
Research Article
Hybrid MPI and CUDA Parallelization for CFD Applications on
Multi-GPU HPC Clusters

Jianqi Lai , Hang Yu, Zhengyu Tian, and Hua Li

College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Correspondence should be addressed to Jianqi Lai; laijianqi_kd@nudt.edu.cn

Received 17 July 2020; Revised 18 August 2020; Accepted 11 September 2020; Published 25 September 2020

Academic Editor: Antonio J. Peña

Copyright © 2020 Jianqi Lai et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Graphics processing units (GPUs) have a strong floating-point capability and a high memory bandwidth in data parallelism and
have been widely used in high-performance computing (HPC). Compute unified device architecture (CUDA) is used as a parallel
computing platform and programming model for the GPU to reduce the complexity of programming. +e programmable GPUs
are becoming popular in computational fluid dynamics (CFD) applications. In this work, we propose a hybrid parallel algorithm
of the message passing interface and CUDA for CFD applications on multi-GPU HPC clusters. +e AUSM+UP upwind scheme
and the three-step Runge–Kutta method are used for spatial discretization and time discretization, respectively. +e turbulent
solution is solved by the K − ω SST two-equation model. +e CPU only manages the execution of the GPU and communication,
and the GPU is responsible for data processing. Parallel execution and memory access optimizations are used to optimize the
GPU-based CFD codes. We propose a nonblocking communication method to fully overlap GPU computing, CPU_CPU
communication, and CPU_GPU data transfer by creating two CUDA streams. Furthermore, the one-dimensional domain
decomposition method is used to balance the workload among GPUs. Finally, we evaluate the hybrid parallel algorithm with the
compressible turbulent flow over a flat plate. +e performance of a single GPU implementation and the scalability of multi-GPU
clusters are discussed. Performance measurements show that multi-GPU parallelization can achieve a speedup of more than 36
times with respect to CPU-based parallel computing, and the parallel algorithm has good scalability.

1. Introduction

+e developments of computer technology and numerical
schemes over the past few decades have made computational
fluid dynamics (CFD) become an important tool in optimal
design of aircraft and analysis of a complex flow mechanism
[1, 2]. A large number of CFD applications can reduce
development costs and provide technical support for re-
search on aircraft. +e scope and complexity of flow
problems in CFD simulation is constantly expanding, and
the grid size required for simulation is increasing. +e rapid
increase in grid size raises the challenge in processing these
huge data on processors in engineering activities and sci-
entific research. Traditionally, multi-CPU parallelization has
been used to accelerate computation. +e low parallelism
degree and power inefficiency may limit the parallel per-
formance of the cluster. Furthermore, the computing time is

largely dependent on the CPU update. In recent years, the
development of the CPU has been a bottleneck due to
limitations in power consumption and heat dissipation
prevention [3, 4].

In CFD applications, a large amount of computing re-
sources are required for complex flow problems, such as
turbulent flow, reactive flow, and multiphase flow. High-
performance computing (HPC) platforms, such as graphics
processing unit (GPU), many integrated core (MIC), and
field programmable gate array (FPGA), exhibit a more ef-
ficient performance in parallel data processing than the CPU
[5–8]. Faster and better numerical solutions can be obtained
by executing CFD codes on these heterogeneous accelera-
tors. In this paper, we discuss GPU parallelization in CFD
applications.

GPU has a strong floating-point capability and a high
memory bandwidth in data parallelism. +e latest Volta

Hindawi
Scientific Programming
Volume 2020, Article ID 8862123, 15 pages
https://doi.org/10.1155/2020/8862123

mailto:laijianqi_kd@nudt.edu.cn
https://orcid.org/0000-0003-3622-6856
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8862123

architecture Tesla V100 GPU has single-precision and
double-precision floating-point operations up to 14 and 7
TFLOP/s, respectively, which are much higher than the
computing performance of the CPU. In 2006, NVIDIA
introduced the compute unified device architecture
(CUDA), which reduces the complexity of programming [9].
+e programmable GPU has evolved into a highly parallel,
multithreaded, many-core processor. +erefore, GPU ac-
celeration is becoming popular in general-purpose com-
puting areas such as molecular dynamics (MD), direct
simulationMonte Carlo (DSMC), CFD, artificial intelligence
(AI), and deep learning (DL) [10–13].

In this work, we focus on the design and optimizations of
a hybrid parallel algorithm of the message passing interface
(MPI) and CUDA for CFD applications on multi-GPU HPC
clusters. +e compressible Navier–Stokes equations are
discretized based on the cell-centered finite volume method.
+e AUSM+UP upwind scheme and the three-step
Runge–Kutta method are used for spatial discretization and
time discretization, respectively. Moreover, the turbulent
solution is solved by the K − ω shear stress transport (SST)
two-equation model. In some previous work, the CPU was
designed to perform data processing together with the GPU
[14, 15]. However, for the latest Pascal or Volta Architecture
GPU, the computing ability of the GPU far exceeds that of
the CPU. In our design of the hybrid parallel algorithm, the
CPU only manages the execution of the GPU and com-
munication, and the GPU is responsible for data processing.
Performance optimization involves three basic strategies:
maximizing parallel execution to achieve maximum utili-
zation, optimizing memory usage to achieve maximum
memory throughput, and optimizing instruction usage to
achieve maximum instruction throughput. In this study,
parallel execution and memory access optimizations are
investigated.

In a multi-GPU HPC cluster, ghost and singularity data
are exchanged between GPUs. Some scholars use CUDA-
aware MPI technology to accelerate the speed of data ex-
change [13, 16–18]. +is technology not only makes it easier
to work with a CUDA+MPI application, but also makes
acceleration technologies like GPUDirect be utilized by the
MPI library. However, the current hardware and software
configurations we used in this paper do not support this
technology. Moreover, the use of the K − ω SST two-
equation turbulence model increases the complexity of
multi-GPU parallel programming. In our design of the
hybrid parallel algorithm, we need to stage GPU buffers
through host memory. Two kinds of communication ap-
proaches are considered: blocking and nonblocking com-
munication methods. +e first approach uses blocking
functions MPI_Bsend and MPI_Recv without overlapping
communication and computations. +e second approach
uses nonblocking functions MPI_Isend and MPI_Irecv with
fully overlapping GPU computations, CPU_CPU commu-
nication, and CPU_GPU data transfer. +e nonblocking
communication method can improve computational effi-
ciency to some extent.

Multi-GPU parallelization can achieve the maximum
performance by balancing the workload among GPUs based

on domain decomposition [3, 19]. +e one-dimensional
(1D), two-dimensional (2D), or three-dimensional (3D)
domain decomposition method is commonly used for GPU
implementation. In this study, we design a 1D domain
decomposition algorithm based on the idea of dichotomy to
load each GPU with approximately the same grid scale.
+ough the 1D method needs to transfer more data, the 2D
or 3D method cannot achieve coalesced memory access in
the global memory, which results in considerable perfor-
mance loss when performing CFD applications on multi-
GPU HPC clusters.

In this paper, the design and optimizations of the parallel
algorithm are closely related to the hardware configurations,
numerical schemes, and computational grids to obtain the
optimal parallel performance on multi-GPU HPC clusters.
+e main contributions of this work are summarized as
follows:

(i) A hybrid parallel algorithm of MPI and CUDA for
CFD applications implemented onmulti-GPUHPC
clusters is proposed, and optimization methods are
adopted to improve the computational efficiency

(ii) Considering the CFD numerical schemes the
nonblocking communication mode is proposed to
fully overlap GPU computing, CPU_CPU com-
munication, and CPU_GPU data transfer by cre-
ating two CUDA streams

(iii) 1D domain decomposition method based on the
idea of dichotomy is used to distribute the problem
among GPUs to balance workload

(iv) +e proposed algorithm is evaluated with the flat
plate flow application, and the parallel performance
has been analyzed in detail

+e remainder of this paper is organized as follows.
Section 2 discusses the related work on GPU-based paralle-
lization and optimizations. Section 3 introduces the governing
equations and numerical schemes. Section 4 describes the
hybrid parallel algorithm and the optimizations in detail.
Section 5 presents the performance evaluation results with the
compressible turbulent flow over a flat plate. Section 6 pro-
vides the conclusion of this work and a plan for future work.

2. Related Work

In the field of CFD, GPU parallelization for CFD applica-
tions has achieved numerous remarkable results. Brandvik
and Pullan [20, 21] developed 2D and 3D GPU solvers for
the compressible, inviscid Euler equations. +is was the first
CFD application to use CUDA for the 2D and 3D solutions.
Ren et al. [22] and Tran et al. [23] proposed a GPU-
accelerated solver for turbulent flow based on the lattice
Boltzmann method, and the solver can achieve a good ac-
celeration performance. Khajeh-Saeed and Blair Perot [24]
and Salvadore et al. [25] accomplished direct numerical
simulation (DNS) of turbulence using GPU-accelerated
supercomputers which demonstrated that scientific prob-
lems could benefit significantly from advanced hardware.
Ma et al. [26] and Zhang et al. [27] performed GPU

2 Scientific Programming

computing of compressible flow problems by a meshless
method. Xu et al. [14] and Cao et al. [28] described hybrid
OpenMP+MPI +CUDA in parallel computing of CFD
codes. +e results showed that the GPU-accelerated algo-
rithm had sustainably improved efficiency and scalability.
Liu et al. [29] proposed a hybrid solution method for CFD
applications on CPU+GPU platforms, and a domain de-
composition method based on the functional performance
model was used to guarantee a balanced workload.

+e optimization techniques are used to enhance the
performance of GPU acceleration. Memory access and
communication are the most critical parts of performance
optimization. A review of optimization techniques and the
specific improvement factors for each technique is shown in
[4].

In a multi-GPU HPC cluster, GPUs cannot communi-
cate directly for data exchange. Meanwhile, the blocking
communication mode is simple to implement but has low
efficiency. Several researchers have designed the non-
blocking communication mode for GPU parallelization to
overlap computation and communication. Mininni et al.
[30] used the nonblocking communicationmethod to realize
the overlap between GPU computation and CPU_CPU
communication. +ibault and Senocak [31], Jacobsen et al.
[32], Castonguay et al. [33], andMa et al. [34] performed the
nonblocking communication method with CUDA streams
to fully overlap GPU computation, CPU_CPU communi-
cation, and CPU_GPU data transfer. +eir results showed
that the full coverage between computation and commu-
nication is the most efficient.

Domain decomposition is a commonly used method in
parallel computing of CFD simulations to balance the
workload in each processor. Jacobsen et al. [32] used 1D
domain decomposition to decompose 3D structured meshes
into a 1D layer. Wang et al. [35] studied the HPC of at-
mospheric general circulation models (ACGMS) in Earth
science research on multi-CPU cores. +ey indicated an
ACGMS model with 1D domain decomposition can only
run in dozens of CPU cores. +erefore, they proposed a 2D
domain decomposition parallel algorithm for this large-scale
problem. Baghapour et al. [36] executed CFD codes on
heterogeneous platforms, with 16 Tesla C2075 GPUs, where
the solver works up to 190 times faster than a single core of a
Xeon E5645 processor. +ey pointed out that 3D domain
decomposition performs best in bandwidth-bound com-
munication and not in latency-bound communication, in
which 1D domain decomposition is preferred. Given that
the GPU computing can execute many threads simulta-
neously and the communication between the CPU and the
GPU becomes a source of high latency with highly non-
contiguous data transfer, the 1D domain decomposition
method is the most suitable for balancing the workload on
GPUs.

3. Governing Equations and
Numerical Schemes

+e simulation of a compressible turbulent flow is con-
sidered. All volume sources are ignored due to body forces

and volumetric heating, and the integral form of the 3D
Navier–Stokes equations for a compressible, viscous, heat-
conduction gas can be expressed as follows [37]:

z

zt
􏽚
Ω

W
�→

dΩ + 􏽉
zΩ

F
→

c − F
→

v􏼒 􏼓dS � 0, (1)

where W
�→

is the vector of conservative variables, F
→

c is the
vector of convective fluxes, and F

→
v is the vector of viscous

fluxes:

W
�→

�

ρ

ρu

ρv

ρw

ρE

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

,

F
→

c �

ρV

ρuV + nxp

ρvV + nyp

ρwV + nzp

ρHV

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

,

F
→

v �

0

nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτzx + nyτzy + nzτzz

nxΘx + nyΘy + nzΘz

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

,

Θx � uτxx + vτxy + wτxz + k
zT

zx
,

Θy � uτyx + vτyy + wτyz + k
zT

zy
,

Θz � uτzx + vτzy + wτzz + k
zT

zz
,

(2)

where ρ is the density, (u, v, w) are the local Cartesian ve-
locity components, p is the static pressure, E is the total
energy, H is the total enthalpy, (nx, ny, nz) are the unit
normal vectors of the cell surface, V is the velocity normal to
the surface element dS, and Θi stands for the work of the
viscous stresses and of the heat conduction, respectively.

+e K − ω shear stress transport (SST) turbulence model
[38] merges the Wilcox’s K − ω model [39] with a high
Reynolds number K − ε model [40]. +e K − ω SST two-
equation turbulence model can be written in integral form as
follows:

Scientific Programming 3

z

zt
􏽚
Ω

W
�→

TdΩ + 􏽉
zΩ

F
→

c,T − F
→

v,T􏼒 􏼓dS � 􏽚
Ω

Q
→

TdΩ, (3)

where W
�→

T is the vector of conservative variables, F
→

c,T and
F
→

v,T represent the convective fluxes and viscous fluxes,
respectively, and Q

→
T is the source term:

W
�→

T �
ρK

ρω
􏼢 􏼣,

F
→

c,T �
ρKV

ρωV
􏼢 􏼣,

F
→

v,T �
nxτ

K
xx + nyτ

K
yy + nzτ

K
zz

nxτ
ω
xx + nyτ

ω
yy + nzτ

ω
zz

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

Q
→

T �
PK − β∗ρωK

Pω − βρω2
+ 1 − F1(􏼁DKω

⎡⎣ ⎤⎦,

(4)

where K is the turbulent kinetic energy and ω is the specific
dissipation rate. +e components of the source term and the
model constant are introduced in [37].

+e spatial discretization of equation (1) on structured
meshes is based on the cell-centered finite volume method.
+e upwind AUSM+UP scheme [41], which has a high
resolution and computational efficiency for all speeds, is
used to compute the convective fluxes. Second-order ac-
curacy is achieved through the monotone upstream-
centered schemes for conservation law (MUSCL) [42] with
Van Albada et al. limiter function [43].+e viscous fluxes are
solved by the central scheme, and turbulence is modeled
with the K − ω SST two-equation model.

+e solution of equation (1) employs a separate dis-
cretization in space and in time, so that space and time
integration can be treated separately. For the control volume
ΩI,J,K, equation (1) is written in the following form:

ΩI,J,K

dW
�→

I,J,K

dt
� R

→
I,J,K. (5)

+e three-step Runge–Kutta method [44] with third-
order accuracy has good data parallelism and lower storage
overhead, which is used for temporal discretization of
equation (5):

W
�→(0)

I,J,K � W
�→(n)

I,J,K,

W
�→(1)

I,J,K � W
�→(0)

I,J,K +
ΔtI,J,K

ΩI,J,K

R
→(0)

I,J,K,

W
�→(2)

I,J,K �
3
4

W
�→(0)

I,J,K +
1
4

W
�→(1)

I,J,K +
1
4
ΔtI,J,K

ΩI,J,K

R
→(1)

I,J,K,

W
�→(3)

I,J,K �
1
3

W
�→(0)

I,J,K +
2
3

W
�→(1)

I,J,K +
2
3
ΔtI,J,K

ΩI,J,K

R
→(1)

I,J,K,

W
�→(n+1)

I,J,K � W
�→(3)

I,J,K,

(6)

where ΔtI,J,K is the time step of control volume ΩI,J,K and
R
→

I,J,K stands for the residual.

4. Parallel Algorithm

4.1. Algorithm Description. +e GPU implementation uses
CUDA. CUDA is a general-purpose parallel computing
platform and programming model for GPUs. CUDA pro-
vides a programming environment for high-level languages,
such as C/C++, Fortran, and Python. For NVIDIA GPUs,
CUDA has wider universality than other general pro-
gramming models, such as OpenCL and OpenACC
[9, 45–47]. In this study, we choose CUDA as the hetero-
geneous model to design GPU-accelerated parallel codes for
CFD on GTX 1070 and Tesla V100 GPU. A complete GPU
code consists of seven parts, namely, getting the device,
allocating memory, data transfer from the host to the device,
kernel execution, data transfer from the device to the host,
free memory space, and resetting the device. In the CUDA
programming framework, the execution of a GPU code can
be divided into host codes and device codes, which are
executed on the CPU and the GPU, respectively.+e code on
the device side calls the kernel functions to execute on the
GPU. +e kernel corresponds to a thread grid, which
consists of several thread blocks. One thread block contains
multiple threads, and a thread is the smallest execution unit
of a kernel. +reads within a block can cooperate by sharing
data through shared memory. Although the same instruc-
tions are executed on the threads, the processed data are
different; this mode of execution is called the single in-
struction multiple thread (SIMT).

+e GPU is rich in computing power but poor in
memory capacity, whereas the CPU is the opposite. To run
CFD applications on a GPU, we must fully utilize the CPU
and the GPU. +us, the GPU is responsible for executing
kernel functions, and the CPU only manages the execution
of the GPU and communication. In a GPU parallel com-
puting program, a thread is the smallest unit for kernel
execution. +reads are executed concurrently in the
streaming multiprocessor (SM) as a warp, and a warp
contains 32 threads. +erefore, the optimal number of
threads in each thread block is an integer multiple of 32. For
current devices, the maximum number of threads on a
thread block is 1024. +e greater the number of threads on
each thread block, the smaller the number of thread blocks
an SM can call.+is condition will diminish the advantage of
the GPU in utilizing multithreading to hide the delays in
memory acquisition and instruction execution due to the
issue of thread synchronization. Too few threads in the
thread block will result in idle threads and thereby insuf-
ficient device utilization. In this study, a thread block size of
256 is used. +e number of thread blocks is determined by
the scale of workload to ensure that each thread is loaded
with the computation of a grid cell.

MPI and OpenMP are two application programming
interfaces that are widely used for running parallel codes on
a multi-GPU platform. OpenMP can be utilized within a
node for fine-grained parallelization using shared memory,
and MPI works on shared and distributed memories and is
widely used for massive parallel computations. In general,
MPI exhibits performance loss compared with OpenMP but
is relatively easy to perform on different types of hardware

4 Scientific Programming

and has good scalability [48, 49]. In this work, MPI-based
communication for shared or distributed memory is hy-
bridized with CUDA to implement large-scale computation
on multi-GPU HPC clusters. +e parallel algorithm for CFD
onmulti-GPU clusters based onMPI and CUDA is shown in
Algorithm 1. It is noted that “Block_size” and “+read_size”
stand for the number of thread blocks and the thread block
size, respectively. At the beginning of the calculation, the
MPI_Init function is called to enter the MPI environment.
+e Device_Query function is called to run the GPU. +en,
data are transferred from the CPU to the GPU using the
cudaMemcpyHostToDevice function, and a series of kernel
functions, including the processing of boundary, the com-
puting of local time step, the calculation of gradient of
primitive variables, the calculation of fluxes, and the update
of primitive variables, are executed on the GPU. Among
these kernel functions, the calculation of gradients and
fluxes consumes the largest amount of time. For multi-
GPU parallel computing, data exchange is required
between GPUs, and the Primitive_Variables_Exchange and
Grad_Primitive_Variables_Exchange functions are used to
exchange the primitive variables and their gradients, re-
spectively. After the kernel iteration ends, the cuda-
MemcpyDeviceToHost function is called to transfer the data
from the GPU to the CPU for postprocessing. Finally, the
MPI_Finalize function is called to exit theMPI environment.

+e data transfer is essential in multi-GPU parallel
computing. In this paper, the exchange of data is done by the
CPUs controlling the GPUs. +e data transfer process be-
tween GPUs is shown in Figure 1. First, we call the cuda-
MemcpyDeviceToHost function to transfer data from the
device to the relevant host through the PCI-e bus. +en, the
data are transferred between CPUs with the MPI. Finally, we
call the cudaMemcpyHostToDevice function to transfer the
data from the host to the target device through the PCI-e
bus.

4.2. Algorithm Optimizations. +e performance of the GPU
parallel program can be optimized using two main methods:
parallel execution optimization for the highest degree of
parallelism utilization and memory access optimization for
maximum memory throughput.

4.2.1. Parallel Execution Optimization. CUDA programs
have two execution modes: synchronous mode and asyn-
chronousmode. Synchronous modemeans that control does
not return to the host until the current kernel function is
executed. Asynchronous modemeans that control returns to
the host immediately once the kernel function is started.
+erefore, the host can start new kernel functions and
perform data exchange simultaneously. Streams are se-
quential sequences of commands that can be managed by the
CUDA program to control device-level parallelism. Com-
mands in one stream are executed in order, but streams from
different commands can be executed in parallel. +us, the
concurrent execution of multiple kernel functions, which is
called asynchronous concurrent execution, can be imple-
mented via streams. For the massive parallel computing of

CFD on a GPU, a series of kernel functions needs to be
executed.+e concurrent execution of these kernel functions
can be implemented via streams. CUDA creates and destroys
streams through the cudaStreamCreate and cudaS-
treamDestroy functions, and synchronization between
threads can be achieved through the cudaDeviceSynchronize
function. +e implementation of the asynchronous con-
current execution algorithm of CFD on the GPU is shown in
Algorithm 2.+e initialization of the gradients and residuals,
the boundary condition processing, and the time step cal-
culation are concurrently executed by creating a stream. In
addition, the calculation of the inviscid fluxes can also be
concurrently executed with the calculation of the gradients
of primitive variables.

4.2.2. Memory Access Optimization. +e data transfer be-
tween the host and the device is realized via the PCI-e bus.
+e transmission speed is considerably lower than the GPU
bandwidth. +erefore, the application should reduce the
data exchange between the host and the device as much as
possible. In this work, the kernel iteration is completely
performed on the GPU, and data transmission only occurs at
the beginning and end of the kernel iteration. Intermediate
variables can be created in the data memory and released
after the calculation is completed. However, for multi-GPU
parallel computing, data transfer is inevitable between the
host and the device due to the features of communication
between GPUs.

+e GPU provides different levels of memory structure:
global memory, texture memory, shared memory, and the
registers. +is storage mode ensures that the GPU can re-
duce the data transfer between the global memory and the
device.+e global memory locates in the video memory with
a large access delay.+erefore, the maximum bandwidth can
only be obtained by employing the coalescedmemory access.
Texture memory is also part of the video memory. Com-
pared with the global memory, the texture memory can use
the cache to improve the data access speed and obtain a high
bandwidth without strictly observing the conditions of
coalesced memory access. +e shared memory has a
bandwidth much higher than that of the global and texture
memories. Data sharing among threads in the SM can be
realized by storing the frequently used data in the shared
memory. +e register is the exclusive storage type of the
thread, which stores the variables declared in the kernel to
accelerate data processing. +e GPU computing efficiency

GPU_1

MPI CPU_2CPU_1

GPU_2

Figure 1: +e data transfer process between GPUs.

Scientific Programming 5

can be improved by properly using the texture memory, the
shared memory, and the registers and reducing the number
of accesses to the global memory.

4.3. Nonblocking Communication Mode. When performing
the parallel computing of CFD on multi-GPU HPC clusters,
the kernel iteration process needs to exchange data on the
boundary, including primitive variables and their gradients.
+e primitive variables U

→
� ρ u v w p K ω􏼂 􏼃

T are
chosen to ensure that as small data as possible are ex-
changed. In this process, CPU_CPU communication and
CPU_GPU data transfer exist. Optimizing the communi-
cation between GPUs significantly affects the performance of
multi-GPU parallel systems.

+e traditional method is the blocking communica-
tion mode, as shown in Figure 2. Algorithm 3 shows the
algorithm of the blocking communication mode. +e
blocking communication mode calls the MPI_Bsend and

MPI_Recv functions for data transmission and reception,
respectively. In the blocking communication mode, GPU
computing, CPU_CPU communication, and CPU_GPU
data transfer are completely separated. +e communica-
tion time in this communication mode is a pure overhead,
which seriously reduces the efficiency of the parallel
system.

+e nonblocking communication mode shields the
communication time with the computing time by over-
lapping the computation and the communication, as shown
in Figure 3. Algorithm 4 shows the algorithm of the non-
blocking communication mode. +e overlaps among GPU
computing, CPU_CPU communication, and CPU_GPU
data transfer are achieved by creating two CUDA streams.
When exchanging primitive variables, stream 0 is used for
CPU_GPU data transfer and stream 1 is used for boundary
condition processing and time step calculation. When the
gradients of the primitive variables are exchanged, stream 1
is used to calculate the inviscid fluxes. +is can be done

(1) MPI_Init (&argc, &argv);
(2) Device_Query ();
(3) cudaMemcpy (d_a, h_a, sizeof(float)∗n, cudaMemcpyHostToDevice);
(4) //Kernel execution start
(5) for i� 0; i<max_step; i++
(6) Boundary_Processing_GPU<<<Block_size, +read_size>>> ();
(7) Time_Step_GPU<<<Block_size, +read_size>>> ();
(8) Primitive_Variables_Exchange ();
(9) Grad_Primitive_Variables_GPU<<<Block_size, +read_size>>> ();
(10) Grad_primitive_Variables_Exchange ();
(11) Flux_GPU<<<Block_size, +read_size>>> ();
(12) Primitive_Variables_Update_GPU<<<Block_size, +read_size>>> ();
(13) end for
(14) //kernel execution end
(15) cudaMemcpy (h_a, d_a, sizeof(float)∗n. cudaMemcpyDeviceToHost);
(16) Flow_post-processing ();
(17) MPI_finalize ();

ALGORITHM 1: Parallel algorithm for CFD on multi-GPU HPC clusters.

(1) cudaStreamCreate (&stream[j]);
(2) Boundary_Processing_GPU<<<Block_size, +read_size, stream[0]>>>();
(3) Time_Step_GPU<<<Block_size, +read_size, stream[1]>>>();
(4) Grad_Initial<<<Block_Size, +read_Size, stream[2]>>>();
(5) RHS_Initial<<<Block_Size, +read_Size, stream[3]>>>();
(6) cudaDeviceSynchronize ();
(7) Grad_Primitive_Variables_GPU<<<Block_size, +read_size, stream[0]>>>();
(8) Convective_Flux_GPU<<<Block_size, +read_size, stream[1]>>>();
(9) cudaDeviceSynchronize ();
(10) Viscous_Flux_GPU<<<Block_size, +read_size, stream[0]>>>();
(11) RHS_GPU<<<Block_size, +read_size, stream[0]>>>();
(12) Primitive_Variables_Update_GPU<<<Block_size, +read_size, stream[0]>>>();
(13) cudaDeviceSynchronize ();
(14) cudaStreamDestroy (stream[j]);

ALGORITHM 2: Asynchronous concurrent execution algorithm of CFD on the GPU.

6 Scientific Programming

because the computations of the inviscid fluxes do not
depend on the values being transferred among GPUs. +e
exchange of the gradients to the host can start as soon as the
data are packaged by using stream 0. +en, the data
transmission between CPUs is implemented with MPI. At
the same time, the Convective_Flux_GPU function is exe-
cuted by using stream 1. Finally, the target device can receive
the data from the host with stream 0. +erefore, the overlaps
among GPU computing, CPU_CPU communication, and
CPU_GPU data transfer can be realized. In this work, the
nonblocking communication mode based on multistream
computing is used to optimize the communication of GPU
parallel programs. +e nonblocking communication mode
calls the MPI_Isend and MPI_Irecv functions for data
transmission and reception, respectively, and the MPI_-
Waitall function to await the communication completion
and query the completion status. +e cudaMemcpyAsync
function is used for asynchronous data transmission.

4.4. Domain Decomposition and Load Balancing. In the
multi-GPU parallel computing, the computational grid
needs to be partitioned. Considering the load balancing
problem, this work uses the 1D domain decomposition
method to load each GPU with approximately the same
number of computational grid. +e 1D domain decompo-
sition is shown in Figure 4. +is method adopts the concept
of the bisection method, which is simple to implement and
facilitates load balancing.+e dichotomy algorithm is shown
in Algorithm 5.

Meanwhile, the coalesced memory access is easy to
implement due to its boundary data alignment for ef-
fectively improving the efficiency of boundary data
communication. When the nonblocking communication
mode is used, the data in the GPU are divided into three
parts (top, middle, and bottom). +e top and bottom
parts of the data need to be exchanged with other devices.

+e data transfer of the top and bottom parts can occur
simultaneously with the computation of the middle
portion.

5. Results and Discussion

5.1. Test Case: Flat Plate Flow. +e supersonic flow over a flat
plate is a well-known benchmark problem for compressible
turbulent flow of CFD applications [50, 51].+is test case has
been studied by many researchers and is widely used to
verify and validate CFD codes.

+e free stream Ma number is 4.5, the Reynolds number
based on the unit length is 6.43 × 106, the static temperature
is 61.1 K, and the angle of attack is 0°. No-slip boundary
condition is applied at the stationary flat plate surface, which
is also assumed to be adiabatic.

+e supersonic flat plate boundary layer problem is
solved on various meshes, namely, mesh 1 (0.72 million),
mesh 2 (1.44 million), mesh 3 (2.88 million), mesh 4 (5.76
million), mesh 5 (11.52 million), mesh 6 (23.04 million),
mesh 7 (46.08 million), and mesh 8 (92.16 million).

5.2. Hardware Environment and Benchmarking. In this
work, two types of devices, namely, GTX 1070 GPU and
Tesla V100 GPU, are introduced. +ese two devices were
introduced by NVIDIA Corporation. Table 1 shows the
main performance parameters of GPUs. For these types
of devices, the single-precision floating-point operations
far exceed double-precision ones. +erefore, the single-
precision data for GPU parallelization are used. +e
performance of the latest Turing architecture Tesla V100
GPU is greatly improved compared with the previous
architecture GPU.

In this study, we use CUDA version 10.1, Visual Studio
2017 for C code andMPICH21.4.1 for MPI communication.

Step 1 … Pack buffer Data transfer
GPU to CPU

Data transfer
CPU to GPU

… Step n

Time

CPU

GPU

Data transfer
CPU to CPU

Step k

Figure 2: Blocking communication mode.

(1) if device_count>1 then
(2) cudaMemory (h_a, d_a, sizeof(float)∗n, cudaMemcpyDeviceToHost);
(3) MPI_Bsend (∗buf, int count, MPI_Datatype, int dest, int tag,MPI_COMM_WORLD);
(4) MPI_Recv (∗buf, int count, MPI_Datatype, int source, int tag,MPI_COMM_WORLD, MPI_Status ∗n,

cudaMemcpyHostToDevice);
(5) cudaMemcpy (d_a, h_a, sizeof(float)∗n, cudaMemcpyHostToDevice);
(6) end if

ALGORITHM 3: Blocking communication mode algorithm.

Scientific Programming 7

Step 1 … Pack buffer Data transfer
device to host

Data transfer
host to device … Step n

Data transfer
host to host

Step k

Time

CPU

GPU
Stream 0

GPU
Stream 1

Overlap GPU computation/CPU-CPU
communication/CPU-GPU data transfer

Figure 3: Nonblocking communication mode.

(1) if device_count>1 then
(2) cudaMemcpyAsync (h_a, d_a, sizeof(float)∗n, cudaMemcpyDeviceToHost, stream[0]);
(3) MPI_Isend (∗buf, int count, MPI_Datatype, int dest, int tag, MPI_COMM_WORLD, MPI_Request ∗request);
(4) //Primitive_Variables_Exchange;
(5) Boundary_Processing_GPU<<<Block_size, +read_size, stream[1]>>> ();
(6) Time_Step_GPU<<<Block_size, +read_size, stream[1]>>> ();
(7) //Grad_Primitive_Variables_Exchange;
(8) Convective_Flux_GPU<<<Block_size, +read_size, stream[1]>>> ();
(9) MPI_Irecv (∗buf, int count, MPI_Datatype, int source, int tag, MPI_COMM_WORLD, MPI_Status ∗status, MPI_Request
∗request);

(10) MPI_Waitall ();
(11) cudaMemcpyAsync (d_a, h_a, sizeof(float)∗n, cudaMemcpyHostToDevice, stream[0]);
(12) end if

ALGORITHM 4: Nonblocking communication mode algorithm.

GPU
0

GPU
1

GPUN-2

GPUN-1

Figure 4: 1D domain decomposition method.

(1) for i� 1; i< partition_number; i++
(2) a�min_XYZ; b�max_XYZ; xyz_current� 0.5∗(min_XYZ+max_XYZ);
(3) while abs (dis)> 1.0exp-10 do
(4) dis�(current_count-average_count)/average_count;
(5) if dis>0.0 then
(6) b� xyz_current;
(7) else
(8) a� xyz_current;
(9) end if
(10) xyz_current� 0.5∗(a+ b);
(11) end while
(12) end for

ALGORITHM 5: +e dichotomy algorithm.

8 Scientific Programming

In addition, a node contains one Intel Xeon E5-2670 CPU at
2.6GHz with eight cores and four GPUs.

5.3. Performance Analysis. Speedup (SP) and parallel effi-
ciency (PE) are important parameters for measuring the
performance of a hybrid parallel algorithm. Speedup and
parallel efficiency are defined as follows [9, 52]:

SP �
tCPU

tGPU
,

PE �
W2/N2(􏼁

W1/N1(􏼁
×

T1

T2
,

(7)

where tCPU is the runtime of one iteration step for one CPU
with eight cores, tGPU is the runtime of one iteration step for
GPUs, W1 and W2 are the problem sizes, N1 and N2 are the
number of GPUs, and T1 and T2 are the computation times.
If W2 � W1, then the problem size remains constant when
the number of GPUs is increased. +e parallel efficiency of
strong scalability is (N1T1/N2T2). If (W2/N2) � (W1/N1),
then the problem size grows proportionally with the number
of GPUs; thus, the problem size remains constant in each
GPU. +e parallel efficiency of weak scalability is (T1/T2).
Here, subscript 1 denotes a single GPU and subscript 2
stands for multi-GPU HPC clusters. +e runtime of one
iteration step is achieved by averaging the execution time of
ten thousand time steps.

5.3.1. Single GPU Implementation. For a single GPU
implementation, the time required for the calculation of one
iteration step is provided in Table 2 (time is given in mil-
liseconds). Figure 5 shows that the speedup of a single GPU
increases with the increase in grid size. For the Tesla V100
GPU, the speedup reaches 135.39 for mesh 1 and 182.11 for
mesh 8.+us, the Tesla V100 GPU has a considerably greater
speedup than the GTX 1070 GPU. GPU parallelization can
greatly improve the computational efficiency compared with
CPU-based parallel computing. For meshes 7 and 8, the
GTX 1070 GPU cannot afford such a large amount of
calculations because of the limitation of device memory. For
our GPU codes, 1 GB of device memory can load approx-
imately 3 million grid cells. As the grid size is increased, the
speedup of the GPU code increases gradually. +e reason is
that, as the grid size increases, the proportion of kernel
execution increases with those of data arrangement and

communication. Meanwhile, the growth rate of speedup is
gradually decreasing because of the limitation of the number
of SMs and CUDA cores.

5.3.2. Scalability. In this section, the blocking communi-
cation mode is used to study the scalability of GPU codes.
Here, the performance of GTX 1070 and Tesla V100 multi-
GPU HPC clusters is discussed.

Strong scaling tests are performed for meshes 1 to 8 on
multi-GPU HPC clusters. Tables 3 and 4 provide the time
required for the calculation of one iteration step for multi-
GPU implementation (time is given in milliseconds).
Figures 6 and 7 show the strong speedup and parallel effi-
ciency, respectively. In Figure 6, the strong speedup is shown
for different grid sizes. Evidently, a large grid size can reach a
high speedup. For GTX 1070 and Tesla V100 multi-GPU
clusters, the speedups of four GPUs reach 172.59 and 576.49,
respectively. +ese values are far greater than the speedups
achieved by a single GPU. +us, a high degree of strong
scaling performance is maintained. Multi-GPU paralleliza-
tion can considerably improve the computational efficiency
with the increase in grid size. However, multi-GPU parallel
computing does not show obvious advantages when the grid
size is small.+is can be explained by the fact that the relative
weight of data exchange is inversely proportional to the grid
size. GPU is specialized for compute-intensive, highly
parallel computation. In Figure 7, the strong parallel effi-
ciency is shown for different grid sizes. +is result is con-
sistent with the change law of speedup; that is, the parallel
efficiency increases with the increase in grid size, and the
strong parallel efficiency performance of GTX 1070 multi-
clusters is slightly better than that of Tesla V100 GPUs. For
mesh 8, the strong parallel efficiency of four Tesla V100
GPUs is close to 80%. In addition, a larger number of GPUs
indicate a lower parallel efficiency because of the increase in
the amount of data transfer. Figure 8 shows the amount of
memory communications for parallel computing with four
GPUs. As the grid size increases, the amount of memory
communication increases proportionally.

+e weak scaling tests for parallel efficiency are shown in
Figure 9, and the grid size loaded on each block remains
constant. As expected, the parallel efficiency decreases as the
number of GPUs increases because the amount of data
exchange increases with the increase in the number of GPUs.
For the grid size of mesh 6 on each GTX 1070 GPU and Tesla
V100 GPU, the weak parallel efficiency of four GPUs can

Table 1: Main performance parameters of GPUs.

GTX 1070 Tesla V100
Date introduced June 2016 January 2018
Architecture Pascal Volta
Computation capability 6.1 7.0
Device memory (GB) 8 32
Streaming multiprocessors 15 80
Stream processors 1,920 5,120
Single precision (TFLOP/S) 6 14
Double precision (TFLOP/S) 0.2 7
Memory bandwidth (GB/s) 256 900

Scientific Programming 9

Table 2: +e runtime for one CPU and a single GPU.

No. CPU (ms) GTX 1070 (ms) Tesla V100 (ms)
Mesh 1 567.29 15.69 4.19
Mesh 2 1,170.6 30.61 8.27
Mesh 3 2,619.41 62.75 16.9
Mesh 4 5,605.29 120.25 33.18
Mesh 5 11,258.58 236.29 64.88
Mesh 6 22,850.69 476.12 128.98
Mesh 7 46,211.38 — 256.72
Mesh 8 93,322.76 — 512.44

200

160

120

80

40

0
0.72 1.44 2.88 5.76 11.52 23.04 46.08 92.16

SP

GTX 1070
Tesla V100

Grid size (million)

Figure 5: +e speedup of a single GPU for different number of grid cells.

Table 3: +e runtime for GTX 1070 multi-GPU clusters.

No. Two GPUs (ms) +ree GPUs (ms) Four GPUs (ms)
Mesh 1 12.62 11.27 10.38
Mesh 2 20.86 18.19 16.01
Mesh 3 35.56 28.19 23.38
Mesh 4 67.55 52.43 42.33
Mesh 5 126.93 96.24 77.15
Mesh 6 252.01 187.84 144.43
Mesh 7 499.02 369.68 276.86
Mesh 8 — — 540.73

Table 4: +e runtime for Tesla V100 multi-GPU clusters.

No. Two GPUs (ms) +ree GPUs (ms) Four GPUs (ms)
Mesh 1 3.85 3.41 3.01
Mesh 2 7.16 6.58 5.86
Mesh 3 13.78 11.82 9.31
Mesh 4 23.99 20.43 15.8
Mesh 5 41.59 32.22 25.71
Mesh 6 78.69 58.81 45.16
Mesh 7 151.78 108.85 83.92
Mesh 8 295.13 208.72 161.88

10 Scientific Programming

reach 88.05% and 79.68%, respectively. +us, a high degree
of weak scaling performance is maintained.

5.3.3. Performance of Nonblocking Mode between GPUs.
In this section, the nonblocking communication mode is
used to study the performance of GTX 1070 GPUs and Tesla
V100 multi-GPU HPC clusters. As an example, mesh 6 is
investigated on one node with four GPUs to compare the
performance of the two communication modes.

Figures 10 and 11 show the strong scalability perfor-
mance of the nonblocking communication mode compared
with the blocking communication mode. Figure 12 shows
the weak parallel efficiency of the two methods. +e results
show that the nonblocking communication mode can shield
the communication time with the computing time by
overlapping the communication and the computation. For
four GPUs, the strong speedups of GTX 1070 and Tesla V100
multi-GPUs increase by 15.15% and 19.63%, respectively. In
addition, the weak parallel efficiency remains above 87%

0

40

80

120

160

200

0.72 1.44 2.88 5.76 11.52 23.04 46.08 92.16
Grid size (million)

St
ro

ng
 S

P

Single GPU
Two GPUs

Three GPUs
Four GPUs

(a)

Single GPU
Two GPUs

Three GPUs
Four GPUs

0

100

200

300

400

500

600

0.72 1.44 2.88 5.76 11.52 23.04 46.08 92.16
Grid size (million)

St
ro

ng
 S

P
(b)

Figure 6: +e strong speedup of multi-GPU clusters. (a) GTX 1070. (b) Tesla V100.

0

0.2

0.4

0.6

0.8

1

1.2

0.72 1.44 2.88 5.76 11.52 23.04
Grid size (million)

St
ro

ng
 P

E

Single GPU
Two GPUs

Three GPUs
Four GPUs

(a)

0

0.2

0.4

0.6

0.8

1

1.2

0.72 1.44 2.88 5.76 11.52 23.04 46.08 92.16
Grid size (million)

St
ro

ng
 P

E

Single GPU
Two GPUs

Three GPUs
Four GPUs

(b)

Figure 7: +e strong parallel efficiency of multi-GPU clusters. (a) GTX 1070. (b) Tesla V100.

Scientific Programming 11

120

100

80

60

40

20

0
0.72 1.44 2.88 5.76 11.52 23.04 46.08 92.16

Grid size (million)

C
om

m
un

ic
at

io
n

am
ou

nt
 (M

B)

Figure 8: +e amount of memory communications.

0

0.2

0.4

0.6

0.8

1

1.2

0.72 1.44 2.88 5.76 11.52 23.04
Grid size (million)

W
ea

k
PE

Single GPU
Two GPUs

Three GPUs
Four GPUs

(a)

0

0.2

0.4

0.6

0.8

1

1.2

0.72 1.44 2.88 5.76 11.52 23.04 46.08 92.16
Grid size (million)

W
ea

k
PE

Single GPU
Two GPUs

Three GPUs
Four GPUs

(b)

Figure 9: +e weak parallel efficiency of multi-GPU clusters. (a) GTX 1070. (b) Tesla V100.

0

Blocking mode
Nonblocking mode

250

200

150

100

50

St
ro

ng
 S

P

1 2 3 4
Number of GPUs

(a)

Blocking mode
Nonblocking mode

1 2 3 4
Number of GPUs

700

600

500

400

300

200

100

0

St
ro

ng
 S

P

(b)

Figure 10: +e strong speedup of multi-GPU clusters with different communication modes. (a) GTX 1070. (b) Tesla V100.

12 Scientific Programming

with the nonblocking communication mode. Moreover, the
GPU-based parallelization with Tesla V100 GPUs can ex-
hibit a better performance improvement than the GTX 1070
multi-GPU HPC clusters. +is result is because the relative
weight of the communication time of Tesla V100 GPUs is
higher.

6. Conclusions

In this work, a hybrid parallel algorithm of MPI and CUDA
for CFD applications on multi-GPU HPC clusters has been
proposed. Optimization methods have been adopted to
achieve the highest degree of parallelism utilization and

maximummemory throughput. In this study, a thread block
size of 256 is used. +e number of thread blocks is deter-
mined by the scale of workload to ensure that each thread is
loaded with the computation of a grid cell. For a single GPU
implementation, two types of devices have been discussed.
We obtain an acceleration ratio of more than 36 times, which
indicates that GPU parallelization can greatly improve the
computational efficiency compared with CPU-based parallel
computing. Meanwhile, a large grid size can reach a high
speedup due to the increase in the proportion of kernel
executions compared with those of data arrangement and
communication. +e speedups of four GPUs reach 172.59
and 576.49 for GTX 1070 GPUs and Tesla V100 multi-GPU

Number of GPUs

St
ro

ng
 P

E

1 2 3 4
0.7

0.8

0.9

1

Blocking mode
Nonblocking mode

(a)

Blocking mode
Nonblocking mode

Number of GPUs

St
ro

ng
 P

E

1 2 3 4
0.7

0.8

0.9

1

(b)

Figure 11: +e strong parallel efficiency of multi-GPU clusters with different communication modes. (a) GTX 1070. (b) Tesla V100.

Number of GPUs

W
ea

k
PE

1 2 3 4

0.8

0.9

1

Blocking mode
Nonblocking mode

(a)

Blocking mode
Nonblocking mode

Number of GPUs

W
ea

k
PE

1 2 3 4

0.8

0.9

1

(b)

Figure 12: +e weak parallel efficiency of multi-GPU clusters with different communication modes. (a) GTX 1070. (b) Tesla V100.

Scientific Programming 13

HPC clusters, respectively. +e strong and weak parallel
efficiency are maintained at a high level when the grid size is
at a large value. +us, the parallel algorithm has good strong
and weak scalability. Nonblocking communication mode
has been proposed to fully overlap GPU computing,
CPU_CPU communication, and CPU_GPU data transfer.
For four GPUs, the strong speedups of GTX 1070 and Tesla
V100 multi-GPUs increase by 15.15% and 19.63%, respec-
tively. In addition, the weak parallel efficiency remains above
87% with the nonblocking communication mode.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is work was supported by the National Natural Science
Foundation (NNSF of China) project (no. 11472004). Also,
the first author would like to thank Dr. Feng Liu.

References

[1] Z. J. Wang, K. Fidkowski, R. Abgrall et al., “High-order CFD
methods: current status and perspective,” International
Journal for Numerical Methods in Fluids, vol. 72, no. 8,
pp. 811–845, 2013.

[2] D. Zhang, S. Tang, and J. Che, “Concurrent subspace design
optimization and analysis of hypersonic vehicles based on
response surface models,” Aerospace Science and Technology,
vol. 42, pp. 39–49, 2015.

[3] A. Afzal, Z. Ansari, A. R. Faizabadi, and M. K. Ramis,
“Parallelization strategies for computational fluid dynamics
software: state of the art review,” Archives of Computational
Methods in Engineering, vol. 24, no. 2, pp. 337–363, 2017.

[4] K. E. Niemeyer and C.-J. Sung, “Recent progress and chal-
lenges in exploiting graphics processors in computational
fluid dynamics,”Be Journal of Supercomputing, vol. 67, no. 2,
pp. 528–564, 2014.

[5] A. Moreno, J. J. Rodŕıguez, D. Beltrán, A. Sikora, J. Jorba, and
E. César, “Designing a benchmark for the performance
evaluation of agent-based simulation applications on HPC,”
Be Journal of Supercomputing, vol. 75, no. 3, pp. 1524–1550,
2019.

[6] M. Rodriguez and L. Brualla, “Many-integrated core (MIC)
technology for accelerating Monte Carlo simulation of ra-
diation transport: a study based on the code DPM,” Computer
Physics Communications, vol. 225, pp. 28–35, 2018.

[7] N. Cadenelli, Z. Jaks̆ić, J. Polo, and D. Carrera, “Consider-
ations in using OpenCL on GPUs and FPGAs for throughput-
oriented genomics workloads,” Future Generation Computer
Systems, vol. 94, pp. 148–159, 2019.

[8] J. Satheesh Kumar, G. Saravana Kumar, and A. Ahilan, “High
performance decoding aware FPGA bit-stream compression
using RG codes,” Cluster Computing, vol. 22, no. S6,
pp. 15007–15013, 2019.

[9] NVIDIA Corporation, NVIDIA: CUDA C Programming
Guide 10.2, NVIDIA Corporation, Santa Clara, CA, USA,

2019, https://docs.nvidia.com/cuda/cuda-c-best-practices-
guide/.

[10] M. S. Friedrichs, P. Eastman, V. Vaidyanathan et al., “Ac-
celerating molecular dynamic simulation on graphics pro-
cessing units,” Journal of Computational Chemistry, vol. 30,
no. 6, pp. 864–872, 2009.

[11] S. S. Sawant, O. Tumuklu, R. Jambunathan, and D. A. Levin,
“Application of adaptively refined unstructured grids in
DSMC to shock wave simulations,” Computers & Fluids,
vol. 170, pp. 197–212, 2018.

[12] G. Nguyen, S. Dlugolinsky, M. Bobák et al., “Machine
Learning and Deep Learning frameworks and libraries for
large-scale data mining: a survey,” Artificial Intelligence Re-
view, vol. 52, no. 1, pp. 77–124, 2019.

[13] A. A. Awan, K. V. Manian, C. H. Chu, H. Subramoni, and
D. K. Panda, “Optimized large-message broadcast for deep
learning workloads: MPI, MPI+NCCL, or NCCL2?” Parallel
Computing, vol. 85, pp. 141–152, 2009.

[14] C. Xu, X. Deng, L. Zhang et al., “Collaborating CPU and GPU
for large-scale high-order CFD simulations with complex
grids on the TianHe-1A supercomputer,” Journal of Com-
putational Physics, vol. 278, pp. 275–297, 2014.

[15] S. Iturriaga, S. Nesmachnow, F. Luna, and E. Alba, “A parallel
local search in CPU/GPU for scheduling independent tasks on
large heterogeneous computing systems,” Be Journal of
Supercomputing, vol. 71, no. 2, pp. 648–672, 2015.

[16] E. Calore, A. Gabbana, J. Kraus, E. Pellegrini, S. F. Schifano,
and R. Tripiccione, “Massively parallel lattice-Boltzmann
codes on large GPU clusters,” Parallel Computing, vol. 58,
pp. 1–24, 2016.

[17] J. Castagna, X. Guo, M. Seaton, and A. O’Cais, “Towards
extreme scale dissipative particle dynamics simulations using
multiple gpgpus,” Computer Physics Communications,
vol. 251, p. 107159, 2020.

[18] J. Kraus, “An introduction to CUDA-Aware MPI,” 2013,
https://developer.nvidia.com/blog/introduction-cuda-aware-
mpi/.71.

[19] D. Li, C. Xu, B. Cheng, M. Xiong, X. Gao, and X. Deng,
“Performance modeling and optimization of parallel LU-SGS
on many-core processors for 3D high-order CFD simula-
tions,” Be Journal of Supercomputing, vol. 73, no. 6,
pp. 2506–2524, 2017.

[20] T. Brandvik and G. Pullan, “Acceleration of a two-
dimensional Euler flow solver using commodity graphics
hardware,” Proceedings of the Institution of Mechanical En-
gineers, Part C: Journal of Mechanical Engineering Science,
vol. 221, no. 12, pp. 1745–1748, 2007.

[21] T. Brandvik and G. Pullan, “Acceleration of a 3D Euler solver
using commodity graphics hardware,” in Proceedings of the
46th AIAA Aerospace Sciences Meeting and Exhibit, Reno,
NEV, USA, January 2008.

[22] F. Ren, B. Song, Y. Zhang, and H. Hu, “A GPU-accelerated
solver for turbulent flow and scalar transport based on the
Lattice Boltzmann method,” Computers & Fluids, vol. 173,
pp. 29–36, 2018.

[23] N. Tran, M. Lee, and S. Hong, “Performance optimization of
3D lattice Boltzmann flow solver on a GPU,” Scientific Pro-
gramming, vol. 2017, Article ID 1205892, 16 pages, 2017.

[24] A. Khajeh-Saeed and J. Blair Perot, “Direct numerical sim-
ulation of turbulence using GPU accelerated supercom-
puters,” Journal of Computational Physics, vol. 235,
pp. 241–257, 2013.

[25] F. Salvadore, M. Bernardini, and M. Botti, “GPU accelerated
flow solver for direct numerical simulation of turbulent

14 Scientific Programming

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/.71
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/.71

flows,” Journal of Computational Physics, vol. 235, pp. 129–
142, 2013.

[26] Z. H. Ma, H. Wang, and S. H. Pu, “GPU computing of
compressible flow problems by ameshless method with space-
filling curves,” Journal of Computational Physics, vol. 263,
pp. 113–135, 2014.

[27] J.-L. Zhang, Z.-H. Ma, H.-Q. Chen, and C. Cao, “A GPU-
accelerated implicit meshless method for compressible flows,”
Journal of Computational Physics, vol. 360, pp. 39–56, 2018.

[28] W. Cao, C.-f. Xu, Z.-h. Wang, L. Yao, and H.-y. Liu, “CPU/
GPU computing for a multi-block structured grid based high-
order flow solver on a large heterogeneous system,” Cluster
Computing, vol. 17, no. 2, pp. 255–270, 2014.

[29] X. Liu, Z. Zhong, and K. Xu, “A hybrid solution method for
CFD applications on GPU-accelerated hybrid HPC plat-
forms,” Future Generation Computer Systems, vol. 56,
pp. 759–765, 2016.

[30] P. D. Mininni, D. Rosenberg, R. Reddy, and A. Pouquet, “A
hybrid MPI-OpenMP scheme for scalable parallel pseudo-
spectral computations for fluid turbulence,” Parallel Com-
puting, vol. 37, no. 6-7, pp. 316–326, 2011.

[31] J. C. +ibault and I. Senocak, “CUDA implementation of a
Navier-Stokes solver on multi-GPU desktop platforms for
incompressible flows,” in Proceedings of the 47th AIAA
Aerospace Sciences Meeting Including the New Horizons Fo-
rum and Aerospace Exposition, Orlando, FL, USA, January
2009.

[32] D. A. Jacobsen, J. C. +ibault, and I. Senocak, “An MPI-
CUDA implementation for massively parallel incompressible
flow computations on multi-GPU clusters,” in Proceedings of
the 48th AIAA Aerospace Sciences Meeting Including the New
Horizons Forum and Aerospace Exposition, Orlando, FL, USA,
January 2010.

[33] P. Castonguay, D. M. Williams, P. E. Vincent, M. Lopez, and
A. Jameson, “On the development of a high-order, multi-GPU
enabled, compressible viscous flow solver for mixed un-
structured grids,” in Proceedings of the 20th AIAA Compu-
tational Fluid Dynamics Conference, Honolulu, Hawaii, June
2011.

[34] W. Ma, Z. Lu, and J. Zhang, “GPU parallelization of un-
structured/hybrid grid ALE multigrid unsteady solver for
moving body problems,” Computers & Fluids, vol. 110,
pp. 122–135, 2015.

[35] Y. Wang, J. Jiang, H. Zhang et al., “A scalable parallel algo-
rithm for atmospheric general circulation models on a multi-
core cluster,” Future Generation Computer Systems, vol. 72,
pp. 1–10, 2017.

[36] B. Baghapour, A. McCall, and C. J. Roy, “Multilevel paral-
lelism for CFD codes on heterogeneous platforms,” in Pro-
ceedings of the 46th AIAA Fluid Dynamics Conference,
Washington, DC, USA, June 2016.

[37] J. Blazek, Computational Fluid Dynamics: Principles and
Applications, Elsevier, Amsterdam, Netherlands, third edi-
tion, 2015.

[38] F. R. Menter, “Two-equation eddy-viscosity turbulence
models for engineering applications,” AIAA Journal, vol. 32,
no. 8, pp. 1598–1605, 1994.

[39] D. C. Wilcox, Turbulence Modeling for CFD, DCW Industries,
La Cañada Flintridge, CA, USA, third edition, 2006.

[40] W. P. Jones and B. E. Launder, “+e prediction of lamina-
rization with a two-equation model of turbulence,” Interna-
tional Journal of Heat and Mass Transfer, vol. 15, no. 2,
pp. 301–314, 1972.

[41] M.-S. Liou, “A sequel to AUSM, part II: AUSM+-up for all
speeds,” Journal of Computational Physics, vol. 214, no. 1,
pp. 137–170, 2006.

[42] B. Van Leer, “Towards the ultimate conservative difference
scheme. V. A second-order sequel to Godunov’s method,”
Journal of Computational Physics, vol. 135, pp. 101–136, 1997.

[43] G. D. Van Albada, B. Van Leer, and W. W. Roberts, “A
comparative study of computational methods in cosmic gas
dynamics,” Astronomy & Astrophysics, vol. 108, pp. 439–471,
1982.

[44] C.-W. Shu and S. Osher, “Efficient implementation of es-
sentially non-oscillatory shock-capturing schemes,” Journal of
Computational Physics, vol. 77, no. 2, pp. 439–471, 1988.

[45] W. P. Ma, Z. H. Lu, W. Yuan, and X. D. Hu, “Parallelization of
an unsteady ALE solver with deforming mesh using Open
ACC,” Scientific Programming, vol. 2017, Article ID 4610138,
16 pages, 2017.

[46] J. Q. Lai, H. Li, Z. Y. Tian, and Y. Zhang, “A multi-GPU
parallel algorithm in hypersonic flow computations,” Math-
ematical Problems in Engineering, vol. 2019, Article ID
2053156, 15 pages, 2019.

[47] J. Q. Lai, Z. Y. Tian, H. Yu, and H. Li, “Numerical investi-
gation of supersonic transverse jet interaction on CPU/GPU
system,” Journal of the Brazilian Society ofMechanical Sciences
and Engineering, vol. 42, 2020.

[48] P. S. Rakić, D. D. Milašinovic, Ž. Živanov, Z. Suvajdžin,
M. Nikolić, and M. Hajduković, “MPI–CUDA parallelization
of a finite-strip program for geometric nonlinear analysis: a
hybrid approach,” Advances in Engineering Software, vol. 42,
pp. 273–285, 2011.

[49] F. Schmitt, R. Dietrich, and G. Juckeland, “Scalable critical
path analysis for hybrid MPI-CUDA applications,” in Pro-
ceedings of the 2014 IEEE 28th International Parallel & Dis-
tributed Processing Symposium Workshops, Phoenix, AZ,
USA, May 2014.

[50] L. Jiang, C.-L. Chang, M. Choudhari, and C. Liu, “Instability-
wave propagation in boundary-layer flows at subsonic
through hypersonic mach numbers,” Mathematics and
Computers in Simulation, vol. 65, no. 4-5, pp. 469–487, 2004.

[51] L. Jiang, M. Choudhari, C. L. Chang, and C. Q. Liu, “Nu-
merical simulations of laminar-turbulent transition in su-
personic boundary layer,” in Proceedings of the 36th AIAA
Fluid Dynamics Conference and Exhibit, San Francisco, CA,
USA, June 2006.

[52] J. Watkins, J. Romero, and A. Jameson, “Multi-GPU, implicit
time stepping for high-order methods on unstructured grids,”
in Proceedings of the 46th AIAA Fluid Dynamics Conference,
Washington, DC, USA, June 2016.

Scientific Programming 15

