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Clustering is one of the most important unsupervised machine learning tasks, which is widely used in information retrieval, social
network analysis, image processing, and other fields. With the explosive growth of data, the classical clustering algorithms cannot
meet the requirements of clustering for big data. Spark is one of the most popular parallel processing platforms for big data, and
many researchers have proposed many parallel clustering algorithms based on Spark. In this paper, the existing parallel clustering
algorithms based on Spark are classified and summarized, the parallel design framework of each kind of algorithms is discussed,

and after comparing different kinds of algorithms, the direction of the future research is discussed.

1. Introduction

Clustering is one of the most important unsupervised
machine learning tasks. Its purpose is to divide data points
into groups or clusters so that data points in the same cluster
are similar to each other but are very different from data
points in other clusters. Clustering is widely used in text
mining, information retrieval, social network analysis, image
and video analysis, and other fields. In the past decades,
researchers have put forward many clustering algorithms,
such as K-Means [1], K-Medoids [2], DBSCAN [3], BIRCH
[4], OPTIGRID [5], FCM [6], PCM [7], CURE [8], CHA-
MELEON [9], DENCLUE [10], OPTICS [11], WaveCluster
[12], STING [13], CLIQUE [14], FADE [15], CLARA [16],
CLARANS [17], and ORCLUS [18], which have achieved
good results over small-scale set of data points. Some
clustering algorithms such as Possibilistic Fuzzy C-Mean
realize the fuzzy segmentation of data points based on
probability, which are applied to image segmentation and
other fields [19-22].

With the rapid development of information technology
such as sensors, computers, and communication, the data
generated by people and various devices is growing

explosively, and we have entered the era of big data. Big data
can be defined and described generally with 5V [23] which is
Volume, Variety, Value, Velocity, and Veracity. Owing to
the above characteristics, the traditional clustering algo-
rithms cannot meet the needs of big data clustering, so a
parallel clustering algorithm is needed to meet the
challenges.

Apache Spark is a new generation of parallel process
platform for big data, which has merits such as easy to use,
versatile, and automatic fault-tolerant. Specifically, Spark
uses Resilient Distributed Datasets (RDDs) to store data in
memory, which can significantly improve the performance
of machine learning tasks requiring multiple iterations.
Compared with the classic big data parallel process platform
named Hadoop, Spark has an order of magnitude advantage
in performance [24] and is suitable for clustering that re-
quires multiple iterations in particular. Many parallel
clustering algorithms based on Spark have been proposed in
recent researches, which significantly improve the efficiency
and accuracy of big data clustering.

Some researchers have reviewed the clustering algo-
rithms for big data. In [25], the characteristics of big data are
discussed in detail, and the classification and clustering
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algorithms based on MapReduce are summarized and
discussed. The article [26] discusses the characteristics of
different types of clustering algorithms and the main
challenges in dealing with big data and makes a compar-
ative analysis of the major clustering algorithms. The paper
[27] discusses the application, opportunities, and chal-
lenges of big data and briefly describes the latest tech-
nologies used to process big data. The paper [28] classifies
the existing nonparallel clustering algorithms and com-
pares the accuracy, scalability, and performance of different
types of algorithms in dealing with big data through ex-
periments. Currently, although Spark is the most popular
big data parallel processing platform, and there are more
and more parallel clustering algorithms based on Spark,
there is no specific overview and discussion of parallel
clustering algorithms based on Spark.

This paper provides an overview of parallel clustering
algorithms based on Spark using the research methods of
literature survey and classification, classifies the parallel
clustering algorithms based on Spark proposed in the lit-
erature, summarizes the parallel implementation framework
of each type of algorithms, and compares different types of
algorithms.

The main contributions of this paper are as follows:

(1) The proposed parallel clustering algorithms based on
Spark are studied in taxonomy

(2) The design framework and characteristics of each
kind of parallel clustering algorithms based on Spark
are discussed

(3) Different kinds of algorithms are compared and
discussed, and the prospect of future research di-
rection is discussed

This paper is organized as follows. In Section 2, we
summarize the classical clustering algorithms and intro-
duces the preliminaries. In Section 3, the main parallel
clustering algorithms based on Spark are classified, and the
design framework and characteristics of each kind of al-
gorithms are discussed. In Section 4, different kinds of al-
gorithms are compared, and the prospect of future research
is discussed.

2. Preliminaries

2.1. Problem Definition. Let x; be a data point depicted by p
attributes (x;, X, .+ -> X;p), and N = {xy,%,,...,x,} is a
collection of n data points. The set of clusters is expressed as
C={C,,C,...,C,}, where C,nC,n...NC,, =@. A
cluster C; can be represented by a special data point in this
cluster or a statistical value of the data point in this cluster.
This data point or statistical value is called the centroid of the
cluster, which is expressed as ¢;. The aim of clustering is to
allocate the data points in N to m clusters. In the following,
dist(x;, x;) is used to represent the distance (or similarity)
between two data points; dist (C;, C;) is used to represent the
distance (or similarity) between two clusters, and dist (x;, C;)
is used to represent the distance (or similarity) between a
data point and a cluster.
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2.2. Classical Clustering Algorithm. Clustering is a tradi-
tional machine learning task. In the past decades, researchers
have proposed many nonparallel clustering algorithms.
Classical clustering algorithms can be divided into five
categories.

2.2.1. Partitioning-Based. This is the most commonly used
clustering algorithm, which divides data points into multiple
mutually exclusive clusters. In the process of partition, each
data point is usually divided into the nearest cluster
according to the distance between the data point and the
cluster. The most famous algorithm in this category is
K-means [1], which randomly selects m data points as the
initial centroid, divides the remaining data points into
clusters closest to them, updates the centroid of the cluster
with the average value of the data points in the cluster after
the division, and iterates the above process until the division
is stable or meets the iteration stop condition (generally the
maximum number of iterations or the best approximation
function value). This kind of algorithm has four key aspects:
the selection of initial centroid, the measurement of the
distance between data points and clusters, the update
method of the centroid, and the design of approximation
function. Other algorithms in this category are optimized in
the above four aspects. For example, Intelligent Keams [29]
uses abnormal data points as the initial centroid; K-Medoids
[2] uses the center of cluster as the updated centroid; FCM
[6] and PCM [7] use different approximation functions. The
clustering algorithm based on a partition is easy to un-
derstand and realize, but it has several obvious disadvan-
tages: firstly, the selection of initial centroid has a significant
impact on the clustering speed and accuracy; secondly, the
partition is based on the distance between the data point and
centroid of the cluster, which is only suitable for finding
spherical clusters; thirdly, the clustering quality is signifi-
cantly affected by outliers; fourthly, it needs to specify the
number of clusters in advance; sometimes, this parameter is
difficult to determine priorly.

The partition-based clustering algorithms depend
heavily on the selection of initial centroid. If the initialization
centroid is not selected properly, it will have a very serious
impact on the quality of clustering results. From another
point of view, clustering can be seen as a process of con-
tinuously optimizing the selection of the centroids of clusters
and searching the best centroid of the cluster by heuristic
searching. Many heuristic search methods can be used for
continuous optimization, including artificial bee colony [30]
and particle swarm optimization (PSO) [31]. These methods
simulate the intelligence of the colony or the process of
natural evolution. Generally, they converge quickly and have
a good effect.

2.2.2. Hierarchical-Based. 'This kind of algorithm organizes
data points into a tree of clusters with a hierarchical
structure, in which the leaf is the data point, the root node is
all data points, and the other nodes in the tree represent a
cluster. The parent nodes in the tree represent the cluster
obtained by agglomerating clusters represented by the child
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node, and the child node represents the cluster obtained by
the devising cluster represented by the parent node.
Therefore, the hierarchical-based clustering algorithm can
be carried out in the top-down direction in a division way or
in a bottom-up way in an agglomeration way. In the former
way, all data points are regarded as a cluster firstly, and then
the cluster is divided into several subclusters recursively. In
the latter way, each data point is regarded as a cluster firstly,
and then two or more clusters agglomerate recursively. The
above iterative process ends when the iterative stop con-
dition is reached (generally, the number of clusters is used),
using the distance or similarity between clusters as the basis
for cluster division or agglomeration. BIRCH [4], CURE [8],
and CHAMELEON [9] are the representative algorithms of
this kind. This kind of algorithm has an obvious disad-
vantage, that is, the operation of division or agglomeration is
irreversible, and improper operation can lead to low-quality
clusters.

2.2.3. Density-Based. The clustering algorithms based on
partition and hierarchy can only find spherical clusters, and
it is difficult to find clusters of arbitrary shapes. The density-
based clustering algorithm regards cluster as a dense area
separated by sparse area in data space. If a data point belongs
to a cluster, it must be in a dense area; that is to say, it has
more than one predefined threshold number of neighbors in
a special radius. The discovery of clusters can start from a
data point and extend in any direction according to the
density. Therefore, clusters of any shape can be found, and
the outliers are naturally filtered. DBSCAN [3] is a typical
representative algorithm of this kind. It identifies the dense
area and the core point by calculating the number of
neighbors in the field of this point. Multiple dense areas can
be connected to form a cluster according to density
reachable between core points. Data points that cannot be
included in any cluster (i.e., data points that are not in any
dense area) can be identified as an outlier. These kinds of
well-known algorithms include DENCLUE [10] and OP-
TICS [11].

2.2.4. Model-Based. This kind of clustering algorithm as-
sumes that data points are generated according to a certain
probability distribution model, and the clustering process is
to adapt all data points to some predefined mathematical
models. Therefore, this kind of algorithm can automatically
identify the number of clusters and outliers in data points
according to the selected mathematical model. The com-
monly used probability distribution models are the Gaussian
mixture model (GMM) [32], mixture model for cluster
analysis [33], etc., and the typical algorithms are EM [34],
etc.

2.2.5. Grid-Based. The above discussed four kinds of clus-
tering algorithms are all data-driven, which directly partition
or identify data points, while the grid-based clustering al-
gorithm is space-driven. This kind of algorithm divides the
data space of data points into a fixed number or size of grid

units, and clustering is carried out on grid units instead of
data points. Because the number of grid units is far less than
the number of data points and only needs to scan the data
points in the grid once to get the statistical information of
the unit, the grid-based clustering algorithm is faster, and the
performance is independent of the number of data points.
WaveCluster [12] and STING [13] are representative algo-
rithms of this kind. Although the clustering algorithm based
on the grid has faster speed, it needs to predefine the number
or size of grid units. If the data points’ distribution is ir-
regular, the use of fixed number or uniform size of the grid
unit to divide the data points may lead to poor quality of
clusters and long clustering time and is not suitable for
processing high-density data.

2.3. Spark. Apache Spark [35] is one of the most popular big
data parallel processing platforms at present. Because it uses
RDD based on memory to store input data and intermediate
results, compared with Hadoop [36], it reduces a lot of I/O
operations, especially those suitable for machine learning
tasks which require multiple iterations [37].

A typical Spark cluster consists of one master node and
several worker nodes. The master node is responsible for
managing the resources of the worker nodes and assigning
tasks to the worker nodes, while the worker nodes perform
the corresponding distributed tasks. The working model of
Spark is shown in Figure 1.

Spark distributes RDD to worker nodes in the cluster to
realize distributed storage and provides a batch of functions
for performing parallel operations on RDD which cross
worker nodes. Commonly used functions are as follows:

map (f): use a user-defined function f to convert each
record in RDD to a new record, and return an RDD
containing the new record

mapPartitions (f): use a user-defined function f to
convert each record in the local RDD partition into a
new record, and return an RDD containing the new
record

filter (f): use a user-defined function f to filter the
records in RDD and return an RDD containing the
filtering results

reduce (f): use a user-defined function f to aggregate
data in RDD

reduceByKey (f): use a user-defined function f to ag-
gregate data with the same key in pair RDD

takeSample (s): use a user-defined generator seed s to
get a sample of RDD records

collect (): return the records in RDD to the master node
as an array of objects

3. Taxonomy and Framework of Parallel
Clustering Algorithm Based on Spark

The algorithms that have been proposed are basically to
transplant the classical clustering algorithms to the Spark
platform. They use RDD to store datasets in a distributed
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FIGURE 1: Working model of Spark framework.

way and use the functions provided by Spark to realize the
parallel execution of key steps, so as to achieve parallel
clustering. The proposed algorithms can be roughly divided
into four categories.

3.1. Parallel K-Means Clustering Algorithm. K-means is the
most famous and commonly used clustering algorithm. It
has three key steps: the selection of initial centroid,
distribution of every data point into the nearest cluster
by calculating the distance between the data point and
each cluster centroid, and updating of each cluster
centroid. Many K-means variant algorithms take dif-
ferent strategies in these three key steps. The imple-
mentation framework of this kind of algorithm based on
Spark is shown in Figure 2.

As can be seen from Figure 2, the three key steps of the
K-means algorithm can be executed in parallel using the
functions provided by Spark. After loading data points into
RDD, this kind of algorithm can use takesample() function
to randomly select initial centroid or use filter() function to
customize filtering rules. The distance between every data
point and all centroids can be calculated by map() or
mapPartitions (). Each data point is divided into clusters
represented by the nearest centroid. This is the result of the
division store in pair RDD, where the key is the cluster ID
and the value is the data point. Algorithms of this kind use
reducebykey() function to update the centroid of clusters. If
the iteration end condition has been met (generally the
number of iterations or the change proportion of data point
distribution), stop the iteration, and use collect() to collect
the clustering results from each worker node. Otherwise,
redistribute data points and update centroid.

The framework of parallel K-means algorithm in MLIib
[38], a Spark-based machine learning algorithm library, is
exactly the same as that in Figure 2. It randomly selects the
initial centroids, uses Euclidean distance (1) to measure the
distance between data points, and uses the average value of
data points in the cluster to update the centroid of the cluster
(2). This algorithm is easy to understand and use, but the
Euclidean distance measurement will be invalid if the di-
mension of the data point is high, and the mean value of data
points in the cluster is used to update the centroid, which
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FIGURE 2: Parallel implementation framework of the K-means
clustering algorithm based on Spark.

does not support fuzzy clustering. So, this algorithm is only
suitable for the deterministic clustering of low dimensional
data. The parallel K-means proposed in [39, 40] is similar to
the parallel K-means in MLIib, which is based on the classic
K-means algorithm implemented in Spark:

dist(x;,x;) = \/(xn —xj1)2 +(xa —xj2)2 oot (- xjp)z’
(1)

|Ci] |Ci|

1 1 p Il 2
G=l =7 ) X ) Xipreo st ) Xip |-
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Wang et al. proposed a series of optimization strategies
for parallel K-means algorithm in MLIib in [41]. This al-
gorithm can use a simple and fast random selection method
to select initial centroids or use the method proposed in [42]
to select high-quality initial centroids according to proba-
bility distribution or use the distributed centroid selection
method [43] to speed up the selection of initial centroids
from big data. If the dimension of the data point is high, this
algorithm uses cosine distance [44] (3) or KL distance [45]
(4) to measure the distance between data points:
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The selection of initial centroids has a significant impact
on algorithms of K-means kind. Improper selection of initial
centroids may lead to long execution time or poor clustering
quality. Therefore, many types of research have explored the
optimization choice of initial centroids. In [46], a parallel
intelligent K-means based on Spark is proposed. The dif-
ference between this algorithm and K-means is the way of a
generation method of initial centroids. Intelligent K-means
[29] looks for the center gravity or average of data points in
advance and initializes the centroids which are farthest from
the center gravity. This method of selecting the initial
centroid takes into account the distribution of data points
but is greatly affected by outliers. Similar algorithms include
[47], which uses bat [48] and firefly [49] to optimize the
selection of initial centroids.

Lu et al. proposed a parallel clustering algorithm, which
uses a tabu search strategy [50, 51] to optimize the updating
of centroids [52]. Given a cluster C; and its centroid x;, a
domain N (i) (5) with a radius R; can be created. The new
centroid can only be selected from N (7). The value of R; can
be determined by the average (6) of the distance between
data points in the cluster. If the centroid of a cluster is
updated from x; to x; in an iteration, x; will be added to the
tabu list, and x; will no longer be an alternative centroid in
the specified t-round iteration. Although this method of
centroid updating is more complex than the classical
K-means, centroid updating of each cluster can be per-
formed in parallel on Spark, so it can still generate new
centroids of higher quality quickly, making each cluster
closer, making the distance between all data points DistSum
(7) as small as possible:

N(@) = {xj ' dist(x] x,») SRi’xj € Ci’xj :#xi}) )

IS 5.
Yoy dist{x;, x;
= Tﬁ) (0% € Cox 7). (©

DistSum = Z Z dlst(x x]) (7)

Another way to update the centroid is to use a heuristic
search method, which is also called evolutionary compu-
tation. Its characteristic is to simulate the method of bio-
logical evolution or natural selection which chooses the best
solution among the new solutions generated randomly. The
representative algorithms of this kind of methods are arti-
ficial bee colony (ABC) [30], Particle Swarm Optimization
(PSO) [31], etc. Yan et al. proposed a parallel ABC algorithm
based on Spark [53]. The process of clustering is a simulation
of bees’ search for high-quality food sources. ABC algorithm
divides all data points into three categories: food source

(centroid), employed bee (assigned data point), and the
unemployed bee (unassigned data point). In each iteration, a
random partition solution is generated first, and then the
partition probability of each data point is calculated. By
comparing with the previous partition solution, whether to
update the solution is determined until the iteration stops.
Similarly, the KMPSO [54] proposed by Matthew et al.
implements a parallel PSO algorithm based on Spark.

Fuzzy C-means (FCM) is the most classical fuzzy
clustering algorithm, which is proposed by Bezdek [6]. The
clustering result of this algorithm is not to divide each data
point into clusters but to generate the probability that each
data point belongs to a cluster. The difference between FCM
and K-means mainly lies in the method of centroid updating
and the design of objective function. It uses equation (8) to
update centroid and equation (9) as an objective function.
The objective of iteration is to minimize the weighted av-
erage of all data points belonging to a cluster:

=T (8)

Jin = z Z u;j”xi - Ci”2- 9)

Neha et al. discussed the design ideas of three famous
variants of the FCM algorithm named LFCM [55], resFCM
[55], RSIO-FCM [56], and proposed a parallel clustering
algorithm SRSIO-FCM [57] based on Spark.SRSIO-FCM
divides the set of data points N into multiple subsets ran-
domly {N,N,, ..., N}, clustering the first subset N; with
the classical K-means algorithm to generate the set of
centroids {c;, ¢y, - . .» ¢y} In the following iteration, when
dealing with N;, the centroids of N, ~ N;_; is calculated
according to the membership to generate the recommended
centroid set of N}, ¢ = {¢;1, > - - - » €i}> which is used as the
initial centroid to cluster N; until all subsets are clustered.

Spark-PCM [7] proposed by Zhang et al. is a parallel
version of the Possibilistic C-Means (PCM) [7] based on
Spark. PCM uses the possibility model instead of the
probability model of FCM, which is less affected by outliers.
Because the possibility model matrix needs to be updated
repeatedly, Spark-PCM uses the distributed matrix opera-
tion library Marlin [58] to accelerate the matrix update
operation.

In order to improve the traditional distance measure-
ment method which only supports numerical attributes
(such as equations (1), (3), and (4)), Mohamed et al. [59]
implemented the Spark-based K-Prototypes [60]. The dif-
ference between K-Prototypes and K-means is the mea-
surement method of the distance between data points and
centroid. It uses equation (10) to measure the distance
between data points and centroid so that it can support data
points with categorical attributes:

dist (x> ¢;) = Z Xir = Cir)z + Z 8 (x> €it)- (10)
r=1 t=1



3.2. Parallel Hierarchical Clustering Algorithm. The hierar-
chical-based clustering algorithm organizes all data points
into a tree structure, which can agglomerate data points
from the bottom-up direction or divide the set of data points
from the top-down direction. Obviously, the method based
on agglomeration is more suitable for parallel execution.
Single linkage hierarch clustering (SHC) [61] is a repre-
sentative clustering algorithm based on agglomeration. It
needs multiple iterations. Each iteration will merge the
nearest data points or clusters with each other until the end
condition of iteration is met (generally the number of
clusters or the number of iterations).

In order to realize the agglomeration of contiguous data
points or clusters, the set of data points needs to be divided
according to the data space in advance. The framework of the
parallel hierarchical clustering algorithm based on Spark is
shown in Figure 3.

Jin et al. proposed a parallel SHC algorithm based on
Spark named SHAS [62]. The framework of SHAS is the
same as Figure 3, which mainly includes three stages: data
point division, local clustering, and cluster merging. In the
local clustering stage, the method proposed in [63] is in-
troduced to transform the clustering into a problem of
finding a minimum spanning tree (MST) of a complete
graph. All the vertices in the graph are data points, and the
weight of the edge is the distance between data points. This
method improves the efficiency of local clustering and
cluster merging. Firstly, SHAS divides the set of data points
into roughly equal partitions {N,N,,...,Ng} and con-
structs a complete graph for every partition. Then, bipartite
graphs (C? in total) are constructed for each pair of data
partitions. After MSTs of each complete graph are con-
structed, each bipartite graph is combined until only one
MST is left.

MLIib, a machine learning algorithm library based on
Spark, also contains a parallel hierarchical clustering algo-
rithm, which is based on the bisecting K-means [64], and the
design idea comes from the paper [65]. Because bisecting
K-means is a hierarchical clustering algorithm based on the
division in the top-down direction, this algorithm can only
start from a single node with all data points. It uses K-means
to further divide clusters in each iteration. The parallelism
degree of this algorithm is low, and it is only suitable for
training data with a small size [66].

3.3. Parallel Density Clustering Algorithm. The clustering
algorithm based on partition or hierarchy can only find
spherical clusters, and the clustering quality is greatly af-
fected by outliers, while the clustering algorithm based on
density overcomes the above two shortcomings. Density-
Based Spatial Clustering of Applications with Noise
(DBSCAN) [3] is one of the most representative density-
based clustering algorithms, which can identify clusters of
any shape and outliers efficiently. DBSCAN uses the number
of data points denoted by | N, (p)| contained in N, (p)
which is a neighborhood with radius r of data point p
(Figure 4) as the density of data point p and divides all data
points into three categories according to the density of data
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FIGURE 3: Parallel implementation framework of the hierarchical
clustering algorithm based on Spark.

FIGURE 4: N, (p): the neighborhood of data point p with radius r.

points: core points, boundary points, and outliers. The core
point is the data point whose density is greater than the
specified threshold MinPts. The boundary point is the data
point included in Ny, of a core point but not the core point;
the outlier is the data point not in Ny, of any core point.
Ny, of all the density-connected core points can form a
cluster (Figure 5). Data points that do not belong to any
cluster are outliers. Therefore, the density-based clustering
algorithm mainly consists of two key steps: finding the core
points by calculating the density of data points and merging
Ny, (representing a subcluster) of the density-connected
core points into a cluster:

density (P) =[Ny, (p)|- (11)

The framework of a parallel density clustering algorithm
based on Spark is shown in Figure 6.
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FIGURE 5: Core point p and g are density-connected.
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FIGURE 6: The framework of a parallel density clustering algorithm
based on Spark.

Fang et al. proposed a parallel density clustering algo-
rithm named parallel DBSCAN [67] based on Spark and
classic DBSCAN. According to the analysis of DBSCAN,
more than 90% of its execution time is used to calculate the
density of data points and find the core points. Therefore,
parallelizing this step can significantly improve the per-
formance of DBSCAN. Parallel DBSCAN mainly consists of
three stages: in the first stage, data points are redistributed
according to the strategy of grid and secondary expansion
partition [68] according to the data space. Each grid is called
a local area, the adjacent parts between the local areas are
called boundary areas, and the data points in the boundary
area are called boundary points (Figure 7). Because the

S % % hd o S3

%)Y Boundary point

FiGUure 7: Data grid and boundary points generated after data
points are divided by space.

boundary points may be density-connected with data points
in multiple local areas, the algorithm enlarges the grid ap-
propriately to include the boundary points (Figure 8).

In the second stage, the classical DBSCAN is executed in
each cell in parallel to generate local clusters. Finally, in the
third stage, all local clusters are merged and relabeled to
generate global clusters. The authors in [67] also discuss the
optimization of parallel DBSCAN in terms of data trans-
mission, serialization, parameter configuration, etc. The
experimental results show that parallel DBSCAN has good
acceleration under various Spark operating environments
than classic DBSCAN.

Amar et al. proposed a parallel clustering algorithm
SparkSNN [69] based on Spark and Shared Nearest
Neighbor (SNN) [70]. Different from the parallel DBSCAN
which uses Euclidean distance (equation (1)) to measure the
distance between data points, SparkSNN uses the number of
data points in the neighborhood intersection of data points
as the method for distance measurement (equation (12)), the
density of x; is defined as the sum of the similarities between
x; and data points in Ny, (equation (13)), and the core point
(also is the centroid of subcluster) is the point whose density
is greater than the specified threshold MinPs. SparkSNN,
like parallel DBSCAN, also includes three main stages:
redistributing data points, local clustering, and global
merging. The difference is that the local clustering stage uses
SNN. Compared with the DBSCAN algorithm, the SNN
algorithm not only has the advantages of discovering clusters
of arbitrary shapes and recognizing outliers well but also has
a better effect on the collection of data points with a high
dimension or uneven density:

dist(xi,xj) = NEps (xi)nNEPS(xj)’ (12)

dentisy (x;) = Zdist(x,-,xj)xj € Ngpo (%), x#x;. (13)

Liu et al. proposed a parallel clustering algorithm Parallel
DP [71] based on Spark Graphx and Density Peaks [72]. The
main difference between this algorithm and the parallel
DBSCAN algorithm is the selection of centroid of clusters.
The parallel DBSCAN selects the first found core point as the
centroid of the cluster, which can only ensure that the
density of centroid is not less than the predefined threshold
MinPts. The Parallel DP calculates the density of each data
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point and the minimum distance to other data points with
higher density §(x;) (equation (14)) and selects the data
point with the largest § as the centroid of the cluster. In other
words, the densest data point in the cluster is selected as the
centroid of the cluster, which makes the cluster compact and
more conducive to merging local clusters to generate global
clusters:

d(x;) = min(density(xj))xj € N (x;)- (14)

The framework of the parallel clustering algorithm [73]
proposed by Liang et al. is consistent with Figure 6, but special
methods are adopted in three stages. In the data point re-
distribution stage, the locality sensitive hashing (LSH)
function [74] is used to achieve better load balancing and
spatial density estimation; in the local clustering stage, the
classic kernel density and high-density nearest neighbor
(KNN) [75] are used, and the Gauss model is used to rep-
resent the local cluster to reduce the amount of data trans-
mitted by the network and the amount of computation in the
merging stage. In the stage of merging local clusters into
global clusters, the density connection based on the Gauss
model is used to merge multiple models (local clusters).

3.4. Parallel Model Clustering Algorithm. The model-based
clustering algorithm is based on the assumption that the data
points come from the data source which contains multiple
subpopulations. The data points in each subpopulation
conform to a certain probability distribution, and the data
point set is a mixture of multiple subpopulations. The most
commonly used model is Gaussian Mixture Models (GMMs)
[32], which regards the cluster as a Gaussian distribution, and
the set of data points is a mixture of multiple Gaussian
distributions with different parameters (equation (15)). The
process of clustering is to divide the data points into a
Gaussian distribution, which directly generates clusters.
Therefore, the model-based clustering algorithm has more
advantages in running speed than other types of algorithms:

flx)= i f<x | uiyzx_>P(Ci). (15)

MLIib provides a parallel clustering algorithm based on
GMM. It uses the expectation maximization (EM) [34] for

Scientific Programming

sampling data points to find one or more variable Gaussian
distributions and training Gaussian mixture model and
generates the mean value and standard deviation of each
Gaussian distribution closer to the real situation through
multiple iterations. After training, the Gaussian mixture
model is used to classify all data points and get a predefined
number of clusters. In addition to the GMM model, MLlib
also provides a parallel Latent Dirichlet Allocation (LDA)
[76] algorithm, which is mainly used for text clustering. LDA
is a probability model of the corpus. It is supposed that a text
is randomly mixed by multiple latent topics; each latent topic
can be identified by the probability distribution of words.

The above two parallel model clustering algorithms
provided by MLIib both include three main stages: data
sampling, training probability model, and classification.
These algorithms firstly get some samples from all data
points, then use the samples to train the probability model,
and finally use the trained probability model to classify all
data points in parallel.

3.5. Parallel Clustering Algorithm for Special Dataset. A high-
dimensional dataset refers to the set of data points described
by a large number of attributes. Data points with high di-
mensionality will bring serious challenges to the clustering
algorithm based on distance measurement, which not only
affects the performance but also has a significant impact on
the accuracy of clustering. This is called “the curse of di-
mensionality” [77]. There are two main methods to cluster a
high-dimensional dataset: one is subspace clustering, which
refers to clustering a subset of all attributes rather than all
attributes; the other is dimension reduction method, which
combines or converts the original attributes to form new
attributes, so as to reduce the dimension.

Zhu et al. proposed a parallel subspace clustering al-
gorithm named CLUS [78] based on Spark, which paral-
lelized the classic subspace clustering algorithm SUBCLU
[79]. If the dimension of data points is p, there are 27 — 1
subspaces, and the subspaces with the same dimension can
be clustered in parallel. CLUS starts from p subspaces with a
single dimension and generates all clusters in these sub-
spaces. In the k-th iteration, any two (k-1)-dimensional
candidate clusters are merged, and the merged results are
pruned monotonically to generate a k-dimensional sub-
space. The DBSCAN algorithm is used to cluster the newly
generated k-dimensional subspace, which requires at most
logP iterations. In the above process, each worker node
needs to process all data points in the subspace. Some data
points need to be copied repeatedly between multiple nodes.
It is difficult to redistribute the dataset, and the amount of
data transmission between nodes is also large.

Spectral clustering is a dimension reduction method.
Zhu et al. put forward a parallel spectral clustering algorithm
based on Spark, named SCoS [80]. This algorithm paral-
lelized the four main steps of the spectral clustering algo-
rithm: building similarity matrix, building Laplacian matrix
and normalization, feature vector calculation, and parallel
clustering of feature vector matrix. Some methods of per-
formance optimization are used in the algorithm of SCoS:
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TaBLE 1: Comparison of key features of various algorithms.

Clusters shape

Handling outliers

Input parameters Data points’ distribution

m

K-means Spherality No N Random
Hierarchy Spherality No m Random or by data space
. . Eps
Density Arbitrary Yes MinPts Data space
Model Mathematical model Yes m Random
ki ky, .. k;
m: number of clusters; n: maximum number of iterations; Eps: radius of data point neighborhood; MinPts: minimum density of core data point; k;, k5, . . ., k;:

parameters required for a specific model.

parallel computation based on multiround iteration is
adopted to improve the speed of building similarity matrix;
Sparse representation and storage are adopted to further
reduce the data transmission between storage and nodes;
ScalaPack, a numerical linear algebra computing library, is
used to accelerate the parallel solution of feature vectors.

In addition to the high-dimensional data, there are also
parallel clustering methods [81, 82] for the streaming data
realized by Spark streaming and parallel clustering methods
[83-86] for the graph data realized by Spark graph x, which
expands the types of the dataset that can be parallel clustered
based on Spark.

4. Conclusion and Prospection

4.1. Summary of Proposed Algorithms. To sum up, many
researchers have proposed many parallel clustering algo-
rithms based on Spark, and their main common features are
as follows:

(1) These parallel clustering algorithms are all based on
the classical clustering algorithm; there is no sig-
nificant change in the algorithm design. They all
improve the clustering efficiency by parallelizing the
main steps of the classical algorithm.

(2) These parallel clustering algorithms use RDD pro-
vided by Spark to store data points, but most of them
need to distribute data points according to the
characteristics of data points or algorithms.

(3) These algorithms use the functions provided by
Spark to realize the parallel operation of each data
partition and make full use of the characteristics of
Spark based on memory computing to improve the
efficiency of multiple iterations.

The comparison of key features of various algorithms is
shown in Table 1.

4.2. Prospection of Future Works. Big data can be defined and
described generally with 5V [23] which are Volume, Variety,
Value, Velocity, and Veracity. From the above discussion,
we can see that the proposed parallel clustering algorithms
based on Spark mainly solve the problem of the large scale of
data. In addition to the huge Volume of data, big data also
includes the following features.

4.2.1. Variety. The data types are very diverse. In addition to
the structured two-dimensional quantitative data which is
most used, it also includes categorical data, high-dimen-
sional data, and three-dimensional data such as time-series
data.

4.2.2. Value. Because of the low value density of data, a data
mining algorithm is needed to find the important infor-
mation contained in the data.

4.2.3. Velocity. The processing of big data requires not only
fast batch processing speed but also real-time data
processing.

4.2.4. Veracity. Generally, big data contains some wrong
data or noise data.

According to the above characteristics of big data, the
research on parallel clustering algorithm based on Spark can
be carried out from five aspects:

(1) Research on a parallel clustering algorithm that can
deal with more types of data: categorical data is
different from quantitative data, its value is discrete,
there is no natural order between different cate-
gorical values, and there is no distance measurement
information. Therefore, it is necessary to further
study the parallel clustering algorithm which can
process categorical data. Generally, big data has a
large number of attributes. Because “the curse of
dimension” will lead to the failure or meaningless of
classical distance measurement methods, it is nec-
essary to further study the parallel clustering algo-
rithm based on subspace or dimension reduction
technology to process high-dimensional data. Three-
dimensional data are usually time- or location-re-
lated data, such as gene-sample-time series in bio-
informatics or item-time-location data in market
analysis. It is necessary to further study the parallel
clustering algorithm that can process three-dimen-
sional data to find clusters across time or location.

(2) Research on parallel clustering algorithm which can
find the significant clusters in the data: big data with
a large amount of data and attributes will lead to a
great increase in the number of clusters generated by
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clustering, and the clustering results become re-
dundant and poorly interpretable. The concept of
maximum cluster or significant cluster can be used to
study the parallel clustering algorithm of important
clusters in data to improve the interpretability of
clustering results and reveal the important infor-
mation in data.

(3) Research on parallel clustering algorithm with better
performance: grid-based clustering algorithm
transforms the clustering of data objects into clus-
tering of grid units, which has better performance.
We can further study the grid-based parallel clus-
tering algorithm supported by Spark. Because the
performance of grid-based clustering algorithm is
closely related to data space and grid size, and the
number of data points has little effect on the per-
formance of this kind of algorithm, it is more suitable
for big data clustering.

(4) Research on a parallel clustering algorithm which
can deal with streaming data: in addition to clus-
tering of stored data in batch, we also need to study a
parallel clustering algorithm which can process
streaming data in real time to further improve the
real time and responsiveness of clustering.

(5) Research on a parallel clustering algorithm that can
deal with noise: noise data generally contains the
values of error, missing or unknown, which often
appears in big data. Therefore, further research on
parallel clustering algorithm which can deal with
noise is also an important research direction.
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