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In this manuscript, we investigate the estimation of the unknown reliability measure R=P [Y < X], in the case where Y and X are
two independent random variables with Topp-Leone distributions. As the main contribution, various advanced sampling
strategies are studied. The suggested strategies are simple random, ranked set, and median ranked set samplings. Firstly, based on
the maximum likelihood, we give an efficient estimator of R when the observations of the two random variables are selected from
the same simple random sample. Secondly, such an estimator is addressed when the observations of the two random variables are
selected from the ranked set sampling method. Then, based on median ranked set sampling, the maximum likelihood estimator of
R is addressed in all the four cases. When the observations from the two random variables are selected from the same set size, two
cases are considered, while the other two cases are considered at different set sizes. A simulation research is developed to evaluate
the behavior of the obtained estimates based on standard and median ranked set samplings with their simple random sampling

equivalents. The ratio of mean square error is used to assess the effectiveness of these estimates.

1. Introduction

First and foremost, the simplified version of the Topp-Leone
(TL) distribution is a bounded support one-parameter
J-shaped distribution. It possesses a bathtub-shaped hazard
rate (see [1]). For these reasons, it is very effective for
modeling life-time tests. Mathematically, it is defined by a
one-parameter probability density function (PDF) and a
one-parameter cumulative distribution function (CDF)
given, respectively, by

flx)=2ax"""(1-x)(2-%)""0<x<1L,a>0,

F(x)=x"(2-x)"0<x<1,a>0.

(1

Hereafter, the TL distribution will be sometimes denoted
by TL(w) in order to highlight the parameter.

In recent years, the TL distribution and its model have
obtained a lot of attention in the literature. For instance, the
authors in [2] proposed an extension of the TL distribution.
The authors in [3] examined several features of the TL
distribution, including the failure rate (classical and re-
versed) and the mean residual life time. A bivariate gen-
eralization of the TL distribution was introduced in [4].
Two-side based version of the TL distribution was proposed
in [5]. Estimation of the stress-strength (SS) model was
discussed based on censored samples in [6]. The author in
[7] derived some moments properties of order statistics
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associated to the TL distribution. Using record values, the
authors in [8] discussed Bayesian and non-Bayesian esti-
mation methods for the unique parameter of the TL dis-
tribution. The author in [9] examined admissible minimax
estimates of the TL distribution.

On the other hand, the notion of ranked set sampling
(RSS) has been presented in [10] as a sampling scheme for
data collection. This scheme is a useful technique when it is
hard to measure a large number of elements, but it is easier
visually (without inspection) to rank some of them. The RSS
scheme has evolved into a complex strategy for enhancing
mean estimation accuracy. The mathematical foundations
for RSS design have been provided in [11,12]. The RSS
scheme has been effective in applied sciences, with im-
pressive wins in agriculture and ecology. The selection of a
RSS of size n entails the drawing of n random samples, each
containing »n units. Judgment is used to rank the n units in
each sample. The first sample is used to measure the smallest
rank unit, and the second sample is used to measure the
second smallest rank unit, and so on. When the unit with
rank 7 is chosen from the nth set, the first cycle is finished. It
is worth noting that the n observations are dispersed ran-
domly. Because # in the RSS is usually low, the following
approach is used to create a sample of size (ns) by repeating
its times or cycles.

Reference [13] suggested the median ranked set sam-
pling (MRSS) scheme as another contribution to the RSS
scheme. The MRSS method is easy to apply since only the
middle of the sample is considered. The following is an
outline of the MRSS method: We choose n* units randomly
by using the simple random sampling (SRS) from the
population, the #* randomly chosen units are divided into n
sets, each of size n, and the units within each set are ranked
according to a variable of interest. If the set size n is odd, the
((n+1)/2)th lowest ranked unit in each set, which is the set’s
median, should be chosen for measurement. Furthermore, if
n is even, the (n/2)th smallest lowest ranked units from the
first n/2 sets should be chosen, followed by the ((n +2)/2)th
lowest ranked units from the second #/2 sets. To obtain ns
units, the cycle can be repeated s times.

For several years, the SS models have attracted the at-
tention of significant statisticians due to their applicability in
distinct fields like economics, engineering, medicine, and
quality control. To depict the life of a component with
unpredictable strength and random stress, the SS model is
utilized. The chance that the system will be able to sustain the
stress placed on it is the reliability of the system, denoted by
R. That is, R=P(Y<X), where X and Y are continuous
random variables (RVs) that are independent, modeling the
random strength and stress, respectively. Applications of the
SS model in medicine and engineering were provided in [14].
An outstanding review of the growth of the SS model up to
2003 was conducted in [15].

The problem of estimating R has been intensively used in
the statistical literature under various sampling schemes. In
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this work, we give a review of RSS schemes; for instance, the
authors in [16, 17] concerned with estimating R when X and
Y are independent RV's with exponential distributions under
the RSS. The authors in [18, 19] handled with the same
problem but RR with Burr type XII distributions under some
forms of RSS schemes. Also, the authors in [20] discussed the
estimation of R when X and Y are independent RVs with
Weibull distributions under some versions of RSS. In this
setting, Lindley distributions were supposed in [21], and
exponentiated Pareto distributions were discussed in [22],
both based on RSS. Using MRSS, the authors in [23] con-
sidered this estimation problem with generalized inverse
exponential distributions.

Although no author has yet examined the estimation of R
for the TL model via ranking schemes and their modifica-
tions in the literature, we would like to point out that ref-
erence [6] contributed to this problem using censored
schemes. So, in this manuscript, we use two different ranking
schemes, namely, MRSS and RSS, as well as the traditional
complete scheme, i.e., SRS, to converge on the estimation of
R when X~TL(«) and Y ~TL(f) are independent. When
both X and Y are selected from the same sample schemes
(SRS, RSS, and MRSS), we get the ML estimator of R. Also,
we obtain the ML of R when both X and Y are selected from
various sampling schemes (MRSS with odd size or even
sample size). To demonstrate the theoretical results, a
simulation study is provided. The following is a summary of
the manuscript. When the SRS is considered, Section 2
calculates the ML estimator of R. When the RSS is con-
sidered, the ML estimator of R is used in Section 3. When
observed data from both X and Y are chosen from the MRSS
with an even set size (MRSSE) or MRSS with an odd set size
(MRSSO) or vice versa, Section 4 deals with the ML esti-
mator of R. In Section 5, the simulation findings are dis-
cussed. In the last section, we wrap up the paper.

2. ML Estimation of R Based on SRS

Let X~TL (a) and Y~TL (f) be independent. Then, with a
standard integral development, the measure R of the SS
model for the TL distribution is basically given by

R=P[Y<X]= 2arx"‘*1(1 -x) (2 -0 2 - x)fdx = ——
0 a+f
(2)
To get the ML estimator of R, we need to get the ML
estimators for the unknown distribution parameters first. In
this regard, suppose that X;, X,,..., X, is a classical ran-
dom sample from the distribution TL (a) and
Y,,Y,,...,Y,.is a classical random sample from the dis-
tribution TL (). The related observations are denoted as
small x;, x,,...,x,. and y,, ¥5,. . ., ¥,,-» and this is consistent
across all the paper. The joint likelihood function for the
observed samples is as follows:
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The corresponding joint log likelihood (LL) function is
obtained as follows:

In¢=2(Inn")+2(ln m") +n"In 0c+m*lnﬁ+((x—1)Zln[xi(2—xi)]

S0+ @0l Sinli-2)

As usual, the ML estimators of « and f are produced by
the maximization of LL with respect to the parameters,
which is equivalent to differentiating the function in
equation (4) and equating with zero, and we obtain

*

Zznzl In[x; (2 _xi)],

*
-m

Y n[y;(2- ;)]

Thanks to the so-called invariance property, we deduce
the ML estimator of R, denoted by R; it is derived by directly
substituting equation (5) in equation (2).

R)

(5)

)

Sy n Sy om
¢ = fi(xi(i)e)nnfj(yf )
e=1 i=1 h=1 j=1
2anlxi)
Fil%i06) = G (-
Z/Sm'yﬁj !
£i(riom) —

The LL function of ¢, is as follows:

InfocsynIna+s,mln f+ i i((xi - 1)ln[xi(,~)e(

e=1i=1
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h=1

xie) (2= xie) (1=, (2

n) )+

h

In(1 = y;(n) + ZZ m- Jl“( —yf@h(z—yj(j)h)ﬂ)-

3
p-1
-y)(2-y) (3)
i=1
(4)
3. ML Estimation of R Based on RSS
Suppose that {Xj;, i=1,2, ..., n; e=12, ...s,) is a RSS

observed from the distribution TL («), with sample size n* =

» where n is the set size and s, is the number of cycles, and
that{ iy j= 1,2, myh=1.2,...s,) is a RSS observed from
the distribution TL (), with sample size m* = msy,where m
is the set size and s, is the number of cycles. In this setting,
the following is the likelihood function ¢, of the observed
samples:

o n—i
xi(i)e) ) 1(1)e>0 (6)

Bi- B\
=m(l_)’j(j)h)(2_yj(j)h) ' l<l_y€(j)h(2_yj(j)h) ) % i > 0-

N

l)e)] +

X

Zln( xi(i)e)

e=1i=1

> Bi=Dn[y; (2= yiim)] (7)

1j=1

N

<



With regard to « and f3, we have

dln & n' 1
goc 1 %er:l;l In[x;6(2 = %ioe) | -
31n 51 xSy

M§

+

m|§

9B

I
—_

h=1j

Because the system “Equations (8) and (9) equal to zero”
is difficult to solve analytically, we use an iterative technique
to evaluate the ML estimators. Then, owing to the invariance
property, the ML estimator of R follows by inserting these
estimators into Equation (2).

4. ML Estimation of R Based on MRSS

In this section, we investigate the ML estimator of R based on
MRSS in four situations. In the first and second situations,
we estimate R= P( YMRSSO < XMRSSO) and R= P( YMRSSE <
Xwnrsse)s 1., when both stress and strength are of the same

ilnly;om(2=yiom)] -
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in( —z)ln[ i(i)e(z_xi(i)e)] (8)

—0 >

i(z)e(z - xi(i)e) -1

e=11i=1

= 9)
Ym)h) -1

size. When both X and Y have different set sizes, we estimate
R in the third and fourth situations.

4.1. Estimation with an Odd Set Size. Suppose that X;g).
where i=1,...,n, e=1,...,s,, and g=[n+1/2] is the MRSS
with sample size n* = ns,, where n is the set size and s, is the
number of cycles, selected from the distribution TL («), and
that Y, where j=1,...,m, h=1,.. .5, and k=[m+1/2] is
the MRSS with sample size ms,, where m is the set size and s,,
is the number of cycles, selected from the distribution TL
(B). The associated likelihood function ¢, for the observed
samples is given by

e=1 i=1 h=1 j=1
n2ax™ ! g-1
i(g)e ag-1 « «
fg( l(g)e) = [(g 1)']2( —xi(g)e)(Z—xi(g)e) <1—xxi( (2 x,(g)e) > ,xi(g)e>0, (10)
k-1
Zm!/jyj(k)h

The LL function of ¢, is as follows:

Iné,xs,nln a+s mlnﬁ+ZZ(0€g l)ln[xz(g)e(

Sx

xi(g)e)]+ iln( Xi(ge )

e=1i=1 e=1i=1
S, n Sy m
+ Z(g - l)ln(l - xf‘(g)e(Z X g)e) ) + Z Z(ﬁk - l)ln[yj(k)h(z - yj(k)h)]’ (11)
e=1i=1 Pt
Sy m Sy m
+ 2 2 In(1=yj00n) + 2 Y (k=1) 1“<1 ~ V(2 %(k)h)ﬂ)-
h=1 j=1 h=1 j=1

Again, the ML estimators of o and 8 are derived by
maximizing In ¢,. In this regard, the first partial derivatives
of In ¢, with respect to the parameters are
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aln 82 noAE & & (9= Dinfxi (2 - x|
1 i(g)e i(ge)] — - B > 12
+e:1;g n[X(ge(2 = i) 621; P C (12)
oln ¢ & & & (k= Dlnfy;gn(2-y;
g 2 —%+ZZkln[yj(k)h(Z—yj(k)h)] ‘ZZ 3 abirt ?(k)h)]' (13)
h=1j=1 h=1j=1 yj(k)h(z - yf(k)h) -1

By solving the system “Equations (12) and (13) equal to
zero,” we get the ML estimators of « and . Hence, reliability
estimator of R is produced by immediately by substitution of
parameter’s estimators in equation (2).

4.2. Estimation with an Even Set Size. Suppose Xige
i=1...q¢ e=1,...5¢ UXjgine i=q+1l,...m e=1,...5,

Sy 4

€3 fq( ;(q)e)l—[ 1—[ fq+1( z(q+1 )

e=1 i=1 e=1 i=q+1
n!2ocx?(g;
X; =——7I1-
fq( l(q)e) (g-1)q! (
a(g+1)-1
~ n!2(xxl(q+1)e |
fq+1(xi(q+1)e) (q_ 1)|q; (

m2py" o
Fl(7iom) :(v_ilj);;;'(l‘)’ﬂv)h)(z‘yj(wh)ﬁ 1<1 = Yom(2 = 250m) ) L

B(v+1)-1
m2/3 ](v+1

fwl()’j(wl)h) W

The LL function of ¢; for « and 5 based on MRSSE is

<

xi(q+1)e)(2 X q+1)e) ! (1 - xii(q+l)e (2 -

(1 B yj(v+1)h)(2 - yj(v+1)h)ﬁ(1’+1)—1

with even set sizes where g = n/2 be the observed MRSSE
selected from the distribution TL («). Also, suppose{Yjx,
j=Lo.ovih=1,...5} U {Yjyinej=v+1L...mh=1,..5}
with even set sizes where v = m/2 be the observed MRSSE
selected from the distribution TL (f). Therefore, the like-
lihood function ¢, of the observed data is written as follows:

v

fv(y](v )H 1_[ fwrl(y](wl)h)

=1 j=1 h=1 j=v+1

Xige) (2= X )aq_l<1‘xzf(q>e(2 x(q)e)a>q’xi<q>e>0’

@)1 14
xi(q+1)e) ) (q+1)e > 0 ( )

v

>0

g A
(1 - yj(w—l)h(z - yj(wl)h) ) > Vj(v1)h > 0.

x4 55 n
In &; Z Z[((xq - 1)ln(xi(q)eT1) + ln(l q)e)] z Z (x(g+1) - 1)ln(xi(q+1)eT2)
e=1i=1 e=1i=qt1
tsnlna+s,m lnﬁ+i i [ln(l Xi(ge1e )+(q—1)ln( q+1 W )]
e=1i=q+1
| Sy
+2, 2 a1 =2 T0") + 3 X [(By = DIn(y;Ny) + In(1 = yj)] (15)
e=1i=1 h=1 j=1

N

+ 3 Y (B +1) = DIn(yjiN, ) + Z
h=1 j=v+1 h=1

B
(1 - yj(v)hN2ﬁ>’

Sy

+ ivln

h=1 j=1

QM§

[ (1 - yj(v+1)h) +(v— l)ln<1 - )/jz(wl)thﬁ)]



where T, =(2-x;
2- y](vh) andN2

i@e) To = (2= Xj(g110e) Ny =
(2- y](wrl)h) Hence,

Oln &, n" &
oo Z

J’J(y)th

We solve “Equations (16) and (17) equal to zero” to take
out the ML estimators. Further, we insert the obtained ML
estimators in Equation (2) to have an estimator of R.

4.3. Estimation with an Odd Strength and Even Stress Sizes.
Here, we get the ML estimator of R under the following
configuration: based on the MRSSO, we select observed
samples of X from the distribution TL(«); based on the
MRSSE, we select observed samples of Y from the distri-
bution TL(f).

a[), =?+h§1;'vln(yj(v)th)+z
Y yIn W > m
> ( Vi /5) +Z Z

Scientific Programming

Sx

q ln(xi(q)eTl) + Z z (q+ l)ln(xi(q+l)eT2)

e=1i=q+1
(16)
(q+ 1>ln( ,WT )
e=1i=q+1 t(q+1 T27a N )
Y. = DIn(y;14N,)
h=1 j=v+1
(17)

(v- l)ln(y](vH hNZ)
y](wrl N ¥ -1

h=1 j=v+1

Suppose that X9y Wwhere i=1,...n, e=1,..s,
g = [(n+ 1)/2], with sample size ns,, where n is the odd set
size and s, is the number of cycles, is the observed MRSSO
from the distribution TL(«), and that {Y;v),, j=1,...v;
h=1,...5} U {Yjpinej=v+1,...,mh=1,..s}, witheven
set sizes where v = m/2, is the observed MRSSE selected
from the distribution TL(f). Therefore, the associated
likelihood function ¢, is

Sy n Sy v Sy, m
b = ( Xi(g)e )H fv(y](v )H H fv+1(yj(v+1)h)’ (18)
e=1 i=1 h=1 j=1 h=1 j=v+1
where the PDFs of X;gye» Yjvyn and Yj(,,1y, are as defined
before. The LL of the observed data is
Int,xsnln a+ sym In 3+ i i (ag - l)ln[xi(g)e(2 - xi(g)e)] + 3 i ln(l - xi(g)e)
e=1i=1 e=1i=1
Sy n y v
+2- 2 (g - DIn(1 - x{g(2 - xi050.) ") + Z 2. (Bv="DIn(y;(,N, )
=1i=1 h=1j=1
es i S (19)
y v Y m Sy m
+ 2 2 (1=yjom) + ) ) B+ 1) = DIy N,) + Z Z (1= jin)
h=1 j=1 h=1 j=v+1 h=1 j=v+
Sy oy Sy m
# Y Yvin(1- MNP ) 1Y Y 0= Din(1- N
h=1 j=1 h=1 j=v+1

Maximizing In ¢, with respect to « and f3, we obtain the
ML estimators. The partial derivatives of In £, with respect to
the parameters are given by
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7
oln ¢, n" {& & (9= Din[xg(2 - xl(g>2)]
- 1 2— X0 )| — - , 20
O o +;i=lg n[ ( Hitg )] e;wl xi(o;)e(2 N xi(y)e) -1 .
0 lg £, _m_+ bl ZV ln(}/](v)hN )+ zy Z (v+ l)ln(y] yl th)
B B h=1 j=1 h=1 j=v+1 (21)

There appear to be no closed form solutions to Equations
(20) and (21) when equal with zero. As a result, numerical
techniques are used to find the solution.

4.4. Estimation with an Even Strength and Odd Stress Sizes.
Here, the estimator of R=P(Yyrsso < Xmrsse) 18 derived,
where X is selected from the distribution TL («) based on the
MRSSE and Y is selected from the distribution TL(f3) based

on the MRSSO. Let {Xi(q)e> i=1,.. > €= 1,.. .,Sx} U {Xi(q+1)67

N

i (V l)ln(y](wrl)hNZ)
—1 h=1 j=vr+1 y](v+1)hN ‘8—1

i=q+1,...,m e=1,..s}, where q=n/2 and Yju), where
j=1...m, d=1,...s, and h=[(m + 1)/2]. The likelihood
function ¢; of the observed data is given by

s 4 s n
b= anq(xi(q>e) H 1_[ fq+1(xi(q+l)e)

e=1 i=1 e=1 i=q+1

Sy

[T /e(yiam)-

h=1 j=1
(22)

Therefore, the LL function of €5 for observed data is

x4 S 4
Inlocs,nlna+s,mln B+ Z[(ocq - l)ln(xi(q)eTl) + ln(l - xi(q)e)] + Zq ln( l(q)e “)
e=1i=1 e=1i=1
+3 ¥ [@lar 1= Do) #1001 - 5]+ 3 3 @ DIn(1 =¥ T9) (23)
e=1i=g+1 e=1i=g+1
Sy m Sy m 5 8
+ 2, 2 Bk =i [y5600(2 = )] + 2 2 (1= ja0n) + (k- 1)1‘1(1 = Yian(2 = Yjon) )
h=1 j=1 h=1 j=1
The ML estimators of both parameters are determined by
maximizing In 5. The first partial derivatives of « and f§ are
represented by
0 1 14 & @ 33 g In(x;,,
T P ITCERRS 3 OSSN CINENES Rt
e=1i=1 e=1i=q+1 e=1i=1 t(q)e
(24)
+i Z": (q- 1)111(T1(q+1 Tz)’
e=1i=q q+1)e
dln & m" I L & & (k=1 2-y,
g : _%+szln[yj(k)h(z_yj(k)h)] -2 ATk} (25)
h=1 j=1

The ML estimators of the parameters are con-
structed by setting Equations (24) and (25) to zero and
solving them numerically. Putting the ML estimator of «

and B in Equation (2), we obtain the SS reliability
estimator.

-B
h=1 j=1 y](k)h( _yj(k)h) -1

5. Simulation Results

The results of a simulation are compared with the perfor-
mance of estimators based on RSS and MRSS. For a wide
range of sample sizes and parameter settings, the absolute
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bias (AB), mean square error (MSE), and relative efficiency
(RE) criteria are used to investigate the estimated reliability.
The following set sizes and number of cycles are taken into
account when developing the simulation: (1, m)=(2, 2), (2,
3), (3,2), (3, 3), (3, 4), (4, 3), (4, 4), (5, 5), (6, 6), (7, 7), and
s =s,=>5, respectively. As presented earlier, the sample sizes
are given by s,n and s,m for the RSS and MRSS sampling
schemes. Also, (n*,m*)=(10, 10), (10, 15), (15, 10), (15, 15),
(15, 20), (20, 15), (20, 20), (25, 25), (30, 30), (35, 35) are
selected as sample sizes for SRS. The parameter values are
determined as (a, 8)=(3, 2), (5, 2), (5, 1), (4, 0.4), giving
R=0.600, 0.714, 0.833, and 0.933, respectively. From the
distributions TL(«) and TL(f), 1000 random samples are
generated. In this setting, the definition of efficiency is as
follows:

. MSE (Rggs)
fficiency (Ress Rsis) = 1Sk (Ror)’
efficiency ( RSS SRS) MSE(RRSS)
(26)
. MSE (Rggs)
ff Rutwss> Rsws) = §1SE (R, es)
efficiency (Ryrss> Rers) MSE (Rygss)
. MSE (Rgss)
ff Raamss> Rass) = USE (Rypes) ¥
e 1c1ency( MRSS RSS) MSE(RMRSS) )
Furthermore, the absolute bias is  defined

byAB(R;) = |R - E(R,)|, 8 = SRS, RSS, MRSS.

The ABs and MSEs of the reliability estimates based on
the SRS, RSS, and MRSS are summarized in Tables 1-4. They
also show the efficiency of the RSS and MRSS-based reli-
ability estimates with respect to the SRS, as well as the ef-
ficiency of the MRSS with respect to the RSS, for different
sample sizes and distribution parameters.

We can deduce the following from Tables 1-4:

(i) For all scenarios, the reliability estimates under the
RSS scheme outperform the corresponding ones
under the SRS (see Tables 1-4)

(ii) The reliability estimates under the MRSS scheme
outperform the corresponding ones under SRS in
most situations, except when X has an odd set size
and Y has even set sizes at R=0.6 (see Tables 1-4)

(iii) The reliability estimates under the MRSS scheme
outperform the corresponding ones under the RSS
in most situations, except at (n, m)=(2, 2) where
R=0.6 and at (n, m)=(4, 4) where R=0.833 (see
Table 1)

(iv) The reliability estimates under the MRSS scheme
outperform than the corresponding ones under the
RSS in most situations, except at (n, m)=(5, 5),
where R=0.714 (see Table 2)

(v) The reliability estimates under the RSS scheme
outperform the corresponding ones under the
MRSS for all cases (see Table 3)

(vi) The reliability estimates under the RSS scheme
outperform the corresponding ones under the
MRSS for all cases for (n, m)=(2, 3) except at
R=0.833 while the reliability estimates under the

Scientific Programming

MRSS scheme outperform the corresponding ones
under the RSS for all of the situations at (n, m)=
(4, 3) except R=0.9 (see Table 4)

6. Conclusions

In this manuscript, we have examined the estimation of the
unknown reliability measure R =P [Y < X], assuming that X
and Y are modeled by independent identically distributed
RVs from the TL distribution. We obtain the ML estimator
of R in the setting of the SRS or RSS. In the MRSS design, we
establish the reliability estimator of R in four situations. In
the first and second situations, we obtain the reliability
estimator when both X and Y have the same set size. The
reliability estimator is derived in the third and fourth sit-
uations when the observed samples from the stress distri-
bution have the MRSSO and the observed samples from the
strength distribution have the MRSSE, and vice versa. We
check the performance of different estimates through nu-
merical studies.
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