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In the construction of smart city, the carbon emission reduction problem of road traffic needs to be solved urgently. It is of great
significance to introduce reasonable low-carbon policies. Based on urban private cars trajectory data, this study, respectively,
establishes the genetic algorithm-back propagation neural network model (GA-BP) and back propagation-adaptive boosting
algorithm neural network model (BP-AdaBoost) to predict the carbon emissions of private cars. By comparing the two neural
networkmodels, the GA-BP neural networkmodel has better prediction results. Next, this study establishes the cost-benefitmodel
for consumers and compares consumers’ participation willingness, emission reduction effect, and social benefits of consumers
from the perspective of six kinds of low-carbon policies.+e results show that the overall effect of the low-carbon policy mix of free
quota is better than that of paid quota. In addition, different low-carbon policy mixes innovations have different policy
implementation effects under different indicators. Overall, the low-carbon policy mix of carbon trading and emission reduction
subsidy is better in the short term, and the low-carbon policy mix of carbon tax and emission reduction subsidy is better in the
long term.

1. Introduction

Road traffic is the fastest growing carbon emission source in
the world, and the introduction of reasonable low-carbon
policies has always been the focus of global attention. As
early as 2013, China’s Ministry of Transport proposed the
introduction of the carbon-trading policy to promote green
and low-carbon development of the transport sector. At
present, many countries, such as Sweden and the UK, have
introduced low-carbon policies to reduce carbon emissions
in road traffic. Although China has introduced the carbon-
trading policy, the low-carbon policy mix of road traffic
carbon emission reduction has not been put into practice. By
March 2021, the number of motor vehicles in China have
reached 378 million [1], and its carbon emissions have
become the third largest source of carbon emissions in
China, which poses a huge challenge to achieve carbon peak
and carbon neutrality. +is study combines private car data
with low-carbon policy mix innovation to study effective

emission reduction measures to promote sustainable de-
velopment of smart city. First, the carbon emissions of
private cars can be well predicted through deep learning of
private car data. Next, according to the carbon emissions of
private cars, government can introduce low-carbon policy
mix innovation to achieve the emission reduction goal. In
addition, road traffic is an indispensable part of smart city,
and the effective emission reduction of road traffic is a
necessary way for smart city to achieve sustainable devel-
opment. +erefore, based on the urban private cars tra-
jectory data, this study introduces low-carbon policies such
as carbon quota allocation, carbon trading, carbon tax, and
emission reduction subsidy, discusses the effect of policy
implementation from the consumer perspective, and studies
the feasibility and benefit of low-carbon policy mix
innovation.

For the carbon quota allocation, current studies can be
broadly divided into two categories: free quota and paid
quota. As for the allocation of free quota, consumers can get
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a fixed amount of carbon emission for free. Chen and Liu
proposed the allocation of free quota to help save energy,
reduce emissions, and gain public recognition [2]. Pan and
Shi put forward that the allocation of free quota is more
intrinsically necessary than paid quota, which is conducive
to play the role of emission reduction incentive [3]. Wei et al.
believed that the implementation of free quota in the early
stage of carbon market is better for the overall social welfare,
but there are some defects in fairness and efficiency [4]. As
for the allocation of paid quota, consumers need to conduct
paid bidding to obtain the carbon credits. Zhang et al.
believed that the income from paid quota can be used to set
up carbon funds to promote low-carbon transition and
development [5]. Miao proposed that the allocation of paid
quota could reduce the cost of enterprise performance and
meet the financing needs of enterprise [6]. Li argued that
paid quota is a more effective way of resource allocation,
which can not only encourage enterprises to reduce carbon
emissions but also reapply the benefits to technological
innovation [7]. In addition, some scholars believed that the
paid quota and free quota have their advantages and dis-
advantages. Xuan and Zhang believed that free quota has
little impact on social economy, but there are serious de-
ficiencies in fairness and efficiency. Paid quota is easy to be
monopolized by powerful industries in the process of quota
auction [8]. Ding and Feng believed that free quota can
reduce the production burden of enterprises, but the cost of
emission reduction will be passed on to consumers. +e paid
quota will influence the profits of enterprises and affect their
competitive position, but it is beneficial to form a trans-
parent market price and reflect the marginal emission re-
duction cost of enterprises [9]. At present, the allocation of
carbon quota adopts a mixed way and the transition from
free quota to paid quota. Hu et al. proposed that single or
mixed quota methods in different industries have a signif-
icant impact on the operating efficiency of carbon market
[10]. Wu et al. showed that it is more beneficial to adopt
different quota methods in the early stage of the carbon
market establishment [11].

Different scholars have different views on market-based
low-carbon policies such as carbon tax, carbon trading, and
emission reduction subsidy. For the study of carbon tax
policy, the vast majority of scholars agree that carbon tax
policy is effective. Shikha and Aditi showed that carbon tax
policy is a flexible and effective tool for reducing emissions by
building a sustainable inventory model [12]. Baranzini et al.
believed that the carbon tax policy can obtain implicit ben-
efits, and its negative effects can be offset by tax design.
However, some scholars believe that the effect of carbon tax
policy is not significant [13]. Botteon and Carraro argued that
there is no evidence that carbon tax policy would significantly
reduce carbon emissions [14]. Li et al. showed that carbon tax
policy could not achieve the effect of reducing carbon
emissions and growing double dividend in the short term
[15]. In terms of the carbon-trading policy, most scholars have
demonstrated the effectiveness of the carbon-trading policy in
reducing emissions and increasing social benefits through
empirical studies [16, 17]. +e carbon trading price and the
allocation of carbon quota will significantly affect the

emission reduction effect of the carbon-trading policy. With
the introduction of the emission reduction subsidy policy,
most scholars have shown the synergistic and emission re-
duction effects of the emission reduction subsidy policy. He
and Yue found that using low-intensity environmental
technology subsidies could reduce the emission reduction
costs of enterprise and improve environmental quality [18].
Wang et al. showed that the combination of carbon tax and
emission reduction subsidy could produce greater emission
reduction, and the emission reduction policy should gradually
shift from carbon tax to emission reduction subsidy [19].
Based on the above research, in order to better arrange the
policy mix innovation, this study subdivides the low-carbon
policy mix into two categories. One is command-and-control
type, including free quota allocation and paid quota alloca-
tion. +e other is market-based type, including carbon tax,
carbon trading, and emission reduction subsidy. +e com-
mand-and-control low-carbon policy means that the gov-
ernment restricts environmental pollution through
regulations and other means. +e market-based low-carbon
policy guides consumers to reduce pollution levels through
market mechanisms.

In addition, low-carbon policy mix, compared with
single low-carbon policy, can produce a better emission
reduction effect and social welfare. Diao et al. proposed that
the low-carbon policy mix could promote the improvement
of the optimal emission reduction rate of low-carbon
products [20]. Wang et al. proposed that low-carbon policy
mix could expand the emission reduction boundary of the
supply chain and save the implementation cost of the
government [21]. With the development of low-carbon
policy mix theory, scholars further proposed policy mix
innovation. Policy mix is dynamic, and the interaction of
policy mix is the core content of policy mix innovation [22].
+e innovative characteristics of policy mix include uni-
formity, coherence, trustworthiness, comprehensiveness,
and sufficiency [23]. Some scholars also proposed that the
innovation characteristics of the policy mix are reflected in
the governance space and policy space [24, 25]. +e use of
the policy mix in low-carbon innovation is increasingly
significant. Karoline and Schleich proposed that policy mix
innovation is positively correlated with the innovation ex-
penditure of renewable energy, and policy mix innovation
should pay more attention to low-carbon and ecological
innovation in the future [26]. Costantini et al. proposed that
the limited policy mix would reduce the effectiveness of
policies, and only comprehensive policy mix innovation can
produce energy-saving and environmental protection
technologies [27]. In addition, in terms of green and low-
carbon urban development, the construction of smart city is
also an important part. Chu et al. proposed that smart cities
could reduce pollution and improve the quality of ecological
environment [28]. Shi et al. pointed out that smart city
construction can effectively reduce urban environmental
pollution through innovation drive [29]. As an indispensable
part of smart city construction, road traffic should pay more
attention to policy mix innovation [30]. +erefore, when
introducing carbon reduction policies for road traffic, China
can consider introducing single or mixed low-carbon
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policies in different periods to achieve the optimal emission
reduction effect. At present, there are few literatures about
the introduction of the low-carbon policy into the carbon
emission reduction of road traffic, and empirical research
literature is scarce too. +erefore, this study introduces the
low-carbon policy into the carbon emission reduction of
private cars and conducts quantitative analysis based on the
perspective of consumers. +e remainder of this study is
organized as follows. Section 2 establishes the comparison
model of the GA-BP neural network and BP-AdaBoost
neural network and the cost-benefit model of consumer.
Section 3 compares the prediction results between the GA-
BP neural network model and BP-ADA neural network
model. Section 4 compares and analyzes the implementation
effect of the low-carbon policy mix from the consumer
perspective. Section 5 draws conclusions and gives
proposals.

2. Materials and Methods

Based on urban private cars trajectory data, this study es-
tablishes the BP neural network model optimized by GA and
the BP neural network model optimized by the AdaBoost
algorithm. GA is a method to search for optimal solution by
simulating the natural evolution process. +e BP neural
network is a multilayer feedforward neural network trained
according to the error back propagation algorithm. +e GA-
BP algorithm is before the BP algorithm. GA is first used to
inherit the initial optimization value in the random point set,
which is used as the initial weight of the BP algorithm, and
then trained by the BP algorithm. AdaBoost is an iterative
algorithm. Its core idea is to train different classifiers (weak
classifiers) for the same training set and then assemble these
weak classifiers to form a stronger final classifier (strong
classifier). +e BP-AdaBoost algorithm takes the BP neural
network as a weak classifier, trains the BP neural network
repeatedly to predict sample output, and obtains a strong
classifier composed of multiple BP neural network weak
classifiers by the AdaBoost algorithm [31]. In this study, the
mileage, travel time, and fuel consumption of private cars are
taken as the predictive variables and carbon emissions as the
target variables. RMSE, MAE, and error sum of the simu-
lation results of the two models are used to judge the
performance of the model. In addition, this study takes
carbon emissions per unit mile as the standard of emission
reduction subsidy. Consumers who exceed carbon emissions
per unit mile cannot obtain emission reduction subsidies.

2.1. GA-BP Neural Network Model and BP-AdaBoost Neural
Network Model. +is study establishes a three-layer GA-BP
neural network model and selects 10,000 urban private car
trajectory data. +e initialization genetic algorithm pa-
rameters are set as follows: the number of iterations is 30; the
population size is 10; the crossover probability is 0.5; and the
mutation probability is 0.1 [32]. In addition, the training
error of the neural network is used as the fitness value of the
genetic algorithm. +is study adopts the roulette operation
mode. +e selected individual has a certain probability of

passing on this fitness to the next generation, and the
probability of each individual being selected is as follows:

Pi �
fi

􏽐
n
j�1 fj

, (1)

where Pi is the probability of being selected, and fi is the
individual fitness. Crossover operation is a random pairing
of individuals within a population to exchange genes. +e
cross inheritance is as follows:

Cxi � Cxi(1 − a) + Cyia,

Cyi � Cyi(1 − a) + Cxia,

⎧⎨

⎩ (2)

where Cxi is the cross-interchange of the x
th chromosome at

i,Cyi is the cross-interchange of the y
th chromosome at i, and

a is a random number from 0 to 1. Mutation manipulation is
the use of mutation probability to produce new genes. +e
genetic variation of the ith individual is as follows:

Cij �

Cij + Cij − Cmax􏼐 􏼑∗f(t) g> 0.5,

Cij + Cmin − Cij􏼐 􏼑∗f(t) g≤ 0.5,

⎧⎪⎪⎨

⎪⎪⎩

f(t) � r 1 −
t

tmax
􏼠 􏼡

2

.

(3)

In the above formula, Cmax is the maximum value of the
gene, Cmin is the minimum value of the gene, Cij is the j

gene of the ith individual, g is the random number from 0 to
1, t is the number of iterations, tmax is the maximum
number of iterations, and r is the random number. +e
algorithm solves the optimal weight and threshold by it-
eration and assigns the optimal initial threshold and weight
to the BP neural network model for prediction.

+e BP-AdaBoost neural network model established in
this study is also a three-layer neural network structure. +e
initial sample data weight is 1/7000.+e prediction error and
prediction weight obtained by BP neural network training
are as follows:

et � 􏽘 Dt(i),

wt �
1
2
ln

1 − et

et

􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where 􏽐 Dt(i) is the weight of sample data, et is the pre-
diction error, and wt is the prediction weight. +e next
round of sample weight is adjusted according to the fol-
lowing equation:

Dt+1(i) �
Dt(i)

Ct

∗ exp −wtyig xi( 􏼁􏼂 􏼃,

· yi ∈ Y � +1, −1{ }, i � 1, 2 . . . ,

(5)

where Ct is the normalization factor, and g(xi) is the
classifier function, after t iterations. +e strong predictor
function H(x) is the function combination of t group weak
predictor, which can be presented as follows:
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H(x) � 􏽘
t

t�1
wt · f gt, wt( 􏼁⎡⎣ ⎤⎦. (6)

For the GA-BP neural network model and BP-AdaBoost
neural network model prediction results credibility, this
study uses the root mean square error (RMSE) and mean
absolute error (MAE) as the criteria. +e smaller the index
value is, the higher the prediction performance of the model
is. For the comparison of prediction results between the GA-
BP neural network model and BP-AdaBoost neural network
model, this study takes the error sum and the absolute value
of prediction error as the comparison standards. +e smaller
the index value is, the higher the prediction performance of
the model is. In addition, the pseudocodes of the GA-BP
neural network is presented in Algorithm 1, and the pseudo-
codes of the BP-AdaBoost neural network is presented in
Algorithm 2.

2.2. Consumer Cost-Benefit Model. +e low-carbon policies
adopted in this study are carbon quota allocation, carbon
tax, carbon trading, and emission reduction subsidy. Carbon
quotas are targets for reducing greenhouse gas emissions
that must be met. Carbon quota allocation is divided into
free quota and paid quota. Carbon tax policy refers to a tax
on carbon dioxide emissions. Carbon trading is a market
trading mechanism that uses carbon dioxide emission as a
commodity to reduce greenhouse gas emissions. Emission
reduction subsidies are subsidies given by the government to
private cars with a set standard of carbon emissions. Under
different low-carbon policy mixes, the participation will-
ingness of consumers, social benefits, and carbon emission
reduction effect vary with consumers’ own cost-benefit.
+erefore, this study designs six kinds of low-carbon policy
mixes to compare participation willingness, social benefits,
and carbon emission reduction effect from the consumer
perspective. Consumers’ participation willingness is evalu-
ated by their unit cost-benefit; the social benefits of con-
sumers are evaluated by the difference between consumer
benefits and costs; the emission reduction effect of policy
implementation is evaluated by the difference between
consumers’ equilibrium emissions and actual emissions. +e
equilibrium emissions of consumers are the carbon emis-
sions when the difference between consumer costs and
benefits is zero.

Under the policy mix of free quota, carbon trading, and
emission reduction subsidy, when the allocation method is
free quota, consumers can get the free quota given by the
government. In the actual emission process, consumers
who exceed their quotas need to buy carbon emissions to
meet their demands, while consumers who have surplus
quotas sell carbon emissions to get benefits. Both of them
complete this process by participating in carbon trading. In
addition, the government will also subsidize private cars
that produce less carbon per kilometer than required. Cost-

benefit and emission reduction subsidies of consumers are
as follows:

R � Qb − Qs( 􏼁Pc + Vb,

C � QsPc,

B1 �
Qb − Qs( 􏼁Pc + Vb

QsPc

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vb � z − Cd( 􏼁PcLmbt,

(7)

where R is the benefit obtained by consumers, C is the cost
paid by consumers, B1 is the unit cost-benefit of consumers
under the policy mix of free quota, carbon trading, and
emission reduction subsidy,Qb is the free carbon emission of
consumers, Qs is the actual carbon emission of consumers,
Pc is the carbon price, Vb is emission reduction subsidy, Cd

is the carbon emissions per unit mile, Lm is the driving
mileage, bt is the subsidy rate, and z is the standard of carbon
emissions per mileage.

Under the free quota and carbon trading policy mix,
consumers can get the free quota given by the government.
In the actual emission process, both parties participate in
carbon trading to buy and sell carbon emissions to meet
their respective demands. Consumers are unable to obtain
emission reduction subsidies, and the cost-benefit of con-
sumers is as follows:

B2 �
Qb − Qs( 􏼁Pc

QsPc

, (8)

where B2 is the unit cost-benefit of consumers under the free
quota and carbon-trading policy mix. Under the policy mix
of free quota, carbon tax, and emission reduction subsidy,
consumers can get free quotas and emit carbon dioxide while
driving. Government imposes carbon tax to increase the
travel cost of consumers, so as to promote the low-carbon
emission reduction of consumers. In addition, the intro-
duction of emission reduction subsidies can enhance con-
sumers’ emission reduction potential. +e cost-benefit of
consumer is as follows:

R � Vb,

C � QsPcT,

B3 �
Vb

QsPcT
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where T is the carbon tax rate, and B3 is the unit cost-benefit
of consumers under the policy mix of free quota, carbon tax,
and emission reduction subsidy. From the perspective of free
quota, carbon tax, and no emission reduction subsidy policy
mix, consumers cannot obtain emission reduction subsidies
(R � 0), so the unit cost-benefit of consumers B4 is zero.
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Under the policy mix of paid quotas, carbon-trading and
emission reduction subsidies, consumers need to buy carbon
credits from the government, participate in carbon trading,
and receive carbon reduction subsidies. +e quota
method of paid quota increases the carbon cost of con-
sumers, but emission reduction subsidy and carbon
trading policy can enhance the enthusiasm of consumers.
In the process of carbon trading, consumers can sell
carbon quotas to get benefits, and private cars with lower
carbon emissions can get benefits. +e cost-benefit of
consumer is as follows:

R � Qb − Qs( 􏼁Pc + Vb,

C � Qs + Qb( 􏼁Pc,

B5 �
Qb − Qs( 􏼁Pc + Vb

Qs + Qb( 􏼁Pc

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where B5 is the unit cost-benefit of consumers under the
policy mix of paid quota, carbon trading, and emission
reduction subsidy. Under the policy mix of paid quota,

Input: the training set {xs, ys, zs}, the test set {xd, yd, zd}.+emaximum iteration value isM, the size population value isN, the crossover
probability value is θ, and the mutation probability value is β. +e number of neuron nodes value is Nd.
Output: predicting the carbon emissions of private cars {y}
(1) Define population information as a structure.
(2) While iteration do
(3) For i� 1, 2, . . ., N do
(4) Calculate individual fitness.
(5) End for
(6) Find the best chromosome s and best fitness b, solve the optimal initial threshold t and weight w1.
(7) For i� 1, 2, . . ., M do
(8) Select the individual i, cross chromosome, mutate heredity.
(9) For j� 1, 2, . . ., N do
(10) Find the minimum fitness chromosomes p, maximum fitness l, and their position.
(11) End for
(12) If b> new b, then
(13) b�new b
(14) End if
(15) End for
(16) Assign the optimal initial threshold weight w to network prediction.
(17) End while
(18) Obtain the carbon emissions of private cars {y}.

ALGORITHM 1: GA-BP genetic algorithm.

Input: the training set {xs, ys, zs}, the test set {xd, yd, zd}. Initialize weight k. Calculate sample weight w2.
Output: predicting the carbon emissions of private cars {y}
(1) k� 10.
(2) For i� 1, 2, . . ., K do
(3) Set the number of iterations e, set learning rate l, weak predictor training.
(4) Calculate weak predictor predicting.
(5) Calculate prediction error r, r� q− y.
(6) Calculate test data predicting.
(7) Adjust the weight.
(8) For j� 1, 2, . . ., n do
(9) If absolute value of error >0.2 then
(10) New error� r+w2
(11) New weight� w2 ∗ 1.1
(12) Else
(13) New weight� w2
(14) End if
(15) End for
(16) Calculate the weak predictor weights. Normalize weight.
(17) End for
(18) Obtain the carbon emissions of private cars {y}.

ALGORITHM 2: BP-AdaBoost adaptive boosting algorithm.
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carbon trading, and no emission reduction subsidy, with the
further increase of carbon cost, consumers can obtain de-
mand through carbon trading in the actual emission process.
+e unit cost-benefit for consumer is as follows:

B6 �
Qb − Qs( 􏼁Pc

Qs + Qb( 􏼁Pc

, (11)

where B6 is the unit cost-benefit of consumers under the
policy mix of paid quota, carbon trading, and no emission
reduction subsidy. From the perspective of paid quota,
carbon tax, and emission reduction subsidy policy mix,
consumers need to buy quotas from the government. +e
government also imposes carbon tax when consumers emit
carbon dioxide, but the policy of emission reduction subsidy
will reduce the carbon cost of consumers appropriately. +e
unit cost-benefit for consumer is as follows:

R � Vb,

C � QsPc(1 + T),

B7 �
Vb

QsPc(1 + T)
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where B7 is the unit cost-benefit of consumers under the
policy mix of paid quota, carbon tax, and emission reduction
subsidy. When consumers cannot obtain emission reduction
subsidies, R is zero. +erefore, the unit cost-benefit for
consumer B8 is 0. In addition, the social benefits of con-
sumer are calculated as the sum of R-C differences. +e
emission reduction of consumer is calculated by the dif-
ference between the balance carbon emission and the actual
carbon emission when R-C is zero. +e social benefits and
emission reduction for consumers are as follows:

Ts � 􏽘(R − C),

Ms � Qh − QS,

⎧⎨

⎩ (13)

where Ts is the social benefit, Ms is the emission reduction,
and Qh is the balance carbon emission.

3. Results and Discussion

3.1. Error Comparison between the Two Models. +is study
selects 10,000 urban private car trajectory data as the
training set and test set according to the ratio of 7 : 3. Driving
mileage, driving time, and driving fuel consumption are
taken as the predictive variables of the neural network. By
adjusting the number of neurons in the hidden layer, the
error between the BP-AdaBoost neural network model and
the BP-AdaBoost neural network model established in this
study is given in Table 1 [1].

As given in Table 1, all indicators are optimal when the
number of neurons is 10 in the GA-BP neural network
model. +erefore, this study establishes a 3-10-1 GA-BP
neural network model. In the BP-AdaBoost neural net-
work model, all indicators are optimal when the number
of neurons is 9. +erefore, this study establishes a 3-9-1

BP-AdaBoost neural network model. As shown in Fig-
ure 1, this study takes 0.01 as a reasonable error range.
When the error range is less than 0.01, the number of
errors of the GA-BP neural network is 1823, and the
number of errors of the BP-AdaBoost neural network is
1654. In other error ranges, the number of errors of the
GA-BP neural network is less than the BP-AdaBoost
neural network; the GA-BP neural network is superior. In
addition, the total error of GA-BP neural network pre-
diction is 24.78, the error rate is 0.25%, the total error of
BP-AdaBoost neural network prediction is 28.49, and the
error rate is 0.28%. +erefore, the prediction result of the
GA-BP neural network is better than that of the BP-
AdaBoost neural network overall.

3.2. Comparison of Simulation Results. In the error com-
parison, RMSE, MAE, and error sum of the GA-BP neural
network model are smaller than those of the BP-AdaBoost
neural network model. In addition, as shown in Figures 2
and 3, the prediction error of the GA-BP neural network
model is within 0.03, and the prediction error of the BP-
AdaBoost neural network model is within 0.35. When the
error range is less than 0.01, the prediction accuracy of the
GA-BP neural network is 60.77%, while the prediction ac-
curacy of the BP-AdaBoost neural network is only 55.13%.
When the error range is less than 0.25, the prediction ac-
curacy of the GA-BP neural network is 99.93%, while the
prediction accuracy of the BP-AdaBoost neural network is
97.87%. In addition, the individual error of the GA-BP
neural network is only 0.248, while the individual error rate
of the BP-AdaBoost neural network is 0.341. +erefore, the
prediction results of the GA-BP neural network are better.
+is study establishes a 3-10-1 GA-BP neural networkmodel
to simulate prediction.

+e prediction results of simulation are given in Table 2;
the expected carbon emissions are calculated by the IPCC
calculation formula. +e predicted carbon emissions are the
prediction results of the neural network, and carbon
emissions per unit mileage are the carbon emissions per unit
kilometer of a private car. +e emission reduction subsidy is
calculated by formula (1).

In Table 2, the prediction error of the GA-BP neural
network is less than 0.02. +e results are excellent. In ad-
dition, carbon emissions per mile exceed the specified
emission standards that will not receive emission reduction
subsidies. +e emission reduction subsidies prescribed
emission standards are given.

4. The Comparison of the Policy Mix
Implementation Effects from
Consumer Perspective

4.1. "e Comparison of Consumers’ Participation Willingness
under Policy Mix. From the perspective of B4 and B8, the
consumer’s benefit and unit cost-benefit are 0, which will not
be drawn in this study. As shown in Figure 4, under the
allocation of free quota, before carbon emissions reaches
point A, the unit cost-benefit of consumer is optimal in the
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B1 mix; after the carbon emissions reaches point A, the unit
cost-benefit of consumer is optimal in the B2 mix, and the
consumer’s participation willingness is the highest. Under
the allocation of paid quota, before carbon emissions reach
point B, the unit cost-benefit of consumer is optimal in the
B7 mix. When the carbon emissions are between point B and
point C, the unit cost-benefit of consumer is optimal in the
B5 mix; after the carbon emissions reaches point C, the unit
cost-benefit of consumer is optimal in the B6 mix, and the
consumer’s participation willingness is the highest. Overall,

when carbon emissions continue to increase, the unit cost-
benefit of consumer is optimal, and the consumer’s par-
ticipation willingness is the highest in the B2 mix.

4.2. "e Comparison of the Consumers’ Emission Reduction
Effect underPolicyMix. As shown in Figure 5, when the low-
carbon policy is paid quota, the emission reduction effect of
consumer is optimal in the B7 mix, which is always higher
than the mix of B5 and B6. When the low-carbon policy is
free quota, the emission reduction effect of consumer from
the perspectives of B1, B2, and B3 is different. Overall, the
emission reduction effect of consumers under the mix of free
quota is always better than the mix of paid quota. Before the
driving mileage reaches point D, the emission reduction
effect of consumer is optimal in the B2 mix. When the
driving mileages are between point D and point E, the
emission reduction effect of consumer is optimal in the B1
mix. After the driving mileage reaches point E, the emission
reduction effect of consumer is optimal in the B3 mix.

4.3. "e Comparison of Consumers’ Social Benefits under
Policy Mix. As shown in Figure 6, before the carbon
emission reaches point F, the social benefits of consumer are
optimal in the B1 mix. When the carbon emission is between
point F and point G, the social benefits of consumer are
optimal in the B2 mix. After the carbon emission reaches
pointG, the social benefits of consumer are optimal in the B3

Table 1: Error comparison of the two models under the number of each neuron.

Model/neural number 7 8 9 10 11

GA-BP neural network
RMSE 0.0119 0.0102 0.0104 0.0094 0.01
MAE 0.0091 0.0083 0.0083 0.008 0.0082

Error sum 27.2044 24.7875 24.7823 24.0654 24.4685

BP-AdaBoost neural network
RMSE 0.0156 0.0128 0.0118 0.0204 0.1084
MAE 0.0105 0.0097 0.0095 0.0122 0.0144

Error sum 31.3554 28.9729 28.4914 36.6374 43.3059
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Figure 1: +e comparison of error distribution between the two
models.

0 500 1000 1500 2000 2500 3000
Sample

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Er
ro

r v
al

ue

GA-BP neural network prediction error

Figure 2: Prediction error of the GA-BP model.
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mix. +e social benefits of consumer under the paid quota
policy mix are different. In general, the social benefits of
consumer under the free quota policy mix is obviously better
than the paid quota policy mix.

5. Conclusions

Based on urban private cars trajectory data, this study es-
tablishes the GA-BP neural network model and BP-Ada-
Boost neural network model for simulation comparison and
finds that the prediction results of the GA-BP neural net-
work model are more accurate. In addition, based on the
prediction results of the GA-BP neural network model, this
study compares consumers’ participation willingness,
emission reduction effect, and social benefits under multiple
low-carbon policy mix innovation scenarios and finds that
the policy mix of free quota is better than that of paid quota
in these respects. As for the participation willingness of
consumers, the mix of carbon trading and emission re-
duction subsidy has the best unit cost-benefit and the highest
consumers’ participation willingness in the short term; the
mix of carbon trading and no emission reduction subsidy is

Table 2: Prediction results of the GA-BP neural network and subsidy amount.

S/no. Driving mileage Expected carbon emissions Projected carbon emissions Error Carbon emissions per unit mileage Subsidy
1 8.9 3.21 3.19 −0.02 0.36 0
2 2.01 0.89 0.89 0 0.44 0
3 13.14 4.58 4.57 −0.01 0.35 0
4 23.89 5.74 5.74 0 0.24 0.43
5 5.94 2.41 2.43 0.02 0.41 0
... ... ... ... ... ... ...
... ... ... ... ... ... ...
... ... ... ... ... ... ...
2999 1.81 0.74 0.74 0 0.41 0
3000 31.26 6.73 6.72 −0.01 0.21 0.84
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better in the long term. As for the effect of emission re-
duction, the policy mix of carbon trading and zero emission
reduction subsidy will result in a better emission reduction
effect for consumers in the short term; the policy mix of
carbon tax and emission reduction subsidy is better in the
long term. As for the social benefits of consumers, the policy
mix of carbon trading and emission reduction subsidy will
bring the best social benefits in the short term; the policy mix
of carbon tax and emission reduction subsidy has better
social benefits in the long term. +erefore, from the per-
spective of different indicators, the policy implementation
effects of low-carbon policy mix are different, and it is better
to implement carbon trading policy in the short term and
carbon tax policy in the long term.

+is study combines five low-carbon policies and in-
corporates them into the framework of carbon emission
reduction for private cars, quantitatively compares con-
sumers’ participation willingness, emission reduction effect
and social benefits under multiple low-carbon policy mix
innovation, and provides policy ideas for emission reduction
of private cars in smart city.

In order to build a smart city with sustainable devel-
opment and smoothly achieve carbon peak and carbon
neutrality, it is necessary to implement carbon emission
reduction schemes for road transportation. Based on the
low-carbon policy mix innovation proposed in this study,
relevant policy proposals can be started from the following
aspects: (1) preferential application of the policy mix of free
quota. +e policy mix of free quota can encourage con-
sumer participation and increase emissions reduction. In
the empirical study of this study, the policy mix of free
quota is superior to that of paid quota. (2) Carbon trading
policy will be implemented in the short term, carbon tax
policy will be implemented in the long term, and a proper
policy mix of emission reduction subsidy will be adopted in
due course. Carbon trading policy has low social cost and
high implementation cost, and consumers are more willing
to participate in the short term, while carbon tax policy has
high social cost and low implementation cost. In the long
run, it will further reduce carbon emissions. Timely in-
novation and adoption of low-carbon policy mix can en-
hance consumers’ participation willingness and emission
reduction effect [33]. (3) Considering the emission re-
duction path under multiple low-carbon policy mixes in-
novation, the low-carbon policy mix can be combined with
the market-based low-carbon policy and the command-
and-control low-carbon policy to promote carbon emission
reduction of urban private cars.
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