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Mutation testing is an effective defect-based software testing method, but a large number of mutants lead to expensive testing
costs, which hinders the application of variation testing in industrial engineering. To solve this problem and enable mutation
testing to be applied in industrial engineering, this paper improves the method of identifying redundant mutants based on data
flow analysis and proposes the inclusion relationship between redundant mutants, so that the redundancy rate of mutants is
reduced. In turn, the cost of mutation testing can be reduced. (e redundant mutants identification method based on definition
and reference of variables (ImReMuDF) was validated and evaluated using 8C programs. (e minimum improvement in re-
dundant mutant identification rate was 34.0%, and the maximum improvement was 71.3% in the 8 C programs tested, and the
verification results showed that the method is feasible and effective and has been improved in reducing redundant mutants and
effectively reducing the execution time of mutation testing.

1. Introduction

Mutation testing is a fault-based software testing technique
[1] that has received a great deal of attention in program
analysis, defect detection, and test case generation [2].
Mutation testing not only has the advantages of strong
troubleshooting ability, convenience, and flexibility, but also
can be used to expose defects in the software, and it has the
ability to measure the error found in the test data set and
evaluate the adequacy of the test [3]. Mutation testing has
strong fault detection capabilities [4]. Mutation testing
technology has gradually become popular in the industry [5]
but has not been widely used.(e reason is that running and
analyzing tests are expensive in terms of resources and
manpower [6], the computational cost of mutation testing is
high, the identification of equivalent mutations is difficult,
the effective automated mutation testing tools are not
perfect, etc. [7].

(e concept of mutation testing was first proposed by
Demillo [8], which refers to the execution of mutation

operations on the original program to generate a new
program (program with defects), and the new program is
called a mutant. Subsequently, a large number of scientific
research results appeared. In terms of reducing the number
of mutants,Wong [9] proposed random selection of mutants
to achieve the purpose of reducing the number of mutants.
Sridharan and Namin [10] proposed the preferential se-
lection of more informative mutation operators. Usaola et al.
[11] proposed the minimization of test cases to reduce the
time of mutation testing. Sun et al. [12] proposed a method
for identifying redundant mutants based on data flow
analysis. Chekam et al. [13, 14] proposed a dynamic sym-
bolic execution method and a mutant priority method.
Shomali and Arasteh [15] proposed the firefly optimization
algorithm as a heuristic algorithm for identifying the most
error-prone path in the program. Hooseini et al. [16] pro-
posed a genetic algorithm to identify the path where the
program is most likely to propagate errors as the mutation
location. In terms of shortening the time of mutation testing,
Krauser et al. [17] proposed parallel execution of mutants.
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King and Offutt [18] proposed prioritization of mutation
compilation. Although the above method optimizes the
mutation testing from different aspects, it is not perfect in
terms of adequacy assessment, and it still has a certain
impact on adequacy. (e method proposed by Sun et al.
reduces the mutants caused by variables very well. It reduces
the execution time of mutation testing by reducing the
number of mutants, but it does not extend well to the
identification of redundant mutants of multiple variables.

In order to increase the recognition rate of redundant
mutants and reduce redundant mutants, this paper proposes
a redundant mutants identification method based on defi-
nition and reference of variables (ImReMuDF). (e main
contributions of this paper are as follows:

(1) (e definition and reference of two variables are
proposed to increase the recognition rate of re-
dundant mutants in the test.

(2) In the definition and reference of two variables, the
inclusion relationship of the variables in the same
situation is introduced. (is method improves the
identification of redundant mutants caused by var-
iables, thereby achieving the purpose of reducing the
number of mutants.

(3) In 8C program experiments, the effectiveness and
feasibility of this method are verified.

Compared with the definition and reference of one
variable, the ImReMuDF method can be extended to the
definition and reference of multiple variables to identify
redundant mutants.

2. Identification of Redundant Mutants

2.1. Traditional Mutation Testing. In traditional mutation
testing, errors are embedded into the program through mutant
operators [19] or manually, and then the embedded defects are
detected by test cases, and the adequacy of defect detection is
determined by the mutation score. Given the tested program P
and the set of test cases T, the tested program P uses mutation
operators or manual embedding errors to generate a set of
mutantsM. It is very important to identify equivalent mutants
and nonequivalent mutants in the mutation testing [20]. (e
traditional mutation testing process is shown in Figure 1. (e
traditional mutation testing process is as follows:

(1) (e set of mutants identifies and classifies the set of
equivalent mutants I and the set of nonequivalent
mutants L

(2) Run the set of test cases T(T � T∪ t{ }) on the set L
(3) Calculate themutation score for the set of test casesT
(4) If the mutation testing meets the requirements, exit;

if the mutation testing does not meet the require-
ments, add a new test case t and repeat the (2)-(3)
operations

2.2. Redundant Mutant. In mutation testing, the adequacy
of the test case set is evaluated by the ratio of the number of
detected mutants to the total mutants. In mutation testing, a

large number of redundant mutants bring a large number of
repeated checks to the mutation testing. On the one hand, it
increases the test time, and on the other hand, it brings
expensive test costs. (erefore, a large number of redundant
mutants must be removed before mutation testing. (e
removed mutants will not be repeatedly tested, reducing the
time of mutation testing, to achieve the purpose of saving
test costs.

(e redundant mutants are shown in Figure 2. In Fig-
ure 2, it can be found that the mutants m1 and m2 mutate in
the 3rd and 4th rows, respectively. Although the position of
the mutation has changed, the program status below the
mutation location is similar. In the mutation testing, if there
is a test case that can execute the above code, it must be able
to kill mutantsm1 andm2. In the calculation of the mutation
score, since whether the mutant can be killed can be ob-
tained by the test result of the mutant m2, only the mutant
m1 needs to be executed during the mutation testing, and the
mutant m2 is not executed.

Given the program P and the mutant m1 generated by
the mutation operator, if the output results of the program P
and the mutant m1 are not equal when running on the test
case t, then the mutation testing is called strong mutation
testing. Given the program P and the mutant m2 generated
by the mutation operator, if the state of the program P and
the mutant m2 is inconsistent when running on the test case
t, then the mutation testing is called weak mutation testing.
Compared with strong mutation testing, weak mutation
testing has the advantage of shortening the test time. As can
be seen from the above description, traditional mutation
testing is based on strong mutation testing. (is paper is to
optimize the execution time of the mutation testing based on
the weak mutation testing.

Definition 1 (inclusive relationship between mutants).
Given the program P to be tested and an input t � (t �

ti(i�1,2,...,n)􏽮 􏽯) containing n-tuples, all possible t forms the
input space T of the program P. Suppose there are two
mutants m1 and m2 generated by P, and the output states of
P and m when the input is t are Pt and mt, respectively; the
mutant m1 including the mutant m2 must meet the two
following conditions:

(1) ∃t ∈ T, pt ≠ (m1)t∧pt ≠ (m2)t

(2) T(m1)⊆T(m2), T(m) � t ∈ T|pt ≠mt􏼈 􏼉

(en, it can be expressed as m1↦m2.
Based on the above analysis, when T(m1)⊆T

(m2), T(m) � t ∈ T|pt ≠mt􏼈 􏼉 exists between the mutants,
andm1 andm2 meet Definition 1,m2 is called the redundant
mutant of m1. Assuming that there are sets of mutants M1
and M2 satisfying ∀mi ∈M2, ∃mj ∈M1, where mi ∈ mj,
thenM2 is called the set of redundantmutants, and M1 is the
set of nonredundant mutants.

2.3. Data Flow Analysis. Data flow analysis is a technology
used during compilation. And data flow analysis plays an
important role in program analysis, compilation opti-
mization, program verification, defect detection, etc. [2].
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Data flow analysis mainly focuses on the data flow or
possible values on the program execution path. Its pur-
pose is to determine the relationship between variable
definitions and references within a certain range of the
program [21]. (erefore, the following two definitions are
given.

Definition 2 (definition set and reference set). Definable set:
in the program P, if x exists in the assignment statement y,
and the variable value of x changes, then x is an assignment
variable, which can be expressed as

def(y) � x | x is the assignment variable in the y statement􏼈 􏼉.

(1)

Reference set: in the programP, if x exists in the assignment
statement y, and the variable value of x does not change, then x
is a reference variable, which can be expressed as

ref(y) � x | x is the reference variable in they statement􏼈 􏼉.

(2)

Definition 3 (reference chain). In PDG [22], there is a path
from def(u, v, s1) to ref(u, v, s2), and there is no other path
from s1 to s2, then there is a definition-reference Chain of
variables u and v, denoted as dr(u, v, s1, s2).

2.4. Improved Redundant Mutant Identification Steps.
When performing redundant mutant detection on the
mutant set M, firstly, a series of information about each
mutant is obtained; then, after the identification rules, the
redundant mutants in the mutant set are identified; finally,
the redundant mutants are removed from the mutant set,
and a new mutant set is output. (e redundant mutant
process of data flow analysis is as follows:

(1) (e program structure of the program P to be tested
is analyzed, and the block rule file of the program is
obtained

(2) Compare the mutant program and the source pro-
gram one by one to obtain the mutation location of
the mutants

(3) Determine the class of the mutant according to the
block rule file

(4) Analyze the data flow of the source program, and
generate data flow information such as variable
definition, variable reference, and definition-refer-
ence chain;

(5) Identify the set of redundant mutants according to
the redundant mutant identification rules and
combining the block categories of the mutants and
information of the program data flow

(6) Output the set of mutants

(e process of identifying redundant mutants based on
data flow analysis is shown in Figure 3.

In redundant mutant based on data flow analysis,
program structure analysis and mutation location analysis
are applied to mutation testing tools [23]. In this paper, the
data flow analysis is implemented using Frama-C [24].

Time complexity analysis of the algorithm: suppose that
the number of mutants of the program to be tested is n, and
the number of definition-reference chains is m. In the al-
gorithm, each definition-reference chain needs to traverse
the entire set of mutants, so the time complexity of obtaining
the set of definition mutants and reference mutants is O(n);

Set of mutants M
Identify the set of

equivalent
mutants I

Set of non-
equivalent
mutants L

Execute the
mutation test case

T on the set of
mutants L

Calculate the
score of the

mutation of T

Add test case t

Does the mutation
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Test case
set

T=T U  {t}

Exit
Yes
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Figure 1: Traditional mutation testing process.

Figure 2: Examples of redundant mutant.
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when the definition-reference chain meets the identification
rules, it is necessary to traverse entire mutants in the set of
reference mutant of the variable, so the time complexity is
O(m). (erefore, the time complexity of the algorithm is
O(n × m).

3. Identification Rules of Redundant Mutant

When mutants undergo static analysis, the following three
aspects need to be qualified: (1) the set of mutants with
similar mutation locations; (2) the set of mutants with the
same predecessor path conditions; (3) the set of mutants
with similar program states (the state of the program after
the mutation location). In the case of redundant mutant
identification, to ensure the existence of a reachable path
from variable definition to use between the source mutant
and the mutation location of the redundant mutant, the
solution is to set the analysis location after the mutant is
used. Based on the above principles, the redundant mutant
identification rules are defined in 4 dimensions (intrablock,
sequential block, subfast, and intermodule) in the technique
of data flow analysis.

3.1. Identification Rule 1 (D1). Suppose that there is a def-
inition-reference chain dr(u, v, s1, s2) in the program, let
mutant mi�(1,2,3) be the definition mutant set M(def , u, v, s1)

of variable u, v, and let mutant mj�(1,2,3) be the reference
mutant set M(ref , u, v, s2) of variable u, v. When s1 and s2
are in the same basic block and in the definition mutant set,
m1↦m2, m3. It can be concluded that mx�(2,3,...,6) is a re-
dundant mutant of m1.

According to the identification rule D1 of the definition,
it is qualified that its source variant m1 and redundant
mutants mx�(2,3,...,6) belong to the same basic block. mi�(1,2,3)

and mj�(1,2,3) are defined by the variable definability
appearing in the s1 statement (mx�(2,3,...,6)) and the variable
reference line appearing in the s2 statement (ref , u, v, s2),
respectively, where the s1 statement and the s2 statement
belong to the BasicBlockn. From the data flow analysis
technique, we can know that if the execution of s1 in mi is
triggered in the mutation test, it can cause the execution of s2
inmj, and then the definition-reference company can ensure
the propagation of the state at s1 to s2. Based on the inclusion
relationship between mutants and the definition of redun-
dant mutant, mx�(2,3,...,6) can be identified as a redundant
mutant of m1. Figure 4 shows an example of the D1 iden-
tification rule application.

In the mutants mi�(1,2,3), the variables x and y are defined
in the 4th and 5th lines (def(x, y, 4, 5)), and in the mutants
mj�(4,5,6), the variables x and y are referenced in the 6th line
(ref(x, y, 6)). In the mutants mi�(1,2,3), the changes in the
value of the variable in the definition mutant set
M(def , x, y, 4, 5) of the variables x and y will cause the value
of the variable temp in the 6th line of the program to change.
In the mutants mj�(4,5,6), the reference mutant set
M(ref , x, y, 6) of the variables x and y has a direct effect on
the value of the variable temp in the program. Due to the
definition-reference chain dr(x, y, 4, 5, 6), the 6 mutants

entirely have the same change state in the 6th row; that is,
mx�(2,3,...,6) are redundant mutants of m1.

3.2. Identification Rule 2 (D2). Assuming the existence of a
definition-reference chain dr(u, v, s1, s2), let mutant
mi�(1,2,3) be the definition mutation set M(def , u, v, s1) of
variable u, v, and let mutant mj�(1,2,3) be the reference
mutation set M(ref , u, v, s2) of variable u, v. s1, belongs to
the program block bn (bn is one of the BasicBlock,
OptiomBlock, and LoopBlock), and s2 belongs to Basic-
Blocki, where bn and BasicBlocki satisfy the sequential block
relationship and meet Definition 1 in s1. It can be concluded
that mx�(2,3,...,6) is a redundant mutant of m1.

According to the defined identification rule D2, it is
qualified that its mutant mi�(1,2,3) and mutant mj�(4,5,6)

belong to the sequential block relationship. mi�(1,2,3) and
mj�(4,5,6) are variables defined, respectively, in the s2 state-
ment (def , u, v, s1) and referenced in the s2 statement
(ref , u, v, s2), where s1 belongs to program block bn (bn is
one of the BasicBlock, OptiomBlock, and LoopBlock) and s2
belongs to BasicBlocki. According to the definition of the
sequential block, in the mutation testing, if the execution
condition of s1 in mi is triggered, it will cause the execution
of s2 in mj. (en, the definition-reference chain of the
variable can ensure that the state at s1 is propagated to s2.
Based on the inclusion relationship betweenmutants and the
definition of redundant mutants, mx�(2,3,...,6) can be iden-
tified as redundant mutants of m1. An example of the
recognition rule is shown in Figure 4 below. Figure 5 shows
an example of the D2 identification rule application.

(e source program in Figure 5 is divided into blocks. It
can be seen that lines 3, 4, and 5 belong to the same
BasicBlock (b1), lines 6, 7, and 8 belong to the same
BasicBlock (b2), and line 9 belongs to the same BasicBlock
(b3). (e definitions of the variables x and y are in the 4th
and 5th lines, expressed as (def(x, y, 4, 5)), and the refer-
ences to the variables x and y are in the 9th line, expressed as
(ref(x, y, 9)). b2 is the sequential block of b1, and b3 is the
sequential block of b2, so b3 is the indirect block of b1. (e
mutants mi�(1,2,3) belong to the definition mutation set
M(def , x, y, 4, 5) of the variables x and y. If the values of the
variables x and y change, the influence of the program is
propagated to line 9 by reference to the variables x and y,
thereby changing the value of the variable temp.(emutants
mj�(4,5,6) belong to the reference mutation set M(ref , x, y, 9)

of the variables x and y, and the changes in the values of the
variables x and y directly affect the value of the variable temp.
From the definition-reference chain dr(x, y, 4, 5, 9), it can
be seen that the 6 mutants have the same change state in the
9th row; that is, mx�(2,3,...,6) are redundant mutants of m1.

3.3. Identification Rule 3 (D3). Assuming the existence of a
definition-reference chain dr(u, v, s1, s2), let mutant
mi�(1,2,3) be the definition mutation set M(def , u, v, s1) of
variables u, v, and let mutant mj�(4,5,6) be the reference
mutation set M(ref , u, v, s2) of variables u, v. When s1
belongs to program block bn (bn is one of the BasicBlock,
OptiomBlock, and LoopBlock), and s2 belongs to
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BasicBlocki, BasicBlocki is the sequential block of the
subblock of bn and meets Definition 1 in s1. It can be
concluded that mx�(2,3,...,6) are redundant mutants of m1.

According to the identification rule D3, it is qualified that
the relationship between the mutants mi�(1,2,3) and mutants
mj�(4,5,6) is defined as a composite of the relationship of the
subblock and the sequential block. mi�(1,2,3) and mj�(4,5,6) are
variables defined, respectively, in the s2 statement
((def , u, v, s1)) and referenced in the s2 statement
((ref , u, v, s2)). s1 belongs to program block bn (bn is one of
the BasicBlock, OptiomBlock, and LoopBlock) and s2 belongs
to BasicBlocki, where bn and BasicBlockn directly or indi-
rectly satisfy the composite of the relationship of the subblock
and the sequential block. It can be known from the subblock

relationship that, in the mutation testing, if bn is executed, its
upper block will be executed, and then the sequential block
BasicBlockn will be executed. (e definition-reference chain
can ensure that the error state at s1 is propagated to s2.
According to the inclusion relationship between mutants and
the definition of redundant mutants, mx�(2,3,...,6) can be
identified as the redundant mutant of m1. Figure 6 shows an
example of the D3 identification rule application.

(e source program in Figure 6 is divided into blocks. It
can be seen that lines 3, 4, 5, and 6 belong to the same loop
block (b1), lines 4 and 5 belong to the same basic block (b2),
and line 7 belongs to the same basic block (b3). b1 is the
upper block of b2, and b3 is the sequential block of b1. (e
definitions of the variables x and y are in the 4th and 5th
lines, expressed as def(x, y, 4, 5, )), and the references to the
variables x and y are in the 9th line, expressed as ref(x, y, 9).
(e mutants mi�(1,2,3) belong to the definition mutation set
M(def , x, y, 4, 5) of the variables x and y. (e change of
variables x and y changes the value of the variable sum by
ref(x, y, 7) in line 7. mj�(4,5,6) directly affect the change of
the value of the variable sum by referencing the variables x
and y. From the definition-reference chain dr(x, y, 4, 5, 7), it
can be seen that the 6 mutants have the same change state in
the 7th row; that is, mx�(2,3,...,6) are redundant mutants ofm1.

3.4. Identification Rule 4 (D4). Suppose that there exists a
definition-reference chain dr(u, v, s1, s2), let mutants mi�(1,2,3)

be the definition mutation set M(def , u, v, s1) of the variables
u, v, and let mutants mj�(4,5,6) be the reference mutation set
M(ref , u, v, s2) of the variables u, v. If s1 is a function call
statement i⟶∗j in module i with the variables u, v as ar-
guments, s2 belongs to a BasicBlockj in module j,

Program to be
tested P

Collection of
mutants

Data flow analysis

Program structure 
analysis

Analysis of the
location of variant

mutations

Variable definiton-
reference chain

Mutant block
category

Redundant
Mutant

Identification
Rules

Set of redundant
mutants

Multiple files

Data

Process

file

Output

Figure 3: Redundant mutant identification by data flow analysis.

Figure 4: Example program for identifying rule D1.
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S(BasicBlockj) � ∅ and meets Definition 1 in s1. It can be
concluded that mx�(2,3,...,6) are redundant mutants of m1.

According to the identification rule D4, it is qualified that
mutants mi�(1,2,3) and mutants mj�(4,5,6) belong to the cross-
module relationship. mi�(1,2,3) and mj�(4,5,6) are the block,
where the variable definitional appearance ((def , u, v, s1)) is
located as bn ∈ i, and the variable reference line appears in the
BasicBlockn ∈ j where ((ref , u, v, s2)) is located, and there is a
call relationship i⟶∗j between bn and BasicBlockn, and
BasicBlockn has no subblock relationship in module j. From
this, it can be deduced that, after the execution of bn, Basic-
Blockn must be executed, and then the definition-reference
chain can ensure that the error state at s1 is propagated to s2.
Based on the inclusion relationship between mutants and the
definition of redundant mutants, mx�(2,3,...,6) can be identified
as redundant mutants ofm1. Figure 7 shows an example of the
D4 identification rule application.

(e mul function is called by the f function in the third
line, and the passing parameters are the variables x and y.
(e definition of variables x and y in the mutants mi�(1,2,3) is
represented as def(x, y, 3), and the references in themutants
mj�(4,5,6) are represented as ref(x, y, 6). mi�(1,2,3) belong to
the definition mutation set M(def , x, y, 3) of variables x and
y.(e change of the variable will affect the return value of the
function, and the value of the variable mulp in the program
can be changed through the call of the function. mj�(4,5,6)

belong to the reference mutation set M(ref , x, y, 5) of the
variables x and y, and the reference of variables x and y will
directly affect the value of the variable mulp. From the
definition-reference chain dr(x, y, 3, 6), it can be seen that
the 6 mutants have the same change state in the 6th row; that
is, mx�(2,3,...,6) are redundant mutants of m1.

4. Experimental Analysis

4.1. Experimental Subjects. 8 C program sets (program
source: http://sir.csc.ncsu.edu/portal/index.php, containing
detailed information about experimental data) are used as

experimental objects to verify the feasibility and effectiveness
of the algorithm, which can be divided into two categories:
(1) Siemens program sets and the functional descriptions of
the program set: print_tokens and print_tokens2 are lexical
analyzers; schedule and schedule2 are schedulers; replace is
pattern matching and replacement; tcas is a vehicle collision
program; tot_info is data generation statistics. (2) (e space
assembly is the interpreter of the array definition language.

Firstly, a large number of mutants were generated for
each source program using Proteum [25]; then, the data set
was preprocessed to filter a set of equivalent mutants and a
set of applicable mutants. (e relevant information of the
program set is shown in Table 1.

4.2. Experimental Steps and Results Analysis. Firstly, all sets
of mutants with nonequivalent and single mutants are se-
lected, and the data flow information of the experimental
subjects is obtained using Frama-C [24]; then, the block rule
file of the program to be tested is obtained using the static
analysis method, and the mutation location information of
the mutants is obtained; finally, the redundant mutants are
identified after the identification rules (D1∼D4).

(e redundant mutants identified by the program for
different experimental subjects were summed and counted,
and the statistical results are shown in Table 2. (e re-
dundancy rate of their mutants was used to verify the ef-
fectiveness of the algorithm in reducing the execution time
of the mutation testing, and the redundancy rate was cal-
culated by the formula shown in equation (1):

R �
NRVI

MN − MEN
×100%, (3)

where R denotes the redundancy rate, NRVI denotes the
number of identified redundant mutants, MN denotes the
total number of mutants, and MEN denotes the number of
equivalent mutants.

From Table 2 and Figure 8, it can be seen that there are
different numbers of redundant mutants in the set of mu-
tants of different experimental subjects. Although the re-
dundancy rate accounted for by different experimental
subjects varies greatly, this is enough to verify the existence

Figure 5: Example program for identifying rule D2.

Figure 6: Example program for identifying rule D3.
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of redundant mutants. From the side, it also verifies the
reason why a small number of test cases can kill a large
number of mutants in mutation testing.

From Table 2 and Figure 9, it can be seen that the re-
dundancy recognition rate varies widely among the different
experimental objects, and the recognition variation of dif-
ferent identification rules is relatively large. Among the 8C
programs, it can be seen that the redundancy recognition rate
of the space program reaches a maximum of 1964. However,
the number of redundancy recognitions of the schedule is

only 104. (e validity analysis of the method is shown in
Figure 9: (is figure visualizes the proportion of redundant
mutants under different identification rules. (e number of
redundant mutants identified in D1 and D3 is relatively high,
accounting for 37% and 39% of the total number of mutants,
respectively; the number of redundant mutants identified in
D2 andD4 is relatively low, accounting for 5% and 19% of the
total number of mutants, respectively. (e following two
points are summarized: (1) the larger the program size is, the
more efficient the redundant mutants will be identified; (2)

Figure 7: Example program for identifying rule D4.

Table 1: Experimental procedure information.

Experimental
subject

Number of lines of code
(including commented

lines of code)

Lines of code
(excluding comment lines

and blank lines)

Number
of

test cases

Total
number

of mutants

Number of
equivalent
mutants

Number of applicable
mutations

print_tokens 565 343 4130 10881 583 3619
print_token2 510 355 4115 9369 545 3478
Schedule 412 296 2650 3516 204 1441
schedule2 307 263 2710 5794 471 2045
Replace 563 513 5542 21703 1556 7805
Tcas 173 137 1680 6478 442 2044
tot_info 406 281 1052 4308 678 3654
Space 9126 5982 136467 9380 1079 7986

Table 2: Redundant mutants of two variables for different experimental subjects.

Experimental subjects
Number of redundant mutants

Total redundant mutants
D1 D2 D3 D4

print_tokens 78 32 62 180 352
print_token2 33 0 76 112 221
Schedule 41 0 23 40 104
schedule2 18 7 27 53 105
Replace 175 0 267 131 573
Tcas 0 0 112 37 149
tot_info 86 16 213 186 501
Space 1046 132 786 0 1964
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from the identification rules, the program structure distri-
bution of the program can be judged, and we can verify this
from the source code of the program. If there are more se-
quential structures in a program, the rule D1 recognition will
work in the recognition rule. (ere are more branch struc-
tures and loop structures in the Siemens program set. (e
variables defined in the branch structure and loop structure
are used more in sequential blocks, which makes D3 identify
more redundant mutants. (e use of variables in the Siemens
assembly is mostly through function calls, which makes D4
recognize more redundant mutants. (erefore, when there
are more cyclic structures, the recognition rate of D3 will be
increased. When there are more function calls, the recogni-
tion rule D4 will play an important role.

When the program size increases in the experimental
program, the number of mutants increases accordingly
when the test program passes through the mutation
operator, and the number of test cases also increases, in
which case the traditional mutation test execution time

increases exponentially, significantly increasing the ex-
pensive resources for mutation testing. (e redundant
mutants are identified by statically scanning the defini-
tion-use chain of the program and the set of mutants, and
it can be concluded that the identification of redundant
mutants is linearly related to the size of the program and
is not correlated with the test cases. (erefore, the ex-
pensive resources for mutation testing are reduced to
some extent.

In order to better show the identification of redundant
mutants based on two variables for data flow analysis, the
identification of redundant variants based on one variable
proposed by Sun et al. is given in Table 3 for Sun et al.
[12].

Since the changed redundant mutant identification
based on data flow analysis contains a definition-reference
chain of variables as proposed by Sun et al., i.e., our proposed
scheme has a higher identification rate in terms of imple-
mentation than the scheme proposed by Sun et al. As can be
seen in Figure 10, the improved redundancy rate varies from
one experimental subject to another, with the highest re-
dundant mutant identification improvement of up to 498 in
the space program; however, the schedule2 program has the
lowest redundant mutant identification improvement of
only 39 mutants.

19%

39% 5%

37%

D1

D2

D3

D4

Figure 9: Percentage of redundant mutant identification rules.

Table 3: Redundant mutants of one mutation for different ex-
perimental subjects.

Experimental
subjects

Number of
redundant mutants Total redundant mutants
D1 D2 D3 D4

print_tokens 59 10 37 123 249
print_tokens2 19 0 41 69 129
Schedule 31 0 12 20 63
schedule2 12 3 18 33 66
Replace 88 0 160 94 342
Tcas 0 0 73 23 96
tot_info 52 7 87 150 296
Space 872 73 521 0 1466
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Figure 8: Redundant mutants of a variable in different subjects.
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5. Conclusion

(is paper improves the identification technique based on
data flow redundant mutants from the point of view of
reducing the execution time of mutant test, combines the
program block structure and data flow analysis technique,
and defines a set of redundant mutant identification rules
based on the weak mutant test. A set of redundant mutant
identification rules is defined based on weak mutation
testing. (e effectiveness of the proposed redundant mutant
identification technique is evaluated using 8C programs.
(e experiments show that a large number of redundant
mutants can be identified using the method in this paper,
which not only reduces the number of mutants, but also
shortens the execution time of mutation testing; we have
compared this with the previous technique and found that
our improvement still greatly improves the identification of
redundancy rate and further optimizes the identification of
redundant mutants.

(e main work in this paper is based on the im-
provement of the redundant mutant identification
technique for data flow analysis. We introduce the in-
clusion relation of redundant mutants by adding one
variable to achieve redundant mutant identification for
two mutants, and the method can be better extended to
multiple variables. Our next work is the redundant
mutant identification technique for arbitrary multiple
mutations, and better algorithms to further improve the
testing efficiency.
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