
Research Article
Recognition of Power Equipment Based on Multitask
Sparse Representation

Lei Lei,1,2 Jian Wu ,1,2 Shuhai Zheng,3 Xinyi Zhang,4 Liang Wang,1,2 Yanfei Wang,5

and Hao Wan1,2

1State Grid Shaanxi Electric Power Science Research Institute, Xi’an, China
2State Grid (Xi’an) Environmental Technology Center Co., Ltd, Xi’an, China
3State Grid Co., Ltd. DC Construction Branch, Beijing, China
4State Grid Shaanxi Electric Power Xi’an Power Supply Company, Xi’an, China
5Sichuan Hengchuang Tiandi Automation Equipment Co., Ltd., Chengdu, China

Correspondence should be addressed to Jian Wu; jwu.sxsp@yahoo.com

Received 16 July 2021; Revised 5 August 2021; Accepted 16 August 2021; Published 29 November 2021

Academic Editor: Bai Yuan Ding

Copyright © 2021 Lei Lei et al. +is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Image analysis of power equipment has important practical significance for power-line inspection and maintenance. +is paper
proposes an image recognition method for power equipment based on multitask sparse representation. In the feature extraction
stage, based on the two-dimensional (2D) random projection algorithm, multiple projection matrices are constructed to obtain
the multilevel features of the image. In the classification process, considering that the image acquisition process will inevitably be
affected by factors such as light conditions and noise interference, the proposed method uses the multitask compressive sensing
algorithm (MtCS) to jointly represent multiple feature vectors to improve the accuracy and robustness of reconstruction. In the
experiment, the images of three types of typical power equipment of insulators, transformers, and circuit breakers are classified.
+e correct recognition rate of the proposed method reaches 94.32%. In addition, the proposed method can maintain strong
robustness under the conditions of noise interference and partial occlusion, which further verifies its effectiveness.

1. Introduction

With the continuous increase of power equipment, tradi-
tional manual-line inspection and substation monitoring
have been difficult to meet the actual requirements. In this
context, a large number of power-line inspection equipment
types based on helicopters, drones, and other computational
platforms have been put into application [1–5]. +ese de-
vices collect images of power equipment through optical and
infrared sensors on themselves or nearby. +en, the image
analysis and other technical means can be used to determine
possible faults in the power equipment. +erefore, it is of
great significance to carry out the analysis and interpretation
of power equipment images. Image recognition of power
equipment is one of the branches in the field of image
analysis of power equipment. +e basic idea is to classify the
collected power equipment on the basis of the existing

database, so as to provide a prerequisite for the targeted
analysis of the special type of equipment. At present, there
are still few studies in this field. In fact, the power equipment
image recognition problem is similar to the traditional
image-based target recognition problem and basically uses
two stages of feature extraction and classifiers. In the process
of feature extraction, according to the characteristics of
power equipment images, geometric shape features, image
gray distribution features, and local texture features are
developed and employed [6–12]. Afterwards, an appropriate
classifier is selected to process the extracted features and
determine the corresponding category. Commonly used
classifiers in image recognition of power equipment include
support vector machines (SVMs) and sparse representation-
based classification (SRC). In recent years, the deep learning
models represented by the convolutional neural network
(CNN) have become a powerful tool in the field of image
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processing [13–16] and have also been widely used and
verified in the image recognition of power equipment
[17–21].

+e rapid development of modern pattern recognition
technology provides a large number of tools, which can be
well used for reference in the recognition of power equip-
ment images. In recent years, the compressive sensing (CS)
technology has developed rapidly and widely used in the
fields of signal processing, image analysis, and other relevant
applications. Specifically, in the field of image recognition,
SRC is a representative classifier based on the compressed
sensing theory, which has been successfully applied in face
recognition and remote sensing image recognition [22–24].
+is paper makes optimizations in the feature extraction and
classifier stages based on the CS theory and develops an
image recognition method of power equipment. In the
process of feature extraction, the two-dimensional (2D)
random projection is used to reduce the dimensionality of
the original images [25]. +rough multiple random pro-
jection matrices, the characteristics of the image can be
obtained from different aspects to achieve complementary
enhancement. 2D random projection is an extension of
traditional one-dimensional random projection, which can
effectively maintain the structural characteristics of 2D
signals such as images. At the same time, the algorithm
inherits the advantages of random projection, which needs
no prior parameters and has high computational efficiency.
+rough the comprehensive operation of multiple 2D
random projection matrices, it can play a complementary
role, so as to provide more comprehensive feature de-
scriptions for the input images. In the classification stage, the
multitask compressed sensing (MtCS) [26] is used to jointly
reconstruct and analyze the multilevel projection features.
MtCS is a typical multitask joint sparse representation al-
gorithm, which can be used to analyze the internal corre-
lation of multiple sparse representation tasks, so as to
improve the accuracy of the solution [27–31]. In the field of
target recognition, based on the solved sparse representation
coefficients, the test samples can be reconstructed by dif-
ferent classes, so as to make decisions based on the re-
construction error. MtCS combines the principles of CS and
Bayesian theory to obtain the largest a posteriori solution in
the theoretical sense. In particular, due to the basic prin-
ciples of CS and Bayesian solution, the algorithm can ef-
fectively overcome the influence of noise and other
interference factors and can better handle the changes in
lighting conditions, sensor noise, and other factors that may
be encountered during the image acquisition process of
power equipment. In order to verify the proposed method,
images of insulators, transformers, and circuit breakers are
used as basic samples in the experiments. And, noise in-
terference and partial occlusion conditions are further
constructed for testing. +e experimental results show the
effectiveness and robustness of the proposed method.

2. 2DRandomProjection for FeatureExtraction

Traditionally, the projection features are extracted by first
stacking the 2D image X ∈ Rn1×n2 into a vector as

x � vec(X). Such operation actually benefits the processing
afterwards but inevitably corrupts the structural information
of the image. In order to maintain the structural properties
of images, the 2D projection algorithm can be employed like
Y � AXBT, in which Y ∈ Rm1×m2 denotes the resulted feature
and A ∈ Rm1×n1 and B ∈ Rm2×n2 are the projection matrices
with m1≪ n1 and m2≪ n2. +e key in 2D projection lies on
the design of the projection matrices, which influences the
validity of the final features.

According to the CS theory, the sparse signal can be well
reconstructed by a small number of measurements. In a
similar idea, the sparse matrix can be reconstructed by the
low-dimensional matrix. In this sense, the CS theory pro-
vides a simple and effective way to extract features from 2D
sparse matrices [25].With the projection featuresA ∈ Rm1×n1

and B ∈ Rm2×n2 , the process of feature extraction can be
described as Y � AXBT, whereX ∈ Rn1×n2 is the input image.

In order to guarantee the fidelity after feature extraction,
the dimensions of the result Y, i.e., m1 and m2, should be
properly chosen. According to [25], the requirements for m1
and m2 are as follows:

‖X‖0 <
spark(A)spark(B)

4
,

ℓ0 normof each column of X <
spark(A)

2
,

ℓ0 normof each row of X <
spark(B)

2
,

(1)

where ‖X‖0 denotes the ℓ0 norm of X and the spark of a
matrix represents the minimal number of its columns which
are linearly dependent. For the random projection matrices
A ∈ Rm1×n1 and B ∈ Rm2×n2 , they comply to spark(A) � m1 +

1 and spark(B) � m2 + 1.
Owing to the merits of 2D random projection, this paper

employs it for feature extraction of images of power
equipment. Specially, multiple random projection matrices
are developed to generate multiple feature vectors, which
provide complementary descriptions of the target to be
analyzed and classified.

3. MtCS for Classification

3.1. Basics ofMtCS. It is easy to understand that the multiple
measurements from the same source are statistically related
like multichannel signals and multiview signatures [27–31].
MtCS is a multitask learning algorithm based on CS and
Bayesian theory, which could consider the correlations of
several related tasks to achieve high reconstruction
precision.

Denote the L measurements from the same source as
yi i�1,...,L; they are expressed as follows:

yi � Aixi + ni, (2)

where Ai ∈ RNi×N denotes the dictionary corresponding to
ith measurement and ni represents a zero-mean Gaussian
process with the variance of ξ0.

+e likelihood function of yi is modeled as follows:
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+e parameters xi(i � 1, 2, . . . , L) are kept unchanged
for all the L tasks. +e L tasks are assumed to be statistically
related as follows:

p yi | ξ, ξ0(  � 
N

j�1
N xi,j|0, ξ− 1

j ξ− 1
0 , (4)

where xi,j is the jth element of xi and ξ � [ξj, . . . , ξN]T. +e
Gamma priors are put on the parameter ξ0 as follows:

p ξ0 | a, b(  � Gamma ξ0|a, b( . (5)

With the choices of ξ and yi, the posterior density
function (PDF) of xi can be calculated as follows:
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where

μi � ΣiA
T
i yi,

Σi � A
T
i Ai + Λ 

− 1
,

(7)

with Λ � diag(ξ1, ξ2, . . . , ξN).

+e parameter ξ can be estimated by searching the
maximum of the marginal likelihood as follows:

L(ξ) � 

L

i�1
log yi|ξ( 

� −
1
2



L

i�1
Ni + 2a( log y

T
i B

− 1
i yi + 2b  + log Bi


  + const,

(8)

where Bi � I + AiΛ− 1AT
i .

+e dependence of L(ξ) on ξj and Bi can be formulated
as Bi � Bi,− j + ξ− 1

j Ai,jA
T
i,j with Bi,− j � I + k≠jξ

− 1
k Ai,kAT

i,k.
+erefore, L(ξ) can be reformulated as follows:

L(ξ) � L ξ− j  −
1
2
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(9)

where ξ− j is obtained by removing the jth component in ξ.
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To find the maximum of L(ξ), L(ξ) is differentiated with
respect to ξj. With the assumption of ξj≪ si,j, ξj can be
approximated as follows:

ξj ≈

L
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(11)

Equation (11) controls the addition and deletion of Ai,j

from the signal representation. +en, si,j, qi,j, and gi,j can be
computed as follows:

si,j �
ξjSi,j

ξj − Si,j

,

qi,j �
ξjQi,j

ξj − Qi,j

,

gi,j � Gi +
Q

2
i,j

ξj − Si,j

,

(12)

with
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(13)

In equation (13), Ai and Σi only contain the basis
vectors currently included in the model. With the sedi-
mentations of Σi, the sparse representation coefficients
can be solved. With the solutions of sparse coefficients
corresponding to different tasks, the original input can be
reconstructed class by class to calculate the reconstruc-
tion errors. Finally, by comparison of the reconstruction
errors from different classes, the category of the input can
be decided.
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3.2. Procedure of Target Recognition. Based on the above
analysis, the basic process of the power equipment image
recognition method designed in this paper is shown in
Figure 1. First, multiple 2D random projection matrices are
initialized for multilevel feature extraction. For all training
samples, a corresponding dictionary is constructed through
different 2D random projection matrices to form a multi-
feature dictionary. +e test sample uses the same random
projection matrices to obtain the multilevel feature vectors.
+en, based on the multifeature dictionary, MtCS is used to
characterize multiple feature vectors of the test sample and
the sparse representation coefficients corresponding to
different features are calculated. Finally, the decision is made
based on the reconstruction errors of the test sample cor-
responding to different training classes. +e proposed
method shows a certain degree of randomness in the con-
struction of 2D random projections, so as to ensure the
complementarity between them. In the classification stage,
the maximum posterior strategy adopted by MtCS can well
overcome the interference caused by nuisance conditions
such as noise and occlusion, so as to ensure the reliability of
the final decision.

4. Experiments and Discussion

4.1. Description of the Dataset. In order to test the perfor-
mance of the proposedmethod, this paper uses three types of
power equipment, i.e., insulators, transformers, and circuit
breakers, for experiments, which are common in power
systems. 2000 images of each of the three types of equipment
are collected and used. All these images are adjusted to sizes
of 400 pixels× 400 pixels by means of preprocessing. 1400
images of each of the three types of targets are randomly
selected as the training samples, and the remaining 600
images are used as the test samples. As a comparison, this
paper selects several types of existing relevant methods to
conduct experiments at the same time, including the method
based on the region moments in [11] (denoted as Region
moment), the method using SRC in [5] (denoted as SRC),
the method based on SVM in [8] (denoted as SVM), and the
method using CNN in [21] (denoted as CNN).

In the following, the original samples are first tested as a
preliminary validation. Later, the nuisance conditions,
which may occur in the actual applications, are considered
including noise interference and occlusion.+e performance
of all the methods is comprehensively investigated under the
three conditions to reach the final evaluation of the proposed
method.

4.2. Performance on Original Samples. At first, we use the
proposed method to classify the original test samples of three
types of equipment. Table 1 shows the recognition results of the
three types of equipment achieved by the proposed method. It
can be seen that the recognition rate of the three types of
equipment has reached more than 90%, and the average rec-
ognition rate is calculated to 92.3%. +is result shows the ef-
fectiveness of the proposed method for image recognition of
power equipment. Table 2 compares the average recognition

rates of different methods. +e performance of the proposed
method is better than of others, which proves its superior
performance. Specifically, compared with the SRC method, this
paper extends the single sparse representation problem to a
multitask one and combines multilevel 2D random projection
features to provide a more adequate discrimination basis for
classification decision. +erefore, the recognition result of the
proposed method is greatly improved compared with the SRC
method. +e recognition performance of the CNN method
ranks second in this case, only lower than the proposedmethod.
For the original samples, the test samples can maintain high
correlations with the training samples. At this time, the trained
classification network can maintain strong adaptability to the
test samples. +e method based on regional moment features
has poor performance under the current condition, mainly
because there may be certain errors in the process of regional
feature extraction, which are passed to the classification stage
and cause the decrease of the recognition accuracy.

4.3. Performance onNoisy Samples. Since noise interference is
inevitable in the actual image acquisition process, it is necessary
to investigate the recognition performance of the proposed
method under noise interference conditions. In this experiment,
we first add different degrees of Gaussian white noise to the
original test samples [32] and then test the recognition per-
formance of different methods for noise samples. Figure 2
shows the average recognition rate curves of different
methods as the signal-to-noise ratio (SNR) changes. It can be
seen that the proposed method maintains the best recognition
performance under different SNRs, indicating its robustness to
noise interference. As analyzed above, both 2D random pro-
jection and MtCS are based on the basic theory of CS and have
good adaptability to noise influences. At the same time,
Bayesian estimation is introduced intoMtCS, which can further
enhance the robustness of the classification process against
noise interference. Compared with the condition of the original
samples, the performance of the CNN and SVM methods
degrades themost significantly. Taking the CNN as an example,
as the noise level of the test samples continues to increase, its
similarity with the training samples decreases. As a result, the
trained classification network has poor adaptability to those test
samples, resulting in a decrease in the recognition accuracy.
+e overall robustness of the method based on the regional
moment feature under noise interference is second only to the
proposed method, because the regional feature is relatively
insensitive to noise interference. Even under noise pollution
conditions, the area characteristics of the target can generally be
well maintained, so it can maintain good performance under
noise interference conditions. +e SRC method has some
advantages over the CNN and SVM, which further reflects the
robustness of the CS principle to noise interference.

4.4. Performance on Occluded Samples. In the process of
collecting images of power equipment, occlusion and other
situations inevitably occur, resulting in partial occlusions in
the acquired images. To test the adaptability of the proposed
method to occlusion conditions, this paper constructs oc-
cluded samples based on the original test set and obtains
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Figure 1: Procedure of recognition via electric equipment based on 2D random projection and MtCS.

Table 1: +e recognition results of the three types of power equipment achieved by the proposed method.

Class
Recognition result

Recognition rate (%)
Insulators Transformers Circuit breakers

Insulators 552 21 27 92.00
Transformers 9 580 11 96.67
Circuit breakers 10 13 567 94.50
Average recognition rate (%) 94.32

Table 2: Comparison of performance of different methods on original test samples.

Method type Proposed Region moment SVM SRC CNN
Average recognition rate (%) 94.32 91.87 92.13 92.42 93.54
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Figure 2: Comparison of performance of different methods on noisy samples.
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different test sets with occlusion levels of 10%, 20%, 30%, and
40%. Afterwards, all the methods are used to classify the test
sets with different occlusion conditions, and the statistical
results are shown in Figure 3. It can be seen that the pro-
posed method can achieve higher performance than the
comparison methods at different occlusion levels, showing
its robustness to partial occlusion.+emultilevel 2D random
projection features have good complementarity, so they play
a positive role in the recognition problem under occlusion
conditions. At the same time, the Bayesian estimation used
in MtCS can be solved in a maximum posterior manner, so
as to obtain a theoretical optimal decision. Similar to the case
of noise interference, the performance of the SRC method is
better than that of the SVM and CNN methods, which
reflects that the principle of CS is also adaptable to occlusion
situations. +erefore, the proposed method combines the
advantages of these two tools to effectively improve the
adaptability to occlusion situations.

5. Conclusion

For the problem of power equipment image recognition,
this paper proposes a method based on 2D random
projection and MtCS. +e multilevel feature vectors of
the power equipment image are obtained by 2D random
projection, which have good complementarity. MtCS has
good noise robustness and anti-interference performance
and can robustly solve sparse representation coefficients
under more complex conditions. By combining the ad-
vantages of the two algorithms, the adaptability of the
recognition method to various scenarios can be im-
proved. Experiments are carried out based on the samples
of three typical power equipment: insulators, trans-
formers, and circuit breakers. +e results show that the
proposed method is effective for the problem and has

stronger robustness than other methods under conditions
like noise interference and partial occlusions.

Data Availability

Our experiment data are all collected from the Internet, and
they are permitted for public use.
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