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In this paper, a route-planning approach is proposed based on the region-segmentation Dynamic Programming (DP) algorithm
for Automated Guided Vehicles (AGVs) in large Smart Road Network Systems (SRNSs) to deal with the problem of low route
computation efficiency of the classical DP algorithm. We introduced an improved Markov Decision Process (MDP) to describe
SRNSs, in which the SRNSs are divided into several regions according to the AGVs’ start nodes and their goal nodes to improve the
route-planning efficiency. Moreover, the route with the minimum number of turns is selected to reduce the system running time
and energy cost in the following way: first, all the equidistant shortest routes are acquired from the AGVs’ start nodes to their goal
nodes using the improved DP algorithm; then, the routes are screened by calculating the angular deviation between all feasible
routes and AGVs’ initial directions, and the route with the fewest number of turns is taken as the shortest-time route. The
simulation results verified that the proposed method can effectively solve the route-planning problem of AGVs in current SRNSs.

1. Introduction

Smart Road Network Systems (SRNSs) are important parts
of the Smart World. Automated Storage and Retrieval
Systems (AS/RSs) and Container Terminal Systems are
typical Industry 4.0 application scenarios. Automated
Guided Vehicles (AGVs) are the main tools, which enable
automatic access to goods transportation without human
labor. With the development of Smart City and Internet of
Things technology, the route-planning algorithms of AGV's
in SRNSs are commonly used not only in logistics industries
and smart factories but also in intelligent transportation
systems [1], energy transmission systems [2], and even
network planning [3]. With the wide application of AGVs
route planning, the goal of route planning is not only to find
the route with the shortest distance from AGVs’ start nodes
to their goal nodes but also to minimize the system operating
time and reduce energy cost. Moreover, the speed of the
route-planning algorithm is also important. Therefore,
AGVs route-planning problem in SRNSs has been widely
studied.

The AGVs route planning in SRNSs belongs to the
single-source shortest routing problem, and it has

similarities with trajectory optimization. They both can be
solved using graph search algorithms [4, 5], sampling-based
methods [6], and intelligent algorithms [7]. Dijkstra’s al-
gorithm is a classical route search algorithm, which has a
simple structure and is robust and easy to implement, and it
can meet requirements in practical scenarios. However,
Dijkstra’s algorithm belongs to Breadth-First Search (BEFS),
and thus it is not suitable for applying in scenarios with high
real-time requirements [8-10]. In addition, when there are
multiple equidistant shortest routes between the start node
and the goal node, Dijkstra’s algorithm can find only one of
them. Even though there is improved Dijkstra’s algorithm
[11] that can obtain all equidistant shortest routes through
iterations, the time complexity of Dijkstra’s algorithm is
O(n?), where n indicates the number of nodes in SRNSs.
Therefore, it is not suitable for route planning in large
SRNSs. AGVs interact with SRNSs all the time and an AGV
has state s, at each time t. An AGV takes action a on state s,,
and then it transforms to a new state s,,; by taking reward
1141, and a sequence (i.e., S, s, T Sp Ap Tr41...) 1s built by
repeating the operation. The process of computing the
shortest routes for AGVs is called the sequence decision
process, and Markov Decision Process (MDP) is a typically
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formulaic method for it. SRNSs described in this paper
consist of several regularly arranged nodes, and the work-
flow can be described using MDP. However, we cannot
completely copy the classical MDP to model the environ-
ment of the characteristics of different SRNSs.

Dynamic Programming (DP) algorithm is a branch of
operations research, which was proposed by Bellman et al.
[12] in the 1950s. DP algorithm is a method for solving
optimization problems of the multistep decision process. DP
can transform multistage problems into a series of single-
stage problems [13], and it is suitable for solving optimization
problems in large-scale environments. DP algorithm is the
basic of Reinforcement Learning (RL) [14], and RL is an
unsupervised algorithm based on the principles of reward and
punishment. However, it is suitable for solving model-free
problems, an AGV does not know which state has the bigger
reward, and it needs to find the optimal policy to the goal state
through trial and error [15]. Moreover, the classical DP al-
gorithm iterates the sample set by randomly selecting starting
point until the value function approaches the optimal policy.
With the expansion of the scales of route-planning envi-
ronments, the training time can become larger, and the
computation amount of the DP algorithm will increase ex-
ponentially with the increasing number of nodes [16].

With the development of new communication technolo-
gies (e.g., 5G) and the increase of nodes’ number in SRNSs, the
real-time requirements for AGVs route-planning algorithm are
becoming higher, and the classical DP algorithm is not suitable
for the current development of Smart World. We propose a
route-planning approach based on the region-segmentation
DP algorithm for AGV's in SRNSs to address the low-efliciency
problem of the classical DP algorithm. Because the classical
MDP fails to accurately model the current SRNSs, we propose
an improved MDP model for SRNSs. Since the number of
samples is one of the important factors that affect the efficiency
of the algorithm, a region-segmentation-based DP algorithm is
proposed. Firstly, SRNSs are divided into several regions
according to AGVs’ start nodes and their goal nodes, and the
objective is to reduce the number of training samples. Then,
each node is assigned a value, and the DP algorithm is used to
compute the value function of each region, and the objective is
to find all equidistant shortest routes from the AGVs’ start
nodes to their goal nodes. Because AGVs can take more time
and energy to turn, we introduce the following steps to de-
termine routes with the least turns: (a) screening routes by
calculating the angle deviation between all candidate routes
and an AGV’s initial direction and (b) choosing a route among
remaining routes with the fewest number of turns and con-
sidering it the optimal route for the AGV. Moreover, we design
different route-planning strategies according to whether an
AGV is loaded or not, which improves the flexibility and
efficiency of SRNSs, and the more nodes in the SRNSs, the
more efficient our approach.

2. Related Works

The AGVs route-planning problem can be solved using
Dijkstra’s algorithm [17], A* algorithm [18], D* algorithm
[19], Probabilistic Roadmap (PRM) [20], Rapid Random
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Tree (RRT) [21], Artificial Potential Field (APF) [22], neural
network [23], genetic algorithm [24], and ant colony al-
gorithm [25]. Dijkstra’s algorithm is a classical shortest route
search algorithm, and it is simple and stable for perfor-
mance. Guo et al. [11] improved Dijkstra’s algorithm and
found the shortest routes with the least distance and time
consumption for AGVsin AS/RSs. Li et al. [26] assumed that
all obstacles were convex and found the shortest routes for
AGVs without collision. However, the above achievements
were all obtained in small-scale environments without
considering the case of large-scale SRNSs (i.e., a large
number of nodes and large size of the space). With the rapid
development of SRNSs, the calculation amount of AGVs
route planning will increase exponentially. But classical
Dijkstra’s algorithm does not consider the scenarios with a
large number of nodes, and the system may be locked due to
too much computation.

Yuan et al. [27] proposed Approximate Dynamic
Programming (ADP), and they applied it to crane sched-
uling to reduce the operation time of the AS/RSs. Novoa
et al. [28] focused on Vehicle Routing Problem (VRP) from
the perspective of ADP, and they proved that a DP-based
algorithm could be applied to vehicle routing planning.
Cimen et al. [29] proposed a vehicle routing optimization
algorithm by combining ADP and MDP. Bahlawan et al.
[30] introduced a method of system operation management
and energy optimization based on the DP algorithm to
minimize the energy cost of factories. Horiguchi et al. [31]
focused on the routing problem of network packets, and
they redefined the energy function by combining the DP
algorithm and neural network. They proposed a method to
find the optimal balance between queues’ length and the
routes’ distance. Although many achievements have proved
that the DP algorithm can be used to solve optimization
problems in various situations, the classical DP algorithm
needs to iterate the values of each node in the whole space
many times until a stable and optimal policy is obtained. To
reduce the computing time of DP, Ulmer et al. [32] pro-
posed an offline value function prediction method, which
introduced MDP into state space and combined action
space with reward information. Desai et al. [33] proposed a
preprocessing method of a random dynamic network
according to vehicles’ starting time and location. But they
failed to fundamentally solve the problem of longer DP
algorithm iteration time.

3. Rasterizing the SRNS as the Model

There are a large number of nodes arranged according to
the regular form of rows and columns in SRNSs and nodes
and the lines between nodes (i.e., the driving paths of
AGVs) are typically presented as a regular rectangle.
Therefore, SRNSs can be rasterized, and the grids’ loca-
tions can be stored with spatial coordinates. Figures 1(a)-
1(c) are m x n SRNSs constructed using grid methods [34],
where m and n represent the numbers of rows and col-
umns of the SRNSs, respectively. We establish the Car-
tesian coordinate system of the SRNSs: the upper-left
corner is selected as the origin (x=0, y=0), the lower-
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FIGURE 1: Rasterize large SRNSs

right corner defines the workspace size (x=n-1,
y=m— 1), and each node corresponds to a coordinate (a,
b) (a<n-1, b<m—1). Grey grids represent obstacle
nodes, white grids indicate the nodes that are available for
AGVs, and numbers in grids indicate the number of nodes
(i.e., the number of nodes starting from (x=0, y=0) and
markedas 1,2,3,...,n).Red, green, and blue solid squares
represent the start nodes of AGVs, and solid circles of the
corresponding color represent their goal nodes. The
distance between every two adjacent nodes is equal and
the SRNS is bidirectional (i.e., AGVs can travel bidirec-
tionally), and each node can only be occupied by one
AGV. The size of every obstacle is the same in SRNSs and
the number of grids AGVs passed represents the travel
distance for AGVs.

Figures 1(a) and 1(b) are commonly used SRNSs (e.g.,
AS/RSs), in which the shelves are arranged according to the
rules of row and column, and there is a channel on both
sides of each row (or column) of shelf for AGVs access.
Figure 1(c) shows recently presented SRNSs due to the
rapid development of the Smart World. In these fish-bone
SRNSs, shelves are arranged on both sides of the main
diagonal of the SRNSs, since it is inconvenient for AGV

as a model. (a) Horizontal row SRNSs; (b) vertical column SRNSs; (c) fish-bone SRNSs.

access and the signal may be blocked, and it can lead to
system deadlock of SRNSs; this environment model has no
practical application.

3.1. General Markov Decision Process Framework. Markov
Decision Process (MDP) is a quintuple (i.e., {S, A, P,R,y)),
where S is the finite states set, A is the actions set, and P is the
state transition probability matrix. Given the current state s
and the next state s', the state transition probability (i.e.,
P, =P[S,, =5, =s]) represents the transition proba-
bility from state s to state s". R is the rewards set; y is the
discount factor, which denotes that the influence of the goal
state on each state is gradually weakened with the increase of
distance between a node and the goal node, y € [0, 1]. There
are two kinds of rewards of R set: (1) immediate reward R,,
which denotes the expectation of rewards from state s to state
s', that is, R, = E[R,,4|S, = s], and (2) accumulated reward
G,, which denotes the weighted sum of each immediate re-
ward from the start state to the goal state.

G =Ry + YR+

= z yth+k+1' ( 1)

k=0



3.2. The Markov Decision Process in SRNSs. State value
function V (s) represents the expectation of accumulated
reward under state s:

V(s) = E[G,IS, = s]. (2)

Bellman equation [12] is the core of all MDP-based
algorithms. AGVs can obtain the best route from start nodes
to goal nodes according to Bellman equation. The derivation
process of the Bellman equation is as follows:

V (s) = E[G,IS, = 5]
= E[Ry + YRy +1Ris 1S, = 5]
=E[Ry; +y(Rey + YRiys - - IS, = 5] (3)
= E[Ry; +yGy, IS, = 5]
= E[Ry, +yV (Se)IS; = 5]

In equation (3), the value of state s consists of (i) the
expectation of immediate reward and (ii) the expectation of
the state’s value for the next moment. State-policy transition
probability P7 , = ¥, ,7(als)P? , represents the probability
of an AGV transforming from state s to state s'.

3.2.1. Smart Road Network System-Reward Matrix (SRNS-
RM). AGVs can obtain different immediate rewards at
different nodes, and the reward/penalty obtained by AGVs is
defined as follows: (1) if AGVs enter grey solid grids (i.e.,
obstacle nodes), they will get penalty: —r, where r is a positive
integer; (2) if AGVs enter white grids, they will get penalty:
—¢, where ¢ is a positive integer and € < r; (3) if AGVs reach
the goal node, they can obtain reward + r*. Given an mxn
SRNS, where m indicates the number of rows, that is, the
number of nodes in a column, and # indicates the number of
columns, that is, the number of nodes in a row, the SRNS-
RM is

[T =—€ rp=—€ r3=—1 ... 1, =—¢€
Ty =—€ Tyy=—T Ty3—T ... Iy, =—¢
SRNS-RM =| r3y;=—¢ r3y =—€ r33=—r ... 3, =—¢

2
L7y = —€ Tpp = —€ Ty = —€ oo Ty =+
(4)

In equation (4), the dimension of SRNS-RM is m x n,
which is the same as the SRNS. The elements (i, r;;) in
SRNS-RM (i = 1,2...m; j=1,2...n) indicate the rewards
of an AGV reaching nodes in row i and column j. Consider
that there are four obstacle nodes in the SRNS, that is, SRNS-
RM13 =-1, SRNS-RM22 =-T, SRNS-RM23 =-1, and SRNS-
RM33=—r.

3.2.2. Smart Road Network System-Transition Probability
Matrix (SRNS-TPM). The adjacencies of nodes in SRNSs are
as follows: (1) there are no upper adjacent nodes for the
nodes on the upper edge but only left, lower, and right
adjacent nodes; (2) there are no left adjacent nodes for the
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node on the left edge but only top, right, and bottom ad-
jacent nodes; (3) there are no lower adjacent nodes for the
node on the lower edge but only upper, left, and right ad-
jacent nodes; (4) there are no right adjacent nodes for the
node on the right edge but only top, left, and bottom ad-
jacent nodes; (5) there are four adjacent nodes except for the
nodes on edges. In principle, the probabilities are the same
for an AGV entering any adjacent node in an m x n SRNS,

that is, P;; = P[S,,; = jIS; =i] =0, where 0<d<1. The
SRNS-TPM is
[Py, Py, Py3 ... Py,
Py Py Py ... Py,
SRNS—TPM =|P;, Py, Py ... P, | (5
-Pml PmZ Pm3 ‘Pmn-

In equation (5), P;; indicates each element of SRNS-
TPM, where i indicates AGV’s current state (i.e., S;), and j
indicates its next state (i.e., S;,;). The dimension of SRNS-
TPM is mxn, which is the same as the SRNS and
P, =P, =---=P, =6 that is, the probability of AGV
entering each adjacent node is the same.

3.2.3. Criteria of the Optimal Policy Selection. The objective
of the classical MDP is to find the optimal policy that can
reach the goal to maximize the accumulated reward G, (see
equation (2)). However, AGVs route planning in SRNSs is a
multiobjective combinatorial optimization problem. On
the one hand, the total routes’ length should be minimized;
on the other hand, total routes’ length should be mini-
mized, and AGVs’ traveling time should be the least.
Therefore, the criteria for choosing the optimal policy need
to be modified.

When an AGV enters a node, it uploads coordinates of
the current node to the server through 5G, Bluetooth, or
other wireless technologies, so that the server can know the
location of the AGV in SRNSs. We ignore the size of nodes in
SRNSs, and consider that the distance between every two
adjacent nodes is L,; the longitudinal length of the AGV is
L_; and the traveling speed of the AGV is fixed as v. When the
head of the AGV enters a node, the node is occupied, and the
node is released when the tail of the AGV leaves. As shown in
Figure 2, the time for the AGV to pass through every two
adjacent nodes is t. = L, + L./v.

In many SRNSs (e.g., AS/RSs), an AGV can only travel in
four directions, north, east, south, and west, and can only
turn at nodes. It requires deceleration, stopping, autobi-
ography, and acceleration, and the total time for turning is
t,,.. The route length from the start node to the goal node is
shown in equation (6). Given that the starting time of an
AGV is 0 s, the total time for the AGV traveling to the goal
node is shown in equation (7).

(n.—1)x L, (6)

L=
T=(n—1)xt, +n,xt,. (7)
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In equations (6) and (7), n, denotes the total number of
nodes in the route and n,, denotes the number of turns in the
route.

Given that the computing time of the server is t,, the
criteria of the optimal policy selection in SRNSs are as
follows:

min _t, (8)
min L=(n-1)xL, (9)
min T =(n.—1)xt +n,xt,, (10)
t,>0
n.>landlL,>0
s.t. n,=12,.,n (11)
O0<n,<n,
t,>0

Equation (8) indicates that we should reduce route
computing time of the server; equation (9) indicates that
we should shorten routes’ distance of AGV's; equation (10)
indicates that we should minimize the total travel time of
AGVs. In equation (11), n, denotes the number of nodes
in an AGV’s route. Due to the fewer turns in AGVSs’
routes, with less energy cost of the SRNSs, reducing the
number of turns in AGVs routes can reduce the energy
cost.

3.3. AGVs Route-Planning Approach in SRNSs. The flow-
chart of AGVs route-planning approach proposed in this
paper is shown in Figure 3, which consists of four parts: (1)
route-planning region segmentation; (2) computing all
shortest routes by training value functions of the regions; (3)
obtaining the feasible routes according to AGVs’ status; and
(4) selecting collision-free routes with the shortest length
and the least travel time.

3.3.1. Route-Planning Region Segmentation. The most ef-
fective way to speed up training is to reduce the number of
samples. We here proposed a region-segmentation-based
DP algorithm, in which the SRNSs are divided into regions
according to AGVs’ start nodes and their goal nodes. The
objective is to accelerate the convergence of the DP algo-
rithm by excluding irrelevant nodes. Given the coordinates
of an AGV’s start node (X, Y ) and the goal node (Xg, Yg),
the left boundary of an SRNS X, and the right boundary X,,
the upper left coordinates of the AGV’s route-planning
region (X4 AGv,» GV) the upper-right coordinates
(X%6v» Yigy,)» the coordinates of the lower-left corner

(xdl hGv, , Y4 ), the coordinates of the lower right corner

(Xxdr Wav,» i%vi)’ the length of the region along the x-direc-
tion L,,,, and the length along the y-direction L., the

AGVS’ route-planning region is defined as follows:

(@) If X, - X; <X, - X, that is, an AGV’s goal node is
closer to the left boundary of the SRNS, then

col>

(Xav, Yiay,) =(Xp min(Y,,Y,)), (12)
(X4ov, Yigy,) =(max(X,, X, ), min(Y,Y,)), (13)
(Xv, Yiav,) =(Xp max(Y,,Y,)), (14)
(K Vi) = (max(X, X, ), max(1,.,). (19
Ly, = max(X,, X,) - X, (16)
Leo = (17)

(i) If Xg -X;> X, - Xg, that is, an AGV’s goal node is
closer to the right boundary, then

(X4ov Yigy,) =(min(X,, X, ), min(Y,,Y,)),  (18)
(Xiv,» Yigy,) =(min(X, X, ), max(Y,Y,)),  (19)
(Xl Vi) = (X, min(v,.,)), o)
(X Vi) = (X, max(¥.,7,), e
Ly, = X, - max(X,, X,), (22)
Loy = (23)

The conventional region-segmentation methods only
focus on locations of AGVs’ start nodes and their goal nodes,
but we take the relationship between them and the left (and
right) boundaries of SRNSs into consideration. Our ap-
proach can reduce the number of samples without losing the
accuracy of route planning. As shown in Figure 4, given that
the start node of an AGV is node 43 (x= 3, y = 5) and the goal
node is node 20 (x=4, y=2), the blue line indicates the
feasible route from the start node to the goal node; the yellow
shaded area represents the route-planning region obtained
using the conventional region-segmentation methods,
which does not include the feasible route, and the area in the
red box indicates the region in our approach, which contains
the feasible route.

3.3.2. Training Value Function of the Route-Planning Region.
There are two kinds of commonly used DP algorithms:
policy iteration-based DP algorithm and value iteration-
based DP algorithm. The time of computing route using the
DP algorithm based on policy iteration and value iteration in



Scientific Programming

Region segmentation based on AGV start
& goal nodes

y

Computing all shortest routes by
training value functions

I

Determining route-planning strategies based
on AGVS status

The AGV is loaded?

v
Obtaining the routes by calculating the length
of all shortest routes

—>| Selecting the final routes with the least travel time |<7

End

FIGURE 3: Flowchart of the AGVs route-planning approach proposed in this paper.
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FiGure 4: Conventional and improved region segmentation.

an mxn SRNS (see Figure 1(a)) is shown in Figure 5, where
the blue line denotes the training time of the DP algorithm
based on policy iteration, and the red line denotes that of the
DP algorithm based on value iteration.

As can be seen from Figure 5, the training time of the DP
algorithm based on value iteration is smaller than that of the
DP algorithm based on policy iteration. In this scenario, the
average time for route computing is improved by nearly

97.39%, and when the scales of SRNSs become larger, the
difference of computing time between them becomes bigger.
We employ the value iteration-based DP algorithm because
it can adjust the policy while training rather than after the
value function converges, which greatly reduces the number
of iterations and significantly improves the efficiency of the
algorithm.

The calculation of the optimal value function (i.e., V* (s))
is a recursive process (refer to equation (3)). We need to
evaluate the rewards of all adjacent states based on the
current state, and the state with the largest reward is taken as
the next state of the AGV. The method of computing the
relationship between the current node and all adjacent nodes
is

VIt(s) = Z p(sealse ay) [r;t:l tyX vl (St+1)]’

s+1

(24)

where p(s,.,ls; a,) indicates the probability of taking
action a, to transfer to an adjacent state s,,; based on the
current state s,; 7" is the reward of taking action a, to
transfer to state s, ; y is the discount factor, where y € [0, 1];
VT (s,,,) is the value of each state adjacent to state s,.

Without considering obstacle nodes in SRNSs, the
probability is the same for an AGV traveling to surrounding
nodes; that is, p(s,,,Is;, a;,) = 1/4 and y = 1. Equation (24)
can be rewritten as
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Comparison Curve of Route Computing Time of DP Algorithm Based on Policy and Value Iteration
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FIGURE 5: Curve of convergences between the DP algorithms based on policy iteration and value iteration.

YT+ :lx[(_l +1 xVZ) +(—l +1 XV};)
4 (25)
+(—1 +1 xV,T) +(—1 +1x V,T)

In equation (25), VI, VI, VT and VI denote the state
values of upper, lower, left, and right adjacent nodes of
AGV’s current nodes, respectively.

3.3.3. Route-Planning Strategies Based on Status of AGVs.
There are multiple obstacles on AGVs’ routes, and the route-
planning methods of AGVs in different status can be dif-
ferent. Taking AS/RSs as an example [35], as shown in
Figure 6, the height of the bottom shelf from the ground is
75 cm, and the height of each no-load AGV is 50 cm. If an
AGV needs to load, the tray on the AGV will be lifted to hold
the bottom to lift the shelf. Because the height from the
bottom shelf to the ground is greater than the height of a no-
load AGV, a no-load AGV can pass under the shelve,
whereas a loaded AGV (ie., an AGV that is carrying a
shelve) can not. So the loaded AGVs should avoid collision
with not only other AGVs but also shelves placed above the
nodes.

If AGVs are loaded, the route-planning method is as
follows: (1) storing locations of obstacle nodes into a list
obstacle_list=[ | while initializing the environment; (2)
repeating equation (25) to compute the value function of the
route-planning regions and obtaining all feasible routes
from AGVSs’ start nodes to their goal nodes; (3) comparing
nodes in all feasible routes with nodes in obstacle_list=[ |
and deleting the routes that contain obstacle nodes; and (4)
calculating the length of each collision-free route and storing
routes with the minimum length. If AGVs are no-load ones,
it is not necessary to establish obstacle_list=[ | while ini-
tializing the environment, and we need not compare feasible
routes to obstacle_list = [ | but only to calculate the length of
all feasible routes.

3.3.4. Obtaining Collision-Free Routes with the Shortest
Length and the Least Travel Time. SRNSs are shaped like
chessboards, and AGVs can travel in four directions: north,
east, south, and west. Therefore, there may be more than one

FIGURE 6: Height of bottom shelf and no-load AGV in AS/RSs.

shortest-distance route from AGVs’ start nodes to their goal
nodes. In some large SRNSs (e.g., AS/RSs), AGVs can only
turn at nodes, and the time of the process becomes longer
with the increase of AGVs’ turning angles. The fewer angles,
the smaller the time cost and the higher the system efficiency.
We can find routes with the shortest travel time for AGVs
through the following steps:

Step 1. Comparing the angles of each feasible route with
AGV5 initial directions to determine their departure routes:

_ . tart tart tart tart
Opit = mln(lesl - eixGVl’ |9§ - GZGV"

tart tart start start (26)
|6§ - HZGV" |64 - GAGV )

In equation (26), 0;,, indicates the departure angle of
AGVs from start nodes. We take the southward as 0° and
start nodes as the origin; 67" indicates the angle of route 1,
65" indicates the angle of route 2, 67" indicates the angle
of route 3, and 6" indicates the angle of route 4; 6%
indicates the angle of AGVs at start nodes.

Step 2. Computing the routes with the shortest travel time,
that is, the routes with the fewest turns: traversing each node of
feasible routes obtained in Step 1, deleting routes that contain
nodes in obstacle_list = [ |, and then judging whether a node is a
turn or not in remaining routes. The method of determining
whether a node is a turn or not is as follows: considering the X
and Y coordinates of upstream and downstream nodes, if a
node satisfies equation (27), it is a turn:



|Xi+1 - Xi| # |Xi - Xi—1|0r|Yi+1 - Yi| # |Yi - Yi—l|' (27)

In equation (27), i denotes the number of the current
node, X; is the X-coordinate of the current node, and Y; is
the Y-coordinate; i + 1 denotes the number of the down-
stream node, X,,, is the X-coordinate, and Y,,, is the Y-
coordinate; i — 1 denotes the number of the upstream node,
X;_, is the X-coordinate, and Y,_, is the Y-coordinate.

4. Simulation Case Studies

Simulation OS is Windows 10, Intel Xeon W-2145 CPU @
3.70 GHz x64-based processor; programming software is
Python 3.7.3; rasterized AS/RSs environment parameters are
25%34 Horizontal Row, with 850 nodes in total, L.=2.5m
(note: the proposed algorithm is suitable for not only AS/RSs
but also all SRNSs); v=10.5m/s, and the times for AGVs
traveling between two adjacent nodes (i.e., t.) and turning at
nodes (i.e., t,) are both 5 s.

Case 1. Route planning for an AGV in AS/RSs from a
designated start node to a designated goal node. The
numbers of obstacle nodes of Figure 7 are as follows:

Scientific Programming

obstacle_list = [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, . . ., 805,
806, 807, 808, 809, 810, 811, 812, 813, 814]. The start node of
an AGV is node 56 (x =22, y= 1), and the goal node is node
639 (x=27, y=18). The process of route planning is as
follows.

4.1. Determining the Route-Planning Region for the AGV.
Based on the start node and the goal node of every AGV and
the AS/RS’s boundary, we use equations (12)-(17) (or
equations (18)-(23)) to obtain the region-segmentation
result, as shown in the blue shaded part in Figure 7.

4.2. Modeling the AS/RS Using the Improved MDP.
According to the definition in equations (16) and (17) (or
equations (22) and (23)), we can obtain the following:
L., =12,L =18,r =10,and ¢ = 1, and the probability of
AGYV traveling towards the node adjacent to the current
node (i.e., state transition) p = 1/4. Based on equations (4)
and (5), SRNS-RM and SRNS-TPM are as follows:

[r11=-1 r,=-10 r;3=-10 -« r;, =-1 1]

1y =-1 1,,=-10 7,3, =-10 -+ 7,, =-1
PBS—RM =| r3;=-1 r3,=-1 r3;=-1 7310 =-1 |,PBS-TPM

[ 7151 =1 15, =-1 rigz=—1 -+ ryg;;, =+100]

[ p P p, =2 p =11
1,1 = 12 =5 1,3~ L12 =7

4 4 4 4 (28)

1 1 1 1 1
P2,1_Z Pz,zzz Pz)zzz Pz,szz P2,12:Z

= 1 1 1 1 1|
P3’1:Z Ps,z—i Pa,z—i P3’3:Z P3’12:Z
1 1 1 1

_P18,1 =7 P18,2:Z PIS,ZZZ Pigs 4 P18,12:Z_

4.3. Obtaining All the Equidistant Shortest Routes. By using
the value iteration-based DP algorithm (see equation (25)),
we can obtain all the feasible routes from AGV’s start node
to its goal node, as shown in Figures 8(a)-8(f).

4.4. Selecting a Route with the Least Travel Time. The route of
an AGV in SRNS can be presented as S(T), where S indicates
the set of nodes’ numbers in AGV’s route, and T indicates the
set of time when the AGV passes the nodes. We can choose
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Figure 8: All feasible routes from

routes with the least AGV turning angle using (22) and obtain a
route with the least turning nodes using equation (23), as
shown in Figure 9. The comparison of route computing time
between the algorithm proposed in this paper and the classical
DP algorithm is shown in Figure 10, where the blue line
represents the classical DP algorithm and the red the algorithm
proposed in this paper.

As shown in Figure 10, the route computing time of the
classical DP algorithm is 0.8756s, the time of the algorithm
proposed in this paper is 0.1233 s, and it reduces the route
computing time (i.e., f.) by nearly 85.92%. Then, we
compare the route computing time of the classical DP al-
gorithm and our algorithm in SRNSs of different sizes (see
Figure 11).

As shown in Figure 11, the algorithm proposed in this
paper greatly reduces route computing time of AGVs and
significantly improves route-planning algorithm’s efficiency,
and the larger the SRNSs, the more obvious the advantages
of the proposed algorithm.

Case 2. Route planning for loaded AGVs and a no-load
AGV in AS/RSs. Consider the start node of an AGV to be
node 23 (x=23, y=0) and the goal node to be node 435
(x=27, y=12). If the AGV is loaded, it should avoid
shelves located on nodes while traveling, and we need to
build obstacle_list=[ |. Then, we compute route-planning
regions using equations (8)-(13) (or equations (14)-(19))
and repeatedly employ equation (21) to obtain all the
feasible routes for the AGV from the start node to the goal
node. Finally, we obtain the route with the shortest travel
time according to equations (22) and (23), as indicated by
the red line in Figure 12. If the AGV is a no-load one, it
does not need to avoid shelves while traveling. We omit

AGV’s start node to its goal node.

—
50 7

10.0 —
125
15.0
v 175

—— Route of the AGV

FiGURE 9: AGV’s route that has the shortest distance and the least
travel time.

the process of building obstacle_list=[ | and directly use
the region-segmentation DP algorithm to obtain the route
with the shortest length and travel time, as the blue line
shows in Figure 12.

As shown in Figure 12, although the start node and the goal
node of loaded and no-load AGV are the same, the number of
turns in routes, the length of the route, and the traveling time of
the AGV are different, and the comparison results are as
follows.
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Comparison Curve of Route Computing Time Between Classical DP Algorithm and Improved DP Algorithm
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TaBLE 1: All feasible routes from AGV’s start node to its goal node.

Number Length of AGV’s

of turns the route (m) travel time (s)
Loaded AGV 2 70 150
No-load AGV 1 40 85

As shown in Table 1, (i) when the AGV is loaded, the
number of turns is 2, the length of the route is 70m, and
AGV’s travel time is 150s; (ii) when the AGV is a no-load
one, the number of turns is 1, the length of the route is 40m,
and AGV’s travel time is 85s. In this scenario, the algorithm
proposed in this paper improves the routes computing time
(i.e., t.) by nearly 43.33%.

5. Conclusions

This paper proposes an AGVs route-planning approach in
large SRNSs based on a region-segmentation Dynamic
Programming algorithm. First, we use the improved MDP to
model the large SRNSs. Then, the large SRNSs are divided
into several route-planning regions according to AGV's’ start
nodes and their goal nodes, the objective is to narrow the
range of searching routes and reduce the number of samples,
and this step significantly improved the route-planning
speed. Since more travel time and energy cost can be caused
by AGVs’ turns, we compute the absolute value of angle
deviation between each feasible route to AGVs’ initial di-
rections to choose the candidate routes, and then the route
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with the least turns is selected as the optimal one. Compared
with the conventional Dynamic Programming algorithm,
the algorithm proposed in this paper greatly improves the
efficiency of route planning in large SRNSs.
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