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In this study, an e�ective robust PCA is developed for joint image alignment and recovery via L2,1 norms and a�ne trans-
formations. To alleviate the potential impacts of outliers, heavy sparse noises, occlusions, and illuminations, the L2,1 norms along
with a�ne transformations are taken into consideration. �e determination of the parameters involved and the updating a�ne
transformations is arranged in the form of a constrained convex optimization problem. To reduce the computation load, we also
further decompose the error as sparse error and Gaussian noise; additionally, the alternating direction method of multipliers
(ADMM) is considered to develop a new set of recursive equations to update the optimization parameters and the a�ne
transformations iterative.�e convergence of the derived updating equation is explained as well. Conducted simulations illustrate
that the new method is superior to the baseline works in terms of precision on some public databases.

1. Introduction

Robust methods are the fundamental methods for image
alignment and reconstruction [1, 2], video surveillance, text,
video, and bioinformatics. Such approach is important to get
the true underlying objects in highly correlated and complex
high-dimensional images in which the approaches are ap-
plied in various applications in the areas of signal processing,
images, texts, videos, and bioinformatics [3–8]. Moreover,
this problem faces some severe challenges due to various
annoying e�ects. It is because of this that developing an
e�cient robust PCA for joint image alignment and recon-
struction methods, which can tackle the above adverse ef-
fects. �us, developing new approaches that can better
robust and replace instead of PCA [9] and RPCA [10] has
been required to addressed; however, many of these existing
approaches have a serious problem in reducing the rank and
tackle the potential impact of outliers, occlusions, and il-
luminations. Nevertheless, none of these methods yield
better performance and have no guarantees under broad
conditions.

A number of e�ective robust methods [11, 12] have been
addressed for rank minimization in solving an image
alignment and reconstruction problems. For example, De
et al. [13] addressed a parameterized component analysis
method to �nd the low-rank component and tackle the
problem of misalignment via reducing the mean square
error. Moreover, it is nonconvex and therefore lacks a
polynomial-time method to solve the problem. Moreover,
Reference [14] proposed an e�ective alignment approach for
video separation. Moreover, Ma and Aybat [15] addressed a
comprehensive review on methods for solving and variants
of robust PCA. Moreover, Reference [16] addressed robust
principal component analysis (RPCA) for a partially ob-
served data matrix to eliminate outliers from the highly
corrupted big data. Ebadi et al. [17] considered an e�cient
method for the tasks of batch image aligning and recon-
struction. Chen et al. [18] considered a nonconvex with a
penalized quadratic low-rank and sparse decomposition
(NQLSD) method to reduce the potential impacts of outliers
and sparse errors. However, it was unable to reconstruct and
align images when the outliers and noises follow complex
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statistical distributions other than the mixture of Gaussian
distributions. Kim et al. [19] addressed the L1 along with the
gradient, but it lacks robustness with outliers and heavy
sparse noises. Peng et al. [20] proposed an efficient robust
image alignment to reduce the potential impact for sparse
from the low-rank decomposition (RASL) method to re-
cover the low-rank component. In addition, it only con-
sidered the potential impact of heavy sparse noises and
outliers from a single subspace. Wang et al. [21] addressed
RPCA with the L2,1 norm to alleviate the potential impact of
outliers and heavy sparse noises; then, we further separate
the objects as the fast separation model, where the recov-
ering is the clean part of the data along with the scaled factor
matrix. Oh et al. [22] mentioned a new method via the
partial sum of singular value thresholding (PSVT) from
which an incorporation of PSVT replaces the nuclear norms
in the RPCA method [23, 24] to search the true underlying
structure. It lacks the boosting performance in dealing about
occlusion and illuminations when there are lots of data
samples. Bouwmans et al. [25] addressed a new algorithm for
decomposing highly correlated and complex high-dimen-
sional images via L1 norm. 'ere are several works con-
ducted in the areas of signal processing. For instance,
Reference [26–28] proposed novel semisupervised feature
selection method from a new perspective; however, it seeks
considering affine transformation and L21 norms to better
prune out the potential impacts of annoying effects. 'e
studies conducted by [29, 30], which is an effective con-
strained relaxation method. But, it cannot deal with outliers
lying outside the main subspaces. To mitigate this problem,
Reference [31] addressed an efficient method (IA-RPCA) by
combining geometric transformations with the L1 and
nuclear norm denoted L∗. But, it cannot well deal with
miscellaneous effects in signal processing. To solve this
problem, Zheng et al. [32] proposed a IGO-RIA to reduce
the potential impacts in signal processing.

In this work, an effective robust PCA is proposed to align
and reconstruct high-dimensional images via affine trans-
formation and L2,1 norms. In this new method, we need to
minimize the ranks so that the highly correlated and
complex high-dimensional images are jointly aligned and
reconstructed. To develop a robust method in against the
potential impacts of outliers and heavy sparse noises, the
new method integrates the affine transformations, the L2,1
norms, and with decomposing large errors into the sparse
and Gaussian noises, so the highly corrupted images can be
rectified to render more faithful image reconstruction and
representation. Additionally, the L2,1 norm is further con-
sidered to remove the correlated samples and reduce the
errors across the images, enabling the new method to be
more strong in dealing with occlusions and large variations
in the images so that the rank minimization is carried out.
'e determination of the parameters involved, and the
variables corresponding to the Gaussian noise and sparse
errors with affine transformations with the L2,1 norms are
arranged as a constrained convex optimization problem. To
reduce the computational complexity and make the problem
more stable, first we decompose the errors as a sparse errors
and Gaussian noises; following this, the ADMM method is

utilized to derive a new sets of recursive equations of
updating the optimization parameters and the affine
transformations iterative in a round-robin manner. 'e
convergence issue of the model is experimentally tested and
verified. 'e simulation result shows that superior to the
baselines on various public databases.

'e contribution of this work is structured as follows:

(1) 'e L2,1 norm is added with affine transformations,
further decomposing the errors as the sparse errors
and the Gaussian noise, then the true underlying
objects to fix the distortion or misalignment problem
in the batch of corrupted images.

(2) Additionally, the L2,1 norm is newly added with
affine transformation instead of the L1, to get a more
trustful new model.

(3) To mitigate the large errors in high-dimensional
images, which will impact the accuracy of image
alignment and reconstruction with rank minimiza-
tion, the L2,1 norm is utilized to alleviate the potential
impact of outliers and the sparse errors. 'e L2,1
norm is more robust as it further decomposes the
errors as the sparse errors and Gaussian noises. 'is
norm, when combined with the affine transforma-
tions, plus decompose the errors into the different
types, can further enhance the performance. To
minimize the modeling error of L1 norms, the L2,1
norm penalization approach is considered to attain
with better recovering and aligning performances
based on various datasets.

(4) 'e L2,1 norm of G is taken to estimate the Gaussian
noise in real applications so as to minimize the
potential impact of outliers, occlusions and illumi-
nations, and heavy sparse errors. Unlike to the others
work [2, 33–39], the new method tries to decompose
the aggregated errors as the Gaussian noise and
sparse error, which make the new method more
novel.

(5) 'e new set of equations, which are derived in more
detailed including affine transformation using an
ADMM method, is used to improve the robustness
and solve the set of new optimization problems. 'e
convergence of the developed iterative equations is
addressed.

'e flow of this paper is structured as follows. Section 2
indicates the related overview of the related works. Section 3
also explains problem formulation. Sections 4 and 5 develop
updating equations to solve the proposed problem and
analyze its convergence characteristics, respectively. In
Section 6, experimental results are conducted to justify the
proposed method. Section 7 illustrates some concluding
remarks to summarize the paper.

2. Related Works

A number of works has been conducted for image recovery
and alignments. For example, Vedaldi et al. [52] proposed a
model to remove the errors via the log-determinant cost
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function. Lia et al. [53] addressed the issue of the spatial
dependency between images through low-order polyno-
mials. However, the performance is too weak. To tackle this
dilemma, Reference [54, 55] addressed RPCA methods,
which decomposed the corrupted data into two basic
components. Lu et al. [56, 57] addressed a novel algorithm to
tackle the misalignment dilemma, which is designed to find
the low-rank component from the illuminated data. Oh et al.
[58] introduced a new dynamic imaging method, which also
utilizes rank minimization. To improve the performance,
Reference [58, 59] addressed a randomized method for
finding the low-rank part after decomposing via rank
minimization. Podosinnikova et al. [60] developed a robust
PCA to minimize the reconstruction error. Additionally,
there are several methods [33, 33–35, 61, 62]; however, the
performance in minimizing the ranks needs to be taken into
account.

Shahid et al. [63] incorporated the spectral graph reg-
ularization with the robust PCA. Shaker et al. [64] proposed
an online sequential framework to find the clean part via
pruning out the sparse corruptions. Hu et al. [65] introduced
an approximate of the low-rank assumption for the matrix
via a low-rank regularization to solve the face image
denoising problems. Wright et al. [66] proposed a RPCA for
image decomposition as low-rank and sparse errors; how-
ever, it lacks scalability. Kang et al. [67] addressed a robust
method via nonconvex rank approximation. Zhang et al.
[68] and Rahmani et al. [69] addressed a robust subspace
recovery to tackle the influence of annoying effects.'ere are
several methods for image recovery. However, its complexity
is jeopardized when the outliers and sparse noises are heavy
in the data. Additionally, Reference [70, 71] both addressed
robust subspace learning and RPCA with rank minimization
to tackle the potential impact of occlusions, illuminations,
outliers, and heavy sparse noises. Shang et al. [72] proposed a
novel algorithm for rank minimization by using double
nuclear normwith nuclear norm hybrid penalties to alleviate
the adverse dilemmas. However, decomposing the error
further is very important for better performance. Addi-
tionally, there are several low-rank subspace methods to
decompose the images [7, 73–75].

3. Problem Formulation

We assume that we have n images, I0i􏼈 􏼉 ∈ Rw×h, where w and
h indicate the weight and height of highly correlated and
complex high-dimensional images, respectively. In many
situations, these images are occluded due to annoying ef-
fects. We can stack these images into a matrix:
M � [vec(I01) ∣ vec(I02) . . . ∣ vec(I0n)] ∈ Rm×n, where vec(·)

indicates the vector stacking operator.
'e method estimates the true underlying objects

denoted by A and the error part E, and the others are
considered as G. 'ereby, we can further decomposeM into
the true underlying objects and the sparse noise part given by
E of large matrix containing an additive noise part G
[76, 77]: M � A + E + G, where the subspaces are not be
independent from each other or the data are contaminated
by large noises; then, the low-rank component lies in a union

of subspaces, in which A ∈ Rm×n is a clean low-rank dic-
tionary and C ∈ Rn×n is a coefficient matrix being used to
represent M, and E ∈ Rm×n indicates a sparse error matrix
incurred by outliers or corruptions. 'e data matrix origi-
nally M with the low-rank component A and errors are
denoted by E and the other a Gaussian noise matrix G;
finally, the overall are given by Moτ � A + E + G.

In reality, I0i is generally not well aligned, entailing the
decomposition is incorrect. To tackle this dilemma, inspired
by Reference [4, 20, 33–35, 78, 79], we apply affine trans-
formations τi to the potentially misaligned input images I0i to
get a collection of transformed images Ii � I0i oτi, where the
operator o indicates the transformation. We can then stack
these aligned images into a matrix and obtain
Moτ � [vec(I1)|vec(I2)| . . . |vec(In)] ∈ Rm×n. 'e aligned
images can be treated as samples taken from a union of low-
dimensional subspaces, which, if well align, should exhibit a
low-rank subspace structure as the rank of the transformed
images is as small as possible, up to some outliers and heavy
sparse errors.'e updating of the variables corresponding to
the constraints Moτ � A + E + G is intractable due to its
nonlinearity. To solve this dilemma, we assume that the
change produced by these affine transformation of τ is small
and an initial affine transformation of τ is known. We can
then linearize Moτ by using the first-order Taylor
approximation as Mo(τ+Δτ) ≈ Moτ + 􏽐

n
i�1 JiΔτvivT

i , where
Moτ ∈ R

m×n is the transformed image, Δτ ∈ Rp×n with p

being the number of variables, Ji � (zvec(Iioτi)/zτi) ∈
Rm×p denotes the Jacobian of the ith image with respect to τi,
and vi is the standard basis for Rn. In this way, we obtain
approximate transformations to recover the clean part from
the underlying subspaces.

'us, to develop a stable method for image alignment
with rank minimization via L2,1 for image representation
applications, the stable formulation on A + E + G decom-
position assumes that the datummatrixM is denoted asM �

A + E + G where G a noise term, which are independently
identically distributed on each entry matrix. To align and
recovery the low-rank component, we indicate so as to solve
the following optimization problem. To make the new
method more strong in dealing with heavy sparse noises and
others, the L2,1 norm, which combines the advantages of the
L1 and L2 norms, is used and characterize the sparsity and
the low-rank subspace property. It can also tackle the sparse
errors in data points, which are highly correlated across all
data points in the images. 'e overall problem is formulated
as a convex optimization constrained problem given by

min
A,E,Δτ

‖A‖∗ + λ1‖E‖2,1 + λ2‖G‖2,1

s.t Moτ + 􏽘
n

i�1
JiΔτviv

T
i � A + E + G,

(1)

where ‖A‖∗ � 􏽐
min(m,n)
i�1 σi(A) represents the nuclear norm

of A, in which σi(A) indicates the singular values of A, λ1
and λ2 are the regularization parameters, and
‖E‖2,1 � max

x≠ 0
‖Ex‖1/‖x‖2 represents the L2,1 norm of E, and

‖M‖2,1 � 􏽐
m
i�1

�������
􏽐

n
j�1 M

2
ij

􏽱
.
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'e A in Reference (1) indicates the nuclear norm lying
in the low-dimensional subspaces. 'e second term ‖C‖∗
constrains the representation to be low rank, and the third
and fourth terms denoted by Q indicate regularizes the
coefficient matrix and the sparse error E to be sparse, re-
spectively. 'ey are employed to have more faithful sub-
spaces and capture the global structure of data. For easy
reference, see Table 1.

4. Proposed Method

To solve (1), augmented Lagrangian function is considered
as given by

L A,E,Δτ,Z1( 􏼁 � ‖A‖∗ + λ1‖E‖2,1 + λ2‖G‖2,1

+〈Z1,B − A − E − G〉,
(2)

from which Z1 ∈ R
m×n, μ1, 〈X,Y〉 � Trace(XTY), and

‖ · ‖2F denotes the Lagrangian multipliers, penalty pa-
rameters, and Frobenius norm, respectively, and
B � Moτ + 􏽐

n
i�1 JiΔτvivT

i . By using augmented Lagrange
multiplier with adaptive penalty [80], Reference (2) can
be rewritten as

L A,E,Δτ,Z1( 􏼁 � ‖A‖∗ + λ1‖E‖2,1 + λ2‖G‖2,1

+ μ1 B − A − E − G +
Z1

μ1

��������

��������

2

F

.

(3)

Solving (3) directly is computationally not advisable;
thereby, we need to update the parameters iteratively
alternatively via ADMM [80, 81].

To update the parameterA first, the parameters E and Δτ
remain constant; therefore, A(k+1) can be determined by

A(k+1)
� argmin

A
L A,E(k)

,G,Δτ(k)􏽮 􏽯, (4)

where k indicates the iteration index. Again, by removing all
irrelevant terms of A, Reference (4) can be simplified as

A(k+1)
� argmin

A
‖A‖∗ +

μ1
2

B(k)
− A − E(k)

− G(k)
+
Z(k)
1

μ(k)
1

���������

���������

2

F

⎧⎨

⎩

⎫⎬

⎭.

(5)

Now, problem (5) is completely separable in which we
can solve as convex constrained program. 'en, we
employed the shrinkage operator from which we can attain
the following:

(UΣV) � svd B(k)
+

1
μ(k)
1

Z(k)
1 − E(k)

− G(k)⎛⎝ ⎞⎠

A � Uς[Σ]VT
,

(6)

where ς denotes the singular value decomposition operator.
Secondly, to update E, we keep A,Q, C, and Δτ as constants,
so E(k+1) can be obtained by

E(k+1)
� argmin

E
L A(k+1)

,E,G,Δτ(k)􏽮 􏽯. (7)

Again, by ignoring all irrelevant terms of E, Reference
(10) can be simplified as

E(k+1)
� argmin

E
λ1‖E‖2,1 +

μ(k)
1
2

B(k)
− A(k)

− E − G +
Z(k)
1

μ(k)
1

���������

���������

2

F

⎧⎨

⎩

⎫⎬

⎭.

(8)

By using lemma [82], the update of the ith column of
E(k+1), E(k+1)

i , is given by

E(k+1)
i �

V(k)
i

�����

�����2
− λ(k)

2 /μ(k)
1

V(k)
i

�����

�����2

V(k)
i , if V(k)

i

�����

�����2
≥
λ(k)
2

μ(k)
1

,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

where V(k) � (B(k) − A(k) − G(k) + Z(k)
1 /μ(k)

1 ).
'irdly, to update G, we keep A, E, and Δτ as constants,

so G(k+1) can be determined by

G(k+1)
� argmin

G
L A(k+1)

,E(k+1)
,G,Δτ(k)􏽮 􏽯, (10)

Again, by ignoring all irrelevant terms of E, Reference (10)
can be simplified as

G(k+1)
� argmin

G

μ(k)
1
2

B(k)
− A(k)

− E(k)
− G −

Z(k)
1

μ(k)
1

���������

���������

2

F

+ λ2‖G‖2,1
⎧⎨

⎩

⎫⎬

⎭ .

(11)

By using lemma [82], the update of the ith column of
E(k+1), E(k+1)

i , is given by

G(k+1)
i �

V(k)
i

�����

�����2
− λ(k)

2 /μ(k)
1

V(k)
i

�����

�����2

V(k)
i , if V(k)

i

�����

�����2
≥
λ(k)
2

μ(k)
1

,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

Table 1: Comparison of the proposed approach with other related algorithms in terms of the objective function and constraints.

Methods Objective function Constraints
[40] min

A,C
‖M − AC‖2F ATA � I

[13, 23, 33, 35, 41–43] min
A,E

‖A‖∗ + λ‖E‖1 M � A + E
[44] min

A,E
‖A‖∗ + λ‖E‖1 + ctr(AΦAT) M � A + E

[18, 35, 45–48] min
A,E

‖A‖∗ + λ‖E‖1 Moτ + 􏽐
n
i�1 JiΔτvivT

i � A + E
[7, 34, 49–51] min

C,E,A
‖A‖∗ + λ‖E‖2,1 M � AC + E,C � Q

Ours min
A,E,C,Q,Δτ

‖A‖∗ + λ1‖E‖2,1 + λ2‖G‖2,1 Moτ + 􏽐
n
i�1 JiΔτvivT

i � A + E + G
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where V(k) � (B(k) − A(k) − E(k) + Z(k)
1 /μ(k)

1 ).
Lastly, to get an update of Δτ, we keep A and E as

constants and Δτ(k+1) can be obtained by

Δτ(k+1)
� argmin
Δτ

L A(k+1)
,E(k+1)

,Δτ􏽮 􏽯. (13)

By ignoring all irrelevant terms of Δτ, we can obtain

Δτ(k+1)
� argmin
Δτ

μ1
2

B(k)
− A(k+1)

− E(k+1)
− G(k+1)

−
Z(k)
1

μ(k)
1

���������

���������

2

F

⎧⎨

⎩

⎫⎬

⎭ .

(14)

Solving (15) with the threshold operators [18, 20], we can
get an update of Δτ(k+1) as

Δτ(k+1)
� 􏽘

n

i�1
J+

i A(k+1)
+ E(k+1)

+ G(k+1)
− Moτ −

Z(k)
1

μ(k)
1

⎛⎝ ⎞⎠viv
T
i ,

(15)

where J+
i denotes Moore–Penrose pseudoinverses of Ji [83].

Finally, following the same steps as the above, the La-
grangian multipliers Z1 are updated by

Z(k+1)
1 � Z(k)

1 + μ(k+1)
1 B(k)

− A(k+1)
− E(k+1)

− G(k+1)􏽮 􏽯.

(16)

Likewise, the regularization parameters μ1 are updated,
respectively, by

μ(k+1)
1 � min μmax, ρμ

(k)
1􏽮 􏽯, (17)

where ρ is considered to be fixed and μmax is a tunable
parameter that is used for an adjustment to fasten the
convergence of the proposed method.

'e overall updating equations of our method can be
briefly given as follows. We first update A, E, G, and Δτ by
(5), (8), (10)and (14) sequentially. Following this, the La-
grangian multipliers, Z1, and the penalty regularization
parameter, μ1, are updated by (17-18).

'en, all the updates of the equation are given in the
form an iterative in a round-robin manner until we attain
the convergences.

5. Convergence Analysis

'e following two different theorems are developed in this
work.

Theorem 1. If μ(k)
1􏽮 􏽯 is nondecreasing, then the sequences

A(k)􏽮 􏽯, E(k)􏽮 􏽯, G(k)􏽮 􏽯, Δτ(k)􏼈 􏼉, and Z(k)
1􏽮 􏽯 generated by

ADMM converge to a Karush–Kuhn–Tucker (KKT) point of ,
and (14).

'e proofs of both theorems can be readily extended
from Reference [34, 77, 84, 85].

'eorem 1 implies that the variables A(k)􏽮 􏽯, E(k)􏽮 􏽯,
G(k)􏽮 􏽯, Δτ(k)􏼈 􏼉, and Z(k)

1􏽮 􏽯 are guaranteed to converge to the
global optimum with an appropriate choice of the Lagrange
multipliers Z(k)

1􏽮 􏽯 and a sufficiently large penalty parameters
μ(k)
1􏽮 􏽯.

6. Experimental Results and Discussion

We need to examine the effectiveness of the new method for
joint image alignment and reconstruction on some public
databases. To attain the goal of the research, five different
databases mainly the MINST database [86], the Wild da-
tabase [87], the Al Gore talking video [20], CMU Multi-Pie
dummy [88], and complicated window taken from objects
[20].'e baselines are RASL [20], TRPCA-SVD [56],
NQLSD [18], and TRPCA-t [57]. 'ereby, invoked by RASL
and NQLSD, which are the most popular methods, we
additionally considered the L2,1 norm. Moreover, our
method is supported with more novel ideas to tackle the
potential impacts of outliers and heavy sparse noises. All the
conducted simulations are used to further illustrate the
performances of the proposed method over the criterion of
nuclear norms, L1 norm penalization, and the new tensor
nuclear norms. To further verify the effectiveness of the new
algorithm for image recovery, the final ranks are taken as a
comparison criterion based on some public databases. Both
the visual effect and the final rank evaluation criterion’s are
made based on the five different databases include the
MINSTdatabase, the Wild database, and the Al Gore talking
video, the dummy, and complicated windows. Apparently,
our proposed method gives the best results in all databases
compared with the RASL, TRPCA-SVD, NQLSD, and
TRPCA-t.

6.1. Experimental Convergence Performance. In this sub-
section, some experimental analysis of the proposed method
based on four sets of images.'e first set of image is based on
the synthetic data, the second is based on the handwritten
images, the third one is based on the Natural Faces labeled in
the Wild database [87], and the fourth is based on the video
face images, and the convergence characteristic is assessed
by comparing the relative square error (RSE) vs. the iteration
number, where RSE is defined as

‖􏽢C − C‖F

‖C‖F

, (18)

in which 􏽢C is the recovered image and C is the original one.
Also, we set λ1 � 1/

���������
min(m, n)

􏽰
as suggested in Reference

[89–92]. 'e resulting convergence curves are as shown in
Figure 1, from which we can see that the RSEs of the
proposed algorithm for all images decrease with the iteration
number and then reach at a constant after a few iterations.
'is fact justifies the convergence of the proposed algorithm.

6.2.ComparisonwithBaselineApproach. In this subsection, I
made a comparison with the proposed approach, which adds
in the affine transformations with the L2,1 norm, with some
recently reported works in terms of the quantitative mea-
sures of the final ranks based on five different databases.
Four different baselines approaches, including RASL [20],
TRPCA-SVD [56], NQLSD [18], and TRPCA-t [57], and the
proposed algorithm are conducted for comparison. More-
over, there are several works conducted in the areas of signal
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processing. For instance, Reference [26–28] proposed a
supervised approach to prune out the annoying e�ects;
however, they lack performance. �en, the performance
results from these baselines are obtained based on publicly
available codes.

6.2.1. Handwritten Digits. In this experiment, 30 number of
digits are taken from the MINST dataset [86] with sizes
29 × 29.

We compare the �nal rank being considered as the
evaluation criteria of the proposed approach with the
aforementioned four baselines, as given in Table 2, from
which we can realize that NQLSD has better results than
RASL, as NQLSD employs the local linear approximation
with a quadratic penalty approach to tackle the potential
setback of outliers and sparse noises in the images. More-
over, the TRPCA has enhanced the recovery over the other
approaches, as it considers tensor to tensor products instead
of singular value decomposition to exactly recover the low
ranks. However, still it lacks robustness as the L2,1 norm is
not taken into consideration. We can also observe from
Table 2 that the suggested approach provides the best
achievement. �is is because it incorporates a set of a�ne
transformations and employs the L2,1 norms, the approach
also splits the annoying e�ects as the sparse error and
Gaussian noise, which further reduce the �nal ranks and
which simultaneously enhance the aligning and recovering

the hand written digits, both of which enable the new al-
gorithm to be more strong in dealing with all the annoying
e�ects.

As an illustration, some visual images of the recovered
handwritten digits based on the baselines algorithms are
given in Figure 2, from where we can cogently observe that
the proposed approach recovers the handwritten images
better as compared with the other four baselines. As shown
in Figure 2(e), the recovered handwritten images provide
clearer visual quality by properly removing the annoying
dilemmas mainly outliers and heavy sparse noises. �is is in
agreement with the results in Table 2; then, we can further
justify that the proposed algorithm is more resilient to
occlusions and heavy sparse noises.

6.2.2. Dummy Face Image Alignment. In this subsection, we
consider 30 from 100 images with the size of 49 × 49 CMU
Multi-Pie [88].

We can compare the newly developed approach with the
state of the arts as given in Table 2, from which we can
cogently see that the NQLSD is better align than the RALS,
TRPCA-SVD, as it considers the convex penalization with
some quadratic penalty and local linear approximation.
Moreover, the TRPCA is considered as the second best
performance over the other three methods, this considers
tensor to tensor product with a new nuclear norm to exactly
recover the handwritten images. Finally, the newly

0 2 4 6 8 10 12 14 16 18 20
Iteration number

10-2

10-1

100

RS
E

(a)

0 2 4 6 8 10 12 14 16 18 20
Iteration number

10-1

100

RS
E

(b)

0 2 4 6 8 10 12 14 16 18 20
Iteration number

10-2

10-1

100

RS
E

(c)

0 2 4 6 8 10 12 14 16 18 20
Iteration number

10-1

100

RS
E

(d)

Figure 1: Convergence curves of the proposed algorithm on: (a) synthetic data; (b) handwritten digits images; (c) natural face images; (d)
video face images.

Table 2: Rank minimization evaluation criterion of the di�erent image separation algorithms on �ve di�erent real bases.

Method Handwritten digits Dummy face images Natural face images Video face images Window images
RASL [20] 58 60 18 116 8
TRPCA-SVD [56] 53 45 12 16 16
NQLSD [18] 7 8 4 23 10
TRPCA-t [57] 6 2 7 11 2
Ours 2 1 1 1 1
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(a)

(b)

(c)

(d)

(e)

Figure 2: Handwritten digits images recovery: (a) RASL; (b) TRPCA-SVD; (c) NQLSD; (d) TRPCA; (e) ours.
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developed algorithm better performs in rank minimization
during the face alignments than all aforementioned base-
lines. 'is is newly incorporated the L2,1 norms, the affine
transformations are also considered to tackle the mis-
alignment problems, and the annoying effects are also
further split into the sparse errors and the Gaussian noises,
which ultimately reduce the final ranks.

Again, for the visualization, the pictures of the true globe
are with uncontrolled misalignments, under different illu-
minations. Figure 3 shows the recovered dummy face image

based on our algorithm and the other four other baseline
methods.We can observe from Figure 3(e) that the proposed
approach gives more clear visual quality. 'is is briefly the
effectiveness of our method pruning out all the annoying
effects.

6.2.3. Natural Face Images. Following this, we conduct
simulations on a very challenging natural faces from the
natural faces labeled in the Wild database [87]. In this

(a)

(b)

(c)

(d)

(e)

Figure 3: Dummy face image recovery: (a) RASL; (b) TRPCA-SVD; (c) NQLSD; (d) TRPCA; (e) ours.
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experiment, 21 natural face images with size 80 × 60 are
considered.

'e comparison of the proposed method compared with
the baselines is made on the natural face image recovers.
'ereby, some performance results are given in Table 2,

from which we can recognize that NQLSD outperforms
RASL, as it considers the convex penalization with quadratic
penalty along with the local linear approximations to
minimize the final ranks based on the distorted natural face
images. TRPCA provides the second best performance, as it

(a)

(b)

(c)

(d)

(e)

Figure 4: Natural face image recovery: (a) RASL; (b) TRPCA-SVD; (c) NQLSD; (d) TRPCA; (e) ours.
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can cope with outliers and heavy sparse noises via consid-
ering the tensor to tensor products so as to exactly recover
the low-rank components over the other three baselines. We
can also search that the proposed algorithm providing the
smallest final ranks compared with the other baselines, as it
incorporates the affine transformations with the L2,1 norms
and further decomposing the annoying effects as the sparse

error and the Gaussian noise is done so as to circumvent the
outliers and sparse noises in the natural face images.

Again, as an illustration, some recovered natural face
images based on the proposed method and the aforemen-
tioned baselines are given in Figure 4. 'e recovered images
by the proposed algorithm are shown in Figure 4(e), from
which we can observe that the visual quality of the proposed

(a)

(b)

(c)

(d)

(e)

Figure 5: Video sequences of face image recovery: (a) RASL; (b) TRPCA-SVD; (c) NQLSD; (d) TRPCA; (e) ours.
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method is better than all of the baselines. 'is is in line with
the numerical results in Table 2.

6.2.4. Video Face Images. Finally, we conduct an experiment
onmore complicated face images in videos taken from the Al
Gore talking [20]. In this video, 21 different video face
images with size 232 × 312 are considered.

'e comparison of the final rank using proposed method
and the other four baselines is given in Table 2, from which
we can see that the TRPCA yields the second best perfor-
mance. 'is is because it considers tensor to tensor product
with the new nuclear norm instead of using the singular
value decomposition so as to minimize the tensor tubal

ranks, which corresponds to the low-rank components. We
can also notice from Table 2 that the proposed method still
outperforms all baselines, as it includes affine transforma-
tions and utilizes the L2,1 norms to render a more robust
recovery against outliers and heavy sparse noises. In addition
to this, a new incorporation of the L2,1 norms’ affine
transformation along with splitting the annoying effects into
the sparse error and the Gaussian noises enhanced the
performance of the proposed method as compared with the
aforementioned baselines, which makes the new approach
more robust.

As an illustration, some recovered face images based on
the above algorithms are provided in Figure 5(e), and thus, we
can cogently see that the proposed method again produces

(a)

(b)

(c)

(d)

(e)

Figure 6: Complicated window image recovery: (a) RASL; (b) TRPCA-SVD; (c) NQLSD; (d) TRPCA; (e) ours.
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recovering images with better visual quality as compared with
the other four baselines. 'ese results are once again in
agreement with the numerical results in Table 2.

6.2.5. Results of Controlled Window Images. In this sub-
section, we also considered some practical experimental
simulation via using sets of transformation mainly affine
transformations assisted by the L2,1 norms, and our pro-
posedmethod is also applied onmore challenging controlled
data, which is taken from the Reference [20].

'e comparison of the proposed method and all other
four baselines is given in Table 2, from which the perfor-
mance of the TRPCA based on the final ranks is better as
compared with the other three baselines (RASL, NQLSD,
and TRPCA-SVD). 'is is because the TRPCA is used for
further exact recovery of complicated windows since the
tensor to tensor product is taken into consideration. Finally,
the proposed approach is better than all the aforementioned
baselines based on its final ranks, as it is an aggregated by
combining the affine transformations, the L2,1 norms, and
further decomposing the annoying effects as the sparse
errors and the Gaussian noises. 'is has boosted the per-
formance of the newly developed approach, which makes it
more robust with these annoying effects.

In this subsection, we further demonstrate the effec-
tiveness of the new algorithm in aligning and recovering the
complicated images. Figure 6 reveals 4 images of the win-
dows, which are taken from different corners of the camera
viewpoints, and with illuminations influenced with some
trees. 'en, we employed the proposed method, with planar
homography via an affine transformation and the L2,1 norms
to correctly align the images in the frame of the canonicals.
We can also see from Figure 6(e), as our proposed algorithm
tackles the potential errors by removing the trees from the
windows entailing as the alignment is made correctly. 'is
example points out suggests that the proposed algorithm is
very useful in recovering the most challenging images. 'en,
this result is also more resembled with the final ranks ob-
tained in Table 2. 'is makes the newly proposed method
more robust with more complicated windows with various
annoying effects.

7. Computational Complexity

'e time complexity of the proposedmethod as compared to
the state-of-the-art works is described in this section. On a
very standard desktop computer, the computational load of
the baselines mainly RASL [20], TRPCA-SVD [56], NQLSD
[18], and TRPCA-t [57] along with the proposed method is
given in Table 3, from which we note that the proposed
method has small number of running time due to the
proposed method as the number of parameters is small and
the novel ideas also better align the images, which make the
proposed method fast. Moreover, the new method handles
batches of images within a fewminutes as compared with the
baselines, which makes the new method to be guaranteed
faster time complexity compared with the baselines, as
shown in Table 3.

8. Conclusions

In this paper, an efficient new model is proposed via affine
transformation and L2,1 norms developed to minimize the
ranks, align, and recovery the images.'e searching of affine
transformations with the L2,1 norms incorporated in the
latest work, and the optimizing parameters in the formu-
lation are considered as a convex problem. As such, the
potential impacts of outliers, heavy sparse noises, occlusions,
and illumination are removed from the original datasets.'e
convex constrained optimization problem is solved via
ADMM technique and all updating parameters are solved in
a round-robin manner. 'ereby, the convergence of these
new updating equations is scrutinized as well. We also
validated the convergence of the proposed method on all
data considered; then, the curves are converging. Conducted
simulations show that the new method outperforms to the
state of the art of the works on five public datasets.
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