Lattice and Magnetic and Electronic Transport Properties in Antiperovskite M_3AX Compounds

Guest Editors: Cong Wang, Koshi Takenaka, Laifeng Li, and Yuping Sun
Lattice and Magnetic and Electronic Transport Properties in Antiperovskite M_3AX Compounds
Lattice and Magnetic and Electronic Transport Properties in Antiperovskite M_3AX Compounds

Guest Editors: Cong Wang, Koshi Takenaka, Laifeng Li, and Yuping Sun
Editorial Board

A. Sasha Alexandrov, UK
Dario Alfe, UK
Bohdan Andraka, USA
Daniel Arovas, USA
A. Bansil, USA
Ward Beyermann, USA
Luis L. Bonilla, Spain
Mark Bowick, USA
Gang Cao, USA
Ashok Chatterjee, India
R. N. P. Choudhary, India
Kim Chow, Canada
Oleg Derzhko, Ukraine
Thomas Peter Devereaux, USA
Gayanath Fernando, USA
Jörg Fink, Germany
Yuri Galperin, Norway
Russell Giannetta, USA
Gabriele F. Giuliani, USA
James L. Gole, USA
P. Guptasarma, USA
M. Zahid Hasan, USA
Yurij Holovatch, Ukraine
Chia-Ren Hu, USA
David Huber, USA
Nigel E. Hussey, UK
Philippe Jacquod, USA
Jan Alexander Jung, Canada
Dilip Kanhere, India
Feo V. Kusmartsev, UK
Robert Leisure, USA
Rosa Lukaszew, USA
Dmitrii Maslov, USA
Yashowanta N. Mohapatra, India
Abhijit Mookerjee, India
Victor V. Moshchalkov, Belgium
Charles Myles, USA
Donald Naugle, USA
Vladimir A. Osipov, Russia
Rolfe Petschek, USA
S. J. Poon, USA
Ruslan Prozorov, USA
Leonid Pryadko, USA
Charles Rosenblatt, USA
Alfonso San-Miguel, France
Mohindar S. Seehra, USA
Sergei Sergeenkov, Brazil
Ivan Smalyukh, USA
Daniel L. Stein, USA
Michael C. Tringides, USA
Sergio E. Ulloa, USA
Attila Virosztek, Hungary
Markus R. Wagner, Germany
Gary Wysin, USA
Fajun Zhang, Germany
Gergely Zimanyi, USA
Contents

Lattice and Magnetic and Electronic Transport Properties in Antiperovskite M_3AX Compounds, Cong Wang, Koshi Takenaka, Laifeng Li, and Yuping Sun
Volume 2013, Article ID 214120, 2 pages

Synthesis, Magnetization, and Electrical Transport Properties of $Mn_3Zn_{0.9}Cu_{0.1}N$, Y. Yin, J. C. Han, T. P. Ying, J. K. Jian, Z. H. Zhang, L. S. Ling, L. Pi, and B. Song
Volume 2013, Article ID 863963, 5 pages

The Magnetic/Electrical Phase Diagram of Cr-Doped Antiperovskite Compounds $GaFe_{3-x}Cr_x$ ($0 \leq x \leq 0.9$), S. Lin, B. S. Wang, P. Tong, D. F. Shao, Y. N. Huang, W. J. Lu, B. C. Zhao, W. H. Song, and Y. P. Sun
Volume 2013, Article ID 729458, 9 pages

Thermodynamic, Electromagnetic, and Lattice Properties of Antiperovskite Mn_3SbN, Ying Sun, Yan-Feng Guo, Yoshihiro Tsujimoto, Xia Wang, Jun Li, Clastin I. Sathish, Cong Wang, and Kazunari Yamaura
Volume 2013, Article ID 286325, 5 pages

Structural, Elastic, and Electronic Properties of Antiperovskite Chromium-Based Carbides $ACCr_3$ ($A = Al$ and Ga), D. F. Shao, W. J. Lu, S. Lin, P. Tong, and Y. P. Sun
Volume 2013, Article ID 136274, 7 pages

Chemical Phase Separation of Superconductive and Ferromagnetic Domains in $ZnNi_{3-x}Co_x$, Takahiro Yamazaki, Akira Uehara, Katsuya Kozawa, Yoshihide Kimisima, and Masatomo Uehara
Volume 2012, Article ID 902812, 7 pages

Research Progress on Ni-Based Antiperovskite Compounds, P. Tong and Y. P. Sun
Volume 2012, Article ID 903239, 9 pages

Origin of the Giant Negative Thermal Expansion in $Mn_3(Cu_{0.5}Ge_{0.5})N$, B. Y. Qu, H. Y. He, and B. C. Pan
Volume 2012, Article ID 913168, 7 pages
Editorial

Lattice and Magnetic and Electronic Transport Properties in Antiperovskite M_3AX Compounds

Cong Wang,¹ Koshi Takenaka,² Laifeng Li,³ and Yuping Sun⁴

¹ Department of Physics, Center for Condensed Matter and Material Physics, Beihang University, Beijing 100191, China
² Department of Crystalline Materials Science, Nagoya University, Nagoya 464-8603, Japan
³ Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancun East Road 29, Beijing 100190, China
⁴ Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei 230031, China

Correspondence should be addressed to Cong Wang; congwang@buaa.edu.cn

Received 29 January 2013; Accepted 29 January 2013

In the past 50 years, perovskite ABO_3 oxides have been extensively studied, specially in electronic transport for the example of high-T_c cuprate superconductors with aberrant perovskite structure and in correlation between spin ordering and electronic transport for the example of giant magnetoresistance $RMnO_3$ (R: rare earth) compounds. However, another kind of compounds M_3AX (M: magnetic elements, Mn, Ni, Fe, etc.; A: transition and main group elements, Ga, Cu, Sn, and Zn; X: N, C, and B), which was first discovered in 1930 by Morral as metallic perovskite, is lacking in systematical studies. The kind of compounds M_3AX, with the so-called antiperovskite structure due to the reverse occupancy of metal and nonmetal elements (such as N and C) in cubic body corner and body center positions, has also exhibited a wide range of interesting physical properties, such as superconductivity (SC), giant magnetoresistance (GMR), negative/zero thermal expansion (NTE or ZTE) and nearly zero temperature coefficient of resistivity (NZ-TCR), magnetostriction and piezomagnetic effects, and magnetocaloric effect (MCE) due to the strong correlation among lattice, spin, and charge. Therefore, these compounds have attracted great attention. Early reports suggested that the physical properties of these materials are mainly originated from the complex magnetostructure and the induced variable band structure. The strong coupling among crystal structure, magnetic, and even electric ordering parameters and/or fields is also of great interest for the design of novel magneto-electronic devices. The ability to control and tune the electronic transport, magnetic transition, and abnormal thermal expansion behaviors of these materials makes it worthy to be studied for fundamental research as well as for potential applications.

Abnormal lattice variation has been one of the studied hot points in condensed matter physics. People have been searching for negative thermal expansion and nearly zero thermal expansion materials for many actual applications, which are very important in optical, microelectronic devices and spacecraft. Nowadays, the important phenomena were widely found in the series of antiperovskite compounds. However, the control of abnormal thermal expansion behaviors has been difficult, and how to design and obtain the nearly zero thermal expansion materials is still not clear. Materials with tunable magnetostructural correlations which may induce the lattice variation are very important. Such control over the magnetostructure and lattice variation has a great impact on material science.

This special issue deals with comprehensive contents in the field of condensed matter and materials physics, and it is interesting to the physicists and material researchers, who are studying on antiperovskite structured M_3AX compounds or relevant functional materials. This special issue brings together some of the latest developments in this field of research. Many of them contain new and original results which we acknowledge with thanks.

The seven articles in the special issue can address but a small subset of these fields. P. Tong and Y. P. Sun presented a review paper on the Ni-based antiperovskite compounds.
In more detail, they reported the recent research progress on the experimental investigations of superconducting MgCNi$_3$ single crystals and the synthesis and physical properties of the neighbor compounds of MgCNi$_3$. Moreover, a universal phase diagram of these compounds is presented, which suggests a phonon-mediated mechanism for the observed superconductivity. We know that it is still not clear whether the mechanism for MgCNi$_3$ superconductivity is conventional or not. The central issue is if and how the ferromagnetic spin fluctuations contribute to the cooper paring. The paper by S. Lin, B. S. Wang, P. Tong et al. reported the magnetic and electrical properties of GaCFe$_{3-x}$Cr$_x$ (0 ≤ x ≤ 0.9), and a magnetic/electrical phase diagram was plotted. Furthermore, the Fermi-liquid behavior was obtained below 70 K in the sample. In another paper, they theoretically investigated the antiperovskite chromium-based carbides ACCr$_3$ by the first principles calculation based on density functional theory (DFT). Y. Sun et al. reported the magnetic, calorimetric, and electronic transport properties of Mn$_3$SbN. The lattice distortion from the high-temperature cubic structure to the room-temperature tetragonal structure, which accompanies a ferromagnetic transition, introduces a large transition entropy of 10.2 J mol$^{-1}$ K$^{-1}$ near 353 K. Y. Yin et al. reported the magnetic and electronic transport properties of Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N. The absolute value of $d\rho/dT$ of Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N is much lower which is close to zero. The paper by T. Yamazaki et al. reported that the micrometer-scaled ferromagnetic ZnN$_x$Ni$_{1.6}$Co$_{2.4}$ domains are formed and embedded within a superconductive ZnNNi$_3$ bulk, which shows a chemical phase separation of superconductive ZnNNi$_3$ and ferromagnetic ZnN$_x$Ni$_{1.6}$Co$_{2.4}$, reflecting the existence of a miscibility gap in ZnN$_x$Ni$_{1-x}$Co$_x$ for the samples with x < 2. B. Y. Qu et al. reported the giant negative thermal expansion in the Ge-doped antiperovskite Mn$_3$CuN compound, which was theoretically studied using the first principles calculations. The giant negative thermal expansion was attributed to a magnetic phase transition from Γ_{5g} phase to the PM phase. In detail, they thought that these donated conduction electrons polarize the local electrons and change the local magnetic moments of Mn ions, leading to the volume contraction of the compound.

Acknowledgment

We would like to thank all contributors for their very hard work and patience in bringing out this special issue. We also expect that the special issue will stimulate the continuing efforts to deepen the investigation on the antiperovskite M$_3$AX compounds.

Cong Wang
Koshi Takenaka
Laifeng Li
Yuping Sun
Research Article

Synthesis, Magnetization, and Electrical Transport Properties of Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N

Y. Yin, J. C. Han, T. P. Ying, J. K. Jian, Z. H. Zhang, L. S. Ling, L. Pi, and B. Song

1 Center for Composite Materials, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China
2 Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
3 Department of Physics, Xinjiang University, Urumchi 830046, China
4 Liaoning Key Materials Laboratory for Railway, School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, Liaoning 116028, China
5 Laboratory of High Magnetic Field, Chinese Academy of Sciences, Hefei, Anhu 230031, China
6 Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China

Correspondence should be addressed to B. Song; songbo@hit.edu.cn

Received 4 December 2012; Accepted 12 January 2013

Academic Editor: Y. Sun

Copyright © 2013 Y. Yin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We synthesized Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N by solid state reaction, and magnetic as well as electrical transport properties were investigated. It is found that Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N exhibits a first-order antiferromagnetism (AFM) to paramagnetic (PM) transition with the Néel temperature $T_N \sim 163$ K, and substitution of Cu for Zn would favor ferromagnetism (FM) state and weaken AFM ground state, leading to a convex curvature character of $M(T)$ curve. With high external fields 10 kOe–50 kOe, magnetic transition remains a robust AFM-PM feature while FM phase is completely suppressed. Thermal hysteresis of $M(T)$ under 500 Oe is also suppressed when the magnetic field exceeds 10 kOe. Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N exhibits a good metallic behavior except for a slope change around T_N, which is closely related to AFM-PM magnetic transition. Compared with the first differential of resistivity with respect to temperature for (dρ/dT)$_{Mn_3ZnN}$ in transition temperature range, the absolute value of (dρ/dT)$_{Mn_3Zn_{0.9}Cu_{0.1}N}$ is much lower which is close to zero.

1. Introduction

The Mn-based antiperovskite compounds Mn$_3$XN (X = Cu, Zn, Ga, Sn, and so on) have attracted considerable attentions because of the discoveries of interesting properties such as non-Fermi liquid behavior [1, 2], magnetoresistance [3, 4], negative thermal expansion (NTE) [5–7], zero thermal expansion (ZTE) [8, 9], spin-glass behavior [10], and large negative magnetocaloric effect (MCE) [11–14].

As a typical member of Mn$_3$XN, Mn$_3$ZnN has been intensively investigated, and some novel properties have been observed like unusual phase separation and resistive switching phenomenon around antiferromagnetism (AFM) to paramagnetic (PM) transition [15, 16]. More interestingly, it has been confirmed that properties of Mn$_3$ZnN can be sensitively influenced by partial substitution at Zn sites, 1a (0,0,0) by other elements or even vacancies. For example, Sun et al. found that an obvious NTE phenomenon appears in Mn$_3$Zn$_{0.5}$Ge$_{0.5}$N and ZTE behavior in Mn$_3$Zn$_{0.7}$Sn$_{0.3}$N, while abrupt lattice contraction near magnetic transition does not appear in Mn$_3$ZnN [17]. Very recently, Wang et al. demonstrated that NTE features in Mn$_3$Zn$_x$N can be induced and tuned by modulating the Zn occupancy [9].

It is of great interests to further probe the intrinsic relation between properties and substitution element or V_{Zn}, at 1a (0,0,0) sites, and understanding the novel properties origin is useful in attaining new insight on the magnetic mechanism in such a strong related system. All these make the further extensive experimental investigations on Mn$_3$ZnXN highly desirable for solving these puzzles. To this end, we choose Cu element as another attempt to address this issue. In this paper, we synthesized Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N by solid state reaction and magnetic, electrical transport properties were investigated. It is found that Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N exhibit...
Figure 1: Temperature dependence of magnetization $M(T)$ under FC and ZFC processes measured at 500 Oe. Inset shows the temperature dependence of dM/dT.

2. Experiment

Sintered polycrystalline samples of Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N were prepared by a solid state reaction. Mn$_3$N (homemade, 99.9%), and high purity Zn (Alfa, 99.99%), high purity Cu (Alfa, 99.99%) were mixed in the stoichiometric proportion and pressed into a pellet. The pellet was wrapped by tantalum foil and placed into a quartz tube and then was vacuumized to 10^{-5} Pa. The quartz tube was sealed and heated at 850 °C for 96 h. The as-synthesized sample was characterized by high-resolution X-ray diffraction diffractometer (XRD, Philips XPert MPD) with cell parameter calculated from Rietveld analysis of XRD pattern \(a = 3.89965 \text{ Å, space group Pm}3\text{m.} \) It is less than that of Mn$_3$ZnN (ICDD-PDF: 23–0229, space group Pm3m). Magnetization measurements were performed with a commercial superconducting quantum interference device (SQUID). Both field-cooled (FC) and zero-field-cooled (ZFC) magnetizations were measured from 10 K to 300 K. The resistivity was measured using the standard four-probe technique in a physical property measurement system (Quantum Design, PPMS).

3. Results and Discussion

Temperature dependence of magnetization $M(T)$ measured in both FC and ZFC of Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N is shown in Figure 1. A clear AFM-PM transition can be seen in both sets of data around the Néel temperature $T_N \approx 163$ K, although T_N obtained in the FC cycle shifts to a lower temperature from ZFC cycle by about 8 K. The thermal hysteresis in $M(T)$ curves, particularly near T_N, implies a first-ordered magnetic transition in Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N. Similar result has been observed in Mn$_3$ZnN by Kim et al. [18]. With decreasing the temperature, as shown in the inset, the absolute value of dM/dT is much lower and is close to zero.

A typical AFM-PM transition with the Néel temperature of $T_N \approx 163$ K. Substitution of Cu for Zn favors FM state and weakens AFM ground state in Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N. Under high external fields (10 kOe–50 kOe), AFM-PM transition feature remains robust where FM phase is completely suppressed. Further, Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N exhibits a good metallic behavior except for a slope change around T_N and shows a normal Fermi liquid behavior in a low temperature range from 5 K to 80 K. While compared with $(d\rho/dT)_{Mn_3ZnN}$ in transition temperature range, the absolute value of $(d\rho/dT)$ is much lower and is close to zero.
Figure 2: Temperature-dependent magnetization $M(T)$ of Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N measured during both FC and ZFC processes at several magnetic fields. The arrows indicate the direction of temperature circle.

Figure 3: Magnetization versus magnetic field M versus H at several temperature around T_N for Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N. While FM phase is metastable in this case. Further, it is worthy to note that the thermal hysteresis of $M(T)$ curves displayed in Figure 1 is also suppressed when the magnetic field exceeds 10 kOe. It can be seen that magnetization is not saturated even when the external field H exceeds 50 kOe; to demonstrate this feature clearly, magnetization versus magnetic field (M versus H) around T_N is plotted in Figure 3, and the isotherms curves $M(H)$ are nearly linear with increasing of H.

Figure 4 illustrates the temperature dependence of resistivity $\rho(T)$ of Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N from 10 K to 300 K under 0 kOe, 10 kOe, and 50 kOe, respectively. Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N exhibits a typical metallic behavior except for a slope change around 162 K, which is closely related to AFM-PM transition, similar phenomena have been observed in other systems [21], where ρ decreases due to the orientation of magnetic moments from AFM ordering. However, no magnetoresistance appears during the whole temperature ranges in this study. Simultaneously, we note that the absolute value of $d\rho/dT$ in the transition temperature range of 140 K–162 K nearly decreases to zero, as shown in the bottom inset of Figure 4, which is lower than that of Mn$_3$ZnN as reported in [6]. Previous investigations have shown that there exists an unusual conduction property, namely, low temperature coefficient of resistivity (TCR) in Mn$_3$CuN above magnetic transition temperature; that is, the absolute value of $d\rho/dT$ is close to zero in this temperature range [22]. Moreover, in [23] it is assumed that Cu–N bonds serve as the key role to induce low TCR feature in nitrides. Therefore, it is
reasonable to suggest the plateau-like $\rho(T)$ curve around T_N in Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N could be well understood in terms of partial doping effect induced by Cu. The top inset in Figure 4 shows a linear relationship between ρ and T^2 below 80 K, which agrees well with the following equation:

$$\rho = \rho_0 + AT^2,$$

(1)

where ρ_0 is residual resistivity and A is constant; this result implies a Fermi liquid behavior that exists in Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N in temperature range $T < 80$ K [1]. In this sense, we assumed that the electron-electron scatterings are dominant in this temperature range. However, with temperature increasing, the number of phonon sharply increases and phonon scatterings enhance accordingly, as one can see in temperature range 80 K < T < 140 K and 162 K < T < 300 K linear relationship between ρ-T indicates that electron-phonon scatterings exceed electron-electron scatterings in the temperature ranges mentioned above.

4. Conclusion

In summary, we synthesized Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N by solid state reaction, and magnetic as well as electrical transport properties were investigated. It is found that Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N exhibits a first-ordered antiferromagnetism (AFM) to paramagnetic (PM) transition with the Néel temperature T_N ~163 K, and substitution of Cu for Zn would favor FM state and weaken AFM ground state, leading to a convex curvature character of $M(T)$ curve. Further, we found that under high external fields 10 kOe–50 kOe magnetic transition remains a robust feature of AFM-PM while FM phase is completely suppressed. Further, thermal hysteresis of $M(T)$ exhibited at 500 Oe is also suppressed when the magnetic field exceeds 10 kOe. Mn$_3$Zn$_{0.9}$Cu$_{0.1}$N exhibits a good metallic behavior except for a slope change around T_N, which is closely related to AFM-PM magnetic transition. Compared with first differential of resistivity with respect to temperature for Mn$_3$ZnN($d\rho/dT$)$_{MnZnN}$ in transition temperature range, the absolute value of ($d\rho/dT$)$_{MnZnN}$ is much lower and is close to zero.

Acknowledgments

This work is supported financially by the National Natural Science Foundation of China (Grant no. 50902037, 51172055, 51172193, 50902014, and 51072226), fundamental Research Funds for the Central University (Grant no. HIT.BRETIII.201220, HIT. NSFRI.2012045, and HIT.ICRST.2010008), the Foundation of National Key Laboratory of Science and Technology on Advanced Composite in Special Environment in HIT, and International Science and Technology Cooperation Program of China (2012DFR50020).

References

B. S. Wang, P. Tong, Y. P. Sun et al., “Enhanced giant magnetoresistance in Ni-doped antiperovskite compounds GaCMn$_{3−x}$Ni$_x$ (x = 0.05, 0.10),” Applied Physics Letters, vol. 95, no. 22, Article ID 222509, 2009.

C. Wang, Q. Yao, Y. Sun et al., “Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn$_3$(Zn, M)$_x$N(M = Ag, Ge),” Physical Review B, vol. 85, no. 22, Article ID 220103, 2012.

The Magnetic/Electrical Phase Diagram of Cr-Doped
Antiperovskite Compounds GaCFe\(_{3-x}\)Cr\(_{x}\) (0 ≤ x ≤ 0.9)

S. Lin, B. S. Wang, P. Tong, D. F. Shao, Y. N. Huang, W. J. Lu, B. C. Zhao, W. H. Song, and Y. P. Sun
1 Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei 230031, China
2 High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China

Correspondence should be addressed to B. S. Wang; bswang@issp.ac.cn
Received 19 September 2012; Revised 13 November 2012; Accepted 20 November 2012

We report the effect of Cr doping on the structural, magnetic, and electrical transport properties in Cr-doped antiperovskite compounds GaCFe\(_{3-x}\)Cr\(_{x}\) (0 ≤ x ≤ 0.9). With increasing the Cr content, the lattice constant increases while both the Curie temperature and the saturated magnetization decrease gradually. The electrical resistivity shows different behaviors as a function of x. For x ≤ 0.6, there exists a semiconductor-like behavior below a certain temperature which decreases with increasing x. In contrast, for 0.7 ≤ x ≤ 0.9, the resistivity shows a metallic behavior in the whole temperature measured (2–350 K). In particular, the Fermi-liquid behavior is obtained below 70 K. Finally, based on the magnetic and electrical properties of GaCFe\(_{3-x}\)Cr\(_{x}\) (0 ≤ x ≤ 0.9) a magnetic/electrical phase diagram was plotted.

1. Introduction

Since MgCNi\(_3\) was firstly reported as a new superconductor with the antiperovskite structure [1], the antiperovskite compounds AXM\(_3\) (A = Ga, Al, Sn, Zn, Cu, In, Ge; X = C, N; M = Mn, Fe, Ni) have been extensively investigated [2–13]. Particularly, plenty of theoretical and experimental studies were performed for the Ni-based and Mn-based antiperovskite compounds [2–12]. Based on previous theoretical investigations [14, 15], the antiperovskite compounds AXM\(_3\) have similar electrical band structure which determines the basic physical properties, indicating that all these antiperovskite compounds (e.g., Mn-, Fe-, or Ni-based) may exhibit similar physical properties.

Recently, considerable attention has been paid to the Fe-based antiperovskite compounds due to their interesting physical and mechanical properties, such as low temperature coefficient of resistance (LTCR) [16], magnetocaloric effect (MCE) [13, 17, 18], and good corrosion resistance [19, 20]. GaCFe\(_3\) has been investigated for several decades as a typical Fe-based antiperovskite compound. It is a ferromagnetic (FM) material with the FM Curie temperature \(T_C\) of 510 K as reported previously [15]. Very recently, the studies of chemical doping at Ga site in GaCFe\(_3\) have been reported, and some interesting physical properties such as extremely LTCR and large room-temperature MCE have been observed [13, 16, 17]. Based on the previous investigations of Mn- or Ni-based antiperovskite compounds, the chemical doping has been proved to be an effectual method to manipulate the basic physical properties [6, 10, 21–24]. As reported previously in antiperovskite compounds GaCMn\(_{3-x}\)Ni\(_x\) [25], GaCMn\(_{3-x}\)Fe (or Cr or Co)\(_x\) [26, 27], and SnCMn\(_{3-x}\)Fe\(_x\) [28], the chemical doping at Mn site can affect the magnetic and electrical transport properties significantly. Similarly, the chemical doping at Fe site for GaCFe\(_3\) may be performable. However, no report was found on the chemical substitutions for the Fe site of Fe-based antiperovskite compound GaCFe\(_3\). As reported previously [14, 15], the density of states at the Fermi level \(E_F\) \([N(E_F)]\) is mainly from Fe 3d electrons in AXFe\(_3\). As we know, the Cr (3d\(^5\)4s\(^1\)) has one less 3d electron than Fe (3d\(^5\)4s\(^2\)) atom. Meanwhile, the Cr atom is bigger in size than that of Fe. The influences of hole doping and the change of lattice constant on the physical properties in GaCFe\(_{3-x}\)Cr\(_{x}\) will be thus interesting.
In this paper, the structural, magnetic, and electrical evolutions with doping level \(x\) in GaCFe\(_{3-x}\)Cr\(_{x}\) (\(0 \leq x \leq 0.9\)) were investigated. It is found that the lattice expands while both the Curie temperature and the saturated magnetization decrease gradually as \(x\) increases. For GaCFe\(_{3-x}\)Cr\(_{x}\) with \(x \leq 0.6\), the electrical resistivity exhibits a semiconductor-like behavior at low temperature while displaying a metallic behavior at elevated temperature. As the doping level \(x\) is above 0.7, the resistivity is metallic with a \(T^2\) temperature dependence below 70 K. Finally, a magnetic/electrical phase diagram of GaCFe\(_{3-x}\)Cr\(_{x}\) (0 \(\leq x \leq 0.9\)) was presented.

2. Experimental Details

Polycrystalline samples GaCFe\(_{3-x}\)Cr\(_{x}\) (0 \(\leq x \leq 1.0\)) were prepared as described in our previous paper [13]. Powder X-ray diffraction (XRD) data was collected at room temperature using an X-ray diffractometer with Cu \(K_\alpha\) radiation (PHILIPS, \(\lambda = 0.15406\) nm). The data of XRD was refined using a standard Rietveld technique to determine the crystal structure parameter and the purity of phase. Magnetic measurements were performed on a superconducting quantum interference device magnetometer (SQUID 5T, Quantum Design) and on a vibrating sample magnetometer (VSM, Quantum Design). The electrical resistivity and specific heat were carried out on a physical property measurement system (PPMS 9T, Quantum Design). The electrical transport properties were measured by the standard four-probe method to eliminate the contact resistivity.

3. Results and Discussion

Figure 1(a) shows the room-temperature XRD patterns for the samples GaCFe\(_{3-x}\)Cr\(_{x}\) \((x = 0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,\) and 1.0). Obviously, all GaCFe\(_{3-x}\)Cr\(_{x}\) are single phase with a cubic antiperovskite structure (space group: \(Pm3m\)) except for a small amount of chromium (marked by open triangle) for \(x = 1.0\). Moreover, according to the vertical bars the central position of peak (200) of GaCFe\(_{3-x}\)Cr\(_{x}\) shifts to lower angles with an increase of Cr content, suggesting that the lattice constant expands with increasing \(x\). The Rietveld refinements of XRD patterns were performed for all samples to determine the lattice parameter. As shown in Figure 1(b), the refined lattice parameter increases with \(x\), which is consistent with the shift of peak (200) in Figure 1(a). The expansion of lattice can be attributed to the larger atom radius of Cr than that of Fe.

Figure 2(a) presents temperature-dependent magnetization \(M(T)/M(5\text{ K})\) curves for GaCFe\(_{3-x}\)Cr\(_{x}\) (0 \(\leq x \leq 0.9\)) at 100 Oe under zero-field-cooled (ZFC) process. Obviously, each \(M(T)\) curve exhibits an FM-PM transition as reported in GaCFe\(_3\) [15]. The Curie temperature \(T_C\) (determined by the minimal value of \(dM/dT\), shown in Figure 2(b)) is presented in Figure 2(d). It displays that the value of \(T_C\) decreases with increasing Cr content \(x\). In order to investigate the magnetic ground state of GaCFe\(_{3-x}\)Cr\(_{x}\), the isothermal \(M(H)\) curves at 5 K are measured and plotted in Figure 2(c). Apparently, all the \(M(H)\) curves display similar \(H\)-dependent behavior: with increasing the magnetic field, the magnetization increases initially and then tends to saturation above 10 kOe. Here, the value of saturated magnetization \(M_s\) is obtained by the extrapolation of the high field (10–45 kOe) \(M(H)\) curve to \(M\)-axis, which is shown in Figure 2(c) (the green dash line). As shown in Figure 2(d), the \(M_s\) decreases with increasing \(x\).

According to the previous theoretical studies [14, 15, 29], the density of states at the Fermi level \(N(E_F)\) is mainly from Fe 3d electrons in AXFe\(_3\). Generally, the change of \(N(E_F)\) can be caused by many factors such as...
expansion/shrinkage of lattice, Fe/Cr 3d-C 2p hybridization effect, and band filling effect. In a conventional scheme, the expansion of lattice constant may give rise to the increasing of $N(E_F)$ due to the decrease of bandwidth [13, 16]. However, another important factor is associated with the detailed electronic structure at Fermi level. In GaCFe$_3$, the calculation of band structure suggests that the position of E_F is located at the left hand of a sharp peak [14]. Considering the electronic structure of Cr (3d54s1) and Fe (3d64s2), the Cr substitution for Fe can be considered as hole doping. Assuming a rigid band model, it will shift the E_F to lower energy side. As a result, the value of $N(E_F)$ in GaCFe$_{3-x}$Cr$_x$ is reduced with increasing x. Based on the Stoner model of itinerant ferromagnetism, the reduced

Figure 2: (Color online) (a) Temperature-dependent magnetization $M(T)$/M(5 K) curves under ZFC process at 100 Oe for GaCFe$_{3-x}$Cr$_x$ ($0 \leq x \leq 0.9$). (b) Temperature dependence of dM/dT for GaCFe$_{3-x}$Cr$_x$. (c) Magnetic field dependence of magnetization $M(H)$ curves for GaCFe$_{3-x}$Cr$_x$ at 5 K; inset shows the enlargement of $M(H)$ curves at positive H. (d) The x-dependent T_C and M_S for GaCFe$_{3-x}$Cr$_x$.

The diagrams show the changes in magnetization and magnetic field as a function of temperature and magnetic field, respectively. The graphs illustrate the behavior of the system under different conditions and highlight the effects of Cr substitution for Fe.
Figure 3: (Color online) (a) Isotherm magnetization $M(H)$ curves for GaCFe$_{2.6}$Cr$_{0.4}$ between 180 and 390 K with external magnetic fields up to 45 kOe. (b) The Arrott plots deduced from $M(H)$ curves in (a). (c) Isotherm magnetization $M(H)$ curves for GaCFe$_{2.2}$Cr$_{0.8}$ between 100 and 250 K. (d) The Arrott plots deduced from $M(H)$ curves in (c).

$N(E_F)$ will lead to a decrease in the magnetization [30]. Therefore, x-dependent M_S could be understood based on the above discussions. Now, how can the Cr-doping reduce the T_C? In itinerant ferromagnetism the main contribution to the magnetism is the itinerant electrons. Here, in GaCFe$_x$ the itinerant electrons are mainly 3d electrons of transition element. With the Cr doping level increasing, the 3d electrons decrease, which leads to a decrease in the exchange integral J. Correspondingly, the value of T_C decreases with increasing x. In a word, the evolutions of T_C and M_S are mainly attributed to the cooperation of the lattice expansion and changes of electronic structure by chemical doping.

In order to investigate the type of magnetic transition for GaCFe$_{3-x}$Cr$_x$, we measured the $M(H)$ curves around the corresponding T_C for the selected samples. Figure 3(a) displays the isothermal magnetization $M(H)$ curves measured between 180 and 390 K with the magnetic fields up to 45 kOe for GaCFe$_{2.6}$Cr$_{0.4}$. The $M(H)$ curves were measured under the increasing/decreasing field processes around T_C (∼305 K). As shown in Figure 3(a), all the $M(H)$ curves around T_C are reversible during the increasing/decreasing field processes without any hysteresis, indicating a second-order magnetic transition [9]. In addition, the Arrott plots derived from $M(H)$ around T_C are presented in Figure 3(b). For GaCFe$_{2.6}$Cr$_{0.4}$, it is evident that the slope of H/M versus M^2 curve at high magnetic fields is positive for each temperature measured, confirming a second-order magnetic transition again [9, 23]. Analogously, for GaCFe$_{2.2}$Cr$_{0.8}$ ($T_C ∼ 165$ K), the $M(H)$ curves and the Arrott plots in a temperature range of 100–250 K were shown in Figures 3(c) and 3(d), respectively, which confirm a second-order magnetic transition too. It is reasonable to conclude that the FM-PM transition is of second order for the left compositions in serial GaCFe$_{3-x}$Cr$_x$.

N(E\textsubscript{F}) will lead to a decrease in the magnetization [30]. Therefore, x-dependent $M\textsubscript{S}$ could be understood based on the above discussions. Now, how can the Cr-doping reduce the $T\textsubscript{C}$? In itinerant ferromagnetism the main contribution to the magnetism is the itinerant electrons. Here, in GaCFe\textsubscript{x} the itinerant electrons are mainly 3d electrons of transition element. With the Cr doping level increasing, the 3d electrons decrease, which leads to a decrease in the exchange integral J. Correspondingly, the value of $T\textsubscript{C}$ decreases with increasing x. In a word, the evolutions of $T\textsubscript{C}$ and $M\textsubscript{S}$ are mainly attributed to the cooperation of the lattice expansion and changes of electronic structure by chemical doping.

In order to investigate the type of magnetic transition for GaCFe\textsubscript{3-x}Cr\textsubscript{x}, we measured the $M(H)$ curves around the corresponding $T\textsubscript{C}$ for the selected samples. Figure 3(a) displays the isothermal magnetization $M(H)$ curves measured between 180 and 390 K with the magnetic fields up to 45 kOe for GaCFe\textsubscript{2.6}Cr\textsubscript{0.4}. The $M(H)$ curves were measured under the increasing/decreasing field processes around $T\textsubscript{C}$ (∼305 K). As shown in Figure 3(a), all the $M(H)$ curves around $T\textsubscript{C}$ are reversible during the increasing/decreasing field processes without any hysteresis, indicating a second-order magnetic transition [9]. In addition, the Arrott plots derived from $M(H)$ around $T\textsubscript{C}$ are presented in Figure 3(b). For GaCFe\textsubscript{2.6}Cr\textsubscript{0.4}, it is evident that the slope of H/M versus M^2 curve at high magnetic fields is positive for each temperature measured, confirming a second-order magnetic transition again [9, 23]. Analogously, for GaCFe\textsubscript{2.2}Cr\textsubscript{0.8} ($T\textsubscript{C} ∼ 165$ K), the $M(H)$ curves and the Arrott plots in a temperature range of 100–250 K were shown in Figures 3(c) and 3(d), respectively, which confirm a second-order magnetic transition too. It is reasonable to conclude that the FM-PM transition is of second order for the left compositions in serial GaCFe\textsubscript{3-x}Cr\textsubscript{x}.

![Image](image_url)
Figures 4(a) and 4(b) illustrate the temperature dependence of resistivity \(\rho(T) \) at zero magnetic field (2–350 K) for GaCFe\(_{3-x}\)Cr\(_x\) (0 ≤ \(x \) ≤ 0.9). All the magnitude of resistivity is comparable with other isostructural compounds [9, 22, 31, 32]. Figure 4(c) presents the temperature-dependent resistivity at both zero magnetic field and 5 T. Obviously, both curves are almost overlapped. The MR value (defined as \((\rho(H) - \rho(0T))/\rho(0T) \)) is positive and very small (≤1%) even at 5 T, suggesting that the magnetic field has little impact on the resistivity in GaCFe\(_{3-x}\)Cr\(_x\). Figure 5(a) shows the normalized resistivity \(\rho(T)/\rho(350K) \) for GaCFe\(_{3-x}\)Cr\(_x\) between 2 and 350 K. There exists a minimal resistivity \(\rho_{\text{min}} \) and the corresponding temperature \(T_{\rho_{\text{min}}} \) decreases with increasing \(x \) (to see Figure 5(b)) for low-doping samples. In high-doping samples (0.7 ≤ \(x \) ≤ 0.9), the \(\rho_{\text{min}} \) disappears, which can be seen clearly in Figure 5(c). As shown in Figure 5(d), the low-T resistivity was well fitted by the formula \(\rho = \rho_0 + AT^2 \) (\(\rho_0 \) and \(A \) represent the residual resistivity and \(T^2 \)-term coefficient of the resistivity, resp.) up to about 70 K, indicating a Fermi-liquid behavior for GaCFe\(_{3-x}\)Cr\(_x\) (0.7 ≤ \(x \) ≤ 0.9) at lower temperatures. That is to say, the electron-electron scatterings are dominant at lower temperature (5–70 K) [5, 9]. Furthermore, the fitting parameter \(A \) decreases with increasing \(x \), which is shown in the left inset of Figure 5(d). However, at the elevated temperatures (100–270 K), \(\rho(T) \) increases almost linearly with temperature for the samples with 0.7 ≤ \(x \) ≤ 0.9 according to the fitting results (see the inset of Figure 5(c)), meaning that the contributions of electron-phonon scatterings exceed those of the electron-electron scatterings [9, 16]. In addition, the slope of linear part decreases with increasing \(x \) as displayed in the right inset of Figure 5(d). The above results can be simply understood as follows: with increasing the temperature, the number of excited phonons increases quickly, resulting in the enhancement of the phonon scatterings [9].

Figures 6(a)–6(c) show the specific heat \(C_p(T) \) for GaCFe\(_{3-x}\)Cr\(_x\) (0.7 ≤ \(x \) ≤ 0.9) measured between 7 and 70 K at zero field. As shown in the inset of Figures 6(a)–6(c), the data below 20 K is plotted as \(C_p(T)/T \) versus \(T^2 \) which can be well expressed by using the following equation [5]:

\[
\frac{C_p(T)}{T} = \gamma + \beta T^2 + \delta T^4,
\]

where \(\gamma \) (Sommerfeld constant) is the electronic contribution, \(\beta \) is the phonon contribution, and \(\delta \) is deviations from...
Figure 5: (Color online) (a) The normalized resistivity $\rho(T)/\rho(350\text{K})$ dependence of temperature at zero field between 2 and 350 K for GaCFe$_{3-x}$Cr$_{x}$ ($0 \leq x \leq 0.9$). (b) The temperature of minimal resistivity as a function of x for GaCFe$_{3-x}$Cr$_{x}$ ($0 \leq x \leq 0.6$). (c) Temperature dependence of resistivity at zero magnetic field for GaCFe$_{3-x}$Cr$_{x}$ ($0.7 \leq x \leq 0.9$); inset displays the linear fits of $\rho(T)$ for the samples with $0.7 \leq x \leq 0.9$ between 100 and 270 K. (d) The lower-T $\rho(T)$ data plotted as $\rho(T)$ versus T^2 for the samples with $0.7 \leq x \leq 0.9$; the left and right insets show fitted parameters A and k as a function of x, respectively (see text for details).

Table 1: The fitting parameters of ρ_0, A, γ, β, σ, and Θ_D for GaCFe$_{3-x}$Cr$_{x}$ ($0.7 \leq x \leq 0.9$), respectively.

<table>
<thead>
<tr>
<th>GaCFe${3-x}$Cr${x}$</th>
<th>ρ_0 ($\mu\Omega\text{cm}$)</th>
<th>A ($10^{-6} \mu\Omega\text{cm}/\text{K}^2$)</th>
<th>γ (ml/mol K2)</th>
<th>β (ml/mol K4)</th>
<th>σ (ml/mol K6)</th>
<th>Θ_D (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = 0.7$</td>
<td>239</td>
<td>2.26</td>
<td>76.3</td>
<td>0.046</td>
<td>3.66×10^{-4}</td>
<td>593</td>
</tr>
<tr>
<td>$x = 0.8$</td>
<td>217</td>
<td>2.18</td>
<td>79.3</td>
<td>0.071</td>
<td>2.99×10^{-4}</td>
<td>517</td>
</tr>
<tr>
<td>$x = 0.9$</td>
<td>136</td>
<td>1.57</td>
<td>81.7</td>
<td>0.085</td>
<td>2.79×10^{-4}</td>
<td>487</td>
</tr>
</tbody>
</table>
Advances in Condensed Matter Physics 7

\[T^2 (K^2) \]

\[C_p (J/mol K) \]

\[T (K) \]

\[x = 0.7 \]

\[x = 0.8 \]

\[x = 0.7 \]

\[x = 0.8 \]

\[x = 0.9 \]

\[\gamma, \beta, \delta \]

\[\Theta_D = (n \times 1.94 \times 10^5/\beta)^{1/3} \]

\[a_0 = 10^{-5} \mu \Omega \text{ cm}/(\text{mJ/mol K})^2 \]

4. Conclusion

In summary, we present the magnetic/electrical phase diagram of GaCFe_{3-x}Cr_{x} (0 \leq x \leq 0.9). The influences of the Cr doping on the structure, magnetic, and electrical transport properties have been investigated systematically. With increasing the Cr content \(x \), the lattice parameter increases while both the \(T_C \) and \(M_S \) decrease gradually. For the samples with \(x \leq 0.6 \), the resistivity curves show a
semiconductor-like behavior below a certain temperature, which decreases as x increases. On the contrary, for $x \geq 0.7$ the semiconductor-like behavior disappears, and the metallic behavior is dominant in the whole temperature range (2–350 K). Particularly, the samples with $x \geq 0.7$ show a Fermi-liquid behavior at low temperatures. In addition, we confirm that the FM-PM transition in the series GaCFe$_{3-x}$Cr$_x$ is of second order.

Acknowledgments

This work was supported by the National Key Basic Research under Contract no. 2011CBA00111 and the National Natural Science Foundation of China under Contracts nos. 51001094, 51171177, 11174295, and 91222109.

References

[6] B. S. Wang, P. Tong, Y. P. Sun et al., “Enhanced giant magnetoresistance in Ni-doped antiperovskite compounds GaCMn$_{3-x}$Ni$_x$ ($x = 0.05, 0.10$),” *Applied Physics Letters*, vol. 95, no. 22, Article ID 222509, 2009.

[7] B. S. Wang, P. Tong, Y. P. Sun et al., “Reversible room-temperature magnetocaloric effect with large temperature span in antiperovskite compounds Ga$_{3-x}$CMn$_{1-x}$ ($x = 0, 0.06, 0.07$, and 0.08),” *Journal of Applied Physics*, vol. 105, no. 8, Article ID 083907, 5 pages, 2009.

[28] M. Nie, C. Wang, Y. C. Wen et al., “Magnetic phase transitions of antiperovskite Mn$_{3-x}$Fe$_{x}$SnC (0.5 ≤ x ≤ 1.3),” *Solid State Communications*, vol. 151, no. 5, pp. 377–381, 2011.

Research Article

Thermodynamic, Electromagnetic, and Lattice Properties of Antiperovskite Mn₃SbN

Ying Sun,¹ Yan-Feng Guo,² Yoshihiro Tsujimoto,³ Xia Wang,² Jun Li,² Clastin I. Sathish,²,⁴ Cong Wang,⁵ and Kazunari Yamaura ²,⁴

¹International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan
²Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan
³Materials Processing Unit, National Institute for Materials Science, 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan
⁴Graduate School of Chemical Sciences and Engineering, Hokkaido University, Hokkaido, Sapporo 060-0810, Japan
⁵Department of Physics, Center for Condensed Matter and Materials Physics, Beihang University, Beijing, Haidian 100191, China

Correspondence should be addressed to Ying Sun; sun.ying@nims.go.jp

Received 1 October 2012; Revised 4 December 2012; Accepted 5 December 2012

Academic Editor: Y. Sun

Copyright © 2013 Ying Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The physical properties of polycrystalline Mn₃SbN were investigated using measurements of the magnetic, calorimetric, and electronic transport properties. At room temperature, the phase crystallizes in a tetragonal structure with \(P_{4/mmm} \) symmetry. A remarkably sharp peak in the heat capacity versus temperature curve was found near 353 K. The peak reaches 723 J mol\(^{-1}\) K\(^{-1}\) at its highest, which corresponds to a transition entropy of 10.2 J mol\(^{-1}\) K\(^{-1}\). The majority of the large entropy change appears to be due to lattice distortion from the high-temperature cubic structure to the room-temperature tetragonal structure and the accompanying ferrimagnetic transition.

1. Introduction

Antiperovskite compounds with the formula Mn₃XN or Mn₃XC (X = Cu, Zn, Ga, Cu, In, or Sn) were discovered in the middle of the last century [1]. Recently, interest in these materials has intensively renewed owing to discoveries of new, potentially useful properties [2–4] such as the giant magnetoresistance of Mn₃GaC [5], negative thermal expansion (NTE) of Mn₃Cu(Ge)N [6] and Mn₃Zn(Ge)N [7], magnetostriction of Mn₃Cu(N) [8] and Mn₃Sb(N) [9], and near-zero temperature coefficient of the resistivity of Mn₃Cu(N) and Mn₃Ni(N) [11]. Specifically, Takenaka and Takagi found that Ge-doped Mn₃CuN compound has a large NTE (NTE parameter = \(-25 \times 10^{-6}\) K\(^{-1}\)) [12]; using neutrons diffraction, the broad NTE was determined to be associated with the local \(T_4 \) structure [6]. Asano et al. discovered large magnetostriction in tetragonal Mn₃CuN; it expands 0.2% and shrinks 0.1% in the directions parallel and perpendicular to an external 90 kOe magnetic field, respectively [8]. In previous studies, we found a peculiar phase separation and accompanying anomaly in the electronic transport properties of Mn₃ZnN [13, 14], while further study indicated that the thermal expansion properties of Mn₃ZnN can be controlled by introducing Zn vacancies [15]. In addition, Song et al. observed a canonical spin-glass state in Mn₃GaN below the spin-freezing temperature of 133 K [16]. Lukashev et al. systematically studied the spin density of the spin-frustrated state of a Mn-based antiperovskite under mechanical stress [17].

The above-mentioned properties enable a variety of potential applications for this type of material. Although the prospective industrial markets are expected to be large and much effort has already been devoted to studying their structural, electromagnetic, and transport properties, further investigations on antiperovskite materials are still required. In this study, the thermodynamic, electromagnetic, and electronic transport properties of Mn₃SbN are investigated. In particular, we focused on the notable transition entropy that...
accompanies the magnetic and crystal structure transition above room temperature.

2. Experimental Details

A polycrystalline Mn$_3$SbN sample was prepared via the solid-state reaction of fine powders of Sb (99.99%, Rare Metallic Co.) and Mn$_2$N, which was synthesized by firing Mn powder (99.99%, Sigma Aldrich Co.) in nitrogen at 800°C for 60 h. Stoichiometric amounts of the starting materials were thoroughly mixed, and the mixture was pressed into a pellet. The pellet was sealed in an evacuated quartz tube, heated in a box furnace at 800°C for three days, and then slowly cooled to room temperature in the furnace.

The crystal structure of Mn$_3$SbN was analyzed by synchrotron X-ray diffraction (SXRD) using a large Debye-Scherrer camera at the BL15XU NIMS beam line of the SPring-8 facility in Hyogo, Japan. The SXRD data were collected for 2θ ranging from 2° to 60° at intervals of 0.003°. The incident beam was monochromatized at λ = 0.65297 Å. The evolution of the Mn$_3$SbN crystal structure with temperature was also determined via the measurement of the SXRD patterns.

The temperature dependence of magnetization was measured between 2 and 400 K with applied magnetic fields of 0.1 and 5 kOe using a Magnetic Property Measurements System (Quantum Design). The measurements were conducted on loosely gathered powder under both zero-field cooling (ZFC) and field cooling (FC) conditions. The isothermal magnetization curve was recorded at 10 K between −50 and 50 kOe.

Specific heat (C_p) values were measured between 2 and 400 K with cooling using a Physical Properties Measurement System (Quantum Design). The sample was fixed on a stage using a small amount of grease; the heat capacity of the grease was measured first and subtracted from the total C_p.

The electrical resistivity (ρ) was measured between 2 and 400 K with cooling and heating using a conventional four-probe techniques with the same apparatus. The AC gauge current and frequency were 10 mA and 30 Hz, respectively. The electrical contacts were prepared on the surface of a bar-shaped piece of the pellet using silver paste and Pt wires.

3. Results and Discussion

As shown in Figure 1, the synchrotron XRD pattern at room temperature fit well with a model pattern of the proposed structure (space group: P4/mmm). The structural parameters of Mn$_3$SbN were refined by the Rietveld method using the RIETAN-FP program [18]. The occupancy factors of Sb, N, Mn1, and Mn2 were refined to be 1 (fixed), 1 (fixed), 0.97(1), and 0.99(1), respectively, while the isotropic atomic displacement parameters were 0.42(1), 0.84(5), 0.86(1), and 0.78(1) Å2, respectively. The lattice constants were calculated to be $a = b = 4.17994(4)$ Å and $c = 4.27718(5)$ Å. The final R_{wp} and R_{p} reliability indexes were below 5.56% and 4.09%, respectively. The analysis revealed 1.91 mass% MnO in the sample as an impurity; as shown later, the magnetic, C_p, and ρ measurements suggest that the impurity does not significantly impact the measurements of Mn$_3$SbN in this study.

Figure 2 displays the temperature dependence of magnetization of polycrystalline Mn$_3$SbN. The magnetization steeply increases upon cooling to around 353 K, which suggests the establishment of long-range magnetic order at the magnetic transition temperature (T_c). In addition, a small hysteresis can be observed between the heating and cooling process, implying the first-order character of the magnetic transition. The remarkable bifurcation between the ZFC and FC curves may originate from the spontaneous alignment of random magnetic Mn moments in domain boundaries. It is worth noting that the hysteresis is less significant at a higher magnetic field of 5 kOe, which supports the domain picture.
To further study the magnetic properties, we applied the Curie-Weiss law to the paramagnetic portion. As shown in the right inset of Figure 2, the χ^{-1}-T plot is well represented by the Curie-Weiss law, that is, the spin-only expression for magnetic susceptibility: $\chi(T) = C/(T - \Theta_W)$, where C is the Curie constant and Θ_W is the Weiss temperature. The value of Θ_W was determined to be 354 K, which suggests that ferromagnetic correlation is dominant in the spin system. The effective Bohr magneton (μ_{eff}) was estimated to be 1.28 μ_B/Mn from $\mu_{\text{eff}} = 2.83(C/\eta)^{0.5} \mu_B$, where η is the number of magnetic atoms in the molecular formula ($\eta = 3$ in the present case). The value of μ_{eff} is much lower than that of other antiperovskite manganese nitrides (e.g., 2.87 μ_B for Mn$_2$ZnN [14]) and even lower than the expected moment for localized $S = 1/2$ spins, suggesting an itinerant character of the 3d electrons in Mn$_2$SbN.

From the isothermal magnetization curve (see the inset of Figure 2), it was found that the magnetization at 50 kOe is $\sim 0.35 \mu_B$/Mn, which is too small to be caused by full ferromagnetic order. The gap suggests that the spins of the Mn atoms are possibly Ferrimagnetically ordered. This Ferrimagnetic interaction is also suggested by the magnetization characteristics above 10 kOe, that is, the magnetization continuously increases with increasing magnetic field without approaching saturation. The Ferrimagnetic order of a related Mn-based antiperovskite compound was explained by a $T^{4\eta}$ spin structure, where two of the three Mn magnetic moments are antiferromagnetically coupled and the third exhibits FM behavior [19]. It is possible that a similar magnetic structure is established in Mn$_2$SbN below 153 K.

To further characterize the magnetic transition, the specific heat was measured from 400 to 2 K. As shown in Figure 3, the temperature dependence of C_p features a sharp and narrow peak around T_c ($\Delta C_p/R = 87$ and $\Delta T = 3$ K, where R is the ideal gas constant). This is indicative of a first-order-like transition, as discussed in [20].

An estimation of entropy change is essential to understanding the nature of the transition of Mn$_2$SbN. The peak was roughly separated from the baseline using a polynomial function. Analysis indicates that the total transition entropy (ΔS) is $\sim 1.23 R$ (10.2 J/mol K). Since the total entropy change comprises all contributions, including the lattice, electronic, and magnetic changes [20], we evaluated each contribution independently.

For the present compound, the abrupt change of the magnetization at T_c may induce a large $\partial M/\partial T$; therefore, a large magnetic entropy change (ΔS_m) is expected. A series of magnetization curves with small temperature steps were measured; the data allow for a rough estimation of the magnetic entropy change via the thermodynamic Maxwell relation, as follows [21]:

$$\left(\frac{\partial S(T, H)}{\partial H}\right)_T = -\left(\frac{\partial M(T, H)}{\partial T}\right)_H. \quad (1)$$

The magnetic entropy change, $\Delta S_m(T, H)$, can be calculated by

$$\Delta S_m(T, H) = S_m(T, H) - S_m(T, 0) = \int_0^H \left(\frac{\partial M(T, H)}{\partial T}\right)_H dH. \quad (2)$$

The temperature dependence of ΔS_m calculated from (2) with fields of 10, 20, 30, 40, and 50 kOe is shown in Figure 4. The ΔS_m is maximized around T_c, and the maximum is estimated to be ~ 2.1 J mol$^{-1}$ K$^{-1}$, which implies that the lattice and electronic changes provide a fairly large contribution to the total entropy change.

To investigate the electronic contribution (i.e., the Sommerfeld coefficient or γ), the C_p/T versus T^2 plot below 10 K was analyzed by applying the approximate Debye model, as...
4 Advances in Condensed Matter Physics

Lattice parameters (Å)

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>a (Å)</th>
<th>c (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td>4.16</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>4.24</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>4.28</td>
<td></td>
</tr>
<tr>
<td>375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5: Variation in (a) lattice parameters and (b) synchrotron XRD patterns with temperature for Mn₃SbN.

Reflections (002) and (200) for the P4/mmm lattice merge to one reflection. By the Rietveld analysis of the synchrotron XRD patterns, the structural change from tetragonal to cubic was defined, and the lattice constants were determined as a function of temperature, as shown in Figure 5(a). It is obvious that lattice parameter c increases slightly with increasing temperature, whereas a gradually decreases. When the temperature crosses T_c, the tetragonal structure completely transforms to an unidentified cubic structure. Hence, the lattice distortion must contribute to the total entropy change.

According to the thermodynamic relation, the magnetization (M) is equal to the first derivative of the magnetic free energy by the magnetic field, that is, $df(M)/dT$ [22]. Therefore, the sharp transition indicates that the energy barrier in the free energy that separates the paramagnetic and ferromagnetic states is large. Accordingly, T_c and the energy barrier height probably correlate with the electronic density of states, which exhibits a sharp peak near the Fermi level [23]; therefore, the large entropy change is possibly related to the reconstruction of the electronic structure, which could induce the magnetic and structural transition. Since such an electronic reconstruction is often sharply reflected in a ρ-T curve, the electronic transport properties of Mn₃SbN were carefully measured (shown in Figure 6). It is evident that an abnormal drop appears at T_c in the ρ-T curve, which is indicative of an electronic structure reconstruction. In addition, as shown in the inset of Figure 6, a small hysteresis was observed between the warming and cooling curves; this is in agreement with a first-order transition.

Figure 6: Variation of ρ with temperature for Mn₃SbN upon cooling and warming. The inset shows an enlarged view of the ρ variation around the magnetic transition.

follows: $C(T)/T = \gamma + 2.4n^4 N_0 k_B (1/\Theta_D)^2 (T < \Theta_D)$, where n denotes the number of atoms per formula unit, k_B is the Boltzmann constant, N_0 is the Avogadro constant, and Θ_D is the Debye temperature. Fitting to the linear part of the C_p/T versus T^2 plot using the least-squares method yielded γ and Θ_D values of $\sim 7.03(1)$ mJ mol$^{-1}$ K$^{-2}$ and 326(2) K, respectively. Compared with the parameters determined for other antiperovskite nitrides, Mn₃SbN has a much lower γ, which indicates that the electronic correlation is somewhat weakened [20]. Thus, the electronic contribution might not be a dominant contributor to the total transition entropy.

In addition to the magnetic and electronic contributions, a possible lattice change may need to be investigated to analyze the total transition entropy. The variation of the synchrotron XRD pattern with temperature was measured. As shown in Figure 5(b). It can be seen that some typical reflections disappear with temperature, for example, the two reflections (002) and (200) for the P4/mmm lattice merge to one reflection. By the Rietveld analysis of the synchrotron XRD patterns, the structural change from tetragonal to cubic was defined, and the lattice constants were determined as a function of temperature, as shown in Figure 5(a). It is obvious that lattice parameter c increases slightly with increasing temperature, whereas a gradually decreases. When the temperature crosses T_c, the tetragonal structure completely transforms to an unidentified cubic structure. Hence, the lattice distortion must contribute to the total entropy change.

According to the thermodynamic relation, the magnetization (M) is equal to the first derivative of the magnetic free energy by the magnetic field, that is, $df(M)/dT$ [22]. Therefore, the sharp transition indicates that the energy barrier in the free energy that separates the paramagnetic and ferromagnetic states is large. Accordingly, T_c and the energy barrier height probably correlate with the electronic density of states, which exhibits a sharp peak near the Fermi level [23]; therefore, the large entropy change is possibly related to the reconstruction of the electronic structure, which could induce the magnetic and structural transition. Since such an electronic reconstruction is often sharply reflected in a ρ-T curve, the electronic transport properties of Mn₃SbN were carefully measured (shown in Figure 6). It is evident that an abnormal drop appears at T_c in the ρ-T curve, which is indicative of an electronic structure reconstruction. In addition, as shown in the inset of Figure 6, a small hysteresis was observed between the warming and cooling curves; this is in agreement with a first-order transition.

4. Conclusions

In conclusion, the thermodynamic, electromagnetic, and transport properties of antiperovskite Mn₃SbN were studied. The phase crystallizes in a tetragonal structure with $a = b = 4.17994(4)$ Å and $c = 4.27718(5)$ Å at room temperature. The C_p measurements revealed a sharp endothermic peak in the C_p-T curve at 353 K, which corresponds to a large
entropy change (∼10.2 J mol⁻¹ K⁻¹). The present study clearly indicates that the entropy change is accompanied with a Ferrimagnetic transition and lattice distortion as well as a possible electronic structure reconstruction.

Conflict of Interests

The authors declare that they have no conflict of interests.

Acknowledgments

The authors would like to thank the staff members at BL15XU, the National Institute for Materials Science (NIMS), and SPring-8 for their help in the use of the beamline. The SRXD measurements were performed with the approval of the NIMS Beamline Station (Proposal no. 2011A4502). This study was supported in part by the World Premier International Research Center Initiative of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT); a Grant-in-Aid for Scientific Research grant (no. 22246083) from the Japan Society for the Promotion of Science (JSPS); the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program) of the JSPS; the Japan Science and Technology (JST) Advanced Low Carbon Technology Research and Development Program (ALCA) of the Japan Science and Technology Agency (JST).

References

Research Article

Structural, Elastic, and Electronic Properties of Antiperovskite Chromium-Based Carbides ACCr$_3$ (A = Al and Ga)

D. F. Shao, W. J. Lu, S. Lin, P. Tong, and Y. P. Sun

1 Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
2 High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China

Correspondence should be addressed to W. J. Lu; wjlu@issp.ac.cn and Y. P. Sun; ypsun@issp.ac.cn

Received 29 October 2012; Accepted 24 December 2012

Academic Editor: Laifeng Li

Copyright © 2013 D. F. Shao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We theoretically investigated antiperovskite chromium-based carbides ACCr$_3$ through the first-principles calculation based on density functional theory (DFT). The structure optimization shows that the lattice parameter of ACCr$_3$ is basically proportional to the radius of A-site elements. The calculated formation energies show that AlCCr$_3$ and GaCCr$_3$ can be synthesized at ambient pressure and are stable with nonmagnetic ground states. Based on the calculation of elastic constants, some elastic, mechanical, and thermal parameters are derived and discussed. AlCCr$_3$ and GaCCr$_3$ show ductile natures and may have similar thermal properties. From the analysis of the electronic structures, it was found that there are electron and hole bands that cross the Fermi level for AlCCr$_3$ and GaCCr$_3$, indicating multiple-band natures. The Fermi level locates at the vicinity of the density of states (DOSs) peak, which leads to a large DOS at Fermi level dominated by Cr-3d electrons. The band structures of AlCCr$_3$ and GaCCr$_3$ are very similar to those of the superconducting antiperovskite MgCNi$_3$. The similarity may make AlCCr$_3$ and GaCCr$_3$ behave superconductively, which needs to be further investigated in theoretical and experimental studies.

1. Introduction

Recently, antiperovskite compounds AXM$_3$ (A, main group elements; X, carbon, boron, or nitrogen; M, transition metal) have attracted considerable attention. Due to the high concentration of transition metals in a cell, it can be deduced that interesting properties will be found in the family of compounds. In the antiperovskites family, nickel-based and manganese-based antiperovskites were extensively studied. Abundant physical properties were shown in the two kinds of compounds, such as superconductivity [1–3], giant magnetoresistance (MR) [4, 5], large negative magnetocaloric effect (MCE) [6, 7], giant negative thermal expansion [8, 9], magnetostriction [10], and nearly zero temperature coefficient of resistivity [11, 12]. But there are only a few reports about other 3d-metal-based antiperovskites so far. The difficulty restricting researchers is the exploration of new materials that can be experimentally synthesized. Therefore, theoretical investigations on these potential 3d-metal-based antiperovskites are useful to find the easily prepared stable materials and explore the new physical properties.

In the earlier years, researchers have found that in chromium compounds there are varieties of interesting physical properties. Many of chromium alloys such as Cr-Ru, Cr-Rh, and Cr-Ir alloys show superconductivity [13]. And it was found there is spin density wave antiferromagnetism that coexists with superconductivity in Cr$_{1-x}$Re$_x$ ($x > 0.17$) [14], Cr$_{1-x}$Ru$_x$ ($x > 0.17$) [15], and (Cr$_{1-x}$Mo$_x$)$_2$Ru$_2$ ($x = 0, 0.03, 0.06$, and 0.10) [16]. For chromium-based antiperovskites, Wiendlocha et al. [17] discussed the possibility of superconductivity in GaNCr$_3$ and RhNCr$_3$, and recent phonon and electron-phonon coupling calculation of RhNCr$_3$ [18] supports Wiendlocha et al’s prediction. In the present work, we theoretically investigated antiperovskite chromium-based carbides ACCr$_3$ through the first-principles calculation based on density functional theory (DFT). The optimized lattice parameter of ACCr$_3$ is basically proportional to the radius of A-site elements. From the analysis of formation energies, we predict that only AlCCr$_3$ and GaCCr$_3$ can be synthesized at ambient pressure, and they are stable with nonmagnetic ground states. The elastic and electronic properties of the two compounds are specifically discussed.
Table 1: The coefficient A_2 in (1) as combinations for second order elastic constant for cubic crystal. η_α denotes the Lagrangian strain tensors in terms of ξ.

<table>
<thead>
<tr>
<th>Strain type</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta_1 = (\xi, 0, 0, 0, 0)$</td>
<td>C_{11}</td>
</tr>
<tr>
<td>$\eta_2 = (\xi, \xi, 0, 0, 0)$</td>
<td>$2C_{11} + 2C_{12}$</td>
</tr>
<tr>
<td>$\eta_3 = (\xi, \xi, \xi, 0, 0)$</td>
<td>$C_{11} + 4C_{44}$</td>
</tr>
</tbody>
</table>

AlCr$_3$ and GaCr$_3$ show ductile natures and may have similar thermal properties. The electron and hole bands cross the Fermi level, implying the multiple-band nature of AlCr$_3$ and GaCr$_3$. The Fermi level locates at the vicinity of the density of states (DOS) peak, which leads to a large DOS at Fermi level dominated by Cr-3d electrons. The bands properties of AlCr$_3$ and GaCr$_3$ are very similar to those of superconducting antiperovskite MgCNi$_3$. The similarity may make AlCr$_3$ and GaCr$_3$ show superconductivity.

2. Computational Details

The calculations were performed by projected augmented-wave (PAW) [19, 20] method using the ABINIT code [21–23]. The PAW method can lead to very accurate results comparable to other all-electron methods. For the exchange-correlation functional, the generalized gradient approximation (GGA) according to the Perdew-Burke-Ernzerhof [24] parametrization was used. Electronic wavefunctions are expanded with plane waves up to an energy cutoff of 1200 eV. Brillouin zone sampling is performed on the Monkhorst-Pack (MP) mesh [25] of $120 \times 120 \times 120$. Brillouin zone sampling is performed on the Monkhorst-Pack (MP) mesh [25]. The self-consistent calculations were considered to be converged when the total energy of the system was stable within 10^{-6} Ha. Nonmagnetic, ferromagnetic (FM), and antiferromagnetic (AFM) states were tested in the study. For AFM states, we only considered the simplest case: the spins of Cr atom in [111] layers are parallel with each other in the same layer and are antiparallel with spins in the neighboring layers.

The elastic constants are evaluated according to the finite-strain continuum elasticity theory [26, 27]. The strain energy per unit mass can be expressed as a polynomial of the strain parameter ξ [28]:

$$
\phi(\xi) = \frac{1}{2} A_2 \xi^2 + \frac{1}{6} A_3 \xi^3 + O(\xi^4),
$$

where the coefficients A_2 and A_3 are combinations of second- and third-order elastic constants of the crystal, respectively. For a cubic structure, there are three independent second-order elastic constants (C_{11}, C_{12}, and C_{44}). Therefore, here we introduced 3 Lagrangian strain tensors labeled as η_α in terms of ξ, η_α and the corresponding coefficients A_2 are listed in Table 1.

Once the single-crystal elastic constants are calculated, the related elastic and mechanic parameters may also be evaluated. Using the Voigt-Reuss-Hill approximation [29], bulk modulus B and shear modulus G of cubic crystal can be defined as

$$
B = \frac{C_{11} + 2C_{12}}{3},
$$

$$
G = \frac{G_V + G_R}{2},
$$

where the subscripts V and R denote the Voigt, and Reuss average, respectively. In (3),

$$
G_V = \frac{C_{11} - C_{12} + 3C_{44}}{5},
$$

$$
G_R = \frac{5(C_{11} - C_{12})C_{44}}{4C_{44} + 3(C_{11} - C_{12})}.
$$

Thus Young’s modulus E and Poisson’s ratio σ can be obtained using the relations

$$
E = \frac{9BG}{3B + G},
$$

$$
\sigma = \frac{3B - 2G}{2(3B + G)}.
$$

Using the calculated bulk modulus B, shear modulus G, and Young’s modulus E, the Debye temperature Θ_D can be determined as

$$
\Theta_D = \left(\frac{3n\pi N_A}{4\pi M}\right)^{1/3} v_m,
$$

where h, k_B, and N_A are Planck’s, Boltzmann’s constants, and Avogadro’s number, respectively. ρ is the mass density, M is the molecular weight, and n is the number of atoms in the unit cell. The mean sound velocity is defined as

$$
v_m = \left[\frac{1}{3} \left(\frac{1}{v_l^2} + \frac{1}{v_t^2} + \frac{1}{v_3^2}\right)^{1/3},
$$

where v_l and v_t are the longitudinal and transverse sound velocities, which can be obtained from bulk modulus B and shear modulus G:

$$
v_l = \left(\frac{3B + 4G}{3\rho}\right)^{1/2},
$$

$$
v_t = \left(\frac{G}{\rho}\right)^{1/2}.
$$

3. Results and Discussion

3.1. Ground State and Formation Energy. The structures were fully optimized with respect to lattice parameter and atomic positions. The optimized lattice parameters of ACCr$_3$ for different A-site elements are listed in Table 2. The results show that the lattice parameter of ACCr$_3$ is basically proportional to the radius of A-site elements (see Figure 1).

The common technique for producing antiperovskite carbides is the solid-state synthesis from the parent materials.
The calculated elastic constants at ambient pressure and other derived mechanical parameters are listed in Table 3. From the calculated values of the elastic constants, one can find that they satisfy the mechanical stability criteria for a cubic crystal, that is, $C_{11}, C_{12}, C_{44} > 0$, and $C_{11} + 2C_{12} > 0$ [30], which indicates that the compounds are mechanically stable.

3.2. Elastic and Mechanical Properties

In order to obtain accurate elastic constants, ξ is varied with a step of 0.0025 in every case for η_A. As an example, the strain energies for AlCCr$_3$ and the fitted polynomials are shown in Figure 2. The calculated elastic constants at ambient pressure and other derived mechanical parameters are listed in Table 3. From the calculated values of the elastic constants, one can find that they satisfy the mechanical stability criteria for a cubic crystal, that is, $C_{11}, C_{12}, C_{44} > 0$, and $C_{11} + 2C_{12} > 0$ [30], which indicates that the compounds are mechanically stable.
For a complete isotropic system, the anisotropy factor A takes the value of unity, and the deviation from unity measures the degree of elastic anisotropy [32]. The elastic anisotropy factor A of a cubic crystal can be described as

$$A = \frac{2C_{44}}{C_{11} - C_{12}}.$$

(10)

For a complete isotropic system, the anisotropy factor A takes the value of unity, and the deviation from unity measures the degree of elastic anisotropy [32]. The elastic constant C_{44} represents the shear resistance in a [100] direction, which is related to the C–Cr bonding. The values of C_{44} for the two compounds are almost the same, which implies the similar C–Cr bonding nature of the two compounds. $C_{11} - C_{12}$ turns out to be the stiffness associated with a shear in a [110] direction, which can be connected with the bonding between A–Cr bonding. Although A–M bonding is usually very weak in antiperovskite ACM$_3$, it still can influence the anisotropy of the material. The anisotropic factors A are listed in Table 3. The different A–Cr bondings of the two compounds lead to different anisotropy. For AlCCr$_3$, $A = 0.91$ indicates that AlCCr$_3$ is almost isotropic. However, GaCCr$_3$ seems like more anisotropic ($A = 0.78$).

Young's modulus E defines the ratio between the linear stress and strain. The larger the value of E, the stiffer is the material. In general, as Young's modulus increases, the covalent nature of the compound also increases, which further has an impact on the ductility of the compounds. The values of E for AlCCr$_3$ and GaCCr$_3$ are very close to each other, suggesting the similar covalent nature of the two compounds.

The Cauchy's pressure C_p is defined as the difference between the two particular elastic constants $C_p = C_{12} - C_{44}$. It is considered to serve as an indication of ductility: $C_p > 0$ suggests that the material is expected to be ductile; otherwise, the material is expected to be brittle [33]. As shown in Table 3, the values of C_p for AlCCr$_3$ and GaCCr$_3$ are positive, which is a clear indication for the compounds to be ductile. Another index of ductility is the ratio B/G. According to Pugh [34], the ductile/brittle properties of materials could be related empirically to the ratio B/G. If $B/G > 1.75$, the material would be ductile; otherwise, the material behaves in a brittle manner. For ACCr$_3$ ($A =$ Al and Ga), all the calculated B/G ratios are much larger than 1.75, which clearly highlights the ductile nature of AlCCr$_3$ ($A =$ Al and Ga). Poisson’s ratio generally quantifies the stability of the crystal against shear and takes the value between −1 and 0.5, which are the lower and the upper bounds. The lower bound is where the material does not change its shape, and the upper bound is where the volume remains unchanged. The calculated σ of AlCCr$_3$ ($A =$ Al and Ga), listed in Table 3, are very close to the typical σ value of 0.33 for ductile metallic materials [35]. All the parameters clearly show the ductility of ACCr$_3$ ($A =$ Al and Ga).

Using bulk modulus B, shear modulus G, and Young's modulus E, the Debye temperature Θ_D can be calculated. As a matter of fact, a higher Θ_D would imply a higher thermal conductivity associated with the material [36]. For the present calculation, the Θ_D are estimated to be 532.43 K and 497.12 K for AlCCr$_3$ and GaCCr$_3$, respectively. The similar values of Θ_D suggest the similar thermal characteristics of the two compounds.

3.3. Electronic Properties

The calculated electronic band structures along the high symmetry directions in the Brillouin zones together with the total and site-projected l-decomposed DOS at equilibrium lattice parameters for ACCr$_3$ ($A =$ Al and Ga) are shown in Figures 3 and 4. The band structures of the two compounds are very similar. Bands from -13 eV to -10 eV are mainly from the C-2s and Cr-3d states with strong hybridizations characteristic. From -8 eV to 2 eV, there are hybridizations between C-2p and Cr-3d states, and the Cr-3d states contribute dominantly to the bands, which suggests the itinerant nature of Cr-3d electrons. From Figure 4, it can be seen the Fermi level locates at the vicinity of the DOS peak, which leads large DOS at the Fermi level $N(E_F)$ with values of 4.79 states/eV for AlCCr$_3$ and 5.62 states/eV for GaCCr$_3$.

The Fermi surfaces of the two compounds are similar (see Figure 5). There are four bands that cross the Fermi level. Hole pockets surrounding Γ point come from the lower two bands (denoted with red and green colors in Figure 3). Electron pockets surrounding R point come from the upper two bands (denoted with blue and purple colors in Figure 3). The differences of the Fermi surface of the two compounds come from the band denoted with blue color in Figure 3. It crosses the Fermi level at the vicinity of M point for AlCCr$_3$, which makes the electron pockets surround the corners of the Brillouin zones connected to each other at M point. However, for GaCCr$_3$, it crosses the Fermi level in the place between Γ and M points, which forms a cubic cage-like electron pocket surrounding Γ point and connecting with the corner-centered electron pockets. The presence of electron and hole bands crossing the Fermi level indicates the multiple-band natures for AlCCr$_3$ and GaCCr$_3$.

![Figure 2: The strain-energy relation of AlCCr$_3$.](image-url)
In order to understand the bonding nature among the atoms in AlCCr$_3$ and GaCCr$_3$, we plot the contour maps of the charge density of the two compounds in Figure 6. The C–Cr bonds are very strong, which coincides with the strong hybridization between C-2p and Cr-3d electrons shown in DOS figures. The similarity of the bonding nature for the two compounds coincides with the similar Young’s modulus E discussed before.

The electronic properties of AlCCr$_3$ and GaCCr$_3$ are very similar to those of the superconducting antiperovskite MgCNi$_3$ [37], for which the Fermi level locates at the vicinity of the DOS peak as well, and there is multiple-band nature present. The similarity possibly makes AlCCr$_3$ and GaCCr$_3$ potential superconductors. According to McMillan’s coupling theory [38], the electron-phonon coupling constant λ can be calculated from the following expression $\lambda = \sum_a (\eta_a / M_a \langle \omega_a^2 \rangle)$, where M_a is the atomic mass and $\langle \omega_a^2 \rangle$ is the averaged phonon frequency and can be approximated as $\langle \omega_a^2 \rangle = \Theta_D^2 / 2$. For superconducting MgCNi$_3$, there is a peak (a van Hove singularity) in DOS just below Fermi level, which leads to a large $N(E_F)$. The $N(E_F)$ is not large enough to lead magnetic instability, but it can lead to a large electron-phonon coupling constant [39]. To the best of our knowledge, except for the superconducting nickel antiperovskites, there are no
other antiperovskites that have such a nature. Wiendlocha et al. [17] pointed out that in chromium systems, chromium atoms have very large values of the McMillan-Hopfield parameters [38], which may lead to a very strong electron-phonon coupling. The recently reported work about RhNCr$_3$ [18] supports Wiendlocha et al’s prediction. The phonon and electron-phonon coupling calculations show that RhNCr$_3$, which has a large $N(E_F)$, is a strong coupling superconductor with T_c above 16K. Therefore, we consider that there is possibility for superconductivity appearing in AlCCr$_3$ and GaCCr$_3$. Phonon and electron-phonon coupling calculations will be carried out in the future to confirm the possibility.

4. Conclusion
In conclusion, we theoretically investigated the antiperovskite chromium-based carbides ACCr$_3$ through the first-principles calculation based on density functional theory. The optimized lattice parameter of ACCr$_3$ is basically proportional to the radius of A-site elements. Only AlCCr$_3$ and GaCCr$_3$ have negative formation energies, implying that the two compounds can be synthesized at ambient pressure and are stable with nonmagnetic ground states. AlCCr$_3$ and GaCCr$_3$ show ductile natures, and they may have similar thermal properties. Similar to superconducting antiperovskite MgCNi$_3$, there are electron and hole bands that cross the Fermi level for AlCCr$_3$ and GaCCr$_3$, indicating multiple-band natures. The Fermi level locates in the vicinity of the DOS peak, which leads to a large $N(E_F)$ dominated by Cr-3d electrons. These similarities possibly make AlCCr$_3$ and GaCCr$_3$ show superconductivity, which needs to be further investigated from theoretical and experimental studies.

Acknowledgments
This work was supported by the National Key Basic Research under Contract no. 2011CBA00111 and the National Nature Science Foundation of China under Contract nos. 91222109, 11274311, 51171177, 11174295, U1232139, and 50701042. The calculations were partially performed at the Center for Computational Science, CASHIPS.

References
Research Article

Chemical Phase Separation of Superconductive and Ferromagnetic Domains in ZnNNi$_{3-x}$Co$_x$

Takahiro Yamazaki, Akira Uehara, Katsuya Kozawa, Yoshihide Kimisima, and Masatomo Uehara

Address of Engineering, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan

Correspondence should be addressed to Masatomo Uehara, uehara@ynu.ac.jp

Received 19 September 2012; Accepted 12 December 2012

Academic Editor: Cong Wang

Copyright © 2012 Takahiro Yamazaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Various ZnN$_y$Ni$_{3-x}$Co$_x$ compounds with differing Co content, x, were synthesized, and their magnetic properties were investigated. Uniform solid solutions could not be obtained at low Co content ($x < 0.75$); instead micrometer-scaled ferromagnetic ZnN$_y$Ni$_{0.6}$Co$_{2.4}$ domains formed embedded within a superconductive ZnNNi$_3$ bulk, showing chemical phase separation of superconductive ZnNNi$_3$ and ferromagnetic ZnN$_y$Ni$_{0.6}$Co$_{2.4}$. At intermediate levels of Co concentration (0.75 < x < 2), this two-phase separation might persist, and the superconductive behavior was strongly suppressed in this composition region. Only at high Co concentration ($x > 2$) the uniform ferromagnetic solid solution ZnN$_y$Ni$_{1.5}$Co$_{0.5}$ (with most likely y = 0.5) formed. The phase separation behavior is intrinsic to the system, reflecting the existence of a miscibility gap in ZnNNi$_{3-x}$Co$_x$ for the samples with $x < 2$, and was shown not to be attributable to incomplete synthesis. In the two-phased samples, high-quality granular contact between the superconductor and ferromagnet has been realized, suggesting that the production of useful devices requiring high-quality contacts between superconductors and ferromagnets may be possible by making use of this two-phase situation.

1. Introduction

He et al. discovered a new antiperovskite superconductor MgCNi$_3$ that has a superconducting transition temperature (T_c) \sim 8 K [1]. This compound has attracted attention in the context of the relationship between superconductivity and ferromagnetism, because the material includes large amounts of ferromagnetic Ni and has structural similarities with f.c.c. elemental Ni. Some researchers have supposed that the ferromagnetic correlation is associated with the superconductivity of MgCNi$_3$. A theoretical calculation has pointed out that this compound is located near a ferromagnetic state and that the emergence of ferromagnetism may be induced by hole doping [2].

In order to reveal the superconducting gap symmetry and to clarify the microscopic origin of the superconductivity in MgCNi$_3$, various types of experiments have been carried out [3–14]. However, a rigid consensus has not been obtained yet about the origin of superconductivity in MgCNi$_3$. Stimulated by the discovery of MgCNi$_3$, several new antiperovskite compounds have been synthesized including two new superconductors, CdCNi$_3$ and ZnNNi$_3$, and complementary theoretical studies have been performed, especially for these new superconductors [15–33].

In this study we synthesized and investigated the physical properties of the ZnN$_y$Ni$_{3-x}$Co$_x$ system composed of superconductive ZnNNi$_3$ and ferromagnetic ZnN$_y$Co$_3$. ZnNNi$_3$ is a superconductor with $T_c \sim 3$ K that has the same antiperovskite structure as MgCNi$_3$ [34, 35]. ZnN$_y$Co$_3$ is a ferromagnet with a Curie temperature above room temperature. It should be mentioned that the nitrogen content y of ZnN$_y$Co$_3$ is about half of that in ZnNNi$_3$ ($y \sim 0.5$), which seems to be the only stable nitrogen content of this material [36]. The nitrogen content of ZnN$_y$Co$_3$ has been confirmed by measuring the weight change before and after sintering.

These two compounds have the same antiperovskite structure and almost the same lattice constant (3.756 and 3.758 Å for ZnNNi$_3$ and ZnN$_y$Co$_3$, resp.), which make them
likely to form a ZnN$_{y}$Ni$_{1-x}$Co$_{x}$ solid solution with a whole value of x. However the chemical phase separation of superconductive ZnNi$_3$ and ferromagnetic ZnN$_x$Ni$_{0.8}$Co$_{2.4}$ domains has been observed. In this paper, we report the synthesis and the two-phase separation of superconductivity and ferromagnetism in the ZnNi$_{y}$Ni$_{3-x}$Co$_{x}$ system in detail.

2. Experimental

The samples were prepared from elemental Zn, Ni, and Co powders. The powders were weighed and mixed to a nominal composition of Zn$_{1.05}$Ni$_{3-x}$Co$_x$ and were then pressed into pellets. Extra Zn powder was added to compensate for loss due to vaporization. The pellets were sintered in NH$_3$ gas in the following temperature sequence: (1) 400°C for 3 h, (2) 520°C for 5 h, and (3) 550–600°C for 5 h several times with intermediate grinding steps. The NH$_3$ gas decomposes to chemically active hydrogen and nitrogen at high temperatures, and the active nitrogen penetrates into the sample to nitrify the sample. This has been shown to be an effective method for forming 3d-transition metal nitrides [37–39].

X-ray diffraction patterns were obtained using Cu Kα radiation. The magnetization measurements were performed using a Quantum Design SQUID magnetometer. Magnetization was measured with zero-field cooling (ZFC). In order to investigate the homogeneity of the sample, an electron probe microanalyzer (EPMA) was used.

3. Results and Discussion

Figure 1 shows the powder X-ray diffraction patterns obtained for various ZnNi$_{y}$Ni$_{3-x}$Co$_{x}$ samples. All of the diffraction patterns indicate a cubic structure with Pm3m space group. No impurity peaks were detected, showing single-phased samples. The lattice parameters were determined to be a nearly constant value of 3.756 Å for all samples, and systematic changes in the lattice constant were not observed as the Ni:Co ratio was varied.

Figure 2 shows the temperature dependence of the magnetic susceptibility for ZnNi$_{y}$Ni$_{3-x}$Co$_{x}$ with $x = 0$, 0.25, 0.5, and 0.75 samples. All samples show supercondutive behavior. The onset of T_c was seen to slightly decreased as the Co content (x) was increased. Though the superconducting volume fraction (SVF) decreases as x increases, the SVF values are large enough for bulk superconductivity up to $x = 0.5$ (SVF = 12% estimated from magnetization value at 1.8 K). The bulk superconductivity disappears in samples with x above 0.75 (data with $x > 0.75$ not shown).

Figure 3 shows the field dependence of magnetization curves at 1.8 K and 3.5 K with (a) $x = 0.25$ and (b) $x = 0.5$. Below T_c (1.8 K), the magnetization curves show superconducting character but overlap with ferromagnetic character for both samples. The ferromagnetic character becomes more obvious for the sample with larger Co content (compare $x = 0.5$ data in Figures 3(a) and 3(b) at 1.8 K). At the lower temperature, superconductivity seems to coexist with ferromagnetism, but above T_c (3.5 K), the superconductive character disappears and only the ferromagnetism survives (see 3.5 K data of Figures 3(a) and 3(b)). In order to clarify the origin of this coexistence, we analyzed the samples using EPMA.

Figures 4(a) and 4(b) show the elemental mapping analysis for Ni (Figure 4(a)) and Co (Figure 4(b)) over a $230 \times 230 \mu m^2$ area of the $x = 0.25$ sample obtained using an acceleration voltage of 15 kV and probe diameter of 1 μm. In Figure 4(a), darker blue colors indicate areas deficient in Ni content. From this figure, it can be seen that there are some blue islands that are tens of micrometers in size and have much less Ni content than the surrounding areas. On the other hand, in Figure 4(b), areas with brighter red colors indicate that the Co content is enhanced in those regions. Comparing these two figures, it is seen that within the islands with very small Ni content seen in Figure 4(a), the Co content is very large. The chemical composition of these islands was revealed to be ZnNi$_{y}$Ni$_{0.8}$Co$_{2.4}$ and the volume fraction of the islands can be estimated from image.

Figure 1: Powder X-ray diffraction pattern for ZnNi$_{y}$Ni$_{3-x}$Co$_{x}$.

Figure 2: Temperature dependence of magnetic susceptibility, χ, normalized by $1/4\pi$ for ZnNi$_{y}$Ni$_{3-x}$Co$_{x}$ under 10 Oe between 1.8 K and 5 K obtained by the ZFC method.

Figure 4: Elemental mapping analysis.
Advances in Condensed Matter Physics 3

Zn$_{1-x}$Ni$_x$Co$_x$ with (a) $x = 0.25$ and (b) $x = 0.5$.

Figure 3: Magnetic field dependence of magnetization at 1.8 and 3.5 K for ZnNNi$_{1-x}$Co$_x$ with (a) $x = 0.25$ and (b) $x = 0.5$.

Figure 4: Elemental quantity mapping analysis for (a) Ni and (b) Co over a 230 \times 230 μm2 area for the $x = 0.25$ sample with an acceleration voltage of 15 kV and probe diameter of 1 μm. The red-colored area on the left side of Figure 4(a) is due to instrumental noise.

mapping to be about 5%. Except for these ZnN$_y$Ni$_{0.6}$Co$_{2.4}$ islands, the overall chemical composition was found to be nearly pure superconductive ZnNNi$_3$. In order to clarify the magnetic property of ZnN$_y$Ni$_{0.6}$Co$_{2.4}$, we synthesized a ZnN$_y$Ni$_{0.6}$Co$_{2.4}$ sample and measured its field-dependent magnetization at 1.8 K (Figure 5(a)). As clearly seen in Figure 5(a), ZnN$_y$Ni$_{0.6}$Co$_{2.4}$ is ferromagnetic. In Figure 5(b), ZnN$_y$Ni$_{0.6}$Co$_{2.4}$ magnetization data is superimposed with the 1.8 K data shown in Figure 3(a); the ZnN$_y$Ni$_{0.6}$Co$_{2.4}$ magnetization data was scaled by 0.05, corresponding to the volume fraction of ZnN$_y$Ni$_{0.6}$Co$_{2.4}$ (5%) estimated from the EPMA mapping data. It is clear that the ferromagnetic character seen in the $x = 0.25$ sample is well explained by the 5% reduced magnetization behavior of ZnN$_y$Ni$_{0.6}$Co$_{2.4}$. It appears that the origin of the coexistence of superconductive and ferromagnetic behavior arises from a chemical phase separation where ferromagnetic ZnN$_y$Ni$_{0.6}$Co$_{2.4}$ regions are embedded within the superconductive ZnNNi$_3$ background. It should be noted that the overall average composition of this 95%-ZnNNi$_3$/5%-ZnN$_y$Ni$_{0.6}$Co$_{2.4}$ sample is ZnN$_y$Ni$_{2.88}$Co$_{0.12}$, which corresponds to only half the Co content of the nominal composition of ZnNNi$_{3.75}$Co$_{0.25}$. We suspect that the discrepancy may be explained by the existence of small or thin ZnN$_y$Ni$_{0.6}$Co$_{2.4}$ portions in the ZnNNi$_3$ grain boundary areas, which we failed to adequately detect by mapping analysis. These small portions may lose...
4 Advances in Condensed Matter Physics

Figure 5: (a) Magnetic field dependence of magnetization at 1.8 K for ZnNi$_{0.6}Co_{2.4}$. (b) Magnetic field dependence of magnetization at 1.8 K for ZnNi$_{0.6}Co_{2.4}$. The magnetization data is scaled by a factor of 0.05 and superimposed with the 1.8 K data from Figure 3(a).

From this figure, it can be seen that the magnetization value at 1.8 K increases with increasing number of sintering cycles and almost saturates for the sample after 17 sintering cycles. This indicates that the chemical reaction has gone to completion and that the sample has reached a thermodynamic equilibrium state. Therefore, in this system, more than 17 sintering cycles are enough to achieve complete chemical reaction. The samples used in this study were synthesized with more than 17 sintering cycles; therefore, the two-phase separation cannot be attributed to incomplete synthesis but instead must be intrinsic to the system. It seems that Co ions cannot be substituted into Ni sites in the $x = 0.25$ and 0.5 samples, instead, two-phase separation of ZnNi$_3$ and ZnNi$_{0.6}Co_{2.4}$ arises. In other words, a miscibility gap exists in ZnNi$_{3-x}Co_x$ systems for at least $x = 0.25$ and 0.5. In an Mn-doped ZnNi$_{3-x}Mn_x$ system synthesized by the same recipe used in the present study, the superconductivity completely disappeared with a tiny amount ($x = 0.05$) of doping, which indicated the formation of a uniform solid solution, even with small doping concentrations [40]. This experimental result also reinforces the peculiar character of the Co-doping system and supports the existence of a miscibility gap. Why does not a uniform solid solution of ZnNi$_{3-x}Co_x$ form between the ZnNi$_3$ and ZnNi$_{0.5}Co_3$ which have nearly the same crystal structures? As already mentioned, it has been recognized that, in the preset synthesis conditions, the nitrogen content y of ZnNi$_{0.5}Co_3$ must be about 0.5 [36] unlike ZnNi$_2$ ($y = 1$). Strictly speaking, the crystal structure of ZnNi$_{0.5}Co_3$ is different than ZnNi$_3Co_3$ from the viewpoint of nitrogen content. Therefore, it is reasonable to imagine that ZnNi$_{0.5}Co_3$ cannot dissolve into ZnNi$_3$, even though the overall crystal structure and lattice parameters are almost the same. In contrast, for high x

Figure 6: Temperature-dependent magnetic susceptibilities of $x = 0.5$ samples with various numbers of sintering cycles. The inset shows χ at 1.8 K as function of sintering cycle number.
values, homogeneous solid solutions of ZnN\textsubscript{y}Ni\textsubscript{3-x}Co\textsubscript{x} may be realized because the islands of ZnN\textsubscript{y}Ni\textsubscript{0.6}Co\textsubscript{2.4} observed by EPMA mapping seem to be homogeneous within their islands. The nitrogen content \(y\) of ZnN\textsubscript{y}Ni\textsubscript{0.6}Co\textsubscript{2.4} is inferred to be 0.5 due to the compositional proximity to ZnN\textsubscript{0.5}Co\textsubscript{2.5}. A lower nitrogen content ZnN\textsubscript{0.5}Ni\textsubscript{3} phase can be synthesized under 50%-H\textsubscript{2}+50%-NH\textsubscript{3} conditions (For synthesizing ZnN\textsubscript{0.5}Ni\textsubscript{3}, the concentration of NH\textsubscript{3} gas has to be diluted down to 50% by H\textsubscript{2} gas, while for the case of ZnNNi\textsubscript{3}, 100%-NH\textsubscript{3} gas is needed.) and may exist as a pseudostable phase under the present synthesis conditions using 100%-NH\textsubscript{3} gas. Therefore, it can be supposed that small amounts of ZnN\textsubscript{0.5}Ni\textsubscript{3} could dissolve into ZnN\textsubscript{0.5}Co\textsubscript{2.5} to form the solid solution ZnN\textsubscript{y}Ni\textsubscript{3-x}Co\textsubscript{x} at high \(x\) concentrations, with a most likely value of \(y = 0.5\). If appropriate synthesis conditions were found that allowed the N content to be 1 for ZnN\textsubscript{y}Co\textsubscript{3}, the formation of uniform solid solutions at all \(x\) values could be possible. For example, this may be accomplished by using NH\textsubscript{3} gas at more than 1 atm.

In Figure 7, SVF, \(T_c\), and magnetization values obtained in a 1 T field at 1.8 K (\(M\)) are shown as a function of the Co content, \(x\). The SVF value decreases linearly as Co content increases up to about 0.5. This behavior is consistent with a two-phase situation. With linearly increasing \(x\), the relative ratio of the superconducting region linearly decreases. \(T_c\) is nearly constant and suddenly disappears at \(x = 1\). \(M\) increases linearly up to about 2 and strongly increases above \(x = 2\). This implies that the two-phase situation extends up to \(x = 2\), and at \(x > 2\) the uniform solid solution ZnN\textsubscript{y}Ni\textsubscript{3-x}Co\textsubscript{x} forms and shows ferromagnetism. However this hypothesis contradicts the experiment because the superconductivity disappears below \(x = 2\). This discrepancy might be explained by the influence of the magnetic field made by ferromagnetic ZnN\textsubscript{y}Ni\textsubscript{0.6}Co\textsubscript{2.4} regions adjacent to the superconductive ZnNNi\textsubscript{3} region under the two-phase situation, which may strongly suppress or wholly destroy the superconductive behavior. In order to clear this point, further investigations employing NMR or \(\mu\)SR experiments are needed.

Finally, it should be mentioned that in the two-phase situation a prototype of a ferromagnet-superconductor granular contact device is naturally realized. The nature of the ferromagnet-superconductor grain boundary is expected to be good because the ferromagnetic ZnN\textsubscript{y}Ni\textsubscript{0.4}Co\textsubscript{2.4} and superconductive ZnNNi\textsubscript{3} have almost the same crystal structure and lattice constant. This indicates the possibility for use in \(\pi\)-junction quantum bit and magnetoresistance devices and similar applications by tuning the morphological characteristics of the contact boundary, such as contact strength, shape of the boundary, and each domain size. These parameters may be controllable within conventional solid state reaction techniques by optimizing synthesis conditions such as temperature, sintering time, and nitrogen partial pressure, without the special equipment used in producing thin film devices.

4. Conclusion

It has been revealed that, in ZnN\textsubscript{y}Ni\textsubscript{3-x}Co\textsubscript{x} systems with \(0 < x < 0.75\), instead of forming uniform solid solutions, micrometric scale ferromagnetic ZnN\textsubscript{y}Ni\textsubscript{0.6}Co\textsubscript{2.4} domains
embed within a superconductive ZnNNi3 bulk, showing chemical phase separation of superconductive ZnNNi3 and ferromagnetic ZnN3Ni0.6Co2.4. Our results suggest that, for 0.75 < x < 2, two-phase separation persists, but the superconducting region is strongly suppressed or almost destroyed possibly by the magnetic field produced by surrounding ferromagnetic regions. Above x > 2, the uniform solid solution ZnN3Ni1−xCo2 (with most likely y = 0.5) forms, and in this compositional region the system shows long range ferromagnetism. The two-phase separation nature is intrinsic to the system, reflecting the existence of a miscibility gap in ZnN3−yNiCo3 with 0 < x < 0.75 and suggestively with 0.75 < x < 2. The origin of this unexpected chemical phase separation is probably due to the differences in stable nitrogen content between ZnN3Ni (y = 1) and ZnN3Ni0.6Co2.4 (y = 0.5). By taking advantage of this two-phase situation, useful devices requiring high-quality granular contacts between superconductors and ferromagnets could be produced.

Acknowledgment

This work was partly supported by Research Institute and Instrumental Analysis Center of Yokohama National University.

References

[25] B. He, C. Dong, L. Yang, L. Ge, L. Mu, and C. Chen, “Preparation and the physical properties of antiperovskite-type compounds CmDn−zInNNi3 (0 ≤ x ≤ 0.2) and CmDn−zCoNNi3 (0 ≤ y ≤ 0.2),” Chinese Physics B, vol. 21, no. 4, Article ID 047401, 2012.

Review Article

Research Progress on Ni-Based Antiperovskite Compounds

P. Tong and Y. P. Sun

1 Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
2 High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China

Correspondence should be addressed to Y. P. Sun, ypsun@issp.ac.cn

Received 19 September 2012; Accepted 5 December 2012

1. Introduction

To explore new superconductors is one of the central issues of material science and condensed matter physics. The discovery of high-temperature (high-T_C) superconductivity in cuprates has attracted a lot of attention in the past decades [1]. In 2001, Professor R. J. Cava from the University of Princeton reported the superconductivity in antiperovskite compound MgCNi$_3$ with the transition temperature $T_C \sim 8$ K (Figure 1) [2]. The superconductivity in MgCNi$_3$ is unusual in view of the large content of the magnetic element Ni, which often favors a magnetic ground state. A prominent feature of the electronic structure is an extended van Hove singularity as shown in Figure 2(a), giving rise to a large density of states (DOS) just below the Fermi level (E_F) [see Figure 2(b)] [3]. A similar feature has been observed in some high-T_C superconductors. Moreover, the DOS peak is mainly attributable to the Ni 3d states [4, 5]. Structurally, the cubic symmetry recalls the high-T_C cuprates superconductors with perovskite structures. Thus the central question was raised, whether the superconductivity in MgCNi$_3$ is exotic. In other words, the answer to the question lies in clarifying the roles of the spin fluctuations or ferromagnetic (FM) correlations probably from the dominant Ni content in MgCNi$_3$. However, the experimental results based on polycrystalline samples by different techniques (such as NMR [6], London penetration depth [7, 8], critical current behavior [9], tunneling spectra [10, 11], carbon isotope effect [12], specific heat [13, 14], μSR [15] and so on) from different groups are controversial. A detailed summary on the experimental and theoretical results published before 2004 can be found in the review paper [16] written by Mollah. From then on, the researchers have been focusing on two main scopes in this field, namely, the experimental investigations on MgCNi$_3$ single crystals and on the synthesis and physical properties of neighbor compounds of MgCNi$_3$, which have never been included in any review papers. In this paper, we focus on these two topics, as well as give a phase diagram based on the available data of the lattice constant, the Debye temperature and the density of state at the Fermi level, $N(E_F)$, for the Ni-based antiperovskite compounds. The phase diagram supports that the superconductivity observed in the Ni-based
2. Experimental Results on Single Crystalline MgCNi3

The experiments on single crystal are desirable for eliminating the discrepancies in the experimental results based on polycrystalline samples. However, the first, also the only successful synthesis of MgCNi3 single crystal is reported in 2007 [17] by Lee et al., five years after the discovery of superconductivity in polycrystalline MgCNi3.

In [17], Lee et al. employed a self-flux method with the aid of high pressure. The mixtures of Mg, C, and Ni powders with the ratio 1:1:3 were ground, pressed into a pellet, and then loaded into a high pressure cell. Then the sample was heated at 1200 °C under 4.25 GPa for 12 hours. The resulted sample is a mixture of single crystalline MgCNi3 with the size of hundreds of micrometers and some fluxes. Unlike the polycrystalline samples, the single crystal does not contain C or Mg deficiencies. Instead, Ni is found to be deficient. The real composition turns out to be MgCNi3.80.05. As displayed in Figure 3, the transition temperature is found to be 6.7 K, slightly lower than the Tc for polycrystalline MgCNi3. Even so, the entire sample quality was greatly improved compared with the crystalline samples. For example, the residual resistivity ratio is 2.7, larger than the values ever reported for the crystalline samples. Moreover, the single crystal was homogeneous and free of microscopic regular arrays observed in the high-resolution transmission electron microscopy (TEM) images for polycrystalline samples [17].

In order to clarify the nature of the superconductivity in single crystal MgCNi3, further measurements have been performed on the samples from Lee’s group. Based on the resistance measured as functions of the temperature and the applied magnetic field, it is found that the normal state resistivity can be explained by using only electron-phonon (e-p) scattering mechanism, indicating a conventional BCS behavior [18]. It is further supported by the linear behavior of Hc2(T) near Tc. The low-temperature electronic specific heat Cp(T) in superconducting state shows a classical exponential decrease confirming s-wave pairing with a moderate e-p coupling in this material [19, 20]. However, the Cp(T) at normal state cannot be well described by the usual T³ term of phonon contribution. A higher phonon-term probably due to the softening of the lowest acoustic Ni phonon modes is needed to interpret the deviation [20]. It is consistent with the magnetic penetration depth measured by high-precision tunnel diode oscillator technique and Hall probe magnetization, which shows that the superconducting gap is fully open over the whole Fermi surface [21]. Moreover, the ratio 2Δ/kBTc ≈ 4 and high specific-heat jump at Tc in zero field, ΔC(Tc)/NcTc ≈ 1.96, indicating a strong-coupling mechanism. This scenario is supported by the direct gap measurements via the point-contact spectroscopy [20]. The reported superconducting parameters are summarized in Table 1. The availability of single crystal specimens also allows a detailed phonon-dispersion mapping which is

<table>
<thead>
<tr>
<th>MgCNi3</th>
<th>CdCNi3</th>
<th>ZnNi3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (Å)</td>
<td>3.812/3.8125</td>
<td>3.844</td>
</tr>
<tr>
<td>Tc (K)</td>
<td>7.6/7.3</td>
<td>3.2</td>
</tr>
<tr>
<td>Hc1(0) (mT)</td>
<td>10</td>
<td>8.6</td>
</tr>
<tr>
<td>Hc2(0) (T)</td>
<td>14.4/12.8</td>
<td>2.2</td>
</tr>
<tr>
<td>ξ(0)</td>
<td>46/51</td>
<td>122</td>
</tr>
<tr>
<td>λ(0) (Å)</td>
<td>2480/2300</td>
<td>2767</td>
</tr>
<tr>
<td>κ(0)</td>
<td>54/44</td>
<td>23</td>
</tr>
<tr>
<td>γ (mJ·mol⁻¹·K⁻²)</td>
<td>30.1</td>
<td>18</td>
</tr>
<tr>
<td>ΘD (K)</td>
<td>284/132</td>
<td>352</td>
</tr>
<tr>
<td>2Δ/kBTc</td>
<td>(3.75–5)/4</td>
<td>—</td>
</tr>
<tr>
<td>N(EF) (states eV⁻¹/f.u)</td>
<td>4.99</td>
<td>3.82</td>
</tr>
</tbody>
</table>
Figure 2: (a) Surface plot (and contour plot below) of the van Hove singularity in ϵ_k (relative to E_F) in the G-M-X plane, with M at the right-hand corner (planar coordinates are given in units of $2\pi/a$) [Reprinted with permission from H. Rosner et al., Phys. Rev. Lett. 88, 027001 (2002)]. (b) The peak structure in the electronic density of state around E_F [Reprinted with permission from D. J. Singh et al., Phys. Rev. B 64, 140507 (2001)].

Figure 3: (Color online) Temperature-dependent resistivity of MgCNi$_3$ [Reprinted with permission from H.-S. Lee et al., Adv. Mater. 19, 1807-1809 (2007)]. The sample with four metallic leads is shown in the upper inset. The lower inset shows a magnified view of $\rho(T)$ near the superconducting transition.

closely related to the superconducting mechanism. By applying inelastic X-ray scattering (IXS), the phonon mapping was reported by Hong et al. [22]. The IXS result implies that there are no phonon anomalies that could support any exotic mechanisms for superconductivity in MgCNi$_3$. This result was verified by a late ab initio calculation [23]. In addition, Jang et al. [24] observed the collapse of the peak effect (PE), namely a sudden increase in the critical current near the end of superconductivity. As the AC driving frequency increases, the PE was collapse and observable flux creep was developed in contrast to the result observed in the well-studied NbSe$_2$. Also, the PE in MgCNi$_3$ was suggested be a dynamic phenomenon.

Although the experimental results measured on the single crystal samples suggest that MgCNi$_3$ is a conventional BCS-type superconductor with mediate or strong e-p coupling, it is yet arbitrary to exclude the contribution from spin fluctuations or FM instability. The reason is relative to the single crystalline sample itself. All the experiments were performed on the crystals prepared by the same group. Moreover, the crystal is Ni-deficient [17] though its superconducting parameters are close to those determined on polycrystalline samples (see Table 1). Theoretically, for another Ni-based antiperovskite compound InCNi$_3$, it is proved that the excess of Ni, or say, deficiency of In can tune the system to the FM instability [25], even to a FM order [26]. It is natural to expect stronger spin-fluctuations given a perfectly stoichiometric MgCNi$_3$ single crystal. Therefore, a theoretical comparison between the Ni-deficient MgCNi$_3$ and perfect MgCNi$_3$ would resolve the problem. Moreover, growth of single crystals without Ni deficiencies is needed to end the ten-year debate on whether MgCNi$_3$ is unconventional superconductor.
3. Research Progress on Ni-Based Antiperovskite Compounds other than MgCNi$_3$

The purpose of investigating the materials which are closely related to MgCNi$_3$, that is, AXNi$_3$ (A = Zn, Al, Ga, In, Cd and so on; X = C, N, B), is two sided to explore new superconductors and to shed light on the superconducting mechanisms for MgCNi$_3$. Up to date, there are more than ten compounds neighboring to MgCNi$_3$ were synthesized and the physical properties investigated. These newly synthesized Ni-based antiperovskite compounds can be grouped into three types, that is, carbides ACNi$_3$, nitrides ANNi$_3$, and borides ABNi$_3$.

CdCNi$_3$ with the same number of valence electrons as MgCNi$_3$ is another superconductor in the carbides ACNi$_3$. As shown in Figures 4(a) and 4(b), the transition temperature T_C is around 3.2 K, varying with fabrication conditions [27]. The superconducting parameters are listed in Table 1. The specific heat Sommerfeld constant γ is 18 mJ/(mol K2), smaller than that of MgCNi$_3$. However, the theoretical calculation shows the $N(E_F)$ value is slightly larger than MgCNi$_3$, while the calculated e-p coupling coefficient (0.8) is nearly half that of the corresponding value of 1.5 for MgCNi$_3$ [28]. This is argued to be associated with a softening behavior of the lowest acoustic phonon branch along the X-R symmetry direction [28]. The large Wilson ratio $R_W = (\pi^2 k_B^2/3\mu_B^2)(\chi_0/\gamma) \sim 12$ and the well suppressed upper critical
field $H_{c2}(0) \sim 2.2$ T, compared with the Pauli limit (14 T) indicate the existence of strong FM correlations. Surprisingly, ZnCNi$_3$ with the same number of valence electrons, as MgCNi$_3$ and CdCNi$_3$, is found to be a Pauli paramagnetic (PM) metal without signals of superconductivity down to 2 K [29]. The value of y is only 6.77 mJ/(mol K2), much smaller than those of MgCNi$_3$ and CdCNi$_3$ (see Table 1), indicating a very weak e-p coupling that explains the disappearance of superconductivity. However, it was theoretically suggested that the experimental ZnCNi$_3$ is carbon deficient, while the stoichiometric compound should be superconducting [30].

The polycrystalline ACNi$_3$ (A = Al, Ga, In) series with one more valence electron than MgCNi$_3$ were prepared by solid state reaction and detailed studies of their basic properties were performed. For GaCNi$_3$, a T^2 temperature dependence of resistivity was observed. The large values of the Kadowaki-Woods ratio $A/\gamma^2 \sim 7.2$ $(\mu\Omega$ cm/K2) and the Wilson ratio $R_w \sim 9.2$ suggest a highly correlated Fermi liquid behavior [31]. The large electron-electron correlation was suggested to be caused by the proximity of FM order from the side of exchange-enhanced Pauli paramagnet, evidenced by the remarkable enhancements in both the specific heat Sommerfeld constant γ and the temperature-independent magnetic susceptibility χ_0. As to AlCNi$_3$ compound, the magnetic properties also show it is a strongly exchange-enhanced Pauli paramagnet in the very vicinity of FM order [32]. However, the low-temperature resistivity is nearly linear temperature-dependent, indicating a possible non-Fermi-liquid behavior which is in sharp contrast with GaCNi$_3$. The low-temperature electronic specific heat reveals that the spin fluctuations in AlCNi$_3$ are strongly enhanced when compared with the superconducting MgCNi$_3$, while the e-p couplings are comparable in both compounds. The Wilson ratio R_w is about 2.4 and the dimensionless ratio that connects the low-temperature Seebeck coefficient with the Sommerfeld specific heat constant indicate that AlCNi$_3$ can be considered as a modest electron-correlated material. Consistently, the enhanced spin fluctuations were confirmed using 27Al NMR measurement in AC$_{x}$Ni$_3$ with $x \geq 0.1$ where the FM order was suppressed and the system is in the vicinity of FM order [33, 34]. On the contrary, an early experimental report shows AlCNi$_3$ is a weak ferromagnet with the FM-PM transition at 300 K [35]. The nonmagnetic ground state for AlCNi$_3$ and GaCNi$_3$ was confirmed by many theoretical reports [36–39], though the predicted FM correlations or spin fluctuations are weaker than experimentally measured [37]. The existence of carbon deficiencies to various extents may account for this divergence, as suggested by Sieberer et al. [37]. As to the InCNi$_3$, it was found that the reduction of Indium ratio in the mixture of the raw powders helps make pure antiperovskite type compound [26]. The resulted composition from the optimum synthesis is In$_{0.95}$Ni$_3$. It behaves as a FM metal below the Curie temperature (577 K) [26]. It was suggested that the appearance of ferromagnetism originates from the deviation of the Ni/In atomic ratio from the ideal case. Theoretically, it is found the ideally stoichiometric InCNi$_3$ is a nonmagnetic metal and far away from a long-range magnetic order [25, 40]. Both In vacancies and substitutional Ni on In site were found to be able to lead to a spin-polarized ground state. Energetically, the latter scenario is more preferable to generate a FM ground state [25].

ZnNNi$_3$ is the only superconductor observed so far in the nitrides ANNi$_3$ [41]. The $T_C \sim 3$ K, as shown in Figures 4(c) and 4(d), is close to that of CdCNi$_3$. The magnetic susceptibility shows a Pauli-like behavior with the magnitude much smaller than that of CdCNi$_3$. It indicates the FM correlations in this material are not as enhanced as in CdCNi$_3$. The obtained specific heat Sommerfeld constant γ is 13 mJ/(mol K2), smaller than the value of 18 mJ/(mol K2) for CdCNi$_3$. Even so, the T_C is close to CdCNi$_3$ because the FM correlation which could suppress the T_C is weak in ZnNNi$_3$. Compared with MgCNi$_3$, a significantly reduced $N(E_F)$ was theoretically observed in ZnNNi$_3$ [42], which accounts for the lower T_C in ZnNNi$_3$ than in MgCNi$_3$. The CdNNi$_3$ and InNNi$_3$ were also successfully synthesized by the same authors of [41] but neither is superconducting [43]. The y value is 12 mJ/(mol K2) and 8 mJ/(mol K2) for CdNNi$_3$ and InNNi$_3$, respectively, smaller than that for ZnNNi$_3$. However, the temperature-independent magnetic susceptibility χ_0 for CdNNi$_3$ and InNNi$_3$ is larger than that of ZnNNi$_3$, indicative of an enhanced contribution from the FM correlations in the former two compounds. It shows by theoretical calculations that the $N(E_F)$ for CdNNi$_3$ is comparable with that for ZnNNi$_3$ [44], but the $N(E_F)$ is much reduced in InNNi$_3$ [45]. Assuming that the e-p coupling is comparable in CdNNi$_3$ and ZnNNi$_3$, it is possible to observe superconductivity in CdNNi$_3$ in case the FM correlations can be well suppressed. Very recently, He et al. reported two series of doped CdNNi$_3$, that is, Cd$_{1-x}$In$_x$NNi$_3$ ($0 \leq x \leq 0.2$) and Cd$_{1-x}$Cu$_x$NNi$_3$ ($0 \leq x \leq 0.2$) [46]. These compounds show metallic resistivity and exhibit a Fermi liquid behavior at low temperatures. No superconductivity was found down to 2 K. However, all samples exhibit very soft and weak ferromagnetism, in contrast to the PM behavior for CdNNi$_3$ reported previously by Uehara et al. [43].

Compared with the carbides ACNi$_3$ and nitrides ANNi$_3$, little attention has been paid to the borides ABNi$_3$. To the best of our knowledge, ScB$_{0.5}$Ni$_3$ [47] is the only boron based Ni-based antiprovskite compound with its physical properties reported in the literatures. It shows a Pauli PM behavior without any superconducting signals observed down to 2 K. We tried to synthesize ABNi$_3$ (A = Al, Ga, In, and so on) samples by solid state reaction [48]. The pure sample of InBNi$_3$ with the antiperovskite structure (lattice constant $a = 3.795$ Å) was successfully synthesized and structural, magnetic, transport properties, and specific heat measurements performed. No superconductivity appears down to the lowest temperature by electric and magnetic measurements (5 K) as shown in Figure 5(a). The magnetization $\chi(T)$ takes a typical Pauli PM behavior with a very small contribution from the FM spin fluctuations. As shown in the inset of Figure 5(b), the low-temperature specific heat data, plotted as $C(T)/T$ versus T^2, can be well fitted using the following formula, $C(T)/T = y + \beta T^2$, where y is the Sommerfeld constant for electronic
InBNi₃

$T = 300$ K

$C(\text{J/mole/K})$

$T^2 (\text{K}^2)$

$C(T)/T$ versus T^2 below 15 K.

Figure 6: (Color online) The Debye temperature, Θ_D, and the DOS at E_F, $N(E_F)$ as a function of the lattice parameter a for Ni-based antiperovskite compounds. The crossing dashed lines indicate the trends of Θ_D (downwards) and $N(E_F)$ (upwards) with increasing the lattice constant a. The Θ_D values are derived from specific heat data reported in [26, 29, 31, 32, 41]. The $N(E_F)$ values are from theoretical calculations where corresponding calculated lattice constant is the closet to the experimental ones [4, 28, 30, 37, 39, 40, 42].

4. A Universal Phase Diagram

Thanks to the systematic studies in the past, it is possible to draw a uniform picture of the properties for the Ni-based antiperovskite compounds, thus to shed light on the unique superconductivity in MgCNi₃. The Debye temperature Θ_D obtained from specific heat measurements, the calculated density of state at Fermi level $N(E_F)$ available in the published literatures are plotted as a function the lattice constant, as shown in Figure 6. Two main trends can be found, (1) the Θ_D increases approximately as the lattice constant is reduced. (2) The shrinkage of lattice constant reduces the $N(E_F)$, which is more scattered than Θ_D though.

The evolution of Θ_D derived from experimental specific heat data with lattice constant can be understood as follows: the lattice contraction leads to the hardening of phonon mode, thus an increase of Debye temperature [29]. There exists a strong hybridization between X 2p and Ni 3d orbitals [4, 5, 16, 25, 30, 36, 37], playing important roles in determining the physical properties. The decrease of lattice constant reduces the Ni–C bond length, thus enhances the hybridization, leading to a decreased $N(E_F)$. It is more general that the DOS is inversely proportional to the band
width \(W \). for a cubic solid, the band width is related with the lattice constant \(a \) by the expression \(W \sim 1/a^2 \). Therefore, the decrease of lattice constant will increase the band width, leading to a reduction of \(N(E_F) \). In addition, the theoretical calculations show there is a peak structure in the DOS below the \(E_F \) for all Ni-based antiperovskite compounds AXNi\(_3\). For carbide compounds ACNi\(_3\) (\(A = Al, Ga, In \)) or ZnNNi\(_3\) that has more electrons than MgCNi\(_3\), could be interpreted as electron-doped MgCNi\(_3\), resulting in a downward shift of the position of the peak in the DOS from the \(E_F \), consequently a reduced \(N(E_F) \). In a word, the \(N(E_F) \) is expected to increase as the lattice expands. It is basically followed by many compounds as shown in Figure 6. However, the real case may be too complex to be attributed to the above models. One example is InBNi\(_3\) whose \(N(E_F) \) is extremely lower than expected. It is probably because the B 2p state in borides hybridizes with Ni 3d state more than the C 2p state in carbides ACNi\(_3\). For a BCS theory, the e-p coupling constant can be estimated by the McMillan’s formula \[\lambda_{ph} = \frac{N(E_F)}{M(\omega^2)} \], where \((\omega^2) \) is the averaged electron-ion matrix element squared, \(M \) is an atomic mass, and \((\omega^2) \) the averaged phonon frequency proportional to Debye temperature \(\Theta_D \). Therefore, a combination of a large \(N(E_F) \) and small \(\Theta_D \) will lead to a strong e-p coupling, consequently a BCS-like superconductor. The Ni-based antiperovskite compounds seem to obey this law. All discovered superconductors locate on the right side of the map in Figure 6, where the \(\Theta_D \) is relatively small, but the \(N(E_F) \) is relatively large. For instance, MgCNi\(_3\) which shows the highest \(T_C \) has the largest \(N(E_F) \) and smallest \(\Theta_D \). Figure 6 also suggests that the superconductivity observed in the Ni-based antiperovskite compounds is predominantly \(s \)-wave BCS type mediated by e-p coupling, though the other contributions, for example, from spin fluctuations, may not be excluded. We note that the \(\Theta_D \) for MgCNi\(_3\) in the figure is from polycrystalline sample [27], while the value deduced from resistivity for single crystal MgCNi\(_3\) is surprisingly small (132 K) [18]. There is no clear trend for the relation between number of the valence electrons and \(N(E_F) \) or \(\Theta_D \). Regardless of this, the phase diagram in Figure 6 provides a clue for searching new superconductors in Ni-based antiperovskite compound AXNi\(_3\), namely, the compounds with large lattice constant may be superconducting in terms of the BCS scenario.

5. Future Outlook

In the future, the following works are worthy to be done.

1. New MgCNi\(_3\) single crystals with ideal 1:1:3 stoichiometry would finally close the long-time debate on the mechanism of superconductivity.

2. In order to clarify the divergences among the experimental and theoretical results for the Ni-based antiperovskite compounds other than MgCNi\(_3\), more extensive investigations on single crystal samples are desirable. The growth of single crystal AXNi\(_3\) is a challenge. The successful growth of MgCNi\(_3\) single crystals would help, because the application of high pressure during heating can improve the solubility of carbon and suppresses the volatility of magnesium.

3. The AXNi\(_3\) materials may serve as a platform for studying quantum critical phenomena (QCP) and quantum phase transitions (QPT) in simple material systems with three-dimensional cubic structure and none “f” elements. Previously, the QCP and QPT have been extensively studied in some “unique” systems [52], such as heavy fermions with “f” elements, magnetic systems with spin frustration, and so on. Taking the advantages of the single crystal samples, the possible quantum phase transitions can be explored in some AXNi\(_3\), such as AlCNi\(_3\), GaCNi\(_3\), and CdCNi\(_3\), driven by chemical alloying, external pressure, or magnetic field.

4. It is interesting to explore new superconductors with antiperovskite structure based the clues mentioned, for example, large lattice constant may favor BCS superconductivity. This clue may work for the antiperovskite compounds based on other 3d elements, such as Ti and Sc. The discovery of new superconductors can always cheer the superconductor society.

6. Conclusion

We summarized the recent progress for Ni-based antiperovskite compounds closely related to the superconducting MgCNi\(_3\). A universal phase diagram is presented based on the published data, which would help design new superconductors with the antiperovskite structure. The synthesis and characterization on single crystals are desirable for future study in order to eliminate the divergences made by different authors or between the theoretical and experimental result.

Acknowledgments

This work was supported by the National Key Basic Research under Contract no. 2011CB001111 and the National Natural Science Foundation of China under Contract nos. 50701042, 11174295, 51001094, 51171177, and 91222109.

References

[46] B. He, C. Dong, L. H. Yang, L. H. Ge, L. B. Mu, and X. C. Chen, “Preparation and the physical properties of antiperovskite-type compounds Cd1−xInxNNi3 (0 ≤ x ≤ 0.2) and Cd1−yCuyNNi3 (0 ≤ y ≤ 0.2),” *Chinese Physics B*, vol. 21, no. 4, Article ID 047401, 2012.

Research Article

Origin of the Giant Negative Thermal Expansion in Mn$_3$(Cu$_{0.5}$Ge$_{0.5}$)N

B. Y. Qu,¹ H. Y. He,¹ and B. C. Pan¹,²

¹ Department of Physics, University of Science and Technology of China, Anhui, Hefei 230026, China
² Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Anhui, Hefei 230026, China

Correspondence should be addressed to B. C. Pan, bcpan@ustc.edu.cn

Received 16 June 2012; Accepted 11 September 2012

Academic Editor: Koshi Takenaka

Copyright © 2012 B. Y. Qu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The giant negative thermal expansion in the Ge-doped antiperovskite Mn$_3$CuN compound is theoretically studied by using the first principles calculations. We propose that such a negative thermal expansion property is essentially attributed to the magnetic phase transition, rather than to the lattice vibration of the Ge-doped compound. Furthermore, we found that the doped Ge atoms in the compound significantly enhance the antiferromagnetic couplings between the nearest neighboring Mn ions, which effectively stabilizes the magnetic ground states. In addition, the nature of the temperature-dependent changes in the volume of the Ge-doped compound was revealed.

1. Introduction

Controlling the thermal expansion behavior of materials is eagerly required in modern advanced industries [1, 2]. Commonly, such control can be realized through mixing a kind of positive thermal expansion (PTE) materials with a kind of negative thermal expansion (NTE) materials whose volumes contract on heating. As we know, there are many PTE materials in the world, but the NTE ones rarely exist yet. Therefore, a challenging issue in controlling the thermal expansion behavior of the materials is to synthesize materials possessing NTE property.

Mn$_3$CuN, a member of the anti-perovskite manganese nitride Mn$_3$MN (M = Zn, Cu, etc.) [3–5], does not possess the negative thermal expansion property. However, recent experiments [6] reported that, with partial substitution of Ge for Cu in the Mn$_3$CuN compound, the synthesized Mn$_3$(Cu$_{1-x}$Ge$_x$)N compounds exhibited isotropic negative thermal expansion. Typically, the Ge-doped compound, Mn$_3$(Cu$_{1-x}$Ge$_x$)N (x = 0.5), showed the NTE property in a wide temperature window of 316–386 K, together with a giant negative thermal expansion coefficient (The linear thermal expansion coefficient of a material is defined as $\alpha = (1/L)(\Delta L/\Delta T)$. Here, L is the length of the material at temperature T_0, and ΔL is the change of the length when temperature has a change of $\Delta T = T - T_0$) of $\alpha_L = -16 \times 10^{-6}$ K$^{-1}$. More importantly, the working temperature and the width of the temperature window as well as the negative thermal expansion coefficient of the Ge-doped compound were modulated through the introduction of Ge dopant.

Prompted by the pioneering research [6], many other groups have studied the doping effect on the NTE property for some counterparts of Mn$_3$(Cu$_{1-x}$Ge$_x$)N, typically like Mn$_3$(Cu$_{1-x}$Sn$_x$)N [7], Mn$_3$(Zn$_{1-x}$Ge$_x$)N [8], Mn$_3$(Cu$_{0.65}$Si$_{0.35}$Ge$_{0.4}$)N [9], and so on [10, 11]. All the efforts reported in these papers showed that it was the doped Ge that brought the NTE property into these antiperovskite compounds, just like that of the Mn$_3$(Cu$_{1-x}$Ge$_x$)N compound. Therefore, the doped Ge was regarded as a "magic element" for the observed NTE property in the class of the anti-perovskite manganese nitride compounds [6].

Recently, revealing the nature of such a "magic element" in the elegant performance of the NTE property has aroused many attractions. Matsuno and coworkers [12] proposed that the Ge dopant caused a local structural distortion in the Mn$_3$(Cu$_{0.7}$Ge$_{0.3}$)N compound, leading to the negative thermal expansion of the system in a broad temperature range. This was supported by the neutron powder diffraction
and NMR measurements on Mn$_3$(Cu$_{1-x}$Ge$_x$)N [13]. On the other hand, through fitting the possible magnetic configurations to their experimental data, Kodama et al. [14] found that the ordering moment of the ground state known as the anti-ferromagnetic Γ^g (seen in Figure 1(a)) of the Mn$_3$(Cu$_{1-x}$Ge$_x$)N compound gradually increased with decreasing temperature. This might also be responsible for the NTE property of the concerned compound. Even so, it is still unclear why the doped Ge atoms make the Mn$_3$(Cu$_{1-x}$Ge$_x$)N compound be of NTE property.

Usually, the thermal expansion property of a compound arises from different mechanisms, such as the lattice vibration, the temperature-excited magnetic phase transition, and the diffusion of ions/atoms between interstitial sites. Among these different mechanisms, both the lattice vibration and the phase transition are mainly responsible for the thermal expansion property of many materials. However, for our concerned Mn$_3$(Cu$_{1-x}$Ge$_x$)N compound, the relation between its thermal expansion behavior and the lattice vibration is still puzzling.

In this theoretical study, the Mn$_3$(Cu$_{0.5}$Ge$_{0.5}$)N compound is selected as a representative, since it exhibited a striking NTE property in experiment. Our calculations indicate that the lattice vibration contributes to the positive thermal expansion, and the magnetic phase transition from anti-ferromagnetic phase to paramagnetic phase contributes to the negative thermal expansion. Both of the PTE and NTE are compensative to each other, resulting in the observed thermal expansion behavior of the Mn$_3$(Cu$_{0.5}$Ge$_{0.5}$)N compound. Furthermore, a novel mechanism is proposed to explain the role of the doped Ge for the broad working temperature range of NTE in the Mn$_3$(Cu$_{0.5}$Ge$_{0.5}$)N compound.

2. Computational Details

In our calculations, a $\sqrt{2} \times \sqrt{2} \times 2$ supercell consisting of 20 atoms is used to simulate the magnetic structures of Mn$_3$(Cu$_{0.5}$Ge$_{0.5}$)N compound, where half of Cu atoms were replaced by Ge atoms. Based on the symmetry of the supercell, there are three kinds of distributions of Ge in it. These configurations are all optimized by using the VASP code [15, 16], in which the projector augmented wave (PAW) pseudopotentials and the Perdew-Burke-Ernzerhof (PBE) parameterizations of the generalized gradient approximation [17] are adopted. The cut-off energy is 400 eV and a gamma-centered k-point mesh of $5 \times 5 \times 3$ is used for the geometry optimization. Optimizations are performed until the residual forces acting on the atoms are smaller than 0.01 eV/Å.

By calculations, the energies of the supercell with three kinds of distributions of Ge in the compound are achieved, respectively. We find that the energy differences between the Ge distributions are less than 18 meV per unit cell. Such very small energy differences imply that these different distributions of Ge in Mn$_3$(Cu$_{0.5}$Ge$_{0.5}$)N compound may exist at finite temperatures. Even so, we select the lowest-energy one to serve our following calculations.

3. Results and Discussions

3.1. Vibrational Effect on the Variation of Volume. Structurally, Mn$_3$(Cu$_{0.5}$Ge$_{0.5}$)N is composed of the corner-shared
Mn₆N octahedron, somewhat like the structural feature in the ZrW₂O₈ compound [18], where an open-framework structure consisting of corner-linked rigid polyhedra associates with the transverse vibrational modes that cause NTE. Thus, it is necessary to examine the thermal expansion behavior induced by the vibrational modes. Within the quasiharmonic approximation, the thermal expansion coefficient α_L is related to the vibrational modes of a material, which is calculated through the formula [19]

\[
α_L = \frac{k_B}{3BV} \sum_{j=1}^{n} \gamma_j \left(\frac{\hbar \omega_j}{k_B T} \right)^2 \frac{\exp \left(\frac{\hbar \omega_j}{k_B T} \right)}{\left[\exp \left(\frac{\hbar \omega_j}{k_B T} \right) - 1 \right]^2},
\]

where ω_j is the jth frequency, B the bulk modulus, V the volume of the system, and γ_j the Grüneisen parameter relevant to the jth vibrational mode. Here, the Grüneisen parameter is defined as

\[
γ_j = -\left(\frac{\partial \ln \omega_j}{\partial \ln V} \right)_T.
\]

To evaluate the coefficient of the thermal expansion, we first compute the bulk modulus and all vibrational frequencies at Γ point for the supercell. Based on the obtained energy as a function of the volume of the system the bulk modulus of the concerned system is predicted to be about 128.2 GPa (to accurately achieve the vibrational modes, a larger supercell containing 2 × 2 × 2 chemical unit cell is selected in our calculations relevant to the vibrational modes.) Meanwhile, the dynamic matrix of the considered system is generated through the forces acting on each atom, with using the frozen phonon approximation. By solving the dynamic matrix, we obtain all of the vibrational frequencies and the related eigenmodes. According to the obtained eigenmodes and the bulk modulus, the thermal expansion coefficient α_L is obtained, as shown in Figure 2. Apparently, the value of α_L is very small at low temperature and then increases rapidly with increasing temperature. When the temperature reaches 100 K or so, α_L almost converges to the value of 11.50 × 10⁻⁶ K⁻¹.

This value is in good agreement with that (13 × 10⁻⁶ K⁻¹) from experiment [6]. Such agreement indicates that the widely used frozen phonon approximation is also reliable to evaluate the dynamical property of the compound. More importantly, the calculated values of α_L shown in Figure 2 are positive in the whole considered temperature range. This strongly predicts that the transverse motion from the rigid octahedron has no contribution to the observed NTE property in the Mn₃(Cu₀.₅Ge₀.₅)N compound.

3.2. Magnetic Phase Transition versus the Variation of Volume. Experiments found the observed NTE behavior in the Mn₃(Cu₀.₅Ge₀.₅)N compound accompanied with a magnetic transition from the low temperature Pb₂-type antiferromagnetic (AFM) phase to the high temperature paramagnetic (PM) phase [6, 20]. However, such NTE behavior was not found in the Mn₃CuN compound yet [6, 21]. Clearly, the observed NTE property of Mn₃(Cu₀.₅Ge₀.₅)N does tightly couple with the doped Ge atoms. To understand the role of the doped Ge atoms in the concerned NTE behavior, it is valuable to study the Mn₃CuN compound firstly.

For the undoped MnCuN compound, where the Mn ions contribute to local magnetic moments, showing non-collinear magnetic configuration. Its ground state was experimentally demonstrated to be ferromagnetic. Furthermore, a magnetic configuration (notated as C0, seen in Figure 1(b)) was suggested to explain the ground state [21]. Our calculations reproduce the magnetic configuration C0, with the ferromagnetic components of local magnetic moments of 0.18 μ_B and 0.30 μ_B for the Mn ions locating at two unequal planes, respectively, which are close to the values of 0.20 μ_B and 0.65 μ_B reported in experiment [21]. However, such agreement does not directly support C0 configuration as the ground state of the Mn₃CuN compound. In fact, a ground state configuration should have the lowest energy among all of the possible magnetic configurations. To examine whether the configuration C0 is the ground state or not, we generate many kinds of magnetic configurations, followed by full relaxations. Among these considered magnetic configurations, a lowest-energy configuration (notated as C1, seen in Figure 1(c)) is found, whose energy is lower by about 0.3 eV per primitive unit cell than that of the C0 configuration. Furthermore, we find that the configuration C1 characterizes the FM feature, and the ferromagnetic component averaged on Mn ions in this configuration is about 0.1 μ_B, being smaller than the experimental value of 0.35 μ_B.

Moreover, for this undoped compound, we find that these magnetic configurations have different energies, meaning that these magnetic configurations may be thermally excited at different temperatures. On the other hand, the equilibrium volumes of all considered magnetic configurations are very close to each other. Hence, the thermally excited transformation between different magnetic configurations does not change the volume of the compound nearly. In other words, the Mn₃CuN compound does not show NTE on heating. This is consistent with the observation in experiment very well [6].

Then, we turn to the Mn₃(Cu₀.₅Ge₀.₅)N compound. For this compound, the magnetic state at low temperature

![Figure 2: The coefficient of the thermal expansion α_L caused by the lattice vibration as a function of the temperature.](image-url)
was demonstrated to be AFM in experiment. Moreover, experiments suggested that a special AFM configuration named as Γ^g_5 just corresponded to the ground state of the compound [13]. On the theoretical side, it is necessary to clarify its magnetic ground state. To do this, we randomly generate about eighty magnetic configurations plus the Γ^g_5 configuration in this compound. After full relaxations of the spins and atomic positions for each concerned case, we only have twenty four inequivalent magnetic configurations. Figure 3(a) displays the energy as a function of the lattice constant for each magnetic configuration. From Figure 3(a), one can find that the lowest-energy magnetic configuration is Γ^g_5, and its equilibrium lattice constant is evaluated to be 3.864 Å, in agreement with the experimental value of 3.910 Å [13]. Furthermore, our calculations indicate that the local magnetic moments of the Mn ions in the Γ^g_5 configuration are 2.63 μ_B, being in good consistence with the experimental value of 2.47 \pm 0.27 μ_B [21]. Such agreement supports that Γ^g_5 is really the magnetic ground state for Mn$_3$(Cu$_0.5$Ge$_0.5$)N compound.

The experiments revealed that with raising temperature, the Mn$_3$(Cu$_0.5$Ge$_0.5$)N compound exhibited a volume contraction. Basically, the temperature effect not only excites more magnetic configurations of the system, but also distorts each magnetic configuration to some extent. To qualitatively evaluate the distorted magnetic configurations, we randomly deviate the orientations of the local moments of Mn ions from their initial orientations for each magnetic configuration, and thus a series of the distorted configurations can be generated through controlling the deviating extent. The volume of the compound at each distorted configuration is optimized with fixing the orientations of the local moments. Our calculations show that the volume of the distorted magnetic configurations almost does not change, except for the Γ^g_5 configuration. As shown in Figure 3(b), with distorting the Γ^g_5 configuration seriously, the energy of the system increases significantly, and the volume of the lattice decreases largely. This predicts that the volume contraction on heating is actually contributed from the distorted Γ^g_5 configuration together with the thermal excited metastable configurations.

On the other hand, when the compound was heated up to the Neel temperature, it transfers from the AFM Γ^g_5 state to the PM state [13]. As we know, the PM state is a magnetic disorder state, which cannot be simply approximated to be either a non-magnetic state or a magnetic ordering state with low magnetic moment in a theoretical calculation. Since there are many different magnetic configurations in the compound, the PM state may be approximatively regarded as a mixture of many magnetic structures that can be thermally excited, when the compound is heated up above the Neel temperature. According to this, the volume of the compound at the PM state is expressed as the statistically averaged volume of many different magnetic structures including Γ^g_5, by using the Boltzmann distribution function. Combining this consideration with the energy curves shown in Figure 3, we statistically compute the lattice constant ($a(T)$) at each considered temperature. Of these temperature-dependent lattice constants, the lattice constant at 500 K is selected as a reference, and thus we obtain the ratio of the lattice constant contraction, $\Delta a/a(a(T) - a(500 K))/a(500 K)$. As displayed in Figure 4(a), the lattice constant exhibits a
gradual decrement with increasing temperature. This implies that the considered magnetic interactions really cause the NTE property in the whole temperature range. To go further, combining this NTE behavior with the PTE behavior from the lattice dynamics shown in Figure 2, we find that the compound exhibits the NTE behavior only in a temperature range of 250–340 K, as seen in Figure 4(b), in consistent with the results reported in experiment [6]. Our calculations above reveal that the volume contraction from the magnetic couplings is actually compensated by the lattice vibrations to some extent. The effect of such compensation is strongly relevant to the temperature. Namely, when the temperature is either below 250 K or over 340 K, the volume change of the compound from the lattice vibration overpasses that from the magnetic interaction, showing the PTE behavior. And in the temperature range between 250 and 340 K, the NTE effect is much stronger than the PTE effect, so that the compound exhibits a net effect of NTE in such a temperature window.

3.3. The Role of the Doped Ge Atoms in the NTE Property. As mentioned above, it is the doped Ge atoms that cause the compound to be of NTE property. Meanwhile, the observed NTE property is stemmed from the magnetic interaction between ions in the Mn3(Cu0.5Ge0.5)N compound. So, the nature of the observed NTE property is essentially associated with how the doped Ge atoms affect the magnetic couplings between ions. Physically, the magnetic couplings between ions in a compound can be expressed by the exchange parameters between different ions within the framework of the classical isotropic Heisenberg theory [22–25]. In our concerned compound, three typical kinds of exchange parameters, J1, J2, and J′ 2 are considered. Here, J1 is the coupling between an Mn ion and its nearest neighbor Mn; J2 is the super exchange between an Mn ion and its second neighbor Mn ion, separated by an N atom; J′ 2 is the coupling between an Mn ion and its second neighbor Mn ion, without any atom between them. Based on the classical isotropic Heisenberg theory [22–25], the energy gain from the magnetic couplings is expressed as 24J1 − 12J2 − 24J′ 2 for Mn3(Cu0.5Ge0.5)N and 8J1 − 12J2 + 8J′ 2 for Mn3CuN.

Table 1 lists the calculated exchange parameters for both compounds. Among the three kinds of exchange parameters, the amplitude of J1 for the Mn3(Cu0.5Ge0.5)N compound is considerably bigger than that for the Mn3CuN compound. This indicates that the doped Ge strongly enhances the magnetic interaction between the nearest-neighboring Mn ions in the Mn3(Cu0.5Ge0.5)N compound. It is worth noting that in our concerned anti-perovskite manganese nitride compound, the couplings between the nearest-neighboring Mn ions form a triangular structure in space. Such a triangular feature is just responsible for the noncollinear antiferromagnetic configuration, which is the basic characteristic of the Γ5 configuration. So, the doped Ge atoms effectively enhance the AFM Γ5 configuration much more than the other configurations in the Mn3(Cu0.5Ge0.5)N compound. This is just corresponding to the fact that Mn3(Cu0.5Ge0.5)N has the ground state of Γ5, whereas Mn3CuN does not have yet [6, 21].

As reported in experiments, the doped Ge atoms not only caused the NTE property, but also made the NTE occurring in a broad temperature range for Mn3(Cu0.5Ge0.5)N. However, these features did not occur in the Mn3(Cu1−xMx)N (M = Zn, Si, and Ga) compounds. Basically, the different behaviors in NTE of the compounds caused by the different dopants tightly couple with the different electronic structures of the dopants. For the isolated atoms of Cu, Ge, Zn, and Mn, the energies of their highest occupied orbitals are in the order of $E_{Cu^6d}(-5.93 \text{ eV}) < E_{Mn^{6d}}(-5.47 \text{ eV}) < E_{Ge^{4p}}(-4.98 \text{ eV}) < E_{Zn^{4p}}(-4.38 \text{ eV})$. Clearly, the energy differences of the orbitals between Mn and M (M = Cu, Zn and Ge) are quite big. This means that the 4s orbital of either Cu or Zn and the 4p orbital of Ge do not significantly couple with the valence orbitals. Therefore, the NTE property will not occur in Mn3CuN and Mn3(Zn, Si, Ga)N compounds. However, the 4s or 4p orbitals strongly couple with the 3d orbitals of Mn, which makes a big contribution to the volume contraction of the magnetic interactions and the lattice vibrations.
We have investigated the lattice vibrations and the magnetic phase transition for the Ge-doped metallic anti-perovskite Mn$_3$(Cu$_{0.5}$Ge$_{0.5}$)N compound, based on first-principles calculations. We find that the lattice vibrations contribute to the magnetic couplings between Mn ions and the local magnetic moments accordingly. Namely, some of magnetic states in the Ge-doped compound are easily excited by temperature, even temperature rises slightly. As a result, the Ge-doped compound shows a gradually temperature-dependent change in volume. This is corresponding to the wide temperature range for the NTE working, as reported in experiments [6].

4. Conclusion

We have investigated the lattice vibrations and the magnetic phase transition for the Ge-doped metallic anti-perovskite Mn$_3$(Cu$_{0.5}$Ge$_{0.5}$)N compound, based on first-principles calculations. We find that the lattice vibrations contribute to the PTE property rather than the NTE property. Our calculations indicate that the observed NTE is actually resulted from the magnetic phase transition from the Γ_5^g phase to the PM phase. Furthermore, we suggest that the thermal effect excites more valence electrons from the doped Ge atoms to the conduction bands in the compound. These donated conduction electrons polarize the local electrons and change the local magnetic moments of Mn ions, leading to the contraction of the compound in volume.

Acknowledgments

This work is supported by the National Basic Research Program of China (2009CB939901) and the National Science Foundation of China with Grant no. NSFC10974184. The HP-LHPC of USTC is acknowledged for computational support. The authors gratefully acknowledge the valuable comments from Professor Koshi Takenaka.

References

[11] R. I. Huang, W. Xu, X. D. Xu, L. F. Li, X. Q. Pan, and D. Evans, “Negative thermal expansion and electrical properties of Mn$_3$(Cu$_{0.5}$Nb$_{0.5}$Ge$_{0.5}$)N (x = 0.05–0.25) compounds,” Materials Letters, vol. 62, no. 16, pp. 2381–2384, 2008.

