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Hydrological extreme events [1, 2] often lead to catastrophes
for humans [3] and the environment [4]. $e identification,
understanding, modeling, validation, and prediction of
hydrological extreme events are crucial in preventing such
catastrophes and eventually developing a system that is
resilient to them, but such tasks are challenging. $is is
because it is difficult to obtain a comprehensive un-
derstanding of extreme events in which spatiotemporal
characteristics vary significantly, and the corresponding
damage that typically occurs over a spatial extent of several
thousand kilometers.

$e weather radar and the satellite-based remote sensing
techniques are two major research branches to resolve these
issues. Weather radar provides the near-real-time precise and
accurate observation of precipitation over the spatial coverage
encompassing several hundred kilometers. While traditional
studies regarding weather radar have focused on the cali-
bration [5, 6], bias correction [7], validation, and uncertainty
estimation [8, 9] of radar measurements, recent studies in-
vestigated the topics of merging ground and radar pre-
cipitation data [10–12], storm movement tracking and
forecast [13–15], application to urban flash flood and warning
[16, 17], and design parameter estimation [18, 19]. $e sat-
ellite remote sensing techniques allow us to observe a variety
of components of hydrological cycle at a global scale. $ey
have been developed for the estimation of water and energy
fluxes between the land surface and atmosphere in terms of
space and time. $e major water and energy fluxes are land

surface temperature, soil moisture, evapotranspiration, snow
water equivalent, and vegetation/land cover [20].

In addition, technologies regarding radar and satellite
sensors and satellite launchers have been advancing re-
markably. $e X-band radar instruments have been de-
veloped to figure out the Z-R relationships based on the
shape of the rain drops and to capture rainfall intensity at the
spatial resolutions of a few meters within a few kilometers of
radius [21, 22]; the acquisition period for optical and SAR
satellite images is already getting as shorter as less than one
day [23].

$is dramatic advance in the remote sensing techniques
will eventually revolutionize the design and management
framework to make current anthropogenic systems more
agile and efficient against natural disasters. For example, the
radar-gauge merging techniques and the accumulating
length of the radar precipitation records enable a more
thorough understanding of the characteristics of extreme
precipitation including their whole spatial pattern, temporal
progress, and interactions with other environmental vari-
ables, which subsequently yields more realistic and cost-
effective design parameters [24] and agile real-time flood
warning systems customized to the urban areas as small as
several square kilometers [25].

In this era of abundant remote sensing data, themission of
hydrologists is evident: actively utilizing the data; extending
the dimension of our understanding of nature; and returning
the benefits to the human and environment.
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Machine learning algorithms should be tested for use in quantitative precipitation estimation models of rain radar data in South
Korea because such an application can provide a more accurate estimate of rainfall than the conventional ZR relationship-based
model. *e applicability of random forest, stochastic gradient boosted model, and extreme learning machine methods to
quantitative precipitation estimation models was investigated using case studies with polarization radar data fromGwangdeoksan
radar station. Various combinations of input variable sets were tested, and results showed that machine learning algorithms can be
applied to build the quantitative precipitation estimation model of the polarization radar data in South Korea. *e machine
learning-based quantitative precipitation estimation models led to better performances than ZR relationship-based models,
particularly for heavy rainfall events. *e extreme learning machine is considered the best of the algorithms used based on
evaluation criteria.

1. Introduction

Quantitative precipitation estimation (QPE) using remote
sensing data has been widely used to investigate the spatial
characteristics of precipitation events [1, 2].*is method can
be used to obtain rainfall estimation at ungauged locations,
cloud characteristics, and areal rainfall depth [3–6]. *e
spatial resolution of rain radar data is the finest of all these.
While the spatial resolution of satellite images is greater than
approximately 10 km, the spatial resolution of rain radar
data is approximately 1 km [7–9]. Because of the spatial
resolution of rain radar data, it is often applied into rainfall-
runoff modeling, particularly in terms of flash flood and
urban flood modeling [10, 11]. *e accurate forecast of these
extreme hydrological events can mitigate damages on the
hydraulic infrastructure and prevent the crisis of water-
related disaster on human life. *e accurate QPE of radar

data is the key for the accurate forecast of extreme hydro-
logical events.

Reflectivity and rainfall rate (ZR) relationship-based
models have been used broadly for QPEmodels of rain radar
data [12–14]. Because ZR relationship can be changed based
on the characteristics of the rainfall event and the radar
instrument used, various methodologies are applied to build
ZR relationship-based QPE models and correct their esti-
mations [15–18]. However, the ZR relationship-based model
still has high uncertainty in a rainfall estimation [19–21].

Machine learning (ML) algorithms have been widely
employed to create functional relationships for natural
phenomena and data processing. Many ML algorithms were
developed and employed to model a function in fields such
as meteorology, hydrology, and agriculture. Applications of
ML algorithms can provide accurate models of natural
phenomena [22–25] and thus can be good candidates for
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QPE of rain radar data. Recently, random forest (RF),
stochastic gradient boosted model (GBM), and extreme
learning machine (ELM) have been actively employed as ML
algorithms [26–28]. *ese advanced ML algorithms, which
have been tested recently, would increase our capacity to
build QPE model. Chiang et al. [29], proposed a QPE model
using a recurrent neural network and three-dimensional
radar data. *ey reported that the ML-based model pro-
duced more accurate estimations than the ZR relation-based
model. Yu et al. [30] attempted to develop quantitative
precipitation forecast (QPF) models of rain radar data using
RF and support vector regression. *eir proposed meth-
odology focused on QPFmodels for typhoons in Taiwan and
performed well.

To the best of our knowledge, advanced ML algorithms,
e.g., RF, GBM, and ELM, have not been employed for QPE of
rain radar data in South Korea. *is should be resolved
because applying ML algorithms may provide more accurate
rainfall estimation of rain radar data than the conventional
ZR relation-based model. *erefore, this study investigated
the applicability of the ML algorithms for QPE using
Gwangdeoksan radar station, South Korea, as a case study in
order to enhance performance of QPE in radar data. RF,
GBM, and ELM are the ML algorithms used; their appli-
cability is investigated using four rainfall events, and their
performances for the QPE model are compared. *is study
can provide fundamental information on the development
of QPE model using ML algorithms in South Korea. Par-
ticularly, the characteristics of ML algorithm for QPE model
of radar data can be briefly investigated in the study. *is
result can enhance our capacity to understanding ML al-
gorithms in the QPE of radar data. In addition, the most
plausible candidate among the employedQPEmodels will be
selected for ML-based QPE model of radar data in South
Korea.*e selected QPEmodel can lead to improvements in
accuracy of QPE, particularly in extreme rainfall events that
cause extreme hydrological events. *e improvement in
accuracy of QPE may help to mitigate impacts from extreme
hydrological events on the destruction of property and
human life.

*is paper is organized as follows. In Section 2, the
characteristics of the radar and ground gauge rainfall data
are presented. Section 3 presents a description of the
methods employed, e.g., ZR relationship andML algorithms.
*e application methodology for the case studies is pre-
sented in Section 4. In Section 5, the results of tested QPE
models for all events and each event are presented. Finally,
the conclusions are presented in Section 6.

2. Data

2.1. Radar and Ground Rainfall Gauge. Gwangdeoksan
weather radar station, which has a dual-polarization weather
radar with an S-band, is located on the border of Gyeonggi-
do and Gangwon-do provinces close to Seoul (latitude
38°7′2.5″, longitude 127°26′1″, and elevation 1064m), the
capital of the Republic of Korea.*e observation range of the
Gwangdeoksan radar is 240 km, which is enough to cover
the northern part of South Korea. Radar data within the

effective observation range, 100 km, are applied to QPE.
Considering the high elevation of this radar station, the
relationship between the radar and ground rainfall gauge
data is increased with the application of PPI0. PPI (plan-
position indicator) is an intensity-modulated display on
which echo signals are shown in plan view with range and
azimuth angle displayed in polar coordinates. PPI0 is vol-
ume scanned data when the azimuth angle is 0 which
represents a condition that can be observed by minimizing
blocking in a flat state. Data with a spatial resolution of
1 km× 1 km and stored at 10-minute interval are applied to
estimate radar rainfall.

*e three main polarization parameters of the radar, i.e.,
reflectivity, differential reflectivity, and specific differential
phases, are applied to QPE in this study. Radar reflectivity
refers to the ratio between the transmitted and received
energies. *e differential reflectivity is the ratio between
horizontal and vertical radar reflectivity; it can provide
information on the sizes and shapes of raindrops. Specific
differential phases are the rate of change of the range in pulse
phases, because these are not affected by attenuation, partial
beam blockage, or radar miscalibration; they are an at-
tractive parameter to use in QPE [31].

Rainfall rate data from ground gauge stations in Seoul
and Gyeonggi-do province within the radar umbrella are
analyzed in this study. All stations obtain rainfall data every
minute, but the QPE in this study uses rainfall rate data at
10-min intervals. *is is to compare the radar data and to
minimize the fluctuation of ground gauge data. Figure 1
shows the ground gauges densely distributed across the
Korean peninsula; of these, 20 gauges within the radar ef-
fective range are selected. *e number of 20 stations is
located in near Seoul and had severe storm damage in the
past. *e location of Gwangdeoksan radar and the selected
rainfall gauges are described in the zoomed area in Figure 1,
and information on each station is given in Table 1.*e used
data can be downloaded from the data base of Korea
Ministration Administration (KMA) at data.kma.go.kr.

2.2. Rainfall Events. Rainfall events for which the depth of
the observed daily rainfall exceeded 30mm from August to
November 2018 are used. Four events are selected as case
studies. Two events (the first and second) occurred from
August 28–29 (event #1) and on September 3 (event #2).*e
third event occurred from October 5–6 (event #3), and the
fourth event happened on November 8 (event #4). Heavy
precipitation was observed in Korea, brought on by a rainy
front (the Changma front) for event #1 and by low pressure
in the northern area for event #2. Event #3 occurred as part
of Typhoon KONG-REY, and event #4 was accompanied by
the collision of a cold and a warm front.

Table 2 summarizes information on the total rainfall,
mean rainfall rate, and standard deviation for each event at
the station in Seoul (#108). *e amount of rain that fell
during event #1 was the largest (larger than 100mm) in two
days. Both events #1 and #4 show that the weather front
greatly affected the increase in rainfall or cloud formation.
*e average rainfall is very large in the rainy season and
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typhoons, such as in events #1 and #3. �e largest variance
was observed in event #1.�is heavy rainfall during the rainy
season is representative of the summer monsoon climate in
South Korea.

3. Methods

3.1. ZR Relationship. Radar rainfall can be de�ned by the
relationship between radar parameters and rainfall gauge
data. A variety of synthetic algorithms have been proposed
to estimate quantitative radar rainfall based on the polari-
zation parameters applied [32, 33]. �e basic form of the
equation, which is well-known as ZR relationship, is given as
follows:

R � θ0x
θ1
1 , . . . , x

θd
d , (d � 1, 2, . . . , n), (1)

where R is the ground gauge rainfall rate (mm/h),
x1, . . . , xd are radar polarization parameters such as

re�ectivity, di�erential re�ectivity, and speci�c di�erential
phase, and θ0, . . . , θd are the parameters of the ZR re-
lationship. �e main radar polarization parameters are
de�ned as the following equations:

Z � 10 log ZH( ),

DR � 10 log
ZH

ZV
( ),

KD �
∅DP r2( ) − ∅DP r1( )

r2 − r1

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣,

(2)

where Z is the radar re�ectivity, (changed from mm6m− 3 to
dBZ); ZH and ZV are horizontal and vertical re�ectivity; DR
is di�erential re�ectivity (dB); KD is speci�c di�erential
phase (deg km− 1); and ∅DP and r are phases of the radar
beam pulse and given range, respectively. Because the ZR
relationship stands on the physical phenomena, the results

N

S

E

400 kilometers0 200

W

Height (m)
1–164
165–327
328–490
491–653

654–816
817–979
980–1142
1143–1305

1306–1468
No data

Figure 1: Locations of the Korea Meteorological Administration ground gauge stations (red dots) and Gwangdeoksan (GDK) radar (blue
triangle) with its radar umbrella (e�ective radius: 100 km;maximum observation radius: 240 km).�e �gure in the right-hand panel presents
the locations of the ground gauge stations (red dots) used in the current study.
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of ZR relationship can be used to interpret characteristics of
precipitation events, unlike the ML algorithms. *e ML
algorithms used in this study are the predictive models.
*ough they can be used to predict rain rate, extracting
physical meaning from the results is difficult. For example,
the parameters of ZR relationship can be used to identify
type of cloud, type of precipitation, and type of storm events.
In the case of the ML algorithms, prediction models for each
variable of interest such as type of cloud, type of pre-
cipitation, and type of storm events have to be individually
built.

3.2. Machine Learning (ML) Algorithms

3.2.1. Random Forest. RF has been widely applied in re-
gression and forecasting problems [34–37]. It was proposed
by Breiman [38] and uses bagging (called bootstrapping in
statistics) to build a number of decision trees with a con-
trolled variance. Each decision tree in the RF is grown using
randomly selected samples. Subsequently, the nodes in each
tree use randomly selected features (called input variables).
*e RF has two major steps: (1) randomness and (2) en-
semble learning. *e randomness in the RF comes from
random sampling of the entire data set, and the selection of
features with which every classification and regression tree
(CART) is built. *e data set is randomly sampled with
replacement to create a subset with which to train one
CART. At each node, optimal split rule is determined by

using the one of the randomly selected features from the
employed features.

*e ensemble learning method in the RF means that all
individual decision trees in a collection of decision trees
(called an ensemble) contribute to a final prediction. A
training subset is created after the random selection step. *e
CART without pruning is used to construct a single decision
tree. To growK trees in the ensemble, this process (resampling
a subset and training an individual tree) is repeated K times.
*e final predicted value comes from averaging the results of
all the individual trees. *e ranger library in r package is used
to construct the RF model in the current study [39].

3.2.2. Stochastic Gradient Boosted Model. GBM is a method
widely used in classification and regression problems; it was
proposed by Friedman [40]. Decision stumps or regression
trees are used widely as weak classifiers in the GBM [40–42].
In the GBM, weak learners are trained to decrease loss
functions, e.g., mean square errors. Residuals in the former
weak learners are used to train the current weak learners.
*erefore, the value of the loss function in the current weak
learners decreases. *e bagging method is employed to
reduce correlation between weak learners, and each weak
learner is trained with subsets sampled without replacement
from the entire data set. *e final prediction is obtained by
combining predictions by a set of weak learners.

*e GBM and RF adapted ensemble learning with a
decision tree model (the weak learner). Bothmodels produce

Table 1: Ground precipitation gauge stations selected for this study.

Name Code Latitude Longitude
Paju 99 37.885 126.766
Seoul 108 37.571 126.965
Incheon 112 37.477 126.624
Suwon 119 37.272 126.985
Ganghwa 201 37.707 126.446
Yangpyeong 202 37.488 127.494
Gwanak 116 37.445 126.964
Gangnam 400 37.513 127.046
Gangseo 404 37.573 126.829
Gangbuk 424 37.639 127.025
Uijeongbu 532 37.734 127.073
Namyangju 541 37.634 127.150
Daeseongri 542 37.684 127.380
Gwangju 546 37.435 127.259
Yongin 549 37.270 127.221
Osan 550 37.187 127.048
Guri 569 37.582 127.156
Hwaseong 571 37.195 126.820
Yangju 598 37.831 126.990
Bupyeong 649 37.472 126.750

Table 2: Precipitation events selected based on observed rainfall data from Seoul station.

No. Periods of precipitation events Total (mm) Mean (mm/h) Standard deviation (mm/h)
1 2018.08.28. 11 : 50–2018.08.29. 22 : 20 138.5 4.0 11.9
2 2018.09.03. 08 : 50–2018.09.03. 21 : 30 34.5 2.7 5.8
3 2018.10.05. 08 : 20–2018.10.06. 12 : 20 92.0 3.3 3.3
4 2018.11.08. 01 : 30–2018.11.08. 23 : 40 64.0 2.8 3.5
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one prediction based on a combination of predictions from
a set of weak learners. *ough the methods seem to be
similar, they are based on different concepts. *e major
difference between the GBM and RF is that the tree in the
GBM is fit on the residual of a subset of the former trees
while the RF trains a set of weak learners using a number of
subsets. *erefore, the GBM can reduce bias of prediction
while the RF method can reduce variance of prediction.
*erefore, the RF can be trained in parallel computing,
whereas the GBM cannot. *e gbm library in r package
(https://github.com/gbm-developers/gbm) is used to con-
struct a GBM in the current study.

3.2.3. Regularized Extreme Learning Machine. ELM was
originally developed and then extended to generalized
single-hidden layer feed-forward networks in which the
hidden layer need not to be neuron alike. ELM is a single-
layer network in which the weights and biases between input
and hidden layers are randomly generated [43]. Unlike
traditional iterative learning algorithms, the randomly ini-
tiated input weights and biases of ELM remain fixed without
need to iteratively tuned, and the output weights are de-
termined analytically. Hence, the model can be trained in a
single iteration which significantly reduces the training time
of ELM and makes ELM efficient for online and real-time
applications.*e ELM can be formulized using the following
equations:

Y � Hβ, (3)

where Y, β, and H are the outputs, weight matrix between
hidden and output layers, and the output vector of the
hidden layer (called nonlinear feature mapping), re-
spectively, and

H � fa(XW + B), (4)

where fa(·),W, B, and x are the activation function, weight
matrix between the input to hidden layer, bias, and inputs,
respectively. In the current study, the sigmoid function
(fa(x) � 1/(1 + exp(− x))) is used as the activation func-
tion in the ELM. Since the weights (W) and bias (B) are
randomly generated and the activation function (fa(·)) is
known in the ELM,H represents the deterministic variables
from a data set. *us, only β needs to be estimated in the
ELM.

In the ELM, finding an appropriate weight set is to
avoid overfitting. Tuning weights in the ELM can be
considered a fitting linear regression model using the
ordinary least square method. Ridge regression was
employed to attenuate multicollinearity in the data set by
adding the norm of the parameters to the parameter es-
timations in the regression model [44]. *e ELM model
also adapted this strategy for weight tuning. *e ELM
attempts to perform better generalization by achieving the
smallest training error and the smallest output weight
norm. *is minimization problem can take the form of
ridge regression or regularized least squares as follows [45]:

min
1
2
‖β‖

2
+

C

2
‖Hβ − Y‖

2
, (5)

where the first term of the objective function is l2, the norm
regularization term that controls the complexity of the
model; the second term is the training error associated with
the learnedmodel; and C> 0 is a tuning parameter.*e ELM
gradient equation can be solved analytically, and the closed-
form solution can be written as follows:

􏽢β � HTH +
1
C
I􏼒 􏼓

− 1
HTY, (6)

where I is an identity matrix. *e ELM models used in this
study are the regularized ELM model.

4. Application Methodology

To examine the applicability of the three ML algorithms,
their input variables and hyperparameters should be defined.
Z, DR, and KD in the polarization radar data have been
widely employed as input variables for the QPE model.
*erefore, these variables are used as input variable can-
didates in the ML algorithms. *e tested models with input
variable combinations are presented in Table 3.

*ree ML algorithms use variables from both lag-zero
(L0) and lag-one (L1) radar data for input variable while lag-
zero and lag-one radar data, respectively, are used to con-
struct ZR relationships. Since radar data measure the
amount of cloud in the air, there is a short time difference
between radar data and ground gauge observation. *e time
difference depends on the precipitation event conditions
such as wind speed, cloud movements, and types of cloud.
As the ZR relationship cannot account for time lag in its
formula, QPE models based on the ZR relationship are
constructed using different time-lag data and their appro-
priateness are investigated.

*e ML algorithms can use both lag-zero and lag-one
radar data simultaneously. In addition, the number of
variables from the radar data (three) is much smaller than
the number of data points (greater than thousands). A larger
number of input variables might improve the predictability
of the ML algorithms employed. Additionally, since this
input variable setting can take the time lag in modeling into
account automatically, additional processes such as the ZR
relationship are unnecessary in ML-based models.

To evaluate the performances of the models constructed,
the data set should be grouped into training and test data
sets. *e data from stations #112, #201, #400, #546, and #571
are used as randomly selected test data. *e data at the other
stations are used for the training data set. For the case of all
events, the numbers of training and test data are 3652 and
1209, respectively. *e numbers of training data for event 1
to 4 are 1079, 319, 1173, and 1081, respectively.*e numbers
of test data for event 1 to 4 are 318, 107, 441 and 343, re-
spectively. To build a regressionmodel usingML algorithms,
their hyperparameters should be tuned. *e number of the
trees is the most sensitive hyperparameter for the RF and
GBM [30]; hence, the number of trees for the RF and GBM
are optimized. *e tuning parameter and the number of
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hidden nodes are the hyperparameters of the ELM. *e
relationship between the tuning parameter and the number
of hidden nodes presents a trade-off relationship such as
the Pareto frontier. *us, after one parameter is fixed,
another will be optimized. In this study, the tuning pa-
rameter is fixed (C � 0.5), and the number of hidden nodes
is optimized.

In the current study, leave-one-out cross-validation
(LOOCV) is employed to optimize the hyperparameters of
the three ML algorithms. *e root-mean-square error
(RMSE) between the estimates and observations is cal-
culated for the ML algorithms trained by the data set that
does not include any station among all those in the
training set. *e expected numbers of train and test data
are 3227 (approximate 94%) and 233 (approximate 6%),
respectively. *e fifteen models were trained, and their
performances were evaluated using the test data set. *e
RMSEs without each station are calculated, and average
value of these RMSEs is the criterion for measuring ap-
propriateness of the hyperparameters. *e results of the
LOOCV are presented in Figure 2. *e optimal numbers
of the tree for the RF and GBM are 380 and 4200, re-
spectively; any numbers greater than these do not lead to
significant improvements in increasing the performance
of the RF and GBM. *e optimal number of hidden nodes
for the ELM is 950. *ese numbers are used for the
hyperparameters of ML algorithms.

QPEmodels are built for five case studies.*e first case
study uses all data including the four precipitation events.
*e other case studies built QPE models for each of the
precipitation events. *e first case study was carried out to
evaluate the overall performances of the QPE models
constructed. *e results of the other case studies may
provide detailed examinations of the performance of the
different rainfall events. *e RMSE, Pearson correlation,
mean absolute error (MAE), mean bias (Mbias), and
relative root-mean-square error (RRMSE) are employed
as evaluation criteria. Equation (7) gives the equation of
the RMSE:

RMSE �

�������������

1
n

􏽘

n

i�1
Ei − Oi( 􏼁

2

􏽶
􏽴

, (7)

where Ei, Oi, and n are ith radar estimation, ith observed
precipitation data point, and the number of data points,
respectively. *e correlation can be calculated using the
following equation:

correlation �

���������������������
􏽐

n
i�1 Ei − E( 􏼁 Oi − O( 􏼁

􏽐
n
i�1 Ei − E( 􏼁􏽐

n
i�1 Oi − O( 􏼁

􏽳

, (8)

where E and O are the means of the radar estimates and
observed precipitation data, respectively. MAE, Mbias, and
RRMSE equations are given in equations (9)–(11),
respectively.

MAE �
1
n

􏽘

n

i�1
Ei − Oi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (9)

MBias �
1
n

􏽘

n

i�1
Ei − Oi( 􏼁, (10)

RRMSE �
RMSE

o
× 100. (11)

5. Results

5.1. Overall Performance of the QPE Models. *e overall
performances of the constructed QPE models are evaluated
using rainfall and radar data for all the events. *e training
and test data sets are constructed from the data set that
included all the rainfall events. Evaluation criteria for the
constructed QPE models are applied to the test data set.
Results of evaluation criteria are presented in Figure 3. *e
ML-based models lead to lower RMSEs than ZR relation-
ship-based models.

When the number of input variables increases, the
RMSE becomes smaller. For the ZR relationship-based
models, RMSEs of ZR-L1-based models are smaller than
those of ZR-L0-based models.*e result means that usage of
lag-data may provide more information onto QPE of the
employed radar data. Models that include all the available
input variables lead to lowest RMSE values. *e second
lowest RMSE is observed for models that use Z and DR as
input variables. Models using DR and KD lead to the largest
RMSE. Based on RMSE, the ELM5 (using Z, DR, and KD) is
the best model for QPE of the radar data. Correlation results
are similar to the results of the RMSE.*eML-based models
give larger correlations than ZR relationship-based models.
For correlation, the cases using all input variables provide
the largest correlation values. Based on MAE, models using
Z and DR as input variables lead to the smallest MAE. *e
best model based on MAE is the ELM2 (using Z and DR).
Based on MBias, ZR-L0-based models are the best models,
with an MBias close to zero. Estimations by ZR-L1-based
models have positive biases except for the ZR4-L1, while
those of ML-based models have negative biases. RRMSEs of
all employed QPEmodels are larger than 100%. Based on the
RRMSEs, the ELM is the best model for QPE of radar data.
*e second best model is the RF.

Estimation-verse observation plots are presented in
Figure 4. Rainfall rate estimations are underestimated for
large amounts of rainfall rates (larger than 40mm/h).*ese
underestimations for large amount of rainfall rate are
clearly observed in the results of ZR-L0-based models.

Table 3: Tested models for quantitative precipitation estimation
from radar data.

Model
Input variables

Z Z, DR Z, KD DR, KD Z, DR, KD
ZR-L1 ZR1-L1 ZR2-L1 ZR3-L1 ZR4-L1 ZR5-L1
ZR-L0 ZR1-L0 ZR2-L0 ZR3-L0 ZR4-L0 ZR5-L0
RF RF1 RF2 RF3 RF4 RF5
GBM GBM1 GBM2 GBM3 GBM4 GBM5
ELM ELM1 ELM2 ELM3 ELM4 ELM5
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Figure 2: Leave-one-out cross-validation results of hyperparameters for the random forest (the number of trees), stochastic gradient
boosted model (the number of trees), and extreme learning machine (the number of hidden nodes) models. *e red circles indicate the
selected optimal points of the employed hyperparameters based on the root-mean-square error. LOOCV results of (a) RF, (b) GBM, and
(c) ELM.
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Mbias of ZR-L0-based models is close to zero. To meet the
value ofMbias estimate, rainfall rate estimations for small and
medium amounts of rainfall rates are overestimated. Mbias of
ZR-L1-based models have positive values, and estimations are
underestimated for large amount of precipitation, which

indicates that a large overestimation occurs for a small
amount of precipitation. *ese overestimations also are ob-
served in Figure 4. *e ELM5 leads to the best estimation
performance in Figure 4. Circles by the ELM5 are located
closer to the diagonal line than other models, while ZR5-L1
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Figure 3: (a) Root-mean-square error (RMSE), (b) correlation (COR), (c) mean absolute error (MAE), (d) mean bias (Mbias), and
(e) relative RMSE (RRMSE) of rainfall rate estimations by the tested quantitative precipitation estimation models for all rainfall events
studied.
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and GBM5 models seem to provide poor performances. *e
circle distribution for these models is L-shaped (orthogonal
shape) in Figure 4.

5.2. Performances of the Constructed QPE Models for Single-
Rainfall Events. Parameters of ZR relationship differ
depending on rainfall events characteristics. *e perfor-
mances of the QPE model differ from the rainfall events.

Hence, to obtain an accurate QPE, the QPE model should be
built for every rainfall event. To investigate the applicability
and performance of QPE models, all the tested QPE models
are built using data from each precipitation event. RMSEs of
the tested QPE models for single-rainfall events are pre-
sented in Table 4. ML-based models are selected for the best
models based on RMSEs. For events #1 and #2, the ELM5
and ELM3 lead to the lowest RMSEs, respectively. Based on
RMSEs, RF2 and RF5 lead to the best performance for events
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Figure 4: Plots of rainfall rate estimation versus observations for the models tested for all precipitation events studied. (a) ZR1-L1 (RMSE:
8.75, R: 0.58). (b) ZR2-L1 (RMSE: 8.87, R: 0.56). (c) ZR3-L1 (RMSE: 8.74, R: 0.58). (d) ZR5-L1 (RMSE: 8.86, R: 0.58). (e) ZR1-L0 (RMSE:
9.33, R: 0.47). (f ) ZR2-L0 (RMSE: 9.36, R: 0.46). (g) ZR3-L0 (RMSE: 9.35, R: 0.47). (h) ZR5-L0 (RMSE: 9.37, R: 0.46). (i) RF1 (RMSE: 8.56, R:
0.6). (j) RF2 (RMSE: 8.26, R: 0.63). (k) RF3 (RMSE: 8.36, R: 0.62). (l) RF5 (RMSE: 8.18, R: 0.63). (m) GBM1 (RMSE: 8.38, R: 0.61). (n) GBM2
(RMSE: 8.43, R: 0.61). (o) GBM3 (RMSE: 8.38, R: 0.24). (p) GBM5 (RMSE: 8.43, R: 0.6). (q) ELM1 (RMSE: 8.37, R: 0.64). (r) ELM2 (RMSE:
7.99, R: 0.66). (s) ELM3 (RMSE: 8.33, R: 0.64). (t) ELM5 (RMSE: 7.91, R: 0.67).
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#3 and #4, respectively. Overall, RMSEs of the models using
Z and KD data are lower than those in the models using
other input variable sets for event #2. For event #3, RMSEs of
the models using Z and DR data are lower than the models
using other input variable sets. Differences between RMSEs
of ML and ZR relationship-based models are very small in
event #4. Although RF5 is selected as the best model in the
event #4 based on RMSEs, the difference between RMSEs of
RF5 and ZR5-L1 is 0.01. Practically, the performances of ZR-
L1-based models are the best for event #4 based on RMSEs.

Table 5 presents the correlations of the tested QPE
models for single-rainfall events.*e correlations of the QPE
models for events #1 and #2 are much larger than those for
events #3 and #4. While the RMSEs of events #1 and #2 are
larger than events #3 and #4, their correlations are higher
than those of events #3 and #4. Results indicate that the QPE
models lead to good estimation performance for heavy
rainfall events. *e largest correlation values are observed in
ML-based models. ELM2 and ELM3 lead to the largest
correlations for events #1 and #2, respectively. RF2 and RF5
provide the largest correlations for events #3 and #4, re-
spectively. Results of MAE are similar to the results of
RMSE. Based on Mbias, ZR-L1-, ZR-L0-, GBM-, and ELM-
based models lead to the best performance for events #1 to
#4, respectively. Detailed MAE and MBias results are not
contained in the current manuscript.

Table 6 presents the RRMSEs of the tested QPE models
for single-rainfall events.*e correlations of the QPEmodels
for events #3 and #4 are smaller than those for events #1 and
#2, unlike the results of RMSE and correlation. *e smallest

RRMSEs for events #1 and #2 (heavy rainfall events) are
71.8% and 68.1%, respectively. For events #3 and #4 (light
rainfall events), the smallest RRMSEs are 60.6% and 63.0%,

Table 4: Root-mean-square errors (RMSEs) of rainfall rates esti-
mated by quantitative precipitation estimation models for selected
rainfall events.

Event no. Model
Input variables

Z Z, DR Z, KD DR, KD Z, DR,
KD

1

ZR-L1 11.97 11.91 11.98 18.12 11.92
ZR-L0 14.59 14.62 14.62 17.86 14.66
RF 11.29 11.30 11.01 15.52 11.20

GBM 11.05 11.05 11.03 16.33 11.06
ELM 10.30 10.11 10.21 13.12 10.06

2

ZR-L1 5.39 5.26 5.40 7.00 5.30
ZR-L0 6.13 5.99 6.15 7.51 6.00
RF 5.25 5.16 5.14 6.34 5.10

GBM 5.08 5.16 5.07 6.53 5.15
ELM 4.93 5.17 4.71 5.99 5.05

3

ZR-L1 3.33 3.33 3.33 3.57 3.33
ZR-L0 3.34 3.33 3.34 3.57 3.33
RF 3.47 3.17 3.43 3.54 3.20

GBM 3.35 3.31 3.35 3.48 3.32
ELM 3.64 3.91 3.75 3.85 3.99

4

ZR-L1 2.88 2.86 2.88 3.24 2.86
ZR-L0 3.05 3.02 3.05 3.26 3.02
RF 2.93 2.97 2.89 3.39 2.85

GBM 2.89 2.86 2.88 3.22 2.86
ELM 2.91 2.90 2.90 3.08 2.89

Italicized numbers indicate the smallest RMSEs among those calculated
during the same rainfall events.

Table 5: Correlations of rain rate estimations by quantitative
precipitation estimation models for each selected rainfall event.

Event no. Model
Input variables

Z Z, DR Z, KD DR, KD Z, DR,
KD

1

ZR-L1 0.750 0.753 0.749 0.154 0.752
ZR-L0 0.603 0.600 0.600 0.201 0.597
RF 0.785 0.785 0.800 0.513 0.796

GBM 0.799 0.799 0.800 0.425 0.799
ELM 0.829 0.837 0.830 0.687 0.836

2

ZR-L1 0.721 0.736 0.721 0.455 0.732
ZR-L0 0.615 0.639 0.611 0.332 0.637
RF 0.745 0.750 0.749 0.593 0.756

GBM 0.758 0.749 0.759 0.559 0.750
ELM 0.793 0.785 0.805 0.649 0.788

3

ZR-L1 0.308 0.309 0.308 0.007 0.308
ZR-L0 0.287 0.292 0.286 − 0.056 0.292
RF 0.228 0.423 0.230 0.208 0.404

GBM 0.298 0.362 0.298 0.207 0.358
ELM 0.364 0.417 0.355 0.371 0.389

4

ZR-L1 0.418 0.431 0.419 0.047 0.429
ZR-L0 0.275 0.299 0.279 − 0.065 0.298
RF 0.433 0.418 0.449 0.018 0.459

GBM 0.422 0.435 0.423 − 0.004 0.433
ELM 0.395 0.409 0.400 0.258 0.415

Italicized numbers indicate the largest correlations among those calculated
during the same rainfall events.

Table 6: Relative root-mean-square errors (RRMSEs) of rain rate
estimations by quantitative precipitation estimation models for
each selected rainfall event.

Event no. Model
Input variables

Z Z, DR Z, KD DR, KD Z, DR,
KD

1

ZR-L1 85.5 85.1 85.6 129.5 85.2
ZR-L0 104.3 104.5 104.5 127.6 104.7
RF 81.1 80.2 78.5 112.2 79.8

GBM 78.8 79.0 79.1 116.8 79.2
ELM 73.5 72.1 72.9 93.5 71.8

2

ZR-L1 77.8 75.9 77.9 101.0 76.4
ZR-L0 88.5 86.4 88.8 108.4 86.6
RF 76.4 74.0 74.5 91.6 73.6

GBM 73.1 74.6 73.2 94.1 74.5
ELM 71.2 75.0 68.1 86.5 72.6

3

ZR-L1 63.6 63.7 63.6 68.3 63.7
ZR-L0 63.8 63.8 63.8 68.3 63.8
RF 66.3 60.6 65.6 67.4 60.8

GBM 64.1 63.4 64.1 66.6 63.4
ELM 69.6 75.8 71.9 73.3 76.9

4

ZR-L1 63.5 63.0 63.5 71.4 63.0
ZR-L0 67.4 66.7 67.3 72.0 66.7
RF 64.7 65.3 64.1 75.0 63.0

GBM 63.6 63.0 63.5 71.4 63.0
ELM 64.2 63.8 63.8 68.0 63.4

Italicized numbers indicate the smallest RRMSEs among those calculated
during the same rainfall events.
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respectively. Overall difference between the smallest RRMSEs
of heavy and light rainfall events are approximately 10%. *e
difference between the smallest RMSE of heavy and light
rainfall events is approximately 4.3mm/hr. Because 4.3mm/
hr is larger than the smallest RMSE of event #3, the RRMSE
difference is relatively smaller than RMSE difference. *e
result indicates that the QPE models provide similar per-
formances for heavy and light rainfall events based on RRMSE
measures.

To evaluate the tested QPE models for single-rainfall
events, rainfall rate estimation versus observation plots for
event #1 and #4 is presented in Figures 5 and 6, respectively.
*e tested models excluding ZR-L0-based models lead to
good estimation performances for event #1. Of the tested
models, ELM5 gives the best estimation performance. Some
circles are aligned to approximately 80mm/h based on
observations in Figure 5. *is is a recurrent issue in QPE of
rain radar data. When the observed rainfall rates are the
same but the observed parameters of radar data are different,
this phenomenon occurs. *is result indicates that all tested
QPEmodels cannot solve this issue. For event #4 in Figure 6,
all the tested QPE models lead to poor performances of
rainfall rate estimation. In the observed small magnitude of
rainfall rates, the QPE models tend to overestimate rainfall
rates. On the other hand, the QPE models provide an un-
derestimation for the observed large magnitude of rainfall
rates. Five lines are observed at approximately 3mm/h,
6mm/h, 9mm/h, 12mm/h, and 15mm/h based on obser-
vations in all the subfigures presented in Figure 6. *e
observed rainfall depths for these small rainfall rates are
0.5mm, 1mm, 1.5mm, 2mm, and 2.5mm, and their du-
ration is 10 minutes. Because event #4 is light, a large
number of small rainfall rates are observed. *e phenomena
wherein parameters of radar are different for the same
amount of observed rainfall rate occur frequently. Due to
this phenomenon, the tested QPE models show poor per-
formances in event #4.

Radar rainfall rate fields for events #1 and #4 are il-
lustrated to investigate the difference between ZR relation-
and ML-based models in Figures 7 and 8. Figure 7 presents
radar rainfall rate fields of event #1 at 20 :10, 28th August
2018. *e range of rainfall rates is from 0 to 100mm/h for
event #1. *e ML-based QPE models provide larger mag-
nitudes of rainfall rates for very small magnitudes of rainfall
rates based on estimates by ZR2-L1. For heavy magnitudes
of rainfall rates, estimates of all QPE models are similar. *e
GBM leads to the largest magnitude of rainfall rate esti-
mation in Figure 7. Rainfall rate estimates on ground gauge
stations for the ZR2-L1 are larger than those of ML-based
models. Due to the high magnitude of rainfall rate at these
points, the ZR2-L1 overestimates rainfall rate in Figure 3. In
areas where there are no ground gauge stations, the ZR2-L1
estimates smaller rainfall rates than other models. Figure 8
presents radar rainfall rate fields of event #4 at 12 : 40, 8th
November 2018. Rainfall rates range from 0 to 15mm/h for
event #4. Overall results of rainfall rate estimates by the
tested models are similar to the results shown in Figure 7.
*e ELM leads to the largest magnitude of rainfall rate
estimation.

6. Discussion

*e comparison results of the ZR relationship- and ML-
based models show that the application of ML algorithms
can lead to an improvement in the QPE of radar data in the
tested rainfall events.*is result supports the notion that the
ML algorithm could be used in the development of QPE
models of radar data in South Korea. Increasing the number
of variables for the input variables of the ZR relationship-
based models results in very small improvements. In some
events, this increment does not improve performances of
QPE models. It can be inferred that Z is the most critical
variable for the ZR relationship-based model. Additionally,
the application of other variables is often an inefficient way
to build the ZR relationship-based model.

*e performances of the ML-based models improve
when Z and additional variables such as DR and KD are
applied as input variables. In particular, a combination of Z
and DR for input variables of theML-basedmodels leads to a
good QPE performance. Studies have reported that this
combination leads to the best performance among combi-
nations of Z, DR, and KD for the ZR relationship-based
model [46, 47]. In many cases, application of DR, except for
combinations of DR and KD, lead to a large improvement in
the QPE using the ML-based model, unlike the ZR re-
lationship-based model.*e results imply that theML-based
models could consider other variables in QPE. Because the
ML-based model can extract a large amount of information
from the input variables and use this information in QPE of
rain radar data, performances of the ML-based models may
be better than those of ZR relationship-based models. Based
on results of RMSE for individual events, the RF model with
three variables provided the smallest RMSEs in events #2 and
#4. Otherwise, RMSEs of other RF models were smaller than
those of the RFmodel with three variables. In addition, there
is a very small difference (0.06mm/hr) between RSMEs of
RF models with three variables and with Z and KD. *e RF
model with Z and KD is the best model when taking into
consideration of parsimony for event #2. Hence, the RF
model with three variables can be considered for suboptimal
in events #1, #2, and #3.

Computation times to build QPEmodels differ depending
on the ML algorithms employed. RF has the shortest com-
putation time, and its computation time with the data sets of
all events is approximately 1 minute. *e computation times
of the GBM and ELM are approximately 7 minutes and 3
minutes, respectively. As the measuring interval of rainfall
data is 10 minutes, the computation time should be shorter
than 5 minutes. *e RF- and ELM-based models proposed in
the current study can be applied for QPE, but the GBM has to
be modified before application.

Based on the results of this study, a comparison of the
performances of the employed algorithms can be carried out.
*e ELM leads to the best performance for the case that
includes all the events. For single events, the best algorithms
are different. *e ELM provides a good performance for
heavy rainfall events, while the RF is considered a good
algorithm for light rainfall events. *e difference in per-
formance between the RF and ELM is small in the light
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rainfall events. Hence, the best ML algorithm for case studies
performed in the current study is the ELM. Each ML al-
gorithm tested in this study uses popular setting. *e
comparison results of the ML algorithm for QPEmodels can
be altered by adopted setting and used data. For example, in
this study, the CART is used for the decision tree in the RF.
Other decision tree models can be used in the RF such as
inference dichotomiser 3 and chi-squared automatic itera-
tion detection. RF with other decision tree models can

outperform to the ELM model for QPE in South Korea.
*us, the results in the current study should be restricted to
these data sets and the ML algorithms with adopted setting.

Variation of neural network models like artificial neural,
recurrent neural, and deep neural networks may have a high
applicability building QPE models of radar data in South
Korea, because the ELM is developed based on a neural
network. Additionally, enhancing the precision of rainfall
gauges may lead to improvements in the performance of
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Figure 5: Plots of rainfall rate estimations versus observations of tested models for precipitation event #1. (a) ZR1-L1 (RMSE: 11.97, R: 0.75).
(b) ZR2-L1 (RMSE: 11.91, R: 0.75). (c) ZR3-L1 (RMSE: 11.98, R: 0.75). (d) ZR5-L1 (RMSE: 11.92, R: 0.75). (e) ZR1-L0 (RMSE: 14.59, R: 0.6).
(f ) ZR2-L0 (RMSE: 14.62, R: 0.6). (g) ZR3-L0 (RMSE: 14.62, R: 0.6). (h) ZR5-L0 (RMSE: 14.66, R: 0.6). (i) RF1 (RMSE: 11.29, R: 0.79). (j) RF2
(RMSE: 11.3, R: 0.79). (k) RF3 (RMSE: 11.01, R: 0.8). (l) RF5 (RMSE: 11.2, R: 0.8). (m) GBM1 (RMSE: 11.05, R: 0.8). (n) GBM2 (RMSE: 11.05,
R: 0.8). (o) GBM3 (RMSE: 11.03, R: 0.42). (p) GBM5 (RMSE: 11.06, R: 0.8). (q) ELM1 (RMSE: 10.3, R: 0.83). (r) ELM2 (RMSE: 10.11, R: 0.84).
(s) ELM3 (RMSE: 10.21, R: 0.83). (t) ELM5 (RMSE: 10.06, R: 0.84).
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QPE models for light rainfall events. Precision for some of
the employed rainfall gauges is 3mm/hr. Although this
precision is good enough to measure rainfall rates for long
duration or heavy rainfall events, it should be higher for
estimating rainfall rates of light rainfall events. For example,
when parameters of radar data for two points are different
but their observed rainfall rates are the same, the QPEmodel
has to fail estimations of rainfall rates at two points. If the

precision of the rainfall gauge increases, the observed rainfall
rates may be different and could result in a more accurate
constructed QPE model. As shown in Figure 6, three lines
can be observed in all the subfigures. Values of ground gauge
for first, second, and third lines are 3, 6, and 9mm/hr. *ese
three lines indicate that the observed rainfall rates at ground
gauge station are the same when the parameters of radar data
are different. If precisions of these gauge stations become
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Figure 6: Plots of rainfall rate estimations versus observations of tested models for precipitation event #4. (a) ZR1-L1 (RMSE: 2.88, R: 0.42).
(b) ZR2-L1 (RMSE: 2.86, R: 0.43). (c) ZR3-L1 (RMSE: 2.88, R: 0.42). (d) ZR5-L1 (RMSE: 2.86, R: 0.43). (e) ZR1-L0 (RMSE: 3.05, R: 0.27). (f )
ZR2-L0 (RMSE: 3.02, R: 0.3). (g) ZR3-L0 (RMSE: 3.05, R: 0.28). (h) ZR5-L0 (RMSE: 3.02, R: 0.3). (i) RF1 (RMSE: 2.93, R: 0.43). (j) RF2
(RMSE: 2.97, R: 0.42). (k) RF3 (RMSE: 2.89, R: 0.45). (l) RF5 (RMSE: 2.85, R: 0.46). (m) GBM1 (RMSE: 2.89, R: 0.42). (n) GBM2 (RMSE: 2.86,
R: 0.42). (o) GBM3 (RMSE: 2.88, R: 0.42). (p) GBM5 (RMSE: 2.86, R: 0.43). (q) ELM1 (RMSE: 2.91, R: 0.39). (r) ELM2 (RMSE: 2.9, R: 0.41).
(s) ELM3 (RMSE: 2.9, R: 0.4). (t) ELM5 (RMSE: 2.89, R: 0.41).
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better, these lines may be disappeared and the data points in
the lines are dissipated. *is dispersion of data points,
caused by the high precision of measuring instrument, may
lead to improvement of the performance of QPE models for
light rainfall event.

*e tested QPE models lead to good performances for
heavy rainfall events but not for light rainfall events. *is

characteristic of QPE with rain radar data is also observed in
this study. ML-based QPE models outperform ZR re-
lationship-based models for events #3 and #4, albeit in-
significantly. As mentioned above, the ML-based QPE
models show good performances by efficiently extracting
information from given radar data. If additional variables
can be applied in QPE models, the performance of the QPE
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Figure 7: Radar rainfall rate fields for four selected quantitative precipitation estimationmodels (ZR2–L1, RF3, GBM3, and ELM5) for event
#1 (August 28, 2018; 20 :10). (a) ZR. (b) RF. (c) GB. (d) EL.
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model may improve, particularly for light rainfall events.
*us, various sets of input variables that are frequently used
in conventional QPE algorithms should be tested for ML-
based QPE models to improve the performance of QPE
models for light rainfall events.

7. Conclusions

*e applicability of three ML algorithms in QPE models is
investigated using case studies of polarization radar data of four
rainfall events fromGwangdeoksan radar station, Gyeonggi-do,
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Figure 8: Radar rainfall rate fields of four selected quantitative precipitation estimation models (ZR2–L1, RF5, GBM2, and ELM5) for event
#4 (November 8, 2018; 12 : 40). (a) ZR2-L1. (b) RF5. (c) GBM2. (d) ELM5.
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South Korea. Various combinations of input variable sets are
also tested for QPE models. Conventional ZR relation-based
models are also constructed and compared to ML-based
models. In the current study, we reach the following
conclusions:

(1) ML algorithms can be applied to build a QPE model
of polarization radar data. Overall, the ML-based
QPE models outperform or are equal to ZR re-
lationship-based models. ML algorithms can extract
information from radar data more efficiently than
the ZR relationship, which leads to an improvement
in QPE of the radar data.

(2) Application of the ML algorithms for QPE models
improves rainfall rate estimations for heavy events in
South Korea by far. *e performances of the ML-
based QPE model are significantly improved based
on performances of ZR relationship-based models
for heavy rainfall events. *is improvement will be
helpful in modeling floods and forecasting flash
floods.

(3) ELM algorithm may be the best ML algorithm
among the tested ML algorithm with the adopted
setting for QPE models of radar data in South Korea.
Overall, the ELM outperforms other tested QPE
models in QPE of radar data employed in the current
study. Based on evaluation results of single-rainfall
events, the ELM also leads to the best performance in
two heavy rainfall events. Although the ELM is not
the best QPE model for the two light rainfall events,
the performances of QPE models using ELM are
comparable to other QPE models.

In the current study, four rainfall events in 2018 were
employed to evaluate the applicability of ML algorithms for
the QPE model of polarization radar data as the radar
instrument in Gwangdeoksan radar was updated. Future
rainfall events should be included in data sets to further
investigate the applicability and characteristics of ML al-
gorithms in the QPE of polarization radar data in South
Korea. In addition, the applicability of ML algorithms for
QPF should be examined. Because ML algorithms show
high applicability in QPE, they make good candidates for
modeling functions between radar data and QPF.
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'e China Meteorological Administration has deployed the China New Generation Weather Radar (CINRAD) network for severe
weather detection and to improve initial conditions for numerical weather prediction models. 'e CINRAD network consists of 217
radars comprising 123 S-band and 94 C-band radars over mainland China. In this paper, a high-resolution digital elevation model
(DEM) and beam propagation simulations are used to compute radar beam blockage and evaluate the effective radar coverage over
China. Results show that the radar coverage at a height of 1 km above ground level (AGL) is restricted in complex terrain regions.'e
effective coverage maps at heights of 2 km and 3 km AGL indicate that the Yangtze River Delta, the Pearl River Delta, and North
China Plain have more overlapping radar coverage than other regions in China. Over eastern China, almost all areas can be sampled
by more than 2 radars within 5 km above mean sea level (MSL), but the radars operating in Qinghai-Tibet Plateau still suffer from
serious beam blockage caused by intervening terrain. Overall, the radars installed in western China suffer from much more severe
beam blockage than those deployed in eastern China. Maps generated in this study will inform users of the CINRAD data of their
limitations for use in precipitation estimation, as inputs to other weather and hydrological models, and for satellite validation studies.

1. Introduction

As the climate changes, the temporal and spatial distribu-
tions of precipitation characteristics are experiencing
changes. Torrential precipitation events have become more
frequent [1–3], which often lead to floods and debris flows
causing large property damages and casualties. With the
high spatiotemporal continuity of radar data, forecasters can
identify the location of heavy precipitation and issue early
warnings and watches. Understanding realistic spatial
coverage maps associated with an operational radar network
is vital for using the data in applications [4, 5]. Klazura and
Imy simulated a coverage map at 10,000 ft (about 3.0 km)

above the radar site level for radar sites in the contiguous
United States (CONUS), showing vast areal coverage extents
even in the western United States [6]. Nevertheless, the
altitude of western WSR-88D sites varies greatly (the ele-
vation of radar sites ranges from near sea level to more than
10,000 ft). Some researchers have pointed out that pre-
cipitation is orographically enhanced within 1-2 km above
the topography [7–9]. 'us, Klazura and Imy optimistically
overestimated the radar coverage over western mountains,
and it is difficult to interpret meaningful information from
their work of a radar coverage map [10, 11]. Westrick et al.
evaluated the limitation of theWSR-88D radar network over
the mountainous West of the US and defined that the radar
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scanning range is effective if more than 50% of the beam is
unblocked [11]. Subsequently, Maddox et al. developed
radar coverage maps over the CONUS in more detail [10].
More reports about the terrain blockage of regional radars
can be found in [12, 13].

When constructing a weather radar network, terrain
blockage is a significant factor to affect siting radars.
Considering this, Minciardi et al. developed an approach to
optimally deploy the weather radar network in Italy [14].
Inggs et al. provided a quantitative method for evaluating
radar coverage to improve future construction and siting of
radars [15]. Weather radar data are the most reliable remote
sensing data in detecting precipitation. However, the radar
beam usually encounters partial or total beam blockage
caused by high buildings andmountains. Additionally, some
previous studies use beam propagation models to provide
beam blockage correction factors to enhance precipitation
estimates. 'e bias between radar quantitative precipitation
estimation (QPE) and ground gauge data will be reduced by
using these factors [16–19]. Geng and Katsumata analysed
beam blockage of radars on board theMirai and showed that
details about beam blockage improves quality control of
radar data of Mirai [4].

Similar to the NEXRAD network in the US, the China
Meteorological Administration (CMA) has deployed the
China Next GenerationWeather Radar (CINRAD) network.
Currently, the CINRAD network is composed of 217
Doppler weather radars (94 C-band radars and 123 S-band
radars) over mainland China. 'ese radars are distributed
densely across China except in complex terrain where beam
blockages are more likely to have negative consequences on
derived quantitative precipitation estimation (QPE)
[11, 12, 20]. Additionally, there are four WSR-88D radars
installed in Taiwan and one WSR-98D radar installed in
Hong Kong. Previous studies evaluated the radar coverage
over selected regions of southern China where the topog-
raphy is relatively flat compared to western China, indicating
decent coverage [21]. Wang et al. expanded the study of
radar coverage to mainland China using a single tilt at 0.5-
degree elevation angle [22]. However, the national CINRAD
coverage map still needs to be investigated and improved
due to the absence of effective coverage by higher elevation
angles. Furthermore, the CMA has supplemented 58 more
radars over China since the initial study of CINRAD cov-
erage had approximately 160 radars in 2011 [22]; thus, the
effective coverage maps need to be updated accordingly.
'erefore, it is necessary to investigate the radar network’s
coverage over China which can serve as an important ref-
erence for radar data users, especially for weather forecasters
in operational offices. In order to make better use of weather
radar network for monitoring and early warning of extreme
weather events, this study quantifies the coverage of the
renewed radar network over China, including four radars in
Taiwan and the one in Hong Kong.

2. Methodology

2.1. Study Area. 'e complex topography in China shows a
staircase-like distribution from low altitude in the east to

high altitude in the west. Spatiotemporal precipitation
spectra show a significant diurnal and seasonal variation
over China [23, 24]. Heavy precipitation is common in
summer, and these storms can trigger severe floods and
mudslides. Figure 1 depicts the digital elevation map of
China and the distribution of the CINRAD network. 'e
altitude ranges from near sea level to more than 8000m over
the Qinghai-Tibet Plateau. In total, there are 222 radars
(composed of 128 S-band and 94 C-band radars) in oper-
ation to detect weather phenomena over China when the
radars in Hong Kong and Taiwan are taken into account.
S-band radars have the advantage of detecting precipitation
from longer distances (∼460 km) with little attenuation in
rain. Geographically, eastern China is much flatter than
western China (such as the Tibet plateau). Economically,
most of large cities (e.g., Beijing, Shanghai, Shenzhen, and
Guangzhou) are in eastern China where more than 90% of
population lives. 'e total gross domestic product (GDP) of
these cities accounts for more than 90% of the total GDP of
China. Meteorologically, eastern China is impacted signif-
icantly by the East Asia monsoon which brings a lot of
disastrous heavy precipitation events including tornadoes
and typhoons. 'erefore, S-band radars are deployed in
eastern China to help monitor heavy precipitation events
and provide early warnings for the government and the
public when the radar observations are assimilated in the
numerical forecast models like the Weather Research and
Forecasting (WRF) model. In contrast, western China has
lots of high-altitude mountains like Kunlunshan Mountain
in Tibet plateau and Hengduan Mountains in southeastern
Qinghai plateau. 'ese mountains cause serious radar beam
blockage. Additionally, few people live in the western China
where the GDP is a small percentage of the total GDP of
China. Furthermore, few disastrous weather events occur
and the precipitation intensity is weaker than that in the
middle and eastern China. For these reasons, it makes sense
to use the lower-cost C-band radars in western China despite
the disadvantages with shorter ranges for precipitation
detection and reflectivity losses in rain due to attenuation of
the radar signal.

'e radar distributions are sparse in the west especially
on the Qinghai-Tibet Plateau, while the radars are more
closely spaced in the east. A national map of slope derived
from 30 arc sec (90m) Shuttle Radar Topography Mission
(SRTM) high-resolution digital elevation model (DEM) data
by using ArcGIS, which is one of the contributing factors for
landslides, is shown in Figure 2. 'e steep slope areas are
Tianshan Mountains, northern Qinghai-Tibet Plateau,
south-eastern Qinghai-Tibet Plateau, Yunnan-Guizhou
Plateau, and northern Sichuan province where radars are
distributed more sparsely. Figure 3 shows the ideal coverage
map of CINRAD without beam blockage and national
meteorological stations.'e shaded area represents coverage
(without beam blockage) of 230 km for S-band and 150 km
for C-band radar. 'ere are large areas in south-eastern
XinJiang, Qinghai-Tibet Plateau, and northern Inner
Mongolia with no radar coverage while almost the rest of
China is well detected by the CINRAD network in this
optimal coverage map. 'e complex topography in China

2 Advances in Meteorology



will induce serious beam blockages causing bias in radar
quantitative precipitation estimation (QPE) especially in
mountainous western China. Meanwhile, the ground-based
gauges are rare in these areas without radar coverage, es-
pecially on the Qinghai-Tibet Plateau called water tower of
Asia. It is difficult to make accurate precipitation forecast
there due to the lack of radar coverage and the sparseness of
ground-based gauges.

2.2. Data and Computing Method. 'e 30 arc sec (90m)
Shuttle Radar Topography Mission (SRTM) high-resolution
digital elevation model (DEM) data (available at http://srtm.
csi.cgiar.org/SELECTION/inputCoord.asp) are used in this
study to depict the terrain over China and then compared
with the height of the center of the radar beam. Similar
analysis methods [10, 11] have been employed to compute
radar coverage over the US. It is known that the antenna
elevation angle depends on the scan strategies employed for
the network.'e new generation weather radar supplies two
volume coverage patterns (VCP), namely, precipitation scan
mode and clear sky scan mode. 'e precipitation scan mode
contains two VCPs (i.e., VCP-11 and VCP-21). In opera-
tional practice, VCP-21 is generally used while VCP-11 is
rarely used. 'e VCP-21 scan mode is to complete 9 ele-
vation tilts’ scans (e.g., 0.5°, 1.5°, 2.4°, 3.4°, 4.3°, 6.0°, 9.9°,
14.6°, and 19.5°) within 6minutes. In order to alleviate beam
blockage caused by complex topography, the hybrid scan is
constructed from a composite of elevation angles to optimize
low-level coverage needed for precipitation estimation [25].

Now, radar data users usually use whichever elevation angle
is closest (and above) to the ground. So, the lowest 0.5°
elevation angle is now used when the area of concern is
closer to radar [26]. According to this, this paper applies the
new method, which is illustrated in Figure 4, to evaluate
realistic radar coverage. For instance, when the radar beam
encounters a mountain in the propagation path and the
mountain is high enough to obstruct the radar beam up to
50%, the second tilt will be adopted. If the mountain is still
too high to overcome and the radar beam is still blocked by
50% or more, the third tilt will be adopted. 'e remaining
tilts can be adopted in the same manner.

'e following principles are used in this study. Firstly,
the location information (longitude, latitude, and altitude) of
each radar site is determined and mapped with the DEM
data around the radar site. 'e height of the center of the
beam at each sampling point (every 50m for a sampling
point) is calculated with range at each azimuthal angle (at
intervals of 0.1°). Next, the height of the beam center is
compared with the corresponding point on the DEM and if
the center of the radar beam is lower than the terrain, it is
considered to be blocked and no longer propagates at farther
ranges. 'e height of the radar beam is computed by the
following equation with the assumption that the radar beam
propagates in standard atmosphere [27]:

h �
�����������������
r2 + R2 + 2rR sin(θ)

􏽰
−R + h0, (1)

where h is the height of radar beam, r is the range from radar
site, R (approximately 8500 km) is the effective earth radius
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obeying standard atmospheric refraction, θ is the elevation
angle, and h0 is the height of radar antenna. 'e range of a
radar scan is limited by earth curvature, intervening
blockages and attenuation of the radar signal. Attenuation is
more prevalent with C-band radars, so this study computes
the radar coverage out to 230 km for S-band radars and
150 km for C-band radars. Key specifications of the CIN-
RAD systems are shown in Table 1.

To verify the beam propagation simulation effectiveness,
the reflectivity of example radars (Shenzhen radar and
Zhuhai radar) and simulation results are presented in Fig-
ure 5. Figures 5(a) and 5(c) show the radar coverage of the
first tilt (0.5°) of Shenzhen radar and Zhuhai radar revealing
a similarity with the corresponding reflectivity maps
(Figures 5(b) and 5(d)) though there are some notable
differences too. 'ese inconsistencies may be caused by
ground clutter, biological scatterers, sea clutter, etc. 'is
indicates that beam propagation simulations used in this
study can effectively depict the terrain blockage. Further
validation would be possible using reflectivity observations
in widespread rain.

3. Results

In this study, both radar coverage maps at heights
above ground level (AGL) and constant altitudes in MSL
are calculated to estimate the coverage condition of the
CINRAD network. Heights of 1 km, 2 km, and 3 km AGL
and 3 km and 5 km MSL are set as constraints.

During the cool season, the height of the bright band is
relatively low and orographic precipitation processes en-
hance growth in the lowest 1-2 km above topography [7–9].
When radar data users are applying the measurements for
studying or monitoring storms where microphysical and
dynamical processes occur at low levels (e.g., cool season
precipitation and quasi-linear convective system tornadoes),
radar data should be gathered near the ground [10]. Cor-
respondingly, radar coverage at 1 km and 2 km AGL are
shown in Figures 6(a) and 6(b), respectively. Figure 6(a)
shows that there are large areas with no radar coverage in
western China especially on the Qinghai-Tibet Plateau. In
addition, there are severe beam blockages on the Yunnan-
Guizhou Plateau owing to the complex terrain. However, an
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exception is that the radar coverage in the northern regions
of Tianshan Mountains in Xinjiang province is relatively
good. In contrast to the coverage status in the western area,

overlapping radar coverage in eastern China is better at 1 km
AGL. Radar coverage at 2 km AGL (Figure 6(b)) depicts
limited coverage in western China while the CINRAD
network covers the east quite well. For example, there are
more than 3 radars overlapping in the Yangtze River Delta
and the Pearl River Delta, which are the important economic
and prosperous areas in China. Generally speaking, when
areas are covered bymore than one radar, the radar QPE will
be more accurate. Because biases of radar QPE increase with
longer ranges from the radar site, low-level coverage is
maximized using radar data that have been mosaicked
[17, 28]. However, the steep slope areas (e.g., Tianshan
Mountains, northern Qinghai-Tibet Plateau, south-eastern
Qinghai-Tibet Plateau, Yunnan-Guizhou Plateau, and
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band radars, red dots denote the S-band radars, and black dots refer to national meteorological stations.
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supposed to locate at original point (0, 0). 'e shadowed area
denotes a mountain which blocks radar beams.'e black bold lines
are the adopted beams from the radar, and the dash lines represent
different distances (e.g., 20 km, 35 km, and 50 km) from radar site.

Table 1: System specifications of China Next Generation Weather
Radars.

Radar type S-band radar C-band radar
Wavelength (cm) ∼10 ∼5.6
Antenna gain (dB) ≥44 ≥43
Diameter of the antenna dish (m) 8∼9 4.5
Range resolution (m) ≤150 ≤150
Beam width (°) ≤1.0 ≤1.0
Pulse power (kW) ≥650 ≥250
Noise figure (dB) ≤4 ≤4
Dynamic range (dB) ≥95 ≥95
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northern Sichuan province) shown in Figure 2 are almost
with little radar coverage according to Figures 6(a) and 6(b).
Topographic slope is a contributing factor for landslides
when heavy precipitation occurs. So, it will be challenging to
issue early warnings and watches of heavy precipitation,
mudslides, and landslides in these regions.

'e CINRAD network coverage map at a height within
3 km AGL is exhibited in Figure 6(c). It is noted that the
coverage and overlapping maps are to some extent different
from those in Wang et al. [22]. 'e main reasons why these
two coverage maps are different are as follows: Firstly, 58
radars have been added to the CINRAD network since the
initial study. Secondly, the merged data of multiple ele-
vation angles to construct the hybrid scan represent the
coverage map in this paper. In the new coverage map
shown in Figure 6(c), it can be seen that western China
suffers from restricted coverage at 3 km AGL except the
northern Xinjiang province and some regions of the
southern Tianshan Mountains. Eastern China and central

China are well sampled by the CINRAD network except for
some parts of the northeast where radars are sparse. For
instance, there are large areas covered by as many as 3–6
radars in the North China Plain and 4–7 radars in the Pearl
River Delta area.'e Yangtze River Delta is sampled by 4–9
radars. 'erefore, it is best covered by the CINRAD net-
work in China and facilitates water resources management,
severe thunderstorm monitoring and warning, and fore-
casting through assimilation in numerical weather pre-
diction models. In summer, precipitation amounts,
occurrence frequencies, and intensities reach their peak
values in most of China, especially in the eastern Qinghai-
Tibet Plateau and Yunnan-Guizhou Plateau where there is
sparse radar coverage [23, 24]. Plus, the freezing levels are
higher compared to the cool season. 'us, the radar
coverage map at 3 km AGL in Figure 6(c) is a preferable
reference for interpreting the capability of the CINRAD
network to detect warm season storms. For the Qinghai-
Tibet Plateau, the large data voids present great challenges
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Figure 5: (a)'e effective coveragemap of Shenzhen radar using the first tilt (0.5°) simulation, and the blue area denotes coverage area while
the yellow area represents no radar coverage area. (b)'e reflectivity at UTC 0000 4 September 2017 is used to validate the simulation result.
(c) 'e effective coverage map of Zhuhai radar using the first tilt (0.5°) simulation, and the blue area refers to coverage area while the yellow
area indicates no radar coverage area. (d) 'e reflectivity at UTC 1512 23 August 2017 is used to validate the simulation result. 'e red dot
corresponds to the radar site.
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for radar data users to estimate precipitation occurring in
this region.

'e atmospheric conditions like temperature, wind,
troughs, and ridges are usually analysed at mandatory levels
of 700 hPa pressure level and 500 hPa pressure level in
weather forecast. Gou et al. calculated the maximum ranges
of radar coverage and the altitudes of multiradar hybrid
mosaic reflectivity over eastern Sichuan province (e.g., well-
covered area in this study) and further studied radar
reflectivity for storms at different altitudes and propagation
directions [29]. So, CINRAD coverage maps at heights above
MSL are also estimated in this study with the aim of offering
reference when designing mosaicking schemes for locations
that are covered by more than one radar. Figures 7(a) and
7(b) show the CINRAD network coverage at a height of 3 km
above MSL (i.e., near the 700 hPa isobaric surface) and 5 km
above MSL (i.e., near the 500 hPa isobaric surface), re-
spectively. Figures 6(c) and 7(a) show a significantly dif-
ferent situation in terms of coverage in western China. As
shown in Figure 7(a), there are larger areas with data voids at
a height of 3 km above MSL because the elevation of many
radar sites in western China is at or higher than 3 km above
MSL.'ere is nearly no radar coverage on the Qinghai-Tibet
Plateau and very poor radar coverage on the Yunnan-
Guizhou Plateau, Inner Mongolia Autonomous Region

(Inner Mon.), Gansu province, and the southeastern Xin-
jiang province. In contrast, the radar coverage map
(Figure 7(a)) reveals overlapping coverage in the east,
sampled by more than 2 radars in the North China Plain, the
Pearl River Delta area, and the Yangtze River Delta. 'e
coverage map of the CINRAD network at a height of 5 km
above MSL still shows limitations in the west, while eastern
China and central China are almost completely covered with
more than 2 radars overlapping in almost all regions
(Figure 7(b)). 'ere are more than 4 radars overlapping in
the North China Plain, southern China, eastern Sichuan
province, and the Yangtze River Delta.

For further analysis, radar coverage indexes such as
coverage area (including the border areas and coastal areas)
and coverage ratio are also used in this study. As seen in
Table 2, the statistical result shows that the CINRAD cov-
erage area of 1 km AGL (AGL1) is about 2.5×106 km2 and
the coverage ratio is about 26%. With the increasing of
height of AGL and height above MSL, the coverage area and
ratio are increasing. 'e coverage area of 2 km AGL (AGL2)
is about 5.3×106 km2, and the coverage ratio is about 55%,
respectively. Within 3 km AGL, the coverage area and ratio
are about 6.6×106 km2 and 69%, respectively. Within 3 km
above MSL, the coverage area and ratio are similar to these
indexes within 2 km AGL. 'e coverage area (7.0×106 km2)
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Figure 6: Effective coveragemap of CINRADnetwork at heights of (a) 1 km, (b) 2 km, and (c) 3 kmAGL over China.'e legend refers to the
number of overlapping radars covering a given point in space, and the subgraph at the bottom right corner of each panel represents the
South China Sea.
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and ratio (73%) reach maximum when the height is within
5 km above MSL.

4. Conclusions and Recommendations

'e 30 arc sec (90m) high-resolution DEM data are used
with a model for beam propagation estimated in a standard
atmosphere to calculate beam occultation and the effective
coverage maps of the Chinese national weather radar net-
work. 'e main findings of this study are as follows:

(1) 'e coverage map at 1 km AGL shows extremely
limited coverage especially in the mountainous west
such as the Qinghai-Tibet Plateau and the Yunnan-
Guizhou Plateau.

(2) At 2 km AGL, the coverage extent improves for
radars deployed in eastern and central China, cov-
ering most of those areas. In particular, the Yangtze
River Delta and the Pearl River Delta are generally
sampled by more than 3 radars. However, the radars
are still insufficient to estimate precipitation that
occurs on the Qinghai-Tibet Plateau.

(3) At a height of 3 kmAGL, CINRAD network provides
good coverage east of 105°E although there is no
radar coverage in many regions of the Inner Mon-
golia Autonomous Region. 'ere are still large parts
in western China with no radar coverage, which
poses challenges in estimating precipitation.

(4) At 3 km above MSL, the radar coverage map
(Figure 7(a)) is significantly different from the one at

3 km AGL (Figure 6(c)) over the mountainous west
due to radar sittings at high altitudes, while the
coverage remains good in eastern and central China.

(5) At 5 km above MSL, the CINRAD network shows
much better coverage than at 3 km above MSL and
thus can monitor most areas in China except the
Qinghai-Tibet Plateau, the Inner Mongolia province,
and the southeast of Xinjiang province. 'ere are
more than 4 radars overlapping in the North China
Plain, southern China, eastern Sichuan province, and
the Yangtze River Delta.

With the rapid economic development of China in recent
years, many high buildings have been constructed throughout
the country, which can cause additional blockages to the radar
beams. 'ese anthropogenic changes are not represented in
the DEM used in this study and thus not represented in the
coverage maps presented herein. Although there are some
limitations, this study can provide a reference for the future
construction of the CINRAD network in China (e.g., iden-
tifying areas where radar coverage is insufficient to add a new
radar or using our model to select candidate sites for radar
construction) and radar coverage maps could be used to guide
radar data mosaicking schemes in the future. If we can attain
the latest DEM data with higher accuracy (e.g., 10m or higher
resolution DEM data) or add the heights of newly built high
buildings into the DEM, the beam propagation simulations
will be improved. It is recommended that users identify and
document additional blockages by examining long-term
precipitation accumulations or reflectivity frequency maps.
However, these radar datasets are not presently available.

Data Availability

'e 30 arc sec (90m) Shuttle Radar Topography Mission
(SRTM) high-resolution digital elevation model (DEM) data
used to depict the terrain over China are available at http://
srtm.csi.cgiar.org/SELECTION/inputCoord.asp. 'e lati-
tude, longitude, and elevation information of radar stations
as well as radar reflectivity data is confidential.

Table 2: Coverage index of China Next Generation Weather
Radars.

Height Coverage area (km2) Coverage ratio (%)
AGL1 2.5×106 26
AGL2 5.3×106 55
AGL3 6.6×106 69
MSL3 5.3×106 55
MSL5 7.0×106 73

55°N

45°N

35°N

25°N

15°N

75°E 85°E 95°E 105°E 115°E 125°E 135°E

9

8

7

6

5

4

3

2

1

(a)

55°N

45°N

35°N

25°N

15°N

75°E 85°E 95°E 105°E 115°E 125°E 135°E

9
8

11
12
13
14

10

7
6
5
4
3
2
1

(b)

Figure 7: Effective coverage map of CINRAD network at heights of (a) 3 km and (b) 5 km above MSL over China. 'e legend refers to the
number of overlapping radars covering a given point in space and the subgraph at the bottom right corner of each panel represents the South
China Sea.
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Hallasan Mountain is located at the center of Jeju Island, Korea. Even though Hallasan Mountain has a height of just 1,950m, the
temperature during the winter decreases below −20 degrees Celsius. On the contrary, the temperature on the coastal areas remains
just above freezing. *erefore, large snowfalls in the mountain and rainfall in the coastal areas are very common in Jeju Island.
Most of the rain gauges are available around highly populated coastal areas, and snow measurements are available at just four
locations on the coastal areas. *erefore, it is practically impossible to distinguish the rainfall and snowfall in Jeju Island.
Fortunately, two radars (Seongsan and Gosan radars) operate on Jeju Island, which fully covers Hallasan Mountain. *is study
proposes a method of using both the radar and rain gauge information to map the snowy region in Jeju Island, including Hallasan
Mountain. As a first step, this study analyzed the Z-R and Z-S relationships to derive a fixed threshold of radar reflectivity to
separate snowfall from rainfall, and, in the second step, this study additionally considered the observed rain rate information to
implement the problem of using the fixed threshold. *is proposed method was applied to radar reflectivity data collected during
November 1, 2014, to April 30, 2015, and the results indicate that the method considering both the radar and rain gauge in-
formation was satisfactory. *is method also showed good performance, especially when the rain rate was very low.

1. Introduction

Mapping the snowy region is very important in our daily lives.
In some places it rains, but in other places, maybe in high-
elevation areas, it can snow. If it snows, it may be necessary to
limit vehicle traffic, remove snow from the road and road-
sides, and sometimes warn climbers against trespassing.
Accurately predicting the snowline is thus important, espe-
cially where the rainfall and snowfall simultaneously occur.

Jeju Island, which is located in the southernmost part of
the Korean Peninsula, is likely the only place where both
rainfalls in the plain coastal area and the snowfall in
mountainous areas can be observed at the same time. *is is
mainly because HallasanMountain is located at the center of
Jeju Island. With a height of 1,950m, Hallasan Mountain is
known to have a strong orographic precipitation. During

winter, from December to February, the mean temperature
in the coastal area is around 6.5∼7.3°C, but that in the
mountain area decreases to around −2.3∼1.0°C. At the
mountain top, the temperature easily drops below −10°C [1].

*ere are two main roads in Jeju Island: one is the
beltway along the sea shore and the other an expressway that
connects two big cities, Jeju City and Seogwipo City, in Jeju
Island. In particular, the expressway passes the side of
Hallasan Mountain at an elevation of 700m. Unfortunately,
this expressway is frequently closed due to heavy snowfall
during the winter. Four access roads to Hallasan Mountain
run up to an elevation of 1,000m.

However, in Jeju Island, it is practically impossible to
divide areas of the rainfall and snowfall. *e Jeju Regional
Meteorological Administration (JRMA) operates a total of
24 rain gauges, but 13 rain gauges are located near the sea
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shore (elevation 0 to 250m from the sea level) where the
population is high. Rain gauges in the high-elevation
mountain area are very limited. Snowfall observations are
carried out at four locations over Jeju Island (Jeju, Seogwipo,
Seongsan, and Gosan), but these are all in the coastal areas
where snowfall is very rare. Rain gauges in the mountainous
area can measure snowfall according to water depth, but it is
not easy to distinguish snowfall from rainfall.

Radar data may be used as an alternative to divide areas
between the rainfall and snowfall. Basically, radar reflectivity
on rain drops is different from that on snow flakes. For
example, the Z-R relationships between the radar reflectivity
(Z) and rain rate (R, mm/hr) areZ � 200R1.6 [2],Z � 31R1.71

[3], Z � 486R1.37 [4], etc. On the contrary, the Z-S re-
lationships between radar reflectivity (Z) and snow rate (unit
of mm/hr, the same as R) are Z � 2,000S2.0 [5], Z � 2,100S2.0

[6], Z � 427S1.09 [7], etc. *e two relationships are markedly
different in their proportional constants, i.e., the pro-
portional constant of the Z-S relationship is generally much
larger than that of the Z-R relationship.

However, the problem is that, for a given radar reflec-
tivity, it is impossible to distinguish the snowfall and rainfall.
*is is the main issue in this study. Currently, classification
of rainfall and snowfall fully relies on the information of air
temperature. It is generally assumed that snow cannot exist if
the temperature is higher than 5°C [8]. Also, the guideline
from the Korean Meteorological Administration (KMA)
shows that the precipitation is assumed to be snowfall if the
temperature is lower than 1.2°C [9]. So the problem is that
the range between the obvious rainfall and obvious snowfall
is too wide. *is range of temperature corresponds to the
elevation difference around 500m. In case the prediction of
snowline much matters such as in Jeju Island, the tem-
perature information may not be a sufficient indicator.

*e objectives of this study are as follows. First, this
study will analyze the Z-R and Z-S relationships reported so
far worldwide to characterize their difference. *e difference
between the two may give us an idea of separating the
snowfall from rainfall. Second, as the known range of radar
reflectivity of rainfall is much wide and includes that of the
snowfall, simply a fixed radar reflectivity value may not be
useful to map the snowy region [10]. In this case, additional
information must be used to successfully achieve the study
objective. In this study, rain gauge data will be considered as
secondary information to separate snowfall from rainfall, as
it is generally accepted that radar reflectivity is proportional
to the rain rate.

*is manuscript is composed of a total of five sections,
including Introduction and Conclusions. In the second
section, the Z-R and Z-S relationships are reviewed to derive
their difference. In the third section, the study area and the
data are explained. Finally, the fourth section explains the
methodology and application examples using the data col-
lected by both radar and rain gauges in Jeju Island, Korea.

2. Z-R and Z-S Relationships

*e equation for the so-called Z-R relationship has the
following form [11]:

Z � AR
b
, (1)

where Z is the radar reflectivity (mm6/m3), R is the rain gauge
rain rate (mm/hr), and A and b are parameters. *ese two
parameters are known to vary so widely regionally and
depending on storm types. Table 1 introduces some Z-R re-
lationships collected from past studies and reports worldwide.

Similar to the Z-R relationship to estimate the radar rain
rate from the radar reflectivity, the so-called Z-S relationship
is used to estimate the radar snow rate [15].*e basic form of
the equation for the Z-S relationship is the same as that for
the Z-R relationship:

Z � AS
b
, (2)

where the snow rate S has the same unit of mm/hr as the rain
rate. Table 2 shows some Z-S relationships collected from
past studies and reports. In this table, Ze has the relation
with Z such as Ze � 0.244 × Z. *is relation was proposed in
[22] for melted snowflakes.

*e variability of the parameters for the Z-R and Z-S
relationships is quite different from each other. Figure 1
compares the box plots of parameters A and b of the two
relationships collected in this study. As can be seen in this
figure, the range of parameter A of the Z-R relationship is
16.6∼730 and that for parameter b is 1.0∼2.87. On the
contrary, the range of parameter A of the Z-S relationship is
160∼3,300 and that for the parameter b is 1.09∼2.21; that is,
the ranges of parameter A are very different, but those of
parameter b are similar to each other.

Simply plotting the Z-R relationships and Z-S re-
lationships collected in this study produces Figure 2. *e
log-log scale was used in this figure, so all relationships are
shown linearly over the Z-R and Z-S planes. Comparing
these two panels, one can easily find that the slopes of the
lines are similar to each other. In fact, this is a natural result
because parameter b is similar in both relationships.
However, the intercept, which is related to parameter A, is
found to be very different from each other.

*is study used the concept of a confidence interval to
summarize the Z-R relationships and Z-S relationships. In
general, the confidence interval is derived as a fixed one about
the given mean. However, in this study, the confidence in-
terval was derived for the entire range of the radar reflectivity
as a function of R or S. *e radar reflectivity Z for a given R or
S was assumed to follow the Gaussian distribution. *e 95%
confidence intervals (i.e., 2.5∼97.5% range) derived for the Z-
R relationship and Z-S relationship also overlapped in
Figures 2(a) and 2(b), respectively. As can be seen in a
comparison of these two confidence intervals, Z for S is
distinctly higher than that for R. However, it is also true that
these two confidence intervals overlap a bit to make a sep-
aration of snowfall from rainfall become very complicated.

3. Study Area and Data

3.1. Study Area. Jeju Island is located in the southernmost
region of the Korean Peninsula. In fact, Jeju Island is
composed of the main island, eight inhabited islands, and 55
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uninhabited islands. Figure 3 shows Jeju Island and its
administrative districts.

Jeju Island is a volcanic island composed of about 360
small-scale volcanoes and volcanic cones [1]. Hallasan
Mountain is located at the center of Jeju Island, and it sits at a
height of 1,950m. Hallasan Mountain has a gentle slope of
about 3° along the east–west direction, but a steeper slope of
about 5° along the north–south direction (Jeju Special Self-
Governing Province, http://www.jeju.go.kr). *e shape of the
island is elliptical, with a major axis length of 73 km along the
east–west direction and a minor axis length of 31 km along the

north–south direction. *e total area for Jeju Island is
1,848 km2, and the coastal area whose elevation above the sea
level is less than 200m covering 55.3% of the island’s total area.

3.2. Rain Gauge and Radar Data. In 1990, the Korea Me-
teorological Administration (KMA) started to introduce
automated weather stations (AWSs) in Jeju Island [23].
Now, a total of 24 AWSs are in operation [24]. Among them,
16 rain gauges are located in the coastal area with an ele-
vation of less than 250m, four in between 250 and 500m,

Table 2: Z-S relationships collected from past studies and reports.

Precipitation type Z-S relationship Ze-S relationship Reference

Snowflakes
Z � 500S1.60 Ze � 112S1.60

[16]Z � 1,800S1.60 Ze � 403S1.60

Z � 1,200S1.60 Ze � 269S1.60

Snowflakes Z � 2,000S2.0 Ze � 448S2.0 [5]
Snowflakes
Dry (T< 0°) Z � 540S2.0 Ze � 120S2.0

[6]Wet (T> 0°) Z � 2,100S2.0 Ze � 470S2.0

Snowflakes Z � 1,780S2.21 Ze � 399S2.21 [17]
Snowflakes consisting of the following crystal types:
Plates and columns Z � 400S1.60 Ze � 60S1.60

[18]Needle crystals Z � 930S1.90 Ze � 208S1.90

Stellar crystals Z � 1,800S1.50 Ze � 403S1.50

Spatial dendrites Z � 3,300S1.70 Ze � 739S1.70

Single crystals Z � 160S2.0 Ze � 36S2.0 [19]
Snowflakes
Dry (T< 0°) Z � 1,050S2.0 Ze � 235S1.60

[20]Wet (T> 0°) Z � 1,600S2.0 Ze � 358S1.60

Snowfall (1 g � 0.03mm/h) Z � 427S1.09 Ze � 96S1.09 [7]
Hail Z � 320S1.60 Ze � 72S1.60

[21]Graupel Z � 900S1.60 Ze � 202S1.60

T �mean air temperature.

Table 1: Z-R relationships collected from past studies and reports.

Precipitation type Z-R relationship Reference
Stratiform Z � 200R1.60 [2]
Convective Z � 16R1.55 [3]
All storms Z � 372R1.47

[4]*undershowers Z � 435R1.48

Rainshowers Z � 370R1.31

Continuous Z � 311R1.43

Cold front Z � 208R1.39 [12]
Continuous Z � 322R1.33 [13]
Warm air advection Z � 207R1.50

[14]

Cold air advection Z � 205R1.50

Weak gradient type Z � 201R1.50

*understorms Z � 291R1.50

Warm air advection Z � 183R1.50

Cold air advection Z � 200R1.50

Weak gradient type Z � 191R1.50

*understorms Z � 254R1.50

Warm air advection Z � 200R1.50

Cold air advection Z � 255R1.50

Weak gradient type Z � 206R1.50

*understorms Z � 318R1.50

Advances in Meteorology 3

http://www.jeju.go.kr/


two in between 750 and 1,000m, one in between 1,250 and
1,500m, and one at 1,500m or higher. *e locations of the
rain gauges are shown in Figure 4.

KMA operates the Gosan radar and Seongsan radar in
Jeju Island. *e Gosan radar, which was originally a C-band
radar, started tracking typhoons in 1991 but was replaced by
an S-band radar in 2006.*e Seongsan radar was introduced
in 2006 to supplement the Gosan radar, specifically to
remove the blind spot caused by Hallasan Mountain.
Seongsan radar is also an S-band radar, and both radars
possess an observation radius of 240× 240 km and a reso-
lution of 1× 1 km.*emajor specifications of the Gosan and
Seongsan radars are summarized in Table 3.

From both the Gosan and Seongsan radars, a total of
eight radar reflectivity fields were prepared from an elevation
of 250m to 2,000m in intervals of 250m. *at is, from each
radar, 0.25 km CAPPI, 0.50 km CAPPI, 0.75 km CAPPI,
1.00 km CAPPI, 1.50 km CAPPI, 1.75 km CAPPI, and
2.00 km CAPPI data were prepared. *ese data were used to
produce a composite field at each elevation. When data were
available from both radar systems, their arithmetic mean was
calculated to make the representative reflectivity. *e radar

reflectivity data that were used were captured from No-
vember to April from 2007 to 2016. A total of 21 AWSs data
were used in Jeju Island during the same period.

4. Mapping the Snowy Region

4.1. Using Only the Radar Information. In this study, the
mapping of the snowy region was first attempted based on
the difference between the Z-R and Z-S relationships. *e
radar reflectivity data were collected for the winter period
from the year 2007 to 2016. In most cases, the data collected
in the coastal area are for the rainfall and those in the
mountain area the snowfall. However, as the snowline varies
so widely in both space and time, it is not easy to separate the
snowfall from rainfall simply by analyzing the radar
reflectivity value. In this study, among the data collected,
those within the 95% significance range of Z-R relationship
were selected, as shown in Figure 5(a), for the elevation zone
of 250–500m, as an example. *ose within the 95% sig-
nificance range of the Z-S relationship were also selected, as
shown in Figure 5(b). Even though it was impossible to
check if these two datasets were really rainfall or snowfall,
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Figure 2: 95% confidence intervals derived for the (a) Z-R and (b) Z-S relationships.
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Figure 1: Comparison of the (a) Z-R and (b) Z-S relationships with their box plots of parameters A and b.
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they were assumed so at this point. �ese two datasets were
then quanti
ed by probability density functions (Figure 6).
Here the Gaussian distribution was assumed since the dBZ
unit was used for the radar re�ectivity [25–27]. For the rainfall
case, radar re�ectivity data were distributed over a range of 20
to 50 dBZ but for the snowfall over the range of 30 to 55 dBZ.
�ey obviously overlapped, indicating the possibility of un-
certainty in the separation of snowfall from rainfall.

As can be seen in Figure 6, the mean of the radar
re�ectivity for the rainfall was 26.1 dBZ and that, for the
snowfall case, was 41.8 dBZ. �eir standard deviations were
similar at 5.6 dBZ and 6.6 dBZ, respectively. �e range of
overlapping radar re�ectivity for both the rainfall and
snowfall was found to be between 24 and 42 dBZ. �eo-
retically, both the rainfall and snowfall can happen if the
radar re�ectivity is within this range. However, its possibility
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Figure 3: Location of Jeju Island, Korea (the contour lines over Jeju Island represent the 250m altitude interval).
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(or the probability) is totally different. Near the low bound of
this range, it is more like the rainfall, and near the upper
bound of this range, it is more like the snowfall. In this study,
the concept of a contingency table was used to determine the

threshold value of the radar reflectivity to separate the rainfall
and snowfall conditions. A contingency table is composed of
four different probabilities indicating the true and false
probabilities under the assumption of rainfall or snowfall.
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Figure 5: Comparison of observed (a) rainfall and (b) snowfall data along with their radar reflectivity collected over the elevation zone of
250∼500m (data collected during winter from 2007 to 2016).

Table 3: Major specification of the Gosan and Seongsan radars.

Radar type Gosan radar S band Seongsan radar S band
Transmitter Transmitting tube Klystron Klystron

Receiver

Frequency 2,825MHz 2,755MHz
Peak power 750 kW 750 kW

Pulse width Short 1.0 μs 1.0 μs
Long 4.5 μs 4.5 μs

PRF Short pulse 250∼1,200Hz 250∼1,200Hz
Long pulse 250∼350Hz 250∼350Hz

Occupied bandwidth 8MHz 8MHz

Antenna

Dynamic range 95 dB 95 dB
Intermediate frequency 10MHz 10MHz

Antenna diameter 8.5m 8.5m
Beam width 1.0° 1.0°
Antenna gain 45 dB 45 dB
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Figure 6: Comparison of probability density functions for rainfall and snowfall data over the elevation zone of 250∼500m.
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Figure 7: Monthly variation of the threshold radar reflectivity value (○) and its accuracy (□) for each elevation zone (the zonal-average
threshold value and fixed threshold value (30 dBZ) are also given for the comparison): (a) 1,750m; (b) 1,500m; (c) 1,000m; (d) 500m; (e)
250m.
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By changing the threshold value of the radar reflectivity,
the average accuracy of rainfall and snowfall predictions as
well as their difference was calculated. It is obvious that the
accuracy of the rainfall prediction increases as the threshold
value decreases. On the contrary, the accuracy of the
snowfall prediction increases as the threshold value in-
creases. *us, the average accuracy should be determined
somewhere in between the low and high threshold values,
which was around 33∼35 dBZ in this case. However, the
difference in the accuracy between the rainfall and snowfall
prediction was the smallest at a threshold value of 33 dBZ,
which increased rather highly as the threshold value in-
creased. Since both the average accuracy and the difference
in the accuracy between the rainfall and snowfall prediction
were important, this study determined the threshold value to
be 33 dBZ.

Following the same procedure, this study determined the
threshold value for each elevation zone from November to
April, when the snowfall is observed in the mountain area of
Jeju Island. *e results are summarized in Figure 7. In this
figure, the symbol “○” represents the threshold values, and
the symbol “□” represents the average accuracy. *is figure

shows that the threshold values that were determined
monthly were more or less the same at most elevation zones
except for the elevation zone of 250∼500m. Even in the
elevation zone of 250∼500m, the threshold value remained
similarly from November to February, but it increased a bit
from March. In the case of applying a fixed threshold value
for each elevation zone, the average accuracy was found not
to change significantly from that estimated by applying the
value determined monthly (Figure 7). It is also noticeable
that the threshold values were all determined at around
30 dBZ regardless of the elevation. *us, this study decided
to use the fixed threshold value of 30 dBZ to map the snowy
region for every month and the elevation zones considered
in this study. By applying this fixed threshold value, the
accuracy deteriorates slightly, as shown in Figure 7.

Next, this study attempted to map the snowy region with
a fixed threshold of the radar reflectivity value of 30 dBZ to
the radar reflectivity data measured over Jeju Island from
November 1, 2014, to April 30, 2015. As an example, Figure 8
shows the mapping results from 22:00 December 15 to 02:40
December 16, 2015. In this figure, the red colour represents
the snowy region and the grey colour the rainy region.

2014/12/15/22:00 2014/12/15/22:20 2014/12/15/22:40

2014/12/15/23:00 2014/12/15/23:20 2014/12/15/23:40

2014/12/16/00:00 2014/12/16/00:20 2014/12/16/00:40

2014/12/16/01:00 2014/12/16/01:20 2014/12/16/01:40

2014/12/16/02:00 2014/12/16/02:20 2014/12/16/02:40

Snowfall

Rainfall

Figure 8: Mapping result of the snowy region by applying the fixed threshold method (from 22:00 December 15 to 02:40 December 16,
2015).
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At this moment, it is not certain if the mapping result is
correct or not. As the snowfall did not accumulate in the
low elevation zone (the atmospheric temperature is gen-
erally above zero), the result could not be confirmed based
on the snowfall measurements at four locations located in
the low elevation zone of 0 to 250m. However, Figure 8
shows that the snowy region occurred rather randomly
over the Jeju Island, which is also inconsistent with the

atmospheric temperature. Higher elevation zones were
classified as the snowy zone, but some low elevation zones
were also classified as the snowy zones even when the
temperature was rather high. Overall, it is true that the
mapping result contains lots of uncertainty. *e behavior
of snowfall in space is random, and also the mapping result
lacks the physical consistency with the atmospheric
temperature.
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Figure 9: *e threshold radar reflectivity values for snowfall determined by considering the rain gauge data in each elevation zone ((a)–(e))
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4.2. Using Both the Radar and Rain Gauge Information.
*e radar reflectivity is proportional to the rain rate
(�rainfall depth/duration) or snow rate (�snowfall depth/
duration). *us, in this study, to consider this behavior of
the radar reflectivity, another method was proposed to
additionally consider the rain rate data measured at each
ground rain gauge station. All the rain gauges in Jeju Island
are equipped with a melting device for snow and thus can
measure the snowfall by units of rain rate. *e monthly
variation of the threshold value was not considered in this
study, as it was found to be very small in the analysis in the
previous section.

First, in this study, the threshold values were estimated
again using the observed radar and rain gauge data by
additionally considering the rain rate (or the snow rate).
Since the rain rate during the winter was so low, only four
ranges of the rain rate could be considered, which are
0∼3.0mm/hr, 3.0∼6.0mm/hr, 6.0∼9.0mm/hr, and 9.0∼12.0
mm/hr. Figure 9 shows the results for each elevation zone
given over the 95% significance interval derived in the

previous section. As can be seen in this figure, in all elevation
zones, the threshold radar reflectivity was determined to be
proportional to the rain rate. *e threshold values were also
found to be all within the overlapping zone of confidence
intervals of Z-R and Z-S relationships. In particular, the
threshold values were found to be located nearer to the
upper bound of the 95% confidence interval of the Z-S
relationship.

Based on above result, the study decided to use the upper
bound of the 95% confidence interval of the Z-S relationship
as the threshold for snowfall. Similarly, as the threshold for
rainfall, the lower bound of the 95% confidence interval of
the Z-R relationship was used. In between the two thresh-
olds, a zone of the mixed rainfall and snowfall was assumed.

Next, this proposed method with a variable threshold
was applied with the same data considered in the previous
section. As was explained earlier, the variable threshold of
the radar reflectivity was derived by considering the rain
rate. Both thresholds for the rainfall and snowfall were
defined, and additionally, the zone for the mixed rainfall and
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Figure 10: Mapping result of the snowy region by applying the variable threshold method (from 22:00 December 15 to 02:40 December 16,
2015).
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snowfall was also introduced to consider the uncertainty of
classifying the rainfall and snowfall. An example applying
the variable thresholdmethod to the event observed on 22:00
December 15 to 02:40 December 16, 2015, is given in Fig-
ure 10. In this figure, the red colour indicates the snowfall
and grey colour indicates rainfall. Additionally, the cross
stripes represent the mixed rainfall and snowfall.

Different from previous results in Figure 8, Figure 10
shows somewhat distinct features. First, the snowy region in
this case was larger than that in the previous case. If adding
the area for the mixed rainfall and snowfall, the snowy
region becomes much larger than that in the previous case.
Second, especially on the top of Hallasan Mountain at
subzero temperatures, radar reflectivity data were also
classified into either snowfall or mixed. In the previous case,
most of the radar reflectivity data in the high-elevation zone
was classified into rainfall. *ird, the behavior of a snow
storm, i.e., directional property of the snowfall movement,
could be clearly identified. In this example, the snowfall
approached from the west or northwest to Jeju Island, which
also scattered snowfall mostly on the rising limb of Hallasan
Mountain. *is behavior of the snowfall could not be de-
tected when applying the fixed threshold method. Obvi-
ously, the variable threshold method showed a superior
performance to classify the rainfall and snowfall. In addition,

applying the variable threshold method was also found to be
advantageous, especially when the rain rate was very low.

4.3.Determination of the Snowline atHallasanMountain, Jeju
Island. Finally, in this study, the snowline of Hallasan
Mountain was determined by applying the variable
threshold method. *e snowline in this case indicates the
lowest elevation where snow is observed. In this study, snow
was assumed to melt away if the temperature was higher
than 5°Celsius [8], and that snow would disappear regardless
of the snow depth. As an example, Figure 11 shows the
change in the snow coverage over Jeju Island from 250m to
2,000m. At the early stages of winter, snow was detected
around the top of Hallasan Mountain, but the snow-covered
area increased significantly during winter and then de-
creased again at the end of the winter.

To determine the snowline, snowfall ratios of 10% and
90% were considered in this study (Figure 12). *e snowfall
ratio was calculated by dividing the number of snowy cells by
the total number of cells at each elevation zone. In fact, the
criterion 10% was a very weak one but was considered to
show the snow-detectable elevation and its change during
the winter. *e second case was added to estimate the
number of days when the snow-covered Hallasan Mountain
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2014/12/02 2014/12/07 2014/12/13 2014/12/18

2014/12/22 2015/01/01 2015/01/08 2015/01/13

2015/01/18 2015/01/23 2015/02/01 2015/02/06

2015/02/10 2015/02/15 2015/02/20 2015/02/25

Figure 11: Change of the snow coverage over Jeju Island fromNovember 1, 2014, to February 25, 2015, determined by applying the variable
threshold method.
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could be seen.*e result shows that the snowy mountain top
can be seen from December to the beginning of March in
Jeju Island.

5. Summary and Conclusions

In this study, a method was proposed to map the snowy
region using both the radar and rain gauge information. As a
first step, this study analyzed the Z-R and Z-S relationships
to derive a fixed threshold of radar reflectivity to separate
snowfall from rainfall, and in the second step, this study
additionally considered the observed rain rate information
to address the problem of using the fixed threshold. *is
proposed method was applied to radar reflectivity data
collected during November 1, 2014, to April 30, 2015, in Jeju
Island, Korea. *e results are summarized as follows.

For the case of using only the radar information, the
threshold value of the radar reflectivity was determined to be
33 dBZ. However, the application of this threshold value did
not show any satisfactory results.*e results showed that the
snowy region occurred rather randomly, which was also
inconsistent with the atmospheric temperature.

For the case of using both the radar and rain gauge
information, the threshold radar reflectivity was determined
to be proportional to the rain rate.*e threshold values were

especially found nearer to the upper bound of the 95%
confidence interval of the Z-S relationship. Similarly, as the
threshold for the rainfall, the lower bound of the 95% con-
fidence interval of the Z-R relationship was determined for
use. Between the two thresholds was assumed to be the zone
of the mixed rainfall and snowfall. Application of this pro-
posed method resulted in somewhat distinct features like (1)
obvious snowfall on the top of Hallasan Mountain in subzero
temperature and (2) directional property of the snowfall
movement. *is method based on the variable threshold
depending on the rain rate showed a superior performance in
classifying the rainfall and snowfall, including a good per-
formance particularly when the rain rate was very low.

Based on above results, the proposed method in this
study based on the variable threshold value of radar
reflectivity considering the observed rain rate could be
confirmed to be effective when applied to map the snowy
region. Especially, the AWS, which can measure the snowfall
by the unit of water depth, was found to be beneficial to
improve the quality of snowfall prediction. Even though this
is a case study over Jeju Island, Korea, the samemethodology
may be applied anywhere with a similar environment. Es-
pecially, this methodology can be advantageous in the
mountainous areas where snow measurements are not
systematically taken.
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Figure 12: Change of the snowline (shaded area) over Jeju Island from November 1, 2014, to April 30, 2015, determined by applying the
variable threshold method ((a) snow coverage 10% or higher; (b) snow coverage 90% or higher). Also, the thin wiggly line represents the air
temperature measured at each elevation, which is moving around the reference temperature 0°C (i.e., the horizontal line at each elevation).
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In the present study, five-year of precipitation features (PFs) datasets, based onGlobal PrecipitationMeasurement (GPM), are used
to investigate the global and regional characteristics of extreme rainfall events (EREs).)e EREs are defined based on the PFs area,
depth (maximum height of radar reflectivity), and the rain rate and called them largest, deepest, and intense EREs, respectively.)e
EREs are divided into top 10%, 1%, 0.1%, and 0.01% based on their frequency of occurrences. It is observed that occurrences of
EREs belonging to less than top 0.01% EREs follow the tropical rainfall climatology over the tropics based on all the parameters.
Subtropical oceanic areas consist of a higher frequency of largest EREs, whereas tropical land areas consist of the higher number of
deepest EREs. )e most intense EREs (top 0.01%) are uniformly distributed over tropical areas and subtropical oceans, and spatial
distribution shows that a deepest ERE belongs to intense EREs in the tropical land areas. Large differences between the pre-
cipitation contribution from the largest and deepest EREs are seen; for example, the top 1% of largest EREs contribute to ∼80.7% of
Earth’s precipitation, whereas the corresponding percentage for deepest EREs is only 53%. On the regional and seasonal scale,
South Asia (SAsia) and South America (SA) nearly show common features, as oceanic and land areas consist of largest and deepest
EREs, respectively, and contribute to higher precipitation. Subtropical latitudes over South America, including Sierra de Cordoba
and La Plata basin, consist of deepest and intense EREs and match with those of the Indo-Gangetic plain over South Asia, which
also shows the similar characteristics. EREs based on various parameters are strongly linked over SAsia compared to SA. For
example, the largest top 10% EREs have a higher probability to be part of the top 10% deepest and intense EREs over SAsia. )e
seasonal and regional water budget reveals different characteristics, as in the southern hemisphere, the deeper EREs contribute to
the higher fraction of rainfall, but over SAsia, the shallower EREs could also contribute to significant rainfall.

1. Introduction

Mesoscale convective systems (MCS) play a vital role in
tropical large-scale circulation (e.g., [1, 2]) and Earth’s water
budget, as most of Earth’s rainfall comes from them [3].
)erefore, it is very important to understand them globally,
seasonally, and regionally. )e extreme rainfall events
(EREs) are related to atmospheric/weather conditions [4].
Some common EREs are associated withMCSs [5] and could
produce a copious amount of rainfall over the tropical land
and oceanic areas. Because of their large impact on the

Earth’s energy and water budget, the scientific community
has studied their properties in many ways, including field
campaigns (e.g., GATE, Monsoon Experiment (MONEX),
TOGA COARE, DYNAMO, and COPE), satellite observa-
tions, and numerical modeling (e.g., [2, 6–9]). Passive mi-
crowave radiometers can detect the strength of ice scattering
signals, whereas lightning data were used to identify the
global distribution of storms [10–13]. )e Tropical Rainfall
Measuring Mission (TRMM) satellite was launched in 1997,
consists of multiple sensors, and provides the three-
dimensional structure of precipitation [14] from space.
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)e TRMM-based precipitation features (PFs) consist of
valuable information of the precipitation, such as its depth,
area, convective-stratiform fraction, rain rate (RR), and
volumetric contribution to rainfall [15, 16]. Past studies
detected the various properties of precipitation over the
tropics and subtropics using the TRMM sensors [17–31],
including their vertical characteristics, diurnal cycle,
convective-stratiform separation, and other properties.
Extreme and intense convection is defined using the radar
reflectivity as a threshold in many studies over different
tropical areas [24, 26, 27, 29, 30, 32]. For example, the
maximum height of 40 dBZ is used as a convective proxy
[23], and based on the criteria, it is observed that some of the
most intense thunderstorms occur over the tropical land
areas [33]. TRMM data are used to investigate the scale-
based precipitation systems over the tropical globe [34], and
the precipitation systems are classified into small (<100 km2)
and large (>10000 km2) ones. )e observations revealed that
small precipitation systems do not show much diurnal
variation, whereas large precipitation systems mostly occur
in the afternoon.)e geographical locations of 1000 extreme
precipitation events with the highest volumetric rainfall
amount showed that these events are unevenly distributed
and mostly occur near South America and associated with
the tropical cyclone [35]. Hamada et al. [35] defined the
intense rainfall events using RR (mm h−1). )ey considered
the RR greater than 99.99 percentile in each 2.5° × 2.5° grid
box over the tropical areas [35] and showed that most of the
volumetric higher rainfall events are associated with cy-
clones. A weak linkage is observed between the largest
precipitating systems and their corresponding top height [4].
Table 1 lists the past studies where intense and extreme
rainfall events are studied using the TRMM data.

Monsoon domains are defined based on the annual and
seasonal rainfall criteria [37]. Monsoon domains consist of
more than 70% of the total annual rainfall during local
summer seasons. Based on the mentioned criteria, monsoon
domains are defined over South East South Asia, Indonesia-
Australia, Northern and Southern Africa, and North and
South America. In the past, various studies were carried out
to investigate the rainfall characteristics, such as monsoon
circulation pattern, intraseasonal variation, and mesoscale
convection (e.g., [37–41]). However, there are very few
studies that have been carried out to understand the dis-
tribution and characteristics of EREs globally, regionally,
and seasonally. )e multiscale climatology of large, deep,
and intense rain events will improve the estimation of
rainfall by using microwave radiometers [42, 43]. )e main
objectives of the present study are to investigate the global
view of the spatial distribution of EREs and their role/
contribution to global precipitation. We also selected two
monsoon seasons, namely, Indian summer monsoon (June
to September, JJAS) and Austral summer monsoon (De-
cember to March, DJFM) over South Asia (SAsia, 55°E–
110°E, 0–35°N) and South America (SA, 80°W–35°W,
10°N–55°S) to investigate the regional and seasonal distri-
bution of EREs and their contribution in regional pre-
cipitation during two monsoon seasons. For this, we used
the PFs from the Global Precipitation Measurement (GPM)

observations. )e core satellite of the GPM was launched in
February 2014 and consists of a dual-polarized radar (DPR)
and a microwave imager (GMI). In summary, the main
objectives of the present study are to answer the following
questions:

(a) What is the spatial distribution of the largest,
deepest, and intense EREs on the Earth using 4-year
GPM data (April 2014–December 2017) and their
importance in world precipitation?

(b) What are the regional differences of occurrence of
these EREs during two monsoon seasons over SAsia
and SA, and how important is the contribution of
these EREs relative to the seasonal and regional
precipitation?

(c) How are these EREs interlinked based on their size,
depth, and rainfall intensity during Indian and
Austral summer monsoon seasons over SAsia and
SA, respectively?

)e paper is organized as follows. Section 2 provides a
summary of the data used in the present study and in-
troduces the method for defining EREs. Section 3 describes
the global distribution of EREs and their characteristics on a
global, regional, and seasonal scale. Summary and con-
cluding remarks are given in section 4.

2. Global Precipitation Measurement (GPM),
Precipitation Features (PFs), and Extreme
Rainfall Events (EREs)

GPM, a successor of TRMM, is a joint multisatellite mission
by NASA and the Japanese Space Agency, which provides
the global information of precipitation [44]. )e core ob-
servatory of GPM has a DPR and an advanced passive mi-
crowave radiometer, which measures the three-dimensional
characteristics of precipitation. GPM covers the area between
65°S and 65°N compared to the TRMM, whose span was only
36°S–36°N. In the present study, we used the PFs based on
GPM DPR and passive microwave radiometers sensors
(http://atmos.tamucc.edu/trmm/data.html#datadownload) [33].
)e PFs are defined as the connected pixels of PR beams
with near-surface rain rate >0.1mmh−1 [33]. )ese PFs are
further used to extract the characteristics of EREs on a
global, regional, and seasonal scale. Here, the extremely
large, deep, and intense EREs are identified and their
properties such as echo top height, area, and RR are ex-
plored. Last, the fractions of precipitation contributed by
these EREs are estimated for comparing the global and
regional precipitation budgets.

Basically, GPM based PFs are used to characterize the
EREs based on various parameters [33]. Liu and Zipser [33]
classified the EREs into the top 10%, 1%, 0.1%, and 0.01%
based on their area and top height using one year of GPM
data. We followed the methodology used in [33] and defined
three types of EREs, namely, the largest, deepest and intense
EREs based on the area, top height, and RR of PFs, re-
spectively (Table 2). Basically, we plotted the cumulative
frequency distribution (CDF) of all the parameters and then
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divided them into the top 10%, 1%, 0.1%, and 0.01% based on
their number of occurrences (Supplementary Figure 1). )e
largest EREs are defined based on the area of PFs (km2) and
area of volumetric rainfall contribution (km2mmh−1),
whereas the deepest EREs are defined based on the maxi-
mum height of 20 dBZ (MH20, in km) and the maximum
height of 40 dBZ (MH40, in km). )e intense EREs are
defined based on the RR (in mmh−1), and the parameters are
mentioned in Table 2, which shows the definition of various
kinds of EREs used in the present study.

3. Results and Discussions

3.1. Global Distribution of Extreme Rainfall Events.
Figure 1 shows the spatial distribution of the largest EREs
based on the area of PFs (top 10%, top 1%, top 0.1%, and
top 0.01%). )e first three panels (Figures 1(a)–1(c)) show
the distribution of the largest EREs in each 1° × 1° box,
whereas Figure 1(d) shows the actual geographical loca-
tions of the top 0.1% (green color) and the top 0.01% largest
EREs (magenta color). )e spatial distribution of less than
99.99% largest EREs follows the total rainfall climatology
(Figures 1(a)–1(c)), and the higher number of EREs are
observed over the tropical belt and at high latitudes over
oceanic areas [45–47]. )e largest EREs (top 0.01%) occur
over the oceanic areas beyond the tropics. )e most
valuable benefit from GPM observations are apparent;
because of their scanning at higher latitudes, it is clearly
observed that mid latitude and high latitude over oceans
(beyond 35°S and 35°N) consist of the largest EREs.
Figures 2(a)–2(c) and 3(a)–3(c) show the spatial distri-
bution of the deepest EREs in a 1° × 1° box based on MH20

and MH40, respectively, and they also follow the long-term
rainfall climatology. Tropical oceanic areas and high lati-
tudes (beyond 38°) consist of shallow EREs (up to 5 km,
Figure 2(a)) and are consistent with the TRMMobservation
[31]. Tropical land-dominated areas such as the Indo-
Gangetic plain (IGP), central India, Maritime Continent
(MC), north Australia (NAUS), and central South America
consist of the highest number of deepest EREs (e.g., top
0.01% EREs> 15.50 km). EREs with MH40 show similar
characteristics but the corresponding altitude is>
15.875 km (Figure 3). )e top 0.01% deepest EREs based on
MH40 are mostly found over land-dominated areas, such
as South Asia, central Africa, central South America, and
the south of United States of America. )e EREs with
higher 40 dBZ echoes are also found over the mid latitude
and subtropical areas, such as northern Europe, Siberian
Russia, and central Canada. It clearly indicates that even if
the oceanic areas and mid latitude have largest EREs, they
are not deep enough. Figure 4 shows the global distribution
of intense EREs. Again, up to top 0.1% intense rainy events
(>130.06mmh−1) follow the rainfall climatology, but the
top 0.01% (>299.62mmh−1) intense rainy events show the
different characteristics compared to the largest and
deepest EREs. For example, both land and oceanic areas
consist of the top 0.01% intense rain events, and most of the
intense EREs occur over central South America, central
Africa, South East South Asia, Maritime Continent, coastal
regimes, central Pacific, southern Atlantic, and South
America.

Spatial distribution of EREs shows the land-ocean
contrast as well as the regional characteristics. )e largest
and deepest EREs (top 0.01%) occurrences show the land
and ocean contrast, as mostly subtropical oceans and
tropical land areas, consist of the largest and deepest EREs,
respectively. However, intense EREs occur both over the
tropical land and oceanic areas (Figure 4(d)). It clearly
indicates that largest EREs do not correspond to the deepest
or intense EREs over land (quantified later), and over land,
the intense EREs are deeper, compared to the ocean where
shallower EREs may be an intense one as shown in

Table 2: Definition of extreme rainfall events.

Types Parameters
(1) Largest EREs PFs area and volumetric area

(2) Deepest EREs Maximum height of 20 and 40 dBZ (MH20
and MH40)

(3) Intense EREs Rain rate (RR)

Table 1: Past studies considered to investigate the extreme rainfall events using the TRMM satellite.

Reference Definition of extreme events

Zipser et al. [23] Maximum height of 40 dBZ; minimum brightness temperature at 37 and 85GHz; higher
lightning flash rate

Houze et al. [24]
Romatschke and Houze [32]
Romatschke et al. [32]
Rasmussen and Houze [36]

Deep intense convective echoes (40 dBZ echo reaching heights>10 km)
Wide intense convective echoes (40 dBZ echo> 1000 km2 in horizontal dimension)

Hirose et al. [34] Small (<100 km2) and large (>10000 km2) precipitation systems

Hamada et al. [35] Rain rate (mm h−1) higher than the 99.99 percentile in each 2.5° × 2.5° grid box over the
tropical areas

Bhat and Kumar [26]
Kumar and Bhat [27] Radar reflectivity> 20 dBZ at 12 km and top 5% radar reflectivity at 3 and 8 km

Kumar [28, 29] Radar reflectivity> 40 dBZ at 3 km

Hamada et al. [4] Rain rate (mm h−1) higher than the 99.99 percentile in each 2.5° × 2.5° grid box over the
tropical areas

Liu and Zipser [34] Divided the PFs into top 10%, 1%, 0.1%, and 0.01% group based on the area andmaximum
height of PFs

Advances in Meteorology 3



[4, 34, 35]. In the next section, we will discuss the importance
of these EREs in world precipitation.

3.2. -e Fraction of the Global Precipitation from Extreme
Rainfall Events. EREs are very important as they contribute
to most of the global precipitation [33]. Figure 5 shows the
fraction of global precipitation in each 1° latitude belt for
the EREs based on MH20. Here, two important features are
observed. First, tropical areas have a higher number of
deeper EREs, which contribute to a higher fraction of
rainfall in world precipitation, whereas, beyond 25°, a
higher fraction of precipitation comes from shallower
EREs. )e deeper EREs (top 1% > 15.50 km) are less but
contribute to the highest fraction of precipitation over the
tropics, whereas over the mid latitude, most of the pre-
cipitation comes from the EREs less than 7.5 km altitude
and mostly belongs to the top 10% of the deepest EREs.
)ese findings are consistent with the past studies
[33, 48, 49]. )e higher fraction from shallow precipitation
over the southern hemisphere is due to the large regions of
weak and shallow rainfall over the area (e.g., stratocumulus
regions west coast of Chile and Africa). A clear difference is
observed between the northern and southern hemisphere,
and each latitude in the northern hemisphere has higher

deeper EREs compared to the corresponding latitude in the
southern hemisphere.

Table 3 provides a brief information of the fraction of the
global precipitation contributed by different types of EREs.
)e top 1% largest EREs contribute more than 36% of the
total global precipitation, whereas the corresponding con-
tribution for top 1% deepest EREs based on MH20
(>10.625 km) and MH40 (>9.5 km) are only 14.3 and 4.5%.
)e land and ocean contrast are also visible as land-based
deepest EREs contribute to higher global precipitation
compared to oceanic based deepest EREs; however, the
largest EREs show the opposite characteristics. )e top
0.01% largest EREs contribute to more than ∼8.0% rainfall
over the oceans, compared to the land where the top 0.01%
largest EREs only contribute to ∼2.6% rainfall. Although the
deepest EREs based onMH40 contribute to a higher fraction
of rainfall (3.1%) over land-dominated areas compared to
oceanic areas (1.8%).

3.3. Regional Distribution of Extreme Rainfall Events over SA
and SAsia during Different Seasons. We selected two mon-
soon domains/zone, namely, SAsia and SA, during JJAS and
DJFM months to compare the characteristics of EREs.
Figure 6 shows the geographical locations of top 10% (blue),
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Figure 1: Spatial distribution of largest (in size) extreme rainfall events over the globe. (a–c) )e distribution of largest extreme rainfall
events in each 1° × 1° box; (d) the actual geographical locations of largest extreme rainfall events. Color bar in (a)–(c) shows the number of
extreme rainfall events. (d) )e green color refers to the top 0.1% PFs, whereas magenta refers to the top 0.01% largest PFs.
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1% (green), 0.1% (violet) and 0.01% (black) EREs based on
the various criteria (Table 2) over SA and SAsia. Table 4
shows the thresholds used in the present study for DJFM and
JJAS seasons. During DJFM months, the largest EREs (top
0.1% largest PFs, 53320 km2) occur over central SA, southern
Chile, south of the Atlantic Ocean, and Amazon basin
[32, 36]. )e largest EREs over the Amazon is linked to low-
level jets (LLJ), which carry the moist air from the Amazon
and produces the heavy precipitation at the eastern flank of
the Andes [50]. )e deepest EREs show the different
characteristics compared to the largest EREs, and the re-
gional differences are much higher. For example, the deepest
EREs (top 0.1% EREs>16.25 km) mostly occur over central
SA including the north SA, La Plata basin, Sierra de Cor-
doba, central Andes, and southern Chile.)e higher number
of deepest EREs over/near the Andes reflects the orographic-
induced convection [32, 36]. )e Atlantic Ocean does not
consist of a single ERE categorized by the top 0.01% deepest
EREs and is consistent with the weak convection over the
Atlantic [23, 28, 29, 32]. )e deepest EREs based on MH40
show the most interesting characteristics, as both Atlantic
Ocean and Pacific Ocean do not consist of a single ERE
belong to the top 1% deepest EREs, and the deepest EREs

mostly occur over the land area (top 0.01%; >14.0 km). )e
spatial distribution of the largest volumetric rainfall EREs
shows that most of the largest EREs are located near the
Brazilian highlands and the Atlantic Ocean and nearly co-
incides with the locations of the largest EREs. )e intense
EREs (top 1%) reveal the importance of the role of orography
in intense rainfall events, as during DJFM seasons, the areas
near and at the Andes have the higher number of intense
rainfall events (top 1% EREs>44mmh−1), along with the La
Plata basin and Brazilian Highlands. Overall, northern SA has
higher intense EREs compared to southern SA.

Figure 6(b) shows the geographical locations of EREs
over SAsia during JJAS months. )e spatial distribution
shows that the Bay of Bengal (BOB) and the head of the Bay
have a higher number of the largest EREs (top 0.1% largest
EREs; 53000 km2). )ese findings are consistent with the
past studies that the BOB has the most organized larger
convective systems [23, 33, 35, 37]. )e Western Ghats
(WG), Arabian Sea, and tropical Indian Ocean also consist
of fewer largest EREs (>53000 km2). )e deepest EREs based
on MH20 show different characteristics, as the IGP and WG
have the higher number of deeper EREs (top 0.1%;
>11.5 km). Myanmar and Karakoram hills also consist of
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Figure 2: Spatial distribution of deepest (in depth, km) extreme rainfall events over the globe based in the maximum height of 20 dBZ. (a–c)
)e distribution of deepest extreme rainfall events in each 1° × 1° box; (d) the actual geographical locations of deepest extreme rainfall events.
Color bar in (a)–(c) shows the number of extreme rainfall events. (d) )e green color refers to the top 0.1% deepest PFs, whereas magenta
refers to the top 0.01% deepest PFs.
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fewer deeper EREs [26]. )e deepest EREs based on MH40
show an interesting characteristic as they (top 0.1%
EREs> 13.5 km) are located mostly over the land areas, such
as over the Western Himalaya Foothills (WHF), IGP, and
central India and reflect the land and ocean differences. )e
WG and Arabian Sea have the shallowest EREs (<5.0 km)
during the monsoon season [28, 31]. )e largest EREs based
on the amount of volumetric rainfall follow the largest EREs
distribution, and most of the largest EREs correspond to the
higher volumetric rainfall, especially over the BOB and
Arabian Sea. )e land-dominated areas have fewer largest
EREs, which contribute to higher volumetric rainfall com-
pared to oceanic areas. )e most intense EREs show the
interesting characteristics, and both land and oceanic areas
consist of intense EREs. Areas over the head of the Bay, BOB,
Arabian Sea, Karakoram hills, and WG have the highest
intense EREs (top 0.1% intense EREs>125mmh−1), but they
do not coincide with the largest EREs, except over the BOB.
During JJAS months, the topographic areas such as the IGP
and WHF consist of fewer intense EREs (top 0.1%
> 133mmh−1) and reflect the mountain’s role [51]. )e WG
and the Arabian Sea also have few large and intense EREs [26].

)e spatial distribution of the deepest, largest, and intense
EREs indicates the effect of specific geographical features,

climatological wind pattern, humidity, topography, and role of
cloud condensation nuclei (CCN). It has been long known that
the wind shear and upslope motion at the wind-ward and lee
side of the mountain can alter the microphysical processes and
lead to a change in rainfall characteristics [51]. )e smaller
number of the largest and deepest EREs at west of the Andes
and south most (including Pacific Ocean) of the Andes are
related to South-East Subtropical Anticyclone (SPSA) in the
South Pacific basin. )e SPSA generates the stable and arid
condition at the western slope of the Andes [52], which does
not allow the deep convection and does not allow the moisture
to rise above 900hPa. South American LLJ transports the
moisture along the eastern edge of the Andes from the tropical
regions to the subtropical part of the continent (850 level), and
it triggers the deep and intense convectionmostly at the eastern
flank of the Andes [32].)e deepest convections over theWHF
and Sierra deCordoba alongwith La Plata basin are due to their
specific geographical feature and wind pattern. Median et al.
[53] and Romatscheke and Houze [32] explained that in-
stability generatedwithin themoist boundary layer in two areas
is not easily released. )e only way to produce the deep and
intense convection over these areas is the orographic motion.
Whenever an unstable and orographically induced flow moves
along the steep slope and reaches up to the saturation level, it
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Figure 3: Spatial distribution of deepest (in depth, km) extreme rainfall events over the globe based in the maximum height of 40 dBZ. (a–c)
)e distribution of deepest extreme rainfall events in each 1° × 1° box; (d) the actual geographical locations of deepest extreme rainfall events.
Color bar in (a)–(c) shows the number of extreme rainfall events. (d) )e green color refers to the top 0.1% deepest PFs, whereas magenta
refers to the top 0.01% deepest extreme rainfall events.
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Figure 4: Spatial distribution of intense extreme rainfall events (in mmh−1) over the globe based on the rainfall rate. (a–c) )e distribution
of intense extreme rainfall events in each 1° × 1° box; (d) the actual geographical locations of intense extreme rainfall events. Color bar in
(a)–(c) shows the number of extreme rainfall events. (d) )e green color refers to the top 0.1% intense extreme rainfall events, whereas
magenta refers to the top 0.01% intense extreme rainfall events.

20

17.5

15

12.5

10

7.5

5.0

2.5

0
–60 –50 –40 –30 –20 –10 0 10

Latitude

H
ei

gh
t (

km
)

20 30 40 50 60 0
0.003
0.009
0.02

0.036

0.06

0.08

0.1

0.12

0.14

0.16
%

Figure 5: Contribution to global precipitation from extreme rainfall events of different maximum heights of the 20 dBZ echo. Here, the
statistics are computed in 1° latitude bins.

Advances in Meteorology 7



Table 3: Contribution to global precipitation by largest, deepest, and intense PFs.

PFs Intensity Top 10% Top 1% Top 0.1% Top 0.01%

Largest (area)
Total 96.4 80.7 36.1 7.1
Ocean 96.2 82.2 40.5 8.6
Land 97.2 76.3 23.0 2.6

Maximum height of 20 dBZ (MH20)
Total 90.6 53.1 15.4 1.8
Ocean 89.1 51.5 14.3 1.4
Land 94.9 57.8 18.8 3.1

Maximum height of 40 dBZ (MH40)
Total 86.7 53.3 9.5 1.2
Ocean 86.3 49.8 4.5 0.4
Land 87.6 63.9 24.8 4.0

Top 10% PFs
Top 1% PFs

Top 0.1% PFs
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Figure 6: Spatial distribution of largest, deepest, and intense extreme rainfall events over South America (upper rows) and South Asia
(bottom rows) during December to March (DJFM) and June to September (JJAS) months, respectively.)e different seasons are mentioned
in the Y-axis. )e first, second, third, fourth, and fifth columns are for the largest extreme rainfall events based on area, deepest extreme
rainfall events based on maximum height of 20 dBZ, deepest extreme rainfall events based on maximum height of 40 dBZ, largest extreme
rainfall events based on the quantity of volumetric rainfall, and intense extreme rainfall events based on the rain rate.

Table 4: Fraction contribution in seasonal and regional precipitations by extreme events based on the area over the land and ocean.

Season and number of
PFs

Volumetric rainfall contribution (in %) )resholds
Top 10% Top 1% Top 0.1% Top 0.01% Top 10% Top 1% Top 0.1% Top 0.01%

For the largest PFs (km2 )
DJFM/land 290919 94.97 67.95 22.07 3.68 540.1000 8.9362e+ 03 5.4077e+ 04 1.0730e+ 05
DJFM/ocean 388683 96.74 84.06 36.18 8.21 270.05 4.1735e+ 03 5.1749e+ 04 1.4738e+ 05
JJAS/ocean 253470 97.28 82.61 32.42 5.52 343.7000 6.0639e+ 03 5.9044e+ 04 1.2510e+ 05
JJAS/land 235396 94.32 64.93 21.91 4.10 540.1000 8.1997e+ 03 4.8941e+ 04 1.0320e+ 05
Maximum height of 20 dBZ (MH20)
DJFM/land 237542 84.54 28.50 4.64 0.62 8.500 14.500 16.875 18.250
DJFM/ocean 286051 91.16 53.12 12.82 2.60 5.250 9.250 13.750 16.125
JJAS/ocean 191865 94.69 57.98 12.49 1.57 7.00 12.250 16.000 18.250
JJAS/land 185994 81.03 28.30 4.38 0.38 9.375 15.000 17.565 19.985
Maximum height of 40 dBZ (MH40)
DJFM/land 36953 38.8 8.36 1.75 0.20 7.125 10.750 14.250 16.450
DJFM/ocean 17490 52.96 10.44 2.34 0.14 5.125 7.500 11.375 16.125
JJAS/ocean 26522 64.9 14.65 2.79 0.18 5.875 8.250 11.2475 16.500
JJAS/land 28598 54.62 39.42 4.93 1.01 8.000 11.250 14.475 16.625
Intense rainfall events (mm/hr)
DJFM/land 290919 88.26 50.63 10.20 1.95 7.37 59.35 216.30 299.90
DJFM/ocean 388683 94.45 69.50 25.10 5.01 4.74 30.75 125.62 299.61
JJAS/ocean 253470 96.23 77.24 24.31 3.22 6.67 55.12 206.04 299.96
JJAS/land 235396 87.33 45.94 10.06 1.42 7.72 73.43 299.11 299.97
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causes the instability to release and produces the deep and
intense convection. )e west side/coast of SAsia has lower
CCN concentration [54], which increases the warm rain fre-
quency that allows a few hydrometeors to go into the deep
atmosphere [55], and at the same time, the higher CCN
concentration over the land-dominated areas specially over the
central and IGP delays the precipitation processes [55, 56] and
is responsible for the deep and intense convection.)eArabian
Sea has less deeper EREs during JJAS months because of Giant
CCNs, which initiate the early warm rain processes and do not
allow the deep convection [55]. )e weak vertical velocity over
the oceanic area is not able to lift the hydrometeors at a higher
altitude and responsible for less cloud depth or cloud tops over
the oceanic areas.

Figure 6 shows that the largest EREs are not the deepest
ones, and the geographical location of EREs based on different
parameters show the weak linkage between the largest,
deepest, and intense EREs.)ese are quantified in detail in the
next section. )is reveals the atmospheric conditions which
produce intense EREs are different from those produce the
largest and deepest EREs. )e regional and seasonal differ-
ences in EREs are related to different atmospheric conditions
(e.g., [57]). )is situation is well observed in [26, 27], where
they showed the geographical features, and specific locations
could produce very deep convection although their frequency
could be less. For example, Zipser et al. [23] explained that the
Amazon has a higher number of EREs in December–February
(DJF), but the intense and deepest convection occurs mostly in
the post-monsoon season [48]. )e highest land and ocean
contrasts are visible in the deepest EREs, as the Pacific, At-
lantic, BOB, and Arabian Sea do not have a higher number of
the deepest EREs. )ese EREs are not crossing 12 km altitude,
whereas EREs of the nearby land areas are higher than 17 km.
Both SA and SAsia show the mountainʼs (topographic) role in
the generation of intense EREs, and most of the intense EREs
occur near the topographic areas [51]. Land vs ocean contrast
in the deepest EREs could be related to the weaker vertical
velocity over the oceanic areas, which are not able to carry the
hydrometeors at a higher altitude.

3.4. Linage between Extreme Events Based on Various
Parameters. Hamada et al. [4] observed a weak linkage
between the extreme convective and rainfall events, e.g., a
very small fraction of extreme convective events produce the
higher rainfall over the tropics and subtropics. )e corre-
lation was stronger over the tropical oceans (∼50%) com-
pared to land areas (∼10%). A similar characteristic is
observed in [33] where geographical locations of the largest
and deepest EREs do not match. Here, we examined the
linkage between the top 10% EREs based on various pa-
rameters. For example, for the largest EREs, parameters such
as MH20, MH40, volumetric rainfall area, and RR are es-
timated. In Figure 7, the first row shows the CDF of MH20,
MH40, volumetric rainfall area, and RR for the top 10%
largest EREs (see the figure comment for more details). )e
second row shows the CDF of the area, MH20, volumetric
rainfall area, and RR for the top 10% deepest EREs based on
the MH40, whereas the third row shows the CDF of area,

MH20, MH40, and volumetric rainfall area for top 10%
intense EREs based on the RR.

For the largest top 10% EREs (Figure 7(a1)), the seasonal
and regional differences are apparent. For example, SAsia
has a higher frequency of the deepest EREs (MH20 is higher)
compared to SA for the largest EREs. For 50% of the largest
top 10% EREs during JJAS months, MH20 is higher than
7 km altitude, whereas the corresponding altitude for SA is
∼5.5 km (Figure 7(a1)). EREs withMH20 higher than 8.5 km
altitude correspond to only the top 10% deepest EREs, and
so within the largest 10% EREs, ∼20% of them correspond to
the top 10% deepest EREs over SAsia (∼7 km), whereas over
SA ∼30% largest EREs corresponds to the top 10% deepest
EREs. Also, for ∼50% of the largest top 10% EREs, MH40 are
crossing the 12 km altitude, whereas the corresponding
percentage and altitude over SA is 70% and ∼8–9 km
(Figure 7(a2)). It indicates that there is a higher probability
that the largest EREs could be the deepest during JJAS
months compared to DJFM months. Volumetric rainfall
area shows the opposite characteristics, and the top 10%
largest EREs over SAsia do not provide the much volumetric
rainfall amount compared to SA. )is indicates that small
EREs are also able to contribute to significant rainfall over
SAsia during JJASmonths.)e RR is also higher during JJAS
seasons over SAsia compared to SA for the top 10% largest
EREs. More than ∼50% of the top 10% largest EREs have a
RR higher than 75mmh−1 during JJAS months, whereas the
corresponding RR is only 50mmh−1 during DJFM over SA
(Figure 7(a4)). Over both the areas, only 35–45% of the
largest EREs have a RR that is higher than the top 1% intense
RR (Table 4) which indicates that very few of the largest
EREs correspond to intense rainy events (∼63 and
∼50mmh−1 during JJAS and DJFM over SAsia and SA).

MH40 also shows the regional and seasonal differences
for the top 10% deepest EREs, and JJAS months have higher
deeper EREs over SAsia. For the ∼50% of the top 10%
deepest EREs, MH20 is higher than 8.5 km (top 10%
deepest EREs) over SAsia, whereas over SA, for the ∼40%
deepest EREs, MH20 corresponds to the top 10% deepest
EREs (7 km, Table 4). Area for the top 10% deepest EREs
does not show much seasonal differences (Figure 7(b2)).
Although in small differences, SA has a higher frequency of
the deepest EREs, which can produce a higher amount of
volumetric rainfall. )e deepest EREs have a higher chance
to be intense during DJFM months and more than ∼40% of
the deepest EREs have a RR higher than 50mmh−1, which
corresponds to the top 1% intense EREs. Importantly,
thresholds over SAsia (63mmh−1 for top 1%) is higher
compared to SA (50mmh−1 for top 1%), but there is a
higher probability (∼45%) for them to be quantified as a
part of the top 1% intense rainy events over SAsia for the
deepest EREs. For the top 10% intense rainfall EREs, MH20
and MH40 show the least regional and seasonal differences
(Figures 7(c1) and 7(c2)), and EREs over SAsia are deeper
when compared to SA. )e area and volumetric rainfall
area do not show much regional differences for intense
EREs.

Figure 7 shows that the linkage between the EREs is
higher over SAsia compared to SA, and there is a higher
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probability that the largest EREs belong to the deepest and
intense EREs over SAsia, compared to SA. It is very im-
portant to see that thresholds for EREs area, MH20, MH40,
and rain rate over SA are higher/lower compared to SAsia,
depending on the land and ocean. �e land areas have
higher deepest EREs over SAsia (>14.75 for top 0.1% EREs)
compared to SA (>12.75 for top 0.1% EREs). �e opposite
characteristics are observed over the oceans. �e least
regional and seasonal di�erences are observed in intense
EREs, it could be the orthographically induced convection
produced them [51].

3.5. Fraction of theGlobal Precipitation fromExtremeRainfall
Events during JJAS and DJFM Months. Figure 8 shows the
fraction of precipitation from the deepest EREs based on
MH20 at di�erent latitudes in 1° latitude belts over SA and
SAsia (Figures 8(a) and 8(b)) during DJFM and JJAS
month. During both the seasons, the deepest EREs based
on MH20 are crossing 12.5–17 km over the tropics and
contribute to the higher fraction of seasonal and regional
precipitation, although they are relatively rare (belongs to
only top 0.1 deepest EREs, Table 4). MH20 higher than
12 km could be related to Cumulonimbus clouds

[26, 27, 58] and is responsible for the large precipitation
contribution. At the mid and higher latitude, shallower
EREs are contributing to the higher amounts of rainfall
[31], as in Figure 5. In a small seasonal di�erence, SA
(during DJFM month) has a higher fraction of rainfall
from little deeper EREs (14 km <MH20 < 17.5 km) com-
pared to SAsia, where the maximum fraction on rainfall
comes from EREs with MH20 lies between 11 and 16.5 km
altitude. �e northern hemisphere has higher pre-
cipitation contribution by deeper EREs compared to the
southern hemisphere and possibly the higher land areas in
the northern hemisphere are responsible for them. �ere
are a higher number of shallower EREs, but their pre-
cipitation contribution is not as signi�cant, which is
consistent with past studies (e.g., [26, 33, 52]). Satellite-
based observations show that during the DJFM season, the
Andes Mountain along with the surface wind �ow a�ects
the distribution of the precipitating cloud systems [59–
62], and wind shear could also a�ect the microphysical
processes and leads the di�erent cloud tops with di�erent
rainfall intensities [63].

Figure 9 shows the fraction of precipitation from the
deepest EREs based on MH40 at di�erent latitudes in 1°
latitude belts over SA and SAsia (Figures 9(a) and 9(b))
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Figure 7: �e cumulative frequency distribution (CDF) of area, maximum height of 20 dBZ, maximum height of 40 dBZ, volumetric
rainfall, and rain rate for each type of extreme rainfall events. As an example, in the �rst row, theMH20, MH40, volumetric rainfall area, and
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during DJFM and JJAS months, respectively. )e regional
and seasonal differences are higher here; and a higher
fraction of precipitation comes from deeper EREs
(5 km <MH40 < 10 km) during DJFM months. JJAS also
shows the similar trends, but at the southern latitudes, it
also shows a maxima from the sallower clouds. At mid and
higher latitudes, shallower EREs contribute to a higher
fraction of rainfall, as in Figure 6. Figure 10 shows the
contributions to seasonal and regional precipitations from
the deepest EREs based onMH40 at different latitudes in 1°
latitude belts over SA and SAsia for land and ocean sep-
arately. Land and ocean contrasts are observed, and land
areas have a higher fraction of rainfall from deeper EREs,
compared to oceanic areas, during both the seasons. )e
land differences are higher in both the seasons compared
to oceanic areas, as oceanic areas show similar charac-
teristics, and the maximum amount of the rainfall comes
from the EREs, with MH40 lying between 4 and 6 km,
within tropical areas. Interestingly, JJAS shows the two

bands over the land-dominated areas, namely, at 7 and
9 km altitude.

Table 4 shows brief information about the fraction of
global precipitation by the EREs over land and oceanic
areas during JJAS and DJFM months. For example, the top
0.1% largest EREs contribute more than 22% of the regional
precipitation over land during DJFM months, whereas
during JJAS month, the corresponding number is higher
than 32%. During both the seasons largest EREs contribute
to higher volumetric rainfall compared to that over the
land. )e deepest EREs also show the regional and seasonal
differences, as the top 0.1% deepest EREs based on MH20
(MH40) contribute nearly ∼12.4% ((∼2.8%) over ocean)
and ∼4.3% ((4.9%) over land) of regional precipitation
during JJAS months, whereas the corresponding contri-
bution during DJFM months is only ∼4.6% ((∼12.8%) over
ocean) and ∼4.6% ((1.79%) over land). For all the pa-
rameters, the land and oceanic differences are evident and
tabulated in Table 4.
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Figure 9: Contributions to global precipitation from PFs of different maximum heights of the 40 dBZ echo. In all cases, the statistics are
computed in 1° latitude bins. Total values add up to 100%. (a) DJFM; (b) JJAS.
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Figure 8: Contributions to global precipitation from extreme rainfall events of different maximum heights of the 20 dBZ echo. In all cases,
the statistics are computed in 1° latitude bins. Total values add up to 100%. (a) DJFM; (b) JJAS.
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4. Conclusions

PFs data based on GPM satellite are used to explore the
spatial distribution of extreme rainfall events/PFs on a global
scale as well as the regional scale. We also selected the two
main monsoon zones, namely, over South Asia and South
America during different seasons to explore the spatial
distribution of extreme rainfall events.)emain conclusions
from the present study are the following:

(1) )e spatial distribution shows a large regional var-
iation in EREs based on the area, depth, and rain rate.
)e spatial distribution of the largest and deepest
EREs (top 0.01% EREs) shows the land and ocean
differences. Subtropical oceans and tropical land-
dominated areas consist of the largest and deepest
EREs, respectively. It is clear that the largest EREs do
not correspond to the deepest EREs. However, the
intense EREs occur both over the tropical land and
oceanic areas. Geographical locations of the deepest
and intense EREs over the land-dominated area
indicate that the intense EREs are deeper ones
compared to the ocean, where the shallower EREs
could also be an intense one.

(2) )e top 1% largest EREs contribute to ∼80.7% of
Earth’s precipitation, whereas the corresponding %
for the deepest EREs is only 53%. Tropical areas have
a higher number of deeper EREs contributing to a
higher fraction of rainfall in world precipitation,

whereas, beyond 25°, the higher fraction of pre-
cipitation comes from shallower EREs. )e deeper
extreme rainfall events (top 1%> 15.50 km) are less
but contribute to the highest fraction of precipitation
over the tropics, whereas over the mid latitude, most
of the precipitation comes from the EREs less than
7.5 km altitude and mostly belongs to the top 10% of
the deepest extreme rainfall events.

(3) Geographical locations of the largest, deepest, and
intense EREs over South Asia are regions dependent.
)e Bay of Bengal along with the Arabian Sea and
Equatorial Indian Ocean consists of the largest EREs,
whereas the deepest EREs mostly occur over the
land-dominated areas. )e Western Himalaya
foothills, Western Ghats, and Indo-Gangetic plain
consist of the deepest EREs during Indian summer
monsoon seasons. South America also shows similar
characteristics and the Atlantic Ocean consists of the
largest EREs followed by the Amazon and southern
Chile. )e deepest extreme rainfall events show
different characteristics, as the Amazon also has the
deepest EREs along with east side of the Andes.
Subtropical South America including Sierra de
Cordoba and La Plata basin consists of the largest,
deepest, and extreme EREs during DJFM.

(4) Extreme rainfall events are highly linked over South
Asia compared to South America based on different
thresholds. For example, the top 10% largest extreme
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Figure 10: Contributions to global precipitation from extreme rainfall events of different maximum heights of the 40 dBZ echo over the land
and ocean. In all cases, the statistics are computed in 1° latitude bins. (a) DJFM-ocean; (b) DJFM-land; (c) JJAS-ocean; (d) JJAS-land.

12 Advances in Meteorology



rainfall events have a higher probability to be the part
of the top 10% deepest and intense extreme rainfall
events. Also, the deeper and intense rainy extreme
events are highly linked over South Asia compared to
South America.

(5) )e seasonal and regional water budget reveals the
regional characteristics, as the southern hemisphere
has higher deeper extreme rainfall events, contrib-
uting to seasonal and regional precipitation budget.
)e tropical ocean has a higher number of shallower
extreme rainfall events that contribute to higher
water budget compared to land, where more pre-
cipitations occur due to deeper extreme rainfall
events.
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*is study applied the remote sensing-based drought index, namely, the Energy-Based Water Deficit Index (EWDI), across
Mongolia, Australia, and Korean Peninsula for the period between 2000 and 2010. *e EWDI is estimated based on the hy-
drometeorological variables such as evapotranspiration, soil moisture, solar radiation, and vegetation activity which are derived
from the Moderate Resolution Imaging Spectroradiometer (MODIS) imageries. *e estimated EWDI was compared with the
Evaporative Stress Index (ESI), the Vegetation Condition Index (VCI), and the Standardized Precipitation Index (SPI). *e
correlation coefficients between the drought indices are as follows: 0.73–0.76 (EWDI vs ESI), 0.64–0.71 (EWDI vs VCI), 0.54–0.64
(EWDI vs SPI-3), 0.69–0.71 (ESI vs VCI), 0.55–0.62 (ESI vs SPI-3), and 0.53–0.57 (VCI vs SPI-3).*e drought prediction accuracy
of each index according to error matrix analysis is as follows: 83.33–94.17% (EWDI), 70.00–91.67% (ESI), 47.50–85.00% (VCI),
and 61.67–88.33% (SPI-3). Based on the results, the EWDI and ESI were found to be more accurate in capturingmoderate drought
conditions than the SPI at different geographical regions.

1. Introduction

In general, drought is considered from numerous percep-
tions. Firstly, meteorological drought which is usually
interpreted by degree of aridness and duration of aridness
and its extent, which shows anomalies, correspond to cu-
mulative precipitation. Secondly, hydrological drought is
related to the precipitation deficits on water supply, which is
quantified by short runoff, deepened ground water level, and
water resource deficiencies. *irdly, agriculture drought
accounts for the variable susceptibility of vegetation during
different statuses of vegetation development which is esti-
mated by measuring diminution in crop yield and soil
moistness as well as differences among actual and potential
evapotranspiration.

Due to these assorted definitions of drought as well as
troublesome in estimating the precise commencement, range,

level, and end of drought, substantial efforts have been utilized
to delineate techniques for investigation and monitoring of
drought. However, the conventional drought has been con-
sidered based on the hydrometeorological variables measured
by the network of in situ data tools, whereas remote sensing
technology is robust substituted by providing decisive hy-
drometeorological variables for drought analysis at the
enormously higher spatial scale than the capability of in situ
network devices. Several studies have presented remote
sensing-based drought indices. Likewise, Kogan [1] in-
troduced the Vegetation Condition Index (VCI) by using
remote sensing-based Normalized Difference Vegetation
Index (NDVI) data, and Kogan [2] developed the Vegetation
Health Index (VHI) by using remotely sensed data of TIR
imageries to monitor variation in canopy temperatures.
Anderson et al. [3–5] developed a new drought index known
as “Evaporative Stress Index” (hereafter ESI). *ey assessed
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the ESI crosswise the globe based on water vapor and tem-
perature that is attained from the remote sensing model
named “Atmosphere-Land Exchange Inverse (ALEXI) re-
mote sensing model” [3–5]. *ey described that the ESI
correlated soundly with the Palmer Drought Severity Index
(PDSI) and Standardized Precipitation Index (SPI). Mu et al.
[6] proposed the Drought Severity Index (DSI) which was
based on MODIS data. *eir proposed DSI matched well not
only with the Palmer Drought Severity Index (PDSI) and
Standardized Precipitation Index (SPI) but also with the
vegetation net primary production (NPP) data which des-
ignated that the index was useful for assessing drought stimuli
on crop production and forest growth. Keshavarz et al. [7]
proposed and evaluated a new drought index, Soil Water
Deficit Index (SWDI), to study the agricultural drought. Here,
it is remarkable that almost all of these drought indices focus
on specific aspects of various and complex drought conditions
in reality. For example, SPI, ESI, EDI, and PDSI were esti-
mated primarily based on meteorological variables, so these
indices did not reflect the level of soil moisture that could
mainly influence crop growth and ecology. Moreover, VHI
and SWDI are mainly estimated based on other variables
related to vegetative greening conditions, so they cannot
accurately reveal the instant of meteorological phenomena
that can improve drought severity. For tenacity of this issue,
Sur et al. [8] assessed a progressive drought index named
“Energy-Based Water Deficit Index” (EWDI), which con-
currently considered the circulation of energy, water, and
carbon across the soil surface and atmosphere to reflect the
complex conditions of droughts related to atmosphere and
vegetation.*ey estimated this index across Korean Peninsula
using MODIS-based datasets and exposed that the EWDI
performed well and showed favorable association with the ESI
(correlation coefficient within 0.73 and 0.76 based on their
specific study area) as well as the conventional drought indices
such as PDSI (correlation coefficient within 0.57 and 0.67)
and SPI (correlation coefficient within 0.61 and 0.64). As
outcomes of their research were achieved based on the data of
Korean Peninsula which is located on the northeastern brink
of the Asian continent, they could not interpret an overall
conclusion for the applicability and legitimacy of the EWDI
on a wide range of spatial scales across the globe.

In this view, the main purpose of this research is to
enhance the application of EWDI by validating the EWDI at
other geographical locations with greater spatial scales that
are prone to drought. To attain this goal, the EWDI, ESI,
VCI, and SPI were estimated across Mongolia (north-central
Asia), the Australian continent, and the remaining part of
Korean Peninsula for the duration of 2000–2010. Linear
regression and error matrices were used to compare esti-
mated indices with each other.

2. Study Area and Datasets

2.1. Study Area

2.1.1. Mongolia. *e first study area was the north-central
Asian country Mongolia located between 42–51°N (latitude)
and 85–120°E (longitude) (Figure 1). *e total area of

Mongolia is nearly 1.6 million square kilometers, and the
elevation ranges from 1,000m to 2,500m above themean sea
level. *e country is divided into six types of natural zones
having different soil types and plant life in each zone. In this
study, meteorological data are obtained from six selected
stations which cover the entire country. *e climate of
Mongolia is described by a dry and hot summer, a long-
lasting cold winter, high temperature variations, low pre-
cipitation, and a relatively high total of sunny days (on
average 260 days per year) [9]. Mongolia, which is relatively
a dry region, has a less mean annual precipitation, accu-
mulating to approximately 100–200mm in the dry southern
mountainous regions and 200–350mm in the northern
mountainous regions [10]. *e entire area has a total annual
precipitation about 90mm.*e northern part of Mongolia is
mountainous ranges characterized by dense forests in a dry
subhumid climate, whereas the southern region is the Gobi
Desert characterized by a drier climate at lower elevations
[9]. *e above-mentioned climatic array as a function of
latitude also described the vegetation pattern athwart
Mongolia.

2.1.2. Australia. *e second study area was Australia located
between 10–40°S (latitude) and 113–153°E (longitude)
(Figure 1).*e total area of Australia is 7,617,930 km2 setting
on the Indo-Australian Plate. Australia is separated into
eight climate zones which are defined by the Building Code
of Australia (BCA). Based on the local geographical varieties
including wind patterns and elevation above the mean sea
level, each climate zone is further subdivided into many
subzones.

2.1.3. Korean Peninsula. Korean Peninsula is located on the
northeast brink of Asia at 33–43°N (latitude) and 124–132°E
(longitude) (Figure 1). Even though Korean Peninsula has
been previously investigated by Sur et al. [8], this study
presents the result of the additional analysis performed in
the north Korean region. Korean Peninsula covers an area of
219,020 km2, located in the Asian monsoon region, having a
mean annual precipitation approximately 1,100mm (North
Korea, 919.7mm; South Korea, 1,307.7mm). *e topogra-
phy of the study area represents an elevation range about
0–1,915m [11]. *e land use is mainly composed of crop-
lands (29.7%), mixed forests (39.6%), deciduous broadleaf
forests (14.4%), woody savannas (6.3%), and residential and
commercial areas (5.2%). Table 1 describes the geographical
features of meteorological observations.

Validations of various drought indices were performed
for the selected three meteorological measurement sites
(Hamheung, Anju, and Kimchaek). *e meteorological
observation stations and flux tower are presented in Figure 1,
and the features of each meteorological station are described
in Table 1.

2.2. Datasets. In this study, to calculate drought indices,
input datasets were obtained from the MODIS satellite and
ground observation for the duration of 2000–2010. *e
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MODIS multispectral sensor that is the scientific instrument
sent off into the earth circle by NASA’s Earth Observing
System (EOS) was developed to observe the atmosphere,
land, and ocean. *e temporal resolution is 1 day, and the
spatial resolutions of the sensor estimations are 1 km, 500m,
and 250m. *e sensors are found on board the Terra and
Aqua satellites, which were launched in December 1999 and
May 2002, respectively. *e Terra satellite has an overpass
time around 10 : 30 PM when ascending and 10 : 30 AM

when descending. *e Aqua satellite’s overpass time is
roughly 1 : 30 PM when ascending and 1 : 30 AM while
descending.

MODIS has been widely used in the field of energy
balance studies since it gives a firm footing for spatiotem-
porally continuous information over the entire surface of the
globe [12]. MODIS information from the Terra spacecraft
(10 : 30 overpass) is used to estimate ET using various
equations. MOD07 having a spatial resolution of 5 km is
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chosen among all current MODIS items given by NASA as it
incorporates air and dew point temperatures. *e MOD07
provides instantaneous geophysical variables such as lati-
tude, longitude, dew point and air temperatures, surface
pressure, solar zenith angle, and brightness temperature and
total perceptible water vapor with moderate resolution
[13, 14]. Together with these geophysical variables, air and
dew point temperatures were considered a part of this study.
*e MODIS cloud product (MOD06) was used for calcu-
lation of radiation under cloudy sky conditions. *e cloud
parameters including cloud fraction, cloud top temperature,
and cloud optical thickness with 1 km spatial determination
and cloud emissivity with 5 km spatial resolution [15] were
used in this study. *e sinusoidal projection was imple-
mented to the land products to peruse various needs for
major discipline groups: Korean Peninsula placed on hor-
izontal tile numbers 27 to 28 and vertical tile numbers 4 to 5
(H27V04, H27V05, H28V04, and H28V05) in the sinusoidal
projection. In the case of Mongolia, the HDF tiles are
H23V03, H23V04, H24V03, H24V04, H25V03, H25V04,
H26V03, and H26V04. For Australia, the HDF tiles are
H27V12, H28V11, H28V12, H29V10, H29V11, H29V12,
H30V10, H30V11, H30V12, H31V10, H31V11, and
H31V12. *e MOD13A2 provides NDVI and the Enhanced
Vegetation Index (EVI) at a temporal resolution of 16 days
and spatial resolution of 1 km [16], and the MOD15A2
provides Leaf Area Index (LAI) and the Fraction of Pho-
tosynthetically Active Radiation (fPAR) for every 8 days.*e
MOD17A2 provides vegetation information at 1 km spatial
resolution in every 8-day intervals through gross primary
productivity (GPP) and net primary productivity (NPP)
products. Hemispherical reflectance (white sky albedo) and
bihemispherical reflectance (black sky albedo) were offered
by the MOD43 albedo product. Reflected solar radiation was
estimated by using the shortwave infrared band (10th band)
of the white sky albedo from the MCD43B3 albedo product
[17].

For estimation of SPI, the climatological ground mea-
surement data were obtained from the weather stations.
Because SPI is calculated from more than 30 years of data, we
have chosen a location that provides over 30 years of

precipitation data in Korean Peninsula, Australia, and
Mongolia (12 sites from Mongolia: http://worldweather.wmo.
int/en/country.html?countryCode�MNG; 32 sites from Aus-
tralia: http://www.bom.gov.au/climate/data/stations/; 60 sites
from Korean Peninsula: http://www.kma.go.kr/weather/
climate/past_cal.jsp). *e streamflow data were obtained
from Global Land Data Assimilation System (GLDAS) for
drought status validation [18].*eGLDASNoah dataset having
25km spatial resolution and 1-month estimated data were used
as the ground basis observation for validation purposes.

3. Methodology

In this study, the following four drought indices were
estimated and compared: EWDI, ESI, SPI-3, and VCI. Since
selected drought indices have different data ranges, they
were normalized for more intuitive comparison with
EWDI. Following sections briefly describe the four drought
indices.

3.1. Evaporative Stress Index (ESI). ESI is calculated by using
AET-PET ratios denoted by fPET:

fPET �
AET
PET

. (1)

A well-known Priestley–Taylor algorithm (Priestley and
Taylor, 1972) was used for calculations of potential evapo-
transpiration (PET). For PET calculation, all hydrometeo-
rological data were derived from satellite observations. We
modified the algorithm of Cleugh et al. [19] and Mu et al.
[17] which estimates AET based on the following
Penman–Monteith equation [20]:

λE �
Δ RN −G( 􏼁 + ρCp esat − e( 􏼁􏼐 􏼑/ra
Δ + c 1 + rs( 􏼁/ra( 􏼁

, (2)

where λE is the latent heat flux (W·m−2), λ is the latent heat
of vaporization (J·kg−1), Δ is the slope of the curve relating
the saturated water vapor pressure to temperature
(kPa·K−1), RN is the net radiation flux (W·m−2), G is the soil
heat flux (W·m−2), ρ is the air density (kg·m−3), CP is the

Table 1: General characteristics of the study sites.

ID Latitude Longitude Altitude (m) Temperature (°C) Precipitation (mm)
Hamheung 39.93°N 127.55°E 13 9.8 890.3
Anju 39.62°N 125.65°E 125 9.2 1072.0
Kimchaek 40.67°N 129.20°E 540 8.4 700.0
Tsetserleg 47.45°N 101.47°E 1695 0.5 336.0
Darkhan 49.47°N 105.98°E 709 −0.6 309.0
Sainshand 44.90°N 110.12°E 915 4.0 119.0
Dalanzadgad 43.58°N 104.42°E 1469 4.6 127.0
Khovd 48.02°N 91.65°E 1405 0.3 119.0
Murun 49.63°N 100.17°E 1288 −1.3 207.0
Darwin 12.46°S 131.05°E 34 27.4 1694
Giles 25.03°S 128.30°E 598 22.7 291.7
Perth 31.88°S 116.13°E 25 18.7 807.0
Brisbane 27.48°S 153.04°E 8 20.3 1168.0
Adelaide 34.87°S 138.87°E 48 16.4 536.0
Melbourne 37.88°S 145.04°E 49 14.8 666.0
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specific heat capacity of air (J·kg−1·K−1), esat is the saturated
water vapor pressure (Pa), e is the actual water vapor
pressure (Pa), ra is the aerodynamic resistance (s·m−1), c is
the psychrometric constant and is set as a constant with a
value of 0.66 Pa K−1, and rs is the surface resistance (s·m

−1).
All required parameters of equation (2) were obtained

from satellite observations using the algorithms of Cleugh
et al. [19] and Mu et al. [17]. In this study, the only dif-
ference was EVI instead of NDVI because the EVI might
enhance the accuracy of the estimated AET value [17]. *is
study enhanced the accuracy of the AET estimation by
introducing the gross primary productivity (GPP) values
for the estimation of the surface resistance (rs). *e GPP
can be derived from the MOD17 product, and it is known
to precisely reflect the impact of photosynthesis which EVI
and NDVI cannot reflect [21]. To enhance the accuracy of
the algorithm, this study revised the equation for calcu-
lating the vegetation cover fraction by the following
equation:

Fcci
�
1
2

EVIi −EVImin

EVImax −EVImin
+

GPPi −GPPmin

GPPmax −GPPmin
􏼢 􏼣, (3)

where Fcci
stands for the ith day’s vegetation cover fraction

and the subscripts max and min symbolize the maximum
and minimum value of all GPP and EVI values attained for
all observation periods.

*is calculated value of vegetation cover fraction is
subsequently used as the input of the set of equations [8] to
estimate the surface resistance value (rs) to be used in
equation (2). Figure 2 shows the comparison among the AET
values estimated based on the method of this study (y) to the
reference flux tower ET value (x) at Cheongmicheon (CFC)
and Seolmacheon (SMC) gages located in Korean Peninsula.
*e AET value based on the method of Mu et al. [17] is
shown for comparison. It can be noted that the method of
this study has greater accuracy compared to the method of
Mu et al. [17] in terms of correlation coefficient (Figure 2).

Lastly, the Evaporative Stress Index (ESI) is obtained by
normalizing the estimated fPET value:

ESI �
fPET − μfPET

σfPET

, (4)

where μfPET
and σfPET

represent the mean and the standard
deviation of all fPET values estimated for the entire study
period at a given grid cell location.

3.2. Energy-Based Water Deficit Index (EWDI). *e water
status of the land surface under different conditions can be
estimated by considering the EWDI which represents the
water deficit condition. Based on apparent thermal inertia
(ATI), the EWDI was corporated using the ESI and Soil
Moisture Saturation Index (SMSI). *e ATI evaluates the
spatiotemporal variability of soil moisture and is derived
directly from multispectral satellite imageries [22].

Using the differences in land surface temperature
(ΔLST) and land surface albedo, the ATI is calculated as
follows:

ATI �
1− α
ΔLST

,

Z(ATI)i,j � SMSI �
ATIi,j −ATImin

ATImax −ATImin
,

(5)

where α represents the land surface albedo and ΔLST is the
diurnal land surface temperature, which is the difference of
temperature between the daytime and nighttime. Since the
ATI represents the sum of canopy and soil moisture vari-
ability, the higher the value, the higher the soil water content
of the land surface [22, 23]. ATI values are normalized by
using SMSI for the purpose of calculating EWDI. ATIi,j
represents the ATI value at the ith latitude and jth longitude.

After calculation of the EWDI, the ESI and SMSI terms
are differences in the standardized anomaly:

EWDIi,j � Z ESIi,j + SMSIi,j􏼐 􏼑
i,j

, (6)

where the EWDI is a dimensionless index ranging from
infinite negative values (drier than normal) to infinite
positive values (wetter than normal). Surface albedo prod-
ucts (MCD43B3) in 8 days were used in this study. Leaf Area
Index (MOD15A2), NDVI and EVI (from the MOD13A2
product), and atmospheric products (MOD07_L2 atmo-
sphere product) were used for calculating EWDI.

3.3. Standardized Precipitation Index (SPI). *e SPI was
established by McKee et al. [24]. *e SPI is assessed by using
the monthly average precipitation dataset, for a continuous
period of at least 30 years. Because SPI is calculated from
more than 30 years of data, we have chosen a location that
provides over 30 years of monthly precipitation data. *e
SPI uses monthly precipitation aggregated at various time
scales (1month, 3months, 6months, 12months, etc.). In
general, gamma fitting function is applied for each dataset to
describe probability interactions. *e distinction of the SPI
is that it does not depend upon the model. A straightforward
valuation of precipitation is the input, disparate with the
PDSI, which makes assumptions about water storage and
deficit.

3.4. Vegetation Condition Index (VCI). *e Vegetation
Condition Index (VCI hereafter) [1] is the most widely used
satellite-based drought index to monitor vegetation condi-
tions. VCI is determined based on the Normalized Differ-
ence Vegetation Index (NDVI) which assesses live green
vegetation for the observed target. VCI is determined using
the following equation:

VCI � Z
NDVI−NDVImin

NDVImax −NDVImin
􏼢 􏼣, (7)

where NDVI, NDVImin, and NDVImax are the smoothed
monthly normalized difference vegetation index at a given
grid cell location, its multiyear maximum, and its multi-
year minimum, respectively, and Z is the meaning of
standardized normalization. Since the VCI is an index
value which normalizes the value varying between 0 and 1,
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Figure 2: Comparison of the actual evapotranspiration estimated by the method of this study.

Table 2: Error matrix result for Korean Peninsula (Hamheung site) during 2001–2010.

Hamheung
Streamflow

Sum Drought accuracy (%) Overall accuracy (%)
Drought No drought

Moderate drought (Streamflowlower quartile � 0.03137 cfs)
ESI

54/58� 93.10 110/120� 91.67Drought 54 4 58
No drought 6 56 62
Sum 60 60 120

EWDI

54/57� 94.74 113/120� 94.17Drought 54 3 57
No drought 4 59 63
Sum 58 62 120

SPI-3

45/52� 86.54 100/120� 83.33Drought 45 7 52
No drought 13 55 68
Sum 58 62 120

VCI

35/53� 66.04 85/120� 70.83Drought 35 18 53
No drought 17 50 67
Sum 52 68 120

Table 3: Error matrix result for Australia (Brisbane site) during 2001–2010.

Brisbane
Streamflow

Sum Drought accuracy (%) Overall accuracy (%)
Drought No drought

Moderate drought (Streamflowlower quartile � 0.04784 cfs)
ESI

45/52� 86.54 100/120� 83.33Drought 45 7 52
No drought 13 55 68
Sum 58 62 120

EWDI

54/57� 94.74 113/120� 94.17Drought 54 3 57
No drought 4 59 63
Sum 58 62 120

SPI-3

39/56� 69.64 84/120� 70.00Drought 39 17 56
No drought 19 45 64
Sum 58 62 120

VCI

29/57� 50.88 91/120� 75.83Drought 29 28 57
No drought 1 62 63
Sum 30 90 120
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approximately 95 percent of the VCI at a given grid cell
location varies from −2 (harsh drought) to 2 (healthy
vegetation condition).

3.5. Error Matrix Method. To correctly detect the drought
event and severity, numerous drought indices were eval-
uated using an error matrix method [25, 26]. An error

Table 4: Error matrix result for Mongolia (Tsetserleg site) during 2001–2010.

Tsetserleg
Streamflow

Sum Drought accuracy (%) Overall accuracy (%)
Drought No drought

Moderate drought (Streamflowlower quartile � 0.04314 cfs)
ESI

45/52� 86.54 100/120� 83.33Drought 45 7 52
No drought 13 55 68
Sum 58 62 120

EWDI

54/57� 94.74 113/120� 94.17Drought 54 3 57
No drought 4 59 63
Sum 58 62 120

SPI-3

39/56� 69.64 84/120� 70.00Drought 39 17 56
No drought 19 45 64
Sum 58 62 120

VCI

17/50� 34.00 74/120� 61.67Drought 17 33 50
No drought 13 57 70
Sum 30 90 120
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Figure 3: (a) Spatial distributions of EWDI for 2000 and 2001 in North Korea; (b) temporal distributions of EWDI and precipitation in the
(A) Anju, (B) Hamheung, and (C) Kimchaek sites.
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matrix method is a formed array that consists of drought or
wet condition as compared to the category of drought
suggested by the observation data such as streamflow and
soil moisture. When the value of the standardized
streamflow is less than 0, it is defined as a drought status.
*e fallouts of matrix are represented to obtain the ac-
curacy of drought, and the accuracy of drought is the ratio
of all observation datasets that are certificated as drought by
both the index and the observation datasets to the total
number of drought statuses.

4. Results and Discussions

4.1. Analysis ofDroughtAccuracyUsing ErrorMatrixMethod.
Error matrix derived from GLDAS streamflow dataset in
Tables 24 showed overall accuracy from 75 to 92%, with
approximately 90% accuracy during dry season. *is result
indicates that all four drought indices (EWDI, ESI, VCI, and
SPI-3) have a good degree of reliability for analyzing the
drought status at each site. *e applicability of the EWDI
was best compared to that of another drought index under
drought conditions. For streamflow, the EWDI and ESI had
markedly better results than did the VCI and SPI-3, with
drought and overall accuracies ranging between 75% and

90% at every study site. *e patterns of SPI-3 were relatively
slow because it related to the precipitation variation.

*ese intercomparison fallouts prove the applicability of
the satellite-based drought indices and the impact of drought
on streamflow [25]. However, some limitations may exist. As
noted by Karnieli et al. [27] and Choi et al. [25], the
vegetation-based drought indices such as the VCI and
Evapotranspiration-Based Drought Index (ESI) might be
less appropriate for the time and the places where drought
conditions cannot be fully represented by vegetation con-
ditions such as dormant season and the area with high
latitudes and elevations. For the aforementioned results, the
EWDI precisely predicts the drought status, compared to the
SPI-3. *e EWDI, ESI, VCI, and SPI-3 were good indices of
extreme drought status.

4.2. Spatiotemporal Patterns of Various Drought Indices.
In Section 4.2, the spatiotemporal patterns of EWDI and
actual drought situations were compared. In the case of
North Korea, several previous studies have reported that
there has been a serious drought situation from February to
May in 2000 and from March to June in 2001, respectively
[28–30]. Jang et al. [28] examined the cases of drought
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damage in North Korea from 2000 to 2001 and showed the
spatial distribution of drought damage regions. Nam et al.
[30] reported that severe drought conditions occurred in the
western part of North Korea in 2000 and in the eastern part
of North Korea in 2001.

Figure 3 represents the annual mean spatial distributions
of EWDI for 2000 and 2001 in North Korea. It also shows the
temporal distribution of EWDI and precipitation in the
Anju, Hamheung, and Kimchaek sites.

Comparing the results of this study with those of pre-
vious studies, it can be seen that a more severe drought
condition occurred during 2000 than 2001 at Anju, which is
located in the western part of North Korea. On the contrary,
in Kimchaek and Hamheung areas located in the eastern
part of the country, a more severe drought occurred in 2001
than in 2000. *e main reason of this phenomenon can be
explained by the lack of precipitation. In 2000, the amount of
precipitation in the western region was 20% of that in the
normal year, while in 2001, precipitation in the eastern
region was only 17% lower than that in the normal year. For
this reason, the spatial distribution of drought was shown
differently by year [30].

In the case of Australia, Horridge et al. [31] reported that
there has been a serious drought situation from April to

December 2002. Horridge et al. [31] showed the cases of
drought damage in Australia in 2002 and reported the spatial
distribution of drought damage regions.

Figure 4 represents the annual mean spatial distribu-
tions of EWDI for 2002 in Australia. It also shows the
temporal distribution of EWDI and precipitation in the
Darwin, Giles, Perth, Adelaide, Melbourne, and Brisbane
sites. Among the six validation sites, Perth had the lowest
annual average precipitation of 688mm in 2002, which was
32% lower than that in the normal year [31]. *e value of
the drought index for that period indicated the drought
status. In the case of the Darwin site, there was an extreme
drought situation from April to August, but there was a lot
of precipitation during the rest of the year. For this reason,
the annual average drought condition was expressed
moderately (Figure 4).

Finally, in the case of Mongolia, several previous re-
searches have reported that there has been a serious
drought situation from February to October 2001 and from
March to December 2002, respectively [32, 33]. Bayarjargal
et al. [32] examined the cases of drought damage in
Mongolia in 2001 and 2002. *ey reported that the overall
drought condition was serious in 2001, but in 2002, there
was extreme drought condition in the southern region.
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Davi et al. [33] showed the spatial distribution of drought
condition regions.

Figure 5 represents the annual mean spatial distributions
of EWDI for 2001 and 2002 in Mongolia. It also shows the
temporal distributions of EWDI and precipitation in the
Khovd, Murun, Darkhan, Tsetserleg, Dalanzadgad, and
Sainshand sites. Among the six validation sites, the Dalan-
zadgad site had the lowest annual average precipitation of
95mm in 2001 and 76mm in 2002, which were 58% lower than
that in the normal year [32].*e value of the drought index for
that period also indicated the drought status. In the case of the
Khovd andMurun sites, there were extreme drought situations
from February to April, but there was a lot of precipitation
during the rest of the year. For this reason, the annual average
drought condition was expressed moderately (Figure 5).

5. Conclusions

In this study, conventional and satellite-based drought in-
dices were compared over drought-vulnerable sites (Korean
Peninsula, Mongolia, and Australia) from 2000 to 2010. *e
EWDI showed the highest drought accuracy through the
errormatrixmethod (drought accuracy ranged from 85.71 to
94.74%; Hamheung in North Korea, Brisbane in Australia,
and Tsetserleg in Mongolia: 94.74%).

*e applicability of the EWDI was determined by com-
paring the estimated EWDI with actual drought conditions.
*e results of the EWDI and the spatiotemporal distribution
of the actual drought situation showed a similar tendency. In
the case of North Korea, there has been a serious drought
situation from February to May in 2000 and from March to
June in 2001, respectively. More severe drought condition
occurred during 2000 than 2001 at the Anju region, which is
located in the western part of North Korea. On the one hand,
in Kimchaek and Hamheung areas located in the eastern part
of the country, a more severe drought occurred in 2001 than
in 2000. In the case of Australia, there has been a serious
drought situation from April to December 2002. *e most
severe droughts in Perth were examined because the pre-
cipitation was only about 32% lower than that in the normal
year. On the other hand, Darwin was relatively less drought
prone due to heavy rainfall during the summer season (from
September to March). Finally, in the case of Mongolia, there
has been a serious drought situation from February to Oc-
tober 2001 and from March to December 2002, respectively.
During the drought period, the most serious droughts oc-
curred in the Dalanzadgad region and the less severe drought
conditions in the Khovd and Murun regions.

*rough the above-mentioned results, the applicability
of EWDI was good compared to that of the other drought
indices. Based on the results, RS-based indices were iden-
tified as good indicators for detecting the drought status
especially when climate data were not available or were
sparsely distributed.
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,e Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset was conceived as a tool for monitoring drought
and environmental change over land. Recent validation efforts along South America have assessed its suitability for reproducing the
main spatial and temporal features of precipitation. Nevertheless, little has been done regarding the ability of CHIRPS for the
assessment of wet and dry conditions, particularly in areas where in situ precipitation records are scarce. In this paper, we investigated
the performance of CHIRPS for monitoring wet and dry events along the semiarid Central-Western Argentina. Using the
Standardized Precipitation Index (SPI), we compared the CHIRPS database with records from 49 meteorological stations along the
study area for the period 1987–2016. Results indicate that the CHIRPS dataset adequately reproduced the temporal variability of SPI
on multiple timescales (1 month, 3 months, and 6months), particularly in the region dominated by warm season precipitation. ,e
large overestimation of the seasonal precipitation in the region dominated by cold season precipitation can introduce errors that are
reflected in the performance of CHIRPS over the western portion of the domain.,e frequency of wet and dry classes was accurately
reproduced by CHIRPS on timescales larger than 1 month (SPI1), given the existence of a wet bias that produces an underestimation
of the frequency of zero values.,is bias is further translated to the evaluation of the SPI1 during the spatial and temporal assessment
of historical dry (1998) and wet (2016) events, especially for the classification of extreme dry/wet months. ,e results from the
evaluation indicate that CHIRPS is a suitable tool for assessing dry and wet conditions for timescales longer than 1 month and can
support decision-making process within the hydrometeorological agencies over the region.

1. Introduction

A wide range of satellite-derived precipitation products have
emerged in the last decades, providing a spatial coverage that
is superior to gauge products, considering that rain gauges
had the obvious queries such as the density of site networks,
the continuous time series, and the financial limitation [1].
Some of these products are the Precipitation Estimation
from Remotely Sensed Information using Artificial Neural
Networks (PERSIANN) [2], the Climate Prediction Center
Morphing (CMORPH) technique [3], the Global Satellite
Mapping of Precipitation (GSMaP) [4], the TRMM Multi-
satellite Precipitation Analysis (TMPA) 3B42RT [5], and the
Multisource Weighted-Ensemble Precipitation (MSWEP)
[6]. A comprehensive overview of these products can be
found in Beck et al.’s studies [7].

To satisfy the demand of studies and applications of
climate and drought, some of these satellite-based estima-
tions provide long-term precipitation records. Some of the
products with the most extense records are the MSWEP [6],
the PERSIANN-CDR [8], and the Climate Hazards Group
Infrared Precipitation with Stations (CHIRPS) data archive
[9]. ,e CHIRPS database comprises a quasi-global (50°S-
50°N, 180°E-180°W), 0.05° resolution, and 1981 to near-
present gridded precipitation time series. ,is dataset
merges three types of information: global climatology, sat-
ellite estimates, and in situ observations [10], generating
several precipitation products with time steps from 6-hourly
to 3-monthly aggregates.

,is database was mainly used for the assessment of
monthly, seasonal, and annual precipitation variability in
several regions of the world. Monthly CHIRPS estimations
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were applied for droughtmonitoring inNepal [11], Chile [12],
and China [1]. ,e research of López-Carr et al. [13] used 3-
month accumulations to identify changes in the growing
season precipitation patterns over Africa. Trends in CHIRPS
annual rainfall estimations were compared with gridded
gauge-only precipitation datasets and climate models simu-
lations from the CMIP5 dataset [14]. ,e daily version of
CHIRPS also gained attention recently. Examples of its use
can be found in the detection of trends of extreme pre-
cipitation indices [15], the assessment of the relation between
weather regimes and wet/dry conditions along East Africa
[16], and the evaluation of the evolution of dry-day frequency
and its impacts on Amazonian seasonal rainfall [17].

,e performance of these satellite-based products needs
to be evaluated over different regions of the world in order to
identify retrieval errors and biases [18].,eCentral-Western
Argentina (CWA) is a region where the interplay between
the complex topography and the atmospheric circulation
determines a wide range of precipitation features, from
intense winter orographic precipitation [19], extreme
summer precipitation events leading to the occurrence of
landslides along the Andes range [20], and hailstorms over
the lowlands [21] to multiannual severe drought events
[22, 23]. Considering these multiple characteristics over the
CWA, the lack of ground observations makes mandatory the
use of high-resolution satellite-based precipitation products
in order to provide a better understanding of precipitation
variability and change. A recent study performed the vali-
dation of CHIRPS for a 30-year period along the CWA,
analysing the representation of the main climatological
features of precipitation [24]. ,e CHIRPS dataset captured
the rainy season characteristics over the region, considering
the Mediterranean climate features over the Andes ranges
and the monsoonal regime in the lowlands. Moreover,
CHIRPS achieved better results in the region with summer
precipitation maximum, given that precipitation was largely
overestimated during the cold semester maximum. In view
of this performance, the CHIRPS database was used for the
assessment of a glacier collapse over the Central Andes of
Argentina in a region with scarce meteorological in-
formation [25]. ,e CHIRPS estimations also gained at-
tention as input for climate monitoring tools. Six countries
in southern South America have established the World
Meteorological Organization Regional Climate Center
(RCC-SSA) that involves a strong collaboration between
weather services and academic institutions [26]. ,e RCC-
SSA periodically generates CHIRPS precipitation estimates
maps on pentadal and monthly time steps, providing rele-
vant information for decision-making needed for agricul-
tural activities and water management purposes.

Besides the efforts for the use of the CHIRPS database as
a tool for regional precipitation monitoring, few validation
studies evaluated its suitability for the assessment of dry and
wet conditions. Guo et al. [27] found that CHIRPS can
properly capture the drought characteristics at various
timescales with the best performance at the three-month
timescale. Zambrano et al. [12] concluded that, in order to
use the CHIRPS dataset to monitor drought intensity
conditions, the product should be calibrated to adjust for the

overestimation/underestimation of rainfall geographically.
Recently, Gao et al. [1] and Zhong et al. [28] indicated that
CHIRPS successfully captured the spatial patterns of
drought over China. ,ese studies also show that wet
conditions are not focus of assessment, which could be
attributed to the design of CHIRPS for agricultural drought
monitoring [9]. Nevertheless, over the study area, the oc-
currence of wet conditions affects the farming and partic-
ularly the quality of the grapes, which require plenty of solar
radiation to achieve sufficient quality for wine production
[29]. Moreover, during wet conditions, the probabilities for
the occurrence of deep convection episodes during the warm
season increases, which strongly affects the cultivated areas
over the CWA, causing big damages and economic losses,
particularly during hailstorms over the vineyards [30].,ese
factors make the assessment of both dry and wet conditions
mandatory over the study area.

,e objective of this study is to assess the suitability of
CHIRPS precipitation estimations for the representation of
wet and dry periods in the CWA. For this assessment, the
Standardized Precipitation Index (SPI) [31] was selected as
an indicator for the definition of wet and dry conditions.,e
SPI will be calculated based on rain gauges observations and
CHIRPS estimations considering several timescales. ,e
performance of CHIRPS will be evaluated through a com-
parison of the spatiotemporal characteristics of wet and dry
events over the study area over the last 30 years. ,is as-
sessment is being conducted in a region where observed
precipitation is at low spatial density, the information from
rain gauges is not always available, and time series are often
interrupted, facts that highlight the crucial nature of vali-
dating satellite precipitation estimations for extreme pre-
cipitation monitoring. It is expected that the outcomes of
this study will constitute a significant contribution for the
improvement of regional monitoring of wet and dry
conditions.

2. Materials and Methods

2.1. Study Area. ,e CWA is a semiarid region located
leeward of the Andes ranges, between 30°S and 40°S (Fig-
ure 1). ,is area is characterized by a strong influence of
topography on the regional and local climate. ,e climate at
high elevations has a Mediterranean regime with higher
precipitations during the cold season (April to September)
and dry warm seasons (October to March), in response to
the seasonal displacement of the Southeastern Pacific High
[32]. North of 35°S, the Andes is a considerable topographic
barrier with peaks exceeding 6000m.a.s.l., preventing the
wet Pacific air masses arriving at the eastern slopes [33]. Due
to the strong rain shadow effect, climate in the east of the
Andes is arid to semiarid, where convective warm season
rainfalls favored by moist air masses from the Amazon and
Atlantic basins play a relevant role [34]. South of 35°S,
precipitation is mainly generated by the passage of cold
fronts moving eastward from the Pacific [35], with a strong
west-east precipitation gradient.

,e agroindustrial activities in CWA depend largely on
grape production, an activity only possible through
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irrigation, considering the arid to semiarid climate of the
region. �e interannual rainfall variability over this region
has been partially related to El Niño-Southern Oscillation
(ENSO), with El Niño events providing large precipitation
(both snow and rainfall) amounts and La Niña events ac-
counting for drought situations [22, 36].

2.2. Data. Monthly precipitation data from 49 hydrome-
teorological stations located along the CWA were obtained
through the Water Resources Agency of Argentina and the
National Weather Service. �e location of these rain gauges
is shown in Figure 1, and the detailed information of each
station can be found in Table 1. �is database was built for

the assessment performed by Rivera et al. [24], including
quality control procedures and the detection of in-
homogeneities. A common period of 30 years, between 1987
and 2016, was selected based on the availability and quality
of precipitation records and the spatial representativeness of
the stations. Missing precipitation values, ranging from 1 to
27 nonconsecutive months, were replaced by applying linear
regressions with neighbouring stations, only for reference
stations that explain >80% (R2> 0.8) of the temporal vari-
ability of precipitation. �e behaviour of precipitation over
the study area was shown to be homogeneous both over the
region dominated by summer precipitation [22, 29] and the
region dominated by winter precipitation [33]. �is was
further veri�ed with the use of rotated principal components
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analysis (RPCA) [37] applied in the S-mode with varimax
rotation (not shown), a methodology that allowed to obtain
the regional separation observed in Figure 1 after assigning
each station to the component upon which it loads most
highly [38]. Moreover, time series of regional precipitation
are significantly uncorrelated [39], highlighting the presence
of different water vapor sources over the region that are
dependent of the season of the year. Even when every gap
filling routine introduces errors to the precipitation esti-
mation, we assume that the strong homogeneity within the

regions guarantees an adequate estimation of the real pre-
cipitation totals.

,e spatial pattern of mean annual precipitation shows
the semiarid condition of the study area, with values ranging
from less than 150mm/year north of 32°S to over 700mm/
year between 37° and 39°S, at the high elevations of the
continental divide (Figure 2, Table 1). A narrow region along
the central-east portion of the Mendoza province (ap-
proximately from 34° to 35°S) exhibits a relative maximum of
precipitation, with values higher than 400mm/year. South of

Table 1: Geographic and climatic features of the selected meteorological stations over the period 1987–2016.

ID Name Lat. (°S) Lon. (°W) Mean annual precipitation (mm) Wet season
1 San Juan 31.57 68.42 98.2 Summer
2 San Juan INTA 31.62 68.53 99.7 Summer
3 San Mart́ın 33.08 68.42 253.7 Summer
4 Mendoza Aero 32.83 68.78 236.3 Summer
5 Mendoza Observatorio 32.88 68.85 261.6 Summer
6 Malargüe 35.50 69.58 327.8 Winter
7 San Rafael 34.58 68.40 360.6 Summer
8 La Angostura 35.09 68.87 256.5 Summer
9 La Jaula 34.67 69.32 252.3 Summer
10 Rama Cáıda 34.67 68.38 347.5 Summer
11 El Nihuil 35.03 68.67 268.4 Summer
12 Villa Atuel 34.82 67.92 335.5 Summer
13 Capitán Montoya 34.58 68.45 361.5 Summer
14 Puesto Canales 34.67 68.89 293.0 Summer
15 Puesto Carmona 34.68 67.84 541.5 Summer
16 Arroyo Hondo 34.48 69.28 287.1 Summer
17 Las Aucas 34.70 69.54 253.3 Winter
18 Las Malvinas 34.94 68.24 278.4 Summer
19 Los Mayines 35.66 70.20 458.8 Winter
20 Bardas Blancas 35.87 69.81 379.4 Winter
21 Arroyo La Vaina 35.92 69.99 356.9 Winter
22 Puesto Las Moras 35.12 66.85 516.3 Summer
23 Guido 32.92 69.24 223.3 Summer
24 Valle de Uco 33.78 69.27 472.0 Summer
25 Pincheira 35.52 69.81 360.9 Winter
26 Las Vertientes 34.42 68.59 400.4 Summer
27 Juncalito 34.74 69.21 338.4 Summer
28 Puesto Morales 34.60 68.87 313.4 Summer
29 Polvaredas 32.79 69.65 178.6 Winter
30 Potrerillos 32.96 69.20 240.1 Summer
31 Puesto Papagayos 34.23 69.12 321.4 Summer
32 La Remonta 33.71 69.29 531.6 Summer
33 Uspallata 32.59 69.34 147.6 Summer
34 Buta Ranquil 37.07 69.75 184.3 Winter
35 El Cholar 37.44 70.65 525.0 Winter
36 Chos Malal 37.37 70.27 217.6 Winter
37 Vilu Malĺın 37.46 70.76 481.5 Winter
38 Cajón Curileuvú 36.96 70.39 476.7 Winter
39 El Alamito 37.26 70.42 247.6 Winter
40 Las Ovejas 36.98 70.75 718.0 Winter
41 Varvarco 36.86 70.68 627.0 Winter
42 El Huecu 37.65 70.58 432.9 Winter
43 Tricao Malal 37.04 70.32 366.5 Winter
44 Los Miches 37.21 70.82 607.8 Winter
45 Chochoy Malĺın 37.36 70.79 516.0 Winter
46 Pichi Neuquén 36.63 70.80 778.5 Winter
47 Auquinco 37.32 69.97 336.3 Winter
48 Neuquén 38.95 68.13 204.9 Summer
49 San Rafael 34.61 68.32 439.1 Summer
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36°S, there is a strong precipitation gradient from west to
east due to the rain shadow e�ect of the Andes (Figure 2).
�e clear distinct seasonality in precipitation over the CWA
is illustrated for two selected locations (Figure 2).�e annual
cycle of precipitation in La Remonta shows a monsoonal
regime, dominated by convective warm season rainfalls
associated with the southward movement of the South
American low-level jet (SALLJ) from northern Argentina
[40] and the moisture transport from the southeast of Brazil
and Uruguay or even directly from the Atlantic Ocean [41].
Conversely, the annual cycle in Pichi Neuquén shows a
Mediterranean regime, with higher precipitation during the
cold season associated with a strong water vapor transport
from the Paci�c Ocean in the pre-cold-front environment of
extratropical cyclones [19, 42].

Gridded monthly precipitation estimates from the
CHIRPS, developed at the University of California at Santa
Barbara (UCSB) Climate Hazards Group (CHG) in col-
laboration to the U.S. Geological Survey (USGS) Earth
Resources Observation and Science (EROS) center, were
used to identify its accuracy reproducing extreme pre-
cipitation events along the CWA. Data from 1987 to 2016
were obtained through the CHG web page (http://chg.geog.
ucsb.edu/data/chirps/index.html). As described by Funk
et al. [9], the CHIRPS algorithm (i) is built around a 0.05°
climatology that incorporates satellite information to rep-
resent sparsely gauged locations, (ii) incorporates monthly
1981-present 0.05° infrared cold cloud duration-based
precipitation estimates, (iii) blends station data to pro-
duce a preliminary information product with a latency of
about 2 days after the end of a pentad and a �nal product
with an average latency of about 3weeks, and (iv) uses a
novel blending procedure incorporating the spatial

correlation structure of infrared cold cloud duration esti-
mates to assign interpolation weights.�is dataset was found
to reproduce adequately several characteristics of pre-
cipitation over South America [12, 17, 43] and particularly
over the CWA, showing a good agreement for the repre-
sentation of the seasonal and interannual variability of
precipitation and its spatial patterns [24].

3. Methods

In order to identify the occurrence of dry and wet events, we
used the SPI, a widely accepted index as a universal tool for
drought monitoring and assessment. Based on a comparison
among six precipitation-based drought indices, the SPI was
selected as the most adequate for analysing meteorological
droughts along southern South America [44]. For the cal-
culation of the SPI, time series of 1-month, 3-month, and 6-
month accumulations were generated and �tted to a two-
parameter gamma distribution function, following previous
recommendations for the study area [22] and in other re-
gions [12, 13, 27]. Finally, an equiprobability transformation
from the cumulative density functions to the standard
normal distribution with the mean of 0 and the variance of 1
were performed to obtain the SPI. �erefore, the values of
the SPI are expressed in standard deviations, with positive
SPI values indicating greater than median precipitation and
negative values indicating less than median precipitation.
�ree dry and wet categories and a normal category can be
de�ned based on the SPI values, as shown in Table 2, fol-
lowing the classi�cation of Lloyd-Hughes and Saunders [45].
As mentioned in the introduction, at the present time,
monitoring of wet and dry events has been performed by the
RCC-SSA using CHIRPS for the calculation of SPI for
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timescales of 3 and 6 months (http://www.crc-sas.org/en/
monitoreo_precipitacion_chirps.php).

,e 30-year period selected for this study provides rain
gauges and CHIRPS records that are long enough for an
accurate estimation of the SPI values, as recommended by
the World Meteorological Organization [46]. For the
comparison between the SPI based on rain gauge obser-
vations and CHIRPS estimations, we used the Pearson
correlation coefficient and the mean absolute error. ,e
correlation coefficient measures the linear relationship
strength between the satellite estimations and the rain
gauges observations, bounded by −1 and 1 with an optimal
value of 1. ,e mean absolute error provides information on
the average magnitude of error estimations, considering
both systematic and random errors [24].

4. Results

4.1. Regional Behaviour of SPI Based on CHIRPS and Rain
Gauges. For the comparison of the SPI based on the
CHIRPS database and rain gauges data, the study area was
divided according to themain regional features of the annual
precipitation cycle: a region dominated by warm season
(WS) precipitation, with a monsoonal regime associated
with convective rainfalls over the lowlands and a relatively
dry cold season; and a region dominated by cold season (CS)
precipitation, with a Mediterranean regime close to the
higher elevations of the Andes (see Figure 1). ,e time series
of SPI at timescales of 1 month, 3 months, and 6months for
the WS and CS regions are shown in Figures 3 and 4,
respectively.

,e temporal evolution of the SPI based on CHIRPS
estimations shows a good agreement with rain gauge ob-
servations, capturing the occurrence of the main dry and wet
periods and its severity in both regions. For the WS region
(Figure 3), the correlation coefficient between the SPI is
higher than 0.8 (p< 0.01) for the three timescales consid-
ered, while this value ranges between 0.74 and 0.77 (p< 0.01)
for the CS region. In line with the results obtained con-
sidering the correlation coefficients, the mean absolute error
is slightly larger for the CS region (between 0.53 and 0.57)
compared to the WS region (between 0.47 and 0.48).

,e extremely wet period recorded between 2015 and
2016 along the WS region was well captured in timing by
CHIRPS, although with an overestimation of its intensity in
all the timescales (Figure 3). On the other hand, CHIRPS
estimations detected the maximum severity period of the
extreme drought between 2003 and 2004 along the WS

region, although the intensity was underestimated compared
to the observations.,is behaviour is similar to the observed
during the dry period of 2005-2006 (Figure 3).

For the CS region, the occurrence of wet periods
recorded between 2000 and 2003 is represented by CHIRPS
estimations, particularly for SPI3 and SPI6, with an over-
estimation of its severity (Figure 4). CHIRPS-SPI captured
the dry periods of 1989, 1995–1997, and the extreme drought
of 1998-1999, with a good agreement with the observed SPI.
,e extreme drought of 1999 affected the hydropower
generation over Patagonia due to hydrological drought
conditions that were also recorded over CWA [47]. ,e
onset of this drought event was well identified by CHIRPS
estimations and also the timing and severity of the maxi-
mum drought intensity (Figure 4). Nevertheless, the drought
demise estimated by CHIRPS was anticipated by several
months when compared with rain gauges-SPI (February
1999 versus September 1999). ,is condition could be at-
tributed to a large overestimation of precipitation over the
CS region compared with rain gauge data [24].

,e observed difference in the agreement between
CHIRPS-SPI and rain gauges-SPI over WS and CS regions
can be associated with the large overestimation of monthly
precipitation estimated from CHIRPS over the CS region
(Figure 5). ,is result can be further attributed to the
overestimations for the months of April to September, es-
pecially in zones above 1000m.a.s.l. [24]. Monthly pre-
cipitation from CHIRPS over the WS region shows a slight
underestimation and, thus, a better agreement between rain
gauges-SPI and CHIRPS-SPI over the WS region.

4.2. SPI Classification forWet andDryCategories. Given that
the SPI values fit a standard normal distribution, these values
lie within one standard deviation at approximately 68% of
the time, within two standard deviations 95% of the time and
within three standard deviations 98% of the time [48]. In this
sense, it is expected that approximately 16% of the months
(∼58months) would be classified as dry (wet) months, given
that this value corresponds to the probability of SPI≤−1.0
(SPI≥ 1.0). In order to evaluate this requirement, we cal-
culated the number of months with dry and wet conditions
for each rain gauge and its corresponding CHIRPS pixel.
Figure 6 shows the box plots for the number of months with
dry and wet conditions for the SPI1, SPI3, and SPI6. ,e
most relevant difference between rain gauge-SPI and
CHIRPS-SPI classes is found for the timescale of 1 month
considering dry conditions. In most of the rain gauges, the
SPI values tend to underestimate the expected number of dry
months. ,is can be related to the presence of zero values,
given the arid and semiarid characteristics of the study area
and its marked seasonal precipitation cycle. When a high
frequency of zero values occurs, SPI tends to be nonnormally
distributed, with a lower bound in the SPI time series at short
timescales [49], thus failing to indicate drought occurrences.
,is is not observed considering CHIRPS estimations, given
that this product tends to underestimate the occurrence of
zero values. To illustrate this, Figure 7 shows the number of
months with zero values for each rain gauge and CHIRPS

Table 2: Standardized Precipitation Index (SPI) categories.

Index value Category
≥2.00 Extremely wet
1.50 to 1.99 Severely wet
1.00 to 1.49 Moderately wet
−0.99 to 0.99 Normal
−1.49 to −1.00 Moderately dry
−1.99 to −1.50 Severely dry
≤−2.00 Extremely dry

6 Advances in Meteorology

http://www.crc-sas.org/en/monitoreo_precipitacion_chirps.php
http://www.crc-sas.org/en/monitoreo_precipitacion_chirps.php


pixel. �e di�erences observed in the SPI1D between rain
gauges and CHIRPS can be attributed mainly to the un-
derestimations over the CS region, although all the CWA
exhibit the same underestimation pattern by CHIRPS. �e
lack of zero values can arise from the screening procedure
developed to remove “false zeros” in the CHIRPS estima-
tions [50], a bias previously reported by Zambrano et al. and
Katsanos et al. [12, 51].

Regarding the remaining timescales and wet and dry
categories, CHIRPS estimates and precipitation from rain
gauges show a similar behaviour, although with larger

regional dispersion considering the SPI6 (Figure 6). It must
be noted that, for most of the timescales and SPI categories,
the median number of months is slightly larger than the
expected probabilistic value, a condition previously docu-
mented considering the SPI based on the two-parameter
gamma distribution [52].

Temporal evolution of the number of pixels/rain gauges
a�ected by dry conditions based on CHIRPS estimations.

From a vulnerability point of view, the situations when a
great portion of the study area is under dry or wet conditions
must be considered. In this sense, for each month from
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Figure 3: SPI time series for the WS region based on CHIRPS and rain gauges (RG) during 1987–2016: (a) SPI1, (b) SPI3, and (c) SPI6.
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January 1987 to December 2016, we obtained the number of
pixels with dry conditions. Figure 8 shows the temporal
evolution of this regional index for the SPI1, SPI3, and SPI6
and the moderately (yellow), severely (orange), and ex-
tremely (vermillion) dry categories (see Table 2). According
to CHIRPS estimations, the CWA experienced large-scale
dry conditions particularly during the periods 1988-1989
and 1998-1999 (Figure 8). As the timescale for the calcu-
lation of the SPI increases, the high-frequency temporal

variability in the time series decreases, allowing a better
identi�cation of the main dry periods considering the SPI6.

We repeated the procedure considering the time series
of SPI based on rain gauges observations. �is allowed
calculating the di�erence between the CHIRPS and rain
gauges areal estimations of dry conditions. �e temporal
evolution of this di�erence, for each timescale and dry
category, is shown in Figure 8. Positive values indicate that
CHIRPS is overestimating the number of pixels/rain gauges
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Figure 4: SPI time series for the CS region based on CHIRPS and rain gauges (RG) during 1987–2016: (a) SPI1, (b) SPI3, and (c) SPI6.
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with dry conditions, while negative values show an un-
derestimation. Considering the SPI1, during most of the
1987–2016 period, the time series based on CHIRPS pre-
cipitation show an overestimation of the dry a�ected area.
�is is particularly evident during the large-scale dry pe-
riods identi�ed in Figure 8. �e result is in line with the
observed bias in the number of months with dry conditions
(Figure 6), suggesting that the SPI1 based on CHIRPS
estimations is not adequate for meteorological drought
monitoring over arid and semiarid regions. Similar tem-
poral evolution is observed considering the di�erences
between CHIRPS and rain gauges for SPI3 and SPI6, with
large areal overestimation during 1988-1989 and a clear
underestimation during 2003, particularly for the ex-
tremely dry category (Figure 9).

�e monthly sum of simultaneously a�ected stations
enables the identi�cation of the large events and their du-
rations, but does not show the regional patterns of mete-
orological drought and its severity [47]. Figure 10 shows a
comparison of the spatial extension of the dry conditions
recorded during October 1998 based on rain gauges and
CHIRPS-SPI for the three timescales selected. As expected
based on previous results, CHIRPS shows a large over-
estimation of the dry conditions considering SPI1, with a
large number of pixels under severely dry and extremely dry
category in comparison with the rain gauges-SPI1. Con-
sidering the spatial patterns based on SPI3 and SPI6,
CHIRPS estimations accurately reproduce the observed dry
conditions, both in location and intensity (Figure 10).

Temporal evolution of the number of pixels/rain gauges
a�ected by wet conditions is based on CHIRPS estimations.

Following the assessment performed on the previous
section, we repeated the methodology to analyse the areal
patterns corresponding to wet conditions. Figure 11 shows
the temporal evolution of the number of pixels/rain gauges
a�ected by wet conditions considering the SPI1, SPI3, and
SPI6 and the moderately (light blue), severely (blue), and
extremely (dark blue) wet categories (see Table 2). A large
fraction of the CWA was a�ected by wet periods based on
CHIRPS estimations during 1999–2003, 2005–2008, and
2016. �is is particularly evident considering the CHIRPS-
based SPI6 (Figure 11). It is remarkable the large number of
pixels a�ected by extremely wet conditions during 2016, a
result that can be attributed to the major El Niño event of
2015/16 considering the precipitation response to this mode
of climate variability events over CWA [22].

�e temporal evolution of the di�erence between the
number of pixels/rain gauges under wet conditions based on
CHIRPS-SPI and rain gauges-SPI is shown in Figure 12.
Similarly to what was found for the assessment of dry
conditions, the cases where widespread wet conditions are
observed by CHIRPS show a large overestimation in the
number of a�ected pixels/rain gauges. �is is particularly
evident for the severely wet and extremely wet categories
considering the SPI3 and SPI6 between 1999 and 2007 and
during 2015-2016 (Figure 12). �e comparison of the spatial
pattern based on rain gauges-SPI and CHIRPS-SPI during
the month of April 2016 shows a similar location of the wet
categories, although CHIRPS tends to overestimate the wet
categories classifying a large number of pixels under ex-
tremely wet conditions in comparison with the categories
based on rain gauges (Figure 13).

�e spatial distribution of both dry and wet conditions is
critical for impact studies. �e results from this comparison
allowed identifying the strengths and weakness of CHIRPS
estimations for wet and drymonitoring. Even when there is a
tendency towards an overestimation of both dry and wet
regional events, the spatial distribution of wet and dry cases
was accurately captured by CHIRPS-SPI. Nevertheless, the
bias in the SPI categorization can limit the usefulness of
CHIRPS for dry or wet declaration. Nowadays, the WMO
RCC-SSA o�ers climate services in support of the National
Meteorological and Hydrometeorological Services (NMHS)
and other users from the countries located in the southern
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South American region. Some of its monitoring tools are
based on CHIRPS precipitation estimations, making the
assessment performed in this paper a baseline to improve
climate services over the region.

5. Discussion

Satellite remote sensing is increasingly being used as a
complementary source of information to in situ monitoring
networks and, in many cases, is the only feasible source [53].
Considering the importance of the water management for
the sustainable regional development in arid and semiarid
areas, much effort has gone into the development and use of
satellite-based precipitation estimations for this purpose. In
this sense, the performance of the CHIRPS dataset for the
identification of wet and dry events was evaluated in the
CWA, a semiarid region, with two distinct precipitation
regimes based on available precipitation records from rain
gauges, using a point-to-pixel comparison for the period
1987–2016.

Several indicators have been developed during recent
decades for the monitoring of dry and wet events, based both
on in situ information and remote sensing estimations,
targeting aspects for meteorological, agricultural, hydro-
logical, and socioeconomic dry and wet declaration. Each
indicator has its own inherent strengths and weaknesses, and
its utility is often tailored for a specific application or

decision-making activity [54]. For this study, the SPI was
used as a tool for the identification of wet and dry events,
based on its performance for drought and wet monitoring
over southern South America [22, 44, 55, 56]. ,is choice is
also relevant given the simplicity of the SPI, considering that
is calculated only based on precipitation data, being one its
main advantages [57]. Considering that CHIRPS estimations
only provide precipitation estimations and the meteoro-
logical stations over the study area only measure tempera-
ture in few reference stations, belonging to the National
Weather Service, we consider unfair to use an index that rely
on more variables for its calculation, for example, the
Standardized Precipitation and Evapotranspiration Index
(SPEI) [58]. In this sense, Quesada-Montano et al. [59]
highlighted that the selection of the precipitation database
was more important than the selection of the drought index.
,e use of CHIRPS precipitation estimates for drought
monitoring based on the SPI has gained attraction nowa-
days, as shown by studies performed in Indonesia [60],
China [1, 28], Nepal [11], Morocco [54], Southeast Asia [27],
Central America [59], and Chile [12].

Uncertainties in the comparison of the SPI time series
based on rain gauges and CHIRPS estimations arise from the
input precipitation data. In the case of the observations,
precipitation data have large latency (∼3months), which
makes it unpractical for real-time decision-making. ,e
sparse and uneven distribution of rain gauges also provides a
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Figure 7: Frequency of zero precipitation months for each (a) rain gauge (RG) and (b) CHIRPS pixel.
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source of uncertainty, even when the selected stations
represent in an adequate way the main characteristics of
precipitation over the CWA. A larger number of rain gauges
can be used to overcome this limitation, however, with
shorter records and without reaching the 30-year record

recommendation for the estimation of the SPI parameters
[46]. Moreover, gap �lling methods like the linear regression
used here are subject to uncertainty in the estimation of
missing data. Nevertheless, given the limited number of
missing months and the homogeneous behaviour of regional
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Figure 8: Temporal evolution of the number of pixels a�ected by dry conditions for the di�erent dry categories and SPI timescales: (a) SPI1,
(b) SPI3, and (c) SPI6.
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precipitation, we consider that this contribution to un-
certainty is negligible.

Regarding the CHIRPS estimations, one of the main
sources of uncertainty arises from the anchor stations used
for the blending procedure, as pointed out by Rivera et al.
[24]. Firstly, in order to verify the independence of this
validation, we analysed the temporal evolution of the anchor
stations used in the blending procedure of CHIRPS. All the
Argentinean stations were provided by the National
Weather Service and obtained through either the Global
Historical Climate Network (GHCN), the Global Summary
of the Day (GSOD), and the World Meteorological Orga-
nization’s Global Telecommunication System (GTS), as can
be observed in ftp://ftp.chg.ucsb.edu/pub/org/chg/products/
CHIRPS-2.0/diagnostics/monthly_station_data/. ,e maxi-
mum number of anchor stations during the period 1987–
2016 is 12 (Figure S1, supplementary material), far from the
49 stations used in this study. A closer look to these data
indicates that several of these anchor stations were discarded
from our validation, like San Carlos, Uspallata, Chacras de
Coria, or Cipolletti, most of them due to data issues (not
shown). In this sense, we can conclude that at least 41 of the
analysed stations were not included for the CHIRPS gen-
eration, which indicates that our validation can be con-
sidered as independent. Given that CHIRPS estimations are
based on the use of stations from three different sources,
another issue to report is the multiplication of anchor
stations. In order to illustrate this, we analysed the anchor
stations located over the domain 31° to 39°S and 68° to 70°W
during themonth of July 2015 (data accessed through ftp://ftp.
chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/diagnostics/

monthly_station_data/2015.07.csv). We found that the list
indicates a total of 14 anchor stations; nevertheless, Neuquén
has 3 different precipitation values for that month (Neu-
quén Aero from GHCN 7mm, Neuquén Aero from GSOD
7.8740001mm, and Neuquén Airport 7.4mm), with 3
different locations as can be seen in the latitude and lon-
gitude. ,e same problem can be observed for Mendoza
Aero, San Juan, San Rafael, San Mart́ın, and Malargüe.
,erefore, even when the list shows the records from 14
stations, there are only 6 valid precipitation values. To evaluate
how this duplication or triplication of information affects the
final CHIRPS estimations is beyond the scope of this study,
however, this must be considered as a potential main source of
uncertainty.

6. Conclusions

,is paper addressed some relevant features that need to be
taken into account before using satellite precipitation
products for regional dry and wet monitoring. Based on the
SPI calculated on timescales of 1 month, 3 months, and
6months, we used the quasi-global high-resolution CHIRPS
monthly precipitation estimations to evaluate its utility over
Central-Western Argentina from 1987 to 2016. ,is com-
parison was performed considering high-quality observa-
tions from 49 rain gauges over the study area. ,e main
conclusions of this assessment can be summarized in the
following:

(i) From a regional perspective, SPI time series based
on CHIRPS accurately reproduce the occurrence of
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Figure 9: Temporal evolution of the difference between the number of CHIRPS pixels and the number of rain gauges with dry conditions for
the different dry categories and timescales: (a) SPI1, (b) SPI3, and (c) SPI6.

12 Advances in Meteorology

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/diagnostics/monthly_station_data/
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/diagnostics/monthly_station_data/
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/diagnostics/monthly_station_data/2015.07.csv
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/diagnostics/monthly_station_data/2015.07.csv
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/diagnostics/monthly_station_data/2015.07.csv


wet and dry conditions over the CWA. Considering
the stations located in the region dominated by
summer precipitation, the correlation between
observations and CHIRPS estimations is signi�cant
(r> 0.8, p< 0.01). Even when the product exhibits a
marked wet bias over the region dominated by
winter precipitation, the temporal variability of the
SPI resembles the observations (r> 0.78, p< 0.01),

showing the suitability of the product for the SPI
calculation.

(ii) For the monitoring and assessment of dry condi-
tions over arid to semiarid regions like the CWA, it
is recommended that the timescale for the calcu-
lation of the SPI based on CHIRPS estimations
needs to be larger than 1 month. �is is related to
the bias in the frequency of zero values in
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Figure 10: Spatial distribution of the SPI categories for timescales of (a) 1 month, (b) 3 months, and (c) 6 months during October 1998
considering rain gauges (RG) and CHIRPS estimations.
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comparison with the rain gauge observations, which
�ctitiously avoid the lower bounded SPI time series
and lead to a normally distributed SPI.

(iii) �e spatial pattern of selected wet and dry cases was
accurately reproduced by CHIRPS, although there
was a bias in the SPI categories towards extreme

conditions.�is drawback can a�ect its suitability for
drought and excess declaration by the regional
agencies. In this sense, the values for severe and
extreme dry and wet classes based on CHIRPS-SPI
should be complemented with in situ information for
a more precise quanti�cation of drought intensity.
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Figure 11: Temporal evolution of the number of pixels a�ected by wet conditions for the di�erent wet categories and SPI timescales:
(a) SPI1, (b) SPI3, and (c) SPI6.
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Figure 12: Temporal evolution of the di�erence between the number of CHIRPS pixels and the number of rain gauges with wet conditions
for the di�erent wet categories and timescales: (a) SPI1, (b) SPI3, and (c) SPI6.
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Figure 13: Continued.
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Considering the relatively short latency (∼3weeks) of the
�nal CHIRPS product, available after blending with several
station sources, its adequate performance for the identi�-
cation of wet and dry events over the study area, and the
sparse and uneven distribution of rain gauges along the
CWA, this study provides a promising prospect of hydro-
meteorological utility of CHIRPS estimations. Given the
ongoing e�orts for precipitation monitoring and declaration
of drought and ¬ood conditions, this assessment can provide
some insights into regarding the use of CHIRPS for the SPI
calculation and application over an arid to semiarid region,
making extensible the results to other similar areas with
complex topography.

Future research should focus on the methodological
aspects of the SPI calculation, considering several choices of
probability distribution functions for the representation of
precipitation. Moreover, operational thresholds for the
de�nition of dry and wet conditions can also provide
valuable information for decision-making, given that
drought and ¬ood monitoring is of paramount importance
considering the socioeconomic activities over the region.
Future validation studies should also include the Climate
Hazards Group Infrared Precipitation (CHIRP) satellite-
only product, given its short latency (available 2 days after
the end of a pentad) and its performance after 1992 [11].

Data Availability

Monthly precipitation records from 41 of the analysed sites
can be accessed online through the Integrated Hydrological
Database from the Water Resources Agency of Argentina

(http://bdhi.hidricos.gob.ar). �e records from the remaining
8 sites can be freely requested to the NationalWeather Service
of Argentina through its Meteorological Information Center
(cim@smn.gob.ar). �e code for the calculation of the
Standardized Precipitation Index can be obtained at http://
drought.unl.edu/droughtmonitoring/SPI/SPIProgram.aspx.
�e CHIRPS products can be accessed through ftp://ftp.chg.
ucsb.edu/pub/org/chg/products/CHIRPS-2.0.
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Figure 13: Spatial distribution of the SPI categories for timescales of (a) 1 month, (b) 3 months, and (c) 6 months during April 2016
considering rain gauges (RG) and CHIRPS estimations.
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