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The space activity in the world is one of the most important achievements of mankind.

It makes possible live communications, exploration of Earth resources, weather forecast,

accurate positioning and several other tasks that are part of our lives today.

The space dynamics plays a very important rule in these developments, since its study

allows us to plan how to launch and control a space vehicle in order to obtain the results we

need.

This field considers the study of Celestial Mechanics and Control applied to spacecraft

and natural objects. The main tasks are to determine the orbit and the attitude of the

spacecraft based in some observations, to obtain its position and attitude in space in a given

time from some initial conditions, to find the best way to change their orbits and attitude, to

analyze how to use the information of the satellites to find the position and the velocity of a

given point (e.g., a personal receptor, a satellite or a car), etc.
This field of study comes from Astronomy. The main contributors from the past have

important names like Johannes Kepler (1571–1630) and Isaac Newton (1642–1727). Based
on the observations of the motion of the planets realized by Tycho Brahe (1546–1601), Kepler
formulated the three basic laws, which govern themotion of the planets around the Sun. From

these laws, Newton formulated the universal Law of Gravitation. According to this Law,

mass attracts mass in a ratio that is proportional to the product of the two masses involved

and inversely proportional to the square of the distance between them. Those laws are the

scientific bases of the space exploration age that officially begin with the launch of the satellite

Sputnik in 1957 by the former Soviet Union. Since then, a strong battle between the United

States of America (USA) and the Soviet Union took place leading to many achievements in

Space. One of the most important results was the landing of the man on the Moon, achieved
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by the USA in 1969. From this point, several different applications of the space research were

developed, changing for better the human life on Earth.

In that scope, this special issue of Mathematical Problems in Engineering is focused on

the recent advances in space dynamics techniques. It has a total of 21 papers that are briefly

described below.

Four of them are concerned with the attitude motion, control and determination.

Optimal On-Off Attitude Control for the Brazilian Multimission Platform Satellite by G.

Arantes Jr. et al. is the first one. This work deals with the analysis and design of the reaction

thruster attitude control for the Brazilian Multi-Mission Platform satellite. The aim of this

work is to provide smoother control for improved pointing requirements with less thruster

activation or propellant consumption. The fuel is a deciding factor of the lifetime of the

spacecraft and reduced propellant consumption is highly required, specially, regarding a

multi-mission spacecraft wherein different payloads are being considering. The three-axis

attitude control is considered and it is activated in pulse mode. Consequently a modulation

of the torque command is compelling in order to avoid high non-linear control action.

The paper considers the Pulse-Width Pulse-Frequency (PWPF) modulator, composed of

a Schmidt trigger, a first order filter, and a feedback loop. This modulator holds several

advantages over classical bang-bang controllers such as close to linear operations, high

accuracy, and reduced propellant consumption. The Linear Gaussian Quadratic (LQG)
technique is used to synthesize the control law during stabilization mode and the modulator

is used to modulate the continuous control signal to discrete one. The results of the

numerical simulations show that the obtained on-off thruster reaction attitude control system,

based on the LQG/PWPF modulation, is optimal with respect to the minimization of

the quadratic cost function of the states and control signals and propellant consumption.

The paper presents a set of optimal parameter for the PWPF modulator by considering

static and dynamics analysis. The obtained results demonstrate the feasibility of combining

LQG/PWPF modulator in a unique controller for on-off thruster reaction attitude control

system. Stability remains by adding the PWPFmodulator and reasonable accuracy in attitude

is achieved. Practical aspects are included in this study as filtering and presence of external

impulsive perturbations. The advantages of less spent propellant shall contribute to the

Brazilian Multi-Mission Platform project, specially, a satellite conceived to be used on a large

number and different types of missions, in the context of an ever-advancing Brazilian space

program.

The second paper on this subject is Highly Efficient Sigma Point Filter for Spacecraft

Attitude and Rate Estimation by C. Fan and Z. You. In this paper, for spacecraft attitude

determination problem, the multiplicative extended Kalman filter MEKF and other similar

algorithms, have been good solutions for most nominal space missions. However, nowadays,

due to their overload computational complexity, they are prohibitive for actual on board

implementation. In this paper, the authors present a new and quite competitive algorithm,

with significant lower computational complexity even when compared to the reduced sigma

point algorithms. The precision is the same as the traditional unscented Kalman filters. In

terms of efficiency, the proposed algorithm rivals MEKF, even in severe situations.

The next one is Spin-Stabilized Spacecraft: Analytical Attitude Propagation Using

Magnetic Torques by R. V. Garcia et al.. This paper considers the problem in obtaining the

attitude of a satellite in a given time based on information from a previous time. It analyzes

the rotational motion of a spin stabilized Earth artificial satellite. It makes derivation of

an analytical attitude prediction. Particular attention is given to torques, which come from

residual magnetic and eddy currents perturbations, as well as their influences on the satellite
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angular velocity and space orientation. A spherical coordinated system, fixed in the satellite,

is used to locate the spin axis of the satellite in relation to the terrestrial equatorial system.

The last paper of this topic is Using of H-Infinity Control Method in Attitude Control

System of Rigid-Flexible Satellite by X. C. M. Cubillos and L. C. G. Souza. This paper

considers the attitude control systems of satellites with rigid and flexible components. In the

current space missions, this problem is demanding a better performance, which implies in

the development of several methods to approach this problem. For this reason, the methods

available today need more investigation in order to know their capability and limitations.

Therefore, in this paper, the H–Infinity method is studied in terms of the performance of the

Attitude Control System of a Rigid-Flexible Satellite.

There were four papers studying the problem of finding space trajectories. The first

one is Hill Problem Analytical Theory to the Order Four: Application to the Computation

of Frozen Orbits around Planetary Satellites by M. Lara and J. F. Palacián. In this paper,

applications to the computation of frozen orbits around planetary satellites are made. The

Hill problem, a simplified model of the restricted three-body problem, also gives a very

good approximation for the dynamics involving the motion of natural and artificial satellites,

moons, asteroids and comets. Frozen orbits in the Hill problem are determined through

the double averaged problem. The developed method provides the explicit equations of the

transformation connecting averaged and non averaged models, making the computation of

the frozen orbits straightforward.

The second one covering this topic is Collision and Stable Regions around Bodies with

Simple Geometric Shape by A. A. Silva et al.. Collision and stable regions around bodies

with simple geometric shape are studied. The gravitational potential of two simple geometric

shapes, square and triangular plates, were obtained in order to study the orbital motion of a

particle around them. Collision and stable regions were also derived from the well known

Poincaré surface of section. These results can be applied to a particle in orbit around an

irregular body, such as an asteroid or a comet.

The next paper is Dynamical Aspects of an Equilateral Restricted Four-Body Problem

by M. Álvarez-Ramı́rez and C. Vidal. It is an immediate extension of the classical restricted

three body problem (ERFBP): a particle is under the attraction of three nonzero masses

(m1, m2, m3) which move on circular orbits around their center of mass, fixed at the origin of

the coordinate system in a such way that their configuration is always an equilateral triangle.

In particular, it is assumed m2 = m3. In a synodical system, a first integral of the problem

is obtained. Using Hamiltonian formalism the authors define Hill’s regions. Equilibrium

solutions are obtained for different cases and the number of them depends on the values

of the masses. The Lyapunov stability of these solutions is studied in the symmetrical case

assuming m1 = m2 = m3 = μ. Under certain conditions and for very small μ, circular and

elliptic keplerian periodic solutions can be continued to ERFBP. For μ = 1/2, Lyapunov

Central theorem can provide a one-parameter family of periodic orbits. Some numerical

applications are also shown.

The last one in this category is Nonsphericity of the Moon and Near Sun-Synchronous

Polar Lunar Orbits by J. P. S. Carvalho et al.. Here, the dynamics of a lunar artificial satellite

perturbed by the nonuniform distribution of mass of the Moon taking into account the

oblateness (J2) and the equatorial ellipticity (sectorial term C22) is presented. A canonical

perturbation method based on Lie-Hori algorithm is used to obtain the second order

solutions. A study is performed for the critical inclination and the effect of the coupling terms

J2 and C22 are presented. A new second order formula is obtained for the critical inclination as

a function of the argument of the pericenter and of the longitude of the ascending node. In the
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same way, for Lunar Sun-synchronous and Near-Polar Orbits, a new formula is obtained to

provide the value of the inclination. This formula depends on the semi-major axis, eccentricity

and the longitude of the ascending node. For Lunar low altitude satellites, the authors call

the attention for the importance of the additional harmonics J3, J5, and C31, besides J2 and

C22. In particular they mention that, for small inclinations, some contributions of the second

order terms can become as large as the first order terms. Several numerical simulations are

presented to illustrate the time variation of the eccentricity and inclination.

After that, there are five papers considering the problem of localization with

information obtained from space, in particular using GPS and/or GLONASS constellations.

The first paper of this topic is GPS Satellites Orbits: Resonance by L. D. D. Ferreira and

R. V. Moraes. In this paper, the effects of the perturbations due to resonant geopotential

harmonics on the semi major axis of GPS satellites are analyzed. The results show that it is

possible to obtain secular perturbations of about 4m/day using numerical integration of the

Lagrange planetary equations and considering, in the disturbing potential, the main secular

resonant coefficients. The paper also shows the amplitudes for the long period terms due

to the resonant coefficients for some hypothetical satellites orbiting in the neighborhood of

the GPS satellites orbits. The results can be used to perform orbital maneuvers of the GPS

satellites to keep them in their nominal orbits.

The second paper is Some Initial Conditions for Disposed Satellites of the Systems GPS

and Galileo Constellations by D. M. Sanchez et al.. In this paper the stability of the disposed

objects of the GPS and Galileo systems can be affected by the increasing in their eccentricities

due to strong resonances. A search for initial conditions where the disposed objects remain

at least 250 years, without crossing the orbits of the operational satellites, was performed. As

a result, regions where the values of the eccentricity prevent possible risk of collisions have

been identified in the phase space. The results also show that the initial inclination of the

Moon plays an important role in searching these initial conditions.

Then, we have Quality of TEC Estimated with Mod Ion Using GPS and GLONASS

Data by P. O. Camargo. The largest source of error in positioning and navigation with the

Global Navigation Satellite System (GNSS) is the ionosphere, which depends on the Total

Electron Content (TEC). The quality of the TECwas analyzed taking into account theModIon

model developed in UNESP-Brazil the more appropriate model to be used in the South

America region.

After that, we have the paper The Impact on Geographic Location Accuracy due to

Different Satellite Orbit Ephemeredes by C. C. Celestino et al.. Here, it is assumed that there

are several satellites, hundreds of Data Collection Platforms (DCPs) deployed on ground

(fixed or mobile) of a large country (e.g. Brazil), and also some ground reception stations. It

considers the question of obtaining the geographic location of these DCPs. In this work, the

impact on the geographic location accuracy, when using orbit ephemeris obtained through

several sources, is assessed. First, by this evaluation is performed by computer simulation

of the Doppler data, corresponding to real existing satellite passes. Then, real Doppler data

are used to assess the performance of the location system. The results indicate that the use of

precise ephemeris can improve the performance of the calculations involved in this process

by reducing the location errors. This conclusion can then be extended to similar location

systems.

There is also the paper Simulations under Ideal and Non ideal Conditions for

Characterization of a Passive Doppler Geographical Location System Using Extension of

Data Reception Network by C. T. Sousa et al.. It presents a Data Reception Network (DRN)
software investigation to characterize the passive Doppler Geographical Location (GEOLOC)
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software. The test scenario is composed by Brazilian Data Collection Satellite (SCD2) and

the National Oceanic Atmospheric Administration satellite (NOAA-17) passes, a single Data

Collecting Platform (DPC) and five ground received stations. The Doppler measurements

data of a single satellite pass over a DCP, considering a network of ground reception stations,

is the rule of the DNR. The DNR uses an ordering selection method that merges the collected

Doppler shift measurements through the stations network in a single file. The pre-processed

and analyzed measurement encompasses the DCP signal transmission time and the Doppler

shifted signal frequency received on board of the satellite. Thus, the assembly to a single file of

the measurements collected, considering a given satellite pass, will contain more information

about the full Doppler effect behavior while decreasing the amount of measurement losses,

as a consequence, an extended visibility between the relay satellite and the reception stations.

The results and analyses were firstly obtained considering the ground stations separately, to

characterize their effects in the geographical location result. Six conditions were investigated:

ideal simulated conditions, random and bias errors in the Doppler measurements, errors in

the satellites ephemeris and errors in the time stamp. To investigate the DNR importance

to get more accurate locations, an analysis was performed considering the random errors

of 1HZ in the Doppler measurements. The results show that the developed GEOLOC is

operating appropriately under the ideal conditions. The inclusion of biased errors degrades

the location results more than the random errors. The random errors are filtered out by the

least squares algorithm and they produce mean locations results that tend to zero error,

mainly for high sampling rate. The simulations results, considering biased errors, yield

errors that degrade the location for high and low sampling rates. The simulation results

for ephemeredes error shows that it is fundamental to minimize them, because the location

system cannot compensate these errors. The satellites ephemeredes errors are approximately

similar in magnitude to their resulting transmitter location errors. The simulations results,

using the DRN algorithm, show that to improve the locations results quality it would be

necessary to have more Reception Stations spread over the Brazilian territory, to obtain

additional amount of data. Then, on the other hand, it improves the geometrical coverage

between satellite and DCPs, and better recovers the full Doppler curves, yielding, as a

consequence, more valid and improved locations.

A similar problem, but concerned with the determination of an orbit of a satellite, is

considered in A Discussion Related to Orbit Determination Using Nonlinear Sigma Point

Kalman Filter by P. C. P. M. Pardal et al.. The goal of this work is to present a Kalman

filter based on the sigma point unscented transformation, aiming at real-time satellite

orbit determination using GPS measurements. Firstly, some underlying material is briefly

presented before introducing SPKF (sigma point Kalman filter) and the basic idea of the

unscented transformation in which this filter is based. Through the paper, the formulation

about orbit determination via GPS, dynamic and observation models and unmodeled

acceleration estimation are presented. The SPKF is investigated inmany different applications
and the results are discussed. The advantages indicate that SPKF can be used as an emerging

estimation algorithm to nonlinear system.

Orbital maneuvers for space vehicles are also considered in three papers, as in Orbital

Dynamics of a Simple Solar Photon Thruster by A. D. Guerman et al.. This paper studies

the orbital dynamics and control for two systems of solar propulsion, a flat solar sail (FSS)
and a simple solar photon thruster (SPT). The use of solar pressure to create propulsion can

minimize the spacecraft on-board energy consumption during the mission. Modernmaterials

and technologies made this propulsion scheme feasible, and many projects of solar sail are

now under development, making the solar sail dynamics the subject of numerous studies.



6 Mathematical Problems in Engineering

To perform the analysis presented in this paper, the equations of the sailcraft’s motion are

deduced. Comparisons for the performance of two schemes of solar propulsion (Simple Solar

Photon Thruster—SSPT and Dual Reflection Solar Photon Thruster—DRSPT) are shown

for two test time-optimal control problems of trajectory transfer (Earth-Mars transfer and

Earth-Venus transfer). The mathematical model for the force acting on SSPT due to the solar

radiation pressure takes into account multiple reflections of the light flux on the sailcraft

elements. In this analysis it is assumed that the solar radiation pressure follows inverse-

square variation law, the only gravitational field is the one from the Sun (central Newtonian),
and the sails are assumed to be ideal reflectors. For a planar motion of an almost flat sail

with negligible attitude control errors, the SSPT equations of motion are similar to those for

a DRSPT. The analysis showed a better performance of SPT in terms of response time and

the results are more pronounced for Earth-Venus transfer. It can be explained by the greater

values of the transversal component of the acceleration developed by SSPT compared to FSS.

Then, we have the paper Alternative Transfers to the NEOs 99942 Apophis, 1994

WR12, and 2007 UW1 via Derived Trajectories from Periodic Orbits of Family G by C. F.

Melo et al.. This paper explores the existence of a natural and direct link between low Earth

orbits and the lunar sphere of the influence to get low-energy transfer trajectory to the three

Near Earth Objects through swing-bys with the Moon. The existence of this link is related to a

family of retrograde periodic orbits around the Lagrangian equilibrium point L1 predicted by

the circular, planar, restricted three-body Earth-Moon-particle problem. Such orbits belong to

the so-called Family G. The trajectories in this link are sensitive to small disturbances. This

enables them to be conveniently diverted, reducing the cost of a swing-by maneuver. These

maneuvers allow a gain in energy enough for the trajectories to escape from the Earth-Moon

system and to be stabilized in heliocentric orbits between Earth and Venus or Earth andMars.

The result shows that the required increment of velocity by escape trajectories G is, in general,

fewer than the ones required by conventional transfer (Patched-conic), between 2% up to

4%. Besides, the spacecraft velocities relative to the asteroids are also, in general, less than

that value obtained by the conventional methods. In terms of the transfer time, the results

show that in the Apophis and 1994WR12 it is possible to find Closest Point Approaches. The

longest time always corresponds to the smallest relative velocity in Closest Point Approaches

for trajectories G. Therefore, the trajectories G can intercept the Near Earth Objects orbits and,

they can be a good alternative to design future missions destined to the Near Earth Objects.

After that, we have the paper Controlling the Eccentricity of Polar Lunar Orbits with

Low-Thrust Propulsion by O. C. Winter et al.. This paper approaches the problem that lunar

satellites in polar orbits suffer a high increase on the eccentricity, due to the gravitational

perturbation of the Earth leading them to a collision with the Moon. Then, the control of the

orbital eccentricity leads to the control of the satellite’s lifetime. This paper introduces an

approach in order to keep the orbital eccentricity of the satellite at low values. The method

presented in the paper considers two systems: the 3-body problem, Moon-Earth-satellite and

the 4-body problem, Moon-Earth-Sun-satellite. A system considering a satellite with initial

eccentricity equals to 0.0001 and a range of initial altitudes, between 100 km and 5000 km,

is considered. An empirical expression for the length of time needed to occur the collision

with the Moon as a function of the initial altitude is derived. The results found for the 3-

body model were not significantly different from those found for the 4-body model. After

that, using low thrust propulsion, it is introduced a correction of the eccentricity every time

it reaches the value 0.05.

Mechanical aspects of spacecrafts are considered in two papers. The first one is Internal

Loading Distribution in Statically Loaded Ball Bearings Subjected to an Eccentric Thrust Load
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by M. C. Ricci. In this paper an iterative method is introduced to calculate internal normal

ball loads in statically loaded single-row, angular-contact ball bearings, subjected to a known

thrust load which is applied to a variable distance from the geometric bearing center line.

Numerical examples are shown and compared with the literature. Fifty figures are presented

and the results are discussed.

The other paper is The Determination of the Velocities after Impact for the Constrained

Bar Problem by A. Fenili et al.. In this paper, a mathematical model for a constrained

manipulator is studied. Despite the fact that the model is simple, it has all the important

features of the system. A fully plastic impact is considered. Analytical expressions for the

velocities of the bodies involved after the collision are derived and used for the numerical

integrations of the equations of motion. The theory presented in the paper can be used to

problems where the robots have to follow some prescribed patterns or trajectories when in

contact with the environment.

One paper deals with the astronomical side of the space dynamics: Gravitational

Capture of Asteroids by Gas Drag by E. Vieira-Neto and O. C. Winter. The orbital

configuration of the irregular satellites, present in the giant planets system, suggests that

these bodies were asteroids in heliocentric orbits that have been captured by the planets.

Since this capture is temporary, it has been necessary a dissipative effect in order to turn this

temporary capture into a permanent one. This paper deals with this problem by analyzing the

effects of the gas drag, from the Solar Nebula, in the orbital evolution of these asteroids after

they have being captured by the planets. The results show that, although this dissipative

effect is important, it is not the only mechanism responsible for keeping the asteroids in a

permanent orbit about the planet.

Then, we also have one paper studying the motion of a spacecraft when traveling in

the atmospheric region of the space: Atmospheric Reentry Dynamics of Conic Objects by J. P.

Saldia et al.. In this paper, the accurate determination of the aerodynamics coefficients is an

important issue in the calculation of the reentry trajectories of an object inside the terrestrial

atmosphere. The methodology to calculate these coefficients and how to include them in a

code, in order to compute the reentry trajectories, is considered. As a result, a sample of

trajectories of conical objects for different initial flight conditions is presented.
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1. Introduction

One of the intentions of this work is to support the ongoing Brazilian multimission platform

(MMP) satellite project [1]. The project takes into consideration a special platform satellite

which can supply multimissions capabilities supporting different payloads to lift up on the

platform. Applications including Earth observation, communication, scientific experiments,

and surveillance are few examples of suitable use of the MMP satellite. The MMP adopted

pulse or on-off reaction thruster for attitude maneuvers, therefore, modulating continuous

command signal to an on-off signal is a required task. Selecting the properly method to
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modulate the control command signal is a key assignment. The aim of this work is to

provide smoother control for improved pointing requirements with less thruster activation

or propellant consumption. The fuel is a deciding factor of the lifetime of the spacecraft

and reduced propellant consumption is highly required, specially, regarding a multimission

spacecraft wherein different payloads are being considered.

In this paper a pulse-width pulse-frequency (PWPF) modulator is considered as a

feasible option for the MMP reaction thruster modulation due to advantages over other types

of pulse modulators as bang-bang controllers which has excessive thruster actuation [2, 3].
The PWPF modulator translates the continuous commanded control/torque signal to an on-

off signal. Its behavior is a quasilinear mode which is possible by modulating the width of

the activated reaction pulse proportionally to the level of the torque command input (pulse-
width) and also the distance between the pulses (pulse-frequency). A PWPF modulator

is composed of a Schmidt trigger, a lag network filter, and a feedback loop. The PWPF

design requires iterative tuning of lag filter and Schmidt trigger. The optimal parameters

achievement is based on the static (test signals) and dynamic (feedback signals) simulation

results. The optimality is in respect to either the number of firings or spent fuel. The work in

[3–5] provides good guidelines for the PWPF tuning task.

The PWPF is synthesized with a Linear Quadratic Gaussian (LQG) controller which

is designed for the MIMO attitude system. The LQG controller, refered to as H2, allows a

tradeoff between regulation performance and control effort. In order to reduce the control

effort or fuel consumption, an iteratively searching of the trade-off can be carried out.

Nevertheless the controller has to attempt all the involved requirements and specifications.

A previous study of the LQG approach applied to the MMP satellite is presented in [6]. The
reaction attitude control system is applied to the stabilization mode of the MMP. The paper

is divided into 5 sections. Section 2 presents the nonlinear model of the satellite, assumed

a rigid body, its linearization around the operation point, and the developed virtual reality

model of the satellite for visualization purposes. Section 3 presents a brief description of the

PWPF modulator and design of the LQG controller, which includes the description of the

LQG controller and provides the tuning parameters range for the PWPFmodulator. Section 4

presents the numerical simulation for the reaction thruster attitude control system during

the stabilization mode. Regulation, filtering, and disturbance rejection are investigated and

discussed. Conclusions are presented in Section 5 based on the obtained results.

2. Problem Formulation

In this section we describe the mathematical model of the attitude motion, including

kinematics, dynamics, and the linerization of the satellite model around LHLV reference

frame. Based on that linear model the LQG controller is designed for the stabilization mode.

2.1. Satellite Attitude Model

The attitude of the satellite will be defined in this work by the orientation of the body

frame (x, y, z) (coincident with the three principal axes of inertia) with respect to the orbital

reference frame (xr, yr , zr), also known as Local-Vertical-Local-Horizontal (LVLH) [7]. The
origin of the orbit reference frame moves with the center of mass of the satellite in orbit.

The zr axis points toward the center of mass of the Earth, xr axis is in the plane of the orbit,

perpendicular to zr , in the direction of the velocity of the spacecraft. The yr axis is normal to
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Figure 1: LVLH axis representation.

the local plane of the orbit, and completes a three-axis right-hand orthogonal system. Figure 1

illustrated the LVLH reference frame.

The attitude is represented by the direction cosine matrix R between body frame and

reference frame. During the stabilization mode only small angular variations are considered,

in this case the Euler angles parametrization is an appropriate choice due to the guarantee of

nonsingularity. Thus, by using Euler angles (φ, θ, ψ) in an asymmetric sequence 3-2-1 (z-y-x)
for describing a rotation matrix, one finds [7, 8]

Rzyx =

⎡⎢⎢⎣
cψcθ sψcθ −sθ

−cφsψ + sφsθcψ cφcψ + sφsθsψ sφcθ

sφsψ + cφsθcψ −sφcψ + cφsθsψ cφcθ

⎤⎥⎥⎦. (2.1)

For a rotating body the elements of the direction cosine matrix change with time, this change

relative to any reference frame fixed in inertial space can be written as follows [9]:

Ṙ(t) = S
(
ωb

ib

)
R(t), (2.2)

where ωb
ib

= (ωx, ωy, ωz)
T is the angular velocity of the body frame relative to the inertial

frame, expressed in the body frame, S is the skew-symmetric operator given by

S
(
ωb

ib

)
=

⎡⎢⎢⎣
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤⎥⎥⎦. (2.3)

According to [10] the angular velocity can be expressed as function of the mean orbital

motion (ω0) and the derivatives (φ̇, θ̇, φ̇), thereafter the kinematics of the rigid body is
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expressed by

ωb
ib =

⎡⎢⎢⎣
1 0 −sθ

0 cφ sφcθ

0 −sφ cφcθ

⎤⎥⎥⎦
⎡⎢⎢⎣

φ̇

θ̇

ψ̇

⎤⎥⎥⎦ − ω0

⎡⎢⎢⎣
cθsψ

sφsθsψ + cφcψ

cφsθsψ − sφcψ

⎤⎥⎥⎦ (2.4)

since large slewing maneuvers of the satellite are not considered, it is save to approximate

cθ ≈ 1, sθ ≈ θ, φψ ≈ 0. According to (2.4) for small Euler angles, the kinematics can be

approximated as

ωb
ib =

⎡⎢⎢⎣
φ̇

θ̇

ψ̇

⎤⎥⎥⎦ + ω0

⎡⎢⎢⎣
−ψ

−1
φ

⎤⎥⎥⎦. (2.5)

The dynamics of a satellite attitude, equipped with six one-sides thrusters is modelled by

using the Euler equations. Furthermore, the attitude dynamic is written in the body frame, it

yields

τext =
[

dh
dt

]
b

+ωb
ib × hb, (2.6)

where hb = Jωb
ib
is the momentum of the rigid body, J is the satellite inertia matrix, and τext

are the external torques acting in the system including perturbation and thruster actuation.

Using [dh/dt]b = Jω̇b
ib
, (2.6) becomes

Jω̇b
ib + S

(
ωb

ib

)
Jωb

ib = τb
d + τb

c , (2.7)

where τb
d
represents all the disturbance torques, for example, atmosphere drag, gravity

gradient, and so on, and τb
c represents the control torques used for controlling the attitude

motion. The control torques about the body axes, x, y, and z provide by the thrusters are

τx, τyτz, respectively. The thruster reaction system is discussed in detail in the following

section. The torque effect caused by the gravity gradient is taken into account and it is

included in the linearization process. An asymmetric body subject to a gravitational field

experience a torque tending to align the axis of the least moment of inertia with the

field direction [8]. For small angle maneuvers, the model of the gravity gradient torque is

approximated as [8, 9]

τb
g = 3ω2

0

⎡⎢⎢⎣
(
Jz − Jy

)
φ

(Jx − Jz)θ

0

⎤⎥⎥⎦. (2.8)

Substituting (2.4) into (2.6) and adding the control and gradient gravity torque, we linearize

the satellite attitudemodel. Moreover, the linearization is performed around the LHLV orbital
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frame, it is thus adopted for the stabilization mode. Afterwards the attitude model can be

represented in the state space form [6, 10]

ẋ = Ax + Bu,

y = Cx + Du,
(2.9)

with states x = [φ, θ, ψ, φ̇, θ̇, ψ̇]T
, and inputs u = [τx, τy, τz]

T .A is the state matrix, B is the

input matrix, C is the output matrix, and D is the direct transmission matrix. In the particular

problem they are given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

4ω2
0

(
Jz − Jy

)
Jx

0 0 0 0
ω0

(
Jx − Jy + Jz

)
Jx

0
3ω2

0(Jx − Jz)
Jy

0 0 0 0

0 0
ω2

0

(
Jx − Jy

)
Jz

ω0

(
Jy − Jx − Jz

)
Jz

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

l

Jx
0 0

0
l

Jy
0

0 0
l

Jz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, C = I6×6, D = 06×3.

(2.10)

It is worth to note that x row and z yaw axes belong to a multi-input and multi-output

(MIMO) system 4 × 2 and the y pitch axis could be dealt as a single input and single output

system (SISO) by assuming a tachometry feedback control. Although the controller is project

over the linear model, the nonlinear model is used in the simulations.

2.2. Virtual Reality Model of the Spacecraft

In this work a Virtual Reality (VR)model are developed as a visualization tool. The purpose is

to visualize the simulations giving a fast and a visual feedback of the simulation models over

time. The model is produced by using the virtual reality model language (VRML) format

which includes a description of 3-dimensional scenes, sounds, internal actions, and WWW

anchors. It enables us to view moving three-dimensional scenes driven by signals from the
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Figure 2: A graphical interface in VRML for visualization.

dynamic model, that is, attitude dynamics. The VR model was created with the use of V-

Realm builder tool, a more detailed description can be found in [11]. Figure 2 shows the

basic structure representation of the spacecraft’s bus. The payload is not illustrated.

3. Thruster Attitude Control System

In this section the controller design based on the Linear Quadratic Gaussian (LQG) technique
is briefly described, afterwards the PWPF modulator is presented in details.

3.1. LQG Controller Design

The Linear Quadratic Gaussian (LQG) or H2 control consist of a technique for designing

optimal controllers. The approach is based on the search of the tradeoff between regulation

performance of the states and control effort [12]. The referred optimality is expressed by a

quadratic cost function and allows the designer to shape the principal gains of the return

ration, at either the input or the output of the plant, to achieve required performance or

robustness specifications. Moreover the method is easily designed for Multi-Input Multi-

Output (MIMO) systems. The controller design takes into account disturbances in the plant

andmeasurement noise from the sensors. Formally, the LQG approach addresses the problem

where we consider a linear system model perturbed by disturbances w, and measurements

of the sensor corrupted by noise ν which includes also the effects of the disturbances by

measurement environment. The state-space model representation of the linear or linearized

system with the addition of the disturbance effects can be mathematically expressed by

ẋ = Ax + Bu + Gw,

yν = Cx + Du + ν,
(3.1)

in our problem A, B, C, and D are given by (2.10). The matrix G is the disturbance balance

matrix. The disturbance and measurements noises are assumed both white noises. The

principle of the LQG is combine the linear quadratic regulator (LQR) and the linear-quadratic

estimator (LQE), that is, a steady-state Kalman filter. The separation principle guarantees that

those can be design and computed independently [13].
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3.1.1. LQR Problem

The solution for the optimal state feedback controller is obtained by solving the LQR problem.

Namely the LQR optimal controller automatically ensures a stable close-loop system, and

achieves guarantee levels of stability and robustness for minimal phase systems, for example,

multivariable margins of phase and gain. The LQR approach gives the optimal controller

gain, denoted by K, with linear control law:

u = −Kx, (3.2)

which minimizes the quadratic cost function, given by

JLQR =
∫∞
0

(
xT Qx + uT Ru

)
dt, (3.3)

where Q is positive definite, and R is semipositive definite, these are weighting or tuning

matrices that define the trade-off between regulation performance and control efforts. The
first term in (3.3) corresponds to the energy of the controlled output (y = x) and the second

term corresponds to the energy of the control signal. The gain matrix K for the optimization

problem is obtained by solving the algebraic matrix Riccati equation:

AT P + PA − PBR−1BT P + Q = 0. (3.4)

The optimal control gain is then obtained by

K = R−1BT P. (3.5)

The close-loop dynamics model is obtained by substituting (3.5) into (3.1), and taking w =
v = 0, as follows

ẋ = (A − BK)x, (3.6)

which corresponds to an asymptotically stable system.

In order to adopt the LQR formulation the whole state x of the process has to be

measurable. In this case it is necessary to estimate the absent states, so the estimated states

are denoted by x̂. Notice that the output matrix in our case is C = I6×6, it means that the

whole state is measurable. Physically, the angular rates are obtained from the gyros and the

attitude/orientation from the solar sensor. Nevertheless, because of the presence of noise, an

estimation is advice in order to produce better and reliable information about the real states.

The estimation is performed by employing the steady-state Kalman filter.
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3.1.2. Kalman Filter Design

The Kalman filter is used to obtain the estimated state x̂. The filter equation in view of the

attitude model is given by

˙̂x = Ax̂ + Bu + L(yν − Cx̂), (3.7)

where L is the Kalman filter gain. The optimal gain L minimizes the covariance of the error E

between real x and estimated x̂ states, by defining the state estimation error as e := x̂ − x, the
cost function is given by [13]

JLQE = lim
t→∞

E
{
e · eT

}
. (3.8)

We assume that the disturbances affecting the processw and v are zero-mean Gaussianwhite-

noise process with covariances Qe = E(wwT ) and Re = E(vvT ), respectively. The process and
measurement noises are uncorrelated from each other. The gain L is obtained solving the

algebraic matrix Riccati equation:

AT S + SA − SCR−1
e CT S + Qe = 0. (3.9)

The optimal estimator gain is then obtained by

L = R−1
e CT S, (3.10)

and the error dynamics is given by

ė = (A − LC)e, (3.11)

where A − LC is asymptotically stable. From (3.6) and (3.11) the open-loop transfer function

for the LQG controller is found as follows:

Klqg(s)G(s) = K(sI − A + BK + LC)−1LΦ(s), (3.12)

where G(s) = Φ(s) = C(sI − A)−1B is the transfer function of the attitude model, in this case

Gs is a matrix of transfer functions.

3.2. Pulse-Width Pulse-Frequency Modulator

The control signals from the LQG controller are of continuous type. However, pulse thruster

devices can provide only on-off signals generating nonlinear control action. Nonetheless,

those can be used in a quasilinear mode by modulating the width of the activate reaction

pulse proportionally to the level of the torque command input. This is known as pulse-width

modulation (PW). In the pulse-width pulse-frequency (PWPF) modulation the distance

between the pulses is also modulated. Its basic structure is shown in Figure 3.
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Demanded
torque

r(t)
kpm

rp(t) e(t) f(t)

−

Filter

km

τms + 1

PWPF modulator

−Uon−Uoff

Um

−Um

UonUoff

Um(t)

Schmitt trigger

To thruster

Figure 3: Pulse-width pulse-frequency (PWPF)modulator.

The modulator includes a Schmitt trigger which is a relay with dead zone and

hysteresis, it includes also a first-order-filter, lag network type, and a negative feedback loop.

When a positive input to the Schmitt trigger is greater than Uon, the trigger input is Um. If

the input falls below Uoff the trigger output is 0. This response is also reflected for negative

inputs in case of two side-thrusters or those thruster that produce negative torques (clockwise

direction). The error signal e(t) is the difference between the Schmitt trigger output Uon and

the system input r(t). The error is fed into the filter whose output signal f(t) and it feeds the

Schmitt trigger. The parameters of interest for designing the PWPF are: the filter coefficients

km and τm, the Schmitt trigger parameters Uon, Uoff, it defines the hysteresis as h = Uon−Uoff,

and the maximal/minimal ± Um. The PWPF modulator can incorporate an additional gain

kpm which will be considered separately from the control gain.

In the case of a constant input, the PWPF modulator drives the thruster valve with

on-off pulse sequence having a nearly linear duty cycle with input amplitude. It is worth to

note that the modulator has a behavior independent of the system in which it is used [3]. The
static characteristics of the continuous time modulator for a constant input C are presented

as follows:

(i) on-time

Ton = PW = −τm ln

(
1 +

h

km(C − Um) − Uon

)
, (3.13)

(ii) off-time

Toff = −τm ln

(
1 − h

kmC − (Uon − h)

)
, (3.14)

(iii) modulator frequency

f =
1

Ton + Toff
, (3.15)
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Table 1: Recommended range for the PWPF parameters.

Static analysis Dynamic analysis Recommended

km 2 < km < 7 N/A 2 < km < 7

τm 0.1 < τm < 1 0.1 < τm < 0.5 0.1 < τm < .5

Uon Uon > 0.3 N/A Uon > 0.3

h h > 0.2Uon N/A h > 0.2Uon

kpm N/A kpm ≥ 20 kpm ≥ 20

(iv) duty cycle

DC =
[
ln[1 + a/(1 − x)]
1 + ln[1 + a/x]

]−1
, (3.16)

(v) minimum pulse-width (PW)

Δ = −τm ln

[
1 − h

kmUm

]
, (3.17)

where the following internal parameters are also defined: dead zone Cd = Uon/km, saturation

level Cs = Um+(Uon−h)/km, normalized hysteresis width a = h/km(Cs−Cd), and normalized

input x = (C − Cd)/(Cs − Cd).
In order to determine the range of parameters for the PWPF modulator, static

and dynamic analyses are carried out. The static analysis involves test input signals, for

example, step, ramp, and sinusoidal signals. The dynamic analysis uses plant and controller.

Afterwards the choice is based upon the number of firings and level of fuel consumption

results. The number of firings gives an indication of the life-time of the thrusters. Table 1

presents the obtained results for the particular problem.

3.3. Specifications and Tuning Schemes

The specification of the requirements for the attitude control system are determined by the

capabilities of the MMP satellite to attempt some desired nominal performance for the linked

payload. Considering the stabilization mode the following specifications are given in terms

of time and frequency domain:

(i) steady state error less than 0.5◦ degrees for each axis;

(ii) overshoot less than 40%;

(iii) short rise time or fast response against disturbances;

(iv) stability margins gain GM ≥ 6 db and PM ≥ 60◦ for each channel.

For the control design, it is necessary to check the limitations and constraints imposed by

the plant. In this sense the optimality of the LQG only holds for the following assumptions:

the matrix [A B] must be stabilizable and [A C] must be detectable. In the case of

the attitude model, both conditions are satisfied. The next step is to design a controller

which achieves the required system performance. During the stabilization mode, it is desired
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attenuation of the effects of disturbances acting on the satellite and accomplishment of

regulation to maintain the satellite in the required attitude. Moreover the output has to be

insensitive to measurements errors. Unfortunately there is an unavoidable tradeoff between

attenuation disturbances and filtering out measurement error. This tradeoff has to be kept

in mind during the design of the controller. In the case of attitude model, the disturbances

acting in the system belong to the spectrum at low frequencies, note that the regulation

signals belongs also to spectrum at low frequencies. On the other hand, the measurement

noises and unmodeled system terms are concentrated at high frequencies. In order to fulfill

the specifications, tuning of LQG gains and PWPF gains have to be careful performed. The

nature of the tuning is an iterative process which turns out less arduous with the use of a

computational tool, in this work the Matlab package is used. In the following, the obtained

weights for LQG controller and PWPF modulator are presented.

3.3.1. LQR Tuning

The first choice for the tuning matrices Q and R is taken from the Bryson’s rule, selecting Q

and R diagonal matrices with the form

Qii =
1

maximum acceptable value of x2
i

i ∈ {1, 2, . . . , n},

Rii =
1

maximum acceptable value of u2
j

j ∈ {1, 2, . . . , m},

(3.18)

where xi and uj are the states input signals boundaries, respectively. The rule is used to keep

the states and inputs below some boundaries. It is advised to avoid large control signals

which from the engineering point of view are unacceptable. On the other hand, the controller

has to fulfill all the system specifications and the LQR formulation does not directly allow

one to achieve standard control system specifications. Nevertheless those can be achieved

by iteration over the values of the weights of Q and R in the cost function till it arrives

at satisfactory controller. For the proposed reaction attitude control system the boundaries

for the states are kept ±5◦ in attitude (φ, θ, ψ), and ±1 degree per second for the rates. The

boundary for the input signals are 1 Newton meter. The result weighting matrices for the

controller which achieved satisfactory controller are

Q = Qii, R = 1 × 10−1 · Rii. (3.19)

The control tuning matrices R and Q were obtained through iterative process following

expectable requirements, for example, allowed (non-saturation) control effort and reasonable

stabilization time.

3.3.2. Filter Tuning

The tuning weight matrices Re and Qe for the Kalman filter are obtained considering Re

large compared to Qe. It corresponds to weighting the measurements less than the dynamics

model. This also leads to a reduction of the poles values for A − LC. The relative magnitude
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Table 2: PWPF parameters used to compose the ACS.

km τm Uon h Kp

1 0.1 0.45 0.3 20

Table 3: Simulation parameters.

Parameters Values

Principal momentum of inertia (without payload) (kgm2)
Jx = 305.89126

Jy = 314.06488

Jz = 167.33919

Torque arm (m) l = 1.0

Mean orbital motion (rad/s) ω0 = 0.001

Mass (kg) 578.05239

Orbit altitude (km) 750

Maximum force (N) 5

Eccentricity ∼= 0

Initial attitude (degrees) slew maneuver (φ,θ,ψ)=(10,10,10)
Initial Angular Rate (degrees/s) ωb

ib
= [1, 1, 1]T

of Re and Qe is determined iteratively till achieves satisfactory gain L in terms of filtering and

smoothing of the measurement vector signal yv. The matrices values are given by

Qe = diag
(
0, 0, 0, qe, qe, qe

)
,

Re = diag(re, re, re, ve, ve, ve),
(3.20)

where qe = 5 × 10−3, re = 1 × 10−1, and ve = 1 × 10−2. Note that the precision for the rate

measurements is bigger than for the attitude measurements, and the tuning values for the

dynamic noise in the attitude are selected as zeros.

3.3.3. Selected PWPF Parameters

In order to compose the entire reaction thruster attitude control system and to achieve the

desire performance the parameters for the PWPF are selected from the optimal range. Table 2

presents those PWPF parameters.

Next section presents the performance of the reaction thruster attitude controller

during the stabilization mode. Filtering noise, rejection of impulse disturbances, and

regulation performance are analyzed.

4. Numerical Simulation and Results

The reaction thruster attitude control is tested through numerical simulations. The tuning

matrices schemes presented in Section 3 are used to obtain the controller and observer gains.

They are able to attempt pointing requirements (<0.5◦) and reasonable margins of stability

for the attitude control system during the stabilization mode. Table 3 includes the values of
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Figure 4: Filtering of the measurement data.

principal momentum of inertia without payload [1]. Although several simulations over a

wide range of initial condition for attitude were performed, just one case is shown.

4.1. Noise Filtering

In order to filter the noise in themeasurement yv the steady-state Kalman filter is applied. The

estimated and measurement attitude is shown in Figure 4, on the left side. The errors and the

respective 3 sigma boundary results are shown on the right side of Figure 4. The steady-state

Kalman achieves good estimation of the real attitude with a standard deviation σ ∼= 0.027. The

estimation results present smoother profile compare to the measurements which is favorable

wish for the control system.

4.2. Short Slew Maneuver during Stabilization Mode

Although a set of different initial conditions are simulated and analyzed, we present only the

case when the satellite has a displacement of 10 degrees for each axis in attitude with respect

to LHLV orbital frame. To regulate or stabilize the satellite a short maneuver is needed. The
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Figure 5: Attitude profile during slew maneuver and disturbance effect.

attitude profile is shown in Figure 5. The simulation time corresponds to quarter of the orbital

period (∼= 104) minutes. The satellite executes the maneuver in approximately 100 seconds.

The duty cycle generated by the PWPF modulation is shown in Figure 6. The duty

cycle for row, pitch, and yaw angles are the same order of magnitude. Themaximal spent time

to complete a close path is quasi 800 seconds and it occurs in row direction. The specification

of pointing accuracy is achieved, less than 0.5 degrees. In fact reading out Figure 6 the

maximal errors in row, pitch, and yaw are ±0.3, ±0.3, and ±0.25 degrees, respectively. It shows

a high accurate performance of the reaction thruster which is possible by modulating the

control signal using the PWPF modulator.

Figure 7 shows the control command, executed by LQG controller, and themodulation

during the slew maneuver. The thrusters’ profile present small pulse-width modulation (ton)
which leads small impulses and hence less fuel consumption. Positive torques are executed

by 3 of thrusters and negative ones by another 3 thrusters.

4.3. Disturbance Rejection During Stabilization Mode

In order to test the action of the controller against disturbance effects (e.g., atmospheric drag)
or uncertainties in the system (e.g., sloshing), simulations considering impulse disturbance

signals acting in the system are carried out. Figure 5 presents the results obtained for the atti-

tude. It shows a maximal error in attitude of ±0.2 degrees which fulfill the desired precision

specification. The attitude control system is capable of respond fast to the disturbance effects,
less than 60 seconds for an exogenous pulse of 1 Newton. The control signal command and

the PWPF modulation results are presented in Figure 8. The results are satisfactory in terms

of accuracy and fuel since the modulation of the pulse-width is kept small.
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Figure 7: Control command and PWPF modulation during the slew maneuver.
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Figure 8: Control command and PWPF modulation for disturbance rejection.

It is worth to note that the use of magnetic coils actuators or reaction wheel devices can

zero the error residue, for example, duty cycle, by a damped actuation. This actuation will be

very small because of the level of accuracy in attitude achieved by the thruster actuation.

5. Conclusions

The obtained on-off thruster reaction attitude control system based on the LQG/PWPF

modulation is optimal with respect to regulation, (i.e., minimizing the quadratic cost function

of states and control signals), and propellant consumption. The optimality for fuel is obtained

through off-line simulations varying the parameters of the PWPF modulator till less fuel

consumption is achieved. This work presents the set of optimal parameters for the PWPF

modulator by considering static and dynamic analysis.

The LQG design is an efficient way to achieve exponentially stability, moreover it

allows to weight the magnitude of input signal u, restricting the torque commands till

acceptable performance is achieved. The weighting matrices for tuning the optimal LQG

controller are presented and discussed in this work. The previous work, see [6], using the

LQG design, demonstrated successfully, the applicability and suitability of the controller for

the stabilization mode. However, in the foregoing work the required on-off modulation was

not taken into consideration. It is worth to note that the LQG controller is able to stabilize the

system even for large initial attitude displacements within nonlinear dynamics. It shows how

resistent the controller is in face of internal changes in behavior.

The obtained results demonstrate the feasibility of combining LQG/PWPF modulator

in an unique controller for on-off thruster reaction attitude control system. Stability remains
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by adding the PWPF modulator and reasonable accuracy in attitude is achieved, that is,

magnitude of the duty cycle. Practical aspects are included in this study as filtering and

presence of external impulsive perturbations. The advantages of less spent propellant shall

contribute to the MMP project, specially, a satellite conceived to be used on a large number

and different types of missions, in the context of an ever-advancing Brazilian space program.
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1. Introduction

Nonlinearities in spacecraft attitude determination problem have been studied intensively

during the past decades. Since the early 1980’s, multiplicative extended Kalman filtering

(MEKF) algorithm [1] has proven to be a successful solution for engineering application. The

MEKF algorithm has a very low computing cost and performs quite well in most nominal

space missions where the spacecraft’s angular rate is slow and the nonlinearities are not so

impactive.
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In recent years, advances in space missions, such as the greater agility demand and

the application of lower cost sensors, deserve a revisit of the nonlinearity issue. Although

a variety of advanced nonlinear filtering algorithms exist, only few of them are close to the

restrict numerical expense requirements of actual onboard implementations. In the existing

methods, the well-known sigma point Kalman filters (SPKFs) [2, 3] have approven to

be among the most efficient ones. SPKF bases on a Gaussian distribution approximation

technique, namely, the unscented transformation (UT), where a deterministic set of weighted

points (known as the sigma points) are used to make probabilistic inference [4]. Eliminating

the complex Jacobian matrix derivations, SPKF algorithms are much easier to implement and

have better performance than traditional widely used EKF algorithms; so they have found

widespread application in a variety of fields. In recent years, spacecraft attitude estimation

problems have also been addressed by SPKF approaches in literature and engineering

practice [5–7].
In spite of being efficient among nonlinear filters, baseline SPKF still seems

computational costly for engineering implementation. If we denote m as the number of

sigma points required, then for an n-dimension random state vector x, standard unscented

transformation needs a set of m = 2n + 1 points to capture the state’s statistical distribution

properties. More seriously, when we develop a complete SPKF estimator for the n-
dimensional state model, the actual m needed is no longer 2n + 1—it easily becomes

4n or even larger, because standard SPKF algorithm requires a state augmentation to

include all the propagation and measurement noise terms, hence leading to an unacceptable

increase in computational burden. For avoidance of state augment, iterated and trapezoidal

approximation approaches [5, 8] have been developed. Both approaches are suitable for

additive noise case only, and they are able to reduce m back to 2n + 1. To further reduce the

complexity, strategies for introducing fewer sigma points are exploited, known as the reduced

sigma point filters. Several simplex points selection strategy have been developed, including

the n + 2 point minimal-skew simplex points [9], the spherical simplex points [10, 11], and
some enhanced higher-order extensions [12]. Each of the above sigma point sets involves

a zero-valued “central point,” which is usually endowed with a negative weight so as to

minimize higher order effects, known as the scaled UT technique [13]. In recent years, new

sigma point selection strategy involving no central-point is introduced, such as the Schmidt

orthogonalization-based simplex set [14], which includes n + 1 equally weighted points. It

is also proved that [15] such negative weight-free, equally weighted sigma point sets are

numerically more stable and accurate aswell as having a better efficiency. In fact, both central-

point elimination and equal weight assignment improve the symmetry property of the sigma

point set, and a better symmetry property provides a better numerical behavior, as it has a

better capability to suppress the impact of the round off errors. In this article, we address the

construction strategies to make a best symmetric structure in simplex sigma point set.

Anyhow, applications of simplex sets have reduced the required sigma points to

50% of the traditional nonaugmented algorithms and have made a significant improvement

in numerical efficiency. In fact, the numerical efficiency of simplex SPKF algorithm is

able to rival or even exceed its EKF counterpart if general formed Riccati equations and

numerical integration process are involved in the latter. However, for typical quaternion-

based spacecraft attitude problems, since simple analytical solutions and sparse matrices

exist for MEKF’ covariance propagation and measurement updates, general simplex SPKF

algorithm still compares unfavorably with MEKF in efficiency.

Clearly, to develop a competitive algorithm alternative to the MEKF for practical

applications, we need a still further reduction of m. Recently, a new sigma point selection
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strategy for a class of “partially linear” transformation problems has been proposed, namely,

the marginal unscented transformation [16]. By exploiting the linear substructures in system

model and margining out the corresponding variables, the marginal UT algorithms only

needs a set of sigma points that adequately describes the statistics property of the nonlinear

part of the states. It provides a possible approach to further shrink the size of the sigma

point set. As attitude dynamics also has linear substructures in gyro bias drift model and

the observation equations, it is imaginable that we can also address the attitude and rate

estimator design with similar ideas.

The main contributions of this article include two parts. First, we have derived in

detail a marginal version of SPKF algorithm for typical 6-state attitude determination system.

The new algorithm uses merely 4 sigma points to give a complete attitude and angular rate

estimation; hence it is able to achieve a high numerical efficiency that truly rivals the MEKF.

Second, we have proposed a new set of simplex sigma points for Euclidean Geometric space,

named the Geometric Simplex sigma point set. The new set has a symmetric structure, a lower

computational expense and is numerically more accurate. It would be of use in a variety of

3-dimensional modeled dynamic problems.

The organization of this paper proceeded as follows. First, we established a general

6-state stellar-inertial spacecraft attitude kinemics and measurement model and analyzed

the partially linear structure in the system. Then a marginal SPKF estimator is derived in

detail. Next, we looked into the asymmetrical properties of existing sigma point construction

algorithms and proposed the Geometric simplex set. Finally, we incorporated the proposed

sigma point set into the marginal filtering framework to configure a complete attitude

estimator, named the Marginal Geometric Sigma Point Filter, and inspected its performance

in simulation with comparisons to the traditional MEKF and Spherical Simplex SPKF.

2. Models and Traditional Filtering Frameworks

2.1. Attitude Dynamics and the MEKF Framework

For spacecraft attitude estimation, quaternion has been the most widely used attitude

parameterization. The quaternion is given by a 4-dimension vector defined as q = [qT , q4]
T
,

with q ≡ [q1, q2, q3]T = n̂ sin(φ/2) and q4 = cos(φ/2), where n̂ is Euler axis and φ is the

rotation angle. Quaternion parameter satisfies a single constraint given by qTq = 1. The

kinematics equation is given by

q̇ =
1

2
Ω(ω)q, (2.1)

where ω is the angular rate vector given from the gyro’s measurement ωmeas by

compensating the gyro bias b:

ω = ωmeas − b − ηARW, (2.2)

where ηARW is a zero-mean Gaussian angular random walk noise with a covariance of

σ2
ARWI3. b is often modeled as a rate random walk process with white noise ηRRW and a

covariance of σ2
RRWI3:

ḃ = ηRRW. (2.3)
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From (2.1)∼(2.3), we can derive the discrete-time version of the above models with

numerical integration. In fact, numerically simpler closed-form solution exists for (2.1) if

we approximately consider the direction of ω as a constant vector during the propagation

interval T for each filtering circle from tk−1 to tk:

q̂k/k−1 = q̂k−1 ⊗ q̂
ω

k−1, (2.4)

where

q̂
ω

k−1 =

⎡⎢⎣ φ̂T

k−1
2

sin
(

φ̂k−1/2
)

cos
(

φ̂k−1/2
) , cos

φ̂k−1
2

⎤⎥⎦
T

(2.5)

with

ω̂k−1 = ωmeas
k−1 − b̂k−1,

φ̂k−1 = ω̂k−1T, φ̂k−1 =
∣∣∣φ̂k−1

∣∣∣. (2.6)

The approximation is tenable as far as the period T is small enough, which is usually well

satisfied in practice, and a second-order accuracy is guaranteed.

In actual calculation process, (2.5) seems too complex, and a 2nd-order approximation

is enough. To associate the quaternion q(φ) = [n̂T sin(φ/2), cos(φ/2)]T
to its pertinent

rotation vector φ = n̂φ in a straightforward way, we can choose an arbitrarily 3-dimensional

attitude parameter as the media. In this paper, we choose the Modified Rodrigues Parameters

(MRPs) recommended in [17] to give a 2nd-order, trigonometric function, and square-root

function-free approximation of (2.5):

φ(δq) =
4δq(

1 + δq4

) ,

δq(φ) =

[
8φT ,

(
16 − φ2

)]T
(
16 + φ2

)
(2.7)

with φ2 = φTφ. Clearly, such MRP-based expression is quite economic for computation. Then

the discrete-time propagation equations can be written as follows:

q̂
ω

k−1 =

[
8φ̂

T

k−1,
(
16 − φ̂2

k−1

)]T

(
16 + φ̂2

k−1

) ,

b̂k/k−1 = b̂k−1.

(2.8)

To cope with the unit-length constraint of quaternion, local error states (also known

as the local disturbance states) are introduced into filter design. We describe the local
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attitude error as a 3-dimensional rotation vector a and the local gyro bias error as another 3-

dimensional vectorΔb. Then the actual state vector processed by the filter is the 6-dimension

disturbance state:

x =
[
aT ,ΔbT

]T
. (2.9)

For clarity, we hence address the original states q̂ and b as the “global states,” which would

mainly serve as singular-point-free reference and storage for the filter. The global states and

the local error state are affiliated as

q = q̂ ⊗ δq(â),

b = b̂ + Δb,
(2.10)

where δq is the local error quaternion corresponding to â. Again we choose to use the MRP

approximation, as

a(δq) =
4δq(

1 + δq4

) ,

δq(a) =

[
8aT ,
(
16 − a2

)]T
(16 + a2)

(2.11)

with a2 = aTa. Clearly, such an MRPs-based expression is free from any square-root or

trigonometric functions, economic in computation.

After all generality, the observation model in this article is established as an automatic

star sensor with quaternion measurements qmeas
k . But in actual practice this information is

presented to the Kalman filter in a more convenient way as in terms of a 3-dimensional

parameter. Againwe choose to use theMRP parameter, and then the star sensor’s observation

model is simply defined as the local error between the predicted and observed attitudes:

zmeas
k = h(x̂k) = a

(
δqmeas

k

)
+ vk, (2.12)

where

δqmeas
k = q̂

−1
k/k−1 ⊗ qmeas

k , (2.13)

and vk is the measurement noise covariance modeled as

Rk = σ2
r I3. (2.14)

With the above models, we can derive an MEKF estimator as in [1] and briefly reviewed

in blocked matrix form in Table 4. Note that the most computational cost parts of the
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algorithm involve the covariance propagation, measurement update, and the Kalman filter

gain computing, namely,

PX
k/k−1 = Θk−1PX

k−1Θ
T
k−1 +Qk, (2.15)

Kk = PX
k/k−1H

T
k

(
HkPX

k/k−1H
T
k + Rk

)−1
, (2.16)

PX
k = (I6 −KkHk)PX

k/k−1, (2.17)

where PX
k
is the estimation of x’s covariance,Kk is the Kalman filter gain,Hk is the observation

matrix, and Θk and Qk are, respectively, the transition matrix and the propagation noise

matrix, as

Θk−1 =

[
Φk−1 Ψk−1

03×3 I3

]
, Qk =

⎡⎣QA
k

(
QBA

k

)T

QBA
k

QB
k

⎤⎦. (2.18)

General problem would involve numerical integration of Riccati equations to evaluate

the Θk matrix in (2.15), and complex derivations to evaluate the Hk matrix in (2.16) and

(2.17). Fortunately, it is also found that simple analytical solutions exist for Φk−1, Ψk−1 (see
Table 4) [18], and Qk [19] as

QA
k = T

(
σ2
ARW +

(
1

3

)
σ2
RRWT2

)
I3,

QBA
k = −

(
1

2

)
σ2
RRWT2I3,

QB
k = σ2

RRWTI3.

(2.19)

Moreover,Hk involves sparse and unit matrices as

Hk = [I3, 03×3]. (2.20)

Hence the MEKF algorithm is numerically very efficient. The computational complex of a

typical stellar-inertial MEKF attitude estimator is evaluated in Table 4.

2.2. Traditional Sigma Point Filtering Framework

We consider now the application of SPKF to the system discussed above. A set of m sigma

points are chosen to approximate the statistic distribution of the 6-dimension disturbance

state x = [aT ,ΔbT]T
:

χ(i) =
[
α(i)T ,β(i)T

]T
, i = 1, 2, . . . , m, (2.21)
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where (i) is the index, α(i), β(i) represent the attitude and bias error, respectively, each point

is assigned with a weight W (i), and all the weights satisfy the normalization constraint:

m∑
i=1

W (i) = 1. (2.22)

For clarity, write the sigma points and their associated weight in matrix form, as

� =
[
χ(1),χ(2), . . . ,χ(m)

]
=

[
�

�

]
=

[
α(1),α(2), . . . ,α(m)

β(1),β(2), . . . ,β(m)

]
,

� =
[
W (1), W (2), . . . , W (m)

]
,

Λ� = diag
(
�
)
.

(2.23)

For unbiased distribution of x ∈ �n , � is constructed as

� = SX
�, (2.24)

where SX is an arbitrary square-root matrix of PX with SX(SX)T = PX = �cov(x, x), also
denoted as SX =

√
PX . � = [u(1), . . . ,u(m)] ∈ �n×m is a base set of sigma points, and it can

be defined in several different rules, depending on the sigma point construction strategy we

use. Anyhow, � has an unbiased mean and a unit covariance:

� ·� T = 0,

� ·ΛW ·�T = Im.
(2.25)

The construction strategy of � is also the dominating differentiation between different SPKF
algorithms. With the definitions above, the set X is able to capture the statistics of x’s
distribution precisely up to 2nd-order.

The SPKF attitude estimator is as follows. At the beginning time of each filtering step

tk−1, the local error state is reset to zero:

x̂k−1 =
[
âT

k−1,Δb̂T
k−1

]T
= [03×1, 03×1]T . (2.26)

Then we construct the sigma points of Xk−1. As in [5], we would like to use the trapezoidal

approximation to avoid state augmentation; so actually SX
k−1 is computed as

SX
k−1 =

√
PX

k−1 +Q
X

k−1, (2.27)
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where

Q
X

k−1 =

⎡⎣QA

k−1, 03×3

03×3,Q
B

k−1

⎤⎦ =

⎡⎢⎢⎣
T

2

(
σ2
ARW − T2

6
σ2
RRW

)
I3, 03×3

03×3,
T

2
σ2
RRWI3

⎤⎥⎥⎦, (2.28)

and it is equivalent to have the Qk in (2.18) implicitly propagated together with the sigma

points [5].
Next, propagate the m sigma points as follows:

φ
β(i)
k−1 =

(
ω̂k−1 − β

(i)
k−1

)
T,

qβ(i)
k−1 =

[
8φ

β(i)T
k−1 ,

(
16 − φ

β(i)2
k−1

)]T
(
16 + φ

β(i)2
k−1

) ,

(2.29)

where φ
β(i)
k−1 = |φβ(i)

k−1|, and

qα(i)
k−1 =

[
8α

(i)T
k−1 ,
(
16 − α

(i)2
k−1

)]T
(
16 + α

(i)2
k−1

) ,

qα(i)
k/k−1 =

(
q̂
ω

k−1

)−1
⊗ qα(i)

k−1 ⊗ qβ(i)
k−1.

(2.30)

Thereby we have the propagated sigma points �k/k−1 and �k/k−1, respectively, as

α
(i)
k/k−1 = α

(
qα(i)

k/k−1

)
=

4qα(i)
k/k−1(

1 + q
α(i)
4k/k−1

) , (2.31)

β
(i)
k/k−1 = β

(i)
k−1. (2.32)

Note we have propagated the attitude-related sigma points α(i) directly without adhering it

to the global state q̂k−1 as in [5]; so a decrease of computational complexity is achievable. This

approach stands as far as the time interval of T is guaranteed to be small enough in order that

both α(i) and φ(i) can be taken as small rotation vectors, and the MRP approximation is valid.

Then the predicted mean of x is

x̂k/k−1 = �k/k−1�
T . (2.33)
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Now we compute the predicted measurements. Noting that the sigma points have already

implicitly changed their reference from q̂k−1 to q̂k/k−1 during propagation, so the predicted

star sensor quaternion measurements are

q̂
χ(i)
k/k−1 = q̂k/k−1 ⊗ δqα(i)

k/k−1. (2.34)

Following (2.12) and (2.13), it is straight forward to derive the observation model for the

SPKF as

ζ
(i)
k/k−1 = α

(i)
k/k−1. (2.35)

Denoted in matrix form as � = [ζ(1), ζ(2), . . . , ζ(m)], then we can get the predicted

measurement �̂k/k−1 as

�̂k/k−1 = Zk/k−1 ·WT . (2.36)

Next we compute the covariance predictions. If we take x̂k/k−1 as a bias of the sigma

points, then to appropriately compute the covariance, wemust remove this bias at first. Hence

the covariance prediction process would involve two steps:

�k/k−1 = �k/k−1 − 11×m ◦ x̂k/k−1, (2.37)

PX
k/k−1 = Xk/k−1 ·ΛW ·Xk/k−1

T , (2.38)

where “◦” denotes the Kronecker product, and 11×m = [1, 1, . . . , 1]1×m. Similarly, we give the

unbiased measurement points set as

Zk/k−1 = Zk/k−1 − 11×m ◦ �̂k/k−1 (2.39)

the innovation covariance and cross covariance matrix are then, respectively,

PZ
k/k−1 = Zk/k−1 ·Λ� ·Zk/k−1

T + Rk,

PXZ
k/k−1 = Xk/k−1 ·Λ� ·Zk/k−1

T
(2.40)

and the measurement update procedure is

Kk = PXZ
k/k−1

(
PZ

k/k−1

)−1
, (2.41)

x̂k = x̂k/k−1 +Kk

(
�̂
meas
k − �̂k/k−1

)
, (2.42)

PX
k = PX

k/k−1 −KkPZ
k/k−1(Kk)T . (2.43)
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Finally, update the global states q̂ and b̂ as

q̂k = q̂k/k−1 ⊗ δq(âk),

b̂k = b̂k/k−1 + Δb̂k.
(2.44)

Above is the framework of an SPKF version attitude estimator. A blocked-form

procedure summary is listed in Table 5. It is not difficult to evaluate the computational

complexity of the SPKF estimator. Evenwhen reduced-point algorithms, such as the spherical

simplex unscented Kalman filter, are adopted, the computing effort is still a double of the

MEKFs, as listed in Table 3.

3. Marginal Geometric Sigma Point Filters

3.1. Marginal Sigma Point Filtering Framework for Spacecraft Attitude and
Rate Estimations

Now we look into some special structures of the above estimator. First, noting (2.32), we

find that the bias-related sigma points � = [β(1), . . . ,β(m)] remain unchanged during the

whole process of the propagation, indicating that their mean would also remain unchanged

as Δb̂k/k−1 = Δb̂k−1 = 03×1. In other words, no information has been introduced into the

state Δb’s mean and covariance cov(Δb,Δb) during the propagation. Therefore, once we are

able to capture the information of â, cov(a, a) and cov(b, a), we have already obtained all the

information available during time propagation.

Then noting (2.35), we find only the attitude-related sigma points �k/k−1 are explicitly
used to construct the measurement predictions �k/k−1. We can write a formal expression of

this transform as

� = h(x) = γ(a). (3.1)

In fact, (3.1) belongs to a special class of nonlinear transformation, namely, the partially linear

transformation [16]. Clearly, for the measurement update process, the random variable �’s

mean � , cov(�, �), and cross covariance cov(a, �) are all independent of Δb, and it is proved

that the cross covariance cov(Δb, �) is also independent of cov(Δb,Δb) up to the 2nd-order.

The above discussions leads to the following conclusion: as long as we can construct a

set of sigma points that matches the given mean estimations of â, Δb̂, and the covariances

of PA = �cov(a, a) and PBA = �cov(Δb, a), it is enough to capture the first two moments’

statistics properties of the random state x with a precision up to 2nd-order. Before moving

on to construct such a sigma point set, we should also note from (2.26), (2.37) and (2.39) that
with the reset and de-bias steps embeding the filter, actually we are on the assumption that

we have an unbiased distribution as x = [aT ,ΔbT]T = [0T
3×1, 0T

3×1]
T
.

So now our goal becomes to construct a minimum set of sigma points, which is able

to fully capture all the available information given as (a) unbiased mean estimation, that is,

a = 03×1, Δb = 03×1, and (b) the covariance estimation as PA = cov(a, a) PBA = cov(Δb, a).
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To match the unbiased mean, we have

� ·WT = Wm

(
α(1) + α(2) + · · · + α(m)

)
= 0, (3.2)

� ·WT = Wm

(
β(1) + β(2) + · · · + β(m)

)
= 0. (3.3)

As stated in [9], to fully capture the mean of an n-dimensional state vector, at least m = n + 1

points are needed. Noting both a andΔb ∈ �3 , the minimum m which satisfies both (3.2) and
(3.3) is m = 4.

To further reduce the computational expense and make a better symmetry property,

assign equal weights W for all the sigma points. Then we have

m∑
i=1

Wi = mW = 1. (3.4)

Clearly,

W =
1

m
=
1

4
, (3.5)

W =
(

1

m

)
11×m, ΛW =

(
1

m

)
Im. (3.6)

To match a’s covariance estimation PA = �cov(a, a)with outer products approximation,

we have

�ΛW(�)T =
(

1

m

)
�(�)T = PA. (3.7)

Again we make use of a base set U� ∈ �3×m to help matching PA. Denoting U� =
[ua(1),ua(2),ua(3),ua(4)], the following relationship should be satisfied:

U� ·WT = 0, (3.8)

U� · ΛW · (U�)T = I3. (3.9)

Substituting (3.5) and (3.6), it is straightforward to get

m∑
i=1

ua(i) = 0, (3.10)

U� · (U�)T = mI3. (3.11)

As m = 4, U� must be a simplex set. In spite of the constraints in (3.8) and (3.9), we still

have the freedom to choose an arbitrary realization of U� . Later we will propose a novel set
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derived from a heuristic geometry approach. Now supposing that U� is given, then we may

construct � simply as

� = SA ·U� , (3.12)

where SA is an arbitrary matrix square-root of PA fulfilling SA(SA)T = PA. It is

straightforward to validate (3.12) as substituting it to (3.7):

�ΛW(�)T =
(

1

m

)
SA ·U�

(
SAU�

)T

=
(

1

m

)
SA ·
(
U�(U�)T

)
·
(
SA
)T

=
(

1

m

)
SA · (mI3) ·

(
SA
)T

= PA.

(3.13)

To match the cross covariance PBA is

BΛW(�)T =
(

1

m

)
B(�)T = PBA. (3.14)

Here we propose a simple and convenient algorithm to compute B. Define SBA
k−1 = PBA(SA)−T

,

which we could get with the low computational cost Gaussian elimination:

SBA
k−1 = PBA

(
SA
)−T

=
PBA

k−1(
SA

k−1
)T

. (3.15)

Then we have

B = SBA
k−1U� . (3.16)

Proof of (3.15) is straightforward as substituting it to (3.14):

BΛ� (�)T =
(

1

m

)(
SBA

k−1U�
)(

SAU�
)T

=
(

1

m

)
SBA

k−1 ·
(
U�(U�)T

)
·
(
SA
)T

=
(

1

m

)
PBA
(
SA
)−T

· (mI3) ·
(
SA
)T

= PBA
(
SA
)−T

·
(
SA
)T

= PBA.

(3.17)
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Thereupon, we have constructed a desired set of marginal sigma points as in (3.12) and (3.16).
Note that it is enough to use merely one base set U� to construct the full-length Sigma point

set � = [�T ,BT]T
. So hereafter we would suppress the superscript of U� as U.

Looking into (2.38), we find

PX =

[
PA, PAB

PBA, PB

]
=

⎡⎣ PA,
(
PBA
)T

PBA, PB

⎤⎦. (3.18)

With the proposed sigma points, the propagation and innovation steps of Δb’s covariance

estimation PB are no longer necessary. Eliminating the PB-related term and making use of the

symmetric structure of the matrix, it is enough to have PA and PBA propagated. Accordingly,

it is only necessary to have the same matrices updated. There by, we will replace (2.38) and
(2.43) with

PA
k/k−1 = �k/k−1 ·ΛW · (�k/k−1)T ,

PBA
k/k−1 = Bk/k−1 ·ΛW · (�k/k−1)T ,

PA
k = PA

k/k−1 − PAZ
k/k−1

(
PZ

k/k−1

)−1(
PAZ

k/k−1

)T

= PAA
k/k−1 −KAZ

k

(
PAZ

k/k−1

)T
,

PBA
k = PBA

k/k−1 − PBZ
k/k−1

(
PZ

k/k−1

)−1(
PAZ

k/k−1

)T

= PBA
k/k−1 −KBZ

k

(
PAZ

k/k−1

)T
.

(3.19)

To avoid state augmentation, we would like to have the propagation noise terms

incorporated into the filter with trapezoidal approximation. However, as PB is no longer used,

we have to seek for alternate approach. Denote

S
QA

k−1 =
√
Q

A

k−1 =

√√√√(T2

2

)
·
(

σ2
ARW −

(
T2

6

)
σ2
RRW

)
· I3,

S
QB

k−1 =
√
Q

B

k−1 =

⎛⎝σRRW

√
T

2

⎞⎠ · I3.

(3.20)

Then similar to [11], we can add the noise terms directly to the sigma points with the help of

U:

�k−1 = SA
k−1U + SQA

k−1U =
(
SA

k−1 + SQA

k−1

)
U, (3.21)

Bk−1 = SBA
k−1U − SB

QU =
(
SBA

k−1 − SB
Q

)
U. (3.22)
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Table 1: Simplex base sets for 3-dimensional space.

Sigma set U ∈ �n×m for n = 3

U = (0.5/
√

Wm)

⎡⎣ 0, −1/
√
2, 1/

√
2, 0, 0

0, −1/
√
6, −1/

√
6, 2/

√
6, 0

0, −1/
√
12, −1/

√
12, −1/

√
12, 3/

√
12

⎤⎦
Spherical simplex

m = 5 0 < W0 < 1, Wm = (1 − W0)/(n + 1)

U = (1/
√

W)

⎡⎢⎣
1/

√
2, −1/

√
2, 0, 0

1/
√
6, 1/

√
6, −1/

√
3/2, 0

1/
√
12, 1/

√
12, 1/

√
12, −1/

√
4/3

⎤⎥⎦
Schmidt orthogonal

m = 4 W = 1/(n + 1) = 1/4

U =

⎡⎣ +1, +1 −1 −1

+1, −1 −1 +1

+1, −1 +1 −1

⎤⎦
Geometric simplex

m = 4 W = 1/(n + 1) = 1/4

Table 2: Residues of numerical mean estimation.

S

⎡⎣ 10−1 , 0, 0;

10−2 , 10−1 , 0;

10−3 , 10−4 , 10−1

⎤⎦ ⎡⎣ 10−2 , 0, 0;

10−3 , 10−2 , 0;

10−4 , 10−5 , 10−2

⎤⎦ ⎡⎣ 10−4 , 0, 0;

10−5 , 10−4 , 0;

10−6 , 10−7 , 10−4

⎤⎦

Mean

SS 2.151464 × 10−18 1.319254 × 10−19 5.591741 × 10−22

SO 1.734723 × 10−18 6.505213 × 10−19 1.694066 × 10−21

GS 0 (precise) 0 (precise) 0 (precise)

Covariance

SS 3.878960 ×10−18 4.065758 × 10−19 8.271806 × 10−24

SO 4.249187 ×10−18 3.030437 × 10−19 7.018860 × 10−24

GS 1.734723 ×10−18 0 (precise) 2.339620 × 10−24

SS: Spherical simplex set. SO: Schmidt orthogonal set. GS: Geometric simplex set.

Note in (3.22) that the sign before SB
Q is negative. The reason is that with a given covariance

estimation P and its square-root S, it is equivalent for us to choose either S or –S when

constructing the sigma points. Both “directions” work because the given mean is unbiased.

But when we add noise terms directly to the sigma points as in (3.22), we must guarantee

that SBA
k−1 and SB

Q have a common sign. Recalling (25) as

QBA
k−1 = −

(
1

2

)
σ2
RRWT2I3, (3.23)

here the negative sign in the right side of (3.23) clearly indicates opposite signs between SBA
k−1

and SB
Q
.
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Table 3: Comparisons of total arithmetic operations.

Algorithm Phase Multiplies Adds
Square

roots

MEKF

Propagation 350 270 2

Measurement update 260 185 1

One full filter step∗ 610 455 3
One observation circle† 1680 1265 9

MGSPF

Propagation 350 285 5

Measurement update 380 280 1

One full filter step 750 565 6
One observation circle 1860 1480 21

SSUKF

Propagation 810 565 8

Measurement update 455 370 1

One full filter step 1265 935 9
One observation circle 3695 2630 33

∗Including 1 propagation step and 1 measurement update step.
†Including several propagation steps and 1 measurement update step. In this case we take a typical value as 4 propagations
for each 1 update.

3.2. The Geometric Simplex Sigma Points

Construction of the base set U plays an important role in simplex sigma point algorithms.

Existing strategies had mainly focused on the design of general operation flow for getting a

base set for any arbitrary dimension n. In [9, 10], direction-extending technique is developed

and used to build the minimal-skew and spherical simplex set. While in [14], Schmidt

orthogonalization is employed to develop a new set. Table 2 demonstrates both the spherical

simplex set [10] and the Schmidt orthogonal simplex set [14] for n = 3. Close comparison

could reveal that both sets are equivalent after a sign shift except for the existence of an

additional central point in the spherical simplex set. Both sets are easy to be extended to

higher dimension space, and because all the points are equally weighted and equidistantly

placed on a hyper sphere, they are numerically stable over the increase of n.

However, both sets lack numerical accuracy, and they are complex to compute, as

irrational numbers
√
2,
√
6, and so on exist. Further, they do not have symmetric structures. A

fully symmetric set needs that for every point u(i) ∈ U, we can get another point u(j) ∈ U, i /= j

simply by element permutation or sign-changing point of the generator point u(i) [15].
Clearly, except for the first dimension (or describing in matrix language, the first row of

U), not even element level symmetry is guaranteed in the spherical or Schmidt orthogonal

simplex sets.

In order to make a better symmetry property, we propose a new base set of sigma

points here as in the 3rd row of Table 1 and Figure 1. It is straight forward to find that both

(3.10) and (3.11) are completely satisfied. For clarity, we name this new set as “the Geometric

Simplex Set,” for it has a nice symmetrical structure as a tetrahedron in the 3-dimensional

Euclidean space (Figure 1). The proposed new sigma point set has several benefits.

(i) The new set is more intuitive to comprehend and apply, especially for the 3-

dimensional Euclidean space, the true space where we are, and the true space in which a

variety of dynamical problems as guidance, navigation, and so on take place.
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Table 4: Pseudocode and computational expense evaluation of the MEKF with closed-form solutions.

Algorithm × + √

Initialize

x̂0 = [âT
0 ,Δb̂T

0 ]
T
= 06×1, q̂0 = [0T

3×1, 1]
T
, b̂0 = 03×1

PA
0 = ε2aI3, P

B
0 = ε2

b
I3,

QA
k
= T(σ2

ARW
+ (1/3)σ2

RRW
T2)I3

QBA
k

= −(1/2)σ2
RRW

T2I3,QB
k
= σ2

RRW
TI3

Propagation

ω̂k−1 = ωmeas
k−1 − b̂k−1, ω̂k−1 = |ω̂k−1|, φ̂k−1 = ω̂k−1T 6 5 1

q̂
ω

k−1 = [8φ̂
T

k−1, (16 − φ̂2
k−1)]

T

/(16 + φ̂2
k−1) 6 2

n̂ = ω̂k−1/ω̂k−1 3

Φk−1 = I3 − sin φ̂k−1[n̂×] + (1 − cos φ̂k−1)[n̂×]2

≈ I3 − (φ̂k−1 − (φ̂3
k−1/6))[n̂×] + (φ̂2

k−1/2)[n̂×]
2

49 30

Ψk−1 = (T/2)I3 − ((1 − cos φ̂k−1)/ω̂k−1)[n̂k−1×]

+((φ̂k−1 − sin φ̂k−1)/ω̂k−1)[n̂k−1×]2

≈ (T/2)I3 − (φ̂2
k−1/2ω̂k−1)[n̂k−1×] + (φ̂3

k−1/6ω̂k−1)[n̂k−1×]2

51 30

PA
k/k−1 = Φk−1PA

k−1Φ
T
k−1 +Ψk−1PB

k−1Ψ
T
k−1 108 81

+Ψk−1PBA
k−1Φ

T
k−1 + (Ψk−1PBA

k−1Φ
T
k−1)

T
+QA

k
54 57

PBA
k/k−1 = PBA

k−1Φ
T
k−1 + PB

k−1Ψ
T
k−1 +QBA

k
54 48

PB
k/k−1 = PB

k−1 +QB
k

3

q̂k/k−1 = q̂k−1 ⊗ q̂
ω

k−1, q̂k/k−1 = q̂k/k−1/‖q̂k/k−1‖ 22 15 1

b̂k/k−1 = b̂k−1

353 271 2

Measurement
update

PZ
k/k−1 = HkPX

k/k−1H
T
k
+ Rk = PA

k/k−1 + Rk 3

PAZ
k/k−1 = PA

k/k−1H
T
k
= PA

k/k−1

PBZ
k/k−1 = PBA

k/k−1H
T
k
= PBA

k/k−1

KAZ
k

= PA
k/k−1(P

Z
k/k−1)

−1
, KBZ

k
= PBA

k/k−1(P
Z
k/k−1)

−1
114 58

δqmeas
k = q̂

−1
k/k−1 ⊗ qmeas

k 16 12

�
meas
k

= 4qmeas
k

/(1 + q4
meas
k

), γmeas
k

= �̂
meas
k

5 4

âk = KAZ
k

γmeas
k

, Δb̂k = KBZ
k

γmeas
k

18 9

PA
k
= PA

k/k−1 −KAZ
k

(PAZ
k/k−1)

T
27 27

PBA
k

= PBA
k/k−1 −KBZ

k
(PAZ

k/k−1)
T

27 27

PB
k
= PB

k/k−1 −KBZ
k/k−1(P

BZ
k/k−1)

T
27 27

q̂k = q̂k/k−1 ⊗ δq̂(âk), q̂k = q̂k/‖q̂k‖ 22 15 1

b̂k = b̂k/k−1 + Δb̂k 3

256 185 1
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Table 5: Pseudocode and computational expense evaluation of the MGSPF algorithm.

Algorithm × + √

Initialize

x̂0 = [âT
0 ,Δb̂T

0 ]
T
= 06×1, q̂0 = [0T

3×1, 1]T
, b̂0 = 03×1

PA
0 = ε2aI3, P

BA
0 = εaεbI3 m = 4

S
QA

k−1 = T
√
((6σ2

ARW − T2σ2
RRW)/12)I3 S

QB

k−1 = (σRRW

√
T/2)I3

Propagation

SA
k−1 =

√
PA

k−1, S
BA
k−1 = PBA

k−1/(SA
k−1)

T
25 13 3

�k−1 = (SA
k−1 + SQA

k−1)UGS, Bk−1 = (SBA
k−1 − SQB

k−1)UGS 0 54

ω̂k−1 = ωmeas
k−1 − b̂k−1, ω̂k−1 = |ω̂k−1|, φ̂k−1 = ω̂k−1T 6 5 1

q̂
ω

k−1 = [8φ̂
T

k−1, (16 − φ̂2
k−1)]

T

/(16 + φ̂2
k−1) 6 2

For i = 1 : m, φ
β(i)
k−1 = (ω̂k−1 − β(i)

k−1)T 3m 3m

qβ(i)
k−1 = [8φβ(i)T

k−1 , (16 − φ
β(i)2
k−1 )]

T
/(16 + φ

β(i)2
k−1 ) 6m 2m

qα(i)
k−1 = [8α(i)T

k−1 , (16 − α
(i)2
k−1)]

T
/(16 + α

(i)2
k−1) 6m 2m

qα(i)
k/k−1 = (q̂

ω

k−1)
−1

⊗ qα(i)
k−1 ⊗ qβ(i)

k−1 32m 24m

α
(i)
k/k−1 = 4qα(i)

k/k−1/(1 + q4
α(i)
k/k−1) end 5m 1m

Bk/k−1 = Bk−1,Zk/k−1 = �k/k−1

âk/k−1 = (1/m)�k/k−1 · 11×m 1×m, Δb̂k/k−1 = Δb̂k−1 = 03×1 3 3(m − 1)

�k/k−1 = �k/k−1 − 11×m ◦ âk/k−1 3m

PA
k/k−1 = (1/m)�k/k−1(�k/k−1)

T 6 + 6m 6(m − 1)

PBA
k/k−1 = (1/m)Bk/k−1(�k/k−1)

T 9 + 9m 9(m − 1)

q̂k/k−1 = q̂k−1 ⊗ q̂
ω

k−1, q̂k/k−1 = q̂k/k−1/‖q̂k/k−1‖ 22 15 1

b̂k/k−1 = b̂k−1

For m = 4 351 285 5

Measurement
update

�̂k/k−1 = (1/m)Zk/k−1•1m×1 3 3(m − 1)

Zk/k−1 = Zk/k−1 − 11×m ◦ �̂k/k−1 3m

PZ
k/k−1 = (1/m)Zk/k−1Zk/k−1

T + Rk 6 + 6m 9(m − 1) + 3

PAZ
k/k−1 = (1/m)ak/k−1Zk/k−1

T 9 + 9m 9(m − 1)

PBZ
k/k−1 = (1/m)Bk/k−1Zk/k−1

T 9 + 9m 9(m − 1)

KAZ
k

= PA
k/k−1(P

Z
k/k−1)

−1
, KBZ

k
= PBA

k/k−1(P
Z
k/k−1)

−1
114 58

δqmeas
k = q−1

k/k−1 ⊗ qmeas
k 16 12

�
meas
k

= 4qmeas
k

/(1 + q4
meas
k

), γmeas
k

= �̂
meas
k

− �̂k/k−1 5 4

âk = KAZ
k

γmeas
k

, Δb̂k = KBZ
k

γmeas
k

18 12

PA
k
= PA

k/k−1 −KAZ
k

(PAZ
k/k−1)

T
27 27

PBA
k

= PBA
k/k−1 −KBZ

k
(PAZ

k/k−1)
T

27 27

PB
k
= PB

k/k−1 −KBZ
k/k−1(P

BZ
k/k−1)

T
27 27

q̂k = q̂k/k−1 ⊗ δq(âk), q̂k = q̂k/‖q̂k‖ 22 15 1

b̂k = b̂k/k−1 + Δb̂k 3

For m = 4 379 278 1
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(ii) Lower computation expense and better round-off error behavior. The new set is

free from calculating any irrational numbers. Furthermore, as it is only constituted of ±1,
we can replace the multiplication operations in (3.12), (3.16) with simple sign changes. By

elimination of both irrational number and multiplication, we made (3.12), (3.16) precise, and
free from round-off errors.

(iii) The Geometric simplex set has a better symmetrical structure, which would

help to further increase the numerical accuracy, including (a) single dimension symmetry

completely fulfilled (or in matrix language, each row of U is constituted with symmetrically

distributed elements). (b) interdimensional symmetry (or per mutational symmetry) partly
fulfilled. Define the generator point as u = [1, 1,−1]T , and construct new points from u by

permutation and sign-changing, altogether we can make 8 points occupying the 8 vertices of

the unit cube in Figure 1. NoteU has included 4 of themwith a symmetric structure, which is

enough to capture the random state’s first two ordermoments (mean and variance). Actually,

the other 4 points can be found in −U, and clearly, for an unbiased problem, choosing either

U or −U is equivalent.

Numerical Demonstration

Suppose that we have already obtained a 3-dimensional unbiased state a, covariance P, and
its coresponding square-root matrix S. Then we are going to generate a set of sigma points

with a base setU as � = S ·U. As had been claimed, theoretically we should have

�
a = Wm

(
α(1) + · · · + α(m)

)
= 0,

�

P = � ·ΛW · (�)T = S · ST ,

(3.24)

where
�
a and

�

P represent the result by numerical computation. Then we can take the norm of

the residues |�a − 0| and |diag(
�

P − P)| as a criterion of a sigma set’s numerical accuracy. Three

typical base sets, namely, the Spherical Simplex set, the Schmidt Orthogonal set and the new

proposed Geometry Simplex set are compared over a series of different S matrices with their

diagonal elements ranked form 102 ∼ 10−6.
The numerical experiment is programmed with double precision float numbers in

MATLAB, and some typical results are listed in Table 2. As can be seen, numerical behaviors

of the Geometric simplex set are quite encouraging. On mean computation, both spherical

and Schmidt sets introduced a residue error at the scale of about 10−16 of the diagonal

elements of S, while the geometric set’s computed residue had always been precisely 0. On

covariance computation, the new set’s accuracy is also significantly superior. Biased sets are

also studied and the result is similar.

3.3. The Highly Efficient New Filter

Incorporating the Geometric Simplex sigma point set into the Marginal SPKF framework, we

would have a new nonlinear SPKF estimator for attitude estimation, namely, the Marginal

Geometric Sigma Point Filter (MGSPF) algorithm, summarized in Table 5. As a sigma point

filtering algorithm, the MGSPF has a significant increase in numerical efficiency, while it still

guarantees a same order precision as the traditional SPKF algorithms. A general comparison
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Figure 1: Geometry simplex sigma points in 3-dimensional Euclidean space.

of computation expense is taken between theMEKF andMGSPF algorithms as listed in Tables

4 and 5, and the result is summarized in Table 3.

For the computing effort of the propagation phase, there is little difference between

MGSPF and MEKF, both are about half of the SSUKFs. For measurement update phase, the

MGSPF takes some more arithmetic operations, but still only 80% of the SSUFK. In fact, if

we take into account that in most actual implementations, there exist more propagation steps

than observation steps, the total computational expense of MEKF and MGSPF would be very

close. It is clear that the MGSPF has achieved a truly rivalizing efficiency as the MEKF, even

when simple analytical closed-form solutions are included in the MEKF, and they are almost

50% of the SSUKF.

4. Simulations

In this section we apply the proposed Marginal Geometric Sigma Point Filter (MGSPF)
algorithm to the typical stellar-inertial spacecraft attitude determination system with

numerical simulations. To give a comparison, the multiple extended Kalman filter (MEKF)
and a nonaugmented spherical simplex unscented Kalman filter (SSUKF) with trapezoidal

approximation of the propagation noise are also simulated.

Parameters of the simulated model are set as follows. The spacecraft’s initiation

attitude is q0 = [0.1, 0.15, 0.2, 1]T , or expressed in 3-1-2 Euler Angles as [14◦,15◦,21◦]. The
initial angular velocity is ω0 = [0.05◦/s, 0.1◦/s, 0.15◦/s]T , and it runs a sinusoidal maneuver

at an Amplitude of 0.5◦/s and periods of 100 s, 120 s, and 125 s for each axis. The gyroscope

is modeled as initial bias 3.4◦/s, drift instability (also known as the flicker noise) 0.001◦/s;
angular randomwalk (ARW) 1× 10−3◦/s1/2, rate randomwalk 1.4× 10−3◦/s3/2, and sampling
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Figure 2: Estimation error history of the attitude.
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Figure 3: Estimation error history of the gyroscope bias.

frequency 20Hz. The star sensor is simulated with 1σ accuracy as cross boresight 10 arc-

seconds and around boresight 30 arc-seconds, and the sensor’s update-rate is 5Hz.
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Figure 4: Influence of the bias noise parameter in MGSPF.

The initial states of all filters are set equivalently as x̂0 = [âT
0 ,Δb̂T

0 ]
T

= 06×1, q̂0 =

[0T
3×1, 1]T

, and b̂0 = 03×1. The initial covariance PX
0 is set with the attitude-related elements

PA
0 =(10

◦)2I3, and bias-related elements PB
0 = (0.1◦/s)2 I3. For MGSPF, as PB

0 is no longer used,

we equivalently set a PBA
0 =

√
PA
0 P

B
0 . Specific elements in Rk and Qk are chosen through

tuning, set as σr = 2 × 10−7, σARW = 4.5 × 10−4, and σRRW = 4 × 10−4, respectively, for all three
filters.

The simulation results of attitude estimation error and and gyro bias estimation error

are, respectively, illustrated in Figures 2 and 3. As the star sensor has a high precision and

a 5Hz Data Update Rate, the three filters’ steady-state accuracies are close to each other;

so we mainly focus on the initial stage of the estimation process. As shown in Figure 2, of

the attitude estimation error, to converge to a value below 0.001◦, MEKF takes more than 60

star observations, SSUKF takes about 40, while the MGSPF takes only about 20. Meanwhile,

as in Figure 3 of the gyro bias estimation, to achieve an estimation precision of 0.001◦/s,
MEKF takes more than 50 star samples, SSUKF takes 30, and the MGSPF takes about 20.

This indicates that the MGSPF algorithm, once properly implemented, provides a better

performance than MEKF at a similar numerical expense, while it is able to achieve, if not

better, at least a comparable performance to traditional sigma point filters, at a significant

lower expense.

We now address the issue of tuning. The main difference between MGSPF and

traditional sigma point filters in parameter selection is mainly reflected in the usage of σRRW;

so we focus on the effect of different σRRW on the performance of MGSPF. As illustrated in

Figure 4, a larger σRRW has the advantage of enabling a faster convergence or can also be said

as an enhancement of the filter’s tracking ability. On the other hand, a large σRRW also has a

drawback of instable parameter estimation in steady state; that is, the estimation of Δb will

“jump”. An optimized value of σRRW would be a tradeoff between the two. In addition, as

the sigma points are created from the covariance matrices which are added with the noise

terms arisen from σRRW, the scale of σRRW should be kept in a reasonable range that would

not obscure the information contained in the covariances.
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5. Conclusion

A new, minimum sigma points algorithm for spacecraft attitude and angular rate estimation

has been developed. By marginalizing out the linear substructures within the random walk

gyro bias model and the attitude involving, only observationmodel, the new algorithm needs

only 4 sigma points to give a complete 6-state attitude and angular rate estimation. The

algorithm’s computational expense is only 50% of the traditional SSUKF algorithm. It has

truly rivaled the MEKF algorithm’s computing speed even when simple analytical closed-

form solutions are included. Yet it is still able to achieve the same accuracy as traditional

unscented Kalman filters.

A new, symmetrical, and numerically more efficient simplex sigma set has been

presented. The new set is completely free from irrational numbers and is free from any

multiplication operations during sigma point construction. The new set introduces almost

none of round-off error for mean reference and smaller error for covariance reference. It

would be of use for the implementation in a variety of 3-dimensional Euclidean space

involving dynamical problems such as positioning and attitude estimation problems.

With the remarkable reduction in computational expense, the sigma point Kalman

filter would gain a significant upgrading in its competitiveness as a candidate algorithm for

actual onboard implementation.
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[7] J. Côté and J. de Lafontaine, “Magnetic-only orbit and attitude estimation using the square-root
unscented Kalman filter: application to the PROBA-2 spacecraft,” in Proceedings of the Guidance,
Navigation, and Control Conference and Exhibit (AIAA ’08), Honolulu, Hawaii, USA, August 2008.

[8] R. van der Merwe and E. Wan, “The square-root unscented Kalman filter for state and parameter-
estimation,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP ’01), vol. 6, pp. 3461–3464, Salt Lake City, Utah, USA, May 2001.

[9] S. J. Julier and J. K. Uhlmann, “Reduced sigma point filters for the propagation of means and
covariances through nonlinear transformations,” in Proceedings of the American Control Conference
(ACC ’02), vol. 2, pp. 887–892, Anchorage, Alaska, USA, May 2002.

[10] S. J. Julier, “The spherical simplex unscented transformation,” in Proceedings of the American Control
Conference (ACC ’03), vol. 3, pp. 2430–2434, Denver, Colo, USA, June 2003.
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1. Introduction

This paper aims at analyzing the rotational motion dynamics of spin-stabilized Earth’s

artificial satellites, through derivation of an analytical attitude prediction. Emphasis is placed

on modeling the torques steaming from residual magnetic and eddy currents perturbations,

as well as their influences on the satellite angular velocity and space orientation. A spherical

coordinated system fixed in the satellite is used to locate the spin axis of the satellite in relation
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to the terrestrial equatorial system. The directions of the spin axis are specified by the right

ascension (α) and the declination (δ) as represented in Figure 1. Themagnetic residual torque

occurs due to the interaction between the Earth magnetic field and the residual magnetic

moment along the spin axis of the satellite. The eddy currents torque appears due to the

interaction of such currents circulating along the satellite structure chassis and the Earth’s

magnetic field.

The torque analysis is performed through the quadripole model for the Earth’s

magnetic field and the satellite in circular and elliptical orbits. Essentially an analytical

averaging method is applied to determine the mean torque over an orbital period.

To compute the average components of both the residual magnetic and eddy current

torques in the satellite body frame reference system (satellite system), an average time in

the fast varying orbit element, the mean anomaly, is utilized. This approach involves several

rotation matrices, which are dependent on the orbit elements, right ascension and declination

of the satellite spin axis, the magnetic colatitudes, and the longitude of ascending node of the

magnetic plane.

Unlike the eddy currents torques, it is observed that the residual magnetic torque does

not have component along the spin axis; however, it has nonzero components in satellite

body x-axis and y-axis. Afterwards, the inclusion of such torques on the rotational motion

differential equations of spin-stabilized satellites yields the conditions to derive an analytical

solution [1]. The theory is developed accounting also for orbit elements time variation,

not restricted to circular orbits, giving rise to some hundreds of curvature integrals solved

analytically.

In order to validate the analytical approach, the theory developed has been applied

for the spin-stabilized Brazilian Satellites (SCD1 and SCD2), which are quite appropriated

for verification and comparison of the theory with the data generated and processed by the

Satellite Control Center (SCC) of Brazil National Research Institute (INPE). The oblateness

of the orbital elements is taken into account.

The behaviors of right ascension, declination, and spin velocity of the spin axis with

the time are presented and the results show the agreement between the analytical solution

and the actual satellite behavior.

2. Geomagnetic Field

It is well known that the Earth’s magnetic field can be obtained by the gradient of a scalar

potential V [2]; it means that

−→
B = −∇V, (2.1)

with the magnetic potential V given by

V
(
r ′, φ, θ

)
= rT

k∑
n=1

(
rT

r

)n+1 n∑
m=0

(
gm

n cosmθ + hm
n senmθ

)
P m

n

(
φ
)
, (2.2)

where rT is the Earth’s equatorial radius, gm
n , hm

n are the Gaussian coefficients, P m
n (φ) are

the Legendre associated polynomial and r, φ, θ mean the geocentric distance, the local

colatitudes, and local longitude, respectively.
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Figure 1: Orientation of the spin axis (ŝ): equatorial system (Î, Ĵ , K̂), satellite body frame reference system

(̂i, ĵ, k̂), right ascension (α), and declination (δ) of the spin axis.

In terms of spherical coordinates, the geomagnetic field can be expressed by [2],

−→
B = Brr̂ + Bφφ̂ + Bθθ̂, (2.3)

with

Br = −∂V

∂r
, Bφ = − 1

r

∂V

∂φ
, Bθ = − 1

rsenφ

∂V

∂θ
. (2.4)

For the quadripole model, it is assumed that n equals 1 and 2 and m equals 0, 1 and 2 in (2.2).
After straightforward computations, the geomagnetic field can be expressed by [3, 4]

Br = 2

(
rT

r

)3

f1

(
θ, φ
)
+ 3

(
rT

r

)4

f2

(
θ, φ
)
, (2.5)

Bφ = −
(

rT

r

)3

f3

(
θ, φ
)
−
(

rT

r

)4

f4

(
θ, φ
)
, (2.6)

Bθ = − 1

senφ

{(
rT

r

)3

f5

(
θ, φ
)
+
(

rT

r

)4

f6

(
θ, φ
)
+ 2

(
rT

r

)4

f7

(
θ, φ
)}

, (2.7)

where the functions fi, i = 1, 2 , . . . , 7, are shown in [3] and depend on the Gaussian

coefficients g2
2 , h1

1, h1
2, h2

2 .

In the Equator reference system, the geomagnetic field is expressed by [2]

BX =
(

Br cos δ + Bφsen δ
)
cos α − Bθsenα, (2.8)

BY =
(

Br cos δ + Bφsen δ
)
senα − Bθ cos α, (2.9)

BZ = Brsen δ + Bφ cos δ, (2.10)
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where α and δ are the right ascension and declination of the satellite position vector,

respectively, which can be obtained in terms of the orbital elements; Br , Bφ, and Bθ are given

by (2.5), (2.6), and (2.7), respectively.
In a satellite reference system, in which the axis z is along the spin axis, the

geomagnetic field is given by [4, 5]

−→
B = Bxî + Byĵ + Bzk̂, (2.11)

where

Bx = − BXsenα + BY cosα,

By = −BXsen δ cosα − BY sen δ senα + BZ cos δ,

Bz = − BX cos δ cosα − BY cos δ senα + BZsen δ,

(2.12)

with BX , BY , and BZ given by (2.8)–(2.10).

3. Residual and Eddy Currents Torques

Magnetic residual torques result from the interaction between the spacecraft’s residual

magnetic field and the Earth’s magnetic fields. If −→m is the magnetic moment of the spacecraft

and
−→
B is the geomagnetic field, then the residual magnetic torques are given by [2]

−→
Nr =

−→m × −→
B. (3.1)

For the spin-stabilized satellite, with appropriate nutation dampers, the magnetic moment is

mostly aligned along the spin axis and the residual torque can be expressed by [5]

−→
Nr = Msk̂ × −→

B, (3.2)

where Ms is the satellite magnetic moment along its spin axis and k̂ is the unit vector along

the spin axis of the satellite.

By substituting the geomagnetic field (2.11) in (3.1), the instantaneous residual torque
is expressed by

−→
Nr = Ms

(
− Byî + Bxĵ

)
. (3.3)

On the other hand, the eddy currents torque is caused by the spacecraft spinning motion. If
−→
W is the spacecraft’s angular velocity vector and p is the Foucault parameter representing

the geometry and material of the satellite chassis [2], then this torque may be modeled by [2]

−→
Ni = p

−→
B ×
(−→
B × −→

W
)

. (3.4)
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For a spin-stabilized satellite, the spacecraft’s angular velocity vector and the satellite

magnetic moment, along the z-axis and induced eddy currents torque, can be expressed by

[5, 6]

−→
Ni = pW

(
−Bx Bzî − ByBz ĵ +

(
B2

y + B2
x

)
k̂
)

. (3.5)

4. Mean Residual and Eddy Currents Torques

In order to obtain the mean residual and eddy currents torques, it is necessary to integrate

the instantaneous torques
−→
Nr and

−→
Ni, given in (3.3) and (3.5), over one orbital period T as

−→
Nrm

=
1

T

∫ ti + T

ti

−→
Nrdt,

−→
Nim

=
1

T

∫ ti + T

ti

−→
Nidt, (4.1)

where t is the time ti the initial time, and T the orbital period. Changing the independent

variable to the fast varying true anomaly, the mean residual and eddy currents torque can be

obtained by [4]

−→
Nrm

=
1

T

∫υi+2π

υi

−→
Nr

r2

h
dυ,

−→
Nim

=
1

T

∫υi+2π

υi

−→
Ni

r2

h
dυ, (4.2)

where υi is the true anomaly at instant ti, r is the geocentric distance, and h is the specific

angular moment of orbit.

To evaluate the integrals of (4.2), we can use spherical trigonometry properties,

rotation matrix associated with the references systems, and the elliptic expansions of the true

anomaly in terms of themean anomaly [7], including terms up to first order in the eccentricity

(e). Without losing generality, for the sake of simplification of the integrals, we consider the

initial time for integration equal to the instant that the satellite passes through perigee. After

extensive but simple algebraic developments, the mean residual and eddy currents torques

can be expressed by [3, 6]

−→
Nrm

= Nrxmî + Nrymĵ,
−→
Nim

=
pW

2π

(
Nixmî + Niymĵ + Nizmk̂

)
, (4.3)

with

Nrxm =
Ms

2π
(A sen δ cosα + B sen δ senα − C sen δ),

Nrym =
Ms

2π
(− D senα + E cos δ)

(4.4)

and Nixm, Niym, Nizm as well as the coefficients A, B, C, D, and E are presented in the

appendix. It is important to observe that themean components of these torques depend on the

attitude angles (δ, α) and the orbital elements (orbital major semi-axis: a, orbital eccentricity:

e, longitude of ascending node: Ω, argument of perigee: ω, and orbital inclination: i).
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5. The Rotational Motion Equations

The variations of the angular velocity, the declination, and the ascension right of the spin axis

for spin-stabilized artificial satellites are given by Euler equations in spherical coordinates [5]
as

Ẇ =
1

Iz
Nz,

δ̇ =
1

IzW
Ny,

α̇ =
1

IzWCos δ
Nx,

(5.1)

where Iz is the moment of inertia along the spin axis and Nx, Ny, Nz are the components of

the external torques in the satellite body frame reference system. By substituting Nrm, given

in (4.3), in (5.1), the equations of motion are

dW

dt
= 0, (5.2)

dδ

dt
=

Nrym

IzW
, (5.3)

dα

dt
=

Nrxm

IzW cos δ
, (5.4)

where it is possible to observe that the residual torque does not affect the satellite angular

velocity (because its z-axis component is zero).
By substituting Nim, given in (4.3), in (5.1), the equations of motion are

dW

dt
=

pW

2πIz
Nizm, (5.5)

dδ

dt
=

pW

2πIz
Niym, (5.6)

dα

dt
=

p

2πIz cos δ
Nixm. (5.7)

The differential equations of (5.2)–(5.4) and (5.5)–(5.7) can be integrated assuming that the

orbital elements (I, Ω, w) are held constant over one orbital period and that all other terms

on right-hand side of equations are equal to initial values.
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6. Analysis of the Angular Velocity Magnitude

The variation of the angular velocity magnitude, given by (5.5), can be expressed as:

dW

W
= k dt, with k =

Nizmp

2 πIz
. (6.1)

If the parameter k is considered constant for one orbital period, then the analytical solution

of (6.1) is

W = W0e
kt, (6.2)

where W0 is the initial angular velocity. If the coefficient k < 0 in (6.2), then the angular

velocity magnitude decays with an exponential profile.

7. Analysis of the Declination and Right Ascension of Spin Axis

For one orbit period, the analytical solutions of (5.3)-(5.4) and (5.6)-(5.7) for declination and

right ascension of spin axis, respectively, can simply be expressed as,

δ = k1t + δ0, (7.1)

α = k2t + α0, (7.2)

with:

(i) for the case where the residual magnetic torque is considered in the motion

equations,

k1 =
Nrym

IzWo
,

k2 =
Nrym

IzWo cos δo
,

(7.3)

(ii) for the case where the eddy currents torque is considered in the motion equations,

k1 =
pNiym

2πIz
,

k2 =
pNiym

2πIz cos δo
,

(7.4)

where W0, δ0, and α0 are the initial values for spin velocity, declination, and right ascension

of spin axis.
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Table 1: INPE’s Satellite Control Center Data (index SCC) and computed results with the satellite in
elliptical orbit and under the influence of the residual magnetic torque (index QER) for declination and
right ascension and SCD1 (in degrees).

Day αSCC αQER αSCC − αQER δSCC δQER δSCC − δQER

22/08/93 282.70 282.7000 0.0000 79.64 79.6400 0.0000

23/08/93 282.67 282.7002 −0.0302 79.35 79.6399 −0.2899
24/08/93 283.50 282.6999 0.8001 79.22 79.6394 −0.4194
25/08/93 283.01 282.7004 0.3096 78.95 79.6395 −0.6895
26/08/93 282.43 282.7015 −0.2715 78.70 79.6399 −0.9399
27/08/93 281.76 282.7019 −0.9419 78.48 79.6398 −1.1598
28/08/93 281.01 282.7019 −1.6919 78.27 79.6393 −1.3693
29/08/93 280.18 282.7024 −2.5224 78.08 79.6392 −1.5592
30/08/93 279.29 282.7036 −3.4136 77.91 79.6396 −1.7296
31/08/93 278.34 282.7043 −4.3643 77.78 79.6397 −1.8597
01/09/93 277.36 282.7044 −5.3444 77.67 79.6391 −1.9691

The solutions presented in (7.1) and (7.2), for the spin velocity magnitude, declination

and right ascension of the spin axis, respectively, are valid for one orbital period. Thus, for

every orbital period, the orbital data must be updated, taking into account at least the main

influences of the Earth’s oblateness. With this approach, the analytical theory will be close to

the real attitude behavior of the satellite.

8. Applications

The theory developed has been applied to the spin-stabilized Brazilian Satellites (SCD1

and SCD2) for verification and comparison of the theory against data generated by the

Satellite Control Center (SCC) of INPE. Operationally, SCC attitude determination comprises

[8, 9] sensors data preprocessing, preliminary attitude determination, and fine attitude

determination. The preprocessing is applied to each set of data of the attitude sensors that

collected every satellite that passes over the ground station. Afterwards, from the whole

preprocessed data, the preliminary attitude determination produces estimates to the spin

velocity vector from every satellite that passes over a given ground station. The fine attitude

determination takes (one week) a set of angular velocity vector and estimates dynamical

parameters (angular velocity vector, residual magnetic moment, and Foucault parameter).
Those parameters are further used in the attitude propagation to predict the need of attitude

corrections. Over the test period, there are not attitude corrections. The numerical comparison

is shown considering the quadripole model for the geomagnetic field and the results of the

circular and elliptical orbits. It is important to observe that, by analytical theory that included

the residual torque, the spin velocity is considered constant during 24 hours. In all numerical

simulations, the orbital elements are updated, taking into account the main influences of the

Earth’s oblateness.

9. Results for SCD1 Satellite

The initial conditions of attitude had been taken on 22 of August of 1993 to the 00:00:00 GMT,

supplied by the INPE’s Satellite Control Center (SCC). Tables 1, 2, and 3 show the results
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Table 2: INPE’s Satellite Control Center Data (index SCC) and computed results with the satellite in
circular orbit and under the influence of the residual magnetic torque (index QCR) for declination and
right ascension and SCD1 (in degrees).

Day αSCC αQCR αSCC − αQCR δSCC δQCR δSCC − δQCR

22/08/93 282.70 282.7000 0 79.64 79.6400 0

23/08/93 282.67 282.7216 −0.0516 79.35 79.6251 −0.2751
24/08/93 283.50 282.7151 0.7849 79.22 79.6172 −0.3972
25/08/93 283.01 282.6737 0.3363 78.95 79.6182 −0.6682
26/08/93 282.43 282.5877 −0.1577 78.70 79.6303 −0.9303
27/08/93 281.76 282.4526 −0.6926 78.48 79.6552 −1.1752
28/08/93 281.01 282.2631 −1.2531 78.27 79.6940 −1.4240
29/08/93 280.18 282.0158 −1.83588 78.08 79.7473 −1.6673
30/08/93 279.29 281.7091 −2.4191 77.91 79.8140 −1.9040
31/08/93 278.34 281.3439 −3.0039 77.78 79.8962 −2.1162
01/09/93 277.36 280.9240 −3.5640 77.67 79.9892 −2.3191

with the data from SCC and computed values by the present analytical theory, considering

the quadripole model for the geomagnetic field and the satellite in circular and elliptical orbit,

under influence of the residual and eddy currents torques.

The mean deviation errors for the right ascension and declination are shown in Table 4

for different time simulations. The behavior of the SCD1 attitude over 11 days is shown in

Figure 2. It is possible to note that mean error increases with the time simulation. For more

than 3 days, the mean error is bigger than the required dispersion range of SCC.

Over the 3 days of test period, better results are obtained for the satellite in circular

orbit with the residual torque. In this case, the difference between theory and SCC data has

mean deviation error in right ascension of 0.2444◦ and −0.2241◦ for the declination. Both

are within the dispersion range of the attitude determination system performance of INPE’s

Control Center.

In Table 5 is shown the computed results to spin velocity when the satellite is under

influence of the eddy currents torque, and its behavior over 11 days is shown in Figure 3. The

mean error deviation for the spin velocity is shown in Table 6 for different time simulation.

For the test period of 3 days, the mean deviation error in spin velocity was of −0.0312 rpm and

is within the dispersion range of the attitude determination system performance of INPE’s

Control Center.

10. Results for SCD2 Satellite

The initial conditions of attitude had been taken on 12 February 2002 at 00:00:00 GMT,

supplied by the SCC. In the same way for SCD1, Tables 7, 8, and 9 presented the results with

the data from SCC and computed values by circular and elliptical orbits with the satellite

under the influence of the residual magnetic torque and eddy currents torque.

The mean deviation errors are shown in Table 10 for different time simulations. For

this satellite, there is no significant difference between the circular and elliptical orbits when

considering the residual magnetic torque. The behavior of the SCD2 attitude over 12 days is

shown in Figure 4.
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Table 3: INPE’s Satellite Control Center Data (index SCC) and computed results with the satellite in
circular orbit and under the influence of the eddy current torque (index QCI) for declination and right
ascension and SCD1 (in degrees).

Day αSCC αQCI αSCC − αQCI δSCC δQCI δSCC − δQCI

22/08/93 282.70 282.7000 0.0000 79.64 79.6400 0.0000

23/08/93 282.67 282.6848 −0.0148 79.35 79.6490 −0.2990
24/08/93 283.50 282.6723 0.8277 79.22 79.6457 −0.4257
25/08/93 283.01 282.6621 0.3479 78.95 79.6352 −0.6852
26/08/93 282.43 282.6538 −0.2238 78.70 79.6220 −0.9220
27/08/93 281.76 282.6468 −0.8868 78.48 79.6092 −1.1292
28/08/93 281.01 282.6412 −1.6312 78.27 79.6001 −1.3301
29/08/93 280.18 282.6366 −2.4566 78.08 79.5942 −1.5142
30/08/93 279.29 282.6331 −3.3431 77.91 79.5913 −1.6813
31/08/93 278.34 282.6305 −4.2905 77.78 79.5904 −1.8104
01/09/93 277.36 282.6287 −5.2687 77.67 79.5909 −1.9209

Table 4: Mean deviations for different time simulations for declination and right ascension and SCD1 (in
degrees).

Time Simulation (days) 11 8 3 2

αSCC − αQER −1.5882 −0.5435 0.2566 −0.0151
αSCC − αQCR −1.0779 −0.3587 0.2444 −0.0258
αSCC − αQCI −1.5400 −0.5047 0.2710 0.0074

δαSCC − δαQER −1.0896 −0.8034 −0.2364 −0.1449
δSCC − δQCR −1.1707 −0.8172 −0.2241 −0.1376
δSCC − δQCI −1.0653 −0.7882 −0.2416 −0.1495

Table 5: INPE’s Satellite Control Center Data (index SCC) and computed results for spin velocity, with the
satellite in circular orbit and under the influence of the eddy currents torque (index QCI) (in rpm).

Day WSCC WQCI WSCC − WQCI

22/08/93 86.2100 86.2100 0.0000

23/08/93 86.0400 86.3156 −0.2756
24/08/93 85.8800 86.4985 −0.6185
25/08/93 85.8000 86.7144 −0.9144
26/08/93 85.7300 86.9439 −1.2139
27/08/93 85.6600 87.1719 −1.5119
28/08/93 85.5800 87.3631 −1.7831
29/08/93 85.5100 87.5296 −2.0196
30/08/93 85.4400 87.6657 −2.2257
31/08/93 85.3700 87.7658 −2.3958
01/09/ 93 85.3100 87.8426 −2.5326

Table 6: Mean deviations for different time simulations for spin velocity and SCD1 (in degrees).

Time Simulation (days) 11 8 3 2

WSCC − WQCI (rpm) −0.1475 −0.1091 −0.0312 −0.0144
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Figure 2: Evolution of the declination (δ) and right ascension (α) of satellite spin axis for SCD1 and its
mean deviation error.

Over the test period of the 12 days with the satellite in elliptical orbit and considering

the residual magnetic torque, the difference between theory and SCC data hasmean deviation

error in right ascension of −0.1266 and −0.1358 in the declination. Both torques are within the

dispersion range of the attitude determination system performance of INPE’s Control Center,

and the solution can be used for more than 12 days.

In Table 11 the computed results to spin velocity are shown when the satellite is

under the influence of the eddy currents torque. The mean deviation error for the spin

velocity is shown in Table 12 for different time simulation. For the test period, the mean

deviation error in spin velocity was of 0.0253 rpm and it is within the dispersion range of

the attitude determination system performance of INPE’s Control Center. The behavior of

the spin velocity is shown in Figure 5.
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Table 7: INPE’s Satellite Control Center Data (index SCC) and computed results with the satellite in
elliptical orbit and under the influence of the residual magnetic torque (index QER) for declination and
right ascension and SCD2 (in degrees).

Day αSCC αQER αSCC − αQER δSCC δQER δSCC − δQER

12/02/02 278.71 278.710000 0.0000 63.47 63.470000 0.0000

13/02/02 278.73 278.709999 0.0200 63.45 63.469998 −0.0200
14/02/02 278.74 278.710000 0.0300 63.42 63.470002 −0.0500
15/02/02 278.74 278.710000 0.0300 63.39 63.470005 −0.0800
16/02/02 278.72 278.709999 0.0100 63.36 63.470002 −0.1100
17/02/02 278.68 278.709999 −0.0300 63.33 63.470000 −0.1400
18/02/02 278.63 278.710000 −0.0800 63.31 63.470003 −0.1600
19/02/02 278.57 278.710001 −0.1400 63.29 63.470006 −0.1800
20/02/02 278.50 278.710000 −0.2100 63.27 63.470004 −0.2000
21/02/02 278.42 278.709999 −0.2900 63.25 63.470000 −0.2200
22/02/02 278.33 278.710000 −0.3800 63.24 63.470002 −0.2300
23/02/02 278.23 278.710002 −0.4800 63.23 63.470006 −0.2400

109876543210

Time (days)

INPE spin velocity

Computed W

8.9

8.95

9

9.05

9.1

9.15

9.2

9.25

S
C
D
1
sp

in
v
el
o
ci
ty

(r
p
m
)

Figure 3: Evolution of the spin velocity (W) for SCD1.

11. Mean Pointing Deviation

For the tests, it is important to observe the deviation between the actual SCC supplied and

the analytically computed attitude, for each satellite. It can be computed by

θ = cos−1
(

î îc + ĵ ĵc + k̂ k̂c

)
, (11.1)

where (̂i, ĵ, k̂) indicates the unity vectors computed by SCC and (̂ic, ĵc, k̂c) indicates the unity
vector computed by the presented theory.
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Table 8: INPE’s Satellite Control Center Data (index SCC) and computed results with the satellite in
circular orbit and under the influence of the residual magnetic torque (index QCR) for declination and
right ascension and SCD2 (in degrees).

Day αSCC αQCR αSCC − αQCR δSCC δQCR δSCC − δQCR

12/02/02 278.71 278.710000 0 63.47 63.470000 0

13/02/02 278.73 278.7113 0.01870 63.45 63.4692 −0.0192
14/02/02 278.74 278.7127 0.02733 63.42 63.4683 −0.0482
15/02/02 278.74 278.7141 0.0259 63.39 63.4673 −0.0773
16/02/02 278.72 278.7155 0.0045 63.36 63.4664 −0.1064
17/02/02 278.68 278.7168 −0.0368 63.33 63.4654 −0.1354
18/02/02 278.63 278.7180 −0.0880 63.31 63.4646 −0.1546
19/02/02 278.57 278.7191 −0.1491 63.29 63.4638 −0.1738
20/02/02 278.50 278.7200 −0.2200 63.27 63.4631 −0.1931
21/02/02 278.42 278.7207 −0.3007 63.25 63.4625 −0.2125
22/02/02 278.33 278.7212 −0.3913 63.24 63.4621 −0.2221
23/02/02 278.23 278.7215 −0.4916 63.23 63.4618 −0.2318

Table 9: INPE’s Satellite Control Center Data (index SCC) and computed results with the satellite in
circular orbit and under the influence of the eddy currents torque (index QCI) for declination and right
ascension and SCD2 (in degrees).

Day αSCC αQCI αSCC − αQCI δSCC δQCI δSCC − δQCI

12/02/02 278.71 278.7100 0.0000 63.47 63.4700 0.0000

13/02/02 278.73 278.7170 0.0130 63.45 63.4921 −0.0421
14/02/02 278.74 278.7261 0.0139 63.42 63.5119 −0.0919
15/02/02 278.74 278.7371 0.0029 63.39 63.5268 −0.1368
16/02/02 278.72 278.7497 −0.0296 63.36 63.5352 −0.1752
17/02/02 278.68 278.7635 −0.0835 63.33 63.5370 −0.2070
18/02/02 278.63 278.7772 −0.1472 63.31 63.5345 −0.2245
19/02/02 278.57 278.7912 −0.2212 63.29 63.5302 −0.2402
20/02/02 278.50 278.8044 −0.3043 63.27 63.5285 −0.2585
21/02/02 278.42 278.8159 −0.3959 63.25 63.5334 −0.2834
22/02/02 278.33 278.8253 −0.4953 63.24 63.5477 −0.3077
23/02/02 278.23 278.8321 −0.6021 63.23 63.5724 −0.3423

Table 10: Mean deviations for different time simulation for declination and right ascension and SCD2 (in
degrees).

Time Simulation (days) 12 8 5 2

αSCC − αQER −0.1266 −0.0200 0.0180 0.0100

αSCC − αQCR −0.1334 −0.0247 −0.0153 −0.0093
αSCC − αQCI −0.1875 −0.0565 −0.0139 0.0065

δαSCC − δαQER −0.1358 −0.0925 −0.0520 −0.0099
δSCC − δQCR −0.1312 −0.0894 −0.0502 −0.0096
δSCC − δQCI −0.1925 −0.1397 −0.1088 −0.0210
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Table 11: INPE’s Satellite Control Center Data (index SCC) and computed results of spin velocity, with the
satellite in circular orbit and under the influence of the eddy currents torque (index QCI) (in rpm).

Day WSCC WQCI WSCC − WQCI

12/02/02 34.4800 34.4800 0.0000

13/02/02 34.4200 34.4942 −0.0742
14/02/02 34.3700 34.4572 −0.0872
15/02/02 34.3100 34.3561 −0.04617
16/02/02 34.2600 34.1831 0.0769

17/02/02 34.2000 33.9323 0.2678

18/02/02 34.1400 34.6059 −0.4659
19/02/02 34.0800 34.2108 −0.1308
20/02/02 34.0200 33.7703 0.2497

21/02/02 33.9600 33.3067 0.6533

22/02/02 33.9000 32.8493 1.0508

23/02/02 33.8300 32.4199 1.4101

Table 12: Mean deviations for different time simulations for spin velocity and SCD1 (in degrees).

Time simulation (days) 12 8 5 2

WSCC − WQCI 0.0253 −0.0060 −0.0027 −0.0039

Figures 6 and 7 present the pointing deviations for the test period. The mean pointing

deviation for the SCD1 for different time simulations are presented in Table 13. Over the

test period of 11 days, the mean pointing deviation with the residual magnetic torque and

elliptical orbit was 1.1553◦, circular orbit was 1.2003◦, and eddy currents torque with circular

orbit was 1.1306◦. The test period of SCD1 shows that the pointing deviation is higher than the

precision required for SCC. Therefore for SCD1, this analytical approach should be evaluated

by a time less than 11 days.

For SCD2, the mean pointing deviation considering the residual magnetic torque and

elliptical orbit was 0.1538, residual magnetic torque and circular orbit was 0.1507, and eddy

current torque was 0.2160. All the results for SCD2 are within the dispersion range of the

attitude determination system performance of INPE’s Control Center of 0.5◦.

12. Summary

In this paper an analytical approach was presented to the spin-stabilized satellite attitude

propagation taking into account the residual and eddy currents torque. The mean

components of these torques in the satellite body reference system have been obtained and

the theory shows that, unlike the eddy currents torque, there is no residual torque component

along the spin axis (z-axis). Therefore this torque does not affect the spin velocity magnitude,

but it can cause a drift in the satellite spin axis.

The theory was applied to the spin-stabilized Brazilian satellites SCD1 and SCD2 in

order to validate the analytical approach, using quadripole model for geomagnetic field and

the satellite in circular and elliptical orbits.
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Figure 4: Evolution of the declination (δ) and right ascension (α) of satellite spin axis for SCD2 and its
mean deviation error.

Table 13: Mean pointing deviation for SCD1.

Time simulation (days) 11 8 3 2

θQER 1.1553 0.8226 0.2448 0.1450

θQCR 1.2003 0.8288 0.2326 0.1376

θQCI 1.1306 0.8071 0.2503 0.1495

The result of the 3 days of simulations of SCD1, considering the residual magnetic

torque, shows a good agreement between the analytical solution and the actual satellite

behavior. For more than 3 days, the pointing deviation is higher than the precision required

for SCC (0.5◦).
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Figure 5: Evolution of the spin velocity magnitude (W) for SCD2.

109876543210

(days)

QER

QCR

QCI

0

0.5

1

1.5

2

2.5

S
C
D
1
p
o
in
ti
n
g
d
ev

ia
ti
o
n
(d

eg
re
es
)

Figure 6: Pointing deviation evolution (in degrees) for SCD1.

For the satellite SCD2, over the test period of the 12 days, the difference between

theory (when considering the residual or eddy currents torque) and SCC data is within the

dispersion range of the attitude determination system performance of INPE’s Control Center.

Thus the procedure is useful for modeling the dynamics of spin-stabilized satellite

attitude perturbed by residual or eddy currents torques but the time simulation depends on

the precision required for satellite mission.
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Figure 7: Pointing deviation evolution (in degrees) for SCD2.

Appendix

The coefficients of the mean components of the residual magnetic torques, given by (2.9), are
expressed by

A =
7∑

i = 1

aia +
7∑

i = 1

aib, B =
7∑

i = 1

bia +
7∑

i = 1

bib, C =
7∑

i = 1

cia +
7∑

i = 1

cib,

D =
7∑

i = 1

aia +
7∑

i = 1

aib, E =
7∑

i = 1

bia +
7∑

i = 1

bib,

(A.1)

where aib, bib, cjb, i = 1, 2, . . . , 7; j = 1, . . . , 4, can be got by Garcia in [3]. It is important to note

that the parcel bib is associated with the quadripole model and the satellite in an elliptical

orbit. For circular, orbit, bib is zero.

The mean components Nixm, Niym, Nizm of the eddy currents torque are expressed by

Nixm =
14 712∑
i = 1

trx(i) +
18 426∑
i = 1

Nx(i),

Niym =
14 712∑
i = 1

try(i) +
53 765∑
i = 1

Ny(i),

Nizm =
7 350∑
i = 1

tr z(i) +
21 435∑
i = 1

Nz(i),

(A.3)

where trx(i), try(i), tr z(i), Nx(i), Ny(i), and Nz(i) are presented by Pereira [6].
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The terms aib, bib, cjb, trx(i), try(i), tr z(i), Nx(i), Ny(i), and Nz(i) depend on orbital

elements (a, e, I, Ω, w) and attitude angles (δ, α).
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1. Introduction

The rapidly complexity increase of systems and processes to be controlled has stimulated the

development of sophisticated analysis and design methods called advanced techniques. The

H-Infinity (H∞) control theory, introduced by Zames [1], is one of the advanced techniques

and its application in several problems of control has been growing rapidly.

The employment of flexible structures in the spatial area is another problem of control

system which has been growing up too. Flexible systems offer several advantages compared

with the rigid system. Some advantages are relatively smaller actuators, lower overall mass,

faster response, lower energy consumption, in general, and lower cost. With the study of the

Attitude Control System (ACS) of space structures with flexible antennas and/or panel and

robotic manipulators, one becomes more complex when the dimensions of such structures

increase due to necessity to consider a bigger number of vibration modes in its model in

order to improve the model fidelity [2]. Examples of projects that involve flexible space

structures are the International Space Station (ISS), the Lunar Reconnaissance Orbiter (LRO),
the Lunar Crater Observation and Sensing Satellite (LCROSS), the Hubble Space Telescope,

and so forth.
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In Rigid-Flexible Satellite (RFS) the function of the ACS is to stabilize and orient

the satellite during its mission, counteracting external disturbances torques and forces. In

this paper is investigated multivariable control method H∞ for attitude control of an RFS

consisting of a rigid body and two flexible panels. The satellite modeling was built following

the Lagrangian approach and the discretization was done using the assumed-modes method.

The equations of motion obtained were written in its modal state space form.

2. The Rigid-Flexible Satellite Model

Figure 1 shows the picture of the satellite used in this work, which is composed of a rigid

body of cubic shape and two flexible panels. The center of mass of the satellite is in the point

0 origin of the system of coordinates (X, Y, Z) that coincides with its main axis of inertia. The

elastic appendixes with the beam format are connected in the central body, being treated as

a punctual mass in its free extremity. The length of the panel is represented by L, the mass is

represented by m, and v(x, t) is the elastic displacement in relation to the axis Z. The moment

of inertia of the rigid body of the satellite in relation to the mass center is J0. The moment of

inertia of the panel in relation to its own mass center is given by Jp.

3. Equations of Motion

In the Lagrang approach are considered the equation of motion of the satellite around in Y

and the elastic displacement of the panels. The Lagrange equations [3] for the problem can

be written in the following form:

d

dt

(
∂L∗

∂θ̇

)
− ∂L∗

∂θ
= τ, (3.1)

d

dt

(
∂L∗

∂q̇i

)
− ∂L∗

∂qi
+

∂M

∂qi
= 0. (3.2)

In (3.1) τ is the torque of the reaction wheel, L∗ = T − V is the Lagrangian, and θ is the

rotation angle of the satellite around the axis Y. In (3.2) M is the dissipation energy associated

to the deformation of the panel qi it represents each one of the generalized coordinates of the

problem.

The beam deflection variable v(x, t) is discretized using the expansion

v(x, t) =
n∑

i=1

φi(x)qi(t) 0 ≤ x ≤ L, (3.3)

where n represents the number of manners to be adopted in the discretization and φi(x)
represents each one of the ownmodes of the system. The admissible functions φi(x) are given
by [4]

φi(x) = cosh(aix) − cos(aix) − αi(sinh(aix) − sin(aix)), (3.4)
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Figure 1: Satellite Model.

where

αi =
cosh(aiL) + cos(aiL)
sinh(aiL) + sin(aiL)

, (3.5)

and aiL are the eigenvalues of the free system and undamped.

For the complete system, the total kinetic energy T is given by T = TSatellite + TPanel;

therefore,

T =
1

2
J0θ̇

2 +

[
ρA′
∫L

0

[
v̇(x, t)2 + 2(v̇(x, t))xθ̇ +

(
xθ̇
)2 + (θ̇ · v̇(x, t)

)2]
dx

]
, (3.6)

where ρ is the density of the panels and A′ is the area. The dissipation energy function is

M = v̇(x, t)2Kd, (3.7)

where Kd is the dissipation constant. So L∗ = T − V is given by

L∗ =
1

2
J0θ̇2 +

[
ρA′
∫L

0

[
v̇(x, t)2 + 2(v̇(x, t))xθ̇ +

(
xθ̇
)2 + (θ̇ · v̇(x, t)

)2]
dx

]
− v(x, t)2 · K.

(3.8)

In (3.8) K is constant elastic of the panels. After some manipulations of (3.8) [5] and
using the orthogonalization property of vibration modes of the beam [6], one has

∫L

0

φiφjdx = 1 if i = j,

∫L

0

φiφjdx = 0 if i /= j. (3.9)
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Finally, two equations are obtained. These equations represent the dynamics of

rotation motion of the satellite and the elastic displacement of the panels, respectively,

θ̈

(
1 + a

n∑
i=1

q2
i

)
+ αi · a

n∑
i=1

q̈i =
1

J1
τ. (3.10)

q̈i + αiθ̈ − θ̇2qi + d · q̇i + c · qi = τq. (3.11)

where the term nonlinear αi in (3.10) is defined as centripetal rigidity, and in (3.11) τq is a

Piezoelectric actuator adapted for the following simulations where will be considered i = 1

(one mode), and the constants are given by

a =
2ρA′

J1
, J1 = J0 + 2Jp, c =

K

ρA′ , d =
Kd

ρA′ . (3.12)

4. H-Infinity Control Method

4.1. Introduction

Throughout the decades of 1980 and 1990, H-Infinity control method had a significant impact

in the development of control systems; nowadays the technique has become fully grown

and it is applied on industrial problems [5]. In the control theory in order to achieve

robust performance or stabilization, the H-Infinity control method is used. The control

designer expresses the control problem as a mathematical optimization problem finding the

controller solution. H∞ techniques have the advantage over classical control techniques in

which the techniques are readily applicable to problems involving multivariable systems

with cross-coupling between channels; disadvantages of H∞ techniques include the high

level of mathematical understanding needed to apply them successfully and the need for a

reasonably goodmodel of the system to be controlled. The problem formulation is important,

since any synthesized controller will be “optimal” in the formulated sense.

The H∞ name derives from the fact that mathematically the problemmay be set in the

space H∞, which consists of all bounded functions that are analytic in the right-half complex

plane. We do not go to this length. The H∞ norm is the maximum singular value of the

function; let us say that it can be interpreted as a maximum gain in any direction and at

any frequency; for SISO (Single In, Single Out) systems, this is effectively the maximum

magnitude of the frequency response. H∞ method is also used to minimize the closed-

loop impact of a perturbation: depending on the problem formulation, the impact will be

measured in terms of either stabilization or performance. Thus, one concludes that the

procedures to project control systems are a difficult task due to the cited terms which are

conflicting properties [7].

4.2. Modeling

This problem is defined by the configuration of Figure 2. The “plant” is a given system with

two inputs and two outputs. It is often referred to as the generalized plant. The signal w

is an external input and represents driving signals that generate disturbances, measurement

noise, and reference inputs. The signal u is the control input. The output z has the meaning
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Figure 2: Generalized Plant.

of control error and ideally should be zero. The output y, finally, is the observed output and

is available for feedback.

The project of control system is based given by

ẋ(t) = Ax + Bu,

y(t) = Cx + Du.
(4.1)

A more general state space representation of the standard plant is

ẋ(t) = Ax(t) + B1w(t) + B2W(t),

z(t) = C1x(t) + D11w(t) + D12u(t),

y(t) = C2x(t) + D21w(t) + D22u(t),⎡⎢⎢⎣
ẋ(t)

z(t)

y(t)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
A B1 B2

C1 D11 D12

C2 D21 D22

⎤⎥⎥⎦.

⎡⎢⎢⎣
x(t)

w(t)

u(t)

⎤⎥⎥⎦ = P.

(4.2)

The solution of the corresponding H∞ problem based on Riccati equations is implemented

requires the following conditions to be satisfied [8]:

(1) (A, B2) is stabilizable and (C2, A) is detectable,

(2) D12 and D21 have full rank,

(3) [A-jwI B2; C1D12] has full column rank for all w ε R (hence, D12 is tall),

(4) [A-jwI B1; C2D21] has full column rank for all w ε R (hence, D21 is wide).

The augmented plant is formed by accounting for the weighting functions W1, W2, and W3,
as shown in Figure 3. In order to reach the acting objectives, the outputs were chosen to be

transfer weight functions: z1 = W1; z2 = W2y; z3 = W3u.
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Figure 3: Plant with weighting functions for H∞ design.

Table 1: Parameters.

Parameter Description Value

J0 Moments of inertia of the rigid body of the satellite 720Kg·m2

Jp Moment of inertia of the panel 40Kg·m2

K Constant elastic of the panels 320Kg·rad2/s2

Kd Dissipation constant 0,48Kg·rad2/s

L Length of the panel 2m

m Mass of the satellite 200 kg

The function cost of mixed sensibility is given for

Ty1u1 =

⎡⎢⎢⎣
W1S

W2R

W3T

⎤⎥⎥⎦,

S = (I + GK)−1,

R = K(I + GK)−1,

T = GK(I + GK)−1,

(4.3)

where S is called sensibility, T is complementary sensitivity function, and R does not have

any name. The cost function of mixed sensibility is named alike, because it punishes S, R, and

T at the same time; it can also be said project requirement. The transfer function from w to

z1 is the weighted sensitivity function W1S, which characterizes the performance objective of

good tracking; the transfer function from w to z2 is the complementary sensitivity function T,

whose minimization ensures low control gains at high frequencies, and the transfer function

from w to z3 is KS, which measures the control effort. It is also used to impose the constraints

on the control input for example, the saturation limits.

5. Simulations

The simulations were carried out by computational implementation of the software MatLab.

The initials conditions used here are θ = 0.001 rad. and θ̇ = 0 rad./s. The values considered

for the physical parameters in the numerical simulation are presented in Table 1.

The procedure of the project of H∞ is different from other control projects knowledge

such as LQR (Linear Quadratic Regulator) and LQG (Linear Quadratic Gaussian) [5]; the
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Figure 4: Angle and Angular Speed.

difference is the use of weighting functionsW1, W2, andW3, where W2 = 0 and the others are

given by

W−1
1 = γ−1 ∗ 0.1(1 + s/100)2

(1 + s/5000)2
∗ I2x2 ,

W−1
3 =

2000

s
∗ I2x2,

(5.1)

where W1 punishes the error sign e, W2 punish the control sign “u”, andW3 punishes the exit

of the plant y; γ is a parameter obtained through successive attempts.

6. Results

First we analyze the open loop of the system through transmission zeros (TZs) and the close-

loop with H∞ Control. The TZs are critical frequencies where signal transmission between

input and output is stopped. The importance of use of the TZs is given by their application in

robust control, because they are the zeros of a MIMO system. In Table 2 are represented the

values.

Following, the performances of H∞ control in the ACS are observed in Figures 4 and 5.

Both graphs, in Figure 4, have existence of overshoot, in which they could commit the

system; however, the time of stabilization of both was of approximately 3.5 seconds. In other

words, in spite of the existence of overshoots, the control of the system, in a long time, was

reached.
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Figure 5: Vibration of the Panels.

Table 2: Transmission Zeros.

Transmission Zeros

Open Loop −0.0244 ± 5.7049i

H∞ Control

−2318.10

−433.3

−0.0 ± 05.700i

−0 ± 0i

In Figure 5 the behavior of the vibration of the panels is presented. The displacement

of overshoot is of the order of 10−7, in other words, very small. The time of stabilization

in the first graph is about 0.5 seconds and for the second one is about 0.45 seconds. This

demonstrates that the control H∞ possesses a good performance for angle and angular

velocity, as well as to control the vibration of the panels.

7. Conclusions

The problem of attitude control of satellites is not new and has been addressed by several

researchers using many different approaches. The H∞ control method is one of the most

advanced techniques available today for designing robust controllers. One great advantage

with this technique is that it allows the designer to tackle the most general form of control

architecture wherein explicit accounting of uncertainties, disturbances, actuator/sensor

noises, actuator constraints, and performance measures can be accomplished. The system is

very different from the methods LQR and LQG, for example. However, a great disadvantage

is the experience and necessary abilities to design the form of the weighting functions and
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the fact that the plant can increase. Basically, the success of the method depends on the correct

choice of the weight functions transfer.
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1. Introduction

Besides its original application to the motion of the Moon [1], the Hill problem provides

a good approximation to the real dynamics of a variety of systems, encompassing the

motion of comets, natural and artificial satellites, distant moons of asteroids, or dynamical

astronomy applications [2–4]. Specifically, the Hill model and its variations [5–9] are useful

for describing the motion about planetary satellites. In addition, the Hill problem is an

invariant model that does not depend on any parameter, thus, giving broad generality to the

results, whose application to different systems becomes a simple matter of scaling. Note that

Hill’s case of orbits close to the smaller primary is a simplification of the restricted three-body

problem, which in turn is a simplification of real models.

A classical result shows that low eccentricity orbits around a primary body are

unstable for moderate and high inclinations due to third-body perturbations [10]. Almost

circular orbits close to the central body remain with low eccentricity in the long-term only

when the mutual inclination with the perturbing body is less than the critical inclination of

the third-body perturbations I = 39.2◦ (see [11] and references therein). Because of their
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low eccentricity, high inclination orbits are precisely the candidate orbits for science missions

around natural satellites. Therefore, a good understanding of the unstable dynamics of the

Hill problem is required.

The study of the long-term dynamics is usually done in the double-averaged problem.

After removing the short- and long-period terms, and truncating higher-order terms, the

problem is reduced to one degree of freedom in the eccentricity and the argument of the

periapsis. As the double-averaged problem is integrable and the corresponding phase space

is a compact manifold, the solutions are closed curves and equilibria. The latter are orbits

that, on average, have almost constant eccentricity and fixed argument of the periapsis, and

are known as frozen orbits.

To each trajectory of the double-averaged problem it corresponds a torus of

quasiperiodic solutions in the nonaveraged problem. The accurate computation of initial

conditions on the torus requires the recovery of the short- and long-period effects that

were eliminated in the averaging. This is normally done by trial and error, making iterative

corrections on the orbital elements, although other procedures can be applied [12].
Our analytical theory is computed with Deprit’s perturbation technique [13]. The

procedure is systematic and has the advantage of providing the explicit transformation

equations that connect the averaged analysis with proper initial conditions of the

nonaveraged problem. A second-order truncation of the Hamiltonian shows that there are

no degenerate equilibria and, therefore, it is sufficient to give the qualitative description of

the reduced system. However, the second-order truncation introduces a symmetry between

the direct and retrograde orbits that is not part of the original problem, and a third-order

truncation is required to reveal the nonsymmetries of the problem.

While, in general, the third-order theory provides good results in the computation

of quasiperiodic, frozen orbits, its solutions are slightly affected by long-period oscillations.

This fact may adversely affect the long-term evolution of the frozen orbits and it becomes

apparent in the computation of science orbits about planetary satellites, a case in which small

perturbations are enough for the unstable dynamics to defrost the argument of the periapsis.

Then, the orbit immediately migrates along the unstable manifold with an exponential

increase in the eccentricity.

We find that a higher-order truncation is desirable if one wants to use the analytical

theory for computing accurate initial conditions of frozen orbits. The computation of the

fourth-order truncation removes almost all adverse effects from the quasiperiodic solutions,

and shows a high degree of agreement between the averaged and nonaveraged models even

in the case of unstable orbits.

Whereas the third-body perturbation is the most important effect in destabilizing

science orbits around planetary satellites, the impact of the nonsphericity of the central body

may be taken into account. The previous research including both effects has been limited

up to third-order theories (see [14] and references therein), but from the conclusions of this

paper it may worth to develop a higher-order theory including the inhomogeneities of the

satellite’s gravitational potential.

2. Double-Averaged Hill Problem to the Fourth-Order

The equations of motion of the Hill problem are derived from the Hamiltonian

H =
(
1

2

)
(X · X) −ω · (x × X) + W(x), W =

(
ω2

2

)(
r2 − 3x2

)
− μ

r
, (2.1)
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where, in the standard coordinate system of Hill’s model, x = (x, y, z) is the position vector,

X = (X, Y, Z) is the vector of conjugate momenta, r = ||x||, and both the rotation rate of the

system ω = ||ω|| and the gravitational parameter μ of the primary are set to 1 in appropriate

units.

The problem is of three degrees of freedom, yet admitting the Jacobi constant

H = −C/2. Despite its nonintegrability, approximate solutions that explain the long-term

dynamics can be found by perturbation methods. Close to the central body the Hill problem

can be written as the perturbed two-body problem

H =
(
1

2

)(
X2 + Y 2 + Z2

)
−
(
1

r

)
− ε
(
x Y − y X

)
+

(
ε2

2

)(
r2 − 3x2

)
, (2.2)

where the first three terms of Hamiltonian (2.2) correspond to the Keplerian motion in the

rotating frame and ε is a formal parameter introduced to manifest the importance of each

effect. Thus, the Coriolis term is a first order effect and the third-body perturbation appears

at the second-order .

To apply perturbation theory, we formulate the problem in Delaunay variables

(�, g, h, L, G, H), where � is the mean anomaly, g is the argument of the periapsis, h the

argument of the node in the rotating frame, L = √
μ a is the Delaunay action, G = L

√
1 − e2 is

the modulus of the angular momentum vector, H = G cos I is its polar component, and a, e, I,

are usual orbital elements: semimajor axis, eccentricity, and inclination.

Our theory is based on the use of Lie transforms as described by Deprit [13, 15].
It has the advantage of connecting the averaged and original problems through explicit

transformation equations. After removing the short- and long-period terms we get the

transformed Hamiltonian

K = K0,0 + εK0,1 +

(
ε2

2

)
K0,2 +

(
ε3

6

)
K0,3 +

(
ε4

24

)
K0,4, (2.3)

where ε = L3,

K0,0 = − 1

(2L2)
,

K0,1 = K0,0 2σ,

K0,2 = K0,0

(
1

4

)[(
2 + 3e2

) (
2 − 3s2

)
+ 15e2s2 cos 2g

]
,

K0,3 = K0,0

(
27

32

)
σ
[
2s2 +

(
50 − 17s2

)
e2 + 15e2s2 cos 2g

]
,

K0,4 = K0,0

(
− 3

512

){
3285s4e4 cos 4g − 12s2

[
3996 − 2940s2 −

(
4582 − 4035s2

)
e2
]
e2 cos 2g

+ 8
(
784 − 708s2 − 9s4

)
− 144

(
926 − 941s2 + 244s4

)
e2

+ 9
(
10728 − 15208s2 + 5007s4

)
e4
}

,

(2.4)
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and σ = H/L = cη, η =
√
1 − e2 is the eccentricity function, and we use the abbreviations

s ≡ sin I, c ≡ cos I. Details on the perturbation method and expressions to compute the

transformation equations of the averaging are given in the appendix.

The double-averaged Hamiltonian (2.3) depends neither on the mean anomaly nor

on the argument of the node. Therefore, the corresponding conjugate momenta, L and H,

are integrals of the reduced problem and the Hamiltonian (2.3) represents a one degree

of freedom problem in g and G. The equations of motion are computed from Hamilton

equations dg/dt = ∂K/∂G, dG/dt = −∂K/∂g,

dg

dt
=

6

G

[
5c2 − η2 − 5

(
c2 − η2

)
cos 2g

]
+
27εσ

4G

[
5c2 + 11η2 − 5

(
c2 − η2

)
cos 2g

]
+

3ε2

128G

{
2113c2 − 3285c4 +

(
3915 + 9165c4

)
η2 +

(
1581 + 7791c2

)
η4

− 4
[
802c2 − 1095c4 +

(
19 + 2565c4

)
η2 −

(
547 + 1744c2

)
η4
]
cos 2g

+ 1095e2s2
(

c2 − η2
)
cos 4g

}
,

dG

dt
= −3

4
e2 s2

{
5(8 + 9εσ) sin 2g

+
ε2

32

(
2
[
509 − 1095c2 +

(
547 + 4035c2

)
η2
]
sin 2g − 1095e2s2 sin 4g

)}
.

(2.5)

Once g and G are integrated for given initial conditions, the secular variations of � and h

are computed from simple quadratures derived from Hamilton equations dh/dt = ∂K/∂H,

d�/dt = ∂K/∂L,

h = h0 +
∫

∂

∂H
K
(
g(t), G(t);H, L

)
dt, � = �0 +

∫
∂

∂L
K
(
g(t), G(t);H, L

)
dt. (2.6)

3. Qualitative Dynamics

The flow can be integrated from the differential equations mentioned previously, (2.5).
However, since the system defined by (2.5) is integrable, the flow is made of closed curves

and equilibria, and it can be represented by contour plots of Hamiltonian (2.3). Thus, for
given values of the dynamical parameters L and H—or ε and σ—we can plot the flow

in different maps that are function of g, G. Figure 1 shows an example in semiequinoctial

elements (e cos g, e sin g), where we note a hyperbolic point corresponding to an unstable

circular orbit, and two elliptic points corresponding to two stable elliptic orbits with e = 0.2

and periapsis at g = ±π/2, respectively.

Delaunay variables are singular for zero eccentricity orbits, where the argument of

the periapsis and the mean anomaly are not defined, and for equatorial orbits, where the
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Figure 1: Flow in the doubly reduced phase space.

argument of the node is not defined. Hence, it is common to study the reduced phase space

in the variables introduced by Coffey et al. [16], see also [8]:

χ1 = ηes cos g, χ2 = ηes sin g, χ3 = η2 − 1

2

(
1 + σ2

)
, (3.1)

that define the surface of a sphere

χ2
1 + χ2

2 + χ2
3 =

1

4

(
1 − σ2

)2
(3.2)

of radius R = (1/2) (1 − σ2) (the sphere representation misses the case G = H = 0, irrelevant

in astrodynamics.)
Then, after dropping constant terms and scaling, Hamiltonian (2.3)writes

K = −12η2 −
30χ2

2

η2
+
9

4
εσ

(
25 − 24η2 − σ2 − 15

χ2
2

η2

)

+
ε2

64

[
3815 + 9528σ2 + 9σ4 − 6

(
343 + 1709σ2

)
η2 − 1824η4

+ 6
(
293 − 821η2 − 1470σ2

) χ2
2

η2
− 3285

χ4
2

η4

]
.

(3.3)
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The flow on the sphere is obtained from Liouville equations χ̇i = {χi;K}, i = 1, 2, 3, where the

dot means derivative in the new time scale. Then,

χ̇1 =
3

16η
χ2

{
64
(
5 − 8η2 + 5σ2

)
+ 72εσ

(
5 − 2η2 + 5σ2

)

+
ε2

64

[
3815 − 1824η4 + 9528σ2 + 9σ4 − 6η2

(
343 + 1709σ2

)

+6
(
293 − 821η2 − 1470σ2

)(χ2

η

)2

− 3285

(
χ2

η

)4
]}

,

(3.4)

χ̇2 = − 3

16η
χ1

{
608ε2η4 + η2

[
128 + 576εσ + ε2

(
343 + 1709σ2

)]

−
[
320 + 360ε σ − ε2

(
293 − 1470σ2

)](χ2

η

)2

− 1095ε2
(

χ2

η

)4
}

,

(3.5)

χ̇3 =
3

8η
χ1 χ2

{
320 + 360εσ − ε2

[
293 − 1470σ2 − 821η2 − 1095

(
χ2

η

)2
]}

, (3.6)

with the constraint χ1 χ̇1 + χ2 χ̇2 + χ3 χ̇3 = 0, derived from (3.2).
Equations (3.4)–(3.6) show that circular orbits (χ1 = χ2 = 0, χ3 = R, the “north” pole

of the sphere) are always equilibria. Equations (3.5) and (3.6) vanish when χ1 = 0, χ2 /= 0, but

(3.4) vanishes only when

1095ε2σ4 − σ2
[
320 + 360εσ + ε2

(
802 + 2565σ2

)]
η2

+
[
192 − 216εσ − ε2

(
362 − 35σ2

)]
η6 − 61ε2η8 = 0.

(3.7)

Equation (3.7) is a polynomial equation of degree 8 in η, therefore admitting eight roots. Note

that, for the accepted values of ε � 1, (3.7) is of the form A2
1 − A2

2 x + A2
3 x3 − A2

4 x4 = 0 that

admits a maximum of three real roots, according to Descartes’ rule of signs.

The real roots of (3.7) verified by the dynamical constraint |σ| ≤ η ≤ 1 are also

equilibria. The root η = 1 marks a change in the number of equilibria due to a “bifurcation”

(η > 1 could be a root but not an equilibrium). Then, the number of equilibria changes when

crossing the line

ε = 4
−27σ − 45σ3 ±

√
5076 + 1473σ2 + 4730σ4 − 27375σ6

423 + 767σ2 + 1470σ4
(3.8)

obtained setting η = 1 in (3.7) that establishes a relation between the dynamical parameters ε

and σ corresponding to bifurcations of circular orbits. Figure 2 shows that this line defines

two regions in the parameters plane with different number of equilibria in phase space.

Circular orbits in the outside region of the curve are stable. When crossing the line given

by (3.8) the number of real roots of (3.7)with dynamical sense increases such that a pitchfork
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Figure 3: Bifurcation lines in the parameter plane.

bifurcation takes place: circular orbits change to unstable and two stable elliptic orbits appear

with periapsis, respectively at g = ±π/2, as in the example of Figure 1.

Note that the curve given by (3.8) notably modifies the classical inclination limit

cos2I > 3/5 for circular orbits’ stability. However, we cannot extend the practical application

of the analytical theory to any value of ε. It is common to limit the validity of the Hill problem

approximation to one third of the Hill radius rH = 3−1/3. Then ε < (rH/3)3/2 = 1/9, including

most of the planetary satellites of interest. Figure 3 shows the bifurcation lines of circular

orbits in the validity region of the parameters plane with the values of ε corresponding to

low altitude orbits around different planetary satellites highlighted.

A powerful test for estimating the quality of the analytical theory is to check the

degree of agreement of the bifurcation lines of the analytical theory with those computed

numerically in the nonaveraged problem. To do that we compute several families of three-

dimensional, almost circular, periodic orbits of the Hill (nonaveraged) problem that bifurcate

from the family of planar retrograde orbits at different resonances. For variations of the Jacobi
constant the almost circular periodic orbits evolve from retrograde to direct orbits through the

180 degrees of inclination. At certain critical points, almost circular orbits change from stable

to unstable in a bifurcation phenomenon in which two new elliptic periodic orbits appear.
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Figure 4: Comparison between the bifurcation line of circular, averaged orbits (full line), and the curve of
critical periodic orbits (dots).

Table 1: Initial orbital elements of an elliptic frozen orbit for ε = 0.0470573, σ = 0.422618.

Theory a (Hill units) e I (deg) g (deg) h �

Classical 0.130342 0.674094 55.0995 −90 0 0

2nd order 0.130342 0.648065 55.6915 −90 0 0

3rd order 0.130515 0.637316 56.1798 −90 0 0

4th order 0.130538 0.634803 56.2813 −90 0 0

The computation of a variety of these critical points helps in determining stability regions for

almost circular orbits [17].
The tests done show that the fourth-order theory gives good results for ε < 0.05. As

presented in Figure 4, the bifurcation line of retrograde orbits clearly diverges from the line of

corresponding critical periodic orbits for higher values of ε, and it may be worth developing

a higher-order theory that encompasses also the case of Enceladus.

4. Frozen Orbits Computation

Hill’s case of orbits close to the smaller primary is a simplification of the restricted three-

body problem, which in turn is a simplification of real models. Therefore, the final goal of

our theory is not the generation of ephemerides but to help in mission designing for artificial

satellites about planetary satellites, where frozen orbits are of major interest.

For given values of the parameters ε, σ, determined by the mission, a number of

frozen orbits may exist. A circular frozen orbit, either stable or unstable, exists always and

the computation of real roots |σ| ≤ η ≤ 1 of (3.7), if any, will provide the eccentricities of

the stable elliptic solutions with frozen periapsis at g = ±π/2. To each equilibrium of the

doubly reduced phase space it corresponds a torus of quasiperiodic solutions in the original,

nonaveraged model. In what follows we present several examples that justify the effort in
computing a fourth-order theory to reach the quasiperiodicity condition in the Hill problem.

4.1. Elliptic Frozen Orbits

We choose ε = 0.0470573, σ = 0.422618. If we first try the classical double-averaged solution,

the Hamiltonian (2.3) is simplified to K0,0 + εK0,1 + (ε2/2)K0,2, and the existence of elliptic
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Figure 5: Long-term evolution of the orbital elements of the elliptic frozen orbit.

frozen orbits reduces to the case σ2 < 3/5, g = ±π/2. The eccentricity of the elliptic frozen

solutions is then computed from η = (5σ2/3)1/4
—obtained by neglecting terms in ε in (3.7).

Thus, for the given values of ε and σ, and taking into account that we are free to choose

the initial values of the averaged angles �, h, we get the orbital elements of the first row

of Table 1. The left column of Figure 5 shows the long-term evolution of the instantaneous

orbital elements for this case, that we call “classical averaging,” in which we find long-period

oscillations of more than four degrees in inclination, more than fifteen in the argument of

periapsis, and a variation of ±0.06 in the eccentricity.

When computing a second-order theory with the Lie-Deprit perturbation method

we arrive exactly at the classical Hamiltonian obtained by a simple removal of the short-

period terms and the classical bifurcation condition that results in the critical inclination

of the third-body perturbations I = 39.2◦ [10, 11]. However, now we have available the

transformation equations to recover the short- and long-period effects, although up to the

first order only. After undoing the transformation equations we find the orbital elements of

the second row of Table 1, where we see that all the elements remain unchanged except for
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Figure 6: Long-term evolution of the orbital elements of the elliptic frozen orbit.

the eccentricity and inclination. The long-term evolution of these elements is presented in

the right column of Figure 5, in which we notice a significant reduction in the amplitude of

long-period oscillations: 2.5◦ in inclination, around 10◦ in the argument of the periapsis, and

±0.04 in eccentricity.

The results of the third- and fourth-order theories are presented in the last two rows

of Table 1 and in Figure 6. The higher-order corrections drive slight enlargements in the

semimajor axis. While both higher-order theories produce impressive improvements, we note

a residual long-period oscillation in the elements computed from the third-order theory (left
column of Figure 6). On the contrary, the orbital elements of the frozen orbit computed with

the fourth-order theory are almost free from long-period oscillations and mainly show the

short-period oscillations typical of quasiperiodic orbits.

4.2. Circular Frozen Orbits

If we choose the same value for ε but now σ = 0.777146, frozen elliptic orbits do not exist any

longer and the circular frozen orbit is stable. Both the third and fourth-order theories provide
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Figure 7: Long-term evolution of the orbital elements of the circular stable frozen orbit. (a) and (c) third-
order theory. (b) and (d) fourth-order theory.

good results, but, again, the third-order theory provides small long-period oscillations in the

eccentricity whereas the fourth-order theory leads to a quasiperiodic orbit (see Figure 7).
For ε = 0.0339919 and σ = 0.34202 the circular frozen orbit is unstable. Due to the

instability, a long-term propagation of the initial conditions from either the third or the

fourth theory shows that the orbit escapes following the unstable manifold with exponential

increase in the eccentricity. But, as Figure 8 shows, the orbit remains frozen much more time

when using the fourth-order theory. A variety of tests performed on science orbits close to

Galilean moons Europa and Callisto showed that the fourth-order theory generally improves

by 50% the lifetimes reached when using the third-order theory.

4.3. Fourier Analysis

Alternatively to the temporal analysis mentioned previously, a frequency analysis using the

Fast Fourier Transform (FFT) shows how initial conditions obtained from different orders of
the analytical theory can be affected of undesired frequencies that defrost the orbital elements.
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Figure 8: Long-term evolution of the orbital elements of the circular, unstable, frozen orbit.

Thus, Figure 9 shows the FFT analysis of the instantaneous argument of the periapsis

of the elliptic orbit in the examplementioned previously. Dots correspond to initial conditions

obtained from the double-averaged phase space after a classical analysis—that is equivalent

to the second-order analytical theory—and the line corresponds to initial conditions obtained

from the fourth-order analytical theory after undoing the transformation. While most of the

frequencies match with similar amplitudes, in the magnification of the right plot we clearly

appreciate a very low frequency of ∼0.15 cycles/year with a very high amplitude in the

classical theory that is almost canceled out with the fourth-order approach. The semiannual

frequency remains in both theories because it is intrinsic to the problem. It is due to the third-

body perturbation and it cannot be avoided.

Figure 10 shows a similar analysis for the instantaneous eccentricity of the stable

circular orbit mentioned previously. Now, dots correspond to the fourth-order theory and

the line to the third-order one (both after undoing the transformation equations). While the
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Figure 9: (a) FFT analysis of the instantaneous argument of the periapsis of the elliptic solution. (b)
Magnification over the low frequencies region.
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Figure 10: (a) FFT analysis of the instantaneous eccentricity of the elliptic solution. (b)Magnification over
the low frequencies region.

third-order theory provides good results, reducing the amplitude of the undesired frequency

to low values, the fourth-order theory practically cancels out that frequency.

An FFT analysis of unstable circular orbits has not much sense because of the time

scale in which the orbit destabilizes.

5. Conclusions

Frozen orbits computation is a useful procedure in mission designing for artificial satellites.

After locating the frozen orbit of interest in a double-averaged problem, usual procedures for

computing initial conditions of frozen orbits resort to trial-and-error interactive corrections,

or require involved computations. However, the explicit transformation equations between

averaged and nonaveraged models can be obtained with analytical theories based on the Lie-

Deprit perturbation method, which makes the frozen orbits computations straightforward.

Accurate computations of the initial conditions of frozen, quasiperiodic orbits can

be reached with higher-order analytical theories. This way of proceeding should not be

undervalued in the computation of science orbits around planetary satellites, a case in which

third-body perturbations induce unstable dynamics.
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Higher-order analytical theories are a common tool for computing ephemeris among

the celestial mechanics community. They are usually developed with specific purpose,

sophisticated algebraic manipulators. However, the impressive performances of modern

computers and software allow us to build our analytical theory with commercial, general-

purpose manipulators, a fact that may challenge aerospace engineers to use the safe, well-

known techniques advocated in this paper.

Appendix

Let T : (x,X) → (x′,X′), where x are coordinates and X their conjugate momenta, be

a Lie transform from “new” (primes) to “old” variables. If W =
∑

i(ε
i/i!) Wi+1(x,X) is

its generating function expanded as a power series in a small parameter ε, a function

F =
∑

i(ε
i/i!) Fi,0(x,X) can be expressed in the new variables as the power series (T : F) =∑

i(ε
i/i!) F0,i(x′,X′) whose coefficients are computed from the recurrence

Fi,j = Fi+1,j−1 +
∑
0≤k≤i

(
i

k

){
Fk,j−1;Wi+1−k

}
, (A.1)

where {Fk,j−1;Wi+1−k} = ∇xFk,j−1 · ∇XWi+1−k − ∇XFk,j−1 · ∇xWi+1−k, is the Poisson bracket.

Conversely, the coefficients Wi+1 of the generating function can be computed step by step

from (A.1) once corresponding terms F0,i of the transformed function are chosen as desired.

In perturbation theory it is common to chose the F0,i as an averaged expression over some

variable, but it is not the unique possibility [18]. Full details can be found in the literature

[19, 20].
To average the short-period effects we write Hamiltonian (2.2) in Delaunay variables

as

H = H0,0 + εH1,0 +

(
ε2

2

)
H2,0 +

(
ε3

6

)
H3,0 +

(
ε4

24

)
H4,0,

(A.2)

where H0,0 = −1/(2L2), H1,0 = −H, H2,0 = r2{1− 3[cos(f + g) cosh − c sin(f + g) sinh]2}, and
H3,0 = H4,0 = 0. Note that the true anomaly f is an implicit function of �.

Since the radius r never appears in denominators, it results convenient to express

Hamiltonian (A.2) as a function of the elliptic—instead of the true—anomaly u by using the

ellipse relations r sin f = η a sinu, r cos f = a(cosu − e), r = a(1 − e cosu).
After applying the Delaunay normalization [21] up to the fourth-order in the

Hamiltonian, we get

H′ = H0,0 + ε H0,1 +

(
ε2

2

)
H0,2 +

(
ε3

6

)
H0,3 +

(
ε4

24

)
H0,4, (A.3)

where, omitting primes,

H0,0 = − 1

2L2
,

H0,1 = H0,0ε2cη,
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H0,2 = H0,0

(
ε2

8

){(
4 + 6e2

) (
2 − 3s2 + 3s2 cos 2h

)
+ 15e2

[
2s2 cos 2g + (1 − c)2 cos

(
2g − 2h

)
+ (1 + c)2 cos

(
2g + 2h

)]}
,

H0,3 = H0,0

(
45ε3

8

)
e2η
[
(1 + c)2 cos

(
2g + 2h

)
− (1 − c)2 cos

(
2g − 2h

)]
,

H0,4 = H0,0

(
− 3ε4

512

)

×
{
16
(
47 + 282c2 + 63c4

)
− 144

(
227 + 90c2 + 59c4

)
e2

− 18
(
227 + 610c2 − 701c4

)
e4 − 24s2

[
558 + 270c2 +

(
109 − 555c2

)
e2
]
e2 cos 2g

+ 24s2
[
216 + 56c2 − 8

(
161 + 59c2

)
e2 −
(
11 − 701c2

)
e4
]
cos 2h

− 48(1 + c)2
[
338 − 90c + 90c2 −

(
91 − 185c + 185c2

)
e2
]
e2 cos

(
2g + 2h

)
− 48(1 − c)2

[
338 + 90c + 90c2 −

(
91 + 185c + 185c2

)
e2
]
e2 cos

(
2g − 2h

)
+ 6s4

(
56 − 472e2 + 701e4

)
cos 4h + 1710s4e4 cos 4g

− 60s2
(
18 − 37e2

)
e2
[
(1 + c)2 cos

(
2g + 4h

)
+ (1 − c)2 cos

(
2g − 4h

)]
+ 1140s2e4

[
(1 + c)2 cos

(
4g + 2h

)
+ (1 − c)2 cos

(
4g − 2h

)]
+ 285e4

[
(1 + c)4 cos

(
4g + 4h

)
+ (1 − c)4 cos

(
4g − 4h

)]}
.

(A.4)

The generating function of the transformation is W = W2 + (1/2)W3, where

W2 = L

(
ε2

192

)

×
{
4
(
2 − 3s2

)[
3e
(
5 + 3η2

)
S1,0,0 − 9e2S2,0,0 + e3S3,0,0

]
+ 6s2e

[
3
(
5 + 3η2

)
(S1,0,2 + S1,0−2) − 9e(S2,0,2 + S2,0−2) + e2(S3,0,2 + S3,0−2)

]
+ 6s2

(
1 + η

)2[
15eS1,2,0 −

(
9 − 6η

)
S2,2,0 + eS3,2,0

]
+ 6s2

(
1 − η

)2[
15eS1,−2,0 −

(
9 + 6η

)
S2,−2,0 + eS3,−2,0

]
+ 3(1 + c)2

(
1 + η

)2[
15eS1,2,2 −

(
9 − 6η

)
S2,2,2 + eS3,2,2

]
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+ 3(1 − c)2
(
1 + η

)2[
15eS1,2,−2 −

(
9 − 6η

)
S2,2,−2 + eS3,2,−2

]
+ 3(1 − c)2

(
1 − η

)2[
15eS1,−2,2 −

(
9 + 6η

)
S2,−2,2 + eS3,−2,2

]
+ 3(1 + c)2

(
1 − η

)2[
15eS1,−2,−2 −

(
9 + 6η

)
S2,−2,−2 + eS3,−2,−2

]}
,

W3 = L

(
ε3

256

)

×
{
72es2

(
13 + 3η2

)
[S1,0,2 − S1,0,−2] − 24e2s2

(
17 + 4η2

)
[S2,0,2 − S2,0,−2]

+ 88e3s2[S3,0,2 − S3,0,−2] − 6e4s2[S4,0,2 − S4,0,−2]

+ 36e
(
1 + η

)(
13 + η + 8η2

)[
(1 + c)2S1,2,2 − (1 − c)2S1,2,−2

]
+ 36e

(
1 − η

)(
13 − η + 8η2

)[
(1 − c)2S1,−2,2 − (1 + c)2S1,−2,−2

]
− 12
(
1 + η

)2(
17 − 6η − 8η2

)[
(1 + c)2S2,2,2 − (1 − c)2S2,2,−2

]
− 12
(
1 − η

)2(
17 + 6η − 8η2

)[
(1 − c)2S2,−2,2 − (1 + c)2S2,−2,−2

]
+ 4
(
1 + η

)2
e
(
11 − 6η

)[
(1 + c)2S3,2,2 − (1 − c)2S3,2,−2

]
+ 4
(
1 − η

)2
e
(
11 + 6η

)[
(1 − c)2S3,−2,2 − (1 + c)2S3,−2,−2

]
− 3
(
1 + η

)2
e2
[
(1 + c)2 S4,2,2 − (1 − c)2S4,2,−2

]
− 3
(
1 − η

)2
e2
[
(1 − c)2S4,−2,2 − (1 + c)2S4,−2,−2

]}
.

(A.5)

We shorten notation calling Si,j,k ≡ sin(i u + j g + k h).
The Lie transform of generating function W can be applied to any function of

Delaunay variables F =
∑

i(ε
i/i!) Fi(�′, g ′, h′, L′, G′, H ′). Since W1 = 0, up to the third-order

in the small parameter recurrence (A.1) gives

F = F0 +

(
ε2

2

)
{F0;W2} +

(
ε3

6

)
{F0;W3}. (A.6)

Specifically, this applies to the transformation equations of the Delaunay variables

themselves, where F0 ∈ (�′, g ′, h′, L′, G′, H ′) and Fi ≡ 0 for i > 0.

A new application of the recurrence (A.1) to the Hamiltonian K =
∑

0≤i≤4 (εi/i!) Ki,0,

where Ki,0 ≡ H0,i of (A.3), allows to eliminate the node up to the fourth-order, obtaining

the double-averaged Hamiltonian (2.3). Note that K0,4 corrects previous results in [22]. The
generating function of the transformation is V = V1 + εV2 + (ε2/2) V3, where, omitting double
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primes,

V1 = L

(
3

64

)[(
4 + 6e2

)
s2 sin 2h + 5 (1 + c)2e2 sin

(
2g + 2h

)
− 5 (1 − c)2e2 sin

(
2g − 2h

)]
,

V2 = L

(
− 3

128

)
η
[
6c
(
2 − 17e2

)
s2 sin 2h + 5 (2 − 9c) (1 + c)2e2 sin

(
2g + 2h

)
+ 5(1 − c)2(2 + 9c)e2 sin

(
2g − 2h

)]
,

V3 = L

(
− 9

32768

)
×
{
16s2
[
456 − 104c2 − 8

(
193 + 754c2

)
e2 +
(
47 + 7831c2

)
e4
]
sin 2h

+ 2s4
(
232 + 416e2 − 1803e4

)
sin 4h

− 32(1 + c)2e2
[
2
(
323 − 285c + 780c2

)
−
(
527 − 1135c + 2125c2

)
e2
]
sin
(
2g + 2h

)
+ 32(1 − c)2e2

[
2
(
323 + 285c + 780c2

)
−
(
527 + 1135c + 2125c2

)
e2
]
sin
(
2g − 2h

)
+ 220s2e2

(
4 − 11e2

)[
(1 + c)2 sin

(
2g + 4h

)
− (1 − c)2 sin

(
2g − 4h

)]
+ 4520s2e4

[
(1 + c)2 sin

(
4g + 2h

)
− (1 − c)2 sin

(
4g − 2h

)]
− 385e4

[
(1 + c)4 sin

(
4g + 4h

)
− (1 − c)4 sin

(
4g − 4h

)]}
.

(A.7)

The new Lie transform of generating function V can be applied to any function of

Delaunay variables, and, specifically, to the Delaunay variables themselves. For any ξ′′ ∈
(�′′, g ′′, h′′, L′′, G′′, H ′′) the transformation equations of the Lie transform are computed, up

to the third-order, from

ξ′ = ξ′′ + εδ1 +

(
ε2

2

)
δ2 +

(
ε3

6

)
δ3, (A.8)

where

δ1 =
{

ξ′′;V1

}
,

δ2 =
{

ξ′′;V2

}
+ {δ1;V1},

δ3 =
{

ξ′′;V3

}
+
{{

ξ′′;V2

}
;V1

}
+ {δ1;V2} + {δ2;V1}.

(A.9)
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1. Introduction

The aim of this paper is to study the phase space of trajectories around some homogeneous

bodies with well-defined simple geometric shapes. Closed-form expressions derived for the

gravitational potential of the rectangular and triangular plates were obtained from Kellogg

[1] and Broucke [2]. They show the presence of two kinds of terms: logarithms and arc

tangents. With these expressions we study the phase space of trajectories of a particle around

two different bodies: a square and a triangular plates. The present study was made using the

Poincaré surface of section technique which allows us to determine the location and size of

the stable and chaotic regions in the phase space. We can find the periodic, quasiperiodic and

chaotic orbits.
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Some researches on this topic can be found in Winter [3] that study the stability

evolution of a family of simply periodic orbits around the Moon in the rotating Earth-Moon-

particle system. He uses the numerical technique of Poincaré surface of section to obtain

the structure of the region of the phase space that contains such orbits. In such work it

is introduced a criterion for the degree of stability. The results are a group of surfaces of

section for different values of the Jacobi constant and the location and width of the maximum

amplitude of oscillation as a function of the Jacobi constant. Another research was done

by Broucke [4] that presents the Newton’s law of gravity applied to round bodies, mainly

spheres and shells. He also treats circular cylinders and disks with the same methods used

for shells and it works very well, almost with no modifications. The results are complete

derivations for the potential and the force for the interior case as well as the exterior

case.

In Sections 2 and 3, following the works of Kellogg [1] and Broucke [2], we show the

expressions for the potential of the rectangular and triangular plates, respectively. In Section 4

we use the Poincaré surface of section technique to study the phase space around the plates.

In Section 5 we show the size and location of stable and collision regions in the phase space.

In the last section, we have some final comments.

2. The Potential of the Rectangular Plate

Let us consider a homogeneous plane rectangular plate and an arbitrary point P (0, 0, Z), not
on the rectangle. Take x and y axes parallel to the sides of the rectangle, and their corners

referred to these axes are A(b, c), B(b′, c), C(b′, c′), and D(b, c′). Let ΔSk denote a typical

element of the surface, containing a point Qk located in the rectangular plate with coordinates

(xk, yk). See Figure 1.
The potential of the rectangular plate can be given by the expression

U =
GσΔSk

rk
= Gσ

∫ c′

c

∫b′

b

dxdy√
x2 + y2 + Z2

= Gσ

{∫ c′

c

ln

(
b′ +
√

b′2 + y2 + Z2

)
dy −

∫ c′

c

ln

(
b +
√

b2 + y2 + Z2

)
dy

}
,

(2.1)

where G is the Newton’s gravitational constant, σ is the density of the material, and rk is the

distance between the particle and the point Qk.

In evaluating the integrals we find

U = Gσ

[
c′ ln

(b′ + d3)
(b + d4)

+ c ln
(b + d1)
(b′ + d2)

+ b′ ln
(c′ + d3)
(c + d2)

+ b ln
(c + d1)
(c′ + d4)

+Z

(
tan−1 b · c′

Z · d4
− tan−1 b′ · c′

Z · d3
+ tan−1 b′ · c

Z · d2
− tan−1 b · c

Z · d1

)]
,

(2.2)
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A c B

b O b′

y

x
Qk

ΔSk

D c′ C

Figure 1: Rectangular plate is on the plane (x, y).

where

d2
1 = b2 + c2 + Z2,

d2
2 = b′2 + c2 + Z2,

d2
3 = b′2 + c′

2 + Z2,

d2
4 = b2 + c′

2 + Z2

(2.3)

are the distances from P (0, 0, Z) to the corners A, B, C, and D, respectively.

3. The Potential of the Triangular Plate

We will give the potential at a point P (0, 0, Z) on the Z-axis created by the triangle shown in

Figure 2 located in the xy-plane. The side P1P2 is parallel to the x-axis. The coordinates of P1

and P2 are �r1(x1, y1) and �r2(x2, y2), but we have that y1 = y2 and x1 > x2 > 0. The distances

are given by d2
1 = x2

1 + y2
1 + Z2 and d2

2 = x2
2 + y2

1 + Z2, where d1 is the distance from P (0, 0, Z)
to the corner P1(x1, y1) and d2 is the distance from P (0, 0, Z) to the corner P2(x2, y1). Using

the definition of the potential, we have that the potential at P (0, 0, Z) can be given by

U = Gσ

{
y1 ln

[
x1 + d1

x2 + d2

]
+ Ztan−1

(
β1Z

d1

)
− Ztan−1

(
β2Z

d2

)
− |Z|α12

}
, (3.1)

where β1 = x1/y1, β2 = x2/y2, and α12 = α1 − α2 represent the angle of the triangle at the

origin O and it is showed in Figure 2.

The potential of this triangle at the point P (0, 0, Z) on the Z-axis must be invariant

under an arbitrary rotation of the triangle around the same Z-axis. Therefore, (3.1) should
also be invariant under this rotation and their four terms are individually invariant, where

they can be expressed in terms of invariant quantities, such as the sides and the angle of the

triangle. The potential of an arbitrary triangular plate P1P2P3 (Figure 3) can be obtained by
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x

y1 = y2 r2

β2
α12

r1
Qk

β1

α2

P2(x2, y1) P1(x1, y1)

Figure 2: Triangle OP1P2 located in the xy-plane (x, y).

O

y

x

r1r23

r12

r2

r3

P1

P2

P3

r31

Figure 3: Triangular plate P1P2P3.

the sum of three special triangles of the type used in this section. So, the result will have three

logarithmic terms and three arc-tangent terms. So, the potential is given by

U = Gσ

{
C12

r12
ln

[
d1 + d2 + r12
d1 + d2 − r12

]
+

C23

r23
ln

[
d2 + d3 + r23
d2 + d3 − r23

]
+

C31

r31
ln

[
d3 + d1 + r31
d3 + d1 − r31

]

+ tan−1
(

Nd1

D1

)
+ tan−1

(
Nd2

D2

)
+ tan−1

(
Nd3

D3

)
+ Sign(Z)π

}
,

(3.2)

where the numerator and the denominators are

N = −Z(C12 + C23 + C31),

D1 = Z2
(

r21 + D23 − D31 − D12

)
− C12C31,

D2 = Z2
(

r22 + D31 − D12 − D23

)
− C23C12,

D3 = Z2
(

r23 + D12 − D23 − D31

)
− C31C23.

(3.3)
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The symbol Sign(Z) in (3.2) is the sign of the variable Z and rij (i, j = 1, 2, 3) is the distance
between Pi and Pj . In particular, the dot-product Dij = rirj cos αij and the cross-product

Cij = rirj sin αij of the vectors ri and rj are two invariants, where αij = αi − αj . In order

to obtain more details see Broucke [2]. This result is invariant with respect to an arbitrary

rotation around the Z-axis.

An important generalization of (2.2) and (3.2) can be done, for the case where the

point P has arbitrary coordinates (X, Y, Z) instead of being on the Z-axis. For the rectangle,

this task is rather easy, because the four vertices A, B, C, and D have completely arbitrary

locations. In order to have more general results it is sufficient to replace (b, b′, c, c′) by

(b − X, b′ − X, c − Y, c′ − Y ) in (2.2). For the triangle, it is sufficient to replace all the vertex-

coordinates (xi, yi) by (xi − X, yi − Y ) in (3.2). These generalizations give us expressions

for the potential U of the rectangle and the triangle as a function of the variables (X, Y, Z).
Then, it is possible to compute the components of the acceleration by taking the gradient of

the potential. It is important to note that, in taking the partial derivatives of U(X, Y, Z), the
arguments of the logarithms and the arc tangents were treated as constants by Broucke [2].
This simplifies the work considerably. The general expressions of the acceleration allow us to

study orbits around these plates, and this study is very important to obtain knowledge that

will be necessary to study the cases of three-dimensional solids, such as polyhedra.

4. Study of the Phase Space around Simple Geometric Shape Bodies

With the potential determined, we study the phase space of trajectories of a point of mass

around the plates. In this section we use the Poincaré surface of section technique to study the

regions around the rectangular and triangular plates. In this part of the paper we explore the

space of initial conditions. The results are presented in Poincaré sections (x, ẋ), from which

one can identify the nature of the trajectories: periodic, quasiperiodic, or chaotic orbits. We

can find the collision regions and identify some resonances.

In order to obtain the orbital elements of a particle at any instant it is necessary to

know its position (x, y) and velocity (ẋ, ẏ) that corresponds to a point in a four dimensional

phase space. The conservation of the total energy of the system implies in the existence of

a three-dimensional surface in this phase space. For a fixed value of the total energy only

three of the four quantities are needed, for example, x, y, and ẋ, since the other one ẏ is

determined, up to the sign, by the total energy. By defining a plane, that we choose y = 0,

in the resulting three-dimensional space, the values of x and ẋ can be plotted every time

the particle has y = 0. The ambiguity of the sign of ẏ is removed by considering only those

crossing with a fixed sign of ẏ. The section is obtained by fixing a plane in the phase space

and plotting the points when the trajectory intersects this plane in a particular direction

(Winter and Vieira Neto, [5]). This technique is used to determine the regular or chaotic

nature of the trajectory. In the Poincaré map, if there are closed well-defined curves then

the trajectory is quasiperiodic. If there are isolated single points inside such islands, the

trajectory is periodic. Any “fuzzy” distribution of points in the surface of section implies that

the trajectory is chaotic (Winter and Murray [6]).
In order to study the regions around simple geometric shape bodies, two cases were

considered. In the first case we used a square plate, where all of its sides are � = 2 and the

initial position of the test particle is chosen arbitrarily in the right side of the plate. Themotion

of the particle is in the counterclockwise direction. In the second case we used an equilateral

triangular plate, with sides � = 1 and one of its sides is parallel to the y-axis. For the triangle,

the initial position of the test particle is in the right side of the plate and its motion is in the
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counterclockwise direction. Both of the cases consider a baricentric system, where the plates

are centered in the origin of the system. The constants used are the Newton’s gravitational

constant and the density of the material, respectively, G = σ = 1.

In this paper, the Poincaré surface of section describes a region of the phase space

for two-body problem (plate-particle). The numerical study makes use of the Burlisch-Stoer

method of integration with an accuracy ofO (10−12). The Newton-Raphson method was used

to determine when the trajectory crosses the plane y = 0 with an accuracy of O (10−11). There
is always a choice of surfaces of section and, in ourwork, the values of x and ẋ were computed

whenever the trajectory crossed the plane y = 0 with ẏ > 0.

In this section, Figure 4 represents a set of Poincaré surfaces of section around the

triangular plate with values of energy, E, varying from −0.41 to −0.46, at intervals of 0.01. We

considered approximately seventy starting conditions for each surface of section, but most of

them generated just a single point each one. In that case the particle collided with the plate.

Figures 4(a) to 4(f) show regions where the initial conditions generated well-defined

curves. These sections represent quasiperiodic trajectories around the triangular plate. The

center of the islands for each surface of section corresponds to one periodic orbit of the

first kind (circular orbit). In Figure 4(a), for example, we can see a group of four islands

corresponding to a single trajectory with E = −0.41 and x0 = −0.8422. The center of each

one of those islands corresponds to one periodic orbit of the second kind (resonant orbit).
In the same figure there is a separatrix that represents the trajectory with E = −0.41 and

x0 = −0.83176 where the particle has a chaotic movement confined in a small region.

Figure 4(d) shows that the group of four islands is disappearing and a new group of five

islands appears. This new group of islands corresponds to a trajectory with E = −0.44 and

x0 = −0.80281. The region of single points outside the islands corresponds to a chaotic “sea”

where the particle collides with the plate. This is a region highly unstable.

Figure 5(a) shows a Poincaré surface of section around the triangular plate for energy,

E = −0.4. With a zoom in the region 1 we can see a fuzzy but confined distribution of points

that corresponds to the separatrix (Figure 5(b)) generated with x0 = −0.80816. With a zoom

in the region 2 we can see islands (Figure 5(c)) that were generated with x0 = −0.81596 and

x0 = −0.83351.

A similar structure of the phase space is found for the square plate when analyzed its

Poincaré surface of section.

5. Collision and Stable Regions

In this section we show a global vision of the location and size of the stable and collision

regions around the triangular and square plates, using Poincaré map. The values of x, when

ẋ = 0, are measured with the largest island of stability (quasiperiodic orbit) for each value

of energy (Winter [3]). With the diagrams (Figures 6 and 7) we can see the evolution of the

stability for the family of periodic orbits for different values of energy constant.

The surfaces of section are plotted at intervals of 0.02 for the energy constant (E). For
the triangular plate, the energy varies from −0.01 to −0.47 and, for the square plate, from −0.13

to −1.09. The values of the energy (E = −0.47) for the triangle and (E = −1.09) for the square
represent the region that there is no island of stability within the adopted precision.

Figure 6(a) shows the stable and collision regions around the triangular plate. The

white color represents the region that is considered stable, neglecting the small chaotic

regions that appear in the separatrices. The collision region is represented by the dark

gray color and it indicates the region where the particle collides with the plate due to its
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Figure 4: A group of Poincaré surfaces of section of trajectory around the triangular plate for different
values of energy, −0.46 ≤ E ≤ −0.41 at intervals of 0.01.
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Figure 5: (a) Poincaré surfaces of section around the triangular plate for energy, E = −0.4; (b) a zoom in
region 1 that represents the separatrix; (c) a zoom in region 2 that represents a group of islands.

gravitational attraction. The light gray color corresponds to a “prohibited” regionwhere there

are no starting conditions for those values of energy. The triangular plate is located to the right

of the limit of the collision border. Figure 6(b) corresponds to a zoom of the previous one in

order to have the best visualization of the regions.

Figure 7(a) summarizes the same studies around the square plate and the color codes

are the same as mentioned for the triangle. The square plate is located to the left of the limit

of the collision border. Figure 7(b) corresponds to a zoom of the previous one.
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Figure 6: (a) Study of the regions around the triangular plate: stable area (white), collision area (dark
gray), and “prohibited”area (light gray); (b) zoom of a region in (a).
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Figure 7: (a) Study of the regions around of the square plate: stable area (white), collision area (dark gray),
and “prohibited” area (light gray); (b) zoom of a region in (a).

6. Trajectories around Triangular and Square Plates

In the last section was shown a global vision of a family of orbits around the geometric plates.

In this section we will show some trajectories of a particle around triangular and square

plates. The initial conditions (position and velocity) of the particle that orbit the plates are

given by:

(
x, y, z

)
= (x0, 0, 0),

(
V x, V y, V z

)
=
(
0,−
√
2(E + U), 0

)
,

(6.1)

where E is the total energy of the system and U is the potential energy generated by the plate.
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Table 1: Value of the energy (E) and the initial position of the particle (x0) for the triangular and square
plates.

Figures E x0

8 −0.40 −0.83

9 −0.41 −0.83176

10 −0.60 1.4
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Figure 8: Trajectory around the triangular plate: quasiperiodic.

Table 1 shows the value of the initial position of the particle (x0) and its correspondent

value of the energy for each trajectory around the triangular and square plates. Figures 8 and

9 show a quasiperiodic orbit and a chaotic orbit (in a region of the separatrix), respectively,
around the triangular plate. Figure 10 shows a quasiperiodic orbit around the square plate.

The trajectories in these figures show that the effect of the potential due to the plates

can be compared with the effect of the Earth’s flattening (J2), generating trajectories as a

precessing elliptic orbit.

In this section we will explore the regions very close to the vertex of the geometric

plates and verify the behavior of the particle in this situation due to the potentials of the

plates. So, it is showed an analysis of the semimajor axis and the eccentricity of the orbit.

In the next example is considered a triangular plate as a central body, the value of the

energy is E = −0.1 and the initial position for the particle is x0 = −1.14 and y0 = z0 = 0,

that generate a quasiperiodic orbit. Figure 11 shows the trajectory around the plate, where

A, B, and C are the vertexes of the triangular plate and Figure 12 shows the behavior of the

semimajor axis versus time. The points in Figure 11 correspond to the enumerated regions in

Figure 12. For better visualization of Figure 11, there is a zoom of the region around the plate.

Figure 13 shows a zoom of Figure 12 with the details of the semimajor axis peaks along six

orbital periods. The results show the following features.

The codes 1a, 2a, 3a, 4a, 5a, and 6a are the maximum values of the semimajor axis that

occur when the particle is close to the vertex A during six complete orbits. The codes 1 to 6

correspond to the six close approaches of the particle to the vertex A. The results show that
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Figure 9: Trajectory around the triangular plate: chaotic orbit (separatrix).
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Figure 10: Trajectory around the square plate: quasiperiodic.

the semimajor axis increases as the particle approaches to the vertex A. From Figures 11 to

13 we see the same codes for passages of the particle close to the other two vertexes, B and

C. Since the trajectory of the particle does not get so close to the vertexes, B and C, then the

increase on the semimajor axis is not so large in these cases.

With these analyses we can verify that the proximity of the particle to the corners of the

plate changes the behavior of the trajectory. In the studied cases, the orbits become eccentric

and precess. For the eccentricity we could verify a similar behavior as that found for the

semimajor axis.

The studies with the square plate show the same behavior as obtained for the triangle.
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Figure 11: (a) Trajectory of the particle around the triangular plate. (b) Zoom of the trajectory near the
plate.

T

a

4

6

8

10

12

14

16

0 100 200 300 400 500

1a

2a

2c

3a

3c

4a

4c

5a

5c 5b 6b

6a

Figure 12: Semimajor axis of the orbit.

7. Final Comments

In this paper we used closed form solutions for the gravitational potential for two simple

geometric shape bodies in order to study the behavior of a particle around each one of them.

The development was applied to the square and to the triangular plates.We used the Poincaré

surface of section technique to study the phase space of trajectories of a particle around those

plates. We identified different kinds of orbits: periodic, quasiperiodic, and chaotic orbits. We

found a collision region and identified some resonances.

The results showed that there is a region of starting conditions where it is possible

to have orbits around the plates before the collision. The location and size of the stable and

collision regions were measured for each value of energy and it showed us the evolution

of the stable regions in the phase space. We have seen that the Poincaré surface of section

technique is an easy and powerful way to identify the nature of the orbits.
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Figure 13: Zoom of Figure 12. Peak of semimajor axis in six orbital periods.

It was observed that the corners of the plates have a significant influence in the

behavior of the trajectory, mainly when the particle has a close approach to them. The orbits

become eccentric and precess due their gravitational field.

This study opens the way to obtain the potential and the trajectories around three-

dimensional bodies with irregular shapes, such as asteroids and comets.
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1. Introduction

Dynamical systems with few bodies (three) have been extensively studied in the past, and

various models have been proposed for research aiming to approximate the behavior of real

celestial systems. There are many reasons for studying the four-body problem besides the

historical ones, since it is known that approximately two-thirds of the stars in our Galaxy

exist as part of multistellar systems. Around one-fifth of these is a part of triple systems,

while a rough estimate suggests that a further one-fifth of these triples belongs to quadruple

or higher systems, which can be modeled by the four-body problem. Among these models,

the configuration used by Maranhão [1] and Maranhão and Llibre [2], where three point

masses form at any time a collinear central configuration (Euler configuration, see [3]), is
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of particular interest not only for its simplicity but mainly because in the last 10 years, an

increasing number of extrasolar systems have been detected, most of them consisting of a

“sun” and a planet or of a “sun” and two planets.

We study the motion of a mass point of negligible mass under the Newtonian

gravitational attraction of three mass points of masses m1, m2, and m3 (called primaries)
moving in circular periodic orbits around their center of mass fixed at the origin of the

coordinate system. At any instant of time, the primaries form an equilateral equilibrium

configuration of the three-body problem which is a particular solution of the three-body

problem given by Lagrange (see [4] or [3]). Two of these primaries have equal masses and

are located symmetrically with respect to the third primary.

We choose the unity of mass in such a way that m1 = 1 − 2μ and m2 = m3 = μ are the

masses of the primaries, where μ ∈ (0, 1/2). Units of length and time are chosen in such a

way that the distance between the primaries is one.

For studying the position of the infinitesimal mass, m4, in the plane of motion of

the primaries, we use either the sideral system of coordinates, or the synodical system of

coordinates (see [5] for details). In the synodical coordinates, the three point masses m1,

m2, and m3 are fixed at (
√
3μ, 0, 0), (−(

√
3/2)(1 − 2μ), 1/2, 0), and (−(

√
3/2)(1 − 2μ),−1/2, 0),

respectively. In this paper, the equilateral restricted four-body problem (shortly, ERFBP) consists
in describing themotion of the infinitesimalmass, m4, under the gravitational attraction of the

three primaries m1, m2, and m3. Maranhão’s PhD thesis [1] and the paper [2] by Maranhão

and Llibre studied a restricted four body problem, where three primaries rotating in a fixed

circular orbit define a collinear central configuration.

In the ERFBP, the equations of motion of m4 in synodical coordinates (x, y, z) are

ẍ − 2ẏ = Ωx,

ÿ + 2ẋ = Ωy,

z̈ = Ωz,

(1.1)

where

Ω = Ω
(
x, y, z

)
=

1

2

(
x2 + y2

)
+
1 − 2μ

ρ1
+

μ

ρ2
+

μ

ρ3
,

ρ1 =

√(
x −

√
3μ
)2

+ y2 + z2, ρ2

=

√√√√(
x +

√
3

2

(
1 − 2μ

))2

+
(

y − 1

2

)2

+ z2,

ρ3 =

√√√√(
x +

√
3

2

(
1 − 2μ

))2

+
(

y +
1

2

)2

+ z2.

(1.2)

We remark that the ERFBP becomes the central force problem when μ = 0, and m1 = 1 is

situated in the origin of the system, while μ = 1/2 results in the restricted three-body problem
with the bodies m2 and m3 of mass 1/2.
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Our paper is organized as follows: Section 2 is devoted to describing the most

important dynamical phenomena that governs the evolution of asteroidmovement and states

the problem under consideration in the present study. In Section 3 reductions of the problem

are discussed and a comprehensive treatment of streamline analogies is given. Section 4 is

devoted to the principal qualitative aspect of the restricted problem—the surfaces and curves

of zero velocity, several uses of which are discussed. The regions of allowed motion and

the location and properties of the equilibrium points are established. We describe the Hill

region. The description of the number of equilibrium points is given in Section 5, and in the

symmetrical case (i.e., μ = 1/3), we describe the kind of stability of each equilibrium. In

Section 6, the planar case is considered. There, we prove the existence of periodic solutions

as a continuation of periodic Keplerian orbits, and also when the parameter μ is small and

when it is close to 1/2. Finally, in Section 8 we present the conclusions of the present work.

Next, we will enunciate some four-body problem that has been considered in the

literature. Cronin et al. in [6, 7] considered the models of four bodies where two massive

bodies move in circular orbits about their center of mass or barycenter. In addition, this

barycenter moves in a circular orbit about the center of mass of a system consisting of these

two bodies and a third massive body. It is assumed that this third body lies in the same

plane as the orbits of the first two bodies. The authors studied the motion of a fourth body of

small mass which moves under the combined attractions of these three massive bodies. This

model is called bicircular four-body problem. Considering this restricted four-body problem

consisting of Earth, Moon, Sun, and a massless particle, this problem can be used as a model

for the motion of a space vehicle in the Sun-Earth-Moon system. Several other authors have

considered the study of this problem, for example, [8–11] and references therein. The quasi-

bicircular problem is a restricted four body problem where three masses, Earth-Moon-Sun,

are revolving in a quasi-bicircular motion (i.e. a coherent motion close to bicircular) also has

been studied, see [12] and references therein. The restricted four-body problemwith radiation

pressure was considered in [13], while the photogravitational restricted four body problem

was considered in [14].

2. Statement of the Problem

It is known that equilateral configurations of three-bodies with arbitrary masses m1, m2, and

m3 on the same plane, moving with the same angular velocity, form a relative equilibrium

solution of the three-body problem (see e.g., [4] or [3]). More precisely, we consider three

particles of masses m1, m2, and m3 (called primaries) each describing, at any instant, a circle

around their center of masses (which is fixed at the origin), with the same angular velocity

ω and such that its configuration at any instant is an equilateral triangle (see Figure 1). Now,

we consider an infinitesimal particle m4 attracted by the primaries m1, m2, and m3 according

to Newton’s gravitational law. Let r be the position vector of m4.

The equations of motion can be written as

r
′ ′
= ∇U, (2.1)

where ( )′ denotes derivative with respect to t and

U = U(r; t, m1, m2, m3) =
m1

‖r − r1(t)‖
+

m2

‖r − r2(t)‖
+

m3

‖r − r3(t)‖
, (2.2)



4 Mathematical Problems in Engineering

m1
m2

m3

m4

x3 = 0

Figure 1: The equilateral restricted four body problem in inertial coordinates.

with r1(t), r2(t), and r3(t) representing the position of each primary, respectively. To remove

the time dependence of the system (2.1), we consider the orthonormal moving frame in R
3,

given by {e1, e2, e3}where

e1 = e1(t) = eiωt, e2 = e2(t) = ie1, e3 = e3(t) = (0, 0, 1) (2.3)

with i2 = −1. This orthonormal moving frame corresponds to the synodical system. Then,

(2.1) can be written as

x′′
1 − 2ωx′

2 − ω2x1 =
∂U

∂x1
,

x′′
2 + 2ωx′

1 − ω2x2 =
∂U

∂x2
,

x′′
3 =

∂U

∂x3
,

(2.4)

where

U = U(x1, x2, x3) =
m1

d1
+

m2

d2
+

m3

d3
,

d1 =
√
(x1 − α1)2 +

(
x2 − β1

)2 + x2
3,

d2 =
√
(x1 − α2)2 +

(
x2 − β2

)2 + x2
3,

d3 =
√
(x1 − α3)2 +

(
x2 − β3

)2 + x2
3,

(2.5)

where rj(t) = eiωtζj , with ζj = αj + iβj for j = 1, 2, 3. Applying the above notation, we can write

r = (x1 + ix2)e1 + x3e3, r1 = ζ1e1, r2 = ζ2e1, r3 = ζ3e1, and so ‖r− rj‖ = ‖(x1 + ix2) + x3e3 − ζj‖ for
j = 1, 2, 3.
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We perform the reparametrization of time dτ = ωdt, then the system (2.4) is

transformed into

ẍ1 − 2ẋ2 − x1 =
1

ω2

∂W

∂x1
,

ẍ2 + 2ẋ1 − x2 =
1

ω2

∂W

∂x2
,

ẍ3 =
1

ω2

∂W

∂x3
,

(2.6)

where the dot denotes the derivative with respect to τ , and the potential W is given by

W = W(x1, x2, x3) =
m1

ρ1
+

m2

ρ2
+

m3

ρ3
(2.7)

with

ρ1 =
√
(x1 − α1)2 +

(
x2 − β1

)2 + x2
3,

ρ2 =
√
(x1 − α2)2 +

(
x2 − β2

)2 + x2
3,

ρ3 =
√
(x1 − α3)2 +

(
x2 − β3

)2 + x2
3.

(2.8)

If we define μ1 = m1/M, μ2 = m2/M, and μ3 = m3/M, where M = m1+m2+m3, the equations

of motions (2.4) become

ẍ1 − 2ẋ2 − x1 =
M

ω2

∂W

∂x1
,

ẍ2 + 2ẋ1 − x2 =
M

ω2

∂W

∂x2
,

ẍ3 =
M

ω2

∂W

∂x3
,

(2.9)

where

W = W(x1, x2, x3) =
Mμ1

ρ1
+

Mμ2

ρ2
+

Mμ3

ρ3
. (2.10)

For simplicity, we will consider an equilateral triangle of side 1 and so we obtain that

M/ω2 = 1.
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m1 = 1 − 2μ

m3 = μ

m4x3

x2

x1

m2 = μ

Figure 2: The equilateral restricted four body problem in a rotating frame.

3. Equations of Motion and Preliminary Results

From (2.9), we deduce that the equations of motion of the ERFBP in synodical coordinates

are given by the system of differential equations

ẍ1 − 2ẋ2 = Ωx1
,

ẍ2 + 2ẋ1 = Ωx2
,

ẍ3 = Ωx3
,

(3.1)

where

Ω = Ω(x1, x2, x3) =
1

2

(
x2
1 + x2

2

)
+ W(x1, x2, x3),

W = W(x1, x2, x3) =
1 − 2μ

ρ1
+

μ

ρ2
+

μ

ρ3
,

(3.2)

with

ρ1 =

√(
x1 −

√
3μ
)2

+ x2
2 + x2

3,

ρ2 =

√√√√(
x1 +

√
3

2

(
1 − 2μ

))2

+
(

x2 −
1

2

)2

+ x2
3,

ρ3 =

√√√√(
x1 +

√
3

2

(
1 − 2μ

))2

+
(

x2 +
1

2

)2

+ x2
3.

(3.3)

Analogously to the circular three-body problem, we can verify that the system (3.1)
possesses a first Jacobi type integral given by

C =
1

2

(
ẋ2
1 + ẋ2

2 + ẋ2
3

)
−Ω(x1, x2, x3). (3.4)

Thus we have the following result.
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Proposition 3.1. The Jacobi-type function (3.4) is a first integral of the ERFBP for any value of μ.

Proof. Differentiating (3.4)with respect to the time, we get

dC

dt
= ẋ1ẍ1 + ẋ2ẍ2 + ẋ3ẍ3 − x1ẋ1 − x2ẋ2 −

∂W

∂x1
ẋ1 −

∂W

∂x2
ẋ2 −

∂W

∂x3
ẋ3, (3.5)

and using (2.9) we can reduce the obtained expression to

dC

dt
= ẋ1

(
x1 +

∂W

∂x1
+ 2ẋ2

)
+ ẋ2

(
x2 +

∂W

∂x2
− 2ẋ1

)
+ ẋ3

∂W

∂x3

− x1ẋ1 − x2ẋ2 −
∂W

∂x1
ẋ1 −

∂W

∂x2
ẋ2 −

∂W

∂x3
ẋ3 = 0.

(3.6)

Hence C is a constant of motion.

In order to write the Hamiltonian formulation of the ERFBP we introduce the new

variables

x = x1, y = x2, z = x3,

X = ẋ − y, Y = ẏ + x, Z = ż.
(3.7)

Hence, it is verified that system (3.1) is equivalent to an autonomous Hamiltonian system

with three degrees of freedom with Hamiltonian function given by

H = H
(
x, y, z, X, Y, Z

)
=

1

2

(
X2 + Y 2 + Z2

)
+
(
yX − xY

)
− W. (3.8)

Therefore, the Hamiltonian system associated is

ẋ = y + X, Ẋ = Y + Wx

ẏ = −x + Y, Ẏ = −X + Wy

ż = Z, Ż = Wz.

(3.9)

Of course, the phase space where the equations of motion are well defined is

M =

{(
x, y, z, X, Y, Z

)
∈
(

R
3 \
{(√

3μ, 0, 0
)

,

(
−
√
3

2

(
1 − 2μ

)
,
1

2
, 0

)
,

(
−
√
3

2

(
1 − 2μ

)
,−1

2
, 0

)})
× R

3

}
,

(3.10)

where the points that have been removed correspond to binary collisions between the

massless particle and one of the primaries.
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Additionally, the spatial ERFBP admits the planar case as a subproblem, that is, z =
Z = 0 is invariant under the flow defined by (3.9).

On the other hand, we see that there are two limiting cases in the ERFBP, which we

described below.

(a) If μ = 0, we obtain a central force problem, with the body of mass m1 = 1 at the origin

of the coordinates.

(b) If μ = 1/2, we obtain the circular restricted three-body problem, with masses m2 = m3 =
1/2.

Note that μ = 1/3 corresponds to the symmetric case, that is, where the masses of the

primaries are all equal to 1/3.

It is easily seen that the equations of motion (3.9) are invariant by the symmetry

S :
(
x, y, z, X, Y, Z, τ

)
−→
(
x,−y, z,−X, Y,−Z,−τ

)
. (3.11)

This means that if ψ(τ) = (x(τ), y(τ), z(τ), X(τ), Y (τ), Z(τ)) is a solution of the system (3.9),
then ϕ(t) = (x(−τ),−y(−τ), z(−τ),−X(−τ), Y (−τ),−Z(−τ)) is also a solution. We note that

this symmetry corresponds to a symmetry with respect to the xz-plane. In the planar case,

the symmetry corresponds to symmetry with respect to the x-axis.

4. Permitted Regions of Motion

In this section, we will see that the function Ω(x, y, z) allows us to establish regions in the

(x, y, z) space, where the motion of the infinitesimal particle could take place. We will use

similar ideas to those developing in [15, 16].
By using (3.4), the surface of zero velocity is defined by the set

RC :
(
x, y, z

)
∈ R

3 such that Ω
(
x, y, z

)
= −C, for any level C. (4.1)

This set corresponds to the so-called Hill region. We note that C ≥ 0 implies RC =
R

3 \ {(
√
3μ, 0, 0), (−

√
3/2(1 − 2μ), 1/2, 0), (−

√
3/2(1 − 2μ),−1/2, 0)}. That is, the region of all

possible motions is given by the whole phase space and so the infinitesimal particle is free to

move; in particular escape solutions are permitted.

In the spatial case, the surfaces that separate allowed and nonallowed motions are

called zero-velocity surfaces, and for the planar case the set that separates the allowed and

nonallowed motions is called zero-velocity curve. The shape and size of zero velocity sets

−C = Ω(x, y, z) depend on C and μ. They correspond to the boundary of the Hill regions. The

zero-velocity set (∂RC) is defined by the equation

Ω =
1

2

(
x2 + y2

)
+

1 − 2μ√(
x −

√
3μ
)2

+ y2 + z2

+
μ√(

x + (
√
3/2)
(
1 − 2μ

))2
+
(
y − 1/2

)2 + z2

+
μ√(

x + (
√
3/2)
(
1 − 2μ

))2
+
(
y + 1/2

)2 + z2

= −C,

(4.2)
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Figure 3: Evolution of zero-velocity surface in the three-dimensional ERFBP for μ = 1/3. (a) C = −1/4. (b)
C = −1/2. (c) C = −3/4.

only for C < 0 and any value of μ. Next, we give a list of all possible situations that may

appear when this condition is fulfilled.

(1) z → ±∞ on the ∂RC in which case x2 + y2 → −2C, this means, that around the

z-axis the variables (x, y) must be asymptotic to a circle of radius
√
−2C.

(2) x → ∞ or −∞ (resp., y → ∞ or −∞) on the ∂RC, when C → −∞.

(3) For |C| very large this implies that (x, y) can be sufficiently close to one of the

primaries, or the infinitesimal mass is close to infinity.

(4) Since x2 + y2 is a factor of Ω on ∂RC, then small values for −C are not allowed.
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Figure 4: Evolution of zero-velocity surface in the three dimensional ERFBP for μ = 1/3. (a) C = −1. (b)
and (c) C = −1.6 under different points of view.

By simplicity, we will only show zero-velocity surfaces for the case μ = 1/3 and

different values of the integral of motion C. Figures 3, 4, 5, and 6 show evolution of zero-

velocity surfaces for several C values.

4.1. The Planar Case

As we mentioned in last section, the set {z = Z = 0} is invariant under the flow, and so

the motion of the infinitesimal body lies on the xy plane that contains the primaries. In

Figure 7, we show the evolution of the function Ω in the planar case for different values
of the parameter μ.

Next we show the evolution of the Hill’s regions as well as the zero velocity curves,

for μ = 1/3 and many values of the Jacobian constant C; the permissible areas are shown on

Figures 8, 9, 10, and 11 shading.

In Figure 12, we show the behavior of level curves in the planar case for some values

of μ and for different energy levels.
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Figure 5: Evolution of zero-velocity surface in the three dimensional ERFBP for μ = 1/3. All cases
correspond to C = −1.7 under different points of view.
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Figure 6: Evolution of zero-velocity surface in the three dimensional ERFBP for μ = 1/3. (a) C = −2. (b)
C = −3. (c) C = −5.
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Figure 7: Evolution of the graph of Ω(x, y) on the xy plane for different values of μ.
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Figure 8: Evolution of zero-velocity curves and Hill’s region in the planar ERFBP for μ = 1/3, where
shading represents permissible areas. (a) C = −1.6, (b) C = −1.6775, (c) C = −1.6795.
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Figure 9: Evolution of zero-velocity curves and Hill’s region in the planar ERFBP for μ = 1/3, where
shading are permissible areas. (a) C = −1.7, (b) C = −1.75, (c) C = −1.765.
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Figure 10: Evolution of zero-velocity curves and Hill’s region in the planar ERFBP for μ = 1/3, where
shading are permissible areas. (a) C = −1.775. (b) C = −1.8. (c) C = −2.
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Figure 11: Evolution of zero-velocity curves and Hill’s region in the planar ERFBP for μ = 1/3, where
shading are permissible areas. (a) C = −3, (b) and (c) both figures correspond to C = −5 with different
window size.

5. Equilibrium Solutions

It is verified that the equilibrium solutions of the system (3.9) or equivalently (3.1) are given
by the critical points of the function Ω = Ω(x, y, z) or simply they are the solutions of the

following system of equations:

(
1 − 2μ

)x −
√
3μ

ρ3
1

+ μ

(
x +

√
3

2

(
1 − 2μ

))( 1

ρ3
2

+
1

ρ3
3

)
= x,

(
1 − 2μ

) y

ρ3
1

+ μ

(
y − 1/2

ρ3
2

+
y + 1/2

ρ3
3

)
= y,

−
(

1 − 2μ

ρ3
1

+
μ

ρ3
2

+
μ

ρ3
3

)
z = 0.

(5.1)

From the last equation we see that the coordinate z must be zero, so the critical points are

restricted to the plane xy, and are given by the solutions of the first two equations.
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Figure 12: Energy level curves for some values of the parameter μ in the planar case.

It is known (see [17]) that the number of equilibrium solutions of the system (5.1) is 8,
9 or 10 depending on the values of the masses, m1, m2 and m3 which must be positive. Six of

them are out of the symmetry axis (i.e., out of the x-axis), therefore on the axis of symmetry

we must have 2, 3 or 4. From the analysis done it follows that the number of the equilibrium

solutions depends on the parameter μ. This implies that finding the critical points is a non-

trivial problem, and this is one of themain differences with the problem studied byMaranhão

in his doctoral thesis [1], because there, the number of critical points did not depend on the

parameter μ.

The critical points on the axis y = 0 are the zeros of the function

Fμ(x) =
(
1 − 2μ

) ∣∣∣x −
√
3μ
∣∣∣(

x −
√
3μ
)3 + 2μ

x +
(√

3/2
)(

1 − 2μ
)

ρ3
2

− x, (5.2)

where

ρ1 =
∣∣∣x −

√
3μ
∣∣∣, ρ2 = ρ3 =

√√√√(
x +

√
3

2

(
1 − 2μ

))2

+
1

4
. (5.3)
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Table 1: Number of critical points on the x-axis.
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Figure 13: Graph of F1/3. (a) x <
√
3/3. (b) x >

√
3/3.

An explicit computation shows that in the limit case problems the number of

equilibrium points corresponding to the system (5.1) is as follows.

(a) The function (5.2) with μ = 0 results in

F0(x) =
x

|x|3
− x (5.4)

whose zeros are x = −1 and x = 1, and so there are two equilibrium points.

(b) Taking μ = 1/2 in (5.2) becomes

F1/2(x) =
x

(x2 + (1/4))3/2
− x (5.5)

with zeros given by x = −(
√
3/2), x = 0 and x = (

√
3/2). We conclude that there are

three equilibrium points.

From numerical simulations we get that the number of critical points along the x–axis

is given in Table 1. Observe that μ∗ := 0.266318 is the bifurcation value.

In the symmetric case when all the masses are equals (i.e., μ = 1/3) we have that the

graph of F1/3 is similar to the one shown in Figure 13. As a consequence, there are exactly 4

equilibrium solutions on the x-axis, and therefore there are exactly 10 equilibrium solutions.

Of course, (0, 0, 0) is an equilibrium solution.
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In general for any equilibrium solution of the form (x0, y0, 0), the linearized system

(3.9) in the planar case give us that the characteristic polynomial is

CA(λ) =
(

λ2 − Wzz

(
x0, y0, 0

))
λ4 +
(
2 − Wxx

(
x0, y0, 0

)
− Wyy

(
x0, y0, 0

))
λ2

+
(
1 + Wxx

(
x0, y0, 0

)
+ Wyy

(
x0, y0, 0

)
+ Wxx

(
x0, y0, 0

)
Wyy

(
x0, y0, 0

)
−W2

xy

(
x0, y0, 0

))
,

(5.6)

whose roots are

λ = ±
√

Wzz

(
x0, y0, 0

)
, λ = ±1

2

√
ρ±, (5.7)

where ρ±is given by

ρ± = −4 + 2(a + c) ± 2

√
(a − c)2 + 4b2 − 8(a + c) (5.8)

with a = Wxx(x0, y0, 0), b = Wxy(x0, y0, 0) and c = Wyy(x0, y0, 0). A very simple result is the

following.

Lemma 5.1. The roots of p(ρ) = ρ2 + Aρ + B are real and negative if and only if A > 0, B > 0 and
Δ = A2 − 4B ≥ 0.

Associating to our characteristic polynomial (5.6) we have

A = 2 − Wxx

(
x0, y0, 0

)
− Wyy

(
x0, y0, 0

)
,

B = 1 + Wxx

(
x0, y0, 0

)
+ Wyy

(
x0, y0, 0

)
+ Wxx

(
x0, y0, 0

)
Wyy

(
x0, y0, 0

)
− W2

xy

(
x0, y0, 0

)
.
(5.9)

Now, we remark that

Wzz

(
x0, y0, 0

)
= −
[
1 − 2μ

ρ3
1

+
μ

ρ3
2

+
μ

ρ3
3

]
< 0. (5.10)

Consequently we have the following result:

Corollary 5.2. In the spatial ERFBP for any equilibrium solution (x0, y0, 0) we have at least two
pure imaginary eigenvalues associated to the linear part, which are given by λ = ±

√
−Wzz(x0, y0, 0)i.

From this corollary we deduce that to study the nonlinear stability in the Lyapunov

sense of each equilibrium solution of the spatial ERFBP is not a simple problem, because

we need to take into account the existence or not of resonance in each situation. Leandro

in [17] studied the spectral stability in some situations (according to the localization of the

equilibrium solution along the symmetry-axis). In a future work we intend to study the

Lyapunov stability of each equilibrium.
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5.1. Analysis of the Symmetrical Case, μ = 1/3

As we have said previously in the symmetrical case (i.e., μ = 1/3) there are 10 equilibrium

solutions and one of them is (0, 0, 0). Here we have ρ1 = ρ2 = ρ3 = 1/
√
3, a = b = 3

√
3/2 and

c = 0. Consequently, the characteristic roots are

λ1 = −
√
3
√
3i, λ2 =

√
3
√
3i,

λ3 = −1
2

√
6
√
3 − 4 + 4

√
−6

√
3, λ4 =

1

2

√
6
√
3 − 4 + 4

√
−6

√
3,

λ5 = −1
2

√
6
√
3 − 4 − 4

√
−6

√
3, λ6 =

1

2

√
6
√
3 − 4 − 4

√
−6

√
3.

(5.11)

Therefore, we have the following result.

Corollary 5.3. In the symmetrical spatial ERFBP the equilibrium solution (0, 0, 0) is unstable in the
Lyapunov sense.

In general, it is possible to prove that the equilibrium solutions on the x–axis are

x1 = −0.9351859666722429, x2 = −0.23895830919534947 and x3 = 1.1799984048894328, and

by symmetry it follows:

Corollary 5.4. In the symmetrical spatial ERFBP all the equilibrium solutions are unstable in the
Lyapunov sense.

According to [17] we have the following corollary.

Corollary 5.5. In the symmetrical planar ERFBP all the equilibrium solutions are unstable in the
Lyapunov sense.

6. Continuation of Periodic Solutions in the Planar Case

In this section we prove the existence of periodic solutions in the ERFBP for μ sufficiently

small in the planar case and by the use of the Lyapunov Center Theorem when μ is close to

1/2. In order to find periodic orbits of our problem we will use the continuation method

developed by Poincaré which is one of the most frequently used methods to prove the

existence of periodic orbits in the planar circular restricted three-body problem (see [15]).
This method has been also used by other authors in different problems. InMeyer andHall [5],
we find a good discussion of the Poincaré continuation method to different n-body problem

(see also [18]).
In our approach we will continue circular and elliptic solutions of the Kepler problem

with the body fixed in the origin of the system with mass 1. We know that all the orbits of the

Kepler problem with angular momentum zero are collision orbits with the origin. We assume

that the angular momentum is not zero and we study the orbits that have positive distance of

(−
√
3/2, 1/2) and (−

√
3/2,−1/2). In the following lemma we resume the kind of orbits that

we will consider.
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Lemma 6.1. Fixed a > 0 there exists a finite number of elliptic orbits with semi-major axis a, such
that its trajectories are periodic in the rotating system and pass through the singularity of the other
primaries (−

√
3/2, 1/2) or (−

√
3/2,−1/2).

The proof of this lemma can be found in [19].

6.1. Continuation of Circular Orbits

In this section we show that circular solutions of the unperturbed Kepler problem can be

continued to periodic solutions of the ERTBP for small values of μ. We introduce the polar

coordinates given as x = r cos θ, y = r sin θ, thus ẋ = ṙ cos θ−rθ̇ sin θ and ẏ = ṙ sin θ+rθ̇ cos θ.

So, Ẋ = ṙ cos θ − r(θ̇ + 1) sin θ and Ẏ = ṙ sin θ + r(θ̇ + 1) cos θ, consequently X2 + Y 2 = ṙ2 +
r2(θ̇ + 1)2 and yX − xY = −r2(θ̇ + 1). Thus, the Hamiltonian (3.8) now is

H =
ṙ2 + r2

(
θ̇ + 1

)2
2

− r2
(
θ̇ + 1

)
− V (r, θ), (6.1)

where

V (r, θ) =
1 − 2μ

ρ1
+ μ

(
1

ρ2
+

1

ρ3

)
, (6.2)

where

ρ1 =
√(

r cos θ −
√
3μ
)2

+ r2sin2θ,

ρ2 =
√(

r cos θ +
√
3/2
(
1 − 2μ

))2
+ (r sin θ − 1/2)2,

ρ3 =
√(

r cos θ +
√
3/2
(
1 − 2μ

))2
+ (r sin θ + 1/2)2.

(6.3)

The new coordinates are not symplectic. In order to obtain a set of symplectic coordinates

(r, θ, R,Θ) we define R = ṙ (radial velocity in the sideral system) and Θ = r2(θ̇ + 1) (angular
momentum in the sideral system), then H is

H =
R2 + Θ/r2

2
−Θ − V (r, θ). (6.4)

When μ = 0 we have that

H =
R2 + Θ2/r2

2
−Θ − 1

r
, (6.5)
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is the Hamiltonian of the Kepler problem in polar coordinates. So, if μ is a small parameter,

the Hamiltonian (3.8) assumes the form

H =
R2 + Θ2/r2

2
−Θ − 1

r
+O
(
μ
)
. (6.6)

For μ = 0, the Hamiltonian system associated is

ṙ = R, Ṙ =
Θ2

r3
− 1

r2
,

θ̇ =
Θ
r2

− 1, Θ̇ = 0.

(6.7)

Let Θ = c be a fixed constant. For c /= 1, the circular orbit R = 0, r = c2 is a periodic

solution with period |2πc3/(1 − c3)|. Linearizing the r and R equations about this solution

gives

ṙ = R, Ṙ = −c−6r, (6.8)

which has solutions of the form exp(±it/c3), and so the nontrivial multipliers of the circular

orbits are exp(±i2π/(1− c3))which are not +1, provided 1/(1− c3) is not an integer. Thus we

have proved the following theorem (see details in [5]).

Theorem 6.2. If c /= 1 and 1/(1 − c3) is not an integer, then the circular orbits of the Kepler problem
in rotating coordinates with angular momentum c can be continued into the equilateral restricted four
body problem for small values of μ.

6.2. Continuation of Elliptic Orbits

In Section 3, we saw that the ERFBP has the S-symmetry which when exploited properly

proves that some elliptic orbits can be continued from the Kepler problem. The main idea is

given in the following lemma, which is a consequence of the uniqueness of the solution of the

differential equations and the symmetry of the problem.

Lemma 6.3. A solution of the equilateral restricted problem which crosses the line of syzygy (the x-
axis) orthogonally at a time t = 0 and later at a time t = T/2 > 0 is T -periodic and symmetric with
respect to the line syzygy.

That is, if x(t) and y(t) is a solution of the equilateral restricted four body problem

such that y(0) = ẋ(0) = y(T/2) = ẋ(T/2) = 0, where T > 0, then this solution is T -periodic

and symmetric with respect to the x-axis.

In Delaunay variables (l, g, L, G), an orthogonal crossing of the line of sizygy at a time

t0 is

l(t0) = nπ, g(t0) = mπ, n, m integers. (6.9)
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These equations will be solved using the Implicit Function theorem to yield the following

theorem (see details in [5]).

Theorem 6.4. Let m, k be relatively prime integers and T = 2πm. Then the elliptic T -periodic
solution of the Kepler problem in rotating coordinates which satisfies

l(0) = π, g(0) = π, L3(0) =
m

k
(6.10)

and does not go through (−
√
3/2, 1/2) and (−

√
3/2,−1/2) can be continued into the equilateral

restricted four body problem for small μ. This periodic solution is symmetric with respect to the line of
syzygy.

Proof. The Hamiltonian of the ERFBP in Delaunay coordinates for μ sufficiently small is

H = − 1

2L2
− G +O

(
μ
)
, (6.11)

and the equations of motion are

l̇ =
1

L3
+O
(
μ
)
, L̇ = 0 +O

(
μ
)
,

ġ = −1 +O
(
μ
)
, Ġ = 0 +O

(
μ
)
.

(6.12)

Let L3
0 = m/k, and let l(t,Λ, μ), g(t,Λ, μ), L(t,Λ, μ) and G(t,Λ, μ) be the solution which goes

through l = π , g = π , L = Λ, G arbitrary at t = 0; so, it is a solution with an orthogonal

crossing of the line of syzygy at t = 0.

From (6.12) l(t,Λ, 0) = t/Λ3 + π , g(t,Λ, 0) = −t + π . Thus, l(T/2, L0, 0) = (1 + k)π and

g(T/2, L0, 0) = (1 − m)π , and so when μ = 0, this solution has another orthogonal crossing at

time T/2 = mπ . Also,

det

⎛⎜⎜⎜⎜⎝
∂l

∂t

∂l

∂Λ

∂g

∂t

∂g

∂Λ

⎞⎟⎟⎟⎟⎠
t=T/2, L=L0, μ=0

= det

⎛⎜⎜⎜⎜⎝
k

m
−3π

(
k4

m

)1/3

−1 0

⎞⎟⎟⎟⎟⎠/= 0. (6.13)

Thus, the theorem follows by the Implicit Function theorem.

6.3. Application of the Lyapunov Center Theorem

For μ = 1/2, we have three equilibrium solutions on the x-axis which are P1 = (−
√
3/2, 0),

P2 = (0, 0) and P3 = (
√
3/2, 0). At the point P2, the associated eigenvalues are ±

√
75 + 8

√
2

and ±
√
75 − 8

√
2. Therefore, this equilibrium is unstable and by Lyapunov’s Center Theorem

(see [5]), we obtain the following theorem.
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Figure 14: Circular orbit for c = 2 with μ = 10−2.
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Figure 15: The circular orbit associated to c = 9/10 for μ = 0 continued to μ = 10−4 which is not circular for
μ = 10−2.

Theorem 6.5. There exists a one-parameter family of periodic orbits of the ERFBP emanating from
the Euler equilibrium (for μ = 1/2). Moreover, when approaching the equilibrium point along the
family, the periods tend to 2π/

√
−3 + 8

√
2.

7. Numerical Results

In the Section 8, we established theorems on the continuation of periodic solutions from

the Kepler’s problem in rotating coordinates to the ERFBP. In this section, we present some

numerical experiments that illustrates the thesis of Theorem 6.2.

To find those circular orbits we first selected an angular momentum c such that c /= 1

and 1/(1 − c3)/∈Z. By varying c we generated a set of initial conditions for Kepler problem

in rotating coordinates given by the system (3.9) taking μ = 0. We have chosen y0 = 0 and

X0 = 0 for all orbits, ensuring that we were following a family of symmetric orbits; we have

taken into account the fact that circular orbits satisfy r = c2.

We have noticed that for values of c = 2, 3, 4, 5, 6, 7, 8, 9, 10 with μ = 10−2 the orbit is

close to the circular orbit, see Figure 14.
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However, the circular orbits associated to c ≈ 0, 1 is close to the circular orbit if μ ≤ 10−4,
for instance c = 9/10 can be continued for μ small and of the order 10−4 but not for higher

values. The orbits obtained as a consequence of numerical simulations are shown in Figure 15.

8. Conclusions and Final Remarks

The spatial equilateral restricted four-body problem (ERFBP) is considered. This model

of four-body problem, we have that three masses, moving in circular motion such that

their configuration is always an equilateral triangle, the fourth mass being small and not

influencing the motion of the three primaries. In our model we assume that two masses of

the primaries m2 and m3 are equal to μ and the mass m1 is 1 − 2μ. In a synodical systems of

coordinates the dynamics obeys to the system of differential equations

ẍ − 2ẏ = Ωx,

ÿ + 2ẋ = Ωy,

z̈ = Ωz,

(8.1)

where

Ω = Ω
(
x, y, z

)
=

1

2

(
x2 + y2

)
+
1 − 2μ

ρ1
+

μ

ρ2
+

μ

ρ3
,

ρ1 =

√(
x −

√
3μ
)2

+ y2 + z2,

ρ2 =

√√√√(
x +

√
3

2

(
1 − 2μ

))2

+
(

y − 1

2

)2

+ z2

ρ3 =

√√√√(
x +

√
3

2

(
1 − 2μ

))2

+
(

y +
1

2

)2

+ z2.

(8.2)

In Section 4 it is devoted to give the principal qualitative aspect of the restricted

problem—the surfaces and curves of zero velocity, several uses of which are discussed.

The regions of permitted motion and the location and properties of the equilibrium points

are established. We describe the Hill region. The description of the number of equilibrium

points is given in Section 5, and in the symmetrical case (i.e., μ = 1/3) we are describing

the kind of stability of each equilibrium. In Section 6 the planar case is considered. Here, we

prove the existence of periodic solutions as continuation of periodic Keplerian orbits, when

the parameter μ is small and when it is close to 1/2. Finally, in Section 7 we present some

numerical experiments that illustrates the thesis of theorem concerning with the continuation

of circular orbits of the Kepler problem to the ERFBP with μ small enough.

In a work in progress we intend to continue the study of the ERFBP in different aspects
of its dynamics. For example, the behavior of the flow near the singularities (collisions). The
study of the escapes solutions (i.e., the unbounded solutions). Existence of chaos under the
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construction of a shift map. We desired to get periodic solutions under the use of numerical

methods.
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1. Introduction

In this paper, we consider the problem of a lunar artificial satellite of low altitude taking

into account the oblateness (J2) and the equatorial ellipticity (sectorial term C22) of the

Moon. The Lie-Hori [1] perturbation theory method up to the second order is applied to

eliminate the short-period terms of the disturbing potential. The perturbation method up

to the second order is applied to analyze coupling terms. In this work, the long-period

term of the disturbing potential is analyzed. A formula is developed to compute the critical

inclination when the perturbations due to the nonsphericity of the Moon as a function of the

terms of the zonal and sectorial harmonics occur.

An approach is done for a special type of orbit, denominated Sun-synchronous orbit of

Moon’s artificial satellites. The Sun-synchronous orbit is a particular case of an almost polar

orbit. The satellite travels from the North Pole to the South Pole and vice versa, but its orbital
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Table 1: Magnitude orders for J2 and C22.

C20 ≡ −J2 C22

Earth −10−3 2 × 10−6

Moon −2 × 10−4 2 × 10−5

plane is always fixed for an observer that is posted in the Sun. Thus the satellite always passes

approximately on the same point of the surface of the Moon every day in the same hour. In

such a way the satellite can transmit all the data collected for a lunar fixed antenna, during

its orbits. An analysis of Sun-synchronous orbits considering the nonuniform distribution of

mass of the Moon is done for the longitude of the ascending node with an approach based on

Park and Junkins [2].
In [3–5] an analytical theory, is developed to study the orbital motion of lunar artificial

satellites using the method of transformation of Lie [6, 7] as a perturbation method. The main

perturbation is due to the nonspherical gravitational field of the Moon and the attraction of

the Earth. The disturbing body is in circular orbit with the disturbing function developed in

polynomial of Legendre up to the second order. In [8–11] an analytical theory, is developed

with numerical applications taking into account the nonuniform distribution of mass of the

Moon and the perturbation of the third body in elliptical orbit (Earth is considered). The
disturbing function is expanded in Legendre associated functions up to the fourth order.

This paper is developed based on [2, 4], where the perturbation theory method of Lie-

Hori up to the second order is used. Our contribution is characterized by (a) We developed

of a new formula for the critical inclination of second order; (b) we fix g and h to assure the

condition of frozen orbits; (c)we showed that the coefficients J2 and C22 affect the variation of

the eccentricity strongly (it affects the eccentricity directly) in the second order contributing

(especially the C22 term) to increasing the variation of the eccentricity mainly for small

inclinations; (d) the coupled perturbations (nonuniform distribution of mass of the Moon (J2
and C22) and third-body (P2)) help to control the variation of the eccentricity for low-altitude

polar orbits; (e) we presented a new formula to compute inclinations for Sun-synchronous

orbits when it is taking into account the harmonic J2 and C22 in the first-order potential.

This paper has seven sections. In Section 2, the terms due to nonsphericity of theMoon

are presented while Section 3 is devoted to the Hamiltonian of the system. In Section 4, an

approach concerning the critical inclinations is used. In Section 5, an approach concerning the

Sun-synchronous lunar orbits is used. Numeric applications are done in Section 6. Section 7

is devoted to the conclusions.

2. Nonsphericity of the Moon

Besides the fact that the Moon is much less flattened than the Earth, it also causes

perturbations in space vehicles. Table 1 presents orders of magnitude for some zonal and

sectorial harmonics compared with the same parameters for the Earth. The term C20 describes

the equatorial bulge of the Moon, often referred to as the oblateness. The coefficient C22

measures the ellipticity of the equator.

The space vehicle is a point of mass in a three-dimensional orbit with orbital elements:

a (semimajor axis), e (eccentricity), i (inclination), ω (argument of periapsis), Ω (longitude
of the ascending node), and n (mean motion) given by the third Kepler’s law n2a3 = Gm0,

where m0 is the mass of the Moon.
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Then, we will present the Hamiltonian formalism using Delaunay canonical variables

[7] defined as L = √
μa, G = L

√
1 − e2, H = G cos i, l = M mean anomaly, g = ω argument of

periapsis, and h = Ω longitude of the ascending node.

The force function, the negative of the total energy as used in physics, is given by

F = H = V − T, (2.1)

here, V is the negative of the potential energy, and T is the kinetic energy. The force function

can be put as [12]:

H =
μ

r
+ R − T =

μ

2a
+ R, (2.2)

or

H =
μ2

2L2
+ R. (2.3)

the function R, comprising all terms of V except the central term, is known as the disturbing

potential. The term due to the unperturbed potential is given by

H0 =
μ2

2L2
. (2.4)

Considering the lunar equatorial plane as the reference plane, the disturbing potential

can be written in the form [13] of

VM = −μ

r

[
5∑

n=2

(
R0

r

)n

JnPn

(
sinφ

)
−
(

R0

r

)2

C22P22

(
sinφ

)
cos 2λ −

(
R0

r

)3

C31

(
sinφ

)
cosλ

]
,

(2.5)

where μ is the Lunar gravitational constant, R0 is the equatorial radius of the Moon (R0 =
1738 km), Pn represent the Legendre polynomial, Pnm represent the associated Legendre

polynomial, the angle φ is the latitude of the orbit with respect to the equator of theMoon, the

angle λ is the longitude measured from the direction of the longest axis of the Moon, where

λ = λ′−λ22, since λ′ is the longitude reckoned from any fixed direction, and λ22 is the longitude

of the Moon’s longest meridian from the same fixed direction. However, λ22 will contain the

time explicitly (see [4, 13], for a detailed discussion). Using spherical trigonometry, we have

sinφ = sin i sin(f + g), where f is the true anomaly.

The following assumptions have been made [4, 14] and will be used in this work: (a)
the motion of the Moon is uniform (librations are neglected); (b) the lunar equator lies in the

ecliptic (we neglect the inclination of about 1.5◦ of the lunar equator to the ecliptic, and the

inclination of the lunar orbit to the ecliptic of about 5◦); (c) the longitude of the lunar longest
meridian is equal to the mean longitude of the Earth (librations are neglected); (d) the mean

longitude of the Earth, λ⊗, is equal to λ22. See De Saedeleer [4] for a detailed discussion.
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Since the variables Ω and λ⊗ appear only as a combination of Ω − λ⊗, where λ⊗ =
nMt + const, with nM being the lunar mean motion, the degree of freedom can be reduced by

choosing as a new variable h = Ω−λ⊗. A new termmust then be added to the Hamiltonian in

order to get ḣ = −∂H/∂H = nM. The Hamiltonian is still time-dependent through λ⊗. Since
the longest meridian is always pointing toward the Earth, it is possible to choose a rotating

system whose x-axis passes through this meridian.

Regarding the Earth’s potential, the dominant coefficient is J2. The rest are of higher-

order terms [15]. In contrast to the Earth, the first harmonics of the Lunar potential are all

almost of the same order (see Table 1). This fact complicates the choice of the harmonic where

the potential can be truncated and this makes its choice a little arbitrary. The influence of the

Earth and of the nonsphericity of theMoon on the stability of lunar satellites was also pointed

out by [16] but sectorial harmonics were not considered. In terms of the orbital elements, the

Legendre associated functions for zonal up to J5 and sectorial terms C22 and C31, where the

values for the spherical harmonic coefficients are given in the Appendix C, can be written in

the following form [13, 14]:

P2

(
sinφ

)
=

1

2

{
3sin2(i)sin2

(
f + g

)
− 1
}

,

P3

(
sinφ

)
=

5

2
sin3(i)sin3

(
f + g

)
− 3

2
sin(i) sin

(
f + g

)
,

P4

(
sinφ

)
=

35

8
sin4(i)sin4

(
f + g

)
− 15

4
sin2(i)sin2

(
f + g

)
+
3

8
,

P5

(
sinφ

)
=

63

8
sin5(i)sin5

(
f + g

)
− 35

4
sin2(i)sin3

(
f + g

)
+
15

8
sin(i) sin

(
f + g

)
,

P22

(
sinφ

)
= 3 − 3sin2(i)sin2

(
f + g

)
,

P22

(
sinφ

)
cos 2λ = 6

(
ξ2cos2

(
f
)
+ χ2sin2

(
f
)
+ 2ξχ sin

(
2f
)
− 3
(
1 − sin2(i)sin2

(
f + g

)))
,

P31

(
sinφ

)
cosλ =

(
15

8
s2 − 3

2

)
cos(h) cos

(
f + g

)
+
(−3

4
− 15

8
s2
)

c sin(h) sin
(
f + g

)
−15
8

s2 cos(h) cos
(
3f + 3g

)
+
15

8
s2c sin(h) sin

(
3f + 3g

)
,

(2.6)

where

ξ = cos
(
g
)
cos(h) − cos(i) sin

(
g
)
sin(h),

χ = − sin
(
g
)
cos(h) − cos(i) cos

(
g
)
sin(h),

s = sin(i), c = cos(i).

(2.7)
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In this paper, are taken into only the terms due to J2 and C22 accout. The zonal

perturbation due to the oblateness J2 is defined by [3] H20 = ε(μ/r3)P20(sinφ), where

ε = J2R2
0. However, the disturbing potential is

H20 = ε
μ

4r3

(
1 − 3cos2(i) − 3sin2(i) cos

(
2f + 2g

))
. (2.8)

Substituting the relation μ = n2a3, using the Cayley’s tables [17] to express the true

anomaly in terms of the mean anomaly, and with some algebraic manipulations, we get

H20 =
3

8
ε
(((

5e2 − 2
)
cos2(i) + 2 − 5e2

)
cos
(
2g + 3l

)
+
(
7e − 7ecos2(i)

)
cos
(
2g + 3l

)
+
(
−17e2cos2(i) + 17e2

)
cos
(
2g + 4l

)
+
(
−e + ecos2(i)

)
cos
(
2g + l

)
+9
(
cos2(i) − 1

3

)(
2

9
+
2

3
e cos(l) +

1

3
e2 + e2 cos(2l)

))
n2.

(2.9)

For the sectorial perturbation, we get [13, 14]

H22 = δ
μ

r3

(
6ξ2cos2

(
f
)
+ 6χ2sen2

(
f
)
+ 12ξχsen

(
2f
)
− 3 + 3s2sen2

(
f + g

))
, (2.10)

where δ = C22R2
0 (R0 is the equatorial radius of the Moon; R0 = 1738 km).

With some manipulations, we get

H22 = −45
16

δn2

×
[(

e2 − 2

5

)
(cos i − 1)2 cos

(
2l + 2g − 2h

)
− 1

3
(cos i + 1)2

(
e2 − 2

5

)
cos
(
2l − 2g − 2h

)
+ (cos i + 1)2

(
e2 − 2

5

)
cos
(
2l + 2g + 2h

)
− 1

3

(
e2 − 2

5

)
(cos i − 1)2 cos

(
2l − 2g + 2h

)
− 17

5
e2(cos i − 1)2 cos

(
4l + 2g − 2h

)
− 7

5
e(cos i − 1)2 cos

(
3l + 2g − 2h

)
+
17

15
e2(cos i + 1)2 cos

(
4l − 2g − 2h

)
+

7

15
e(cos i + 1)2 cos

(
3l − 2g − 2h

)
− 7

5
e(cos i + 1)2 cos

(
3l + 2g + 2h

)
− 17

5
e2(cos i + 1)2 cos

(
4l + 2g + 2h

)
+

7

15
e(cos i − 1)2 cos

(
3l − 2g + 2h

)
+
17

15
e2(cos i − 1)2 cos

(
4l − 2g + 2h

)
− 1

15
e(cos i + 1)2 cos

(
l − 2g − 2h

)
+
1

5
e(cos i − 1)2 cos

(
l + 2g − 2h

)
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+
1

5
e(cos i + 1)2 cos

(
l + 2g + 2h

)
− 1

15
e(cos i − 1)2 cos

(
l − 2g + 2h

)
− 2

3
sin2i

(
e2 − 2

5

)
cos
(
−2g + 2l

)
+
9

5
e2 cos(2l − 2h)

− 7

5
e cos

(
−2g + 3l

)
+
1

5
e cos

(
−2g + l

)
+
9

5
e2 cos(2l + 2h) +

6

5
cos(2h)e2

+
4

5
cos(2h) − 17

5
e2 cos

(
−2g + 4l

)
+
6

5
e cos(l + 2h) +

6

5
e cos(l − 2h)

]
,

(2.11)

where the disturbing potential is written in the form R = H20 + H22.

3. The Hamiltonian System

We find in the literature several papers that use the method of the average to calculate

perturbations of long-period on artificial satellites of the Moon, such as [18–23]. However,

our objective here is to compute analytically secular and periodic perturbations up to the

second order and, using this, to analyze the coupling terms relating the harmonic coefficients.

The Lie-Hori [1] perturbation method is applied to eliminate short-period terms of the

Hamiltonian.

In [24], a different approach is proposed for the canonical version of Hori method. The

reference [24] showed that the ordinary differential equation with an auxiliary parameter t∗

as independent variable, introduced through Hori auxiliary system, can be replaced by a

partial differential equation in time t.
In what follows, first the Lie-Hori [1] method will be shortly presented and then

applied to the problem of the orbital motion of the satellite around the Moon.

Consider themth order equation of the algorithm of the perturbationmethod proposed

by Hori [1]:

{H0, Sm} + Ψm = H∗
m, (3.1)

where braces stand for the Poisson brackets, H∗
0 is the undisturbed Hamiltonian, and Ψm

is a function obtained from the preceding orders, involving H∗
0 , Hm, Sk, H∗

k
, and Hk, k =

1, . . . , m − 1. All of these functions are written in terms of the new set of canonical variables

(ξ, η) and defined through the following equations:

H
(
x, y
)
= H0

(
x, y
)
+
∑
k=1

εkHk

(
x, y
)
,

H∗(ξ, η
)
= H∗

0

(
ξ, η
)
+
∑
k=1

εkHk

(
ξ, η
)
,

εS
(
ξ, η
)
=
∑
k=1

εkSk

(
ξ, η
)
,

(3.2)
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where (x, y) is the original set of canonical variables, H(x, y) is the original Hamiltonian,

H∗(ξ, η) the new Hamiltonian and S(ξ, η) is the generating function of the canonical

transformation, (x, y) → (ξ, η). The transformation is such that the new canonical system

has some advantages for the solution.

In order to determine the functions Sm and H∗
m, Hori introduces an auxiliary

parameter t∗ through the following system of canonical equations [1]:

dξi

dt∗
=

∂H∗
0

∂ηi
,

dηi

dt∗
= −

∂H∗
0

∂ξi
, i = 1, . . . , n. (3.3)

Accordingly, (3.1) reduces to

dSm

dt∗
= Ψm − H∗

m, (3.4)

with Ψm written in terms of the general solution of the system (3.3), involving 2n constants

of integration. Equation (3.4) has two unknown functions: Sm and H∗
m.

The Poisson brackets are defined as

{
x, y
}
=

∂x

∂L

∂y

∂l
− ∂x

∂l

∂y

∂L
+

∂x

∂G

∂y

∂g
− ∂x

∂g

∂y

∂G
+

∂x

∂H

∂y

∂h
− ∂x

∂h

∂y

∂H
(3.5)

with respect to the classical Delaunay variables set l, g, h, L, G, H. Since only l, g, h, L are

explicitly present in the Hamiltonian, the partial derivatives with respect to L, G, H are

computed as ∂/∂L = (∂/∂L) + (η2/eL)(∂/∂e), (∂/∂G) = −(η/eL)(∂/∂e) + (c/Lηs)(∂/∂i),
(∂/∂H) = −(1/Lηs)(∂/∂i) where the bracket indicates the derivative with respect to L
occurring explicitly, and c, s, η are c = cos i, s = sin i, η =

√
1 − e2.

To solve (3.4), we separated in secular and periodic part as it is done by the principle of

the mean [7]. Using (3.3) and (3.4), Hori [1] writes the equations that define the integration

theory based on average principle to determine the new Hamiltonian and the generating

function as follows.

Order zero:

H∗
0 = H0. (3.6)

Order one:

H∗
1 = H1s,

S1 =
∫

H1pdτ.
(3.7)
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Order two:

H∗
2 = H2s +

1

2

{
H1 + H∗

1 , S1

}
s
,

S2 =
∫(

F2p +
1

2

{
H1 + H∗

1 , S1

}
p

)
dτ,

· · ·

(3.8)

where, at each function, the index s represents the secular part of the function and the index

p the periodic part of the function. See Hori [1] for a detailed discussion.

The Hamiltonian of the dynamical system associated to the problem of the orbital

motion of the satellite around the Moon can be written in the following form:

H = H0 + H20 + H22, (3.9)

where

H0 =
μ2

2L2
+ nMH, (3.10)

The term nMH is added to reduce the degree of freedom, since the mean longitude of

the Earth is time-dependent [14]. Here, the term nMH is taken as order zero as suggested by

Breiter [25].
Now, doing

H20 = εH1,

H22 = δH2,
(3.11)

we get,

H = H0 + εH1 + δH2. (3.12)

With the purpose of applications of the perturbation method, the terms of the

Hamiltonian are written in the following form:

H
(0)
0 =

μ2

2L2
+ nMH,

H
(1)
1 = εH1 + δH2.

(3.13)

The disturbing terms are represented in the first order of the applied method. To

eliminate the short-period terms of equation (3.13), the method of Lie-Hori [1] perturbation
theory is applied. In this work long-period terms are calculated, substituting the result in

the planetary equations of Lagrange [26]. The equations of motion are integrated and finally
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the results analyzed. With a simplified model for the disturbing potential it is possible to do

analyses for the orbital motion of the satellite.

Applying the method of Hori [1] to our problem to eliminate the terms of short period,

we get the following:

Order zero:

H∗
0 = H0 =

μ2

2L2
+ nMH. (3.14)

Order one:

H∗
1 =
(

H
(1)
1

)
s
=

1

2π

∫2π

0

H
(1)
1 dl,

S1 =
∫

H1pdτ = −1

β

∫(
H

(1)
1 − H∗

1

)
dl,

(3.15)

where β = ∂H
(0)
0 /∂L.

Order two:

H∗
2 =

1

2

{
H

(1)
1 + H∗

1 , S1

}
s
=

1

2π

∫2π

0

1

2

{
H

(1)
1 + H∗

1 , S1

}
dl. (3.16)

4. Critical Inclination

We consider now the problem of a lunar artificial satellite with low altitude taking into

account the oblateness (J2) and the equatorial ellipticity (sectorial term C22) of the Moon.

The first order long-period disturbing potential (order of the method of perturbation theory)
obtained by the Hori method algorithm can be written as

k1 =
1

8
n2
(
6εcos2(i) − 3εe2 − 2ε − 18δ cos(2h)e2 + 18δ cos(2h)e2cos2(i) − 12δ cos(2h)

+12δ cos(2h)cos2(i) + 9εcos2(i)e2
)

,

(4.1)

where ε = J2R2
0eδ = C22R2

0 and k1 = H∗
1 .

We observe that, at the order considered, the disturbing potential has the terms due to

the oblateness (ε), that are secular, and terms due to the equatorial ellipticity of the Moon (δ),
that appear multiplied for cos(2h).

Taking into account (4.1) a formula for the critical inclination is found. In fact,

substituting (4.1) in the planetary equations of Lagrange [26] and solving the equation

dg/dt = 0, we get

cos2(i) =
−ε + 6δ cos(2h)

5(−ε + 2δ cos(2h))
. (4.2)
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Figure 1: Variation of the critical inclination with respect to the longitude of the ascending node where
i-degree and h-rad.

Table 2: Critical inclination for the potential of first order, where: ε = 613.573; δ = 67.496.

Longitude of the ascending
node (h)

Critical inclination for direct
orbits (ic)

Critical inclination for
retrograde orbits (ic)

1 rad 61.10◦ 118.90◦

2 rad 59.98◦ 120.02◦

π/2 58.56◦ 121.45◦

π/3 60.69◦ 119.31◦

π 72.83◦ 107.17◦

this formula was already obtained by De Saedeleer and Henrard [5] and was here derived in

an independent way, observing that in [5] δ = −C22R2
0. Thus, when we consider the terms due

to the oblateness (J2) and the equatorial ellipticity of the Moon (C22), the critical inclination

depends on the longitude of the ascending node. Figure 1 represents the variation between

the inclination and the longitude of the ascending node. Table 2 represents the values of the

critical inclination for some values of the ascending node.

Now, let us consider the second-order disturbing potential k2 = H∗
2 where is given in

the Appendix A (order of the method of perturbation theory); the potential k2 presents:

(a) coefficients of second order (J2
2 , C2

22),

(b) coupling terms between J2 and C22.

Plugging the equations for the potential in the planetary equations of Lagrange and

solving the equation dg/dt = 0, we present a new formula to compute the critical inclination

taking into account the J2 and C22 terms of the second-order disturbing potential. It is a

function of two variables: the argument of the periapsis (g) and the longitude of the ascending

node (h). When the sectorial term C22 is considered, the first order disturbing potential is a

function of the longitude of the ascending node and of both longitude of the ascending node

and argument of the periapsis to the second order potential. The new formula is given in the

Appendix B.
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We observe that, at the second order, the disturbing potential presents terms due to the

oblateness (ε) and to the equatorial ellipticity of the Moon (δ), that also appear multiplied

by periodic functions. Here, terms of couplings between the oblateness and the equatorial

ellipticity of the Moon (J2, C22) and terms of second order appear. Several scenarios can be

considered. For instance frizzing orbits with particular values of h and g, let us say h = π/2

and g = 3π/2, we get a value of 53.46◦ for the critical inclination taking into account equation

given in the Appendix B. Therefore, the critical inclination taking into account equation (4.2)
is 58.56◦ (see Table 2).

5. Sun-Synchronous Lunar Orbit

Now, an approach is presented for a Lunar Sun-synchronous orbit. The Moon rotates with

angular rate about 360◦ for 27, 32 days, while the Earth rotates with angular rate about 360◦

by day. The perturbation caused by the orbital precession has been studied historically for

orbits centered in the Earth because of near polar orbits the precession is about one degree per

day and to provide attractive Sun-synchronous orbits for many missions around the Earth.

Considering Sun-synchronous orbits for lunar satellites we show that it is not possible to

produce near polar orbits. The precession of the ascending node due to the nonsphericity of

the Moon, when only the effect of the J2 is considered, in (3.3) is well known in Brouwer

theory [27] that the precession of the longitude of the ascending node is given by

dΩ
dt

= −3
2

J2R
2
0n cos i

a2(1 − e2)2
. (5.1)

The Moon’s orbital period is about 27, 32 days and the Earth’s orbital period is about

365, 26 days. Then, for a Sun-synchronous orbit, we have, in lunar day [2]:

dΩ
dt

=
(

27, 35

365, 26

)
360◦/lunar day = 26, 92657◦/lunar day. (5.2)

An inclination for a Sun-synchronous orbit was presented by Park and Junkins [2]
using (5.1) and (5.2), with the following initial conditions: a = 1837.63 km; e = 0. The

calculated inclination is is = 144.82◦. This inclination is not feasible for producing near-polar

orbits, because this orbit does not pass sufficiently near the poles. Considering the disturbing

potential given by (4.1) and substituting in the Lagrange planetary equations [26] to calculate

the variation of the longitude of the ascending node, we get

dΩ
dt

= −3
2

εn

a2(1 − e2)2
cos(i) +

3nδ

2a2
(√

1 − e2
) cos(i)[(2 + 3e2

)
cos(2h)

]
, (5.3)

where ε = J2R2
0, δ = C22R2

0. This new equation (5.3) gives the precession of the longitude of

the ascending node due to nonsphericity of the Moon when the effect of the J2 and the C22 are

considered. In first approximation the periodic terms due to the J2 are negligible, however,

for the C22 term in the first approximation appears the periodic term cos(2h). When δ = 0, we

obtain the classic solution given by (5.1).
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Figure 2: Variation of the inclination Sun-synchronous (IS in degree)with longitude of the ascending node
(h-rad), a0 = 1838 km, e0 = 0.038.

In what follows, the variation of the longitude of the ascending node will be analyzed

to obtain polar or near-polar orbits for some special cases. Using (5.2) and (5.3)we get a new

formula to compute the inclination of Sun-synchronous orbits for Moon’s satellites of low

altitude:

is = π − arccos

⎛⎝ 1.32730740910−7a2
(
1 − e2

)(3/2)

n
(
ε + δ

(
−2 − e2 + 3e4

)
cos(2h)

)
⎞⎠, (5.4)

where n is given in rad/s, δ = 67.496 km2; ε = 613.573 km2. Equation (5.4) gives the

inclination depending on the semi-major axis, the eccentricity and on the longitude of

the ascending node. For Sun-synchronous orbits, considering a = 1837.63 km; e = 0;

h = π/2 the calculated inclination is is = 132.35◦. This inclination is not also ideal for

near-polar orbits. Thus, the obtained results are still distant from a polar Sun-synchronous

orbit, but it is important to consider the term due to the Moon’s equatorial ellipticity to

get more realistic results. Figure 2 represents the variation of Sun-synchronous inclinations

with respect to the longitude of the ascending node where a0 = 1838 km and e0 =
0.038. It can be observed in Figure 2 that, fixing h = π/2, we get an inclination of

about 132◦.

6. Applications for Low Altitude Satellites

The disturbing potential (first order (k1) and second order (k2)) is substituted in the

Lagrange’s planetary equations [26] and numerically integrated. Considering the disturbing

potential due to the nonsphericity of the Moon (J2 and C22), numerical applications (long-
period potential) are performed to analyze the variation of the eccentricity for different initial
conditions of the inclination.
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Figure 3: Initial conditions: a0 = 1838 km, e0 = 0.038, i0 = 30◦, g0 = 3π/2, h0 = π/2 and t-days.
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Figure 4: Initial conditions: a0 = 1838 km, e0 = 0.038, i0 = 90◦, g0 = 3π/2, h0 = π/2 and t-days.

Figures 3 and 4 represent the comparison for different orders of the disturbing

potential. The variation of the eccentricity for lunar satellites in low altitude is constant

at first order. This happens because the coefficients J2 and C22 do not affect the variation

rate of the eccentricity (as we can verify in Lagrange’s planetary equations). Therefore,
it is important to insert more terms in the potential to get more realistic results as, for

example, to study the lifetimes of low altitude Moon artificial satellites [28], considering
the zonal terms J2, J3 and J5 and the sectorial terms C22 and C31 in the disturbing potential.

When taking into account the disturbing potential of second order considering the effect
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Figure 5: Initial conditions: a0 = 1838 km, e0 = 0.038, i0 = 30◦, g0 = 3π/2, h0 = π/2 and t-days. Fixing a
value h = π/2 we find a value of 58.56◦ for the critical inclination.

of the nonuniform distribution of mass of the Moon (J2 and C22), the coefficients J2
and C22 affect the variation rate of the eccentricity (as we can verify in the Lagrange’s

planetary equations). For the second order the results shows a small variation of the

eccentricity for larger inclinations and an accentuated increase for small inclinations. This

is due to the C22 term that affects the eccentricity of the satellite directly in second

order.

The expression of the eccentricity is presented in the following form de/dt =
· · · εδ sin(2g) · · · + ε2 sin(2g) + · · · + δ2 sin(2g + 2h) · · · − · · · εδ sin(−2g + 2h) · · · + · · · where

the terms due to the oblateness (ε) and the equatorial ellipticity (δ) appear multiplied by

periodic functions, terms of couplings between J2 and C22 and terms of second order of

the type J2
2 and C2

22. Figures 3 and 4 shows the temporal variation of the eccentricity for

cases where initial conditions are obtained from the frozen orbits condition. For instance

frizzing orbits with particular values of h and g, let us say h = π/2 and g = 3π/2.

Another factor that also contributes for the variation of the eccentricity, using the potential

up to the second order, is the presence of the coefficients of second order terms (J2
2 , C2

22)
and the coupling terms between J2 and C22. The choice of the initial inclination is very

important to assure a frozen orbit when it is taken into account the second order disturbing

potential.

Figures 5 and 6 show the inclination suffering a periodic variation that depends of

the longitude of the ascending node, as we can verify by (4.2). Figure 5 shows a variation

of the inclination for a value below of the critical inclination around 8 degrees in 100 days,

while Figure 6 presents a more accentuated variation for values of the inclination above of

the critical inclination around 50 degrees in 200 days.

Considering the second-order disturbing potential, Figures 7 and 8 represent the

variation rate for the inclination. The variation represented is due to the initial values given

for the argument of the periapsis and for the longitude of the ascending node. The given

initial values for g and h are for the condition of frozen orbits. For instance frizzing orbits

with particular values of h and g, let us say h = π/2 and g = 3π/2. The same comments done

for the eccentricity, including those for the coupling terms (zonal and sectorial), are valid for

the variation of the orbital inclination.
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Figure 6: Initial conditions: a0 = 1838 km, e0 = 0.038, i0 = 65◦, g0 = 3π/2, h0 = π/2 and t-days. Fixing a
value h = π/2 we find a value of 58.56◦ for the critical inclination.
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Figure 7: Initial conditions: a0 = 1838 km, e0 = 0.038, i0 = 30◦, g0 = 3π/2, h0 = π/2 and t-days.

Numerical applications with the first and second order disturbing potential are done

taking into account the nonsphericity of the Moon and perturbations from the third-body

in elliptical orbit (Earth is considered) considering the term P2 of the Legendre polynomial

and the eccentricity of the disturbing body up to the second order. Figures 9, 10 and
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Figure 8: Initial conditions: a0 = 1838 km, e0 = 0.038, i0 = 65◦, g0 = 3π/2, h0 = π/2 and t-days.
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Figure 9: Initial conditions: a0 = 1838 km, e0 = 0.038, g = 3π/2, h = π/2, emax = 0.05. Considered
Perturbations: P2, J2, C22 = 0.

11 represent the sum of the potential of the first order with the second order (k1 + k2).
Figure 9 shows that, if J2 /= 0 and C22= 0 the small inclinations cause small oscillations in

the variation of the eccentricity and Figure 10 shows the effect caused by the C22 term,

when J2 = 0, where the small inclinations cause a large increase in the variation of the

eccentricity, as well as we can visualize in Figure 11, where it is taken into account the

P2, J2, and C22 terms. Considering the disturbing potential up to second order, the terms

J2 and C22 that does not cause perturbation in the eccentricity in first order, appear as
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Figure 10: Initial conditions: a0 = 1838 km, e0 = 0.038, g = 3π/2, h = π/2, emax = 0.05. Considered
Perturbations: P2, J2, C22.
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Figure 11: Initial conditions: a0 = 1838 km, e0 = 0.038, g = 3π/2, h = π/2, emax = 0.05. Considered
Perturbations: P2, J2, C22.

disturbing term of the type J2
2 and C2

22 and terms of coupling of the type J2C22 that affects
the eccentricity of the satellite directly. The terms appear due to the perturbation method

used.

The temporal variation of the eccentricity is strongly affected by the initial inclination

(i0). As it can be observed by Figure 11, for i0 < 48.6◦ the variation of the eccentricity presents

great amplitude but, for i0 > 48.6◦, the variation has small amplitude.

Figures 12 and 13 represent the variation of the eccentricity for a lunar satellite of

low altitude considering different terms in the disturbing potential. Figure 12 considered
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Figure 12: Initial conditions: a0 = 1935.79 km, e0 = 0.05, i = 90◦, g = 3π/2, h = π/2, emax = 0.09 and t-days.
Perturbations P2.
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Figure 13: Initial conditions: a0 = 1935.79 km, e0 = 0.05, i = 90◦, g = 3π/2, h = π/2, emax = 0.09 and t-days.
Perturbations P2 + J2 + C22.

third body perturbation and Figure 13 considered nonsphericity of the Moon and third body

(P2) perturbation. A comparison is done between the perturbations for the case where the

inclination is 90◦ (polar orbit). Therefore we can conclude that, besides the term due to

the J2, the sectorial term C22 should also be considered in the disturbing potential to get

more realistic results. For lunar satellites of low altitude it is impracticable to consider real

applications taking into account only the perturbation of the third body (P2). In fact, taking

into account only the perturbation of the third body (P2), the eccentricity of the satellite

increases causing escape from the Moon, or crashing to the Moon in 600 days (see Figure 12).
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We observe that, for a Moon’s artificial satellite orbiting in low altitude, the combination of

the two perturbations help to control the variation of the eccentricity, mainly for inclinations

of 90◦ (see Figure 13).
These results agree with those obtained by d’Avanzo et al. [29] when it is considered

just the effects of the zonal harmonics J2–J5 and a first order potential.

7. Conclusions

Using Lie-Hori method, the disturbing potential due to the nonsphericity of the gravitational

field of the Moon is obtained up to first and second order. The disturbing potential is

substituted in Lagrange’s planetary equations and they are numerically integrated. Analyses

for the variations of the orbital elements are done. Terms of couplings between the oblateness

and the equatorial ellipticity of the Moon (J2, C22) and terms of second order of type J2
2

and C2
22 are obtained. A formula is developed to compute the critical inclination when

the effect of the C22 (equatorial ellipticity) term is considered in the Hamiltonian in first

and second order. The critical inclination can be strongly affected by the coefficient due

to the equatorial ellipticity of the Moon and by the longitude of the ascending node. The

formula for the critical inclination for the second order is a function of two variables:

the argument of the periapsis and the longitude of the ascending node. At the first order

this formula is a function of the longitude of the ascending node only. For Lunar low

altitude satellites (LLAS), it is important to take into account both, the terms due to

the oblateness and terms with the equatorial ellipticity of the Moon to get more realistic

results.

The variation of the longitude of the ascending node is analyzed looking Lunar Sun-

synchronous orbits and near-polar orbits. A new formula is obtained to compute inclinations

of Lunar Sun-synchronous orbits when the terms due to the oblateness of the Moon (J2 and
C22) are taken into account. The presented formula to the inclination depends on the semi-

major axis, eccentricity and on the longitude of the ascending node of the satellite. The term

due to the effect of the C22 must be considered for the case of a lunar satellite to analyze the

precession of the longitude of the ascending node.

For a LLAS, when it is considered only the nonsphericity of theMoon in the disturbing

potential, and at the first order, the orbital eccentricity of the satellite is constant along the

time. This happens since the coefficients J2 and C22, at this order, do not affect the variation

rate of the eccentricity directly, therefore it is important to insert more terms in the potential

as, for example, the zonal terms J3, J5 and the sectorial term C31, to get more realistic results.

At the second order, small variations are present. In this case, the small variations of the

eccentricity are due to a combination of the following factors: (a) initial conditions (given to

get frozen orbits) (b) to couplings terms between the oblateness and the equatorial ellipticity

of the Moon (J2, C22) and (c) terms of second order of type J2
2 and C2

22. For small inclinations,

second-order terms (including coupled terms) are greater than 1st order terms. This happens

because the coefficients J2 and C22, at second order, affect the variation of the eccentricity

directly.

To study lifetime of LLAS, due to the characteristics of the mass distribution of the

Moon, it is necessary to take into account up the second order of the disturbing potential

and develop up to the second order the Lie-Hori algorithm. In fact, at first order, the

coefficients do not affect the eccentricity directly while at the second order the coefficients

J2 and C22 affects the eccentricity directly and thus contributing efficiently to more complete

studies.
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Appendices

A. Appendix A

Let us consider the second-order disturbing potential k2 = H∗
2 (order of the method of

perturbation theory), where k2 = H∗
2 , c = cos i, s = sin i:
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B. Appendix B

Plugging the equations for the potential in the planetary equations of Lagrange and solving

the equation dg/dt = 0, we present a new formula to compute the critical inclination taking

into account the J2 and C22 terms of the second-order disturbing potential. We get
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(B.1)

C. Appendix C

Model given by Akim and Golikov [30] for the spherical harmonic coefficients is

J2 = 2.09006496 × 10−4, J4 = 2.32815 × 10−6, C22 = 2.447305 × 10−5,

J3 = 5.48445 × 10−6, J5 = −3.169113 × 10−6, C31 = 2.871327 × 10−5.
(C.1)



Mathematical Problems in Engineering 23

Acknowledgment

This work was accomplished with support of the FAPESP under the contract no. 2007/04413-

7 and 2006/04997-6, SP-Brazil, and CNPQ (300952/2008-2).

References

[1] G. I. Hori, “Theory of general perturbations with unspecified canonical variables,” Publications of the
Astronomical Society of Japan, vol. 18, no. 4, pp. 287–296, 1966.

[2] S.-Y. Park and J. L. Junkins, “Orbital mission analysis for a lunar mapping satellite,” Journal of the
Astronautical Sciences, vol. 43, no. 2, pp. 207–217, 1995.

[3] B. De Saedeleer and J. Henrard, “Orbit of a lunar artificial satellite: analytical theory of perturbations,”
in Transits of Venus: New Views of the Solar System and Galaxy, IAU Colloquium, no. 196, pp. 254–262,
Cambridge University Press, Cambridge, Mass, USA, 2005.

[4] B. De Saedeleer, “Analytical theory of a lunar artificial satellite with third body perturbations,”
Celestial Mechanics & Dynamical Astronomy, vol. 95, no. 1–4, pp. 407–423, 2006.

[5] B. De Saedeleer and J. Henrard, “The combined effect of J2 and C22 on the critical inclination of a
lunar orbiter,” Advances in Space Research, vol. 37, no. 1, pp. 80–87, 2006.

[6] A. Deprit, “Canonical transformations depending on a small parameter,” Celestial Mechanics, vol. 1,
pp. 12–30, 1969.

[7] S. Ferraz Mello, Canonical Perturbation Theories, Springer, New York, NY, USA, 2007.
[8] J. P. dos Santos Carvalho, R. V. de Moraes, and A. F. B. de Almeida Prado, “Semi-analytic theory of a

moon artificial satellite considering lunar oblateness and perturbations due to a third-body in elliptic
orbit,” in Proceedings of the 7th Brazilian Conference on Dynamics, Control and Applications, pp. 51–57,
Presidente Prudente, Brazil, 2008.

[9] J. P. dos Santos Carvalho, R. V. de Moraes, and A. F. B. de Almeida Prado, “Moon artificial satellites:
lunar oblateness and earth perturbations,” in Proceedings of the International Conference on Mathematical
Problems in Engineering, Aerospace and Sciences (ICNPAA ’08), pp. 1095–1106, Cambrige Scientific,
Genoa, Italy, 2009.

[10] J. P. dos Santos Carvalho, R. V. de Moraes, and A. F. B. de Almeida Prado, “A study on resonance
for a lunar artificial satellite,” in Proceedings of the 8th Brazilian Conference on Dynamics, Control and
Applications, pp. 1–6, Bauru, Brazil, 2009.

[11] J. P. dos Santos Carvalho, R. V. de Moraes, and A. F. B. de Almeida Prado, “Non-sphericity of the
moon and critical inclination,” in Proceedings of the 32nd Congresso Nacional de Matemática Aplicada e
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1. Introduction

The period of the orbits of the GPS satellites is about 12 hours, and the main perturbations

acting on their orbits are caused by the nonuniform distribution of the Earth’s mass, by

the lunar and solar gravitational attractions and by the solar radiation pressure. In this

paper, it is analyzed just some perturbations due to resonant terms of the geopotential

coefficients. The resonance considered here is the 2 : 1 commensurability between the

orbital period of the GPS satellites and the period of the Earth’s rotation. As it is pointed

out by Hugentobler [1] the resonance leads a daily drift rate in semimajor axis of up to

7m/day.

Lagrange planetary equations, describing the temporal variation of the orbital

elements, are used here to analyze the orbital perturbations of the GPS satellites under the

influence of resonant coefficients.
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2. Disturbing Potential

The geopotential acting on Earth’s artificial satellite can be expressed as [2]

R =
GM

a

∞∑
n=2

n∑
m=0

(ae

a

)n

(Cnm cosmλ + Snm sinmλ)Pnm

(
sinϕ

)
. (2.1)

Here GM is the geogravitational constant, r is geocentric distance of the satellite, ae is

the semimajor axis of the adopted Earth’s ellipsoid, a is the orbital semimajor axis, Cnm and

Snm are the spherical harmonic coefficients. Pnm denotes the associated Legendre functions,

ϕ, λ are the satellite’s geocentric latitude and the longitude, n and m are, respectively, the

degree and order of the harmonic coefficients.

The geocentric distance, the latitude, and the longitude of the satellite can be expressed

in terms of the orbital elements and (2.1) becomes [2, 3]

R =
∑

Rnmpq =
GM

a

∞∑
n=2

n∑
m=0

(ae

a

)n n∑
p=0

Fnmpq(i)
∞∑

q=−∞
Gnpq(e)Snmpq(ω,Ω, M, θT ), (2.2)

where Fnmpq(i) and Gnpq(e) are, respectively, functions of the satellite’s orbital inclination i
and eccentricity e, Ω represents the right ascension of the orbital ascending node, ω is the

argument of perigee, M is the mean anomaly, and θT is the Greenwich sidereal time. The

function Snmpq(ω,Ω, M, θT ) can be expressed as

Snmpq(ω,Ω, M, θT ) =

[(
Cnm

Snmn

)
cosA +

(
Cnm

Snmn

)
sinA

]n−m,even

n−m,odd

, (2.3)

and the argument A is given by

A =
(
n − 2p

)
ω +
(
n − 2p + q

)
M + m(Ω − θT ). (2.4)

The functions Fnmpq(i) and Gnpq(e) are presented as tables [2] and can be adapted to

be used in computers.

3. Resonance in GPS Satellites

Resonance is associated with small divisors. For artificial Earth satellites whose orbital

periods are in commensurability with the period of the Earth’s rotation resonance can occur

when [1, 3, 4]

Ȧ =
(
n − 2p

)
ω̇ +
(
n − 2p + q

)
Ṁ + m

(
Ω̇ − θ̇T

) ∼= 0, (3.1)

where θ̇T is the Earth’s sidereal rotation.

For the GPS satellites where the commensurability is 2 : 1, there are bounds among the

parameters n, m, p, q.
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Table 1: Resonant parameters.

Degree n Order m p q
3 2 1 0

4 4 1 0

2 2 1 1

4 2 2 1

Taking into account that ω̇, Ω̇ � θ̇T , (3.1) can be put as

(
n − 2p + q

)
Ṁ − mθ̇T = 0, (3.2)

since n = Ṁ ∼= 2θ̇T , we get

(
n − 2p + q

)
2 ∼= m. (3.3)

Considering harmonics of order and degree up to order 4, Table 1, presents some

values for the parameters satisfying the resonance condition for the GPS satellites.

Taking into account in the summations the conditions (n − m) even and (n − m) odd
and putting [5]

Cnm = Knm cosmλnm,

Snm = Knm sinmλnm,
(3.4)

where

Knm =
√

C2
nm + S2

nm,

λ nm =
1

m
tan−1

(
Snm

Cnm

)
,

(3.5)

equation (2.2) can be written in general form as [1]

Rnmpq =
GM

a

(ae

a

)n

Fnmp(i)Gnpq(e)

(
cosA

sinA

)n−m,even

n−m,odd

Knm, (3.6)

where

A =
(
n − 2p

)
ω +
(
n − 2p + q

)
M + m(Ω − θT − λnm). (3.7)

In order to analyze the orbital perturbations of GPS satellites due to the resonant

coefficients presented in (Table 1), the Lagrange planetary equations will be used. However,
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Figure 1: Drift rates in semimajor axis due to the resonant geopotential coefficient 32.

Table 2:Maximum values.

Resonants coefficients Maximum drift rates m/day

C32, S32 −4.0
C44, S44 1.5

C 22 , S22 1.5

C42, S42 0.002

here this analysis will be concentrated initially in the secular effects of such perturbation on

the orbital semimajor axis. Therefore, we have [2]

da

dt
=

2

na

∂Rnmpq

∂M
, (3.8)

with n being the mean motion of the satellite.

Special care must be taken to compute ∂Rnmpq/∂M. In fact, the parameters n, m, p, q

given by Table 1 must be considered and each set of them gives a unique solution for (3.8).
A numerical integration of (3.8)was performed for a period of one day using IGS/POE

(The International GNSS Service Precise Orbital Ephemeredes) given on June, 07, 2007.

Transformations were performed to get the corresponding orbital elements.

Figures 1, 2, 3, and 4 show the daily variations of the semimajor axis a for all GPS

satellites.

Figure 1 gives the variation due to the coefficients C32, S32, which are responsible by

the greatest variation in the semimajor axis that, in this case, corresponds to the satellite

PRN 06. Figures 2, 3, and 4 present, respectively, the daily variations as function of the

coefficients C44,S44, C22, S22, C42, S42. Figure 5 represents the total daily variation due to the

above considered coefficients.

Table 2 shows the maxima and minima values for the daily variation of the semimajor

axis according to the resonant coefficients.
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Figure 2: Drift rates in semimajor axis due to the resonant geopotential coefficient 44.
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Figure 3: Drift rates in semimajor axis due to the resonant geopotential coefficient 22.

Figures 6 and 7 show the semimajor axis variation for the satellites PRN 02 and PRN

06 for a time interval of 200 days and taking into account the harmonic coefficients C32, S32.

During this period and for the considered initial condition, it can be observed variations of

about 600m and 680m, respectively.

4. Long-Period Perturbations

The effects of the resonance are enhanced when long periods are considered. Table 3 and

Table 4, Figures 8, 9, 10, 11, 12, and 13 show some simulations using hypothetical satellites

and a particular method to study effects of resonance on the orbits of artificial satellites [6–9].
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Figure 4: Drift rates in semimajor axis due to the resonant geopotential coefficient 42.
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Figure 5: Drift rates in semimajor axis due to all resonant geopotential coefficients, Table 1.

Table 3 contains the amplitude and period of the variations of orbital elements for

hypothetical satellites considering low eccentricity, small and high inclination, and the

influence of the harmonics J20 and J22
Figures 8 and 9 represent, respectively, the temporary variation of the semimajor axis

and of the eccentricity of artificial satellites of the GPS type in the neighborhood of the 2 :

1 resonance region when the harmonics J20 and J22 are considered. By Figure 10, assuming

several values for the semimajor axes in the neighborhood of the 2 : 1 resonance, it can be

observed distinct behavior for their temporary variations.

Figure 11 represents the temporary variation for the semimajor axis in the neighbor-

hood of the resonance 2 : 1 considering the influence of the harmonics J20 and J32 for a satellite

of the GPS type with inclination of about 55◦.



Mathematical Problems in Engineering 7

0

100

200

300

400

500

600

700

D
ri
ft
in

th
e
se
m
i
m
a
jo
r
a
x
is
(m

)

0 23 46 69 93 116 139 162 185 200

Time interval (days)

Figure 6: Semimajor axis variation (PRN 02) due to the resonant geopotential coefficient 32, for a time
interval of 200 days.
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Figure 7: Semimajor axis variation (PRN 06) due to the resonant geopotential coefficient 32, for a time
interval of 200 days.

Table 4 gives the influence of the resonance due to the harmonics J20 and J32
considering different inclinations, including that of the GPS type satellite. It can be observed

that the amplitudes of the variations are smaller when compared with those when the

harmonics J20 and J22 are taken into account. The more the satellites approach the region

that was defined as a resonant region, the more the variations increase.

Figure 12 represents the temporary variation of the semimajor axis of a satellite of the

GPS type considering resonance due to the harmonics J20, J22, and J32.
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Table 3: Amplitude and period of perturbations due to the 2 : 1 resonance: J2 + J22.

Orbital elements Amplitude Period

ao = 26561.770 km e i Δamax Δemax Δimax(◦) t (days)
ao + 0.430 0.01 4◦ 12 km 0.014 8.7 × 10−4 2500

ao + 0.718 0.01 4◦ 12.5 km 0.0145 8.6 × 10−4 7000

ao + 0.290 0.01 4◦ 4.5 km 0.0065 3.6 × 10−4 2000

ao + 0.500 0.01 4◦ 3 km 0.0045 2.8 × 10−4 1000

ao− 2.5 0.01 4◦ 6.5 km 0.0085 4 × 10−4 1700

ao− 5 0.01 4◦ 1.4 km 0.0023 1.3 × 10−6 500

ao 0.05 55◦ 1.8 km 0.005 2 × 10−3 3200

ao + 0.718 0.005 55◦ 2.75 km 0.006 2.8 × 10−3 3900

ao− 1.770 0.005 55◦ 1.2 km 0.0045 1.4 × 10−3 2000

ao + 5.129 0.005 55◦ 900m 0.0033 10−3 1500

ao + 3.729 0.005 55◦ 1.8 km 0.0055 1.9 × 10−3 2500

ao 0.05 63.4◦ 7.5 km 0.003 10.8 × 10−3 1000

ao− 2 0.05 63.4◦ 4 km 0.0015 5.7 × 10−3 1000

ao 0.05 87◦ 7 km 0.0037 13.9 × 10−3 2000

ao− 2 0.05 87◦ 3.5 km 0.002 10.3 × 10−3 1900

Table 4: Amplitude and period of perturbations due to the 2 : 1 resonance: J2 + J32.

Orbital elements Amplitude Period

ao = 26561.770 km e i Δamáx Δemáx Δimáx(◦) t (days)
ao − 3.77 0.01 4◦ 120m 0.0004 1.78 × 10−3 500

ao + 0.718 0.01 4◦ 245m 0.0009 3.9 × 10−3 1000

ao + 0.929 0.01 4◦ 110m 0.00045 1.78 × 10−3 500

ao + 5 0.01 4◦ 100m 0.0003 1.15 × 10−3 250

ao − 2.5 0.005 4◦ 100m 0.0009 4.6 × 10−5 500

ao + 0.429 0.005 4◦ 700m 0.006 2.4 x 10−4 1500

ao + 0.929 0.005 55◦ 1.9 km 0.0085 6.8 × 10−4 16000

ao + 1.73 0.005 55◦ 250m 0.0017 1.13 × 10−3 16000

ao + 5 0.005 55◦ 30m 0.00055 2.3 × 10−4 1500

ao − 3.77 0.005 55◦ 47m 0.00035 3.43 × 10−5 500

ao − 0.429 0.005 87◦ 110m 0.00085 2.29 × 10−4 1800

ao − 2.23 0.005 87◦ 45m 0.00035 8.59 × 10−5 800

ao − 3.77 0.005 87◦ 20m 0.00014 4 × 10−5 500

Figure 13 represents the time variation of the orbital semimajor axis of a satellite with

eccentricity about 0.01 and inclination about 4◦ orbiting in a region near the 2 : 1 resonance.

It is remarkable the oscillation of the semimajor axis in the region between by a = 26560.0 km

and a = 26562.48 km. For instance, a variation of about 10m in the initial semimajor axis (a =
26562.48 km) brings up a variation of about more than 10 km in its amplitude in a period of

about 2000 days.
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5. Conclusions

From the obtained results it can be seen that for the GPS satellites no negligible perturbations

are provoked by resonant tesseral coefficients. The daily variation of the semimajor axis due

to the C32, S32 is less than 4m/day and those values found for a time interval of 200 days
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(∼680m) are compatible with the results presented by specialized literature (∼7m/day and

∼1200m) about this subject [1].
Taking into account the total effects of daily resonant perturbations, it can be observed

that for someGPS satellites these effects are enhanced and for another satellites are attenuated

but all of these effects are smaller than the amplitudes mentioned above. It was shown also

that the effects of the resonance are very important for the analysis of long-period behavior

of the GPS satellites orbits.
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An important aspect to be considered is the necessity to perform orbital maneuvers of

GPS satellites in such way that they stay in their nominal orbits. Also, for the GPS satellites

that are not active, the long-term effects due to the resonance must be taken into account in

the surveillance of the orbital evolutions of such debris.
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1. Introduction

Broadly speaking, the GPS, GLONASS, and Galileo [1] systems are satellite constellations

which were designed mainly for positioning and navigation purposes. The first members

of GPS (block I) originally were designed to have inclination of 63.4 degrees with respect

to the equator, distributed in three orbital planes, each one separated from 120 degrees in

the longitude of the node. The altitude is 20,200 km. The GLONASS members are similar,

with slightly lower altitude (19,100 km, orbital period = 11:15 h). The European GALILEO
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system is still in construction, and the inclination of the satellites will be 55 or 56 degrees, with

altitude of 23,615 km. All the three systems have rather similar altitudes. In order to avoid

risks of collision and following American Govern instructions about debris mitigation, there

are some recommendations that the disposal satellites and upper-stages should be deposited

at least 500 km above or below the semisynchronous orbit [2].
In a constellation of a navigation system, the members must be kept under precise

requirements of functionality. However, after some time, they have to be deactivated since

some level of these requirements cannot be fulfilled for long time. The destination of these

deactivated objects is a problem since theymust bemoved into some disposal regions in order

to preclude collisions with operational members of the constellation. While these vehicles can

be designed a priori to transport additional propellant (at some nonnegligible cost) to be used
in some plannedmaneuvers to insert them in the disposal regions; the same is not true for the

upper-stage. In some cases (block IIF of GPS system), due to design restrictions, this upper-

stage cannot be easily guided to the disposal region. It must perform several operations after

the satellite is injected in the constellation. All these operations change its final parameters

[3]. Since the inclination of these vehicles is near to 55 or 56 degrees, the eccentricity suffers
strong variations and even an initially circular orbit can become highly eccentric so that

they can cross very easily the orbit of the operational satellites. What is interesting and also

problematic is the fact that the rate of growing of the eccentricity is very sensitive to the initial

parameters of the disposal orbit (eccentricity, argument of the perigee, and longitude of the

node). In this work, based on a theoretical framework, we present a set of initial conditions

(argument of the perigee, longitude of the node) for GPS and Galileo systems such that the

disposed objects can remain at the least 250 years with small eccentricity (0.01 or 0.02)without

causing any risk to the operational satellites.

The above strategy of keeping small eccentricity can generate some additional

problem: after some time, the disposed vehicles will accumulate and a graveyard of these

objects will be created. Therefore, a risk of collisions amongst themselves is a crucial problem,

since the products of these extra collisions are almost untrackable fragments that may offer
more risks to the operational elements of the constellation.

According to Jenkin and Gick [4], the strategy in the opposite direction, that is,

exploiting the growth of the eccentricity in order to dilute disposal orbit collision risk has

some interesting points to be considered: the percentage of disposed vehicles that will reenter

in the atmosphere can be increased. Another advantage observed is, although eccentricity

growth strategy increases the collision risk in the constellation, that in some cases this risk

can be reversed with proper choice of the initial disposal eccentricity.

In this sense, we briefly started the investigation of some initial conditions that can

cause large increase of the eccentricity, for aminimum time interval, considering also different
initial inclinations of the Moon’s orbit (see Appendix B). Our calculations show that the

growth of the eccentricity is rather sensitive to the Moon’s position (inclination and semi-

major axis).

2. Methods

2.1. Disturbing Function of the Sun

Aswewant to highlight some theoretical aspects, it is instructive to write the main disturbing

forces in terms of the orbital elements.
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In this section we obtain the averaged disturbing function of the Sun. Following the

classical procedure [5], in a reference center fixed in the Earth equator, the disturbing function

of the Sun is

R� = k2M�

(
1

|�r − �r�|
− �r · �r�

|�r�|3

)
, (2.1)

where M� is the mass of the Sun, k2 is the gravitational constant, and �r, �r� are position vector

of the satellite and the Sun, respectively.

Expanding (2.1) in powers of (r/r�) up to order 2, we have

R� = k2M�
r2

r3�

(
−1
2
+
3

2
cos2(S)

)
, (2.2)

where S is the angular distance between the satellite and the Sun. We use the classical

notations a, e, I, f, ω, and Ω, for semi-major axis, eccentricity, inclination, true anomaly,

argument of the perigee, and longitude of the node. The same set is used for the Sun’s

elements, adding the index �.
In order to write cos(S) in terms of orbital elements, we have (see Figure 1)

cos(S) =
x

r

x�
r�

+
y

r

y�
r�

+
z

r

z�
r�

. (2.3)

Considering classical relations of the two-body problem, we write cos(S) in terms of f,
f�, Ω, Ω�, ω, ω�, I, I� as follows:

cos(S) =
1

4
(1 + cos(I))(1 − cos(I�)) cos

(
f + ω + f� + ω� + Ω −Ω�

)
+
1

4
(1 − cos(I))(1 + cos(I�)) cos

(
f + ω + f� + ω� −Ω +Ω�

)
+
1

4
(1 + cos(I))(1 + cos(I�)) cos

(
f + ω − f� − ω� + Ω −Ω�

)
+
1

4
(1 − cos(I))(1 − cos(I�)) cos

(
f + ω − f� − ω� −Ω +Ω�

)
+
1

2
sin(I) sin(I�)

[
cos
(
f + ω − f� − ω�

)
− cos

(
f + ω + f� + ω�

)]
,

(2.4)

or in a compact form as follows:

cos(S) = Aa + Bb + Cc + Dd + Ee, (2.5)
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Figure 1: Geometry of the problem.

where

A =
1

4
(1 + cos(I))(1 − cos(I�)),

a = cos
(
f + ω + f� + ω� + Ω −Ω�

)
,

B =
1

4
(1 − cos(I))(1 + cos(I�)),

b = cos
(
f + ω + f� + ω� −Ω +Ω�

)
,

C =
1

4
(1 + cos(I))(1 + cos(I�)),

c = cos
(
f + ω − f� − ω� + Ω −Ω�

)
,

D =
1

4
(1 − cos(I))(1 − cos(I�)),

d = cos
(
f + ω − f� − ω� −Ω +Ω�

)
,

E =
1

2
sin(I) sin(I�),

e = cos
(
f + ω − f� − ω�

)
− cos

(
f + ω + f� + ω�

)
.

(2.6)

In order to get rid of the short period variations, we have to obtain the averaged

system and the rigorous procedure is to apply the classical von-Zeipel or Hori’s method

[5, 6]. In the present case, as our interest is only to examine the long-term behavior, without
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retrieving the contribution of the short period terms eliminated during the averaging process,

the secular disturbing function can be found simply considering [7, 8]

〈R�〉 =
1

2π

∫2π

0

R�dl, (2.7)

where l is the mean anomaly of the satellite. Consider

R∗
� = 〈R�〉

=
k2M�a2

2r3�

×
[
3

2
P

(
A2 + B2 + C2 + D2 + 2E2 − 2

3

)

+
3

2
A2Z cos

(
2ω + 2f� + 2ω� + 2Ω − 2Ω�

)
+
3

2
C2Z cos

(
2ω − 2f� − 2ω� + 2Ω − 2Ω�

)
+
3

2
B2Z cos

(
2ω + 2f� + 2ω� − 2Ω + 2Ω�

)
+
3

2
D2Z cos

(
2ω − 2f� − 2ω� − 2Ω + 2Ω�

)
+
3

2
Z
(

E2 + 2CD
)
cos
(
2ω − 2f� − 2ω�

)
+
3

2
Z
(

E2 + 2AB
)
cos
(
2ω + 2f� + 2ω�

)
+ 3Z

(
−E2 + AD + BC

)
cos(2ω) + 3P

(
−E2 + AC + BD

)
cos
(
2f� + 2ω�

)
+ 3P(AB + CD) cos(2Ω − 2Ω�) + 3ACZ cos(2ω + 2Ω − 2Ω�)

+ 3ADP cos
(
2f� + 2ω� + 2Ω − 2Ω�

)
+ 3EP(A − D) cos

(
2f� + 2ω� + Ω −Ω�

)
+ 3EP(−A − B + C + D) cos(Ω −Ω�) + 3EZ(A − C) cos(2ω + Ω −Ω�)

− 3AEZ cos
(
2ω + 2f� + 2ω� + Ω −Ω�

)
+ 3BCP cos

(
2f� + 2ω� − 2Ω + 2Ω�

)
+ 3BDZ cos(2ω − 2Ω + 2Ω�) + 3EP(B − C) cos

(
2f� + 2ω� −Ω +Ω�

)
+ 3EZ(B − D) cos(2ω −Ω +Ω�) − 3BEZ cos

(
2f� + 2ω + 2ω� −Ω +Ω�

)
+3CEZ cos

(
2ω − 2f� − 2ω� + Ω −Ω�

)
+ 3DEZ cos

(
2ω − 2f� − 2ω� −Ω +Ω�

)]
,

(2.8)

where P = 1 + (3/2)e2, Z = (5/2)e2.
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Performing a second and similar average with respect to the mean anomaly of the Sun,

we get

R̂� =
k2M�a2

4r3�

×
[

P

4

(
1 − 3cos2(I) − 3cos2(I�) + 9cos2(I)cos2(I�)

)
+
3

2
Zsin2(I)

(
−1 + 3cos2(I�)

)
cos(2ω)

+
3

2
Psin2(I)sin2(I�) cos(2Ω − 2Ω�)

+
3

8
Z(1 + cos(I))2sin2(I�) cos(2ω + 2Ω − 2Ω�)

− 3

2
Z sin(I) sin(I�)(1 + cos(I)) cos(I�) cos(2ω + Ω −Ω�)

+ 3P sin(I) cos(I) sin(I�) cos(I�) cos(Ω −Ω�)

+
3

8
Z
(
1 + cos2(I)

)2
sin2(I�) cos(2ω − 2Ω + 2Ω�)

+
3

2
Z sin(I)(1 − cos(I)) sin(I�) cos(I�) cos(2ω −Ω +Ω�)

]
.

(2.9)

In the above expression, the orbit of the Sun is assumed to be a Keplerian circular orbit. The

elliptic case is briefly discussed in Appendix A.

2.2. Oblateness Disturbing Function

For the oblateness, the disturbing function truncated at second order of RP /r is

U2 =
k2MT R2

P

r3
J2

(
1

2
− 3

2
sin2
(
β
))

, (2.10)

where RP , J2, and β are equatorial radius of the planet, oblateness coefficient, and geocentric

latitude of the satellite, respectively. If we proceed in the exact same way as we did before,

we have from the geometry of Figure 1

sin
(
β
)
= sin(I) sin

(
f + ω

)
. (2.11)
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Once β is eliminated, the average of U2 with respect to the mean anomaly of satellite is [9, 10]

〈U2〉 =
1

2π

∫2π

0

U2dl,

RJ2 = 〈U2〉 =
1

4
n2J2R

2
P

(
3cos2(I) − 1

)(
1 − e2

)−3/2
,

(2.12)

where n is the mean motion of the satellite.

2.3. Some Special Resonances

For close satellites, usually the oblateness is the dominant part. In this case, the main

frequencies of the system are given by

ω̇ ≈
3nJ2R2

P

4a2(1 − e2)2
(
5cos2(I) − 1

)
,

Ω̇ ≈ −
3nJ2R2

P

2a2(1 − e2)2
cos(I).

(2.13)

The ratio of these two frequencies is

Ω̇
ω̇

≈ 2 cos(I)
1 − 5cos2(I)

= k. (2.14)

Note that for k = integer, we have the special resonances which do not depend on the

semi-major axis. These resonances usually affect the eccentricity [8]. For k = −2, we have

2ω̇ + Ω̇ ≈ 0 for I = 56.06◦ or I = 110.99◦. Another classical resonance occurs when I = 63.4◦, so
that ω̇ ≈ 0.

3. Effects of 2ω̇ + Ω̇ and ω̇ Resonances

In order to see the effects of the resonances which affect GPS and Galileo satellites, the

osculating equations of a satellite will be integrated. For the moment, as disturbers, we

consider only the Sun and the oblateness (the complete Cartesian equations involving the

remaining disturbers will be given in Section 4). Note that the resonant conditions to be used

this time are extracted from the averaged system as presented in the precedent section (I =
56.06◦, I = 63.4◦). Figures 2 and 3 show the effects of both resonances on the eccentricity and

on the resonant angles. Note that an initial small eccentricity reaches a significant increase.
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Figure 2: Time evolution of the eccentricity (a) and the critical angle (b). Initial conditions: a = 4.805RT

(30,647 km), e = 0.005, I = 56.06◦, and other elements equal to zero. In the simulations, we consider only
Sun and oblateness as disturbers.
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Figure 3: Same as Figure 1. Initial conditions: a = 4.7RT (≈ 29,977 km), e = 0.005, I = 63.4◦, ω = 90◦, and
other elements equal to zero.
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Figure 4: Level curves of Hamiltonian (R̃� + R̃J2), showing the eccentricity variation versus resonant angle.
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Figure 5: Time evolution of the osculating eccentricity (top) and the osculating critical angle (bottom) for
a disposal GPS satellite. Note that the minimum of the eccentricity occurs when 2ω + Ω is crossing zero
in decreasing direction (from positive to negative value) while maximum occurs when 2ω + Ω is crossing
zero, but in increasing direction (from negative to positive value). Initial conditions: a = 3.5 RT (22,324 km),
e = 0.005, I = 56.06◦, and other elements equal to zero; IL = 28.58◦.

Let us pay more attention to the case I = 56.06◦ which is the inclination of the members

of the Galileo constellation. For this inclination, the dominant term in the R∗
� is cos(2ω + Ω −

Ω�). Neglecting the remaining terms of R̂�, the Hamiltonian of the problem is

F = RJ2 +
k2M�a2

2r3�

[
P

8

(
1 − 3cos2(I) − 3cos2(I�) + 9cos2(I)cos2(I�)

)
−3
4

Z sin(I) sin(I�)(1 + cos(I)) cos(I�) cos(2ω + Ω −Ω�)
]

.

(3.1)

Let us take L =
√

k2(MT + m)a, G = L
√
1 − e2, H = G cos(I), l = mean anomaly, ω = g, and

Ω = h the set of the Delaunay variables. After a trivial Mathieu canonical transformation [11],

(G, H, ω,Ω) −→ (P1, P2, θ1, θ2), (3.2)

where

θ1 = 2ω + Ω, P1 =
G

2
, θ2 = Ω, P2 = H − G

2
, (3.3)
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then we have

R̃� =
k2M�a2

2r3�

⎡⎢⎢⎣P

8

(
1 − 3

(P1 + P2)2

4P 2
1

− 3cos2(I�) + 9
(P1 + P2)2

4P 2
1

cos2(I�)

)

−3
4

Z

(
1 − (P1 + P2)2

4P 2
1

)1/2

sin(I�)
(
1 +

P1 + P2

2P1

)
cos(I�) cos(θ1)

⎤⎦,

R̃J2 =
1

4
n2J2R

2
P

(
3
(P1 + P2)2

4P 2
1

− 1

)(
1 −

L2 − 4P 2
1

L2

)−3/2

.

(3.4)

Since Sun’s orbit is a Keplerian one, we also considered ω� = 0, Ω� = 0. In (Pi, θi) variables,
our Hamiltonian is a one degree of freedom problem, whose dynamics is very similar to

the very well-known Lidov-Kozai resonance. In Figure 4, we consider an initial eccentricity

e0 = 0.005 and semi-major axis a = 4.805RT (30,647 km). This figure is very instructive: note

that in the bottom part there is a large region where the satellite remains some finite time

with very small eccentricity. These are the exactly region we are looking for. It corresponds

to the region where 2ω + Ω ≈ 0. On the other hand, we have the counterpart of this situation

at the top of the figure: very high eccentricity, which occurs again for 2ω + Ω ≈ 0. We can

separate these two configurations and have a close view of these two cases. Only to confirm

our reasoning, let us integrate the problem in Cartesian coordinates. We also have to decrease

the effect of the Moon’s perturbation since in the averaged analysis we considered only R̃�
and R̃J2 . To do that, we consider convenient value for the semi-major axis. Figure 5 (initial
conditions: a = 3.5RT (≈ 22323 km), e = 0.005, I = 56.06◦, and other elements equal to zero;

Moon inclination IL = 18.28◦) shows that the minimum of eccentricity occurs when 2ω + Ω
crosses zero from positive to negative values (decreasing direction), while maximum occurs

when 2ω + Ω crosses zero from negative to positive values (increasing direction). It is worth

noting that if the semi-major axis is high, then the effect of the Moon cannot be neglected,

so that the problem is no more a one degree of freedom problem. In this case the search of

the (ω,Ω) pair, such that eccentricity remains small, must be done integrating the complete

equations of the motion.

4. Special (ω,Ω) Initial Conditions for Galileo Case

In the previous section, we considered only the effects of the Sun and of the oblateness.

Moreover, in the presence of the resonance, the main effects are governed by the long term

variations, so that we eliminated the short period terms. From a theoretical point of view, this

averaged system is quite efficient to highlight the basic dynamics that affects the eccentricity
of the GPS and Galileo satellites. However, for a more complete and realistic study, we need

to include more disturbers.

In this section we want to find some special initial conditions such that the satellites

can remain stable for at least 250 years with very small eccentricity without causing any

risk of collision to the operational elements of the constellation. The strategy to search these
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Figure 6: Black dots: represent (ω,Ω) values such that a satellite with a = 30,647 km remains at least 250
years with eMAX ≤ 0.01. Green dots: the same, but eMAX ≤ 0.02. Blue dots: curve satisfying 2ω + Ω = 0.
Moon’s inclination: IL = 18.28◦. Note that most of the “stable” (black dots) (ω,Ω) points satisfy 2ω+Ω = 0,
2π with Ω ≈ 0, ω = π .

particular initial conditions is guided from the theoretical approach described in the previous

section.

In this section we integrate the osculating elements of a disposal satellite of the Galileo

system under the effect of the Sun, Moon, and the oblateness.

The equations for the osculating elements (exact system), including Moon, are

�̈r = −k2(M + m)
r3

�r − k2M�

(
�r − �r�

|�r − �r�|3
− �r�

|�r�|3

)
− k2ML

(
�r − �rL

|�r − �rL|3
− �rL

|�rL|3

)
+ �PJ2 , (4.1)

PJx
= −k2MJ2R

2
P

[
3x

2r5
− 15

2

z2x

r7

]
, (4.2)

PJy
= −k2MJ2R

2
P

[
3y

2r5
− 15

2

z2y

r7

]
, (4.3)

PJz
= −k2MJ2R2

P

[
9z

2r5
− 15

2

z3

r7

]
, (4.4)

where �PJ2 is the acceleration due to the oblateness, whose Cartesian components are given

by PJx
, PJy

, PJz
[10]. The second and third terms in (3.3) are the contributions of the Sun

and the Moon, respectively, and M, m, ML are the masses of the Earth, satellite, and Moon,
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Figure 7: Same of Figure 6, but now IL = 28.58◦. Note that the distribution of the stable (ω,Ω) is very
sensitive under changes in IL.
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Figure 8: Time evolution of the eccentricity (a) and the critical angle (b) obtained from integration of (4.1).
Initial conditions: a = 4.805 RT , e = 0.005, I = 56.06◦. Initial (ω,Ω): (24◦, 0◦): black, (23◦, 2◦): red, (18◦, 8◦):
blue. These initial conditions were extracted from the red square shown in Figure 6. Initial conditions of
the Moon: aL = 380, 367.2 km, eL = 0.0276, IL = 18.28◦, ΩL = 12.11◦, ωL = 92◦, and lL = 337◦. As expected,
the eccentricity remains less than 0.005 for at least 250 years.

respectively. The position vectors of the satellite, Sun, and Moon are indicated by �r, �r�, and
�rL.

As we said before, we take 500 km above of the nominal altitude of the constellation.

The initial elements are fixed to a = 4.805RT (30,647 km), e = 0.005, l = 0◦, and I = 56.06◦.
We consider two cases for the Moon’s inclination, I = 18.28◦ and 28.58◦. We show that the

initial value of the inclination is important as shown in Figures 6 and 7. In these figures, we

show the pair (ω,Ω) such that the disposal object remains at least 250 years with eccentricity

smaller than 0.01, so that there is no risk of collision with any member of the constellation.

The black region corresponds to initial conditions such that the maximum eccentricity is

less than 0.01. In the green region, the maximum eccentricity is less than 0.02. The two
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Figure 9: Same as Figure 8 but considering initial conditions from the red small circle of Figure 6. Initial
conditions: a = 4.805RT (30,647 km), e = 0.005, I = 56.06◦, ω = 90◦, Ω = 180◦. This time eccentricity grows
fastly since the corresponding initial condition was not taken from the black region of Figure 6.
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Figure 10: Same of Figure 6, but now a = 26,060 km.

straight lines represent the exact condition 2ω + Ω = kπ (in particular we only plot the

case k = 0). Note that, in special, the black dots (Figure 6) are in fact located in places

predicted from the previous theoretical model. For the remaining figures, the black dots

are slightly shifted (upward) from the line 2ω + Ω = 0. We believe that this is caused by

the strong perturbation of the Moon. Figure 8 shows the time evolution of the eccentricity

for integration whose initial conditions are obtained from Figure 6 (small square in the

bottom). As expected, the eccentricity remains very low, while if we take (ω,Ω) outside

the marked regions in Figure 6 or Figure 7, a significant increase is verified as shown in

Figure 9. The initial conditions (ω,Ω) used in this case correspond to the red circle given

in Figure 6.
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Figure 11: Same of Figure 10, but now IL = 28.58◦.

5. (ω,Ω) Conditions for GPS Case

Here let us consider the GPS system. Again we take I = 18.28 and I = 28.58 for the Moon’s

inclination. As before, the importance of the Moon’s inclination is clear.

6. Tesseral and Sectorial Harmonics

Up to now, we have not considered tesseral and sectorial harmonics. Since GPS

satellites have orbital period near to 12:00 h, the inclusion of such harmonics must

be examined when drawing the figures of Section 5. While the numerical values of

the coefficients of these harmonics are very small compared to the zonal harmonics,

due to the 1n : 2γ resonance (γ is the rotation velocity of the Earth), this contribution

could cause some nonnegligible effects. We show very briefly these perturbations.

There are several models of the geopotential, including most sophisticated recursive

formulae to generate very high-order (JGM-3 [12], EGM96S, EGM96 [13], etc.). In

this work, we do not need high order model, so that we consider only few terms.

The disturbing function for the general geopotential can be written in the form [14,
15]

V =
k2MT

r
+

k2MT

r

{
−

∞∑
n=2

(
RP

r

)n

JnPn0

(
sin
(
φ
))

+
∞∑

n=2

n∑
m=1

(
RP

r

)n

Jnm cosm(λ−λmn)Pnm

(
sin
(
φ
))}

,

(6.1)

where Jnm, λnm are numerical coefficients and Pnm are the associated functions of Legen-

dre.
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Figure 12: Geometry of the problem.

Figure 12 describes the fundamental axes of the following reference: the potential (6.1)
is referred to the (x, y, z)which is an equatorial system fixed on the Earth; therefore, it rotates

with respect to (X, Y, Z) which is an inertial system, as follows:

�r : the position vector of the satellite.

I: inclination.

φ: geocentric latitude.

λ: longitude.

Ω: longitude of node.

According to Figure 12, some simple geometrical relations can be written as

x = r cos
(
φ
)
cos(λ),

y = r cos
(
φ
)
sin(λ),

z = r sin
(
φ
)
,

cos(2λ) =
x2 − y2

x2 + y2
, sin(2λ) =

2xy

x2 + y2
,

cos2(λ) =
x2

x2 + y2
, sin2(λ) =

y2

x2 + y2
,

x2 + y2 = r2cos2
(
φ
)
.

(6.2)

Let us define ϕnm = (k2MP /r)(RP /r)nJnm cosm(λ − λnm)Pnm(sin(φ)).
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Figure 13: Time evolution of eccentricity of GPS satellite. Initial conditions: a = 27,059.74 km, e = 0.005, ω =
58◦,Ω = 154◦. The initial conditions of the Moon correspond to the epoch August 1, 2001. The contribution
of individual and all ϕnm is shown through different colors. The differences appear only after 370 years.
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Figure 14: Same of Figure 10, including ϕ22, ϕ32, and ϕ33.

Therefore,

ϕ22 =
3k2MP R2

P

r5
J22
[(

x2 − y2
)
cos(2λ22) + 2xy sin(2λ22)

]
. (6.3)
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Figure 15: Same of Figure 14, but now IL = 28.58◦.

Proceeding in the similar way, we obtain

ϕ32 =
15k2MP R3

P

r7
J32
[(

x2 − y2
)

z cos(2λ32) + 2xyz sin(2λ32)
]
,

ϕ33 =
15k2MP R3

P

r7
J33
[
x
(

x2 − 3y2
)
cos(3λ33) + y

(
3x2 − y2

)
sin(3λ33)

]
.

(6.4)

Note that the zonal terms (m = 0) were already considered before. In Figure 12 the

system (x, y, z) is fixed on the Earth while (X, Y, Z) is an inertial system, so that (x, y, z)
rotates with respect to (X, Y, Z). Therefore, to have ϕnm referred to (X, Y, Z), we consider the

trivial rotation:

⎛⎜⎜⎝
x

y

z

⎞⎟⎟⎠ =

⎛⎜⎜⎝
cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

X

Y

Z

⎞⎟⎟⎠, (6.5)

where θ = γt + θ0, γ = 2π/day.

Therefore considering only ϕ22, ϕ32, and ϕ33, the force to be added in (4.1) is

Pϕ = gradXYZ

(
ϕ22 + ϕ32 + ϕ33

)
. (6.6)

Once we have introduced XYZ system, it is clear that several angular combinations

like 2θ − λ appear in the above ϕnm, when (6.3) and (6.4) are expressed in the classical orbital
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elements. Due to the nominal semi-major axis of the GPS satellites, 2θ − λ will generate long-

term variations due to their proximity of the 2 : 1 exact resonance. In fact, the orbital period

of GPS satellite is about 12:00 h.

To express ϕnm in terms of the orbital elements is trivial; however, the best way

to see the effects is to keep these terms in Cartesian coordinates without any expansion

in eccentricity or inclination, as the former increases to high values, while the second is

essentially high from the beginning.

The effects of these additional terms are shown in Figure 13. The interaction of

several arguments coming from ϕ22, ϕ32, ϕ33, and also those related to the lunar disturbing

function, give rise to new resonant combinations. It is interesting that the presence of

different ϕnm cause significative differences in the behavior of the eccentricity, however, in

the beginning (up to t = 370 years), all the curves are almost coincident. In particular, our

numerical experiments show that if eccentricity remains small, the effects of ϕnm are not

significant.

Figures 14 and 15 show that the (Ω, ω) initial conditions are similar to those

figures of Section 4. Note that differences when ϕnm are included are almost neg-

ligible as expected according to what we learned from Figure 13. However, in the

strategy of exploiting the growth of the eccentricity, the initial (Ω, ω) can be sensitive,

depending on the time integration and on the number of the harmonics considered

in the geopotential. In Appendix B, we show similar figures, where (Ω, ω) values

are the initial conditions that cause fast increase of the eccentricity in less than 250

years.

7. Conclusion

With the averaged equations, we showed the dynamics of the 2ω + Ω resonance. The

reason of the increase of the eccentricity is essentially due to this resonance which

does not depend on the value of the semi-major axis. Therefore, any change of the

semi-major axes (raising the perigee) of the decommissioned object will not remove

from the resonance. After showing the existence of some initial conditions in the

(ω,Ω) domain where the eccentricity can remain very small based on the averaged

simplified model, we used the complete set of equations to search this pair in (ω,Ω)
plane. The importance of the Moon’s inclination becomes clear as shown in Figures 6,

7, 10, and 11. We obtained these initial values for GALILEO and GPS systems. For

completeness, we also derived a first-order averaged system in the eccentricity of the

third body (Appendix A). Then several additional resonances appear although their effects
are not so relevant for the navigation system. The search of the (ω,Ω) pair for the

maximum increase of the eccentricity can be done straightforward following the same

procedure we used for minimum eccentricity. For completeness, in the disturbing function

of the geopotential we also included terms coming from J22, J32, and J33. However,

their contributions for the first 370 years are not significant. In a separate paper, we

intend to show the corresponding Figures 10 and 11 considering the second strategy of

exploiting the increase of the eccentricity. Our experiments show that the effect of J22,

J32, and J33 terms becomes more visible only after some hundred years. Therefore, their

contributions in Figures 14 and 15 are almost negligible. However, considering long-

time integration, their effects and interaction with solar and lunar perturbations become

important.
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Appendices

A. Solar Disturbing Function (Up to First Order in e)

Here we give the complete expression of the averaged disturbing function up to first order in

eccentricity of the third body:

R1
� =

k2M3
�a3

2a3
�

e�

×
[
9

2
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3
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4
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Figure 16: Black dots represent (ω,Ω) values such that a satellite with a = 26,559.74 km reaches e ≥ 0.6 in
250 years. Green dots: the same, but eccentricity reaches e ≥ 0.5 in 250 years. Blue dots: curve satisfying
2ω + Ω = 270. Moon’s inclination: IL = 18.28◦.
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(A.1)

Note that all the cosines in the above relations have l� in the argument. Since the

inclination of satellite is fixed about 55◦ or 56◦, each possible resonance can occur for one

particular value of the semi-major axis. However, considering the nominal altitude of the

GPS and Galileo satellites, and since e� is small, none of the above combinations of angles is

significant.
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Figure 17: Same of Figure 16, but now IL = 28.58◦.
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Figure 18: Time evolution of eccentricity (a) and critical angle (b) of a GPS satellite with a = 26,559.74 km
whose eccentricity reaches the value of 0.6 after 200 years. Initial conditions: e = 0.005, I = 56.06◦, ω = 0◦,
Ω = 270◦, IL = 18.28◦.

B. The Eccentricity Increasing Strategy

Following the same strategy to obtain Figures 10, 11, 14, and 15, we obtain similar figures,

but now the pair (ω, Ω) represents the initial condition of an orbit whose eccentricity attains

e ≥ 0.5 in less than 250 years. As before, all orbits start with initial a = 26,559.74 km, e = 0.005,

and I = 56.06◦. The maximum eccentricity usually is reached after t = 200 years.
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[11] C. Lánczos, The Variational Principles of Mechanics, Mathematical Expositions, no. 4, University of

Toronto Press, Toronto, Canada, 4th edition, 1970.
[12] B. D. Tapley,M.M.Watkins, J. C. Ries, et al., “The joint gravitymodel 3,” Journal of Geophysical Research,

vol. 101, no. 12, pp. 28029–28049, 1996.
[13] F. G. Lemoine, et al., “The development of the joint NASA GSFC and NIMA geopotential model

EGM96,” Tech. Rep. NASA/TP-1998-206891, NASA/GSFC, 1998.
[14] P. R. Escobal,Methods of Orbit Determination, John Wiley & Sons, New York, NY, USA, 1965.
[15] O. Montenbruck and E. Gill, Satellite Orbits: Models, Methods and Applications, Springer, Berlin,

Germany, 2005.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2009, Article ID 794578, 16 pages
doi:10.1155/2009/794578

Research Article
Quality of TEC Estimated with Mod Ion Using GPS
and GLONASS Data

Paulo de Oliveira Camargo

Department of Cartography, Faculty of Science and Technology, São Paulo State University (UNESP),
Rua Roberto Simonsen 305, 19060-900 Presidente Prudente, SP, Brazil

Correspondence should be addressed to Paulo de Oliveira Camargo, paulo@fct.unesp.br

Received 1 July 2009; Accepted 28 September 2009

Recommended by Silvia Maria Giuliatti Winter

One of the largest sources of error in positioning and navigation with GNSS is the ionosphere, and
the associated error is directly proportional to the TEC and inversely proportional to the square of
the signal frequency that propagates through the ionosphere. The equatorial region, especially in
Brazil, is where the highest spatial and temporal value variations of the TEC are seen, and where
these various features of the ionosphere, such as the equatorial anomaly and scintillation, can be
found. Thus, the development and assessments of ionospheric models are important. In this paper,
the quality of the TEC was evaluated, as well as the systematic error in the L1 carrier and the inter-
frequency biases of satellites and receivers estimated with the Mod Ion, observable from GPS and
integration with the GLONASS, collected with dual frequency receivers.

Copyright q 2009 Paulo de Oliveira Camargo. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The Global Navigation Satellite System (GNSS) is one of the most advanced technologies

and has revolutionized the activities related to navigation and positioning from space

technology. A main component of GNSS is the Global Positioning System (GPS), developed
by the United States, and Global’naya Navigatsionnaya Sputnikowaya Sistema (GLONASS)
of responsibility of the Republic of Russia. A relevant fact is that, in December 2005, the

first GALILEO satellite was launched, which is being developed by the European Union

and must come into operation in 2013. The GNSS is composed by the so-called (Satellite
Based Augmentation System) SBAS, such as the Wide Area Augmentation System (WAAS)
in USA, European Geostationary Navigation Overlay Service (EGNOS) in Europe, Multi-

functional Satellite-Based Augmentation Service (MSAS) in Japan, and Satellite Navigation

Augmentation System (SNAS) in China [1].
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In general, most users simply use the GNSS system to get their coordinates, without

being committed to details, but for the quality of information (precision) provided by it,

except aviation. This quality information is very optimistic, demanding attention from users.

However, certain applications require the knowledge of the various processes related to

the system. The mitigation of the effects of the atmosphere (troposphere and ionosphere)
over GNSS observables requires knowledge of the signal analysis and its behavior in

the atmosphere, requiring interaction with other sciences such as Aeronomy, Meteorology,

among others. Accordingly, this interaction allows studies related to the behavior of the

ionosphere and the troposphere to be made fromGNSS observables. In Brazil, the ionosphere

shows a very complex behavior, for being located near the geomagnetic equator, requiring the

development of models and appropriate studies for the region [1–12].
With the Selective Availability (SA) deactivation, in the case of GPS, the error due

to the ionosphere has become a major source of systematic error in positioning, especially

in periods of high solar activity for one frequency GNSS users, in the conventional point

positioning as well as relative positioning. Another effect that affects considerably the GNSS

signals is ionosphere scintillation, a result of propagating the signal through a region in which

there are irregularities in the density of electrons.

The error due to the ionosphere depends on the Total Electron Content (TEC) present
in the ionosphere and in signal frequency. Users of, at least, dual frequency receivers can

make corrections of this effect, using the ionospheric free linear combination. This observable

eliminates first-order ionospheric effect. Users of single frequency receivers, however, need

to correct the systematic effect observables due to the ionosphere. The quantification of

this effect can be done by [3, 4, 12]: coefficients transmitted by navigation messages, using

the Klobuchar model; observations collected with one or dual frequency GNSS receivers of

(Ionosphere map Exchange format) IONEX archives obtained from Global Ionospheric Maps

(GIM), which provide values of vertical TEC (VTEC) in a grid with spatial resolution of

5◦ × 2.5◦ in longitude and latitude, respectively, and temporal resolution of 2 hours [13].
In the geodetic community, one of the models used and implemented in commercial

software, to minimize the effects of the ionosphere on GPS observables, is the Klobuchar

model. This model, also called Broadcast model, estimates the systematic error due to

the ionosphere to one frequency receivers [14] and its coefficients are transmitted by GPS

satellites in navigation messages. However, this model removes around 50% to 60% of the

total effect [15, 16]. Being more appropriate for use in regions of middle latitudes, which is

the more predictable ionospheric region, where the ionosphere has a more regular behavior.

However, this is not an appropriate model to be used in Brazil, where there is high variation

in the density of electrons as well as in South America. So with the need to have a more

effective correction strategy of the ionosphere effect, several models were developed by

various research centers and universities, using observations collected with dual frequency

GPS receivers. In terms of South America, we can quote the (La Plata Ionospheric Model)
LPIM model, developed at (Astronomical and Geophysical Sciences Faculty of Universidad

Nacional de La Plata) FCAG/UNLP, Argentine [2] and the Regional Model of Ionosphere

(Mod Ion) developed in FCT/UNESP, Brazil [3].
The accuracy of VTEC values in the final IONEX files grid (∼11 days of latency) is 2–8

TEC units (TECUs) and for rapid files (<24 hours) of 2–9 TECU [17]. Ciraolo et al. [18], in
a calibration process, determined the interfrequency bias (IFB) of a pair of receivers, which

ranged from 1.4 to 8.8 TECU. This paper aims to assess the quality of TEC and the error in the

L1 carrier estimated with the Mod Ion, from GPS observables and integration with the ones

from GLONASS, collected with dual frequency receivers.
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The paper is organized as follows. In Section 2 there is a brief description of impact

of the ionosphere on the propagation of GNSS signals; Section 3 describes the equations,

based on the geometry-free linear combination of observables collected with dual frequency

receivers, used in the Mod Ion, as well as gets the TEC and the systematic error due to

the ionosphere in the L1 carrier, and some aspects of adjustment by the least squares; the

results and analysis of the experiments in order to verify the quality of the TEC provided by

model, as well as the IFB of the satellites and receivers are presented in Section 4; based on

the experiments, conclusions and future works will be presented in Section 5.

2. Impact of the Ionosphere on the Propagation of GNSS Signals

The terrestrial atmosphere, for practical purposes, can be considered as a set of gas layers,

spherical and concentric to the Earth. Its structure is related to various thermal, chemical, and

electromagnetic elements. These combined parameters vary depending on the time, latitude,

longitude, time of year, and solar activity.

With respect to the propagation of electromagnetic waves, the Earth’s atmosphere

is divided into ionosphere and troposphere. In this division, the troposphere is the layer

between the Earth’s surface up to 50 km in height. It is composed of neutral particles, and

the highest concentration of gas is found on up to a height of 12 km, consisting of nitrogen,

oxygen, carbon dioxide, argon, water vapor, among others. The propagation of the signal in

the troposphere depends mainly on the water vapor content, air pressures, and temperature.

For frequencies below 30GHz, the refraction does not depend on the frequency of the signal

transmitted [16].
The ionosphere is defined as the portion of the upper atmosphere, where there is

sufficient ionization to affect the propagation of radio waves [19]. Unlike the troposphere,

it is a dispersive medium; that is, in this case, signal propagation depends on the frequency. It

is characterized mainly by the formation of ions and electrons, and it starts at around 50 km,

extending to approximately 1000 km in height.

In the region covered by the ionosphere, the electron density is sufficient to alter the

propagation of electromagnetic waves. The ions and free electrons in the ionosphere are

mainly created by the process of photo ionization. The ionospheric photo ionization is the

absorption of solar radiation, predominantly in the range of extreme ultraviolet and X-rays

by neutral atmospheric elements [19–21]. The ionosphere as a dispersive means affects the
modulation and phase of the carrier, causing, respectively, a delay and an advance [16]. The
delay is also referred to as ionospheric delay and increases the apparent length of the path

traveled by the signal.

The troposphere effects on GNSS signals are usually reduced by processing techniques

or determined directly by models. Since it is not possible to assess the atmospheric pressure

and temperature along the route of the signal through the neutral layer, there are several

models available, which correct for 92% to 95% of this effect [22]. In contrast, the ionosphere

effect, which depends on frequency and, hence, on the refractive index proportional to the

TEC, that is, to the number of electrons present along the path between the satellite and the

receiver. If the TEC values were constant, the effects caused by the ionosphere would be easy

to determine. The problem is that the TEC varies in time and space, in relation daytime,

season, solar cycle, geographical location of the receiver and Earth’s magnetic field, and so

forth. Besides the refraction effect, these variations can cause the receiver to go out of tune

with the satellite, by weakening the signal strength, the specific case of the phenomenon

known as scintillation.



4 Mathematical Problems in Engineering

Table 1: Maximum vertical ionospheric range error (m).

Frequency 1st-order effect (1/f2) 2nd-order effect (1/f3) 3rd-order effect (1/f4)
L1 32.5 0.036 0.002

L2 53.5 0.076 0.007

L0 0.0 0.026 0.006

The ionosphere effects are divided into effects of 1st, 2nd, and 3rd order. Table 1 shows

the maximum error in the vertical direction, which can be expected for the GPS L1, L2 carriers

and for the ionospheric free linear combination (L0). For inclined directions, the influence

increases [1].
The error or effect of 1st order, due to the ionosphere in phase (Is

fr
) and pseudorange

(Is
gr) along the satellite direction (s) and receiver antenna (r), is given according to the TEC

and the frequency of the signal (f) [3, 16]:

Is
fr = −40.3

f2
TEC, (2.1)

Is
gr =

40.3

f2
TEC. (2.2)

According to (2.1) and (2.2), we can see that the errors due to the ionosphere

for the phase and pseudorange have the same magnitude but opposite signs. Both are

proportional to the TEC and inversely proportional to the square of the frequency of the

carrier. The TEC unit (TECU) is given in electrons per square meter (el/m2) and the

constant 40.3mHz2(el/m2)−1. The effect of first order can be obtained from the free geometry

linear combination using observables collected with GPS receivers and/or dual frequency

GPS/GLONASS, and the remaining error represents a few centimeters [1].
The effect of second order of the ionosphere depends on, besides the TEC and the

frequency, geomagnetic induction at the point where the signal passes through the layer of

the ionosphere and the angle of the signal in the geomagnetic induction vector. Unlike the

effect of first order which is the same and has opposite signals to the phase and pseudorange,

the one of the second order of the phase is half of the second-order effect of the group [23].
But the effect of third order does not depend on the magnetic field, but is a function

of maximum density of electrons, at the phase the effect is equivalent to one third of the

pseudorange effect [23].

2.1. Regular Variations of the TEC

The regular temporal changes of the TEC include daytime and seasonal variations and cycles

of long periods. The daytime variation is mainly due to Sunlight, that is, solar radiation.

Throughout the day, the density of electrons depends on the local time, with its peak

occurring between 12 and 16 local times [24]. In the low latitude equatorial region, a second

peak occurs in the hours preceding midnight, especially in periods close to the equinoxes and

to the summer and during periods of high solar activity.



Mathematical Problems in Engineering 5

Seasons also influence variation in electron density, due to the change in the zenithal

angle of the sun and the intensity of the ionization flow, characterizing seasonal variations.

During the equinoxes, the effects of the ionosphere are bigger, whereas in the solstices, they

are smaller [5].
Changes in long-period cycles, with cycles of approximately 11 years, are associated

with the occurrence of sunspots and the increase of ionization and thus the TEC is

proportional to the number of spots.

The geographic location also influences the variation of the density of electrons in the

ionosphere, because the overall structure of the ionosphere is not homogeneous. It changes

with latitude, due to the variation of the zenithal angle of the Sun, which influences directly,

the level of radiation, which changes, in turn, the density of electrons in the ionosphere.

The equatorial regions are characterized by a high density of electrons and have a high

spatial variation. The regions of middle latitudes, however, are considered relatively free

from ionospheric abnormalities, presenting a more regular behavior, close to that described

by theoretical models. The ionosphere over the north and south poles, alternatively, known

as polar or high latitudes ionosphere, is extremely unstable [20]. More details on the changes

of regular TEC can be obtained, for example, from [19, 20].

3. Regional Ionosphere Model (Mod Ion)

The Mod Ion was developed in FCT/UNESP to represent the ionosphere in an analytical

way [3]. The parameters of the model are estimated from data collected with dual frequency

GNSS receivers. With the introduction of several receivers it was possible to also estimate the

systematic error due to satellites and receivers, called Differential Code Bias (DCB) or IFB,
caused by the signal route on the hardware of satellites, until it was spread out on space, and

on antenna cables and hardware of receivers, until the signal decorrelation.

The adjustment by the Least Squares Method (LSM) with constraints is used in bath

in the process of estimating the parameters of the model. The GNSS observable used in the

calculation of the TEC or the systematic error due to the ionosphere in the L1 carrier is the

pseudorange filtered by the carrier phase [25]. The original observable can also be used as

well as the carrier phase.

3.1. Ionospheric Model

Models that use GNSS data are based on the geometry-free linear combination of observables

collected with dual frequency receivers. In the derivation of the model, errors due to

nonsynchronism of the satellite and receiver, ephemeredes and the tropospheric refraction

are neglected, since their effects contaminate both frequencies the same way and do not affect
the validity of results.

The model is based on the difference between the pseudoranges of the carriers L2 and

L1, with frequencies f2 and f1 of signals generated by the satellites that are part of the GNSS

[3]:

P s
2r − P s

1r = Is
2r − Is

1r +
(

Ss
p2 − Ss

p1

)
+
(
Rp2 − Rp1

)
+ εp21. (3.1)
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From (2.2) we have

Is
2r − Is

1r = 40.3TECs
f2
1 − f2

2

f2
1f2

2

= Is
1r

f2
1 − f2

2

f2
2

, (3.2)

thus

FTEC
(
P s
2r − P s

1r

)
= TECs

r + FTEC
[(

Ss
p2 − Ss

p1

)
+
(
Rp2 − Rp1

)]
+ FTECεp21 (3.3)

or

FI1
(
P s
2r − P s

1r

)
= Is

1r + FI1
[(

Ss
p2 − Ss

p1

)
+
(
Rp2 − Rp1

)]
+ FI1εp21. (3.4)

Equation (3.3) is the observation equation of Mod Ion used to calculate the TEC in the

satellite/receiver direction. The unknowns (Ss
p2 −Ss

p1) and (Rp2 −Rp1) represent, respectively,
the IFBs of satellites and receivers, and εP21 represents another differential remaining errors

(multipath, receiver noise, etc.), where FTEC = f2
1f2

2/40.3(f2
1 − f2

2 ), in general representing a

constant for the GPS satellites and particularly for each of the GLONASS satellites.

By (3.4), one can calculate the ionospheric delay, that is, ionospheric error (Is
1r) in the

L1 carrier, in the satellite/receiver direction, with FI1 = f2
2/(f2

1 − f2
2 ).

The TEC or the ionospheric delay along the path of the satellite/receiver can be

obtained according to the VTEC or the vertical ionospheric delay (Iv
1 ), by the expression,

assigned as standard geometric mapping function (1/cos z′), which provides the slant factor,

like this

TECs
r =

VTEC

cos z′s
r

(3.5)

or

Is
1r =

Iv
1

cos z′′s
r

(3.6)

for a receiver (r), z′s is the zenithal angle of the signal path from the satellite (s) to a

ionospheric point located in a ionospheric layer, for example, of 400 km of height. Then

FTEC
(
P s
2r − P s

1r

)
=

VTEC

cos z′s
r

+ FTEC
[(

Ss
p2 − Ss

p1

)
+
(
Rp2 − Rp1

)]
+ FTECεp21 (3.7)

or

FI1
(
P s
2r − P s

1r

)
=

Iv
1

cos z′s
r

+ FI1
[(

Ss
p2 − Ss

p1

)
+
(
Rp2 − Rp1

)]
+ FI1εp21. (3.8)
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Due to the periodic nature of the effect, to model the diurnal behavior of the VTEC or

the error in the L1 carrier [10] use the series

VTEC or IV1 = a1 + a2B
s +

n=4∑
i=1

j=2i+1

{
aj cos(iBs) + aj+1 sin(iBs)

}

+ an∗2+3h2 +
m=4∑
i=1

j=2i+10

{
aj cos(ihs) + aj+1 sin(ihs)

}
.

(3.9)

The variable Bs represents geographic latitude of the subionospheric point (projection
of a point on ionospheric layer on the earth surface) and variable hs is given as

hs =
2π

T

(
t − 14h

)
, (3.10)

where T represents the 24-hour period and t the local time of the subionospheric point.

The total number of parameters of the model is given by 4∗4 + 3 + r + s, where the

4∗4+3 represent the coefficients of the series, r is the receivers IFB, a total equal to the number

of receivers used in the network, and s is the satellites IFB, which is equal to the number of

satellites tracked to determine the parameters of the model.

In adjustment by least squares, matrix A shows rank deficiency, equal to two. This

implies that satellite or receivers IFBs have to be determined for two of them, one regarding

GPS and the other regarding GLONASS. Thus, the constraints were imposed in one of the

GPS/GLONASS receivers.

4. Experiments, Results, and Analysis

The experiments were performed at the Laboratory of Space Geodesy of the FCT/UNESP,

where 4 dual frequency GPS/GLONASS receivers were connected to a TRM 55971.00 Zephyr

GNSS Geodetic Model 2 Antenna, using a splitter with 4 outputs. Data were collected for 15

days in the year 2007 (132 to 137, 153 to 157, and 173 to 177) using 2 Topcon TPS HYPER

GGD (H826 and H819), TRIMBLE NTR5, and LEICA GRX1200 GGPRO receivers. Two

experiments were conducted, the first using only GPS observables, and the second aiming

the integration of GPS and GLONASS systems. The experiments were conducted using data

in RINEX format, with observables collected every 15 seconds, with 20 degrees elevation.

The precise ephemerides and satellite clocks of the International GNNS Service (IGS) were

used. It is worth mentioning that all experiments passed the quality control of adjustment

and, according to the Dst geomagnetic index, the observables were collected in condition of

weak geomagnetic storm (−30 nT to −50 nT), and that on days in question they did not exceed

−25 nT.
Receiver H826 was chosen as a reference for estimation of IFBs, and relatively

constrained as zero and weight tending to infinity, since the value of the receivers IFB is

unknown. Some GLONASS satellites did not participate in some days, for being under main-

tenance in the quoted period (http://gge.unb.ca/Resources/GLONASSConstellationPlot

.pdf).
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Figure 1: GPS satellite IFB—Error in TEC.
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Figure 2: GPS receiver IFB—Error in TEC.

It was yet adopted as a criterion for rejection of the observables, the standard one,

which represents the upper limit of change in the TEC for static users, given by 0.1 × 1016

(el/m2) per second [26]. This value represents 0.085Hz in L1 (GPS) and corresponds to

0.0163m/s of change in pseudoranges due to the ionospheric effect. The differences between

consecutive linear combinations bigger than 0.0163m/s imply the rejection of the observables

used to estimate the parameters of the model.

4.1. Satellites and Receivers IFBs Obtained with GPS Observables

Using established procedures, the satellite and receiver IFBs were estimated, as well as the

coefficients of the series that allows the calculation of the VTEC considering only the GPS

observables. On Figures 1 and 2, the satellites and receivers IFBs are presented, in TECU.

Experiments 1 to 5 correspond to the days of the year 133 to 137 of 2007, 6 to 10 correspond

to days 153 to 157/2007, and 11 to 15 correspond to days 173 to 177/2007.
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Figure 3: GPS satellite IFB—Error in L1.

Analyzing Figure 1, we find that the satellites IFBs showed a similar behavior, except

for satellite 2 (G2) in the 4th and 5th experiments, and satellite 16 (G16), whose variation was

10.658 TECU. This behavior shows that the systematic errors of the satellites are not stable.

It is worth mentioning that the IFBs of satellites include the IFB of receiver H826 which was

adopted as reference. The Root Mean Square (RMS) error indicates that you can estimate the

IFBs of satellites with precision, better than 2.735 TECU.

The receiver IFB of H826 was constrained as being zero, the values receivers IFBs

were estimated in relation to the receiver. On Figure 2, we observed that receivers showed

a behavior very similar and stable, but with different values for each. Receiver H819 features

an IFB very close to the one adopted as reference, with an average of −0.500 TECU. For

receivers NETR and LEIC, the values were, for the trial period, respectively, −41.510 and

−42.564 TECU. The variation of the IFB of receivers was around 9 times less than the ones of

satellites, indicating the stability of the receivers. The RMS indicates that one can estimate the

IFBs of receivers with accuracy better than 0.329 TECU.

Regarding IFBs in L1 carrier, which represent the systematic error that affects GPS

observables made in L1, values can be obtained using (2.2) or through the Mod Ion. To

determine the error in GPS L2 carrier can also be used by the same equation or multiply the

error in L1 by the constant 1.64694. Figures 3 and 4 show IFBs due to satellites and receivers

for L1 carrier, in units of m, respectively.

The error in the L1 carrier due to satellites showed RMS better than 0.444m and the

receivers better than 0.054m.

4.2. VTEC Obtained with GPS Observables

From geometry-free linear combination (see (3.3)), applying the correction of IFBs due to

satellites and receivers can get a set of values of VTEC for each of the 4 receivers. To calculate

the differences of VTEC, they took as reference the value obtained from the 19 coefficients

estimated for the series (see (3.9)), which analytically represents the ionosphere. Figures 5 to

7 show the discrepancies of VTEC in the quoted period. For each of the experiments it is also

presented the values of VTEC determined analytically, and used as reference.



10 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Experiments

−8

−6

−4

−2

0

E
rr
o
r
in

L
1
(m

)

IFB-receivers

H819

NETR

LEIC

Figure 4: GPS receiver IFB—Error in L1.

Analyzing Figures 5, 6, and 7, we see that the values of VTEC did not exceed 30 units,

because the experiments were conducted over a period of low solar activity. The receivers

of the same manufacturer (H826 and H819) have the same behavior for the discrepancies

of VTEC, and the daily average is less than −0.227VTEC units, the RMS indicates that

the precision with which the VTEC is estimated is better than 2.365 units, and the biggest

discrepancy was −10.917 units. The behavior of receiver NTER is noisier and the daily

average and RMS of discrepancies are better than, respectively, −0.244 and 2.396VTEC units.

Regarding receiver LEIC, there is a little higher value than the other, with daily average of

discrepancies of up to −0.337 units and RMS of 2.713VTEC units. The modeling also shows

a systematic error, as all the daily average of discrepancies show the same bias, that is, the

same signal.

4.3. Satellites and Receivers IFBs Obtained with GPS/GLONASS Observables

In this experiment for the weight of GLONASS observables was assigned a scale factor of 1/2

on the GPS, because fundamental frequency is half the frequency of the GPS. The experiment

was conducted only with data collected between the days of the year from 133 to 137 of 2007,

and receiver LEIC did not participate because it did not collect GLONASS observables in

this period. In Figure 8, it is presented the IFBs due to GPS and GLONASS satellites and, in

Figure 9, the ones due to receivers.

On Figure 8, we find that the GPS satellites IFBs had a very similar behavior,

contrary to what occurred with the most part of GLONASS satellites. For GPS satellites,

in relation to IFBs determined only with GPS observables, the biggest difference to the

RMS was 1.675 TECU (G14). The GLONASS satellites showed the biggest variation in

the determination of IFBs, reaching 36.191 TECU, with the RMS value of 12.727 TECU

(R14).
GPS receiver IFBs (Figure 9) are much more stable than those of the GLONASS

receivers. In the previous experiment, the biggest difference of the averages for the GPS did

not exceed 0.567 TECU, with RMS of 0.164 TECU. The IBFs related to GLONASS observables

have much variation in the order of up to 13.167 TECU, with values very dispersed in

relation to the average, with RMS being 3.994 and 4.364 TECU, respectively, for H819 and

NETR.
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Figure 5: VTEC and discrepancies (GPS: 133 to 137/2007).

4.4. VTEC Obtained with GPS/GLONASS Observables

To evaluate the quality of the TEC obtained with Mod Ion, a modeling was conducted using

the GPS and GLONASS observables simultaneously. Figure 10 shows the daily difference in

the quoted period, including the modeled VTEC.
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Figure 6: VTEC and discrepancies (GPS: 153 to 157/2007).

The behavior of the VTEC discrepancies (Figure 10) regarding receivers H826, H819,

and NETR are similar, the daily average is less than −0.891VTEC units and RMS is better

than 4.929VTEC. The biggest discrepancy was −30.409VTEC units, related to the influences

of GLONASS satellites.
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Figure 7: VTEC and discrepancies (GPS: 173 to 177/2007).

5. Conclusions and Future Works

Results showed that, when using only GPS observables, you get the estimation of satellites

IFBs with RMS better than 2.735 TECU, and better than 0.329 TECU for those of receivers.
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It represents, respectively, in L1 carrier, errors of 0.444m and 0.054m, respectively, for

satellites and receivers used. The RMS obtained for the estimation of the VTEC is better than

2.713 units, which for L1 carrier is an error of 0.441m. The RMS obtained by integrating GPS

and GLONASS was better than, respectively, for the satellites and receivers IFBs and VTEC

of 12.727, 4.364 TECU, and 4.929VTEC units, representing an error of 6.568m in L1 carrier,

0.709m, and 0.800m respectively. Out of experiments conducted, it is concluded that the GPS

observables show better quality than when combined with GLONASS, and compatible with

the final values determined with GIM, which is about 2–8 TECU.

Also, new experiments will be conducted using data collected in times of minimum

and maximum solar activity, because the solar cycle is the period of minimal activity and

periods of irregularities in the ionosphere, having the performance of the model analyzed

in the result of absolute and relative positioning with one frequency receivers. In the case of

relative positioning, the resolution of ambiguities will also be evaluated.
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Figure 10: VTEC and discrepancies (GPS/GLONASS: 133 to 137/2007).

About receivers IFBs are necessary to develop methodologies to calibrate and

constraint them in themodeling process. It will also be implemented the calculations of effects
of 2nd and 3rd orders in the model, in order to provide all the effects of the ionosphere to the

users of GPS, GLONASS and, in the future, GALILEO.

And finally, with the modernization and expansion of GNSS networks in Brazil, it is

possible to produce maps of the ionosphere in terms of TEC and/or effects on L1 carrier.
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The current Brazilian System of Environmental Data Collection is composed of several satellites
(SCD-1 and 2, CBERS-2 and 2B), Data Collection Platforms (DCPs) spread mostly over the
Brazilian territory, and ground reception stations located in Cuiabá and Alcântara. An essential
functionality offered to the users is the geographic location of these DCPs. The location is
computed by the in-house developed “GEOLOC” programwhich processes the onboardmeasured
Doppler shifts suffered by the signal transmitted by the DCPs. These data are relayed and stored
on ground when the satellite passes over the receiving stations. Another important input data to
GEOLOC are the orbit ephemeris of the satellite corresponding to the Doppler data. In this work,
the impact on the geographic location accuracy when using orbit ephemeris which can be obtained
through several sources is assessed. First, this evaluation is performed by computer simulation of
the Doppler data, corresponding to real existing satellite passes. Then real Doppler data are used to
assess the performance of the location system. The results indicate that the use of precise ephemeris
can improve the performance of GEOLOC by reducing the location errors, and such conclusion can
then be extended to similar location systems.

Copyright q 2009 Claudia C. Celestino et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The Brazilian System of Environmental Data Collection (SBCDA) can be organized in three

subsystems: the space subsystem, the data collection ground subsystem, and the tracking

and control ground segment [1, 2]. The space subsystem is composed of SCD-1, SCD-2,

CBERS-2, and CBERS-2B satellites. The ground subsystem of data collection is composed of
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Figure 1: Typical meteorological data collection platform.

hundreds of Data Collection Platforms (DCPs) that are deployed on ground, fixed or mobile

(see Figure 1). The INPE’s tracking and control ground segment is composed of the Satellite

Control Center and Ground Stations in Cuiabá and Alcântara.

In this system, the satellite works as a message retransmitter, that is, providing a

communication link between data collection platform (DCP) and a reception ground station.

One of the functionalities offered by the system is the Geographic Location of the DCPs. The

location is computed by the in-house developed “GEOLOC” program which processes the

Doppler shifts suffered by the signal transmitted by the DCPs, together with a statistical least-

squares method [3, 4]. The DCPs transmit data signals to the satellites in the UHF frequency

band. Aboard the satellite, the DCP is identified and the payload data and the received

frequency data are relayed to the tracking reception station. Then, the Geographical Location

software GEOLOC developed by INPE is fed with Doppler shift data and the corresponding

satellite orbit ephemeris. In general the most common format of orbit ephemeris exchange

is the Two Line Elements (TLE) set [5, 6]. The TLEs can be obtained through the Satellite

Control Center at INPE or through Internet, for example, [5]. The TLE format is composed

of seven parameters and time and is basically defined by orbital mean motion, eccentricity,

inclination, right ascension of the ascending node, perigee argument, mean anomaly, and a

modified ballistic coefficient [5, 6]. Figure 2 shows a representation of Two Line Elements

format.

To evaluate the impacts on geographic localization errors generated by the GEOLOC

software, satellite orbit ephemerides from several sources were used such as: accurate PVT

(Position, Velocity, Time), TLEs from INPE’s Control Center, and TLEs from Internet. Then

actual passes of the satellite were used to compare the errors considering such different orbital
data sources for the location software. To foresee the magnitude of the expected errors, a

comparison with ideal (simulated) case is also performed as detailed in the next section.
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Figure 2: Presentation of the two line elements. Source: [5]

It is expected that conclusions arising from this work can be extended to similar

systems using Doppler data and artificial satellites for location purposes.

2. Data and Work Outline

In order to get a benchmark to allow the analysis of location errors due to orbit ephemeris,

the work followed the following steps.

(i) A survey on the satellite passes (samples) and the feasibility of obtaining the

accurate orbit ephemeris (PVT format) were made to select the test period.

(ii) Three reference DCPs (no. 113, no. 32590, and no. 109) were selected whose

locations are: DCP113 (12.0960◦S, 77.0400◦W), DCP32590 (15.5550◦S, 56.0698◦W), and

DCP109 (5.1860◦N, 52.6870◦W). Such locations are accurate to the GPS level, that is, 10 to

30m. The nominal frequency is 401.650MHz (UHF). The Doppler shift data corresponding

to the passes were obtained by the reception stations of Cuiaba and/or Alcântara, consistent

with the location of the DCPs. The test period was from November, 21st to 27th, 2008.

(iii) The Doppler shift data of SCD-2 satellite passes were considered. The orbit

inclination of this satellite is 25◦, that is, a near equatorial orbit. The orbit ephemerides in

Two Line Element (TLE) format were obtained from both the Satellite Control Center (CCS)
at INPE [7–9] and Internet at [5].

(iv) The accurate orbit ephemerides (PVT format) were provided by the INPE CCS

Orbit Determination System [7] with steps of one minute for each considered day. The

GEOLOC location software was executed with this accurate ephemerides. Then, the accuracy

of the SCD2 satellite orbit ephemerides was verified.

(v) To foresee the magnitude of the error when using TLEs instead of accurate PVTs,

another program simulated the errors for the ideal case.

(vi) The GEOLOC location software was run using the PVT, TLEs from CCS, and TLEs

from Internet, covering 4 SCD2 satellite actual passes. For each satellite pass, considering

the established period above, the reference DCP locations are done using the Doppler shift

measurements and the ephemerides obtained from two different sources (TLEs from both

CCS and Internet). The location errors are compared with the ones obtained using accurate

PVT state vector, considered as reference.
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Figure 3: Location cones.

3. The System for Geographic Location of DCP’s

During the pass of a satellite, the signals transmitted from the DCPs are immediately relayed,

through the satellite, to the reception stations. In the reception station, the signals are received

and the Doppler shifted frequencies, computed on board, are collected. The difference
between the frequency of the received signal and the nominal frequency supplies the Doppler

shift. For each Doppler measure it corresponds to a solid cone of location, whose intersection

with the terrestrial sphere represents the possible positions of the transmitter. The intersection

of the two cones in the altitude sphere supplies two possible position solutions, in a single

pass (Figure 3).
With the apriori knowledge of an approximate position, it is possible to distinguish

which is the correct one. However, because the Doppler measurement is corrupted by several

error sources, a direct solution is not possible. Therefore, one should use statistical methods

to solve the problem.

To do so, the parameters of position location and the ephemeris of the satellite are

related through expression [3, 4]:

h(x) =
(x − X)

(
ẋ − Ẋ

)
+
(
y − Y

)(
ẏ − Ẏ

)
+ (z − Z)

(
ż − Ż

)√
(x − X) 2 +

(
y − Y

) 2 + (z − Z) 2
+ b0 + b1Δt, (3.1)

where x = (x, y, z) and (X, Y, Z) are the position coordinates of the transmitter and the satellite

respectively; (ẋ, ẏ, ż) and (Ẋ, Ẏ , Ż) represent the velocity vectors of the transmitter and the

satellite; b0 and b1 are the bias and drift associatedwith eachDoppler curve;Δt is time interval

from the time of closest approach.
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Figure 4: Typical SCD-2 pass and Doppler curve.

Figure 4 shows an example of a typical pass of satellite SCD-2 over DCP 113 and

Cuiaba reception station. In this figure, the blue line represents positive Doppler shifts, and

the red line the negative ones, with respect to DCP 113. The yellow circles are visibility circles

where the contact with satellite is possible. Also a Typical Doppler curve is depicted.

4. TLE-S Accuracy: CCS and Internet

With the aim at studying the impact of ephemeris accuracy of SCD2 satellite on the location

system, some tests weremade to compare the accuracy of different sources of orbit ephemeris.

Four satellite passes on November 22-23, 2008 were used, and these ephemerides were

compared with TLEs from CCS and Internet.

The CCS carries out precise orbit determination based on ground tracking data of type

“ranging” and Doppler [7]. The orbit determination using “ranging” is called “ranging”

solution, and the orbit determination using Doppler data is called Doppler solution. The

differences between both solutions agree to the level of 15m [10]. The orbit ephemerides are

provided as Inertial True of Date (“True Of Date”) PVTs (Position, Velocity, Time), equally
spaced at one-minute intervals. To recover the ephemeris to the desired time, the PVTs from

CCS are interpolated using a sixth-degree Lagrange polynomial.

CCS provides also TLEs of SCD2. The TLEs obtained from CCS are generated using an

approximate period of one week data. Analyses have shown that the errors, compared to the

PVTs, are zero mean with standard deviations around 300m, however, sometimes presenting

peaks of errors of 1000 to 1500m in along-track (transversal) components [8, 10, 11]. Such
accuracies are consistent with the ones presented elsewhere [12].
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Table 1: Satellite SCD2 passes considered in the comparisons of the orbit ephemeris differences.

Pass
Date Initial time End time

Nov. 2008 (UTC) (UTC)
1 22 17:27:44 17:35:18

2 22 19:13:49 19:25:56

3 23 16:40:25 16:52:32

4 23 18:27:00 18:40:08

The TLEs obtained by Internet are refreshed with a not well-defined periodicity but, in

general, fresh TLEs are available every 2 to 3 days. It is claimed that accuracy [6, 12] enough
for tracking purposes is provided. The orbital ephemerides ofmany satellites are broadcast by

NASA in the TLE format in the electronic addresses of Internet, for example, [5]. To recover

the ephemerides for the desired time, the model SGP4 [6] is conventionally used.

All the ephemerides are in Inertial True of Date (“True Of Date”) system. The inertial

coordinates are transformed to the ECEF system (“Earth Centered Earth Fixed”) of WGS-84

system, taking into account the polar motion and equation of the equinoxes, which are the

most relevant corrections. The SCD2 satellite passes considered in the tests are presented in

Table 1.

From the former considerations, the PVTs from CCS are taken as reference to the

comparisons. Figures 5 (a) and (b) show the differences between the ephemerides using TLE

from Internet (NORAD) and from CCS, respectively, in terms of the radial (R), transversal or
along-track (T), and normal (N) components.

Considering the different ephemerides from PVTs and TLEs of CCS, one observes that

all R, N, and T component differences are inferior to around 450m. On the other hand, the

differences between the PVTs and Internet TLEs present values similar for the R and N com-

ponents; however, the transversal component T presents much higher values near 1000m.

Therefore, for the TLEs from Internet, there is a more pronounced difference in the

transversal component T. It is very likely that it can cause a biased error on the geographic

location, because of the usage of different source of orbit ephemeris.

5. Test Results

In the tests, SCD-2 satellite and three DCPs in different locations were used. The SCD-2

satellite is in a quasi-circular low orbit around of Earth, with 25◦ inclination, and altitude

of 750 km. The 3 DCPs are DCP109, DCP113, and DCP32590.

5.1. Ideal Case

Considering a fictitious ideal case, the Doppler measurements for DPCs 109 and 32590

were simulated computationally using the more precise PVTs provided by the CCS Satellite

Control Center as orbit ephemeris, with SCD2 satellite relayed by the reception station of

Cuiabá. On the other hand, TLEs from Internet and from CCS were used as orbit ephemeris

in the GEOLOC location software, and the results are presented in Table 2. This test gives an

idea of the errors magnitude expected when using ephemeris of different accuracies. For days
21 and 22, of November 2008, the Table shows that these errors are mostly near 1 km, which,

as expected, is a rather direct translation of ephemerides differences as shown in Figure 5.
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Figure 5: Radial (R), Normal (N), and Transversal (T) deviations between CCS PVTs and TLEs from
Internet (a) and from CCS (b).

Table 2: Location errors for a simulated ideal case.

DPC Date Time Internet CCS

no. Nov. 2008 (UTC) TLE error (km) TLE error (km)

109 21 16:29:50 1.07 0.59

109 21 18:14:20 0.67 0.42

109 22 08:31:30 0.99 0.28

109 22 10:19:50 0.83 0.20

109 22 17:27:20 0.88 0.32

109 22 19:13:50 0.85 0.29

109 22 21:02:00 0.61 0.66

32590 21 09:16:40 0.59 0.38

32590 21 11:02:50 0.49 0.27

32590 21 18:09:40 0.94 0.23

32590 22 08:29:50 0.64 0.46

32590 22 10:15:40 1.04 0.32

32590 22 15:36:10 1.25 0.51

32590 22 17:22:30 1.28 0.17

32590 22 19:09:40 0.24 0.42
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Figure 6: Difference between location errors using the PVT location compared to locations from CCS TLE
and NORAD TLE.

5.2. Real Case

In this case, Doppler data relayed by satellite SCD2 and corresponding to days from

November 22–28, 2008, were retrieved from the SBCDA archives for the three DCPs 109, 113,

and 32590. For this actual test case, Doppler data were processed by the GEOLOC software,

and the results are presented in Figure 6. Figure 6 shows the difference in location errors

using all three sources of orbit ephemeris: PVTs from CCS, TLEs from CCS, and TLEs from

Internet. The figure contains, for all 3 DCPs, the location error differences between CCS and

PVT, and TLE and PVT. That is, they show the differences in location when using 3 different
sources of orbital ephemeris. Notice that DCP 32590 presents the highest differences when

using TLEs from Internet (NORAD), similar to what occurred in the simulated ideal case.

6. Conclusions

This article presents the impact on the accuracy when different sources of orbit ephemeris

with heterogeneous accuracies are used to perform location of ground transmitters using

the Doppler shifted data recorded on board satellites. Three different sources were analyzed

(i) precise PVTs (Position, Velocity, Time) arising from INPE’s Control Center orbit

determination system, (ii) TLEs computed by INPE’s Control Center on weekly basis, and

(iii) TLEs obtained freely from Internet. For a restricted period of 2-day comparison, analyses

show the differences in accuracy which could arise between the different orbit ephemeris

sources. The comparisons showed that the ephemerides have minor and similar differences
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in radial and normal components. Nevertheless, extending the comparison to the transverse

(along-track) component, the difference ranges from 500 to 1000 meters. Therefore, it is

straightforward to conclude that this is the major contributing error to the location system. A

simulated location session using ideal measurements, but with orbit ephemeris of different
accuracy, showed clearly the along track error being transposed to the location error at

similar levels. Actual data confirmed the same behavior. A future work can make use of more

precise orbit ephemerides available via on-board GPS, to confirm the location errors steaming

from ephemeris with different accuracies. At the end, the results point that usage of precise

ephemeris can improve the performance the GEOLOC location system, and such conclusion

can then be extended to similar systems.
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1, pp. 925–930, São José do Rio Preto, Brazil, 2002.

[10] H. K. Kuga, A. R. Silva, and R. V. F. Lopes, “Analysis of accuracy of on-board CBERS-2B satellite GPS
orbital ephemerides,” in Proceedings of the 14th Remote Sensing Brazilian Symposium (SBSR ’09), pp.
2057–2064, Natal, Brazil, 2009.

[11] H. K. Kuga and V. Orlando, “Analysis of on-board orbit ephemeris impact on CBERS-2 image
processing,” in Proceedings of the 18th International Symposium on Space Flight Dynamics (ISSFD ’04),
pp. 543–546, Munich, The Netherlands, October 2004, European Space Agency, (Special Publication)
ESA SP.

[12] R. Wang, J. Liu, and Q. M. Zhang, “Propagation errors analysis of TLE data,” Advances in Space
Research, vol. 43, no. 7, pp. 1065–1069, 2009.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2009, Article ID 147326, 19 pages
doi:10.1155/2009/147326

Research Article
Simulations under Ideal and Nonideal Conditions
for Characterization of a Passive Doppler
Geographical Location System Using Extension of
Data Reception Network

Cristina Tobler de Sousa,1 Rodolpho Vilhena de Moraes,1
and Hélio Koiti Kuga2

1 UNESP-University, Estadual Paulista, Guaratinguetá, CEP 12516-410, SP, Brazil
2 INPE-DMC, CP 515, S.J. Campos, CEP 12245-970, Brazil

Correspondence should be addressed to Hélio Koiti Kuga, hkk@dem.inpe.br

Received 30 July 2009; Accepted 5 November 2009

Recommended by Maria Zanardi

This work presents a (Data Reception Network) DRN software investigation considering
simulated conditions inserting purposely errors into the Doppler measurements, satellites
ephemeris, and time stamp, to characterize the geographical location software (GEOLOC)
developed by Sousa (2000) and Sousa et al. (2003). The extension of reception stations in Brazilian
territory can result in more precise locations if the network is considered in the GEOLOC. The
results and analyses were first obtained considering the ground stations separately, to characterize
their effects in the geographical location (GL) result. Six conditions were investigated: ideal
simulated conditions, random and bias errors in the Doppler measurements, errors in the satellite
ephemeris, and errors in the time stamp in order to investigate the DRN importance to get
more accurate locations; an analysis was performed considering the random errors of 1Hz in
the Doppler measurements. The results are quite satisfactory and also show good compatibility
between the simulator and the GEOLOC using the DRN.

Copyright q 2009 Cristina Tobler de Sousa et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
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1. Introduction

This work presents the validation, through software simulations, of the passive Doppler

GEOLOC system using extended DRN. The Doppler measurements data of a single satellite

pass over a (Data Collecting Platform) DCP, considering a network of ground reception

stations, is the rule of the DRN. The DRN uses an ordering selection method that merges

the collected Doppler shift measurements through the stations network in a single file. The

preprocessed and analyzed measurements encompass the DCP signal transmission time and
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the Doppler shifted signal frequency received on board the satellite. Thus, the assembly to

a single file of the measurements collected, considering a given satellite pass, will contain

more information about the full Doppler effect behavior while decreasing the amount of

measurement losses, as a consequence of an extended visibility between the relay satellite

and the reception stations.

The simulations software was developed to produce simulated Doppler measure-

ments according to several error simulation scenarios. A test scenario composed by

SCD-2 (Brazilian Data Collecting satellite) and NOAA-17 (National Oceanic Atmospheric

Administration) satellite passes, a single DCP and five ground receiving stations were used.

This software is integrated to the developed GEOLOC system that uses the method of near

real-time (just after data reception) LOCATION of transmitters through satellites [1].
Nowadays there are more than 600 (fixed and moving) DCPs transmitting several

types of payload data (meteorological, hydrological, agricultural, deforestation, CO2 gas

concentration, etc.) through (Low Earth Orbit) LEO satellites. In Brazil, near real-time

LOCATION of transmitters and its monitoring through satellites is particularly useful for

monitoring moving DCPs [2] (drifting buoys in sea or rivers), to track displacements and

habits of animals by fixing minitransmitters on them [3], for checking if the DCP is still in

place, or for insuring that goods reaches the destiny, to monitor emergency location and

rescue of aircraft and ships [4], and others.

The relay satellite measures the Doppler shift suffered by the DCP transmitted signal,

which in turn, together with the payload data, downlinks the Doppler measurements to

ground receiving stations. Such Doppler shift measurements are freely available (passive),
being further processed to compute the DCP location through the location software.

The results and analysis with table and graphics are represented under six conditions:

(1) ideal conditions from simulated Doppler shift measurements;

(2) random Gaussian errors in the Doppler measurements;

(3) bias errors in the Doppler measurements;

(4) errors in the satellite ephemeris;

(5) errors in the time stamp;

(6) errors of 1Hz in the Doppler measurements using DRN.

For the Doppler shift measurements simulations we considered two transmission

intervals: either 600 Doppler measurements per pass (good statistical condition with lots of

measurements, approximately one measurement every second) or 7 Doppler measurements

per pass (realistic condition and not so good statistical scenario, approximately one

measurement every 90 seconds).

2. Geographical Location with Doppler Shift Measurements

Basically the satellite receives the UHF signals from DCPs and relays such signals to ground

reception stations in range. The Doppler shift measurements are computed in the ground

station. In the Data Collection Mission Center, the Doppler measurements are sorted and

merged to input them to the geographic location software, which provides the DCPs location.

When the transmitter and the reception stations are inside the satellite visibility circle

of around 5000 km diameter for 5◦ minimum elevation angle, the nominal UHF frequency

signals periodically sent by the transmitter are received by the satellite and immediately
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Cuiabá
station

DCPs

Figure 1: Brazilian Environmental data collection system and Cuiabá and Alcântara station visibility
circles.

(realtime) sent down to the reception station. The platforms installed on ground (fixed or

mobile) are configured for transmission intervals of between 40 to 220 seconds. In a typical

condition, in which both transmitter and receiver are close enough, this period can last up

to 10 minutes. The DCP messages retransmited by the satellites and received by the Cuiabá

and Alcântara stations are sent to the Data Collection Mission Center located at Cachoeira

Paulista, for processing, storage, and dissemination to the users, as seen in Figure 1.

The difference between the received signal frequency and the nominal frequency

supplies the Doppler shift. The basic principle of transmitter location considers that for each

signal transmitted a location cone is obtained (Figure 2). The satellite is in the cone vertex

and its velocity vector v lies in the symmetry axis. Two different cones of location intercept

the surface and its intersection contains two possible transmitter positions. To find which

of the two ambiguous positions is the correct one, additional information is required, as

for example, the knowledge of an initial approximate position. A second satellite overpass

removes any uncertainties.

The transmitter geographic location can be determined by means of the Doppler

shift of the transmitted frequency due to the relative velocity between the satellite and the

transmitter. The satellite velocity relative to the transmitter (V cosα) in vacuum conditions,

denoted by ρ̇, is given by the Doppler effect [5] equation

ρ̇ =

[(
fr − ft

)
ft

]
c, (2.1)

where fr is the frequency value as received by the satellite; ft is the reference frequency

sent by the transmitter; (fr − ft) is the Doppler shift due to the relative velocity satellite

transmitter; c is the speed of light; α is the angle between the satellite velocity vector V and

the transmitter position relative to the satellite.

The satellite ephemeris generator uses the SGP8 (Special General Perturbation)model

of (North American Aerospace Defense Command)NORAD [6, 7], for obtaining the satellite
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Instant T1

Instant T2P2

P1

Figure 2: Location cones.

orbit at the measured Doppler shift times. The updated ephemeris are used within the

Doppler effect equation to model the observations. Given the observations modeled as

y = h(x) + v, (2.2)

where y is the set of Doppler shifts measured data; v is a noise vector assumed zero mean

Gaussian; h(x) is the nonlinear function relating themeasurements to the location parameters

and function of the satellite ephemeris:

h(x) =

[
(x − X)

(
ẋ − Ẋ

)
+
(
y − Y

)(
ẏ − Ẏ

)
+ (z − Z)

(
ż − Ż

)]√
(x − X)2 +

(
y − Y

)2 + (z − Z)2
+ b0 + b1Δt, (2.3)

where (x, y, z) and (X, Y, Z) are the satellite and transmitter coordinates position; b0 (drift)
and b1 (drift rate) are constants associated with each Doppler curve to account for unknown

bias in the Doppler measurements and a possible drift in the transmitter oscillator; Δt is the

diference time between the first Doppler measurement and the current one.

The nonlinear least squares solution [8] is

H1δx̂ = δy1, (2.4)

where δx̂ = x̂ − x, and H1 is a triangular matrix. The method turns out to be iterative as we

take the estimated value x̂ as the new value of the reference x successively until δx̂ goes to

zero. The H1 matrix is the result of the Householder orthogonal [9] transformation T such

that

[
H1

0

]
= T

[
S1/2
0

W1/2H

]
, (2.5)

where H is the partial derivatives matrix [∂h/∂x]x=x of the observations relative to the state

parameters (latitude, longitude, height, bias, drift, drift rate) around the reference values;
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Figure 3: Reception stations configuring ideal geometry.

W1/2 is the square root of the measurements weight matrix, and S1/2
0 is the square root of the

information matrix.

The δy1 is such that

[
δy1

δy2

]
= T

[
S1/2
0 δx̂0

W1/2δy

]
, (2.6)

where δy is the residuals vector. The final cost function is

J =
∥∥δy1 − H1δx̂

∥∥2 + ∥∥δy2

∥∥2 (2.7)

with ‖δy2‖2 = Jmin, where Jmin is the minimum cost. The whole detailed procedure is fully

described in [10]

3. Results

In this section we show the results of the simulated Doppler shift measurements for ideal

conditions, inserting random errors in the Doppler measurements, bias errors in the Doppler

measurements, errors in the satellite ephemeris, errors in the time stamp and realistic random

errors in the Doppler measurements using DRN.

For this analysis we initially considered the results using ideal conditions from

simulated Doppler shift measurements of a transmitter located in the center of Brazil at

latitude 12.1200◦S and longitude 310.1100◦W and five simulated ground reception stations

configuring the ideal geometry as illustrated in Figure 3.
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Table 1: Ideal conditions.

Satellite
Number of
samples per pass

Mean location error (km)

STA 1 STA 2 STA 3 STA 4 STA 5

SCD-2
600 7.E-5 ± 3.E-5 4.E-5 ± 1.E-5 6.E-5 ± 2.E-5 4.E-5 ± 2.E-5 6.E-5 ± 2.E-5

7 3.E-4 ± 1.E-4 7.E-4 ± 4.E-4 3.E-4 ± 1.E-4 5.E-4 ± 7.E-4 6.E-4 ± 4.E-4

NOAA-17
600 6.E-5 ± 2.E-5 1.E-5 ± 4.E-5 1.E-5 ± 3.E-5 3.E-5 ± 3.E-5 3.E-5 ± 1.E-5

7 2.E-4 ± 1.E-4 2.E-4 ± 1.E-4 3.E-4 ± 1.E-4 1.E-4 ± 7.E-4 2.E-4 ± 8.E-4

The data were gathered from March 10 to 19, 2008. The SCD-2 ephemerides were

provided by the Control Center of INPE and the NOAA-17 ephemerides were obtained from

Internet at “http://www.celestrak.com/”.

3.1. Simulated Doppler Shift Measurements in Ideal Conditions

Table 1 shows results under ideal conditions, without any errors (ideal).
In the third column (mean location error) we have the geographical location mean

errors from the transmitter nominal position. They are listed for the 5 reception stations

(STA1, STA2, STA3, STA4, STA5) of Figure 3, in terms of mean and standard deviations. From

Table 1, we can observe that the mean location errors and their deviation standards for both

SCD-2 and NOAA-17 satellites, in the case of 600 samples (Doppler measurements) per pass,
are around 10−5 km. This is an evidence that the developed GEOLOC software (Sousa, 2000)
using data that simulates ideal conditions provides precise results.

The files corresponding to high sampling rate (600 samples), which represent a

transmission rate of one burst per second yield results one order of magnitude more precise

than the files resulting that from low sampling rate (7 samples or around one transmission

burst each 90 s). This emphasizes that a large number of measurements imply a better

statistical result as expected.

3.2. Random Errors in the Simulated Doppler Measurements

In this section we present the analyses and results of simulated files under nonideal

conditions inserting purposely errors in the Doppler shifts.

With the aim of verifying the effect of inserting Doppler measurements errors, the

estimator of “bias” was turned off. Thus, the GEOLOC assumes that there is no “bias” in the

Doppler measurements.

The random Gaussian errors (zero mean) with 1Hz, 10Hz, and 100Hz (standard
deviations) were inserted in the Doppler measurements. The corresponding results are

presented in Tables 2(a) and 2(b) as follows.

From Tables 2(a) and 2(b) we can observe that as the random errors inserted in the

Doppler measurements increase, the corresponding mean location errors increase.

We can also verify in the mean errors column that the resulting errors for STA 4 were

smaller than for the other stations. This is a consequence of a higher number of measurements

obtained by this station per each satellite pass and occurs because the fourth reception station

is nearby the transmitter, and so they are almost inside the same satellite visibility circle of

around 5000 km diameter for 5◦ minimum elevation angle.
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Table 2

(a) Random errors in the doppler measurements for satellite SCD-2.

Satellite
Number of
samples per

pass

Random errors in the
simulated Doppler
measurements (Hz)

Locations processed
(sum of the 5 stations)

Mean location error for
reception stations STA

1 to STA 5 (km)

0.06 ± 0.02

0.03 ± 0.01

600 1 394 0.03 ± 0.05

0.02 ± 0.04

0.04 ± 0.06

0.36 ± 0.27

0.44 ± 0.22

7 1 408 0.39 ± 0.10

0.31 ± 0.14

0.33 ± 0.22

0.16 ± 0.12

0.14 ± 0.11

600 10 385 0.23 ± 0.05

SCD-2 0.13 ± 0.04

0.34 ± 0.06

2.54 ± 1.51

3.39 ± 2.87

7 10 386 2.43 ± 1.84

2.33 ± 1.78

2.91 ± 1.82

1.68 ± 0.98

1.43 ± 0.03

600 100 385 2.53 ± 1.81

1.12 ± 0.29

2.62 ± 0.48

34.15 ± 23.39

30.74 ± 22.31

7 100 408 24.59 ± 11.46

23.67 ± 12.97

27.37 ± 17.40
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(b) Random errors in the Doppler measurements for Satellite NOAA-17.

Satellite
Number of
samples per

pass

Random errors in the
simulated Doppler
measurements (Hz)

Locations processed
(sum of the 5 stations)

Mean Location error
for reception stations
STA 1 to STA 5 (km)

0.04 ± 0.09

0.06 ± 0.06

NOAA-17 600 1 173 0.06 ± 0.06

0.09 ± 0.08

0.08 ± 0.01

0.31 ± 0.24

0.30 ± 0.17

7 1 157 0.47 ± 0.14

0.29 ± 0.18

0.30 ± 0.15

0.19 ± 0.01

0.18 ± 0.02

600 10 173 0.10 ± 0.02

0.12 ± 0.02

0.28 ± 0.14

2.87 ± 1.00

3.87 ± 2.06

NOAA-17 7 10 154 3.58 ± 1.60

2.00 ± 1.11

3.56 ± 1.18

1.44 ± 0.57

1.69 ± 0.81

600 100 173 1.69 ± 0.31

1.24 ± 0.62

2.71 ± 0.71

34.71 ± 24.55

35.97 ± 25.32

7 100 153 37.86 ± 20.07

21.80 ± 11.69

24.25 ± 15.20

Also when we consider the low sampling (7 measurements) compared to the high

sampling (600 measurements) cases, for the same reason the location errors were about one

order of magnitude higher. Thus, greater measurements quantity during one satellite pass

will provide a better location result.

The conclusion is as expected: to improve the quality of the presented geographical

location results, considering the reception stations independently, it would be necessary to

install more receptions stations around Brazil territory, nearby the transmitters, to get full

Doppler curve reconstitutions without loss of Doppler shift measurements.
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3.3. Bias (Systematic) Errors in the Simulated Doppler Measurements

This section presents the results of purposely inserted bias errors effect in the simulated

Doppler measurements. For the simulation we used the SCD-2 and NOAA-17 satellites

and bias errors of 1Hz, 10Hz, and 100Hz. The results are presented in Table 3 as

follows.

We can observe in Tables 3(a) and 3(b) that, due to the inserted errors in the simulated

Doppler measurements being systematic errors and not random errors nature, the results

considering high and low sampling are in the same order of magnitude. Thus we conclude

that the location errors resulting from bias errors are influenced in a lesser extent by the rate

of the sampling.

Also, considering the differences among the random and biased simulations results,

we can conclude from to Tables 2 and 3 that the random errors are filtered out. They

producemean locations results that tend to zero, mainly for high sampling rate (600measures

per pass). The location errors maintain some consistency and proportionality; thus, high

sampling random errors of 1, 10, and 100Hz result in location errors of 0.02, 0.2, and 2 km,

respectively. For low sampling rate (7 measures per pass) the obtained results are also

consistent: random errors of 1, 10, and 100Hz produce location errors of 0.2, 2, and 20 km,

respectively.

These results obtainedwere expected, due to the errors intrinsic characteristics. We can

conclude that the smaller the measured Doppler error, the smaller becomes the location error,

especially for high sampling rate. The inclusion of biased errors produces more degradation

in the location results than that for random errors.

The GEOLOC location process with tendency (bias) in the Doppler measurements was

calculated without estimating the drift in the measurements; however, these tendencies may

be removed if the bias estimator is turned on in the location algorithm.

3.4. Errors in the Satellite Ephemerides

In this section we present the transmitters location error results considering inserted errors

of 10 km in the satellites ephemerides. This analysis was performed to verify how the

accuracy in the satellites ephemerides impacts the location accuracy. We also included

errors of observation (Doppler measurements) of 10Hz random and/or bias. The results

considering ephemerides errors adding and not adding observation errors are described in

Table 4.

Observing Tables 4(a) and 4(b) we verify that for the obtained locations, both

using SCD-2 and NOAA-17, the largest errors appear when we insert all errors types

simultaneously (see the last line for each satellite). From the table, we can see that the

largest error contribution is due the errors inserted in the ephemerides. The random errors

are filtered by the least squares algorithm and produce marginal inaccuracy. The systematic

errors (bias) result in a greater final inaccuracy, and the added error levels are similar to those

obtained in Table 3 for bias errors.

We can then conclude that the precision in the “two-lines” elements (ephemerides)
produces direct impact in the location accuracy, that is, an error of 10 km in the ephemerides

results in location errors of the same order of magnitude. Therefore considering the analyzed

satellites, we can claim that, in low sampling rate conditions, precisions of 1-2 km order can

only be obtained if the ephemerides errors are less than 2 km and the random and biased

errors lower than 10Hz.
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Table 3

(a) Bias errors in the simulated Doppler measurements for satellite SCD-2.

Satellite
Number of
samples per

pass

Bias errors in the
simulated Doppler
measurements (Hz)

Locations processed
(sum of the 5 stations)

Mean location error for
reception stations
STA1 to STA5 (km)

0.30 ± 0.03

0.27 ± 0.01

600 1 385 0.25 ± 0.05

0.21 ± 0.05

0.22 ± 0.07

0.38 ± 0.09

0.44 ± 0.07

7 1 410 0.30 ± 0.08

0.23 ± 0.02

0.39 ± 0.04

2.99 ± 0.21

2.78 ± 0.52

600 10 385 2.46 ± 0.21

2.10 ± 0.48

SCD-2 2.27 ± 0.70

3.47 ± 0.34

3.34 ± 0.97

7 10 419 2.87 ± 0.46

2.77 ± 0.19

2.90 ± 0.14

21.37 ± 4.88

23.76 ± 6.07

600 100 385 23.82 ± 8.74

20.00 ± 4.80

24.02 ± 8.64

28.72 ± 7.91

30.37 ± 10.05

7 100 420 26.14 ± 9.80

25.48 ± 5.40

26.63 ± 6.83
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(b) Bias errors in the simulated Doppler measurements for satellite NOAA-17.

Satellite
Number of
samples per

pass

Bias errors in the
simulated Doppler
measurements (Hz)

Locations processed
(sum of the 5 stations)

Mean location error for
reception stations
STA1 to STA5 (km)

0.27 ± 0.01

0.24 ± 0.02

NOAA-17 600 1 173 0.31 ± 0.06

0.21 ± 0.05

0.22 ± 0.05

0.32 ± 0.07

0.28 ± 0.07

0.28 ± 0.07

7 1 155 0.24 ± 0.05

0.34 ± 0.05

2.71 ± 0.89

2.41 ± 0.43

600 10 173 2.49 ± 0.39

2.12 ± 0.24

2.19 ± 0.47

3.69 ± 0.59

3.64 ± 0.52

NOAA-17 7 10 161 3.64 ± 0.52

3.22 ± 0.18

3.49 ± 0.91

26.52 ± 2.48

23.56 ± 3.11

600 100 173 27.75 ± 7.81

20.42 ± 2.36

21.994 ± 9.72

28.79 ± 9.93

29.05 ± 5.05

7 100 158 28.23 ± 8.71

21.97 ± 5.72

31.82 ± 10.88

Comparing the presented Tables 2, 3, and 4, we can observe that the mean location

error from the five simulated reception stations considering a transmission burst every 1s

(600 samples per pass) is lower than for a burst every 90 s (7 samples per pass). This shows

the importance of having a high rate DCP transmission burst to gather more Doppler data

and a better location result.

Also, the obtained location results using NOAA-17 satellite are better than those using

the SCD-2 satellite. This occurs because we simulate random errors of 0.1Hz to the NOAA-17

and 1Hz to the SCD-2 in the Doppler shift measurements, which is more consistent with their

respective on board oscillator accuracies [10].
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Table 4

(a) Satellite ephemeris and observed error for satellite SCD-2.

Satellite
Number of
samples per

pass

Errors in the
satellite

ephemeris (km)

Random errors in
the simulated

Doppler
measurements

(Hz)

Locations
processed (sum
of the 5 stations)

Mean location
error for reception
stations STA 1 to

STA 5 (km)

8.48 ± 0.14

8.57 ± 0.13

600 10 No 357 8.53 ± 0.11

8.38 ± 0.13

8.67 ± 0.14

8.84 ± 0.18

8.72 ± 0.11

7 10 “ 410 8.83 ± 0.18

8.59 ± 0.11

8.75 ± 0.07

8.79 ± 0.23

8.71 ± 0.26

600 10 10 random 357 8.74 ± 0.18

8.67 ± 0.18

8.68 ± 0.27

9.19 ± 0.35

9.01 ± 0.27

7 10 “ 410 9.64 ± 0.14

SCD-2 9.77 ± 0.12

9.23 ± 0.32

10.53 ± 0.26

10.96 ± 2.42

600 10 10 biased 357 10.60 ± 0.38

10.76 ± 0.24

10.78 ± 0.43

11.41 ± 0.41

11.10 ± 0.32

7 10 “ 412 11.17 ± 0.21

11.58 ± 0.12

11.50 ± 0.31
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(a) Continued.

Satellite
Number of
samples per

pass

Errors in the
satellite

ephemeris (km)

Random errors in
the simulated

Doppler
measurements

(Hz)

Locations
processed (sum
of the 5 stations)

Mean location
error for reception
stations STA 1 to

STA 5 (km)

10.89 ± 0.32

10.89 ± 0.39

10 random 10.63 ± 0.24

600 10 + 10 biased 357 10.76 ± 0.26

10.81 ± 0.30

11.30 ± 0.37

11.58 ± 0.33

7 10 “ 410 11.99 ± 0.31

11.73 ± 0.23

11.88 ± 0.34

10.65 ± 0.36

10.62 ± 0.37

600 10 10 biased 174 10.44 ± 0.22

10.79 ± 0.26

10.68 ± 0.33

11.72 ± 0.33

11.82 ± 0.32

7 10 “ 155 11.02 ± 0.28

11.04 ± 0.23

11.84 ± 0.36

SCD-2 10.69 ± 0.48

10.62 ± 0.37

10 random 174 10.45 ± 0.14

600 10 + 10 biased 10.21 ± 0.12

10.86 ± 0.34

11.97 ± 0.32

11.47 ± 0.28

7 10 “ 148 11.10 ± 0.36

11.05 ± 0.31

11.36 ± 0.39
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(b) Satellite ephemeris and observed error for satellite NOAA-17.

Satellite
Number of
samples per

pass

Errors in the
satellite

ephemeris (km)

Random errors in
the simulated

Doppler
measurements

(Hz)

Locations
processed (sum
of the 5 stations)

Mean location
error for reception
stations STA 1 to

STA 5 (km)

8.32 ± 0.10

8.22 ± 0.10

600 10 No 174 8.57 ± 0.11

8.12 ± 0.10

8.58 ± 0.12

8.77 ± 0.14

8.87 ± 0.12

NOAA-17 7 10 “ 164 8.70 ± 0.19

8.66 ± 0.11

8.78 ± 0.12

8.62 ± 0.24

8.69 ± 0.27

600 10 10 random 174 8.67 ± 0.15

8.55 ± 0.14

8.71 ± 0.28

9.56 ± 0.21

9.15 ± 0.21

7 10 “ 160 9.11 ± 0.31

9.58 ± 0.10

9.19 ± 0.31

10.65 ± 0.36

10.62 ± 0.37

600 10 10 biased 174 10.44 ± 0.22

10.79 ± 0.26

10.68 ± 0.33

11.72 ± 0.33

11.82 ± 0.32

NOAA-17 7 10 “ 155 11.02 ± 0.28

11.04 ± 0.23

11.84 ± 0.36

10.69 ± 0.48

10.62 ± 0.37

10 random 10.45 ± 0.14

600 10 + 10 biased 174 10.21 ± 0.12

10.86 ± 0.34

11.97 ± 0.32

11.47 ± 0.28

7 10 “ 148 11.10 ± 0.36

11.05 ± 0.31

11.36 ± 0.39
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The SCD-2 satellite ephemerides used are computed just once a week by the INPE

Control Center of São José of Campos. In order to improve the quality of the obtained results

it would be necessary that the ephemerides be calculated with a higher precision, that is, it is

recommended a daily computation instead of a week one. The NOAA satellite ephemerides

used are obtained with high precision by (Collecte Localisation Satellites) CLS/Argos using

their own method and not supplied to the public. The two-line format NOAAs ephemerides

supplied by Internet site, like SCD-2’s, are also imprecise, according to [1].
From the tables’ results, we conclude that it is fundamental to minimize the errors

in the satellite ephemerides, because the location algorithm cannot compensate for them.

The errors inserted in the satellites ephemeris are approximately similar in magnitude to the

resulting errors in the transmitters’ location.

3.5. Errors in the Time Stamp

In this section we present the results and analysis of inserted errors of 1 and 0.1 seconds

ahead in each transmitted signal frequency time stamp. This analysis was accomplished to

verify how the accuracy in time impacts the location accuracy. The results are described in

Table 5.

Observing Table 5 we verify that the mean location error values increase in the same

order the errors in the time stamp increase. We can also conclude that a time delay of up to

1 s regarding the uplink signal transmitted to the satellite can cause an inaccuracy of up to

10 km in the location.

Thus, to avoid losing the quality on the transmitters geographic location results

the measurements time tagging should be very stable; otherwise we will have one more

unexpected error in the final location result.

4. Simulation Using the (Data Reception Network) DRN

In Section 3 we showed the analyses of the location results using collected measurements of

several reception stations during a satellite pass and the impact of inserting errors on the

transmitters geographical locations. Now the main goal of this present section is to show the

location results when merging the Doppler measurements of all reception stations during the

satellite pass in the location algorithm. We notice that using this approach, the final location

results enhance considerably.

In this section the simulations consider a (Data ReceptionNetwork)DRN composed of

five reception stations according to Figure 3. We insert random errors of 1Hz in the Doppler

shift measurements and consider one transmission each 90 s for a period of 10 minutes of the

SCD-2 and the NOAA-17 satellite passes.

Tables 6 and 7 present the location errors considering five reception stations separately

and as a network (DRN) during March 10 and 11, 2008.

In Tables 6 and 7, the first and second columns of the tables present the day and hour

of each satellite pass. The next six columns present the location errors inserting random error

of 1Hz in the simulated Doppler measurements, over (sign /) the respective measurements

amount obtained during the satellite pass.

The last column shows the location errors using the DRN network. In the cells without

results, the symbol “—” means that there were no data to compute the location. As shown in

the last column, when we use the DRN to merge data from the five reception stations, we can

obtain results that were not present before, as well as improved results.
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Table 5: Errors inserted in the time stamp.

Satellite
Number of
samples per

pass
Error in the time (seg) Locations processed

(sum of the 5 stations)

Mean location error for
reception stations STA

1 to STA 5 (km)

1.54 ± 0.13

1.16 ± 0.30

600 1 385 1.02 ± 0.46

0.71 ± 0.23

0.90 ± 0.23

9.35 ± 0.16

8.96 ± 0.41

7 1 411 8.88 ± 0.36

SCD-2 7.48 ± 0.17

8.28 ± 0.18

0.18 ± 0.39

0.11 ± 0.19

600 0.1 385 0.10 ± 0.13

0.08 ± 0.05

0.09 ± 0.09

1.03 ± 0.14

1.05 ± 0.50

7 0.1 411 1.11 ± 0.02

0.89 ± 0.09

0.97 ± 0.29

1.29 ± 0.10

1.68 ± 0.20

600 1 173 1.68 ± 0.30

2.13 ± 0.13

2.33 ± 0.23

11.81 ± 0.17

8.87 ± 0.14

7 1 166 7.94 ± 0.19

NOAA-17 9.51 ± 0.13

9.51 ± 0.13

0.47 ± 0.19

0.62 ± 0.21

600 0.1 173 0.62 ± 0.31

0.64 ± 0.16

0.22 ± 0.24

1.26 ± 1.28

0.85 ± 0.17

7 0.1 170 1.09 ± 0.29

0.65 ± 0.17

0.65 ± 0.27
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Table 6: Location error considering the DRN and SCD-2.

Location error (km) with simulated

Doppler measurements (with 1Hz

March 2008 random error and transmission /Number of samples per pass:

burst of 90 s), using the following

reception stations

Day Hour STA 1 STA 2 STA 3 STA 4 STA 5 All 5 stations

10 10 0.28/6 0.31/7 0.16/7 0.39 /9 0.46/9 0.14/38

10 12 0.12/6 0.08/6 0.16/9 0.12/9 0.11/8 0.05/38

10 14 0.36/3 0.41/4 0.15/8 0.30/8 0.22/6 0.05/29

10 16 — 0.61/5 0.29/8 0.16/7 0.17/6 0.13/26

10 17 0.31/5 0.51/5 0.18/7 0.13/8 — 0.11/25

10 19 0.30/8 0.31/7 0.25/6 0.14/8 0.25/8 0.13/37

10 21 0.15/7 0.03/5 — 0.47/6 0.38/7 0.02/25

11 08 0.07/6 0.21/7 — 0.09/6 0.14/7 0.07/26

11 09 0.26/7 0.08/7 0.35/7 0.17/9 0.35/9 0.08/39

11 11 0.08/5 0.07/6 0.06/8 0.19/8 0.18/8 0.03/35

11 13 1.36/4 0.95/4 0.13/8 0.15/8 0.19/6 0.12/30

11 15 — 0.19/5 0.06/8 0.20/8 0.09/6 0.04/27

11 17 0.61/4 0.35/6 0.06/8 0.16/8 0.32/7 0.03/33

11 18 1.79/8 0.13/6 0.99/7 1.55/9 0.69/7 0.03/37

11 20 0.17/8 0.17/6 0.61/3 0.30/7 0.14/7 0.12/31

Table 7: Location error considering the DRN and NOAA-17.

Location error (km) with simulated

Doppler measurements (with 1Hz

March 2008 random error and transmission /Number of samples per pass:

burst of 90 s), using the following

reception stations

Day Hour STA 1 STA 2 STA 3 STA 4 STA 5 All 5 stations

10 00 0.09/6 0.05/9 0.06/6 0.05/9 0.11/8 0.02/38

10 02 0.14/4 — 0.10/5 0.38/5 — /1 0.07/15

10 12 —/— 0.08/7 0.26/4 0.14/6 0.08/7 0.06/24

10 13 0.17/7 0.20/5 0.25/6 0.43/8 0.12/6 0.07/32

11 00 0.13/4 0.50/7 0.48/4 0.19/7 0.41/7 0.28/29

11 02 0.52/6 — 0.66/5 0.22/7 0.55/5 0.03/23

11 11 — 0.49/5 0.57/3 0.64/4 0.34/4 0.13/16

11 13 0.11/7 0.17/7 0.15/6 0.26/8 0.10/8 0.05/36

In most of the results the locations obtained for satellite passes with a larger number

of measurements are better than those for smaller number of measurements.

As we see in the last column, the quality of the obtained results was improved when

considering measurements collected by all reception stations compared to one single station

alone. Therefore, there is an enhancement in the location results when generated using the

DRN. For example we notice in Table 7 that Stations 2 and 5 (STA 2 and STA 5) on day 10
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at 02 o’clock have only 0 and 1 data points, respectively, insufficient for a location. When we

merge the whole data set (all other stations), the Doppler curve is fully recovered and the

location error drops (improves) drastically to 0.07 km.

5. Conclusions

We conclude that the developed GEOLOC is operating appropriately as we can see by the

obtained results under ideal conditions, say, without errors in the Doppler measurements,

ephemeris, and time.

Considering the random and biased simulations results, we conclude that the random

errors are filtered out by the least squares algorithm. They produce mean locations results

that tend to zero error, mainly for high sampling rate (600 measures per pass). The

simulation results considering biased errors yield errors that equally degrade the location

for both sampling rates (600 and 7). The inclusion of biased errors degrades the location

results more than the random errors. From the tables with results inserting errors in the

satellite ephemerides, we can conclude that it is fundamental to minimize such errors,

because the location system cannot compensate for them. The satellites ephemeris errors are

approximately similar in magnitude to their resulting transmitters’ location errors.

The simulation results using the DRN showed that to improve the location results

quality it would be necessary to have more Reception Stations than the existing Cuiabá,

Cachoeira Paulista, and Alcântara, spread over the Brazilian territory, to increase the data

amount. Then, on the other hand, it improves the geometrical coverage between satellite and

DCPs, and recovers better the full Doppler curves, yielding as a consequence more valid and

improved locations.

Acknowledgment

The authors thank FAPESP (Process no. 2005/04497-0) for the financial support.

References

[1] C. T. Sousa, H. K. Kuga, and A. W. Setzer, “Geo-Location of transmitters using real data, Doppler
shifts and Least Squares,” Acta Astronautica, vol. 52, no. 9, pp. 915–922, 2003.

[2] M. Kampel and M. R. Stevenson, “Heat transport estimates in the surface layer of the Antarctic polar
front using a satellite tracked drifter—first results,” in Proceedings of the 5th International Congress of the
Brazilian Geophysical Society, São Paulo, Brazil, September 1997.

[3] C. M. M. Muelbert, et al., “Movimentos sazonais de elefantes marinhos do sul da ilha elefante,
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1. Introduction

In orbit determination of artificial satellites, the dynamic system and the measurements

equations are of nonlinear nature. It is a nonlinear problem in which the disturbing forces

are not easily modeled. The problem consists of estimating variables that completely specify

the body trajectory in the space, processing a set of information (pseudorangemeasurements)
related to this body. A tracking network on Earth or through sensors, like the GPS receiver

onboard Topex/Poseidon (T/P) satellite, can collect such observations.

The Global Positioning System (GPS) is a powerful and low cost means to allow

computation of orbits for artificial Earth satellites by means of redundant measurements. The

T/P is an example of using GPS for space positioning.
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The Extended Kalman Filter (EKF) implementation in orbit estimation, under

inaccurate initial conditions and scattered measurements, can lead to unstable or diverging

solutions. For solving the problem of nonlinear nature, convenient extensions of the Kalman

filter have been sought. In particular, the unscented transformation was developed as a

method to propagate mean and covariance information through nonlinear transformations.

The Sigma Point Kalman Filter (SPKF) appears as an emerging estimation algorithm applied

to nonlinear system, without needing linearization steps.

2. Extended Kalman Filter

The real-time estimators are a class of estimators which fulfill the real time requirements.

They are recursive algorithms and produce sequentially the state to be estimated. Among

them, the Kalman filter and its variations are outstanding.

The Kalman filter is the recursive estimator most used nowadays because it is easy to

implement and to use on digital computers. Its recursiveness leads to lesser memory storage,

which makes it ideal for real-time applications. The EKF is a nonlinear version of the Kalman

filter that generates reference trajectories which are updated at eachmeasurement processing,

at the corresponding instant. Details can be found in Brown and Hwang [1].
Due to the complexity of modeling the artificial satellites orbit dynamics accurately,

the EKF is generally used in works of such nature. The EKF algorithm always brings up to

date reference trajectory around the most current available estimate.

The KF filter consists of phases of time and measurement updates. In the first, state

and covariance are propagated from one previous instant to a later one, meaning that they

are propagated between discrete instants of the system dynamics model. In the second one,

state and covariance are corrected for the later instant corresponding to the measurement

time, through the observations model. This method has, therefore, recursive nature and it

does not need to store the measurements previously in large matrices.

Exploiting the assumption that all transformations are quasilinear, the EKF simply

linearizes all nonlinear transformations and substitutes the Jacobian matrices for the linear

transformations in the Kalman filter equations. Although the EKF maintains the elegant and

computationally efficient recursive update form of the Kalman Filter, it suffers a number of

serious limitations.

The first limitation is that linearized transformations are only reliable if the error

propagation can be matched approximated by a linear function. If this condition does

not hold, the linearized approximation can be extremely poor. At best, this undermines

the performance of the filter. The second is that linearization can be applied only if

the Jacobian matrix exists. However, this is not always the case. Some systems contain

discontinuities, singularities, and the states themselves are inherently discrete. And the

last is that calculating Jacobian matrices can be a very difficult and error-prone process.

The Jacobian equations frequently produce many pages of dense algebra that must be

converted to code. This introduces numerous opportunities for human coding errors that

may degrade the performance of the final system in a manner that cannot be easily

identified and debugged. Regardless of whether the obscure code associatedwith a linearized

transformation is or is not correct, it presents a serious problem for subsequent users who

must validate it for use in any high integrity system.

Summarizing, the Kalman filter can be applied to nonlinear systems if a consistent set

of predicted quantities can be calculated. These quantities are derived by projecting a prior



Mathematical Problems in Engineering 3

estimate through a nonlinear transformation. Linearization, as applied in the EKF, is widely

recognized to be inadequate, but the alternatives incur substantial costs in terms of derivation

and computational complexity. Therefore, there is a strong need for a method that is probably

more accurate than linearization but does not incur the implementation nor computational

costs of other higher-order filtering schemes. The Unscented Transformation was developed

to meet these needs.

3. Sigma Point Kalman Filters

If the dynamics system and the observation model are linear, the conventional Kalman filter

can be used fearlessly. Although, not rarely, the dynamic systems and the measurement

equations are nonlinear, convenient extensions of the Kalman Filter have been sought.

The SPKF is a new estimator that allows similar performance than the Kalman filter for

linear systems and it elegantly extends to nonlinear systems, without the linearization steps.

These filters are a new approach to generalize the Kalman filter for nonlinear process and

observation models. A set of weighted samples, called sigma points, is used for normalizing

mean and covariance of a probability distribution. This technique is claimed to lead to a filter

more accurate and easier to implement than the EKF or a second-order Gaussian filter.

The SPKF approach is described by Van Merwe et al. [2] as follows.

(1) A set of weighted samples is deterministically calculated, based on mean and

covariance decomposition of a random variable. One minimum need is that the

first- and second-order momentums are known.

(2) The sigma points are propagated through the real nonlinear function, using only

functional estimation, that is, analytical derivatives are not used to generate a

posteriori set of sigma points.

(3) The later statistics are calculated using propagated sigma points functions and

weights. In general, they assume the form of a simple weighted average of themean

and the covariance.

3.1. Basic Idea: The Unscented Transformation

A recent method to calculate the statistics of a random variable that passes through a

nonlinear transformation is the unscented transform (UT). The UT builds on the principle

that it is easier to approximate a probability distribution than it is to approximate an arbitrary

nonlinear function, which is detailed in Julier and Uhlmann [3]. The approach is simple:

a set of points (sigma points) are chosen so that their mean and covariance are x and Pxx,

according to Julier et al. [4, 5], and Julier and Uhlmann [6]. The nonlinear function is applied

to each point, in turn, to yield a cloud of transformed points. The statistics of the transformed

points, mean y, and covariance Pyy predicted, can then be calculated to form an estimate of

the nonlinearly transformed mean and covariance.

There are several fundamental differences to the particle filters, although this method

bears resemblance it. First, the sigma points are deterministically chosen so that they exhibit

certain specific properties (like a given mean and covariance), and are not drawn at random.

Second, sigma points can be weighted in ways that are inconsistent with the distribution

interpretation of sample points in a particle filter.



4 Mathematical Problems in Engineering

The n-dimensional random variable x, where n is the state vector dimension, with x
mean and Pxx covariance, is approximated by 2n + 1 weighted points, given by

χ0 = x,

χi = x +
(√

(n + κ)Pxx

)
i

,

χi+n = x −
(√

(n + κ)Pxx

)
i

(3.1)

in which κ ∈ R, (
√
(n + κ)Pxx)i is the ith row or column of the root square matrix of (n+κ)Pxx,

and Wi is the weight associated to the ith point

W0 =
κ

(n + κ)
,

Wi =
1

2(n + κ)
, i = 1, . . . , n,

Wi+n =
1

2(n + κ)
, i = 1, . . . , n.

(3.2)

The transformation in the prediction step of the EKF occurs as follows.

(1) Transform each point through the function to yield the set of transformed sigma

points

yi = f
[
χi

]
. (3.3)

(2) The observations mean is given by the weighted average of the transformed points

y =
2n∑
i=0

Wiyi. (3.4)

(3) The covariance is the weighted outer product of the transformed points

Pyy =
2n∑
i=0

Wi

[
yi − y

]
[yi − y]T. (3.5)

As the algorithmworks with a finite number of sigma points, it naturally lends itself to

being used in a “black box” filtering library. Given a model with defined inputs and outputs,

a standard routine can be used to calculate the predicted quantities as necessary for any given

transformation. The computational cost of the algorithm is the same order of magnitude as

the EKF. The most expensive operations are to calculate the matrix square root and the outer

products which are required to compute the covariance of the projected sigma points.
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Initial covariance and state vector

Calculation of
weights

Generating the

sigma points

Propagation of sigma points:

mean and covariance of the
transformed sigma points

Prediction of state, measurement, and

covariance: to transform the sigma

points according to the dynamics and

the observation models

Up to date/correction:

state and covariance up to date

K = k + 1

Prediction

Figure 1: Modified EKF, leading to UKF.

Any set of sigma points that encodes the mean and covariance correctly calculates

the projected mean and covariance correctly to the second order. Therefore, the estimate

implicitly includes the second-order “bias correction” term of the truncated second-order

filter, but without the need to calculate any derivatives.

The algorithm can be used with discontinuous transformations. Sigma points can

pass over a discontinuity and, thus, can approximate the effect of a discontinuity on the

transformed estimate.

3.2. The Unscented Kalman Filter

Using UT, the Kalman filter processes, as summarized in the following steps.

The steps shown in Figure 1 are detailed next.

(1) To predict the new state system x̂(k+1 | k) and its associated covariance P(k+1 | k),
taking into account the effects of the process white gaussian noise.

(2) To predict the expected observation ẑ(k + 1 | k) and its residual covariance

(innovation) Pνν(k + 1 | k), considering the effects of the observation noise.

(3) To predict the cross correlation matrix Pxz(k + 1 | k).
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These steps are put in order in the Kalman filter with the restructuring of dynamics,

state vector, and observations models. First, the state vector is added of the noise vector wk,

with dimension q × 1, in order to obtain a vector of dimension na = n + q,

xa(k) =

[
xk

wk

]
. (3.6)

The dynamics model is rewritten in function of xa(k) as

x(k + 1) = f[xa(k)], (3.7)

and the UT uses 2na + 1 sigma points, generated by

x̂a(k | k) =

(
x̂(k | k)

0q×1

)
, Pa(k | k) =

[
P(k | k) Pxν(k | k)

Pxν(k | k) Qxν(k | k)

]
. (3.8)

The matrices in the principal diagonal of Pa(k | k) are the variances, and the ones out

of it are the correlations between the state dynamic errors and the Gaussian process noises.

There are several extensions and modifications that can be done in this basic method

to consider specific details for one given application. In the next section, it will be presented

a discussion of the orbit determination, in real time, using UKF.

3.3. Comparing EKF and UKF

The conventional nonlinear filters, such as the linearized or the extended Kalman Filter, many

times have a poor performance when applied to nonlinear problems, due to two known

difficulties.

The linearization (of the dynamic and the measurements models) can lead to a highly

instable performance of the filter if the time discretization is not enough small.

The derivation of the Jacobian is not simple in most applications, and usually it makes the

implementation difficult.

The UKF has more advantages, when compared to the EKF, as Lee and Alfriend [7, 8]
wrote, in the following aspects.

(i) It allows more stable and accurate estimates of mean and covariance.

(ii) It can estimate discontinuous functions.

(iii) No explicit derivation of the Jacobian and/or Hessian matrix is necessary.

(iv) It is suitable for parallel processing.

4. Using UKF on Orbit Determination

Before presenting a discussion of the orbit determination, in real time, usingUKF, some points

need to be outlined: the orbit determination; the dynamic model; the observations model.
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4.1. The Orbit Determination

The orbit determination will be based on GPS technology, whose working principle is based

on the geometric method. In such method, the observer knows the set of satellites position in

the reference system, obtaining its own position in the same reference frame. Figure 2 presents

the basic parameters used by GPS for user position determination.

Here, �RGPSi is the position of the ith GPS satellite in the reference system; �ρi is the

pseudorange, the user satellite position in respect to the ith GPS satellite; �ru is the user satellite

position in the reference system.

4.2. The Dynamic Model

In the case of orbit determination via GPS, the ordinary differential equations that represent
the dynamic model are as follows:

�̇r = �v,

�̇v = −μ
�r

r3
+ �a + �w,

ḃ = d,

ḋ = 0 + wd

(4.1)

with variables given in the inertial reference frame. In the equations above, �r is the vector

containing the position components (x, y, z); �v is the vector of velocity components; �a

represents the modeled perturbations; �w is the white noise vector with covariance Q; b is the

user clock bias; d is the user clock drift; wd is the white noise on the drift rate with variance

Qd.

4.3. The Observations Model

The nonlinear equation of the observations model is given by:

zk = hk(xk, t) + νk, (4.2)

where zk is the vector of m observations; hk(xk) is the nonlinear function of state xk, with

dimension m; νk is the vector of observation errors with dimension m.

4.4. Estimation of the Unmodeled Accelerations

Some spacecraft missions require precise orbit knowledge to support payload experiments.

Sometimes after launch, ground-based orbit determination solutions do not provide the

level of accuracy expected. After verifying all known dynamic models, there may be a

residual signature in the orbit as result of unmodeled accelerations. This leads to attempt to

estimate anomalous accelerations during the orbit fit, if sufficient data exist. If successful, the

acceleration estimates can improve the fit residuals, and also results in better orbital position

estimates, as can be seen in Soyka and Davis [9].
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Figure 2: The geometric method.

Unmodeled accelerations may have many reasons: truncation of geopotential field;

limitations of modeling solar pressure, Earth albedo, Earth infrared radiation, drag, and

others. Some of these accelerations can be corrected through the use of higher fidelity

dynamic and physical modeling, while others require postlaunch calibration.

The use of periodic accelerations, with a period near once per revolution of the satellite

orbit, has been used within precision orbit determination programs to improve the accuracy

of the derived ephemeris.

4.4.1. Anomalous Accelerations Modeling

When defining an anomalistic or periodic acceleration, one must consider three aspects: the

subarc interval, the type of function, and the coordinate frame.

Subarc Interval

The subarc interval is the time of duration or number of revolutions for a given acceleration

to be active. As its name implies, it is usually a subset of the total arc. A reason to break an

arc into a subarc is to allow for better overall fits.
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Type of Function

The underlying mathematical function of an acceleration function is usually a constant, a

sine, or a cosine function.

The constant function is the most basic: a constant force in a specific direction. And

the periodic functions (sine or cosine) have amplitude, frequency, and phase associated with

them. The periodic functions are written as

acc = A sin
(
ωt + φA

)
or acc = B cos

(
ωt + φB

)
, (4.3)

where A and B are amplitudes, ω is the frequency, t is the time elapsed since the start of the

periodic function reference point or subarc interval, φA and φB are the phase offsets. Either of
these accelerations can be rewritten as:

acc = A′ sin(ωt) + B′ cos(ωt), (4.4)

where for a sine acceleration with phase, A′ = +A cosφA; B′ = +B sinφA, and, for a cosine

acceleration with phase, A′ = −B cosφB; B′ = +B sinφB. When estimated, the amplitudes A′

and B′ will adjust themselves to produce an effective phase offset.

Coordinate Frame

The selection of the start of the subarc can be important, especially for noncircular orbits.

Conventionally, equator crossings, argument of perigee, mean anomaly, or orbit angle have

been used as reference point.

4.5. Discussion of the Application

Now that the purpose of the discussion is known, it is possible to present a discussion about

the subject.

In order to generate the UKF, it is necessary to rewrite the Kalman filter from UT. First,

the state vector is increased, with the measurements noise vector wk, yielding a vector with

dimension na = n + q. The increased versions of the state and the covariance are

xa(k) =

[
xk

wk

]
, Pa

k =

[
Pk 0

0 Qk

]
. (4.5)

This increase can still contain υk, the Gaussian process noise, of dimension l × 1. The

new covariance matrix would have Rk in the principal diagonal, the covariance of such noise,

and the new state vector dimension would be na = n + q + l, according to Lee and Alfriend

[10].
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Next, the increased set of sigma points is built:

χa
0,k = xa

k,

χa
i,k = xa

k +
(√

(na + λ)Pa
k

)
i
, i = 1, . . . , na,

χa
i,k = xa

k −
(√

(na + λ)Pa
k

)
i
, i = na + 1, . . . , 2na

(4.6)

with λ = α2 (na +κ)−na, where α control the sigma points scattered about the mean xa
k, and it

is usually chosen small, in the interval 10−4 ≤ α ≤ 1, as Jwo and Lai [11] wrote; κ provides an

extra degree of freedom; (
√
(na + λ)Pa

k
)

i
is the ith row or column of the root square matrix of

(na + λ)Pa
k
.

In the propagation step, the state vector and covariance predicted are calculated based

on the mean and the covariance of the propagated sigma points, transformed from the state

vector and dynamical noises

x−k+1 =
2na∑

i = 0

Wiχ
x
i,k+1,

P
−
k+1 =

2na∑
i=0

Wi

[
χx

i,k+1 − x−k+1
][
χx

i,k+1 − x−k+1
] T

. (4.7)

The prediction of the observation vector and the innovation matrix, Pνν
k+1, is done the

same way. That means, the observation and the innovation are predicted from mean and

covariance of the transformed sigma points:

y−k+1 =
2na∑

i = 0

W
(m)
i yi,k+1, (4.8)

where yi,k+1 represents the sigma vectors propagated through the nonlinear equation of the

observation model, yielding the transformed sigma points from the state vector and the

dynamics noise, shown before.

In the up to date (correction) step of measurement, the Kalman gain, K k+1, is

calculated based on the correlation matrix between the measurement and the observation,

Pxy

k+1, and the innovation matrix, both predicted

Kk+1 = Pxy

k+1

(
Pυυ

k+1

)−1
,with

Pνν
k+1 =

2na∑
i = 0

W
(c)
i

[
yi,k+1 − y−k+1

] [
yi,k+1 − y−k+1

] T
,

Pxy

k+1 =
2 na∑
i = 0

W
(c)
i

[
χx

i,k+1 − x−k+1
] [

yi,k+1 − y−k+1
] T

.

(4.9)
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Finally, the up to date state and covariance are

x+k+1 = x−k+1 +K k+1
(
yk+1 − y−k+1

)
,

P+
k+1 = P−

k+1 −K k+1Pνν
k+1K

T
k+1,

(4.10)

where y is the vector effectively measured in the instant k + 1.

The process is repeated for the next instant, and the up to date mean (from state x+k+1)
and covariance will be used to deterministically generate the sigma points of the next instant.

5. Final Comments

The SPKF estimation technique has been investigated in very many different applications.
After analyzing the investigations, some comments may be done.

(i) The main advantages of the SPKF are: easy to implement; computationally strong;

high accuracy.

(ii) The motivation for applying such technique herein: recent nonlinear state estimate

techniques will be applied to the specific problem of orbit determination using

real data from GPS, instead of simulated data. This can improve the results, when

compared to the EKF, and get better the estimated state variables accuracy.

(iii) alman filter may be used as the estimation algorithm. However, not rarely,

the dynamic systems and the measurements equations are of nonlinear nature.

For solving such a problem, convenient extensions of the Kalman filter have

been sought. The EKF implementation in orbit estimation, under inaccurate

initial conditions and scattered measurements, can lead to unstable solutions.

Nevertheless, the unscented transformation was developed as a method to

propagate mean and covariance information through nonlinear transformations.

The SPKF appears as an emerging estimation algorithm applied to nonlinear

system, without linearization steps.
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1. Introduction

The use of solar pressure to create propulsion can minimize spacecraft on-board energy

consumption during a mission [1, 2]. Modern materials and technologies made this

propulsion scheme feasible, and many projects of solar sails are now under development,

making solar sail dynamics the subject of numerous studies.

So far, the most extensively studied problem is the orbital maneuver of a Flat Solar Sail

(FSS, Figure 1). In this case, the control is performed by turning the entire sail surface with

respect to the Sun direction. This changes the radiation pressure and results in evolution of

the vehicle trajectory. Some of the many missions studied are described in [3–13].
The use of a compound solar sail, or Solar Photon Thruster (SPT), was proposed by

Tsander long ago [1, 2], but the study of this spacecraft began quite recently [14–18]. The SPT
consists of a parabolic surface which concentrates the solar radiation pressure on a system

of smaller mirrors. The control effort in such system is produced by displacement of a small

mirror with respect to the parabolic surface. The sail axis is supposed to be oriented along
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the Sun-sailcraft direction. There exist several versions of compound solar sails. Forward [14]
described two types of a compound sail, namely, Simple Solar Photon Thruster (SSPT) and
Dual Reflection Solar Photon Thruster (DRSPT). The few existent studies on SPT dynamics

consider the latter scheme.

In order to assess the dynamical characteristics and to compare the SPT performance to

the most studied version, FSS, one should study the application of these propulsion schemes

for orbital transfer and/or maintenance for various missions. To perform this analysis, a

coherent mathematical model for force acting on such a structure due to solar radiation

pressure is essential. There are many results concerning radiation pressure force and torque

models for a sunlit body, and in many studies they are applied successively to develop a force

model for an FSS. However, the usual approach cannot be applied for a Solar Photon Thruster

due to multiple light reflections on the SPT elements.

Some attempts to develop a mathematical description for SPT force have been made

before, mostly for a Dual Reflection Solar Photon Thruster. In [2] the model for an ideally

reflecting DRSPT is described. In [19] this model is extended for nonideal DRSPT.Meanwhile,

both of these models are based on the supposition that all the incoming light flux is reflected

consequently on each one of the DRSPT elements and then leaves the system, which is not

true [20]. Moreover, the results of [20] show that the existing shadowing and related energy

dissipation diminish significantly the DRSPT efficiency, making dubious the advantages of

this propulsion scheme compared to FSS.

In the present article, we focus on the other version of the compound scheme of solar

propulsion, Simple Solar Photon Thruster (Figure 2). We develop a mathematical model for a

solar radiation force acting on SSPT and provide a comparative study of trajectory dynamics

and control for the FSS and SSPT schemes. In our analysis, we use the following assumptions.

(i) Solar radiation pressure follows inverse-square variation law.

(ii) The only gravitational field is that of the Sun, and this field is central Newtonian.

(iii) The sails are ideal reflectors (all photons are perfectly reflected).

We derive the equations of motion for the SPT and compare the orbital behavior of FSS and

SPT studying two test problems: Earth-Mars transfer and Earth-Venus transfer.

2. Equations of Motion

To write down the equations of motion for a solar sail spacecraft, we introduce two right-

oriented Cartesian frames with their origin in the center of mass of the spacecraft O as

follows:

(i) Oxyz is the coordinate frame attached to the spacecraft; the axes Ox, Oy, and Oz
are the central principal axes of the spacecraft.

(ii) OXYZ is the orbital frame, its axis OZ is directed along the radius vector of the

point Owith respect to the center of mass of the Sun, and the axis OY is orthogonal

both to OZ and to the velocity of the point O.

We determine the position of the coordinate frame Oxyz attached to the spacecraft with

respect to the orbital frame using the transition matrix between these frames, ‖aij‖.
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We use a set of canonical units which implies that the radius of the Earth’s orbit is

1AU, and the period of its revolution is 2π . The equations of orbital motion can be written in

the form

..−→r = −
−→r
r3

+ −→as, (2.1)

where as is the acceleration due to the radiation pressure.

To complete the equations of motion, we have to calculate also the force produced by

the Sun radiation pressure.

2.1. Flat Solar Sail

The interaction of the solar radiation flow with a flat perfectly reflecting surface has been

studied earlier [1, 2]. By the symmetry of falling and reflected flows, the total solar radiation

force is directed along the symmetry axis of the sail and produces no torque with respect

to any point of this axis, including the sail’s center of mass (Figure 1). This force can be

expressed as [1, 2]

−→
P = −2−→n

(−→σ ,−→n
)2

S
Φ
r2

, (2.2)

where −→n is the normal to the sail surface and points to the Sun, −→σ is the unit vector of the

parallel light flow (i.e., it opposes the Sun-sailcraft direction), its coordinates in the Oxyz
frame are −→σ = (σx, σy, σz) = (a31, a32, a33), S is the total area of the sail, and Φ = 4.563 ·
10−6 N/m2 is the nominal solar radiation pressure constant at 1AU. The solar radiation force

projections onto the spacecraft-connected and orbital coordinate frames are

Px = Py = 0, Pz = 2S
Φ
r2

a2
33 signa33,

PX = 2S
Φ
r2

a13a2
33 signa33, PY = 2S

Φ
r2

a32a2
33 signa33, PZ = 2S

Φ
r2
|a33|a2

33,

(2.3)

respectively.

If −→n lies in the OXZ plane, then the components of the radiation force are

PX = −S
Φ
r2

sin 2θ|cos θ|, PY = 0, PZ = 2S
Φ
r2

cos2θ|cos θ|, (2.4)

where θ is the angle between the vector −→n and the OZ axis.

The above expressions are standard and appear in numerous studies of the propulsion

effort of a Flat Solar Sail.
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Figure 1: Flat Solar Sail (FSS).
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Figure 2: Solar Photon Thruster (SPT).

2.2. Solar Photon Thruster

We consider here another system that is shown in Figure 2. It consists of a parabolic collector

and a control mirror (director). When reflection is ideal and the collector axis is exactly

aligned with the Sun-sailcraft direction, the collector concentrates the sunlight in the center

of the director. In order to minimize the solar radiation torque that causes perturbations of

the sailcraft orientation, the director should be located at the sailcraft’s center of mass. This

scheme of solar propulsion seems to be more reliable with respect to small misalignments of

the sail axis than the DRSPT scheme studied in [15–17] which uses a collimator.

In the analysis, we assume the control mirror small enough to disregard the influence

of its shadow. We also suppose that the SPT axis is aligned exactly along the Sun direction.

We consider the parabolic surface described in the reference frame Oxyz by the

equation

x2 + y2 + 2a
(
z − f

)
= 0,

(
x2 + y2 ≤ R2

)
, (2.5)
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where a is the parameter of the paraboloid, f is the focal distance, and R is the radius of the

sail’s projection on the plane Oxy. Since f = a/2, equation (2.5) reduces to

z =
1

2a

(
a2 − x2 − y2

)
. (2.6)

The sunlight is directed along the vector −→σ = (0, 0, 1). Suppose that it is reflected on the

element of the parabolic surface dS, containing the point
−→
ξ = x

−→
i + y

−→
j + z

−→
k with z satisfying

(2.6). The force produced by the falling light is given by

d
−→
P 1 = −ρ−→σ

(−→σ ,−→n
)
dS, (2.7)

where −→n is the normal to the sunlit side of the sail surface

−→n = −x
−→
i + y

−→
j + a

−→
k√

x2 + y2 + a2
, (2.8)

and ρ is the intensity of the light flow at the current point of the orbit

ρ =
Φ
r2

. (2.9)

The ray reflected from the element dS of the collector’s surface has the direction −→σ 1 satisfying

−→σ 1 =
−→σ − 2

(−→σ ,−→n
)−→n. (2.10)

Reflection of light from the element of surface dS produces the force

d
−→
P 2 = ρ−→σ 1

(−→σ ,−→n
)
dS. (2.11)

Finally, this ray is reflected at the focus on the director’s surface with the normal −→ν =
(νx, νy, νz). The force produced by the reflected light can be written as

d
−→
P 3 = −d

−→
P 2, d

−→
P 4 = ρ−→σ 2

(−→σ ,−→n
)
dS. (2.12)

Here

−→σ 2 =
−→σ 1 − 2

(−→σ 1,−→ν
) −→ν (2.13)

is the direction of the ray reflected from the control mirror.
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The reflection of the light on the parabolic surface is unique if the normal to the director

does not cross this surface, so the control angle must be greater than half the angular aperture,

that is,

θ ≥ tan−1
(

R

zR

)
. (2.14)

Here θ is the angle between vector −→ν and the sail axis (cos θ = νz), and zR = (1/2a)(a2 − R2)
is the z-coordinate of the collector’s border. Finally we arrive at the restriction

|tan θ| ≥ 2aR

a2 − R2
. (2.15)

Multiple reflections on the collector destroy the collector’s film and produce a considerable

disturbing torque, and so have to be avoided. Therefore condition (2.15) has to be satisfied

during the orbital maneuver.

The elementary force created by interaction of light with parabolic surface and mirror

is

d
−→
P = d

−→
P 1 + d

−→
P 2 + d

−→
P 3 + d

−→
P 4 = d

−→
P 1 + d

−→
P 4

= −ρ−→σ
(−→σ ,−→n

)
dS + ρ−→σ 2

(−→σ ,−→n
)
d = ρ

(−→σ 2 − −→σ
)(−→σ ,−→n

)
dS.

(2.16)

After integration, we obtain

Px = 2
Φ
r2

πR2νxνz

[
1 − 2

a2

R2
ln

(
1 +

R2

a2

)]
,

Py = 2
Φ
r2

πR2νyνz

[
1 − 2

a2

R2
ln

(
1 +

R2

a2

)]
,

Pz = 2
Φ
r2

πR2

[
ν2

z +
(
1 − 2ν2

z

) a2

R2
ln

(
1 +

R2

a2

)]
.

(2.17)

If the control mirror moves in the OXZ plane (νx = sin θ, νy = 0, νz = cos θ), then the

components of the light pressure force in the orbital coordinate frame are

PX =
Φ
r2

πR2

[
1 − 2

a2

R2
ln

(
1 +

R2

a2

)]
sin 2θ, PY = 0,

PZ = 2
Φ
r2

πR2

[
cos2θ − a2

R2
ln

(
1 +

R2

a2

)
cos 2θ

]
.

(2.18)
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If χ = R/a � 1, then it is possible to simplify (2.18). One can use Taylor’s formula to obtain

the expressions

PX = −Φ
r2

πR2

[
1 − R2

a2
+ o

(
R3

a3

)]
sin 2θ, PY = 0,

PZ = 2
Φ
r2

πR2

[
sin2θ +

R2

2a2
cos 2θ + o

(
R3

a3

)]
.

(2.19)

If χ2 = R2/a2 is negligible (i.e., the sail is almost plane), we get

PX = −Φ
r2

S sin 2θ, PY = 0, PZ = 2
Φ
r2

S sin2θ, (2.20)

where S = πR2 is the effective sail area, that is, the area of the sail projection on the planeOxy.
Formulas (2.20) are similar to those used in [11–13] for a different scheme of SPT, so one can

expect qualitative similarity of the results for small χ, at least for the maneuvers that require

control angles within limits (2.15).

3. In-Plane Orbital Motion

To compare the principal characteristics of SPT and FSS we studied two test time-optimal

control problems of solar sail dynamics, namely, the time-optimal Earth-Mars and Earth-

Venus transfers [3, 21] for both systems. Since our goal is to compare qualitative behavior

of the above systems, we choose the simplest formulation for orbital transfer problem. In

both cases, we assume that the planet orbits are circular and coplanar and that the spacecraft

moves in the ecliptic plane, starting from the Earth-orbit at 1AU with Earth-orbital velocity.

We find the control law that guarantees the fastest transfer to the planet’s orbit.

This model of orbital dynamics results in the following equations of motion in the orbit

plane [3]:

ṙ = u, ϕ̇ =
w

r
, u̇ =

w2

r
− 1

r2
+ asZ, ẇ = −uw

r
+ asX. (3.1)

Here ϕ is the polar angle, and u and w are the radial and transversal components of sail

velocity, respectively.

For the FSS, the components of the light pressure acceleration onto the axis of orbital

coordinate frame OXYZ are

asX =
Φ

mr2
S|cos θ| sin 2θ, asZ = 2

Φ
mr2

S
∣∣∣cos3θ

∣∣∣. (3.2)
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Figure 3: Earth-Mars transfer trajectories.
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Figure 4: Earth-Mars transfer control effort for SSPT for χ = 0.125.

For the SPT the light pressure acceleration is given by

asX =
Φ

mr2
πR2

[
1 − 2

a2

R2
ln

(
1 +

R2

a2

)]
sin 2θ,

asZ = 2
Φ

mr2
πR2

[
cos2θ − a2

R2
ln

(
1 +

R2

a2

)
cos 2θ

]
.

(3.3)

The control angle θ is limited by condition (2.15). In this case the sail surface has to follow

the Sun direction.

4. Results

The time-optimal problems for Earth-Mars transfer and Earth-Venus transfer are studied

numerically using the interactive software from [22]. This optimization software developed

for personal computers running under MS Windows operating systems is based on the

penalty function approach and offers to the user a possibility to effectively solve optimal

control problems. During the interactive problem-solving process, the user can change the

penalty coefficients, change the precision influencing the stopping rule, and choose/change

the optimization algorithms. The system includes various gradient-free algorithms used at
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Figure 6: Earth-Venus transfer control effort for SSPT for χ = 0.125.

the beginning of the optimization, as well as more precise conjugate gradient and Newton

methods applied at the final stage in order to obtain a precise solution.

The sail parameter is assumed to be ΦS/m = 0.0843 for both systems (it corresponds
to the acceleration due to solar radiation pressure equal to 1mm/s2at the Earth-orbit).

The Earth-Mars transfer trajectories for the FSS and the SPT are shown in Figure 3.

The continuous line corresponds to the SPT trajectory and the dot-dashed line to the FSS

trajectory. We consider the ratio χ = R/a = 0.125. The best possible transfer time for the FSS

is TM
FSS

= 2.87 (166.7 days), and for the SPT it is TM
SPT

= 2.71 (157.5 days), so SSPT maneuver

is 5.6% faster than that of the FSS one. Figure 4 shows the variation of the SSPT control angle

for the optimal transfer; for FSS the respective control is well known [3].
For the Earth-Mars problem, we also study the influence of SPT sail ratio χ. The

increase of χ results in longer maneuver time TSPT: for χ = 0.25 it is TM
SPT

= 2.76, and for

χ = 0.5 the maneuver time is TM
SPT

= 2.96. For greater values of χ, the control angle θ attains

the limits described by restriction (2.15) more frequently.

Analyzing the maneuver to Venus orbit for these two sailcraft schemes (Figures 5 and
6), we have established that FSS reaches the objective in 181.2 days (TV

FSS
= 3.12), while the

SPT performs this maneuver in 158.6 days (TV
SPT

= 2.73). In this case, the efficiency of SPT is

more significant; SPT reaches Venus orbit 12.5% faster than FSS.
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5. Conclusions

The problems of orbital dynamics and control are studied for two systems of solar propulsion:

a Flat Solar Sail (FSS) and a Simple Solar Photon Thruster (SSPT). We develop amathematical

model for force acting on SSPT due to solar radiation pressure, taking into account multiple

reflections of the light flux on the sailcraft elements. We derive the SSPT equations of motion.

For in-plane motions of an almost flat sail with negligible attitude control errors, these

equations are similar to those used in the previous studies of DRSPT.

For these two solar propulsion schemes, FSS and SSPT, we compare the best time

response in two test problems (Earth-Mars transfer and Earth-Venus transfer). Our analysis

showed a better performance of SSPT in terms of response time. The result was more

pronounced for Earth-Venus transfer that can be explained by the greater values of the

transversal component of the acceleration developed by SSPT compared to those of FSS.
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1. Introduction

The dynamics of the circular restricted three-body Earth-Moon-particle problem predicts the

existence of the retrograde periodic orbits around the Lagrangian equilibrium point L1. Such

orbits belong to the so-called Family G [1], and starting from them it is possible to define a

set of trajectories that form a natural round trip link between the Earth and Moon and a link

between the Earth, the Moon and the distant space of the Earth sphere of influence. These

links occur even for more complex dynamical systems as the complete Sun-Earth-Moon-

particle problem. In the last dynamical system, many kinds of transfers can be exploited.
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For example, the round trip link is useful for transfers between Low Earth Orbits (LEOs)
and Low Lunar Orbits (LLOs), including polar LLOs, since some of its trajectories pass a

few hundreds of kilometers from the Earth’s surface and a few dozens of kilometers from the

Moon’s surface (Figure 1) [2]. Moreover, the round trip link is also useful for transfer between

two LEOs with different altitudes and inclinations [3]. In these cases theMoon’s gravitational

field, which is near the Earth, works as an extra impulse and provides an efficient method

to minimize the fuel consumption to be used in plane change maneuvers. This is possible,

because the trajectories of the links can lead spacecrafts in a natural way to accomplish swing-

bys with theMoon. In this paper, we use the link between the Earth, the Moon and the distant

space of the Earth sphere of influence and the energy gain of the swing-by with the Moon to

get escape trajectories and to design missions to NEOs.

In general, a swing-by, or a flyby, consists of the alteration of small celestial bodies

orbits (comets, asteroids, or spacecrafts) when they have a close approach with a planet

or a moon. Literature presents many studies about this subject with general descriptions,

applications in interplanetary missions and in the Earth-Moon System. For example, Lawden

[4], Minovitch [5], and Broucke [6] present general descriptions of the mechanics of gravity-

assisted maneuvers. Successful examples in interplanetary missions were the Voyager 1 and

2 which accomplished several swing-bys with the visited planets to gain energy [7], and
Ulysses solar probe which accomplished a swing-by with Jupiter to get a perpendicular orbit

to the ecliptic and observe the Sun’s Poles [8]. Among the many studies on swing-bys in the

Earth-Moon system, we can highlight Dunham and Davis [9], who designed missions with

multiple swing-bys with the Moon; Uphoff [10], who gave a description about lunar gravity-

assisted maneuvers, and Prado [11], who presented a study to use flyby with the Moon to

accomplish transfers between Earth orbits with the same altitudes and different inclinations.
Among the missions that accomplished swing-bys with the Moon, we should mention the

ISEE-3 which after completing its mission in 1982 was renamed ICE (International Cometary

Explorer) and accomplished several lunar encounters to gain energy and intercept the comets

Giacobini-Zinner in September 1985 and Halley, in March 1986 [12]. On the other hand, also

in general, the literature does not present works focused on getting the trajectory that will

accomplish the swing-by. In this work we do not only use the swing-by to obtain transfer

trajectories, but we have included a study that involves the use of trajectories derived from

periodic orbits to accomplish the swing-by in an efficient way. This allows the reduction of

the swing-by maneuver costs.

Our results, considering trajectories derived from periodic orbits of Family G and the

quasiperiodic orbits that oscillate around them, have allowed us to present the parameters to

design Earth-NEOs transfers. The trajectories studied in this work can offer a saving up to

4% in relation to the conventional methods used to send spacecrafts to these asteroids.

This article is laid out according to the following order: in Section 2, the dynamical

systems and the orbits of Family G are described; in Section 3, the set of trajectories of

interest are defined. In Section 4, the studies about the mechanism of the proposed transfers

between Earth and NEOs are shown and, in Section 5, we present and discuss the results. The

conclusions on the work are presented in Section 6.

2. Earth-Moon Link

The equations of motion of a small particle of negligible mass, m, moving under the

gravitational influence of two bodies with preponderant masses, written in a normalized
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rotating coordinate system (x, y), also-called synodic system, are

ẍ − 2nẏ =
∂U

∂x
, ÿ + 2nẋ =

∂U

∂y
, (2.1)

where n is the mean motion and U is a scalar function given by

U =
n2

2

(
x2 + y2

)
+

μ1

r1
+

μ2

r2
, (2.2)

μ1 and μ2 are the reduced masses of the two preponderant bodies, called primaries. r21 =
(x + μ2)

2 + y2 and r22 = (x − μ1)
2 + y2 are the distances between the primaries and m.

Equation (2.1) define the well-known restricted three-body problem in which the primaries

have circular orbits around their common centre of mass [1, 13].
Equation (2.1) presents a special number of solutions that can be achieved searching

for points in synodic frame where ẍ = ÿ = ẋ = ẏ = 0. There are five points with these

features and they are called of Lagrangiam equilibrium points, Li, i = 1, . . . , 5. The locations of

these points are obtained solving the simultaneous nonlinear equations ∂U/∂x = ∂U/∂y = 0.

Figure 1 shows the locations of these points for Earth-Moon-particle problem. In this case,

μ1 = μEarth = 0.9878494, μ2 = μMoon = 0.0121506, and n = 1.

In the Earth-Moon-particle problem, groups of periodic orbits around the Earth, the

Moon and the Li points are known. We have considered a particular family of periodic orbits

around L1 known as Family G [1–3]. In the normalized synodic frame, one of the groups of

initial conditions that allow us to obtain the Family G orbits has the form

(
x0, y0, z0, ẋ0, ẏ0, ż0

)
=
(
x0, 0, 0, 0, ẏ0, 0

)
, (2.3)

where (−μMoon+R∗
E) < x0 < x(L1), with R∗

E = RE/384,400 km = 0.016572, RE = 6, 370 km is the

average radius of the Earth, x(L1) = 0.836893 is the abscissa of the Lagrangian equilibrium

point L1, and −9.389476 ≤ ẏ0 ≤ 601.045381 [1], which corresponds to a variation between

−9.607 km/s and 614.964 km/s. The average Earth-Moon distance (384,400 km) is chosen as

the unit of length of the normalized system. According to (2.3), for any orbit of Family G,

in t = 0, the Earth, the particle and the Moon are aligned in this order, that is, in inferior

conjunction. All orbits in Family G are unstable and this feature is very important for the

transfers here exploited. Figure 1 also shows a typical orbit of Family G.

Periodic orbits as the one shown in Figure 1 and the quasiperiodic orbits that oscillate

around them are tangents to the Earth andMoon low orbits. In other words, they define a link

between the Earth and the lunar sphere of influence. This property allied with the instability

of Family G orbits allows the design of controlled swing-bys with the Moon to gain sufficient

energy to escape from the Earth-Moon system [2]. Moreover, we remark that these properties

allow the reduction of the swing-by maneuver costs besides providing the necessary energy

to win the Earth’s and theMoon’s gravitational fields [3, 14]. Controlled swing-bys also allow

the use of this energy to obtain trajectories inclination changes [3].
In order to exploit these properties and to design more efficient and realistic Earth-

NEOs transfers, the Sun’s gravitational field must be introduced. That is, new equations of

motion must be considered, this time, taking into account the Sun, the Earth and the Moon
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Figure 1: Locations of Lagrangian equilibrium points and a typical periodic orbit of Family G in synodic
frame (x, y).

mutual gravitational attractions, besides the characteristics of the Earth’s orbit around the Sun

(eccentricity) and the Moon’s orbit around the Earth (eccentricity and inclination). Thus, we

define the full four-body Sun-Earth-Moon-particle problem, whose 12 equations of motion in

a Cartesian coordinates system (X, Y, Z) with origin in a fixed point of the space are

R̈i =
4∑

j=1
j /= i

μj

R3
ji

(
Rj − Ri

)
, (2.4)

where Rij = |Rj − Ri| = [(Xj − Xi)
2 + (Yj − Yi)

2 + (Zj − Zi)
2]

1/2
, with j /= i, are the distances

between ith and jth bodies. The eccentricity of the Earth’s orbit and the eccentricity and

inclination of the Moon’s orbit are introduced through initial conditions.

The link between the Earth and the lunar sphere of influence continues existing, even

when the dynamical system given by (2.4) is considered. This can be seen in Figure 2(a)
that shows a trajectory found considering the full four-body problem. Figure 2(b) shows

the inclination gain relative to the ecliptic after the swing-by with the Moon. Note that the

trajectory inclination change is about 52 degrees. As a first conclusion, we can say that the

Moon gravitational field acts like a natural propeller, without fuel consumption. In the next

section, we are going to exploit this property in a controlled way. That is, taking advantage

of the existing natural link between the Earth and the lunar sphere of influence to obtain a

change in inclination and the energy gain needed for a determined sort of mission.

3. Escape Trajectories

The existence of the link between the Earth and the lunar sphere of influence for the full

four-body problem is essential to the design of the Earth-Moon system escape trajectories.
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Figure 2: (a) Derived trajectory of a Family G periodic orbit considering the full four-body problem in
geocentric frame (x′, y′, z′). (b) Trajectory inclination change as function of the time.

For this dynamical system, the initial conditions of an escape trajectory in a geocentric frame

(x′, y′, z′) are [3]

(
x′
0, y′

0, z′
0, ẋ′

0, ẏ′
0, ż′

0

)
=
(
x′
0, 0, z′

0, 0, ẏ′
0, 0
)
, (3.1)

where

x′
0 = (RE + h0) cos(iMoon),

y′
0 = 0,

z′
0 = (RE + h0) sin(iMoon),

ẋ′
0 = 0,

ẏ′
0 = VI,

ż′
0 = 0.

(3.2)
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Quantity VI is called injection velocity. Considering a circular LEO, VI = VCE + ΔV1,

where VCE is the LEO’s velocity, VCE = [GMEarth/(RE + h0)]
1/2,G is the gravitational constant,

MEarth is the Earth’s mass, and h0 is the LEO’s altitude. iMoon is the inclination of the Moon’s

orbit. ΔV1 is the velocity increment that must be provided to the spacecraft. ΔV1 is a function

of the h0 and VCE and its value is given by

ΔV1 =
VCE

2

(
−2.3340 × 10−6h0 + 0.8085 ± 0.0001

)
+ δ + ϑ. (3.3)

Quantity δ assumes values that will take into account the relative position among

the Sun, the Earth, and the Moon. In other words, the values assumed by δ reflect the

influence of the eccentricities of the Earth’s orbit and, mainly, of the Moon’s orbit in the

distance between them. Equations to estimate the values assumed by δ as a function

of the true anomalies of the Earth’s and Moon’s orbits are given by de Melo et al.

[3].
Here, we are interested in Earth-Moon escape trajectories. Then, we can consider the

Earth and the Moon in circular orbits, with the average radius of the Moon’s orbit equal to

384,400 km. This does not represent a significant loss of precision. This way, we can assume

that δ = 0 in (3.3) and, then, we just analyze the quantity θ whose values will determine

the spacecraft position relative to the Moon and the Earth during the passage by the lunar

sphere of influence and the swing-by. For −1.50 × 10−4 km/s ≤ ϑ ≤ 1.50 × 10−4 km/s, we

will have collision trajectories with the Moon, for ϑ < −1.50 × 10−4 km/s, the trajectories will

have periselenium in the region close to the Moon, between itself and the Earth (anterior
region). For ϑ > 1.50 × 10−4 km/s, the periselenium will be in the posterior region to the

Moon relative to the Earth. For ϑ < −1.50 × 10−4 km/s, it is possible to design transfers

between LEOs and LLOs of any altitudes and also between two Earth orbits of different
inclinations and altitudes, both at a low cost [2, 3]. Our interest, however, is the trajectories

generated for ϑ > 1.50 × 10−4 km/s. In those cases, the gain of energy with the swing-by

guarantees the necessary velocity increment to win the Earth’s and the Moon’s gravitational

fields.

The spacecraft must reach the velocityVI when the Earth, the spacecraft and theMoon

are aligned in this order. This is necessary because the trajectory is derived from a Family G

orbit, and this is the only situation in which the orbits of Family G are tangent to the circular

LEOs. Note that this condition does not impose significant restrictions in practical purpose.

For instance, if a satellite is in a LEOwith an altitude of 200 km, this conditionwill occur every

1.48 hour, approximately, which is the period of the LEO. Figure 3 shows a typical escape

trajectory derived from Family G orbits. From now on, we will call them of escape trajectories

G.

It is important to note that the trajectories evolution of the Earth-Moon and escape

links shown here (Figures 2 and 3) do not suffer any intervention since they start from the

LEO. That is, the inclination and the energy gain occur naturally during the passage through

the lunar sphere of influence. However, it is possible to take advantage of the inherent

instability of these trajectories to control the spacecraft passage through the lunar sphere of

influence [2, 15]. This idea will be exploited in the next section to generate specific escape

trajectories for determined missions.
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Figure 3: (a) Typical escape trajectory from the Earth-Moon system. (b) Energy gain relative to the Earth
as function of the time for the trajectory. Note that it is a typical swingy-by energy gain.

4. Escape Trajectories to Design Earth-NEOs Transfers

The basic idea is to find transfer trajectories between the Earth and the NEOs starting from

escape trajectories derived from Family G periodic orbits. This will be done to three NEOs:

the 99942 Apophis, the 1994 WR12, and the 2007 UW1. All these are NEOs of the Aten

asteroids class and they are defined by having semimajor axes of less than one astronomical

unit (1AU is equal to 149.6 × 106 km). Some data about these objects are provided in Tables

1 and 2. Table 1 shows the orbital elements: semimajor axis (a), eccentricity (e), inclination
(i), longitude of ascending node (Ω), argument of perihelion (w), and the orbital period

(P). Table 2 brings other information as average orbital velocity (Vave), Escape velocity (Vesc),
Aphelion, Perihelion, Mass, and diameter. In Table 3, the three next Closest Point Approaches

(CPA)with the Earth are presented for 99942 Apophis, the 1994 WR12, and the 2007 UW1.

Once the mission target is determined, it is necessary to find the point in the asteroid’s

orbit where the spacecraft will reach it. However, our goal here is not to find an optimal

trajectory exactly. We intend to show that transfer trajectories derived from periodic orbits

around L1, generated after swing-bys with the Moon, can reach an NEO with ΔVs smaller
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Table 1: NEOs orbital elements.

Asteroid a (UA) e i∗∗ (deg) Ω (deg) w (deg) P (yr)
Apophis 0.992 0.191 3.331 304, 5 126, 7 0.89

1994WR12 0.757 0.397 6.864 62, 85 205, 9 0.66

2007UW1 0.907 0.121 8.224 26, 04 146, 5 0.86
∗∗Inclination relative to the ecliptic. Source: http://neo.jpl.nasa.gov/.

Table 2: Some characteristics of the NEOs orbits.

Asteroid Vave (km/s) Vesc (m/s) Aphelion (UA) Perihelion (UA) Mass (kg) Diameter (m)
Apophis 30.728 0.144 1.099 0.746 2.7 × 1010 270

1994WR12 34.706 0.050 1.058 0.455 2.0 × 109 110–260

2007UW1 31.509 0.047 1.017 0.798 1.3 × 109 80–190

Source: http://neo.jpl.nasa.gov/.

than the ones required by trajectories that leave from the Earth directly. In order to do so, we

only considered trajectories that are tangents to the NEOs’s orbits. In order to find an escape

trajectory that will reach an NEO’s orbit, for example, an algorithm integrates a number

of them starting from the interception point backward in time until they reach the closest

point approach with the Moon during the swing-bys. These integrations are supplied for

initial conditions determined starting from previous numerical simulations of trajectories

that escape naturally from the Earth-Moon system, as the one shown in Figure 3. In these

simulations, a group of trajectories that have a point closer to the NEO’s orbit is selected. The

positions and the velocities of these trajectories are analyzed and adjusted to form a group of

initial conditions for the integrations beginning in the interception point of the NEO’s orbit.

When the closest point approach with the Moon is found, the algorithm calculates a small

ΔV to determine which escape trajectory G is more suitable for the transfer. In other words,

it calculates the components values of the spacecraft’s initial condition in the LEO (3.1). The
algorithm provides a group of solutions with ΔVTotal, ΔV1, and ΔVintermediary, transfer time

and other quantities of interest. Besides theΔVintermediary applied in the closest point approach

with the Moon, the algorithm also calculates another ΔVintermediary applied in the first apogee

of trajectory G. This apogee is reached about eight days after the departure from the LEO and

prior to the passage by the lunar sphere of influence (Figure 3). This is the best point to do

velocity and inclination changes. In this point, the trajectories G velocities are very small; so

small ΔVs can provide significant velocity and inclination changes.

A similar procedure is used to find the transfer trajectory between the Earth and the

NEO for Patched-conic approximation. In this method, the transfers are designed seeking for

a heliocentric conic arc that links an LEO to an orbit around the asteroid [16].

5. Results

The results of the intercept missions to the NEOs Apophis, 1999 WR12, and 2007 UW1

are in Tables 4 and 5. Table 4 presents the values found for the missions conceived by

escape trajectories G, and Table 5 presents the correspondent values found for the missions

conceived by Patched-conic approach. For each sort of mission, the ΔVs applied in the

departure from the LEO, for occasional velocity and inclination changes, the spacecraft

velocities relative to the asteroids in the closest point approach (CPA), and the transfer times
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Table 3: Three next closest point approaches.

Asteroid

Date Apophis 1994WR12 2007UW1

1st
Date 2013/01/09.48850 2017/11/22.55300 2020/04/24.60600

Minimum possible distance (UA) 0.096662 0.001781 0.137462

2nd
Date 2029/03/06.05209 2019/11/24.23939 2026/10/07.03002

Minimum possible distance (UA) 0.112651 0.001731 0.002622

3rd

Date 2036/04/14.60516 2021/12/05.05848
2039/06/0.832120

2039/10/22.06710

Minimum possible distance (UA) 0.000254 0.001540
0.099407

0.001451

Sources: http://neo.jpl.nasa.gov/.

Table 4:Missions’ data of the Earth-NEOs transfer by escape trajectories G.

Asteroid
ΔV ∗

1 ΔV ∗∗
int 1 ΔV ∗∗∗

int 2 ΔVTotal T1 V ∗∗∗∗
1 T2 V ∗∗∗∗∗

2

(km/s) (km/s) (km/s) (km/s) (days) (km/s) (days) (km/s)
Apophis 3.148 0.010 0.018 3.176 81 0.800 225 0.550

1994WR12 3.147 0.018 — 3.165 53 3.700 103 3.600

2007UW1 3.149 0.018 0.012 3.169 153 0.490 — —
∗Departure, ∗∗1st apogee, ∗∗∗CPA with the Moon, ∗∗∗∗spacecraft velocity relative to the asteroid in T1, and ∗∗∗∗∗spacecraft
velocity relative to the asteroid in T2.

Table 5: Missions’ data of the Earth-NEOs transfer by Patched-conic approach.

Asteroid ΔV ∗
1 (km/s) ΔV ∗∗

int 1 (km/s) ΔVTotal (km/s) T1 (days) V ∗∗∗
1 (km/s) T2 (days) V ∗∗∗∗

2 (km/s)
Apophis 3.280 0.020 3.308 155 1.200 198 1.350

1994WR12 3.225 0.035 3.260 131 4.100 — —

2007UW1 3.250 0.028 3.278 111 0.690 — —
∗Departure, ∗∗middle curse, ∗∗∗spacecraft velocity relative to the asteroid in T1, and ∗∗∗∗spacecraft velocity relative to the
asteroid in T2.

were calculated. The altitude of the circular departure LEO was considered equal to 200 km,

and the altitude of the CPAwith the asteroids was considered equal to 1 km. For the transfers

between the Earth and Apophis and the Earth and 1994 WR12, it was possible to find two

CPAs between the spacecraft and the asteroids. In Tables 4 and 5, we call these times of T1 for

the 1st CPA and T2 for the 2nd CPA. It is interesting to note that spacecraft velocities relative

to the asteroids are different in each CPA, and, depending on the mission goals, the choice of

one of them could represent an extra fuel saving in an occasional insertion maneuver of the

spacecraft into an orbit around the asteroid.

Figure 4(a) shows the Earth’s and the Apophis’s orbits and the heliocentric ellipse arc

generated by the Patched-conic approach. The times of the 1st and 2nd CPA are 155 and 198

days after the departure from the LEO, respectively, and the distances from the Earth to these

points are 11.2× 106 km and 113.6× 106 km, respectively. The values of T1 and T2 of the other

transfers are in Tables 4 and 5.

By analogy, Figure 4(b) shows the escape trajectory G found for the Earth-Apophis

transfer. The 1st and the 2nd CPAs take place 86 and 225 days after the departure from the

LEO, and the distances from the Earth to these points are 52.27 × 106 km and 204.45 × 106 km,

respectively.
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Figure 4: (a) Earth’s and Apophis’s orbits and the transfer trajectory found for Patched-conic transfer. (b)
Earth’s and Apophis’s orbits and transfer trajectory G (heliocentric frame).
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The analysis of Tables 4 and 5 shows that the procedure described in Section 4 to

generate transfer trajectories between the Earth and NEOs, derived from periodic orbits

of Family G, requires ΔVs of 2% up to 4% less than the transfers conceived by Patched-

conic approach. Besides, the spacecraft velocities relative to the asteroids in the CPAs, for

the trajectories G, are the smallest. This can also provide fuel saving in occasional insertion

maneuvers into an orbit around the asteroids. However, the smallest relative velocities

always correspond to the longest transfer times.

6. Conclusions

In this work, a procedure capable of generating transfer trajectories between the Earth and

the NEOs has been presented. These trajectories are derived from the periodic orbits around

the Lagrangian point L1 and escape from the Earth-Moon system after a swing-by with the

Moon.

In terms of ΔVTotal, those required by escape trajectories G are, in general, fewer than

the ones required by conventional transfers (Patched-conic), between 2% up to 4%. Besides,

the spacecraft velocities relative to the asteroids are also, in general, less than those found by

the conventional methods.

With regard to the transfer time, we verify that in two cases (Apophis and 1994WR12)
it was possible to find two CPAs. The time longest always corresponds to the smallest relative

velocity in CPA for trajectories G. We also verify that there are not any discrepancies between

the transfer times of the two considered methods.

This way, we can conclude that the escape trajectories G presented in this work are a

good alternative to design future missions destined to the NEOs.

Finally, future studies of techniques to accomplish a swing-bywith the Earth and, thus,

to gainmore energy and a larger reach could provide the planning of transfers tomore distant

objects, including the internal planets.
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2 Instituto Nacional de Pesquisas Espaciais—INPE, Avenida dos Astronautas 1752, CEP, 12227-010,
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of time needed to occur the collision with the Moon as a function of the initial altitude. The results
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1. Introduction
Recently, several nations presented plans to reach the Moon. Satellites have been launched

and many more are planned for following years (see, e.g., [1]). The expectations are that in

the near future there will be a lunar base. The lunar poles are particularly of interest since

it seems to be where water can be found. Therefore, long living satellites in polar lunar

orbits will be needed. It is well known that lunar satellites in polar orbits suffer a strong

gravitational perturbation from the Earth. That effect is a natural consequence of the Lidov-

Kozai resonance.
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It is well known that the Lidov-Kozai resonance introduces equilibrium configura-

tions. In the case of lunar polar orbits disturbed by the Earth’s gravitational field, this can

be used as an advantage to implement constellations of satellites with elliptic highly inclined

orbits [2, 3]. On the other hand it causes instability for near circular highly inclined orbits.

Wytrzyszczak et al. [4] studied the regular and chaotic motion of geosynchronous satellites

disturbed by the Moon’s gravitational field. They found that the chaotic nature of high

inclination satellites is caused due to the significant eccentricity growth caused by the Lidov-

Kozai resonance.

Similarly, the final fate of polar lunar near circular satellites is the collision with the

Moon. Therefore, the control of the orbital eccentricity leads to the control of the satellite’s

lifetime.

In this paper we propose the control of the eccentricity using an electrical thruster,

similar to the one that is in development at the University of Brası́lia. Electric propulsion is

basically a technique of space propulsion which involves the conversion of electrical power

into the kinetic power or thrust of the exhaust beam of ionized particles. The ability to

obtain high exhaust velocities with ionized particles enables plasma thrusters to perform

high specific impulse mission in space [5]. The main innovation of the thruster that is being

developed at the University of Brası́lia is the use of a permanent magnet, saving energy

during the mission. Preliminary results in the laboratory show that it is possible to obtain

more than 100mN with this technology. Inspired on this thruster project, in this work, we

assume a constant exhaust velocity, and we can control the switch of the thruster during the

mission.

In the present work we introduce an approach in order to keep the orbital eccentricity

of lunar polar satellites at low values. The approach is based on the use of low-thrust

propulsion in order to introduce a correction of the eccentricity.

In the next section we introduce the Lidov-Kozai resonance. In Section 3 we show the

evolution of the eccentricities form our numerical integrations. The approach proposed to

control the eccentricity and its application is presented in Section 3. In the final section we

present our final comments.

2. The Lidov-Kozai Resonance

Lidov [6], studying the dynamics of artificial satellites, and Kozai [7], studying the dynamics

of asteroids, independently discovered what is now called the Lidov-Kozai resonance.

Following, we introduce the basic features of such resonance.

In this section we adopted a simple model (see, e.g., [2]) for the orbital evolution of an

artificial satellite disturbed by a third body in circular equatorial orbit around the primary. It

was obtained by double averaging the system [8] taking into account the disturbing function

expanded in Legendre polynomials up to second order and the eccentricity of the disturbing

body also up to the second order. The disturbing function of the problem is averaged

independently over the mean longitudes of the satellite and the third body. The standard

definition for average used in this work is

〈F〉 =
1

2π

∫2π

0

(F)dM, (2.1)

where M is the mean anomaly, which is proportional to the time.
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Following such approach one can find the double averaged disturbing function given

by (see, e.g., [9])

R =
3G(m1 + m2)a2

16a2
E

(
2
(

e2 − sin2i
)
+ e2(5 cos 2ω − 3)sin2i

)
, (2.2)

where a, e, ω, and i are, respectively, the semimajor axis, eccentricity, argument of pericenter

and inclination, G is the gravitational constant, aE is the semimajor axis of the Earth with

respect to the Moon, and m1 and m2 are the masses of the Earth and Moon respectively.

Substituting R in Lagrange’s planetary equations (see, e.g., [10]), we find

da

dt
= 0, (2.3)

de

dt
=

15eγ

16n

√
1 − e2n2

E

(
2 + 3e2

E

)
sin(2ω)sin2i, (2.4)

dw

dt
= −

3γ
(
2 + 3e2

E

)
n2

E

16n
√
1 − e2

[
1 − 5 cos2i − e2 + 5 cos 2ω

(
cos2i + e2

)
− 1
]

(2.5)

where n is the mean motion and γ = m1/(m1 + m12).
Considering the case when de/dt = 0 and dω/dt = 0 one can find three first integrals:

a = a0, (2.6)(
1 − e2

)
cos2i = k1, (2.7)

e2

(
2

5
− sin2i sin2w

)
= k2, (2.8)

where a, e, i, and w are the semi-major axis, eccentricity, inclination, and argument of

pericenter of the satellite, and a0, k1, and k2 are the constants of motion. This system has a

set of fixed points given by

w = 90◦ or 270◦, e2 +
(
5

3

)
cos2i = 1. (2.9)

Therefore, for a system with e, i, and ωsatisfying conditions (2.10), the satellite would

be in what can be called a frozen orbit; that is, apart from short-period oscillations, the orbit

would be kept fixed in size and location.

A simple analysis of (2.2) and (2.3) shows that [9]

(i) for k2 > 0 and any value of k1, w circulates,

(ii) for k2 < 0 and k1 < 3/5, w librates around 90◦ or 270◦,

(iii) for k2 = 0 and w = 90◦ or 270◦, i = i∗ ∼ 39.2◦,

where i∗ = 39.2◦ is the critical value, which corresponds to the frozen orbit.
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Figure 1: Sample of the satellite’s orbital evolution in a diagram e versus w. There are two sets of initial
values of eccentricity and inclination (eo, io) : One for low inclination, io = 20◦ (thick lines) and other for
high inclination, io = 56.2◦, (thin lines). The values of the initial eccentricities are represented by the colour
code in the bottom of the figure. The argument of pericentre circulates in the case of initial low inclination,
while librates in the case of initial high inclination.

So, that is the Lidov-Kozai resonance. When i > i∗, the system behaves like a

pendulum, with stable fixed points, librations around such points and circulation.

Following another approach let us consider a satellite orbiting theMoon and disturbed

by the Earth in an elliptical orbit with respect to the Moon. Taking into account only the term

P2 of the Legendre polynomial, the disturbing potential is given by

R =
45

32
a2μE

[(
e2sin2i

)
cos 2w +

3

5

(
2

3
+ e2

)(
cos2i − 1

3

)]
n2

E

(
2

3
+ e2

E

)
, (2.10)

where eE and nE are the eccentricity, and mean motion of the Earth with respect to the

Moon, and μE = mE/(mE + mM), where mE and mM are the masses of the Earth and Moon,

respectively.

One can identify the Lidov-Kozai resonant features by numerically integrating

Lagrange’s planetary equations for the temporal variation of the argument of pericentre, w,
and the eccentricity, e, with the disturbing potential given by (2.10). In Figure 1 we present a

sample of these numerical integrations in a diagram e versus w. There are two sets of initial

values of eccentricity and inclination (eo, io). One for low inclination (io = 20◦) and other for

high inclination (io = 56.2◦). This figure shows a clear dependence of the eccentricity on the

argument of pericentre for an orbit with high inclination. All satellites inclined to the orbital

plane of the third body (the Earth) by more than 39.2◦, the critical inclination, experience a

considerable growth of eccentricity. The Earth causes the Lidov-Kozai resonance driving the

eccentricity growth. For all trajectories from the set with initial inclination higher than the

critical value, the argument of pericentre librates, while it circulates for trajectories from the

set with initial inclination lower than the critical value.
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3. Eccentricity Growth

In this section we present numerical integrations considering two dynamical systems: the 3-

body problem, Moon-Earth-satellite, and the 4-body problem, Moon-Earth-Sun-satellite. In

all simulations the satellite is initially in polar orbit (i = 90◦).
In the case of the 3-body problem, considering a coordinate system centered in the

barycenter of the Earth-Moon system (X, Y, Z), the equations of motion of the satellite are

given by

−̈→x =
2∑

i=1

G
mi

|xi − x|3
(−→xi − −→x

)
,

−̈→y =
2∑

i=1

G
mi∣∣yi − y
∣∣3 (−→yi −

−→y
)
,

−̈→z =
2∑

i=1

G
mi

|zi − z|3
(−→z i − −→z

)
,

(3.1)

where m is mass and the index i = 1 refers to the Earth and i = 2 refers to the Moon. In this

system, the equations of motion for the moon and the Earth are given by

−̈→xi =
2∑

j=1, j /= i

G
mi∣∣xj − xi

∣∣3 (−→xj − −→xi

)
,

−̈→yi =
2∑

j=1, j /= i

G
mi∣∣yj − yi

∣∣3
(−→yj −

−→yi

)
,

−̈→z i =
2∑

j=1, j /= i

G
mi∣∣zj − zi

∣∣3 (−→z j − −→z i

)
.

(3.2)

First, we simulated the system, integrating numerically (3.1) and (3.2), considering
a satellite with initial eccentricity equals to 0.0001 and a range of initial altitudes between

100 km and 5000 km. Figure 2 shows the evolution of the satellite’s eccentricity for the 3-body

simulations, considering altitudes h = 100, 200, 500, 1000, and 5000 km. The plots show an

exponential evolution of the eccentricity. We computed the time needed in order to reach

the eccentricity that corresponds to the collision of the satellite with the Moon. A fit of the

collision time, Tcollision, in Earth days, as a function of the altitude, h, is given by the expression:

Tcollision = 2693e0.062h−3.92×10−4h2

. (3.3)

The same set of simulations was performed considering the 4-body problem, adding the

perturbations of the Sun. Now we considered a new coordinate system (X′Y ′Z′), centered at

the barycenter of Sun-Earth-Moon system. In this case we integrate numerically the equations

similar (using prime in the variables) to equations (3.1) and (3.2), but we add the index i = 3,

where the fourth term refers to Sun.
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Figure 2: Time evolution of the eccentricity for the 3-body problem. The colour code indicates the initial
altitude in kilometers. The time is in Earth days.

However, the results found for the 4-body model were not significantly different from
those found for the 3-body model. The empirical expression for the length of time needed to

occur the collision with the Moon as a function of the initial altitude is given by

Tcollision = 2494e0.063h−3.94×10−4h2

. (3.4)

A comparison of the two sets of simulations and (2.5) and (2.6) is shown in Figure 3.

4. Controlling the Eccentricity

In order to control the satellite’s eccentricity we will use low-thrust propulsion. Following

the work of Sukhanov [11], we use the locally optimal thrust for each orbital element. This

development is based on the performance index, through the minimization of a functional in

the direction of the orbital element to be changed. In our case, the eccentricity is the parameter

to be minimized. The result is a vector, called Lawden’s primer vector, P, which gives the

direction of the thruster to be turned on.

The eccentricity of the satellite relative to the Moon is given by

e =

√
1 +

c2

Gm2
h, (4.1)

where c is the magnitude of the angular momentum, and h is the integral energy. The primer

vector is given by

−→p =
1

Gm2e

(
P −→v − r2

a
−→v n

)
, (4.2)
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Figure 3: Collision time as a function of the initial altitude. The red crosses are for the 3-body simulations
and green are for the 4-body simulations. The blue curve corresponds to (2.5) and the purple curve
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Figure 4: Temporal evolution of the eccentricity (a) and of the orbital radius (b). In this simulation the
initial altitude was 500 km and the thrust value used was 0.2N.

where −→r , −→v, and −→v nare the vector position, velocity, and tangential velocity relative to the

Moon, and a and P are the semimajor axis and semilatus rectum relative to the Moon.

Then, we have that the acceleration components to change eccentricity are given by

pr =
1

μe
pa, pn =

1

μe

(
pa −

r2p

a

)
, (4.3)

where pa = c2/μ, pr, and pn are the radial and the tangential components, respectively.

The approach we are proposing is a very simple one. The idea is to introduce a

correction on the eccentricity every time it reaches a certain limit. The procedure is as follows.
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Figure 5: The propellant consumption per year of lifetime for the whole set of simulations, that is, different
initial altitudes and different values of the thruster.

First fix the nominal eccentricity, eo, and the maximum acceptable increase in eccentricity,Δe,

according to the mission design. Then, turn on the thruster every time the condition

e > (eo + Δe) (4.4)

is satisfied and turn off the thruster when e > eo.

Following, we present the results of some simulations assuming eo = 0.04 and Δe =
0.01. These simulations were made considering a set of different thrust values, from 0.1N up

to 0.4N. In each runwemeasured the length of time TThruster, needed to correct the eccentricity

value (from e = 0.04 to e = 0.05). From these results we obtained empirical expressions of

TThruster as a function of the initial altitude and as a function of the thrust value. As an example,

in Figure 4 is shown the temporal evolution of the eccentricity and of the orbital radius for a

satellite with an initial altitude of 500 km and using a thruster of 0.2N.

In Figure 5 we present the propellant consumption per year of lifetime for the whole

set of simulations, that is, different initial altitudes and different values of the thruster. The

time intervals that the thrusters are turned on and off are shown in Figures 6 and 7.

5. Final Comments

In the present work we have studied the problem of polar lunar satellites in near circular

orbits under the gravitational perturbations of the Earth and the Sun. The problem is

dominated by the Lidov-Kozai resonance, which forces satellites with near circular orbits

to have an exponential growth of its eccentricity. In order to keep the satellite with low

eccentricity we proposed to use low-thrust propulsion every time the eccentricity reaches a

limiting eccentricity, acceptable by the requirements of the satellite mission. The results show
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Figure 7: Zoom of Figure 6.

that the satellite’s lifetime can be reasonably extended (several years) at a not so expensive

cost. Therefore, it is shown that low-thrust propulsion is very adequate for this kind of

purpose.
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1. Introduction

Ball and roller bearings, generically called rolling bearings, are commonly used machine

elements. They are employed to permit rotary motions of, or about, shafts in simple

commercial devices such as bicycles, roller skates, and electric motors. They are also used

in complex engineering mechanisms such as aircraft gas turbines, rolling mils, dental drills,

gyroscopes, and power transmissions.

The standardized forms of ball or roller bearings permit rotary motion between two

machine elements and always include a complement of ball or rollers that maintain the

shaft and a usually stationary supporting structure, frequently called a housing, in a radially

or axially spaced-apart relationship. Usually, a bearing may be obtained as a unit, which
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Figure 1: An angular-contact ball bearing (courtesy of SKF Industries).

(a) Small angle (b) Large angle

Figure 2: Angular-contact ball bearings.

includes two steel rings; each of which has a hardened raceway on which hardened balls or

rollers roll. The balls or rollers, also called rolling elements, are usually held in an angularly

spaced relationship by a cage, also called a separator or retainer.
There are many different kinds of rolling bearings. This work is concerned with single-

row angular-contact ball bearings (Figure 1) that are designed to support combined radial and

thrust loads or heavy thrust loads depending on the contact angle magnitude. The bearings

having large contact angle can support heavier thrust loads. Figure 2 shows bearings having

small and large contact angles. The bearings generally have groove curvature radii in the

range of 52%–53% of the ball diameter. The contact angle does not usually exceed 40o.

This work is devoted to the study of the internal loading distribution in statically

loaded ball bearings. Several researchers have studied the subject as, for example, Stribeck

[1], Sjoväll [2], Jones [3], and Rumbarger [4], to cite a few. The methods developed by
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them to calculate distribution of load among the balls and rollers of rolling bearings can be

used in most bearing applications because rotational speeds are usually slow to moderate.

Under these speed conditions, the effects of rolling-element centrifugal forces and gyroscopic

moments are negligible. At high speeds of rotation these body forces become significant,

tending to alter contact angles and clearance. Thus, they can affect the static load distribution

to a great extension.

Harris [5] described methods for internal loading distribution in statically loaded

bearings addressing pure radial, pure thrust (centric and eccentric loads), combined radial

and thrust load, which uses radial and thrust integrals introduced by Sjoväll [2], and for ball

bearings under combined radial, thrust, and moment load, initially due to Jones [3].

The method described by Harris for eccentric thrust load, initially due to Rumbarger

[4], is an approximate, direct method, based in a single-row, 90o thrust bearing and in thrust

and moment integrals whose values are obtained from tables and graphics, as functions of

eccentricity and pitch diameter. The maximum ball load is given directly and no computer

is necessary. Although it is not entirely appropriate, the method was used by Harris to find

approximations for the maximum ball load magnitude and for the extension of the loading

zone in the 218 angular-contact ball bearing.

We can see that there are many works describing the parameters variation models

under static loads but few show such variations in practice, even under simple static loadings.

The author believes that the lack of practical examples in the literature is mainly due to the

inherent difficulties of the numerical procedures that, in general, deal with the resolution of

several nonlinear algebraic equations that must be solved simultaneously.

In an attempt to cover this gap studies are being developed in parallel [6–14].
Particularly in this work is described a new, precise method for internal load distribution

computation in statically loaded, single-row, angular-contact ball bearings subjected to a

known external thrust load which is applied to a variable distance (lever arm or eccentricity)
from the geometric bearing center line. It must be solved iteratively using a digital computer

and can be thought as a particular case of the Jones method, with null external radial

load and external moment load given by the product of the thrust load by the eccentricity.

Unlike Rumbarger’s method, it is adequate to angular-contact bearings, and theoretically

and numerically more precise. The novelty of the method is in the choice of the set of the

nonlinear equations, which must be solved simultaneously. The author did not find in the

literature the resolution of this problem using the same set of equations.

The difference between the method described here and the method described by

Harris for eccentric thrust load mainly comes from the fact that Rumbarger’s method, for

sake of simplicity, makes use of the pitch radius, de/2, as lever arm, instead of the inner

contact radius, dcj/2, in the r.h.s. of the moment equation—see (4.19) for comparison— and

secondarily by the fact that it uses the pitch radius instead of the locus of the centers of the

inner ring raceway groove curvature radii, Ri, in the computations of the load distribution

factor, ε, in (4.10) and of the extension of load zone, ψl, in (4.11). These approximations are

guarantee of the straightforwardness but obviously they introduce errors in the normal ball

loads determination. However, at first glance appears that the method for thrust bearing

is more attractive than the method of this paper because it supplies results more directly

whereas no computer is necessary. But, despite the simplicity of the former, comparative

analyses between the results show significant differences in the magnitudes of the maximum

ball load and extension of the loading zone.
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Figure 3: Radial cross-section of a single-row ball bearing.

r

D

Figure 4: Cross-section of a ball and an outer race showing race conformity.

2. Geometry of Ball Bearings

In this section, the principal geometrical relationships for an unloaded ball bearing are

summarized. The radial cross section of a single-row ball bearing shown in Figure 3 depicts

the diametral clearance and various diameters. The pitch diameter, de, is the mean of the inner-

and outer-race diameters di and do, respectively, and is given by

de =
1

2
(di + do). (2.1)

The diametral clearance, Pd, can be written as

Pd = do − di − 2D. (2.2)

Race conformity is a measure of the geometrical conformity of the race and the ball in a plane

passing through the bearing axis (also named center line or rotation axis), which is a line

passing through the center of the bearing perpendicular to its plane and transverse to the

race. Figure 4 depicts a cross section of a ball bearing showing race conformity expressed as

f =
r

D
. (2.3)
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Figure 5: Cross-section of a radial ball bearing showing ball-race contact due to axial shift of inner and
outer rings.

Radial bearings have some axial play since they are generally designed to have a diametral

clearance, as shown in Figures 5(a) and 5(b), that shows a radial bearing with contact due to

the axial shift of the inner and outer rings when no measurable force is applied. The radial

distances between the curvature centers of the two races are the same in Figures 5(a) and

5(b). Denoting quantities which referred to the inner and outer races by subscripts i and o,

respectively, this radial distance value can be expressed as A − Pd/2, where A = ro + ri − D

is the curvature centers distance in the shifted position given by Figure 5(b). Using (2.3) we

can write A as

A = BD, (2.4)

where B = fo + fi − 1 is known as the total conformity ratio and is a measure of the combined

conformity of both the outer and inner races to the ball.

The contact angle, β, is defined as the angle made by a line, which passes through

the curvature centers of both the outer and inner raceways and that lies in a plane passing

through the bearing rotation axis, with a plane perpendicular to the bearing axis of rotation.

The free-contact angle, βf , (Figure 5(b)) is the contact angle when the line also passes through

the points of contact of the ball and both raceways and no measurable force is applied. From

Figure 5(b), the expression for the free-contact angle can be written as

cos βf =
A − Pd/2

A
. (2.5)

From (2.5), the diametral clearance, Pd, can be written as

Pd = 2A
(
1 − cos βf

)
. (2.6)
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Figure 6: Cross-section of a ball bearing.

Free endplay, Pe, is the maximum axial movement of the inner race with respect to the outer

when both races are coaxially centered and no measurable force is applied. Free endplay

depends on total curvature and contact angle, as shown in Figure 5(b), and can be written as

Pe = 2A sin βf . (2.7)

Considering the geometry of two contacting solids (ellipsoids) in a ball bearing, we can arrive

at the two quantities of some importance in the analysis of contact stresses and deformations.

The curvature sum, 1/R, and curvature difference, Γ, are defined as

1

R
=

1

Rx
+

1

Ry
,

Γ = R

(
1

Rx
− 1

Ry

)
,

(2.8)

where

1

Rx
=

1

rax
+

1

rbx
,

1

Ry
=

1

ray
+

1

rby
,

(2.9)

with rax, rbx, ray, and rby being the radii of curvature for the ball-race contact.

A cross section of a ball bearing operating at a contact angle β is shown in Figure 6.

Equivalent radii of curvature for both inner- and outer-race contacts in, and normal to, the

direction of rolling can be calculated from this figure. Considering x the direction of the
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motion and y the transverse direction, the radii of curvature for the ball-inner-race contact

are

rax = ray =
D

2
,

rbx =
de − D cos β

2 cos β
,

rby = −fiD = −ri.

(2.10)

The radii of curvature for the ball-outer-race contact are

rax = ray =
D

2
,

rbx = −de + D cos β

2 cos β
,

rby = −foD = −ro.

(2.11)

Let

γ =
D cos β

de
. (2.12)

Then

rbx =
D

2

1 − γ

γ
,

1

R

∣∣∣∣
i

=
1

rax
+

1

rbx
+

1

ray
+

1

rby
=

1

D

(
4 − 1

fi
+

2γ(
1 − γ

)),

Γi = R

(
1

rax
+

1

rbx
− 1

ray
− 1

rby

)
=

1/fi + 2γ/
(
1 − γ

)
4 − 1/fi + 2γ/

(
1 − γ

) ,

(2.13)

for the ball-inner-race contact, and

rbx = −D

2

1 + γ

γ
,

1

R

∣∣∣∣
o

=
1

rax
+

1

rbx
+

1

ray
+

1

rby
=

1

D

(
4 − 1

fo
− 2γ

1 + γ

)
,

Γo = R

(
1

rax
+

1

rbx
− 1

ray
− 1

rby

)
=

1/fo − 2γ/
(
1 + γ

)
4 − 1/fo − 2γ/

(
1 + γ

) ,

(2.14)

for the ball-outer-race contact.
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3. Contact Stress and Deformations

When two elastic solids are brought together under a load, a contact area develops; the shape

and size of which depend on the applied load, the elastic properties of the materials, and

the curvatures of the surfaces. For two ellipsoids in contact the shape of the contact area is

elliptical, with a being the semimajor axis in the y direction (transverse direction) and b being

the semiminor axis in the x direction (direction of motion).
The elliptical eccentricity parameter, k, is defined as

k =
a

b
. (3.1)

From Harris [5], k can be written in terms of the curvature difference, Γ, and the elliptical
integrals of the first and second kinds K and E, as

J(k) =

√
2K − E(1 + Γ)

E(1 − Γ)
, (3.2)

where

K =
∫π/2

0

[
1 −
(
1 − 1

k2

)
sin2ϕ

]−1/2

dϕ,

E =
∫π/2

0

[
1 −
(
1 − 1

k2

)
sin2ϕ

]1/2

dϕ.

(3.3)

A one-point iterationmethodwhich has been used successfully in the past [15] is used, where

kn+1 = J(kn). (3.4)

When the ellipticity parameter, k, the elliptic integrals of the first and second kinds, K and E,
respectively, the normal applied load, Q, Poisson’s ratio, ν, and the modulus of elasticity, E,

of the contacting solids, are known, we can write the semimajor and semiminor axes of the

contact ellipse and the maximum deformation at the center of the contact, from the analysis

of Hertz [16], as

a=

(
6k2EQR

πE′

)1/3

,

b=
(
6EQR

πkE′

)1/3

,

(3.5)

δ = K

[
9

2ER

(
Q

πkE′

)2
]1/3

, (3.6)
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where

E′ =
2(

1 − υ2
a

)
/Ea +

(
1 − υ2

b

)
/Eb

. (3.7)

4. Static Load Distribution under Eccentric Thrust Load

Methods to calculate distribution of load among the balls and rollers of rolling bearings

statically loaded can be found in various papers [5, 17]. The methods have been limited to,

at most, three degrees of freedom in loading and demand the solution of a simultaneous

nonlinear system of algebraic equations for higher degrees of freedom. Solution of such

equations generally necessitates the use of a digital computer. In certain cases, however—for

example, applications with pure radial, pure thrust, or radial and thrust loadingwith nominal

clearance—the simplified methods will probably provide sufficiently accurate calculational

results.

Having defined a simple analytical expression for the deformation in terms of load in

the previous section, it is possible to consider how the bearing load is distributed among the

rolling elements. Most rolling-element bearing applications involve steady-state rotation of

either the inner or outer race or both; however, the speeds of rotation are usually not so great

as to cause ball or roller centrifugal forces or gyroscopic moments of significant magnitudes.

In analyzing the loading distribution on the rolling elements, it is usually satisfactory to

ignore these effects in most applications. In this section the load-deflection relationships for

ball bearings are given, alongwith a specific load distribution consisting of an eccentric thrust

load of statically loaded rolling elements.

4.1. Load-Deflection Relationships for Ball Bearings

From (3.6) it can be seen that for a given ball-raceway contact (point loading)

Q = Kδ3/2, (4.1)

where

K = πkE′

√
2ER

9K3
. (4.2)

The total normal approach between two raceways under load separated by a rolling element

is the sum of the approaches between the rolling element and each raceway. Hence

δn = δi + δo. (4.3)
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j = 1
j = 2

j
=
3

de

ψ1 = 0◦

ψ2 ψ3

ψj

Δψ

j

Figure 7: Ball angular positions in the radial plane that is perpendicular to the bearing’s axis of rotation;
Δψ = 2π/Z, ψj = 2π/Z(j − 1).

Therefore,

Kn =

[
1

1/Ki
2/3 + 1/Ko

2/3

]3/2

, (4.4)

Q = Knδ3/2
n . (4.5)

4.2. Ball Bearings under Eccentric Thrust Load

Let a ball bearing with a number of balls, Z, symmetrically distributed about a pitch

circle according to Figure 7, be subjected to an eccentric thrust load. Then, a relative axial
displacement, δa, and a relative angular displacement, θ, between the inner and outer ring

raceways may be expected. Let ψ = 0 be the angular position of the maximum loaded ball.

Figure 8 shows the initial and final curvature centers positions at angular position

ψ, before and after loading, whereas the centers of curvature of the raceway grooves are

fixed with respect to the corresponding raceway. If δa and θ are known, then the total axial
displacement, δt, at angular position ψ, is given by

δt

(
ψ
)
= δa + Riθ cosψ, (4.6)

where

Ri =
de

2
+
(
fi − 0.5

)
D cos βf (4.7)

expresses the locus of the centers of the inner ring raceway groove curvature radii.
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Initial position, inner
raceway groove

curvature center

Final position,

inner raceway groove

curvature center

Outer raceway groove

curvature center fixed

βf

β A

s = A + δn

A − Pd/2

δa + Riθ cosψ

Figure 8: Initial and final curvature centers positions at angular position ψ, with and without applied load.

Also,

δmax ≡ δt(0) = δa + Riθ. (4.8)

From (4.6) and (4.8), one may develop the following relationship:

δt = δmax

[
1 − 1

2ε

(
1 − cosψ

)]
(4.9)

in which

ε =
1

2

(
1 +

δa

Riθ

)
. (4.10)

The extension of the loading zone is defined by

ψl = cos−1
(−δa

Riθ

)
. (4.11)

From Figure 8,

β
(
ψ
)
= cos−1

(
A − Pd/2

A + δn

)
, (4.12)

δt

(
ψ
)
= (A + δn) sin β − A sin βf . (4.13)

From (2.5) and (4.12), the total normal approach between two raceways at angular

position ψ, after the thrust load has been applied, can be written as

δn

(
ψ
)
= A

(
cos βf

cos β
− 1

)
. (4.14)
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From Figure 8 and (4.14) it can be determined that s, the distance between the centers

of the curvature of the inner and outer ring raceway grooves at any rolling-element position

ψ, is given by

s
(
ψ
)
= A + δn = A

cos βf

cos β
. (4.15)

From (4.6), (4.13), and (4.14), yields, for ψ = ψj,

δa + Riθ cosψj − A
sin
(
βj − βf

)
cos βj

= 0, j = 1, . . . , Z. (4.16)

From (4.5), and (4.14) one yields, for ψ = ψj,

Qj = KnjA
3/2

(
cos βf

cos βj
− 1

)3/2

, j = 1, . . . , Z. (4.17)

If the external thrust load, Fa, is applied at a point distant e from the bearing’s axis of

rotation, then for static equilibrium to exist

Fa =
Z∑

j=1

Qj sin βj , (4.18)

M = eFa =
1

2

Z∑
j=1

dcjQj sin βj cosψj, (4.19)

where dcj ≡ de − D cos βj .

Substitution of (4.17) into (4.18) yields

Fa − A3/2
Z∑

j=1

Knj sin βj

(
cos βf

cos βj
− 1

)3/2

= 0. (4.20)

Similarly,

eFa − A3/2

2

Z∑
j=1

Knjdcj cosψj sin βj

(
cos βf

cos βj
− 1

)3/2

= 0. (4.21)

Equations (4.16), (4.20), and (4.21) are Z + 2 simultaneous nonlinear equations with

unknowns δa, θ, and βj , j = 1, . . . , Z. Since Knj and dcj are functions of final contact angle, βj ,

the equations must be solved iteratively to yield an exact solution for δa, θ, and βj .
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5. Numerical Results

A numerical method (the Newton-Rhapson method) was chosen to solve the simultaneous

nonlinear equations (4.16), (4.20), and (4.21). Choosing the rolling bearing, input must be

given the geometric parameters di, do, D, Z, ri, and ro, in accordance with Figures 3 and 5,

and the elastic properties Ea, Eb, νa, and νb. Next, the following parameters must be obtained:

fi, fo, B, A, ψj(j = 1, . . . , Z), E′, de, Pd, βf ,and Ri.

The interest here is to observe the behavior of an angular-contact ball bearing under

a known thrust load which is to be applied statically to a variable distance (lever arm or

eccentricity), e, from the geometric bearing center line. Then, given a thrust load and the

initial estimates for δa, θ, and βj , j = 1, . . . , Z, for each distance e, varying from zero up to

a given maximum eccentricity, the values 1/R|i, 1/R|o, Γi, Γo, ki, ko, Ki, Ko, Ei, Eo, Ki, Ko,

and Kn are calculated for each ball, according to previous sections, and new values for δa, θ,

and βj are obtained. The new βj values are compared with old ones, and if the difference is

greater than a minimal error, then new values for 1/R|i, 1/R|o, Γi, Γo, ki, ko, Ki, Ko, Ei, Eo, Ki,

Ko, and Kn are calculated for each ball, and again new values for δa, θ, and βj are obtained.

If the difference is lesser than the error then a new value for e is taken. If e is the last valid

value, then a new thrust load value is acquired and the procedure is repeated up to the last

valid thrust load value, when the program ends.

To show an application of the theory developed in this work, a numerical example

is presented here. It was chosen the 218 angular-contact ball bearing that was also used by

Harris[5]. Thus, the results generated here can be compared to a certain degree with Harris

results. The input data for this rolling bearing were the following:

inner raceway diameter: di = 0.10279m,

outer raceway diameter: do = 0.14773m,

ball diameter: D = 0.02223m,

ball number: Z = 16,

inner groove radius: ri = 0.01163m,

outer groove radius: ro = 0.01163m,

modulus of elasticity for both balls and races: E = 2.075 × 1011 N/m2,

poisson’s ratio for both balls and races: υ = 0.3.

The remaining parameters have been calculated yielding:

inner race conformity: fi = 0.523166891587944,

outer race conformity: fo = 0.523166891587944,

total conformity ratio: B = 0.046333783175888,

initial curvature centers distance: A=0.00103m,

effective elastic modulus: E′ = 228021978021.978N/m2,

angular spacing between rolling elements: Δψ = 22.5◦,

angular position of rolling elements: ψj = 22.5◦(j − 1), j = 1, . . . , 16,

bearing pitch diameter: de = 0.12526m,

diametral clearance: Pd = 0.00048m,

free-contact angle: βf = 39.915616407992260◦,

radius of locus of inner raceway groove curvature centers: Ri = 0.063025m.
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Figure 9: Relative angular misalignment, θ, for 17,800N thrust load, as a function of the Moment, M.

For each thrust load value, the initial estimates for δa, θ, and βj were the following:

axial deflection: δa = 10−5 m,

misalignment angle: θ = 10−2 rd,

contact angle: βj = 1.1βf , j = 1, . . . , 16.

5.1. Numerical Results for a 17,800 N Thrust Load

Since it is the qualitative behavior of solutions that is the interest, the results are presented

here in graphical form.

Initially, for comparative purposes with the Harris work, a specific thrust load Fa =
17, 800N was chosen to be applied, and the following graphical results are presented as

functions of the moment, M = Fae:

(i) relative angular displacement, θ (Figure 9),

(ii) partial axial displacement, Riθ cosψ (Figure 10),

(iii) relative axial displacement, δa (Figure 11),

(iv) total relative axial deflection, δt (Figure 12),

(v) loading zone, ψl (Figure 13),

(vi) distance between loci of inner and outer raceway groove curvature centers, s

(Figure 14),

(vii) maximum elastic compression at the ball/inner-race contact, δi (Figure 15),

(viii) maximum elastic compression at the ball/outer-race contact, δo (Figure 16),

(ix) total normal ball deflection, δn (Figure 17),

(x) ball-raceway normal load, Q (Figure 18),

(xi) contact angle, β (Figure 19),

(xii) semimajor axis of the ball/inner-race contact area, ai (Figure 20),
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Figure 11: Axial deflection, δa, for 17,800N thrust load, as a function of the Moment, M.

(xiii) semiminor axis of the ball/inner-race contact area, bi (Figure 21),

(xiv) semimajor axis of the ball/outer-race contact area, ao (Figure 22),

(xv) semiminor axis of the ball/outer-race contact area, bo (Figure 23),

(xvi) elliptical eccentricity parameter for ball/inner-race contact, ki (Figure 24),

(xvii) elliptical eccentricity parameter for ball/outer-race contact, ko (Figure 25).

The graphics above, with exception of Figures 9, 11, and 13, show one curve for each

ball angular position.

Figures 9 and 10 show the relative angular misalignment, θ, and the partial axial

deflection for each ball, Riθ cosψ, respectively. It is observed that there is an approximately

linear relationship between the misalignment angle, θ, and applied moment, M, for moment
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values ranging from zero up to about 600Nm, which corresponds to a distance e of

approximately 33.7mm. Keeping the load constant and increasing the lever arm, e, above

this value, it can be observed a deeper increase in the misalignment angle and, therefore, in

the resultant axial deflection, Riθ.

From Figure 9 it can be observed that for an applied moment of 900Nm (e ∼= 50.6mm)
the angular misalignment can be as high as a quarter of degree.

As already been waited for, from Figure 10 it can be observed that the partial axial

deflection is symmetrical with respect to the horizontal axis (null displacement) and that the

displacement is null for the balls located at ψ = ±90◦.
Figure 11 shows the axial deflection, δa. It is observed that the axial deflection, δa,

is approximately constant for moment values where the relationship between θ and M is

approximately linear, that is, from zero up to about 600Nm (e ∼= 33.7mm). For higher

moment values the axial deflection falls abruptly and becomes negative in the vicinity of
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as a function of the Moment, M.

800Nm (e ∼= 44.9mm). The deeper increase in θ due to the increase in the lever arm forces

the decrease of δa to preserve the force and moment static balances.

Figure 12 shows the total axial deflection, δt. It can be observed that the total axial

deflection, δt, is the axial deflection, δa, in two situations: under centric thrust load (e = 0),
where all balls have the same axial deflection (3.6011095400455×10−5 m), and under eccentric

thrust load for balls located at ψ = ±90◦. Increasing from zero the lever arm, an almost

linear increase (decrease) in the total axial deflection is observed for the balls whose angular

positions satisfy |ψ| < 90◦ (|ψ| > 90◦). This relation is approximately linear up to vicinity of

M = 600Nmwhen the ball located at ψ = 180◦ occurs to be unloaded, that is, δt(ψ = 180◦) = 0

for M = 588.9687Nm (e = 3.3088 × 10−2 m).
From Figure 12 it is observed that for eccentricity of about 50mm the total axial

deflection of the most heavily loaded ball can reach one tenth of millimeter.
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Figure 17: Total ball deflection, δn, for 17,800N thrust load, as a function of the Moment, M.

The Figure 13 shows the loading zone, ψl. The increase of the moment above 587.4Nm

(or lever arm above 3.3 × 10−2 m) causes the decrease of the loading zone from initial value

ψl = ±180◦, with the successive unloading of the balls pairs located at ψ = ±157.5◦ (M =
609.448Nm), ψ = ±135◦ (M = 661.1407Nm), ψ = ±112.5◦ (M = 729.9584Nm), ψ = ±90◦
(M = 803.9741Nm), and ψ = ±67.5◦ (M = 873.7125Nm), respectively. Going ahead cause the

unloading of the balls pair located at ψ=±45o. However, it is not advisable to go beyond M =
900Nm, once the radial displacements between curvature centers start to acquire micrometer

order values and they cannot more be disregarded.

Figure 13 shows a substantial difference between results found in this work and those

found by Harris. While Harris found a loading zone of 92.86o (p. 252) for an eccentricity of

50.8mm, this work found a loading zone of 53.66o. Considering the last result as reference,

this represents an error of +73% in the loading angle, meaning that Harris calculation has

underestimated the effect of the moment M.
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Figure 14 shows the distance between loci of inner and outer raceway groove

curvature centers, s. It can be observed that the distance, s, under centric thrust load (e = 0),
is the same for all balls (1.053468971830 × 10−3 m). Increasing from zero the lever arm, an

almost linear increase (decrease) in the distance, s, is observed for the balls whose angular

positions satisfy |ψ| < 90◦ (|ψ| > 90◦). This relation is approximately linear up to vicinity of

M = 600Nmwhen the ball located at ψ = 180◦ occurs to be unloaded, that is, s(ψ = 180◦) = A

for M = 588.9687Nm (e = 3.3088 × 10−2 m).
The increase of the moment above 588.9687Nm (or lever arm above 3.3088 × 10−2 m)

causes the decrease of the loading zone, as already explained, with the successive unloading

of the ball pairs. At the points where the unloading occurs it is observed that the distance s
falls below of the distance between centers of curvature, A, for the unloaded bearing.

Figures 15 and 16 show the maximum normal elastic compressions at the ball/inner-

race and ball/outer-race contacts, δi and δo, respectively. It can be observed that δi and δo,

under centric thrust load (e = 0), are the same for all balls (1.18852986717367 × 10−5 m for δi
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Figure 20: Semimajor axis of the ball/inner-race contact area, ai, for 17,800N thrust load, as a function of
the Moment, M.
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Figure 21: Semiminor axis of the ball/inner-race contact area, bi, for 17,800N thrust load, as a function of
the Moment, M.

and 1.15836731583185×10−5 m for δo) and that the deformation for the maximum loaded ball,

in both cases, can reach values as high as 36μm for moment about 900Nm.

Figure 17 shows the total normal ball deflection, δn, that can be obtained by summing

the maximum normal elastic compressions on the inner and outer races, δi and δo, or by

subtracting A from s, once δn = s − A > 0 also. It can be observed that δn, under centric

thrust load (e = 0), is the same for all balls (2.3468971830055 × 10−5 m) and that the total

normal elastic deformation for the maximum loaded ball can reach values as high as 70μm

for moment about 900Nm.

Figure 18 shows the normal ball load, Q. It can be observed that the normal ball

load, Q, under centric thrust load (e = 0), is the same for all balls (1, 681.663561507042N).
Increasing from zero the lever arm, an almost linear increase (decrease) in the normal ball
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Figure 22: Semimajor axis of the ball/outer-race contact area, ao, for 17,800N thrust load, as a function of
the Moment, M.
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Figure 23: Semiminor axis of the ball/outer-race contact area, bo, for 17,800N thrust load, as a function of
the Moment, M.

load is observed for the balls whose angular positions satisfy |ψ| < 90◦ (|ψ| > 90◦). This
relation is approximately linear up to vicinity of M = 600Nm when the ball located at ψ =
180◦ occurs to be unloaded, that is, Q(ψ = 180◦) = 0 for M = 589.18Nm (e = 3.31 × 10−2 m).

Figure 18, as well as Figure 13, shows a substantial difference between results found

in this work and those found by Harris. While Harris found a 5, 878N magnitude for the

maximum normal ball load (p. 252), for an applied load eccentricity of 50.8mm, this work

found a 9, 445N maximum normal ball load. This represents an error of −62.2% in the

normal load, meaning that the Harris calculation has underestimated the normal load for

the maximum loaded ball.

Figure 19 shows the contact angle, β. It can be observed that the contact angle, β, under

centric thrust load (e = 0), is the same for all balls (41.417986227161386o). Increasing from

zero the lever arm, an almost linear increase (decrease) in the contact angle is observed for
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Figure 25: Elliptical eccentricity parameter for ball/outer-race contact, ko, for 17,800N thrust load, as a
function of the Moment, M.

the balls whose angular positions satisfy |ψ| < 90◦ (|ψ| > 90◦). This relation is approximately

linear up to vicinity of M = 600Nm when the ball located at ψ = 180◦ occurs to be unloaded,

that is, β(ψ = 180◦) = βf for M = 589.18Nm (e = 33.1mm).
Figure 19, as well as Figure 18 and Figure 13, shows a substantial difference between

results found in this work and to those found by Harris. While Harris has assumed a contact

angle magnitude of 41.6o for all balls (p. 252), under a 50.8mm applied load eccentricity,

contact angles ranging from 44.31727851159821o to 16.16919216282055o were found in this

work while ψ were varied from ψ = 0◦ to ±180o, respectively. This represents errors between

−6.1% and +157.3% in the contact angles determination, meaning that the Harris calculation

has underestimated (strongly overestimated) the contact angles for balls located at angular

positions satisfying |ψ| < 45◦(|ψ| > 45◦).
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Figure 26: Partial axial displacement for the maximum loaded ball, Riθ, as a function of lever arm, e.

Figures 20 and 22 show the semimajor axes of the ball/inner-race and ball/outer-race

contact areas, ai and ao, respectively. It can be observed that ai and ao, under centric thrust

load (e = 0), are the same for all balls (2.069901480072mm for ai and 2.025827993682mm for

ao) and that the major axes for the maximum loaded ball, in both cases, can reach values as

high as 7.4mm for moment about 900Nm.

Figures 21 and 23 show the semiminor axes of the ball/inner-race and ball/outer-

race contact areas, bi and bo, respectively. It can be observed that bi and bo, under

centric thrust load (e = 0), are the same for all balls (0.254108993896064mm for bi and

0.293013306181356mm for bo) and that the major axes for the maximum loaded ball, in both

cases, can reach values as high as 0.9mm for moment about 900Nm.

Figures 24 and 25 show the elliptical eccentricity parameters for ball/inner-race and

ball/outer-race contact, ki and ko, respectively. It can be observed that ki and ko, under centric

thrust load (e = 0), are the same for all balls (8.1457 for ki and 6.9138 for ko). Increasing from

zero the lever arm, an almost linear increase (decrease) in the parameter ki is observed for

the balls whose angular positions satisfy |ψ| > 90◦(|ψ| < 90◦), and an almost linear increase

(decrease) in the parameter ko is observed for the balls whose angular positions satisfy |ψ| <

90◦(|ψ| > 90◦). These relations are approximately linear up to vicinity of M = 600Nm when

the ball located at ψ = 180◦ occurs to be unloaded. It can be observed that ki(ψ = 180◦) ∼=
8.1631 and ko(ψ = 180◦) ∼= 6.9024 when M = 588.9687Nm (e = 3.3088 × 10−2 m).

The increase of the moment above 588.9687Nm (or lever arm above 3.3088 × 10−2 m),
causes the successive unloading of the ball pairs. At the points where the unloading occurs

the values of the parameters ki and ko remain roughly equal to those indicated in the

preceding paragraph for ψ = 180◦. So, it can be observed that the contact ellipse of the

inner race is slightly more eccentric than that of the contact ellipse of the outer race. For

M = 900Nm, for example, while ki varies numerically from 8.11, for the most heavily loaded

ball, to 8.37, for the minimum loaded ball, ko varies from 6.83 to 6.37, respectively.

5.2. Numerical Results for Thrust Load Ranging from 0 up to 20,000 N

Graphics for various thrust loads also are shown. The following graphics present curves for

thrust loads ranging from 0 up to 20, 000N as functions of lever arm, e:
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Figure 27: Relative axial displacement, δa, as a function of lever arm, e.
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Figure 28: Total relative axial deflection for the maximum loaded ball, δt(ψ = 0), as a function of lever
arm, e.

(i) partial axial displacement for the maximum loaded ball, Riθ (Figure 26),

(ii) relative axial displacement, δa (Figure 27),

(iii) total relative axial deflection for the maximum loaded ball, δt(ψ = 0) (Figure 28),

(iv) total relative axial deflection for the minimum loaded ball, δt(ψ = 180◦) (Figure 29),

(v) loading zone, ψl (Figure 30),

(vi) distance between loci of inner and outer raceway groove curvature centers for the

maximum loaded ball, s(ψ = 0) (Figure 31),

(vii) distance between loci of inner and outer raceway groove curvature centers for the

minimum loaded ball, s(ψ = 180◦) (Figure 32),

(viii) total normal ball deflection for the maximum loaded ball, δn(ψ = 0) (Figure 33),
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Figure 29: Total relative axial deflection for the minimum loaded ball, δt(ψ = 180◦), as a function of lever
arm, e.
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(ix) total normal ball deflection for the minimum loaded ball, δn(ψ = 180◦) (Figure 34),

(x) ball-raceway normal load for the maximum loaded ball, Q(ψ = 0) (Figure 35),

(xi) ball-raceway normal load for the minimum loaded ball, Q(ψ = 180◦) (Figure 36),

(xii) contact angle for the maximum loaded ball, β(ψ = 0) (Figure 37),

(xiii) contact angle for the minimum loaded ball, β(ψ = 180◦) (Figure 38),

(xiv) semimajor axis of the ball/inner-race contact area for the maximum loaded ball,

ai(ψ = 0) (Figure 39),

(xv) semiminor axis of the ball/inner-race contact area for the maximum loaded ball,

bi(ψ = 0) (Figure 40),

(xvi) semimajor axis of the ball/outer-race contact area for the maximum loaded ball,

ao(ψ = 0) (Figure 41),
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Figure 31: Distance between loci of inner and outer raceway groove curvature centers for the maximum
loaded ball, s(ψ = 0), as a function of lever arm, e.
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Figure 32: Distance between loci of inner and outer raceway groove curvature centers for the minimum
loaded ball, s(ψ = 180◦), as a function of lever arm, e.

(xvii) semiminor axis of the ball/outer-race contact area for the maximum loaded ball,

bo(ψ = 0) (Figure 42),

(xviii) semimajor axis of the ball/inner-race contact area for the minimum loaded ball,

ai(ψ = 180◦) (Figure 43),

(xix) semiminor axis of the ball/inner-race contact area for the minimum loaded ball,

bi(ψ = 180◦) (Figure 44),

(xx) semimajor axis of the ball/inner-race contact area for the minimum loaded ball,

ao(ψ = 180◦) (Figure 45),

(xxi) semiminor axis of the ball/inner-race contact area for the minimum loaded ball,

bo(ψ = 180◦) (Figure 46),
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Figure 33: Total normal ball deflection for themaximum loaded ball, δn(ψ = 0), as a function of lever arm, e.
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Figure 34: Total normal ball deflection for the minimum loaded ball, δn(ψ = 180◦), as a function of lever
arm, e.

(xxii) elliptical eccentricity parameter of the ball/inner-race contact area for the

maximum loaded ball, ki(ψ = 0) (Figure 47),

(xxiii) elliptical eccentricity parameter of the ball/outer-race contact area for the

maximum loaded ball, ko(ψ = 0) (Figure 48),

(xxiv) elliptical eccentricity parameter of the ball/inner-race contact area for theminimum

loaded ball, ki(ψ = 180◦) (Figure 49),

(xxv) elliptical eccentricity parameter of the ball/outer-race contact area for theminimum

loaded ball, ko(ψ = 180◦) (Figure 50).

Due to the size quite extensive of the paper comments about the figures will be omitted

from now on.
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Figure 35: Ball-raceway normal load for the maximum loaded ball, Q(ψ = 0), as a function of lever arm, e.
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Figure 36: Ball-raceway normal load for the minimum loaded ball, Q(ψ = 180◦), as a function of lever arm,
e.
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Figure 37: Contact angle for the maximum loaded ball, β(ψ = 0), as a function of lever arm, e.
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Figure 38: Contact angle for the minimum loaded ball, β(ψ = 180◦), as a function of lever arm, e.
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Figure 39: Semimajor axis of the ball/inner-race contact area for the maximum loaded ball, ai(ψ = 0), as a
function of lever arm, e.

6. Conclusions

The importance of this work lies in the fact that it uses a new procedure for gettinnng

numerically, accurately, and quickly the static load distribution of a single-row, angular-

contact ball bearings, subjected to a known thrust load which is applied to a variable

distance from the geometric bearing center line. Precise applications, as for example,

space applications, require a precise determination of the static loading. Models available

in literature are approximate and often are not compatible with the desired degree of

accuracy. This work can be extended to determine the loading on high-speed bearings where

centrifugal and gyroscopic forces are not discarded. The results of this work can be used in

the accurate determination of the friction torque of the ball bearings, under any operating

condition of temperature and speed.
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Figure 40: Semiminor axis of the ball/inner-race contact area for the maximum loaded ball, bi(ψ = 0), as a
function of lever arm, e.
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Figure 41: Semimajor axis of the ball/outer-race contact area for the maximum loaded ball, ao(ψ = 0), as a
function of lever arm, e.

Symbols

a: Semimajor axis of the projected contact, m

A: Distance between raceway groove curvature centers, m

b: Semiminor axis of the projected contact, m

B: fo + fi − 1, total curvature

d: Raceway diameter, m

da: Bearing outer diameter, m

db: Bearing inner diameter, m

dc: Contact diameter, m

de: Bearing pitch diameter, m

D: Ball diameter, m
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Figure 42: Semiminor axis of the ball/outer-race contact area for the maximum loaded ball, bo(ψ=0), as a
function of lever arm, e.
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Figure 43: Semimajor axis of the ball/inner-race contact area for the minimum loaded ball, ai(ψ = 180◦),
as a function of lever arm, e.

e: Eccentricity of loading, m

E: Modulus of elasticity, N/m2

E′: Effective elastic modulus, N/m2

E: Elliptic integral of second kind

f : Raceway groove radius ÷D

F: Applied load, N

k: a/b
K: Load-deflection factor, N/m3/2

K: Elliptic integral of first kind

M: eFa

Pd: Diametral clearance, m

Pe: Free endplay, m
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Figure 44: Semiminor axis of the ball/inner-race contact area for the minimum loaded ball, bi(ψ = 180◦),
as a function of lever arm, e.
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Figure 45: Semimajor axis of the ball/outer-race contact area for the minimum loaded ball, ao(ψ = 180◦),
as a function of lever arm, e.

Q: Ball-raceway normal load, N

r: Raceway groove curvature radius, solids curvature radius, m

s: Distance between loci of inner and outer raceway groove curvature centers, m

R: Curvature radius, radius of locus of raceway groove curvature centers, m

Z: Number of rolling elements

β: Contact angle, rad, o

βf : Free-contact angle, rad, o

γ : D cos β/de

Γ: Curvature difference
δ: Deflection or contact deformation, m

Δψ: Angular spacing between rolling elements, rad, o

ε: Load distribution factor
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Figure 46: Semiminor axis of the ball/outer-race contact area for the minimum loaded ball, bo(ψ = 180◦),
as a function of lever arm, e.
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Figure 47: Elliptical eccentricity parameter of the ball/inner-race contact area for the maximum loaded
ball, ki(ψ = 0), as a function of lever arm, e.

θ: Bearing misalignment angle, rad, o

υ: Poisson’s ratio

ϕ: Auxiliary angle

ψ: Azimuth angle, rad, ◦.

Subscripts:

a refers to solid a or axial direction.
b refers to solid b.

x, y refers to coordinate system.

i refers to inner raceway.
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Figure 48: Elliptical eccentricity parameter of the ball/outer-race contact area for the maximum loaded
ball, ko(ψ = 0), as a function of lever arm, e.
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Figure 49: Elliptical eccentricity parameter of the ball/inner-race contact area for the minimum loaded ball,
ki(ψ = 180◦), as a function of lever arm, e.

j refers to rolling-element position.

n refers to direction collinear with normal load, integer number.

o refers to outer raceway.

t refers to total axial deformation.
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1. Introduction

There are several ways to deal with the problem of interaction between bodies. Impact

dynamics and continuous contact between bodies can both be included in the mathematical

model of the constrained problem, or just one of these effects can be considered. It depends,

obviously, on the characteristics of the studied problem.

The investigations about the contact between bodies include (at least) two different
kind of analysis [1]: one associated with the beginning of contact and one associated with its

termination. In the first analysis, the distance between the bodies must be checked in order to

knowwhen contact occurs; in the second analysis, once the contact is established, the reaction
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(normal; compression) force between the bodies must be checked. In the second analysis,

contact finishes when the contact force is equal to zero.

One of the hardest parts in the study of contact problems involves the different models

that must be developed for contact and noncontact situations and the switching between

these models when integrating the equations of motion [2, 3]. The unconstrained problem

and the constrained problem do not have the same number of degrees of freedom. Dynamic

systems when constrained have less degrees of freedom than when unconstrained.

The transition between constrained and unconstrained motions is sometimes called

contact (including impact) and sometimes called just impact (mostly when the bodies

separate after the collision). When contact occurs, the new velocities of the bodies involved

must be known in order to generate the initial conditions to the second part (constrained
problem) of the numerical integration. In the constrained problem, the concept of coefficient

of restitution is very important [4].

2. Geometric Model of the System and Governing Equations of Motion

The problem discussed here is depicted in Figure 1. According to this figure, in a part of

its trajectory, the free end of the bar moves along the constraint represented by the mass

named mw. All the movements occur in the horizontal plane. When contact occurs, impact

and bouncing are also allowed to occur.

The mass in which the rigid bar is pivoted (ms) oscillates when excited by the

movement of the bar (free and constrained). In the axis Z, passing through the connection

between the bar and ms (perpendicular to the paper sheet), there is a prescribed moment,

Mθ, acting to turn the bar.

The dashed lines represent the position of the masses in which the springs and

dampers are free of forces. The dotted line represents the position from which one starts

to count the angular displacement, θ.

In physical terms, this system may represent a robot with a translational joint and a

rotational joint; mw can be thought as an obstructing wall on the robot’s trajectory (or some

object this robot must handle or interact with), and Mθ can be thought as an external torque

provided by a dc motor.

According to [5], the constrained governing equations of motion for this system are

given by

(mb + ms)ÿs + csẏs + ksys − mb dAcmbθ̇
2 sin θ + mbdAcmbθ̈ cos θ + FN = 0,

mwÿw + cwẏw + kwyw − FN = 0,

(
Ib,cm + mbd2

Acmb

)
θ̈ + mbdAcmbÿs cos θ + FN� cos θ = Mθ,

(2.1)

and the constraint condition is given by

d − ys + yw − � sin θ = 0, (2.2)
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ẏs

dAcmbθ̇

Figure 2: Velocities.
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F̂w = F̂kw + F̂cw � (P̂x, P̂y)

P̂y

B̂x

B̂y

M̂θ

M̂θ

P̂x

P̂x

x

y

Ây

Âx

F̂s = F̂ks + F̂cs � (Âx, Ây)

Ĉx

Ĉy

Âx

Figure 3: Impulses.

where Ib,cm represents the bar moment of inertia around its center of mass, mb represents

the mass of the bar, dAcmb represents the distance from A to the cm of the bar, cw represents

the damping coefficient of mw, cs represents the damping coefficient associated with mass

ms, kw represents the stiffness coefficient of mass mw, ks represents the stiffness coefficient

associated with ms, and FN represents the amplitude of the normal force. It is assumed the

there are no friction forces involved and � represents the total length of the bar.

Equations (2.1) are the equations of motion for ys, yw, and θ. Equation (2.2) is an

additional relationship between the generalized coordinates ys, θ and yw when contact

occurs. Equations from (2.1) to (2.2) provide four equations and four unknowns (ys, θ, yw,

and FN) considering the constrained problem and three equations and three unknowns (ys,

θ, and yw) considering the unconstrained problem. In the unconstrained case, (2.2) does not
apply and FN = 0.

3. The Contact Case

In contact, for this problem, there is the loss of one degree of freedom. In other words, one

of the variables is dependent on all the others. The best choice is the elimination of the

generalized coordinate yw, which is not always present into the system represented by the
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Figure 4: ẏs, ẏw, θ̇, and FN considering kw = 10Nm.

oscillating bar [6]. The new set of equations [5] is given by

ÿs +
1

a1mt + a3cos2θ

(
a1(cs + cw)ẏs+a1(ks + kw)ys+ a1cw�θ̇ cos θ + a1kw� sin θ − a1a2θ̇2 sin θ

− mbcw�2dAcmbθ̇cos
3θ − mbkw�2dAcmb sin θcos2θ

+ mbkwd�dAcmbcos
2θ + �(mw�cs − mbdAcmbcw)ẏscos

2θ

+ �(mw�ks − mbdAcmbkw)yscos
2θ − a1kwd

)
= − a2 cos θ

a1mt + a3cos2 θ
Mθ,

θ̈+
1

a1mt + a3cos2θ

(
cw�(mt�−a2)θ̇cos2θ+kw�(mt�−a2) sin θ cos θ − kwd(mt�−a2) cos θ

+ (a2mbdAcmb − mw�(mt� − a2))θ̇2 sin θ cos θ + (kw(mt� − a2) − a2ks)ys cos θ

+ (cw(mt� − a2) − a2cs)ẏs cos θ
)
=

mt

a1mt + a3cos2θ
Mθ.

(3.1)
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Figure 5: ẏs, ẏw , θ̇, and FN considering kw = 400Nm.

The fully plastic impact case is considered here for the calculation of the velocities

immediately after contact. Separation will take place when the normal force is zero.

As soon as these two variables are known, the remaining variable, yw, is also known

through (2.2). Equations (3.1) represent, respectively, the time behavior of the generalized

coordinates ys and θ during the contact condition. In [5], an analytical expression to the

reaction force, FN , is also presented.

4. The Determination of the Velocities after Contact (Impact)

The equations for the impact are formulated for point P (see Figure 2 for the representation

of the velocities of the three bodies) where, for sake of clarity, it is distinguished between

Point P1 belonging to the wall and point P2 belonging to the bar. Figure 3 shows the free body

diagram for the three rigid bodies indicating not the forces at the points of connection or

contact but rather indicating the equivalent linear impulses due to impact. All these quantities

are marked with an overhead symbol “hat”, for example, P̂x, which is the linear impulse of

the equivalent force Px. The physical dimension is the same as the linear momentum, that is,

N · s, except for the angular impulse M̂θ whose unit is Nm · s.
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Figure 6: ẏs, ẏw, θ̇, and FN considering kw = 1000Nm.

For each of the three rigid bodies, we can formulate now the linear impulse/linear

momentum equations in the two directions x and y. Additionally, for the rotating bodie(s),
we have the equivalent angular impulse/angular momentum equation in z-direction,

formulated w.r.t. to the respective centre of mass.

To better distinguish between velocities right before and right after impact, they are

denoted with superscripts “+” (after) and “–” (before). Their two components in x- and y-

directions are indicated by corresponding subscripts “x” and “y”.

And, to be more general, it is also allowed initially for the rigid bodies with masses

ms and mw to rotate as well. The respective angular velocities therefore will be denoted by

ω with appropriate indices. Later, this additional degree of freedom will be kinematically

constrained.

For the wall, it is obtained that

mwv+
wy − mwv−

wy = P̂y − F̂w,

mwv+
wx − mwv−

wx = −P̂x + B̂x,

Iwω+
w − Iwω−

w = −B̂y
�w

2
+ P̂y� sin θ.

(4.1)
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Figure 7: ẏs, ẏw , θ̇, and FN considering Mθ = 5Nm.

For the bar, it is obtained (ωb ≡ θ̇) that

mbv+
by − mbv−

by = Ây − P̂y,

mbv+
bx − mbv−

bx = Âx + P̂x,

Ib,cmω+
b − Ib,cmω−

b = M̂θ + ÂxdAcmb sin θ − ÂydAcmb cos θ

− P̂x(� − dAcmb) sin θ − P̂y(� − dAcmb) cos θ.

(4.2)

And, finally, for the lower rigid body with mass ms, it is obtained that

msv+
sy − msv−

sy = −Ây + Ĉy + F̂s,

msv+
sx − msv−

sx = −Âx + Ĉx,

Isω+
s − Isω−

s = −M̂θ + Âxbsy − Ĉybsx,

(4.3)
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Figure 8: ẏs, ẏw, θ̇, and FN considering Mθ = 10Nm.

assuming that the directions of Ĉx and F̂s are going through the center of mass. The geometric

quantities bsx and bsy, not shown in Figure 3, denote the distances of the respective linear

impulses measured from the center of mass.

These equations simplified if the following assumptions are made.

(1) The external two linear impulses F̂w and F̂s, and the angular impulse M̂θ are small

compared with the internal impulses; therefore, they can be neglected.

(2) The rotational motion of both, the wall and the lower rigid body, is omitted;

therefore, one has ωw = 0 and ωs = 0.

(3) The wall is allowed to move only in the vertical direction, as well as the lower rigid

body; therefore, vwx = 0 and vsx = 0.

(4) The contact surface between the lower rigid body and the left or right vertical

guiding surface (not shown in the figures) is assumed ideally smooth; therefore,

Ĉy = 0.

(5) The contact zone between the free end of the bar and the wall surface is also

assumed ideally smooth; therefore, P̂x = 0. Otherwise, if this surface is rough, we

have to account for an additional velocity relationship, for example, given by the

definition of the coefficient of restitution in x-direction.
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Figure 9: ẏs, ẏw, θ̇, and FN considering Mθ = 20Nm.

Applying these assumptions, the following set of equations is obtained:

mwv+
wy − mwv−

wy = P̂y, (4.4)

B̂x = P̂x = 0, (4.5)

B̂y =
2�

�w
sin θ · P̂y , (4.6)

mbv+
by − mbv−

by = Ây − P̂y, (4.7)

mbv+
bx − mbv−

bx = Âx + P̂x = Âx, (4.8)

Ib,cmω+
b − Ib,cmω−

b = ÂxdAcmb sin θ − ÂydAcmb cos θ − P̂y(� − dAcmb) cos θ, (4.9)

msv+
sy − msv−

sy = −Ây , (4.10)

Ĉx = Âx, (4.11)

bsy = 0. (4.12)
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In order to calculate the velocities at the point of impact, P , only (4.4) and (4.7) to

(4.10) are of interest. Additionally, it is needed to establish some kinematic relationships. For

the bar center of mass, one has

vb = vs +ωb × rASb

=
(
−ωbdAcmb sin θ, vsy + ωbdAcmb cos θ

)T

=
(
vbx, vby

)T
,

(4.13)

where the length of the vector rAcmb is just |rAcmb| = dAcmb. Equation (4.13) is valid for the

velocity right before and after impact. For the free end of the bar, it is obtained equivalently

vP1 = vs +ωb × rAP1

=
(
−ωb� sin θ, vsy + ωb� cos θ

)T

=
(
vP1x, vP1y

)T

(4.14)

with |rAP1| = �. In the same way as (4.13), equation (4.14) is valid for the velocity right before

impact and right after. During impact, one has the additional equation, which relates the

velocities before and after impact at point P , in the direction normal to the contact surface,

that is, in y-direction:

εy = −
v+

P1y − v+
P2y

v−
P1y − v−

P2y

(4.15)

with

v−
P1y = v−

sy + ω−
b � cos θ,

v+
P1y = v+

sy + ω+
b � cos θ,

v−
P2y = v−

wy = y−
w,

v+
P2y = v+

wy = y+
w.

(4.16)

In the following, it is assumed that there is a fully plastic impact, that is, the impacting

bodies maintain steady contact as far as the contact force is repulsive (otherwise, they will

separate). This leaves εy = 0, and hence

v+
P1y = v+

P2y (4.17)

or

v+
wy = v+

sy + ω+
b � cos θ = v+

by + ω+
b (� − dAcmb) cos θ. (4.18)
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With these equations, it is possible to calculate all the velocities right after impact,

given the velocities before impact. Additionally, but not needed here, it is also possible

to calculate the appropriate linear impulses. To summarize, one has the following eight

equations to determine all the five velocities right after impact (v+
sy, v+

bx
, v+

by
, v+

wy, ω+
b
), as well

as the impulses (Âx, Ây, P̂y):

mwv+
wy − mwv−

wy = P̂y, (4.19)

mbv+
by − mbv−

by = Ây − P̂y, (4.20)

mbv+
bx − mbv−

bx = Âx, (4.21)

Ib,cmω+
b − Ib,cmω−

b = ÂxdAcmb sin θ − ÂydAcmb cos θ − P̂y(� − dAcmb) cos θ, (4.22)

msv+
sy − msv−

sy = −Ây, (4.23)

v+
bx = −ω+

b dAcmb sin θ, (4.24)

v+
by = v+

sy + ω+
b dAcmb cos θ, (4.25)

v+
wy = v+

sy + ω+
b � cos θ = v+

by + ω+
b (� − dAcmb) cos θ. (4.26)

Initially, all the impulses are obtained. Ây is simply obtained from (4.23) or by adding

the two (4.19) and (4.20), giving

Ây = −
(

msv+
sy − msv−

sy

)
= mbv+

by − mbv−
by + mwv+

wy − mwv−
wy. (4.27)

Âx also goes simply with (4.21),

Âx = mbv+
bx − mbv−

bx (4.28)

and P̂y is simply obtained directly from (4.19) or by adding (4.20) and (4.23)

P̂y = mwv+
wy − mwv−

wy = −
(

mbv+
by − mbv−

by

)
−
(

msv+
sy − msv−

sy

)
. (4.29)

Comparing (4.27) with (4.29), it is observed that both equations yield the same result

for the linear momenta before and after impact. To determine now the velocities right after

impact, one can rely on (4.22), (4.24), (4.25), (4.26), and (4.27) (or (4.29), which is the same).
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Replacing v+
bx
, v+

by
and v+

wy, one arrives at the two equations for the unknown velocities v+
sy

and ω+
b
:

(ms + mb + mw)v+
sy = msv−

sy + mbv−
by + mwv−

wy − ω+
b (mbdAcmb + mw�) cos θ,[

Ib,cm + mbd2
Acmbsin

2θ + mw�(� − dAcmb)cos2θ
]
ω+

b

= v+
sy[msdAcmb − mw(� − dAcmb)] cos θ + Ib,cmω−

b − msv−
sydAcmb cos θ

− mbv−
bxdAcmb sin θ + mwv−

wy(� − dAcmb) cos θ.

(4.30)

And with v−
by

= v−
sy + ω−

b
dAcmb cos θ, and v−

bx
= −ω−

b
dAcmb sin θ, these equations can

finally be expressed by means of the independent velocities, v−
sy, v−

wy, and ω−
b
, right before

impact:

(ms + mb + mw)v+
sy = (ms + mb)v−

sy + mwv−
wy + mbω−

b dAcmb cos θ − ω+
b (mbdAcmb + mw�) cos θ.[

Ib,cm + mbd2
Acmbsin

2θ + mw�(� − dAcmb)cos2θ
]
ω+

b

= v+
sy[msdAcmb − mw(� − dAcmb)] cos θ +

(
Ib,cm + mbd2

Acmbsin
2θ
)

ω−
b

− msv−
sydAcmb cos θ + mwv−

wy(� − dAcmb) cos θ

(4.31)

With the abbreviations

mtot = ms + mb + mw,

Itot = Ib,cm + mbd2
Acmbsin

2θ + mw�(� − dAcmb)cos2θ,

r1 = (ms + mb)v−
sy + mwv−

wy + mbω−
b dAcmb cos θ,

r2 = −msv−
sydAcmb cos θ + mwv−

wy(� − dAcmb) cos θ +
(

Ib,cm + mbd2
Acmbsin

2θ
)

ω−
b ,

α1 = (mbdAcmb + mw�) cos θ,

α2 = [msdAcmb − mw(� − dAcmb)] cos θ,

(4.32)

one finally obtains

v+
sy =

r1Itot − r2α1

α1α2 + mtotItot
,

ω+
b =

r1α2 + r2mtot

α1α2 + mtotItot
.

(4.33)
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The denominator of these two equations then is written as

α1α2 + mtotItot = msmbd2
Acmb + mtotIb,cm + mbmw

[
�(� − 2dAcmb)cos2θ + d2

Acmb

]
+ msmw�2cos2θ + m2

bd2
Acmbsin

2θ.

(4.34)

In order to check (4.33), one case is investigated; that is, for θ = 90◦, we should

maintain the simple translational impact between the combined rigid body consisting of the

two masses ms and mb and the wall with mass mw. For the fully plastic impact, one then

obtains from (4.33)with α1 = 0 and α2 = 0:

v+
sy(θ = 90◦) =

r1
mtot

=
(ms + mb)v−

sy + mwv−
wy

mtot
,

ω+
b (θ = 90◦) =

r2
Itot

=
Ib,cm + mbd2

Acmb

Itot
ω−

b ,

(4.35)

where the first equation for the translational motion coincides with the result governed from

simple impact of two rigid bodies.

5. Numerical Results

The values for the parameters used in the numerical simulations that follow are presented

in Tables 1 and 2. The time step considered in the integration of the governing equations of

motion is kept constant and equal to 0.0001 s. The fourth-order Runge-Kutta is the numerical

integrator used. Two different classes of simulation are investigated.

The constant torque (with different amplitudes) was chosen because it is the simplest

one, and in order to make the bar rotate always in the same direction and fulfill 360◦. Any

other kind of excitation (e.g., like a sinusoidal one with maximum amplitude of 180o, for

instance) can be chosen without problem. In the simulation runs, the motion of the bar starts

always in its horizontal position to the right, that is, with θ = 0◦.
The very beginning of contact is considered here as a fully plastic impact with impact

time Δt ≈ 0 and with e = 0, where e represents the coefficient of restitution. Contact finishes

when FN = 0. No friction or contact is considered, up to this point of the investigation,

between ms and the guide it slides through or between mb and mw.

5.1. Considering Different Values of kw

When first contact takes place, mw is at rest. The second contact (only shown here for the

simulations varying Mθ) will happen with mw presenting some velocity. The bar is able to

develop many turns and, in fact, there are possibilities for it to reach many contact conditions

as the time evolves.

According to Figures 4, 5, 6, 7, 8, and 9, the amplitude of FN jumps at the beginning

of contact, from zero (no contact) to a value associated with the impact force between the

bodies. The contact force evolves with time according to the system states and properties.

The value of FN at the instant of impact does not necessarily represent the biggest value for
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Table 1: Numerical values considered in the numerical simulations for different values of kw.

Parameter Value Unity

mb 2.00 Kg

ms 5.00 Kg

mw 10.00 Kg

ks 5.00 Nm

10.00

kw 400.00 Nm

1000.00

cs 7.00 Ns/m

cw 1.00 Ns/m

� 1.00 m

d 0.60 m

dAcmb 0.50 m

Mθ 10.00 Nm

Ib,cm 0.1667 Kg/m2

Table 2: Numerical values considered in the numerical simulations for different values of Mθ .

Parameter Value Unity

mb 2.00 Kg

ms 1.00 Kg

mw 1.00 Kg

ks 400.00 Nm

kw 5.00 Nm

cs 7.00 Ns/m

cw 7.00 Ns/m

� 1.00 m

d 0.60 m

dAcmb 0.50 m

5

Mθ 10 Nm

20

Ib,cm 0.1667 Kg/m2

the contact force, as can be seen in these figures. A sudden change in velocity, when collision

takes place, can be verified clearly in these figures.

5.2. Considering Different Values of Mθ

Table 2 shows numerical values considered in the numerical simulations for different values
of Mθ.

6. Conclusions

To conclude, it is important to say that the time step used in the numerical integration and

the choice of the integrator are very important aspects to be considered. New numerical
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integrators can be tested in the course of this investigation and results compared to the ones

presented here.

An important consideration not to be forgotten when dealing with problems

presenting some sort of constraint is that more than one set of governing equations of motion

must be integrated to cover all the system dynamics. The set of equations that governs the

system dynamics when the constraint condition is active is different from the one that governs

the unconstrained movement of the system. One of these sets is always generating the states

for the other.

In this context, the determination of the velocities after contact (impact) is very

important. The velocity expressions presented in (4.33) are the necessary corrections one

must do when considering the fully plastic impact case. If this correction is not taken into

consideration in the numerical integration of the governing equations, the system will gain

energy after impact, which is not true.

It is important to realize also that the number of degrees of freedom involved

changes from one set of equations to the other. The necessity for changing from one set

of governing equations to another (according to the system’s requirements of contact or

noncontact conditions) represents a source of integration errors, since the integrator is faced

with singularities.

The problem presented in this paper and the procedures developed for its analysis can

be extended tomany other systems and situations (includingmore complex ones). The theory
presented here can be applied to problems in which robots have to follow some prescribed

patterns or trajectories when in contact with the environment (like in painting activities, for

instance, or the ROKVISS experiment at DLR).
The next steps are the development of the analytical expressions for the velocities after

impact considering any value for the coefficient of restitution and the inclusion of friction

forces between ms and the left and right vertical guiding surfaces; and between the free end

of the bar and mw.
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1. Introduction

The giant planets of the Solar System have two kinds of satellites, the regular and the irregular

ones [1]. This definition was based on the orbits of the satellites. The regular satellites have

their orbits near the equatorial plane, the eccentricity is near zero, and they are close to their

planets. The irregular ones are out of plane, many are retrograde, the eccentricities are above

0.1, and they are far from their planets.

Since the discovery of two new Uranus’ moons in 1997 by Gladman et al. [2], 98 other
satellites were found. These new satellites, plus the old irregulars satellites, are almost all

retrograde, as we can see in Table 1.

The orbits of the irregular satellites suggest that they were captured by their planets.

That is, they were formed elsewhere in the Solar System like any other asteroid, and later

they might have had a close encounter with a planet and could have been captured.
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Table 1: Number of irregular satellites of the giant planets [3].

Planet Prograde Retrograde Total

Jupiter 6 49 55

Saturn 8 27 35

Uranus 1 8 9

Neptune 3 4 7

Using the dynamics of the three-body problem it is possible to explain the gravitational

capture of these satellites. But the gravitational capture is temporary (see, for example, [4]).
There are works that studied the capture time [5] or the directions of capture [6] in the case

of the three-body problem. Thus, it is necessary some kind of additional effect to turn the

temporary capture into a permanent one.

In the literature we can find several mechanisms which were proposed in order to

turn the capture permanent. It could be a pull-down mechanism due to the mass growth

of the planet [7–9], or a capture through n-body interactions [10–12]. In this work we will

explore the gas drag mechanism. In the early history of the solar system, in the last stage of

the giant planets formation, a gas envelope was formed around each one of them [13]. This
gas envelope could make a flying by asteroid to loose enough energy in order to became

a prisoner of the planet. Other authors already discussed this possibility (see, for example,

[14]). Although the theory and numerical simulation have some success in explaining the

prograde satellites, the retrograde ones are not well explained. This is because the retrograde

satellites feel a stronger headwind which make them to spiral inward faster and collide with

the planet sooner than the prograde ones. This suggests distinct conditions for the gas drag

capture of the prograde and retrograde satellites.

Ćuk and Burns [14] studied the case of a prograde satellite capture, using the orbital

and physical parameters of Himalia Jupiter’s satellite. They used a static surface density gas

envelope with edges to modify the size of the envelope. They vary the position of the edge,

but maintaining the surface density of the gas envelope constant. They have discussed the

effect of a gas envelope with decaying density in their work, but made no simulation. Also in

the work of Ćuk and Burns [14], particles were started inside the gas envelope, mainly using

Himalia’s initial conditions, and integrated backwards in time.

In the work of Pollack et al. [15] they simulate the formation of a giant planet and

characterized the phases: (1) accretion of solid material; (2) accretion of solid material and

gas with a small rate; (3) runaway gas accretion. They concluded that the overall time scale is

determined by the second phase, and the first and third phase are very quick. They suppose

that the envelope did not collapse in the phase of runaway gas accretion as long as the solar

nebula could supply the planet with gas rapidly enough. In their work they do not estimate a

time interval for the third phase, but their Figure 1(a) give us a clue of this time interval and

it seems to last less than a thousand years. In our work we will consider the very last stage,

when there is no more gas in the solar nebula to feed the planetary gas envelope and this

envelope collapses. We suppose the duration of this stage to be about a hundred years and in

this stage the density of the gas envelope will vary until vanish.

In this work we simulate a gas envelope with no edges, but its surface density varies

linearly with time. We started the integration of the asteroid orbit outside the gas envelope in

a proper region as an heliocentric orbit, and integrated it forward in time until it reaches the

gas envelope around the planet. We also point out that this work is in two dimensions, while

the work of Ćuk and Burns [14] was three-dimensional.
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Figure 1: Grid of initial conditions of the asteroid with respect to the Sun. In the plot we can see which
initial conditions that lead to negative two-body energy w.r.t. Jupiter, that is, the asteroid was temporarily
captured by Jupiter. The white region in the middle of the plot are trajectories which lead to a two-body
energy greater than one. For each asteroid initial condition in the a × λ space, Jupiter begins its orbit at
5.2AU from the Sun with λ = 0◦.

In our work we will discuss the very last stage of the gas envelope when it collapses

onto the planet. Thus, the surface density of the gas will change from some accepted initial

value down to zero, vanishing the gas. This configuration is favorable for the retrograde

satellites. Our goal is to investigate how to get permanent gravitational capture for the

retrograde satellites.

We will first discuss, in Section 2, the possible heliocentric orbital region that could

make an asteroid to be captured by Jupiter. In Section 3 we will expose the gas model and

show the results of our simulations. Finally, we discuss our results in Section 4.

2. Possible Origins for the Captured Asteroids

In order to study the asteroids initial conditions which lead to capture by the planet, we used

the circular planar Sun-Jupiter system, and made a grid of initial conditions with semi-major

axis and true longitude (λ). The others asteroid’s initial conditions parameters were fixed

in such a way that the asteroid had a circular planar orbit with respect the Sun. The semi-

major axis (a) was varied from 4 to 7 Astronomical Units (AU) and the true longitude (λ)
from 0◦ to 360◦. For each trajectory in this grid, we measured the two-body energy of the

asteroid relative to Jupiter from time t = 0 to time t = 105 years and the minimum value was

stored. The two-body energy is not constant in the three-body system and will vary due to

the Sun’s perturbation. We were interested in the negatives values of the two-body energy,

which configures the temporary gravitational capture [16], since negative value of this energy
corresponds to an osculate elliptical orbit. Other possible option for this study would be the

minimum distance between asteroid and Jupiter and a passage through the Hill sphere, but

the energy was chosen because it takes the position and velocity of the particle with respect

to the planet, and we can avoid a close passage with very high speed which is not interesting

to our experiment.

In the search of proper initial conditions which leads to gravitational capture we did

not consider the gas drag. The idea in this first moment is just to find the path for an encounter

with Jupiter.
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Figure 2: Asteroid initial conditions which lead to negative two-body energy w.r.t. Jupiter, taken from
Figure 1, in polar coordinates.

The numerical integrations we made in this work used an integrator that uses Gauss-

Radau spacings described by E. Everhart[17].
The result for this simulation can be seen in Figure 1, where we separated the initial

conditions in the grid that lead to positive and negative two-body energy. The black points

indicate the initial conditions of trajectories which achieved a minimal negative two-body

energy at some point along the integration, while the other color dots correspond to those

trajectories whose minimum energy was positive.

On Figure 2 we plotted only the initial conditions which lead to negative two-body

energy of the asteroid with respect to Jupiter, in polar coordinates. From these two figures we

can see the horseshoe libration zone [18] and the chaotically-unstable region around Jupiter’s

orbit, which is due to overlap of mean motion resonances [19].
In Figures 1 and 2 we can see the existence of two dense regions with initial conditions

that lead to negative values of the two-body energy. These initial conditions are the ones

that lead the asteroid to pass close enough to the planet and have a temporary gravitational

capture.

3. Dynamics and Numerical Results

In order to turn a temporary capture into a permanent one, we used a drag force proportional

to the velocity of the asteroid relative to the velocity of the gas, the cross section of a spherical

asteroid, and the local density of the gas [20, 21]:

−→
Fd = −Cd

π

2
R2ρ(r)vrel

−→v rel , (3.1)
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where Cd is the drag coefficient, R is the asteroid radius, vrel is the relative velocity of the

asteroid with respect to the gas, and

ρ(r) = ρ0

(
r

r0

)γ

, (3.2)

where ρ(r) is the gas density at a distance r from the centre of the planet, and γ is the exponent

that gives how the gas density decay with the distance from the planet. In this work we used

γ = −1, as in Ćuk and Burns [14]. We also used

ρ0 =
Σ0√
πH0

(3.3)

as the gas density at r0, with Σ0 being the gas surface density, and H0 the gas envelope height.

We considered r0 = 100 Jupiter Radius (JR), H0 = 0.05r0, as in Ćuk and Burns [14]. The
asteroidal radius was took as R = 6 km.We choose this small radius because we are interested

in the retrograde satellites and this will reduce the decaying effect of the gas. Besides, this is

a representative radius value for the retrograde satellites observed around Jupiter. The gas

velocity rotation around the planet was chosen to be 90% of the Keplerian velocity.

In order to change the density of the gas envelope during the passage of the asteroid

we implemented the following surface density time function:

Σ0(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Σ0(t0), t < t0

Σ0(t0) + α(t − t0), t0 ≤ t ≤ t1

0, t > t1,

(3.4)

where α is the time rate of the decreasing density. An exponential (or sigmoid) decay lawwill

change only slightly our results.

The gravitational model used was the general three-body model, that is, the mass of

the asteroid were considered. The density of the asteroid was considered 1.5 g/cm3, and the

gas density surface considered was Σ0(t0) = 103 g/cm2, as in Ćuk and Burns [14].
The gas envelope is formed after the consumption of all the gas from the solar nebula.

The lack of gas to fuel the planet makes the envelope collapses into the planet [20, 22]. It is
believed that this collapse is quick and took only some hundreds of years to occur. That is,

the surface density of the gas goes to zero in times of the order of 102 years.

3.1. Asteroid’s Passage through the Gas Envelope

In order to study the passage of the asteroid through the gas envelope we use the results

from Figure 1 to choose an adequate set of initial conditions. The initial conditions used are

in the same plane of the gas envelope around Jupiter. We fixed a time interval of 100 years

(Δt = |t1 − t0|) for the gas to vanish. The gas has its density changed according to (3.4), from
Σ0(t0) to zero in a time interval of Δt = 100 years, and after this period there is no more gas

around the planet, Σ0(t) = Σ0(t1) = 0.

The effect of the change of the surface gas density on the asteroid trajectory will be

analysed by fixing the initial orbital configuration of the asteroid and Jupiter, but selecting

different values of initial integration time from t = −100 years to t = 0 year, with steps of 0.1
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year, while time variation of the gas envelope has ever the initial time t0 = −100 years and

final time t1 = 0 year. That is, for each trajectory the asteroid and Jupiter have the same orbital

elements with respect to the Sun, but the orbital integration of the system starts at different
times, reaching the gas envelope at different surface density values Σ0.

During the integration of the trajectory we monitored the relative two-body energy of

the asteroid relative to Jupiter to verify its sign. Initially the asteroid is in heliocentric orbit

and has a positive relative two-body energy with respect to Jupiter. We stoped the integration

if one of the following happens: (i) the asteroid passes through the gas envelope; (ii) the

asteroid collides with Jupiter; (iii) the integration time surpass t = 50 years.

In the first case, to know that the asteroid had passed through the gas envelope around

Jupiter, we measured the relative two-body energy of the asteroid with respect to Jupiter

during the encounter. The two-body energy turn into negative when the asteroid is close to

Jupiter. Then, the relative two-body energy turn to positive again when the asteroid is distant

from the planet.

For the second case, as we do not consider the Galilean satellites in the experiment,

the collision with Jupiter is considered when the distance Jupiter-asteroid is smaller than the

Jupiter’s radius.

The third case happens if one of the following occurs: (a) the asteroid is permanently

captured; (b) the asteroid is deflected by the gas envelope; (c) the asteroid is temporarily

captured.

Case (a) is consideredwhen the asteroid entered in the gas envelope, that is, its relative

two-body energy was turned into negative, in a time that the surface density of the gas has

a value between Σ0(t0) e 0. Due to the gas, the asteroid suffers a drag and loose energy. But

the gas surface density vanishes, the asteroid stop to loose its energy and, if it lost enough

energy, it became a permanent satellite.

In case (b) the asteroid never reach a negative relative two-body energy with respect to

Jupiter. In these kind of trajectories the asteroid passes in the outer layers of the gas envelope

and it is deflected.

Finally, in case (c) the asteroid arrives at the planet when the surface density of the gas

is already zero, or very low, and do not loose enough energy to be effectively captured.

We tested four initial conditions for semi-major axis at 6.0AU, and other four initial

conditions for semi-major axis at 4.5AU. Each onewith a different true longitude value (λ) for
the asteroid. These initial conditions were obtained from Figure 1. In Figure 3 we can see the

results of the trajectories of the asteroid which have initial semi-major axis of 6.0AU. None

of the trajectories was effectively captured by the planet, many trajectories entered the gas

envelope and escaped quickly. Other trajectories never entered the gas envelope as shown in

Figures 3(c) and 3(d), where there is a region in the interval [−100,−40] years with no points.

This occurs because the trajectories are deflected by the gas. In Figure 3(d), the lack of points

for the region [−7, 0] happens because the trajectories are with negative two-body energy, but

the gas has low surface density and the trajectories will escape again due to the fact that the

dissipative effect is too weak.

In Figure 4 we show the results for other four initial conditions, but now for a =
4.5AU. The plots in the Figure show the time spent by the asteroid inside the gas envelope

with negative two-body energy. Only for Figure 4(c) effective captures occur, as showed

by the blue squares. In the other three cases there are only collisions and passages near the

planet.

We also note in the plots the existence of upward spikes. These spikes occur due to

the trajectories transition between trajectories which just pass through the gas envelope and
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Figure 3: Length of time that the asteroid spent inside the gas envelope for each initial time simulation.
Four initial conditions for semi-major axis of 6.0 AU: (a) λ = 70◦; (b) λ = 110◦; (c) λ = 250◦; (d) λ = 290◦.

trajectories that collide with the planet. These transition trajectories spend more time around

the planet making more loops than the normal trajectories.

We studied some trajectories of Figure 4(c) and show them in Figure 5. The trajectories

where condition (i) is satisfied, that is, a passage through the gas envelope, occurs when the

asteroid initiated its trajectory when the gas density is close to zero. In this case the gas is

so sparce that the asteroid almost does not feel it and escape (see Figure 5, trajectory d).
Other possibility is when the asteroid initiated its trajectory just after the beginning of the gas

density variation and the gas density is strong enough to make the asteroid to scatter in the

extended atmosphere of the planet (see Figure 5, trajectory a).
Condition (ii), the collisions, mainly occurs for initial time interval [−40, −26.1] years

of Figure 4(c). In this time interval the gas is not so dense and allows the asteroid to enter in

the envelope, but it is a trap for the asteroid which has not enough energy to escape from the

gas envelope, then it spirals and collides with the planet (see Figure 5, trajectory b).
Condition (iii), integration time greater than 50 years, happens in the interval

[−26.0, −21.6] years of Figure 4(c). Figure 5, for trajectory c, shows a trajectory with initial

time at t = −25.0 years. The asteroid enters the gas envelope and it is trapped by the gas. This

trajectory has its semi-major axis reduced, the gas vanish and the trajectory is stabilized.
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Figure 4: Length of time that the asteroid spent inside the gas envelope for each initial time simulation.
Four initial conditions for semi-major axis of 4.5 AU: (a) λ = 70◦; (b) λ = 110◦; (c) λ = 250◦; (d) λ = 290◦.

3.2. Captured Orbits

In order to understand what happens with the permanently captured orbits, we computed

the average of the semi-major axis and eccentricity of the captured trajectories, presented in

Figure 4(c). The average was made in the time interval between 0 and 50 years, that is, after

the gas had vanished.

In Figure 6 we present the behavior of the averaged semi-major axis and eccentricity

after the gas vanishes. For the first trajectories, the gas is denser at the time the asteroid

arrives, which make its semi-major axis to decrease more, stabilizing the orbit with a semi-

major axis close to 10 Jupiter’s radius. With a less dense gas at the time of arrival of the

asteroid, the average value of the semi-major axis is close to 320 Jupiter’s radius.

The average value of the eccentricity is also shown in Figure 6. Most of the trajectories

have eccentricities close to 0.95. The few ones which are less than 0.8 are the ones which are

closer to the planet.
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between 0 and 50 years for the captures generated by gas drag.

We also pointed that the inclination of the asteroids during all the time after the gas

was vanished for all captured trajectories were retrograde, that is, the inclinations never

changes from i = 180◦ with respect to Jupiter.

This process of capture is not suitable for the prograde capture. In the work of Ćuk

and Burns [14] they show that the time needed to capture a Himalia satellite type is between

104 to 106 years. The process described here is rapid and the density of the gas envelope is
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not enough to make a asteroid to lose orbital energy and turn it into a permanent prograde

satellite.

If we compare this and the work of Ćuk and Burns [14], using the results of Pollack

et al. [15], the capture of the prograde satellites might have occurred in the second phase

of planetary formation, while the capture of the retrograde satellites might have occurred

only in the third stage. In the work of Pollack et al. [15] they estimate a time between

106 years and 8 × 106 years in the second phase. Thus, the model of capture with gas drag

show us that the capture of prograde satellites are much more probable than the retrograde

ones. This contradicts the observations. There are more retrograde satellites observed than

prograde ones. Therefore, the origin of the prograde and retrograde irregular satellites cannot

be attributed to the gas drag capture mechanism alone.

4. Conclusions

We found a region of initial conditions, close to Jupiter, which produces temporary

gravitational capture around Jupiter. We took eight sets of initial conditions from this region

and varied the initial time for the integration in a dynamics which includes a gas envelope

with decreasing density along the time to a moment that it vanishes. These simulations gave

us information about what might be the outcomes of the evolution of such system. The

possible outcomes are: the scatter of the asteroid, the temporary gravitational capture, the

collision with Jupiter, and the permanent capture. Seven out of eight sets of initial conditions

did not give effective capture. Only one set presented a few permanent captures due to the

gas drag.

We have shown that the permanent capture of an asteroid in retrograde orbit around

Jupiter due to a vanishing gas envelope is possible. We have the knowledge that this happens

with low probability, but considering the supply of planetesimals available in the early

time of the solar system formation, this kind of event could have happened. Although

comparing with the probability of prograde capture it is less probable. The observations show

more retrograde satellites than prograde ones. This is a problem for the gas drag capture

mechanism as a whole.

It is necessary to look more regions of the space of semi-major axis, eccentricity, and

inclination in order to have enough information about the gravitational capture with gas drag

and also the time for the gas envelope to vanish needs to be tested. In order to implement this

it is necessary to use some Monte Carlo method due to the huge range of free parameters.

The captures studied in this work, which were shown in Section 3.2, are close to Jupiter

compared with the real irregular satellites. Some could cross the Galilean satellites orbits and

collide with them. It is necessary to improve the gas envelope decaying mechanism to obtain

more information of the process, but in this work we tried to proof this concept and further

work is under development.
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1. Introduction

In the case of natural reentries (non-controlled), the orbital evolution of an object can only

be monitored, with no or limited ability to control risks. The time window for reentry of a

satellite is usually provided with a standard error of ±10% to ±20% of the remaining orbital

lifetime. For the controlled reentries, it is required to simulate the different scenarios until the
right window for the mission is found, being that the total or partial disintegration, or the

landing on a safe place.

In this paper, the main objective is to conduct numerical simulations of the supersonic

flow regime on a conical body, thereby using a code developed at the Department of

Aeronautics of the National University of Córdoba, Argentina [1, 2]. This code uses the

technique of finite volumes for solving Euler equations. The spatial discretization of the

domain is done through a mesh of unstructured tetrahedral volumes. It has implemented

a new technique for choosing the limiter functions that can reduce the artificial viscosity

without the loss of strength robustness of the Total Variation Diminishing scheme—TVD [3–
6].
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The drag and lift coefficients, CD and CL, obtained by the numerical simulation of

compressible flows are used in a code that allows to evaluate the trajectories considering six

degrees of freedom [7]. As a result of this research, the trajectories of reentry into the Earth’s

atmosphere for conical objects having different initial flight conditions are presented.

2. Methodology

2.1. Description of the Numerical Scheme for Compressible Flow

The three-dimensional Euler equations can be written as

∂U
∂t

+∇ · F = 0, (2.1)

where U is the vector of conservative variables, and F is the 3D vectorial flow.

The temporal change of the conservative variables can be expressed as

Un+1 = Un − Δt

V ol

lfaces∑
l=1

F∗l · nlAl, (2.2)

where the flux of the conservative variables F has been replaced by the numerical flux tensor

F∗. Vol indicates the volume where the integration is performed, nl is the outward normal to

the control surface (Al).
Equation (2.2) allows the use of a locally aligned system of coordinates whose unit

vector i coincides with the normal to the face l of the cell, and the unit vectors j and k are

tangential directions. To achieve second-order accuracy, the numerical flux at the interface

between cells l and l+1 in the direction normal to the face l is calculated by [8]

f∗i+1/2 =
fi + fi+1

2
+
1

2

∑
m

Φm
i+1/2K

m

i+1/2, (2.3)

where fi and fi+1 are the physical fluxes normal to the face in each cells,K
m

i+1/2 is them-th right

eigenvector, and Φm
i+1/2

is, in the original Harten-Yee scheme [9–11], defined as

Φm
i+1/2 = gm

i + gm
i+1 −

∣∣∣λm
i+1/2 + βm

i+1/2

∣∣∣αm
i+1/2, (2.4)

being

gm
i =

S

2
max
[
0,min

(∣∣∣λm
i+1/2αm

i+1/2

∣∣∣, S
∣∣∣λm

i−1/2

∣∣∣αm
i−1/2

)]
, (2.5)

S = sign
(

λm
i+1/2

)
, (2.6)

βm
i+1/2 =

⎧⎪⎨⎪⎩
gm

i+1 − gm
i

αm
i+1/2

0

if αm
i+1/2 /= 0

if αm
i+1/2

= 0,
(2.7)
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where αm
i+1/2

is the jump of the conserved variables across the interfaces between cells i and
i+1, λm

i−1/2
is the m-th eigenvalue of the Jacobian matrix, gm

i is the limiter function, and S is

the sign function of the corresponding eigenvalue [8–11]. Since the local Riemann problem

is solved with rotated data, the eigensystem is calculated in the locally aligned coordinate

frame.

The limiter function given in (2.5) is known as minmod [3–6]. The minmod selects the

minimum possible value, so that the scheme is TVD. The other end is the limiter function

superbee that ponders the contribution of the high-order flux [3]. The only implementation of

the superbee function leads to an excessively compressive scheme which it is not very robust

for general practical aerospace applications [6].
In the numerical solution of the three-dimensional Euler equations, five wave families

appear. If the five wave families are enumerated in correspondence with their speed, being

one the slowest and five the fastest, it can be demonstrated that for waves of the families two

to four, the characteristic velocities at both sides of the discontinuity are the same and equal

to the velocity discontinuity [3, 5]. This property makes it very difficult to solve theses waves

accurately. Generally they are solved diffusely because the numerical methods incorporate a

large amount of artificial viscosity to track the contact discontinuity.

In this work, the possibility of implementing different limiter functions for different
wave families is explored. The objective is to improve the numerical resolution of the

discontinuities associated with the families two to four using compressive limiter functions

(superbee), andwithout losing robustness mainly due to the use of diffusive limiter functions

(minmod) for the wave families one and five. This technique implements the utilization of

the superbee limiter function only in linear degenerate waves and the minmod function in

nondegenerated nonlinear waves [1, 2].
To introduce in the numerical fluxes calculations the limiter function superbee, (2.5) is

replaced by the following expression:

gm
i =

⎧⎪⎨⎪⎩
0 if αm

i+1/2
αm

i−1/2
< 0

max[0,min(2k, 1),min(k, 2)]
1

2

∣∣∣λm
i−1/2

∣∣∣αm
i−1/2

if αm
i+1/2

αm
i−1/2

≥ 0
(2.8)

being

k =

∣∣∣λm
i+1/2

∣∣∣αm
i+1/2∣∣∣λm

i−1/2

∣∣∣αm
i−1/2

. (2.9)

To improve the overall scheme robustness, the implementation of different limiter

functions is carried out only in those cells interfaces where the greater relative intensities

of the discontinuities in central waves are registered, and using the conventional Harten-Yee

TVD scheme in all other cases. Notice that the comparison among the intensity of the waves

cannot be made using directly the coefficients of the spectral decomposition (αm
i+1/2

) since

these coefficients depend on the module assigned to each eigenvector.
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In the local coordinate system adopted for computing the numerical fluxes across each

face, the corresponding eigenvectors are given by [5]

K1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

u − c

v

w

H − uc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, K2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

u

v

w

u2 + v2 + w2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, K3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

0

v

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, K4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, K5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

u + c

v

w

H + uc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(2.10)

where H is the stagnation enthalpy; u, v and w are the velocity vector components, and c is
the sound velocity. It can be deduced from (2.10) that α1

i+1/2
, α2

i+1/2
and α5

i+1/2
measure the

density jump in the waves 1, 2, and 5, respectively, and that α3
i+1/2

and α4
i+1/2

measure the

momentum jump in waves three and four. To compare these jumps it became necessary to

select reference values for the density and velocity. Thus,

I1 =

∣∣∣α1
i+1/2

∣∣∣
ρref

, I2 =

∣∣∣α2
i+1/2

∣∣∣
ρref

, I3 =

∣∣∣α3
i+1/2

∣∣∣
ρref uref

, I4 =

∣∣∣α4
i+1/2

∣∣∣
ρref uref

, I5 =

∣∣∣α5
i+1/2

∣∣∣
ρref

. (2.11)

In this investigation, ρref = 0.5 (ρi + ρi+1) is taken as density reference, and as the

velocity reference of the average of the sound velocities at the cells uref = 0.5 (ci + ci+1),
where ci is the sound velocity. The parameters Ii permit to measure the wave intensities.

Finally, if the maximum of I1, I5 is higher than the maximum of I2, I3, I4, the

conventional Harten-Yee TVD scheme is used; otherwise, the values of g2
i , g3

i , g4
i , are

calculated with the limiter function superbee and g1
i , g5

i , with the limiter function minmod.

For the evaluation of gm
i and gm

i+1 in (2.4), it is necessary to calculate the spectral

decompositions of the conservative variables increments at the interfaces i − 1/2, i + 1/2,

and i + 3/2. In the context of three-dimensional not structured meshes of tetrahedrons, the

identification of the cells i and i + 1 is intuitive (they are two cells that share a face) but

the determination of the points i − 1 and i + 2 is not direct. If two tetrahedrons that share a

face are analyzed, the nodes not belonging to the common face can be used as representative

points for i − 1 and i + 2. Then, these points can be used as imaginary cells. In this work these

ideas have been implemented, being the nodal values calculated as a pondered average of

the conservative variables between all cells that are in contact with the nodes i − 1 and i + 2.

Such pondered average is given by

Unode k =
∑n

i=1(Ucell i/(dGCcell i−node k))∑n
i=1(1/(dGCcell i−node k))

, (2.12)

where dGCcell i−node k is the distance that separates the gravity center of the cell i from the node

k, and n is the cell number in contact with the node k.
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The treatment of the boundary conditions is carried out through the imaginary cells

technique [2–4]. Five different types of boundaries are considered (1) subsonic inlet; (2)
supersonic inlet, (3) subsonic exit, (4) supersonic exit, (5) nonpenetration (solid boundary

and symmetry).

2.2. Reentry Equations of Motion

The choice of a suitable set of coordinates and parameters of the trajectory to describe the

movement of an object in atmospheric reentry is inherent to any investigation of guided

spacecraft. To analyze a reentry trajectory it is appropriated to describe the motion of the

center of mass using a set of elements known as Flight Coordinates [12].
Thus, the flight coordinates are described by the six orbital elements: magnitude of

the position vector, r, longitude, θ, latitude, ϕ, magnitude of the velocity vector, v, flight-path

angle, γ , and heading angle, ψ (azimuth of the velocity). At every moment this object is under

the influence of a total force,
−→
F , composed by the gravitational force,

−→
F G, the aerodynamic

force,
−→
A, and the force of propulsion,

−→
T :

−→
F =

−→
T +

−→
A +

−→
FG. (2.13)

The gravitational force is always present. For nonpowered flight, the propulsion force

is zero, while for flights outside the atmosphere, the aerodynamic force vanishes.

To derive the equations of motion, we must use an Earth-fixed reference system. The

kinematics equations of motion are [12]

dr

dt
= v sin γ,

dθ

dt
=

v cos γ cosψ

r cosφ

dφ

dt
=

v cos γ sinψ

r
.

, (2.14)

It is desirable to separate the aerodynamic force into two components and define the

tangential component of the nongravitational force,
−→
F T , along the velocity vector, and the

normal component,
−→
FN , orthogonal to the velocity at the aerodynamic plane. When we have

in plane flights, the normal vector
−→
FN is in the plane (−→r ,−→v), the vertical plane, and there is

no lateral force. However, it is possible to create a lateral component of this force, which has

the effect of changing the orbital plane. The non-gravitational force is then decomposed into

a component on the vertical plane and orthogonal to the velocity vector, and a component

orthogonal to this plane using the bank angle, σ.
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The force equations are [12]:

dv

dt
=

1

m
FT − 1

m
FG sin γ + ω2r cosφ

(
sin γ cosφ − cos γ sinψ sinφ

)
,

v
dγ

dt
=

1

m
FN cosσ − 1

m
FG cos γ +

v2

r
cos γ + 2ωv cosψ cosφ

+ ω2r cosφ
(
cos γ cosφ + sin γ sinψ sinφ

)
,

v
dψ

dt
=

1

m

FN sinσ

cos γ
− v2

r
cos γ cosψ tanφ + 2ωv

(
tan γ sinψ cosφ − sinφ

)

− ω2r

cos γ
cosψ sinφ cosφ.

(2.15)

Here ω is the rotation of the Earth that appears because we have to consider a reference

system fixed on the planet.

2.3. Attitude Equations

Knowing the attitude of a space object means knowing the orientation of an axis system

connected to the vehicle related to a vertical reference system. To specify the orientation

of a rigid body in space, three independent parameters are needed. These parameters are

commonly known as roll, pitch and yaw, the Euler angles.

However, the use of the Euler angles to compute the attitude evolution of a spacecraft

is limited: the equations of motion in attitude have singularities for certain values of the pitch

angle, namely ±π/2. This limitation was solved with the substitution of the Euler angles with

a set of variables known as quaternions [13].
The quaternions are denoted as q = (q1, q2, q3, q4). The components of q are defined

in terms of the Euler angles using the convention xyz (or sequence 321) which is found in

Goldstein [14].
Kinematics equations of motion have the following form [14]:

q̇1 =
1

2

(
ω3q2 − ω2q3 + ω1q4

)
,

q̇2 =
1

2

(
−ω3q1 + ω1q3 + ω2q4

)
,

q̇3 =
1

2

(
ω2q1 − ω1q2 + ω3q4

)
,

q̇4 =
1

2

(
−ω1q1 − ω2q2 − ω3q3

)
.

(2.16)
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The attitude dynamic equations of motion express the temporal dependence of the

angular velocity related to the applied torques:

I
d−→ω
dt

=
−→
N − −→ω × I−→ω, (2.17)

where I is the inertia matrix, and
−→
N the aerodynamic torque. Thus, with I1, I2, I3

corresponding to the moments of inertia about the main axes of the vehicle, the dynamic

equations of attitude are [13]:

ω̇1 =
N1 + (I2 − I3)ω2ω3

I1
,

ω̇2 =
N2 + (I3 − I1)ω3ω1

I2
,

ω̇3 =
N3 + (I1 − I2)ω1ω2

I3
.

(2.18)

2.4. Aerodynamic Forces

If the vehicle under consideration operates on a symmetry condition, the velocity vector

defines this plane of symmetry. So the attitude of the object is properly described by the

attack angle, α, which is the angle between the velocity vector relative to the atmosphere and

a vehicle’s baseline, normally the longitudinal axis.

The aerodynamic force is decomposed into two components: the force opposite to the

direction of motion, called Drag -and part of the non-gravitational force
−→
F T in (2.15), and the

orthogonal component, called Lift (part of
−→
FN):

D =
1

2
CDρatmSsatV

2,

L =
1

2
CLρatmSsatV

2.

(2.19)

Here, CD and CL are called drag and lift coefficients, respectively, ρatm is the atmosphere’s

density, Ssat is the satellite’s area and V is the relative velocity between the space object

and the atmosphere. For each object it is necessary to calculate specific coefficients at every

moment of the trajectory. The code developed in the Department of Aeronautics of the UNC

[1] evaluates these parameters for the conical object into consideration.

The first phase of the calculation is to identify the object’s surface areas. So, the nodes

of the tetrahedrons, whose faces form the surface of the object, are identified in the code input

file.

The forces acting on each face have a magnitude equal to the pressure divided by

the area. The direction is the incoming normal to the surface, and the point of application

corresponds to the geometric center of the face. In this way, the resultant force on the body

is calculated as the vector sum of all forces acting on the discretized surface. Finally, the
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resulting force components in directions parallel and perpendicular to the flow velocity

vector are projected, in order to obtain the drag and lift coefficients, respectively.

3. Results

The numerical simulations were performed using as a core calculation code the one

developed at UNC [1]. For delineation of the geometric bodies and meshing, we used the

application GID 8.0 with temporary license issued by the manufacturer.

GID has been developed as an interface for geometric modelling, meshing, income

data, and display results of all types of numerical simulation programs. The different menus

can be modified according to specific user needs. The graphical interface adapted to the code

is designed to allow the entrance of initial conditions, to mark the object’s surface for the

calculation of forces, to define the number of iterations, and other parameters inherent to the

code. The ultimate objective of the use of GID is writing the data file that enters the UNC’s

code and the subsequent display of results, from reading the output file written by the code.

The limit of iterations in the code can be determined by the number of steps, or

the limit time independently. When it comes to any of these, the program completes its

implementation.

The motivation of the simulations performed is to obtain the main aerodynamic

characteristics (drag and lift coefficients) of a conical body. They are used in the calculation

of the trajectory during reentry into the atmosphere [15]. Due to the fact that the original

code did not have the calculation of the pressure forces on a body, the necessary sentences

to perform a simple summation of forces on the faces of the tetrahedrons lying on the object

were written. For the identification of these faces, the graphical interface developed in GID is

used, which has an option to mark the surface of the body.

The angle of the cone (10◦)was chosen arbitrarily, in order to guarantee that this value

is small. The cone’s length (1m) was chosen to facilitate the calculations.

It is known that the aerodynamic characteristics of a body with the given geometry

depend, in the case of nonviscous flow, only on the Mach number and the incidence angle of

the free flow, without considering heat transfer or changes in the properties of air. That’s the

reason why these variables are used as independent ones.

Two sets of simulations were performed. The first case is for a cone-shaped object

that enters in the atmosphere by sharp (narrow) side forward, while the second one was

calculated in the assumption that the vehicle moves by wide (obtuse) side forward. Both

calculations were made for several attack angles and Mach numbers.

It is important to note that the pressure distribution around the body depends only

on the free flow Mach number. Then to obtain the CD and CL coefficients, it is necessary to

modify only the free flow Mach number. For this reason the velocity is modified by keeping

pressure and density constant and equal to those used in the remaining cases. The speed in

the z direction is maintained equal to zero so there is flow symmetry around the xy plane.

3.1. Sharp Side Forward Case

The dimensions of the volume meshing are length in direction x = 2.2m, length in direction y
= 3m, distance to surface point of impact in the axis x = 0.2m, angle of revolution = 180◦. The
characteristics of the mesh are number of tetrahedrons around 130,000 and number of nodes

around 29,000.
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Figure 1: Pressure distribution on the object: (a) Mach = 1, attack angle = 0◦; (b) Mach = 4, a.a. = 15◦.

The interface with GID requested that a new mesh was drawn every time a new

calculation was made, because it needed a new data file for every case considered. For this

reason, and because a nonstructured mesh was used, every case had a slightly different
number of elements, due to arbitraries processes during meshing.

The criterion used for the meshing is based on

(i) using the symmetry of the flow on a plan to reduce the volume of mesh, and on

two planes in the case of zero attack angle,

(ii) concentration of all elements near the surface of the cone, in particular areas

considered critical for the calculation: impact point and base,

(iii) significant reduction of elements in remote areas of the body, to reduce computa-

tional cost.

Figures 1(a) and 1(b) display some examples of results obtained for the pressure field

over a conical object considering two combinations of Mach number and attack angle.

The implemented numerical scheme has the capacity to simulate compressible flows

in subsonic, transonic, and supersonic regimens. From Figure 1(a), it is possible to note, for

Mach number equal 1, the concentration of sonic waves near of the body edge; however, the

shock wave has not yet been formed. The shock wave can be seen clearly in Figure 1(b)when

the free Mach flow is 4. Furthermore Figure 1 shows that the pressure distribution, including

at the cone base, is different for transonic from that of supersonic flows , this explains the

different behaviors of the CD and CL coefficients for different regimes.

Figure 2 shows the drag coefficients for the simulated cases, while Figure 3 shows the

lift coefficients. In all cases it is considered the cone angle equal to 10◦. The reference area used
is the front section of the cone. It is important to note that the viscous effects are neglected to

obtain theses figures.

Note from Figure 2 that drag coefficient is increasing accordingly as the attack angle

of the cone is increasing too, this phenomenon occurs until 75◦. From Figures 2 and 3, it is

possible to observe that both coefficients, drag and lift, have lower variations for height Mach

numbers and the greater variations occur at subsonic and transonic flows. For an attack angle

of 45◦, it is produced that the highest lift and the lower occur for an angle of 90◦, for this test
the lift is negative except for very reduced Mach number.

Figure 4 show some of the results of the reentry simulations. Figure 4(a) plots the

variation of attack angle during the reentry trajectory for initial values of this angle
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Figure 2: Sharp Side Forward: Drag coefficient as a function Mach for different angles of attack.
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Figure 3: Sharp Side Forward: Lift coefficient as a function Mach for different angles of attack.

corresponding to 0◦, 15◦, and 30◦, while Figure 4(b) presents the trajectory, meaning the

altitude as a function of the time, for these angles.

We can notice the moment when the objects sense the presence of the atmosphere

(around 1500 seconds) and begin to experience high variation of the attack angle during

their descent. The first trend is to decrease the initial attack angle. However, although the

atmosphere promotes an oscillatory movement around the zero attack angle condition, this

is very unstable for objects reentering sharp side forward, and it is possible that for certain

initial conditions, the atmosphere turns the object and reverses its attitude.

In what concerns the time evolution of the altitude, it could be seen that it is not

affected until the height of 150 km. This is a limitation of the atmospheric model that has

information on the atmospheric density just until this height. Since the aerodynamic forces
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Figure 4: Sharp Side Forward: (a) Attack angles depending on the time; (b) Altitude. Initial attack angles:
0◦ (blue), 15◦ (red) and 30◦ (green).

depend directly on this parameter, it is assumed that the atmosphere is so faint over 150 km

that it does not affect the trajectory. Anyway, under this limit, all trajectories show bouncing

movements, indicating that the attitude variation affects the objects dynamics.

3.2. Wide Side Forward Case

In this case the characteristics of the mesh are number of tetrahedrons around 160,000 and

number of nodes around 32,000. An additional criterion used for the meshing is based on the

concentration of all elements over the cone’s surface, in particular areas considered critical

for the calculation: impact point and base. Also smaller elements were used in the zones

nearby the cone base and along the axis of the cone in order to determine more precisely

detached shock waves. Apart from that, the mesh wasmade thinner over the sides of the cone

compared to the aerodynamic shadow in order to more accurately determine the expansion

waves.

To simulate the atmospheric reentry of a cone shaped object by wide side forward, it is

takes into account that this object has an attack angle around 180o. Some of the results found

for this condition can be seeing on Figures 5 and 6.

Figure 5 shows the drag coefficients as a function of theMach number for attack angles

105◦, 120◦, 135◦, 150◦, 165◦, and 180◦. It can be seen that this parameter presents higher values

on the condition wide side forward compared with the same attitude angles on a sharp

side forward situation for attack angles around the stability condition (180◦ in this case and

0◦ in the sharp side forward) as expected. For attack angles equal to or bigger than 135◦

(corresponding to 45◦ in the other case), the drag coefficient is very similar. On the other side,

the lift coefficients tend to be smaller or maintain the same values (Figure 6).
The result of these differences can be noticed in Figures 7(a) and 7(b). For a conic

object that reenters the terrestrial atmosphere wide side forward, small angles of attack (here
around 180◦) tend to preserve their magnitude during the reentry trajectory as corresponding
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Figure 5: Wide Side Forward: Drag coefficient as a function Mach for different angles of attack.
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Figure 6: Wide Side Forward: Lift coefficient as a function Mach for different angles of attack.

to an equilibrium configuration. However, when the initial attitude is as far from 180◦ as 30◦,
equilibrium is lost during reentry and we found again the oscillations around the stability

condition.

The most important consequence of the wide side forward reentry is over the altitude

evolution. It can be seen in Figure 7(b) that all the cases present nearly ballistic paths.

Although the far from the 180◦ initial attack angle condition, the less ballistic is the trajectory

inside the dense part of the atmosphere, as can be seen by the dark green line that corresponds

to an initial attack angle of 150◦, the trajectories of initial attack angles equal to 180◦ and 175◦

are superimposed.
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Figure 7: Wide Side Forward: (a) Attack angles depending on the time; (b) Altitude. Initial attack angles:
180◦ (dark blue), 175◦ (dark red) and 150◦ (dark green).

4. Conclusions

In this paper, a series of numerical simulations have been conducted using a code

developed at UNC [1, 2], which solves the Euler equations by the method of finite volume,

using unstructured 3D tetrahedral meshes. The code implements a new technique on the

introduction of limiting functions, which aims to decrease the numerical viscosity, that is,

increasing the contact discontinuities capture accuracy without loss of robustness regarding

other TVD methods.

The goal was the calculation of aerodynamic characteristics of a cone under the effects
of different flight conditions, to attach the results to other code that calculates the dynamic of

atmospheric reentry [7].
It was possible to perform simulations of reentry trajectories for a specific cone under

the influence of various aerodynamic effects for a variety of initial attack angles. Simulations

show, as expected, that the trajectories are more affected when the object has initially a sharp

side forward configuration.

From the obtained results, was compared the numerical slope of the normal force

coefficient with analytical results. In none of the cases the errors exceed 6%. This good

accuracy of the numerical results permits to induce that the error by not considering viscous

effects in the calculation of the aerodynamic coefficients is low, and the obtained trajectories

and attack angles evolution during the reentry are reliable.

Although the methodology implemented has been shown to be suitable for calculating

the reentry trajectories inside the terrestrial atmosphere, it will be improved with the

inclusion of viscous effects in the simulation of the aerodynamic flow in future works.
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