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In the recent years, the mathematical formalism of impulsive systems (based on impulsive
differential equations) has tried to join together the rigorous aspects from continuous
systems formalism and the wide range of applications of discrete systems formalism. They
were introduced to handle many evolution processes which are subject to singular short-
term perturbations. Abrupt changes must be approached with logical, mathematical, and
technical aspects dealing with the final evolution of such impulsive sources, whose effects
are entirely transferred to the new state of the systems. Modern aspects in physics (quantum
theory) and mathematics (wavelets, fractal theory) should be expedient in modelling short
range phenomena, and describing dynamics of perturbations and transitions in natural
systems (advanced materials science) and advanced systems (optic, electronic, and quantum
devices).

The aim of this special issue is to present recent advances of theoretical, computational,
and practical aspects for modeling short range phenomena in order to reveal new
fundamental aspects in science and engineering. Using mathematical tools of wavelets
analysis, fractal theory, and applied mathematics (signal processing, numerical simulations,
control theory) adapted for short range phenomena, significant results were obtained in the
research fields of structure analysis and image recognition, wavelets analysis of localised
space-time phenomena, dynamical and computational aspects of pulse measurement,
sequences of pulses and time series, and mathematical and physical aspects of pulse
generation.

This special issue involves 15 original papers, selected by the editors so as to present
the most significant results in the previously mentioned topics. These papers are organised
as follows.
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(a) Three papers on structure analysis and image recognition: “Incremental nonneg-
ative matrix factorization for face recognition” by Wen-Sheng Chen et al., “Direct
neighborhood discriminant analysis for face recognition” by Miao Cheng et al., and
“Intelligent control of the complex technology process based on adaptive pattern
clustering and feature map” by Cheng Wushan.

(b) Three papers on wavelets analysis of localised space-time phenomena: “Shannon
wavelets theory” by Carlo Cattani “Combined Preorder and Postorder Traversal
Algorithm for the Analysis of Singular Systems by Haar Wavelets” by Beom-Soo
Kim et al., and “On the discrete harmonic wavelet transform” by Carlo Cattani and
Aleksey Kudreyko.

(c) Three papers on sequences of pulses and time series: “Resolution of first and second
order linear differential equations with periodic inputs by a computer algebra
system” by Matilde Legua et al., “Detection of variations of local irregularity of
traffic under DDOS flood attack” by Ming Li and Wei Zhao, and “Tool wear
detection based on Duffing-Holmes oscillator” by Wanqing Song et al.

(d) Three papers on dynamical and computational aspects of pulse measurement:
“Venturi wet gas flow modeling based on homogenous and separated flow theory”
by Fang Lide et al., “Detection of short step pulses using practical test-functions
and resonance aspects” by Alexandru Toma and Cristian Morarescu, and “On
nonperturbative techniques for thermal radiation effect on natural convection past
a vertical plate embedded in a saturated porous medium” by Oluwole Makinde
and Raseelo J. Moitsheki.

(e) Two papers on mathematical and physical aspects of pulse generation: “Relativistic
short range phenomena and space-time aspects of pulse measurements” by Ezzat
Bakhoum and Cristian Toma and “Vanishing waves on closed intervals and
propagating short-range phenomena” by Toma Ghiocel and Flavia Doboga.

(f) One paper on applications of short range (localised) phenomena analysis in
biology: “Solving ratio-dependent predator-prey system with constant effort
harvesting using homotopy perturbation method” by Abdoul Reza Ghotbi et al.

Carlo Cattani
Ming Li

Cristian Toma
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Nonnegative matrix factorization (NMF) is a promising approach for local feature extraction in
face recognition tasks. However, there are two major drawbacks in almost all existing NMF-
based methods. One shortcoming is that the computational cost is expensive for large matrix
decomposition. The other is that it must conduct repetitive learning, when the training samples
or classes are updated. To overcome these two limitations, this paper proposes a novel incremental
nonnegative matrix factorization (INMF) for face representation and recognition. The proposed
INMF approach is based on a novel constraint criterion and our previous block strategy. It thus
has some good properties, such as low computational complexity, sparse coefficient matrix. Also,
the coefficient column vectors between different classes are orthogonal. In particular, it can be
applied to incremental learning. Two face databases, namely FERET and CMU PIE face databases,
are selected for evaluation. Compared with PCA and some state-of-the-art NMF-based methods,
our INMF approach gives the best performance.

Copyright q 2008 Wen-Sheng Chen et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Face recognition has been one of the most challenging problems in computer science and
information technology since 1990 [1, 2]. The approaches of face recognition can be mainly
categorized into two groups, namely geometric feature-based and appearance-based [3].
The geometric features are based on the short range phenomena of face images such
as eyes, eyebrows, nose, and mouth. The facial local features are learnt to form a face
geometric feature vector for face recognition. The appearance-based approach relies on the
global facial features, which generate an entire facial feature vector for face classification.
Nonnegative matrix factorization (NMF) [4, 5] belongs to geometric feature-based category,
while principle component analysis (PCA) [6] is based on the whole facial features. Both
NMF and PCA are unsupervised learning methods for face recognition. The basic ideas of
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these two approaches are to find the basis images using different criterions. All face images
can be reconstructed by the basis images. The basis images of PCA are called eigenfaces,
which are the eigenvectors corresponding to large eigenvalues of total scatter matrix. NMF
aims to perform nonnegative matrix decomposition on the training image matrix V such that
V ≈WH, where W and H are the basis image matrix and the coefficient matrix, respectively.
The local image features are learnt and contained in W as column vectors. Follow the success
of applying NMF in learning the parts of objects [4], many researchers have conducted in-
depth investigation on NMF and different NMF-based approaches have been developed [7–
19]. Li et al. proposed a local NMF method [7] by adding some spatial constraints. Wild
et al. [8] utilized spherical K-means clustering to produce a structured initialization for
NMF. Buciu and Pitas [9] presented a DNMF method for learning facial expressions in a
supervised manner. However, DNMF does not guarantee convergence to a stationary limit
point. Kotsia et al. [15] thus presented a modified DNMF method using projected gradients.
Some similar supervised methods incorporated into NMF were developed to enhance the
classification power of NMF [11–13, 19]. Hoyer [10] added sparseness constraints to NMF
to find solutions with desired degrees of sparseness. Lin [16, 17] modified traditional NMF
updates using projected gradient method and discussed their convergences. Recently, Zhang
et al. [18] proposed a topology structure preservation constraint in NMF to improve the NMF
performance.

However, to the best of our knowledge, almost all existing NMF-based approaches
encounter two major problems, namely time-consuming problem and incremental learning
problem. In most cases, the training image matrix V is very large and it leads to expensive
computational cost for NMF-based schemes. Also, when the training samples or classes
are updated, NMF must implement repetitive learning. These drawbacks greatly restrict
the practical applications of NMF-based methods to face recognition. To avoid the above
two problems, this paper, motivated by our previous work on incremental learning [19],
proposes a supervised incremental NMF (INMF) approach under a novel constraint NMF
criterion, which aims to cluster within class samples tightly and augment the between-
class distance simultaneously. Our incremental strategy utilizes the supervised local features,
which are considered as the short-range phenomena of face images, for face classifications.
Two public available face databases, namely FERET and CMU PIE face databases, are selected
for evaluation. Experimental results show that our INMF method outperforms PCA [6], NMF
[4], and BNMF [19] approaches in both nonincremental learning and incremental learning of
face recognition.

The rest of this paper is organized as follows: Section 2 briefly reviews the related
works. Theoretical analysis and INMF algorithm design are given in Section 3. Experimental
results are reported in Section 4. Finally, Section 5 draws the conclusions.

2. Related work

This section briefly introduces PCA [6], NMF [4], and BNMF [19] methods. Details are as
follows.

2.1. PCA

Principal component analysis (PCA), also called eigenface method, is a popular statistic
appearance-based linear method for dimensionality reduction in face recognition. The
theory used in PCA is based on Karhunen-Loeve transform. It performs the eigenvalue
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decomposition on the total scatter matrix St and then selects the large principal components
(eigenfaces) to account for most distributions. All face images can be expressed by the linear
combinations of these basis images (eigenfaces). However, PCA is not able to exploit all of
the feature classification information and how to choose the principal component elements is
still a problem. Therefore, PCA cannot give satisfactory performance in pattern recognition
tasks.

2.2. NMF

NMF aims to find nonnegative matrices W and H such that

Vm×n
NMF≈ Wm×rHr×n, (2.1)

where matrix V is also a nonnegative matrix generated by total n training images. Each
column of W is called basis image, while H is the coefficient matrix. The basis number r is
usually chosen less than n for dimensionality reduction. The divergence between V and WH
is defined as

F =
∑

ij

(
Vij log

Vij

(WH)ij
− Vij + (WH)ij

)
. (2.2)

NMF (2.1) is equivalent to the following optimization problem:

min
W,H

F, s.t. W ≥ 0, H ≥ 0,
∑

i

Wik = 1, ∀ k. (2.3)

The minimization problem (2.3) can be solved using the following iterative formulae,
which converge to a local minimum:

Wij ←−Wij

∑

k

Vik
(WH)ik

Hjk, Wij ←−
Wij∑
kWkj

, Hij ←− Hij

∑

k

Wki

Vkj

(WH)kj
. (2.4)

2.3. BNMF

The basic idea of BNMF is to perform NMF on c small matrices V (i) ∈ R
m×n0 (i = 1, 2, . . . , c),

namely

(
V (i))

m×n0

NMF≈ (
W (i))

m×r0

(
H(i))

r0×n0
, i = 1, 2, . . . , c, (2.5)

where V (i) contains n0 training images of the ith class, and c is the number of classes. BNMF
is yielded from (2.5) as follows:

Vm×n
BNMF≈ Wm×rHr×n, (2.6)

where r = cr0, Vm×n = [ V (1) V (2) ··· V (c) ], Wm×r = [W (1) W (2) ··· W (c) ], Hr×n = diag(H(1),H(2), . . . ,
H(c)), and n(= cn0) is the total number of training images.
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3. Proposed INMF

To overcome the drawbacks of existing NMF-based methods, this section proposes a novel
incremental NMF (INMF) approach, which is based on a new constraint NMF criterion and
our previous block technique [19]. Details are discussed below.

3.1. Constraint NMF criterion

The objective of our INMF is to impose supervised class information on NMF such that
between-class distances increase, while the within-class distances simultaneously decrease.
To this end, we define the within-class scatter matrix S(i)

w of the ith coefficient matrix H(i) ∈
R
r0×n0 as

S
(i)
w =

1
n0

n0∑

j=1

(
H

(i)
j −U(i))(H(i)

j −U(i))T , (3.1)

where U(i) = (1/n0)
∑n0

j=1H
(i)
j is the mean column vector of the ith class. The within-class sam-

ples of the kth class will cluster tightly as tr(S(k)
w ) becomes small.

Assume Ũ(i) is an enlarging vector of U(i), that is, Ũ(i) = (1+ t)U(i) with t > 0. Then we
have

∥∥U(i) −U(j)∥∥ < (1 + t)
∥∥U(i) −U(j)∥∥ =

∥∥Ũ(i) − Ũ(j)∥∥. (3.2)

Inequality (3.2) implies that between-class distances are increased as the mean vectors of
classes in H are enlarged.

Based on above analysis, we define a constraint divergence criterion function for the
kth class as follows:

F(k) =
∑

ij

⎛

⎝V
(k)
ij log

V
(k)
ij

(WH)(k)ij

− V (k)
ij + (WH)(k)ij

⎞

⎠ + α tr
(
S
(k)
w

) − β∥∥U(k)∥∥2
2, (3.3)

where parameters α, β > 0 and k = 1, 2, . . . , c.
Our entire INMF criterion function is then designed as below:

F =
c∑

k=1

F(k) =
∑

ijk

⎛

⎝V
(k)
ij log

V
(k)
ij

(WH)(k)ij

− V (k)
ij + (WH)(k)ij

⎞

⎠ +
∑

k

(
α tr
(
S
(k)
w

) − β∥∥U(k)∥∥2
2

)
. (3.4)

Based on criterion (3.4), the following constraint NMF (CNMF) update rules (3.5)–
(3.7) will be derived in the next subsection. We can show that the iterative formulae (3.5)–
(3.7) converge to a local minimum as well:

W
(k)
ij ←−W

(k)
ij

∑

l

V
(k)
il

(WH)(k)
il

H
(k)
jl
, (3.5)

W
(k)
ij ←−

W
(k)
ij

∑
lW

(k)
lj

, (3.6)

H
(k)
ij ←−

−b +
√
b2 − 4ad
2a

, (3.7)
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where a = 2α − β/n2
k, b = −(2α + β/nk)U

(k)
i + 1, d = −H(k)

ij

∑
lV

(k)
lj W

(k)
li /(W (k)H(k))lj , and U

(k)
i

is the ith entry of vector U(k), k = 1, 2, . . . , c.
So, our entire INMF is performed as follows:

[
V (1) V (2) · · · V (c)] INMF≈ [

W (1) W (2) · · · W (c)]

⎡
⎢⎢⎢⎣

H(1)

H(2)

. . .
H(c)

⎤
⎥⎥⎥⎦
, (3.8)

where
(
V (i))

m×n0

CNMF≈ (
W (i))

m×r0

(
H(i))

r0×n0
, i = 1, 2, . . . , c. (3.9)

3.2. Convergence of proposed constraint NMF

This subsection reports how to derive the iterative formulae (3.5)–(3.7) and discusses their
convergences under constraint NMF criterion (3.3).

Definition 3.1 (see [5]). J(Q, Q̃) is called an auxiliary function for E(Q), if J(Q, Q̃) satisfies

J(Q, Q̃) ≥ E(Q), J(Q,Q) = E(Q), (3.10)

where Q, Q̃ are matrices with the same size.

Lemma 3.2 (see [5]). If J(Q, Q̃) is an auxiliary function for E(Q), then E(Q) is a nonincreasing
function under the update rule

Qi+1 = arg min
Q

J
(
Q,Qi). (3.11)

To obtain iterative rule (3.7) and prove its convergence, one first constructs an auxiliary function for
F with fixed W.

Theorem 3.3. If F(k)(H(k)) is the value of criterion function (3.3) with fixed W (k), then G(k)

(H(k), H̃(k)) is an auxiliary function for F(k)(H(k)), where

G(k)(H(k), H̃(k)) =
∑

ij

(
V

(k)
ij logV (k)

ij − V
(k)
ij +

(
W (k)H(k))

ij

)

−
∑

ijl

V
(k)
ij

W
(k)
il H̃

(k)
lj

∑
lW

(k)
il H̃

(k)
lj

⎛

⎝log
(
W

(k)
il H

(k)
lj

) − log
W

(k)
il H̃

(k)
lj

∑
lW

(k)
il H̃

(k)
lj

⎞

⎠

+ α tr
(
S
(k)
w

) − β∥∥U(k)∥∥2
2.

(3.12)

Proof. It can be directly verified that G(k)(H(k),H(k)) = F(k)(H(k)). So we just need show
the inequality G(k)(H(k), H̃(k)) ≥ F(k)(H(k)). To this end, we will use the convex function
y = logx. For all i, j, and

∑
lσijl = 1, it holds that

− log

(
∑

l

W
(k)
il
H

(k)
lj

)
≤ −
∑

l

σijl log
W

(k)
il
H

(k)
lj

σijl
. (3.13)
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Substituting σijl =W
(k)
il H̃

(k)
lj /
∑

lW
(k)
il H̃

(k)
lj into the above inequality, we have

− log

(
∑

l

W
(k)
il H

(k)
lj

)
≤ −
∑

l

W
(k)
il H̃

(k)
lj

∑
lW

(k)
il H̃

(k)
lj

⎛

⎝logW (k)
il H

(k)
lj − log

W
(k)
il H̃

(k)
lj

∑
lW

(k)
il H̃

(k)
lj

⎞

⎠ . (3.14)

Therefore, G(k)(H(k), H̃(k)) ≥ F(k)(H(k)). This concludes the theorem immediately.

Obviously, the function G(H, H̃) =
∑

kG
(k)(H(k), H̃(k)) is also an auxiliary function for

the entire constraint NMF criterion F(H) =
∑

kF
(k)(H(k)). Lemma 3.2 indicates that F(H) is

nonincreasing under the update rule (3.11). Let ∂G(H, H̃)/∂H(k)
ij = 0 and we have

∂G(H, H̃)

∂H
(k)
ij

=
∂G(k)(H(k), H̃(k))

∂H
(k)
ij

= −
∑

l

V
(k)
lj

W
(k)
li
H̃

(k)
ij

∑
lW

(k)
li
H̃

(k)
ij

1

H
(k)
ij

+
∑

l

W
(k)
li + 2α

(
H

(k)
ij −U

(k)
i

) − β

nk

(
1
nk
H

(k)
ij +U(k)

i

)

= 0.
(3.15)

From the above equation, it directly induces the iterative formula (3.7), and lemma 3.2
demonstrates that (3.7) converges to a local minimum. For update rule (3.5)-(3.6), the proof
is similar to that of update rule (3.7) using the following auxiliary function with fixed H:

G(W,W̃) =
∑

k

G(k)(W (k), W̃ (k))

=
∑

ijk

(
V

(k)
ij logV (k)

ij − V
(k)
ij +

(
W (k)H(k))

ij

)

−
∑

ijkl

V
(k)
ij

W̃
(k)
il H

(k)
lj

∑
lW̃

(k)
il H

(k)
lj

⎛

⎝log
(
W

(k)
il H

(k)
lj

) − log
W̃

(k)
il H

(k)
lj

∑
lW̃

(k)
il H

(k)
lj

⎞

⎠

+
∑

k

(
α tr
(
S
(k)
w

) − β∥∥U(k)∥∥2
2

)
.

(3.16)

3.3. Incremental learning

From the above analysis, our incremental learning algorithm is designed as follows:
(i) Sample incremental learning. As a new training sample x0 of the ith class is added to

training set, we denote that Ṽ (i) = [V (i), x0]. Thus the training image matrix becomes

Ṽ =
[
V (1) · · · Ṽ (i) · · · V (c)

]
. (3.17)
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In this case, it only needs to perform CNMF on matrix Ṽ (i), that is, Ṽ (i) CNMF≈ W̃ (i)H̃(i).

The rest decompositions such as V (k) CNMF≈ W (k)H(k)(k /= i) need not implement repetitive
computation. So, sample incremental learning can be performed as follows:

Ṽ
INMF≈ W̃H̃ =

[
W (1) · · · W̃ (i) · · · W (c)

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H(1)

. . .
H̃(i)

. . .
H(c)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3.18)

(ii) Class incremental learning. As a new class, denoted by matrix V (c+1), is added to the
current training set, it forms a new training image matrix as

Ṽ =
[
V (1) · · · V (c) | V (c+1)] . (3.19)

The incremental learning settings are similar to the first item (i) that all decompositions

V (k) CNMF≈ W (k)H(k) (k = 1, 2, . . . , c) need not compute again. We only need perform CNMF

on the matrix V (c+1), that is, V (c+1) CNMF≈ W (c+1)H(c+1). Hence, class incremental learning can
be implemented as below:

Ṽ
INMF≈ W̃H̃ =

[
W (1) · · · W (c) | W (c+1)]

⎡
⎢⎢⎢⎣

H(1)

. . .
H(c)

H(c+1)

⎤
⎥⎥⎥⎦
. (3.20)

3.4. INMF algorithm design

Based on the above discussions, this subsection will give a detail design on our
INMF algorithm for face recognition. The algorithm involves two stages, namely training
stage and testing stage. Details are as follows.

Training stage

Step 1. Perform CNMF (3.9) on matrices (V (i))m×n0
, i = 1, 2, . . . , c, namely,

(
V (i))

m×n0

CNMF≈ (
W (i))

m×r0

(
H(i))

r0×n0
, i = 1, 2, . . . , c. (3.21)

Step 2. INMF is obtained as

Vm×n
INMF≈ Wm×rHr×n, (3.22)

where r = cr0, n = cn0, and

Wm×r =
[
W (1) W (2) · · · W (c)] , Hr×n = diag

(
H(1),H(2), . . . ,H(c)). (3.23)

If there is a new training sample or class added to current training set, then the
incremental learning algorithm presented in Section 3.4 is applied to this stage.
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Recognition stage

Step 3. Calculate the coordinates of a testing sample v̂ in the feature space span{W1,W2,

. . . ,Wr} by ĥ =W+v̂, where W+ is the Moore-Penrose inverse of W.

Step 4. Compute the mean column vector vi of class i and its coordinates vector hi =W+vi (i =
1, 2, . . . , c). The testing image v̂ is classified to class k, if d(ĥ, hk) = min1≤ i≤c d(ĥ, hi), where
d(ĥ, hi) denotes the Euclidean distance between vectors ĥ and hi.

3.5. Sparseness of coefficient matrix H

Let h ∈ R
n, define sparseness function with L1 and L2 norms [7] by

fsparse(h) =
√
n − ‖h‖1/‖h‖2√

n − 1
. (3.24)

It can be seen that sparseness function fsparse : R
n→R with range [0, 1].

For INMF method, we have the following theorem for each column hi of H.

Theorem 3.4. Sparseness of each column hi of H in INMF has the following estimation:
√
cr0 − √r0√
cr0 − 1

≤ f{sparse}(hi) ≤ 1. (3.25)

Proof. Let

hi = (0, . . . , 0, h(j)i1 , . . . , h
(j)
ir0
, 0, . . . , 0)

T ∈ R
r , h̃i = (h(j)i1 , · · · , h

(j)
ir0
)
T ∈ R

r0 , (3.26)

where hi belongs to class i in H.
Obviously,

∥∥hi
∥∥

1 =
∥∥h̃i
∥∥

1,
∥∥hi
∥∥

2 =
∥∥h̃i
∥∥

2. (3.27)

Moreover,

1 ≤ ‖h̃‖1

‖h̃‖2

≤ √r0. (3.28)

So, we have
√
r − √r0√
r − 1

≤
√
r − ∥∥hi

∥∥
1/
∥∥hi
∥∥

2√
r − 1

≤ 1. (3.29)

It concludes for r = cr0 that √
cr0 − √r0√
cr0 − 1

≤ fsparse
(
hi
) ≤ 1. (3.30)

In the experimental section, the parameters are selected as r0 = 4 and c = 120 using
INMF on FERET database. It can be calculated that

0.9522 ≤ fsparse(hi) ≤ 1. (3.31)

While on CMU PIE database, we select r0 = 4 and c = 68 and calculate that

0.9355 ≤ fsparse(hi) ≤ 1. (3.32)

These demonstrate that each column of H in INMF is highly sparse. Apparently, the
coefficient column vectors between different classes in H are automatically orthogonal.
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3.6. Computational complexity

This section discusses the computational complexity of our proposed INMF approach. The
ith iterative procedure of proposed INMF includes two parts, namely W (i) and H(i). For each
matrix V (i) the iteration for W (i) needs mr0(n0r0 + 2n0 + 2) multiple times. While for H(i), it
needs n0r0(mr0 + 2m + 10) multiple times. Therefore, the total running multiple times of our
INMF are

TINMF =
(
2mn0r

2
0 + 4mn0r0 + 2mr0 + 10n0r0

)
c =

2mnr2

c2
+

4mnr
c

+
10nr
c

+ 2mr. (3.33)

Similar to INMF, we can obtain the running multiple times of NMF approach as TNMF =
2mnr2 + 4mnr + 2mr + 2nr. It can be seen that the computational complexity of our INMF
method is greatly lower than that of NMF.

4. Experimental results

In this section, FERET and CMU PIE databases are selected to evaluate the performance of our
INMF method along with BNMF, NMF, and PCA methods. All images in two databases are
aligned by the centers of eyes and mouth and then normalized with resolution 112 × 92. The
original images with resolution 112 × 92 are reduced to wavelet feature face with resolution
30 × 25 after two-level D4 wavelet decomposition. If there are negative pixels in the wavelet
faces, we will transform them into nonnegative faces with simple translations. The nearest
neighbor classifier using Euclidean distance is exploited here. In the following experiments,
the parameters are set to r = 120 for NMF, r0 = 4 for BNMF and INMF, α = 10−4, β = 10−3 for
INMF. The stopping condition of iterative update is

F(n−1) − F(n)

F(n)
≤ δ, (4.1)

where F(n) is the nth update criterion function defined in (3.3), the threshold δ is set to 10−12.
We stop the iteration if stopping condition (4.1) is met or if exceeding 1000 times iteration.

4.1. Face databases

In FERET database, we select 120 people, 6 images for each individual. The six images are
extracted from 4 different sets, namely Fa, Fb, Fc, and duplicate. Fa and Fb are sets of images
taken with the same camera at the same day but with different facial expressions. Fc is a set of
images taken with different camera at the same day. Duplicate is a set of images taken around
6–12 months after the day taking the Fa and Fb photos. Details of the characteristics of each
set can be found in [3]. Images from one individual are shown in Figure 1.

CMU PIE database includes totally 68 people. There are 13 pose variations ranging
from full right-profile image to full left-profile image and 43 different lighting conditions, 21
flashes with ambient light on or off. In our experiment, for each person, we select 56 images
including 13 poses with neutral expression and 43 different lighting conditions in frontal
view. Part images of one person are shown in Figure 2.
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Figure 1: Images of one person from FERET database.

Figure 2: Part images of one person from CMU PIE database.

4.2. Basis face images

This section shows the basis images of the training set learnt by PCA, NMF, BNMF, and INMF
approaches. Figure 3 shows 25 basis images of each approach on CMU PIE database. It can
be seen that the bases of all methods are additive except for PCA. PCA extracts the holistic
facial features. INMF learns more local features than NMF and BNMF. Moreover, the greater
number of basis image is, the more localization is learnt in all NMF-based approaches.

4.3. Results on FERET database

This section reports the experimental results with nonincremental learning and incremental
learning on FERET database. All methods use the same training and testing face images.
The experiments are repeated 10 times; and the average accuracies under different training
number, along with the mean running times, are recorded.

4.3.1. Nonincremental learning

We randomly select n (n = 2, 3, 4, 5) images from each person for training, while the rest of (6−
n) images of each individual for testing. The average accuracies of training samples ranging
from 2 to 5 are recorded in Table 1 and plotted in Figure 4(a). The recognition accuracies of
INMF, BNMF, NMF, and PCA are 66.73%, 66.07%, 64.44%, and 34.33%, respectively, with 2
training images. The performance for each method is improved when the number of training
images increases. When the number of training images is equal to 5, the recognition accura-
cies of INMF, BNMF, NMF, and PCA are 83.08%, 81.67%, 80.25%, and 37.58%, respectively.
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(a) (b) (c)

(d)

Figure 3: Comparisons on basis images of PCA, NMF, BNMF, and INMF (from left to right), respectively,
on CMU PIE database results.

In addition, Table 2 gives the comparisons on average time-consuming in three NMF-based
approaches. It can be seen that our INMF method gives the best performance for all cases of
nonincremental learning on FERET database.

4.3.2. Class incremental learning

For 119 people, we randomly select 3 images from each individual for training and then add
a new class to the training set. NMF must conduct repeated learning while BNMF and INMF
need merely perform incremental training on the new added class. The average accuracies
and the mean running times are recorded in Table 3 (plotted in Figure 6(a)) and Table 4,
respectively.

Compared with the NMF and BNMF approaches, the proposed method gives around
5% and 1.5% accuracy improvements, respectively. The running time of INMF is around 2
times and 219 times faster than that of NMF with 119 and 120 individuals for training and
class-incremental learning, respectively. Above all, our INMF gives the best performance on
FERET database.

4.4. Results on CMU PIE database

The experimental setting on CMU PIE database is similar to that of FERET database. It
also includes two parts, namely nonincremental training and incremental learning. The
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Figure 4: Accuracy comparisons on (a) FERET and (b) CMU PIE databases.

Table 1: Accuracy comparisons on FERET database.

Training number PCA NMF BNMF INMF
2 34.33% 64.44% 66.07% 66.73%
3 36.00% 69.72% 72.81% 74.39%
4 34.29% 76.25% 78.04% 78.92%
5 37.58% 80.25% 81.67% 83.08%

experiments are repeated 10 times and the average accuracies under different training
number, along with the mean running times, are recorded for comparisons. Details are as
follows.
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Table 2: Running times (s) on FERET database.

Training number NMF(s) BNMF(s) INMF(s)
2 51.14 30.69 21.12
3 74.58 57.02 33.68
4 100.12 75.81 45.34
5 122.61 89.34 56.30

Incremental training number of the 1st class
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Figure 5: Comparisons on sample incremental learning.

Table 3: Accuracy comparisons on class incremental learning.

Number of class NMF BNMF INMF
119 69.72% 72.94% 74.59%
120 69.45% 72.88% 74.44%

4.4.1. Nonincremental learning

For each individual, n (n = 7, 14, 21, 28) images are randomly selected for training, while
the rest (56 − n) images for testing. The average recognition rates and mean running times
are tabulated in Table 5 (plotted in Figure 4(b)) and Table 6, respectively. It can be seen that
the recognition accuracies of INMF, BNMF, NMF, and PCA are 68.91%, 68.58%, 66.21%, and
23.94%, respectively with training number 7. When the number of training images is equal
to 28, the recognition accuracies of INMF, BNMF, NMF, and PCA are 77.18%, 76.64%, 71.77%,
and 27.51%, respectively. Compared with the PCA and NMF methods, the proposed method
gives around 49% and 5% accuracy improvements, respectively. The performance of INMF
is slightly better than that of BNMF. However, the computational efficiency of INMF greatly
outperforms BNMF.

4.4.2. Sample incremental learning

We randomly select 7 images from each person for training, and the rest 49 images for testing.
In the sample-incremental learning stage, 7, 14, and 21 images of the first individual are added
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Figure 6: Class incremental learning comparisons on (a) FERET and (b) CUM PIE databases.

to the training set, respectively, while the training images from the rest individuals are kept
unchanged. Table 7 (Figure 5) and Table 8 show the average recognition accuracies and the
mean running times, respectively. Experimental results show that our INMF method gives
the best performance for all cases.

4.4.3. Class incremental learning

For 67 people, we randomly select 7 images from each individual for training and then add a
new class to the training set. NMF should conduct repetitive learning. BNMF and INMF need
merely to perform incremental learning on the new added class. The average recognition rates
and the mean running times are recorded in Table 9 (plotted in Figure 6(b)) and Table 10,
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Table 4: Running times (s) on class incremental learning.

Number of class NMF(s) BNMF(s) INMF(s)
119 72.57 56.12 32.34
120 74.58 0.86 0.34

Table 5: Accuracy comparisons on CMU PIE database.

Training number PCA NMF BNMF INMF
7 23.94% 66.21% 68.58% 68.91%
14 26.24% 69.82% 73.79% 74.07%
21 27.15% 71.33% 75.93% 76.55%
28 27.51% 71.77% 76.64% 77.18%

Table 6: Running times (s) on CMU PIE database.

Training number NMF(s) BNMF(s) INMF(s)
7 79.58 57.35 37.24
14 144.52 114.61 89.50
21 208.20 164.18 124.45
28 267.97 215.94 176.23

Table 7: Accuracy comparisons on sample incremental learning.

Incremental training number NMF BNMF INMF
0 66.21% 68.58% 68.91%
7 66.35% 68.66% 68.97%

14 66.51% 68.71% 69.05%
21 66.68% 68.78% 69.14%

Table 8: Running times on sample incremental learning.

Incremental training number NMF (s) BNMF (s) INMF (s)
0 79.58 57.35 37.24
7 79.77 2.34 1.20

14 80.02 3.12 2.36
21 80.23 4.53 3.21

Table 9: Comparisons on class incremental learning.

Number of class NMF BNMF INMF
67 66.35% 68.73% 69.02%
68 66.21% 68.46% 68.89%

respectively. Experimental results show that INMF outperforms BNMF and NMF in both
recognition rates and computational efficiency.
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Table 10: Running time (s) on class incremental learning.

Number of class NMF(s) BNMF(s) INMF(s)
67 72.45 55.19 34.28
68 79.58 1.36 0.70

5. Conclusions

This paper proposed a novel constraint INMF method to address the time-consuming
problem and incremental learning problem of existing NMF-based approaches for face
recognition. INMF has some good properties, such as low computational complexity;
sparse coefficient matrix; orthogonal coefficient column vectors between different classes in
coefficient matrix H; especially for incremental learning, and so on. Experimental results on
FERET and CMU PIE face database show that INMF outperforms PCA, NMF, and BNMF
approaches in nonincremental learning and incremental learning.
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1. Introduction

Many pattern recognition and data mining problems involve data in very high-dimensional
spaces. In the past few decades, face recognition (FR) has become one of the most active
topics in machine vision and pattern recognition, where the feature dimension of data
usually can be very large and hardly handled directly. To get a high recognition rate for FR,
numerous feature extraction and dimension reduction methods have been proposed to find
the low-dimensional feature representation with enhanced discriminatory power. Among
these methods, two state-of-the-art FR methods, principle component analysis (PCA) [1], and
linear discriminant analysis (LDA) [2] have been proved to be useful tools for dimensionality
reduction and feature extraction.

LDA is a popular supervised feature extraction technique for pattern recognition,
which intends to find a set of projective direction to maximize the between-class scatter
matrix Sb and minimize the within-class scatter matrix Sw simultaneously. Although
successful in many cases, many LDA-based algorithms suffer from the so-called “small
sample size” (SSS) problem that exists when the number of available samples is much smaller
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than the dimensionality of the samples, which is particularly problematic in FR applications.
To solve this problem, many extensions of LDA have been developed in the past. Generally,
these approaches to address SSS problem can be divided into three categories, namely,
Fisherface method, Regularization methods, and Subspace methods. Fisherface methods
incorporate a PCA step into the LDA framework as a preprocessing step. Then LDA is
performed in the lower dimensional PCA subspace [2], where the within-class scatter matrix
is no longer singular. Regularization methods [3, 4] add a scaled identity matrix to scatter
matrix so that the perturbed scatter matrix becomes nonsingular. However, Chen et al. [5]
have proved that the null space of Sw contains the most discriminate information, while the
SSS problem takes place, and proposed the null space LDA (NLDA) method which only
extracts the discriminant features present in the null space of the Sw. Later, Yu and Yang [6]
utilized discriminatory information of both Sb and Sw, and proposed a direct-LDA (DLDA)
method to solve SSS problem.

Recently, the motivation for finding the manifold structure in high-dimensionality
data elevates the wide application of manifold learning in data mining and machine
learning. Among these methods, Isomap [7], LLE [8], and Laplacian eigenmaps [9, 10]
are representative techniques. Based on the locality preserving concept, some excellent
local embedding analysis techniques are proposed to find the manifold structure based
on local nearby data [11, 12]. However, these methods are designed to preserve the
local geometrical structure of original high-dimensional data in the lower dimensional
space rather than good discrimination ability. In order to get a better classification
effect, some supervised learning techniques are proposed by incorporating the discrim-
inant information into the locality preserve learning techniques [13–15]. Moreover, Yan
et al. [15] explain the manifold learning techniques and the traditional dimensionality
reduction methods as a unified framework that can be defined in a graph embedding
way instead of a kernel view [16]. However, the SSS problem is still exists in the
graph embedding-based discriminant techniques. To deal with such problem, PCA is
usually performed to reduce dimension as a preprocessing step in such environment
[11, 15].

In this paper, we present a two-stage feature extraction technique named direct
neighborhood discriminant analysis (DNDA). Compared to other geometrical structure
learning work, the PCA step is not needed to be done in our method. Thus, more discriminant
information can be kept for FR purpose, and as a result improved performance is expected.
The rest of the paper is structured as follows: we give a brief review of LDA and DLDA in
Section 2. We then introduce in Section 3 the proposed method for dimensionality reduction
and feature extraction in FR. The effectiveness of our method is evaluated in a set of FR
experiments in Section 4. Finally, we give concluding remarks in Section 5.

2. Review of LDA and DLDA

2.1. LDA

LDA is a very popular technique for linear feature extraction and dimensionality reduction
[2], which chooses the basis vectors of the transformed space as those directions of the
original space to make the ratio of the between-class scatter and the within-class scatter are
maximized. Formally, the goal of LDA is to seek the optimal orthogonal matrix w, such that
maximizing the following quotient, the Fisher Criterion:

J(W) = arg max
w

wTSbw

wTSww
, (2.1)
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where Sb is the between-class scatter matrix, Sw is the within-class scatter matrix, such
that w can be formed by the set of generalized eigenvectors corresponding to following
eigenanalysis problem:

Sbw = λSww. (2.2)

When the inverse of Sw exists, the generalize vectors can be obtained by eigenvalue
decomposition of S−1

w Sb. However, one usually confronts the difficulty that the within-class
scatter matrix Sw is singular (SSS) in FR problem. The so-called PCA plus LDA approach [2]
is a very popular technique which intends to overcome such circumstances.

2.2. DLDA

To take discriminant information of both Sb and Sw into account without conducting PCA, a
direct LDA (DLDA) technique has been presented by Yu and Yang [6]. The basic idea behind
the approach is that no significant information will be lost if the null space of Sb is discarded.
Based on the assumption, it can be concluded that the optimal discriminant features exist in
the range space of Sb.

Let multiclass classification be considered, given a data matrix X ∈ Rd×N, where each
column xi represents a sample data. Suppose X is composed of c classes and total number
of samples is denoted by

∑c
i=1Ni = N, for the ith class consists of Ni samples. Then, the

between-class scatter matrix is defined as

Sb =
1
N

c∑

i=1

Ni

(
μi − μ

)(
μi − μ

)T = GbG
T
b , (2.3)

where

Gb =

[√
N1√
N

(
μ1 − μ

)
,

√
N2√
N

(
μ2 − μ

)
, . . . ,

√
Nc√
N

(
μc − μ

)
]
, (2.4)

μi =
1
Ni

Ni∑

m=1

xm (2.5)

are the class mean sample, and

μ =
1
N

c∑

i=1

Niμi (2.6)

denotes the total mean sample. Similarly, the within-class scatter matrix is defined as

Sw =
1
N

c∑

i=1

Ni∑

j=1

(
xj − μi

)(
xj − μi

)T = GwG
T
w, (2.7)
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where,

Gw =

[
1√
N

(
x1 − μc1

)
,

1√
N

(
x2 − μc2

)
, . . . ,

1√
N

(
xN − μcN

)
]
. (2.8)

In DLDA, eigenvalue decomposition is performed on the between-class matrix Sb, firstly.
Suppose the rank of Sb is t, and let Db = diag(λ1, λ2, . . . , λt) be a diagonal matrix with
the t largest eigenvalue on the main diagonal in descending order, Y = [v1, v2, . . . , vt] is
the eigenvector matrix that consists of t corresponding eigenvectors. Then, dimensionality

of data x is reduced by using the projection matrix Z = YD−1/2
b from d to t, ZTx. And

eigenvalue decomposition is performed on the within-class scatter matrix of the projected

samples, S̃w = ZTSwZ. LetDw = diag(η1, η2, . . . , ηt) be the ascending order eigenvalue matrix

of S̃w and U = [u1, u2, . . . , ut] be the corresponding eigenvector matrix. Therefore, the final

transformation matrix is given by W = YD−1/2
b UD−1/2

w .

To address the computation complexity problem of high dimensional data, the
eigenanalysis method presented by Turk and Pentland [1] is applied in DLDA, which makes
the eigenanalysis of scatter matrices be progressed in an efficient way. For the eigenvalue
decomposition of any symmetry matrix A with the form of A = BBT , we can consider the
eigenvectors vi of BTB such that

BTBvi = λivi. (2.9)

Premultiplying both sides by G, we have

BBTBvi = ABvi = λiBvi (2.10)

from which it can be concluded that the eigenvectors of A is Bvi with the corresponding
eigenvalue λi.

3. Direct neighborhood discriminant analysis

Instead of mining the statistical discriminant information, manifold learning techniques try
to find out the local manifold structure of data. Derived from the locality preserving idea [10,
11], graph embedding framework-based techniques extract the local discriminant features
for classification. For a general pattern classification problem, it is expected to find a linear
transformation, such that the compactness for the samples that belong to the same class and
the separation for the samples of the interclass should be enhanced in the transformed space.
As an example, a simple multiclass classification problem is illustrated in Figure 1. Suppose
there are two nearest inter- and intraclass neighbors searched for classification. The inter-
and intracalss nearby data points of five data points A–E is shown in Figures 1(b) and 1(c),
respectively. For data point A, it is optimal that the distance from its interclass neighbors
should be maximized to alleviate their bad influence for classification. On the other hand, the
distance between data point A and its intraclass neighbors should be minimized to make A
be classified correctly.

Based on the consideration, two graphs, that is, the between-class graph G and the
within-class graph G′ are constructed to discover the local discriminant structure [13, 15]. For
each data point xi, its sets of inter- and intraclass neighbors are indicated by kNNb(xi) and
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Figure 1: Local discriminant neighbors. (a) Multi-class classification (b) Two interclass neighbors (c) Two
intraclass neighbors.

kNNw(xi), respectively. Then, the weight Wij reflects the weight of the edge in the between-
class graph G is defined as

Wb
ij =

⎧
⎨

⎩
1 ifxi ∈ kNNb

(
xj
)

orxj ∈ kNNb(xi),

0 else,
(3.1)

and similarly define within-class affinity weight as

Ww
ij =

⎧
⎨

⎩
1 ifxi ∈ kNNw(xj) orxj ∈ kNNw(xi),

0 else.
(3.2)

Let the transformation matrix be denoted by P ∈ Rd×d′(d′ � d),which transforms the original
data x from high-dimensional space Rd into a low-dimensional space Rd′ by y = PTx. The
separability of interclass samples in the transformed low-dimensional space can be defined
as

Fb =
∑

i,j

∥∥PTxi − PTxj
∥∥2
Wb

ij

=
∑

i,j

tr
[(
PTxi − PTxj

)(
PTxi − PTxj

)T
Wb

ij

]

=
∑

i,j

tr
[
PT
(
xi − xj

)
Wb

ij

(
xi − xj

)T
P
]

= tr

(
2
∑

i

PTxiD
b
iix

T
i P − 2

∑

i,j

PTxiW
b
ijx

T
j P

)

= tr
(
PTX

(
2Db − 2Wb)XTP

)
,

(3.3)



6 Mathematical Problems in Engineering

where tr(·) is the trace of matrix, X = [x1, x2, . . . , xN] is the data matrix, and Db is a diagonal
matrix, of which entries are column (or row, since Wb is symmetric) sum of Wb, Db

ii =
∑

jW
b
ij .

Similarly, the compactness of intraclass samples can be characterized as

Fw =
∑

i,j

∥∥PTxi − PTxj
∥∥2
Ww

ij

=
∑

i,j

tr
[(
PTxi − PTxj

)(
PTxi − PTxj

)T
Ww

ij

]

=
∑

i,j

tr
[
PT
(
xi − xj

)
Ww

ij

(
xi − xj

)T
P
]

= tr

(
2
∑

i

PTxiD
w
ii x

T
i P − 2

∑

i,j

PTxiW
w
ij x

T
j P

)

= tr
(
PTX

(
2Dw − 2Ww)XTP

)
.

(3.4)

Here, Dw is a diagonal matrix of which entries are column (or row) sum of Ww on the main
diagonal,Dw

ii =
∑

jW
w
ij . Then, the optimal transformation matrix P can be obtained by solving

the following problem:

P ∗ = arg max
P

PTSsP

PTScP
,

Ss = X
(
2Db − 2Wb)XT,

Sc = X
(
2Dw − 2Ww)XT.

(3.5)

Here, Sc is always singular with small training sample set leading problem to get
projective matrix P directly, thus previous local discriminant techniques still suffer from the
curse of high dimensionality. Generally, PCA is usually performed to reduce dimension as
a preprocessing step in such environment [15], however, possible discriminant information
may be ignored. Inspired by DLDA, we can perform eigenanalysis on Ss and Sc successively
to extract the complete local geometrical structure directly without PCA preprocessing. To
alleviate the burden of computation, we reformulate Ss and Sc so that Turk’s eigenanalysis
method can be employed. For each nonzero element of Wb, Wb

ij , we build an N dimensional
interclass index vector h(i,j) of all zeroes except the ith and jth element is set to be 1 and −1,
respectively:

h(i,j) =

[ i−1︷ ︸︸ ︷
0 · · · 0,

i

1, 0 · · · 0,
j

−1,

N−j
︷ ︸︸ ︷
0 · · · 0

]T
. (3.6)

Suppose there are Nb nonzero elements in Wb, letHs = [h1, h2, . . . , hNb] be the interclass index
matrix made up of Nb interclass index vectors. It can be easily obtained that 2Db − 2Wb =
HsH

T
s , which we prove in Appendix A. Therefore, Ss can be reformulated as

Ss = XHsH
T
s X

T . (3.7)
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Input: Data matrix X ∈ Rd×N, class label L
Output: Transformed matrix P ∗

1. Construct the between-class and the within-class affinity weight matrix Wb, Ww.
2. Construct the interclass and the intraclass index matrix Hs, Hc according to the non-
zero elements of Wb, Ww.
For the kth nonzero element of Wb(Ww), Wb

ij(W
w
ij ), the corresponding kth column in

Hs(Hc) is constructed as
[ i−1
︷ ︸︸ ︷
0 · · · 0,

i

1, 0 · · · 0,
j

−1,

N−j
︷︸︸︷
0 · · · 0

]T
.

3. Apply eigenvalue decomposition to Ss and keep the largest t nonzero eigenvalues
λ = [λ1, λ2, . . . , λt] and corresponding eigenvectors U = [u1, u2, . . . , ut] after sorted in
decreasing order, where t = rank(Ss).
4. Compute Ps as Ps=UD

−1/2
s , where Ds=diag(λ1, λ2, . . . , λt) is diagonal matrix with

λi on the main diagonal.
5. Perform eigenvalue decomposition on S̃c=PT

s ScPs. Let Dc=diag(μ1, μ2, . . . , μn) be
the eigenvalue matrix of S̃c in ascending order and V = [v1, v2, . . . , vn] be the corres-
ponding eigenvector matrix. Calculate Pc as Pc = VD

−1/2
c .

6. P ∗ ← PsPc.

Algorithm 1: DNDA algorithm.

(a)

(b)

(c)

Figure 2: Sample images from ORL, Yale, and UMIST face database. (a) ORL, (b) Yale, and (c) UMIST.

As each column in Hs has only two nonzero elements 1 and −1, we can make the first row in
Hs be a null row by adding all rows but the first to the first row. On the other hand, for each
column h(j,i) in Hs, there is another column h(j,i) with contrary sign. Then, it is clear that

rank
(
Hs

)
= min

{
N − 1,

Nb

2

}
, (3.8)

where Nb is the number of nonzero elements in Wb. Due to the properties of matrix trace [17],
we can get

rank
(
Ss
)
= rank

(
XHs

) ≤ min
{

rank(X), rank
(
Hs

)}
. (3.9)



8 Mathematical Problems in Engineering

80706050403020100
Number of features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.9

0.8

1

R
ec

og
ni

ti
on

ra
te

(a)

80706050403020100
Number of features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.9

0.8

1

R
ec

og
ni

ti
on

ra
te

(b)

80706050403020100
Number of features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.9

0.8

1

R
ec

og
ni

ti
on

ra
te

Eigenface
Fisherface
DLDA

LPP
MFA
DNDA

(c)

Figure 3: Recognition rate against the number of features used in the matching on the ORL database:
(a) 3 training samples, (b) 4 training samples, and (c) 5 training samples.
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Table 1: Comparison of recognition rates of Eigenface, Fisherface, DLDA, LPP, MFA, and DNDA on the
ORL database.

Method 3 Training samples 4 Training samples 5 Training samples
Eigenface 86.64% (121) 91.65% (112) 94.05% (123)
Fisherface 87.46% (39) 91.42% (39) 93.35% (38)
DLDA 90.04% (38) 94.04% (39) 95.6% (37)
LPP 73.54% (91) 82.73% (98) 86.62% (99)
MFA 87.13% (27) 92% (39) 95.28% (41)
DNDA 91.07% (44) 94.69% (46) 96.12% (77)

Table 2: Comparison of recognition rates of Eigenface, Fisherface, DLDA, LPP, MFA, and DNDA on the
Yale database.

Method 3 Training samples 4 Training samples 5 Training samples
Eigenfaces 76.79% (39) 80.14% (50) 82.39% (60)
Fisherfaces 80.96% (14) 84.27% (14) 90% (14)
DLDA 79.62% (12) 84.52% (11) 89.56% (14)
LPP 77.38% (44) 80.48% (59) 84.33% (59)
MFA 79.42% (26) 86.48% (23) 88.94% (24)
DNDA 82.42% (22) 88.62% (35) 90.61% (29)

In many FR cases, the number of pixels in a facial image is much larger than the number of
available samples, that is, d 	 N. It tells us that the rank of Ss is at most min{N − 1,Nb/2}.
Similarly, Sc can also be reformulated as

Sc = XHcH
T
c X

T . (3.10)

Here, Hc ∈ RN×Nw is the intraclass index matrix consisting of all the Nw intraclass index
vectors as columns, which is constructed according to the Nw nonzero elements in Ww.
Similar to Ss, the rank of Sc is up to min{N − 1,Nw/2}. Based on the modified formulation,
the optimal transformation matrix P can be obtained as

P ∗ = arg max
P

PTSsP

PTScP
= arg max

P

PTGsG
T
s P

PTGcG
T
c P

, Gs = XHs, Gc = XHc. (3.11)

As the null space of Ss contributes little to classification, it is feasible to remove such
subspace by projecting Ss into its range space. We apply the eigenvalue decomposition to Ss
and unitize it through Turk’s eigenanalysis method, while discarding those eigvectors whose
corresponding eigvalues are zero, which do not take much power for discriminant analysis.
Then, the discriminant information in Sc can be obtained by performing eigenanalysis on
S̃c, which is gotten by transforming Sc into the range subspace of Ss. This algorithm can be
implemented by the pseudocode shown in Algorithm 1.
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Table 3: Comparison of recognition rates of Eigenface, Fisherface, DLDA, LPP, MFA, and DNDA on the
UMIST database.

Dimensionality Recognition rate
Eigenfaces 99 89.84%
Fisherfaces 18 93.04%
DLDA 13 93.65%
LPP 93 92.95%
MFA 72 94.82%
DNDA 48 96.01%

DNDA has a computational complexity of o
(
N3

b

)
(Nb is the number of nonzero

elements in Wb), as it preserves a similar procedure to DLDA (o(c3)). Compared with
Eigenface (o(N2d)) and Fisherface (o(N2d)), DNDA is still more efficient for feature
extraction in high dimensionality if d 	N.

4. Experiments

In this section, we investigate the performance of the proposed DNDA method for
face recognition. Three popular face databases, ORL, Yale, and UMIST are used in the
experiments. To verify the performance of DNDA, each experiment is compared with
classical approaches: Eigenface [1], Fisherface [2], DLDA [6], LPP [11], and MFA [15]. The
three nearest-neighbor classifier with Euclidean distance metric is employed to find the image
in the database with the best match.

4.1. ORL database

In ORL database [18], there are 10 different images for each of 40 distinct subjects. For some
subjects, the images were taken at different times, varying the lighting, facial expressions
(open/closed eyes, smiling/not smiling), and facial details (glasses/no glasses). All the
images are taken against a dark homogeneous background with the subjects in an upright,
frontal position (with tolerance for some side movement). The original images have size of
92 × 112 pixels with 256 gray levels; such one subject is illustrated in Figure 2(a).

The experiments are performed with different numbers of training samples. As there
are 10 images for each subject, n (n = 3, 4, 5) of them are randomly selected for training and
the remaining are used for testing. For each n, we perform 20 times to choose randomly
the training set and the average recognition rate is calculated. Figure 3 illustrates the plot of
recognition rate versus the number of features used in the matching for Eigenface, Fisherface,
DLDA, LPP, MFA, and DNDA. The best performance obtained by each method and the
corresponding dimension of reduced space in the bracket are shown in Table 1.

4.2. Yale database

The Yale Face Database [19] contains 165 grayscale images of 15 individuals. There are 11
images per subject, one per different lighting condition (left-light, center-light, right-light),
facial expression (normal, happy, sad, sleepy, surprised, wink), and with/without glasses.
Each images used in the experiments is 92× 112 pixels with 256 gray levels. The facial images
of one individual are illustrated in Figure 2(b).
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Figure 4: Recognition rate against the number of features used in the matching on the Yale database:
(a) 3 training samples, (b) 4 training samples and (c) 5 training samples.
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Figure 5: Recognition rate against the number of features used in the matching on the UMIST database.

The experimental implementation is the same as before. For each individual, n (n =
3, 4, 5) images are randomly selected for training and the rest are used for testing. For each
given n, we average the results over experiments repeated 20 times independently. Figure 4
illustrates the plot of recognition rate versus the number of features used in the matching
for Eigenface, Fisherface, DLDA, LPP, MFA, and DNDA. The best results obtained in the
experiments and the corresponding reduced dimension for each method is shown in Table 2.

4.3. UMIST database

The UMIST face database [20] consists of 564 images of 20 people. For simplicity, the
Precropped version of the UMIST database is used in this experiment, where each subject
covers a range of poses from profile to frontal views and a range of race/sex/appearance.
The size of cropped image is 92 × 112 pixels with 256 gray levels. The facial images of one
subject with different views are illustrated in Figure 2(c).

For each individual, we chose 8 images of different views distributed uniformly in
the range 0–90◦ for training, and the rest are used for training. Figure 5 illustrates the plot of
recognition rate versus the number of features used in the matching for Eigenface, Fisherface,
DLDA, LPP, MFA, and DNDA. The best performance and the corresponding dimensionalities
of the projected spaces for each method are shown in Table 3.

From the experiment results, it is very obvious that DNDA achieves higher accuracy
than the other methods. This is probably due to the fact that DNDA is a two-stage local
discriminant technique, different form LPP and MFA. Moreover, PCA is removed in DNDA
preserving more discriminant information compared with others.

5. Conclusions

Inspired by DLDA, we propose in this paper a novel local discriminant feature extraction
method called direct neighborhood discriminant analysis (DNDA). In order to avoid SSS
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problem, DNDA performs a two-stage eigenanalysis approach, which can be implemented
efficiently by using Turk’s method. Compared with other methods, PCA preprocessing is
left out in DNDA with the immunity from the SSS problem. Experiments on ORL, Yale, and
UMIST face databases show the effectiveness and robustness of our proposed method for face
recognition. To get a better classification result, the improvement and extension of DNDA are
to be taken into account in our future work.

Appendix

A. Proof of 2D − 2W = HHT

Given the graph weight matrix W with l nonzero elements, consider two matrices M,N ∈
RN×l. For each nonzero element in W, there is corresponding column in M and N with
common location, respectively. Let Z = {(i, j) |Wij /= 0} be the index set of nonzero elements
in W. For the kth (1 � k � l) nonzero element Wij in W, the kth column of M, N is represented
as

M(:,k) =

[ i−1︷ ︸︸ ︷
0 · · · 0,

i

1, 0 · · ·
N
0

]T
,

N(:,k) =

[ j−1
︷ ︸︸ ︷
0 · · · 0,

j

−1, 0 · · · N
0

]T
.

(A.1)

Then, it is easy to get

M(a,:)M
T
(b,:) = 0,

N(a,:)N
T
(b,:) = 0

(A.2)

for a /= b (1 � a, b � N), and

M(a,:)N
T
(b,:) = 0 for (a, b) /∈ Z,

N(a,:)M
T
(b,:) = 0 for (b, a)/∈ Z,

(A.3)

where M(k,:) and N(k,:) denote the kth row of M and N, respectively. Therefore, we can get

(
MMT)

ij =
l∑

k=1

MikMjk = δij
l∑

k=1

Mik = δij
N∑

q=1

Wiq,

(
NNT)

ij =
l∑

k=1

NikNjk = δij
l∑

k=1

Nik = δij
N∑

q=1

Wqi,

(
MNT)

ij =
l∑

k=1

MikNjk =Wij,

(
NMT)

ij =
l∑

k=1

NikMjk =Wji,

(A.4)



14 Mathematical Problems in Engineering

where δij is the Kronecker delta. Note that both matrix D and W are symmetry matrices,
based on the above equations, it is easy to find out

(M −N)(M −N)T =MMT +NNT −MNT −NMT

= D +D −W −W
= 2D − 2W.

(A.5)

It is easy to check that H =M −N, which completes the proof.
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A kind of fuzzy neural networks (FNNs) based on adaptive pattern clustering and feature map
(APCFM) is proposed to improve the property of the large delay and time varying of the sintering
process. By using the density clustering and learning vector quantization (LVQ), the sintering
process is divided automatically into subclasses which have similar clustering center and labeled
fitting number. Then these labeled subclass samples are taken into fuzzy neural network (FNN)
to be trained; this network is used to solve the prediction problem of the burning through
point (BTP). Using the 707 groups of actual training process data and the FNN to train APCFM
algorithm, experiments prove that the system has stronger robustness and wide generality in
clustering analysis and feature extraction.
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1. Introduction

Sintering is the most widely used agglomeration process for iron ores and is a very important
chain of iron making. In general, the process of sintering includes three major phases. First, it
involves blending all the ores thoroughly according to certain proportions and adding water
to the ore mix to produce particles. Second, the actual sintering operation is initiated by the
ignition of the cokes as the raw mix passes under gas ignition. Finally, after traveling the
length of the strand, the finished sinter is broken up, cooled, and screened [1, 2]. In the recent
twenty years, many methods of integrity and fusion have been explored by the metallurgy
and automation experts.

1.1. Mathematical model

According to the chemical/physical characteristics for sintering, a model was formulated as a
series of differential equations to describe the relation between the thick martial, the ignition
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temperature, and the bellows temperature at the tail of the machine. For the time varying
and randomness of the sintering process, many mechanisms have still not been understood.
Although the dynamic model is tenable at a certain boundary condition, it is difficult to cover
the whole process.

1.2. Neural network-based model

For the fast approach of neural network, a model can be established rapidly from the given
input and output data, and it can also solve the problem of this long-time delay system. In
general, genetic algorithm is used to optimize the parameters of the network and improve the
generalization of the system, but it has still not been reported to be used in real-time control.

1.3. Rule-based model

The rule base, acknowledge, database, and inference machine can be constructed by
the technology and operation experts’ experience [3]. Rule base and inference machine
are mainly used in estimating the process, analyzing cause, and deciding guideline.
Acknowledge includes operation data, fact, mathematical model, and elicitation and unit
knowledge. Database stores real-time data from production and equipment. Unfortunately,
most results of this model are still simulation results.

2. Fuzzy neural network

In general, the dynamic behavior of a fuzzy logical controller is characterized by a set of
linguistic control rules based on the knowledge of an expert [4].

Consider the fuzzy controller with Gaussian MFs and multiplication implication; the
topology structure of fuzzy neural network is shown in Figure 1.

The fuzzy rule is as follows:

R(l) : if xi = Fli , xn = Fln, (2.1)

then

y = Gl
i. (2.2)

The input and output relationship is shown as

f(x) =

∑M
l=1y

l(∏n
i=1μFli (xi)

)

∑M
l=1
(∏n

i=1μFli (xi)
) , (2.3)

where x = (x1, x2, . . . , xn)
T is the system input, M the is rule number, n is the input number,

μFli (xi) is the membership function in the input xi = Fli , and y l is the value when the
membership function equals the maximum in l rule. The fuzzy neural network [4] has five-
layer structure.

The first layer is input variable layer. In this layer, the ith inputs are represented as xi;
the system can have n inputs.
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Figure 1: The topology structure of fuzzy neural network.

The second layer is membership layer. In this layer, each node performs the Gaussian
function; the function is adopted as a membership function. The membership function of the
input is defined as

μFli (xi) = exp
[
−
(
xi − x l

i

σli

)2]
, (2.4)

where x l
i is the Gauss meaning of the rule input xi, and σli is the square error.

The third layer is rule layer. The layer is used to implement the antecedent matching.
The matching operation or the fuzzy and aggregation operation is chosen as the simple
product operation. In this layer, summing is finished by neuron.

In addition to y l between the third and the fouth layers, other layer weights equal 1.
The fifth layer is output of the fuzzy neural network.
Thus, the entire fuzzy neural network [5] needs to adjust x l

i , σ
l
i , y

l parameters to
control the process. These parameters have specified signification; therefore, they are initialed
by language information in order to improve learning convergence speed.

3. Adaptive pattern clustering and feature map network

3.1. Initial data space clustering

According to technology character and equipment requirement, density sintering speed
and burning temperature are selected as input vectors; the temperature and pressure of 18
windboxes and the waste gas temperature are chosen as output vectors. The input space
scatter diagram is obtained by using the input sample to do three-vector space map, and the
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Figure 2: The trend of topology neighborhood coast line.

clustering centerCij (i = 1, 2, 3; j = 1, 2, . . . , ki) and subspace [aj , bj] of every vector are found
by utilizing feature extract based on density clustering. These rectangle areas are intersected
with each other to form k = k1 × k2 × k3 subregions.

3.2. Feature map

Feature map network developed by Kohonen is an unsupervised competitive learning cluster
network in which only one neuron is on at any time. The map is an artificial system that
emulates the brain in the visual system, and which includes three major phases [5–7].

Competitive phase: the inputs of the network can be written as vector by X =
[x1, x2, . . . , xm]

T , and the synaptic weight vector of neuron j in the two-dimensional (2D)
array is given by wj = [wj1, wj2, . . . , wjm]

T , j = 1, 2, . . . , l, where m is the local number
of output neurons in the 2D array and l is the total number of the neurons of network. In
order to find the best match of input vector x with the synaptic weight wj , the multiplication
wT
j x determined the center location of the exciting neuron’s topology neighborhood and the

maximum of wT
j x is equal to the Euclid norm in mathematics.

Cooperative phase: the winner neuron is located in the center of the cooperation
neuron’s topology neighborhood. We supposed that hji is the topology neighborhood whose
center is the victory neuron i, and dij is the inclination distance between victory neuron i and
excited neuron j. A classical selection of hji to satisfy these conditions is

hji = exp
(
−
d2
ji

2σ2

)
, (3.1)

where σ is the effective width of topology neighborhood. The trend of topology neighbor-
hood is shown in Figure 2.

Self-adjusting phase: it includes self-ordering and converging stages; self-ordering
formula is

wj(n + 1) = wj(n) + η(t)hj,i(x)(n)(x(n) −wj(n)),

η(n) = η0 exp
(
− n
τ

)
.

(3.2)

The equation is in converging stage; learning rate η(n) is made smaller gradually.
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3.3. Learning vector quantification

The learning vector quantification (LVQ) algorithm is used to adjust fine weight vector
to improve quality in decision area by utilizing supervisor learning skill. The foundation
method is first to find the average value of the attribute of every subclass on the basis of
clustering, second to make a comparison between the average value of the subclass and the
whole vector, and last to label the up-arrowhead tag with the larger values and the down-
arrowhead with the smaller values. The set of every labeled subclasses may be expressed as
the direction of its weight shifting. For this purpose, let the Lxi stand for the tag of the input
vector xi, and let Lwj stand for the tag of the weight wj ; the recursive function is defined as
follows.

If Lwj = Lxi, then

wj(n + 1) = wj(n) + αn(xi −wj(n)). (3.3)

If Lwj /=Lxi, then

wj(n + 1) = wj(n) − αn(xi −wj(n)), (3.4)

where 0 < αn < 1.
Passing through a period of time iteratively, the subclasses with the same property

may be converged together, and the other subclasses with different properties may be
departed from each other.

In this paper, we use the actual data as the samples from sintering process. The
input vectors are density, velocity, and ignition temperature, and the output vectors are the
temperature and pressure of 18 windboxes and the temperature of waste gas.

4. Experiment

4.1. Analysis of the input in three-dimensional space

The distributing diagram of the two-year input samples in three-dimensional space is shown
in Figure 3. We can obtain 12 subspaces by using the initialization clustering of the samples,
which is based on the density of the samples, and maps the feature of 12 subspaces to form
the topology structure, which is shown in Figure 4, and the center of every subspace is dotted
in Figure 3.

4.2. Analysis of the input samples’ classification

Computing the average value of every property for each subclass, respectively, such as
density (D), velocity (V ), and ignition temperature (T), and comparing the average value
of the subclass property with the property of the whole samples, if the result of a subclass
is bigger than the average value of the whole samples, we use up-arrowhead marking;
otherwise we use down-arrowhead marking. The marking classification is listed in Table 1.

In this table, we can find 5 different large classes. Row 1 is a class, rows 2, 3, 5 are a
class, rows 4, 7, 8, 10 are a class, rows 6, 9, 12 are a class, and row 11 is a class. Figure 5 shows
the relations between the topology structure and the class table.

According to the characters of process and performance of equipments, we can get the
property of each class in Figure 4.
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Class 1 (D ↓ V ↑ T ↑). The samples of class denote the thick stuffing of sinter bed, high
ignition temperature, and fast velocity, and it may cause raw ore.

Class 2 (D ↓ V ↑ T ↓). It denotes the thick stuffing of sinter bed, low ignition
temperature, and fast velocity, and it causes easily raw ore, and the burning through point
will be back to the strand tail.

Class 3 (D ↑ V ↑ T ↑). The class denotes loose stuffing on the sinter bed, high ignition
temperature, and fast velocity, and it causes easily sintering for sintering process.

Class 4 (D ↓ V ↓ T ↓). The phenomenon shows the thick stuffing on the sinter bed,
low ignition temperature, and slow velocity, and it is in accordance with the thick and slow
sintering.
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Figure 5: (a) The results of fuzzy neural network training (FNN). (b) The results of adaptive pattern
clustering and feature map (APCFM).

Class 5 (D ↓ V ↓ T ↑). This state denotes the thick stuffing of sinter bed, high ignition
temperature, and slow velocity, and we should direct our attention to the sinter bed earlier in
order to avoid the oversintering.

4.3. Learning vector quantization

According to the analysis above, 12 subclasses have been readjusted into 5 classes. Now,
retraining the whole input samples by using the LVQ network, the network is a characteristic
studying of having teacher. The training network with the LVQ can improve the hitting
accuracy of feature map that is proved by [6]. The network output can get the tag of the
class when it enters the sample through the network. We show the step as follows. List the
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Table 1: The setting of subclass property.

Subclass Num D V T Compare results
1 65 0.6643 0.7986 0.8039 D ↓ V ↑ T ↑
2 29 0.6659 0.7893 0.6781 D ↓ V ↑ T ↓
3 40 0.6462 0.7208 0.3900 D ↓ V ↑ T ↓
4 92 0.7039 0.7779 0.8215 D ↑ V ↑ T ↑
5 17 0.6471 0.6775 0.6662 D ↓ V ↑ T ↓
6 32 0.6149 0.5921 0.5671 D ↓ V ↓ T ↓
7 95 0.7549 0.7505 0.8696 D ↑ V ↑ T ↑
8 27 0.6987 0.6771 0.8178 D ↑ V ↑ T ↑
9 96 0.6067 0.5184 0.7202 D ↓ V ↓ T ↓
10 75 0.7558 0.6892 0.8749 D ↑ V ↑ T ↑
11 34 0.6468 0.5361 0.7817 D ↓ V ↓ T ↑
12 105 0.5993 0.4557 0.7410 D ↓ V ↓ T ↓

input vectors P, the output vectors T, and the class of classificatory tag C:

P = [0.75607, 0.81711, 0.78968, 0.6468, . . . , 0.75626;

0.67327, 0.66337, 0.64356, 0.5361, . . . , 0.68317;

0.96873, 0.92471, 0.95533, 0.7817, . . . , 0.95406; ],

T =
[
1 2 4 5 · · · 3] ,

C =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 0 0 · · · 1
0 0 1 0 · · · 0
0 0 0 1 · · · 0

⎤
⎥⎥⎥⎥⎥⎦
.

(4.1)

4.4. Training every subclass sample by using fuzzy neural network

The testing results are shown in Figures 5(a) and 5(b); Figure 5(a) is only genetic neural
network testing results, and Figure 5(b) is the testing results by using the adaptive pattern
clustering and feature map FNN. We compare the two figures and find out that FNN can
obtain the trend of network output, but the precision is low. The adaptive pattern clustering
and feature mapFNN can improve a high precision for network output and have a good
generalization for the samples which belong to the same class.

5. Conclusion

In this paper, in order to predict the BTP, an APCFM reference and FNN system have been
proposed to solve the challenging problem of the sinter production process, which is a
typical nonlinear, time-varying, and multimode process, and is very difficult to solve using
traditional methods. In our approach, a density clustering is used to determine the number
of the initial input vectors consciously, and a feature map algorithm is used to extract data
relevance property from different subclasses and improve the confidence of the vector. By
using the teacher’s instruction, LQV network can herd effectively feature categories together
on this basis FNN algorithm. The constructed system has been trained with input sample
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consisting of 707 technology groups and measuring apparatus of two-year actual process
and has obtained very good performance; especially, comparing APCFM+FNN with FNN
[8, 9], the precision of training and testing has raised one time and three times, respectively,
and the running time decreases more than one time, and it is satisfied with the demand of
real time running and improving the robustness of the system.
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1. Introduction

Wavelets [1] are localized functions which are a very useful tool in many different
applications: signal analysis, data compression, operator analysis, and PDE solving (see,
e.g., [2] and references therein). The main feature of wavelets is their natural splitting of
objects into different scale components [1, 3] according to the multiscale resolution analysis.
For the L2(R) functions, that is, functions with decay to infinity, wavelets give the best
approximation. When the function is localized in space, that is, the bottom length of the
function is within a short interval (function with a compact support), such as pulses, any
other reconstruction, but wavelets, leads towards undesirable problems such as the Gibbs
phenomenon when the approximation is made in the Fourier basis. In this paper, it is shown
that Shannon wavelets are the most expedient basis for the analysis of impulse functions
(pulses) [4]. The approximation can be simply performed and the reconstruction by Shannon
wavelets range in multifrequency bands. Comparing with the Shannon sampling theorem
where the frequency band is only one, the reconstruction by Shannon wavelets can be done
for functions ranging in different frequency bands. Shannon sampling theorem [5] plays a
fundamental role in signal analysis and, in particular, for the reconstruction of a signal from a
digital sampling. Under suitable hypotheses (on a given signal function) a few sets of values
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(samples) and a preliminary chosen basis (made by the sinc function) enable us to completely
reconstruct the continuous signal. This reconstruction is alike the reconstruction of a function
as a series expansion (such as polynomial, i.e., Taylor series, or trigonometric functions, i.e.,
Fourier series), but for the first time the reconstruction (in the sampling theorem) makes use
of the sinc function, that is a localized function with decay to zero. Together with the Shannon
sampling theorem (and reconstruction), also the wavelets series become very popular, as
well as the bases with compact support. It has been recognized that on the sinc functions
one can settle the family of Shannon wavelets. The main properties of these wavelets will
be shown and discussed. Moreover, the connection coefficients [6–9] (also called refinable
integrals) will be computed by giving some finite formulas for any order derivatives (see
also some preliminary results in [2, 10–12]). These coefficients enable us to define any order
derivatives of the Shannon scaling and wavelet basis and it is shown that also the derivatives
are orthogonal.

2. Shannon Wavelets

Sinc function or Shannon scaling function is the starting point for the definition of the
Shannon wavelet family [11]. It can be shown that the Shannon wavelets coincide with
the real part of the harmonic wavelets [2, 10, 13, 14], which are the band-limited complex
functions

ψnk (x)
def≡ 2n/2 e

4πi(2nx−k) − e2πi(2nx−k)

2πi(2nx − k) , (2.1)

with n, k ∈ Z. Harmonic wavelets form an orthonormal basis and give rise to a
multiresolution analysis [1–3, 14, 15]. In the frequency domain, they are very well localized
and defined on compact support intervals, but they have a very slow decay in the space
variable. However, in dealing with real problems it is more expedient to make use of real
basis. By focussing on the real part of the harmonic family, we can take advantage of the
basic properties of harmonic wavelets together with a more direct physical interpretation of
the basis.

Let us take, as scaling function ϕ(x), the sinc function (Figure 1)

ϕ(x) = sincx def=
sinπx
πx

=
eπix − e−πix

2πix
(2.2)

and for the dilated and translated instances

ϕnk(x) = 2n/2ϕ(2nx − k) = 2n/2 sinπ(2nx − k)
π(2nx − k)

= 2n/2 e
πi(2nx−k) − e−πi(2nx−k)

2πi(2nx − k) .

(2.3)

The parameters n, k give, respectively, a compression (dilation) of the basic function (2.2) and
a translation along the x-axis. The family of translated instances {ϕ(x−k)} is an orthonormal
basis for the banded frequency functions [5] (Shannon theorem). For this reason, they can
be used to define the Shannon multiresolution analysis as follows. The scaling functions
do not represent a basis, in a functional space, therefore we need to define a family of
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Figure 1: Shannon scaling function ϕ(x) (thick line) and wavelet (dashed line) ψ(x).

functions (based on scaling) which are a basis; they are called the wavelet functions and
the corresponding analysis the multiresolution analysis.

Let

f̂(ω) = f̂(x) def=
1

2π

∫∞

−∞
f(x)e−iωxdx (2.4)

be the Fourier transform of the function f(x) ∈ L2(R) and

f(x) = 2π
∫∞

−∞
f̂(ω)eiωxdω (2.5)

its inverse transform. The Fourier transform of (2.2) gives us

ϕ̂(ω) =
1

2π
χ(ω + 3π) =

⎧
⎨

⎩

1
(2π)

, −π ≤ ω < π,

0, elsewhere,
(2.6)

with

χ(ω) =

⎧
⎨

⎩
1, 2π ≤ ω < 4π,

0, elsewhere .
(2.7)

Analogously for the dilated and translated instances of scaling function it is

ϕ̂nk(ω) =
2−n/2

2π
e−iω(k+1)/2nχ

(
ω

2n
+ 3π

)
. (2.8)

From the given scaling function, it is possible to define the corresponding wavelet function
[1, 15] according to the following.
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Theorem 2.1. The Shannon wavelet, in the Fourier domain, is

ψ̂(ω) =
1

2π
e−iω[χ(2ω) + χ(−2ω)]. (2.9)

Proof. It can be easily shown that the scaling function (2.6) fulfills the condition

ϕ̂(ω) = H
(
ω

2

)
ϕ̂

(
ω

2

)
, (2.10)

which characterizes the multiresolution analysis [1] with

H

(
ω

2

)
= χ(ω + 3π). (2.11)

Thus the corresponding wavelet function can be defined as [1, 15]

ψ̂(ω) = e−iωH
(
ω

2
± 2π

)
ϕ̂

(
ω

2

)
. (2.12)

With H(ω/2 − 2π) we have

ψ̂(ω) = e−iωH
(
ω

2
− 2π

)
ϕ̂

(
ω

2

)

= e−iωχ(ω + 3π − 2π)
1

2π
χ

(
ω

2
+ 3π

)

=
1

2π
e−iωχ(ω + π)χ

(
ω

2
+ 3π

)

=
1

2π
e−iωχ(2ω),

(2.13)

then analogously with H(ω/2 + 2π) we obtain

ψ̂(ω) =
1

2π
e−iωχ(−2ω), (2.14)

so that (2.9) follows.

For the whole family of dilated-translated instances, it is

ψ̂nk (ω) =
2−n/2

2π
e−iω(k+1)/2n

[
χ

(
ω

2n−1

)
+ χ

( −ω
2n−1

)]
. (2.15)

The Shannon wavelet function in the real domain can be obtained from (2.9) by the inverse
Fourier transform (Figure 1)

ψ(x) =
sinπ(x − 1/2) − sin 2π(x − 1/2)

π(x − 1/2)

=
e−2iπx(−i + eiπx + e3iπx + ie4iπx)

(π − 2πx)
,

(2.16)

and by the space shift and compression we have the whole family of dilated and translated
instances:

ψnk (x) = 2n/2 sinπ(2nx − k − 1/2) − sin 2π(2nx − k − 1/2)
π(2nx − k − 1/2)

. (2.17)
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By summarizing (2.3) and (2.17), the Shannon wavelet theory is based on the following
functions [11]:

ϕnk(x) = 2n/2 sinπ(2nx − k)
π(2nx − k) ,

ψnk (x) = 2n/2 sinπ(2nx − k − 1/2) − sin 2π(2nx − k − 1/2)
π(2nx − k − 1/2)

(2.18)

in the space domain, and collecting (2.8) and (2.15), we have in the frequency domain

ϕ̂nk(ω) =
2−n/2

2π
e−iωk/2nχ

(
ω

2n
+ 3π

)
,

ψ̂nk (ω) = −
2−n/2

2π
e−iω(k+1/2)/2n

[
χ

(
ω

2n−1

)
+ χ

( −ω
2n−1

)]
.

(2.19)

The inner product is defined as

〈f, g〉 def≡
∫∞

−∞
f(x)g(x)dx, (2.20)

which, according to the Parseval equality, can be expressed also as

〈f, g〉 def≡
∫∞

−∞
f(x)g(x)dx = 2π

∫∞

−∞
f̂(ω)ĝ(ω)dω = 2π〈f̂ , ĝ〉, (2.21)

where the bar stands for the complex conjugate.
With respect to the inner product (2.20), we can show the following theorem [11].

Theorem 2.2. Shannon wavelets are orthonormal functions in the sense that

〈ψnk (x), ψmh (x)〉 = δnmδhk, (2.22)

with δnm, δhk being the Kroenecker symbols.

Proof.

〈ψnk (x), ψmh (x)〉

= 2π〈ψ̂nk (ω), ψ̂mh (ω)〉

= 2π
∫∞

−∞

2−n/2

2π
e−iω(k+1/2)/2n

[
χ

(
ω

2n−1

)
+χ

( −ω
2n−1

)]
2−m/2

2π
eiω(h+1/2)/2m

[
χ

(
ω

2m−1

)
+χ

( −ω
2m−1

)]
dω

=
2−(n+m)/2

2π

∫∞

−∞
e−iω(k+1/2)/2n+iω(h+1/2)/2m

[
χ

(
ω

2n−1

)
+ χ

( −ω
2n−1

)][
χ

(
ω

2m−1

)
+ χ

( −ω
2m−1

)]
dω

(2.23)

which is zero for n /=m. For n = m it is

〈ψnk (x), ψnh(x)〉 =
2−n

2π

∫∞

−∞
e−iω(h−k)/2n

[
χ

(
ω

2n−1

)
+ χ

( −ω
2n−1

)]
dω (2.24)
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and, according to (2.7), by the change of variable ξ = ω/2n−1

〈ψnk (x), ψnh(x)〉 =
1

4π

[ ∫−2π

−4π
e−2i(h−k)ξdξ +

∫4π

2π
e−2i(h−k)ξdξ

]
. (2.25)

For h = k (and n = m), it is trivially

〈ψnk (x), ψnk (x)〉 = 1. (2.26)

For h /= k, it is
∫4π

2π
e−2i(h−k)ξdξ =

i

2(h − k)
(
e−4iπ(h−k) − e−8iπ(h−k)

)
= 0 , (2.27)

and analogously
∫−2π
−4πe

−2i(h−k)ξdξ = 0.

Moreover, we have the following theorem [11].

Theorem 2.3. The translated instances of the Shannon scaling functions ϕn
k
(x), at the level n = 0,

are orthogonal in the sense that

〈ϕ0
k(x), ϕ

0
h(x)〉 = δkh , (2.28)

being ϕ0
k(x)

def= ϕ(x − k).

Proof. It is

〈ϕnk(x), ϕmh (x)〉 = 2π〈ϕ̂nk(ω), ϕ̂mh (ω)〉

= 2π
∫∞

−∞

2−n/2

2π
e−iωk/2nχ

(
ω

2n
+ 3π

)
2−m/2

2π
eiωh/2mχ

(
ω

2m
+ 3π

)
dω

=
2−(n+m)/2

2π

∫∞

−∞
e−iω(k/2n−h/2m)χ

(
ω

2n
+ 3π

)
χ

(
ω

2m
+ 3π

)
dω .

(2.29)

When m = n, we have

〈ϕnk(x), ϕnh(x)〉 =
2−n

2π

∫2nπ

−2nπ
e−iω(k−h)/2ndω = 2n

sin[(h − k)π]
(h − k)π . (2.30)

Since h, k ∈ Z, there follows that

sin[(h − k)π]
(h − k)π =

{
1, h = k
0, h /= k

}
= δkh, (2.31)

that is,

〈ϕnk(x), ϕnh(x)〉 = δkh. (2.32)

When m /= n, let’s say m < n, we have

〈ϕnk(x), ϕmh (x)〉 =
2−(n+m)/2

2π

∫2mπ

−2mπ
e−iω(k/2n−h/2m)dω, (2.33)

that is,

〈ϕnk(x), ϕmh (x)〉= 2(m+n)/2 sin[(h − 2m−nk)π]
(h − 2m−nk)π

. (2.34)
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When m /= n, the last expression is always different from zero, in fact (since m < n)

sin
[(

h − k

2|m−n|

)
π

]
= 0 =⇒

[
h − k

2|m−n|

]
π = sπ , s ∈ Z (2.35)

that is,

h = s +
k

2|m−n|
, h, k, s ∈ Z (2.36)

and h ∈ Z only if m = n. Therefore, in order to have the orthogonality it must bem = n, so that

〈ϕnk(x), ϕnh(x)〉= 2nδkh. (2.37)

and, in particular, when n = 0,

〈ϕ0
k(x), ϕ

0
h(x)〉 = δkh. (2.38)

As a consequence of this proof we have that

ϕ0
k(h) = δkh (h, k ∈ Z). (2.39)

The scalar product of the (Shannon) scaling functions with the corresponding wavelets is
characterized by the following [11].

Theorem 2.4. The translated instances of the Shannon scaling functions ϕn
k
(x), at the level n = 0,

are orthogonal to the Shannon wavelets in the sense that

〈ϕ0
k(x), ψ

m
h (x)〉 = 0, m ≥ 0, (2.40)

being ϕ0
k
(x) def= ϕ(x − k).

Proof. It is

〈ϕnk(x), ψmh (x)〉

= 2π〈ϕ̂nk(ω), ψ̂mh (ω)〉

= 2π
∫∞

−∞
2−n/2e−iωk/2nχ

(
ω

2n
+ 3π

)
2−m/2

2π
eiω(h+1/2)/2m

[
χ

(
ω

2m−1

)
+ χ

( −ω
2m−1

)]
dω

= 2−(n+m)/2
∫∞

−∞
e−iωk/2n+iω(h+1/2)/2mχ

(
ω

2n
+ 3π

)[
χ

(
ω

2m−1

)
+ χ

( −ω
2m−1

)]
dω

(2.41)

which is zero form ≥ n ≥ 0 (since, according to (2.7), the compact support of the characteristic
functions do not intersect).

On the contrary, it can be easily seen that, for m < n, it is

〈ϕnk(x), ψmh (x)〉= 2−(n+m)/2
∫2nπ

2mπ
e−iωk/2n+iω(h+1/2)/2mdω

= −
21+(m+n)/2

(
ieiπ[2

−m+n−1(1+2h)−k] + eiπ(h−2m−nk)
)

2n(1 + 2h) − 21+mk

(2.42)

and this product, in general, does not vanish.
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3. Reconstruction of a Function by Shannon Wavelets

Let f(x) ∈ L2(R) be a function such that for any value of the parameters n, k ∈ Z, it is
∣∣∣∣

∫∞

−∞
f(x)ϕ0

k(x)dx
∣∣∣∣ ≤ An

k <∞,
∣∣∣∣

∫∞

0
f(x)ψnk (x)dx

∣∣∣∣ ≤ Bnk <∞ , (3.1)

and B ⊂ L2(R) the Paley-Wiener space, that is, the space of band-limited functions such that,

supp f̂ ⊂ [−b, b] , b <∞. (3.2)

For the representation with respect to the basis (2.18), it is b = π . According to the sampling
theorem (see, e.g., [5]) we have the the following.

Theorem 3.1 (Shannon). If f(x) ∈ L2(R) and supp f̂ ⊂ [−π,π], the series

f(x) =
∞∑

k=−∞
αkϕ

0
k(x) (3.3)

uniformly converges to f(x), and

αk = f(k). (3.4)

Proof. In order to compute the values of the coefficients, we have to evaluate the series in
correspondence of the integer:

f(h) =
∞∑

k=−∞
αkϕ

0
k(h) =

∞∑

k=−∞
αkδkh = αh, (3.5)

having taken into account (2.39).
The convergence follows from the hypotheses on f(x). In particular, the importance of

the band-limited frequency can be easily seen by applying the Fourier transform to (3.3):

f̂(ω) =
∞∑

k=−∞
f(k)ϕ̂0

k(x)

(2.8)
=

1
2π

∞∑

k=−∞
f(k)e−iωkχ(ω + 3π)

=
1

2π
χ(ω + 3π)

∞∑

k=−∞
f(k)e−iωk

(3.6)

so that

f̂(ω) =

⎧
⎪⎨

⎪⎩

1
2π

∞∑

k=−∞
f(k)e−iωk, ω ∈ [−π,π],

0, ω/∈[−π,π].
(3.7)

In other words, if the function is band limited (i.e., with compact support in the frequency
domain), it can be completely reconstructed by a discrete Fourier series. The Fourier
coefficients are the values of the function f(x) sampled at the integers.
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As a generalization of the Paley-Wiener space, and in order to generalize the Shannon
theorem, we define the space Bψ ⊇ B of functions f(x) such that the integrals

αk = 〈f(x), ϕ0
k(x)〉 =

∫∞

−∞
f(x)ϕ0

k(x)dx,

βnk = 〈f(x), ψnk (x)〉 =
∫∞

−∞
f(x)ψnk (x)dx

(3.8)

exist and are finite. According to (2.20) and (2.21), it is in the Fourier domain that

αk = 2π〈f̂(x), ̂ϕ0
k
(x)〉 =

∫∞

−∞
f̂(ω)ϕ̂0

k(ω)dω =
∫2π

0
f̂(ω)eiωkdω,

βnk = 2π〈f̂(x), ψ̂nk (x)〉 = · · ·= 2−n/2
∫2n+2π

2n+1π

f̂(ω)eiωk/2ndω .

(3.9)

Let us prove the following.

Theorem 3.2 (Shannon generalization). If f(x) ∈ Bψ ⊂ L2(R) and supp f̂ ⊆ R, the series

f(x) =
∞∑

h=−∞
αhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
βnkψ

n
k (x) (3.10)

converges to f(x), with αh and βn
k
given by (3.8) and (3.9). In particular, when supp f̂ ⊆

[−2Nπ, 2Nπ], it is

f(x) =
∞∑

h=−∞
αhϕ

0
h(x) +

N∑

n=0

∞∑

k=−∞
βnkψ

n
k (x). (3.11)

Proof. The representation (3.10) follows from the orthogonality of the scaling and Shannon
wavelets (Theorems 2.2, 2.3, 2.4). The coefficients, which exist and are finite, are given by
(3.8). The convergence of the series is a consequence of the wavelet axioms.

It should be noticed that

suppf̂ = [−π, π]
⋃

n=0,...,∞
[−2n+1π, − 2nπ] ∪ [2nπ, 2n+1π] (3.12)

so that for a band-limited frequency signal, that is, for a signal whose frequency belongs to
the first band [−π, π], this theorem reduces to the Shannon. But, more in general, one has to
deal with a signal whose frequency range in different bands, even if practically banded, since
it is N <∞. In this case, we have some nontrivial contributions to the series coefficients from
all the bands, ranging from [−2Nπ, 2Nπ]:

suppf̂ = [−π, π]
⋃

n=0,...,N

[−2n+1π, − 2nπ] ∪ [2nπ, 2n+1π]. (3.13)
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In the frequency domain, (3.10) gives

f(x) =
∞∑

h=−∞
αhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
βnkψ

n
k (x),

f̂(ω) =
∞∑

h=−∞
αhϕ̂

0
h(ω) +

∞∑

n=0

∞∑

k=−∞
βnkψ̂

n
k (ω),

f̂(ω)
(2.19)
=

1
2π

∞∑

h=−∞
αhe

−iωhχ(ω + 3π)+
1

2π

∞∑

n=0

∞∑

k=−∞
2−n/2βnke

−iω(k+1)/2n
[
χ

(
ω

2n−1

)
+χ

( −ω
2n−1

)]
,

(3.14)

that is,

f̂(ω) =
1

2π
χ(ω + 3π)

∞∑

h=−∞
αhe

−iωh

+
1

2π
χ

(
ω

2n−1

) ∞∑

n=0

∞∑

k=−∞
2−n/2βnke

−iω(k+1)/2n

+
1

2π
χ

( −ω
2n−1

) ∞∑

n=0

∞∑

k=−∞
2−n/2βnke

−iω(k+1)/2n .

(3.15)

There follows that the Fourier transform is made by the composition of coefficients at
different frequency bands. When βn

k
= 0, for all n, k ∈ Z, we obtain the Shannon sampling

theorem as a special case.

Of course, if we limit the dilation factor n ≤N <∞, for a truncated series, we have the
approximation of f(x), given by

f(x) ∼=
S∑

h=−S
αhϕ(x − h) +

N∑

n=0

M∑

k=−M
βnkψ

n
k (x). (3.16)

By rearranging the many terms of the series with respect to the different scales, for a fixed N
we have

f(x) ∼=
S∑

h=−S
αhϕ(x − h) +

N∑

n=0

fn(x),

fn(x) =
M∑

k=−M
βnkψ

n
k (x),

(3.17)

where fn(x) represent the component of the function f(x) at the scale 0 ≤ n ≤ N (i.e., in
the band [2nπ , 2n+1π]), and f(x) results from a multiscale approximation or better from the
multiband reconstruction.
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3.1. Examples

Let us first compute the approximate wavelet representation of the even function

f(x) = e−4x2
cos 2πx. (3.18)

The bottom length (i.e., the main part) of the function f(x) is concentrated in the
interval [−0.2, 0.2]. With a low scale n = 3, we can have a good approximation (Figures 2,
4) of the function even with a small number k of translation. In fact, with |k| ≤ 3 the absolute
value of the approximation error is less than 7% (see Figure 4). The higher number of the
translation parameter k improves the approximation of the function on its “tails,” in the sense
that by increasing the number of translation parameters k the oscillation on “tails” is reduced.
We can see that with |k| ≤ 10 the approximation error is reduced up to 3%. Moreover, the
approximation error tends to zero with |x| → ∞.

The multiscale representation is given by

f(x) ∼= α0ϕ(x) +
3∑

n=0

fn(x),

fn(x) =
3∑

k=−3

βnkψ
n
k (x),

(3.19)

so that at the higher scales there are the higher frequency oscillations (see Figure 2). It should
be also noticed that the lower scale approximations f0(x) , f1(x) , f2(x) represent the major
content of the amplitude. In other words, f0(x) + f1(x) + f2(x) gives a good representation of
(3.18) in the origin, while f3(x), with its higher oscillations, makes a good approximation of
the tails of (3.18). Therefore, if we are interested in the evolution of the peak in the origin, we
can restrict ourselves to the analysis of the lower scales. If we are interested in the evolution
either of the tails or the high frequency, we must take into consideration the higher scales (in
our case f3(x)).

If we compare the Shannon wavelet reconstruction with the Fourier integral approach,
in the Fourier method the following hold.

(1) It is impossible to have a series expansion except for the periodic functions.

(2) It is impossible to focus, as it is done with the Shannon series, on the contribution
of each basis to the function. In other words, the projection of f(x) on each
term {cos ξx , sin ξx} of the Fourier basis is not evident. There follows that it is
impossible to decompose the profile with the components at different scales.

(3) The integral transform performs an integral over the whole real axis for a function
which is substantially zero (over R), except in the “small” interval (−ε , ε).

As a second example, let us consider the approximate wavelet representation of the
odd function

f(x) = e−(16x)2/2 + e−4x2
sin 2πx. (3.20)

The bottom length (i.e., the main part) of the function f(x) is concentrated in the
interval [−0.2, 0.2]. Also in this case, for a localized function, with a low scale n = 3 we
can have a good approximation (Figures 3, 4) of the function even with a small number k
of translation. However, in this case, the error can be reduced (around the origin) by adding
some translated instances, but it remains nearly constant far from the origin. In fact, with
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Figure 2: Shannon wavelet reconstruction (dashed) of the even function f(x) = e−4x2
cos 2πx, with nmax =

3, − 3 ≤ k ≤ 3 (bottom right). Scale approximation with (a) n = 0, − 3 ≤ k ≤ 3, (b) n = 1, − 3 ≤ k ≤ 3, (c)
n = 2, − 3 ≤ k ≤ 3, (d) n = 3, − 3 ≤ k ≤ 3, (e) 0 ≤ n ≤ 3, − 3 ≤ k ≤ 3, (f) n = 3, − 5 ≤ k ≤ 5.

|k| ≤ 3 the absolute value of the approximation error is less than 10% (8% in the origin,
Figure 4). The higher number of the translation parameter k improves the approximation
of the function on its “tails,” in the sense that by increasing the number of translation
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Figure 3: Shannon wavelet reconstruction (dashed) of the odd function f(x) = e−(16x)2/2 + e−4x2
sin 2πx,

with N = nmax = 3, − 3 ≤ k ≤ 3 (bottom right). Scale approximation with (a) n = 0, − 3 ≤ k ≤ 3, (b)
n = 1, − 3 ≤ k ≤ 3, (c) n = 2, − 3 ≤ k ≤ 3, (d) n = 3, − 3 ≤ k ≤ 3, (e) 0 ≤ n ≤ 3, − 3 ≤ k ≤ 3, (f)
n = 3, − 5 ≤ k ≤ 5.

parametersk the oscillation on “tails” is reduced and becomes constant (around 10%). But
we can see that with |k| ≤ 10 the approximation error in the origin is reduced up to 3%.
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Figure 4: Error of the Shannon wavelet reconstruction of the even function (top) f(x) = e−4x2
cos 2πx,

with N = nmax = 3 and the odd function f(x) = e−(16x)2/2 + e−4x2
sin 2πx, with N = nmax = 3 (bottom right)

with different values of kmax.

−3 3

−1

1

Figure 5: Approximation (plain) of the first derivative of the function ϕ0
0(x) (bold) by using the connection

coefficients.
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4. Reconstruction of the Derivatives

Let f(x) ∈ L2(R) and let f(x) be a differentiable function f(x) ∈ Cp with p sufficiently
high. The reconstruction of a function f(x) given by (3.10) enables us to compute also its
derivatives in terms of the wavelet decomposition

d�

dx�
f(x) =

∞∑

h=−∞
αh

d�

dx�
ϕ0
h(x) +

∞∑

n=0

∞∑

k=−∞
βnk

d�

dx�
ψnk (x), (4.1)

so that, according to (3.10), the derivatives of f(x) are known when the derivatives

d�

dx�
ϕ0
h(x),

d�

dx�
ψnk (x) (4.2)

are given.
By a direct computation, we can easily evaluate the first and second derivatives of the

scaling function

d
dx

ϕnk(x) =
2n
[ − 1 + (2nx − k)π cot((2nx − k)π)]

2nx − k ϕnk(x),

d2

dx2
ϕnk(x) =

22n{2 − [π(2nx − k)]2 − 2π(2nx − k) cot((2nx − k)π)}

(2nx − k)2
ϕnk(x),

(4.3)

respectively. However, on this way, higher-order derivatives cannot be easily expressed.
Indeed, according to (3.10), we have to compute the wavelet decomposition of the
derivatives:

d�

dx�
ϕ0
h(x) =

∞∑

k=−∞
λ
(�)
hk ϕ

0
k(x) +

∞∑

n=0

∞∑

k=−∞
Λ(�)n
hk ψnk (x),

d�

dx�
ψmh (x) =

∞∑

k=−∞
Γ(�)m
hk

ϕ0
k(x) +

∞∑

n=0

∞∑

k=−∞
γ
(�)mn
hk

ψnk (x),

(4.4)

with

λ
(�)
kh

def≡
〈

d�

dx�
ϕ0
k(x), ϕ

0
h(x)

〉
, γ

(�)nm
kh

def≡
〈

d�

dx�
ψnk (x), ψ

m
h (x)

〉
, (4.5)

Λ(�)n
kh

def≡
〈

d�

dx�
ϕ0
k(x), ψ

n
h(x)

〉
, Γ(�)mhk

def≡
〈

d�

dx�
ψnh(x), ϕ

0
h(x)

〉
, (4.6)

being the connection coefficients [6–9, 11] (or refinable integrals).
Their computation can be easily performed in the Fourier domain, thanks to equality

(2.21). In fact, in the Fourier domain the �-order derivatives of the (scaling) wavelet functions
are

̂d�

dx�
ϕn
k
(x) = (iω)�ϕ̂nk(ω),

̂d�

dx�
ψn
k
(x) = (iω)�ψ̂nk (ω) (4.7)
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and according to (2.19),

̂d�

dx�
ϕn
k
(x) = (iω)�

2−n/2

2π
e−iωk/2nχ

(
ω

2n
+ 3π

)
,

̂d�

dx�
ψn
k
(x) = −(iω)� 2−n/2

2π
e−iω(k+1/2)/2n

[
χ

(
ω

2n−1

)
+ χ

( −ω
2n−1

)]
.

(4.8)

Taking into account (2.21), we can easily compute the connection coefficients in the
frequency domain

λ
(�)
kh

= 2π
〈 ̂d�

dx�
ϕ0
k
(x), ̂ϕ0

h
(x)

〉
, γ

(�)nm
kh

= 2π
〈 ̂d�

dx�
ψn
k
(x), ψ̂m

h
(x)

〉
, (4.9)

with the derivatives given by (4.8).
For the explicit computation, we need some preliminary theorems (for a sketch of the

proof see also [11]).

Theorem 4.1. For givenm ∈ Z, � ∈ N, it is

∫
x�emxdx=(1−|μ(m)|) x

�+1

� + 1
+μ(m)

emx

|m|�+1

�+1∑

s=1

(−1)[1+μ(m)](2�−s+1)/2 �!(|m|x)�−s+1

(� − s + 1)!
+Const,

(4.10)

where

μ(m) = sign (m) =

⎧
⎪⎪⎨

⎪⎪⎩

1, m > 0,

−1, m < 0,

0, m = 0.

(4.11)

Proof. When m = 0, (4.10) trivially follows. When m /= 0, by a partial integration we get the
iterative formula

∫
x�emxdx =

⎧
⎪⎪⎨

⎪⎪⎩

μ(m)
1
|m|e

mx, � = 0,

μ(m)
1
|m|

[
x�emx − �

∫
x�−1emxdx

]
, � > 0 ,

(4.12)

from where by the explicit computation of iterative terms and rearranging the many terms,
(4.10) holds.

The following corollary follows. From Theorem 4.1, after a substitution x → iξ, we
have the following corollary.

Corollary 4.2. For givenm ∈ Z, � ∈ N, it is

∫
(iξ)�eimξdξ= i�(1−|μ(m)|) ξ

�+1

� + 1
−iμ(m)eimξ

�+1∑

s=1

(−1)[1+μ(m)](2�−s+1)/2 �!(iξ)�−s+1

(� − s + 1)!|m|s +Const.

(4.13)
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In particular, taking into account that

eikπ = (−1)k =

⎧
⎨

⎩
1, k = ±2s,

−1, k = ±(2s + 1), s ∈ N,
(4.14)

we have the following corollary.

Corollary 4.3. For givenm ∈ Z ∪ {0}, � ∈ N, and n ∈ N, it is

∫nπ

−nπ
(iξ)�eimξdξ = i�(1 − |μ(m)|) (nπ)

�+1[1 + (−1)�]
� + 1

+ iμ(m)(−1)mn+1
�+1∑

s=1

(−1)[1+μ(m)](2�−s+1)/2 �!(inπ)�−s+1

(� − s + 1)!|m|s [1 − (−1)�−s+1].

(4.15)

More in general, the following corollary holds.

Corollary 4.4. For givenm ∈ Z, � ∈ N, and a, b ∈ Z (a < b), it is

∫bπ

aπ

(iξ)�eimξdξ = i�(1 − |μ(m)|)π
�+1(b�+1 − a�+1)

� + 1

− iμ(m)
�+1∑

s=1

(−1)[1+μ(m)](2�−s+1)/2 �!(iπ)�−s+1

(� − s + 1)!|m|s [(−1)mbb�−s+1 − (−1)maa�−s+1].

(4.16)

As a particular case, the following corollaries hold.

Corollary 4.5. For givenm ∈ Z, � ∈ N, and b ∈ Z (0 < b), it is

∫bπ

0
(iξ)�eimξdξ = i�(1 − |μ(m)|)π

�+1b�+1

� + 1

− iμ(m)

[
�∑

s=1

(−1)[1+μ(m)](2�−s+1)/2 �!(iπ)�−s+1(−1)mbb�−s+1

(� − s + 1)!|m|s

+
(−1)(1+μ(m))�/2�![(−1)mb − 1]

|m|�+1

]
.

(4.17)

Corollary 4.6. For givenm ∈ Z, � ∈ N, it is

∫2π

0
(iξ)�eimξdξ = i�(1 − |μ(m)|) (2π)

�+1

� + 1
− iμ(m)

�∑

s=1

(−1)[1+μ(m)](2�−s+1)/2 �!(2iπ)�−s+1

(� − s + 1)!|m|s .

(4.18)

Thus we can show that the following theorem holds.
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Theorem 4.7. The any order connection coefficients (4.5)1of the scaling functions ϕ0
k(x) are

λ
(�)
kh

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(−1)k−h
i�

2π

�∑

s=1

�!πs

s![i(k − h)]�−s+1
[(−1)s − 1], k /= h,

i�π�+1

2π(� + 1)
[1 + (−1)�], k = h ,

(4.19)

or, shortly,

λ
(�)
kh =

i�π�

2(� + 1)
[1+(−1)�](1−|μ(k − h)|)+(−1)k−h|μ(k−h)| i

�

2π

�∑

s=1

�!πs

s![i(k − h)]�−s+1
[(−1)s−1].

(4.20)

Proof. From (4.9), (4.8), (4.7), (2.21), (2.19), it is

λ
(�)
kh =

1
2π

∫∞

−∞
(iω)�e−i(k−h)ωχ(ω + 3π)χ(ω + 3π)dω, (4.21)

that is,

λ
(�)
kh

=
1

2π

∫∞

−∞
(iω)�e−i(k−h)ωχ(ω + 3π)χ(ω + 3π)dω

=
1

2π

∫π

−π
(iω)�e−i(k−h)ωdω =

i�

2π

∫π

−π
ω�e−i(k−h)ωdω.

(4.22)

The last integral, according to (4.15) (with n = 1), gives (4.20).

Thus we have at the lower-order derivatives � ≤ 5

λ
(1)
kh

= − (−1)k−h

k − h , λ
(1)
00 = 0,

λ
(2)
kh

= −2(−1)k−h

(k − h)2
, λ

(2)
00 = −π

2

3
,

λ
(3)
kh = (−1)k−h

(k − h)2π2 − 6

(k − h)3
, λ

(3)
00 = 0,

λ
(4)
kh

= 4(−1)k−h
(k − h)2π2 − 6

(k − h)4
, λ

(4)
00 =

π4

5
,

λ
(5)
kh = (−1)k−h

(k − h)4π4 − 20(k − h)2π2 + 120

(k − h)5
, λ

(5)
00 = 0 .

(4.23)

Analogously for the connection coefficients (4.5)2, we have the following theorem.
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Theorem 4.8. The any order connection coefficients (4.5)2 of the Shannon wavelets (2.18)2 are

γ
(�)nm
kh = δnm

{
i�(1 − |μ(h − k)|)π

�2n�−1

� + 1
(2�+1 − 1)(1 + (−1)�)

+ μ(h − k)
�+1∑

s=1

(−1)[1+μ(h−k)](2�−s+1)/2 �!i�−sπ�−s

(� − s + 1)!|h − k|s (−1)−s−2(h+k)2n�−s−1

×
{

2�+1
[
(−1)4h+s + (−1)4k+�

]
− 2s

[
(−1)3k+h+� + (−1)3h+k+s

]}}
,

(4.24)

respectively, for � ≥ 1, and γ
(0)nm
kh

= δkhδnm.

Proof. From (4.9), (4.8), (4.7), (2.21), (2.19), it is

γ
(�)nm
kh

def=
〈

d�

dx�
ψnk (x), ψ

m
h (x)

〉

(4.9)
= 2π

〈 ̂d�

dx�
ψn
k
(x), ψ̂m

h
(x)

〉

(4.7)
= 2π〈(iω)�ψ̂nk (ω) , ψ̂mh (ω)〉

(2.21)
= 2π

∫∞

−∞
(iω)�ψnk (ω)ψ̂

m
h
(ω)dω

(2.19)
= 2π

∫∞

−∞
(iω)�

2−n/2

2π
e−iω(k+1/2)/2n

[
χ

(
ω

2n−1

)
+ χ

( −ω
2n−1

)]

× 2−m/2

2π
eiω(h+1/2)/2m

[
χ

(
ω

2m−1

)
+ χ

( −ω
2m−1

)]
dω,

(4.25)

from where, according to the definition (2.7), it is

γ
(�)nm
kh

= 0, n /=m, (4.26)

and (for n = m)

γ
(�)nn
kh

=
2−n

2π

∫∞

−∞
(iω)�e−iω(k−h)/2n

[
χ

(
ω

2n−1

)
+ χ

( −ω
2n−1

)]
dω

=
2−n

2π

[∫−2nπ

−2n+1π

(iω)�e−iω(k−h)/2ndω +
∫2n+1π

2nπ
(iω)�e−iω(k−h)/2ndω

]
.

(4.27)

By taking into account (4.16), (4.24) is proven.

Theorem 4.9. The connection coefficients are recursively given by the matrix at the lowest scale level:

γ
(�)nn
kh

= 2�(n−1)γ
(�)11
kh

. (4.28)
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Moreover, it is

γ
(2�+1)nn
kh

= − γ (2�+1)nn
hk

, γ
(2�)nn
kh

= γ
(2�)nn
hk

. (4.29)

Let us now prove that the mixed connection coefficients (4.6) are zero. It is enough to
show the following theorem.

Theorem 4.10. The mixed coefficients (4.6)1 of the Shannon wavelets are

Λ(�)n
kh = 0. (4.30)

Proof. From (4.9), (4.8), (4.7), (2.21), (2.19), it is

Λ(�)n
kh

def=
〈

d�

dx�
ϕ0
k(x) , ψ

m
h (x)

〉
= 2π

〈 ̂d�

dx�
ϕ0
k
(x) , ψ̂m

h
(x)

〉

(4.7)
= 2π〈(iω)�ϕ̂0

k(ω) , ψ̂
m
h (ω)〉

(2.21)
= 2π

∫∞

−∞
(iω)�ϕ0

k(ω)ψ̂
m
h
(ω)dω

(2.19)
= 2π

∫∞

−∞
(iω)�

2−n/2

2π
e−iωk/2nχ

(
ω

2n
+ 3π

)

× 2−m/2

2π
eiω(h+1/2)/2m

[
χ

(
ω

2m−1

)
+ χ

( −ω
2m−1

)]
dω,

(4.31)

from where, since

χ

(
ω

2n
+ 3π

)[
χ

(
ω

2m−1

)
+ χ

( −ω
2m−1

)]
= 0, (4.32)

the theorem is proven.

As a consequence, we have that the �-order derivatives of the Shannon scaling and
wavelets are

d�

dx�
ϕ0
h(x) =

∞∑

k=−∞
λ
(�)
hk ϕ

0
k(x),

d�

dx�
ψmh (x) =

∞∑

n=0

∞∑

k=−∞
γ
(�)mn
hk ψnk (x) .

(4.33)

In other words, the following theorem holds.

Theorem 4.11. The derivatives of the Shannon scaling function are orthogonal to the derivatives of
the Shannon wavelets

〈
d�

dx�
ϕ0
h(x),

dp

dxp
ψmh (x)

〉
= 0 . (4.34)

Proof. It follows directly from (4.33) and the orthogonality of the Shannon functions
according to Theorem 2.4.



Mathematical Problems in Engineering 21

4.1. First- and Second-Order Connection Coefficients

For the first and second derivatives of the Shannon wavelets, we have (see [11])

d

dx
ψnk (x) =

∞∑

h=−∞
γ ′nnkh ψ

n
h(x),

d2

dx2
ψnk (x) =

∞∑

h=−∞
γ ′′nnkh ψnh(x),

(4.35)

with (4.24)

γ ′nnkh = μ(h − k)
2∑

s=1

(−1)[1+μ(h−k)](2−s+1)/2 i1−sπ1−s

(2 − s)!|h − k|s (−1)−s−2(h+k)2n−s−1

×
{

4
[
(−1)4h+s + (−1)4k+1

]
− 2s

[
(−1)3k+h+1 + (−1)3h+k+s

]}
,

γ ′′nnkh = −(1 − |μ(h − k)|)π222n

+ μ(h − k)
3∑

s=1

(−1)[1+μ(h−k)](5−s)/2 2i2−sπ2−s

(3 − s)!|h − k|s (−1)−s−2(h+k)22n−s−1

×
{

8
[
(−1)4h+s + (−1)4k+2

]
− 2s

[
(−1)3k+h+2 + (−1)3h+k+s

]}
,

(4.36)

respectively.
A disadvantage in (4.33) is that derivatives are expressed as infinite sum. However,

since the wavelets are mainly localized in a short range interval, a good approximation can
be obtained with a very few terms of the series. The main advantage of (4.33) is that the
derivatives are expressed in terms of the wavelet basis.

Analogously, we obtain for the first and second derivative of the scaling function

d

dx
ϕ0
k(x) =

∞∑

h=−∞
λ′khϕ

0
h(x),

d2

dx2
ϕ0
k(x) =

∞∑

h=−∞
λ′′khϕ

0
h(x),

(4.37)

with (4.20)

λ′kh = (−1)h−kμ(h − k)
2∑

s=1

(−1)[1+μ(h−k)](3−s)/2 i1−sπ1−s

2(2 − s)!|h − k|s [1 + (−1)1−s],

λ′′kh=−(1−|μ(h − k)|)
π2

2
+(−1)h−kμ(h−k)

3∑

s=1

(−1)[1+μ(h−k)](5−s)/2 i2−sπ2−s

(3 − s)!|h − k|s [1+(−1)2−s].

(4.38)
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The coefficients of derivatives are real values as can be shown by a direct computation

γ ′11
kh

k = −2 k = −1 k = 0 k = 1 k = 2

h = −2 0 −1
2

−1
4

−1
6

−1
8

h = −1
1
2

0 −1
2

−1
4

−1
6

h = 0
1
4

1
2

0 −1
2

−1
4

h = 1
1
6

1
4

1
2

0 −1
2

h = 2
1
8

1
6

1
4

1
2

0

(4.39)

γ ′22
kh

k = −2 k = −1 k = 0 k = 1 k = 2

h = −2 0 −1 −1
2

−1
3

−1
4

h = −1 1 0 −1 −1
2

−1
3

h = 0
1
2

1 0 −1 −1
2

h = 1
1
3

1
2

1 0 −1

h = 2
1
4

1
3

1
2

1 0

(4.40)

If we consider a dyadic discretization of the x-axis such that

xk= 2−n
(
k +

1
2

)
, k ∈ Z, (4.41)

that is,

k = −2 k = −1 k = 0 k = 1 k = 2

n = 0 −1.5 −0.5 0.5 1.5 2.5

n = 1 −0.75 −0.25 0.25 0.75 1.25

n = 2 −0.375 −0.125 0.125 0.375 0.625

(4.42)
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there results

ψnk

(
2−n

(
k +

1
2

))
= −2n/2, k ∈ Z . (4.43)

Thus (4.33) at dyadic points xk= 2−n(k + 1/2)becomes
[
d

dx
ψn
k
(x)

]

x=xk
= −2n/2

∞∑

h=−∞
γnn
kh
,

[
d2

dx2
ψnk (x)

]

x=xk
= −2n/2

∞∑

h=−∞
Γnnkh.

(4.44)

For instance, (see the above tables) in x1= 2−1(1 + 1/2),

[
d

dx
ψ1

1(x)
]

x=x1=3/4
= −21/2

∞∑

h=−∞
γ11

1h
∼= −21/2

2∑

h=−2

γ11
1h = −21/2

(
1
6
+

1
4

)
= −5

√
2

12
. (4.45)

Analogously, it is

ϕnk

(
2−n

(
k +

1
2

))
=

21+n/2

π
, k ∈ Z, (4.46)

from where, in xk = (k + 1/2), it is
[
d

dx
ϕ0
k
(x)

]

x=xk
=

2
π

∞∑

h=−∞
λkh,

[
d2

dx2
ϕ0
k
(x)

]

x=xk
=

2
π

∞∑

h=−∞
Λkh .

(4.47)

Outside the dyadic points, the approximation is quite good even with low values of
the parameters n, k. For instance, we have (Figure 5) the approximation

d
dx

ϕ0
0(x) =

cos πx
x

− sinπx
πx2

∼=
5∑

h=−5

λ0hϕ
0
h(x) . (4.48)

5. Conclusion

In this paper, the theory of Shannon wavelets has been analyzed showing the main properties
of these functions sharply localized in frequency. The reconstruction formula for the L2(R)
functions has been given not only for the function but also for its derivatives. The derivative
of the Shannon wavelets has been computed by a finite formula (both for the scaling and for
the wavelet) for any order derivative. Indeed, to achieve this task, it was enough to compute
connection coefficients, that is, the wavelet coefficients of the basis derivatives. These
coefficients were obtained as a finite series (for any order derivatives). In Latto’s method
[6, 8, 9], instead, these coefficients were obtained only (for the Daubechies wavelets) by using
the inclusion axiom but in approximated form and only for the first two order derivatives.
The knowledge of the derivatives of the basis enables us to approximate a function and
its derivatives and it is an expedient tool for the projection of differential operators in the
numerical computation of the solution of both partial and ordinary differential equations
[2, 3, 10, 13].
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Copyright q 2008 Beom-Soo Kim et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Wavelets are mathematical functions that cut up data into different frequency components
and then study each component with a resolution matched to its scale. Wavelets are now
being applied in many areas of science and engineering [1–4]. Much attention has been
focused on the use of wavelet transforms to investigate dynamic systems. This is due to the
powerful ability of wavelet transforms to decompose time series in time-frequency domain
and wavelet basis functions. Chen and Hsiao [3, 4] derived a Haar operational matrix
for integration and solved the lumped and distributed parameter systems by constructing
operational matrices of various order. The main characteristic of this technique is that
it converts a differential equation into an algebraic one with the result that the solution
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procedures are greatly reduced and simplified. This approach gives new insight into the use
of the Haar wavelet method.

Singular systems (also referred to as descriptor or semistate systems) arise more
naturally than do state-variable descriptions in the analysis of many sorts of systems.
Examples occur in electrical networks, neural networks, control systems, chemical systems,
economic systems, and so on (see [5, 6] and references therein). These systems are governed
by a mixture of differential and algebraic equations. The complex nature of singular systems
causes many difficulties in the analytical and numerical treatment of such systems.

Recently, Haar wavelet technique was applied to state analysis and observer design of
singular systems [7]. This approach replaces the state function and the forcing function by
the truncated Haar series, respectively. Then the state trajectories are obtained by solving a
generalized Sylvester matrix equation. But there exists a trade-off between the resolution
of the wavelets and the computation time. The accuracy of the solution can be achieved
by increasing the resolution level, but this requires more computation time and very large
memory.

In this paper, an efficient computational method is presented for state space analysis
of singular systems via Haar wavelets. First, an explicit expression for the inverse of the
Haar matrix is presented. This inverse matrix also has a recursive structure. By using this
matrix, we propose a combined preorder and postorder traversal algorithm. Then, the full-
order generalized Sylvester matrix equation should be solved in terms of the solutions of
simple linear matrix equations. Finally, the efficiency of the proposed method is discussed by
a numerical example.

2. Kronecker product

Let A = [aij] and B = [bij] be n × p and r × q matrices, respectively. The Kronecker product of
the matrices, denoted by A ⊗ B(∈ R

nr×pq), is defined as

A ⊗ B =

⎡
⎢⎢⎢⎣

a11B a12B · · · a1pB
a21B a22B a2pB

...
...

an1B an2B · · · anpB

⎤
⎥⎥⎥⎦
. (2.1)

The vec operator transforms a matrix A of size n × p to a vector of size np × 1 by stacking the
columns of A. Some properties of the Kronecker product are given below [8]:

(A + B) ⊗ C = A ⊗ C + B ⊗ C,

(A ⊗ B)C = (AC ⊗ B),

(A ⊗ B)(C ⊗D) = (AC ⊗ BD),

(A ⊗ B)T = AT ⊗ BT .

(2.2)

3. Haar wavelets and their properties

Wavelets constitute a family of functions constructed from dilation and translation of a single
function called the mother wavelet that generates orthogonal bases of L2(R). The simplest
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and most basic of the wavelet systems is the Haar wavelet which is a group of square waves
with magnitudes of ±1 in certain intervals and zeros elsewhere [9]. The scaling function ϕ0(t)
and mother wavelet ϕ1(t) are defined by, respectively,

ϕ0(t) =

{
1, t ∈ [0, 1),
0, t /∈ [0, 1),

ϕ1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, t ∈
[

0,
1
2

)
,

−1, t ∈
[

1
2
, 1

)
,

0, t /∈ [0, 1).

(3.1)

Then, all the other basis functions ϕk(t) are obtained by dilation and translation of the mother
wavelet as follows:

ϕk(t) = ϕ1
(
2nt − j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, t ∈ [
ta, tb

)
,

−1, t ∈ [
tb, tc

)
,

0, t /∈ [ta, tc
)
,

(3.2)

where k = 2n + j, integer n ≥ 1 is a dilation parameter, integer 0 ≤ j < 2n is a shift parameter,
and the intervals are given by ta = m/2n, tb = (0.5 + j)/2n, and tc = (1 + j)/2n. Since the
support of the Haar wavelet is [0, 1), any square integrable function y(t) ∈ L2[0, 1) can be
written as an infinite linear combination of Haar functions

y(t) =
∞∑

k=0

ckϕk(t), t ∈ [0, 1), (3.3)

where the Haar coefficients are determined by

ck =
〈
y(t), ϕk(t)

〉
= 2n

∫1

0
y(t)ϕk(t)dt, (3.4)

where 〈·, ·〉 denotes the inner product. In practical applications, Haar series are truncated to
m terms, that is,

y(t) ∼=
m−1∑

k=0

ckϕk(t) = CT
mhm(t), (3.5)

where Haar functions coefficient vector Cm and Haar functions vector hm are defined as Cm �[
c0 c1 · · · cm−1

]T and hm(t) �
[
ϕ0(t) ϕ1(t) · · · ϕm−1(t)

]T.
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Integrals of the Haar functions with respect to variable t form ramp and triangular
waveforms standing with uniform slope, respectively, at the positions of the corresponding
rectangular functions. The group of these integrals can be expressed as follows:

∫1

0
ϕ0(t)dt = t, t ∈ [

ta, tb
)
,

∫1

0
ϕk(t)dt =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t − ta, t ∈ [
ta, tb

)
,

−t + tc, t ∈ [
tb, tc

)
,

0, t /∈ [ta, tc
)
.

(3.6)

Then, the Haar matrix Hm is defined as

Hm(t) �
[
hm

(
t0
)

hm

(
t1
) · · · hm

(
tm−1

)]
, (3.7)

where i/m ≤ ti ≤ (i + 1)/m.
Integration of the Haar function vector can be written as

∫ t

0
hm(τ)dτ ∼= Pmhm(t), (3.8)

where Pm is the m-square operational matrix of integration which satisfies the following
recursive formula [3]:

Pm =

⎡
⎢⎢⎣

Pm/2 − 1
2m

Hm/2

1
2m

H−1
m/2 0m/2

⎤
⎥⎥⎦ , P1 =

[
1
2

]
, (3.9)

where 0m/2 is an m/2-square zero matrix. The Haar matrix Hm also has the following
recursive formula [3]:

Hm =

[
Hm/2 ⊗

[
1 1

]

Im/2 ⊗
[
1 −1

]

]
, H1 = [1]. (3.10)

Particularly, it was proven that the following relationship holds [3]:

H−1
m =

1
m

HT
mDm, (3.11)
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where Dm = diag(1 1 2 2 · · · 2p−1 · · · 2p−1
︸ ︷︷ ︸m/2

) and p = log2m. This diagonal matrix Dm also

can be represented in the recursive form

Dm =

⎡

⎣
Dm/2 0m/2

0m/2
m

2
Im/2

⎤

⎦ , D1 = [1], (3.12)

where m = 2k, k = 1, 2, . . . , J , and J is called a resolution scale or level.
We present the following lemma which will be used to decompose the generalized

Sylvester matrix equation.

Lemma 3.1. Let Hm be a Haar matrix defined in (3.10). Then, its inverse matrix has the following
recursive form:

H−1
m =

[
H−1
m/2 ⊗

[
0.5
0.5

]
Im/2 ⊗

[
0.5
−0.5

]]
. (3.13)

Proof. We assume that H−1
m has the following recursive structure:

H−1
m =

[
H−1
m/2 ⊗

[
a
b

]
Im/2 ⊗

[
c
d

]]
, (3.14)

where a, b, c, d are constants to be determined. Now, we multiply Hm and H−1
m :

HmH−1
m =

⎡
⎢⎢⎢⎢⎢⎣

(
Hm/2 ⊗

[
1 1

] )
(

H−1
m/2 ⊗

[
a
b

])
(
Hm/2 ⊗

[
1 1

] )
(

Im/2 ⊗
[
c
d

])

(
Im/2 ⊗

[
1 −1

] )
(

H−1
m/2 ⊗

[
a
b

])
(
Im/2 ⊗

[
1 −1

] )
(

Im/2 ⊗
[
c
d

])

⎤
⎥⎥⎥⎥⎥⎦
. (3.15)

Then, using the property of (A ⊗ B)(C ⊗D) = AC ⊗ BD, we obtain

HmH−1
m =

[
Im/2 ⊗ (a + b) Hm/2 ⊗ (c + d)
H−1
m/2 ⊗ (a − b) Im/2 ⊗ (c − d)

]
. (3.16)

Thus, a = b = 0.5, c = 0.5, d = −0.5 satisfy HmH−1
m = H−1

m Hm = I.

4. Singular linear system

Consider a linear continuous-time singular system described by

Eẋ(t) = Ax(t) + Bu(t), x(0) = x0, (4.1)

where x(t) ∈ R
p denotes the vector of state variables, u(t) ∈ R

q denotes the vector of
manipulated inputs, E, A are p × p matrices, E is generally singular, and B is a p × q
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matrix. Without loss of generality, we assume that rank(A) = p and (4.1) is regular, that is,
det(λE − A)/= 0. Regularity means that the solution x(t) is uniquely determined by the given
initial value x0 and input u(t).

If the input function vector u(t) is square integrable in the interval [0, 1), then it can be
represented in a Haar function basis hm(t) as

u(t) = Ghm(t), (4.2)

where G ∈ R
q×m is a Haar coefficient matrix and can be obtained by the method described in

Section 3. Likewise, ẋ(t) is expanded in Haar function basis

ẋ(t) = Vhm(t), (4.3)

where V ∈ R
p×m is the unknown matrix to be determined. From the definition of the Haar

function, the initial state can be represented as follows:

x0 =
[
x0 0 · · · 0

]
hm(t). (4.4)

Integrating (4.3) from 0 to t, we have

x(t) = VPmhm(t) + x0. (4.5)

Integrating (4.1) and using (3.8) and (4.4), after canceling hm(t), we obtain

EV −AVPm = Q, (4.6)

where we define Q �
[
Ax0 0 · · · 0

]
+ BG. Thus, the differential matrix equation (4.1) has

been transformed to a generalized Sylvester matrix equation that must be solved for V.
Equation (4.6) can be solved by using Kronecker product as in [6]

(
Im ⊗ E + PT

m ⊗A
)
vec(V) = vec(Q), (4.7)

where Im is a unit matrix. Equation (4.7) can be solved by LU factorization. However, the
coefficient matrix Im ⊗ E + PT

m ⊗A has dimension pm × pm, making this approach impractical
except for small systems. There are other methods for solving the Sylvester matrix equation
(4.6), for example, the Bartels-Stewart algorithm, Krylov subspace method, and matrix sign
function method (see [10] and references therein). In [3, 11], recursive algorithms were
derived to solve the equations of type V − AVPm = Q for linear systems. It should be noted
that the algorithm in [3] is not applicable to a generalized Sylvester matrix equation (4.6),
since E is a singular matrix.
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1

V(3)
2 =

[
V(5)

3 V(6)
3

]
V(4)

2 =
[
V(7)

3 V(8)
3

]

V(2)
1 =

[
V(3)

2 V(4)
2

]

V(5)
3 =

[
V(9)

4 V(10)
4

]
V(6)

3 =
[
V(11)

4 V(12)
4

]
V(7)

3 =
[
V(13)

4 V(14)
4

]
V(8)

3 =
[
V(15)

4 V(16)
4

]

V =
[
V(1)

1 V(2)
1

]

V(1)
1

V(9)
4 V(10)

4 V(11)
4 V(12)

4 V(13)
4 V(14)

4 V(15)
4 V(16)

4

Level 1

Level 2

Level 3

Level 4

Figure 1: Binary tree for resolution scale J = 4.

4.1. Decomposition and recursive binary tree

Under the assumption that A is a nonsingular matrix, (4.6) can be written as the following
Sylvester equation:

A−1EV −VPs = A−1Q. (4.8)

To decompose (4.8), we split V and A−1Q by columns:

AE

[
V(1)

1 V(2)
1

]
−
[
V(1)

1 V(2)
1

]
⎡
⎢⎣

Pm/2 − 1
2m

Hm/2

1
2m

H−1
m/2 0m/2

⎤
⎥⎦ =

[
Qa Qb

]
, (4.9)

where AE � A−1E, A−1Q =
[
Qa Qb

]
, V =

[
V(1)

1 V(2)
1

]
with Qa,Qb,V

(1)
1 ,V(2)

1 ∈ Rp×m/2. Here

V(r)
k

denotes the matrix that is decomposed at level k with r = {2k, 2k − 1}. Then, we obtain
the following reduced-order matrix equations:

AEV(1)
1 −V(1)

1 Pm/2 − 1
2m

V(2)
1 H−1

m/2 = Qa. (4.10)

AEV(2)
1 +

1
2m

V(1)
1 Hm/2 = Qb. (4.11)

Since E is a singular matrix, AE is also singular. Thus, we postmultiply by H−1
m/2 both sides of

(4.11) to express V(1)
1 in terms of V(2)

1

V(1)
1 = −2mAEV(2)

1 H−1
m/2 + 2mQbH−1

m/2. (4.12)
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Substituting (4.12) into (4.10) yields

− 2mA2
EV(2)

1 H−1
m/2 + 2mAEQbH−1

m/2 + 2mAEV(2)
1 H−1

m/2Pm/2

− 2mQbH−1
m/2Pm/2 − 1

2m
V(2)

1 H−1
m/2 = Qa.

(4.13)

Therefore, the original problem is decomposed into a reduced-order generalized Sylvester
matrix equation (4.13) and a matrix algebraic equation (4.12). Again postmultiplying by Hm/2

both sides of (4.13), we have

(
− 2mA2

E −
1

2m
I
)

V(2)
1 + 2mAEV(2)

1 H−1
m/2Pm/2Hm/2

= QaHm/2 − 2mAEQb + 2mQbH−1
m/2Pm/2Hm/2.

(4.14)

In (4.14), we define

Cm/2 � H−1
m/2Pm/2Hm/2. (4.15)

Then, the matrix Cm/2 is an upper triangular matrix and has the following recursive form:

Cm/2 =

⎡
⎢⎢⎣

1
2

Cm/4
2
m

1m/4

0m/4
1
2

Cm/4

⎤
⎥⎥⎦ , C1 =

[
1
2

]
, (4.16)

where 1m/4 denotes m/4-square matrix with all elements being 1 (see Appendix A).
Substituting (4.16) into (4.14) and splitting V(2)

1 and the right-hand side of (4.14) by
columns yields

Ah

[
V(3)

2 V(4)
2

]
+ 2mAE

[
V(3)

2 V(4)
2

]
⎡
⎢⎢⎣

1
2

Cm/4
2
m

1m/4

0m/4
1
2

Cm/4

⎤
⎥⎥⎦ =

[
T(3)

2 T(4)
2

]
, (4.17)

where

Ah �
(
− 2mA2

E −
1

2m
I
)
,

QaHm/2 − 2mAEQb + 2mQbCm/2 � T(2)
1 =

[
T(3)

2 T(4)
2

]
,

V(2)
1 =

[
V(3)

2 V(4)
2

]
.

(4.18)
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Thus, (4.17) is decomposed into two matrix equations with dependent and independent
subsystems.

AhV(3)
2 +mAEV(3)

2 Cm/4 = T(3)
2 . (4.19)

AhV(4)
2 +mAEV(4)

2 Cm/4 = T(4)
2 − 4AEV(3)

2 1m/4. (4.20)

In (4.19) and (4.20), we first solve for V(3)
2 and then after updating the right-hand side of

(4.20) with respect to V(3)
2 , solve for V(4)

2 . Since (4.19) and (4.20) have the same form as (4.17)
and Cm/4 is still an upper triangular matrix, they can be decomposed into two subsystems
in which the dimension has been reduced by half, respectively. Therefore, we recursively
decompose each equation into two equations until no further decomposition is possible in
which all V(r)

J , T(r)
J (r = 2J−1 + 1, . . . , 2J) are column vectors. This procedure constructs the

binary tree as shown in Figure 1.
A binary tree is a rooted tree in which each node has at most two children, designated

as a left child and a right child. A full binary tree is a binary tree in which each node has
exactly two children or none. A perfect (or complete) binary tree is a full binary tree in which
all leaves have the same depth [12]. In Figure 1, the binary tree in the dotted box is a perfect
binary tree of depth J − 1. An external node (or leaf node) is a node with no children. For
instance, the nodes labeled 1, 9, 10, 11, 12, 13, 14, 15, and 16 in Figure 1 are external nodes.

Matrix equations corresponding to all external nodes of the perfect binary tree are
classified into two types of equations described as follows:

AhV(r)
J + 4AEV(r)

J C1 = T(r)
J , r = 2J−1 + 1, 2J−1 + 3, . . . , 2J − 1 (r is odd),

AhV(r)
J + 4AEV(r)

J C1 = T(r)
J − 4AEV(r−1)

J 11, r = 2J−1 + 2, 2J−1 + 4, . . . , 2J (r is even).
(4.21)

Note that in equation (4.21), C1 = 1/2, 11 = 1. Thus, they become simple linear matrix
equations as follows:

(
Ah + 2AE

)
V(r)
J = T(r)

J , if r is odd,
(
Ah + 2AE

)
V(r)
J = T(r)

J − 4AEV(r−1)
J , if r is even.

(4.22)

4.2. Combined preorder and postorder traversal algorithm

Visiting all the nodes in a tree in some particular order is known as a tree traversal. A preorder
traversal visits the root of a subtree, then the left and right subtrees recursively. A postorder
traversal visits the left and right subtrees recursively, then the root node of the subtree [12].
For example, the preorder and postorder traversals of the binary tree shown in Figure 1 are
as follows:

5 1615814137412761093210

5 2481615714133612111091 0

Preorder traversal:

Postorder traversal:
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Step 1. Initialize Ah, AE, T.
Step 2. Obtain V(2)

1
Input: Resolution scale J
WaveSolver(J)
{

for (r = 2J−1 + 1; r < 2J ; r = r + 2)
{

Solve for V(r)
J the system (Ah + 2AE)V

(r)
J = T(r)

J

Update T(r+1)
J accroding to T(r+1)

J = T(r+1)
J − 4AEV(r)

J

Solve for V(r+1)
J the system (Ah + 2AE)V

(r+1)
J = T(r+1)

J

WaveTree (1, J, r + 1)
}

}
Input: rno is a number of recursive call.

Resolution scale J
r is a node number.

WaveTree(rno, J, r)
{

if (J − rno ≤ 0)
return

Merge: V(r/2)
J−rno =

[
V(r−1)
J−rno+1 V(r)

J−rno+1

]

if
(
r

2
is even

)

WaveTree

(
rno+1, J,

r

2

)
;

else
Update and Split:

[
T(r−1)
J−rno+1 T(r)

J−rno+1

]
= T(r/2+1)

J−rno − 4AEV(r/2)
J−rno1m/2J−rno

}
Step 3. Solve V(1)

1 from (4.12).

Algorithm 1

During the decomposition of (4.14), the right-hand side of the right child is split after
updating it recursively as follows:

T(r)
k
− 4AEV(r−1)

k
1m/2k =

[
T(2r−1)
k+1 T(2r)

k+1

]
. (4.23)

This splitting and updating sequence is a preorder traversal of the perfect binary tree from
root node �2 . The unknown matrix V(2)

1 is obtained by merging all column vectors V(r)
J (r =

2J−1 + 1, . . . , 2J). This sequence is a postorder traversal of the perfect binary tree from root
node �2 . To update (4.23), we need V(r−1)

k which is obtained from the left child. Hence,
to solve (4.22), it is necessary to update, split, and solve by using the following combined
preorder and postorder traversal method.

The pseudocode of the proposed algorithm is as in Algorithm 1.
For example, at resolution scale J = 4, the proposed combined preorder and postorder

traversal method is illustrated in Figure 2.
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Figure 2: The combined preorder and postorder traversal for resolution scale J = 4.

In Figure 2, nodes 2, 3, 5, and 9 of preorder traversal are done at Step 1 and the
remaining nodes are processed at Step 2. The computational efficiency of the proposed
method is discussed in the next section.

5. An illustrated example

In this section, an example is presented to illustrate the proposed algorithm. We consider a
singular linear system of (4.1) with

E =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣

−33 0 1.0 0
0 1 0 1.0
0 621.4 −28.27 0
0 −327.1 12.72 1

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
0

52.65
−23.69

⎤
⎥⎥⎦ , (5.1)

and X0 =
[
0 0.5 1.0 0

]T
. And we assume that u(t) is a unit step function. In the cases of J = 4

and 8, the simulation results are depicted in Figures 3 and 4, respectively.
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Figure 4: Case for resolution scale J = 8.

From these figures, it is clear that the solution accuracy is improved when the
resolution scale is increased. However, it requires more computational time.

In (4.7), the LU factorization of Im ⊗ E + PT
m ⊗ A involves O(m3p3) flops. The cost of

the proposed algorithm is the sum of the cost of WinSolver, O((m/2)p3 + (m/2)p2), and the
cost of WinTree, O(

∑J−2
k=1(2

J−1p2 + (2J+2k−2 − 2J−2)p)) (see Appendix B). Since m = 2J , the costs
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Figure 5: Log plot of flop counts for the Kronecker product method and the proposed method.

Table 1: Flop counts for various sizes of the matrix A and resolution scales.

J

A ∈ R4×4 A ∈ R20×20

Kronecker Proposed algorithm Kronecker Proposed algorithm

method WinSolver WinTree Total method WinSolver WinTree Total

2 4096 160 0 160 512000 16800 0 16800
5 2097152 1280 3360 4640 262144000 134400 32160 166560
10 6.871 × 1010 40960 89534464 89575424 8.589 × 1012 4300800 448983040 453283840
12 4.398 × 1012 163840 5.726 × 109 5.727 × 109 5.497 × 1014 17203200 2.864 × 1010 2.867 × 1010

15 2.251 × 1015 1310720 2.932 × 1012 2.932 × 1012 2.814 × 1017 137625600 1.466 × 1013 1.466 × 1013

18 1.152 × 1018 10485760 1.501 × 1015 1.501 × 1015 1.441 × 1020 1101004800 7.506 × 1015 7.506 × 1015

20 7.378 × 1019 83886080 4.194 × 1016 4.194 × 1016 9.223 × 1021 4.404 × 109 4.803 × 1017 4.803 × 1017

of WinSolver and O(m3p3) can be rewritten as O(2J−1p3 + 2J−1p2) and O(23Jp3), respectively.
Thus, the total cost of the proposed algorithm is

O

(
2J−1p3 + 2J−1p2 +

J−2∑

k=1

(
2J−1p2 +

(
2J+2k−2 − 2J−2)p

)
)

flops. (5.2)

Table 1 and Figure 5 show that the computational cost of the proposed algorithm is
significantly less than the Kronecker product method, and that the flop counts are increasing
rapidly with resolution scale. As the resolution scale grows, the flop counts of WinTree is
increasing more rapidly than that of WinSolver since the sizes of matrices 1m, Tm, and Vm

increase exponentially.
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Table 2

Level Size of 1m/2J−rno Size of T(r/2+1)
J−rno and V(r/2)

J−rno Times Computational cost

2 2J−2 × 2J−2 p × 2J−2 1 p22J−3 +
(
p2 + p

)
2J−1 − p2J−1

3 2J−3 × 2J−3 p × 2J−3 2 p22J−5 +
(
p2 + p

)
2J−2 − p2J−2

: : : : :
J − k 2k × 2k p × 2k 2J−k−2 2k+1p2 + 2k

(
22k − 1

)
p × 2J−k−2

: : : : :
J − 2 4 × 4 p × 4 2J−4 23p2 + 22(24 − 1

)
p × 2J−4

J − 1 2 × 2 p × 2 2J−3 4p2 + 21(22 − 1
)
p × 2J−3

6. Conclusions

An efficient computational method was presented for state space analysis of singular systems
via Haar wavelets. The problem was formulated as a generalized Sylvester matrix equation.
We presented an explicit expression for the inverse of the Haar matrix and a combined
preorder and postorder traversal algorithm to solve the problem more effectively. The full-
order generalized Sylvester matrix equation was solved in terms of the solutions of simple
linear matrix equations by the proposed algorithm. The efficiency of the proposed method
was demonstrated by a numerical example.

Appendices

A. Formula for Cm

In this appendix, we derive a formula for Cm. By using (3.13), (3.9), and (3.10), we can write

Cm = H−1
m PmHm

=
[

H−1
m/2 ⊗

[
0.5
0.5

]
Im/2 ⊗

[
0.5
−0.5

]]
⎡
⎢⎣

Pm/2 − 1
2m

Hm/2

1
2m

H−1
m/2 0m/2

⎤
⎥⎦

[
Hm/2 ⊗

[
1 1

]

Im/2 ⊗
[
1 −1

]

]

=
[(

H−1
m/2 ⊗

[
0.5
0.5

])[
Pm/2 − 1

2m
Hm/2

]
+
(

Im/2 ⊗
[

0.5
−0.5

])[
1

2m
H−1
m/2 0m/2

]]

×
[

Hm/2 ⊗
[
1 1

]

Im/2 ⊗
[
1 −1

]

]

=
([(

H−1
m/2 ⊗

[
0.5
0.5

])
Pm/2 − 1

2m

(
H−1
m/2 ⊗

[
0.5
0.5

])
Hm/2

]

+
[

1
2m

Im/2 ⊗
[

0.5
−0.5

]
H−1
m/2 0m/2

])[
Hm/2 ⊗

[
1 1

]

Im/2 ⊗
[
1 −1

]

]

=
[(

H−1
m/2 ⊗

[
0.5
0.5

])
Pm/2 − 1

2m

(
H−1
m/2 ⊗

[
0.5
0.5

])
Hm/2

] [
Hm/2 ⊗

[
1 1

]

Im/2 ⊗
[
1 −1

]

]

+
[

1
2m

Im/2 ⊗
[

0.5
−0.5

]
H−1
m/2 0m/2

] [
Hm/2 ⊗

[
1 1

]

Im/2 ⊗
[
1 −1

]

]
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=
(

H−1
m/2 ⊗

[
0.5
0.5

])
Pm/2

(
Hm/2 ⊗

[
1 1

] ) − 1
2m

(
H−1
m/2 ⊗

[
0.5
0.5

])
Hm/2

(
Im/2 ⊗

[
1 −1

] )

+
1

2m
Im/2 ⊗

[
0.5
−0.5

]
H−1
m/2

(
Hm/2 ⊗

[
1 1

] )
.

(A.1)

Since (A ⊗ B)C = (A ⊗ B)(C ⊗ 1) = (AC ⊗ B) and (A ⊗ B)(C ⊗ D) = (AC ⊗ BD), the above
equation is rewritten as

Cm =
((

H−1
m/2Pm/2

) ⊗
[

0.5
0.5

])(
Hm/2 ⊗

[
1 1

] ) − 1
2m

((
H−1
m/2Hm/2

) ⊗
[

0.5
0.5

])(
Im/2 ⊗

[
1 −1

] )

+
1

2m

((
Im/2H−1

m/2

) ⊗
[

0.5
−0.5

])(
Hm/2 ⊗

[
1 1

] )

=
(
H−1
m/2Pm/2Hm/2

) ⊗
([

0.5
0.5

] [
1 1

]) − 1
2m

(
Im/2

) ⊗
([

0.5
0.5

] [
1 −1

])

+
1

2m
(
Im/2

) ⊗
([

0.5
−0.5

] [
1 1

])

= Cm/2 ⊗

⎡
⎢⎢⎣

1
2

1
2

1
2

1
2

⎤
⎥⎥⎦ +

1
2m

Im/2 ⊗
([−0.5 0.5
−0.5 0.5

]
+
[

0.5 0.5
−0.5 −0.5

])

= Cm/2 ⊗

⎡
⎢⎢⎣

1
2

1
2

1
2

1
2

⎤
⎥⎥⎦ +

1
2m

Im/2 ⊗
[

0 1
−1 0

]

=

⎡
⎢⎢⎣

1
2

Cm/2
1
m

1m/2

0m/2
1
2

Cm/2

⎤
⎥⎥⎦ .

(A.2)

B. Flop counts of the combined preorder and postorder traversal algorithm

In this appendix, we show that the computational cost for the combined preorder and
postorder traversal algorithm described in Section 4.2 can be obtained as follows:

(1) WinSolve

Solve for V(r)
J the system

(
Ah + 2AE

)
V(r)
J = T(r)

J : O
(
p3).

Update T(r+1)
J according to T(r+1)

J = T(r+1)
J − 4AEV(r)

J : O
(
p
(
2p − 1

)
+ p

)
= O

(
2p2).

Solve for V(r+1)
J the system

(
Ah + 2AE

)
V(r+1)
J = T(r+1)

J : O
(
p3).



16 Mathematical Problems in Engineering

The total iteration number of “for (r = 2J−1 + 1; r < 2J ; r = r + 2)” is m/4. Thus, WinSolve
involves O((m/4)(p3+2p2 + p3)) = O((m/2)(p3+p2)) flops.

(2) WinTree

Update and split T(r/2+1)
J−rno − 4AEV(r/2)

J−rno1m/2J−rno (see Table 2).

Therefore, the computational cost for WinTree can be calculated by

O

(
J−2∑

k=1

(
2k+1p2 + 2k

(
22k − 1

)
p
) × 2J−k−2

)
= O

(
J−2∑

k=1

(
2J−1p2 +

(
2J+2k−2 − 2J−2)p

)
)
. (A.1)
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1. Introduction

The discrete harmonic wavelet transform was developed by Newland in 1993 [1, 2]. Similar
to the ordinary discrete wavelet transform, the classical harmonic wavelet transform can
also perform multiresolution analysis of a function. In addition, it has a fast algorithm
based on fast Fourier transform for numerical implementation. A distinct advantage of
harmonic wavelets is that they are disjoint in frequency domain (see Figure 1) and the Fourier
transform of the successive levels decreases in propagation of their bandwidth (1.1).

ψ̂(ω) =

⎧
⎨

⎩

(
1

2π

)(
1
2j

)
for 2π2j ≤ ω < 4π2j ,

0 elsewhere.
(1.1)

Calculating its inverse Fourier transform, we obtain

ψ
j

k(x) =
e4πi(2jx−k) − e2πi(2jx−k)

2πi(2jx − k) , (1.2)

where j = 0, . . . ,∞ and k = −∞, . . . ,∞. This function represents a class of pulsed functions
due to its compact support in the space domain.
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ψ(ω)

1/2π

Level 0

Level 1

Level 3

Level 2

Level 4

0 2π 4π 8π 16π 32π ω

Figure 1: Values of the Fourier transform of harmonic wavelets of different levels.

2. Discretisation of a real function

The goal of the wavelet transform is to decompose any arbitrary given function f(x) into an
infinite summation of wavelets at different scales according to the expansion

f(x) =
∞∑

j=−∞

∞∑

k=−∞
aj,kψ

j

k(x), (2.1)

or in the alternative form [3]

f(x) =
∞∑

k=−∞
aφ,kφ(x − k) +

∞∑

j=0

∞∑

k=−∞
aj,kψ

j

k
(x). (2.2)

The first sum is a smooth approximation of f(x), where the wavelets for j ≤ 0 have
been rolled together into scaling functions. The second sum is an addition of the details of
f(x) at a specific level of resolution.

For complex wavelet coefficients, we have to define two amplitude coefficients

aj,k= 2j
∫∞

−∞
f(x)ψ∗(2jx − k)dx, ãj,k= 2j

∫∞

−∞
f(x)ψ(2jx − k)dx, (2.3)

and the corresponding pair of complex coefficients for the terms of scaling function,

aϕ,k =
∫∞

−∞
f(x)ϕ∗(x − k)dx, ãϕ,k =

∫∞

−∞
f(x)ϕ(x − k)dx. (2.4)

If f(x) is real, then ãj,k is the complex conjugate of aj,k, that is, ãj,k = a∗
j,k

, but to allow the
general case, when f(x) is complex, we will consider ãj,k and a∗

j,k
as two different amplitudes.

Then the expansion formulas (2.1) and (2.2) become [2]

f(x) =
∞∑

j=−∞

∞∑

k=−∞
{aj,kψ(2jx − k) + ãj,kψ∗(2jx − k)},

f(x) =
∞∑

k=−∞
{aϕ,kϕ(x − k) + ãϕ,kϕ∗(x − k)}

+
∞∑

j=0

∞∑

k=−∞
{aj,kψ(2jx − k) + ãj,kψ∗(2jx − k)}.

(2.5)
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Our primary purpose is to compute the coefficients aϕ,k, ãϕ,k, aj,k and ãj,k of this
expansion.

An important condition for the function is that

∫∞

−∞
|f(x)|2dx <∞. (2.6)

Let us consider a real-valued function f(x), represented by its discrete sequence

fr, r = 0, 1, . . . ,N − 1, (2.7)

where N= 2j . Recalling the definition of the discrete Fourier transform, the corresponding
Fourier coefficients are

f̂m =
1
N

N−1∑

r=0

fre
−2πimr/N, m = 0, 1, . . . ,N − 1. (2.8)

Note that

f̂N−m =
1
N

N−1∑

r=0

fre
−2πi(N−m)r/N =

1
N

N−1∑

r=0

fre
−2πire2πimr/N = f̂∗m, (2.9)

where the asterisk stands for the complex conjugate; f̂0 and f̂N/2 are always real numbers.
Furthermore, we will consider the coefficient aj,k, defined by the first formula in (2.3).

Firstly, we will substitute ψ∗j,k(x) in terms of its Fourier transform (1.1)

ψ∗j,k(x) =
1
2j

∫4π2j

2π2j

1
2π

eiωk/2j e−iωxdω (2.10)

into the first formula of (2.3), and we obtain the following integral

aj,k =
1

2π

∫4π2j

2π2j
eiωk/2j dω

∫∞

−∞
f(x)e−iωxdx, (2.11)

where we have reversed the order of integration. The second integral over x represents the
Fourier transform of f(x) multiplied by 2π , and (2.11) becomes

aj,k =
∫4π2j

2π2j
f̂(ω)e−iωk/2j dω. (2.12)

To derive a discrete algorithm of decomposition of the function, we must replace the
operation of integration by summation, and (2.12) becomes

a2j+k =
2j−1∑

s=0

f̂2j+se
2πisk/2j , k = 0, . . . , 2j − 1. (2.13)

This identity represents the inverse discrete Fourier transform for the sequence of frequency
coefficients f̂2j+s.
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Analogous transformation towards the computation of ã2j+k will lead us to the
following [2]:

ã2j+k =
2j−1∑

s=0

f̂N−(2j+s)e
2πisk/2j , k = 0, . . . , 2j − 1. (2.14)

Computation of the amplitudes a0 and aN/2 in the reviewed algorithm involves special
approach, and a0 = f̂0 and aN/2 = f̂N/2 [2].

Also, it is easy to show from (2.13) that if j = 0, then k = 0 and

a1 = f̂1. (2.15)

Summarizing the stated above, the sequence of operations for computation of wavelet
amplitude coefficients is as follows:

(i) represent the given function f(x) by a discrete sequence fr , where r = 0, 1, . . . ,N−1;

(ii) compute the set of frequency coefficients by fast Fourier transform f̂m, where m =
0, 1, . . . ,N − 1;

(iii) the inverse fast Fourier transform of the octave blocks f̂m generates the amplitudes
of the harmonic wavelet expansion of the function fr .

It is important to mention that this algorithm works for only the functions which
satisfy the following conditions.

(i) The discrete transform covers the unit internal of x.

(ii) The analysed function is periodic in x with period 1.

The algorithm was applied to the given functions which satisfy the mentioned conditions.

3. Implementation of Newland’s algorithm towards a given function

Let us review functions which satisfy the stated conditions. For example, it is f(x) = 2 sin 2πx
and f(x) = 2cos2πx. Following the algorithm, we discretise the interval [0; 1] into N= 2j

equally spaced nods, and obtain discrete set of values of functions

fr = 2 sin
2πr
N

, fr = 2cos
2πr
N

, r = 0, . . . ,N − 1. (3.1)

The fast Fourier transform (2.8) of the obtained discrete sequence gives us the set
Fourier coefficients f̂m. Recalling that a0 = f̂0, a1 = f̂1, and aN/2 = f̂N/2, we can easily
find these three coefficients. Another part of coefficients from a2j to a2j+1−1 is obtained by
computation of the inverse fast s Fourier transform (2.13) of coefficients from f̂2j to f̂2j+1−1.

To reconstruct the function from its wavelet coefficients, we followed the reverse
algorithm of decomposition, that is: the fast Fourier transform of the wavelet coefficients
a2j+k represents the discrete Fourier transform of the reconstructed function fr . Then, taking
into account the shifting property (2.9), we can find f as inverse fast Fourier transform of f̂ .

The results of decomposition and reconstruction of functions f(x) = 2 sin 2πx and
f(x) = 2cos2πx are presented in Figures 2 and 3.
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Figure 2: Arbitrary given function: (a) sin 2πx, (b) cos2πx (dashed line), and its reconstructed clone (solid
line) from wavelet coefficients for N = 8.
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0.25 0.75
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Figure 3: Arbitrary given function: (a) sin 2πx, (b) cos2πx (dashed line), and its reconstructed clone (solid
line) from wavelet coefficients for N = 16.

One can notice that the plots of the reconstructed functions are defined within the
interval from r = 1 to r = N. The difference between the algorithm and its corresponding
computer code consists in that we puta1in the code instead of a0, and so forth . Therefore, the
reconstruction of the function begins from point 1/N to 1, and not from 0 to N − 1.
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Figure 4: Absolute error of the reconstruction of f(x) = 2 sin 2πx forN = 8 (solid line) andN = 16 (dashed
line).
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Figure 5: Absolute error of the reconstruction of 2 sin 2πx after regression analysis.

To show the efficiency of the algorithm, it is worth to estimate the absolute error of the
reconstructed function in the discrete nods. It is well known that the absolute error is given
by

εN = |f(xr) − frec(xr)|, r = 0, . . . ,N − 1, (3.2)

where frec(xr) is the value of the reconstructed point. The dependence of absolute error of the
reconstruction of the function from lnN is represented in Figure 5 and for two partial cases,
when N = 8 and N = 16 can be found in Figure 4. As we can see, small numbers of the level
of decomposition j give a very good approximation, when we reconstruct the function.

4. Discussion of results and conclusion

Wavelets are considered as a new powerful tool for time-frequency analysis of nonlinear
phenomena. In our paper, we discussed the harmonic wavelet transform and applied its
algorithm towards decomposition and reconstruction of functions with a unit period. This
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algorithm might be useful for the wavelet solution of partial differential equations, when
it is reduced to a system of ordinary differential equations [4, 5]. The algorithm of the
decomposition consists of fast Fourier transform of the given discredited vector function,
in which approximation error is proportional to lnN and the corresponding approximation
was obtained in our simulations (see Figure 5). It means that the increase of the length of N
leads us to a slow, but steady increase of the approximation error. The line of the dependence
of the error from N was obtained by implementing the method of least squares [6]. Note that
the line of the plot takes discrete values due to the fact that N takes only integer values of 2j .

The only disadvantage of harmonic wavelets is that its decay rate is relatively
low (proportional to x−1), therefore, its localisation is not precise. However, we have this
disadvantage for the restricted Fourier transform of a harmonic wavelet of a specific level.

The application of harmonic wavelets towards particular problems is still new. The
subject is developing very fast, however, there are still many questions remain unanswered.
For example, what is the best choice of wavelet to use for a particular problem? How far does
the harmonic wavelet transform computational simplicity compensate its slow decay rate in
the x-domain? How it can be used for the solution of integrodifferential equations, and many
others. This work is in progress.
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Universidad de Zaragoza, 50015 Zaragoza, Spain

2 Departamento de Matemática Aplicada, Escuela Técnica Superior de Ingenieros Agrónomos (ETSIA),
and (IUMPA), Universidad Politécnica de Valencia, 46022 Valencia, Spain
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In signal processing, a pulse means a rapid change in the amplitude of a signal from a baseline
value to a higher or lower value, followed by a rapid return to the baseline value. A square wave
function may be viewed as a pulse that repeats its occurrence periodically but the return to the
baseline value takes some time to happen. When these periodic functions act as inputs in dynamic
systems, the standard tool commonly used to solve the associated initial value problem (IVP) is
Laplace transform and its inverse. We show how a computer algebra system may also provide the
solution of these IVP straight forwardly by adequately introducing the periodic input.
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1. Introduction

Linear differential equations L[y(t)] = f(t), where f is a known input and L is the nth-order
linear differential operator,

L = Dn + an−1(t)Dn−1 + · · · + a1(t)D + a0(t),

Di =
di

dti
, 1 ≤ i ≤ n,

(1.1)

are easily solved when it has got constant coefficients ai, the roots of the homogeneous
associated equation are known, and the input is an adequate combination of exponential,
cosine, sine, and polynomial functions.
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A different situation arises when, even the coefficients being constants, the input is a
periodic function which may fail to be continuous or may be formed by a sequence of pulses.
In this case, two widely used methods to handle the problem are Fourier series and Laplace
transforms [1, 2]. Both methods require to know their properties which on the other hand are
highly rewarding since they can help to solve some partial differential equations, too.

The proliferation in the use of computer algebra systems has facilitated and fastened
obtaining some of these solutions. In this note, we show how some of them, namely DERIVE
[3], may directly provide the solution of first- and second-order differential equations in the
presence of periodic inputs.

2. Generating periodic functions

Let us recall that a function f is called periodic with period T > 0, if for all x in the domain of
the function f(x+T) = f(x). Geometrically, this means that the graph of f repeats itself every
T units. Periodic functions do appear in a number of real-life situations such as alternating
currents, the motion of a pendulum, vibrations of a spring, and sound waves, just to mention
a few of them.

Computer algebra systems allow an easy representation of periodic functions since
they have usually got an implemented command which enables to find the remainder on an
integer division of two real numbers. With this goal, assume that we have a given function f
defined in [a, b[, b > a, and is to generate a (b − a)-periodic function, ext(f[a,b[) which repeats
the values of f in successive intervals of length b − a. Then, if DERIVE is the handy program,
it will generate ext(f[a,b[) by just substituting the variable t of f(t) by a + MOD(t − a, b − a)
[4]. MATHEMATICA [5] and MATLAB [6] programs enjoy similar capabilities by means of
their corresponding commands (cf. [7]).

Example 2.1. Represent the π-periodic function f generated as a full-wave rectified sinusoid
such that

f(t) = sin t, t ∈ [0, π[. (2.1)

Solution 1. The DERIVE program enables to introduce f by writing

SUBST
(
SIN(t), t,MOD(t,PI)

)
. (2.2)

Simplifying the above expression and plotting the generated function, we obtain the graph
that appears in Figure 1.

A similar graph is obtained with MATHEMATICA by introducing Plot(Sin(Mod(x,Pi,
0)), {x,−5, 5}, PlotRange {−1, 2}), and with MATLAB by setting, L = “ sin(mod(x,pi)), ”
ezplot(L, [−5, 5]).

From now on, we will focus on DERIVE which has also got a useful CHI (a, x, b)
function that is equally to 1 in ]a, b[ and vanishes outside this interval.

Example 2.2. Represent the 2π-periodic function such that

f(t) =

{
20, t ∈ [0, π[,

−20, t ∈ [π, 2π[.
(2.3)
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Figure 1: Full-wave rectified sinusoid.
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Figure 2: Square wave function.

Solution 2. Having in mind the above, we just have to introduce

SUBST
(
20 CHI(0, t,PI) − 20 CHI(PI, t, 2PI), t,MOD(t, 2PI)

)
. (2.4)

Simplifying the above expression and plotting the generated function, we obtain the graph
that appears in Figure 2.

Finally and for the sake of completeness, let us recall the following result which
justifies that ext(f[a,b[) is a (b − a)-periodic function which coincides with f on [a, b[. Its
easy proof follows immediately noting that if for each real number t, I(t) denotes integer
part function, that is, I(t) equals the integer number n such that n ≤ t < n + 1, then
I((t − a)/(b − a)) = 0 for t ∈ [a, b[.

Lemma 2.3. If f is a real-valued function defined over [a, b[, then

ext
(
f[a,b[

)
= f

(
t − (b − a)I

(
t − a
b − a

))
(2.5)

is a (b − a)-periodic function defined over R that coincides with f in [a, b[.
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3. Initial value problems with periodic inputs

Let us now recall some DERIVE commands that enable to solve first- and second-order linear
differential equations. Given a linear differential equation written in the form

y′ + p(x)y = q(x), (3.1)

the command LINEAR1 GEN (p, q, x, y, c) provides the general solution in terms of the
symbolic constant c. The command LINEAR1 (p, q, x, y, x0, y0) simplifies to the explicit
solution for the initial condition y = y0 at x = x0, there being other available commands
for other specific kinds of differential equations (cf. [8]).

Let us also recall that DSOLVE2 (p, q, r, x, c1, c2) provides the general solution of the
second-order linear differential equation

y′′ + p(x)·y′ + q(x)·y = r(x) (3.2)

in terms of the symbolic constants c1 and c2. Analogously,

DSOLVE2 BV
(
p, q, r, x, x0, y0, x1, y1

)
(3.3)

is simplified to the explicit solution for the boundary value conditions y = y0 at x = x0, and
y = y1 at x = x1, and DSOLVE2 IV(p, q, r, x, x0, y0, v0) to the explicit solution for the initial
value conditions y = y0 at x = x0, and y′ = v0 at x = x0.

Next, we provide an example of a first- (and another of a second-) order linear
differential equation with periodic inputs and show how the aforementioned commands can
cope with periodic inputs.

Example 3.1. Considering as input the function f of Example 2.2, solve

x′ + x = f(t). (3.4)

Solution 3. Let us combine the aforementioned implemented functions with the function f
defined in Example 2.2 by

f(t) := SUBST
(
20 CHI(0, t,PI) − 20 CHI(PI, t, 2PI), t,MOD(t, 2PI)

)
. (3.5)

The general integral is obtained by simplifying

LINEAR1 GEN
(
1, f(t),t,x,c

)
. (3.6)

Hence, we obtain the solution (note that the following expression giving x is not corrupted.
It is included exactly in the way provided by the computer algebra system since it has got



M. Legua et al. 5

−30 −20 −10 10 20

1

2

3

−1

−2

−3

Figure 3: Particular solutions.

a long fraction and its terms are continuously written throughout different lines),

x =

ê−t ·
(

10(êπ + 1) · SIGN
(

2π · FLOOR
(

t

2π

)
− t + 2π

)
·(ê2ß·FLOOR(t/(2ß))+2ß − êt) + 20 · (êß + 1) · SIGN

(
2ß · FLOOR

(
t

2π

)
− t + ß

)
· (êt − ê2ß·FLOOR(

êß+

t/(2ß))+ß) + 10 · (êß + 1) · SIGN
(
2ß · FLOOR

(
t

2π

)
− t

)
· (ê2ß·FLOOR(t/(2ß)) − êt)− 10 · ê2ß·FLOOR(t/(2ß)) · (ê3ß − ê2ß + êß − 1) + c · (êß + 1)

)

1

(3.7)

making c take a finite set of values, we get the corresponding particular solutions, for example,
with the integer values between −10 and 10, we obtain 21 particular solutions whose graphs
are depicted in Figure 3.

In what concerns second-order differential equations, let us recall that the forced motion
of a mass m attached to a vibrating spring with damping constant α and spring constant k is
modeled by

mx ′′ + αx ′ + kx = f(t), (3.8)

where f(t) is an external force acting upon m. When the external force is identically equal
to zero, the motion is called a free motion and it is well known that its solution (underdamped,
critically damped, or overdamped) depends very heavily upon the nature of the characteristic
roots. Next, we solve a problem where the external force is a wave square function (see [9,
pages 336–341]).

Example 3.2. A mass of 1 g is attached to the end of a spring with k = 20 dyn/cm and the
air resistance acts upon the mass with a force that is 4 times its velocity at time t. The mass
has got no motion at its equilibrium position when it is subjected to an external periodic
force equal to a square wave function of amplitude 20 cm. Find the position x(t) of the
mass.
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Figure 4: Position of the mass.

Solution 4. In this case, the position x is set by the initial value problem

x ′′ + 4x′ + 20x = f(t), x(0) = x ′(0) = 0, (3.9)

where f is the 2π-periodic depicted in Example 2.2. Thus the position x is obtained by
simplifying

DSOLVE2 IV(4, 20, f(t), t, 0, 0, 0). (3.10)

The solution provided by the computer algebra system (remember that long fraction terms
are continuously written throughout different lines) is the following one,

ê−2t ·
(
(ê2π + 1) · SIGN

(
2π · FLOOR

(
t

2π

)
− t + 2π

)
·(ê4ß·FLOOR(t/(2ß))+4ß · (2COS(4t) + SIN(4t)) − 2ê2t) + 2 · (ê2ß + 1) · SIGN

(
2ß · FLOOR

(
t

2π

)

−t + ß

)
· (2ê2t − ê4ß·FLOOR(t/(2ß))+2ß · (2COS(4t) + SIN(4t))) + (ê2ß + 1) · SIGN

(
2ß · FLOOR

(
t

2π

)
− t

)
· (ê4ß·FLOOR(t/(2ß)) · (2COS(4t) + SI

4(ê2ß + 1)

N(4t)) − 2ê2t) + (1 − ê2ß) · (2COS(4t) + SIN(4t)) · (ê4ß·FLOOR(t/(2ß)) · (ê4ß + 1) − 2)
)

(3.11)

its graph is plotted in Figure 4.

4. Conclusion

Laplace transform is an important tool classically used to solve initial value problems in the
presence of a periodic external force. For its adequate use, properties of direct and inverse
Laplace transforms are required and they are extensively studied in many textbooks.

In this paper, we have seen how DERIVE enables to avoid this in a very simple
way. This is achieved by using its standard routines that provide the general solution of
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a differential equation and the exact solution of a given initial value problem, along with
the possibility of handling periodic functions by means of its MOD command.

Finally, DERIVE facilitates to plot the solution and its evaluation at a given point if
desired.
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The aim of distributed denial-of-service (DDOS) flood attacks is to overwhelm the attacked site
or to make its service performance deterioration considerably by sending flood packets to the
target from the machines distributed all over the world. This is a kind of local behavior of traffic
at the protected site because the attacked site can be recovered to its normal service state sooner
or later even though it is in reality overwhelmed during attack. From a view of mathematics, it
can be taken as a kind of short-range phenomenon in computer networks. In this paper, we use
the Hurst parameter (H) to measure the local irregularity or self-similarity of traffic under DDOS
flood attack provided that fractional Gaussian noise (fGn) is used as the traffic model. As flood
attack packets of DDOS make the H value of arrival traffic vary significantly away from that of
traffic normally arriving at the protected site, we discuss a method to statistically detect signs of
DDOS flood attacks with predetermined detection probability and false alarm probability.

Copyright q 2008 M. Li and W. Zhao. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

IP Networks are subject to electronic attacks [1]. An intrusion detection system (IDS) collects
information from a variety of systems and network sources to analyze the information of
attack signs. A network-based IDS monitors the traffic on its network as a data source [2]. For
distributed denial-of-service (DDOS) flood attack, an intruder bombs attack packets upon a
site (victim) with a huge amount of traffic the sources of which are distributed over the world
[3]. Hence the pattern of traffic under DDOS flood attack may suddenly differ significantly
from the normal pattern of the arrival traffic. From the perspective of dynamical aspects
for limited time interval in physics [4], one may regard this sudden change as a specific
“pulse.” Though DDOS flood attack may not be a sole factor to make traffic pattern vary
significantly, we assume that secure officers can distinguish significant variation of monitored
traffic pattern caused by other known factors (e.g., normally heavy traffic) from DDOS flood
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attack. Without confusions causing, the term abnormal traffic used in this paper specifically
implies a traffic series that has significant variation of traffic pattern caused by DDOS flood
attack.

In this research, we ponder two fundamental issues in detection. One is feature
extraction of monitored traffic time series. The other is detection scheme that can be used
to assure predetermined detection probability (Pd) and false alarm probability (Pf). The
first issue will be discussed in Section 2 from a view of feature extraction of traffic based
on self-similarity of traffic. The second will be dissertated in Section 3 based on statistical
detection. Section 4 will explain the performance analysis of the present detection system. A
case study is demonstrated in Section 5. Discussions are given in Section 6, which is followed
by conclusions.

2. Feature extraction of traffic

2.1. Self-similar traffic

Computer scientists in the last decade discovered that traffic is a type of fractal time series. It
has the properties of self-similarity, long memory, and multiscales (see e.g., [5]). A commonly
used model in traffic engineering is fractional Gaussian noise (fGn) (see e.g., [6–8]).

Let B(t), t ∈ (0,∞) be Wiener Brownian motion. Let BH(t) be fractional Brownian
motion with the Hurst parameter H ∈ (0, 1) [9]. Let Γ(·) be Gamma function. Then by using
fractional calculus, BH(t) is expressed by

BH(t) − BH(0) =
1

Γ(H + 1/2)

{∫0

−∞

[
(t − u)H−0.5 − (−u)H−0.5]dB(u) +

∫ t

0
(t − u)H−0.5 dB(u)

}
.

(2.1)

Let G(t) be the increment series of BH(t):

G(t) = BH(t + a) − BH(t), (2.2)

where a is a real number. Then G(t) is fGn [9]. The autocorrelation function (ACF) of fGn in
the discrete case is given by

ρ(τ) =
σ2

2

[∣∣|τ | + 1
∣∣2H − 2|τ |2H +

∣∣|τ | − 1
∣∣2H

]
, (2.3a)

where σ2 = Γ(2 −H)cos(πH)/πH(2H − 1) is the intensity of fGn [10]. The normalized ACF
of fGn is given by

R(τ) =
1
2

[∣∣|τ | + 1
∣∣2H − 2|τ |2H +

∣∣|τ | − 1
∣∣2H

]
. (2.3b)

The relationship between the fractal dimension of fGn and H is given by

D = 2 −H. (2.4)

Approximating the right side of (2.3b) with the second-order differential of 0.5(τ)2H ,
see [9, H15, page 350], for τ ≥ 0, yields

0.5
[
(τ + 1)2H − 2τ2H + (τ − 1)2H] ≈ H(2H − 1)τ2H−2. (2.5)
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Let y and R be a traffic series and its ACF, respectively. Then according to (2.5),

R(τ)∼ cτ2H−2, H ∈ (0.5, 1), (2.6)

where ∼ implies the asymptotical equivalence under the limit τ→∞ and c > 0 is a constant
[11].

The ACF (2.5) is nonsummable for H > 0.5, implying long-range dependence (LRD).
Hence H is a measure of LRD of traffic. It is kindly noted that LRD of traffic does not
mean that DDOS attacking is a long-range phenomenon. On the contrary, DDOS attacking
and its detection are short-range phenomena since both sides, namely, an attacker and its
opponent, are engaged with each other during a short period of time. Such a battle makes
local irregularity of traffic vary dramatically [12].

Without losing generality, we consider traffic series y in the discrete case. By dividing y
into nonoverlapping blocks of size L and averaging over each block, we obtain another series
given by

y(i)(L) =
1
L

(i+1)L∑

j=iL

y(j). (2.7)

According to the analysis in [5, 9, 11], in the fGn sense, one has

Var
(
y(L)) = L2H−2 Var(y), (2.8)

where Var implies the variance operator. Thus the self-similarity is measured by H.
A series encountered in engineering is usually of finite length. Let y be a series

of P length. Divide it into N nonoverlapping sections. Each section is divided into M
nonoverlapping segments. Divide each segment into K nonoverlapping blocks. Each block
is of L length. Let y(i)(L)m (n) be the series with aggregated level L in the mth segment of the
nth section (m = 0, 1, . . . ,M − 1; n = 0, 1, . . . ,N − 1). Let Hm(n) be the H value of y(i)(L)m (n).
Let r(k;Hm(n)) be the measured ACF of y(i)(L)m (n) in the normalized case. The theoretic ACF
form corresponding y(i)(L)m (n) in the fGn sense is given by

R
(
k;Hm(n)

)
= 0.5

[∣∣|k| + 1
∣∣2Hm(n) − 2|k|2Hm(n) +

∣∣|k| − 1
∣∣2Hm(n)

]
. (2.9)

The above expression exhibits the multifractal property of traffic as can be seen from [13].
Let

J
(
Hm(n)

)
=
∑

k

[
R
(
k;Hm(n)

) − r(k;Hm(n)
)]2 (2.10)

be the cost function. Then one has

Hm(n) = arg min J
[
Hm(n)

]
. (2.11)

Averaging Hm(n) in terms of index m yields

H(n) =
1
M

M−1∑

m=0

Hm(n), (2.12)

representing the H estimate of the series in the nth section.
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Figure 1: Normal traffic at input of a server.
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Figure 2: Illustration of abnormal traffic.

Usually, H(n1) /=H(n2) for n1 /= n2. However, stationarity of traffic time series implies
that H(n) at a specific site is a number falling within a certain confidence interval [5,
Paragraph 5, Section 5, page 966]. In practical terms, a normality assumption for H(n) is
quite accurate in most cases for M > 10 regardless of probability distribution function of H
[14]. Thus we take

Hx = E
[
H(n)

]
(2.13)

as a mean estimate of H of x, where E is the mean operator. It can be taken as a template of H
of x for the purpose of statistical detection. The appendix gives a case of the H estimation of
a real-traffic series to clarify the reasonableness of H in featuring traffic time series.

2.2. Characterizing traffic time series with H

Let x be normal traffic time series. Normally, the site serves x peacefully though x may
sometimes be unpleasantly delayed because of the normal traffic jam. The arrival traffic x is
contributed by many connections distributed all over the world. Figure 1 shows x contributed
by traffic from d connections. From previous discussions, we see that x can be characterized
by the Hurst parameter and we denote it as Hx.

Assume that the site is intruded by DDOS flood attacking. Then actual arrival traffic
(abnormal traffic) consists of normal traffic x and attack traffic a, see Figure 2, where a is
contributed by e connections. We use Hy as a feature of y.

3. Detection method and system structure

To explain our detection principle, we introduce three terms. Correctly recognizing an
abnormal sign is termed detection; failing to recognize it, miss; mistakenly recognizing a
normal as abnormal is a false alarm.
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Let ξ = ‖Hx − Hy‖. Then ξ represents the deviation of H of monitored traffic time
series. Let V > 0 be the threshold. Then the detection hypotheses are as follows. ξ > V ,
implies detection, while ς = ‖Hx −Hxl‖ > V represents false alarm, where Hxl stands for H
which is not used as the template but obtained when there is no attacking. Clearly, ξ and ζ are
random variables. Mathematically, there are many distance measures available [15–17], but
the following works well:

ξ = E

[
∑

k

∣∣∣∣
Hy

Hx
− log

Hy

Hx
− 1

∣∣∣∣

]
. (3.1)

According to the previous discussions, we give the system diagram in Figure 3. The
measured arrival traffic first passes through an H estimator. The result of H estimator goes
to template database to produce the template Hx. In addition, it outputs an online estimate
of Hy. Hx and Hy are compared in the distance detector. The comparison result ξ is fed into
threshold detector to compare with a given threshold V. In the stage of decision analysis, the
output of the threshold detector is analyzed and its output gives a sign of detection according
to preset detection probability and false alarm probability.

4. Performance analysis

With the partition explained in Section 2, we see that there is a value of ξ representing the
deviation of H of y in each segment. Therefore, in each section, ξ is a random sequence of M
length. Denote ξ as the expectation of ξ in each section. Then ξ is a random sequence of N
length. In the case of N ≥ 10, ξ well obeys Gaussian distribution [14]. For the simplicity, we
still denote ξ as ξ.

4.1. Detection probability

Let μξ and σ2
ξ be the expectation and the variance of ξ, respectively. Then

ξ∼N(
μξ, σ

2
ξ

)
=

1√
2πσξ

e−(ξ−μξ)
2/2σ2

ξ . (4.1)

Let

Φ(t) =
∫ t

−∞

1√
2π

e−t
2/2 dt. (4.2)
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Figure 4: Detection probability.

Then detection probability is given by

Pd = P{V < ξ <∞} =
∫∞

(V−μξ)/σξ

1√
2π

e−t
2/2 dt = 1 −Φ

[
V − μξ
σξ

]
. (4.3)

4.2. False alarm probability

Let μζ and σ2
ς be the mean and the variance of ζ. Then false alarm probability is given by

Pf = P{V < ζ <∞} =
∫∞

(V−μς)/σς

1√
2π

e−t
2/2 dt = 1 −Φ

[
V − μζ
σζ

]
. (4.4)

4.3. Miss probability

Let Pm be miss probability. Then

Pm = P{−∞ < ξ < V } =
∫ (V−μξ)/σξ

−∞

1√
2π

e−t
2/2 dt = Φ

[
V − μξ
σξ

]
. (4.5)

Generally, μζ = 0. Besides, the numeric computation in data processing can be
arranged such that σζ = σξ = σ. In this case, three probabilities are given by

Pd =
∫∞

(V−μξ)/σ

1√
2π

e−t
2/2 dt = 1 −Φ

[
V − μξ
σ

]
,

Pf =
∫∞

V/σ

1√
2π

e−t
2/2 dt = 1 −Φ

(
V

σ

)
,

Pm =
∫ (V−μξ)/σ

−∞

1√
2π

e−t
2/2 dt = 1 −Φ

[
V − μξ
σ

]
.

(4.6)

Figures 4–6 show the curves of three distributions, respectively. As Pd + Pm = 1, high Pd
implies low Pm and vice versa.
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4.4. Threshold and detection region

As can be seen from the previous discussions, the selection of a threshold value is crucial to
our system. In fact, given a false alarm probability f, we want to find the threshold Vf such
that P(Vf) ≤ f . Clearly,

Vf ≥ −σΦ−1(f). (4.7)

If f = 0 and when the selected precision is 4, we obtain

Vf ≥ 4σ. (4.8)

Given a detection probability d, we want to find the threshold Vd such that Pd(Vd) ≥ d.
Clearly,

Vd ≤ μξ − σΦ−1(d), if μξ − σΦ−1(d) > 0. (4.9)

In the case of d = 1,

Vd ≤ μξ − 4σ, ifμξ − 4σ > 0. (4.10)

Therefore, when −σΦ−1(f) < μξ − σΦ−1(d) and V ∈ [−σΦ−1(f), μξ − σΦ−1(d)], Pd ≥ d and
Pf ≤ f are assured. That is,

Pd ≥ d,
Pf ≤ f,

if V ∈ [ − σΦ−1(f), μξ − σΦ−1(d)
]
, μξ − σΦ−1(d) > 0. (4.11)



8 Mathematical Problems in Engineering

0 50 100 150 200 250 300
V

0.5

1

P
d
(V

),
P
f
(V

),
P
m
(V

)
Pd(V ); (80, 10)
Pf (V ); (0, 10)
Pm(V ); (80, 10)

Figure 7: Intersection of three probability distributions: detection region.

0 333.33 666.67 1000
n

150

200

250

ξ

Figure 8: Random variable ξ.

In the case of d = 1 and f = 0,

Pd = 1,

Pf = 0,
if V ∈ [

4σ, μξ − 4σ
]
, μξ − 4σ > 0. (4.12)

The constraint of (4.12) is given by μξ > 8σ.
Obviously, the detection region is the intersection of three probability functions. Under

the condition of μξ = 80 and σ = 10, the detection region is shown in Figure 7.

5. A case study

Suppose the template H0 = 0.7671 as described in the appendix. Assume that the confidence
level is 99.9999%. Thus we suppose y′s H ∈ (0.5000, 0.7669) or (0.7673, 0.9900) during the
transition process of intrusion. In this case study, 1000 points of Hs in (0.5000, 0.7669) or
(0.7673,0.9900) are randomly selected to simulate the abnormal traffic deviating from the
normal one. The error sequence is indicated in Figure 8. By the numeric computation, we
obtain μξ = 210.3011 and σ = 7.7490. Therefore, we obtain the probability distributions
for detection, false alarm and miss as shown in Figure 9. Under the conditions of Pd = 1
and Pf = 0, we obtain Vmin = 30.9951 and Vmax = 179.3052. Hence when we select
V ∈ [30.9951, 179.3052], we have 99.9999% confidence to say that Pd = 1 and Pf = 0 are
assured, which can be easily observed from Figure 9.

6. Discussions

Since Yahoo servers were successfully attacked in 2001, the issue of detecting DDOS
flood attacking has been paid much attention to. Various methods and systems have been
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proposed, see, for example, [18–25]. As known, traffic under DDOS flood attack must be
significantly different from that of normal one [25]. Otherwise, DDOS flood attack would
have no effect. From this point of view, the value of H of traffic under DDOS flood attacks is
considerably different from that of normal one, see [12] for details.

For a stationary random time series of finite length, ACF and power spectrum
density (PSD) function are commonly used in engineering for feature extraction in statistical
classifications [16, 17]. However, the PSD of traffic does not exist in the domain of
ordinary functions since it has long memory [8]. To avoid such a difficulty in mathematics,
consequently, ACF of traffic is considered for feature extraction in our early work [25]. This
paper focuses on detection of local variations of traffic based on the self-similarity of traffic.
Thus it suggests a new method that substantially develops the work of [25], from the point
of view of traffic pattern matching, because feature extraction of traffic time series by using a
single parameter H makes pattern matching more efficient.

7. Conclusions

We have discussed the characterization of the local irregularity of traffic by H(n). We have
explained a principle of statistical detection to capture signs of DDOS flood attacking with
predetermined detection probability and false alarm probability based on the variation of the
local irregularity of traffic.

Appendix

Demonstration of H estimation of a real-traffic series

This appendix gives a demonstration with a real-traffic series, named LBL-PKT-4 [26, 27].
Denote x(i) as the series of LBL-PKT-4, indicating the number of bytes in the ith packet. The
length of that series is 1.3 million. The first 1024 points of that series is plotted in Figure 10(a).
Divide x(i) into 32 nonoverlapping sections. Computing H in each section yields H(n) (n =
0, 1, . . . , 31) as shown in Figure 10(b). Its histogram is indicated in Figure 10(c).

According to (2.13), we have Hx = 0.7671. The confidence interval with 95%
confidence level is [0.7670,0.7672]. Hence we have 95% confidence to say that the H estimate
in each section of that series takes Hx = 0.7671 as its approximation with fluctuation not
greater than 1 × 10−4. Further, it is easy to obtain that the confidence interval with 99.9999%
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Figure 10: Verification of statistical invariable H. (a) A real-traffic time series; (b) estimate H(n); (c)
histogram of H(n).

confidence level is [0.7669, 0.7673]. Hence we have 99.9999% confidence to say that the H
estimate in each section of that series takes Hx = 0.7671 as its approximation with fluctuation
not greater than 2 × 10−4.
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The cutting sound in the audible range includes plenty of tool wear information. The sound
is sampled by the acoustic emission (AE) sensor as a short-time sequence, then worn wear
can be detected by the Duffing-Holmes oscillator. A novel engineering method is proposed for
determining the chaotic threshold of the Duffing-Holmes oscillator. First, a rough threshold value
is calculated by local Lyapunov exponents with a step size 0.1. Second, the exact threshold value is
calculated by the Duffing-Holmes system in terms of the law of the golden section. The advantage
of the method is low computation cost. The feasibility for tool condition detection is demonstrated
by the 27 kinds of cutting conditions with sharp tool and worn tool in turning experiments. The
54 group data sampled as noisy are embedded into the Duffing-Holmes oscillator, respectively.
Finally, one chaotic threshold is determined conveniently which can distinguish between worn
tool or sharp tool.

Copyright q 2008 Wanqing Song et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Tool wear is a complex phenomenon occurring in metal cutting processes. A worn tool
adversely affects the surface finish of the work piece and therefore there is a need to detect
tool wear which alerts the operator to the tool wear state, thus, avoiding undesirable product
quality. However, accurately determining cutting conditions remains difficult.

Acoustic emission based on tool condition monitoring has been available for
approximately 17 years, most of them use analog root mean square of the signal to monitor
tool wear or detect breakages. Damodarasamy and Raman [1] combined the radial force, feed
force, and AE to model the tool flank wear in a turning operation. Wanqing et al. [2] used a
wavelet transform and fractal algorithm to capture the features of the AE signals. Yao et al. [3]
used a fuzzy neural network to describe the relation between the monitoring features, which
are derived from wavelet-based AE signals, and the tool wear condition. The data processing
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methods have shown acoustic emission signal power to increase with tool wear owing to
increased friction effect [4].

Nearly years, chaotic oscillator is used widely to detect weak period signal [5–8]. The
weak signal detection is a central problem in the general field of signal processing and the
use of chaos theory in weak signal detection is also a topic of interest in chaos control. At
present, however, this research is mainly theory and simulation, engineering practice is a
few examples. The phase transforms of Duffing-Holmes oscillator are sensitive to periodic
signal and periodic interference signals which have larger angular frequency difference from
the referential signal, but immune to the random noisy [5, 9]. Since tool wear is a gradual
processing during the turning conditions, the cutting sound is composed of periodic signals
and a large amount of periodic interference signals and the random noise. Of course, the
frequency and amplitude of these signals also are changing gradually along with tool wear
except of the random noise. Therefore, the tool wear processing belongs to detect weak
periodic signals in strong noisy and very appropriately by Duffing-Holmes oscillator.

Machining tests were carried out on HL-32 NC turning center. This lathe does not
have a tailstock. Tungsten carbide finishing tool was used to turn free machining mild steel.
The work material was chosen for ease of machining, allowing for generation of surfaces of
varying quality without the use of cutting fluids. The experiment equipments are shown in
Figure 1. The piezoelectric AE sensor (CAE-150) was mounted on the tool holder. A light
coating of petroleum jelly was applied under the sensor to ensure good acoustic emission
coupling. Because of high impedance of the sensor, it must be directly connected to a buffer
amplifier. Low-frequency noise components, which are inevitably present in AE signal,
cannot represent the tool’s condition and hence useless. Therefore, those components should
be eliminated (highpass filtered) at the earliest possible stage of signal processing to enable
usage of full amplitude range of the equipment. The filtered signals were sampled at 4 MHz
using a digital storage oscillograph to a PC, see Figure 1. All test data were processed and
analyzed by using the Matlab software.

In the experiment, according to the cutting conditions which are presented in Table 1,
a sharp tool and a worn tool was used, respectively.

The data sampled by AE, 54 group data, are merged into Duffing-Holmes equation as
an exterior perturbation of the chaotic system, respectively. Then, with tool wear, the gradual
change sound signal under the background of strong noise can be detected by identifying the
phase space trajectory. In terms of the results from theoretical calculation, it is proved that
there is a huge difference in the phase space trajectories between the chaotic state and the
periodic state, and this difference can be used as the evidence in the chaotic system for the
detection of tool wear signal based on Duffing oscillator. Meanwhile, Lyapunov exponents
are adopted as threshold value evaluated roughly for chaotic critical state, the law of golden
section to determine the threshold is proposed and the threshold in chaotic critical state is
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Table 1: Experimental cutting conditions.

No. Speed Depth of cut Feed No. Speed Depth of cut Feed
r/min mm mm/r r/min mm mm/r

1 1500 1 0.1 15 1000 0.2 0.05
2 1500 0.5 0.1 16 800 1 0.05
3 1500 0.2 0.1 17 800 0.5 0.05
4 1000 1 0.1 18 800 0.2 0.05
5 1000 0.5 0.1 19 1500 1 0.02
6 1000 0.2 0.1 20 1500 0.5 0.02
7 800 1 0.1 21 1500 0.2 0.02
8 800 0.5 0.1 22 1000 1 0.02
9 800 0.2 0.1 23 1000 0.5 0.02
10 1500 1 0.05 24 1000 0.2 0.02
11 1500 0.5 0.05 25 800 1 0.02
12 1500 0.2 0.05 26 800 0.5 0.02
13 1000 1 0.05 27 800 0.2 0.02
14 1000 0.5 0.05

evaluated more accurately. Melniko’s function also can be used to calculate the threshold
for chaos, but Melniko’s function only determines the threshold from order to chaos, but
Lyapunov exponents can determine the threshold from chaos to order [7, 10, 11]. We describe
a means for tool wear whether or not a system is chaotic. When the tool is sharp, the Duffing-
Holmes oscillator is chaos in state space trajectory, when the tool is wear, the Duffing-Holmes
oscillator takes on periodic trajectory from chaos to order in state space.

2. Principle detecting weak signal based on Duffing-Holmes oscillator

The Duffing-Holmes is the second differential equation containing the item of the power five,
which can be motivated by exterior stimulations to engender oscillation movement and then
generate chaotic trajectory or periodic trajectory; its dynamic equation is as follows:

x ′′(t) + 0.5x ′(t) − x3(t) + x5(t) = r sin(t) + (input), (2.1)

where 0.5 denotes the ratio of damping, r sin(t) is the forced periodic terms, which is the
reference signal and as an internal signal, −x3(t) + x5(t) term is the nonlinear recovery force
in system 1, the kinematical state of the system mainly depends on this recovery force term
r sin(t). Input terms are the signal measured which is imported to the dynamic system as
the supplement of special parameters of chaotic oscillator; we can adjust the amplitude r of
the reference signal to the special value as in the chaotic critical state. The value is called
threshold value in the chaotic system 1. If a weak periodic signal is merged into system 1, so
long as the threshold is adjusted appropriately, the behavior of the Duffing-Holmes will be
changed dramatically from chaotic states to periodic states. For example, let input terms be
f(t) = 0.2 sin(t), then the Duffing-Holmes equation is

x ′′(t) + 0.5x ′(t) − x3(t) + x5(t) = r sin(t) + f(t), (2.2)
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when f(t) contains a weak white noisy, that is, f(t) = 0.2 sin(t) + 0.01 rand, rand is a random
white noisy (0 ∼ 1), input terms f(t) are a low-amplitude periodicsignal with white noisy,
then the Duffing-Holmes equation is

x ′′(t) + 0.5x ′(t) − x3(t) + x5(t) = r sin(t) + f(t), (2.3)

when one weak periodic noisy signal is merged into input terms f(t), that is,

f̂i =fi, i /= 16 + 128k,

f̂16+128k =f15+128k + 0.04, k = 0, 1, 2, 3, . . . ,
(2.4)

then

x ′′(t) + 0.5x ′(t) − x3(t) + x5(t) = r sin(t) + f(t). (2.5)

Let dynamical system 2, 3, and 4 initial point x ′(0) = 0, x(0) = 0, then set threshold rd =
0.52544 as the critical state for the system 2, integrated with Runge-Kutta method of fourth
order with a fixed step size t = 0.01 second. Total time is 16 seconds. The phase space in
systems 2 and 3 takes on periodic state trajectory, but phase space in system 4 is chaotic
trajectory.

When a strong noise [0.2 sin(t)] without white noisy or with white noisy is added to
the Duffing-Holmes system, both systems 2 and 3 take on the periodic state. It means the
random noisy is not influenced on the state of the dynamic system. Once the strong noisy
contains a weak periodic noise signal, the behaviors of system 4 is changed immediately from
a large-scale periodic state to a chaotic state. The temporal waveform of f(t), the phase orbit,
and the temporal waveforms of systems 3 and 4 are shown in Figures 2 and 3. In other words,
the Duffing-Holmes takes on some immunity to random noisy [12] and strong sensitivity to
some weak periodic signal. Since 0.01 rand term is too small, it is not obvious in the temporal
waveform.

3. Threshold calculated based on Lyapunov exponents

Lyapunov exponents are frequently computed measure for the characteristic of chaotic
dynamics [10, 11, 13]. It describes a method for diagnosing whether or not a system is chaotic.
To confirm the existence of the weak periodic signal to be detected and the amplitude of the
signal, we need to define a proper index for denoting the change in the states of the chaos
detection system. The index should be sensitive to a weak periodic signal, but insensitive
to the random noise from the viewpoint of statistical characteristics. Thus, the dynamic
properties of a certain system are reflected statistically by Lyapunov exponents which are
described as follows [14–16].

Dynamic system x ′′(t) + 0.5x ′(t) − x3(t) + x5(t) = r cos(t) is transformed below:

y(t) = x ′(t),

y ′(t) = −0.5y(t) + x3(t) − x5(t) + r cos(t).
(3.1)
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Figure 2: Dynamic character with weak periodic noisy signal, y(t) = x ′(t).

To a two-dimensional plane x(t), y(t) = x ′(t), two Lyapunov exponents can be solved
in system 5. When the system is in the large-scale periodic state, both of the two Lyapunov
exponents are negative. When the system is in the chaotic state, at least one of the two
Lyapunov exponents of the system is positive which has behaviors of the chaos. Therefore,
the detection system is established on the basis of Lyapunov exponents.

Let initial condition x(0) = 1, x ′(0) = 1, with about typical 30 points in the region
r = [0.5, 1] chosen to calculate the Lyapunov exponents (LE), the computation precision of
r is two digits after the decimal dot, see Table 2. LE curve are plotted in Figure 4. r = 0.70,
system 5 takes on the chaotic state, and r = 0.78, system 5 takes on the periodic state. They
are shown in Figures 5 and 6.
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Figure 3: Dynamic character without weak periodic noisy signal, y(t) = x ′(t).

Obviously, LE changed from positive to negative correspond to region r = [0.733,
0.734] based on the chaotic system extreme sensitivity to parameters changed. If the threshold
r is equal to 0.733, because computation precision of r is only three effective digits after
decimal dot, the sensitivity from chaos to periodic is not enough. Above, computation cost
spends about 3 hours for typical 30 point sets of r with Matlab. In order to improve sensitivity
of system 5, however, if the computation precision of r is risen 4 digits after decimal dot,
namely, r = [0.5200, 0.9800], time interval 0.01 second and 1000 steps, the computation
cost will spend about 30 hours with Matlab. The more high sensitivity is, the more long
computation time is.
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Figure 4: The relational curve of LE and r.

Table 2: Lyapunov exponents in Duffing-Holmes.

No. r Max LE Min LE No. r Max LE Min LE
1 0.52 0.185 −0.685 16 0.74 −0.18527 −0.31473
2 0.54 0.11914 −0.61914 17 0.75 −0.22179 −0.27821
3 0.56 0.12314 −0.62314 18 0.76 −0.23059 −0.26941
4 0.58 0.15765 −0.65765 19 0.77 −0.23088 −0.26912
5 0.6 0.00782 −0.50782 20 0.78 −0.22217 −0.27783
6 0.62 0.13867 −0.63867 21 0.8 −0.24112 −0.25888
7 0.64 0.15349 −0.65349 22 0.82 −0.23407 −0.26893
8 0.66 0.17321 −0.67321 23 0.84 −0.23449 −0.26551
9 0.68 0.16921 −0.66921 24 0.86 −0.24647 −0.25353
10 0.7 0.17056 −0.67056 25 0.88 −0.24773 −0.25227
11 0.71 0.17226 −0.67226 26 0.9 −0.24394 −0.25606
12 0.72 0.19317 −0.69317 27 0.92 −0.22882 −0.27118
13 0.73 0.185 −0.685 28 0.94 −0.24693 −0.25307
14 0.733 0.164 −0.664 29 0.96 −0.24271 −0.25729
15 0.734 −0.20655 −0.29345 30 0.98 −0.23848 −0.26152

4. Threshold computation combined the law of golden section
with Lyapunov exponents

First, rough region of the system threshold r is estimated by Lyapunov exponents with
computation precision to be one digit after decimal dot, the calculating process only spends
about 40 minutes in the region r = [0, 1] with step size 0.1. Whatever any kinds of weak
external signal merged, the region of r = [0.7, 0.8] is always sensitivity region changed from
chaotic state to large periodic state in system 5. Since the law of the golden section can search
optimizing solution quickly [12], the threshold value is determined by the golden section
accurately in the region r = [0.7, 0.8]. The Duffing-Holmes oscillator is below:

x ′′(t) + 0.5x ′(t) − x3(t) + x5(t) = r cos(t). (4.1)
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Figure 5: r = 0.70, system character and LE.

Let initial condition x(0) = 1, x ′(0) = 1, the computation precision of threshold value is six
digits after the decimal dot in system 6. The method is as follows:

(1) because 0.7 corresponds to chaotic state and 0.8 corresponding periodic state, r =
0.75 is the middle value between 0.7 and 0.8.

(2) because r = 0.75 corresponds to periodic states, the region of r is [0.7, 0.75]. Then, r
is accumulated from 0.7 to 0.75 with the step 0.01 up to 0.71 which corresponds to
chaotic state and 0.72 which corresponds to periodic state. 0.715 is the middle value
between 0.71 and 0.72.
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Figure 6: r = 0.78, system character and LE.

(3) because r = 0.715 corresponds to chaotic state, the region of r is taken [0.715, 0.72].
Then, r is accumulated from 0.715 to 0.72 with the step 0.001 up to r = 0.717 which
corresponds to chaotic state and 0.718 which corresponds to periodic state, 0.7175
is the middle value between 0.717 and 0.718.

(4) because r = 0.7175 corresponds to periodic state, the region of r is [0.717, 0.7175].
Then, r is accumulated from 0.717 to 0.7175 with the step 0.0001 up to 0.7173 which
corresponds to chaotic state and 0.7174 which corresponds to periodic state. 0.71735
is the middle value between 0.7173 and 0.7174.
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Table 3: Threshold r based on the golden section in the region r = [0.7, 0.8].

Chaos, r1 Phase plane Periodic, r2 Phase plane Golden section, r Phase plane

0.7 0.8
r1 + r2

2

0.71 0.72 0.75

0.717 0.718 0.715

0.7173 0.7174 0.7175

0.71732 0.71733 0.71735

0.717329 0.717330 0.717325

(5) because r = 0.71735 corresponds to periodic state, the region of r is [0.7173, 0.71735].
Then, r is accumulated from 0.7173 to 0.71735 with the step 0.00001 up to 0.71732
which corresponds to chaotic state and 0.71733 which corresponds to periodic state.
0.717325 is the middle value between 0.71732 and 0.71733.

(6) because r = 0.717325 corresponds to periodic state, the region of r is [0.717325,
0.71733]. Then, r is accumulated from 0.717325 to 0.71733 with the step 0.000001 up
to 0.717329 which corresponds to chaotic state and 0.717330 which corresponds to
periodic state.

(7) final, the threshold value calculated is 0.717329. When a weak periodic signal is
merged into system 6, the system takes on the large-scale periodic state. Calculating
process is shown in Table 3.

The computation processing only spends about 10 minutes for computation precision
to be six digits after the decimal dot. The method has important meaning for engineering
practice. 30th steps calculated yield the search optimization threshold value. This is the most
amounts of the point sets in the case.

5. Experiment work

The sound signal of sharp tool sampled by AE as an initial condition is merged into the
Duffing-Holmes system 6 which is in the chaotic critical state, (its phase plane changes from
the chaotic state to the large-scale periodic state), the movement state of the system will
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Figure 7: Waveform of sharp tool in first condition.
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Figure 8: Waveform of wear tool in first condition.

transit immediately from the chaotic state to the large-scale periodic state. The simulation
of systems 3 an 4 above has only one input signal, however, for this practice engineering,
since the sharp tool and wear tool have 27 groups data, respectively, see systems 7 and 8, the
threshold in the both the systems must satisfy to distinguish sharp tool and wear tool in 54
group data. The dynamic system 6 is transformed to systems 7 and 8. When the data of sharp
tool are embedded to the chaotic system 7, the phase space is chaotic state; however, when
the data of wear tool are embedded to the chaotic system 8, phase space change is the large-
scale periodic state. The method based on the change of the dynamic behaviors of a chaotic
system (chaotic state, periodic state) has been proposed for recognizing, where there exists a
signal to be detected in a system, and greatly immune to the random noise of arbitrary zero
average value with unknown probability distribution. The threshold value r should firstly be
determined in system 7, which is the critical problem of wear signal chaotic detection. The
algorithm to determine the threshold value, using Lyapunov exponents method based on the
golden section is detailed as follows:

x ′′(t) + 0.5x ′(t) − x3(t) + x5(t) = r cos(t) + sharp 1,

x ′′(t) + 0.5x ′(t) − x3(t) + x5(t) = r cos(t) + wear 1.
(5.1)

Since the signal amplitude merged is too bigger than interior perturbation force r, the
signal sampled is decreased 100 times, thus, signals embedded to Duffing-Holmes are weak
perturbation noisy, see systems 9 and 10. The interior perturbation force r is still main signal
in the dynamic systems 9 and 10. Sharp 1 signal and wear 1 are shown in Figures 7 and 8
in time domain the initial condition is [0, 0] in systems 9 and 10 frequency sampled is 0.001
second. We set up a chaotic oscillator sensitive to weak periodic signals based on the Duffing-
Holmes equation (5.2), and poising the system at its critical state

x ′′(t) + 0.5x ′(t) − x3(t) + x5(t) = r cos(t) + 0.01 sharp 1, (5.2)

x ′′(t) + 0.5x ′(t) − x3(t) + x5(t) = r cos(t) + 0.01 wear 1. (5.3)
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Table 4: The critical value for 27 group sharp tool data.

No. r No. r No. r

1 0.724896 10 0.724276 19 0.72371
2 0.724633 11 0.724203 20 0.723873
3 0.724716 12 0.724249 21 0.723819
4 0.723738 13 0.723154 22 0.723945
5 0.724714 14 0.724004 23 0.723782
6 0.724467 15 0.724051 24 0.723759
7 0.724533 16 0.723862 25 0.723975
8 0.724526 17 0.724141 26 0.723982
9 0.724561 18 0.723814 27 0.72379
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Figure 9: Sharp 1 phase plane and time domain.

Here, we meet a problem. When the computation precision of the threshold r is
not appropriate, dynamic system 10 is not stable. In other words, perhaps one group
data is chaotic and another group data is periodic state in all wear tools. Behavior of the
dynamic system is changed with the threshold difference, see Figure 4. In order to decrease
computation cost with Matlab, we fix a step size 0.1 in the region r = [0, 1], the system trends
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Figure 10: Wear 1 phase plane and time domain.

of dynamic behavior can be get roughly, this computing process spends about 40 minutes.
In fact, the region r = [0.7, 0.8] is the region from chaotic state to periodic state for Duffing-
Holmes oscillator, no matter what any exterior weak periodic signals are merged into the
system, the r = [0.7, 0.8] can be used directly as ruler.

If we took the critical value of each group data as the threshold value, we would
get 27 difference threshold values. However, we must get one threshold value for all 27
group data. For the reason, the range of the threshold value will be enlarged, that is, the
threshold value will be decreased. We take the minimum threshold value in all 27 group
sharp tool data. Using the law of the golden section in the region r = [0.7, 0.8] for each group
data of sharp tool, their critical value are calculated, see Table 4. Obviously, minimum is
0.723710.

When the amplitude of interior perturbation force r is equal to 0.723710, System 9 is
critical state from chaotic to periodic, one of 27 groups data of sharp tool is merged to system
9, the system shows chaotic state, and when one of 27 groups of wear tool is merged to system
10, the system shows larger scale periodic state. For first group data, system 9 and system 10
are showed Figures 9 and 10.

The computation precision is six digits after decimal dot for the threshold determined
accurately, it is enough sensitivity for distinguish wear tool or sharp tool. Of course, the
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Figure 11: Map of time domain to be detected signal, phase plane, and state of time domain on system 9.

difference engineering problem may choose the difference computation precision for the
threshold value in chaotic system model.

Finally, 0.723710 is a threshold value detected wear tool. All 54 group data sampled
is merged to system 9, respectively, time domain map of each group data sampled, system
phase plane, time domain map of system state; they are shown in Figure 11.

6. Conclusion

Currently, Duffing-Holmes oscillator is the area of most intense research activity for
developing weak signal detected. The method which was described in this paper can be used
as a valuable tool for the tool condition monitoring. In comparison to conventional weak
signal detected, the advantages of tool wear detected based on Duffing-Holmes oscillator
were shown. Compared to the Lyapunov exponents calculated determining the threshold
of system chaotic critical state, the law of the golden section spends the less time and
useful engineering meaning. The computation precision of the threshold can be calculated
conventionally to satisfy the sensitivity of wear tool detected.

For the future development of the presented techniques in laboratory, several 10
approaches are to be tested. For example, relationship between the computation precision of
the threshold and sensitivity of the chaotic critical state for difference engineering problem.
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Since Runge-Kutta method of fourth order is one kind of approximate solution method for
dynamic equation, a difference time-step size will impact the computation precision for the
threshold value.
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1. Introduction

Wet gas metering has been described as a subset of multiphase flow measurement, where
the volume of gas at actual measuring conditions is very high when compared to the
volume of liquid in the flow stream. High-gas volume fraction has been defined in the
range of 90–98% by different technical papers; more details are shown by Agar and
Farchy [1]. Normally, these conditions need wet gas metering; for instance, some small
or remote gas fields are processed together in common platform facilities, the individual
unprocessed streams must be metered before mixing. In other circumstances, some gas
meters may also be subjected to small amounts of liquid in the gas. This can happen
to the gas output of a separator as a result of unexpected well conditions or liquid
slugging.
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Table 1: Result of high-pressure comparison.

Models Root mean square error Rank
De Leeuw 0.0211 1
Homogeneous 0.0237 2
Lin 0.0462 3
Murdork 1.5 0.0482 4
Murdork 1.26 0.0650 5
Chisholm 0.0710 6
Smith and Leang 0.1260 7

Two ways are employed to meter wet gas: one approach is to use a multiphase flow
meter in wet gas, and the other approach is to use a standard dry gas meter applying
corrections to the measurements based on knowledge of how this type of meter is affected by
the presence of liquid in the gas stream. This method requires prior knowledge of the liquid
flow, which has to be obtained through another means; more details were shown by Lupeau
et al. [2].

As a mature single-phase flow measurement device, the Venturi meter has been
successfully applied in a variety of industrial fields and scientific research. Just owing to
its successful applications in single-phase flows, the Venturi meter can easily be considered
for two-phase flow measurement. When Venturi meters are used in wet gas, the measured
differential pressure is higher than it would be with the gas phase flowing alone. If
uncorrected, this additional pressure drop will result in an over reading of the gas mass flow
rate. More details were shown by Geng et al. [3].

Eight famous over-reading correlations have been studied in low- and high-pressure
conditions [4–10]. In Steven’s paper [10], an ISA Controls standard North Sea specification
6
′′

Venturi meters with a 0.55 diameter ratio (or “beta”) of 6 mm pressure tappings was the
meter installed in National Engineering Laboratory (NEL) with pressure from 2 to 6 MPa and
LM parameter from 0 to 0.3. NEL’s engineer tested three 4-inch meters with different beta
values (0.4, 0.60, 0.75) and tested over a range of pressures (1.5–6.0 MPa) gas densimetric
Froude number (Frg), 0.5–5.5, and Lockhart-Martinelli parameter, X, 0–0.4 [11–13]. The
results show that the liquid existence causes the meters to “over-read” the gas flow rate.
This over reading is affected by the liquid fraction, gas velocity, pressure, and Venturi beta
value. They predicted that some of the data seem to tend to a value slightly above unity,
particularly at low X values. Furthermore, in 2002, Britton et al. did some tests in Colorado
Engineering Experiment Station, Inc., Colo, USA, [14, 15] with pressure between 1.4–7.6 MPa
and X values between 0–0.25. Their study also confirmed the over-reading existence in
Venturi meters.

The result of high-pressure comparison is shown in Table 1 [10].
Under low pressure, eight correlations are compared with Tianjin University’s low-

pressure wet gas test facilities [16] (see Table 2).
The method of comparing the seven correlations performances was chosen to be by

comparison of the root mean square error (defined as δ):

δ =

√√√√ 1
N

∑N

1

(ORp(i) −ORe(i)

ORe(i)

)2

, (1.1)
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Table 2: Result of low-pressure comparison.

Models RMSE Rank
Homogenous 0.11021 1
Steven 0.14787 2
De Leeuw 0.14854 3
Smith and Leang 0.18821 4
Chisholm 0.19597 5
Murdock1.5 0.20658 6
Lin 0.20742 7
Murdock 0.21078 8

where ORp(i) is prediction over reading; ORe(i) is experimentation over reading; N is data
numbers.

Tables 1 and 2 show the models performance in low and high pressure. By De
Leeuw model being based on separated flow assumption, more parameters have been
considered so it performs well. Although the assumptions of homogeneous models are
simple, it performs well at both low pressure and high pressure (see Steven’s results),
for wet gas, homogeneous models may be true to some extent. This means that wet gas
flow structure holds homogeneous character and separation character. Therefore, a new
correlation considering homogeneous and separation flow theory together could be better
than the previous ones.

This paper proposed a new Venturi wet gas correlation based on homogenous and
separate assumption. The acceleration pressure drop and the friction pressure drop of Venturi
under two-phase flow conditions are considered in new correlation, and its validity is verified
through experiment. Finally, the performance of the new proposed correlations is compared
with the old eight correlations both under low and high pressure.

2. New Model Based on Homogeneous and Separated Flow Theory

2.1. Over-Reading Theory of Venturi Wet Gas Metering

When Venturi meters are used in wet gas the measured differential pressure is higher than it
would be for the gas phase flowing alone. If uncorrected, this additional pressure drop will
result in an over reading of the gas mass flow rate:

OR =
m′g
mg

, (2.1)

where mg is the correct gas mass flow rate, m′g is the apparent gas mass flow rate
determined from the two-phase measured differential pressure ΔPtp, ΔPtp is the actual
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two-phase differential pressure between the upstream and throat tappings, and ΔPg is the
gas differential pressure between the upstream and throat tappings:

mg =
CεAT

√
2ρgΔPg

√
1 − β4

, (2.2)

m′g =
CεAT

√
2ρgΔPtp

√
1 − β4

. (2.3)

In (2.2) and (2.3), C is discharge coefficient, AT is the area of the Venturi throat, ε is
expansibility factor, ρg is gas density, and β is diameter ratio. In fact, the discharge coefficient
C is variable under different flow conditions. Here, given that the discharge coefficient C is
constant, and take into account the fact that different flow conditions only have effect on over
reading, but not have effect on the discharge coefficient given C.

The real gas mass flow rate can been obtained by

mg =
m′g
OR

. (2.4)

The homogeneous flow theory treats the two-phase flow as if it was a single-phase
flow by using a homogeneous density expression ρtp which averages the phase densities so
that the single-phase differential pressure meter equation can be used

1
ρtp

=
x

ρg
+

1 − x
ρl

, (2.5)

where x is the mass quality, ρtp is the homogeneous density, and subscripts “l” and “g” are
for liquid and gas, respectively.

With this models the gas mass flow rate of the two phase flow can be written as

mg = x
CεAT

√
2ρtpΔPtp

√
1 − β4

. (2.6)

Let (2.3) divide (2.6), then the homogeneous model gives

ORh =
m′g
mg

=
CεAT

√
2ρgΔPtp

/√
1 − β4

x
(
CεAT

√
2ρtpΔPtp

/√
1 − β4

) ,

ORh =
1
x

√
ρg

ρl
+
(

1 − ρg
ρl

)
x.

(2.7)

However, (2.6) is also an estimation function about gas mass flow rate; the real gas
mass flow rate should be (2.2) and then (2.6) as the apparent gas mass flow rate will be more
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rational. So let (2.6) divide (2.2), the real over reading under the homogeneous flow theory is
shown in the following form:

ORh =
m′g
mg

=
x ·

(
CεAT

√
2ρtpΔPtp

/√
1 − β4

)

CεAT

√
2ρgΔPg

/√
1 − β4

= x ·
√
ρtp

ρg
· ΔPtp

ΔPg
.

(2.8)

Equation (2.8) derived from homogeneous flow theory, if
√
ΔPtp/ΔPg derived from

separation flow theory, the combination of homogeneous and separation flow theory is
implemented.

Separated flow theory takes into account the fact that the two phases can have differing
properties and different velocities. Separate equations of continuity, momentum, and energy
are written for each phase, and these six equations are solved simultaneously, together with
rate equations which describe how the phases interact with each other and with the walls of
duct. In the simplest version, only one parameter, such as velocity, is allowed to differ for the
two phases while conservation equations are only written for the combined flow.

Equation (2.9) shows the momentum function of one dimension two-phase flow based
on separated flow assumption. The pressure drop of fluids in the pipe come from three parts,
the first is friction; the second is gravitation; the third is acceleration [17–21]:

−dP
dz

=
τ0U

A
+ [ρgα + ρl(1 − α)]g sin θ

+
1
A

d

dz

{
AG2

[
(1 − x)2

ρl(1 − α) +
x2

ρgα

]}
,

(2.9)

−dP
dz

=
dPf

dz
+
dPg

dz
+
dPa
dz

, (2.10)

where τ0 is friction force, U is perimeter of pipe, α is void fraction, G is mass velocity of
mixture, dPf/dz is pressure drop caused by friction, dPg/dz is pressure drop caused by
gravitation, dPa/dz is pressure drop caused by acceleration.

2.2. The Friction Pressure Drop of Venturi Under Two-Phase Flow Condition

For single-phase flow in straight pipe, the friction pressure drop can be calculated with

dPf

dz
=
λ

d
· ρu

2

2
, (2.11)

where λ is the friction factor; d is the pipe diameter, u is the velocity.
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Figure 1: Sketch of Venturi conical convergent region.

Given λ is constant in conical convergent of Venturi, the fluid velocity in the straight
pipe keep unchanged, d0 is diameter of straight pipe, A0 is cross-section of straight pipe, d1

is diameter of Venturi throat, l0 is the length of conical convergent, θ is convergent angle. The
schematic of Venturi conical convergent part is shown in Figure 1.

Analyzing an infinitesimal dl given d is diameter of the analyzing part, A is cross-
section, l is the distance from Venturi inlet to infinitesimal dl make integral to (2.11):

ΔPf =
∫ l0

0

λ

d
· ρu

2

2
dz, (2.12)

ΔPf =
λρ

2

∫ l0

0

1
d
·u2 dz. (2.13)

Multiply d0 to (2.13) in two sides:

ΔPf =
λρ

2d0

∫ l0

0

d0

d
·u2 dz. (2.14)

From continuity equation,

u =
A0

A
u0,

A0

A
=
(
d0

d

)2

.

(2.15)

Substitute (2.15) into (2.14):

ΔPf =
λρu2

0

2d0

∫ l0

0

(
d0

d

)5

dz. (2.16)

According to geometrical relationship showed in Figure 1,

dz =
dl

cos θ
, (2.17)

l

l0
=
d0 − d
d0 − d1

, (2.18)

=⇒ d0

d
=

l0
l0 − l(1 − d1/d0)

. (2.19)
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Let β be diameter ratio of Venturi, then

β =
d1

d0
. (2.20)

Substitute (2.17), (2.19), and (2.20) into (2.16):

ΔPf =
λρu2

0l
5
0

2d0 cos θ

∫ l0

0

(
1

l0 − l(1 − β)
)5

dl, (2.21)

ΔPf =
λρu2

0l
5
0

8d0 cos θ(1 − β)
(

1
l0 − l(1 − β)

)4∣∣∣∣
l0

0
, (2.22)

ΔPf =
(1 + β) · (1 + β2)

β4
· 1

4 cos θ
· λ
d0
· ρu

2
0

2
l0. (2.23a)

Equation (2.23a) shows that the friction pressure drop is affected by diameter ratio,
convergent angle, convergent length, inlet diameter, and inlet velocity.

In a constant section pipe with l0 length, the friction pressure drop is

ΔPfl0 =
λl0
d0
· ρu

2
0

2
. (2.23b)

Equation (2.23a) that is divided by (2.23b) is

Kf =
(1 + β) · (1 + β2)

β4
· 1

4 cos θ
. (2.24)

Equation (2.24) shows that the ratio Kf is a function of diameter ratio and convergent angle.
For a definite Venturi, Kf is constant.

As for gas liquid two-phase flow, (2.23a) and (2.23b) changes into

ΔPf = Kf · λl0
d0
·
αρgu

2
g + (1 − α)ρlu2

l

2
. (2.25)

When the pipe is full of gas (α = 1) or liquid (α = 0), (2.25) changes to (2.23a).
From gas liquid two-phase flow continuity equation,

xGA = Agugρg,

(1 − x)GA = Alulρl.
(2.26)

Consider the definition of void fraction,
x

α
G = ugρg,

(1 − x)
(1 − α)G = ulρl,

(2.27)

G =
m

A
= αρgug + (1 − α)ρlul (2.28)

which defined S as slip ratio, that is, gas and liquid real velocity ratio combine (2.26) and
(2.27):

1
α
= 1 + s

1 − x
x
· ρg
ρl
. (2.29)
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Substitute (2.26) and (2.27) into (2.25):

ΔPf = Kf · λl0
d0
· G

2

2
· 1
ρl

[
x2

α
· ρl
ρg

+
(1 − x)2

1 − α
]
. (2.30)

When the pipe is full of gas,

ΔPfg = Kf ·
λgl0

d0
· G

2

2
· x

2

ρg
. (2.31)

When the pipe is full of liquid,

ΔPfl = Kf · λll0
d0
· G

2

2
· (1 − x)

2

ρl
. (2.32)

Let λ = λg = λl, define Xf as

Xf =

√
ΔPfl
ΔPfg

=
(

1 − x
x

)√
ρg

ρl
. (2.33)

Equation (2.30) divided by (2.31) is

ΔPf
ΔPfg

=
1
α
+
(1 − x)2

x2

ρg

ρl
· 1

1 − α. (2.34)

Substitute (2.29) into (2.34):

ΔPf
ΔPfg

= 1 + CfXf +X2
f , (2.35)

where

Cf =
1
s

√
ρl
ρg

+ s

√
ρg

ρl
. (2.36)

2.3. The Acceleration Pressure Drop of Venturi Under Two-Phase Flow Condition

According to (2.9), the acceleration pressure drop is

dPa
dz

=
1
A

d

dz

{
AG2

[
(1 − x)2

ρl(1 − α) +
x2

ρgα

]}
, (2.37)

ΔPa =
∫
dPa =

∫A0

AT

1
A
d

{
AG2

[
(1 − x)2

ρl(1 − α) +
x2

ρgα

]}
. (2.38)
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Given the fluid is incompressible, the void fraction α is constant in the Venturi throat.
Integrate (2.38):

ΔPa = G2
[
(1 − x)2

ρl(1 − α) +
x2

ρgα

]
· ln A0

AT
. (2.39)

When the gas was flowing alone in the pipe, the pressure drop can be expressed as

ΔPag = G2 x
2

ρg
· ln A0

AT
. (2.40)

The similar equation for the liquid phase is

ΔPal =
G2(1 − x)2

ρl
· ln A0

AT
. (2.41)

Define Xa:

Xa =

√
ΔPal
ΔPag

=
(1 − x)
x

·
√
ρg

ρl
. (2.42)

Equation (2.39) divided by (2.40) is

ΔPa
ΔPag

=
(1 − x)2

x2
· ρg
ρl
· 1

1 − α +
1
α
. (2.43)

Substitute (2.29) and (2.42) into (2.34):

ΔPa
ΔPag

= 1 + Ca ·Xa +X2
a, (2.44)

where Ca is expressed as

Ca =
1
s
·
√
ρl
ρg

+ s ·
√
ρg

ρl
. (2.45)

Compare (2.33) with (2.42), it is obvious that Xf is the same as Xa.
Also, compared (2.33) with (2.42), Cf is equal to Ca.
And then, (2.44) is equal to

ΔPf
ΔPfg

=
ΔPa
ΔPag

= 1 + Cg ·X +X2, (2.46)

where

Cg = Ca = Cf =
1
s
·
√
ρl
ρg

+ s ·
√
ρg

ρl
, (2.47)

X = Xa = Xf =
(1 − x)
x

·
√
ρg

ρl
. (2.48)

Equation (2.46) notes that the ratio of two-phase and single-phase friction pressure
drop is equal to the ratio of two- phase and single-phase acceleration pressure drop.
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2.4. The Total Pressure Drop of Venturi Under Two-Phase Flow Condition

For a horizontal mounted Venturi, gravitation pressure drop can be ignored. The total
pressure drop is

ΔPtp = ΔPf + ΔPa. (2.49)

The total pressure drop of Venturi under single-phase flow condition is

ΔPg = ΔPfg + ΔPag. (2.50)

Divide (2.49) by (2.50):

ΔPtp

ΔPg
=

ΔPf + ΔPa
ΔPfg + ΔPag

. (2.51)

According to (2.46) and geometric axiom,

ΔPf
ΔPfg

=
ΔPa
ΔPag

=
ΔPf + ΔPa
ΔPfg + ΔPag

. (2.52)

Combine (2.51) and (2.52):

ΔPtp

ΔPg
=

ΔPf
ΔPfg

=
ΔPa
ΔPag

= 1 + Cg ·X +X2. (2.53)

So the model combined homogeneous and separation flow theory can be expressed as
(2.55). Call this correlation as H-S model:

ORH-S = x ·
√
ρtp

ρg
· ΔPtp

ΔPg

= x ·
√

ρl
ρlx + ρg(1 − x) ·

√
1 + Cg ·X +X2

(2.54)

=

√√√√√x · 1 + Cg ·X +X2

1 +
√
ρg/ρl X

. (2.55)

Equation (2.55) shows that Cg is an effect factor to OR, it must be known first when
(2.55) is used. However, slip ratio S is contained in Cg equation, and slip ratio is hard to be
determined accurately, so it needs to fit a correlation with experiment.

3. Dry Gas Calibration and Wet Gas Tests

3.1. Dry Gas Calibration

Three venture meters are calibrated in TJU critical sonic nozzle flow calibration facility; see
Figure 2.



Mathematical Problems in Engineering 11

T P

T P

T P

T P

T P

4
5
6

7
8

9
10

11
12

2 3

1

1. Vacuum pump
2. Air tank
3. Collecting pipe
4. Switch valve
5. Critical sonic nozzle
6. Temperature

7. Manometer
8. Stagnation tank
9. Control valve
10. Temperature
11. Flow meter
12. Manometer

Figure 2: Schematic diagram of TJU critical sonic nozzle flow calibration facility.
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Figure 3: Discharge coefficient of Venturi tube in single phase flow.

The facility has eleven sonic nozzles of different discharge coefficient, and the
calibration range varies from 2.50 to 660 m3/h with a step of 2 m3/h. The maximum calibrated
flow rate is about 380 m3/h due to the beta ratio and pipe diameter. At the same time, the
TJU multiphase flow loop also has the calibration function. So the dry gas calibration for
three Venturis was done in both. The test data from the two facilities show the same results.
Figure 3 shows the calibration coefficient C with different diameter ratio. When the Reynolds
number is higher than 1 × 105, the value of coefficient is in accord with the standard discharge
coefficient for flows with Reynolds numbers less than one million [22].

Fit the coefficient C in different diameter ratio, the parameters listed in table 3:

C = P1 + P2 ·Re + P3 ·Re2 + P4 ·Re3 + P5 ·Re4 + P6 ·Re5. (3.1)
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Figure 4: Schematic diagram of TJU multiphase flow loop.

3.2. Test System and Experimental Procedures

The tests were conducted on TJU multiphase flow loop at pressures from 0.15 MPa to
0.25 MPa across a range of gas velocities and liquid fractions. TJU’s low-pressure wet gas
test facilities are a fully automatic control and functional complete system, which is not only
a multiphase flow experiment system, but also a multiphase flow meter calibration system.
As an experiment system, the test can be conducted in a horizontal pipe, vertical pipe and
0–90◦lean pipe; as a calibration system, the test meter can be calibrated in standard meter
method. Figure 4 shows schematic diagram of TJU multiphase flow loop.

Thess facilities have six components, named as medium source, measurement pipe,
horizontal pipe, vertical pipe, 0–90◦lean pipe and computer control system.
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Figure 6: Lockhart-Martinelli parameter X effect on n of De Leeuw model.

Gas medium is compression air, and two compressors provide dynamic force, the
compressor air is passing through cooling and drying unit which access to two 12 m3

accumulator tanks; the accumulator tanks and pressure maintaining valve can hold a stable
pressure 0–0.8 MPa for the test. The liquids used in test are water (oil or oil and water mixture
also can be used) and a water pump pushes the water to a 30-meter-high water tower, which
can hold a stable pressure for liquid.

In standard meter calibration system, gas calibration system has five paths; three of
them are low-flow channels metering with three mass flow controllers made in America by
Alicat scientific company, Ariz, USA, the lowest flux is 10 l/min, the other two paths are
middle and large flow channels metering with a Roots type flow meter and a vortex flow
meter. All temperature and pressure measurements use traceable calibrated instrumentation
for gas temperature and pressure compensation.

Liquid calibration system has six paths: four of them are low-flow channels metering
with an electrical flow meter made in Germany combined by four magnet valves, the lowest
flux is 0.01 m3/h, the other two paths are middle and large flow channels metering with a
electrical flow meter and a vortex flow meter. See parameters of the standard meter in Table 4.

Gas and liquid calibrate through standard meter access to mixer, and then go through
the experimental pipe. There are two paths in experimental pipes, one is made in rustless
steel, the other is made in organic glass, their diameter is 50 mm, and a cutoff valve which
can adjust the pressure is installed at outlet of the pipe.

Figure 5 shows horizontal experiment pipe, which includes mixer, temperature sensor,
straight lengths, pressure sensor, and Venturi tube.
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Table 3: Parameters value.

0.4048 0.55 0.7
P1 17.88251 −0.58867 6.06974
P2 −0.00074 0.00006 −0.00016
P3 1.283E − 8 −9.7022E − 10 1.88E − 9
P4 −1.0944E − 13 8.4168E − 15 −1.0733E − 14
P5 4.5672E − 19 −3.5094E − 20 2.9549E − 20
P6 −7.4476E − 25 5.5411E − 26 −3.1419E − 26

Table 4: Parameters of the standard sensor.

Phases Range (m3/h) Accuracy

Water
0.01 ∼ 3.0 ±0.2%
0.75 ∼ 19 ±1.0%
1.7 ∼ 43 ±0.5%

Air
0 ∼ 6.0 ±0.8%

0.15 ∼ 17 ±3.0%
6.5 ∼ 130 ±1.5%

Oil 0.02 ∼ 2.5 1.0%
0.75 ∼ 19 1.0%

Table 5: Required straight lengths for classical Venturi tubes with a machined convergent section.

Diameter ratio Straight length (D)
0.40 8
0.50 8
0.60 10
0.70 10
0.75 18

According to ISO 5167-1, 4 : 2003 [23, 24], a classical Venturi tube with a machined
convergent section, straight lengths and diameter ratio must accord with Table 5.

In this test, three Venturi tubes with β values of 0.4048, 0.55, and 0.70 have been
produced, the length of Venturi tubes is 388 mm, diameter is 50 mm, the length of cylindrical
throat is 20 mm, conical convergent angle is 21◦, conical divergent angle is 15◦, diameter of
pressure tappings is 4 mm, the pipe wall roughness is 0.06 mm, and stainless steel flange is
used in connecting. 1151 differential pressure transducers were made in Rosemont company,
Colo, USA, the uncertainty of whole equipment is 2.5‰.

The test data are collected and saved as Microsoft Excel file automatically (see
experimental parameters in Table 6).

The flow pattern of the test included annular and drop-annular, where Frg is gas
Froude number:

Frg =
vg

√
gD

√
ρg

ρl − ρg . (3.2)

vg is superficial velocity of the gas phase: vg = mg/(ρgA).
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Table 6: Experimental parameters.

β P (MPa) Frg X

0.4048
0.15 0.8 ∼ 1.5 0.0022 ∼ 0.0338
0.20 1.0 ∼ 1.88 0.0022 ∼ 0.0472
0.25 0.67 ∼ 1.81 0.0022 ∼ 0.0495

0.55
0.15 1.04 ∼ 1.78 0.0022 ∼ 0.2572
0.20 1.09 ∼ 1.85 0.0022 ∼ 0.3431
0.25 0.92 ∼ 1.73 0.0022 ∼ 0.3514

0.7
0.15 1.04 ∼ 2.0 0.0024 ∼ 0.0480
0.20 1.08 ∼ 2.0 0.0025 ∼ 0.0525
0.25 0.87 ∼ 1.66 0.0027 ∼ 0.0576

Table 7: Fit exponent n with all data.

a1 a2 a3 a4 a5 a6 a7 a8 K
1.29203 −0.17161 0.12618 −0.01884 0.30196 0.05205 −0.07122 0.0259 0.78105

4. Model Parameters Determining and Error Analyzing

The coefficient Cg can be calculated by experimental data. On TJU multiphase flow system,
the real gas, liquid mass flow rateand gas, liquid density can be determined by standard
sensor. The gas mass fraction is known parameter. The Lockhart-Martinelli parameter can
be obtained by (2.33). The over reading can be calculated with (2.1) and (2.3). Therefore,
the coefficient Cg can be calculated by (2.55) (H-S model). The study shows that coefficient
Cg decreases with increasing Lockhart-Martinelli parameter X, decreases with increasing
pressure P, decreases with increasing diameter ratio β, increases with increasing Gas Froude
number Frg ,and increases with increasing gas liquid quality ratio x/(1 − x).

Equation (2.47) can be expressed as

Cg = f
(
s,

√
ρg

ρl

)
. (4.1)

Equation (4.1) shows that the gas-liquid quality ratio x/(1 − x) contains the same
parameter with coefficient Cg :

mg

ml
=

x

1 − x = S · ρg
ρl
· α

1 − α. (4.2)

Combining (3.2) and (4.1) can gain

Cg = f
(

x

1 − x ,
α

1 − α,
√
ρg

ρl

)
. (4.3)

De Leeuw model considers the coefficient Cg as a function of gas-liquid density ratio
and gas Froude number:

CDe Leeuw =
(
ρl
ρg

)n

+
(
ρg

ρl

)n

, n =

{
0.41 0.5 ≤ Frg ≤ 1.5,
0.606(1 − e−0.746 Frg ) Frg ≥ 1.5.

(4.4)
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Figure 7: Lockhart-Martinelli parameter X effect to n.
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Figure 8: Pressure P effect on coefficient n under same gas Froude number.

However, inherited the form of the coefficient Cg of De Leeuw model’s, and using gas
liquid density ratio as base of exponential function, the exponent n is a severe nonlinear curve
with other parameters such as Lockhart-Martinelli parameter X, or gas Froude number (see
Figure 6).

Research found that using gas liquid volume ratio (gas liquid mass ratio divided by
gas liquid density ratio) as a base of exponential function Cg in H-S model, the exponent
n almost linear increases with increasing Lockhart-Martinelli parameter X, it can be seen as
Figure 7, so defined the coefficient Cg of the H-S model as

CH-S =
(
x/(1 − x)
ρg/ρl

)n

+
(

ρg/ρl

x/(1 − x)
)n

. (4.5)
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Figure 10: Diameter ratio effect on coefficient n under 6 MPa.

In fact, gas liquid mass ratio divided by gas liquid density ratio is equal to gas liquid
volume ratio:

CH-S =
(

ϕ

1 − ϕ
)n

+
(

1 − ϕ
ϕ

)n

,

n = f
(
β, P

(
OR

ρg

ρl

)
,Frg, X, . . .

)
,

(4.6)

where ϕ is gas volume fraction.
Next, a correlation of exponent n with other parameters will be approached.
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Figure 12: The prediction error of H-S model.
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Figure 14: Comparison errors of models under β = 0.4, P = 1.5 MPa, and Frg = 2.
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Figure 15: Comparison of models under β = 0.4048, P = 0.20 MPa, and Frg = 1.5.

4.1. Effect of Parameters to Exponent n of H-S Model

Figure 7 shows the effect of Lockhart-Martinelli parameter X to n, and exponent n almost
linearly increases with increasing Lockhart-Martinelli parameter X. Figure 8 shows the effect
of pressure to n, apparently, exponent n decreases with the increasing pressure. Figure 9
shows the effect of gas Froude number to n, seemingly, n increases with the increasing of
gas Froude number. Figure 10 shows the effect of diameter ratio to n, and n decreases with
the increasing diameter ratio.
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Figure 16: Comparison errors of models under β = 0.4048, P = 0.20 MPa, and Frg = 1.5.
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Figure 17: Comparison of models under β = 0.55, P = 0.15 MPa, and Frg = 2.

4.2. Fitting Exponent n of H-S Model

According to the results of these figures, n varied linearly with Lockhart-Martinelli parameter
X, and with the rate of curves effect by diameter ratio, pressure, and Gas Froude number. So
the experiment correlation of coefficient n should take the Lockhart-Martinelli parameter X
as a key independent variable, and pressure P (or gas liquid density ratio), diameter ratio β,
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Figure 18: Comparison errors of models under β = 0.55, P = 0.15 MPa, and Frg = 2.
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Figure 19: Comparison of models under β = 0.60, P = 3 MPa, and Frg = 1.5.

Gas Froude number Frg as auxiliary variable. Exponent n can be defined as

n = A + B ·Xk, (4.7)

where

A = a1 · (β)a2 · (Frg)
a3 ·

(
ρg

ρl

)a4

,

B = a5 ·(β)a6 · (Frg)
a7 ·

(
ρg

ρl

)a8

,

(4.8)
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Figure 20: Comparison errors of models under β = 0.60, P = 3 MPa, and Frg = 1.5.
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Figure 21: Comparison of models under β = 0.70, P = 0.20 MPa, and Frg = 1.7.

where K is constant, a1, a2, a3, a4, a5, a6, a7, a8 are undetermined coefficient, which will be
determined through experimental data. The fit coefficient showed in Table 7.

Table 7 is the coefficient n fit by independent data from TJU low-pressure wet gas
loop and National Engineering Laboratory high-pressure wet gas loop. Using exponent n
and coefficient Cg for H-S over-reading model, over 98% data set will express the prediction
error within ±5%, and the maximum error within ±6.5%. See Figures 11 and 12.
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Figure 22: Comparison errors of models under β =0.70, P = 0.20 MPa, and Frg = 1.7.
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Figure 23: Comparison of models under β = 0.75, P = 6 MPa, and Frg = 3.5.

4.3. Comparison of H-S OR Model and the Eight Previous OR Models

Compare new model to 8 old models with the condition of pressure P varied from 0.15 to
6.0 MPa, beta ratio varied from 0.4 to 0.75, gas densimetric Froude number Frg varied from
0.5 to 5.5, the modified Lockhart-Martinelli parameter X varied from 0.002 to 0.3, the ratio
of the gas to total mass flow rate x varied from 0.5 to 0.99. The data used for comparison is
independent data different from training data. A Part of independent data was obtained from
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Figure 24: Comparison errors of models under β = 0.75, P = 6 MPa, and Frg = 3.5.

NEL’s report. Figures 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, and 24 are a part of the compared
results.

These figures show that H-S model can accurately predict Venturi OR in all kinds of
flow conditions, the error of H-S wet gas model is stable with OR increasing, and within
5%. It again proved that new wet gas model has good adaptability and wide application
range. Particularly, as the wet gas flow fluctuate intensively under low pressure, all old OR
models cannot predict OR accurately, the absolute of maximum error almost reached 40%.
However, the new wet gas model reflects this change perfectly, the prediction OR has the
same distribution with real OR. This is mainly because the homogenous model can well
reflect the fluctuation of real OR, and the H-S model has inherited this ability. NEL’ data
have evidence trends because it is obtained in middle and high pressure. Even though, old
correlations predicted errors are also large than H-S correlation, they varied from 10% to
−35%.

5. Conclusions
Separation and homogeneous assumptions reflect the wet gas flow character, so a correlation
combining these two assumptions performed well than each single one. The H-S model has
inherited merits of homogeneous correlation and separation correlation, and can predict
Venturi over reading accurately with the conditions of pressure varied from 0.15 to 6 MPa,
beta ratio varied from 0.4 to 0.75, gas densimetric Froude number varied from 1 to 5.5, the
modified Lockhart-Martinelli parameter varied from 0.002 to 0.3, the ratio of the gas to total
mass flow rate varied from 0.5 to 0.99. The prediction error of H-S model is within ±6.5%.
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1. Introduction

Filtering and sampling devices usually consist of asymptotically stable systems, sometimes
an integration of the output over a certain time interval being added. Yet such structures
are very sensitive at random variations of the integration period, being recommended for
the signal which is integrated to be approximately equal to zero at the end of the integration
period. For this reason, oscillating systems for filtering the received signal should be used,
so as the filtered signal and its slope to be approximately zero at the end of a certain time
interval (at the end of an oscillation). For avoiding instability of such oscillating systems on
extended time intervals, certain electronic devices (gates) controlled by computer commands
should be added, so as to restore the initial null conditions for the oscillating system before
a new working cycle to start [1].

The filtering performances of asymptotically stable systems are determined by their
transfer function. A filtering and sampling device consisting of low-pass filters of first or
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second order having the transfer function

H(s) =
1

T0s + 1
(1.1)

(for a first-order system) and

H(s) =
1

T2
0 s

2 + 2bT0s + 1
(1.2)

(for a second-order system) attenuates an alternating signal of angular frequency ω � ω0 =
1/T0 about ω/ω0 times (for a first-order system) or about (ω/ω0)

2 times (for a second-order
system). The response time of such systems at a continuous useful signal is about 4−6T0 (5T0

for the first-order system and 4T0/b for the second-order system). If the signal given by the
first- or second-order system is integrated over such a period, a supplementary attenuation
for the alternating signal of about 4 − 6ω/ω0 can be obtained.

But such structures are very sensitive at the random variations of the integration
period (for unity-step input, the signal which is integrated is equal to unity at the sampling
moment of time), and the use of oscillators with a very high accuracy cannot solve the
problem due to switching phenomena appearing at the end of the integration period (when
an electric current charging a capacitor is interrupted).

These random variations cannot be avoided if we use asymptotically stable filters.
By the other hand, an improvement in an electrical scheme used for integrators in analog
signal processing (see [2, 3]) cannot lead to a significant increasing in accuracy, as long as
such electronic devices perform the same task (the system has the same transfer function).
There are also known techniques for reducing the switching noise in digital systems, but
such procedures can be applied only after the analog signal is filtered and sampled, so as to
be prepared for further processing. So we must give attention to some other kind of transfer
functions and to analyze their properties in case of filtering and sampling procedures, similar
to wavelets analysis presented in [4, 5].

Mathematically, an ideal solution consists in using an extended Dirac function for
multiplying the received signal before the integration (see [1]), but is very hard to generate
such extended Dirac functions (a kind of acausal pulses) using nonlinear differential
equations for (i) symmetrical pulses (see [6]) or (ii) asymmetrical pulses (see [7] for more
details).

A heuristic algorithm for generating practical test functions using MATLAB proce-
dures was presented in [6]. First it has been shown that ideal test functions cannot be
generated by differential equations, being emphasized the fact that differential equations can
only generate functions similar to test functions (defined as practical test functions). Then a
step-by-step algorithm for designing the most simple differential equation able to generate
a practical test function was presented, based on the invariance properties of the differential
equation and on standard MATLAB procedures. The result of the algorithm consists in a
system working at the stability limit from initial null conditions, on limited time intervals,
the external signal representing the free term in the differential equation corresponding to the
input of the oscillating system. Such a system could be built using standard components and
operational amplifiers. However, the previously mentioned study [6] did not investigate the
behavior of such an oscillating system for an input represented by a short-step pulse. These
aspects will be studied in this paper. Finally, supplementary resonance aspects (appearing
when the input frequency is close to the working frequency of the oscillating second-order
system) will be also presented.
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2. Modeling transitions by practical test-functions integral aspects

While this study is based on robust integral procedures of practical test-functions for certain
time intervals, certain basic integral aspects of practical test functions should be mentioned.
These aspects are useful for modeling smooth transitions from a certain function of time to
another on a limited time interval [6].

From basic mathematics, it is known that the product ϕ(t)g(t) between a function g(t)
which belongs to C∞ class and a test-function ϕ(t) which differs to zero on (a, b) is also a
test-function because

(a) it differs to zero only on the time interval (a, b) where ϕ(t) differs to zero (if ϕ(t) is
null, then the product ϕ(t)g(t) is also null);

(b) the function ϕ(t)g(t) belongs to the C∞ class of functions, while a derivative of a
certain order k can be written as

(
ϕ(t)g(t)

)(k) =
k∑

p=0

C
p

kϕ(t)
(p)g(t)(k−p) (2.1)

(a sum of terms represented by a product of two continuous functions).

Yet for practical cases (when phenomena must be represented by differential
equations), the ϕ(t) test functions must be replaced by a practical test functions f(t) ∈ Cn

on R (for a finite n-considered from now on as representing the order of the practical test
function) having the following properties:

(a) f is nonzero on (a), (b),

(b) f satisfies the boundary conditions f (k)(a) = f (k)(b) = 0 for k = 0, 1, . . . , n, and

(c) f restricted to (a, b) is the solution of an initial value problem (i.e., an ordinary
differential equation on (a, b) with initial conditions given at some point in this
interval).

The generation of such practical test functions is based on the study of differential equations
satisfied by these test functions, with the initial moment of time chosen at a time moment
close to the t = a moment of time (when the function begins to present nonzero values).

By using these properties of practical test-functions, we obtain the following important
result for a product f(t)g(t) between a function g(t) which belongs toC∞ class and a practical
test-function of n order f(t) which differs to zero on (a, b):

General property for product

The product g(t)f(t) between a function g(t) ∈ C∞ and a practical test-function f of order n
is represented by a practical test function of order n.

This is a consequence of the following two properties:

(a) the product g(t)f(t) differs to zero only on the time interval (a, b) on which f(t)
differs to zero;
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(b) the derivative of order k for the product g(t)f(t) is represented by the sum

(
f(t)g(t)

)(k) =
k∑

p=0

C
p

k
f(t)(p)g(t)(k−p) (2.2)

which is a sum of terms representing products of two continuous functions for
any k ≤ n, (n being the order of the practical test-function f)—only for k > n
discontinuous functions can appear in the previous sum.

Now we will begin to study the integral properties of practical test functions of certain
order. For this, we note that the integral ϕ(t) of a test function φ(t) (which differs to zero on
(a, b) interval) is a constant function on the time intervals (−∞, a] and [b,+∞); it presents a
certain variation on the (a, b) time interval, from a constant null value to a certain Δ quantity
corresponding to the final constant value. Moreover, all derivatives of order k ≤ n + 1 for
the integral function F(t) are equal to zero for t = a and t = b (this can be easily checked
by taking into account that all derivatives of order p for f(t) are equal to zero at these time
moments, for p ≤ n, and a derivative of order p for f(t) corresponds to a derivative of order
p+1 for function F(t), the integral function of f(t)). This suggests the possibility of using such
integral functions for modeling smooth transitions from a certain state to another in different
kind of applications, when almost all derivatives of a certain function are equal to zero at the
initial moment of time.

For modeling such a transition, we analyze the general case when a function f and a
finite number of its derivatives f (1), f (2), . . . f (n) present variations from null values to values
Δ,Δ1,Δ2, . . .Δn on the time interval [−1, 1]. We begin by looking for a function fn which
should be added to the null initial function so as to obtain a variation Δn for the derivative of
n order.

By multiplying the bump-like function

ϕ(τ) =

⎧
⎪⎨

⎪⎩

C exp
(

1
τ2 − 1

)
, if τ ∈ (−1, 1),

0, otherwise
(2.3)

(a test-function on [−1, 1]) with the variation Δn of the derivative of n order and by
integrating this product n + 1 times we obtain

(i) after the first integration: a constant value equal to Δn at the time moment t = 1
(while the integral of the bump-like test function on [−1, 1] is equal to 1), and a null
variation on (1,+∞);

(ii) after the second integration (when we integrate the function obtained at previous
step): a term equal to Δn(t − 1) and a term equal to a constant value c11 (a constant
of integration) on the time interval (1,+∞);

(iii) after the n + 1 integration: a term equal to Δn(t − 1)n/n! and a sum of terms having
the form c1i(t − 1)i/i! for i ∈ N, i < n (cni being constants of integration) on the
time interval (1,+∞).

All previous constants of integration are determined by integrating the test function
on [−1, 1]. The procedure continues by looking for the other functions fn−1, fn−2 . . . which
must be added to the initial null function. However, we must take care to the fact that the
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function fn previously obtained has nonzero variations dn−1, dn−2, . . . d1 for its derivatives of
order n − 1, n − 2, . . . 1 on the working interval and so we must subtract these values from the
set Δn−1,Δn−2, . . .Δ1 before passing to the next step.

Then we multiply the bump-like function with the corrected value

Δ′n−1 = Δn−1 − dn−1 (2.4)

and by integrating this product n times we obtain in a similar manner a function with a
term equal to Δ′n−1(t − 1)n−1/(n − 1)! and a sum of terms having the form c2i(t − 1)i/i! for
i ∈ N, i < n − 1 (cni being constants of integration) on the time interval (1,+∞). It can be
noticed that the result obtained after n integration possess the n − 1 order derivative equal to
Δ′n−1, a smooth transition for this derivative from the initial null value being performed. So
the second function which must be added to the initial null function is the integral of n − 1
order for the bump-like function multiplied by this variation Δn−1 − dn−1 (the function being
noted as fn−1). This function fn−1 has a null value for the derivative of n order for t > 1, so the
result obtained at first step is not affected. We must take care again to the fact that the function
fn−1 previously obtained has nonzero variations d1

n−1, d
1
n−2, . . . d

1
1 for its derivatives of order n−

1, n−2, . . . 1 and so we must once again subtract these values from the previously corrected set
Δn−1−dn−1,Δn−2−dn−2, . . .Δ1−d1 before passing to the next step. Finally we obtain all functions
fn+1, fn, . . . f1 which represent the terms of function f modeling the smooth transition from
an initial null function to a function having a certain set of variations for a finite number
of its derivatives on a small time interval. The procedure can be also applied for functions
possessing a finite number of derivatives within a certain time interval by time reversal (t
being replaced with −t). More details regarding possible applications of such a procedure
can be found in [6].

3. The oscillating second-order system for the case of short-step inputs

After presenting basic aspects regarding integral properties of practical test-functions, we
will analyze the behavior of a system able to generate a practical test-function for signal
processing when its command is represented by a short-step pulse. Unlike aspects presented
in previous paragraph, the step change appears for the command function u(t), and the
dynamical behavior on a limited time interval should be performed. We are searching for
a robust integral procedure (with null values of the function which is integrated at the
beginning and at the end of the interval of integration) so as the sampled values to be further
processed for determining the amplitude and the time length of the short-step pulse.

For a robust filtering and sampling procedure based on an integration on a limited time
interval, a search for a system having the following property was performed in a rigorous
manner in [8]: starting to work from initial null conditions, for a unity step input it must
generate an output and a derivative of this output equal to zero at a certain moment of time
(the condition for the derivative of the output to be equal to zero has been added so as the
slope and the first derivative of the slope for the signal which is integrated to be equal to
zero at the sampling moment of time, when the integration is interrupted). It was finally
shown that the simplest structure possessing such properties is represented by an oscillating
second-order system having the transfer function

Hosc =
1

T2
0 s

2 + 1
(3.1)
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receiving a step input and working on the time interval [0, 2πT0]. For initial conditions equal
to zero, the response of the oscillating system at a step input with amplitude A will have the
form

y(t) = A
(

1 − cos
(
t

T0

))
. (3.2)

By integrating this result on the time interval [0, 2πT0], we obtain the result 2πAT0, and we
can also notice that the quantity which is integrated and its slope are equal to zero at the
end of the integration period. Thus the influence of the random variations of the integration
period (generated by the switching phenomena) is practically rejected.

This oscillating system attenuates about (ω/ω0)
2 times such an input, and the

influence of the integrator consists in a supplementary attenuation of about

[(
1/(2π)

)(
ω/ω0

)]
(3.3)

times. The oscillations having the form

yosc = a sin
(
ω0t
)
+ bcos

(
ω0t
)

(3.4)

generated by the input alternating component have a lower amplitude and give a null result
after an integration over the time interval [0, 2πT0].

These results have shown that such a structure provides practically the same
performances as a structure consisting of an asymptotically stable second-order system and
an integrator (response time of about 6T0, an attenuation of about (1/6)(ω/ω0)

3 times for
an alternating component having frequency ω), moreover being less sensitive at the random
variations of the integration period. For restoring the initial null conditions after the sampling
procedure (at the end of the working period), some electronic devices must be added. Yet the
previous analysis is valid for extended step inputs, which are active on the whole working
interval (the integration period).

We will continue the analysis of this structure by considering that the input is
represented by a unity short-step pulse (instead of a unity step-pulse) which differs to zero
on the time interval [0, τ]. This means that the input u can be represented under the following
form:

u(t) = 1, for t ∈ [0, τ],

u(t) = 0, for t > τ,
(3.5)

or, using the Heaviside function

u(t) = h(τ − t) for t ∈ [0,∞), (3.6)

where h(τ) corresponds to the function 1/s if we apply the Laplace transformation.
The transfer function of the second-order oscillating system is

H(s) =
1

T2
0 s

2 + 1
. (3.7)
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On the time interval [0, τ], the output of the second-order oscillating system is represented
(using the Laplace transformation) as

y(s) = H(s)u(s) =
1

T2
0 s

2 + 1
1
s

(3.8)

which corresponds to the output

y(t) =
(

1 − cos
(
t

T0

))
(3.9)

which can be written as

y(t) = 1 − cos
(
ω0t
)
, (3.10)

where ω0 = 2π/T0. When the action of the external unity pulse ceases (for t = τ) the output
y(t) is

y(τ) = 1 − cos
(
ω0τ
)

(3.11)

and the derivative of y(t) is

y′(τ) = ω0 sin
(
ω0τ
)
. (3.12)

These values, y(τ) and y′(τ), represent the initial values for the free oscillations of the
second-order oscillating system generated for t > τ (when the input command u(t) = 0).
These free oscillations have the angular velocity ω0, and thus the output y(t) for t > τ will
have the form

y(t) = C sin
(
ω0t + φ

)
, for t > τ. (3.13)

The quantitiesC and φ (amplitude and initial phase of free oscillations) should be determined
using the initial conditions for t = τ :

y(τ) = 1 − cos
(
ω0τ
)
, y′(τ) = ω0 sin

(
ω0τ
)
. (3.14)

This implies

1 − cos
(
ω0τ
)
= C sin

(
ω0τ + φ

)
, ω0 sin

(
ω0τ
)
= Cω0cos

(
ω0τ + φ

)
. (3.15)

By dividing the second equality with ω0, squaring both equalities and summing left-
hand sides and right-hand sides of both squared equalities we obtain

[
1 − cos

(
ω0τ
)]2 + sin2(ω0τ

)
= C2 (3.16)

and (while sin2(ω0τ) + cos2(ω0τ) = 1)

2 − 2cos
(
ω0τ
)
= C2. (3.17)
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While

cos
(
ω0τ
)
= 1 − 2sin2

(
ω0τ

2

)
(3.18)

by substituting cos(ω0τ) with the right-hand side of the above equality, the result is

4sin2
(
ω0τ

2

)
= C2. (3.19)

It results

C = 2 sin
(
ω0τ

2

)
. (3.20)

(C is a positive quantity, because ω0τ ∈ [0, 2π]→ω0τ/2 ∈ [0, π]→ sin(ω0τ/2) ≥ 0).
The phase φ can be obtained using the two equations determined by the initial conditions:

1 − cos
(
ω0τ
)
= C sin

(
ω0τ + φ

)
, sin

(
ω0τ
)
= Ccos

(
ω0τ + φ

)
(3.21)

(the second equation resulting by dividing previous equation of y′(τ) to ω0).
By dividing left-hand side of first equality to left-hand side of second equality, and

right-hand side of first equality to right-hand side of second equality, it results

1 − cos
(
ω0τ
)

sin
(
ω0τ
) = tan

(
ω0τ + φ

)
. (3.22)

Using equalities

cos
(
ω0τ
)
= 1 − 2sin2

(
ω0τ

2

)
, sin

(
ω0τ
)
= 2 sin

(
ω0τ

2

)
cos
(
ω0τ

2

)
, (3.23)

it results by substituting cos(ω0τ), cos(ω0τ) with the above expressions

tan
(
ω0τ

2

)
= tan

(
ω0τ + φ

)
. (3.24)

So φ is obtained as

φ = −
(
ω0τ

2

)
(3.25)

and the output y(t) corresponding to the free oscillations of the system for t > τ (when the
action of the external short-step command u has ceased) can be written as

y(t) = 2 sin
(
ω0τ

2

)
sin
(
ω0t − ω0τ

2

)
. (3.26)
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4. Algorithm for detecting short-step pulses

While the signal processing system is linear, in case of a short-step pulse of amplitude A
defined on time interval [0, τ] the output y(t) of the system will be multiplied by A as related
to the output obtained in case of a unity short-step input (presented in previous paragraph).
Thus, the output y(t) will be

A(1 − cos(ω0t)), for t ∈ [0.τ],

y(t) = 2A sin
(
ω0τ

2

)
sin
(
ω0t − ω0τ

2

)
, for t > τ.

(4.1)

This output, y(t), is equal to zero at two time moments t1 and t2 after time moment τ .
At time moment t1,

(
ω0t1 − ω0τ

2

)
= π ; (4.2)

and at time moment t2,

(
ω0t2 − ω0τ

2

)
= 2π. (4.3)

These imply that

t1 =
τ

2
+
π

ω0
,

t2 =
τ

2
+ 2
(
π

ω0

)
.

(4.4)

We must check whether both t1, t2 are greater than τ . First we check the inequality
t1 = τ/2 + π/ω0 > τ . This is equivalent to τ/2 < π/ω0, τ < 2π/ω0 = T0, where T0 represents
the period of the second-order oscillating system. It is obvious that τ < T0, while we have
considered that the short-step pulse has nonzero values for t ∈ (0, T0). Thus t1 > τ , and while
t2 > t1 it results that t2 > t1 > τ .

The signal processing system will perform the integration of output y(t) on two
different time intervals. The first value I1 is obtained by an integration of y(t) on the time
interval [0, t2]. It results

I1 =
∫ t2

0
y(t)dt =

∫ τ

0
A
(
1 − cos

(
ω0t
))
dt +

∫ t2

τ

2A sin
(
ω0τ

2

)
sin
(
ω0t − ω0τ

2

)
dt,

I1 = A
(
τ − 1

ω0
sin
(
ω0τ
)
+ 2A

1
ω0

sin
(
ω0τ

2

)(
− cos(2π) + cos

(
ω0τ

2

))
,

(4.5)

(while ω0t2 = 2π). Then we obtain

I1 = Aτ −A 1
ω0

sin
(
ω0τ
)
+A

2
ω0

sin
(
ω0τ

2

)(
cos
(
ω0τ

2

)
− 1
)

(4.6)
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which can be finally written as

I1 = Aτ −A 2
ω0

sin
(
ω0τ

2

)
. (4.7)

The second integral I2 is performed by integrating y(t) on the time interval [t1, t2]. On
this time interval, the output y(t) is represented by a free oscillation

y(t) = 2A sin
(
ω0τ

2

)
sin
(
ω0t − ω0τ

2

)
, (4.8)

so I2 is determined by

I2 =
∫ t2

t1
2A sin

(
ω0τ

2

)
sin
(
ω0t − ω0τ

2

)
dt; (4.9)

and taking into account that

ω0t − ω0τ

2
= π, for t = t1,

ω0t − ω0τ

2
= 2π, for t = t2,

(4.10)

it results I2 as

I2 = −4A
ω0

sin
(
ω0τ

2

)
. (4.11)

The values I1, I2 allow us to determine A, τ by robust integrations (the values of the
function y(t) which is integrated are zero at the beginning and the end of the time interval
used for integration). A quantity I0 can be determined as

I0 = I1 − I2
2

= Aτ ; (4.12)

and a quantity R can be determined as

R = − I2
2I0

=

(
4A/ω0

)
sin
(
ω0τ/2

)

2Aτ
(4.13)

which can be written as

R =
sin
(
ω0τ/2

)

ω0τ/2
= sinc

(
ω0τ

2

)
. (4.14)

This means that after performing the robust integration of y(t) in order to obtain the
sampled values I1, I2 we can compute I0 = I1 − I2/2 and then I0 = −I2/(2I0). While

I0 = sinc
(
ω0τ

2

)
, (4.15)

we can determine the time interval τ of the received short-step pulse using I0 and a
mathematical memory (the quantity ω0 being known).

Next quantity A (the amplitude of this received short-step pulse) can be determined
using τ (determined at previous computation) and I0 = Aτ .
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At t = 0 Start Integration for I1
if output = 0
then
Start Integration for I2
if output = 0
Stop Integration for I1 and Integration for I2
Determine A and τ using sampled values for I1 and I2

Algorithm 1

Taking into account the previous considerations, the algorithm for detecting short-step
pulses consists in the steps shown in Algorithm 1.

5. The problem of initial conditions and resonance aspects

In previous paragraphs has been analyzed the case when a certain short-step pulse is received
at the beginning of a working interval—this pulse presenting nonzero values on a limited
time interval (0, τ). Yet in applications, the signal processing system can receive a sequence
of step pulses with different time lengths. Due to this reason, the whole procedure must be
adapted for the case when a certain step input with amplitude D is received on a certain time
interval (0, σ) (the first part of the working interval) and a different step input with amplitude
B appears on the time interval [σ, T0] (the second part of the time interval).

Under these circumstances the output y(t) could be represented by

y(t) = D
(
1 − cos

(
ω0t
))
, for t < σ,

y(t) = B
(
1 − cos

(
ω0(t − σ)

))
+ yosc, for t ≥ σ,

(5.1)

where

yosc = 2D sin
(
ω0σ

2

)
sin
(
ω0t − ω0σ

2

)
(5.2)

represents the free oscillations of the system generated by the short-step pulse with amplitude
D (which has ceased its action at time moment σ). It can be noticed that it is very difficult
to analyze these outputs by performing certain integral operations in order to determine the
parameters D,B, σ. However, the whole procedure can be simplified in a significant manner
if we observe that the amplitude D of the first step input can be predicted by the signal
processing system (by considering that the pulse with amplitude D has been received by
the system on a previous working interval and its action continues at the beginning of the
analyzed working interval). This suggests the possibility of adjusting the input command for
the second-order oscillating system by subtracting quantity D from u(t) and thus the output
of the oscillating system will become

y(t) = 0, for t < σ,

y(t) = (B −D)
(
1 − cos

(
ω0(t − σ)

))
, for t ≥ σ.

(5.3)

The quantity yosc vanishes while the oscillating second-order system has initial null
conditions and a null command for t < σ.
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At first sight it looks like the system receives a nonzero command at the end of the
working time interval and the results presented in previous paragraph cannot be applied. Yet
we can observe that an integration performed on the first time interval [0, σ] generates a null
result. Due to this reason, we have to adjust the integration procedure by

(i) starting the integration for I1 and I2 at the beginning of a new working cycle,
with the input command considered as w(t) = u(t) − A (the previous value for
the amplitude of the received pulse is subtracted from received pulse u(t));

(ii) if a step variation of amplitude for the input command w(t) is detected then

(a) stop the action of adjusted input command w(t) = u(t)−A upon the oscillating
system at time moment T0 (the output y(t) of the system will be represented
by free oscillations),

(b) continue the integration for I1 and I2 after the time moment T0 (which would
have been the end of the working cycle in case that the step variation of input
has been not detected);

(iii) stop the integration procedure for I1 when y(t) first time equals zero and the
integration procedure for I2 when y(t) second time equals zero.

Note that the time moments when the integration procedures cease are not affected
by noise, while the output y(t) is represented just by free oscillations of the second-
order system (after the time moment T0 the action of u(t) upon the system ceases);

(iv) Determine σ using

I0 = −I2/(2I0), I0 = sinc
(
ω0τ

2

)
, T0 − σ = τ,

I0 = Aτ, B −D = A, B = D +A.

(5.4)

Note: by translating the time origin from the beginning of a working interval to the
time moment when the step change (B − D) appears, we can consider that a short-step
pulse with amplitude (B − D) acts upon the second-order system at time moment zero,
from null initial conditions, on the time interval (0, T0 − σ)—thus the quantities τ and A
corresponding, respectively, to the time length of the received short-step pulse and to its
amplitude in previous paragraph should be replaced by T0 − σ and (B −D).

All presented aspects are valid if the system receives a step pulse (which can be
represented by an extended step pulse as presented in [1]) or by a short-step pulse (as
presented in this study, in previous paragraphs). Filtering properties of the second-order
oscillating system were studied in [1]. However, we must study also resonance aspects.
The second-order system being an oscillating system, resonance aspects (appearing when
the input u(t) is represented by an alternating function A sin(ωt + ϕ) with ω ≈ ω0) are
very important. Instead of damped proper oscillations of angular frequency ω0 with zero
limit (as for an asymptotic stable second-order system), some proper oscillations of angular
frequency ω0 and with constant amplitude can be noticed as term in y(t). These are added
to the oscillations with angular frequency ω generated by the command function u(t), both
having a higher amplitude inversely proportional to ω2 − ω2

0. If ω = ω0 (the limit case), for a
command function

u(t) = A sin
(
ω0t + ϕ0

)
, (5.5)
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the output y(t) is represented by

y(t) = E1t sin
(
ω0t + ϕ1

)
+ E2 sin

(
ω0t + ϕ2

)
. (5.6)

This function is hard to be processed by a signal processing system, working on a limited
time interval. Moreover, in applications it is possible for the input u(t) to be represented by
a sum of alternating functions with different angular frequencies ωi ≈ ω0. However, a signal
processing procedure can be established for the case when u(t) is represented by a sum of
alternating functions with angular frequencies ωi ≈ ω0 by taking into account the fact that
for an input u(t) represented by an alternating function A sin(ωt + ϕ) the amplitude E of
oscillations with angular frequencyω generated by this command function u(t) is determined
by

E(ω) =
Aω2

0

ω2 −ω2
0

(5.7)

which is a very sharp function. For this reason we can consider that in the case when the input
u(t) is represented by a sum of oscillations with different angular frequencies ωi ≈ ω0, the
output y(t) of the second-order system will be represented by an oscillation with the angular
frequency ωj closest to ω0 (generated by the received oscillation with angular frequency ωj)
and a proper oscillation of the second-order system (with angular frequency ω0). Thus y(t)
could be represented by a sum of two oscillations.

The result of an integration of this output y(t) on the working interval [0, 2πT0]
would depend just on the oscillation with angular frequency ωj , while the oscillation with
angular frequency ω0 (with time period T0) gives a null result by an integration on this
period. The result of this integration could be used for determining certain parameters for
the received oscillation with angular frequency ωj . However, such an integration is not a
robust integration, while the signal which is integrated is not equal to zero at the end of
this working interval. A possible solution of this problem would consist in disconnecting
the input signal after a certain time interval, so as to analyze (using robust integrations)
the free oscillations of the second-order system after this moment (as presented in previous
paragraph). A faster procedure could consist in a previous adjustment of initial conditions,
so as the free oscillations not to appear.

Theoretically, this can be done by using a set of identical oscillating second-order
systems (receiving the same input command u(t)) with initial conditions adjusted to different
values. The system generating a single oscillation with angular frequency ωj would be
selected by checking the following condition:

d2y

dt2
+ω2

j y = 0. (5.8)

However, the adjustment of two initial conditions at different values for a second-order
system requires a large number of identical oscillators. Due to this reason, this method is
inconvenient. A better choice would be represented by a delay systems of first order, with
transfer function

H(s) =
s

s sinϕ +ωjcosϕ
(5.9)
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would transform a received oscillation sin(ωjt + ϕ) according to

V (s) = H(s)U(s) =
s

s sinϕ +ωjcosϕ
s sinϕ +ωjcosϕ

s2 +ω2
j

=
s

s2 +ω2
j

(5.10)

which corresponds to an output v(t) = cos(ω0t). If this function v(t) represents the command
for the second-order oscillating system, the output y(t) (for initial null conditions) will be

y(t) = (1/2)ωjt sin
(
ωjt
)

(5.11)

when ωj is very close to ω0 and can be approximated by this quantity. The function y(t)
presented in previous equation is suitable for a sequence of robust integration procedures on
half-period time intervals:

[
0, π/ωj], [π/ωj, 2π/ωj

]
, etc. (5.12)

(it presents null values at the beginning and at the end of these intervals integration). The
results of these procedures are proportional to the amplitude A of received oscillation with
angular frequency ωj (as can be easily noticed).

Unlike the possible solution based on adjustment of two initial conditions, this
procedure requires a set of signal processing systems composed of different time-delaying
systems adjusted according to a single parameter (the phase φ, while ωj is supposed to
be known) and identical second-order oscillating systems starting to work from initial null
conditions. The number of required systems is less than in previous case, while a single
parameter has to be adjusted at different values (the quantity ϕ in the time-delay systems).
The corresponding output is selected by checking whether the results of these procedures
(considered as positive quantities) vary according to a linear mathematical law (as required
by the integration of y(t) = (1/2)ωjt sin(ωjt) on a sequence of half-period time intervals).

One major disadvantage of this method has to be mentioned: the function y(t) =
(1/2)ωjt sin(ωjt) equals zero at the beginning of signal processing time interval (t = 0) and
presents a small slope. So an extended time interval is necessary for obtaining significant
results using robust integration procedures. If we need a fast signal processing, we can simply
use a set of identical oscillating second-order systems, with different initial conditions. The
greatest amplitude for the output oscillation (considered as a sum of an oscillation with
angular frequency ωj and an oscillation with angular frequency ω0, ωj ≈ ω0) corresponds
to the case when the two oscillations are in-phase. By detecting the output presenting in-
phase oscillations, we can establish the amplitude and phase for the received signal using the
initial conditions for the second-order system generating this output.

6. Conclusions

An important aspect in modeling dynamic phenomena consists in measuring with higher
accuracy some physical quantities corresponding to the dynamic system. Yet for measure-
ments performed on limited time interval at high working frequency, certain intelligent
methods should be added. The high working frequency requires that the measurement
and data processing time interval should be greater than the time interval when the step
input is received, so as to allow an accurate measurement. This paper has shown that an
intelligent processing method based on oscillating second-order systems working on limited
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time interval can differentiate between large-step inputs (which are active on the whole
limited time interval) and short-step inputs (which are active on a time interval shorter than
the limited working period). Some resonance aspects (appearing when the input frequency
is close to the working frequency of the oscillating second-order system) were also presented.
Possible applications could be represented by processing the electric signal generated by
transducers [9] and by advanced modeling of traffic network [10].
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1. Introduction

Heat transfer from different geometrics embedded in porous media has many engineering
and geophysical applications such as geothermal reservoirs, drying of porous solids, thermal
insulation, enhanced oil recovery, packed-bed catalytic reactors, cooling of nuclear reactors,
and underground energy transport [1]. Nakayama and Koyama [2] studied free convection
over a vertical flat plate embedded in a thermally stratified porous medium by exploiting
the similarity transformation procedure. Cheng and Minkowycz [3] studied the steady free
convection about a vertical plate embedded in a porous media using the boundary layer
assumptions and Darcy model by the similarity method. Cheng [4] extended the work by
studying the effect of lateral mass flux with prescribed temperature and velocity as power
law on the vertical surface. Other investigators [5–8] studied some similar porous medium
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cases using Darcy and Boussinesq approximations with different power-law velocity and
temperature variations at the boundaries.

Meanwhile, the boundary layer equations for free-convective flow through a porous
medium constitute a nonlinear problem. The theory of nonlinear differential equations is
quite elaborate and their solutions are of practical relevance in the engineering sciences.
Several numerical approaches have been developed in the last few decades (e.g., finite
differences, spectral method, shooting method, etc.) to tackle this problem. More recently,
the ideas of classical analytical methods have experienced a revival in connection with
the proposition of novel hybrid numerical-analytical schemes for nonlinear differential
equations. Among such trends are Adomian decomposition method (ADM) [9–12] and He’s
variational iteration method (VIM) [13–16] coupled with Padé approximation method [17]
especially when dealing with boundary value problems [18]. These techniques, over the last
few years, have proved themselves as a powerful tool and a potential alternative to traditional
numerical techniques in various applications in science and engineering. This seminumerical
approach is also extremely useful in the validation of purely numerical schemes.

The aim of the present work is to construct a nonperturbative solution for natural
convection boundary layer flow through a porous medium on an unbound domain in the
presence of radiation using both ADM and VIM coupled with Padé approximation technique.
The chief merit of the methods is that they are capable of greatly reducing the size of
computation work while still maintaining accuracy of the numerical solution. However, VIM
gives successive approximations of high accuracy of the solution and VIM does not require
specific treatments as in ADM for nonlinear terms. Both numerical and graphical results are
presented and discussed quantitatively with respect to various parameters embedded in the
problem.

2. Mathematical formulation

We consider the steady two-dimensional flow of an incompressible viscous fluid induced by
a heated vertical plate embedded in a homogeneous porous medium of uniform ambient
temperature T∞. The fluid is assumed to be Newtonian, and a constant fluid suction or
blowing is imposed at the plate surface. Under Darcy and Boussinesq approximations, the
governing boundary layer equations for this problem can be written as [5, 6]

∂u

∂x
+
∂v

∂y
= 0, (2.1)

∂u

∂y
=
gKβ

υ

∂T

∂y
, (2.2)

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
= k

∂2T

∂y2
− ∂qr
∂y

. (2.3)

Here, u, v are the velocity components along x, y coordinates, ρ the fluid density, T the
temperature of the fluid, cp specific heat at constant pressure, k the thermal conductivity,
υ kinematic viscosity, g the gravitational acceleration, K permeability of the porous medium,
and β thermal expansion coefficient. It is also assumed that the temperature distribution of
the plate is governed by the power law Tw(x) = T∞+Axλ, where A is a constant > 0 for heated
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plate. Using Roseland approximation [7, 19], we takethe radiative heat flux as

qr = −4σ
3γ

∂T4

∂y
, (2.4)

where σ is the Stefan-Boltzmann constant and γ the mean absorption coefficient. Assume that
the temperature differences within the flow are sufficiently small such that T4 may expressed
as a linear function of temperature

T4 ≈ 4T3
∞T − 3T4

∞. (2.5)

The boundary conditions are given by

T(x, 0) = Tw(x), v(x, 0) = V (x),

T(x,∞) = T∞, u(x,∞) = 0.
(2.6)

We introduced the following similarity variables and parameters [5, 8]:

Ψ = αRaxF(η), Rax =
gKβ

(
Tw − T∞

)
x

υα
, T = T∞ +Axλθ(η),

N =
16σT3

∞
3γk

, η =
(
y

x

)
Ra1/2

x , α =
k

ρcp
, θ =

T − T∞
Tw − T∞ ,

(2.7)

where Rax is the modified local Rayleigh number. The continuity equation (2.1) is satisfied
by the stream function Ψ(x, y) defined by

u =
∂Ψ
∂y

=
(
α

x

)
RaxF

′(η), v = −∂Ψ
∂x

= −
(
α

2x

)
Ra1/2

x

[
(λ + 1)F + (λ − 1)F ′

]
, (2.8)

and (2.2) and (2.3) become

F ′′ = θ′, θ′′ +
λ + 1

2(N + 1)
Fθ′ − λ

N + 1
F ′θ = 0, (2.9)

where the primes denote differentiation with respect to η, N is the Radiation parameter, and
λ is the temperature exponent. In view of (2.7), the boundary conditions (2.6) transform into

θ(0) = 1, θ(∞) = 0, F(0) = m, F ′(∞) = 0. (2.10)

The suction or injection speed at the plate surface becomes

v(x, 0) = −
(
α

2x

)
Ra1/2

x (λ + 1)F(0), (2.11)
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wherem = F(0) is the suction or injection parameter according tom > 0 orm < 0, respectively.
The entrainment velocity of the fluid is given by

v(x,∞) = −
(
α

2x

)
Ra1/2

x (λ + 1)F(∞). (2.12)

Equation (2.9) together with the boundary conditions (2.10) can be easily reduced to give

F ′′′ +
λ + 1

2(N + 1)
F ′′F − λ

N + 1
F ′2 = 0, (2.13)

with

F ′(0) = 1, F(0) = m, F ′(∞) = 0, (2.14)

since it is very obvious from (2.9) and (2.10) that F ′ = θ (i.e., the vertical velocity and the
temperature profiles are identical). The local surface heat flux can be expressed as a function
of the local Rayleigh and Nusselt numbers as

NuxRa
−1/2
x = −θ′(0). (2.15)

3. Adomian decomposition method

In order to explicitly construct approximate nonperturbative solutions of the problem
described by (2.13) and (2.14), Adomian decomposition method well addressed in [9–11]
is employed and implemented in Maple (a symbolic algebra package). We rewrite (2.13) in
the form

LηF =
λ

(N + 1)
(Fη)

2 − (λ + 1)
2(N + 1)

FFηη, (3.1)

where the subscript η represents differentiation with respect to η and the differential operator
employs the first three derivatives in the form Lη = d3/dη3. The inverse operator L−1

η is
considered a threefold integral operator defined by

L−1
η =

∫η

0

∫η

0

∫η

0
(·)dηdηdη. (3.2)

Applying L−1
η to both sides of (3.1), using the boundary conditions in (2.14), we obtain

F(η) = m + η + b
η2

2
+ a1L

−1
η (F2

η) − a2L
−1
η (FFηη), (3.3)
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where a1 = λ/(N + 1), a2 = (λ + 1)/2(N + 1), and b = F ′′(0) is to be determined from the
boundary condition at infinity in (2.14). As usual in Adomian decomposition method, the
solution of (3.3) is approximated as an infinite series

F(η) =
∞∑

j=0

Fj, (3.4)

and the nonlinear terms are decomposed as

F2
η =

∞∑

j=0

Hj, FFηη =
∞∑

j=0

Gj, (3.5)

where Hj , Gj , are polynomials (called Adomian polynomials) given by

Hj =
1
j!

dj

dSj

⎡

⎣
( ∞∑

i=0

FηiS
i

)2
⎤

⎦

S=0

,

Gj =
1
j!

dj

dSj

[( ∞∑

i=0

FiS
i

)( ∞∑

i=0

FηηiS
i

)]

S=0

.

(3.6)

Thus, we can identify

F0 = m + η, F1 =
bη2

2
+ a1L

−1
η (H0) − a2L

−1
η (G0),

Fj+1 = a1L
−1
η (Hj) − a2L

−1
η (Gj), for j ≥ 1.

(3.7)

Using Maple, we obtained a few terms approximation to the solution as

F1 =
1
2
bη2 +

(1/6)λη3

N + 1
,

F2 =

(
1

60
λ2

(N + 1)2
− 1

60
(1 + λ)λ

(2N + 2)(N + 1)

)
η5

+

(
1

12
λb

N + 1
− (1 + λ)((1/24)(mλ/(N + 1)) + (1/24)b)

2N + 2

)
η4 − 1

6
(1 + λ)mbη3

2N + 2
(3.8)
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and so on. Substituting (3.7) into (3.4), we obtain

F(η) = m + η +
1
2
bη2 − 1

12

(
bm + bmλ − 2λ

)
η3

N + 1

+
1
96

1

(N + 1)2

(( − 2bN − 2b + 6bλN + 6bλ + bm2 + 2bm2λ − 2mλ + bm2λ2 − 2mλ2)η4)

+
1

480
1

(N + 1)2

(( − 2b2N − 2b2 + 6b2λN + 6b2λ − 2bmλ − 5bmλ2 + 4λ2 + 3bm − 4λ
)
η5)

+ O
(
η6),

(3.9)

where other terms up to O(η13) were derived. Let WL =
∑L

j=0Fj represent the decomposition
series partial sum obtained, then F(η) = limL→∞(Wl).

4. He’s variational iteration method

In 1978, Inokuti et al. [20] proposed a general Lagrange multiplier method to solve
nonlinear problems, which was first proposed to solve problems in quantum mechanics. The
modified method, or variational iteration method (VIM) proposed by He [13–16], has been
shown to solve effectively, easily, and accurately a large class of nonlinear problems with
approximations converging rapidly to accurate solutions. To illustrate the basic idea of the
method, we consider the general nonlinear system

L[F(η)] +N[F(η)] = g(η), (4.1)

where L is a linear operator, N is a nonlinear operator, and g(η) is a given continuous function.
The basic character of the method is to construct a correction functional for the system, which
reads

Fn+1(η) = Fn(η) +
∫η

0
B(s)

[
LFn(s) +NF̃n(s) − g(s)

]
ds, (4.2)

where B is a Lagrange multiplier which can be identified optimally via variational theory,
Fn is the nth approximate solution, and F̃n denotes a restricted variation (i.e., δF̃n = 0).
This technique provides a sequence of functions which converges to the exact solution of
the problem. The initial values F(0), F ′(0), and F ′′(0) are usually used for selecting the
zeroth approximation F0. Consequently, the exact solution may be obtained by using F(η) =
limn→∞Fn.

In what follows, we will apply the VIM for the problem in (2.13) to illustrate the
strength of the method. The correction functional for (2.13) reads

Fn+1(η) = Fn(η) +
∫η

0
B(s)

[
F ′′′n +

λ + 1
2(N + 1)

F̃ ′′nF̃n −
λ

N + 1
F̃ ′2n

]
ds. (4.3)
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Making the above correction functional stationary with respect to Fn yields the stationary
conditions (Euler equations)

∂3B

∂s3
= 0, 1 +

∂2B

∂s2

∣∣∣∣
s=η

= 0,
∂B

∂s

∣∣∣∣
s=η

= 0, B(s)|s=η = 0. (4.4)

Solving the above equations results in B = −(1/2)(s − η)2, and (4.3) then becomes

Fn+1(η) = Fn(η) − 1
2

∫η

0
(s − η)2

[
F ′′′n (s) +

λ + 1
2(N + 1)

F ′′n(s)Fn(s) −
λ

N + 1
F ′2n (s)

]
ds. (4.5)

We select the initial value F0(η) = m + η + (1/2)bη2 by using the conditions in (2.14), where
b = F ′′(0) is to be determined from the boundary condition at infinity in (2.14). Using (4.5),
we obtain the next successive approximation as

F1(η) =
(
− 1

120
(1 + λ)b2

2N + 2
+

1
60

λb2

N + 1

)
η5 +

(
− 1

24
(1 + λ)b
2N + 2

+
1

12
λb

N + 1

)
η4

+
(
− 1

6
(1 + λ)bm

2N + 2
+

1
6

λ

N + 1

)
η3 +

1
2
bη2 + η +m

(4.6)

and after few iterations, we obtain

F(η) = m + η +
1
2
bη2 − 1

12

(
bm + bmλ − 2λ

)
η3

N + 1

+
1
96

1

(N + 1)2

(( − 2bN − 2b + 6bλN + 6bλ + bm2 + 2bm2λ − 2mλ + bm2λ2 − 2mλ2)η4)

+
1

480
1

(N + 1)2

(( − 2b2N − 2b2 + 6b2λN + 6b2λ − 2bmλ − 5bmλ2 + 4λ2 + 3bm − 4λ
)
η5)

+ O
(
η6)

(4.7)

and F(η) = limn→∞Fn.

5. Padé approximation technique

It is now well known that Padé approximants [17] have the advantage of manipulating the
polynomial approximation into rational functions of polynomials. By this manipulation we
gain more information about the mathematical behavior of the solution. In addition, power
series is not useful for large values of η. Boyd [18] and others have formally shown that power
series in isolation are not useful to handle boundary value problems. This can be attributed
to the possibility that the radius of convergence may not be sufficiently large to contain the
boundaries of the domain. It is therefore essential to combine the series solution, obtained by
the ADM and VIM or any series solution methods, with the Padé approximants to provide
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Table 1: Comparison of the values of F ′′(0) with previous results for N = 0, λ = 1.

m Postelnicu et al. [6] Ali [5] Present results (Padé [3/3]) Present results (Padé [6/6])
−1.0 −0.6180 −0.61803 −0.61728 −0.61803
−0.8 −0.6770 −0.67703 −0.67516 −0.67703
−0.6 −0.7440 — −0.74412 −0.74404
−0.4 −0.8198 −0.81980 −0.82101 −0.81982
−0.2 −0.9050 — −0.90513 −0.90499
0.0 −1.0000 −1.00000 −0.99998 −1.00000
0.2 −1.1049 — −1.10524 −1.10497
0.4 −1.2198 — −1.22781 −1.21976
0.6 −1.3440 — −1.34462 −1.34390
0.8 −1.4770 — −1.47789 −1.47701
1.0 −1.6180 −1.61803 −1.62351 −1.61803

Table 2: Numerical values of F ′′(0) for N > 0 using Padé approximants [6/6].

N λ m F ′′(0)
1.0 1.0 1.0 −0.999822
2.0 1.0 1.0 −0.767530
3.0 1.0 1.0 −0.640354
4.0 1.0 1.0 −0.593069
5.0 1.0 1.0 −0.528624
1.0 1.0 0.0 −0.707100
1.0 1.0 0.5 −0.843048
1.0 1.0 −0.5 −0.593084
1.0 1.0 −1.0 −0.500004

an effective tool to handle boundary value problems on an infinite or semi-infinite domain.
Recall that the Padé approximants can be easily evaluated by using built-in function in a
symbolic computational package such as Maple. The essential behavior of the solution will
be addressed by using several diagonal Padé approximants of different degrees. Furthermore,
the undetermined value of b = F ′′(0) is calculated from the boundary condition at infinity in
(2.14). The difficulty at infinity is overcome by employing the diagonal Padé approximants
[10, 11, 18] that approximate F ′(η) using W ′

L(η). For instance, the series is transformed into
diagonal Padé approximants as follows:

W ′
L[M,M](η) =

∑M
i=0hiη

i

∑M
i=0giη

i
, (5.1)

where P = 2(M + 1) is the order of the series required for each approximant. In the Maple
environment, the simultaneous evaluation of limη→∞W ′

L[M/M](η) = 0 for M = 2, 3, 4, . . . in
(3.9) gives the numerical results for b = F ′′(0) as shown in Tables 1 and 2.
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Figure 1: Vertical velocity or temperature profiles for λ = 1; m = 1; N = 1 (solid line), N = 2 (circles),
N = 3 (plus signs).

6. Numerical results and discussion

The governing equation (2.13) subject to the boundary conditions (2.14) is solved using both
ADM and VIM together with Padé technique as described in Sections 3–5. Solutions are
obtained for the plate temperature with uniform lateral mass flux (λ = 1) controlled by the
suction/injection parameter m and radiation parameter N as shown in Tables 1 and 2 and
Figures 1 and 2.

The results presented in Table 1 are in good agreement with those given by Postelnicu
et al. [6] and Ali [5] who solved numerically the case of permeable surface without
considering the thermal radiation effect. In Table 2, we observed that the local surface heat
flux rate decreases with increasing values of radiation parameter. Figures 1 and 2 confirm
the exponential decay velocity F ′(η) or temperature θ(η) profiles across the boundary layers
[5–8]. As mentioned earlier, suction corresponds to m > 0, injection to m < 0, and m = 0
to impermeable plate. Therefore, it is clear from Figure 1 that suction reduces the boundary
layer thickness sharply as seen for m = 1 while injection increases it as for m = −1; however,
the surface heat flow is always positive regardless of the sign of m where the heat is directed
from the plate to the porous medium. Figure 2 shows that the fluid velocity and temperature
increase as the radiation parameter N increases. This can be explained by the fact that the
effect of radiation N is to increase the rate of energy transport to the fluid and accordingly to
increase the fluid temperature.

7. Conclusions

We employed both ADM and VIM to compute a nonperturbative solution for thermal
radiation effect on natural convection boundary layer flow past a vertical plate embedded
in a saturated porous medium. The results demonstrate the reliability and the efficiency
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Figure 2: Vertical velocity or temperature profiles for N = 1; λ = 1; m = 1 (solid line), m = 0 (circles),
m = −1 (plus signs).

of both methods in an unbounded domain. The two methods are powerful and efficient in
obtaining approximations of higher accuracy and closed-form solutions if existing. However,
He’s variational iteration method gives several successive approximations through using
the iteration of the correction functional and Adomian decomposition method provides the
components of the exact solution that will be added to get the series solution. Moreover,
the VIM requires the evaluation of the Lagrangian multiplier whereas ADM requires the
evaluation of the Adomian polynomials that mostly require tedious algebraic calculations.
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1. Introduction

The theory of special relativity plays a great role in particle physics. Now, particle
physics is increasingly being linked to engineering applications, via electron microscopy,
superconductivity, nuclear instrumentation, to name a few applications. Since relativistic
formulae are at the heart of all such applications, then it becomes important to find ways to
perform numerical computations related to localized (short-range) relativistic phenomena.
For instance, it is well known that the relativistic version of Schrödinger’s equation, namely,
the Dirac equation, cannot normally be solved over a short interval because it always predicts
that the velocity of the electron is equal to c, or the speed of light. In applications such
as electron microscopy, it becomes therefore usually necessary to abandon the relativistic
formulae and rely solely on the classical theory of electromagnetism. It is therefore clear that
there is a need at the present time to formulate the Dirac and other relativistic equations in a
manner that allows the computation of short-range phenomena. This is the first objective of
this paper.

The second objective of this paper is to show that space-time measurements on
closed-loop trajectories in special relativity and noncommutative properties of operators
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in quantum physics require a more rigorous definition of the method of measurement of
interaction phenomena. The use of the least action principle, for instance, implies some logic
definitions for measuring methods that are based on waves and for measuring methods
that are based on the corpuscular aspects of matter. When measurement is applied to
pulses, those logic definitions include considerations about a possible memory of previous
measurements (space-time operators). Accordingly, a distinction exists between the set of
existing space-time intervals and the set of measured space-time intervals (established using
wave measurement methods and defined within limited space-time intervals).

2. Relativistic short-range electron equation

In this section, we will develop a version of Dirac’s equation that is suitable for pulsed,
short-range electron beams. We will rely on the recently introduced mass-energy equivalence
relation H = mv2 [1] (where H is the total energy of the electron and v is its velocity), which
has proved to be effective in explaining short-range phenomena. First, a new Hamiltonian
will be obtained. It will be then verified that the new Hamiltonian directly leads to the result
that the velocity of the electron must be equal to ±v, which is of course a result that is in
sharp contrast with Dirac’s result and which does agree with experimental observation. We
will also verify that the spin magnetic moment term obtained by Dirac remains unchanged
in the present formulation.

2.1. The wave equation

We will begin by describing briefly Dirac’s approach for obtaining the relativistic wave
equation and then proceed to derive the modified equation and hence the modified
Hamiltonian. Dirac considered the mass of the particle as represented by its relativistic
expression m = m0/

√
1 − v2/c2. If we square that expression and rearrange the terms, we

get

m2c2 = m2v2 +m2
0c

2. (2.1)

Multiplying by c2, we get

m2c4 = m2v2c2 +m2
0c

4. (2.2)

But since mc2 is the total energy according to Einstein, then we have

H2 = p2c2 +m2
0c

4. (2.3)

Hence,

H = c
√
p2 +m2

0c
2. (2.4)

Since the term p2 can be written as
∑

rp
2
r , where pr is a one-dimensional momentum

component and r = 1, 2, 3, we finally have

H = c
√∑

r

p2
r +m2

0c
2. (2.5)
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This was Dirac’s total energy equation and was subsequently used to obtain the
relativistic wave equation. To obtain the modified wave equation, we now proceed to
multiply (2.1) by v2, getting

m2c2v2 = m2v4 +m2
0c

2v2. (2.6)

Using H = mv2 as the total energy of the particle, we have, from the above expression,

H2 = p2c2 −m2
0c

2v2. (2.7)

Now, since v2 =
∑

rv
2
r , where vr is a one-dimensional velocity component, (2.7) can

equivalently be written as

H = c
√∑

r

p2
r −m2

0

∑

r

v2
r . (2.8)

Equation (2.8) can be further simplified by noting that vr = pr/m. We finally have

H = c

√√√√
(

1 − m
2
0

m2

)∑

r

p2
r . (2.9)

Following Dirac’s approach, if we let �p0 be a vector defined as �p0 = �H/c, where �H

may be Hamiltonian of the form �H = (H, 0, 0), we will seek a wave equation that is linear in
�p0. We will take an equation of the most simple, basic form

(
�p0 −

∑

r

�pr
[
αr
]
)
ψ = 0. (2.10)

This form can be sufficient without any additional terms if we do not impose any
restrictions on the matrices [αr]. Dirac found that such matrices must be noncommuting, but
it is obvious here that such matrices must also contain mass terms. Multiplying (2.10) by the
vector (�p0 +

∑
r �pr [αr]), we get

p2
0 −
(
∑

r

�pr
[
αr
]
)2

= 0. (2.11)

Comparing this last expression with (2.9), we conclude that

(
1 − m

2
0

m2

)∑

r

p2
r =

(
∑

r

�pr
[
αr
]
)2

=
∑

r

�pr
[
αr
]2
�pTr +

∑

j

∑

k

�pj
[
αj
][
αk
]
�pTk , (2.12)

where j, k = 1, 2, 3, and j /= k. Accordingly, the matrices [αr] must satisfy

[
αr
]
= ±
√

1 − m
2
0

m2

[
βr
]
, (2.13)
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where [βr] are matrices that must satisfy the following two conditions:

[
βr
]2 = I,

[
βj
][
βk
]
+
[
βk
][
βj
]
= 0. (2.14)

Examples of such matrices were suggested by Dirac [2]. They might take the following
forms among others:

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎟⎠ . (2.15)

(Note that Dirac used 4 × 4 matrices to account for time as the fourth dimension. It
was independently confirmed later that the minimum number of dimensions that will satisfy
Dirac’s theory is in fact four.)

Using the relativistic expression for m, the matrices [αr] can now be written as

[
αr
]
= ±
√

1 −
(

1 − v
2

c2

)[
βr
]
= ±v

c

[
βr
]
. (2.16)

Therefore, from (2.12) and (2.16), the vector Hamiltonian can be written as

�H = c �p0 = c
∑

r

�pr
[
αr
] ± v

∑

r

�pr
[
βr
]
. (2.17)

To check the modified theory, it can be now easily verified that the velocity component
ẋ1 will be given by

ẋ1 =
[
x1, �H

]
= ±v. (2.18)

Unlike Dirac’s result, this result is of course in agreement with experimental
observation. It is important to note here that, mathematically, ẋ1 is the “expected” value of
the velocity. From (2.17), we can also see that the negative energy states are still preserved
here.

2.2. Motion of a charged particle in a magnetic field

We now consider the motion of a charged particle in a magnetic field to obtain a formulation
for the spin magnetic moment term that must appear in the final Hamiltonian (we assume
the absence of an electrostatic field here). In the presence of a magnetic field, the change in
the particle momentum Δp that occurs as a result of the interaction with the field is given by
[3]

Δp =
e

c
A, (2.19)

where e is the particle charge andA is the magnitude of the vector magnetic potential. Adding
that term to the momentum in (2.17) gives the Hamiltonian

�H = ±v
∑

r

(
�pr +

e

c
�Ar

)[
βr
]
. (2.20)
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By squaring (2.20), we get

H2

v2
=
∑

r

[(
�pr +

e

c
�Ar

)[
βr
]]2

+
∑

j

∑

k

(
�pj +

e

c
�Aj

)[
βj
][
βk
](
�pk +

e

c
�Ak

)T
. (2.21)

It is fairly easy to verify that the second term on the r.h.s. of the above expression must
vanish since the �pr vectors commute and since the [βr] matrices satisfy condition (2.14). In
Dirac’s treatment of the subject, he was able to show that the following equation holds:

[(
�pr +

e

c
�Ar

)[
βr
]]2(

�pr +
e

c
�Ar

)2

+
�e

c

∥∥ �M
[
βr
]∥∥, (2.22)

where �M = curl �A is the magnetic field intensity vector. Equation (2.21) therefore becomes

H2 = v2
∑

r

(
�pr +

e

c
�Ar

)2

+ v2 �e

c

∑

r

∥∥ �M
[
βr
]∥∥. (2.23)

(Note that (2.23) is a scalar equation.) If we now let H = mv2 and divide both sides of
the equation by 2mv2, we get

1
2
mv2 =

1
2m

∑

r

(
�pr +

e

c
�Ar

)2

+
�e

2mc

∑

r

∥∥ �M
[
βr
]∥∥. (2.24)

If the particle is an electron, then e is a negative quantity and the above equation
becomes

1
2m

∑

r

(
�pr +

e

c
�Ar

)2

=
1
2
mv2 +

�|e|
2mc

∑

r

∥∥ �M
[
βr
]∥∥. (2.25)

Without the presence of the magnetic field, the l.h.s. of (2.25) is reduced to

1
2m

∑

r

p2
r =

p2

2m
. (2.26)

This is the same as 1/2mv2. We can therefore conclude that the second term on the
r.h.s. of (2.25) is the term that represents the interaction of the field with the electron magnetic
moment. Hence the quantity �|e|/2mc is the spin magnetic moment coefficient. In general, we
can withdraw here the following two important conclusions: (1) the modified theory fully
yielded the classical expression of kinetic energy with the addition of the spin interaction
term; and (2) the spin interaction term obtained here is the same as the one obtained by
Dirac [2] (which is one Bohr magneton). The second conclusion is a confirmation that this
part of Dirac’s theory was correct. The first conclusion, however, shows a fact that was not
apparent from Dirac’s theory. Specifically, when �M = 0 (i.e., when the particle is away from
the magnetic field lines), (2.25) becomes

1
2m

∑

r

(
�pr +

e

c
�Ar

)2

=
1
2
mv2. (2.27)

This is a direct confirmation of the Aharonov-Bohm effect [4, 5]. Clearly, (2.27) shows
that the components pr of the momentum will be altered while the kinetic energy remains
constant.
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3. Phase and group velocities of short-range electrons

The concepts of the phase velocity and the group velocity are very important concepts that
come into play when short-range phenomena are considered. For instance, de Broglie’s work
predicts that the phase velocity of a matter wave is given by the expression c2/v, which is a
very unrealistic assumption for short-range, slow electrons. We will attempt in this section to
give a better explanation for that problem.

First of all, we must realize that there exists a number of phase velocities, not a single
phase velocity. Now, it is well known mathematically that each phase velocity vp = ωi/ki
and that the group velocity vg = dω/dk (where ω is the angular frequency and k = 2π/λ is
the propagation constant). As was pointed out in [1], the two fundamental relationships of
wave mechanics, λ = h/p and H = hν, together make a statement about the total energy of
a particle; that is, H = (pλ)ν = pu, where u is some velocity. The question here is what is u
exactly? Is it a phase velocity or a group velocity? Apart from the fact that H = pu is a total
energy equation, we must also note, since H = �ω and p = �k, that the equation leads to the
relationship ω = ku. Hence we must conclude that

dω

dk
=
ω

k
= u. (3.1)

This means that the group and the phase velocities are the same. This is the conclusion
that we must hold as true for short-range phenomena. Let us now attempt to understand
the origin of the problem. De Broglie’s original derivation of the important relationship λ =
h/p can be found in a number of standard references (see, e.g., [6]). Amazingly, as we will
conclude, while the formula was correct, the approach that was used to derive it was not.

De Broglie started by assuming a wave function that describes a stationary particle of
the form ψ ′ = exp(iω′t′). By using the Lorentz transformation of time t′ = γ(t − vx/c2), then
ψ ′ = exp(iγω′[t − vx/c2]). Since this equation (in principle) is a traveling wave equation,
de Broglie then concluded that the quantity c2/v must represent the velocity of the wave
in the observer frame. The rest of the derivation that leads to the formula λ = h/p is then
straightforward and consists of letting H = hν = mc2 and substituting the product λν for the
quantity c2/v. As it is well known historically [7, 8], de Broglie later offered the hypothesis
that c2/v is only a “phase” velocity and that the real, or “group” velocity is actually v so that
the particle and its associated wave would not part company. However, as we indicated, the
problem with such a hypothesis is that it directly contradicts the simple conclusion in (3.1).

Let us try to understand the problem with the above approach that led to the indicated
contradictions. The Lorentz transformation of time t′ = γ(t − vx/c2), which includes the
coordinate x, strictly assumes that “x” is only one geometrical point. From the viewpoint of
a stationary observer, a traveling wave, in the observer’s frame, cannot be described by one
“x” coordinate. The correct approach for including a traveling wave within the relativistic
transformations is to assume first that the “x” coordinate is equal to zero (and hence the time
transformation will be t′ = γt) and then write a true traveling wave equation in the observer
frame, that is,

ψ = exp i(kx −ωt). (3.2)

This was indeed the approach that was taken by Shrödinger and certainly this
explains why Shrödinger’s equation has been unquestionably successful. Now, by noting
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that k = 2π/λ and ω = 2πν, ψ can be written as

ψ = exp i
(

2π
λ
x −ωt

)
= exp iω

(
2π
λ

x

2πν
− t
)

= exp iω
(
x

λν
− t
)
. (3.3)

Assume first that the particle is moving with a velocity v � c so that the relativistic
effects can be ignored. In this case, ordinary (nonrelativistic) wave mechanics state that λν =
v, or the wave velocity. Now, if the relativistic effect is to be included, then the wavelength
λ becomes λ/γ (length contraction) and the frequency ν becomes γν (frequency shift). The
result therefore is that λν is still equal to v. We can see, then, that the flaw in the original
approach that led to the result λν = c2/v was the incorrect use of the Lorentz transformation.

If we now follow the rest of de Broglie’s derivation, but use H = mv2 instead of mc2,
we have H = mv2 = hν, hence

p = mv =
hν

v
=
hν

λν
=
h

λ
, (3.4)

which is of course de Broglie’s well-known formula. De Broglie was aware that this
relationship can be derived in a number of different ways, and for that reason he raised it
to the level of a postulate. Concerning the approach that was used in deriving it, however, this
is certainly one of the rare cases in science in which an incorrect derivation procedure still led
to the correct result.

4. A Klein-Gordon equation and a De Broglie dispersion relation for
short-range electrons

In this section, we present derivations for a modified Klein-Gordon equation and a modified
de Broglie dispersion relation. The conclusions are: (1) in the case of a massless particle, the
dispersion relation is the same as the original one; and (2) in the case of a massive particle,
we still conclude that the phase and the group velocities are the same, that is, vg = vp = v.

4.1. The Klein-Gordon equation

The derivation of the Klein-Gordon equation starts with the usual relativistic expression (see
[9])

H2 = p2c2 +m2
0c

4. (4.1)

If we now replace H by mc2 and p by mv, we have

m2c4 = m2v2c2 +m2
0c

4. (4.2)

If we multiply this expression by v2/c2, we get

m2v2c2 = m2v4 +m2
0v

2c2. (4.3)

If we now let H = mv2, we finally have

H2 = p2c2 −m2
0v

2c2. (4.4)
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This is a modified energy-momentum relationship and was in fact derived previously
in [1]. Notice that the quantity m2

0v
2 = p2 −H2/c2. It is therefore a correct representation of

the momentum vector pμ.
To obtain the modified Klein-Gordon equation, we start with the well-known

relationship

∇2ψ = −k2ψ = −p2

�2
ψ. (4.5)

By substituting from (4.4) into (4.5) we have

−�2∇2ψ =
(
H2

c2
+m2

0v
2
)
ψ. (4.6)

From Shrödinger’s equation we have

∂2ψ

∂t2
= −H

2

�2
ψ. (4.7)

By substituting from (4.6) into (4.7) we finally get

1
c2

∂2ψ

∂t2
− ∇2ψ =

(
m0v

�

)2

ψ. (4.8)

This is the modified Klein-Gordon equation.

4.2. De Broglie’s dispersion relation

In view of (4.7) and (4.5), the modified Klein-Gordon equation can be written as

− 1
c2

(
ω2

�
2

�2

)
ψ = −k2ψ +

(
m0v

�

)2

ψ, or, ω2
�

2ψ = c2
�

2k2ψ −m2
0c

2v2ψ. (4.9)

Hence, the modified de Broglie wave dispersion relation is

�
2ω2 = c2

�
2k2 −m2

0c
2v2. (4.10)

For m0 = 0, we can see that the relation becomes �
2ω2 = c2

�
2k2, which is of course the

same as in the usual theory.
To obtain the group velocity, vg = dω/dk, we differentiate the dispersion relation with

respect to k, getting (note that only the magnitudes of the vectors p and k will be represented)

�
2ω

dω

dk
= c2

�
2k −m2

0c
2v
dv

dk
. (4.11)

Since p = mv = �k and hence m(dv/dk) = �, the above equation becomes

�
2ω

dω

dk
= c2

�
2k −m2

0c
2 �

2

m2
k (4.12)

or

ω
dω

dk
= c2k − m

2
0

m2
c2k = c2k

(
1 −
(

1 − v
2

c2

))
= kv2. (4.13)
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Hence,

dω

dk
=
(
k

ω

)
v2. (4.14)

But since dω/dk = vg = v, we then conclude that ω/k = vp = v. The group and the
phase velocities are therefore the same.

5. Logical aspects connected with space-time measurements

After presenting basic aspects in physics from the relativistic point of view, we will present
some logical aspects for basic principles in physics (the principle of constant light in vacuum
in any reference system and the uncertainty principle in quantum theory). We will show
that these principles make use in an implicit manner of terms which are defining also the
conclusion. For example, the idea of constant light speed implies the use of a measuring
method based on a clocks’ synchronization performed using a supposed antecedent light
signal transmitted and reflected toward the observer. In a similar manner, the uncertainty
principle implies the existence of a measuring method for position or time correlated with a
subsequent measurement for momentum or energy (measurements which also make use of
position and time). Yet a logic definition of a physics principle cannot be based on the use of
the same terms in both sides of it; like in the case of an algebraic calculus, the quantity to be
determined must be finally placed in the opposite side of an equality, as related to the already
known quantities joined in a mathematical operation. More precisely, we cannot define in a
rigorous manner a certain term using the same term in the corresponding definition.

5.1. Logical aspects of light speed constance principle

The constant light speed principle (in vacuum) can be considered under the following form.
It exists a quantity light speed in vacuum noted as c, which is constant for any observer inside
an inertial reference system.

We can notice at first step that in an implicit manner the previous definition requires
the existence of a measuring method for light speed in vacuum; any method for measuring
a speed requires the use of time measurements (while v = Δr/Δt). For our case (special
relativity theory), the correspondence of time moments in different reference systems is based
on a previous synchronization procedure implying an emission of light from an observer
to another and a reflection of this light signal from the other observer to the first one. The
reflection moment (considered as synchronization moment ≡ zero moment) is considered by
the first observer to take place at the middle of the time interval between the initial emission
of light and the return of it. The whole chain implies that the use of a wave light LW appears in
the definition of the light speed constance principle (in vacuum) under an explicit form (the
notion of light speed), and it appears also under an implicit form (a previous synchronization
based on light signals is required). From the formal logic point of view, this represents a
contradiction [10]. A first attempt to solve it would be in taking into account the fact that
the light speed measurement and the systems synchronization correspond to different time
moments (the light wave considered for systems synchronization corresponds to the zero
moment of time, while the light wave whose speed is considered in light speed constance
principle corresponds to a subsequent moment of time).



10 Mathematical Problems in Engineering

However, the use of such a set of different light waves (a light wave whose speed
has to be measured and a previous pair of emitted-reflected light wave necessary for the
synchronization procedure) implies the use of an extended time interval required by a light
speed measurement as

Tm =
[
t0, tm

]
, (5.1)

where Tm is the time interval required by a light speed measurement at tm time moment. But
at next step we can notice that a speed corresponds to an almost instant moment of time,
being defined as

v = lim
t→tm

Δr
Δt

=
dr
dt
. (5.2)

This requires that the time interval required by a speed measurement must be infinitely small.
Thus the time interval necessary for light speed measurement can be written as

Tm =
[
tm −Δt, tm

]
(5.3)

which implies that the corresponding length interval LTm is infinitely small

LTm −→ 0. (5.4)

But this is in contradiction with the previous consideration Tm = [t0, tm]. The corresponding
timelength

LTm = tm − t0 � 0 (5.5)

can be much greater than zero. So the contradiction can be easily proved as

LTM −→ 0 and in the same timeLTm � 0. (5.6)

From the intuitive point of view, this means that a light wave emitted in a certain
reference system interacts in the most general case only on a limited time interval with
another measuring reference system, the use of a previous procedure of emission-reflection
for synchronization being impossible in practice. So the solution of such a contradiction
(determined by implicit aspects of the terms used in definitions) must be found by taking
into consideration other properties of physics entities involved in definition; see also [11].

5.2. Logical aspects of uncertainty principle in quantum mechanics

If we study the uncertainty principle in quantum mechanics, we can notice quite similar
aspects. According to this principle, a measurement performed with a greater accuracy upon
space or time coordinates for a quantum particle must generate a greater error upon a
subsequent measurement for momentum or energy according to

ΔxΔPx ≥ h

4π
(5.7)
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or

ΔtΔE ≥ h

4π
. (5.8)

But the existence of a measuring method for position or time is correlated with a subsequent
measurement for momentum or energy (measurements which also make use of position and
time).

It can be noticed that a term (a space-time measurements) is explained using (in
an implicit manner) the same term at a subsequent moment of time. Without being a
contradiction (like in the case of light speed constance principle), it still remains a recurrent
definition. In the same manner presented for special relativity, we can take into consideration
the different moments of time for space-time measurements. Yet the fact that (in an implicit
manner) the principle requires the use of a measurement performed at a later time moment
generates another logical problem. Can a space-time measurement performed at a certain
moment of time be influenced by previous space-time measurements performed upon the
same quantum particle? When a space-time measurement belongs to the class of space-
time coordinates measurement, and when it belongs to the class of momentum or energy
measurements (performed in an indirect manner using also space-time measurements)?
Under which circumstances a measurement can be considered as an initial action (in this
case its accuracy can be greater) or as a subsequent action (its accuracy having to be less than
a certain value, according to Heisenberg relation)?. The time always appears in quantum
mechanics, while two physical quantities cannot be measured exactly at the same moment of
time.

So a space or time measurement performed at a certain time moment belongs to
the class of subsequent indirect methods for measuring momentum or energy (having as a
consequence a limited accuracy), or to the class of direct methods for measuring space or time
(having a possible greater accuracy). A rigorous classification according to certain patterns
should be made; see also [12], taking into consideration similarities in fundamental physics
laws [13].

5.3. Different-scale system properties used for explaining logical
aspects of pulse measurements

This problem suggests also a possible solution: if we continue our analysis of terms involved
in measuring procedures, we can notice that both basic principles (light speed constance
principle and uncertainty principle) use the term of measuring method. In an implicit
manner, the terms reference system (for special relativity theory) and measuring system (for
quantum theory) appear. Yet a measuring system implies the fact that it is not affected by the
measuring procedure (otherwise, the physical quantity having to be measured would possess
different values, depending on this interaction). So a first conclusion appears: the measuring
system must be defined at a much larger scale than the body or the wave which interacts
with it. The different scale system properties must be taken into consideration from the very
beginning so as to put them into correspondence with

(i) the class of reference systems, which are not affected by interaction (where wave
trains similar to wavelets can appear [14]);
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(ii) the class of transient phenomena which undergo specific interactions (such
transient phenomena can be represented as solitary waves, while estimations for
the space coordinates for the source of the received wave-train based on space
relations are not suitable for this purpose. As a further consequence, the constance
light speed principle appears as a simple generation of another light wave when
a received wave train arrives in the material medium of the observer reference
system, and the uncertainty principle appears as a spread of a wave corresponding
to a quantum particle by the measuring system, according to a kind of Fourier
transformation performed on limited space and time intervals (the aperture and
a certain working period). Thus logical aspects of the definitions of basic principles
in physics (implying measurements of pulse parameters) can be explained in a
rigorous manner.

6. Aspects connected with measurements on a set of pulses

6.1. Measurements on a set of pulses received on adjoining space-time intervals.
Synchronization aspects

We will justify the previous considerations by presenting the case of measurements for
sequence of pulses received on adjoining space-time intervals. As it is known, the special
relativity theory considers that the Lorentz formulae describe the transformation of the
space-time coordinates corresponding to an event when the inertial reference system is
changed. These formulae are considered to be valid at any moment of time after a certain
synchronization moment (the zero moment) irrespective to the measuring method used.
However, there are some problems connected to the use of mechanical measurements on
closed-loop trajectories. For example, let us consider that at the zero moment of time, in a
medium with a gravitational field which can be neglected (the use of the Galileean form
of the tensor gik being allowed) two observers are beginning a movement from the same
point of space, in opposite directions, on circular trajectories having a very great radius of
curvature. After a certain time interval, the observers are meeting again in the same point of
space. For very great radii of curvature, the movements on very small time intervals can be
considered as approximative inertial (as in the case of the transverse Doppler effect, where the
time dilation phenomenon was noticed in the earth reference system which is approximative
inertial on small time intervals). The Lorentz formulae can be applied on a small time interval
Δt(1) measured by one of the observers inside his reference system, and it results (using the
Lorentz formula for time) that this interval corresponds to a time interval

Δt′(1) =
Δt(1)

√
1 − v(1)2/c2

(6.1)

in the reference system S2 of the other observer, which moves with speed v(1) as related to
the reference system S1 on this time interval. So the time dilation phenomenon appears. If
each observer considers the end of this time interval (Δt(1) orΔt′(1)) as a new zero moment
(using a resynchronization procedure), the end of the second time interval Δt(2) (with the
new zero moment considered as origin) will correspond to a time moment

Δt′(2) =
Δt(1)

√
1 − v(2)2/c2

(6.2)
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measured in the other reference system S2 which moves with speed v(2) as related to system
S1 on the time interval Δt′(2) (with the new zero moment considered as origin). As related to
the first zero moment (when the circular movement has started) the end of the second time
interval appears at the time moment

t2 = Δt(1) + Δt(2). (6.3)

For the observers situated in reference system S1, and at the time moment

t′(2) = Δt′(1) + Δt′(2)
Δt(1)

√
1 − v(1)2/c2

+
Δt(2)

√
1 − v(2)2/c2

(6.4)

for the other observer.
Due to the fact that

Δt′(1) > Δt(1),

Δt′(2) > Δt(2),
(6.5)

it results that

t′(2) = Δt′(1) + Δt′(2) > Δt(1) + Δt(2) = t(2) (6.6)

and thus a global time dilation for the time interval Δt(1) +Δt(2) appears. The procedure can
continue, by considering the end of each time interval

Δt(1) + Δt(2) + · · · + Δt(i) (6.7)

as a new zero moment, and so it results that on all the circular movement period, a time
moment

t(k) =
k∑

i=0

Δt(i) (6.8)

(measured by the observer in reference system S1) corresponds to a time moment

t′(k) =
k∑

i=0

Δt′(i) =
k∑

i=0

Δt(i)
√

1 − v2
i /c

2
(6.9)

(measured by the observer situated in reference system S2) which implies

t′(k) > t(k). (6.10)

By joining together all these time intervals Δt(i) we obtain the period of the whole circular
movement T . While the end of this movement is represented by the end of the time interval
Δt(N) in the reference system S1, it results that T can be written under the form

T = t(N) =
N∑

i=0

Δt(i) (6.11)
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(considered in the reference system S1) and it results also that this time moment (the end of
the circular movement) corresponds to a time moment

T ′ = t′(N) =
N∑

i=0

Δt′(i) (6.12)

measured in the reference system S@. While

Δt′(i) =
Δt(i)

√
1 − v(i)2/c2

> Δt(i), (6.13)

it results

T ′ > T. (6.14)

If the time is measured using the age of two twin children, it results that the twin in
reference system S2 is older than the other in reference system S1, (having a less mechanical
resistance of bones) and it can be destroyed by it after both observers stop their circular
movements. However, the same analysis can be made starting from another set of small time
intervals Δnt

′(i) considered in the reference system S2 which corresponds to a new set of time
intervals Δnt(i) considered in the reference system S2 (established using the same Lorentz
relation) and finally it would result that the period of the circular movement T ′ measured
in system S2 corresponds to a period T greater than T ′ considered in reference system S1. If
the time is measured using the age of two twin children, it results that the twin in reference
system S1 is older than the other in reference system S2, (having a less mechanical resistance
of bones) and it can be destroyed by it after both observers stop their circular movements.
But this result is in logic contradiction with the previous conclusion, because a man cannot
destroy and in the same time be destroyed by another man [15].

As a first attempt of solving this contradiction, one can suppose that Lorentz formulae
are valid only for electromagnetic phenomena (as in the case of the transversal Doppler
effect) and not in case of mechanical phenomena. But such a classification is not a rigorous
classification, being not suitable for formal logic. In next section, we will present a more
rigorous classification of phenomena used in space-time measurements, which can be used
for gedanken experiments using artificial intelligence based on formal logic.

6.2. Classification of space-time measurement methods
based on memory of previous measurements

The logical contradiction presented in previous section appeared due to the fact that an
element with internal memory has been used. The indication of this element has not been
affected by the resynchronization procedure. In modern physics such an element with
internal memory is connected with the corpuscular aspect of matter with a body. On the
contrary, a measuring procedure based on an electromagnetic or optic wave train is a transient
phenomenon. The synchronization of clocks is possible only after the wave-train arrives
at the observer. Excepting a short time interval after the reception the received wave train
does not exist inside the observer medium, so there is not any space area where a physical
quantity which characterizes the wave to cumulate. That is the reason why a correct solution
of the twins paradox must be based not on the association of electromagnetic (or optic)
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phenomena with the Lorentz formulae, but on the association of the Lorentz formulae
with wave phenomena describing the propagation of a wave inside the observers reference
systems. The wave class is more general than the class of electromagnetic and optic waves
(we can mention the wave associated with particles in quantum mechanics). Besides, in the
most general case, the interaction between two reference systems appears under the form
of a field, not under the form of a material body. Moreover, this aspect implies an intuitive
interpretation for the dependence of the mass of a body inside a reference system.

Using the formal logic, all we have shown can be presented in a rigorous manner.
(a) We define the notion of “propagation” phenomenon in two inertial reference

systems (the system where the event takes place and the system where a signal generated by
the event is noticed) as a phenomenon having a finite existence inside the reference system,
the number of intervals being finite.

(b) We define the notion of corpuscle inside a certain reference system as a
phenomenon which can possess an unlimited evolution in time and space inside the reference
system; it can be also said that the phenomenon has its own existence, it exists by itself.

(c) We define the emission of a wave-train Ue in a reference system and its
transformation in another train when it interacts with the observers medium

Definition 6.1. There exist an area S0e and a time interval T0e in the reference system where
the emission takes place so that

Fue
(
S0e, T0e

)
/= 0, Fue

(
S0e, t

)
= 0 for t /∈ T0e. (6.15)

There exist a space area S0r and a time interval T0r in the observer reference system, and a
relation Tr so that

Fur
(
S0r , T0r

)
= Tr
[
Fue
(
S0e, T0e

)]
,

Fur
(
S0r , T0r

)
/= 0, Fur

(
S0r , t

)
= 0 for t /∈ T0r .

(6.16)

(d) We define the transformation of a sequence of received pulses ΣkUek in a sequence
ΣkUrk, k = 1 · · ·n after interaction with the observers reference system, by considering that
each pulse (wave-train) is transformed in an independent manner by the material medium
of the observer reference system, according to its specific Lorentz transformation

Definition 6.2. Consider

Urk = Lk[Ue]k,

ΣkUek = ΣkUrk,
(6.17)

where Lk represents the Lorentz transformation performed upon the Uek wave by the
system with the interaction moment of this wave with the material medium of the observer
considered as zero moment of time (synchronization moment) for the Lorentz transformation
Lk.

(e) We define the interaction between a sequence of pulses and the material body of the
observer reference system (a corpuscle) as an interaction function Int between the material
medium and each transformed pulse Urk corresponding to a received pulse Uek, the mass m
of the body measuring the influence of the received wave-train Uek upon the body.
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Definition 6.3. Consider

1
m

= Int
[
Urk
]
= Int

[
Lk(Ue)k

]
. (6.18)

When Lorentz transformation Lk does not generate a pulseUrk (e.g., when the relative
speed between the material body and the wave is equal to c, the speed of light in vacuum),
the mass m is equal to ∞, which means that no interaction due to the received pulse Uek
exists (an idea which connects the notion on infinite mass with the absence of interaction).
So m = ∞ for a body inside a reference system S shows that we cannot act upon the material
body using wave pulses emitted in system S; however, changes in the movement of the body
(considered in system S) due to other external forces seem to be allowed.

By interaction with a certain material medium, each pulse is transformed according
to Lorentz formulae, and the modified parameters of each pulse must replace the previous
informations in the memory cells.

7. Associating a certain wave train to Lorentz transformation

7.1. The necessity for associating a wave function to the Lorentz transformation

The Lorentz transformation is usually represented as a matrix L which acts upon a
quadridimensional column vector r having the components r1 = x, r2 = y, r3 = z, r4 = ict,
resulting in another quadridimensional vector r∗ having the components r ′1 = x′, r ′2 = y′, r ′3 =
z′, r ′4 = ict′, where x, y, z, t are the space-time coordinates corresponding to a certain event in
an inertial reference system S, and x′, y′, z′, t′ are the space-time coordinates corresponding
to the same event measured in an inertial reference system S′ which moves with velocity v (a
vector) against the system S. This means

r ′ = L(v)r. (7.1)

All time moments are considered after a synchronization moment (when the clock
indications in the reference systems are set to zero). The velocity v defines the matrix L, and
the result is considered not to depend on the measuring method used. But let us consider
that the velocity v has two components vx and vy oriented along the Ox axis (for vx) and
along the Oy axis (for vy) and let us consider also that the event taking place in the reference
system S is first observed in a reference system S1 which moves with velocity vx as against
the system S :

a set of space-time coordinates (x1, y1, z1, t1) will be established for the event. Then
the event having the space-time coordinates (x1, y1, z1, t1) in system S1 is observed in the
reference system S′ which moves with velocity vy (the projection of v along the Oy axis)
against the reference system S (this relative speed being measured in system S). That
corresponds to a relative speed

vy(c) =
vy

√
1 − v2

x/c2
(7.2)

between the systems S and S′ (due to the kinematics law of addition of speeds in special
relativity theory). Thus will result in the cuadridimensional vector r ′ (having the components
x′, y′, z′, ict′), measured in system S′, under the form

r ′ = L
(
vy(c)

)
L
(
vx
)
r. (7.3)
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But we can also consider that the event having the space-time coordinates x, y, z, t in system
S is first observed in a reference system S2 which moves with velocity vy (the projection of
velocity v along the Oy axis) as against system S; a set of space-time coordinates will be
established for the event. Then this event having the space-time coordinates x2, y2, z2, t2
in system S2 is observed in the reference system S′ which moves with velocity vx (the
projection of velocity v along the Ox axis) against the reference system S2, the velocity vx
being measured in the reference system S. That corresponds to a relative speed

vx(c) =
vx√

1 − v2
y/c2

(7.4)

between the systems S′ and S2 (due to the same kinematics law of addition of speeds in
special relativity). Thus will result in the space-time coordinates x′, y′, z′, t′ measured in
system S′ under the form

r ′ = L
(
vx(c)

)
L
(
vy
)
r. (7.5)

Using the explicit form of Lorentz transformation for the case when the relative speed has the
direction of one of the axes of coordinates, it can be easy shown that

L
(
vy(c)

)
L
(
vx
)
r /= L

(
vx(c)

)
L
(
vy
)
r. (7.6)

This shows that the coordinates measured for the event in S′ reference system depends on
the succession of transformations. This aspect is similar to the noncommutative properties
of operators in quantum theory [16]. It implies that in the case of special relativity we
must define a vector of state (a wave-function) upon which the Lorentz transformation
acts. Thus the Lorentz transformation can be considered as a physical transformation which
modifies a certain wave function inside a reference system. Taking into account the fact that
usually we receive information under the form of electromagnetic (or light) wave trains
(the emission of these wave trains corresponding to the event) and taking also into account
the fact that the time-dilation phenomenon (a consequence of Lorentz transformation) was
first time observed for light wave trains (the transverse Doppler effect) it results that in
the most general case this wave function must be associated to the wave-function of the
received light wave train. As a consequence of the previous statement, it results that a Lorentz
transformation L must be always put in correspondence with a pair (S, ϕ), S representing a
certain material reference system which acts upon a wave train having the state-vector ϕ. So
the Lorentz transformation must be written under the form LS(ϕ); in the most general case
L is the Lorentz matrix and ϕ is a vector or a higher-order tensor which describes the field.
For an electromagnetic wave, the field can be described using the cuadridimensional vector
A. The action of the matrix LS consists in a general transformation

ϕ(x, y, z, t) −→ ϕ′(x′, y′, z′, t′) = LSϕ(x, y, z, t), (7.7)

where the values of ϕ are modified according to the transformation rules of vectors and
tensors (e.g., A′ = LA for an electromagnetic wave described by the cuadrivector A) and in
the change of the space-time coordinates (x, y, z, t) into (x′, y′, z′, t′) according to the formula

r ′ = LSr, (7.8)
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r representing the cuadridimensional vector of coordinates. We have to point the fact that in
all these formulae ϕ(x, y, z, t) represents the value ϕ would have possessed in the absence of
the interaction with the observer material medium; the space-time origin must be considered
in the point of space and at the moment of time where the wave first time interacts with
the observer material medium (in a similar way with the aspects in quantum mechanics,
where all transformations are acting after the interaction with the measuring system). This
interpretation can solve the contradictions appearing in case of movements on closed-loop
trajectories (the twins paradox) in a very simple manner. The Lorentz transformation being
a transformation which acts upon a certain wave train (a light wave train, in the most
general case), it has no consequences upon the age of two observers moving on closed-loop
trajectories. So no contradiction can appear when the two observers are meeting again.

7.2. Possibilities of using the principle of least action
in connection with the wave-train interpretation

We begin by writing the propagation equation for an electromagnetic wave inside an observer
material medium under the form dx2 + dy2 + dz2 = c2dt2 (c representing the light speed). It
results that c2dt2 − dx2 − dy2 − dz2 = 0 for all points inside the material medium where the
wave has arrived. But

c2dt2 − dx2 − dy2 − dz2 = ds2, (7.9)

where ds is the cuadridimensional space-time interval. The propagation equation of the
optical wave can be written as ds = 0, and so it results that the trajectory of the wave inside
the material medium between two points a and b is determined by the equation

∫b

a

ds = Δs = 0. (7.10)

By the other hand, for mechanical phenomena the quantity determining the trajectory of
a material body inside a reference system is the action S. Under a relativistic form, it can
be written as S = −mc ∫ba ds, m representing the mass of the body, and a, b the space-time
coordinates for two points situated along the “universe line” on which the body moves. The
principle of least action can be written as δS = −mcδ ∫ba ds = 0.

While δS =
∑

imcuiδxi, where ui = vi/
√

1 − v2/c2 for i = 1, 2, 3 and u4 =
ic/
√

1 − v2/c2, it results finally that
∑

ip
2
i = −m2c2, pi being the cuadrivector ∂S/∂xi

(the momentum). For a free particle, pi = mui. It can be noticed that the infinite
small cuadridimensional interval ds is used both for describing the propagation of an
electromagnetic wave and the movement of a body inside a reference system. While is it
related to the action S, this result is easy to be understood (the principle of least action being
a basic principle in nature). The next step consists in pointing the fact that the previous
integral Δs = 0 (determining the trajectory of the optical wave train inside the material
medium) is based on the supposition that both points a, b belong to the material medium
(otherwise, the velocity of the wave may differ, depending on the dielectric and magnetic
constants of the material). So the equation can be directly used in measurement procedures
(for establishing trajectory or other properties of the wave only for the time interval when
the optical wave train exists in that material medium [17]). If an observer has to analyze a
wave train emitted in another material reference system, he must use the invariance property



E. G. Bakhoum and C. Toma 19

of the cuadriinterval: ds = ds′, where ds represents the cuadriinterval between two close
events in a certain inertial reference system and ds′ represents the cuadriinterval between
the same two events measured in another reference system. While ds = ds(dx, dy, dz, dt) is
determined inside the observer reference system and ds′ = ds′(dx′, dy′, dz′, dt′) corresponds
to the reference system where the wave has been emitted, it results that the cuadridimensional
interval ds moves into the cuadridimensional interval ds′ by a function

ds(dx, dy, dz, dt) =⇒ L =⇒ ds′(dx′, dy′, dz′, dt′), (7.11)

where the arguments of ds are transformed by the Lorentz relations

dx′ =
dx + vdt
√

1 − v2/c2
, dy′ = dy, dz′ = dz, dt′ =

dt + vdx/c2

√
1 − v2/c2

(7.12)

for v parallel to Ox (all the space and time intervals dx, dy, dz, dt being considered inside
the observer material medium after the emitted optical wave train arrives), and ds = ds′. The
above relation can be considered as presenting a transformation of the received wave train
(with x, y, z, t coordinates) into a “supposed” wave train corresponding to the case when
the wave train would not have entered inside the observer material medium. For determining
the real trajectory of the wave before interaction the observer must extend the trajectory of
the received wave train (having coordinates x′, y′, z′, t′ in the past and outside the observer
material medium, using the relation

∫b

a

ds′ = Δs′ = 0. (7.13)

7.3. Non-Markov aspects of pulse transformation

We have also to emphasize the non-Markov aspect of Lorentz transformation which acts upon
a received wave train when this interacts with the observer material medium. At the initial
moment of time (the zero moment) we can consider that new values for wave quantities are
generated as a result of the Lorentz matrix action upon the received values (cuadrivectors
or cuadritensors). This represents a Markov transformation (using some physical quantities
defined at a certain moment of time t = 0, we can obtain the result of that transformation at a
time moment t + dt = 0 + dt).

Yet if we analyze the wave train transformation at a subsequent moment of time (after
the zero moment when the wave was received) we can notice that the physical quantities
corresponding to cuadrivectors and cuadritensors are not just modified (by the action of
Lorentz matrix) but are also translated at a different time moment (according to Lorentz
formulae for transforming space-time coordinates). This implies that the physical quantities
corresponding to the transformed wave train (defined in the observer material reference
system) depend on the physical quantities corresponding to the unchanged wave train
(supposed situation) at a previous time moment. Not being possible to use values of certain
quantities at a time moment t for obtaining the values of that physical quantities at a time
moment t + dt for t > 0, it results that the Lorentz transformation of a received wave train
(an electromagnetic or optic pulse or an associated wave corresponding to a particle) is a
non-Markov transformation. In future studies, this aspects should be studied using aspects
connected to time series inside a material medium [18].
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8. Conclusions

This study has shown that certain intuitive problems connected with measurements of
sequences of pulses on closed-loop trajectories in special relativity and noncommutative
properties of operators in quantum physics imply a more rigorous definition of measurement
method and of the interaction phenomena (classified according to a possible memory
of previous measurements), so as to avoid logical contradictions due to a possible
resynchronization. It is also shown that the use of the least action principle requires a specific
space-time interval available for a space-time measurement in an implicit form. Due to this,
it results in a certain distinction between the set of existing space-time intervals (which can
be defined on unlimited space-time intervals) and the set of measured space-time intervals
(established using measuring methods based on waves and always defined on limited space-
time intervals).
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1. Introduction

Test-functions(whichdifferto zero only on a limited interval and have continuous derivatives
of any order on the whole real axis) are widely used in the mathematical theory of distributions
and in Fourier analysis of wavelets. Yet such test-functions, similar to the Dirac functions,
cannot be generated by a differential equation. The existence of such an equation of evolution,
beginning to act at an initial moment of time, would imply the necessity for a derivative of
certain order to make a jump at this initial moment of time from the zero value to a nonzero
value. But this aspect is in contradiction with the property of test-functions to have continuous
derivatives of any order on the whole real axis, represented in this case by the time axis. So it
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results that an ideal test-function cannot be generated by a differential equation (see also [1]);
the analysis has to be restricted at possibilities of generating practical test-functions (functions
similar to test-functions, but having a finite number of continuous derivatives on the whole real
axis) useful for wavelets analysis. Due to the exact form of the derivatives of test-functions, we
cannot apply derivative free algorithms [2] or algorithms which can change in time [3]. Start-
ing from the exact mathematical expressions of a certain test-function and of its derivatives,
we must use specific differential equations for generating such practical test-functions.

Thisaspect is connected with causal aspects of generating apparently acausal pulses
as solutions of the wave equation, presented in [4]. Such test-functions, considered at
the macroscopic scale (that does not mean Dirac-functions), can represent solutions for
certain equations in mathematical physics (an example being the wave-equation). The main
consequence of this aspect consists in the possibility of certain pulses to appear as solutions of
the wave-equation under initial null conditions for the function and for all its derivatives and
without any free-term (a source-term) to exist. In order to prove the possibility of appearing
acausal pulses as solutions of the wave-equation (not determined by the initial conditions or
by some external forces) we begin by writing the wave-equation

∂2φ

∂x2
− 1
v2

∂2φ

∂t2
= 0 (1.1)

for a free string defined on the length interval (0, l) (an open set), where φ represents the
amplitude of the string oscillations and v represents the velocity of the waves inside the string
medium. At the initial moment of time (the zero moment) the amplitude φ together with all
its derivatives of first and second orders is equal to zero. From the mathematical theory of the
wave-equation, we know that any solutionof this equation must be a superposition of a direct
wave and of a reverse wave. For the beginning, we will restrict our analysis at direct waves by
considering a supposed extension of the string on the whole Ox axis, φ being defined by the
function

φ(τ) =

⎧
⎪⎨

⎪⎩

exp
(

1

(x − vt + 1)2 − 1

)
for |x − vt + 1| < 1,

0 for |x − vt + 1| ≥ 1,
(1.2)

where t ≥ 0. This function for the extended string satisfies the wave-equation (being a function
of x − vt, a direct wave). It is a continuous function, having continuous partial derivatives of
any order for x ∈ (−∞,∞) and for t ≥ 0. For x ∈ (0, l) (the real string) the amplitude φ and
all its derivatives are equal to zero at the zero moment of time, as required by the initial null
conditions for the real string (nonzero values appearing only for x ∈ (−2, 0) for t = 0, while
on this interval |x − vt + 1| = |x + 1| < 1). We can notice that for t = 0 the amplitude φ and
its partial derivatives differ to zero only on a finite space interval, this being a property of
the functions defined on a compact set (test-functions). But the argument of the exponential
function is x−vt; this implies that the positive amplitude existing on the length interval (−2, 0)
at the zero moment of time will move along the Ox axis in the direction x = +∞. So at some
time moments tk after the zero moment, a nonzero amplitude φ will appear inside the string,
propagating from one edge to the other. It can be noticed that the pulse passes through the real
string and at a certain time moment tfin (when the pulse existing at the zero moment of time on
the length interval (−2, 0) has moved into the length interval (l, l + 2)) its action upon the real
string ceases. We must point the fact that the limit points x = 0 and x = l are not considered
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to belong to the string; but this is in accordance with the rigorous definition of derivatives (for
this limit points cannot be defined as derivatives related to any direction around them).

This point of space (the limit of the open space interval considered) is very important
for our analysis, while we will extend the study to closed space intervals. Considering small
space intervals around the points of space where the sources of the generated field are situated
(e.g., the case of electrical charges generating the electromagnetic field), it will be shown that
causal aspects require the logical existence of a certain causal chain for transmitting interaction
from one point of space to another, which can be represented by mathematical functions which
vanish (its amplitude and all its derivatives) in certain points of space. From this point of space,
an informational connection for transmitting the wave further could be considered (instead of
a transmission based on certain derivatives of the wave). Thus a kind of granular approach for
propagation along a certain axis can be considered suitable for application in quantum theory.
As an important consequence, some directions of propagation for the generated wave will
appear and the possibility of reverse radiation will be rejected. Moreover, specific applications
for other propagating phenomena involving the generation of some spatial periodical patterns
or an increasing amplitude of oscillations along a certain spatial axis can be also analyzed by
this mathematical model.

2. Utility of test-functions in mathematical physics for half-closed space intervals

If we extend our analysis to half-closed intervals by adding one endpoint of the space interval
to the previously studied open intervals (e.g., by adding the point x = 0 to the open interval
(0, l)), we should take into account the fact that a complete mathematical analysis usually
implies the use of a certain function f(t) defined at the limit of the working space interval
(the point of space x = 0, in the previous example). Some other supplementary functions can
be met in mathematical physics.

The use of such supplementary functions defined on the limit of the half-closed interval
could appear as a possible explanation for the problem of generating acausal pulses as
solutions of the wave equation on bounded open intervals. The acausal pulse presented in
the previous paragraph (similar to wavelets) traveling along the Ox axis requires a certain
nonzero function of time f0(t) for the amplitude of the pulse for the limit of the interval x = 0.
It could be argued that the complete mathematical problem of generating acausal pulses for
null initial conditions on this interval and for null function f0(t) corresponding to function φ
(the pulse amplitude) at this endpoint of the interval (x = 0, resp.) would reject the possibility
of appearing the acausal pulse presented in the previous paragraph. The acausal pulse φ
previously presented implies nonzero values for f0 at certain time moments, which represents
a contradiction with the requirement for this function f0 to present null values at any time
moment. By an intuitive approach, null external sources would imply null values for function
f0 and (as a consequence) null values for the pulse amplitude φ.

Yet it can be easily shown that the problem of generating acausal pulses on half-closed
intervals cannot be rejected by using supplementary requirements for certain functions f(t)
defined at one limit of such bounded space intervals. Let us simply suppose that instead of
function

φ(τ) =

⎧
⎪⎨

⎪⎩

exp
(

1

(x − vt + 1)2 − 1

)
for |x − vt + 1| < 1,

0 for |x − vt + 1| ≥ 1
(2.1)
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presented in the previous paragraph we must take into consideration two functions φ0 and φl
defined as

φ0(τ) =

⎧
⎪⎨

⎪⎩

exp
(

1

(x − vt +m)2 − 1

)
for |x − vt +m| < 1,

0 for |x − vt +m| ≥ 1,

φl(τ) =

⎧
⎪⎨

⎪⎩

− exp
(

1

(x + vt −m)2 − 1

)
for |x − vt +m| < 1,

0 for |x + vt −m| ≥ 1,

(2.2)

with m selected as m > 0, m − 1 > l (so as both functions φ0 and φl to have nonzero values
outside the real string and asymmetrical as related to the point of space x = 0. While function
φ0 corresponds to a direct wave (its argument being (x − vt)) and φl corresponds to a reverse
wave (its argument being (x + vt)) it results that both functions φ0 and φl arrive at the same
space origin x = 0, the sum of these two external pulses being null all the time (functions φ0

and φl being asymmetrical, φ0 = −φl) at any moment of time. So by requiring that φ(t) = 0 for
x = 0 (the left limit of a half-closed interval [0, l)) we cannot reject the mathematical possibility
of the appearance of an acausal pulse on a half-closed interval.

A possible mathematical explanation for this aspect consists in the fact that we have
used a reverse wave (an acausal pulse) propagating from x =∞ toward x = −∞, which is first
received at the right limit x = l of the half-closed interval [0, l) before arriving at the point of
space x = 0. It can be argued that in case of a closed space interval [0, l], we should consider
the complete mathematical problem, consisting of two functions f0(t), fl(t) corresponding to
both limits of the working space intervals (the points of space x = 0 and x = l). But in fact the
wave equation corresponds to a physical model valid in the three-dimensional space, under
the form

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
− 1
v2

∂2φ

∂t2
= 0 (2.3)

and the one-dimensional model previously used is just an approximation. Moreover, the source
of the field is considered at a microscopic scale (e.g., quantum particles like electrons for the
case of the electromagnetic field) and the emitted field for such elementary particles presents a
spherical symmetry. Transforming the previous equation in polar coordinates and supposing
that the function φ depends only on r (the distance from the source of the field to the point of
space where this emitted field is received), it results that

∂2U

∂r2
− 1
v2

∂2U

∂t2
= 0, (2.4)

where

U = rϕ. (2.5)

An analysis of the field emitted from the point of space r = 0 (the source) toward a point of
space r = r0 (where the field is received) should be performed on the space interval (0, r] (a
half-closed interval); the point of space r = 0 cannot be included in the working interval as
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long as the solution φ(r) for the field is obtained by dividing the solution U(r) of the previous
equation (in spherical coordinates) through r (the denominator of the solution φ being zero,
some supplementary aspects connected to the limit of functions should be added, but still
without considering a function of time as condition for the space origin). This can be put in
correspondence with the previously presented case of an acausal pulse defined on [0, l) if we
consider that (as a rule) (a) the endpoint where the function φ(t) is not defined represents the
source of the field (a round bracket being added, while it cannot be considered as part of the
working interval) and (b) the endpoint where the function ϕ vanishes represents a point of
space where the propagating phenomenon is recreated (by reflection or by interaction with
different particles, for the case of optical waves), a square bracket being added. The endpoint
represented by square bracket (where the wave vanishes) can be considered as a source for the
field propagating in a next space interval after an interaction, and so on.

Thus an asymmetry in the required methods for analyzing phenomena appears.
Moreover, for the appearance of a certain direction for the transmission of interaction (from
one space interval to another), it results that the possibility of retroradiation (a reverse wave
generated by points of space where a direct wave has arrived) should be rejected (a memory
of previous phenomena is determining the direction of propagation).

3. Applications for closed space intervals: applications in quantum physics

The pulse presented in the previous paragraph is in fact a traveling wave propagating from
x = ∞ toward x = 0 and back which vanishes at the point of space x = 0 due to a kind of
reflection. Yet we can extend our analysis by considering a subsequent reflection of this pulse
at the limit point x = l and so on. Thus a resulting traveling wave can be considered inside the
closed space interval [0, l] with null values at the endpoints x = 0, x = l at any time moment
after the first reflection.

At first sight, this localized oscillation is not useful for our mathematical analysis of
acausal pulses. It does not correspond to initial null conditions on the closed bounded space
interval [0, l] and to null time functions defined at the endpoints x = 0, x = l (while the
traveling wave should already exist inside this interval when null conditions for the endpoints
at any subsequent time moment are added). Yet we must take into consideration the fact that
in quantum physics the operators corresponding to creation and annihilation of particles are
obtained (in a heuristic manner) starting from an analysis of electromagnetic field performed
on bounded space intervals and extended to unbounded intervals by simply replacing the
space limits for a set of such intervals with infinite values [5]. However, the previously
mentioned analysis on bounded intervals makes use of stationary waves which cannot be
taken into consideration when a space limit equals ±∞ (no reflection can appear). This logical
contradiction can be avoided if any extended space interval is considered as a sum of adjacent
small space intervals with specific localized oscillations defined on each of them.

Supposing that a localized oscillation is generated on a certain limited space interval
by an external force or by a received wave-train, we can consider that subsequent oscillations
are generated on adjacent space intervals (as in the case of spherical waves) due to a kind
of informational connection existing on the boundaries of these intervals. A mathematical
connection described by wave-equation cannot be taken into consideration any more, and thus
the previous model of causal chain corresponding to a sequence: changes in the value of partial
derivatives as related to space coordinates imply changes in the partial derivatives of the amplitude as
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related to time, which further imply changes in the value of the function, should be replaced by a step-
by-step transmission of interaction starting from an initial half-closed interval (e.g., its open
limit corresponding to the source of the field) to adjacent space intervals. This corresponds to
a granular aspect of space suitable for applications in quantum physics, where the generation
and annihilation of quantum particles should be considered on limited space-time intervals
(asymmetrical pulses could be also used [6]). A specific physical quantity (corresponding
to the amplitude of localized oscillations) is transmitted from one space interval to another,
according to a certain mathematical law.

4. Dynamical spatial generation of structural patterns

We will continue the study by presenting properties of spatial linear systems described by a
certain physical quantity generated by a differential equation. This quantity can be represented
by internal electric or magnetic field inside the material or by similar physical quantities,
and corresponds to the amplitude of localized oscillations previously mentioned. A specific
mathematical law which can be approximated by a differential equation generates this quantity
considering as input the spatial alternating variations of a certain internal parameter. As a
consequence, specific spatial linear variations of the corresponding physical quantity appear.
In case of very short-range variations of this internal parameter, systems described by a
differential equation able to generate a practical test-function [1] exhibit an output which
appears to an external observer under the form of two distinct envelopes. These can be
considered as two distinct structural patterns located in the same material along a certain linear
axis. This aspect differs from the oscillations of unstable type second-order systems studied
using difference equations [7] or advanced differential equations [8], and they differ also from
the previous studies of the same author [9] where the frequency response of such systems to
alternating inputs was studied (in conjunction with the ergodic hypothesis). For our purpose,
we will use the function

ϕ(x) =

⎧
⎨

⎩
exp
(

1
x2 − 1

)
if x ∈ (−1, 1),

0 otherwise,
(4.1)

which is a test-function on [−1, 1]. For a small value of the numerator of the exponent, a
rectangular shape of the output is obtained. An example is the case of the function

ϕ(x) =

⎧
⎨

⎩
exp
(

0.1
x2 − 1

)
if x ∈ (−1, 1),

0 otherwise.
(4.2)

Using the expression of ϕ(x) and of its derivatives of first and second orders, a
differential equation which admits as solution the function ϕ corresponding to a certain
physical quantity can be obtained. However, a test-function cannot be the solution of a
differential equation. Such an equation of evolution implies a jump at the initial space point
for a derivative of certain order, and test-function must possess continuous derivatives of any
order on the whole real axis. So it results that a differential equation which admits a test-
function ϕ as solution can generate only a practical test-function f similar to ϕ, but having
a finite number of continuous derivatives on the real Ox axis. In order to do this, we must



G. Toma and F. Doboga 7

add initial conditions for the function f (generated by the differential equation) and for some
of its derivatives f (1), and/or f (2) and so on equal to the values of the test-function ϕ and of
some of its derivatives ϕ(1), and/or ϕ(2) and so on at an initial space point xin very close to the
beginning of the working spatial interval. This can be written under the form

fxin = ϕxin , f
(1)
xin = ϕ(1)

xin , and/or f
(2)
xin = ϕ(2)

xin , and so on. (4.3)

If we want to generate spatial practical test-functions f which are symmetrical as related
to the middle of the working spatial interval, we can choose as space origin for the Ox axis
the middle of this interval, and so it results that the function f should be invariant under the
transformation

x −→ −x. (4.4)

Functions invariant under this transformation can be written in the form f(x2) (similar to
aspects presented in [1]) and so the form of a general second-order differential equation
generating this kind of functions should be

a2
(
x2) d2f

d
(
x2
)2

+ a1
(
x2) df

dx2
+ a0
(
x2)f = 0. (4.5)

However, for studying the generation of structural patterns on such a working interval,
we must add a free term corresponding to the cause for the variations of the external observable
physical quantity. Thus, a model for generating a practical test-function using as input the
internal parameter u = u(x), x ∈ [−1, 1], is

a2
(
x2) d2f

d
(
x2
)2

+ a1
(
x2) df

dx2
+ a0
(
x2)f = u (4.6)

subject to

lim
x→±1

fk(x) = 0 for k = 0, 1, . . . , n, (4.7)

which are the boundary conditions of a practical test-function. For u represented by
alternating functions, we should notice periodical variations of the external observable
physical quantity f .

According to the previous considerations for the form of a differential equation invariant
at the transformation

x −→ −x, (4.8)

a first-order system can be written under the form

df

d
(
x2
) = f + u (4.9)
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Figure 1: f versus distance for first-order system, input u = sin (10x).

which converts to

df

dx
= 2xf + 2xu (4.10)

representing a first-order dynamical system. For a periodical input (corresponding to the
internal parameter) u = sin 10x, numerical simulations performed using Runge-Kutta
functions in MATLAB present an output of an irregular shape (Figure 1) not suitable for joining
together the outputs for a set of adjoining linear intervals (the value of f at the end of the
interval differs in a significant manner to the value of f at the beginning of the interval). A
better form for the physical quantity f is obtained for variations of the internal parameter
described by the equation u = cos 10x. In this case, the output is symmetrical as related to the
middle of the interval (as can be noticed in Figure 2) and the results obtained on each interval
can be joined together on the whole linear spatial axis, without any discontinuities to appear.
The resulting output would be represented by a sum of two great spatial oscillations (one at
the end of an interval and another one at the beginning of the next interval) and two small
spatial oscillations (around the middle of the next interval).

Similar results are obtained for an undamped dynamical system first order, represented
by

df

d
(
x2
) = u (4.11)

which is equivalent to

df

dx
= 2xu. (4.12)

When the internal parameter presents very short-range variations, some new structural
patterns can be noticed. Considering an alternating input of the form u = sin(100x), it results
in an observable physical quantity f represented in Figure 3; for an alternating cosine input
represented by u = cos (100x), it results in the output f represented in Figure 4. Studying these
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Figure 2: f versus distance for first-order system, input u = cos (10x).
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Figure 3: f versus distance for first-order system, input u = sin(100x).

two graphics, we can notice the presence of two distinct envelopes. Their shape depends on
the phase of the input alternating component (the internal parameter), as related to the space
origin. At first sight, an external observer could notice two distinct functions f inside the same
material, along the Ox axis. These can be considered as two distinct structural patterns located
in the same material, generated by a short-range alternating internal parameter u through a
certain differential equation (invariant at the transformation x→− x).

5. Aspects connected with short-range breaking phenomena

For simulating the generation of specific deformations inside a material medium under the
action of external forces, it can be considered that some short wavelength vibrations appear
in the area where the force acts. Usually the corresponding deformation is simulated inside
the material medium, using linear differential equations or equations with partial derivatives
(similar to the wave equation or to the equation of diffusion). Yet such linear equations cannot
explain the distance between the space area where the external force acts and the space area
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Figure 4: f versus distance for first-order system, input u = cos (100x).

where fracture phenomena appear. Using differential equations of higher order, some slow
variations of deformation along a certain direction could be obtained. Due to the fact that
the mathematical model should explain the sharp deformations at a certain distance of the
point of space where the force acts (leading to fracture phenomena), some different types of
differential equations must be studied. For this reason, our study has taken into consideration
some dynamical equations able to generate practical test-functions (similar to wavelets) [1]
and delayed pulses (when a free term which corresponds to an external pulse is added) [10]
for justifying fracture phenomena appearing in a certain material medium. It is considered
that an external force (described by a short wavelength sine function multiplied by a Gaussian
function) acts upon the material medium in a certain area. As a consequence, some localized
vibrations (corresponding to localized oscillations on closed space intervals presented in the
previous paragraphs) appear. These localized oscillations are transmitted from one space
interval to another according to a certain mathematical law which puts into correspondence
the amplitude of these local vibrations to spatial coordinates.

Using a specific differential equation (able to generate symmetrical functions for a null
free term) for describing the generation of the corresponding deformation along an axis inside
the material medium, it results that a significant deformation appears at a certain distance.
This significant deformation justifies the fracture phenomena, while the inner structure of the
material cannot allow significant sharp deformations without breaking. The main problem is
represented by the search of an adequate free term u(x) able to justify fracture phenomena. We
start by using a constant free term, using an equation as

f (2) =
0.6x4 − 0.36x2 − 0.2

(
x2 − 1

)4
f + u(x), (5.1)

where u(x) represents the external force (supposed to be constant in a first approximation on
the working space interval (−1, 1)). The deformation f(x) is supposed to be first time generated
by the external force at the limit x = −1 of the working interval and then (according to the
differential equation) it generates the corresponding deformation along the whole working
interval, with the external constant force u acting in a continuous manner upon the material.
The deformation generated by such a constant force u should be symmetrical as related to
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Figure 5: Deformation generated by an external constant force.

origin 0 (the previous differential equations being valid on the space interval (−1, 1) with
initial null conditions for f(x) at the initial point of space x = −1). The property of symmetry
previously mentioned is justified by invariance properties of this type of differential equations
[1]. However, even for u(x) = 1 (the most simple external force acting upon the material
which is symmetrical as related to space origin 0) numerical simulations in MATLAB present
an asymmetry of the output signal, justified by numerical errors (see Figure 5). But numerical
simulations present also a slow varying deformation along the axis, with no spatial oscillations;
thus the fracture phenomenon cannot be explained.

A similar shape of the output can be noticed for an input represented by a Gaussian
external force, acting around the point of space x = −0.9 and having a width ten times smaller
than the working period—similar to the use of a Gaussian modulated signal for generating
delayed pulses [10]. In such a case the differential equation generating the deformation along
the working interval is represented by

f (2) =
0.6x4 − 0.36x2 − 0.2

(
x2 − 1

)4
f + exp−(x + 0.9)2

(0.01)2
(5.2)

and the corresponding output is represented in Figure 6.
So we must extend our search for adequate mathematical models, and we will try a free

term u(x) represented by

u(x) = exp
(
− (x + 0.9)2

(0.01)2

)
sin 104x. (5.3)

This mathematical expression describes an external force represented by a Gaussian multiplied
by a sine function with short wavelength, being considered that the applied force is
transformed by the surface of the material into a set of alternating internal efforts with very
short wavelength (similar to a localized vibration).

The corresponding output is represented in Figure 7. It can be noticed that we have
finally obtained a sharp deformation appearing at a certain distance between the point of space
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Figure 6: Deformation generated by an external Gaussian (localized) force.
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Figure 7: Deformation generated by a modulated Gaussian internal effort.

where the external (modulated Gaussian) force acts and the point of space where the sharp
deformation appears. Moreover, the sharp deformation appears as an alternating function
localized on a very short spatial interval. It is quite obvious that such a deformation cannot be
allowed by the inner structure of the material, leading to fracture phenomena. This simulation
explains also the fact that the fracture point is usually situated at a certain distance from the
point where the external force is applied (as can be noticed studying the deformation presented
in Figure 7 generated by the internal efforts u(x) presented in Figure 8)

For the case when the Gaussian input is modulated by a cosine function, which means
that

u(t) = exp
(
− (τ + 0.9)2

(0.01)2

)
cos 104τ, (5.4)
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Figure 8: Modulated Gaussian internal effort by a sine function.

we obtain an output represented by a slowly varying function, without alternate deformation.
So a cosine modulation of a Gaussian input is not suitable for simulating fracture phenomena
appearing at a certain distance from the point where the external force acts.

We must point the fact that such localized alternating deformations generated by
systems working on a limited interval and situated at a certain distance from the point
where the external force acts differ to wavelets resulting from PDE equations (see [11]) and
to propagating wavelets through dispersive media [12], while the shape of the resulting
deformation is not symmetrical as related to Ox axis (its mean value differs to zero). However,
a multiscale analysis of such pulses should be performed for explaining the complex fracture
phenomena in an extended area and for justifying why a certain direction for generating
deformation has to be chosen.

6. Conclusions

This study has shown that some solutions of the wave equation for half-closed space interval
are considered around the point of space where the sources of the generated field are situated
(e.g., the case of electrical charges generating the electromagnetic field). These solutions
can be mathematically represented by vanishing waves corresponding to a superposition of
traveling test-functions. Then some properties of spatial linear systems described by a certain
physical quantity (generated by a differential equation) are studied. This quantity can be
represented by internal electric or magnetic field inside the material or by similar physical
quantities, and corresponds to the amplitude of localized oscillations previously mentioned.
A specific mathematical law which can be approximated by a differential equation generates
this quantity considering as input the spatial alternating variations of this internal parameter.
As a consequence, specific spatial linear variations of the corresponding physical quantity
appear. Finally, a specific differential equation (able to generate symmetrical functions for a
null free term) is used for describing the generation of the corresponding deformation along
an axis inside the material medium. Numerical simulations have shown that a significant
deformation appears at a certain distance. This deformation justifies the fracture phenomena,
while the inner structure of the material cannot allow significant sharp deformations without
breaking.
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1. Introduction

Partial differential equations which arise in real-world physical problems are often too
complicated to be solved exactly, and even if an exact solution is obtainable, the required
calculations may be practically too complicated, or it might be difficult to interpret the
outcome. Very recently, some promising approximate analytical solutions are proposed
such as Exp-function method, Adomian decomposition method (ADM), variational iteration
method (VIM), and homotopy perturbation method (HPM).

HPM is the most effective and convenient method for both linear and nonlinear
equations. This method does not depend on a small parameter. Using homotopy technique
in topology, a homotopy is constructed with an embedding parameter p ∈ [0, 1], which is
considered as a “small parameter.” HPM has been shown to effectively, easily, and accurately
solve a large class of linear and nonlinear problems with components converging to accurate
solutions. HPM was first proposed by He [1–7] and was successfully applied to various
engineering problems.
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The motivation of this paper is to extend the homotopy perturbation method (HPM)
[8–17] to solve the ratio-dependent predator-prey system. The results of HPM are compared
with those obtained by the ADM [18]. Different from ADM, where specific algorithms are
usually used to determine the Adomian polynomials, HPM handles linear and nonlinear
problems in simple manner by deforming a difficult problem into a simple one. The HPM
is useful to obtain exact and approximate solutions of linear and nonlinear differential
equations.

In this paper, we assume that the predator in model is not of commercial importance.
The prey is subjected to constant effort harvesting with r, a parameter that measures the
effort being spent by a harvesting agency. The harvesting activity does not affect the predator
population directly. It is obvious that the harvesting activity does reduce the predator
population indirectly by reducing the availability of the prey to the predator. Adopting a
simple logistic growth for prey population with e > 0, b > 0, and c > 0 standing for
the predator death rate, capturing rate, and conversion rate, respectively, we formulate the
problem as

dx

dt
= x(1 − x) − bxy

y + x
− rx,

dy

dt
=

cxy

y + x
− ey,

(1.1)

where x(t) and y(t) represent the fractions of population densities for prey and predator at
time t, respectively. Equations (1.1) are to be solved according to biologically meaningful
initial conditions x(0) ≥ 0 and y(0) ≥ 0 [18].

2. Applications

In this section, we will apply the HPM to nonlinear differential system of ratio-dependant
predator-prey,

H(ν, p) = (1 − p)[L(ν) − L(u0)
]
+ p

[
A(ν) − f(r)] = 0, p ∈ [0, 1], rεΩ, (2.1)

where A(ν) is a general differential operator which can be divided into a linear part L(ν) and
a nonlinear part N(ν) and f(r) is a known analytical function. p ∈ [0, 1] is an embedding
parameter, while u0 is an initial approximation of the equation which should be solved, and
satisfies the boundary conditions.

According to the HPM (relation (2.1)), we can construct a homotopy of system as
follows:

(1 − p)(ν2ν̇1 + ν1ν̇1 − ẋ0y0 − ẋ0x0
)
+ p

(
ν2ν̇1 + ν1ν̇1 − (1 − b − r)ν1ν2+ν2ν

2
1 − (1 − r)ν2

1 + ν
3
1

)
= 0,

(1 − p) × (ν2ν̇2 + ν1v̇2 − ẏ0y0 − x0ẏ0

)
+ p

(
ν2ν̇2 + ν1ν̇2 + (e − c)ν1ν2 + eν2

2
)
= 0,

(2.2)

where dot denotes differentiation with respect to t, and the initial approximations are as
follows:

v1,0(t) = x0(t) = x(0),

v2,0(t) = y0(t) = y(0) .
(2.3)
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Assume that the solution of (2.2) can be written as a power series in p as follows:

ν1 = ν1,0 + pν1,1 + p2ν1,2 + p3ν1,3 + · · · ,
ν2 = ν2,0 + pν2,1 + p2ν2,2 + p3ν2,3 + · · · ,

(2.4)

where νi,j (i, j = 1, 2, 3, . . .) are functions yet to be determined. Substituting (2.3) and (2.4)
into (2.2), and arranging the coefficients of p powers, we have
(
v2,0v̇1,0 + v1,0v̇1,0

)

+
(
v3

1,0 − v2
1,0 + v1,0 v̇1,1 + v2,0v̇1,1 + r v1,0v2,0 + bv1,0v2,0 − v1,0v2,0 + v2,0v

2
1,0 + rv

2
1,0

)
p

+ (v1,1 v̇1,1+v1,0 v̇1,2+v2,0 v̇1,2+v2,1 v̇1,1+2r v1,0v1,1 + b v1,0v2,1 + 2v2,0 v1,0 v1,1 + r v1,1 v2,0

+ r v1,0 v2,1 + b v1,1 v2,0 − v1,0 v2,1−v1,1v2,0 + v2,1v
2
1,0 − 2v1,0 v1,1 + 3v2

1,0v1,1
)
p2

+
(
v1,1v̇1,2 + v1,2v̇1,1 + v1,0v̇1,3 + v2,1v̇1,2 + v2,0v̇1,3 + v2,2v̇1,1 + v2,0v

2
1,1 − v1,0v2,2 − v1,2v2,0

− v1,1v2,1+v2,2v
2
1,0 + rv

2
1,1+3v1,0v

2
1,1−v2

1,1 + bv1,1v2,1 + bv1,0v2,2 + bv1,2v2,0 + rv1,0v2,2

+ rv1,1v2,1 + rv1,2v2,0 + 2v2,0v1,0v1,2 + 2rv1,0v1,2 + 2v2,1v1,0v1,1 + 3v2
1,0v1,2

− 2v1,0v1,2
)
p3 + · · · = 0,

(
v2,0v̇2,0 + v1,0v̇2,0

)

+
(
ev1,0v2,0 − cv1,0v2,0 + v2,0v̇2,1 + v1,0v̇2,1 + ev2

2,0
)
p

+
(
v2,1v̇2,1+ev1,0v2,1−cv1,0v2,1+ev1,1v2,0−cv1,1v2,0+2ev2,0v2,1+v2,0v̇2,2+v1,1v̇2,1+v1,0v̇2,2

)
p2

+
(
ev2

2,1 + v2,1v̇2,2 + v2,2v̇2,1 + v2,0v̇2,3 + v1,1v̇2,2 + v1,2v̇2,1 + v1,0v̇2,3 + ev1,0v2,2 + ev1,1v2,1

− cv1,0v2,2 − cv1,1v2,1 + ev1,2v2,0 − cv1,2v2,0 + 2ev2,0v2,2
)
p3 + · · · = 0.

(2.5)

In order to obtain the unknown of νi,j(x, t), i, j = 1, 2, 3, . . ., we must construct and solve the
following system which includes 6 equations, considering the initial conditions of νi,j(0) =
0, i, j = 1, 2, 3, . . . :

v2,0v̇1,0 + v1,0v̇1,0 = 0,

v3
1,0 − v2

1,0 + v1,0 v̇1,1 + v2,0v̇1,1 + v1,0v2,0 + bv1,0v2,0 − v1,0v2,0 + v2,0v
2
1,0 + rv

2
1,0 = 0,

v1,1 v̇1,1 + v1,0 v̇1,2 + v2,0 v̇1,2 + v2,1 v̇1,1 + 2r v1,0v1,1 + b v1,0v2,1 + 2v2,0 v1,0 v1,1 + r v1,1 v2,0

+ r v1,0 v2,1 + b v1,1 v2,0 − v1,0 v2,1 − v1,1v2,0 + v2,1v
2
1,0 − 2v1,0 v1,1 + 3v2

1,0v1,1 = 0,

v2,0v̇2,0 + v1,0v̇2,0 = 0,

ev1,0v2,0 − cv1,0v2,0 + v2,0v̇2,1 + v1,0v̇2,1 + ev2
2,0 = 0,

v2,1v̇2,1 + ev1,0v2,1 − cv1,0v2,1 + ev1,1v2,0 − cv1,1v2,0 + 2ev2,0v2,1 + v2,0v̇2,2 + v1,1v̇2,1 + v1,0v̇2,2 = 0.
(2.6)

From (2.4), if the first three approximations are sufficient, then setting p = 1 yields the
approximate solution of (1.1) to

x(t) = lim
p→1

v1(t) =
k=3∑

k=0

v1,k(t),

y(t) = lim
p→1

v2(t) =
k=3∑

k=0

v2,k(t).

(2.7)
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Therefore,

v1,0(t) = x0(t) = x(0), (2.8)

v1,1(t) = −
x0
(
x2

0 − x0 − y0 + x0y0 + ry0 + by0 + rx0
)
t

x0 + y0
, (2.9)

v1,2(t) =
1

2
(
x0 + y0

)3

((
x0t

2(3y0x
2
0 − x2

0by0 + 2x3
0by0 + 3x4

0r + 6x3
0y

2
0 − 3y3

0x0 + x3
0r

2 − 9x3
0y0

+ 6x4
0y0 − 9x2

0y
2
0 + 2y3

0x
2
0 − 2x3

0r − 2ry3
0 − 2by3

0+b
2y3

0 + r
2y3

0

+ x2
0by0r + 3x0ry

2
0b + y

2
0x0eb + bx2

0y0e − bx2
0y0c − 3x0by

2
0

+ 3x0y
2
0 + 3y3

0x0r + 3y3
0x0b − 6x2

0ry0 + 2x5
0 − 3x4

0 + y
3
0 + 2ry3

0b

+ 9x3
0ry0 − 6x0ry

2
0 + 9x2

0y
2
0r + 5x2

0y
2
0b + x

3
0 + 3x0r

2y2
0 + 3x2

0r
2y0

)))
,

(2.10)

v2,0(t) = y0(t) = y(0) , (2.11)

v2,1(t) =
y0

( − ex0 + cx0 − ey0
)
t

y0 + x0
, (2.12)

v2,2(t) = − 1

2
(
y0 + x0

)3

((
y0t

2(3y0ex
2
0c + y

2
0cx0e + 2ex3

0c − cx2
0y0 − cx0y

2
0 − c2x3

0 + cx
3
0y0

+ cx2
0y0r + cx0y

2
0b + cx

2
0y

2
0 + cx0y

2
0r − e2x3

0 − 3y0e
2x2

0

− 3y2
0e

2x0 − y3
0e

2))).
(2.13)

We also obtained v1,3 and v2,3, but because they were too long to maintain, we skip them and
only use them in the final numerical results. In this manner, the other components can be
easily obtained by substituting (2.8) through (2.13) into (2.7) as follows:

x(t) = x(0) −
(x0

(
x2

0 − x0 − y0 + x0y0 + ry0 + by0 + rx0
)
t

x0 + y0

)

+
1

2
(
x0 + y0

)3
(x0t

2(3y0x
2
0 − x2

0by0 + 2x3
0by0 + 3x4

0r + 6x3
0y

2
0 − 3y3

0x0 + x3
0r

2 − 9x3
0y0

+ 6x4
0y0 − 9x2

0y
2
0 + 2y3

0x
2
0 − 2x3

0r − 2ry3
0 − 2by3

0 + b
2y3

0 + r
2y3

0

+ x2
0by0r + 3x0ry

2
0b + y

2
0x0eb + bx2

0y0e − bx2
0y0c − 3x0by

2
0 + 3x0y

2
0

+ 3y3
0x0r+3y3

0x0b−6x2
0ry0+2x5

0 − 3x4
0+y

3
0+2ry3

0b+9x3
0ry0 − 6x0ry

2
0

+ 9x2
0y

2
0r + 5x2

0y
2
0b + x

3
0 + 3x0r

2y2
0 + 3x2

0r
2y0

))
+ v1,3 · · · ,

y(t) = y(0) +
y0

( − ex0 + cx0 − ey0
)
t

y0 + x0
− 1

2
(
y0 + x0

)3

× (y0t
2(3y0ex

2
0c + y

2
0cx0e + 2ex3

0c − cx2
0y0 − cx0y

2
0 − c2x3

0 + cx
3
0y0 + cx2

0y0r

+ cx0y
2
0b + cx

2
0y

2
0 + cx0y

2
0r − e2x3

0 − 3y0e
2x2

0 − 3y2
0e

2x0 − y3
0e

2)) + v2,3 · · · .
(2.14)

3. Numerical results and comparison with ADM

For comparison with the results obtained by ADM [18], the parameter values in four cases
are considered in Table 1.
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Table 1: Parameter values used for illustration purposes.

Case x0 y0 b c e r

1 0.5 0.3 0.8 0.2 0.5 0.9
2 0.5 0.3 0.8 0.2 0.5 0.1
3 0.5 0.6 0.5 0.5 0.3 0.1
4 0.5 0.2 0.5 0.5 0.1 0.2

t

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1: Population fraction versus time for Case 1: r = 0.9: (—) prey population fraction; (◦◦◦) predator
population fraction.

Results of four terms approximation for x(t), y(t) obtained by using HPM and ADM
[18] are presented in (3.1), respectively:

Case 1 : x ≈ 0.5 − 0.35t + 0.19476t2 − 0.107288t3,

y ≈ 0.3 − 0.1125t + 0.018808t2 − 0.0011284t3,

Case 2 : x ≈ 0.5 + 0.05t + 0.012265t2 − 0.0016032t3,

y ≈ 0.3 − 0.1125t + 0.024433t2 − 0.00398199t3,

Case 3 : x ≈ 0.3 + 0.0799t + 0.00533 t2 − 0.00115 t3,

y ≈ 0.6 − 0.08t + 0.01866t2 − 0.00231t3,

Case 4 : x ≈ 0.5 + 0.07857t − 0.016020 t2 − 0.00119873 t3,

y ≈ 0.2 + 0.051428t + 0.0055918t2 + 0.00002245t3,

Case 1 : x ≈ 0.5 − 0.35000t + 0.19476t2 − 0.10728t3,

y ≈ 0.3 − 0.11250t + 0.018809t2 − 0.0011286t3,

Case 2 : x ≈ 0.5 + 0.05000t + 0.012266t2 − 0.0016034t3,

y ≈ 0.3 − 0.11250t + 0.024434t2 − 0.0039821t3,

Case 3 : x ≈ 0.3 + 0.08000t + 0.005333 t2 − 0.0011555 t3,

y ≈ 0.6 − 0.08000t + 0.018667t2 − 0.0023112t3,

Case 4 : x ≈ 0.5 + 0.07857t − 0.016021 t2 − 0.0011984t3,

y ≈ 0.2 + 0.051430t + 0.0055920t2 + 0.00002246t3.

(3.1)
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t

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2: Population fraction versus time for Case 2: r = 0.1: (—) prey population fraction; (◦◦◦) predator
population fraction.

t
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0
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0.6

0.7

Figure 3: Population fraction versus time for Case 3: r = 0.1: (—) prey population fraction; (◦◦◦) predator
population fraction.

t

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4: Population fraction versus time for Case 4: r = 0.2: (—) prey population fraction; (◦◦◦) predator
population fraction.
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Figures 1–4 show the relations between prey and predator populations versus time.
A noteworthy observation from Figure 1 is that prey and predator species can become

extinct simultaneously for some values of parameters, regardless of the initial values. Thus,
overexploitation of the prey population by constant effort harvesting process together with
high predator capturing rate may lead to mutual extinction as a possible outcome of predator-
pray interaction. In Figure 2, only the predator population gradually decreases and becomes
extinct despite the availability of increasing prey population. This can be attributed to the
effect of the predator death rate, being greater than the conversion rate and low constant
prey harvesting as shown in Case 2 (see Table 1). Figures 3 and 4 illustrate the possibility
of predator and prey long-term coexistence. Depending on the initial values, both prey and
predator populations increase or reduce in order to allow long-term coexistence [18].

4. Conclusion

Homotopyperturbation method was employed to approximate the solution of the ratio-
dependent predator-prey system with constant effort prey harvesting. The results obtained
here were compared with results of Adomian decomposition method. The results show that
there is less computations needed in comparison to ADM.
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