Mathematical Problems for Complex Systems

Guest Editors: Haijun Jiang, Haibo He, Jianlong Qiu, Qiankun Song, and Jianquan Lu
Mathematical Problems for Complex Systems
The Scientific World Journal

Mathematical Problems for Complex Systems

Guest Editors: Haijun Jiang, Haibo He, Jianlong Qiu, Qiankun Song, and Jianquan Lu
Contents

Mathematical Problems for Complex Systems, Haijun Jiang, Haibo He, Jianlong Qiu, Qiankun Song, and Jianquan Lu
Volume 2015, Article ID 605172, 2 pages

Consensus of Nonlinear Complex Systems with Edge Betweenness Centrality Measure under
Time-Varying Sampled-Data Protocol, M. J. Park, O. M. Kwon, and E. J. Cha
Volume 2015, Article ID 493907, 11 pages

Results for Two-Level Designs with General Minimum Lower-Order Confounding,
Zhi Ming Li and Run Chu Zhang
Volume 2015, Article ID 163234, 9 pages

A Learning Framework of Nonparallel Hyperplanes Classifier, Zhi-Xia Yang, Yuan-Hai Shao, and Yao-Lin Jiang
Volume 2015, Article ID 497617, 12 pages

Description and Application of a Mathematical Method for the Analysis of Harmony, Qiting Zuo, Runfang Jin, Junxia Ma, and Guotao Cui
Volume 2015, Article ID 831396, 9 pages

On the Maximum Estrada Index of 3-Uniform Linear Hypertrees, Faxu Li, Liang Wei, Jinde Cao, Feng Hu, and Haixing Zhao
Volume 2014, Article ID 637865, 7 pages

One Adaptive Synchronization Approach for Fractional-Order Chaotic System with Fractional-Order
1 < q < 2, Ping Zhou and Rongji Bai
Volume 2014, Article ID 490364, 7 pages

A Novel Chaotic Map and an Improved Chaos-Based Image Encryption Scheme,
Xianhan Zhang and Yang Cao
Volume 2014, Article ID 713541, 8 pages
As most of practical systems have high complexity, complex systems have become a rapidly growing area of mathematics and attracted many researchers. The study of complex systems not only has an important theoretical interest but also is motivated by problems from applied mathematics including physics, chemistry, astronomy, technology, and natural and social sciences. It should be noted that some major problems have not been fully investigated, such as the behavior of stability, synchronization, bifurcation, and chaos control for complex systems, as well as their applications in, for example, communication and bioinformatics.

The special issue contains seven papers; of these, three of the papers are related to application analysis of complex systems to the real world problems. One paper studies the synchronization of chaotic complex systems with fractional-order. One paper investigates the consensus problem for nonlinear complex systems. Another paper provides an approach to determine the unique 3-uniform linear hypertree with the maximum Estrada index. Finally, a paper provides interior principles to calculate the leading elements of the aliased effect-number pattern.

In the paper "Results for Two-Level Designs with General Minimum Lower-Order Confounding," the authors study the interior principles of calculating the leading elements in \mathcal{C}_1 and \mathcal{C}_2 aliased effect-number pattern. Also, their mathematical formulations are obtained for every lower-order confounding 2^{n-m} design according to the two different cases.

In the paper "On the Maximum Estrada Index of 3-Uniform Linear Hypertrees," authors give some basic definitions on the Estrada index of hypergraph and then formulate an algorithm for determining the unique 3-uniform linear hypertree with the maximum Estrada index.

In the paper "Consensus of Nonlinear Complex Systems with Edge Betweenness Centrality Measure under Time-Varying Sampled-Data Protocol," by constructing a suitable Lyapunov-Krasovskii functional and using linear matrix inequality technique, the authors propose a new consensus criterion for nonlinear complex systems with edge betweenness centrality measure. Finally, a numerical example is provided to illustrate the effectiveness of the proposed consensus schemes.

In the paper "One Adaptive Synchronization Approach for Fractional-Order Chaotic System with Fractional-Order $1 < q < 2$," based on a new stability result of equilibrium point in nonlinear fractional-order systems, the authors investigate the adaptive synchronization for the fractional-order Lorenz chaotic system with fractional-order $1 < q < 2$. Numerical simulations show the feasibility of the proposed adaptive synchronization scheme.

In the paper "A New Chaotic Map and Its Application on Image Encryption," the authors present a novel approach to create the new chaotic map and then applied it to image encryption. Compared with traditional classic one-dimensional chaotic map like Logistic Map and Tent Map, this newly created chaotic map demonstrates many better chaotic properties for encryption. The simulation results and security analysis show that such method not only meets the requirement of image encryption but also has better security, which is very useful for general applications.

In the paper "Description and Application of a Mathematical Method for the Analysis of Harmony," after briefly
introducing the basic concepts of harmony theory, the authors expound the five essential elements for the quantitative description of harmony issues in water resources management: harmony participant, harmony objective, harmony regulation, harmony factor, and harmony action. Furthermore, a basic mathematical equation for the harmony degree is introduced.

In the paper "A Learning Framework of Nonparallel Hyperplanes Classifier," the authors concerned the learning framework of nonparallel hyperplanes support vector machines (SVM) for binary classification and multiclass classification. The given framework not only includes twin SVM and its many deformation versions but also extends them into multiclass classification problem with loss functions or different parameters. The numerical experiments on several artificial and benchmark datasets indicate that the introduced frameworks not only are fast but also have good generalization.

Acknowledgments

We would like to thank the authors for their excellent contribution and work on choosing the topics, preparing the manuscripts, and going through the revisions in a timely fashion. Furthermore, all reviewers should be congratulated and acknowledged for their essential work and time spent to improve the content of these papers.

Haijun Jiang
Haibo He
Jianlong Qiu
Qiankun Song
Jianquan Lu
Research Article

Consensus of Nonlinear Complex Systems with Edge Betweenness Centrality Measure under Time-Varying Sampled-Data Protocol

M. J. Park, O. M. Kwon, and E. J. Cha

1 School of Electrical Engineering, Chungbuk National University, 52 Naesudong-ro, Cheongju 361-763, Republic of Korea
2 Department of Biomedical Engineering, School of Medicine, Chungbuk National University, 52 Naesudong-ro, Cheongju 361-763, Republic of Korea

Correspondence should be addressed to O. M. Kwon; madwind@chungbuk.ac.kr

Received 22 July 2014; Accepted 3 September 2014

Academic Editor: Qiankun Song

Copyright © 2015 M. J. Park et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper proposes a new consensus criterion for nonlinear complex systems with edge betweenness centrality measure. By construction of a suitable Lyapunov-Krasovskiif functional, the consensus criterion for such systems is established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. One numerical example is given to illustrate the effectiveness of the proposed methods.

1. Introduction

During the last few years, complex systems have received increasing attention from the real world such as the social networks, electrical power grids, global economic markets, small-world network, and scale-free network. Complex systems have the information flow which is consisted of a set of interconnected nodes with specific dynamics. For more details, see the literature [1–4] and the references therein. Also, many models has been proposed to describe multiagent systems, various coupled neural network, and so on [5–9].

Nowadays, most systems use microprocessor or micro-controllers, which are called digital computer. But the physical real situation is that the computers are on discrete signals while the plants are on continuous signals. In line with this thinking, in order to analyze the behavior of the plant between sampling instants, it is necessary to consider both the discrete operation of the computer and the continuous response of the plant. A little more to say, the fundamental character of the digital computer is that it takes the computed answers at sampling instants to calculate the control operation of a continuous plant. In addition to this, samples are taken from the continuous physical signals such as position, velocity, or temperature and these samples are used in the computer to calculate the controls to be applied. Systems in which discrete signals appear in some places and continuous signals occur in other parts are called sampled-data systems because continuous data are sampled before being used [10]. For this reason, various sampled-date control problems were investigated in [11–13]. Return to complex systems, this system is also booked for the consensus problem with sampled data [14–16].

However, there is room for further improvements in consensus analysis of complex systems. In most studies on complex systems such as multiagent system, complex dynamical network, and coupled neural network, the Laplacian matrix which is consisted of the adjacency and degree matrices of network is used. Because the foresaid matrices are based on degree centrality measure, the existing works need only the local structural information of network, that is, the degree centrality of node, which is determined by the number of nodes adjacent to it. Hence, by considering some other properties of graph theory, the structural information of network to analyze consensus problem for such system will be advanced. The edge betweenness centrality is selected from a choice among the properties of graph theory. Moreover, the edge betweenness centrality quantifies the average shortest path between two other nodes per each edge. It was
introduced as a measure for quantifying the control of a human on the communication between other humans in a social network by [17, 18]. Thus, the edge between two nodes has strongly an impact on the overall structure of information flow. Sometimes, the nodes with small degree centrality are directly connected through edges with larger betweenness centrality [3]. In this case, such edges should be weighted by the value with proportional to their betweenness centrality. Therefore, through the edge betweenness centrality measure, not only the local structural information but also the global effects of structure of information flow are considered. As a result, the consensus analysis in complex systems will be advanced by weighting each edge to its betweenness centrality.

Motivated by what was mentioned above, in this paper, a consensus criterion for nonlinear complex systems with edge betweenness centrality measure under time-varying sampled-data protocol will be proposed in Theorem 6 with the frame work of LMIs [19]. For comparison, based on the results of Theorem 6, a consensus criterion for such system with degree centrality measure will be introduced in Corollary 7. Through one numerical example, it will be shown that the proposed model can give its usefulness.

Notation 1. \(\mathbb{R}^n \) and \(\mathbb{R}^{m \times n} \) denote the \(n \)-dimensional Euclidean space with vector norm \(\| \cdot \| \) and the set of all \(m \times n \) real matrices, respectively. \(\mathbb{S}^n \) and \(\mathbb{S}^n_+ \) are the sets of symmetric and positive definite \(n \times n \) matrices, respectively, \(I_n \) denotes \(n \times n \) identity matrix. \(X > 0 \) means symmetric positive (negative) definite matrix. \(X^\dagger \) stands for a basis for the nullspace of \(X \). \(\text{sym} \{ \cdots \} \) represents the block diagonal matrix. For any square matrix \(X \) and any vectors \(x_i \) respectively, we define \(\text{sym} \{X\} = X + X^\dagger \) and \(\text{col}[x_1, x_2, \ldots, x_n] = [x_1^T \ x_2^T \ \cdots \ x_n^T]^T \). The symmetric terms in symmetric matrices and in quadratic forms will be denoted by * (This is used if necessary). \(X_{(i \cdots j)} \) means that the elements of matrix \(X_{i \cdots j} \) include the scalar value of \(f(t) \) affinely.

2. Problem Statements

Consider the model of nonlinear complex systems given by

\[
\begin{align*}
\dot{x}_i(t) &= Ax_i(t) + Bf(y_i(t)) + u_i(t), \\
y_i(t) &= Cx_i(t), \quad i = 1, 2, \ldots, N,
\end{align*}
\]

where \(N \) is the number of coupled nodes, \(n \) is the number of state of each node, the subscript \(i \) means the \(i \)-th node, \(x_i(t) \in \mathbb{R}^n \) is the state vector, \(y_i(t) \in \mathbb{R}^{n_y} \) is the output vector, \(A \in \mathbb{R}^{n \times n} \), \(B \in \mathbb{R}^{n \times n_y} \), and \(C \in \mathbb{R}^{n_y \times n} \) are system matrices, and \(f(\cdot) \in \mathbb{R}^{n_y} \) denotes the nonlinearity, which satisfies \(f_q(0) = 0 \) \((q = 1, \ldots, n_y)\) and

\[
L^q_i \leq \frac{f_q(u) - f_q(v)}{u - v} \leq U^q_i, \quad u \neq v, \forall u, v \in \mathbb{R},
\]

where \(L^q_i \) and \(U^q_i \) are given constants. For simplicity, let us define \(\text{diag}[L^1_i, \ldots, L^m_i] \) and \(L^\dagger = \text{diag}[L^1_i, \ldots, L^m_i] \).

Let us consider the following consensus protocol proposed by [3]:

\[
u_i(t) = -\frac{\sigma}{\sum_{j=1, j \neq i}^N \sum_{k=1}^N y_{ij}(x_i(t) - x_j(t))}, \quad i = 1, 2, \ldots, N,
\]

where \(\sigma \) is a given scalar meaning the coupling strength, \(y_{ij} \) is the edge betweenness centrality between nodes \(i \) and \(j \) defined by

\[
y_{ij} = \sum_{k=1}^N \frac{g_{kl}(e_{ij})}{g_{kl}},
\]

where \(e_{ij} \) denotes the edge between nodes \(i \) and \(j \), \(g_{kl} \) is the number of the shortest paths from nodes \(k \) to \(l \) in the graph, and \(g_{kl}(e_{ij}) \) is the number of these shortest paths through path \(e_{ij} \).

Remark 1. The consensus protocol (3) with edge betweenness centrality measure will be compared with the common consensus protocol followed by

\[
u_i(t) = -\sigma \sum_{j=1, j \neq i}^N d_{ij}(x_i(t) - x_j(t)), \quad i = 1, 2, \ldots, N,
\]

where \(d_{ij} = 1 \) if node \(i \) is connected to node \(j \) and otherwise, \(d_{ij} = 0 \).

For details, from Figure 1, the thickness of edge is proportional to the edge betweenness centrality, which can be paraphrased as the load of edge. Thus, node 2 has the edge with the largest value of edge betweenness centrality compared to its smallest degree centrality while the degree centrality of node 1 is the largest value. As a guide, the degree centrality of node is determined by the number of nodes adjacent to it, for example, the value of node 1 is \(\sum_{j=1}^N d_{1j} = 5 \), and in this sense, the common protocol (5) considers degree centrality measure. Therefore, in protocol (3), not only the local structural information but also the global effects of structure of information flow can be considered.

In this paper, the following protocol with the sampled-data information flow is proposed:

\[
u_i(t_k) = -\frac{\sigma}{\sum_{j=1, j \neq i}^N \sum_{k=1}^N y_{ij}(x_i(t_k) - x_j(t_k))}, \quad i = 1, 2, \ldots, N,
\]

where \(t_k \) are the sampling instants satisfying \(0 = t_0 < t_1 < \cdots < t_k < \cdots < t_{k+1} < \cdots < \lim_{t \to +\infty} t_k = +\infty \). For its analysis, assume that the sampling interval is constant; that is, \(t_{k+1} - t_k = h_M \). Then, let us define

\[
h(t) = t - t_k, \quad t \in [t_k, t_{k+1}).
\]

Note that \(h(t) \leq h_M \) and \(h(t) = 1 \) for \(t \neq t_k \).
Remark 2. The consensus protocol (6) is assumed to be generated by using a zero-order-hold function with a sequence of hold times $0 = t_0 < t_1 < \cdots < t_k < \cdots$. Then, the definition (7), $h(t) = t - t_k$, is that the interval between two sampling instants is less than a given bound, $h_M = t_{k+1} - t_k$. Hence, (7) means the time-varying sampling drawn as shown in Figure 2. In addition to the figure, all slopes are 1.

The aim of this paper is to analyze the consensus of the complex systems (1) under the time-varying sampled-data protocol (6) given by

$$
\dot{x}_i(t) = Ax_i(t) + Bf(Cx_i(t)) - \frac{\sigma}{\sum_{j=1}^N y_{ij}} \sum_{j=1}^N y_{ij} (x_i(t_k) - x_j(t_k)), \quad i = 1, 2, \ldots, N.
$$

(8)

This means that the protocol $u_i(t_k)$ solves the consensus problem, if and only if the states of each node satisfy

$$
\lim_{t \to \infty} \|x_i(t) - x_j(t)\| = 0, \quad i, j = 1, 2, \ldots, N.
$$

(9)

The following lemmas will be used to derive the main result.

Lemma 3 (see [6]). Let $U = [u_{ij}]_{N \times N}$, $P \in \mathbb{R}^{m \times m}$, $x = \text{col}\{x_1, x_2, \ldots, x_n\}$, and $y = \text{col}\{y_1, y_2, \ldots, y_n\}$. If $U = U^T$ and each row sum of U is zero, then

$$
x^T(U \otimes P) y = -\sum_{1 \leq i < j \leq N} u_{ij} (x_i - x_j)^T P (y_i - y_j).
$$

(10)

Lemma 4 (see [20]). Let $x \in \mathbb{R}^n$, $A = A^T \in \mathbb{R}^{n \times n}$, and $B \in \mathbb{R}^{m \times n}$ such that $\text{rank}(B) < n$. The following statements are equivalent:

(i) $x^T A x < 0$, for all $Bx = 0$, $x \neq 0$,

(ii) $B^T A B^T < 0$,

(iii) $\exists X \in \mathbb{R}^{m \times n}$: $A + \text{sym}(XB) < 0$.

For convenient analysis, with the Kronecker product [21], the system (8) can be expressed as

$$
\dot{x}(t) = (I_N \otimes A) x(t) + (I_N \otimes B) F((I_N \otimes C) x(t)) - \overline{\sigma} (I_N \otimes I_n) x(t - h(t)), \quad t \in [t_k, t_{k+1}),
$$

(11)

which imply

$$
\begin{bmatrix}
\dot{x}_1(t) \\
\vdots \\
\dot{x}_N(t)
\end{bmatrix}
= \text{diag}\{A, \ldots, A\}
\begin{bmatrix}
x_1(t) \\
\vdots \\
x_N(t)
\end{bmatrix}
+ \text{diag}\{B, \ldots, B\}
\begin{bmatrix}
f(y_1(t)) \\
\vdots \\
f(y_N(t))
\end{bmatrix}
\begin{bmatrix}
y_1(t) \\
\vdots \\
y_N(t)
\end{bmatrix}
\Gamma \otimes \epsilon
\begin{bmatrix}
\begin{bmatrix} y_{11} I_n & \cdots & -y_{12} I_n \\
-\cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots \\
y_{NN} I_n & \cdots & -y_{NN} I_n
\end{bmatrix}
\begin{bmatrix}
x_1(t - h(t)) \\
\vdots \\
x_N(t - h(t))
\end{bmatrix}
\end{bmatrix}
$$

(12)

where $\overline{\sigma} = \sigma / \sum_{j=1}^N \sum_{i \neq j} y_{ij}$ and $\Gamma = \frac{1}{\sum_{j=1}^N \sum_{i \neq j} y_{ij}}$.

Remark 5. With the Kronecker product, the transformation from (8) to (11) has two advantages in the consensus analysis for the system (8): the first is the ease of mathematical representation, and the second is, in construction of the Lyapunov-Krasovskii functional, the applicability of the relation between the use of the Kronecker product with the matrix U defined in Lemma 3 and the term $[x_i(t) - x_j(t)]$ stated in the condition (9) (see the equality (10)). As a result, based on the Kronecker product and Lemma 3, the consensus problem of the system (8) is converted into the Lyapunov stability problem of the transformed system (11).
3. Main Results

For simplicity of matrix and vector notations in Theorem 6, the following scalars and matrices are defined as

\[v_1(t) = \frac{1}{t - t_k + h_M} \int_{t_k}^{t} x(s) \, ds, \]
\[v_2(t) = \frac{1}{t - t_k} \int_{t_k}^{t} x(s) \, ds, \]
\[\omega(t) = \frac{1}{t - t_k} \int_{t_k}^{t} \dot{x}(s) \, ds, \]
\[\zeta(t) = \text{col} \left\{ x(t), x(t_k), x(t - h_M), \dot{x}(t), v_1(t), v_2(t), \omega(t), f \left(Cx_j(t) \right) \right\}, \]
\[\Psi_{ij} = \begin{bmatrix} e_1(t_k - t + h_M) e_5 \left(t - t_k \right) e_6 \end{bmatrix}, \]
\[\Pi_{1,1}(h(t)) = \begin{bmatrix} e_1 \left(t_k - t + h_M \right) e_5 \left(t - t_k \right) e_6 \end{bmatrix}, \]
\[\Pi_{1,2} = \begin{bmatrix} e_4 \left[-e_3 \left[e_1 \right] \right] \end{bmatrix}, \]
\[\Xi_{1}(h(t)) = \text{sym} \left\{ \Pi_{1,1}(h(t)) \Pi_{1,2}^{T} \right\} + e_1 Q e_2^{T} \]
\[-e_3 Q e_2^{T} + h_M e_4 R e_2^{T} = \begin{bmatrix} e_2^{T} - e_3^{T} \\ e_2^{T} + e_3^{T} - e_5^{T} \\ e_1^{T} - e_2^{T} \\ e_1^{T} + e_2^{T} - 2e_6^{T} \end{bmatrix}, \]
\[\Xi_{2}(h(t)) = \begin{bmatrix} \begin{bmatrix} e_2^{T} - e_3^{T} \\ e_2^{T} + e_3^{T} - e_5^{T} \\ e_1^{T} - e_2^{T} \\ e_1^{T} + e_2^{T} - 2e_6^{T} \end{bmatrix} \end{bmatrix}, \]
\[\Xi_{3} = -\text{sym} \left\{ \left(e_6 e_1 C^T L^{T} \right) \right\}, \]
\[\Xi_{[h(t)]} = \Xi_{1}(h(t)) + \Xi_{2}(h(t)) + \Xi_{3}, \]

where \(e_i \in \mathbb{R}^{(7n+9n \times n)} (i = 1, 2, \ldots, 8) \) are the block entry matrices; for example, \(e_6^T \zeta_j(t) = x_j(t_k) \) and \(e_6^T \zeta_j(t) = f(Cx_j(t)) \).

Theorem 6. For a given positive scalar \(h_M \), the node in the system (8) is consented, if there exist matrices \(P \in [P_j] \in \mathbb{S}^n, Q \in \mathbb{S}^{n_1}, R \in \mathbb{S}^{n_2}, S \in \mathbb{S}^{n_3}, \mathcal{M} = [M_{ij}] \in \mathbb{R}^{2n_2 \times 2n_3}, \) and diagonal matrix \(D \in \mathbb{S}^{n_3} \) satisfying the following LMIs for \(1 \leq i < j \leq N \):

\[
\begin{bmatrix} (j - i) Y_{ij}^1 \end{bmatrix}^T \Xi_k \begin{bmatrix} (j - i) Y_{ij}^1 \end{bmatrix} < 0 \quad (k = 1, 2), \tag{14}
\]
\[
\Omega > 0, \tag{15}
\]

where \(\Xi_k \) is the two vertices of \(\Xi_{[h(t)]} \) with the bounds of \(h(t) \), that is, \(0, k = 1 \) and \(h_M, k = 2 \).

Proof. Define a matrix \(U \) as \(U = [u_{ij}]_{N \times N} \) with \(u_{ij} = -1 \) if \(i = j \), and otherwise, \(u_{ij} = -1 \). Then, consider the Lyapunov-Krasovskii functional candidate given by

\[
V = V_1 + V_2, \tag{16}
\]

where

\[
V_1 = \begin{bmatrix} x(t) \x(x(s)) \int_{t-k}^{s} x(s) \, ds \end{bmatrix}^T \begin{bmatrix} U \otimes P_{11} & U \otimes P_{12} & U \otimes P_{13} \\ * & U \otimes P_{22} & U \otimes P_{23} \\ * & * & U \otimes P_{33} \end{bmatrix} \int_{t_k}^{t} x(s) \, ds + \int_{t-h_M}^{t} x^T(s) (U \otimes Q) x(s) \, ds + h_M \int_{t-h_M}^{t} \dot{x}^T(u) (U \otimes R) \dot{x}(u) \, du ds,
\]

\[
V_2 = \begin{bmatrix} x(t) \x(x(s)) \int_{t_k}^{t} x(s) \, ds \end{bmatrix}^T \begin{bmatrix} U \otimes P_{11} & U \otimes P_{12} & U \otimes P_{13} \\ * & U \otimes P_{22} & U \otimes P_{23} \\ * & * & U \otimes P_{33} \end{bmatrix} \int_{t_k}^{t} x(s) \, ds + x^T(t) (U \otimes Q) x(t) - x^T(t) (U \otimes Q) x(t - h_M)
\]

\[
\Xi_{[h(t)]} = \Xi_{1}(h(t)) + \Xi_{2}(h(t)) + \Xi_{3}, \tag{13}
\]
By Wirtinger-based inequality [22] and reciprocally convex approach [23], the integral term is bounded as

\[
- h_M \int_{t-h_M}^t \tilde{x}^T(s) (U \otimes R) \tilde{x}(s) \, ds
\]

By Jensen inequality [24] and Lemma 3, a upper bound of \(\dot{V} \) is obtained as

\[
\dot{V}_1 \leq \sum_{1 \leq i \neq j \leq N} \xi_{ij}^T(t) \Xi_{[h(t)]} \xi_{ij}(t).
\]

By Jensen inequality [24] and Lemma 3, an upper bound of \(\dot{V}_2 \) is obtained as

\[
\dot{V}_2 = (t_{k+1} - t) \tilde{x}^T(t) (U \otimes S) \tilde{x}(t)
- \int_{t_k}^t \tilde{x}^T(s) (U \otimes S) \tilde{x}(s) \, ds
\]

In addition, the following inequality holds for any positive diagonal matrix \(D \):

\[
0 \leq -2 [f((I_N \otimes C)x(t)) - (I_N \otimes L^{-1})(I_N \otimes C)x(t)]^T
	\times (U \otimes D) [f((I_N \otimes C)x(t)) - (I_N \otimes L^{-1})(I_N \otimes C)x(t)]
\]

Then, for \(h(t) \to 0 \) and \(h(t) \to h_M \), the following conditions hold

\[
\sum_{1 \leq i \neq j \leq N} \xi_{ij}^T(t) \Xi_{[h(t)]} \xi_{ij}(t) < 0,
\]

where \(\phi_{1,1}(t) = x(t_k) - x(t - h_M) \), \(\phi_{1,2}(t) = x(t_k) + x(t - h_M) - (2/(t_k - t + h_M)) \int_{t-k}^t x(s) \, ds \), \(\phi_{2,1}(t) = x(t) - x(t_k) \), and \(\phi_{2,2}(t) = x(t) + x(t_k) - (2/(t_k - t)) \int_{t_k}^t x(s) \, ds \).

From Lemma 3, \(\dot{V}_1 \) can be bounded as

\[
\dot{V}_1 \leq \sum_{1 \leq i \neq j \leq N} \xi_{ij}^T(t) \Xi_{[h(t)]} \xi_{ij}(t).
\]

By Jensen inequality [24] and Lemma 3, an upper bound of \(\dot{V}_2 \) is obtained as

\[
\dot{V}_2 = (t_{k+1} - t) \tilde{x}^T(t) (U \otimes S) \tilde{x}(t)
- \int_{t_k}^t \tilde{x}^T(s) (U \otimes S) \tilde{x}(s) \, ds
\]

Therefore, from (20) to (22), an upper bound of \(\dot{V} \) is

\[
\dot{V} \leq \sum_{1 \leq i \neq j \leq N} \xi_{ij}^T(t) \Xi_{[h(t)]} \xi_{ij}(t).
\]

Then, for \(h(t) \to 0 \) and \(h(t) \to h_M \), the following conditions hold

\[
\sum_{1 \leq i \neq j \leq N} \xi_{ij}^T(t) \Xi_{[h(t)]} \xi_{ij}(t) < 0,
\]

\[
\Leftrightarrow \alpha \sum_{1 \leq i \neq j \leq N} \xi_{ij}^T(t) \Xi_{[h(t)]} \xi_{ij}(t) + (1 - \alpha) \xi_{ij}^T(t) \Xi_{[h_M]} \xi_{ij}(t) < 0,
\]

where \(\alpha = (h_M - h(t))/h_M \).

Applying (i) and (iii) of Lemma 4 with the following equality:

\[
\sum_{1 \leq i \neq j \leq N} \xi_{ij}^T(t) \Xi_{[h(t)]} \xi_{ij}(t) = 0
\]

leads to the following two conditions:

\[
\sum_{1 \leq i \neq j \leq N} \xi_{ij}^T(t) \Xi_{[h(t)]} \xi_{ij}(t) < 0,
\]

\[
\sum_{1 \leq i \neq j \leq N} \xi_{ij}^T(t) \Xi_{[h_M]} \xi_{ij}(t) < 0.
\]

Here, if the inequality \(\Xi_{[h(t)]} + \text{sym} \{XY_{ij}\} \xi_{ij} < 0 \) holds, then there exist positive scalars \(\varepsilon_1 \) and \(\varepsilon_2 \) such that

\[
\Xi_{[h(t)]} + \text{sym} \{XY_{ij}\} < -\varepsilon_1 I_{8n},
\]

\[
\Xi_{[h_M]} + \text{sym} \{XY_{ij}\} < -\varepsilon_2 I_{8n}.
\]
From (25), (26), and (27), we have
\[\dot{V} \leq \sum_{1 \leq i < j \leq N} \zeta_{ij}^T(t) \left(\mathbf{E}_{[h(t)]} + \text{sym} \{X \mathbf{Y}_{ij}\} \right) \zeta_{ij}(t)\]
\[< \sum_{1 \leq i < j \leq N} \zeta_{ij}^T(t) \left(-\min\{\epsilon_1, \epsilon_2\} I_m \right) \zeta_{ij}(t)\]
\[< \sum_{1 \leq i < j \leq N} x_{ij}^T(t) \left(-\min\{\epsilon_1, \epsilon_2\} x_{ij}(t) \right)\]
\[= \sum_{1 \leq i < j \leq N} \left(-\min\{\epsilon_1, \epsilon_2\} \|x_{ij}(t)\|^2 \right)\]
\[= \sum_{1 \leq i < j \leq N} \left(-\min\{\epsilon_1, \epsilon_2\} \|x_i(t) - x_j(t)\|^2 \right).\]

(28)

By Lyapunov theorem and the definition for consensus (9), it can be guaranteed that the nodes in the nonlinear complex systems (8) are asymptotically consented.

In addition to this, in order to illustrate the process of obtaining (25), let us define
\[\Lambda = [\Lambda_1, \Lambda_2, \ldots, \Lambda_N] = [N, N - 1, \ldots, 1] \otimes I_n \in \mathbb{R}^{n \times N},\]
where \(\Lambda_k \in \mathbb{R}^{n \times n} (k = 1, \ldots, N).\)

Then, according to the proof of Theorem 1 in [9], we have the following zero equality:
\[0 = \Lambda (U \otimes I_n) Y \xi(t)\]
\[= \Lambda (U \otimes I_n) \left[I_n \otimes A \right] \left[-\overline{\sigma} (T_e \otimes I_n) \right] 0 \left| - (I_N \otimes I_n) \right] 0 \left| 0 \right| 0 \left| I_N \otimes B \right] \xi(t)\]
\[= \Lambda \left[U \otimes A \right] \left[-\overline{\sigma} (U T_e \otimes I_n) \right] 0 \left| - (U \otimes I_n) \right] 0 \left| 0 \right| 0 \left| U \otimes B \right] \xi(t)\]
\[= \Lambda (U \otimes A) x(t) - \overline{\sigma} \Lambda (U T_e \otimes I_n) x(t_k)\]
\[= \Lambda (U \otimes I_n) \dot{x}(t) + \Lambda (U \otimes B) f(Cx(t)).\]

(30)

By Lemma 3, the first term of (30) can be obtained as
\[\Lambda (U \otimes A) x(t)\]
\[= \frac{[N I_n, (N - 1) I_n, \ldots, I_n] (U \otimes A)}{nN^{nN}} \times \left[x_1(t), \ldots, x_N(t) \right]^T\]
\[= \sum_{1 \leq i < j \leq N} u_{ij} \left(\Lambda_i - \Lambda_j \right) A \left(x_i(t) - x_j(t) \right)\]
\[= \sum_{1 \leq i < j \leq N} \left(\Lambda_i - \Lambda_j \right) A \left(x_i(t) - x_j(t) \right)\]
\[= \sum_{1 \leq i < j \leq N} \left((N + 1 - i) I_n \right) A \left(x_i(t) - x_j(t) \right)\]
\[= \sum_{1 \leq i < j \leq N} \left((j - i) \right) A \left(x_i(t) - x_j(t) \right).\]

(31)

Similarly, the other terms of (30) are calculated as
\[- \overline{\sigma} \Lambda (U T_e \otimes I_n) x(t_k)\]
\[= \sum_{1 \leq i < j \leq N} \left((j - i) \right) \left(\overline{\sigma} N Y_{ij} I_n \right) \left(x_i(t - h(t)) - x_j(t - h(t)) \right),\]
\[- \Lambda (U \otimes I_n) \dot{x}(t)\]
\[= \sum_{1 \leq i < j \leq N} \left((j - i) \right) B \left(f(C x_i(t)) - f(C x_j(t)) \right),\]
\[\Lambda (U \otimes B) f(Cx(t))\]
\[= \sum_{1 \leq i < j \leq N} \left((j - i) \right) B \left(f(C x_i(t)) - f(C x_j(t)) \right).\]

(32)

Then, (30) can be rewritten as
\[0 = \Lambda (U \otimes I_n) Y \xi(t) = \sum_{1 \leq i < j \leq N} \left((j - i) Y_{ij} \xi_{ij}(t) \right).\]

(33)

Finally, reapplying (ii) and (iii) of Lemma 4 to (26), the following inequalities can be obtained
\[\sum_{1 \leq i < j \leq N} \left[(j - i) Y_{ij}^+ \right]^T \mathbf{E}_{[\epsilon]} \left[(j - i) Y_{ij}^+ \right] < 0,\]
\[\sum_{1 \leq i < j \leq N} \left[(j - i) Y_{ij}^- \right]^T \mathbf{E}_{[\epsilon]} \left[(j - i) Y_{ij}^- \right] < 0.\]

(34)

From (34), if the LMIs (14) satisfy, then the condition (24) subject to (25) holds. This completes our proof.

For comparison, the following corollary is introduced.

Corollary 7. For a given positive scalar \(h_M\), the node in the system (1) under the protocol (5) with time-varying sampled data is consented, if there exist matrices \(\mathcal{P} = [P_{ij}] \in \mathbb{S}_+^m\), \(Q \in \mathbb{R}^{m \times m}\).
4. Numerical Example

In this section, one numerical example will be presented to illustrate the effectiveness of the proposed criteria in this paper.

Consider 2-node information flow drawn in Figure 3 consisted of the Chua's circuit [25] given by

\begin{align}
\dot{x}_{11}(t) &= \alpha (x_{12}(t) - h(x_{11}(t))), \\
\dot{x}_{12}(t) &= x_{11}(t) - x_{12}(t) + x_{13}(t), \\
\dot{x}_{13}(t) &= -\beta x_{12}(t), \quad i = 1, 2
\end{align}

with the nonlinear function \(h(x_{11}(t)) = m_1 x_{11}(t) + (1/2) (m_0 - m_1) (|x_{11}(t) + c| - |x_{11}(t) - c|)\), where parameters \(m_0 = -1/7, m_1 = 2/7, \alpha = 9, \beta = 14.28\), and \(c = 1\) and its Lur'e form can be rewritten with

\[
A = \begin{bmatrix}
-\alpha m_1 & 0 \\
1 & -1 & 1 \\
0 & -\beta & 0
\end{bmatrix}, \quad B = \begin{bmatrix}
-\alpha (m_0 - m_1) \\
0 \\
0
\end{bmatrix},
\]

\[C^T = \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}.
\]

For the above system, the maximum interval of \(t_{k+1} - t_k (= h_M)\) for fixed coupling strength \(\sigma = 1\) is compared between degree and edge betweenness centralities as shown in Table 1. From Table 1, it can be seen that the result with the edge betweenness centrality measure for this example gives larger maximum interval of \(t_{k+1} - t_k (= h_M)\) than the one with the degree centrality measure.

Moreover, the elements of matrix \(\Gamma_c\) can be calculated as

\[
y'_{12} = \sum_{k \neq l} g_{kl} \left(e_{12} \right) = \frac{g_{12} \left(e_{12} \right)}{g_{12}} + \frac{g_{21} \left(e_{12} \right)}{g_{21}} = \frac{1}{1} + \frac{1}{1} = 2,
\]

\[
y'_{21} = \sum_{k \neq l} g_{kl} \left(e_{21} \right) = \frac{g_{12} \left(e_{21} \right)}{g_{12}} + \frac{g_{21} \left(e_{21} \right)}{g_{21}} = \frac{1}{1} + \frac{1}{1} = 2,
\]

\[
y'_{11} = \sum_{j \neq i} y_{ij} = y_{12} = 2, \quad y'_{22} = \sum_{j \neq i} y_{ij} = y_{21} = 2.
\]

However, the system performance with the edge betweenness centrality measure is more poor and needs more protocol input than the one with the degree centrality measure. For comparison between two measure cases, the sampling interval \(t_{k+1} - t_k (= h_M)\) is assumed to be 0.4. Figure 4 shows that the states with the responses consent to the same behavior under two measure cases for the given initial states of the nodes \(x_i(0) = [0.1, 0.5, 0.7]\) and \(x_i(0) = [3, 1, -4]\). In Figure 5, their error trajectories are shown. Here, the case of the edge betweenness centrality measure indicates the poor performance. Thus, it can be confirmed that it is necessary to consider the global information for network structure as mentioned in Remark 1. Their corresponding protocol inputs can be identified in Figure 6. In addition to this, without the protocol, the behaviors of two nodes are different as shown in Figure 7.

5. Conclusions

In this paper, the consensus analysis for nonlinear complex systems under time-varying sampled-data protocol has been conducted. The information for network structure is measured by edge betweenness centrality, which has the global information while the degree centrality has the local one. To achieve this, by constructing the simple Lyapunov-Krasovskii functional, sufficient conditions for guaranteeing asymptotic consensus of such systems have been derived in terms of LMIs. One numerical example has been given to show the usefulness of the proposed model.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea.
Figure 4: State trajectories of each node: (a) degree and (b) edge.

Table 1: Comparison with fixed coupling strength $\sigma = 1$.

<table>
<thead>
<tr>
<th>Measures</th>
<th>Methods</th>
<th>Structure</th>
<th>$t_{k+1} - t_k$ ($=h_M$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree centrality</td>
<td>Corollary 7</td>
<td>$\Gamma_d = \begin{bmatrix} 1 & -1 \ -1 & 1 \end{bmatrix}$</td>
<td>0.41</td>
</tr>
<tr>
<td>Edge betweenness centrality</td>
<td>Theorem 6</td>
<td>$\Gamma_e = \begin{bmatrix} 2 & -2 \ -2 & 2 \end{bmatrix}$</td>
<td>0.49</td>
</tr>
</tbody>
</table>

* is the Laplacian matrix of graph drawn in Figure 3.
Figure 5: Error trajectories of each node: (a) degree and (b) edge.

Figure 6: Protocol trajectories of each node: (a) degree and (b) edge.
(NRF) funded by the Ministry of Education, Science and Technology (2008-0062611), and by a Grant of the Korea Healthcare Technology R & D Project, Ministry of Health & Welfare, Republic of Korea (A100054).

References

Figure 7: Results without the consensus protocol, that is, $u_i(t_k) = 0$: (a) phase and (b) each state.

The general minimum lower-order confounding (GMC) criterion for two-level design not only reveals the confounding information of factor effects but also provides a good way to select the optimal design, which was proposed by Zhang et al. (2008). The criterion is based on the aliased effect-number pattern (AENP). Therefore, it is very important to study properties of AENP for two-level GMC design. According to the ordering of elements in the AENP, the confounding information between lower-order factor effects is more important than that of higher-order effects. For two-level GMC design, this paper mainly shows the interior principles to calculate the leading elements \(C_1 \) and \(C_2 \) in the AENP. Further, their mathematical formulations are obtained for every GMC \(2^{n-m} \) design with \(N = 2^{n-m} \) according to two cases: (i) \(5N/16 + 1 \leq n < N/2 \) and (ii) \(N/2 \leq n \leq N - 1 \).

1. Introduction

To find optimal designs in a more elaborate and explicit manner under effect hierarchy principle, Zhang et al. [1] first introduced the aliased effect-number pattern (AENP) and proposed a new criterion of general minimum lower-order confounding (GMC) for two-level regular design. Further, they proved that all the classification patterns conducting the existing criteria, such as maximum resolution (MR) criterion [2], minimum aberration (MA) criterion [3], clear effects (CE) criterion [4], and maximum estimation capacity (MEC) criterion [5], can be expressed as different functions of the AENP so that it can be a basis to unify these criteria.

Through the AENP, we can get a deeper understanding of properties of the above criteria and relationships among them. Zhang and Cheng [6] revealed an exact expression of the average minimum lower-order confounding property of MA design. Hu and Zhang [7] obtained an essential statistical equivalence of MEC design and MA design. From the average least confounding property between lower-order effects, MA designs are most suitable for the situation that all the factors in experiments are treated to be equally important, while GMC design has an individual least confounding property between lower-order effects and possesses the maximum numbers of clear main effects and clear two-factor interactions (2fis). Because of this, GMC designs can be applied to the experiments which the experimenters have some prior information to the order of the importance factors. In practice, the latter situation more often happens than the former one. Therefore, the study for GMC designs should be significantly important in both theory and application.

Now we review some definitions proposed by Zhang et al. [1]. Let \(D \) be a \(2^{n-m} \) design with \(n \) factors, \(m \) independent defining words, and \(N = 2^{n-m} \) runs. We denote the factors by \(1, 2, \ldots, n \). An \(i \)th-order factor effect is said to be aliased with \(j \)th-order factor effects at degree \(k \) if it is simultaneously aliased with \(k \) \(j \)th-order factor effects. The \(0 \)th-order effect is the grand mean and \(1 \)st-order effect is a main effect.

Let \(C_j^{(k)} (D) \) (written by \(C_j^{(k)} \) for short) be the number of \(i \)th-order factor effects that are aliased with \(k \) \(j \)th-order factor effects. Denote \(K_j = \binom{n}{j} \); a set \(\{ C_j^{(k)} \} \), \(0 \leq k \leq K_j \),
0 ≤ i, j ≤ n} is called the aliased effect-number pattern (AENP) of the design \(D\). The set reflects the overall confounding between factor effects in the design. Define \(\hat{\mathbf{C}}_j = (\hat{\mathbf{C}}_{j}^{(0)}, \hat{\mathbf{C}}_{j}^{(1)}, \ldots, \hat{\mathbf{C}}_{j}^{(K)})\) and a design that sequentially maximizes the vector

\[
\hat{\mathbf{C}} = (\hat{\mathbf{C}}_{2^1}, \hat{\mathbf{C}}_{2^2}, \hat{\mathbf{C}}_{2^3}, \hat{\mathbf{C}}_{2^4}, \hat{\mathbf{C}}_{2^5}, \ldots)
\]

is called a GMC design, where the ordering of \(\hat{\mathbf{C}}_j\)'s is in accordance with the rule: \(\hat{\mathbf{C}}_j \text{ is before } \hat{\mathbf{C}}_{j'}\) if either \(\text{max}(i, j) < \text{max}(u, v)\), or \(\text{max}(i, j) = \text{max}(u, v)\), with \(i < u\), or \(\text{max}(i, j) = \text{max}(u, v)\) with \(i = u \text{ and } j < v\). In order to make main effects or 2fi's estimable, we need to give an assumption: the interactions involving three or more factors are absent. Thus, we only study the leading terms \(\hat{\mathbf{C}}_{2^1} \text{ and } \hat{\mathbf{C}}_{2^2}\) of AENP for two-level GMC design in this paper.

Zhang et al. [1] listed all two-level GMC designs of 16 and 32 runs, a number of 64-run GMC designs, and obtained the values of \(\hat{\mathbf{C}}_{2^1}\) and \(\hat{\mathbf{C}}_{2^2}\) by computer algorithm. However, the method is not suitable for designs with larger runs. Zhang and Cheng [6] and Chen and Liu [8] provided an important theory for constructing GMC designs. Cheng and Zhang [9] and Li et al. [10] finished the construction of GMC \(2^{r-n}\)-designs with \(N/4 + 1 ≤ n ≤ N - 1\). However, there are few articles that pay attention to calculating the values of elements in the AENP, especially the confounding information between main effects and 2fi's, or among 2fi's of two-level GMC design.

This paper mainly reveals the interior principles for calculating the values of \(\hat{\mathbf{C}}_{2^1}\) and \(\hat{\mathbf{C}}_{2^2}\) for two-level GMC design. In Section 2, we introduce some notations and obtain useful lemmas to study the lower-order confounding information of two-level GMC designs. Section 3 and Section 4, respectively, obtain values of \(\hat{\mathbf{C}}_{2^1}\) and \(\hat{\mathbf{C}}_{2^2}\) for GMC \(2^n-m\)-design with resolution \(R ≥ III\), for \(5N/16 + 1 ≤ n ≤ N/2\) and \(N/2 ≤ n ≤ N - 1\). Concluding remarks are given in Section 5.

2. Some Notations and Lemmas

Denote \(q = n - m\) and \(1, 2, \ldots, q\) stand for \(q\) independent factors. Let \(H_q\) be the set containing all main effects \(1, 2, \ldots, q\) and all interactions among them, formed by

\[
H_q = \{H_{q-1}, q, qH_{q-1}\},
\]

where \(qH_{q-1} = \{qd: d \in H_{q-1}\}\). By Theorem 2.71 of Mukerjee and Wu [11], any \(2^n-m\) design \(D\) can be represented by an n-subset of \(H_q\), that is, \(D \subset H_q\).

Let \(T_q = H_{q-1}\) and \(T_r = \{r, rH_{r-1}\}\) for \(1 ≤ r ≤ q\). Evidently, \(H_q = \bigcup_{j=1}^{q} T_j\). For \(5N/16 + 1 ≤ n ≤ N - 1\), Li et al. [10] have gotten that every GMC \(2^n-m\)-design is constructed by the last \(n\) columns of \(H_q\). Therefore, GMC \(2^n-m\)-designs with \(5N/16 + 1 ≤ n ≤ N/2\) are directly formed by the last \(n\) columns of \(T_q\). Denote \(S_r = H_q \setminus H_r\) with \(1 ≤ r < q\). For \(N/2 ≤ n ≤ N - 1\), there exists a number \(r < q\) so that GMC \(2^n-m\)-design is formed by the last \(n\) columns of \(T_r \cup S_r\). Thus, the GMC design can be written by \(D_q \cup S_q\), where \(D_q\) consists of the last \(n - (N - 2^t)\) columns of \(T_r\). To get the lower-order confounding information of two-level GMC design, we need to study structure of last \(n_{0}\) columns of \(T_r\) for \(r < q\) and \(n_{0} ≤ n\).

Suppose \(D_0\) consists of the last \(n_0\) columns of \(T_r\) \((r ≤ q)\), where \(n_0 = \#(D_0)\) and \(\#A\) denotes the cardinality of a set \(A\). The following example illustrates the structure of \(D_0\).

Example 1. Consider \(r = 7\); we select the last \(n_0\) columns of \(T_7\) to construct \(D_0\). Clearly, there are 64 choices besides \(D_0 \equiv T_r\). For \(1 ≤ n_0 ≤ 63, D_0\) is one of the following six forms.

(i) \((u + 1) \cdots 7H_u\) for \(1 ≤ u < 7\).
(ii) \((u + 1) \cdots 7(H_u \setminus H_s)\) for \(1 ≤ v < u < 7\).
(iii) \((u + 1) \cdots 7(s + 1) \cdots vH_u \cup (H_u \setminus H_v)\) for \(1 ≤ s < v < u < 7\).
(iv) \((u + 1) \cdots 7((s + 1) \cdots vH_u \cup (H_u \setminus H_v)\) for \(1 ≤ t < s < v < u < 7\).
(v) \((u + 1) \cdots 7((s + 1) \cdots v(H_u \cup (H_u \setminus H_v)\) for \(1 ≤ s < v < u < 7\).
(vi) \((u + 1) \cdots 7((s + 1) \cdots v(H_u \cup (H_u \setminus H_v)\) for \(1 ≤ z < w < t < s < v < u < 7\).

The above example provides a way to construct \(D_0\). Generally, for any \(r (r ≤ q)\), we consider the construction of \(D_0\) in \(T_r\). Define

\[
D_i = H_i \setminus H_{i'}, \quad a_i = (i + 1)(i + ... j_{t-1}),
\]

where \(1 ≤ j_m < i_m < j_{m-1} < ... < j_1 < i_1 < ... < j_0 = r\). Then, \(D_0\) can be constructed by either of the following cases.

Case 1. One has \(D_0 = a_i(a_j(\cdots (a_{m-1}(a_{m}H_{m} \cup D_{m-1}) \cdots \cup D_2) \cup D_1)\).

Case 2. One has \(D_0 = a_i(a_j(\cdots (a_{m-1}(a_{m}H_{m} \cup D_{m-1}) \cdots \cup D_2) \cup D_1)\).

In Case 1, the number of elements in \(D_0\) is even since \(\#(D_0) = \sum_{i=1}^{m} (2^i - 2^k)\). However, that of \(D_0\) in Case 2 is odd because of \(\#(D_0) = \sum_{i=1}^{m-1} (2^i - 2^k) + 2^m - 1\).

Consider \(D \subset H_q\) and any \(\gamma \in H_{q'}\), define

\[
B_2(D, \gamma) = \# \{(d_1, d_2): d_1, d_2 \in D, d_1d_2 = \gamma\},
\]

which is the number of 2fi's in \(D\) aliased with \(\gamma\). By the definition of \(\hat{\mathbf{C}}_j^{(k)}(D)\), it can be easily obtained that

\[
\hat{\mathbf{C}}^{(k)}(D) = \# \{\gamma: \gamma \in D, B_2(D, \gamma) = k\},
\]

and

\[
\hat{\mathbf{C}}^{(k)}(D) = \# \{\gamma: \gamma \in H_{q'}, B_2(D, \gamma) = k + 1\},
\]

where \(k = 0, 1, \ldots, K_{q}\). In order to get the lower-order confounding of \(D_0\) in the above cases, we need to study \(B_2(D_r, \gamma)\) for \(t ≥ 1\).
Lemma 2. Let D_t be defined in (3) for $t \geq 1$. Then

$$B_2(D_t, \gamma) = \begin{cases} 2^{i-1} - 2^{k-1}, & \gamma \in H_{i_t}, \\ 2^{i-1} - 2^k, & \gamma \in H_i \setminus H_{i_t}, \\ 0, & \gamma \in H_q \setminus H_{i_t}. \end{cases}$$

(7)

Proof. For $\gamma \in H_q \setminus H_{i_t}$, we have $B_2(D_t, \gamma) = 0$. If $\gamma \in H_{i_t}$, then

$$B_2(D_t, \gamma) = \frac{\# \{H_{i_t} \setminus H_{i'} \}}{2} = 2^{i-1} - 2^{i-1}.$$

(8)

For $\gamma \in H_i \setminus H_{i_t}$, there are $2^{i-1} - 1$ pairs of factors in H_i so that their interactions are aliased with γ. Among these pairs, there are $2^k - 1$ pairs with one factor from H_{i_t} and another from $H_i \setminus H_{i_t}$. Thus,

$$B_2(D_t, \gamma) = (2^{i-1} - 1) - (2^k - 1) = 2^{i-1} - 2^k.$$

(9)

This completes the proof.

Next we analyze Case 1 of D_0. For convenience, by (3), denote

$$\mathcal{D}(t) = a_{i_t}(\cdots(a_{i_{m-1}}(a_{i_{m}}D_m \cup D_{m-1})\cdots) \cup D_1)$$

(10)

for $1 < t \leq m$. Evidently, $\mathcal{D}(t) \subset H_{i_t}$ and $\mathcal{D}(1) = D_0$ in Case 1. When $d_1 \in \mathcal{D}(t)$ and $d_2 \in D_{t-1}$, we have $d_1d_2 \in D_{t-1}$. Thus,

$$\# \{(d_1, d_2) : d_1 \in \mathcal{D}(t), d_2 \in D_{t-1}, d_1d_2 = \gamma \} = \sum_{l=2}^m \# \{D_l \}$$

(11)

for $\gamma \in D_{t-1}$. Otherwise, the value is zero. Then

$$\# \{(d_1, d_2) : d_1 \in \mathcal{D}(t), d_2 \in D_{t-1}, d_1d_2 = \gamma \} = \begin{cases} \sum_{l=1}^m (2^i - 2^k), & \gamma \in D_{t-1}, \\ 0, & \gamma \notin D_{t-1}. \end{cases}$$

(12)

Based on Lemma 2 and (12), we can get the following result for Case 1.

Lemma 3. Let $D_0 = a_{i_1}(\cdots(a_{i_{m-1}}(a_{i_{m}}D_m \cup D_{m-1})\cdots) \cup D_2) \cup D_1$. Then

$$B_2(D_0, \gamma) = \begin{cases} \frac{c(m+1)}{2}, & \gamma \in H_{j_m}, \\ \frac{c(m+1) - (c(t) + 2^k)}{2}, & \gamma \in H_{j_t}, \ t = 1, \ldots, m, \\ \frac{c(t)}{2}, & \gamma \in H_{j_{t+1}} \setminus H_{j_t}, \ t = 2, \ldots, m, \\ 0, & \gamma \in H_q \setminus H_{j_t}, \ t = 1, \ldots, m. \end{cases}$$

(13)

where

$$c(1) = 0, \ c(t) = \sum_{l=1}^{t-1} (2^i - 2^k), \ t > 1.$$

(14)

Proof. For $1 < l \leq m$, by (10), we have

$$B_2\left(a_{i_l}(\mathcal{D}(l) \cup D_{l-1}), \gamma \right) = B_2\left(\mathcal{D}(l) \cup D_{l-1}, \gamma \right) = B_2\left(\mathcal{D}(l), \gamma \right) + B_2\left(D_{l-1}, \gamma \right) + \# \{(d_1, d_2) : d_1 \in \mathcal{D}(l), d_2 \in D_{l-1}, d_1d_2 = \gamma \}.$$

(15)

Hence,

$$B_2(D_0, \gamma) = \sum_{l=1}^{m-2} B_2(D_l, \gamma) + B_2\left(a_{i_m}D_m \cup D_{m-1}, \gamma \right) + \sum_{l=2}^{m-1} \# \{(d_1, d_2) : d_1 \in \mathcal{D}(l), d_2 \in D_{l-1}, d_1d_2 = \gamma \} = \sum_{l=1}^m B_2(D_l, \gamma) + \sum_{l=2}^m \# \{(d_1, d_2) : d_1 \in \mathcal{D}(l), d_2 \in D_{l-1}, d_1d_2 = \gamma \}.$$

(16)

Put H_r into $2m + 1$ incompatible parts: $H_{j_m}, D_{l+1},$ and $H_{j_t} \setminus H_{j_{t+1}}$ for $l = 0, 1, \ldots, m - 1$. Clearly, if $\gamma \in H_{j_t} \setminus H_{j_{t+1}}$, then $B_2(D_0, \gamma) = 0$. By Lemma 2 and (12), we, respectively, discuss the following cases.

(i) If $\gamma \in H_{j_m}$, then

$$\# \{(d_1, d_2) : d_1 \in \mathcal{D}(l), d_2 \in D_{l-1}, d_1d_2 = \gamma \} = 0$$

for $1 < l \leq m - 1$. Thus,

$$B_2(D_0, \gamma) = \sum_{l=1}^{m-1} \left(2^{i-1} - 2^h\right) = 2^{i-1} - 2^h.$$

(17)

(ii) If $\gamma \in D_t$ with $1 < t \leq m$, one has

$$B_2(D_0, \gamma) = \sum_{l=1}^{t-1} B_2(D_l, \gamma) + B_2(D_t, \gamma) + \sum_{l=2}^m \# \{(d_1, d_2) : d_1 \in \mathcal{D}(l + 1), d_2 \in D_{t-1}, d_1d_2 = \gamma \} = \sum_{l=1}^{t-1} \left(2^{i-1} - 2^h\right) + \left(2^{i-1} - 2^h\right) + \sum_{l=2}^m \left(2^i - 2^h\right) = \sum_{l=1}^m \left(2^i - 2^h\right) - \sum_{l=1}^{t-1} \left(2^{i-1} - 2^h\right) - 2^{i-1}.$$

(18)
(iii) If \(\gamma \in H_{j_t} \setminus H_i \) for \(t > 1 \), then

\[
B_2(D_0, \gamma) = \sum_{j=1}^{t-1} B_2(D_j, \gamma) = \sum_{j=1}^{t-1} (2^{i_{j-1}} - 2^{i_{j-1} - 1}).
\]

(20)

This completes the proof. \(\square \)

Lemma 3 shows that the value of \(B_2(D_0, \gamma) \) in Case 1 depends on all pairs \(\{i_t, j_t\}_{1 \leq t \leq m} \) which relate to \#\(D_0 \) = \(\sum_{l=1}^{m} (2^{i_l} - 2^{i_l - 1}) \). For instance, take \(n_0 = \#\{D_0\} = 42 \) that is nearer to the number \(2^5 \) than \(2^6 \); we have

\[
n_0 = 2^5 + 2^3 + 2 = (2^6 - 2^5) + (2^3 - 2^2) + (2^2 - 2).
\]

(21)

Thus \(i_1 = 6, j_1 = 5, i_2 = 4, j_2 = 3, i_3 = 2, \) and \(j_3 = 1 \). And take \(n_0 = 54 \) which is closer to the number \(2^6 \) than \(2^5 \); one obtains

\[
n_0 = 2^6 - 2^5 + 6 = 2^6 - 2^4 + 2^2 - 2.
\]

Then \(i_1 = 6, j_1 = 4, i_2 = 3, \) and \(j_2 = 2 \).

Consider Case 2 of \(D_0 \). Denote

\[
H(t) = a_{i_1} \cdots \left(a_{i_{t-1}} H_{i_{t-1}} \cup D_{l_{t-1}} \right) \cdots \cup D_i
\]

(22)

for \(1 < t \leq m \). Clearly, \(H(t) \subset H_{i_1} \) and \(H(1) = D_0 \) in Case 2. For two factors \(d_1 \in H(t) \) and \(d_2 \in D_{l_1-1} \), one has

\[
\#\{ (d_1, d_2) : d_1 \in H(t), d_2 \in D_{l_1-1}, d_1 d_2 = \gamma \} = \left\{ \begin{array}{ll}
\sum_{l=1}^{m-1} \left(2^{i_l} - 2^{i_l - 1} \right) + 2^{m-1} - 1, & \gamma \in D_{l_1-1}, \\
0, & \gamma \notin D_{l_1-1}.
\end{array} \right.
\]

(23)

Specifically, if \(t = m \), then

\[
\#\{ (d_1, d_2) : d_1 \in H_{i_m}, d_2 \in D_{m-1}, d_1 d_2 = \gamma \} = \left\{ \begin{array}{ll}
2^{m-1} - 1, & \gamma \in D_{m-1}, \\
0, & \gamma \notin D_{m-1}.
\end{array} \right.
\]

(24)

For \(m \geq 1 \) and \(\gamma \in H_{i_m} \), there are \(2^{m-1} - 1 \) pairs of factors in \(H_{i_m} \), which each interaction is aliased with \(\gamma \). Then

\[
B_2(a_{i_m} H_{i_m}, \gamma) = B_2(H_{i_m}, \gamma) = \left\{ \begin{array}{ll}
2^{m-1} - 1, & \gamma \in H_{i_m}, \\
0, & \gamma \in H_q \setminus H_{i_m}.
\end{array} \right.
\]

(25)

Based on the above results, we can obtain the value of \(B_2(D_0, \gamma) \) for any \(\gamma \in H_q \) in Case 2.

Lemma 4. Let \(D_0 = a_{i_1} (a_{i_2} \cdots (a_{i_{t-1}} H_{i_{t-1}} \cup D_{l_{t-1}}) \cdots) \cup D_2 \cup D_1 \). Then

\[
B_2(D_0, \gamma) = \left\{ \begin{array}{ll}
c(m) + 2^{m-1} - 1, & \gamma \in H_{i_m}, \\
\frac{c(m)}{2} - \frac{(c(t) + 2^i)}{2} + 2^{m-1} - 1, & \gamma \in D_0, t = 1, \ldots, m-1, \\
\frac{c(m)}{2}, & \gamma \in H_{i_m} \setminus H_i, t = 2, \ldots, m, \\
0, & \gamma \in H_q \setminus H_{i_m}.
\end{array} \right.
\]

(26)

where \(c(t) \) is defined in (14).

Proof. By (22), we obtain

\[
B_2(D_0, \gamma) = \sum_{l=1}^{m-1} B_2(D_l, \gamma) + B_2(a_{i_m} H_{i_m}, \gamma)
\]

\[
+ \#\{ (d_1, d_2) : d_1 \in a_{i_m} H_{i_m}, d_2 \in D_{m-1}, d_1 d_2 = \gamma \}
\]

\[
+ \sum_{l=2}^{m} \#\{ (d_1, d_2) : d_1 \in H(t), d_2 \in D_{l-1}, d_1 d_2 = \gamma \}.
\]

(27)

For \(\gamma \in H_q \setminus H_i \), we have \(B_2(D_0, \gamma) = 0 \). By Lemma 2, (25), and (23), analyze the following cases.

(i) For \(\gamma \in H_{i_m} \), we obtain

\[
B_2(D_0, \gamma) = \sum_{l=1}^{m-1} B_2(D_l, \gamma) + B_2(a_{i_m} H_{i_m}, \gamma)
\]

\[
= \sum_{l=1}^{m-1} \left(2^{i_l-1} - 2^{i_l-2} \right) + 2^{m-1} - 1.
\]

(28)

(ii) For \(\gamma \in D_i \), with \(1 \leq t \leq m-1 \), one has

\[
B_2(D_0, \gamma) = \sum_{l=1}^{m-1} B_2(D_l, \gamma)
\]

\[
+ \#\{ (d_1, d_2) : d_1 \in H(t+1), d_2 \in D_t, d_1 d_2 = \gamma \}
\]

\[
= \sum_{l=1}^{m-1} \left(2^{i_l-1} - 2^{i_l-2} \right)
\]

\[
+ \sum_{l=2}^{m-1} \left(2^{i_l-2} - 2^{i_l-3} \right) - 2^{m-1} + 2^{m-1} - 1
\]

\[
= c(m) - \frac{(c(t) + 2^i)}{2} + 2^{m-1} - 1.
\]

(29)

(iii) For \(\gamma \in H_{j_{t-1}} \setminus H_i \) with \(2 \leq t \leq m \), \(B_2(D_0, \gamma) = \sum_{l=1}^{m-1} (2^{i_l-1} - 2^{i_l-2}) \).

\(\square \)

In Lemma 4, the value of \(B_2(D_0, \gamma) \) is relative to these pairs \(\{i_t, j_t\}_{1 \leq t \leq m} \) and \(i_m \). For example, consider \(n_0 = \#\{D_0\} = 21 \). Since \(n_0 = (2^5 - 2^4) + (2^3 - 2^2) + 2 - 1 \), it yields \(i_1 = 5, j_1 = 4, i_2 = 3, j_2 = 2, \) and \(i_3 = 1 \). Taking \(n_0 = 29 \), we have \(n_0 = 2^5 - 3 = 2^5 - 2^2 + 1 \); thus \(i_1 = 5, j_1 = 2, \) and \(i_2 = 1 \).

Lemmas 3 and 4, respectively, obtain the value of \(B_2(D_0, \gamma) \) that \(D_0 \) consists of the last \(n_0 \) columns of \(T_r \) \((r \leq q) \) for two cases. These results play a key role in calculating \(\binom{C_2}{2} \) and \(\binom{C_2}{2} \)’s for all GMC \(2^m \) designs with \(5N/16 + 1 \leq n \leq N - 1 \). Next sections will, respectively, discuss two-level GMC designs with the factor number \(n \) satisfying (i) \(5N/16 + 1 \leq n < N/2 \) or (ii) \(N/2 \leq n \leq N - 1 \).
3. GMC 2^{n-m} Designs with $5N/16 + 1 ≤ n < N/2$

Li et al. [10] showed all GMC 2^{n-m} designs with $5N/16 + 1 ≤ n < N/2$, constructed by the last n_i columns of T_i. In Section 2, D_0 is constructed by Case 1 or Case 2, which is the last n_i columns of T_i, ($r ≤ q$) for $n_0 = |D_0|$. Therefore, for any GMC 2^{n-m} design D with $5N/16 + 1 ≤ n < N/2$, its construction is similar to that of D_0. In (3), take $j_0 = r = q$.

Theorem 5. Consider GMC 2^{n-m} design

$$D = a_{i_1} \left(a_{i_2} \left(\cdots \left(a_{i_{m-1}} \left(a_{i_m} D_m \cup D_{m-1} \right) \cdots \right) \cup D_2 \right) \cup D_1 \right)$$

with $5N/16 + 1 ≤ n < N/2$. Then

(a) $\# C_1^{(k)} (D) = \begin{cases} n \left(2^{\frac{n}{m} - 1} \right), & k = 0, \\ 0, & \text{otherwise}, \end{cases}$

(b) $\# C_2^{(k)} (D) = \begin{cases} n \left(2^{\frac{n}{m} - 1} \right), & k = 0, \\ \frac{c(t)(t^{2^{i-1}} - 2^i)}{2}, & k = \frac{c(t)}{2} - 1, t = 2, \ldots, m, \\ \frac{c(t)}{2}, & k = \frac{c(t)}{2} - 1, t = 1, \ldots, m, \\ 0, & \text{otherwise}, \end{cases}$

where $c(t)$ is defined in (14).

Proof. Evidently, $n = \sum_{i=1}^{m} (2^i - 2^i)$; we have $c(m + 1) = n$. By Lemma 3,

$$B_2 (D, \gamma) = \begin{cases} n, & \gamma \in H_{j_m}, \\ n - \frac{c(t) + 2^i}{2}, & \gamma \in D_t, t = 1, \ldots, m, \\ \frac{c(t)}{2}, & \gamma \in H_{j_{i+1}} \setminus H_{i_t}, t = 2, \ldots, m, \\ 0, & \gamma \in H_q \setminus H_{i_t}. \end{cases}$$

(a) Since $D \subset H_q \setminus H_{i_t}$, hence by (33) and (5)

$$\# C_2^{(0)} (D) = \# \{ \gamma \in D, B_2 (D, \gamma) = 0 \} = |D| = n.$$

Otherwise, $\# C_2^{(k)} (D) = 0$ for $k \neq 0$.

(b) Following (33) and (6), we obtain

$$\# C_2^{(k)} (D) = (k + 1) \times \left[\# \{ \gamma \in H_{j_m}, B_2 (D, \gamma) = k + 1 \} + \sum_{i=1}^{m} \# \{ \gamma \in D_t, B_2 (D, \gamma) = k + 1 \}
ight]$$

$$+ \sum_{i=1}^{m} \# \{ \gamma \in H_{j_{i+1}} \setminus H_i, B_2 (D, \gamma) = k + 1 \} + \sum_{i=1}^{m} \# \{ \gamma \in H_q \setminus H_{i_t}, B_2 (D, \gamma) = k + 1 \}.$$

If $k = n/2 - 1$, then

$$\# C_2^{(k)} (D) = \frac{n \# \{ H_{j_m} \}}{2} = \frac{n \left(2^{\frac{n}{m} - 1} \right)}{2}.$$

For $k = n - (c(t) + 2^i)/2 - 1$ with $1 ≤ t ≤ m$, one has

$$\# C_2^{(k)} (D) = \left(n - \frac{c(t) + 2^i}{2}\right) \# \{ D_t \} = \left(n - \frac{c(t) + 2^i}{2}\right) \left(2^{h_i} - 2^i\right).$$

And if $k = c(t)/2 - 1$ with $1 < t ≤ m$, then

$$\# C_2^{(k)} (D) = \frac{c(t) \# \{ H_{j_{i+1}} \setminus H_i \}}{2} = c(t) \left(2^{h_i} - 2^i\right).$$

Otherwise, $\# C_2^{(k)} (D) = 0$.

For GMC 2^{n-m} design with $5N/16 + 1 ≤ n < N/2$, Theorem 5 reveals that the value of $\# C_2^{(k)}$ only depends on the factor number n. However, the value of $\# C_2^{(k)}$ is related to the numbers $\{i_t, j_t\}_{1 ≤ t ≤ m}$ besides n. We illustrate them via a simple example.

Example 6. Take $q = 5$ and $n = 10$; consider GMC 2^{10-5} design D. Since $n = 2^3 + 2 = (2^4 - 2^3) + (2^2 - 2)$, clearly, we have $i_1 = 4$, $j_1 = 3$, $i_2 = 2$, and $j_2 = 1$. Hence, $2^4 - 2^3 = 8$, $2^2 - 2^1 = 2$, $2^1 - 2^0 = 4$, and $c(1) = 0, c(2) = 8$. By Theorem 5, we get

$$\# C_2^{(k)} (D) = \begin{cases} 10, & k = 0, \\ 0, & \text{otherwise}, \end{cases}$$

$$\# C_2^{(k)} (D) = \begin{cases} 16, & k = 1, \\ 24, & k = 3, \\ 5, & k = 4, \\ 0, & \text{otherwise}. \end{cases}$$

Theorem 5 applies to the case that the factor number n of GMC design is even. If n is odd, similar to the proof of Theorem 5, by Lemma 4, one can get the result below.

Theorem 7. Consider GMC 2^{n-m} design

$$D = a_{i_1} \left(a_{i_2} \left(\cdots \left(a_{i_{m-1}} \left(a_{i_m} H_{i_m} \cup D_{m-1} \right) \cdots \right) \cup D_2 \right) \cup D_1 \right)$$

with $5N/16 + 1 ≤ n < N/2$. Then
shown the confounding information of D has GMC. By Lemma 2, we directly give the value of $\sum m_{t=1}^{\nu} (2^i - 2^j) + 2^m - 1 = c(m) + 2^k - 1$.

Example 8. Let $q = 5$ and $n = 11$; consider GMC 2^{11-6} design D. Here $n = 2^4 - 2^3 + 2^2 - 1$; we have $i_1 = 4$, $j_1 = 3$, and $i_2 = 2$. Thus, $c(2) = 2^i - 2^j = 8$ and $2^i - 2^j - 2^l = 4$. Following Theorem 7, it is directly obtained by

$$\#_{1C_2}^{(k)} (D) = \begin{cases} 11, & k = 0, \\ 0, & \text{otherwise,} \end{cases}$$

$$\#_{2C_2}^{(k)} (D) = \begin{cases} 24, & k = 2, \\ 16, & k = 3, \\ 15, & k = 4, \\ 0, & \text{otherwise,} \end{cases}$$

where $c(t)$ is defined in (41).

Proof. Note that $n = \sum_{i=1}^{m} (2^i - 2^j) + 2^m - 1 = c(m) + 2^k - 1$.

4. GMC 2^{n-m} Designs with $N/2 \leq n \leq N - 1$

In Section 2, we know that any GMC 2^{n-m} design with $N/2 \leq n \leq N - 1$ is constructed by $D_0 \cup S_{q}$, where D_0 is the last $n - (N - 2^r)$ columns of T_1 (r < q), Lemmas 3 and 4 have shown the confounding information of D_0. Next we will study a special design S_{q} = $H_q \setminus H_r$ (r < q), which consists of the last $N - 2^r$ columns of H_q. Since $r < q$, the factor number of the design S_{q} satisfies $N - 2^r \geq N/2$. Hence, the design S_{q} has GMC. By Lemma 2, we directly give the value of $B_2 (S_q, \gamma)$ as follows:

$$B_2 (S_q, \gamma) = \begin{cases} \frac{N}{2} - 2^r, & \gamma \in H_q \setminus H_r, \\ \frac{N}{2} - 2^{r-1}, & \gamma \in H_r, \end{cases}$$

Next we discuss the values of $\#_{1C_2}$ and $\#_{2C_2}$ for GMC design S_{q} with $r < q$.

Theorem 9. Consider any GMC design $S_{q} = H_q \setminus H_r$, for $r < q$. Then

(a) $\#_{1C_2}^{(k)} (S_q) = \begin{cases} N - 2^r, & k = \frac{N}{2} - 2^r, \\ 0, & \text{otherwise,} \end{cases}$

(b) $\#_{2C_2}^{(k)} (S_q) = \begin{cases} \left(\frac{N}{2} - 2^r\right) \left(\frac{N}{2} + 2^r\right), & k = \frac{N}{2} - 2^r - 1, \\ 0, & \text{otherwise.} \end{cases}$

Proof. (a) If $k = N/2 - 2^r$, by (44), then

$$\#_{1C_2}^{(k)} (S_q) = \# \{\gamma; \gamma \in S_q, B_2 (S_q, \gamma) = k\}$$

$$= \# \{S_q\} = N - 2^r.$$

Otherwise, $\#_{1C_2}^{(k)} (S_q) = 0$.

(b) For $k \geq 0$, note that

$$\#_{2C_2}^{(k)} (S_q) = (k + 1) \times \left[\# \{\gamma; \gamma \in S_q, B_2 (S_q, \gamma) = k + 1\}\right] \quad \text{or} \quad \left[\# \{\gamma; \gamma \in H_r, B_2 (S_q, \gamma) = k + 1\}\right].$$

If $k = N/2 - 2^r - 1$, thus by (44)

$$\#_{2C_2}^{(k)} (S_q) = \left(\frac{N}{2} - 2^r\right) \# \{S_q\} = \left(\frac{N}{2} - 2^r\right) \left(\frac{N}{2} - 2^r\right).$$

Similarly, for $k = N/2 - 2^{r-1} - 1$, we have

$$\#_{2C_2}^{(k)} (S_q) = \left(\frac{N}{2} - 2^{r-1}\right) \# \{H_r\} = \left(\frac{N}{2} - 2^{r-1}\right) \left(2^r - 1\right).$$

For GMC design S_{q} (r < q), the values of $\#_{1C_2}$ and $\#_{2C_2}$ only rely on two numbers N and r. In particular, if $r = q - 1$, then $S_{q(q-1)} = T_q$. By Theorem 9, one has

$$\#_{1C_2}^{(k)} (T_q) = \begin{cases} \frac{N}{2}, & k = 0, \\ 0, & k \neq 0, \end{cases}$$

$$\#_{2C_2}^{(k)} (T_q) = \begin{cases} 0, & k = 0, \\ 0, & k \neq 0, \end{cases}$$

$$\#_{3C_2}^{(k)} (T_q) = \begin{cases} 0, & k = 0, \\ \frac{N}{2}, & k \neq 0, \end{cases}$$
The relationship of \(D_q \).

Example 10. Consider GMC 2\(^{16-11}\) design \(S_{24} \). Since \(r = 4 \) and \(N = 32 \), one directly gets

\[
\begin{align*}
\mathbb{C}^{(k)}_{1C_2} (D) &= \begin{cases}
16, & k = 0, \\
0, & k \neq 0,
\end{cases} \\
\mathbb{C}^{(k)}_{2C_2} (D) &= \begin{cases}
120, & k = 7, \\
0, & k \neq 7.
\end{cases}
\end{align*}
\]

(51)

On the other hand, every GMC 2\(^{m-m}\) design \(D \) with \(n \geq N/2 \) can be constructed by the form \((D \setminus S_{q'}) \cup S_{q''}\), where \(D \setminus S_{q'} \) consists of the last \(n - (N - 2') \) columns of \(T_r \). Then, \(D_0 = D \setminus S_{q'} \). Based on Lemma 3 of Li et al. [10], we obtain the relationship of \(D \) and \(D_0 \) as follows:

\[
B_2 (D, \gamma) = \begin{cases}
\frac{N}{2}, & \gamma \in H_{q', m}, \\
\frac{(a(t) + 2^{j})}{2}, & \gamma \in D_t, t = 1, \ldots, m,
\end{cases}
\]

(52)

\[
\begin{cases}
\frac{a(t)}{2}, & \gamma \in H_{q', m-1} \setminus H_{q'}, t = 2, \ldots, m, \\
\frac{N}{2} - 2^{j-1}, & \gamma \in H_{q'} \setminus H_{q'}, \\
\frac{N}{2}, & \gamma \in H_{q'}, \gamma \in H_{q'} \setminus H_{r},
\end{cases}
\]

(53)

Therefore, we can get the following result.

Theorem 11. Consider GMC 2\(^{m-m}\) design \(D = D_0 \cup S_{q'} \) with \(r < q \), where \(D_0 = a_1 (a_2 (\cdots (a_{m-1} (a_m a_{m} \cup D_{m-1}) \cdots) \cup D_2) \cup D_1) \). Then

\[
\begin{align*}
\mathbb{C}^{(k)}_{1C_2} (D) &= \begin{cases}
\frac{n}{2}, & \gamma \in H_{q', m}, \\
\frac{(a(t) + 2^{j})}{2}, & \gamma \in D_t, t = 1, \ldots, m,
\end{cases} \\
\mathbb{C}^{(k)}_{2C_2} (D) &= \begin{cases}
\frac{a(t)}{2}, & \gamma \in H_{q', m-1} \setminus H_{q'}, t = 2, \ldots, m, \\
\frac{N}{2} - 2^{j-1}, & \gamma \in H_{q'} \setminus H_{q'}, \\
\frac{N}{2}, & \gamma \in H_{q'}, \gamma \in H_{q'} \setminus H_{r},
\end{cases}
\end{align*}
\]

(54)

\[
\begin{align*}
\mathbb{C}^{(k)}_{1C_2} (D) &= \begin{cases}
\frac{N - 2', \gamma \in H_{q', m}}, \\
\frac{n - N}{2}, & k = \frac{N}{2} - 2^{j-1}, \\
0, & \gamma \in H_{q'}, \gamma \in H_{q'} \setminus H_{r},
\end{cases} \\
\mathbb{C}^{(k)}_{2C_2} (D) &= \begin{cases}
\frac{N - 2', \gamma \in H_{q', m}}, \\
\frac{n - N + 2', \gamma \in H_{q'}, \gamma \in H_{q'} \setminus H_{r}}, & k = \frac{N}{2} - 2^{j-1}, \\
0, & \gamma \in H_{q'}, \gamma \in H_{q'} \setminus H_{r},
\end{cases}
\end{align*}
\]

(55)

where \(a(t) = N - 2' + c(t) \) and \(c(t) \) is defined in (14).

Proof. (a) By (53) and Lemma 3, note that

\[
c (m + 1) = \# \{ D_0 \} = \sum_{i=1}^{m} \left(2^{j} - 2^{k} \right) = n - N + 2'.
\]

(56)

yields (a).

(b) For \(\gamma \in S_{q'} \), by (a), \(B_2 (D, \gamma) = n - N/2 \). If \(k = n - N/2 \), then

\[
\mathbb{C}^{(k)}_{1C_2} (D) = \# \{ S_{q'} \} = N - 2'.
\]

(57)

Since \(D_0 \subset H_{q'} \setminus H_{q'} \), for \(k = N/2 - 2^{j-1} \), we have

\[
\mathbb{C}^{(k)}_{1C_2} (D) = \# \{ D_0 \}
\]

\[
= \sum_{t=1}^{m} \left(2^{j} - 2^{k} \right) = n - N + 2'.
\]

(58)

(c) Since

\[
\mathbb{C}^{(k)}_{2C_2} (D) = \# \{ \{ \gamma \in H_{q'} \setminus H_{q'} \} \}
\]

by (a), the result follows. \(\square \)
When the factor number \(n \) of a GMC design satisfying \(N/2 \leq n \leq N-1 \) is even, by Theorem II, we obtain values of the corresponding \(\# C_2 \) and \(\# C_2 \). The next example illustrates this point.

Example 12. Let \(q = 8 \), \(r = 7 \); consider GMC design \(D = D_0 \cup S_8 \). Since \(n_0 = \#D_0 = 26 \) and

\[
n_0 = 2^5 - 6 = (2^5 - 2^3) + (2^2 - 2),
\]

we have \(i_1 = 5 \), \(j_1 = 3 \), \(i_2 = 2 \), and \(j_2 = 1 \). Thus, \(2^{i_1} - 2^{j_1} = 24 \), \(2^{i_2} - 2^{j_2} = 2 \) and \(a(1) = N - 2^r + c(1) = 128 \), \(a(2) = N - 2^r + c(2) = 152 \). By (b) and (c) of Theorem II, one obtains

\[
\#_{C_2}^{(k)} (D) = \begin{cases}
128, & k = 26, \\
26, & k = 64, \\
0, & \text{otherwise},
\end{cases}
\]

\[
\#_{C_2}^{(k)} (D) = \begin{cases}
3328, & k = 25, \\
6144, & k = 63, \\
1776, & k = 73, \\
456, & k = 75, \\
77, & k = 76, \\
0, & \text{otherwise},
\end{cases}
\]

Theorem 13. Consider GMC design \(D = D_0 \cup S_q \) with \(r < q \), where \(D_0 = a_1 (a_1 \cdots a_m, H_{m} \cup D_m \cdots \cup D_2) \cup D_1 \). Then

(a)

\[
\begin{align*}
B_2 (D, r) & = \begin{cases}
\frac{(n-1)(2^{m-1})}{2}, & \gamma \in H_{n}, \\
 \frac{n - (a(t) + 2^i)}{2}, & \gamma \in D_t, \ t = 1, \ldots, m - 1, \\
 \frac{a(t)}{2}, & \gamma \in H_{m} \setminus H_i, \ t = 2, \ldots, m, \\
 \frac{N}{2} - 2^{r-1}, & \gamma \in H_r \setminus H_i, \\
 \frac{n - N}{2}, & \gamma \in H_\varphi \setminus H_r,
\end{cases}
\end{align*}
\]

(b)

\[
\#_{C_2}^{(k)} (D) = \begin{cases}
N - 2^r, & k = n - \frac{N}{2}, \\
N - N + 2^r, & k = \frac{N}{2} - 2^{r-1}, \\
0, & \text{otherwise},
\end{cases}
\]

(c)

\[
\#_{C_2}^{(k)} (D) = \begin{cases}
\frac{(n-1)(2^{m-1})}{2}, & k = \frac{(n-1)}{2} - 1, \\
 \frac{n - (a(t) + 2^i)}{2}, & k = n - \frac{a(t) + 2^i}{2} - 1, \\
 \frac{a(t)}{2}, & k = \frac{a(t)}{2} - 1, \\
 \frac{N}{2} - 2^{r-1}, & k = \frac{N}{2} - 2^{r-1} - 1, \\
 \frac{n - N}{2}, & k = n - \frac{N}{2} - 1, \\
0, & \text{otherwise},
\end{cases}
\]

where \(a(t) = N - 2^r + c(t) \) and \(c(t) \) is defined in (14).

Proof. Only prove (a). Since

\[
\# \{ D_0 \} = \sum_{i=1}^{m-1} \left(2^{i} - 2^{i} \right) + 2^{m-1} - 1 = n - N + 2^r,
\]

one has \(c(m) = n - (N - 2^r) - (2^m - 1) \). By (53) and Lemma 4, yields (a).

The proof of (b) and (c) is similar to those of Theorem II. The following example serves to show its application.

Example 14. Let \(q = 8 \), \(r = 7 \), and \(N = 256 \) and consider GMC design \(D = D_0 \cup S_8 \). Since \(#D_0 = 2^3 - 1 \), we have \(i_1 = 3 \). By (b) and (c) of Theorem II, one gets

\[
\#_{C_2}^{(k)} (D) = \begin{cases}
128, & k = 7, \\
7, & k = 64, \\
0, & \text{otherwise},
\end{cases}
\]

\[
\#_{C_2}^{(k)} (D) = \begin{cases}
896, & k = 6, \\
7680, & k = 63, \\
469, & k = 66, \\
0, & \text{otherwise}.
\end{cases}
\]

5. Concluding Remark

Based on construction of GMC designs with \(5N/16 + 1 \leq n \leq N - 1 \), we obtain the mathematical formulation to calculate the values of \(\# C_2 \) and \(\# C_2 \) in the AENP. These results are very useful to analyze the confounding information among lower-order factors of two-level GMC designs. For GMC designs satisfying \(n \neq [5N/16 + 1, N - 1] \), some further studies in this direction are in progress.
Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China Grants 11171165, 10871104, and 11101074; Scientific Research Program of the Higher Education Institution of XinJiang Grant XJEDU2012501; and Research Fund for the Doctoral Program of XinJiang University Grant BS130106. The authors are very grateful to the editor, the associate editor, and the referees for their valuable comments which have led to a substantial improvement in the paper.

References

A novel learning framework of nonparallel hyperplanes support vector machines (NPSVMs) is proposed for binary classification and multiclass classification. This framework not only includes twin SVM (TWSVM) and its many deformation versions but also extends them into multiclass classification problem when different parameters or loss functions are chosen. Concretely, we discuss the linear and nonlinear cases of the framework, in which we select the hinge loss function as example. Moreover, we also give the primal problems of several extension versions of TWSVM’s deformation versions. It is worth mentioning that, in the decision function, the Euclidean distance is replaced by the absolute value \(|w^T x + b| \), which keeps the consistency between the decision function and the optimization problem and reduces the computational cost particularly when the kernel function is introduced. Then the numerical experiments on several artificial and benchmark datasets indicate that our framework is not only fast but also shows good generalization.

1. Introduction

Classification problem is an important issue in machine learning and data mining, which is mainly comprised of binary and multiclass classification. Support vector machine (SVM), proposed by Burges [1] and Cortes and Vapnik [2], is an excellent tool for classification. In contrast with conventional artificial neural networks (ANNS) which aim at reducing empirical risk, SVM is principled and implements the structural risk minimization (SRM) that minimizes the upper bound of the generalization error [3–5]. Within a few years after its introduction, SVM has been successfully applied to pattern classification and regression estimation like face detection [6, 7], text categorization [8], time series prediction [9], bioinformatics [10], and so forth.

Recently, for binary classification, Mangasarian and Wild [11] proposed the generalized eigenvalue proximal support vector machine (GEPSVM) via two nonparallel hyperplanes. In their approach, the data points of each class are proximal to one of two nonparallel hyperplanes. The nonparallel hyperplanes are determined by eigenvectors corresponding to the smallest eigenvalues of two related generalized eigenvalue problems. Inspired by GEPSVM [11], Jayadeva et al. [12] developed twin SVM (TWSVM) with two nonparallel hyperplanes. However, the two hyperplanes are got by solving two quadratic programming (QP) problems, similar to the standard SVM. Furthermore, TWSVM differs from the standard SVM in fundamental way. In TWSVM, one solves a pair of smaller size QP problems rather than a single QP problem in the standard SVM. Therefore, TWSVM works faster than the standard SVM. Subsequently, there are many extensions for TWSVM including the improvements on TWSVM (TBSVM) [13], the least square TWSVM (LS-TWSVM) [14–17], nonparallel plane proximal classifier (NPPC) [18], smooth TWSVM [19], geometric algorithm [20], and twin support vector regression (TWSVR) [21]. TWSVM was also extended to deal with multiclassification TWSVM [22–24]. More precisely, in [22], TWSVM was extended straight from binary classification to multiclass classification, in which each primal problem covers all patterns except the patterns of the \(k \)th class in the constraints for the \(k \)th (\(k = 1, 2, \ldots, K \)) hyperplane. In [23], the authors extended TWSVM based on the idea of “one-versus-rest” (1-v-r) from binary classification to multiclass classification, in which there are two quadratic programming
(QP) problems for each reconstructing binary classification. However, they both have not kept the advantage of TWSVM which has lower computational complexity than that of the standard SVM. In [24], Yang et al. proposed multiple birth SVM (MBSVM) with much lower computational complexity than that of both [22, 23] by solving K smaller size of QP problems for K-class classification; only the empirical risk is considered like TWSVM. However, in TBSVM [13], the structural risk minimization principle is implemented by introducing the regularization term.

In this paper, we propose a novel learning framework of nonparallel hyperplanes support vector machines based on TWSVM and its extension versions, called NPSVMs, which not only provide a unified view for TWSVM and its many extension versions but also can deal with binary and multiclass classification problems. For binary classification, if the loss function is the hinge loss function, then the framework can become TWSVM [12] or TBSVM [13] with different parameters; if the loss function is the square loss function, then the framework is LS-TWSVM [14]; if the loss function is the convex combination of the linear and square loss functions, then the framework is NPPC [18]. Actually, we can also get smooth TWSVM [19] by replacing 2-norm with 1-norm in the framework. However, for multiclass classification, the framework does not directly extend, in which we switch the roles of the patterns of the k-th class and the rest class and replace “min” with “max” in the decision function. Moreover, we use the absolute value $|wx+b|$ rather than the Euclidean distance in the decision function due to the twofold reasons: reducing the computational cost particularly when the kernel function is introduced and making the consistency since it is the corresponding absolute value that appears in the primal problems. Concretely, we discuss the linear and nonlinear cases of the framework, in which we select the hinge loss function as example. Moreover, we also give the primal problems of extensions of LS-TWSVM, 1-norm LS-TWSVM, NPPC, and smooth TWSVM. Finally, the numerical experiments on several artificial and benchmark datasets indicate that our frameworks are not only fast but also show good generalization.

The paper is organized as follows. Section 2 introduces the brief reviews of SVMs. Section 3 proposes our frameworks, in which Section 3.1 discusses the linear framework, Section 3.2 extend into the nonlinear framework, Section 3.3 gives SOR algorithm for solving the hinge NPSVMs, and Section 3.4 discusses several other extension approaches. Finally, Section 4 deals with experimental results and Section 5 contains concluding remarks.

2. Brief Reviews of SVMs

2.1. Twin Support Vector Machine. Given the following training set for the binary classification:

\[
T = \{(x_1, y_1), \ldots, (x_l, y_l)\},
\]

where \((x_i, y_i)\) is the ith data point, the input \(x_i \in \mathbb{R}^n\) is a pattern, the output \(y_i \in \{1, 2\}\) is a class label, \(i = 1, \ldots, l\), and \(l\) is the number of data points. In addition, let \(l_1\) and \(l_2\) be the number of data points in positive class and negative class, respectively, and \(l = l_1 + l_2\). Furthermore, the matrices \(A_1 \in R^{l_1 \times n}\) and \(A_2 \in R^{l_2 \times n}\) consist of the \(l_1\) inputs of Class 1 and the \(l_2\) inputs of Class 2, respectively.

The goal of TWSVM [12] is to find two nonparallel hyperplanes in n-dimensional input space:

\[
x^T w_1 + b_1 = 0,
\]

\[
x^T w_2 + b_2 = 0,
\]

such that one hyperplane is close to the patterns of one class and far away from the patterns of the other class to some extent. TWSVM is in spirit of GEPSVM [11]. But both of GEPSVM and TWSVM are different from the standard SVM. For TWSVM, each hyperplane is generated by solving a QP problem looking like the primal problem of the standard SVM. The primal problems of TWSVM can be presented as follows:

\[
\min_{w_i, b_i, \xi_i} \frac{1}{2} \|A_i w_i + e_i b_i\|^2_2 + C_i e_i^T \xi_i,
\]

\[
\text{s.t.} \quad -(A_i w_i + e_i b_i) + \xi_i \geq e_i,
\]

\[
\xi_i \geq 0;
\]

\[
\min_{w_i, b_i, \xi_i} \frac{1}{2} \|A_i w_i + e_i b_i\|^2_2 + C_i e_i^T \xi_i,
\]

\[
\text{s.t.} \quad (A_i w_i + e_i b_i) + \xi_i \geq e_i,
\]

\[
\xi_i \geq 0,
\]

where \(C_1\) and \(C_2\) are nonnegative parameters and \(e_i\) and \(e_2\) are vectors of ones of appropriate dimensions. In the QP problem (4), the objective function tends to keep hyperplane (2) close to the patterns of Class 1 and the constraints require the hyperplane (2) to be at a distance of at least 1 from the patterns of Class 2. The QP problem (5) has similar property. Moreover, we note that the constraints do not contain all patterns in the training set (1) but are determined by only the patterns of one class in both classes. Therefore, in [12], the authors claimed that TWSVM is approximately four times faster than the standard SVM.

Define \(G = [A_1 \ e_1]\) and \(H = [A_1 \ e_1]\). It has been shown that when both $G^T G$ and $H^T H$ are positive definite, the Wolfe duals of (4) and (5) are written as follows:

\[
\max_{\alpha_1} e_1^T \alpha_1 - \frac{1}{2} \alpha_1^T H (G^T G)^{-1} H^T \alpha_1,
\]

\[
\text{s.t.} \quad 0 \leq \alpha_1 \leq C_1,
\]

\[
\max_{\alpha_1} e_1^T \alpha_1 - \frac{1}{2} \alpha_1^T H (G^T G)^{-1} H^T \alpha_1,
\]

\[
\text{s.t.} \quad 0 \leq \alpha_1 \leq C_2,
\]

respectively, where \(\alpha_1\) and \(\alpha_2\) are Lagrangian multipliers.

In order to avoid the possible ill-conditioning of $H^T H$ and $G^T G$, TWSVM introduces a term ϵI ($\epsilon > 0$), where I
is an identity matrix of appropriate dimensions. Thus, the nonparallel hyperplanes (2) and (3) can be obtained from the solutions \(\alpha_1 \) and \(\alpha_2 \) of the QP problems (6) and (7). Consider
\[
z_1 = -\left(H^T H + \epsilon I \right)^{-1} G^T \alpha_2, \quad z_2 = \left(G^T G + \epsilon I \right)^{-1} H^T \alpha_1,
\]
where \(z_k = [w_k^T \ b_k]^T, k = 1, 2 \). Moreover, a new pattern \(x \in R^n \) is assigned to Class \(k (k = 1, 2) \), depending on which of the two nonparallel hyperplanes given by (2) and (3) lies closer to; that is,
\[
f(x) = \arg\min_{k=1,2} \frac{\|w_k^T x + b_k\|_2}{\|w_k\|_2}.
\]

2.2. Multiple Birth Support Vector Machine. Given the training set
\[
T = \{(x_1, y_1), \ldots, (x_l, y_l)\},
\]
where the input \(x_i \in R^n, i = 1, \ldots, l \), is the pattern and the output \(y_i \in \{1, \ldots, K\} \) is the class label. The task is to seek \(K \) hyperplanes,
\[
w_k^T x + b_k = 0, \quad k = 1, \ldots, K,
\]
and assign the class label according to which hyperplane a new pattern is farthest from.

For convenience, denote the number of data points of the \(k \)th class in the training set (10) as \(l_k \) and define the following matrixes: the patterns belonging to the \(k \)th class are represented by the matrix \(A_k \in R^{l_k \times n}, k = 1, \ldots, K \). In addition, define the matrix
\[
B_k = \left[A_1^T, \ldots, A_{k-1}^T, A_{k+1}^T, \ldots, A_K^T \right]^T;
\]
that is, \(B_k \in R^{(l-k)i \times n} \) consists of the patterns belonging to all classes except the \(k \)th class, \(k = 1, \ldots, K \). The primal problems of MPSVM [24] are comprised of the following \(K \) QP problem:
\[
\begin{align*}
\min_{w_k, b_k, \xi_k} & \frac{1}{2} \|B_k w_k + e_{k1} b_k\|^2 + C_k e_{k2}^T \xi_k, \\
\text{s.t.} & \quad (A_k w_k + e_{k2} b_k) + \xi_k \geq e_{k2}, \quad \xi_k \geq 0,
\end{align*}
\]
where \(e_{k1} \in R^{(l-k)i} \) and \(e_{k2} \in R^i \) are the vectors of ones, \(\xi_k \) is the slack variable, and \(C_k > 0 \) is the penalty parameter, \(k = 1, \ldots, K \). The dual problem of QP problem (13) is formulated as follows:
\[
\begin{align*}
\max_{\alpha_k} & \quad e_{k2}^T \alpha_k - \frac{1}{2} \alpha_k^T G_k \left(H_k^T H_k\right)^{-1} G_k^T \alpha_k, \\
\text{s.t.} & \quad 0 \leq \alpha_k \leq C_k,
\end{align*}
\]
where the penalty parameter \(C_k > 0 \), \(H_k = [B_k \quad e_{k1}] \), and \(G_k = [A_k \quad e_{k2}], k = 1, 2, \ldots, K \). Similarly, in order to avoid the possibility of the ill-conditioning of the matrix \(H_k^T H_k \)
in some situations, one introduces a regularization term \(\epsilon I \), where \(\epsilon > 0 \) is a fixed small scalar and \(I \) is the identity matrix with appropriate size.

After getting the solution \([w_k^T \ b_k]^T = -(H_k^T H_k + \epsilon I)^{-1} G_k^T \xi_k \) to the above QP problem (13) with \(k = 1, \ldots, K \), a new pattern \(x \in R^n \) is assigned to class \(k (k \in \{1, \ldots, K\}) \), depending on which of the \(K \) hyperplanes given by (11) lies farthest from; that is, the decision function is represented as
\[
f(x) = \arg\max_{k=1,\ldots,K} \frac{\|w_k^T x + b_k\|_2}{\|w_k\|_2},
\]
where \(|\cdot| \) is the absolute value.

3. The Framework of Nonparallel Hyperplanes Classifiers

In this section, we propose a learning framework of nonparallel hyperplanes classifier, which gives a unified form for TWSVM and its many extension versions and extend them into multiclass classification problem. We first develop the linear framework and then extend it to nonlinear framework.

3.1. Linear Framework. Given the training set (10), the task is to find \(K \) nonparallel hyperplanes:
\[
w_k^T x + b_k = 0, \quad k = 1, 2, \ldots, K,
\]
one for each class. For obtaining the \(K \) unknown hyperplanes, we construct the following standard framework for each unknown hyperplane:
\[
\begin{align*}
\min_{w_k, b_k, \xi_k} & \frac{1}{2} \|B_k w_k + e_{k2} b_k\|^2 + \frac{1}{2} C_k \|w_k\|^2 + b_k^2, \\
\text{s.t.} & \quad (A_k w_k + e_{k2} b_k) + \xi_k \geq e_{k2}, \quad \xi_k \geq 0,
\end{align*}
\]
where \((15) \) is the Tikhonov regularization term [25] and can implement the structural risk minimization principle like TBSVM [13]; the third term constitutes the loss function which is defined different loss functions corresponding to different models. For a new pattern \(x \in R^n \), we assign to class \(k (k = 1, 2, \ldots, K) \) according to the following decision function:
\[
f(x) = \arg\max_{k=1,\ldots,K} \frac{\|w_k^T x + b_k\|_2}{\|w_k\|_2},
\]
where \(|\cdot| \) is the absolute value. Note that we only use the absolute value \(|w_k^T x + b_k| \) in the decision function. There are two main reasons: one is that the first term of the optimization problem (17) just minimizes the sum of the square rather
than the sum of square Euclidean distance from the patterns to hyperplanes, so it should keep consistency between the optimization problem and the decision function; another is that it reduces the computational cost particularly when the kernel function is introduced afterwards.

In fact, if \(K = 2 \), the parameter \(C_k^* \) is equal to 0, and the loss function is hinge loss function, that is, \(L(1, g(x)) = \max(0, 1 - g(x)) \), then the optimization problem (17) becomes TWSVM [12]. Moreover, if the parameter \(C_k^* > 0 \) is alterable, then it is TBSVM [13]. And if the loss function is the square loss function, that is, \(L(1, g(x)) = (1 - g(x))^2 \), it is LS-TWSVM [14]. Other extension versions of TWSVM also can be contained in the optimization problem (17), for instance, smooth TWSVM, 1-norm LS-TWSVM [17], and so forth, in which we just need to select proper norm or loss function.

More importantly, our framework can solve multiclass classification problem, which is extension of TWSVM, TBSVM, LS-TWSVM, NPPC, and so forth. It should be pointed out that our framework is not straight extension of TWSVM and its deformation versions. Concretely, from the optimization problem (17), we can see that the first term contains the patterns except for those of the \(k \)th class and the third term just involves the patterns of the \(k \)th class. This strategy cannot lead to significant increase of the complexity of the optimization when the number \(K \) of classes increases. We will dwell on in specific algorithm afterwards.

Now, we give the detailed algorithm to the hinge loss function as an example, called hinge NPSVM (HNPSVM). And then the optimization problem (17) is the following formulation with the hinge loss function:

\[
\min \frac{1}{2} \left\| B_k w_k + e_{k1} b_k \right\|_2^2 + \frac{1}{2} C_k^* \left(\left\| w_k \right\|_2^2 + b_k^2 \right) + C_k e_k^T \xi_k,
\]

\[
+ C_k^T e_k^T \max(0, e_{k1} - (A_k w_k + e_{k1} b_k)),
\]

where the matrix \(A_k \) is comprised of the patterns in the \(k \)th class, the matrix \(B_k \) is defined (12), \(C_k^* \geq 0 \) and \(C_k > 0 \) are the parameters, \(e_{k1} \) and \(e_{k2} \) are vectors of ones of appropriate dimensions, and \(k = 1, 2, \ldots, K \). Actually, the problem is equivalent to the following quadratic programming:

\[
\min \frac{1}{2} \left\| B_k w_k + e_{k2} b_k \right\|_2^2 + \frac{1}{2} C_k^* \left(\left\| w_k \right\|_2^2 + b_k^2 \right) + C_k e_k^T \xi_k,
\]

\[
s.t. \quad (A_k w_k + e_{k1} b_k) + \xi_k \geq e_{k1}, \quad \xi_k \geq 0,
\]

(20)

where the matrix \(A_k \) is comprised of the patterns in the \(k \)th class, the matrix \(B_k \) is defined (12), \(C_k^* \geq 0 \) and \(C_k > 0 \) are the parameters, \(e_{k1} \) and \(e_{k2} \) are vectors of ones of appropriate dimensions, and \(k = 1, 2, \ldots, K \).

In fact, for \(k = 1, 2, \ldots, K \), we have \(K \) QP problems like (20). In particular, when \(K \) is equal to 2, that is, \(k = 1, 2 \), the QP problems (4) and (5) can be obtained as a special case of (20) with \(C_k^* = 0 \). For simplicity, assume that the number of each class points is almost balanced; namely, the number of the \(k \)th class is \(l_k = l/K \). Then, note that the constraints just involve the patterns of the \(k \)th class, so the complexity of the the problem (20) is no more than \((l_k)^3 = (l/K)^3 \). However, if TWSVM is directly extended to multiclass classification case like [22], we will get a different optimization problem, in which the roles of patterns of the \(k \)th class and the rest class are switched. Thus, the complexity of the optimization problem will increase significantly and is determined by the patterns except for the patterns of the \(k \)th class in the training set (10), which is no more than \((K-1)/(l/K)^3 \). Obviously, our approach is approximately \((K-1)^3\) times faster than the model in [22]. On the other hand, when the number of each class points is unbalanced, our approach still is faster than the model in [22] because the complexity of our optimization problem just is decided by the number of the patterns of the \(k \)th class rather than the patterns of the rest classes. Therefore, our HNPSVM keeps the computation complexity low.

It is well known that the solution of primal problem (20) is obtained from the solutions of their dual problems. So we now derive their dual problems. The Lagrangian function of the problem (20) is given by

\[
L(w_k, b_k, \xi_k, \alpha_k, \eta_k) = \frac{1}{2} \left\| B_k w_k + e_{k2} b_k \right\|_2^2 + \frac{1}{2} C_k^* \left(\left\| w_k \right\|_2^2 + b_k^2 \right) + C_k b_k^T \xi_k
\]

\[
- \alpha_k^T ((A_k w_k + e_{k1} b_k) + \xi_k - e_{k1}) - \eta_k^T \xi_k,
\]

(21)

where \(\alpha_k, \eta_k \) are nonnegative Lagrange multiplier vectors. The Karush-Kuhn-Tucker (KKT) necessary and sufficient optimality conditions [26] for the QP problem (20) are given by

\[
\nabla_{w_k} L = B_k^T (B_k w_k + e_{k2} b_k) + C_k^* b_k - A_k^T \alpha_k = 0,
\]

(22)

\[
\nabla_{b_k} L = e_{k2}^T (B_k w_k + e_{k2} b_k) + C_k b_k - \alpha_k^T = 0,
\]

(23)

\[
\nabla_{\xi_k} L = C_k e_k - \xi_k - \eta_k = 0,
\]

(24)

\[
(A_k w_k + e_{k1} b_k) + \xi_k \geq e_{k1}, \quad \xi_k \geq 0,
\]

(25)

\[
-\alpha_k^T ((A_k w_k + e_{k1} b_k) + \xi_k - e_{k1}) = 0, \quad \eta_k^T \xi_k = 0,
\]

(26)

\[
\alpha_k \geq 0, \quad \eta_k \geq 0.
\]

(27)

Since \(\eta_k \geq 0 \), according to (24), we have

\[
0 \leq \alpha_k \leq C_k.
\]

(28)

Next, from (22) and (23), we can obtain

\[
\left[B_k^T e_k^T \right] [B_K e_k] + C_k^* I \left[w_k^T b_k \right]^T - \left[A_k^T e_k^T \right] \alpha_k = 0,
\]

(29)

where I is an identity matrix of appropriate dimensions. Let \(v_k = \left[w_k^T b_k \right]^T \); (29) can be written as

\[
(H_k^T H_k + C_k I) v_k - G_k^T \alpha_k = 0,
\]

or \(v_k = (H_k^T H_k + C_k I)^{-1} G_k^T \alpha_k \).
where \(H_k = [B_k \ e_k] \) and \(G_k = [A_k \ e_k] \). And then putting (30) into the Lagrangian function (21) and using (22)–(28), we can get the dual problem of the primal problem (20):

\[
\max_{\alpha_k} e_k^T \alpha_k - \frac{1}{2} \alpha_k^T H_k \left(G_k^T G_k + C_k^* I \right)^{-1} H_k^T \alpha_k, \\
\text{s.t.} \quad 0 \leq \alpha_k \leq C_k,
\]

where \(C_k^* > 0 \) and \(C_k > 0 \) are parameters and \(k = 1, 2, \ldots, K \). Obviously, if we have the solution of the QP problem (31), then we obtain the \(K \) nonparallel hyperplanes (16) by (30).

It is worth mentioning that the parameter \(C_k^* \) replaces \(\epsilon \) as in (8), so \(C_k^* \) is no longer a fixed small scalar but a weighting factor which determines the trade-off between the regularization term and the empirical risk in the problem (20). Therefore, the high and low of the value of \(C_k^* \) reflects the structure of minimization principle and our HNPSVM includes MBSVM.

3.2. Nonlinear Framework.

Similarly, we also extend the linear framework of NPSVMs to nonlinear case. For a \(K \)-class classification (10), our goal is to find \(K \) kernel-generated hyperplanes:

\[
K(x, A^T) u_k + b_k = 0, \quad k = 1, \ldots, K,
\]

where \(A = [A_1, \ldots, A_K] \) and \(K(x, A^T) \) is an appropriately chosen kernel function.

In order to obtain the \(K \) hyperplanes (32), we construct the following formulation:

\[
\begin{align*}
\min_{u_k,b_k} & \quad \frac{1}{2} \left\| K(B_k^T, A^T) u_k + e_k b_k \right\|_2^2 \nonumber + \frac{1}{2} C_k^* \left\| u_k \right\|_2^2 + b_k^2 \nonumber \\
+ & \quad C_k e_k^T L \left(e_k, K(A_k^T, A^T) u_k + e_k b_k \right),
\end{align*}
\]

where the matrix \(A_k \) is comprised of the patterns in the \(k \)th class, the matrix \(B_k \) is defined (12), \(C_k^* \geq 0 \) and \(C_k > 0 \) are the parameters, \(e_k \) and \(e_k \) are vectors of ones of appropriate dimensions, \(k = 1, 2, \ldots, K \), and \(L(\cdot, \cdot) \) is the loss function (e.g., square loss or hinge loss, etc.). Similarly, as discussed in the last subsection, the problem (33) can be reduced to the nonlinear formulations of the difference approaches (e.g., TWSVM, TB SVM, LS-TWSVM, NPPC, etc.) when the difference losses functions or parameters are selected for \(K = 2 \).

A new pattern \(x \in R^m \) is assigned to the \(k \)th class by the following decision functions:

\[
f(x) = \arg \max_{k=1,\ldots,K} |K(x, A^T) u_k + b_k|,
\]

where \(|| \) is the absolute value. Note that, in this decision function (34), we just compute the absolute value rather than Euclidean distance from the pattern \(x \) to the hyperplanes. This strategy reduces the complexity of computation because Euclidean distance should be \(|K(x, A^T) u_k + b_k|/\sqrt{u_k^T K(A, A^T) u_k}\) from the pattern \(x \) to the \(k \)th hyperplanes. Thus, the decision function (34) not only saves the computation quantity but also keeps the consistency with the first term of the problem (33).

Now, we still select the hinge loss function as example. Then, the problem (33) can be formulated as follows:

\[
\begin{align*}
\min_{u_k,b_k} & \quad \frac{1}{2} \left\| K(B_k^T, A^T) u_k + e_k b_k \right\|_2^2 \\
+ & \quad C_k e_k^T L \left(e_k, K(A_k^T, A^T) u_k + e_k b_k \right),
\end{align*}
\]

\[s.t. \quad \left(K(A_k^T, A^T) u_k + e_k b_k \right) + \xi_k \geq e_k, \quad \xi_k \geq 0,
\]

where the matrix \(A_k \) is comprised of the patterns in the \(k \)th class, the matrix \(B_k \) is defined by (12), \(C_k^* > 0 \) and \(C_k > 0 \) are parameters, \(e_k \) and \(e_k \) are vectors of ones of appropriate dimensions, and \(k = 1, 2, \ldots, K \). Similarly, derived process with the linear case, its dual problem is formulated as:

\[
\max_{\alpha_k} e_k^T \alpha_k - \frac{1}{2} \alpha_k^T R_k \left(S_k^T S_k + C_k^* I \right) R_k^T \alpha_k, \\
\text{s.t.} \quad 0 \leq \alpha_k \leq C_k,
\]

where \(C_k^* > 0 \) and \(C_k > 0 \) are parameters, \(R_k = [K(A_k^T, A^T) \ e_k], S_k = [K(B_k^T, A^T) \ e_k], \) and \(k = 1, 2, \ldots, K \). And the augmented vector \(z_k = [u_k \ b_k]^T \) is given by \(z_k = (S_k^T S_k + C_k^* I)^{-1} R_k^T \alpha_k \).

3.3. SOR Algorithm.

In our HNPSVMs, the QP problems (31) and (36) can be rewritten as the following unified forms:

\[
\min_{\alpha} \quad \frac{1}{2} \alpha^T Q \alpha - e^T \alpha,
\]

\[s.t. \quad 0 \leq \alpha \leq C,
\]

where \(Q \in R^{nm \times m} \) is positive definite. For example, the above problem becomes the problem (36), when \(Q = R_k(S_k^T S_k + C_k^* I)^{-1} R_k^T, C = C_k \).

The above problem (37) can be solved efficiently by the following successive overrelaxation (SOR) algorithm; see [27].

Algorithm 1. SOR for the QP problem (36) is as follows.

1. Select the parameter \(t_k \in (0, 2) \) and the initial value \(\alpha^{(0)}_k \in R^m \).
2. Suppose that \(\alpha^{(r)}_k \) is obtained by the \(r \) times iterate; compute \(\alpha^{(r+1)}_k \) according to the following iterate formula:

\[
\alpha^{(r+1)}_k = \left(\alpha^{(r)}_k - t_k D_k^{-1} \left(Q_k \alpha^{(r)}_k - e_k + L_k (\alpha^{(r+1)}_k - \alpha^{(r)}_k) \right) \right),
\]

where \(Q = R_k(S_k^T S_k + C_k^* I)^{-1} R_k^T, L_k \in R^{m \times m} \) and \(D_k \in R^{m \times m} \) are the strictly lower triangular matrix and the diagonal matrix, respectively.
(3) Stop if \(\| \alpha_k^{r+1} - \alpha_k^r \| \) is less than some desired tolerance. Else, replace \(\alpha_k^r \) by \(\alpha_k^{r+1} \) and \(r \) by \(r + 1 \) and go to 2.

SOR is an excellent TWSVM solver, because it can process efficiently very large datasets that need not reside in memory. Furthermore, it has been proved that this algorithm converges linearly to a solution in [27, 28]. It should be pointed out that we employ the Sherman-Morrison-Woodbury formula [29] for the inversion of matrix \((S_k^T S_k + C_k^r I)\) and, hence, need only to invert matrix with a lower order \(l_k \), instead of the order \(l \). Further, in practise, if the number of patterns in the \(k \)th class is large, then the rectangular kernel technique [30, 31] can be applied to reduce the dimensionality of our nonliner classifiers.

3.4. Several Others Approaches

In this section, we briefly give several extension versions based on our framework by selecting different loss function or replacing 2-norm.

First, if the square loss function is chosen, that is, \(L(1, g(x)) = (1 - g(x))^2 \), then we can get the following formulation from the framework (17):

\[
\begin{align*}
\min_{w_k, b_k} & \quad \frac{1}{2} \left[B_k w_k + e_{k1} b_k \right]_2^2 + \frac{1}{2} C_k^\star \left(\| w_k \|_2^2 + b_k^2 \right) + C_k \xi_k^T \xi_k, \\
\text{s.t.} & \quad (A_k w_k + e_{k1} b_k) + \xi_k = e_{k1},
\end{align*}
\]

where the matrix \(A_k \) is comprised of the patterns in the \(k \)th class and the matrix \(B_k \) is defined by (12); \(C_k^\star > 0 \) and \(C_k > 0 \) are parameters, \(e_{k1} \) and \(e_{k2} \) are vectors of ones of appropriate dimensions, and \(k = 1, 2, \ldots, K \). This is extension version of LS-TWSVM [14].

Second, if we replace 2-norm with 1-norm in the problem (39), then we can get the extension of 1-norm LS-TWSVM [17] as follows:

\[
\begin{align*}
\min_{w_k, b_k} & \quad \| B_k w_k + e_{k2} b_k \|_1 + C_k^\star \left(\| w_k \|_1 + | b_k | \right) + C_k \xi_k^T \xi_k, \\
\text{s.t.} & \quad (A_k w_k + e_{k1} b_k) + \xi_k = e_{k1},
\end{align*}
\]

where the matrix \(A_k \) is comprised of the patterns in the \(k \)th class, the matrix \(B_k \) is defined by (12); \(C_k^\star > 0 \) and \(C_k > 0 \) are parameters, \(e_{k1} \) and \(e_{k2} \) are vectors of ones of appropriate dimensions, and \(k = 1, 2, \ldots, K \).

Third, if the loss function is a convex combination of linear and square loss, that is, \(L(1, g(x)) = \delta (1 - g(x)) + (1 - \delta) (1 - g(x))^2 \), where \(\delta \in (0, 1) \), then we can obtain extension version of NPPC [18] as follows:

\[
\begin{align*}
\min_{w_k, b_k} & \quad \frac{1}{2} \left[B_k w_k + e_{k2} b_k \right]_2^2 + \frac{1}{2} C_k^\star \left(\| w_k \|_2^2 + b_k^2 \right) \\
& \quad + C_k \left(\delta \xi_k^T \xi_k + (1 - \delta) \xi_k^T \xi_k \right), \\
\text{s.t.} & \quad (A_k w_k + e_{k1} b_k) + \xi_k = e_{k1},
\end{align*}
\]

where the matrix \(A_k \) is comprised of the patterns in the \(k \)th class, the matrix \(B_k \) is defined by (12); \(C_k^\star > 0 \) and \(C_k > 0 \) are parameters, \(e_{k1} \) and \(e_{k2} \) are vectors of ones of appropriate dimensions, and \(k = 1, 2, \ldots, K \).

Forth, if the square hinge loss function is selected, that is, \(L(1, g(x)) = (\max(0, 1 - g(x)))^2 \), then we can get the extension version of smooth TWSVM as follows:

\[
\begin{align*}
\min_{w_k, b_k, \xi_k} & \quad \left\| B_k w_k + e_{k2} b_k \right\|_2^2 + \frac{1}{2} C_k^\star \left(\| w_k \|_2^2 + b_k^2 \right) + C_k \xi_k^T \xi_k, \\
\text{s.t.} & \quad (A_k w_k + e_{k1} b_k) + \xi_k \geq e_{k1}, \quad \xi_k \geq 0,
\end{align*}
\]

where the matrix \(A_k \) is comprised of the patterns in the \(k \)th class, the matrix \(B_k \) is defined by (12); \(C_k^\star > 0 \) and \(C_k > 0 \) are parameters, \(e_{k1} \) and \(e_{k2} \) are vectors of ones of appropriate dimensions, and \(k = 1, 2, \ldots, K \).

These approaches have the same decision function (18) and can be extended into nonlinear case. And their solving methods can construct based on their binary algorithms.

4. Numerical Experiments

In this section, we present experimental results of our binary HNPSVM (BHNP SVM) and multiclass HNPSVM (MHNPSVM) on both artificial and benchmark datasets. In experiments, we focus on the comparison between our methods and some state-of-the-art classification methods, including SVM, GEPSVM, TWSVM, "i-v-1," "i-v-r," and MBSVM. All the classification methods are implemented in MATLAB 7.0 [32] environment on a PC with Intel P4 processor (2.9 GHz) with 1 GB RAM. In order to give the fastest training speed, we employ Libsvm [33] to implement the SVM, "i-v-1," and "i-v-r." Our BHNP SVM and MHNP SVM and TWSVM and MBSVM are implemented using SOR technique; GEPSVM is implemented by simple MATLAB functions like "eig," respectively. As for the problem of selecting parameters, we employ standard 10-fold cross-validation technique [34]. Furthermore, the parameters for all methods are selected from the set \(\{2^{-8}, \ldots, 2^{8}\} \).

4.1. Toy Examples

Firstly, we consider a simple two-dimensional "Cross Planes" dataset as Example 1, which was tested in [11, 13] to indicate that nonparallel hyperplanes classifiers can handle the cross planes dataset much better compared with parallel ones. Now, we show that our BHNP SVM also can handle cross-planes type data well due to use of our decision function. The "Cross Planes" dataset is generated by perturbing points lying on two intersecting lines. Figures 1(a)–1(d) show the dataset and the linear classifiers obtained by SVM, GEPSVM, TWSVM, and our BNPSVM. It is easy to see that the result of our BNPSVM is more reasonable than that of SVM, and better than that of GEPSVM and TWSVM. In addition, we list the accuracy and CPU time for these four classifiers in Table 1. From Table 1, we can see that our BNPSVM obtains the best accuracy while not the slowest computing time.

Secondly, we consider a two-dimensional three-class dataset as Example 2 to show the operating mechanism of our MNPSVM and other multiple-class classifiers. The three-class dataset is generated by perturbing points lying on three
The Scientific World Journal

![Graphs of SVM, GEPSVM, TWSVM, and BNPSVM](image)

Figure 1: Results of linear SVM, GEPSVM, TWSVM, and BNPSVM on Example 1 dataset.

Table 1: Tenfold testing percentage test set accuracy (%) on example data sets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>SVM Accuracy%</th>
<th>GEPSVM Accuracy%</th>
<th>TWSVM Accuracy%</th>
<th>BHNPSVM Accuracy%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example 1</td>
<td>70.90</td>
<td>95.45</td>
<td>98.18</td>
<td>98.64</td>
</tr>
<tr>
<td>(202 × 2)</td>
<td>0.122</td>
<td>0.0005</td>
<td>0.0064</td>
<td>0.0052</td>
</tr>
<tr>
<td>“1-v-1”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“1-v-r”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBSVM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MHNPSVM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data set</td>
<td>SVM Accuracy%</td>
<td>GEPSVM Accuracy%</td>
<td>TWSVM Accuracy%</td>
<td>BHNPSVM Accuracy%</td>
</tr>
<tr>
<td>Time (s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example 2</td>
<td>87.33</td>
<td>86.67</td>
<td>89.33</td>
<td>90.67</td>
</tr>
<tr>
<td>(330 × 2)</td>
<td>0.098</td>
<td>0.0006</td>
<td>0.0079</td>
<td>0.0095</td>
</tr>
</tbody>
</table>

Intersecting lines. Figures 2(a)–2(d) show the dataset and the linear classifiers obtained by “1-v-1,” “1-v-r,” MBSVM, and MHNPSVM. It is easy to see that the result of MBSVM and MHNPSVM is more reasonable than that of “1-v-1” and “1-v-r.” We also list the accuracy and CPU time of Example 2 for these four classifiers in Table 1. From Table 1, we can see that our MHNPSVM obtains the best accuracy in all these two examples, indicating that our MHNPSVM is suitable for both “Cross Planes” and multiclass problems.

4.2 Benchmark Datasets. In order to further compare our methods with others, we examine nine binary-class datasets.
and nine multiclass datasets used by [12, 35], from the UCI Repository of machine learning database [36]. Table 2 gives the details of these eighteen datasets.

In order to compare the behavior of our linear BHNPSVM with SVM, GEPSVM, and TWSVM, the numerical experimental results for binary-class UCI datasets are summarized in Table 3. In Table 3, the classification accuracy and computation time are listed. In Table 3, the best accuracy is shown by bold figures. It is easy to see that most of the accuracies of our linear BHNPSVM are better than linear SVM, GEPSVM, and TWSVM on these datasets. It can also be seen that our BHNPSVM is a little faster than TWSVM and is competitive with SVM (implements by Libsvm). We also list the mean accuracy and mean time for these four classifiers. Our BHNPSVM gains the highest mean accuracy while faster training speed than TWSVM.

Table 4 is concerned with our kernel BHNPSVM, SVM, GEPSVM, and TWSVM on binary-class UCI datasets. The Gaussian kernel \(K(x, x') = e^{-\mu \|x-x'\|^2} \) is used. The kernel parameter \(\mu \) is also obtained through searching from the range from \(2^{-8} \) to \(2^8 \). The training CPU times for these four classifiers are also listed. The results in Table 4 are similar to those appearing in Table 3 and therefore confirm the above conclusion further.

In order to compare the behavior of our MHNPSVM with other multiple-class classifiers, we compare our MHNPSVM with “1-v-1,” “1-v-r,” and MBSVM, the linear results of numerical experiments on multiclass UCI datasets are summarized in Table 5. In Table 5, the classification accuracy and computation time are listed. From Table 5, we can see that the accuracy of linear MHNPSVM is significantly better than linear MBSVM on all 9 UCI datasets. We also obtain that MHNPSVM and MBSVM are almost same fast because they both solve two SOR algorithms instead of two QP problems with the same size. In contrast, classification accuracy of “1-v-1” and “1-v-r” is no statistical difference with MHNPSVM for all cases except for vowel dataset, and “1-v-1” and “1-v-r” are a bit lower than
Table 2: The detailed characteristics of the datasets.

<table>
<thead>
<tr>
<th>Data</th>
<th>#Ins</th>
<th>#Fea</th>
<th>#class</th>
<th>Data</th>
<th>#Ins</th>
<th>#Fea</th>
<th>#class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis</td>
<td>155</td>
<td>19</td>
<td>2</td>
<td>Votes</td>
<td>435</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>WBPC</td>
<td>198</td>
<td>34</td>
<td>2</td>
<td>Sonar</td>
<td>208</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>Heart-statlog</td>
<td>270</td>
<td>13</td>
<td>2</td>
<td>BUPA</td>
<td>345</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Pima-Indian</td>
<td>768</td>
<td>8</td>
<td>2</td>
<td>CMC</td>
<td>1473</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Australian</td>
<td>690</td>
<td>14</td>
<td>2</td>
<td>Iris</td>
<td>150</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Wine</td>
<td>178</td>
<td>3</td>
<td>13</td>
<td>Ecoli</td>
<td>336</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Vowel</td>
<td>528</td>
<td>11</td>
<td>10</td>
<td>Glass</td>
<td>214</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Vehicle</td>
<td>846</td>
<td>4</td>
<td>18</td>
<td>Car</td>
<td>1728</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Segment</td>
<td>2310</td>
<td>7</td>
<td>19</td>
<td>Satimage</td>
<td>4435</td>
<td>6</td>
<td>36</td>
</tr>
</tbody>
</table>

#Ins is the number of the training points; #attributes is the number of attributes; #class is the number of class.

Table 3: Tenfold testing percentage test set accuracy (%) on binary-class UCI data sets for linear classifiers.

<table>
<thead>
<tr>
<th>Data sets</th>
<th>TWSVM</th>
<th>SVM</th>
<th>GEPSVM</th>
<th>BHNPSVM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy %</td>
<td>Accuracy %</td>
<td>Accuracy %</td>
<td>Accuracy %</td>
</tr>
<tr>
<td></td>
<td>Time (s)</td>
<td>Time (s)</td>
<td>Time (s)</td>
<td>Time (s)</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>82.89 ± 6.30*</td>
<td>84.13 ± 5.58</td>
<td>80.07 ± 5.43</td>
<td>85.47 ± 1.36*</td>
</tr>
<tr>
<td></td>
<td>0.012</td>
<td>0.012</td>
<td>0.0006</td>
<td>0.0304</td>
</tr>
<tr>
<td>BUPA liver</td>
<td>66.40 ± 7.74*</td>
<td>67.78 ± 5.51</td>
<td>61.33 ± 6.26</td>
<td>69.97 ± 0.56*</td>
</tr>
<tr>
<td></td>
<td>0.840</td>
<td>0.0549</td>
<td>0.0012</td>
<td>0.2143</td>
</tr>
<tr>
<td>Heart-statlog</td>
<td>84.44 ± 6.80</td>
<td>83.12 ± 5.41</td>
<td>75.37 ± 7.02</td>
<td>84.44 ± 0.56</td>
</tr>
<tr>
<td></td>
<td>0.023</td>
<td>0.0281</td>
<td>0.0022</td>
<td>0.1092</td>
</tr>
<tr>
<td>Votes</td>
<td>95.85 ± 2.75</td>
<td>95.80 ± 2.65</td>
<td>91.93 ± 3.18</td>
<td>95.58 ± 2.75</td>
</tr>
<tr>
<td></td>
<td>0.797</td>
<td>1.1446</td>
<td>0.0039</td>
<td>0.1027</td>
</tr>
<tr>
<td>WPBC</td>
<td>83.68 ± 5.73*</td>
<td>83.30 ± 4.53</td>
<td>76.76 ± 6.67</td>
<td>81.32 ± 1.36*</td>
</tr>
<tr>
<td></td>
<td>0.012</td>
<td>0.0432</td>
<td>0.0002</td>
<td>0.0465</td>
</tr>
<tr>
<td>Sonar</td>
<td>77.00 ± 6.10</td>
<td>80.13 ± 5.43</td>
<td>73.16 ± 8.33</td>
<td>74.15 ± 1.73</td>
</tr>
<tr>
<td></td>
<td>0.007</td>
<td>0.0946</td>
<td>0.0225</td>
<td>0.007</td>
</tr>
<tr>
<td>Australian</td>
<td>85.94 ± 5.84</td>
<td>88.51 ± 4.85</td>
<td>80.00 ± 3.99</td>
<td>85.27 ± 3.26</td>
</tr>
<tr>
<td></td>
<td>0.3460</td>
<td>0.2350</td>
<td>0.0029</td>
<td>0.4250</td>
</tr>
<tr>
<td>Pima-Indian</td>
<td>73.80 ± 4.97*</td>
<td>77.34 ± 4.37</td>
<td>75.47 ± 4.64</td>
<td>77.05 ± 0.48*</td>
</tr>
<tr>
<td></td>
<td>0.121</td>
<td>0.261</td>
<td>0.0016</td>
<td>0.4793</td>
</tr>
<tr>
<td>CMC</td>
<td>68.28 ± 2.21*</td>
<td>67.82 ± 2.63</td>
<td>66.76 ± 2.98</td>
<td>77.86 ± 0.22*</td>
</tr>
<tr>
<td></td>
<td>1.247</td>
<td>0.597</td>
<td>0.0050</td>
<td>1.197</td>
</tr>
<tr>
<td>Mean accuracy</td>
<td>79.81</td>
<td>80.88</td>
<td>75.65</td>
<td>81.23</td>
</tr>
<tr>
<td>Mean time</td>
<td>0.38</td>
<td>0.27</td>
<td>0.004</td>
<td>0.29</td>
</tr>
</tbody>
</table>

* A greater difference between BHNPSVM and TWSVM.

5. Conclusions

In this paper, a general framework of nonparallel hyperplanes support vector machines, termed NPSVMs, are proposed for binary classification and multiclass classification. For binary classification, this framework includes TWSVM and its many deformation versions, for instance, TWSVM, TBSVM, LS-TWSVM, NPPC, and so forth, when different loss functions and parameters are selected. For multiclass classification, we do not directly extend TWSVM and its deformation versions to get the framework, in which we switch the roles of the patterns of the kth class and the rest classes. This strategy does not lead to significant increase of the computation complexity when the number of classes is increasing. Moreover, in the decision function, “min” and Euclidean distance in TWSVM.
Table 4: Tenfold testing percentage test set accuracy (%) on binary-class UCI datasets for nonlinear classifiers.

<table>
<thead>
<tr>
<th>Datasets</th>
<th>TWSVM</th>
<th>SVM</th>
<th>GEPSVM</th>
<th>BHNPSVM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy %</td>
<td>Time (s)</td>
<td>Accuracy %</td>
<td>Time (s)</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>83.39 ± 7.31</td>
<td>0.016</td>
<td>84.13 ± 6.25</td>
<td>0.0142</td>
</tr>
<tr>
<td>BUPA liver</td>
<td>67.83 ± 6.49*</td>
<td>0.033</td>
<td>68.32 ± 7.20</td>
<td>0.029</td>
</tr>
<tr>
<td>Heart-statlog</td>
<td>82.96 ± 4.67*</td>
<td>0.029</td>
<td>83.33 ± 9.11</td>
<td>0.0250</td>
</tr>
<tr>
<td>Votes</td>
<td>94.91 ± 4.37</td>
<td>0.072</td>
<td>95.64 ± 7.23</td>
<td>0.0495</td>
</tr>
<tr>
<td>WPBC</td>
<td>81.28 ± 5.92</td>
<td>0.029</td>
<td>80.18 ± 6.90</td>
<td>0.048</td>
</tr>
<tr>
<td>Sonar</td>
<td>89.64 ± 6.11</td>
<td>1.708</td>
<td>88.93 ± 10.43</td>
<td>1.755</td>
</tr>
<tr>
<td>Australian</td>
<td>75.8 ± 4.91t</td>
<td>0.014</td>
<td>85.51 ± 4.85</td>
<td>0.0781</td>
</tr>
<tr>
<td>Pima-Indian</td>
<td>73.74 ± 5.2*</td>
<td>0.420</td>
<td>76.09 ± 3.58</td>
<td>0.0425</td>
</tr>
<tr>
<td>CMC</td>
<td>73.95 ± 3.48*</td>
<td>0.427</td>
<td>68.98 ± 3.44</td>
<td>0.442</td>
</tr>
</tbody>
</table>

Mean accuracy: 80.39
Mean time: 0.3053

* A greater difference between BHNPSVM and TWSVM.

Table 5: Tenfold testing percentage test set accuracy (%) on multiclass UCI datasets for linear classifiers.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>1-v-1</th>
<th>1-v-r</th>
<th>MBSVM</th>
<th>MHNPSVM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy (%)</td>
<td>Time (s)</td>
<td>Accuracy (%)</td>
<td>Time (s)</td>
</tr>
<tr>
<td>Iris</td>
<td>96.83 ± 1.75</td>
<td>0.025</td>
<td>95.73 ± 3.78</td>
<td>0.014</td>
</tr>
<tr>
<td>Wine</td>
<td>96.59 ± 1.48</td>
<td>0.058</td>
<td>97.72 ± 0.74</td>
<td>0.021</td>
</tr>
<tr>
<td>Ecoli</td>
<td>87.63 ± 0.81</td>
<td>0.863</td>
<td>86.77 ± 0.87</td>
<td>0.522</td>
</tr>
<tr>
<td>Vowel</td>
<td>54.21 ± 2.24</td>
<td>1.459</td>
<td>57.44 ± 3.26</td>
<td>0.580</td>
</tr>
<tr>
<td>Glass</td>
<td>94.16 ± 1.84</td>
<td>1.037</td>
<td>94.42 ± 4.06</td>
<td>0.405</td>
</tr>
<tr>
<td>Vehicle</td>
<td>77.79 ± 2.21</td>
<td>28.11</td>
<td>78.22 ± 2.10</td>
<td>10.05</td>
</tr>
<tr>
<td>Car</td>
<td>86.78 ± 0.50</td>
<td>16.042</td>
<td>86.72 ± 0.31</td>
<td>13.79</td>
</tr>
<tr>
<td>Segment</td>
<td>91.60 ± 2.42</td>
<td>28.078</td>
<td>92.54 ± 2.03</td>
<td>15.26</td>
</tr>
<tr>
<td>Satimage</td>
<td>91.80 ± 0.81</td>
<td>60.50</td>
<td>90.20 ± 1.13</td>
<td>32.29</td>
</tr>
</tbody>
</table>

Mean accuracy: 86.38
Mean time: 0.3053

* A greater difference between MHNPSVM and MBSVM.
Table 6: Tenfold testing percentage test set accuracy (%) on multiclass UCI datasets for nonlinear classifiers.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>1-v-1 Accuracy (%)</th>
<th>1-v-r Accuracy (%)</th>
<th>MBSVM Accuracy (%)</th>
<th>MHNPSVM Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris</td>
<td>98.93 ± 1.11</td>
<td>97.63 ± 5.46</td>
<td>98.12 ± 2.08</td>
<td>98.74 ± 1.92</td>
</tr>
<tr>
<td>Time (s)</td>
<td>0.0054</td>
<td>0.0264</td>
<td>0.037</td>
<td>0.030</td>
</tr>
<tr>
<td>Wine</td>
<td>97.08 ± 3.32</td>
<td>97.72 ± 0.86</td>
<td>96.45 ± 1.29</td>
<td>97.28 ± 0.96</td>
</tr>
<tr>
<td>Time (s)</td>
<td>7.294</td>
<td>4.6504</td>
<td>0.592</td>
<td>0.523</td>
</tr>
<tr>
<td>Ecoli</td>
<td>92.27 ± 1.03</td>
<td>90.35 ± 0.47</td>
<td>91.06 ± 1.45*</td>
<td>92.95 ± 0.89*</td>
</tr>
<tr>
<td>Time (s)</td>
<td>0.382</td>
<td>0.0843</td>
<td>0.154</td>
<td>0.182</td>
</tr>
<tr>
<td>Glass</td>
<td>98.09 ± 1.04</td>
<td>99.14 ± 0.97</td>
<td>98.76 ± 1.22</td>
<td>99.24 ± 0.93</td>
</tr>
<tr>
<td>Time (s)</td>
<td>0.692</td>
<td>0.0105</td>
<td>0.089</td>
<td>0.092</td>
</tr>
<tr>
<td>Vowel</td>
<td>91.37 ± 0.86</td>
<td>94.32 ± 0.18</td>
<td>80.42 ± 4.37*</td>
<td>85.86 ± 4.72*</td>
</tr>
<tr>
<td>Time (s)</td>
<td>1.482</td>
<td>0.3844</td>
<td>0.623</td>
<td>0.593</td>
</tr>
<tr>
<td>Vehicle</td>
<td>81.03 ± 5.73</td>
<td>82.49 ± 4.26</td>
<td>82.01 ± 1.33</td>
<td>83.57 ± 1.79</td>
</tr>
<tr>
<td>Time (s)</td>
<td>19.562</td>
<td>11.456</td>
<td>2.81</td>
<td>2.50</td>
</tr>
<tr>
<td>Car</td>
<td>88.37 ± 0.55</td>
<td>87.36 ± 0.68</td>
<td>85.74 ± 0.33</td>
<td>86.57 ± 0.46</td>
</tr>
<tr>
<td>Time (s)</td>
<td>3.6571</td>
<td>0.9405</td>
<td>1.832</td>
<td>1.944</td>
</tr>
<tr>
<td>Segment</td>
<td>95.15 ± 6.02</td>
<td>94.65 ± 4.38</td>
<td>95.96 ± 4.08</td>
<td>95.90 ± 3.29</td>
</tr>
<tr>
<td>Time (s)</td>
<td>128.42</td>
<td>91.69</td>
<td>53.27</td>
<td>49.58</td>
</tr>
<tr>
<td>Satimage</td>
<td>93.80 ± 1.46</td>
<td>93.05 ± 1.46</td>
<td>94.03 ± 1.93</td>
<td>94.47 ± 1.58</td>
</tr>
<tr>
<td>Time (s)</td>
<td>190.27</td>
<td>132.47</td>
<td>89.05</td>
<td>88.36</td>
</tr>
<tr>
<td>Mean accuracy</td>
<td>92.90</td>
<td>92.97</td>
<td>91.39</td>
<td>92.73</td>
</tr>
<tr>
<td>Mean time</td>
<td>39.08</td>
<td>26.87</td>
<td>16.50</td>
<td>15.98</td>
</tr>
</tbody>
</table>

* A greater difference between MHNPSVM and MBSVM.

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (no. 11161045); the Project is sponsored by SRF for ROCS, SEM, and the Open Funding Project of the National Key Laboratory of Biochemical Engineering (no. 2013KF-01) and the Zhejiang Provincial Natural Science Foundation of China (no. Q12A010077).

References

Description and Application of a Mathematical Method for the Analysis of Harmony

Qiting Zuo, Runfang Jin, Junxia Ma, and Guotao Cui

College of Water Conservancy and Environment, Zhengzhou University, No. 100, Science Road, Zhengzhou 450001, China

Correspondence should be addressed to Qiting Zuo; zuoqiting@163.com

Received 18 September 2014; Revised 9 March 2015; Accepted 30 March 2015

Copyright © 2015 Qiting Zuo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Harmony issues are widespread in human society and nature. To analyze these issues, harmony theory has been proposed as the main theoretical approach for the study of interpersonal relationships and relationships between humans and nature. Therefore, it is of great importance to study harmony theory. After briefly introducing the basic concepts of harmony theory, this paper expounds the five elements that are essential for the quantitative description of harmony issues in water resources management: harmony participant, harmony objective, harmony regulation, harmony factor, and harmony action. A basic mathematical equation for the harmony degree, that is, a quantitative expression of harmony issues, is introduced in the paper: \[HD = a_i - b_j \], where \(a \) is the uniform degree, \(b \) is the difference degree, \(i \) is the harmony coefficient, and \(j \) is the disharmony coefficient. This paper also discusses harmony assessment and harmony regulation and introduces some application examples.

1. Introduction

With the exception of “goodwill competition,” living in harmony (in terms of the relationships between people) is recommended, and the resulting community of people living in harmony is often called a “harmony society,” “harmony community,” “harmony city,” “harmony home,” and “harmony team.” From the point of view of relationships between humans and nature, it is impossible for human beings to dominate nature because people would be forced to live in harmony with nature as a result of a nature counterattack. Therefore, there is no doubt that human beings and nature should be harmonious.

When the word “harmony” is mentioned, it is often associated with the word “games.” Game theory is concerned with the behavior of absolutely rational decision makers with unlimited capabilities for reasoning and memorization [1]. Games are defined mathematical objects that consist of a set of players, a set of strategies (i.e., options or moves) that are available to the players, and a specification of the payoff that each player receives for each combination of strategies (i.e., possible outcomes of the game) [2]. Game theory has been used in a variety of fields, and it includes many contents in each field. For example, in water resources research, it reflects in lots of ways, including allocation of water resources [3, 4], water rights [5], water resources development [6], optimal allocation of water resources [7–9], problems of water environment [10], water resources management [11–13], and water conflicts [14, 15]. Game theory is used to represent the “struggle or competition” phenomenon and can be frequently encountered in practice, such as bargaining, offensive and defensive battles, horse racing, and auctions. However, it is insufficient just considering the games. Games can only be used to represent a struggle or competitive phenomenon. In contrast, it is necessary to build a harmony balance in many situations, and game theory cannot be applied for common harmony issues. In addition, there are some extraordinarily difficult problems, such as the “tragedy of the commons” [16, 17], which cannot be solved by game theory alone.

In game theory, “the tragedy of the commons” has been mentioned in the literature through various expressions, but the meaning is basically the same. The “tragedy of the commons” roughly means as follows: if there is a set piece of grassland that is shared by two homes for sheep grazing, the total number of sheep is limited due to the limited grass. From the point of view of the individual, a home that raises more sheep will have a better profit. To maximize his/her profits, each individual attempts to increase his/her number of sheep,
which results in an increasingly high number of total sheep and thus an increasingly excessive use of the grass. This excess leads to grassland degradation and even destruction, that is, the “tragedy of the commons.” Therefore, in some cases, it is insufficient to only consider game theory; there is a need to consider harmony issues in these cases. As a result, harmony theory should also be established.

This paper has three objectives: (1) to introduce the concepts of harmony theory and the five essential elements of harmony theory in water resources management based on the above analysis and previous studies [18]; (2) to discuss the mathematical description of harmony theory by proposing a function for the harmony degree, introducing a mathematical approach for the assessment of harmony, and developing a method for harmony regulation; (3) to illustrate the mathematical description of harmony by a series of typical examples.

2. Concepts

Although the word “harmony” is widely used, a unifying concept has not yet been defined. Harmony in this paper is defined as follows: harmony is the action taken to achieve “coordination, accordance, balance, integrity, and adaptation.” Because people rely on nature to survive, it is necessary for human society to live in harmony with nature.

The theory and methodology of studies on harmony behavior are termed harmony theory, which is further defined as follows: harmony theory is a method through which various participants work together to achieve harmony. Harmony theory, which is of broad application prospect, is a significant theory that reveals the harmonious relationships in nature and is also a concrete manifestation of dialectical materialism on the assertion of “the coordinated development between humans and nature.” Firstly, it should be recognized that “harmony is an important concept in addressing interpersonal relationships and relationships between humans and nature, and it is also a major guarantee and a concrete manifestation to build a harmony society, harmony community, harmony team, and harmony nature.” Secondly, it is important to gradually establish the concept of harmony and adhere to the ideological philosophy of harmony. In addition, humans should take the initiative to coordinate the marvelous relationships between people, which is the basis for the coordination of relationships between humans and nature. Furthermore, it is a new theory, and it can provide an appropriate pathway for water resources management in China [19]. The main arguments of harmony theory are the following.

(1) Harmony theory advocates the philosophy that “harmony is the most precious” to address a variety of relationships, and harmony ideology is the cornerstone of harmony theory.

(2) Harmony theory advocates a rational understanding of various contradictions and conflicts existing in various types of relationships, allowing the existence of differences and promoting a harmonious attitude to address various factors of disharmony and problems. Instead of ignoring the disharmony factors, it is necessary to consider all of the harmony factors and disharmony factors.

(3) Harmony theory advocates the concept of harmony between humans and nature and has very pronounced views on the coordinated development of these relationships. It asserts that human beings should take the initiative to coordinate the marvelous relationships among people. There is a possibility to achieve the coordination of the relationships between humans and nature based on this theory.

(4) Harmony theory adheres to the system perspective by promoting system-wide theoretical methods to study the issues of harmonious relationship.

3. Five Factors of Harmony Theory

To obtain a reasonable expression of harmony and a quantitative description of the harmony degree, the following five elements, which are the “five essential factors of harmony theory,” need to be defined [18].

(1) Harmony Participant. The term “harmony participant” refers to the parties (generally two or more) involved in the harmony relationship, which are known as “the harmony party.” The collection of harmony participants can be represented as \(H = \{ H_1, H_2, \ldots, H_n \} \), where \(n \) is the number of participants in the harmony party, which is also named “\(n \)-participant harmony.” For a certain harmony party, this variable can be expressed as \(H_k (k = 1, 2, \ldots, n) \). For instance, the participants of a harmonious couple are the two spouses, and the harmony participants of a family are all of the family members.

(2) Harmony Objective. This term refers to the target that the harmony participants have to achieve a state of harmony. If not, it is impossible to arrive at a state of harmony. In addition, attaining this goal might only lead to a partial state of harmony. For example, if there are \(n \) families sharing a piece of meadow for sheep, it is imperative to ensure that the total number of sheep does not exceed a certain amount (i.e., stocking rate) to avoid grass damage; the certain amount is thus the harmony target of the \(n \) households that share a piece of grassland.

(3) Harmony Regulation. This term refers to all of the rules or constraints established by the participants for the purpose of achieving the harmony goals. For example, in order to ensure rationality, a harmony regulation for the abovementioned \(n \) households sharing a piece of grassland could be that the amount of the increase in sheep for each household should be proportional to their population. Thus, according to the conditions of these harmony rules, it is appropriate to study harmony problems.

(4) Harmony Factor. This term refers to the factor that should be considered by harmony participants to achieve overall
harmony. Its collection is represented as \(F = \{ F_1, F_2, \ldots, F_m \} \), where the \(p \)th harmony factor is \(F_p \) and the total number of factors is \(m \). When \(m = 1 \), it indicates single-factor harmony, and the harmony factor can be directly expressed as \(F \). If \(m \geq 2 \), the harmony relationship is called multiple-factor harmony.

(5) Harmony Action. The term “harmony action” refers to the general name of the concrete behavior of the harmony participants for the harmony factors. For example, if \(n \) households jointly own a field of grass, the specific action is the quantity of sheep that are raised on that land. The collection of harmony actions taken by the participants in the \(n \)-participant harmony and the \(m \) harmony factors can be expressed as a matrix:

\[
\begin{bmatrix}
A_1^1, A_2^1, \ldots, A_n^1 \\
A_1^2, A_2^2, \ldots, A_n^2 \\
\vdots \\
A_1^m, A_2^m, \ldots, A_n^m
\end{bmatrix}.
\]

A single-factor harmony action is represented as \(A = \{ A_1, A_2, \ldots, A_n \} \).

4. Calculation of the Harmony Degree

The harmony degree is used for the quantitative expression of the harmony degree [18]. In this section, the harmony degree equation of a given factor \((F_p) \) will be introduced, (i.e., Zuo-harmony degree equation). Then, the calculations of the harmony degree in multifactor harmony and multilevel harmony will be discussed.

4.1. Harmony Degree Equation of a Factor. The harmony degree of a given factor is defined by the following equation:

\[
\text{HD}_p = ai - bj,
\]

where \(a \) and \(b \) are the unity degree and the difference degree, respectively. The unity degree \(a \) expresses the proportion of harmony participants in accordance with harmony rules with the same goal. The difference degree \(b \) is the expression of the proportion of harmony participants with divergent harmony rules and goals. Note that \(a \in [0,1], b \in [0,1], \) and \(a + b \leq 1 \). In the presence of “either unity nor differences” (i.e., “waiver” phenomenon), \(a + b = 1 \); otherwise, \(a + b = 1 \). If the harmony actions of a given factor in \(n \)-participant harmony are \("A_1, A_2, \ldots, A_n" \), it is assumed that the harmony actions of the \(n \)-participant harmony with the same target are \("G_1, G_2, \ldots, G_n" \); thus, \(a = \frac{\sum_{k=1}^{n} G_k}{\sum_{k=1}^{n} A_k} \). If there is no waiver, then \(b = 1 - a \). For example, if the harmony rule is \(A_1 : A_2 = 2 : 1 \) and \(A_1 \) and \(A_2 \) are 100 and 40, respectively, then \(G_1 \) and \(G_2 \) equal 80 and 40, respectively.

\[
a = \frac{(80 + 40)}{(100 + 40)} = 0.8571, \quad b = 1 - a = 0.1429.
\]

If \(A_1 \) and \(A_2 \) are 100 and 80, respectively, then \(G_1 \) and \(G_2 \) equal 100 and 50, respectively, \(a = \frac{(100 + 50)}{(100 + 80)} = 0.8333, \quad b = 1 - a = 0.1667 \).

The variable \(i \), which is the harmony coefficient, represents the satisfaction degree of the harmony goals and can be determined based on the calculation of the harmony goals, \(i \in [0,1] \). If the harmony goals are completely achieved, then \(i = 1 \). In contrast, if the goals are not achieved, then \(i = 0 \). The harmony coefficient curve or function can be determined based on the satisfaction degree.

The variable \(j \), which is the disharmony coefficient that reflects the divergent harmony participants, can be calculated and determined according to the difference degree. Note that \(j \in [0,1] \). If the harmony participants are completely opposed, then \(j = 1 \). In contrast, if the harmony participants are not opposed, then \(j = 0 \). In all other cases, the value of \(j \) is within the range of 0 to 1. The disharmony coefficient curve or function can be determined based on the difference degree; that is, the disharmony coefficient depends on the extent of opposition.

In single-factor harmony (i.e., \(m = 1 \)), the harmony degree equation is expressed as the following equation:

\[
\text{HD} = ai - bj.
\]

4.2. Harmony Degree Equation for Multifactor Harmony.

If there are a number of factors in a harmony problem, a comprehensive multifactor harmony degree should be calculated based on the single-factor harmony degree. This can be accomplished through two methods: weighted average calculation and exponential weighted calculation.

4.2.1. Weighted Average Calculation. Consider the following:

\[
\text{HD} = \sum_{p=1}^{m} w_p \text{HD}_p,
\]

where \(\text{HD} \) is the comprehensive harmony degree, \(\text{HD}_p \in [0,1], w_p \) is the weight of each harmony degree, \(w_p \in [0,1], \) and \(\sum_{p=1}^{m} w_p = 1 \). The other variables have the same definition as above.

4.2.2. Exponential Weighted Calculation. Consider the following:

\[
\text{HD} = \prod_{p=1}^{m} \left(\text{HD}_p \right)^{\beta_p},
\]

where \(\beta_p \) is the index weight of each harmony degree, \(\beta_p \in [0,1], \) and \(\sum_{p=1}^{m} \beta_p = 1 \). The other variables have the same definition as before.

4.3. Calculation of Multilevel Harmony Degree. There are complex multilevel harmony problems in real life, and a higher-level harmony problem (i.e., a more comprehensive harmony problem) includes or implies a set of lower-level
harmony problems (i.e., single harmony problems). Therefore, the calculation of the harmony degree of harmony problems with different levels is essential. Figure 1 shows a harmony problem with two levels. The first level is the highest and the harmony degree is \(HD \), and the second level is a lower level that includes several harmony problems, which are expressed as \(HD_{21}, HD_{22}, \ldots, HD_{2p} \) \((P \) is the number of second-level harmony problems\). Each lower-level harmony problem has corresponding indexes; that is, the indicators of \(HD_{21}, HD_{22}, \) and \(HD_{2p} \) are \(Z_{11}, Z_{12}, \ldots, Z_{21}, Z_{22}, \ldots, \) and \(Z_{p1}, Z_{p2}, \ldots, \) respectively.

The calculation process of a multilevel harmony problem is as follows. (1) Calculate the harmony degree of the lowest-level harmony problem using the multifactor harmony degree method presented above. (2) Based on the results of step (1), calculate the harmony degree of a higher-level harmony problem in accordance with the weighted average or the exponential weighted method. For instance, as shown in Figure 1, \(HD = \sum_{p=1}^{m} w_{p} HD_{2p} \) or \(HD = \prod_{p=1}^{m} (HD_{2p})^{\beta_{p}} \). (3) Repeat step (2) until the harmony degrees of the highest-level harmony problem are calculated.

5. Assessment of Harmony

The harmony assessment in water resources management represents the assessment of the harmony degree. This analysis can reflect the overall harmony degree, the present state and level of the harmony degree, and the space-time variation in the harmony degree. Thus, this assessment can provide insight into the evaluation of harmony problems and the development of a harmony strategy. The two main methods for harmony assessment are discussed.

5.1. Evaluation of the Harmony Degree. The evaluation of the harmony degree is a method in which the harmony degree is directly calculated according to certain problems to determine the level of the harmony degree based on its magnitude and to evaluate the calculated harmony degree.

5.2. Multi-Index Comprehensive Evaluation. Multi-index comprehensive evaluation is a method used to characterize the harmony degree synthetically through the establishment of a set of evaluation indexes and criteria. It includes the following three steps: (1) to establish an index system; (2) to determine the evaluation criteria; and (3) to select the evaluation and calculation methods. There are various types of multi-index comprehensive evaluation methods, such as the fuzzy comprehensive evaluation method, the gray comprehensive evaluation method, the analytic hierarchy process method, the set pair analysis method, and the matter element analysis method.

6. Harmony Regulation

Harmony regulation, which is primarily based on the harmony assessment, involves the use of some measures to improve the harmony degree. The primary task of harmony regulation is to advance the harmony degree to ultimately move the harmony problem in a more harmonious direction.

There are two thoughts in harmony regulation. The simple thought is a direct selection in accordance with the magnitude of the harmony degree, that is, “optimal selection method of the harmony action set.” The complex thought is to obtain the optimal harmony scheme through the development of harmony regulation models, namely, “optimization-based models of the function of the harmony degree.”

6.1. Optimal Selection Method of the Harmony Action Set. The optimal selection method of a harmony action set is to gather all of the harmony actions that meet a certain target (i.e., form a harmony action set) and then select the needed harmony actions (or schemes) from the set (i.e., obtain a concentrated optimal set of harmony actions).

If the harmony degree of the selected harmony action is the maximum centralized harmony degree, then the selected harmony action is considered the optimal harmony action. If it is difficult to obtain the maximum harmony degree, a suboptimal action, which is called a quasi-optimal harmony action, can be used.

Therefore, the key steps of this method are as follows: (1) combine many different schemes (or harmony actions) and calculate the harmony degree for each scheme using the abovementioned harmony degree calculation methods and (2) combine all of the harmony action sets that coincide with
The development of an optimization model is a critical aspect of harmonious regulation. Through the harmony degree calculation of multiple schemes, access to the maximum or near-maximum harmony degree is easy, which contributes to the optimal scheme selection. However, it would also be easy to select the most favorable harmony regulation by changing a variety of possible options. In fact, sometimes the best harmony regulation rule has a significant effect on the harmony problem.

6.2. Optimization-Based Model of the Function of the Harmony Degree. The development of an optimization model is a common calculation method used in operational research and systems science and has been used widely in practice. A general optimization model consists of an objective function and a set of constraints, and the general form of an optimization model is expressed as follows:

\[Z = \max [F(X)], \quad G(X) \leq 0, \quad X \geq 0, \quad (6) \]

where \(X \) is a decision vector, \(F(X) \) is the objective function, the variable \(Z \) is the maximum value of the objective function (note that the minimum can be transformed into the maximum by taking the negative of both sides), and \(G(X) \) is a set of constraints, which should be written such that the value of each specific constraint is less than or equal to 0 in the equation (if the constraint condition is greater than or equal to 0, it can be transformed to less than or equal to 0 by taking the negative).

This method can be used for the following three conditions.

1. Establish an optimization model using the harmony degree equation as the objective function. This model is primarily used to identify the optimal harmony action (optimization scheme) under the condition that the harmony degree is the maximum possible value. The normal method for using the harmony degree equation as the objective function is

\[Z = \max [HD(X)], \quad G(X) \leq 0, \quad X \geq 0. \quad (7) \]

2. Construct an optimization model based on the harmony degree as a constraint. This model is primarily used to identify an optimization scheme that ensures that the harmony degree is above a certain limit. This method requires that the harmony degree be not less than a given limit value (set as \(u_0 \)) and has the following form:

\[Z = \max [F(X)], \quad G(X) \leq 0, \quad HD(X) \geq u_0, \quad X \geq 0. \quad (8) \]

3. Optimize the harmony regulation. Set up an optimization model that uses the relevant parameters as a variable; that is, set the harmony regulation variable as \(Y \). The general form of the optimization problem is then the following:

\[Z = \max [F(X,Y)], \quad G(X,Y) \leq 0, \quad X,Y \geq 0. \quad (9) \]

7. Application Examples

7.1. Harmony Theory Description of the “Tragedy of the Commons”. The “tragedy of the commons,” which is a famous example of game theory, cannot be explained well by game theory alone. However, it can be commendably solved using harmony theory.

It is assumed that there is a field of grass that is shared by two families \((A \text{ and } B)\) for the raising of sheep. Families \(A\) and \(B\) have 6 and 3 members, respectively. In addition, family \(A\) has \(n_A \) sheep, and family \(B\) has \(n_B \) sheep. There is no doubt that a certain amount of grass is essential for all of the sheep to survive, and the total number of sheep has an upper limit.

The relevant assumptions are as follows. The harmony goal of this problem is to ensure that the grassland is controlled such that its grazing capacity is not destroyed. If the normal growth of grass exhibits the general requirement of \(n_A + n_B \leq 300 \), then all of the grass would be destroyed if the number of sheep reaches 400. The harmony regulation is that the number of raised sheep is proportional to the population; that is, \(n_A : n_B = 2:1 \). Under this condition, it is optimal that families \(A\) and \(B\) raise 200 and 100 sheep, respectively. However, what is the harmony situation in other cases? Various assumptions are analyzed below.

(1) First, list the function of the harmony coefficient \(i \) according to the harmony goals, as shown in Figure 2. Second, determine the function of the disharmony coefficient \(j \), as shown in Figure 3.

According to the harmony regulation that the number of raised sheep is proportional to the population (i.e., \(n_A : n_B = 2:1 \)), the results are as follows. If \(A \) owns 200 sheep and \(B \) owns 100 sheep, the harmony action of \(A\) and \(B\) with the same goal is 200 and 100, respectively. Then, \(a = (200+100)/(200+100) = 1 \) and \(b = 0 \). In contrast, if \(A\) has 200 sheep and \(B\) has 160 sheep, the harmony action of \(A\) and \(B\) with the same goal is still 200 and 100. Then, \(a = (200+100)/(200+160) = 0.83 \) and \(b = 1 - a = 0.17 \). If \(A\) raises 200 sheep and \(B\) raises 60 sheep, the harmony action of \(A\) and \(B\) with the same goal is 120 and 60. Then, \(a = (120+60)/(200+60) = 0.69 \) and \(b = 1 - a = 0.31 \).
Table 1: Harmony degree calculation for various scenarios of the “tragedy of the commons.”

<table>
<thead>
<tr>
<th>Scenario</th>
<th>(n_A)</th>
<th>(n_B)</th>
<th>(a)</th>
<th>(b)</th>
<th>(i)</th>
<th>(j)</th>
<th>HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>100</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>100</td>
<td>0.82</td>
<td>0.18</td>
<td>1</td>
<td>0.18</td>
<td>0.79</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>80</td>
<td>0.86</td>
<td>0.14</td>
<td>1</td>
<td>0.14</td>
<td>0.84</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>60</td>
<td>0.69</td>
<td>0.31</td>
<td>1</td>
<td>0.31</td>
<td>0.59</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
<td>80</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>50</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>200</td>
<td>150</td>
<td>0.86</td>
<td>0.14</td>
<td>0.5</td>
<td>0.14</td>
<td>0.41</td>
</tr>
<tr>
<td>8</td>
<td>250</td>
<td>100</td>
<td>0.86</td>
<td>0.14</td>
<td>0.5</td>
<td>0.14</td>
<td>0.41</td>
</tr>
<tr>
<td>9</td>
<td>300</td>
<td>150</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>250</td>
<td>180</td>
<td>0.87</td>
<td>0.13</td>
<td>0</td>
<td>0.13</td>
<td>0</td>
</tr>
</tbody>
</table>

Directions:
- \(n_A : n_B = 2 : 1 \) and \(n_A + n_B \leq 300 \). Optimal action.
- Certain “differences” occur.
- Larger “differences” occur.
- Harmony goal is exceeded, and some “differences” occur. Harmony goal is significantly exceeded.

7.2. Optimization of Water Allocation.

Transboundary water distribution (regional water allocation) is a very important issue in hydraulic engineering practice. Due to the limit and scarcity of water resources, conflicts appear frequently between regions. As a result, the reasonable distribution of water has long been a difficult issue discussed by the academic community.

Assume that the known study area is divided into three partitions (A, B, and C) and the amount of available water is 764 million cubic meters. In addition, the water diversion proportion is assumed to be 4:4:2, and the population of the three partitions is 1.49, 1.34, and 0.75 million, respectively, which results in a total population of 3.58 million. Moreover, the average total outputs per cubic meter of water attained by the three partitions are 96, 112, and 105 yuan, respectively.

It is assumed that two harmony factors need to be considered. One is the water distribution harmony factor, which takes the requirements of water resources distribution into account according to the harmony regulation of the proportion of water distribution. The other harmony factor is the benefit harmony factor, which takes the benefit requirements brought by the water resources into consideration in accordance with the harmony regulation of equality in the per capita output.

7.2.1. Function of the Harmony Degree and Harmony Assessment.

For the unity degree calculation under the first harmony factor (i.e., water distribution), calculate the unity degree \(a \) based on harmony actions \(G_1, G_2, \) and \(G_3 \) that meet the harmony regulation. As a result, \(a = \sum_{k=1}^{n} G_k / \sum_{k=1}^{n} A_k \) where \(n = 3 \).

To calculate the unity degree for the second harmony factor (i.e., harmony benefit factor), it is assumed that the per capita output of the three partitions is equal; thus, the unity degree \(a \) is 1. If these were not equal \((x_1, x_2, x_3) \) are assumed separately), the unity degree \(a \) can be calculated according to the exponential weighted calculation of equal weight with the ratio of each value to the maximum using the following formula:

\[
a = \left(\frac{x_1 \times x_2 \times x_3}{\max(x_1, x_2, x_3)} \right)^{\frac{1}{3}}.
\]

To satisfy the first harmony factor, the total amount of distributed water must be less than the available water resources; that is, the harmony coefficient \(i \) equals 1 when this objective is met, and \(i = 0 \) if this objective is not met. Furthermore, if the influence of the disharmony coefficient is not considered, \(j = 0 \).

There are no specific harmony objectives for the benefit harmony factor. The harmony coefficient \(i \) equals 1, and the disharmony coefficient \(j \) is 0.

Figure 3: Function of the disharmony coefficient \(j \).
<table>
<thead>
<tr>
<th>Scheme</th>
<th>Water of partition A (billion m³)</th>
<th>Water of partition B (billion m³)</th>
<th>Water of partition C (billion m³)</th>
<th>Harmony degree of the diversion harmony factor</th>
<th>Harmony degree of the benefit harmony factor</th>
<th>Multifactor harmony degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.06</td>
<td>3.06</td>
<td>1.52</td>
<td>0.9948</td>
<td>0.8624</td>
<td>0.9262</td>
</tr>
<tr>
<td>2</td>
<td>3.50</td>
<td>2.50</td>
<td>1.64</td>
<td>0.8181</td>
<td>0.9633</td>
<td>0.8877</td>
</tr>
<tr>
<td>3</td>
<td>3.40</td>
<td>2.50</td>
<td>1.74</td>
<td>0.8181</td>
<td>0.9171</td>
<td>0.8662</td>
</tr>
<tr>
<td>4</td>
<td>3.30</td>
<td>2.50</td>
<td>1.84</td>
<td>0.8181</td>
<td>0.8748</td>
<td>0.8460</td>
</tr>
<tr>
<td>5</td>
<td>3.20</td>
<td>2.50</td>
<td>1.94</td>
<td>0.8181</td>
<td>0.8359</td>
<td>0.8269</td>
</tr>
<tr>
<td>6</td>
<td>3.10</td>
<td>2.50</td>
<td>2.04</td>
<td>0.8181</td>
<td>0.7998</td>
<td>0.8089</td>
</tr>
<tr>
<td>7</td>
<td>3.00</td>
<td>2.50</td>
<td>2.14</td>
<td>0.8181</td>
<td>0.7663</td>
<td>0.7918</td>
</tr>
<tr>
<td>8</td>
<td>3.50</td>
<td>2.60</td>
<td>1.54</td>
<td>0.8508</td>
<td>0.9731</td>
<td>0.9099</td>
</tr>
<tr>
<td>9</td>
<td>3.40</td>
<td>2.60</td>
<td>1.64</td>
<td>0.8508</td>
<td>0.9666</td>
<td>0.9068</td>
</tr>
<tr>
<td>10</td>
<td>3.30</td>
<td>2.60</td>
<td>1.74</td>
<td>0.8508</td>
<td>0.9500</td>
<td>0.8912</td>
</tr>
<tr>
<td>11</td>
<td>3.20</td>
<td>2.60</td>
<td>1.84</td>
<td>0.8508</td>
<td>0.8773</td>
<td>0.8639</td>
</tr>
<tr>
<td>12</td>
<td>3.10</td>
<td>2.60</td>
<td>1.94</td>
<td>0.8508</td>
<td>0.8380</td>
<td>0.8443</td>
</tr>
<tr>
<td>13</td>
<td>3.00</td>
<td>2.60</td>
<td>2.04</td>
<td>0.8508</td>
<td>0.8015</td>
<td>0.8258</td>
</tr>
<tr>
<td>14</td>
<td>3.50</td>
<td>2.70</td>
<td>1.44</td>
<td>0.8835</td>
<td>0.9629</td>
<td>0.9223</td>
</tr>
<tr>
<td>15</td>
<td>3.40</td>
<td>2.70</td>
<td>1.54</td>
<td>0.8835</td>
<td>0.9752</td>
<td>0.9282</td>
</tr>
<tr>
<td>16</td>
<td>3.30</td>
<td>2.70</td>
<td>1.64</td>
<td>0.8835</td>
<td>0.9691</td>
<td>0.9253</td>
</tr>
<tr>
<td>17</td>
<td>3.20</td>
<td>2.70</td>
<td>1.74</td>
<td>0.8835</td>
<td>0.9221</td>
<td>0.9026</td>
</tr>
<tr>
<td>18</td>
<td>3.10</td>
<td>2.70</td>
<td>1.84</td>
<td>0.8835</td>
<td>0.8790</td>
<td>0.8813</td>
</tr>
<tr>
<td>19</td>
<td>3.00</td>
<td>2.70</td>
<td>1.94</td>
<td>0.8835</td>
<td>0.8393</td>
<td>0.8611</td>
</tr>
<tr>
<td>20</td>
<td>3.39</td>
<td>2.70</td>
<td>1.55</td>
<td>0.8835</td>
<td>0.9763</td>
<td>0.9288</td>
</tr>
<tr>
<td>21</td>
<td>3.38</td>
<td>2.70</td>
<td>1.56</td>
<td>0.8835</td>
<td>0.9775</td>
<td>0.9293</td>
</tr>
<tr>
<td>22</td>
<td>3.37</td>
<td>2.70</td>
<td>1.57</td>
<td>0.8835</td>
<td>0.9786</td>
<td>0.9298</td>
</tr>
<tr>
<td>23</td>
<td>3.36</td>
<td>2.70</td>
<td>1.58</td>
<td>0.8835</td>
<td>0.9797</td>
<td>0.9304</td>
</tr>
<tr>
<td>24</td>
<td>3.35</td>
<td>2.70</td>
<td>1.59</td>
<td>0.8835</td>
<td>0.9808</td>
<td>0.9309</td>
</tr>
<tr>
<td>25</td>
<td>3.34</td>
<td>2.70</td>
<td>1.60</td>
<td>0.8835</td>
<td>0.9818</td>
<td>0.9314</td>
</tr>
<tr>
<td>26</td>
<td>3.33</td>
<td>2.70</td>
<td>1.61</td>
<td>0.8835</td>
<td>0.9829</td>
<td>0.9319</td>
</tr>
<tr>
<td>27</td>
<td>3.33</td>
<td>2.70</td>
<td>1.62</td>
<td>0.8835</td>
<td>0.9790</td>
<td>0.9301</td>
</tr>
<tr>
<td>28</td>
<td>3.31</td>
<td>2.70</td>
<td>1.63</td>
<td>0.8835</td>
<td>0.9741</td>
<td>0.9277</td>
</tr>
<tr>
<td>29</td>
<td>3.35</td>
<td>2.69</td>
<td>1.60</td>
<td>0.8802</td>
<td>0.9853</td>
<td>0.9313</td>
</tr>
<tr>
<td>30</td>
<td>3.34</td>
<td>2.69</td>
<td>1.61</td>
<td>0.8802</td>
<td>0.9839</td>
<td>0.9306</td>
</tr>
<tr>
<td>31</td>
<td>3.33</td>
<td>2.69</td>
<td>1.62</td>
<td>0.8802</td>
<td>0.9788</td>
<td>0.9282</td>
</tr>
<tr>
<td>32</td>
<td>3.32</td>
<td>2.69</td>
<td>1.63</td>
<td>0.8802</td>
<td>0.9738</td>
<td>0.9259</td>
</tr>
<tr>
<td>33</td>
<td>3.31</td>
<td>2.69</td>
<td>1.64</td>
<td>0.8802</td>
<td>0.9689</td>
<td>0.9235</td>
</tr>
<tr>
<td>34</td>
<td>3.35</td>
<td>2.71</td>
<td>1.58</td>
<td>0.8868</td>
<td>0.9763</td>
<td>0.9305</td>
</tr>
<tr>
<td>35</td>
<td>3.34</td>
<td>2.71</td>
<td>1.59</td>
<td>0.8868</td>
<td>0.9774</td>
<td>0.9310</td>
</tr>
<tr>
<td>36</td>
<td>3.33</td>
<td>2.71</td>
<td>1.60</td>
<td>0.8868</td>
<td>0.9784</td>
<td>0.9315</td>
</tr>
<tr>
<td>37</td>
<td>3.32</td>
<td>2.71</td>
<td>1.61</td>
<td>0.8868</td>
<td>0.9795</td>
<td>0.9320</td>
</tr>
<tr>
<td>38</td>
<td>3.31</td>
<td>2.71</td>
<td>1.62</td>
<td>0.8868</td>
<td>0.9793</td>
<td>0.9319</td>
</tr>
</tbody>
</table>

The multifactor harmony degree (Formula (5)) is calculated taking the two harmony factors into account and using the exponential weighted calculation of equal weights. The results including the final multifactor harmony degree of 38 schemes with different water distributions throughout the three partitions (i.e., harmony actions of this issue) are listed in Table 2.

7.2.2. Optimization of the Harmony Action. In this section, the optimization problem seeks to identify the most optimal harmony action that results in the highest harmony degree. The 38 schemes in Table 2 essentially reflect the process of seeking an optimal harmony behavior. The overall process is the following. First, calculate the multifactor harmony degree (Scheme 1) in accordance with the agreed-upon proportion
Table 3: Optimal harmony action and harmony degree for different schemes of water allocation with varied harmony rules (proportion of water distribution).

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Water distribution proportion (harmony rules)</th>
<th>Optimal harmony actions (amount of water allocated, billion m3)</th>
<th>Multifactor harmony degree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Partition A</td>
<td>Partition B</td>
<td>Partition C</td>
</tr>
<tr>
<td>1</td>
<td>3.36</td>
<td>2.68</td>
<td>1.60</td>
</tr>
<tr>
<td>2</td>
<td>3.36</td>
<td>2.69</td>
<td>1.60</td>
</tr>
<tr>
<td>3</td>
<td>3.35</td>
<td>2.68</td>
<td>1.60</td>
</tr>
<tr>
<td>4</td>
<td>3.35</td>
<td>2.69</td>
<td>1.60</td>
</tr>
<tr>
<td>5</td>
<td>3.34</td>
<td>2.69</td>
<td>1.61</td>
</tr>
<tr>
<td>6</td>
<td>3.33</td>
<td>2.69</td>
<td>1.62</td>
</tr>
<tr>
<td>7</td>
<td>3.32</td>
<td>2.69</td>
<td>1.63</td>
</tr>
<tr>
<td>8</td>
<td>3.31</td>
<td>2.69</td>
<td>1.64</td>
</tr>
<tr>
<td>9</td>
<td>3.30</td>
<td>2.69</td>
<td>1.65</td>
</tr>
<tr>
<td>10</td>
<td>3.36</td>
<td>2.70</td>
<td>1.58</td>
</tr>
<tr>
<td>11</td>
<td>3.35</td>
<td>2.70</td>
<td>1.59</td>
</tr>
<tr>
<td>12</td>
<td>3.34</td>
<td>2.70</td>
<td>1.60</td>
</tr>
<tr>
<td>13</td>
<td>3.33</td>
<td>2.70</td>
<td>1.61</td>
</tr>
<tr>
<td>14</td>
<td>3.34</td>
<td>2.71</td>
<td>1.59</td>
</tr>
<tr>
<td>15</td>
<td>3.33</td>
<td>2.71</td>
<td>1.60</td>
</tr>
</tbody>
</table>

The optimization problem seeks to identify the optimal harmony rule (i.e., water distribution harmony rule) based on changes in the proportion used for the water distribution. In this example, changing the water distribution proportion implies changing the water rules and the calculation methods. The procedures used to calculate the harmony degree are unchanged. The fundamental difference between this and the previous optimization is the changing harmony rules. The harmony regulation used in the previous calculation is a water distribution proportion of 4 : 4 : 2, whereas this proportion is changed in the following analysis.

Table 3 shows the optimal harmony action and harmony degree calculated with changing harmony regulations (i.e., water distribution proportion). The corresponding optimal harmony action and harmony degree can be obtained using similar steps (Table 2); the only difference is that the harmony regulation (water distribution proportion) is changed repeatedly. For example, the harmony rule in Scheme 1 (Table 3) is 3.36 : 2.68 : 1.6, and the corresponding amounts of water allocated to the three partitions are 335, 269, and 160 million cubic meters, respectively. The water distribution proportion was calculated with a step size of 0.01, and some of the calculation results are listed in Table 3. Scheme 4 exhibits the maximum harmony degree of 0.9889 with the optimal harmony rule of 3.35 : 2.69 : 1.60. This maximum harmony degree is significantly larger than that obtained in the previous analysis (Table 2), which demonstrates that the overall level can be improved through the optimization of the harmony regulations.

8. Conclusions

This paper illustrates the widespread existence of harmony relationships and demonstrates that a quantitative study of harmony issues is of great significance for the analysis of various relationships in nature and human society. This is achieved through the introduction of the five essential factors of harmony theory, the calculation of the harmony degree and a harmony assessment, the discussion of harmony regulation issues, and the solution of two application examples.

Through the expositions and the two application examples, some conclusions can be obtained. (1) Harmony issues are common phenomena in nature and human society, and the use of quantitative research is of vital importance. (2) The harmony degree equation is a quantitative expression of harmony issues and a basic mathematical equation used to calculate the dimensions of the harmony degree. A harmony degree HD of 1 indicates complete harmony, whereas HD = 0 indicates absolute disharmony. A value of HD between 0 and 1 indicates changes in the harmony degree from absolute disharmony to complete harmony in accordance with the
quantitative expressions of the harmony degree. (3) The optimal harmony action, the optimal harmony rule, and the best management solution can be obtained mathematically, which provides a theoretical basis for the solutions of many practical problems. (4) As an emerging subdiscipline, harmony theory will aid the scientific understanding and arrangement of harmony issues. Further research on the quantitative expressions and assessment of the harmony degree and the search for optimal harmony regulation strategies will provide additional insight into harmony issues.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (no. 51279183 and no. 51079132), the Major Program of the National Social Science Fund of China (no. 12&ZD215), and Program for Innovative Research Team (in science and technology) in University of Henan Province (13IRTSTHN030).

References

Research Article

On the Maximum Estrada Index of 3-Uniform Linear Hypertrees

Faxu Li,1,2 Liang Wei,3 Jinde Cao,4,5 Feng Hu,1,2 and Haixing Zhao2

1 School of Computer Science, Shaanxi Normal University, Xi’an 710062, China
2 College of Computer, Qinghai Normal University, Xining 810008, China
3 Department of Mathematics, Qinghai Normal University, Xining 810008, China
4 Department of Mathematics, Southeast University, Nanjing 210096, China
5 Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Correspondence should be addressed to Haixing Zhao; h.x.zhao@163.com

Received 3 July 2014; Accepted 12 August 2014; Published 28 August 2014

Academic Editor: Jianlong Qiu

Copyright © 2014 Faxu Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For a simple hypergraph H on n vertices, its Estrada index is defined as $EE(H) = \sum_{i=1}^{n} e^{\lambda_i}$, where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of its adjacency matrix. In this paper, we determine the unique 3-uniform linear hypertree with the maximum Estrada index.

1. Introduction

Let $G = (V, E)$ be a simple graph, and let n and m be the number of vertices and the number of edges of G, respectively. The characteristic polynomial of a graph G is written as $P(G, \lambda) = \det(\lambda I - A(G))$, where $A(G)$ is the adjacency matrix of G. The eigenvalues of G are the eigenvalues of its adjacency matrix $A(G)$, which are denoted by $\lambda_1, \lambda_2, \ldots, \lambda_n$. A graph-spectrum-based invariant, nowadays named Estrada index, proposed by Estrada in 2000, is defined as [1]

$$EE(G) = \sum_{i=1}^{n} e^{\lambda_i}. \quad (1)$$

Since then, the Estrada index has already found remarkable applications in biology, chemistry, and complex networks [2–5]. Some mathematical properties of the Estrada index, especially bounds for it have been established in [6–15]. For more results on the Estrada index, the readers are referred to recent papers [16–19].

Let $H = (V, \mathcal{E})$ be a simple and finite hypergraph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and hyperedge set $\mathcal{E}(G) = \{E_1, E_2, \ldots, E_m\}$. The hypergraph H is called linear if two hyperedges intersect in one vertex at most and also h-uniform if $|E_i| = h$ for each E_i in \mathcal{E}, $i = 1, 2, \ldots, m$. An h-uniform hypertree is a connected linear h-hypergraph without cycles. An h-uniform linear hypertree is called 3-uniform linear hypertree if h is equal to 3. Denoted by δ_m^h an h-uniform linear star with m hyperedges. More details on hypergraphs can be found in [20].

Let $A(H)$ denote a square symmetric matrix in which the diagonal elements a_{ii} are zero, and other elements a_{ij} represent the number of hyperedges containing both vertices v_i and v_j (for undirected hypergraphs, $a_{ij} = a_{ji}$). Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the eigenvalues of $A(H)$ of H. The subhypergraph centrality of a hypergraph, firstly put forward by Estrada and Rodríguez-Velázquez in 2006, is defined as [21]

$$\langle C_{SH} \rangle = \frac{1}{n^2} \sum_{i=1}^{n} C_{SH}(i) = \frac{1}{n^2} \sum_{i=1}^{n} e^{\lambda_i}. \quad (2)$$

They revealed that the subhypergraph centrality provides a measure of the centrality of complex hypernetworks (social, reaction, metabolic, protein, food web, etc). For convenience, we call the subhypergraph centrality of a hypergraph its Estrada index and define the Estrada index as

$$EE(H) = \sum_{i=1}^{n} e^{\lambda_i}. \quad (3)$$

Thus far, results on the Estrada index of hypergraph seem to be few although the Estrada index of graph has numerous applications. So our main goal is to investigate the Estrada index of 3-uniform linear hypertrees. In this paper,
we determine the unique 3-uniform linear hypertree with the maximum Estrada index among the set of 3-uniform linear hypertrees.

2. Preliminaries

For a hypergraph H of order n, its completely connected graph, denoted by G_H, is a graph which has the same order and in which two vertices are adjacent if they share one hyperedge. Obviously, G_H is a multigraph. For an h-uniform linear hypergraph H, G_H is a simple graph. According to the definition of adjacency matrix of hypergraph, it is easy to see that both a 3-uniform linear hypertree H and its completely connected graph G_H have the same adjacency matrix; see Figure 1. Then, they have the identical Estrada index. Thus, we investigate the Estrada index of its completely connected graphs instead of the 3-uniform linear hypertrees in this paper.

We use $M_k(G) = \sum_{i=1}^{n} \lambda_i^k$ to denote the kth spectral moment of the graph G. It is well-known [22] that $M_k(G)$ is equal to the number of closed walks of length k in G. Obviously, for any graph G, $M_1(G) = n$, $M_2(G) = 0$, $M_2(G) = 2m$, $M_3(G) = 6t$, and $M_4(G) = 2 \sum_{i=1}^{n} d_i^2 - 2m + 8q$, where t, q, and $d_i = d_G(v_i)$ are the number of triangles, the number of quadrangles, and the degree of vertex v_i in graph G, respectively. Then

$$EE(G) = \sum_{k=1}^{\infty} \sum_{i=0}^{\infty} \frac{\lambda_i^k}{k!} = \sum_{k=0}^{\infty} \frac{M_k(G)}{k!}.$$ \hspace{1cm} (4)

For $u, v \in V(G)$, denote by $\mathcal{W}_k(G; u, v)$ the set of (u, v)-walks of length k in G. Obviously, $M_k(G; u, v) = |\mathcal{W}_k(G; u, v)|$. For convenience, let $\mathcal{W}_k(G; u) = \mathcal{W}_k(G; u, u)$ and $M_k(G; u) = M_k(G; u, u)$. Let W be a (u, v)-walk in graph G; we denote by W^{-1} a (v, u)-walk obtained from W by reversing W.

For any two graphs G_1 and G_2, if $M_k(G_1) \geq M_k(G_2)$ for all integers $k > 0$, then $EE(G_1) \geq EE(G_2)$. Moreover, if the strict inequality $M_k(G_1) > M_k(G_2)$ holds for at least one value $k > 0$, then $EE(G_1) > EE(G_2)$.

Denote by $\Gamma(n, m)$ the set of connected graphs on n vertices and m hyperedges, $G_H \in \Gamma(n, m)$. Now we study the Estrada index of a graph in $\Gamma(n, m)$.

3. Maximum Estrada Index of 3-Uniform Linear Hypertrees

In this section, we determine the maximum value of Estrada index among the set of 3-uniform linear hypertrees.

Lemma 1. Let S^3_m be star which is the completely connected graph of S^3_m, with m hyperedges. It is easily found that the star S^3_m has n vertices labeled v_1, v_2, \ldots, v_n and $m = (n - 1)/2$ triangles. Let k be a positive integer; then there is an injection ξ from $\mathcal{W}_k(S^3_m; v_2)$ to $\mathcal{W}_k(S^3_m; v_1)$, and ξ is not surjective for $n \geq 5$, $2 \leq m \leq (n - 1)/2$, and $k > 1$, where $\mathcal{W}_k(S^3_m; v_2)$ and $\mathcal{W}_k(S^3_m; v_1)$ are the sets of closed walks of length k of v_2 and v_1 in S^3_m, respectively; see Figure 2.

Proof. Firstly, we construct a mapping φ from $\mathcal{W}_k(S^3_m; v_2)$ to $\mathcal{W}_k(S^3_m; v_1)$. For $W \in \mathcal{W}_k(S^3_m; v_2)$, let $\varphi(W)$ be the closed walk obtained from W by replacing v_1 by v_2 and v_2 by v_1. Obviously, $\varphi(W) \in \mathcal{W}_k(S^3_m; v_1)$ and φ is a bijection.

Secondly, we construct a mapping ξ from $\mathcal{W}_k(S^3_m; v_2)$ to $\mathcal{W}_k(S^3_m; v_1)$. For $W \in \mathcal{W}_k(S^3_m; v_2)$, we consider the following cases.

Case 1. Suppose W does not pass the edge v_1v_t for $t \geq 4$; then $\xi(W) = \varphi(W)$.

Case 2. Suppose W passes the edge v_1v_t for $t \geq 4$. For $W \in \mathcal{W}_k(S^3_m; v_2)$, we may uniquely decompose W into three sections $W_1W_2W_3$, where W_1 is the longest (v_2, v_1)-section of W without v_t, W_2 is the internal longest (v_1, v_2)-section of W for $t' \geq 4$, and the last W_3 is the remaining (v_1, v_2)-section of W not containing v_t. We consider the following three subcases.
Case 2.1. If both W_1 and W_3 contain the vertex v_3, we may uniquely decompose W_1 into two sections W_1W_2 and decompose W_3 into two sections $W_3_1W_3_2$, where W_1 is the shortest (v_2,v_3)-section of W_1, W_12 is the remaining (v_3,v_4)-section of W_1, W_3_1 is the longest (v_3,v_5)-section of W_3, and W_3_2 is the remaining (v_5,v_2)-section of W_3.

Let $\xi(W) = \xi(W_{11})\xi(W_{12})\xi(W_{22})\xi(W_{31})\xi(W_{32})$, where $\xi(W_{12}) = W_{12}, \xi(W_2) = W_2, \xi(W_3) = W_3, \xi(W_{11})$ is a (v_1,v_2)-walk obtained from W_1 replacing its first vertex by v_2, and $\xi(W_{32})$ is a (v_1,v_2)-walk obtained from W_3 replacing its last two vertices by v_1.

Case 2.2. If W_1 contains the vertex v_3 and W_3 does not contain v_3, then $\xi(W) = \xi(W_1)\xi(W_2)\xi(W_3)$, where $\xi(W_2)$ is a (v_1,v_2)-walk obtained from W_1 replacing its first vertex by v_2, and $\xi(W_3)$ is a (v_1,v_2)-walk obtained from W_3 replacing its last two vertices by v_1.

For example, in star S^1, on 7 vertices and 3 triangles, $W = v_2v_3v_1v_2v_1v_3v_5$ is a closed walk of length 6 of v_2 not passing the edge v_1v_5. By Case 1, we have

$$\xi(W) = v_1v_4v_5v_4v_3v_5v_1.$$

$W' = v_2v_3v_1v_2v_1v_3v_5v_1v_2v_1$ is a closed walk of length 9 of v_2 passing the edge v_1v_7. By Case 2.2, we get

$$\xi(W') = v_1v_4v_5v_4v_3v_5v_1v_6v_7v_1.$$

$W'' = v_2v_3v_1v_2v_1v_3v_5v_1v_2v_1v_3v_5v_2$ is a closed walk of length 14 of v_2 passing the edge v_1v_7. By Case 2.3, we obtain

$$\xi(W'') = v_1v_4v_5v_4v_3v_5v_1v_6v_7v_1v_3v_5v_2v_1.$$

Obviously, $\xi(W) \in \mathcal{W}_k(S^1), \xi$ is an injective and not a surjective for $n \geq 5$, and $k \geq 1$.

Lemma 2. Let u be a nonisolated vertex of a connected graph G. If G_1 and G_2 are the graphs obtained from G by identifying an external vertex v_2 and the center vertex v_1 of the union of $S^1 \cup Q$ to u, respectively, where $|V(S^1_n)| = n$, Q is either empty graph or nonempty graph. Then $M_k(G_1) < M_k(G_2)$ for $n \geq 3$ and $k \geq 4$; see Figure 3.

Proof. Let $\mathcal{W}_k(G_1), \mathcal{W}_k(S^1_n \cup Q)$, resp. be the set of closed walks of length k of $G_1(G, S^1_n \cup Q)$, resp. for $i = 1, 2$. Then $\mathcal{W}_k(G_i) = \mathcal{W}_k(G) \cup \mathcal{W}_k(S^1_n \cup Q) \cup X_i$, where X_i is either empty graph or nonempty graph. Thus we need to show the inequality $|X_1| < |X_2|$.

We construct a mapping η from X_1 to X_2 and consider the following four cases.

Case 1. Suppose W is a closed walk starting from v_1 in X_1. For $W \in X_1$, let $\eta(W) = (W - W \cap (S^1_n \cup Q)) \cup \xi(W \cap (S^1_n \cup Q))$, where $\eta(W) = \mathcal{W}_k(G_i)$ of the union of $S^1_n \cup Q$ with its image under the map ξ.

Case 2. Suppose W is a closed walk starting at v_1 in X_1. For $W \in X_1$, we may uniquely decompose W into three sections $W_1W_2W_3$, where W_1 is the longest (v_1,v_2)-section of W without vertices u_0, \ldots, u_t, where W_3 is the internal longest (u_0,u_t)-section of W for which the internal vertices are some possible vertices in $V(G_i)$, and W_3 is the remaining (v_2,v_3)-section of W. Let $\eta(W) = \eta(W_3)\eta(W_2)\eta(W_1)$, where $\eta(W_1) = W_1^{-1}, \eta(W_3) = W_3^{-1}$, and $\eta(W_2) = (W_2 - W_2 \cap (S^1_n \cup Q)) \cup \xi(W_2 \cap (S^1_n \cup Q));$ that is, $\eta(W_2)$ is a (u_0,u_t')-walk from W_2 by replacing its every section in $S^1_n \cup Q$ with its image under the map ξ.

Case 3. Suppose W is a closed walk starting from v_3 or $\omega \in V(Q)$ in X_1. For $W \in X_1$, we may uniquely decompose W into three sections $W_1W_2W_3$, where W_1 is the longest (v_1,v_2)-section of W without vertices u_0, \ldots, u_t', where W_3 is the internal longest (u_0,u_t')-section of W for which the internal vertices are some possible vertices in $V(G_i)$, and W_3 is the remaining (v_2,v_3)-section of W without vertices u_0, \ldots, u_t'. We have three subcases.
Case 3.1. If both W_1 and W_3 do not pass edge v_1v_2, let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)$, where $\eta(W_2) = (W_2 - W_1 \cap (S_m^2 \cup Q)) \cup \xi(W_2 \cap (S_m^3 \cup Q))$, $\eta(W_3)$ is a (v_1, v_3)-walk obtained from W_3 replacing v_1 by v_2 and v_2 by v_1, and $\eta(W_2)$ is a (v_1, v_2)-walk obtained from W_3 replacing v_1 by v_2 and v_2 by v_1.

Case 3.2. If both W_1 and W_3 pass edge v_1v_2, we may anew decompose W into five sections $W_1W_2W_3W_4W_5$, where W_1 is the shortest (v_1, v_2)-section of W (for which the internal vertices, if exist, are only possible $v_1, v_2, v_3, w \in V(Q)$), the third W_3 is the internal longest (u_0, u_0')-section of W for which the internal vertices are some possible vertices in $V(G_1)$, and the last W_5 is the remaining (v_1, v_3)-section of W. We have three subcases.

Case 3.2.1. If both W_2 and W_3 contain the vertex v_1, we may uniquely decompose W_2 into two sections W_2W_2' and W_3 into two sections W_3W_3', where W_2' is the longest (v_2, v_3)-section of W_2, W_3' is the remaining shortest (v_3, v_2)-section of W_3, and $W_2W_3W_2'W_3'$ is the shortest (v_3, v_2)-section of W_4, and W_4 is the remaining longest (v_3, v_2)-section of W_4.

Let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)\eta(W_4)$, where $\eta(W_1) = W_1, \eta(W_2) = W_2', \eta(W_3) = (W_3 - W_3' \cap (S_m^3 \cup Q)) \cup \xi(W_3' \cap (S_m^3 \cup Q)), \eta(W_4) = W_4$, $\eta(W_2')$ is a (v_3, v_2)-walk obtained from W_2' replacing v_2 by v_1, and $\eta(W_3')$ is a (v_3, v_2)-walk obtained from W_3' replacing its first vertex v_2 by v_1.

Case 3.2.2. If W_2 does not contain the vertex v_3, let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)$, where $\eta(W_1) = W_1, \eta(W_2) = (W_2 - W_3 \cap (S_m^3 \cup Q)) \cup \xi(W_3 \cap (S_m^3 \cup Q)), \eta(W_3) = W_3$, and $\eta(W_2)$ is a (v_1, v_2)-walk obtained from W_2 replacing its last two vertices v_2 by v_1, and $\eta(W_3)$ is a (v_1, v_2)-walk obtained from W_3 replacing its first vertex v_2 by v_1.

Case 3.2.3. If W_3 contains the vertex v_3 and W_4 does not contain vertex v_3, let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)$, where $\eta(W_1) = W_1, \eta(W_2) = (W_2 - W_3 \cap (S_m^3 \cup Q)) \cup \xi(W_3 \cap (S_m^3 \cup Q)), \eta(W_3) = W_3$, and $\eta(W_2)$ is a (v_1, v_2)-walk obtained from W_2 replacing its last vertex v_2 by v_1, and $\eta(W_3)$ is a (v_1, v_3)-walk obtained from W_3 replacing its first two vertices v_2 by v_1.

Case 3.3. If W_1 passes edge v_1v_2 and W_3 does not pass edge v_1v_2, we may anew decompose W into four sections $W_1W_2W_3W_4$, where W_1 is the longest (v_1, v_2)-section of W (for which do not contain vertices u_0, \ldots, u_n'), W_2 is the second (v_1, v_2)-section of W (for which the internal vertices, if exist, are only possible $v_1, v_2, v_3, w \in V(Q)$), the third W_3 is the internal longest (u_0, u_0')-section of W (for which the internal vertices are some possible vertices in $V(G_1)$), and the last W_4 is the longest (v_2, v_3)-section of W (for which the internal vertices, if exist, are only possible $v_1, v_2, v_3, w \in V(Q)$). We consider the following two subcases.

Case 3.3.1. If W_2 contains vertex v_3, we may uniquely decompose W_2 into two sections W_2W_2', where W_2' is the longest (v_1, v_3)-section of W_2 and W_2' is the remaining shortest (v_3, v_2)-section of W_2.

Let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)$, where $\eta(W_1) = W_1, \eta(W_2) = W_2, \eta(W_3) = (W_2 - W_3 \cap (S_m^3 \cup Q)) \cup \xi(W_2 \cap (S_m^3 \cup Q)), \eta(W_2)$ is a (v_1, v_3)-walk obtained from W_2 replacing v_2 by v_3 and v_3 by v_2, and $\eta(W_3)$ is a (v_1, v_2)-walk obtained from W_3 replacing v_1 by v_2 and v_2 by v_1.

Case 3.3.2. If W_2 does not contain vertex v_3, let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)$, where $\eta(W_1) = W_1, \eta(W_2) = (W_2 - W_3 \cap (S_m^3 \cup Q)) \cup \xi(W_2 \cap (S_m^3 \cup Q)), \eta(W_2)$ is a (v_1, v_2)-walk obtained from W_2 replacing its last two vertices v_1, v_2 by v_2, v_1, and $\eta(W_3)$ is a (v_1, v_3)-walk obtained from W_3 replacing its first vertex v_2 by v_1.

Case 3.4. If W_1 does not pass edge v_1v_2 and W_3 passes edge v_1v_2, we may anew decompose W into four sections $W_1W_2W_3W_4$, where W_3 is the longest (v_1, v_3)-section of W (for which the internal vertices are some possible vertices in $V(G_1)$), W_4 is the third (v_2, v_3)-section of W (for which the internal vertices, if exist, are only possible $v_1, v_2, v_3, w \in V(Q)$), and the last W_4 is the longest (v_1, v_3)-section of W. We have two subcases.

Case 3.4.1. If W_3 contains vertex v_3, we may uniquely decompose it into two sections W_3W_3', where W_3 is the shortest (v_2, v_3)-section of W_3 and W_3' is the remaining longest (v_3, v_1)-section of W_3.

Let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)\eta(W_3')$, where $\eta(W_2) = (W_2 - W_3 \cap (S_m^3 \cup Q)) \cup \xi(W_2 \cap (S_m^3 \cup Q)), \eta(W_3') = W_3'$, $\eta(W_3)$ is a (v_1, v_2)-walk obtained from W_3 replacing its last vertex v_1 by v_2 and v_2 by v_1, and $\eta(W_3')$ is a (v_1, v_3)-walk obtained from W_3' replacing v_2 by v_1.

Case 3.4.2. If W_3 does not contain vertex v_3, let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)$, where $\eta(W_1) = W_1, \eta(W_2) = (W_2 - W_3 \cap (S_m^3 \cup Q)) \cup \xi(W_2 \cap (S_m^3 \cup Q)), \eta(W_3)$ is a (v_1, v_2)-walk obtained from W_3 replacing its last vertex v_2 by v_1, and $\eta(W_3)$ is a (v_1, v_3)-walk obtained from W_3 replacing its first two vertices v_2, v_1 by v_1.

Case 4. Suppose W is a closed walk starting from v_1 for $i = 4, 5, 6, \ldots, n$ in X_1. For $W \in X_1$, we may uniquely decompose W into five sections $W_1W_2W_3W_4W_5$, where W_1 is the longest (v_1, v_2)-section of W (for which do not contain vertices u_0, \ldots, u_n'), W_2 is the second (v_1, v_2)-section of W (for which the internal vertices are some possible vertices in $V(G_1)$), the third W_3 is the internal longest (u_0, u_0')-section of W (for which the internal vertices are some possible vertices in $V(G_1)$), the fourth W_4 is the longest...
The procedure of transformation.

(\nu_2, \nu_1\text{-section of } W \text{ (for which the internal vertices, if exist, are only possible } \nu_1, \nu_2, \nu_3, \omega \in V(G)), \text{ and the last } W_3 \text{ is the remaining } (\nu_1, \nu_1\text{-section of } W). \text{ We have four subcases.}

Case 4.1. If both \(W_2\) and \(W_4\) contain the vertex \(\nu_3\), we may uniquely decompose \(W_2\) into two sections \(W_{21}W_{22}\) and decompose \(W_4\) into two sections \(W_{41}W_{42}\), where \(W_{21}\) is the longest \((\nu_1, \nu_1)\text{-section of } W_2, W_{22}\) is the remaining shortest \((\nu_3, \nu_2)\text{-section of } W_2, W_{41}\) is the shortest \((\nu_2, \nu_2)\text{-section of } W_4, \text{ and } W_{42}\) is the remaining longest \((\nu_3, \nu_2)\text{-section of } W_4.

Let \(\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)\eta(W_4)\eta(W_5)\eta(W_6), \text{ where } \eta(W_1) = W_1, \eta(W_2) = W_2, \eta(W_3) = W_3, \text{ and } \eta(W_4) = W_4, \text{ and } \eta(W_5) = W_5, \text{ and } \eta(W_6) = W_6. \text{ Let } W_{21} = (\nu_1, \nu_1)\text{-walk obtained from } W_{22} \text{ replacing } \nu_1 \text{ by } \nu_3 \text{ and } \nu_2 \text{ by } \nu_1, \text{ and } \eta(W_{41}) \text{ is a } (\nu_1, \nu_1)\text{-walk obtained from } W_{41} \text{ replacing } \nu_1 \text{ by } \nu_3 \text{ and } \nu_2 \text{ by } \nu_1.

Case 4.2. If \(W_2\) contains the vertex \(\nu_3\) and \(W_4\) does not contain vertex \(\nu_3\), let \(\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)\eta(W_4)\eta(W_5)\eta(W_6), \text{ where } \eta(W_1) = W_1, \eta(W_2) = (W_3 - W_3 \cap (S_m \cup Q)) \cup \xi(W_3 \cap (S_m \cup Q)), \text{ and } \eta(W_4) = W_4, \text{ and } \eta(W_5) = W_5, \text{ and } \eta(W_6) = \nu_1, \nu_1)\text{-walk obtained from } W_2 \text{ replacing its last vertex } \nu_2 \text{ by } \nu_3 \text{, and } \eta(W_4) \text{ is a } (\nu_1, \nu_1)\text{-walk obtained from } W_4 \text{ replacing its first two vertices } \nu_1 \text{ by } \nu_3.

Case 4.3. If \(W_2\) does not contain the vertex \(\nu_3\), let \(\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)\eta(W_4)\eta(W_5)\eta(W_6), \text{ where } \eta(W_1) = W_1, \eta(W_2) = (W_2 - W_2 \cap (S_m \cup Q)) \cup \xi(W_2 \cap (S_m \cup Q)), \text{ and } \eta(W_3) = W_3, \text{ and } \eta(W_4) = W_4, \text{ and } \eta(W_5) = W_5, \text{ and } \eta(W_6) = \nu_1, \nu_1)\text{-walk obtained from } W_2 \text{ by replacing its last two vertices } \nu_1 \text{ by } \nu_3, \text{ and } \eta(W_4) \text{ is a } (\nu_1, \nu_1)\text{-walk obtained from } W_4 \text{ by replacing its first vertex } \nu_1 \text{ by } \nu_3.

For example,

\[
\eta_1 \left(u_0u_1 \cdots u_2v_3v_4v_5v_6 \cdots u_3v_4v_5v_6u_4 \cdots u_4u_3u_2u_1 \right)
= u_0u_1 \cdots u_2v_3v_4v_5v_6u_4 \cdots u_3v_4v_5v_6u_4 \cdots u_4u_3u_2u_1
\]

where \(u_0, u_1, \ldots, u_n, u_m, u_{m+1}, \ldots, u_n\) are vertices in \(G\) and \(\nu_1, \ldots, \nu_n\) are vertices in \(Q\).

By Lemma \(1, \xi\) is injective and not surjective. It is easily shown that \(\eta\) is also injective and not surjective. Thus \(|X_1| < |X_2|, M_k(G_1) < M_k(G_2)\).

Theorem 3. Let \(G_{H}\) be an arbitrary graph on \(n\) vertices in set \(\Gamma(n, m), \text{ where } n > 5\). Then \(EE(G_{H}) \leq EE(S_m^n)\) with the equality holding if and only if \(G_{H} \cong S_m^n\).

Proof. Determine a vertex \(v\) of the maximum degree \(\Delta\) as a root in \(G_{H}\), and let \(k \geq 4\) be an integer. Let \(G_{H}'\) be the completely connected graph of 3-uniform linear hypertree \(H_k, \text{ and } G_{H}\) be attached at \(v, \text{ and let } m_i, \text{ be the number of triangles of } G_{H}, \text{ for } i = 1, 2, \ldots, \Delta/2, \text{ respectively. We can repeatedly apply this transformation from Lemma 2 at some vertices whose degrees are not equal to two or } 2m_i \text{ in } G_{H}, \text{ till } G_{H}\text{ becomes a star. From Lemma 2, it satisfies that each application of this transformation strictly increases the number of closed walks and also increases Estrada index.}
When all G_{H_k} turn into stars, we can again use Lemma 2 at the vertex v as long as there exists at least one vertex whose degree is not equal to two or $2 \sum m_i$, further increasing the number of closed walks. In the end of this procedure, we get the star S^3_m. The whole procedure of transformation is shown in Figure 4.

Lemma 4 (see [20]). Let v be a vertex of a graph G, $G - \{v\} = G - v$ for $v \in V(G)$, and $\mathcal{C}(v)$ the set of cycles containing v. Consider

\[P(G, \lambda) = \lambda \cdot P(G - v, \lambda) - \sum_{w \in \mathcal{C}(v)} P(G - v - w, \lambda) - 2 \sum_{Z \in \mathcal{C}(v)} P(G - V(Z), \lambda), \]

where $P(G - v - w, \lambda) = 1$ if G is a single edge and $P(G - V(Z), \lambda) = 1$ if G is a cycle.

Now, we calculate $EE(S^3_m)$. Applying Lemma 4, we have

\[P\left(S^3_m, \lambda\right) = (\lambda + 1)^{m-1}/2 (\lambda - 1)^{(m-3)/2} \left(\lambda^2 - \lambda - n + 1\right). \]

By some simple calculating, we achieve the following eigenvalues:

\[
\begin{align*}
\lambda_1 &= \lambda_2 = \cdots = \lambda_{(n-1)/2} = -1, \\
\lambda_{(n+1)/2} &= \lambda_{(n+3)/2} = \cdots = \lambda_{n-2} = 1, \\
\lambda_{n-1} &= \frac{1 - \sqrt{4n - 3}}{2}, \quad \lambda_n = \frac{1 + \sqrt{4n - 3}}{2}.
\end{align*}
\]

Then, we obtain

\[EE\left(S^3_m\right) = \frac{(n-1)}{2e} + \frac{(n-3)}{2} e + e^{(1+\sqrt{4n-3})/2} + e^{(1-\sqrt{4n-3})/2}. \]

Theorem 3 shows that the star S^3_m has the maximum Estrada index in set $\Gamma(n, m)$. Thus, according to previous definition, it is easy to show that the 3-uniform star S^3_m has the maximum Estrada index among the set of 3-uniform linear hypertrees; that is,

\[EE(H) \leq EE\left(S^3_m\right), \]

where

\[EE\left(S^3_m\right) = \frac{(n-1)}{2e} + \frac{(n-3)}{2} e + e^{(1+\sqrt{4n-3})/2} + e^{(1-\sqrt{4n-3})/2}. \]

Acknowledgments

This work was supported by Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT)(no. ITRI068), Special 973 Program for Key Basic Research of the Ministry of Science and Technology, China (no. 2010CB334708), the National Natural Science Foundation of China (NSFC)(no. 60863006), Scientific Research Foundation of the Department of Science and Technology, Qinghai Province, China (no. 2012-Z-943).

References

One Adaptive Synchronization Approach for Fractional-Order Chaotic System with Fractional-Order $1 < q < 2$

Ping Zhou1,2 and Rongji Bai1,2

1 Center of System Theory and Its Applications, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2 Key Laboratory of Network Control and Intelligent Instrument of Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Correspondence should be addressed to Ping Zhou; zhouping@cqupt.edu.cn

Received 19 May 2014; Accepted 11 August 2014; Published 27 August 2014

Academic Editor: Jianquan Lu

Copyright © 2014 P. Zhou and R. Bai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Based on a new stability result of equilibrium point in nonlinear fractional-order systems for fractional-order lying in $1 < q < 2$, one adaptive synchronization approach is established. The adaptive synchronization for the fractional-order Lorenz chaotic system with fractional-order $1 < q < 2$ is considered. Numerical simulations show the validity and feasibility of the proposed scheme.

1. Introduction

Fractional-order differential equations can be more accurately described in the real-world physical systems [1–3]. Many fractional-order systems create chaotic attractor. Many fractional-order chaotic attractors have been reported in recent years, for example, the fractional-order Lorenz chaotic attractor [1, 4, 5], the fractional-order Chen chaotic attractor [5], the fractional-order Lu chaotic attractor [2, 4], the fractional-order Chua chaotic attractor [5], the fractional-order Duffing chaotic attractor [6], the fractional-order Rössler chaotic attractor [7, 8], and so on. On the other hand, synchronization of chaotic systems has been given more attention [2, 9–13]. This is due to its applications in the field of engineering and science. Over the last two decades, many scholars have proposed various synchronization schemes. It is well known that many chaotic systems in practical situations are usually with fully or partially unknown parameters. In order to estimate the unknown parameters, a synchronization scheme named adaptive synchronization has been proposed. Now, the adaptive synchronization [13–16] has attracted more and more attention. This is due to its effectiveness in many practical chaos applications.

However, many adaptive synchronization approaches on fractional-order chaotic systems reported previously [2, 9–13] were considered the fractional-order lying in $0 < q < 1$. To the best of our knowledge, there are a few results about adaptive synchronization on fractional-order chaotic systems with fractional-order $1 < q < 2$. In fact, there are many fractional-order systems with fractional-order $1 < q < 2$ in real-world physical systems, for example, the fractional diffusion-wave equation [17], the fractional telegraph equation [18], the time fractional heat conduction equation [19], and so forth. So, an interesting question is how to realize the adaptive synchronization for fractional-order lying in $1 < q < 2$? This question is of practical importance as well as academic significance. In this paper, a positive answer is given for the above question.

Inspired by the above-mentioned discussion, one adaptive synchronization approach for a class of fractional-order chaotic system with $1 < q < 2$ is established. This approach is based on a new stability result of equilibrium point in nonlinear fractional-order systems for fractional-order lying in $1 < q < 2$ [1]. The adaptive synchronization for the fractional-order Lorenz chaotic system with fractional-order $1 < q < 2$ is considered. Numerical simulations show the validity and feasibility of the proposed scheme.
2. Preliminaries and Main Results

In our paper, the \(q \)th Caputo derivative for function \(g(t) \) is shown as

\[
D^q g(t) = \frac{1}{\Gamma(l-q)} \int_0^t \frac{g^{(l)}(r)}{(t-r)^{q+1}} dr, \quad l-1 < q < l,
\]

where \(D^l \) denote the Caputo derivative, \(l \) is the smallest integer larger than \(q \), \(g^{(l)}(t) \) is the \(l \)th derivative in the usual sense, and \(\Gamma \) is the gamma function.

Now, consider the following fractional-order chaotic system:

\[
D^q x = f(x) = Mx + n(x),
\]

where fractional-order \(1 < q < 2 \), \(x \in \mathbb{R}^{\nu_1} \), and \(f(x) \in \mathbb{R}^{\nu_1} \). \(M \in \mathbb{R}^{\nu \times \nu} \) is a constant matrix. \(n(x) \in \mathbb{R}^{\nu_1} \) is the nonlinear part of system (2).

The system (2) can be rewritten as follows:

\[
D^q x = L \left(\frac{x}{\sigma_0} \right) + n(x, \sigma_0),
\]

where \(\sigma_0 \in \mathbb{R} \) is the system parameter, \(n(x, \sigma_0) \in \mathbb{R}^{\nu_1} \) is the nonlinear part, and all the terms with system parameter \(\sigma_0 \) are contained in \(n(x, \sigma_0) \). \(L \in \mathbb{R}^{\nu \times (\nu+1)} \) is a constant matrix, and matrix element \(L_{i,\nu+1} = 0 \) \((i = 1, 2, \ldots, \nu)\).

In this paper, we focus on a class of fractional-order chaotic systems where the equation \(n(y, \sigma_0) - n(x, \sigma_0) = n_{np}(y - x) \) holds. Here, variable \(y \in \mathbb{R}^{\nu_1} \) is real number. Vector \(n_{np}(y - x) \) are the linear part and nonlinear part with respect to \(y - x \), respectively. In fact, the nonlinear term \(n(x, \sigma_0) \) in many fractional-order chaotic systems meet this equation, for example, the fractional-order Lorenz chaotic system, fractional-order Chen chaotic system, fractional-order Lu chaotic system, fractional-order Rössler chaotic system, the fractional-order Chua’s chaotic system and its modified chaotic system, the fractional-order Duffing chaotic system, the fractional-order Arneodo chaotic system, the fractional-order Sprott chaotic system, and so forth.

Next, the adaptive synchronization for fractional-order chaotic system (3) is proposed. Select system (3) as drive system; the response systems with parameter update law are shown as follows:

\[
D^q y = L \left(\frac{y}{\sigma} \right) + n(y, \sigma) + u(x, y, \sigma),
\]

\[
D^q \sigma = \Omega e,
\]

where \(y \in \mathbb{R}^{\nu_1} \) is state vector, \(u(x, y, \sigma) \in \mathbb{R}^{\nu_1} \) is a controller, \(\Omega \in \mathbb{R}^{\nu \times (\nu+1)} \) is real constant matrix, and parameter \(\sigma \) is unknown in response system (4). The true value of the “unknown” parameter \(\sigma \) is selected as \(\sigma_0 \). The parameter update law is \(D^q \sigma = \Omega e \). The adaptive synchronization errors are \(e = (e_1, \ldots, e_\nu, e_{n+1})^T \in \mathbb{R}^{\nu \times (\nu+1)} \), \(e_i = (y_i - x_i) \in \mathbb{R} \) \((i = 1, 2, \ldots, \nu)\), and \(e_{n+1} = e_\sigma = (\sigma - \sigma_0) \in \mathbb{R} \).

Lemma 1 (see [1]). For the nonlinear part \(n(x) \) of systems (2), if

(i) \(n(x)\big|_{x=0} = 0 \), \(\lim_{x \to 0}((|n(x)|/\|x\|) = 0 \);

(ii) \(\Re\{\lambda(M)\} < 0 \), \(\max\{\Re\{\lambda(M)\}\} > |\Gamma(q)|^{1/q} \).

Then, the zero solution of fractional-order chaotic system (2) is asymptotically stable.

Based on this lemma, the following main results are given.

Theorem 2. If the controller is selected as

\[
u(x, y, \sigma) = \left[F - n_{np}(x) \right] e
\]

and the following conditions are satisfied:

(i) \(\left(n_{np}(e, x) \right)_{e=0} = 0 \), \(\lim_{x \to 0}((e_\nu \|e\|) = 0 \) for any \(x \),

(ii) \(\Re\{\lambda \left(\begin{bmatrix} L & F \\ \Omega & 0 \end{bmatrix} \right) \} < 0 \), \(\max\{\Re\{\lambda \left(\begin{bmatrix} L & F \\ \Omega & 0 \end{bmatrix} \right) \}\} > |\Gamma(q)|^{1/q} \),

then the adaptive synchronization between fractional-order chaotic system (3) and fractional-order system (4) can be achieved, where \(n(y, \sigma) - n(x, \sigma_0) = n_{hp}(x) e + n_{np}(e, x) \), \(n_{hp}(x) \in \mathbb{R}^{\nu \times (\nu+1)} \), and \(n_{hp}(e, x) \in \mathbb{R}^{\nu_1} \). \(F \in \mathbb{R}^{\nu \times (\nu+1)} \) is a suitable constant matrix.

Proof. The error system between systems (4) and (3) can be shown as

\[
D^q (y - x) = L \left(\frac{y}{\sigma} \right) - \left(\frac{x}{\sigma_0} \right) + n(y, \sigma)
\]

\[
- n(x, \sigma_0) + u(x, y, \sigma),
\]

\[
D^q \sigma = \Omega e.
\]

Due to \(e = (e_1, \ldots, e_\nu, e_{n+1})^T \), \(e_i = y_i - x_i \) \((i = 1, 2, \ldots, \nu)\), and \(e_{n+1} = e_\sigma = (\sigma - \sigma_0) \), system (6) can be rewritten as

\[
D^q (y - x) = L e + n(y, \sigma) - n(x, \sigma_0) + u(x, y, \sigma),
\]

\[
D^q \sigma = \Omega e.
\]

Using \(n(y, \sigma) - n(x, \sigma_0) = n_{hp}(x) e + n_{np}(e, x) \), \(D^q \sigma_0 = 0 \), and \(D^q \sigma = D^q (\sigma - \sigma_0) = D^q e_\sigma \), error system (7) can be changed as

\[
D^q (y - x) = L e + n_{hp}(x) e + n_{np}(e, x) + u(x, y, \sigma),
\]

\[
D^q e_\sigma = \Omega e.
\]

Since \(u(x, y, \sigma) = [F - n_{np}(x)] e \) and \(e = (e_1, \ldots, e_\nu, e_{n+1})^T \), therefore, (8) can be changed as

\[
D^q e = \left(\begin{bmatrix} L & F \\ \Omega & 0 \end{bmatrix} e + \left(\begin{bmatrix} n_{np}(e, x) \\ 0 \end{bmatrix} \right) \right).
\]
Due to \(\left(\frac{d_0}{n_{0,0}}(x) \right)_{x=0} = 0 \), \(\lim_{x \to 0} \left(\frac{d_0}{n_{0,0}}(x) \| e \| \right) = 0 \) for any \(x \), \(\text{Re} \left(\lambda \left(\frac{L}{n} + F \right) \right) < 0 \), and \(-\max \left(\text{Re} \left(\lambda \left(\frac{L}{n} + F \right) \right) \right) > \left[\Gamma(q) \right]^{1/q} \). According to the above-mentioned lemma, the zero solution of fractional-order system (9) is asymptotically stable. So, the following result holds:

\[
\lim_{t \to +\infty} \| e \| = 0.
\]

(10)

It implies the following:

\[
\lim_{t \to +\infty} \| y - x \| = 0, \quad \lim_{t \to +\infty} (\sigma - \sigma_0) = 0.
\]

(11)

Therefore, the adaptive synchronization between fractional-order chaotic system (3) and fractional-order system (4) can be arrived. The proof is completed.

3. Illustrative Example

In this section, to show the effectiveness of the adaptive synchronization approach in this paper, the adaptive synchronization for the fractional-order Lorenz chaotic system [4] with fractional-order \(1 < q < 2 \) is considered. Numerical simulations show the validity and feasibility of the proposed scheme.

The fractional-order Lorenz system is described by

\[
\begin{pmatrix}
D_x^q x_1 \\
D_x^q x_2 \\
D_x^q x_3
\end{pmatrix} =
\begin{pmatrix}
a_0 (x_2 - x_1) \\
b_0 (x_1 x_3 - x_2) + c_0 x_3 \\
x_1 x_2 - c_0 x_3
\end{pmatrix},
\]

(12)

where \(a_0, b_0, \) and \(c_0 \) are system parameters. Let \(a_0 = 10, \ b_0 = 28, \ c_0 = 8/3, \) and \(q = 1.05 \); the system (12) creates chaotic attractor. The chaotic attractor is shown in Figure 1.

Case I (parameter \(a \) is unknown in response system). Now, assume the system parameter \(a \) in the response system is the unknown parameter. The true value of the “unknown” parameter \(a \) is selected as \(a_0 \).

The fractional-order Lorenz system (12) can be rewritten as

\[
\begin{pmatrix}
D_x^q y_1 \\
D_x^q y_2 \\
D_x^q y_3
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 \\
28 & -1 & 0 \\
0 & 0 & -8/3
\end{pmatrix}
\begin{pmatrix}
y_1 \\
y_2 \\
y_3
\end{pmatrix}
+ \begin{pmatrix}
a_0 (x_2 - x_1) \\
-x_1 x_3 \\
x_1 x_2
\end{pmatrix}
+ \left(\frac{\sigma}{n_{0,0}}(x) \right) \begin{pmatrix}
e_1 \\
e_2 \\
e_3
\end{pmatrix}
\]

(13)

and the parameter update law is

\[
D_x^q a = \Omega(e_1 e_2 e_3 e_a)^T.
\]

(16)

It is easy to obtain the following:

\[
\begin{pmatrix}
D_x^q y_1 \\
D_x^q y_2 \\
D_x^q y_3
\end{pmatrix} =
\begin{pmatrix}
a (y_2 - y_1) \\
-y_1 y_3 \\
y_1 y_2
\end{pmatrix}
+ \left(\frac{\sigma}{n_{0,0}}(x) \right) \begin{pmatrix}
e_1 \\
e_2 \\
e_3 \\
e_a
\end{pmatrix}
\]

(15)

\[
\begin{pmatrix}
D_x^q y_1 \\
D_x^q y_2 \\
D_x^q y_3
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 \\
28 & -1 & 0 \\
0 & 0 & -8/3
\end{pmatrix}
\begin{pmatrix}
y_1 \\
y_2 \\
y_3
\end{pmatrix}
+ \begin{pmatrix}
-x_1 x_3 \\
x_1 x_2 \\
x_1 x_2
\end{pmatrix}
+ \left(\frac{\sigma}{n_{0,0}}(x) \right) \begin{pmatrix}
e_1 \\
e_2 \\
e_3 \\
e_a
\end{pmatrix}
\]

(17)
So
\[
n_p(x) = \begin{pmatrix} -a_0 & a_0 & 0 & x_2 - x_1 \\ -x_3 & 0 & -x_1 & 0 \\ x_2 & x_1 & 0 & 0 \end{pmatrix},
\]
and
\[
n_p(e, x) = \begin{pmatrix} e_a(e_2 - e_1) \\ -e_1 e_3 \\ e_1 e_2 \end{pmatrix}.
\]

Now, it is easy to verify the following:
\[
\|n_p(e, x)\|_0 \leq \sqrt{\frac{e_3^2(e_2 - e_1)^2 + (e_1 e_3)^2 + (e_1 e_2)^2}{e_1^2 + e_2^2 + e_3^2}}.
\]
\[
\|n_p(e, x)\|_0 \leq \sqrt{\frac{e_3^2(|e_2| + |e_1|)^2 + (e_1 e_3)^2 + (e_1 e_2)^2}{e_1^2 + e_2^2 + e_3^2}}.
\]
\[
\|n_p(e, x)\|_0 \leq \sqrt{\frac{e_3^2(|e_2| + |e_1|)^2 + (e_1 e_3)^2 + (e_1 e_2)^2}{e_1^2}}.
\]
\[
\|n_p(e, x)\|_0 \leq \sqrt{\frac{e_3^2(|e_2| + |e_1|)^2 + (e_2)^2 + (e_3)^2}{e_1^2}} = 0,
\]
\[
\|n_p(e, x)\|_0 \equiv 0.
\]

Therefore, the first condition in the above-mentioned theorem holds.

Now, choose suitable real constant matrix \(\Omega \in \mathbb{R}^{1 \times n} \) and \(F \in \mathbb{R}^{n \times (n+1)} \) such that
\[
\text{Re} \left[\lambda \left(\frac{L+F}{\Omega} \right) \right] < 0,
\]
\[
-\max \left[\text{Re} \lambda \left(\frac{L+F}{\Omega} \right) \right] > [\Gamma(q)]^{1/\eta}.
\]
So the second condition in the above-mentioned theorem holds. According to the theorem in Section 2, the adaptive synchronization between drive system (13) and response system (15) with parameter update law (16) can be achieved.

For example, let \(F = \begin{pmatrix} -28 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -8/3 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \) and \(\Omega = \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix} \).
So \(\left(\frac{L+F}{\Omega} \right) = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -8/3 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \). Therefore, \(\lambda_i = -1 \) \((i = 1, 2, 3)\), \(\lambda_4 = -8/3 \), and \(-\max[\text{Re} \lambda \left(\frac{L+F}{\Omega} \right)] = 1 > [\Gamma(q)]^{1/\eta} = 0.9722 \), respectively. Simulation results are shown in Figure 2. Here, \(a(0) = 7 \), and all the initial conditions in this paper are \((x_{10}, x_{20}, x_{30}) = (10, 20, 30)\), and \((y_{10}, y_{20}, y_{30}) = (1, 2, 5)\), respectively.

Case 2 (parameter \(b \) is unknown in response system). Now, assume that the system parameter \(b \) in response system is the unknown parameter. The true value of the “unknown” parameter \(b \) is selected as \(b_0 \).

The fractional-order Lorenz system (12) can be rewritten as
\[
\begin{pmatrix} D^q_{t}x_1 \\ D^q_{t}x_2 \\ D^q_{t}x_3 \end{pmatrix} = \begin{pmatrix} -10 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -8/3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} b_0 x_1 - x_1 x_3 \\ 0 \\ x_1 x_2 \end{pmatrix},
\]
\[
D^q_{t} = \begin{pmatrix} \frac{-10}{1/\eta} & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -8/3 \end{pmatrix},
\]
where \(b_0 = 28 \).
So
\[
L = \begin{pmatrix} -10 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -8/3 \end{pmatrix}.
\]
According to Section 2, the response system with unknown parameter b can be given as

$$\begin{pmatrix}
D^q y_1 \\
D^q y_2 \\
D^q y_3
\end{pmatrix} = \begin{pmatrix}
-10 & 10 & 0 \\
0 & 0 & -8/5 \\
0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
y_1 \\
y_2 \\
y_3
\end{pmatrix} + \begin{pmatrix}
0 \\
y_1 y_3 \\
y_1 y_2
\end{pmatrix} + \left(F - n_p(x)\right)\begin{pmatrix}
e_1 \\
e_2 \\
e_3
\end{pmatrix}
$$

and the parameter update law is

$$D^q b = \Omega (e_1, e_2, e_3, e_b)^T.$$ (24)

It is easy to obtain the following:

$$\begin{pmatrix}
0 & b y_1 - y_1 y_3 \\
y_1 y_2 & 0 & 0 \\
0 & x_1 x_2 & 0
\end{pmatrix} + \begin{pmatrix}
e_1 \\
e_2 \\
e_3
\end{pmatrix} = \begin{pmatrix}
e_1 e_2 + e_b e_1 \\
0 \\
e_1 e_2
\end{pmatrix}. \quad (25)

So

$$n_p(x) = (b_0 - x_3, 0, -x_1, 0), \quad n_{np}(e, x) = \begin{pmatrix}
0 \\
-e_1 e_3 + e_0 e_1 \\
e_1 e_2
\end{pmatrix}. \quad (26)

Now, it is easy to verify the following:

$$\left\| \begin{pmatrix}
n_{np}(e, x) \\
0
\end{pmatrix} \right\| \left\| e \right\| \leq \lim_{e \to 0} \sqrt{\left(e_3^2 + e_b^2 + (e_1 e_2)^2 \right)} \leq \lim_{e \to 0} \sqrt{\left(|e_3| + |e_b| \right)^2 + (e_2)^2} = 0.$$

Therefore, the first condition in the above-mentioned theorem holds.

Now, choose suitable real constant matrix $\Omega \in \mathbb{R}^{1 \times n}$ and $F \in \mathbb{R}^{n \times (n+1)}$ such that

$$\text{Re} \left[\lambda (L + F \Omega) \right] < 0, \quad -\max \left[\text{Re} \lambda (L + F \Omega) \right] > \left[\Gamma(q) \right]^{1/q}. \quad (28)$$

So the second condition in the above-mentioned theorem holds. According to the theorem in Section 2, the adaptive synchronization between drive system (21) and response system (23) with parameter update law (24) can be achieved.

For example, let $F = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$ and $\Omega = \begin{pmatrix}
0 & 0 & 0 \end{pmatrix}$. Therefore, $\lambda_+ = -5.5 \pm 8.9303 j$, $\lambda_3 = -8/3$, $\lambda_4 = -1$, and $-\max[\text{Re} \lambda (L + F \Omega)] = 1 > \left[\Gamma(q) \right]^{1/q} = 0.9722$, respectively. Simulation results are shown in Figure 3. Here, $b(0) = 10$.

Case 3 (parameter c is unknown in response system). Now, assume that the system parameter c in response system is...
the unknown parameter. The true value of the “unknown” parameter c is selected as c_0.

The fractional-order Lorenz system (12) can be rewritten as

$$
\begin{pmatrix}
D^q x_1 \\
D^q x_2 \\
D^q x_3
\end{pmatrix} =
\begin{pmatrix}
-10 & 10 & 0 \\
28 & -1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
+ \begin{pmatrix}
0 \\
-x_1 x_3 \\
x_1 x_2 - c_0 x_3
\end{pmatrix}.
$$

(29)

So

$$L = \begin{pmatrix}
-10 & 10 & 0 \\
28 & -1 & 0 \\
0 & 0 & 0
\end{pmatrix}.
$$

(30)

According to Section 2, the response system is given as

$$
\begin{pmatrix}
D^q y_1 \\
D^q y_2 \\
D^q y_3
\end{pmatrix} =
\begin{pmatrix}
-10 & 10 & 0 \\
28 & -1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
y_1 \\
y_2 \\
y_3
\end{pmatrix}
+ \begin{pmatrix}
0 \\
y_1 y_3 \\
y_1 y_2 - c y_3
\end{pmatrix}
+ \begin{pmatrix}
0 \\
-x_1 x_3 \\
x_1 x_2 - c_0 x_3
\end{pmatrix}
+ \begin{pmatrix}
(e_1 e_2 - e_3) \\
e_1 e_2 \\
e_1 e_3
\end{pmatrix}
\begin{pmatrix}
e_1 \\
e_2 \\
e_3
\end{pmatrix}
$$

(31)

and the parameter update law is

$$D^q c = \Omega (e_1 e_2 e_3).$$

(32)

It is easy to obtain the following:

$$
\begin{pmatrix}
0 \\
-y_1 y_3 \\
y_1 y_2 - c y_3
\end{pmatrix}
+ \begin{pmatrix}
0 \\
-x_1 x_3 \\
x_1 x_2 - c_0 x_3
\end{pmatrix}
+ \begin{pmatrix}
0 \\
-x_1 x_3 \\
x_1 x_2 - c_0 x_3
\end{pmatrix}
\begin{pmatrix}
e_1 \\
e_2 \\
e_3
\end{pmatrix}
$$

(33)

So

$$
n_{np} (x) = \begin{pmatrix}
0 \\
-x_3 \\
x_2
\end{pmatrix} \\
\begin{pmatrix}
0 \\
-x_1 \\
x_1 - c_0
\end{pmatrix} \\
\begin{pmatrix}
0 \\
-x_1 x_3 \\
x_1 x_2 - c_0 x_3
\end{pmatrix}
$$

(34)

Now, it is easy to verify the following:

$$
\frac{\| n_{np} (e, x) \|}{\| e \|}
= \sqrt{\frac{(e_1 e_2 - e_3)^2 + (e_1 e_3)^2}{e_1^2 + e_2^2 + e_3^2 + e_c^2}}
$$

(35)

Therefore, the first condition in the above-mentioned theorem holds.

Now, choose suitable real constant matrix $\Omega \in R^{3 \times n}$ and $F \in R^{n \times (n+1)}$ such that

$$
\text{Re} \left[\lambda \left(\begin{pmatrix} L + F \end{pmatrix} \right) \right] < 0,
$$

(36)

$$
- \max \left[\text{Re} \lambda \left(\begin{pmatrix} L + F \end{pmatrix} \right) \right] > |\Gamma(q)|^{1/2}.
$$

So, the second condition in the above-mentioned theorem holds. According to the theorem in Section 2, the adaptive synchronization between drive system (29) and response system (31) with parameter update law (32) can be achieved.
The approach can be applied to other fractional-order chaotic systems. Moreover, this synchronization is extended to several unknown parameters of the fractional-order system. The current results in this paper can be numerically shown to validate and feasibility of synchronization for the fractional-order Lorenz chaotic system.

Numerical simulations show the validity and feasibility of adaptive synchronization for the fractional-order Lorenz chaotic system with fractional-order $1 < q < 2$. In order to verify the effectiveness of the adaptive synchronization approach, the adaptive synchronization for the fractional-order Lorenz chaotic system with fractional-order $1 < q < 2$ is considered. Numerical simulations show the validity and feasibility of the proposed scheme. The current results in this paper can be extended to several unknown parameters of the fractional-order chaotic systems. Moreover, this synchronization approach can be applied to other fractional-order chaotic systems.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

Research Article

A Novel Chaotic Map and an Improved Chaos-Based Image Encryption Scheme

Xianhan Zhang¹ and Yang Cao²,³

¹ Department of Mathematics, Southeast University, Nanjing 210096, China
² Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong
³ College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Correspondence should be addressed to Yang Cao; caoyeacy@hku.hk

Received 12 June 2014; Accepted 3 July 2014; Published 20 July 2014

Academic Editor: Qiankun Song

Copyright © 2014 X. Zhang and Y. Cao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we present a novel approach to create the new chaotic map and propose an improved image encryption scheme based on it. Compared with traditional classic one-dimensional chaotic maps like Logistic Map and Tent Map, this newly created chaotic map demonstrates many better chaotic properties for encryption, implied by a much larger maximal Lyapunov exponent. Furthermore, the new chaotic map and Arnold’s Cat Map based image encryption method is designed and proved to be of solid robustness. The simulation results and security analysis indicate that such method not only can meet the requirement of imagine encryption, but also can result in a preferable effectiveness and security, which is usable for general applications.

1. Introduction

With the discovery of a series of chaotic maps such as Tent Map [1, 2] and Logistic Map [3], researchers and scholars have been able to apply them into a variety of fields. The knowledge of chaotic maps is perhaps one of the most significant achievements in nonlinear science. Since 1980s, researches on chaos theory have been overlapping and mixing up with other subjects, in the meanwhile promoting their further developments. The fields that take advantage of knowledge concerning chaos range greatly from math and astronomy to music and art. Besides, the most famous magazines in the world such as Nature and Scientific American once published a great deal of discoveries and progresses in chaos theory [4]. Therefore, it is reasonable to judge that chaos has been becoming a universal language between these important subjects.

If we are to further classify the applications of the chaos in different categories, chaos analysis [5] and chaos synthesis [6] will be the answer. As for the former, based on complex manual work and natural system, we tend to find some hidden rules inside of them. One example is the prediction towards time series [7–10]. For the latter, by using manually produced chaotic system, we are inclined to discover some possible functions contained within the chaotic dynamics [11–13].

In addition, some likely applications of the chaos are listed below. First, combining neural network and chaos, we utilize chaotic status of intermediate processes to let networks avoid the partial minimum point. And hence it guarantees global optimum according to [14]. Second, the chaos theory has already been used in high-speed searching process. Last but not least, chaotic maps are widely applied in secure communication which is carefully studied in [13, 15]. We could not only use chaotic signals to encrypt the information needed to be secure but also decipher encrypted one as well according to [16–18]. Also, researches regarding these aspects are known to have already been put in the national defense plan of China.

Despite the fact that the fields that call for chaotic maps range greatly, one thing they share in common is that they all need the chaotic features of chaotic maps. In other words, the feature that a simple initial point and a given value of the parameter could completely control the whole process is what we need. As a matter of fact, chaotic maps are quite sensitive to the initial point, which means even a very slight change in
the value of initial point would result in a dramatic change of the sequence produced by the chaotic map. However, at present, only a limited number of one-dimensional chaotic maps (e.g., Tent Map and Logistic Map) are introduced. Also, their properties are somehow limited and may no longer satisfy our needs. Too often our methods of encryption and engineering projects are merely based on these simple chaotic maps. Without new and better chaotic maps, our applications will remain unchanged and might get stuck in the future. This may lead to an urgent need for more and better chaotic maps.

In this paper, a new one-dimensional chaotic map is first introduced, and we use the maximal Lyapunov exponent [19–21] to determine how well the map performs. In addition, we later prove that this new chaotic map actually exhibits a larger maximal Lyapunov exponent, indicating better properties of the chaotic map. What is more is that a new algorithm based on this new chaotic map is used in image encryption, providing a brand new way to encrypt images. Compared with previous ways to encrypt image, it not only utilizes the excellent chaotic property of the newly discovered map itself but also entails another classical map: Arnold’s Cat Map [22–24], through which coordinates of the target image's grey value matrix will be changed to another. Lastly, a security analysis is accomplished by plotting histogram of the image's grey values and calculating information entropy [25]. Without how many times the target image is iterated, it is next to impossible to decrypt the encrypted image. Therefore, the safety of the image is largely strengthened and guaranteed. Now we discuss this new chaotic map and how to use it to encrypt images in detail in the following.

2. Design and Analysis to the New Chaotic Map

In this section, we first discuss the definition of “maximal Lyapunov exponent.” Then, we plot the Lyapunov spectrum of the two traditional one-dimensional chaotic maps. Next, a new chaotic map is introduced. Lastly, a comparison between the new chaotic map and two traditional maps is carefully made.

2.1. Maximal Lyapunov Exponent

2.1.1. Definition of the Lyapunov Exponent. According to statements in [19, 26], Lyapunov exponent λ usually represents the features of a chaotic system, named after the great Russian mathematician Lyapunov.

For discrete system (maps or fixed point iterations) \(x_n = f(x_{n-1}) \) and for an orbit starting with \(x_0 \), the Lyapunov exponent can be defined as follows:

\[
\lambda (x_0) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \ln |f'(x_i)| .
\]

(1)

It is common to refer to the largest \(\lambda \) defined by (1) as the maximal Lyapunov exponent because it determines a notion of predictability for a chaotic system.

2.1.2. Properties of Maximal Lyapunov Exponent (MLE). A positive \(\lambda \) is usually taken as an indication that the system is basically chaotic. Besides, it is also apparently true that the larger MLE is, the more chaotic the map is. And this means a better chaotic map according to [20].

Remark 1. Lyapunov exponent, as an important exponent to test the property of chaotic map, is widely used in the world of chaos. Actually, from the definition equation (1), we could clearly find out that Lyapunov is an average value of \(\ln |f'(x)| \). Since \(|f'(x)| \) is the indicating parameter that measures the variation speed for \(f(x) \), Lyapunov exponent, the average value of \(\ln |f'(x)| \) is bound to reflect the chaotic properties of \(f(x) \). Thus, maximal Lyapunov exponent can largely expresses the overall performance of chaotic maps.

Next, we begin with calculating the MLE and plotting the Lyapunov exponent spectrum for two typical one-dimensional maps, Tent Map and Logistic Map.

2.2. Tent Map. In mathematics, according to [1], Tent Map with parameter \(\mu \) is a real-valued function \(f(\mu) \) defined by

\[
f(\mu) = \mu \min \{x, 1-x\} ; \quad \mu \in (0, 2).
\]

(2)

Thus, we can obtain the Lyapunov exponent spectrum of Tent Map, which is shown in Figure 1.

In addition, we could calculate the MLE for Tent Map, which is 0.6931 (when \(\mu \to 2 \)), indicating that the map itself is chaotic.

2.3. Logistic Map. Logistic Map [27, 28] is a polynomial mapping of degree 2 that exhibits chaotic behavior. The Logistic Map equation is given by

\[
x_{n+1} = \mu x_n (1-x_n).
\]

(3)

When the variable \(\mu \) is given different value, ranging from 2 to 4, through formula (1), we could plot Lyapunov exponent of Logistic Map as well. That is shown in Figure 2.

It is obviously shown in Figure 2 that, when \(\mu \to 4 \), MLE of Tent Map is reached. Through calculating, maximal Lyapunov exponent of the Logistic Map is 0.6785.
2.4. A New Chaotic Map. When we replace “x” with “1−2|x|” in Logistic Map, formula (4) will be attained:

\[x_{n+1} = 2\mu |x_n|(1−2|x_n|); \quad (−1 < x_n < 1). \]

(4)

If we choose \(x_0 = 0.4 \) as the initial point of the map and the parameter \(\mu = 2.4140 \), after 10000 times of iterations, we will get the randomly scattered image of the map in Figure 3 when we plot every \(x_i \) \((i = 1, 2, \ldots)\).

Remark 2. It is clearly displayed in Figure 3 that the sequence generated from the new chaotic map ranges from −0.6 to 0.6, while, in Tent Map and Logistic map, it is a little larger, ranging from −1 to 1. However, this does not matter that much, since we consider the range that they share in common, which is \(-0.6 < x_n < 0.6\).

In order to see if the map is a chaotic map and, if yes, how good the map is, similarly, we also use the maximal Lyapunov exponent to see that, starting with \(x_0 = 0.4 \) and iterating 2000 times. Hence, Figure 4 will be yielded.

As is shown in Figure 4, when \(\mu = 2.4140 \), the MLE of the new chaotic map reaches beyond 1, to be exact, 1.0742.

Next, we combine the three Lyapunov exponent spectrums given above together and Figure 5 is the result.

Remark 3. Just like what we have discussed in Section 2.1, a larger maximal Lyapunov exponent indicates not only a stronger sensitivity to the initial point but also it also indicates that the chaotic system itself is “more chaotic.” In other words, the chaotic map with larger MLE is of better quality. It is demonstrated above that the MLE of the two most typical chaotic maps (2) and (3) all end below 1, which are apparently smaller than the new map (4). The MLE of the new chaotic map, as expected, has reached beyond 1. Therefore, the new map (4) is supposed to bear the potential to perform more effectively in engineering or encryption process than the two classic ones (2) and (3) mentioned above.

3. Application on Image Encryption

3.1. Encryption Scheme. In this section, we are about to take one step further, applying the new map on image encryption.

Now, we begin introducing an image encryption algorithm based on the map we have just constructed.

\(m_{n+1} = 2\mu |m_n|(1−2|m_n|) \quad (−0.6 < m_n < 0.6). \)

Then, in order to make \(|x_k| \) reach closely 1, we choose \(x_k = (5/3)m_k; \quad (k = 1, 2, \ldots) \).

Step 2. Next, we transform decimal numbers \(x_k \) to the form of binary numbers, and consequently we will get \(x_k' \). After that, we choose the first 8 figures after the decimal point of \(x_k' \) to form a new binary number, \(B_k \).

To put in the language of math, that is:

\[x_k' = \sum_{v=0}^{\infty} a_{k,v} 2^{−(v+1)} ; \quad a_{k,v} = 0 \text{ or } 1. \]
Thus, for each \(x_k \), there is a unique \(B_k \) corresponding to it. Obviously, \(B_k \) is formed by the first 8 numbers after the decimal point of \(x'_k \). In this way, we could obtain the original chaotic sequence in the form of binary numbers with 8 places. Similar approaches have been discussed in [29].

Remark 4. Binary numbers with 8 places have three major advantages that are listed below. First of all, it corresponds well with \((R, G, B)\), which is the gray values’ row vector of each point in an image. \(R \) refers to red, \(G \) refers to green, and \(B \) refers to blue. In fact, they all range from 0 to 255. And, hence, if they are written into binary forms, 8-place binary numbers will be exactly what we get. Therefore, this step provides convenience to the following steps. Secondly, computers have always been using binary numbers to operate. Thus binary numbers tend to make calculation efficient and time-saving.

Thirdly, as per what we have discussed in Section 2.1, the sequence generated by the chaotic map is basically random and therefore this will lead the binary numbers to be random as well due to the transmission of randomness.

Step 3. Suppose that the pixel of the target image is \(m \times n \), and then we put \(B_k \) produced in Step 1 into a matrix \(AA \) with the size \(m \times n \). In other words, from left to right and from up to down, each \(B_k \) is assigned to a unique, particular position in matrix \(AA \).

Step 4. For point \((i, j)\) from the plaintext image we have its grey value vector \((R, G, B)\) written in binary form. In order to build a connection between the grey value matrix of the plaintext image and the chaotic sequence matrix \(AA \), it is reasonable to think of the XOR operation (\(\oplus \)), the definition of which is given below in accordance with [30]:

\[
1 \oplus 0 = 1; \quad 1 \oplus 1 = 0; \\
0 \oplus 0 = 0; \quad 0 \oplus 1 = 1.
\]

Thus, for each \(x_k \), there is a unique \(B_k \) corresponding to it. Obviously, \(B_k \) is formed by the first 8 numbers after the decimal point of \(x'_k \). In this way, we could obtain the original chaotic sequence in the form of binary numbers with 8 places. Similar approaches have been discussed in [29].
A new chaotic map

Given initial point

A corresponding chaotic sequence

\{x_k\}

Binary form

\{x'_k\}

A matrix AA formed by

\{x'_k\}

Encrypted image

Encrypted matrix

Coordinate change through Arnold's Cat Map

Matrix

\(\{R_1, G_1, B_1\}\)

A grey value matrix of the targeted image (RGB)

\(\{R'_1, G'_1, B'_1\}\)

Figure 7: Proposed encryption scheme.

Thus, we use XOR to “make a mess.” For point \((i, j)\) from the plaintext image, we also extract \(AA(i, j)\) from AA, which is made up with the chaotic sequence generated. Next, we do XOR operation as follows:

\[\begin{align*}
R_1 &= R \oplus AA(i, j) . \\
G_1 &= G \oplus AA(i, j) . \\
B_1 &= B \oplus AA(i, j) .
\end{align*}\] \(8\)

Step 5. In Step 6, we make a change to the coordinate of \((i, j)\). To be exact, let \((i', j')\) be the starting column vector, which is \((\frac{X_i}{Y_i})\), and then iterate a given “\(k\)” times with formula (9) according to [23, 24]

\[
\begin{pmatrix}
X_{n+1} \\
Y_{n+1}
\end{pmatrix} =
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\begin{pmatrix}
X_n \\
Y_n
\end{pmatrix} \mod m, \quad (ad - bc = 1).
\] \(9\)

After iteration of a given “\(k\)” times, we will obtain a new coordinate for point \((i, j)\) in the plaintext image, and we mark it as \((i', j')\). This is one of the most famous coordinate change maps, the Arnold's Cat Map. Lastly, we assign the value of \((R_1, G_1, B_1)\) from \((i, j)\) to \((i', j')\). (Tips: “mod” in the formula means complementation, if the plaintext image is of the size \(x_a \times y_a\) (the pixel value); \(m = \max\{x_a, y_a\}\).) A sample experiment has been provided in Figure 6.

Remark 5. There exists actually a slight defect of Step 5, due to the fact that, after a special number of iteration times, the image could simply be restored as in the beginning according to [22]. As Arnold's Cat Map is defined, it is a periodic map, and this property leads to an unsafe encryption. Therefore, it is very significant to choose a proper value of “\(k\)” the number of times of iterations to prevent the image from being restored.

Remark 6. Along with defects, there are also huge advantages. First, only a few times of iteration are enough to guarantee the thorough change of the picture. Without knowing the times of iteration, it takes next to forever to decipher the image, as you could see as follows. Second, “mod” guarantees that the size of the image will be exactly the same if the picture is square-sized. Lastly, there is no denial that it is easy to recover the original image using some fundamental knowledge from algebra. Elaborate discussion will be in Section 3.2.

Step 6. Repeat Steps 3–5 for every point in the target plaintext image, and use these processed grey values to form an encrypted image.

3.2. Decryption Scheme

Step 1. Read the encrypted image, and then write its grey value into a three-dimensional matrix.

Step 2. According to Step 6 in encryption, we could simply do the opposite: start with \((i', j')\) in the encrypted image, use the formula listed below, and iterate “\(k\)” times as well:

\[
\begin{pmatrix}
X_{n+1} \\
Y_{n+1}
\end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix}
X_n \\
Y_n
\end{pmatrix} \mod m \\
(ad - bc = 1).
\] \(10\)
The definition of ”m” is the same as the one mentioned above, and thus we attain the original coordinate of (i, j).

Step 3. See Steps 1 and 2 in the encryption part.

Step 4. In order to restore changes from Step 5, just do XOR operation with (R_1, G_1, B_1) in points (i, j) and AA(i, j) again. Hence, (R, G, B) is obtained. That is,

\[R = R_1 \oplus AA(i, j). \]
\[G = G_1 \oplus AA(i, j). \]
\[B = B_1 \oplus AA(i, j). \]

(11)

Step 5. Use (R, G, B) of every point to form the original image. Hence, restoration of the plaintext image is accomplished.

3.3. Overall Process of Image Encryption. Statements mentioned above yield the encryption scheme listed in Figure 7.

3.4. Simulation Results. Take the image of Figure 8(a) as a sample to test the algorithm mentioned above and the plaintext image, encrypted image, and restored image are given in Figure 8.

4. Security Analysis

In this section, by plotting the histogram and calculating the so-called “information entropy,” we test the security qualities of the proposed method in Section 2.

4.1. Histogram Analysis. There is no denying that a well-ciphered image should provide no chances for the attackers to decrypt through statistics analysis. On the one hand, the grey level of the plaintext image in Figure 8(a) is somehow similar to normal distribution in accordance with Figure 9(a) and this would bring about vulnerabilities to decryption. On the other hand, the ciphered image in Figure 8(b), though not perfectly average on each value between 1 and 256, is somehow subjected to uniform distribution according to Figure 9(b), which undoubtedly adds up difficulty for the attacker to decrypt according to [16].
4.2. Information Entropy. According to the thesis in [25], the value of information entropy typically expresses the feature of randomness. Its definition is given by

$$H(m) = -\sum p(m_i) \log_2 \frac{1}{p(m_i)}$$ \hspace{1cm} (12)$$

where “m” refers to message and $p(m_i)$ represents the chances of appearance of the ith message. As for images, $p(m_i)$ stands for the probability of a particular grey value (R, G, B). Under this circumstance, $H(m)$ is also called “image entropy.” The entropy of a perfectly encrypted image should, in ideal case, approach 24, since $3 \times \log_2 256 = 24$ (3 means 3 color planes) according to [14, 31]. The entropy $H(m) = 23.9616$ is yielded through calculating, which is extremely close to 24. Therefore it can be inferred that the encrypted image is almost random. In this way, we tend to believe that the safety of the image is largely promoted and ensured.

Remark 7. As the result of the entropy shows, $H(m)$ is perfectly close to 24, which is an ideal entropy for a randomly encrypted image. And this result in turn proves the excellent chaotic properties of the new chaotic map. What is more is that the comparison between the histograms of the plaintext image and the encrypted image shows that the new chaotic map actually makes grey values distribute uniformly, which convinces us of the fact the new chaotic map is of robust quality.

5. Conclusion

In this paper, a new chaotic map with better chaotic properties has been proposed. To step further, a comparison with traditional one-dimensional chaotic maps has been made as well through their maximal Lyapunov exponent spectrums, which proves the new chaotic map’s marvelous application prospect. In addition, it has been applied on image encryption. Along with Arnold’s Cat Map, it could successfully produce a ciphered image based on original plaintext image. Steps and the proposed scheme to encrypt a targeted image and decrypt a ciphered image have been given. What is more is that the results of encryption and decryption simulation have been provided. At last, security reliability towards this algorithm has been discussed. As a result, this method is of excellent quality and robustness and turns to be theoretical unbreakable by convention attacks without any knowledge to the values of the starting point and parameters. Yet, to seek perfectness, a safe conveyance of the parameter still remains to be a problem. That is, when the attacker gains the parameter value and initial point value, a whole system can break down easily. Thus a safe transmission of keys may be our next direction to study.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

