
Scientific Programming

Programming Models, Languages,
and Compilers for Manycore and
Heterogeneous Architectures

Guest Editors: Sunita Chandrasekaran, Barbara Chapman, Xinmin Tian,
and Yonghong Yan

Programming Models, Languages,

and Compilers for Manycore

and Heterogeneous Architectures

Scienti�c Programming

Programming Models, Languages,

and Compilers for Manycore

and Heterogeneous Architectures

Guest Editors: Sunita Chandrasekaran, Barbara Chapman,
Xinmin Tian, and Yonghong Yan

Copyright © 2015 Hindawi Publishing Corporation. All rights reserved.

�is is a special issue published in “Scienti�c Programming.” All articles are open access articles distributed under the Creative Com-
mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Editorial Board

Siegfried Benkner, Austria
Barbara Chapman, USA
Frank De Boer, Netherlands
Bronis R. de Supinski, USA
Dino Distefano, United Kingdom
Jack J. Dongarra, USA
Erik Elmroth, Sweden

Wan Fokkink, Netherlands
Gianluigi Greco, Italy
Bormin Huang, USA
Ananth Kalyanaraman, USA
Rafael Mayo, Spain
Can Özturan, Turkey
Jan F. Prins, USA

�omas Rauber, Germany
Damian Rouson, USA
Walid Taha, Sweden
Giorgio Terracina, Italy
Jan Weglarz, Poland

Contents

ProgrammingModels, Languages, and Compilers for Manycore and Heterogeneous Architectures,
Sunita Chandrasekaran, Barbara Chapman, Xinmin Tian, and Yonghong Yan
Volume 2015, Article ID 376317, 1 page

Locality-Aware Task Scheduling and Data Distribution for OpenMP Programs on NUMA Systems and

Manycore Processors, Ananya Muddukrishna, Peter A. Jonsson, and Mats Brorsson
Volume 2015, Article ID 981759, 16 pages

Multi-GPU Support on Single Node Using Directive-Based ProgrammingModel, Rengan Xu,
Xiaonan Tian, Sunita Chandrasekaran, and Barbara Chapman
Volume 2015, Article ID 621730, 15 pages

OpenCL Performance Evaluation on Modern Multicore CPUs, Joo Hwan Lee, Nimit Nigania,
Hyesoon Kim, Kaushik Patel, and Hyojong Kim
Volume 2015, Article ID 859491, 20 pages

E�ective SIMD Vectorization for Intel Xeon Phi Coprocessors, Xinmin Tian, Hideki Saito,
Serguei V. Preis, Eric N. Garcia, Sergey S. Kozhukhov, Matt Masten, Aleksei G. Cherkasov,
and Nikolay Panchenko
Volume 2015, Article ID 269764, 14 pages

Optimized Data Transfers Based on the OpenCL Event Management Mechanism, Hiroyuki Takizawa,
Shoichi Hirasawa, Makoto Sugawara, Isaac Gelado, Hiroaki Kobayashi, and Wen-mei W. Hwu
Volume 2015, Article ID 576498, 16 pages

Editorial
Programming Models, Languages, and Compilers for Manycore
and Heterogeneous Architectures

Sunita Chandrasekaran,1 Barbara Chapman,1 Xinmin Tian,2 and Yonghong Yan3

1University of Houston, 4800 Calhoun Road, Houston, TX 77004, USA
2Intel Corporation, 2200 Mission College Boulevard, SC12-301, Santa Clara, CA 95052, USA
3Oakland University, 2200 N Squirrel Road, Rochester, MI 48309, USA

Correspondence should be addressed to Sunita Chandrasekaran; sunita@cs.uh.edu

Received 25 March 2015; Accepted 25 March 2015

Copyright © 2015 Sunita Chandrasekaran et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Aim and Scope. Hardware is emerging rapidly, core count
is increasing, and systems consist of large cluster of nodes.
These nodes are becoming more heterogeneous, that is,
multicore CPUs attached to accelerators meant to address
specific needs of specific computations. The type of paral-
lelism each accelerator offers is quite different from the other.
On the other hand, software for such emerging parallel and
heterogeneous computing systems is still catching up.The gap
between hardware and software is growing; it is a challenge
for the software developers to keep up with the hardware
advancements. Thus, there is an urgent need to develop
and maintain sophisticated software that can not only offer
performance productive solutions but also be applicable to a
wide range of hardware systems. Some of the promising and
widely used programming solutions include directive-based
programming models such as OpenMP, vendor-specific
programming models such as NVIDIA’s CUDA, OpenCL,
and recently emerging programming model, OpenACC.
This special issue publishes papers on the evaluations of
these models for parallel computing with respect to several
factors including locality-aware scheduling, data transfer
optimizations, SIMD vectorization on Phi coprocessors, and
programming multi-GPU.

Acknowledgments

The editors would like to thank the authors for their tremen-
dous effort and time spent on their respective manuscripts.
We relied on peer-review process to uphold the quality of

the manuscripts. To this effort, we would like to thank
and acknowledge all external reviewers for spending their
valuable time to provide the authors with valuable feedback.

Sunita Chandrasekaran
Barbara Chapman

Xinmin Tian
Yonghong Yan

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 376317, 1 page
http://dx.doi.org/10.1155/2015/376317

http://dx.doi.org/10.1155/2015/376317

Research Article
Locality-Aware Task Scheduling and Data Distribution for
OpenMP Programs on NUMA Systems and Manycore Processors

Ananya Muddukrishna,1 Peter A. Jonsson,2 and Mats Brorsson1,2

1KTH Royal Institute of Technology, School of Information and Communication Technology, Electrum 229, 164 40 Kista, Sweden
2SICS Swedish ICT AB, Box 1263, 164 29 Kista, Sweden

Correspondence should be addressed to Ananya Muddukrishna; ananya@kth.se

Received 15 May 2014; Accepted 29 September 2014

Academic Editor: Sunita Chandrasekaran

Copyright © 2015 Ananya Muddukrishna et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Performance degradation due to nonuniform data access latencies has worsened on NUMA systems and can now be felt on-
chip in manycore processors. Distributing data across NUMA nodes and manycore processor caches is necessary to reduce
the impact of nonuniform latencies. However, techniques for distributing data are error-prone and fragile and require low-level
architectural knowledge. Existing task scheduling policies favor quick load-balancing at the expense of locality and ignore NUMA
node/manycore cache access latencies while scheduling. Locality-aware scheduling, in conjunction with or as a replacement for
existing scheduling, is necessary to minimize NUMA effects and sustain performance. We present a data distribution and locality-
aware scheduling technique for task-based OpenMP programs executing on NUMA systems and manycore processors. Our
technique relieves the programmer from thinking of NUMA system/manycore processor architecture details by delegating data
distribution to the runtime system and uses task data dependence information to guide the scheduling of OpenMP tasks to reduce
data stall times. We demonstrate our technique on a four-socket AMD Opteron machine with eight NUMA nodes and on the
TILEPro64 processor and identify that data distribution and locality-aware task scheduling improve performance up to 69% for
scientific benchmarks compared to default policies and yet provide an architecture-oblivious approach for programmers.

1. Introduction

NUMA systems consist of several multicore processors
attached to local memory modules. Local memory can be
accessed both faster and with higher bandwidth than remote
memory by cores within a processor. Disparity between local
and remote node access costs increases both in magnitude
and nonuniformity as NUMA systems grow.ModernNUMA
systems have reached such size and complexity that even
simple memory-oblivious parallel executions such as the
task-based Fibonacci programwith work-stealing scheduling
have begun to suffer fromNUMAeffects [1]. Careful data dis-
tribution is crucial for performance irrespective of memory
footprint on modern NUMA systems.

Data distribution is also required onmanycore processors
which exhibit on-chip NUMA effects due to banked shared
caches. Cores can access their local cache bank faster than
remote banks. The latency of accessing far-off remote cache

banks approaches off-chip memory access latencies. Another
performance consideration is that cache coherence of many-
core processors is software configurable [2]. Scheduling
should adapt to remote cache bank access latencies that can
change based on the configuration.

Scheduling decisions of the runtime system are key to
task-based program performance. Scheduling decisions are
made according to scheduling policies which until now
have focused mainly on load-balancing—distributing com-
putation evenly across threads. Load-balancing is a simple
decision requiring little information from task abstractions
used by the programmer and has been effective for several
generations of multicore processors.

However, scheduling policies need to minimize memory
access costs in addition to load-balancing for performance
on NUMA systems and manycore processors. Strict load-
balancing policies lose performance since they neglect data
locality exposed by tasks. Neglecting data locality violates

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 981759, 16 pages
http://dx.doi.org/10.1155/2015/981759

http://dx.doi.org/10.1155/2015/981759

2 Scientific Programming

design principles of the complex memory subsystems that
support NUMA systems and manycore processors. The
subsystems require scheduling to keep cores running unin-
terrupted and provide peak performance by exploiting data
locality.

Despite rising importance of data distribution and
scheduling, OpenMP—a popular and widely available task-
based programming paradigm—neither specifies data distri-
bution mechanisms for programmers nor provides schedul-
ing guidelines for NUMA systems and manycore processors
even in the latest version 4.0.

Current data distribution practices on NUMA systems
are to either use third-party tools andAPIs [3–5] or repurpose
the OpenMP for work-sharing construct to allocate and
distribute data to different NUMA nodes. The third-party
tools are fragile and might not be available on all machines
and the clever use of the parallel for work-sharing con-
struct [6] relies on a particular OS page management policy
and requires the programmer to knowabout theNUMAnode
topology on the target machine.

Similar data distribution effort is required on many-
core processors. For example, programmers directly use
system API to distribute data on shared cache banks on
the TILEPro64. There are no third-party tools to simplify
data distribution effort. Programmers additionally have to
match data distribution choicewith numerous configurations
available for the cache hierarchy for performance.

Expert programmers can still work around existing data
distribution difficulties, but even for experts the process can
be described as fragile and error-prone. Average program-
mers who do not manage to cope with all the complexity
at once pay a performance penalty when running their
programs, a penalty that might be partially mitigated from
clever caching by the hardware. The current situation will
get increasingly worse for everybody since NUMA effects
are exacerbated by growing network diameters and increased
cache coherence complexity [7] that inevitably follow from
increasing sizes of NUMA systems andmanycore processors.

We present a runtime system assisted data distribution
scheme that allows programmers to control data distribution
in a portable fashionwithout forcing them to understand low-
level system details of NUMA systems and manycore proces-
sors. The scheme relies on the programmer to provide high-
level hints on the granularity of the data distribution in calls
to malloc. Programs without hints will work and have the
same performance as before, which allows gradual addition
of hints to programs to get partial performance benefits. Our
runtime system assisted distribution scheme requires nearly
the same programmer effort as regular calls to malloc and
yet doubles the performance for some scientific workloads on
NUMA systems.

We also present a locality-aware scheduling algorithm
for OpenMP tasks which reduces memory access times by
leveraging locality information gained from data distribution
and task data footprint information from the programmer.
Our scheduling algorithm improves performance over exist-
ing schedulers by up to 50% on our test NUMA system
and 88% on our test manycore processor in programs where
NUMA effects degrade program performance and remains

Table 1: Simple data distribution policies for the programmer.

Policy Behavior
Standard Delegate data distribution to the OS.

Fine Distribute data, unit-wise round-robin, across all
locations.

Coarse Distribute data units, per-allocation round-robin,
across all locations.

Table 2: Data distribution policy abstractions.

System Unit Location
NUMA system Page NUMA node
TILEPro64 Cache line Home cache

competitive for other programs. Performance of scientific
programs—blocked matrix multiplication and vector cross
product—improves by 14% and 69%, respectively, when the
locality-aware scheduler is used.

The paper is an extension of our previous work on
NUMA systems [8] andmanycore processors [9].We provide
common data distribution mechanisms (Tables 1 and 2) and
unify the presentation of locality-aware scheduling mech-
anisms (Algorithms 1, 2, and 3) for both NUMA systems
and manycore processors. The new experimental setup for
manycore processors enables L1 caching (Section 5.2) for a
more realistic scenario. We disabled L1 caching in previous
work to isolate locality-aware scheduling effects. We provide
new measurements for manycore processors with a work-
stealing scheduler as the commonbaseline (Figures 9 and 10).
Previous work used a central queue-based scheduler as
the baseline for manycore processors. We demonstrate the
impact of vicinity sizes while stealing tasks (Figure 11), which
is not done in previous work.

2. Potential for Performance Improvements

We quantify the performance improvement from data dis-
tribution by means of an experiment conducted on an
eight-NUMA node system with four AMD Opteron 6172
processors. The topology of the system is shown in Figure 1.
The maximum NUMA distance of the system according to
the OS is 22, which is an approximation of the maximum
latency between two nodes. NUMA interconnects of the
system are configured for maximum performance with an
average NUMA factor of 1.19 [11]. Latencies to access 4 MB
of memory from different NUMA nodes measured using
the BenchIT tool are shown in Figure 2. Detailed memory
latencies of a similar system are reported by Molka et al. [12].

We execute task-based OpenMP programs using Intel’s
OpenMP implementation with two different memory allo-
cation strategies: the first strategy uses malloc with the first-
touch policy and the second distributes memory pages evenly
across NUMA nodes using the numactl tool [5]. We use first-
touch as a short hand for malloc with first-touch policy in the
rest of the paper. We measure execution time of the parallel
section of each program and quantify the amount of time

Scientific Programming 3

(1) Procedure deal-work(task T, queues 𝑄
1
, . . . , 𝑄

𝑁
, current node n, cores per node C)

(2) Populate 𝐷[1 : 𝑁] with bytes in T.depend list;
(3) if 𝑠𝑢𝑚(𝐷) > 𝑠𝑖𝑧𝑒𝑜𝑓(𝐿𝐿𝐶)/𝐶 and 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒V𝑖𝑎𝑡𝑖𝑜𝑛(𝐷) > 0 then
(4) find𝑄

𝑙
with least NUMA distance-weighted cost to𝐷;

(5) enqueue(𝑄
𝑙
, T);

(6) else
(7) enqueue(𝑄

𝑛
, T);

(8) end
(9) end

Algorithm 1: Work-dealing algorithm for NUMA systems.

(1) Procedure find-work(queues 𝑄
1
, . . . , 𝑄

𝑁
, current node n, cores per node C)

(2) if empty 𝑄
𝑛
then

(3) for 𝑄
𝑖
in (Sort 𝑄

1
, . . . , 𝑄

𝑁
by NUMA distance from 𝑛) do

(4) if 𝑠𝑖𝑧𝑒𝑜𝑓(𝑄
𝑖
) > 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑛)∗𝐶 then

(5) Run dequeue(𝑄
𝑖
);

(6) break;
(7) end
(8) end
(9) else
(10) Run dequeue(𝑄

𝑛
);

(11) end
(12) end

Algorithm 2: Work-finding algorithm for NUMA systems.

(1) Procedure deal-work(task T, queues 𝑄
1
, . . . , 𝑄

𝑁
, current home cache n,

current data distribution policy p, access-intensive dependence index a)
(2) if 𝑝 == 𝑐𝑜𝑎𝑟𝑠𝑒 then
(3) if exists a then
(4) find𝑄

𝑎
containing T.depend list[𝑎];

(5) enqueue(𝑄
𝑎
, T);

(6) else
(7) Populate𝐷[1 : 𝑁] with bytes in T.depend list;
(8) if 𝑠𝑢𝑚(𝐷) > 𝑠𝑖𝑧𝑒𝑜𝑓(𝐿1) then
(9) find 𝑄

𝑙
with least home cache latency cost to𝐷;

(10) enqueue(𝑄
𝑙
, T);

(11) else
(12) enqueue(𝑄

𝑛
, T);

(13) end
(14) end
(15) else
(16) enqueue(𝑄

𝑛
, T);

(17) end
(18) end

Algorithm 3: Work-dealing algorithm for TILEPro64.

spent waiting for memory by counting dispatch stall cycles
which includes load/store unit stall cycles [13].

Several programs show a reduction in execution time
when data is distributed across NUMA nodes as shown in
Figure 3. The reduction in dispatch stall cycles contributes to
the reduction in execution time. Performance is maintained

with data distribution for all remaining programs except
Strassen.

We can explain why benchmarks maintain or lose per-
formance with data distribution. Alignment scales linearly
which implies low communication. Data distribution does
not relieve thememory subsystem for FFT, Health, SparseLU,

4 Scientific Programming

Memory CTRL HT comm CTRL

L3$

L2$

L1$

Core

Die/NUMA node

0

2

4

6

1

3

5

7

So
ck

et

HT8
+

HT16
link

HT8 link

Figure 1: Topology of eight NUMA node, 48-core system with four AMD Opteron 6172 processors. Each processor has a 64KB DL1 cache,
a 512 KB L2 cache and a 5MB L3 cache.

Node

0
0 1 2 3 4 5 6 7

100

200

300

400

La
te

nc
y

(c
yc

le
s)

Figure 2: Latenciesmeasuredwhile accessing 4MBof data allocated
on different NUMA nodes from node 0 of the eight-node Opteron
system. Remote node access is expensive.

and Strassen benchmarks. Execution time of Health sur-
prisingly improves despite increased dispatch stall cycles
implying bandwidth improvements with data distribution.
Strassen is a counter-example whose performance degrades
from data distribution. Strassen allocates memory inside
tasks. Distributing the memory incurs higher access latencies
than first-touch.

We demonstrate how locality-aware task scheduling used
in conjunction with data distribution can further improve
performance by means of an experiment on the TILEPro64
manycore processor. We explain the experiment after intro-
ducing key locality features of the TILEPro64 architecture.

The TILEPro64 is a 64-core tiled architecture processor
with a configurable directory-based cache coherence protocol

0

50

Re
du

ct
io

n
ov

er
 fi

rs
t-t

ou
ch

 m
al

lo
c (

%
)

Execution time
Dispatch stall cycles

A
lig

nm
en

t

FF
T

Fi
bo

na
cc

i

H
ea

lth

Ja
co

bi

M
ap

M
at

m
ul

N
qu

ee
ns

Re
du

ct
io

n

So
rt

Sp
ar

se
lu

St
ra

ss
en

Figure 3: Performance impact of data distribution compared
to first-touch in programs taken or derived from the Barcelona
OpenMP Task Suite (BOTS) [10] and executed on the eight-node
Opteron system. Execution time corresponds to the critical path of
parallel section. Dispatch stall cycles are aggregated over all program
tasks. Most programs improve or maintain performance when data
is distributed across NUMA nodes.

and topology as shown in Figure 4. Load and store misses
from cores are handled by a specific L2 bank called the
home cache. A cache line supplied by the home cache can be
allocated selectively in the local L2 bank (inclusive) and the L1
cache depending on software configuration. Stores in a tile are

Scientific Programming 5

Tile

Core
L1$
+

banked
L2$

Network
CTRL

Multi-protocol
communication

links

Memory CTRL

0 1 2 7

8

63

Figure 4: TILEPro64 topology. Tiles are connected by an 8 × 8mesh on-chip network. Each tile contains a 32-bit VLIW integer core, a private
16 KB IL1 cache, a private 8 KB DL1 cache, a 64KB bank of the shared 4MB L2 cache and a network controller.

0 4 8 12 16 20 24 28

Tile
32 36 40 44 48 52 56 60

La
te

nc
y

(c
yc

le
s)

70

60

50

40

30

20

10

0

Figure 5: Latencies measured while accessing a cache line from
different home cache access from tile 0 under isolation. Latencies
increase in the presence of multiprogrammed workloads, OS, and
hypervisor interference. Tile 63 runs dedicated system software
and is excluded from measurement. Off-tile access takes 4–6 times
longer.

always write-through to the home cache with a store update
if the line is found in the L1 cache. Load latency of a cache line
depends on home cache location and is nonuniform as shown
in Figure 5. Remote home caches take four to six times longer
to access than local home caches.

TILEPro64 system software also provides data distri-
bution mechanisms. Cache lines in a main memory page
can be distributed uniformly to all home caches or to a
single home cache. The home cache of an allocated line can
additionally be changed at a high cost through migration
[14]. The performance impact of data distribution on the

TILEPro64 is similar to NUMA systems. Memory alloca-
tions through malloc are uniformly distributed to all home
caches.

We now explain our experiment to demonstrate locality-
aware scheduling effectiveness. Consider map [15]—a com-
mon parallelization pattern as shown in Listing 1. Tasks
operate on separate chunks of data in the map pattern. We
execute the map program using two different strategies. Data
is uniformly distributed to all home caches and work-stealing
scheduling is used to assign tasks to idle cores in the first
strategy. Data is distributed per-allocation to separate home
caches and locality-aware scheduling is used to assign tasks
to cores such that data is supplied by the local home cache in
the second strategy.

The top and bottomgraphs in the first columnof Figure 10
show performance of the map program under the two
strategies, respectively. The second strategy outperforms the
first. Tasks execute faster under locality-aware scheduling
since data is supplied by the local home cache. Selectively
assigning home caches to cache lines rather than uniformly
distributing them is beneficial for locality-aware scheduling.
Task performance suffers from nonuniform home cache
access latencies due to uniform data distribution and work-
stealing scheduling.

We conclude that overheads from memory access laten-
cies are significant in OpenMP programs. Proper choice of
data distribution and scheduling is crucial for performance.

6 Scientific Programming

/* Allocate and initialize data */

for(int i=0; i<N; i++) {

list[i] = malloc(sizeof(int) * SZ);

initialize(i, list[i], SZ);

}

/* Work in parallel */

for(int i=0; i<N; i++) {

#pragma omp task input(list[i][0:SZ-1])

map(list[i], SZ);

}

#pragma omp taskwait

Listing 1: Parallel map implemented using OpenMP tasks.

Our goal is to provide simple and portable abstractions
that minimize memory access overheads by performing data
distribution and enabling scheduling that can exploit locality
arising from data distribution.

3. Runtime System Assisted Data Distribution

Runtime system assisted data distribution is one mechanism
for increasing performance portability. Handling specific OS
and hardware details can be delegated to an architecture-
specific runtime system which has a global view of program
execution.

We propose a memory allocation and distribution mech-
anism controlled by a simple data distribution policy that is
chosen by the programmer. The distribution policy choice is
deliberately kept simple with only a few choices in order to
provide predictable behavior and be easy to understand for
the programmer, just like process binding hints in OpenMP
are defined. There are two different policies available to
the programmer as shown in Table 1. Unit and location
abstractions used in policy descriptions are explained in
Table 2.

We demonstrate how the data distribution policies
work and propose preliminary interfaces for policy selec-
tion using an example program in Listing 2. The pro-
gram makes memory allocation requests A–E which span
eight units of memory. Requests A and B use a proposed
interface called omp malloc whose signature is similar
to malloc. The user selects the data distribution policy
for requests A and B by setting a proposed environ-
ment variable called OMP DATA DISTRIBUTION to one
of standard, fine, or coarse prior to the program in-
vocation. The standard data distribution policy choice
refers to the machine default—first-touch for NUMA sys-
tems and uniform distribution for TILEPro64. Memory
requested using omp malloc is distributed to different loca-
tions based on the global data distribution policy selected.
Requests C–E use omp malloc specific—an extension
of omp malloc—to override the global policy and distribute
specifically instead.Machine level results of policy actions are
shown in Figure 6.

We provide heuristics in Table 3 to assist in the choice
of data distribution policy. The heuristics are based on the

Table 3: Heuristics to select data distribution scheme.

Number of tasks operating on data
One Many

Number of
malloc calls

One Regular malloc Fine
Many Coarse Coarse

number of data allocations through malloc in the origi-
nal program and the number of tasks operating on those
allocations. Programs with many tasks and a single malloc
call will benefit from using the fine policy since cores can
issue multiple outstanding requests to different nodes/home
caches. Programswith a single task andmanymalloc calls can
use the coarse policy to improve bandwidth since memory is
likely to be fetched from different network links. Programs
with many malloc calls and many tasks that operate on
allocated data are likely to improve performance with the
coarse policy due to reduced network contention assuming
tasks work on allocations in isolation.

We have built the runtime system assisted distribution
scheme using readily available support—libnuma on NUMA
systems and special allocation interfaces on the TILEPro64.
The overhead of the distribution scheme is low since our
implementation wraps the system API with a few additional
book-keeping instructions. The book-keeping instructions
track the round-robin node selection counter for the coarse
distribution policy and cache location affinity of data when
requested by the locality-aware scheduling policy described
in Section 4.

Programmers do not need to be concerned about NUMA
node/home cache identifiers and topology in order to use
our data distribution scheme. The distribution policy choice
is kept simple with only those choices that are easy to
predict and understand for the programmer. Programmers
can also incrementally distribute data by targeting specific
memory allocation sites. We also provide precise control for
expert programmers in our implementation allowing them
to override the global data distribution policy and request
fine or coarse data distribution for a specific allocation.
We have implemented two simple distribution policies to
demonstrate the potential of our data distribution scheme.
Runtime system developers can use the extensibility of our

Scientific Programming 7

int main(. . .) {

. . .

/* Allocate data */

size t sz = 8 * UNIT SIZE;

/* NUMA system: UNIT SIZE = PAGE SIZE */

/* TILEPro64: UNIT SIZE = PAGE SIZE/CACHE LINE SIZE */

void* A = omp malloc(sz);

void* B = omp malloc(sz);

void* C = omp malloc specific(sz, OMP MALLOC COARSE);

void* D = omp malloc specific(sz, OMP MALLOC COARSE);

void* E = omp malloc specific(sz, OMP MALLOC FINE);

/* Initialize data */

init(A, B, C, D, E, sz, . . .);

/* Work in parallel */

#pragma omp parallel

{

. . .

}

. . .

}

$ export OMP DATA DISTRIBUTION=<standard | fine | coarse>

$ <invoke program>

Listing 2: Program using the proposed interface for selecting data distribution policies.

A0, A4,
B0, B4

A0–A7 B0–B7

A1, A5,
B1, B5

A2, A6,
B2, B6

A3, A7,
B3, B7

Page/cache line distribution

Fine

Coarse

Specific

Node/
tile 0

Node/
tile 1

Node/
tile 2

Node/
tile 3

C0, C3, C6
D0–D7

C1, C4, C7
E0–E7

C2, C5

X0 X1 X2 X3

X4 X5 X6 X7

Pages/cache lines

Allocation X

Figure 6: Data distribution results on an example four-node/four-tile ma-chine. We simplify illustration by using eight cache lines per page.
In reality, over 64 cache lines typically make up a page.

scheme to provide more advanced distribution policies as
plug-ins. Programmers can be educated about distribution
policies in amanner similar to existing education about for-
loop scheduling policies within the OpenMP specification.

4. Locality-Aware Task Scheduling

Our implementation of locality-aware scheduling aims to
further leverage the performance benefits of data distribu-
tion. The main idea behind our locality-aware scheduler is

to schedule tasks to minimize memory access latencies. The
locality-aware scheduler uses an architecture-specific task
queue organization and takes locality-aware decisions both
during work-dealing and work-stealing. Work-dealing refers
to actions taken at the point of task creation and work-
stealing is actions taken when threads are idle.

Knowing the data footprint of tasks is crucial for the
scheduler we expect data footprint information to come from
the programmer through task definition clauses which do not
yet exist in the OpenMP specification. We currently estimate

8 Scientific Programming

the data footprint of each task through the information
provided by the depend clause in the OpenMP 4.0 speci-
fication. The estimate is fragile when programmers specify
an incomplete depend clause that is sufficient for scheduling
decisions but underestimate the data footprint.The limitation
can be overcome if programmers use low-effort expressive
constructs such as array-sections to express a large fraction of
the data footprint in the depend clause in return for improved
performance.

The locality-aware scheduler binds task queues to archi-
tectural locations to which data can be distributed. There is
a task queue per NUMA node on NUMA systems and per
home cache on the TILEPro64. Tasks are added at the front
and removed from the back of task queues. The scheduler
binds one thread to each core.

4.1. NUMASystems. Wedescribe thework-dealing algorithm
of the locality-aware scheduler in Algorithm 1.The scheduler
deals a task at the point of task creation to the node queue
having the least total memory access latency for pages not
in the last-level cache (LLC). The individual access latencies
are computed by weighting NUMA node distances with the
node-wise distribution𝐷 of the data footprint of the task.

NUMAnode distances are obtained fromOS tableswhich
are cached by the scheduler for performance reasons. The
distribution 𝐷 is calculated using page locality information
cached by the data distribution mechanism. The complexity
of the access cost computation is 𝑂(𝑁2) where 𝑁 is the
number of NUMA nodes in the system, typically a small
number.

Tasks are immediately added to the local queue when
scheduling costs outweigh the performance benefits
decided by two thresholds. The first threshold—𝑆𝑢𝑚(𝐷) >
𝑠𝑖𝑧𝑒𝑜𝑓(𝐿𝐿𝐶)/𝐶—ensures that tasks have a working set size
exceeding the LLC size per core. The second threshold—
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒V𝑖𝑎𝑡𝑖𝑜𝑛(𝐷) > 0—ensures that scheduling effort
will not be wasted on tasks with a perfect data distribution.

Distributed task queues may lead to load-imbalance
and in our experience the performance benefits from load-
balancing often trumps those from locality.We have therefore
implemented a work-stealing algorithm to balance the load.
Stealing is still preferred over idle threads although cycles
spent dealing tasks are wasted.

We show the stealing algorithm of the scheduler in
Algorithm 2. Threads attempt to steal when there is no work
in the local queue. Candidate queues for steals are ranked
based on NUMA node distances. The algorithm includes
a threshold which prevents tasks from being stolen from
nearly empty task queues whichwould incur further steals for
threads in the victim node. There is an exponential back-off
for steal attempts when work cannot be found.

4.2. Manycore Processors. We describe the work-dealing
algorithm of the locality-aware scheduler in Algorithm 3.
The scheduler deals a task to the home cache queue having
the least total memory access latency for cache lines not
in the private L1 cache. The individual access latencies are
computed by weighting home cache access latencies with the
home-cache distribution 𝐷 of the data footprint of the task.

Home cache access latencies are calculated by benchmarking
the interconnection during runtime system initialization.The
scheduler avoids recalculation by saving latencies across runs.
The distribution 𝐷 is calculated using home cache locality
information cached by the data distribution mechanism.The
complexity of the access cost computation is𝑂(𝑁2) where𝑁
is the number of home caches in the system.

Tasks are immediately added to the local queue if schedul-
ing costs outweigh the performance benefits. The algorithm
ignores distribution policies which potentially distribute data
finely to all home caches (condition 𝑝 == 𝑐𝑜𝑎𝑟𝑠𝑒). Only tasks
with a working set exceeding the L1 data cache are analyzed
(condition 𝑠𝑢𝑚(𝐷) > 𝑠𝑖𝑧𝑒𝑜𝑓(𝐿1)).

Another condition—exists a—minimizes scheduling
effort by using programmer information about the access
intensity to data dependences in the list T.depend list.
The index 𝑎 denotes the most intensely accessed data
dependence in the list. The scheduler queues tasks with
intensity information in the queue associated with the home
cache containing the intensively accessed dependence. Note
that we rely on a custom clause to indicate intensity since
existing task definition clauses in OpenMP do not support
the notion.

We have implemented a work-stealing algorithm to bal-
ance load on task queues. Queues are grouped into fixed size
vicinities and idle threads are allowed to steal tasks from
queues in the same vicinity. Cross-vicinity steals are forbid-
den. Threads additionally back off when work cannot be
found. The size of the vicinity is selected by the programmer
prior to execution. We allow vicinity sizes of 1, 4, 8, 16, and
63 tiles in our implementation as shown by tile groups in
Figure 4. A vicinity size of 1 only includes the task queue of
the member thread; vicinity size of 63 includes task queues of
all threads.

5. Experimental Setup

We evaluated data distribution assistance and locality-aware
scheduling using benchmarks described in Table 4. The
benchmarks were executed using MIR, a task-based runtime
system library which we have developed. MIR supports the
OpenMP tied tasks model and provides hooks to add custom
scheduling and data distribution policies which allows us
to compare different policies within the same system. We
programmed the evaluation benchmarks using the runtime
system interface directly since MIR does not currently have a
source-to-source translation front-end.

We ran each benchmark in isolation 20 times for all valid
combinations of scheduling and data distribution policies.
We recorded the execution time of the critical path of the par-
allel section and collected execution traces and performance
counter readings on an additional set of runs for detailed
analysis.

We used a work-stealing scheduler as the baseline for
comparing the locality-aware scheduler. The work-stealing
scheduler binds one thread to each core and uses one task
queue per core. The task queue is the lock-free dequeue by
Chase and Lev [16]. The implementation is an adaption of
the queue from the Glasgow Haskell Compiler version 7.8.3

Scientific Programming 9

Table 4: Pattern-based [15] and real-world benchmarks.

Benchmark Behavior
Data distribution

heuristic
guidance

Map
(pattern-based) 1D vector scaling Coarse

Reduction
(pattern-based)

Iterative implementation of
merge
phase of BOTS Sort

Fine

Vecmul Vector cross product Coarse

Matmul

Blocked matrix
multiplication with
BLAS operations in task
computation

Coarse

Jacobi Blocked 2D heat equation
solver Fine

SparseLU

LU factorization of sparse
matrix.
Derived from BOTS
SparseLU.

Coarse

runtime system. Each thread adds newly created tasks to its
own task queue. Threads look for work in their own task
queue first. Threads with empty task queues select victims
for stealing in a round-robin fashion. Both queuing and
stealing decisions of the work-stealing scheduler are fast but
can result in high memory latencies during task execution
since the scheduling is oblivious to data locality and NUMA
node/remote cache access latencies.

5.1. NUMA System. We used the Opteron 6172 processor
based eight-NUMA node system described in Section 2
for evaluation. Both runtime system and benchmarks were
compiled using the Intel C compiler v13.1.1 with -O3 opti-
mization. We used per-core cycle counters and dispatch stall
cycle counters to, respectively, measure execution time and
memory access latency of tasks.

5.2. Manycore Processor. Both runtime system and bench-
marks were compiled using the Tilera GNU compiler with
-O3 optimization. We used integer versions of evaluation
benchmarks to rule out effects of slow software-emulated
floating-point operations. Benchmark inputs were selected
to minimize off-chip memory access. We also minimized
the adverse effect of evicting local home cache entries to
memory by disabling local L2 (inclusive) caching. We used
per-core cycle counters and data cache stall cycle counters
to, respectively, measure execution time and memory access
latency of tasks.

The locality-aware scheduler avoids long home cache
access latencies.TheL1 cache alsomitigates the impact of long
home cache access latencies. We separated effects of locality-
aware scheduling by disabling L1 caching in previouswork [9]
but enabled L1 caching in the current setup for amore realistic
scenario.

0

1

2

Jacobi Map Matmul Reduction Sparselu

N
or

m
al

iz
ed

 ex
ec

ut
io

n
tim

e

Work-stealing numactl-interleave Work-stealing fine
Work-stealing coarse Locality-aware fine
Locality-aware coarse

Figure 7: Performance of data distribution combined with work-
stealing and locality-aware scheduling on eight-node Opteron
system. Execution time is normalized to performance of work-
stealing with memory page interleaving using numactl for each
benchmark. Inputs to Map: 48 floating-point vectors, 1MB each;
Jacobi: 16384 × 16384 floating-point matrix and block size = 512;
Matmul: 4096 × 4096 floating-point matrix and block size =
128; SparseLU: 8192 × 8192 floating-point matrix and block size
= 256; Reduction: 256MB floating-point array and depth = 10.
Combination of numactl page-wise interleaving and locality-aware
scheduling is excluded since the locality-aware scheduler does not
currently support querying numactl for page locality information.
Locality-aware scheduling, in combination with heuristic-guided
data distribution, improves or maintains performance compared to
work-stealing.

6. Results

We show performance of evaluation benchmarks for com-
binations of data distribution and scheduling policy for the
eight-node Opteron system in Figure 7. The fine distribution
is a feasible replacement for numactl since execution times
with the work-stealing scheduler are comparable to page-
wise interleaving using numactl. Performance degrades when
distribution policies violate the guidelines in Table 3 for both
work-stealing and locality-aware schedulers. For example,
performance of Matmul degrades when the fine distribution
policy is used. The locality-aware scheduler coupled with
proper data distribution improves or maintains performance
compared to the work-stealing scheduler for each bench-
mark.

We use thread timelines for Map and Matmul in Figure 8
to explain that reduced memory page access time is the main
reason behind the difference in task execution times of the
work-stealing and locality-aware scheduler.

The thread timeline indicates time spent by threads in dif-
ferent states and state transition events.Threads are shown on
the 𝑦-axis, time is shown on the 𝑥-axis, and memory access
latencies are shown on the 𝑧-axis. The 𝑧-axis is represented
using a linear green to blue gradient which encodes memory

10 Scientific Programming

W
or

k-
ste

al
in

g
W

or
k-

ste
al

in
g

fin
e

W
or

k-
ste

al
in

g
co

ar
se

Lo
ca

lit
y-

aw
ar

e fi
ne

Lo
ca

lit
y-

aw
ar

e c
oa

rs
e

W
or

k-
ste

al
in

g
W

or
k-

ste
al

in
g

fin
e

W
or

k-
ste

al
in

g
co

ar
se

Lo
ca

lit
y-

aw
ar

e fi
ne

Lo
ca

lit
y-

aw
ar

e c
oa

rs
e

Map Matmul

963,782,589 cycles 909,591,936 cycles

Figure 8: Thread timelines showing task execution on the eight-node Opteron system. Threads are shown on the 𝑦-axis and time is shown
on the 𝑥-axis. Memory access latencies are encoded using a green-blue gradient. Tasks stall for fewer cycles under locality-aware scheduling
combined with heuristic-guided data distribution.

Scientific Programming 11

access latencies measured at state transition boundaries.
Green represents lower memory access latencies and blue
represents higher ones. We filter out all thread states except
task execution. Timelines of a benchmark are time aligned
(same 𝑥-axis span) and gradient aligned (same 𝑧-axis span).
Timelines are additionally zoomed-in to focus on task execu-
tion and omit runtime system initialization activity.

Understanding benchmark structure is also necessary
to explain the performance difference. Each task in the
Map benchmark scales a separate vector in a list. Coarse
distribution places all memory pages of a given vector in
a single node whereas fine distribution spreads the pages
uniformly across all nodes.

The locality-aware scheduler combined with coarse dis-
tribution minimizes node access latency by ensuring that
each task accesses its separate vector from the local node.The
behavior can be confirmed by low memory access latencies
seen in Figure 8 (light green). The work-stealing scheduler
with coarse distribution loses performance due to increased
remote memory access latencies as indicated by the relatively
higher memory access latencies (dark green and blue).

We can also explain performance of cases that violate
the guidelines by using timelines. The locality-aware sched-
uler with fine distribution detects that pages are uniformly
distributed across nodes and places all tasks in the same
local queue. The imbalance can not be completely recovered
from since steals are restricted. The work-stealing scheduler
with fine distribution balances loads more effectively in
comparison.

Each task in the Matmul benchmark updates a block in
the output matrix using a chain of blocks from two input
matrices. Coarse distribution places all memory pages of a
given block in a single node whereas fine distribution spreads
the pages uniformly across all nodes. The memory pages
touched by a task are located on different nodes for both
coarse and fine distribution. The locality-aware scheduler
with fine distribution detects that data is evenly distributed
and falls back to work-stealing by queuing tasks in local
queues. Task execute for a longer timewith both schedulers as
indicated by similar memory access latency (similar intensity
of green and blue). However, the locality-aware scheduler
with coarse distribution exploits locality arising from dis-
tributing blocks in round-robin as indicated by the relatively
lower memory access latency (lighter intensity of green and
blue) in comparison to the work-stealing scheduler.

We show the performance of evaluation benchmarks
for combinations of data distribution and scheduling pol-
icy for the TILEPro64 processor in Figure 9. Results are
similar to those on the eight-node Opteron system. Per-
formance degrades when distribution policies are chosen
against heuristic guidelines in Table 3 for both work-stealing
and locality-aware schedulers. The locality-aware scheduler
coupled with proper data distribution improves or maintains
performance compared to the work-stealing scheduler for
each benchmark. Locality-aware scheduler performance is
also sensitive to vicinity sizes.

SparseLU is a counter-example whose performance
degradeswith heuristic-guided coarse distribution andwork-
stealing scheduling. Performance is also maintained with

0

1

2

3

Map Reduction Sparselu Vecmul

N
or

m
al

iz
ed

 ex
ec

ut
io

n
tim

e

Work-stealing fine Work-stealing coarse
Locality-aware coarse vicinity-1 Locality-aware coarse vicinity-4
Locality-aware coarse vicinity-8 Locality-aware coarse vicinity-16
Locality-aware coarse vicinity-63

Figure 9: Performance of data distribution combined with work-
stealing and locality-aware scheduling on TILEPro64. Execution
time is normalized to performance of work-stealing scheduling with
fine distribution for each benchmark. Inputs to Map: 63 integer
vectors, 32 kB each; Reduction: 700 kB integer array and depth =
6; Vecmul: 128 integer vectors, 28 kB each; SparseLU: 1152 × 1152
integer matrix, block size = 36, and intensity heuristic enabled for
tasks executing the bmod function. Locality-aware scheduling, in
combination with heuristic-guided data distribution, improves or
maintains performance compared to work-stealing.

both coarse and fine distribution on NUMA systems.
SparseLU tasks have complex data access patterns which
require a data distribution scheme more advanced than fine
and coarse.

Reduction allocates memory using a single malloc call.
Coarse distribution is a bad choice since all cache lines are
allocated in a single home cache. Locality-aware scheduling
serializes execution by scheduling tasks on the core associated
with the single home cache. Stealing from larger vicinities
balances load to win back performance.

Thread timelines for Map and Vecmul in Figure 10 con-
firm that reduced cache line access time is the main reason
behind the reduction in task execution times. The work-
stealing scheduler loses performance by being oblivious to
locality despite balancing the load evenly.

We can explain vicinity sensitivity using timelines for
Map andVecmul benchmarks in Figure 11. Increasing vicinity
sizes for Map increases the risk of tasks being stolen by
threads far from the home cache. Stolen tasks experience
large and nonuniform cache line access latencies as shown
by long blue bars. Threads fast enough to pick tasks from
their own queue finish execution faster. Larger vicinity sizes
promote better load-balancing and improve performance in
Vecmul.

The locality-aware scheduler can safely be used as the
default scheduler for all workloads without performance
degradation. There is a performance benefit in using the
locality-aware scheduler for workloads which provide strong
locality with data distribution. The locality-aware scheduler

12 Scientific Programming

W
or

k-
ste

al
in

g
fin

e
W

or
k-

ste
al

in
g

co
ar

se
Lo

ca
lit

y-
aw

ar
e c

oa
rs

e b
es

t v
ic

in
ity

W
or

k-
ste

al
in

g
fin

e
W

or
k-

ste
al

in
g

co
ar

se
Lo

ca
lit

y-
aw

ar
e c

oa
rs

e b
es

t v
ic

in
ity

Map Vecmul

4,260,998,872 cycles 5,626,965,215 cycles

Figure 10: Thread timelines showing task execution on the TILEPro64. Threads are shown on the 𝑦-axis and time is shown on the 𝑥-axis.
Memory access latencies are encoded using a green-blue gradient. Tasks access memory faster under locality-aware scheduling combined
with heuristic-guided data distribution.

falls back to load-balancing similar to work-stealing sched-
uler for workloads which do not improve locality with data
distribution.

7. Related Work

Numerous ways of how to distribute data programmatically
on NUMA systems have been proposed in the literature. We
discuss the proposals that are closest to our approach.

Huang et al. [17] propose extensions to OpenMP to dis-
tribute data over an abstract notion of locations.The primary
distribution scheme is a block-wise distribution which is
similar to our coarse distribution scheme.The scheme allows
precise control of data distribution but relies on compiler
support and additionally requires changes to the OpenMP
specification. Locations provide fine-grained control over
data distribution at the expense of programming effort.

The Minas framework [4] incorporates a sophisticated
data distribution API which gives precise control on where

memory pages end up. The API is intended to be used by an
automatic code transformation in Minas that uses profiling
information for finding the best distribution for a given
program. The precise control is powerful but requires expert
programmerswho are capable of writing code that will decide
on the distribution required.

Majo and Gross [18] use fine-grained data distribution
API to distribute memory pages. Execution profiling is used
to get data access patterns of loops and used for both guiding
code transformation and data distribution. Data distribution
is performed in between loop iterations which guarantee that
each loop iteration accesses memory pages locally.

Runtime tracing techniques that provide automatic page
migration based on hardware monitoring through perfor-
mance counters have the same end goal as we do: to provide
good performance with low programming effort. Nikolopou-
los et al. [19] pioneered the idea of page migration with user-
level framework. Page access is traced in the background
and hot pages are migrated closer to the accessing node.

Scientific Programming 13

Map Vecmul

Vi
ci

ni
ty

-1
Vi

ci
ni

ty
-4

Vi
ci

ni
ty

-8
Vi

ci
ni

ty
-1
6

Vi
ci

ni
ty

-6
3

Vi
ci

ni
ty

-6
3

Vi
ci

ni
ty

-1
6

Vi
ci

ni
ty

-8
Vi

ci
ni

ty
-4

Vi
ci

ni
ty

-1

1,636,294,260 cycles 1,855,088,238 cycles

Figure 11: Vicinity size sensitivity on the TILEPro64. On each thread timeline, threads are shown on the 𝑦-axis and time is shown on the
𝑥-axis. Memory access latencies are encoded using a green-blue gradient. Increasing vicinity size improves load balance but adversely affects
memory access time.

14 Scientific Programming

Terboven et al. [20] presented a next-touch dynamic page
migration implementation on Linux. An alternative approach
to page migration, which is expensive, is to move threads
instead, an idea exploited by Broquedis et al. [21] in a
framework where decisions to migrate threads and data are
based on information about thread idleness, available node
memory, and hardware performance counters. Carrefour
is a modification of the Linux kernel that targets traffic
congestion for NUMA systems through traffic management
by page replication and page migration [22]. One advantage
of the approach is that performance will improve without
having to modify applications.

Dynamic page migration requires no effort from the
programmer, which is a double edged sword. The benefit of
getting good performance without any effort is obvious, but
when the programmer experiences bad performance it is dif-
ficult to analyze the root cause of the problem. Performance
can also be affected by input changes. Attempts at reducing
the cost of page migration by providing native kernel support
give promising results for matrix multiplication on large
matrices [23].

Locality-aware scheduling for OpenMP has been studied
extensively. We focus on other task-based approaches since
our approach is based on tasks.

Locality domains where programmers manually place
tasks in abstract bins have been proposed [1, 24]. Tasks are
scheduled within their locality domain to reduce remote
memory access. MTS [25] is a scheduling policy struc-
tured on the socket hierarchy of the machine. MTS uses
one task queue per socket which is similar to our task
queue per NUMA node. Only one idle core per socket is
allowed to steal bulk work from other sockets. Charm++
uses NUMA topology information and task communica-
tion information to reduce communication costs between
tasks [26]. Chen et al. [27] reduce performance degradation
from cache pollution and stealing tasks across sockets in
multisocket systems by memory access aware task-graph
partitioning.

Memphis uses hardware monitoring techniques and pro-
vides methods to fix NUMA problems on general class
of OpenMP computations [7]. Monitoring crossbar (QPI)
related and LLC cache miss related performance counters
is used to measure network activity. Memphis provides
diagnostics to the programmer for when to pin threads,
distribute memory, and keep computation in a consistent
shape throughout the execution. Their recommendations
have inspired the design of our locality-aware scheduler and
our evaluation methodology.

Liu and Mellor-Crummey [28] add detailed NUMA
performance measurement and data distribution guidance
capability to HPCToolkit. They report several case studies
where coarse (block-wise) distribution improves perfor-
mance over default policies. Their multiarchitecture tool
is a good starting-point for implementing advanced data
distribution policies.

Schmidl et al. propose the keywords scatter and compact
for guiding thread placement using SLIT-like distance matri-
ces [29]. Our names for data distribution, fine and coarse, are
directly inspired by their work.

Task and data affinity mechanisms discussed in our
work are greatly inspired by the large body of research on
NUMA optimizations for OpenMP runtime systems. The
implicit memory allocation and architectural locality based
scheduling mechanisms we implemented in the runtime
system are inspired by a similar work on NUMA systems by
Broquedis et al. [30].

Few works have tackled data distribution and locality-
aware scheduling on manycore processors.

Yoo et al. [31] provide an in-depth quantitative analysis
of locality-aware scheduling for data-parallel programs on
manycore processors. They conclude that work-stealing
scheduling cannot capture locality present in data-parallel
programs which we also demonstrate through scheduling
results for the map program. They propose a sophisticated
locality-aware scheduling and stealing technique that max-
imizes the probability of finding the combined memory
footprint of a task group in the lowest level cache that
can accommodate the footprint. The technique however
requires task grouping and ordering information obtained
by profiling read-write sets of tasks and off-line graph
analysis.

Vikranth et al. [32] propose to restrict stealing to groups
of cores based on processor topology similar to our vicinity-
based stealing approach.

Tousimojarad and Vanderbauwhede [33] cleverly reduce
access latencies to uniformly distributed data by using copies
whose home cache is local to the access thread on the
TILEPro64 processor. Zhou and Demsky [2] build a NUMA-
aware adaptive garbage collector that migrate objects to
improve locality onmanycore processors. We target standard
OpenMP programs written in C which makes it difficult to
migrate objects.

Techniques tominimize cache access latency by capturing
access patterns and laying out data both at compile-time
and runtime have been proposed for manycore processors.
Lu et al. [34] rearrange affine for-loops during compilation
to minimize access latency to data distributed uniformly
on banked shared caches of manycore processors. Marongiu
and Benini [35] extend OpenMP with interfaces to partition
arrays which are then distributed by their compiler backend
based on profiled access patterns. The motivation for their
work is enabling data distribution on MPSoCs without
hardware support for memory management. Li et al. [36,
37] use compilation-time information to guide the runtime
system in data placement. R-NUCA automatically migrates
shared memory pages to shared cache memory using
OS support reducing hardware costs for cache coherence
[38].

8. Conclusions

We have presented a data distribution and memory
page/cache line locality-aware scheduling technique that
gives good performance in our tests on NUMA systems and
manycore processors. The major benefit is usage simplicity
which allows ordinary programmers to reduce their suffering
fromNUMA effects which hurt performance. Our technique
is easy to adopt since it is built using standard components

Scientific Programming 15

provided by the OS.The locality-aware scheduler can be used
as the default scheduler since it will fall back to behaving
like a work-stealing scheduler when locality is missing,
something also indicated from our measurements.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The work was partially funded by European FP7 project
ENCORE Project Grant Agreement no. 248647 and Artemis
PaPP Project no. 295440.

References

[1] S. L. Olivier, B. R. de Supinski, M. Schulz, and J. F. Prins,
“Characterizing and mitigating work time inflation in task
parallel programs,” in Proceedings of the 24th International Con-
ference for High Performance Computing, Networking, Storage
and Analysis (SC '12), pp. 1–12, Salt Lake City, Utah, USA,
November 2012.

[2] J. Zhou and B. Demsky, “Memory management for many-core
processors with software configurable locality policies,” ACM
SIGPLAN Notices, vol. 47, no. 11, pp. 3–14, 2012.

[3] F. Broquedis, J. Clet-Ortega, S. Moreaud et al., “Hwloc: a
generic framework for managing hardware affinities in HPC
applications,” in Proceedings of the 18th Euromicro Conference
on Parallel, Distributed andNetwork-Based Processing (PDP ’10),
pp. 180–186, February 2010.

[4] C. P. Ribeiro, M. Castro, J.-F. Méhaut, and A. Carissimi,
“Improving memory affinity of geophysics applications on
NUMA platforms using minas,” in High Performance Com-
puting for Computational Science—VECPAR 2010, vol. 6449
of Lecture Notes in Computer Science, pp. 279–292, Springer,
Berlin, Germany, 2011.

[5] A. Kleen,ANUMAAPI for Linux, Novel, Kirkland,Wash, USA,
2005.

[6] C. Terboven, D. Schmidl, T. Cramer, and D. AnMey, “Assessing
OpenMP tasking implementations on NUMA architectures,” in
OpenMP in a Heterogeneous World, vol. 7312 of Lecture Notes in
Computer Science, pp. 182–195, Springer, Berlin, Germany, 2012.

[7] C. McCurdy and J. S. Vetter, “Memphis: finding and fixing
NUMA-related performance problems on multi-core plat-
forms,” in Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS ’10), pp.
87–96, March 2010.

[8] A. Muddukrishna, P. A. Jonsson, V. Vlassov, and M. Brors-
son, “Locality-aware task scheduling and data distribution on
NUMA systems,” in OpenMP in the Era of Low Power Devices
and Accelerators, vol. 8122 of Lecture Notes in Computer Science,
pp. 156–170, Springer, Berlin, Germany, 2013.

[9] A. Muddukrishna, A. Podobas, M. Brorsson, and V. Vlassov,
“Task scheduling on manycore processors with home caches,”
in Euro-Par 2012: Parallel Processing Workshops, Lecture Notes
in Computer Science, pp. 357–367, Springer, Berlin, Germany,
2013.

[10] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade,
“Barcelona OpenMP tasks suite: a set of benchmarks targeting

the exploitation of task parallelism in OpenMP,” in Proceedings
of the International Conference on Parallel Processing (ICPP ’09),
pp. 124–131, Vienna, Austria, September 2009.

[11] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B.
Hughes, “Cache hierarchy and memory subsystem of the AMD
opteron processor,” IEEE Micro, vol. 30, no. 2, pp. 16–29, 2010.

[12] D. Molka, R. Schöne, D. Hackenberg, and M. Müller, “Memory
performance and SPEC OpenMP scalability on quad-socket
x86 64 systems,” in Algorithms and Architectures for Parallel
Processing, vol. 7016 of Lecture Notes in Computer Science, pp.
170–181, Springer, Berlin, Germany, 2011.

[13] AMD, BIOS and kernel developer’s guide for AMD family 10h
processors, 2010.

[14] Tilera, Tile Processor User Architecture Manual, 2012, http://
www.tilera.com/scm/docs/UG101-User-Architecture-Reference
.pdf.

[15] M. McCool, J. Reinders, and A. Robison, Structured Parallel
Programming: Patterns for Efficient Computation, Elsevier, 2012.

[16] D. Chase andY. Lev, “Dynamic circular work-stealing deque,” in
Proceedings of the 17th Annual ACM Symposium on Parallelism
inAlgorithms andArchitectures (SPAA ’05), pp. 21–28, ACM, Las
Vegas, Nev, USA, July 2005.

[17] L. Huang, H. Jin, L. Yi, and B. Chapman, “Enabling locality-
aware computations in OpenMP,” Scientific Programming, vol.
18, no. 3-4, pp. 169–181, 2010.

[18] Z.Majo andT. R. Gross, “Matchingmemory access patterns and
data placement for NUMA systems,” in Proceedings of the 10th
International Symposium on Code Generation and Optimization
(CGO ’12), pp. 230–241, April 2012.

[19] D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Polychronopou-
los, J. Labarta, and E. Ayguade, “Is data distribution necessary
in OpenMP?” in Proceedings of the ACM/IEEE Conference on
Supercomputing (CDROM ’07), p. 47, November 2000.

[20] C. Terboven, D. Mey, D. Schmidl, H. Jin, and T. Reichstein,
“Data and thread affinity in OpenMP programs,” in Proceedings
of the Workshop on Memory Access on Future Processors: A
Solved Problem? (MAW ’08), pp. 377–384, May 2008.

[21] F. Broquedis, N. Furmento, B. Goglin, R. Namyst, and P.-A.
Wacrenier, “Dynamic task and data placement over NUMA
architectures: an OpenMP runtime perspective,” in Evolving
OpenMP in an Age of Extreme Parallelism, vol. 5568 of Lecture
Notes in Computer Science, pp. 79–92, Springer, Berlin, Ger-
many, 2009.

[22] M.Dashti, A. Fedorova, J. Funston et al., “Trafficmanagement: a
holistic approach to memory placement on NUMA systems,” in
Proceedings of the 18th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS ’13), pp. 381–394, ACM, March 2013.

[23] B. Goglin and N. Furmento, “Enabling high-performance
memory migration for multithreaded applications on linux,” in
Proceedings of the 23rd IEEE International Parallel &Distributed
Processing Symposium (IPDPS ’09), pp. 1–9, May 2009.

[24] M. Wittmann and G. Hager, “Optimizing ccNUMA local-
ity for task-parallel execution under OpenMP and TBB on
multicore-based systems,” Computing Research Repository,
http://arxiv.org/abs/1101.0093.

[25] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, M. Spiegel, and
J. F. Prins, “OpenMP task scheduling strategies for multicore
NUMA systems,” International Journal of High Performance
Computing Applications, vol. 26, no. 2, pp. 110–124, 2012.

16 Scientific Programming

[26] L. L. Pilla, C. P. Ribeiro, D. Cordeiro, and J.-F. Méhaut,
“Charm++ on NUMA platforms: the impact of SMP optimiza-
tions and a NUMA-aware load balancer,” in Proceedings of the
4thWorkshop of the INRIA-Illinois Joint Laboratory on Petascale
Computing, Urbana, Ill, USA, 2010.

[27] Q. Chen, M. Guo, and Z. Huang, “Adaptive cache aware bitier
work-stealing in multisocket multicore architectures,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 12,
pp. 2334–2343, 2013.

[28] X. Liu and J. Mellor-Crummey, “A tool to analyze the perfor-
mance of multithreaded programs on NUMA architectures,” in
Proceedings of the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP ’14), pp. 259–271,
ACM, Orlando, Fla, USA, February 2014.

[29] D. Schmidl, C. Terboven, and D. an Mey, “Towards NUMA
support with distance information,” inOpenMP in the Petascale
Era, vol. 6665 of Lecture Notes in Computer Science, pp. 69–79,
Springer, Berlin, Germany, 2011.

[30] F. Broquedis, N. Furmento, B. Goglin, R. Namyst, and P.
Wacrenier, “Dynamic task and data placement over numa archi-
tectures: an openmp runtime perspective,” in Evolving OpenMP
in an Age of Extreme Parallelism, vol. 5568 of Lecture Notes in
Computer Science, pp. 79–92, Springer, Berlin, Germany, 2009.

[31] R. M. Yoo, C. J. Hughes, C. Kim, Y.-K. Chen, and C. Kozyrakis,
“Locality-aware taskmanagement for unstructured parallelism:
a quantitative limit study,” in Proceedings of the 25th ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA
'13), pp. 315–325, ACM, Portland, Ore, USA, July 2013.

[32] B. Vikranth, R. Wankar, and C. R. Rao, “Topology aware task
stealing for on-chip NUMA multi-core processors,” Procedia
Computer Science, vol. 18, pp. 379–388, 2013.

[33] A. Tousimojarad and W. Vanderbauwhede, “A parallel task-
based approach to linear algebra,” inProceedings of the IEEE 13th
International Symposium on Parallel and Distributed Computing
(ISPDC ’14), pp. 59–66, IEEE, 2014.

[34] Q. Lu, C. Alias, U. Bondhugula et al., “Data layout transfor-
mation for enhancing data locality on NUCA chip multipro-
cessors,” in Proceedings of the 18th International Conference on
Parallel Architectures and Compilation Techniques (PACT ’09),
pp. 348–357, IEEE, September 2009.

[35] A. Marongiu and L. Benini, “An OpenMP compiler for efficient
use of distributed scratchpad memory in MPSoCs,” IEEE
Transactions on Computers, vol. 61, no. 2, pp. 222–236, 2012.

[36] Y. Li, A. Abousamra, R. Melhem, and A. K. Jones, “Compiler-
assisted data distribution for chip multiprocessors,” in Proceed-
ings of the 19th International Conference on Parallel Architectures
and Compilation Techniques (PACT ’10), pp. 501–512, ACM,
September 2010.

[37] Y. Li, R. Melhem, and A. K. Jones, “Practically private: enabling
high performance CMPs through compiler-assisted data classi-
fication,” in Proceedings of the 21st International Conference on
Parallel Architectures and Compilation Techniques (PACT ’12),
pp. 231–240, ACM, September 2012.

[38] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reac-
tive NUCA: near-optimal block placement and replication in
distributed caches,” ACM SIGARCH Computer Architecture
News, vol. 37, no. 3, pp. 184–195, 2009.

Research Article
Multi-GPU Support on Single Node Using Directive-Based
Programming Model

Rengan Xu, Xiaonan Tian, Sunita Chandrasekaran, and Barbara Chapman

Department of Computer Science, University of Houston, Houston, TX 77004, USA

Correspondence should be addressed to Rengan Xu; rxu6@uh.edu

Received 15 May 2014; Accepted 29 September 2014

Academic Editor: Xinmin Tian

Copyright © 2015 Rengan Xu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Existing studies show that using single GPU can lead to obtaining significant performance gains. We should be able to achieve
further performance speedup if we use more than one GPU. Heterogeneous processors consisting of multiple CPUs and GPUs
offer immense potential and are often considered as a leading candidate for porting complex scientific applications. Unfortunately
programming heterogeneous systems requires more effort than what is required for traditional multicore systems. Directive-based
programming approaches are being widely adopted since they make it easy to use/port/maintain application code. OpenMP and
OpenACC are two popular models used to port applications to accelerators. However, neither of the models provides support for
multiple GPUs. A plausible solution is to use combination of OpenMP andOpenACC that forms a hybridmodel; however, building
this model has its own limitations due to lack of necessary compilers’ support. Moreover, the model also lacks support for direct
device-to-device communication. To overcome these limitations, an alternate strategy is to extend OpenACC by proposing and
developing extensions that follow a task-based implementation for supportingmultiple GPUs.We critically analyze the applicability
of the hybrid model approach and evaluate the proposed strategy using several case studies and demonstrate their effectiveness.

1. Introduction

Heterogeneous architecture has gained great popularity over
the past several years. These heterogeneous architectures
are usually comprised of accelerators that are attached to
the host CPUs, and such accelerators could include GPUs,
DSPs, and FPGA. Although heterogeneous architectures
help in increasing the computational power significantly,
they also pose potential challenges to programmers before
the capabilities of these new architectures could be well
exploited. CUDA [1] and OpenCL [2] offer two different
interfaces to programGPUs. But in order to perform effective
programming using these interfaces, the programmers need
to thoroughly understand the underlying architecture and the
language/model.This affects productivity. To overcome these
difficulties, a number of high-level directive-based program-
ming models have been proposed that include HMPP [3],
PGI [4], and OpenACC [5]. These models simply allow the
programmers to insert directives and runtime calls into an
application code, making partial or full Fortran and C/C++
code portable on accelerators. OpenACC is an emerging

interface for parallel programmers to easily create and write
simple code that executes on accelerators. In August 2013,
the OpenACC standard committee released a second version
of the API, OpenACC 2.0. Vendor companies, Cray and
PGI, provide compiler support for OpenACC 2.0. CAPS,
before they ran out of business, was also providing support
for OpenACC 2.0. The model is aiming to port scientific
applications tomore than oneGPU. Several large applications
in the fields of geophysics, weather forecast require massive
parallel computations and such applications could easily
benefit from multiple GPUs. How can we create suitable
software that could take advantage of multiple GPUs without
losing performance portability? This remains a challenge.
In a large cluster, multiple GPUs could reside within a
single node or across multiple nodes. If multiple GPUs are
used across nodes and each node has one GPU, then the
CPU memory associated with the corresponding GPU is
independent of the CPU memory associated with another
GPU. This makes the communication between the GPUs
easier since the CPU memories associated with those GPUs
are distributed. However, multiple GPUs could also be in

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 621730, 15 pages
http://dx.doi.org/10.1155/2015/621730

http://dx.doi.org/10.1155/2015/621730

2 Scientific Programming

a single node. Since each node in a cluster is usually a shared
memory system which has multiple processors, the same
sharedmemory is associated withmultiple GPUs.Thismakes
the communication between these GPUs more difficult since
they share the same CPU memory and thus the possible
memory synchronization issue arises.This paper only focuses
on multi-GPU within a single node.

In this paper, we develop strategies to exploit usage of
multiple GPUs.

(i) Explore the feasibility of programming multi-GPU
using the directive-based programming approaches.

(ii) Evaluate performance obtained by using theOpenMP
and OpenACC hybrid model on a multi-GPU plat-
form.

(iii) Propose extensions to OpenACC to support pro-
gramming multiple accelerators within a single node.

We categorize our experimental analysis into three types: (a)
port completely independent routines or kernels to multi-
GPU, (b) divide one large workload into several independent
subworkloads and then distribute each subworkload to one
GPU. In these two cases, there is no communication between
the GPUs, and (c) use workload in manner that requires
different GPUs to communicate with each other.

The organization of this paper is as follows. Section 2
highlights related work in this area; Section 3 provides an
overview of OpenMP and OpenACC directive-based pro-
grammingmodels. In Section 4, we will discuss our strategies
to develop the hybrid model using OpenMP and OpenACC-
based hybrid model and port three scientific applications to
multi-GPU within single node with NVIDIA’s GPU cards
attached. In Section 5 we propose newer extensions to the
OpenACC programmingmodel addressing limitations of the
hybrid model. Section 6 provides the conclusion of our work.

2. Related Work

Existing research on directive-based programming approach
for accelerators focuses on mapping applications to only
single GPU. Liao et al. [6] provided accelerator support
using OpenMP 4.0 in ROSE compiler. Tian et al. [7] and
Reyes et al. [8] developed open source OpenACC compilers,
OpenUH, and accULL, respectively. Both their approaches
use source-to-source technique to translate OpenACC pro-
gram to either CUDA program or OpenCL program. Besides
compiler development, there is also extensive research [9–11]
on the porting applications using OpenACC. These works,
however, all utilize only a single GPU, primarily because
both OpenACC and OpenMP do not yet provide support for
multiple accelerators.

A single programming model may be insufficient to
provide support for multiple accelerator devices; however,
the user can apply hybrid model to achieve this goal. Hart
et al. [12] used Coarray Fortran (CAF) and OpenACC and
Levesque et al. [13] usedMPI andOpenACC to programmul-
tiple GPUs in a GPU cluster. The inter-GPU communication
in these works ismanaged by theDistributed SharedMemory
(DSM) model CAF or distributed memory model MPI.

Unlike these works, our work uses OpenMP and OpenACC
hybrid model. We also develop an approach that extends
the OpenACC model to support multiple devices in a single
cluster node.

Other works that target multiple devices include OmpSs
[14] that allows the user to use their own unique directives in
an application so that the program can run onmultiple GPUs
on either the shared memory system or distributed memory
system. StarPU [15] is a runtime library that schedules tasks
to multiple accelerators. However, the drawbacks of these
approaches are that both OmpSs and StarPU require the
user to manually write the kernel that is to be offloaded to
the accelerators. Moreover, their approach is not part of any
standard thus limiting the usability.

To the best of our knowledge, the only other program-
ming model that supports multiple accelerators without the
need to manually write accelerator kernel files is HMPP
[3], a directive-based approach. However, HMPP directives
are quite challenging in terms of their usability and porting
applications to accelerators and even complicated when the
applications are large and complex enough.

In this paper, we have adopted a task-based concept by
proposing extensions to the OpenACC model to support
multiple accelerators. This work is based upon our previous
work in [16]. The new work compared to our previous work
is the model extension part. Related work that uses tasking
concept for GPUs includes Chatterjee et al. [17] who designed
a runtime system that can schedule tasks into different Stream
Multiprocessors (SMs) in one device. In their system, at a
specific time, the device can only execute the same number
of thread blocks as the number of SMs (13 in Kepler 20c),
thus limiting the performance. This is because their system
is designed for tackling load balancing issues among all
SMs primarily for irregular applications. Extensions to the
OpenACC model were proposed by Komoda et al. [18] to
support multiple GPUs. They proposed directives for the
user to specify memory access pattern for each data in a
computing region and the compiler identifies the workload
partition. Typically, it is quite complicated if it is the user that
identifies the memory access pattern for all data, especially
when a data is multidimensional or accesses multiple index
variables. In our extensions to the OpenACCmodel we allow
the user to partition the workload, thus further simplifying
the application porting, and make the multi-GPU support
general enough to cover most application cases.

3. Overview of OpenACC and OpenMP

OpenMP is a high-level directive-based programmingmodel
for shared memory multicore platforms. The model consists
of a set of directives, runtime library routines, and environ-
ment variables.The user just needs to simply insert the direc-
tives into the existing sequential code, with minor changes or
no changes to the code. OpenMP adopts the fork-join model.
The model begins with an initial main thread, then a team of
threadswill be forkedwhen the programencounters a parallel
construct, and all other threads will join the main thread at
the end of the parallel construct. In the parallel region, each
thread has its own private variable and does the work on

Scientific Programming 3

its own piece of data. The communication between different
threads is performed by shared variables. In the case of a
data race condition, different threads will update the shared
variable atomically. Starting from 3.0, OpenMP introduced
task concept [19] that can effectively express and solve the
irregular parallelism problems such as unbounded loops
and recursive algorithms. To make the task implementation
efficient, the runtime needs to consider the task creation,
task scheduling, task switching, task synchronization, and
so forth. OpenMP 4.0 released in 2013 includes support for
accelerators [20].

OpenACC [5], similar to OpenMP, is a high-level pro-
gramming model that is being extensively used to port
applications to accelerators. OpenACC also provides a set
of directives, runtime routines, and environment variables.
OpenACC supports three-level parallelism: coarse grain
parallelism “gang,” fine grain parallelism “worker,” and vector
parallelism “vector.” While mapping the OpenACC three
levels of parallelism to the low level CUDA programming
model, all of PGI, CAPS [21], and OpenUH [22] map each
gang to a thread block, workers to the 𝑌-dimension of a
thread block and vector to the𝑋-dimension of a thread block.
This guarantees fair performance comparison when using
these compilers since they use the same parallelism mapping
strategy.The executionmodel assumes that themain program
runs on the host, while the compute-intensive regions of the
main program are offloaded to the attached accelerator. In
the memory model, usually the accelerator and the host CPU
consist of separate memory address spaces; as a result, data
being transferred back and forth is an important challenge
to address. To satisfy different data optimization purposes,
OpenACC provides different types of data transfer clauses
in 1.0 specification and possible runtime routines in the 2.0
document. To fully utilize the CPU resource and remove
potential data transfer bottleneck, OpenACC also allows
asynchronous data transfer and asynchronous computation
with the CPU code. Also the model offers an update directive
that can be used within a data region to synchronize data
between the host and the device memory.

4. Multi-GPU Support with OpenMP and
OpenACC Hybrid Model

In this section, we will discuss strategies to explore pro-
grammingmulti-GPU using OpenMP andOpenACC hybrid
model within a single node. We will evaluate our strategies
using three scientific applications. We study the impact of
our approach by comparing and analyzing the performances
achieved by the hybrid model (multi-GPU implementation)
against that of a single GPU implementation.

The experimental platform is a server machine that is a
multicore system consisting of two NVIDIA Kepler 20Xm
GPUs. The system itself has Intel Xeon x86 64 CPU with
24 cores (12 × 2 sockets), 2.5 GHz frequency, and 62GB
main memory. Each GPU has 5GB global memory. We use
CAPS OpenACC for S3D and PGI OpenACC for matrix
multiplication and 2D heat equation. PGI compiler is not
used for S3D since it cannot compile the code successfully.

The 2D heat equation program compiled by CAPS compiler
is extremely long so we do not show the result here. CAPS
compiler does compile the matrix multiplication program
but we leave the performance comparison with other
compilers later and here we only verify the feasibility of
hybrid programming model. We use GCC 4.4.7 as CAPS
host compiler for all C programs. For a Fortran program, we
use PGI and CAPS (pgfortran as the host compiler of CAPS)
to compile the OpenACC code. We use the latest versions of
CAPS and PGI compilers, 3.4.1 and 14.2, respectively. CUDA
5.5 is used for our experiments.TheCAPS compiler performs
source-to-source translation of directives inserted code into
CUDA code and then calls nvcc to compile the generated
CUDA code. The flags passed to CAPS compiler are “–nvcc-
options -Xptxas=-v,-arch,sm 35,-fmad=false,” and the flags
passed to PGI compiler are “-O3 -mp -ta=nvidia,cc35,nofma.”
We consider wall-clock time as the evaluation measurement.
We ran all experiments for five times and then averaged the
performance results. In the forthcoming subsections, we
will discuss both single and multi-GPU implementations
for the S3D thermodynamics application kernel, matrix
multiplication, and 2D heat equation.

OpenMP is fairly easy to use, since all that the pro-
grammer needs to do is to insert OpenMP directives in the
appropriate places and, if necessary, make minor modifi-
cations to the code. The general idea of an OpenMP and
OpenACChybridmodel, as shown in Figure 1, is that we need
to manually divide the problem among OpenMP threads
and then associate each thread with a particular GPU. The
easy case is when the work in each GPU is independent of
each other and no communication among different GPUs
is involved. But there may be cases where the GPUs will
have to communicate with each other and this will involve
the CPUs too. Different GPUs transfer their data to their
corresponding host threads, these threads then communicate
or exchange their data via shared variable, and finally the
threads transfer the new data back to their associated GPUs.
With the GPU direct technique [23], it is also possible to
transfer data between different GPUs directly without going
through the host. This has not been plausible in OpenMP
and OpenACC hybrid model so far, but in Section 5 we will
propose some extensions to the OpenACC programming
model to accommodate this feature.

4.1. S3D Thermodynamics Kernel. S3D [24] is a flow solver
that performs direct numerical simulation of turbulent com-
bustion. S3D solves fully compressible Navier-Stokes, total
energy, species, and mass conservation equations coupled
with detailed chemistry. Apart from the governing equations,
there are additional constitutive relations, such as the ideal
gas equation of state, models for chemical reaction rates,
molecular transport, and thermodynamic properties. These
relations and detailed chemical properties have been imple-
mented as kernels or libraries suitable for GPU computing.
Some research on S3D has been done in [13, 25], but the
code they used is not accessible for us. For the experimental
purpose of our work, we only chose two separate and
independent kernels of the large S3D application, discussed
in detail in [26].

4 Scientific Programming

!$acc data copyout(c(1:np), h(1:np)) copyin(T(1:np),. . .)

do m = 1, MR

call calc mixcp(np, nslvs, T, midtemp, . . . , c)

call calc mixenth(np, nslvs, T, midtemp, . . . , h)

end do

!$acc end data

Algorithm 1: S3D thermodynamics kernel in single GPU.

Fo
rk

Jo
inGPU 2

OpenMP threads

GPU 1

GPU n

Figure 1: A multi-GPU solution using the hybrid OpenMP and
OpenACCmodel. EachOpenMP thread is associatedwith oneGPU.

Weobserved that the two kernels of S3Dhave similar code
structures and their input data are common. Algorithm 1
shows a small code snippet of a single GPU implemen-
tation. Both the kernels, calc mixcp and calc mixenth, are
surrounded by a main loop with MR iterations. Each kernel
produces its own output result, but their results are the same
as that of the previous iteration. The two kernels can be
executed in the same accelerator sequentially while sharing
the common input data, which will stay on the GPU during
the whole execution time. Alternatively, they can be also
executed on different GPUs simultaneously since they are
totally independent kernels.

In order to use multi-GPU, we distribute the kernels to
two OpenMP threads and associate each thread with one
GPU. Since we have only two kernels, it is not necessary
to use omp for; instead we use omp sections so that each
kernel is located in one section. Each thread needs to set
the device number using the runtime acc set device num
(int devicenum, acc device t devicetype). Note that the device
number starts from 1 in OpenACC, or the runtime behavior
would be implementation-defined if the devicenum were to
start from 0. To avoid setting the device number in each
iteration and make the two kernels work independently, we
apply loop fission and split the original loop into two loops.
Finally we replicate the common data on both the GPUs.The
code snippet in Algorithm 2 shows the implementation for
multi-GPU. Although it is a multi-GPU implementation, the
implementation in each kernel is still the same as that of a
single GPU implementation. Figure 2 shows the performance
results of using single GPU and two GPUs. It is observed
that two GPUs almost always take approximately half the
time taken for a single GPU.This illustrates the performance
advantage of using multiple GPUs over single GPU.

One GPU
Two GPUs

 0

 10

 20

 30

 40

 50

 60

 70

1000 5000 10000 15000

Ti
m

e (
s)

Iteration number

Figure 2: Performance comparison of S3D.

4.2. Matrix Multiplication. With S3D, we had distributed
different kernels of one application to multiple GPUs. An
alternate type of a case study would be where the workload
of only one kernel is distributed to multiple GPUs, especially
if the workload is very large. We will use square matrix
multiplication as an illustration to explore this case study.We
chose this application since this kernel is extensively used in
numerous scientific applications. This kernel does not com-
prise complicated data movements and can be parallelized by
simply distributing work to different thread. We also noticed
a large computation to data movement ratio.

Typicallymatrixmultiplication takesmatrixA andmatrix
B as input and produces matrix C as the output. When
multiple GPUs are used, we will use the same amount of
threads as the number of GPUs on the host. For instance, if
the system has 2GPUs, then we will launch 2 host threads.
Then we partition matrix A in block row-wise which means
that each thread will obtain partial rows of matrix A. Every
thread needs to read the whole matrix B and produce the
corresponding partial result of matrix C. After partitioning
the matrix, we use OpenACC to execute the computation of
each partitioned segment on one GPU.

Algorithm 3 shows a code snippet for the multi-GPU
implementation for matrix multiplication. Here we assume
that the number of threads could be evenly divided by the
square matrix row size. Since the outer two loops are totally
independent, we distribute the 𝑖 loop into all gangs and

Scientific Programming 5

call omp set num threads(2)

!$omp parallel private(m)

!$omp sections

!$omp section

call acc set device num(1, acc device not host)

!$acc data copyout(c(1:np)) copyin(T(1:np),. . .)

do m = 1, MR

call calc mixcp(np, nslvs, T, . . . , c)

end do

!$acc end data

!$omp section

call acc set device num(2, acc device not host)

!$acc data copyout(h(1:np)) copyin(T(1:np),. . .)

do m = 1, MR

call calc mixenth(np, nslvs, T, . . . , h)

end do

!$acc end data

!$omp end sections

!$omp end parallel

Algorithm 2: S3D thermodynamics kernel in multi-GPU using hybrid model.

omp set num threads(threads);

#pragma omp parallel

{

int i, j, k;

int id, blocks, start, end;

id = omp get thread num();

blocks = n/threads;

start = id∗blocks;

end = (id+1)∗blocks;

acc set device num(id+1, acc device not host);

#pragma acc data copyin(A[start∗n:blocks∗n])\
copyin(B[0:n∗n])\
copyout(C[start∗n:blocks∗n])

{

#pragma acc parallel num gangs(32) vector length(32)

{

#pragma acc loop gang

for(i=start; i<end; i++){

#pragma acc loop vector

for(j=0; j<n; j++){

float c = 0.0f;

for(k=0; k<n; k++)

c += A[i∗n+k] ∗ B[k∗n+j];
C[i∗n+j] = c;

}

}

}

}

Algorithm 3: A multi-GPU implementation of MM using hybrid model.

the 𝑗 loop into all vector threads of one gang. We have
used only 2GPUs for this experiment; however, more than
2GPUs can be easily used as long as they are available in
the platform. In this implementation, we assume that the
number of GPUs can be evenly divided by the number of

threads. We use different workload size for our experiments.
The matrix dimension ranges from 1024 to 8192. Figure 3(a)
shows the performance comparison while using one and
two GPUs. For all data size except 1024, the execution time
with 2GPUs is almost half of that with only 1 GPU. For

6 Scientific Programming

 0

 50

 100

 150

 200

 250

1024 2048 4096 8192

Ti
m

e (
s)

Square matrix size

1 GPU
2 GPUs

(a) Matrix multiplication

1 GPU
2 GPUs

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

512 1024 2048 4096

Ti
m

e (
s)

Dimension of square grid

(b) 2D heat equation

Figure 3: Performance comparison using hybrid model.

1024 ∗ 1024 as the matrix size, we barely see any benefit
using multiple GPUs. This is possibly due to the overhead
incurred due to the creation of host threads and GPU context
setup. Moreover, the computation is not large enough for
two GPUs. When the problem size is more than 1024, the
multi-GPU implementation shows a significant increase in
performance. In these cases, the computation is so intensive
that the aforementioned overheads are being ignored.

4.3. 2D Heat Equation. We notice that, in the previous two
cases, the kernel on one GPU is completely independent of
the kernel on the other GPU. Now we will explore a case
where there is communication between different GPUs. One
such interesting application is 2D heat equation.The formula
to represent 2D heat equation is explained in [27] and is given
as follows:

𝜕𝑇

𝜕𝑡
= 𝛼(

𝜕
2
𝑇

𝜕𝑥2
+
𝜕
2
𝑇

𝜕𝑦2
) , (1)

where 𝑇 is temperature, 𝑡 is time, 𝛼 is the thermal diffusivity,
and 𝑥 and 𝑦 are points in a grid. To solve this problem, one
possible finite difference approximation is

Δ𝑇

Δ𝑡
= 𝛼[

𝑇
𝑖+1,𝑗

− 2𝑇
𝑖,𝑗
+ 𝑇
𝑖−1,𝑗

Δ𝑥2
+
𝑇
𝑖,𝑗+1

− 2𝑇
𝑖,𝑗
+ 𝑇
𝑖,𝑗−1

Δ𝑦2
] ,

(2)

where Δ𝑇 is the temperature change over time Δ𝑡 and 𝑖, 𝑗 are
indexes in a grid. In this application, there is a grid that has
boundary points and inner points. Boundary points have an
initial temperature and the temperature of the inner points
is also updated. Each inner point updates its temperature
by using the previous temperature of its neighboring points
and itself. The operation that updates temperature for all

inner points in a grid needs to last long enough. This implies
that many iterations are needed before arriving at the final
stable temperatures. In our program, the number of iterations
is 20,000, and we increase the grid size gradually from
512 ∗ 512 to 4096 ∗ 4096. Our prior experience working on
single GPU implementation of 2D heat equation is discussed
in [11]. Algorithm 4 shows the code snippet for the single
GPU implementation. Inside the kernel that updates the
temperature, we distribute the outer loop into all gangs and
the inner loop into all vector threads inside each gang. Since
the final output will be stored in temp1 after pointer swapping,
we just need to transfer this data out to host.

Let us discuss the case where the application uses two
GPUs. Algorithm 5 shows the program in detail. In this
implementation, ni and nj are 𝑋 and 𝑌 dimensions of the
grid (it does not include boundary), respectively. As shown
in Figure 4, we partitioned the grid into two parts along
𝑌 dimension and run each part on one GPU. Before the
computation, the initial temperature is stored in temp1 h,
and after updating the temperature, the new temperature is
stored in temp2 h. Then we swap the pointer so that in the
next iteration the input of the kernel points to the current
new temperature. Since updating each data point needs its
neighboring points from the previous iteration, two GPUs
need to exchange the halo data in every iteration. The halo
data refers to the data that needs to be exchanged by different
GPUs. So far by simply using high-level directives or runtime
libraries, data cannot be exchanged directly between different
GPUs and the only workaround is to first transfer the data
from one device to the host and then from the host to
another device. In 2D heat equation, different devices need
to exchange the halo data; therefore, the halo data updating
would go through the CPU. Because different GPUs use
different parts of the data in the grid, we do not have to

Scientific Programming 7

void step kernel{. . .}

{

#pragma acc parallel present(temp in[0:ni∗nj], temp out[0:ni∗nj]) \

num gangs(32) vector length(32)

{

// loop over all points in domain (except boundary)

#pragma acc loop gang

for (j=1; j < nj-1; j++) {

#pragma acc loop vector

for (i=1; i < ni-1; i++) {

// find indices into linear memory

// for central point and neighbours

i00 = I2D(ni, i, j);

im10 = I2D(ni, i-1, j);

ip10 = I2D(ni, i+1, j);

i0m1 = I2D(ni, i, j-1);

i0p1 = I2D(ni, i, j+1);

// evaluate derivatives

d2tdx2 = temp in[im10]-2∗temp in[i00]+temp in[ip10];
d2tdy2 = temp in[i0m1]-2∗temp in[i00]+temp in[i0p1];
// update temperatures

temp out[i00] = temp in[i00]+tfac∗(d2tdx2 + d2tdy2);

}

}

}

}

#pragma acc data copy(temp1[0:ni∗nj]) \

copyin(temp2[0:ni∗nj])
{

for (istep=0; istep < nstep; istep++) {

step kernel(ni, nj, tfac, temp1, temp2);

// swap the temp pointers

temp = temp1;

temp1 = temp2;

temp2 = temp;

}

}

Algorithm 4: Single GPU implementation of 2D heat equation.

Host Device 0

Device 1

Device 2

Figure 4: Multi-GPU implementation strategy for 2D heat equation using the hybrid model. Consider that there are 3 GPUs (Devices 0, 1,
and 2).The grid in the left has 6 rows (excluding boundaries, i.e., the top and the bottom rows). By splitting the 6 rows into 3 parts, each GPU
is expected to compute only 2 rows. However, the computation for a data point requires the value of the neighboring points (top, bottom, left,
and right data points); hence, simply considering 2 rows of the grid for 1 GPU is not enough. For GPU Device 0, the last row added already
has the left, top, and right data points but lacks data points from the bottom; hence, the bottom row needs to be added, leading to 3 rows in
total. For GPU Device 1, the first and the second rows do not have data points from the top and the bottom, respectively, hence requiring an
addition of the top and bottom rows.This leads to 4 rows in total. For GPUDevice 2, the first row does not have data points from the top and
requires the addition of the top row. This leads to 3 rows in total. Another point to note is that values in the rows added need to be updated
from other GPUs as indicated by the arrows.

8 Scientific Programming

omp set num threads(NUM THREADS);

rows = nj/NUM THREADS;

LDA = ni + 2;

// main iteration loop

#pragma omp parallel private(istep)

{

float ∗temp1, ∗temp2, ∗temp tmp;

int tid = omp get thread num();

acc set device num(tid+1, acc device not host);

temp1 = temp1 h + tid∗rows∗LDA;

temp2 = temp2 h + tid∗rows∗LDA;

#pragma acc data copyin(temp1[0:(rows+2)∗LDA]) \

copyin(temp2[0:(rows+2)∗LDA])
{

for(istep=0; istep < nstep; istep++){

step kernel(ni+2, rows+2, tfac, temp1, temp2);

/∗ all devices (except the last one) update the lower halo to the host ∗/

if(tid != NUM THREADS-1){

#pragma acc update host(temp2[rows∗LDA:LDA])
}

/∗ all devices (except the first one) update the upper halo to the host ∗/

if(tid != 0){

#pragma acc update host(temp2[LDA:LDA])
}

/∗ all host threads wait here to make sure halo data from all devices

have been updated to the host ∗/

#pragma omp barrier

/∗ update the upper halo to all devices (except the first one) ∗/

if(tid != 0){

#pragma acc update device(temp2[0:LDA])
}

/∗ update the lower halo to all devices (except the last one) ∗/

if(tid != NUM THREADS-1){

#pragma acc update device(temp2[(rows+1)∗LDA:LDA])
}

temp tmp = temp1;

temp1 = temp2;

temp2 = temp tmp;

}

/∗ update the final result to host ∗/

#pragma acc update host(temp1[LDA:row∗LDA])
}

}

Algorithm 5: Multi-GPU implementation with hybrid model of 2D heat equation.

allocate separate memory for these partial data; instead we
just need to use private pointer to point to the different
positions of the shared variables temp1 h and temp2 h. Let
𝑡𝑖𝑑 represent the id of a thread; then that thread points to
the position 𝑡𝑖𝑑 ∗ 𝑟𝑜𝑤𝑠 ∗ (𝑛𝑖 + 2) of the grid (because it
needs to include the halo region), and it needs to transfer
(𝑟𝑜𝑤𝑠 + 2) ∗ (𝑛𝑖 + 2) data to the device where rows are
equal to 𝑛𝑗/𝑁𝑈𝑀 𝑇𝐻𝑅𝐸𝐴𝐷𝑆. The kernel that updates the
temperature in the multi-GPU implementation is exactly the
same as the one in single GPU implementation.

Figure 3(b) shows the performance comparison of the
different implementations, that is, single and multi-GPU

implementations. While comparing the performances of
multi-GPU with single GPU, we notice that there is a trivial
performance difference when the problem size is small.
However, there is a significant increase in performance using
multi-GPU for larger grid sizes. With the grid size as 4096 ∗

4096, the speedup of using two GPUs is around 2x times
faster than the single GPU implementation. This is because
as the grid size increases, the computation also increases
significantly, while the halo data exchange is still small
enough. Thus, the ratio of the computation/communication
becomes larger. Using multi-GPU can be quite advantageous
to decompose the computation.

Scientific Programming 9

5. Multi-GPU Support with
OpenACC Extension

We see that programming using multi-GPU using OpenMP
and OpenACC hybrid model shows significant performance
benefits in Section 4. However, there are some disadvantages
too in this approach. First, the users need to learn two
different programming languages whichmay impact the pro-
ductivity. Second, in this approach the device-to-device com-
munication happens via the host bringing more unnecessary
data movement. Third, providing support for such hybrid
model is a challenge for compilers. Compiler A provides
support for OpenMP and Compiler B provides support for
OpenACC; as a result, it is not straightforward for different
compilers to interact with each other. For instance, Cray
compiler does not allowOpenACCdirectives to appear inside
OpenMP directives [28]; therefore, the examples in Algo-
rithms 3 and 5 are not compilable by Cray compiler. Although
CAPS compiler provides support for OpenACC, it still uses
an OpenMP implementation from another host compiler,
also a challenge to follow andmaintain. Ideally, one program-
mingmodel should provide support formulti-GPU.Unfortu-
nately the existing OpenACC standard does not yet provide
support formultiple accelerator programming. To solve these
problems, we propose some extensions to the OpenACC
standard in order to support multiple accelerator devices.

5.1. Proposed Directive Extensions. The goal is to help the
compiler or runtime realize which device the host will com-
municate with, so that the host can issue the data movement
and kernel launch request to the specific device. The new
extensions are described as follows:

(1) #pragma acc parallel/kernels deviceid (sca-
lar-integer-expression): this is to place the correspond-
ing computing region into a specific device;

(2) #pragma acc data deviceid (scalar-integer-ex-
pression): this is the data directive extension for the
structured data region;

(3) #pragma acc enter/exit data deviceid (sca-
lar-integer-expression); this is the extension for
unstructured data region;

(4) #pragma acc wait device (scalar-integer-expres-
sion): this is used to synchronize all activities in a
particular device since by default the execution in
each device is asynchronous when multiple devices
are used;

(5) #pragma acc update peer to (list) to device
(scalar-integer-expression) from (list) from device
(scalar-integer-expression);

(6) void acc update peer(void∗ dst, int to
device, const void∗ src, int from device,
size t size).

The purpose of (5) and (6) is to enable device-to-device
communication. This is particularly important when using
multiple devices, since in some accelerators device can
communicate directly with another device without going

through the host. If the devices cannot communicate directly,
the runtime library can choose to first transfer the data to a
temporary buffer in the host and then transfer it from the host
to another device. For example, in CUDA implementation,
two devices can communicate directly only when they are
connected to the same root I/O Hub. If this requirement
is not satisfied, then the data transfer will go through the
host. (Note that we believe these extensions will address
direct device-to-device communication challenge; however,
such direct communication also requires necessary support
from the hardware. Our evaluation platformdid not fulfill the
hardware needs; hence, we have not evaluated the benefit of
these extensions quantitatively yet and we will do so as part
of the future work.)

5.2. Implementation Strategy. We implement the extensions
discussed in Section 5.1 in our OpenUH compiler. Our
implementation is based on the hybrid model of pthreads
+ CUDA. CUDA 4.0 and later versions simplify multi-
GPU programming by using only one thread to manip-
ulate multiple GPUs. However, in our OpenACC multi-
GPU extension implementation, we use multiple pthreads to
operate multiple GPUs and each thread is associated with
one GPU. This is because the memory allocation and free
operations are blocking operations. If a programmer uses
data copy/copyin/copyout inside a loop, the compiler
will generate the corresponding data memory allocation
and transfer runtime APIs. Since the memory allocation is
blocking operation, the execution in multiple GPUs cannot
be parallel. CUDA code avoids this by allocating memory for
all data first and then performs data transfer. In OpenACC,
however, this is unavoidable because all runtime routines
are generated by the compiler and the position of these
routines cannot be randomly placed. Our solution is to create
a set of threads and each thread manages the context of
one GPU which is shown in Figure 5. This is a task-based
implementation. Assume we have 𝑛 GPUs attached to a CPU
host, initially the host creates 𝑛 threads, and each thread is
associated with one GPU. Each thread creates an empty first-
in first-out (FIFO) task queue which waits to be populated by
the host main thread. Depending on the directive type and
deviceid clause in the original OpenACC directive annotated
program, the compiler generates the task enqueue request for
the main thread. The task here means any command issued
by the host and executed either on the host or on the device.
For example, memory allocation, memory free, data transfer,
kernel launch, and device-to-device communication, all of
these, are different task types.

Algorithm 8 includes the definitions of the task structure
and the thread controlling a GPU (refer it to GPU thread).
The task is executed only by GPU thread. A task could
be synchronous or asynchronous to the main thread. In
the current implementation, most tasks are asynchronous
except device memory allocation because the device address
is passed from a temporary argument structure, so the GPU
threadmust wait for this to finish. Each GPU threadmanages
a GPU context, a task queue, and some data structures in
order to communicate with themaster thread. Essentially this
is still the master/worker model and the GPU threads are

10 Scientific Programming

GPU 1

Master thread

Host

Task queue for thread 1

Task queue for thread 2

Execute tasks

Push tasks

Task queue for thread n − 1

GPU n − 1

GPU n

Task queue for thread n

GPU 2

TM−1TM T1

T1

T1

T1T2

T2

T2

T2

TN−1TN

TP−1TP

TS−1TS

.

.

.
.
.
.

· · ·

· · ·

· · ·

· · ·

Figure 5: Task-based multi-GPU implementation in OpenACC. 𝑇
𝑖
(𝑖 = 1, 2, . . .)means a specific task.

(1) functionWORKER ROUTINE
(2) Create the context for the associated GPU
(3) pthread mutex lock(⋅ ⋅ ⋅)
(4) context created++;
(5) while 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑐𝑟𝑒𝑎𝑡𝑒𝑑! = 𝑛𝑢𝑚 𝑑𝑒V𝑖𝑐𝑒𝑠 do
(6) pthread cond wait(⋅ ⋅ ⋅) ⊳wait until all threads created their contexts
(7) end while
(8) pthread mutex unlock(⋅ ⋅ ⋅)
(9) if 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 == 𝑛𝑢𝑚 𝑑𝑒V𝑖𝑐𝑒𝑠 then
(10) pthread cond broadcast(⋅ ⋅ ⋅)
(11) end if
(12) Enable peer access among all devices
(13) while (1) do
(14) 𝑝𝑡ℎ𝑟𝑒𝑎𝑑 𝑚𝑢𝑡𝑒𝑥 𝑙𝑜𝑐𝑘(&𝑐𝑢𝑟 𝑡ℎ𝑟𝑒𝑎𝑑 → 𝑞𝑢𝑒𝑢𝑒 𝑙𝑜𝑐𝑘)

(15) while 𝑐𝑢𝑟 𝑡ℎ𝑟𝑒𝑎𝑑 → 𝑞𝑢𝑒𝑢𝑒 𝑠𝑖𝑧𝑒 == 0 do
(16) 𝑝𝑡ℎ𝑟𝑒𝑎𝑑 𝑐𝑜𝑛𝑑 𝑤𝑎𝑖𝑡(&𝑐𝑢𝑟 𝑡ℎ𝑟𝑒𝑎𝑑 → 𝑞𝑢𝑒𝑢𝑒 𝑟𝑒𝑎𝑑𝑦,&𝑐𝑢𝑟 𝑡ℎ𝑟𝑒𝑎𝑑 → 𝑞𝑢𝑒𝑢𝑒 𝑙𝑜𝑐𝑘)

(17) if 𝑐𝑢𝑟 𝑡ℎ𝑟𝑒𝑎𝑑 → 𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑 then
(18) 𝑝𝑡ℎ𝑟𝑒𝑎𝑑 𝑚𝑢𝑡𝑒𝑥 𝑢𝑛𝑙𝑜𝑐𝑘(&𝑐𝑢𝑟 𝑡ℎ𝑟𝑒𝑎𝑑 → 𝑞𝑢𝑒𝑢𝑒 𝑙𝑜𝑐𝑘)

(19) Synchronize the GPU context ⊳the context is blocked until the device has
completed all preceding requested tasks

(20) pthread exit(NULL)
(21) end if
(22) end while
(23) cur task = cur thread → queue head; ⊳fetch the task from the queue head
(24) cur thread → queue size−−;
(25) if 𝑐𝑢𝑟 𝑡ℎ𝑟𝑒𝑎𝑑 → 𝑞𝑢𝑒𝑢𝑒 𝑠𝑖𝑧𝑒 == 0 then
(26) cur thread → queue head = NULL;
(27) cur thread → queue tail = NULL;
(28) else
(29) cur thread → queue head = cur task → next;
(30) end if
(31) pthread mutex unlock(&cur thread → queue lock);
(32) cur task → routine((void∗)cur task → args); ⊳execute the task
(33) end while
(34) end function

Algorithm 6: The worker algorithm for multi-GPU programming in OpenACC.

workers. Algorithms 6 and 7 show a detailed implementation
for the worker thread and master thread, respectively.

To enable device-to-device communication, we must
enable such peer-to-peer access explicitly and this requires
that all worker threads have created the GPU contexts. So

each worker first creates the context for the associated GPU,
and then it waits until all workers have created the GPU
contexts. The worker that is the last one to create the context
will broadcast to all worker threads so that they can start
to enable the peer-to-peer access. The worker then enters

Scientific Programming 11

(1) function ENQUEUE TASK XXXX
(2) Allocate memory and populate the task argument
(3) Allocate memory and populate the task
(4) pthread mutex lock(&cur thread → queue lock)
(5) if 𝑐𝑢𝑟 𝑡ℎ𝑟𝑒𝑎𝑑 → 𝑞𝑢𝑒𝑢𝑒 𝑠𝑖𝑧𝑒 == 0 then ⊳push the task into the FIFO queue
(6) cur thread → queue head = cur task;
(7) cur thread → queue tail = cur task;
(8) pthread cond signal(&cur thread → queue ready); ⊳signal the worker that the queue is not empty and the task is ready
(9) else
(10) cur thread → queue tail → next = cur task;
(11) cur thread → queue tail = cur task;
(12) end if
(13) cur thread → queue size++;
(14) pthread mutex unlock(&cur thread → queue lock);
(15) if 𝑐𝑢𝑟 𝑡𝑎𝑠𝑘 → 𝑎𝑠𝑦𝑛𝑐 == 0 then ⊳if the task is synchronous
(16) pthread mutex lock(&cur thread → queue lock);
(17) while 𝑐𝑢𝑟 𝑡𝑎𝑠𝑘 → 𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 == 0 do ⊳wait until this task is done
(18) pthread cond wait(&cur thread → work done, &cur thread → queue lock);
(19) end while
(20) pthread mutex unlock(&cur thread → queue lock);
(21) end if
(22) end function

Algorithm 7: The master algorithm for multi-GPU programming in OpenACC.

typedef struct task s

{

int type; //task type (e.g. memory allocation and kernel launch, etc.)

void∗ (∗routine)(void∗); // the task routine

work args ∗args; // point to the task argument

int work done; // indicate whether the task is done

int async; // whether the task is asynchronous

struct task s ∗next; // next task in the task queue

} task;

typedef struct

{

int destroyed; // whether this thread is destroyed

int queue size; // the task queue size

pthread t thread; // the thread identity

context t ∗context; // the GPU context associated with this thread

int context id; // the GPU context id

task ∗queue head; // head of the FIFO task queue

task ∗queue tail; // tail of the FIFO task queue

pthread mutex t queue lock;

pthread cond t queue ready; // the task queue is not empty and ready

pthread cond t work done;

pthread cond t queue empty;

} gpu thread;

Algorithm 8

an infinite loop that waits for the incoming tasks. When the
task is ready in the FIFO task queue, it will fetch the task
from the queue head and execute that task. When there is
no task available, the worker just goes to sleep to save CPU
resource. Whenever a master pushes a task into the FIFO
queue of a worker, it will signal to that worker that the queue
is not empty and the task is ready. If the master notifies that

the worker be destroyed, theworkerwill complete all pending
tasks and then exit (see Algorithm 6).

5.3. Benchmark Example. In this section, we will discuss how
to port some of the benchmarks discussed in Section 4 using
the OpenACC extensions instead of using the hybrid model.
The programs using the proposed directives are compiled

12 Scientific Programming

for(d=0; d<num devices; d++)

{

blocks = n/num devices;

start = id∗blocks;

end = (id+1)∗blocks;

#pragma acc data copyin(A[start∗n:blocks∗n])\
copyin(B[0:n∗n])\
copyout(C[start∗n:blocks∗n])\
deviceid(d)

{

#pragma acc parallel deviceid(d)\

num gangs(32) vector length(32)

{

#pragma acc loop gang

for(i=start; i<end; i++){

#pragma acc loop vector

for(j=0; j<n; j++){

float c = 0.0f;

for(k=0; k<n; k++)

c += A[i∗n+k] ∗ B[k∗n+j];
C[i∗n+j] = c;

}

}

}

}

for(d=0; d<num devices; d++){

#pragma acc wait device(d)

}

Algorithm 9: A multi-GPU implementation of MM using OpenACC extension.

by OpenUH compiler with “-fopenacc -nvcc,-arch=sm 35,-
fmad=false” flag.We also compare the performance with that
of the CUDA version. All CUDA codes are compiled using
“-O3 -arch=sm 35 -fmad=false” flag.

Algorithm 9 shows a code snippet of multi-GPU imple-
mentation of matrix multiplication using the proposed Ope-
nACC extensions. Using the proposed approach, the user
still needs to partition the problem explicitly into different
devices. This is because if there is any dependence between
devices, it is difficult for the compiler to do such analysis and
manage the data communication. For the totally independent
loop, we may further automate the problem partition in
compiler as part of the future work. Figure 6 shows the per-
formance comparison using differentmodels.We can see that
the performance of manual CUDA version and OpenACC
extension version is much better than that of the hybrid
model. CAPS compiler seems to have not performed well at
all using the hybridmodel implementation.The performance
of the proposed OpenACC extension version is the best and
it is very close to the optimized CUDA code.There are several
reasons for this. First, the loop translation mechanisms from
OpenACC to CUDA in different compilers are different.
Loop translation means the translation from OpenACC
nested loop to CUDA parallel kernel. In the translation step,
the OpenACC implementation in OpenUH compiler uses
redundant execution model which has no synchronization
between different OpenACCparallelism like gang and vector.

However, PGI compiler uses another execution model which
loads some scalar variables into shared memory in gang
parallelism and then the vector threads fetch them from
shared memory. The detailed comparison between these two
loop translation mechanisms is explained in [29]. OpenUH
compiler does not need to do those unnecessary shared
memory store and load operations and therefore reduces
those overhead. Second, we found that CAPS compiler uses
similar loop translation mechanism as OpenUH. However,
its performance is still worse than OpenUH compiler. The
possible reason is that it has nonefficient runtime library
implementation. SinceCAPS itself does not provideOpenMP
support, it needs complex runtime management to interact
with the OpenMP runtime in other CPU compilers. This
result demonstrates the effectiveness of our approach that
not only simplifies the multi-GPU implementation but also
maintains high performance.

We also port the 2D heat equation to the GPUs using the
proposedOpenACCdirective extension. In the code level, the
user does not need tomake the device-to-device communica-
tion go through the host anymore; instead the update peer
directive can be used to reduce the code complexity
and therefore improve the implementation productivity.
Algorithm 10 shows the detailed multi-GPU implementation
code using the OpenACC extension and Figure 7 explains
this implementation graphically. Compared to Figure 4 that
uses the hybrid model, it is obvious to see that the data

Scientific Programming 13

for(d=0; d<num devices; d++){

#pragma acc enter data copyin(temp1 h[d∗rows∗LDA:(rows+2)∗LDA]) device(d)

#pragma acc enter data copyin(temp2 h[d∗rows∗LDA:(rows+2)∗LDA]) device(d)

}

for(istep=0; istep<nstep; istep++){

for(d=0; d<num devices; d++)

step kernel (ni+2, rows+2, tfac, temp1 h+d∗rows∗LDA, temp2 h+d∗rows∗LDA)

}

/∗ wait to finish the kernel computation ∗/

for(d=0; d<num devices; d++){

#pragma acc wait device(d)

}

/∗ exchange halo data ∗/

for(d=0; d<num devices; d++){

if(d > 0){

#pragma acc update peer to(temp2 h[d∗rows∗LDA:LDA]) to device(d)

from(temp2 h[d∗rows∗LDA:LDA]) from device(d-1)

}

if(d < num devices - 1){

#pragma acc update peer to(temp2 h[(d+1)∗rows∗LDA+LDA:LDA]) to device(d)

from(temp2 h[(d+1)∗rows∗LDA+LDA:LDA]) from device(d+1)

}

}

/∗ swap pointer of in and out data ∗/

temp tmp = temp1 h;

temp1 h = temp2 h;

temp2 h = temp tmp;

}

for(d=0; d<num devices; d++){

#pragma acc exit data copyout(temp1 h[(d∗rows+1)∗LDA:rows∗LDA]) deviceid(d)

}

for(d=0; d<num devices; d++){

#pragma acc wait device(d)

}

Algorithm 10: Multi-GPU implementation with OpenACC extension of 2D heat equation.

 0

 50

 100

 150

 200

 250

1024 2048 4096 8192

Ti
m

e (
s)

Square matrix size

OpenACC-PGI-hybrid-1 GPU
OpenACC-CAPS-hybrid-1 GPU
CUDA-1 GPU
OpenACC-UH-tasks-1 GPU
OpenACC-PGI-hybrid-2 GPU
OpenACC-CAPS-hybrid-2 GPU
CUDA-2 GPU
OpenACC-UH-tasks-2 GPU

Figure 6: Performance comparison for MM using multiple models. PGI and CAPS compilers compile the hybrid model implementation.

14 Scientific Programming

Host Device 0

Device 1

Device 2

Figure 7: Multi-GPU implementation of 2D heat equation using OpenACC extension.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

512 1024 2048 4096

Ti
m

e (
s)

Dimension of square grid

OpenACC-PGI-hybrid-1 GPU
CUDA-1 GPU
OpenACC-UH-tasks-1 GPU
OpenACC-PGI-hybrid-2 GPU
CUDA-2 GPU
OpenACC-UH-tasks-2 GPU

Figure 8: Performance comparison for 2D heat equation using
multiple models. PGI compiler compiles the hybrid model imple-
mentation.

transfer between devices ismuch simpler now. Figure 8 shows
the performance comparison using differentmodels.Theper-
formance of the hybridmodel version usingCAPS compiler is
not shownhere because it is too slow, that is, around 5x slower
than PGI’s performance. When the grid size is 4096 ∗ 4096,
the execution time ofOpenACCversion is around 60 seconds
faster than the hybrid model and it is close to that of the
optimized CUDA code. We notice that there is almost no
performance loss with our proposed directive extension.

6. Conclusion and Future Work

This paper explores the programming strategies of multi-
GPU within a single node using the hybrid model, OpenMP
and OpenACC. We demonstrate the effectiveness of our
approach by exploring three applications of different char-
acteristics. In the first application where there are different
kernels, each kernel is dispatched to one GPU. The second
application has a large workload that is decomposed into
multiple small subworkloads, after which each subworkload
is scheduled on one GPU. Unlike the previous two appli-
cations that consist of totally independent workloads on
different GPUs, the third application has some communi-
cation between different GPUs. We evaluated the hybrid

model with these three applications on multi-GPU and
noticed reasonable performance improvement. Based on
the experience gathered in this process, we have proposed
some extensions to OpenACC in order to support multi-
GPU. By using the proposed directive extension, we can
simplify the multi-GPU programming but still obtain much
better performance compared to the hybrid model. Most
importantly, the performance is close to that of the optimized
manual CUDA code.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank CAPS for helping them
understand its software infrastructure. The authors would
also like to thank Oscar Hernandez for his S3D code and
Graham Pullan for his lecture notes on heat conduction that
helped them understand the application better.

References

[1] CUDA, http://www.nvidia.com/object/cuda home new.html.
[2] OpenCL Standard, http://www.khronos.org/opencl.
[3] HMPP Directives Reference Manual, (HMPP Workbench 3.1),

2015, https://www.olcf.ornl.gov/wp-content/uploads/2012/02/
HMPPWorkbench-3.0 HMPP Directives ReferenceManual.pdf.

[4] The Portland Group, PGI Accelerator Programming Model for
Fortran and C, Version 1.3, The Portland Group, 2010.

[5] OpenACCStandardHome,http://www.openacc-standard.org/.
[6] C. Liao, Y. Yan, B. R. de Supinski, D. J. Quinlan, and B.

Chapman, “Early experiences with the openMP accelerator
model,” in OpenMP in the Era of Low Power Devices and
Accelerators: Proceedings of the 9th International Workshop on
OpenMP, IWOMP 2013, Canberra, ACT, Australia, September
16–18, 2013, vol. 8122 of Lecture Notes in Computer Science, pp.
84–98, Springer, Berlin, Germany, 2013.

[7] X. Tian, R. Xu, Y. Yan, Z. Yun, S. Chandrasekaran, and B. Chap-
man, “Compiling a high-level directive-based programming
model for GPG-PUs,” in Languages and Compilers for Parallel
Computing: 26th International Workshop, LCPC 2013, San Jose,
CA, USA, September 25–27, 2013, Revised Selected Papers, pp.
105–120, Springer International Publishing, 2014.

[8] R. Reyes, I. López-Rodŕıguez, J. J. Fumero, and F. de Sande,
“accULL: an OpenACC implementation with CUDA and
OpenCL support,” inEuro-Par 2012 Parallel Processing, vol. 7484

Scientific Programming 15

of Lecture Notes in Computer Science, pp. 871–882, Springer,
Berlin, Germany, 2012.

[9] S. Lee and J. S. Vetter, “Early evaluation of directive-based GPU
programming models for productive exascale computing,” in
Proceedings of the International Conference forHigh Performance
Computing, Networking, Storage and Analysis (SC ’12), pp. 1–
11, IEEE Computer Society Press, Salt Lake City, Utah, USA,
November 2012.

[10] S. Wienke, P. Springer, C. Terboven, and D. an Mey, “Open-
ACC—first experiences with real-world applications,” in Euro-
Par 2012 Parallel Processing, vol. 7484 of Lecture Notes in
Computer Science, pp. 859–870, Springer, Berlin, Germany,
2012.

[11] R. Xu, S. Chandrasekaran, B. Chapman, and C. F. Eick,
“Directive-based programming models for scientific applica-
tions—a comparison,” inProceedings of the SCCompanion:High
Performance Computing, Networking, Storage andAnalysis (SCC
’12), pp. 1–9, IEEE, Salt Lake City, Utah, USA, November 2012.

[12] A. Hart, R. Ansaloni, and A. Gray, “Porting and scaling
OpenACC applications onmassively-parallel, GPU-accelerated
supercomputers,”The European Physical Journal Special Topics,
vol. 210, no. 1, pp. 5–16, 2012.

[13] J. M. Levesque, R. Sankaran, and R. Grout, “Hybridizing S3D
into an exascale application using OpenACC: an approach for
moving to multi-petaflops and beyond,” in Proceedings of the
International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC ’12), pp. 1–11, IEEE Computer
Society Press, Salt Lake City, Utah, USA, November 2012.

[14] J. Bueno, J. Planas, A. Duran et al., “Productive programming
of GPU clusters with OmpSs,” in Proceedings of the IEEE
26th International Parallel & Distributed Processing Symposium
(IPDPS ’12), pp. 557–568, IEEE, May 2012.

[15] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“StarPU: a unified platform for task scheduling on heteroge-
neous multicore architectures,” Concurrency and Computation:
Practice and Experience, vol. 23, no. 2, pp. 187–198, 2011.

[16] R. Xu, S. Chandrasekaran, and B. Chapman, “Exploring pro-
gramming multi-GPUs using OpenMP and OpenACC-based
hybrid model,” in Proceedings of the IEEE 27th International
Parallel and Distributed Processing Symposium Workshops &
PhD Forum (IPDPSW ’13), pp. 1169–1176, IEEE, Cambridge,
Mass, USA, May 2013.

[17] S. Chatterjee,M.Grossman, A. Sbı̂rlea, andV. Sarkar, “Dynamic
task parallelism with a GPU work-stealing runtime system,” in
Languages and Compilers for Parallel Computing, vol. 7146 of
Lecture Notes in Computer Science, pp. 203–217, Springer, Berlin,
Germany, 2013.

[18] T. Komoda, S. Miwa, H. Nakamura, and N. Maruyama, “Inte-
grating multi-GPU execution in an OpenACC compiler,” in
Proceedings of the 42nd Annual International Conference on
Parallel Processing (ICPP ’13), pp. 260–269, IEEE, Lyon, France,
October 2013.

[19] E. Ayguadé, N. Copty, A. Duran et al., “The design of OpenMP
tasks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 20, no. 3, pp. 404–418, 2009.

[20] Technical report on directives for attached accelerators, 2012,
http://openmp.org/wp/openmp-specifications/.

[21] CAPS OpenACC Parallism Mapping, 2015, http://exxactcorp
.com/index.php/software/prod list/5.

[22] R. Xu, X. Tian, Y. Yan, S. Chandrasekaran, and B. Chap-
man, “Reduction operations in parallel loops for GPGPUs,” in

Proceedings of the Programming Models and Applications on
Multicores and Manycores (PMAM ’14), pp. 10–20, ACM, New
York, NY, USA, 2007.

[23] NVIDIA Kepler GK110 Architecture Whitepaper, 2014, http://
www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-
Architecture-Whitepaper.pdf.

[24] J. H. Chen, A. Choudhary, B. de Supinski et al., “Terascale
direct numerical simulations of turbulent combustion using
S3D,” Computational Science & Discovery, vol. 2, no. 1, Article
ID 015001, 2009.

[25] K. Spafford, J. Meredith, J. Vetter, J. Chen, R. Grout, and R.
Sankaran, “Accelerating S3D: a GPGPU case study,” in Euro-Par
2009—Parallel Processing Workshops, vol. 6043 of Lecture Notes
in Computer Science, pp. 122–131, Springer, Berlin, Germany,
2010.

[26] O. Hernandez, W. Ding, B. Chapman, C. Kartsaklis, R.
Sankaran, and R. Graham, “Experiences with high-level pro-
gramming directives for porting applications to GPUs,” in
Facing the Multicore—Challenge II, vol. 7174 of Lecture Notes in
Computer Science, pp. 96–107, Springer, Berlin, Germany, 2012.

[27] G. Pullan, “Cambridge cuda course 25–27 May 2009,” http://
www.many-core.group.cam.ac.uk/archive/CUDAcourse09/.

[28] Cray C and C++ Reference Manual, 2014, http://docs.cray.com/
books/S-2179-81/S-2179-81.pdf.

[29] R. Xu, M. Hugues, H. Calandra, S. Chandrasekaran, and B.
Chapman, “Accelerating Kirchhoff migration on GPU using
directives,” in Proceedings of the 1st Workshop on Accelerator
Programming Using Directives (WACCPD ’14), pp. 37–46, IEEE,
2014.

Research Article
OpenCL Performance Evaluation on Modern Multicore CPUs

Joo Hwan Lee, Nimit Nigania, Hyesoon Kim, Kaushik Patel, and Hyojong Kim

School of Computer Science, College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA

Correspondence should be addressed to Joo Hwan Lee; joohwan.lee@gatech.edu

Received 15 May 2014; Accepted 29 September 2014

Academic Editor: Xinmin Tian

Copyright © 2015 Joo Hwan Lee et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Utilizing heterogeneous platforms for computation has become a general trend, making the portability issue important. OpenCL
(Open Computing Language) serves this purpose by enabling portable execution on heterogeneous architectures. However,
unpredictable performance variation on different platforms has become a burden for programmerswhowriteOpenCL applications.
This is especially true for conventional multicore CPUs, since the performance of general OpenCL applications on CPUs lags
behind the performance of their counterparts written in the conventional parallel programming model for CPUs. In this paper, we
evaluate the performance of OpenCL applications on out-of-order multicore CPUs from the architectural perspective. We evaluate
OpenCL applications on various aspects, includingAPI overhead, scheduling overhead, instruction-level parallelism, address space,
data location, data locality, and vectorization, comparing OpenCL to conventional parallel programming models for CPUs. Our
evaluation indicates unique performance characteristics of OpenCL applications and also provides insight into the optimization
metrics for better performance on CPUs.

1. Introduction

The heterogeneous architecture has gained popularity, as can
be seen from AMD’s Fusion and Intel’s Sandy Bridge [1, 2].
Much research shows the promise of the heterogeneous archi-
tecture for high performance and energy efficiency. However,
how to utilize the heterogeneous architecture considering
performance and energy efficiency is still a challenging prob-
lem. OpenCL is an open standard for parallel programming
on heterogeneous architectures, which makes it possible to
express parallelism in a portable way so that applications
written inOpenCL can run on different architectures without
codemodification [3]. Currently,many vendors have released
their own OpenCL framework [4, 5].

Even though OpenCL provides portability on multiple
architectures, portability issues still remain in terms of per-
formance. Unpredictable performance variations on different
platforms have become a burden for programmers who write
OpenCL applications. The effective optimization technique
is different depending on the architecture where the ker-
nel is executed. In particular, since OpenCL shares many
similarities with CUDA, which was developed for NVIDIA
GPUs, many OpenCL applications are not well optimized
for modern multicore CPUs. The performance of general

OpenCL applications on CPUs lags behind the performance
expected by programmers considering conventional parallel
programmingmodels.The expectation comes fromprogram-
mers’ experience with conventional programming models.
OpenCL applications show very poor performance on CPUs
when compared to applications written in conventional
programming models.

The reasons we consider CPUs for OpenCL compute
devices are as follows.

(1) CPUs can also be utilized to increase the performance
of OpenCL applications by using both CPUs and
GPUs (especially when a CPU is idle).

(2) Because modern CPUs have more vector units, the
performance gap between CPUs and GPUs has been
decreased. For example, even for the massively paral-
lel kernels, sometimes CPUs can be better thanGPUs,
depending on input sizes. On some workloads with
high branch divergence or with high instruction-level
parallelism (ILP), the CPU can also be better than the
GPU.

A major benefit of using OpenCL is that the same kernel
can be easily executed on different platforms. With OpenCL,

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 859491, 20 pages
http://dx.doi.org/10.1155/2015/859491

http://dx.doi.org/10.1155/2015/859491

2 Scientific Programming

Host memory

Host
CPU

Host

Compute
device

Compute
device

Compute device

.

.

.

Compute unit Compute unit

PE PE PE PE· · · · · · · · ·

Device memory

Figure 1: OpenCL platform model.

it is easy to dynamically decide which device to use at
run-time. OpenCL applications that select a compute device
between CPUs and GPUs at run-time can be easily imple-
mented. However, if the application is written in OpenMP,
for example, it is not trivial to split an application to use both
CPUs and GPUs.

Here, we evaluate the performance of OpenCL appli-
cations on modern out-of-order multicore CPUs from the
architectural perspective, regarding how the application uti-
lizes hardware resources on CPUs. We thoroughly evaluate
OpenCL applications on various aspects that could change
their performance. We revisit generic performance metrics
that have been lightly evaluated in previous works, especially
for running OpenCL kernels on CPUs. Using these metrics,
we also verify the current limitation of OpenCL and the
possible improvement in terms of performance. In summary,
the contributions of this paper are as follows.

(i) We provide programmers with a guideline to under-
stand the performance of OpenCL applications on
CPUs. Programmers can verify whether the OpenCL
kernel fully utilizes the computing resources of the
CPU.

(ii) We discuss the effectiveness of OpenCL applications
on multicore CPUs and possible improvement.

The main objective of this paper is to provide a way to
understand OpenCL performance on CPUs. Even though
OpenCL can be executed on CPUs and GPUs, most previous
work has focused on only GPU performance issues. We
believe that our work increases the understandability of
OpenCL on CPUs and helps programmers by reducing
the programming overhead to implement a separate CPU-
optimized version from scratch. Some previous studies about
OpenCL on CPUs discuss some aspects presented in this
paper, but they lack both quantitative and qualitative evalua-
tions, making them hard to use when programmers want to
estimate the performance impact of each aspect.

Section 2 describes the background and architectural
aspects to understand the OpenCL performance on CPUs.
Then, we evaluate OpenCL applications regarding those
aspects in Section 3. We review related work in Section 4 and
conclude the paper.

2. Background and Criteria

In this section, we describe the background of several aspects
that affect OpenCL application performance on CPUs: API
overhead, thread scheduling overhead, instruction-level par-
allelism, data transfer, data locality, and compiler autovec-
torization. These aspects have been emphasized in academia
and industry to improve application performance on CPUs
on multiple programming models. Even though most of
the architectural aspects described in this section are well-
understood fundamental concepts, most OpenCL applica-
tions are not written considering these aspects.

2.1. API Overhead. OpenCL has high overhead for launching
kernels, which is negligible on other conventional parallel
programmingmodels for CPUs. In addition to the kernel exe-
cution on the compute device, OpenCL needs OpenCL API
function calls in the host code to coordinate the executions of
kernels that are overheads. The general steps of an OpenCL
application are as follows [3]:

(1) Open an OpenCL context.
(2) Create a command queue to accept the execution and

memory requests.
(3) Allocate OpenCL memory objects to hold the inputs

and outputs for the kernel.
(4) Compile and build the kernel code online.
(5) Set the arguments of the kernel.
(6) Set workitem dimensions.
(7) Kick off kernel execution (enqueue the kernel execu-

tion command).
(8) Collect the results.

The complex steps of OpenCL applications are due
to the OpenCL design philosophy emphasizing portability
over multiple architectures. Since the goal of OpenCL is
to make a single application run on multiple architectures,
they make the OpenCL programming model as flexible as
possible. Figure 1 shows the OpenCL platform model and
how OpenCL provides portability. The OpenCL platform
consists of a host and a list of compute devices. A host is
connected to one ormore compute devices and is responsible
for managing resources on compute devices. The compute
device is an abstraction of the processor, which can be any

Scientific Programming 3

type of processor, such as a conventional CPU,GPU, andDSP.
A compute device has a separate device memory and a list of
compute units. A compute unit can have multiple processing
elements (PEs). By this abstraction,OpenCL enables portable
execution.

On the contrary, flexibility for various platform supports
does not exist on conventional parallel programming models
for multicore CPUs. Many of the APIs in OpenCL, which
take a significant execution time on OpenCL application do
not exist on conventional parallel programming models. The
compute device and the context in OpenCL are implicit on
conventional programming models. Users do not have to
query the platform or compute devices and explicitly create
the context.

Another example of the unique characteristics ofOpenCL
compared to conventional programming models is the “just-
in-time compilation” [6] during run-time. In many OpenCL
applications, kernel compilation time by the JIT compiler
incurs the execution time overhead. On the contrary, com-
pilation is statically done and is not performed during
application execution for the application written in other
programming models.

Therefore, to determine the actual performance of appli-
cations, the time cost to execute the OpenCL API functions
also should be considered. From evaluation, we find that the
API overhead is larger than the actual computation in many
cases.

2.2. Thread Scheduling. Unlike other parallel programming
languages such as TBB [7] and OpenMP [8], the OpenCL
programming model is a single-instruction and multiple-
thread (SIMT)model just like CUDA [9]. AnOpenCL kernel
describes the behavior of a single thread, and the host appli-
cation explicitly declares the number of threads to express
the parallelism of the application. In OpenCL terminology, a
single thread is called a workitem (a thread in CUDA).
The OpenCL programmer can form a set of workitems
as a workgroup (a threadblock in CUDA), where the
programmer can synchronize among workitems by barrier
and mem fence. A single workgroup is composed of a multi-
dimensional array of workitems. Figure 2 shows the OpenCL
execution model and how an OpenCL kernel is mapped on
theOpenCL compute device. InOpenCL, a kernel is allocated
on a compute device, and a workgroup is executed on a
compute unit. A single workitem is processed by a processing
element (PE). For better performance, programmers can tune
the number of workitems and change the workgroup size.

It is common for OpenCL applications to launch a
massive number of threads for kernels expecting speedup by
parallel execution. However, portability of OpenCL applica-
tions in terms of performance is not maintained on different
architectures. In other words, an optimal decision of how
to parallelize (partition) a kernel on GPUs does not usually
guarantee good performance on CPUs. The partitioning
decision of a kernel is done by changing the number of
workitems and workgroup size.

2.2.1. Number of Workitems. First, the number of workitems
and the amount of work done by a workitem affect

Kernel

Compute device

Work-
item

Work-
item

Work-
item

Work-
item

Workgroup

Compute unit

Processing element (PE)

Figure 2: OpenCL execution model.

performance differently on CPUs andGPUs. Amassive num-
ber of short workitems hurts performance on CPUs but helps
performance on GPUs. The performance difference comes
from the different architectural characteristics between CPUs
and GPUs. On GPUs, a single workitem is processed by
a scalar processor (SP) or one single SIMD lane. As is
widely known, GPUs are specialized for supporting a large
number of concurrently running threads, and high thread-
level parallelism (TLP) is critical to achieve high performance
[10–13]. On the contrary, on CPUs, the TLP is limited by
the number of cores, so using more threads to do the same
amount of work does not help performance on CPUs but
hurts it due to the overhead of emulating a large number
of concurrently executing workitems on a small number of
cores.

2.2.2. Number of Workitems and Instruction-Level Parallelism
(ILP). The number of workitems affects the instruction-level
parallelism (ILP) of the OpenCL kernel on CPUs. Increasing
ILP in GPU applications has not been a popular performance
optimization technique. The reasons are as follows. First,
the hardware can explore much TLP so ILP will not affect
the performance significantly. Second, the hardware does
not explore too much ILP. The GPU processor is an in-
order scheduler processor and does not also support branch
prediction to increase ILP. However, on CPUs, the hardware
has been designed to increase ILP withmultiple features such
as superscalar execution and branch predictors.

A modern superscalar processor executes more than one
instruction concurrently by dispatching multiple indepen-
dent instructions during a clock cycle to utilize the multiple
functional units in CPUs. Superscalar CPUs use hardware
that checks data dependencies between instructions at run-
time and schedule instructions to run in parallel [14].

One of the performance problems of OpenCL applica-
tions on CPUs is that usually the kernel is written mostly to
utilize the TLP, not for ILP.TheOpenCL programmingmodel
is an SIMTmodel, and it is common for an OpenCL applica-
tion to have a massive number of threads. Since independent
instructions computing different elements are separated into
different threads, most instructions in a single workitem in
the kernel are usually dependent on previous instructions,
so that typically most OpenCL kernels have ILP one; only
one instruction can be dispatched to execute in a workitem.
On the contrary, on conventional programming models
such as OpenMP, independent instructions exist between
different loop iterations. For better performance onCPUs, the

4 Scientific Programming

OpenCL kernel should be written to have more independent
instructions.

2.2.3. Workgroup Size. The second important component is
the workgroup size. Workgroup size determines the amount
of work in a workgroup and the number of workgroups
of a kernel. On GPUs, a workgroup or multiple groups
are executed on a streaming multiprocessor (SM), which is
equivalent to a physical core on the multicore CPU. Similarly,
a workgroup is processed by a logical core of the CPU
[15, 16]. (Even though it depends on the implementation,
many implementations have this characteristic in common.).
A workload size that is too small per workgroup makes
the scheduling overhead more significant in total execution
time on CPUs since the thread context switching overhead
becomes bigger.

An OpenCL programmer can explicitly set workgroup
size or let the OpenCL implementation decide. If NULL value
is passed for workgroup size when the host application
calls clEnqueueNDRangeKernel, the OpenCL implemen-
tation automatically partitions global workitems into the
appropriate number of workgroups.

2.2.4. Proposed Solutions and Limitations. Many proposals to
reduce the scheduling overhead by serialization have been
presented [15–17]. Scheduling overhead is not a fundamental
problem with the OpenCL programming model. Better
OpenCL implementation can have less overhead than other
suboptimal implementations. Serialization is a technique that
serializes multiple workitems into a single workitem. For
example, SnuCL [15] overcomes the overhead of a large
number of workitems by serializing them to have fewer
workitems in the run-time. However, even with serialization,
multiple OpenCL implementations for CPUs still have high
scheduling overhead due to the complexity of compiler
analysis. Therefore, instead of using many workitems, as is
usually the case for OpenCL applications on GPUs, we are
better off assigning more work to each workitem with fewer
workitems on CPUs. The results from our experiments agree
with the above inferences.

2.3. Memory Allocation and Data Transfer. In general, a
parallel programming model can have two types of address
space options: unified memory space and disjoint memory
space [18]. Conventional programming models for CPUs
provide the unified memory address space both for the
sequential code and for parallel code. The benefit of unified
memory space is easy programming, with no explicit data
transfer for kernel execution.

On the contrary, even though it is hard for programmers
to program, OpenCL provides disjoint memory space to
programmers. This is because most heterogeneous comput-
ing platforms have disjoint memory systems due to the
different memory requirements of different architectures.
OpenCL assumes for its target a system where communica-
tion between the host and compute devices are performed
explicitly by a system network, such as PCI-Express. But, the
assumption of discrete memory systems is not true when
we use CPUs as compute devices for kernel execution. The

host and compute devices share the same memory system
resources such as last-level cache, on-chip interconnection,
memory controllers, and DRAMs.

The drawback of disjoint memory address space is that it
requires the programmer to explicitly manage data transfer
between the host and compute devices for kernel execu-
tion. In common OpenCL applications, the data should be
transferred back and forth in order to be processed by the
host or the compute device [3], which becomes unnecessary
when we use only the host for computation. To minimize
the data transfer overhead on a specific architecture, OpenCL
programmers usually have to rewrite the host code [3]. Often,
they need to change the memory allocation flags or use
different data transfer APIs for performance. For example,
the programmer should allocate memory objects on host
memory or device memory depending on target platform.
These rewriting efforts have been a burden for programmers
and have even been a waste of time due to the lack of
architectural or run-time knowledge of a specific system in
most cases.

2.3.1. Memory Allocation Flags. One of rewriting efforts is
changing the memory allocation flag. OpenCL provides the
programmer multiple options for memory object allocation
flags when the programmer calls clCreateBuffer that
could affect the performance of data transfer and kernel
execution.The memory allocation flag is used to specify how
the object is accessed by a kernel and where it is allocated.

Access Type. First, programmers can specify if the memory
object is a read-only memory object (CL MEM READ ONLY)
or write-only one (CL MEM WRITE ONLY) when referenced
inside a kernel.Theprogrammer can setmemory objects used
as input to the kernel as read-only and memory objects used
as output from the kernel as write-only. If the programmer
does not specify access type, the default option is to create
a memory object that can be read and written by the kernel
(CL MEM READ WRITE). CL MEM READ WRITE can also be
explicitly specified by programmers.

Where to Allocate. The other option that programmers
can specify is where to allocate a memory object. When
the programmer does not specify allocated location, the
memory object is allocated on the device memory in the
OpenCL compute device. OpenCL also supports the pinned
memory. When the host code creates memory objects using
the CL MEM ALLOC HOST PTR flag, the memory object is
allocated on the host-accessible memory that resides on the
host. Different from allocating the memory object in the
device memory, there is no need to transfer the result of
kernel execution back to the host memory when the result
is required by the host.

2.3.2. Different Data Transfer APIs. OpenCL also provides
different APIs for data transfer between the host and
compute devices. The host can enqueue commands
to read data from an OpenCL memory object that
is created by clCreateBuffer call to the memory
object that is mostly created by malloc call in the

Scientific Programming 5

host memory (by clEnqueueReadBuffer API). The
host can also enqueue commands to write data to the
OpenCL memory object from the memory object in the
host memory (by clEnqueueWriteBuffer API). The
programmer can also map an OpenCL memory object
to have the host-accessible pointer of the mapped object
(by clEnqueueMapBuffer API).

2.4. Vectorization andThread Affinity

2.4.1. Vectorization. Utilizing SIMD units has been one of
the key performance optimization techniques for CPUs [19].
Since SIMD instructions can perform computation on more
than one data item at the same time, SIMD utilization
could make the application more efficient. Many vendors
have released various SIMD instruction extensions on their
instruction set architectures, such as MMX [20].

Various methods have been proposed to utilize the SIMD
instruction: using optimized function libraries such as Intel
IPP [21] and Intel MKL [22], using C++ vector classes with
Intel ICC [23], or usingDSL compilers such as the Intel SPMD
Program Compiler [24]. Programmers can also program in
assembly or use intrinsic functions. However, all of these
methods assume rewriting the code. Due to this limitation,
and to help programmers easily write applications utilizing
SIMD instruction, autovectorization has been implemented
in many modern compilers [19, 23].

It is quite natural for programmers to expect that a
programming model difference has no effect on compiler
autovectorization on the same architecture. For example, if
a kernel is written in both OpenCL and OpenMP and both
implementations are written in a similar manner, program-
mers would expect that both codes are vectorized in a similar
fashion, thereby giving similar performance numbers. Even
though it depends on the implementation, this is not usually
true. Unfortunately, today’s compilers are very fragile about
vectorizable patterns, which depend on the programming
model. Applications should satisfy certain conditions in order
to fully take advantage of compiler autovectorization [19].
Our evaluation in Section 3.5.1 shows an example of this
fragility and verifies the possible effect of programming
models on vectorization.

2.4.2. Thread Affinity. Where to place threads can affect the
performance on modern multicore CPUs. Threads can be
placed on each core in different ways, which can create
a performance difference. The performance impact of the
placement would increase with more processors on the
system.

The performance difference can occur for multiple rea-
sons. For example, because of the different latency on the
interconnection network, threads that are far away will take
longer to communicate with each other, whereas threads
close to the adjacent core can communicate more quickly.
Also, an application that requires data sharing among adja-
cent threads can benefit if we assign these adjacent threads
to nearby cores. Proper placement can also eliminate the
communication overhead by utilizing shared cache. For the

Table 1: Experimental environment.

CPUs Intel Xeon E5645
Cores 4
Vector width SSE 4.2, 4 single precision FP
Caches L1D/L2/L3: 64KB/256KB/12MB
FP peak performance 230.4GFlops
Core frequency 2.40GHz
DRAM 4GB
GPUs NVidia GeForce GTX 580
SMs 16
Caches L1/Global L2: 16 KB/768KB
FP peak performance 1.56 TFlops
Shader Clock
frequency 1544MHz

O/S Ubuntu 12.04.1 LTS

Platform Intel OpenCL Platform 1.5 for CPU
NVidia OpenCL Platform 4.2 for GPU

Compiler Intel C/C++ compiler 12.1.3

performance reason, most conventional parallel program-
ming models support affinity, such as CPU AFFINITY in
OpenMP [8].

Unfortunately, thread affinity is not supported in
OpenCL. An OpenCL workitem is a logical thread, which is
not tightly coupled with a physical thread even though most
parallel programming languages provide this feature. The
reason for the lack of this functionality is that the OpenCL
design philosophy emphasizes portability over efficiency.

We present the lack of affinity support as one of the
performance limitations of OpenCL on CPUs compared to
other programming languages for CPUs. We would like to
present a potential solution to enhanceOpenCL performance
on CPUs. We found the benefit of better utilizing cache
on OpenCL applications by thread affinity. An example is
presented in Section 3.5.2.

3. Evaluation

Given the preceding background on the anticipated effects of
architectural aspects to understand theOpenCLperformance
on CPUs, the goal of our study is to quantitatively explore
these effects.

3.1. Methodology. The experimental environment for our
evaluation is described in Table 1. Our evaluation was per-
formed on a heterogeneous computing platform consisting
of a multicore CPU and a GPU; the OpenCL kernel was
executed either on the Intel OpenCL platform [4] or the
NVidia OpenCL platform [5]. We implemented an execution
framework so that we can vary and control many aspects
on the applications without code changes. The execution
framework is built as an OpenCL delegator library that
invokes OpenCL libraries from vendors: the one from Intel
for kernel execution on CPUs and the other from NVidia for
kernel execution on GPUs.

6 Scientific Programming

Table 2: List of NVidia OpenCL benchmarks for API overhead
evaluation.

Benchmark
oclBandwidthTest, oclBlackScholes, oclConvolutionSeparable,
oclCopyComputeOverlap,
oclDCT8x8, oclDXTCompression, oclDeviceQuery,
oclDotProduct, oclHiddenMarkovModel,
oclHistogram, oclMatrixMul, oclMersenneTwister,
oclMultiThreads, oclQuasirandomGenerator,
oclRadixSort, oclReduction, oclSimpleMultiGPU,
oclSortingNetworks, oclTranspose,
oclTridiagonal, oclVectorAdd

We use different applications for each evaluation. To
verify the API overhead, We use NVIDIA OpenCL Bench-
marks [5]. For other aspects, including scheduling overhead,
memory allocation, and data transfer, we first use simple
applications for evaluation. We also vary the data size of
each application.The applications are ported to the execution
framework we implemented. After evaluation with simple
applications, we also use the Parboil benchmarks [25, 26].
Tables 2, 3, and 4 describe evaluated applications and their
default parameters.

We use the wall-clock execution time. To measure stable
execution time without fluctuation, we iterate the kernel
execution until the total execution time of an application
reaches a long enough running time, 90 seconds in our
evaluation.This is sufficiently long to have amultiple number
of kernel executions for all applications in our evaluation.
Using the average kernel execution time per kernel invocation
calculated, we use normalized throughput to clearly present
the performance difference on multiple sections.

3.2. API Overhead. As we discussed in Section 2.1, the
OpenCL application has API overhead. To verify the API
overhead, we measured the time cost of each API function
in executing the OpenCL application in NVIDIA OpenCL
Benchmarks [5]. The workload size for each benchmark is
the size the application provides as a default. Figure 3 shows
the ratio of the execution time of kernel execution and
auxiliary API functions to the total execution time of each
OpenCL benchmark. (Auxiliary API functions are OpenCL
API functions called in the host code to coordinate kernel
execution.) The last column total means the arithmetic
mean of the data from each benchmark. From the figure, we
can see that a large portion of execution time is spent on
auxiliary API functions instead of kernel execution.

For detailed analysis, we categorized OpenCL APIs into
16 categories. We group multiple categories for visibility
in the following. Figure 4 provides a detailed example of
API overheads by showing the execution time distribu-
tion of each API function category for oclReduction.
Enqueued Commands category includes kernel execution
time and data transfer time between the host and compute
device and accounts for 12.1% of execution time. We find that
the API overhead is larger than the actual computation.

3.2.1. Overhead due to Various Platform Supports. Figure 5
shows the ratio of the execution time of each category
to the total execution time of each OpenCL benchmark.
The figure shows the performance degradation due to the
flexibility of various platforms. We see that the API func-
tions in Platform, Device, and Context categories con-
sume over 80 percent of the total execution time of each
OpenCL benchmark on average. The need to call API
functions in these categories comes from the fact that each
OpenCL application needs to set up an execution envi-
ronment for which the detailed mechanism would change,
depending on the platform. From our evaluation, we also
see that each call to the API functions in these categories
requires a long execution time. In particular, context man-
agement APIs incur a large execution time overhead. Figure 6
shows the execution time distribution of clCreateContext
and clReleaseContext to total execution time in each
benchmark. These functions are called at most once on each
OpenCL benchmark. But in conventional parallel program-
ming models, context and device are implicit, so there is no
need to call such management functions.

3.2.2. Overhead due to JIT Compilation. The list of OpenCL
kernels in the application is represented by the cl program
object. cl program object is created using either clCre-
ateProgramWithSource or clCreateProgramWithBi-
nary. JIT compilation is performed by either calling the
clBuildProgram function or a sequence ofclCompilePro-
gram and clLinkProgram functions for the cl program
object to build the program executable for one or more
devices associated with the program [3].

JIT compilation overhead is another source of the API
overhead. Figure 7 shows the execution time distribution
of Program category to the sum of execution time of all cate-
gories except Platform, Device, and Context categories.
We exclude these 3 categories that we have evaluated in
previous section. The figure clearly shows the performance
degradation due to the JIT compilation. We see that the
API functions in Program category consume around 33% of
the total execution time for 13 categories of the API func-
tions including kernel execution. Execution time overhead
of clBuildProgram is not negligible in most benchmarks.

Caching. Caching JIT compiled code can help reduce
the overhead. Some of the caching ideas are available in
OpenCL. Programmers can extract compiled binary by using
the clGetProgramInfo API function and store it using
FILE I/O functions. When the kernel code is not modified
since caching, programmers can load the cached binary on
disk and use the binary instead of performing JIT compilation
on every execution of the application.

3.2.3. Summary. In this section, we can see the high overhead
of explicit context management (Section 3.2.1) and JIT com-
pilation (Section 3.2.2) in OpenCL applications. These are
unique characteristics of OpenCL compared to conventional
programming models for portable execution over multiple
architectures.

Scientific Programming 7

Table 3: Configurations of simple applications.

Benchmark Kernel Global work size Local work size
Square Square 10000, 100000, 1000000, 10000000 NULL
Vectoraddition vectoadd 110000, 1100000, 5500000, 11445000 NULL
Matrixmul matrixMul 800 × 1600, 1600 × 3200, 4000 × 8000 16 × 16
Reduction reduce 640000, 2560000, 10240000 256
Histogram histogram256 409600 128
Prefixsum prefixSum 1024 1024
Blackscholes blackScholes 1280 × 1280, 2560 × 2560 16 × 16
Binomialoption binomialoption 255000, 2550000 255
Matrixmul(naive) matrixMul 800 × 1600, 1600 × 3200, 4000 × 8000 16 × 16

Table 4: Configurations of the Parboil benchmarks.

Benchmark Kernel Global work
size Local work size

CP Cenergy 64 × 512 16 × 8

MRI-Q computePhiMag
computeQ

3072
32768

512
256

MRI-FHD RhoPhi
computeFHD

3072
32768

512
256

oc
lB

an
dw

id
th

Te
st

oc
lB

la
ck

Sc
ho

le
s

oc
lC

on
vo

lu
tio

nS
ep

ar
ab

le
oc

lC
op

yC
om

pu
te

O
ve

rla
p

oc
lD

CT
8

x8
oc

lD
XT

C
om

pr
es

sio
n

oc
lD

ev
ic

eQ
ue

ry
oc

lD
ot

Pr
od

uc
t

oc
lH

id
de

nM
ar

ko
vM

od
el

oc
lH

ist
og

ra
m

oc
lM

at
rix

M
ul

oc
lM

er
se

nn
eT

w
ist

er
oc

lM
ul

tiTh
re

ad
s

oc
lQ

ua
sir

an
do

m
G

en
er

at
or

oc
lR

ad
ix

So
rt

oc
lR

ed
uc

tio
n

oc
lS

im
pl

eM
ul

tiG
PU

oc
lS

or
tin

gN
et

w
or

ks
oc

lT
ra

ns
po

se
oc

lT
rid

ia
go

na
l

oc
lV

ec
to

rA
dd

To
ta

l

Kernel execution
Auxiliary

Ra
tio

 (%
) 100

80
60
40
20

0

Figure 3: Execution time distribution of kernel execution and
auxiliary API functions.

It should be noted that the workload size for the evalua-
tion in Section 3.2 is the size that the application provides as
the default workload size, which is relatively small.Therefore,
these overheads can be reduced with a large workload size
and thus a long kernel execution time. But it is also true that
these overheads are not negligible with small workload size,
so the programmer should consider the workload size when
they decide whether to use OpenCL or not.

3.3. Thread Scheduling

3.3.1. Number of Workitems. Associated with the discussion
in Section 2.2.1, to evaluate the effect of the number of
workitems and the workload size per workitem, we perform
an experiment on OpenCL applications by allocating more
computation per workitem. We coalesce multiple workitems
into a single workitem by forming a loop inside the kernel.

Ra
tio

 (%
)

40.0

30.0

20.0

10.0

3
.8

%
0

.0
%

3
8

.0
%

0
.0

%
1

7
.8

%
0

.0
%

1
4

.1
%

0
.0

%
0

.0
%

0
.0

%

1
4

.1
%

1
2

.1
%

0
.0

%
0

.0
%

0
.0

%
0

.0
%

0.0

(1
) P

lat
fo

rm
(2

) D
ev

ic
e

(3
) C

on
te

xt
(4

) C
om

m
an

d
qu

eu
e

(5
) M

em
or

y
ob

je
ct

(6
) S

am
pl

er
(7

) P
ro

gr
am

 o
bj

ec
t

(8
) K

er
ne

l o
bj

ec
t

(9
) E

ve
nt

 o
bj

ec
t

(1
0

) P
ro

fil
in

g
A

PI
(1

1
) F

lu
sh

 an
d

fin
ish

(1
2

) E
nq

ue
ue

d
co

m
m

an
ds

(1
3

) E
xt

en
sio

n
fu

nc
tio

n
(1

4
) O

pe
nG

L
(1

5
) O

pe
nG

L
ex

te
ns

io
n

(1
6

) O
pe

nC
L

ex
te

ns
io

n

Figure 4: Execution time distribution of each category of API
function for oclReduction.

oc
lB

an
dw

id
th

Te
st

oc
lB

la
ck

Sc
ho

le
s

oc
lC

on
vo

lu
tio

nS
ep

ar
ab

le
oc

lC
op

yC
om

pu
te

O
ve

rla
p

oc
lD

CT
8

x8
oc

lD
XT

C
om

pr
es

sio
n

oc
lD

ev
ic

eQ
ue

ry
oc

lD
ot

Pr
od

uc
t

oc
lH

id
de

nM
ar

ko
vM

od
el

oc
lH

ist
og

ra
m

oc
lM

at
rix

M
ul

oc
lM

er
se

nn
eT

w
ist

er
oc

lM
ul

tiTh
re

ad
s

oc
lQ

ua
sir

an
do

m
G

en
er

at
or

oc
lR

ad
ix

So
rt

oc
lR

ed
uc

tio
n

oc
lS

im
pl

eM
ul

tiG
PU

oc
lS

or
tin

gN
et

w
or

ks
oc

lT
ra

ns
po

se
oc

lT
rid

ia
go

na
l

oc
lV

ec
to

rA
dd

To
ta

lRa
tio

 (%
) 100

80
60
40
20

0

Command queue, memory object, sampler, program object,
kernel object, event object, profiling API, flush and finish,
enqueued commands, extension function, openGL,
openGL extension, openCL extension
Platform, device, context

Figure 5: Execution time distribution of each category of API
functions.

To keep the total amount of computation the same, we
reduce the number of workitems to execute the kernel. The
number of workitems coalesced increases from 1 to 1000
workitems by multiplying by 10 for each step. Figure 8
shows the performance of Square and Vectoraddition
applications with a different amount of computation per

8 Scientific Programming

oc
lB

an
dw

id
th

Te
st

oc
lB

la
ck

Sc
ho

le
s

oc
lC

on
vo

lu
tio

nS
ep

ar
ab

le
oc

lC
op

yC
om

pu
te

O
ve

rla
p

oc
lD

CT
8

x8
oc

lD
XT

C
om

pr
es

sio
n

oc
lD

ev
ic

eQ
ue

ry
oc

lD
ot

Pr
od

uc
t

oc
lH

id
de

nM
ar

ko
vM

od
el

oc
lH

ist
og

ra
m

oc
lM

at
rix

M
ul

oc
lM

er
se

nn
eT

w
ist

er
oc

lM
ul

tiTh
re

ad
s

oc
lQ

ua
sir

an
do

m
G

en
er

at
or

oc
lR

ad
ix

So
rt

oc
lR

ed
uc

tio
n

oc
lS

im
pl

eM
ul

tiG
PU

oc
lS

or
tin

gN
et

w
or

ks
oc

lT
ra

ns
po

se
oc

lT
rid

ia
go

na
l

oc
lV

ec
to

rA
dd

To
ta

l

Ra
tio

 (%
) 100.0

80.0

60.0

40.0

20.0

0.0

clCreateContext
clReleaseContext

Figure 6: Execution time distribution of clCreateContext
and clReleaseContext.

oc
lB

an
dw

id
th

Te
st

oc
lB

la
ck

Sc
ho

le
s

oc
lC

on
vo

lu
tio

nS
ep

ar
ab

le
oc

lC
op

yC
om

pu
te

O
ve

rla
p

oc
lD

CT
8

x8
oc

lD
XT

C
om

pr
es

sio
n

oc
lD

ev
ic

eQ
ue

ry
oc

lD
ot

Pr
od

uc
t

oc
lH

id
de

nM
ar

ko
vM

od
el

oc
lH

ist
og

ra
m

oc
lM

at
rix

M
ul

oc
lM

er
se

nn
eT

w
ist

er
oc

lM
ul

tiTh
re

ad
s

oc
lQ

ua
sir

an
do

m
G

en
er

at
or

oc
lR

ad
ix

So
rt

oc
lR

ed
uc

tio
n

oc
lS

im
pl

eM
ul

tiG
PU

oc
lS

or
tin

gN
et

w
or

ks
oc

lT
ra

ns
po

se
oc

lT
rid

ia
go

na
l

oc
lV

ec
to

rA
dd

To
ta

lRa
tio

 (%
) 100

80
60
40
20

0

Command queue, memory object, sampler, kernel object,
event object, profiling API, flush and finish,
enqueued commands, extension function, openGL,
openGL extension, openCL extension
Program object

Figure 7: Execution time distribution of Program category API
functions except Platform, Device, and Context categories.

workitem. Table 5 shows the number of workitems used in
this evaluation.

From Figure 8, we find a performance gain for allocating
more work per workitem on CPUs. A noticeable example is a
case of Vectoraddition, wherewe add an array of numbers.
If we create asmanyworkitems as the size of arrays, we end up
creating significant overhead on CPUs. When we reduce the
number of workitems, we see a major performance improve-
ment for CPUs. We could also find that the performance is
saturated sometimes when the workload assigned per each
workitem goes over a certain threshold. This shows that
when each workitem has a sufficient workload, scheduling
overhead is reduced.

Compared to CPUswith high overhead of handlingmany
workitems, GPUs have low overhead for maintaining a large
number of workitems, as our evaluation shows. Furthermore,
reducing the number of workitems degraded performance
on GPUs significantly.The large performance degradation on
GPUs is because we could no longer take advantage of many
processing units on GPUs.

One of the reasons for performance improvement by
allocating more workload per workitem is the reduced num-
ber of instructions. Figure 9 shows the number of dynamic
instructions of Square and Vectoraddition applications
with a different amount of computation per workitem.
The left figure of Figure 9 shows the dynamic instruction
count including instructions from OpenCL APIs on top of
instructions from the OpenCL kernel. And the right figure of
Figure 9 represents the instructions only from the kernel.

For this evaluation, we implement a tool based on Pin
[27] that counts the number of instructions. The tool also
identifies the function to which the instruction belongs.
From Figure 9, we can see that the number of instructions
is reduced with more workload per workitem even though
the amount of computation is the same regardless of the
number of workitems. The number of instructions from
OpenCL APIs as well as that from the kernels increases, so
that the scheduling overhead exists on both OpenCL APIs
and the JIT compiled OpenCL kernel binary. Figure 10 shows
reduced overhead on OpenCL APIs with increased workload
per workitem. The instructions from OpenCL APIs are for
scheduling, not for computation intended by programmers
represented as an OpenCL kernel. So a reduced number of
instructions from OpenCL APIs means reduced overhead.

Figure 11 shows the performance of Parboil benchmarks
with a similar experiment [25, 26].The number of workitems
coalesced is different depending on the benchmark since we
could not increase the workload per workitem in the same
manner for all kernels. We find a similar performance gain
of allocating more work per workitem. Figure 12 represents
the reduced number of dynamic instructions with increased
workload per workitem.

3.3.2. Number of Workitems and Instruction-Level Parallelism
(ILP). As we discussed in Section 2.2.2, the number of
workitems, and therefore how to parallelize the computation,
also affects the instruction-level parallelism (ILP) of the
OpenCL kernel on CPUs. Coalescingmultiple workitems can
not only reduce the scheduling overhead but also improve the
performance by utilizing ILP.

To evaluate the ILP effect on both the CPU and the GPU,
we implemented a set of compute-intensive microbench-
marks that share common characteristics. Every benchmark
has an identical number of dynamic instructions and mem-
ory accesses. Each benchmark also has the same instruction
mixture, such as a ratio of the number of branch instructions
over the total number of instructions. The only difference
between each benchmark is ILP by varying the number of
independent instructions. From the baseline implementa-
tion, we increase the number of operand variables, so that
the number of independent instructions can increase. For
example, in the case of ILP 1, the next instruction depends
on the output of the previous instruction so that the number
of independent instructions is one; but in the case of ILP 2,
an independent instruction exists between two dependent
instructions.

Figure 13 shows the performance with increasing ILP. We
provide enoughworkitems to fully utilize TLP.Thenumber of
workitems remains the same for all microbenchmarks. The

Scientific Programming 9

Sp
ee

du
p

Sp
ee

du
p

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

5.00

4.00

3.00

2.00

1.00

0.00

Base(GPU)
10x(GPU)

100x(GPU)
1000x(GPU)

Base(CPU)
10x(CPU)

100x(CPU)
1000x(CPU)

1.20

1.00

0.80

0.60

0.40

0.20

0.00

Figure 8: Performance of Square and Vectoraddition applications with different workload per workitem.

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Base(CPU)
10x(CPU)

100x(CPU)
1000x(CPU)

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Base(CPU)
10x(CPU)

100x(CPU)
1000x(CPU)

100.0

80.0

60.0

40.0

20.0

0.0

N
um

be
r o

f d
yn

am
ic

in
str

uc
tio

n
(%

)

100.0

80.0

60.0

40.0

20.0

0.0

N
um

be
r o

f d
yn

am
ic

in
str

uc
tio

n
(%

)

Figure 9: The number of dynamic instructions of Square and Vectoraddition applications with different workload per workitem including
(L) instructions from OpenCL APIs and (R) kernel only.

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Base(CPU)
10x(CPU)

100x(CPU)
1000x(CPU)

100.0

80.0

60.0

40.0

20.0

0.0

Ra
tio

 o
f i

ns
tr

uc
tio

ns
fro

m
 k

er
ne

l (
%

)

Figure 10: The ratio of instructions from kernel over the instruc-
tions around clEnqueueNDRangeKernel for Square and Vectorad-
dition applications with different workload per workitem.

left 𝑦-axis represents the throughput of the CPUs, and the
right one represents the throughput of the GPUs. From the
figure, we find that performance improves depending on the
ILP value of the OpenCL kernel on CPUs. On the contrary,
there is no performance variation on GPUs with different
degrees of instruction-level parallelism.

3.3.3. Workgroup Size. Associated with the discussion in
Section 2.2.3, the number of workitems in workgroups can
affect the performance of the OpenCL application. We evalu-
ate the effect of workgroup size, both on CPUs and GPUs.We
vary the number of workitems in a workgroup by passing a
different argument for workgroup size (local work size)
on kernel invocation. We maintain the total number of
workitems of the kernel as the same. Table 6 shows the
different workgroup size for each benchmark, and Figures 14,
16, and 18 show the performance of applicationswith different
workgroup sizes. When the NULL argument is passed on
kernel invocation, the workgroup size is implicitly defined by
the OpenCL implementation.

The benchmarks can be categorized into three cate-
gories, depending on the behavior. The first group con-
sists of Square, Vectoraddition, and naive implementa-
tion of Matrixmul; Matrixmul belongs to the second
group; and Blackscholes belongs to the last.

Square, Vectoraddition, and naive implementation
of Matrixmul show a performance increase with increased
workgroup sizes on the CPU, as can be seen in Figure 14.
On the Square and Vectoraddition applications, per-
formance achieved with the NULL workgroup size is less
than the peak performance we achieve. This implies that

10 Scientific Programming

0

1

2

3

4

5

CP: cenergy MRI‐Q:
computeQ

MRI‐FHD:
computeFHD

Sp
ee

du
p

0

0.5

1

1.5

2

MRI‐Q: computePhiMag

Sp
ee

du
p

Base(1x)
2x
4x

Base(1x)
2x
6x

MRI-FHD: RhoPhi

Figure 11: Performance of Parboil benchmarks with different
workloads per workitem.

CP: cenergy MRI‐Q:
computeQ

MRI‐FHD:
computeFHD

Base(1x)
2x
4x

Base(1x)
2x
4x

N
um

be
r o

f d
yn

am
ic

in
str

uc
tio

ns
 (%

) 100

120

80

60

40

20

0

N
um

be
r o

f d
yn

am
ic

in
str

uc
tio

ns
 (%

)

100

120

80

60

40

20

0

MRI‐Q: computePhiMag MRI-FHD: RhoPhi

Figure 12: The number of dynamic instructions of Parboil bench-
marks with different workload per workitem.

0
100
200
300
400
500
600

0
10
20
30
40
50

CPU
GPU

G
PU

 th
ro

ug
hp

ut

(G
Fl

op
s)

CP
U

 th
ro

ug
hp

ut

(G
Fl

op
s)

1 2 3 4

Figure 13: Performance of ILP microbenchmark on the CPU and
the GPU.

Table 5: Number of workitems for each application.

Benchmark Base 10x 100x 1000x
Square 1 10000 1000 100 10
Square 2 100000 10000 1000 100
Square 3 1000000 100000 10000 1000
Square 4 10000000 1000000 100000 10000
Vectoradd 1 110000 11000 1100 110
Vectoradd 2 1100000 110000 11000 1100
Vectoradd 3 5500000 550000 55000 5500

Table 6: Workgroup size for each application.

Benchmark Base Case 1 Case 2 Case 3 Case 4
Square NULL 1 10 100 1000
Vectoraddition NULL 1 10 100 1000
Matrixmul 16 × 16 1 × 1 2 × 2 4 × 4 8 × 8
Blackscholes 16 × 16 1 × 1 1 × 2 2 × 2 2 × 4
Matrixmul(naive) 16 × 16 1 × 1 2 × 2 4 × 4 8 × 8

programmers should explicitly set the workgroup size for
the maximum performance. The performance with a small
workgroup size is also bad on GPUs since the workgroup is
allocated per SM, so that the small workgroup size makes
GPUs unable to utilize many warps in an SM. Even though
no hardware TLP is available inside a logical core on CPUs
(the evaluated CPU is an SMT processor, so multiple logical
cores share one physical core), performance increases with
a large workgroup size. This is because the overhead of
managing a large number of workgroups, many threads
in many implementations, is reduced. We also find that
performance is saturated at a certain workgroup size.

The left figure of Figure 15 shows the number of dynamic
instructions of Square, Vectoraddition, and naive
implementation of Matrixmul with different workgroup
size on CPUs. The right figure of Figure 15 shows the
ratio of instructions from kernel over the instructions
around clEnqueueNDRangeKernel for those applications
with a different workgroup size. From the left figure of
Figure 15, we can see that the number of instructions is
reduced with larger workgroup size. This is because the
number of instructions from OpenCL APIs is reduced, as
can be seen from the right figure of Figure 15. The number

Scientific Programming 11

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Ve
ct

or
ad

d_
4

M
at

rix
m

ul
(n

ai
ve

)_
1

M
at

rix
m

ul
(n

ai
ve

)_
2

M
at

rix
m

ul
(n

ai
ve

)_
3

Sp
ee

du
p

Base(CPU)
Case_1(CPU)
Case_2(CPU)

Case_3(CPU)
Case_4(CPU)

2.00

1.50

1.00

0.50

0.00

1.20
1.00
0.80
0.60
0.40
0.20
0.00

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Ve
ct

or
ad

d_
4

M
at

rix
m

ul
(n

ai
ve

)_
1

M
at

rix
m

ul
(n

a i
ve

)_
2

M
at

rix
m

ul
(n

a i
ve

)_
3

Sp
ee

du
p

Base(GPU)
Case_1(GPU)
Case_2(GPU)

Case_3(GPU)
Case_4(GPU)

Figure 14: Performance of applications with different workgroup size on CPUs and GPUs.

N
um

be
r o

f d
yn

am
ic

in
str

uc
tio

ns
 (%

)

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Ve
ct

or
ad

d_
4

M
at

rix
m

ul
(n

ai
ve

)_
1

M
at

rix
m

ul
(n

ai
ve

)_
2

M
at

rix
m

ul
(n

a i
ve

)_
3

Base(CPU)
Case_1(CPU)
Case_2(CPU)

Case_3(CPU)
Case_4(CPU)

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Ve
ct

or
ad

d_
4

M
at

rix
m

ul
(n

ai
ve

)_
1

M
at

rix
m

ul
(n

a i
ve

)_
2

M
at

rix
m

ul
(n

ai
ve

)_
3

Base(CPU)
Case_1(CPU)
Case_2(CPU)

Case_3(CPU)
Case_4(CPU)

Ra
tio

 o
f i

ns
tr

uc
tio

ns
fro

m
 k

er
ne

l (
%

)

100.00

80.00

60.00

40.00

20.00

0.00

300.0

200.0

100.0

0.0

Figure 15: (U) The number of dynamic instructions of Square, Vectoraddition, and naive implementation of Matrixmul with different
workgroup size on CPUs. (L) The ratio of instructions from kernel over the instructions around clEnqueuNDRangeKernel for Square,
Vectoraddition, and naive implementation of Matrixmul with different workgroup size.

of instructions from the OpenCL kernel remains the same
regardless of workgroup size.

As we can see from Figure 16, we also see a significant
performance increase on the Matrixmul applicationwith an
increased workgroup size.The optimal workgroup size of this
application is different, depending on platforms. For inputs 1
and 2, the optimal workgroup size on CPUs is 8 × 8, but
the optimal size on GPUs is 16 × 16. Here, the performance
depends not only on the scheduling overhead, but also on
the cache usage. Matrixmul utilizes the local memory in
OpenCL by blocking. Workgroup size can change the local
memory usage of the kernel. Since the size of the cache in
CPUs and the scratchpad memory in GPUs are different, the
optimal workgroup size can be different. Figure 17 shows the
reduced number of dynamic instructions of Matrixmul with
increasing workgroup size.

Unlike other applications, Blackscholes shows differ-
ent performance behavior on CPUs and on GPUs. As we
can see in Figure 18, the workgroup size does not change the
performance on CPUs, but it affects the performance signif-
icantly on GPUs. Since the workload allocated on a single
workitem is relatively long compared to other applications,
the overhead of managing a large number of workgroups
becomes negligible. On the contrary, the number of warps

in the SM is defined by the workgroup size on GPUs, which
makes the performance on GPUs low on small workgroup
sizes. Figure 19 shows that the number of instructions does
not change much for Blackscholes, regardless of workgroup
size.

Figure 20 shows the performance of Parboil benchmarks
with different workgroup sizes. We increase the workgroup
size from one to 16 times by multiplying by 2 for each step.
Since the workgroup size for CP:cenergy kernel is two-
dimensional, we increase the workgroup size of the kernel in
two directions. CP:cenergy(x) represents the performance
with workgroup sizes 1 × 8, 2 × 8, 4 × 8, 8 × 8, and
16 × 8. CP:cenergy(y) represents the performance with
workgroup sizes 16 × 1, 16 × 2, 16 × 4, 16 × 8, and
16 × 16. In general, we find the performance gain with
a large workgroup size. The performance saturates when
there is enough computation inside the workgroup. Figure 21
shows that the performance gain is due to reduced scheduling
overhead, which is represented by a reduced number of
dynamic instructions.

3.3.4. Summary. Here, we summarize the findings on thread
scheduling for OpenCL applications.

12 Scientific Programming

Sp
ee

du
p

Base(CPU)
Case_1(CPU)
Case_2(CPU)

Case_3(CPU)
Case_4(CPU)

1.50

1.00

0.50

0.00

1.20

1.00

0.80

0.60

0.40

0.20

0.00

Sp
ee

du
p

Base(GPU)
Case_1(GPU)
Case_2(GPU)

Case_3(GPU)
Case_4(GPU)

Matrixmul_1 Matrixmul_2 Matrixmul_3 Matrixmul_1 Matrixmul_2 Matrixmul_3

Figure 16: Performance of Matrixmul with different workgroup size on CPUs and GPUs.

N
um

be
r o

f d
yn

am
ic

in
str

uc
tio

ns
 (%

)

1000.0

800.0

600.0

400.0

200.0

0.0

Matrixmul_1 Matrixmul_2 Matrixmul_3

Base(CPU)
Case_1(CPU)
Case_2(CPU)

Case_3(CPU)
Case_4(CPU)

Figure 17: The number of dynamic instructions of Matrixmul with
different workgroup size on CPUs.

(1) Allocating more work per workitem by manually
coalescing multiple workitems reduces scheduling
overhead on CPUs (Section 3.3.1).

(2) High ILP increase performance on CPUs but not on
GPUs (Section 3.3.2).

(3) Workgroup size affect performance both on CPUs
and GPUs. In general, large workgroup size increases
performance by reducing scheduling overhead on
CPUs and enables utilizing high TLP on GPUs.
Workgroup size can also affect the cache usage
(Section 3.3.3).

3.4. Memory Allocation and Data Transfer. Associated with
the discussion in Section 2.3, to evaluate the performance
effect of differentmemory object allocation flags and different
APIs for data transfer, we perform an experiment onOpenCL
applications with different combinations of the following
options. To measure exact execution performance, we use a
blocking call for all kernel execution commands andmemory
object commands so that no command overlaps with other
commands. The combination we use is three-dimensional as
follows.

3.4.1. Evaluated Options for Memory Allocation and
Data Transfer

(1) Different APIs for data transfer:

(i) explicit transfer: clEnqueueReadBuffer and
clEnqueueWriteBuffer for explicit read and
write;

(ii) mapping: clEnqueueMapBufferwith CL MAP
READ, CL MAP WRITE for implicit read and
write.

(2) Kernel access type when referenced inside a kernel:

(i) the kernel accesses the memory object as read-
only/write-only:
(a) CL MEM READ ONLY for the input to the

kernel;
(b) CL MEM WRITE ONLY for computation re-

sults from the kernel;
(ii) the kernel accesses the memory object as

read/write: CL MEM READ WRITE for all mem-
ory objects.

(3) Where to allocate a memory object:

(i) allocation on the device memory;
(ii) allocation on the host-accessiblememory on the

host (pinned memory).

3.4.2. Metric: Application Throughput. The throughput we
present here is the performance, including data transfer
time, between the host and compute devices, not just the
kernel execution throughput on the compute device. For
example, the throughput of an application becomes half of the
throughput when we consider only the kernel execution time
if the data transfer time between the host and the compute
device equals the kernel execution time.Theway we calculate
the throughput of an application is illustrated in

Throughput app =
Throughput kernel

kernel time + transfer time
. (1)

3.4.3. Different Data Transfer APIs. We compare the per-
formance of different data-transfer APIs on all possible
allocation flags. (The combinations are as follows: (1) read-
only/write-only memory object + allocation on the device;
(2) read-only/write-only memory object + allocation on the

Scientific Programming 13

0.00
0.20
0.40
0.60
0.80
1.00
1.20

Blackscholes_1

Sp
ee

du
p

0.00
0.20
0.40
0.60
0.80
1.00
1.20

Sp
ee

du
p

Base(CPU)
Case_1(CPU)
Case_2(CPU)

Case_3(CPU)
Case_4(CPU)

Base(GPU)
Case_1(GPU)
Case_2(GPU)

Case_3(GPU)
Case_4(GPU)

Blackscholes_2 Blackscholes_1 Blackscholes_2

Figure 18: Performance of Blackscholes with different workgroup size on CPUs and GPUs.

N
um

be
r o

f d
yn

am
ic

in
str

uc
tio

ns
 (%

)

100.0

120.0

80.0

60.0

40.0

20.0

0.0

Blackscholes_1 Blackscholes_2

Base(CPU)
Case_1(CPU)
Case_2(CPU)

Case_3(CPU)
Case_4(CPU)

Figure 19:Thenumber of dynamic instructions of Blackscholeswith
different workgroup size on CPUs.

0
1
2
3
4
5

Sp
ee

du
p

CP
: c

en
er

gy
(X

)

CP
: c

en
er

gy
(Y

)

co
m

pu
te

Ph
iM

ag
M

RI
‐Q

:

M
RI

‐Q
:

co
m

pu
te

Q

M
RI

‐F
H

D
:

co
m

pu
te

FH
D

Base(1x)
2x
4x

8x
16x

M
RI

‐F
H

D
:

Rh
oP

hi

Figure 20: Performance of Parboil benchmarks with different
workgroup size on CPUs.

host; (3) read-write memory object + allocation on the
device; (4) read-write memory object + allocation on the
host.) Figure 22 shows the performance of the benchmarks
with different APIs for data transfer. The 𝑦-axis represents
the normalized application throughput (Throughput app)
whenweusemapping for data transfer over the baselinewhen
we use explicit data transfer APIs.We find that mapping APIs
have superior performance compared to explicit data transfer
APIs, regardless of the decision on other dimensions. First,
the performance of mapping APIs is superior wherever the
memory object is allocated: on device memory or on pinned
memory on host. Second, mapping APIs also perform better

N
um

be
r o

f d
yn

am
ic

in
str

uc
tio

ns
 (%

) 100

80

60

40

20

0

CP
: c

en
er

gy
(X

)

CP
: c

en
er

gy
(Y

)

co
m

pu
te

Ph
iM

ag
M

RI
‐Q

:

M
RI

‐Q
:

co
m

pu
te

Q

M
RI

‐F
H

D
:

co
m

pu
te

FH
D

Base(1x)
2x
4x

8x
16x

M
RI

‐F
H

D
:

Rh
oP

hi

Figure 21: The number of dynamic instructions of Parboil bench-
marks with different workgroup size on CPUs.

regardless of the decision for allocating the memory object as
read-only/write-only or as read/write object.

Different APIs change data transfer time. Figure 23 shows
the normalized data transfer throughput from the host
to a compute device between different data transfer APIs.
Figure 24 shows the one from compute device to host. The
data transfer time is shorter with mapping APIs. The differ-
ence of data transfer throughput increases with increases in
workload sizes and therefore increases in data transfer sizes.

We also report the performance of Parboil benchmarks
with different APIs for data transfer [25, 26]. Since the data
transfer time is much shorter than the kernel execution
time on Parboil benchmarks, instead of using application
throughput as shown in (1), we report the data transfer
time from the host to device, and data transfer time from
the device to host with different APIs. Figure 25 shows the
different data transfer time of the Parboil benchmarks with
different APIs for data transfer. The 𝑦-axis represents the
data transfer time in milliseconds.The left figure in Figure 25
shows the data transfer time from the host to the compute
device with different data transfer APIs. The right figure
shows the one from the compute device to the host. As with
simple applications, we find that the data transfer time is
shorter with mapping APIs on these benchmarks.

14 Scientific Programming

M
at

rix
m

ul
(n

ai
ve

)_
1

M
at

rix
m

ul
(n

ai
ve

)_
2

M
at

rix
m

ul
(n

a i
ve

)_
3

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Ve
ct

or
ad

d_
4

M
at

rix
m

ul
_1

M
at

rix
m

ul
_2

M
at

rix
m

ul
_3

Re
du

ct
io

n_
1

Re
du

ct
io

n_
2

Re
du

ct
io

n_
3

H
ist

og
ra

m

Pr
efi

xs
um

Bl
ac

ks
ch

ol
es

_1

Bl
ac

ks
ch

ol
es

_2

Bi
no

m
ia

lo
pt

io
n_

1

Bi
no

m
ia

lo
pt

io
n_

2N
or

m
al

iz
ed

 ap
pl

ic
at

io
n

th
ro

ug
hp

ut

Read-only or write-only, allocation on device
Read write, allocation on device
Read-only or write-only, allocation on host
Read write, allocation on host

3.00

2.50

2.00

1.50

1.00

0.50

0.00

Figure 22: Normalized application throughput of mapping over explicit data transfer for all combinations on other dimensions. The
performance of mapping APIs is superior to explicit data transfer on all possible combinations.

M
at

rix
m

ul
(n

ai
ve

)_
1

M
at

rix
m

ul
(n

a i
ve

)_
2

M
at

rix
m

ul
(n

a i
ve

)_
3

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Ve
ct

or
ad

d_
4

M
at

rix
m

ul
_1

M
at

rix
m

ul
_2

M
at

rix
m

ul
_3

Re
du

ct
io

n_
1

Re
du

ct
io

n_
2

Re
du

ct
io

n_
3

H
ist

og
ra

m

Pr
efi

xs
um

Bl
ac

ks
ch

ol
es

_1

Bl
ac

ks
ch

ol
es

_2

Bi
no

m
ia

lo
pt

io
n_

1

Bi
no

m
ia

lo
pt

io
n_

2

Read-only or write-only, allocation on device
Read write, allocation on device
Read-only or write-only, allocation on host
Read write, allocation on host

2.50

2.00

1.50

1.00

0.50

0.00

N
or

m
al

iz
ed

 d
at

a t
ra

ns
fe

r
th

ro
ug

hp
ut

 (h
os

t t
o

de
vi

ce
)

Figure 23: Normalized data transfer (host to device) throughput of mapping over explicit data transfer for all combinations on other
dimensions.

The difference of data transfer time is due to the different
behaviors of different APIs. When the host code explicitly
transfers data between the host and the compute device,
the OpenCL run-time library should allocate a separate
memory object for the device and copy the data between
the memory object allocated by the malloc call and the
memory object allocated for the device that is allocated
by the clEnqueueReadBuffer call. However, a separate
memory object is not needed when the host code uses
mapping; only returning a pointer of the memory object
is needed. So, copying between memory objects becomes
unnecessary.

3.4.4. Kernel Access Type When Referenced inside a Ker-
nel. We also verify the performance effect of specifying a
memory object as read-only/write-only or as read/write.
Figure 26 shows the performance implication of this flag.

The 𝑦-axis represents the normalized throughput when we
allocate the memory object as read-only/write-only from the
baseline when we allocate the object as read/write. OpenCL
implementations can utilize the detailed information of how
the memory object is accessed in the OpenCL kernel for
optimization instead of naively assuming all objects are read
and modified in the OpenCL kernel. However, we do not
see a noticeable performance difference with our evaluated
workloads. Kernel execution time and data transfer time
between the host and compute device do not differ regardless
of this memory allocation flag.

3.4.5. Where to Allocate a Memory Object. Finally, we
also verify the performance effect of the allocation loca-
tion of memory objects. Programmers can allocate the
memory object on the host memory or the device mem-
ory. Figure 27 shows the performance of benchmarks with

Scientific Programming 15

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Ve
ct

or
ad

d_
4

M
at

rix
m

ul
_1

M
at

rix
m

ul
_2

M
at

rix
m

ul
_3

Re
du

ct
io

n_
1

Re
du

ct
io

n_
2

Re
du

ct
io

n_
3

H
ist

og
ra

m

Pr
efi

xs
um

Bl
ac

ks
ch

ol
es

_1

Bl
ac

ks
ch

ol
es

_2

Bi
no

m
ia

lo
pt

io
n_

1

Bi
no

m
ia

lo
pt

io
n_

2

Read-only or write-only, allocation on device
Read write, allocation on device
Read-only or write-only, allocation on host
Read write, allocation on host

N
or

m
al

iz
ed

 d
at

a t
ra

ns
fe

r
th

ro
ug

hp
ut

 (d
ev

ic
e t

o
ho

st)
10000.00

1000.00

100.00

10.00

1.00

0.10

M
at

rix
m

ul
(n

ai
ve

)_
1

M
at

rix
m

ul
(n

a i
ve

)_
2

M
at

rix
m

ul
(n

ai
ve

)_
3

Figure 24: Normalized data transfer (device to host) throughput of mapping over explicit data transfer for all combinations on other
dimensions.

H
os

t t
o

de
vi

ce
da

ta
 tr

an
sfe

r t
im

e (
m

s)

CP MRI-Q MRI-FHD

2

1.5

1

0.5

0

Explicit transfer
Mapping

(a)

CP MRI-Q MRI-FHD

D
ev

ic
e t

o
ho

st
da

ta
 tr

an
sfe

r t
im

e (
m

s)
0.4

0.3

0.2

0.1

0

Explicit transfer
Mapping

(b)

Figure 25: Data transfer time with different APIs for data transfer. (Left) host to device and (Right) device to host.

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Ve
ct

or
ad

d_
4

M
at

rix
m

ul
_1

M
at

rix
m

ul
_2

M
at

rix
m

ul
_3

Re
du

ct
io

n_
1

Re
du

ct
io

n_
2

Re
du

ct
io

n_
3

H
ist

og
ra

m

Pr
efi

xs
um

Bl
ac

ks
ch

ol
es

_1

Bl
ac

ks
ch

ol
es

_2

Bi
no

m
ia

lo
pt

io
n_

1

Bi
no

m
ia

lo
pt

io
n_

2N
or

m
al

iz
ed

 ap
pl

ic
at

io
n

th
ro

ug
hp

ut

Allocation on device, explicit transfer
Allocation on device, mapping
Allocation on host, explicit transfer
Allocation on host, mapping

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

M
at

rix
m

ul
(n

ai
ve

)_
1

M
at

rix
m

ul
(n

a i
ve

)_
2

M
at

rix
m

ul
(n

ai
ve

)_
3

Figure 26: Normalized application throughput of read-only/write-onlymemory objects over read/writememory objects for all combinations
on other dimensions. There is no noticeable performance difference.

16 Scientific Programming

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Ve
ct

or
ad

d_
4

M
at

rix
m

ul
_1

M
at

rix
m

ul
_2

M
at

rix
m

ul
_3

Re
du

ct
io

n_
1

Re
du

ct
io

n_
2

Re
du

ct
io

n_
3

H
ist

og
ra

m

Pr
efi

xs
um

Bl
ac

ks
ch

ol
es

_1

Bl
ac

ks
ch

ol
es

_2

Bi
no

m
ia

lo
pt

io
n_

1

Bi
no

m
ia

lo
pt

io
n_

2N
or

m
al

iz
ed

 ap
pl

ic
at

io
n

th
ro

ug
hp

ut

Read-only or write-only, explicit transfer
Read write, explicit transfer
Read-only or write-only, mapping
Read write, mapping

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

M
at

rix
m

ul
(n

ai
ve

)_
1

M
at

rix
m

ul
(n

a i
ve

)_
2

M
at

rix
m

ul
(n

a i
ve

)_
3

Figure 27: Normalized application throughput of the pinned memory over the device memory for all combinations on other dimensions.
Where to allocate a memory object does not change the performance much on CPUs.

different allocation locations. The 𝑦-axis represents the nor-
malized throughput when we allocate the memory object on
the host memory from the baseline when we use the device
memory. We find that an allocation location does not have a
huge impact on performance both for kernel execution time
and data transfer time. This is because the device memory
and the host memory reference the same memory, the main
memory of the system when the compute device is the CPU.
Therefore, a different memory allocation location does not
imply performance differences. On the contrary, when the
compute device is not the CPU, memory allocation location
can affect the performance significantly.

3.4.6. Summary. In this section we find that mapping APIs
perform superior compared to explicit data transfer APIs
with reduced data transfer time by eliminating the copying
overhead on CPUs. Allocated location and kernel access type
do not affect the performance on CPUs.

3.5. Vectorization andThread Affinity

3.5.1. Vectorization. We evaluate the possible effect of
programming models on vectorization, even though
vectorization is more about compiler implementation. For
evaluation, we port the OpenCL kernels to identical
computations being performed by their OpenMP
counterparts. We map multiple workitems on OpenCL to a
loop to port OpenCL kernels to their OpenMP counterparts.
We utilize the Intel C/C++ 12.1.3 compiler and the Intel
OpenCL platform 1.5 for our evaluation. The programmer’s
expectation is that when we run the same computation in
the OpenCL and OpenMP applications, both runs should
give comparable performance numbers. However, the results
show that this assumption does not hold. For the evaluated
benchmarks, the OpenCL kernels outperform their OpenMP
counterparts. Figure 28 shows the different performance
of OpenMP and OpenCL implementations. The reason for
this mismatch is the different way OpenMP and OpenCL
compilers vectorize code.

M
Be

nc
h1

M
Be

nc
h 2

M
Be

nc
h3

M
Be

nc
h4

M
Be

nc
h5

M
Be

nc
h 6

M
Be

nc
h 7

M
Be

nc
h8Th

ro
ug

hp
ut

 (G
FL

op
s)

1000

100

10

1

OpenMP
OpenCL

Figure 28: Performance impact of vectorization.

OpenCL Vectorization.The vectorization by the OpenCL ker-
nel compiler is coalescing workitems. OpenCL vectorization
enables the execution of several workitems together by a
single vector instruction.Vectorization enablesmultiplework
items to be processed concurrently on a single thread. For
example, if the target instruction set is SSE 4.2, and the
computation is based on a single precision floating point, then
fourworkitems couldmake progress concurrently, so they are
coalesced into a single workitem. By doing this, vectorized
OpenCL code would have fewer dynamic instruction counts
compared to nonvectorized code.

OpenMP Vectorization. On the other hand, the OpenMP
compiler vectorizes loops by unrolling a loop combined
with the generation of packed SIMD instructions. To
be vectorized, a loop should be countable, have sin-
gle entry and single exit, and have a straight control
flow graph inside the loop [28]. Many factors could
prevent the vectorization of a loop in OpenMP. Two
key factors are (1) non-contiguous memory access and
(2) data dependence.

(1) Noncontiguous memory access:

(i) four consecutive floats may be loaded directly
from the memory in a single SSE instruction;

Scientific Programming 17

/∗OpenMP computation that doesn’t vectorize due to dependencies.∗/
intmain(){
⋅ ⋅ ⋅

for (int 𝑗 = 0; 𝑗 < 4; 𝑗++){
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
}

⋅ ⋅ ⋅

}

/∗Similar OpenCL kernel computation which vectorizes.∗/
void VectorAdd (. . ., global float ∗dm src, global float ∗dm dst){
⋅ ⋅ ⋅

for (int 𝑗 = 0; 𝑗 < 4; 𝑗++){
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
}

⋅ ⋅ ⋅

}

Algorithm 1: Vectorization on OpenCL versus OpenMP. The equivalent code in OpenCL is vectorizable while OpenMP code is not
vectorizable.

but if the four floats to be loaded are not
consecutive, we will have a load using multiple
instructions; loops with a nonunit stride are an
example of the above scenario.

(2) Data dependence:

(i) vectorization requires changes in the order of
operations within a loop since each SIMD
instruction operates on several data elements at
once; but such a change of order might not be
possible due to data dependencies.

Example. Algorithm 1 shows an example of how different
vectorizationmechanisms fromOpenMP andOpenCL com-
pilers affect whether identical codes are to be vectorized or
not. When there is a true data dependence inside an OpenCL
kernel or inside a loop iteration in OpenMP parallel for
section, the OpenCL kernel is vectorized, while the OpenMP
code is not. Therefore, they show different performance even
when vectorization of OpenMP loops seems possible. The
vectorization of an OpenCL kernel is relatively straightfor-
ward because no dependency checks are required as in the
case of traditional compilers. Even though we only show the
example of when theOpenCL compiler shows the benefit, the
opposite case is also possible: when the OpenMP compiler
vectorizes code, but the OpenCL compiler fails.

New OpenMP Compiler. We have also evaluated OpenMP
vectorization with OpenMP 4.0 SIMD extension and the
newer compiler (Intel C/C++ compiler 15.0.1).The evaluation

revealed comparable performance of OpenMP and OpenCL
implementations. Compiler vectorization is dependent on the
compiler implementation.

3.5.2. Thread Affinity. We evaluate the performance benefit
using the CPU affinity in OpenMP. We use OMP PROC BIND
and GOMP CPU AFFINITY to control the scheduling of
threads on the processors [8]. When the OMP PROC BIND
is set to be true, the threads will not be moved between
processors. GOMP CPU AFFINITY enables us to control the
allocation of a thread on a particular core.

We use a simple application for evaluation. The aim of
the application is to verify the effects of binding threads
to cores in terms of cache utilization. Performance can
improve when the OpenCL run-time library maps logical
threads of a kernel on physical cores so that it can utilize
the cached data of the previous kernel execution. The appli-
cation we use consists of two kernels: Vector Addition
and Vector Multiplication. Computation of each kernel
is distributed among eight cores: and the computation of
second kernel is dependent on the first one, using the data
produced by the first one.

Table 7 shows the method we use. The upper table in
Table 7 represents the (a) Aligned case, and the lower
table represents the (b) Misaligned case. The numbers
in the table represent the logical thread IDs. Threads with
identical IDs of both the kernels access the same data.
On the (a) Aligned case, we bind threads of the second
kernel to the cores on which the threads of the first kernel

18 Scientific Programming

Table 7: Performance impact of CPU affinity.

(a) Aligned

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7
Computation 1 0 1 2 3 4 5 6 7
Computation 2 0 1 2 3 4 5 6 7

(b) Misaligned

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7
Computation 1 0 1 2 3 4 5 6 7
Computation 2 6 3 4 0 2 1 7 5

/∗First Kernel: Vector Addition.∗/
#pragma omp parallel for shared(𝑎, 𝑏, 𝑐) private (𝑖)
for (int 𝑖 = 0; 𝑖 <MAX INDEX; 𝑖++){
𝑐[𝑖] = 𝑎[𝑖] + 𝑏[𝑖];
}

/∗(a) Aligned Second Kernel: Vector Multiplication.∗/
#pragma omp parallel for shared(𝑏, 𝑐, 𝑑) private (𝑖)
for (int 𝑖 = 0; 𝑖 <MAX INDEX; 𝑖++){
𝑑[𝑖] = 𝑏[𝑖] + 𝑐[𝑖];
}

/∗(b) Misaligned Second Kernel: Vector Multiplication.∗/
#pragma omp parallel for shared(𝑏, 𝑐, 𝑑) private (𝑖)
for (int 𝑖 = 0; 𝑖 <MAX INDEX; 𝑖++){

int 𝑗 = MAX INDEX − 1 − 𝑖;
𝑑[𝑗] = 𝑏[𝑗] + 𝑐[𝑗];
}

Algorithm 2: Code snippet of simple application.

are bound. On the (b) Misaligned case, we shuffle this
binding. Algorithm 2 shows the code snippet of this simple
application.

As we expect, the (a) Aligned case shows higher
performance than does the (b) Misaligned case. The
(b) Misaligned one runs longer by 15%. This is because
during the execution of the second kernel, the cores on the
CPU encounter cache misses on their private caches. On the
contrary, the (a) Aligned case would have more cache hits
than the (b) Misaligned case because the data accessed by
the second kernel would already be on the cache after the
execution of the first kernel on the (a) Aligned case.

As the results show, even though OpenCL emphasizes
portability, adding the affinity support to OpenCL may
provide a significant performance improvement in some
cases. Hence, we argue that coupling logical threads with
physical threads (cores on the CPU) is needed on OpenCL,
especially for CPUs. The granularity for the assignment
could be a workgroup; in other words, the programmer
can specify the core where a specific workgroup would
be executed. This functionality would help to improve the
performance ofOpenCL applications. For example, data from
different kernels can be shared without a memory request if
the programmer allocates cores for specific workgroups in

consideration of the data sharing of different kernels.Thedata
can be shared through the private caches of cores.

4. Related Work

Multiple research studies have been done on how to optimize
OpenCL performance on GPUs. The GPGPU community
provides TLP [29] as a general guideline for optimizing
GPGPU applications since GPGPUs are usually equipped
with a massive number of processing elements. Since
OpenCL has the same background as CUDA [9], most
OpenCL applications are written to better utilize TLP. The
widely used occupancy metric indicates the degree of TLP.
However, this scheme cannot be applied on CPUs since even
when the TLP of the application is large, the physical TLP
available on CPUs is limited by the number of CPU cores, so
that the context switching overhead is much higher on CPUs
than on GPUs for which this overhead is negligible.

Several publications refer to the performance of OpenCL
kernels on CPUs. Some focus on algorithms and some refer
to the performance difference by comparing it with GPU
implementation and OpenMP implementation on CPUs [16,
30, 31]. However, to the best of our knowledge, our work is the
first to provide a broad summary, combining applicationwith
the architecture knowledge to provide a general guideline to
understand OpenCL performance on multicore CPUs.

Ali et al. compare OpenCL with OpenMP and Intel’s TBB
on different platforms [30]. They mostly discuss the scaling
effects and compiler optimizations. But it misses out on why
the optimizations listed in the paper give the performance
benefit mentioned and lacks quantitative evaluation. We,
too, evaluate the performance of OpenCL and OpenMP for
a given application. However, our work considers various
aspects that can change application performance and provide
quantitative evaluations to help programmers estimate the
performance impact of each aspect.

Seo et al. discuss OpenCL performance implications for
theNAS parallel benchmarks and give a nice overview of how
they optimize the benchmarks by first getting an idea of the
data transfer and scheduling overhead and then coming up
with ways to avoid them [31]. They also show how to rewrite
a good OpenCL code, given an OpenMP code. Stratton et al.
describe a way to implement a compiler for fine-grained
SPMD-thread programs on multicore execution platforms
[16]. For the fine-grained programming model, they start

Scientific Programming 19

with CUDA, saying that it will apply to OpenCL as well.They
focus on the performance improvement over the baseline.
Our work is more generalized and broad compared to these
previous studies and also includes some of the important
points that are not addressed in these papers.

One of the references that is very helpful to understand
the performance behavior of OpenCL is a document from
Intel [32]. It broadly lays out some general guidelines to follow
to get better performance out ofOpenCL applications on Intel
processors. However, it does not discuss the performance
improvement and also does not state how much benefit can
be achieved.

5. Conclusion

We evaluate the performance of OpenCL applications on
modern multicore CPU architectures. Understanding the
performance in terms of architectural resource utilization is
helpful for programmers. In this paper, we evaluate various
aspects, including API overhead, thread scheduling, ILP, data
transfer, data locality, and compiler-supported vectorization.
We verify the unique characteristics of OpenCL applications
by comparing them with conventional parallel programming
models such as OpenMP. Key findings of our evaluation are
as follows.

(1) OpenCL API overhead is not negligible on CPUs
(Section 3.2).

(2) Allocating more work per workitem therefore reduc-
ing the number of workitems helps performance on
CPUs (Section 3.3.1).

(3) Large ILP helps performance onCPUs (Section 3.3.2).
(4) Large workgroup size is helpful for better perfor-

mance on CPUs (Section 3.3.3).
(5) On CPUs,Mapping APIs perform superior compared

to explicit data transfer APIs.Memory allocation flags
do not change performance (Section 3.4).

(6) Programming model can have possible effect on
compiler-supported vectorization. Conditions for the
code to be vectorized can be complex (Section 3.5.1).

(7) Adding affinity support to OpenCL may help perfor-
mance in some cases (Section 3.5.2).

Our evaluation shows that considering the characteris-
tics of CPU architectures, the OpenCL application can be
optimized further for CPUs, and the programmer needs to
consider these insights for portable performance.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank Jin Wang and Sudhakar
Yalamanchili, Inchoon Yeo, the Georgia Tech HPArch mem-
bers, and the anonymous reviewers for their suggestions and

feedback. We gratefully acknowledge the support of the NSF
CAREER award 1139083 and Samsung.

References

[1] AMD, AMDAccelerated Processing Units (APUs), http://www
.amd.com/en-us/innovations/software-technologies/apu.

[2] Intel, “Products (Formerly Sandy Bridge),” http://ark.intel.com/
products/codename/29900/Sandy-Bridge.

[3] Khronos Group, “OpenCL: the open standard for parallel pro-
gramming of heterogeneous systems,” http://www.khronos.org/
opencl.

[4] Intel, “Intel OpenCL SDK,” http://software.intel.com/en-us/
articles/intel-opencl-sdk/.

[5] NVIDIA, “NVIDIA OpenCL SDK,” http://developer.nvidia
.com/cuda/opencl/.

[6] J. Aycock, “A brief history of just-in-time,” ACM Computing
Surveys, vol. 35, no. 2, pp. 97–113, 2003.

[7] Intel, Intel Threading Building Blocks, http://threadingbuild-
ingblocks.org/.

[8] The OpenMP Architecture Review Board, OpenMP, http://
openmp.org/wp/.

[9] NVIDIA, CUDA Programming Guide, V4.0, 2011.
[10] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,

and W.-M. W. Hwu, “Optimization principles and application
performance evaluation of a multithreaded GPU using CUDA,”
in Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’08), pp.
73–82, February 2008.

[11] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z.Ueng,
andW.-M.W. Hwu, “Program optimization study on a 128-core
GPU,” in Proceedings of the 1st Workshop on General Purpose
Processing on Graphics Processing Units (GPGPU '07), October
2007.

[12] S. Ryoo,C. I. Rodrigues, S. S. Stone et al., “Programoptimization
space pruning for a multithreaded GPU,” in Proceedings of
the 6th Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO ’08), pp. 195–204, 2008.

[13] V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune
dense linear algebra,” in Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and
Analysis (SC ’08), pp. 31:1–31:11, November 2008.

[14] R. Balasubraamonian, S. Dwarkadas, and D. H. Albonesi,
“Reducing the complexity of the register file in dynamic
superscalar processors,” in Proceedings of the 34th Annual
International Symposium on Microarchitecture, pp. 237–248,
December 2001.

[15] J. Kim, S. Seo, J. Lee, J. Nah, and G. Jo, “SnuCL: an OpenCL
framework for heterogeneous CPU/GPU clusters,” in Proceed-
ings of the 26th ACM International Conference on Supercomput-
ing (ICS ’12), pp. 341–351, June 2012.

[16] J. A. Stratton, V. Grover, J. Marathe et al., “Efficient compilation
of fine-grained SPMD-threaded programs for multicore CPUs,”
in Proceedings of the 8th International Symposium on Code
Generation andOptimization (CGO ’10), pp. 111–119, ACM,April
2010.

[17] G. Diamos, “The design and implementation Ocelot’s dynamic
binary translator fromPTX toMulti-Core x86,” Tech. Rep. GIT-
CERCS-09-18, Georgia Institute of Technology, 2009.

[18] B. Saha, X. Zhou, H. Chen et al., “Programming model for
a heterogeneous x86 platform,” in Proceedings of the ACM

20 Scientific Programming

SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’09), pp. 431–440, June 2009.

[19] S. Maleki, Y. Gao, M. J. Garzarán, T. Wong, and D. A. Padua,
“An evaluation of vectorizing compilers,” in Proceedings of
the 20th International Conference on Parallel Architectures and
Compilation Techniques (PACT '11), pp. 372–382,Galveston, Tex,
USA, October 2011.

[20] L. Gwennap, “Intel’sMMX speedsmultimedia,”Microprocessor
Report, 1996.

[21] Intel, “Intel Integrated Performance Primitives,” https://soft-
ware.intel.com/en-us/intel-ipp.

[22] Intel, Intel Math Kernel Library, http://software.intel.com/en-
us/intel-mkl.

[23] Intel, Intel C and C++ Compilers, https://software.intel.com/
en-us/c-compilers.

[24] M. Pharr and W. R. Mark, “ispc: a SPMD compiler for
high-performance CPU programming,” in Proceedings of the
Innovative Parallel Computing (InPar ’12), pp. 1–13, IEEE, San
Jose, Calif, USA, May 2012.

[25] D. Grewe and M. F. P. O’Boyle, “A static task partition-
ing approach for heterogeneous systems using OpenCL,” in
Proceedings of the 20th International Conference on Compiler
Construction (CC ’11), pp. 286–305, Saarbrücken, Germany,
March 2011.

[26] The IMPACT Research Group and UIUC, “Parboil benchmark
suite,” http://impact.crhc.illinois.edu/Parboil/parboil.aspx.

[27] C.-K. Luk, R. Cohn, R. Muth et al., “Pin: building customized
program analysis tools with dynamic instrumentation,” in
Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’05), pp. 190–200,
June 2005.

[28] Intel, A Guide to Auto-Vectorization with Intel C++ Compilers,
http://software.intel.com/en-us/articles/a-guide-to-auto-vec-
torization-with-intel-c-compilers.

[29] S. Hong andH. Kim, “An analyticalmodel for a gpu architecture
with memory-level and thread-level parallelism awareness,” in
Proceedings of the 36th Annual International Symposium on
Computer Architecture (ISCA ’09), pp. 152–163, June 2009.

[30] A. Ali, U. Dastgeer, and C. Kessler, “OpenCL for programming
shared memory multicore CPUs,” in Proceedings of the MULTI-
PROGWorkshop at HiPEAC, 2012.

[31] S. Seo, G. Jo, and J. Lee, “Performance characterization of the
NAS Parallel Benchmarks in OpenCL,” in Proceedings of the
IEEE International Symposium on Workload Characterization
(IISWC '11), pp. 137–148, Austin, Tex, USA, November 2011.

[32] Intel, “Writing Optimal OpenCL Code with Intel OpenCL
SDK,” http://software.intel.com/file/37171.

Research Article
Effective SIMD Vectorization for Intel Xeon Phi Coprocessors

Xinmin Tian,1 Hideki Saito,1 Serguei V. Preis,2 Eric N. Garcia,1 Sergey S. Kozhukhov,2

Matt Masten,1 Aleksei G. Cherkasov,2 and Nikolay Panchenko2

1Mobile Computing and Compilers Software and Service Group, Intel Corporation, Santa Clara, CA 95054, USA
2Mobile Computing and Compilers Software and Service Group, Intel Corporation, 6/1 Prospect Akademika,
Novosibirsk 125009, Russia

Correspondence should be addressed to Xinmin Tian; xinmin.tian@intel.com

Received 15 May 2014; Accepted 29 September 2014

Academic Editor: Sunita Chandrasekaran

Copyright © 2015 Xinmin Tian et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Efficiently exploiting SIMD vector units is one of the most important aspects in achieving high performance of the application
code running on Intel Xeon Phi coprocessors. In this paper, we present several effective SIMD vectorization techniques such as
less-than-full-vector loop vectorization, Intel MIC specific alignment optimization, and small matrix transpose/multiplication 2D
vectorization implemented in the Intel C/C++ andFortran production compilers for Intel XeonPhi coprocessors. A set ofworkloads
from several application domains is employed to conduct the performance study of our SIMD vectorization techniques. The
performance results show that we achieved up to 12.5x performance gain on the Intel Xeon Phi coprocessor. We also demonstrate
a 2000x performance speedup from the seamless integration of SIMD vectorization and parallelization.

1. Introduction

The Intel Xeon Phi coprocessor is based on the Intel Many
Integrated Core (Intel MIC) architecture, which consists of
many small, power efficient, in-order cores, each of which has
a powerful 512-bit vector processing unit (SIMD unit) [1]. It
is designed to serve the needs of applications that are highly
parallel, make extensive use of SIMDvector operations, or are
memory bandwidth bound. Hence, it is targeted for highly
parallel, high performance computing (HPC) workloads
[2] in a variety of fields such as computational physics,
chemistry, biology, and financial services [3]. The Intel Xeon
Phi Coprocessor 5110P has the following key specifications:

(i) 60 cores, 240 threads (4 threads/core),
(ii) 1.053GHz,
(iii) 1 TeraFLOP double precision theoretical peak perfor-

mance,
(iv) 8GB memory with 320GB/s bandwidth,
(v) 512 bit wide SIMD vector engine,
(vi) 32 KB L1, 512 KB L2 cache per core,
(vii) fused multiply-add (FMA) support.

One Teraflop theoretical peak performance is computed
as follows: 1.053GHz× 60 cores× 8 double precision elements
in SIMD vector × 2 flops per FMA. As such, any compute
bound applications trying to achieve high performance on
Intel Xeon Phi coprocessors need to exploit a high degree of
parallelism and wide SIMD vectors. Using a 512-bit vector
unit, 16 single precision (or 8 double precision) floating
point (FP) operations can be performed as a single vector
operation. With the help of the fused multiply-add (FMA)
instruction, up to 32 FP operations can be performed at each
core at each cycle. In comparison to the current 128-bit SSE
and 256-bit AVX vector extensions, this new coprocessor can
pack up to 8x and 4x the number of operations into a single
instruction, respectively.

Wider SIMD vector units cannot be effectively utilized
by simply extending the vectorizer for Intel SSE and Intel
AVX architecture. Consider the following simple example.
There exists a scalar loop that executesN-iterations. Using the
vector length of VL, a vector loopwould execute floor (N/VL)
full vector iterations followed by NmodVL scalar remainder
iterations. Unless 𝑁 is sufficiently larger than VL, executing
NmodVL scalar iterations can still be a significant portion
of the vector execution of such a loop. In what follows, we

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 269764, 14 pages
http://dx.doi.org/10.1155/2015/269764

http://dx.doi.org/10.1155/2015/269764

2 Scientific Programming

Collect function annotations or function analysis information

Function cloning and vector signature generation

Function vectorization Identify and analyze functions by parsing annotations and
profiling information to decide function cloning and

signatures for matching caller and callee on target CPU/GPU Memory/loop optimizations
loop vectorization/parallelization

Scalar optimization and code generation

Phase-2: optimizing with program annotation
or profiling feedback information

Phase-1: compile and execute with call graph and profiling enabled

Vectorized and optimized binary code

Figure 1: SIMD vector compilation infrastructure for function and loop vectorization.

will discuss two approaches in handling such “less-than-full-
vector” situations: the first technique is masked vectorization
and the second technique is small matrix optimization and
2-dimensional (2D) vectorization.

Furthermore, architectural or microarchitectural differ-
ences between Intel Xeon Phi coprocessors and Intel Xeon
processors necessitate that new compiler techniques be
developed. This paper focuses on three SIMD vectorization
techniques and makes the following contributions.

(i) We propose an extended compiler scheme to vector-
ize short trip-count loops and peeling and remainder
loops that are classified as “less-than-full-vector”
cases, with amasking capability supported by the Intel
MIC architecture.

(ii) We describe our specific data alignment strategies
for achieving optimal performance through vector-
ization, as the Intel MIC architecture is much more
demanding onmemory alignment than the Intel AVX
architecture [4].

(iii) We describe our 2-dimensional vectorizationmethod
which is beyond the conventional loop vectoriza-
tion for small matrix transpose and multiplication
operations by fully utilizing long SIMD vector units,
swizzle, shuffle, and masking support on the Intel
MIC architecture.

The rest of this paper is organized as follows: Section 2
provides a high-level overview of Intel C/C++ and Fortran
compilers. In Section 3, the compiler details of “less-than-
full-vector” loop vectorization are described and discussed.
Specific data alignment strategies for the Intel Xeon Phi
coprocessor and the schemes of performing data alignment
optimization are discussed in Section 4. Section 5 presents
the 2D vectorization methods for small matrix transpose and
multiplication. Section 6 discusses related work. Section 7
provides the performance results with a set of workloads and
microbenchmarks. Section 8 concludes the paper.

2. Compiler Architecture for Vectorization

This section describes the Intel C/C++ and Fortran compiler
support for the Intel Xeon Phi coprocessor at a high level
with respect to loop vectorization and the translation and
optimization of SIMD vector extensions [5–7]. The compiler
translates serial C/C++ and Fortran code via automatic loop
analysis or based on annotations using the SIMD pragma
and vector attributes into SIMD instruction sequences. The
compilation process is amenable to many optimizations
such as loop parallelization, memory locality optimizations,
classic loop transformations and optimizations, redundancy
elimination, and dead code elimination before and after
the loop/function vectorization. Figure 1 depicts the SIMD
compilation infrastructure of the Intel C/C++ and Fortran
compilers for automatic loop vectorization and compiling
SIMD pragma, vector function annotations, and associated
clauses. The framework consists of four major parts.

(i) Perform automatic loop analysis and identify and
analyze programmer annotated functions and loops
by parsing and collecting function and loop vector
properties. In addition, our compiler framework can
apply interprocedural analysis and optimization with
profiling and call-graph creation for automatic func-
tion vectorization.

(ii) Generate vectorized function variants with properly
constructed signatures via function cloning and vec-
tor signature generation.

(iii) Vectorize SIMD for loops that are identified by
the compiler or annotated using SIMD extensions
(#pragma SIMD can be used to vectorize outer loops)
and cloned vector function bodies and all arguments
by leveraging and extending our automatic loop
vectorizer.

(iv) Enable classical scalar, memory, and loop optimiza-
tions and parallelization effectively, before or after
loop and function vectorization, for achieving good
performance.

Scientific Programming 3

float x, y[31];

for (k=0; k<31; k++) {

x = x + fsqrt(y[k]);

}

Algorithm 1

3. Less-than-Full-Vector Loop
Vectorization with Masking

Intel Xeon Phi coprocessor provides long (512-bit) SIMD
vector hardware support for exploitingmore vector-level par-
allelism.The long SIMD vector unit imposes the requirement
of packingmore scalar loop iterations into a single vector loop
iteration, which also results in more iterations in the peeling
loop, and/or in the remainder loop remaining nonvectorized,
due to the fact that they do not constitute the full SIMDvector
(or less-than-full-vector) unit of Intel MIC architecture. For
example, consider the short trip-count loop as shown in
Algorithm 1.

When the loop is vectorized for Intel SSE2 with vector
length = 4 (128-bit), the remainder loop will have 3 iterations.
When the loop is vectorized for the Intel MIC architecture
with vector length = 16 (512-bit), the remainder loop will
have 15 iterations. In another situation, if the loop is unrolled
by 16, then the remainder loop will have 15 iterations,
leaving the remaining 15 iterations in a scalar execution
form. Thus, vectorizing the peeling and remainder loops
(i.e., short trip-count loop in general) is very important for
the Intel MIC architecture. This section describes how to
apply vectorization, with masking support, to peeling and
remainder loops (i.e., short trip-count loop) with special
guarding masks to prevent the SIMD code from exceeding
original loop and memory access boundaries. At a high
level, the following steps describe our vectorization scheme
without vectorization of peeling and remainder loops.

(i) s0: select alignment, vector length, and unroll factor.
(ii) s1: generate alignment setup code.
(iii) s2: compute the trip count of the peeling loop.
(iv) s3: emit the scalar peeling loop.
(v) s4: generate the vector loop initialization code.
(vi) s5: emit the main vector loop.
(vii) s6: compute the trip count of the remainder loop.
(viii) s7: emit the scalar remainder loop.

Given the simple example as shown in Algorithm 2, the
loop trip-count “𝑛” and the pointer “𝑦” (&𝑦[0]) have a
memory alignment that is unknown at compile time.

On the IntelMIC architecture the vector length is 512 bits,
which requires 64-byte alignment for efficient memory
accesses. To achieve 64-byte aligned memory loads/stores,
we need to pack 16 float (32-bit) elements for each single
vector iteration and generate a peeling loop. Pseudocode 1
shows the vectorized loop based on the vectorization steps

float foo(float ∗y, int n)

{ int k; float x = 10.0f;

for (k = 0; k < n; k++) {

x = x + fsqrt(y[k])

}

return x;

}

Algorithm 2

[s0, s1, . . . , s7] described above. The “less-than-full-vector”
loops, that is, the peeling and remainder loops, are not
vectorized.

Note that we performed loop unrolling for the main
vectorized loop, which allows the hardware to issue more
instructions per cycle by hiding memory access latency and
reducing branching. To enable the “less-than-full-vector”
(i.e., peeling loop, remainder loop, or short trip-count loop)
vectorization, the loop vectorization scheme is extended as
below.

(i) s0: select alignment, vector length and unroll factor.
(ii) s1: generate alignment setup code.
(iii) s2: compute the trip count of peeling loop.

(a) Create a vector of 16 elements with value
⟨0, . . . , 15⟩.

(b) Create a vector of 16 elements with value
⟨peeledTripCount, . . . , peeledTripCount⟩.

(iv) s3: emit the vectorized peeling loop with masking
operations.

(v) s4: generate the main vector loop initialization code.
(vi) s5: emit the main vector loop.
(vii) s6: compute the trip count of the remainder loop.

(a) Create a vector of 16 elements with the value
⟨mainTripCount, . . . ,mainTripCount+15⟩.

(b) Create a vector of 16 elements with the value
⟨origTripCount, . . . , origTripCount⟩.

(viii) s7: emit the vectorized remainder loop with masking
operations.

Pseudocode 2 shows the vectorized loops based on the
extended vectorization schemes [s0, s1, . . . , s7] described as
above.

In the cases of short trip-count loop vectorization of
peeling and remainder loops with runtime trip-count and
alignment checking, loops are vectorized as efficiently as pos-
sible. These loops are vectorized with optimal vector lengths
and an optimal amount of profitable unrolling regardless of
a known loop trip count. This provides better utilization of
SIMD vector hardware without sacrificing the performance
of short loops.This scheme allows us to completely eliminate

4 Scientific Programming

misalign = &y[0] & 63

peeledTripCount = (63 – misalign)/sizeof(float)

x = 10.0f;

do k0 = 0, peeledTripCount-1 // peeling loop

x = x + fsqrt(y[k0])

enddo

x1 v512 = (m512)0

x2 v512 = (m512)0

mainTripCount = n – ((n – peeledTripCount) & 31)

do k1 = peeledTripCount, mainTripCount-1, 32

x1 v512 = mm512 add ps(mm512 fsqrt(y[k1:16]),x1 v512)

x2 v512 = mm512 add ps(mm512 fsqrt(y[k1+16:16]), x2 v512)

enddo

// perform vector add on two vector x1 v512 and x2 v512

x1 v512 = mm512 add ps(x1 v512, x2 512);

// perform horizontal add on all elements of x1 v512, and

// the add x for using its value in the remainder loop

x = x + mm512 hadd ps(x1 512)

do k2 = mainTripCount, n // Remainder loop

x = x + fsqrt(y[k2])

enddo

Pseudocode 1: Pseudocode without vectorizing “less-than-full-vector” loops.

misalign = &y[0] & 63

peeledTripCount = (63 – misalign) / sizeof(float)

x = 10.0f;

// create a vector: <0,1,2,. . .15>

k0 v512 = mm512 series pi(0, 1, 16)

// create vector: all 16 elements are peeledTripCount

peeledTripCount v512 = mm512 broadcast pi32(peeledTripCount)

x1 v512 = (m512)0

x2 v512 = (m512)0

do k0 = 0, peeledTripCount-1, 16

// generate mask for vectorizing peeling loop

mask = mm512 compare pi32 mask lt(k0 v512, peeledTriPCount v512)

x1 v512 = mm512 add ps mask(mm512 fsqrt(y[k0:16]), x1 v512, mask)

enddo

mainTripcount = n – ((n – peeledTripCount) & 31)

do k1 = peeledTripCount, mainTripCount-1, 32

x1 v512 = mm512 add ps(mm512 fsqrt(y[k1:16]), x1 v512)

x2 v512 = mm512 add ps(mm512 fsqrt(y[k1+16:16]), x2 v512)

enddo

// create a vector: <mainTripCount,mainTripCount+1 . . . mainTripCount+15>

k2 v512 = mm512 series pi(mainTripCount, 1, 16)

// create a vector: all 16 elements has the same value n

n v512 = mm512 broadcast pi32(n)

step v512 = mm512 broadcast pi32(16)

do k2 = mainTripCount, n, 16 // vectorized remainder loop

mask = mm512 compare pi32 mask lt(k2 v512, n v512)

x1 v512 = mm512 add ps mask(mm512 fsqrt(y[k2:16]), x1 v512, mask)

k2 v512 = mm512 add ps(k2 v512, step v512)

enddo

x1 v512 = mm512 add ps(x1 v512, x2 512);

// perform horizontal add on 8 elements and final

// reduction sum to write the result back to x.

x = x + mm512 hadd ps(x1 512)

Pseudocode 2: Pseudocode with vectorizing “less-than-full-vector” loops using mask.

Scientific Programming 5

scalar execution of the loop in favor of masked SIMD vector
code generation. Special properties of the mask are used to
match unmasked code generation inmost cases. For example,
masked scalar memory loads that could be unsafe under an
empty mask are considered safe under a remainder mask
since it is never empty.

Without adding the capability of short trip-count loop
vectorization, the loops in the ConvolutionFFT2D bench-
mark with 7 iterations and double precision data type would
end up as a fully scalar execution. Applying vectorizationwith
masking to these short trip-count loops results in a∼2x to∼5x
speedup for the 7-iteration short trip-count (or less-than-full-
vector) loops in the ConvolutionFFT2D benchmarks on the
Intel MIC Architecture.

4. Alignment Strategy and Optimization

TheIntel XeonPhi coprocessor ismuchmore sensitive to data
alignment than the Intel Xeon E5 processor, so developing
an Intel MIC oriented alignment strategy and optimization
schemes is one of the key aspects for achieving optimal
performance.

(i) Similar to Intel SSE4.2, the SIMD load+op instruc-
tions require vector size alignment, which is 64-byte
alignment for the Intel MIC architecture. However,
simple load/store instructions require the alignment
information to be known at compile time on the Intel
Xeon Phi coprocessor.

(ii) Different from prior Intel SIMD extensions, all SIMD
load/store instructions including gather/scatter
require at least element size alignment. Misaligned
elements will cause a fault. This necessitates the Intel
MIC architecture ABI [8] to require that all memory
accesses be elementwise aligned.

(iii) There are no special unaligned load/store instructions
in the Intel Initial Many Core Instruction (Intel
IMCI) set.This is overcome by using unpacking loads
and packing stores that are capable of dealing with
unaligned (element-aligned) memory locations. Due
to their unpacking and packing nature, these instruc-
tions cannot be directly used for masked loads/stores,
except under special circumstances.

(iv) The faulting nature ofmaskedmemory access instruc-
tions in Intel IMCI adds extra complexity to those
instructions addressing data outside paged memory
and may fail even if actual data access is masked out.
The exceptions are gather/scatter instructions.

Therefore, the compiler aggressively performs data align-
ment optimizations using traditional techniques such as
alignment peeling and alignment multiversioning.

Alignment peeling implies the creation of a preloop that
executes several iterations on unaligned data in order to
reach an aligned memory address. As a result, most of these
iterations are executed using aligned SIMD operations. The
preloop can be vectorized with masking as described in
Section 2. Unfortunately, this scheme works only for one set

of coaligned memory addresses, and the others are assumed
to be unaligned. In addition, our multiversioning optimiza-
tion can be applied to the second set of coaligned locations
by examining them dynamically. Aligned or unaligned oper-
ations are used based on the results of the examination.

For unmasked unaligned (element-aligned) vector loads
and stores, the compiler uses unpacking/packing load and
store instructions. They are safe in this scenario and perform
much better than gather/scatter instructions. If the compiler
cannot prove the safety of the entire address range of a
particular memory access, it inserts a zero-mask check in
order to avoid a memory fault. All instructions with the same
mask are emitted under a single check to avoid execution
under the empty mask and to eliminate multiple checks of
the same condition.

Unpacking and packing instructions may cause fault
when they are used with a mask, as they may address
masked-out invalid memory. On-the-fly data conversion
may cause fault even without masking. Thus, for unaligned
masked and/or converting loads/stores, the compiler uses
gather/scatter instructions instead of safety, even though this
degrades performance. Memory faults would never happen
if each memory access had at least one vector (64 bytes) of
memory paged after its initial address. This can be achieved
by padding each data section in the program and each
dynamically allocated object with 64 bytes. For developers
who are willing to do the padding to achieve optimal perfor-
mance from masked code, the compiler knob-opt-assume-
safe-padding was introduced. Under this knob, unaligned
masked and/or converting load/store operations are emitted
as unpacking loads/packing stores.

(i) In unmasked converting cases, as well as cases
with peel/remainder masks, the compiler emits
loads/stores directly. The mask in this case will work
since it is dense.

(ii) For an arbitrary masking scenario, an unmasked load
unpack instruction is used, which is safe due to the
padding assumption, followed by a masked move
(blend).The “nonempty-mask” check guarantees that
the 64-byte padding is always enough for safety; that
is, at least one item within the vector is to be loaded.
Thus, the tail end of the memory access is within 64
bytes from meaningful data.

The safe-padding optimization has provided notable
improvements on a number of benchmarks, for example,
10% gain on BlackScholes and selected Molecular Dynamics
kernels.

5. Small Matrix Operations 2D Vectorization

Frequently seen in HPC workloads, operations on small
matrices are a growing, profitable set of calculations for
vectorization on Intel Xeon Phi coprocessors. With the wider
SIMD unit support, the Intel C/C++ and Fortran compilers
are enhanced to vectorize common operations on small
matrices along 2 dimensions. Small matrices are matrices
whose data can reside entirely in one or two 512-bit SIMD

6 Scientific Programming

real, dimension(4,4):: A, B, C

real sum

integer j, l, i

do j = 1, 4

do l = 1, 4

sum = 0.0

do i = 1, 4

sum = sum + A(i,l) ∗ B(i,j)

enddo

C(l,j) = sum

enddo

enddo

Algorithm 3: Small matrix multiplication summation.

Table 1: Contents of vector register A v512 after load.

A v512

A[1][1] A[1][2] A[1][3] A[1][4]

A[2][1] A[2][2] A[2][3] A[2][4]

A[3][1] A[3][2] A[3][3] A[3][4]

A[4][1] A[4][2] A[4][3] A[4][4]

Table 2: Contents of vector register B v512 after load.

B v512

B[1][1] B[1][2] B[1][3] B[1][4]

B[2][1] B[2][2] B[2][3] B[2][4]

B[3][1] B[3][2] B[3][3] B[3][4]

B[4][1] B[4][2] B[4][3] B[4][4]

Table 3: A󸀠 v512 after zero initialization.

A󸀠 v512

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

registers. Consider the example Fortran loop nest with 32-bit
float (or real) type as shown in Algorithm 3.

With nonunit stride references present in the inner loop
of Algorithm 3, the conventional inner loop vectorization
will not provide the most efficient vectorization of the loop
nest. The outer loop vectorization faces similar issues. The
Intel C/C++ and Fortran compiler employs the wider SIMD
vector unit of the Intel MIC architecture and vectorizes this
example loop across all three loop nesting levels, named as
2-dimensional (2D) vectorization on small matrices.

The vectorization approach is detailed below with vector
intrinsic pseudocode. For visualization, Tables 1–13 depict
a snapshot of the various vector unit contents after each
corresponding instruction. Tables 1–13 represent a vector
unit, whose name is in the leftmost column and its contents in
the rightmost four columns. Of the rightmost four columns,
the lowest addressed element is in the top left corner and each
consecutive element follows a row-major addressing order.

Table 4: Vector register contents after first shuffle.

A󸀠 v512

A[1][1] 0 0 0

0 A[2][2] 0 0

0 0 A[3][3] 0

0 0 0 A[4][4]

Table 5: Vector register contents after second shuffle.

A󸀠 v512

A[1][1] 0 0 A[4][1]

A[1][2] A[2][2] 0 0

0 A[2][3] A[3][3] 0

0 0 A[3][4] A[4][4]

Table 6: Vector register contents after third shuffle.

A󸀠 v512

A[1][1] 0 A[3][1] A[4][1]

A[1][2] A[2][2] 0 A[4][2]

A[1][3] A[2][3] A[3][3] 0

0 A[2][4] A[3][4] A[4][4]

Table 7: Vector register contents after the final shuffle.

A󸀠 v512

A[1][1] A[2][1] A[3][1] A[4][1]

A[1][2] A[2][2] A[3][2] A[4][2]

A[1][3] A[2][3] A[3][3] A[4][3]

A[1][4] A[2][4] A[3][4] A[4][4]

Table 8: Vector register contents after load with broadcast.

t1 v512

A[1][1] A[2][1] A[3][1] A[4][1]

A[1][1] A[2][1] A[3][1] A[4][1]

A[1][1] A[2][1] A[3][1] A[4][1]

A[1][1] A[2][1] A[3][1] A[4][1]

Table 9: Vector register contents illustrating swizzle.

t2 v512

B[1][1] B[1][2] B[1][3] B[1][4]

B[1][1] B[1][2] B[1][3] B[1][4]

B[1][1] B[1][2] B[1][3] B[1][4]

B[1][1] B[1][2] B[1][3] B[1][4]

First, array data is loaded into a vector unit. With a wider
SIMD vector unit, the compiler is able to load the entire A
and B matrix each into a single vector unit.

(a) Matrices A and B are loaded into two SIMD registers:

//Load A matrix from memory into vector
register,

A v512 = ⟨A[1][1], A[1][2],,
A[4][3], A[4][4]⟩.

For more details see Table 1.

//Load B matrix from memory into vector
register,

B v512 = ⟨B[1][1], B[1][2],,
B[4][3], B[4][4]⟩.

For more details see Table 2.

Scientific Programming 7

Table 10: C v512 vector unit contains elementwise product of
t1 v512 and t2 v512.

C v512 t1 v512 ∗ t2 v512

Table 11: t1 v512 vector register contents illustrating final load with
broadcast.

t1 v512

A[1][4] A[2][4] A[3][4] A[4][4]

A[1][4] A[2][4] A[3][4] A[4][4]

A[1][4] A[2][4] A[3][4] A[4][4]

A[1][4] A[2][4] A[3][4] A[4][4]

Table 12: t2 v512 vector register contents illustrating final swizzle.

t2 v512

B[4][1] B[4][2] B[4][3] B[4][4]

B[4][1] B[4][2] B[4][3] B[4][4]

B[4][1] B[4][2] B[4][3] B[4][4]

B[4][1] B[4][2] B[4][3] B[4][4]

Table 13: Final C v512 vector unit contains sum of existing values of
C v512 and elementwise products t2 v512 and t v512.

C v512 t2 v512 ∗ t1 v512 + C v512

Next, the compiler optimizes themultiplication operation
between matrix A and matrix B, through a series of data lay-
out transformations and vector multiplication and addition
operations.The compiler identifies a matrix multiplication in
this loop and permutes the elements in matrix A and matrix
B setting up simple vector multiplications and additions.

(b) We can simplify the multiplication needed through a
transposition of the elements of A, followed by amultiply and
add of each rowB andwith each rowof transposedA.We start
by transposing the elements of A.

//First, create a vector unit of zeros.

A󸀠 v512 = mm512 setzero()

For more details see Table 3.
For the transpose operation, we use a set of new Intel

MIC mm512 mask shuf128 × 32() intrinsic calls. Similarly
in classic architecture, this shuffle intrinsic is bound by four
128-bit “lanes” in each vector register. Thus, this intrinsic
contains arguments for permutation patterns for each of the
four 128-bit lanes, as well as a permutation pattern for each
of the four 32 bit boundaries within each of those lanes. The
arguments are as follows:

m512 res = mm512 mask shuf128 × 32(m512 v1, (I16)
vmask, m512 v2, (SI32)perm128, (SI32)perm32),

(i) res: result vector unit,
(ii) v1: blend-to-vector unit; the values in this vector unit

will be blended with the shuffled elements of the v2,
according to the write mask,

(iii) vmask: write mask; the write mask is a bit vector
specifying which elements to overwrite in v1 with the
shuffle elements of v2,

(iv) v2: incoming data vector unit; this vector unit holds
the elements which are to be shuffled,

(v) perm128: 128-bit lane permutation; this value specifies
the permutation order of the vector unit’s 128-bit
lanes,

(vi) perm32: elementwise permutation; this value speci-
fies the permutation order of the each of the four 32
bit boundaries within each 128-bit lane,

//Begin transpose operation by
shufflingelements into

//desired order. Shuffle used to insert
matrix diagonal

//into transpose result vector unit,

A󸀠 v512 = mm512 mask shuf128 ×32(A󸀠

v512, 0 × 8421,A v512,
MM PERM DCBA, MM PERM DCBA).

For more details see Table 4.

//Shuffle the next four elements and
blend-in with the

//elements written from previous
shuffle,

A
󸀠

v512 = mm512 mask shuf128 × 32(A󸀠

v512, 0 × 4218,A v512, MM PERM CBAD,
MM PERM ADCB).

For more details see Table 5.

//Shuffle the next four elements and
blend-in with the

//elements written from previous
shuffle,

A󸀠 v512 = mm512 mask shuf128 × 32(A󸀠

v512, 0 × 2184, A v512, MM PERM BADC,
MM PERM BADC)

For more details see Table 6.

//Shuffle the final four elements and
blend-in with the

//elements written from previous shuffle
to obtain the

//complete transpose,

A󸀠 v512 = mm512 mask shuf128 × 32(A󸀠

v512, 0 × 1842, A v512, MM PERM ADCB,
MM PERM CBAD).

For more details see Table 7.
After the elements of matrix A have been permuted

through transposition, each element of A and B is now in the
correct position within each vector unit for a vector product,
resulting in the same behavior as the dot product of rows and
columns.

(c) Next, we perform themultiplication of each row of the
transposed A with each row of B, maintaining a sum of the
products from row to row:

8 Scientific Programming

//Load the first row of A󸀠 v512 and
broadcast that row to

//each of the remaining three rows

t1 v512 = mm512 extload ps(A󸀠 v512[0 : 4],
MM FULLUPC NONE, MM BROADCAST 4 × 16,
0).

For more details see Table 8.
Another useful intrinsic used in this optimization is the

Intel MIC mm512 swizzle ps() intrinsic. This intrinsic is
similar to that of the shuffle above except it only permutes
each 128-bit lane and not each of the 32 boundaries within
those lanes. The arguments are as follows:

m512 res = mm512 swizzle ps(mm512 v1, SI32 perm)

(i) res: result vector unit,
(ii) v1: incoming data vector unit to be permuted,
(iii) perm: permutation pattern for each 128-bit lane,

//Load the first row of B v512 and
broadcast that row to

//each of the remaining three rows

t2 v512 = mm512 swizzle ps (B v512,
MM SWIZ REG AAAA).

For more details see Table 9.

//Multiply each element of t1 v512
with each element of

//t2 v512 and store result in C v512

C v512 = mm512 mul ps (t1 v512, t2 v512).

For more details see Table 10.

//Load the second row of A󸀠 v512 and
broadcast that row

//to each of the remaining three rows

t1 v512 = mm512 extload ps(A󸀠

v512[4 : 8], MM FULLUPC NONE, MM
BROADCAST 4 × 16, 0)

//Load the second row of B v512 and
broadcast that row to

//each of the remaining three rows

t2 v512 = mm512 swizzle ps (B v512,
MM SWIZ REG BBBB).

Each subsequent multiplication must be accumulated
for each row. These multiplications and additions are the
corresponding dot product of rows and columns found in
matrixmultiplication, but because of the earlier transpose, no
further permuting is required:

//Add the existing values of C v512
with the product of

//t1 v512 and t2 v512 and store
result in C v512

C v512 = mm512 madd213 ps (t2 v512,
t1 v512, C v512)

//Load the third row of A󸀠 v512
and broadcast that row to

//each of the remaining three rows

t1 v512 = mm512 extload ps(A󸀠

v512[8 : 12], MM FULLUPC NONE,
MM BROADCAST 4 × 16, 0)

//Load the third row of B v512 and
broadcast that row to

//each of the remaining three rows

t2 v512 = m512 swizzle ps (B v512,
MM SWIZ REG CCCC)

//Add the existing values of C v512
with the product of

//t1 v512 and t2 v512 and store result
in C v512

C v512 = mm512 madd213 ps (t2 v512,
t1 v512,C v512)

//Load the fourth row of A󸀠 v512
and broadcast that row

//to each of the remaining three rows

t1 v512 = mm512 extload ps(A󸀠

v512[12:16], MM FULLUPC NONE,
MM BROADCAST 4 × 16, 0).

For more details see Table 11.

//Load the fourth row of B v512
and broadcast that row to

//each of the remaining three rows

t2 v512 = mm512 swizzle ps (B v512,
MM SWIZ REG DDDD).

For more details see Table 12.

//Add the existing values of C v512
with the product of

//t1 v512 and t2 v512 and store result
in C v512

C v512 = mm512 madd213 ps (t2 v512,
t1 v512, C v512).

For more details see Table 13.
After the simplified matrix multiplication, the loop fur-

ther requires that results be stored in the C matrix. With all
elements correctly computed and residing in vector unit only
one store operation is generated.

(d) Finally, the result vector unit of values is stored to the
C array:

//The elements of vector register
C v512 are then stored

Scientific Programming 9

//to memory at &C[1][1]

⟨C[1][1], &C[1][2], . . . C[4][3],
&C[4][4]⟩ = C v512.

The 512-bit long SIMD vector unit of the Intel MIC archi-
tecture supports consumption of both matrix dimensions
for 2D vectorization, fitting an entire small matrix (4 × 4
float type) into one 512-bit SIMD vector register.This enables
more efficient flexible vectorization and optimizations for
small matrix operations. For example, the scalar version of
single precision 4 × 4 matrix multiply computation naively
executes 128 memory loads, 64 multiplies, 64 additions,
and 16 memory stores. The small matrix 2D vectorization
reduces instructions to 2 vector loads from memory, 4
multiplications, 4 shuffles, 4 swizzles, 3 additions, and 1 vector
store to memory for a reduction of approximately 15x in
number of instructions.

6. Performance Evaluation

This section presents the performance resultsmeasured on an
Intel Xeon Phi coprocessor system using a set of workloads
and microbenchmarks.

6.1. Workloads. We have selected a set of workloads to
demonstrate the performance benefits and importance of
SIMD vectorization on the Intel MIC architecture. These
workloads exhibit a wide range of application behavior that
can be found in areas such as high performance computing,
financial services, databases, image processing, searching,
and other domains. These workloads include the following.

6.1.1. NBody. NBody computations are used in many sci-
entific applications such as astrophysics [9] and statistical
learning algorithms [10].Themain computation involves two
loops that iterate over the bodies and computes a pairwise
interaction between them.

6.1.2. 2D 5 × 5 Convolution. Convolution is a common image
filtering computation used to apply effects such as blur and
sharpen. For a given 2D image and a 5 × 5 spatial filter
containing weights, this convolution computes the weighted
sum for the neighborhood of the 5 × 5 set of pixels.

6.1.3. Back Projection. Back projection is commonly used for
performing cone-beam image reconstruction of CT projec-
tion values [11]. The input consists of a set of 2D images that
are “back-projected” onto a 3D volume in order to construct
a 3D grid of density values.

6.1.4. Radar (1D Convolution). The 1D convolution is widely
used in applications such as radar tracking, graphics, and
image processing.

6.1.5. Tree Search. In memory tree structured index search
is a commonly used operation in database applications. This
benchmark consists of multiple parallel searches over a tree

Table 14: Target system configuration.

System parameters Intel Xeon Phi processor
Chips 1
Cores/threads 61 and 244
Frequency 1 GHz
Data caches 32KB L1, 512 KB L2 per core
Power budget 300W
Memory capacity 7936MB
Memory technology GDDR5
Memory speed 2.75 (GHz) (5.5 GT/s)
Memory channels 16
Memory data width 32 bits
Peak memory Bandwidth 352GB/s
SIMD vector length 512 bits

with different queries, where the path through the tree is
determined based on the comparison of results of the query
and node value at each tree level.

6.2. System Configuration. The detailed information on the
configuration of the Intel Xeon Phi Coprocessor used for
the performance study and for evaluating the effectiveness of
SIMD vectorization techniques is provided in Table 14.

6.3. Performance Results. All benchmarks were compiled as
native executable using the Intel 13.0 product compilers and
run on the Intel Xeon Phi coprocessor system specified in
Table 14. To demonstrate the performance gains obtained
through the SIMD vectorization, two versions of the binaries
were generated for each workload. The baseline version
was compiled with OpenMP parallelization only (-mmic -
openmp -novec); the vectorized version is compiled with
vectorization (default ON) and OpenMP parallelization (-
mmic -openmp).

The performance scaling is derived from the OpenMP-
only execution and OpenMP with 512-bit SIMD vector
execution on the Intel Xeon Phi coprocessor system that we
described at beginning of this section.That is, when thework-
load contains 32-bit single precision computations, 16-way
vectorization may be achieved. When the workload contains
64-bit double-precision computations, 8-way vectorization is
achieved.

Figure 2 shows the normalized SIMD performance
speedup of five workloads.The generated SIMD code of these
workloads achieved SIMD speedup ranging from 2.25x to
12.45x. Besides those classical HPC applications with regular
array accesses and computations, the workload with a large
amount of branching codes, such as tree search used in
database applications, achieves 2.25x speedup as well with
SIMDvectorization based on themasking support in the Intel
MIC architecture.

6.3.1. Impact of Less-than-Full-Vector Loop Vectorization. To
examine the impact of the less-than-full-vector loop vector-
ization, a simple microbenchmark was written with three

10 Scientific Programming

N-body Tree search

Normalized SIMD vectorization speedup

No vectorization
Vectorization

14.00

1.00 1.00 1.00 1.00 1.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00
Back

projection
Radar (1D

convolution)
2D 5 × 5

convolution

4.27x
2.25x

12.45x
10.52x10.39x

Figure 2: Performance results of workloads.

small kernel functions: intAdd, floatAdd, and doubleAdd.
Each of them has a short trip-count loop that takes 3 arrays,
a, b, c of size 31, and does an elementwise addition with
respect to int, float, and double data types. The vector
length is 16 iterations for loops in the intAdd and floatAdd
kernels and 8 iterations for the loop in the doubleAdd
kernel function.This experimental setup ensures the intAdd
and floatAdd loops contain a 15-iteration remainder loops,
and the doubleAdd loop contains a 7-iteration remainder
loop which can be vectorized with the “less-than-full-vector”
loop SIMD vectorization technique using masking support
described in the Section 2.

Figure 3 shows performance gains from vectorization
without “less-than-full-vector” loop vectorization and with
“less-than-full-vector” loop vectorization for three short trip-
count loops in the intAdd, floatAdd, and doubleAdd
kernel functions. The generated SIMD code of these loops
achieves a speedup ranging from 2.89x to 3.32x without
“less-than-full-vector” loop vectorization. With “less-than-
full-vector” loop vectorization, the performance speedup is
improved significantly and ranges from 3.28x to 7.68x. Note
that, in this measurement, all data are 64-byte aligned, there
are no peeling loops generated, and the aligned memory
load/store instructions such as vmovaps and vmovapd [1]
are generated to achieve optimal performance. The next
subsection shows the data alignment impact on the IntelMIC
architecture.

6.3.2. Impact of Data Alignment. These kernel loops used in
Section 6.3.1 are reused for this measurement. In this study,
the difference is that we do not provide alignment informa-
tion of the arraysa, b, and c.Without alignment information,
given these loops are short trip-count loopswith constant trip
count, the compiler generates SIMD instructions:

(i) vloadunpackld and vloadunpackhd to load
data from unaligned memory locations and
vpackstoreld and vpackstorehd [1] to store data
to unaligned memory locations for the vectorized
main loop,

(ii) vgatherdps and vscatterdps instructions [1] to
load and store for the vectorized remainder loop with
write mask.

1.00

2.89x

6.57x

1.00

3.32x

7.68x

1.00

3.06x 3.28x

0.00

2.00

4.00

6.00

8.00

10.00

No vectorization

Normalized SIMD vectorization speedup

intAdd short trip-count loop (31)
floatAdd short trip-count loop (31)
doubleAdd short trip-count loop (31)

peeling/remainder
scalar loop

Main vector +
peeling/remainder

vector loop

Main vector +

Figure 3: Performance gain with “less-than-full-vector” loop vec-
torization.

1.00 1.00 1.00

1.45x 1.41x
1.32x

0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50

intAdd short trip-
count loop

doubleAdd short
trip-count loop

Normalized gain from data alignment

Unaligned memory accesses
Aligned memory accesses

floatAdd short
trip-count loop

Figure 4: Performance gain with data alignment.

As shown in Figure 4, with data alignment information,
the performance of SIMD execution is 1.45x, 1.41x, and
1.32x better than unaligned cases with respect to int, float,
and double types of three kernel functions. The alignment
optimization described in Section 3 is critical to achieving
optimal performance on Intel MIC architecture.

6.3.3. Impact of Small Matrix 2D Vectorization. Small matrix
operations such as addition andmultiplication have served as
important parts ofmanyHPC applications. A number of clas-
sic compiler optimizations such as loop complete unrolling,
partial redundancy elimination (PRE), scalar replacement,
and partial summation have been developed to achieve
optimal vector execution performance. The conventional
inner or outer loop vectorization for 3-level loop nests of 4
× 4 matrix operations is not performing well on Intel Xeon
Phi coprocessor due to

(i) less effective use of 512-bit long SIMD unit, for
example, for 32-bit float data type, when either inner
loop or outer loop is vectorized. In this case 4-way
vectorization is used instead of 16-way vectorization,

(ii) side-effects on classic optimizations, for example, the
partial redundancy elimination, partial summation,
and operator strength reduction, when the loop is
vectorized.

Scientific Programming 11

1.00 1.00 1.00 1.00
0.48

1.06
0.50 0.931.15x

5.42x

1.04x

4.18x

0.00
1.00
2.00
3.00
4.00
5.00
6.00

Si
ng

le
 p

re
ci

sio
n

Si
ng

le
 m

at
rix

M
ul

tip
ly

Si
ng

le
 p

re
ci

sio
n

Pa
ire

d
m

at
rix

M
ul

tip
ly

D
ou

bl
e p

re
ci

sio
n

Si
ng

le
 m

at
rix

M
ul

tip
ly

D
ou

bl
e p

re
ci

sio
n

Pa
ire

d
m

at
rix

M
ul

tip
ly

Normalized SIMD vectorization gain/loss

No vectorization
Conventional vectorization
Small matrix 2D vectorization

Figure 5: Performance gain/loss with SIMD vectorization.

As shown in Figure 5, the convention loop vectorization
on small matrix (4 × 4) operations does cause performance
degradation. For both cases of single precision and double
precision matrix (4 × 4) multiplications, the performance
degradation is ∼50% when comparing against cases without
vectorization, which are used as the baseline performance.
In the case of the paired matrix multiplication, there are two
matrix (4 × 4) multiplications done in a single loop nest, and
matrix B is transposed for computing sumy (for more details
see Algorithm 4).

The classical loop optimizations are not as effective as for
the single matrix multiplication case due to the transpose
operation of matrix B and paired matrix multiplications in
the loop. Thus, the performance achieved with classical loop
optimization is on-par with applying conventional loop vec-
torization, and nonotable performance difference is observed
as shown in Figure 5. Promisingly, applying the small matrix
2D vectorization we proposed in Section 4, we achieved a
performance speedup 1.15x/1.04x for single matrix (4 × 4
float/double type) multiplication and a speedup 5.42x/4.18x
for paired matrix (4 × 4 float/double type) transpose and
multiplication, which demonstrates the effectiveness of small
matrix 2D vectorization using long SIMD vector unit sup-
ported by Intel Xeon Phi coprocessor.

7. Seamless Integration with Threading

Effectively exploiting the power of a coprocessor like Xeon
Phi requires that both thread- and vector-level parallelism
are exploited. While the parallelization topic is beyond the
scope of this paper, we would still like to highlight that the
SIMD vector extensions can be seamlessly integrated with
threading models such as OpenMP∗ 4.0 supported by the
Intel compilers. Given the Mandelbrot example Mandelbrot
computes a graphical image representing a subset of the
Mandelbrot set (awell-known 2D fractal shape) out of a range
of complex numbers. It outputs the number of points inside
and outside the set.

In the mandelbrot workload, the function “mandel” in
the mandelbrot program is a hot function and a candi-
date for SIMD vectorization, so we can annotate it with
#pragma omp declare SIMD. At the caller site, the hot
loop is a double nested for loop, the outer for loop is asserted
with “omp parallel for” for threading, and the inner loop
is asserted with “omp SIMD” for vectorization as shown in
Algorithm 5. Note that the “guided” scheduling type is used
for achieving a good load balance, as each call to “mandel”
function does varying amount of work in terms of execution
time due to “break” exit of the loop.

Figure 6 shows that the SIMD vectorization alone deliv-
ers a ∼16x speedup, built with option –mmic –openmp –
std=c99–O3 over the serial execution. The OpenMP paral-
lelization delivers a 62.09x speedup with 61 threads using 61
cores with Hyperthreading OFF, a speedup 131.54x with 244
threads (61 cores with Hyperthreading ON, 4 HT threads
per core) over the serial execution. The OMP PARALLEL
FOR and SIMD combined execution delivers an OMP PAR
+ SIMD speedup 2067.9x with 244 threads, running on
an Intel Xeon Phi system, which has 61-core on the chip
with Hyperthreading ON. The performance scaling from
1 thread to 61 threads is close to linear. In addition, the
Hyperthreading support delivers a ∼2x performance gain
by comparing the 244-thread speedup with the 61-thread
speedup, which is better than the well-known 20%–30%
expectation on the performance gain from Hyperthreading
technology due to the nature of less computing resource
contention in the workload, and 4 busy HT threads did
hide latency well. For the system information details see
Section 6.2.

8. Related Work

The compiler vectorization technology [12] had been one of
the key loop transformations for traditional vector machine
decades ago. However, the recent proliferation of modern
SIMD architecture [1, 4] poses new constraints such as data
alignment, masking for control flow, nonunit stride access to
memory, and the fixed-length nature of SIMD vectors that
shall demand more advanced vectorization technologies and
vectorization friendly programming language extensions [7].

In the past three plus decades, the rich body of SIMD
vectorization capabilities has been incorporated in a number
of industry and research compilers [5, 6, 12–16].These include
works based on ICC (the Intel compiler) [5, 6], XLC (the IBM
compiler) [13, 16], VAST [17], GCC [18, 19], and the SUIF
compiler [20]. However, there are many unknown program
factors such as loop trip count, memory access stride and
patterns, alignment, and control flow complexity at compile-
time that pose challenges to the modern optimizing com-
piler’s ability to apply advanced and practical vectorization
techniques and fulfill the semantic gap between application
programs and the modern processors such as Intel Xeon Phi
coprocessor for harnessing its computational power.

Compared to the conventional loop vectorization [5,
12, 20], the “less-than-full-vector” vectorization technique
brings extra performance benefits for those vectorizable short

12 Scientific Programming

do j = 1, 4

do k = 1, 4

sumx = 0.0

sumy = 0.0

do i = 1, 4

sumx = sumx + matrixA(i,k) ∗ matrixB(i,j)

sumy = sumy + matrixA(i,k) ∗ matrixB(j,i)

enddo

matrixC(k,j) = sumx

matirxD(j,k) = sumy

enddo

enddo

Algorithm 4

2000.00

1.
00 1.
00

7.
78

16
.0

1
12

7.
33

1.
00 15
.7

6
15

.9
9

25
1.

98
1.

00 31
.1

5
16

.1
8 51

0.
88

1.
00 62
.0

9
16

.0
5

98
9.

56
1.

00

1.
0098

.6
11

16
.1

2
15

80
.0

3

20
67

.9
1

13
1.

54
16

.0
7

0.
99

16
.0

2
15

.0
2

1600.00
1200.00

800.00
400.00

0.00
1 8 16 32 61 122 244

Serial

Number of threads

OpenMP PAR
OpenMP SIMD
OpenMP PAR + SIMD

Figure 6: OpenMP∗ parallel for and SIMD speedup of mandelbrot workload.

trip-count loops, especially when the processor provides the
long SIMD unit masking capability like the Intel Xeon Phi
coprocessor. Our alignment optimizations are built on top of
existing dynamic alignment optimizations as presented in [5,
6]. However, the alignment strategy described in this paper is
designed to satisfy the requirement of Intel MIC architecture
with optimal SIMD instruction selection andmask utilization
for safe and optimal performance. Beyond traditional single-
level loop vectorization [5, 12, 16, 18, 19, 21], the small matrix
operation 2D vectorization increases vector-parallelism and
improves the utilization efficiency of the long SIMD vector
unit, swizzle, shuffle, broadcast, and mask support in Intel
MIC architecture significantly.

In addition, programming language extensions such as
OpenMP∗ SIMD extensions [22, 23] and Cilk Plus [3, 7]
function vectorization and loop vectorization through the
compiler has been paving the way to enable more effective
vector-level parallelism [7, 22] in both C/C++ and Fortran
programming languages. To support these SIMD vector
programming models on the Intel Xeon Phi coprocessor
effectively, the practical and effective vectorization techniques
described in this paper are essential for achieving optimal
performance and ensuring SIMD code execution safety on an
Intel Xeon Phi coprocessor system.

9. Conclusions

Driven by the increasing prevalence of SIMD architec-
ture in the Intel Xeon Phi coprocessor, we proposed and
implemented new vectorization techniques to explore the
effective use of its long SIMD units. This paper presented
several practical SIMD vectorization techniques such as less-
than-full-vector loop vectorization, Intel MIC specific data
alignment optimizations, and small matrix operations 2D
vectorization for the Intel Xeon Phi coprocessor. A set of
workloads from several domains was employed to evaluate
the benefits of our SIMDvectorization techniques.The results
show that we achieved up to 12.5x performance gain on Intel
Xeon Phi coprocessor. Mandelbrot workload demonstrated
the seamless integration of SIMD vector extensions with
threading and showed a 2067.91x performance speedup with
the combined use of OpenMP “parallel for” and “SIMD”
constructs using Intel C/C++ compilers on an Intel Xeon Phi
coprocessor system.

Intel C/C++ and Fortran compilers are highly enhanced
for programmers to harness the computational power of
Intel Xeon Phi coprocessors for accelerating highly parallel
applications found in chemistry, visual computing, computa-
tional physics, biology, financial services, pixel, multimedia,

Scientific Programming 13

#pragma omp declare SIMD uniform(max iter) SIMDlen(32)
uint32 t mandel(fcomplex c, uint32 t max iter)

{

// Computes number of iterations(count variable)

// that it takes for parameter c to be known to

// be outside mandelbrot set

uint32 t count = 1; fcomplex z = c;

for (int32 t i = 0; i < max iter; i += 1) {

z = z ∗ z + c;

int t = (cabsf(z) < 2.0f);

count += t;

if (t == 0) { break;}

}

return count;

}

Caller site code:
int main() {

.

#pragma omp parallel for schedule(guided)
for (int32 t y = 0; y < ImageHeight; ++y) {

float c im = max imag - y ∗ imag factor;

#pragma omp SIMD safelen(32)
for (int32 t x = 0; x < ImageWidth; ++x) {

fcomplex in val;

in val = (min real + x∗real factor) + (c im∗1.0iF);

count[y][x] = mandel(in val, max iter);

}

}

.

}

Algorithm 5: An example of OpenMP∗ parallel for and SIMD combined usage.

graphics, and HPC applications by effectively exploiting the
use of the Intel MIC architecture SIMD vector unit beyond
traditional loop SIMD vectorization.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] Intel Corporation, “Intel Xeon Phi Coprocessor System Soft-
ware Developers Guide,” 2012, http://software.intel.com/en-
us/mic-developer.

[2] N. Satish, C. Kim, J. Chhugani et al., “Can traditional program-
ming bridge the Ninja performance gap for parallel computing
applications?” in Proceedings of the 39th Annual International
Symposium on Computer Architecture (ISCA ’12), pp. 440–451,
June 2012.

[3] J. Reinders, “An Overview of Programming for Intel Xeon
processor and Intel Xeon Phi Coprocessor,” 2012.

[4] Intel Corporation, Intel Advanced Vector Extensions Program-
ming Reference, Document Number 319433-011, Intel Corpora-
tion, 2011.

[5] A. J. C. Bik,M.Girkar, P.M.Grey, andX. Tian, “Automatic intra-
register vectorization for the intel architecture,” International
Journal of Parallel Programming, vol. 30, no. 2, pp. 65–98, 2002.

[6] A. J. C. Bik, D. L. Kreitzer, and X. Tian, “A case study on
compiler optimizations for the Intel Core𝑇𝑀 2 duo processor,”
International Journal of Parallel Programming, vol. 36, no. 6, pp.
571–591, 2008.

[7] X. Tian, H. Saito, M. Girkar et al., “Compiling C/C++ SIMD
extensions for function and loop vectorizaion on multicore-
SIMD processors,” in Proceedings of the IEEE 26th Interna-
tional Parallel and Distributed Processing SymposiumWorkshops
(IPDPSW ’12), pp. 2349–2358, May 2012.

[8] H. J. Lu, M. Garkar, M. Matz, J. Hubicka, A. Jaeger, and
M. Mitchell, “System V Application Binary Interface K1OM
Architecture Processor Supplement,” Version 1.0, 2012, http://
software.intel.com/en-us/forums/topic/278102.

[9] S. J. Aarseth, Gravitational N-Body Simulations: Tools and
Algorithm, Cambridge Monographs on Mathematical Physics,
Cambridge University Press, Cambridge, UK, 2003.

[10] A. G. Gray and A. W. Moore, “‘N-body’ problems in statistical
learning,” in Advances in Neural Information Processing Systems
(NIPS), pp. 521–527, 2000.

[11] M. Kachelrieb, M. Knaup, and O. Bockenbach, “Hyperfast
perspective cone-beam backprojection,” in Proceedings of the
IEEE Nuclear Science Symposium Conference Record, pp. 1679–
1683, November 2006.

[12] R. Allen and K. Kennedy, “Automatic translation of FORTRAN
programs to vector form,” ACM Transactions on Programming
Languages and Systems, vol. 9, no. 4, pp. 491–542, 1987.

14 Scientific Programming

[13] A. E. Eichenberger, K. O’Brien, P. Wu et al., “Optimizing
compiler for the CELL processor,” in Proceedings of the 14th
International Conference on Parallel Architectures and Compi-
lation Techniques (PACT ’05), pp. 161–172, IEEE, St. Louis, Mo,
USA, September 2005.

[14] R. Karrenberg and S. Hack, “Whole-function vectorization,”
in Proceedings of the 9th International Annual IEEE/ACM
Symposium on Code Generation and Optimization, pp. 141–150,
Charmonix, France, April 2011.

[15] S. Larsen and S. Amarasinghe, “Exploiting superword level
parallelism with multimedia instruction sets,” in Proceedings of
the SIGPLANConference on Programming Language Design and
Implementation (PLDI '00), pp. 145–156, June 2000.

[16] P. Wu, A. E. Eichenberger, and A. Wang, “Efficient SIMD code
generation for runtime alignment and length conversion,” in
Proceedings of the International Symposium on Code Generation
and Optimization (CGO '05), pp. 153–164, March 2005.

[17] Crescent Bay Software, VAST-F/AltiVec: Automatic Fortran
Vectorizer for PowerPC Vector Unit, 2004.

[18] D. Nuzman and A. Zaks, “Outer-loop vectorization—revisited
for short SIMD architectures,” in Proceedings of the 17th Inter-
national Conference on Parallel Architectures and Compilation
Techniques (PACT ’08), pp. 2–11, Toronto, ON, Canada, October
2008.

[19] D. Nuzman and R. Henderson, “Multi-platform auto-vector-
ization,” in Proceedings of the 4th International Symposium on
CodeGeneration andOptimization (CGO ’06), pp. 281–294,New
York, NY, USA, March 2006.

[20] G. Cheong and M. S. Lam, “An optimizer for multimedia
instruction sets,” in Proceedings of the 2nd SUIF Compiler
Workshop, August 1997.

[21] J. Shin, M. Hall, and J. Chame, “Superword-level parallelism in
the presence of control flow,” in Proceedings of the International
Symposium on Code Generation and Optimization (CGO ’05),
pp. 165–175, IEEE Computer Society, March 2005.

[22] M. Klemm, A. Duran, X. Tian, H. Saito, D. Caballero, and
X. Martorell, “Extending OpenMP* with vector constructs
for modern multicore SIMD architectures,” in OpenMP in a
Heterogeneous World: 8th International Workshop on OpenMP,
IWOMP 2012, Rome, Italy, June 11–13, 2012. Proceedings, Lecture
Notes in Computer Science, pp. 59–72, Springer, Berlin, Ger-
many, 2012.

[23] OpenMP Architecture Review Board, “OpenMP Application
Program Interface,” Version 4.0 (Release Candidate RC1), 2012.

Research Article
Optimized Data Transfers Based on the OpenCL Event
Management Mechanism

Hiroyuki Takizawa,1 Shoichi Hirasawa,1 Makoto Sugawara,2 Isaac Gelado,3

Hiroaki Kobayashi,2 and Wen-mei W. Hwu4

1Tohoku University/JST CREST, Sendai, Miyagi 980-8579, Japan
2Tohoku University, Sendai, Miyagi 980-8578, Japan
3NVIDIA Research, Santa Clara, CA 95050, USA
4The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Correspondence should be addressed to Hiroyuki Takizawa; takizawa@cc.tohoku.ac.jp

Received 15 May 2014; Accepted 29 September 2014

Academic Editor: Sunita Chandrasekaran

Copyright © 2015 Hiroyuki Takizawa et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In standard OpenCL programming, hosts are supposed to control their compute devices. Since compute devices are dedicated
to kernel computation, only hosts can execute several kinds of data transfers such as internode communication and file access.
These data transfers require one host to simultaneously play two or more roles due to the need for collaboration between the host
and devices. The codes for such data transfers are likely to be system-specific, resulting in low portability. This paper proposes
an OpenCL extension that incorporates such data transfers into the OpenCL event management mechanism. Unlike the current
OpenCL standard, the main thread running on the host is not blocked to serialize dependent operations. Hence, an application
can easily use the opportunities to overlap parallel activities of hosts and compute devices. In addition, the implementation details
of data transfers are hidden behind the extension, and application programmers can use the optimized data transfers without
any tricky programming techniques. The evaluation results show that the proposed extension can use the optimized data transfer
implementation and thereby increase the sustained data transfer performance by about 18% for a real application accessing a big
data file.

1. Introduction

Today, many high-performance computing (HPC) systems
are equipped with graphics processing units (GPUs) serving
as data-parallel accelerators in addition to conventional
general-purpose processors (CPUs). For such a heteroge-
neous HPC system, application programmers need to man-
age the system heterogeneity while exploiting the parallelism
involved in their applications. For the rest of the paper, we
will follow the OpenCL terminology and refer to the CPUs as
hosts and data-parallel accelerators as compute devices.

One difficulty in programming such a heterogeneous
system is that a programmer has to take the responsibility
for appointing the right processors to the right tasks. In the
current OpenCL standard, only the host can perform some
of tasks because the compute device is dedicated to kernel

computation. For example, only the host can access files and
communicate with other nodes. To write the computation
results of a kernel into a file, the results have to be first
transferred from the devicememory to the hostmemory after
the kernel execution, and then the host writes the results to
the file.

From the viewpoint of programmers, accelerator pro-
gramming models such as CUDA [1] and OpenCL [2] are
used for data transfers between the device memory and the
host memory, MPI [3] is used for internode data commu-
nication, and file functions of each programming language,
such as fprintf and fscanf in the C programming, are
used for the file I/O. Hence, these three categories of data
transfers are described with different programming models.
Some data transfers done by different programming models
could be dependent; a certain data transfer can be done

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 576498, 16 pages
http://dx.doi.org/10.1155/2015/576498

http://dx.doi.org/10.1155/2015/576498

2 Scientific Programming

only after its preceding data transfer. In order to enforce
such dependence, one popular way is to block the host
thread until the preceding data transfer has finished. This
kind of blocking often inhibits overlapping parallel activities
of the host and the device and exposes the data transfer
latencies to the total execution time. One may create a
dedicated host thread for synchronizing the dependent data
transfers. However, such multithreading will further increase
the programming complexity. Consequently, the application
performance strongly depends on the programming skills
and craftsmanship of the developers.

Another difficulty is that there is no standard way to
coding those data transfers even for common data transfer
patterns. Since application programmers are supposed to
appropriately combine those data transfers for fully exploit-
ing the potential of a heterogeneous HPC system, the code
is often specialized for a particular system. For example, one
compute device may be capable of directly accessing a file,
and another may not. In this case, the file access code for
the former device would be totally different from that for the
latter one.Therefore, the code for data transfers is likely to be
system-specific and some abstractions are required to achieve
functional portability as well as performance portability.
Although OpenCL has been designed for programming
various compute devices, it provides interfaces only for data
transfers between the host memory and the device memory,
but not for the other kinds of data transfers.

To overcome the above difficulties, we need a “bridging”
programming model that provides a standard way for coding
data transfers among various memory spaces and storages of
a heterogeneous parallel system in a unified fashion. In this
paper, we focus on OpenCL as the accelerator programming
model for high code portability and propose an OpenCL
extension for abstraction of data transfers, though the idea
could be trivially extrapolated to other GPU programming
models such as CUDA. The proposed OpenCL extension
named clDataTransfer provides an illusion that the compute
devices are transferring data directly to files or other nodes.
This paper focuses especially on internode communication
and file access as typical data transfers that need collaboration
of hosts anddevices.The extension offers someOpenCL com-
mands and functions for the data transfers. The internode
communication and file access commands are executed in the
same manner as the other OpenCL commands, and hence
the OpenCL programming model is naturally extended so
as to seamlessly access file data and also to improve the MPI
interoperability.

The clDataTransfer extension provides a portable, stan-
dardized way to programming of internode communications
and file accesses from/to the device memory. Although MPI
and file functions are used internally to perform those data
transfers with help of the hosts, those internal behaviors are
invisible to application programmers; it can thereby hide the
system-aware optimized implementations behind function
calls. Hence, we can also expect that the clDataTransfer exten-
sion improves the performance portability of OpenCL appli-
cations across different system types, scales, and generations.

The rest of this paper is organized as follows. Section 2
briefly reviews the related work. Section 3 discusses the

difficulties in joint programming of OpenCL, MPI, and the
standard I/O package of the C library, so-called Stdio. Then,
Section 4 proposes clDataTransfer, which is an OpenCL
extension for the collaboration withMPI and Stdio. Section 5
discusses the performance impact of clDataTransfer through
some evaluation results. Finally, Section 6 gives concluding
remarks and our future work.

2. Related Work

In the OpenCL programming model, a CPU works as a host
that manages one or more compute devices such as GPUs.
To manage the interaction between the host and devices,
OpenCL provides various resources that are instantiated as
OpenCL objects such as contexts, command queues,memory
objects, and event objects. A unique handle is given to
every object and is used to access the resource. A context
is a container of various resources and is analogous to a
CPU process. A command queue is used to interact with its
corresponding compute device; a host enqueues a command
to have its compute device execute a task. A memory
object represents a memory chunk accessible from hosts and
devices. An event object is bound with a command in the
command queue to represent the status of the command and
is used to block the execution of other commands. Hence,
it is used to describe the dependency among commands.
Moreover, multiple events can be combined to an event list
to express several previous commands.

For example, clEnqueueReadBuffer is a typical Open-
CL function for enqueuing a command, which transfers data
from the device memory to the host memory. The function
signature is as in Algorithm 1.

OpenCL command enqueuing functions take three argu-
ments for event management: the number of events in the
waiting list (numevts), the initial address of the waiting
list (wlist), and the address to which the event object of
the enqueued command is passed (evtret). The enqueued
command is able to be executed when all the preceding
commands associated with the event objects in the waiting
list have been completed.

In joint programming of MPI and OpenCL, a pro-
grammer needs to consider not only host-device commu-
nication using OpenCL but also internode communication
using MPI. So far, some researchers have presented sev-
eral MPI extensions to GPUs to ease the joint program-
ming of MPI and CUDA/OpenCL. We will refer to these
approaches as GPU-aware MPI implementations. Lawlor has
proposed cudaMPI [4] that provides anMPI-like interface for
communication between remote GPUs. MPI-ACC [5] uses
the MPI Datatype argument to indicate that the memory
buffer passed to an MPI function is located in the device
memory. MVAPICH2-GPU [6] assumes Unified Virtual
Addressing (UVA), which provides a singlememory space for
host and device memories, and checks if the memory buffer
passed to an MPI function is in the device memory. Then,
MVAPICH2-GPU internally uses different implementations
depending on whether the memory buffer is in the device
memory or the host memory. Stuart et al. have discussed

Scientific Programming 3

cl int

clEnqueueReadBuffer(cl command queue cmd, /* command queue */

cl mem buf, /* memory buffer */

cl bool blocking, / blocking */

size t offset, /* offset */

size t size, /* buffer size */

void* hbuf, /* buffer pointer */

cl uint numevts, /* the number of events in the list */

cl event* wlist, /* event list */

cl evett* evtret) /* event object of event object */

Algorithm 1

various design options of MPI extension to support accelera-
tors [7]. Gelado et al. proposed GMAC that provides a single
memory space shared by a CPU and a GPU and hence allows
MPI functions to access device memory data [8]. Those
extensions allow an application to use a GPUmemory buffer
as the end point of MPI communication; the extended MPI
implementations enable using MPI functions for internode
communication from/to GPU memory buffers by internally
using data transfer functions of CUDA/OpenCL.

By using GPU-aware MPI extensions, application
developers do not need to explicitly describe the host-
device data transfers such as clEnqueueWriteBuffer
and clEnqueueReadBuffer. As with clDataTransfer, these
extensions do not require tricky programming techniques
to achieve efficient data transfers, because they hide the
optimized implementations behind the MPI function calls.

In GPU-aware MPI extensions, all internode communi-
cations are still managed by the host thread visible to applica-
tion developers. For example, if the data obtained by execut-
ing a kernel are needed by other nodes, the host thread needs
to wait for the kernel execution completion in order to seri-
alize the kernel execution and the MPI communication; the
host thread is blocked until the kernel execution is completed.

Furthermore, MPI extension to OpenCL is not straight-
forward, as Aji et al. discussed in [5]. To keep OpenCL
data transfers transparent to MPI application programs, the
MPI implementationmust acquire valid command queues in
some way. Aji et al. assume that an MPI process mostly uses
only one command queue and its handle is thus cached by the
MPI implementation to be used in subsequent communica-
tions, even though this assumption could be incorrect. Even
if the cached command queue is available for subsequent
communications, there may exist a more appropriate com-
mand queue for the communications. clDataTransfer allows
application programmers to specify the best command queue
for communication. It should be emphasized thatGPU-aware
MPI extensions and clDataTransfer are mutually beneficial
rather than conflicting. For example, although this work
has implemented pipelined data transfers using standard
MPI functions, it is possible for clDataTransfer to use MPI
extensions for its implementation.

Stuart and Owens have proposed DCGN [9]. As with
clDataTransfer, DCGN provides an illusion that GPUs com-
municate without any help of their hosts. Unlike clData-
Transfer, DCGN provides internode communication API

functions that are called from GPU kernels. When the API is
called by a kernel running on a GPU, the kernel sets regions
of device memory that are monitored by a CPU thread.Then,
theCPU thread reads necessary data from the devicememory
and thus handles the communication requests from the
GPU. Accordingly, DCGN allows a kernel to initiate intern-
ode communication. However, the requirement for host to
monitor the device memory incurs a nonnegligible runtime
overhead. On the other hand, in clDataTransfer, internode
communication requests are represented as OpenCL com-
mands. Hence, the host initiates the commands and the
clDataTransfer implementation can rely on theOpenCL event
managementmechanism to synchronizewith the commands.

AnOpenCLmemory object in the same context is shared
bymultiple devices.TheOpenCLmemory consistencymodel
implicitly ensures that the contents of amemory object visible
to the devices are the same only at their synchronization
points. Once a device updates a memory object shared
by multiple devices, the new memory content is implicitly
copied to the memory of every device in the same context.
Some OpenCL implementations [10] support creating a
context shared by multiple devices across different nodes
and thereby attain data sharing among remote devices while
conforming the OpenCL specifications. However, in this
approach, multiple devices sharing one context can have only
a single memory space; they cannot have different memory
contents even if some of the contents are not needed by
all nodes. As a result, the contents could unnecessarily be
duplicated to the device memory of every node, increasing
the aggregated memory usage and also internode communi-
cations for the duplication.

GPU computing is employed not only for conventional
HPC applications but also for data-intensive applications,
for example, [11, 12], in which the data sizes are large and
hence are stored in files. As only hosts can access the data
stored in files, GPU computing requires additional data
transfers between hosts and GPUs. Nonetheless, GPUs are
effective to accelerate the kernel execution and reduce the
total execution time in practical data-intensive applications.
Overlapping the kernel execution with various data transfers
such as file accesses and host-device data transfers is a key
technique to reduce the data transfer latencies and obviously
has common code patterns. However, as far as we know,
there is no standard way to develop this pattern in a manner
that is reusable in other applications. As recent and future

4 Scientific Programming

(1) cl command queue cmd;

(2) cl kernel kern;

(3) cl event evt;

(4)
(5) for(int i(0);i<N;++i){

(6) // (1) computation on a device
(7) clEnqueueNDRangeKernel(cmd,kern,. . .,0,NULL,&evt);

(8)
(9) // (2) read the result from device to host
(10) clEnqueueReadBuffer(cmd,. . .,1,&evt,NULL);

(11) clFinish(cmd); // the host thread is blocked
(12)
(13) // (3) exchange data with other nodes
(14) MPI Sendrecv(. . .); // blocking function call
(15)
(16) // (4) write the received data to device memory
(17) clEnqueueWriteBuffer(cmd,. . .);

(18) }

Listing 1: A simple pseudocode combining OpenCL and MPI.

HPC systems have hierarchical storage subsystems, high-
speed local storages using nonvolatile memories will be
available. In those cases, the overlapping would become
more significant because host-device data transfer overheads
increase relatively to the file access overhead.

3. Difficulties in Joint Programming

This section discusses some difficulties in joint programming
of OpenCL and other libraries, such as MPI, which
are called by host threads. Listing 1 shows a simple
code of the joint programming of MPI and OpenCL. In
this code, a command to execute a kernel is first enque-
ued by invoking clEnqueueNDRangeKernel. Another com-
mand to read the kernel execution result is then enqueued
by clEnqueueReadBuffer. Using the event object of the
first command, evt, the execution of the second command
is blocked until the first command is completed. The second
command enqueued by clEnqueueReadBuffer can be
either blocking or nonblocking. The function call is non-
blocking if the third argument is CL FALSE; otherwise
it is blocking. If it is nonblocking, we have to use a
synchronization function such as clFinish to make sure
that the data have already been transferred from device
memory to host memory in advance of calling MPI Sen-
drecv. In this naive implementation, the data exchange
with other nodes must be performed after the data
transfer from device memory to host memory; those
data transfers must be serialized. Similarly, MPI Sendrecv
and clEnqueueWriteBuffer must be serialized.Therefore,
kernel execution and all data transfers are serialized, which
results in a long communication time exposed to the total
execution time. In addition, the host thread is blocked
whenever MPI and OpenCL operations are serialized.
Although Listing 1 shows an example of joint programming
of MPI and OpenCL, the same difficulties arise when

combining OpenCL and Stdio (or any other file access
programming interfaces).

To make matters worse, there is no standard way for
the joint programming. Even for simple point-to-point
communication between two remote devices, we can con-
sider at least the following three implementations. One is
the naive implementation as shown in Listing 1. In the
implementation, host memory buffers should be page-locked
(pinned) for efficient data transfers (although the OpenCL
standard does not provide any specific means to allocate
pinned host memory buffers, most vendors rely on the
usage of clEnqueueMapBuffer to provide programmers
with pinned host memory buffers). This can be also a point
to make different vendors require different implementations
to exploit pinned memory. Another implementation is to
map device memory objects to host memory addresses
by using clEnqueueMapBuffer and then to invoke MPI
functions to transfer data from/to the addresses. After
the MPI communication, clEnqueueUnmapMemObject is
invoked to unmap the device memory objects. The other
implementation is to overlap host-device data transfers with
internode data transfers. In this implementation, data of a
device memory object are divided into data blocks of a fixed
size, called a pipeline block size, and host-device data transfers
of each block are overlapped with internode data transfers
of other blocks in a pipelining fashion [6]. In this paper,
the three aforementioned implementations are referred to
as pinned, mapped, and pipelined data transfers. Among
those implementations, the best one changes depending
on several factors such as the message size, device types,
device vendors, and device generations. Also in the cases
of overlapping host-device data transfers with file accesses
there are many implementation options and parameters due
to the variety of file access speeds in a hierarchical storage
subsystem. Accordingly, an application developermight need
to implement multiple versions to optimize data transfers

Scientific Programming 5

A

A

A

B

B

B

...

...

Rank 2n − 1

Rank 2n

Rank 2n + 1

Figure 1: One-dimensional domain decomposition.

for performance portability of an application program across
various systems.

Another common approach to hide the communication
overhead is to overlap the data transfers and computation
through double buffering [11, 13]. To this end, the compu-
tation is usually divided into two stages. While executing
the first stage computation, the first stage data transfer is
performed to prepare for the second stage computation. If the
computation and data transfer are inside a loop, the second
stage data transfer for the first stage computation of the next
iteration is performed during the second stage computation
of the current iteration.

In OpenCL programming, this overlapping optimiza-
tion can be achieved using two in-order execution com-
mand queues. Listing 2 shows a simplified version of
the Himeno benchmark code described in [13], which
is originally written in CUDA and MPI. In the code,
jacobi kernel * functions in Lines (9), (18), (28), and (35)
invoke kernels using the command queue cmd1 to update
the memory object specified by the second argument. The
code assumes one-dimensional domain decomposition, in
which each decomposed domain is further halved into upper
and lower portions, A and B. Figure 1 illustrates the domain
decomposition assumed by the code. The top plane of A
and the bottom plane of B are halo regions that have to be
updated every iteration by exchanging data with neighboring
nodes. Hence, if theMPI rank of a process is an even number,
during calculating A, the process updates the halo region
included in B.Then, it calculates B during exchanging data for
updating the halo of A. On the other hand, if the MPI rank
of a process is an odd number, the process first calculates B
during updating the halo of A. Then, it calculates A during
exchanging data for updating the halo of B. As a result, the
communication time is not exposed to the total execution

time as shown in Figure 2(a) unless the communication time
exceeds the computation time.

As the number of MPI processes increases, the computa-
tion time becomes shorter because the domain processed by
each GPU becomes smaller. However, the second stage com-
munication cannot start even if the first stage computation is
completed earlier and hence the data are ready for the second
stage communication as shown in Figure 2(b).This is because
the host thread is often blocked and tied up in the first stage
communication in order to serialize the MPI and OpenCL
operations.

Since the code in Listing 2 is simple, there are some
workaround techniques to solve this problem. However, in
the case where more advanced optimization techniques such
as pipelining are applied to the data transfers, the host thread
is stalled more frequently to timely synchronize MPI and
OpenCL operations in multiple parallel activities of an appli-
cation. In general, there are at least three parallel activities in
an application: host computation, device computation, and
nonblocking MPI communication. If there are dependent
operations of MPI and OpenCL, the host thread is usually
blocked to serialize the operations, which inhibits overlap-
ping of the parallel activities. Also, host thread blocking is
often used even in a serial application if the host thread needs
to load data from a file, send them to the device memory,
and retrieve the computation results from the devicememory.
Multithread programming or complex asynchronous I/O
APIs would be required to properly manage those parallel
activities. In this way, an application code becomes more
complicated and system-specific, resulting in low code read-
ability, maintainability, and portability. This motivates us to
design a bridging programming model that can explicitly
describe the dependencies among MPI, OpenCL, and file
access operations in order to initiate data transfers without
any help of the host thread.

4. An OpenCL Extension for Collaboration
with MPI and Stdio

This paper proposes clDataTransfer, an OpenCL extension
to facilitate and standardize the joint programming of MPI,
Stdio, and OpenCL. The key idea of this extension is to use
OpenCL commands for internode data transfers, file accesses,
and data transfers between hosts and local devices.

The major advantages of clDataTransfer are summarized
as follows.

(1) Performance portability: the implementation details
of internode data transfers andfile accesses are hidden
behind extended commands and can be used via a
simple programming interface similar to the standard
OpenCL interface.

(2) Event management: a host thread is not responsible
for serializing internode communications, file oper-
ations, and host-device communications. Instead, an
event object is used to block the subsequent com-
mands until the preceding command is completed.

6 Scientific Programming

(1) cl command queue cmd1, cmd2;

(2) cl mem p new, p old, p tmp;

(3)
(4) for(int i(0);i<N;++i){

(5) //swap pointers
(6) p tmp = p new; p new = p old; p old = p tmp;

(7) if(rank%2 == 0) {

(8) // the upper portion is calculated
(9) jacobi kernel even A(cmd1,p new,. . .);

(10) // the bottom plane is updated
(11) MPI Irecv(. . .);

(12) clEnqueueReadBuffer(cmd2,p old,CL FALSE,. . .);

(13) clFinish(cmd2); // blocking
(14) MPI Send(. . .); // blocking
(15) MPI Wait(. . .); // blocking
(16) clEnqueueWriteBuffer(cmd2,p old,CL FALSE,. . .);

(17) // the lower portion is calculated
(18) jacobi kernel even B(cmd2,p new,. . .);

(19) // the top plane is updated
(20) MPI Irecv(. . .);

(21) clEnqueueReadBuffer(cmd1,p new,CL FALSE,. . .);

(22) clFinish(cmd1); // blocking
(23) MPI Send(. . .); // blocking
(24) MPI Wait(. . .); // blocking
(25) clEnqueueWriteBuffer(cmd1,p new,CL FALSE,. . .);

(26) }
(27) else {

(28) jacobi kernel odd B(cmd1,p new,. . .);

(29) MPI Irecv(. . .);

(30) clEnqueueReadBuffer(cmd2,p old,CL FALSE,. . .);

(31) clFinish(cmd2); // blocking
(32) MPI Send(. . .); // blocking
(33) MPI Wait(. . .); // blocking
(34) clEnqueueWriteBuffer(cmd2,p old,CL FALSE,. . .);

(35) jacobi kernel odd A(cmd2,p new,. . .);

(36) MPI Irecv(. . .);

(37) clEnqueueReadBuffer(cmd1,p new,CL FALSE,. . .);

(38) clFinish(cmd1); // blocking
(39) MPI Send(. . .); // blocking MPI Wait (. . .); // blocking
(40) clEnqueueWriteBuffer(cmd1,p new,CL FALSE,. . .);

(41) } clFinish(cmd1);clFinish(cmd2); /* error calculation */
(42) }

Listing 2: A Himeno benchmark code with overlapping communication and computation.

(3) Collaboration for latency hiding: clDataTransfer can
collaborate with MPI and Stdio in order to hide data
transfer latencies in a pipelining fashion.

By encapsulating file accesses into OpenCL commands,
the clDataTransfer extension offers two file access com-
mands: clEnqueueReadBufferToStdioFile and clEnq-
ueueWriteBufferFromStdioFile. clEnqueueReadBuf-
ferToStdioFile reads data from a device memory buf-
fer and writes the data to a file, and clEnqueueWrite-
BufferFromStdioFile reads data from a file and writes
the data to a device memory buffer. The function signatures
are as in Algorithm 2.

Similarly, the clDataTransfer extension offers clEnqueue-
SendBuffer and clEnqueueRecvBuffer, which enqueue
commands of transferring data from and to a device memory
buffer, respectively. These clDataTransfer functions are direct
counterparts of MPI Send and MPI Recv [3] and hence take
the same arguments of rank, tag, and communicator as those
two MPI functions. For example, the function signature
of clEnqueueRecvBuffer is as in Algorithm 3.

When one MPI process invokes those functions for
sending a command to a device, the device becomes a
communicator device for oneMPI communication and works
as if it communicates instead of the host thread.The data sent
to the MPI rank are received by the communicator device,

Scientific Programming 7

Comp.

Comp.Comm.

Comm.cmd1

cmd2

Time

(a)

Comp.

Comp. Comm.

Comm.

cmd1

cmd2

Time

(b)

Comp.

Comp.

Comm.

Comm.

cmd1

cmd2

Time

(c)

Figure 2: Overlapping communications and computations. (a) The communication time is overlapped with the computation time. (b) The
computation time is too short to hide the communication time. Since joint programming of OpenCL andMPI cannot express the dependency
between the first communication and the second computation, the host thread is blocked to execute them in a correct order. (c) The second
communication can potentially start earlier because the host thread is not blocked.

cl int clEnqueueReadBufferToStdioFile(

cl command queue cmd, /* command queue */

cl mem mem, /* memory buffer to be read */

cl bool blk, /* blocking function call */

size t off, /* offset */

size t bsz, /* buffer size */

FILE* fp, /* file pointer */

cl uint nev, /* the number of events in the list */

const cl event* evl, /* event list */

cl event* evt) /* event object of the function call */

cl int clEnqueueWriteBufferFromStdioFile(

cl command queue cmd, /* command queue */

cl mem mem, /* memory buffer to be written */

cl bool blk, /* blocking function call */

size t off, /* offset */

size t bsz, /* buffer size */

FILE* fp, /* file pointer */

cl uint nev, /* the number of events in the list */

const cl event* evl, /* event list */

cl event* evt) /* event object of the function call */

Algorithm 2

cl int

clEnqueueRecvBuffer(cl command queue cmd, /* command queue */

cl mem buf, /* memory buffer to receive data */

cl bool blocking, /* blocking function call */

size t offset, /* offset */

size t size, /* buffer size */

int src, /* sender’s rank */

int tag, /* tag */

MPI Comm comm, /* communicator */

cl uint numevts, /* the number of events in the list */

const cl event* wlist, /* event list */

cl event* evtret) /* event object of the function call */

Algorithm 3

8 Scientific Programming

(1) if(rank == 0){

(2) clEnqueueSendBuffer(cmd, buf, CL TRUE, off, sz, 1,. . .);

(3) }
(4) else if(rank == 1){

(5) clEnqueueRecvBuffer(cmd, buf, CL TRUE, off, sz, 0,. . .);

(6) }

Listing 3: A code with the OpenCL extension for device-to-device communication.

and the received data are stored in the memory space of
the communicator device, that is, buf. The MPI rank of the
sender is given to the function, and the sender could be either
the host thread or the communicator device associated with
the MPI rank.

In the case where both the sender and the receiver submit
internode communication commands to their devices, those
devices communicate with each other. Listing 3 shows a sim-
ple example of communication between remote devices. In
this code, the communicator device of rank 0 sends the data of
a memory buffer object to the communicator device of rank
1 without explicitly calling any MPI functions. Accordingly,
devices appear to communicate with remote devices without
help of their host threads. The implementation details of
internode communication by combining MPI and OpenCL
are hidden behind the OpenCL command execution. Hence,
the application can use optimized implementations of effi-
cient data transfers without using tricky programming tech-
niques. If oneMPI process needs to usemultiple communica-
tor devices, a unique tag is given to eachMPI communication
to specify which communicator device handles it.

4.1. Event Management. The clDataTransfer extension allows
a programmer to use event objects in order to express the
dependency among internode communication commands,
storage file access commands, and otherOpenCL commands.
If a data transfer command provided by clDataTransfer needs
the result of its preceding command, the programmer can get
the event object of the preceding command and use it to block
the execution of the data transfer command.This ensures that
the data transfer is performed after the preceding command
is completed. In this way, data transfer commands of clData-
Transfer are incorporated into the OpenCL execution model
in a natural manner. Accordingly, function calls of MPI
and Stdio are encapsulated in OpenCL commands whose
dependencies with other OpenCL commands are accurately
enforced by the command queues. Unlike the conventional
joint programming of MPI, Stdio, and OpenCL, the host
thread does not need to wait for the preceding command
completion. After enqueuing the commands by nonblocking
function calls, the host thread immediately becomes available
for other computations and data transfers; an application
programmer can consider as if a device is able to work
independently from the host thread. In due time, theOpenCL
runtime will release the clDataTransfer command for timely
execution of the MPI functions as shown in Figure 2(c),

even though the two communications may or may not be
performed concurrently.

Using the clDataTransfer extension, the code in Listing
2 can be simply rewritten as the code in Listing 4. This
is an example that demonstrates simplification of common
patterns in joint programming of OpenCL and other pro-
gramming models. In this particular case, the clDataTransfer
extension can halve the number of code lines for describ-
ing the same computation as the joint programming of
OpenCL and MPI. Since there are dependencies among the
enqueued commands, they are expressed by using event
objects bound with the commands. In Listing 2, the second
stage computations, jacobi even A and jacobi odd B, are
blocked using event objects of the first communication, e[1].
The second stage communications are blocked using the
event object of the first stage computation, e[0]. On the
other hand, in Listing 4, the dependencies among the
function calls are managed by the OpenCL event manage-
ment mechanism, and the host thread is thus freed from
controlling the computation and communication. In the
code, clEnqueueSendrecvBuffer enqueues an OpenCL
command for exchanging data between two MPI processes
by internally invoking MPI Sendrecv under control of the
OpenCL eventmanagement.Therefore, the host thread is just
waiting at the end of the iteration by calling clFinish.

4.2. Interoperability with Existing MPI Functions. In clData-
Transfer, an MPI process uses clDataTransfer commands for
transferring data from/to a device memory buffer. If an MPI
process needs to transfer data from/to a host memory buffer,
clDataTransfer allows the MPI process to use standard MPI
functions such as MPI Isend and MPI Irecv to communi-
cate with remote devices as well as remote hosts. Listing 5
shows that the MPI process of rank 0 receives data from
a remote device managed by the MPI process of rank 1.
A special MPI Datatype value, MPI CL MEM, is given to the
third argument of MPI Irecv in order to express that the
sender is supposed to be a communicator device and the
data are in the device memory. If MPI CL MEM is given, the
sender and receiver collaborate for efficient data transfers
between host and device memories. A similar approach of
using MPI Datatype can be seen in [5], even though they
extend only MPI but not OpenCL.

As shown in Listing 5, nonblocking MPI functions
can be used for internode communication from/to a host
memory buffer. Hence, the data need to be received

Scientific Programming 9

(1) cl command queue cmd1, cmd2;

(2) cl mem p new, p old, p tmp;

(3) cl event e[2];

(4)
(5) for(int i(0);i<N;++i){

(6) p tmp = p new; p new = p old; p old = p tmp;

(7) if(rank%2 == 0) {

(8) jacobi kernel even A(cmd1,p new. . .0,NULL,&e[0]);

(9) clEnqueueSendrecvBuffer(cmd2,p old,. . .0,NULL,&e[1]);

(10) jacobi kernel even B(cmd2,p new. . .1,&e[1],NULL);

(11) clEnqueueSendrecvBuffer(cmd1,p new,. . .1,&e[0],NULL);

(12) }
(13) else {

(14) jacobi kernel odd B(cmd2,p new. . .0,NULL,&e[0]);

(15) clEnqueueSendrecvBuffer(cmd1,p old,. . .0,NULL,&e[1]);

(16) jacobi kernel odd A(cmd1,p new. . .1,&e[1],NULL);

(17) clEnqueueSendrecvBuffer(cmd2,p new,. . .1,&e[0],NULL);

(18) }
(19) clFinish(cmd1);clFinish(cmd2);

(20) /* error calculation */
(21) }

Listing 4: A Himeno benchmark code with the proposed OpenCL extension.

(1) cl context ctx;

(2) MPI Request req;

(3) cl event evt[2];

(4)
(5) if(rank == 0){

(6) /* receiving data from a remote device */
(7) MPI Irecv(recvbuf, bufsz, MPI CL MEM, 1, 0, MPI COMM WORLD,&req);

(8) /* creating an event object of MPI Irecv */
(9) evt[0] = clCreateEventFromMPIRequest(ctx,&req,NULL);

(10) /* executing a kernel during the data transfer */
(11) clEnqueueNDRangeKernel(. . ., &evt[1]);

(12)
(13) /* executing this after the computation and communication */
(14) clEnqueueWriteBuffer(cmd, buf, . . ., 2, evt, NULL);

(15) }
(16) else if(rank == 1){

(17) /* send data to a remote host */
(18) clEnqueueSendBuffer(cmd, buf, CL TRUE, 0, bufsz, 0,. . .);

(19) }

Listing 5: A code with the OpenCL extension for host-to-device communication.

before clEnqueueWriteBuffer in lines (14) is executed to
write the data to the device memory of rank 0. In addition, a
kernel in line (11) is executed during the internode communi-
cation. To express the dependency among nonblocking MPI
function calls and OpenCL commands, the clDataTransfer
extension offers a function to create an OpenCL event object
that corresponds to MPI Request of a nonblocking MPI
function call. Using the event object, another OpenCL com-
mand can be executed after the nonblocking MPI function
is completed; the dependence between an MPI operation

and an OpenCL operation is properly enforced without host
intervention. In Listing 5, the event object is used to ensure
that MPI Irecv is completed before writing data to a device
memory buffer.

TheMPI interoperability is very important because many
applications have already been developed in such a way that
CPUs manage all internode communications via MPI func-
tion calls. Considering the importance, the clDataTransfer
extension is not designed as a standalone communication
library but an OpenCL extension for interoperation with

10 Scientific Programming

Table 1: System specifications.

System Masamune Cichlid RICC
CPU Intel Xeon E5-2670 Intel Core i7 930 Intel Xeon 5570
GPU GeForce GTX TITAN Tesla C2070 Tesla C1060
NIC GbE 1000BASE-T GbE 1000BASE-T InfiniBand DDR
OS CentOS 6.4 CentOS 6.0 RHEL 5.3
Compiler GCC-4.4.7 GCC-4.4.4 Intel Compiler 11.1
GPU Driver 319.37 290.10 295.41
OpenCL OpenCL1.1 (CUDA5.5) OpenCL1.1 (CUDA4.1.1) OpenCL1.1 (CUDA 4.2.9)
MPI Open MPI 1.5.4 Open MPI 1.6.0 Open MPI 1.6.1
Storage SSD (Intel 910 400GB) NFS NFS

MPI. With the interoperability, legacy applications can be
ported incrementally to heterogeneous computing systems by
gradually replacing the MPI function calls with the clData-
Transfer extension. This does not mean that all internode
communications should be replaced with the clDataTransfer
extension. We argue that both MPI and OpenCL need to be
extended for their efficient interoperation.

Although the clDataTransfer extension offers intern-
ode peer-to-peer communications among remote hosts and
devices, it does not currently offer any collective communi-
cations. This is because the function calls of MPI collective
communications are blocking and no OpenCL extension is
required to describe the dependability among the collec-
tive communications and OpenCL commands. If optimized
collective communications for device memory objects are
required, we can hide the implementation details in MPI
collective communication functions, rather than developing
a set of special collective communication functions for device
memory objects. As the MPI-3.0 standard will support non-
blocking collective communications, some synchronization
mechanisms between the nonblocking collective communi-
cations and OpenCL commands might be required in the
future. In this case, it will be effective to further extend
OpenCL to use its event management mechanism for the
synchronization.

5. Evaluation and Discussions

In this section, the performance impact of the proposed
extension is discussed by showing the effects of hiding
the host-device data transfer latency and the performance
improvement. In this work, a GPU program of the Smith
Waterman algorithm [11] is first used to evaluate the perfor-
mance gain by overlapping host-device data transfers with
file accesses. Then, the Himeno benchmark [13] and the
nanopowder growth simulation [14] are adopted for the
evaluation of MPI interoperability, which is improved by the
proposed extension.

Three systems called Masamune, Cichlid, and RICC are
used for the following evaluation. Masamune is a single node
PC with Intel Xeon E5-2670 CPU running at 2.60GHz and
one NVIDIA GeForce GTX TITAN GPU. Cichlid is a small
PC cluster system of four nodes, each of which contains one
Intel Core i7 930 CPU running at 2.8 GHz and one NVIDIA
Tesla C2070 GPU. The nodes are connected via the Gigabit

Ethernet network. On the other hand, in the multipurpose
PC cluster of RIKEN Integrated Cluster of Clusters (RICC),
100 compute nodes are connected via an InfiniBand DDR
network. Each of the compute nodes has two Intel Xeon
5570 CPUs and one NVIDIA Tesla C1060 GPU. The system
specifications are summarized in Table 1.

5.1. Implementation. In this work, we have implemented the
clDataTransfer extension on top of NVIDIA’s OpenCL and
OpenMPI [15] as shown inTable 1. Asmost of currently avail-
able OpenCL implementations are proprietary, the clData-
Transfer extension is designed so that it can be implemented
on top of a proprietary OpenCL implementation. In the
implementation, we have to consider at least three points.
One point is how to implement clDataTransfer commands
that mimic standard OpenCL commands. Another is how to
implement nonblocking function calls. The other is how to
implement pipelined data transfers.

To implement clDataTransfer commands whose execu-
tion is managed by the OpenCL event management sys-
tem, user event objects are internally used to create event
objects of those additional commands provided by the
clDataTransfer extension. Since there are several different
behaviors between standard event objects and user event
objects, the runtime of the clDataTransfer extension has been
developed so that user event objects of additional commands
can mimic event objects of standard OpenCL commands.
A simplified pseudocode of a clDataTransfer function is
shown in Listing 6. When the function is executed, from the
viewpoint of application programmers, the clDataTransfer
runtime appears to work as follows. A user event object
whose execution status is CL SUBMITTED is first created
when a clDataTransfer command is enqueued. Then, the
clDataTransfer runtime automatically changes the execution
status to CL COMPLETE when the command is completed.
This allows other commands to wait for the completion of
a clDataTransfer command by using its user event object.
Therefore, application programmers can use the event object
of a clDataTransfer command in the same way as that of a
standard OpenCL command.

The clDataTransfer function in Listing 6 can be invoked
in either blocking or nonblocking mode. To invoke a clData-
Transfer function without blocking the host thread, the
clDataTransfer runtime internally spawns another thread
dedicated to data transfers. Since most existing OpenCL

Scientific Programming 11

(1) cl int clDataTransferFunc(. . .,

(2) cl uint numevts, /* the number of events in the list */
(3) cl event* wlist, /* event list */
(4) cl evett* evtret) /* event object of event object */
(5) {
(6) /* create a new user event object whose status is CL SUBMITTED */
(7) *evtret = clCreateUserEvent(. . .);

(8)
(9) if(non blocking = CL TRUE)

(10) pthread create(. . .,cldtThreadFunc,. . .);

(11) else

(12) cldtThreadFunc(. . .);

(13)
(14) return CL SUCCESS;

(15) }
(16)
(17) /* numevt, wlist, and evtret are passed from the caller */
(18) void* cldtThreadFunc(void* p)

(19) {
(20) clWaitForEvent(numevt, wlist);

(21)
(22) /* pipelined data transfer */
(23)
(24) clSetUserEventStatus(*evtret, CL COMPLETE);

(25) return NULL;

(26) }

Listing 6: A simple pseudocode of a clDataTransfer function.

implementations are already spawning a CPU thread to
support callbacks, the same thread can technically be used to
handle the clDataTransfer function calls. Thus, no additional
thread would be needed if clDataTransfer is implemented by
OpenCL vendors.

As the clDataTransfer implementation needs to call MPI
and file access functions from the host thread and the dedi-
cated thread, their underlying implementations are assumed
to be thread-safe. File access functions are generally thread-
safe. On the other hand, in MPI, MPI Init thread should
workwith MPI THREAD MULTIPLE. TomakeOpenMPIwork
correctly for InfiniBand in a multithreaded environment, IP
over InfiniBand (IPoIB) is used for performance evaluation
on RICC.

In our current implementation, pipelined data transfers
are implemented by ourselves by reference to some papers
on GPU-awareMPI implementations [5, 6] and encapsulated
in clDataTransfer commands as shown in Listing 6. So far,
wrapper functions of file I/O functions and some major
MPI functions such as MPI Send and MPI Recv have been
developed so that those functions can perform pipelined
data transfers of overlapping host-device communication
with internode communicationwhen MPI CL MEM is given as
the MPI Datatype parameter.

5.2. Evaluation of File Access Performance

5.2.1. Evaluation of Sustained Data Transfer Bandwidths.
The sustained bandwidths of data transfers from files

to device memory buffers are evaluated to show that
clEnqueueWriteBufferFromStdioFile can reduce the
data transfer time compared to conventional serialized data
transfers. To evaluate the sustained bandwidths with different
storage’s bandwidths, the solid state drive (SSD) and the hard
disk drive (HDD) ofMasamune are used as the local storages,
and a shared file system of NFS is used as the global storage
and accessed from Cichlid.

First, we evaluate how much the clDataTransfer exten-
sion can improve the sustained bandwidth. In the case
of using clEnqueueWriteBufferFromStdioFile, data are
read from a file and then sent to a device memory buffer.
The bandwidth of a storage is lower than that of the data
transfer between the host and the device via the PCI-express
bus. Hence, the sustained bandwidth of the data transfer is
limited by the storage bandwidth. Since clEnqueueWrite-
BufferFromSdtioFile enables the host-device data trans-
fer to be overlapped with the file read, it can reduce the data
transfer time andhence achieve a higher sustained bandwidth
than the sequential execution of those two data transfers.

Figure 3 shows the sustained bandwidths obtained with
changing the data size and the pipeline buffer size. The verti-
cal axis shows the sustained bandwidth, and the horizontal
axis is the data size. In the figure, Serial means the data
transfer time in the case of not hiding the host-device data
transfer latency and 𝑁-pipe means the data transfer time of
the pipelined implementation with an𝑁-byte pipeline buffer.
By hiding the latencymore, the data transfer time approaches
to the file read time, which is FileRead in the figure. These

12 Scientific Programming

115

110

105

100

95

90

Su
sta

in
ed

 b
an

dw
id

th
 (M

B/
s)

1
M

B

2
M

Bs

4
M

Bs

8
M

Bs

1
6

M
Bs

3
2

M
Bs

6
4

M
Bs

1
2
8

M
Bs

2
5
6

M
Bs

5
1
2

M
Bs

1
G

B

(a) Cichlid

Su
sta

in
ed

 b
an

dw
id

th
 (M

B/
s)

160

140

120

100

80

60

40

1
M

B

2
M

Bs

4
M

Bs

8
M

Bs

1
6

M
Bs

3
2

M
Bs

6
4

M
Bs

1
2
8

M
Bs

2
5
6

M
Bs

5
1
2

M
Bs

1
G

B

(b) Masamune, HDD

Su
sta

in
ed

 b
an

dw
id

th
 (M

B/
s)

1080

980

880

780

680

580

480

380

280

180

80

FileRead
Serial

1
M

B

2
M

Bs

4
M

Bs

8
M

Bs

1
6

M
Bs

3
2

M
Bs

6
4

M
Bs

1
2
8

M
Bs

2
5
6

M
Bs

5
1
2

M
Bs

1
G

B
2-KB pipe

1-MB pipe
8-MB pipe

16-KB pipe

128-KB pipe

(c) Masamune, SSD

Figure 3: Sustained bandwidth (MB/s) of clEnqueueReadBufferToStdioFile.

results indicate that the clDataTransfer extension can hide the
host-device data transfer latency and hence the sustained per-
formance of the data transfer from a file to a device memory
buffer is almost comparable to the sustained bandwidth of
just reading a file, that is, FileRead. A programmer can use the
optimized data transfer implementation by just enqueuing a
clDataTransfer command.

In the case of reading from the HDD of Masamune, the
file read time varies widely as shown in Figure 3. This is
likely due to the bandwidth of the disk and the behaviors
of the read-ahead thread in the OS kernel. As a result,
the performance gain is unseen. The FileRead performance
is sometimes even lower than that of clEnqueueWrite-
BufferFromStdioFile because of the intrinsic measure-
ment accuracy.

5.2.2. Evaluation with the SmithWaterman Algorithm. In this
work, a CUDA program of the Smith Waterman algorithm
[11] is ported to OpenCL. Then, the performance of the
OpenCL version is evaluated to show that clDataTransfer can
hide the host-device data transfer latency of a real application
by overlapping it with the file access latency. In the Smith
Waterman program, the data transfer time can be overlapped
with the computation time. However, the data transfer time

is still partially exposed to the total execution time if the
computation time is shorter than the data transfer time. The
exposed data transfer time depends on the problem size.
Therefore, in this evaluation, the overlap of computation and
data transfer is disabled, and the fully exposed data transfer
time is evaluated to clearly show the effect of overlapping the
host-device data transfer latency with the file access latency.

The OpenCL program repeatedly reads the data in files
to host memory buffers and sends them to device memory
buffers. Suppose that d db and h db are handles of a device
memory buffer and a host memory buffer, respectively. Their
buffer size is readsz, and the file pointer is fp. Then, the
original code has the following code pattern:

fread(h db, readsz, 1, fp);
clEnqueueWriteBuffer(cmd,
d db, CL TRUE, 0, readsz, h db, 0, NULL, NULL);

The above pattern is replaced with an additional OpenCL
command enqueued by

clEnqueueWriteBufferFromStdioFile

(cmd, d db, CL TRUE, 0, readsz, fp, 0,
NULL, NULL);

Scientific Programming 13

Masamune, HDD

Masamune, PCIeSSD
Cichlid

Re
ad

 fi
le

 to
 G

PU
 p

er
fo

rm
an

ce
im

pr
ov

em
en

t r
at

io
1.25

1.2

1.15

1.1

1.05

1

0.95

32
-K

B
pi

pe

64
-K

B
pi

pe

12
8-

KB
 p

ip
e

25
6-

KB
 p

ip
e

51
2-

KB
 p

ip
e

1-
M

B
pi

pe

2-
M

B
pi

pe
Figure 4: The improvement ratio of data transfer performance for
the Smith Waterman algorithm.

The results of evaluating the data transfer time with
changing the pipeline buffer size are shown in Figure 4. Here,
the data transfer time is the total time of data transfers from a
database file to a devicememory buffer.These results indicate
that the clDataTransfer extension can reduce the data transfer
time if the pipeline buffer size is appropriately configured.The
performance improvement of the clDataTransfer extension
decreases if the pipeline buffer size is too small due to the
runtime overhead of the pipeline implementation. It also
decreases if the pipeline buffer size is too large compared to
the data size, because pipelining with a too large buffer does
not benefit from overlapping of data transfers. Accordingly,
the optimal pipeline buffer size depends not only on the
storage performance but also on the data size to be transferred
from a file to a device memory buffer. The pipeline buffer
size has to be dynamically adjusted because the data size is
usually determined at runtime. Figure 4 discusses the effect
of changing the pipeline buffer size on performance. Since the
clDataTransfer extension hides the implementation details of
data transfers, it is technically possible to employ empirical
parameter tuning or autotuning for automatically finding the
optimal pipeline buffer size, as in MVAPICH2-GPU’s CUDA
support.

In the Smith Waterman program, the data size to be read
from a file ranges from 511 bytes to 4 Mbytes and hence is
relatively small. The sustained bandwidths of both the file
read and the host-device data transfer become lower for the
transfer of a small data chunk. If the program is used for large
input data, we believe that the performance improvement by
clDataTransfer would become more remarkable as indicated
in Figure 3.

5.3. Evaluation of Internode Communication Performance

5.3.1. Point-to-Point Communication Performance. One ad-
vantage of the clDataTransfer extension over conventional
joint programming of MPI and OpenCL is that the clData-
Transfer extension can hide the implementation details of
system-aware optimization for efficient data transfers.

Figure 5 shows the difference in sustained bandwidth
among pinned, mapped, and pipelined implementations
described in Section 3. In the figure, “pipelined(𝑁)” indicates
the results of pipelined data transfers with the pipeline buffer
size of𝑁 Mbytes. The evaluation results in Figure 5(a) show
that the performance difference among the three imple-
mentations is small in the Cichlid system. This is because
their sustained bandwidths are limited by the bandwidth
of the GbE interconnect network. The time for host-device
communication is much shorter than that of internode
communication, and hence the pipelined implementation
hardly improves the sustained bandwidth. On the other hand,
in Figure 5(b), there is a big difference in sustained bandwidth
among the three implementations. Moreover, the sustained
bandwidth of the pipelined implementation changes with the
pipeline buffer size. Pipelining with a relatively small pipeline
buffer is the most efficient when the message size is small
because the pipeline buffer size needs to be smaller than the
message size. On the other hand, a large pipeline buffer leads
to a higher sustained bandwidth for large messages because
the sustained bandwidth of sending each pipeline buffer
usually increases with the pipeline buffer size. Accordingly,
the optimal pipeline buffer size changes depending at least on
the message size.

From the above results, it is obvious that system-aware
optimizations are often required by multinode GPU appli-
cations to achieve a high performance, and hence some
abstractions of internode data transfers are necessary for
high performance-portability. For example, on RICC, the
pinned data transfer is always faster than the mapped one,
while the mapped data transfer is faster for small messages
on Cichlid due to the short latency of the implementation.
The clDataTransfer extension provides interfaces that abstract
internode data transfers and thereby allows an application
programmer to use optimized data transfers without tricky
programming techniques. An automatic selection mecha-
nism of the data transfer implementations can be adopted
behind the interfaces. The current implementation of the
clDataTransfer runtime can use either the pinned or the
mapped data transfer for small messages, and the pipelined
data transfer can be performed for large messages. The
pipelined data transfer can also be implemented using either
the pinned or the mapped data transfer. In the following
evaluation, themapped and pinned data transfers are used for
Cichlid and RICC, respectively. Of course, other optimized
data transfers can be incorporated into the runtime and
available to application programs without changing their
codes, which results in high performance-portability across
system types, scales, and probably generations.

5.3.2. Evaluation with the Himeno Benchmark. The per-
formance impact of using the clDataTransfer extension is
first evaluated by comparing the sustained performances
of three implementations for the Himeno benchmark. One
implementation is called the hand-optimized implementa-
tion presented in [13]. The hand-optimized implementation
uses pinned data transfers for exchanging halo data of about
750 Kbytes. Another is called the serial implementation that
is almost the same as the hand-optimized implementation

14 Scientific Programming

Ba
nd

w
id

th
 (M

B/
s)

Data size (MB)

Pinned
Mapped
Pipelined (1)

Pipelined (2)
Pipelined (4)
Pipelined (8)

120

110

100

90

80

70

60

1 2 4 8 16 32 64 128 256 512 1024

(a) Cichlid

Pinned
Mapped
Pipelined (1)

Pipelined (2)
Pipelined (4)
Pipelined (8)

Ba
nd

w
id

th
 (M

B/
s)

Data size (MB)
8 16 32 64 128 256 512 1024

1600

1400

1200

1000

800

600

400

200

0

(b) RICC

Figure 5: Sustained bandwidth of peer-to-peer communication.

but all the computations and communications are serialized.
The performance of the serial implementation is supposed
to be the lowest. The other is the implementation using the
clDataTransfer extension, called the clDataTransfer imple-
mentation.

Figure 6 shows the sustained performances of the three
implementations for the Himeno benchmark with 𝑀-size
data. Since the hand-optimized implementation is well
designed for overlapping the computations and communi-
cations, it can always achieve a higher performance than
the serial implementation; the average speedup ratios are
51.2% and 15.2% for Cichlid and RICC, respectively. The
performance of the clDataTransfer implementation is almost
always comparable to that of the hand-optimized imple-
mentation because the communication times of both the
hand-optimized and the clDataTransfer implementations are
not exposed to their total execution times. Accordingly, the
clDataTransfer extension allows an application programmer
to easily overlap the communication and computation by
simply sending internode communication commands to
devices and utilizing OpenCL event objects to enforce the
dependencies among OpenCL commands.

The results in Figure 6(a) are obtained using Cichlid
whose network performance is low compared to the com-
putation performance. The ratio of the computation time to
the communication time in the serial implementation is also
shown in the figure. Only in the case of Cichlid with four
nodes, the ratio of the computation to the communication
is less than one, and hence the communication time cannot
completely be overlapped with the computation time when
pinned data transfers are used for communication. In this
case, the performance of the hand-optimized implementation
is clearly lower than the clDataTransfer implementation. The
main reason of the performance difference is that themapped
data transfer behind the clDataTransfer implementation is
faster than the pinned data transfers. These results clearly
show the importance of system-dependent optimizations for

highly efficient data transfers. As the programming model of
the clDataTransfer extension encapsulates the data transfers,
an application programmer does not need to know the imple-
mentation details and can automatically use the optimized
implementation from a simply written code such as shown
in Listing 4.

5.3.3. Evaluation with a Practical Application. The perfor-
mance impact of the clDataTransfer extension is further
discussed by taking the nanopowder growth simulation [14]
as an example of real applications. The simulation code has
been developed for numerical analysis of the entire growth
process of binary alloy nanopowders in thermal plasma
synthesis. Although various phenomena are considered to
simulate the nanopowder growth process, about 90% of
the total execution time of the original code is spent for
simulating the process of coagulation among nanoparticles.

In the following evaluation, the clDataTransfer extension
is applied to a parallel version of the simulation code, in
which only the coagulation routine is parallelized usingMPI,
and its kernel loop is further accelerated using OpenCL.
The other phenomena such as nucleation and condensation
are computed by one host thread, and the coefficient data
of about 42 Mbytes required by the coagulation routine
are distributed from the host thread to each node at every
simulation step. For the simulation code, two versions
have been implemented to clarify the effect of using the
optimized data transfers provided by the clDataTransfer
extension. One is the baseline implementation that just
uses MPI Isend and MPI Recv for coefficient data distribu-
tion. The other is the clDataTransfer implementation, which
uses MPI Isend with MPI CL MEM to send the coefficients in
hostmemory buffers and clEnqueueRecvBuffer to receive
them.

Figure 7 shows the results to compare the performances
of the two implementations on RICC. Unlike the Himeno
benchmark, the communication overheads are obviously

Scientific Programming 15

Serial
Hand-optimized
clDataTransfer

Comp./comm. ratio

Pe
rfo

rm
an

ce
 (G

flo
ps

)

The number of nodes
2 4

180

160

140

120

100

80

60

40

20

0

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0 C
om

pu
ta

tio
n/

co
m

m
un

ic
at

io
n

ra
tio

(a) Cichlid

Hand-optimized
clDataTransfer

The number of nodes
2 4 8 16 32

1200

1000

800

600

400

200

0

Pe
rfo

rm
an

ce
 (G

flo
ps

)

Serial

(b) RICC

Figure 6: The performance for the Himeno benchmark.

The number of nodes

MPI + OpenCL
clDataTransfer

To
ta

l e
xe

cu
tio

n
tim

e (
s)

2 4 5 8 10 20

1000

900

800

700

600

500

400

300

200

100

0

Figure 7:The execution time of the nanopowder growth simulation
(700 simulation steps).

exposed to the total execution time of this simulation
program. Due to the decomposition method for MPI par-
allelization, the number of nodes must be a divisor of 40.
Because of the poor parallelism, the performance degrades
when the number of nodes increases beyond 8.

As shown in Figure 7, the clDataTransfer outperforms the
baseline implementation because it can exploit an optimized
implementation that overlaps the host-device communi-
cation with the internode communication in a pipelined
fashion for sufficiently large messages. Accordingly, these
results indicate that a higher performance can be achieved
by appropriately interoperating MPI and OpenCL, and the
clDataTransfer enables us to express the interoperation in a
simple and effective way.

In the above evaluation, by just replacing the combination
of MPI Recv and clEnqueueWriteBuffer with clEnque-
ueRecvBuffer, the pipeline data transfer is used for the
communication and leads to a higher sustained bandwidth.

Hence, the results also suggest that application programmers
can incrementally improve their MPI programs so as to use
the clDataTransfer extension. This is very important because
most of existing applications have been developed using
MPI.

6. Conclusions

This paper has proposed an OpenCL extension, clDataTrans-
fer, to allow OpenCL to perform data transfers that need
collaboration between hosts and compute devices. In the
clDataTransfer extension, additional OpenCL commands are
defined for encapsulating common programming patterns in
data transfers from/to the device memory, such as internode
communications and file accesses.The additional commands
are executed in the same way as the other OpenCL com-
mands. Using OpenCL event objects, we can express the
dependency among both conventional and additional com-
mands. Therefore, data transfers indicated by the additional
commands are incorporated into the OpenCL execution
model in a natural manner.

As data transfers are abstracted as OpenCL commands,
the implementation details of the data transfers are hidden
from application codes. Hence, clDataTransfer will be able
to exploit new features of the latest devices without any user
code change. As a result, clDataTransfer would allow today’s
applications to benefit from hardware improvements without
making any code change or even without recompiling the
application. That is, clDataTransfer can improve not only the
performance but also the performance portabilities across
system types, scales, and generations.

The performance evaluation results clearly show that
clDataTransfer can achieve efficient data transfers while
hiding the complicated implementation details, resulting
in higher performance and scalability. Moreover, using the
clDataTransfer extension, the host thread of an application
is not blocked to serialize dependent operations of data

16 Scientific Programming

transfers. As a result, the clDataTransfer extension allows an
application programmer to easily use the opportunities to
overlap communications and storage accesses with compu-
tations.

Although this work focuses on OpenCL, we believe that
the idea itself could be applicable to other programming
models such as CUDA. In the future, we will further improve
the extension so that it can support other kinds of tasks that
need help of host threads, such as system calls.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank Professor Mayasa Shigeta
and Professor Fumihiko Ino of Osaka University for allowing
them to use their simulation codes in the performance
evaluation. The authors would also like to thank the RIKEN
Integrated Cluster of Clusters (RICC) at RIKEN for the
user supports and the computer resources used for the
performance evaluation. This research is partially supported
by JST CREST “An Evolutionary Approach to Construction
of a Software Development Environment for Massively-
Parallel Heterogeneous Systems” and Grants-in-Aid for Sci-
entific Research (B) nos. 25280041 and 25280012. The work
is also partly supported by DoE Vancouver Project (DE-
SC0005515).

References

[1] D. B. Kirk andW.W. Hwu, ProgrammingMassively Parallel Pro-
cessors: A Hands-on Approach, Morgan Kaufmann Publishers,
2007.

[2] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa,
Heterogeneous Computing with OpenCL, Morgan Kaufmann,
Boston, Mass, USA, 2011.

[3] W.Gropp, E. Lusk, andA. Skjellum,UsingMPI: Portable Parallel
Programmingwith theMessage Passing Interface,TheMITPress,
1999.

[4] O. S. Lawlor, “Message passing for GPGPU clusters: cudaMPI,”
in Proceedings of the IEEE International Conference on Cluster
Comptuing and Workshops (CLUSTER ’09), pp. 1–8, 2009.

[5] A.M. Aji, J. Dinan, D. Buntinas et al., “MPI-ACC: An integrated
and extensible approach to datamovement in accelerator-based
systems,” in Proceedings of the 14th IEEE International Con-
ference on High Performance Computing and Communications
(HPCC '12), pp. 647–654, Liverpool, UK, June 2012.

[6] H.Wang, S. Potluri,M. Luo, A. K. Singh, S. Sur, andD.K. Panda,
“MVAPICH2-GPU: optimized GPU to GPU communication
for InfiniBand clusters,” Computer Science: Research and Devel-
opment, vol. 26, no. 3-4, pp. 257–266, 2011.

[7] J. A. Stuart, P. Balaji, and J. D. Owens, “Extending MPI to
accelerators,” in Proceedings of the 1stWorkshop on Architectures
and Systems for Big Data (ASBD ’11), pp. 19–23, 2011.

[8] I. Gelado, J. Cabezas, N. Navarro, J. E. Stone, S. Patel, and
W.-M. W. Hwu, “An asymmetric distributed shared memory

model for heterogeneous parallel systems,” in Proceedings of
the 15th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’10),
pp. 347–358, March 2010.

[9] J. A. Stuart and J. D. Owens, “Message passing on data-parallel
architectures,” in Proceedings of the 23rd IEEE International
Parallel and Distributed Processing Symposium (IPDPS ’09), pp.
1–12, May 2009.

[10] A. Barak, T. Ben-Nun, E. Levy, and A. Shiloh, “A package
for OpenCL based heterogeneous computing on clusters with
many GPU devices,” in Proceedings of the IEEE International
Conference on Cluster Computing Workshops and Posters, pp. 1–
7, September 2010.

[11] Y. Munekawa, F. Ino, and K. Hagihara, “Design and imple-
mentation of the Smith-Waterman algorithm on the CUDA-
compatible GPU,” in Proceedings of the 8th IEEE International
Conference onBioInformatics andBioEngineering (BIBE ’08), pp.
1–6, October 2008.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems, vol. 25, pp.
1097–1105, 2012.

[13] E. H. Phillips and M. Fatica, “Implementing the Himeno
benchmark with CUDA on GPU clusters,” in Proceedings of
the 24th IEEE International Parallel and Distributed Processing
Symposium (IPDPS ’10), pp. 1–10, April 2010.

[14] M. Shigeta and T. Watanabe, “Growth model of binary alloy
nanopowders for thermal plasma synthesis,” Journal of Applied
Physics, vol. 108, no. 4, Article ID 043306, 2010.

[15] The Open MPI Project, “Open MPI: open source high perfor-
mance computing,” http://www.open-mpi.org/.

