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Optimal control is a branch of mathematics that deals with
analytical and numerical methods to design control strategies
for dynamical systems in which some measures of perfor-
mance are optimised.

Applications of optimal control in aeronautical engineer-
ing include aircraft guidance and control. Aircraft guidance
refers to the determination of the trajectory to steer the air-
craft between two different states. Techniques for aircraft
guidance are in general open loop. Aircraft control refers to
the determination of the control inputs to follow the planned
trajectories while maintaining aircraft stability and smooth
manoeuvring. In this case, closed-loop control techniques
must be employed.

Although optimal control has been applied in aeronau-
tical engineering for several decades, the continuous tech-
nological development in this field is resulting in leading
to optimal control models of increasing size and complex-
ity. As a consequence, and despite the progress in the
development of numerical solution methods, the increasing
size and complexity of the problems generates a constant
demand for faster and more efficient methods to solve opti-
mal control problem.

Among the most demanding problems from the compu-
tational point of view are the stochastic optimal control
problems, in which uncertainties are taken into account and
the obtained solution must fulfil probabilistic constraints.

The purpose of this special issue is to bring recognition to
the contribution of optimal control techniques to aircraft
guidance and control and to provide a forum to disseminate

the latest research work with the aim of further stimulating
interest in this area of great potential.

The special issue includes several high-quality papers
written by leading and emerging specialists in the field.

14 submissions have been received. After a rigorous
refereeing process, 5 papers have been accepted for publica-
tion in this special issue.

A short description of the addressed topics is presented.
In “Efficient Convex Optimization of Reentry Trajectory

via the Chebyshev Pseudospectral Method” by C.-M. Yu
et al., optimal control techniques based on the Chebyshev
pseudospectral method and on a novel sequential convex
optimisation scheme have been applied to solve the hyper-
sonic reentry trajectory optimisation problem.

In “Analyzing the Departure Runway Capacity Effects of
Integrating Optimized Continuous Climb Operations” by
M. V. Díaz et al., optimal control techniques based on the
Chebyshev pseudospectral method have been applied to
study the effects of the introduction of continuous climb
operations on runway capacity.

In “Characterization and Enhancement of Flight Plan-
ning Predictability under Wind Uncertainty” by J. García-
Heras et al., potential enhancements in flight planning
predictability due to the effects of wind uncertainty are
analyzed using a robust optimal control methodology. In
this work, wind uncertainty is retrieved out of ensemble
probabilistic forecasts.

In “Evasion-Pursuit Strategy against Defended Aircraft
Based on Differential Game Theory” by Q. Sun et al., an
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optimal guidance law based on differential game theory is
derived for the attacker in an active defence scenario, in
which the attacker evades from the defender and pursues
the target.

In “Cooperative Guidance of Seeker-Less Missiles for
Precise Hit” by J. Zhao and F. Xiong, linear-quadratic opti-
mal control and biased proportional navigation guidance
are employed to develop a two-stage cooperative guidance
law for fire-and-forget attacks for seeker-less missiles.
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A novel study is presented aiming at characterizing and illustrating potential enhancements in flight planning predictability due to
the effects of wind uncertainty. A robust optimal control methodology is employed to calculate robust flight plans. Wind
uncertainty is retrieved out of Ensemble Probabilistic Forecasts. Different wind approximation functions are compared,
typifying errors, and illustrating its importance for accurate solving of the robust optimal control problem. A set of key
performance indicators is defined for the quantification of uncertainty in terms of flight time and fuel consumption. Two
different case studies are presented and discussed. The first one is based on a representative sample of the whole 2016 year for a
single origin-destination and a forecast time step of 6 hours. As for the second, we select the most uncertain day together with a
multiorigin-destination set of flights with forecast time steps up to 2 days.

1. Introduction

The Air Traffic Management (ATM) System is undergoing a
paradigm shift aiming at enhancing its environmental
impact, capacity, safety, and efficiency. Different worldwide
programmes are fostering this transformation, mainly the
Single Sky ATM Research (SESAR) in Europe and Next
Generation Air Transportation System (NextGen) in USA,
yet also in the Asia/Pacific region, the Collaborative Actions
for Renovation of Air Traffic Systems (CARATS) in Japan
and the New Generation ATM System (CNAS) in China.
Improvement in the ATM system predictability has been
identified as paramount to achieve the above-mentioned
high-level goals (see, e.g., SESAR-JU. European ATMMaster
Plan Edition 2015). All ATM system actors, including pilots,
air traffic controllers, airlines, dispatchers, air navigation ser-
vice providers, meteorological offices, and the network man-
ager, are daily facing the effects of uncertainty. Should the
capacity of the system be increased while maintaining high
safety standards and improving the overall performance,

uncertainty levels in ATMmust be reduced and, when possi-
ble, find new strategies to deal with and eventually reduce it.
For instance, it is well-known that the sector’s capacity is
under-declared due to uncertain entry/occupancy counts,
thus limiting the capacity of the system. Also, adding unnec-
essary fuel leads to a nonneglectable loss of efficiency, e.g.,
Hao et al. in [1] conclude that 1min in reducing flight time
dispersion could save between $120 and $452 million per
year only considering US domestic airlines.

Uncertainty in ATM is nevertheless a heavily involved,
multilayered, and interrelated phenomena. The analysis of
uncertainty in ATM should take into the different scales,
yet also the different sources that introduce uncertainty into
the system. For deeper insight on this taxonomy, refer to
[2] (Chapter 4). From a scale perspective, ATM uncertainty
can be grouped into macroscale (the air transport network),
mesoscale (traffic scale), and microscale (single flight). Previ-
ous work analyzing uncertainty effects at both macro- and
mesoscales include, e.g., Goyens et al. [3], who studied delay
propagation across the European network; Valenzuela et al.
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in [4], who studied probabilistic sector loading considering
wind uncertainties; and Cook et al. [5], who applied complex
network theory to the ATM system. Needless to say, the focus
of the present paper is on flight uncertainty (microlevel).

Regarding flight uncertainty, [2] (Chapter 4) distin-
guishes four time frames, namely, strategic (flow manage-
ment planning level, from months up to two/three hours
before the off-block time), predeparture (flight dispatching
planning level, from two/three hours up to off-block time),
gate-to-gate (execution both airborne and taxi times), and
postarrival (from on-block time). Source-wise, ATM uncer-
tainty falls into the following five categories: data uncertainty,
operational uncertainty, equipment uncertainty, and meteo-
rological uncertainty. Indeed, meteorological uncertainty
has been recognized as one of the most (if not the most)
important sources introducing uncertainty into the ATM
system (see also [2]). All five uncertainty sources obviously
affect flight predictability at its different time frames, which
is mainly due to [6] not perfect knowledge of the initial con-
ditions (e.g., off-block time, departure time, and initial mass),
inaccurate aircraft performance model (e.g., weight, aerody-
namics, Earth models, and atmospheric variables), uncertain
meteorological conditions (e.g., convection and wind), navi-
gation and equipment errors (e.g., flight management sys-
tem, avionics, and flight technical errors), and ATM-related
operational uncertainty (regulations, ATC advisories). Some
previous work on initial condition error estimation include,
e.g., Sun et al. [7], who estimate aircraft initial mass using
ADS-B data. Also, Vazquez and Rivas [8] studied the propaga-
tion of initial mass uncertainty. In [6], the authors use Polyno-
mial Chaos Expansion (PCE) to propagate uncertainties along
a given flight intent considering disturbances due to initial
conditions, the aircraft performance model, the Earth and
atmospheric model, the aircraft intent, and wind.

We are herein interested in both the strategic and pre-
departure time frames, the ones compatible with flight
planning. Yet, analyzing meteorological uncertainty and its
effects on flight planning, to the best of the authors’ knowl-
edge, has received not enough attention so far. Indeed, wind
uncertainty modelling in [6] considers uniform wind field dis-
tributions based on a deterministic forecast. More advanced
features are demanded, such as the use of Ensemble Prediction
System (EPS) forecasts, which provide probabilistic forecasts.

One of the first (if not the first) works on EPS-based wind
uncertainty modelling and flight trajectories is due to
Cheung et al. [9]. They used EPS information to study the
impact of wind uncertainty in flight duration on a given,
fixed route over the North Atlantic. A great impact in flight
duration was observed, with no seasonal variation, and an
important decrease when the time frame gets closer to the
used forecast. Moreover, Vazquez et al. [10] analyzed the
influence of along-track wind uncertainty (also based on
EPS) in fuel mass distribution based on a probabilistic trans-
formation method. Both studies can be casted as trajectory
prediction problems since the flight path is known a priori,
and thus, they are only capable of characterizing uncertainty.
The ambition in this paper is not only to characterize but also
to reduce uncertainty. For that purpose, flight planning algo-
rithms that take into consideration predictability should be

derived. Research to this end is rather recent and still needs
more insight.

For flight planning purposes, a rather straightforward
approach is to extend some of the probabilistic trajectory pre-
diction approaches (e.g., [9, 10]) to consider a higher algo-
rithmic level in which the flight path is found using the
discrete optimization method. This was followed by Cheung
et al. in [11], where they used a Dijkstra-based trajectory pre-
dictor and also evaluated the quality of different EPSs, and by
Franco et al. [12], who addressed the optimization of a North
Atlantic crossing also using a Dijkstra algorithm together
with their probabilistic trajectory predictor based on the
probabilistic transformation method. A different approach
is due to Legrand et al. [13], who presented a robust wind
(obtained from EPS) optimal trajectory design algorithm
based on dynamic programming and minimum-energy tra-
jectory clustering. It should be noted that all these three
approaches for flight planning under wind uncertainty are
somehow based on discrete optimization. In [14], Gonzalez-
Arribas et al. presented a robust optimal control approach to
flight planning under wind uncertainty (obtained from EPS)
in which the flight plan can be optimized considering effi-
ciency and predictability. The present paper is based on the
latter methodology, with the aim at generalizing it to different
scenarios and modelling features, and thus advance in the
understanding of the effects of meteorological uncertainty.

All in all, the contribution of this paper is threefold. First,
we extend the methodology in [14] to consider spline wind
approximations. It is shown that the errors committed in
wind approximation (using, e.g., polynomial approximation
such in [14]) have a tremendous impact, leading to ill-
conditioned solutions. Second, instead on analyzing a single
flight (as in previous work), we generalize for different days
(and thus meteorological conditions) and for different
origin-destinations. We also analyze the effects of wind
uncertainty at different flight planning horizons, i.e., prede-
parture (3 hours before departure), which could be useful
for flight dispatchers, and strategic (1 day before departure),
which could be useful for the network manager for probabi-
listic capacity-demand balancing. Third, we characterize the
quality of the flight plan prediction (and its uncertainty)
against a hypothetical realization of winds based on reanaly-
sis information. We note (as will be exposed) that further
insights in the latter are demanded in future research and this
third contribution remains as a preliminary step.

The methodology has been sketched in Figure 1. Firstly,
wind data is collected from the EPS forecast. Secondly, wind
forecasts are approximated by Lipschitz-continuous func-
tions in order to model wind is a form compatible with the
robust optimal planning methodology in [14]. Thirdly, the
so-termed Robust Optimal Control Problem (ROCP) is
solved, obtaining a Pareto frontier with different trade-offs
between fuel consumption and predictability. Then, the flight
path (obtained as a solution to the ROCP and defined by a
sequence of waypoints) is introduced into a standard trajec-
tory predictor (TP) ([15], Chapter 3), which flies the precal-
culated route using wind information retrieved from the
original source (raw, tabular), either EPS or reanalysis.
Finally, flight times, fuel burns, and its associated dispersions
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are analyzed. Different Key Performance Indicators (KPIs)
are defined to that end.

Two different case studies are presented. The first
focuses on a single prediction horizon (referred to as step),
choosing a single origin-destination flight (over the North
Atlantic), and a systematic date analysis along year 2016
(choosing the 1st, 5th, 10th, 15th, 20th, and 25th of each
month as representative days). The second focuses on a
single day (5th October 2016, the one that resulted to be
the most unpredictable one in the former analysis), multi-
ple origin-destination flights (based on the schedule of an
important airline), and with forecasting steps ranging from
0 to 48 hours (by 6 hours). The first study aims at character-
izing the seasonal influence at the predeparture time horizon,
i.e., compatible with flight dispatching time frames; the
second aims at the geographical influence, yet on a more

strategic vision, i.e., compatible with the network manager’s
time frames.

2. Robust Flight Planning

2.1. Robust Optimal Control Methodology. Our approach is
based on the robust optimal control methodology for aircraft
trajectory optimization problems presented in [14]. We will
here summarize the method for the sake of completeness.

2.1.1. Robust Optimal Control. Let us consider a dynamical
system with a randomly parametrized differential-algebraic
equation and constraints. Uncertainty is described using a
standard Kolmogorov probability space Ω,F , P , composed
of a sample space of possible outcomes Ω, a σ-algebra of
events F containing sets of outcomes, and the probability
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function P assigning probabilities to each of these events. The
uncertain parameters of the system will be modelled as a no
time-dependent random variable ξ Ω→Rnξ . For each pos-
sible outcome ω ∈Ω, the random variables take a different
value ξ ω .

Let us denote the state vector x ∈Rnx , the control vector
u ∈Rnu , the algebraic variables z ∈Rnz , and t ∈R as the
independent variable (typically time). For each outcome
ω0 ∈Ω, there exist a unique trajectory path t→ x ω0, t ,
z ω0, t , u ω0, t that corresponds to the realization of the
random variables ξ ω0 . The dynamics of the system are
given by the functions f Rnx ×Rnz ×Rnu ×Rnξ ×R→
Rnx , h Rnx ×Rnz ×Rnu ×Rnξ ×R→Rnh , and g Rnx ×
Rnz ×Rnu ×Rnξ ×R→Rng , such that valid trajectories ful-
fill the conditions almost surely (i.e., with probability 1)
(the ≤ sign applies in an element-wise fashion in equation
(3) and analogous equations.):

d
dt

x ω, t = f x ω, t , z ω, t , u ω, t , ξ ω , t , 1

h x ω, t , z ω, t , u ω, t , ξ ω , t = 0, 2

gL ≤ g x ω, t , z ω, t , u ω, t , ξ ω , t ≤ gU , 3

where ω ∈Ω is the sample point on the underlying
abstract probability space. Therefore, for each possible sce-
nario or realization of the random parameters ξ ω , the
trajectory will follow the deterministic differential equation
(1) for the corresponding fixed value of ξ. We employ the
notation x ω, t and u ω, t in order to emphasize the fact that
the trajectory depends on the realization of the random
parameters. Note that, because the random parameters are
constant in time and thus the system is not described by a full
stochastic differential equation (as in, for example, [16]),
there is no need to consider filtered σ-algebras to deal with
potential measurability issues.

We follow the optimal guidance scheme of [14] that relies
on the notion of tracked states.

Definition 1. A state is said to be tracked if its trajectory is
assumed to be independent of the realization of the random
variables almost surely, i.e., with probability one.

In this concept, the controls are specific to each scenario
in order to guarantee that the tracked states follow the unique
computed trajectory of those states that are tracked. Natu-
rally, the practical consideration of this framework requires
a dynamical system where the controls can be computed
online to ensure that the realization of the trajectory of the
tracked states stays close to its precomputed value. This is
the case of the aircraft, since the flight control systems of an
aircraft can follow a given route and vertical profile. For an
in-depth explanation of this concept and why it is adequate
for a flight planning problem, we refer the reader to [14].
We now proceed to illustrate the main concepts.

Definition 2. The amount control degrees of freedomd of the
dynamical system is defined, in this work, as the number of

controls and free algebraic variables minus the number of
algebraic restrictions: d = nz + nu − nh.

Let qx ≤min nx, d be the number of tracked states;
without loss of generality, we can assume that the tracked
states are the first qx states (rearrange the state vector other-
wise), i.e.,

x = x1 ⋯ xqxxqx+1 ⋯ xnx
T
=

xq
xr

, 4

where xq is the tracked part of the state vector and xr is the
untracked part. Let In be the identity matrix of shape n × n
and 0n1,n2 be the zero matrix (i.e., a matrix with zeroes in all
its entries) of shape n1 × n2. We define the matrix Ex ∈
Rqx×nx as

Ex = Iqx
0qx ,nx−qx 5

This matrix transforms the state vector into the tracked
states vector xq = Exx that contains only the states whose evo-
lution is equal in all scenarios. In this work, qx = d will hold
so that there are enough tracked states to consume all avail-
able control degrees of freedom. This is not necessary in gen-
eral. With the aid of the tracking matrices, we can now define
the tracking conditions (which, again, apply almost surely):

Ex x ω1, t − x ω2, t = 0,∀t,∀ω1, ω2 ∈Ω,

Ez z ω1, t − z ω2, t = 0,∀t,∀ω1, ω2 ∈Ω,

Eu u ω1, t − u ω2, t = 0,∀t,∀ω1, ω2 ∈Ω

6

The tracking conditions enforce equality in the tracked
variables between realizations: note that, Ex x ω1, t − x
ω2, t is the vector of differences between the tracked states
in outcome ω1 and the tracked states in outcome ω2. The
other two conditions are analogous tracking conditions for
the dependent variables and the controls.

Let us define a Bolza-type functional in optimal control
problems:

Ĵ =Φ t0, t f , x t0 , x t f +
t f

t0

L x, z, u, ξ, t dt 7

For each possible scenario or realization of the random
parameters ξ ω , we have an objective value of Ĵ . In order
to build a scalar objective function, we rely on both expecta-
tions and dispersions. Without generality, the latter can be
characterized using the central moments, the range, or the
interquartile range (IQR), just to mention a few. In our case,
and in order to account for worst-case scenarios, we choose
the range.

Let us then define the range R of Ĵ as

R Ĵ = max
ω∈Ω

Ĵ −min
ω∈Ω

J 8
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The robust optimal control problem with tracking is now
formulated as follows (an alternative formulation could, for
instance, rely on the nth central moment of a random variable
Ĵ as μn = E J∧ − E J∧ n and then substituting the range in
R Ĵ by μn.) [14]:

min J = E Ĵ + dp · max
ω∈Ω

Ĵ −min
ω∈Ω

Ĵ 9

subject to: initial conditions

x t0 = x0 ; 10

final conditions

E Ψ t f , x t f = 0 ; 11

differential-algebraic equations and constraints (1)–(3)
grouped as

d
dt

x = f x, z, u, ξ, t ,

h x, z, u, ξ, t = 0,

gL ≤ g x, z, u, ξ, t ≤ gU ,

12

and the tracking conditions (6).
Where in the above, E · is the expectation operator

associated with the probability space Ω,F , P ; the termi-
nal cost or the Mayer term is Φ R ×R ×Rnx ×Rnx →R;
the running cost or the Lagrange term is L Rnx ×Rnz ×
Rnu ×Rnξ ×R→R; dp is a weighting parameter (dispersion
penalty); and function Ψ R ×R ×Rnx ×Rnx →R denotes
the final conditions.

2.1.2. Probabilistic Discretization. In order to deal with
potentially continuous random variables, we make use of dis-
cretization techniques. These methods will be referred to as
stochastic quadrature rules (SQRs).

Definition 3. Given a random variable with probability
measure P, a stochastic quadrature rule (SQR) is defined
as a function or algorithm that produces a finite set of
quadrature points ξk , k ∈ 1,⋯,N and weights wk ,
k ∈ 1,⋯,N that approximates the integral I = E G ξ =
G ξ dP with the sum:

QG = 〠
N

k=1
wkG ξk , 13

with the approximation converging to the true value as
N →∞.

In the present work, we employ a trivial quadrature rule
(each ensemble member is a scenario with wk = 1/N), as
uncertainty is already characterized by discrete scenarios

from EPS forecasts. However, the integration of additional
sources of uncertainty in the future may require the usage
of a nontrivial SQR.

Let xq t : R→Rqx define a trajectory for the tracked
states and zq t and uq t analogously. Suppose a SQR has
been chosen, with a number of points N (in our case, corre-
sponding to the N possible scenarios). For each one of these
points ξk, the tracking trajectory xq, zq, uq t defines a
unique trajectory given a full set of initial conditions; we will
now collect each one of these N trajectories in a trajectory
ensemble. We define the trajectory ensemble associated with
a tracking trajectory xq, zq, uq t as the set of trajectories
xk, zk, uk t with k ∈ 1,⋯,N such that the trajectory

k is generated by the initial conditions xk t0 = x0 and the
tracking trajectory with ξ = ξk, i.e.,

d
dt

xk = f xk, zk, uk, ξk, t ,

h xk, zk, uk, ξk, t = 0,

gL ≤ g xk, zk, uk, ξk, t ≤ gU ,

Exxk t = xq t ,

Ezzk t = zq t ,

Euuk t = uq t

14

We will now build a virtual dynamical system where the
state vectors of all the trajectories in the trajectory ensemble
are merged into a single large state vector, which represents
the collective trajectory. Its state vector xE ∈RnxN contains
the state vector of all the trajectories in the ensemble (the
control uE ∈RnuN and algebraic zE ∈RnzN vectors are analo-
gous), and each individual trajectory follows the dynamics
associated with each scenario (with ξ = ξk).

xE =
x1
⋮

xN

;

zE =
z1
⋮

zN

;

uE =
u1
⋮

uN

15

We define the differential equation, algebraic equa-
tions, and inequality constraints of this augmented dyna-
mical system as
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f E xE, zE , uE, t =

f x1, z1, u1, ξ1, t
⋮

f xN , zN , uN , ξN , t
, 16

hE xE, zE , uE , t =

h x1, z1, u1, ξ1, t
⋮

h xN , zN , uN , ξN , t
, 17

gE xE, zE, uE , t =

g x1, z1, u1, ξ1, t
⋮

g xN , zN , uN , ξN , t
18

Let us define the approximate cost functional, divided
intoMayer and Lagrange terms, using the trajectory ensemble:

ĴE =ΦE xE t0 , xE t f +
t f

t0

LE xE, zE, uE , t dt, 19

ΦE xE t0 , xE t f = 〠
N

k=1
wkϕ xk t0 , xk t f , 20

LE xE, zE , uE, t = 〠
N

k=1
wkL xk, zk, uk, t , 21

and discretize the boundary conditions as

ΨE t f , xE ω, t f = 〠
N

k=1
wkΨ t f , xk t f 22

For concise writing of the discretization of the tracking
conditions (6), we will define the matrix EN

x ∈Rqx N−1 ×nxN as

EN
x =

Ex

⋱

Ex

Inx −Inx
Inx −Inx

⋱ ⋱

Inx −Inx
23

EN
z ∈Rqz N−1 ×nzN and EN

u ∈Rqu N−1 ×nuN can be defined
in analogous fashion. These matrices map the ensemble
state vector to the differences in the tracked states between
trajectories.

Making use of equations (14), (15), (16), (17), and (18) as
well as equations (19), (20), (21), (22), and (23), we can com-
plete now the formulation of the deterministic approximant:

minimize JE = E ĴE + dp · R ĴE

subject to xE = f E xE, zE, uE , t
hE xE , zE, uE, t = 0

IGgL ≤ gE xE, zE, uE , t ≤ IGgU

EN
x xE = 0

EN
z zE = 0

EN
u uE = 0

ψE t0, t f , xE ω, t0 , xE ω, t f = 0

, 24

where IG = Ing ⋯ Ing
T ∈RngN×ng

2.2. Application to Flight Planning

2.2.1. Modelling Assumptions. We consider a free-routing
airspace and 3-DoF point-mass model based on BADA 3
[17]. We restrict ourselves to the analysis of the cruise phase
for the sake of illustration. In addition, we assume the con-
stant flight level and airspeed profiles. Note however that
our methodology could be extended to full 4D problems.
We consider an ellipsoidal Earth as in the WGS84 model
(which offers slightly more precision than a spheroid model),
with radii of curvature of ellipsoid meridian and prime
vertical denoted by RM and RN , respectively. We take the
wind and temperature fields from an EPS forecast and com-
pute density with the ideal gas law (as the pressure is deter-
mined by the flight level). We assume the heading as a
control variable instead of the bank angle, thus allowing it
to change instantaneously.

All in all, aircraft dynamics can be described by the
following set of differential equations expressed in the Geo-
graphic Reference System (GRS) coordinate system (f in
quation (12)):

x = d
dt

ϕ

λ

=
RN ϕ + h −1 v cos χ +wx ϕ, λ, t

RM ϕ + h −1 cos−1 ϕ v sin χ +wy ϕ, λ, t
,

25

where ϕ is the latitude, λ is the longitude, v is the true air-
speed, h is the geodetic altitude, χ is the heading, and wx
and wy are the zonal and meridional components of the
wind. The control vector is composed by the heading χ.

2.2.2. System Reformulation. We reformulate the dynami-
cal system above as a differential-algebraic system (DAE)
with the addition of the ground speed vG as an algebraic var-
iable and the course ψ as a control variable, linked to the
remaining variables by two new equality constraints. The
reformulated system is given by the dynamical function:
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d
dt

ϕ

λ
=

RN + h −1vG cos ψ

RM + h −1 cos−1 ϕ vG sin ψ
, 26

and the equality constraints (h in equation (12)):

vG cos ψ = v cos χ +wx ϕ, λ, t ,

vG sin ψ = v sin χ +wy ϕ, λ, t
27

We add the inequality constraint:

vG ≥ 0 28

to ensure uniqueness of vG and ψ (otherwise, −v∗G, ψ∗ + π/2
would produce the same left-hand side of equation (27) as
v∗G, ψ∗ ).

2.2.3. Time to Distance Transformation. We apply a coordi-
nate transformation to make the distance flown along the
route (s) be the new independent variable. This allows us to
apply our methodology in a manner that is consistent with
existing planning and flight procedures (again, see the dis-
cussion in [14]). As a consequence, the time t becomes a state
variable, and the new dynamical function can be obtained by
dividing the time derivatives by ds/dt = vG:

d
ds

ϕ

λ

t

=

RN + h −1 cos ψ

RM + h −1 cos−1 ϕ sin ψ

v−1G

29

All constraints remain the same as in the untransformed
system of differential-algebraic equations.

2.2.4. Problem Statement.An ensemble forecast contains a set
of ensemble members, each one defining a different wind
forecast (and, therefore, different functions wx and wy). Con-
sider the ensemble contains N members, then we define N
scenarios, each one having weight wk = 1/N . We choose to
track the course ψ, i.e., the function ψ s is the same in every
scenario (thus, we do not need to implement scenario-
specific versions). As a consequence of (29), this implies that
the evolution of the latitude ϕ is unique (as it only depends
on the evolution of the unique variable ψ) and λ is also
unique (as it only depends on ϕ and ψ). Therefore, the posi-
tion variables also act like tracked variables, which is a
desired goal (since we want to obtain a unique route).

We can define the dynamical system associated with the
trajectory ensemble with the dynamical function:

d
ds

ϕ

λ

t1

⋮

tN

=

RN + h −1 cos ψ

RM + h −1 cos−1 ϕ sin ψ

1/vG,1
⋮

1/vG,N

,

vG,1 cos ψ

⋮

vG,N cos ψ

vG,1 sin ψ

⋮

vG,N sin ψ

=

v cos χi +wy,1 ϕ, λ

⋮

v cos χi +wy,N ϕ, λ

v sin χi +wx,1 ϕ, λ

⋮

v sin χi +wx,N ϕ, λ

30

The boundary conditions are

ϕ 0 , λ 0 = ϕ0, λ0 ,

ϕ sf , λ sf = ϕf , λf ,

ti 0 = 0∀i ∈ 1,⋯,N ,

t f ,min ≤ ti r f ≤ t f ,max∀i ∈ 1,⋯,N ,

31

where t f ,min and t f ,max are scalar decision variables.
We complete the definition of the discretized robust opti-

mal control problem by adding the cost function. We apply
the robust optimal control methodology to find routes that
minimize a weighted sum of average fuel consumption and
flight time dispersion (weighted with the dispersion penalty
parameter dp). The cost functional to minimize is then

J = E ti r f + dp · max ti r f −min ti r f

uncertaintyint f

32

Note that max ti r f −min ti r f is the difference
between the earliest and the latest arrival time.

With this cost functional, the parameter dp regulates the
solution flight plan depending on the preferences of the flight
planner. High values of dp will produce more predictable tra-
jectories by avoiding regions where the wind is more unpre-
dictable. Low values of the parameter will produce flight
plans that are more efficient in average but less predictable.

3. Trajectory Predictor

The trajectory predictor determines the aircraft trajectory for
a weather scenario. The objective of the TP is to provide the
aircraft variable values, i.e., flight times, aircraft mass, and
ground speed, along the previously defined route (sequence
of nodes/waypoints) provided by the ROC problem.

Mass at discrete node/waypoint i + 1 is computed follow-
ing quation (33) (note that this equation can be applied
because the aircraft is flying at constant speed and altitude):

mi+1 =
Aaux
Baux

tan E + F , 33
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where

Aaux = η · A,

Baux = η · B,

η =
Cf 1

1000 · 60
· 1 +

v · kt2ms
Cf 2

,

A = 0 5 · ρ · S · v2 · CD0CR ,

B =
2 · CD2CR · g
0 5 · ρ · S · v2

,

E = arctan
Baux
Aaux

·mi ,

F = Baux · Aaux · ti − ti+1 ,

34

where Cf 1 and Cf 2 are first and second thrust-specific fuel
consumption coefficient, respectively, v is the true airspeed
(TAS), kt2ms is a constant to convert m/s to knots, S is
the reference wing surface area, ρ is the air density, CD0CR is
the parasitic drag coefficient (cruise), CD2CR is the induced
drag coefficient (cruise), g is the gravity, ti and ti+1 are
the flight time at discrete node/waypoint i and node/way-
point i + 1, respectively, and mi is the aircraft mass at
node/waypoint i.

Ground speed is computed as

vGi+1
= v2 −w2

yPr +wxPr , 35

where

wxPr = cos ψ i → i+1 ·wy + sin ψ i → i+1 ·wx,

wyPr = cos ψ i → i+1 ·wx − sin ψ i → i+1 ·wy

36

Note that ψ i → i+1 is the aircraft course between node/-
waypoint i and node/waypoint i + 1 calculated as shown in
equation (37) to (38).

ψ i → i+1 = sign λi+1 − λi ·
π

2
, ∀ϕi = ϕi+1, 37

ψ i → i+1 = arctan 2 λi+1 − λi, ln
tan π/4 − ϕi/2
tan π/4 − ϕi+1/2

,

 ∀ϕi ≠ ϕi+1

38

Flight time at node/waypoint i + 1 is computed as the dis-
tance (d) between nodes/waypoints i and i + 1 over vG. It is
assumed that vG is constant between nodes/waypoints. Dis-
tance between nodes/waypoint is the orthodromic distance.

ti+1 = ti +
d i → i+1

vGi+1

39

4. Wind Data and Modelling

4.1. Wind Data. In order to incorporate wind into the models,
we make use of two meteorological products, namely, EPS,
which provide ensemble-wise uncertainty information and
reanalysis, considered to be a sufficiently good approximation
to weather’s realization.

4.1.1. EPS. Uncertainty of wind fields will be derived from
EPS. Ensemble forecasting is a prediction technique that gen-
erates a representative sample of the possible future states of
the atmosphere. An ensemble forecast is a collection of typi-
cally 10 to 50 weather forecasts (referred to as members) with
a common valid time, which can be obtained using different
Numerical Weather Prediction (NWP) models with varying
initial conditions. Each forecast is based on a model which
is close, but not identical, to the best estimate of the model
equations, thus representing also the influence of model
uncertainties on forecast error. Thus, the spread of solutions
can be used as a measure of uncertainty. In this paper, we
focus on the output data of the global ensemble forecast sys-
tem ECMWF EPS. Data can be accessed (among others) at
the TIGGE dataset by the European Center for Medium-
Range Weather Forecasts (ECMWF) [18] (http://apps.ecmwf
.int/datasets/http://apps.ecmwf.int/datasets/).

(1) ECMWF EPS. The European Centre for Medium-Range
Weather Forecasts EPS (ECMWF EPS) is based on 51 ensem-
ble members with approximately 32 km resolution up to
forecast day 10 and 65 km resolution thereafter, with 62 ver-
tical levels.

4.1.2. Reanalysis.Meteorological reanalysis is based on mete-
orological data assimilation. The aim is at assimilating histor-
ical observational data spanning an extended period, using a
given model. Reanalysis is considered to be the best estimate
on many variables (such as winds and temperature).

ECMWF ERA-5 reanalysis will be used in the course of
the validation activities. The data assimilation system used
to produce ERA-5 includes a 4-dimensional variational analy-
sis with a 12-hour analysis window. The spatial resolution of
the dataset is approximately 31km (in the high resolution ver-
sion) on 32 vertical levels from the surface up to 0.01hPa.
ERA-5 products are normally updated once daily, with a delay
of two months to allow for quality assurance and for correct-
ing technical problems with the production, if any. ERA-5
data can be downloaded from the ECMWF Public Datasets.

4.2. Wind Approximation. Note that in order to incorporate
winds in Problem (24), functions wx ϕ, λ, t : R3 →R and
wy ϕ, λ, t : R3 →R in equation (27) must ideally be class

C2 functions, i.e., continuous and twice derivable functions
(in lack of this, they should be at least Lipschitz continuous
functions). This in practice translates into the need of
approximating raw, tabular data from either EPS or reanalysis
into smooth functions with the abovementioned properties.
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We describe two possible approximations: a multiregion
polynomial regression and a spline interpolation method.
Approximation errors cannot be obviated; they end up dis-
torting results as we will show in the sequel.

4.2.1. Multiregion Polynomial Regression. We seek to com-
pute an approximation of the wind field in the area of inter-
est. We subdivide this area into regions and consider an
approximating polynomial for each region:

pa,s ϕ, λ = 〠
i+j≤n
i,j≥0

as,ijϕ
iλj,

40

where s denotes the index of the region.
We compute the coefficients as,ij by solving the following

least squares problem:

min
as,i j∈R

〠
Nregions

s=1
〠
N

k=1
〠
M

l=1
pa,s ϕkl,s, λkl,s − ukl,s

2, 41

where the points ϕkl,s, λkl,s are generated by applying to a
rectangular, equispaced grid on 0, 1 × 0, 1 the affine trans-
formation Ts R2 →R2 such that Ts 0, 1 × 0, 1 = Rs,
where Rs ⊂R2 denotes the region number s. The values ukl,s
are generated by sampling a cubic spline interpolant of the
original grid values at this new grid.

We also add continuity and differentiability requirements
at the boundaries between regions. Consider the boundary
between region s and region s + 1 and parametrize it by
ξs ∈ 0, 1 by building the affine transformations ϕs ξs ,
λs ξs . By composition, we can build the polynomials:

ba,s ξs = pa,s ϕs ξs , λs ξs ,

ba,s+1 ξs = pa,s+1 ϕs ξs , λs ξs ,
42

that represent the value of the field approximation at the
boundaries at each one of the adjacent regions. By construc-
tion, both bs and bs+1 are polynomials of degree n in ξs; there-
fore, by equating them at n + 1 points, we can guarantee that
they are equal. We choose n + 1 equispaced points along the
boundary, ξs,m (m ∈ 0,⋯, n ) and augment problem (41)
with the equality constraints ba,s ξs,m = ba,s+1 ξs,m . Note
that these are constraints on the value of the coefficients a,
which are the decision variables for this problem. This con-
straints guarantee continuity between regions.

In order to deal with differentiability constraints, we sim-
ilarly define the polynomials:

bq,ra,s ξs =
∂q

∂ϕq
∂r

∂λr
pa,s ϕs ξs , λs ξs ,

bq,ra,s+1 ξs =
∂q

∂ϕq
∂r

∂λr
pa,s+1 ϕs ξs , λs ξs ,

43

where q, r ≥ 0 are the orders of the differentiability con-
straints. The degree of this polynomial on ξ is n − q − r, so
we only need to equate bq,ra,s and bq,ra,s+1 in n + 1 − q − r points
in order to enforce differentiability across boundaries.

Figure 2 presents the approximation error of the global
and regional regression approaches, measured in a band of ±
3deg around the reference trajectory as computed in
[14]. A significant improvement can be observed in both
number of regions and degree of the polynomial, thus jus-
tifying the advantages of this approach. Nonetheless, a
residual error always persists and that is why we resort to
spline interpolation.

4.2.2. Spline Interpolation. An alternative method to do wind
field spline interpolation is a well-established field of knowl-
edge. Amodei and Benbourhim in [19] introduced a new
family of vector field splines with application to wind fields.
More recently, Le Guyader et al. [20] studied the use of a
spline-bases approximation considering conservative vector
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Figure 2: Polynomial approximation accuracy in L2 (RMS) norm (a) and L∞ (maximum) norm (b) [14].
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fields as it happens with winds (winds derive from tempera-
ture potentials). We herein use the b-spline interpolation
functionality implemented in CasADi [21], a symbolic
framework for algorithmic differentiation and numeric opti-
mization. The spline S takes values in the region of interest
λ, ϕ and maps them to R.

4.3. Wind Errors. To illustrate errors with both wind
approximation models and its effects in the results to Prob-
lem (24), we bring herein an example. It corresponds to case
5th October 2016 in the single O-D flight case study, so
please refer therein for more details.

Needless to say, it can be readily observed comparing
Figures 3(a) and 3(b) that the wind uncertainty (computed
as the standard deviation of wind norm across all members
in the EPS, see equation (44)) in both multiregion polyno-
mial regression and spline interpolation approaches sub-
stantially differ. One could qualitatively say that there is a
displacement of the wind uncertainty. This is mainly due to
the fact that wind approximation errors (see definition
bellow) committed using the multiregion polynomial regres-
sion itself are of the same order of magnitude as the uncer-
tainty. This fact can be observed in Figure 3(d); indeed, the
higher the uncertainty, the higher the error. This is of course
expected, since regression is a smoothing technique. On the
contrary (see Figure 3(c)), spline interpolation errors are
neglectable with orders of magnitude of 1 · e − 12.

σw = σ2wx
+ σ2wy

, 44

where σw is the wind uncertainty, and σwx
and σwy

represent

the standard deviation of wind east-west and north-south
components across all members in the EPS, respectively.

σwx
= 〠

N

n=1

wxn
−wx

N
,

σwy
= 〠

N

n=1

wyn
−wy

N
,

45

where wxn
and wyn

are the wind east-west and north-south
components of member n in the EPS and wx and wy repre-
sent the average with east-west and north-south components
across all members in the EPS, respectively, being N is the
number of members in the EPS, i.e.,

wx = 〠
N

n=1

wxn

N
,

wy = 〠
N

n=1

wyn

N

46

Let us define wind uncertainty error as εσw = σwf
− σwa

,

where σwf
is the standard deviation of wind across all mem-

bers in the EPS forecast (considering raw, tabular wind data)

and σwa
is the standard deviation of wind across all members

in the EPS (considering the polynomial/n-spline approxima-
tion functions.)

Figure 4 provides evidence on errors’ effects in the cal-
culated trajectories (solving Problem (24) with both wind
approximations). While darker trajectories (representing
the problem computed with low dp values, thus weighting
less the effects of uncertainty) are very similar, brighter ones
behave in rather disimilar manner. Indeed, in Figure 4(b),
trajectories computed with the multiregion polynomial regres-
sion approximation and high dp values (bright colors) seek to
deviate southwards to avoid a region of high uncertainty
(according to the approximated wind). This region is indeed
biased by approximation errors. If one looks at Figure 4(a)
(approximated with splines and thus with no error), the
high-uncertainty region has moved slightly south and thus
trajectories do not go south anymore, rather go straight.

We bring now readers’ attention to Figure 5. Flight times
and flight dispersions are represented for different dp values
in boxplots, which provide qualitative information on
quartiles (upper and lower box) and median (red line). The
whiskers indicate variability outside the upper and lower
quartiles. Outliers are plotted (should they exist) as individ-
ual points. All in all, one can readily have an idea of median
(or mean) flight times and dispersions. The solution to Prob-
lem (24) should provide increasing average flight times and
reduced time dispersions as dp values grow. This is as
expected in Figure 5(a), where results are represented with
the direct output of the optimization problem (in which wind
reads as in the approximated functions). However, if ones
takes the obtained discrete path (λ, θ, h) and computes flight
times using a trajectory predictor (TP) over the original raw,
tabular wind, results do not show this behaviour anymore.
This can be noticed in Figure 5(b), e.g., comparing dp = 0
and dp = 1. Also, looking now at Figure 5(c), which includes
the same simulation with the spline interpolation (note that
herein wind errors are zero), flight times are substantially dif-
ferent; yet, dispersions are consistent.

Please refer to Table 1 for quantitative data, including also
data for fuel consumptions and fuel dispersions with spline
wind approximation. Remark also that this analysis has been
made for the whole scenario in Case 1 and this reasoning holds
for the whole set of flights. These findings motivate the use of
precise wind approximation methodology, though reader
should advert there is always a trade-off between accurate
modelling and solvability. All in all, we resorted to spline inter-
polation to circumvent these problems.

5. Key Performance Indicators (KPIs)

The following variables will be analyzed:

(i) Total flight time (FT)

(ii) Total fuel consumption (FC)

For the sake of simplicity, henceforth, variable x will be
sued (denoting either FT or FC interchangeably). Note the
reader that the solution to the robust flight planning provides
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a discrete number N (equal to the number of members in the
ensemble forecast) of possible values for both flight time and
fuel consumption. Thus, in order to compare the robust flight

planning results with hypothetical realizations (considered to
be that of the reanalysis), we should statistically characterize
flight times and fuel consumptions. Figure 6 sketches the
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Figure 3: Wind approximations and associated errors (in m/s).
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Figure 5: Boxplot diagrams showing flight dispersion results for different dp values.
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Figure 4: Optimal paths (for different dp values).
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solutions provided by the robust trajectory predictor (includ-
ing its statistical characterization in quartiles and mean
values) and the realization (based on reanalysis).

Let us consider the following sets:

(i) F → (set of flights)

Table 1: Top five days in terms of time and fuel dispersion. Tol = 30 sec (FT) and 70 kg (FC).

Variable Date
FT (sec.) FC (kg)

dp0 dp5 dp10 dp15 dp20 dp0 dp5 dp10 dp15 dp20

R x R−Trj

2016-Oct-05

337.0 227.6 215.4 211.1 207.1 487.2 328.8 311.0 304.7 298.8

xR−Trj 20073.5 20203.0 20296.9 20365.0 20454.4 30525.4 30712.5 30848.2 30946.4 31075.5

xRea 20205.7 20295.1 20383.3 20450.0 20538.4 30716.5 30845.6 30972.9 31069.2 31196.7

ΔxMean -132.2 -92.1 -86.4 -85.1 -84.0 -191.1 -133.0 -124.7 -122.8 -121.3

B x IQR False False False False False False False False False False

B x Exp±Tol False False False False False False False False False False

%xRea±Tol 16.0 20.0 24.0 24.0 24.0 20.0 28.0 30.0 34.0 34.0

R x R−Trj

2016-Sep-05

314.2 247.0 225.7 203.4 182.6 451.8 354.9 324.2 291.9 261.6

xR−Trj 21185.9 21327.5 21477.4 21605.9 22001.7 32129.1 32332.7 32548.1 32732.5 33300.0

xRea 21217.1 21358.7 21509.5 21650.4 22025.4 32174.1 32377.6 32594.1 32796.4 33333.9

ΔxMean -31.2 -31.2 -32.1 -44.5 -23.6 -45.0 -44.9 -46.0 -63.9 -33.9

B x IQR True True True True True True True True True True

B x Exp±Tol False False False False True True True True True True

%xRea±Tol 36.0 32.0 30.0 30.0 26.0 56.0 48.0 48.0 46.0 50.0

R x R−Trj

2016-May-05

300.7 176.1 129.5 107.4 100.0 435.7 254.9 187.3 155.1 144.3

xR−Trj 19584.8 19751.8 20046.4 20256.5 20447.0 29818.2 30060.0 30486.2 30789.8 31064.8

xRea 19578.0 19750.7 20054.3 20249.2 20443.3 29808.4 30058.4 30497.6 30779.2 31059.5

ΔxMean 6.8 1.1 -7.9 7.4 3.7 9.8 1.5 -11.4 10.6 5.3

B x IQR True True True True True True True True True True

B x Exp±Tol True True True True True True True True True True

%xRea±Tol 62.0 66.0 74.0 66.0 62.0 84.0 82.0 86.0 94.0 94.0

R x R−Trj

2016-Jan-25

261.7 180.2 173.2 168.1 149.0 380.2 261.7 251.5 244.1 215.8

xR−Trj 18981.2 19025.9 19083.4 19153.7 19638.3 28942.4 29007.3 29090.8 29192.9 29895.7

xRea 19011.9 19070.8 19128.9 19199.9 19700.5 28987.0 29072.6 29157.0 29260.0 29985.7

ΔxMean -30.7 -44.9 -45.5 -46.2 -62.2 -44.6 -65.3 -66.1 -67.1 -90.0

B x IQR False False False False False False False False False False

B x Exp±Tol False False False False False True True True True False

%xRea±Tol 34.0 32.0 26.0 24.0 22.0 62.0 52.0 50.0 50.0 38.0

R x R−Trj

2016-May-20

234.8 189.5 166.6 151.9 121.4 341.3 275.4 241.9 220.5 175.7

xR−Trj 18873.7 18976.7 19140.0 19260.1 19778.1 28786.1 28935.8 29173.1 29347.3 30098.0

xRea 18895.8 18996.3 19145.6 19253.6 19768.9 28818.2 28964.3 29181.1 29337.9 30084.9

ΔxMean -22.1 -19.6 -5.5 6.5 9.1 -32.2 -28.5 -8.0 9.4 13.2

B x IQR True True True True True True True True True True

B x Exp±Tol True True True True True True True True True True

%xRea±Tol 42.0 46.0 64.0 64.0 70.0 62.0 68.0 82.0 86.0 90.0
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(ii) DP → (set of dp values)

(iii) S → (set of forecast steps in the EPS)

(iv) N → (set of ensemble members in the EPS)

Let us consider the following variables:

xR−Trji,j,k,n , ∀i ∈F , ∀j ∈DP , ∀k ∈ S , ∀n ∈N ;

xReai,j,k, ∀i ∈F , ∀j ∈DP , ∀k ∈ S ;
47

where super-index R-Trj refers to variables obtained from
the robust trajectory predictor and computed using EPS fore-
casts, and super-index Rea refers to the trajectory flown
under a hypothetical realization of wind (considered to be
the reanalysis).

Taking mean values across all members in the EPS:

xR−Trji,j,k = 〠
N

n=1

xR−Trji,j,k,n

N
, ∀i ∈F , ∀j ∈DP, ∀k ∈ S 48

Consider also the following conditions:

xReai,j,k ∈ IQR
R−Trj
i,j,k , ∀i ∈F , ∀j ∈DP , ∀k ∈ S ; 49

xReai,j,k ∈ xR−Trji,j,k ± tol , ∀i ∈F , ∀j ∈DP , ∀k ∈ S ; 50

xR−Trji,j,k,n ∈ xReai,j,k ± tol , ∀i ∈F , ∀j ∈DP , ∀k ∈ S , ∀n ∈N ;

51

where tol is a user-specified tolerance.
Let us define the indicator functions that takes value one

if the condition is true and zero elsewhere:

1cond 49 , i,j,k  ∀i ∈F , ∀j ∈DP , ∀k ∈ S ;

1cond 50 , i,j,k  ∀i ∈F , ∀j ∈DP , ∀k ∈ S ;

1cond 51 , i,j,k,n  ∀i ∈F , ∀j ∈DP , ∀k ∈ S , ∀n ∈N

52

The flight-wise Key Validation Indicators are defined as
follows:

R x R−Trj
i,j,k =max

n∈N
xR−Trji,j,k,n −min

n∈N
xR−Trji,j,k,n ,

 ∀i ∈F , ∀j ∈DP , ∀k ∈ S ;

ΔxMean
i,j,k = xR−Trji,j,k − xReai,j,k, ∀i ∈F , ∀j ∈DP , ∀k ∈ S ;

B x IQR
i,j,k = 1cond 49 , i,j,k , ∀i ∈F , ∀j ∈DP , ∀k ∈ S ;

B x Exp±Tol
i,j,k = 1cond 50 , i,j,k , ∀i ∈F , ∀j ∈DP , ∀k ∈ S ;

%xRea±Toli,j,k = 〠
n∈N

1cond 51 , i,j,k,n

N
, ∀i ∈F , ∀j ∈DP , ∀k ∈ S ;

53

where R x R−Trj
i,j,k represents the predicted flight time or fuel

burnt dispersions using the robust flight planing method-
ology; ΔxMean

i,j,k represents the deviations of the expected
value (the mean) with respect to the observation (assumed
herein to be the calculated using reanalysis); B · denotes
boolean, and thus, the associated indicator can take value
true or false, depending on whether the realization fits into
the defined domains (IQR; expected prediction ± tolerances)
for both flight time and fuel consumption; last but not the
least, % · denotes the percentage of predictions that fin
within the realization ± a given tolerance. Notice that these
indicators are calculated for all flights, all dp values and all
forecast steps.

Let us also define the following aggregated KPIs:

R x j,k = 〠
i∈F

R x R−Trj
i,j,k

N flights
, ∀j ∈DP , ∀k ∈ S ;

Δxj,k = 〠
i∈F

ΔxMean
i,j,k

N flights
, ∀j ∈DP , ∀k ∈ S ;

%B x IQR
j,k = 〠

i∈F

B x IQR
i,j,k

N flights
, ∀j ∈DP , ∀k ∈ S ;

%B x Exp±Tol
j,k = 〠

i∈F

B x Exp±Tol
i,j,k

N flights
, ∀j ∈DP , ∀k ∈ S ;

%xRea±Tolj,k = 〠
i∈F

%xRea±Toli,j,k

N flights
, ∀j ∈DP , ∀k ∈ S ;

54

where they provide an aggregated vision over all flights in the
different scenarios of the same variables as above, namely,
flight time and fuel burnt dispersions, and deviations of the
predicted mean flight time and fuel burnt with respect to
the observation.

6. Case Studies

Two case studies have been selected in order to characterize
and illustrate potential reductions in both flight time and fuel
burnt uncertainty, namely,

(1) A single origin-destination flight (over the North
Atlantic) along a set of characteristic days along year

Med

Q1 Q3IQR
1.5·IQR 1.5·IQR

⁎⁎ ⁎⁎ ⁎ ⁎⁎⁎⁎⁎ ⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎ ⁎⁎⁎⁎⁎⁎⁎⁎ ⁎⁎

Predictions (⁎) → x
n
R−Trj, n ∈ N

Mean of predictions (∗) → x̄R−Trj = n∈N

x
n
R−Trj

x
n
R−Trj

N

Realization (
⁎⁎

) → xRea

Figure 6: Schematic boxplot including the N robust prediction and
the realization of a hypothetical variable.
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2016. The flights are computed considering a single
step of 6 hours, i.e., a characteristic times at flight
dispatching level. Please refer to Section 6.1 for addi-
tional details

(2) A multiple origin-destination set of flights in a
representative day, i.e., day with more time disper-
sion in the single origin-destination case study. The
flights are computed considering multiple steps,
from 0 to 48 hours, i.e., characteristic times at flow
management level. Please refer to Section 6.2 for
additional details

All robust flight planning have been simulated using the
robust flight planning approach in Section 2.1, considering
EPS forecasts as input data and approximated using the
spline interpolation in Section 4. The realization of the trajec-
tory is computed using the route provided by the robust flight
planning (a sequence of (lat, long) coordinates) and consid-
ering reanalysis wind data approximated by spline interpola-

tion. A trajectory predictor is used for that purpose. KPIs
introduced in Section 5 are used to quantify results.

6.1. Single O-D Flight, Single Step, Multiple Days.We choose a
flight between KJFK and LPPT, flying at constant barometric
FL380, and constant Mach of 0.82. A free routing airspace is
considered. Aircraft is modelled as a A330 BADA3 model
with an initial mass of 200000 kg.We select a set of character-
istic days along year 2016, all together 72 days (1st, 5th, 10th,
15th, 20th, and 25th of each month). The corresponding EPS
forecasts produced at 00.00 of the day and with forecast of 06
step are considered. We present in Table 1 the top five days in
terms of time and fuel dispersions, respectively. We proceed
on discussing the results for the day with the greatest disper-
sion (2016-Oct-05, herein termed representative day).

6.1.1. Representative Day “2016-Oct-05.” Figure 7 includes
boxplot information on flight times, fuel consumptions, time
dispersions, and fuel burnt dispersions for this representative
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day and different dp values ranging 0 to 50. Furthermore,
the realization computed using reanalysis is represented
(as a star). It can be seen that flight time dispersions and fuel
burnt consumptions systematically reduce as dp increases.
Similarly, expected flight times and fuel burns increase. It
is also interesting to remark that ΔFTMean and ΔFCMean

decrease as dp increases; in other words, the predicted values
get closer to the realization. Indeed, it is remarkable that the
greater the dp value is, the more likely the realization to fit
within the predicted bounds.

Quantitative information is presented in Table 1 (row 1).
For the sake of illustration, it can be observed that maximum
dispersions R FT R−Trj can reach up to roughly 337 sec. This

dispersion could be reduced to 207 sec. (130 sec. or 38%
reduction) by setting dp = 20. This would come at a cost of

roughly 381 sec. of extra flight time in average FTR−Trj. Simi-
larly, in terms of consumption, dispersion can be reduced
from 487 kg to 298 kg (189 kg or 38%), all in all with a cost
of roughly 550 kg of extra fuel burnt. The Pareto frontier of
the problem weighting dispersion and time/consumption is
presented in Figure 8. The reader is referred therein and to
Table 1 for a quantitative insight on other intermediate
trade-offs and additional days.

Moreover, the deviations of the expected time (as pre-
dicted) with respect to the realization ΔFTMean is decreasing
as dp increases, from 132 sec. to 84 sec. (negative sign means
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Figure 9: Aggregated dispersion boxplots for the single origin-destination case study.
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the trajectory flown under reanalysis has greater flight time
than under the EPS forecast), i.e, roughly 48.2 sec. or, in other
words, predicted trajectories with dp = 20 are 47.6% more
predictable. Similarly with fuel consumption ΔFCMean, we
reduce the deviations with respect to the expected consump-
tion from 191 kg to 121 kg, i.e., 70 kg of reduction.

Last but not the least, it holds (as expected) that the
higher dp, the greater the percentage of prediction fitting
within the realization ± tolerances %xRea±Tol. On the con-
trary, it should be noted that the realization is not fitting
within the predicted interquartile range B FT IQR (the same
reasoning holds mutatis mutandis for FC), neither within
the expected flight time ± 30 sec. range B FT Exp±Tol. Notice
however that the realization hits closer to the IQR as dp
grows (see Figure 7). This is partially due to the high uncer-
tainty. In other words, we are able to substantially improve
predictability; however, the predictability is still rather poor.
The reader is referred to Section 6.3 for a discussion on accu-
racy of realizations (as considered herein).

6.1.2. 2016 Aggregated Results. Figure 9 shows aggregated
values for dispersion and for all 72 days considered. Table 2
presents all aggregated KPIs. On average, flight time disper-
sion can be reduced roughly 1min (from 151 sec. to 92 sec.)
by computing flight plans with dp equal to 20. Similarly, fuel
consumption dispersion could be reduced roughly 85kg (from
219 to 133kg). This represents 39% dispersion reduction in
both times and fuel consumption. This nevertheless would
come at an average cost of extra 300 sec. and 450kg of fuel.

As for the indicators that take into consideration the real-
izations, we can observe that deviations from the expected
times and fuels decrease slightly (from 29.5 to 27.3 sec. and
42.7 to 39.4 kg, respectively). It is however remarkable to look
at the percentage of times the realization is within the IQR
(around 40%), yet also at the percentage of time flights are
within the expected value ± a given tolerance (30 sec. and
70 kg in this case), over 60% and almost 90% for times and
consumptions, respectively. Again, readers are referred to
Section 6.3 for a discussion on accuracy of realizations (as
considered herein).

6.2. Multiple O-D Flights, Multiple Steps, Single Day.We keep
the focus on the same day “2016-Oct-05.” We choose now a
set of 164 flights flying to different destinations (according
to British Airways’ schedule for that day). Figure 10 pro-
vides a snapshot of the flight set. We assume all of them
fly at constant barometric altitude FL380 and constant Mach
M0.82. A free routing airspace is also assumed. Different
aircraft types are considered, all modeled as BADA3, and
considering their corresponding reference masses as initial
mass. As for wind, we take EPS forecasts produced on
2016-Oct-05 at 00.00 with forecast steps ranging from 00
to 48 hours.

For the sake of representativeness, we have clustered
them into 64 short-, 46 medium-, and 54 long-haul flights.
We present the top three long-haul flights in Table 3. Top
three medium- and short-haul flights can be seen in
Table 4 and Table 5, respectively. All in all, results show a
consistent behaviour; dispersions are systematically reduced

as we increase dp values; yet, they increase as we increase
the forecast step. Needless to say, this corresponds to the
expected behaviour. We discuss in what follows flight EGLL
to SBGL (first row in Table 3).

6.2.1. Representative Flight EGLL to SBGL. First, it is interest-
ing to look at how dispersions grow as prediction horizon (or
step) does. Indeed, at one day look-ahead time, they can be
more than 10 minutes; yet, at two days look-ahead time, they
can go up 20 minutes. Second, it is also very important to
observe how we are able to substantially reduce flight time
uncertainty as we increase the dp parameter. For instance,
at one day prediction step, we are able to cut it by almost
two (459 to 249 sec., i.e., 46% reduction) by moving from
dp = 0 to dp = 10. All in all, this could be of course very rele-
vant for the ATFM units at pretactical level, where they do
the capacity-demand balancing the day before operation.
Nonetheless, this increase of predictability would come at
the cost of increasing flight time and fuel consumption
(roughly 800 sec. or 1000 kg in this case). Other trade-off
values (also for the other top 2 flights) can be checked both
in Table 3 and Figure 11, where the Pareto frontiers of the
problem are shown for this specific flight. Moreover,
Figure 12 shows boxplot information, including the obtained
realization. It can be seen that dispersions reduce as dp
increases. On the contrary, expected flight times and fuel
burns increase. It is also interesting to remark that in general,
ΔFTMean and ΔFCMean decrease as dp increases; in other
words, the predicted values get closer to the realization.
Nonetheless, no conclusive results can be extracted in this
sense as forecast step increases. Similar analysis holds for
other flights. Of course, medium- and short-haul flights pres-
ent lower dispersion values. Detailed information on them
can be checked in Tables 3, 6–9.

6.2.2. Aggregated Results. An aggregated analysis (for all
164 flights considered) is presented in both Table 5 and

Table 2: Aggregated KPIs. Tol = 30 sec (FT) and 70 kg (FC).

Variable dp0 dp5 dp10 dp15 dp20

R FT 151.6 113.3 102.6 96.7 92.6

R FC 219.4 163.9 148.4 139.7 133.7

ΔFTMean 29.5 25.8 26.3 27.4 27.3

ΔFCMean 42.7 37.3 38.0 39.6 39.4

FT
R−Trj

19918.2 19980.9 20061.5 20136.1 20218.2

FC
R−Trj

30298.6 30389.2 30505.7 30613.5 30732.0

%B FT IQR 38.9 45.8 44.4 38.9 40.3

%B FC IQR 38.9 45.8 44.4 38.9 40.3

%B FT Exp±Tol 58.3 65.3 66.7 63.9 62.5

%B FC Exp±Tol 87.5 93.1 87.5 88.9 87.5

%FTRea±Tol 47.6 52.2 52.8 51.9 52.6

%FCRea±Tol 69.1 73.8 74.7 74.2 74.9
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Figure 13. Also, Figures 13–16 show aggregated values con-
sidered as per haul. One can readily observe that fuel and
time dispersions are systematically reduced as we increase
dp values; yet, they increase as we increase the forecast step.
Aggregated results in Table 5 show, e.g., for one day planning
horizon, roughly 75 sec. of time dispersion reduction with an
associated cost of roughly 400 sec. of flight time (580 kg of
extra fuel). If one looks at forecast step 48, one would
get 133 sec. of reduction in time dispersion with a flight
time cost of 664 sec. (almost 1000 kg). As for the indicator
associated with the realization, we can see that the realiza-
tions are typically close to the expected values, meaning that
we would be quite predictable in aggregated terms.

6.3. Discussion on the realization. So far, we have observed a
systematic consistency in the behaviour of the robust trajec-
tory planning: predicted dispersions are reduced as dp grows,
yet at the cost of flying longer. This is however not the case
when computing the flight as with the realizations of wind
based on reanalysis. This is in principle expected, since we
do not know a priori what the wind would be. Nonetheless,
we have observed some features that indicate further research
is needed.

(i) First, one should expect the realization to be within
the EPS. However, this is not always the case. We
have indeed found strong deviations, which are in
general very dependant of the geographic coordi-

nates. This is due to EPS usually presenting spread-
error correlation, tending to be biased and underdis-
persed. Indeed, different techniques for the statistical
postprocessing and calibration of EPS are around,
e.g., based on ensemble model output statistics and
Bayesian model averaging. Thus, research efforts in
improving the quality of the EPS (at the barometric
levels) are needed

(ii) Reanalysis is not realized wind; it is just an assim-
ilation. Aircraft-derived data should be used instead
(AMDAR data). Nevertheless, these date are not
uniform (they populate the network of airways),
bringing in associated drawbacks (e.g., the need
of estimation outside this network). Thus, using
AMDAR data would lead to similar problems as
using reanalysis. Initiatives such as the recent launch
of Eolus by ESA, aiming at providing a worldwide
gridded measurement of winds at different altitudes,
will be paramount in the future

7. Conclusions

This study explored the characterization and enhancement of
flight planning predictability under wind uncertainty. For
these purposes two analyses (single and multiple origin-
destination; single and multiple step prediction horizon)
were carried out.

Figure 10: Optimal Trjs dp equal to 0 and weather forecast step equal to 0 (05/10/2016 multiple routes).
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The single origin-destination flight (KJFK-LPPT), over a
set of days along year 2016, was computed considering a fore-
cast step used that represents the characteristic flight dis-
patching level. In average, the cost of increasing 1 sec. of
predictability is 5 seconds of extra flight time. Also in aver-
age, the cost of reducing fuel burnt uncertainty 1 kg is 5 kg
of extra fuel burnt. For some extreme days, increasing 1 sec.
predictability (reducing also fuel burnt uncertainty by 1 kg)
would cost 2.5 sec. (2.5 kg) of extra fuel burnt. This improve-
ment in flight predictability has some direct relationship with
airline savings via fuel reserves, yet also has important indi-
rect effects such as less ATC tactical intervention, less delays,
and thus potential miss connections. Further studies on

quantifying both these direct and indirect effects should be
addressed. As for the multiple origin-destination analysis,
we covered a global study considering 164 flights with dif-
ferent origin-destinations. The forecast step used (up to
two days) represents the characteristic air traffic flow man-
agement pretactical and tactical time horizons. Similarly, for
1 to 2 days forecast steps, the cost of increasing 1 sec. of pre-
dictability is between 5 and 5.5 seconds of extra flight time
(also, 5 to 5.5 kg of extra fuel burnt for reducing 1 kg of fuel
burnt uncertainty). Yet, we can observe that the higher the
forecasting step, the higher the uncertainty: uncertainty
grows between 50 and 70 secs. in flight times every 12 hours
when considering minimum time trajectories. We are
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Figure 13: Aggregated dispersion boxplots multiple origin-destination (long haul).
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however able to reduce flight time uncertainty by roughly
40% in average. The direct effect of this would be a more
accurate sector loading forecasting, leading to increase the
capacity of the system. Indirectly, airlines would benefit
from less regulations.

Data Availability

This research is using weather data from the ECMWFMARS
public databases (https://www.ecmwf.int); therefore, the
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A novel sequential convex (SCvx) optimization scheme via the Chebyshev pseudospectral method is proposed for efficiently solving
the hypersonic reentry trajectory optimization problem which is highly constrained by heat flux, dynamic pressure, normal load,
and multiple no-fly zones. The Chebyshev-Gauss Legend (CGL) node points are used to transcribe the original dynamic
constraint into algebraic equality constraint; therefore, a nonlinear programming (NLP) problem is concave and time-
consuming to be solved. The iterative linearization and convexification techniques are proposed to convert the concave
constraints into convex constraints; therefore, a sequential convex programming problem can be efficiently solved by convex
algorithms. Numerical results and a comparison study reveal that the proposed method is efficient and effective to solve the
problem of reentry trajectory optimization with multiple constraints.

1. Introduction

The trajectory optimization problem for a hypersonic vehicle
constrained by heat rating, dynamic pressure, normal load,
and other constraints related to the specified mission is often
a highly constrained nonlinear dynamic programming prob-
lem which, in general, can be solved by two types of methods:
direct and indirect methods [1]. Indirect methods rely on
solving the necessary conditions which is analytically derived
from the Pontryagin minimum principles [2]. On the con-
trary, indirect methods, the analytical necessary conditions
do not have to be derived, while the parameterization tech-
niques are used to convert the original infinite-dimensional
dynamic optimization problem to a finite-dimensional non-
linear programming problem (NLP) which can be solved by
some nonlinear programming algorithms such as the well-
known sequential quadratic programming (SQP) [1, 3].
There are some software packages such as GPOPS [4] and
GPOCS [5] based on direct methods for addressing the
trajectory optimization problems. However, these mentioned

nonlinear programming algorithms cannot provide an a
priori guarantee on the convergence and acquisition of a
global optimal solution [6].

In recent years, convex optimization methods have been
introduced to solve complex trajectory optimization prob-
lems because of their unique theoretical advantages: (1)
rapid convergent rate and (2) insensitivity to the initial guess
solution [7]. In [6, 8], Açıkmeşe and his coauthors proposed
a lossless convexification method for solving the soft landing
problem in the Mars exploration, then the highly con-
strained nonlinear dynamic programming problem is con-
verted into its convex version which is efficiently solved by
the second-order conic programming (SOCP) algorithm.
Further, in [9], they improved their convex optimization
algorithm based on the interior-point methods and thereby
an efficient online algorithm for the guidance of soft land-
ing. In [10], an SCvx optimization framework is proposed
for solving nonconvex optimal control problems, in which
the concave inequality constraint is successively approxi-
mated by linearization on the iterated solution rendering a
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convex optimization problem suited to be solved by SOCP
algorithms. This convex optimization method has been suc-
cessfully used for addressing trajectory optimization prob-
lems of hypersonic vehicles [11].

Actually, as for the aforementioned SCvx optimization
methods, the appropriate techniques of linearization and dis-
cretization are the key factors ensuring that the solution of
the convexified problem is still the solution of the original
problem. Hence, additional constraints of the trust region
are applied to guarantee the validity of linearization in
[10, 11]. Our previous study [7] reveals that the trust region
should be carefully selected: if the trust region is given too
large, the conditions of linearization will be violated and
therefore the solution of the convexified problem is not that
of the original problem; on the contrary, a smaller trust
region will result in larger iterations andmake the convergent
rate slower.

In the procedure of discretization mentioned in [6–11],
the uniformly distributed discretized points are chosen to
transform the original infinite-dimensional optimization
problem into a finite-dimensional parameter optimization
problem. With such numerical discretization scheme, the
discretized interval should be sufficiently small in order to
obtain a sufficiently accurate solution, while this leads a
high-dimensional transformed problem which is time-
consuming to be solved. Actually, the pseudospectral
methods have been widely used to solve the trajectory opti-
mization problems, such as the Radau-Gauss pseudospectral
method in [4, 5] and the Chebyshev method in [12–14]. The
Chebyshev pseudospectral method is a special case of the
general spectral methods, in which the functions can be
expanded in terms of interpolating polynomials and the
expansion coefficients are the values of the function at the
Gauss quadrature node points, thereby having the best accu-
racy in interpolation of a function [12]. It has been shown
that interpolation at the Chebyshev-Gauss Legend (CGL)
nodes presents a closest result to the optimal polynomial
approximation to a given function [15].

In this study, we develop a new SCvx optimization algo-
rithm based on the Chebyshev pseudospectral method to
improve the SCvx optimization method proposed in our
previous work [7], in which the dynamic programming
problem of reentry trajectory optimization is transcribed
into a nonlinear programming problem by using the equi-
space discretizing technique, and then the convexification
method and SCvx algorithm are employed to efficiently
obtain the optimal trajectory. However, in order to obtain
a sufficient well solution, the discretization points in the
manner of equispace must be sufficiently large due to the
requirement of discretizing accuracy. Based on the advan-
tages of the Chebyshev psuedospectral method, CGL node
points are used to discretize and approximate the state and
control variables, therefore having more accurate approxi-
mations and less discretized points than using equispace dis-
cretized points. The less discretized points mean that less
decision variables in the transformed SCvx problem and,
consequently, the computational cost will be dramatically
reduced, and this is validated by numerical study results in
Section 4.

2. Problem Formulation

The reentry trajectory optimization problem, including the
reentry motion model, various constraints, and the perfor-
mance index, is formulated in this section. Further, the
corresponding convexification techniques are particularly
demonstrated.

2.1. Reentry Dynamics of CAV. For simplicity, the nonrotat-
ing earth with constant gravitational acceleration is applied
during modelling the motion of CAV; meanwhile, it assumes
that CAV’s motion is with small flight path angle and limited
control input (bank angle and angle of attack). Then, the
nondimensional equation of CAV is given as [16].

x = v cos θ,
y = v sin θ,
h = vγ,

v = −Bv2e−βReh 1 + λ2

2E∗ ,

γ = Bve−βRehλ cos σ − 1/v + v,

θ = Bve−βRehλ sin σ

1

Here, the independent variable is dimensionless time t
which is normalized by Re/ge (Re is the earth’s radius, ge
is the gravitational acceleration at sea level), states x and y
are the horizontal positions normalized by the earth’s radius
Re, states h and v are the dimensionless altitude and velocity
of the vehicle, and γ and θ are the flight path angle and head-
ing angle, respectively. The vehicle-specific constant B is
defined byB = ρ0ReSrefC

∗
L/ 2m , in which ρ0 is the atmo-

spheric density at sea level, Sref is the aerodynamic reference
area, m is the vehicle mass, and C∗

L andC∗
D, respectively, are

the coefficients of lift and drag which produce the maximum
lift-to-drag ratio E∗ = C∗

L/C∗
D for CAV. The control variables

in (1) are the bank angle σ and the normalized coefficient of
lift λ = CL/C∗

L where CL is the lift coefficient of the vehicle.
Thus, the coefficient of lift and drag can be represented by
CL = λC∗

L and CD = C∗
L 1 + λ2 /2E∗, respectively. The further

details of the aerodynamics of CAV can be found in the liter-
ature [17]. For convenience, we rewrite (1) as the following
general nonlinear system

x = f x, u, t , 2

where the state vector x = x, y, h, v, γ, θ T and the control
vector is u = λ, σ T .

2.2. Flight Constraints. During the entry flight of CAV, the
strong path constraints, such as heating flux, dynamic pres-
sure, and load factor, should be satisfied for guaranteeing
the safety of the vehicle. Moreover, in many cases, to avoid
the enemy’s detection and interception, no-fly zone con-
straints should be considered in the trajectory planning such
that the vehicle keeps away from the area with the deploy-
ment of missile defense systems.

2 International Journal of Aerospace Engineering



2.2.1. Path Constraints. In this research, the path constraints
including the maximal heating rate, dynamic pressure, and
load factor are considered for the safe flight of the vehicle.
According to [7], the dimensional atmospheric density ρ is
reasonably assumed be an exponential function of the nondi-
mensional altitude h = R − Re /Re with the form

ρ = ρ0e
−βReh 3

Then, the normalized path constraints are defined by

P1 x t , t =

kQe
−0 5βRehv3 − 1

kqe
−βRehv2 − 1

kne
−βRehv2 4E∗2λ2 + 1 + λ2 2 − 1

≤ 03×1,

4

in which the normalized coefficients are defined by kQ = kQ
ρ0 geRe

3/Qmax, kq = 0 5ρ0geRe/qmax, and kn = 0 5ρ0Re
SrefC

∗
L
2/ mnmax , where Qmax (W/m2), qmax (N/m2), and

nmax, respectively, are the maximum allowable heating rate,
dynamic pressure, and loading factor.

2.2.2. No-Fly Zone Constraints.No-fly zones (NFZs) are con-
sidered in this paper which are defined as circular exclusion
zones in the horizontal plane with infinite altitude; thus,
nNFZ NFZs can be specified by their centre CNFZ

j = xj,yj
T

and the corresponding radius RNFZ
j for j = 1,⋯, nNFZ. Then,

NFZs constraints are formulated as

Nj x t , CNFZ
j , RNFZ

j

j=1,⋯,nNFZ

= x − xj y − yj
T

≥ RNFZ
j 5

2.2.3. Boundary Constraints.According to the mission profile
of CAV, the vehicle’s entry start and the target point are pre-
scribed; therefore, the following boundary constraints are

Γ x t0 , x0 = 0, Ψ x t f , x f = 0, 6

where x0 and x f , respectively, are the given initial states and
terminal states which should be satisfied in the optimized tra-
jectory [16].

2.2.4. Control Constraints. During the entry of CAV, due to
the vehicle’s aerodynamic characteristics, the normalized lift
coefficient λ is confined in a certain range (for example [0,2]).
Further, the bank angle σ is bounded to guarantee the stabil-
ity. Then, the inequality constraints imposed on the controls
are formulated as

C u, t =
σ − σmax

λ − 2
−λ

≤ 0 7

It is noteworthy that if we directly use σ and λ as control
variables in the followed SCvx algorithm, the sinusoidal func-
tion of σ in (1) will result in the chattering phenomenon in
the solution. The detailed reason can be found in [11]. Con-
sequently, in accordance with the treatment proposed in
[18], three new control variables are defined as follows to
replace the original control variables in order to conveniently
convexify the control constraints.

u1 = λ cos σ,
u2 = λ sin σ,
u3 = λ2 = u21 + u22,
u = u1, u2, u3 T

8

Then, the constraints in (7) are reformulated as

C u, τ =

−u3
u3 − 4

−u2 − u1 tan σmax

u2 − u1 tan σmax

≤ 0, 9

with an auxiliary equality constraint

Ce = u21 + u22 − u3 = 0 10

2.3. Reentry Trajectory Optimization Problem. In the general
trajectory optimization problem, there are several choices of
performance indices to specify different optimization objec-
tives such as maximum range, minimum heat load, and min-
imum time. In this research, minimum time is chosen as the
performance index; thus, the reentry trajectory optimization
problem is formulated as

P0 min  
t f

0
1dt ,

subject to 2 , 4 , 5 , 6 , 9 , 10
11

3. Sequential Convex Optimization Based on the
Chebyshev Pseudospectral Method

In this section, the Chebyshev pseudospectral method is
introduced to reformulate the original dynamic optimiza-
tion problem (11) as an SCvx programming problem in
order to be efficiently solved by the convex optimization
algorithms. First, the infinite-dimensional trajectory optimi-
zation problem is discretized by the Chebyshev pseudospec-
tral method and henceforth a finite-dimensional parameter
optimization problem. Then, the sequential convex opti-
mization problem is formulated to be solved by the
SOCP algorithm.

3.1. Chebyshev Pseudospectral Method. In the classical Che-
byshev pseudospectral method, the CGL points are given by
τk = cos πk/N for k = 0,⋯,N , then the node points range
from 1 to -1. Since such order is inconvenient for the
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trajectory optimization problem, then the modified CGL
points proposed by [12] with the form,

τk = −cos πk
N

, k = 0,⋯,N , 12

are employed in this work. The corresponding ith order
Chebyshev polynomial is

Pi = cos i cos−1τ , i = 0,⋯,N , 13

where τ ∈ −1, 1 can be mapped from the independent
variable t by the equation t = t f − t0 τ/2 + t f + t0 /2. If
t0 = 0, thent = t f τ + 1 /2. Consequently, problem P0 is
equivalent to the following problem P1.

P1 min  t 1 , 14

subject to  dX
dτ =

t f
2

f x, u, τ
1

= F X,U, τ , τ ∈ −1, 1 ,

15

Γ X −1 ,X0 = 0,
Ψ X 1 ,X f = 0, 16

G X,U, τ =
P1 x τ , τ

−Nj x τ , CNFZ
j , RNFZ

j

j=1,⋯,nNFZ

≤ 0, j = 1,⋯, nNFZ,

17

C U, τ =
C u, τ
−t f

≤ 0, 18

Ce = 0, 19

where the augment state X = xT , t T
and the control vari-

able U = uT , t f
T
are used in (15) to reformulate the orig-

inal time-free problem (11) as a time-fixed problem for
the convenience of the following discretized manipula-
tions; meanwhile, Lagrange’s problem P0 is converted into
Mayer’s problem, which is suited to be solved by convex
programming since its performance index is linear in

nature. In (16), X0 = xT0 , t0
T
and X f = xTf , t f

T
. The con-

straints in (17) are the general form of the aforementioned
nonlinear constraints (4) and (5). The augmented control
variable t f is constrained by t f ≥ 0 in (18). The state and
control vectors of (15) can be approximated by

X τ = 〠
N

i=0
X τi Φi τ , 20

U τ = 〠
N

i=0
U τi Φi τ , 21

where the basis N-order Lagrange interpolating polyno-
mials Φi τ for i = 0, 1,⋯,N are given by

Φi τ = −1 i+1

N2ci

1 − t2 PN τ

τ − τi
, 22

with

ci =
2, i = 0,N ,
1, 1 ≤ i ≤N − 1

23

Differentiating (20) at each CGL point yields the deriv-
ative approximation with the following form

X τk = 〠
N

i=0
X τi Φi τk = 〠

N

i=0
DkiX τi , 24

where Dki are the entries of the differentiation matrix
D ∈ℝ N+1 × N+1 and can be obtained by

D≔ Dki ≔

−
ck
ci

−1 i+k

τk − τi
, j ≠ k,

τk
2 1 − τ2k

, 1 ≤ i = k ≤N − 1,

−
2N2 + 1

6 , i = k = 0,

2N2 + 1
6 , i = k =N

25

Thus, the dynamic constraint of (15) is transcribed into
an algebraic constraint as

〠
N

i=0
DkiX τi − F Xk,Uk, τk = 0,  k = 0,⋯,N , 26

where Xk ≡X τk and Uk ≡U τk . It is to be noted that if
the function F X,U, τ in (15) is a linear function of X
and U, then (26) will be a series of linear equality constraints
which are convex in nature. Unfortunately, F X,U, τ is a
strong nonlinear function; hence, the further convexification
technique should be employed in order to formulate an
SCvx problem.

3.2. Convexification. In the above subsection, the dynamic
constraint is transformed into an algebraic constraint via
the Chebyshev pseudospectral method, and the trajectory
optimization problem can be reformulated as an NLP prob-
lem which cannot be directly solved by convex optimization
algorithms. Hence, appropriate convexification techniques
are required to reformulate problem P1 as an SCvx problem.
It is obvious that the constraints in (15) and (17)–(19) are
concave and should be convexified.
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3.2.1. Convexification of Dynamic Constraints.Due to the iter-
ative nature of sequential optimization algorithms, we sup-
pose a reference trajectory denoted by Xn τ ,Un τ which
is provided by the n-th iteration solution of the SCvx algo-
rithm, then in the n + 1 −th iteration, the dynamic equation
(15) can be linearized along the reference trajectory Xn τ ,
Un τ as

dX
dτ =An Xn,Un, τ X + Bn Xn,Un, τ U +Cn Xn,Un, τ ,

27

whereAn and Bn, the Jacobian matrices of Fwith respect toX
and U, are given by

The residue term can be calculated by

Cn Xn,Un, τ = F Xn,Un, τ −An Xn,Un, τ Xn

− Bn Xn,Un, τ Un 29

Similar to references [7, 10], additional constraints of the
trust region are denoted by the following element-wise
inequalities

X −Xn < εX ,
U −Un < εU ,

30

where εX ∈ R7 and εU ∈ R4 are imposed to make the linear-
ized system sufficiently approximate to the original nonlinear
system. Actually, the constraints of the trust region (30)

confine the deviated trajectory in a prescribed neighbour-
hood about the reference trajectory Xn τ ,Un τ .

Discretizing (27) on the CGL node points like (26) yields
the following convex (linear) algebraic equality constraints:

〠
N

i=0
DkiX =An

k Xn
k ,Un

k , τ X + Bn
k Xn

k ,Un
k , τ U

+ Cn
k Xn

k ,Un
k , τ ,  k = 0,⋯,N ,

31

which will enforce the solution at N + 1 CGL node points
exactly satisfying the dynamic constraint (15).

3.2.2. Convexification of Path Constraints. Each entry of the
concave path constraints (17) can be represented by a gener-
alized inequality as

An = ∂F/∂X Xn τ ,Un τ = 1
2

0 0 0 t f cos θ 0 −t f v sin θ 0
0 0 0 t f sin θ 0 t f v cos θ 0
0 0 0 t f γ t f v 0 0

0 0
t fβReBv

2e−βReh 1 + u3
2E∗

−t f Bve−βReh 1 + u3
E∗ 0 0 0

0 0 −t fβReBve
−βRehu1 t f Be−βr0hu1 + 1/v2 + 1 0 0 0

0 0 −t fβReBve
−βRehu2 t f Be

−βRehu2 0 0 0
0 0 0 0 0 0 0

Xn τ ,Un τ

,

Bn = ∂F/∂U Xn τ ,Un τ = 1
2

0 0 0 v cos θ
0 0 0 v sin θ

0 0 0 vγ

0 0
−t f Bv2e−βReh

2E∗
−Bv2e−βReh 1 + u3

2E∗

t f Bve
−βReh 0 0 Bve−βRehu1 − 1/v + v

0 t f Bve
−βReh 0 Bve−βRehu2

0 0 0 1
Xn τ ,Un τ

28
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gp X,U, τ ≤ 0, p = 1,⋯,m, 32

where m is the number of path constraints.
In the scenario of trajectory linearization and discretiza-

tion, the abovementioned concave inequality constraints
can be reformulated as

gp Xn
k ,Un

k +∇gTp Xn
k X −Xn

k +∇gTp Un
k U −Un

k ≤ 0,
 k = 0, 1, 2,⋯N ,

33

where ∇gp Xn
k and ∇gT

p Un
k , respectively, are the gradients

of gp at Xn
k and Un

k . Note that the trust region defined by (30)
is necessary in order to guarantee the linearized constraints
in (33) reasonably approximate to the original constraints
in (17). Lemma 1 of [10] presented a theoretical illustration
in which the feasible solution of P1 comes from the linearized
inequality constraints. Equation (33) is also the feasible solu-
tion of the original problem.

3.2.3. Convexification of Control Constraints. The equality
constraint on the control variables in (19) is obviously con-
cave. We relax the strong equality constraints to a convex
inequality constraint as follows [7, 18]:

u21 + u22 ≤ u3, 34

which is shown by the blue cone including its surface on the
right side of Figure 1. Auxiliary inputs u1 and u2 are limited
by u3 and the maximum bank angle σmax as illustrated by
the left image in Figure 1. And the relaxed constraint illus-
trated by the right image in Figure 1 is obviously convex.

3.3. Sequential Convex Optimization Problem. After the con-
vexifications of path constraints and the control constraints,

the optimal solution of P1 is obtained by solving the follow-
ing relaxed sequential convex optimal problems defined on
the CGL node points for n = 0,1,2⋯ :

P2 min t 1 , 35

subject to 〠
N

i=0
DkiX =An

k Xn
k ,Un

k , τ X + Bn
k Xn

k ,Un
k , τ U

+ Cn
k Xn

k ,Un
k , τ ,

  k = 0,⋯,N , n = 1, 2,⋯ ,
36

Γ X −1 ,X0 = 0,
Ψ X 1 ,X f = 0, 37

gp Xn
k ,Un

k +∇gT
p Xn

k X −Xn
k +∇gTp Un

k U −Un
k ≤ 0,

 k = 0, 1, 2,⋯N ,
38

u21 + u22 ≤ u3, 39

0 ≤ u3 ≤ 4, 40

−tan σmax u1 ≤ u2 ≤ tan σmax u1, 41

X −Xn < εX ,
U −Un < εU

42

3.4. SCvx Algorithm. According to the solution procedure of
the sequential convex programming method, the SCvx algo-
rithm to find the original problem P0 is given as follows.

Step 1. Set n = 0, and choose an initial control profile U0 τk
k = 0, 1, 2,N on the CGL node points. An easy choice is

set λk = 1 and bank angle σk = 0. Then driven by U0 τk ,
numerical integration is conducted according to the dynami-
cal model in (1); we henceforth have the initial state profile
X0 τk .

Step 2. At the n + 1 th iteration, problem P2 is set up by
using Xn τk ,Un τk , meanwhile point-wisely checking

u3

u1

u2

u3

u1

u2

Figure 1: [18] Relaxation of control constraints. (Left) original
nonconvex set: blue surface (10). (Right) relaxed convex set: blue
cone includes its surface (34) Reproduced from Liu et al. [18]
(under the Creative Commons Attribution License/public domain).

Table 2: Comparison of the minimum-time solution for CAV.

Method
Number of

discretized points
Iteration
number

Optimal
index (s)

CPU
time (s)

Cheb-SCvx

25 7 3056.4 5.59

30 18 2860.5 14.20

40 8 2862.6 6.75

60 6 2909.5 5.68

80 6 2968.4 12.21

Eq-SCvx
300 7 2869.2 11.15

250 10 2893.8 15.42

GPOPS - - 3100.0 20.430

Table 1: CAV mission description.

Latitude (deg) Longitude (deg) Radius (km)

Initial point N 28.5 W -80.6 —

NFZ1 N 20.1 W -3.4 177.7920

NFZ2 N 55.6 E 58.5 277.8000

Target N 31.2 E 65.7 —
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the violation states of the heat flux, dynamic pressure, load
factor, and NFZ constraints defined in (4). If all or some
of these constraints are violated, the corresponding con-
vexified constraints in (38) are set up. Then solving prob-
lem P2 by the SOCP algorithm yields the solution denoted
by Xn+1 τk ,Un+1 τk .

Step 3. Check whether the convergence condition as follows
is satisfied:

max   Xn+1 −Xn ≤ δ, 43

which consists of a series of component-wise inequalities; δ is
a prescribed sufficiently small constant vector. Moreover, the
constraints defined in (4) are point-wisely calculated. If all
these constraints on the CGL node points and the conver-
gence condition in (43) are satisfied, go to Step 4; otherwise,
set n = n + 1 and go back to Step 2.

Step 4. The solution for P0 is found to be Xn+1 τk ,
Un+1 τk . Stop.

4. Numerical Results

In this section, the hypersonic gliding vehicle (CAV-H)
described by (1) is used to validate the proposed algorithm
in the above section. The MATLAB modelling tool YALMIP
[19] is used to formulate the SOCP problem P2, and a light
embedded SOCP solver ECOS [20] is used to obtain the solu-
tion. The all-solution procedure is executed on a laptop com-
puter with Intel Core i5-4200 at 2.5GHz.

The CAV mission is described in Table 1, which defines
the horizontal positions of the initial and target points, as
well as two waypoints during the flight. The radius of the first
NFZ is chosen to be much smaller than the turn capability of
the CAV, while the second NFZ has a large enough radius.
The path constraints imposed on the trajectory are given by
Qmax = 4000 kW/m2, qmax = 5 × 105 N/m2, and nmax = 2 5ge.
The boundary conditions are as follows: h0 = 122 km, v0 =

7315 2m/s, γ0 = −1 5∘, θ0 = 4∘, hf ≥ 20 km, vf ≥ 2000m/s,
and γf = −4∘. The terminal flight heading angle is not con-
strained. In addition, the bank angle are limited by σmax = π/
3. The trust region in (42) is given as

∣X −Xn∣ ≤ 0 2 0 2 10000
Re

5000
geRe

π

6
π

6
T

,

∣U −Un∣ ≤ 0 5 0 5 1 0 5 T ,
44

which is sufficiently large to satisfy Assumption 1 presented
by [7]. The stopping criterion δ in (43) is set as δ =
0 03 0 03 0 003 0 04 0 06 0 03 T

To verify the proposed SCvx algorithm via Chebyshev
pseudospectral method (denoted by Cheb-SCvx), a com-
parison study between the proposed SCvx method in [7]
(denoted by Eq-SCvx) as well as GPOPS is conducted. In
the Eq-SCvx method, the equal-space discretized scheme
is employed, while GPOPS uses the hp-adaptive Radau
pseudospectral method to solve optimal control problems.
Similar to the proposed method in Section 3, we use the
new controls u1, u2, and u3 to replace the original controls
(λ and σ) in (1).

The comparison of numerical solutions obtained by
Cheb-SCvx, Eq-SCvx, and GPOPS is presented in Table 2,
which reveals that the proposed Cheb-SCvx method is more
efficient and effective than Eq-SCvx and GPOPS while deal-
ing with the highly constrained entry trajectory optimization
problems. It is to be noted that, in the Eq-SCvx algorithm,
when the discretized point number is less than 250, the algo-
rithm cannot converge, and no solution can be obtained.
The reason lies in the fact that less discretized points result
in a larger distance between two adjacent points; thus, the
linearization condition in (27) will be violated. And after
multiple numerical experiments, we can ascertain that the
appropriate number of CGL node points will extremely
reduce the computational time and improve the perfor-
mance index.

90° W 60° W 30° W 0° 30° E 60° E

N 

N 

Cheb−SCvx
Eq−SCvx

GPOPS

NFZ1

NFZ2

Figure 2: Ground tracks of CAV.
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The ground track of CAV constrained by NFZs is pre-
sented in Figure 2, which reveals that both target and NFZ
constraints are satisfied by three methods. However, the pro-
posed method renders lower cost than the other two methods
do. Altitude and velocity profiles are given in Figure 3, while
the flight path angle and heading angle histories are illus-
trated in Figure 4. Although the terminal altitude, velocity,
and heading angle are not assigned a fixed value but limited
in a prescribed range, the overall trend of the solutions pro-
vided by the three methods is similar. The optimized control
variables’ histories are presented in Figure 5, which shows
that the bank angles obtained by the Cheb-SCvx method
are with a more chattering phenomenon than those obtained

by the other methods during the final phase, but the con-
straints on the bank angle are well satisfied. Further, the con-
straints on the heat rate, dynamic pressure, and normal load
are all satisfied (as shown in Figure 6).
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5. Conclusions

Inspired by the application of convex optimization in
aerospace trajectory generation and optimization, a novel
sequential convex programming algorithm based on the clas-
sical Chebyshev pseudospectral method is proposed to solve
a highly constrained entry trajectory optimization problem
with free final time. By using sequential linearization, con-
vexification, and discretization on the CGL node points, the
original concave optimization problem is approximated by
a series of SOCP problems, which are solved by open-
source solver ECOS. In this work, we concentrate on the con-
version of a nonconvex problem to a convex space, so that
the converted problem can be efficiently solved by the SOCP
method. An efficient and accurate discretization method
based on the Chebyshev interpolating polynomials are pro-
posed to facilitate transcribing the dynamic constraint into
an algebraic equality constraint; then, the convexification
technique based on the linearization is used to set up the con-
vex version of the original trajectory optimization problem.
The numeric results reveal that the proposed method can
dramatically reduce computational cost by appropriately
choosing the number of discretized points and will be very
competitive to fulfill the onboard optimization in the future.
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A novel cooperative guidance scenario is proposed that implements fire-and-forget attacks for seeker-less missiles with a cheap
finder for stationary targets and without requiring real-time communication among missiles or precise position information.
Within the proposed cooperative scenario, the classic leader-follower framework is utilized, and a two-stage cooperative
guidance law is derived for the seeker-less missile. Linear-quadratic optimal control and biased proportional navigation
guidance (PNG) are employed to develop this two-stage cooperative guidance law to minimize the control cost in the first stage
and to reduce the maximum acceleration command in the second stage when the acceleration command is continuous.
Simulations and comparisons are conducted that demonstrate the effectiveness and advantages of the proposed guidance law.

1. Introduction

Homing guidance systems that can implement fire-and-
forget attacks have been rapidly developed and widely
applied [1, 2]. In recent years, studies on homing guidance
have dealt with constraints in the angle of impact [3], mostly
through the employment of optimal control theory [4–13].
Moreover, constraints on the maximum acceleration com-
mand are also commonly considered [14, 15]. As is well-
known, a seeker is essential to homing guidance systems,
which is, however, very expensive. Therefore, it has become
necessary to study guidance systems for seeker-less missiles.

Studies on the guidance of seeker-less missiles are mainly
classified into two categories. The first category employs
external guidance [1], whereby a ground station is utilized
to control the trajectory of the seeker-less missile and to
implement a precise hit [16, 17]. However, due to the
involvement of a ground station, the fire-and-forget aspect
of the missile attack cannot be implemented, and the posi-
tion of the ground station is likely to be exposed. The other
category is a scenario in which cooperative guidance is uti-
lized, in which the seeker-less missile is guided by a separate
missile with a seeker to hit the target [18, 19]. These two
aforementioned cooperative guidance methods require real-
time communication among the missiles and information

on their precise position. It is well-known that the posi-
tion of seeker-less missiles is commonly measured by the
INS/GNSS (Inertial Navigation System and Global Naviga-
tion Satellite System), which inevitably induces localization
errors. Moreover, real-time communication among missiles
makes radio-silent attacks impossible, and the content of com-
munications may be received and decoded by opponents,
inducing difficulty for the defense penetration of missiles.

To address the aforementioned issues, a new cooperative
guidance scenario is proposed to implement fire-and-forget
attacks for seeker-less missiles without requiring real-time
communication and precise position information. In this
scenario, an onboard finder that is much cheaper than a
seeker is employed for a seeker-less missile. Even though
the measurement information produced by such a finder
(the line-of-sight angle) is identical to that of the seeker, the
finder has the following features that can clearly reduce costs,
as the object of measurement would be another missile in
the missile cluster: (1) the lock-on distance is remarkably
reduced and (2) the requirements for identification capabili-
ties are reduced, as information on the precise design of other
missiles can be derived in advance, and there is no active dis-
turbance or invisibility among these missiles. Therefore, this
finder may be considered a cheaper version of a seeker, with a
reduced lock-on distance and reduced requirements for
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identification capabilities. To differentiate this device from
commonly used seekers, this device will be defined in this
paper as a “finder.” Due to its features, a seeker-less missile
with this finder will not be able to employ certain common
laws of guidance, for a reduced lock-on distance and reduced
identification capabilities for the finder would result in the
target being undetectable.

Within this proposed cooperative guidance scenario, a
missile with a seeker that can independently hit the target is
located in the front of the missile cluster during the flight,
while other seeker-less missiles equipped with finders can
hit the target in sequence by tracking the position of the near-
est missile at the front, including the missile with the seeker.
In this scenario, the employment of the finder reduces costs,
and the number of cooperative missiles may be conveniently
increased, considering the reduced lock-on distance. In addi-
tion, to implement the aforementioned cooperative guidance
scenario, a two-stage guidance law is designed for the seeker-
less missile by employing linear-quadratic optimal control
and biased proportional navigation guidance (PNG).

The remainder of this paper is organized as follows. In
Section 2, the novel cooperative guidance scenario is intro-
duced. In Section 3, the two-stage guidance law employing
linear-quadratic optimal control and biased PNG is described
for the implementation of the cooperative guidance scenario.
In Section 4, the simulation results are presented and analyzed
to verify the effectiveness and superiority of the proposed
guidance law. Conclusions are drawn in the last section.

2. The Proposed Cooperative Guidance Scenario

Within the proposed cooperative guidance scenario (as
shown in Figure 1), the classic leader-follower framework is
employed, where n seeker-less missiles with finders are
guided by a missile with a seeker (denoted as L) to coopera-
tively hit a stationary target. Considering the relatively short
lock-on distance of the finder, the number of cooperative
missiles, i.e., n, can be conveniently increased in this pro-
posed cooperative guidance scenario. In Figure 1, only mis-
sile L is equipped with a seeker, and the seeker-less missile
can easily implement a fire-and-forget attack by tracking
the position of the nearest missile in front using its finder.
In this work, for any two missiles with a tracking relation-
ship, the tracked missile is considered as the leader and the
tracking one the follower. Therefore, as shown in Figure 1,
missile L is the leader of the missiles F1, F2,… , Fn, and mis-
sile F1 is the leader of the missiles F11, F12,… , F1n, etc.

In this cooperative guidance scenario, the missile L with
the seeker could directly employ certain common guidance
laws (e.g., PNG) to achieve an accurate hit, while the
seeker-less missile can merely track its leader according to
the information on relative motion derived by the finder.
Considering that the finder of the follower missile will be
ineffective if the lead missile has already hit its target, the
law of guidance for seeker-less missiles is designed to be sep-
arated into two stages based on whether the leader has hit the
target. Clearly, for the second stage of the seeker-less missile
(i.e., its leader has hit the target), the initial relative motion
between the target and seeker-less missile is derived by the

finder with the assumption that the leader will finally arrive
at the stationary target; thus, the seeker-less missile can
implement certain common guidance laws (e.g., PNG) as
the rate of change in the line-of-sight (LOS) angle for the tar-
get is derived in real time via the relative kinematic equations.
Therefore, a precise hit by the seeker-less missile is achievable
at the end of the second stage of guidance. Clearly, coopera-
tive guidance between the seeker-less missile and its leader
only exists during the first stage of guidance.

For the two-stage law of guidance for the seeker-less mis-
sile to be effective, any impact between the seeker-less missile
and its leader must be avoided in the first stage, which will be
studied later (Remark 2 of Section 3.2). In addition, during
the first stage of guidance, the total cost of control for the
seeker-less missile is minimized to save energy (as is com-
monly done in practice), while for the second stage of guid-
ance, the maximum acceleration command is minimized in
order to reduce requirements on the actuator.

3. Guidance Law Formulation

3.1. Model Linearization. Considering that the proposed
cooperative guidance scenario consists of multiple groups
with a leader-follower framework, a single leader-follower
framework is first illustrated. During the first stage of a
seeker-less missile (as a leader), its followers can be consid-
ered to be in the middle guidance stage, which is out of the
scope of this work and thus not introduced here. Therefore,
the missile L or only seeker-less missiles in the second stage
are considered as leaders. The geometry between the leader
Ml, followerMi, and the target in the inertial reference coor-
dinate X-O-Y is shown in Figure 2, in which the variables
with the subscripts i and l, respectively, represent the states
of the follower and leader in motion. Moreover, V , a, θ, q,
and r denote the speed, normal acceleration, heading angle,
LOS angle, and LOS distance, respectively.

The speed of all missiles is considered to be constant in
this work, and the relative kinematic equations between the
leader and follower are given as follows:

ri = −Vi cos qi − θi +Vl cos qi − θl , 1

riqi =Vi sin qi − θi −Vl sin qi − θl , 2

ηi = θi − qi, 3

L

F1

Fn

F11

F1n

F1...m

F1...1

Figure 1: Proposed cooperative guidance scenario.
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where η denotes the lead angle. The normal acceleration
command of the follower is given as

ai =Viθi 4

We define the error between the position coordinate for
the leader and follower relative to the y-axis as yi; thus,

yi =Vl sin θl −Vi sin θi 5

To simplify the derivation of the guidance law, a lineari-
zation process is implemented. We approximate that there is
no normal acceleration for the leader, as will be illustrated in
Section 3.3. We also assume that θi is sufficiently small [20].
The reason is that for the leader implements the rectilinear
motion and the x-axis of the employed inertial reference
coordinate is defined as being approximately along the
motion direction of the leader; the heading angle of the leader
is small. Moreover, the heading angle of the follower would
be essentially identical to that of the leader, as the terminal
guidance for a maneuvering target commonly ends up in a
tail-chase situation and the tracking target for the follower
is the leader in this work. Therefore, the heading angle of
the follower θi can be regarded as sufficiently small. The
derivative of equation (5) is taken to be

yi = −ai 6

As the leader flies straight, it is assumed without loss of
generality that θl = 0. The state vector is defined as

X = yi, yi, θi 7

Therefore, the linearized guidancemodel can be derived as

X = AX + Bu, 8

where

A =
0 1 0
0 0 0
0 0 0

,

B =
0
−1
1/Vi

,

u = ai

9

3.2. Optimal Control Problem. As the follower only requires
the employment of the common guidance law in the second
stage, it is assumed that the PNG is utilized without loss of
generality. Therefore, for the first stage of guidance, the follow-
ing cost function is introduced to reduce the maximum accel-
eration for the second stage (the first term) and to minimize
the control effort (the second term).

J = w
2 η2i tlf + b

2
tfl

t0

u2 t dt, 10

where b is a positive constant and t0 and tfl denote the status at
the initial and terminal instant of time, respectively, for the
first stage of guidance. The constant w is defined as

w = cNi
2V4

i

r2i tlf
, 11

where c is a positive constant and Ni is the navigation gain of
followerMi during the second stage of guidance. An explana-
tion for the choice of w will be provided as the 2nd point of
Remark 2.

As qi is assumed to be sufficiently small, it can be approx-
imated as

qi =
yi
ri

12

Therefore, according to equation (3), the lead angle of the
follower ηi can be formulated as

ηi = θi −
yi
ri

13

Substituting equation (13) into equation (10) yields

J = w
2 θi −

yi
ri

2

t=tfl

+ b
2

tfl

t0

u2 t dt 14

Then, the cost function shown in equation (14) can be
classically reformulated as

J = 1
2X

T tlf P tlf X tlf + 1
2

tfl

t0

uT t bu t dt, 15

Y

XO
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Vl rl
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Ml

Mi
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Vi

qi

𝜃l

𝜃i

ai

Figure 2: Geometry among the leader, follower, and target.
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where

P =
P11 1×1 P12 1×2

P12
T

2×1 P22 2×2

,

 P11 =w/r2i , P12 = 0 −w/ri , P22 =
0 0

0 w

16

It is well-known that the solution of the optimal control
problem formulated by equations (8) and (15) is

u = −
BTK t X t

b
, 17

where K t is derived by numerically solving the associated
differential matrix Riccati equation formulated as

K = −KA − ATK + KBBTK
b

,

K tfl = P

18

The matrixes A, B, and K t can be reformulated as

A =
0 1×1 A12 1×2

0 2×1 0 2×2
, A12 = 1 0 , 19

B =
0 1×1

B21 2×1
, B21 =

−1
1
Vi

, 20

K =
K11 1×1 K12 1×2

K12
T

2×1 K22 2×2
21

Substituting equations (19), (20), and (21) into equation
(18) yields

K11 = K12SK12
T , K11 tlf = P11,

K12 = −K11A12 + K12SK22, K12 tlf = P12,
K22 = −K12

TA12 − A12
TK12 + K22SK22, K22 tlf = P22,

22

where S is defined as B21B
T
21/b.

Therefore, equation (17) can be rewritten as

u = −
B21

T K12
T t, tlf , K22 t, tlf X t

b
23

Remark 1. ri tlf must be predetermined to calculate P tlf .
Assuming that qi and θi are sufficiently small and that θl =
0, it can be approximated that the follower flies along the
straight-line trajectory of the leader. Therefore, ri tlf can
be estimated by

ri tlf = ri t0 − Vi −Vl tfl − t0 , 24

where ri t0 is derived by the finder at the initial time.

If the leader is the missile L, and by employing PNG, tfl
can be directly derived by the existing approach as [21]

tfl =
rl t0
Vl

1 + η2l t0
2 2Nl − 1 + t0, 25

where Nl is the navigation gain of missile L. Moreover, the
initial distance between the missile L and the target rL t0
can be derived [3]. If the leader is a seeker-less missile (e.g.,
the missile F1), tfl can be approximately derived as

tfl =
rL t0 + rF1

t0
VF1

, 26

where VF1
is the velocity of missile F1 and rF1

t0 is the
initial distance between the missile L and F1. Similarly, if
the leader is the seeker-less missile F11, equation (26)
can be rephrased as

tfl =
rL t0 + rF1 t0 + rF11

t0
VF11

, 27

where VF11
and rF11 t0 are the velocity of missile F11 and

the initial distance between missiles F1 and F11, respec-
tively. Therefore, a follower is required to derive the dis-
tance between its leader and the target at the initial time.

Remark 2. The three criteria for the guidance mentioned in
Section 2 can be satisfied.

(1) For the first stage of guidance, it can be derived from
equation (24) that ∀t ∈ t0, tfl ,

ri t ≥ ri t0 − Vi − Vl tfl − t0 , withVi ≥ Vl,
ri t ≥ ri t0 , withVi <Vl

28

Evidently, the impact between the leader and fol-
lower is avoided with the condition Vi <Vl. More-
over, when Vi ≥ Vl, an impact can also be avoided
if ri t0 satisfies

ri t0 ≥ Vi −Vl tfl − t0 29

In addition, by considering the limited lock-on dis-
tance of the finder, the upper limit of ri t0 which will
be implemented during the middle guidance stage,
can be derived, i.e.,
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ri t0 ≤ ld , withVi ≥Vl,
ri t0 ≤ ld − Vl −Vi tfl − t0 , withVi <Vl,

30

where ld denotes the lock-on distance of the finder.

(2) Because the follower can employ the PNG during the
second stage of guidance, i.e.,

ai =NiViqi 31

Substituting equation (2) into equation (31) yields

ai =
NiVi Vi sin qi − θi −Vl sin qi − θl

ri
32

Since Vl = 0 in the second stage, equation (32) can be
rephrased as

ai = −
NiVi

2 sin ηi
ri

33

As the initial acceleration of the PNG is at a maxi-
mum, the term w/2 η2i tfl employed in equation
(10) can reduce the maximum acceleration for the
second stage ai tfl .

(3) The total control cost for the first stage can be opti-
mized by considering the term b/2 tf l

t0
u2 t dt in

equation (10).

3.3. Two-Stage Guidance. Clearly, it is more convenient to
implement the guidance algorithm if it is reformulated with
respect to variables that can be directly measured by onboard
instruments. Therefore, an alternative measurable state vec-
tor for the acceleration command during the first stage is
provided in this subsection. With the assumptions that θl =
0 and θi is sufficiently small, equation (5) can be rephrased as

yi = −Viθi 34

Moreover, because equation (12) is identical to

yi = riqi, 35

the state vector can be redefined as

Z = θi, qi T , 36

and it can be derived that

X =WZ, 37

where

W =
0 ri

−Vi

1
0
0

38

Then, substituting equation (37) into equation (23) yields

u = −
B21

T K21
T t, tfl , K22 t, tfl WZ t

b
39

In the second stage of guidance, if the follower employs
the PNG, the acceleration command would be discontinuous
at the initial time, since

ai tlf
− ≠NiViqi tlf

+ , 40

where tlf
+ and tlf

− represent the initial time of the second
stage and the terminal time of the first stage, respectively.
Therefore, a biased PNG is proposed for the seeker-less mis-
sile during the second stage, i.e.,

ai =NiVi qi t − qi tlf
+ h + ai tlf

− h, 41

where

h = ri t
ri tlf

42

Both ηi tlf
+ and ai tlf

− are sufficiently small if optimal
control is implemented in the first stage of guidance. Thus,
ηi < π/2 can be guaranteed during the second stage of
guidance. Thus, both ri and h are monotonously decreasing
during this stage, which further means that equation (41) will
converge to the PNG, and the miss distance as well as the ter-
minal acceleration command of the biased PNG could be
identical to 0. Moreover, it is verified that the normal acceler-
ation of the leader is approximately identical to 0 when the
missile L and the seeker-less missile in the second stage
employ the PNG and the biased PNG, respectively, with
greater navigation gain.

4. Simulation and Analysis

In our analysis, three seeker-less missiles with finders, guided
by a missile with a seeker, cooperatively hit a stationary target
located at 12000m and 1000m. The measurement relation-
ship between the missiles and their initial states of motion
are presented in Figure 3 and Table 1, in which L represents
the missile with the seeker, while F1, F2, and F3 represent
seeker-less missiles. The missile L employs the PNG, while

LF1F2F3

Figure 3: The relationship between the missiles.

Table 1: Initial states of the missiles.

Parameters L F1 F2 F3

Position, × 103 m (6, 1) (5, 0.5) (4, 0) (3, 0.5)

Velocity, × 102 m/s 3.5 3.7 3.7 3.7

Heading angle (deg) 10 0 0 0
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F1, F2, and F3 all employ the proposed or modified (for com-
parison) two-stage guidance law during the entire flight.
These two-stage guidance laws change to second stage if the
leader is lost for follower. In Figure 3, two different cases
are considered: (1) the leader is a missile with a seeker (for
F1) and (2) the leaders are seeker-less missiles with finders
(for F2 and F3). To achieve a precise hit, the miss distance
and normal acceleration command of these missiles and the
relative distance between the leader and follower are required
to be less than 5m, 20m/s2, and 1200m/s2, respectively.

4.1. Sample Simulation. The simulation results for the pro-
posed two-stage guidance law are presented in Figure 4.

The trajectories of the four missiles are illustrated in
Figure 4(a), which indicates that all seeker-less missiles that
correspond to the two cases could precisely hit their targets
when the two-stage guidance law is employed for follower
missiles with the leader in the first stage. Figure 4(b) shows
the leader-follower distance (missile-target distance during
second guidance stage), in which it indicates that all the
seeker-less missiles can satisfy requirements for miss dis-
tances and lock-on distances of finders with the proposed
cooperative guidance law. Figure 4(c) illustrates that the lead
angles between the seeker-less missiles and their leaders are
essentially identical to 0 at the terminal time instant for the
first stage of guidance. In other words, the maximum normal
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Figure 4: Simulation results for the proposed cooperative guidance law.
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acceleration of the seeker-less missile for the second stage of
guidance can be reduced. In Figure 4(d), it is indicated that all
the missiles can satisfy requirements for a normal accelera-
tion command. Moreover, from Figures 4(b) and 4(d), it
can be verified that the miss distance as well as the terminal
acceleration command of the seeker-less missile could be
identical to 0.

4.2. Comparison of Two Modified Two-Stage Guidance Laws.
To verify the superiority of the proposed cost function for the
first stage and the biased PNG for the second stage, two mod-
ified two-stage guidance laws using the existing formulations
are introduced. For the first modified guidance law, the zero-
effort miss distance is considered to produce an optimal state
of initial motion for the second stage of guidance, as is com-
monly done in the literature; i.e., the cost function shown in
equation (10) is rewritten as [22]

J = ς

2 yi tfl + yi tfl ⋅ Δt 2 + ζ

2
tfl

t0

u2 t dt, 43

where ς and ζ are positive constants and Δt denotes the
error in flight time between the leader and follower, which
is essentially identical to ri t0 /V . For the second modi-
fied guidance law, the existing PNG is utilized for the sec-
ond guidance stage instead of the proposed biased PNG.

With the first or second modified two-stage guidance law,
all the miss distances of F1, F2, and F3 and the relative dis-
tances between leaders and followers would satisfy the
requirement, which can be verified by the simulation. How-
ever, compared with the results shown in Figure 4(d) for
the proposed method, Figure 5(a), derived by the existing
method, indicates that for the first modified two-stage guid-
ance law, the maximum normal acceleration of the seeker-

less missile during the second stage of guidance is far greater
and cannot satisfy the requirement. The reason is that, com-
pared with the cost function introduced in equation (10),
equation (43) cannot effectively reduce the maximum nor-
mal acceleration during the second stage of guidance. More-
over, by comparing Figures 4(d) and 5(b), it is observed that
compared with the PNG, the seeker-less missile employing
the proposed biased PNG can clearly obtain a continuous
acceleration command and a smaller maximum acceleration
during the second stage of guidance.

5. Conclusion

To achieve a precise hit of a seeker-less missile for a station-
ary target, a novel cooperative scenario for guidance is pro-
posed in this work that is able to implement fire-and-forget
attacks for seeker-less missiles without real-time communi-
cation or precise position information. Within the proposed
novel cooperative guidance scenario, a two-stage cooperative
guidance law is derived for a seeker-less missile. The guid-
ance law for the first stage can produce the minimum control
cost for this stage as well as the reduced maximum accelera-
tion command for the second stage. The guidance law for the
second stage can guarantee a precise hit for a seeker-less mis-
sile with a continuous acceleration command. Simulation
results illustrate the effectiveness and superiority of the pro-
posed two-stage guidance law.

Data Availability

The data used to support the findings of this study are
included within the article.
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The active defense scenario in which the attacker evades from the defender and pursues the target is investigated. In this scenario,
the target evades from the attacker, and the defender intercepts the attacker by using the optimal strategies. The evasion and the
pursuit boundaries are investigated for the attacker when the three players use the one-to-one optimal guidance laws, which are
derived based on differential game theory. It is difficult for the attacker to accomplish the task by using the one-to-one optimal
guidance law; thus, a new guidance law is derived. Unlike other papers, in this paper, the accelerations of the target and the
defender are unknown to the attacker. The new strategy is derived by linearizing the model along the initial line of sight, and it
is obtained based on the open-loop solution form as the closed-loop problem is hard to solve. The results of the guidance
performance for the derived guidance law are presented by numerical simulations, and it shows that the attacker can evade the
defender and intercept the target successfully by using the proposed strategy.

1. Introduction

In the traditional pursuit-evasion scenario, the guidance law
was investigated for two players which included an evasion
target and a pursuit attacker. Zarchan studied a variety of
guidance laws for this pursuit-evasion scenario [1]. A new
impact time and angle control guidance law against station-
ary and nonmaneuvering targets was investigated for the
missile [2]. A novel extended proportional guidance law
was designed to intercept the maneuvering target [3]. The
adaptive integral sliding mode guidance law was derived in
a three-dimensional scenario [4, 5]. In these papers, the
acceleration of the target was a known bounded external dis-
turbance to the missile. A two-phase optimal guidance law
was derived to improve the estimation accuracy and terminal
performances for impact angle constraint engagement [6].
Yang et al. [7] presented a time-varying biased proportional
guidance law in which two time-varying bias terms were
applied to divide the trajectory into the initial phase and ter-
minal phase. Recently, various pursuit-evasion scenarios
involving multiple players have been investigated. The

guidance laws for two missiles attacking one target were ana-
lyzed [8, 9]. References [10–12] described a scenario in which
multimissiles attacked one target, and the cooperative guid-
ance laws were derived.

When a missile attacks the aircraft, the aircraft always
launches a defender to protect itself. Meanwhile, the aircraft
evades the attacking missile. The problem which includes a
target aircraft, a defender, and an attacking missile is known
as the active defense scenario. It is difficult for a missile to hit
the aircraft that launched a defender by using the traditional
guidance law. The three-player engagement is different from
the typical one-to-one engagement. In recent years, the strat-
egies in the active defense scenario have been a hot topic, and
especially, the cooperative guidance laws between the target
and the defender have been studied a lot.

A scenario in which the defender and the fixed or slowly
moving target constituted the defended system was investi-
gated [13–15]. In these papers, the optimal defense guidance
laws were derived under the condition that the positions and
the trajectories of the target and the attacker were known to
the defender. Rusnak [16] investigated a scenario in which

Hindawi
International Journal of Aerospace Engineering
Volume 2019, Article ID 7980379, 12 pages
https://doi.org/10.1155/2019/7980379

http://orcid.org/0000-0002-6060-9112
http://orcid.org/0000-0003-2261-8138
http://orcid.org/0000-0001-8329-3475
http://orcid.org/0000-0001-8986-1656
http://orcid.org/0000-0003-0401-5616
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7980379


the lady evaded from the bandit that pursued the lady and the
body guard intercepted the bandit before the bandit captured
the lady. In this paper, the optimal strategies were derived
base on the differential game theory and optimal control the-
ory. Line of sight (LOS) guidance law was investigated to
intercept the attacker and protect the target [17]. In this
paper, the defender is located on the line of sight of the
attacker and the target. The defender could intercept the
attacker with less control by using the LOS guidance law than
by using the traditional guidance law. The cooperative opti-
mal guidance laws between the target and the defender were
studied [18–20]. In these papers, the target launched one
defender, and the guidance laws were derived by differential
game theory. The defender and the target helped each other
to intercept the attacker. Oyler et al. [21] studied the
pursuit-evasion games in the presence of obstacles that inhib-
ited the motions of the players. The dominance regions were
presented and analyzed to provide a complete solution to the
game. Unlike previous research, two defenders were
launched from the target to protect itself [22, 23]. In Refer-
ence [23], the cooperation between the defenders and the tar-
get was one-way which meant one defender received the
information from the target and another defender sent infor-
mation to the target. In Refs. [24–26], the cooperative guid-
ance law for protecting the target was investigated by using
nonlinear methods, and the defender could intercept the
attacker with high heading angle errors. The conditions were
investigated for the attacker winning the game in the active
defense scenario by using the differential game theory [27].
Rubinsky and Gutman [28] investigated a three-player sce-
nario in which the attacker evaded a defender and continued
to pursue a target. In this scenario, the target and defender
were independent, and the derived guidance law is only
suited for the condition that the zero-effort-miss (ZEM) dis-
tance between the attacker and the target is not a large value.
An evasion and pursuit guidance law for the attacking missile
was analyzed [29], and the control efforts of the defender and
the target were known to the attacking missile. In this paper,
the attacking missile chose an appropriate lateral acceleration
to maneuver before the defender and the attacking missile
met, then the attacking missile used the optimal pursuit guid-
ance law to hit the aircraft.

In the previous paper, the studies always focused on the
cooperative guidance law between the aircraft and the
defender. However, the attacking guidance law for the
attacker winning the game is relatively rare. Refs. [27–29]
presented the attacking guidance laws for the attacking mis-
sile. However, in these papers, the control efforts of the target
and the defender were known to the missile, and they were
hard to obtain in reality. The method presented in Reference
[28] is unsuited for the condition that the zero-effort-miss
(ZEM) distance between the attacker and the target is large,
and the zero-effort-miss (ZEM) distance between the
attacker and the defender is small.

In this paper, a new strategy is investigated for the
attacker to hit the target. In this scenario, the miss distance
between the target and the attacker and the miss distance
between the defender and the attacker are considered for
the attacker at the same time. The target and the defender

are independent, and they use the optimal strategies. It is
not necessary for the attacker to obtain the control efforts
of the target and the defender by using the derived guidance
law.

2. Problem Formulation

The problem consists of three players: an attacker (A), a tar-
get (T), and a defender (D), and the scenario is described in
Figure 1. LOS is the line of sight. R and V represent the range
and velocity. γ represents the flight path angle. λ represents
the angle between line of sight and the X axis. The lateral
acceleration is denoted by α. The subscripts A, T, and D rep-
resent the corresponding players. AT and AD present the
corresponding parameters between the players.

Neglecting the gravitational force, the geometric relations
for the rates of the ranges are obtained by

RAT =VA cos γA − λAT +VT cos γT + λAT ,

RAD =VA cos γA − λAD +VD cos γD + λAD
1

The LOS rate relations are expressed as follows:

λAT =
VT sin γT + λAT −VA sin γA − λAT

RAT
,

λAD =
VD sin γD + λAD −VA sin γA − λAD

RAD

2

The dynamics of each player are considered to be a linear
time-invariant system that can be described by the following
equations [24]:

δ
i
n×1 = αin×nδ

i
n×1 + βi

n×1ui′, i = A, T, D ,

αiK
i
1×nδ

i
n×1 + diui′, i = A, T, D

3

Here, δi is the state vector of internal state variables of
each agent with dim δi = ni, and ui′represents its controller.

The path angle relations satisfy the following equation:

γi =
ai
Vi

, i = A, T, D 4

It is assumed that the problem occurs in the endgame
phase and the defender separates from the target; thus, the
problem can be linearized along the initial lines of sight.
The relative displacement between two players normal to
LOS0 is denoted as yi i = AT, AD . The accelerations of the
attacker and target normal to LOSAT are denoted by uALAT
and uTLAT . The acceleration of the defender normal to
LOSAD is defined by uDLAD .Thus, we can obtain

yAT = uTLAT − uALAT ,

yAD = uDLADΓ t − κuALAT ,
5

2 International Journal of Aerospace Engineering



where

uALAT = aA cos γA − λAT = KA
1×nxA + dAuA′ cos γA − λAT ,

uTLAT = aT cos γT + λAT = KT
1×nxT + dTuT′ cos γT − λAT ,

uDLAD = aD cos γD + λAD = KD
1×nxD + dAuD′ cos γD − λAD ,

Γ t =
1, t < tADf ,

0, t ≥ tADf ,

κ =
cos γA − λAD
cos γA − λAT

6

We solve the problem under the condition that the
players A, T, and D obey ideal dynamics. Thus, ain×n, β

i
n×1,

Ki
1×n = 0 di = 1. It can be obtained by

uALAT = aA cos γA − λAT = uA′ cos γA − λAT ,

uTLAT = aT cos γT + λAT = uT′ cos γT + λAT ,

uDLAT = aD cos γD + λAD = uD′ cos γD + λAD

7

uA, uT, and uD satisfy the following form:

uA = uA′ cos γA − λAT ,

uT = uT′ cos γT + λAT ,

uD = uD′ cos γD + λAD

8

The state vector of the linearized engagement is expressed
as follows:

x = yAT yAT yAD yAD
T 9

The equations of motion corresponding to equation (9)
are given by

x =

yAT = x2,

yAT = uT − uA,

yAD = x4,

yAD = uDΓ t − κuA

10

The equations can be written in the following form:

x = Ax + B uT uD
T + CuA, 11

where

A =

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

,

B =

0 0

1 0

0 0

0 Γ t

,

C =

0

−1

0

−κ

12

Y
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VA

LOSAD

�휆AD
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Figure 1: Engagement geometry.
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The intercept times are considered to be fixed because of
the problem occurring in the endgame phase, and they can be
given by

tATf =
RAT0

VA0
cos γA0

− λAT0
+VT0

cos γT0
+ λAT0

,

tADf =
RAD0

VA0
cos γA0

− λAD0
+VD0

cos γD0
+ λAD0

13

After tADf , the defender will disappear. The time-to-go tgo
can be described by

tigo = tif − t, i = AT, AD 14

3. Strategy for the Attacker

3.1. Order Reduction. The order of the problem needs to be
reduced so that it can be solved expediently. The
well-known zero-effort-miss (ZEM) distance between the
attacker and the target can be expressed as follows:

ZAT t =DATΦ tATf , t x 15

Similarly, the ZEM distance between the attacker and the
defender can be expressed as follows:

ZAD t =DADΦ tADf , t x, 16

where Φ tATf , t and Φ tADf , t are the transition matrices
with respect to equation (11),

Φ tADf , t = −Φ tADf , t A,Φ tADf , tADf = I,

Φ tATf , t = −Φ tATf , t A,Φ tATf , tATf = I
17

DAD and DAT are expressed as follows:

DAD = 0 0 1 0 ,

DAT = 1 0 0 0
18

Equations (15) and (16) can be presented by

ZAD t = yAD + yAD tADf − t ,

ZAT t = yAT + yAT tATf − t
19

The dynamics of ZAT t and ZAD t can be obtained by

ZAD t = tADf − t −κuA + Γ t uD ,

ZAT t = tATf − t −uA + uT

20

3.2. One-to-One Optimal Strategies. In the attacker-target
engagement, the attacker needs to pursue the target. The cost
function to solve the problem is expressed by

JAT =
1
2

yAT tATf
2

21

Because of yAT tATf = ZAT tATf , the cost function can be
rewritten in the following form:

JAT =
1
2

ZAT tATf
2

22

Similarly, in the attacker-defender engagement, the
attacker needs to evade from the defender. The cost function
to solve the problem is expressed by

JAD = −
1
2

ZAD tADf
2

23

The Hamiltonian functions corresponding to equations
(23) and (22) are given by

HAD = λ1ZAD t ,

HAT = λ2ZAT t
24

The adjoint equation and transversality condition are as
follows:

λ1 = −
∂H
∂ZAD

= 0, λ1 tADf =
∂JAD

∂ZAD tADf
= −ZAD tADf ,

λ2 = −
∂H
∂ZAT

= 0, λ2 tATf =
∂JAT

∂ZAT tATf
= ZAT tATf

25

Thus, the solution can be obtained as follows:

λ1 t = −ZAD tADf ,

λ2 t = ZAT tATf

26

Substituting equations (26) and (20) into equation (24), it
can be obtained in the following form:

HAD = −ZAD tADf tADf − t −uAκ + Γ t uD ,

HAT = ZAT tATf tATf − t −uA + uT

27
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The optimal strategies for the attacker-target engagement
are as follows:

uΘA = sign ZAT t umax
A ,

uΘT = sign ZAT t umax
T

28

The optimal strategies for the attacker-defender engage-
ment are as follows:

uΘA = −sign ZAD t κ umax
A ,

uΘD = −sign ZAD t umax
D ,

29

where superscript max represents the maximal value.

3.3. Optimal Trajectories for the Attacker. In the attacker-
target engagement, the optimal pursuit strategy for the
attacker in equation (28) is

uΘA = sign ZAT t umax
A 30

It is assumed that umax
A , umax

T , and umax
D satisfy umax

A >
umax
T and umax

A > umax
D in the scenario. ZAT t satisfies the

following form:

ZAT t = tATgo −sign ZAT t umax
A + sign ZAT t umax

T 31

The kill radius of the attacker is R; ZAT t satisfies

ZAT t +
tATf

t
−sign ZAT t umax

A + sign ZAT t umax
T tATf − ξ dξ = R

32

The positive and negative pursuit boundary trajectories
are given by

ZΘ
AT tATgo = R −

1
2

−umax
A + umax

T tATgo
2
,

−ZΘ
AT tATgo = −R +

1
2

−umax
A + umax

T tATgo
2

33

Figure 2 presents the optimal pursuit trajectories. The
positive and negative boundary trajectories are marked
with triangles. In the engagement, the attacker uses the
optimal pursuit guidance law, and the target uses the opti-
mal evasion guidance law corresponding to equation (28).
If ZAT t locates on the boundary trajectories, the final
miss distance between the attacker and the target will be
R. If ZAT t locates within the zone between the positive
and negative boundary trajectories, the final miss distance
between the attacker and the target will be less than R;
thus, the attacker can hit the target successfully. Con-
versely, the aircraft evades the attacker successfully.

The defender is launched from the target; thus, κ is
always a positive value. Similarly, ZAD t satisfies the follow-
ing form:

ZAD t = tADgo sign ZAD t umax
A κ − sign ZAD t umax

D 34

The kill radius of the defender is M; ZAD t satisfies

ZAD t +
tADf

t
sign ZAD t umax

A κ − sign ZAD t umax
D tADf − ξ dξ =M

35
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Figure 2: Optimal pursuit trajectories.
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The positive and negative evasion boundary trajectories
are given by

ZΘ
AD tADgo =M −

1
2

umax
A κ − umax

D tADgo
2
,

−ZΘ
AD tADgo = −M +

1
2

umax
A κ − umax

D tADgo
2

36

Figure 3 presents the optimal evasion trajectories under
the condition that umax

A κ > umax
D . The positive and negative

boundary trajectories are marked with triangles. In the
engagement, the attacker uses the optimal evasion guidance
law, and the defender uses the optimal intercept guidance
law corresponding to equation (29). If ZAD t locates on
the boundary trajectories, the final miss distance between
the attacker and the defender will be M. If ZAD t locates
without the zone between the positive and negative boundary
trajectories, the final miss distance between the attacker and
the defender will be larger than M; thus, the attacker can
evade the defender successfully. Conversely, the defender
intercepts the attacker successfully.

It can be noted that if the signs of ZAT and ZAD are
the same, the optimal strategies of the attacker are differ-
ent in equations (28) and (29). It means that when the
attacker pursues the target, it will approach the defender.
Figure 4 shows the time evolution of the ZEMs for the sit-
uation in which the attacker evades the defender before
the engagement time tADf , then pursues the target. It is

shown that if the attacker evades the defender before tADf
, the absolute value of ZAT will increase heavily, and it will
go out of the zone between the positive and negative pur-
suit boundary trajectories easily. Thus, it is difficult for the
attacker to pursue the target successfully after tADf .

Figure 5 shows the time evolution of the ZEMs for the
situation in which the attacker pursues the target in the
total endgame phase. It is shown that the value of ZAD
will easily go in the zone between the positive and nega-
tive evasion boundary trajectories. Thus, the attacker can
be intercepted easily by the defender because the attacker
only pursues the target and ignores the defender.

3.4. Optimal Pursuit Strategy for the Attacker. If the attacker
wants to win the game, the attacker needs to evade from
the defender and pursue the target. Thus, the cost function
is designed by

J = −
1
2
α ZAD tADf

2
+
1
2
β ZAT tATf

2
,

37

where α and β are nonnegative weights.

Z
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D
 (m

)

M

M

tgo (s)AD

Figure 3: Optimal evasion trajectories.
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The Hamiltonian function of the problem is in the fol-
lowing form:

H = λ1ZAD t + λ2ZAT t 38

Parameters satisfy

λ1 = −
∂H
∂ZAD

= 0,

λ1 tADf =
∂J

∂ZAD tADf
= −αZAD tADf ,

λ2 = −
∂H
∂ZAT

= 0,

λ2 tATf =
∂J

∂ZAT tATf
= βZAT tATf

39

Substituting equations (39) and (20) into equation (38),

t (s)

ZE
M

 (m
)

0 R

M

t
f

ZAT
ZAD

Z�훩
AT

Z�훩
AD

AT

t
f
AD

Figure 4: Time evolution of the ZEMs for the attacker evading the defender before tADf .

t
f
AT

t (s)
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M

 (m
)

R

M

t
f
AD

ZAT
ZAD

Z�훩
AT

Z�훩
AD

Figure 5: Time evolution of the ZEMs for the attacker pursuing the
target in the total endgame phase.

Table 1: Initial parameters.

Parameters (unit) Target Attacker Defender

Initial position (km) (6, 2) (0, 0) (6, 2)

Initial course (deg) 5 0 7.5

Maximal acceleration (m/s2) 50 180 70

Speed (m/s) 300 600 800
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we can obtain the following equation:

H = αZAD tADf Γ t κtADgo − βZAT tATf tATgo × uA

− αZAD tADf Γ t tADgo uD + βZAT tATf tATgo uT

40

The open-loop optimal strategies can be expressed as fol-
lows:

uΘA = −sign αZAD tADf Γ t tADgo κ − βZAT tATf tATgo umax
A ,

uΘT = sign ZAT tATf tATgo umax
T ,

uΘD = −sign ZAD tADf αΓ t tADgo umax
D

41

The close-loop optimal strategies of uΘT and uΘD are solved
as follows:

uΘT = sign ZAT t tATgo umax
T ,

uΘD = −sign ZAD t αΓ t tADgo umax
D ,

42

where superscript max represents the maximal value.
The close-loop optimal strategy of the attacker is difficult

to obtain. The open-loop optimal strategy is

uΘA = −sign αZAD tADf Γ t tADgo κ − βZAT tATf tATgo umax
A

43
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The strategy is designed for the attacker to evade from the
defender and pursue the target as follows:

uΘA = sign αZAD t Γ t tADgo κ − βZAT t tATgo umax
A 44

Equation (44) can be rewritten as follows:

uΘA = sign
α

β
ZAD t Γ t tADgo κ − ZAT t tATgo umax

A 45

4. Nonlinear Simulation

The initial condition is shown in Table 1.
Figures 6, 7, 8, and 9 show the time evolutions of ZAD t ,

ZAT t , three players’ trajectories, and time-to-go by using
nonlinear simulation for different values of α/β. Figure 10

shows the values of the control parameters corresponding
to α/βZAD t tADgo κ and ZAT t tATgo . In the simulation phase,

the initial line of sight is updated in real time, and tADf and

tATf are replaced by tADgo and tATgo . The meaning of the lines

for different values of α/β are shown in Figure 11. The
engagement times and the miss distances are shown in
Table 2.

It is shown that when the time approaches the engage-
ment time tADf , the absolute value of ZAD t increases sub-
stantially because at this time, the LOS changes quickly,
and tADgo increases heavily. It is noted that at the initial time,
ZAD t and ZAT t increase because at this time, the absolute
value of α/βZAD t tADgo κ is bigger than that of ZAT t tATgo , and
the attacker tries to minimize the cost function. As time goes
on, the absolute value of ZAT t tATgo increases more quickly,
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Figure 8: Time evolutions of trajectories.
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Figure 9: Time evolutions of time-to-go.
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and its influence on the cost function becomes greater. Thus,
the control direction of the attacker changes, which leads to
the decrease of ZAD t and ZAT t . It can be concluded that
the attacker can evade from the defender and hit the target
by using the derived strategy through observing the trajecto-
ries, and results are shown in Figure 8 and Table 2.

5. Conclusion

The scenario in which the attacker attacks the active
defense aircraft is investigated. In this scenario, the target
evades the attacker, and the defender intercepts the
attacker by using optimal guidance laws. The optimal
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Figure 10: Time evolutions of the control parameters of α/βZAD t tADgo κ and ZAT t tATgo .
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one-to-one guidance law is derived for the attacker. If the
attacker evades the defender by using the optimal evasion
guidance law before tADf , it will go out of the zone between
the positive and negative pursuit boundary trajectories eas-
ily. Thus, it is difficult for the attacker to pursue the target
successfully after tADf . If the attacker pursues the target in
the total endgame phase, the value of ZAD will easily go in
the zone between the positive and negative evasion bound-
ary trajectories, and the attacker can be intercepted by the
defender.

Thus, a new strategy is derived for the attacker to win the
game in the active defense scenario. In this problem, the tar-
get evades from the attacker, and the defender intercepts the
attacker by using the derived close-loop optimal strategies.
Although the close-loop strategy is difficult to obtain by using
the presented cost function for the attacker, an available strat-
egy is designed for it based on the open-loop solution. The
attacker can accomplish the task of evading from the defender
and pursuing the target by using the derived strategy.
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Performing Continuous Climb Operation (CCO) procedures enable the reduction of the environmental footprint and the
improvement of the trajectory efficiency when individually operated. However, its operation may affect negatively the overall
operational efficiency at Terminal Manoeuvring Areas (TMAs). The estimation of capacity is a matter of paramount importance
to all airport planning and analyzing the capacity effects of this particular operational technique on a certain scenario will
definitely help on evaluating its potential applicability. In this paper, departure runway capacity at the Adolfo Suárez
Madrid-Barajas airport was operationally evaluated when introducing CCOs. The considered trajectories consisted of
multiobjective optimized CCOs based on the optimal control theory, using the pseudospectral direct numerical method. These
scenarios allowed addressing of the incremental variations of CCOs versus conventional departures, through fast time
simulation, with the objective to assess the effects on the operations.

1. Introduction

Defined as an uninterrupted climb flight operation allow-
ing the aircraft to attain initial cruise flight level at an
optimum air speed with optimal thrust settings [1], the
Continuous Climb Operation (CCO) leads to a significant
fuel economy and environmental benefits. The improve-
ment of flight trajectories through the execution of a flight
profile optimized to the performance of an aircraft repre-
sents a significant enabler for Trajectory-Based Operations
(TBO), which is one of the four pillars (four-phase
improvement) defined on Single European Sky ATM
Research (SESAR) [2].

At a local level, continuous operating techniques, such as
CCOs, can significantly reduce the environmental footprint
in living areas around the airports. Besides, this technique
allows the airspace users to plan and, ideally, to fly a trajec-
tory which will be closer to their preferences whilst comply-
ing with operational constraints. This may be translated into

positive contributions on cost benefits through satisfying the
airspace users’ business needs.

As part of the Aviation System Block Upgrade (ASBU)
system engineering modernization strategy, Global Air Nav-
igation Plan (GANP) [3], the International Civil Aviation
Organization (ICAO) prioritizes the usage of CCOs among
other initiatives. Along these lines, global air navigation ini-
tiatives for future air traffic management like the Single
European Sky ATM Research (SESAR) [2] in Europe and
The Next Generation Air Transportation System (NextGen)
[4] in the United States of America put in place innovative
activities for the optimization of vertical trajectories. The
departure phase of the flight has been identified as a key area
where substantial environmental benefits could be achieved.

The optimization of flight trajectories for terminal oper-
ating procedures has been a problem extensively tackled for
years, particularly focused on arrival procedures. Limited
research has been conducted in terms of “pure” CCOs, as
the benefits did not seem to be noteworthy. However,
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considering that engines usually run close to full throttle
during a climb phase, there exist the potential for reducing
the environmental footprint in living areas around the air-
ports. In this regard, McConnachie et al. [5] presented the
evidences for environmental performance change in case
CCOs are applied at certain airports. Nevertheless, it was
plausibly assumed that a CCO is just an uninterrupted
climb. The successful application of a CCO should not be
simplistically reduced to the operation of an uninterrupted
climb procedure, which implies inexistent level-off seg-
ments. It is important to note the importance of factors like
the aircraft, airport type, aircraft weight, runway, Standard
Instrument Departure (SID), and operational constraints
when identifying the CCO profile optimized to the perfor-
mance of the aircraft.

However, the integration of a CCO-operating technique
in a Terminal Manoeuvring Area (TMA) requires the analy-
sis of one of the most important parameters on airport plan-
ning, which is capacity. This Key Performance Area (KPA),
which is one of the eleven KPAs defined by ICAO, at
high-density terminal areas motivated the interesting work
presented by Li et al. [6]. The model introduced for terminal
area design is mainly focused on arrival trajectories. It is
important to highlight that the integration of a pure CCO
has not been directly considered by recent investigations;
therefore, an assessment of the operational limitations and
its potential effects would be tempting.

In Europe, SESAR targets up to 30% reduction in depar-
ture delays. On the other hand, its environmental expectation
targets up to 10% reduction in CO2 emissions including a pos-
itive impact on noise and air quality. Along with this KPA, the
operational efficiency aims up to 6% reduction in flight time
and up to 10% reduction in fuel burn. The successful achieve-
ment of all these targets is not trivial considering that the
implementation of an environmental friendly operational pro-
cedure may produce negative effects on other KPAs.

It is likely to obtain local positive environmental effects
through the application of optimized CCOs whilst affecting
negatively airport efficiency operations. In other words, a
new operating technique that seems to be beneficial when
it is applied in isolation may not be quite beneficial when
integrated as a part of a complete scenario. The study
presented at this paper is aimed at studying the capacity
effects when applying optimized CCOs. The Adolfo Suárez
Madrid-Barajas airport (ICAO code, LEMD) has been
selected as the test scenario to evaluate the effects on capac-
ity when facilitating CCOs. The study has been enabled by a
consolidated multiobjective software model, which was pre-
viously developed by the authors, for the computation of air-
craft trajectories when performing optimal CCOs in terms of
noise and fuel consumption.

To this end, the paper is organized as follows: Section 2
gathers the description of the scenario. Section 3 includes
the aircraft performance model. Section 4 provides the oper-
ational constraints as well as the boundary conditions. Sec-
tion 5 describes the used methodology for tackling the
exercise. Section 6 presents the results, which offers the main
findings of the analysis. And finally, Section 7 concludes
with the key remarks of the study.

2. Departures at Adolfo Suárez Madrid-Barajas

Adolfo Suárez Madrid-Barajas is the largest airport in Spain
with 378,566 total operations in 2017. Considered as one of
the largest airport in Europe by physical size, it is the coun-
try’s busiest airport in Spain, and Europe’s sixth busiest. The
airport is predominantly operated in north configuration
and runway (RWY) 36L was selected as the preferred option
for this study. In particular, the chosen flight segments go
from ground to waypoint (WPT) AVILA. A shorter flight
segment which is common for two Standard Instrument
Departures (SIDs): Bardi Two Tango (BARDI2T) and
Cáceres One Tango (CCS1T), and a longer flight segment,
which is shared by Bardi Two Kilo (BARDI2K) SID and
Cáceres One Kilo (CCS1K) SID. The operations of these
SIDs are limited by the performance of the aircraft and air-
craft type as clarified below.

Figure 1 shows a zoom view of the published chart,
which includes the SIDs for RWY 36L, usable at daytime.
SIDs BARDI2T/CCS1T are only allowed to authorized air-
craft and, thus, BARDI2K/CCS1K becomes mandatory to
listed aircraft due to noise restrictions. Published noise
abatement procedures are applicable to all takeoffs, unless
exceptionally cancelled due to an event that cannot be
reasonably anticipated.

This is a challenging scenario as the performance of the
aircraft plays a relevant role when performing BAR-
DI2K/CCS1K or BARDI2T/CCS1T SID. The facilitation of
CCO when performing these departure segments must sat-
isfy the airspace restrictions and operational constraints.

3. Aircraft Performance

This section gathers the aircraft dynamics equations consid-
ered for this study. The considered representation of the air-
craft is a dynamic model, which represents the point variable
mass motion over a spherical flat nonrotating earth model
besides neglecting wind components. The resulting set of
differential equations of the aircraft is the following:

x = V cos γ ,

h =V sin γ ,

V = T h, V −D h, V , Cd −m g sin γ

m t
,

γ = L h, V , Cl −m g sin γ

m t V t
,

m = −T h, V η h, V ,

1

where the state vector is comprised of the true airspeed V ,
the longitudinal position x, the aerodynamic flight path
angle γ, the altitude h, and the mass of the aircraft m. In
addition to the states, there are other components like T ,
which represents the thrust, g the gravity acceleration
(assumed as a constant value), D is the aerodynamic drag,
and η is the thrust-specific fuel flow.
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In terms of the atmosphere, it has been considered the
ICAO Standard Atmosphere (ISA) model [7], which presents
pressure p h , density ρ h , and temperature τ h . This
model denotes p0, ρ0, and τ0 for the standard values at sea
level for pressure, density, and temperature, respectively.

4. Operational Constraints and
Boundary Conditions

The studied scenario corresponds to RWY 36L at the Adolfo
Suárez Madrid-Barajas airport. The surveillance data has
been analyzed in order to identify the operational constraints
of the scenario prior to the performance of the simulations.
Flows for departures and arrivals have been studied. More-
over, it has also been analyzed the potential interaction of
the inbound & outbound flows against the modeled flight
segment for SIDs BARDI2T/CCS1T and BARDI2K/CCS1K.

Determining the capacity effects when facilitating CCOs
has been applied to the aforesaid SIDs, where the performance
of the aircraft plays a significant role. The clearance for flying a
CCO technique does not take the aircraft operator away from
being compliant with the numerous operational constraints.

The considered flight segments start with a climb on the
runway heading directly to DVOR/DME SSY and finish
when crossing AVILA waypoint at 12000 ft or above. The
operation of these flight segments may be influenced by air-
craft performance limitations, which may be translated on
negative effects depending on the selected SID. It is worth
mentioning that assuming the initial Air Traffic Control
(ATC) clearance of maintaining 13000 ft and requesting
flight level change en route may not stop a continuous climb
operation in the first instance.

The assumed separation for departures is time based.
The considered value is 120 seconds between any combina-
tions of aircraft types. Regarding the operational constraints,
Table 1 gathers the operational constraints, like Minimum
Climb Gradient (MCG) and Knots Indicated Airspeed
(KIAS), among others.

The computational cost for finding the solution is signif-
icantly higher when the problem is applied to actual scenar-
ios due to the mandatory compliance of actual operational
constraints. The initial conditions on the studied procedure
are taken at the moment the aircraft lines up for taking off.
Table 2 summarizes the main boundary conditions consid-
ered when modeling the departures for the considered air-
craft types, Airbus 319 (A319) and Airbus 330 (A330). The
surveillance data analysis performed through additional
hand-tailored MATLAB models enabled the operational
assessment of departure and arrival flows as well as the calcu-
lation of some relevant parameters indicated within Table 2.
The analysis of the surveillance data brings up interesting
facts, for example, SID BARDI2T/CCS1T is highly operated
by mediums compared to heavies. Considering this, it is
not realistic to consider a medium aircraft operating BAR-
DI2K/CCS1K SID.

5. Model

Traditionally, tactical controllers manage the aircraft within
their airspace domain and provide clearances to specific alti-
tudes based on the characteristics of the traffic in terms of
complexity and airspace layout. A conventional departure
trajectory, which has been vertically limited, presents several
level-offs before reaching the cruise level. There is a limit to

LEP161

SFC
5000 ft ALT

SFC
10000 ft AGL

LED17B

SFC
5200 ft ALT LED17A

SFC
3500 ft ALT LED118

SFC
4000 ft ALT

LED162

SFC
4000 ft ALTLED133

8300 ft ALT

BARDI2K

CCS1K

R-259 RBO

R-269 CNR37
5.7 DME

SSY

6.8 DME
SSY

R

SSY
R-321

R-308 BRA

BARDI2T
CCS1T19

12000
AVILA

40°37′29″N
004°33′00″W
RBO 259/61.0
CNR 269/37.2

Figure 1: SIDs RWY 36L. Detailed view of selected flight segments associated to BARDI2T/CCS1T & BARDI2K/CCS1K SIDs.

Table 1: Operational constraints.

SID BARDI2T/CCS1T BARDI2K/CCS1K

MCG 6.4% to 10000 ft 7.5% to 4500 ft

KIAS constraints (1) 5.7 DME SSY: 180-240 kt 15 DME BRA h ≥ 6500 ft
KIAS constraints (2) h ≤ 10000 ft KIAS ≤ 250 kt
AVILA (2) h ≥ 12000 ft
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the number of aircraft a controller can keep track of at one
time, so as airspace has to be subdivided in airspace sectors,
the flights require leveled segments. These leveled segments
on the vertical profile penalize the aircraft efficiency and pre-
vent the aircraft from flying its ideal trajectory. Conversely,
the performance of an optimized CCO that allows the aircraft
to attain initial cruise flight level at an optimum air speed
with optimal thrust settings brings noteworthy benefits to
the flight efficiency. Figure 2 illustrates a standard departure
and an optimized CCO where the differences between the
departure flight paths can be appreciated.

The mathematical method used for the optimization of
the CCO is based on the optimal control theory, which
aims at determining the control input that will cause a
system to achieve the control objectives, whilst satisfying
the constraints and also optimizing some performance cri-
terion. The trajectory optimization problem was solved
following an open loop terminal control problem that
allows the constraints acting on the dynamical system to
be considered in a way that the obtained trajectory will
be admissible.

Commercial aircraft trajectory problems have been tack-
led through open loop optimal control techniques [8–10].
However, optimal control problems are characterized for
being highly nonlinear, and thus, it becomes certainly diffi-
cult to find analytical solutions. Numerical methods are typ-
ically used for this purpose, and direct methods fit the
approach for the trajectory optimization problem. A simplis-
tic description of direct methods could be presented as dis-
cretizing the optimal control problem at the nodes of
discretization, resulting to a NLP ready to be solved.

5.1. Optimal Control Problem. With the aim of facilitating
the discussion, consider the following optimal control
problem (OCP):

min J t, x t , u t , l = E tF, x tF +
tF

tI
L x t , u t , l dt,

2

subject to

Table 2: Boundary conditions.

SID BARDI2T/CCS1T BARDI2K/CCS1K

RWY (h) 0 ft

RWY (KIAS) 0 knots

RWY (Rate of Climb (ROC)) 0 ft

AVILA (h) 16200 ft–26400 ft

AVILA (KIAS) 392 knots (A319)/389 knots (A330) 401 knots (A330)

AVILA (ROC) 2165 fpm (A319)/1546 fpm(A330) 1467 fpm (A330)

Flight distance 47NM 56NM

Optimized
CCO

Conventional
departure

Figure 2: Departure flight paths. Optimized CCO versus standard departure.
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x t = f x t , u t , l , dynamic equations; 0 = g x t , u t , l ,
algebraic equations; x tI = xI, initial boundary conditions;ψ x
tF = 0, terminal boundary conditions; and ϕl ≤ ϕ x t ,
u t , p ≤ ϕu, path constraints.

Variable t ∈ tI, tF ⊂ ℝ represents time, and l ∈ ℝnl is a
vector of parameters. Notice that the initial time tI is fixed
and the final time tF might be fixed or left undetermined. x
t : tI, tF →ℝnx represents the state variables. u t : tI, tF
→ℝnu represents the control functions, also referred to as
control inputs, assumed to be measurable. The objective
function J tI, tF ×ℝnx ×ℝnu ×ℝnl →ℝ is given in the
Bolza form. It is expressed as the sum of the Mayer term E

tF, x tF and the Lagrange term tF

tI L x t , u t , l dt.
Functions E tI, tF ×ℝnx →ℝ and L ℝnx ×ℝnu ×ℝnl

→ℝ are assumed to be twice differentiable. The system is
a DAE system in which the right hand side function of the
differential equations f ℝnx ×ℝnu ×ℝnl →ℝnx is assumed
to be piecewise Lipschitz continuous, and the derivative of
the algebraic right hand side function g ℝnx ×ℝnu ×ℝnl

→ℝnz with respect to z is assumed to be regular. xI ∈ℝnx

represents the vector of initial conditions given at the
initial time tI and the function ψ ℝnx →ℝnq provides
the terminal conditions at the final time, and it is
assumed to be twice differentiable. The system must sat-
isfy algebraic path constraints given by the function ϕ
ℝnx ×ℝnu ×ℝnl →ℝnϕ with lower bound ϕl ∈ℝ

nϕ and
upper bound ϕu ∈ℝ

nϕ . Function ϕ is assumed to be
twice differentiable.

The Chebyshev pseudospectral method, which has
demonstrated advantages over indirect methods, is widely
used in engineering applications, especially on trajectory
optimization problems [11]. This spectral method utilizes
orthogonal polynomials instead of piecewise continuous
polynomials when approximating state and control vari-
ables. F. Fahroo and I. M. Ross presented at [12] the demon-
stration of the fact that Chebyshev-Gauss-Lobatto (CGL)
method yields more accurate results than those obtained
from the traditional collocation method. Recently, in [13],
an intensive analysis on different direct collocation methods
to solve a classical problem on ATM was presented. Once
again, pseudospectral collocation method has proven better
results on accuracy and computational time but uncer-
tainties in vertical trajectories during a climb/descent.

In this investigation, the operational flight paths were
obtained through multiobjective optimization process based
on CCO principles by a CGL pseudospectral method. The
calculations were executed through a hand-tailored software
tool implemented on AMPL modeling language [14] for Air-
bus A319 and A330 aircraft, using IPOPT as the NLP solver.
The latest Base of Aircraft Data (BADA 4.1 [15]) supported
the AMPL self-implemented optimization model. AMPL is
an algebraic modeling system for mathematical program-
ming of large-scale optimization problems. For the sake
of clarity, a solver is defined as the number-crunching
algorithm that computes optimal solutions. The calcu-
lated optimal trajectories were stored in a database for
further processing.

5.2. Optimization Criteria. The environmental optimization
criterion has been modeled considering two magnitudes:
maximum A-weighted sound level (Lmax) and fuel burn.
Aiming at supporting this multiobjective optimization, the
weighted combination of the aforementioned factors has
been implemented as follows:

J = a noise + b fuel consumption , 3

where a and b are adjustable weighting constants. The
values of these constants are directly related to the
trade-off between noise exposure and fuel consumption/e-
missions. In this study, both factors have received the
same weighting avoiding the prioritization of one of them.
It is out of the scope of this study to present the analysis
of Pareto for the aforesaid weighting constants. The con-
sidered parameter for noise optimization, maximum
A-weighted sound level Lmax , is based on the methodol-
ogy employed by the Integrated Noise Model (INM) [16].
The core of this methodology relies on the Noise-Power-
Distance (NPD).

5.3. Departure Capacity Model. The following steps were
required to establish the appropriate enablers that allow
addressing of the main objective of this study, in other
words, the means of evaluating the operational implications
of integrating optimal CCOs.

The scenario was modeled considering operational and
physical constraints. The derivation of the runway utiliza-
tion rates when performing CCOs required the construction
of a departure capacity model. It was flexibly constructed,
based on the MATLAB software tool, in a number of stages:

(1) The physical constraints were analyzed for variability
across departure routes

(2) The different operational constraints were compared
to determine which were the most dominant

(3) Preprocess of surveillance data and FDR data to gen-
erate database

(4) Databases (actual data) were processed through an
additional MATLAB model to determine arrival
and departure traffic flows, as well as aircraft
type patterns

(5) In parallel, the optimal CCOs were simulated whilst
being complied with the identified constraints

(6) The databases (optimized trajectories) were compiled
by using the data obtained from the simulations

(7) The databases were processed by the capacity
model with the aim of determining the runway
utilization rates

The data regarding the considered aircraft types
(A330\A319) was processed by the departure capacity model
ensuring no loss of separation. The separation values for this
calculation were 1000 ft (vertical) and 3NM (horizontal)
[17]. Table 3 presents the evaluated aircraft types per SID.
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As it is possible to appreciate on it, the A319 were not
considered for BARDI2K/CCS1K taking into account the
findings from the surveillance data analysis. It bears out
the fact that mediums operating the long leg when depart-
ing west are not usual. Regarding the aircraft mass for
CCOs, several highly representative take-off mass values
were considered where M1 represents the lightest of the
studied actual data sample. The figures are not provided
in purpose.

Different path lengths, speeds, altitudes, ATC con-
straints, performance limitations, and operational-cleared
levels are some of the numerous parameters, which were
considered. The construction of the model was reviewed
and discussed with operational staff ensuring the most
realistic scenario. The selected mechanism of evaluating
the capacity is based on the Monte Carlo simulations that
were hand-tailored through MATLAB.

6. Results

Estimating capacity is a matter of paramount importance
to all airport planning and analyzing the capacity effects
of this particular operational technique on a certain sce-
nario helped on evaluating its potential applicability. The
selected method to evaluate CCOs was to study them
against actual conventional departures. From an opera-
tional point of view, it has been assumed departure sepa-
ration is based on time. In this regard, a standard time
separation of 120 seconds between consecutive departures
has been considered. Unfortunately, the combination of
certain conventional departures and optimal CCOs may
require longer time spacing while ensuring safety opera-
tions between the aircrafts along the SIDs.

Figure 3 gathers the information regarding the effects
on time spacing in view of the results obtained, is influ-
enced, by the SID and the combination of leading (each
represented line) and trailing aircraft (abscissa axis). The
following points address those combinations of departures
where longer time spacings, than the standard 120 sec-
onds, are required to ensure no loss of separation.

(1) M1B2KA330 (.-+). Being the leading aircraft, an
A330 departing BARDI2K/CCS1K whilst perform-
ing a conventional departure, it is necessary for
an increase of time spacing between 61 and 65 sec-
onds when the trailing aircraft is A319 and
between 28 and 38 seconds for A330 performing
conventional departures through BARDI2T/CCS1T

(2) M2B2KA330 (-+). Leading aircraft, an A330 departing
BARDI2K/CCS1K whilst performing a conventional

departure, it is necessary for an increase of time
spacing between 52 and 56 seconds when the
trailing aircraft is A319 and between 27 and 36 sec-
onds for A330 performing conventional departures
through BARDI2T/CCS1T

(3) M1B2KA330 CCO (.-o). Being the leading aircraft,
the lightest A330 (M1) departing BARDI2K/CCS1K
whilst performing a CCO, it is necessary for an
increase of time spacing between 29 and 35 sec-
onds when the trailing aircraft is A319 performing
CCOs through BARDI2T/CCS1T and between 7
and 35 seconds for A330 departing through
BARDI2T/CCS1T

(4) M2B2KA330 CCO (-o). Being the leading aircraft,
the A330 (M2) departing BARDI2K/CCS1K whilst
performing a CCO, it is necessary for an increase of
time spacing between 25 and 31 seconds when the
trailing aircraft is A319 performing CCOs through
BARDI2T/CCS1T and between 4 and 31 seconds
for A330 departing through BARDI2T/CCS1T

(5) M3B2KA330 CCO (-o). Being the leading aircraft,
the heaviest A330 (M3) departing BARDI2K/CCS1K
whilst performing a CCO, it is necessary for an
increase of time spacing between 22 and 28 seconds
when the trailing aircraft is A319 performing CCOs
through BARDI2T/CCS1T and up to 28 seconds
for A330 departing through BARDI2T/CCS1T

Considering the above factors it is interesting to high-
light two findings: first of all, when the leading aircraft is
performing a conventional departure via the long leg of the
SIDs (BARDI2K/CCS1K), the standard time spacing
requires to be increased. This time spacing is likely to
be higher when the trailing aircraft type is lighter than
the leading one. Secondly, it is interesting to note the
fact that when the leading heavy aircraft is performing
a CCO via BARDI2K/CCS1K, it is necessary for more
time spacing for the trailing aircraft flying CCOs than
conventional departures.

6.1. Runway Capacity Effects Due to CCO Expedition. Finally,
the effects on capacity for each combination of
leading-trailing aircraft were calculated using Monte Carlo
simulations. The Monte Carlo simulations were conducted
using a hand-tailored model based on MATLAB software
tool. Its main objective was to obtain the capacity values
per hour of operation considering the previously calcu-
lated time spacing between different combinations of
aircraft. The simulations were conducted for 10.000

Table 3: Aircraft types and their associated mass (M) per SID for optimal CCOs and conventional departures.

SID BARDI2T/CCS1T BARDI2K/CCS1K

Aircraft (CCO) M1/M2/M3 (A319)/M1/M2/M3 (A330) M1/M2/M3 (A330)

Aircraft (conventional) M1/M2/M3 (A319)/M1/M2/M3/M4 (A330) M1/M2 (A330)
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hours per scenario. The model addresses 11 scenarios
depending on the percentage of CCOs that covers a
total of 110.000 hours analyzed:

(1) Scenario 1.100% CCOs

(2) Scenario 2. 90% CCOs/10% conventional departures

(3) Scenario 3. 80% CCOs/20% conventional departures

(4) Scenario 4. 70% CCOs/30% conventional departures

(5) Scenario 5. 60% CCOs/40% conventional departures

(6) Scenario 6. 50% CCOs/50% conventional departures

(7) Scenario 7. 40% CCOs/60% conventional departures

(8) Scenario 8. 30% CCOs/70% conventional departures

(9) Scenario 9. 20% CCOs/80% conventional departures

(10) Scenario 10. 10% CCOs/90% conventional departures

(11) Scenario 11. 100% conventional departures

Figure 4 gathers the information regarding the boxplot
for each scenario. It allows the reader to appreciate the key

results and to identify the key characteristics. The median,
which is represented by the line in the box, represents a
measure of the center of the data, and the interquartile
range box (the green and the red box) brings the distance
between the first and the third quartile. Besides, the interquar-
tile range box brings the distance between the first and the
third quartile. Last but not the least, the whiskers show the
ranges for the bottom 25% and the top 25% of the data values.

(1) Scenario 1. The median capacity is 28 movements
per hour, and the capacity is as low as 26 and as high
as 29. The capacity values are less variable than
other scenarios

(2) Scenario 2. The median capacity is 28.2 movements.
Most of the capacity values are between 28 and 29,
and the boxplot manifests top-skewed data, which
means that most of the capacity values are lower.
The capacity values are as low as 26 and as high
as 29

(3) Scenario 3. Median capacity value is 28.4, and the
interquartile range box is the same as the previous
scenario. The boxplot represents top-skewed data.
The whisker values are as low as 26 and as high as 29
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Figure 3: Time separations between aircraft operating BARDI2T/CCS1T and BARDI2K/CCS1K SIDs.
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(4) Scenario 4. The median capacity value is 28.5, and
the interquartile range box and the whiskers
have the same values on the previous scenario.
In this case the main difference is regarding
the skewed data, which seems to be slightly
top-skewed

(5) Scenario 5. The median capacity is 28.5, the inter-
quartile range box remains as before but the bottom
whisker increases up to 27. In this case, the data is
not skewed

(6) Scenario 6. The median capacity is 28.5. The inter-
quartile range box is the same as before, but in this
case, the lower whisker goes back to 26. The data
distribution is symmetric

(7) Scenario 7. Median value is 28.5. Similar to sce-
nario 6 where it is possible to appreciate a change
of trend regarding the data which is slightly
top-skewed

(8) Scenario 8. Median value is 28.3. The main differ-
ence compared to scenario 6 is that in this case, it
is clearly top-skewed data

(9) Scenario 9. Median value is 28.2. In this case, the
lower whisker decreases down to 25, and the sce-
nario is clearly top-skewed data

(10) Scenario 10. Median capacity value is 28 movements
per hour, and the capacity is as low as 25 and as high
as 29. The capacity values are less variable than
other scenarios

(11) Scenario 11. Median capacity value is the lowest,
27.7. The capacity is as low as 25 and as high as
29. Most of the capacity values are between 27 and
28, and the boxplot manifests bottom-skewed data,
which means that most of capacity values are higher

Figure 5 reveals that the median values for the studied
scenarios vary between 27.7 and 28.5. It is interesting to note
the fact that those scenarios where the percentages of each
type of traffic are similar, the median presents its highest
values. The standard deviation appreciated for the scenarios
with lower percentage of CCOs are higher. This indicates
that the values are more dispersed.

7. Conclusions

In view of the obtained results, the integration of traffic per-
forming CCOs on departures does not affect negatively in
terms of runway capacity. Therefore, it may be argued that
whilst the combination between leading-trailing aircraft on
mixed departures may affect the capacity, the effect is within
an acceptable limit.

The integration of CCO does not necessarily require a
specific ATM tool at the controller’s working position but
the procedures should support them. Nevertheless, the
results suggest that integrating CCOs along with a combina-
tion of a departure sequence tool tend to mitigate the char-
acteristics of these operating techniques.

Unlike standard arrival routes where aircrafts are tacti-
cally guided by air traffic controllers, SID routes tend to
follow fixed flight paths. Thus, the optimization of the
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Figure 4: Capacity. Maximum number of aircraft that can be accommodated per hour according to aforementioned scenarios.
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vertical profile may be considered an appropriate initiative
for departure efficiency.

Allowing the airspace user to fly optimized continuous
climb operations will bring significant benefits in greenhouse
gas and noise emissions in the vicinity of airports. From the
operational point of view, it will lead to more consistent
flight paths whilst reducing the number of required radio
transmissions. As a consequence, this may be traduced on
lower pilot and air traffic controller workload.

This study reinforces the idea of transmitting the impor-
tance of CCOs and, furthermore, promotes the usage of this
operating technique in TMAs.

Nomenclature

Cd : Coefficient of drag
Cl: Coefficient of lift
D: Drag force
g: Gravity acceleration
h: Altitude
L: Lift force
m: Mass
p: Atmospheric pressure
p0: Standard value at sea level for atmospheric pressure
t: Time

T : Thrust
V : True airspeed
x: Longitudinal position
η: Thrust-specific fuel flow
γ: Flight path angle
ρ: Atmospheric density
ρ0: Standard value at sea level for atmospheric density
τ: Temperature
τ0: Standard value at sea level for temperature.
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