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1. Introduction

The past ten years have witnessed great developments of
wireless sensor networks in both theory and application.
The long been expected and advocated ubiquitous sensing
is becoming increasingly popular and widely admitted with
the great success of many applications of wireless sensor net-
works in environmental monitoring, precision agriculture,
human health monitoring, and so forth. Correspondingly,
theoretical foundations of wireless sensor networks, such as
sensor positioning, time synchronization, communication
protocols, data fusion, and operating systems, also have
received intensive attentions. However, in current stage, most
attentions in theory still regard wireless sensor networks as
a means of data collection, instead of autonomous networks
with self-decision making based on the collected data. The
widely investigated type of wireless sensor network with per-
ception but without reaction is in contrast to the autonomous
network with perception, reaction, and cognition, which
adapts itself to the monitored environment by exploiting
information feedback (e.g., the collected data feedbacks to
make adjustment of the electricity price for smart power
grid network). Introducing reaction and cognition alongwith
perception opens a door to transformwireless sensor network
from a passive network for data collection to an adaptive and

active network with self-intention, self-evolution, and self-
intelligence andwill open a new promising branch in the field
of wireless sensor networks.

2. Major Topics around Perception, Reaction,
and Cognition in Wireless Sensor Networks

With the capability of sensing, reacting, and thinking, a
sensor node is increasingly like a live animal being and a fleet
of them are connected together by information exchanging
with others in the collection, which is in analogy to the
social behaviors of animals. It is also in analogy to the
skin of our human beings, which feels temperature with
nerve endings in every area, makes decision with the nearby
nerve cells, shrinks or constricts arterioles with the action
of muscles, and thereby achieves the ability of regulating the
body temperature and functions like a sensor network with
perception, reaction, and cognition. From this perspective,
biological systems or social behaviors of animals may give in-
depth insight to the design of such a novel sensor network.

Integrating perception, reaction, and cognition into wire-
less sensor networks requires the effort of interdisciplinary
researches, and this merging direction can be viewed from
different perspectives. From the perspective of artificial
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intelligence, the sensor network with perception, reaction,
and cognition can be treated as a network with interactive
agents; from a system perspective, the sensor network with
perception, reaction, and cognition is a feedback system
involving nonlinear estimation and control with interdepen-
dence.The goal of sensor networks with perception, reaction,
and cognition lies in optimizing an objective function under
constraints. Optimum for a single sensor node or a portion
of nodes does not necessarily imply global optimum. As
cooperative nonlinear optimization, game theory may find
applications in this scenario. As each sensor node in this
network needs to adapt to a possibly variant environment,
real-time signal processing, data fusion, and data mining are
often required requirements and pose more challenges than
conventional wireless sensor networks, to which real-time
performance is often not crucial. From the view of com-
munication, congestion control, routing, protocol designs,
and so forth may encounter new challenges as integrating
real-time sensing and control together inevitably introduces
more information exchanging and possibly communication
burdens.

We accepted 5 papers press from the submissions of 16 to
this special issue. The overall acceptance rate is 31.25%. The
papers cover specific problems such as routing algorithms,
indoor localization, energy harvesting, wormhole detection,
and circle fitting algorithms. Some of the topics are crucial
in conventional wireless sensor networks and also play
important roles in the sensor network with the capability
of perception, reaction, and cognition integrated. Some of
the topics are more likely encountered in the latter case.
Inspired by the large and single-celled amoeboid organism,
slime mold Physarum polycephalum, the authors of the paper
“Anovel Physarum-inspired routing protocol for wireless sensor
networks” propose a novel Physarum-inspired routing pro-
tocol (P-iRP) to address the routing issue in wireless sensor
networks with a low complexity 𝑂(√𝑛). The paper “Circle
fitting using a virtual source localization algorithm in wireless
sensor networks” solves the circle fitting problem in wireless
sensor networks by formulating the problem into the special
source localization one and employing the multidimensional
scaling (MDS) analysis.The paper “Indoormobile localization
in wireless sensor network under unknown NLOS errors”
solves the nonline-of-sight (NLOS) propagation problem
by proposing a likelihood matrix correction based mixed
Kalman and H-infinity filter (LC-MKHF) method. Results
show that the LC-MKHF algorithm has higher estimate
accuracy in comparison with no-filter, Kalman filter, and H-
infinity filter methods and is robust to the NLOS errors.
The paper “Secure routing protocol using cross-layer design
and energy harvesting in wireless sensor networks” proposes
a secure routing protocol based on cross layer design and
energy-harvesting mechanism. This algorithm ensures effi-
cient use of energy and performs better in many scenarios
and in hostile attack-prone environment;Wormhole attack is
a severe threat to wireless sensor networks.The authors of the
paper “MDS-based wormhole detection using local topology in
wireless sensor networks” propose a novel approach to detect
wormhole attacks by only local topology informationwithout
requiring special hardware devices or depending on rigorous

assumptions on the network settings. Extensive simulations
demonstrate the effectiveness and superior performance of
the proposed approach.
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In order to solve the indoor pedestrian positioning and tracking problems under the condition of sparse anchor nodes, this paper
presents a new tracking scheme which predicts the staff position under the condition of indoor location fingerprints based on
particle filter. In the proposed algorithm, the indoor topology is adopted to constrain and correct the results. Simulation results
show that the proposed algorithm can significantly improve the accuracy of indoor pedestrian positioning and tracking more than
the Kalman filter and k-nearest neighbor (KNN) algorithms. The simulation results also show that under the condition of sparse
nodes deployment good tracking results can still be achieved through the adoption of indoor topology and the average positioning
error is about 1.9m.

1. Introduction

With the improvement of communication technology,
location-based service (LBS) [1] has drawn more and more
attention and will have a significant impact on human life
and work. For example, the use of Global Positioning System
(GPS) and electronic map in vehicle navigation and the
use of intelligent mobile phone help people outside to find
their place and route. Using a variety of sensors in indoor
environments, for example, in a large supermarket or an
exhibition hall can lead people to the places where they want
to go. Although GPS can basically meet the requirements
in outdoor environment for locating and tracking, it cannot
work well in indoor environment. Currently the common
adopted indoor localization techniques are mainly infrared,
ultrasonic, ZIGBEE, wireless local area network (WLAN),
ultrawide bandwidth (UWB), radio-frequency identification
devices (RFID), magnetic signal, visual analysis and inertial
measurement unit (IMU) [2], or the combination of multiple
techniques.

Existing localization algorithms can be divided into the
following three categories: range based, range-free, and event
driven. Algorithms based on distance measurement need
at least three sensors to locate trilateral using triangulation

algorithm. Range-free algorithms are based on network
connectivity information, which has lower location accuracy
than the range-based algorithms. Event-driven localization
makes use of localization events which are generated and
propagated across the area where sensor networks are
deployed. Although these algorithms are very effective, it is
hard to employ them directly for the indoor positioning.

Indoor positioning and tracking order that sensors for
locating should be deployed first. Increasing the density
of coverage would increase the cost. In practice, the aim
that the whole indoor area is covered by all anchors is
often hard to achieve. Some dead angle inevitably exists.
Considering the complexity of the indoor environment, the
obstacle diffraction and reflection of the signal and the change
of interior structure all have effects on the wireless signal
for localization. Indoor localization and tracking should not
only consider the normal usage, but also should consider
the special cases, for example, the cases of fire or earthquake
damage. Some anchor nodes or the order of the deployment
of at least three sensors cannot be met [3]. In this paper,
we put forward a positioning and tracking algorithm under
the condition of sparse anchor nodes deployment, where the
particle filter (PF) method based on the position fingerprint
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is used and the constraints of the results of indoor topology
and correction algorithms are also explored.

The rest of the paper is organized as follows. Section 2
briefly surveys previous localization methods. Section 3
presents the system overview and details the system design.
Section 4 illustrates simulation results. Finally, Section 5
concludes the whole paper.

2. Related Work

Many excellent schemes have been proposed for the indoor
localization. Most of them can be categorized into three
classes: range-based localization, range-free localization, and
event-driven localization.

Range-based localization algorithms are built on top of
distance or angle measurements among the nodes in the net-
works, which require expensive hardware devices to estimate
the distance between the nodes or need careful environment
profiling. The Time of Arrival [4] and Time Difference of
Arrival [5] schemes measure the propagation time of the
signal and estimate the distance based on the propagation
speed. The Angle of Arrival (AOA) schemes [6] estimate the
node locations by sensing the received signal direction. The
Received Signal Strength Indicator (RSSI) schemes [7] use
either theoretical or empiricalmodels to estimate the distance
based on the loss of power during signal propagation. The
fingerprint localization algorithm is based on signal strength,
and it is with the benefit of simple calculation and high
precision.The fingerprint based localization algorithm can be
divided into two stages: the offline stage and the online stage
[8].

To address the limitations of the range-based schemes,
range-free localization schemes have been proposed, which
attempt to locate sensors without costly ranging devices. The
location of each node is estimated based on the knowledge
of proximity to the anchor nodes. There are two kinds
of localization schemes: anchor-based scheme and anchor-
free distrusted localization scheme. Generally, range-free
localization methods normally have low accuracy, highly
depending on the density and distribution of the anchor
nodes.

Recently, event-driven localization schemes have been
proposed to simplify the node functionality and to provide
high-quality localization. The key idea of these schemes is to
use artificial events for localization. Although their effective
range can reach hundreds of meters, it needs additional
event generation devices and manual operations to generate
artificial events.

In the tracking field, the location is often achieved
through estimation and filtering like particle filters. It is a
kind of method where Monte Carlo simulation is used to
solve nonlinear and non-Gaussian problems of the Bayesian
estimation [9]. It first uses a lot of weighted particles to
represent the posterior distribution of the estimation. Then,
particles are forecasted by transcendental motion equation
information.Through the observed information, the weights
could be updated accordingly. At last, the aforementioned
two steps are run in cycles to realize the estimator of the
distribution of the tracking.

3. Positioning and Tracking Algorithm under
Sparse Anchor Nodes

In indoor wireless environments, various obstacles cause
wireless signals irregular reflection and scattering. In addi-
tion, barrier properties such as metal, building materials, or
human bodies could have different impacts on the propaga-
tion of wireless signals so that wireless signals in different
buildings will have big gaps. Generally, positioning in indoor
places requires the signals received from at least three anchor
nodes, and receiving the signals from five or more anchor
nodes can result in more accurate location (employing more
than five or six nodes cannot further improve the positioning
accuracy). Due to the specialty of indoor environments, wire-
less anchor node’s deployment is hard to cover with at least
three anchor nodes in every place. If the number is less than
three, signals would be weak or the damaged results cannot
provide the anchor nodes with any usable information for
positioning, hence, causing intermittent positioning failure.

3.1. Tracking Algorithm. First, according to the principle
of RSSI ranging, we set up the offline indoor radio fre-
quency maps. Each point’s signal strength is the average
of several measurements, and the signal data format is
(𝑥, 𝑦,RSS

1
, . . . ,RSS

𝑖
, . . . ,RSS

𝑚
), where 𝑥 and 𝑦 are coordi-

nates and RSS
𝑖
is the detected signal strength of anchor node

𝑖. We calibrate the signal intensity maps and store them in
the database. At the online stage, the moving target node
receives the real-time RSS signal (𝑆

1
, 𝑆
2
, . . . 𝑆
𝑚
). One should

select the minimum Euclidean distance of the 𝑘 results and
look for the average location. As the observed value of the
particle filter, one should also use the particle filter algorithm
to get the final localization results. The formula of Euclidean
distance between the received signal strength and the locating
fingerprint can be expressed as follows:

𝑑
𝑖
= √

𝑚

∑

𝑖=1

(RSS
𝑖
− 𝑆
𝑖
)
2

. (1)

According to the number of anchor nodes in positioning
and tracking environments, indoor location tracking process
should be discussed for the following two different situations:
(1) the situation for sufficient anchor node’s indoor position-
ing and (2) the situation for sparse anchor node’s indoor
positioning. In the first case, the target node is covered by
three or more anchor nodes with the initial location being
obtained by the KNN algorithm. Then, one can use particle
filter to determine the final location. In the second case, the
target node is covered by two, one or zero anchor nodes (note
that the case of three collinear anchor nodes is similar to that
of two anchor nodes). In this case, the location of the target
node cannot be directly located, whichwill cause intermittent
positioning failures. As shown in [10], the environments
covered by two anchor nodes can locate two target locations
which connect symmetrically with the two anchor nodes.
When only covered by one anchor node, the range of the
target node location is a circle with its radius the distance
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from the anchor node, and zero anchor node coverage cannot
be located [11].

Although sparse anchor nodes cannot directly locate the
target nodes, some facts can be used for the positioning
constraint. By setting the target node 𝑆’s maximum speed as
Vmax m/s sampling time interval 𝑇, the anchor node coverage
is 𝑟, and we can get the following constraint conditions.

(1) Set 𝑃
𝑡
as the current time’s position, 𝑃

𝑡−1
for the

location of previous time; there is 𝑃
𝑡
< 𝑃
𝑡−1

+𝑇∗Vmax;
namely, the currentmoment’s location is always in the
scope of a circle whose radius is 𝑇 ∗ Vmax.

(2) If the target only receives the signals from two anchor
nodes 𝑎 and 𝑏, it means that the target cannot be
covered by other anchors except 𝑎 and 𝑏. We define
the formula 𝑥 ∈ 𝑦, which means that 𝑥 node is within
the communication range of 𝑦 node. Then, the above
situation can be expressed as 𝑆 ∉ {𝑈− {𝑎, 𝑏}}, where 𝑆
is the target node and𝑈 is the collection of all anchor
nodes in the network. By the same token, the target
node is covered by one anchor node 𝑎, having the
constraint 𝑆 ∉ {𝑈 − 𝑎}.

(3) If the target is not covered by any anchor, thenwe have
𝑆 ∉ 𝑈. In this situation, we will combine the following
conditions to determine the target location as follows:
the location at the last step, themaximum target speed
limitation, and the area which cannot be covered by
any anchor in the fingerprint database.

The aforementioned are the filtering conditions in the
tracking process based on particle filter algorithm. If the
particle cannot satisfy the above conditions, it should be
filtered.

3.2. Particle Filter Process. For simplicity, the particle filter
method refers to finding a random sample of groups in the
state space transmission and, thereafter, to approximating
the probability density function, where integral operation
is replaced by a sample mean, and, hence, it achieves the
minimum variance distribution process. The samples here
refer to particles, while the number of samples 𝑁− >∝

can approximate any probability density distribution. The
detailed particle filter algorithm [9, 12] is given as follows.

(1) Initialization, sampling from the initial distribution of
the particle:

𝑥
𝑖

0
∼ 𝑝 (𝑥

0
) , 𝑖 = 1, 2, 3, . . . , 𝑛, (2)

where 𝑥
𝑖

0
is the 𝑖th sampling particle, 𝑝(𝑥

0
) is the

initial distribution of the 𝑖th particle, 𝜔𝑖
0
= 1/𝑛 is 𝑖th

particle’s weight, and 𝑛 is total number of the particles.
(2) Weight calculation is as follows:

𝑥
𝑖

𝑘
∼ 𝑞 (𝑥

𝑘
| 𝑥
𝑖

0:𝑘−1
, 𝑧
0:𝑘
) , 𝑖 = 1, 2, . . . , 𝑛. (3)

The importance weights are calculated as follows:

𝜔
𝑖

𝑘
= 𝜔
𝑖

𝑘−1

𝑝 (𝑧
𝑘
| 𝑥
𝑖

𝑘
) 𝑝 (𝑥

𝑖

𝑘
| 𝑥
𝑖

𝑘−1
)

𝑞 (𝑥
𝑖

𝑘
| 𝑥
𝑖

0:𝑘−1
, 𝑧
0:𝑘
)

, 𝑖 = 1, 2, . . . , 𝑛. (4)

And, the importance weights are normalized as

𝜔
𝑖

𝑘
=

𝜔
𝑖

𝑘

∑
𝑁

𝑖=1
𝜔
𝑖

𝑘

. (5)

(3) Resample 𝑥𝑖
𝑘
, 𝑖 = 1, 2, 3, . . . , 𝑛.

According to the importance weights 𝜔̃
𝑖

𝑘
, resample

is carried out to get the updated 𝑛 particles, 𝑥
𝑖

0
,

𝑖 = 1, 2, . . . , 𝑛. And the redistribution of the particle
weight 𝜔𝑖

𝑘
= 𝜔̃
𝑖

𝑘
= 1/𝑛.

(4) Output
state estimation:

𝑥
𝑘
=

𝑁

∑

𝑖=1

𝜔
𝑖

𝑘
𝑥
𝑖

𝑘
, (6)

variance estimation:

𝑃
𝑘
=

𝑁

∑

𝑖=1

𝜔
𝑖

𝑘
(𝑥
𝑖

𝑘
− 𝑥
𝑘
) (𝑥
𝑖

𝑘
− 𝑥
𝑘
)

𝑇

. (7)

Step (1) is performed only at the beginning of the
algorithm, and the other steps are performed sequentially.
Finally, the particle set {𝑥𝑖

𝑘
, 𝜔
𝑖

𝑘
| 𝑖 = 1, 2, . . . , 𝑛} is updated

to achieve the target posterior distribution tracking.

3.3. Indoor Topology Constraint. Many logic errorsmay occur
in indoor locating cases, for example, positioning tracking
information, jumping from one room to another room or to
the corridor. In the process of fingerprint-based positioning,
there may be a new position for penetrating a wall. Although
the derived results are the optimumof the position, the actual
route may be very long [13], which is much farther than the
value of 𝑇 ∗ Vmax. In order to reduce these logic errors, we
introduce indoor topology constraints into the positioning
tracking algorithm.

Indoor topology structure can be described as a con-
nected graph, and the distance between the two fingerprints
can be obtained by using the Dijkstra algorithm and getting
the monophyletic shortest path. The fingerprint of each
adjacent position is taken as a node of graph where the
connection line for the edge and the weights of edge represent
the distance of position fingerprint.

In Figure 1(a), the gray box is the position fingerprint, and
each box A, B, C, and D can be regarded as connected graph
vertex, in which the adjacent points can be connected, as
shown in Figure 1(b). Adjacent position fingerprint distance
is set to 1, the available distance is 3 between A and B, and the
distance fromA toD though is 1, but actually the shortest path
is 7. So, the indoor topology for positioning in the process of
the shortest path can effectively filter out positioning location
which is not in conformity with the conditions. As shown
in Figure 2, 𝑃

𝑡−1
is the location a moment before; 𝑃

𝑡
󸀠 is

the location got from the KNN algorithm; 𝑅 is the largest
distance of target node; and 𝑅 = 𝑇 ∗ Vmax. The two position’s
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Figure 1: Position fingerprint diagram and connected graph example.
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connections intersect the target node, respectively, and the
target node moves along the circle and walls between 𝑃

𝑡1
and

𝑃
𝑡2
. The current position of 𝑃

𝑡
can be determined by

𝑃
𝑡
= {

𝑃
𝑡1
, (𝑃
𝑡−1

+ 𝑇 ∗ Vmax < 𝑃
𝑡2
)

𝑃
𝑡2
, (𝑃
𝑡−1

+ 𝑇 ∗ Vmax > 𝑃
𝑡2
) .

(8)

So, the indoor topological constraints remove the location
which mismatches the conditions, and it also identifies the
location most close to the real location of 𝑃

𝑡
.

The indoor topological structure is basically the same.
So, in the offline phase of the fingerprint procedure, one
can calculate the shortest distance between two fingerprints’

position and store the results in the database. Thereafter, one
can get the new location from the database by using the
particle filter under the indoor topology constraints and can
get a more accurate estimated position.

3.4. Algorithm Flow. Algorithm 1 depicts the whole working
flow. This is suitable for positioning and tracking under the
sparse anchor node condition. Note that the algorithm is
featured with the condition of small number of anchor nodes
less than three which would lead to intermittent positioning
failure.



6 International Journal of Distributed Sensor Networks

Table 1: Tracking results comparison.

Algorithm Percentage in 2m error Percentage in 3m error Average error (m)
KNN 16.67 75.00 2.7011
Kalman 38.89 88.89 2.2400
Proposed algorithm 66.67 88.90 1.9476

Input: fingerprint (𝑥, 𝑦, 𝑅𝑆𝑆
1
, 𝑅𝑆𝑆
𝑖
, . . . , 𝑅𝑆𝑆

𝑚
) of anchor location in indoor environment and the signals

measured by target node (𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑚
).

Output: the target node’s location curve resulting from the operation of the algorithm.
(1) (𝑥, 𝑦) = KNN % Using the KNN algorithm to find 𝑘 nearest position and get the observation values;

(2) (𝑋, 𝑌) = (

𝑁

∑

𝑖=1

𝜔
𝑖

𝑘
𝑥
𝑖

𝑘
,

𝑁

∑

𝑖=1

𝜔
𝑖

𝑘
𝑦
𝑖

𝑘
)% Input the observation values (𝑥, 𝑦) to the particle filter algorithm.

(3) The filtering condition is as follows:
𝑃
𝑡
< 𝑃
𝑡−1

+ 𝑇 ∗ 𝑣max %The distance between two adjacent locations should be smaller than 𝑇 ∗ 𝑣max

{{

{{

{

𝑆 ∉ {𝑈 − {𝑎, 𝑏}}% When the target is covered by two anchors
𝑆 ∉ {𝑈 − 𝑎}% When the target is covered by one anchor
𝑆 ∉ 𝑈% When the target isn’t covered by any anchor

𝑃
𝑡
=

𝑃
𝑡1
, (𝑃
𝑡−1

+ 𝑇 ∗ 𝑣max < 𝑃
𝑡2
)

𝑃
𝑡2
, (𝑃
𝑡−1

+ 𝑇 ∗ 𝑣max > 𝑃
𝑡2
)

%The topology constraints.
(4) Until all times’ positioning and tracking is over, one can get the final positioning tracking curve.

Algorithm 1: Indoor pedestrian tracking.

4. Simulation Evaluation

To verify the effectiveness of the algorithm above, we simu-
lated the algorithm using MATLAB platform by simulating
an indoor corner in the building of the computer school of
China University of Mining and Technology. We compare
the proposed algorithm that combines the particle filter and
topology constraints with the other indoor localization algo-
rithms. The simulated environment and the AP distribution
are shown in Figure 3.

Because the anchor node deployment is not dense, the
changes of the complexity environment often cause indoor
pedestrians’ nodes positioning not always receiving more
than three anchor node’s signals. As shown in Figure 3, there
is a dotted line which only receives two anchor node’s signals,
whichwill cause the intermittent failure positioning problem.

In order to evaluate the performance of the proposed
algorithm, the algorithm was compared with the traditional
KNN algorithm and Kalman filter algorithm. Experimental
model parameters are specified as follows: the maximum rate
of mobile target node Vmax is 1.3m/s and the targets locate
themselves every 𝑇 (𝑇 = 1 s) time. In the KNN algorithm,
the parameter 𝑘 is set to 4.The number of particles𝑁 is set to
200 in particle filter algorithm. To ensure the reliability of the
experimental results, this study samples 36 times and locates
and tracks 50 times repeatedly to get the average data. The
location errors are shown in Figure 4. We can observe that
the tracking performance of our algorithm is better than the
KNN algorithm and the Kalman filter algorithm, although
the distribution of errors is difficult to figure out in the figure.
In Figure 5, we draw the percentage error of the cumulative

distribution every 0.5m error interval. It can be seen that the
algorithm error percentage is 2m and 3m, so the proposed
algorithm in this paper has a better advantage.

The statistical results of the test data are shown in
Table 1. It can be seen that the proposed particle filter and
the indoor topology constraints algorithm can obtain better
tracking precision. The average error of KNN and Kalman
filter algorithm is 2.7011 meters and 2.24 meters, respectively,
while the error of the proposed algorithm is 1.9476 meters.
Compared with the KNN and Kalman filter algorithm, the
percentage of the error that is smaller than 2 meters is
increased to 66.67%. And, the percentage of the error that is
smaller than 3 meters is increased to 88.91%.The simulations
show that when combined with indoor topology constraints,
positioning effect can be improved efficiently.

5. Conclusion

Indoor localization is the research hotspot in location based
on services. At present, most of the indoor positioning
research focuses on anchor nodes deployed sufficiently with-
out considering the change of indoor environment.This may
lead to weaker signal that cannot be used to locate. Or
anchor nodes’ fault can cause the sparse deployment, which
leads to intermittent positioning failure problem. To this
end, we put forward an indoor positioning algorithm under
sparse anchor nodes by building an indoor radio-frequency
fingerprint map and using KNN algorithm to obtain initial
position location under the condition of sufficient anchor
nodes, while one gets optimal positioning location with
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sparse anchor node by a series of constraints measures and
uses particle filter tracking algorithm to solve nonlinear
state space problems. Simulation experiments show that our
algorithm can achieve good positioning and tracking results.

The indoor target tracking is a huge and complex engi-
neering, and many issues still remain to be explored. Our
ongoing work is as follows: (1) because the anchor placement
has direct influence on the tracking accuracy, we will further
study the indoor placement problem of anchors; (2) in the
indoor environment, there may be multiple targets; thus,
we will extend the proposed algorithm for multiple targets
tracking; and (3) in the future, we shall consider the detailed
hardware implementation and extend this work into the real
scenario.
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There is a tradeoff between routing efficiency and energy equilibrium for sensor nodes inwireless sensor networks (WSNs). Inspired
by the large and single-celled amoeboid organism, slime mold Physarum polycephalum, this paper presents a novel Physarum-
inspired routing protocol (P-iRP) for WSNs to address the above issue. In P-iRP, a sensor node can choose the proper next
hop by using a proposed Physarum-inspired selecting next hop model (P-iSNH), which comprehensively considers the distance,
energy residue, and location of the next hop. As a result, the P-iRP can get a rather low algorithm complexity of 𝑂(√𝑛), which
greatly reduces the processing delay and saves the energy of sensors. Moreover, by theoretical analysis, the P-iSNH always has an
equilibrium solution for multiple next hop candidates, which is vital factor to the stability of routing protocol. Finally, simulation
results show that P-iRP can perform better in many scenarios and achieve the effective tradeoff between routing efficiency and
energy equilibrium compared to other famous algorithms.

1. Introduction

With the development of communication, electron, and
sensor technologies, wireless sensor networks (WSNs) have
attracted wide concern of both researchers and application
providers. WSNs consist of large numbers of sensor nodes
deployed over a certain region. Each sensor node is a low-
cost, short range wireless transceiver typically equipped with
a low-computation processor and a battery operated power
supply. Under many scenarios, the sensor nodes need to
operate without battery replacement for several years. Thus,
there are two questions need to be considered. One is how to
achieve energy balance of these nodes to avoid the emergence
of energy holes which commonly take place around the sink,
since the data traffic follows a many-to-one communication
pattern and nodes nearer the sink have to take heavier traffic

load. The other is how to obtain high routing efficiency
under multihop transmission circumstance, since WSNs can
contain hundreds of such low-cost sensor nodes. Therefore,
designing such networks should primarily focus on both
routing efficiency and energy equilibrium in terms of trade-
off.

Location-aware routing protocols seem to possess high
routing efficiency, where GPS, phone, or other techniques
are used for positioning nodes [1]. However, there are two
extremes in location-aware routing—the greedy strategy and
the robust strategy. Greedy strategies may suffer failures to
route packets to destination, while robust strategies need very
high flooding rates to ensure reliability and rapid delivery of
data.Thus, many location-aware routing protocols aremostly
to propose methods to overcome the mentioned drawbacks
[2–4]. The energy-aware routing attracts more researchers’
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Figure 1: Photographs of Physarum. (a) Physarum is able tomake complex comparisons between two food options based on the quality differ-
ence of the food and riskiness of the feeding environment, which comes from http://sydney.edu.au/news/sobs/1699.html?newsstoryid=4576.
(b) Example of maze solving by Physarum, which comes from paper [25]. (c) Example of connecting path in a uniformly illuminated field
which comes from http://cmr.soc.plymouth.ac.uk/research.htm. (d) Comparison of the Physarum networks with Tokyo rail network, which
comes from paper [26].

attentions than that of location-aware routing for the signi-
ficance of energy. There are many results relating to energy-
aware routing recently [5–8] to save energy or prolongWSNs’
lifetime, where energy harvesting [9] is shown to be a promis-
ing technique.

Unsurprisingly, the combination between location-
aware routing and energy-aware routing becomes another
researchers’ focus to balance energy and efficiency forWSNs’
routing protocol [10, 11]. In addition, some researchers focus
on other aspects of WSNs’ routing protocol, for example, the
distributed characteristic [12, 13] and the trade-off of other
two or more indexes [14, 15].

In recent years, the slime mold Physarum polycephalum,
a large single-celled amoeboid organism, becomes a new
researchers’ pet and has shown to be a good technique for
solving the shortest-path problem, since it can adapt its
organism to forage for patchily distributed food sources, as
shown in Figure 1. In this paper, we draw the inspiration from
the Physarum, introduce the Physarum model into WSNs,
and improve it through ignoring its dimension and preserv-
ing its logical meanings to make it suit for routing selection
based on our prior works [16–20]. Our focus is to choose the

proper next hops to transmit data to sink in thinking of both
routing efficiency and energy equilibrium, which is partially
similar to [11].

The rest of this paper is organized as follows. Section 2
gives a brief description of related work. Section 3 formulates
the proposed models. Section 4 details the P-iRP. Section 5
discusses the feasibility of P-iSNH. Section 6 evaluates our
P-iRP by simulations. Finally, the conclusion is presented in
Section 7.

2. Related Work

In the aspect of efficient routing, GPSR [2] is a famous greedy
routing protocol, which makes greedy forwarding decisions
using only information about a router’s immediate neighbors
in the network topology. Li et al. [21] present a neural network
approach to plan the shortest path from the target position to
the start position in real time. Kuhn et al. [3] utilize face (or
perimeter) routing to go around voids in the topology. Pad-
manabh et al. [4] consider unbiased randomwalk on a regular
deployment of nodes, forming a hexagonal lattice pattern.

In the aspect of the energy-aware routing, Trajcevski et al.
[5] construct a data aggregation tree that minimizes the total
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energy cost of data transmission, which is shown as an NP-
complete problem, and propose algorithms for addressing it.
A battery aware power allocation model was studied in [6]
for a single-hop transmission scheme to balance the network
energy consumption based on the nonlinear battery para-
meters proposed in [7]. Chau et al. [8] consider that a portion
of the lost charge can be recovered due to the battery’s
recovery effect and present a battery model. The approaches
propose some of the routes that would otherwise need
to bypass the hole along the boundary and should start to
deviate from their original path further from the hole instead.

Moreover, distribution and clustering problems are also
important branches of WSNs’ routing. Li et al. [13] consider
the problem of nonlinear constraints defined on a graph and
give a better solution incorporated with Laplacian eigenmap
as heuristic information to solve the problem in distributed
scenarios. For maximizing the network lifetime, Rao and
Fapojuwo [22] present a battery aware distributed clustering
and routing protocol which incorporates the state of the
battery’s remaining charge and health parameters in com-
puting the charge utility metric at each cluster formation
round. Wang and Syue [23] propose a relay selection pro-
tocol based on geographical information, in which multihop
transmission is realized by concatenation of single cluster-to-
cluster hops, where each cluster-to-cluster scheme forms the
simplified cooperative network that consists of a single source
destination pair and a set of available relays.

However, the trade-off is not comprehensively considered
in those papers, which is very necessary for WSNs’ routing
due to the features of WSNs, for example, nodes’ failures,
limited bandwidth, and power energy. Bai et al. [10] route the
connections in a manner that link failure does not shut down
the entire stream but allows a continuing flow for a significant
portion of the traffic along multiple paths to address the
issues of reliability and energy efficiency. Trajcevski et al. [24]
present heuristic approaches to relieve some of the routing
load of the boundary nodes of energy holes in location-aware
WSNs to balance load and latency. Yu et al. [11] use energy
aware neighbor selection to route a packet towards the target
region and recursive geographic forwarding or restricted
flooding algorithm to disseminate the packet inside the
destination region. By allowing the battery to rest for certain
duration, without being subjected to heavy loads, Yang and
Heinzelman [14] propose sleeping multipath routing, which
selects the minimum number of disjoint paths to achieve
the trade-off of given reliability requirement and energy
efficiency. Sivrikaya et al. [15] propose randomized routing
based on Markov chains to balance the load and routing per-
formance.

In recent years, the Physarum becomes a new focus of
bioinspired method. It is also the original source of our
inspiration. Nakagaki et al. [25] validate that the Physarum
is apparently able to solve shortest path problems as shown in
Figure 1. They build a maze, cover it with pieces of Physarum
(the Physarum can be cut into pieces that will reunite if
brought into vicinity), and then feed the Physarum with
oatmeal at two locations. A few hours later, the Physarum
retracts to a path that follows the shortest path connecting
the food sources in the maze. Tero et al. [26] use Physarum
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Figure 2: An example of sensor nodes’ deployment in WSNs.

forms networks comparable efficiency, fault tolerance, and
cost to those of real-world infrastructure networks—Tokyo
rail system. Tero et al. [27] propose a mathematical model
for the behavior of Physarum and argue extensively that the
model is adequate.

3. System Models

Our research is built on three assumptions. The first is that
all nodes are aware of their locations, which may be achieved
through GPS receivers at network deployment time, employ-
ing a distributed location discover algorithm shortly after
deployment or adopting other positioning methods [1, 28].
The second is that each node is aware of its energy residue
[22].The third is that the link is bidirectional, that is, if a node
hears from a neighbor, then its transmission range can reach
to the neighbor.

3.1. Typical WSNs Scenario. We consider the large multi-hop
WSNs which consist of 𝑛 static sensors. Each node 𝑖 has a
fixed circular transmission range 𝑟 which determines the set
of sensors in which each node can communicate with node 𝑖
in one hop. We abstract suchWSNs using a graph𝐺 = (𝑉, 𝐸),
where each node V ∈ 𝑉 represents a sensor, and each edge 𝑒 ∈
𝐸 represents the existence of one-hop wireless link between
two sensors.

We suppose that node 𝑠 is the source node and node 𝑑
is the sink, as shown in Figure 2. In most cases, the sink 𝑑 is
placed in the middle of WSNs field to ease traffic burdens of
nodes in the right of the WSNs field. In this paper, we only
think of the nodes in left of the WSNs field for simplicity and
clarity.The transmission range of 𝑠 is drawn as a dashed circle
whose radius is 𝑟 and center is 𝑠. We call the angle 𝜃 is the
angle of deviation of node 𝑐, which represents ameasurement
of node 𝑐 deviating from the sink 𝑑. The Euclidean distance
of any two nodes, 𝑖 and 𝑗, and the angle 𝜃

𝑗𝑖𝑑
can be calculated

following from (1) and (2), respectively

𝐿
𝑖𝑗
= √(𝑥

𝑖
− 𝑥
𝑗
)
2

+ (𝑦
𝑖
− 𝑦
𝑗
)
2 (1)

𝜃
𝑗𝑖𝑑
= arc cos

𝐿
2

𝑠𝑐
+ 𝐿
2

𝑠𝑑
− 𝐿
2

𝑐𝑑

2 × 𝐿
𝑠𝑐
× 𝐿
𝑠𝑑

, (2)

where (𝑥
𝑖
, 𝑦
𝑖
) and (𝑥

𝑗
, 𝑦
𝑗
) are the coordinates of nodes 𝑖 and

𝑗, respectively.
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SA NA Data

SA NA ER Data

SA: Source Address

ER: Energy Residue
NA: Next Hop Address

(a) Traditional data packet format

(b) Our data packet format

Figure 3: Formats of data packets.

If the node 𝑠 needs to transmit data to sink 𝑑, it will select
its next hop in the dashed circle. Since our scenario is location
aware, we select the next hop in the right semicircle under
normal circumstances. Obviously, the smaller the angle 𝜃 is,
the closer the next hop is to the sink for a fixed distance.That
is to say, we are apt to choose the node whose 𝜃 is smaller as
the next hop. In order to avail discussion, we define the𝑁

𝑠
is

the set of neighbors of node 𝑠 (in the dashed circle),𝑁𝐿
𝑠
is the

set of left neighbors of node 𝑠 (in the left semicircle), and𝑁𝑅
𝑠

is the set of right neighbors of node 𝑠 (in the right semicircle).
Then,𝑁

𝑠
,𝑁𝐿
𝑠
, and𝑁𝑅

𝑠
meet the following:

𝑁
𝑠
= 𝑁
𝐿

𝑠
∪ 𝑁
𝑅

𝑠

𝑁
𝐿

𝑠
∩ 𝑁
𝑅

𝑠
= 0.

(3)

In addition, the energy residue of each node is also
important for choosing next hop for balancing the energy of
WSNs’ nodes. When a node chooses its next hop, it would
consider the energy residue of the candidates and be apt to
pick the node which has much higher energy residue as the
next hop. Therefore, it is important to acquire the energy
residue of neighbors.

We think of the basic theory of wireless transmission
combined with Figure 2 and the data packet format shown
in Figure 3(a). If node 𝑠 transmits a group of data to node 𝑐,
all of the nodes in 𝑁

𝑠
would receive the wireless radio and

check the packet header.The node 𝑐matches the field NA and
receives the packet. Other nodes mismatch the field NA then
ignore the packet and go on sleeping.

In order to acquire the energy residue of neighbors, we
add a new field ER to the packet header, which is shown in
Figure 3(b). When node 𝑠 transmits a group of data to node
𝑐, all of the nodes in𝑁

𝑠
extract the fields of SA and ER from

the packet header and save ER in local memory according to
SA. Then, the node 𝑐 matches the field NA and receives the
packet. Other nodesmismatch the NA then ignore the packet
and go on sleeping.

Since eachnodeneeds to listen in real time to every packet
and try to match its field NA, only adding an operation of
saving ER would not add a considerable effect on energy
consumption. Therefore, we neglect the cost of acquiring
energy residue of neighbors.

3.2. Physarum-Inspired Path-Finding Model. Papers in [25–
27] exploit the slime mold Physarum polycephalum to develop
aPhysarum-inspired path-findingmodel (PiPf). Suppose that
(1) the initial shape of a Physarum organism is represented by
a graph, (2) the edges represent plasmodial tubes in which
protoplasm flows, and nodes are junctions between tubes,
(3) the pressures at nodes 𝑖 and 𝑗 are 𝑃

𝑖
and 𝑃

𝑗
, respectively,

and the two nodes are connected by a cylinder of length 𝐿
𝑖𝑗

and radius 𝑟
𝑖𝑗
, and (4) the flow is laminar and follows the

Hagen-Poiseuille equation. Then, the flux through the tube
is calculated as in the following

𝑄
𝑖𝑗
=

𝜋𝑟
4

𝑖𝑗
(𝑃
𝑖
− 𝑃
𝑗
)

8𝜂𝐿
𝑖𝑗

=

𝐷
𝑖𝑗
(𝑃
𝑖
− 𝑃
𝑗
)

𝐿
𝑖𝑗

=
𝐷
𝑖𝑗
Δ𝑃
𝑖𝑗

𝐿
𝑖𝑗

, (4)

where Δ𝑃
𝑖𝑗
= 𝑃
𝑖
− 𝑃
𝑗
is the difference of pressures, 𝜂 is the

viscosity of the fluid, and 𝐷
𝑖𝑗
= 𝜋𝑟
4

𝑖𝑗
/8𝜂 is a measure of the

conductivity of the tube. As the length 𝐿
𝑖𝑗
is a constant, the

behavior of Physarum is described by the conductivities,𝐷
𝑖𝑗
,

of the edges.
Equation (4) represents that the flux through the tube 𝑖𝑗 is

determined by 𝐷
𝑖𝑗
, Δ𝑃
𝑖𝑗
, and 𝐿

𝑖j . The better the conductivity
of the tube 𝑖𝑗 is and the larger the pressure difference Δ𝑃

𝑖𝑗
is,

the more the flux through the tube 𝑖𝑗 is, while the longer the
length of the tube 𝑖𝑗 is, the less the flux through the tube 𝑖𝑗 is.

Suppose that the capacity of each node is zero, the con-
servation law of each node is calculated from the following:

∑

𝑗

𝑄
𝑖𝑗
=

{{

{{

{

𝐼, 𝑖 = 𝑠 𝑗 ∈ 𝑁
𝑖
,

−𝐼, 𝑖 = 𝑑 𝑗 ∈ 𝑁
𝑖
,

0, others 𝑗 ∈ 𝑁
𝑖
,

(5)

where 𝐼 is the flux flowing from the source node (or into
the sink node). It should be noted that 𝐼 is a constant in
Physarum model, which means that the total flux is fixed
constant throughout the process.

Equation (5) illuminates the flux relationship in each
node. In the source node 𝑠, 𝐼 is the flux flowing from it; in the
sink node 𝑑, 𝐼 is the flux flowing into it; and in intermediate
nodes, the sum of flowing from and flowing into is zero.

Physarum forages for distributed food sources through
the adaptive behavior of the plasmodium. The adaptive
behavior is illustrated as follows combined with Figure 4(a),
where two food sources are connected by two tubes. Because
of Δ𝑃1

𝑖𝑗
= Δ𝑃

2

𝑖𝑗
and 𝐿1

𝑖𝑗
> 𝐿
2

𝑖𝑗
, the flux 𝑄2

𝑖𝑗
will be greater

than 𝑄
1

𝑖𝑗
from (4). Note that 𝐿1

𝑖𝑗
and 𝐿

2

𝑖𝑗
are kept con-

stant throughout the adaptation process in contrast to 𝐷
𝑖𝑗
;

therefore, the adaptive behavior can be described by the
evolution of𝐷

𝑖𝑗
(𝑡),

𝑑

𝑑𝑡
𝐷
𝑖𝑗
= 𝜑 (

󵄨󵄨󵄨󵄨󵄨
𝑄
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
) − 𝛿𝐷

𝑖𝑗
, (6)

where 𝛿 is a decay rate of the tube. Equation (6) implies that
the conductivity tends to vanish if there is no flux along the
edge, while it is enhanced by the flux. It is natural to assume
that 𝜑(⋅) is a monotonically increasing continuous function
satisfying 𝜑(0) = 0.
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Figure 4: (a) If two food sources are connected by two tubes, the
longer tube will vanish with time going by. (b) If there are two
candidates for next hop, the node that has the greater 𝑘 × ER + (1 −
𝑘)𝐿 cos 𝜃 will be picked as the next hop.

Equation (6) illustrates the variation relationship of the
conductivity with time to accommodate the flux distribution
of the multipath transmission. In equilibrium (𝜑(|𝑄

𝑖𝑗
|) =

𝛿𝐷
𝑖𝑗
for all edges), the flow through any edge is steady. In

nonequilibrium, the diameter grows or shrinks if 𝜑(|𝑄
𝑖𝑗
|) is

larger or smaller than 𝛿𝐷
𝑖𝑗
, respectively.

The PiPf consisting of (4), (5), and (6) describes the
evolutionary process of Physarum to solve the path-finding
behavior of self-organized networks.

3.3. Physarum-Inspired Selecting Next Hop Model. In this
section, we improve the PiPf and make it fit for routing in
WSNs based on dimensionless analysismethod.That is to say,
we improve the PiPf to achieve a Physarum-inspired selecting
next hop model (P-iSNH). In order to obtain that, there
are two problems that need to be solved. The first is which
physical quantities are used to replace the conductivity 𝐷

𝑖𝑗
,

the length 𝐿
𝑖𝑗
, and the pressure difference Δ𝑃

𝑖𝑗
. The second is

how to select the proper next hop.
Equation (4) derives from fluid dynamics. 𝐷

𝑖𝑗
is a mea-

sure of the conductivity of the tube; 𝐿
𝑖𝑗
is the length of the

tube; and Δ𝑃
𝑖𝑗
is the differential pressure of tube on both

ends. However, the 𝐷
𝑖𝑗
, 𝐿
𝑖𝑗
, and Δ𝑃

𝑖𝑗
cannot be directly used

in WSNs where we need to consider the link quality, energy
residue, transmission direction, and the distance of one hop.

First, because the 𝐷
𝑖𝑗
is an inherent characteristic of the

tube, we should replace the𝐷
𝑖𝑗
by an inherent physical quan-

tity. Apparently, the link quality Φ
𝑖𝑗
is an inherent character-

istic relating to wireless link, so we replace the 𝐷
𝑖𝑗
by Φ
𝑖𝑗
in

our model.
Second, the meaning of 𝐿

𝑖𝑗
is the same as in fluid dynam-

ics. However, in wireless communication, there is a path-
loss exponent 𝛼, which has a great effect on transmission.
Therefore, we replace the 𝐿

𝑖𝑗
by 𝐿𝛼
𝑖𝑗
in our model.

Third, we discuss the Δ𝑃
𝑖𝑗
combind with Figure 4(b). On

one hand, suppose that there is a potential field from node
𝑖 to sink 𝑑. The potential difference between 𝑖 and 𝑗 can
be expressed by 𝐾 × 𝐿

𝑖𝑗
cos 𝜃. Because parameter 𝐾 is uni-

mportant in the judge process, we use 𝐿
𝑖𝑗
cos 𝜃 expressing

𝐾 × 𝐿
𝑖𝑗
cos 𝜃. When node 𝑖 chooses its next hop, it is apt

to pick the node whose potential difference is much greater.
On the other hand, because the next hop needs to consume
energy to deal with data packets, it is apt to pick the node
with much higher energy residue as the next hop. Therefore,

Li···Li···Li1 Li2 LijLij

𝛽ip1 𝛽ip···𝛽ip···𝛽ip2

𝜃···id 𝜃···id𝜃jid 𝜃jid𝜃1id 𝜃2id

ERi1 ERi2 ERi··· ERi···ERij j ∈ Ni

j ∈ Ni

ERiiERii

ERij

𝛽ipj 𝛽ipj

j ∈ N
R

i

j ∈ N
L

i

Figure 5: Conserved data structures.

we replace the 𝑃
𝑗
by 𝑘 × ER

𝑗
+ (1 − 𝑘)𝐿

𝑖𝑗
cos 𝜃
𝑗𝑖𝑑
. Since 𝑃

𝑖
is

the base pressure, we replace Δ𝑃
𝑖𝑗
= 𝑃
𝑗
− 𝑃
𝑖
by 𝑃
𝑗
through

omitting 𝑃
𝑖
. Using (4), we have

𝑄
𝑖𝑗
=

Φ
𝑖𝑗
× [𝑘 × ER

𝑗
+ (1 − 𝑘) 𝐿

𝑖𝑗
cos 𝜃
𝑗𝑖𝑑
]

𝐿
𝛼

𝑖𝑗

, (7)

where 𝑄
𝑖𝑗
is the virtual communication fluxes through the

wireless link 𝑖𝑗; Φ
𝑖𝑗
is the link quality; ER

𝑗
is the energy

residue of node 𝑗; 𝐿
𝑖𝑗
is the Euclidean distance of nodes 𝑖 and

𝑗; 𝛼 is path-loss exponent; 𝜃
𝑗𝑖𝑑

is the angle of deviation and its
range is [−𝜋/2, 𝜋/2]; 𝑘 is a proportionality factor which uses
to adjust the weight of ER

𝑗
and 𝐿

𝑖𝑗
cos 𝜃
𝑗𝑖𝑑
.

Then, we discuss how to choose the proper next hop.
As related in Section 3.2, since Δ𝑃1

𝑖𝑗
= Δ𝑃

2

𝑖𝑗
and 𝐿1

𝑖𝑗
and 𝐿2

𝑖𝑗

are kept constant throughout the adaptation process in con-
trast to 𝐷i𝑗, the PiPf can only achieve the adaptation by the
evolution of 𝐷

𝑖𝑗
(𝑡). In our scenario, node 𝑖 chooses the next

hop form candidates as shown in Figure 4(b). Since (1) Φ1
𝑖𝑗
=

Φ
2

𝑖𝑗
and 𝐿1

𝑖𝑗
and 𝐿2

𝑖𝑗
are kept constant according to the assump-

tions and (2) Δ𝑃
𝑖𝑗
1

and Δ𝑃
𝑖𝑗
2

are different and time-varying,
we can achieve the adaptation by the evolution of Δ𝑃

𝑖𝑗
(𝑡).

If letting the monotonically increasing continuous function
𝜑(𝑄) = 𝑄

𝜇, we have

𝑑

𝑑𝑡
Δ𝑃
𝑖𝑗
= 𝜑 (|𝑄|) − 𝛿Δ𝑃

𝑖𝑗
= (

Φ
𝑖𝑗
Δ𝑃
𝑖𝑗

𝐿
𝛼

𝑖𝑗

)

𝜇

− 𝛿Δ𝑃
𝑖𝑗
, (8)

where 𝛿 is a decay rate of Δ𝑃
𝑖𝑗
and 𝜇 is a constant satisfying

𝜇 > 0. We use (8) to determine the next hop in our P-iSNH;
namely, we choose the node whose (𝑑/𝑑𝑡)Δ𝑃

𝑖𝑗
is maximal as

the next hop.

4. P-iSNH Based Routing Strategy
and Algorithm

4.1. Data Conserved. In this section, we introduce the data
which should be conserved in each node. Because of the same
characteristic of each node, we suppose that the Φ

𝑖𝑗
of each

link is the same and ignore it to simplify discussion.
Each node 𝑖 needs to conserve the following information:

𝐿
𝑖𝑗
(𝑗 ∈ 𝑁

𝑖
), ER
𝑖𝑗
(𝑗 ∈ 𝑁

𝑖
), ER
𝑖𝑖
, |𝜃
𝑗𝑖𝑑
| (𝑗 ∈ 𝑁

𝑅

𝑖
), and

𝛽
𝑖𝑝𝑗
(𝑗 ∈ 𝑁

𝐿

𝑖
) which are shown in Figure 5, where node 𝑝
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Figure 6: Process of routing selection.

is the previous hop of node 𝑖, ER
𝑖𝑖
represents the ER

𝑖
stored

in node 𝑖, and ER
𝑖𝑗
represents the ER

𝑗
stored in node 𝑖. As

our WSNs are location aware, the 𝐿
𝑖𝑗
, 𝜃
𝑗𝑖𝑑
, and 𝛽

𝑖𝑝𝑗
are easily

acquired following from (1) and (2). Note that the nodes in
ourWSNs are static, andwe only need to calculate the 𝐿

𝑖𝑗
, 𝜃
𝑗𝑖𝑑

and 𝛽
𝑖𝑝𝑗

once atWSNs deployment time. For the difference of
ER and 𝐿

𝑖𝑗
, we normalize them to ÊR and 𝐿̂

𝑖𝑗
, respectively.

Therefore, we obtain

𝑄
𝑖𝑗
=
𝑘 × ÊR

𝑗
+ (1 − 𝑘) 𝐿̂

𝑖𝑗
cos 𝜃
𝑗𝑖𝑑

𝐿̂
𝛼

𝑖𝑗

(9)

𝑑

𝑑𝑡
Δ𝑃
𝑖𝑗
= (

𝑘 × ÊR
𝑗
+ (1 − 𝑘) 𝐿̂

𝑖𝑗
cos 𝜃
𝑗𝑖𝑑

𝐿̂
𝛼

𝑖𝑗

)

𝜇

− 𝛿 [𝑘 × ÊR
𝑗
+ (1 − 𝑘) 𝐿̂

𝑖𝑗
cos 𝜃
𝑗𝑖𝑑
] .

(10)

4.2. Routing Strategy. If node 𝑠 needs to send data to the
sink 𝑑, it searches for a routing in the following method. We
illustrate the routing strategy combined with Figure 6.

Step 1. Each (𝑑/𝑑𝑡)Δ𝑃
𝑠𝑗
(𝑗 ∈ 𝑁

R
𝑠
) is calculated following from

(10), where 𝜃
𝑗𝑠𝑑

, ÊR
𝑠𝑗
, and 𝐿̂

𝑠𝑗
are conserved and stored in

node 𝑠 beforehand.

Step 2. Each node 𝑗 ∈ 𝑁
𝑅

𝑠
is saved into a temporary array

variable 𝑇𝑒𝑚𝑝 in descending order by (𝑑/𝑑𝑡)Δ𝑃
𝑠𝑗
.

Step 3. Thefirst node in𝑇𝑒𝑚𝑝 is picked as the next hop of the
routing.

Step 4. If the next hop 𝑎 of node 𝑠 satisfies 𝑁𝑅
𝑎
= 0, namely,

there is an energy hole in the right side of node 𝑎, the node 𝑎
will not send𝐴𝐶𝐾 to 𝑠.Then, the node 𝑠will trigger a specific
processing routine.

Step 5. If |𝑇𝑒𝑚𝑝[0] ⋅ 𝜃
𝑗𝑠𝑑
− 𝑇𝑒𝑚𝑝[1] ⋅ 𝜃

𝑗𝑠𝑑
| ≥ 𝜋/2, node 𝑠 will

choose the node 𝑇𝑒𝑚𝑝[1] as the next hop. Then, the regular
processing routine is going on.

Step 6. Otherwise, each (𝑑/𝑑𝑡)Δ𝑃
𝑠𝑗
(𝑗 ∈ 𝑁

𝐿

𝑠
) is calculated

following from (11) and the nodes are saved into the 𝑇𝑒𝑚𝑝

in ascending order by (𝑑/𝑑𝑡)Δ𝑃
𝑠𝑗
. Then, the first node in

𝑇𝑒𝑚𝑝 is chosen as the next hop of the routing and the regular
processing routine is going on

𝑑

𝑑𝑡
Δ𝑃
𝑖𝑗
= (

𝑘 × ÊR
𝑗
+ (1 − 𝑘) 𝐿̂

𝑖𝑗
𝛽
𝑎𝑠𝑗

𝐿̂
𝛼

𝑖𝑗

)

𝜇

− 𝛿 [𝑘 × ÊR
𝑗
+ (1 − 𝑘) 𝐿̂

𝑖𝑗
𝛽
𝑎𝑠𝑗
] ,

(11)

where 𝛽
𝑎𝑠𝑗

is the angle of line 𝑠𝑎 and line 𝑠𝑗. Equation (11)
indicates that it tends to choose a nodewhich sharply deviates
from the failing node, for example, 𝑎, as the next hop to avoid
entering the energy hole again.

Step 7. The process is repeated, like a rolling wheel, until the
sink 𝑑 is found.

4.3. Routing Algorithms. Given the data conserved and rout-
ing process in the preceding sections, the P-iRP’s algorithms
of initialization, regular processing routine, receiving routine,
and specific processing routine are described by Algorithm 1,
Algorithm 2, Algorithm 3, and Algorithm 4, respectively.

Based on the WSNs scenario in Section 3.1, suppose
that the degree of graph 𝐺 is 𝐷(𝐺) which can be regarded
as a constant, the complexity of Algorithm 1, Algorithm 2,
Algorithm 3, and Algorithm 4 are 𝑂(𝑛 × 𝐷(𝐺)2) = 𝑂(𝑛),
𝑂(𝐷(𝐺)) = 𝑂(1), 𝑂(1), and 𝑂(𝐷(𝐺)) = 𝑂(1), respectively.
From Figure 2, the number of intermediate nodes from node
𝑠 to sink 𝑑 is approximately √5𝑛/2 in the worst case. Note
that Algorithm 1 is run only once at WSNs deployment time.
Therefore, the complexities of P-iRP is𝑂(√5𝑛/2) = 𝑂(√𝑛) in
running time, which greatly reduces the processing delay and
saves the energy of sensors.

5. P-iSNH Analysis

In this section, we analyze the feasibility of P-iSNH by
mathematical theoretical analysis. We study the cases in
which two nodes connected to the same node compete to be
the next hop, as shown in Figure 4(b).

There are four nodes 𝑖, 𝑗
1
, 𝑗
2
, and sink 𝑑. For simplicity,

we hereafter replace 𝐿
𝑖𝑗
1

, 𝐿
𝑖𝑗
2

,𝑄
𝑖𝑗
1

,𝑄
𝑖𝑗
2

,Δ𝑃
𝑖𝑗
1

, andΔ𝑃
𝑖𝑗
2

by 𝐿
1
,

𝐿
2
, 𝑄
1
, 𝑄
2
, Δ𝑃
1
, and Δ𝑃

2
, respectively. In multipath routing,

the virtual fluxes along each path are calculated as

𝑄
1
=

Δ𝑃
1
/𝐿
𝛼

1

Δ𝑃
1
/𝐿
𝛼

1
+ Δ𝑃
2
/𝐿
𝛼

2

𝑄
2
=

Δ𝑃
2
/𝐿
𝛼

2

Δ𝑃
1
/𝐿
𝛼

1
+ Δ𝑃
2
/𝐿
𝛼

2

.

(12)

Since𝑄
1
and𝑄

2
are nonnegative, adaptation equation (8)

becomes

𝑑

𝑑𝑡
(Δ𝑃
1
) = 𝜑 (𝑄

1
) − 𝛿 ⋅ Δ𝑃

1

𝑑

𝑑𝑡
(Δ𝑃
2
) = 𝜑 (𝑄

2
) − 𝛿 ⋅ Δ𝑃

2
.

(13)
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(1) for each node 𝑖 do
(2) for each node 𝑗(𝑗 ∈ 𝑁𝐿

𝑖
) do

(3) 𝑅
𝑖𝑗
= 1;

(4) if (𝐿
𝑖𝑗
is not initialized)

(5) initializing and normalizing 𝐿
𝑖𝑗
and 𝐿

𝑗𝑖
following (1);

(6) end if
(7) for each node 𝑘(𝑘 ∈ 𝑁𝑅

𝑗
) do

(8) calculating 𝛽
𝑖𝑗𝑘

following (2);
(9) end for
(10) end for
(11) for each node 𝑗(𝑗 ∈ 𝑁𝑅

𝑖
) do

(12) 𝑅
𝑖𝑗
= 1;

(13) calculating 𝜃
𝑗𝑖𝑑

following (2);
(14) if (𝐿

𝑖𝑗
is not initialized)

(15) initializing and normalizing 𝐿
𝑖𝑗
and 𝐿

𝑗𝑖
following (1);

(16) end if
(17) end for
(18) 𝑅

𝑖𝑖
= 1;

(19) end for

Algorithm 1: Initialization.

(1) for each node 𝑗(𝑗 ∈ 𝑁𝑅
𝑖
) do

(2) calculating 𝑑

𝑑𝑡
Δ𝑃
𝑖𝑗
following from (10);

(3) save 𝑗 and 𝑑

𝑑𝑡
Δ𝑃
𝑖𝑗
into 𝑇𝑒𝑚𝑝 in descending order by 𝑑

𝑑𝑡
Δ𝑃
𝑖𝑗
;

(4) end for
(5) 𝑃 ⋅ 𝑆𝐴 = 𝑖;
(6) 𝑃 ⋅ 𝑁𝐴 = 𝑇𝑒𝑚𝑝[0];
(7) 𝑃 ⋅ 𝐸𝑅 = 𝑅

𝑖𝑖
;

(8) send 𝑃;

Algorithm 2: Regular processing.

Setting 𝜑(𝑄) = 𝑄𝜇, (𝑑/𝑑𝑡)(Δ𝑃
1
) = 0, and (𝑑/𝑑𝑡)(Δ𝑃

2
) =

0, we have

(
Δ𝑃
1
/𝐿
𝛼

1

Δ𝑃
1
/𝐿
𝛼

1
+ Δ𝑃
2
/𝐿
𝛼

2

)

𝜇

= 𝛿 ⋅ Δ𝑃
1

(
Δ𝑃
2
/𝐿
𝛼

2

Δ𝑃
1
/𝐿
𝛼

1
+ Δ𝑃
2
/𝐿
𝛼

2

)

𝜇

= 𝛿 ⋅ Δ𝑃
2
.

(14)

After some calculations, we obtain

Δ𝑃
1
=
1

𝛿

[

[

1

(1 + (𝐿
𝛼

1
/𝐿
𝛼

2
)
1/1−𝜇

)

]

]

𝜇

Δ𝑃
2
=
1

𝛿

[

[

1

(1 + (𝐿
𝛼

2
/𝐿
𝛼

1
)
1/1−𝜇

)

]

]

𝜇

.

(15)

Namely, there is an equilibriumpoint given by (Δ𝑃
1
, Δ𝑃
2
).

We perform the simulation using MATLAB by setting the

parameters 𝛼 = 2, 𝜇 = 0.8, 𝛿 = 0.3, 𝐿
1
= 10 and 𝐿

2
= 12

following from (14), and the solutions are shown in Figure 7,
where two curves intersect in a point 𝐸 which superpose on
the equilibrium point (Δ𝑃

1
, Δ𝑃
2
).

We present a linear stability analysis at the equilibrium
point in before parameters. The Jacobi matrix 𝐽 on the right-
hand side of (13) is calculated as

𝐽 = (
𝐽
11

𝐽
12

𝐽
21

𝐽
22

) , (16)

where

𝐽
11
=

𝜇𝑄
1

𝜇−1
Δ𝑃
2
/𝐿
𝛼

2

𝐿
𝛼

1
(Δ𝑃
1
/𝐿
𝛼

1
+ Δ𝑃
2
/𝐿
𝛼

2
)
2
− 𝛿

𝐽
12
=

−𝜇𝑄
1

𝜇−1
Δ𝑃
1
/𝐿
𝛼

1

𝐿
𝛼

2
(Δ𝑃
1
/𝐿
𝛼

1
+ Δ𝑃
2
/𝐿
𝛼

2
)
2
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(1) while (no receiving wireless radio)
(2) node 𝑖 sleep;
(3) end while
(4) wake node 𝑖;
(5) 𝑅

𝑖𝑃⋅𝑆𝐴
= 𝑃 ⋅ 𝐸𝑅;

(6) if (𝑖! = 𝑃 ⋅ 𝑁𝐴)
(7) go on sleeping;
(8) else
(9) receiving packet 𝑃;
(10) end if

Algorithm 3: Receiving processing.

(1) if (not receive 𝐴𝐶𝐾 from next hop before deadline)
(2) if (󵄨󵄨󵄨󵄨󵄨𝑇𝑒𝑚𝑝 [0] ⋅ 𝜃𝑗𝑠𝑑 − 𝑇𝑒𝑚𝑝 [1] ⋅ 𝜃𝑗𝑠𝑑

󵄨󵄨󵄨󵄨󵄨
≥
𝜋

2
)

(3) 𝑃 ⋅ 𝑆𝐴 = 𝑖;
(4) 𝑃 ⋅ 𝑁𝐴 = 𝑇𝑒𝑚𝑝[1];
(5) 𝑃 ⋅ 𝐸𝑅 = 𝑅

𝑖𝑖
;

(6) send 𝑃;
(7) else
(8) for each node 𝑗 (𝑗 ∈ 𝑁𝐿

𝑖
) do

(9) calculating 𝑑

𝑑𝑡
Δ𝑃
𝑖𝑗
following (11);

(10) save 𝑗 and 𝑑

𝑑𝑡
Δ𝑃
𝑖𝑗
into 𝑇𝑒𝑚𝑝 in ascending order;

(11) end for
(12) 𝑃 ⋅ 𝑆𝐴 = 𝑖;
(13) 𝑃 ⋅ 𝑁𝐴 = 𝑇𝑒𝑚𝑝 [0] ⋅ 𝑗;
(14) 𝑃 ⋅ 𝐸𝑅 = 𝑅

𝑖𝑖
;

(15) send 𝑃;
(16) end if
(17) end if

Algorithm 4: Specific processing.

𝐽
21
=

−𝜇𝑄
2

𝜇−1
Δ𝑃
2
/𝐿
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2

𝐿
𝛼

1
(Δ𝑃
1
/𝐿
𝛼

1
+ Δ𝑃
2
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𝛼

2
)
2

𝐽
22
=

𝜇𝑄
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Δ𝑃
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𝛼

1

𝐿
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(Δ𝑃
1
/𝐿
𝛼

1
+ Δ𝑃
2
/𝐿
𝛼

2
)
2
− 𝛿

(17)

and the Jacobi matrix at equilibrium point 𝐸 is denoted 𝐽(𝐸).
After some calculations, the following formula is obtained

𝐽 (𝐸) = (

𝛿 (𝜇𝑄
∗

2
− 1) −𝛿𝜇
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2
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𝑄
∗

2
𝛿 (𝜇𝑄
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)
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∗
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− 1 −𝜇

𝐿
𝛼

1

𝐿
𝛼

2

𝑄
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𝐿
𝛼

2

𝐿
𝛼

1

𝑄
∗

2
𝜇𝑄
∗

1
− 1

) ,

(18)

where 𝑄∗
1
and 𝑄∗

2
are virtual communication fluxes along

the first and second wireless links at the equilibrium point 𝐸.
Using the relation 𝑄∗

1
+ 𝑄
∗

2
= 𝐼, we have

det 𝐽 (𝐸) = 𝛿 (1 − 𝜇𝐼) , tr 𝐽 (𝐸) = 𝛿 (𝜇𝐼 − 2) . (19)

Note that 𝛿 is the decay rate of Δ𝑃
𝑖𝑗
and 𝛿 > 0. If we let

𝐼 = 1, thus,

det 𝐽 (𝐸) < 0 for 𝜇 > 1,

det 𝐽 (𝐸) > 0 tr 𝐽 (𝐸) < 0 for 0 < 𝜇 < 1.
(20)

Since we set 𝜇 = 0.8, this means that the equilibrium
point 𝐸 is stable. Therefore, the routing of WSNs will reach
to equilibrium with our P-iSNH, which is very important to
a routing strategy.

6. Simulation Results

We design a simulation platform using C++ to validate P-
iRP. In the simulation, 441 sensors are relatively regularly
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deployed in the field of 200m × 200m, and the sink node
is deployed in the right of the field, shown in Figure 8. The
sensing radius of each sensor is 30m, the original energy of
each node is 100, and the energy of sink node is inexhaustible.
We suppose that the energy consumption of one transmission
is 1, if the transmission distance is 20m.Therefore, the energy
consumption of one transmission of two nodes 𝑖 and 𝑗 is
(𝐿
𝑖𝑗
/20)
𝛼, where 𝛼 is set to 2.

In order to validate the energy equilibrium, we only
choose the nodes in the field of [(0, 0), (1m, 1m)] to transmit
data to the sink. If a chosen node transmits a group of data
to sink, the P-iRP is used to choose next hops until the sink
is found, which is called a round. This iterative process will
halt after 𝑛 rounds until WSNs break down. We run GPSR,
GEAR (𝑘 = 0.5, 0.9) and P-iRP (𝑘 = 0.5, 0.9) 10 times,
respectively, to acquire their average value and compare them,
where we use 𝑘 replace 𝛼which is used in GEAR to bring into
correspondence with P-iRP. If the distance between the nodes
and sink is less than 30m, we let the nodes directly transmit
data to sink to quicken convergence of P-iRP, and the energy
consumption is set to 1. From Figure 8, there are 18 sensors
around the sink. Therefore, the ideal number of rounds of
simulation process is 1800/(𝐿

𝑖𝑗
/20)
𝛼.

6.1. Energy Equilibrium of P-iRP. Figure 9 illustrates the
energy distribution of GPSR, GEAR (𝑘 = 0.5), and P-iRP
(𝑘 = 0.5) in different rounds. We can infer that (1) the energy
distributions of GPSR are very imbalanced, (2) the energy
distributions of GEAR and P-iRP are rather balanced, and
(3) the energy distributions of P-iRP are more balanced than
those of GEAR.

Figure 10 illustrates the lifetime of WSNs. In GPSR, the
first dead node emerges in round of 192, and theWSNs break
down in round of 889. In GEAR (𝑘 = 0.5), the first dead
node emerges in round of 910, and the WSNs break down
in round of 1223. In P-iRP (𝑘 = 0.5), the first dead node
emerges in round of 1112, and theWSNs break down in round
of 1396. In GEAR (𝑘 = 0.9), the first dead node emerges in
round of 1428, and the WSNs break down in round of 1592.
In P-iRP (𝑘 = 0.9), the first dead node emerges in round of
1542, and the WSNs break down in round of 1696. Therefore,
the lifetime of GEAR (𝑘 = 0.5) is 48.8% longer than that of
GPSR; the lifetime of P-iRP (𝑘 = 0.5) is 14.2% longer than
that of GEAR (𝑘 = 0.5); and the lifetime of P-iRP (𝑘 = 0.9) is
6.5% longer than that of GEAR (𝑘 = 0.9). From Figure 9 and
Figure 10, we can differ that (1) whether considering energy
residue of next hops or not will impacts on the lifetime of
WSNs greatly, and (2) in energy balanced WSNs, the time
period is very short from emerging dead nodes to networks
breaking down because all nodes reach to exhausted status of
energy in the same time period.

Figure 11 illustrates the dead nodes distributions of GEAR
(𝑘 = 0.5) and P-iRP (𝑘 = 0.5) in the rounds of 1380. The
results show that P-iRP (𝑘 = 0.5) has much less dead nodes
than GEAR (𝑘 = 0.5). We can also differ that the dead nodes
of both algorithms are converged on a specific field but do
not spread around the entire range of WSNs, which is useful
in deploying such WSNs to prolong the lifetime.

The reasons to gain the results of Figures 9, 10, and 11
are that (1) since GPSR does not take energy into account,
it utilizes frequently the “hot” nodes to result in imbalanced
energy distributions, (2) since GEAR and P-iRP consider
both energy and location of nodes, their energy distributions
are rather balanced, and (3) since P-iRP is more elaborate
in energy utilization than GEAR, the energy distributions of
P-iRP are more balanced than those of GEAR.

6.2. Efficiency of P-iRP. Figure 12 illustrates the number of
hops that the different algorithms need in different rounds
of transmission. By calculating, the average hops of GPSR,
GEAR (𝑘 = 0.5), P-iRP (𝑘 = 0.5), GEAR (𝑘 = 0.9), and P-iRP
(𝑘 = 0.9) are 19.4, 24.3, 21.6, 28.9, and 26.8, respectively.

In case of 𝑘 = 0.5, the average hops of P-iRP are 11.3%
more than those of GPSR, and the hops of GEAR are 23.3%
more than those of GPSR. Combined with Figure 10, the
increment of average hops of 11.3% will lead to the increment
of lifetime of more than 60% from GPSR to P-iRP, while
the increment of average hops of 23.2% will only lead to the
increment of lifetime of about 48% from GPSR to GEAR.
Therefore, the P-iRP is more efficient in balance of routing
efficiency and energy equilibrium than GEAR.

In case of 𝑘 = 0.9, the average hops of P-iRP are 38.1%
more than those of GPSR, and the hops of GEAR are 49.0%
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more than those of GPSR. Combined with Figure 10, the
increment of 11.3% of average hops will lead to the increment
of about 60% of lifetime from GPSR to P-iRP (𝑘 = 0.5),
while the increment of 24% of average hops will only cause
the increment of 21.5% of lifetime from P-iRP (𝑘 = 0.5) to
P-iRP (𝑘 = 0.9). That is to say, the larger 𝑘 is, the smaller the
increment of 𝑘 impacts on lifetime of WSNs. Therefore, it is
improper to set a larger 𝑘, so does GEAR.

In addition, Figure 12 implies that (1) GPSR can get much
higher routing efficiency than those of GEAR and P-iRP at
initial periods of time in WSNs’ lifetime, but its efficiency

decreases exponentially with the time going, and (2) the
routing efficiencies of GEAR andP-iRP are almost the same at
initial periods of time in WSNs’ lifetime, while the difference
becomes gradually large with the time going. The reasons
to gain those results are that (1) since GPSR does not take
energy into account, the routing efficiency will decrease
exponentially after dead nodes emerge and (2) P-iRP can out-
perform GEAR in routing efficiency, since P-iRP considers
comprehensively the distance, energy residue, and location of
the next hop, other than only considering energy and location
in GEAR.

7. Conclusion

The Physarum forages for patchily distributed food sources
through accommodating its body to form networks with
comparable efficiency, fault tolerance, and cost, which is the
source of P-iRP’s inspiration. For the proposed scenario, the
P-iRP ensures the passage of data packets through one by one
static sensor nodes to reach the sink. In each intermediate
node, the P-iSNH is used to choose the proper next hop.Once
an energy hole emerges, a specific processingwill be triggered
to bypass the hole. The theoretical analysis and simulation
results show that the P-iRP possesses many advantages,
for example, rather low algorithm complexity for P-iRP,
ever-present equilibrium solution for P-iSNH, and effective
trade-off between routing efficiency and energy equilibrium
compared to other famous algorithms, which greatly reduces
the processing delay and saves the sensors’ energy and also
demonstrates that the P-iRP is applicable to the proposed
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scenario. Furthermore, we consider that the model may also
provide a useful help to develop the routing protocol in
mobile ad hoc networks, which will be our future focus.
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A novel circle fitting algorithm is proposed in this paper.The key points of this paper are given as follows: (i) it formulates the circle
fitting problem into the special source localization one in wireless sensor networks (WSN); (ii) themultidimensional scaling (MDS)
analysis is applied to the data points, and thus the propagator-like method is proposed to represent the circle center parameters as
the functions of the circle radius; (iii) the virtual source localization model can be rerepresented as special nonlinear equations of
a unique variable (the circle radius) rather than the original three ones (the circle center and radius), and thus the classical fixed-
point iteration algorithm is applied to determine the radius and the circle center parameters.The effectiveness of the proposed circle
fitting approach is demonstrated using the simulation and experimental results.

1. Introduction

Circle fitting receives considerable attention because it plays
an important role in computer vision, observational astron-
omy, structural geology, industry inspection,medical diagno-
sis, Iris recognition, military, security, and so forth [1–8]. For
instance, to meet the increasing demand for manufacturing
automation, the circle fitting technique is often applied to
measure the diameter of the processing product in the
manufacturing systems.

The fitting problem can be viewed as follows: estimate the
parameters of a circle from a set of coplanar points. Several
classical approaches [1–8], including the Hough transform
(HT)methods [4, 5] and the least square (LS) approaches [6–
8], have been developed to solve this problem. The former
are actually to carry out a voting procedure in a three-
dimensional (3D) Hough accumulator space, where every
point represents a circle of a certain size. The corresponding
coordinate of the local maxima is obtained as the estimated
parameters of the circle. In comparison, the latter attempt to
find the parameters of a circle by minimizing an error metric
between the primitive and the data points.

In this paper, we develop a novel circle fitting approach
by borrowing the idea from source localization in wireless
sensor networks (WSN) [9, 10]. It is worthwhile to highlight
the main contributions of this paper here.

(i) It formulates the circle fitting problem into special
source localization one in WSN, where each data
point should be understood as an abstract sensor
node in sensor networks, and the circle center repre-
sents the localized target. However, the propagation
delays are unknown, and thus the existing source
localization algorithms in WSN cannot be applied to
solve the special source localization problem.

(ii) The multidimensional scaling (MDS) analysis [11] is
applied to the data points, and a special covariance-
like matrix is constructed. Thus, we propose the
propagator-like method to represent the circle center
as the functions of the circle radius.

(iii) The virtual source localization model can be rerep-
resented as special nonlinear equations, where the
radius is the unique variable rather than the original
three ones (the circle center and radius), and thus the
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Figure 1: Circle fitting problem description.

classical fixed-point iteration algorithm [12] is applied
to determine the radius and circle center.

The rest of this paper is organized as follows. The circle
fitting problem is described in Section 2. A novel circle
fitting approach is developed in Section 3. Simulated and
experimental results are presented in Section 4. The paper is
concluded in Section 5.

2. Problem Formulation

The equation for a circle centered at (𝑥
0
, 𝑦
0
)with a radius 𝑟 in

(𝑥, 𝑦) coordinates has the following form:

(𝑥 − 𝑥
0
)
2

𝑟2
+

(𝑦 − 𝑦
0
)
2

𝑟2
= 1. (1)

The circle fitting problem (CFP) [1–8] can be described
in Figure 1, that is, given data points (𝑥

𝑖
, 𝑦
𝑖
), 𝑖 = 1, . . . , 𝐼,

the objective of circle fitting is to estimate circle parameters
(𝑟, 𝑥
0
, 𝑦
0
) that best fit to these data points. However, since in

the actual application noise is introduced by some operations
(e.g., the segmentation and edge detection operations in the
image processing application), these obtained points are not
completely precise, that is,

(𝑥
𝑖
− 𝑥
0
)
2

𝑟2
+

(𝑦
𝑖
− 𝑦
0
)
2

𝑟2
= 1 + 𝑣

𝑖
, (2)

where 𝑣
𝑖
is the introduced noise. The objective of this paper

is to estimate the circle parameters (𝑟, 𝑥
0
, 𝑦
0
) from the given

data points (𝑥
𝑖
, 𝑦
𝑖
), 𝑖 = 1, . . . , 𝐼.

3. Proposed Algorithm

In this section, we first reformulate CFP into a virtual source
localization problem in wireless sensor networks (WSN) [9,
10] and then develop a novel circle fitting algorithm in this
framework.

Let us review the source localization model in WSN [9,
10]:

1

𝑐

󵄩󵄩󵄩󵄩s − x
𝑖

󵄩󵄩󵄩󵄩 = 𝜏
𝑖
+ 𝑤
𝑖
= 𝜏
𝑖
, (3)

Sensor nodeEmitter

Figure 2: Virtual source localization in WSN.

where 𝑐 is the propagation speed of light; s is the unknown
location of the emitter; x

𝑖
is the location of the 𝑖th sensor

node in wireless sensor networks; 𝜏
𝑖
is the (ideal) signal

propagation delay from the target to the 𝑖th sensor node, but
𝜏
𝑖
is the available delay measurement, containing noise𝑤

𝑖
. In

addition, ‖ ∙ ‖ denotes the Euclidean norm of vector ∙. The
objective of source localization in WSN is to estimate s from
the given measurement delays 𝜏

𝑖
, 𝑖 = 1, . . . , 𝐼.

To reformulate CFP into the source localization problem
in WSN, we rewrite (2) in another form as

(𝑥
𝑖
− 𝑥
0
)
2

+ (𝑦
𝑖
− 𝑦
0
)
2

= 𝑟
2
+ 𝑟
2
𝑣
𝑖

󳨐⇒
󵄩󵄩󵄩󵄩s − x

𝑖

󵄩󵄩󵄩󵄩 = 𝑟 + 𝑛
𝑖
, 𝑖 = 1, . . . , 𝐼,

(4)

where 𝑛
𝑖
= 𝑟(√1 + 𝑣

𝑖
− 1), s = [𝑥

0
𝑦
0
], x
𝑖
= [𝑥
𝑖
𝑦
𝑖
], and

𝑖 = 1, . . . , 𝐼.
The source localizationmodel in (3) is quite similar to the

circle fitting model in (4), especially when 𝑐 = 1: (i) each
data point should be understood as a virtual “sensor node” in
sensor networks; (ii) the circle center represents the virtual
“emitter” or localized “target”; and (iii) the circle radius 𝑟 is
the virtual “propagation delay”, which are clearly described
in Figure 2.

By comparing (3) with (4), we can easily observe their
differences; that is, all “propagation delays” from the “target”
to “sensor nodes” 𝜏

𝑖
or 𝜏
𝑖
are unknown.Therefore, the existing

source localization algorithms cannot solve (𝑥
0
, 𝑦
0
) since they

require the knowledge of “propagation delays” 𝑟, 𝜏
𝑖
, or 𝜏
𝑖
.

In the rest of this section, we will develop a novel
algorithm for estimating the “target position” (𝑥

0
, 𝑦
0
) and the

“propagation delays” 𝑟 of all sensor nodes.
Let

𝑑
𝑖,𝑗

=
󵄩󵄩󵄩󵄩󵄩
x
𝑖
− x
𝑗

󵄩󵄩󵄩󵄩󵄩
, 𝑖, 𝑗 = 1, . . . , 𝐼. (5)

And then define an 𝐼 × 𝐼 similarity matrix B [11]:

B =
[
[

[

s − x
1

...
s − x
𝐼

]
]

]

[
[

[

s − x
1

...
s − x
𝐼

]
]

]

𝑇

, (6)
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Figure 3: Data points used in the first experiment.

the (𝑖, 𝑗)th element of which can be represented as

B (𝑖, 𝑗) = 0.5 (
󵄩󵄩󵄩󵄩s − x

𝑖

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
s − x
𝑗

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
x
𝑖
− x
𝑗

󵄩󵄩󵄩󵄩󵄩

2

)

= 𝑟
2
− 0.5𝑑

2

𝑖,𝑗
+ 𝑟 (𝑛

𝑖
+ 𝑛
𝑗
) + 0.5 (𝑛

2

𝑖
+ 𝑛
2

𝑗
) .

(7)

Under the ideal (without noise) case, B(𝑖, 𝑗) = 𝑟
2
−0.5𝑑

2

𝑖,𝑗
.

Note that 𝑟 is unknown, and thus B is actually the function of
𝑟, that is, B(𝑟).

Since the rank of [
s−x
1

...
s−x
𝐼

] equals 2, the rank of B(𝑟) is also

2. From B(𝑟), we introduce the following partition:

B (𝑟) = [B
1
(𝑟) B

2
(𝑟)] , (8)

whereB
1
(𝑟) andB

2
(𝑟) are the first two and last (𝐼−2) columns

of B(𝑟), respectively.
Similar to the conventional propagator method [13], we

define the propagator

P (𝑟) = (B
1
(𝑟)
𝑇B
1
(𝑟))
−1

B
1
(𝑟)
𝑇B
2
(𝑟) , (9)

which satisfies

P (𝑟) = min
P

󵄩󵄩󵄩󵄩B2 (𝑟) − B
1
(𝑟)P󵄩󵄩󵄩󵄩 . (10)

Let x(:, 1) and x(:, 2) stand for the first and second column
of [x𝑇
1
x𝑇
2

⋅ ⋅ ⋅ x𝑇
𝐼
]
𝑇. Based on the propagator method [13], we

have

[𝑥
0
× 1 − x(:, 1)]𝑇 [P (𝑟)

−I ] = 0,

[𝑦
0
× 1 − x(:, 2)]𝑇 [P (𝑟)

−I ] = 0,

(11)

where 1 denotes the 𝐼 × 1 vector with all elements 1.

Table 1: Estimated results using different algorithms (Experi-
ment 1).

Parameters Hough LS Proposed
𝑟 (10) 10 9.9177 9.9204
𝑥
0
(8) 8 8.0354 8.0332

𝑦
0
(15) 15 14.9800 14.9703

Table 2: Estimated results using different algorithms (Experi-
ment 2).

Parameters Reference Hough LS Proposed
2 × 𝑟 (mm) 45.07 45.0700 44.9838 44.9874
𝑥
0
(pixel) — 161 160.5635 160.5635

𝑦
0
(pixel) — 123 122.8443 122.8443

Table 3: Estimated results using different algorithms (Experi-
ment 3).

Parameters Hough LS Proposed
𝑟 (pixel) 23 23.2277 23.2237
𝑥
0
(pixel) 120 119.7545 119.7542

𝑦
0
(pixel) 156 156.4885 156.4885

From (11), we can solve 𝑥
0
and 𝑦

0
as follows:

𝑥
0
(𝑟) =

(1
𝑇
[
P(𝑟)
−I ]) (x(:, 1)𝑇 [ P(𝑟)

−I ])
𝑇

(1𝑇 [
P(𝑟)
−I ]) (1𝑇 [

P(𝑟)
−I ])
𝑇

,

𝑦
0
(𝑟) =

(1
𝑇
[
P(𝑟)
−I ]) (x(:, 2)𝑇 [ P(𝑟)

−I ])
𝑇

(1𝑇 [
P(𝑟)
−I ]) (1𝑇 [

P(𝑟)
−I ])
𝑇

.

(12)

Note that P(𝑟) depends on 𝑟 and thus 𝑥
0
(𝑟) and 𝑦

0
(𝑟)

are not determined from (12) directly and can only be
represented as the functions of the unknown “propagation
delay” 𝑟.

Plugging (12) (i.e., 𝑥
0
(𝑟) and 𝑦

0
(𝑟)) into (4), we can obtain

󵄩󵄩󵄩󵄩s (𝑟) − x
𝑖

󵄩󵄩󵄩󵄩 = 𝑟 + 𝑛
𝑖
, 𝑖 = 1, . . . , 𝐼, (13)

which implies that 𝑟 is the root of the equations previously
mentioned in absence of noise.

According to the fixed-point iteration theory [12], 𝑟 is the
fixed point of the function ‖s(𝑟)−x

𝑖
‖, that is, the value that the

function ‖s(𝑟)−x
𝑖
‖ “locks onto” in the iterative process.Thus,

we can compute “propagation delay” 𝑟 using the following
iteration procedure:

𝑟 (𝑘 + 1) =
󵄩󵄩󵄩󵄩s (𝑟 (𝑘)) − x

𝑖

󵄩󵄩󵄩󵄩 , 𝑘 ≥ 0, 𝑖 = 1, . . . , 𝐼, (14)

which are combined to yield the following iteration process:

𝑟 (𝑘 + 1) =
1

𝐼

𝐼

∑

𝑖=1

󵄩󵄩󵄩󵄩s (𝑟 (𝑘)) − x
𝑖

󵄩󵄩󵄩󵄩 , 𝑘 ≥ 0. (15)

Once circle radius 𝑟 is obtained from the previously
mentioned iterative procedure, the circle center (𝑥

0
, 𝑦
0
) can

be solved from (12).
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Figure 4: Estimated circle parameters versus iteration number
(Experiment 1).
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Figure 5: Fitting results using different algorithms.

4. Simulation Results

In this section, some experiments are conducted to evaluate
the performance of the proposed method. For comparison,
we simultaneously implement the HT method [4, 5] and the
LS approach [6–8].

4.1. Experiment 1. The first experiment is implemented on
𝐼 = 50 data points of a circle shown in Figure 3, where the

Figure 6: Experimental data used in Experiment 2.
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Figure 7: Estimated circle parameters versus iteration number
(Experiment 2).

Figure 8: Iris Image used in Experiment 3.
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Figure 9: Edge points used in Experiment 3.

Figure 10: Fitting result using the proposed algorithm.

noise is stochastic additive white Gaussian noise with zero
mean and variance 0.01, and the true circle parameters are
𝑟 = 10, 𝑥

0
= 8, and 𝑦

0
= 15. The initial value of 𝑟(0) is 0.1.

Figure 4 shows the realized 𝑟, 𝑥
0
, and 𝑦

0
using the proposed

algorithm with 50 iterations. We can see from Figure 4 that
the realization of 𝑟, 𝑥

0
, and 𝑦

0
generally stays around 10, 8,

and 15, respectively, after 3 iterations in this problem, which
shows that the proposed algorithm converges rapidly. Table 1
gives the estimated results using the proposed algorithm, the
LS method, and the Hough transform approach. We can see
fromTable 1 that the proposed algorithmhas the approximate
estimation accuracy as those of HT and LS and is slightly
more accurate in estimating (𝑟, 𝑥

0
) than the LS method.

Figure 5 shows the fitting results using different algorithms,
which further shows that the fitting result obtained by the
proposed algorithm approaches the true circle.

4.2. Experiment 2. In this experiment, the proposed
algorithm is applied to the real data. Figure 6 (resolution
300 × 244) shows an example which computes the diameter
of the bright hole after orientating the clouds of points to get
the hole plane parallel to the projection plane (Available from
http://www.aqsense.com/docs/docu/Compatibility.html).
We can obtain the inner edge points of the hole via threshold
segmentation, edge detection, and spectral clustering and
then fit these points. Figure 7 shows the realized 𝑟, 𝑥

0
, and

𝑦
0
using the proposed algorithm with 50 iterations. Table 2

lists the estimation results using the proposed algorithm, the
HT method, and the LS approach.
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Figure 11: Estimated circle parameters versus iteration number
(Experiment 3).

4.3. Experiment 3. Iris recognition is a biometric identifica-
tion technique based on images of the irides of an individual’s
eyes. Since the Iris area lies between the pupil region (a dark
ellipse with the lowest intensity) and limbus region, deter-
mining the pupil region is an important preprocessing step of
Iris localization. In the third experiment, we implement the
proposed algorithm on the Iris image, as shown in Figure 8.
Via the thresholding segmentation and Sobel edge detection,
edge points are given in Figure 9. Table 3 gives the estimation
results from three different methods. Figure 10 displays the
fitting results by the proposed algorithm that are marked by
red points, and Figure 11 shows the realized 𝑟, 𝑥

0
, and 𝑦

0

using the proposed algorithmwith 50 iterations, which shows
that the proposed algorithm can fit the Pupil’s boundary well.

Although the HT method is of the highest estimation
accuracy, it needs to be pointed out that the HT method
requires (i) quantizing the three-dimensional space finely
enough; otherwise the peaks in the transform plane will be
broadened and (ii) the overwhelming burden of the three-
dimensional search in the 𝑟, 𝑥

0
, and 𝑦

0
plane.

5. Conclusion

In this paper, we propose a novel circle fitting algorithm
by borrowing the idea from source localization in wireless
sensor networks. Since the virtual propagation delays of all
sensor nodes are unknown, the existing source localization
algorithms cannot be applied. This paper formulates the
virtual source localization model of three unknown param-
eters (𝑟, 𝑥

0
, 𝑦
0
) into special nonlinear equations of a unique

parameter, that is, the circle radius 𝑟, using the MDS analysis
and propagator method, and then it employs the classical
fixed-point iteration theory to determine the circle radius and
circle center.
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Localization is one of the key techniques in wireless sensor network. One of the main problems in indoor mobile localization
is non-line-of-sight (NLOS) propagation. And the NLOS effects will lead to a large localization error. So the NLOS problem is
the biggest challenge for accurate mobile location estimation in WSN. In this paper, we propose a likelihood matrix correction
based mixed Kalman and 𝐻-infinity filter (LC-MKHF) method. A likelihood matrix based correction method is firstly proposed
to correct the LOS and NLOS measurements. This method does not need the prior information about the statistical properties of
the NLOS errors. So it is independent of the physical measurement ways. And then a mixed Kalman and𝐻-infinity filter method is
proposed to improve the range measurement. Simulation results show that the LC-MKHF algorithm has higher estimate accuracy
in comparison with no-filter, Kalman filter, and𝐻-infinity filter methods. And it is robust to the NLOS errors.

1. Introduction

Localization is one of the most important subjects. Global
position system (GPS) is the most common position system
in the world. However, research studies show that the GPS
performance degrades drastically when the receiver is located
in large buildings. In recent years, there has been a growing
research interest in wireless sensor network (WSN). Wireless
sensor network that consist of thousands of low cost sensor
nodes have been used inmany promising applications such as
health surveillance, robot navigation [1], and environmental
monitoring. And localization is one of the important applica-
tions of WSN.

The classic methods to estimate the indoor location are
time of arrival (TOA), time difference of arrival (TDOA),
angle of arrival (AOA), and received signal strength (RSS).
TOAmethodmeasures travel times of signals between nodes.
TDOA method is located by measuring the signals’ arrival
time difference between anchor nodes and mobile node. It
is able to achieve high ranging accuracy but requires extra
hardware and consumes more energy. The angles between
mobile node and a number of anchor nodes are used in the
AOA method to estimate the location. RSS has established

the mathematical model on the basis of path loss attenuation
with distance, and it requires relatively low configuration
and energy. And the data fusion technique has been utilized
to improve the accuracy by combining two or more mea-
surements such as TOA/AOA, TDOA/AOA, and TOA/RSS
[2]. Accurate position estimation can be obtained by using
filtering techniques if there exists direct propagation between
the beacon node and the mobile node, also known as the line
of sight (LOS). The complicated indoor environment causes
non-line-of-sight (NLOS) situation. And the NLOS effects
will lead to a large localization error. So the NLOS problem is
the biggest challenge for accurate mobile location estimation
in WSN.

In indoor environments, the NLOS signal propagation
such as reflection and diffraction leads to an overestimation,
which in turn results in erroneous measurements containing
NLOS errors. There are two ways to deal with the NLOS
situation: unknown parameters of NLOS errors and known
parameters of NLOS errors.

For the unknown parameters of NLOS errorsmethod, the
advantage of this method is that it can be used with any of the
ranging technologies and does not require prior information
about statistical properties of the NLOS measurements. In
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[3], a residual weighting algorithm (Rwgh) which uses the
sum of squared residuals of a least squares estimation as the
indicator of the accuracy of calculated node coordinates was
proposed. This method applies least squares multilateration
on all possible combinations of the distance measurements
and then the estimated location is computed as a weighted
combination of these intermediate estimates. A Gaussian
mixture model (GMM) [4] is used to model the distribution
of LOS errors and NLOS errors [5].

For the known parameters of NLOS errors method, the
first method attempts to identify the NLOS propagation such
as hypothesis test [6], likelihood ratio test [7], and statistical
analysismethods [8, 9] and then itmitigates theNLOS errors.
If the identification is correct, the localization accuracy can
be achieved. However, the probability of wrong identification
is inevitable. The second method attempts to combine all of
the LOS and NLOS measurements to estimate the location
of mobile node. The interacting multiple model (IMM)
approach with the Kalman filtering technique is developed
[10]. And the data fusion based IMMapproach is investigated
[11, 12]. An M-estimator [13] is employed to estimate the
distribution of NLOS errors. And an IMM based cubature
Kalman filter [14] is introduced to deal with the maneuvers
of the target. Most of the above mentioned algorithms rely
on certain NLOS error distribution which is unknown in
practice. However, most of the methods focus on cellular
network or ultrawideband communication system. Very few
papers investigate the mobile node mobile localization in
NLOS environment for WSN.

In this paper, we firstly propose a likelihood matrix
based correction method. And then a mixed Kalman filter
and 𝐻-infinity filter method is proposed. A 2-dimensional
analysis is provided, as extension to 3 dimensions is rather
straightforward.The main contribution of this paper is given
as follows.

(1) The proposed likelihood matrix based correction
method does not require identification of propagation
state, and it is independent of the physical measure-
ment ways.

(2) The proposed method does not require any prior
information about the statistical properties of NLOS
errors. Therefore, it can be widely used in the cellular
network, ad hoc network, and wireless sensor net-
work.

(3) In comparison with other methods, the proposed
method is robust to the NLOS errors.

The rest of the paper is organized as follows. Section 2
provides the system model in LOS/NLOS conditions. We
will introduce our proposed strategy in Section 3. Some
simulation results will present in Section 4. The conclusions
are given in Section 5.

2. System Model

In this section, we introduce some technical preliminaries.
The assumption of this paper is as follows. Consider a range-
based 2D localization problem employing𝑁 beacon nodes at

known locations 𝑍
𝑖
= [𝑥
𝑖
, 𝑦
𝑖
]
𝑇, 𝑖 = 1, . . . , 𝑁. The position of

the mobile node at time 𝑘 is𝑍𝑡
𝑢
= [𝑥
𝑢

𝑘
, 𝑦
𝑢

𝑘
]
𝑇, 𝑘 = 1, . . . , 𝑡

𝑛
.The

beacon nodes send the signal and the mobile node receives
it and converts it to range information. The real distance
between 𝑖th the beacon node and the mobile node at time 𝑘
is

𝑑
𝑖

𝑘
= √(𝑥

𝑢

𝑘
− 𝑥
𝑖
)
2

+ (𝑦
𝑢

𝑘
− 𝑦
𝑖
)
2

. (1)

In LOS propagation conditions, the range measurement
by 𝑖th beacon node at time 𝑘 is modeled as follows:

𝑑
𝑖

𝑘
= 𝑑
𝑖

𝑘
+ 𝑛
𝑖
, (2)

where 𝑛
𝑖
is the measurement noise modeled as zero mean

white Gaussian with variance 𝜎2
𝑖
.

In NLOS propagation conditions, the signal does not
travel in a straight line when an obstacle exists between the
beacon and mobile node due to the reflection or diffusion
effect. So the range measurement by 𝑖th beacon node at time
𝑘 is modeled as follows:

𝑑
𝑖

𝑘
= 𝑑
𝑖

𝑘
+ 𝑛
𝑖
+ 𝑏NLOS, (3)

where 𝑛
𝑖
is the measurement noise with zero mean and 𝜎

2

𝑖

variance. 𝑏NLOS is the NLOS errors and is assumed to be
independent of the measurement noise 𝑛

𝑖
. And the NLOS

error 𝑏NLOS obeys Gaussian, uniform, exponential, or Delta
distribution. The distribution and parameters of 𝑏NLOS are
different in different indoor environments and measurement
methods.

3. Implementation of the Proposed Algorithm

The system flow of the proposed NLOS errors mitigation
method is plotted in Figure 1. The input of this method is the
measured distance 𝑑𝑖

𝑘
, and the output of themethod is filtered

distance 𝑑𝑖
𝑘
. This method consists of two major stages, that is,

likelihood matrix based correction and mixed Kalman and
𝐻-infinity filter. The proposed algorithm is described in the
following discussion.

3.1. Likelihood Matrix Based Correction. Firstly, a grid-based
likelihood matrix is established to provide the initial local-
ization results. And then the corrected range and the factor
of the mixed Kalman/𝐻-infinity filter are introduced.

At time 𝑘, the proposed algorithm consists of the follow-
ing steps.

Step 1. The area is divided into a gridΦwith𝑊×𝑊 cells and
grid resolution 𝑤, for example, a 100 × 100 field with𝑊 = 5

and a grid resolution 𝑤 is equal to 20. The number of cells
is a tradeoff between estimation accuracy and computational
complexity. 𝐶(𝑖, 𝑗), for 𝑖, 𝑗 = 1, . . . ,𝑊, denotes the centers of
these cells in a matrix form. And then we construct a𝑊×𝑊

likelihood matrix 𝑉. The elements of the likelihood matrix
are obtained by

𝑉 (𝑚, 𝑛) =

𝑁

∑

𝑖=1

𝑏
𝑖
(𝑚, 𝑛) , for 𝑚, 𝑛 = 1, . . . ,𝑊, (4)



International Journal of Distributed Sensor Networks 3

Location
estimation

Mixed Kalman and H-infinity filter

LC-MKHF

LC-MKHF

LC-MKHF

l1 l1

...

xuk , yuk T

Combination

Likelihood
matrix based

correction

Kalman
filter

H-infinity
filter

d1(M)
k

d2(M)
k

dN(M)
k

d1(K)
k

d1(H)
k

d1 d1
k

d2
k

dNk

Figure 1: Architecture of the localization system.
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Figure 2: An example of Step 1.

where

𝑏
𝑖
(𝑚, 𝑛) = {

1, 𝑑
𝑖
− 𝜀 ≤ 𝑑imn ≤ 𝑑

𝑖
+ 𝜀

0, otherwise,
(5)

𝑑imn is the Euclidean distance between the 𝐶(𝑚, 𝑛) and 𝑖th
node. 𝑑𝑖 is the measured distance of 𝑖th node. And we set 𝜀 =
𝜎
𝑖
.
Let (𝑚∗, 𝑛∗) be the element of𝑉with themaximumvalue,

that is, 𝑉(𝑚∗, 𝑛∗) ≥ 𝑉(𝑚, 𝑛), for 𝑚, 𝑛 = 1, . . . ,𝑊, then the
estimated location of mobile node is 𝐶∗ = [𝐶

∗

1
, . . . , 𝐶

∗

𝑣
]. 𝐶∗is

the initial results set of localization. The center of the initial
results set can be expressed as 𝐶∗ = ∑

𝑣

𝑖
𝐶
∗

𝑖
/𝑣.

In order to illustrate Step 1, we provide a simple example
using a square measured distance. The measured distances
of sensors are 2, 2, and 3 respectively. The locations of the
sensors are illustrated in Figure 2. For the construction of
the likelihood matrix 𝑉, each sensor node adds a positive
one contribution to the element of 𝑉 that corresponds to
the cells that the measured range meets the condition 𝑑

𝑖
−

𝜀 ≤ 𝑑imn ≤ 𝑑
𝑖
+ 𝜀. On the other hand, sensor node adds

zero contribution to these elements. The resulting likelihood
matrix after computing these contributions of three sensor
nodes is shown in Figure 2. The mobile node is correctly
localized in the grid cell with the maximum value 3.
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Step 2. The corrected range by 𝑖th beacon node at time 𝑘 is
can be expressed as

⌣

𝑑

𝑖

𝑘
=
󵄩󵄩󵄩󵄩󵄩
𝐶
∗

− 𝑍
𝑖

󵄩󵄩󵄩󵄩󵄩
. (6)

Step 3. The factor of the mixed Kalman/𝐻-infinity filter can
be obtained as

𝑙
𝑖

𝑘
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑
𝑖

𝑘
−

⌣

𝑑

𝑖

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑
𝑁

𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑
𝑖

𝑘
−

⌣

𝑑

𝑖

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

. (7)

3.2. Kalman Filter. Kalman filter is the most widely used
method for tracking andmobile location estimation. And the
Kalman filter is suggested as a promising method to range
measurement for smoothing and mitigating Gaussian noise.
A modified Kalman filter [15, 16] is employed to reduce the
NLOS error in rough wireless environments. A modified
extended Kalman filter [17] is proposed to jointly estimate
the mobile state and the LOS/NLOS sight state based on the
measurements. And then a Bayesian data fusion algorithm
is applied to achieve high estimation accuracy. An extended
Kalman based interacting multiple model smoother (EKF-
IMM) [11] is proposed. The IMM is employed as a switch
between the LOS and NLOS condition, which are considered
to be a Markov process with two interactive models. And
then the Kalman filter is used for nonlinear estimation. In
this paper, we employ the Kalman filter to mitigate the
measurement noise.

The state vector at time 𝑘 is defined as 𝑋
𝑘
= [

⌣

𝑑

𝑖

𝑘
,

̇⌣

𝑑

𝑖

𝑘
]
𝑇,

where [

⌣

𝑑

𝑖

𝑘
,

̇⌣

𝑑

𝑖

𝑘
]
𝑇 represents the measured distance and the

corresponding velocity.Then themotionmodel with random
acceleration can be modeled as

𝑋
𝑖

𝑘+1
= Φ
𝑘
𝑋
𝑖

𝑘
+ 𝑤
𝑘
, (8)

where 𝑤
𝑘
is the random process noise modeled as zero mean

with variance𝑄𝑖
𝑘
. The state transition matrixΦ

𝑘
is defined as

Φ
𝑘
= [ 1 Δ𝑡
0 1

], and Δ𝑡 = 𝑡
𝑘+1

− 𝑡
𝑘
is the sampling period.

The measurement model is defined as (2) and (3) in LOS
and NLOS environments, respectively. So the measurement
model can be rewritten as

𝑧
𝑖

𝑘
= 𝐻
𝑘
𝑋
𝑖

𝑘
+ 𝑣
𝑘
, (9)

where 𝐻
𝑘
= [1, 0]. Most of the papers assume that 𝑏NLOS is

Gaussian distribution, that is, 𝑏NLOS ∼ 𝑁(𝜇NLOS, 𝜎
2

NLOS). So,
𝑣
𝑘
∼ 𝑁(𝑚

𝑘
, 𝑅
𝑘
) can be rewritten as

𝑣
𝑘
∼ 𝑁(0, 𝜎

2

𝑖
) , LOS

𝑣
𝑘
∼ 𝑁(𝜇nlos, 𝜎

2

𝑖
+ 𝜎
2

NLOS) , NLOS.
(10)

Therefore, the Kalman filter cannot perform better per-
formance when the NLOS noise is non-Gaussian distribu-
tion.

The operation of the Kalman filter can be represented
by two recursive steps. The prediction step includes the
following operations:

𝑋
𝑖

𝑘+1|𝑘
= Φ
𝑘+1

𝑋
𝑖

𝑘|𝑘
,

𝑃
𝑖

𝑘+1|𝑘
= Φ
𝑘+1

𝑃
𝑖

𝑘|𝑘
Φ
𝑇

𝑘+1
+ 𝑄
𝑘+1

.

(11)

The update step includes the following operations:

𝑦
𝑖

𝑘+1
= 𝑧
𝑖

𝑘+1
− 𝐻
𝑘+1

𝑋
𝑖

𝑘+1
,

𝑆
𝑘+1

= 𝐻
𝑘+1

𝑃
𝑖

𝑘+1|𝑘
𝐻
𝑇

𝑘+1
+ 𝑅
𝑘+1

,

𝐾
𝑘+1

= 𝑃
𝑖

𝑘+1|𝑘
𝐻
𝑇

𝑘+1
𝑆
−1

𝑘+1
,

𝑋
𝑖

𝑘+1|𝑘+1
= 𝑋
𝑖

𝑘+1|𝑘
+ 𝐾
𝑘+1

𝑦
𝑖

𝑘+1
,

𝑃
𝑖

𝑘+1|𝑘+1
= 𝑃
𝑖

𝑘+1|𝑘
− 𝐾
𝑘+1

𝑆
𝑘+1

𝐾
𝑇

𝑘+1
.

(12)

The output of Kalman filter can be expressed as

𝑑
𝑖(𝐾)

𝑘
= 𝐷𝑋

𝑖

𝑘+1|𝑘+1
, 𝐷 = [1, 0]. (13)

3.3. 𝐻-Infinity Filter. Although some filtering techniques
such as unscented filter [18] andparticle filter [19] are superior
to the Kalman filter for nonlinear and non-Gaussian noise
system, the computational cost is too high that they do not
suit for resource limited sensor nodes. The Kalman filter is
established on the 𝐻-2 estimate criterion, and it needs to
know the statistical properties of the noise. However, it is not
practical especially in the complex indoor environment. 𝐻-
infinity filter differs from the Kalman filter in that it does
not require the knowledge of the noise properties except that
the noises are assumed to have bounded power. Therefore,
𝐻-infinity filter is one of the promising methods due to its
simplicity, optimality, tractability, and robustness [20, 21].
However, very few papers employ the𝐻-infinity filter into the
mobile location estimation field for WSN.

The motion model and measurement model are given by

𝑋
𝑖

𝑘+1
= Φ
𝑘
𝑋
𝑖

𝑘
+ 𝑤
𝑘
,

𝑧
𝑖

𝑘
= 𝐻
𝑘
𝑋
𝑖

𝑘
+ 𝑣
𝑘
,

(14)

where 𝑤
𝑘
and 𝑣

𝑘
are process noise and measurement noise,

respectively. And the distribution and the statistical proper-
ties of the noises are unknown. The definition of Φ

𝑘
and 𝐻

𝑘

is the same with Kalman filter.
The linear combination of measurement and state vectors

[22, 23] is

𝑠
𝑖

𝑘
= 𝐿
𝑘
𝑋
𝑖

𝑘
. (15)

We assume that the initial covariance of estimation error
is 𝑃
𝑖

0
= 𝐸[(𝑋

𝑖

0
− 𝑋
𝑖

0
)(𝑋
𝑖

0
− 𝑋
𝑖

0
)
𝑇

]. 𝑠𝑖
𝑘

= 𝐹
𝑓
(𝑧
𝑖

0
, 𝑧
𝑖

1
, . . . , 𝑧

𝑖

𝑘
)

represents the estimation of 𝑠𝑖
𝑘
using the measurements 𝑧𝑖

𝑘

from 0 to time 𝑘. The filtering error is Δ𝑠
𝑖

𝑘
= 𝑠
𝑖

𝑘
− 𝑠
𝑖

𝑘
.

𝑇
𝑘
(𝐹
𝑓
) denotes the transfer operators that map the unknown
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Table 1: The default parameter values.

Parameters Symbol Default values
Number of beacon nodes 𝑁 7
The standard deviation of measurement noise 𝜎

𝑖
4

The NLOS errors 𝑏NLOS ∼ 𝑁 (𝜇NLOS , 𝜎
2

NLOS) 𝜇NLOS = 4, 𝜎NLOS = 5

disturbances {(𝑃𝑖
0
)
−0.5

(𝑋
𝑖

0
− 𝑋
𝑖

0
), 𝑤
𝑘
, 𝑣
𝑘
} to the filtering error

Δ𝑠
𝑖

𝑘
.The𝐻-infinity norm of the transfer operator𝑇 is defined

as
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑘
(𝐹
𝑓
)
󵄩󵄩󵄩󵄩󵄩∞

=

∑
𝑘

𝑖=0
(Δ𝑠
𝑖

𝑘
)
𝑇

Δ𝑠
𝑖

𝑘

(𝑋
𝑖

0
− 𝑋
𝑖

0
)
𝑇

(𝑃
𝑖

0
)
−1

(𝑋
𝑖

0
− 𝑋
𝑖

0
) + ∑
𝑘

𝑖=0
𝑤
𝑇

𝑘
𝑤
𝑘
+ ∑
𝑘

𝑖=0
𝑣
𝑇

𝑘
𝑣
𝑘

.

(16)

So the𝐻-infinity filter can be described as follows. Given
a scale 𝛾 > 0, find 𝐻-infinity estimation strategies that
achieve ‖𝑇

𝑘
(𝐹
𝑓
)‖
∞

< 𝛾. In this paper, we set 𝐿
𝑘
= 𝐼. The

recursive steps are as follows:

𝐾
𝑘+1

= (
1

𝛾
𝐼 + Φ
𝑘+1

(𝑃
𝑖

𝑘+1|𝑘
)
−1

𝐻
𝑇

𝑘+1
)

× (𝐼 + 𝐻
𝑘+1

(𝑃
𝑖

𝑘+1|𝑘
)
−1

𝐻
𝑇

𝑘+1
)

−1

,

𝑋
𝑖

𝑘+1|𝑘+1
= Φ
𝑘+1

𝑋
𝑖

𝑘|𝑘
+ 𝐾
𝑘+1

(𝑧
𝑖

𝑘+1
− 𝐻
𝑘+1

𝑋
𝑖

𝑘+1
) ,

𝑃
𝑖

𝑘+1|𝑘
= (𝑃
𝑖

𝑘+1|𝑘
)
−1

− 𝛾
2
𝐼,

𝑃
𝑖

𝑘+1|𝑘+1
= (Φ
𝑘+1

− 𝐾
𝑘+1

𝐻
𝑘+1

) (𝑃
𝑖

𝑘+1|𝑘
)
−1

× (Φ
𝑘+1

− 𝐾
𝑘+1

𝐻
𝑘+1

)
𝑇

+ 𝐾
𝑘+1

𝐾
𝑇

𝑘+1
.

(17)

The output of𝐻-Infinity filter can be expressed as

𝑑
𝑖(𝐻)

𝑘
= 𝐷𝑋

𝑖

𝑘+1|𝑘+1
, 𝐷 = [1, 0] . (18)

3.4. Mixed Kalman and 𝐻-Infinity Filter. In this subsection,
we combine the results of Kalman and𝐻-infinity filter. It can
be expressed as

𝑑
𝑖(𝑀)

𝑘
= 𝑙
𝑖
⋅ 𝑑
𝑖(𝐻)

𝑘
+ (1 − 𝑙

𝑖
) 𝑑
𝑖(𝐾)

𝑘
. (19)

3.5. Location Estimation. In this section, we briefly introduce
maximum likelihood localization method. We set the posi-
tion of beacon node as ⟨(𝑥

1
, 𝑦
1
), . . . , (𝑥

𝑁
, 𝑦
𝑁
)⟩. At time 𝑘, the

position of mobile node is 𝑋 = [𝑥
𝑢

𝑘
, 𝑦
𝑢

𝑘
]
𝑇. 𝑑𝑖
𝑘
is output by

mixed Kalman and𝐻-infinity filter algorithm:

(𝑥
1
− 𝑥
𝑢

𝑘
)
2

+ (𝑦
1
− 𝑦
𝑢

𝑘
)
2

= (𝑑
1

𝑘
)
2

...

(𝑥
𝑁
− 𝑥
𝑢

𝑘
)
2

+ (𝑦
𝑁
− 𝑦
𝑢

𝑘
)
2

= (𝑑
𝑁

𝑘
)
2

.

(20)

The linear equation 𝐴𝑋 = 𝑏 represents the above
equation, where 𝐴 and 𝐵 are given by

𝐴 = 2

[
[
[
[

[

(𝑥
1
− 𝑥
2
) (𝑦
1
− 𝑦
2
)

(𝑥
1
− 𝑥
3
) (𝑦
1
− 𝑦
3
)

...
...

(𝑥
1
− 𝑥
𝑁
) (𝑦
1
− 𝑦
𝑁
)

]
]
]
]

]

, (21)

𝐵 =

[
[
[
[
[
[

[

𝑑
2

𝑘
− 𝑑
1

𝑘
− (𝑥
2

2
+ 𝑦
2

2
) + (𝑥

2

1
+ 𝑦
2

1
)

𝑑
3

𝑘
− 𝑑
1

𝑘
− (𝑥
2

3
+ 𝑦
2

3
) + (𝑥

2

1
+ 𝑦
2

1
)

...
𝑑
𝑁

𝑘
− 𝑑
1

𝑘
− (𝑥
2

𝑁
+ 𝑦
2

𝑁
) + (𝑥

2

1
+ 𝑦
2

1
)

]
]
]
]
]
]

]

. (22)

We can obtain the coordinate matrix of the mobile node
as follows:

𝑋 = (𝐴
𝑇
𝐴)
−1

𝐴
𝑇
𝐵. (23)

4. Performance Evaluation

In this section, we present simulation results for the proposed
LC-MKHF algorithm for mobile location estimation in non-
line-of-sight environments. As shown in Figure 3(a), we
randomly deploy seven beacon nodes in the 100m × 100m
square area and one mobile node (MN) moving in the area.
We assume that themobile node has the velocity of 1m/s.The
communication range of sensor node is 150m. We compare
the proposed method with no-filter (NF) method, Kalman
filter (KF) method, and 𝐻-infinity Filter (HF) algorithm.
The default parameter values in the simulation are shown in
Table 1. In each simulation case, 1000 Monte Carlo runs are
performedwith the same parameters.The performance of the
proposed algorithm ismeasured by average localization error
(ALE):

error = 1

𝑁 ⋅ 𝑡
𝑛

𝐾

∑

𝑖=1

𝑡
𝑛

∑

𝑘=1

√(𝑥
𝑘
− 𝑥
𝑖

𝑘
)
2

+ (𝑦
𝑘
− 𝑦
𝑖

𝑘
)
2

, (24)

where𝑁 = 1000, 𝑡
𝑛
= 100, (𝑥𝑖

𝑘
, 𝑦
𝑖

𝑘
) is the true location of the

mobile node, and (𝑥
𝑖
, 𝑦
𝑖
) is the estimated location.

Figure 3(a) shows the deployment of the beacon nodes
and obstacles. In this paper, the beacon nodes and obstacles
are randomly deployed. And Figure 3(b) shows sight state
with respect to all the beacon nodes in sample points. We
can see that the sight states vary with time. In Figure 3(c),
we can obtain the detailed localization errors in each sample
point. It can be observed that the proposedmethod has better
performance in comparison with other methods in most of
the sample points.



6 International Journal of Distributed Sensor Networks

0 20 40 60 80 100
0

20

40

60

80

100

MN trajectory
Beacon node

Obstacles

(a)

0 20 40 60 80 100

1

2

3

4

5

6

7

Sample points

Th
e n

um
be

r o
f  

be
ac

on
 n

od
e

LOS
NLOS

(b)

0 20 40 60 80 100
0

10

20

30

40

50

60

Sample points

A
ve

ra
ge

 lo
ca

liz
at

io
n

 e
rr

or
 (

m
)

NF
HF

KF
LC-MKHF

(c)

Figure 3: (a) The deployment of beacon nodes and obstacles. (b) The sight state of each beacon node in each sample point. (c) The average
localization error in each sample point.

In the following section, we evaluate the performance
of our proposed method under different environment, that
is, the NLOS errors obey different distribution. We also
investigate the effect of various parameters on the proposed
method.

4.1. The NLOS Errors Obey Gaussian Distribution, That Is,
𝑏NLOS ∼ 𝑁(𝜇NLOS,𝜎

2

NLOS). In this subsection, we compare
the proposed method with other methods when the NLOS
errors obey Gaussian distribution. Figure 4(a) shows the
relation between the average localization errors and the
number of sensor nodes. The average localization errors
of all methods decrease with the number of sensor nodes

increase. And Figures 4(b) and 4(c) show the impact of
mean and standard deviation of NLOS errors on the average
localization errors. It can be observed that the mean and
standard deviation of NLOS errors have a significant impact
on KF and NF methods. The HF and LC-MKHF are robust
to the parameters. In Figure 4(b), the proposed method has
higher localization accuracy than HK, EK, and NF, about
39.59%, 48.94%, and 54.81%, respectively. In Figure 4(c), the
proposed method has higher localization accuracy than HK,
EK, and NF, about 28.32%, 47.91%, and 58.26%, respectively.

4.2. The NLOS Errors Obey Uniform Distribution, That Is,
𝑏NLOS ∼ 𝑈(2, 𝑈max). In this subsection, we assume that the
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Figure 4: (a)The number of beacon nodes versus ALE. (b)Themean of NLOS errors versus ALE. (c)The standard deviation of NLOS errors
versus ALE.

NLOS errors obey uniform distribution. The minimum and
maximum values of parameters of uniform distribution are
2 and 𝑈max, namely, 𝑈(2, 𝑈max). We firstly investigate the
impact of 𝑈max on average localization errors. As shown in
Figure 5(a), the KF has the similar performance with HF
when the 𝑈max is low. The NF method owns the worst per-
formance, and our proposedmethod has the best localization
accuracy. In Figure 5(b), we also investigate the influence of
standard deviation of measurement noise when 𝑈max = 7. It
can be observed that the proposed method has the highest
localization accuracy in each case.

4.3. The NLOS Errors Obey Exponential Distribution, That Is,
𝑏
𝑁𝐿𝑂𝑆

∼ 𝐸(𝑢). In this subsection, we study the performance
of the methods when the NLOS errors obey exponential
distribution. As shown in Figure 6(a), LC-MKHF performs
stably when the mean parameter increases. However, the
KF and NF methods increase with the mean parameter
increase.The localization accuracy improved 58.75%, 52.56%,
and 41.18% when comparing with NF, KF, and HF methods.
And Figure 6(b) indicates that the proposed method owns
the best performance under various standard deviation of
measurement noise.
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Figure 5: (a) The 𝑈max versus ALE. (b) The standard deviation of measurement errors versus ALE.
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Figure 6: (a) The mean parameter versus ALE. (b) The standard deviation of measurement errors versus ALE.

5. Conclusion

This paper presents a novel LC-MKHF method which is
robust to theNLOS errors without prior information on error
model. A likelihoodmatrix based correctionmethod is firstly
proposed. And then a mixed Kalman and 𝐻-infinity filter is
proposed to further mitigate the NLOS errors. This method
does not need much parameters of the measurement model.
The simulation results show that the proposed algorithm has

the higher localization accuracy, and it is robust to the NLOS
errors.
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Energy efficiency is the main concern of research community while designing routing protocols for wireless sensor networks
(WSNs).is concern can be addressed by using energy-harvesting scheme in routing protocols. In this paper, we propose a secure
routing protocol that is based on cross layer design and energy-harvesting mechanism. It uses a distributed cluster-based security
mechanism. In the cross-layer design, parameters are exchanged between different layers to ensure efficient use of energy. Energy-
harvesting system is used to extract and store energy, which is used to take decisions for the node state and thus for the routing issues.
Simulation results show that our routing protocol can perform better in many scenarios and in hostile attack-prone environment.

1. Introduction

WSN is typically used to monitor environmental or geo-
graphical location for some speci�c purpose. WSN consists
of sensor nodes that have the capability of self-con�guration
and its deployment in target area is so easy. WSNs have some
limitations in terms of battery power, data rates, memory, and
processing.

Energy efficiency is one of the most important factors
in designing a WSN. As WSN is deployed in many hostile
and extreme environments, it is not possible to supply energy
source or recharging facility. e entire network has to per-
form its task on the embedded batteries. If some nodes died
due to low battery power, it may result in the breakdown of
entire network termed as network partitioning [1], so one
of the main purposes is to enlarge the WSN lifetime [2].
Built-in power technologies such as batteries are consistently
improving [3], and there are many power saving and energy
saving techniques for WSNs [4]. However, most of WSNs
are deployed in harsh environments in which there is a need

of environmental energy harvesting. Energy harvesting is a
mechanism in which sensor nodes have the ability to extract
energy from environment, store it, and then use it whenever
needed. In WSN more energy is used in data transmission
from source to multihop away destination.is is the reason;
energy-efficient routing is always desirable in such kind of
networks [5]. Energy efficiency can be achieved by utilizing
clustering mechanism in WSN. Clustering is a technique in
which many sensor nodes are grouped together to perform a
task. Cluster head is responsible for monitoring all the nodes
in its own cluster. In cluster-based WSN, routing mechanism
is more simple and easy as compared to noncluster WSN.
Cluster head facilitates the routing protocol to reliably send
data from source to destination. On the other hand, routing
protocol is responsible for �nding optimal route from source
to destination. In classical OSI model, all the layers operate
independently. In such case, routing protocol would select a
path regardless of physical layer (battery power) and MAC
layer (data rates) requirements. Networks having energy
or bandwidth limitations must interact with upper layers
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for selecting energy-efficient path. is kind of interaction
between different layers is only possible using cross-layer
technique.

e idea behind cross-layer information exchange [6, 7] is
to optimize network usage and resources by communicating
different layers. Cross-layer optimization technique can be
used to make intelligent decisions about power saving, QoS
routing, enhanced scheduling, and bandwidth allocation
algorithms in multihop networks. e important fact of
using cross-layer design is to exchange multiple parameters
across the protocol stack to increase network performance
and efficiency of network resources. Network resources in
WSN can be threatened by many security attacks such as
sleep deprivation attack, packet dropping attack, or collecting
sensitive information [1, 8–10]. e attacker conducts sleep
deprivation attack at physical layer while packet dropping
attack at network layer. Such kind of multilayered security
attacks cannot be prevented by using a security mechanism
at single layer. To counter multilayer security attacks, again
cross-layer security mechanism is highly desirable for detect-
ing and responding to different attacks at different layers. One
possible solution can be cross-layer secure routing.

Secure routing is highly desirable for multihop wireless
networks such as WSN. Multihop wireless networks are
more vulnerable to security attacks as compared to single-
hop wireless networks. e reason is that most of multihop
wireless networks are distributed having no centralized body.
Designing an appropriate secure routing protocol forWSN is
a challenging task. In WSN the ideal routing protocol should
be secure and efficient in terms of energy consumption.

In this paper, we present a secure routing protocol which
is based on cross-layer information exchange and energy-
harvesting technique.

Our proposal is capable to consistently monitor the
energy consumption and select secure and energy-efficient
path from source to destination.

e rest of the paper is organized as follows. Section 2
discusses related work. Protocol design considerations and
parameters are covered in Section 3. Section 4 describes the
evaluation and simulation results. Section 5 concludes the
paper and provides our future work.

2. RelatedWork

WSN has many applications such as wide area surveillance
for borders security, monitoring heat, sound, and pressure in
a given area [11]. Routing packets from source to destination
is one of the important operations in WSN. Many Routing
protocols have been proposed in the literature [12–16]. Most
of these protocols are either application speci�c or lacking
security mechanism. Research community is paying special
attention to propose various security mechanisms for WSN
[17–20]. Most of these security mechanisms operate and
counter speci�c security threat. Many secure routing proto-
cols are developed for WSN as mentioned in [21–24], which
are used to address particular security concern. Furthermore,
most of these proposed routing protocols are based on key
management schemes to encrypt the data. Although key

management scheme is efficient to protect data con�dential-
ity, it cannot prevent data dropping or packet misdirecting
kind of attacks [8]. It is also important to mention that most
of these existing secure routing protocols operate without
taking energy into consideration. Some researchers proposed
energy-aware routing protocols for WSN [25–27]. However,
most of these energy-aware routing protocols lack security
mechanism. Furthermore, these proposed mechanisms have
no concept of energy-harvesting mechanism in WSN.

It is important to consider energy limitations while
designing any mechanism for WSN. Majority of current
energy-aware routing protocols determine efficient use of
energy. Such mechanisms may increase the life time of
WSN, but do not offer harvesting of environmental energy
to provide durable solution.

Research community is now seriously considering such
mechanisms for WSN, in which environmental energy is
harvested and stored so that to provide a durable source
of more energy to sensor nodes especially for those sensor
networks which are deployed for long-term activities. Many
routing protocols have been proposed so far which are based
on the concept of energy harvesting in WSN. Low latency
geographic routing using energy harvesting is proposed for
WSN [28]. is proposal estimates the energy consumption
and the expected energy from harvesting device.e authors
made a claim about reliable data delivery with low latency.
However, this scheme cannot ensure reliable data delivery in
case of security attack or malicious activity in WSN.

Another beaconless geographic routing based on energy-
harvesting technique is proposed for WSN [29]. e main
idea of this proposal is same as presented in [28] except that
its nodes send data packets �rst instead of control packet
and the nodes have no prior information of neighbors. is
proposal also harvests energy from harvesting device. How-
ever, the performance is yet not known in case of mobility,
multimedia traffic, and large network size. Furthermore,
security concerns are not addressed in this proposal.

Adaptive opportunistic routing based on energy harvest-
ing technique is proposed in [30]. is proposal considers
grouping of nodes and estimating distance of nodes from
sink. In this work, the authors assume that all the nodes have
energy harvesting capability.

In [31], a routing protocol is proposed on the basis
of energy transfer mechanism using electromagnetic waves.
Another routing protocol based on the concept of energy
harvesting is proposed in [32] for environmental monitoring
of sustainableWSN. In this work, the authors equippedWSN
networks with two types of node, that is, battery-power-
driven nodes and energy-harvesting-driven nodes. Two types
of routing are proposed for these two categories of nodes.
Authors in [33] proposed a novel mechanism for transmis-
sion power control based on energy level and harvesting
technique.e authors claim that the problem of unbalanced
energy consumption is solved by using unbalanced energy
capability. Routing protocol with hybrid energy storage
system is proposed [34] to extend the network lifetime with
a new cost metric. Another harvesting-aware mechanism
[35] is designed for sustainable mobile sensor nodes. In this
mechanism, mobile sensor nodes move to energy station
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for recharging if the energy is found below threshold value.
However, this mechanism is not suitable for static WSN.
A detailed work is done on opportunistic routing based on
ambient energy harvesting [36]. In this proposal, nodes are
grouped together to improve throughput andminimize delay.

3. Proposed Routing Scheme

Data transmission from source to destination node requires
some sort of routing mechanism. Typical WSN nodes sense
information and forward to sink node over multi-hop inter-
mediate nodes using routing protocol. e objective behind
this work is to transmit packets along such path, which is
reliable and energy efficient. We assume that eachWSN node
is equipped with energy harvesting system. It is capable to
harvest environmental energy and convert it into electrical
energy. e proposed mechanism consists of four important
modules as given in Figure 1.

(i) e proposed mechanism is cluster based in which
when WSN is deployed for any application, nodes
form two-hop cluster for coordination. In cluster-
based WSN, the optimal cluster size is two hop as
presented in [37].

(ii) Energy consumption can be reducedwhennodes only
communicate with cluster head. So our energy model
is cluster-based WSN.

(iii) Proposed mechanism is cross-layer in nature so that
it can get energy parameters at network layer using
cross-layer interface.

(iv) e mechanism is secure in nature especially against
variety of active and passive attacks.

3.1. Cluster Formation. e �rst step consists of cluster
formations. ere are many clustering schemes [38], but we
have used the following one. In the start of the network
deployment, all the nodes are assumed to have equal battery
power. Initially, each node broadcasts a neighbor-discovery
message. All nodes in their coverage area will reply with a
neighbor-discovery ack message. us, network links and
topology are built. en, interested cluster head nodes send
a cluster-invitation message to all one-hop and two-hop
neighbors in order to become its cluster members. One-
and two-hop neighbors respond back with cluster-joining
message. In cluster-joining message, the node enables hop-
count �eld, so that when cluster head receives cluster-joining
message, it can con�rm that the distance of the joining
member is not more than two hops. Interested cluster head
nodes may be de�ned in advance or selected randomly by
the system based on their position. Described message �ow
system is shown in Figure 2.

We assume that cluster head is aware of its position
with respect to sink node. Such location information can be
obtained using global positioning system or using built-in
con�guration.

3.2. Energy Model. WSN is deployed in such areas where
wired network is not feasible tomaintain and con�gure.WSN

Cluster formation

Energy model

Cross-layer design

Security mechanism

F 1: Modules of proposed routing mechanism.

Head cluster node  1 hop neighbors 2 hops neighbors 

Neighbors
response

Neighbour-discovery

Neighbour-discovery

Neighbour-discovery

Neighbour-discovery ask

Neighbour-discovery ask

Neighbour-discovery ask

Cluster-invitation

Cluster-joining

F 2: Message �ow for cluster formation.

is used to sense information, analyzes them, and transmits
to base station. WSN nodes have built-in batteries which
determine the network lifetime. e battery life of nodes
in WSN depends on the location and other environmental
factors. A node that is located in the center of WSN has
less battery life as compared to those nodes which are
located at edges, because the centre nodes not only collect
information around its own �eld but also forward data for
others as well towards the base station. It is not possible to
replace or recharge batteries of dying nodes. ere is a need
for a constant power source for WSN nodes especially for
sustainableWSN. Energy harvesting is a promising technique
in which sensor nodes are empowered to extract energy from
environment, store it, and later on use it for performing
different tasks.

Some important sources of energy harvesting are men-
tioned in [39–41], which are summarized below.

(i) Mechanical vibration is used to create movement
which is later on converted to electrical energy
using piezoelectric, electrostatic or electromagnetic
schemes.
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(ii) Photovoltaic cells are used to convert sun light energy
into electric energy.

Some other sources of energy are radio frequency (RF)
radiation and thermal energy [42]. In RF scheme, high power
electromagnetic waves are directed towards sensor nodes
from nearby source. In thermal energy-harvesting schemes,
sensor nodes have the capability to convert heat energy
to electric energy. More investigation is needed to explore
all possible merits and demerits of these energy sources
especially factors like environmental pollution. Furthermore,
some energy harvesting schemes may perform well in one
scenario but may not in other. For example, usage of
photo cells to harvest solar energy may perform well in
those WSN applications where nodes have more exposure
to sunlight. Some other challenges are mentioned in [43]
such as energy harvesting hardware and soware overheads.
Enabling energy harvesting in sensor nodes demands spe-
cialized hardware to harvest and store energy. Furthermore,
speci�c soware is needed to control and manage harvested
energy. Such specialized demand of soware and hardware
will de�nitely increase the overall cost of WSN deployment.
From the literature survey, it is observed that less attention
is given to security mechanisms in WSN having energy-
harvesting mechanism. Any new mechanism for WSN must
consider that as WSNs are deployed in harsh areas, so
only battery power may not be sufficient for medium and
long-term monitoring. It is indeed necessary to harvest
environmental energy so that to provide constant and durable
source of energy to all nodes.

In the proposed mechanism, the energy model is con-
sidered in next step. We are considering sunlight as the
source for harvesting inWSN. For perpetual operation, a duty
cycle and energy harvestingmechanismusing amathematical
model is present in [44]. Using this equation, we can get the
power output from energy source and energy harvested. e
proposed equations in [44] also estimate power consumption
of a node during speci�c interval of time. We de�ned three
energy ranges for every sensor node. ese three energy
ranges de�ne three states of sensor node. e three states are
active state, semiactive state, and idle state.ethree states and
their characteristics are listed in Table 1.

In active state,WSNnode is actively participating inWSN
operations, that is, as soon as it sense, or receives any packet,
it is immediately routed to cluster head. In active state, node
does not harvest environmental energy. A node remains in
active state as far as its energy is greater than𝑋𝑋. In semiactive
state, node starts harvesting environmental energy. A node
remains in semiactive state as far as its energy (𝑌𝑌) is in
between𝑋𝑋 and 𝑍𝑍.

In semiactive state, a node does not actively participate
in WSN operation. It collects and stores packets and later on
sends to cluster head. In semiactive state, when node is in the
process of harvesting energy, it collects and stores packets.
Aer some time, it stops harvesting process and sends a bulk
of packets to cluster head and again starts harvesting energy.
It is a kind of sleep and wake state. In sleep state, it only
harvests energy and collects packets. When in wake state, it

T 1: e energy related states of WSN node.

State Energy range Energy harvesting
Active Above X No
Semi active Y Yes
Idle Below 𝑍𝑍 Yes

forwards packets to cluster head and stop energy-harvesting
process.

In idle state, a node does not perform any operation, only
harvest environmental energy. A node remains in idle state as
far as its energy is below 𝑍𝑍.

In idle state, node calculates its harvested energy aer
interval of time. If the energy value is greater than “𝑋𝑋,” then
it switches to active state. If the harvested energy is still below
“𝑍𝑍,” it remains in idle state or otherwise switchs to semiactive
state.

Given 𝐸𝐸𝐸AR) as the energy in active range and 𝐸𝐸𝐸SAR) as
energy in semiactive range, the algorithm for the three states
of sensor node is given in Figure 3.

Along a node lifetime, it will be in any of these three states.
Now we can de�ne 𝑡𝑡𝑎𝑎 as the amount of time that has been
in active mode, 𝑡𝑡𝑠𝑠 as the amount of time that has been in
semiactive mode, and 𝑡𝑡𝑖𝑖 as the amount of time that has been
in idle range. e node lifetime 𝑇𝑇 can be expressed by

𝑇𝑇 𝑇 𝑇𝑇𝑎𝑎 + 𝑡𝑡𝑠𝑠 + 𝑡𝑡𝑖𝑖. (1)

Now, we can estimate the energy consumed along the
node lifetime. It is given by the following expression:

𝐸𝐸 (𝑡𝑡) = 𝐸𝐸 (AR) ⋅ 𝑡𝑡𝑎𝑎 + 𝐸𝐸 (SAR) ⋅ 𝑡𝑡𝑠𝑠 + 𝐸𝐸 (IR) ⋅ 𝑡𝑡𝑖𝑖. (2)

𝐸𝐸𝐸AR) varies according the number of packets to trans-
mit, packets to receive, acknowledgements to transmit,
acknowledgements to receive, and the number of retrans-
missions during 𝑡𝑡𝑎𝑎 time. Bearing in mind that in a wireless
link there is a packet retransmission probability (𝑃𝑃𝑠𝑠), because
there can be lost or error packets, 𝐸𝐸𝐸AR) can be given by the
following expression:

𝐸𝐸 (AR) = 󶀡󶀡1 + 𝑃𝑃𝑠𝑠󶀱󶀱 ⋅ 󶀡󶀡𝐸𝐸TX + 𝐸𝐸RX + 𝐸𝐸TX_ACK + 𝐸𝐸RX_ACK󶀱󶀱 ,
(3)

where𝐸𝐸TX is the energy consumed because of the transmitted
packets, 𝐸𝐸RX is the energy consumed because of the received
packets, 𝐸𝐸TX_ACK is the energy consumed because of the
transmitted acknowledgement packets, and 𝐸𝐸RX_ACK is the
energy consumed because of the received acknowledgement
packets. If we take into account the following parameters and
the energy model for wireless sensor nodes provided in [45],
we obtain (4) to estimate 𝐸𝐸𝐸AR) in free space:

(i) number of packets to be transmitted (𝑛𝑛𝑡𝑡),
(ii) average number of bits of each transmitted packet

(𝑥𝑥𝑡𝑡),
(iii) average number of acknowledgements transmitted

for a packet (𝑛𝑛at),
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(iv) average number of bits of each transmitted acknowl-
edgement packet (𝑥𝑥at),

(v) number of packets to be received (𝑛𝑛𝑟𝑟),
(vi) average number of bits of each received packet (𝑥𝑥𝑟𝑟),
(vii) average number of acknowledgements received for a

packet (𝑛𝑛ar),
(viii) average number of bits of each received acknowledge-

ment packet (𝑥𝑥ar)

𝐸𝐸 (AR) = 󶀡󶀡1 + 𝑃𝑃𝑠𝑠󶀱󶀱 ⋅ 󶀡󶀡𝐸𝐸elec ⋅ 󶀡󶀡𝑛𝑛𝑡𝑡 ⋅ 𝑥𝑥𝑡𝑡𝑡𝑡 + 𝑛𝑛𝑟𝑟 ⋅ 𝑥𝑥𝑡𝑡𝑡𝑡 + 𝑛𝑛atr ⋅ 𝑥𝑥atr

+𝑛𝑛atr ⋅ 𝑥𝑥atr󶀱󶀱

+ 𝜀𝜀amp ⋅ 𝑑𝑑
2 ⋅ 󶀡󶀡 𝑛𝑛𝑡𝑡 ⋅ 𝑥𝑥𝑡𝑡𝑡𝑡 + 𝑛𝑛atr ⋅ 𝑥𝑥atr󶀱󶀱󶀱󶀱 .

(4)

We have assumed that generally 𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑟𝑟 (we will call it
𝑥𝑥𝑡𝑡𝑡𝑡), 𝑥𝑥at = 𝑥𝑥ar (we will call it 𝑥𝑥atr), and 𝑛𝑛at = 𝑛𝑛ar (we will call
it 𝑛𝑛atr).

When any node switches to idle state, it informs its
neighbors. In return, neighbor nodes start routing packets
through another route.

For energy-efficient routing, all the member nodes of
cluster periodically exchange route energy packets (REP).
In REP, nodes communicate energy value. A node always
selects that path in which the neighbors have more energy.
For example, node A has three one-hop neighbors K, L, and
M. Now A will select that neighbor which has more energy.

3.3. Cross-Layer Design. Interaction amongst parameters
across the protocol stack is performed using methodology of
cross-layer design. In proposed mechanism, the interaction
between physical layer and network layer is possible due to
this methodology.

REP is generated using cross-layer design. Energy is
physical layer scheme, while routing is the mechanism of
network layer. To bring current energy value of a node in
routing packet is only possible using cross-layer design. In
cross-layer design, energy value is �rst captured at application
layer and then inserted to network packet using cross-layer
interface [9]. is selection of energy efficient route helps
semiactive nodes to harvest more energy and to participate
less inWSN operations so that they become active soon.is
kind of intelligent routing is possible with cross-layer design.
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F 4: Energy-efficient route selection.

e energy-efficient route selection process is given in Figure
4.

In Figure 4(a), “S” is a cluster head forming a two-hop
cluster of many nodes. Initially all the nodes are in active
state and as soon as any node gathers some information, it
transfers that information immediately to cluster head for
further processing. As in active state, environmental energy
is not harvested so that all the nodes are using battery power.
In WSN, those nodes which are in center or having many
neighbors are supposed to consume more energy as they not
only gather information and transmit to cluster head but also
relay data for all other neighbors. In Figure 4(a), node “b”
is not only forwarding its own data to “S,” but also relaying
data for “a” as well. So “b” energy consumption is more as
compared to “a.” Here “b” cannot remain in active state for
long time. When “b” energy falls in semiactive range, it will
switch to semiactive state. Here “a” has an alternate path to
start routing data through node “c” as shown in Figure 4(b).

Node “b” will start energy harvesting and will remain
in semiactive state. Let suppose node “c” is not there and
node “a” has no alternate path. In such case, node “a” will
still forward data to node “b” and node “b” will relay data
for node “a” aer some interval of time. As in semiactive
state, node “b” will harvest environmental energy for some
time and will forward collected data to cluster head for some
time. Let suppose node “b” is in idle state and node “a” has
no alternate route to cluster head. In that case, node “a” will
collect information and has to wait till it receives a control
packet from node “b” about its active or semiactive state.

From Figure 4(a), suppose node “b,” “h,” and “d” are
under heavy traffic load. Aer some time, these three nodes
switch to semiactive state. eir neighbors will start data
relaying through other alternate routes as given in Figure
4(b). In this �gure, node “a” is now routing data through node
“c,” node “e” is communicating with cluster head through
node “f ”, while node “g” is relaying data through “f.” However,
now node “f ” is relaying packets for many nodes. Suppose,
node “f ” switches to semiactive state, then the nodes will
reorganize themselves to alternate paths as shown in Figure
4(c).

As nodes periodically communicate REP packet, so all
the nodes are informed of neighbors current state. When
a neighbor receives REP packet and the energy value in
REP packet is in semiactive or idle range, the corresponding
neighbors start searching for alternate routes. is kind of
mechanism ensures energy-efficient routing in cluster-based
sustainable WSN. However, there is a need of some kind of
security scheme to ensure reliable data forwarding,

3.4. Security Mechanism. Most of WSNs are used to sense,
collect, and process sensitive information. Data con�dential-
ity and integrity is one of the important objectives in such
cases. is kind of objective can be achieved by designing
some sort of security mechanism especially enabling security
mechanism in routing protocol. Important requirement of
any network is to ensure con�dentiality, integrity, and avail-
ability [1, 8, 10]. �on�dentiality ensures the secrecy of data
sent from source to destination. Integrity makes sure that
the destination received data in correct format and sequence
without any alteration. Availability means that all the nodes
and network devices are operating in harmonious mode and
the network resources are available all the time. e attacker
uses active or passive attacks to violate either con�dentiality
of sensitive data or integrity of transmitted data by altering
the real information

Different kinds of active and passive attacks can bring
serious disruption in overall performance of WSN. Passive
attacks [10] do not harm the network or network resources;
however, these attacks collect, analyze, and decode sensitive
information. Active attacks [1] have the capability to drop
or misdirect routing packets. To counter passive attacks and
to ensure secrecy and con�dentiality of data, we are using
similar kind of mechanism as used in [46]. To counter packet
dropping ormisdirecting kinds of active attacks, wemodi�ed
a bit the security mechanism proposed in [9]. e security
mechanism proposed in [9] sends passive acknowledgement
for every successful delivery of packet. For example, if a
source node sends 100 packets to destination node through
intermediate node(s), the destination node sends back 100
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passive acknowledgements to source node for every packet
arrived. Keeping in view the limited resources and band-
width, in WSN we cannot use this kind of heavy mechanism.
e reason is that, such mechanism will greatly increase
routing overheads and could create congestion. In our case, a
packet counter is introduced at every node including cluster
head. Suppose in Figure 4(a), node “e” forwards 300 packets
to cluster head.When cluster headwill not receive any further
packets from node “e” till �xed interval of time, it will assume
that node “e” has no more packets to send. e cluster head
will send a packet count of 300 to node “e,” which means that
cluster head successfully received 300 packets. When node
“e” receives packet count from cluster head which matches
to its own packet count, it means node “d” is not malicious
and all the packets are successfully relayed through node “d.”
Ourmechanism is per session basis contrary to the per packet
bases mechanism proposed in [9].

e proposed security model can counter many kinds
of active attacks such as blackhole, greyhole, and wormhole
[1, 8, 9]. Blackhole is a compromised node and if it is located
as intermediate node between source and destination, it is
used to drop all the packets passing through it. Greyhole is a
less harsh version of blackhole attack.Greyhole is such amali-
cious node, which is used to selectively drop packets passing
through it. Wormhole is basically packet misdirecting attack,
in which the attacker establishes a wormhole link between
two malicious nodes. e wormhole link is established using
fast medium such as �ber optic. Onemalicious node captures
packets at one end and tunnel them throughwormhole link to
other malicious node. e objective of this attack is to create
routing overheads and congestion in network. Our security
mechanism is further explained in Figure 5

In Figure 5, “S” is a source node, while “D” is cluster
head acting as destination node. Node “A” and “B” are
intermediate nodes which relay packets for “S” towards “D.”
Let us suppose, node “A” is malicious and acting as greyhole.
Node “S” sent 12 packets to “A.” Node “A” dropped 4
packets. Node “D” received only 8 packets. At the end of the
transmission, node “D” sent an acknowledgement to “S” that
8 packets are received successfully. At this stage, node “S”
assumes that the next node is malicious and dropping the
packets. Now, node “S” starts searching an alternate route to
node “D.”

Similarly, if node “A” is acting as blackhole or greyhole,
the acknowledgement at the end of the session can easily
detect such packet dropping or packet misdirecting kind of
malicious activities.

0

300

600

900

1200

1500

1800

2100

2400

0 50 100 150 200 250 300 350 400

R
o

u
n

d
s

Number of  nodes

Proposed routing

HEED

LEACH

F 6: Network life time based on number of rounds.

On the other hand, the mechanism proposed in [9]
uses every next hop passive acknowledgement. For example,
node “B” sends passive acknowledgment to node “S” for
every packet received. Similarly node “D” sends passive
acknowledgement to node “A” for every packet received.

4. Performance Evaluation

e performance of secure routing protocol based on cross-
layer design and energy harvesting technique is simulated
using realistic scenarios. We simulated a WSN having 200
nodes capable of harvesting environmental energy using NS-
2. ese nodes are randomly deployed at 100m × 100m.
Each data packet is of 200 bytes, while PER packet size is 40
bytes. We compared our routing mechanism with low energy
adaptive clustering hierarchy (LEACH) and hybrid energy-
efficient distributed (HEED) cluster-based routing protocol.
Figure 6 shows the network lifetime comparison of three
routing protocols based on number of rounds.

e performance of the proposed protocol is better as
compared to LEACH and HEED.

e reason is that the proposed routing scheme selects
energy efficient path to cluster head; furthermore, envi-
ronmental energy-harvesting mechanism can create great
difference in network lifetime.

In Figure 7, the remaining network energy is presented
with respect to number of rounds. e total number of
nodes is 400 and the network remaining energy is computed
for 80 rounds. It is observed that the proposed routing
mechanism is better than the rest of two. is difference is
again created by the usage of energy harvesting mechanism.
e proposed routing scheme is capable to balance the
energy usage and harvesting. HEED performance is also
satisfactory till the end of 40 rounds. e reason is that
HEED is also energy-efficient routing mechanism. However,
aer 40 rounds, HEED gradually decreases energy value as
it has no support of energy harvesting. On the other hand,
LEACH performance shows gradual degradation as soon as
the number of rounds increases.e reason is that LEACH is
not energy efficient in nature.
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In Figure 8, end to end delay is presented, which shows
some interesting results. When the proposed mechanism is
in active states, it shows lowest end to end delay from source
to cluster head. is is because, the proposed mechanism
follows such a path which is rich in energy. However, the
proposed scheme shows more end to end delay if some of its
nodes are in semi-active state. e reason is that, if a node(s)
is in semiactive state, it harvests energy for some time.During
energy harvesting period, nodes do not forward packets or
take part in communication. In this case, a neighbor has only
one route to cluster head through the node in semiactive state.
e node has to wait for its neighbor to harvest energy for
some time and then forwards its packets through it to cluster
head.

Figure 9, compares routing overheads of all three routing
protocols with 400 nodes. e proposed routing scheme has
more routing overheads as compared to LEACH. It is due to
periodic exchange of REP packets to inform the neighbors
about energy value.

Figure 10 shows a number of live nodes with respect to
rounds in a network of 400 nodes. is simulation result
is obtained with increased traffic from sensor nodes to
destination. It is observed, that even aer 1500 rounds,
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the number of live nodes in proposed mechanism is more
than 300, whereas great performance degradation is seen in
LEACH just aer 200 rounds.

In Figure 11, a malicious node is introduced to observe
the packet loss ratio of all the routing protocols. e
malicious node is acting as a greyhole [8]. Greyhole node
selectively drops packets which it receives from neighbors.
We selected greyhole attack as it represents an entire class
of packet dropping and packet misdirecting attacks such as
blackhole, sinkhole, jelly�sh, and wormhole attacks [1, 9].
is simulation is setup in many sessions. Every session is
used to forward 150 packets toward cluster head. Greyhole
node is introduced from second session onward (i.e., in
sessions 3, 4, 5, and �). In �rst two sessions, all the routing
protocols successfully forward all the packets without any
loss. However, when greyhole malicious node is introduced,
almost half of the packets are dropped by all the routing
schemes. However, our proposed mechanism adapted a new
route from session 4 and onward.

Our proposedmechanism also dropped almost half of the
packets in session 3. At the end of session 3, our mechanism
waits for response of cluster head to receive a packet counter
in which the cluster head will mention the number of packets
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successfully arrived. Cluster head sends packets to nodes by
enabling packet counter in it. e node sees that the total
number of packets sent to cluster head were 150 while only
70 packets are successfully transferred. At this stage, our
routing scheme assumes that the neighbor is malicious and
it is dropping packets. at is why in session 4 and onward,
packet loss in our routing mechanism is negligible due to
selection of alternate path. On the other hand, HEED and
LEACH cannot distinguish malicious node in their way.

5. Conclusion

Research community is trying to explore different possi-
bilities to enable energy harvesting in WSN. In this way,
the lifetime of sustainable WSN can be increased to a great
extent to achieve all goals of sensors deployment. In this
paper, we presented in detail a secure routing protocol for
WSN, which is based on cross-layer design and energy-
harvesting technique. We use a cluster-based approach to
group together nodes of two-hop neighbors. Initially all the
nodes are in active state, in which nodes actively participate
in WSN operations. However, as long as the energy value
of sensor node decreases, it switches to semiactive state. In
semiactive state, nodes are in wake and sleep conditions. In
wake position, nodes take part in network operations, while
in sleep position, nodes only harvest environmental energy.
In idle state, nodes only harvest energy till it switches back
either to active or semiactive states. When compared to other
cluster-based routing protocols such as HEED and LEACH,
our proposed routing scheme shows better performance in
terms of network lifetime, number of live nodes, remaining
network energy, and the presence of malicious node.

Some packet loss is observed in ourmechanism especially
in session 3 as shown in Figure 11. We cannot use per packet
acknowledgement as it may result in high routing overheads.
We are planning to devise a mechanism in which such
packet loss could be reduced. Our future work is to design
such distributed algorithm, which is capable of operating in
both cluster and non-cluster-basedWSN. Furthermore, such
mechanism is also desirable since it enables sensor nodes

to harvest environmental energy as well as participate in
network operations simultaneously. Security mechanism can
be improved by using lightweight hash function mechanism
or advanced cryptographic scheme to handle active and
passive attacks. An interesting technique of arti�cial neural
network (ANN) can be considered to locate those nodes
having less remaining energy.

Acknowledgments

eauthors extend their appreciation to the Research Centre,
College of Applied Medical Sciences, and the Deanship of
Scienti�c Research at King Saud �niversity for funding this
research.

References

[1] S. Khan, N. Mast, and J. Loo, “Denial of service attacks and
mitigation techniques in IEEE 802.11Wireless mesh networks,”
Information, vol. 12, pp. 1–8, 2009.

[2] M. Segal, “Improving lifetime of wireless sensor networks,”
Network Protocols and Algorithms, vol. 1, no. 2, pp. 48–60, 2009.

[3] J.M. Gilbert and F. Balouchi, “Comparison of energy harvesting
systems for wireless sensor networks,” International Journal of
Automation and Computing, vol. 5, no. 4, pp. 334–347, 2008.

[4] S. Sendra, J. Lloret, M. Garcia, and J. F. Toledo, “Power saving
and energy optimization techniques for Wireless Sensor Net-
works,” Journal of Communications, vol. 6, no. 6, pp. 439–459,
2011.

[5] A. H. Mohsin, K. Abu Bakar, A. Adekiigbe, and K. Z. Ghafoor,
“A survey of energy-aware routing protocols in Mobile Ad-
hoc networks: trends and challenges,” Network Protocols and
Algorithms, vol. 4, no. 2, pp. 82–107, 2012.

[6] S. Shakkottai, T. S. Rappaport, and P. C. Karlsson, “Cross-layer
design for wireless networks,” IEEE Communications Magazine,
vol. 41, no. 10, pp. 74–80, 2003.

[7] V. Srivastava and M. Motani, “Cross-layer design: a survey and
the road ahead,” IEEE Communications Magazine, vol. 43, no.
12, pp. 112–119, 2005.

[8] S. Khan, K. K. Loo, N. Mast, and T. Naeem, “SRPM: secure
routing protocol for IEEE 802.11 infrastructure based wireless
mesh networks,” Journal of Network and Systems Management,
vol. 18, no. 2, pp. 190–209, 2010.

[9] S. Khan and J. Loo, “Cross layer secure and resource-aware on-
demand routing protocol for hybrid wireless mesh networks,”
Wireless Personal Communications, vol. 62, pp. 201–214, 2010.

[10] S. Khan, N. Mast, J. Loo, and A. Silahuddin, “Passive security
threats and consequences in IEEE 802. 11 wireless mesh
networks,” International Journal of Digital Content Technology
and Its Applications (JDCTA), vol. 2, pp. 4–8, 2008.

[11] M. Frederickson, A publication of the National Electronics
Manufacturing Center of Excellence, 2005.

[12] K. Akkaya and M. Younis, “A survey on routing protocols for
wireless sensor networks,” Ad Hoc Networks, vol. 3, no. 3, pp.
325–349, 2005.

[13] S. Singh, M. Singh, and D. Singh, “Routing protocols in wireless
sensor networks, A survey,” International Journal of Computer
Science & Engineering Survey (IJCSES), vol. 1, pp. 25–34, 2010.



10 International Journal of Distributed Sensor Networks

[14] A. Popescu, G. Tudorache, B. Peng, and A. Kemp, “Surveying
position based routing protocols for wireless sensor andAd-hoc
networks,” International Journal of Communication Networks
and Information Security (IJCNIS), vol. 4, no. 7, pp. 41–67, 2012.

[15] O. Fdili, Y. Fakhri, and D. Aboutajdine, “Impact of queue buffer
size awareness on single and multi service real-time routing
protocols for WSNs,” International Journal of Communication
Networks and Information Security (IJCNIS), vol. 4, no. 2, pp.
104–111, 2012.

[16] M. Hussaini, H. Bello-Salau, A. Salami, F. Anwar, A. Abdalla,
andM. Islam, “Enhanced clustering routing protocol for power-
efficient gathering in wireless sensor network,” International
Journal of Communication Networks and Information Security
(IJCNIS), vol. 4, no. 12, pp. 18–28, 2012.

[17] A. Kellner, O. Alfandi, and D. Hogrefe, “A survey on measures
for secure routing in wireless sensor networks,” International
Journal of Sensor Networks and Data Communications, vol. 1,
Article ID 235548, pp. 1–17, 2012.

[18] J. Sen, “A survey on wireless sensor network security,” Inter-
national Journal of Communication Networks and Information
Security (IJCNIS), vol. 1, pp. 55–78, 2009.

[19] K. Xing, “Attacks and countermeasures in sensor networks, a
survey,” Springer Network Security, vol. 7, pp. 534–548, 2005.

[20] V. Kesavan and S. Radhakrishnan, “Multiple secret keys based
security for wireless sensor networks,” International Journal of
Communication Networks and Information Security (IJCNIS),
vol. 4, no. 1, pp. 68–76, 2012.

[21] M. Azeem, K. Khan, and A. Pramod, “Security architecture
framework and secure routing protocols in wireless sensor
networks-survey,” International Journal of Computer Science &
Engineering Survey (IJCSES), vol. 2, pp. 189–204, 2011.

[22] C. Karlof and D. Wagner, “Secure routing in wireless sensor
networks: attacks and countermeasures,” Ad Hoc Networks, vol.
1, no. 2-3, pp. 293–315, 2003.

[23] B. Kur, Secure routing protocols for wireless sensor networks [M.S.
thesis], Masaryk University Faculty of Informatics, Brno, Czech
Republic, 2008.

[24] P. Samundiswary, D. Sathian, and P. Dananjayan, “Secured
greedy perimeter stateless routing for wireless sensor networks,”
International Journal of Ad Hoc, Sensor & Ubiquitous Comput-
ing (IJASUC), vol. 1, pp. 9–20, 2010.

[25] M. Liu, J. Cao, G. Chen, andX.Wang, “An energy-aware routing
protocol in wireless sensor networks,” Sensors, vol. 9, no. 1, pp.
445–462, 2009.

[26] M. Younus, A. A. Minhas, M. Y. Javed, and A. Naseer, “EEAR:
efficient energy aware routing in wireless sensor networks,”
in Proceedings of the 7th International Conference on ICT and
Knowledge Engineering (ICTKE ’09), pp. 57–62, December
2009.

[27] S. Singh, M. Singh, and D. Singh, “A survey of energy-efficient
hierarchical cluster-based routing in wireless sensor networks,”
International Journal of Advanced Networking and Applications,
vol. 2, pp. 570–580, 2010.

[28] D. Noh, I. Yoon, and H. Shin, “Low-latency geographic routing
for asynchronous energy-harvesting WSNs,” Journal of Net-
works, vol. 3, no. 1, pp. 78–85, 2008.

[29] O. Jumira, R. Wolhuter, and S. Zeadally, “Energy-efficient
beaconless geographic routing in energy harvested wireless
sensor networks,” Concurrency and Computation, vol. 25, no.
1, pp. 58–84, 2013.

[30] Z. Eu and H. Tan, “Adaptive opportunistic routing protocol
for energy harvesting wireless sensor networks,” in Proceedings
of the IEEE International Conference on Communications (ICC
’12), pp. 318–322, June 2012.

[31] R. Doost, K. R. Chowdhury, andM.Di Felice, “Routing and link
layer protocol design for sensor networks with wireless energy
transfer,” in Proceedings of the 53rd IEEE Global Communica-
tions Conference (GLOBECOM ’10), December 2010.

[32] K. Takahashi, M. Bandai, H. Tan, W. Seah, and T. Watanabe,
Least Impact Routing towards Sustainable Sensor Networks
Enhanced by Energy Harvesting. White Paper published by
Victoria University of Wellington, 2010.

[33] G. Dai, J. Qiu, P. Liu, B. Lin, and S. Zhang, “Remaining energy-
level-based transmission power control for energy-harvesting
WSNs,” International Journal of Distributed Sensor Networks,
vol. 2012, Article ID 934240, 12 pages, 2012.

[34] N. Pais, “Cost-bene�t aware routing protocol for wireless sensor
networks with hybrid energy storage system,” Journal of Green
Engineering, vol. 11, pp. 189–208, 2011.

[35] S. Kim, C. Won, J. Lee, S. Kwon, and Y. Park, “Harvesting aware
system for sustainable mobile sensor networks,” International
Journal of Hybrid Information Technology, vol. 5, pp. 199–206,
2012.

[36] Z. A. Eu, H. P. Tan, and W. K. G. Seah, “Opportunistic
routing in wireless sensor networks powered by ambient energy
harvesting,” Computer Networks, vol. 54, no. 17, pp. 2943–2966,
2010.

[37] A. Förster, A. Förster, and A. L. Murphy, “Optimal cluster
sizes for wireless sensor networks: an experimental analysis,”
in Ad Hoc Networks, vol. 28 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications
Engineering, pp. 49–63, 2010.

[38] A. A. Abbasi andM. Younis, “A survey on clustering algorithms
for wireless sensor networks,” Computer Communications, vol.
30, no. 14-15, pp. 2826–2841, 2007.

[39] S. Chalasani and J. M. Conrad, “A survey of energy harvesting
sources for embedded systems,” in Proceedings of the IEEE
Conference of Southeastcon, pp. 442–447, April 2008.

[40] B. Atwood, B. Warneke, and K. S. J. Pister, “Smart dust mote
forerunners,” in Proceedings of the 14th IEEE International
Conference on Micro Electro Mechanical Systems (MEMS ’01),
pp. 357–360, January 2001.

[41] G. Park, T. Rosing, M. D. Todd, C. R. Farrar, and W. Hodgkiss,
“Energy harvesting for structural health monitoring sensor
networks,” Journal of Infrastructure Systems, vol. 14, no. 1, pp.
64–79, 2008.

[42] L. Mateu and F. Moll, “Review of energy harvesting techniques
and applications for microelectronics,” in Proceedings of the
SPIE Microtechnologies for the New Millennium, pp. 359–373,
May 2005.

[43] C. Moser, Power management in energy harvesting embedded
systems. Doctor of Sciences dissertation [Ph.D. thesis], Swiss
Federal Institute of Technology Zurich, Zurich, Switzerland,
2009.

[44] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power
management in energy harvesting sensor networks,” ACM
Transactions on Embedded Computing Systems, vol. 6, no. 1, pp.
1–35, 2007.

[45] W. R. Heinzelman, A. Chandrakasan, and H. Balakrish-
nan, “Energy-efficient communication protocol for wireless
microsensor networks,” in Proceedings of the 33rd Annual



International Journal of Distributed Sensor Networks 11

Hawaii International Conference on System Siences (HICSS-33),
p. 223, Maui, Hawaii, USA, January 2000.

[46] M. Ba, I. Niang, B. Gueye, and T. Noel, “A deterministic
key management scheme for securing cluster-based sensors
networks,” in Proceedings of the IEEE/IFIP 8th International
Conference on Embedded and Ubiquitous Computing (EUC ’10),
pp. 422–427, December 2010.



Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2012, Article ID 145702, 9 pages
doi:10.1155/2012/145702

Research Article

MDS-Based Wormhole Detection Using Local Topology in
Wireless Sensor Networks

Xiaopei Lu, Dezun Dong, and Xiangke Liao

College of Computer Science, National University of Defense Technology, Hunan 410073, China

Correspondence should be addressed to Xiaopei Lu, luxp02@gmail.com

Received 28 September 2012; Accepted 27 November 2012

Academic Editor: Shuai Li

Copyright © 2012 Xiaopei Lu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Wormhole attack is a severe threat to wireless sensor networks (WSNs), which has received considerable attentions in the literature.
However, most of the previous approaches either require special hardware devices or depend on rigorous assumptions on the
network settings, which greatly limit their applicability. In this work, we attempt to relax the limitations in prior work, and propose
a novel approach to detect wormhole attacks by only local topology information in WSNs. The basic idea is as follows. Each node
locally collects its neighborhood information and reconstructs the neighborhood subgraph by multidimensional scaling (MDS).
Potential wormhole nodes are detected by validating the legality of the reconstruction. Then, a refinement process is introduced
to filter the suspect nodes and to remove false positives. Our approach solely relies on the local connectivity information and is
extremely simple and lightweight, which makes it applicable in practical systems. Extensive simulations are conducted, and the
results demonstrate the effectiveness and superior performance of our approach.

1. Introduction

Wormhole attack is a severe threat to wireless networks,
which has attracted considerable attentions since it was
introduced in previous works [1]. Recently, wormhole attack
has become a more critical problem, especially in large-
scale WSNs [2]. In a wormhole attack, the adversary places
two radio transceivers, which are connected through high-
speed channel. Each transceiver, captures signals in the
network and delivers them to the other end. These signals are
replayed, respectively, at the two ends. Then, two distant sen-
sor nodes that are, respectively, around these two transceivers
will consider each other as a close neighbor. By building these
tunnels, wormhole attacker can fundamentally change the
network connectivity, create a set of shortcut paths, attract
a large amount of network traffic, and launch many kinds
of attacks, such as selectively dropping or modifying packets
and breaking the order of packets. Moreover, by attracting
network traffic and collecting and analyzing network data,
the attacker can perform many other more aggressive and
severe attacks, such as denial of service attacks, network

hijacking, and man-in-the-middle attacks. Since wormhole
attacks are independent of the MAC layer protocol and
immune to the cryptographic techniques, most of traditional
security mechanisms are vulnerable to them.

To address wormhole attack in WSNs, a number of
countermeasures have been proposed in the literature.
Those solutions are respectively based on catching different
symptoms of wormhole attack. However, most of them
have various limitations, for example, requiring additional
hardware devices, depending on special assumptions on the
network settings. For instance, a number of methods are
based on additional hardware devices, such as GPS [3],
special radio frequency (RF) hardware [4], and directional
antennas [5], which all significantly increase the hardware
cost of the systems. Another kind of solutions depends on
special assumptions on the network, such as global tight
clock synchronization [6], special guarding nodes [7, 8],
and attack-free initial networks [9, 10], which all greatly
limit their applicability. In order to relax these limitations,
a number of topology-based solutions are proposed [11–16].
These methods can detect wormholes by capturing various
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symptoms on the network topology, by only exploring the
network topology information. However, most of them still
have various limitations, for example, centralized algorithms,
requiring unit disk graph (UDG) model or relatively high
node density, high false positive rate, and so forth. To sum
up, wormhole attack has not been well addressed presently,
especially in large-scale practical systems.

In this work, we propose a purely new topology-based
wormhole detection approach in WSNs. We basically focus
on exploring the abnormal structures introduced by worm-
hole attacks to the network topology. Each node v locally
collects its k-hop neighborhood information and obtains the
neighborhood subgraph. Then, we construct an estimation
distance matrix that consists of the shortest distances (i.e.,
hop counts) of all node pairs in this subgraph. Next, the esti-
mation distance matrix is used to reconstruct the subgraph
and embed it on a plane by multidimensional scaling (MDS),
during which each node will be assigned a virtual position
(i.e., node coordinates). The basic idea of our wormhole
detection approach is based on an important observation
as follows. If node v is a normal node, the layout of the
MDS would well accord with the estimation distances, which
means the distortion factor of the reconstruction would be
relatively small. Otherwise, if node v is a wormhole node, its
neighborhood subgraph cannot be smoothly embedded on
a plane or at least would produce a great distortion factor.
Based on this observation, we can detect potential wormhole
nodes by validating whether the distortion factor of each
node exceeds a threshold. Finally, we propose a simple but
novel necessary condition for wormhole links and utilize
it to filter the suspect nodes in a refinement process. Then,
all wormhole nodes and wormhole links can be explicitly
identified, with almost no false positives. Figure 1 briefly
illustrates the detection results by our approach and the
state-of-the-art methods. Black points in the gray regions
denote real wormhole nodes, and circles denote detected
wormhole nodes by wormhole detection algorithms. The
given network graphs in Figures 1(a)–1(d), respectively,
present the detection results by MDS-VOW method [12],
LCT method [16], and our approach. We can see that MDS-
VOW method can hardly work on this kind of wormhole
attack, LCT method can detect all wormhole nodes, but with
many false positives, and our approach can effectively detect
all wormhole nodes with no false positives.

The main contributions of this work are as follows.
Our approach does not require any additional hardware
devices, but only needs each node to locally collect its k-hop
neighborhood information. The algorithm is very simple and
the overhead is extremely low, which makes it very applicable
in practical WSNs. Moreover, not only can our approach
identify all wormhole nodes and wormhole links, but also it
produces very few false positives (almost no false positives
according to extensive simulations).

The rest of this paper is organized as follows. We
discuss related works in Section 2 and introduce the problem
formulation in Section 3. Section 4 presents our detection
approach in details. We evaluate this design through exten-
sive simulations in Section 5 and conclude this work in
Section 6.

(a) (b)

(c) (d)

Figure 1: An illustration of wormhole detection results by different
approaches. Gray areas denote the impact range of wormhole
antennas. Black points in the gray areas denote real wormhole nodes
that are directly affected by wormhole antennas. Circles denote
detected wormhole nodes by respective detection approaches. (a)
The original sensor network. 400 nodes are deployed over a square
region. The average node degree is 7.5. Edges connecting wormhole
nodes at different ends are omitted. (b) Detection results of MDS-
VOW. Most of wormhole nodes are not detected. (c) Detection
results of LCT. A number of false positives are produced. (d)
Detection result of our approach.

2. Related Work

2.1. Wormhole Detection. A number of countermeasures
have been proposed in the literatures. Existing methods are
all based on capturing various symptoms induced by worm-
holes. In this section, we review and analyze the prior work.

The first line of existing solutions is based on the distance
or timing analysis of data transmissions. Some methods
attempt to detect wormhole attacks by validating the legality
of packet traverse distance or time. By appending the location
or time information of the sending nodes in each packet, they
verify whether the hop-by-hop transmission is physically
possible and accordingly detect the wormholes. However,
such methods require the preknowledge of node locations by
special hardware devices such as GPS [3, 6] or depend on
the assumption of accurate globally synchronized clocks to
capture the packet propagation time [4, 6]. These methods
significantly increase the hardware cost of sensor nodes, and
it is unclear whether these techniques would be effective in
resource constraint WSNs.

Another line of existing solutions uses special com-
munication devices. Some methods provide physical layer
mechanism by using special radio frequency hardware to
perform authentications in packet modulation and demod-
ulation [6]. Hu and Evans [5] propose to adopt directional
antennas to find and prevent infeasible communication
links. The requirement of special hardware devices limits the
applicability of these methods.
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The third line of existing solutions is based on the
discovery and maintenance of node neighborhood. For
instance, LiteWorp [7] assumes that the network is attack-
free before a time point, and each node collects its 2-hop
neighbors. Then, LiteWorp selects a number of guard nodes
to detect wormhole channels by overhearing the infeasible
transmissions among those nonneighboring nodes. Mobi-
Worp [8] is further proposed to complement LiteWorp by
introducing some location-aware mobile nodes. Obviously,
the assumption of attack-free environment significantly
limits the applicability of these methods.

The forth line of existing solutions detects wormhole
attacks by observing the symptom of traffic flow mismatch
based on statistical analysis on the network traffic. For
instance, Buttyan et al. [9] propose to detect wormhole
attacks by capturing the abnormal increase of neighbor
number and the decrease of the shortest path lengths that are
induced by wormhole channels. This method is centralized
because the base station needs to detect wormhole attacks
by hypothesis testing based on the prestatistics of normal
networks. Another statistical approach [10] is based on
the observation that the wormhole links are selected for
routing with abnormally high frequency. They identify
wormhole links by comparing them with normal network
statistics.However, these methods all require the prestatistics
of normal network (i.e., attack-free environments).

The last line of existing solutions, which our approach
would belong to, is based on the network topology. Worm-
hole attacks drastically change the network connectivity
by introducing fake links among nodes near wormhole
antennas, which will result in various abnormal symptoms to
the network topology. Lazos et al. [11] present a graph-based
framework to tackle wormhole attacks. They assume that a
number of guard nodes that have extraordinary communi-
cation range exist in the network. The direct communication
links between guard nodes and regular nodes would form
special geometric structures, and the presence of wormholes
would break these structures. Wang and Bhargava propose
MDS-VOW [12] to reconstruct the whole network using
MDS technique and detect wormhole links by capturing
the abnormal features of the “network layout” introduced
by wormholes. However, this method is centralized, and it
can only work for special cases with only one infected node
at both ends of the wormhole attack. In [13], the authors
propose a wormhole detection approach with only local
connectivity information. In networks with UDG model,
their approach can accurately detect wormholes by looking
for “forbidden substructures” that should not be present in a
normal connectivity graph. However, it is inaccurate under
non-UDG graph. Dong et al. [14] propose a distributed
connectivity-based wormhole detection method. Each node
collects its k-hop neighborhood and checks whether the
boundary of its k-hop neighborhood subgraph has one or
two circles. Its basic idea is based on the observation that
the neighborhood that encloses a wormhole link will have
two cycles and single cycle otherwise. However, Wormcircle
requires relatively high node density to ensure that boundary
detection algorithm works well. In another work [15], they
propose to leverage global topological properties to detect

wormhole attacks. They consider a legitimate multihop wire-
less network deployed on the surface of a geometric terrain as
a 2-manifold surface of genus 0. Wormholes would introduce
singularities or higher genus into the network topology. Ban
et al. [16] propose local connectivity test (LCT) to identify
wormhole attacks. Their basic idea is that removing the
wormhole would disconnect its neighborhood from two
components. Their algorithm works well in relatively dense
and regular networks but results in many false positives in
sparse or random networks.

To sum up, the wormhole attack problem has not been
perfectly addressed presently. Existing solutions have various
limitations, which make them lack applicability in practical
WSNs. In this work, we attempt to propose a new wormhole
detection approach to relax the limitations in prior work.

2.2. MDS and Its Applications. Multidimensional scaling was
originally a method for visualizing dissimilarity data, which
was developed from the behavioral and social sciences for
studying the structure of objects. MDS takes a dissimilarity
matrix among objects as input and produces a layout of the
objects in a low-dimensional space as output. Its basic goal
is to create a configuration of objects in a low-dimensional
space (e.g., one, two, or three dimensions), and the distances
between object pairs are close to the original dissimilarities.

Recently, MDS was applied in WSNs for solving the
localization problem. As a fundamental problem in wireless
networks, localization problem has been widely studied [17–
22]. Shang et al. [17] propose a MDS-based localization
algorithm that only relies on mere connectivity informa-
tion and well tolerates measurement error. Ji and Zha
[18] propose a distributed MDS-based sensor localization
mechanism that presents a multivariate optimization-based
iterative algorithm to calculate the positions of the sensors.
In this work, we apply MDS to reconstruct the neighborhood
subgraph of each node in WSNs. The input is the distance
matrix of all node pairs, and the output is a set of virtual
positions of all nodes. The virtual positions are used to
calculate a virtual distance matrix of all node pairs. Then,
the dissimilarity of these two distance matrices is utilized to
evaluate the legality of the reconstruction.

3. Problem Formulation

3.1. Network Model. In our model, a WSN consists of a set
of sensor nodes deployed over a plane region. Each node has
a unique identity (ID). Nodes are only capable of commu-
nicating with other nodes in their proximity. We use G to
denote the communication graph, where vertices and edges
depict the nodes and communication links, respectively. We
do not require the sensor nodes to be equipped with any
special hardware, or achieve accurate globally synchronized
clocks. Moreover, we do not place any restrictions on the
network settings or topology, for example, static or dynamic
nodes, node density, communication model, the uniformity
of deployment, attack-free initial environment, and so forth.
We set an assumption to the network as follows.
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Each vertex v in the network G is capable of collecting
its k-hop neighbor information. We use Nk

G(v) to denote the
neighbors of vertex v that are away from v within k hops in G.
Let X be a vertex set in G, and let G(X) be the vertex-induced
subgraph by X , which consists of vertexes in X and edges
among them. The k-hop neighborhood subgraph of vertex
v is denoted by ΓkG(v) = G(Nk

G(v) ∪ v). This assumption is
common in the literatures and is realistic in practical WSNs.
It is worth noting that k would be a relatively small value, for
example, k = 2 is sufficient for our algorithm, which makes
our approach extremely lightweight.

3.2. Threat Model. In this work, wormhole attacks are
defined based on the minimum capabilities required by
the attacker to perform these attacks. In particular, the
attacker does not need to compromise any node or have
any knowledge of the network protocol used. Wormhole
endpoints deployed by the adversary do not have valid
network identities and do not become part of the network.
We assume that in the network exist mechanisms that
authenticate legitimate nodes and establish secure links
between authenticated nodes. Although wormhole attacks
impact neighboring discovery mechanisms in the physical
or link layer greatly, transmitted data over encrypted net-
work protocols remain transparent and unobservable to the
wormhole attacker. These assumptions are common in prior
work [3–6, 12, 13].

Then, we set an assumption on the threat model as
follows. Each wormhole link e in networkG is long enough to
well separate nodes at the two ends of it. We denote nodes at
the two ends of e by V1(e) and V2(e) and denote the shortest
distance between V1(e) and V2(e) by dG(V1(e),V2(e)). Then,
we assume that dG(V1(e),V2(e)) > 2k, where 2k presents the
length of the wormhole attack, that is, the shortest distance
between nodes at the two ends of the wormhole without
wormhole links. The length of the wormhole determines
the threat level of the wormhole attack. Longer wormholes
are more dangerous because they have larger impact range
and longer impact distance. For a short wormhole attack, its
impact on the network connectivity would be negligible since
only a small fraction of nodes are affected.

4. Local MDS-Based Wormhole Detection

In this section, we present the analysis and design details of
our MDS-based wormhole detection approach.

4.1. Overview of Our Approach. Wormhole attacks introduce
essential changes to the network topology. In order to detect
wormhole attacks by only topology information, we have to
capture the typical topological characteristics of wormhole
links. The main idea of our detection approach is based on
an observation as follows.

Each node v in the network G collects its k-hop
neighborhood information, in particular, k = 2. The shortest
distances (i.e., hop count) between all node pairs in the
neighborhood subgraph ΓkG(v) are used to construct an
estimation distance matrix. Then, the distance matrix is

used to reconstruct the subgraph by applying MDS on the
subgraph and embedding it on a plane. There would be two
conditions. First, if v is a normal node, the reconstructed
subgraph would be relatively approximating to the original
network. Thus, the embedded distance between each node
pair would be relatively close to their estimation distance.
Otherwise, if v is a wormhole node, its 2-hop neighborhood
subgraph would contain all the wormhole nodes. Topolog-
ically, each wormhole node would connect with all nodes
at the other end. Therefore, if we still constrainedly embed
the subgraph on a plane, the distance constraints cannot be
well maintained during the reconstruction. Based on this
observation, we let all nodes in the network perform local
MDS-based reconstruction and detect potential wormhole
nodes according to the legality of their reconstructions.
Additionally, we introduce a simple and effective necessary
condition of wormholes to filter the suspect nodes detected
by the previous process. Through this refinement process, we
can remove most of false positives and identify all wormhole
links.

As discussed previously, our detection approach mainly
includes two components: (1) performing local MDS-based
reconstruction and (2) performing refinement process. The
first component obtains a number of suspect wormhole
nodes. The second component filters the suspect nodes and
presents the final detection results. We, respectively, describe
these two components in detail as follows.

4.2. Local MDS-Based Reconstruction. For ease of represen-
tation, we divide this component into three subprocesses, as
described hereinafter.

4.2.1. Distance Estimation. For an arbitrary node v in net-
work G, it first collects its k-hop neighborhood information
and obtains its k-hop neighborhood subgraph ΓkG(v). Next,
a classical shortest-path algorithm, for example, Dijkstra’s
shortest path algorithm, is applied to calculate the shortest
distances between all node pairs in ΓkG(v). Then, the shortest
distance matrix M[ΓkG(v)] is constructed, which is an n × n
matrix (n denotes the number of nodes). Each element in
M[ΓkG(v)] is utilized as the estimation distance between each
node pair.

4.2.2. Network Reconstruction. Using the shortest distance
matrix M[ΓkG(v)] as input parameter, we apply MDS to
reconstruct the k-hop neighborhood subgraph of v. We

denote the reconstructed network by Γ
k
G(v), in which each

node would be assigned a virtual position (i.e., node
coordinations). Then, the Euclidian distance between each

node pair is calculated in Γ
k
G(v), and a virtual distance matrix

M[Γ
k
G(v)] is produced.

4.2.3. Wormhole Judgement. Then, we describe how to decide
whether a node is a wormhole node candidate by its
reconstructed neighborhood subgraph. First, the distortion
factor of the MDS reconstruction is calculated for each node
v. The distortion factor is defined as follows.
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Definition 1 (distortion factor). The distortion factor λ(v)
is defined as the root mean square error (RMSE) between
the shortest distance matrix M[ΓkG(v)] and the recon-

structed virtual distance matrix M[Γ
k
G(v)], that is, λ(v) =√

(1/(n× n))
∑n

i=1, j=1(M[Γ
k
G(v)](i, j)−M[ΓkG(v)](i, j))2.

As discussed previously, each node produces large distor-
tion factor if it is a wormhole node and little distortion factor
otherwise. Based on this observation, we set a predefined
threshold and label nodes that produce distortion factors
above this threshold as suspect wormhole nodes. In our
experiment, we set the threshold to be the median value of
the distortion factors of all nodes in G, that is, λthreshold =
(λmax + λmin)/2 and λmax = max{λ(v) : v ∈ V(G)}, λmin =
min{λ(v) : v ∈ V(G)}, respectively.

Then, we present an efficient way to generate the
threshold and distribute it to all nodes. Each node floods a
message that contains its distortion factor and records the
maximum and minimum values of all distortion factors in all
flooding messages it receives. Each node only relays messages
that contain a new maximum or minimum value. Thus, only
two messages that, respectively, contain the globally maxi-
mum and minimum values would be flooded to the whole
network. After the flooding is finished, each node calculates
the threshold from the maximum and minimum values it
records and compares it with its own distortion factor. If
its distortion factor exceeds the threshold, it is labeled as a
suspect wormhole node and normal node otherwise.

After the implement of this component, a number of
suspect wormhole nodes are produced.

4.3. Performing Refinement Process. There is still an issue
to be addressed. Some normal nodes may be wrongly
labeled as suspect wormhole nodes, and false positives will
be introduced. Too many false positives would result in
normal links being removed and consequentially degrade the
network capacity. In order to address this issue, we introduce
this refinement process to filter the suspect nodes and remove
false positives. By fully investigating the topology changes
introduced by wormholes, we are able to capture some
typical topological characteristics of wormhole links. Let X
and Y denote two sets that, respectively, contain wormhole
nodes at the two ends of a wormhole in network G; let X ×Y
denote the edge set between an arbitrary node pair x ∈ X
and y ∈ Y . Then, we present Theorem 2.

Theorem 2. Given a network graph G and two wormhole node
sets X and Y , the following two conditions hold.

(1) The subgraph G′ that contains node set X∪Y and edge
set X × Y is a complete bipartite subgraph of G.

(2) In the subgraph G′′, which is constructed by removing
all edges in X × Y from G, the k-hop neighbor sets of
an arbitrary vertex pair x ∈ X and y ∈ Y have no
common elements, that is, Nk

G′′(x)∩Nk
G′′(y) = ∅.

Proof. We first prove condition 1. Because X and Y , respec-
tively, contain and only contain nodes at the two ends of a

wormhole, each node v at one end is given the illusion that
all nodes at the other end are its direct neighbors. Thus, there
will be an edge between v and each node at the other end.
According to the construction of G′, it will obviously be a
complete bipartite subgraph of G.

We then prove condition 2. If there are two nodes x ∈ X
and y ∈ Y and Nk

G′′(x) ∩ Nk
G′′(y) /=∅, the shortest distance

between x and y must be less than 2k, that is, d(x, y) < 2k.
Consequentially, the shortest distance between node sets X
and Y would be less than 2k, that is, dG′′(X ,Y) < 2k, which
will contradict with our assumption in the threat model.

Theorem 2 is a necessary condition of wormholes and is
utilized to filter suspect wormhole nodes. First, all connected
components are found in these suspect nodes. We denote the
set of such connected components by C. Isolated nodes can
be certainly excluded. Next, all maximal complete bipartite
subgraphs (MCBSs) are found in these connected compo-
nents. In order to improve the detection rate, we expand each
connected component by adding all 1-hop neighbors of the
nodes in the component into this component. By doing this,
all wormhole nodes can be included in the component if at
least one wormhole node at both ends of the wormhole is
suspect node. The algorithm in [23] that finds the maximal
complete bipartite subgraphs in any graph is applied on each
C ∈ C. Let B be the set of maximal complete bipartite
subgraphs generated by this algorithm, and let B = (X ,Y) be
an element in B, where X and Y are the two partitions of the
bipartite graph. Then, condition 2 in Theorem 2 is applied
on each B ∈ B. If Nk

G′′(X) ∩ Nk
G′′(Y) = ∅, all nodes in B

will be labeled as final wormhole nodes. Otherwise, they are
excluded. Till now, the final detection results are produced.

Moreover, our ultimate goal of detecting wormhole
attacks is to neutralize them without breaking regular
network functions. In particular, we want to eliminate the
high volume of traffic passing through the wormhole links
that create the wormhole effect with keeping the sensing and
computational capabilities of the nodes. After detecting all
wormhole nodes, this can be easily done by removing edges
X × Y in each bipartite subgraph B ∈ B.

4.4. Algorithm and Discussion. We present Algorithm 1 that
describes our wormhole detection approach. Then, several
parameters that may influence the performance of our
algorithm are discussed as follows.

First, we discuss the influence of k. In our simulations, k
is set to be small constant k = 2. The reasons are twofold.
First, small k introduces low communication overhead of
each node for collecting its k-hop neighborhood informa-
tion. Second, if v is a wormhole node, its 2-hop neighbors
would cover all wormhole nodes. Therefore, setting k = 2
is sufficient for capturing the abnormal embedding chrema-
tistics induced by this wormhole. Actually, setting k to be a
larger value is even adverse to the detection, because larger
k induces larger subgraph, which will reduce the proportion
of wormhole nodes in the subgraph and accordingly degrade
the distinguishability of wormhole nodes.

Then, we discuss the influence of λthreshold. The selection
of the threshold dramatically impacts the detection accuracy



6 International Journal of Distributed Sensor Networks

Input:
A network graph G(V ,E).

Output:
A set of complete bipartite graphs B.

(1) for each v ∈ V do
(2) Collect k-hop neighborhood subgraph ΓkG(v).
(3) Calculate the shortest distance matrix M[ΓkG(v)].
(4) Reconstruct the subgraph by MDS.

(5) Calculate the virtual distance matrix M[Γ
k
G(v)].

(6) Calculate the distortion factor λ(v).
(7) Flood λ(v) to the network.
(8) Calculate the threshold λthreshold.
(9) if λv > λthreshold then
(10) Add v to the suspect node set S.
(11) end if
(12) end for
(13) Find all connected components C from S.
(14) for each C ∈ C do
(15) Find each MCBS B from C.
(16) Add B to the MCBS set B.
(17) end for
(18) for each B = {X ,Y} in B do
(19) if Nk

G′′ (X)∩Nk
G′′ (Y) = ∅ then

(20) Remove edges X × Y .
(21) else
(22) Remove B from B.
(23) end if
(24) end for

Algorithm 1: Our wormhole detection algorithm.

of our approach. In particular, lower threshold guarantees to
catch all wormhole nodes, but causes more false positives,
which will increase the workload of refinement process.
Otherwise, a higher threshold induces fewer false positives
but may produce false negatives. Comparatively, we are more
concerned with detecting all wormhole nodes. Therefore, our
approach will be on the aggressive side and select a relatively
lower threshold. In our simulations, the threshold is set to
be the median value of all distortion factors. Moreover, it
is also a concerning issue, which makes the generation and
distribution of the threshold easier.

5. Evaluation

In this section, we conduct extensive simulations to evaluate
the effectiveness and performance of our design and compare
it with the state-of-the-art methods.

5.1. Simulation Setup

5.1.1. Node Deployment. Two node deployment models are
used: perturbed grid and random deployment. Perturbed
grid model is adopted [24] to approximate manual deploy-
ments of nodes, in which all nodes are placed on an m × n
grid and perturbed around their initial positions with a
perturbed ratio p. Let each cell in the grid be a square with
edge length d. Then, the node with coordinate (x, y) will be

randomly placed in the region [x− pd, x+ pd]× [y− pd, y+
pd]. In random deployment model, each node is assigned a
coordinate randomly drawn from the network field.

5.1.2. Communication Model. Although our approach does
not require specific communication models, both UDG and
quasi-UDG models are adopted to build the networks. In
the UDG model, there is a link between nodes u and v if
and only if their distance is no larger than R, where R is the
communication radius. In quasi-UDG model, nodes u and
v have a link if their distance is no larger than ρR and have
a link with probability q if their distance is within [ρR,R],
where 0 < ρ < 1.

5.1.3. Wormhole Position. The wormhole position is a crucial
factor for wormhole detection, because it could impact
the significance of wormhole symptoms. Especially when
multiple wormholes exist in the network, their relative
position will dramatically influence the wormhole detection.
In the simulations, our approach is evaluated for detecting
wormholes placed at different positions of the network.
Moreover, multiple wormholes with different relative posi-
tions are also evaluated.

5.2. Simulation Results. In this subsection, we present the
results of the simulations under various network settings and
compare them with the state-of-the-art MDS-VOW [12] and
LCT [16] methods.

The basic network contains 1600 nodes deployed over a
square region. In all simulations, p = 2 for perturbed grid
model, and ρ = 0.75 for quasi-UDG model. The average
node degree varies from 4 to 13. A set of wormhole nodes are
placed at the diagonal of the network. The average number
of wormhole nodes is 15. We require all algorithms to detect
wormholes that are not shorter than 8 hops, that is, the
shortest distance between nodes at the two ends of the
wormhole is not less than 8. All simulations take 100 runs
with random network generation and present the average
results.

First, four sets of simulations are conducted to evaluate
the number of false positives of our approach. Each set of
simulations adopts different node deployments and commu-
nication models. The results are, respectively, presented in
Figures 2(a)–2(d). From the results, we can obtain several
observations as follows.

5.2.1. Influence of Node Density. The results in Figure 2
indicate that the number of false positives decreases for all
approaches as the node degree increases. And our approach
always greatly outperforms LCT method. However, when
the degree is very low, there are still some false positives.
The reason is analyzed as follows. In extremely sparse
networks, there would be some special cases called bridge
links, as shown in Figure 3. Although it is a normal link in
the network, it topologically accords with the property of
wormhole links. Some of these links may be wrongly labeled
as wormhole candidates in MDS-based reconstruction and
cannot be filtered by the refinement process.
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(a) Quasi-UDG and perturbed grid deployment
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(b) Quasi-UDG and random deployment
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(c) UDG and perturbed grid deployment
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(d) UDG and random deployment
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(e) Quasi-UDG and perturbed grid deploy-
ment
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(f) Quasi-UDG and random deployment

Figure 2: Simulation results. 1600 nodes are deployed over a square region. The average node degree varies from 4 to 13. In all simulations,
p = 2 for perturbed grid model, and ρ = 0.75 for quasi-UDG model. A wormhole is launched at the diagonal of the network. The average
number of wormhole nodes is 15. (a)–(d) evaluate the number of false positives under various network settings. (e)-(f) evaluate number of
false negatives.

A B

Figure 3: An example of bridge link. Link between nodes A and
B may be aggressively labeled as wormhole link. The hatched areas
denote holes of network deployment.

5.2.2. Influence of Node Deployment. It is shown in Figure 2
that our approach always produces few false positives for
both perturbed grid distribution and random distribution.
LCT produces fewer false positives for perturbed grid

model than random deployment model. The reason is that
perturbed grid model produces more regular networks.

5.2.3. Influence of Communication Model. Figure 2 demon-
strates that our approach is not clearly influenced by the
communication model. And it also demonstrates that our
approach always induces much fewer false positives under
both UDG and quasi-UDG models.

Then, we evaluate the number of false negatives of our
approach, as shown in Figures 2(e) and 2(f). The results
show that our approach can always detect all wormhole
attacks. More results are constant under UDG model and are
omitted here. The MDS-VOW method cannot even detect
any wormholes because it does not work for the general
wormhole model.

More simulations are conducted by placing wormholes at
different positions in the network. The results are constant
and are omitted due to the space limit. To sum up, our
approach still works well in sparse and irregular networks
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(a) (b) (c) (d)

Figure 4: Detection results for multiple wormholes. 900 nodes are deployed over a square region. Perturbed grid deployment with p = 1.5
and quasi-UDG with ρ = 0.75 are adopted to generate the networks. The average node degree is 7.5. Multiple wormholes are placed at
different positions in the network.

and is not clearly influenced by the communication model.
Moreover, our approach produces few false positives. It is
worth noting that LCT method can obtain better results by
increasing the shortest length of wormholes required to be
detected. However, that will greatly restrict its applicability
and increase the communication and computation cost.

5.3. Multiple Wormholes. In this subsection, our approach is
evaluated for detecting multiple wormholes.

When the distance between two different wormholes
is long enough, they will not affect each other. Thus, our
approach can well detect all wormhole nodes, as shown
in Figures 4(a)–4(c). Otherwise, if multiple wormholes are
close, they may interfere with each other, which makes the
detection more difficult. Particularly, if the distances of both
ends of the wormholes are relatively short, as shown in
Figure 4(d), our approach fails to detect the wormholes. The
reason is as follows. When both ends of two wormholes are
very close to each other, wormhole nodes at different ends
are connected by short paths through wormhole links in the
adjacent wormhole. Therefore, these nodes would be filtered
during the refinement process. Actually, to the best of our
knowledge, this situation cannot be solved by any purely
topology-based detection methods.

6. Conclusions

As a severe threat to WSNs, wormhole attack has received
considerable attentions during the past decade. However,
most of existing countermeasures lack applicability for
requiring special hardware devices or depending on rigorous
assumptions on the network. In this work, we fundamentally
analyze the essential wormhole symptoms by topological
methodology and propose a local MDS-based wormhole
detection approach. Our approach does not depend on
any hardware requirements and is extremely simple and
lightweight, which make it quite feasible in practical WSNs.
Extensive simulations are conducted, and the results show
that our approach can effectively identify all wormhole nodes
for a large class of network instances.
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