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Image analysis, an interdisciplinary field where one wit-
nesses the crossing contribution from engineers, scientists
and mathematicians, is of paramount importance for a wide
range of technologies, such as computer vision, pattern
recognition, artificial intelligence, and biomedical imaging.
During the last few years, there have been important ad-
vances in the development of the next generation of math-
ematical methods for image analysis. While progress in the
fundamentals and applications has been rapid, many chal-
lenges remain. This special issue is a collection of high qual-
ity, peer-reviewed, original research papers illustrating recent
progress and future directions in the area of mathematical
analysis of biomedical images.
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In contemporary image and vision analysis, stochastic approaches demonstrate great flexibility in representing and modeling com-
plex phenomena, while variational-PDE methods gain enormous computational advantages over Monte Carlo or other stochastic
algorithms. In combination, the two can lead to much more powerful novel models and efficient algorithms. In the current work,
we propose a stochastic-variational model for soft (or fuzzy) Mumford-Shah segmentation of mixture image patterns. Unlike the
classical hard Mumford-Shah segmentation, the new model allows each pixel to belong to each image pattern with some prob-
ability. Soft segmentation could lead to hard segmentation, and hence is more general. The modeling procedure, mathematical
analysis on the existence of optimal solutions, and computational implementation of the new model are explored in detail, and
numerical examples of both synthetic and natural images are presented.

Copyright © 2006 Jianhong (Jackie) Shen. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION: SOFT VERSUS
HARD SEGMENTATION

Segmentation is the key step towards high-level vision mod-
eling and analysis, including object characterization, detec-
tion, and classification. There have been some recent devel-
opments indicating that certain high-level visual tasks such
as global scene interpretation might be able to bypass seg-
mentation [1, 2]. Nevertheless, segmentation still remains
perhaps the most important and inspiring task to date in low-
or middle-level vision analysis and image processing.

The segmentation problem can be formulated as follows.
Given an image I ∈ L2(Ω) on a 2-dimensional (2D) domain
Ω (assumed to be bounded, smooth, and open), one seeks
out a closed “edge set” Γ, and all the connected components
Ω1, . . . ,ΩK of Ω \ Γ, such that by certain suitable visual mea-
sure (e.g., textural or photometric), the image I is discon-
tinuous along Γ while smooth or homogeneous on each seg-
ment Ωi. Each image patch Ii = I|Ωi is also called a pattern,
and Ωi is its support.

We will call this most common practice “hard” segmen-
tation. A hard segmentation partitions the image domain Ω
along a definitive edge set Γ, and outputs nonoverlapping pat-
tern supports Ω1, . . . ,ΩK .

The present work introduces the notion of “soft” seg-
mentation. Mathematically, a hard segmentation amounts to
the partition of the unit using indicator functions:

1Ω(x) =
K∑

i=1

1Ωi(x), a.e. (in Lebesgue) x = (x1, x2
) ∈ Ω.

(1)

A soft segmentation seeks out instead a softer partition of the
unit:

1Ω(x) =
K∑

i=1

pi(x), (2)

where pi’s are continuous or smoother functions. Formally,
each pi could be considered as the mollified version of 1Ωi(x).

In the stochastic literature of image analysis and mod-
eling, the above notion of soft segmentation is closely con-
nected to mixture image models (e.g., [3]). Suppose a given
image I is composed of K unknown patterns:

ω = 1,ω = 2, . . . ,ω = K , (3)

where ω denotes the pattern label variable. At each pixel x ∈
Ω, ω(x) ∈ {1, . . . ,K} becomes a random variable. Then the
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Figure 1: Natural images often do not have clear-cut “hard” bound-
aries between different patterns. Along the arrow, for example, one
only observes that the sand pattern gradually becomes a grass pat-
tern. Such a “soft” view is the stochastic view on the segmentation
problem.

pi’s in (2) carry the natural stochastic interpretation:

pi(x) = Prob
(
ω(x) = i

)
, i = 1 : K. (4)

For this reason, each pi will be called the ownership of pattern
i, following Jepson and Black [3]. (Some authors also prefer
to call it the membership [4].) Instead of the repulsive own-
ership in a hard segmentation, a soft one allows each pattern
to “own” a pixel with some likelihood.

Soft segmentation is more general since it can lead to nat-
ural hard segmentation under the maximum-likelihood (ML)
principle. Given a soft segmentation {pi(x) : i = 1 : K}, one
can define for each pixel x ∈ Ω its unique owner ω∗(x) by

ω∗(x) = arg max
ω∈1:K

pω(x), (5)

and if the maxima are nonunique, accept the largest index
from the arg max pool. The segments are then defined by

Ωi = ω−1
∗ (i) = {x ∈ Ω | ω∗(x) = i

}
, i = 1 : K , (6)

which leads to a natural hard segmentation. Formula (5) and
(6) are called the hardening formulae.

Soft segmentation has been motivated by practical anal-
ysis of natural images. Patterns in natural scenes often do
not have clear-cut boundaries. In Figure 1, for example, there
does not seem to exist a “hard” boundary between the grass
and sand areas. If one draws an oriented line as shown in the
figure, it makes more sense to state that along the arrow, the
pattern transits from being “more” sand-like to being “more”
grass-like. Such consideration favors the following stochastic
view that along the arrow, the ownership

Prob
(
ω(x) = grass

)
increases,

while Prob
(
ω(x) = sand

)
decreases.

(7)

In the present work, we propose a new stochastic-varia-
tional soft segmentation model for the following celebrated
Mumford-Shah model [5, 6]:

min
Γ,u

E
[
u,Γ | I]=min

Γ,u
H1(Γ)+α

∫

Ω\Γ
|∇u|2 +λ

∫

Ω
(u− I)2,

(8)

where H1 stands for the 1D Hausdorff measure [7], which
is simply the length when Γ is regular enough. For notational
conciseness, the default area-element symbol dx = dx1dx2 will
be omitted in most integral formulae.

As stated in the abstract, the stochastic softness in-
duces more flexibility and universality in modeling, while the
variational-PDE approach facilitates rigorous mathematical
analysis as well as more efficient computational implementa-
tions compared with purely stochastic approaches including,
for example, the Monte Carlo method or Gibbs’ sampling [8–
11].

The paper has been organized as follows. Section 2
builds up the soft Mumford-Shah (SMS) model under the
Bayesian rationale and the MAP estimator [12, 13], which
are the formal stochastic foundations of the present model.
In Section 3, the prior energy on the ownerships pi’s is de-
veloped based on the celebrated work of Modica and Mor-
tola [14] on phase-field modeling and Γ-convergence ap-
proximation in material sciences and phase transitions. In
Section 4, we analyze the main mathematical properties of
the proposed SMS model, including the admissible space,
hidden symmetry and symmetry breaking via weak super-
vision, and the existence theorems. In Section 5, we then
derive the system of Euler-Lagrange equations of the SMS
model for which the role of the probability simplex con-
straint is discussed in detail. Section 5 also introduces the
alternating-minimization algorithm to compute the Euler-
Lagrange equations. Finally, the numerical performance of
the SMS model is demonstrated in Section 6 via both syn-
thetic and natural test images that are sufficiently representa-
tive and generic.

Throughout the manuscript, the notation F[X ,Y | Z]
in the deterministic setting always denotes a quantity (often
a functional, or an energy) F that depends on X , Y , and Z
but with Z given or fixed. Similarly, F[X | Y ,Z] still de-
notes F[X ,Y | Z] modulo some additive quantity g[Y ,Z]
that is often unimportant as far as the optimization on X
(given Y and Z) is concerned. These notations therefore have
been inspired by conditional probabilities in the stochastic set-
ting (formally under the Gibbs’ correspondence: F[X | Y] =
− log p(X | Y)).

2. BAYESIAN RATIONALE TO THE NEW MODEL
AND GAUSSIAN MIXTURE

2.1. Bayesian rationale

Segmentation can be done in some feature spaces such as
gradient-like highpass features or Gabor features (e.g., [11,
15, 16]). The Mumford-Shah model easily extends to such
general features (e.g., [15]), even though it was originally
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formulated only for intensity fields. For maximal clarity in
exposing the core ideas of the current work, we will also fo-
cus only on the latter, while leaving as canonical exercises to
adapt the new model for any given feature distribution.

Let K be the total number of intended patterns. As in [10,
11], K could also be treated as an unknown to be optimally
estimated, which however does not add much to the most
significant contribution (i.e., the modeling and computation
of the “softening” procedure) of the present work.

Given an image input I = I(x) on a bounded, regular,
and open domain Ω, the primary goal of soft segmentation
is to compute the ownerships

p1(x), p2(x), . . . , pK (x). (9)

Define P(x) = (p1(x), p2(x), . . . , pK (x)), and

ΔK−1 = convex hull of �e1, . . . ,�eK , (10)

where the (�ei | i = 1 : K) denotes the canonical Cartesian ba-
sis of RK . ΔK−1 is often called the canonical (K − 1)-simplex,
or the probability simplex in RK . Then

P : Ω −→ ΔK−1, x −→ P(x), (11)

meaning that the total ownerships always add up to 100% at
any pixel x ∈ Ω.

Associated with each pattern label, ω = i is a smooth
function ui(x) ∈ H1(Ω), similar to the original Mumford-
Shah model. Here the Sobolev space H1(Ω) is defined by [17]

H1(Ω) = {u ∈ L2(Ω) | ∇u ∈ L2(Ω,R2)}. (12)

Define U(x) = (u1(x),u2(x), . . . ,uK (x)). Then the goal of
soft segmentation is to estimate the optimal vectorial pair of
ownerships and patterns given an image I :

(
P∗, U∗

) = arg max
(P,U)

Prob
(

P, U | I). (13)

By the Bayesian formula [12, 13], the posterior given I is
expressible via

Prob
(

P, U | I) = Prob
(
I | P, U

)
Prob(P) Prob(U)

Prob(I)
, (14)

assuming that the mixture patterns U and the mixture rules P
are independent (as two vectorial random fields). We will call
the first term a “mixture generation” model, since it reveals
how the image data should look like given the information of
the patterns and their ownerships.

By taking logarithmic likelihood E[·] = − log Prob(·), or
the formally Gibbs’ energy in statistical mechanics [18, 19],
one attains the soft segmentation model in its “energy” form:

arg min
(P,U)

E
[

P, U | I]

= arg min
(P,U)

E
[
I | P, U

]
+ E[P] + E[U].

(15)

Assuming that all the pattern channels are independent
of each other, one has

E[U] = E
[
u1, . . . ,uK

] =
K∑

i=1

E
[
ui | i

]
. (16)

That is, we assume that U as a random vector field has in-
dependent scalar components. It has been motivated by the
facts that 2D images are the optical projections of 3D scenes
and that different objects in 3D are independently positioned
in different ranges or depths.

For Sobolev-regular patterns, that is, functions whose
gradients are square integrable, one may impose the homo-
geneous Sobolev energies:

E
[
ui | i

] = E
[
ui
] = α

∫

Ω

∣∣∇ui
∣∣2

, i = 1 : K , (17)

for some scalar weight α that models the visual sensitivity
to intensity roughness. Unlike the original Mumford-Shah
model, the energy for each channel has been defined on
the entire image domain Ω instead of on each “hard-cut”
patch Ωi. Thus the energy form (17) must carry out extrap-
olation for practical applications. Long-range extrapolations
are, however, often unimportant after being weighed down
by their negligible ownerships pi’s.

2.2. Gaussian mixture with smooth mean fields

In this section we discuss the mixture generation model
Prob(I | P, U) or E[I | P, U].

Assume that the patterns are all Gaussian with mean
fields u1,u2, . . . ,uK . For simplicity, also assume that they
share the same variance σ2 (which readily generalizes to the
more general case with variations). Then at any given pixel
x ∈ Ω,

(
I | ω(x) = i

) ∼ N
(
ui(x), σ2), i = 1 : K. (18)

Define the Gaussian probability density function (pdf)

g
(
I | m, σ

) = 1√
2πσ

exp
(
− (I −m)2

2σ2

)
. (19)

The pdf of the mixture image I at any pixel x is given by

Prob
(
I(x) | P(x), U(x)

)

=
K∑

i=1

Prob
(
I | ω(x) = i

)
Prob(ω(x) = i)

=
K∑

i=1

g
(
I | ui(x), σ

)
pi(x).

(20)

Thus ideally the “energy” for the mixture generation model
should be given by

E
[
I | P, U

] = Eμ
[
I | P, U

]

= −μ
∫

Ω
log

( K∑

i=1

g
(
I | ui(x), σ

)
pi(x)

)
,

for some μ > 0,

(21)

provided that given two fields P and U on Ω, for any two
disjoint and finite sets of pixels X and Y ,

(
I(X) | P, U

)
is independent of

(
I(Y) | P, U

)
. (22)
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Here I(X) = {I(x) | x ∈ X}. (We also must emphasize that
the above derivation should be considered as motivational
rather than rigorous, due to the continuum setting.)

In the current work, we will adopt a reduced form of the
complex formula (21), which is simpler and easier to manage
both in theory and for computation. Assume that each soft
ownership pi(x) is closer to a hard one pi(x) � 1Ωi(x) for
i = 1 : K . Then

− log

( K∑

i=1

g
(
I | ui(x), σ

)
pi(x)

)

� − log

( K∑

i=1

g
(
I | ui(x), σ

)
1Ωi(x)

)

= −
K∑

i=1

log g
(
I | ui(x), σ

)
1Ωi(x) (a.e.)

� −
K∑

i=1

log g
(
I | ui(x), σ

)
pi(x)

= 1
2σ2

K∑

i=1

(
I − ui(x)

)2
pi(x) + const,

(23)

where the additive constant only depends on σ and K . This
suggests the following convenient energy form for the mix-
ture generation model:

E
[
I | P, U

] = λ
∫

Ω

( K∑

i=1

(
I − ui(x)

)2
pi(x)

)
, (24)

which amounts to a weighted least-square energy [20]. The
weight λ reflects visual sensitivity to synthesis errors.

In combination of (15), (17), and (24), the new soft seg-
mentation model takes the form of minimizing

E
[

P, U | I] = λ
K∑

i=1

∫

Ω

(
I − ui(x)

)2
pi(x)

+ α
K∑

i=1

∫

Ω

∣∣∇ui
∣∣2

+ E[P].

(25)

Notice that here the ownership distribution P “softens” the
“hard” segmentation boundary Γ in the original Mumford-
Shah model (8). To complete the modeling process, it suffices
to properly define the prior or regularity energy E[P], which
is the main task of the next section.

3. MODICA-MORTOLA’S PHASE-FIELD MODEL
FOR OWNERSHIP ENERGY

To generalize but not to deviate too far from classical hard
segmentation, it is natural to impose the following two con-
straints:

(a) each pattern ownership pi(x) has almost only two
phases: on (corresponding to pi = 1) and off (to
pi = 0), and the transition band in between is narrow;

(b) the soft boundaries, or equivalently the transition
bands, are regular, instead of being zigzag.

In combination, one imposes the following Modica-Mortola
type of energy with a double-well potential [14]: pi ∈ H1(Ω),

Eε
[
pi
] =

∫

Ω

(
9ε
∣∣∇pi

∣∣2
+

(
pi
(
1− pi

))2

ε

)
, i = 1 : K.

(26)

Here ε 	 1 controls the transition bandwidth. Since ε 	 1,
the second term necessarily demands pi � 0 or 1 to lower the
energy, which well resonates with the expectation in (a). The
first term, weighted by the small parameter ε, amounts to a
regularity condition on each pi, which meets the requirement
in (b).

Energies in the form of (26) are very common in ma-
terial sciences, including the theories of liquid crystals and
phase transitions [21, 22]. Mathematically, they have been
well studied in the framework of Γ-convergence [23], which
we now give a brief introduction in the present context. We
also refer the reader to the works of Ambrosio and Tortorelli
[24, 25] on the Γ-convergence approximation to the classical
Mumford-Shah segmentation model.

Recall that for any q(x) ∈ L1(Ω), its total variation as a
Radon measure is defined by [7, 26, 27]

TV[q] =
∫

Ω
|Dq| = sup

g∈C1
0 (Ω,B2)

〈q,∇ · g〉, (27)

where B2 stands for the unit disk centered at the origin inR2.
(The TV measure was first introduced into image processing
by Rudin et al. [28].) Define that for any q ∈ L1(Ω),

E0[q] =
⎧
⎨
⎩

TV[q] if q = 0 or 1, a.e. on Ω,

∞ otherwise.
(28)

As a result, a finite energy E0[q] necessarily implies that q
has two phases only, and E0[q] = TV[q] = Per(q−1(1)) is the
perimeter of the support region V = q−1(1).

Further define

L1
[0,1](Ω) = {q ∈ L1(Ω) | q(x) ∈ [0, 1], ∀x ∈ Ω

}
(29)

to be a subspace of L1(Ω) (as a metric space). Then Modica
and Mortola’s well-known results in [14] readily lead to the
following theorem.

Theorem 1 (Γ-convergence approximation of a two-phase
TV). For any q ∈ L1

[0,1](Ω) \ H1(Ω), extend the definition of
Eε[·] in (26) by defining Eε[q] = +∞. Then

Eε −→ E0

in the sense of Γ-convergence in the metric space L1
[0,1](Ω).

(30)

That is,

(i) for any qε → q in L1
[0,1](Ω) as ε → 0,

lim inf
ε→0

Eε
[
qε
] ≥ E0[q]; (31)
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(ii) for any q ∈ L1
[0,1](Ω), there exists some sequence

(q∗ε | ε), such that q∗ε → q as ε → 0, and

lim
ε→0

Eε
[
q∗ε
] = E0[q]. (32)

We refer the reader to Modica and Mortola [14] for a
proof (with some necessary modification). Here we only
point out that the “tight” sequence (q∗ε | ε) in (ii) can be con-
structed using a smooth sigmoid transition across the hard
boundary of a given two-phase function q. Recall as in the
theory of neural networks [29] that a sigmoid transition be-
tween 0 and 1 is achieved by

σ(t) = 1
1 + e−t

, −∞ < t <∞. (33)

The scaling parameter ε participates in the transition by the
form of σ(t/(3ε)). In particular, ε indeed corresponds to the
width of the transition band when t is a distance function.

This theorem reveals the close connection of the particu-
lar choice of Eε[pi] in (26) with the original Mumford-Shah
model.

Proposition 1. Suppose that pε’s “optimally” (i.e., by the
above sigmoidal transition) converge to a given 2-phase pattern
1V (x) with a regular hard boundary Γ = ∂V . Then,

Eε
[
pε
] −→ length(Γ) =

∫

Ω

∣∣D1V (x)
∣∣. (34)

Similar results have appeared in the earlier influen-
tial works of Ambrosio and Tortorelli [24, 25] on the Γ-
convergence approximation to the Mumford-Shah model.
The technique has also been extensively applied in image
computation and modeling [30–35] to overcome the diffi-
culty in representing and computing the free boundary Γ.

To summarize this section, we propose the follow-
ing energy model for the ownership distribution P(x) =
(p1(x), p2(x), . . . , pK (x)):

Eε[P] =
K∑

i=1

Eε
[
pi
] =

K∑

i=1

∫

Ω

(
9ε
∣∣∇pi

∣∣2
+

(
pi
(
1− pi

))2

ε

)
.

(35)

One, however, must realize that different ownerships are not
decoupled by this energy though it has appeared so. The en-
ergy Eε[P] must be coupled with the constraint of the prob-
ability simplex:

P : Ω −→ ΔK−1, or
K∑

i=1

pi(x) ≡ 1, pi ≥ 0, ∀x ∈ Ω.

(36)

In particular, for small ε, although (35) implies that each
ownership pi tends to polarize to 0 or 1 independently, they
have to cooperate with each other under the above simplex
constraint to optimally share the ownerships.

4. SOFT MUMFORD-SHAH SEGMENTATION

4.1. The model and admission space

Combining the preceding two sections, we have developed
the complete formula for soft Mumford-Shah segmentation
with K patterns, that is, to minimize

E
[

P, U | I] = λ
K∑

i=1

∫

Ω

(
ui − I

)2
pi + α

K∑

i=1

∫

Ω

∣∣∇ui
∣∣2

+
K∑

i=1

∫

Ω

(
9ε
∣∣∇pi

∣∣2
+

(
pi
(
1− pi

))2

ε

)
,

(37)

with the constraint that

P : Ω −→ ΔK−1, the probability (K − 1)-simplex, (38)

that is, pi ≥ 0, i = 1 : K , and
∑K

i=1 pi = 1. As discussed
previously, it is this simplex constraint that induces cou-
pling among different channels into the seemingly decoupled
model (37).

Besides the simplex constraint, the last term in the en-
ergy (37) requires pi ∈ H1(Ω) for i = 1 : K . Similarly, the
second term requires each pattern ui ∈ H1(Ω). Then with
the assumption that

“the given image I ∈ L2(Ω),” (39)

E[P, U | I] is well defined and finite for any admissible pat-
terns U and pattern ownership distribution P:

admK=
{

(P, U) | pi, ui ∈ H1(Ω), i=1 : K ; P :Ω −→ ΔK−1
}
.

(40)

4.2. Breaking the hidden symmetry via
weak supervision

Let SK denote the permutation group of {1, . . . ,K}. Each per-
mutation σ ∈ SK is a 1-to-1 map:

σ : {1, . . . ,K} −→ {1, . . . ,K}, (41)

so that (σ(1), . . . , σ(K)) is a rearrangement of {1, . . . ,K}. For
any K-tuple F = ( f1, . . . , fK ), one defines

Fσ =
(
fσ(1), fσ(2), . . . , fσ(K)

)
. (42)

Theorem 2 (hidden symmetry of SMS). For any σ ∈ SK ,

E
[

Pσ , Uσ | I
] = E

[
P, U | I]. (43)

In particular, suppose that

(
P∗, U∗) = arg min

(P,U)∈admK

E
[

P, U | I] (44)

is an optimal pair. Then for any σ ∈ SK , (P∗σ , U∗
σ ) is a mini-

mizer as well.
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The proof is straightforward and thus omitted. Such
symmetry not only worsens the nonuniqueness of the min-
ima to the nonconvex energy functional in (37), but also po-
tentially jitters intermediate solutions in iterative computa-
tional schemes (i.e., hysterical transitions in the admissible
space).

To break the permutation symmetry, we turn to a weak
supervision scheme in which a user specifies K distinct do-
main patches:

Q1,Q2, . . . ,QK , (45)

and imposes the symmetry-breaking conditions:

pi|Qj = δi j , i, j = 1 : K , (46)

where δi j denotes Kronecker’s delta. That is, a user requires
each given patch Qi to be a “pure” pattern exclusively labelled
by i. Computationally, this weak supervision process can be
automated based on multiscale patch statistics as in the con-
temporary works on scene recognition [1, 2], or more gener-
ally, the learning theory [36, 37].

4.3. Existence theorems for nonsupervision
and supervision

In this section, we briefly state the existence theorems for
the soft Mumford-Shah segmentation model (37) without
or with the supervision (46). The detailed proof has been
moved to the appendix, under the suggestion of one of our
referees. Skipping this section will cause no serious problem
in comprehending or implementing the models.

Theorem 3 (existence theorem for unsupervised SMS). Sup-
pose that I ∈ L2(Ω). Then for any positive modeling param-
eters (λ,α, ε), a minimizer to the unsupervised soft Mumford-
Shah model (37) must exist.

Mathematically, the existence issue has special appeal to
model developers, especially for models that are highly non-
convex. Nonconvex variational models normally fail to guar-
antee the uniqueness of optimal solutions, and existence is
hence often the best one can attempt to establish theoretically
[38]. Notice that most interesting variational models in con-
temporary image and visual analysis are nonconvex, which
include, for example, the original Mumford-Shah model [6],
various image restoration models (e.g., deblurring and dejit-
tering) [7, 39], as well as most optical-flow models [38].

The theoretical proof in the appendix, however, does re-
veal an important behavior of the model (37) which carries
practical implications. If certain channel i becomes dumb in
the limiting process of the proof (i.e., the limit p∗i ≡ 0 for a
minimizing sequence), it has often been introduced unnec-
essarily in the first place, and the associated optimal pattern
u∗i could be any featureless constant image.

The related issue of determining an optimal class num-
ber K (i.e., without containing dumb channels nor missing
visually important channels) is also intrinsically driven by
the complexity theory of natural images, in particular, the

multiscale complexity [40]. Theoretically, K could be any in-
teger, ranging from zero to the infinity, as one zooms into
the details of a continuum image from the atomic scale to
the ordinary observational scales of the naked eyes. Thus ide-
ally, K itself could be introduced as a random variable taking
0, 1, 2, . . ., and becomes part of the model itself. This idea has
already been explored in purely stochastic settings, for exam-
ple, see Tu and Zhu [10].

For the supervised scenario motivated earlier, the follow-
ing existence theorem still holds.

Theorem 4. Suppose that I ∈ L2(Ω). Then an optimal
pattern-ownership pair must exist to the soft Mumford-Shah
segmentation model (37) with supervision (46), assuming that
each patch Qi has a positive Lebesgue measure |Qi| > 0.

The proof is almost identical to the unsupervised case in
the appendix, and simplifies substantially by noticing that no
channel could become dumb due to supervision. Further-
more, the functions ρi’s in the previous proof can be directly
set to be

ρi = 1∣∣Qi

∣∣1Qi(x), i = 1 : K , (47)

without the necessity of turning to Lemma 2.

4.4. Mixture of homogeneous Gaussians

When each pattern i is a homogeneous Gaussian N(mi, σ)
with a distinct mean value mi, one has

ui(x) ≡ mi, x ∈ Ω, i = 1 : K. (48)

Define m = (m1, . . . ,mK ). As a result, the soft Mumford-
Shah model (37) simplifies to

min
(P,m)

E
[

P, m | I] = min
(P,m)

λ
K∑

i=1

∫

Ω

(
I −mi

)2
pi

+
K∑

i=1

∫

Ω

(
9ε
∣∣∇pi

∣∣2
+

(
pi
(
1− pi

))2

ε

)
.

(49)

Theorem 5. Suppose that I ∈ L2(Ω). Then a minimizer pair
(P∗, m∗) to E[P, m | I] exists for both the unsupervised and
supervised cases.

The proof can be derived readily from the previous gen-
eral cases and is hence left out. When K = 2, a similar model
was proposed earlier by Shen [33] under the symmetrization
transform:

p1(x) = 1− z(x)
2

, p2(x) = 1 + z(x)
2

, z ∈ [−1, 1].

(50)

The model (49) could be considered as the soft version
of Chan-Vese model [41] from the point of view of region-
based active contours. Chan and Vese have demonstrated
that such a piecewise constant Mumford-Shah model (or the
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CV model as popularly referred to in the present literature)
is already powerful enough for a number of applications in-
cluding medical imaging.

5. EULER-LAGRANGE EQUATIONS AND
COMPUTATION ON (K − 1)-SIMPLEX

5.1. Euler-Lagrange equations on (K − 1)-simplex

To minimize the energy for the soft Mumford-Shah segmen-
tation

E
[

P, U | I] = λ
K∑

i=1

∫

Ω

(
ui − I

)2
pi + α

K∑

i=1

∫

Ω

∣∣∇ui
∣∣2

+
K∑

i=1

∫

Ω

(
9ε
∣∣∇pi

∣∣2
+

(
pi
(
1− pi

))2

ε

)
,

(51)

one resorts to its gradient-descent flow or Euler-Lagrange
equations. In this section, we discuss these equations and
their practical computational schemes.

The first-order partial variation on U given P leads to, for
i = 1 : K ,

αΔui + λ
(
I − ui

)
pi = 0, on Ω;

∂ui
∂n

= 0, along ∂Ω,

(52)

where n stands for the outer normal vector field along ∂Ω.
Thus the Euler-Lagrange equations on the patterns are all in
the form of linear Poisson equations with variable coefficient
fields:

−αΔui +
(
λpi
)
ui = fi, i = 1 : K , (53)

with Neumann adiabatic boundary conditions, where the
source terms are fi(x) = λpi(x)I(x).

The first-order variation on the ownerships P is carried
out on the probability (K−1)-simplex ΔK−1, which is a com-
pact manifold (with border) of codimension 1 embedded in
RK . Chan and Shen [42] developed a general framework for
modeling and computing image features that “live” on gen-
eral manifolds, and especially those that are embedded inRK .
We will follow the approach there.

Without the simplex constraint on the ownerships, for
any given U, the first-order variation of the soft energy E un-
der P → P + δP is given by

δE =
∫

Ω

K∑

i=1

Viδpi dx +
∫

∂Ω

K∑

i=1

viδpi dH
1, (54)

where H1 is the 1D Hausdorff measure along ∂Ω, and

Vi = λ
(
ui − I

)2 − 18εΔpi + 2ε−1pi
(
1− pi

)(
1− 2pi

)
,

(55)

vi = 18ε
∂pi
∂n

, along ∂Ω. (56)

Define V = (V1, . . . ,VK ) and v = (v1, . . . , vK ). Then

δE =
∫

Ω
V · δPdx +

∫

∂Ω
v · δPdH1, (57)

which holds for any free variation of P in RK , or one writes
in the free-gradient form

∂E

∂ f P
= V

∣∣
Ω + v

∣∣
∂Ω. (58)

In reality, P ∈ ΔK−1. Let TPΔK−1 denote the tangent space
of ΔK−1 at any single point P ∈ ΔK , and

π : TPRK −→ TPΔK−1 (59)

the orthogonal projection onto the tangent space in RK .
Since the normal direction of the tangent plane is given by
1K/
√
K = (1, . . . , 1)/

√
K , the projection operator is explicitly

given by, for any w ∈ TPRK ,

π(w)=w− 1K
〈

w, 1K
〉

K
=w−〈w〉1K , with 〈w〉= 1

K

K∑

i=1

wi.

(60)

The constrained gradient of E on ΔK−1 is therefore given by

∂E

∂P
= π

(
∂E

∂ f P

)
= (V− 〈V〉1K

)∣∣
Ω +

(
v − 〈v〉1K

)∣∣
∂Ω.

(61)

In particular, the system of Euler-Lagrange equations on P
given U is given by

Vi(x)− 〈V〉(x) = 0, x ∈ Ω,

vi(z)− 〈v〉(z) = 0, z ∈ ∂Ω,
(62)

for i = 1 : K . The coupling among different channels is evi-
dent from these two formulae.

Lemma 1. Suppose that P : Ω → ΔK−1. Then for any z ∈ ∂Ω,
〈v〉(z) = 0, where the boundary “flux” v is defined in (56).

Proof. This is obtained by direct computation: at any z ∈ ∂Ω,

〈v〉 = 1
K

K∑

i=1

vi = 18ε
K

K∑

i=1

∂pi
∂n

= 18ε
K

∂

∂n

( K∑

i=1

pi

)
= 18ε

K

∂1
∂n
= 0.

(63)

As a result, the boundary conditions in (62) simplify to
the ordinary Neumann conditions ∂pi/∂n = 0, i = 1 : K .
Combining all the above derivations, we have established the
following theorem.

Theorem 6 (Euler-Lagrange equations). The system of Euler-
Lagrange equations of E[P, U | I] is given by

−αΔui +
(
λpi
)
ui =

(
λpi
)
I ,

− 18εΔpi + 2ε−1pi
(
1− pi

)(
1− 2pi

)

= 〈V〉 − λ
(
ui − I

)2
, i = 1 : K ,

(64)
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on Ω, all with Neumann boundary conditions along ∂Ω. Here
V = V(P, U) is defined as in (55). Furthermore, under super-
vision (46), the ownerships must satisfy the interpolation con-
ditions:

pi|Qj = δi, j , i, j = 1 : K , (65)

or equivalently, the equations on pi’s in (64) hold on Ω \
(
⋃K

i=1 Qi) with Neumann conditions along ∂Ω, and Dirichlet
conditions along

⋃K
i=1 ∂Qi : pi|∂Qj = δi, j .

Similarly, one has the following result for the piecewise
constant SMS model (49), which carries much lower com-
plexity compared with the full SMS model.

Proposition 2 (Euler-Lagrange equations for piecewise con-
stant SMS). The Euler-Lagrange equations for E[P, m | I] in
(49) are given by

mi = 〈I〉pi :=
∫
Ω I pi∫
Ω pi

,

− 18εΔpi + 2ε−1pi
(
1− pi

)(
1− 2pi

)

= 〈V〉 − λ
(
mi − I

)2
, i = 1 : K ,

(66)

with Neumann conditions for all the ownerships pi’s along ∂Ω.

5.2. Computation of the Euler-Lagrange equations

Computationally, as well practiced in multivariate optimiza-
tion problems, (64) and (66) can be solved via the algo-
rithm of alternating minimization (AM) [30, 39]. The AM
algorithm is closely connected to the celebrated expectation-
maximization (EM) algorithm in statistical estimation prob-
lems with hidden variables [3, 43]. In the current context, the
ownership distributions pi’s could be treated as the hidden
variables.

Like EM, the AM algorithm is progressive. Given the cur-
rent (t = n) best estimation of the patterns Un = (uni | i = 1 :
K), by solving

Pn = arg min
P

E
[

P | Un, I
]
, (67)

or equivalently,

− 18εΔpi + 2ε−1pi
(
1− pi

)(
1− 2pi

)

= 〈Vn
〉− λ

(
uni − I

)2
, i = 1 : K ,

(68)

with Neumann boundary conditions, one obtains the cur-
rent best estimation of the ownerships Pn = (pni | i = 1 : K).
Subsequently, based on Pn, by solving

Un+1 = arg min
U

E
[

U | Pn, I
]
, (69)

or equivalently,

−αΔui +
(
λpni

)
ui =

(
λpni

)
I , i = 1 : K , (70)

with Neumann boundary conditions, one completes a single
round of pattern updating Un → Un+1. The same procedure
applies to the piecewise constant SMS equations in (66).

(a) (b)

Figure 2: Examples of (a) a 3-phase supervision and (b) a 4-phase
supervision to break the symmetry in the model. Such weak super-
vision can also be automated based on multiscale patch statistics
[1, 2].

Since the system (70) is linear and decoupled, the main
computational complexity resides in the integration of (68),
which is coupled and nonlinear due to the simplex constraint
and the double-well potential in the energy. Define ei(x) =
(ui(x)− I(x))2 and e = (ei | i = 1 : K). In order to solve

−18εΔpi + 2ε−1pi
(
1− pi

)(
1− 2pi

) = 〈V〉 − λei (71)

given e and V = V(P, U) = V(P, e) (see (55)), first notice
that

〈
V(P, e)

〉 = 1
K

K∑

i=1

(−18εΔpi+λei+ 2ε−1pi
(
1− pi

)(
1− 2pi

))

= λ

K

K∑

i=1

ei +
2ε−1

K

K∑

i=1

(
2p3

i − 3p2
i

)
+

2ε−1

K
,

(72)

since
∑K

i=1 pi = 1 and Δ(
∑K

i=1 pi) = 0. We also split the
double-potential force in (71) by

pi
(
1− pi

)(
1− 2pi

) = pi
(
1− pi

)2 − p2
i

(
1− pi

)
. (73)

In combination, the nonlinear equation (71) can then be
solved iteratively:

· · · −→ P〈 j〉 −→ P〈 j+1〉 −→ · · · (74)

by the following linearization procedure:

−18εΔp
〈 j+1〉
i + 2ε−1p

〈 j+1〉
i

(
1− p

〈 j〉
i

)2 = f
〈 j〉
i ,

f
〈 j〉
i = −λei +

〈
V(P〈 j〉, e)

〉
+ 2ε−1

(
p
〈 j〉
i

)2(
1− p

〈 j〉
i

)
,

(75)

with Neumann adiabatic boundary conditions for all the
channels i = 1 : K . This system of linear Poisson equations
can be conveniently integrated using any elliptic solvers. The
detailed numerical analysis on the convergence behavior of
the entire algorithm above, however, is still an open problem
and well deserves some systematic investigation.
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Noisy image u0

(a)

Pattern A with mean = 0.10

(b)

Pattern B with mean = 0.89

(c)

Pattern C with mean = 0.51

(d)

Figure 3: Synthetic image of a T-junction: hard segmentation from
the SMS model via “hardening” formulae (5) and (6). The 120-
degree regularization behavior at the junction point is also well
known in the classical Mumford-Shah model [6].

6. COMPUTATIONAL EXAMPLES

In this section, we present the computational results of the
proposed soft Mumford-Shah model. Notice that the exten-
sion of the above SMS models to color images is straight-
forward by having the gray values ui’s replaced by RGB vec-
tors. (We, however, must remind the reader that perceptually
RGB may not be the most ideal representation of colors
compared with other nonlinear approaches, e.g., brightness-
chromaticity [42] and HSV [44].)

Figures 3 and 4 illustrate the performance of the SMS
model on two synthetic images with multiple phases.
Figure 3 shows a typical T-junction and Figure 4 shows a 3-
phase image with a narrow bottleneck. Plotted in the figures
are the hard segments obtained from the SMS model via the
hardening formulae (5) and (6).

Plotted in Figures 5 and 6 are the hardened segments of
two MRI brain images computed by the soft Mumford-Shah
segmentation model via formulae (5) and (6). For this appli-
cation, a user specifies three small patches (three rectangles
in both examples) Q1, Q2, and Q3, and the SMS model pro-
ceeds with the extra interpolation conditions in (46) for the
ownerships. Notice in the second example that the detailed
branching of the complex boundary is well resolved by the
model.

In Figure 7, another example of a natural image is seg-
mented via the SMS model and the “hardening” formulae (5)
and (6). A user supervises with three patches Q1, Q2, and Q3,
and designates the two on the body to a pattern ownership

Noisy image u0

(a)

Pattern A with mean = 0.11

(b)

Pattern B with mean = 0.80

(c)

Pattern C with mean = 0.40

(d)

Figure 4: Synthetic image of a narrow bottleneck: hard segmenta-
tion from the SMS model via “hardening” formulae (5) and (6).
The thickening regularization at the bottleneck junction can be ex-
plained similarly by the classical Mumford-Shah model for which
minimum-surface or “soap-foam” behavior arises due to the sur-
face tension energy. Also, see the recent work by Kohn and Slastikov
[45] for the singularity analysis of a similar problem arising from
micromagnetism.

pbody and the third (from the ocean) to pocean. If the three
are treated as distinct patterns, the SMS model still works,
but one needs an extra step of high-level vision processing
(e.g., based on Grenander’s graph models [46]) to group the
skin-tone and the purple-shirt patterns in order to capture
the entire body faithfully.

Finally, plotted in Figures 8 and 9 are the ownerships
from the SMS model based on the 3-phase and 4-phase su-
pervisions separately in Figure 2. The stochastic nature of the
outcomes (i.e., the softly transiting ownerships pi’s instead of
hard segmentation) is closer to the way a human subject may
perceive such a natural scene. In particular, the SMS model
seems to be consistent with the most recent theory that hard
pattern segments may not be absolutely necessary for natural
scene recognition [1, 2].

7. CONCLUSION

In this work, we have improved the celebrated Mumford-
Shah segmentation to allow stochastic fuzziness of individ-
ual patterns. The proposed model outputs the ownership (or
membership) probability distributions for all the patterns,
from which the classical hard segmentation can be obtained
based on stochastic decision rules such as the principle of
maximum likelihood or the Bayesian classifier.
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Noisy image u0

(a)

Brain pattern with mean = 0.58

(b)

Skull pattern with mean =0.95

(c)

Background pattern with mean = 0.10

(d)

Figure 5: A real noisy brain image: hard segmentation from the SMS model via “hardening” formulae (5) and (6).

Noisy image u0

(a)

Background with mean = 0.15

(b)

White matter with mean =0.84

(c)

Gray matter with mean =0.52

(d)

Figure 6: A brain image with low noise: hard segmentation from the SMS model via “hardening” formulae (5) and (6). Notice how the
detailed branching of the gray matter has been successfully resolved by the model.

The key component of the new model is an ensemble of
regularized double-well potentials inspired by the literature
of material sciences and variational calculus. The model is
nonconvex and the existence of optimal soft segmentation
has been proven. A preliminary algorithm has been proposed
and implemented, but without convergence analysis. Several
generic numerical examples have demonstrated the flexibil-
ity and performance of the new model.

Our future work will mainly focus on (1) automating
the weak supervision process based on statistical patch anal-
ysis, as inspired by the recent work of Li and Perona [1],
and (2) developing a comprehensive framework for the ef-
fective computation of such a nonconvex and multivariate
variational model (with Alan Yuille).

APPENDIX

PROOF OF THE EXISTENCE THEOREM 3

We will need the following lemma for the proof.

Lemma 2. Let ( fn | n) be a sequence of functions in L2(Ω),
and (pn | n) a sequence of nonnegative measurable functions
on Ω and valued in [0, 1]. Suppose that

(i) pn → p∗, a.e. on Ω, and
∫
Ω p∗ > 0;

(ii)
∫
Ω f 2

n p
n ≤ A for some A > 0 and n = 1 : ∞.

Then there exists some function ρ ∈ L2(Ω), such that

(a) ρ ≥ 0 and
∫
Ω ρ = 1;

(b) for some fixed B > 0, | ∫Ω fnρ| ≤ B for n = 1 : ∞.

Proof. Denote the Lebesgue measure of a measurable set W
by |W|. Since p∗ ≥ 0 and

∫
Ω p∗ > 0, there must exist some

c > 0, such that

V = {x ∈ Ω | p∗ > 2c
}

has a finite but positive measure.

(A.1)

On the other hand, by Egorov’s theorem [47] on a.e. conver-
gence, there must exist a subset W ⊂ V , such that

(a′) |V −W| ≤ |V |/2, and hence |W| > 0;
(b′) pn → p∗ uniformly on W .

In particular, there exists some N , such that for any n > N ,
pn > c on W . Define

ρ(x) = 1W (x)
|W| ∈ L2(Ω). (A.2)
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Original noisy image

(a)

Two-phase supervision

(b)

Segmentation

(c)

Figure 7: Hard segmentation from the SMS model via “hardening” formulae (5) and (6), based on a 2-phase supervision. Denote the two
rectangles on the body by Q1 and Q2, and the third by Q3. Supervision provides the ownership interpolation condition: pbody = 1 on Q1∪Q2

and 0 on Q3, while pocean = 1 on Q3 and 0 on Q1 ∪Q2. Patch selection can also be automated based on multiscale patch statistics (e.g., see Li
and Perona [1]).

Then
∫
Ω ρ = 1, and for any n > N ,

∫

Ω
f 2
n ρ =

1
c|W|

∫

W
f 2
n c ≤

1
c|W|

∫

Ω
f 2
n p

n ≤ A

c|W| . (A.3)

Thus by the Schwarz inequality (or E[X]2 ≤ E[X2] in proba-
bility theory),

∣∣∣∣
∫

Ω
fnρ
∣∣∣∣ ≤

(∫

Ω
f 2
n ρ
)1/2

≤
(

A

c|W|
)1/2

, n > N. (A.4)

The lemma holds if one defines

B = max

((
A

c|W|
)1/2

,
∣∣∣∣
∫

Ω
f1ρ
∣∣∣∣, . . . ,

∣∣∣∣
∫

Ω
fNρ

∣∣∣∣

)
. (A.5)

We are ready to prove Theorem 3.

Proof. Take the special pattern distribution:

ui ≡ 0, i = 1 : K ; p1 ≡ 1, pj ≡ 0, j = 2 : K.
(A.6)

Then

E
[

P, U | I] = λ
∫

Ω
I2 <∞. (A.7)

Thus the infimum of the energy must be finite. Let (Pn, Un |
n) ⊆ admK (see (40)) be a minimizing sequence for the soft
Mumford-Shah energy (37). That is, E[Pn, Un | I] converges
to inf P,U E[P, U | I].

Due to the third term in the energy and the simplex con-
straint, for each channel i, (pni | n) must be bounded in
H1(Ω). By the L2-weak compactness, there must exist some
P∗ ∈ L2(Ω,RK ), and a subsequence of (Pn | n), which after
relabelling will still be denoted by (Pn | n) for convenience,
such that

Pn −→ P∗ in L2(Ω,RK
)
, n→∞. (A.8)

Then by the L2 lower semicontinuity of Sobolev measures,

9ε
∫

Ω

∣∣∇p∗i
∣∣2 ≤ lim inf

n→∞ 9ε
∫

Ω

∣∣∇pni
∣∣2

, i = 1 : K. (A.9)

Furthermore, with possibly another round of subsequence
refinement, one can assume that

Pn(x) −→ P∗(x), a.e. x ∈ Ω, n→∞. (A.10)

Since the probability simplex Δk−1 is closed and Pn(x) ∈
ΔK−1, one concludes that

P∗(x) ∈ ΔK−1, a.e. x ∈ Ω. (A.11)

And by Fatou’s lemma [47, 48], one has

∫

Ω

(
p∗i
(
1− p∗i

))2

ε
≤ lim inf

n→∞

∫

Ω

(
pni
(
1− pni

))2

ε
, i = 1 : K.

(A.12)

(In fact, the equality holds by Lebesgue’s dominated conver-
gence [48].)

After the above subsequence selection on Pn’s, one nat-
urally has an associated subsequence of (Un | n), which for
convenience is still denoted by (Un | n) after relabelling. For
each specific channel i, we then consider two scenarios sepa-
rately.

Suppose that p∗i (x) ≡ 0, a.e. x ∈ Ω. We then define for
that channel

u∗i (x) ≡ 0, x ∈ Ω. (A.13)

Such a channel is called a “dumb” channel.
Otherwise, one must have

∫
Ω p∗i > 0, and from the first

term in (37),
∫

Ω

(
uni − I

)2
pni ≤ const, n = 1 : ∞. (A.14)
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Given image

(a)

Sand ownership

(b)

Grass ownership

(c)

Sky ownership

(d)

Figure 8: Soft Mumford-Shah segmentation with three phases
corresponding to the supervision on Figure 2(a). Plotted here are
the three ownership distributions p1(x), p2(x), and p3(x). Due to
“under”-supervision, namely the number K of specified patterns is
less than that of the visually meaningful ones, the grass pattern has
“absorbed” the ocean pattern due to the greenish color they happen
to share.

Since
∫
Ω I2pni ≤

∫
Ω I2, by the triangle inequality,

∫

Ω

(
uni
)2
pni ≤ const, n = 1 : ∞, (A.15)

where the constant only depends on I and the model param-
eters. Then by Lemma 2, there exists some ρi(x) ≥ 0, with∫
Ω ρi = 1, some constant Bi > 0 such that

∣∣∣∣
∫

Ω
uni ρi

∣∣∣∣ ≤ Bi, n = 1 : ∞. (A.16)

On the other hand, by the second term in the energy (37),

∫

Ω

∣∣∇uni
∣∣2 ≤ Ci = Ci(I , λ,α, ε), n = 1 : ∞, (A.17)

for some constant Ci independent of n. Then by the general-
ized Poincaré inequality [48, 49] on Ω,

∥∥w − 〈w, ρi〉
∥∥
L2 ≤ Ai‖∇w‖L2 , (A.18)

where Ai = Ai(ρi,Ω) is independent of w ∈ H1(Ω), one con-
cludes that

∥∥uni
∥∥
L2 ≤ Di = Di

(
Ai,Bi,Ci

)
, n = 1 : ∞, (A.19)

Sand ownership

(a)

Grass ownership

(b)

Sky ownership

(c)

Ocean ownership

(d)

Figure 9: Soft Mumford-Shah segmentation with four phases cor-
responding to the supervision on Figure 2(b). Plotted here are the
four ownership distributions p1(x), p2(x), p3(x), and p4(x). Unlike
Figure 8, the narrow ocean pattern is now softly segmented due to
the extra fourth patch Q4.

for some constant Di. As a result, (uni | n) must be bounded
in H1(Ω). By the L2-weak compactness of bounded H1-
sequences, there is a subsequence of (uni | n), for convenience
still denoted by (uni | n) after relabelling, such that

uni −→ u∗i ∈ L2(Ω), n −→ ∞, (A.20)

converging in the sense of both L2 and almost everywhere.
Then by the lower semicontinuity,

∫

Ω

∣∣∇u∗i
∣∣2 ≤ lim inf

n→∞
∣∣∇uni

∣∣2
. (A.21)

Finally, since uni (x) → u∗i (x) and pni (x) → p∗i (x), a.e. x ∈ Ω,
Fatou’s lemma gives

∫

Ω

(
u∗i − I

)2
p∗i ≤ lim inf

n→∞

∫

Ω

(
uni − I

)2
pni . (A.22)

Combining both cases just analyzed above, we have es-
tablished that

λ
K∑

i=1

∫

Ω

(
u∗i − I

)2
p∗i + α

K∑

i=1

∫

Ω

∣∣∇u∗i
∣∣2

≤ lim inf
n→∞ λ

K∑

i=1

∫

Ω

(
uni − I

)2
pni + α

K∑

i=1

∫

Ω

∣∣∇uni
∣∣2
.

(A.23)
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Together with (A.9) and (A.12), this implies that

E
[

P∗, U∗ | I] ≤ lim inf
n→∞ E

[
Pn, Un | I] = inf

(P,U)
E
[

P, U | I],
(A.24)

and hence (P∗, U∗) must be a minimizer. (We must caution
our reader that since index relabelling has been performed
for a couple of times to simplify notations, this last sequence
(Pn, Un) is not the one we have started with originally.) This
completes the proof.

ACKNOWLEDGMENTS

The author is very grateful to Professor Alan Yuille for an
enlightening discussion after the current work was first pre-
sented. For their generous teaching and continual inspira-
tion, the author is always profoundly indebted to Professors
Gil Strang, Tony Chan, Stan Osher, David Mumford, Jean-
Michel Morel, and Stu Geman. The author must thank his
wonderful former teacher, Professor Dan Kerstan at the Psy-
chology Department of the University of Minnesota, for his
first introduction on mixture image models and stochastic
visual processing several years ago. The author also thanks
the Institute of Mathematics and its Applications (IMA)
and the Institute of Pure and Applied Mathematics (IPAM)
for their persistent role in supporting this new emerging
field. Finally, the author would like to dedicate this paper to
his dear friends Yingnian Wu and Song-Chun Zhu for the
unique friendship cultivated by the intellectually rich soil of
vision and cognitive sciences. The generous help from our
referees is also enormous. This work has been partially sup-
ported by the NSF (USA) under Grant no. DMS-0202565.

REFERENCES

[1] F.-F. Li and P. Perona, “A Bayesian hierarchical model for
learning natural scene categories,” in IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR
’05), vol. 2, pp. 524–531, San Diego, Calif, USA, June 2005.

[2] F.-F. Li, R. VanRullen, C. Koch, and P. Perona, “Rapid natural
scene categorization in the near absence of attention,” Proceed-
ings of the National Academy of Sciences of the United States of
America, vol. 99, no. 14, pp. 9596–9601, 2002.

[3] A. D. Jepson and M. J. Black, “Mixture models for image repre-
sentation,” PRECARN ARK Project Technical Report ARK96-
PUB-54, University of Toronto, Toronto, Ontario, Canda,
March 1996.

[4] D. L. Pham, C. Xu, and J. L. Prince, “Current methods in med-
ical image segmentation,” Annual Review of Biomedical Engi-
neering, vol. 2, pp. 315–337, 2000.

[5] J.-M. Morel and S. Solimini, Variational Methods in Image Seg-
mentation, vol. 14 of Progress in Nonlinear Differential Equa-
tions and Their Applications, Birkhäuser, Boston, Mass, USA,
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of our scheme compared with other methods.
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1. INTRODUCTION

Three-dimensional image segmentation is an important
problem in medical image analysis. Determining the loca-
tion of the cortical surface of the human brain from MRI im-
agery is often the first step in brain visualization and analysis.
Generally, the normal human brain consists of three kinds
of tissues: white matter (WM), gray matter (GM), and cere-
brospinal fluid (CSF). Due to the geometric complexity of
the human brain cortex, manual slice by slice segmentation
is quite difficult and time consuming. Thus, many semiau-
tomatic or automatic segmentation methods have been pro-
posed in recent years.

The active contour model, which was first introduced
in [1] as “snakes,” is an energy minimization method and
has been widely applied in medical imaging. Cohen first
extended snakes to 3D models and also used them for 3D
medical image segmentation [2–4]. Malladi et al. [5] also
showed their application to 3D medical image segmentation.
Afterwards, they proposed a hybrid strategy of level set/fast
marching segmentation for 3D brain cortex segmentation
[6]. In their method, a small front is initialized inside the de-
sired region, and then the fast marching method [7] is used

to greatly accelerate the initial propagation from the seed
structure to the near boundary, which gives a fast and rough
initialization to a costly segmentation. Then the narrow band
level set method [8] is used to achieve the final result.

In addition to the above method, numerous contribu-
tions [4, 9–19] have been made on the segmentation of com-
plex brain cortical surfaces based on active contour models.
Davatzikos and Bryan [9] used the homogeneity of intensity
levels within the gray matter region to introduce a force that
would drive a deformable surface towards the center of the
gray matter, and built the cortex representation by growing
out from the white matter boundary. Based on this parame-
terization, the cortical structure is characterized through its
depth map and curvature map. This model explicitly used
the structural information of the cortex. However, close ini-
tialization and significant human interaction are needed to
force the ribbon into sulcal folds.

Pham and Prince proposed an adaptive fuzzy segmen-
tation method [15] for brain cortex extraction from images
which have been corrupted by intensity inhomogeneities. In
their method, the minimized objective function has two ad-
ditional regularization terms added to the gain field, which
is different from object functions in standard fuzzy C-means
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algorithms [20]. Their method iteratively estimates the fuzzy
membership functions for each tissue class, the mean intensi-
ties of each class, and the inhomogeneity of the processed im-
age, and models the intensity inhomogeneities to a smooth-
ing varying gain field. They reported that their method yields
lower error rates than standard fuzzy C-means algorithms
[20].

Lately, Xu et al. [13] described a systematic method for
obtaining a surface representation of the geometric central
layer of the brain cortex. It is a four-step method includ-
ing brain extraction, fuzzy segmentation, isosurface gener-
ation, and a deformable surface model using gradient vec-
tor flow [21]. They defined the central cortical layer as the
layer lying in the geometric center of the cortex, and applied
a deformable surface model on the membership functions
computed by the adaptive fuzzy segmentation [15] instead
of image intensity volumes. Han et al. [18] also proposed
a topology-preserving geometric deformable surface model
for brain segmentation.

Teo et al. [11] proposed a four-step segmentation method
based on deformable models. They first segmented white
matter and cerebral spinal fluid regions by anisotropic
smoothing of the posterior probabilities of different prede-
fined regions, then selected the desired white matter compo-
nents and verified and corrected the white matter structure
based on cavities and handles. Finally a representation of the
gray matter was created by constrained growth starting from
the white matter boundary. Their work focused on creating a
representation of cortical gray matter for functional MRI vi-
sualization. Dale et al. [12] concentrated on cortical surface-
based analysis. They started by deforming a tessellated ellip-
soidal template into the shape of the inner surface of the skull
under the influence of MRI-based forces and curvature re-
ducing forces. White matter was then labeled and the cortical
surfaces were reconstructed with validation of topology and
geometry.

MacDonald et al. [16] proposed to use an intersurface
proximity constraint in a two-surface model of the inner and
outer cortex boundaries in order to guarantee that surfaces
do not intersect themselves or each other. Their method was
an iterative algorithm for simultaneous deformation of mul-
tiple surfaces formulated as an energy minimization prob-
lem with constraints. This method was applied to 3D MR
brain data to extract surface models for the skull and the cor-
tical surfaces, and it took advantage of the information of
the interrelation between the surfaces of interest. However,
its main drawbacks include an extremely high computational
expense and the difficulty of tuning the weighting factors of
the cost function, due to the complexity of the problem.

Zeng et al. [14] used the fact that each cortical layer has a
nearly constant thickness to design a coupled surfaces model,
in which two embedded surfaces evolve simultaneously, each
driven by its own image-based forces so long as the intersur-
face distance remained within a predefined range. They mea-
sured the likelihood of a voxel to be on the boundary between
two issues and used this as a local feature to guide the surface
evolution. Gomes and Faugeras [22] also implemented the
above coupled surfaces model with a different scheme that

preserves the level-set surface representation function as a
distance map, so that reinitialization is not required every it-
eration. Goldenberg et al. [17] proposed a similar coupled
surfaces principle and developed a model using a variational
geometric framework. In their method, surface propagation
equations are derived from minimization problems and im-
plemented based on a fast geodesic active contours approach
[23] for improving computational speed.

Kapur et al. [10] presented a method for the segmenta-
tion of brain tissues from MRI images which is a combina-
tion of EM segmentation, binary mathematical morphology,
and active contours. EM segmentation is used for intensity-
based correction and data classification. Binary morphology
and connectivity is used for incorporation of topological in-
formation, and balloon-based deformable contours [3] are
used for the addition of spatial information to the segmenta-
tion process. Cristerna et al. [19] proposed a hybrid method-
ology for brain multispectral MRI segmentation, which cou-
ples a Bayesian classifier based on a radial basis network with
an active contour model based on cubic spline interpolation.

Many other automatic methods for brain cortex segmen-
tation using T1-weighted or multispectral MR data were
also proposed such as histogram threshold determinations
[24, 25], fuzzy set methods [15, 26], Bayesian methods
[27], Markov random field methods [28–31], expectation-
maximization (EM) algorithms [10, 32], and so on.

These methods were aimed at segmenting the brain tis-
sues automatically, and eliminating or nearly eliminating
user interaction for choosing the parameters of the auto-
matic process, setting initial surfaces for surface evolution, or
restricting regions to be processed. However, there is some-
thing to be said for allowing trained users to guide the seg-
mentation process with their expert knowledge of what con-
stitutes a correct segmentation. Methods that allow simple
and intuitive user interaction (while minimizing the need for
such interaction as much as possible) are therefore poten-
tially more useful than totally automatic methods given the
importance of high accuracy and detail in cortical segmenta-
tion.

In this paper, we propose a novel 3D brain cortex seg-
mentation scheme based on dual-front active contours which
are faster and yield flexibly global image-based energy mini-
mizers related to active regions compared to other active con-
tours models. This scheme also adapts easily to user interac-
tion, making it very convenient for experts to guide the seg-
mentation process by adding useful seed points with simple
mouse clicks. This scheme is very fast and the total computa-
tional time is less than 20 seconds. Experimental results on 15
simulated and 20 real 3D brain images demonstrate the ro-
bustness of the result, the high reconstruction accuracy, and
the low computational cost compared with other methods.

This paper is organized into the following sections. In
Section 2, we review the dual front active contour model and
a number of its properties. In Section 3, we extend dual-front
active contours to 3D brain cortex segmentation. Section 3.1
introduces the overall diagram of 3D brain cortex segmen-
tation based on dual-front active contours. Section 3.2 de-
scribes how to choose active regions and potentials for the
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dual-front active contours based on histogram analysis. In
Section 4, we show experimental results on various simulated
and real brain images as well as comparisons with other cor-
tex segmentation methods. We also demonstrate some of the
features and properties of our scheme such as simple and
useful user interactions and high computational efficiency.
Finally, conclusions and future research work are presented
in Section 5.

2. DUAL-FRONT ACTIVE CONTOURS

The basic idea of dual-front active contours was proposed in
[33, 34] for detecting object boundaries. It is an iterative pro-
cess motivated by the minimal path technique [35] utilizing
fast sweeping methods [36, 37]. In this section, we give a re-
view of dual-front active contours.

2.1. Background-minimal path techniques

Since dual-front active contours are motivated by the min-
imal path technique proposed by Cohen and Kimmel [35,
38, 39], we give a brief summary of this technique in this
subsection. Their technique is a boundary extraction ap-
proach which detects the global minimum of an active con-
tour model’s energy between two user-defined points located
on the boundary, and avoids local minima arising from the
sensitivity to initialization in geodesic active contours [4, 40].
Contrary to energy functionals defined in snakes [1], they
proposed a simplified energy minimization model,

E(C) =
∫
Ω

{
w + P

(
C(s)

)}
ds =

∫
Ω
P̃(C)ds, (1)

where s represents the arc-length parameter of a curve C(s) ∈
Rn. P is a pointwise potential associated to image features,
while w is a real positive constant.

Given a potential P > 0 that takes lower values near the
desired boundary, the objective of the minimal path tech-
nique is to look for a path (connecting two user-defined
points) along which the integral of P̃ = P + w is minimal. In
[35], a minimal action map Up0 (p) was defined as the mini-
mal energy integrated along a path between a starting point
p0 and any point p:

Up0 (p) = inf
Ap0,p

{∫
Ω
P̃
(
C(s)

)
ds
}
= inf

Ap0,p

{
E(C)

}
, (2)

where Ap0,p is defined as the set of all paths between p0 and p.
The value of each point p in the minimal action map Up0 (p)
corresponds to the minimal energy integrated along a path
starting from point p0 to point p.

So the minimal path between point p0 and point p can be
easily deduced by calculating the action map Up0 (p) and then
sliding back from point p to point p0 via gradient descent.

They also noted that given a minimal action map Up0 to
point p0 and a minimal action map Up1 to point p1, the min-
imal path between points p0 and p1 is exactly the set of points
pg which satisfy

Up0

(
pg
)

+ Up1

(
pg
) = inf

p

{
Up0 (p) + Up1 (p)

}
. (3)

A saddle point p′ is the first point where two action maps
Up0 and Up1 meet each other, which means that p′ satis-
fies Up0 (p′) = Up1 (p′) and (3) simultaneously. The minimal
path between points p0 and p1 may also be determined by
calculating Up0 and Up1 and then, respectively, sliding back
from the saddle point p′ on the action map Up0 to point p0

and from the saddle point p′ on the action map Up1 to point
p1 according to the gradient descent. This idea was used in
[39] for finding closed contours as a set of minimal paths
from an unstructured set of points. It was also used in [41]
in order to reduce the computational cost of a variety of fast
marching applications. In order to compute Up0 (p), they for-
mulated a PDE equation:

∂L(v, t)
∂t

= 1

P̃
�n(v, t), (4)

to describe the level sets L of Up0 , where “time” t represents
heights of the level sets of Up0 . v ∈ S1 is an arbitrary param-
eter, and �n(v, t) is the normal to the closed curve L(v, t). By
definition we have Up0 (L(v, t)) = t, and by differentiation of
this equation by t and v it can be deduced that Up0 satisfies
the Eikonal equation

∥∥∇Up0

∥∥ = P̃ with Up0

(
p0
) = 0. (5)

This equation can be numerically solved using the fast
marching method [7] because of its lower complexity com-
pared to the direct front propagation approach implied by
(3) while maintaining the same spirit of front propagation in
the way that the grid points are visited during the marching
procedure.

2.2. Dual-front active contours with flexibly
global minimizers

In this section, we briefly review the dual-front active con-
tour model [34]. We assume that an image I has two re-
gions Rin and Rout with B as their common boundary. We
choose one point p0 from Rin and another point p1 from
Rout, then we define a velocity 1/P̃ taking lower values near
the boundary B and define two minimal action maps Up0 (p)
and Up1 (p) according to (2). Contrary to just considering the
saddle point p′ which satisfies Up0 (p′) = Up1 (p′) and (3) si-
multaneously, we consider the set of points pe which satisfies
Up0 (pe) = Up1 (pe). These points pe form a partition curve
B′ which divides I into two regions. This partition is also a
velocity- (or potential-) weighted Voronoi diagram. The re-
gion containing p0 will be referred to as R′in, while the other
region containing p1 will be referred to as R′out. All points
in R′in are closer (in this weighted sense) to p0 than to p1

and contrariwise for points in R′out. Because the action maps
are potential weighted distance maps which can be endowed
with Riemannian metrics, B′ is called the potential weighted
minimal partition curve.

The level sets of Up0 and Up1 represent the evolving

fronts, and the front velocity 1/P̃ takes on lower values near
B. When an evolving front arrives at the actual boundary B,
it evolves slowly and therefore takes a long time to cross B. By
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Cin
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Replace C with Cnew for the next iteration

Active-region location Dual-front evolution

(a)
(b)

(c)

Figure 1: Iteration process of dual-front evolution and active-
region location. (a) An initial contour C separates image I to two
regions Rin and Rout; (b) the curve C is dilated to form a narrow
active region Rn; (c) the inner and outer boundaries Cin and Cout

of Rn are set as the initializations of two minimal action maps UCin

and UCout , and the set of meeting points of the level sets of UCin and
UCout forms a new minimal partition curve Cnew inside Rn. Cnew di-
vides image I into two regions. Curve C is replaced by curve Cnew

for the next iteration.

choosing appropriate potentials when defining Up0 and Up1 ,
we may cause the partition curve B′ formed by the meeting
points of the level sets of Up0 and Up1 to correspond with
the actual boundary B. In other words, we can detect B by
setting appropriate potentials and finding the minimal parti-
tion curve B′.

Now let us consider minimal action maps having a set
of starting points. Similar to the definitions in [39], we let
X be a set of points in image I (e.g., X is a 2D curve or a
3D surface), and define a minimal action map UX(p) as the
minimal energy integrated along a path between a starting
point p0 ∈ X and any point p /∈ X :

UX(p) = min
p0∈X

(
inf
Ap0,p

{∫
Ω
P̃
(
C(s)

)
ds
})

. (6)

We choose a set of points Xi from Rin and another set of
points Xj from Rout, and define two minimal action maps
UXi(p) and UXj (p) according to (6). All points satisfying
UXi(p) = UXj (p) form a partition boundary B′′ and divide
I into two regions. One region contains Xi and the other re-
gion contains Xj . Because UXi(p) and UXj (p) are the poten-
tial weighted distance maps, B′′ is a potential weighted mini-
mal partition of I . With appropriate potentials, it is also pos-
sible that B′′ is exactly the actual boundary B of Rin and Rout.

Therefore, the dual front evolution principle proposed in
[33] is to find a potential weighted minimum partition curve
within an active region.

This principle is shown in Figure 1. A narrow active re-
gion Rn is formed by extending an initial curve C. For exam-
ple, it may be generated from C using morphological dila-
tion. Rn has an inner boundary Cin and an outer boundary
Cout. Two minimal action maps UCin and UCout are defined by
different potentials P̃in and P̃out, respectively, based on (6).
When the level sets of UCin and UCout meet each other, the
meeting points form a potential weighted minimal partition
curve Cnew in active region Rn. The evolution of curves Cin

and Cout and their meeting locations pg can also be obtained
using the “time of arrival” functions which satisfy Eikonal
equations

∥∥∇UCin

∥∥ = P̃in with UCin

(
Cin
) = 0,∥∥∇UCout

∥∥ = P̃out with UCout

(
Cout

) = 0,

UCin

(
pe
) = UCout

(
pe
)

on Cnew.

(7)

Since the dual front evolution is to find the global minimal
partition curve only within an active region, not in the whole
image, the degree of this global minima changes flexibly by
adjusting the size of active regions.

The dual-front active contour model is an iterative pro-
cess including the dual front evolution followed by relocation
of the active region. The minimum partition curve formed by
the dual front evolution is extended to form a new active re-
gion. We extract the boundaries of the new active region, and
define potentials for the evolution of the separated bound-
aries again. Then we repeat the dual front evolution and the
active region location to find new global minimal partition
curves until certain stopping conditions are satisfied. For ex-
ample, we may compare the difference between two consec-
utive minimal partition curves, to determine when we have
converged to a final result.

As shown in (7), two minimal action maps UCin and
UCout may be obtained by solving Eikonal equations. In the
minimal path technique proposed in [35], they used fast
marching methods described in [7] to solve Eikonal equa-
tions. Tsitsiklis [42] first used heap-sort structures to solve
Eikonal equations, Sethian [7] and Helmsen et al. [43] re-
ported similar approaches lately. Fast marching methods are
computationally efficient tools to solve Eikonal equations, in
which upwind difference schemes and heap-sort algorithms
are used for guaranteeing the solution is strictly increasing
or decreasing on grid points. The computational complex-
ity of fast marching methods is O(N logN), where N is the
number of grid points, and logN comes from the heap-sort
algorithm.

Another algorithm for solving Eikonal equations is the
fast sweeping method presented in [37, 44]. It is for com-
puting the solution of Eikonal equations on a rectangular
grid based on iteration strategies. In fast sweeping methods
[37, 44], the characteristics are divided into a finite number
of groups according to their directions and each sweep of
Gauss-Seidel iterations with a specific order covers a group of
characteristics simultaneously. 2n Gauss-Seidel iterations (n
is the spatial dimension) with alternating sweeping order are
used to compute a first order accurate numerical solution for
the distance function in n dimensions. Fast sweeping meth-
ods have an optimal complexity of O(N) for N grid points,
which are extremely simple to implement in any dimension,
and give similar results as fast marching methods. The details
of fast sweeping methods may be seen in [37, 44].

Both fast marching methods and fast sweeping methods
can be used in the dual front evolution for finding the min-
imal partition curve in an active region. In this paper, the
dual front evolution scheme utilizes fast sweeping methods
because of its low complexity O(N), where N is the number
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(a) (b)

(c) (d)

(e) (f)

Figure 2: The segmentation result on a 2D synthetic image based
on dual-front active contours. (a) The original image and the initial
curve (the red line), (b) the black region is the defined active re-
gion which is extended from the initial curve using morphological
dilation, (c) the new formed global partition curve within the active
region after dual-front evolution, (d) to (f) the different new global
minimal partition curves after 5, 10, 15 iterations.

of grid points in Rn. Because the low computational cost of
fast sweeping methods is maintained, and the calculation of
all minimal action maps can be finished simultaneously, the
complexity of the dual front evolution is still O(N), where N
is the number of grid points in an active region. The 3D dual
front evolution scheme is shown in the appendix.

In dual front active contours, potentials may combine re-
gion and edge-based information. For example, we may con-
sider the mean values μin, μout, the variance values σ2

in, σ2
out of

region (Rin−Rin∩Rn) and region (Rout−Rout∩Rn) to decide
the evolution potentials for the labeled points (x, y) as

P̃in(x, y) = wr
in f
(∣∣I(x, y)− μin

∣∣, σ2
in

)
,

+ wb
in g
(∇I(x, y)

)
+ win if l(x, y) = lin,

P̃out(x, y) = wr
out f

(∣∣I(x, y)− μout
∣∣, σ2

out

)
,

+ wb
out g

(∇I(x, y)
)

+ wout if l(x, y) = lout,

(8)

where ωr
in and ωr

out are positive weights for the region-
based terms, ωb

in and ωb
out are positive weights for the edge-

based items, and ωin and ωout are positive constants for con-
trolling the smoothness of the partition curves. We choose
g(∇I(x, y)) as a positive decreasing function of the image
gradient, and f as a function related to the region-based in-
formation. As with any segmentation algorithm, the optimal
set of parameters is very application-dependent.

In Figure 2, we give the segmentation process on a 2D
synthetic image to show the basic principle of dual-front ac-
tive contours. Here we use morphological dilation to define
the active region for each iteration. The structuring element
for morphological dilation was a 15 × 15 circle mask. For
this example, the potential at a point (x, y) was P̃(x, y) =
(|I(x, y) − μl| + 0.1), where μl is the mean value of points
having the same label l as the point (x, y).

2.3. Properties of dual-front active contours

The dual front active contour model has several nice prop-
erties. First, the final contour is not just a local minimizer.
It possesses a controllable global minima related to certain
active regions which vary according to the user-specified
amount of dilation used to form the active regions at each
step. The result of the dual front evolution is a potential
weighted global minimum partition curve within an active
region. So the size and shape of active regions affect the fi-
nal segmentation result. This ability to gracefully move from
capturing minima that are more local to minima that are
more global makes it much easier to obtain “desirable” min-
imizers (which often are neither the most local nor the most
global).

In Figure 3, we demonstrate that by choosing different
active regions with different sizes, dual-front active contours
may achieve different global minima within different active
regions. Here, the potential at a point (x, y) was defined as
P̃(x, y) = |I(x, y) − μl| + (1 + |∇I|)2/10 + 0.1, where μl is
the mean value of points having the same label l as the point
(x, y).

Most edge-based active contour models [4, 40] were de-
signed to find local minima of data-dependent energy func-
tionals with the hope that reasonable initial placement of the
active contour will drive it towards a “desirable” local mini-
mum rather than an undesirable configuration that can oc-
cur due to noise or complex image structure. The minimal
path technique proposed by Cohen and Kimmel [35, 38, 39]
attempts to capture the global minimum of an active con-
tour model’s energy between two user-defined points. Fur-
thermore, a large class of region-based models, such as [45–
47], have utilized image information not only near the evolv-
ing contour but also image statistics inside and outside the
contour in order to improve the performance. Most of these
more global region-based energy functionals assume highly
constrained models for pixel intensities within each region,
and require a priori knowledge of the number of region
types. Sometimes, though, minimizers that are too global (or
region-based energies using information that is too global)
are just as undesirable as minimizers that are too local.

An example of this is illustrated in Figure 4. In this figure,
we compare geodesic active contours [40], the minimal path
technique [35], Chan-Vese’s method [45], and Mumford-
Shah method [47] with dual-front active contours. The test
image is part of a 2D human brain MRI image, and the ob-
jective is to find the interface of gray matter and white mat-
ter. The image size is 80×80 pixels. The structure element for
morphological dilation in dual-front active contours is a 5×5
circle. As this figure indicates, dual-front active contours can
control the degree of global or local minima which are re-
lated to active regions, find correct boundaries, and perform
better than the other methods.

Second, the computational cost of dual-front active con-
tours is reduced significantly. The iteration process in dual
front active contours causes the initial and intermediate
curves move in large “jumps” in order to arrive at the ob-
jective boundary, which substantially reduces the number of
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3: By choosing active regions with different sizes, the dual-front active contour model may achieve different global minima related
to different active regions and iteration times. (a) The original image with the initialization. (b) The corresponding gradient information.
(c) Segmentation result using a 5 × 5 structuring element with 15 iterations of morphological dilation. (d) Segmentation result using a
7 × 7 structuring element with 15 iterations of morphological dilation. (e) Segmentation result using an 11 × 11 structuring element with
15 iterations of morphological dilation. (f) Segmentation result using a 15 × 15 structuring element with 15 iterations of morphological
dilation. (g) Segmentation result using a 23× 23 structuring element with 15 iterations of morphological dilation.

(a) (b) (c) (d) (e)

Figure 4: Comparison of different segmentation results for the white matter and gray matter boundaries using different active contour
models. The gradient information used in panels (a), (b), and (e) is shown in Figure 3. The top row shows the original image and initializa-
tions. The bottom row shows the corresponding segmentation results. (a) Geodesic active contours suffer from undesirable local minima;
(b) the minimal path technique relies on the location of initial points and strong gradient information; (c) and (d) Chan-Vese method and
Mumford-Shah method find more global minima over the whole image. (e) Improved edge extraction using dual-front active contours with
the same initialization used for geodesic active contours.

iterations needed to converge. We also use a fast sweeping nu-
merical scheme [37] for the dual front evolution because of
its lower complexity (O(N), where N is the number of grid
points in the band). As a result, the dual-front active contour
model enjoys a low complexity of O(N).

Third, dual-front active contours provide an automatic
stopping criterion. In the dual front evolution, whenever two
contours from the same group meet, they merge into a single
contour. On the other hand, whenever two contours from
different groups meet, both contours stop evolving and a
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common boundary is formed by their meeting points auto-
matically. The iterative process of dual-front active contours
stops when the difference between two consecutive minimal
partition curves is less than a predefined amount.

Fourth, in dual-front active contours, we provide a very
flexible way to define active regions. Generally, we use mor-
phological dilation to generate an active region around the
current curve. In this way, the size and shape of the active
region can be controlled easily by adjusting the associated
structuring elements and dilation times. However, by regard-
ing the active region as a restricted search space, we may use
methods such as those presented for active contours with re-
stricted search spaces in [48–51] to form the active regions.

A final observation to make about the dual-front active
contour model is to note that while it is vaguely related to
a variety of couple surface models [14, 16, 17, 22] discussed
in Section 1, it is an altogether different approach. Coupled
surfaces models were proposed to evolve a pair of curves
together to find a pair of desired contours while exploiting
some sensible constraints between the two curves as they
evolved. The dual front active contour model, however, seeks
to find a single potential weighted minimal partition curve
within an active region, which is formed by the meeting
points of dual evolving curves. By iteratively forming a new
narrow active region based on the current partition curve
and then using the dual front evolution to find a new parti-
tion curve, dual-front active contours can find the boundary
of a single desired object. Furthermore, the “dual fronts” can
be generalized to multiple fronts. The boundaries of an ac-
tive region may be composed of multiple separating curves,
each independent curve evolves with different potential and
different label, whenever two (or more) evolving curves meet
each other, both (or more) curve evolutions stop at the meet-
ing points. All the meeting points form a partition curve au-
tomatically. The full details are outlined in the appendix.

3. CORTEX SEGMENTATION BY DUAL-FRONT
ACTIVE CONTOURS

3.1. 3D brain cortex segmentation with
flexible user interaction

Due to the complex and convoluted nature of the human
brain cortex and partial volume effects of MRI imaging, the
brain cortex segmentation must be considered in three di-
mensions. In this section, we give a 3D brain cortex segmen-
tation scheme based on dual-front active contours.

Generally, in dual front active contours, morphological
dilation is used to form an active region from an initial
curve. However, it is not a good choice to form active re-
gions for segmentation of the brain cortex. One example is
illustrated in Table 1 and the corresponding 3D models are
shown in Figure 9. The test image is generated from the nor-
mal brain database, BrainWeb [52], using T1 modality, 1 mm
slice thickness, 3% noise level, and 20% intensity nonunifor-
mity settings (INU). we assume the brain skull is stripped
and that other nonbrain tissues are also removed. The re-
mainder consists of only three kinds of tissues: WM, GM,
and CSF. The initialization for this segmentation was a sphere

Table 1: Comparison of tissue segmentation results of our method.
Dual-front active contour (1) using morphological dilation to gen-
erate the active regions and (2) using histogram analysis to generate
active regions.

Rate

Dual-front Dual-front

active contours (1) active contours (2)

CSF GM WM CSF GM WM

TP (%) 96.3 78.0 84.3 96.6 93.3 95.1

FN (%) 3.7 22.0 15.7 3.4 6.7 4.9

FP (%) 44.6 13.0 5.7 5.7 5.6 5.8

Overlap metric 0.666 0.689 0.797 0.914 0.883 0.898

(a) (b) (c)

Figure 5: Morphological dilation affects the topology structure of
evolving fronts and also affects the accuracy of segmentation results.
(a) The formed partition diagram on one slice after a number of it-
erations and different regions with different gray values represent
different tissues; (b) the extracted boundary between GM and WM
tissues on the same slice as that shown in (a); (c) the formed ac-
tive region (the most black region) by dilating the boundary shown
in (b).

mask centered at (100, 100, 95) with size 75 × 75 × 150.
The potential at a point (x, y, z) was chosen as P̃(x, y, z) =
(|I(x, y, z)−μl|+0.1), where μl is the mean value of the points
having the same label l as the point (x, y, z). The structuring
element used for morphological dilation was a 7×7×7 sphere
mask. We first used dual-front active contours to segment the
CSF boundary, and then processed only the remaining inte-
rior region to capture the WM/GM boundary.

As shown in Table 1, the quantitative evaluation of the
segmentation result using this morphological dilation is not
very good, as the dilation process is blind to the complex and
convoluted structure of the brain cortex. Because of the con-
voluted geometry of the cortex, each time we dilate the parti-
tion curve to form a new active region for next iteration, the
dilation may change the topology of the partition curve. An
example is illustrated in Figure 5. The 3D models shown in
panels (a) and (b) of Figure 9 demonstrate the poor perfor-
mance of this morphological approach.

Since morphological dilation is not the only way to ob-
tain active regions, we may choose another method. Here we
propose a scheme based on histogram analysis. This scheme
is simple, fast, and accurate with flexible user interaction. In
Figure 6, we show an overall diagram of this scheme.
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Figure 6: Overall diagram of 3D brain cortex segmentation process.

In this scheme, we first assume the brain skull is stripped
and that other nonbrain tissues are also removed. The re-
mainder consists of three kinds of tissues: white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF). If
an image is noisy, we first preprocess it to reduce the effects.
Next, we divide the whole brain image into four regions:
WM seed voxels, GM seed voxels, CSF seed voxels, and un-
labeled voxels. All the voxels in the same region (WM, GM,
or CSF) have the same label. The background is ignored for
the computation. Here, the unlabeled voxels make the “ac-
tive region” among the labeled WM, GM, CSF voxels, and
the active region may be composed of isolated points, sets
of points, and so forth. After running the dual front evo-
lution, all the points in the active region are assigned a la-
bel which is one of the three labels for GM, WM, and CSF.
The final grid is therefore separated into these three tissue
classes.

If this initial segmentation does not give satisfactory re-
sults, users can modify the initial active region just by adding
(or deleting) some labels (via mouse-clicks) as desired, after-
which the dual-front evolution is automatically rerun to yield
an updated segmentation.

3.2. Active region and potential decision
based on histogram analysis

In this section, we describe a method for creating the ac-
tive regions, required by the dual-front active contour, by
analyzing histograms of normal MRI brain images. A his-
togram, which is simply a frequency count of the gray lev-
els in the image, is important in many areas of image pro-
cessing, such as segmentation and thresholding. Analysis of
histograms gives useful information about image contrast.
For 3D T1-weighted brain cortex images, the reasonable con-
trast is obtained between the three main tissue classes in
brain, which are GM, WM, and CSF. Some brain cortex
segmentation approaches [24, 25, 53] were based on auto-
matic gray-level thresholding, and in common, a histogram
is first determined, from which the threshold levels are de-
termined by Gaussian fitting algorithms to produce a binary
mask. Five Gaussian representing three pure tissue classes
(GM, WM, CSF) and two partial volume compartments
(GM/WM, CSF/GM) are fitted at a local level and are used

to generate either discrete or continuous segmentations [24].
But the problems with these methods include their sensitiv-
ity to partial volume effects, which produces speckled regions
in the final segmentation. In order to reduce the impact of
the noise, some Markov-random-field-based methods [28–
31] were proposed.

Figure 7 shows the histogram analysis of these three brain
tissues. panel (a) is the histogram of a sample 3D MRI el-
derly brain image. There are three peaks and two troughs in
this histogram. The locations of these peaks approximate the
average mean values of the GM, WM, and CSF tissues. The
regions around these two troughs correspond to the voxels
located around the boundaries of different tissues. Because of
the effect from noise and partial volume problems, it is hard
to locate the actual boundaries just by simple thresholding.

In this paper, we use histogram analysis for a special pur-
pose. After a histogram is first determined, we may use sim-
ple thresholding to choose regions which include the actual
boundaries instead of the boundaries themselves. We treat all
the voxels in these chosen regions as unlabeled voxels and use
a dual-front active contour to assign a unique label to each
voxel in this region. The 3D dual front evolution scheme is
detailed in the appendix. This process is shown in panel (b)
and panel (c) of Figure 7. By setting different thresholds, a
3D brain image may be divided into GM seeds, WM seeds,
CSF seeds, and unlabeled voxels which comprise two active
regions R1 and R2 around the two troughs in the histogram.
As shown in panel (c) of Figure 7, a 3D brain image may be
separated into different regions by the previous procedure.
The voxels with different gray values represent different ini-
tial CSF, GM, and WM voxels. The most black voxels repre-
sent the unlabeled pixels which compose the active region.
The 3D dual-front evolution scheme may be used to assign
a unique label to each voxel in this active region. For images
with high noise levels, we smooth the image first and then
calculate the histogram. The main purpose of this smoothing
process is to eliminate extraneous peaks/troughs in the his-
togram. Then we may use thresholding to separate an image
into different regions. While smoothing makes some parts of
the boundaries list distinct, quantitative analysis on several
sample images indicate that a limited amount of smoothing
actually improves the segmentation results. The details are
given in Section 4.1.
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Figure 7: Active regions are determined by histogram analysis and thresholding of 3D MRI brain images. (a) The histogram of a sample 3D
MRI brain image; (b) the center of R1 is the trough between the CSF and GM peaks, the center of R2 is the trough between the GM and WM
peaks. h1 and h2 decide the size of R1 and R2. (c) The brain image is separated into different regions by thresholding. The most black voxels
represent the unlabeled pixels, and voxels with different gray values represent different initial CSF, GM, and WM voxels.

We use region-based information during the front evo-
lutions in our scheme because the tested MRI images rarely
provide reliable edge information. We calculate the mean val-
ues μCSF, μGM, and μWM, and the variance values σ2

CSF, σ2
GM,

σ2
WM, of the three different seed voxel classes with labels lCSF,
lGM, and lWM. Then the potential for a labeled point (x, y, z)
is set to

P̃l(x, y, z) = ω1 · exp

(∣∣I(x, y, z)− μl
∣∣2

2σ2
l

)
+ ω2

if L(x, y, z) = l
(
l = lCSF, lGM, lWM

)
,

(9)

where I(x, y, z) is the average image intensity in a window
of size 3 × 3 × 3 around the given voxel. ω1 is a real positive
weight for the region-based image potential, while ω2 is a real
positive constant to control the smoothness of the partition
curves obtained from the dual front evolution.

4. EXPERIMENTAL RESULTS

In this section, we validate our approach on various 3D simu-
lated and real MRI brain image data sets. We use T1-weighted
images on account of their better GM/WM contrast [14, 54].
All the experimental results shown in this section are ob-
tained from 3D volume processing directly.

To evaluate the efficiency of our method for every tissue
type T (GM, WM, and CSF), four probabilities are defined:

TP = NB ∩NR

NR
, FN = NR −NB ∩NR

NR
,

FP = NB −NB ∩NR

NR
, OM = TP

1 + FP
,

(10)

where NR is the number of reference ground truth voxels of
tissue T . NB is the number of voxels detected by our algo-
rithm for tissue T . NB ∩ NR is the number of correct voxels
detected by our method for tissue T . TP means true positive,
which is the probability of correct detection relative to the
ground truth for tissue T . FN means false negative, which is

the probability of misdetection relative to the ground truth
for tissue T . FP means false positive, which is the probabil-
ity of false detection relative to the ground truth for tissue
T . OM means overlap metric, which is defined for a given
voxel class assignment as the sum of the number of voxels
that both have the class assignment in each segmentation di-
vided by the sum of voxels where either segmentation has
the class assignment [55]. This measurement is more critical
than comparisons using the volume only, it is the same as the
Tanimoto coefficient [56]. This metric approaches a value of
1.0 for results that are very similar and is near 0.0 when they
share no similarly classified voxels. In the following experi-
ments we use these parameters to quantitatively analyze our
segmentation results.

4.1. Validation on simulated MR brain images

In Figure 8, we present the results of the segmented WM tis-
sues for five different slices of one 3D simulated brain image
provided by BrainWeb [52], which is generated from the nor-
mal brain database using the T1 modality, 1 mm slice thick-
ness, 3% noise level, and 20% intensity nonuniformity set-
tings (INU).

For this segmentation, we use the potentials defined by
(9) with ω1 = 1 and ω2 = 0.1. The size of R1, h1 is equal to
20, and the size of R2, h2 is equal to 10 (shown in Figure 7). In
fact, ω1 and ω2 are two parameters for adjusting potentials,
while h1 and h2 are two parameters for adjusting the size of
active regions. The best or most appropriate values for these
parameters have to be chosen for different classes of images.
In this paper, we manually choose these parameters by testing
on a few sample images, and then using the same values for
all of the rest. Adaptive tuning of these parameters is one of
the subjects for future research.

In Table 1, we give the quantitative results of two brain
cortex segmentations on the same 3D simulated image as
that in Figure 8. This 3D simulated brain image is provided
by BrainWeb [52], and is generated from the normal brain
database using the T1 modality, 1 mm slice thickness, 3%
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(a) (b) (c) (d) (e)

Figure 8: Comparison of the segmentation results from our method with the ground truth data of five slices of one 3D simulated brain image
provided by BrainWeb [52], which is of T1 modality, 1 mm slice thickness, 3% noise level, 20% INU. The image size is 181× 217× 181. The
top row presents the segmentation results obtained from our method. The second row shows the ground truth data provided by BrainWeb
database. The third row shows the false negative difference between the segmentation results from our method and the ground truth data.
The fourth row shows the false positive difference between the segmentation results from our method and the ground truth data. These five
columns correspond to five slices of the test 3D image.

noise level, and 20% intensity nonuniformity settings (INU).
One result is obtained by using dual front active contours
with active regions obtained by morphological dilation. The
second result is obtained by using dual front active contours
with active regions obtained by the same histogram analysis
as in Figure 8. Figure 9 shows the corresponding 3D mod-
els of the segmented GM and WM surfaces from these two
methods explained in Table 1 and from the ground truth
data. From these segmentation results we can see that our
scheme based on histogram analysis performs better than the
dual-front active contours based on morphological dilation.

We also tested our method on 15 3D simulated brain im-
ages provided by BrainWeb [52, 57], which are of T1 modal-
ity, 1 mm slice thickness, different noise levels 1%, 3%, 5%,
7%, and 9%, and different INU settings 0%, 20%, and 40%.
All images are 181×217×181. For this segmentation, we con-
tinued to use the same potentials defined by (9) with ω1 = 1

and ω2 = 0.1. The size of R1, h1 is 20, and the size of R2, h2 is
10.

For images with high noise levels 5%, 7%, and 9%, we
first use the isotropic nonlinear diffusion proposed by Per-
ona and Malik [58] to smooth the images. Since the ground
truth data is also provided by BrainWeb website, it is easy for
us to compare the accuracy from the original images and the
corresponding smoothed image. For the segmented results,
the overlap metrics of three tissues for 5 images with different
noise levels and same 0% INU setting are from 0.813 to 0.944,
the overlap metrics of three tissues for 5 images with differ-
ent noise levels and same 20% INU setting are from 0.814 to
0.914, the overlap metrics of three tissues for 5 images with
different noise levels and same 40% INU setting are from
0.747 to 0.835. In Figure 10, we also show these segmenta-
tion results. In Figure 10, some CSF segmentation results of
images having 0% INU are worse than the results of images
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(a) (b) (c)

(d) (e) (f)

Figure 9: Comparison of the 3D models of GM and WM surfaces
from our method and from the ground truth data. The test image
is the same as in Figure 8. (a) and (b) are the 3D models of the GM
and WM surfaces obtained from our method using morphological
dilation; (c) and (d) are the 3D models of the GM and WM surfaces
obtained from our method using histogram analysis; (e) and (f) are
the 3D models of the GM and WM surfaces from the ground truth.

having 20% INU. We think there are three reasons. One is
that the two parameters h1 and h2 are constants. The cho-
sen parameters are not the best or most appropriate values
for processing all the images and segmenting all the tissues.
Furthermore, when we choose these parameters, we consider
more on their performance on the GM and WM segmenta-
tion results than that of the CSF segmentation results. The
best or most appropriate values for these parameters have to
be chosen based on different applications. How to set adap-
tive tuning of these parameters is very application-dependent
and still needs further research work. The second reason is
that we use some smoothing operators to smooth the im-
ages with noise levels 5%, 7%, and 9% first and then segment
them. These smoothing processes may also effect the final re-
sults. Furthermore, CSF tissues are much thinner than GM
and WM tissues, which also may effect the segmentation re-
sults.

4.2. Validation on real MR brain images

To further evaluate our segmentation method under more
realistic conditions, we test it on 20 real MRI brain images
and compare the segmentation results with those of hu-
man experts as well as to those obtained by other segmen-
tation algorithms. These 20 normal MR brain data sets are
provided by the Center for Morphometric Analysis at Mas-
sachusetts General Hospital on the IBSR website http://www
.cma.mgh.harvard.edu/ibsr/. The IBSR website also provides
the segmentation results on GM, WM, and CSF tissues from
the adaptive MAP method, the biased MAP method, the
fuzzy C-means method, the maximum a posteriori prob-

ability method, the maximum-likelihood method, and the
tree-structure k-means method on these 20 normal brain-
only MR data sets along with the manual segmentation re-
sults on GM and WM tissues from two experts [59]. Since
the segmentation results provided by the IBSR website are
measured by two parameters “overlap metric” and “average
overlap metric,” we will also measure the results from our
method by these same two parameters for the sake of mean-
ingful comparison.

Figure 11 shows the overlap metric of CSF, GM, and WM
segmentation results (compared to expert manual results)
on 20 normal brains for various automatic segmentation re-
sults provided by IBSR, for the hidden Markov method [28]
provided by the FMRIB website (http://www.fmrib.ox.ac
.uk/fsl/), and for our proposed scheme. For the segmentation
of these real brain images, we still use the potentials defined
by (9) with ω1 = 1 and ω2 = 0.1. The size of R1, h1 is 20, the
size of R2, h2 is 10.

Figure 12 shows the average overlap metric of GM and
WM segmentation results on these 20 normal brains pro-
vided by the IBSR website for various methods. The figures
show that the overlap metric and the average overlap met-
ric of the segmentation results from our method are either
higher than or at least close to the other methods. However,
the computational time for our method is around 20 sec-
onds, which is much faster than other methods.

In these comparisons shown in Figures 11 and 12, in
addition to the comparison with the methods provided by
IBSR [55, 60], we also compare our method with other three
recently proposed methods, the Bayesian method proposed
in [27] (MPM-MAP); the coupled surfaces method [14]
(ZENG), and the hidden Markov method [28] (FAST). This
study is just the initial step of our research work on brain im-
age analysis. We will still work on it, and try to improve the
model’s robustness and the segmentation’s accuracy further.

4.3. Simple and useful user interaction

In the previous two subsections, various segmentation re-
sults of our scheme on simulated and real 3D brain datasets
are shown, and simple thresholding operators are used for
defining active regions in the dual-front evolution. Gener-
ally, most automatic techniques, while less demanding on the
user, are much less accurate. It would be useful to employ
a fast automatic segmentation procedure to do most of the
work but still allow an expert user to interactively guide the
segmentation to ensure an accurate final result. An attractive
feature of our scheme is that it is extremely simple for users
to add seed points just by mouse clicks to yield corrections
to the segmentation that extend far beyond their initial lo-
cations (due to the flexibly global nature of dual front active
surfaces), thus minimizing the user effort. Figure 13 shows
an example of this interaction.

In Figure 13, we use the same image as the one used for
the test shown in Figure 8. One slice of the test 3D image
(panel (a)), the ground truth data for the WM tissue in this
slice (panel (b)), and the 3D model of the ground truth WM
tissue (panel (c)) are shown in the first row. The second row
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Figure 10: Overlap metric for CSF, GM, and WM segmentations on simulated brain images provided by BrainWeb website. The different
noise levels are 1%, 3%, 5%, 7%, and 9%. The three curves labeled INU0, INU20, and INU40 represent the overlap metric of the segmenta-
tion results of the images with 0%, 20%, and 40% INU settings based on our proposed method. (a) The overlap metric of CSF segmentation
results for images with different noise levels (1%, 3%, 5%, 7%, and 9%) and different INU settings (0%, 20%, and 40%). (b) The overlap
metric of GM segmentation results for images with different noise levels (1%, 3%, 5%, 7%, and 9%) and different INU settings (0%, 20%,
and 40%). (c) The overlap metric of WM segmentation results for images with different noise levels (1%, 3%, 5%, 7%, and 9%) and different
INU settings (0%, 20%, and 40%).
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Figure 11: The overlap metric of CSF, GM, and WM segmentations results on 20 normal real brain images for various segmentation
methods. The results of some automatic segmentation methods provided by IBSR. AMAP: adaptive MAP; BMAP: biased MAP; FUZZY:
fuzzy C-means; MAP: maximum a posteriori probability; MLC: maximum likelihood; TSKMEANS: tree-structure k-means; FAST: hidden
Markov method [28]; DFM: our scheme.

shows the segmentation result using dual-front active con-
tours, in which active regions are chosen based on automatic
thresholding. In this test, we set a different active region be-
tween the WM and GM tissues by changing the size and lo-
cation of R2 according to Figure 7. The most black region in
panel (d) presents unlabeled voxels in the active region, and
different regions with different gray values represent differ-
ent tissues’ initial seed points. panel (e) shows the segmenta-
tion result. The 3D model of the segmented WM is shown in

panel (g). These figures illustrate that if automatic threshold-
ing cannot provide enough WM seed points, the segmented
WM tissue may be incorrect. So in addition to employing
a fast automatic segmentation procedure to do most of the
work, it would be useful to still allow an expert user to in-
teractively guide the segmentation to ensure an accurate fi-
nal result. We show segmentation result after user interac-
tion in the third row of Figure 13. As shown in panel (h), the
user interaction simply consists of a few mouse clicks to add
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Figure 12: Average overlap metric for GM and WM segmentations
on 20 normal real brains for various segmentation methods. The
results of some automatic segmentation methods were provided
by IBSR or related papers. For each method, the left column rep-
resents the average overlap metric of GM segmentation, the right
column represents the average overlap metric of WM segmenta-
tion. For our method, the left column represents the average overlap
metric of GM segmentation, the right column represents the aver-
age overlap metric of WM segmentation. AMAP: adaptive MAP;
BMAP: biased MAP; FUZZY: fuzzy C-means; MAP: maximum a
posteriori probability; MLC: maximum likelihood; TSK-MEANS:
tree-structure k-means; FAST: hidden Markov method [28]; ZENG:
coupled-surface method [14]; MPM-MAP: Bayesian method [27];
DFM: our scheme.

some new seed points. We then run the dual-front evolution
again to segment the GM and WM. The segmented bound-
ary of GM/WM is shown in panel (i), the extracted WM tis-
sue and the corresponding 3D model are shown in panel (j)
and panel (k). The figures show that the accuracy of the result
after user interaction is much better than that just based on
automatic thresholding.

We provide a flexible way to combine histogram analy-
sis and dual-front active contours. We may first set certain
predefined parameters such as the different weights in po-
tentials, and the width of h1 and h2, then do histogram anal-
ysis and the dual front evolution to obtain the segmentation
result directly. We may also do histogram analysis separately
and let experts choose appropriate parameters for the dual-
front evolution based on histogram analysis and their experi-
ence. In most fully automatic methods, users need to repeat
the whole process to obtain different results, and it is hard to
tune the associated parameters flexibly. But our method pro-
vides a fast automatic segmentation procedure to do most of
the work but still allow an expert user to interactively guide
the segmentation to ensure an accurate final result.

4.4. Computational time

Another nice property of our method is its high computa-
tional efficiency. We test our method on 15 simulated 3D MR
brain images provided by BrainWeb [57], and 20 real normal
3D MR brain images provided by IBSR website. The average

computational time is around 20 seconds on a 2.5 GHz Pen-
tium4 PC processor, out of which the average computational
time for the histogram analysis is about 5 seconds and the av-
erage computational time for the dual front evolution is less
than 15 seconds.

Since most methods introduced in Section 1 were tested
on different images and run on the different processors, it
is hard for us to give exact quantitative comparisons on the
computational time between our method and these other
methods. Here we just give a brief discussion on the compu-
tational time reported for various cortex segmentation meth-
ods.

We downloaded the software for the hidden Marko-
vian method from the website of the FMRIB Software Li-
brary (http://www.fmrib.ox.ac.uk/fsl/) to compare its com-
putational speed with our method. On the same computer,
the average computational time for the hidden Markovian
method for same test images was around 550 seconds. Xu’s
method [13] combined the adaptive fuzzy C-means algo-
rithm [15]; they reported that the computational time for the
final deformable surface algorithm was about 3 hours using
an SGI workstation with a 174 MHz R10000 processor.

For the coupled surface method proposed by Zeng et
al. [14], it was reported that for a 3D image of the whole
brain with a voxel size of 1.2 × 1.2 × 1.2 mm3, their algo-
rithm runs in about 1 hour on a SGI Inigo2 machine with a
195 MHz R10000 processor for the implementation of skull
stripping, cortex segmentation, and measurement simulta-
neously. Goldenberg et al. [17] also adopted the coupled sur-
faces principle and used the fast geodesic active contour ap-
proach to improve the computational time for cortex seg-
mentation. They reported that the computational time of
their method was about 2.5 minutes for a 192 × 250 × 170
MR image of the whole brain on a Pentium3 PC. But they
did not give the quantitative analysis of the segmentation re-
sults.

Teo et al. [11] reported that their entire procedure takes
about 0.5 hours. Prior to the procedure, gray matter needs
to be identified manually in a single occipital lobe of one
hemisphere using rudimentary segmentation tools, which
requires about 18 hours for an expert. Much of the time is
spent on visually inspecting connectivity and ensuring topo-
logical correctness. In MacDonald’s method [16], the pro-
cessing time for each object was reported to be 30 hours on
an SGI Origin 200 R10000 processor running at 180 MHz.
Dale et al. [12] reported that their entire procedure runs au-
tomatically in about 1.5 hours. Kapur et al. [10] reported that
their method required about 20 minutes to process a single
3D image.

In Marroquin’s method [27], it was reported that the av-
erage total processing time (including registration for peel-
ing the skull and nonbrain material and segmentation) on
20 normal brain data sets from IBSR is 29 minutes on a
single processor of an SGI ONYX machine. In the adap-
tive fuzzy C-means algorithm (AFCM) [15], they reported
that execution times for 3D T1-weighted MR data sets with
1 mm cubic voxels are typically between 45 minutes and 3
hours when using full multigrid AFCM, and that execution
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Figure 13: Simple user interaction can improve the segmentation accuracy dramatically (see text). (a) One slice of the original 3D brain
image, (b) the ground truth data of WM tissue in the slice shown in panel (a), (c) the corresponding 3D model of ground truth data of
WM tissue, (d) based on histogram analysis, the whole brain is divided into GM tissue, WM tissue, CSF tissue with different gray values,
and unlabeled tissues in active regions with the most black values, (e) the segmentation result by using dual-front active contours, (f) the
segmented WM tissue (the white part), (g) the 3D model of segmented WM tissue, (h) manually added seed points for WM tissue, (i) the
new segmentation result with added seed points, (j) the segmented WM tissue, (k) the corresponding 3D model of the segmented WM
tissue, (l) the horizontal line is the zoom-in of the user-added seed points in panel (h).

times are between 10 minutes and 1 hours when using trun-
cated multigrid AFCM. In the graph-based topology correc-
tion algorithm (GTCA) [18] proposed by Han et al., they re-
ported that the processing time depends on the total num-
ber of foreground/background filters required. For the brain
volumes with typical size 140×200×160 used in their exper-
iments, each filter took less than 3 minutes on an SGI Onyx2
workstation with a 250 MHz R10000 processor, and the to-
tal processing time for each brain volume took less than 10
minutes. Normally, manual segmentation of one type tissue
segmentation for an experienced person is about 18 hours.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel scheme for 3D brain cor-
tex segmentation based on dual-front active contours and
local histogram analysis. The experimental section illustrated
several advantages of our scheme. The first is that our scheme
exhibited better results than most other methods when tested
on 20 real normal brain images as demonstrated in Figures 11
and 12. The second is that the average computational time of
our method is less than 20 seconds, which is much faster than
most other methods, as discussed in Section 4.4. The third is
that our method facilitates optional user interaction which is
crucial when highly accurate results are needed, as it allows a
trusted and trained user to guide the segmentation processes.
This is discussed and illustrated in Section 4.3.

Our future research work will continue on the follow-
ing aspects because of the complexity and variety of medi-
cal brain images. Since the dual-front active contour model
is fast and easy to implement, it is easily combined with other
preprocessing and postprocessing methods to improve the

segmentation accuracy further. From the segmentation re-
sults shown in Section 4, we can see, for images with high
INU settings and high noise levels, the segmentation results
are not as good. We will work on combing our current model
with INU bias compensation methods and smoothing meth-
ods to improve its performance in these conditions. In recent
years, several methods have been proposed to correct INU
settings [15, 26], and some other methods were also pro-
posed to remove image noise. We will investigate on how
other methods might be used in conjunction with our model.

Second, we have just used potentials based on region-
based information because the interfaces between different
tissues in the tested images were not very clear (due to partial
volume effects). However, edge-based information is impor-
tant and widely exploited for image segmentation and feature
extraction. We are working on developing more robust local
edge operators, and combining them with region-based in-
formation in our potentials to further improve the accuracy
of our results.

Third, our model can be generalized to multispectral data
sets commonly used in MR imaging. When processing such
data sets, vectors may be used to represent intensities of im-
age voxels instead of scalars, and how to design appropriate
potentials and active regions for this case is a very interesting
topic needing further investigation.

Fourth, we use histogram analysis to determine the ac-
tive regions. The test images in this paper are normal elderly
brain images, but young normal histograms have small CSF
compartments compared to those seen in the elderly his-
tograms. Additionally, in diseased brains, the contrast be-
tween gray and white matter is considerably reduced, and
the two histogram peaks sometimes merge. In fact, when
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we tested our method on two of the 20 real MR brain im-
ages, we had to choose the cutoff values for the active regions
manually. Now, we are working on finding better methods to
choose active regions for improving the method’s generality.

APPENDIX

3D DUAL-FRONT EVOLUTION SCHEME

Initialization

Label map L: Initial contours B1, . . . ,Bn with labels li, . . . , ln;
otherwise, l(p) = −1.

Action map U : for any point p of the initial contours, set
U(p) = 0; for other points, set U(p) = ∞.

Potentials P̃li(p): which is calculated based on the label li
of the point p.

Input: active region Rn in image A (I× J×K), initial label
map L, initial action map U .

Sweeping forward loop

(1) For each point x(i, j, k) in Rn, calculate its new label and
new action value by the ordering i = 1 → I , j = 1 → J ,
k = 1 → K , as the following steps:

(i) the new label of x is the label of the point, which has
the smallest U value among the point x and its 6-
connected neighbors,

xmin =
{
x | u(x) =
min

(
ui, j,k,ui−1, j,k,ui+1, j,k,ui, j−1,k,

ui, j+1,k,ui, j,k−1,ui, j,k+1
)}

;

lnew
i, j,k = l

(
xmin

)
;

(A.1)

(ii) calculate the new potential hnew
i, j,k of point x, and find

three minimum U in the 6-connected neighbors of
point x:

hnew
i, j,k = P̃lnew

i, j,k
(i, j, k);

a = min
(
ui−1, j,k,ui+1, j,k

)
; b = min

(
ui, j−1,k,ui, j+1,k

)
;

c = min
(
ui, j,k−1,ui, j,k+1

)
;

(A.2)

(iii) arrange a, b, and c as UA ≤ UB ≤ UC , and calculat-
ing new U from the current value of its 6-connected
neighbors:

(a) if |UA −UB| ≥ hnew
i, j,k, ui, j,k = UA + hnew

i, j,k,
(b) if |UA −UB| < hnew

i, j,k, Δ1 = 2(hnew
i, j,k)2−(UB−UA)2,

(c) if
√
Δ1 ≤ 2UC − (UA + UB), ui, j,k = (UA + UB) +√

Δ1/2,
(d) if

√
Δ1 > 2UC−(UA+UB), Δ2 = (UA +UB +UC)2

− 3(U2
A + U2

B + U2
C − (hnew

i, j,k)2),

ui, j,k =
(
UA + UB + UC

)
+

√
Δ2

3
, (A.3)

– updating ui, j,k: unew
i, j,k = min(ui, j,k,u).

(2) Repeat the above computation 23 times with alternating
sweeping orders.

Output is the label map L which divides the active region
Rn to n regions.
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1. INTRODUCTION

The advent of digital imaging technologies such as MRI has
revolutionized modern medicine. Today, many patients no
longer need to go through invasive and often dangerous pro-
cedures to diagnose a wide variety of illnesses. With the wide-
spread use of digital imaging in medicine today, the qual-
ity of digital medical images becomes an important issue. To
achieve the best possible diagnoses it is important that med-
ical images be sharp, clear, and free of noise and artifacts.
While the technologies for acquiring digital medical images
continue to improve, resulting in images of higher and higher
resolution and quality, noise remains an issue for many med-
ical images. Removing noise in these digital images remains
one of the major challenges in the study of medical imaging.

While noise in medical images present a problem be-
cause they could mask and blur important but subtle fea-
tures in the images, many proposed denoising techniques
have their own problems. One of the widely discussed tech-
niques is the wavelet thresholding scheme, which recognizes
that by performing a wavelet transform of a noisy image,
random noise will be represented principally as small coef-
ficients in the high frequencies. Thus in theory a threshold-
ing, by setting these small coefficients to zero, will eliminate
much of the noise in the image. The wavelet hard thresholding
scheme, which sets wavelet coefficients below certain thresh-
old in magnitude to 0, is easy to implement and fast to per-
form, and depending on the threshold, it removes noise ade-
quately. However, at the same time it also introduces artifacts
as a result of the Gibbs oscillation near discontinuities. Since
artifacts in medical images may lead to wrong diagnoses, the
wavelet hard thresholding scheme is not practical for use in

medical imaging without being combined with other tech-
niques. An improvement over the wavelet hard threshold-
ing is the wavelet soft thresholding scheme [1, 2], which sig-
nificantly reduces the Gibbs oscillation but does not elimi-
nate it. The effectiveness of wavelet thresholding schemes in
general are limited with combining them with other tech-
niques. These other more complex techniques often try to
take account of geometric informations by using wavelet-
like bases that better characterize discontinuities, such as
curvelets [3, 4]. Nevertheless, they do not completely elim-
inate the Gibbs phenomenon. Other methods with varying
success have also been studied by different authors, for ex-
ample, [5–7].

Another approach employs variational principles and
PDE-based techniques. In this approach, a noisy image is
modeled as z(x) = u0(x) + n(x) where u0 denotes the un-
contaminated underlying image and n denotes the noise. To
reconstruct u0 one considers the problem of minimizing

E(u) = λ

2
�u� z�2

L2(ω) + R(u), (1)

where λ > 0, Ω is the domain on which z is defined, and
the term R(u) is a regularization functional. Earlier efforts
focused on least square-based functionals R(u)’s such as
�Δ�2

L2(ω), ��u�
2
L2(ω), and others. While noise can be effec-

tively removed, these regularization functionals penalize dis-
continuity, resulting in soft and smooth reconstructed im-
ages, with subtle details lost. Again, for medical imaging this
is not practical, as subtle details could very well yield crucial
information about the patients.
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A better choice for R(u) was proposed in [8], in which
R(u) is the total variation (TV) of u given by

R(u) = TV(u) :=
∫
Ω
��u�dx. (2)

Intensive studies have shown that the total variation bet-
ter preserves edges in u, thus it allows for sharper recon-
structions, for example, [9–12]. Among all the PDE-based
techniques, the TV minimization scheme is a candidate that
offers the best combination of noise removal and feature
preservation.

Solving the minimizers for the TV minimization (2), or
(1) in general, amounts to solving certain PDEs, which is very
similar to the anisotropic diffusion scheme proposed first in
[13]. For the TV minimization it is easy to show that the PDE
is given by

� �

(
�u

��u�

)
� λ(u� z) = 0. (3)

But in practice, one introduces the time variable t and solves
for u(x, t) by time-marching the equation

ut = � �

(
�u

��u�

)
� λ(u� z), u(x, 0) = z(x). (4)

The end result u(x,T), if T is large enough, will have all
noise removed. An important attribute of the TV minimiza-
tion scheme is that it takes the geometric information of the
original images into account, in that it preserves significant
edges. In fact significant edges are sharpened. This is similar
to the anisotropic diffusion methods see [13, 14] and refer-
ences therein.

The time-marching of (4) is in essence solving for the
minimizer of E(u) by gradient flow. Two approaches are used
for achieving the best combination of noise removal and fea-
ture preservation. The straighforward approach is to tune the
parameter λ. Obviously if λ is too large we may not remove
enough noise. On the other hand, if λ is too small it is well
known that the scheme will remove too many features and
end up with a cartoon-like piecewise constant image [15, 16].
But tuning the parameter λ is time consuming. Since in prac-
tice there is no original image to compare to, and the as-
sumption of i.i.d. Gaussian noise is not always realistic, tun-
ing λ often relies on experience and visual inspection. There
is no automatic way for it as far as we know. A more widely
used approach is to choose λ in a reasonable range without
being precise about the choice. Instead, we try to stop the
time-marching before it reaches the ground state at a point
that offers a good combination of noise removal and feature
preservation. But again here we face the problem of decid-
ing when to stop. There have been efforts in this direction,
see, for example, [17, 18]. These proposed criteria are typi-
cally cumbersome and are based on some a priori knowledge
about the noise such as the variance and type, which may not
be realistic. With the explosion in volumes of medical images,
this is a very significant issue.

In this paper we propose a wavelet TV denoising scheme.
In our scheme, the wavelet coefficients are selected and

modified subjecting to minimizing the TV norm of the re-
constructed images. We demonstrate that while being as ef-
fective as the TV scheme in removing noise, the wavelet TV
scheme allows us to modify the wavelet coefficients primar-
ily in the high frequency domain, something that the regular
TV scheme cannot do. Experiments show that the wavelet
TV scheme preserves details like the regular TV scheme but
offers a slightly higher PSNR in the reconstruction. It is also
significantly faster in that far fewer iterations are needed for
noise removal. The details of these improvements will be pre-
sented in a separate paper [19]. And unlike the traditional
wavelet thresholding scheme, it does not introduce Gibbs’
oscillations near discontinuities. These properties are consis-
tent with other investigations that combine variational ap-
proaches with wavelet framework [20–24]. But more impor-
tantly, this scheme allows for an effective automatic stop-
ping time criterion based on a certain statistical property of
wavelet coefficients. An added advantage for our approach is
that it leads to superior JPEG2000 compression for denoised
images [21]. Given the increased use of JPEG2000 standard
in medical imaging, this is a significant bonus.

2. THE WAVELET TOTAL VARIATION
DENOISING METHOD

In this section, we describe our image denoising algorithm
based on wavelet and TV minimization.

We start with a standard noisy monochromatic image
model

z(x) = u0(x) + n(x), (5)

where z(x), u0(x), and n(x) are real valued functions defined
on R2, and they are compactly supported since they repre-
sent images in our study. The function u0(x) denotes the un-
derlying noise-free image, z(x) the observed image, and n(x)
the noise. In our general model, we assume that z(x), u0(x),
and n(x) are in some space of functions F , such as L2(Ω) for
some domain Ω. Let �ψj : j � I� be a basis for F . This basis
can be an orthonormal basis, such as wavelets [25, 26] if F is
a Hilbert space, or any other type of bases in general. So for
any f (x) � F we have

f (x) =
∑
j�I

c jψj(x), (6)

for some real (cj).
In [21] a wavelet TV minimization model is proposed, in

which �ψj� is taken to be a wavelet basis for F = L2(Ω). In
that model, the wavelet coefficients are selected and modified
to achieve the goals of image processing such as denoising
and compression. In this paper, we refine the above model.
Key to our innovation is an automatic stopping criterion, a
feature we believe to be very important for medical appli-
cations. Another improvement is the multiscale fitting pa-
rameters targeting denoising in the high frequency domain,
which yields a significant reduction in number of iterations
needed to achieve the desired denoising as well as a small per-
formance improvement in terms of PSNR on simulated noisy
images.
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We first describe the denoising part in the general setting.
Let

z(x) =
∑
j�I

αjψj(x) (7)

and denote

u(x,β) :=
∑
j�I

β jψj(x), (8)

where β = (βj). Define the total variation functional by

F(u) :=
∫
R2

∣∣�xu(x,β)
∣∣dx +

1
2

∑
j�I

λ j
(
βj � αj

)2
, (9)

where u = u(x,β), λj > 0. In practice we often replace
��xu(x,β)� by

∣∣�xu
∣∣
ε =

√∣∣�xu
∣∣2

+ ε, with 0 < ε	 1. (10)

The small parameter ε is used to prevent denominators from
vanishing in numerical implementations. The goal of de-
noising is to minimize F(u) and find the minimizer u� :=
u(x,β�) such that

F(u�) = min
β
F(u). (11)

The objective functional in (9) differs somewhat from the
one used in [21], where all λj ’s are uniformly set to a single
parameter λ. With uniform parameter λ and an orthonormal
basis �ψj� the objective functional F(u) is the same as the ob-
jective functional E(u) in (1). Hence the minimizer of F(u)
would be the same as that of E(u) for the regular TV scheme.
By taking a basis that is not an orthonormal basis, such as a
biorthogonal wavelet basis as we do in our implementation,
F(u) is typically not the same as E(u), even with uniform pa-
rameter λj . With nonuniform λj ’s the objective functional
F(u) can be significantly different from E(u) in the origi-
nal TV scheme. Like the regular TV denoising scheme, the
wavelet TV scheme proposed here retain sharp edges with-
out creating Gibbs’ phenomenon.

One can use simple calculus of variation to obtain the
derivative of the objective functional (9). For u = u(x,β)
where β = (βj),

∂F(u)
∂βj

=
∫
R2

�xu∣∣�xu
∣∣ � �xψjdx + λj

(
βj � αj

)

= �

∫
R2
�x �

[
�xu∣∣�xu

∣∣
]
ψjdx + λj

(
βj � αj

)
.

(12)

Then the Euler-Lagrange equation for the model is

�

∫
R2
�x �

(
�xu∣∣�xu

∣∣
)
ψj(x)dx + λj

(
βj � αj

) = 0. (13)

In practice, rather than solving the Euler-Lagrange equa-
tion (13) directly to denoise an image, we introduce an artifi-
cial time parameter t and time-march the image using gradi-
ent flow. More precisely, we set β = β(t) = (βj(t)) and solve

the following time evolution equation:

∂βj
∂t
=
∫
R2
�x �

(
�xu∣∣�xu

∣∣
)
ψj(x)dx�λj

(
βj�αj

)
, βj(0) = αj .

(14)

The minimizer of the TV wavelet model is the steady state of
the above equation.

However, it is well known that TV minimization often
leads to images with cartoonish features. More precisely, the
denoising algorithm will remove noise as well as fine struc-
tures, such as textures and subtle details, from an image. The
consequence is that unless the parameter λ in (1) is carefully
calibrated, if one evolves (14) for an extended time, the de-
noised image is often over-smoothed to the point that it is al-
most piecewise constant. The wavelet TV denoising scheme
has the same issue. This is often unacceptable for most medi-
cal applications. In the original TV minimization scheme in-
troduced in [8] or similar schemes such as anisotropic diffu-
sion, there was no mechanism for stopping the time evolu-
tion. In fact, since the objective functionals do not measure
information pertaining to noise in the processes, a mecha-
nism to stop the time evolution automatically is virtually im-
possible. But in our wavelet TV denoising scheme this can be
naturally done. The reason is that high frequency wavelet co-
efficients are well known to encode information about noise
in images. This property of high frequency wavelet coeffi-
cients has served as the basis for virtually all wavelet denois-
ing methods, such as the widely used hard or soft threshold-
ings, or wavelet shrinkage. Now, by choosing �ψj� to be a
wavelet basis, the same principle allows us to design a nat-
ural automatic stopping criterion for the wavelet TV mini-
mization method, making it an extremely viable scheme for
medical applications.

We now describe our automatic stopping criterion with
the basis �ψj : j � I� being a wavelet basis—in our case
we usually take the biorthogonal wavelet basis generated by
the well-known 7–9 biorthogonal wavelets. (We remark that
the conventional notation for wavelet bases use two or more
indices, such as �ψjk�. In this paper we only use one index
for conciseness, and there should not be any confusion). Like
in the wavelet hard thresholding scheme, we first choose a
threshold ρ > 0. Let Jρ = � j � ID : �βj(0)� = �αj� 
 ρ�,
where ID � I is the index set corresponding to the diagonial
portion of the highest frequency wavelet coefficients. Intu-
itively speaking, as in the wavelet hard thresholding scheme,
the coefficients �βj(0) : j � Jρ� will indicate how noisy the
image is. In a noise-free image these wavelet coefficients will
mostly be very close to 0. But in a noisy image they will be
more substantial. Define μ(t) = (1/�Jρ�)

∑
j�Jρ �βj(t)�. So μ(t)

measures the noise in the image at time t. The key idea is that
an automatic stopping criterion of the time evolution can be
designed by measuring the reduction in the value μ(t) from
the original value μ(0).

We can use two different approaches in setting the au-
tomatic stopping criterion. The first approach is the relative
criterion. In the relative criterion, we consider μ(t)/μ(0). We
will stop the time evolution whenever this value goes below a
threshold b. For example, we may set b = 0.1. This threshold
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(a) (b)

Figure 1: (a) Original image. (b) Image with artificial additive
Gaussian white noise, with PSNR = 2.55 (dB).

intuitively says that we stop the time evolution when we have
reduced noise by 90%. The second approach is the absolute
criterion. In the absolute criterion, we stop the time evolution
if μ(t) drops below a threshold c. Since in a noise-free image
we expect μ(t) to be very close to zero, it is reasonable to set
an absolute threshold for μ(t) to achieve a desired denoising
effect.

In the actual implementation the value ρ does not seem
to affect the automatic stopping time sensitively. We usually
take ρ = (2/�ID�)

∑
j�ID �αj�. Both the relative criterion and

the absolute criterion work well, although we typically use
the relative criterion. For an image with moderate noise we
set the threshold b to be between 0.05 and 0.1. In the more
noisy cases such as the images shown in this paper, we use
smaller threshold b around 0.03. We tested the automatic
stopping time criterion on a number of MRI images for one
lab. The thresholds for optimal performance stayed remark-
ably consistent. This is an important property for batch pro-
cessing of medical images.

3. EXAMPLES

In this section we provide some examples to illustrate the
performance of our algorithm. The first example is for test-
ing. Artificial noise is added to an otherwise rather clean
brain scan shown in Figure 1(a). The standard peak signal-
to-noise ratio (PSNR) is employed to quantify the perfor-
mance of denoising, where

PSNR = 10 log10

⎛
⎝ 2552

∥∥u� u0
∥∥2

2

⎞
⎠ (dB), (15)

where 255 is the maximum intensity value of the gray-scale
images, u0 the noise-free original image, u the noise added
image, and � � �2 the standard L2 norm. A conventional cri-
terion is that larger PSNR signifies better performance. In
addition, we use visual inspection to compare the perfor-
mance in preservation of edges and other geometric features,
which is not reflected through the PSNR measurement. In all

(a) (b)

Figure 2: (a) Denoised image by wavelet hard thresholding PSNR =
8.65 (dB), with the selected threshold that returns the best PSNR
performance. (b) Denoised image by wavelet soft thresholding
PSNR = 8.36 (dB); the threshold is selected to reach the best PSNR
improvement. We note that the hard thresholding gives better PSNR
performance because it is optimal in the L2 norm sense, but the soft
thresholding gives better visual quality because its Gibbs’ oscilla-
tions are less severe.

(a) (b)

Figure 3: (a) Denoised image by TV wavelet with fixed fitting pa-
rameter λj , the PSNR = 10.05 (dB). This image and the PSNR mea-
surement are very similar to those of the regular TV scheme with
the same parameter. (b) Denoised image by TV wavelet with vari-
able fitting parameter λj on different wavelet scales, the PSNR =
10.28 (dB).

examples shown here, we use Daubechies 7–9 biorthogonal
wavelets with symmetric extensions at the boundaries.

We performed denoising on the noise-added brain scan
image using the standard wavelet thresholding schemes
(Figure 2) and our wavelet TV schemes (Figure 3). The
thresholds in the wavelet hard and soft thresholding were
chosen after some trials to ensure the best performance (in
terms of PSNR) for fairness. This actually exemplifies the
problem we try to solve: the only way to get optimal result
is through trial and error experiments with the threshold.
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Figure 4: (a) Original image. (b) Denoised image using the TV
wavelet algorithm.

For our wavelet TV scheme we use the relative approach and
have set the autostopping threshold b = 0.03. We show re-
sults for two different choices of the parameters λj . In the
first one we choose uniform λj = 5. In the second, the fitting
parameters λj for the coarsest level wavelet coefficients (in-
cluding low frequencies) are all set to λj = 400. Afterwards
with each finer level we decrease λj ’s by a factor of 4. Similar
idea of choosing the parameters has appeared in [27] for a
different purpose. As one can see, the wavelet TV scheme in
both examples outperforms the wavelet thresholding signif-
icantly. But more importantly, the wavelet TV image main-
tained sharpness and many fine details, while the wavelet
thresholding image looks soft with details lost. The uniform
fitting parameter example performed similarly to the regu-
lar TV scheme with the same parameter. The multiscale fit-
ting parameters wavelet TV scheme has a small advantage in
PSNR, and in our opinion is visually better. However, the
number of iterations is significantly smaller than either the
uniform λj wavelet TV scheme or the regular TV scheme.

In the next example (Figure 4), we apply the algorithms
with uniform λj = 5 to a real image without artificial noise.
The original image appears quite noisy. We cannot judge the
performance by examining the PSNR as we do not have a
noise-free image with which we can compare. However, by
visual inspection it is evident that the denoised image, while
removing a substantial amount of noise, suffers virtually no
degradation in sharpness and details.
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1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) measures
activity in different areas of the brain under different experi-
mental conditions (e.g., active, rest). In the medical imaging
literature, magnitudes in MR images are assumed to follow
a Rice distribution [1–7], first studied by Rice [8, pages 100–
103]. Most statistical analyses of fMRI images test the differ-
ence between experimental conditions against a null distri-
bution, which applies when no task is performed. Paramet-
ric statistical fMRI analysis often assumes Gaussian noise [9–
14], but findings contradicting this assumption have already
been reported by Hanson and Bly [15], and tests for the dis-
tribution of the residual (noise) signal in fMRI data sets have
been developed [16].

In this paper, we examine the properties of Rician noise,
and the distribution of resting state images that are made
by pairwise subtraction of MR images. Most standard tests,
such as the t-test, F-test, and the z-test, rely on Gaussian dis-
tributed noise. Petersson et al. [17] argue that with Gaus-
sian spatial smoothing, many degrees of freedom, and the
multivariate central limit theorem, these tests are valid in
functional neuroimaging, but they warn that low-count PET
data show departures from normality. Similar effects can be
seen in functional MR images. The Rician probability density
function is very asymmetric if the signal is weak compared to

the noise, so for low signal intensities and with a low signal-
to-noise ratio (SNR), Rician noise and Gaussian noise behave
very differently and the Rician distribution has to be taken
into account in order to prevent biased statistical results.

This problem is important for fMRI, because the scans
may have relatively low SNRs, and the values of the BOLD
contrast are very small compared to the noise. This is espe-
cially true for data with high temporal and/or spatial resolu-
tion: this will inevitably lead to lower SNR values.

The remainder of this paper is organised as follows.
Section 2 introduces the Rician noise model for MR images.
Section 3 derives analytical expressions for the probability
distribution of the difference between two MR images, which
are verified in a series of tests on synthetic noise images.
Section 4 investigates the noise distributions in MR template
images contaminated with noise and in a real fMRI time se-
ries, and discusses implications for the design of fMRI exper-
iments. Section 5 contains some general conclusions.

2. NOISE IN MR IMAGES

During image acquisition in an MR scanner, magnetic fields
are transmitted in pulses varying in frequency and phase.
Voxel locations are selected by frequency and phase, and the
resulting data consist of complex values. The frequency space



2 International Journal of Biomedical Imaging

in which these data are represented is known as the k-space.
The values in the real and imaginary parts of the image are
Gaussian distributed. The k-space data are transformed to a
Cartesian space via an inverse Fourier transform (IFT). The
noise distribution in the resulting image is still Gaussian, be-
cause the IFT is a linear transform.

Most applications of MR imaging only use the magni-
tudes of the signal, because those magnitudes represent a
physical property of the scanned object [18]. Let A(x) rep-
resent the magnitude of the MR image at voxel location x
in the absence of noise. The magnitude r(x) of the signal at
voxel location x in the magnitude image is

r(x)=
√(
A(x) + n1(x)

)2
+ n2(x)2, n1(x),n2(x)∼ N

(
0, σ2),

(1)

where n1(x) and n2(x) are the real and imaginary parts of the
noise and N(0, σ2) is the Gaussian distribution with mean
zero and standard deviation σ .

The magnitude signal in each voxel x is Rician distributed
[1–3], that is, Prob[r ≤ r(x) ≤ r + dr] = pA(x),σ(r), where
pA,σ(r) is the Rician probability density with parameters A
and σ defined by

pA,σ(r) =

⎧⎪⎪⎨
⎪⎪⎩

0, r < 0

r

σ2
e−(A2+r2)/2σ2

I0

(
Ar

σ2

)
, r ≥ 0,

(2)

where

Ik(z) = 1
π

∫ π
0
ez cos(θ) cos(kθ)dθ (3)

is the modified Bessel function of the first kind of order k,
k∈N. Figure 1 shows the Rician probability density function
(pdf) for varying values of A and σ . The shape of the PDF
changes with both parameters. The distribution for A = 0
is called the Rayleigh distribution. For high SNRs, the Rician
distribution approaches a Gaussian distribution [3].

The mean μr =
∫∞

0 r pA,σ(r)dr of the Rice distribution is
given by [8, pages 100–103, Appendix 4B]

μr = σ
√
π

2
e(−z2/4)4

{[
1 +

z2

2

]
I0

(
z2

4

)
+
z2

2
I1

(
z2

4

)}
, (4)

where z = A/σ is the SNR, and Ik, k = 0, 1, is defined in (3).

The standard deviation σr =
√∫∞

0 r2pA,σ(r)dr − μ2
r of the

Rice distribution satisfies the relation [3]

σr =
√
A2 + 2σ2 − μ2

r . (5)

As A/σ goes to infinity, these formulas yield μr → A, σr →
σ , that is, the mean approaches the noise-free intensity and
the standard deviation approaches the corresponding value
of the underlying noise distribution N(0, σ2).

MR noise was modelled by computing the intensity dis-
tribution as in (1). To make a Rice-distributed noisy im-
age from a real-valued noise-free image f (x), we use the
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Figure 1: (a) Rician PDFs for σ2 = 1 and A ∈ {1, . . . , 6}, (b) Rician
PDFs for A = 1 and σ2

r ∈ {1, . . . , 6}, (c) Rician PDFs for σ2 = 4 and
A ∈ {1, . . . , 6}, (d) Rician PDFs for A = 4 and σ2

r ∈ {1, . . . , 6}.
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following procedure for each voxel location x:

(1) n1(x),n2(x) ∼ N(0, σ2),
(2) r(x) =

√
[ f (x) + n1(x)]2 + n2(x)2.

Again, the noisy image is denoted by r(x). The local SNR
is controlled through the ratio f (x)/σ , where f (x) and σ de-
termine μr and σr as described in (4) and (5), respectively.

3. MATHEMATICAL ANALYSIS OF fMRI NOISE

3.1. Statistical testing in fMRI

In fMRI analysis, one searches for activation in certain brain
areas via statistical hypothesis testing. The null hypothesis
H0 states that there is no activation, other hypotheses cor-
respond to several kinds of activation. Most fMRI analysis
methods, such as statistical parametric mapping [13], use
the general linear model (GLM). The GLM treats fMRI re-
sponses as the outputs of a linear time-invariant (LTI) system
using a number of temporal basis functions, f1(·), . . . , fM(·),
called explanatory variables. The GLM has the form

Yk,s = βk,1 f1
(
ts
)

+ · · · + βk,M fM
(
ts
)

+ ek,s, (6)

where Yk,s is the observed data at voxel k, k = 1, . . . ,N , and
time index s, s = 1, . . . ,T ; fm(ts) is value of the mth basis
function at time ts, m = 1, . . . ,M; the βk,m are weight factors
of each temporal component at each voxel (to be determined
from the measurements); and ek,s is the error (noise) at voxel
k and time index s. In matrix form, the GLM may be suc-
cinctly written as

Y = Xβ + e, (7)

where Y is a T × N matrix, X is the T × M design matrix
containing the fm(ts) values, β is T ×N weight matrix, and e
is the T ×N residual matrix containing the part of the signal
not modelled by any component in X. Statistical parametric
tests often assume that the error values in e are independent
and identically normally distributed, that is, ek,s ∼ N(0, σ2

k ),
where the standard deviation may depend on the voxel loca-
tion.

In brain activation studies, one considers an equation of
the form (6) for both the activated and the rest (null) con-
dition. Let Y

q
k,s denote the observed signals under condition

q (0 = “rest,” 1 = “active”). Then a test statistic is formed at
each voxel, for example, a t-statistic Tk defined by

Tk = Y
1
k − Y 0

k

S2
k · (2/M)

, (8)

where Y
q
k is the temporal average per voxel and S2

k is the
pooled variance estimate, that is,

Y
q
k =

1
T

T∑

s=1

Y
q
k,s,

S2
k =

1
2M − 2

1∑

q=0

T∑

s=1

(
Y
q
k,s − Y

q
k

)2
.

(9)

Under the assumption of Gaussian noise, that is, e
q
k,s ∼

N(0, σ2
k ), Y

q
k,s is normally distributed with mean μq and stan-

dard deviation σk, and also the differences Y
q
k,s − Y

q
k are nor-

mally distributed. This implies that Tk ∼ t2M−2, that is, Tk
has a t-distribution with 2M − 2 degrees of freedom un-
der the null hypothesis H0 : μ0 = μ1, that is, no mean ef-
fect of activation occurs. For this reason the distribution of
Tk under this hypothesis is called the null distribution. Vox-
els where this hypothesis can be rejected are therefore des-
ignated as activated voxels. The significance of a certain ob-
served voxel value is expressed by a so-called p-value, which
is the probability of that voxel’s intensity being attributable
to mere chance. A p-value is calculated as the area under the
graph of the t-distribution to the right of a given intensity
value on the horizontal axis. A low p-value (say lower than
0.05) indicates that the measured value is probably not due
to mere chance, that is, that it is a real activation.

The Rician distribution which applies to MRI data has
a heavier right tail than a Gaussian, so p-values based on a
Gaussian noise assumption with the standard deviation of
the Rice distribution will be too low, introducing false pos-
itives. Hanson and Bly [15] found similar deviations, using
gamma distributions instead of Rician PDFs.

As we have seen, it is the null distribution which is needed
to compute p-values. From the discussion above, it is appar-
ent that a sufficient condition for the usual statistical analysis
to hold is that the difference signal at each voxel correspond-
ing to the case of no activation has a Gaussian distribution.
Therefore, our object of study in the remainder of this pa-
per is the distribution of the noise in difference images of
Rician-distributed MRI images without activation. As we will
see, this distribution is indeed very close to a Gaussian, albeit
with a standard deviation different from that of the initial
Rice distribution.

3.2. Null distribution of the difference fMRI signal

The difference of two noisy versions r1(x) and r2(x), con-
taining Rician noise, of the same underlying image f (x), is
not Rician distributed. Let the null image s(x) be defined as
s(x) = r2(x) − r1(x). Its probability density function (PDF)
is denoted by CA,σ(s), where we write A instead of f (x) and
σ is the standard deviation of the underlying noise distribu-
tion (cf. (1)). Then CA,σ(s) is the probability that the value
of the difference s(x) falls in an infinitesimal interval around
s : CA,σ(s) = Prob[s ≤ s(x) ≤ s + ds]. We will refer to CA,σ(s)
as the null distribution.

Since it is easy to see that CA,σ(s) is symmetric, that is,
CA,σ(s) = CA,σ(−s), we have the following expression valid
for arbitrary values of s ∈ R:

CA,σ(s) =
∫∫∞

0
pA,σ

(
r1
)
pA,σ

(
r2
)
δ
(
r2 − r1 − |s|

)
dr1dr2

=
∫∞

0
pA,σ

(
r1
)
pA,σ

(
r1 + |s|)dr1,

(10)

where δ(r) denotes the Dirac delta function. That is, CA,σ(s)
is the cross-correlation of two identical Rice distributions.



4 International Journal of Biomedical Imaging

The mean μs and standard deviation σs of the null distribu-
tion CA,σ(s) are given by

μs = 0, σs =
√

2σr , (11)

where σr is the standard deviation of the Rice distribution,
see (5). For the derivation, see Appendix A.1. In the case A =
0, the PDF of r1, as well as that of r2, is

p0,σ(r) = r

σ2
e−r

2/2σ2
. (12)

For the Rayleigh case (A = 0), the integral in (10) can be
explicitly evaluated. The resulting expression for C0,σ(s) is

1
2σ
e−s

2/4σ2
[ |s|

2σ
e−s

2/4σ2
+
√
π

2

(
1− s2

2σ2

)
erfc

( |s|
2σ

)]
, (13)

where erfc(z) = (2/
√
π)
∫∞
z e−t2 dt is the complementary error

function [19]. For the derivation of this formula, we refer to
Appendix A.2.

The following experiments investigate how well the PDF
CA,σ(s) can be approximated by a Gaussian distribution.

3.3. Numerical approximation by a normal distribution

The distribution CA,σ(s), see (10), was numerically approx-
imated by a Gaussian via the Levenberg-Marquardt curve-
fitting algorithm. The fit was carried out on an interval cen-
tered around zero with negligible function values outside this
interval. Figure 2 shows the PDF CA,σ(s), as well as the Gaus-
sian fitted to this distribution, for a number of values of A
and σ . The plots show an excellent fit.

Table 1 presents some quantitative results. It shows, for
various values of A and σ , (i) the exact standard deviation
σs =

√
2σr of the null distribution (11), where σr was com-

puted according to (4)-(5); (ii) the width σGauss of the Gaus-
sian fitted to CA,σ(s); and (iii) the mean square error of the
difference between CA,σ(s) itself and the fitted Gaussian. The
difference between the width σGauss of the fitted Gaussian and
the exact value σs is very small, especially for high SNR (i.e.,
A/σ). Since σr approaches σ for high SNR (see Section 2), σs
approaches

√
2σ in this limit. The mean square error should

decrease when the SNR increases; this is confirmed by the
experimental results. The null distribution does not have a
heavy tail (it is slightly lighter than a Gaussian of width σ ,
see below). Function values outside the interval used in the
fitting procedure represent a negligible portion of the dis-
tribution. Therefore, p-values from statistical tests based on
Gaussian noise with an estimated standard deviation σGauss

will be very accurate, and (because of the light tail) where
there is a difference, the estimates will be conservative.

3.4. Tail of the null distribution

An important property of the PDFCA,σ(s) for statistical fMRI
analysis is the tail behaviour (as |s| approaches infinity) of the
distribution under the null hypothesis, because this deter-
mines the p-value corresponding to a certain threshold (cf.
Section 3.1).

Table 1: Accuracy of Gaussian fits to the PDFCA,σ for various values
of A and σ . Shown are the exact standard deviation σs computed
from (11), the width σGauss of the fitted Gaussian, and the mean
square error of the difference between the exact distribution and
the fitted Gaussian.

A σ σs σGauss Error

0 1 0.9265 0.9103 0.0080

0 3 2.7795 2.7315 0.0045

0 5 4.6325 4.5526 0.0035

2 1 1.2933 1.3071 0.0030

2 3 3.0463 3.0085 0.0035

2 5 4.8079 4.7291 0.0033

8 1 1.4086 1.4086 0.0000

8 3 4.0552 4.0780 0.0008

8 5 6.1567 6.2188 0.0013

For the limiting cases of low and high SNR, that is, A = 0
and A/σ large, we mathematically analysed the behaviour of
the PDF CA,σ(s) when |s| becomes very large. The details are
presented in Appendix A.3. We find that both in the Rayleigh
case (A = 0) and for large values of A/σ , the tails of the dis-
tribution (10) are lighter than the tail of a Gaussian distribu-
tion:

CA,σ(s) ∼ constant · 1
|s| e

−(|s|−A)2/2σ2
, s −→ ∞, (14)

where the constant depends on A and σ . This is a Gaussian
tail of width σ multiplied by a factor 1/|s|, which means that
the distribution approaches zero even faster than a Gaussian
distribution of width σ . This implies that if p-values based
on a Gaussian are used, the test is slightly conservative, and
will not give extra false positives.

3.5. Statistical tests of normality

An image of a uniform underlying intensity with Rician noise
has a spatially stationary noise distribution. The distribution
of the difference between two such images is symmetric.

To test whether this distribution is close to Gaussian,
the Kolmogorov-Smirnov (KS) test was employed as follows.
We created two images of a uniform intensity A with Rician
distributed noise, and computed the difference between the
noisy images. The KS test was applied to the difference im-
age. The null hypothesis of the KS test is that the data are
normally distributed, and this is rejected if the p-value of the
KS test statistic is below 0.05. For a number of intensities A,
images of different sizes were tested, and for each size and
intensity, the test was repeated 32 times. Table 2 shows the
mean p-values of the KS test statistics for each size, with in-
tensity A = 1 and A = 5. As a reference, 32 images of the
same size containing N(0, 1) noise were also tested, and their
mean p-values are in the right column. This table shows that
deviations from normality can only be detected in very large
images with low intensities: for high intensities, they are too
small to measure.
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Figure 2: The exact null distribution CA,σ(s) (solid), the fitted Gaussian (dashed), and the difference between CA,σ(s) and the Gaussian
(dotted). Note that the fitted Gaussian is hardly distinguishable from the exact distribution.

3.6. Parameter estimation in fMRI with
the general linear model

For fMRI analysis, the possibility of accurately estimating the
parameters of the noise is at least as important as using the
right noise model. We tested the applicability of the GLM
(see Section 3.1) by estimating the noise parameters in dif-
ference images created in the same way as s(x) in Section 3.2,
and comparing them with the real underlying parameters.

A matrix e of error signals was created by making a time
series of 128 difference images. The standard deviation of the
temporal noise was computed in each voxel. Table 3 shows,
for the same input A and σ as before, the measured temporal
standard deviation σ temp, the mean standard deviation σs in
the difference images (which equals

√
2σr , see Section 3.2),

and the ratio σs/σ temp. It shows that the standard deviation σs
is very accurately predicted by formula (11).

3.7. Evaluation of the test results

The statistical tests, the analytical results, and the numeri-
cal computations, all show that the difference between two
MR images whose intensities are Rician distributed, can
be very well approximated by a Gaussian distribution. The
approximation is closest for high SNR, but is still very good
for lower SNR. Given the parameters A and σ of the Ri-
cian spatial noise in a series of MR images and defining null
images as pairwise difference images, the parameters of the
Gaussian distribution that describes the temporal noise can
be accurately estimated.
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Table 2: p-values produced by the KS test for the difference be-
tween images with Rician distributed noise with signal amplitudes
A = 1 and A = 5, and for images of the same size with N(0, 1)-
noise.

Size p-value (A = 1) p-value (A = 5) p-value N(0, 1)

2 × 2 0.6573 0.5607 0.4569

4 × 4 0.5761 0.5565 0.4249

8 × 8 0.5511 0.5493 0.4894

16 × 16 0.5801 0.5564 0.5854

32 × 32 0.5833 0.5378 0.5946

64 × 64 0.5629 0.4869 0.4816

128 × 128 0.5270 0.5426 0.5147

256 × 256 0.4390 0.5554 0.5225

512 × 512 0.3210 0.5219 0.4006

1024 × 1024 0.0587 0.5236 0.5037

Table 3: Measured temporal standard deviation σ temp, the mean
standard deviation σs in the difference images, and the ratio
σs/σ temp.

A σ σs σ temp σs/σ temp

0 1 1.4280 1.4338 0.9959

0 3 4.2854 4.3017 0.9962

0 5 7.1352 7.1667 0.9956

2 1 1.8001 1.8071 0.9961

2 3 4.4708 4.4890 0.9959

2 5 7.2472 7.2815 0.9953

8 1 2.1579 2.1667 0.9959

8 3 5.7924 5.8157 0.9960

8 5 8.5195 8.5542 0.9959

4. THE NOISE DISTRIBUTION IN fMRI

Images in an fMRI time series have a range of intensities,
so the noise distribution is a sum of Rician PDFs (sums of
Gamma PDFs have also been used, see [15] for an example).
For each intensity A in the image, the noise is distributed dif-
ferently (see Figure 3(c)), and this will have an influence on
the parameter estimates of the GLM. Areas with a “true” grey
value of 0, like the space around the body, have Rayleigh-
distributed noise, and the areas with higher grey values have
more symmetric distributions, which are quite similar to a
Gaussian, and they are centered around the grey value at that
location. The total noise distribution is a mixture of all those
distributions. The question is whether the conclusions about
the noise in the difference image obtained in Section 2 also
hold for noisy images with mixed distributions.

4.1. Shape of the noise distribution in MR images

A simulated MR image was acquired from the BrainWeb
Magnetic Resonance Imaging simulator [20] with the follow-
ing parameters: modality T2, slice thickness 1 mm, noise 0%,
intensity nonuniformity 0%. Nonbrain voxels were excluded
with the Brain Extraction Tool [21]. This noise-free T2∗-
weighted image (Figure 3(a)) was contaminated by Rician

(a) (b)

25002000150010005000

(c)

25002000150010005000

(d)

Figure 3: (a) A noise-free T2-weighted MR image. (b) Image (a)
with Rician noise of σ = 81.67 (SNR 10 dB). The histogram of a
noise-free T2∗-weighted MR image (c) and of the same image with
Rician noise of σ = 81.67, SNR = 10 dB (d).

noise with a known σ (see Figure 3(b)). A residual image
was obtained by subtracting the original MR image from the
noisy MR image, and a null image was made using the proce-
dure proposed in Section 3, that is, as the difference between
two MR images containing Rician noise.

The dissimilarity between a Rician distribution and a
Gaussian is largest for low signal intensities A. The previ-
ous section showed that the difference between two images
of a uniform intensity A and Rician noise has zero mean and
is near-Gaussian distributed, also for low signal intensities.
This section examines the difference images when the noise-
free images contain more than one intensity. Figure 4 shows
the histograms of a noisy MR image, the difference between a
noisy MR image and the noise-free image, and the difference
between two noisy MR images, respectively. The histograms
were computed for a range of values for σ and are presented
together as surface plots. As σ decreases, the histogram of the
noisy MR image changes from one Rayleigh-like PDF to a
number of near-Gaussian PDFs (see Figure 4(a)). The his-
togram of the noisy image after subtraction of the original is
asymmetric for high σ , and becomes more symmetric as σ
decreases (see Figure 4(b)). The histogram of the difference
images is symmetric for all σ (see Figure 4(c)).
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Figure 4: (a) Histogram of a noisy MR image, (b) histogram of the difference between a noisy MR image and the noise-free MR image, and
(c) histogram of the difference of two noisy MR images, for various σ . Top: surface plots, bottom: grey-value maps.

4.2. Time series of MR images

A time series of 164 EPI scans was made on a 3 Tesla Intera
scanner (Philips Medical Systems, The Netherlands), with
repetition time TR = 3 seconds, volume size = 64× 64× 46
voxels of 3.5×3.5×3.5 mm3. No stimuli were presented, and
the null hypothesis of no activation was assumed to be true
throughout the experiment. Alignment of the images was
done with SPM′99 program [13].

The time series was split in two disjoint sets: TS1 (images
1, . . . , 82) and TS2 (images 83, . . . , 164). The noise of TS1 was
centered around 0 by subtracting the time series mean image
of TS1 from each image. Note that although this is a common
procedure in fMRI analysis, this means treating Rician noise
as additive noise. To obtain an image with a symmetric noise
distribution, difference images were made by subtracting the
corresponding image of TS2 from each image of TS1.

The histogram of the time series mean image (see
Figure 5) was used to divide the images into three intensity
ranges: low intensity (grey value 0, . . . , 300), medium inten-
sity (grey value 301, . . . , 600), and high intensity (grey value
> 600).

Figure 6 shows the histograms of the grey values in the
resulting time series within the three ranges. Gaussians were
fitted to the histograms with the Levenberg-Marquardt
curve-fitting algorithm. For medium and high intensities, the
time series histograms show no significant asymmetries. For
low intensities however, the time series TS1 after subtracting
the mean has an asymmetric histogram, while the time series
TS1 after subtracting TS2 has a symmetric histogram. The
fits are never perfect, except in the case of low intensities and
after subtracting TS2. In that case, the intensity distribution
has one predominant intensity (A = 0, see Figure 5), and the

150010005000

Figure 5: Histogram of the time series mean image of TS1.

difference distribution is close to those in the A = 0 cases of
the previous section. In the other cases, the noise originates
from voxels with various intensities, and the noise distribu-
tion resembles a mixture of Gaussians with mean μ = 0 and
various σ .

Because the amount of asymmetry in the medium and
high grey-value ranges is very small, the combination of
thresholding and subtracting the time series mean may solve
most of the problems concerning the Rician distribution of
the noise. However, the new method presented in this paper
of subtracting a second-time series is preferable: it has proved
to yield symmetric noise distributions in all measurements
considered.

4.3. Implications for fMRI designs

The assumption of Gaussian noise in the analysis of fMRI
data should be used with care. Relying on the robustness of
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Figure 6: Histograms of three intensity ranges of the images in the time series. Top: time series TS1 after subtracting the time series mean:
(a) low intensity, (b) medium intensity, (c) high intensity. Bottom: time series TS1 after subtracting the corresponding images of time series
TS2: (d) low intensity, (e) medium intensity, (f) high intensity.

the standard tests most often works, but it does not solve
the problem of the asymmetric noise distribution. A recent
maximum-likelihood test based on the Rician distribution
shows to be as powerful as the GLM-based test with a high
SNR, but performs much better with a low SNR [22]. For
using the assumption of Gaussian noise, difference distribu-
tions like the one presented here will be required. The exam-
ple presented here of using an extra data set for every exper-
iment is difficult for large studies, but this can be solved in a
more practical way: a relatively small set of “null data” can be
reused after randomisation in the time dimension. The only
change in the formula for the GLM (7) is using Y − Y0 in-
stead of Y, with Y0 the resting-state data set. It is trivial to see
that this does not change the way the estimates are computed,
even if different (more complex) design matrices X are used.

5. CONCLUSIONS

We have presented a noise model in BOLD fMRI that takes
into account the Rician distribution of MR noise known
from the literature. BOLD noise was defined as the difference
between two MR images with Rician noise. We investigated
the properties of the difference image under the null hypoth-
esis (no brain activation), which is needed to determine p-
values in a statistical analysis. The problem was studied in
several complementary ways: analytical calculation, numeri-
cal simulation, statistical estimation, and experimental vali-
dation on real EPI data. An analytic expression was derived
for the statistical null distribution CA,σ(s) as an integral in
terms of two underlying Rician probability densities with pa-
rameters A and σ . From this basic formula, analytical expres-
sions were derived for the mean and standard deviation of

the null distribution, as well as for its tail, that is, its asymp-
totic behaviour as s goes to infinity.

The null distribution CA,σ(s) was numerically approxi-
mated by a Gaussian function with the Levenberg-Marquardt
nonlinear curve-fitting algorithm. The approximation by a
Gaussian distribution was very good, with the accuracy in-
creasing with SNR (i.e., A/σ). The standard deviation of the
fitted Gaussian was found to be in excellent agreement with
the exact standard deviation σs derived from the analytical
expressions.

The statistical properties of the noise were examined in
two ways. The Kolmogorov-Smirnov test was applied to dif-
ference images of noise-only images with Rician distributed
noise. A second test using the general linear model (GLM)
compared the estimated noise parameters to the value pre-
dicted by the model, and showed that the agreement is excel-
lent.

From the analytical results, the numerical computations,
and the statistical tests, we concluded that the assumption of
Gaussian distributed noise used in the fMRI literature could
be justified. That is, the difference between two images whose
intensities follow a Rice distribution can be very well ap-
proximated by a Gaussian distribution. The approximation
is closest for high SNR, but is still quite good for lower SNR.
Given the parameters A and σ of the Rician spatial noise in a
series of MR images, the standard deviation of the Gaussian
that describes the temporal noise can be accurately predicted.

The noise model was tested on simulated and real MR
images. In a test that contaminated noise-free MR templates
with Rician noise, MR noise was shown to have an asym-
metric distribution when it is—incorrectly—treated as addi-
tive noise. As in the test with noise-only images, difference
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images of noisy MR pictures were found to have a symmetric
distribution. The consequence for fMRI time series analysis
is that subtracting the time series mean does not get rid of
the asymmetry in temporal noise.

We tested thresholding the MR images as a fast and sim-
ple alternative to the difference image approach: it can re-
move asymmetry in the noise distribution to a large extent,
depending on the robustness of the test that is used. Subtract-
ing a second time series from the time series being analysed
yields symmetric and close to Gaussian distributed noise.

APPENDIX

A. MATHEMATICAL ANALYSIS OF THE
NULL DISTRIBUTION

This appendix presents the derivations of the exact analytical
results in Section 3 on the distribution of the difference sig-
nal under the null hypothesis. Extensive use is made of the
concept of asymptotic expansions. We first provide a few for-
mal definitions. Let φ(x) and ψ(x) be two functions defined
for x ≥ x0. One writes φ(x) = O(ψ(x)), x → ∞, when con-
stants K and x1 exist such that |φ(x)| ≤ K|ψ(x)| for x ≥ x1.
We call

∑∞
n=0 anφn(x) the asymptotic expansion of a function

f when, for every N , | f (x) −∑N
n=0 anφn(x)| = O(φN+1(x)),

and write

f (x) ∼

∞∑

n=0

anφn(x), x −→ ∞. (A.1)

Below, we only use the first term in the asymptotic expansion
of some special functions (error function, Bessel function),
and use the shorthand notation

f (x) ∼ a0φ0(x), x −→ ∞. (A.2)

To make this precise, one has to refer to the full asymptotic
expansions, as can be found in Abramowitz and Stegun [19];
for easy reference, we refer to the relevant sections of this
handbook at the appropriate places.

A.1. Mean and variance of the null distribution

First, the mean μs is zero because of the symmetry of CA,σ(s).
Second, since the mean is zero, the variance of the null
distribution satisfies (see (10))

σ2
s =

∫∞
−∞

ds s2C(s)

=
∫∞
−∞

ds s2
∫∞

0
dr1

∫∞
0

dr2pA,σ
(
r1
)
pA,σ

(
r2
)
δ
(
r2 − r1 − |s|

)

=
∫∞

0
dr1

∫∞
0

dr2pA,σ
(
r1
)
pA,σ

(
r2
) ∫∞

−∞
dss2δ

(
r2 − r1 − |s|

)
,

(A.3)

where δ(·) denotes the Dirac delta function. Since δ(r2−r1−
|s|) is zero except when r2 − r1 − |s| = 0, we find

σ2
s =

∫∞
0

dr1

∫∞
0

dr2pA,σ
(
r1
)
pA,σ

(
r2
)(
r1 − r2

)2

=
∫∞

0
dr1

∫∞
0

dr2pA,σ
(
r1
)
pA,σ

(
r2
)(
r2

1 + r2
2 − 2r1r2

)

=
∫∞

0
dr1r

2
1 pA,σ

(
r1
)

+
∫∞

0
dr2r

2
2 pA,σ

(
r2
)

− 2
(∫∞

0
dr1r1pA,σ

(
r1
))(∫∞

0
dr2r2pA,σ

(
r2
))

= 2E
(
r2)− 2E(r)2 = 2σ2

r .
(A.4)

Here E(· · · ) denotes the average of the quantity within the
brackets. So we have found that σ2

s = 2σ2
r , which directly

yields (11).

A.2. Exact form of the null distribution in the
Rayleigh case

Substituting the form (12) of the Rayleigh distribution in ex-
pression (10), we find

C0,σ(s) =
∫∞

0
dr

r

σ2
e−r

2/2σ2 r + |s|
σ2

e−(r+s)2/2σ2
. (A.5)

Putting r/σ = x, |s|/σ = q, A/σ = a, we find after some
algebra

C0,σ(s) = 1
σ

∫∞
0

dx
{(

x +
q

2

)2

− q2

4

}
e−(x+q/2)2−q2/4. (A.6)

Again, putting y = x + q/2,

C0,σ(s) = 1
σ
e−q

2/4
∫∞
q/2

dy
(
y2 − q2

4

)
e−y

2
. (A.7)

Writing τ = q/2, we can write this integral as the sum
of two terms, each of which can be expressed in terms of the
complementary error function

C0,σ(s) = 1
σ
e−τ

2
S2 − 1

σ
e−τ

2
τ2S0, (A.8)

where

S0 =
∫∞
τ

dye−y
2 =

√
π

2
erfc(τ),

S2 =
∫∞
τ

dyy2e−y
2 = 1

2
τe−τ

2
+
√
π

4
erfc(τ).

(A.9)

Substitution of these expressions in (A.8) yields

C0,σ(s) = 1
2σ
e−τ

2
{
τe−τ

2
+
√
π

2

(
1− 2τ2)erfc(τ)

}
. (A.10)

Reexpressing τ in terms of the original variable s (i.e., τ =
q/2 = |s|/(2σ)), we obtain formula (13).
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A.3. Tails of the null distribution

We consider the limiting case of low versus high SNR, that is,
A = 0 and A/σ large.

A = 0. This is the Rayleigh case, for which we have de-
rived an exact expression for the null distribution, see for-
mula (13). When s is large, we can use the asymptotic be-
haviour of the error function [19, section 7.1.23]

erfc(z) ∼

1√
πz
e−z

2
, z −→ ∞. (A.11)

Substituting this in (13), we find (after rearrangement of
terms)

C0,σ(s) ∼

1
2|s| e

−s2/2σ2
, s −→ ∞, (A.12)

which behaves as a Gaussian tail of width σ multiplied by a
factor 1/|s|.

A/σ large. Since A/σ is large, we apply the Gaussian ap-
proximation of the Rice distribution:

pA,σ(r) ∼

1√
2πσ2

e−(r−A)2/2σ2
. (A.13)

As shown in [3], this approximation is already accurate for
A ≥ 2σ . This formula is easy to derive by using the asymp-
totic expansion of the Bessel function I0 as given in [19, Sec-
tion 9.7.1]. Substituting this in (10), we get

CA,σ(s) ∼

∫∞
0

dr
1

2πσ2
e−(r−A)2/2σ2

e−(r+|s|−A)2/2σ2
. (A.14)

Putting r/σ = x, |s|/σ = q, A/σ = a, we find after some
algebra

CA,σ(s) ∼

1
2πσ

∫∞
0

dxe−(x−a)2/2e−(x+q−a)2/2

= 1
2πσ

e−q
2/4
∫∞

0
dxe−(x+q/2−a)2

.
(A.15)

Again, putting y = x + q/2− a,

CA,σ(s) ∼

1
2πσ

e−q
2/4
∫∞
q/2−a

dye−y
2

= 1
2πσ

e−q
2/4
√
π

2
erfc

(
q

2
− a
)
.

(A.16)

In terms of the original variable s,

CA,σ(s) ∼

1
4
√
πσ

e−s
2/4σ2

erfc
( |s|/2− A

σ

)
. (A.17)

Applying the asymptotic expansion (A.11) of the erfc
function for large argument, we find

CA,σ(s) ∼

1
2π
(|s| − 2A

) e−((|s|−A)2+A2)/2σ2
. (A.18)

Finally, since |s| is large, we can replace |s| − 2A by |s|:

CA,σ(s) ∼ constant · 1
|s|e

−(|s|−A)2/2σ2
, s −→ ∞, (A.19)

which again behaves as a Gaussian tail of width σ multiplied
by a factor 1/|s|.
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1. INTRODUCTION

Breast cancer is the second leading cause of cancer death in
women in the United States. Early detection is crucial for
treatment success as tumor size is a major prognostic in-
dicator. Studies have shown that early detection and treat-
ment improve the chances of survival for breast cancer pa-
tients [1, 2]. The American Cancer Society recommends all
women 40 years and older undergo yearly screening mam-
mograms. The goal of screening mammography is the de-
tection of cancer before it becomes palpable. Unfortunately,
mammograms are not 100% accurate. False positive rates of
15–30% and false negative rates of 10–30% have been re-
ported [3]. False-positives (labeling a finding as suspicious
which later is found to be benign) lead to unnecessary biop-
sies and anxiety, while false-negatives (failure to detect pres-
ence of cancer) result in later detection and often poorer
prognosis. Nonetheless, mammography has an overall accu-
racy rate of 90% [2].

Although radiologists are capable of detecting a num-
ber of findings suggesting cancerous tissues in radiographic
images, a significant percentage of abnormalities are missed
[3]. Screening programs typically require radiologists to read
large numbers of mammograms with great attention to fine
details. As less than 10% of exams will have abnormalities

that need further attention and only around 1% will actu-
ally have cancer, this is a rather tedious process. Fatigue, sat-
isfaction of search (failing to detect additional abnormali-
ties once one finding is detected), and failure to perceive
subtle changes are common causes of false negative exams.
Development of computer algorithms to assist radiologists
in detection of abnormalities would be extremely beneficial.
Masses can be hidden by normal dense glandular tissue and
fine microcalcifications can blend in with background tissue.
Computer-aided image analysis enables detection of mass-
like structures only a few millimeters in size and even smaller
microcalcifications. Cancerous tissues usually arise in duct
channels and lobules. It is critical to define the degree of ab-
normality compared to normal cells and growth rate of ab-
normal cells, which is named tumor grade.

Computerized feature extraction techniques are used to
extract features in mammographic images that may not
be readily perceived by radiologists. Many methods have
been proposed in the literature for mammography detec-
tion and classification utilizing a wide variety of algorithms
to achieve their goals. Chan et al. [4] used artificial neural
networks to extract features from mammograms to predict
whether the presence of microcalcifications is associated with
malignant or benign pathology. A back-propagation artifi-
cial neural network classifier was trained and tested with a



2 International Journal of Biomedical Imaging

leave-one-case-out method to recognize the malignant or be-
nign microcalcification clusters. 11 out of the 28 benign cases
were correctly identified (39%) without missing any malig-
nant cases. Lemaur et al. [5] used wavelets having a high
Sobolev regularity to detect clustered microcalcification in
digitized mammograms. Morrow et al. [6] used each pixel in
the mammographic images as a seed to grow a region. Then,
the contrast of each region is calculated and enhanced by ap-
plying an empirical transformation based on each region’s
seed pixel value, its contrast, and its background. The valid-
ity of microcalcification clusters and anatomic details is con-
siderably improved in the processed images. Shen et al. [7]
developed a set of shape factors to measure the roughness of
contours of calcifications in mammograms and for use in mi-
crocalcification classification as malignant or benign. Wang
and Karayiannis [8] used wavelet transform to decompose
the mammograms into different frequency subbands. They
suppressed the low-frequency subbands, making microcalci-
fications correspond to high-frequency components, and re-
constructed the mammogram from the subbands containing
only high frequencies. Zwiggelaar [3] used fractals and sta-
tistical modeling to separate the structure and texture back-
ground that are present in mammographic images.

Utilizing PCA and feature modeling in this work is to tar-
get identifying abnormal mammograms in a local process-
ing setting. It identifies the region of suspicious tissues in an
area size of 120 × 120. This paper is organized as follows.
Section 2 presents a procedure of PCA. Section 3 presents the
linear and curvelinear modeling of the data. Simulation re-
sults are presented in Section 4 followed by the conclusions
in Section 5.

2. BACKGROUND ON PCA

Principal component analysis has proven to be one of the
best methods to find similar patterns or features in a data set.
It is an essential statistical tool in pattern recognition appli-
cations which includes medicine (such as sample identifica-
tion), industry (quality control and document image anal-
ysis), and government (fingerprint identification and face
recognition) [9–11]. Ye and Auner [11] used PCA to reduce
the dimensionality of signatures for different types of sam-
ples to create a real-time approach of sample analysis using
a Raman spectrometer directly mounted at the end-effector
of medical robot to enhance the remote robot surgery. Chen
et al. [9] developed algorithms based on PCA to generate a
set of new identifying keys for a given set of patterns to re-
duce the number of comparisons during the near-matching
process. Pinkowski [10] used PCA for feature reduction on a
speaker-dependent data set to achieve high recognition rate
analyzing spectrograms, which contain human speech utter-
ances. 97.5% correct recognition rate is achieved using PCA.
Also, Swiniarski and Swiniarsk [12] used PCA with rough set
methods for feature selection in mammograms and reported
good results.

In general, PCA algorithm can be useful whenever an
automated feature extraction or identification from a digi-
tal image is required. It is based on finding a match for the
specific feature in the test image from image database using

some similarity measures. These measures are defined based
on statistical characteristics of the data: variance, covariance,
eigenvectors, and eigenvalues. A brief description of PCA is
given in the following subsection and followed by an intro-
duction of two distance measures used in this work.

2.1. A brief description of PCA

Suppose that we have m training data vectors x1, x2, . . . , xm of
n dimensions each, that is, x j = [x1 j , . . . , xnj]T . There are two
phases in the algorithm of PCA. The first phase is to find p
orthogonal and uncorrelated vectors and the second phase is
to project the given data set into a subspace spanned by these
p orthogonal vectors.

The first phase of PCA is as follows.

(i) Construct an n × 1 vector m whose ith element mi is
the mean of the ith dimension of all data x, that is,

mi = 1
m

m∑

k=1

xik. (1)

(ii) Form an n×m matrix X = [x1−m, x2−m, . . . , xm−m],
that is, [X]i j = xi j −mi.

(iii) The n× n covariance matrix C of X is

C = XXT . (2)

(iv) Let λi and vi, i = 1, 2, . . . ,n, be eigenvalues and nor-
malized eigenvectors of the matrix C with Cvi = λivi
and λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Eigenvectors are called
the principal components.

Note that the covariance matrix C is symmetric and
semidefinite. We have vT

i ·v j = 0 for all λi �= λj . If λi is the re-
peated eigenvalue of C, the associated principle component
vi is not unique.

The second phase of PCA is to project a given n×1 testing
data x into a space spanned by v1, v2, . . . , vp, the eigenvectors
associated with the first p largest eigenvalues of the covari-
ance matrix C. This space is called eigenspace. The projection
of the testing data x on the eigenspace is

y = PT(x−m), (3)

where P = [v1 v2 · · · vp
]
.

Discarding small eigenvalues, and consequently corre-
sponding eigenvectors, results in dimension reduction and
increases the speed of computations. The highest eigenvalues
are associated with the eigenvectors that contain the major
modes of variation in the data. Once test mammogram and
training set all projected in the eigenspace, a distance mea-
sure is used to find the nearest match of the test mammo-
gram to the mammogram in the training set. Approximately
90% of the total variance is contained in the first 5 to 10 of
the dimensions. In most implementations of PCA for feature
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extraction applications, the important decision is how much
of the original data variation is needed to be captured in the
eigen features. Most researches choose to work with 88% to
98% of original data variations (see [11]). Including all of
the principal components would be equivalent to working
with the original data since each one of these vectors is a lin-
ear combination of the original vectors. It is worth mention-
ing that keeping the first few components and discarding the
others will result in a loss of the original data, however, in this
utilization of the PCA, this loss is insignificant due to the fact
that the principal components are used as feature vectors to
match them with the feature vectors from mammograms in
the training set. The original mammogram is preserved and
the output for the radiologist is the original mammogram
with identified blocks as suspicious block.

Thresholding is implemented by throwing away all eigen-
values that are below a threshold T , which is basically a mea-
sure of how much variation in the original data is accounted
for in the eigenvalues and their corresponding eigenvectors
that are preserved. The threshold T is calculated as follows:

T =
∑L

k=1 λk∑n
k=1 λk

, (4)

where L is usually kept much smaller than the original total
number of the eigenvalues n. In our simulation, we choose
L = 36.

2.2. Distance measurements

A common way of finding similarities between two patterns
is to find the difference. Since minimum distance means
maximum similarity, different types of distance measure-
ments are being used. In this study, two types are employed:
Euclidean and Chebyshev with the intention to compare
them and find the optimum one for mammographic data.

(i) Euclidean distance

This type of distance is the standard metric, which is the
shortest distance between two vectors (x and y) and is de-
fined as follows:

de(x, y) :=
√∑

i

(
xi − yi

)2
. (5)

(ii) Chebyshev distance

This type of distance is also known as maximum value dis-
tance. It examines the absolute magnitude of the differences
between coordinates of a pair of objects. When computation
time is extremely imperative, Chebyshev distance is used. It
is defined as follows:

dch(x, y) := max
i

∣∣xi − yi
∣∣. (6)

3. MODELING OF IMAGE FEATURES

Initially the intention was to identify the image features us-
ing a linear structure model in an effort to improve the re-
sults obtained by utilizing PCA alone [13]. Indeed, a proper
choice of a modeling technique that suites the features in the
data can be combined with PCA to improve results as re-
ported in [10, 11, 13]. In this work, the search is for suspi-
cious tissue which can be identified by regions surrounded
by an edge. Edges in images can be detected using several al-
gorithms such as directional morphology, curve-linear struc-
ture detection, directional second-order Gaussian derivative,
and convolution-based edge detection algorithms [14–21].
Also, edges may have several shapes such as straight lines, cir-
cles, ellipses, and parabola. Thus it is important that a suit-
able data modeling is utilized to better fit the nature of the
features captured in the data.

3.1. Linear modeling

Convolution-based edge detector is used in this work. Four
masks with the size of 5× 5 pixels are used for vertical, hori-
zontal, and oblique (±45◦) structure detection such as

R
(
n1,n2

) =
2∑

k1=−2

2∑

k2=−2

a
(
k1, k2

)
b
(
n1 − k1,n2 − k2

)
, (7)

where R is the resultant image, a is the mask, and b is the
input image. When a vertical mask is convolved with an im-
age, the longitudinal linear structures are extracted in the re-
sultant image. Using other masks results in similar outputs.
Once all edges in all directions are identified, an edge mam-
mogram is generated. It is more common to use mask size of
3× 3 and they are seldom to be greater than 7× 7, we decide
to use 5×5. Masks used in this implementation for detecting
vertical, horizontal, oblique with 45◦ and −45◦ edges are

⎡
⎢⎢⎢⎢⎢⎣

−1 −1 4 −1 −1
−1 −1 4 −1 −1
−1 −1 4 −1 −1
−1 −1 4 −1 −1
−1 −1 4 −1 −1

⎤
⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1 −1
−1 −1 −1 −1 −1
4 4 4 4 4
−1 −1 −1 −1 −1
−1 −1 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1 4
−1 −1 −1 4 −1
−1 −1 4 −1 −1
−1 4 −1 −1 −1
4 −1 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎣

4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4

⎤
⎥⎥⎥⎥⎥⎦

,

(8)

respectively.

3.2. Curvilinear modeling

Hough Transform (HT) was introduced by Hough in 1962
for detecting and recognizing complex patterns in data [22].
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HT does not require connected or even nearby edge points.
Literature is rich in articles on HT and its abilities in tracking
edges, lines, curves, and parabolic features in images. Fun-
damentally it is a mapping process of edge pixels into a pa-
rameter space [22, 23]. Edges that represent straight lines, for
example, are identified with their slope-intercept (m, b) pa-
rameters and the line for edge pixel (x, y) is

y = mx + b. (9)

However, due to the difficulty dealing with vertical lines in
the image space, a different description for straight line is
commonly used [23]. Lines are parameterized by the orienta-
tion of the line θ and the distance of the line from the origin
ρ as follows:

ρ = (xi − x0
)

cos θ +
(
yi − y0

)
sin θ, (10)

where all points (xi, yi) of an edge in the image space are
represented by (θ, ρ) point in the transform space, and
(x0, y0) is the origin of the image space. While this algorithm
has proved its efficiency in applications where features are
straight lines, however, suspicious regions tend to have circu-
lar shapes. Thus HT for curves is a mapping of a pixel point
(xi, yi) in an image space to a sinusoidal curvilinear in the
Hough space (ρ, θ). A complete review of detecting Hough
transforms curves can be found in [24, 25]. In general, curves
of various sizes can be identified in the image scene by intro-
ducing a new parameter such as a radius of a circle r. The
transform makes use of the circle formula

(
x − x0

)2
+
(
y − y0

)2 = r2 (11)

to find the pixels that fall on this circle and simultaneously
increases the particular accumulator positions.

HT can be high in computational cost and complexity
and has some disadvantages such as the fact that some lines
are replicated during detection due to spatial sampling. Nev-
ertheless, HT is a powerful tool for detecting features with
various sizes and orientations with high accuracy and re-
search is ongoing in developing computationally efficient al-
gorithms [26]. Recently, Olson in [27] has presented superior
algorithm to provide accurate and fast Hough curves with a
worst-case complexity of O(n).

4. EXPERIMENTAL RESULTS

The algorithm outlined above was simulated on mammo-
grams from the Mammographic Image Analysis Society
(MIAS) database using Matlab . The simulations can be cate-
gorized as follows: the first is utilizing PCA with linear mod-
eling in local processing, and the second is utilizing PCA
with HT as a method for curvilinear modeling. In a global
approach one would consider each mammogram is an im-
age as where in local processing each mammogram is seg-
mented into blocks prior to any processing and each block

Table 1: Decision table for training set segments.

Training set
Segments

Image is
1 2 3 4 5 6 7 8 9 10 11 12

1 mdb001 n n n n s n s s s n n n S

2 mdb002 n n n n n n s s s n s s S

3 mdb003 n n n n n n n n n n n n N

4 mdb004 n n n n n n n n n n n n N

5 mdb058 n n n n n n s n n n n n S

6 mdb072 n n n n n n n s n n s n S

7 mdb008 n n n n n n n n n n n n N

8 mdb009 n n n n n n n n n n n n N

9 mdb012 n n n n s n n n n n n n S

10 mdb013 n n n n n n n s s n n n S

11 mdb075 n n n n s n n n n n n n S

12 mdb090 n n n s s n s s n n n n S

is processed as it was an image. Instead of a training set of
mammograms, we are training a set of blocks from several
mammograms. Earlier work showed that PCA using a local
processing is performing better [13]. This is an attempt to ex-
amine PCA performance in a small neighborhoods that may
contain some mamographic features of interest.

Twelve images are segmented into 12 blocks each result-
ing in 144 elements trained. These mammograms are com-
binations of normal, benign, and malignant mammograms.
All these images/blocks from MIAS database are labeled and
their information are tabulated in Table 1. Table 1 is the deci-
sion table, where the status of each block is visually inspected
and labeled by a radiologist. As for the blocks, each block is
defined to be either normal (n) or suspicious (s). Figure 1
shows one of the images of each group. Figure 1(a) is a be-
nign mammogram in training set database, the area around
nipple is defined to be suspicious. Tissues of interest are re-
ferred to as suspicious in this paper, whether they are ma-
lignant or benign. Making final decision is left to a special-
ist. Figure 1(b) is a normal mammogram in the training set
database. Figure 1(c) is a malignant mammogram, and areas
around milk ducts are suspicious. The local processing can
be computationally expensive depending on the training set
size and number of blocks in each image. Moreover, adding
more mammograms to the training set increases memory re-
quirements.

Fifteen mammograms were used as testing set, which
mounts to 180 block testing and matchings results. Figure 2
shows three samples of test images. Each of them belongs to
one of the three classified groups: benign, normal, and ma-
lignant, respectively.

4.1. Results from linear structure modeling

This algorithm is based on extracting the linear models in
each image or block using a convolution process. The de-
tectors are composed of four 5 × 5 masks responding to
vertical, horizontal, and oblique (±45◦) lines. This method
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(a) (b) (c)

Figure 1: (a) Benign mammogram in training set mdb001; (b) normal mammogram in training set mdb003; and (c) malignant mammo-
gram in training set mdb058.

(a) (b) (c)

Figure 2: (a) Benign mammogram in testing set mdb005; (b) normal mammogram in testing set mdb006; and (c) malignant mammogram
in testing set mdb023.

was applied to 15 randomly selected images such as the
ones displayed in Figure 2 using both Euclidean distance and
Chebyshev distance. Total number of testing blocks are 180
and total number of trained blocks are 144.

Results with Euclidean and Chebyshev distance measures
are tabulated in Tables 2 and 3, respectively. These results in-
dicate that Euclidian distance is capable of achieving simi-
lar results to Chebyshev distance in terms of a mammogram
classification as suspicious or not, both at 60% correct, 26.6%
FP, and 13.3% FN. Out of the fifteen tests performed, 9 were
correct, 4 were FP, and 2 FN using both distance measures.
However, the Euclidian distance has shown much higher ac-
curacy with PCA using block statistics. That is, in the Eu-
clidean distance simulations, 159 (88.33%) blocks were cor-
rectly classified, while 9 (5%) FP, and 12 (6.66%) FN classifi-
cations. As for the Chebyshev results they are at 157 (87.22%)
blocks correctly classified, 11 (6.11%) FP, and 12 (6.66%) FN
classifications. The Euclidean distance has a comparable ac-
curacy to Chebyshev’s with the first has two less FP block
classification which requires less viewing time by the radiol-
ogist.

4.2. Results from curvilinear modeling

The results of using HT transform as an algorithm to identify
the curvilinear features in the mammogram as opposed to
straight edges are displayed in Tables 4 and 5.

From these tables, it is observed that the correct mammo-
gram classifications is improved to 73.3% with 20% FP and
6.67% FN classifications for the Eculidean disteance while
the results of the Chebyshev distance are improved to 66.67%
correct classifications, and 26.67% FP, and 6.67% FN. How-
ever, since the objective here is to alert a radiologist to sus-
picious regions in the test mammogram, it is more proper
again to look at the block classification results. These are at
91.11% correct classifications, 3.33% FP, and 5.55% FN for
the Euclidean distance measure while the Chebyshev results
are at 90% correct block classifications, 4.44% FP, and 5.55%
FN. It is worth noting that mdb016 was consistently classified
as suspicious mammogram when it is a normal mammo-
gram. This is due to the fact that this image is a mammogram
of fatty and glandular tissue. Tissue composition ion mam-
mography is important as the detection of cancer is easier
in fatty tissue and mammography becomes less sensitive the
more dense tissue (the greater the proportion of fibroglan-
dular tissue). While this mammogram is not suspicious, it is
not uncommon for a CAD system to mark an area of normal
overlapping tissue as suspicious since its tissue is highly glan-
dular tissue.

5. CONCLUSION

Our goal is to detect abnormalities in screening mammo-
grams as an additional support system to assist radiologists.
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Table 2: Results using block processing with Euclidean distance. Note: first number indicates the block number and second one signifies the
image number in training set.

Testing set
Segments

Image is

1 2 3 4 5 6 7 8 9 10 11 12

mdb005 S
11,10 5,10 9,10 11,11 5,11 9,8 2,3 8,7 9,8 11,11 11,8 12,3

S

n n s n s n n n n n n n

mdb006 N
1,7 8,5 9,7 4,4 8,9 9,5 7,7 8,7 9,7 10,4 2,2 11,6

S

n n n n n n n n n n n s

mdb007 N
1,10 2,3 6,8 12,12 5,8 9,8 7,11 8,8 9,8 10,3 11,3 12,3

N

n n n n n n n n n n n n

mdb010 S
1,12 2,12 6,4 7,6 5,5 6,4 7,6 8,5 9,5 10,6 12,10 12,12

N

n n n n n n n n n n n n

mdb023 S
10,3 2,1 3,8 10,3 5,10 6,10 7,1 2,11 6,10 10,3 8,1 9,8

S

n n n n n n s n n n s n

mdb028 S
1,7 2,12 6,7 4,2 5,9 9,5 4,2 8,9 12,7 10,5 11,9 9,5

S

n n n n s n n n n n n n

mdb011 N
0,3 2,1 3,8 7,1 5,10 6,10 10,10 8,11 12,8 10,3 7,1 3,7

S

n n n s n n n n n n s n

mdb014 N
1,7 5,6 3,7 1,5 8,12 6,7 7,4 8,5 9,5 10,7 11,12 12,12

S

n n n n s n n n n n n n

mdb016 N
4,12 5,5 12,1 7,12 8,9 9,5 4,12 8,5 12,7 7,1 11,6 12,12

S

s n n s n n s n n s s n

mdb015 S
10,11 5,10 6,11 7,1 5,11 3,1 7,1 8,11 6,1 4,11 6,4 3,12

S

n n n s s n s n n n n n

mdb017 S
12,12 5,3 2,6 4,3 5,3 9,1 12,12 8,1 9,7 4,1 11,10 12,7

S

n n n n n s n s n n n n

mdb019 S
1,10 2,1 3,8 11,11 5,11 3,10 2,10 8,7 6,10 2,3 8,7 12,8

S

n n n n s n n n n n n n

mdb095 S
7,1 2,1 9,10 12,12 5,1 6,8 7,1 5,11 9,8 7,11 11,8 12,10

S

s n s n s n s s n n n n

mdb102 S
1,12 2,12 12,11 7,6 5,6 6,4 1,12 2,12 3,12 10,6 12,10 3,12

N

n n n n n n n n n n n n

mdb092 S
4,12 5,9 6,7 4,12 5,12 6,4 7,12 8,6 6,4 10,6 12,10 6,4

S

s s n s s n s s n n n n
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Table 3: Results using block processing with Chebyshev distance. Note: first number indicates the block number and second one signifies
the image number in training set.

Testing set
Segments

Image is

1 2 3 4 5 6 7 8 9 10 11 12

mdb005 S
11,10 5,10 9,10 11,11 5,11 9,8 1,8 8,7 9,8 11,11 2,4 12,3

S

n n s n s n n n n n n n

mdb006 N
1,7 8,5 9,7 4,4 5,7 9,5 10, 4 8,7 9,7 10,4 2,2 11,6

S

n n n n n n n n n n n s

mdb007 N
1,3 2,3 6,8 6,12 5,8 9,8 7,11 8,8 9,8 10,1 11,3 12,3

N

n n n n n n n n n n n n

mdb010 S
1,12 2,12 6,2 7,6 5,5 6,4 7,6 8,5 9,5 10,6 12,10 12,12

N

n n n n n n n n n n n n

mdb023 S
10,3 2,1 3,8 7,1 5,10 6,10 7,1 2,11 6,3 7,1 8,1 9,8

S

n n n s n n s n n s s n

mdb028 S
1,7 2,12 6,7 7,7 5,9 9,5 10,4 5,7 12,7 10,5 11,5 9,5

S

n n n n s n n n n n n n

mdb011 N
10,11 2,1 3,8 7,1 5,10 6,10 10,10 8,11 12,8 10,3 7,1 3,7

S

n n n s n n n n n n s n

mdb014 N
1,7 5,6 3,7 7,4 8,12 6,7 7,4 8,5 9,5 10,7 11,2 9,12

S

n n n n s n n n n n n n

mdb016 N
4,12 5,12 12,1 4,12 8,9 12,1 4,12 8,5 12,7 7,1 11,6 12,2

S

s s n s n n s n n s s s

mdb015 S
10,11 5,10 6,11 7,1 5,11 3,1 7,1 8,11 6,1 4,11 6,4 3,12

S

n n n s s n s n n n n n

mdb017 S
6,12 5,3 2,6 7,10 5,3 9,1 6,12 8,1 9,1 4,1 11,10 11,6

S

n n n n n s n s s n n s

mdb019 S
1,10 2,1 6,3 11,11 5,11 3,10 2,10 8,7 6,10 2,3 8,7 12,8

S

n n n n s n n n n n n n

mdb095 S
7,1 2,1 9,10 4,3 5,1 6,8 7,1 5,11 9,8 7,11 11,8 12,10

S

s n s n s n s s n n n n

mdb102 S
1,12 2,12 12,1 7,6 5,6 12,4 1,12 2,12 12,4 1,8 9,7 12,4

N

n n n n n n n n n n n n

mdb092 S
7,6 5,9 6,7 4,12 5,6 6,2 4,12 8,6 6,2 10,6 9,7 6,2

S

n s n s n n s s n n n n
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Table 4: Results of using curvilinear modeling and PCA with Euclidean distance. Note: first number indicates the block number and second
one signifies the image number in training set.

Testing set
Segments

Image is

1 2 3 4 5 6 7 8 9 10 11 12

mdb005 S
8,7 2,9 8,11 8,4 8,9 5,10 8,4 8,5 5,10 8,7 11,11 5,11

S

n n n n n n n n n n n s

mdb006 N
1,2 2,2 3,6 7,2 8,9 6,6 4,12 8,7 6,6 10,9 11,7 12,6

S

n n n s n n s n n n n n

mdb007 N
1,3 2,10 3,10 4,1 5,10 6,3 4,3 8,8 9,8 10,11 11,3 12,8

N

n n n n n n n n n n n n

mdb010 S
1,6 2,12 3,12 4,12 5,12 9,4 4,12 8,5 9,4 10,6 11,6 12,2

S

n n n s s n s n n n s s

mdb023 S
1,1 2,10 3,3 4,8 5,10 6,8 4,8 8,8 6,8 10,3 11,8 12,8

N

n n n n n n n n n n n n

mdb028 S
1,4 2,12 3,4 4,4 5,2 9,7 7,2 8,7 9,7 10,2 11,7 12,7

S

n n n n n n s n n n n n

mdb011 N
1,2 2,1 3,3 7,11 5,10 6,10 7,3 8,11 9,3 10,3 11,1 12,10

N

n n n n n n n n n n n n

mdb014 N
1,9 2,7 3,7 4,7 5,5 9,4 7,9 8,5 9,5 10,9 11,2 12,6

S

n n n n n n n n n n s n

mdb016 N
1,12 2,2 3,11 7,12 8,9 6,4 7,12 8,5 9,5 10,10 11,6 12,6

S

n n n s n n s n n n s n

mdb015 S
1,1 2,11 3,11 4,1 8,8 9,11 4,3 8,11 9,1 10,1 11,1 12,4

S

n n n n n n n n s n n n

mdb017 S
1,1 2,1 3,6 4,1 5,8 6,6 4,1 8,1 6,6 10,10 11,10 12,4

S

n n n n n n n s n n n n

mdb019 S
1,10 2,1 3,3 7,3 5,1 6,8 4,6 8,7 6,3 10,5 11,7 12,8

S

n n n n s n n n n n n n

mdb095 S
1,6 2,10 3,3 4,3 5,8 9,10 4,1 8,8 9,3 10,10 11,8 12,3

S

n n n n n s n n n n n n

mdb102 S
1,6 2,12 3,5 4,12 5,6 6,4 4,6 8,6 9,4 10,6 11,6 12,4

S

n n n s n n n s n n s n

mdb092 S
1,12 2,2 3,12 7,12 5,12 6,4 7,12 8,6 6,4 10,6 11,2 12,7

S

n n n s s n s s n n s n
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Table 5: Results of using curvilinear modeling and PCA with Chebyshev distance. Note: first number indicates the block number and second
one signifies the image number in training set.

Testing set
Segments

Image is

1 2 3 4 5 6 7 8 9 10 11 12

mdb005 S
8,7 2,9 8,11 8,4 8,9 5,10 8,4 8,5 5,10 8,7 11,11 5,1

S

n n n n n n n n n n n s

mdb006 N
1,2 2,2 3,9 4,12 8,9 6,6 4,12 8,7 6,6 10,8 11,7 12,6

S

n n n s n n s n n n n n

mdb007 N
1,3 2,10 3,10 4,1 5,10 6,3 7,1 8,8 9,8 10,11 11,3 12,8

S

n n n n n n s n n n n n

mdb010 S
1,6 2,12 3,12 4,12 5,12 9,4 7,6 8,5 9,4 10,6 11,6 12,2

S

n n n s s n n n n n s s

mdb023 S
1,1 2,10 3,3 4,8 5,10 6,8 4,8 8,8 6,8 10,3 11,8 12,8

N

n n n n n n n n n n n n

mdb028 S
1,4 2,2 3,4 4,4 5,2 9,7 7,2 8,7 9,7 10,2 11,7 12,5

S

n n n n n n s n n n n n

mdb011 N
1,2 2,1 3,3 7,11 5,10 6,10 7,3 8,11 6,9 10,3 11,1 12,10

N

n n n n n n n n n n n n

mdb014 N
1,9 2,7 3,7 4,7 5,12 9,4 4,7 8,5 9,5 10,7 11,2 12,6

S

n n n n s n n n n n s n

mdb016 N
1,11 2,2 3,11 7,12 8,9 6,4 7,12 8,7 9,5 10,1 11,6 12,6

S

n n n s n n s n n n s n

mdb015 S
1,1 2,11 3,11 4,1 8,8 9,11 4,3 2,11 9,1 10,1 11,6 12,4

S

n n n n n n n n s n s n

mdb017 S
1,1 2,1 3,6 4,1 5,8 6,6 4,1 8,10 6,6 10,1 11,10 12,4

S

n n n n n n n s n n n n

mdb019 S
1,3 2,1 3,3 7,3 5,1 6,8 4,12 8,7 6,3 10,5 11,7 12,8

S

n n n n s n s n n n n n

mdb095 S
1,6 2,3 3,3 4,3 5,8 9,10 4,1 8,8 9,3 10,1 11,8 12,3

S

n n n n n s n n n n n n

mdb102 S
1,6 2,12 3,5 4,12 5,6 6,4 4,6 8,6 6,7 10,6 11,2 12,4

S

n n n s n n n s n n s n

mdb092 S
1,12 2,2 3,12 7,12 5,12 6,4 7,12 8,6 6,4 10,6 11,2 12,7

S

n n n s s n s s n n s n
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In this work, two different approaches are employed for
the detection of suspicious tissues in mammograms utiliz-
ing local PCA with data modeling. Linear modeling, lo-
cal PCA, and Euclidean distance algorithm showed better
results compared to Chebyshev distance. Euclidean measure
produces in general less false detections. However, since the
nature of cancerous tissues is more circular, Hough trans-
form was employed to search for curved shapes rather than
straight edges. The Hough modeling of the data combined
with local PCA, and Euclidean distance produces improved
results. In all, all algorithms produced over 90% correct
classifications of blocks. However, the algorithm has several
parameters that can be investigated for improvements. Thus
future work is planned for an investigation of the perfor-
mance dependency on the Hough parameters, threshold for
the principal components, and T which is a function of λ.
The algorithm would improve if thresholding is optimized
by using adaptive measures. Also, the distance measure is an
important component of this framework, an optimum dis-
tance or even other similarity measures should be investi-
gated. Moreover, block size is crucial for the performance and
if smaller block size is used into the algorithm, the algorithm
performance should improve, and hopefully, identify abnor-
malities in smaller size of neighborhoods down to pixel ab-
normality detection.
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Recent advances in neuroimaging techniques have provided precise spatial localization of brain activation applied in several neu-
roscience subareas. The development of functional magnetic resonance imaging (fMRI), based on the BOLD signal, is one of the
most popular techniques related to the detection of neuronal activation. However, understanding the interactions between several
neuronal modules is also an important task, providing a better comprehension about brain dynamics. Nevertheless, most con-
nectivity studies in fMRI are based on a simple correlation analysis, which is only an association measure and does not provide
the direction of information flow between brain areas. Other proposed methods like structural equation modeling (SEM) seem to
be attractive alternatives. However, this approach assumes prior information about the causality direction and stationarity condi-
tions, which may not be satisfied in fMRI experiments. Generally, the fMRI experiments are related to an activation task; hence,
the stimulus conditions should also be included in the model. In this paper, we suggest an intervention analysis, which includes
stimulus condition, allowing a nonstationary modeling. Furthermore, an illustrative application to real fMRI dataset from a simple
motor task is presented.
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1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) based on
blood oxygenation level-dependent (BOLD) signal has be-
come one of the most prominent and powerful tools in cog-
nitive neuroscience [1]. Most fMRI studies found in the liter-
ature focus on the detection of neuronal activation and brain
mapping via statistical analysis. However, understanding cor-
tical dynamics is a crucial step toward inferring cortical func-
tioning.

Several evidences [2–4] suggest that modeling the inter-
actions between different brain structures is paramount to
understand the mechanisms guiding specific cognitive be-
haviour. However, the determination of parameters involved
in cortical dynamics is still an open question. A number
of techniques are being used to detect patterns of interac-
tion between cortical areas, most using an ad hoc concept.
So far, most connectivity studies have investigated temporal

correlation as a measure of connectivity [3], even though it
is not enough to identify the direction of information flow.
In fact, Pearson correlation coefficient in time series analy-
sis is just a measure of linear association. The connectivity
mapping via correlation analysis is obtained firstly by select-
ing a seed voxel, and then Pearson correlation is calculated
against all the other brain voxels. In most cases, the selection
of the seed voxel is derived from the activation maps. Hence,
as the activation detection is based on the similarity between
the observed BOLD signal in a voxel and an expected haemo-
dynamic curve, the correlation connectivity analysis is close
to an activation mapping considering the seed voxel BOLD
signal as the expected curve. Finally, we conclude that the
correlation connectivity mapping is not sufficient to provide
additional information in relation to the activation analysis
based on general linear model (GLM).

Other statistical methods, such as the structural equa-
tion modeling (SEM), are more attractive to overcome this
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shortcoming. Büchel and Friston [2] modeled the occipi-
toparietofrontal network involved in attention tasks using
structural equation modeling. Zhuang et al. [5] applied SEM
to a bimanual motor coordination experiment. Rowe et al.
[6] modeled the prefrontal cortex in a color selection task.
An improvement of SEM applied to fMRI analysis is the
dynamic causal model (DCM), proposed by Friston et al. [7].
However, these two modeling approaches require a complete
prespecification of the connectivity structure. Additionally,
as DCM is estimated via Bayesian algorithms, it also re-
quires the prior densities of the parameters of interest. In fact,
these models measure the instantaneous connectivity, but re-
quire the direction of information flow. Therefore, these ap-
proaches are not enough to provide a complete identifica-
tion of the connectivity pattern. Furthermore, the autocorre-
lation of BOLD signal is another obstacle for the application
of these models and, in most cases, is simply ignored.

Granger causality [8] is a very prominent concept to de-
scribe information flow and connectivity. Baccalá et al. [9]
and Baccalá and Sameshima [10] introduced a frequency-
domain connectivity identification method for EEG using
partial directed coherence and this causality concept. Goebel
et al. [11] and Roebroeck et al. [12] introduced the concept
of Granger causality in fMRI via vector autoregressive mod-
eling (VAR). They have also shown the applicability of this
approach to BOLD signals using simulations and illustrating
it with real data derived from visuomotor studies. Compared
to other approaches described previously, the main advan-
tage of Granger causality identification via VAR models is the
fact that prior specifications about connectivity structure are
not necessary. Also, if one has prior partial knowledge about
this structure, it can be naturally included in the model as a
restriction in the parameters to be estimated.

The stationarity condition is one of the main obstacles
to VAR modeling application in fMRI analysis. This assump-
tion requires the connectivity structure to be the same during
all acquisition times. Although acceptable in resting state or
one-condition experiments, it may not be valid in paradigms
with more than one condition. In that matter, as the con-
nectivity structure may change according to the stimulus,
comparisons between these structures are also an interesting
point.

In this paper, we propose the use of a generalization of
VAR models via intervention analysis (structural break mod-
els), which allows a natural modeling of connectivity and also
statistical comparisons of the connectivity structures in ex-
periments with different stimulus conditions.

2. GRANGER CAUSALITY AND CONNECTIVITY

In fMRI analysis, the definition of connectivity can be di-
vided into two concepts: functional and effective connectiv-
ity. The first is defined as “correlations between spatially re-
mote neurophysiological events” [4]. In contrast, effective con-
nectivity is related to the “influence of one neural system over
another” [4]. Note that effective connectivity implies in func-
tional one, but the reciprocal may not be valid. The activ-
ity correlations or synchronisms may be observed due to ex-

ternal factors, not only due to synaptic interactions between
the areas involved. An illustrative example involving differ-
ences between these two concepts of connectivity could be a
paradigm with simultaneous stimulation of visual and au-
ditory cortex. The neuronal activity in these areas will be
correlated (functional), but not related to neural interactions
(effective). However, the simplicity of functional connectiv-
ity concept makes it very useful, mainly in cases where the
neural activity is measured indirectly, as in fMRI time series.

Granger causality is a very useful concept for the descrip-
tion of brain areas connectivity and direction of informa-
tion flow identification [10, 13]. In the context of time series,
Granger [8] defined causality in terms of predictability. This
concept was originated in econometrics, focusing the under-
standing of relationships between financial time series such
as prices, indexes, interest rates, and so forth. The basis of
this concept is that effect cannot precede cause, suggesting
that causality can be detected toward past and future rela-
tionships. A signal xt is said to Granger-cause a signal yt if
the past values of xt help the prediction of present values of
yt. In other words, if the variance of the prediction error of yt,
considering all the information until the time t, is less than
the one obtained excluding the information of past values of
xt, then xt is said to Granger-cause yt.

Goebel et al. [11] introduced Granger causality identifi-
cation between BOLD time series using VAR models, show-
ing the applicability of this approach in simulated and real
fMRI data. Note that Granger causality aims to identify in-
teractions and relationships between signals via precedence
and prediction. However, it is more related to functional con-
nectivity than effective one, because it cannot distinguish real
influences from prediction power.

Let a k-dimensional multivariate time series

Yt =
[
y1t y2t · · · ykt

]′
, t = 1, 2, . . .,T , (1)

composed by k signals measured on time t. In order to mea-
sure the prediction improvement of Yt using a collection of
p past values of the series (Yt−1, Yt−2, . . ., Yt−p), assume a k-
dimensional vector autoregressive model (VAR) of order p,

Yt = v + A1Yt−1 + A2Yt−2 + · · · + ApYt−p + ut , (2)

where v is the intercept vector (related to the process aver-
age), ut is an error vector of random variables with zero mean
and covariance matrix Σ given by

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ2
11 σ12 · · · σk1

σ21 σ2
22 · · · σk2

σ31 σ32 · · · σk3
...

...
. . .

...
σk1 σk2 · · · σ2

kk

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3)

v and Ai are coefficient matrices given by

v =

⎡
⎢⎢⎢⎢⎣

v1

v2
...
vk

⎤
⎥⎥⎥⎥⎦

, Ai =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11i a12i · · · a1ki

a21i a22i · · · a2ki

a31i a32i · · · a3ki
...

...
. . .

...
ak1i ak2i · · · akki

⎤
⎥⎥⎥⎥⎥⎥⎦

, i= 1, 2, . . ., p.

(4)
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As the error term ut has zero mean, the predicted values of
Yt conditional to the past values are given by

∧
Yt = v + A1Yt−1 + A2Yt−2 + · · · + ApYt−p. (5)

The VAR model allows an easy way to identify Granger
causality. If the coefficient ajli for some i is nonzero, we say
that signal ylt Granger-causes the signal yjt. In other words,
the past values of the signal ylt help the prediction of the
present and future values of the signal yjt. It is important to
mention that this kind of relationship is not reciprocal, for
example, ylt may Granger-cause the signal yjt, but not nec-
essarily yjt causes ylt, indicating the direction of information
flow.

Consider a functional magnetic resonance dataset. Select
k voxels in the volume, obtaining a BOLD k-dimensional
signal. Using the concept of Granger causality and the VAR
modeling, it is possible to verify if the BOLD signal of certain
brain areas Granger-causes another areas’ BOLD signal, by
testing the significance of the estimates of matrix At. There-
fore, we are able to test the functional connectivity and direc-
tion of the information flow.

However, VAR modeling is only suitable in cases of sta-
tionary time series with coefficients and error covariance ma-
trix invariant on time. Hence, considering fMRI studies, a
weakness of this approach is the assumption that both acti-
vation and connectivity functions are constant in the whole
scanning interval. Let an epoch functional magnetic reso-
nance image experiment with two conditions A and B. It is
reasonable to expect functional connectivity under A, but it
may not be the same under B. Therefore, we propose the use
of intervention VAR (structural breaks model) focusing on
the identification of changes in functional connectivity. The
intervention VAR model is defined by

Yt = v(C) + A(C)
1 Yt−1 + A(C)

2 Yt−2 + · · · + A(C)
k Yt−k + ut ,

(6)

where the coefficient matrices are given by

v(C) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 + δ(C)
1

v2 + δ(C)
2

...

vk + δ(C)
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= v + δ(C),

A(C)
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11i + ∂(C)
11i a12i + ∂(C)

12i · · · a1ki + ∂(C)
1ki

a21i + ∂(C)
21i a22i + ∂(C)

22i · · · a2ki + ∂(C)
2ki

a31i + ∂(C)
31i a32i + ∂(C)

32i · · · a3ki + ∂(C)
3ki

...
...

. . .
...

ak1i + ∂(C)
k1i ak2i + ∂(C)

k2i · · · akki + ∂(C)
kki

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=Ai + ∂(C)
i ,

(7)

ut is an error vector of random variables with zero mean and
covariance matrix Σ(C) defined by

Σ(C) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
11 + ψ(C)

11 σ12 + ψ(C)
12 · · · σ1k + ψ(C)

1k

σ21 + ψ(C)
21 σ2

22 + ψ(C)
22 · · · σ2k + ψ(C)

2k

σ31 + ψ(C)
31 σ32 + ψ(C)

32 · · · σ3k + ψ(C)
3k

...
...

. . .
...

σk1 + ψ(C)
k1 σk2 + ψ(C)

k2 · · · σ2
kk + ψ(C)

kk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=Σ + Ψ(C),

(8)

and C indicates the block condition (A or B). For simplicity,
assume that

δ(A)
j = 0, ∂(A)

jli = 0, ψ(A)
jl = 0 (9)

for j = 1, 2, . . ., k, l = 1, 2, . . ., k, i = 1, 2, . . ., and δ(B)
j , ∂(B)

jli ,

and ψ(B)
jl are the increments on the coefficients during B con-

dition. If at least one of the coefficients δ(B)
j , ∂(B)

jli , and ψ(B)
jl

is nonzero, it implies the existence of structural changes. In
other words, we have different coefficient matrices for each
condition. Thus, we have a VAR structure for each block, but
all the parameters are globally estimated, allowing a statistical
test to the connectivity changes. The intervention VAR model
can be estimated using an interactive generalized least-square
estimator. Consider the following vector and matrices:

y = vec
(

Yt
)
,

X =
[

1 Yt−1 Yt−2 · · · Yt−p
]

,

Z = Ik ⊗
(
[1 Δ]⊗R X

)
,

(10)

where vec is an operator that concatenates all the columns of
a matrix in a column vector, Δ is a vector of zeros and ones
indicating the stimulus condition at time t (the tth element
of Δ is zero/one if the acquisition at time t occurs during A/B
condition), 1 is a column vector of ones, and ⊗R is the row-
Kronecker product, which is defined as the Kronecker prod-
uct applied separately for each row, that is,

⎡
⎢⎢⎢⎢⎣

a1

a2
...
ak

⎤
⎥⎥⎥⎥⎦
⊗R

⎡
⎢⎢⎢⎢⎣

b1

b2
...
bk

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 ⊗ b1

a2 ⊗ b2

...

ak ⊗ bk

⎤
⎥⎥⎥⎥⎥⎥⎦
. (11)

The error covariance matrix is given by Γ. The general-
ized least-square estimator of the coefficients of the interven-
tion VAR model is given by [14, 15]

β̂ = (Z′Γ−1Z
)−1

Z′Γ−1y. (12)

However, as the covariance matrix Γ is unknown, we pro-
pose the use of an interactive two-stage least-square estima-
tor. The residuals are estimated on the first step and the co-
variance matrix Γ on the second one, as an extension of the
Cochrane-Orcutt procedure. The variances/covariances in Γ
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Figure 1: Group activation and connectivity changes maps for six subjects in a rest-fingertap block design paradigm. The connectivity
changes map shows the voxels with significant changes in the information flow intensity from SMA, between rest and fingertap condition.
The maps are presented on radiological convention.

may be consistently estimated considering the fits of an or-
dinary regression of squares/cross residuals as response and
[1 Δ] as model matrix. The Wald test statistic of linear com-
binations of parameter in β is given by

W =
(

Cβ̂ −m
)′[

C
(

Z′Γ−1Z
)

C′
]−1(

Cβ̂ −m
)

σ̂2
, (13)

where σ̂2 is the estimated residual variance, m is a vector, and
C is a contrast matrix corresponding to the following test:

H0 : Cβ = m,

HA : Cβ �= m.
(14)

Under the null hypothesis, W has an asymptotic chi-
square distribution with rank (C) degrees of freedom [14].
Basically, this procedure performs simultaneous tests of the
equality between m and linear combinations (C) of parame-
ters in β. Note that the connectivity parameters can be easily
tested considering the W statistic. Further, in case of non-
Gaussian errors distribution, the martingales central limit
theorem [16] implies that the classic asymptotic properties
of the generalized least-square estimator are valid.

To finish this section, it is important to highlight some
points about the application of the intervention VAR models
to connectivity analysis in fMRI. Firstly, although Granger
causality identification via VAR models is closely related to
interactions, it cannot make a distinction between real influ-
ences or predictive power. Secondly, it is important to men-
tion that this approach depends on sampling frequency. As
Granger causality identification is based on information con-
tained in past values, low sampling rates result in aliasing and
data aggregation. In fact, sampling frequency represents a
challenge for connectivity modeling in fMRI, as short acqui-
sition time implies in low signal-to-noise ratio. On the other
hand, neural interactions occur in a frequency much higher
than fMRI acquisitions (TR). Thus, the connectivity struc-
ture identified via VAR models is only related to very low fre-
quencies information, and fast interactions are not detected.
Additionally, we would like to emphasize the point that al-
though intervention model does not require the assumption

of global stationarity, it depends on this assumption to be
valid during each paradigm condition. The validity of this
assumption is reasonable in block design paradigms, but it
may not be true in event-related ones. The application of the
proposed approach to fMRI data with event-related designs
could result in an imprecise estimation, such as an average
of the information flow intensity across the activation time-
points.

3. APPLICATION TO REAL DATA

In order to illustrate the usefulness of the proposed approach,
the intervention VAR modeling was applied to real fMRI data
derived from a motor task study.

Six normal right-handed subjects performed a simple
right hand fingertapping task, in an AB periodic block de-
sign experiment. The functional magnetic resonance im-
ages were acquired in a GE 1.5 T Signa LX MR system
equipped with a 23 mT/m gradient, (TE: 40 milliseconds,
TR: 2000 milliseconds, FA: 90◦, FOV: 240 mm, 64 × 64 ma-
trix; 15 slices, thickness: 7.0 mm, gap: 0.7 mm) oriented in
the AC-PC plane in a single run. There were one hundred
volumes collected during five cycles of rest-task performance.
Each cycle had the duration of 40 seconds corresponding to
20 volumes, 10 volumes acquired during rest, and 10 vol-
umes during the activation task. The subjects were in the
dark room with noise-reducing headphones customized for
functional MR. Instructions to begin and finish movements
were given via auditory stimuli.

The images were preprocessed considering motion cor-
rection and spatial smoothing. The activation brain mapping
was obtained using the XBAM software [17]. Spatial normal-
ization transformation to the stereotatic space of Talairach
and Tournoux [18] was performed using SPM2 [4]. Since the
main interest was the study of motor function, the analyses
were limited to the superior slices, reducing the number of
multiple comparisons and consequently increasing the sen-
sitivity of the statistical tests.

The group activation maps (cluster P value < .01) are
presented in Figure 1 (top). Note that there are significant
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activations found on the left primary and contralateral mo-
tor cortex (BA 4), supplementary and premotor areas (BA 6),
and primary sensitive areas (BA 3, 2, 1), which are classically
involved in motor control.

Taking into account a significant activation in the sup-
plementary motor area (SMA), the intervention VAR analy-
sis was performed in a bivariate fashion considering a seed in
the activation local maxima of SMA against all other voxels
in the whole brain. As changes in BOLD signal are not in-
stantaneous, we considered a delay of 2 seconds in the condi-
tion specification. Statistical tests for differences in the infor-
mation flow intensity from SMA to the voxel of interest, be-
tween rest and task, were performed in each individual sepa-
rately. The individual W statistics were mapped to Gaussian
quantiles, and the group analysis was performed in SPM2
(on-tailed t test, which is similar to a random effects analysis
[4]). The connectivity changes map (voxel P value < .005)
is presented in Figure 1 (bottom). The areas with significant
changes in the information flow intensity from SMA were the
premotor cortex, presupplementary motor area, and primary
sensitive cortex.

The intervention VAR model was also applied in a trivari-
ate analysis, considering the selected seed in SMA, and voxels
(connectivity changes minimum P value) in the pre-motor
cortex (PM) and pre-supplementary motor area (PSMA). In
Figure 2 (top), diagrams (arrow P value < .05) describing
the connectivity structure during rest and fingertap and also
differences in information flow intensity are presented. The
BOLD signals derived from selected ROI of one subject are
presented in Figure 2 (bottom).

When contrasting fingertapping with rest we found sig-
nificant changes in PM cortex, primary sensitive areas, and
PSMA. All these areas are classically involved in movement
control [19]. The current understanding of motor control in
the literature suggests that PSMA provides the main input
to SMA, which is possibly responsible for providing internal
representation of movement sequences, and is involved in
learning process of new movements. SMA is believed to send
information to the PM and primary motor cortices, and is
also associated with complex calculation to achieve max-
imum performance, based on feedback information from
sensitive areas.

During the rest, we observed increased connectivity be-
tween the SMA and PM with pre-SMA. Some studies demon-
strated that PSMA plays an important role in cognitive motor
control, which involves sensory discrimination and move-
ment decision making (go/nongo) or motor selection for the
action after stimuli [20, 21]. In order to start the sequence of
fingertapping, a motor decision must be made, based on the
instruction previously given to the participant. All areas (pre-
SMA, PM, and SMA) are involved in the initiation of move-
ment and modification in their connectivity pattern might
be explained by the attention to stimulus presentation and
monitoring during the task.

4. CONCLUSION

Most connectivity studies results rely on analyzing second-
order correlations that do not give additional information

PSMA

SMA PM

0.0410.023

Resting

PSMA PSMA

SMA PM
0.017

0.020 0.027
Fingertap Contrast

SMA PM

0.001

0.003
0.005
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P
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A
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M
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Figure 2: Group connectivity structure during resting, fingertap-
ping, and information flow changes between these two conditions
(top). The numbers in the arrows describe the information flow cor-
respondent P value. An illustrative chart of ROI’s BOLD signals of
one subject is also presented.

about neural interactions. Other advanced methods like
structural equation modeling (SEM) or dynamic causal
models (DCM) could be an attractive alternative. However,
they heavily depend on a prior knowledge about involved
neural circuitry.

Granger causality concept, in its most general form, is
a flexible definition of relationship and temporal order. It
could be tested by a simple VAR modeling without any con-
nectivity prespecification. In this paper, we introduced a
new approach for connectivity modeling based on Granger
causality and intervention VAR models, which enabled us to
compare differences in connectivity structures as a statisti-
cal hypothesis test. An initial application of intervention VAR
models to fMRI data produced biologically plausible results,
but further experiments are necessary to reveal its potential
as a new tool to investigate neural systems.
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We present a tool for tracking coronary vessels in MRI scans of the human heart to aid in the screening of heart diseases. The
vessels are identified through a single click inside each vessel present in a standard orthogonal view. The vessel identification results
from a series of computational steps including eigenvalue analysis of the Hessian of the MRI image followed by a level set-based
extraction of the vessel centerline. All identified vessels are highlighted using a virtual contrast agent and displayed simultaneously
in a spherical curved reformation view. In cases of over segmentation, the vessel traces can be shortened by a click on each vessel
end point. Intermediate analysis results of the vessel computation steps can be displayed as well. We successfully validated the tool
on 40 MRI scans demonstrating accuracy and significant time savings over manual vessel tracing.
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1. INTRODUCTION

Coronary artery disease (CAD) is one of the leading causes
of mortality and morbidity in the USA and other industri-
alized nations [1]. Although conventional cardiac angiogra-
phy remains the “gold standard” for the evaluation of CAD,
it is an invasive procedure that is associated with morbid-
ity (1.5%) and mortality (0.15%) risks [2]. Coronary CT an-
giography (CTA) is emerging as a promising noninvasive al-
ternative [3]. However, this technology requires patient ex-
posure to substantial amounts of radiation [4] and poten-
tially nephrotoxic contrast agents as in conventional angiog-
raphy. As a result, coronary magnetic resonance angiography
(CMRA) provides a more patient friendly option for CAD
assessment [5] without the use of contrast agents and radia-
tion. Unfortunately, currently the MRI image signal-to-noise
ratios and the maximally achievable resolution are not as
high as for CTA. This complicates the process of identifying
the vessels and MRA targeted vessel segmentation and analy-
sis tools usually fail. Thus, the common solution is still time
consuming, manual vessel tracing. Our research presents an
MRI coronary identification software tool that is able to track
and intuitively display the MRI data along all three main
coronary vessels. A typical screenshot of the software is pre-
sented in Figure 1.

A core component of the system is the computation of a
centerline for each vessel. As the vessels are only a few vox-
els thick, it is important to compute the vessel centerlines at
subvoxel accuracy. They must also be inherently smooth to
yield a smooth display of the vessel in the spherical curved
reformation view.

The next section describes the technical background of
our methods followed by related work and a description of
the novel methods used in our system. We conclude with
showing and discussing results acquired with our software.

2. BACKGROUND

Many automatic and semiautomatic skeletonization tech-
niques compute the centerline of an object on the voxel grid
with optional subsequent smoothing [6–16]. These discrete
centerline solutions are inappropriate for vessels that are only
a few voxels thick. Subsequent smoothing may displace the
centerline from the vessel center and is thus inappropriate
as well. Another method [17] computes the centerline as a
minimum cost B-spline. This delivers an inherently smooth
centerline, but is computationally expensive due to the ex-
plicit global optimization. The same holds for [18], which
iteratively computes a globally optimized NURBS curve that
locally minimizes the vessel cross sections perpendicular to
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Figure 1: A screenshot of the MRI coronary vessel tracking tool
with axial (red), sagittal (green), coronal (blue), and spherically fit-
ted “thin plate spline” (yellow) 3D views showing all three main
coronaries virtually enhanced.

the curve. In contrast, our prior centerline algorithm effi-
ciently and automatically extracts a smooth, continuous cen-
terline directly at subvoxel precision [19]. Our algorithm is
based on level sets. Level set methods evolve an isosurface
in the direction of the surface normal [20]. In its general
form the evolution speed can depend on position, normal
direction, curvature, and shape; and the isosurface can cross
over the same point multiple times. In our centerline method
the evolution speed is always positive and depends only on
position. Hence, its boundary front moves only outwards.
With these restrictions the isosurface can be represented by
an Eikonal equation:

|∇T|F = 1, T = 0 on Γ, (1)

where T is the arrival time function, F is the speed of evolu-
tion function, and Γ is the initial isosurface at time zero.

An efficient method to numerically evaluate the solution
to the Eikonal equation is the fast marching method [20]. It
processes the voxels in a sorted order based on increasing val-
ues of T . The fast marching method calculates a time cross-
ing map, which indicates for each pixel how much time it
would take for the level set front to arrive at the pixel loca-
tion. The evolution only needs to be computed on a recti-
linear grid. However, values at nongrid locations can be in-
terpolated from these grid positions properly to simulate the
true propagation value.

Several other centerline methods based on level sets have
been previously presented [10–12]. One approach [10] com-
putes centerlines by first detecting medial axis points at the
locations where the level set fronts collide and form sharp
discontinuities. However, the level sets are only computed
on two dimensional cross-sections of the three dimensional
data, which are not identical to the 3D discontinuities. Next,
the algorithm performs topological thinning and filling in
of gaps with voxels along straight lines which may not re-
sult in positions on the skeleton. Other methods [11, 12]

make use of the full 3D data in its level set propagation and
guarantee a minimum cost, discrete solution, but as pointed
out before, do not extract the centerline with subvoxel ac-
curacy. In addition, algorithms [6–10] require a segmenta-
tion of the vessel as input. In our images it is very difficult
to segment the vessels accurately and completely. Hence, we
were looking for an algorithm that does not require a seg-
mented vessel as input. An algorithm that is subvoxel accu-
rate and does not require vessel segmentation is presented
in [21]. It directly traverses the centerline along ridges in
a Hessian medialness measure, but it performs a sequence
of local greedy decisions that do not guarantee a globally
optimal solution. The methods in [11–17, 21] use Hessian
matrix analysis to track a vessel with having to segment its
boundaries first. Computing the Hessian at different scales
proved to be beneficial for vessels varying greatly in thick-
ness, but was not necessary for our data. Table 1 lists the
prior methods and classifies them according to the main al-
gorithm ideas. In [22], 94 vessel extraction algorithms are
compared: only 50% of them do compute an explicit cen-
terline, only one uses level set methods, but not for cen-
terline tracking and only one uses Hessian eigenvalues, but
not in combination with level sets. Our proposed algorithm
combines the benefits of the previous methods without their
shortcomings. It can find minimum cost, subvoxel accurate
centerlines of thin vessels without the need of first segment-
ing them.

2.1. Subvoxel accurate centerline algorithm

The most closely related prior algorithm is our input seg-
mentation dependent, subvoxel accurate centerline algo-
rithm [19]. It uses a level set segmentation of the vessel
to obtain a subvoxel accurate surface and a Euclidean dis-
tance transform of the object. This distance transform is
then used as a speed image in a fast marching level set
method with propagation starting at the global maximum
point of the distance transform. The fast marching method
propagation is augmented to calculate the geodesic dis-
tance in addition to the time crossing map. The furthest
geodesic point from the global maximum point is used as
the start point of the vessel centerline and the remaining
points of the centerline are determined by performing a gra-
dient descent on the time crossing map with a subvoxel step
size.

The algorithm presented in this paper is an extension of
this previous method, which handles the absence of vessel
segmentation and improves upon the computation speed of
the level set propagation.

2.2. Vessel enhancement

In order to track thin vessels without an explicit represen-
tation, we found it necessary to process the MRI images
using vessel enhancing image filters. Given the eigenvalues
λ3 ≤ λ2 ≤ λ1 of the 3 × 3 Hessian matrix for each 3D image
pixel, it is possible to compute a likelihood of the pixel being
part of a linear structure [23, 24]. This measure, which we
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Table 1: Comparison of ideas used in various vessel centerline computation methods. “+” stands for the best idea within a group, “0” for
average, and “−” for the least desirable idea in a group.

Vessel centerline computation reference [6–10] [11] [17] [18] [12] [13] [14, 15] [16] [19] This paper

2D − −
2D and 3D + + + + + + + +

Prior vessel segmentation required − −
Vesselness from intensity only −
Vesselness from Hessian eigenvalues + + + + + + +

Path cost from segmentation distance map − −
Path cost from vesselness 0 0 0 0

Path cost from multiscale vesselness + + + +

Discrete cost propagation − − − −
Level set wave cost propagation + + + +

Centerline extraction as minimum cost B-spline 0

Centerline as minimum vessel cross-section NURBS 0

Discrete centerline, optional post smoothing − − − − − −
Smooth centerline (wave gradient decent) + +

Computation only for the most obvious path +

call vesselness (υ), is defined as
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(4)

and α = 1/4 and γ = 1/2.
This vesselness υ has been used before to improve visual-

izations of linear structures [23, 24], but we are using it to as-
sist in vessel tracking. However, other similar equations have
been used for vessel identification before [25].

2.3. Curved reformation vessel view

A good vessel centerline can be used to create a curved ref-
ormation vessel view. One such method is to stretch the ves-
sel and display its surroundings with as little distortion as
possible [26]; however this is not appropriate for a view that

is supposed to include multiple vessels. The “soap bubble”
method [27] allows projection of multiple vessels to a plane,
preserving the relationship of the vessels to each other, but
for roughly spherically arranged vessels, the projected vessels
may overlap or surrounding tissue may be severely distorted.
We use the spherical curved reformation method [28], which
eliminates the problems of the “soap bubble” method for the
specific case of coronary vessels. It achieves this through pro-
jecting a spherical approximation of the heart onto the ves-
sels with little distortion, followed by a standard globe un-
rolling onto a rectangular view as done for any world map.
The minimal distortion is the consequence of minimizing the
energy of a “thin plate spline” being fit to the vessel points
[28].

3. METHODS

While the system is designed to look at all vessels at once,
processing is done one vessel at a time. The user identifies
each vessel initially by clicking on one landmark point for
each vessel.

3.1. Vessel centerline computation

The vessel centerline computation results from a series
of computational steps (Figure 2). Initially, noise removal
is performed on the MRI data by using edge preserving
anisotropic diffusion filtering. Next, the intensities are nor-
malized through a sigmoid window whose parameters are
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(1) Remove noise

(2) Place landmark A inside vessel

(3) Normalize intensities

(4) Compute vesselness

(5) Sigmoid vesselness to speed image

(6) Propagate wave to spearhead start

(7) Propagate spearhead wave

(8) Autocreate landmark B at end

(9) Back trace partial centerline to A

(10) Intensify speed image on centerline

(11) Propagate wave to spearhead start

(12) Propagate spearhead wave

(13) Autocreate landmark C at end

(14) Back trace full centerline to B

(15) Create spherical reformation

(16) Crop vessel end points to D and E

(17) Repeat for other vessels

Figure 2: Steps of the algorithm needed to track and display vessels.

A
B

D

C

E

Figure 3: Landmark A is initially manually placed inside the ves-
sel. Landmarks B and C are automatically placed by the algorithm.
Vessel end points D and E are manual corrections of points B and
C which are placed on the curved view without the need to scroll
through multiple images.

determined from the MRI intensity I at the first landmark
point (A in Figure 3) which must be inside the vessel and is
assumed to be the maximum intensity in the local neighbor-
hood. The width of the sigmoid window is equal to I and the
center is at I/2. Subsequently the vesselness, υ, is computed
for each pixel in the image by (2) from the Hessian matrix
of the image. The partial derivatives that form the Hessian
matrix are a result of convolving the smoothed MRI image
with the derivatives of a Gaussian with 3σ covering 2 mm,
which is the median of the expected vessel diameter. This
vesselness map is then normalized using a sigmoid window.
Again the window parameters are relative to the landmark
point (width = õ, center = õ/2), which maximizes the con-
trast in the transition region. Values in the normalized ves-
selness map are clamped to zero if they are less than 33%
of the maximum value. The clamp threshold and σ were de-
termined empirically for a single dataset and applied for all
others.

This resulting vesselness map (middle image in Figure 4)
is used as a speed function for a fast marching level set
method that starts at the initial vessel landmark point A.
However, instead of computing the fast marching through
the complete image or at least until the entire vessel is covered
(as in [11]), the computations are stopped when a point 1 cm
from the landmark point is reached. Due to the nature of the
vesselness computation, the highest speed values are found
in the center of the vessel, and thus the point first reached
at 1 cm distance (larger than the vessel radius) must be cen-
tral to the vessel. This point is then defined as the “spearhead
point.” The fast marching method is now continued, but only
newly discovered points that are within 1 cm of the “spear-
head point” are allowed to be added to the evolving sur-
face of the fast marching method. Each time a new furthest
geodesic distance point is found, the “spearhead point” is up-
dated. Consequently, only a small band of voxels along the
vessel is involved in the computation. When the modified fast
marching method has processed all of the points in the con-
nected object, the final “spearhead point” is the most distant
trackable vessel point. This becomes the second, automatic
landmark point (B in Figure 3). The steepest gradient decent
from the second to the first landmark point yields a partial
vessel centerline. This centerline is not based on local greedy
decisions, but is the minimum cost path with respect to the
given vesselness speed image. Next, the speed image is inten-
sified along this partial vessel. With the updated speed image,
the above described fast marching method is started from the
second automatic landmark. Again, only a small band of vox-
els along the vessel are involved in the computation. When
the second fast marching method algorithm completes, the
resulting “spearhead point” becomes the third, automatic
landmark point (C in Figure 3). Intensifying the speed im-
age along the first partial centerline is necessary to guarantee
that the initial path of the second fast marching does not de-
tour into a vessel branch. Finally, the steepest gradient decent
from the third (C) to the second (B) landmark point yields
the complete vessel centerline (Figure 5).

Once the centerline is computed, a virtual contrast
dataset can be created. The virtual contrast dataset has the
original data as its basis, but each pixel is intensified that is
within 2 mm (expected vessel radius) of the computed cen-
terline and also has at least 33% of the maximal vesselness
intensity in the initial speed image.

The above process can be repeated for each of the de-
sired vessels. After the centerline for each vessel has been
computed, a new spherical curved reformation can be gen-
erated from all current vessel centerlines. The length of
each of the vessels is displayed on the graphical user in-
terface. In order to be able to bridge areas of stenosis or
low signal, short (< 1 cm) sections of low vesselness (be-
low 33% of the maximum intensity value) are allowed, as
long as the tracking can be continued with more obvi-
ous vesselness pixels after the gap. Unfortunately, this some-
times also causes the tracking to go beyond the vessel ends
into other nearby vessels or to jump onto the edge of the
heart, which may not be totally suppressed in the speed im-
age. In this case, the curved reformation view can be used
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(a) (b) (c)

Figure 4: Three key steps along the processing pipeline: smoothed image, vesselness map speed image, and virtual contrast image.

Figure 5: Spherical reformation with superimposed vessel center-
line.

to allow the user to manually relocate the second and/or
third landmark point to the desired vessel endpoint(s) (D
and E in Figure 2). The system then adjusts the centerline
to only cover the vessel between these updated vessel end
points. System validation was based on visual assessment of
completeness of the tracked vessels, partial success was de-
fined as a section of the vessel being visible in the scan,
but not tracked. The scanning protocols used for the vali-
dation were (A) standard imaging parameter, (B) shortened
acquisition window, (C) isotropic acquisition voxel resolu-
tion, (D) short-axis plane aligned with the right coronary
artery.

4. RESULTS

The algorithm presented was validated on 40 MRI cardiac
scans with volume sizes of 512×512×100 to 512×512×300
containing 0.5× 0.5 mm images with 0.5 to 1 mm spacing in
the z-direction. The data came from 10 volunteers scanned
each with four scanning protocols. The right coronary artery
(RCA) was found completely for 90% of the volunteers on
two protocols (A, B), for the other protocols 80% (B) and
70% (D) of the MRI scans had completely tracked vessels.
For the incomplete scans it was possible to complete them
by treating the missed vessel section as a new vessel. Figure 3
shows some intermediate and final results.

Completing the interactive part of the vessel tracking was
accomplished within one minute. On a professional medi-
cal image analysis workstation a trained radiologist took 2.5
minutes to hand segment a vessel via coarse contours on ev-
ery third slice that were then interpolated by the system.

5. DISCUSSION

The results in Figures 1, 3, and 5 show spherical curved refor-
mations of the three main coronary arteries. In this example
for two arteries joined near the aorta a single landmark was
sufficient, but for the third both endpoints needed to be cor-
rected. In either case, the user interaction time required is
minimal when compared to manual vessel tracking.

All numerical parameters listed in this algorithm degrade
gracefully. A 10% change of the parameter value has only a
small impact on the final result, but doubling or halving it
usually significantly shortens the identification of vessel seg-
ment.

The novelty of this research is two fold. First, it lies in
the creation of a time saving tool that combines the idea
of semi-automatic tracking with spherical curved reforma-
tion. Second, it improves over prior work on the method
of finding the vessel centerline. Due to the low signal-to-
noise ratio on the MRI input images, the vesselness map is
a network of mutually connected vessels and pseudovessels.
Following all branches as done in [10] frequently results in
automatically found vessel end landmarks that are very far
from the intended vessel end. The restriction of expand-
ing the fast marching only near the “spearhead point” al-
lows for a much more intuitive behavior of the algorithm.
The manual clipping of the traced path to only the por-
tion within the vessels is easily performed on the spherical
curved reformation view and no scrolling through slices is
needed.

6. CONCLUSIONS

This paper has presented a semi-automatic algorithm for de-
termining centerlines of the main coronary vessels and its
application to creating virtual contrast enhanced MRI scans
that are displayed in an intuitive spherical curved reforma-
tion view. The method can track vessels even in the pres-
ence of low signal-to-noise ratios, is subvoxel accurate, and
is more computationally efficient than previous methods.
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1. INTRODUCTION

Recent advances in cell culture and cell imaging have made
possible the automated acquisition of millions of cell images.
The corresponding automation of the analysis of such huge
sets of images would allow fundamentally new questions to
be addressed in proteomics, genomics, and stem-cell research
[1–8]. This paper proposes a coupling of advanced methods
in pattern recognition and image processing [9–16] to an ex-
isting cell-imaging platform [17] in which the analysis, cur-
rently being undertaken by hand, is impossibly slow and te-
dious for the volumes of data being generated.

The object of this particular project is the analysis of
stem-cell behavior and differentiation, the process by which
stem cells specialize to different cell types, a process which is
crucial to understand if stem cells are to be used in cell and
tissue regeneration. Specifically, given a culture of cells, ob-
served over time, we need some way of determining whether
a given cell is likely to die, to cause cancer, to specialize into
an incorrect tissue type, or, desirably, to specialize into the
correct cell type.

The first major step in this process, and the end goal of
the research described in this paper, is the automated con-
struction of cell lineage trees, essentially the descendent fam-
ily tree of a single ancestor cell, as illustrated in Figure 1.
Building such a tree for each of multiple cells in a culture
requires maintaining cell identity over time, clearly requiring
the tracking and associating of cells over a long sequence of
images, typically 7000 images taken over a period of several
days.

2. PROBLEM FORMULATION

Although cell tracking is among the most important and
common tasks for biomedical researchers it continues to be
undertaken manually. Researchers visually perform cell mo-
tion analyses and observe cell movement or changes in cell
shape for hours to discover when, where, and how fast a given
cell moves, divides, or dies. This task is tedious due to the of-
ten corrupted or blurred images, the presence of clutter, the
fixing of eyes for long periods of time, and repeating the same
task for different cell types. Furthermore, with imaging data
ever more simply and rapidly acquired, manual tracking be-
comes progressively impractical. As a result, automated cell
tracking systems are mandatory to further advance the study
of biological cells [2, 3, 6, 8, 18–20].

To produce the data for this study, HSC samples are first
extracted from mouse bone marrow, then cultured in custom
arrays having up to forty wells. A small fraction of a typical
HSC microscopic image is depicted in Figure 2 with the su-
perimposed dynamics of a mature blood stem cell before and
after splitting. The cells were imaged using manual focusing
through a 5X phase contrast objective using a digital cam-
era (Sony XCD-900) and acquired by an IEEE 1394 standard
(FireWire) connector. Images were sampled every three min-
utes over the course of several days.

To keep cells alive and healthy, light exposure must be
controlled during their life cycle to minimize phototoxicity.
Therefore it is desired to limit light exposure in each frame
and to sample the frames as far apart as possible, leading to
infrequent, poorly contrasted images, directly at odds with
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Figure 1: An image sequence (a) showing cell (small light circles) movement and division over time. A lineage tree (b) may be generated by
detecting cell splitting and associating individual cells from image to image.

(a) (b)

Figure 2: Close-up of an HSC phase contrast microscopic image
with the superimposed track of one mature blood stem cell (a) 8
frames before and (b) 30 frames after splitting.

the data desired for easy tracking: frequent, high-contrast
images. Cell staining techniques may be used to increase
the contrast between cell and background, however different
parts of tissue are undesirably stained unevenly, causing in-
homogeneity. Fortunately the HSCs in our study have fairly
regular shape and brightness patterns. Hence, a segmenta-
tion method which exploits these attributes should be able to
perform better than simple thresholding.

Suppose we have an image sequence I1:K={I1, I2, . . . , IK}.
The two fundamental tasks needed to construct a lineage
tree, such as in Figure 1, are the detection of cells in each
image and the subsequent association of the detected cells
over time. The cell detection problem is essentially one of
anomaly detection: the localization of groups of pixels incon-
sistent with the random behavior of the image background.
A wide variety of semi automatic or automatic methods have
been proposed to segment cell boundaries [2, 3] which can
be divided into three major categories.

(1) Boundary based, generally employing deformable
models such as snakes [7].

(2) Region based, such as split and merge [21], morpho-
logical operators [22], watershed [6], and region grow-
ing methods [23].

(3) Threshold based [8, 24, 25] applied to some extracted
image feature.

We can make the problem much more specific by seeking
particular features consistent with HSCs. From Figures 2 and

(a)

r

(xc , yc)

(b)

Figure 3: (a) 8 by 8 pixel detail of an HSC phase contrast micro-
scope image. (b) A circular idealized cell model.

3(a), HSCs can be characterized as an approximately circular
object with a darker interior and a brighter boundary—an
effect due to phase contrast imaging modality. So rather than
a heuristic thresholding approach, these cell attributes allow
a more specific model, essentially a matched filter, more ro-
bust to noise and to low contrast. The model depicted in
Figure 3(b) considers the following criteria:

(i) cell size: the radius r is known to lie in a limited range
related to cell age;

(ii) boundary brightness: brighter due to phase contrast
imaging;

(iii) interior brightness: tends to be dimmer than the
boundary;

(iv) boundary uniformity or symmetry: want to assert uni-
formity to avoid a strong response when straddling
cells, as shown in Figure 4.

As depicted in Figure 3(b), to model a dark region sur-
rounded by a bright boundary, the proposed cell model con-
sists of two concentric circles, with the radius of the internal
circle being half that of the external one. To facilitate the anal-
ysis of the image as a function of cell center location (xc, yc)
and radius r we construct the set of boundary pixels

B
(
xc, yc, r, I

)=
{

Ii j |
∣∣(xc − i

)2
+
(
yc − j

)2 − r2
∣∣ ≤

(
1
2

)2
}

,

(1)
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Figure 4: A scenario in which a spuriously hypothesized (white)
boundary may have a large associated average brightness B and a
low cell interior brightness C. The uniformity constraint in the cell
boundary is intended to address this case.

and the set of interior cell pixels

C
(
xc, yc, r, I

) =
{

Ii j |
(
xc − i

)2
+
(
yc − j

)2 ≤
(
r

2

)2
}

,

(2)

from which we extract sample means

B =
∑

i Bi

|B| , C =
∑

i Ci

|C| , (3)

where Bi or Ci is the ith element of the respective set.
The four cell criteria are then combined to formulate the

following probabilistic cell model:

P
(
xc, yc, r | Ik

) = Pcb(B) · Pci(C) · Pbu(B), (4)

where the cell boundary Pcb, cell interior Pci, and boundary
uniformity Pbu terms are elaborated below.

Based on a visual examination of the distribution of sam-
ple points of B derived from real imagery, the probability
density of cell boundary Pcb is modeled as Gaussian with
mean μcb and variance σ2

cb

Pcb(B) ∼ N
(
B;μcb, σ2

cb

)
, (5)

where μcb and σ2
cb are estimated empirically.

Similarly the probability density of dark region inside the
cell Pci is also modeled as Gaussian with mean μci and vari-
ance σ2

ci

Pci(C) ∼ N
(
C;μci, σ2

ci

)
, (6)

where μci and σ2
ci are again estimated empirically.

It should be mentioned that the parameters of model (4)
are time invariant, consistent with most of our acquired data
sets. Therefore in cases where the intensity or contrast of the
image changes over time due to background noise or spa-
tiotemporal illumination variations, the nonstationarity of
the data might make (4) in error or inapplicable. In such
cases, to improve the robustness of the proposed method, the

time variations of the image sequence need to be removed by
background estimation and subtraction, considered in future
work.

As illustrated in Figure 4 we wish to penalize spurious
cell detection. We propose to calculate an empirical cumu-
lative density function (CDF) to discriminate background
from cell boundary. The CDF on cell boundary pixel intensi-
ties is computed by

cdfn(B) =
∑n

i=1 Bi

|B| · B , n ∈ 1 : |B|. (7)

As a set of constant or uniform values in B corresponds to a
straight line CDF, we use a Kolmogorov-Smirnov test on B to
test its deviation from uniformity:

D(cdf) = max
n∈[1:N]

∣
∣∣
∣cdfn− n

N

∣
∣∣
∣. (8)

An exponential function Pbu(D) is used to penalize the non-
uniformity as

Pbu(D) = exp
{− 2 ·N ·D(cdf)

}
. (9)

This completes the development of a simple model for the
detection of cells in background noise. We will use the model
to generate and test cell hypotheses in the following section.

3. CELL TRACKING

With a model in place describing the spatial pattern of pix-
els with the appearance of a cell, we move to the core of the
problem: given a sequence of images I1:K = {I1, I2, . . . , IK}
and a definition of our “target” (the cell model (4)), we need
to associate the cells over time. Denote by F1:K a possible hy-
pothesis of the K-frame association problem,

F1:K =
{
f1, f2, . . . , fK

}
, (10)

where fk is a parametric representation of frame k. In the case
of HSCs, fk is defined as

fk =
{(
lk, j , zk, j , rk, j , sk, j

)
, 1 ≤ j ≤Mk

}
, (11)

where lk, j is the cell parent label, zk, j is the cell coordinate
(xc, yc), rk, j is the radius, sk, j is the cell age corresponding to
cell j, and Mk is the number of cells in frame k. The parent
label i = lk, j associates cell j in frame k to parent cell i in
the previous frame. The goal is to solve the spatiotemporal
cell segmentation-association problem of Figure 5: we wish
to estimate F1:K given the image sequence I1:K and given an
initialization f0 in frame zero.

3.1. MAP estimation

The proposed solution to the association problem is the max-
imum a posteriori estimation of F1:K :

F̂1:K = arg max
F1:K

P
(
F1:K | I1:K , f0

)
. (12)
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Figure 5: An illustration of cell association over time with numeric labels.

From Bayes’ rule,

P
(
F1:K , I1:K , f0

) = P
(
F1:K | I1:K , f0

)
P
(
I1:K , f0

)

= P
(
I1:K | F1:K , f0

)
P
(
F1:K , f0

)
.

(13)

As P(I1:K , f0) is fixed, F̂1:K does not depend on it, thus

P
(
F1:K | I1:K , f0

)∝ P
(
I1:K | F1:K , f0

)
P
(
F1:K , f0

)
. (14)

At the same time P( f0) is fixed

P
(
F1:K , f0

) = P
(
F1:K | f0

)
P
(
f0
)∝ P

(
F1:K | f0

)
. (15)

So we conclude that

F̂1:K = arg max
F1:K

P
(
I1:K | F0:K

) · P(F1:K | f0
)
. (16)

Since F1:K = { f1, f2, . . . , fK}, the solution to (16) is real-
ized, in principle, by examining and evaluating all possible
cell parameterizations and associations. In virtually all track-
ing problems of this kind the problem is made tractable by
searching over a limited number of hypotheses

{
Fh

1:K | h = 1, 2, . . .
}

(17)

such that we find the best member of this set

F̂1:K = Fĥ
1:K ,

where ĥ = arg max
h

P
(
I1:K | Fh

0:K

) · P(Fh
1:K | f0

)
.

(18)

The original, optimal solution is found if it is included
among the hypotheses, that is, if

arg max
F1:K

P
(
F1:K | I1:K , f0

) ∈ {Fh
1:K

}
. (19)

The key, here, to efficiency is to minimize the number of hy-
pothesis; the key to quality of estimation is finding the most
likely hypothesis. As these goals are in opposition, we are left
with a complexity/quality tradeoff.

3.2. Evaluation of P(I1:K | Fh
1:K )

The proposed cell model P(xc, yc, r | Ik) = P(zc, r | Ik) from
(4) evaluates the likelihood of a single cell, given an image. To
solve the MAP problem we need to compute P(I1:K | F1:K ),

the likelihood of a given image sequence as a function of a
specified cell parametrization and association. Since fk pro-
vides a complete paramerized description of Ik, conditioned
on F1:k, I1:k is Markov:

P
(
I1:K | F1:K

) =
∏

k∈[1,K]

P
(
Ik | fk

)
. (20)

The cell model (4) describes only the likelihood of a single
cell; it says nothing about groups of cells, nor does it provide
any kind of prior on zc or r. Fortunately these latter aspects
are straightforward.

(1) As the cells may be located anywhere with no prior
bias, zc is uniformly distributed over the image.

(2) We empirically define a size range r ∈ [2, 4] pixels,
within which the cell radius is uniformly distributed.

(3) Any hypothesis which has cells violating the minimum
required separation between cells is assigned a proba-
bility of zero.

It follows, then, that as long as zero-probability hypothe-
ses are not created, then all remaining hypotheses { f hk } are
equally likely a priori. Because P(Ik) is fixed, and more-
over because all valid hypotheses are equally likely, such that
P(zc, r) is constant, we can conclude

P
(
Ik | zc, r

)∝ P
(
zc, r | Ik

)
, (21)

implying that the evaluation of P(Ik | zc, r) can follow from
evaluating P(zc, r | Ik). The proposed parametric cell model
can be applied to each image frame I ; a two-dimensional
probability map is generated, and hypothesised cells are lo-
cated at local maxima of this map. Although our cell model
allows this probability map to be computed as a function
of r for each r ∈ [ra, rb], we have found that a value of
r◦ = 2 functions robustly. The locations of local maxima in
P(z | I , r◦) may either be used in the generation of hypothe-
ses from I , or in computing P(I | f ), to assess an asserted cell
arrangement.

First, to generate possible measurement hypotheses from
I , find the spatial local maxima of P(z) and keep only those
maxima such that the likelihood of the ith maximum P(zk,i |
Ik, r◦) > τ. Choosing T values of τ thus generates T sets of
maxima, each a hypothesised measurement set for frame k,

zτk =
{
zk,i | P

(
zk,i | Ik, r◦

)
> τ, τ ∈ [τ1, τ2

]}
. (22)
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(a) (b) (c) (d)

Figure 6: (a) Microscope image I . (b) Probability map P(z | I , r◦) obtained by applying cell model (4). (c) Local maxima of P(z | I , r◦). (d)
Thresholding the local maxima map.

We have found that a fixed threshold τ = 0.65 works effec-
tively for the HSC data set being considered here however, in
general multiple τ would be used, leading to multiple mea-
surement hypotheses.

Second, to compute P(I | f ) as depicted in Figure 7 the
cells in f are divided into two sets:

(1) fM : those cells in f which are located within δD of a
maximum;

(2) fM : those cells in f which are not within δD of a max-
imum.

A third set contains the unmatched maxima:

(3) f M : those maxima which are not within δD of any
point in f .

fM contains the successful matches, fM and f M the failed
ones. The fit between Ik and f hk is thus quantified as

P
(
Ik | f hk

) =
⎡

⎣
∏

j∈ fM

P
(
zk, j | Ik, r◦

)
⎤

⎦

·
⎡

⎢
⎣
∏

i∈ f M

(
1− P

(
zτk,i | Ik, r◦

))

⎤

⎥
⎦

·
⎡

⎣
∏

j∈ fM

P
(
zk, j | Ik, r◦

)
⎤

⎦ ,

(23)

where P(zk, j | Ik, r◦) is the probability of the location of the
jth cell in the state f hk for frame k, and P(zτk,i | Ik, r◦) is the
probability of the ith maximum in frame k. As depicted in
Figure 7, P(Ik | f hk ) is evaluated by applying (23).

3.3. Evaluation of P(Fh
1:K | f0)

The second part of (18) is the evaluation of association hy-
potheses {Fh

1:K}. To track the HSCs over time, detected cells
in the measurement hypothesis of the current frame zτk must
be associated to the most probable element in the previous
frame.

Considering that for each image frame k, we associate cell
features from (k − 1) only, Markovianity can be asserted on

F1:K such that

P
(
F1:K | f0

) =
∏

k∈[1,K]

P
(
fk | fk−1

)
, (24)

where we recall that fk is the set of cell properties in frame k.
The cell age sk, j is updated as

sk, j =

⎧
⎪⎪⎨

⎪⎪⎩

1 if ∃m such that, lk,m = lk, j

(i.e., cell split),
(
s(k−1),lk, j

)
+ 1 otherwise.

(25)

Each cell in fk must belong to one of the following sets.
Unassociated: N = { j | lk, j = 0}.
Split: S = { j | lk, j = lk,m for m �= j}.
Regular: R = { j | j /∈ {N ∪ S}}.

In contrast with joint probabilistic data association (JPDA)
[26–28] in which new tracks can not be initiated, our pro-
posed method initiates new tracks for divided cells, therefore
the following constraints are considered:

(i) each measurement must originate from cell or clutter;
(ii) each measurement can be associated to one cell;

(iii) up to two measurements in frame k can be associated
to the same cell in frame k − 1.

Asserting Markovianity we evaluate P( f hk | f hk−1) in thef rest
of this section. The association problem is resolved frame by
frame by selecting the hypothesis with the maximum joint
association probability. In this way the measurement hypoth-
esis zτk for frame k and association hypothesis f hk−1 from the
previous frame are used to generate hypotheses f hk . Therefore
we have

P
(
f hk | f hk−1

) = P
(
f hk | zτ1:k, f hk−1

) = P
(
f hk | zτk , f hk−1

)
.

(26)

The filter step is

P
(
f hk | f hk−1

) = P
(
f hk | zτ1:k, f hk−1

)

= P
(
f hk | zτ1:k−1

) · P(zτk | f hk
)

P
(
zτk | zτ1:k−1

) ,
(27)
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Figure 7: Having 4 maxima (solid dots), and 3 hypothesized sets of cells (large circles), for each hypothesis fM , fM , and f M are illustrated
and then P(Ik | f hk ) is evaluated.

P(zτk | zτ1:k−1) is fixed and we have

P
(
f hk | f hk−1

) = λk · P
(
f hk | zτ1:k−1

) · P(zτk | f hk
)
, (28)

where λk is a normalization constant. The first term of (28),
P( f hk | zτ1:k−1), is a prediction step which is illustrated as fol-
lows. Because of the nonlinear and non-Gaussian nature of
both measurements and dynamics, in contrast with JPDA,
the Kalman filter is not considered for the prediction step.
The prediction step in the proposed method is

P
(
f hk | zτ1:k−1

) =
∫

P
(
f hk | f hk−1

)
P
(
f hk−1 | zτ1:k−1

)
df hk−1

=
⎡

⎣
∏

j∈R∪S
Pvel
(
zk, j , zτk−1,lk, j

)
⎤

⎦

·
⎡

⎣
∏

j∈S
Pstate

(
sk−1, j

)
⎤

⎦ .

(29)

The former term Pvel is a nonlinear term to predict the loca-
tion of the hypothetical cell j in frame k based on its dynam-
ics and its location in frame k − 1. The motion will be cell-
type specific, and may further be influenced by environmen-
tal factors, chemical gradients, and so forth. In our context
there are no deliberate experimental biases, and a Gaussian
random walk was found to well-approximate hand-tracked
cell motion. The latter term Pstate predicts the likelihood of
cell division in frame k. An age penalty such that cell divi-
sion cannot happen below some age; this minimum age is
cell-type specific and is asserted from biological experience.

The second term of (28), P(zτk | f hk ), is the likelihood of
measurement zτk given hypothesis f hk and is given by

P
(
zτk | f hk

) =
⎡

⎣
∏

j∈R∪S
N
(
vk, j , 0, Sk, j

)
⎤

⎦

· [Psep
(
f hk
)] ·

⎡

⎣
∏

j∈N
Puna

⎤

⎦ ,

(30)

where vk, j = zτk,i − ẑk, j is an innovation term so that the ith
measurement is within δD of the jth hypothesised cell loca-
tion in frame k. Puna is a penalty on the association of unas-
sociated cells, and Psep is the probability of separation dis-
tance of a measurement pair. As we can see in the proposed
method, the likelihood of measurement zk, j is penalized by
the unlikely events such as minimum separation distance and
unassociated cells.

4. EXPERIMENTAL RESULTS

We begin by evaluating the proposed cell model. The model
generates cell hypotheses, as illustrated in Figure 6, where
candidate cells are found as local maxima in P(xc, yc, r) =
P(zc, r). Because of the availability of hand-labelled ground-
truth data, a good assessment of cell detection is possible.
The only unknown parameter in cell detection is τ, the prob-
ability threshold in declaring a cell present. Figure 8 shows
the probability of false alarm and missed detection as a func-
tion on the chosen threshold τh over a sequence of HSC phase
contrast microscope images. It is clear that a threshold yield-
ing acceptably low failures of both types is τ = 0.65.

Next, Figures 9 and 10 test the number of detected cells
(using τ = 0.65) and the detected spatial locations with man-
ual ground truth. The greatest probability of misdetection
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Figure 8: (a) Variation of the probability of false alarm as a function of the threshold τh. (b) Variation of the probability of missed detection
as a function of the threshold τh.
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Figure 9: A comparison of ground truth (solid line) and the de-
tected cells on the basis of the proposed cell model (dashed line).

occurs during division where a mature cell gives rise to two
new cells. During division, notable between frames 9 to 29,
the cells are inconsistent with a circular shape with a fixed
radius. However, the divided cells are recognized as soon as
the division process is completed, which takes at most five
frames. As it can be seen in Figure 10, the maximum cell cen-
ter spatial error is 1.8 pixels per cell. Considering the fact that
manual ground truth is prone to error, the results obtained
by the proposed method are very promising.

Results obtained by applying the proposed probabilistic
cell tracking method are depicted in Figure 11. Cell centers
are detected by applying the cell model (4), locating the lo-
cal maxima in the probability map, and thresholding the lo-
cal maxima map. Finally cell centers are associated using the

proposed tracking method. Color coding is used to highlight
associated cell centers such that different colors show the as-
sociation of cell centers over time. It takes about 0.5 seconds
for a well to be segmented and associated in the current stage
using a Pentium 4 running at 1.6 Ghz.

As can be observed from Figure 11, by applying our prob-
abilistic model-based tracking to HSC image sequence, it
is able to identify and associate both nondividing and di-
viding cell centers correctly. However there are some cases,
such as having a large number of proximate young divided
cells or a few number of nearby dividing mature cells, in
which some of the hypotheses have very similar probabil-
ity, therefore deriving the best hypothesis for such a frame
is very difficult and prone to error. Employing a more robust
Bayesian approach will resolve those ambiguous situations
over time by the further integration of information of neigh-
boring frames, maintaining several hypotheses, and selecting
the most likely one over the subsequent images.

5. CONCLUSIONS

Image cytometry is a practical approach to measure and ex-
tract cell properties from large volumes of microscopic cell
images. As an important application of image cytometry,
this paper presents a probabilistic model-based cell tracking
method to locate and associate HSCs in phase contrast mi-
croscopic images.

Our statistical cell model, which is constructed after care-
fully observing HSCs in typical image sequences, captures
the key properties of these cells. The close match between
the model and imaged HSCs allowed for threshold selection
yielding very low false alarm or missed detection. Cells in iso-
lation are detected well; recently split cells provide a proper
fit to the model and rely on association to resolve ambigui-
ties.

Cell association is accomplished based on the proposed
joint association method. As it can be observed in Figure 2
the cell dynamics can be well approximated by a random
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Figure 10: (a) RMS spatial error, the distance between detected cell centers and ground truth. (b) The location of missed detections with
the superimposed average missed detection probability (0.0107). (c) The location of false alarms with the superimposed average false alarm
probability (0.0027).
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Figure 11: Detection and association of cell centers obtained by applying the proposed model-based tracking method. Results are superim-
posed on the original HSC images and each color shows a different cell track over time (frames 1–20).

walk as it has been considered in the proposed method to
model the cell motion. It can be seen from the previous
section that such a probabilistic model-based cell tracking
method produces promising results and is able to identify
and associate both dividing and nondividing cell centers cor-
rectly. However, there are some cases, such as a few proximate
dividing cells or large number of nearby cells, in which the
proposed method may be inaccurate. To resolve association
ambiguities in such cases and to make the method more ro-

bust to noise and clutter, future work will be conducted to
extend the proposed method by integrating the information
over multiple neighboring frames.

Future work will also include improving the cell model to
more accurately reflect unique properties of the cells under
different conditions. Moreover further work is required to
better preprocess the images with background subtraction to
improve homogeneity and eliminate camera artifacts. There
is also considerable interest in designing a parametric cell
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model with additional degrees of freedom to generate lineage
trees in which cells can be characterized by richer features so
that cell properties can be more reliably extracted.
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1. INTRODUCTION

Inferential methods used in human brain mapping span a
spectrum of experimental designs and statistical techniques.
In the broadest terms the task is to recast the predictions
of a theoretical description of neural information process-
ing into testable properties of the neuroimaging data. A log-
ical starting point is the mapping u ← F(ν, θ) in which u
represents the data of a neuroimaging study, acquired using
one of several imaging technologies; and ν represents the set
of physiological mechanisms that have potentially influenced
the measurement u. Manifest evidence that the latent pro-
cesses ν of experimental interest are the actual determinants
of the imaging data u is achieved through the activation and
modulation of the latent physiological (neural) processes by
means of parametric manipulations of the stimulus input. F
is the model of the conjoint influences of the latent physio-
logical activity on u. The vector θ quantifies both the rela-
tive strength of each mechanism’s contribution to u and the
strength of interactions among different latent mechanisms.

A current example is the acquisition of the BOLD MRI
signal (blood oxygenation-level-dependent signal), a surro-
gate measure of local neural activity, in studies involving
event-related experimental designs. In event-related func-
tional MRI (fMRI), the mapping is expressed as u(s, t) ←
F(ν(s, t), θ), in which each ν(s, t) may be thought of as a
“movie” of an aspect of information processing whose neural
signal is manifest at one or more locations s in the brain, at
one or more time points during data acquisition interval T ,
that is, for times t ∈ T . In modeling neuroimaging data, the
aim is to infer the spatiotemporal properties of the underly-
ing operations ν(s, t), and how these ν(s, t) jointly determine
the measured u(s, t).

Model construction also includes a quantitative account
of the spatiotemporal filtering of F(ν(s, t), θ) introduced by
the imaging technology. In the case of BOLD signal acquisi-
tion, F(ν(s, t), θ) must be transformed to represent the con-
volution of the hypothetical neural signal with the hemody-
namic response function. Caveats are that the hemodynamic
response may be different for different brain regions, and
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may also differ in the same brain region in different individ-
uals, for example, in individuals of different ages.

In analyzing imaging data sets, there is a plethora of dif-
ferent observation models. From the perspective of infer-
ential statistics, the choice of experimental design and ob-
servation model is dependent on both the abstract map-
ping u(s, t) ← F(ν(s, t), θ) and the spatiotemporal filtering
of F(ν(s, t), θ) introduced by the imaging technology. The
choices depend on (a) what is known a priori about ν(s, t)
and F and θ; (b) which mechanisms ν(s, t) and properties
of F(ν(s, t), θ) are of primary interest to the experimenter;
and (c) the degree to which the features of interest are resolv-
able in the filtered representation of F(ν(s, t), θ). In current
neuroscience studies of human sensory processing and cog-
nitive and motor operations, the observation models that are
ordinarily applied to the data are of two classes [1–12]: the
general linear model (GLM) used in mass-univariate analysis
and the multivariate models based on PCA or ICA decompo-
sition.

1.1. Mass-univariate analysis

In mass-univariate analyses one or more hypothetical mod-
els F(ν(s, t), θ) are used to predict the data u(s, t). For each
F(ν(s, t), θ) the observation model consists of a set of ex-
planatory variables, or design matrix, that is assumed to be a
set of known and fixed predictors, and the model is applied
identically to all voxels in the brain. In the design matrix the
primary design variables provide a detailed description of the
predictions regarding the behavior of the hypothetical oper-
ations ν(s, t) in different experimental conditions (i.e., dif-
ferent temporal epochs); and the secondary design variables
describe potential nuisance effects that, were they not taken
into account, would inflate the GLM estimate of random er-
ror. Standard linear methods are used to quantify the contri-
butions of the predictor variables to the temporal waveforms
of individual voxels. The aim is to identify voxels for which
one or more F(ν(s, t), θ) provide a plausible account of the
local temporal activity in u(s, t). Moreover, in head-to-head
comparisons of competing theoretical models the best-case
scenario would be that in which only one model provides a
high level of explanatory power.

1.2. Multivariate modeling

Multivariate models based on PCA or ICA decomposition
have a somewhat different focus—on the waveform similari-
ties in the dynamic neural activity of different brain regions.
The underlying premise of this type of multivariate model-
ing is that multiple signals are generated in response to ex-
perimental stimulus input, and each signal is manifested in
multiple brain regions. That is, similar neural trains of ac-
tivity appear at multiple brain sites—with locations not only
in sensory pathways, but also in limbic and temporoparietal
pathways and areas of prefrontal cortex.

This generally accepted premise is a corollary of neuro-
scientific theory that describes the brain’s analysis of sensory
inputs in terms of “predictive coding strategies” [13–18].

From this theoretical perspective the brain mines stimu-
lus inputs using complementary inferential modes: (a) spe-
cialized sensory coding methods, for example, the array of
feature-specific coding schemes known to be deployed in
the initial processing of visual stimuli; and (b) the contex-
tual guidance provided by working memory and executive
systems that relate immediate stimulus events to organism-
generated goals. Concretely, predictive coding models sug-
gest that signals generated in sensory pathways are likely to
be fed forward for interpretation and synthesis to limbic and
temporoparietal pathways associated with short- and long-
term memories, and to the prefrontal cortices that are in-
volved with working memory, including goal-directed re-
sponse selection, motor planning, and error checking. Like-
wise, signals containing contextual and goal-specific infor-
mation are fed back to sensory pathways, modifying sensorial
representations of external stimulus events.

The observation models used in a multivariate analy-
sis decompose the neuroimaging data u(s, t) into a series of
components, in which each component represents a tempo-
ral waveform that is expressed to a stronger or weaker de-
gree in a multiplicity of brain regions and not at all in other
brain regions. In applications of unguided PCA and ICA,
only mild constraints are imposed on the temporal wave-
forms and their respective spatial modes (i.e., topographic
patterns of nonzero signal expression). Specifically in PCA,
the series of waveforms are constrained to be mutually or-
thogonal, as are the series of spatial modes; and in ICA, ei-
ther the series of temporal waveforms or the series of spatial
modes are constrained to be maximally statistically indepen-
dent.

Indeed, in the case of unguided PCA and ICA the individ-
ual components may, or may not, be related in a one-to-one
fashion to either (a) the true neural signals ν(s, t) occurring
in one or more task conditions (temporal epochs), or (b) par-
ticular behavioral and demographic experimental variables.
On the other hand, these PCA and ICA decomposition meth-
ods are designed to provide an accurate approximation to the
brain-wide footprint of the sites associated with the aggregate
of latent neural signals ν(s, t). Ordinarily the experimental
prediction is that the brain-wide footprint will be sparse in
total anatomical extent, although spatially distributed.

Guided PCA and ICA observation models, on the other
hand, are designed to further constrain the components of
the PCA or ICA decomposition to spatiotemporal features
of the data u(s, t) that most closely match the hypothesized
neural processes ν(s, t) and their predicted activity in differ-
ent experimental conditions.

1.3. Reciprocal benefits of mass-univariate and
multivariate modeling

The practical reality is that no one modeling method alone
will provide an exact description of the physiological mech-
anisms that are the actual determinants of the imaging data:
neither the theoretical models F(ν(s, t), θ), nor their instan-
tiation in GLM, nor the major components of unguided or
guided PCA or ICA. However, there is a potential advantage
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to explore the footprint of a multivariate analysis with one or
another theoretical model F(ν(s, t), θ). A theoretical model
can provide a parsimonious account of regional activity for
some portion of the voxels within the multivariate footprint.
This account represents an implicit judgment of similarity
between theoretical neuroscientific predictions and the latent
processes actually operating within the footprint. The stan-
dard GLM calculation of goodness-of-fit represents the true
explanatory power achieved by F(ν(s, t), θ) when contrasted
with its distribution predicted by random Gaussian field the-
ory. Goodness-of-fit is calculated on a voxel-by-voxel basis,
but includes the footprint’s anatomical extent and the level
of type-I error protection as global parameters.

The practical advantage in applying the mass-univariate
analysis to a multivariate footprint—rather than brain
wide—is that the spatially constrained analysis identifies ad-
ditional voxels in which F(ν(s, t), θ) has actual explanatory
power. The greatest reciprocal benefit is afforded when (a)
the major temporal waveforms obtained from an PCA or
ICA decomposition span the fixed predictor variables of the
mass-univariate analysis; and (b) almost all, if not all regions
for which the mass-univariate analysis provides a moderate-
to-high level of explanatory power lay within the multivari-
ate footprint. Perhaps the multivariate analysis that is best
equipped to take advantage of these potential benefits is
the multivariate linear model (MLM), a guided PCA that
was among the first multivariate methods applied to event-
related fMRI data. The conjoint MLM and mass-univariate
analysis is based on a theoretical model F(ν(s, t), θ) in which
the temporal waveforms obtained from a MLM-PCA de-
composition are constrained to match the fixed predic-
tor variables of the mass-univariate analysis. MLM has the
added virtue that the GLM-type mean contrast effects be-
tween experimental conditions are computed using a proper
statistical method of whitening the data along the temporal
dimension.

The essential strength of the MLM analysis is that, like
mass-univariate analysis, it is based on our accrued knowl-
edge about human information processing and the theoret-
ical constructs derived there from. On the other hand, the
strong reliance by MLM on current theory limits its capacity
to uncover novel features of the data u(s, t) that reveal neural
machinery not heretofore anticipated.

1.4. Utility of individual differences in brain mapping

The exploration of individual differences has been a depend-
able means for discovering novel neural machinery as chron-
icled in the research findings of cognitive psychology and
clinical neuroscience [13, 19–23]. In brain mapping the main
sources of information about individual differences are the
interactions between brain regions, experimental task pa-
rameters, and endogenous variables. It is thus understand-
able that guided PCA methods were devised early on in the
development of noninvasive brain imaging technologies to
explore subject-related interaction effects. These models in-
cluded the subprofile scaling model (SSM) [3, 12, 24, 25] and
the partial least squares methods [6, 26]. These guided PCA

were originally designed for application to data acquired
with positron emission tomography (PET) with H2

15O per-
fusion and [18F]Fluorodyoxyglucose, and topographic elec-
troencephalography (EEG).

The authors and others [4, 5, 7, 8, 11, 27] have extended
these initial developments in guided PCA to take advantage
of the higher temporal resolution of event-related fMRI. The
clear benefit of higher resolution is that more experimental
tasks, and greater numbers of comparisons between experi-
mental conditions and their parametric controls, can be built
into study designs. Two of the newest guided PCA are the
generalized partial least squares (gPLS) and ordinal trends
(OrT) analyses [5, 7]. These guided PCA are designed to cap-
ture the joint influences of experimental task parameters and
endogenous factors on latent neural signals of theoretical in-
terest. In both gPLS and OrT the aim is to combine the ver-
ification of neural machinery that is reasonably well under-
stood with the discovery of reliable signatures of new neural
machinery.

1.5. Ordinal trends model

In this report we focus on the OrT analysis. The inferen-
tial strategy that is unique to OrT is its capacity to capture
the joint influence of task parameters and endogenous fac-
tors on u(s, t) without resorting to classical latent variable
modeling. In brain mapping, the latent variables are the neu-
ral processes ν(s, t) and their spatiotemporal properties; their
observable counterparts are both the experimental predictor
variables and subject variables, for example, indices of task
performance, IQ, education and age. From the perspective of
standard latent variable analysis [28], the method of estimat-
ing ν(s, t) relies on models that impose explicit constraints
on the relationships among different ν(s, t) and between in-
dividual ν(s, t) and experimental predictor variables, behav-
ioral scores and demographic factors. In contrast, an OrT
analysis is based on the experimental design variables alone,
without the use of either behavioral scores, demographic
variables, or causal models that depict the relationship be-
tween latent brain circuitry and endogenous variables.

The OrT analysis is predicated on event-related exper-
imental designs in which positive incremental changes in
task parameters are expected to produce positive monotonic
trends in the activity of individually targeted signals ν(s, t).
OrT performs a separate analysis for each ν(s, t) with the aim
of identifying one or more topographic patterns in u(s, t)
that expresses positive ordinal trends on a subject-by-subject
basis. OrT is a guided PCA: a specially designed linear trans-
formation is applied to the neuroimaging data with the ef-
fect that maximal salience is assigned to topographic patterns
whose expressions are monotonic across a specified series of
experimental conditions, corresponding to the positive in-
cremental changes expected in the level of the targeted neural
signal.

Algebraically speaking, the multiplication of the data
matrix by the OrT design matrix differentially alters the
voxel-by-condition-by-subject variance of three types of la-
tent patterns: see the appendix. First, the OrT transformation
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discriminates among patterns that expressed mean trends in
the predicted direction from patterns that expressed mean
directional changes that are different from the predicted
trend; and second, the transformation discriminates among
different types of patterns within the first category. In the
first category, the OrT design matrix discriminates among
patterns in which the direction of the trend expressed is the
same in all subjects from patterns that express condition-
by-subject interactions in which the direction of the trend
expressed is different for different subjects. Lastly, the de-
sign matrix is constructed to preserve the relative size of
the voxel-by-task-by-subject variance accounted for by topo-
graphic patterns that express ordinal trends. On this basis the
application of PCA, or singular value decomposition (SVD),
to the transformed data set can be expected to produce major
principal components that provided a good approximation
to one or more target patterns, where each expresses ordinal
trends on an individual subject basis.

Importantly, the data structure to which the OrT model
is applied is not the raw fMRI data. Initially, the spatiotem-
poral data are preprocessed to remove the normal MR ar-
tifacts, for example, susceptibility and motion artifacts and
artifacts associated with respiration and cardiac pulsations.
Subsequently, a standard method of temporal averaging is
applied to the “artifact-free” data to construct brain maps for
individual subjects that represent the BOLD activity within
different task conditions (epoch types) of the experimen-
tal design. This temporal averaging enhances the signal-to-
noise characteristics of BOLD activity that is time-locked
to stimulus-based, cue-based, and response-based epochs.
These brain maps are the data structure to which the OrT
model is applied, that is, the data consist of one brain map
per subject per task condition (or epoch). More details of the
time series modeling are provided in our example of an OrT
analysis applied to real event-related fMRI data.

Robust inferential statistical methods have been designed
for OrT applications to these types of data structures. Non-
parametric statistics are used to control type-I error rates, for
example, permutation test statistics and error statistics based
on Monte Carlo simulations of random Gaussian fields; see
the appendix. In addition, bootstrap resampling methods are
applied to OrT topographic pattern estimates to evaluate the
reliability of nonzero voxel weights. The reliability of individ-
ual voxel weights is computed as z-scores, where the higher
the z-score the less likely it is that any subject is extraordi-
narily influential in determining voxel weight. The caveat is
that in our current bootstrap procedure the areal extent of
clustered voxels is not taken into account in calculating indi-
vidual z-scores.

We suggest that OrT is likely to provide the greatest ben-
efit in experiments that admit substantial interactions be-
tween experimental task parameters and endogenous vari-
ables. On the one hand, the OrT analysis is predicated on
the notion that experimental control is sufficiently robust
that positive incremental changes in task parameters produce
positive ordinal trends in the activity of each targeted signal
ν(s, t) of the theoretical model F(ν(s, t), θ). That is, the OrT
analysis is designed to recover the footprint of each ν(s, t) for

which every subject (or almost every subject) expresses a pos-
itive ordinal trend. In particular, footprint recovery is possi-
ble in data sets in which there is substantial variation in the
trajectories of subjects’ positive ordinal trends. The worst-
case scenario for which recovery of ν(s, t) may be feasible are
data sets in which interactions between task parameters and
endogenous variables take the form of additional latent pro-
cesses that had not been included in (i.e., were not predicted
by) the theoretical model F(ν(s, t), θ). The additional latent
processes may express mean trends similar to that of a tar-
geted ν(s, t). But what distinguishes each of these latent pro-
cesses from ν(s, t) is that the directional trend in task activity
is different for different subjects. In other words, the experi-
mental control over the operation of these latter latent pro-
cesses is markedly less than that achieved with the targeted
processes ν(s, t).

In applications to real data sets, for example, H2
15O PET

data sets and event-related fMRI data sets, there are striking
examples in which the OrT analysis appeared to provide a
relatively unconfounded and unbiased estimator of a target
pattern [7, 29]. By contrast, the corresponding map of GLM
mean trend statistics deviated markedly from the OrT esti-
mate of the target footprint, suggesting that the GLM map
estimate is influenced by interactions between task parame-
ters and endogenous variables. We have implemented Monte
Carlo methods to simulate data sets that manifest similar
differences between OrT and mass-univariate analyses [7].
The simulated data sets represent the worst case scenario in
which there is substantial variation in the subject trajecto-
ries of target ν(s, t) activity plus, the superposition of several
“nuisance” latent processes. The inclusion of these interac-
tion effects in simulated data sets results in maps of GLM
mean trend statistics that contain significant contributions
from both target and nuisance processes. By contrast, the
OrT analysis provides a substantially less confounded esti-
mate of the target footprint.

In sum, OrT is likely to provide the greatest benefit in
studies in which (a) enrollment criteria create subject sam-
ples that reflect the population level of phenotypic varia-
tion, and (b) experimental control is sufficiently strong that
the latent neural processes of primary theoretical interest
exhibit positive ordinal trends. This potential advantage is
particularly relevant to studies of learning and memory for
which there are ordinarily inherited and acquired differences
among individuals.

2. EXAMPLE OF AN OrT ANALYSIS APPLIED
TO EVENT-RELATED fMRI

We demonstrate here the practical utility of an OrT analy-
sis with its application to the event-related fMRI data from
a study of visual recognition and perceptual adaptation [29].
We describe below the essential information about experi-
mental goals and design, the fMRI acquisition and prepro-
cessing steps, as well as the OrT analytic design and the
patterns of regional activations that represented experimen-
tal effects. The OrT computational methods are outlined in
the appendix that includes (a) a step-by-step recipe of the



J. R. Moeller and C. G. Habeck 5

OrT computations, and (b) the attendant inferential statisti-
cal methods that are routinely applied.

2.1. Experimental aims

The aim of the fMRI study was to investigate the effects
of stimulus repetition on behavioral and neurophysiological
measures of adaptation. We used a modified, trial-based ver-
sion of the possible/impossible object decision (IP-OD) task
that was originally designed by Schacter et al. [30]. Unlike
the original IP-OD task, our version was designed to mea-
sure repetition effects over delays of a few seconds rather
than minutes. Our modified IP-OD task was benchmarked
with the production of significant perceptual priming effects.
Significant reaction time (RT) effects occurred for stimulus
repetitions (p < 0.0001) and object type (p < 0.005), with
a nonsignificant trend in the interaction between repetition
number and object type (p < 0.08). In this two-alternative,
forced-choice paradigm, the decision theoretic parameters of
object discrimination, d’ and bias, remained nearly constant
across successive object presentations. The minimum d’ and
maximum bias were 2.92 ± 0.56 and −0.66 ± 0.57 (mean ±
SD), recorded for initial presentations.

Ordinal trend analysis was applied to the fMRI BOLD
signal. The analytic goal was to recover a latent component
of the BOLD signal that appeared in multiple brain regions
and that, with successive exposures of a test object, exhibited
either a positive trend in every subject, or a negative trend
in every subject. OrT was applied separately to possible and
impossible objects [29]. We have limited our report here to
the analysis of possible objects with the express purpose of
illustrating the OrT methodology.

2.2. Materials and methods

2.2.1. Subjects

Fourteen healthy, right-handed subjects (age = 22.8 ± 3.8
[Mean ± SD]), recruited from the Columbia University stu-
dent population, participated in the experiment. All subjects
supplied informed consent, as approved by the Internal Re-
view Board of the College of Physicians and Surgeons of
Columbia University. Volunteers were screened for psychi-
atric and neurological illness via a questionnaire.

2.2.2. Task procedures

The stimuli used in the visuo-perceptual task consisted of
“possible” and “impossible” objects (Figure 1). Possible ob-
jects were two-dimensional renderings of three-dimensional
solid forms, where the latter are composed of a small num-
ber of intersecting planar surfaces. By contrast, the planar
surfaces rendered in impossible objects did not come to-
gether to form actual 3D solid objects. With each stimu-
lus presentation, that is, on each trial, the subject’s task was
to decide whether the visual stimulus was a possible or an
impossible object—hence the term “object decision.” Every

(a)

(b)

Figure 1: Examples of the visual stimuli used in the IP-OD task: (a)
“possible” object; and (b) “impossible” object.

trial was exactly-3000 milliseconds (ms) in duration: a trial
began with a 500-ms ITI, followed by a fixation cue for
250 ms. Fifty milliseconds after fixation offset, the stimulus
then appeared for 1000 ms; trials were terminated 1200 ms
after stimulus offset. Practice trials were administered to con-
firm that participants understood what it meant to judge ob-
ject type. Prior to commencement of fMRI scanning, subjects
were told that (a) their memory of visual objects was being
tested, (b) they would be viewing an extended series of object
presentations, and (c) they should respond as quickly and as
accurately as possible to each test object in the series.

The PI-OD task consisted of three test blocks, each with a
different set of 13 possible and 13 impossible objects. Within
a block each test object was presented four times. Altogether
a block consisted of 104 test objects. The PI-OD task design
was counterbalanced to obviate confounds between experi-
mental effects [29].

With subjects laying supine in the MR scanner, task stim-
uli were back-projected onto a screen located at the foot of
the MRI bed using an LCD projector. Subjects viewed the
screen via a mirror system located in the head coil. Responses
were made on an LUMItouch response system (Photon Con-
trol Company). PsyScope [31] was used to control task events
and collect subject responses (reaction time and accuracy).
In addition PsyScope electronically synchronized task events
with the MRI acquisition computer.
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2.2.3. fMRI data preprocessing

The several images acquired included T2∗-weighted func-
tional images, T1 “scout” images, and T2 anatomical images.
Details regarding the acquisition parameters for these differ-
ent images are reported in Habeck et al. [29]. All image pre-
processing and analysis was done using the SPM99 program
(Wellcome Department of Cognitive Neurology) and other
code written in MATLAB (Mathworks, Natick, Mass). The
following steps were taken in turn for each subject’s GE-EPI
data set: data were corrected for the timing of slice acquisi-
tion, using the first slice acquired in the TR as the reference.
All GE-EPI images were realigned to the first volume of the
first session. The T2-weighted structural image was coregis-
tered to the first EPI volume using the mutual information
coregistration algorithm implemented in SPM99. The latter
high-resolution image was then used to determine param-
eters (7 × 8 × 7 nonlinear basis functions) for transforma-
tion into Talairach standard space [32] defined by the Mon-
treal Neurologic Institute (MNI) template brain supplied
with SPM99. This transformation was then applied to the
GE-EPI data, which were resliced using sinc-interpolation to
2 mm× 2 mm× 2 mm.

2.3. Statistical Analysis

2.3.1. fMRI time-series and OrT modeling

A first-level, GLM-based, time series analysis was performed
on individual subject image data [33] from which parameter
images were constructed. A second-level OrT analysis was
applied to these latter images for the group of 14 subjects.
At the first level, the fMRI time-series analysis was applied
voxel-wise, in which linearity and time-invariance were as-
sumed in the physiological transformation of neural activity
into a fMRI BOLD signal [34]. The steps in modeling fol-
lowed the example of Friston et al. [35] and Zarahn [1, 36]:
GE-EPI time-series were simultaneously modeled with re-
gressors that represented the hypothesized BOLD response
to the individual PI-OD trial types—relative to a baseline
of intertrial intervals. The individual GLM regressors were
constructed as convolutions of an indicator sequence (i.e., a
train of discrete-time delta functions) representing delayed
trial onsets, an assumed BOLD impulse response function
(as represented by default in SPM99), and a rectangular func-
tion of trial duration. A predictor variable was created for
each of eight-trial types—two-object types times four-object
presentations; and eight images of GLM parameter estimates
were produced for a subject. Subject images were each inten-
sity normalized (via voxel-wise division by the image time
series mean) and spatially smoothed with an isotropic Gaus-
sian kernel (full-width-at-half-maximum = 8 mm).

These images of GLM parameters were subsequently sub-
mitted to an OrT analysis. An OrT analysis was performed
on the first three-object presentations, based on the informa-
tion that the largest change in RT occurred between the first
and second, or first and third presentations. OrT patterns
were constructed from the first few principal components,
and their significance was evaluated using nonparametric
test statistics (see the appendix). As a source of independent
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Figure 2: Results of an OrT guided PCA applied to the imaging
data of 14 participants in the IP-OD study, for which negative ordi-
nal trends were predicted across repeated object presentations (pre-
sentation number). A linear combination of the first two principal
components (PCs) produced significant results: (a) negative mono-
tonic trends exhibited by 12 of 14 subjects in the plot of presenta-
tion number versus pattern expression (p < 0.01); and (b) positive
correlation (p < 0.0005) between the change score in OrT pattern
expression (difference between first- and second-object presenta-
tions), and the corresponding change score in reaction time (index
of perceptual repetition suppression).

validation, change scores in OrT pattern expression were cor-
related with the perceptual measure of repetition suppres-
sion, that is, change scores in RT.

3. RESULTS

A statistically significant OrT topographic pattern was ob-
tained using the first two-principal components. All but
two of the 14 subjects expressed positive ordinal trends
(Figure 2(a)) with stimulus repetition (p < 0.01). The OrT
pattern accounted for 16% of the total voxel-by-condition-
by-subject variance in the untransformed fMRI data set. The
OrT pattern estimate identified not only areas exhibiting
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repetition suppression, but also brain areas that were posi-
tively increasing with successive presentations of each possi-
ble object, that is, “repetition augmentation.” In addition the
index of perceptual repetition suppression, that is, the change
score in the difference in reaction time between the first-
and second-object presentations, was significantly correlated
(R2 = 0.67, p < 0.0005) with the corresponding change
score in OrT pattern expression (Figure 2(b)). The one sub-
ject who did not show perceptual repetition suppression was
an outlier in this correlation analysis. Indeed, this subject was
an outlier in the OrT analysis as well—exhibiting a negative,
rather than positive OrT change score. Notwithstanding, the
correlation between OrT expression and RT was significant
without this subject outlier.

Our bootstrap resampling method confirmed that many
of the nonzero voxel weights of the OrT pattern estimate
were reliable (Table 1). Figure 3 maps the voxels with boot-
strap z-scores ≥ 3.09, which is associated with uncorrected
p-values ≤ 0.001. The bootstrapped OrT pattern revealed
experimental effects in several areas of the visual pathway,
including primary visual cortex, the precuneus and supra-
marginal gyrus, fusiform gyrus and parahippocampus, and
the inferior frontal gyrus. Areas of increasing activation with
successive object presentations populated regions predomi-
nantly in the left hemisphere, although right BA 39 exhib-
ited increasing activation as well (Figure 3(a)). In contrast,
areas of decreasing activation populated posterior dorsolat-
eral regions of both hemispheres, ventrolateral regions of the
right hemisphere, and a portion of right BA 44 (Figure 3(b)).
It is unlikely that any subject was extraordinarily influential
in determining the voxel weight of these superthreshold re-
gions.

Lastly, we also performed a mass-univariate analysis in
which the predictor variable was the mean contrast most
similar to the positive ordinal trend prediction, that is, the
linear mean trend across three-object presentations. Two
brain areas were identified with F-values > 5.61, which are
associated with uncorrected p-values < 0.001: these regions
revealed a mean repetition suppression effect, but not a com-
mon directional trend in all subjects. Moreover, no voxel
survived an SPM99 correction for multiple comparisons.
(This Bonferroni-like correction uses a random Gaussian
field adjustment that properly accounts for spatial depen-
dences in the data.)

4. DISCUSSION

In current neuroscience studies of human sensory processing
and cognitive and motor operations, the observation mod-
els that are applied to data sets have usually been one of
two kinds: the general linear model (GLM) used in mass-
univariate analysis and the multivariate models based on
PCA or ICA decomposition. Although these two modeling
strategies have an essential complementarity—in that the
strengths of the one can be used to bolster the weaknesses
of the other, it has been routine practice in brain mapping to
apply these methods in isolation. The aim of this report has
been to engender a better appreciation of the benefits of the
complementarity between brain mapping methods.

Table 1: Nearest gray-matter voxel locations assigned positive or
negative weights (|Z| > 3.09) in the bootstrapped OrT pattern,
which represents the neural effects of repeated presentations of
“possible” objects. MNI coordinates, structure name, and Brod-
mann label are tabulated for (a) brain regions in which sig-
nal strength decreases with object repetition (repetition sup-
pression); and (b) regions in which signal strength increases
with object repetition (repetition augmentation). Localization with
Talairach Demon available from http://ric.uthscsa.edu/projects/
talairachdaemon.html.

X Y Z Structure Brodmann label

Repetition suppression

28 −84 16 Middle occipital gyrus 19

−24 −82 34 Precuneus 19

−12 −84 38 Precuneus 19

−24 −73 26 Precuneus 31

42 −54 −17 Fusiform gyrus 37

34 −56 51 Superior parietal lobule 7

24 −58 56 Precuneus 7

16 −28 −2 Thalamus ∗
−26 −88 16 Middle occipital gyrus 19

51 10 22 Inferior frontal gyrus 44

28 −38 −11 Parahippocampal gyrus 36

−42 −42 38 Supramarginal gyrus 40

Repetition augmentation

44 −70 42 Inferior parietal lobule 39

−18 −38 −11 Parahippocampal gyrus 36

−8 −58 46 Precuneus 7

−12 −52 52 Precuneus 7

−38 −16 60 Precentral gyrus 4

−40 −8 56 Precentral gyrus 6

−40 −14 38 Precentral gyrus 6

−44 −72 13 Middle temporal gyrus 39

−48 −72 36 Angular gyrus 39

−54 −36 26 Inferior parietal lobule 40

−20 −54 65 Postcentral gyrus 7

−46 −56 30 Superior temporal gyrus 39

6 −44 50 Precuneus 7

−16 0 26 Caudate body ∗

It might come as a surprise that a similar kind of com-
plementarity has previously been articulated in theories of
predictive coding—as they are applied to the brain’s min-
ing of sensory inputs. Predictive coding describes a com-
plementary set of inferential methods that are employed in
human information processing to reconstruct external stim-
ulus events from sensory signals. The latter spatiotempo-
ral signals are those that are produced at the stage of sen-
sory transduction, for example, in the retinal mosaic of the
cone transduction of visual input. In the relationship be-
tween human information processing and brain mapping,
these sensory signals correspond to the neuroimaging data
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Figure 3: OrT pattern displayed in sagittal, coronal, and transverse projection views using SPM99 software. Voxels mapped have inverse
coefficient of variation (ICV) values that exceed an absolute threshold of 3.09. (a) Repetition augmentation—regions that increase in acti-
vation with object repetition. (b) Repetition suppression—regions that decrease in activation with object repetition. (ICV values estimated
using a bootstrap method. Anatomical designations for mapped voxel clusters are tabulated in Table 1.)

u(s, t). In human information processing, the goal is to ex-
tract information about external stimulus events that is rel-
evant to both environment-organism homoeostasis and im-
mediate goal-directed activity. Correspondingly, the goal of
neuroscience is to mine the neuroimaging data u(s, t) for
evidence that the latent processes of theoretical interest are
indeed the neural processes that have been activated and
modulated by the parametric manipulations of the stim-
ulus input. In other words, the ν(s, t) of theoretical inter-
est in brain mapping are analogous to the external stim-
ulus events that are relevant to human thought and ac-
tion.

In this analogy, the sensorial representations of external
stimulus events correspond to the features of the neuroimag-
ing data u(s, t) that are captured by the first principal compo-
nents of PCA, or the task-related components of ICA. For ex-
ample, in the simplest multivariate decomposition (e.g., un-
guided PCA), the neuroimaging data are encoded as a set of
principal components without reference to experimental de-
sign variables or theoretical constructs. This type of coding
would be analogous to sensorial representations in sensory
pathways that are not modifiable by top-down, neural sig-
nals. But actually the brain has the capacity to modify sen-
sorial representations with top-down signals: hence the bet-
ter analogy is between modifiable sensorial representations
and guided PCA and ICA, where the latter are designed to
identify features of u(s, t) that share spatiotemporal features
with the predicted neural signals ν(s, t). Theories of predic-
tive coding emphasize the need to optimize the reciprocal
flow of information between sensory pathways and brain ar-
eas associated with executive control as a means of maximiz-
ing the synthesis and interpretability of information about

external stimulus events. The analogous concept is the aspect
of brain mapping highlighted in this report, that is, conjoint
multivariate and mass-univariate analysis.

The exploitation of conjoint multivariate and mass-
univariate analyses is expected to benefit significantly from
the new developments in guided PCA that combine the ca-
pability to verify the activation of the neural machinery that
we already understand with the capability to discover reliable
signatures of new neural machinery. The OrT analysis is pre-
sented as the latest example of a guided PCA that combines
these capabilities. The means by which OrT achieves its ex-
panded capability was examined; and OrT’s practical utility
is demonstrated in a group analysis of an event-related fMRI
data from a study of visuo-perceptual adaptation.

4.1. Utility of OrT for event-related fMRI

The substantive finding of the OrT analysis was that a sta-
tistically significant OrT topographic pattern was identified
in which lateral occipital cortex was among the most salient
regions that exhibited reductions in the BOLD signal with
successive stimulus exposures. This finding is consistent with
the results of similar types of visual adaptation studies that
have reported group mean reductions in lateral occipital
functional activity—in blood flow and the BOLD signal
[30, 37]. But, the OrT pattern is also consistent with the pre-
dictions of cognitive neuroscientists who argue that the neu-
ral correlates of visual adaptation and perceptual learning are
not limited to neural response suppression in lateral occipi-
tal regions [38, 39]. Consistent with these latter predictions,
the OrT pattern revealed significant regional effects of stimu-
lus repetition in temporoparietal and prefrontal areas. These
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brain regions support processing of higher-level perceptual
attributes and spatial attention, and are distinguishable from
the processes of preattentive feature extraction and visual im-
agery that take place in primary sensory pathways.

The difference between brain areas that reveal repetition
suppression and those that exhibit increased activity with ob-
ject repetition may reveal two different brain analyses that are
performed on visual stimuli. We speculate that the predom-
inantly left-hemisphere effects, which are associated with in-
creased activity with object repetition, may be associated
with analyses of intersecting curved and planar surfaces and
their assignment to the same or different 3D solid objects.
By contrast, the regions that show object suppression popu-
late posterior regions of both hemispheres and may be asso-
ciated with the operations of preattentive feature extraction
and visual imagery. This interpretation is consistent with the
Kosslyn et al. theory of object perception [40–42].

The relevance of the latent neural activity identified by
OrT to perceptual repetition suppression was further af-
firmed by a strong, significant correlation between subject
decreases in RT between the first- and second-object presen-
tations and the corresponding change score in OrT pattern
expression. On the other hand, the RT change score may have
been influenced by endogenous factors unrelated to the OrT
neural signal, as 33% of the subject variation in RT change
scores was not accounted by OrT change scores. We there-
fore performed a brain-wide, mass-univariate search to de-
tect the influence of perceptual or motor processing on RT
via neural processes other than those captured by OrT. Cor-
relations between the RT change score and regional activity
was computed on a voxel-basis with the OrT change score
partialled out. Two isolated brain areas were identified with
F-values > 6.70, which are associated with uncorrected p-
values < 0.001. However, neither region survived an SPM99
correction for multiple comparisons.

Although the correlation between OrT pattern expres-
sion and RT change scores was quite strong, its interpretation
is not altogether straightforward. There is the likelihood that
activity of latent ν(s, t) revealed in the OrT pattern is differ-
ent from the neural activity that is responsible for the per-
ceptual suppression effects manifested in RT. The physiolog-
ical events that are antecedents of response selection and re-
sponse execution may be too brief to accurately resolve in the
BOLD signal. On the other hand, the strong correlation be-
tween OrT pattern expression and RT reductions with stimu-
lus repetition might be the result of a top-down process that
operates over a more extended timeframe, for example, its
operation may extend, say, from fifty milliseconds post stim-
ulus onset to three hundred milliseconds post response ini-
tiation. In other words, the strong correlation between OrT
pattern expression and RT change scores may reflect a func-
tional coupling of two distinct aspects of learning and mem-
ory.

The question therefore remains as to whether the latent
signal associated with the OrT pattern represents a bottom-
up flow of information from sensory cortex to limbic, tem-
poroparietal and prefrontal cortices, or represents top-down
feedback to sensory pathways, or a combination of these two

signals. A more elaborate experimental design and a more
elaborate OrT analysis is needed to answer this question. In-
deed, a model of local neural processing with multiple in-
puts is needed, namely, a model that includes both bottom-
up and top-down input signals, and possibly a modulation of
these inputs by hysteresis effects associated with prior stim-
ulus events. Penny et al. [15] have described such a model,
“bilinear dynamic systems.” Were we to redesign our experi-
ment to dissociate these different signals, OrT would be ap-
plied separately to the images of GLM trial parameters asso-
ciated with the different input signals (each having first been
convolved with the local hemodynamic response function).
The resulting OrT analyses would likely provide more defini-
tive answers regarding the nature of the latent signals that ex-
hibited ordinal trends across successive stimulus repetitions.

Finally, the linear mean trend of the mass-univariate
analysis was statistically nonsignificant. Moreover, of the two
isolated regions that exhibited relatively large F-statistics nei-
ther manifested a significant correlation between RT change
scores and the corresponding difference in voxel activity. The
effect size of GLM mean contrasts appeared to have been di-
luted by features of the latent physiological (neural) processes
that were not well described by the fixed predictor variables,
including the contributions of subject-dependent factors.

4.2. Novel approaches to type-I error control

Of practical interest in inferential statistics is whether guided
PCA and ICA—and OrT in particular—can augment the
sensitivity of mass-univarate analysis while maintaining con-
trol over type-I errors. The facts are that in routine applica-
tions of mass-univariate methods, theoretical models often-
times supply only rough approximations to the architecture
of the underlying neural information processing. That is, the
level of explanatory power is only modest to moderate for
voxels containing real experimental effects. This practical re-
ality collides with the need to control type-I error rates in
brain-wide maps of GLM goodness-of-fit statistics. In order
to control the false positive detection rate, mass-univariate
analysis requires that a Bonferroni-like correction be applied.
But the outcome of Bonferroni-like corrections for multiple
comparisons is predictable, namely, a substantial portion of
voxels that contain real experimental effects will not be iden-
tified as statistically significant.

Development of inferential methods that reduce the stiff
penalty of high type-II error rates—in exchange for tight
control over type-I errors—is an ongoing project in brain
mapping, for example, type-I error control based on the
statistics of false discovery rate (FDR) [43, 44], conjunction
analysis and meta-analyses [45, 46]. But oftentimes investi-
gators resort to less formal remedial approaches to further
enhance the detection of voxels with real experimental ef-
fects: albeit they are willing to tolerate false-positive rates
higher than p = 0.05. Currently researchers report, on a rou-
tine basis, brain maps of experimental effects based on sin-
gle voxel statistics, for example, p < 0.001 for a standard
F- or t-statistic—in lieu of imposing the more stringent,
multivoxel Bonferroni-like correction.



10 International Journal of Biomedical Imaging

However we would offer as an alternative to FDR, con-
junction analysis and the informal approaches, conjoint mul-
tivariate and mass-univariate analyses. We suggest that mul-
tivariate modeling supplies essential information about la-
tent neural processing that mass-univariate modeling lacks,
namely, information about the similarities in u(s, t) activity
between brain voxels. We anticipate that conjoint multivari-
ate and mass-univariate modeling will provide real improve-
ments in the detection of voxels with real experimental ef-
fects while maintaining control of the false-positive detec-
tion rate. Moreover, we expect these improvements will be
realized in all multivariate methods including MLM, gPLS,
OrT, and other forms of guided PCA and ICA, for example,
probabilistic PCA and ICA.

Among multivariate methods the OrT analysis is unique
in its method of controlling type-I errors. By comparison,
in MLM and related PPCA and PICA, eigenvalue statistics
are used to limit the number of principal components to the
smallest set for which the complementary set of components
is not distinguishable from the statistics of random Gaussian
fields. In MLM specifically, the presumption is that on av-
erage the time-by-subject scores of the significant principal
components account for at least a modest portion of the vari-
ance in a majority of the voxels that contain real experimental
effects—specifically those effects described by the associated
theoretical model F(ν(s, t), θ) and the corresponding GLM.
Implicit in PPCA and PICA modeling—as well as in MLM—
is the presumption that all nuisance sources of region-by-
condition-by-subject variance can be accurately articulated
for inclusion in their respective observation models: of par-
ticular importance are the competing sources of variance
with effect sizes that are comparable to those of main ex-
perimental interest, including nuisance sources that are par-
tially correlated with the experimental design variables. By
contrast, in an OrT analysis it is expected that across the
spectrum of latent variable effects, the least is known about
the spatiotemporal properties of nuisance effects: indeed, less
is known about most nuisance effects than about the la-
tent neural processes of experimental interest. For these rea-
sons, OrT controls the type-I error rate using nonparametric
statistics that are different from eigenvalue statistics [7]. Fur-
ther in its applications to date, OrT analysis has appeared to
provide relatively unconfounded and unbiased estimators of
target patterns. One example of OrT pattern estimation is il-
lustrated in our review of a group analysis of event-related
fMRI data from a study of visuo-perceptual adaptation.

5. CONCLUSIONS

The aim of this report is to explicate the potential benefits of
conjoint multivariate and mass-univariate analyses in human
brain mapping. The practical reality is that neither modeling
technique alone provides an exact description of the physi-
ological mechanisms that are the actual determinants of the
imaging data. We argue that it takes conjoint mass-univariate
and multivariate analyses to determine the exactness of either
modeling approach.

We began by reviewing the benefits that are afforded by
MLM—a guided PCA approach that is strongly reliant on

theoretical constructs of neural information processing, and
speculated as to how MLM could best be combined with
mass-univariate analysis to achieve a reciprocal advantage.
On the other hand, because over reliance on conventional
neuroscientific theory has its drawbacks, additional guided
PCA methods are recommended to uncover novel features of
the data u(s, t) that are associated with neural machinery not
heretofore anticipated. The new OrT statistical analysis was
presented as the latest example of a guided PCA that com-
bines the capabilities not only to verify the activation of the
neural machinery that we already understand, but also dis-
cover reliable signatures of new neural machinery. We exam-
ined the details as to how OrT achieves its expanded capac-
ity through the exploration of individual differences and the
interactions between experimental task parameters and en-
dogenous factors. We suggest that OrT analysis, as well as
several other guided PCA and ICA, is especially relevant to
studies of memory and learning for which there are ordinar-
ily inherited and acquired differences among individuals.

Finally we argue that conjoint multivariate and mass-
univariate modeling is a novel approach that significantly en-
hances the detection of real experimental effects while main-
taining control of the false-positive detection rate. More-
over, we expect these improvements will be realized in all
multivariate methods including MLM, partial least squares
(PLS and gPLS), OrT and other forms of guided PCA and
ICA.

APPENDIX

Listed below are the six computational steps of the OrT
analysis. This computational recipe for OrT assumes that
the imaging data have undergone sufficient preprocessing to
yield one image per subject per task condition. Details are
provided below for the case in which there are three-task con-
ditions, denoted below as B, E1 and E2. However, our recipe
can be generalized to any number of task conditions (two or
greater).

Step 1. Application of a projection operator, P, by multipli-
cation from the right according to YP, to eliminate strictly
task-independent effects: P is constructed from the set of 2N
eigenimages of the Helmert-transformed data matrix H′Y,
where N is the group sample size. The Eigen decomposition
can be written as Y′HH′YW =WΛ with the Helmert matrix

H =
⎛
⎜⎝
−IN IN

IN IN

0 −2IN

⎞
⎟⎠ . (A.1)

The matrix W contains the 2N eigenimages as col-
umn vectors, and Λ is a 2N-diagonal matrix containing the
nonzero eigenvalues. The matrix WW′ corresponds to the
projection matrix P of the Helmert eigenimages. The modi-
fied data matrix YP has the same dimensions as the original
data matrix Y. However, YP contains N fewer activation pat-
terns and has rank 2N , that is, a lower rank than the matrix
Y, which has rank 3N .

Removal of the task-independent subject effects is nec-
essary in order to obviate their being confounded with
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the target patterns of experimental interest. Moreover, task-
independent subject effects are not usually of interest as they
describe effects that remained unchanged by the experimen-
tal design manipulation.

Step 2. Application of the OrT design matrix, Q, by mul-
tiplication from the left according to [Q(Q′Q)−1/2]′YP, to
increase the salience of ordinal trend effects. In the case of
three-task conditions,

Q =

⎛
⎜⎜⎝

IN 0

IN IN

0 IN

⎞
⎟⎟⎠ . (A.2)

Step 3. Singular value decomposition (SVD) is applied to the
mean centered [Q(Q′Q)−1/2]′YP matrix. This is equivalent
to applying principal components analysis (PCA), that is,

P′Y′Q(Q′Q)−1Q′YPV = VΣ (A.3)

in which V contains 2N orthogonal eigenimages as column
vectors; and Σ is a 2N-diagonal matrix of the eigenvalues.

Step 4. The first K eigenimages are tested for the presence of
an ordinal trend.

For the first K singular images, a 2N × K predictor array
is calculated according to [E1−B;E1 +B−2E2]. B is obtained
by projection of all K images onto the raw data pertaining
to condition B, that is, B = Y(1 : N , :)V(:, 1 : K). Likewise
for E1 and E2, we have E1 = Y(N + 1 : 2N , :)V(:, 1 : K),
and E2 = Y(2N + 1 : 3N , :)V(:, 1 : K). We then conduct
a linear regression to best predict the dependent variable of
the regression, which is a 2N column vector [1;−1], with the
2N × K predictor array described above,

(
1

−1

)
≈
(

E1 − B

E1 + B− 2E2

)
β. (A.4)

This linear multivariate regression analysis is a type of
discriminant analysis that produces the linear combination
of the K eigenimages, according to V(:, 1 : K)β, whose
mean expression changes maximally across task conditions.
For the test of significance of the ordinal trend, we com-
pute the task-subject scores for this new linear-combination
image according to the right-hand side of the above regres-
sion equation. The test of significance is based on the min-
imum number of exceptions to a perfect segregation of the
two contrast scores C1 and C2 that are calculated from the
resultant pattern’s expression according to C1 = E1 − B and
C2 = E1 + B − E2, respectively. The number of exceptions
is an inverse correlate to the maximum number of subjects
who exhibit monotonic task-activity curves as can be appre-
ciated from Figure 4. Monte-Carlo simulations of random
Gaussian fields provide the type-I error rate of ordinal trends
based on the minimum number of exceptions to a perfect
segregation of scores.

B E1 E2

�3

�2

�1

0

1

2

Task condition

Su
bj

ec
t

O
rT

sc
or

e

Subject contrast scores: E1-B

Subject contrast
scores: E1 + B-2E2

Figure 4: Sample graphic output of an OrT analysis for the imag-
ing data of 15 subjects, for which positive ordinal trends were pre-
dicted across task conditions B, E1, and E2. Statistical significance
is a function of the maximal separation achieved between subject
contrast scores C1 = E1 − B and C2 = E1 + B − E2, calculated for
arbitrary linear combinations for a fixed number of PCs. The opti-
mum segregation (horizontal line) between the two sets of contrast
values (columns of open circles) is displayed for a linear combina-
tion of the first three PCs. Level of segregation achieved with this
number of PCs is one exception, which is significant at p < 0.005.
The overlay of the B-E1-E2 trends for the 15 subjects (uniramous
line segments) identifies the exceptional individual.

Step 5. Bootstrap resampling methods [47] are applied to
OrT topographic pattern estimates to evaluate the reliability
of nonzero voxel weights. The reliability of individual voxel
weights is computed as z-scores, where the higher the z-score
the less likely it is that any subject is extraordinarily influen-
tial in determining voxel weights. In the bootstrap, Steps 1–4
that were performed on the original subject sample are re-
peated 100–1000 times on samples of subjects that have been
chosen randomly with replacement from the original subject
pool. The inverse coefficient of variation (ICV) serves as the
measure of the reliability of the regional weight at each voxel
in the topographic pattern. ICV is computed from the point
estimate of the regional weights, wvoxel, and the variability of
the resampling process around this point estimate, captured
as the standard deviation σvoxel, as

ICVvoxel = wvoxel

σvoxel
∼ N(0, 1) (A.5)

and is approximately standard-normally distributed. The
larger the absolute magnitude of ICVvoxel, the smaller the rel-
ative variability of the regional weight about its point esti-
mate value. Common benchmark thresholds are chosen as
1.64, 2.33, and 3.09, which corresponds to a one-tailed p-
level of 0.05, 0.01, and 0.001, respectively.

Step 6. Forward application of pattern estimates into new
data sets [48–53]: a pattern v from a guided PCA—in
particular an OrT analysis—can be projected into any data
matrix Y according to the algebraic rule Yv′—provided that
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the row vector v and the vectorized images in Y are all coreg-
istered to the same brain atlas; and the same voxel mask has
been applied to every image. The resulting column vector
consists of the levels of expression of v in the individual im-
ages in Y, for example, for each subject and experimental
condition.

The subject-by-condition scores v are normally used to
evaluate correlations between the regional activity associated
with a latent neural process ν(s, t) and (a) hypothetical re-
sponses of ν(s, t) to experimental task challenges, or (b) ex-
perimental relevant behavioral and demographic variables.
In addition, the OT forward application is a useful tool for
testing whether the topographic footprint of a latent process
found in one parametric series of experimental conditions is
also evident in the images of other task conditions within the
same experiment, or in the images obtained in independent,
but theoretically related experimental studies.
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1. INTRODUCTION

With the frequent application of the magnetic resonance
(MR) imaging method to clinical diagnosis, automatic anal-
ysis of the acquired images using techniques from computer
vision and pattern recognition has received considerable at-
tention. In developing such computer-aided diagnosis tools,
a commonly encountered problem is to correct the intensity
inhomogeneity (IIH) in MR images.

The IIH (also termed as the intensity nonuniformity, the
bias field, or the gain field in the literature) usually refers to
the slow, nonanatomic intensity variations of the same tissue
over the image domain. It can be due to imaging instrumen-
tation (such as radio-frequency nonuniformity, static field
inhomogeneity, etc.) or the patient movement [1–5]. This ar-
tifact is particularly severe in MR images captured by surface
coils. Two real MR images with severe IIH artifact are shown
in Figure 1(a), where one can see that the intensity varies sig-
nificantly for the pixels of the same tissue and the intensity
values overlap markedly between the pixels of the different
tissues. For comparison, the IIH corrected images by a sur-
face fitting technique [6] are given in Figure 1(b), from which
the improvement in image quality is clearly visible. The esti-
mated IIH maps are given in Figure 1(c).

Let x denote the measured intensity and x′ the true in-
tensity. Then the most popular model in describing the IIH
effect is

x = αx′ + ξ, (1)

where α denotes the IIH effect and ξ the noise. Notation of
bold letters refers to 2D or 3D MR data. Figure 2 displays the
widely used BrainWeb [7] simulated MR images, where on
Figure 2(a) is the original image, on Figure 2(b) the image
with IIH artifact, on Figure 2(c) the image with noise, and on
Figure 2(d) the image with both IIH artifact and noise. From
Figure 2, one can see the visual difference resulting from the
IIH artifact and the noise.

To simplify the computation, one often ignores the noise
and takes the logarithmic transform of intensity

yi = log xi = log x′i + logαi = y′i + βi, (2)

where xi is the intensity at voxel i (i = 1, . . . ,n). Here, to
avoid numerical problems, care should be taken for those
pixels/voxels with low intensities, which are usually excluded
from computation.

In general, the presence of IIH can significantly reduce
the accuracy of image segmentation and registration, hence
decreasing the reliability of subsequent quantitative mea-
surement. A number of techniques have been proposed to
deal with this issue. In general, if a map of the IIH in the im-
age domain (Figure 1(c) for instance) is known or can be es-
timated, then it is simple to correct the IIH by division in (1)
or subtraction in the log-domain (2). One can obtain the IIH
map from measurement in vivo [8–15], typically of a uni-
form phantom, [16–20], which often requires extra measure-
ment (and increases the scanning time) or needs additional
hardware which may not be readily available in some clinical
departments. Also there are theoretical modeling approaches



2 International Journal of Biomedical Imaging

(a)

(b)

(c)

Figure 1: Sample MR images with severe intensity inhomogeneity:
original images (a), corrected images (b), and estimated inhomo-
geneity maps (c).

[21–28] to approximate the IIH map. However, due to the
complexity that causes the IIH, it is difficult to model the
IIH under a variety of imaging conditions. In particular, the
object-induced IIH is hard to be accounted for by phantom
study or theoretical modeling.

More often, the IIH map is derived retrospectively from
the image data alone. A number of research efforts have been
put in this direction and many techniques have been pro-
posed. Popular mathematical models for IIH description can
be classified as follows:

(1) low-frequency model, which assumes the IIH to
constitute low-frequency components in frequency
domain and the IIH map can be recovered by lowpass
filtering;

(2) hypersurface model, which fits the IIH map by a
smooth functional, whose parameters are usually ob-
tained using regression;

(3) statistical model, which assumes the IIH to be a ran-
dom variable or a random process and the IIH map
can be derived through statistical estimation;

(a) (b)

(c) (d)

Figure 2: BrainWeb simulated images: original image (a), image
with 40% inhomogeneity (b), image with 9% noise (c), and image
with both artifacts (d).

(4) others, which are based on different principles, and
sometimes without explicit assumptions on the IIH
field.

With this in mind, the IIH correction methods are catego-
rized into lowpass filtering, statistical modeling, surface fit-
ting and others, which are detailed, respectively, in the fol-
lowing sections.

For an early literature review, interested readers are re-
ferred to [29], where an evaluation of the IIH correction ef-
fect for brain tumor segmentation is also reported. This pa-
per attempts to summarize the recent progress and focus will
be on mathematical modeling for IIH removal. Nevertheless,
it is by no means an exhaustive summary. For simplicity, the
description will be on single-channel data only.

2. LOWPASS FILTERING

Since the IIH is slowly varying in the image domain, its spec-
trum in frequency domain will be concentrated in the low-
frequency end. Therefore the IIH could be separated from
the true image by a lowpass filter, L. After lowpass filtering
in log-domain, one would approximately have

L{y} ≈ β. (3)

This procedure to correct the IIH is similar to the homomor-
phic filtering in digital image processing for the correction of
illumination inhomogeneity [30]. In fact, (1) easily reminds
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one of the illumination-reflectance model in optical imaging
[30], where the artifact from the illumination inhomogeneity
is often termed “shading” in the literature. Thus, techniques
for shading correction, such as the homomorphic filtering,
can be adopted for IIH removal and the converse also holds.
An investigation of applying IIH correction methods to deal
with the shading problem in microscopic images has been
carried out in [31].

Due to their simplicity and efficiency in implementation,
lowpass filtering methods have been widely used [30–43].
For a summary, interested readers are referred to [42]. Also in
[42], the impact of filter width on IIH correction was inves-
tigated and it was found that these methods should be used
with care to avoid intensity distortion and artificial artifacts
in the corrected images. Basically, for MR images, due to the
overlapping spectrum between the patient data and the IIH,
the effectiveness of most conventional lowpass filtering in re-
moving the IIH is generally quite limited.

Luo et al. [44] presented a technique to recover low-
frequency components which correspond to anatomic struc-
ture and are lost during the lowpass filtering. The method
expresses the signal with a linear combination of singularity
functions. The higher-frequency components are assumed to
be less affected by the IIH and are used to reconstruct the true
image, after which the ratio between the observed and esti-
mated image is used for IIH map approximation.

Recently, lowpass filtering methods have been extended
using the wavelet transform [45, 46] and were shown to be
effective in removing IIH in images acquired by surface coils
and phase array coils. Compared with usual lowpass filter-
ing methods, the multiresolution analysis allows one to se-
lect an optimal scale from which the approximate band in
the wavelet transform domain is used for estimating the IIH
map.

In [47], an improvement of a lowpass filtering method
[43] was presented. The method varies the filter kernel size to
minimize the segmentation error. The idea is generally sim-
ilar to [45, 46] in addressing IIH correction from the scale
space, but differs in the criterion to determine the optimal
scale.

3. SURFACE FITTING

Since the inhomogeneity field is slowly varying, it is natural
to approximate the IIH by a parametric smooth functional
[6, 48–58]. Very often, the parameter estimation is linked to
image segmentation. In this way, the two different problems,
IIH correction and image segmentation, are formulated in
one framework and solved simultaneously. Alternatively, the
parameter searching can be guided through the variation of
some global image feature in an iterative process. A typical
example is to minimize the entropy of gray-level histogram.

3.1. Segmentation

A large category of surface fitting approaches search the pa-
rameters by fitting with respect to a set of tissue points en-
coding information about the IIH. Let I = {1, . . . ,n} in-

dex the voxel coordinates of brain tissue. Then, in order to
determine the parameters of this functional, one needs to
find/segment a set of voxels SI ⊆ I which convey informa-
tion about the IIH map. Among these methods, the essential
difference lies in the identification of SI , and hence decoding
the IIH information from SI .

Dawant et al. [48] proposed to manually select SI such
that they belong to the same type of tissue. As a result,
the intensity variation among these voxels can largely be at-
tributed to IIH. However, expert supervision to select points
is time consuming and error prone, especially for volume
data. Wang et al. [59] has presented an automated method
for generating the reference points.

Meyer et al. [49] employed the LCJ method [60] to pre-
liminarily segment the image and then fit a smooth func-
tional over the segmented image. The LCJ segmentation
method assumes the image to be piecewise smooth and re-
quires that the different objects are well separated at the
boundaries, which is quite stringent in practice, particularly
when image quality is poor due to perturbation such as noise,
partial volume artifact, or IIH. Beside that, not every clinical
department can afford the computer cost to run the parallel
LCJ algorithm.

Liew and Yan [58] approximated the IIH as a stack of B-
spline surfaces with continuity constraints across slices. The
estimation of IIH interwines with a fuzzy c-means clustering
process. In [61, 62], segmentation that utilizes local scale as
homogeneous criteria has been presented and applied to IIH
correction.

When a statistical classifier, such as Gaussian classifier or
random field modeling, is exploited [50, 53, 63], the process
is similar to the parameter estimation in Section 4, where the
parameters are associated with a probability distribution and
can be estimated with common statistical estimation meth-
ods such as maximum-likelihood estimation.

3.2. Entropy minimization

As a frequently used criterion to characterize the intensity
distribution of an image, entropy has been employed to de-
sign algorithms for image restoration, thresholding, or clas-
sification [64, 65]. Also, it has been utilized to quantify the
image property with IIH present and guide the parameter
searching for IIH removal [54–57].

It is assumed that the intensity distribution of the orig-
inal image is multimodal, and the presence of IIH causes
the intensity overlapping between objects. Figure 3 shows the
histograms of brain tissue in a BrainWeb-simulated image
(Figure 3(a)) and the head image in Figure 1 (Figure 3(b)).
On Figure 3(a), the solid line is the histogram without
inhomogeneity, where the modes corresponding to differ-
ent tissues are very distinctive. With the presence of IIH
(dashed-dotted line), the valleys between different modes
are markedly flattened. For the head image with severe IIH,
the histogram (Figure 3(b)) is so flat that the modes corre-
sponding to the gray matter and the white matter are diffi-
cult to distinguish. The flattening of the histogram leads to
the increase in the entropy of the image, therefore, the IIH
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Figure 3: Histogram of brain tissue with the presence of intensity inhomogeneity. (a) Corresponds to a BrainWeb-simulated image: without
intensity inhomogeneity (solid line) and with 40% intensity inhomogeneity (dashed-dotted line), and on (b) the head image (Figure 1).

correction can be achieved through searching the parameter
space of the IIH model such that the entropy of the image is
reduced. It should be pointed out that direct minimization
on the entropy would lead to the null field [55, 66]. To avoid
this pitfall, constraints over the solution space are necessary.
Mangin [55] constrained the solution to minimize the dis-
tance between the mean values of the restored and the orig-
inal image. In [57], the restored image was constrained to
have the same mean value as the original one.

Evidently, other quantities relevant to image features,
variance for example, can also be applicable in a similar fash-
ion. Again, constraints upon the solution space are necessary.

4. STATISTICAL MODELING

The statistical methods [67–71] may assume that the IIH fol-
lows a distribution, the Gaussian distribution for example,
or model the IIH as a random process, such as the Markov
random field.

4.1. Bayesian framework

The Bayes’ rule has frequently been employed to estimate the
IIH map when the IIH is modeled by a distribution. Let β be
a random vector (β1, . . . ,βn) with probability density p(β).
To estimate β, one can maximize the conditional probability
of β given y (the log-transform of x) as follows:

̂β = max
β

p
(

β | y
)

. (4)

This is called the maximum a posterior (MAP) estimate and,
by the Bayes rule, is equivalent to

̂β = max
β

p
(

y | β)p(β). (5)

Wells et al. [67] used the Gaussian distribution to model
the entire log-transformed bias field and the observed inten-
sity at voxel i:

p(β) = Gψβ(β), (6)

p
(

yi | Γi,βi
) = GψΓi

(

yi − μ
(

Γi
)− βi

)

, (7)

where Γi is the tissue class at voxel i with mean value μ(Γi),
and

Gψx (x) = (2π)−n/2
∣

∣ψx
∣

∣

−1/2
exp

(

− 1
2

xTψ−1
x x

)

, (8)

with ψx as the covariance matrix. By assuming the statisti-
cal independence of voxel intensities and from (7), one can
derive

p
(

y | β) =
∏

i

p
(

yi | βi
)

=
∏

i

∑

Γi

p
(

yi | Γi,βi
)

p
(

Γi
)

.
(9)

When the image data is not polluted by IIH, the above
method is simply the tissue classification using a mixture
Gaussian model. Hence, this method essentially interleaves
the IIH correction with a Gaussian classifier. Guillemaud and
Brady [68] observed that the effect of IIH correction by Wells
et al. algorithm is substantially affected by the Gaussian clas-
sifier. In real images, it is very possible for the histogram to
deviate from the mixture Gaussian distribution. A modifi-
cation was then proposed by introducing a tissue class Γother

with a non-Gaussian distribution

p
(

yi | βi
) =

∑

Γ j

p
(

yi | Γ j
)

p
(

Γ j
)

+ λp
(

Γother
)

. (10)
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With this modification, the IIH is only estimated with respect
to the Gaussian classes. Including the non-Gaussian compo-
nent makes the Gaussian classifier less influenced by possible
outliers arising in images.

4.2. Spatial modeling

In the method by Wells et al. the IIH correction has not ex-
plicitly considered the context of IIH map. Since the IIH field
is slowly varying in the image domain, the values of the IIH
map in neighboring pixels/voxels would be close. When this
spatial relation is taken into account in the IIH modeling, one
would likely arrive at a smoother approximation of the IIH
map. A useful tool for spatial modeling is the Markov ran-
dom field (MRF), which is first employed by Geman and Ge-
man [72] for image segmentation. Held et al. [69] have em-
ployed the MRF to model IIH. According to the Hamersly-
Clifford theorem [73], the prior probability p(y) is given by
the Gibbs distribution

p(y) ∝ exp
{−U(y)

}

(11)

with the Gibbs energy

U(y) = α
∑

〈i, j〉

(

yi − yj
)2

+ β
∑

i

y2
i , (12)

where 〈i, j〉 sums over every voxel i and its neighbours j.

4.3. The N3 method

Different from most IIH correction method which involves
a classification step, Sled et al. [74] proposed a nonparamet-
ric nonuniform intensity normalization (N3) method which
searches for the IIH field to maximize the frequency content
of the image intensity distribution. The method simplified
the problem in log-domain as a deconvolution problem by
realizing that if v1 and v2 are two independent random vari-
ables with distributions V1 and V2, respectively, then the dis-
tribution of their sum is the convolution of V1 and V2 [75].
To constrain the solution space, the IIH field is modeled as
a Gaussian distribution with small variance. Code for this
method is publicly available.1

5. OTHER APPROACHES

5.1. Comparison between local and global statistics

There are efforts [76, 77] to estimate the IIH by comparing
a local statistic with the global one. The two statistics are as-
sumed to characterize the same population. These methods
essentially relate the IIH correction to tissue segmentation,
and the implicit assumptions are (1) the constant intensity

1 http://www.bic.mni.mcgill.ca/software/N3

for a tissue and (2) that the intensity variation within a tissue
is solely due to IIH. Not surprisingly, these methods are sen-
sitive to the estimation of tissue statistics, which is nontrivial
in practice.

When GM and WM are combined as one class and the
local statistic is estimated from a sample in a local region as
done in [76, 77], the method can be regarded as a generalized
white matter method by Dawant et al. [48], where the refer-
ence tissue is the combination of GM and WM. Also, it can be
taken as a lowpass filtering estimation. Although it is usually
much easier to identify GM and WM together than to iden-
tify WM alone, a potential problem is that the local sample
could fail to adequately characterize the feature of the com-
bined tissue class even though there is no artifact like IIH.

A possible solution is to carry out more detail tissue clas-
sification in each local region. For example, the technique
proposed in [78, 79]2 estimated the global tissue mean val-
ues by empirical thresholding, while the local statistics are
derived through fitting the local histogram with a theoretical
distribution. After obtaining estimations of local correction
factors, a smooth function is fitted among these data and ap-
plied to the whole brain volume for IIH removal.

5.2. Image feature-based methods

An image feature-based technique was reported in [80],
where the IIH correction was decomposed into row and col-
umn correction. The correction factor at a voxel is firstly
related to first-order difference at other voxels in the same
row/column, then combined with those calculated in the
rows/columns from the initial to the current one. The ra-
tionale underlying the computation is obscure from the de-
scription. However, it is very similar to that in [81]. In the
latter technique, a smooth “variation” image was firstly de-
rived from normalized intensity gradient field, where pixels
with low intensity or high gradient magnitude are excluded.
Then numerical integration was applied to the “variation”
(first-order derivative) image to obtain an image, which only
contains small variations and was used to determine the IIH
map.

Vovk et al. [82, 83] proposed to use the probability distri-
bution of image features for IIH correction, where the image
feature includes the intensity and the second spatial deriva-
tive of the image. Similar to the usual intensity histogram,
the joint probability distribution also contains information
for classifying tissues and such information was encoded by
entropy. The correction factor was derived so that the en-
tropy would decrease, similar to [57].

5.3. Estimate without explicit modeling

There are methods [84–88] which consider the IIH as model
parameters formulated in a segmentation framework. Sup-
pose the segmentation is to optimize a functional Φ(y, θ,β),
where y denotes the observed data, β the IIH term, and θ

2 Available with the BrainSuite package (http://neuroimage.usc.edu/).
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other parameters. Then one way to estimate β can be ob-
tained by

∂Φ

∂β
= 0. (13)

Rajapakse and Kruggel [84] used an MRF formulation,
whereas Farag and his group exploited the fuzzy c-means
clustering framework [85–88].

It is noted that in these methods no explicit assumption
has been made on the IIH field, which can be advantageous
over model-based methods, since the assumptions with a
model could be violated in practice. On the other hand, the
absence of constraints on the IIH solution could result in er-
roneous IIH maps that deviate far away from the truth. In
addition, voxel-wise updating the IIH in an iterative process
is time-consuming, hence techniques such as multigrid com-
puting may help reduce the computation load.

5.4. Registration against template

Image registration has also been utilized to aid the IIH cor-
rection [89, 90]. In [90], the patient data was registered
against a tissue reference template, which allows to estimate
the IIH map by direct comparison between two images. Here
human intervention was employed to ensure the correct cor-
respondence between the distorted and the reference image.

5.5. Shape recovery

Lai and Fang [91] transformed the IIH correction into the
problem of shape recovery with orientation constraint and
solved the latter using regularization theory. The approach
may result in solving a linear equation with a large matrix.

5.6. Deformed thin plate model

Bansal et al. [92] modelled the IIH field as a thin plate de-
forming elastically under a body force:

μ∇2β + (λ + μ)∇(∇ · β) + b(β) = 0, (14)

where μ and λ are the elasticity constants. The body force
b(β) is evaluated to minimize the entropy of the observed
image.

6. DISCUSSION

6.1. Integrated approaches

As seen from the description above, many IIH correction
methods relate the problem with image segmentation and
solve these two problems alternatively through an iteration
process. Evidently, accurate segmentation would significantly
ease the burden of IIH correction. Conversely, if the IIH has
been precisely removed, the segmentation accuracy will in
general be improved. Thus, it is not surprising to see over-
whelming techniques addressing these two problems within
a common framework.

Actually, it has been a trend in computer vision to imitate
the human intelligent system and solve the different prob-
lems simultaneously. A typical computer vision system may
consist of several individual processes, which can be solved
sequentially. However, the solution of one process could be
beneficial to the solution of another one and the converse
may also hold. As an example, image denoising and edge
detection are two closely related problems. And it is com-
mon to require a denoising algorithm able to preserve im-
age edge structures, and an edge detection method robust
against noise. For the problem of IIH correction, beside the
connection with image segmentation as mostly noted, there
are efforts that relate the solution to image registration, be-
cause the image quality can impose an impact on the accu-
racy of image registration and conversely a good registration
against a template could greatly help derive a high-quality
image. In addition, there even exist attempts to address these
three processes, IIH correction, segmentation, and registra-
tion together [93, 94].

Among some processes, their relationship may not be
very intimate, but different implementation order could re-
sult in different performance. In [68], it was found that de-
noising after IIH correction is more preferable. Madabhushi
and Udupa [95] investigated the interplay between IIH cor-
rection and intensity standardization, and concluded that the
better sequence is IIH correction followed by intensity stan-
dardization.

6.2. Validation and comparative study

For end users, it is natural to ask questions such as how to
assess the performance of an IIH correction method, which
method should be recommended when a practical medical
image processing system encounters the problem of IIH cor-
rection, or if there is a method which exclusively outperforms
others. To answer these questions, we need to do extensive
comparisons under a variety of data sets. However, this turns
out to be a difficult task, because the true amount of IIH is
unknown for real data. The lack of ground truth is a common
problem in evaluating a computer vision algorithm. There
are two possible ways to circumvent this difficulty. One is
to approximate the golden standard by experts’ estimation,
which is often a tedious task. Alternatively, we can use syn-
thetic data. In IIH correction, the simulated brain images
[7, 96] from the Montreal Neurological Institute3 have been
widely employed for validation.

(1) Criteria

The criteria that have been frequently used are listed in the
following.

Cr-I The variance of the fully or a partially segmented
image, which is supposed to decrease after the IIH
correction. When this criterion is used for compar-
ing different methods, the result could be misleading

3 http://www.bic.mni.mcgill.ca/brainweb
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because the variance is scale-variant. Usually, the
mean-preserving condition is utilized to avoid this
problem.

Cr-II The coefficient of variation, cv, of class Γi:

cv
(

Γi
) = σ

(

Γi
)

μ
(

Γi
) . (15)

It can be shown that this quantity overcomes the lim-
itation of the image variance. But the cv alone only
characterizes the within-class scatter and a criterion
that also takes into account the between-class scatter
is as follows.

Cr-III The coefficient of joint variations between two classes

c jv
(

Γ1,Γ2
) = σ

(

Γ1
)

+ σ
(

Γ2
)

∣

∣μ
(

Γ1
)− μ(Γ2

)∣

∣

. (16)

Moreover, one can also use the relative change of c jv
as defined below:

c jva − c jvb
c jvb

× 100%, (17)

where the subscripts a and b denote after and before
IIH correction.

Cr-IV Mean-square error, which directly measures the dis-
tance between the derived and the true IIH map.

Cr-V Segmentation accuracy, which indirectly reflects the
effect of IIH correction. Care should be taken in inter-
preting the segmentation result since the latter could
be complicated by other factors, like subject, scanner,
noise, segmentation method, and so forth.

Cr-VI Stability, which means that an IIH correction algo-
rithm is recursively applied to the corrected volume.
For a good algorithm, the extracted IIH map is as-
sumed to converge rapidly.

Cr-VII Computer requirement and CPU time.

From the list, one can observe that most criteria have
their own limitations and some are applicable to simulated
data only. However, simulated data might not adequately
characterize real ones. For example, in [47], the proposed
method was reported to be inferior to methods such as the
N3 in terms of cv or c jv when tested on simulated data,
but the order is reversed when tested against real volumes.
Furthermore, the adaptivity of an algorithm is also impor-
tant. For a method with good adaptivity, the approximated
IIH map would approach a constant when the real IIH ap-
proaches zero.

(2) Comparative study

Compared to the numerous techniques for IIH correction,
only a few studies have been carried out towards the com-
parative evaluation of existing algorithms. Sled et al. [97]
have compared three IIH correction methods, the expecta-
tion maximization (EM) [67], the white matter (WM) [48],
and the N3 method [74] using simulated T1, T2, and PD
weighted data. It was shown that the WM method performs

better than the other two methods for T1 weighted volumes,
which might be due to the high contrast between the WM
and other tissues in T1 weighted images. The EM method
made excessively large corrections to voxels that fall outside
the classifier’s tissue model, as is consistent with that pointed
out in [68]. Overall, the N3 method performs the most stable
for all simulated images.

Velthuizen et al. [29] have evaluated four IIH correc-
tion methods (a phantom method [17], two lowpass filtering
methods [36, 39], and a surface fitting method with refer-
ence points selected from white matter [48]) in brain tumor
segmentation. The surface fitting method was found to be in-
ferior to others, which could be due to the way the reference
points were generated. As mentioned in Section 3.1, the lat-
ter is crucial to the performance of the surface fitting method.
An automatic method to generate such reference points has
been presented in [59]. Hou and Huang [98] have also de-
veloped a similar technique based on order statistics, which
is very well comparable with the state-of-the-art IIH correc-
tion methods.

Although it turned out no improvement in tumor assess-
ment after the IIH correction [29], it does not mean that IIH
correction is not an obstacle to automatic medical image pro-
cessing in general, since the tumor segmentation is charac-
terized by the localization of the tumor region as well as the
intensity contrast with surrounded tissue. Thus, the tumor
segmentation could be less affected by the IIH artifact.

A more comprehensive study was presented in [66],
where six algorithms, n3 [74], hum [42], eq [43], bfc [78], spm
(statistical parametric mapping)4 [52], and cma5 were com-
pared against BrainWeb-simulated data as well as real vol-
umes including repeated scans of the same subject, scans un-
der different magnetic fields and different scanners. Three of
the methods (hum, eq, and cma) are lowpass filtering based.
The spm method is based on surface-fitting, and its parame-
ters are estimated through integration with a tissue mixture
model. It was found that the IIH maps obtained by filtering
based methods can exhibit higher-frequency structures per-
taining to brain anatomy. The spm method could be unsta-
ble when operating on relatively uniform image volumes and
could lead to spurious solution for some volume. Overall, the
n3 and the bfc methods are superior to the other four meth-
ods. At lower bias levels, the estimated bias by bfc is more
accurate than that by n3, and at higher bias levels, the or-
der reverses. Nevertheless, none of the six methods performs
ideally under all the circumstances investigated.

The problem of the spm might be similar to that of
the EM method by Wells et al. [67]. Both methods utilized
the mixture Gaussian classifier, which may be inadequate to
model the image intensity distribution arising in practice. It
should be pointed out that the spm method used in [66] is the
SPM99 version, which has been updated to version SPM2 in
2003 with substantial improvement in theoretical modeling

4 It is a part of the SPM99 software released by the Wellcome Department
of Imaging Neuroscience (http://www.fil.ion.ucl.ac.uk/spm).

5 Available in the Nautilos Library from the Center for Morphometric Anal-
ysis at the Massachusetts General Hospital.
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or algorithmic design, and the latest version is SPM5. As
to the three filtering-based methods, they lack a scheme to
adapt the filtering strength to data quality, which may explain
the inefficiency compared with the n3 and the bfc methods.
As mentioned in Section 2, filtering methods [45–47] with
data adaptivity have been developed recently, which might
outperform their conventional counterparts.

Although further comparative study using more exten-
sive MR images is necessary, it might be inappropriate for
end users to expect an algorithm superior to others and ex-
clusively applicable. In general, each method has its under-
lying assumptions and limitations and the choice of which
method to use is intimately interwined with the problem to
solve, the source, and quality of the data. Many methods have
attempted to correct the IIH artifact in brain MR images,
some of which require the removal of the scalp/skull before
the correction process, while others do not. Although sophis-
ticated methods may be able to correct for IIH more accu-
rately, one would also have to consider the expense of com-
puter cost as well as the final segmentation error. Among the
publicly available softwares, the N3 method has been widely
used and its performance has been well demonstrated, while
the BFC method can be advantageous when the image is also
contaminated by severe noise [98].

7. CONCLUSION

This paper presented a summary of the recent progress on
MR image IIH correction. The most popular models to de-
scribe the IIH field are the low frequency, the hypersurface,
and the statistical model. Filtering methods are fast, easy to
code and widely used. With optimization in scale space, the
filtering method can also be adaptive to image data. Surface
fitting and statistical methods are easy to integrate with other
knowledge such as segmentation, registration, or some im-
age feature, thus could in principle provide more reliable so-
lution, which have been and will be the trend in the field.
Some techniques based on other IIH correction principles
were also reviewed in the paper. In future, it might be of in-
terest to have more extensive investigations on evaluation of
existing methods.
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