Molecular Genetics and Cytogenetics in Cancer
Molecular Genetics and Cytogenetics in Cancer

Guest Editors: José María Sayagués, Sergio Roa, Norma C. Gutierrez, and Ilana Zalcberg Renault
Editorial Board

Urs Albrecht, Switzerland
Marc Billaud, France
Rhona H. Borts, UK
Claudio Bravi, Argentina
Stacey S. Cherny, Hong Kong
Frans Cremers, The Netherlands
Leanne Dibbens, Australia
Norman A. Doggett, USA
Francine Durocher, Canada
Robert E. Ferrell, USA
Shinichi Fukushige, Japan
Jonathan A. Harton, USA
M. Hattori, Japan
Ziarih H. Hawi, Australia
Akira Horii, Japan
M. Horikoshi, Japan

Martin Hülskamp, Germany
Maj Hulten, UK
Y. Kashi, Israel
M. Kreitman, USA
Ulf Kristoffersson, Sweden
Jerzy K. Kulski, Australia
Martin Kupiec, Israel
Paul J. Lockhart, Australia
Fabio M. Macciardi, Italy
Alexander MacKenzie, Canada
E. Martínez-Romero, Mexico
Melvin G. McInnis, USA
Wieland Meyer, Australia
Lucia Migliore, Italy
S. E. Mole, UK
Kenta Nakai, Japan
Giuseppe Novelli, Italy

Hilmi Ozcelik, Canada
Svetlana D. Pack, USA
Tomaso Patarnello, Italy
Dorien Peters, The Netherlands
Wendy Robinson, Canada
Edgar Serfling, Germany
Marcel G. Tilanus, The Netherlands
V. W. van Beusechem, The Netherlands
Walther Vogel, Germany
Jim Wainscoat, UK
Michael Walter, Canada
Bernard Weissman, USA
Haim Werner, Israel
Meredith Yeager, USA
Jia L. Zhuo, USA
Drazen B. Zimonjic, USA
Contents

Molecular Genetics and Cytogenetics in Cancer, José María Sayagués, Sergio Roa, Norma C. Gutierrez, and Ilana Zalcberg Renault
Volume 2011, Article ID 835053, 2 pages

Molecular Aspects of Breast Cancer Metastasis to the Brain, Jodi M. Saunus, Majid Momeny, Peter T. Simpson, Sunil R. Lakhani, and Leonard Da Silva
Volume 2011, Article ID 219189, 9 pages

Integrated Genomic Analysis of Szary Syndrome, Xin Mao, Tracy Chaplin, and Bryan D. Young
Volume 2011, Article ID 980150, 13 pages

The Role of Dicentric Chromosome Formation and Secondary Centromere Deletion in the Evolution of Myeloid Malignancy, Ruth N. MacKinnon and Lynda J. Campbell
Volume 2011, Article ID 643628, 11 pages

Genetic Markers Used for Risk Stratification in Multiple Myeloma, Priscilla Segges and Esteban Braggio
Volume 2011, Article ID 798089, 4 pages

Molecular Alterations in Sporadic Primary Hyperparathyroidism, Maria Inês Alvelos, Maria Mendes, and Paula Soares
Volume 2011, Article ID 275802, 7 pages

Cytogenetics and Molecular Genetics of Myxoid Soft-Tissue Sarcomas, Jun Nishio, Hiroshi Iwasaki, Kazuki Nabeshima, and Masatoshi Naito
Volume 2011, Article ID 497148, 13 pages
Editorial

Molecular Genetics and Cytogenetics in Cancer

José María Sayagués,1 Sergio Roa,2 Norma C. Gutierrez,3 and Ilana Zalcberg Renault4

1 Centro de Investigación del Cáncer, (IBMCC-CSIC/USAL) and Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, 37007 Salamanca, Spain
2 Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
3 Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain
4 Laboratory of Molecular Biology, Bone Marrow Transplantation Center (CEMO), National Cancer Institute, 20230-130 Rio de Janeiro, RJ, Brazil

Correspondence should be addressed to José María Sayagués, ppmari@usal.es

Received 29 November 2011; Accepted 29 November 2011

Copyright © 2011 José María Sayagués et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This special issue of Genetics Research International focuses on molecular genetics and cytogenetics in cancer. The hunt for informative disease-related genetic biomarkers may become so valuable for the differential diagnosis, prognosis, and disease monitoring of cancer patients that numerous researchers are committed to this challenge. Indeed, a colossal effort of current molecular medicine to progress in the understanding of the hallmarks of cancer is focusing on the field of biomarker discovery through genetic and cytogenetic profiling. Ambitious initiatives such as the Cancer Genome Atlas (http://cancergenome.nih.gov/) or the Cancer Genome Anatomy Project (http://cgap.nci.nih.gov/cgap.html) from the US National Institutes of Health (NIH) are devoted to provide collaborative platforms to better comprehend and fight the malignant signature of cancer.

The fast development of high-throughput technologies is bringing to biomedical research more affordable and high-resolution ways to explore whole genomes, chromosomes, genes, proteins, RNA, and metabolites. In consequence, numerous genomic datasets accumulate in international repositories, such as GEO from the US National Center for Biotechnology Information (NCBI), and around 500,000 clonal chromosomal abnormalities belonging to more than 60,000 human neoplasms are described in the latest catalogue of chromosome aberrations in cancer. However, translational application of biomarker discovery still has to face its ultimate challenge: incorporation into routine clinical practice.

We are under the pressure to combine the multidisciplinary efforts of basic, clinical, and computational research fields to identify meaningful genetic profiles that can be used as powerful tools for diagnosis, prognosis, and treatment. Every patient who suffers from cancer hopes that our research will deliver alternatives. For scientists, the identification of the specific genetic abnormalities responsible for tumor diversity and heterogeneity is crucial to shed light on the molecular mechanisms of cancer and the identification of druggable targets and functional pathways. For clinicians, the appropriate molecular categorization of patients would allow to enroll them in tailored—more adequate and less toxic—treatments, improving healthcare and optimizing medical costs.

Ultimately, any effort to (i) frame the important unsolved problems, (ii) to review what is known about the molecular pathways involved in the pathogenesis of distinct types of cancer, (iii) to catalog recurrent genetic alterations that could serve as biomarkers, (iv) to suggest standardization of routine protocols of diagnosis and molecular detection, and (v) to rank available or potential drugs and their targets, is decisive to help molecular medicine in its challenge against cancer. This is the scope of this special issue where the biographies of some of the most aggressive hematological and solid tumors are discussed. The journal Genetics Research International is serving here as a forum for discussion and review of major genetic risks involved in breast cancer metastasis to the brain as well as in the evolution of myxoid soft-tissue sarcomas and parathyroid tumors. The importance of applying genetic protocols in the risk-based stratification of multiple myeloma is also reviewed here, and new evidences supporting genetic aberrations in a rare variant of T-cell lymphomas known as Sézary syndrome are presented. Finally,
myeloid malignancies are revealed as a paradigm to discuss the role of dicentric chromosomes as instigators of genomic instability and suggest a model for their implication in the formation of unbalanced translocations in malignancy.

Breaking the barriers of cancer is a difficult task that is continuously challenging the research community.

We, the editors of this special issue, are hopeful that the ideas presented here can inspire the critical thinking of the specialized readers and contribute to the common efforts to better understand and fight the multiple faces of cancer.

José María Sayagués
Sergio Roa
Norma C. Gutierrez
Ilana Zalcberg Renault
Review Article

Molecular Aspects of Breast Cancer Metastasis to the Brain

Jodi M. Saunus, Majid Momeny, Peter T. Simpson, Sunil R. Lakhani, and Leonard Da Silva

1 School of Medicine, The University of Queensland, Herston, QLD 4029, Australia
2 Pathology Queensland, The Royal Brisbane and Women’s Hospital, Herston, QLD 4029, Australia

1 UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia

Correspondence should be addressed to Leonard Da Silva, leonard@szd.com.br

Received 30 April 2011; Revised 15 July 2011; Accepted 14 August 2011

Copyright © 2011 Jodi M. Saunus et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Our knowledge of the biology underlying the development of brain metastases (BM) from breast cancer has improved over the last decade due to large clinical epidemiological studies, animal models of metastasis, and the use of high-resolution gene expression profiling technologies. However, there are still major gaps in our understanding of the mechanisms utilized by breast cancer cells to colonize the brain microenvironment, thus our arsenal of therapies remains relatively nonspecific, and the prognosis for breast cancer patients with BM remains poor. Additional insights into these mechanisms are necessary to facilitate the development of new preventive and curative therapeutic regimens to block this fatal disease. This paper aims to provide a general overview for the readers of what has been achieved in this field of research and its translation into clinical practice to date and to highlight exciting new areas of research that promise to inform the development of new targeted therapies for BM.

1. An Overview of Metastasis

Metastasis, or metastatic disease, is the spread of cancer cells from one organ to a distant site via the blood or lymph. In the Nineteenth Century, Paget asked whether the distribution of metastases in different organs was simply a matter of chance. He studied autopsy records of women with breast cancer, revealing a nonrandom pattern of metastatic colonization. He proposed a hypothesis that tumour cells (the “seed”) could have specific affinity for the microenvironments of certain organs (the “soil”) [1]. This intriguing phenomenon is called organotropism, and Paget’s hypothesis has now been repeatedly substantiated, with growing recognition of the importance of tumour cell interactions with the stromal microenvironment in supporting the establishment of metastases (see below). For instance, analysis of large autopsy series has showed that lung, breast, melanoma, renal, and colon cancers are the most common primary tumours to metastasize to the brain [2, 3]. There is a theory that the primary tumour could contribute to priming “premetastatic niches” prior to the establishment of micrometastases, thereby influencing organ tropism. Kaplan, Lyden, and colleagues’ analysis of mouse models of lung metastasis implicated certain chemokines in this process, as well as mobilisation of hematopoietic precursor cells to pre-metastatic sites [4], however the mechanisms underlying creation of pre-metastatic niches are not fully understood [5].

The metastatic process is very inefficient. In order to accomplish distant metastasis, tumour cells must first detach and/or escape from the primary site, then survive as circulating tumour cells (CTCs) in the absence of the microenvironment cues with which they were conceived. Most CTCs are cleared from initial trapping sites within a few days. Those that survive, and succeed in extravasating, engraft at a distant site forming a micrometastasis, then may proliferate to form a clinically significant lesion after a fairly unpredictable period of latency (dormancy) spent meeting requirements for cell division in the new microenvironment [6, 7]. The poorly understood “dormancy” phenomenon poses a major challenge in metastasis management. Despite being attractive drug targets (at least conceptually), CTCs and micrometastases are undetectable with current hematologic and imaging technologies and are thought to be insensitive to chemotherapeutics that target rapidly dividing cells.
It is now becoming clear that only a very small proportion of primary tumour cells are capable of forming clinically significant metastatic lesion [8]. Because these cells share critical features with normal stem cells (namely, multi-lineage potential in reseeding a secondary tumour and self-renewal), they have been called cancer stem cells (CSCs). It is hypothesized that a complex combination of tumour cell intrinsic and extrinsic processes eventually culminates in the activation of dormant CSC proliferation at distant sites [8]. Current evidence suggests that this includes continuing tumour cell genetic evolution, adaptation, and selection of those cells with signaling programs that best engage and exploit the new microenvironment [9, 10]. Observations on the temporal courses of metastasis, from different primary tumour types, provide some insight into the biology underlying these processes. For example, subsets of breast and lung carcinomas show similar overall organ tropism (brain, bone, lung, and liver), but strikingly different progression times, with distant relapse detected early in lung cancer (metastases established within months of diagnosis), and relatively late in breast cancer progression (after years to decades of remission). This suggests early acquisition of metastasis-enabling genetic alterations in lung cancer, in contrast to a longer latency period as CTCs and/or micrometastases in breast cancer.

At least three categories of metastasis genes have been proposed to facilitate the multistep metastatic cascade (reviewed in [11]): (1) “initiation” genes that facilitate detachment (e.g., CDH2 (encodes N-Cadherin) and TWIST), extracellular matrix degradation (e.g., MMPs) or angiogenesis (e.g., VEGF); (2) “progression” genes (e.g., PTGS2 (encodes COX-2) and MMP-1) that regulate extravasation of circulating tumour cells and are involved in metastatic colonization; (3) “virulence” genes (e.g., IL6 and TNFα), which promote survival in circulation, and/or provide a proliferative advantage in the distant microenvironment. Apart from these metastasis-promoting genes, there is a well-distinguished class of metastasis “suppressor” genes that represses tumour cell dissemination without any effect on primary tumour growth, including KAI-1, BRSM1, and NME1 [11]. These findings are mainly derived from studies using animal models. Historically, it has been difficult to understand the genetic alterations underlying metastasis by direct analysis of human tissue. Transcriptomic profiling of matched pairs of primary tumours and their metastases has demonstrated a high degree of similarity with minor differential gene expression [12–14]. However, the more recent application of next-generation whole genome sequencing (WGS) technologies is revealing subtle, but significant distinctions between metastases and their primary tumours of origin [15, 16] that were previously undetectable.

2. What Is the Impact of Brain Metastasis in the Natural History of Breast Cancer?

The prevalence of BM during the course of breast cancer disease has been reported to range from 10%–16%, reaching 30% when autopsy diagnoses of BM are included [17, 18]. Several factors have been reported to be associated with a higher risk of developing BM: patients less than fifty years old, four or more axillary lymph nodes involved with metastatic disease, basal phenotype, and high tumour grade [19–22]. Current therapeutic strategies for BM include whole brain radiation therapy (WBRT; the treatment mainstay since the 1950s), stereotactic radiosurgery, or surgery combined with radiotherapy. The median survival in untreated breast cancer patients with symptomatic BM is less than one month, 6–8 weeks in patients treated with steroids alone and 3–6 months when treated with WBRT [3, 23].

Patients with HER2-positive breast tumours are now also regarded to be at high risk for developing BM. Improved control of systemic disease with the anti-HER2 monoclonal antibody combined with poor BBB penetration have been regarded as culprits of this increased metastatic trend [24]. BM treatment strategies are currently informed by the histopathology of the primary tumour, and BM are rarely biopsied. Whilst many features are shared, it is becoming clear that metastases are distinct in their genetic landscape and expression of critical disease markers [12, 14–16]. Hence, future therapeutic development is likely to be based on features of the metastases themselves.

3. Does the Incidence of BM Correlate with Breast Cancer Molecular Subtypes?

Breast cancer is a heterogeneous disease with respect to molecular features perhaps best exemplified by the molecular subgroups identified by gene expression profiling including basal-like, luminal A (hormone receptor positive), luminal B, and HER2 amplified/over-expressed (HER2+) subtypes. These molecular subtypes are associated with different outcomes. It is generally accepted that the basal-like, luminal B and HER2+ subtypes are associated with particularly poor prognosis compared with the hormone receptor-positive, luminal A subtype [25, 26] (Figure 1). Basal-like tumours are generally high grade, have central areas of necrosis, invasive pushing borders and are characterized by the expression of markers including high-molecular weight cytokeratins (e.g., CK14 and CK5/6), p53 and the myoepithelial markers Smooth Muscle Actin (SMA) and p63 [27, 28].

We, and other groups, have reported a greater propensity of primary breast cancer with a basal-like immunophenotype to metastasize to the brain [20–22]. Moreover, patients with germline BRCA1 mutations who develop breast cancer have a higher incidence of BM compared to germline BRCA2 carriers and non-BRCA1/2 patients [29]. These tumours have morphological similarities with those from the sporadic basal-like group [27, 28]. Patients with HER2+ tumours have also been shown to have an increased incidence of BM [30]. These metastatic patterns were further validated by a large study analysing, 3,726 cases, with a median follow-up of 14.8 years [31]. This work confirmed a higher rate of BM in HER2+-enriched and basal-like, compared to luminal A tumours. The cumulative incidence for BM in basal-like and HER2+ tumours were highest in the first five years after diagnosis, plateauing thereafter.
4. Current Understanding of BM from Breast Cancer Mechanisms

Gene expression profiling of breast tumours coupled with outcome data, functional analyses on cell lines, and in vivo animal models have shed light on our understanding of the colonization of the brain parenchyma by breast cancer cells [10, 11, 16, 42–44] (Figure 1).

Regarding the brain microenvironment, there are two main cell types in the neural tissue: neurons and glial cells, including microglia, astroglia, and oligodendroglia. There is a body of evidence suggesting that metastatic tumour cell interactions with the brain microenvironment facilitate the colonization process [43]. Interactions between breast cancer cells and pericytes and/or astrocytes might be responsible for alterations in the BBB and thus, development of BM from breast cancer. For example, Mendes et al. [45] reported that astrocyte-induced factors activated the ERK1/2 signalling pathway in rat mammary adenocarcinoma ENU1564 cells and thus enhanced the invasive features of these cells through increased expression of MMP-2. Furthermore, transfection of ENU1564 cells with TIMP-2, a natural inhibitor of MMP-2, reduced the in vitro invasive characteristics of these cells. BM was not observed in animals inoculated with ENU1564-TIMP-2, which implies a cardinal role for MMP-2 in BMBC [45]. In addition, reactive glia under coculture with breast cancer cell line MDA-MB-231 was shown to enhance growth of this same cell line [46]. Furthermore, the 435-Br1 cell line, which was derived from BM in a nude mouse, showed increased adhesion to astrocytes and enhanced growth in vitro in the presence of an astrocyte-conditioned media when compared to parental MDA-MB-435 breast cancer cells and the lung metastasis-derived variant 435-Lung2 [47]. Table 1 summarizes BM-associated genes identified in integrated studies that used combinations of in vitro cell culture-based functional assays, in vivo mouse xenograft models and the analysis of human clinical samples.

Palmieri et al. demonstrated that when human MDA-MB-231-BR cells, the brain metastatic derivative of the MDA-MB-231 cell line, were transfected with HER2, the HER2-overexpressing clones showed a threefold increase in the number of large BM compared with control MDA-MB-231-BR cells [39]. These findings are consistent with epidemiological studies showing increased incidence of BM in HER2+ breast cancer patients [30]. The same group showed in vitro that Lapatinib inhibited the phosphorylation of EGFR, HER2, and downstream signalling proteins leading to reduced proliferation and migration in 231-BR. This in vitro data was also replicated in a mouse model showing Lapatinib inhibited the growth of brain macrometastases seeded from EGFR-overexpressing 231-BR cells [48].

Another example of an integrated approach to understanding BM from breast cancer was published by Bos et al. In this study, cyclooxygenase, the epidermal growth factor receptor ligand HBEGF and α2,6-sialyltransferase acted as mediators of cancer cell passage through the BBB. Again, these findings were derived from in vitro functional analyses and animal models, with translation in clinical samples where meta-analysis of gene expression profiling of patients who had brain metastases and survival data were combined. The presence of this signature was related to shorter brain-metastasis free survival [34].

Several studies focusing on the functional significance of single genes have also contributed to our current understanding of BM development. In an effort to develop an experimental model of BM from breast cancer, Kim et al. used internal carotid artery injection of breast cancer cells into nude mice, which resulted in formation of different brain metastatic variant cell lines. These variants expressed higher levels of vascular endothelial growth factor (VEGF)
Table 1: Genes implicated in the development of brain metastases from breast cancer.

<table>
<thead>
<tr>
<th>Gene abbrev</th>
<th>Gene name</th>
<th>BM expression status</th>
<th>Gene product functions</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCNMA1</td>
<td>Potassium large conductance calcium-activated channel, subfamily M, alpha member 1</td>
<td>↑</td>
<td>Voltage gated ion channel involved in neuronal excitability</td>
<td>[32]</td>
</tr>
<tr>
<td>MNT</td>
<td>MAX binding protein</td>
<td>↓</td>
<td>Myc antagonist</td>
<td>[33]</td>
</tr>
<tr>
<td>TERC</td>
<td>Telomerase RNA component</td>
<td>↑</td>
<td>A template for telomere repeat</td>
<td>[33]</td>
</tr>
<tr>
<td>CTSB</td>
<td>Cathepsin B</td>
<td>↑</td>
<td>Lysosomal cysteine proteinase</td>
<td>[33]</td>
</tr>
<tr>
<td>PTGS2</td>
<td>Prostaglandin-endoperoxide synthase 2</td>
<td>↑</td>
<td>Prostaglandin biosynthesis</td>
<td>[34]</td>
</tr>
<tr>
<td>HBEGF</td>
<td>Heparin-binding EGF-like growth factor</td>
<td>↑</td>
<td>EGFR signalling</td>
<td>[34]</td>
</tr>
<tr>
<td>ST6GALNAC5</td>
<td>ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase 5</td>
<td>↑</td>
<td>Sialyltransferase that modifies proteins and ceramides</td>
<td>[34]</td>
</tr>
<tr>
<td>CXCR4</td>
<td>Chemokine (C-X-C motif) receptor 4</td>
<td>↑</td>
<td>Receptor for stromal cell-derived factor-1</td>
<td>[35]</td>
</tr>
<tr>
<td>MMP2</td>
<td>Matrix metallopeptidase 2</td>
<td>↑</td>
<td>Degradation of extracellular matrix</td>
<td>[36]</td>
</tr>
<tr>
<td>MMP9</td>
<td>Matrix metallopeptidase 9</td>
<td>↑</td>
<td>Degradation of extracellular matrix</td>
<td>[36]</td>
</tr>
<tr>
<td>ROBO1</td>
<td>Roundabout</td>
<td>↑</td>
<td>Axon guidance and neuronal precursor cell migration</td>
<td>[37]</td>
</tr>
<tr>
<td>ERBB3</td>
<td>Y-erb-b2 erythroblastic leukemia viral oncogene homolog 3</td>
<td>↑</td>
<td>Cell proliferation and differentiation</td>
<td>[12]</td>
</tr>
<tr>
<td>CAV1</td>
<td>Caveolin 1, caveole protein</td>
<td>↓</td>
<td>Structural component of the caveole plasma membranes</td>
<td>[38]</td>
</tr>
<tr>
<td>ERBB2</td>
<td>v-erb b2 erythroblastic leukemia viral oncogene homolog 2</td>
<td>↑</td>
<td>Cell proliferation</td>
<td>[39]</td>
</tr>
<tr>
<td>HK2</td>
<td>Hexokinase 2</td>
<td>↑</td>
<td>Glycolysis</td>
<td>[34]</td>
</tr>
<tr>
<td>HPSE</td>
<td>Heparanase</td>
<td>↑</td>
<td>Remodeling of the extracellular matrix</td>
<td>[40]</td>
</tr>
<tr>
<td>STAT3</td>
<td>Signal transducer and activator of transcription 3</td>
<td>↑</td>
<td>Cell growth and apoptosis, inflammation, invasion, and metastasis</td>
<td>[39]</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
<td>↑</td>
<td>Stimulates angiogenesis and vasculogenesis</td>
<td>[41]</td>
</tr>
<tr>
<td>IL-8</td>
<td>Interleukin 8</td>
<td>↑</td>
<td>CXC chemokine involved in neutrophil recruitment</td>
<td>[41]</td>
</tr>
</tbody>
</table>

↑ overexpressed; ↓ downregulated.

and IL-8 than the nonbrain metastatic clones, suggesting a possible role for VEGF in BM from breast cancer [40]. Consistent with this, suppression of BM and induction of apoptosis were observed following treatment of the mice with the VEGF-receptor tyrosine kinase inhibitor, PTK787/Z 222584 [40]. A second study by Palmieri et al. analyzed gene expression profiles of laser-captured epithelial cells from BM of breast cancer patients compared with unmatched primary breast tumors. The results showed that hexokinase 2 (HK2), a critical enzyme in glucose metabolism, is increased in BM [49]. Increased expression of HK2 was observed in the 231-BR brain metastatic breast cancer cell line [49]. A third example is the study by Chiu et al., which showed augmented expression of the activated form of signal transducer and activator of transcription 3 (STAT3) coupled with downregulation of Caveolin-1 (the structural component of caveole involved in membrane trafficking and cell signaling) in BM compared with primary breast tumours. Furthermore, they showed that ectopic expression of Caveolin-1 or knockdown of STAT3 reduces the invasive features of breast cancer cells in vitro and brain colonization in vivo [38].

Our group has combined gene expression array profiling, targeted somatic mutation analysis, and immunohistochemical profiling of BM from breast cancer and integrated the data to demonstrate activation of signaling pathways associated with the HER receptor family in BM compared to their matched primary breast tumours. Critically, the data showed an increase in HER3 expression in breast cancer cells isolated from BM compared to matched primary tumours [12]. Neuregulin 1, the ligand for this receptor, is abundantly expressed in the brain [50] and is activated by a variety of stimuli, including hypoxia [51]. Consistent with this, we observed increased expression of hypoxia-inducible Factor 1α (HIF-1α) in the BM, likely reflecting the local hypoxic environment. Increased HER3 expression has also been reported in BM from lung cancer [52]. These two clinical snapshots could reflect environmental selection and therefore adaptation of metastatic cells to the brain microenvironment, exploiting the Neuregulin-HER3 axis in order to succeed.

While there is ample evidence that miRNAs have determinant roles in tumour cell dissemination, the possible roles of these “micromanagers of metastasis” in BM from breast
cancer are poorly understood. Using miRanda for target prediction, Zhang et al. showed that miRNA-1258 targets heparanase (HPSE) which is the dominant endoglycosidase in mammals. HPSE favors tumor cell spread through dissolution of the extracellular matrix. In addition, this study introduced an inverse association between the miR-1258 levels and heparanase expression and enzymatic activity [53]. These findings were confirmed when the authors compared miRNA-1258 levels in clinical samples of invasive ductal carcinoma and BMBC compared with the corresponding normal or primary tissues. Moreover, the expression of miR-1258 in BM from breast cancer cells has been shown to suppress heparanase in vitro cell invasion and experimental BM.

5. The Blood-Brain-Barrier Is an Additional Challenge for BM Therapeutic Development

The BBB comprises a specialized endothelium surrounded by a thick basement membrane and astrocytic endfeet [48]. Compared with endothelial cells from other vascular beds, brain microvascular endothelial cells characteristically have very low permeability to solutes and hydrophilic molecules, high electrical resistance, complex tight junctions, and an array of metabolic and transport systems that supply the brain with nutrients and eliminate brain metabolic by-products. The low permeability is important in protecting the brain from circulating toxins and restricting the migration of leukocytes and monocytes, consequently it is also hindrance to drug access. The BBB endothelia specifically express efflux transporters that further diminish the brain availability of certain chemotherapeutic agents, including p-glycoprotein, breast cancer resistance p-glycoprotein, and multidrug resistance-associated protein [54]. Moreover, binding of specific plasma proteins to chemotherapeutic drugs has been shown to decrease the concentrations of such drugs and subsequently, delivery of these drugs to the brain [41]. Therefore, poor drug delivery across the BBB is thought to be a major factor underlying the limited efficiency of systemic chemotherapies against BM from breast cancer, particularly monoclonal antibodies like Trastuzumab [48]. Large hydrophilic molecules, such as chemotherapeutic and molecular-targeted drugs, are excluded from the central nervous system unless they can be actively transported by receptor-mediated transcytosis. This highlights the need for new brain-permeable drugs.

In order to metastasize to the brain, breast cancer cells must attach to and invade through the BBB. A widely supported hypothesis is that breast tumour cell adhesion induces retraction of the endothelium, which exposes the vascular basement membrane to the breast cancer cells. There is ample evidence that breast cancer cells recognize and bind to components in the vascular membrane, thereby initiating extravasation and the beginning of colonization at secondary organ sites [43]. The impairment of the BBB was observed recently in breast cancer patients who developed metastasis to the brain. CXCR4/SDF-1α has been suggested to play a major role in penetration of breast cancer cells through brain microvascular endothelial cells. In this regard, it has been reported that SDF-1α-mediated blood vessel instability via enhanced vascular permeability facilitates BM from breast cancer in a PI3K/Akt dependent manner [35].

The characteristics of the BBB necessitate the use of specialized, biologically relevant (and preferably throughput) preclinical models to test the efficacy of therapeutics against BM. Neural-cancer cell co-cultures can be used to simulate a brain-like microenvironment in vitro [55], but these simple models do not test whether compounds could cross the BBB in vivo. Bos and colleagues have developed a more biologically relevant in vitro transmigration assay, in which cancer cells adhere to and migrate across a human umbilical vein endothelial cell barrier towards human astrocytes segregated in a transwell chamber [34]. The gold standard preclinical model would involve xenograft transplantation of human BM into immunocompromised mice, but development is limited by the availability of fresh human tissue, and to our knowledge, none have been developed using metastatic cells selected in the human brain microenvironment. Alternative models have been generated by in vivo selection of neutrophile clones in nude mice, following intracardiac injection of metastatic cells from breast (231-BR, MCF7-HER2-BR, CN34-BM, and the mouse mammary tumour-derived 4T1 syngeneic model) [56, 57]. Table 1 summarizes a series of genes derived from integrated studies that have been implicated in BM development.

6. Treatment Strategies against Metastatic Breast Cancers Including Brain Metastases

We are approaching an era of personalized medicine, where therapies will be routinely tailored to individual tumours based on molecular diagnostics. Several targeted therapies for metastatic breast cancer are currently used or in clinical trials (Table 2; examples discussed below).

A recent phase II clinical trial using Lapatinib (dual inhibitor of HER1/2 with good brain penetration) in HER2+ breast cancer patients with BM despite prior radiation and Trastuzumab therapy showed Lapatinib has modest CNS antitumour activity [68]. This was corroborated in a mouse model where Lapatinib inhibited the colonisation of 231BR cells overexpressing EGFR and HER2 [48]. There is also evidence of synergism with Capecitabine, a pyrimidine analogue prodrug approved for metastatic breast cancer management [41, 54]. Sunitinib, a multitarget inhibitor (targets include VEGF-Rs, c-kit and PDGF-Rs), is also under investigation for its effects on BM in metastatic breast and renal cell carcinomas [64, 65, 69].

7. Possible “Druggable” Targets for the Future in BM from Breast Cancer

A recent study has demonstrated the role of STAT3 in BM from breast cancer [38]. Moreover, it has been shown that STAT3 inhibition by restoration of its inhibitor, suppressor of cytokine signalling (SOCS-1), results in induction of Caveolin-1, a tumour suppressor gene in breast cancer [38]. In this regard, STAT3 might be an attractive therapeutic target in BM from breast cancer.
Table 2: Current targeted therapies and their use in metastatic breast cancer (MBC).

<table>
<thead>
<tr>
<th>Drug</th>
<th>Class</th>
<th>Targets</th>
<th>Clinical indications</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trastuzumab</td>
<td>mAb</td>
<td>HER2</td>
<td>Single agent for HER2+ MBC; used in combination with paclitaxel as first-line therapy for HER2+ MBC</td>
<td>[58]</td>
</tr>
<tr>
<td>Lapatinib</td>
<td>TKI</td>
<td>HER1/2</td>
<td>Active in Trastuzumab-resistant, HER2+ breast cancer; crosses the BBB and suppresses CNS metastasis used in combination with Capecitabine for HER2+ MBC</td>
<td>[41]</td>
</tr>
<tr>
<td>Pertuzumab</td>
<td>mAb</td>
<td>HER2</td>
<td>Impairs HER2 homo-/hetero-dimerisation; active in Trastuzumab-resistant HER2+ breast cancers; not currently approved for MBC</td>
<td>[59]</td>
</tr>
<tr>
<td>Neratinib</td>
<td>TKI</td>
<td>HER1/2</td>
<td>Inhibits HER2 autophosphorylation and suppresses downstream signalling; active in HER2+ patients with and without Trastuzumab pretreatment; not currently approved for MBC</td>
<td>[60]</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>mAb</td>
<td>VEGF</td>
<td>Antiangiogenic therapy for MBC in combination with Docetaxel or Paclitaxel for first-line treatment</td>
<td>[61]</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>TKI</td>
<td>VEGFR</td>
<td>Multitarget receptor tyrosine kinase inhibitor; FDA-approved for advanced renal cancer and hepatocellular carcinoma</td>
<td>[62]</td>
</tr>
<tr>
<td>Axitinib</td>
<td>TKI</td>
<td>VEGFR</td>
<td>Currently in phase III clinical trial for metastatic renal cell carcinoma</td>
<td>[63]</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>TKI</td>
<td>VEGFR</td>
<td>Antiangiogenic therapy; FDA-approved for renal cell carcinoma and Gleevec-resistant gastrointestinal stromal tumours; effective as a single agent for metastatic breast cancer (phase II study)</td>
<td>[64–66]</td>
</tr>
<tr>
<td>Pazopanib</td>
<td>TKI</td>
<td>VEGFR</td>
<td>Anti-angiogenic therapy; FDA-approved for renal cell carcinoma; combination with Lapatinib has superior activity as the first-line treatment for MBC (phase II study)</td>
<td>[67]</td>
</tr>
</tbody>
</table>

Abbreviations: BBB: blood-brain barrier; CNS: central nervous system; HER1: Epidermal Growth Factor Receptor (EGFR); mAb: monoclonal antibody; KIT: Mast/stem cell growth factor receptor gene; PDGFR: platelet-derived growth factor receptor; TKI: tyrosine kinase inhibitor; VEGFR: vascular endothelial growth factor receptor.

Secondly, a growing body of evidence suggests that heparanase, a downstream target of EGFR/HER2, might be involved in BM from breast cancer [53]. EGF induces nucleolar translocation of HPSE and induction of DNA topoisomerase I which is essential for BM from breast cancer and cell proliferation [53]. In this setting, heparanase has been suggested as a potential target that could be exploited therapeutically [53].

Palmieri et al. [49] reported that hexokinase 2 (HK2) is significantly increased in brain metastases compared to unmatched primary breast tumors. Hexokinases phosphorylate glucose to produce glucose-6-phosphate in the first step of glucose metabolism. It is thought that HK2 increases glycolysis in tumor cells and may therefore be an attractive therapeutic target [49].

We recently identified somatic activating mutations in genes associated with the AKT and MAPK signaling pathways, including PIK3CA, KRAS, HRAS, and NRAS, in BM from breast and other cancers [12]. This highlights the possibility of cancer cells resisting targeted treatment to molecules such as HER2 or EGFR by acquiring oncogenic mutations in downstream pathways. Therapeutic modalities targeting these downstream pathways are currently being investigated [59]. In addition, Grigoriadis et al. demonstrated the presence of CT-X antigens in a cohort of BM, including BM from breast cancer. These proteins are predominantly expressed in human germ cells and not somatic tissues, but are frequently activated in cancer. Nearly two-thirds of our BM cohort showed expression of MAGE-A and NY-ESO, two of the CT-X antigens for which inhibitors are currently in clinical trials for lung cancer and melanoma [70]. Targeting these antigens could therefore also be an effective therapeutic strategy for BM.

8. Future Directions: Brain Metastases in the Whole Genome Sequencing Era

Direct, high-resolution genomic and transcriptomic analyses of BM may uncover new druggable features that can be targeted to specifically inhibit BM cells. The development and continual refinement of WGS technologies has dramatically increased the resolution with which we can analyse cancer genomes. We can now screen for new mutations, simultaneously and accurately assess their frequencies and correlate this with expression data across the entire genome. Rare mutations, that are present in only a small percentage of cells within the heterogeneous primary tumour mass, may be important in progression and virulence acquisition at a metastatic site. Although there are no large-scale BM genomics studies published to date, Ding and colleagues used WGS
to interrogate the genomic profiles of a human BM, its corresponding primary breast tumour, and a mouse xenograft derivative [44]. They showed that; (1) most of the genomic changes present in the primary tumour are propagated during the clinical course of the disease; (2) the frequency of some mutations was increased in the BM, suggesting enrichment with a subpopulation of cells selected from a more heterogeneous primary tumour; (3) two different populations of cells from the primary tumour, with distinct subsets of mutations, were selected during the metastatic process. The third finding is striking and is consistent with other data suggesting that metastases may be established from clusters of cells, rather than one founder cell [71] or may derive from regions of the tumour where there is clonal heterogeneity [16].

9. Conclusions

Thus far, we have only fragmented knowledge of the mechanisms underlying breast cancer cell colonisation of the brain microenvironment. Animal models and gene expression profiling have and will continue to provide insight, however it is anticipated that next-generation sequencing technology and integration of this data with expression profiling will enable us to generate a comprehensive map of the brain metastasis genomic landscape. To be able to translate this impending knowledge into clinical outcomes, we must continue to develop and refine high-throughput, biologically relevant preclinical models that accurately mimic the brain microenvironment and the BBB (summarized in Figure 1).

Acknowledgments

Peter T. Simpson is a recipient of a fellowship from the National Breast Cancer Foundation (NBCF), Australia. The brain metastasis data reported herein was obtained by Leonardi Da Silva during his Ph.D. funded by the Ludwig Institute for Cancer Research. J. M. Saunus and M. Momeny contributed equally to the paper.

References

[22] D. G. Hicks, S. M. Short, N. L. Prescott et al., “Breast cancers with brain metastases are more likely to be estrogen receptor negative, express the basal cytokeratin CK5/6, and overexpress HER2 or EGFR,” American Journal of Surgical Pathology, vol. 30, no. 9, pp. 1097–1104, 2006.

Research Article

Integrated Genomic Analysis of Sézary Syndrome

Xin Mao,1, 2 Tracy Chaplin,3 and Bryan D. Young3

1 Centre for Cutaneous Research, Institute of Cell and Molecular Sciences, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
2 Division of Investigative Science, Department of Histopathology, Faculty of Medicine, Imperial College, Hammersmith Hospital, Du cane Road, London W12 0NN, UK
3 Cancer Research UK Medical Oncology Centre, Barts and The London School of Medicine and Dentistry, Queen Mary College, Queen Mary University of London, London EC1M 6BQ, UK

Correspondence should be addressed to Xin Mao, mxmayo@yahoo.co.uk

Received 16 April 2011; Revised 7 August 2011; Accepted 29 August 2011

Academic Editor: Ilana Zalcberg Renault

Copyright © 2011 Xin Mao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sézary syndrome (SS) is a rare variant of primary cutaneous T-cell lymphoma. Little is known about the underlying pathogenesis of S. To address this issue, we used Affymetrix 10K SNP microarray to analyse 13 DNA samples isolated from 8 SS patients and qPCR with ABI TaqMan SNP genotyping assays for the validation of the SNP microarray results. In addition, we tested the impact of SNP loss of heterozygosity (LOH) identified in SS cases on the gene expression profiles of SS cases detected with Affymetrix GeneChip U133A. The results showed: (1) frequent SNP copy number change and LOH involving 1, 2p, 3, 4q, 5q, 6, 7p, 8, 9, 10, 11, 12q, 13, 14, 16q, 17, and 20, (2) reduced SNP copy number at FAT gene (4q35) in 75% of SS cases, and (3) the separation of all SS cases from normal control samples by SNP LOH gene clusters at chromosome regions of 9q31q34, 10p11q26, and 13q11q12. These findings provide some intriguing information for our current understanding of the molecular pathogenesis of this tumour and suggest the possibility of presence of functional SNP LOH in SS tumour cells.

1. Introduction

Sézary syndrome (SS) is a rare subset of primary cutaneous T-cell lymphoma (CTCL) with an aggressive clinical course [1, 2]. SS typically presents with generalised skin lesions or erythroderma, intense pruritus, and peripheral lymphadenopathy. A blood test will reveal atypical T-lymphocytes with convoluted nuclei, S´ezary cells, which are often associated with a cutaneous T-cell lymphoma [2–5]. Recent studies have revealed complex genetic aberrations affecting almost all chromosomes [6–14] with loss of heterozygosity (LOH), [9, 15–19] and deregulation of several genes, [20–26] and epigenetic changes [27, 28] in SS. Despite this progress, the key molecular targets underlying the pathogenesis of this type of skin lymphoma remain elusive.

Single nucleotide polymorphism (SNP) denotes a single base in the DNA sequence that differs from the usual base at that position. Millions of SNPs have been catalogued in the human genome, which may be responsible for disease such as cancer (http://www.ncbi.nlm.nih.gov/sites/entrez?db=snp).

SNP microarray is a powerful genome research technique designed for the identification of SNP and dose change within the whole genome [29–31]. This method has been widely used to investigate SNP copy number change and LOH in cancer genome in a variety of medical and biological subjects [32–42]. However, there has been no report describing the use of SNP microarray to assess genomewide SNP copy number change and LOH in SS in the literature (http://www.ncbi.nlm.nih.gov/sites/entrez).

To address this issue we initially performed SNP microarray on DNA samples isolated from biopsies of skin lesions and peripheral blood mononuclear cells (PBMCs) of patients with SS by using Affymetrix GeneChip Mapping 10K Xba assay. Then we assessed gene-specific SNP copy number changes in same DNA samples with ABI TaqMan SNP genotyping assays to compare and verify the findings from Affymetrix 10K SNP microarray analysis. Finally, we conducted a literature review on LOH findings of patients with SS. Our findings are presented here in this paper.
2. Materials and Methods

2.1. Sample Selection and DNA Preparation. Eleven patients with Sézary syndrome were selected for this study according to the World Health Organization and the European Organization for Research and Treatment of Cancer diagnosis criteria for CTCL [2]. Genomewide SNP analysis was performed on 8 of these SS cases using Affymetrix SNP microarray. Five of these 8 SS cases plus additional 3 cases were further assessed with SNP quantitative real-time PCR in this study. Briefly, a total of 16 DNA samples (13 samples for SNP microarray and 3 additional samples for SNP qPCR), which were taken prior to treatment, were extracted from both PBMCs and biopsied skin lesions from these SS cases (Figures 1 and 2). This was conducted by using QIAGEN Genomic-tip 100/G kit (QIAGEN Ltd, West Sussex, UK) according to the manufacturer’s instruction (http://www1.qiagen.com/). DNA concentrations and purity were determined with the NanoDrop ND-1000 spectrophotometer (NanoDrop, Rockland, Del, USA). Local ethical approval for the sampling procedures was obtained previously [9–11, 18] and the use of the stored DNA samples for this study was approved by the Research Ethical Committee at Barts and Royal London School of Medicine and Dentistry, Queen Mary University of London.

2.2. Single Nucleotide Polymorphism Microarray Assay. Affymetrix SNP microarray analysis of 13 DNA samples including 5 paired PBMCs and skin biopsies from 8 SS patients (Figure 1) was conducted according to the standard GeneChip Mapping 10 K (V2.0) Xba Assay protocol (Affymetrix Inc., Santa Clara, Calif, USA). Briefly, 350 ng of DNA was digested with XbaI and ligation to the XbaI adaptor prior to PCR amplification (35 cycles) using AmpliTaq Gold with Buffer II (Applied Biosystems, Foster City, Calif, USA). Hybridised arrays were processed with an Affymetrix Fluidics Station 450 and fluorescence signals were detected using the Affymetrix GeneChip Scanner 3000. Signal intensity data was assessed with the GeneChip DNA analysis software (http://www.affymetrix.com/products/arrays/specific/10k.affx) based on a model algorithm to generate SNP calls [43] and subsequent bioinformative analysis was carried out using an in-house software called GOLF (http://www.bioinformatics.cancerresearchuk.org/cazier01) developed by Professor Young [44] and a publicly accessible software named IdeogramBrowser Software (http://www.informatik.uni-ulm.de/ni/staff/HKestler/ideogram/doc.html).

2.3. SNP Quantitative Real-Time PCR Assay. To verify the results of Affymetrix SNP microarray analysis of SS cases in this study, SNP qPCR assay was performed to test 10 DNA samples from 8 SS patients including 7 samples from 5 SS cases used in above SNP microarray and 3 samples from additional 3 SS cases (Figure 3). This experiment was carried out by means of an ABI Prism 7900 sequence detection
Figure 2: Illustration of an ideogram of genomewide SNP copy number changes in 8 SS cases identified by using Affymetrix GeneChip Human Mapping 10K Array as above and analysed with the IdeogramBrowser Software (http://www.informatik.uni-ulm.de/ni/staff/HKestler/ideo/doc.html). Here each red-coloured dot represents copy number loss of individual SNP and green-coloured dot stands for SNP copy number gain. Frequent SNP copy number changes at chromosomes 1, 2p, 3, 4q, 5q, 6, 7p, 8, 9, 10, 11, 12q, 13, 14, 16q, 17, and 20 are clearly visible.

Figure 3: A summary of SNP copy number changes of 12 genes in 10 SS samples by using qPCR with ABI TaqMan SNP genotyping assay to verify the results of Affymetrix 10K SNP microarray analysis of SS in this study. Here red-coloured rectangular bar denotes SNP copy number loss against internal controls of B2M and GAPDH, green-coloured bar stands for SNP copy number gain, yellow-coloured bar represents balanced/neutral or normal SNP copy number, and gray-coloured bar indicates noninformative. Frequent SNP copy number losses of VEGFC, FAT, NFIB, and TRIM16 are clearly visible.
system using the TaqMan PCR Master Mix with TaqMan SNP genotyping assays (http://www3.appliedbiosystems.com/applicationstechol-o-gies/real-timepcr/index.htm). These assays amplify 12 genes within the chromosomal regions showing frequent SNP copy number changes identified in this study (Figure 2). Additional 2 SNP genotyping assays amplifying beta-2-microglobulin (B2M, rs935885, C_12080829_10) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, rs3741918, C_27510362_10) were used as the internal quality controls. qPCR reactions contained 900 nmol primers, 200 nmol probes, 400 mM each dATP, dCTP and dGTP, 800 mM dUTP, 1 U AmpliTaq Gold DNA polymerase, 0.2 U AmpErase uracil N-glycosylase (UNG), and 13 TaqMan buffer in a total volume of 25 μL in 96-well microtiter plate (Applied Biosystems). After a decontamination step at 50°C, a two-step protocol was followed for 50 cycles: 95°C for 15 s and 61°C for 1 min. SNP qPCR data analysis was conducted as previously described [45] with ABI SNPbrowser Software (http://marketing.appliedbiosystems.com/mk/get/snpb_landing).

2.4. SNP Loss of Heterozygosity Expression Profiling. We have previously put forward a concept of functional copy number changes in cancer cells [46]. To further test our hypothesis in this study, we assume a SNP LOH gene cluster in SS is bioinformatically significant or functional if it is capable of separating all SS cases from normal control (NC) samples. This test was carried out through a data mining experiment by using a bioinformative method developed by us [46]. In this experiment, the effect of SNP LOH detected in this study on gene expression profiling in SS cases conducted in previous studies [23, 24, 47] was tested as before [46]. The procedures were briefly described as follows. We initially created gene lists from 9 chromosomal regions showing frequent LOH (>3 per region) at SNP level seen in SS (Table 1) by using IdeogramBrowser Software and UCSC Human Gene Sorter (http://www.genome.ucsc.edu/). Then we imported these 9 gene-lists into GeneSpring software version 7 (http://www.sigenetics.com/), which contained a genome/raw data of gene expression profile from 6 SS patients who were treated with photopheresis therapy and 2 healthy individuals generated by using Affymetrix GeneChip U133A (http://www.affymetrix.com/products/arrays/specific/hgu133av2.affx). Of 6 SS cases analysed with Affymetrix gene expression microarray the 3 cases were also tested by Affymetrix SNP microarray. Finally, we analysed the selected 9 gene lists by using the clustering tool of GeneSpring to generate gene tree and condition tree, a supervised clustering, which enables direct visualisation of sample congregation and separation [46].

2.5. Comparison with Published Data on LOH at Microsatellite Loci in SS. The genomic region where SNPs span on Affymetrix 10K GeneChip used in this study is equivalent to that covered by 400 microsatellite (MS) loci (http://www.affymetrix.com/products/arrays/specific/10k.affx). There have been several publications describing LOH at MS loci on limited chromosomes in CTCL including SS [9, 15–19, 48].

<table>
<thead>
<tr>
<th>Chromosomal regions with LOH detected in this study</th>
<th>Number of genes</th>
<th>Separation of SS from NC*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1p36p33</td>
<td>80</td>
<td>N</td>
</tr>
<tr>
<td>2q21q24</td>
<td>9</td>
<td>N</td>
</tr>
<tr>
<td>8q22q24</td>
<td>15</td>
<td>N</td>
</tr>
<tr>
<td>9q31q34</td>
<td>40</td>
<td>P</td>
</tr>
<tr>
<td>10p11q26</td>
<td>111</td>
<td>P</td>
</tr>
<tr>
<td>11q12q25</td>
<td>205</td>
<td>N</td>
</tr>
<tr>
<td>13q11q12</td>
<td>15</td>
<td>P</td>
</tr>
<tr>
<td>16q21q23</td>
<td>74</td>
<td>N</td>
</tr>
<tr>
<td>17p13q11</td>
<td>198</td>
<td>N</td>
</tr>
</tbody>
</table>

N: no separation between SS and NC, P: presence of separation between SS and NC.

To compare previous findings with this study, we reanalysed previous published data on MS LOH at chromosomes 1 and 10q through fine mapping of each MS locus, which was linked to individual gene and SNP by using NCBI ENTREZ GENE and ENTREZ SNP database (http://www.ncbi.nlm.nih.gov/).

3. Results

3.1. SNP Microarray. In this study, paired DNA samples from PBMCs and skin lesions from 5 of 8 SS cases were analysed with Affymetrix 10 K SNP microarray, which showed similar SNP homozygous changes between the paired samples indicating they are coming from the same individual. There was a difference in SNP fingerprint among 8 different SS cases signifying the absence of sample contamination. As Figure 1 shows, frequent homozygous changes (>3 per chromosome) including gain, loss, and uniparental disomy (UPD) were seen to distribute throughout almost an entire genome except of chromosomes 14, 19 and 22.

As Figure 2 shows there were frequent SNP copy number changes (>3 per chromosome) at chromosomes 1, 2p, 3, 4q, 5q, 6, 7p, 8, 9, 10, 11, 12q, 13, 14, 16q, 17, and 20, which are not only consistent with above homozygous changes but also in line with previous CGH findings in SS [10].

In this study, a weak and/or smear band of TCR gene was detected in skin DNA samples, while a strong monoclonal TCR gene band was seen in PBMC DNA samples (data not shown), suggesting that only a few tumour cells were present in skin samples and sample contamination was negligible. Overall, a frequent LOH was noted in 5 paired SS cases at 9 chromosomal regions including 1p36p33, 2q21q24, 8q22q24, 9q31q34, 10p11q26, 11q12q25, 13q11q12, 16q21q23, and 17p13q11 (Table 1), which are to some extent similar to previous reports on LOH at certain chromosome regions [9, 15–19].

3.2. SNP qPCR Assay. To further confirm SNP microarray findings, SNP qPCR was utilised to test DNA samples from 5 of 8 SS cases (case number 1, 3, 5, 6 and 8) analysed with...
Affymetrix 10K SNP microarray using ABI TaqMan SNP genotyping assay (63%) and 3 additional cases. As Figure 3 shows, frequent SNP copy number loss (>2 cases) at the FAT gene (rs1280100) at 4q35 was observed in 6 of 8 SS cases (number 1, 3, 6, 8, 9, and 10) (75%), followed by VEGFC (rs1485765) at 4q34.1q34.3 (cases 3, 6, 8, and 9) (50%), NFIB (rs2382446) at chromosome 12 (cases 5, 6 and 8) (38%), and TRIM16 (rs9909923) at 17p11.2 (cases 3, 6, and 8) (38%). While frequent SNP copy number gain (>2 cases) was also noted at the AKR1C3 gene (rs7068685, 50%), VEGFC (rs1485765, 38%), and TAGLN (rs2269397, 38%).

 SNP copy number changes were most frequent present in SS case 3, which showed losses of genes of RAB1A (rs10519011, 2p14), VEGFC, FAT, AKR1C3, TRIM16, and PLS3 (rs5987755, Xq23) as well as gains of genes of TAGLN (rs2269397, 11q23.2) and NFIB. This was followed by case 5, which had gains of RAB1A, STAT4 (rs13001658, 2q32.2q32.3), VEGFC, TWIST1 (rs2106892, 7p21.2), TAGLN, and PLS3, and loss of NFIB. Case 6 revealed losses of VEGFC, FAT, NFIB and TRIM16, and gain of AKR1C3; case 8 demonstrated losses of VEGFC, FAT, AKR1C3, NFIB, and TRIM16 (Figure 3). Overall these SNP copy number changes, detected by using TaqMan ABI genotyping assay, were consistent with those identified by using Affymetrix 10K SNP microarray as shown in Figure 2.

3.3. SNP LOH Expression Profiling. The impact of SNP LOH gene cluster on gene expression pattern was further tested in this study. As shown in Figure 4, the clusters of 2 NCs appeared at the right end of the heatmap and the clusters of 6 SS cases were present in the middle and at the left end of the heatmap. This clearly showed that two groups were separated and different. Over the 9 SNP LOH gene lists analysed in this study, 38% showed gene expression patterns of the separation of 6 SS cases from 2 NCs (Table 1). This included SNP LOH gene clusters at 9q31q34 (40 genes), 10p11q26 (111 genes), and 13q11q12 (15 genes) (Figure 4). Each individual gene in these 3 gene clusters is listed in Table 2. However, the remaining 6 SNP LOH gene lists revealed a mixed gene expression pattern without the separation of SS from NCs (Table 1).

3.4. Refining Previous SS LOH Data and Comparing with This Study. Previous studies have shown LOH on several chromosomes including chromosomes 1 and 10q [9, 15–19, 48]. The 10K SNP microarray gene chip used in this study is equivalent to the genetic distance covered by 400 MS. This allows us to compare SNP LOH identified in this study with MS LOH described in those previous studies. Frequent LOH at MS loci D1S247 (rs11372930) at 1p36 and D10S562 (rs4128597) at 10q25.3 (Figure 5) reported in previous studies [9, 18, 19] were seen in this study.

4. Discussion

This integrated genomic study has for the first time revealed genomewide SNP copy number change and LOH as well as SNP LOH gene expression profiling in SS cases. Although the number of SS cases tested in this study was small, the patterns of SNP copy number change and LOH identified in SS cases are generally in line with previous metaphase/array-CGH [6–14] and MS LOH studies [9, 15, 17–19, 48], suggesting the high efficiency and reliability of the methods used. In addition some novel findings emerged. This includes the presence of SNP copy number loss at the FAT gene (4q35) in most SS cases and the separation of all SS cases from NC samples by SNP LOH gene clusters at chromosome regions of 9q31q34, 10p11q26, and 13q11q12. Although all of these results will need to be validated in larger cohorts of samples from SS patients in the future, they do provide some intriguing information for our current understanding of the molecular pathogenesis of this type of lymphoma and suggest the possibility of presence of functional SNP LOH in SS tumour cells at least from the point of view of bioinformatics.

Sézary syndrome is a rare form of CTCL with an aggressive clinical course and it also likely represents the leukaemic phase of mycosis fungoides [1, 2]. Like any other advanced stage of malignancies, SS accumulates a variety of genetic and epigenetic events including alterations of tumour suppressor genes, oncogenes, and some key house-keeping genes [18, 27, 28, 49]. Previous studies on SS have shown complex genetic aberrations affecting almost all chromosomes with copy number losses being the dominant abnormalities, which mainly involve chromosomes 1p, 6q, 9, 10, 13q, and 17p [6–14] and the presence of LOH at MS loci on chromosomes 1p, 9p, 10q, and 17p in tumour cells [9, 15–19, 48]. In addition, downregulation of several genes including MXI1 (10q24q25) and upregulation of genes such as TWIST1 (7p21.2) and PLS3 (Xq23) have also been described in this malignancy [20–26]. Similar results were obtained in this study, which showed SNP copy number change on chromosomes 1, 2p, 3, 4q, 5q, 6, 7p, 8, 9, 10, 11, 12q, 13, 14, 16q, 17, and 20, and LOH at 1p, 2q, 8q, 9q, 10, 11q, 13q, 16q, and 17 as well as SNP copy number gains of TWIST1 and PLS3 in 2 SS cases, further indicating the high efficiency and reliability of the integrated genomic experiments conducted in this study.

Although there are different definitions for loss of heterozygosity in literature, LOH is generally defined as a locus or loci at which a deletion or other process has converted the locus from heterozygosity to homozygosity or hemizygosity. In terms of cancer, LOH signifies that in tumour cells carrying a mutated allele of a tumour suppressor gene, the gene becomes fully inactivated when the cell loses a large part of the chromosome carrying the wild-type allele (http://www.ncbi.nlm.nih.gov/cancerchromosomes). LOH is traditionally used as a molecular tool to identify a tumour-suppressor gene but it also represents one of the most common molecular features of cancer cells [47, 50–52]. Previous studies have shown LOH at MS loci on chromosomes 1p, 9p, 10q, 12q, 13q, 17p, and 19 in CTCL including SS [9, 15–19, 48]. This was supported by previous conventional cytogenetics and metaphase and array-based CGH studies, which revealed DNA copy number losses at these chromosomal regions [6–14, 48]. In this study LOH at SNP level on 9 chromosomal regions (1p, 2q, 8q, 9q, 10, 11q, 13q, 16q, and 17)
Figure 4: Illustration of a heatmap of gene expression profile of SNP LOH at 13q11q12 gene cluster (15 genes). Here each column represents one test sample and each coloured rectangular bar signifies each individual gene. The colouration of each bar indicates the expression level of individual gene, which has been reported previously [23, 24, 47] and is not the focus of this study. The separation of 6 Sézary syndrome cases (SS, left and middle) from 2 normal controls (NC, right) is clearly visible and two test groups are different.

Figure 5: A summary of reanalysis of previously published LOH at 18 microsatellite loci on 10q21q26 in SS and MF [19] with this study, in which each microsatellite locus is finely mapped and linked to individual gene and SNP via NCBI ENTREZ GENE and ENTREZ SNP database (http://www.ncbi.nlm.nih.gov/). Here black bar represents LOH, gray bar stands for noninformative, and white bar indicates microsatellite marker that is not available. One SNP within microsatellite locus D10S562 (bold) is also present in the SNP LOH cluster at 10p11q26 in this study (Table 1).
Table 2: A detailed gene list of the 3 LOH gene clusters separating SS from NC

<table>
<thead>
<tr>
<th>LOH gene clusters</th>
<th>Gene name</th>
<th>Common Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9q31q34</td>
<td>221294_at</td>
<td>GPR21, G-protein-coupled receptor 21</td>
</tr>
<tr>
<td></td>
<td>221085_at</td>
<td>TNFSF15, Tumor necrosis factor (ligand) superfamily, member 15</td>
</tr>
<tr>
<td></td>
<td>220935_s_at</td>
<td>CDK5RAP2, CDK5 regulatory subunit associated protein 2</td>
</tr>
<tr>
<td></td>
<td>220300_at</td>
<td>RGS3, Regulator of G-protein signalling 3</td>
</tr>
<tr>
<td></td>
<td>220202_s_at</td>
<td>MNAB, Membrane-associated nucleic acid binding protein</td>
</tr>
<tr>
<td></td>
<td>220201_at</td>
<td>MNAB, Membrane-associated nucleic acid binding protein</td>
</tr>
<tr>
<td></td>
<td>219884_at</td>
<td>LHX6, LIM homeobox protein 6</td>
</tr>
<tr>
<td></td>
<td>218941_at</td>
<td>FBXW2, F-box and WD-40 domain protein 2</td>
</tr>
<tr>
<td></td>
<td>218489_s_at</td>
<td>ALAD, Aminolevulinate, delta-, dehydratase</td>
</tr>
<tr>
<td></td>
<td>218487_at</td>
<td>ALAD, Aminolevulinate, delta-, dehydratase</td>
</tr>
<tr>
<td></td>
<td>218160_at</td>
<td>NDUFA8, NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8, 19 kDa</td>
</tr>
<tr>
<td></td>
<td>215813_s_at</td>
<td>PTGS1, Prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase)</td>
</tr>
<tr>
<td></td>
<td>214465_at</td>
<td>ORM2, Orosomucoid 2</td>
</tr>
<tr>
<td></td>
<td>214425_at</td>
<td>AMBP, Alpha-1-microglobulin/bikunin precursor</td>
</tr>
<tr>
<td></td>
<td>214040_s_at</td>
<td>GSN, Gelsolin (amyloidosis, Finnish type)</td>
</tr>
<tr>
<td></td>
<td>211503_s_at</td>
<td>RAB14, member RAS oncogene family</td>
</tr>
<tr>
<td></td>
<td>210825_s_at</td>
<td>STOM, Stomatitin</td>
</tr>
<tr>
<td></td>
<td>210824_s_at</td>
<td>STOM, Stomatitin</td>
</tr>
<tr>
<td></td>
<td>209162_s_at</td>
<td>PRPF4, PRP4 pre-mRNA processing factor 4 homolog (yeast)</td>
</tr>
<tr>
<td></td>
<td>209161_at</td>
<td>PRPF4, PRP4 pre-mRNA processing factor 4 homolog (yeast)</td>
</tr>
<tr>
<td></td>
<td>208828_at</td>
<td>POLE3, Polymerase (DNA directed), epsilon 3 (p17 subunit)</td>
</tr>
<tr>
<td></td>
<td>208737_at</td>
<td>ATP6V1G1, ATPase, H+ transporting, lysosomal 13 kDa, V1 subunit G isoform 1</td>
</tr>
<tr>
<td></td>
<td>205599_at</td>
<td>TRAF1, TNF receptor-associated factor 1</td>
</tr>
<tr>
<td></td>
<td>205500_at</td>
<td>C5, Complement component 5</td>
</tr>
<tr>
<td></td>
<td>205477_s_at</td>
<td>AMBP, Alpha-1-microglobulin/bikunin precursor</td>
</tr>
<tr>
<td></td>
<td>205128_s_at</td>
<td>PTGS1, Prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase)</td>
</tr>
<tr>
<td></td>
<td>205127_at</td>
<td>PTGS1, Prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase)</td>
</tr>
<tr>
<td></td>
<td>205041_s_at</td>
<td>ORM1, Orosomucoid 1</td>
</tr>
<tr>
<td></td>
<td>205040_at</td>
<td>ORM1, Orosomucoid 1</td>
</tr>
<tr>
<td></td>
<td>204449_s_at</td>
<td>PDCL, Phosducin-like</td>
</tr>
<tr>
<td></td>
<td>204448_s_at</td>
<td>PDCL, Phosducin-like</td>
</tr>
<tr>
<td></td>
<td>203971_at</td>
<td>SLC31A1, Solute carrier family 31 (copper transporters), member 1</td>
</tr>
<tr>
<td></td>
<td>203823_at</td>
<td>RGS3, Regulator of G-protein signalling 3</td>
</tr>
<tr>
<td></td>
<td>203447_at</td>
<td>PSMD5, Proteasome (prosome, macropain) 26S subunit, non-ATPase, 5</td>
</tr>
<tr>
<td></td>
<td>201062_at</td>
<td>STOM, Stomatatin</td>
</tr>
<tr>
<td></td>
<td>201061_s_at</td>
<td>STOM, Stomatatin</td>
</tr>
<tr>
<td></td>
<td>201060_s_at</td>
<td>STOM, Stomatatin</td>
</tr>
<tr>
<td></td>
<td>200928_s_at</td>
<td>RAB14, member RAS oncogene family</td>
</tr>
<tr>
<td></td>
<td>200927_s_at</td>
<td>RAB14, member RAS oncogene family</td>
</tr>
<tr>
<td></td>
<td>200696_s_at</td>
<td>GSN, Gelsolin (amyloidosis, Finnish type)</td>
</tr>
<tr>
<td>10p11.21q26.3</td>
<td>32094_at</td>
<td>CHST3, Carbohydrate (chondroitin 6) sulphotransferase 3</td>
</tr>
<tr>
<td></td>
<td>222072_at</td>
<td>ADD3, Homo sapiens clone DT1P1A11 mRNA, CAG repeat region</td>
</tr>
<tr>
<td></td>
<td>221136_at</td>
<td>GDF2, Growth differentiation factor 2</td>
</tr>
<tr>
<td></td>
<td>219963_at</td>
<td>DUSP13, Dual specificity phosphatase 13</td>
</tr>
<tr>
<td></td>
<td>219957_at</td>
<td>RUFY2, RUN and FYVE domain containing 2</td>
</tr>
<tr>
<td></td>
<td>219543_at</td>
<td>MAWBP, MAWD domain containing 2</td>
</tr>
<tr>
<td></td>
<td>219509_at</td>
<td>MYOZ1, Myozenin 1</td>
</tr>
<tr>
<td>LOH gene clusters</td>
<td>Gene name</td>
<td>Common Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>218878_s_at</td>
<td>SIR1</td>
<td>Sirtuin (silent mating type information regulation 2 homolog) 1 (S. cerevisiae)</td>
</tr>
<tr>
<td>218871_s_at</td>
<td>GALNACT-2</td>
<td>Chondroitin sulfate GalNAcT-2</td>
</tr>
<tr>
<td>218445_at</td>
<td>H2AFY2</td>
<td>H2A histone family, member Y2</td>
</tr>
<tr>
<td>218249_at</td>
<td>ZDHHC6</td>
<td>Zinc finger, DHHC domain containing 6</td>
</tr>
<tr>
<td>218046_s_at</td>
<td>MRPS16</td>
<td>Mitochondrial ribosomal protein S16</td>
</tr>
<tr>
<td>218006_s_at</td>
<td>ZNF22</td>
<td>Zinc finger protein 22 (KOX 15)</td>
</tr>
<tr>
<td>218005_s_at</td>
<td>ZNF22</td>
<td>Zinc finger protein 22 (KOX 15)</td>
</tr>
<tr>
<td>216903_s_at</td>
<td>CBARA1</td>
<td>Calcium binding atopy-related autoantigen 1</td>
</tr>
<tr>
<td>216345_at</td>
<td>KIAA0913</td>
<td>KIAA0913 protein</td>
</tr>
<tr>
<td>216037_s_at</td>
<td>TCF7L2</td>
<td>Transcription factor 7-like 2 (T-cell specific, HMG-box)</td>
</tr>
<tr>
<td>216035_s_at</td>
<td>TCF7L2</td>
<td>Transcription factor 7-like 2 (T-cell specific, HMG-box)</td>
</tr>
<tr>
<td>214878_at</td>
<td>ZNF37A</td>
<td>Zinc finger protein 37a (KOX 21)</td>
</tr>
<tr>
<td>214617_s_at</td>
<td>PRF1</td>
<td>Perforin 1 (pore forming protein)</td>
</tr>
<tr>
<td>214508_s_at</td>
<td>CREM</td>
<td>cAMP responsive element modulator</td>
</tr>
<tr>
<td>214366_s_at</td>
<td>ALOX5</td>
<td>Arachidonate 5-lipoxygenase</td>
</tr>
<tr>
<td>214348_at</td>
<td>TACR2</td>
<td>Tachykinin receptor 2</td>
</tr>
<tr>
<td>214338_at</td>
<td>DNAJ1B12</td>
<td>DnaJ (Hsp40) homolog, subfamily B, member 12</td>
</tr>
<tr>
<td>214322_at</td>
<td>CAMK2G</td>
<td>Calcium/calmodulin-dependent protein kinase (CaM kinase) II gamma</td>
</tr>
<tr>
<td>214136_s_at</td>
<td>NUDT13</td>
<td>Nudix (nucleoside diphosphate linked moiety X)-type motif 13</td>
</tr>
<tr>
<td>213952_s_at</td>
<td>ALOX5</td>
<td>Arachidonate 5-lipoxygenase</td>
</tr>
<tr>
<td>213647_at</td>
<td>DNA2L</td>
<td>DNA2 DNA replication helicase 2-like (yeast)</td>
</tr>
<tr>
<td>212894_at</td>
<td>SUPV3L1</td>
<td>Suppressor of var1, 3-like 1 (S. cerevisiae)</td>
</tr>
<tr>
<td>212762_s_at</td>
<td>TCF7L2</td>
<td>Transcription factor 7-like 2 (T-cell specific, HMG-box)</td>
</tr>
<tr>
<td>212761_at</td>
<td>TCF7L2</td>
<td>Transcription factor 7-like 2 (T-cell specific, HMG-box)</td>
</tr>
<tr>
<td>212759_s_at</td>
<td>TCF7L2</td>
<td>Transcription factor 7-like 2 (T-cell specific, HMG-box)</td>
</tr>
<tr>
<td>212757_s_at</td>
<td>CAMK2G</td>
<td>Calcium/calmodulin-dependent protein kinase (CaM kinase) II gamma</td>
</tr>
<tr>
<td>212669_at</td>
<td>CAMK2G</td>
<td>Calcium/calmodulin-dependent protein kinase (CaM kinase) II gamma</td>
</tr>
<tr>
<td>212594_at</td>
<td>PDCD4</td>
<td>Programmed cell death 4 (neoplastic transformation inhibitor)</td>
</tr>
<tr>
<td>212593_s_at</td>
<td>PDCD4</td>
<td>Programmed cell death 4 (neoplastic transformation inhibitor)</td>
</tr>
<tr>
<td>212359_s_at</td>
<td>KIAA0913</td>
<td>KIAA0913 protein</td>
</tr>
<tr>
<td>212322_at</td>
<td>SGPL1</td>
<td>Sphingosine-1-phosphate lyase 1</td>
</tr>
<tr>
<td>212321_at</td>
<td>SGPL1</td>
<td>Sphingosine-1-phosphate lyase 1</td>
</tr>
<tr>
<td>211809_s_at</td>
<td>COL13A1</td>
<td>Collagen, type XIII, alpha 1</td>
</tr>
<tr>
<td>211668_s_at</td>
<td>PLAU</td>
<td>Plasminogen activator, urokinase</td>
</tr>
<tr>
<td>211343_s_at</td>
<td>COL13A1</td>
<td>Collagen, type XIII, alpha 1</td>
</tr>
<tr>
<td>210956_at</td>
<td>PPyR1</td>
<td>Pancreatic polypeptide receptor 1</td>
</tr>
<tr>
<td>210671_s_at</td>
<td>MAPK8</td>
<td>Mitogen-activated protein kinase 8</td>
</tr>
<tr>
<td>210588_s_at</td>
<td>HNRPH3</td>
<td>Heterogeneous nuclear ribonucleoprotein H3 (2H9)</td>
</tr>
<tr>
<td>210477_s_at</td>
<td>MAPK8</td>
<td>Mitogen-activated protein kinase 8</td>
</tr>
<tr>
<td>210318_at</td>
<td>RBP3</td>
<td>Retinol binding protein 3, interstitial</td>
</tr>
<tr>
<td>210171_s_at</td>
<td>CREM</td>
<td>cAMP responsive element modulator</td>
</tr>
<tr>
<td>210110_s_at</td>
<td>HNRPH3</td>
<td>Heterogeneous nuclear ribonucleoprotein H3 (2H9)</td>
</tr>
<tr>
<td>209910_at</td>
<td>SLC25A16</td>
<td>Solute carrier family 25 (mitochondrial carrier; Graves disease autoantigen), member 16</td>
</tr>
<tr>
<td>209869_at</td>
<td>ADRA2A</td>
<td>Adrenergic, alpha-2A-, receptor</td>
</tr>
<tr>
<td>209860_s_at</td>
<td>ANXA7</td>
<td>Annexin A7</td>
</tr>
<tr>
<td>209834_at</td>
<td>CHST3</td>
<td>Carbohydrate (chondroitin 6) sulfotransferase 3</td>
</tr>
<tr>
<td>209817_at</td>
<td>PPP3CB</td>
<td>Protein phosphatase 3 (formerly 2B), catalytic subunit, beta isoform (calcineurin A beta)</td>
</tr>
<tr>
<td>LOH gene clusters</td>
<td>Gene name</td>
<td>Common Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>209538_at</td>
<td>ZNF32</td>
<td>Zinc finger protein 32 (KOX 30)</td>
</tr>
<tr>
<td>209457_at</td>
<td>DUSP5</td>
<td>Dual specificity phosphatase 5</td>
</tr>
<tr>
<td>209045_at</td>
<td>XPNPEP1</td>
<td>X-prolyl aminopeptidase (aminopeptidase P) 1, soluble</td>
</tr>
<tr>
<td>208990_s_at</td>
<td>HNRPH3</td>
<td>Heterogeneous nuclear ribonucleoprotein H3 (2H9)</td>
</tr>
<tr>
<td>208770_s_at</td>
<td>EIF4EBP2</td>
<td>Eukaryotic translation initiation factor 4E binding protein 2</td>
</tr>
<tr>
<td>208769_at</td>
<td>EIF4EBP2</td>
<td>Eukaryotic translation initiation factor 4E binding protein 2</td>
</tr>
<tr>
<td>208535_s_at</td>
<td>COL13A1</td>
<td>Collagen, type XIII, alpha 1</td>
</tr>
<tr>
<td>208453_s_at</td>
<td>XPNPEP1</td>
<td>X-prolyl aminopeptidase (aminopeptidase P) 1, soluble</td>
</tr>
<tr>
<td>208381_s_at</td>
<td>SGPL1</td>
<td>Sphingosine-1-phosphate lyase 1</td>
</tr>
<tr>
<td>208252_s_at</td>
<td>CHST3</td>
<td>Carbohydrate (chondroitin 6) sulfotransferase 3</td>
</tr>
<tr>
<td>208152_s_at</td>
<td>DDX21</td>
<td>DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 21</td>
</tr>
<tr>
<td>208095_s_at</td>
<td>CAMK2G</td>
<td>Calcium/calmodulin-dependent protein kinase (CaM kinase) II gamma</td>
</tr>
<tr>
<td>207965_at</td>
<td>NEUROG3</td>
<td>Neurogenin 3</td>
</tr>
<tr>
<td>207630_s_at</td>
<td>CREM</td>
<td>cAMP responsive element modulator</td>
</tr>
<tr>
<td>207543_s_at</td>
<td>P4HA1</td>
<td>Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide 1</td>
</tr>
<tr>
<td>207347_at</td>
<td>ERCC6</td>
<td>Excision repair cross-complementing rodent repair deficiency, complementation group 6</td>
</tr>
<tr>
<td>207127_s_at</td>
<td>HNRPH3</td>
<td>Heterogeneous nuclear ribonucleoprotein H3 (2H9)</td>
</tr>
<tr>
<td>206747_at</td>
<td>KIAA0514</td>
<td>KIAA0514 gene product</td>
</tr>
<tr>
<td>206261_at</td>
<td>ZNF239</td>
<td>Zinc finger protein 239</td>
</tr>
<tr>
<td>206159_at</td>
<td>GDF10</td>
<td>Growth differentiation factor 10</td>
</tr>
<tr>
<td>206010_at</td>
<td>HABP2</td>
<td>Hyaluronan binding protein 2</td>
</tr>
<tr>
<td>205882_s_at</td>
<td>ADD3</td>
<td>Adducin 3 (gamma)</td>
</tr>
<tr>
<td>205879_s_at</td>
<td>RET</td>
<td>Ret proto-oncogene (multiple endocrine neoplasia and medullary thyroid carcinoma 1, Hirschsprung disease)</td>
</tr>
<tr>
<td>205479_s_at</td>
<td>PLAU</td>
<td>Plasminogen activator, urokinase</td>
</tr>
<tr>
<td>204446_s_at</td>
<td>ALOX5</td>
<td>Arachidonate 5-lipoxygenase</td>
</tr>
<tr>
<td>204445_s_at</td>
<td>ALOX5</td>
<td>Arachidonate 5-lipoxygenase</td>
</tr>
<tr>
<td>204120_s_at</td>
<td>ADK</td>
<td>Adenosine kinase</td>
</tr>
<tr>
<td>204119_s_at</td>
<td>ADK</td>
<td>Adenosine kinase</td>
</tr>
<tr>
<td>203916_at</td>
<td>NDST2</td>
<td>N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 2</td>
</tr>
<tr>
<td>203666_at</td>
<td>CXCL12</td>
<td>Chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1)</td>
</tr>
<tr>
<td>203187_at</td>
<td>DOCK1</td>
<td>Dedicator of cyto-kinesis 1</td>
</tr>
<tr>
<td>203079_s_at</td>
<td>CUL2</td>
<td>Cullin 2</td>
</tr>
<tr>
<td>203078_at</td>
<td>CUL2</td>
<td>Cullin 2</td>
</tr>
<tr>
<td>203074_at</td>
<td>ANXA8</td>
<td>Annexin A8</td>
</tr>
<tr>
<td>202867_s_at</td>
<td>DNAJB12</td>
<td>Dnal (Hsp40) homolog, subfamily B, member 12</td>
</tr>
<tr>
<td>202866_at</td>
<td>DNAJB12</td>
<td>Dnal (Hsp40) homolog, subfamily B, member 12</td>
</tr>
<tr>
<td>202865_at</td>
<td>DNAJB12</td>
<td>Dnal (Hsp40) homolog, subfamily B, member 12</td>
</tr>
<tr>
<td>202777_at</td>
<td>SHOC2</td>
<td>soc-2 suppressor of clear homolog (C. elegans)</td>
</tr>
<tr>
<td>202731_at</td>
<td>PDCD4</td>
<td>Programmed cell death 4 (neoplastic transformation inhibitor)</td>
</tr>
<tr>
<td>202730_s_at</td>
<td>PDCD4</td>
<td>Programmed cell death 4 (neoplastic transformation inhibitor)</td>
</tr>
<tr>
<td>202524_s_at</td>
<td>SPOCK2</td>
<td>Sparc/osteonectin, ccw and kazal-like domains proteoglycan (testican) 2</td>
</tr>
<tr>
<td>202523_s_at</td>
<td>SPOCK2</td>
<td>Sparc/osteonectin, ccw and kazal-like domains proteoglycan (testican) 2</td>
</tr>
<tr>
<td>202432_at</td>
<td>PPP3CB</td>
<td>Protein phosphatase 3 (formerly 2B), catalytic subunit, beta isoform (calcineurin A beta)</td>
</tr>
<tr>
<td>202364_at</td>
<td>MXI1</td>
<td>MAX interacting protein 1</td>
</tr>
<tr>
<td>202361_at</td>
<td>SEC24C</td>
<td>SEC24 related gene family, member C (S. cerevisiae)</td>
</tr>
<tr>
<td>201859_at</td>
<td>PRG1</td>
<td>Proteoglycan 1, secretory granule</td>
</tr>
</tbody>
</table>
was identified in SS cases by using Affymetrix 10 K Gene-Chip, which covers approximately 400 MS loci. There was an overlap between this and previous studies on LOH at chromosome 1p (D1S247) and 10q (D10S562). Previous studies also suggested LOH at 1p and 10q associated with late stage CTCL [15–17, 19, 48]. In addition, copy number losses were described in these 9 chromosomal regions by using molecular cytogenetic techniques as discussed above. Furthermore, these findings were subsequently validated by extensive SNP qPCR test in this study. Taking together all of these results suggest that some of these SNP LOH and copy number changes are likely to be associated with the pathogenesis of SS.

The FAT gene, which is expressed at high levels in a number of foetal epithelia, is an ortholog of the Drosophila fat gene. FAT encodes a tumour suppressor essential for controlling cell proliferation during Drosophila development. Its product is a member of the cadherin superfamily, a group of integral membrane proteins characterised by the presence of 34 tandem cadherin-type repeats as well as five epidermal growth factor-like repeats and one laminin A-G domain with possible functions as an adhesion molecule and/or signalling receptor, which are likely to be associated with developmental processes and cell communication (http://www.ncbi.nlm.nih.gov/gene/2195). The FAT gene is located on human chromosome 4q35. Previous molecular cytogenetic studies have revealed copy number losses at this chromosomal region in a variety of cancers (http://www.progenetix.org/cgi-bin/pgCasesMatrix-Plotter.cgi). Furthermore deletion/LOH and absent expression of FAT have also been found in oral cancer [53] and human astrocytic tumours [54]. Intriguingly, in this study SNP copy number loss of FAT was observed in three-quarter of SS cases and reduced gene expression of FAT was also noted in most cutaneous squamous cell carcinoma cases (data not shown) no spare SS RNA samples are available for qPCR testing. These results further indicate the tumour suppressor role of FAT and also suggest that loss of FAT is relevant to SS pathology.

Interindividual copy number variation/polymorphism (CNV/P) is thought to be the manifestation of a considerable and unanticipated plasticity of the human genome. CNV/P constitutes a major source of interindividual genetic variation that could explain variable penetrance of inherited diseases and variation in the phenotypic expression of aneuploidies and sporadic traits [55, 56]. There is increasing
evidence showing de novo CNV/P as a major cause of mental retardation and several other complex disorders [38–40, 43, 57]. Cytogenetically CNV/P or copy number changes (CNCs) have long been described in cancer cells (http://www.cgap.nci.nih.gov/Chromosomes/Mitelman,http://www.progenetix.net/). As discussed above SS has been found with frequent CNCs at several chromosomal regions [6–13]. Some of these CNCs may have a net effect on gene expression as previous expression profiling studies on SS have revealed up- and downregulations of several genes, which are mapped within the chromosomal regions harbouring these CNCs [20–26]. From, bioinformatic point of view these CNCs may not have any net effect at all and are therefore nonfunctional. To test this hypothesis we developed a simple bioinformatics strategy through the analysis of the expression profiling of CNCs gene clusters commonly presented in SS to see if SS cases can be separated from NCs. We found separated of CNCs gene clusters commonly presented in SS to see if [20–26]. From, bioinformatic point of view these CNCs may not have any net e

References

Acknowledgments

This work was supported by British Society for Haematology, Elimination of Leukaemia Fund and Peel Medical Research Trust.

Review Article

The Role of Dicentric Chromosome Formation and Secondary Centromere Deletion in the Evolution of Myeloid Malignancy

Ruth N. MacKinnon1 and Lynda J. Campbell1, 2

1 Victorian Cancer Cytogenetics Service, St Vincent’s Hospital (Melbourne) Ltd., P.O. Box 2900, Fitzroy, VIC 3065, Australia
2 Department of Medicine (St Vincent’s), University of Melbourne, Parkville, VIC 3010, Australia

Correspondence should be addressed to Ruth N. MacKinnon, ruth.mackinnon@svhm.org.au

Received 31 May 2011; Accepted 20 July 2011

Academic Editor: Sergio Roa

Copyright © 2011 R. N. MacKinnon and L. J. Campbell. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dicentric chromosomes have been identified as instigators of the genome instability associated with cancer, but this instability is often resolved by one of a number of different secondary events. These include centromere inactivation, inversion, and intercentromeric deletion. Deletion or excision of one of the centromeres may be a significant occurrence in myeloid malignancy and other malignancies but has not previously been widely recognized, and our reports are the first describing centromere deletion in cancer cells. We review what is known about dicentric chromosomes and the mechanisms by which they can undergo stabilization in both constitutional and cancer genomes. The failure to identify centromere deletion in cancer cells until recently can be partly explained by the standard approaches to routine diagnostic cancer genome analysis, which do not identify centromeres in the context of chromosome organization. This hitherto hidden group of primary dicentric, secondary monocentric chromosomes, together with other unrecognized dicentric chromosomes, points to a greater role for dicentric chromosomes in cancer initiation and progression than is generally acknowledged. We present a model that predicts and explains a significant role for dicentric chromosomes in the formation of unbalanced translocations in malignancy.

1. Introduction

Dicentric chromosomes, which have two centromeres, are a well-known feature of cancer cells, and the genome instability and evolution they induce are highly relevant to cancer biology [1, 2]. Although constitutional dicentric chromosomes are much rarer, in those that have been identified there is little evidence of this instability. Our studies have shown that the mechanisms by which dicentric chromosomes are stabilized include the loss of a centromere from a dicentric chromosome making it secondarily monocentric [3, 4], a previously little known mechanism which may be relatively common in cancer evolution. We review evidence that dicentric chromosomes have a greater role in oncogenesis than is currently acknowledged.

During cell division the two centromeres of an unstable dicentric chromosome migrate towards opposite poles at anaphase, causing cycles of breakage and rejoining which create new chromosome arrangements, deletions, and amplifications. This is known as the bridge-fusion-breakage (BFB) cycle [5]. The gene copy number aberrations which are a byproduct of dicentric chromosome instability can create an increased risk of malignancy. Positive selection of these copy number changes can drive clonal evolution [6–10].

Copy number aberration (CNA) in the genome—net gain or loss of genetic material—is seen as one of the major causes of cancer. CNA can occur by whole chromosome gain or loss (aneuploidy), simple deletion or duplication of a chromosome segment, or unbalanced translocation where rearrangement between two or more chromosomes produces net gain or loss of material. Isodicentric chromosome formation causes both gain and loss of material, by the joining together of sister chromatids at a double-strand break, and is one method by which unstable dicentric chromosomes can be produced [11, 12].

Dicentric chromosomes in constitutional (nonmalignant) genomes are typically either stable at formation, or have
undergone a process of stabilization by mechanisms which have been well studied [13–16]. The processes underlying the stabilization of dicentric chromosomes in cancer cells have not been so well defined.

We will compare patterns of dicentric chromosome stabilization in the cancer and constitutional settings, including insights gained from our studies of cases of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) with unbalanced karyotypes.

2. Dicentric Chromosomes in Malignancy

Dicentric chromosomes in cancer are best known as the product of telomere fusion events. Telomeres cap and stabilize the ends of chromosomes. Loss of this protective function, such as by a gradual reduction in the number of DNA telomere-specific repeats as a consequence of repeated genome replication, creates sticky chromosome ends. These can join to each other, with or without complete loss of the residual telomere and subtelomere sequences [17, 18]. Apparent telomere fusion (telomere association) events are characteristic of certain tumors, such as giant cell tumor of the bone [19] and meningioma [20]. Several model systems have been developed for creating and studying dicentric chromosomes in vitro or in nonhuman organisms, by artificially induced telomere erosion [7, 10, 18, 21–23]. Recent studies have reported direct molecular evidence for naturally occurring telomere fusion in cancer cells [6, 24].

Studies of dicentric chromosomes in vivo, in vitro, and in mice with induced telomere dysfunction, support a major role for telomere erosion and subsequent end-to-end chromosome fusion in causing the genome instability which is observed in many types of cancer [6, 8, 21, 22, 24–26], although this has also recently been questioned [27]. The BFB cycle undergone by these dicentric chromosomes is understood to be one of the principle causes of genome instability [11, 26, 28].

Unstable dicentric chromosomes can produce rearrangements such as deletion, amplification, inversion, double minute, and ring chromosomes [9, 28, 29]. Micronuclei and other nuclear anomalies can be produced by byproducts of instability. These contain centric or acentric chromosome segments which have not segregated to either daughter cell [26, 30]. Lagging of dicentric chromosomes so that they are then lost to a micronucleus, or missegregation of the whole dicentric chromosome to one daughter cell, can produce whole chromosome aneuploidy [21, 26].

Studies of transformed cell lines and premalignant cells have shown that with continued cell division and shortening of the telomeres, the cells enter a period of crisis, which is associated with end-to-end fusion of the chromosomes and genome instability, causing genome aberration. These cells with aberrant genomes would normally undergo senescence, but can survive if p53-induced apoptosis is inactivated. Telomere length and stability are restored by upregulation of telomerase or the alternative lengthening of telomere (ALT) mechanism [6, 8, 31–34].

Translocation between two or more chromosomes with interstitial breakpoints (reciprocal translocation) can also produce dicentric chromosomes (Figure 1). Hematological malignancies have the most well characterized chromosome abnormalities of any malignancy, and most dicentric chromosomes reported in hematological malignancies have a morphology consistent with this type of rearrangement rather than telomere fusion. Morphology can be misleading however, and there is now evidence that over half of the dicentric chromosomes involving chromosome 20 in myeloid malignancy are formed by telomere fusion events [35]. It is not yet known whether this pattern extends to other chromosomes.

Dicentric chromosomes which have been identified in hematological malignancies include the recurrent dic(17;20) [36, 37] and dic(5;17) [38] in MDS and AML and the dic(9;20) in acute lymphoblastic leukemia [39], as well as a range of other abnormalities [3, 39–41]. These are usually interpreted as unbalanced reciprocal translocations (see Figure 1), with breakpoints often described at or near the centromere [40, 42, 43]. The dic(9;20) is an unusual case. While most dicentric chromosomes, including the recurrent dic(17;20) [4], appear to have a range of breakpoints on both chromosomes, the dic(9;20) has been shown to have breakpoints within a single gene on 9p, PAX5, creating a fusion gene between this gene and a number of different genes on 20q [44–47].

Studies which focus on the identification of dicentric chromosomes in hematological malignancies have tended to uncover a higher incidence of dicentric chromosomes than is usually reported. In one of the rare studies into the incidence of dicentric chromosomes in myeloid malignancy, Andersen and Pedersen-Bjergaard [42] identified a dicentric chromosome in 15% (27/180) of consecutive cases of therapy-related AML (t-AML) and t-MDS and a much lower incidence in
de novo disease (0.4%). The combined incidence for AML and MDS was 8%. Callet-Bauchu et al. [41] identified a high incidence of dicentric chromosomes (10/14) among 17p translocations in chronic B-lymphoid disorders.

3. Dicentric Chromosomes in Myeloid Malignancy

A diverse range of cytogenetic aberrations has been described in the myeloid malignancies AML and MDS, including highly specific balanced translocations producing fusion genes, and copy number aberrations. Our studies of in vivo karyotype abnormalities in patients with these diseases have revealed a high incidence of dicentric chromosomes in unbalanced translocations involving chromosome 20.

We characterized the centromere and chromosome content and organization of 32 unbalanced chromosome 20 translocations, including thirteen unbalanced 17;20 translocations [3, 4, 36, 48]. These 32 cases had been identified as having apparent monosomy 20 (24 cases) and/or a 17;20 translocation (13 cases) (five cases fulfilled both criteria). Most had lost the putative tumor suppressor gene (TSG) region at 20q12.

Eight cases of dic(17;20) had a typical morphology comprised of 20p, 17q, and the proximal regions of 20q and 17p between the two centromeric constrictions [3, 36] (Figure 2(a)). A further five cases had a variant 17;20 translocation derived by secondary rearrangement of a primary dicentric chromosome [4, 48] (e.g., Figures 2(b)–2(e)). Thus, every one of thirteen 17;20 translocation products that we identified had been formed as a dicentric chromosome [4, 36, 48],

Twenty-one of 24 cases (87.5%) with apparent monosomy 20 (including the five variant 17;20 translocations) were shown to have a primary dicentric translocation, and only six of these appeared to have no secondary rearrangement or epigenetic inactivation of a centromere (Table 1) [3]. There was not enough information to determine whether the translocations of the remaining three cases had been derived from dicentric chromosomes.

These findings point to a hidden body of dicentric chromosomes in myeloid malignancy, that can only be identified by detailed characterization. In a review of dicentric chromosomes in hematological malignancies, Berger and Busson-Le Coniat [40] reported that the identification of dicentric chromosomes is increased when fluorescence in situ hybridization (FISH) with specific α-satellite DNA probes is used and suggested that the true incidence is higher than realized. Our studies show that even the use of centromere probes will not identify all dicentric translocations, because some primary dicentric chromosomes become secondarily monocentric.

Our evidence points to a frequency of primary dicentric chromosomes in AML/MDS which is higher than the 8% reported by Andersen and Pedersen-Bjergaard [42] and is
Table 1: Patterns of secondary chromosome aberration derived from 32 primary dicentric (20;var) chromosomes in cases of AML and MDS described in previous publications. In total eleven cases had some mechanism of secondary centromere deletion and had retained or lost the deleted segment, and eight had another type of rearrangement which produced an altered (secondary) dicentric chromosome which retained both chromosomes (four cases had mixtures of clones exhibiting both mechanisms).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No change</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Centromere inactivation</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Intercentromeric deletion</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Inversion reducing intercentromeric distance</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Cases with secondary monocentric chromosomes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixture of clones: intercentromeric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>deletion/centromere deleted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixture of clones: intercentromeric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>deletion/centromere excised and retained in a ring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chromosome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centromere deleted</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Centromere excised and retained in a ring chromosome</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Complex mixture of clones: dicentric and secondary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rearrangements (centromere deletion,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>excision of centric ring, inversion, deletion)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>29</td>
</tr>
</tbody>
</table>

potentially as high as the frequency of unbalanced translocations in AML/MDS. In our laboratory during 2009 and 2010, the frequency of karyotypes with unbalanced translocation in new cases of MDS or AML was 18%.

4. Stabilization of Dicentric Chromosomes in Myeloid Malignancy

These detailed studies of dicentric chromosomes in cases of AML and MDS gave us the opportunity to identify some of the mechanisms by which dicentric chromosomes had been stabilized. In 18/29 primary dicentric chromosomes, some or all of the cells had undergone secondary events which could be interpreted as producing a more stable derivative. A summary of these different secondary events is presented in Table 1. One case had a highly unstable dic(17;20) with 26 Mb between the centromeres, that had produced a wide range of derivatives (Figure 2) [4]. The variety of rearrangements is reminiscent of those described by Riboni et al. [2] in a dicentric chromosome which was produced by telomere fusion in vitro.

Centromere suppression occurred by functional inactivation (which was assumed when α-satellite DNA was still present but there was no centromeric constriction) or by excision of the α-satellite DNA. (Centromere suppression refers to loss of centromere function, regardless of how this is achieved). Loss of centromere-specific α-satellite DNA from the chromosome was the most common type of secondary rearrangement. The dicentric chromosome of 11 cases had become secondarily monocentric, by deletion of a centromere from a primary dicentric chromosome. In some cases the excised segment containing the centromere was retained in the cell as what appeared to be a ring chromosome (Table 1).

We identified loss of the 20, 6, or 17 centromere in these cases [3, 4]. We have also identified cases where there has been loss of the 17 centromere from a primary dicentric chromosome not involving chromosome 20 (RNM, unpublished results; Figure 3). Similar studies will be needed to determine if centromere deletion occurs more widely in dicentrics involving other chromosomes and in other malignancies.

Some secondary rearrangements were produced by intercentromeric deletion or inversion of the inferred primary dicentric chromosome (Figures 2(d), 2(e)). These rearrangements produced dicentric derivatives with a greatly reduced intercentromeric distance, apparently resulting in stable dicentric chromosomes. The stable dicentric chromosomes showing no evidence of secondary events had short intercentromeric distances, supporting studies in constitutional dicentric chromosomes which show that this property renders the dicentric chromosome stable [14, 49].

More than half of the dic(20;var) which had lost the 20q12 TSG region had done so by an interstitial deletion, retaining the distal, subtelomeric 20q region [35]. Based on evidence that dicentric chromosomes can occur by telomere fusion, the simplest explanation of our findings was that an unstable primary dicentric chromosome had been formed by telomere fusion between chromosome 20 and another chromosome, followed by positive selection of a derivative with a secondary 20q12 deletion (see Figure 1). However, the alternative explanation, translocation between a preexisting del(20q) and another chromosome, could not be discounted.
We have described five cases of dic(17;20) with interstitial deletion of 20q suggestive of telomere fusion and subsequent deletion of the 20q12 TSG containing region [4, 35, 48]. A telomere fusion between 17p and 20q would produce a dicentric chromosome with an intercentromeric distance of 56 Mb. According to studies of constitutional dicentric chromosomes [14, 49] a dicentric chromosome with this intercentromeric distance would be unstable. Thus, the secondary deletion of 20q12 could fulfill two roles: loss of a TSG and stabilization of the dicentric chromosome.

We have also reported localized amplification of a section of 20q (20q11.21), in both MDS and AML, the development of which was probably aided by its position between the centromeres of unstable dicentric chromosomes [3, 48]. We have suggested that this selectively amplified region contains an oncogene [3, 48]. As well as deletion, the BFB cycle can cause amplification of material between the centromeres of a dicentric chromosome. Positive selective pressure would tend to favor amplification of an oncogene in this position. Gain of the whole abnormal chromosome in other cases, rather than localized amplification, provides further support for an oncogenic role for a gene in this region. Further instances of amplification of 20q11.21 have been identified since these publications (RNM, unpublished observations).

5. Centromere Deletion

Centromere deletion or excision has only rarely been described previously. Nevertheless, it was a significant event in our series (occurring in 11 of 29 primary dicentrics) and was more frequent than functional inactivation. FISH with BAC (bacterial artificial chromosome) clones was used to define the breakpoints of 20 centromere deletion [48], which fell into two main categories. Some had deletion breakpoints close to the centromere, retaining part or all of the flanking BACs (two published cases [48] and one unpublished case (RNM, unpublished results)), while others had excision of a broader section including 20q11.21, and the excised fragment was retained in the cell as either a ring or marker chromosome (4 cases). We have also observed larger deletions spanning the centromere without retention of the deleted segment (chromosome 17, one case and chromosome 20, two cases) [4, 48]. Some cases had multiple clones with different centromere deletion events. There was no FISH evidence of partial retention of the centromere in any of these cases.

In the 1970s it was suggested that centromere suppression could be a result of either deletion of the centromere or functional inactivation [50–52]. However, molecular studies since
then have identified epigenetic mechanisms for suppressing centromeres, that is, loss of the centromere proteins which form the kinetochore, produces a functionally inactive centromere [13, 53]. These studies were carried out on constitutional dicentric chromosomes, but it seems to have been generally assumed that functional inactivation is also the mechanism of centromere suppression in cancer cells (e.g., [40]). Although dicentric chromosomes are commonly found in cancer cells, mechanisms stabilizing these dicentric chromosomes have not been well studied.

In humans, centromere deletion from a dicentric chromosome has been noted most often in constitutional dicentric Y chromosomes [54–57], but also in a handful of other cases [58, 59]. The α-satellite DNA was found to be only partially removed in some of these, including the two examples of isodicentric Y chromosome which were studied in detail by Tyler-Smith et al. [54], a landmark study which used these deletions to identify α-satellite DNA as the sequence marking the centromere. In some cases [55, 56, 58, 59] the excised section, including the centromere, was preserved in a small stably transmitted marker chromosome. Rivera et al. [55, 56] identified at least six cases with pseudodicentric Y chromosomes in which the excised Y centromere was still present, in a small marker chromosome. These authors have suggested that centromere excision from pseudodicentric Y chromosomes with retention of the excised section is under-diagnosed, because these marker chromosomes can usually only be detected by FISH [55].

Centromere deletion has also been identified in yeast. Artificially created dicentric chromosomes in Saccharomyces cerevisiae can be stabilized by deleting a section of DNA containing one centromere [60, 61].

Stimpson et al. [7] observed partial α-satellite deletion in dicentric human chromosomes that were created in vitro, in fibrosarcoma cell lines. However, these dicentric chromosomes had been artificially induced by in vitro abrogation of telomere function.

Our studies identifying centromere deletion in MDS and AML combined FISH for specific centromeres with traditional cytogenetics, multicolor FISH (M-FISH), and multicolor banding (M-BAND) [3, 4, 48]. To our knowledge ours are the first studies identifying centromere deletion from naturally occurring cancer chromosomes. Centromere deletion or excision was the most common mechanism of dicentric chromosome stabilization that we identified in abnormalities of chromosome 20. This suggests that there is a significant rate of unidentified centromere deletion in cancer genomes.

6. Functional Inactivation of a Centromere

While dicentric chromosomes are relatively common in cancer cells, they are rare in the constitutional setting, probably because most events causing genome imbalance are incompatible with embryo viability. Nevertheless, most studies of in vivo dicentric chromosome stabilization in humans have been carried out on constitutional dicentric chromosomes discovered through clinical cytogenetic analysis. Stabilization of these dicentric chromosomes has generally occurred by the time of discovery [13–16].

The most commonly reported constitutional dicentric chromosomes are Robertsonian translocations and isodicentric X chromosomes—which have lost nonessential material. Stability is typically achieved through close physical proximity of the centromeres [14, 49] or suppression of one of the centromeres [16, 62, 63].

In a series of isodicentric X chromosomes in patients with Turner syndrome, Sullivan and Willard [49] determined that an intercentromeric distance of 12 Mb or less is compatible with a stable, functionally dicentric chromosome (in which both centromeres are active), whereas a larger intercentromeric distance is not compatible with stability. Dicentrics with more material between the centromeres (at least 34 Mb in their examples and 15 Mb in a recent paper by Ewers et al. [64]) consistently had only one active centromere. Available evidence points to a requirement for rapid stabilization of a dicentric chromosome with well-separated centromeres, if the (nonmalignant) cells are to remain viable [49, 65, 66].

Centromere suppression in constitutional dicentric chromosomes with well-separated centromeres has most often been shown to be achieved by functional inactivation, producing a pseudodicentric chromosome. Functional inactivation occurs by loss of the centromere proteins which assemble at the kinetochore and define an active centromere [13, 53, 67–70]. Antibodies to some of these epigenetic markers, CENP-A, CENP-C, and CENP-E, have commonly been used to distinguish between functionally active and inactive centromeres [7, 13, 53]. Page and Shaffer [14] showed that the centromere-specific alpha satellite DNA of both centromeres was maintained in dicentrics with one inactive centromere.

Even in stable dicentric chromosomes with closely apposed centromeres, there is usually a mixture of cells with one or two active centromeres, as has been shown in Robertsonian translocations [13, 14], isodicentric X chromosomes [49, 71], and other constitutional dicentrics [50, 66]. The patterns of inactivation seen in parent-child pairs were consistent with stable transmission of the centromere in either the active or inactive state, with a gradual progression towards loss of functionality of either centromere if both were inherited in the active state [14]. In cultured cells there tended to be a higher proportion of functional monocentrics (structural dicentrics with one active centromere) [13, 14], consistent with a tendency to centromere inactivation but not reactivation.

It is not known whether centromere reactivation occurs in vivo in humans. The presence of CENP-A is usually a prerequisite to kinetochore assembly in humans [68, 72–74]. However, centromere DNA lacking centromere proteins can be reconstituted (reactivated) in yeast, maize, and mammalian artificial chromosomes in vitro [75–78]. Also, in rare instances a new human centromere (neocentromere) can be created at a position naive of centromere α-satellite DNA by assembly of the necessary proteins, to preserve a marker chromosome that lacks a native centromere [79]. This suggests that reactivation of a human centromere in vivo
7. Identification of Dicentric Chromosomes and Secondary Rearrangements

A number of factors can explain why secondary centromere deletion in malignancy had not been recognized earlier. These include the tendency to explain pseudodicentric chromosomes as having been derived by centromere inactivation and the infrequency of testing for the presence of centromeres in routine metaphase cytogenetic analysis. In our experience, monocentric chromosomes derived from dicentric chromosomes were often only identified after a detailed analysis of centromere content, chromosome content, and organization.

FISH studies to detect pairs of centromeres are not usually carried out on metaphase chromosomes during diagnostic cancer cytogenetic analysis. The chromosomes that are most likely to be recognized as dicentric are those stable primary dicentric chromosomes that have two distinct centromeric constrictions or a recognizable pseudodicentric morphology spanning both centromeres. Other secondary monocentric chromosomes are morphologically unrecognizable because of the altered morphology around the centromere, as is the case with chromosome 20 morphology after the centromere has been deleted [3, 85] (Figure 2(b)). Furthermore, dicentric chromosomes that break into two monocentric derivatives might not be identified as having been derived from a primary dicentric chromosome.

The use of array karyotyping (single nucleotide polymorphism—SNP—and comparative genomic hybridization—CGH—arrays) on its own for cytogenetic analysis will not identify dicentric chromosomes, telomere fusion, or centromere deletion. Centromeres and telomeres are not represented on standard microarrays, nor do microarrays give information on translocation partners or chromosome organization. As residual telomere sequence can be retained at the site of telomere fusion [2, 6, 86], there will not necessarily be loss of the distal part of the chromosome that is detectable by microarrays, in dicentric chromosomes formed by telomere fusion. In the two cases of apparent telomere fusion that we analyzed by array CGH [48], there was no detectable terminal deletion of 20qter, nor did the arrays show any indication of the centromere loss that had occurred. This may have clinical implications. Dicentric chromosomes may have a poorer prognosis because they can be subject to more rapid selective evolution.

If on any derivative chromosome both translocation partners contain material spanning the centromeres, this is the strongest indication that there was a primary dicentric translocation. A method for identifying chromosome content (array karyotyping, M-BAND, or traditional banding) in conjunction with FISH for the centromeres (using a pancentromere probe or specific centromere probes or, more efficiently, multicolor centromere FISH (cenM-FISH) which will identify all the centromeres in one step [87]) and a method for identifying translocation partners (M-FISH or traditional banding) can therefore help identify dicentric chromosomes, including primary dicentric chromosomes which have lost one of the centromeres. M-BAND [88] gives information on gross chromosome content and organization within an individual cell and also helps define different clones. It can help shed light on the rearrangements that have occurred, if this information is not provided by standard karyotyping. It may not be practical to carry out this level of analysis in routine diagnostics, but for a full understanding of the causes and consequences of unbalanced translocation in a research context, it may be essential.

8. The Tip of the Iceberg?

Our studies highlight a higher incidence of primary dicentric chromosome formation in unbalanced chromosome 20 abnormalities than has previously been recognized. The dic(20)var appears to be an example of an unstable dicentric chromosome creating selectable derivatives that can allow rapid clonal evolution.

Our studies suggested a greater role for telomere fusion in creating dicentric chromosomes in myeloid malignancy than has been previously acknowledged. Environmental and biological factors associated with telomere erosion, that is, advancing age and chemical exposure, are also risk factors for developing MDS and AML [43, 89–91], and so identifying a high incidence of telomere fusion as an oncogenic event may help identify the causes of these diseases. Complex karyotypes often include many unbalanced translocations, frequently of unknown composition, and the resulting chromosomes are typically assumed to be monocentric unless there is clear evidence to the contrary. Given the apparently high incidence of unidentified chromosome 20 dicentrics in myeloid malignancy, we suggest that other unbalanced translocations in AML, MDS, and other malignancies may also harbor a higher incidence of dicentric chromosomes than is currently recognized. This would suggest that the instability associated with dicentric chromosomes is a much more significant factor in cancer than is apparent. We propose a model that both explains the high incidence of dicentric chromosomes in unbalanced chromosome 20 translocations and makes the more general prediction that dicentric chromosome formation is a major mechanism for unbalanced chromosome translocation in malignancy.
9. Model for the Formation of Unbalanced Translocations by Dicentric Translocation

This model suggests that most unbalanced translocations are formed by one of two mechanisms producing a dicentric chromosome, dicentric translocation, and telomere fusion. Genome imbalance is a direct consequence of both of these events. Three types of translocation are defined.

(i) Telomere Fusion (end-to-end joining of chromosomes at the telomeres): this is a balanced rearrangement (apart from possible telomere and subtelomere loss), but if the centromeres are well separated, the chromosome is unstable and further rearrangements are likely—including oncogenic deletions and amplifications—creating an unbalanced translocation product.

(ii) Dicentric Translocation: a simple reciprocal translocation producing a dicentric and an acentric chromosome. As the acentric chromosome is lost during mitosis, this becomes an unbalanced translocation.

(iii) Balanced Reciprocal Translocation: a simple reciprocal translocation producing two monocentric chromosomes. There is no net gain or loss of material and another event would be required to produce copy number aberration. Therefore we suggest that this is not a usual cause of genome imbalance, contrary to the tacit assumption that the products of most oncogenic unbalanced translocations are monocentric.

The novel aspect of this model is that it predicts that dicentric chromosomes play a much greater role in oncogenesis than is currently appreciated and gives a smaller role to balanced reciprocal translocation in the generation of copy number imbalance. A significant role for dicentric chromosomes produced by telomere attrition in causing genome instability is already recognized. Our chromosome 20 studies provide evidence for both mechanisms of dicentric chromosome formation and support only a minor or coincidental role for reciprocal translocation producing two monocentric chromosomes.

10. Conclusions

Dicentric chromosomes are rarely identified in constitutional genetics. However, in cancer cells the formation of dicentric chromosomes is a well-recognized event, which may contribute to the malignant phenotype and clonal evolution. We have explored the patterns of stabilization of dicentric chromosomes in constitutional karyotypes, cancer cells, and cells in tissue culture.

Our studies have shed a light on the role of dicentric chromosome formation in myeloid malignancy. Many primary dicentric chromosomes escape detection when traditional or molecular karyotyping is used to characterize genome aberrations. We have uncovered a significant role for centromere deletion or excision in the evolution of myeloid malignancy, which raises the possibility that this occurs more widely, and in other cancers. More detailed studies combining molecular karyotyping (which allows precise breakpoint definition and genome-wide detection of copy number aberration) with FISH studies (which allow chromosome organization and centromere content to be determined) will lead to a better understanding of the role of dicentric translocations in cancer.

Conflict of Interests

The authors declare that there is no conflict of interests.

Acknowledgment

Funds for these studies were contributed by the Leukaemia Foundation of Victoria, State Trustees of Victoria, the Derham Green Fund (Perpetual Trustees), the Harold and Cora Brennen Benevolent Trust (Equity Trustees Ltd), the James and Vera Lawson Philanthropic Trust (ANZ Trustees), the St Vincent’s Hospital Research Endowment Fund, the Leukaemia Foundation of Australia, and the Cancer Council of Australia.

References

Review Article

Genetic Markers Used for Risk Stratification in Multiple Myeloma

Priscilla Segges¹ and Esteban Braggio²

¹Laboratory of Molecular Biology, Bone Marrow Transplantation Center, National Cancer Institute, Rio de Janeiro, RJ 20230-130, Brazil
²Comprehensive Cancer Center, Mayo Clinic Arizona, Scottsdale, AZ 85259-5494, USA

Correspondence should be addressed to Priscilla Segges, priscillasegges@gmail.com

Received 31 May 2011; Accepted 14 July 2011

Academic Editor: Norma C. Gutierrez

Copyright © 2011 P. Segges and E. Braggio. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

While no specific genetic markers are required in the diagnosis of multiple myeloma (MM), multiple genetic abnormalities and gene signatures are used in disease prognostication and risk stratification. This is particularly important for the adequate identification of the high-risk MM group, which does not benefit from any of the current therapies, and novel approaches need to be proposed. Fluorescence in situ hybridization (FISH) has been employed for establishing risk-based stratification and still remains the most used genetic technique in the clinical routine. The incorporation of gene expression profiling (GEP) in the study of MM has shown to be a very powerful test in the patient stratification, but its incorporation in clinical routine depends on some technical and logistic resolutions. Thus, FISH still remains the gold standard test for detecting genomic abnormalities and outcome discrimination in MM.

1. Background

Multiple Myeloma (MM) is a malignancy characterized by accumulation of clonal antibody-secreting plasma cells [1]. While no specific genetic markers are used for MM diagnosis, multiple genetic abnormalities have been associated with malignant transformation and disease progression [2–5]. The identification of genetics aberrations was greatly improved after the implementation of analytic tools capable to overcome the technical limitations related to low proliferation of the myeloma cell. Thus, several classifications have been proposed based on the identification of the genomic changes that help to discriminate between different genetic groups of MM patients [3, 6–9].

Overall, MM is divided into two main genetic groups: (1) the hyperdiploid group (H-MM), which can be defined mainly by the gain of odd chromosomes 3, 5, 7, 9, 11, 15, 19, and 21 and (2) the nonhyperdiploid group (NH-MM), characterized by the presence of chromosomal translocations involving the immunoglobulin H (IgH) locus with several chromosomal partners (4, 8, 11, 16) [10–12]. Each category includes approximately half of cases, with a very low number of overlapping cases.

Of interest, the dissection of the genetic landscape has provided important genetic markers with demonstrated clinical and disease stratification value [5, 13–15].

2. Cytogenetic Prognostic Markers—FISH

2.1. t(4;14)(p16;q32). This translocation affects the telomeric portion of chromosome 4p leading to the dysregulation of two protooncogenes, FGFR3 in derivate chromosome 14 (der14) and multiple myeloma SET domain (MMSET) in derivative chromosome 4 (der4) [16]. The t(4;14) is seen in 15–20% of primary MM [17]. The translocation is cryptic and detectable only by FISH or reverse transcriptase—PCR [17].

Several groups have associated the t(4;14) with inferior outcome and more aggressive disease irrespective of the treatment modality [2, 5, 18, 19] (Table 1). It has been suggested that this group of patients can benefit from bortezomib-based therapy [20]. However, two recent studies showed that, although bortezomib-based therapy shows better results than previous therapies (vincristine, adriamycin, and dexamethasone) in patients with t(4;14),
Abnormalities associated with outcome in MM and techniques used for detection.

<table>
<thead>
<tr>
<th>Abnormalities</th>
<th>Outcome</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(4;14)(p16;q32)</td>
<td>Poor</td>
<td>FISH*</td>
</tr>
<tr>
<td>t(14;16)(q32;q23)</td>
<td>Poor</td>
<td>FISH</td>
</tr>
<tr>
<td>t(6;14)(p21;q32)</td>
<td>Good?</td>
<td>FISH</td>
</tr>
<tr>
<td>t(11;14)(q13;q32)</td>
<td>Good/neutral</td>
<td>FISH</td>
</tr>
<tr>
<td>Deletion 1p13</td>
<td>Poor</td>
<td>FISH</td>
</tr>
<tr>
<td>Deletion 13</td>
<td>Poor</td>
<td>Conventional</td>
</tr>
<tr>
<td>Chromosome 1 abnormalities</td>
<td>Poor</td>
<td>FISH</td>
</tr>
<tr>
<td>Hyperdiploidy</td>
<td>Good</td>
<td>FISH or FCM**</td>
</tr>
<tr>
<td>(if not associated with deletion 17p13)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Fluorescence in situ hybridization (FISH). **Flow cytometry.

this translocation still has prognostic implications in a great group of patients treated with this drug [18, 19].

2.2. t(14;16)(q32;q23) and Other MAF Translocations. The t(14;16) is found in 5–7% of all MM cases [4, 5, 21]. The presence of t(14;16) has been associated with more aggressive disease and shorter survival among the patients treated with either conventional or high-dose chemotherapy [5, 6] (Table 1). The prognosis of this translocation was recently challenged by a study that suggests a neutral effect in a large series of patients [21]. Given the very low prevalence of the MAF abnormalities, the test to detect the presence of these translocations has not been universally incorporated in the clinical routine.

The upregulation of CCND3 (cyclin D3), as a result of t(6;14)(p21;q32), is identified in only 3% of MM [5] (Table 1). Until now, there is no known clinical or prognostic information for this translocation.

2.3. t(11;14)(q13;q32). This translocation results in the juxtaposition of CCND1 proto-oncogene with the IgH locus and as consequence an ectopic expression of cyclin D1 [22]. Of all MM, the t(11;14) has been described in 15% of cases and is associated with CD20 expression, lymphoplasmacytic morphology, hyposecretory disease, and Ig light chain usage [22, 23].

Most studies have suggested that the presence alone of t(11;14) may confer a favorable outcome (Table 1), but this effect is not strong enough to be statistically significant (probably because of small magnitude of this translocation) [22–24]. Moreover, due to heterogeneity within patients with t(11;14) there exists a difficulty in establishing a favorable outcome for patients with this genetic aberration. For instance, the presence of K-RAS mutations in patients with t(11;14) is also more prevalent (50%) than in patients with other primary IgH translocations (10%) [25]. In addition, the presence of t(11;14) is associated with an aggressive phenotype such as plasma cell leukemia [23]. A recent study with a larger series of patient with t(4;14) has suggested that the effect of t(11;14) on prognosis remains neutral [24] (Table 1).

2.4. Ploidy Status. In MM, aneuploid is frequently observed [11, 12] and delineates the disease into two main genetic subtypes, H-MM and NH-MM. H-MM is more common among males, has a higher incidence of MM bone disease, and carries a more favorable outcome [6] (Table 1). Among patients with H-MM, 13 deletion and chromosome 1 abnormalities have not apparent prognostic significance but the presence of deletions of 17p13 in remains an important prognostic factor. In addition, a study showed that most of the prognostic value of H-MM was related to the gain of chromosome 5 [24, 26].

2.5. Deletion of 17p. The deletion of 17p13 remains the most important molecular prognostic factor in MM [5, 6, 20]. The deletion 17p13 is generally monoallelic and includes TP53. The abnormality is detected in only 10% of new diagnosis MM cases, but its prevalence increases in later stages of the disease. Patients with 17p13 deletions often have more aggressive and extramedullary disease (such as plasmacytomas), center nervous system involvement, and hypercalcemia [6, 27]. This abnormality is associated with a shorter survival irrespective of the treatment modality, including the novel bortezomib and IMiDs-based therapies [5, 6, 14, 27] (Table 1).

2.6. Chromosomes 1 and 13. Chromosome 1 abnormalities are found in almost half of MM cases [28]. There is an enrichment of genes associated with proliferation in the affected region [8]. Although the poor prognosis value of this abnormality has been recently demonstrated, its incorporation into standard clinical practice has not been implemented yet [28] (Table 1).

The deletion of chromosome 13 is found in 50% of MM cases [4–6, 8, 29]. Although this abnormality was originally identified as negative prognostic factor in MM, several studies had proved the association of chromosome 13 monosomy with the t(4;14) [6, 30, 31]. Even in the absence of this association or other high-risk markers, the chromosome 13 alone is not a predictive of poor prognosis when identified by FISH (Table 1). On the other hand, its identification by conventional cytogenetics is a surrogate of high proliferation and is used as a poor prognostic marker [32] (Table 1).

3. Comprehensive Genomic Tools in MM Risk Stratification

The advent of high-resolution genomics tools provided a remarkable revolution in the analysis of MM and the identification of genomic signatures able to identify high-risk patients and to predict patient outcome [6, 8, 33]. Several high-resolution available tests provide a comprehensive analysis at the DNA (aCGH, single-nucleotide polymorphism (SNP) arrays, and whole-genome sequencing (WGS)) and RNA levels (gene expression profiling (GEP)).
Among these technologies, the use of GEP is the most promising risk stratification tool in MM. The use of GEP has been successfully implemented in MM, and several genetic signatures have been proposed [8, 33, 34]. The most used signatures are based on the analysis of proliferation markers or in centrosome index and successfully detected the 15–20% of worse prognosis patients [35].

The prognostic classification, using genetic analysis as outcome discrimination, has been used in several cohorts of MM treated with the conventional and high-dose chemotherapy followed by stem cell transplant (SCT) [5, 8, 35]. Moreover, the ongoing studies involving patients with MM are focused on the use of these genetic markers provided by genetic changes, as predictors of outcome in those treated with proteasome inhibitors. Although GEP is still mainly used for research purposes, some groups have successfully implemented its use in the routine clinical care [35]. Other approaches such as aCGH and WGS have not been implemented in the clinical routine yet, being used in the research laboratory.

4. Conclusion

Genetic studies have played a crucial role in the determination of the risk-based stratification of MM. Nowadays, FISH and GEP are the most powerful tools for successfully identifying disease subgroups with different outcomes.

References

[29] G. Tricot, B. Barlogie, S. Jagannath et al., “Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities,” *Blood*, vol. 86, no. 11, pp. 4250–4256, 1995.

[31] N. C. Gutiérrez, M. V. Castellanos, M. L. Martín et al., “Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis,” *Leukemia*, vol. 21, no. 1, pp. 143–150, 2007.

Review Article
Molecular Alterations in Sporadic Primary Hyperparathyroidism

Maria Inês Alvelos,1, 2 Maria Mendes,1, 3 and Paula Soares1, 4, 5

1 Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal
2 Faculty of Engineering of the University of Porto (FEUP), 4200-465 Porto, Portugal
3 Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003 Porto, Portugal
4 Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
5 Cancer Biology Group, IPATIMUP, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

Correspondence should be addressed to Paula Soares, psoares@ipatimup.pt

Received 15 April 2011; Revised 3 July 2011; Accepted 11 July 2011

Academic Editor: Ilana Zalcberg Renault

Copyright © 2011 Maria Inês Alvelos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Primary hyperparathyroidism (PHPT) is a frequent endocrine disorder characterized by an excessive autonomous production and release of parathyroid hormone (PTH) by the parathyroid glands. This endocrinopathy may result from the development of a benign lesion (adenoma or hyperplasia) or from a carcinoma. Most of the PHPT cases occur sporadically; however, approximately 10% of the patients present a familial form of the disease. The molecular mechanisms underlying the pathogenesis of sporadic PHPT are incompletely understood, even though somatic alterations in \(\text{MEN1} \) gene and \(\text{CCND1} \) protein overexpression are frequently observed. The \(\text{MEN1} \) gene is mutated in about 30% of the parathyroid tumours and the protooncogene \(\text{CCND1} \) is implicated in parathyroid neoplasia by rearrangements, leading to an overexpression of \(\text{CCND1} \) protein in parathyroid cells. The aim of this work is to briefly update the molecular alterations underlying sporadic primary hyperparathyroidism.

1. Introduction

One of the multiple implications of multicellularity is that all parts of a body must be able to communicate with each other, in order to maintain homeostasis. The communication between different parts of an organism is essential for an appropriate response to internal and external environmental stimuli. The endocrine system, through the production, and release of hormones, is a key element for the establishment and maintenance of such regulation [1].

The parathyroid glands are the endocrine organs responsible for regulating calcium levels by producing a hormone, the parathyroid hormone (PTH), released directly into the blood [2] that regulates calcium levels acting at various organs.

Calcium plays a fundamental role in controlling the neuromuscular activity, the blood clotting process, bone structure, and integrity of cell signaling. The levels of ionized calcium in bloodstream are maintained by a complex hormonal mechanism, involving three main systems: gastrointestinal system, bone, and kidney [3, 4].

Primary hyperparathyroidism is a frequent endocrine disorder characterized by an excessive autonomous production and release of parathyroid hormone (PTH) by the parathyroid glands. This endocrinopathy may result from the development of a benign lesion (adenoma or hyperplasia) or from a carcinoma. Most of the PHPT cases occur sporadically; however, approximately 10% of the patients present a familial form of the disease. The molecular mechanisms underlying the pathogenesis of sporadic PHPT are incompletely understood, even though somatic alterations in \(\text{MEN1} \) gene and \(\text{CCND1} \) protein overexpression are frequently observed. The \(\text{MEN1} \) gene is mutated in about 30% of the parathyroid tumours and the protooncogene \(\text{CCND1} \) is implicated in parathyroid neoplasia by rearrangements, leading to an overexpression of \(\text{CCND1} \) protein in parathyroid cells. The aim of this work is to briefly update the molecular alterations underlying sporadic primary hyperparathyroidism.
Table 1: Summary of the molecular alterations associated with familial and sporadic parathyroid tumors.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Germline mutations</td>
<td>Inactivating mutations, LOH (MEN1)</td>
<td>—</td>
<td>Inactivating mutations, LOH (HPT-JT)</td>
<td>Activating mutations (MEN2A)</td>
<td>Inactivating mutations (NSHPT/FHH)</td>
</tr>
<tr>
<td>Benign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somatic mutations</td>
<td>Inactivating mutations, LOH</td>
<td>Activating Inv (11) (p15; q13)</td>
<td>Inactivating mutations</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Prevalence of somatic alteration</td>
<td>20 to 30%</td>
<td>~5%</td>
<td>2 to 4%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Protein expression (%)</td>
<td>Downregulation (20 to 40%)</td>
<td>Overexpression (30 to 40%)</td>
<td>Downregulation (ND)</td>
<td>ND</td>
<td>Downregulation (Up to 90%)</td>
</tr>
<tr>
<td>Malignant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somatic mutations</td>
<td>Inactivating</td>
<td>ND</td>
<td>Inactivating mutations, LOH</td>
<td>N</td>
<td>ND</td>
</tr>
<tr>
<td>Prevalence of somatic alteration</td>
<td>~13%</td>
<td>ND</td>
<td>70 to 100%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Protein expression (%)</td>
<td>ND</td>
<td>Overexpression (~90%)</td>
<td>Downregulation/loss of expression (70 to 100%)</td>
<td>ND</td>
<td>Downregulation (~30%)</td>
</tr>
</tbody>
</table>

N: negative; ND: not determined.

endocrine neoplasia type 2) syndrome, specifically in the variant MEN2A, is associated with genetic alterations in the RET (rearranged during transfection) gene. Homozygous or heterozygous mutations in CaSR (Calcium Sensing Receptor) gene are the source of NSHPT (neonatal severe hyperparathyroidism) and FHH (familial hypercalcemic hypercalciuric), respectively [9, 10].

Although, the genetic alterations associated with familial forms are well known, the genetic alterations underlying sporadic forms are far from being understood. The molecular alterations that are established as being characteristic of sporadic benign parathyroid tumor are genetic alterations in the MEN1 gene (20 to 30% cases) and Cyclin D1 protein overexpression (30 to 40% of cases) [11, 12]. Parathyroid carcinomas are strongly associated with somatic HRPT2 mutations [13].

1.1. The Role of MEN1 Gene in PHPT.

The MEN1 tumor suppressor gene was identified in 1997 as the gene responsible for the autosomal dominant syndrome characterized by tumors of endocrine pancreas, the anterior pituitary and parathyroid glands, the MEN1 syndrome [14]. Apart from being involved in the mentioned familial syndrome, somatic mutations of MEN1 gene are also implicated in the development of sporadic parathyroid tumors [15].

The MEN1 gene is located on chromosome 11 (band 11q13), consists of 10 exons (with 9 coding exons), and encodes a protein of 610 amino acids called menin that is ubiquitously expressed, at all stages of development [16]. The transcript of MEN1 gene is a 2.8 Kb mRNA but six more alternative transcripts have been reported, although none of them interferes with the coding region revealing variations of the 5’ translated region only [17]. Despite the high degree of conservation among metazoan, menin does not reveal motifs of known function and has no similarity with any other known protein [18].

Tumors of MEN1 patients usually reveal the presence of a germline mutation followed by a somatic alteration such as loss of heterozygosity (LOH) or inactivating mutation, as predicted by the model of Knudson, pointing to MEN1 gene as a very good example of a classical tumor suppressor gene [19].

About 30% of sporadic parathyroid tumors show MEN1 gene mutations (see Table 1). These somatic mutations, similarly to what happen with the germline mutations, are spread throughout the coding region. About 40% of these mutations are frameshift, 29% are missense mutations, 18% are nonsense, 7% occur in splice sites, and 6% are deletions or insertions in-frame. Sporadic parathyroid tumors harboring MEN1 gene somatic mutations frequently evidence LOH on chromosome region 11q13 [20]. Somatic inactivating mutations in this gene have also been identified in other types of tumors, namely, in neuroendocrine tumours such as gastrinomas, insulinomas, lung carcinoids, and pituitary tumors showing a similar loss of function mechanism promoting tumorigenesis [21–23].

From Drosophila to humans, menin is conserved but is absent in C.elegans and yeast [24]. Subcellular localization studies evidence that the protein has predominantly a nuclear localization and possesses two nuclear localization signals (NLSs) that should be essential for its role in regulation of gene transcription [25]. Menin has been reported to interact with a broad spectrum of proteins involved in regulation of transcription by coordinating chromatin remodeling, genome stability, cell division, and proliferation [26, 27].
Recently, it was demonstrated in vitro that menin acts as a scaffold and inhibits AKT/PKB activation by regulating its cellular localization, since it hampers the transition from the cytoplasm to the membrane, required to its activation [28].

The clinical relevance of pathways and molecular mechanisms in which menin is involved remain to be clarified.

Most of the MEN1 gene mutations will lead to a premature stop codon, giving rise to a truncated protein. Frequently this truncated menin may have lost, at least one of its NLS, compromising the protein function, regarding their role of driving the protein to the nucleus, but also by coordinating the regulation of expression of menin target genes [25].

Menin protein can function as suppressor of transcription, because this protein is able to bind a family of transcription factors such as AP-1/Jun-Fos family, and it is also associated with a histone methyltransferase (HMT) complex leading to an increased expression of cyclin-dependent kinase inhibitors (CDKIs) and consequently suppressing cell growth [29, 30].

1.2. The Role of Cyclin D1 Protein in PHPT. The gene encoding cyclin D1, CCND1, located in chromosome 11q13, was initially designated PRAD1 (parathyroid adenomatosis 1) since it was cloned from DNA from a parathyroid adenoma. In 1989, Arnold and colleagues found a genetic rearrangement in a parathyroid adenoma, this rearrangement, inv (11) (p15; q13), positions the 5′ PTH gene regulatory region (located in 11p15) adjacent to the CDKN1 gene leading to the overexpression of cyclin D1 protein [31]. The increased expression of cyclin D1 promotes the transcription of genes required for DNA synthesis and cell cycle progression.

Several studies show the overexpression of cyclin D1 in 20–40% of parathyroid tumors (see Table 1), even though they do not demonstrate the presence of the rearrangement, pointing to the presence of other molecular abnormalities leading to an overexpression of this cell cycle regulator [32].

The pathogenic role of this protein was assessed through studies in transgenic mice overexpressing cyclin D1 in parathyroid. These mice were created to model the genetic rearrangement found in human parathyroid tumors [33]. In this model, the overexpression of this cell cycle regulator leads to hyperplastic parathyroid glands, with increased cell proliferation, retaining their capacity of hormone production [34].

1.3. Parathyroid Carcinoma and CDC73/HRPT2. In 2002, germline mutations in the tumor suppressor gene hyperparathyroidism 2 (HRPT2) were described by Carpent et al. as being responsible for the HPT-JT familial syndrome [13].

HRPT2 gene is located at 1q25-q31 and encodes a 60 kDa nuclear protein named parafibromin that has been shown to be a member of the polymerase-associated factor (PAF1) complex involved in gene transcription regulation by histone ubiquitination and methylation [35, 36].

Additionally, parafibromin suppresses tumor growth by inducing apoptosis, inhibiting G1 to S phase transition, regulating Wnt canonical pathway, and also regulating gene expression by direct binding of promoter regions, being therefore expected that loss of parafibromin will lead to enhanced cellular proliferation [37–40].

The loss of parafibromin as a molecular marker of parathyroid carcinoma was first reported by Tan and colleagues in 2004. These authors noted that loss of parafibromin nuclear staining had a high sensitivity and specificity for the definitive diagnosis of parathyroid carcinoma and their results were confirmed by other groups [41, 42].

Despite its specificity, other studies indicated that, although occurring more frequently in parathyroid carcinomas, loss of parafibromin nuclear staining can also occur in a small proportion of sporadic benign adenomas and therefore cannot be considered exclusive of malignancy. Curiously, these adenomas exhibit cystic features which are commonly observed in the HPT-JT syndrome [43]. Another important aspect is the fact that nuclear positivity cannot exclude the presence of HRPT2 mutation, once some tumors harboring missense mutations revealed weak nuclear positivity [44].

Given the low frequency of parathyroid carcinomas, these are commonly misdiagnosed in the clinical setting and the need of specific markers for this disease is fundamental to reduce potential false-negative cases [45]. Some studies assessed the role of additional molecular marker to complement parafibromin staining in the screening process, emerging the protein 9.5 (PGP9.5) encoded by the ubiquitin carboxyl-terminal esterase L1 (UCHL1), that was found to be upregulated in the majority of parathyroid carcinomas [46]. In contrast, the tumor suppressor adenomatous polyposis coli (APC) was found downregulated in carcinomas while benign lesions retain the expression [47].

In spite of these findings, the unequivocal diagnosis remains a challenge, and additional markers are likely to increase the knowledge and proper recognition of parathyroid carcinomas.

2. The Role of Other Genes in PHPT

The knowledge on the molecular bases of parathyroid tumorigenesis, particularly the sporadic variant, remains largely unknown. Some candidate genes have been studied because of their possible role in sporadic primary hyperparathyroidism development (see Table 1). Despite their involvement in familial forms, no somatic mutations have been found in RET and CaSR genes [48, 49].

Vitamin D receptor (VDR) has an important role in negatively controlling PTH secretion and parathyroid proliferation, thus representing a good target for this parathyroid pathological condition, but no mutations in either VDR gene or vitamin-D-activating enzyme were found in sporadic parathyroid tumors despite the evidence of the reduced expression in some series [62–65].

Abnormal Wnt signaling has been associated with many types of tumors, and deregulation of CTNNB1 as well as mutations of LRPS coreceptor has been found in some series of parathyroid tumors. At variance, other studies pointed out that Wnt/beta-catenin signaling does not seem to contribute to the development of parathyroid tumors [66–68].

The existence of common molecular alterations among endocrine tumors and its proximity with MEN1 gene
raised the hypothesis that SDH5 gene could be involved in parathyroid tumorigenesis, but no genetic alterations were found in this pathology [69]. Using techniques such as comparative genomic hybridization (CGH), various authors verified the presence of chromosome gains and losses in specific regions, suggesting the presence of unidentified oncogenes and tumor suppressor genes, which may have a role in parathyroid tumorigenesis. Chromosomal regions in 1p, 6q, 9p, and 13q were found to be lost in benign and malignant parathyroid lesions, indicating these chromosomal regions as eventual carriers of novel tumor suppressor genes. Unknown oncogenes may be present in chromosomal regions of 9q, 16p, and 19p, because several authors demonstrated gain in these loci, in parathyroid tumors [70–72]. Chromosomal imbalances have been recognized as a mechanism able to alter the expression of miRNAs. Corbetta and collaborators explored the miR expression profile in parathyroid carcinomas, since the expression of these small noncoding RNAs varies between cancer and normal cells. These authors went to verify differential expression among parathyroid carcinoma and normal tissue. By real-time PCR, it was observed that the overall miRNA expression could separate normal versus cancer tissue and four miRs (miR-296, miR-139, miR-222, and miR-503) revealed differences between tumoural and normal parathyroid tissues [73]. Some genes such as human growth factor-regulated tyrosine kinase substrate (HGS) and p27/Kip1 are described as potential targets of these miRNAs but further information about the biological relevance of these findings is needed and might provide tools for identifying new diagnostic and therapeutic strategies [74, 75].

Most of the studies in parathyroid tumorigenesis field have been performed using genomics and immunohistochemical approaches [53, 76]. Giusti and collaborators carried out comparative analysis to examine the changes in protein profile between adenomas and normal parathyroid tissue [77]. These authors verified the presence of 30 deregulated proteins in parathyroid adenomas, 22 of them being overexpressed when compared to normal parathyroid tissue [77]. Some of the identified proteins belong to the same functional class of the ones identified by Haven and co-workers when they preformed tissue microarrays for benign and malignant tumors [78]. Overall, these findings represent promising steps for the improvement of the knowledge about this pathology.

3. Concluding Remarks

Presently, alterations in MENG and CCND1 are still the main genetic alterations associated with the development of sporadic benign tumors (accounting for approximately 30% of the cases). The HRPT2 gene is not only responsible for the HPT-JT syndrome but also mutated in the majority of parathyroid carcinomas.

A number of other candidate genes (due to their genomic localization, role in familial syndromes, and/or biological function) have been studied in parathyroid tumors, but without promising results.

Future goals include the identification of additional oncogenes and/or tumor suppressor genes in parathyroid lesions and understanding the molecular insights in the relationship between parathyroid proliferation and hormone regulation.

Acknowledgments

This study was supported by an IPG-UP Grant (IPG2007-32, with financial support from CGD) and by Portuguese Foundation for Science and Technology through project grant. IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education that is partially supported by the FCT.

References

Review Article

Cytogenetics and Molecular Genetics of Myxoid Soft-Tissue Sarcomas

Jun Nishio,1 Hiroshi Iwasaki,2 Kazuki Nabeshima,2 and Masatoshi Naito1

1 Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
2 Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan

Correspondence should be addressed to Jun Nishio, jnishio@cis.fukuoka-u.ac.jp

Received 21 March 2011; Accepted 6 June 2011

Academic Editor: José María Sayagués

Copyright © 2011 Jun Nishio et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Myxoid soft-tissue sarcomas represent a heterogeneous group of mesenchymal tumors characterized by a predominantly myxoid matrix, including myxoid liposarcoma (MLS), low-grade fibromyxoid sarcoma (LGMS), extraskeletal myxoid chondrosarcoma (EMC), myxofibrosarcoma, myxoinflammatory fibroblastic sarcoma (MIFS), and myxoid dermatofibrosarcoma protuberans (DFSP). Cytogenetic and molecular genetic analyses have shown that many of these sarcomas are characterized by recurrent chromosomal translocations resulting in highly specific fusion genes (e.g., FUS-DDIT3 in MLS, FUS-CREB3L2 in LGMS, EWSR1-NR4A3 in EMC, and COL1A1-PDGFB in myxoid DFSP). Moreover, recent molecular analysis has demonstrated a translocation t(1;10)(p22;q24) resulting in transcriptional upregulation of FGF8 and NPM3 in MIFS. Most recently, the presence of TGFBR3 and MGEA5 rearrangements has been identified in a subset of MIFS. These genetic alterations can be utilized as an adjunct in diagnostically challenging cases. In contrast, most myxofibrosarcomas have complex karyotypes lacking specific genetic alterations. This paper focuses on the cytogenetic and molecular genetic findings of myxoid soft-tissue sarcomas as well as their clinicopathological characteristics.

1. Introduction

Myxoid soft-tissue sarcomas encompass a heterogeneous group of rare tumors characterized by a marked abundance of mucoid/myxoid extracellular matrix. The main clinicopathological entities in this group are myxoid liposarcoma, low-grade fibromyxoid sarcoma, extraskeletal myxoid chondrosarcoma, myxofibrosarcoma, myxoinflammatory fibroblastic sarcoma, and myxoid dermatofibrosarcoma protubera-

nts [1–4]. The correct classification of these sarcomas is important because of their distinct biological behaviors and potentially different treatments. However, it is often difficult to set apart many of these sarcomas due to overlapping histological features and lack of a distinct immunohistochemical profile. Moreover, the use of core needle biopsies to diagnose these sarcomas has become increasingly common, and this shift has created additional challenges.

Cytogenetic and molecular genetic assays are routinely used for diagnostic and prognostic purposes in molecular pathology laboratories [5]. Many of myxoid soft-tissue sarcomas are characterized by recurrent chromosomal translocations resulting in highly specific fusion genes [6, 7]. Advances in knowledge of the genetics of these sarcomas are leading to more accurate diagnosis. This paper reviews the cytogenetic and molecular genetic findings in these sarcoma types and their relationship with clinicopathological features. The consistent genetic alterations are summarized in Table 1.

2. Approaches to the Genetics of Soft-Tissue Sarcomas

Conventional karyotyping is the most comprehensive method for spotting the various translocations and other structural or numerical aberrations. It is dependent on the availability of fresh, sterile tumor tissue, the success of tumor cell growth in culture, and quality of metaphase cell preparations. When dividing cells are not available for cytogenetic studies, molecular approaches such as fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), reverse transcriptase-polymerase chain reaction (RT-PCR), or gene expression microarray can be used to evaluate genetic alterations.
FISH is the most helpful method for identifying specific gene rearrangements. It is more adaptable to formalin-fixed, paraffin-embedded tissues although imprint slides are preferred. Interphase FISH is particularly useful to assess intratumoral genetic heterogeneity as long as adequate combinations of probes are used. FISH probes are readily available fixed, parafrin-embedded tissues although imprint slides are preferred. Interphase FISH is particularly useful to assess intratumoral genetic heterogeneity as long as adequate combinations of probes are used. FISH probes are readily available (12q13), EWSR1-DDIT3 (12; 22)(q13; q12), FUS-CREB3L2 (7; 16)(q32–34; p11), FUS-CREB3L1 (11; 16)(p11; p11), TAF15-NR4A3 (9; 17)(q22; q11), TCF12-NR4A3 (12; 16)(q13; p11), TFG-NR4A3 (3; 9)(q12; q22), COL1A1-PDGFB (17; 22)(q22; q13)∗.

CGH is a method for genome-wide analysis of DNA sequence copy number in a single experiment. It maps the origins of amplified and deleted DNA sequences on normal chromosomes, thereby highlighting regions harboring potential oncogenes and tumor suppressor genes. However, CGH cannot detect rearrangements such as balanced translocations or inversions. Recently, a higher resolution version of CGH, so-called array CGH, has been made available. A distinct advantage of array CGH is the ability to directly map the copy number changes to the genome sequence. Similar to array CGH, single nucleotide polymorphism (SNP) array is capable of identifying small regions of chromosomal gains and losses at a high resolution. Also, SNP array can provide information regarding loss of heterozygosity.

RT-PCR is the most sensitive method to detect small numbers of translocation-bearing cells that are mixed within a tissue consisting of largely nonneoplastic cells. Sensitivity levels of 1 in a 100,000 cells are typically achieved. It may be suitable for the detection or monitoring of minimal residual disease [9]. However, the diagnostic success rate is variable and dependent on multiple factors. First, RNA quality may be inadequate because of RNA degradation. The second impediment of this methodology is the high risk of reagent contamination, mainly with PCR products, particularly in small laboratory spaces.

Microarray is a method for genome-wide monitoring of gene expression in a single experiment. A variety of commercial and noncommercial platforms can be used to perform global gene expression profiling. It is hoped that application of this technology will afford increased understanding of sarcoma biology and facilitate the development of new diagnostic markers and therapeutic agents [10–12].

Approximately one-third of all soft tissue sarcomas exhibit a nonrandom chromosomal translocation. In addition, a subset of soft-tissue tumors carries specific oncogenic mutations (e.g., KIT or PDGFRα mutations in gastrointestinal stromal tumor). FISH and RT-PCR are commonly applied for the detection of specific genetic alterations in the differential diagnosis of soft-tissue sarcomas.

3. Myxoid Liposarcoma

The working group of the World Health Organization (WHO) for classification of tumors of soft-tissue and bone combined myxoid and round cell liposarcomas under myxoid liposarcoma (MLS) [13]. MLS is the second most common subtype of liposarcoma, representing approximately one-third of all liposarcomas. MLS occurs predominantly in the deep soft-tissues of lower extremities and has a peak incidence in the fourth and fifth decades of life with no gender predilection. Pure MLS is considered low-grade and has a 5-year survival rate of 90% [14]. In contrast, MLS containing a greater than 5% round cell component is considered high-grade and has a worse prognosis. The clinical outcome of multifocal MLS is poor [15]. In contrast to other soft-tissue sarcomas, MLS tends to metastasize to unusual sites such as retroperitoneum, opposite extremity, and bone.

Histologically, pure MLS is composed of primitive mesenchymal cells in a myxoid matrix, often featuring mucinous pools (Figure 1(a)). Lipoblasts are most often univacuolated, small, and tend to cluster around vessels or at the periphery of the lesion. A delicate plexiform capillary vascular network is present and provides an important clue for distinguishing MLS from intramuscular myxoma [16]. A subset of MLS shows histological progression to hypercellular or round cell morphology. The round cell areas are characterized by solid sheets of primitive round cells with a high nuclear/cytoplasmic ratio and a prominent nucleolus. Pure round cell liposarcoma is extremely rare and may be confused with
Figure 1: (a) Myxoid liposarcoma with a myxoid background containing a delicate arborizing capillary vascular network, small uniform mesenchymal cells, and lipoblasts. (b) G-banded karyotype showing a 12;16 translocation as the sole aberration. (c) Fluorescence in situ hybridization analysis using a *DDIT3* (12q13) break-apart probe shows a split of the orange and green signals, indicating a disruption of the *DDIT3* locus.

Other round cell sarcomas such as Ewing sarcoma/primitive neuroectodermal tumor, rhabdomyosarcoma, and poorly differentiated synovial sarcoma.

MLS is characterized by a recurrent translocation t(12;16)(q13;p11) in more than 90% of cases (Figure 1(b)), which fuses the 5’ portion of the *FUS* gene on chromosome 16 with entire reading frame of the *DDIT3* gene on chromosome 12 [17–19]. A small percentage of cases carry a variant translocation t(12;22)(q13;q12) resulting in an *EWSR1-DDIT3* fusion gene [15, 20–28]. The presence of these translocations and molecular alterations is highly sensitive and specific for MLS. Therefore, cytogenetics is an excellent analytic method for the initial workup of a suspected MLS. FISH and RT-PCR can also be used to provide support for the diagnosis of MLS (Figure 1(c)) [8, 29–32]. In addition, several nonrandom secondary alterations have been identified, including 6q deletion, isochromosome 7q10, trisomy 8, and unbalanced 1;16 translocation [17, 24, 33–35]. Conventional and array CGH studies have shown gains of 8p21–23, 8q, and 13q [36–38].

To date, 12 *FUS-DDIT3* and four *EWSR1-DDIT3* variants of fusion transcripts have been described in MLS [22, 26, 28, 39, 40]. Most cases of MLS are one of three different *FUS-DDIT3* fusion transcript types, including varying portions of *FUS*. The *FUS-DDIT3* fusion transcript type does not appear to have a significant impact on clinical outcome [22, 26]. On the other hand, Suzuki et al. [28] reported that MLS with a type 1 *EWSR1-DDIT3* fusion transcript may show more favorable clinical behavior than MLS with other types of fusion transcripts. Interestingly, clinical data suggest that the fusion transcript type may influence response to therapy with trabectedin [41].

Several receptor tyrosine kinases (RTKs) are highly expressed in MLS, including RET, MET, and IGF1R [42, 43]. These RTKs promote cell survival and cell proliferation through the PI3K/AKT and the Ras-Raf-ERK/MAPK pathways [42]. Recently, Barretina et al. [44] demonstrated that mutation of *PIK3CA*, encoding the catalytic subunit of PI3K, is associated with AKT activation and poor clinical outcome. AKT activation functions as a master switch to generate a plethora of intracellular signals and intracellular responses and is more frequent in the round cell variant [43]. It has also been shown that the NF-κB pathway is highly active in MLS [40]. Moreover, Göransson et al. [45] showed that NF-κB is a major factor controlling *IL8* transcription in FUS-DDIT3-expressing cells. NF-κB is an inducible cellular transcription factor that regulates a variety of cellular genes, including those involved in immune regulation, inflammation, cell survival, and cell proliferation. These findings will help to develop new potential therapeutic strategies for MLS patients with advanced disease.

4. **Low-Grade Fibromyxoid Sarcoma**

Low-grade fibromyxoid sarcoma (LGFMS), first described by Evans [46] in 1987, is a rare but distinctive fibromyxoid variant of fibrosarcoma. It includes the tumor originally designed as hyalinizing spindle cell tumor with giant rosettes [47]. LGFMS occurs primarily in young to middle-aged adults with a male predominance, but this tumor may affect children [48, 49]. LGFMS typically presents as a slowly growing, painless mass in the deep soft-tissues of lower extremities or trunk. Local recurrence and metastatic rates are 9%–21% and 6%–27%, respectively [49, 50]. The overall prognosis for superficial LGFMS appears to be better than that for deep LGFMS [48].

Histologically, LGFMS shows alternating fibrous and myxoid areas with bland spindle-shaped cells arranged in a whorled pattern (Figure 2). Cellularity is variable but generally low and mitoses are scarce. There is often a prominent...
network of branching capillary-sized blood vessels reminiscent of myxoid liposarcoma. Approximately 40% of cases have giant collagen rosettes characterized by a central zone of eosinophilic collagen surrounded by a palisade of round to oval tumor cells [13]. This variant was originally termed hyalinizing spindle cell tumor with giant rosettes [47]. Immunohistochemically, the tumor cells are diffusely positive for vimentin and focally for epithelial membrane antigen (EMA) [48, 50]. Immunostains for S-100 protein, desmin, and CD34 are typically negative.

LGFM is characterized by a recurrent balanced translocation t(7;16)(q34;p11) resulting in an FUS-CREB3L2 fusion gene [50–53]. This same translocation was identified in cases of hyalinizing spindle cell tumor with giant rosettes [54, 55], suggesting a pathogenetic link between these two entities. A small percentage of cases carry a variant translocation t(11;16)(p11;p11) leading to a fusion of the FUS and CREB3L1 genes [50, 53]. Interestingly, supernumerary ring chromosomes have been observed as the sole anomaly in a subset of LGFM [52, 56, 57]. FISH and CGH studies have demonstrated that ring chromosomes are composed of material from chromosomes 7 and 16 [56, 57]. Bartuma et al. [57] showed that the FUS-CREB3L2 fusion gene can be present in ring chromosomes.

The breakpoints in the fusion transcripts are mostly at exon 6 or 7 of FUS and exon 5 of CREB3L2 or CREB3L1 [50–53, 58]. CREB3L2 is a member of CREB3 family of transcription factors and contains a basic DNA-binding and leucine zipper dimerization domain, highly similar to that in CREB3L1. Panagopoulos et al. [59] suggested that the FUS-CREB3L2 fusion protein is a more potent transcriptional activator than the native CREB3L2 and may contribute to the pathogenesis of LGFM through the deregulation of its target genes. The molecular variability of fusion transcripts in LGFM does not appear to have a significant impact on microscopic appearances or clinical outcome [53].

5. Extraskeletal Myxoid Chondrosarcoma

Extraskeletal myxoid chondrosarcoma (EMC) is categorized by the WHO as a tumor of uncertain differentiation, because there is a paucity of convincing evidence of cartilaginous differentiation [13]. Most EMCs arise in the deep soft-tissues of the proximal extremities and limb girdles, especially the thigh and popliteal fossa, similar to MLS. EMC has a peak incidence in the fifth and sixth decades of life with a male predominance. Only a few cases have been encountered in children and adolescents [60–62]. Patients typically present with a slowly growing mass that causes pain or tenderness in approximately one-third of cases [16]. Local recurrence and metastatic rates are 48% and 46%, respectively [61]. EMC has a 10-year survival rate of 63%–88%, but a 10-year disease-free survival is much lower, ranging from 14% to 36% [61, 63–66]. Large tumor size (especially >10 cm), advanced age, and proximal tumor location appear to be poor prognostic factors in EMC [61, 63, 67].

Histologically, EMC is characterized by multinodular growth of a cord-like or lace-like arrangement of round or slightly elongated cells in an abundant myxoid matrix (Figure 3). The tumor cells have small hyperchromatic nuclei and a narrow rim of deeply eosinophilic cytoplasm. Occasional cells show cytoplasmic vacuolization [16]. Mitotic figures are rare in most cases. In contrast to the bland-looking or low-grade morphology, cellular or high-grade EMC has also been described [61, 68, 69]. Some authors have suggested that the cellular or high-grade EMC is likely to have a worse prognosis than conventional EMC [63, 68, 70] although its prognostic significance has not yet been established [67]. Immunohistochemically, vimentin is the only marker consistently positive in EMC. S-100 protein is expressed in approximately 30% of cases [67], often with focal and weak immunoreactivity. Only a small percentage of cases may show scattered cells that are EMA positive [67]. Recent immunohistochemical and ultrastructural studies have demonstrated that some EMCs may have neuroendocrine differentiation [63, 69, 71].

EMC is characterized by a recurrent translocation t(9; 22)(q22;q12) in approximately 75% of cases, which fuses the EWSR1 gene on 22q12 with the NR4A3 gene on 9q22 [72–78]. A second variant translocation, t(9;17)(q22;q11), has been detected in approximately 15% of EMC and results in a TAF15-NR4A3 fusion gene [78–82]. In addition, two
additional variant translocations, t(9; 15)(q22; q21) resulting in a TCF12-NR4A3 fusion gene and t(3; 9)(q12; q22) resulting in a TFG-NR4A3 fusion gene, have also been identified, each only in a single case [83, 84]. Because these fusion genes have not yet been described in any other tumor type, they represent useful diagnostic markers. Moreover, several nonrandom secondary alterations have been identified in approximately 50% of cytogenetically analyzed cases, including gain of 1q and trisomy for chromosomes 7, 8, 12, and 19 [77, 78]. The biological significance of these chromosomal alterations remains unknown.

Two main EWSR1-NR4A3 fusion transcript types have been reported for the t(9; 22)(q22; q12) in EMC [69, 77, 78]. The most common fusion transcript contains exon 12 of EWSR1 fused to exon 3 of NR4A3 (type 1), whereas exon 7 of EWSR1 is fused to exon 2 of NR4A3 in the type 2 fusion transcript. In the TAF15-NR4A3 fusion transcript, exon 6 of TAF15 is fused exclusively to exon 3 of NR4A3 [77]. NR4A3 is a member of NR4A subfamily within the nuclear receptor superfamily and contains a zinc finger DNA-binding domain. The EWSR1-NR4A3 fusion protein is thought to function as a potent transcriptional activator for NR4A3-target genes [85, 86]. It has also been shown that the TAF15-NR4A3 fusion protein functions as a strong transcriptional activator [87]. It is unclear whether the fusion transcript type is associated with particular morphological features or clinical outcome.

Gene expression profiling studies of EMC have revealed overexpression of the CHI3L1, METTL1, RELB, MYB, NMB, DKK1, DNER, CLCN3, DEP6, NDRG2, and PPARG genes [78, 88, 89]. In addition, several genes encoding neuronal-neuroendocrine markers have been expressed, including SCG2, NEF3, GFAP, GAD2, ENO2, SYP, CHGA, NEF3, and INSM1 [78, 88]. CHI3L1 encodes a glycoprotein member of the glycosyl hydrolase 18 family, which is secreted by activated chondrocytes, macrophages, neutrophils, and synovial cells. Sjögren et al. [78] suggested that CHI3L1 may be useful as a serum marker monitoring disease progression in EMC patients. NMB is a member of bombesin-related peptide family in mammary and a secreted protein involved in stimulation of smooth muscle contraction [90]. Subramanian et al. [88] suggested that NMB may prove to be a serological marker of EMC recurrence. DKK1 encodes a protein that is a member of the dickkopf family. DKK1 is involved in embryonic development through its inhibition of the WNT signaling pathway. Because DKK1 is a secreted protein, it may serve as a prognostic marker for evaluation of EMC. PPARG encodes a member of the peroxisome proliferator-activated receptor subfamily of nuclear receptors. PPARG is known as a regulator of adipocytic differentiation [91]. Interestingly, Filion et al. [89] demonstrated that PPARG is the first direct transcriptional target of the EWSR1-NR4A3 fusion protein. These findings will lead to the development of molecularly targeted therapies for patients with advanced EMC.

6. Myxofibrosarcoma

Myxofibrosarcoma, formerly known as myxoid malignant fibrous histiocytoma (MFH), is now defined as a distinct histological entity [13]. It is one of the most common soft-tissue sarcomas in elderly patients. Most myxofibrosarcomas arise in the dermal and subcutaneous tissues of the limbs (especially lower limbs) and limb girdles. Myxofibrosarcoma has a peak incidence in the sixth to eighth decades of life with a slight male predominance. Patients typically present with a slowly growing, painless mass. Recently, an epithelioid variant of myxofibrosarcoma with an aggressive course has been described [92].

Grading of myxofibrosarcoma is somewhat controversial. Myxofibrosarcoma has been subdivided into three or four grades based on the degree of cellularity, nuclear pleomorphism, and mitotic activity [93, 94]. Local recurrences occur in up to 50% to 60% of cases [93–95], irrespective of histological grade. Whereas low-grade myxofibrosarcomas usually do not metastasize, intermediate and high-grade lesions may develop metastases in approximately 16% to 38% of cases [93–95]. Importantly, low-grade myxofibrosarcomas may become higher grade in subsequent recurrences and acquire metastatic potential. The overall 5-year survival rate is 60%–70% [13].

Histologically, myxofibrosarcoma is characterized by multinodular growth of spindle or stellate-shaped cells within variably myxoid stroma containing elongated, curvilinear blood vessels (Figure 4). The tumor cells have slightly eosinophilic cytoplasm and mildly atypical, hyperchromatic nuclei. Vacuolated cells with cytoplasmic acid mucin, mimicking lipoblasts, are also seen [13]. Mitotic figures are rare in low-grade lesions. In contrast, high-grade myxofibrosarcomas are composed of solid sheets and fascicles of atypical spindled and pleomorphic tumor cells with hemorrhagic and necrotic areas. Bizarre, multinucleated giant cells are also occasionally found. Mitotic figures, including abnormal mitoses, are frequent. At least focally, however, areas of a lower grade neoplasm with a prominent myxoid matrix are present [13]. Intermediate-grade myxofibrosarcomas are more cellular than low-grade lesions and often contain minute solid areas showing bland pleomorphism. Immunohistochemically, the tumor cells are diffusely positive for vimentin and occasionally for muscle specific actin and α-smooth muscle actin, suggestive of focal myofibrolastic differentiation.

Data on the cytogenetics and molecular genetics of myxofibrosarcoma are difficult to evaluate, because the diagnostic criteria for this tumor have changed with time. In general, myxofibrosarcomas are associated with highly complex karyotypes lacking specific structural aberrations [96–98]. The only recurrent gain involves chromosome 7, whereas losses primarily affect chromosomes 1, 3, 5, 6, 10, 12, 16, 17, and 19 [7]. The presence of ring chromosomes has been described in some cases of low-grade myxofibrosarcoma (or myxoid MFH) [98–100]. In addition, homogeneous staining regions, double minutes, and marker chromosomes have been found. Recently, Willems et al. [98] proposed the concept of progression of myxofibrosarcoma as a multistep genetic process ruled by genetic instability.

A conventional CGH study of 22 myxofibrosarcomas showed gains of 19p and 19q, losses of 1q, 2q, 3p, 4q, 10q, 11q, and 13q, and high-level amplifications of the central
regions of chromosome 1, 5p, and 20q [101]. Interestingly, gain of 5p and loss of 4q are not observed in low-grade myxofibrosarcomas as opposed to higher grade neoplasms, suggesting that these aberrations are late events in the onco-
genesis of myxofibrosarcoma. In addition, array CGH studies showed gains of 7p21-22, 7q31–35, and 12q15–21 and losses of 10p13-14, 10q25-26, and 13q14–34 [38, 102, 103]. These findings suggest that loss of chromosome 13q is the most frequent genomic imbalance in myxofibrosarcoma, leading to inactivation of the RB pathway.

Recently, Lee et al. [103] reported that MET is expressed in approximately two-third of cases and its overexpression is highly related to deep location, higher grades, and more advanced stages. The authors suggested that MET may represent a target of choice to develop novel therapeutic strategies for myxofibrosarcoma.

A recent gene expression analysis has shown that the WISP2, GPR64, and TNXB genes are upregulated in myxofibrosarcoma compared with other spindle cell and pleomorphic sarcomas [104]. WISP2 encodes a member of the WNT1 inducible signaling pathway protein subfamily, which belongs to the connective tissue growth factor family. WISP2 is a secreted protein involved in several important human diseases or conditions that are marked by aberrant cell proliferation and migration [105]. GPR64 is a highly conserved, tissue-specific, seven-transmembrane receptor of the human epididymis [106]. TNXB encodes a member of the tenascin family of extracellular matrix glycoproteins. TNXB is thought to function in matrix maturation during wound healing, and its deficiency is associated with the connective tissue disorder Ehlers-Danlos syndrome [107]. Nakayama et al. [104] suggested that these genes may serve as novel diagnostic markers for myxofibrosarcoma. Most recently, Barretina et al. [44] demonstrated that NF1 is mutated or deleted in 10.5% of myxofibrosarcomas.

7. Myxoinflammatory Fibroblastic Sarcoma

Myxoinflammatory fibroblastic sarcoma (MIFS), also known as inflammatory myxohyaline tumor of the distal extremities with vireocyte or Reed-Sternberg-like cells, is a recently described soft-tissue tumor entity [108, 109]. MIFS occurs predominantly in the subcutaneous tissues of distal extremities and has a peak incidence in the fourth and fifth decades of life with no gender predilection. Patients typically present with a slowly growing, painless, ill-defined mass. The preoperative diagnosis in most cases is benign and may include tenosynovitis, ganglion cyst, and giant cell tumor of tendon sheath [13]. Local recurrence and metastatic rates are 31.3% and 3.1%, respectively [110].

Histologically, MIFS is multinodular, poorly delineated, and characterized by a prominent myxoid matrix containing numerous inflammatory cells, including lymphocytes, plasma cells, neutrophils, and eosinophils [109]. Germinal centers are occasionally encountered. Neoplastic cells include spindle-shaped and epithelioid cells with mild to moderate nuclear atypia, large polygonal and bizarre ganglion-like cells, Reed-Sternberg-like cells with huge inclusion-like nucleoli, and multivacuolated lipoblast-like cells (Figure 5). Hemosiderin deposition may be conspicuous. Mitotic activity is usually low, and necrosis is rarely present. Immunohistochemically, the tumor cells are diffusely positive for vimentin and focally for CD68 and CD34 [16]. Occasional cases may show scattered cells that stain for cytokeratin or α-smooth muscle actin. Immunostains for S-100 protein, HMB-45, desmin, EMA, leukocyte common antigen, CD15, and CD30 are typically negative.

Cytogenetic and molecular cytogenetic studies have identified the frequent presence of a balanced or unbalanced t(1;10)(p22;q24) translocation and ring chromosomes containing amplified material from the 3p11-12 region in MIFS [111–113]. A balanced translocation, t(2;6)(q31;p21.3), has also been described as the sole anomaly in a single case [114]. Most recently, Antonescu et al. [115] demonstrated the presence of TGFBR3 (1p22) and MGEA5 (10q24) gene rearrangements by FISH in a subset of MIFS. It is of interest that the t(1;10) translocation and these gene rearrangements have also been identified in hemosiderotic fibrolipomatous tumor (HFLT) [113, 115–117]. These findings suggest that
MIFS and HFLT may represent different morphologic variants of the same entity.

Conventional and array CGH studies showed amplification of 3p11-12 [113, 118]. Notably, Hallor et al. [113] demonstrated that 3p11-12 amplification is associated with an increased expression of VGLL3 and CHMP2B. VGLL3 encodes a protein that is a cofactor of transcription factors of the TEAD family. It has also been shown that VGLL3 is amplified and overexpressed in myxofibrosarcoma, undifferentiated pleomorphic sarcoma, and dedifferentiated liposarcoma [119]. These findings strongly suggest that VGLL3 is the main target of 3p11-12 amplification and this genetic event plays an important role in the development and progression of certain subsets of soft-tissue sarcomas.

A recent gene expression analysis has shown that the FGF8 and NPM3 genes are upregulated in the t(1;10) - positive tumors compared with tumors without such a translocation [113]. These two genes downstream of MGEA5 have been mapped to 10q24. FGF8, a member of the fibroblast growth factor family, is a secreted heparin-binding protein, which has transforming potential. FGF8 is widely expressed during embryonic development. Overexpression of FGF8 has been shown to increase tumor growth and angiogenesis [120]. Hallor et al. [113] suggested that deregulation of FGF8 may constitute an important event in the development of a subset of MIFS.

8. Myxoid Dermatofibrosarcoma Protuberans

Myxoid dermatofibrosarcoma protuberans (DFSP) is a rare but distinctive variant of DFSP with a prominent myxoid matrix. Clinically, myxoid DFSP is similar to typical DFSP [121–123]. DFSP occurs primarily young to middle-aged adults with a male predominance, but this tumor may affect children, including congenital occurrence [124]. It typically presents as a slowly growing, plaque-like or small nodular lesion. The most common location is the trunk, followed by the limbs and head and neck area. Local recurrence and metastatic rates are 0%–52% and 0%–1.7%, respectively [125]. The overall prognosis of typical DFSP is excellent if completely excised with negative microscopic margins. Reimann and Fletcher [122] stated that myxoid DFSP appears to have a similarly good prognosis. Recognition of this DFSP variant is important to avoid misdiagnosis of more or less aggressive myxoid soft-tissue tumors.

Histologically, myxoid DFSP is characterized by a sheet-like to vaguely lobular proliferation of bland spindle cells in an abundant myxoid stroma (Figure 6). The tumor cells have slightly eosinophilic cytoplasm and stellate to oval nuclei with indistinct nucleoli. Branching, thin-walled blood vessels are frequently present. All cases display at least focally a strikingly infiltrative growth pattern, with trapping of subcutaneous adipose tissue in the characteristic honeycomb manner also observed in typical DFSP [122]. Mitotic activity is usually low. Immunohistochemically, the tumor cells are diffusely positive for vimentin and CD34. Immunostains for S-100 protein, desmin, muscle specific actin, α-smooth muscle actin, cytokeratin, and EMA are typically negative. Apolipoprotein D (APOD) has been found to be highly expressed in DFSP and its histological variants [126].

DFSP is characterized by an unbalanced translocation t(17;22)(q22;q13), which fuses the COL1A1 gene on 17q21-22 with the PDGFB gene on 22q13 [127–130]. The same molecular event is also seen in supernumerary ring chromosomes derived from the t(17;22) [129, 130]. Identical genetic changes have also been shown in the histological variants, including myxoid DFSP [123], pigmented DFSP (Bednar tumor) [131], Granular cell DFSP [132], juvenile variant of DFSP (giant cell fibroblastoma) [128], and fibrosarcomatous variant of DFSP [133, 134]. Other rare translocations, including t(X;7), t(2;7), t(9;22), and t(5;8), have also been described [135–138]. Moreover, several secondary nonrandom alterations have been identified, including trisomy 5 and trisomy 8 [130]. The clinical and biological implications of these chromosomal alterations are virtually unknown.

Conventional and array CGH studies showed gain or high-level amplification of 17q and 22q in most cases [139–141]. DFSP is occasionally misdiagnosed as benign lesions such as dermatofibroma, leading to improper primary management. We suggested that CGH may be a useful diagnostic tool for distinguishing DFSP from dermatofibroma [140]. The presence of gain in 8q was also observed [140–142]. Interestingly, FISH and CGH studies have indicated an association between an increased number of COL1A1-PDGFB genomic copies and fibrosarcomatous transformation in a subset of DFSP [139, 143, 144]. Most recently, Salgado et al. [145] reported that the majority of DFSP harbor the COL1A1-PDGFB fusion and FISH should be recommended as a routine diagnostic tool.

The breakpoint of PDGFB is remarkably constant (exon 2). In contrast, the COL1A1 breakpoint may occur in any of the exons in the α-helical coding region (exons 6–49). The most frequently rearranged COL1A1 exons are exon 25, 32, and 47 [146]. PDGFB encodes the β chain of platelet-derived growth factor. PDGFB is a potent mitogen for
a variety of cells [147]. COL1A1 encodes the pro-a1 chains of type I collagen whose triple helix comprises two a1 chains and one a2 chain. Type I collagen is a major structural protein found in the extracellular matrix of connective tissue such as skin, bone, and tendon. The COL1A1-PDGFB fusion protein is posttranslationally processed to a functional tissue such as skin, bone, and tendon. The COL1A1-PDGFB protein found in the extracellular matrix of connective and one α chain of type I collagen whose triple helix comprises two α2 chains plays a role in angiogenesis, cell survival, migration, and invasion. EGR2 is a transcription factor with three tandem C2H2-type zinc fingers and plays a role in the PTEN-induced apoptotic pathway [154]. MEOX1 has been mapped to 17q21 and encodes a member of a subfamily of nonclustered, diverged, antennapedia—like homeobox—containing genes. The homeobox genes are involved in early embryonic development and the determination of cell fate. Linn et al. [153] proposed the possibility that DFSP are derived from early embryonic mesenchymal cells.

9. Conclusions

It is important to be familiar with the clinicopathological and molecular genetic features of myxoid soft-tissue sarcomas for their accurate diagnosis and appropriate treatment. In our experience, FISH is a valuable ancillary diagnostic tool for these sarcomas, especially on limited tissue samples. Novel diagnostic and/or prognostic molecular markers as well as promising therapeutic targets have gradually been recognized. In the future, treatment decisions and prognosis assessment for myxoid soft-tissue sarcomas will increasingly be based on a combination of histological criteria and molecular identification of genetic alterations indicative of biological properties.

Acknowledgment

This work was supported in part by Kaibara Morikazu Medical Science Promotion Foundation, Japan Orthopaedics and Traumatology Foundation, Fukuoka Cancer Society, Clinical Research Foundation, and a Grant-in-Aid for Young Scientists (B) (21791424) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References

