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The subject of spectral line shapes (SLS), a.k.a. spectral
line broadening, which embraces both shapes and shifts
of spectral lines, is of both fundamental and practical
importance. On the fundamental side, the study of the
spectral line profiles reveals the underlying atomic and
molecular interactions. On the practical side, the spectral line
profiles are employed as powerful diagnostic tools for various
media, such as neutral gases, technological gas discharges,
magnetically confined plasmas for fusion, laser- and Z-
pinch-produced plasmas (for fusion and other purposes),
astrophysical plasmas (most importantly, solar plasmas), and
planetary atmospheres.

The research area covered by this special issue includes
both the SLS dominated by various electric fields (including
electron and ion microfields in strongly ionized plasmas) and
the SLS controlled by neutral particles. In the physical slang,
the former is called “plasma broadening” while the latter is
called “neutral broadening” (of course, the results of neutral
broadening apply also to the spectral line broadening in
neutral gases).

The goal of this special issue is to demonstrate the
most recent developments in this field. Topics presented
here are basically the same as for the biannual International
Conference on Spectral Line Shapes. This special issue
contains 4 review articles and 11 original research papers.

The first paper is a review article discussing the role of the
fully numerical simulations and complicated codes, which

are important as the third powerful research methodology,
with respect to experiments and theories. It shows by
examples the pitfalls of the trend where the ultimate test of
any theory is considered to be fully numerical simulations
and complicated codes instead of experiments conducted in
well-controlled conditions.

The second paper is a review article discussing the
spectral profiles of the quasimolecules formed in hot and
dense plasmas as two nuclei share a bound electron. The
study of spectral profiles is shown to be strongly related to
the collision dynamics of ions in excited states.

The third paper is a review article devoted to the current
status of the concept of plasma microfield. In this review, the
physical aspects of the most employed models are analyzed
and some open questions are highlighted.

The fourth paper is a review article presenting a quantum
statistical approach for calculating the line shape of neutral
helium lines in dense plasmas. The shifts and widths of
several lines are calculated and compared to experimental
results and other models.

The fifth paper revisits time ordering effects in Stark
profiles using simulation techniques that permit to repro-
duce the motion of the heavy particles in the plasma and
to obtain the electric fields at the location of the emitter.
By considering jointly Zeeman and Stark effects, the authors
obtained valuable spectral line profiles to be used in fusion
plasma diagnostics.
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The sixth paper provides a coherent description of the
hydrogen Brackett line shapes for plasma conditions relevant
to stellar observations in the corresponding infrared range. It
supplies tables of line profiles for astrophysical applications
intended to gain an insight into the physical properties of
stars.

The seventh paper employs a new statistical multiparticle
approach to calculate the effect on spectral line caused by
the acceleration of the perturbing electrons by the ion field.
It shows that two totally different analytical approaches
(dynamical and statistical) agree with each other by leading
to the reduction of the electron Stark broadening and,
therefore, disprove the corresponding recent fully numerical
simulations that claimed an increase of the electron Stark
broadening.

The eighth paper proposes a modelling of the distribu-
tion of collision times, and a study of their effect on collision-
induced molecular spectra. The use of a Poisson distribution
of velocities is shown to lead to an exactly soluble and realistic
model.

The ninth paper reports experiments performed using
laser-induced breakdown spectroscopy for studying the
evolution of C2 and C3 formation. This technique also
allowed the authors to study the carbon migration in the
plasma cell.

The tenth paper presents a unified impact model for
neutral species—the model incorporating velocity changing
effects and the speed dependence of coherence destruction.
Simple closed expressions are obtained for the dipole
correlation function, retaining the cubic time term.

The eleventh paper presents a quantum theoretical study
of the depolarized Raman spectrum of compressed hydrogen
gas at low temperature with a detailed analysis of the various
contributions to the line shape, as well as a comparison with
the experiment at the temperature of 50 K. These calculations
show the important contribution of interference and shape
resonance effects.

The twelfth paper reports the measurements and analysis
of Stark-broadened profiles of the H-gamma line emitted
from plasma formed by laser-induced optical breakdown in
a pulsed methane flow. The obtained values of the electron
density are in a good agreement with the corresponding
values found previously from Stark-broadened profiles of the
H-alpha and H-beta lines.

The thirteenth paper presents new results on the energy
and dipole surfaces of the complex H2–H2, allowing for the
calculation of the corrsponding rototranslational absorption
spectra. These spectra are of great interest for astrophysical
applications as they extend the available data to higher
temperatures, up to 2000 K.

The fourteenth paper explains how the spectrum of
Flucher alpha diagonal band of hydrogen molecules can be
prudently chosen to diagnose the temperature of hydrogen-
containing high-frequency electrodeless lamps. These lamps
are used for a wide range of applications.

The fifteenth paper is an experimental measure of
absorption line of atomic hydrogen by diode laser spec-
troscopy. The fitting of the spectra by two Gaussians reveals
the existence of low and high temperature components,

thus allowing their ratio to be used for monitoring the
dissociation of molecular oxygen.

Eugene Oks
Elisabeth Dalimier

Roland Stamm
Chantal Stehlé

Manuel A. Gonzalez
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Simulations of Shapes and Shifts of Spectral Lines (SSSL) are important as the third powerful research methodology—in addition
to theories and experiments. However, there is a growing tendency in physics in general and in the area of SSSL in particular, to
consider the ultimate test of any theory to be the comparison with results of a code based on fully-numerical simulations starting
from the “scratch” rather than from some analytical advance. In this paper, we show by examples that fully-numerical simulations
are often not properly verified and validated, fail to capture emergent principles and phenomena, and lack the physical insight.
Physics is the experimental science. So, the ultimate test of any theory—including theories of SSSL—should be the comparison
with experiments conducted in well-controlled conditions (benchmark experiments).

1. Introduction

By a commonly accepted classification, the determination
of Shapes and Shifts of Spectral Lines (SSSL) belongs to the
highest level of spectroscopy—compared to the determina-
tion of unperturbed wavelengths and frequency-integrated
intensities of spectral lines. In plasmas with the high degree
of ionization, SSSL are controlled primarily by various
electric fields: this is the Stark broadening of spectral lines
(the term includes both Stark shapes and Stark shifts). In
weakly ionized plasmas, a significant contribution to SSSL
can come from pressure broadening by neutrals.

The research area covered by this special issue includes
both the SSSL dominated by various electric fields (including
electron and ion microfields in strongly ionized plasmas) and
the SSSL controlled by neutral particles. In the physical slang,
the former is called “plasma broadening” while the latter is
called “neutral broadening” (of course, the results of neutral
broadening apply also to the spectral line broadening in
neutral gases).

The subject of SSSL is a rather old field beginning about
100 years ago for plasma broadening and even earlier (about
150 years ago) for neutral broadening. Despite the age, the
research area of SSSL is alive and flourishing and has a bright
future.

Indeed, the growth of this field is manifested both
“horizontally” (in terms of the number of publications)
and “vertically” (in terms of breakthroughs to advanced
approaches and better physical insights). Just over the last
5 years, there have been published several books (such as,
e.g., [1–3]) and numerous papers in refereed journals and/or
conference proceedings (examples of the latter are [4, 5]).
Examples of vertical advances are (but not limited to):

(i) unification of the impact and one-perturber theories
of line shapes [6],

(ii) QED approach to modeling spectra of isolated atoms
and ions, as well as those influenced by a strong laser
field [7, 8],

(iii) path integral formalism for the spectral line shapes in
plasmas [9],

(iv) temperature dependence of the Stark broadening
dominated by strong collisions [10],

(v) various new features in X-ray spectral lines from
plasmas, such as charge-exchange-caused dips [11],
Langmuir-waves-caused dips [12], and effects of
external laser fields [13–16],



2 International Journal of Spectroscopy

(vi) formalism of dressed atomic states for diagnos-
tics (including laser-aided diagnostics) of quasi-
monochromatic electric fields in plasmas [17, 18],

(vii) formalism of atomic states dressed by the broadband
electric microfield in plasmas [2, 19].

Just the above incomplete list demonstrates the virility of
the area of SSSL. This special issue is a further proof of this
fact. There is no doubt in our mind that the field of SSSL
will continue thriving. However, there is a trend, which—if
continued—could jeopardize this research area. It has to do
with the following.

One of the most important questions in physics in
general and in SSSL in particular is what should be the
ultimate test of various theories. There are two different
schools of thought on this issue.

One school of thought considers the comparison with
benchmark experiments as the ultimate test of the theory.
Benchmark experiments are those that are conducted in well-
controlled conditions, for example, for SSSL in plasmas,
benchmark experiments are those, where plasma parameters
are determined independently of the SSSL theory to be
tested.

Another school of thought insists that the ultimate test of
a particular theory is the comparison with another theory
(!)—specifically, with results of a code based on fully-
numerical simulations starting from the “scratch” rather
than from some analytical advance.

There is no question about the importance of simulations
as the third powerful research methodology—in addition to
theories and experiments. Large-scale codes have been cre-
ated to simulate a garden variety of complicated phenomena.

However, first, not all large-scale codes are properly
verified and validated. Second, fully-numerical simulations
are generally ill-suited for capturing so-called emergent
principles and phenomena, such as conservation laws, the
laws of thermodynamics, detailed balance, and preservation
of symmetries. Third, as any fully-numerical method, they
lack the physical insight. A number of physicists started
warning about this several years ago. Let us present the
relevant quotations.

In 2005 Post and Votta published a very insightful
article [20], the main point of which was that “much of
computational science is still troublingly immature” and that
new methods of verifying and validating complex codes are
necessary and should be mandatory. Further they wrote

“A computational simulation is only a model of
physical reality. Such models may not accurately
reflect the phenomena of interest. By verification
we mean the determination that the code solves
the chosen model correctly. Validation, on the
other hand, is the determination that the model
itself captures the essential physical phenomena
with adequate fidelity. Without adequate verifica-
tion and validation, computational results are not
credible.”

They described the underlying problems as follows:

“Part of the problem is simply that it’s hard to
decide whether a code result is right or wrong.
Our experience as referees and editors tells us that
the peer review process in computational science
generally doesn’t provide as effective a filter as it
does for experiment or theory. Many things that
a referee cannot detect could be wrong with a
computational-science paper. The code could have
hidden defects, it might be applying algorithms
improperly, or its spatial or temporal resolution
might be inappropriately coarse.

The few existing studies of error levels in scientific
computer codes indicate that the defect rate is
about seven faults per 1000 lines of Fortran.
That’s consistent with fault rates for other complex
codes in areas as diverse as computer operating
systems and real-time switching. Even if a code
has few faults, its models and equations could be
inadequate or wrong. . .

The existing peer review process for computational
science is not effective. Seldom can a referee
reproduce a paper’s result. Generally a referee can
only subject a paper to a series of fairly weak
plausibility checks: Is the paper consistent with
known physical laws? Is the author a reputable
scientist? Referees of traditional theoretical and
experimental papers place some reliance on such
plausibility checks, but not nearly to the degree
a computational-science referee must. The plau-
sibility checks are, in fact, sometimes worse than
inadequate.”

This was written by two leading experts in computational
science. Indeed, Post is a computational physicist at Los
Alamos National Laboratory and an associate Editor-in-
Chief of the journal Computing in Science and Engineering.
Votta is a Distinguished Engineer at Sun Microsystems Inc.
and an associate Editor of IEEE Transactions on Software
Engineering. No wonder that their paper caused lots of
comments published in [21]. In one of the comments, J.
Loncaric from Los Alamos wrote in particular:

“Unfortunately, these days universities turn out
users who employ codes as black boxes but do not
understand what they do or when their results can
be trusted.”

Further, speaking of components of a code, he added

“. . . components can be combined, but their
combination could be wrong even though the
components test well individually. A combination
that is insensitive to minor component errors could
still give invalid results. Each component has an
unstated region of applicability that is often hor-
ribly complicated to describe, yet the combination
could unexpectedly exceed individual component
limits.”

Responding to the comments, Post and Votta wrote in
particular [21]:
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“The second point Loncaric highlights is that a
model for a natural system—physical, chemical,
biological, and so forth—is often much more
than the sum of the individual components. For
physical systems, Robert Laughlin recently pointed
out that much of science today is inherently
reductionist. Present scientific research paradigms
emphasize the detailed study of the individual ele-
ments that contribute to a complex system’s behav-
ior. High-energy physics, for example, involves
the study of fundamental particles at progressively
higher accelerator energies. Yet successful models
of complex systems, such as low-temperature
superconductors, are relatively insensitive to the
detailed accuracy of the individual constituent
effects. Laughlin stresses that successful models
capture the emergent principles that determine the
behavior of complex systems. Examples of these
emergent principles are conservation laws, the
laws of thermodynamics, detailed balance, and
preservation of symmetries.

Since a computational simulation is only a model
of nature, not nature itself, there is no assurance
that a collection of highly accurate individual
components will capture the emergent effects.
Yet most computational simulations implicitly
assume that if each component is accurate, the
whole code will be accurate. Nature includes all
of the emergent phenomena, but a computational
model may not. This perspective underscores the
importance of validation of the integrated code
and of individual models.”

The above general deficiencies of complicated codes
resulted in huge failures of important large-scaled projects.
Post and Votta described the following examples [20]:

“Examples abound of large-scale software fail-
ures in fields like information technology and
aerospace. The 1995 failure of the European Space
Organization’s Arianne 5 rocket and the 1999 loss
of NASA’s Mars Climate Orbiter are still fresh in
memory. After the Columbia space shuttle’s ill-
fated February 2003 launch and first reports of
possible problems with the mission, a NASA—
Boeing team’s computational assessment of poten-
tial failure modes yielded misleading conclusions
that may have contributed to the tragedy.

The quest for fusion energy provides two more
examples of problematic computation. By stretch-
ing boundary conditions far beyond what could
be scientifically justified, computer simulations
were able to “reproduce” the exciting but wrong
experimental discovery of sonoluminescent fusion.
With regard to the International Thermonu-
clear Experimental Reactor (ITER), preliminary
computational predictions in 1996 of inadequate
performance by the proposed facility were wrongly

characterized as definitive. Those predictions con-
tributed to the 1998 US withdrawal from that
important and promising international undertak-
ing.”

As for the research area of SSSL, let us bring up just
one example of the unjustifiable reliance on fully-numerical
simulations that led to a conclusion contradicting first-
principle-based analytical results obtained in various ways.
The example concerns a direct coupling of the electron and
ion microfields in plasmas. This coupling results from the
Acceleration of the Electrons by the Ion Field (AEIF). The
AEIF is a universal effect: it affects all kinds of spectral lines.
The net result of the AEIF is a reduction of Stark widths and
shifts.

This phenomenon was first described analytically in the
binary approach in paper [22] with subsequent analytical
improvements in paper [23]. Then it was also described
analytically in the multiparticle approach in book [2] and
paper [19].

More recently, there have been conducted fully-
numerical simulations trying to “mimic” the phenomenon
of AEIF [24]. Based on their fully-numerical simulations
conducted for the Hα line at just one value of the electron
density Ne and just one value of the temperature T , the
authors of [24] claimed that the AEIF leads to an increase of
the electron-caused Stark width rather than to its decrease.

It should be emphasized that those simulations [24]
had lots of limitations. The primary limitation was their
employment of the binary version of the AEIF. Thus, their
results have no bearing on the analytical results for the AEIF
obtained in the multiparticle approach [2, 19]. Nevertheless,
the controversial results of simulation from [24] for the
binary version of the AEIF required a resolution.

This issue has been resolved in [25] as follows. The
previous analytical calculations of the AEIF [2, 19, 22, 23]
were based on the dynamical treatment of the perturbing
electrons. In other words, in [2, 19, 22, 23] there was
calculated analytically how the ion microfield changes the
trajectories and velocities of the individual perturbing elec-
trons and then averaged their contribution to the broad-
ening over the ensemble of electrons. In [25], instead of
the dynamical treatment there was employed a statistical
approach. It started from the electron velocity distribution
function modified by the presence of the ion microfield—
this modified electron velocity distribution function had
been calculated (for a different purpose) by Romanovsky and
Ebeling in the multiparticle description of the ion microfield
[26]. With the help of the modified electron velocity
distribution function from [26], it was then calculated in [25]
the Stark broadening by electrons within the framework of
the conventional theory usually assigned to Griem [27] (who
is one of the coauthors of [24]). The result showed that the
electron Stark broadening decreases.

Thus two totally different analytical approaches (dynam-
ical and statistical) agreed with each other (by predicting
a decrease of the electron Stark broadening) and therefore
disproved the fully-numerical simulations from [24] (that
claimed an increase of the electron Stark broadening).
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In summary, while simulations are important as the third
powerful research methodology—in addition to theories and
experiments—there is a growing tendency in physics in
general and in the area of spectral line shapes in particular,
to consider the ultimate test of a particular theory to be the
comparison with results of a code based on fully-numerical
simulations. However, fully-numerical simulations are often
not properly verified and validated, fail to capture emergent
principles and phenomena, and lack the physical insight. The
last but not least: physics is the experimental science. So, the
ultimate test of any theory—including theories of spectral
line shapes—should be the comparison with experiments
conducted in well-controlled conditions (benchmark exper-
iments).
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The interaction between quasimolecular states produces not only nonadiabatic transitions but also some exotic features in the
wings of the spectral profiles emitted by the ions in collision. Although this concept has been fruitfully used for neutral species,
some new highlighted experimental data on quasimolecular optical transitions in hot dense plasma have renewed the interest to
the concept in the recent years. The present review deals with highly charged quasimolecules and it is dedicated specifically to
quasimolecules formed by two bare nuclei and one bound electron. The reason for this choice is that, for such quasimolecules, the
energy terms and the dipole moments of the optical transitions can be obtained straightforwardly in nonrelativistic case without
any approximation that are typical for neutrals. Although the results obtained in the frame of the approach developed here are
directly applicable to the case of single collisions or to low-density plasmas, they form a reasonable initial approximation for the
problem of optical profiles in hot dense plasmas and can be regarded as a safe framework for qualitative discussions of profiles in
those environments.

1. Introduction: Features of Spectral
Profiles following the Interaction of
Quasimolecular States

The concept of quasi-molecular (QM) states that are
formed during collisions of atomic particles has proved
to be successful in describing collision processes at low
energies including charge-exchange processes. In frame of
the QM approach, nonadiabatic transitions in collisions can
be regarded as a consequence of the interaction between
different QM states at some interatomic distances and can
be analytically described by the Landau-Zener model or
the Demkov-Nikitin model [1, 2]. However the QM states
participating in collision processes are very often subjected to
optical transitions. The question therefore arises whether the
interaction of the states during a collision affects the spectral
line shape and if so, how? An analysis based on the general
theory of quasistationary states, that is, the states that are
unstable due to the emission of photons or electrons during

the collisions, has shown that the interaction of QM states
does indeed give rise to exotic features in the profiles [3, 4]. In
particular, analytical formulae have been obtained describing
the features produced by the crossing of QM energy terms
[5, 6]. It should be stressed that the approach proposed here
has related the cross-sections of nonadiabatic transitions to
the spectral features averaged over impact parameters and
Maxwell’s distribution.

In spite of successful applications of the elaborated
theory to experiments with neutrals, for example, [6–9],
attention had not been paid to ion collisions in plasma, until
recent experiments in hot dense plasmas [10–14] exhibiting
fine structures, that is, satellites in F Lyman β profile emitted
by a fluorine plasma, dips, and bumps in the Al Lyman
γ profile emitted by a heterogeneous Al-C plasma. The
fine structures in Al Lyman γ have been connected to
intersections of QM Al-C energy terms. This work was the
first to reveal charge-exchange signature in the spectral line
shape in hot dense plasmas.
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The main objective of the present paper is to overview the
recent theoretical and numerical developments in the specific
field of spectral signatures of nonadiabatic transitions,
namely, charge-exchange processes. Those processes are basic
ones for plasma physics, and, among other things, they
play an important role in understanding the interaction
of high-temperature plasmas with cold gases [15] or the
interactions at the edge plasmas in Tokamaks [16]. It is
important to emphasize that the features mentioned above
in the spectral profiles can be utilized as diagnostics. The
whole study is complementary to the analysis of the coupling
between charge-exchange processes dynamics and ionic
populations dynamics in plasmas, the latter study being
addressed to line intensities instead of spectral line shapes
[16].

The focus of the survey is at the one-electron ionic quasi-
molecule. The reason is that, in addition to hot plasma and
astrophysics applications, the one-electron quasi-molecule
is the unique example of quasi-molecules for which energy
terms and dipole moments can be calculated straightfor-
wardly, with any desired precision excluding uncertainties
in the input data (those uncertainties on terms and dipole
moments are quite typical in the calculations of profiles
produced by neutrals collisions.).

2. Energy Terms and Dipole Optical
Transition Moments for the Molecule Z1eZ2

This part is devoted to the calculation of the energy terms
and the dipole transition matrix elements and related
optical values, for multicharged one electron diatomic
quasi-molecules with unequal nuclear charges Z1 and Z2

(Z1eZ2 notation for the quasi-molecule). The first wave of
interest for such molecules was initiated by spectroscopic
observations attributed to inner-shell excitations in ion-
atom collisions [17, 18]. Another wave came from the
hot dense plasma physics community. The excited state
orbital of mononuclear ion bound electrons may be strongly
disturbed by the field of the nearest-neighbor ion. Within
these conditions, transitions in quasi-molecules are relevant
for the interpretation of experimental results [10–14, 19, 20].

At first the exchange interaction in the quasi-molecule
and its influence on the spectral profiles was considered
with the rough approximations of exponential interaction
energies and constant dipole matrix elements. These approx-
imations are valid for allowed transitions produced by quasi-
molecular transitions in the region of large internuclear dis-
tances. The approach is unsuitable for forbidden transitions
characterized by a strong dependence of the dipole matrix
elements on the internuclear distance. The need of accurate
values of dipole moments over a wide range of internuclear
distances rather than restricted to large ones only is then
obvious.

At this step it is important to notice that the dipole
matrix elements for the one-electron heterodiatomic quasi-
molecules (Z1 /=Z2), in the frame of nonrelativistic approach,
had not been calculated before the work done by Devdariani
et al. [21]; only the quasi-molecular energy terms had been
reviewed in details by Komarov et al. [22].

In the present section we first scale the radiative charac-
teristics of the one-electron heterodiatomic quasi-molecules,
then; after summarizing the method of calculation of the
energy terms and the dipole moments matrix element, we
provide some results and applications to spectroscopy.

2.1. Scaling the Radiative Characteristics. We derive the
formulae which relate the radiative characteristics of the one-
electron diatomic quasi-molecule with nuclei charges Z1 and
Z2 (Z1 ≥ Z2) to the same characteristics of the one-electron
quasi-molecule with nuclei charges Z′1 = Z1/Z2 and Z′2 = 1.

For an electron being in the field of two fixed nuclei Z1

and Z2 separated at the distance R, the matrix element of the
electric dipole moment operator between states specified by
quantum numbers i,mi and j,mj is given by the following
formula:

−→
d imi, jmj (Z1,Z2,R) =

∫
ψ∗imi

(−→r ,R
)−→r ψjmj

(−→r ,R
)−→
dr. (1)

In (1) mi and mj stand for the magnetic quantum numbers,
which determine the projection of the orbital momentum

of the electron on the internuclear axis
−→
R , −→r denotes the

position vector of the electron (with origin at the middle
of the internuclear axis), and ψimi and ψjmj are the two-
Coulomb-centre wave-functions. These eigen-functions are
solutions of the Shrödinger equation for the energy terms
εi|mi|(R) respectively.

The oscillator strength fi j(Z1,Z2,R) corresponding to the
electric dipole transition i → j is determined by means of
the matrix element (1), that is,

fi j(Z1,Z2,R) = −2
3

�ij(R)

gi

∑
mi,mj

∣∣∣−→d imi, jmj (Z1,Z2,R)
∣∣∣2

, (2)

where �ij(R) = εi|mi|(R)− ε j|mj |(R) is the difference between
the energy terms, and gi is the degree of degeneracy or
statistic weight of the initial level i (gi = 1 for states with
mi = 0 and gi = 2 for states with mi /= 0).

Finally for spontaneous emission by a quasi-molecule
Z1eZ2 from the state i to j, the probability per time unit
Aij(Z1,Z2,R) can be expressed in terms of the oscillator
strength of the corresponding transition [23]:

Aij(Z1,Z2,R) = 2α3�2
i j(R)

∣∣∣ fi j(Z1,Z2,R)
∣∣∣, (3)

where α is the fine structure constant.
Let us perform the following scale transformations:

−→r =
−→ρ
Z2

,
−→
R =

−→
L

Z2
, Z′1 =

Z1

Z2
, Z′2 = 1. (4)

It can be shown that the normalized eigen-functions and the
eigen-values of the two-center Shrödinger equation verify the
following relations [24]:

ψimi

(−→r ,R
) = Z3/2

2 ϕimi

(
Z2
−→r ,Z2R

)
,

εi|mi|(R) = Z2
2εi|mi|(Z2R).

(5)
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Figure 1: Molecular orbital correlation diagram for the quasi-
molecule Z1eZ2 with Z1 = 1.5 and Z2 = 1. For the notation of the
molecular orbitals, we use the united ion designation in the left part
of the figure and the parabolic quantum numbers in brackets in the
right part of the figure. n stands for the main quantum number in
the separated ions limit, and the primed numbers are for the ion
with Z1 = 1.
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Figure 2: Molecular orbital correlation diagram for the quasi-
molecule Z1eZ2 with Z1= 2.0 and Z2= 1. The notations are similar
to the ones on Figure 1.

As a consequence this gives the scaling transformations for
the radiative characteristics of the quasi-molecule Z′1eZ

′
2

experimenting the electric dipole transition i → j.

−→
d imi, jmj (Z1,Z2,R) = 1

Z2

−→
d imi, jmj

(
Z′1,Z′2,L

)
,

fi j(Z1,Z2,R) = fi j
(
Z′1,Z′2,L

)
,

Aij(Z1,Z2,R) = Z2
4Aij

(
Z′1,Z′2,L

)
.

(6)

In the particular case of homonuclear quasi-molecules (Z1 =
Z2 = Z), the radiative characteristics reduce to the ones
relevant to the hydrogen molecular ion H+

2 .
The formulae obtained above reduce the calculation

of the radiative characteristics of the one-electron quasi-
molecules with the nuclei charges kZ1 and kZ2 (k =
1, 2, 3, . . .) to the calculation of the same characteristics for a

single quasi-molecule with the nuclei charges Z′1 = Z1/Z2 and
Z′2 = 1. We emphasize that the calculation of the radiative
characteristics for the quasi-molecules with smaller nucleus
charges is timesaving and faced with smaller computational
difficulties.

2.2. The Molecular Orbital (MO) Energy Diagrams and the
Dipole Moment Matrix Elements [21]. It is well known that
the Schrödinger equation of the two-coulomb-centre system
is separable by using the prolate spheroı̈dal coordinate system
(ξ,η,ϕ) related to the coordinates x, y, z of the electron
position vector through

x = R

2

√
(ξ2 − 1)

(
1− η2

)
cosϕ,

y = R

2

√
(ξ2 − 1)

(
1− η2

)
sinϕ,

z = R

2
ξη.

(7)

The solution of this equation can then be presented as the
following product:

ψimi

(−→r ,R
) = 1√

2π
Xi|mi|(ξ,R)Yi|mi|

(
η,R

)
eimiϕ,

1 ≤ ξ <∞, −1 ≤ η ≤ 1, 0 ≤ ϕ < 2π.

(8)

Here Xi|mi|(ξ,R) and Yi |mi|(η,R) stand for the normalized
two-Coulomb-centre quasi-radial and quasi-angular wave
functions. After an integration over ϕ, the dipole matrix
elements, depending on the wave-functions ψimi and ψjmj ,
can be expressed through those forms:

(dx)imi, jmj
= ±i

(
dy
)
imi, jmj

= R4

32

[∫∞
1
Xi|mi|Xj|mj|

√
ξ2 − 1ξ2δξ

×
∫ 1

−1
Yi|mi|Yj|mj|

√
1− η2δη

−
∫∞

1
Xi|mi|Xj|mj|

√
ξ2 − 1δξ

×
∫ 1

−1
Yi|mi|Yj|mj|

√
1− η2η2δη

]
,

(9)

(dz)imi, jmj
= R4

16

[∫∞
1
Xi|mi|Xj|mj|ξ3dξ

∫ 1

−1
Yi|mi|Yj|mj|ηdη

−
∫∞

1
Xi|mi|Xj|mj|ξdξ

∫ 1

−1
Yi|mi|Yj|mj|η3dη

]
.

(10)
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Table 1: Dipole moment matrix elements for transitions 2pσ → 1sσ and 3dσ → 1sσ in relation to the distance R between ions Z1 =
1.5, 2.0, 2.5, 3.0 and Z2 = 1, all values in atomic units.

R
2pσ → 1sσ 3dσ → 1sσ

Z1 = 1.5 Z1 = 2.0 Z1 = 2.5 Z1 = 3.0 Z1 = 1.5 Z1 = 2.0 Z1 = 2.5 Z1 = 3.0

0.25 −0.33803 −0.28907 −0.25263 −0.22412 −0.00174 −0.00303 −0.00404 −0.00485

0.50 −0.41545 −0.36026 −0.31328 −0.27264 −0.00488 −0.00885 −0.01202 −0.01446

0.75 −0.50288 −0.42748 −0.35600 −0.29371 −0.01044 −0.01920 −0.02566 −0.02989

1.00 −0.58488 −0.47277 −0.36814 −0.28570 −0.01962 −0.03555 −0.04541 −0.05021

1.50 −0.70306 −0.48210 −0.32696 −0.23558 −0.05478 −0.08810 −0.09784 −0.09613

2.00 −0.73859 −0.41656 −0.26382 −0.19231 −0.12002 −0.15697 −014965 −0.13021

2.50 −0.68315 −0.33383 −0.21462 −0.16807 −0.20965 −0.21854 −0.18207 −0.14208

3.00 −0.56969 −0.26313 −0.18281 −0.15913 −0.29820 −0.25760 −0.19418 −0.13747

3.50 −0.44511 −0.20898 −0.16470 −0.16077 −0.36338 −0.27608 −0.19380 −0.12248

4.00 −0.33529 −0.16811 −0.15710 −0.16779 −0.40070 −0.28197 −0.18663 −0.10089

4.50 −0.24687 −0.13647 −0.15830 −0.17481 −0.41596 −0.28172 −0.17467 −0.07747

5.00 −0.17850 −0.11095 −0.16738 −0.17913 −0.41672 −0.27920 −0.15713 −0.05717

6.00 −0.08884 −0.07110 −0.19803 −0.18181 −0.39782 −0.27401 −0.10127 −0.03076

7.00 −0.04175 −0.04202 −0.21427 −0.18187 −0.37434 −0.27132 −0.04739 −0.01693

8.00 −0.01880 −0.02280 −0.21733 −0.18147 −0.35788 −0.27062 −0.02052 −0.00928

9.00 −0.00821 −0.01163 −0.21755 −0.18103 −0.35023 −0.27079 −0.00893 −0.00494

10.0 −0.00352 −0.00570 −0.21727 −0.18062 −0.34912 −0.27106 −0.00390 −0.00255

12.0 −0.00062 −0.00127 −0.21655 −0.17992 −0.35424 −0.27107 −0.00074 −0.00063

14.0 −0.00010 −0.00026 −0.21591 −0.17938 −0.35822 −0.27060 −0.00014 −0.00014

16.0 −0.00002 −0.00005 −0.21537 −0.17896 −0.35959 −0.27004 −0.00002 −0.00003

18.0 0.00000 −0.00001 −0.21492 −0.17862 −0.35979 −0.26951 0.00000 −0.00001

20.0 0.00000 0.00000 −0.21455 −0.17834 −0.35957 −0.26904 0.00000 0.00000

22.0 0.00000 0.00000 −0.21423 −0.17810 −0.35922 −0.26862 0.00000 0.00000

24.0 0.00000 0.00000 −0.21397 −0.17790 −0.35883 −0.26825 0.00000 0.00000

26.0 0.00000 0.00000 −0.21373 −0.17773 −0.35844 −0.26793 0.00000 0.00000

28.0 0.00000 0.00000 −0.21353 −0.17759 −0.35807 −0.26764 0.00000 0.00000

30.0 0.00000 0.00000 −0.21336 −0.17746 −0.35773 −0.26739 0.00000 0.00000

∞ 0.00000 0.00000 −0.21070 −0.17558 −0.35117 −0.26337 0.00000 0.00000

They satisfy the selection rules for the magnetic quantum
number in the case of dipole transitions, that is, mj = mi ∓ 1
in (9) for the radiation polarized in the plane perpendicular

to
−→
R (σ − π transitions) and mj = mi in (10) for the

radiation polarized along the internuclear axis
−→
R (σ−σ , π−

π transitions).
The wave functions have been expanded in various forms

involving coefficients determined by recurrence relations
[21] and yielding the relative accuracy of order 10−12 for the
energy terms and the accuracy of order 10−8 − 10−10 for the
corresponding quasiradial and quasiangular wave functions.
Thus, the accuracy of the calculated matrix elements can be
estimated at 10−8 [21].

The dipole matrix elements (and all energy terms
involved) have been calculated for all transitions between
the states with the principal quantum number in the united
ion limit nu = 1, 2, 3 and for four transitions involving
nu = 4. The calculations have been carried out for the quasi-
molecules with the nucleus charges Z1 = 1.5, 2, 2.5, 3 and
Z2 = 1. Some results are given in Tables 1 and 2 for the
dipole matrix elements and in Figures 1, 2, and 3 for the

energy terms (MO) correlation diagrams. The choice of these
results gives examples relevant to the discussion of the most
important new features.

In this paper we will not be concerned with the existence
of extrema in the energy terms; this feature has been
previously used for high-density plasma spectroscopy [10–
14, 19, 20].

The most prominent other new features that can be
deduced from the data are as follows: (i) the matrix elements
strongly depend on the internuclear distance R; (ii) some
matrix elements of the quasi-molecules, with different Z1

at large R, exchange their limiting values; (iii) the limiting
values of some matrix elements, at large R, tend in pairs to
the same values or to values of equal modulus and opposite
signs, and some of them are equal to zero; (iv) some of the
matrix elements have zeros at intermediate R.

Below, some features are discussed qualitatively in more
detail through examples.

2.2.1. The Limiting Values. A novel feature for the hetero-
nuclear quasi-molecules is that the correlation diagram,
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Table 2: Dipole moment matrix elements for transitions 3pσ → 1sσ and 4pσ → 1sσ in relation to the distance R between ions Z1 =
1.5, 2.0, 2.5, 3.0 and Z2 = 1, all values in atomic units.

R
3pσ → 1sσ 4pσ → 1sσ

Z1 = 1.5 Z1 = 2.0 Z1 = 2.5 Z1 = 3.0 Z1 = 1.5 Z1 = 2.0 Z1 = 2.5 Z1 = 3.0

0.25 −0.12796 −0.10778 −0.09289 −0.08137 −0.07421 −0.06223 −0.05341 −0.04662

0.50 −0.13743 −0.11347 −0.09481 −0.08004 −0.07673 −0.06251 −0.05167 −0.04327

0.75 −0.13436 −0.10445 −0.08230 −0.06729 −0.07096 −0.05396 −0.04225 −0.03417

1.00 −0.11617 −0.08495 −0.06615 −0.05399 −0.05717 −0.04080 −0.03165 −0.02597

1.50 −0.06109 −0.04839 −0.04293 −0.03791 −0.02412 −0.01944 −0.01814 −0.01653

2.00 −0.01617 −0.02939 −0.03216 −0.03033 −0.00027 −0.00881 −0.01182 −0.01179

2.50 0.00886 −0.02113 −0.02680 −0.02630 0.01284 −0.00385 −0.00833 −0.00881

3.00 0.01882 −0.01735 −0.02389 −0.02393 0.01881 −0.00122 −0.00606 −0.00665

3.50 0.02062 −0.01549 −0.02229 −0.02235 0.02099 0.00036 −0.00442 −0.00494

4.00 0.01898 −0.01459 −0.02142 −0.02111 0.02138 0.00139 −0.00313 −0.00352

4.50 0.01626 −0.01426 −0.02095 −0.02001 0.02096 0.00211 −0.00207 −0.00231

5.00 0.01345 −0.01431 −0.02062 −0.01897 0.02016 0.00264 −0.00114 −0.00126

6.00 0.00871 −0.01520 −0.01989 −0.01705 0.01817 0.00340 0.00044 0.00047

7.00 0.00537 −0.01666 −0.01885 −0.01537 0.01619 0.00403 0.00177 0.00182

8.00 0.00313 −0.01808 −0.01766 −0.01394 0.01447 0.00465 0.00290 0.00290

9.00 0.00169 −0.01888 −0.01646 −0.01273 0.01306 0.00529 0.00386 0.00378

10.0 0.00080 −0.01894 −0.01536 −0.01171 0.01197 0.00593 0.00469 0.00452

12.0 0.00004 −0.01787 −0.01346 −0.01007 0.01060 0.00714 0.00604 0.00568

14.0 −0.00010 −0.01641 −0.01194 −0.00882 0.01021 0.00821 0.00709 0.00656

16.0 −0.00008 −0.01504 −0.01072 −0.00785 0.01082 0.00913 0.00793 0.00725

18.0 −0.00005 −0.01383 −0.00971 −0.00707 0.01228 0.00993 0.00862 0.00781

20.0 −0.00002 −0.01277 −0.00887 −0.00643 0.01367 0.01061 0.00919 0.00826

22.0 −0.00001 −0.01186 −0.00817 −0.00589 0.01448 0.01120 0.00968 0.00865

24.0 −0.00001 −0.01106 −0.00756 −0.00544 0.01504 0.01172 0.01010 0.00897

26.0 0.00000 −0.01036 −0.00704 −0.00505 0.01552 0.01219 0.01046 0.00926

28.0 0.00000 −0.00973 −0.00659 −0.00471 0.01596 0.01260 0.01078 0.00950

30.0 0.00000 −0.00918 −0.00619 −0.00442 0.01637 0.01296 0.01107 0.00972

∞ 0.00000 0.00000 0.00000 0.00000 0.02621 0.01966 0.01573 0.01311

which relates the orbitals of the isolated and united ions,
now depends on Z1. More precisely, the rearrangement
for the dipole matrix elements of the Molecular Orbital
(MO) correlation diagrams results in the dependence of
the limiting values on Z1, apart from the trivial scaling,
and in the exchange of the limiting values. To exemplify
the dependence of the limiting values on Z1 we take the
particular case of the matrix element 〈010|dz|000〉 =
−128/243Z1 for the hydrogen-like ion (for large R the matrix
elements are in parabolic coordinates). According to Figures
1–3 and Table 1 this matrix element is the limiting value for
the transition between the 3dσand 1sσstates in the case of
Z1 = 1.5, 2; but in the case Z1 = 2.5, 3, this matrix element
is the limiting value for the transition between the 2pσ and
1sσ states. Also Figures 1–3 shows that the 2sσ , 2pπ, 3sσ , 3pπ
MO energy diagrams do not depend on Z1.

2.2.2. The Roots of the Optical Transition Dipole Moments.
When the dipole matrix element between two states of an
atom or an ion is equal to zero, the transition is forbidden.
Nevertheless the interaction between particles during the

collisions will allow the dipole matrix elements to become
functions of internuclear distance and the optical transitions
to be allowed. Such optical transitions can be identified as
true quasi-molecular ones, and up to now some of these
transitions produced in atomic and ionic collisions have been
studied [26–28].

The existence of zeros in the dipole transition matrix
elements had already been pointed out for symmetrical
quasi-molecules [31, 32]. In the hetero-nucleus case, the
parallel transitions, having zeros in the symmetrical case,
have zeros for all Z1 values considered here, namely, 4pσ −
1sσ ; see Table 2. The matrix element for the transition 3pσ −
1sσ has two zeros but only for Z1 = 1.5 and has no zero
otherwise; see Table 2.

In the hetero-nuclear quasi-molecules there is an addi-
tional possibility for asymptotically forbidden-transitions.
When at R → ∞ the upper and lower states belong to
different ions, the corresponding wave functions do not
overlap, and therefore, the matrix element is equal to zero.
At smaller R, the interaction between two different ions
will allow optical transitions corresponding to the transition
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of one electron from one ion to the other. Such optical
transitions involve a nonresonant charge-exchange process
and they correspond to asymptotically forbidden transitions.
As examples the transitions 2pσ − 1sσ for Z1 = 1.5, 2 and
3dσ−1sσ for Z1 = 2.5, 3 accompanying the charge-exchange
between the lowest ion states with parabolic sets (000)
and (000)′ correspond to such asymptotically forbidden-
transitions (see Table 1).

The results of these calculations put forward two prob-
lems: what is the reason for the roots and how can we
describe the spectral features produced?

3. Spectral Features Due to
Intersection of Energy Terms

In this part we will show that the intersection of terms not
only leads to the formation of extrema in energy terms but
can also be responsible for the roots of dipole moments. As
for the spectral features, an extremum in an energy term will
then not necessarily produce a satellite. Of particular interest
is the role of dipole transition moments [21, 33], which can
lead, in the case of zeros, to the formation of dips in the
far wing spectral profiles [21]. This phenomenon has been
discussed in two limiting cases, adiabatic and diabatic [34].

3.1. The Two-State Model for the Dipole Moments. The
prediction of roots and their positions can be made within
the two-state model.

Let us next consider the two-state adiabatic and diabatic
wave functions |ΨI ,II〉 and |ϕ1,2〉, for the quasi-molecule,
respectively. We now follow the Nikitin model [25] that is
appropriate to have an idea of all situations and can reveal the
main conclusions. The model gives for the diabatic matrix
elements Vik = 〈ϕi|V |ϕk〉 of the interaction between the two
ions:

Vik = δik

[
V(x) +

Δε

2
(1− e−x cos 2Θ0)(−1)1+i

]

+ (1− δik)
Δε

2
e−x sin 2Θ0.

(11)

The variable x is a dimensionless distance (x = 0 at the center
of the considered nonadiabatic region). The parameter Θ0

characterizes two alternative evolutions of the energy terms
in the considered transition zone, namely, intersecting, 0 ≤
Θ0 ≤ π/4, (Figure 4(a)) or nonintersecting, π/4 ≤ Θ0 ≤ π/2,
(Figure 4(b)) diabatic terms. Δε is the splitting between the
terms at large distances.

The same model leads to the following adiabatic dipole
moments:

D =
√
d2

1 + d2
2

∣∣∣∣∣∣
cos(Θ−Θd)

− sin(Θ−Θd)

∣∣∣∣∣∣. (12)

In this formula, the dipole moments for optical transitions
towards the ground state |ϕ0〉 are defined on the two
wave function basis (adiabatic and diabatic) as DI ,II =
〈ΨI ,II |d|ϕ0〉.d1,2 = 〈ϕI ,II |d|ϕ0〉, and tg Θd = d2/d1 (Θd

varying from 0 to π/2 if d1d2 ≥ 0).
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Figure 3: Molecular orbital correlation diagram for the quasi-
molecule Z1eZ2 with Z1= 2.5 and Z2= 1. The notations are similar
to the ones on Figure 1.

The free parameter Θ, varying from π/2−Θ0 to 0, when
xvaries from −∞ to +∞, is defined as follows:

Θ = arctg

√
K − Δ
K + Δ

with Δ = V11 −V22,

K =
√
Δ2 + 4|V12|2.

(13)

3.2. The Roots of the Dipole Moments and the Spectral
Profiles. In this section, we discuss the adiabatic dipole
transition moment roots and their manifestations in the
spectral profiles (satellites and/or dips). For this purpose, the
relationship between Θ0 and Θd turns out to be determining
(see Figure 5, where all possible cases are summarized). As
one can see from (12), one of the two adiabatic dipole
transition moment has a root at Θ = Θd and another has
a maximum if the upper limiting value Θ (x → −∞) =
π/2−Θ0 ≥ Θd (regions III and IV on Figure 5). But there are
no roots in the opposite case (regions I and II). We should
stress that counter-intuitively, there is a root in the former
case for nonintersecting diabatic terms corresponding to
Θ0 ≥ π/4 (region III) but no root for intersecting diabatic
terms corresponding to Θ0 ≤ π/4 (region II). Thus the
main conclusion is that the intersection of terms is neither
a necessary nor a sufficient condition for the existence of a
dipole moment root.

Then we discuss the effect, on the optical spectral profiles,
of the dipole transition moment rearrangement in the four
regions previously discussed in the space Θ0,Θd.

In the region I of Figure 5, the adiabatic potential energy
curves (and consequently the transition energies) do not
have extrema (π/4 < Θ0 < π/2, Figure 4(b)), and the dipole
moments do not have any root at any allowed interatomic
distances. This case leads to a monotonous dependence of the
profiles on frequency.

In the region II, every adiabatic potential energy curve
(and consequently the transition energy) has an extremum
(Θ0 < π/4, Figure 4(a)), but the dipole moments have
neither roots nor extrema. It is well known that an extremum
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in the transition energy produces a satellite in the spectral
profile.
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Figure 6: Visualization of the four regions in the line shape |J(ω)|2
of the transition 2pπu → 1sσg for the molecule F8+−F9+, according
to (17) (dots), [29]. Results of numerical calculations for |J(ω)|2
are given by (15) and (16) for rectilinear trajectories (solid line).
Parameters are d = 2.3 · 10−2Z2, rex = 4.2/Z, v = 0.035. I-
line core; II-blue wing; III-antistatic region; IV-region of quantum
oscillations due to the minimum of the potential-difference.

Region III of Figure 5 is completely distinctive from these
two previous regions with the simultaneous existence of a
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maximum of the dipole moment for the upper energy state
and a root for the lower state at Θd = arctg(d2/d1), without
any extremum in the potential energy (and in the transition
energy) curves (π/4 < Θ0 < π/2, Figure 4(b)). Clearly the
lower state produces a dip in the profile.

Finally, in the region IV there is an extremum in the
two adiabatic transition energy terms at R = Rm jointly
with a maximum for dI (the upper state) and a root for
dII (the lower state) at R = Rd. In general Rm /=Rd, and
thus the upper state produces two satellites, one connected
with the minimum in the adiabatic transition energy curve,
and another connected with the maximum in the adiabatic
dipole moment. The lower state produces a satellite due to
the minimum in the adiabatic transition energy curve and a
dip. The spectral features are more clearly pronounced when
Rm = Rd; this situation leads to the merging of the two
satellites in one (for the upper state case) and to the merging
of the dip and the satellite in some structure (for the lower
state case).

4. Quasimolecular Optical Transitions
Followed by Charge-Exchange

4.1. Symmetric Charge-Exchange. We start from the descrip-
tion of radiative transitions in symmetric quasi-molecules.
The process is schematically described as follows:

(Ze)∗ + Z −→ Z + (Ze) + �ω (14)

and can be realized by two ways as a radiative transition
between one initial quasi-molecular state and two possible
final quasi-molecular states. The first way is roughly an
optical transition that can be described qualitatively as a
transition in an excited ion (Ze)∗ broadened by collisions
with a charged particle Z, mainly at large interionic distances.
The second way can be described as an optical transition
which is followed by a jump of an electron from one charged
center to another and takes place mainly at small and
moderate interionic distances. It should be stressed that the
probability of the reaction (14) in both ways is determined
by the probabilities of the optical transitions involved. Of
course the final state in a distant ion is the same for both
ways, so that the correct description of the reaction (14) must
take into account an interference because of the two possible
reaction ways.

As it follows from the qualitative discussion, the decisive
factor for the reaction (14) is the influence of “one-electron”
exchange interaction. Using Ly α as an example it has
been shown in [29, 35] that exchange interaction produces
noticeable structures in the spectral profile of Ly α radiation.
The rst indication of the structure can be obtained from
the quasistatic theory [36] and the asymptotic theory of
the charge exchange [37]. The interaction between ions
transforms the ground ionic state into the quasi-molecular
states 1sσg and 2pσu, the excited 2s state into the quasi-
molecular states σg,u, and the excited 2p state into the σg,u

and πg,u states. At large interionic distances the splitting of
the ground states is proportional to exp(−Zr), while the
splitting of the excited states is proportional to exp(−Zr/2).

In addition, the splitting for π terms is opposite in sign to that
for σ terms [37]. Therefore, the potential-difference curve
ΔU+ = U(3dπg) − U(2pσu) experiences a maximum and
the potential-difference curve ΔU− = U(2pπu) − U(1sσg)
experiences a minimum, As predicted even by the quasistatic
theory, these extrema lead to the formation of structures
in the spectral wings of perpendicular optical transitions
3dπg → 2pσu, 2pπu → 1sσg .

The total intensity distribution is shown to be propor-
tional to

|b(ω, t)|2 = 1
2

(
|J+|2 + |J−|2

)
, (15)

where J± are the amplitudes of the two quasi-molecular
radiative transitions discussed above [29], and

J±(ω, t) =
∫ t

t0

〈
ω1|V |ϕ1

〉
exp

(
−i
∫ t′

t0
(ΔU± − ω)dt′′

)
dt′

(16)

and Γ1,2 = 2π|〈ω1,2|V |ϕ1,2〉|2 are the radiative width. The
reasonable approximation for ΔU± by exponential functions
leads to global approximation for spectral line shapes

J(ω)〈
ω1|V |ϕ1

〉 = j(ω)

= −i
α

(x)−iΩΓ(iΩ)D−iΩ
(

2xe−3iπ/4
)

× exp
(
iαΩt0 + ix2 +

πΩ

4

)
,

(17)

where Ω = (Δω + i(Γ/2))/α,Δω = ω − ΔU(r → ∞), x =√
d/α.

The formula (17) gives an analytical description in four
different regions of the spectral profile: a Lorentzian region
situated near the center Δω ≈ 0, a blue wing with one
Condon point, an antistatic region of classically forbidden
transitions with no Condon point, and a region correspond-
ing to transitions near the extrema of the potential-difference
curve. Figure 6 gives the example of the Lyα profile produced
in F+8 − F+9 collisions.

The main conclusion of [29, 35] is that exchange interac-
tion results in the formation of two satellites perpendicularly
polarized. It is interesting to point out that the main
idea of the asymptotic approach for the description of the
interaction between atomic/ionic particles is to separate
the effects of the long-range and the exchange parts [37].
The long-range part of the Ze-Z interaction produces
structures that are in principle similar to structures described
under the conventional Stark broadening scheme in plasmas,
whereas the exchange interaction produces the features
discussed above. As an example, the splitting between 3dπg
and 2pπu terms due to exchange interaction is given by
−Z4r2/4 exp(−2 − Zr/2) according to [22]. The exchange
interaction is equal to the first term of the long-range
interaction 6/Zr3 at r0 ≈ 16/Z, meaning that the Stark effect
dominates at r > r0 and the g-u splitting can be neglected.
Therefore the structures produced by the long-range part of
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Figure 7: Dipole transition moment and difference potential Δω
for the reaction (21), (a) The dependence of the turning point
position Rtp on the impact parameter (for collision energy 1a.u.),
for rectilinear (rect), and hyperbolic (hyp) trajectories, (b).

the interaction are more sensitive to the plasma surrounding
than the ones due to the exchange interaction. In connection
with plasma problems, we note that the effect of charge
exchange on atomic spectral line shapes in plasmas was
analyzed in the frame of the asymptotic theory for exchange
interaction of radiating atom with perturbing ion [38].

Equation (17) is applicable to the description of line
shapes in the case of any extremum in the potential difference
curves characterizing ionic or atomic quasi-molecules. Using
this formula in [39] has led to a perfect agreement with
experimental data on the spectral profiles produced in
Ca(4 1S → 31D) + He forbidden transitions.

4.2. Nonsymmetric Charge-Exchange Involving Accidental
Resonance. For nonsymmetrical quasi-molecules, and when
the condition

Z1

n1 f
= Z2

n2 f
or

Z1

n1i
= Z2

n2i
(18)

(n1i f ,2i f being the principal quantum numbers of the elec-
tron in a corresponding ion) is fulfilled, then the emission of
photons can be once more realized via two different optical
transitions similar those described above. In ion collision
physics, the condition (18) is named “swapping” [17].
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Figure 8: Spectral profile produced in reaction (21) for both
rectilinear and hyperbolic trajectories for collision energy 1a.u.,
[30]. The maximum is shifted about 180Å from the center of line
Hα = 1641 Å. Some additional structures in the blue wing are due to
transitions near the turning points, the extremum of the difference
potential and the root of the dipole moment at R ≈ 3.

The first optical transition is

Z1e(n1i) + Z2 −→ Z1e
(
n1 f

)
+ Z2 + �ω, (19)

and the second one is an optical transition followed by
nonsymmetric charge-exchange

Z1e(n1i) + Z2 −→ Z1 + Z2e
(
n2 f

)
+ �ω. (20)

A peculiarity of the quasi-molecular optical transition (20)
is that its dipole transition moment is equal to zero at large
interionic distances. From this point of view, the transition
must be attributed to optical forbidden transitions that are
mainly concentrated near the position of the dipole moment
extremum. Certainly, those two transitions (19) and (20)
do not interfere with each other in contrast to the ones
discussed previously, so that there will be in general only one
satellite produced by the reaction (20) and shifted from the
position of an optical transition in a separate ion Z1e(n1i) →
Z1e(n1 f ).

A typical example of the reaction (20) is the following
reaction relevant to thermonuclear physics:

He+(n = 3) + H+ −→ He2+ + H(n = 1) + �ω, (21)

producing a blue satellite of the Hα transition in He+; see
Figures 7 and 8 for details.

As one can see the transitions near the position of the
dipole moment extremum produce a noticeable spectral
feature. The reason is clear as the position of the extremum
depends neither on the impact parameter, nor on the
collision energy; however the half-width of the spectral
distribution on Figure 8 depends on collision energy and can
be used to determine the temperature of plasma.
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4.3. Charge-Exchange in Excited States with Small Energy
Defect. Let us suppose that the swapping condition (18) has
been disturbed a little, for example,

Z1

n1i
≥ Z2

n2i
. (22)

A representative example of this case is Al+12(n = 4) + C+6

collisions that have been studied in experiments on hot
dense plasmas produced by laser pulses [10–14, 40]. Despite
the energy splitting at large distances, two states still exist
with asymptotically allowed and forbidden transitions. But
the novelty, in comparison with the discussion above, is an
avoided crossing between quasi-molecular terms of the two
states involved. The energy separation of adiabatic terms
V12 in the region of avoided crossing is proportional to the
exchange interaction at large distances and is rather small
thus making easier the diabatic scenario of collisions. In this
case (14) is also true, and it predicts the occurrence of “steps”
in the dependence of dipole moments on interionic distance,
these “steps” occurr in the narrow regions of interionic
distances about |V12|/ΔF, ΔF representing the difference
between the forces acting on the two interacting states.

Under (22), an excited state of a separate ion Z1e(ni) can
be depopulated by two qualitatively different ways, namely
by optical transitions and by charge-exchange between two
excited states. In the diabatic basis, the intersection of
interacting diabatic states, one of them is populated, leads to
a sudden population of the other state in the narrow region
of intersection. The population of this kind can be regarded
as a shake and thus produces structures in the spectral
profiles similar to the ones observed in Fresnel diffraction.
An example of this effect has been given in [5, 41].

As it has been discussed in Section 4.1 the interaction
between excited quasi-molecular states not only produces
spectral structures but also leads to nonadiabatic transitions,
governed, in fact, by the same Massey parameter [3–6].
In the case under discussion, it leads to a connection
between the spectral features and the cross sections of charge

exchange in excited states. As an example inspired by the
experiments [40], Figure 9 depicts the results of the close-
coupled calculations of charge-exchange cross-sections in
collisions Al+12(n = 4) + C+6 → Al+13 + C+5(n = 2) [42].
As one can see for this reaction, the only 5gσ − 6hσ channel
accounts for charge exchange.

5. Conclusion

The goal of our consideration has been to clarify for ionic
collisions the connection between nonelastic transitions and
spectral profiles; this topic is well developed earlier in neu-
trals. The most distinctive collisions process involving ions
is charge-exchange so that QM optical transitions have been
analyzed in connection with charge-exchange process. Three
typical cases have been considered, symmetric resonance
charge-exchange, nonsymmetric charge-exchange involving
accidental resonance, and charge-exchange in excited states
with small energy defects. In all three cases, pronounced
spectral structures have been exhibited. Therefore, the study
of spectral profile features is intimately connected with the
study of collision dynamics of ions in excited states. It
is obvious that the existence of the connections between
charge-exchange and spectral structures is a promising tool
for plasma spectroscopy. Although the results obtained
can be used directly for single collisions and low-density
plasmas, they can be regarded as a reasonable starting
approach and the zero-order approximation for laboratory
and astrophysics hot dense plasma spectroscopy.

It has turned out that the study of the highly
charged Z1eZ2 quasi-molecule forms a foolproof and fruitful
approach for analyzing different features of spectral profiles
and charge-exchange processes. The main result enhanced
here is that the basic characteristics of QM, energy terms
and dipole moments, can be obtained in the frame of the
nonrelativistic Schrödinger equation, which is justified for
low and moderate Z, with any desired accuracy. Following
this approach we have carefully studied the general features
of the dipole moments including the roots and the extrema,
the reasons, and the features of the QM asymptotically
forbidden transitions. The results obtained make clear that
dipole transition moments are as equally important in
calculations of spectral profiles as energy terms. It must
be underlined that the fundamental Z1eZ2 problem, with
its wide history [22], is of primary interest for atomic
physics. So, the results discussed above can be regarded as
a contribution to the study of optical characteristics of the
Z1eZ2 quasi-molecule.

Finally, we summarize the highlights in the paper. It has
been demonstrated that the existence of an extremum in
the difference potential energy terms is not the necessary
condition for a satellite in the spectral profiles. A root of the
dipole moment has transformed a maximum in the profile
into a dip. A global approximation has been proposed for
the first time. The approximation is valid for the central
part and the wings of the profiles as well as for the region
of oscillations produced by extrema in the potential energy
terms differences. As this study does not include the effect of
the surrounding plasma on the quasi-molecule, it must be
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considered as a first step that needs to be improved, in order
to be quantitatively used in plasma experiments.

It seems reasonable that the future developments of
the physics of QM optical transitions will include specific
calculations motivated by experiments in different kinds of
plasmas as well as the study of the influence of external fields
and environments. The investigations of dependencies of
spectral features on external fields, temperature and density
of charged particles are of the primary interest for diagnostics
applications and for comparisons with experiments.
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The present review is devoted to the current status of microfield notion that was so successful and profitable for experimental and
theoretical studies of plasma in gas discharges and thermonuclear modeling installations for many decades. The physical aspects
and ideas of the main generally used microfield models are described and analyzed in detail. The review highlights the remaining
vague and unclear questions in the subject.

1. Microfield Notion

1.1. The Term of Microfield. The term “microfield” was
introduced to designate the electric and magnetic fields,
whose action is essential on microscales intra different media
[1–12]. This was done to distinguish microfield from the
fields of other origin essential, for example, for macroscopic
description of a medium. As a rule the average microfield
over macroscopic volume is equal to zero.

Plasma on microscales is characterized by noticeable
deviation from quasineutrality conditions and appearance
of strong electric fields due to separation of charges [3–12].
Namely, those electric fields, essential on microscales, usually
are implied under term “microfield.” The magnitude of this
field and its direction are subjected to fortuitous variations
from point to point in space and in time.

Thus, from the very beginning, the microfield calcula-
tions represent itself challenging, complex, statistical, and
kinetic problems. Being defined by the medium properties
and composing it separate particles, the microfields action
in its turn affects the medium characteristics and physical
processes between these composing particles. Hence, the
physical phenomena that somehow or other became involved
and connected with microfields are very diverse. The volu-
minous literature [1–198], which is not confined so far by
the named list and devoted to the study of various physical
processes related to microfield characteristics and its affect on

medium properties and composing it particles, just confirms
the variety of aspects and complexity of a problem.

The characteristics of microfields could be, in principle,
determined with the help of hydrogen-like atoms placed
inside plasma, which experience the Stark or Zeeman effects
in electric or magnetic fields correspondingly [1, 2]. Those
effects lead to the line splitting into separate sublines—Stark
or Zeeman components. Thereby, the simplest quantum
systems could serve as some kind of microprobes for the
measurements of plasma parameters on microscales and
perform the role of the so-called test particles. The measured
signal from these microprobes on microscales is their
emission in spectral lines or other spectral characteristics,
perturbed by plasma environment.

However, the emission of spectral lines practically impos-
sible to register locally from the volume with characteristic
microsizes. That is why the radiation is registered simultane-
ously from different microvolumes. As far as the probability
of field realization with the given magnitude and direction is
different in space, this is equivalent to average of observed
spectral lines profiles over the field configurations with
various microfield magnitudes and directions, which leads to
some extent to the smoothed-broadened contour.

Basing on pointed out dependencies spectral lines of
atoms, molecules and ions with simple energetic structure
are used for diagnostics of plasma parameters [1, 2].
Usually the methods of measurements correspond to the
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so-called passive diagnostics, when the observed quantities
are the distributions of intensity and polarization in discrete
spectrum, emitted by plasmas. However, as meanwhile the
measurements mainly has integral character, the success of
their interpretation depends on construction of adequate
model notions on the interaction of radiator with plasma
medium, better corresponding to observed characteristics.

The formation of spectral line contour is influenced by
dynamics of interaction of radiator of the electric field with
that or another frequency spectrum, and by statistics of
such interactions, describing the average over probabilities
of appearance of the fields in plasmas. The real problem
is complicated due to the strong difference in masses of
negative and positive charges in plasmas, which leads to the
strongly differing characteristic time scales of corresponding
electric fields alterations [3–12]. For example, in equilibrium
plasmas with density in a range of 1017 cm−3 and temper-
ature about 1 eV, the ions of the electric fields vary more
slowly than the electrons ones. So, the conventional picture
of spectra formation is composed by splitting the energy
levels in slowly varying ion microfield into Stark sublevels,
broadening of these sublevels due to transitions between
them, induced by more swift electron flights, and further
averaging of spectrum over ion microfield distribution in
plasmas [1, 2].

Near the series limit, the lines strongly overlap, and
their intensity starts to decrease due ionization in plasma
microfields [1]. However, the contribution of continuum
noticeably increases in this region, and that is why visually
the lines, located in sequence of decreasing intensity to the
series limit, look as if ascending up the hillside, describing
the increasing intensity of continuum.

For emitters with more complex internal structure, the
contribution of line satellites, induced by transitions from
doubly excited states of ions with preceding ionization
stage, becomes important. On the other hand, under plasma
creation by femtosecond laser pulses ionization evolves from
K—and L—atomic shells of the targets, and the ions of
hole configurations are created. In this case, the observed
spectrum acquires quasicontinuous character. The plasma
microfield even in these more complex conditions noticeably
modifies the discrete spectrum of radiation.

The plasma microfield is stipulated as by Coulomb
electric fields of charged particles, as by self-oscillations
of plasma, playing the decisive role in nonequilibrium
conditions. These fields are subdivided by terms of “individ-
ual” and “collective” components of microfield, respectively
[1, 3].

In the wide range of plasma parameters, the quasistatic
approximation is efficient for the description of interactions
with ion microfield. It is grounded on the notion of
instantaneous static microfield distribution function [1, 2].
However, in these conditions, the broadening by some part of
ions has impact character, and this is of principal significance
for a family of simulation methods [13].

It would seem, from general considerations, that the
solution of spectral line broadening problem in a medium
could be found using only statistical, and even, moreover,
thermodynamic methods. However, in truth, a phenomenon

of spectral lines broadening has inseparably linked to each
other dynamical and statistical aspects. For example, the
processes of spectral line shape formation and population of
quantum states are interrelated, and have to be considered
self-consistently [108, 109]. The important factor in finding
the solution is physically a correct choice of zero-order wave
functions of a problem and its direction of quantization,
adequately corresponding to physical observables [53].

Thus inadequacy of only statistical or only dynamical
descriptions of a problem makes necessary the search of
solutions based more or less on synthesis of these notions
[104–109]. To a considerable extent, the necessity of such
synthesis is stipulated also by actually restricted power of
recent supercomputers for numerical modeling of complex
multidimensional problems [14–17].

It should be noted that the whole row of phenomena
exists in which microfield plays the important role but
more amply its characteristics show up just in spectra of
atoms and ions, immersed into plasmas. That is why in
this introductory part the main attention was paid for the
broadening of spectral lines.

This work presents the review of current ideas about
plasma microfields, physical models, and methods for
describing the quasistatic instantaneous distribution func-
tions and temporary microfield evolution. The most ample
previous reviews of this problem could be found in [1, 2, 11,
14–17] and the recently published papers [195–198].

1.2. Dipole Approximation as Basement of Microfield For-
malism. So, a consideration of medium influence on test
particles serves as a source of information on origin and
character of interactions in various media and in its turn
about the media state.

In plasmas this impact is due first of all to charged
particles—plasma electrons and ions. If to expand the
interaction potential of test particles with the medium into
series over multipoles, assuming large remoteness of the
medium (field) particles from the test ones in comparison
with distances between the test particles, then the first term of
expansion becomes zero due to condition of quasineutrality.
(Here the case of charged plasmas, where this condition does
not fulfill is not considered.)

The first not equal to zero term of this expansion just is
due to the electric fields of plasma particles and proportional
to the scalar product of the vector of dipole moment of
a system of test particles and the summary electric field
strength vector of plasma particles. This summary electric
field of medium on microscales, becoming zero under
average over macrovolume due to quasineutrality condition,
was called microfield, as its action shows up at microscales,
where the quasineutrality condition does not hold and the
charge separation is essential.

Thereby, a possibility to describe the test particles inter-
action with environment (plasma) in terms of microfield
is linked with conditions of predominance of long range
components of potential over short range ones, when the
distances between particles in a test system are less than
the distances between particles of a medium. On the other
hand, the possibility of such description depends on the
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existence of dipole moment in a test system. That is
why approximate representation of potential in terms of
microfield corresponds to the dipole approximation.

In the case of the electric fields of collective plasma
oscillations, the implementation of dipole approximation is
evidently admissible, as the sizes of test systems are typically
much less than the wavelength of those oscillations.

1.3. Applicability Criteria for Quasistatic Approach. Notion
of quasistatic microfield is based as a rule on a simple
reasoning that summary electric plasma microfield does not
alter on some effective for radiation time scales [1, 2]. Within
such settings, this condition turns out depending not only
on microfield statistical properties but also on quantum
properties of a radiator. For example, the smallness of

frequency of temporary microfield changes �F in comparison
with the hydrogen atom dipole moment dn (n—the principal
quantum number) [1, 2] frequency precession in this field is
considered as such aforementioned condition:

dnn F

�
�

∣∣∣∣∣∣
�̇F
F

∣∣∣∣∣∣. (1)

For the other condition of this kind, the smallness of
life time of atom quantum state τeff in comparison with
characteristic life time of microfield might serve or, when
the characteristic frequency of atomic decay exceeds the
characteristic frequency of microfield changes

∣∣∣∣∣∣
�̇F
F

∣∣∣∣∣∣ � τ−1
eff , (2)

indicating that an atom could not have enough time to
response to temporary microfield variation. Often both these
conditions are considered in aggregate with each other.

Besides the mentioned criteria, which are called “inte-
gral,” there are other types of conditions, requesting, for
example, smallness of spectra variations, calculated using
quasistatic microfield distribution functions Wst(F) with
small corrections Ist(Δω) + δI(Δω), accounting to microfield
evolution with time Wst(F) + δ W(F(t))

Ist(Δω) � δI(Δω),

Wst(F) � δ W(F(t)),
(3)

where Δω = ω − ω0, ω is the circular frequency of radiation,
ω0 is the unperturbed circular frequency of transition.

Per se this requires the complete solution within per-
turbation theory in assumption of small effective times [1,
2]. Such type of criteria dependent on circular frequency
detuning from the line centers Δω are used to call “spectral.”

More definitive quantitative characteristics are provided
by integral and spectral criteria, derived from consideration
of power law potentials of binary interaction of particles
with respect to problems of spectral line broadening theory
(see [2]).

1.4. Quantum and Classical Theory. The necessity of quan-
tum microfield description mainly appears in connection
with degeneracy of electron plasma component [7]. That
is why from practical point of view the account of “quan-
tumness” or the extent of degeneracy of electron gas in this
concrete case touches upon mainly the character of plasma
ions shielding by electrons [3–12]. Prescriptively, this could
be reduced to the function of plasma ions shielding by
electrons, which sufficiently well describes all limiting cases
(see [7–12]).

However, for example, for plasma of metals very often,
the range of parameters, where the effective charge of field
ions noticeably differs from the charge of bare nuclear, is of
main interest. Then, the appearance of quantum exchange
and correlation effects due to ion core becomes essential.
Evidently, the consequent account of quantum structure of
radiator also has definite contribution. The description of
these effects was suggested to perform in terms of formalism
of local density functional, the application of which will be
discussed in Section 2.7.

Additionally, for very low temperatures, the account of
quantum description might become necessary even for the
translational motion.

1.5. Significance of Models. We have to comprehend that
plasma is a medium with very complicated physical charac-
teristics [3–11].

Namely, due to this complexity, it was not possible to
elaborate universal rigorous and self-consistent theory of
plasma microfield in spite of numerous papers published
on the subject up to now [1–198]. However, each time,
some tractable but limited picture is achieved only in
the frames of more or less trustable assumptions, obvious
physical ideas, some solvable mathematical formalism, and
various approximations. All the aforementioned compo-
nents together constitute that or another physical model for
microfield description.

For example, plasma could be considered as continuous
medium [175] or as medium, which constitutes from many
separate discrete particles [18]. Indeed, the commonly used
ion-sphere model for microfield description is the typical
sample of continuous models (see, e.g., [11, 45, 110]). So, it
is natural to divide models on continuous and discrete ones.
There are also some mixed models, where continuous and
discrete approaches are applied to the different subsystems
(see, e.g., [9, 11, 110]). One can consider point particles [18]
and particles with finite sizes as well [176].

The deviation of plasma main parameters temperature
and density also provides a variety of physical conditions—
weakly and strongly coupled plasmas [9, 11], nonrelativistic
and relativistic plasmas [177], degenerate electron plasma
component [43], and so forth.

There is also a lot of complications connected with the
choice of interaction potential, that is different for weakly
and strongly coupled plasmas, for movings particles and
particles at rest [42, 125]. Its working form depends on
effective characteristic time scales that are prescribed to the
microfield action [84, 85, 135–137], which in their turn
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due to Fourier transform could be determined further by
detunings from the line center [83, 95].

The microfield in plasma could be due to many-body
interactions with discrete charged particles, or due to
plasma self-oscillations or plasma waves [18, 30, 31, 49–
52]. Moreover, it is important on what space and time
scales it is necessary to define microfield. The space scales
could be limited by formalism as well, and introduction
of additional constraints such as energy conservation law
[178, 179]. Indeed, for weakly coupled plasma on the
microdistances less than Debye radius, the fluctuations of
energy of particles is of the order of temperature. So,
there is no reason to implement energy conservation law,
but on macroscales, the fluctuations are much smaller and
this restriction starts to hold. Interestingly, both mentioned
restrictions or usage of the formalism, which from very
beginning is derived for macro scales like the formalism of
dielectric functions, should lead to the different from discrete
models microfield distributions. In this context, we remind
the old dispute around Hunger and Larenz works [178],
who obtained instead of Holtsmark distribution Gauss type
distributions introducing additionally energy conservation
law constraints. The illuminating analysis of these results and
polemics around them is presented in the work of Kogan and
Selidovkin [179], who found explicit mistakes in analytical
derivations of Hunger and Larenz works.

The distribution functions of microfield conventionally
are obtained in the case of the so-called thermodynamical
limit for N → ∞ and V → ∞, so that N /V = const =
N (N is total number of particles in the system, V is
the system volume, N is the density of particles) [14–16].
However, it is possible to introduce microfield distribution
functions for the finite number of particles as well [135–137].
There are obvious contradictions between various views on
microfield definitions. For example, the different notions
of instantaneous static ion microfield and ion microfield,
obtained as a result of thermodynamic average, appeared
from the consideration of the same physical object. However,
the difference between output distributions, based on the
distinct initial assumptions could result only in difference of
the shielding constants that had to be used in the expression
of “elementary” ion microfield.

The classification of microfield models in terms of their
accounting for correlations between subsystems of plasma
electrons and plasma ions was presented, for example, in
the work of Ortner et al. [188]. These plasma models
accounting for correlations are called “Two Component
Plasma” (TCP) models in distinction from “One Component
Plasma” (OCP) models [9].

The microfield models are additionally subdivided on
those that attempt to describe static fields and ones depend-
ing on time. Using some assumptions on microfield statistics
and some other approximations, the Method of Model
Microfield (MMM) [86–94], Collective Coordinates for Ion
Dynamics [180], Frequency Fluctuation Model (FFM) [99,
100], and Frequency Separation Technique (FST) [181]
were proposed. Also, the direct computer simulations meth-
ods were elaborated firstly for static microfield distributions
like the Monte-Carlo method [27–29, 35–39, 110, 113] and

after for modeling the evolution of electric microfields versus
time: Computer Simulations (CS) with particles moving
along prescribed type of trajectories [101–105, 142–145]
and Method of Molecular Dynamics (MD) [107, 109, 135–
139, 182, 183].

Thus we see that notions of microfield and models that
are designed for its description are complicated and diverse,
reflecting the diverse and complex plasma properties.

2. Quasistatic Distribution Functions

It is used to distinguish (although it could be done only
approximately) plasma microfield additive components, hav-
ing essentially different frequency and spatial characteristics.
Firstly, it is possible to single out the electric fields of high and
low frequency plasma collective oscillations and individual
component of electric microfield, being a summary field of
separate plasma particles.

Furthermore, an individual component in its turn could
be divided into high frequency, induced by plasma electrons,
and low frequency, induced by plasma ions, parts. Evidently,
such separation should happen automatically under imple-
mentation of sufficiently adequate mathematic approaches to
the complete system and specifics of that or another problem.
Although such attempts were done, they did not lead to
formulated goal. In fact, as was underlined in the previous
subsection, the microfield theory is constructed based on
model and intuitive ideas as necessary solutions for a whole
row of problems could not be obtained using conventional
thermodynamic methods.

The interaction of the point field ions with an emitter
in dipole approximation could be represented in terms of

the electric ion microfield �F in assumption, that perturbing
particles are situated sufficiently far from emitter, so that the
radius-vector of radiating electron is much less than radius-
vectors of perturbing particles with respect to the emitter
nuclear. Using the condition of vector additivity of electric

fields of all ions �Fj , we have

�F =
∞∑
j=0

�Fj . (4)

Then the statistical microfield distribution function �F could
be obtained from the next thermodynamic average

W
(
�F
)
=
〈
δ

⎛
⎝�F −

∞∑
j=0

�Fj

⎞
⎠
〉

, (5)

where symbol 〈· · · 〉 designates the average over plasma
ensemble of ions. Moreover, as a rule, this average encircles
passage to the limit, under which the number of particles
(ions) in ensemble Ni and the system volume V are
indefinitely increasing, while their ratio is kept constant and
equal to the particle density limNi →∞,V →∞Ni/V = Ni.

The field strength of electric microfield �F and its

components �Fj in assumption of a point test particle is
evaluated in the place of its localization, which usually is
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chosen as an origin of reference frame of coordinates (in the
case of test particles at rest).

The average value calculation, mentioned earlier, is a
complex problem due to its many-body character, vector
properties of quantities under evaluation, multicomponent
system of plasma particles, correlations and interactions
between them, and specific peculiarities of a test system.

It is important to comprehend what a function in the
sense of performed average character would more correctly
correspond to the posed problem. From the arsenal of
mathematical methods of statistical physics the average over
canonical or microcanonical ensembles, chaotic phases, fast
subsystems, and so forth [3–12] could be recovered.

However, for obtaining such averages as a rule, the
infinite time interval is needed, while the used in many
physical solutions Fourier transform itself limits the effective
duration of time average. For example, under Fourier
transform for line profile calculation at the circular frequency
detuning from the line center Δω = ω − ω0, the effective
time of profile formation is of the order Δω−1, where ω,
ω0 are perturbed and unperturbed circular frequencies of
radiation. The value Δω−1 determines thereby the allowed
characteristic scales of average over the time of stochastic
variables entering expression for line contour versus the
frequency detuning. As a rule, it is implicitly assumed
that instantaneous distribution function of ion microfield,
when the average could be performed before ions would
change essentially their space configuration, is used. Here
is evidently some mismatch of descriptive methods and
requested from physical consideration result. However, spec-
tra depend not only on line profiles but also on spectral
lines intensities, proportional to population of excited levels.
The populations in many cases are determined by the
balance of thermodynamically equilibrium processes. Hence,
the real situation is rather diverse. The elaborated up-to-
date approaches give only approximate solutions for the
aforementioned row of problems. In this paper, only those
that are used more often will be enlightened.

2.1. Hotltsmark Function. Historically, the Holtsmark func-
tion [18] became the first and physically significant solution
of a problem of static microfield distribution, derived for
isotropic ideal gas of charged particles with the same sign of
charges [1, 2, 14–21]. This function describes the probability
of outcome for ions configuration for the given value of
microfield module F without account of plasma ion-ion and
ion-electron interactions versus the reduced dimensionless
microfield value β = F/F0, where F0 = 2 π (4/15)2/3eZi N

2/3
i

is the normal Holtsmark field value:

H
(
β
) = 2β

π

∫∞
0
dx x sin

(
β x

)
exp

[
−x3/2

]
. (6)

The important characteristic of this distribution is its
asymptotic behavior at small β� 1 and large β� 1. At large
β, it is proportional to β−5/2 and stems to the distribution of
the nearest neighbor, which corresponds to small distances
between the perturbing and emitting (test) particles. At small
β, this distribution is proportional to β2, which corresponds

to the many-body law of summary field formation at large
distances between field particles, when the field values due to
separate particles are small. Those asymptotic dependencies
in fact are universal features and of more realistic microfield
distributions [1, 2, 14–17]. The basic technical element for
obtaining this and and other results is the Fourier-transform
of δ-function, which allows to reduce the problem in the
isotropic case to calculation of characteristic function A(k):

W
(
β
) = 2β

π

∫∞
0
dk k sin

(
k β
)
A(k),

∫∞
0
dβW

(
β
) = 1.

(7)

This expression is universal and based only on isotropy of
distribution function, does not depend on density, which
enters only in the definition of the normal field. At the same
time, the functional dependence of lnA(k) is determined by
the Coulomb law of electric field. The graph of universal
Holtsmark distribution function will be given in what follows
in comparison with more sophisticated distributions of
Ecker-Müller [22, 23], and Hooper [27–29].

2.2. Ecker-Müller Distribution. The first step to account
of plasma specifics became the Ecker and Ecker-Müller
microfield distribution functions [22, 23]. In its derivation,
it is assumed that the potential of plasma field ion is shielded
by plasma electrons and obeys Debye law. The interaction
between field ions is neglected. So, the difference from
the Holtsmark distribution is only using the expression for
electric field for plasma ions, shielded by plasma electrons
according to Debye:

�E
(
�r
) = −Zpe

(
1 +

r

rDe

)
exp

(
− r

rDe

) �r
r3

, (8)

where Zpe-is the charge of field ion, e is the electron charge,
rd is the electron Debye radius [3–11]. In various publica-
tions, the total Debye radius is substituted in this expression,
simultaneously including the shielding by electrons and ions
[14–17]. However, from physical point of view, it is not
always justified.

The Ecker-Müller distribution became a function of two
variables—the reduced electric field value β and dimesionless
parameter δ, proportional to the number of field ions in the
Debye sphere:

δ = 4π
3

Nir
3
De. (9)

However, later, the labeling of distribution functions with the
parameter

a = δ1/3 = R0

rDe
(10)

became conventional, where R0 is the mean distance between
field ions.
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For weakly coupled plasmas, only for which there is a
sense to apply this distribution, the parameter value a is
limited from above by unity. At a = 0, the Ecker-Müller dis-
tribution coincides with the Holtsmark distribution, and its
maximum is shifted to the lesser reduced values of microfield
while parameter a is increasing. As due to quasineutrality
condition, the ion density could be expressed via electron
density, and from the aforementioned, it follows that the
Ecker-Müller distribution is also a function of electron
temperature, of course, via dependence on parameter δ or a.

The comparison of Ecker-Müller distribution and Holts-
mark function versus parameter δ and values of electric
reduced field values E /E0 is presented in Figure 1.

2.3. Baranger-Mozer Cluster Expansion. The Baranger-Mozer
papers [24, 25] appeared approximately 2 years after the
works of Ecker and Müller and were significant advance as
according to the physical formulation as to the development
of adequate mathematical formalism.

The notions of high-frequency electronic and low-
frequency ionic components of plasma microfield, ion-ion
correlations were introduced in [24, 25]. It was pointed out
on inadmissibility of usage the total Debye radius in expres-
sion for ion microfield and was demonstrated the different
character of distributions in the neutral and charged points.

The adequate formalism in [24, 25] is based on the cluster
expansion methods, developed firstly for virial coefficients
[7–12] and giving the possibility to represent ln[A(k)] in
power series over density ordered versus the extent of
correlations weakening. Let us consider in more detail the
instructive derivation of these results. The summary field of

ions �F satisfies the vector additivity condition, that is,

�F = �F1 + �F2 + �F3 + · · · + �FN . (11)

The distribution function of summary microfield W(�F)
could be transformed to the form

W
(
�k
)
= 1

(2π)3

∫
d3k exp

(
− i�k�F

)
A
(
�k
)

,

A
(
�k
)
=
∫
· · ·

∫
d3x1 · · ·d3xN

· exp
[
i �k
(
�F1 + �F2 + · · · + �FN

)]

· P(�x1,�x2, . . . ,�xN
)
,

(12)

where P(�x1,�x2, . . . ,�xN ) designates the probability of given
configuration from N particles.

Furher on, the standard procedure, which is performing

the identical operations with each of multiplicands exp(i�k�Fj)
in the integrand, is applied:

exp
(
i�k�Fj

)
= 1 + ϕj ,

N∏
j=1

(
1 + ϕj

)
= 1 +

∑
i

ϕi +
∑
i,i′

ϕi ϕi′ + .
(13)
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Figure 1: Comparison of Ecker-Müller microfield distribution
W(E /E0) and Holtsmark function WH(E /E0) versus parameter δ
and values of reduced field E /E0 according to [22, 23].

Then integrating over free variables, the characteristic func-
tion could be represented as a sum

A
(
�k
)
=

∑
M

AM

(
�k
)

, (14)

AM =
∫
· · ·

∫
d3xi · · · d3xs · ϕi · · · ϕs

· PM
(
�xi, . . . ,�xs

)
,

(15)

where the summation is extended on all combinations of M
particles from N .

Then the idea about strong decreasing of correlations
versus increasing their order is explicitly implemented:

VM PM
(
�xi, . . . ,�xs

)

=
∏
i

g1
(
�xi
)

+
∑

2

g2

(
�xj ,�xk

) ∏
i

g1
(
�xi
)

+
∑
22

g2

(
�xj ,�xk

)
· g2

(
�xl,�xm

) ∏
i

g1
(
�xi
)

+
∑
222

· · · + · · · +
∑

3

gs
(
�xj ,�xk,�xl

)

·
∏
i

g1
(
�xi
)

+
∑
33

g3

(
�xj ,�xk,�xl

)

· g3

(
�xm,�xn,�xp

) ∏
i

g1
(
�xi
)

+
∑
333

· · · + · · ·

+
∑
32

g3

(
�xj ,�xk,�xl

)
· g2

(
�xm,�xn

) ∏
i

g1
(
�xi
)

+
∑

4

· · · + · · · ,

(16)

where V is the system volume, and the single particle
probability function is

P1
(
�x
) = 1

V
g1
(
�x
)
. (17)
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The sum
∑

2 designates the summation over all pairs of
particles from M particles, the sum

∑
22 over two different

pairs of particles from M particles. In the sum
∑

32, the
summation goes over all possible combinations of different
triplets and pairs of particles from M particles. In each term
of this series, those particles, included in the product from M
particles, do not constitute triplets, pairs, and so forth. The
g functions due to the extraction of factor V−M are defined
so that do not depend on volume V for large values of V.
Generally speaking, the cluster diagram could be confronted
to each term of this expansion [7].

In the limit of large N → ∞ and large V → ∞, but for

constant concentration N = N /V = const, A(�k) could be
represented as

A
(
�k
)
= G1

(
�k
)
G2

(
�k
)
G3

(
�k
)
. . . , (18)

GP

(
�k
)
= 1 + V−P ∑

P

∫
ϕi · · · ϕsgP

(
�xi, . . . ,�xs

)

· d3xi · · · d3xs

+ V−2P
∑
PP

∫
ϕi · · · ϕvgP

(
�xi, . . . ,�xs

)

· gP
(
�xt, . . . ,�xv

)
d3xi · · · d3xv

+
∑
PPP

· · · + · · · .

(19)

Here, the single sum covers all possible combinations with
P particles from N ones, the double sum over all possible
combinations of different two clusters with P particles from
N ones, while all particles in a cluster are being different, and
so forth.

The difference of expression (18) from (14) is that
there are no the same particles in each term from (14),
represented as the expansion according to (15)–(17), whereas
according to definition (18), one particle, entering in GP ,
could coincide with one of particles, that compose GQ. That
is why (18) contains a part of additional terms which do not
appear in (14). However, as stated in [24, 25], the number of
coinciding terms in both expansions, under the tendency of
the total number of particles to infinity, is N times larger the
number of additional terms, whose contribution to the total
sum thus occurs negligible [24, 25].

If to take into account that under N → ∞ all terms
in each sum become equal, then calculating the number of
those terms, one could obtain the following closed expression

for GP(�k)

GP

(
�k
)
= exp

(
Np

p!
hp

(
�k
))

,

hp

(
�k
)
=

∫ ∫
· · ·

∫
ϕ1 ϕ2 · · ·ϕp

· gp
(
�x1,�x2, . . . ,�xp

)
d3x1 d3x2 · · ·d3xp,

(20)

and hence the expression for A(�k) takes the form

A
(
�k
)
= exp

⎡
⎣ ∞∑
P=1

Np

p!
hp

(
�k
)⎤⎦. (21)

In contrast to the virial expansion, the convergence of

integrals hp(�k) and its sum are more rapid due to the

appearance of powers of additional factors ϕj(�k) in the
integrands for terms of cluster expansion series, which
drastically narrows the range of effective values of variables,
providing the main contribution to integrals.

As the Bogolubov-Born-Green-Kirkwood-Yvon chain
[7–12], the cluster expansion is based on two very significant
semi-intuitive notions: (i) about monotonous decreasing
of correlation functions versus increase of the correlation
order; (ii) about a sufficiently rapid decrease of correlation
functions versus increase of the distance between particles.

For the low-frequency distribution of ion microfield, the
electric field produced by single-field ion at the origin of
reference frame was taken in the form of Coulomb electric
field statically shielded by plasma electrons according to
Debye as was already mentioned in the previous paragraph.
The Debye approximation was implemented in expressions
for pair correlation functions, and calculations were limited
by the pair correlations in neutral point and the triple
correlations in charged point. In the case of the electric
field distribution in charged point, the triple correlation
function was disentangled with the help of the Kirkwood
superposition approximation [7–12]. Thereby, only the two
first terms of cluster expansion of ln[A(k)] were taken
into account, where the second term describes ion-ion
correlations. For the pair correlations function of field ions,
the linearized Debye approximation was used for description
of ion-ion correlations, which is the first not equal to zero
term of expansion [3–12].

The high-frequency function, describing the Coulomb
field of plasma electrons, practically was not used later, but
the low frequency component of plasma microfield had got
applications in spectroscopy.

Formally, this distribution due to ion-ion correlation
additionally to the dependencies on β and Te also is a
function of ion temperature Ti through dependence on
additional dimensionless parameter Rc/R0 = e2Z2

p/TiR0,
which practically coincides with the definition of ionic
coupling parameter Γi, where Rc is the ionic Coulomb radius.
It should be pointed out that in the second of cited works
[24, 25], the linearized Debye pair correlation function,
used for description of ion-ion correlations, contains as a
shielding length the total Debye radius, where the ion-ion
shielding also is accounted for [24, 25].

Regretfully, in the tabulation of ion microfield distri-
bution functions in [24, 25] the numerical mistakes were
detected, which led to undeserved disavowal of developed
approach. Later, Pfennig and Trefftz found and removed
these inaccuracies [26] together with distrust to approach in
general.

The important advantage of Baranger-Mozer formalism
is the possibility of its generalization for arbitrary plasma
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ionization composition, that is presented, particularly, in
2.9.1. The explicit results of 2.9.1. allow to obtain more
ample apprehension on practical receipts of Baranger-Mozer
approach implementations.

The graphical behavior of Baranger-Mozer distribution
functions after removal of numerical inaccuracies coincides
with the Hooper distributions, obtained within the different
model and represented in the following subsection.

The main progress of these two works is distinguishing
the high-frequency electric microfiled component, whose
time variation is governed by the motion of electrons, and
the low-frequency electric microfiled component, whose
characteristic time scale is determined by ion motion. At the
same time, it is assumed that the average of high-frequency
component on the ion microfield time scale contributes to
the summary low-frequency microfield component via the
Debye electronic shielding of ion electric field due to the
electron clouds surrounding ion charges [24, 25]. Having
in mind the problem of the Stark broadening of spectral
lines, the authors aimed to obtain the distribution of, namely,
“instant” microfield and not the average “thermodynamic”
microfield. It should be underlined, thus these declarations
although quite sound and reasonable from physical sense
contradict with the available formalism, which is, of course,
thermodynamic in its origin [24, 25].

As the properties of correlation functions with the order
larger than 2 are studied still insufficiently up to now, only
the two first terms of expansion were considered in [24, 25]:
the first one is being linear dependent on density and the sec-
ond one is being proportional to the density squared. Thus,
the first term describes certain type of independent quasipar-
ticles, characterized by some interaction potential with the
test particle, while the second term is responsible for pairwise
or reduced triple correlations between field particles.

2.4. Hooper Model. The Hooper model implements Bohm
and Pines “collective coordinates method” (CCM) [30, 31].
This method devoted to an attempt to separate formally
Hamiltonian of the system of Coulomb particles into two
Hamiltonians, characterizing almost independent subsys-
tems one of which represents itself the plasma collective
characteristic oscillations, and the other one represents the
subsystem of independent quasiparticles “dressed” by the
screening due to separated collective degrees of freedom [30,
31]. It was shown [30, 31] that under specific assumptions,
this separation is possible to accomplish by applying the
specifically defined sequence of canonical transformations
of variables. These results had great impact on the further
development of ideas of plasma microfield and were used
later as a basis in order to determine how to separate the col-
lective microfield component due to the plasma characteris-
tic oscillations from many-body but “individual” microfield
component due to particles or quasiparticles [48–51]. Firstly
for constructing the static microfield distributions, this
method was proposed by Broyles [32, 33]. The Broyles papers
[32, 33] contain deep and very interesting original physical
analysis of microfield problem, as well as several innovative
suggestions for development of appropriate mathematical
formalism.

Meanwhile, in the same period of time, the Monte Carlo
(MC) procedure was formulated and published providing
a powerful tool for consideration of thermodynamically
equilibrium conditions and calculations of correlation func-
tions and various static microfield distributions [110] (see
[35–39, 111–113]. The overall situation at that time with
the Baranger-Mozer results was not clear, and the progress
in Monte Carlo and ideas of Broyles inspired Hooper to
reconsider the derivation of static microfield distribution
functions in some different original way [27–29]. Hooper
adopted the ideas of Baranger-Mozer on the separation
of high- (electron) and low-frequency (ion) microfield
components, but he introduced the separation of the inter-
action potential into the so-called central (corresponding
to the interaction with the test particle) and noncentral
(corresponding to the interactions between field particles)
parts [27–29]. He also formally included the scalar product
of vectorial Fourier variable on the vector of elementary
electric field strength of the single particle into the cen-
tral part of the interaction potential. After this, Hooper
constructed the analog of the two term Baranger-Mozer
cluster expansion but for complex central potential, which
had certain impact on the definition and determination of
the correlations functions, for example. It was supposed
that the screening of the ion field in the central part
of potential is determined by the electronic Debye radius
while the screening length for the noncentral part also is
described by Debye potential but with a screening length
equal to the electronic Debye radius multiplied by fitting
parameter “α” to be determined later. Using the Bohm and
Pines method of collective variables as a mathematical trick
according to the Broyles ideas, Hooper was able to derive
the formulae for the microfield distribution function that
as in the case of Baranger-Mozer is expressed through the
finite number of subsidiary integrals and functions [27–
29]. Performing calculations along with this derivation and
comparing their results with Monte Carlo method for the
same values of parameters, Hooper found the rather wide
ranges for the “α” parameter variation, in which the results
of calculations with the prescribed accuracy practically do
not alter and coincide with Monte Carlo results for the
same set of plasma parameters and assumptions concerning
the interaction potential. The examples presented in [27–
29] showed that for the low-frequency ionic microfield
component, α could change from 1.3 to 1.8 at a = 0.8,
and from 1.8 to 4.0 at a = 0.2. Hence, this strangely
means that in some range of fitting parameter variation,
the results in question do not depend on its values. When
his article was altogether in print [27–29], Hooper became
aware of the article of Pfennig and Trefftz [26], and after
comparison he found that the results of his calculations
do not differ from the improved for digital mistake results
of Baranger-Mozer [24, 25]. Thus, it was rather dramatic
point because no words the Hooper’s method of derivation
was much more complicated and that is why, probably,
lesser convincing than the Baranger-Mozer one. However,
tables of microfield distributions presented in Hooper’s
works became widely used in practical calculations in plasma
spectroscopy and thus frequently cited, although their values
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Figure 2: Microfield distribution function P(ε) in neutral point for
several values of a from [27–29] (designations ε ≡ β, W(β) ≡ P(ε)
are the same as in original Hooper paper [27–29]).
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Figure 3: Microfield distribution function P(ε) in charged point
for several a values according to [27–29] (the designations are the
same as in Figure 1).

practically coincide with the values prescribed by Baranger-
Mozer approach!

Alas, the derivation of Hooper results is substantially
unclear [27–29] mostly due to the very complicated formal-
ism used in [27–29], although initial settings do not differ
from Baranger-Moser ones. Hooper also stated that he used
nonlinear form of Debye-Hückel correlation function. How-
ever, in this case the dependence of the second term of cluster
expansion starts to be more complicated and could not be
reduced only to the second power of density. Regrettably, the
noticeable difference of the effective shielding length from
the Debye value did not get any physical treatment in [27–29]
and posterior works, exploiting these initial Hooper ideas.

In Hooper works, there are no details on Monte-Carlo
method used in the model. The Monte-Carlo method in
its essentials corresponds to the infinite interval of time
average and thus includes the total ion-ion screening, which
is inadmissable in the case of its implementation for the
description of quasistatic ion broadening of spectral lines in
plasmas. So, now it is well known that the results of Hooper
approach do not differ from corrected Baranger-Mozer

results [24, 25]. At the same time Hooper approach is more
laborious and could not get unequivocal interpretation.
The later Hooper works with coauthors showed that the
developed formalism does not have simple extension on the
case of arbitrary plasma ionization composition, and even
the case of binary composition needs tremendous computing
efforts [34]. The Hooper distributions also are limited by
values of parameter a ≤ 1.

In Figure 2, one can see microfield distribution found
by Hooper for several values of a in the neutral point,
and in Figure 3 in the charged point. Both distributions
are calculated for the singly charged field ions and singly
charged test ion. The designations in the figures are as in the
original Hooper papers. The distribution for a = 0 in neutral
point coincides with the Holtsmark distribution. The other
distributions coincide with the Baranger-Mozer ones for the
same conditions as mentioned earlier.

The Hooper formalism for construction of distribution
functions, based on using in mathematical calculations the
collective coordinates method and cluster expansion, could
not be generalized directly on quantum case or plasmas with
complex ionization composition. In fact, to our knowledge,
his results and formalism were never reproduced indepen-
dently from the author [27–29]. However, the distribution
functions presented in [27–29] and other papers are very
trusted by professional community and popular in doing
practical calculations.

2.5. Monte-Carlo Method. The calculation of microfield dis-
tribution functions by Monte-Carlo method (MC) is based
on computer statistical sampling of probability of fall-out of
various spatial configurations of field particles [35–39].

Firstly, the systematic description of Monte-Carlo
method was published in [110] (see also [111–113]) and
formally is not limited by only weakly coupled plasmas.

Until recently, the majority of results for microfield
distribution functions for strongly coupled plasmas were
obtained namely by this method [39]. The notion of
strongly coupled plasmas encircles also conditions, when
electronic Γe = e2N1/3

e /Te and ionic plasma parameters Γi =
Z2
pe

2N1/3
i /Ti of coupling exceed unity not at the same time.

In the main part of MC studies up to date, the Debye
form is chosen for the initial ionic potential with the effective
screening length taking into account the degeneracy of
electronic component. The size of the cell L is determined by
the density of modeled conditions, namely, by the number
of particles in MC simulations N plus the test particle, and
connected with the ion density Ni by the relation

Ni = (N + 1)
L3

. (22)

For including the influence of remote particles, the cell is
reproduced by its “self-images” with step equal to L, and
the total sum of potentials is evaluated by the Evald method
[114, 115]. The important advantage of MC is that it easily
matches any boundary conditions.

During simulations, the field ion and its location inside
the cell are chosen in a random manner. If, during modeling,
the ion occurs outside the cell, then it is substituted by its
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image. Under the usage of powerful computers like Cray,
the first 104 configurations were discarded in order to avoid
dependence on initial conditions.

For searching equilibrium solution, the Metropolis algo-
rithm is used [105]: the difference of energy ΔW between
two consequent configurations is calculated, and if this
difference is negative, then the configuration is included
with the weight factor equal to 1, and if it is positive then
with the weight factor equal to exp[−ΔW/T]. This allows
to avoid the system trapping in local random minima.
Evidently, during approaching the equilibrium, ΔW → 0.
All equilibrium values of microfield are calculated after
reaching the equilibrium. For example, in the widely used
by experts results of MC modeling [35–39], the number
of particles in the cell was 700–800, while the number of
configurations after reaching the equilibrium 107. It should
be noted that unlike the initial version of method [110], the
later results [35–39] are obtained after an average of total
potential over the angles of radius vector of test particle,
which accelerates the convergence and secure the fulfilment
of conditions of isotropy.

In a recent paper [39], the rather simple approximate
functions of reduced microfield and coupling parameters for
various regions of plasma parameters were proposed during
fitting procedure to results of MC calculations of plasma
microfield distributions.

In regions of very small and very large reduced microfield
values, β MC has very large fluctuations and could not
provide prescribed accuracy. For description of distribution
functions in this regions, the matching with known asymp-
totic results is applied [21].

2.6. Adjustable Parameter Exponential Approximation. The
Hooper’s ideas gave rise to another approach in the theory
of microfield distribution that is called Adjustable Parameter
Exponential Approximation (APEX) developed in series of
papers by Iglesias et al. (for current version, see [43, 184–
189]). This method was aimed to describe first of all the
microfield distribution at highly charged test ions in strongly
coupled plasmas, where other theoretical approaches as
Baranger-Mozer one fail, while MC at that time was con-
sidered as inconvenient and expensive for large-scale calcu-
lations together with magneto-hydrodynamic and radiation
transfer codes in the laser inertial confinement fusion (LICF)
studies [40–42]. Hence, the main motivation for APEX
derivation [40–44] was an attempt to give alternative with
respect to MC description of microfield distributions at test
ions in strongly coupled plasmas. However, APEX from the
beginning was formulated as ad hoc approach.

APEX also singles out the high frequency-electron and
low frequency-ion components of plasma microfield. The
constructions of microfield distributions for those com-
ponents are rather different. The APEX model for high-
frequency component could be considered in our classifi-
cation as a mixed one, because it uses the notion of point
separate electrons and the notion of uniform continuous
positive background due to ions. In this APEX derivation, the
results of the so-called one component plasma model (OCP)

were applied [7–12]. Here, the narration mostly concerns the
APEX results for ionic low-frequency part [42–44].

The key point in the APEX construction is the assump-
tion of the Yukawa-type effective interaction potential
between ions with the screening length, which is propor-
tional to the adjustable parameter “α” to be determined later.
Also, APEX utilizes the exact relation that have to be fulfilled
at the test particle with charge equal to Z0 [43]. At the same
time if to remember that in the strongly coupled plasma the
Debye radius as a rule is less than the mean interparticle
distance, the validity and applicability of the Debye potential
start to be doubtful for these conditions.

According to the APEX ideology, the introduction of the
APEX effective field should account for high-order correla-
tions and thus should make it possible to consider effectively
noninteracting quasiparticles [43]. Thus, the initial APEX
starting formulation and idea was using transformations
of cluster expansion for lnA(k), like used by Hooper [27–
29], to obtain single-term representation of cluster series
with the help of more accurate methods for constructing
the correlation functions than those provided by Debye
approximation [7–12].

For transformation of cluster series to one term it was
proposed to substitute in lnA(k) not a real, but some
effective electric field and corresponding distribution of
quasiparticles, equating the products of local probability
density on the value of local field, namely:

eCσZσGσ(x) fσ(x) = eCσZσgσ(x) f (x),

Gσ(x) = gσ(x)
f (x)
fσ(x)

,

fσ(x) = exp[−ασ x]
x2

(1 + ασx),

f (x) = exp[−a x]
x2

(1 + ax),

(23)

where a = R0/RDe ; σ designates the field ions species;
Cσ = Nσ/N , Zσ are partial concentration and the charge of
field ions species σ correspondingly; gσ(x) is the correlation
function of the field and test ions; fσ(x) is the APEX
effective field, depending on fitting parameter ασ ; Gσ(x)
is the effective distribution function of the field particles
density with the charge Zσ around the test ion with the
charge Z0; f (x) is the reduced initial, screened by electrons
according to Debye, this ”so-called“ elementary electric field
is the adopted dependence for the electric field of single
plasma ion.

Thus, the Hooper ideas of implementation of additional
fitting parameter under optimization of distribution func-
tions got in APEX alike, but another realization.

The set of fitting parameter {ασ} according to [42] has
to be found from the exact relation for mean square of
microfield at test ion

〈
E2〉 = 4πNT

∑
σ

Cσ Zσ

Z0
ψσ(a),

ψσ(a) = a2
∫∞

0
dx xgσ(x) exp[−ax],

(24)
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Figure 4: Comparison of pairwise radial distribution functions
(RDF) for Z0 = Zs =25, Te= 50 eV, plasma coupling parameter
Γ =50 and Ne = 1024 cm−3 calculated by Molecular Dynamics and
in HCN approximation in [43].

where Z0 is the test ion charge.
The left-hand side of this equation in APEX takes the

form [42]

∑
σ

Z2
σ Cσ

∫∞
0
dx x2gσ(x) fσ(x) f (x)

= 1
Z0 Γi

∑
σ

ZσCσψσ(a).

(25)

It is assumed in [42] that the solution could be found for each
species separately, which gives the set of equations for all σ :

Z2
σ

∫∞
0
dx x2gσ(x) fσ(x) f (x) = Zσ

Z0 Γi
ψσ(a). (26)

The correlation functions could not be determined within
APEX. To close APEX scheme, the correlation functions are
calculated separately within the hypernetted chain approxi-
mation (HCN) [7–12], when the so-called “bridge function”
is put to zero [43]. The HCN correlation functions are
considered as very precise and remarkably differ from Debye
ones for large plasma coupling parameters and reproduce
rather well MC and MD correlation functions [7–12, 40–43].
The illustration of correlation function behavior for strongly
coupled plasma is shown in Figure 4 from [43]. Utilizing
HCN correlation functions is one of the APEX significant
advantages that gives possibility to describe microfield distri-
butions in strongly coupled plasmas (SCP) [43]. At the same
time as could be judged by laconic APEX papers, the starting
potential in HCN is again Debye potential [42], which could
be invalid for very large plasma coupling parameters.

The APEX results very well reproduce the MC simula-
tions, considered by the APEX authors as more time con-
suming than APEX. However, recently MC programs were
substantially improved and could compete with APEX speed
of computations [37–39]. As shown in APEX publications,

MD

TH

APEX

0
0

0.4

0.8

1.2

0.6 1.2 1.8

E

P
(E

)

2.4

HDG

Figure 5: Microfield distribution function P(E) in charged point
Z0 = 9 in mixture of field ions with charges Z1 = 9 and Z2 = 1,
with equal partial concentrations, (Γe = 0.21) according to [42]:
MC designates Monte-Carlo results, TH are results from [34], HDG
are the results of [72, 73] (designations E ≡ β, W(β) ≡ P(E) are the
same as in the original paper [42]).

the value of fitting parameter α−1 can exceed unity several
times [68, 69]. In Figure 5, the example of APEX distribution
in the mixture of field ions with equal concentrations
and its comparison with the results of other authors is
presented [43]. It is seen that the APEX better reproduces MC
calculations than it cold be done in the frames of TH [34]
or HDG [72, 73] approaches, which were not designed to
describe strongly coupled plasmas. In Figure 6, the calculated
in APEX [68, 69] variation of the reduced fitting parameter α
in the reciprocal Debye length units kDH for the hydrogen-
like Ar ions at temperature Te = 800 eV is shown versus
density. These results demonstrate that the effective APEX
potential has all the time the radius of shielding (2÷4) times
less the Debye radius in the interval of density variation of
4 orders of magnitude. So, the effective interaction is more
short-ranged in comparison with Debye potential.

The recently improved APEX version [43] can address
to nonequilibrium plasma parameter-non-equality of ion
Ti and electron Te temperatures. The example in Figure 7
shows the case when the ion temperature by an order
of magnitude less than the electron one could lead to
two times difference of the quasistatic Stark line profile
halfwidth [43]. The improved APEX scheme allows to
consider the degeneracy of electronic component [43].
Although the significance of the degeneracy effects evidently
signalize about an uprise of the quantum effects, it has
almost no consequences on the derivation of the practically
classical microfield distribution function beside changing the
screening length of the interaction potential [43]. However,
the APEX microfield distribution function itself could be
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of shielding kDH versus density for hydrogen-like Ar ions at
temperature 800 eV according to [68, 69].
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for Z0 = Zs = 12, Ne = 5 · 1023 cm−3 at Ar+17 ion charged point for
Te = 100 eV and two values of ion temperature Ti = Te and Ti =
Te/10 from [43] (the reduced field is given in the electron units).

changed quite considerably, which is well illustrated in
[43, Figure 8]. It is worthy to discuss the W(β) behavior
at large Γi. In this limit, the pairwise Radial Distribution
Function should acquire additional maxima on the scales,
corresponding to short-range and long-range ordering.
Moreover, it should be escorted by an uprise of pronounced
anisotropy. From physical point of view [45] in this case, the
distribution function should be alike Gaussian, describing
small deviations from equilibrium particles positions in
the vicinity of crystallization Γi ∼ 150, which was really
observed in modeling of strongly coupled plasmas. Hence,
the asymptotic of distribution function could not be the
nearest neighbor NN distribution [21, 39]. Although it is
stated in APEX that at Γ → ∞ the APEX is approaching
Gaussian, this transition was not followed in detail, whereas
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Figure 8: Microfield distribution functions P(β) in charged point
Z0 = Z1 = 1 with (dashed line) and without (solid line) account of
electron degeneracy effects according to APEX [43] (Ne = 1024 m−3,
Te = 5 eV, ke ≡ r−1

de , kdeg is the reciprocal shielding length of electrons
with account of degeneracy).
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Figure 9: Microfield distributions for Z0 = Zs =25, Ne =
1024 cm−3, Te = 50 eV, giving Γ =50 from [43]; dashed line: APEX
with HCN RDF; solid line: APEX with MD RDF; • : MD; dot-dash
line: Gaussian approximation.

it is doubtful how so qualitatively different asymptotic laws
would replace each other. The available results do not allow
to clear this question yet.

In Figure 9 from [43], the microfield distributions for
Z0 = Zs =25, Ne = 1024 cm−3, Te = 50 eV, giving Γ = 50
from [43] are presented, where it is seen that at these con-
ditions the APEX is approaching already Gaussian in some
regions of β variation. However, APEX asymptotic at Γ =50
is still more alike nearest neighbor (NN) [43]. Also, one can
see the comparison of APEX distributions constructed with
HCN and MD Radial Distribution Functions (RDFs) [43].
The current methods of simulations ab initio, the molecular
dynamics (MD) [68, 69, 96, 101–109, 135–139] and MC [35–
39], provide rather large noise with increasing of reduced
microfield values, as was illustrated recently in [43].
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For description of microfield distributions in neutral
point, the APEX approach was reformulated [44]. In this
case, the relations (24)–(26) do not take place. For the case
of neutral point, it is suggested to determine α from the
condition of equality of the second order derivative over
Fourier-variable k to zero at k = 0 of any term beside the
first one of specially renormalized cluster expansion [44]. If
to return to the charged point, then it was stated that the
new relation could be reduced to the form introduced for the
charged point [44].

The APEX model was recently interestingly combined
in works of Nersisyan et al. [184–186] for the classical two
component plasmas (TCP) with the “potential-of-mean-
force” (PMF) approximation very similar to the earlier work
of Yan and Ichimaru [187]. Here the basic APEX ingredients
like the expressions for the elementary electric fields are
changed and modeled by the Coulomb fields modified in
the case of attractive interactions by diffraction corrections
[184–186]. The fitting parameter “α” is not introduced at all
since the second moment relation is satisfied exactly [184–
186]. The new model called PMFEX [184–186] preserves
the APEX way for generating the correlation functions-HCN
approximation and demonstrates rather good coincidence
with MD simulations and admirable stability in providing
data in the region of large reduced microfield values.
Astonishingly, PMFEX has more natural generalization to
obtain microfield distribution functions (MDF) in neutral
point than APEX itself.

At last, the APEX procedure was generalized to extend
it for modeling liquid domain in [189], where additional
parameter of scaling is introduced

κ = rWS

λe
, (27)

where rWS is the Wigner-Seitz radius, λe is the electron
screening length. In this work, the set of analytical formulas
are proposed for acceleration of computations depending
beside reduced field β on κ and the coupling plasma ion
parameter Γi, defined as

Γi = (Z∗ · e)2

kB · T · rWS
, (28)

alike it was done in [39], where obtained by Dr. Dominique
Gilles, data in MC simulations were fitted by multi-
parametric approximate expressions. In [189] and the afore-
mentioned expression, the thermodynamic equilibrium is
assumed T = Ti = Te, Z∗ is the residual ion charge.
However, to our opinion, an extension of microfield ideas
on liquids with Yukawa type of interaction potential between
particles is complicated and disputable subject.

In conclusion of this section, it should be resumed that
in spite of evident success of APEX applications, the APEX
itself is essentially ad hoc semiempirical method, whose
reproduction is almost impossible without the help of its
authors. At the same time the new APEX modifications
evidently expand the range of successful implementation of
these ideas.

2.7. Density Functional Theory. The most close to conven-
tional thermodynamic notions method of construction of
plasma microfield distribution functions was proposed in the
work of Dharma-Wardana and Perrot [46, 47]. This method
is based on generalization of local density functional theory
of Kohn and Sham (LDFT) [116, 117] to finite temperatures.
The outstanding research of these coauthors, who performed
a row of fundamental studies, made possible the regular
application of LDFT methods in plasmas (see, e.g., [118–
123]).

The physical idea of this approach is the implementation
of the self-consistent description of dense plasmas, which
can reflect the influence of its properties on the quantum
characteristics of free electrons with the arbitrary extent
of degeneracy and partially ionized core of field ions and
actually the states of emitter, determined simultaneously and
self-consistently with correlation functions.

The request for self-consistency to some extent corre-
sponds to the solution of kinetic problem, giving the answer
on a question what partial concentration, temperature,
and effective charge would have that or another plasma
component at given temperature and density of free plasma
electrons. Namely, relying on this initial information, the
distribution functions are constructed in the other nonself-
consistent approaches. It is evident that self-consistent
approach would be by far more complicated due to necessity
to find simultaneously with a distribution function the
distribution of electron density, effective charges of ions
cores, and various correlation functions.

The range of plasma parameters on which such a
description is pretended corresponds to large values of
electron plasma-coupling parameter Γe � 1 and strong ion-
electron correlation due to influence of bounded electron
states of emitter and field ions, but at the same time to values
of ion plasma coupling parameter mainly less than unity
Γi < 1.

The proper variational methods of local density func-
tional is finding self-consistent distribution of electron den-
sity with simultaneous solution of the Schödinger equation
for determining the wave functions and energy levels in
potential, which in its turn is a functional of the electron
density distribution [46, 116, 117].

The computational realization of approach is accom-
plished in the so-called correlation sphere of finite radius.
This recalls the principles of mean ion plasma model
(MIP), assuming finite size of ion sphere, in which the
quasineutrality condition is fulfilled. It is common to refer on
this procedure as on solution of DFT-Schrödinger equation
[116].

In [46], this distribution of electron density is used
further on in solution of Ornstein-Zernike equation in HCN
approximation [7–12] for calculations of ion-ion correlation
functions gii′(r).

These functions are substituted then in two terms
cluster expansion of Baranger-Mozer type [24, 25] for
calculations of the logarithm of characteristic function with
some amending modifications, connected with possibilities
of partial summation of chain terms of higher orders in the
so-called “weighted-chain-sum” (WCS) approximation [46].
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This amendment functionally is expressed in appearance of
majorizing factor for the second-order density term in the
Baranger-Mozer expression for the characteristic function
logarithm [46].

The principal moments of this approach [46] are (i) the
choice of Baranger-Mozer scheme of cluster expansion, that
allows generalization on quantum case in distinction from,
for example, limited by classical approximation Hooper
model; (ii) the criticism of a choice of the Yukawa type
potentials for describing pairwise interactions in plasma; (iii)
the determination of gii′(r) with the help of special self-
consistent procedure within HCN approximation; (iv) the
way of calculation of the electric field value at the origin of
reference frame due to field ion with the effective charge ZB

according to the exact result of pseudopotential theory of the
second order:

E(r) = ZB

r2
+

1
r2

∫ r

0
n
[
gei(x)− 1

]
4πx2dx. (29)

The expression for E(r) is convenient to represent in the form

E(r) = ZB
q(r)
r2

,

q(r) = 1− 1
ZB

∫ r

0
dx 4πx2Δn(x),

Δn(x) = n
[
gei(x)− 1

]
.

(30)

The last equation determines the total nonlinear excess of
electron density around ion “B,” including exchange and
correlations effects, which is found from the solution of
DFT-Schrödinger equation in [46, 116, 117]. This pileup
of electron density around ion is defined with respect to
the level of uniform neutralizing background of free plasma
electrons.

It should be noted that ionization equilibrium in DFT
[46, 47, 116, 117] does not obey Saha equation because the
correct condition of thermodynamic equilibrium is the free
energy minimization. To the same resume, Hammer and
Michalas arrived at one year later during analysis of the
microfields influence on the equation of state [154–156].

At the same time, one drawback of this approach could be
hidden here. Indeed, the emitter or field ion of “finite” size is
inserted in the uniform electron background, but the plasma
effects like lowering of ionization potential and kinetics
of establishing of equilibrium with continuous spectra are
not included in the description of levels population and
realization of the bound electron states of the upper levels,
as tried to formulate Hammer and Michalas [154–156].

As could be judged by original formulation [46, 47, 116,
117], it seems that DFT capability to describe nonequilib-
rium plasma conditions with complex chemical and ioniza-
tion composition and different temperatures of electron and
ion subsystems appears to be doubtful.

In the equation for electric field, the shielding of only
one ion (field ion or emitter) is included. Due to the authors
statement [46], the accounting for analogous terms for the
second ion is beyond the accuracy of the used second-order
pseudopotential theory.

It is important to underline that the electric field defined
by the aforementioned equations in the quantum case could
not be equalled as in the classical limit to the gradient (with
opposite sign) of pairwise potential of ion-ion interaction.
This is because in these conditions, this gradient will include
nonelectrostatic terms connected with exchange and other
purely quantum effects. Thereupon in [46] it is demonstrated
that the usage of the effective pairwise potential of Yukawa
type provides inadequate results.

The discussed approach operates with the following
quantities: the effective charge of field ions Z and their mean
density ρ, and the mean density of free electrons n, associated
with quasineutrality condition:

n = Z ρ,
4
3
πr3

s n = 1, (31)

where rs has the sense of the electron sphere radius. The
reduced and normal fields are determined by expressions

E = E

E0
,

E0 = Z

r2
0

,

4
15

(2π)3/2 r3
0 n = 1,

r0 = 0.9991178 rs,

(32)

where Z represents itself the charge of field ions. (This choice
of the normal field, although admissible in principle, could
be misleading. More adequate to our opinion would be E0i =
Z/r2

0i, (4/15)(2π)3/2 r3
0i ρ = 1.) The distribution functions

depend on parameter

a ≡ rmf = r0

rDe
= 0.99912 (3Γe)

1/2,

Γe = e2

Trs
≡ rc

rs
,

(33)

where the electron Debye radius rDe is determined also on
the basis of the mean free electrons density n, the electron
plasma coupling parameter Γe is defined in the same way as
Hooper did, and rc is the Coulomb radius.

The classical ion plasma coupling parameter is deter-
mined from the expression

Γ = Z2rc
rWS

, rWS =
(

3
4πρ

)1/3

, (34)

where rWS is the radius of Wigner-Seitz cell. In this model, Z
and Z are related to each other by

Z = Z − nb, (35)

where nb is the number of bounded electrons per ion,
calculated on the basis of DFT approach.

The DFT microfield distribution functions in distinc-
tion from the distribution functions in classical plasmas
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depending not only on the parameter a but also on the
parameter T̃ = T/TF at least, where TF is the electron Fermi
temperature, defined by the equation

kTF = EF = 1
2

(
3π2n

)2/3
, a.u. (36)

Moreover, according to authors [46, 47] opinion, the extent
of plasma coupling in quantum case is characterized more
correctly by parameter Γ, which is determined by the basis of
notion about the mean ion radius R assigned to each ion, so
that the mean number of free electrons per ion nif is equal to

nif =
4
3
πR

3
n f , (37)

where n f (= n) is the density of plasma free electrons. On
the other hand,

Z = nb + nif ,

nb = 2
∫ R

0
4πr2nb(r) fs(r)dr,

Γ = Z
2
rc
R

,

(38)

where Γ could be considered as the effective ionic plasma
coupling parameter, corresponding to “equivalent” classical
plasma, fs(r) is the Fermi factor, describing the character
of electron states filling and depending on temperature and
chemical potential. Thereby, the value Z or nb are also
the results of self-consistent solution of DFT-Schrödinger
equations.

In the first article [46] of the authors of this approach,
devoted to constructing microfield distribution functions,
the Kirkwood approximation [7–12] was applied for dis-
entanglement of the three particle correlations. This pro-
cedure was supplemented by separation of the central and
noncentral parts of interactions in [47] on the basis of
methods, elaborated in papers for description of quantum
Hall effect. In particular, this improvement was connected
with the APEX authors criticism of the DFT results for
strongly coupled plasmas, where noticeable discrepancy was
observed between the predictions of APEX and the first
version of DFT-approach [46].

To illustrate this, the results of DFT-approach in com-
parison with APEX [40, 41] for Al plasma are presented in
Figure 10 according to [46]. It is necessary to note that data
of [40, 41] correspond to the so-called the high-frequency
component of microfield, which describes the distribution of
Coulomb electric fields of particles with the charge Ze [40] or
with arbitrary composition of ions of different species [41],
inserted in the uniform neutralizing electron background.
However, the authors of [46] did not point out for which
values of Z or Z they took the data from [40, 41]. However,
curiously enough, the most open for criticism moment of
this approach is its complete self-consistency, which leads
to the loss of possibility of the conventional identification
of observed spectral transitions. In other words, in this
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Figure 10: DFT-function of microfield distribution W(E/E0) in
neutral (Δ- triangles, lower curves) and charged points (� squares,
upper curves) Z = 0 and Z = 1 in Al plasma in comparison
with APEX results without account of electron degeneracy effects
[40, 41] from [46] (Γ = 3.47, Γ = 3.31, T̃ ≡ T/TF = 7.624,
ZAl = 5.178, rs = 3a0, rmf = a = 0.8, TF is the electron Fermi
temperature see (36)).

DFT version, the self-consistent wave functions and the
energy structure of emitters in plasma do not remember
the corresponding characteristics of free emitters, which,
generally speaking, are tools for decoding of observations.

Probably the cause of that is the insufficient accuracy in
the description of the bounded excited states within DFT [46,
47]. The DFT version under discussion, however, could be
successfully applied for calculations of the thermodynamic
characteristics, when the affixment of results to observed
properties of radiation in spectral lines is not important.

Moreover, it is not quite clear how to track the time scales
of microfield variations in this approach, and the character
of averages, applied in its derivation, more corresponds to
purely thermodynamic notions. That is why the doubt arises
in possibility to construct with the help of this approach
instantaneous ion microfield distribution functions. Partially,
it is connected with the very orientation of this method on
description of quantum effects in the microfield distributions
and necessity of possible reexamination of the “instanta-
neous distribution functions” notion in this case. However,
this criticism concerns equally and Monte-Carlo method,
and so forth.

In comparison with the other theoretical approaches to
the microfield distribution functions construction, touched
here, this method is perhaps the most laborious and compli-
cated for realization, as the procedure of finding solution is
very complicated and cumbersome, and requires preliminary
complex calculations of additional auxiliary functions.

Beside, this method essentially does not give universal
results for actually the microfield distribution functions, as
the distribution from the very beginning depends on the
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specific quantum properties of field ions and the emitter.
At the same time, the doubt arises on how adequate and
ample the developed notions about the character and the
speed of establishing equilibrium between the emitter (test
particle) and plasmas. Apparently DFT approach, of course,
could not pretend on all completeness of plasma kinetic
description, which is necessary for determination of plasma
parameters. The latter are necessary as initial (input) data for
the calculations of microfield distribution functions. Thus,
the self-consistency of DFT approach in certain sense is
limited.

Up to now, the DFT calculations of microfield distri-
bution functions are performed only for several concrete
cases and did not get wide-spread implementation. It is also
unknown if there are any accessible for applied usage DFT
codes for calculation of microfield distribution functions
that are similar, for example, to APEX, although during
the past years after the paper [47], the DFT approach
as a method for description of atomic properties was
considerably improved [120–123].

At the same time, no essential progress was achieved
in the extent of adequateness of description with the help
of DFT the excited atomic states, and consequently the
radiative processes with their participation [122]. However,
the DFT application to calculations of atomic, molecular,
and chemical properties are all over considered currently as
quite effective from point of view of universality, simplicity,
and also due to the high speed of performing corresponding
calculations on contemporary computers [123].

However, in spite of pointed out drawbacks the studies,
performed within DFT approach, provided very interesting
and instructive physical results, which without any doubt are
very valuable for the further development in this field.

2.8. Plasma Collective Oscillations.

2.8.1. Microfield Separation on “Individual” and “Collective”
Components. As it is evident, the “individual” and “collec-
tive” components of microfield are consequences of the same
Hamiltonian of plasma charged particles [48]. Thus, many
papers, dealing with the problem of microfield distributions
of plasma collective oscillations, followed Bohm and Pines
[30, 31], attempting to split the system of Coulomb particles
with the help of canonical transformations of variables into
the two weakly interacting subsystems, which could be con-
sidered independently [17, Section 2], [48, 49]. In addition,
plasma could usually be considered as uniform and isotropic.

Then, the total distribution function W(�F) of summary

microfield �F under the condition that its components are
additive, and the characteristic time scales of their variation
are of the same order could be expressed as a convolution
[48–50]:

W
(
�F
)
=
∫
d�Fc d�FiWc

(
�F−�Fi

)
Wi

(
�Fi
)

, �F= �Fc+�Fi, (39)

where Wc(�F), Wi(�F) are distribution functions of the collec-
tive �Fc and individual �Fi microfield components correspond-
ingly. The microfield distribution function of individual

component more or less approaches the Baranger-Mozer-
type function, whereas the distribution function of collective
component is practically Gaussian [48].

However, the final result of such approach happens to
depend on the choice of phenomenological parameter, which
controls the separation of subsystems, while the satisfactory
methods for its exact determination was not ever found
[30, 31, 48, 49].

The determination of this parameter invoked certain
difficulties already in Bohm and Pines [30, 31] papers. Firstly,
it is rather not a parameter but a function in the space

of oscillations wave vectors �k, and secondly the possibility
of such separation is valid only in a quite narrow range
of plasma parameters [30, 31]. Thereby, this procedure of
collective variables extraction is not regular and universal.

In spite of that, it was declared in two publications
(see [17, Section 2]), [49] about the realization of such
separation after two canonical transformations although no
explicit and proving demonstration of this statement was
provided. These difficulties, of course, are due to strong
interaction between subsystems, when, for example, the
usage of the formal technique like the Zwanzig method of
projection operators could not be rigorously justified, while
the corresponding subsystems of quasiparticles, “dressed
by interaction with each other”, could not be managed
reasonably in order to separate them by transformations of
initial Hamiltonian (see, e.g., [14, 79, 96]).

Basing on sound sense, the separation on “collective”
and “individual” subsystems should be possible when the
resonance interaction of plasma waves with plasma particles
is not essential [6, 50, 82].

So, for these specially stipulated conditions in fact
without proof, it was conventionally accepted to consider
that the two practically independent and noninteracting
subsystems of plasma waves and quasiparticles exist, for
which it is possible to introduce independent distributions
of microfields.

Per se it means the construction of distribution function
of collective oscillations on the basis of independent models.
Evidently, this question has sense only if the conditions of
quasistatics or large modulation depth are fulfilled:

dE0

�
� ωc, (40)

where d is the dipole moment of the emitter (test particle),
E0, ωc are the amplitude and characteristic frequency of
collective plasma electric microfield component.

2.8.2. Rayleigh Distribution. In the assumption of isotropy,
multimode property, additivity and randomness of phases
of collective oscillations, the distribution of collective
microfields is described by Rayleigh function [50]:

Wc

(
�F
)
= 3

(
6
π

)1/2 F2

〈F2〉3/2 exp

[
− 3F2

2〈F2〉

]
,

〈
F2〉 =

∫∞
0
dF F2 Wc(F).

(41)



International Journal of Spectroscopy 17

This function is known also under the name of “distribution
of random vector,” and by definition, it corresponds to
nonpolarized summary field of oscillations.

In one-dimensional case, this distribution has the form

Wc(F) =
(

2
π

)1/2 1

〈F2〉1/2 exp

[
− F2

2〈F2〉

]
, (42)

and then the electric field of oscillations has definite
polarization.

2.8.3. Regular Oscillations. For linearly polarized, one mode,
and sinusoidal field, it is possible to introduce instantaneous
distribution function [51, 52] in the so-called dynamic case,
when the atomic state dipole precession frequency in the
electric field is much larger than the frequency of oscillations
Ω and the reciprocal life time of atomic state τ−1

eff :

dE0

�
� Ω� τ−1

eff . (43)

This distribution function has the form [48–50]

Wc(F) = 1
π

1√
E2

0 − F2
, (44)

where E0 is the amplitude of sinusoidal oscillations.

2.9. Joint Distributions. In many problems, the information
about distribution of the electrical field strength vector only
is insufficient, and it is necessary to consider much more
complex joint distribution functions of several scalar, vector,
or tensor random variables at once [19–21, 53–70, 74–81].
These variables could have some limitations on the intervals
of their variation, as, for example, it happens in APEX.
Seemingly, the first works, where the joint distributions in
ideal gas of Coulomb (gravitating) particles were considered
in application to problems of stellar dynamics, belong to
Chandrasekhar and von Neuman [19–21].

2.9.1. Distribution of Microfield and Its Space Derivatives. Let
us consider the low-frequency ion joint distribution function

W(�F; {∂Fα/∂xβ}) of the ion electric microfield vector �F and
its spacial derivatives ∂Fi/∂xk, forming the symmetric second
rank tensor, following [53–62] (compare [63, 64]). The
“Spur” of this tensor is not equal to zero for the shielded ions,
but is nullified in the case of Coulomb field. The values of
arguments are sums of corresponding values of separate field
ions, that is, the additivity condition is fulfilled:

�F =
∑
j

�Fj ,
∂Fα
∂xβ

=
∑
j

∂
(
�Fj

)
α

∂xβ
. (45)

In general form, it is rather complex function in 9-
dimensional space of variables: the 3 components of electric
field vector and the 6 independent components of symmetric
tensor of the second rank.

For arbitrary plasma ionization composition, the
quasineutrality condition could be expressed as

N = Ne =
∑
s

ZsNs, (46)

where Zs, Ns are the charge and partial concentration of field
ions of s species correspondingly.

The general expression for the joint distribution function
then could be presented in the form

W

(
�F;

{
∂Fα
∂xβ

})
= 1

(2π)9

∫
d3�ρ

6∏
m=1

∫ +∞

−∞
dσm

· exp

⎡
⎣−i�ρ�F − i

6∑
m=1

σm

(
∂Fα
∂xβ

)

m

⎤
⎦

· A(�ρ; {σm}
)
.

(47)

For the distribution characteristic function A(�k), the follow-
ing general exponential representation is valid:

A
(
�ρ; {σm}

) = exp
[−N · C(�ρ; {σm}

)]
. (48)

Using the generalization of Baranger-Mozer cluster expan-
sion [53–58] (compare [63, 64]) on the case of arbitrary
plasma composition, the index of exponent of characteristic
function could be presented with the accuracy of up to the
second-order terms over density in the following recording:

C
(
�ρ; {σm}

) = C(o)(�ρ; {σm}
)− N

2!
· C(1)(�ρ; {σm}

)
,

C(o)(�ρ; {σm}
) =∑

s

Cs

∫
d3�r · gsr

(
�r
) · ϕs

(
�ρ;�r; {σm}

)
,

C(1)(�ρ; {σm}
) =∑

s,s′
CsCs′

∫
d3�r1

∫
d3�r2·ϕs

(
�ρ;�r1;{σm}

)

· ϕs′
(
�ρ;�r2; {σm}

)

· [gss′(�r1;�r2
)− gsr

(
�r1
) · gs′r(�r2

)]
,

ϕs
(
�ρ;�r; {σm}

) = 1− exp
[
iΦs

(
�ρ;�r; {σm}

)]
,

Φs
(
�ρ;�r; {σm}

) = �ρ�Es(�r) +
6∑

m=1

σm

⎛
⎝∂(�Es)α

∂rβ

⎞
⎠
m

.

(49)

Here, Cs ≡ Ns/N , gsr(�r) is the pair correlation function
of field ion from s species with charge Zs and the test
ion with charge Z0, immersed in the origin of reference
frame, gss′(�r1;�r2) is the pair correlation function of field ions
between each other with charges Zs and Zs′ in the field of the

test ion with charge Z0, �Es(�r) is the elementary electric field,
produced by any field ion (quasiparticle) of “s” species in the
origin of the reference frame.
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This field is determined by the effective interaction
potential for such species in plasmas and could be described
by the following equations:

�Es
(
�r
) = −eZs

�r
r3
· [1− κs(r)],

div �Es
(
�r
) = eZs

r2
· ∂κs(r)

∂r
− 4πeZsδ

(
�r
)
,

∮
V→∞

d3�r · div �Es
(
�r
) = 0.

(50)

The latter equations are followed from the properties of
screening function κs(r), connected with its definition:
κs(0) = 0, κs(∞) = 1, so that the excess charge of free
electrons around the ion Zs is determined by the expression

δn(s)
e (r) = 1

4π
Zs

r2
· ∂κs(r)

∂r
. (51)

Then the nonuniformity tensor components of elementary
electric field are determined from

G(s)
ki

(
�r
) ≡ ∂

(
�Es
)
k

∂xi
= eZs

r5
· [3xixk − δikr

2]

·
[

1− κs(r) +
r

3
∂κs(r)
∂r

]

+
δik
3

eZs

r2

∂κs(r)
∂r

.

(52)

Hence, it follows that the screening function κs(r) ≥ 0
could be found, for example, on the basis of the recent
DFT approach receipts [46, 47], and G(s)

ki (�r) ≡ G(s)
ik (�r).

In assumption that the field ions are bare nuclei here, the
equations that determine the bound electrons distributions
are not considered. It is assumed that quantum effects [14–
17, 46, 47, 71] are not essential in microfield distribution.

The joint distribution obtained earlier provides the
instantaneous distribution function of the low-frequency
individual ion component of plasma microfield and its
spacial derivatives, which per se are defined on time scales τ
of the order ω−1

pe � τ � (viN
1/3
i )−1, where ωpe is the plasma

electron frequency, vi is the relative thermal ion velocity with
respect to the test particle, and Ni is the total ion density.

The basic ideas of this derivation were proposed by
Baranger and Mozer and did not undergo any essential
changes since that time, in spite of certain differences in
posterior papers [27–29, 34–81, 96, 97], as they are inherent
in microfield formalism.

It is important to underline that plasma polarization
effects [46, 47, 53–62] (or in other words appearance of
nonuniformity in distribution of plasma electron density)
are included in general form in this consideration from the
very beginning via screening function and its derivatives.

The integration over �F or over ∂Fi/∂xk components leads
to separate distributions of microfield or its tensor of
nonuniformity, and after implementation of appropriate
approximations recovers known earlier results.

One of the most interesting properties of the joint
distributions follows from the analysis of its moments

〈∂Fi/∂xk〉�F for a given value of �F that represent itself the
averages of ∂Fi/∂xk over the joint distributions for the fixed

vector value of �F :

W
(
�F
)〈 ∂Fi

∂xk

)
�F
= N

(2π)3

∫
d3�ρ · exp

[
−i�ρ�F

]

· A(�ρ) · 〈Gik
(
�ρ
)〉

,

〈
Gik

(
�ρ
)〉 = 〈

G(o)
ik

(
�ρ
)〉

+
〈
G(1)
ik

(
�ρ
)〉

,

〈
G(o)
ik

(
�ρ
)〉 =∑

s

Cs

〈
G(s)
ik

(
�ρ
)〉

,

〈
G(1)
ik

(
�ρ
)〉 = −N

2

∑
s,s′
CsCs′

〈
G(ss′)
ik

(
�ρ
)〉

,

〈
G(s)
ik

(
�ρ
)〉 =

∫
d3�r · gsr

(
�r
) · exp

[
iΦs

(
�ρ;�r

)]

·G(s)
ik

(
�r
)
,

〈
G(ss′)
ik

(
�ρ
)〉 =

∫
d3�r1

∫
d3�r2

· [gss′(�r1;�r2
)− gsr

(
�r1
) · gs′r(�r2

)]

·
{
G(s)
ik

(
�r1
) · exp

[
iΦs

(
�ρ;�r1

)]

· (1−exp
[
iΦs′

(
�ρ;�r2

)])
+G(s′)

ik

(
�r2
)

· exp
[
iΦs′

(
�ρ;�r2

)]

· (1− exp
[
iΦs

(
�ρ;�r1

)])}
.

(53)

It was found that the expressions for the first moments of
the nonuniformity tensor could be presented via microfield
distribution functions in general form [52–55, 59]

W
(
�F
)〈 ∂Fi

∂xk

)
�F

= N

[∑
s

Cs

∫
d3�r · gsr

(
�r
) ·G(s)

ik

(
�r
)

·W
(
�F − �Es

(
�r
))− N

2

∑
ss′
CsCs′

∫
d3�r1

∫
d3�r2

· [gss′(�r1;�r2
)− gsr

(
�r1
) · gs′r(�r2

)]

·
{
G(s)
ik

(
�r1
) · [W(

�F − �Es
(
�r1
))

−W
(
�F−�Es

(
�r1
)−�Es′(�r2

))]
+G(s′)

ik

(
�r2
)

·
[
W
(
�F−�Es′

(
�r2
))−W(

�F−�Es
(
�r1
)−�Es′(�r2

))]}]
.

(54)

To carry out expressions that could be processed in
numerical calculations, it is necessary to apply additional
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simplifications and approximations for correlation func-
tions in the aforedescribed general formulas. For this it is
presumed that the pair correlation function depends only
on the module of particles radii-vectors difference and the
Kirkwood approximation is used for disentanglement [7–10]
of the three-particle correlations. This yields [55–58, 80, 81]

gsr
(
�r
) ≡ gsr(r),

gss′
(
�r1;�r2

) � gss′
(∣∣�r1 −�r2

∣∣) · gsr(r1) · gs′r(r2),

hss′
(∣∣�r1 −�r2

∣∣) ≡ gss′
(∣∣�r1 −�r2

∣∣)− 1.

(55)

Then, it is possible to obtain the following general represen-
tations of correlation functions in the form of series over
harmonics:

hss′
(∣∣�r1 −�r2

∣∣) =
∞∑
n=0

(2n + 1) · Pn
(

cos
[
�̂r1�r2

])
· hss′(n; r1; r2),

hss′(n; r1; r2) =
∫∞

0
dk · k2 · jn(kr1) · jn(kr2) · hss′(k),

hss′(k) = 1

(2π)3

∫
d3�r · exp

(
i�k�r
)
· hss′(r).

(56)

Here, Pn(z) are the Legendre polynomials depending on
cosine of the angle between vectors �r1 and �r2, where jn(y)-
is the spherical Bessel function.

This allows to simplify general results, mentioned earlier,
and obtain, for example, the distribution function of reduced
microfield values β ≡ F/F0 (where F0 is the value of normal
microfield [18]), more general expression than those known
before [24, 25] (compare [72, 73, 164]):

W
(
�F
)
= 4πF2 ·W(F), A

(
�ρ
) = A

(
ρ
)
,

F0 = ΛeN2/3, Λ ≡ 2π(4/15)2/3,
(57)

W
(
β
) = 2β

π

∫∞
0
dk · k · sin kβ · A(k),

A(k) = exp{−[Ψ0(k) +Ψ1(k)]},
(58)

Ψ0(k) = 4π
Λ3/2

∑
s

CsIs(k),

Ψ1(k) = −8π2

Λ3

∑
ss′
CsCs′Iss′ (k), r0 ≡

(
e

F0

)1/2

,

(59)

Is(k) =
∫∞

0
dx · x2 · gsr(r0x) ·

{
1− sin kεs(x)

kεs(x)

}
,

εs(x) = Zs

x2
[1− κs(r0x)],

(60)

Iss′(k) =
∫∞

0
dx1 · x2

1

∫ x1

0
dx2 · x2

2 · gsr(r0x1) · gs′r(r0x2)

·
∞∑
n=0

(−1)n(2n + 1) · { jn[εs(x1)]− δon
}

· { jn[εs′(x2)]− δon
}
hss′(n; r0x1; r0x2).

(61)

Here, the function Ψ1(k) describes ion-ion correlations.

The explicit representation for distribution function
allows to obtain analytical expressions for the first moments
of nonuniformity tensor, describing its fundamental proper-
ties for the fixed value of the ion electric microfield vector:

〈
∂FX
∂X

)
�F
=−2πNe

3

{
BD
(
β
)[
P2(cos θ)−P|2|2 (cos θ)

cos 2φ
2

]

− 2BDO
(
β
)}

,

(62)

〈
∂FY
∂Y

)
�F
=−2πNe

3

{
BD
(
β
)[
P2(cos θ)+P|2|2 (cos θ)

cos 2φ
2

]

− 2BDO
(
β
)}

,
(63)

〈
∂FZ
∂Z

)
�F
= 4πNe

3

{
BD
(
β
) · P2(cos θ) + BDO

(
β
)}

, (64)

〈
∂FY
∂X

)
�F
= πNe

3
· BD

(
β
) · P|2|2 (cos θ) · sin 2φ

2
, (65)

〈
∂FZ
∂X

)
�F
= 2πNe

3
· BD

(
β
) · P|1|2 (cos θ) · cosφ, (66)

〈
∂FZ
∂Y

)
�F
= 2πNe

3
· BD

(
β
) · P|1|2 (cos θ) · sinφ, (67)

where θ and φ are the polar and azimuthal angles of vector
�F in the laboratory Cartesian reference frame XYZ, P|m|n (x) is
the generalized Legendre polynomial.

The universal function BDO(β) is due to plasma polariza-
tion effects [55–59].

The universal functions BD(β) and BDO(β) with an
account of ion-ion correlations are determined by the
expressions, where the terms with upper subindex (1) are
connected with ion-ion correlations:

BD
(
β
) = B(o)

D

(
β
)

+ B(1)
D

(
β
)
,

BDO
(
β
) = B(o)

DO

(
β
)

+ B(1)
DO

(
β
)
,

B(o)
D

(
β
) = 12

π

β2

W
(
β
)∑

s

CsZsbs
(
β
)
,

B(1)
D

(
β
) = −12

π

β2

W
(
β
)∑

ss′
CsCs′bss′

(
β
)
,

B(o)
DO

(
β
) = 2

π

β2

W
(
β
)∑

s

CsZsb
(o)
s

(
β
)
,

B(1)
DO

(
β
) = − 2

π

β2

W
(
β
)∑

ss′
CsCs′b

(o)
ss′
(
β
)
,

(68)

The functions, describing the first terms of expansion
and connected with quadrupolar tensor bs(β) and scalar

b(o)
s (β) correspondingly, could be transformed to
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the following form:

bs
(
β
) =

∫∞
0
dk · k2 · A(k) · j2

(
kβ
) ·Φs(k),

b(o)
s

(
β
) =

∫∞
0
dk · k2 · A(k) · j0

(
kβ
) ·Φ(o)

s (k),
(69)

where the Fourier-components of nonuniformity tensor

Φs(k) and its trace Φ(o)
s (k) of the field ion for “s” species

enters the integrands:

Φs(k) =
∫∞

0
dx · x2 · gsr(r0x) · j2[kεs(x)] ·Φs(x),

Φ(o)
s (k)=4π

∫∞
0
dx·x2·gsr(r0x)· j0[kεs(x)] ·

{
r3

0δn
(s)
e (r0x)
Zs

}
,

Φs(x) ≡ 1
x3

[
1− κs(r0x) +

x

3
∂κs(r0x)

∂x

]
.

(70)

It is convenient to represent the next-order functions bss′(β)

and b(o)
ss′ (β) due to ion-ion correlations in the following form

using the same designations:

bss′
(
β
) =

∫∞
0
dk · k2 · A(k) · j2

(
kβ
) · bss′(k),

b(o)
ss′
(
β
) =

∫∞
0
dk · k2 · A(k) · j0

(
kβ
) · b(o)

ss′ (k),
(71)

where the corresponding Fourier components of correlation
contributions are represented in the series

bss′(k) =
∫∞

0
dx1 · x2

1

∫ x1

0
dx2 · x2

2 · gsr(r0x1)

· gs′r(r0x2) · bss′(k; x1; x2),

bss′(k; x1; x2) = Zs ·Φs(x1)

·
{
j2[kεs(x1)]

· hss′(0; r0x1; r0x2)−
∞∑
n=0

(−1)n(2n + 1)

·
[(

3n(n− 1)
2k2ε2

s (x1)
− 1

)
jn[kεs(x1)]

+
3

kεs(x1)
jn+1[kεs(x1)]

]

· jn[kεs′(x2)] · hss′(n; r0x1; r0x2)

}
,

b(o)
ss′ (k) =

∫∞
0
dx1 · x2

1

∫ x1

0
dx2 · x2

2 · gsr(r0x1)

· gs′r(r0x2) · b(o)
ss′ (k; x1; x2),

b(o)
ss′ (k; x1; x2) = 4π · r3

0δne(r0x1)

·
{
j0[kεs(x1)] · hss′(0; r0x1; r0x2)

−
∞∑
n=0

(−1)n(2n + 1) · jn[kεs(x1)]

· jn[kεs′(x2)]hss′(n; r0x1; r0x2)

}
.

(72)

Now, it is useful to present substitutions for obtaining
previous results [24, 25] in the linearized Debye-Hückel
approximation for correlation functions of field particles
from expressions, derived earlier:

κs(r0x) −→ κDs (x) ≡ 1− exp[−ax] · (1 + ax),

a ≡ r0

rD
, rD ≡

√
Te

4πe2Ne
,

gsr(r0x) −→ exp

[
−Z0ZS ·Θ · a2 · Λ

3/2

4π
· exp[−ax]

x

]
,

Θ ≡ Te

Ti
,

h(n; x1; x2) −→ −Θ · a3 · Λ
3/2

4π
· f >n (ax1) · f <n (ax2),

f >n (z) ≡ (−1)n · zn ·
(

d

zdz

)n e−z
z

,

f <n (z) ≡ zn ·
(

d

zdz

)n sinh(z)
z

.

(73)

In these formulas, the conventional designations from orig-
inal works [24–26, 72, 73, 164] are used, while Ti,Te are the
electron and ion temperatures correspondingly.

After performing the pointed out simplifications for one
sort of field ions, the equations (57)–(61) reproduce the
Baranger-Mozer results for low-frequency ion component of
plasma microfield distribution function.

In Figure 11 the Baranger-Mozer (BM) functions W(β)
for several a values, calculated along with this section deriva-
tion in the charged point, and the results of corresponding
MC calculations are presented. The comparison has shown
that within the accuracy of the figure drawing BM and MC
data are indistinguishable from each other. It should be
noted that the direct calculations of general joint distribution
functions is very complicated task even for the current
powerful supercomputers. Moreover, sometimes even a
definition of such functions is difficult to accomplish. That
is why the most accessible approximation is characterizing
these functions with the help of its moments of various ranks
over different variables.

In practical application, it is important to keep in mind
that even in the case of calculations the simplest distribution
functions, depending only on the module of reduced field,
the known difficulties exist with arising oscillations in results
at small and especially at large β due to Fourier transform.
That is why the most accepted method of introduction of
various distribution functions in calculations is connected
with the use of their tables. As a rule under calculations of
the sum of terms with ion-ion correlations, the convergence
is rather rapid, and it is quite enough to include only 3-4 first
terms of the sum [22–26].

In Figure 12, the universal function BD(β) in the charged
point Zr = Z1 = 1 for different values of parameter a is
presented [58]. The dashed lines show the results of calcula-
tions using only the first two terms of cluster expansion and
three terms of expansion over l. The nearest neighbor result
is also shown as 2β3/2. Solid lines represent MC results. In
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Figure 11: Microfield distribution function W(β) in charged
point Zr = 1 in mixture of field ions with charge Z = 1
from [58] calculated within Baranger-Mozer and MC approaches
(results of MC and Baranger-Mozer calculations are practically
indistinguishable, numbers near arrows label a values).
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Figure 12: Universal functions BD(β) in charged point Zr = 1 for
various a values and charge of field ions equal to 1 [58].

Figure 13, the illustration of the universal function BDO(β)
for different values of parameter a in the charged point
Zr = Z1 = 1, according to [58] similarly to BD(β) is
presented. Only the two first terms of cluster expansion and
three terms of expansion over l are used. Solid lines show
MC results (see [58]). The analysis of BDO(β) asymptotic for
small β discovers that this function stems to constant at β →
0. Moreover, from graphs, generally speaking, the presence
of another constant is evident in asymptotic for large β.
These properties have principal significance and signalize on
the necessity of simultaneous correct account for electron
contribution under consideration of quadrupole interaction,
for example, in the spectral lines broadening [59, 60, 62].
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Figure 13: Universal functions BDO(β) in charged point Zr = 1 for
various a values and charge of field ions equal to 1 [58].

The described-here Baranger-Mozer cluster expansion
approach for joint distribution function of ion microfield
and its nonuniformity tensor with Debye-Hückel correlation
functions was firstly proposed by the author of this review in
[54] and completely realized in [55, 56], where the functions
BD(β) and BDO(β) were defined and its asymptotics was
described. Two years later and with much less generality, sim-
ilar results appeared in [64]. Interestingly, the designations in
[64] coincide with the corresponding from [55].

In order to obtain results for strongly coupled plasmas,
it is necessary to apply MC [57–62], molecular dynamics or
APEX approaches. However, the APEX scheme allows only
some reformulation of general expression on the basis of (54)
relations, and then derivation from it the expressions for the
first moments [65, 68, 69]. However, it is not possible to
construct with APEX namely the joint distributions and then
to derive the first moment from such a function, if it would
exist in APEX.

Indeed, within the APEX these operations do not
commute (see [58, 65, 68, 69]), and APEX authors avoid
the attempts of construction joint distribution functions
[165]. Resultantly, they attempt to generalize the relation for
the first moment, basing on [165] (where the correlation
function in the given electric field �ε was introduced g(�r;�ε))
and miss the partial derivative from C(ρ; σm) over one of σm
components, that during reduction of microfield function
to APEX form provides the effective density distribution
geff.APEX(r) [59, 60], diverging at large values of argument.

For the APEX distribution function itself and the
“quadrupole” part of the first moment of nonuniformity
tensor, this increase is damped by corresponding decrease of
function in (60) (see [57, 58, 80, 81]):

{
1− sin kεs(x)

kεs(x)

}
, εs(x) = Zs

x2
[1− κs(r0x)] (74)

and function in (70):

j2[kεs(x)], (75)
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but in the scalar part of first moment, this invokes divergence
[68, 69, 80, 81].

Thus, pointed out noncommutativity is connected on
one hand with the behavior of effective screening α in APEX,
which is stronger than the Debye one (see Figure 14), and
on the other hand with the outcome to constant for small
reduced field values of the polarization (scalar) part of the
first moment of nonuniformity tensor (see Figures 12 and
13), which was not taken into account in the first APEX work
on the first moment of nonuniformity tensor calculation
[65]. These factors both lead to divergence at upper limit in
the polarization part of the first moment of nonuniformity
tensor if to derive it from expression for the joint distribution
function of microfield and its spacial derivatives within
APEX (see [57, 58, 65, 68, 69, 76, 80, 81]).

In order to obtain the finite result, APEX authors
in fact calculate field derivative, averaged over the APEX
distribution function. This way means that such an average
could be performed over any microfield distribution, and
consequently, the given microfield is associated with the
derivative as “if of quite other microfield”. So, the presence of
unequivocal connection between the field and its derivative
is not requested, which does not correspond to the setting of
a problem under consideration, and from the logic point of
view is absurd.

Nevertheless, the general derivation in [65] contains
several new interesting formal results. Indeed, in [65],
the constrained distributions of the nonuniformity tensor
components at the fixed value of microfield are introduced
instead of joint distribution functions, which formally allows
to avoid the approximation of preaveraged Hamiltonian over
components of microfield nonuniformity tensor. However,
to our opinion, the numerical calculation of such functions is
not simpler than the full-joint distribution itself and avoiding
the approximation of averaged Hamiltonian has only an
illusive character.

The described difficulties are due to the fact that the
APEX distribution itself already is derived under certain
limitations, imposed by fulfillment of the (24) condition
for the second moment of microfield in the charged
point. So, trying to preserve the natural asymptotic for
large field values on one hand, and on the other hand
comprehending well that geff.APEX(r) is divergent al large
r, the authors of [65, 165] decided not to use the first
moment of the joint distribution function, but to use the
mean value of derivative over APEX distribution. (The
presence of divergence and non-normalization of geff.APEX(r)
and the information on real values of screening parameter
α in comparison with the Debye reciprocal length was
not mentioned in previous APEX papers till [68, 69].) Per
se introduced in [165], the definitions of averaged values
deviate from the conventional approach of Chandrasekhar-
von Neuman [19–21] and represent itself some additional
approximation that is not connected with formalism of joint
distribution functions, and which region of validity is at least
unclear.

Besides the fact that APEX in this case does not allow to
construct namely joint distribution function of the electric
field strength vector and its nonuniformity tensor in the
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Figure 14: First moment components of ion microfield nonuni-
formity tensor for given value of microfield strength (without
separation of quadrupole and scalar parts for MD, MC, and APEX)
and nearest neighbor distribution NN (without scalar part) versus
microfield-reduced values ε according to [68, 69] (MC from [58],
MD from [68, 69]).

conventional “Chandrasekhar” sense [19–21], this problem
seemingly is connected with inadmissibility of separate
consideration of the electron and ion contributions to polar-
ization interaction. Indeed, simultaneous consideration in
real physical problems of the ion and electron contributions
to polarization interaction lead to conversion to zero, at
infinite distances, the constant in summary polarization
interaction, and in this way remove the problem of pointed
out divergence (see [59, 60]). The physical sense of this is
that the distribution of ion charge also becomes nonuniform
in response to the nonuniform distribution of electron
density (see [59, 60]), and both effects compensate each
other at sufficient distances from test charge according to
general plasma quasineutrality condition. The alike outlook
is presented in the interesting paper of Ortner, Valuev, and
Ebeling, where such model is called as OCP on polarizable
background (POCP).

On the other hand, it is obvious that up to now, not
all variants of joint distribution function construction, using
APEX, were analyzed.

The comparison of results for the moments of total
nonuniformity tensor (without separation of contributions
on tensor and scalar parts) for fixed value of the field ε using
MD method, APEX (on the basis of relation (54)), and MC
(from [58]) for T = 800 eV and N = 1024 cm−3 is presented
according to [68, 69] in Figure 14 versus the reduced field
values. The designations are taken from original work [68,
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Figure 15: Pair radial correlation functions g(r/ri), calculated
within HCN by Rogers code [124] (solid lines) and in Debye
approximation (dotted lines) for Ne = 1021 cm−3 and Ne =
1024 cm−3 at T = 800 eV according to [58].

69]. The designations in the figure are connected with the
conventional ones in the present paper in the following way:

〈dxEx〉ε ≡
〈
∂Fx
∂x

)
β
, 〈dzEz〉ε ≡

〈
∂Fz
∂z

)
β
, (76)

and the results are obtained after average over angles of
microfield vector in the expressions (62)–(67).

In Figure 14, the dependencies presented are obtained
specially for distribution of nearest neighbor (NN) with
screening by plasma electrons and without it, but neglecting
the scalar part of nonuniformity tensor. It is seen that the
APEX version for average values of nonuniformity tensor
[68, 69] noticeably deviates at large reduced microfield
values from the results of the nearest neighbor distribution.
The MD results practically coincide with MC ones, while
APEX curves are located inside MC curves in Figure 14. The
presence of constant at small values of reduced microfield
is confirmed. This comparison shows that the APEX calcu-
lation of averaged components of nonuniformity tensor in
principle gives sound results in the context of coincidence
with values of the first moments of nonuniformity tensor,
although its derivation within APEX could not be recognized
as completely correct and justified.

It seems instructive to demonstrate how with the increase
of plasma coupling the differences of radial distribution
functions within Debye and HCN approximations become
ever more pronounced, which is illustrated in Figure 15.
Partially, namely, the implementation of HCN correla-
tion functions provides the APEX success in description
of microfield distribution functions for strongly coupled
plasmas. As was already mentioned with the increase of
plasma coupling, the considerable changes of pair correlation
function g(r) occur, which acquires oscillations versus r for
large values of Γ, which are due to the formation of the short-
range ordering [166, 167]. This is explicitly demonstrated
in Figures 16 and 17 within one component plasma model
(OCP) for the different values of plasma coupling Γ. The
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Figure 16: Pair radial distribution function g(r/ri), obtained by MC
in OCP model according to [166] (numbers near curves provide
corresponding values of plasma coupling parameter Γ).
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Figure 17: Pair radial correlation function g(r/ri), obtained by MC
in OCP model according to [167] (numbers near curves provide
corresponding values of plasma coupling parameter Γ).

presented results are obtained by the different authors
with ten years interval [166, 167]. These data demonstrate
visually qualitative changes of g(r) versus variation of plasma
coupling in the range Γ = 0.1 − 1, Γ = 10 − 20,
Γ ≈ 100. At the same time, the special study, done in
[58], showed that using in the Baranger-Mozer scheme HCN
correlation functions and MC correlation functions does not
eliminate completely the noticeable discrepancies between
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APEX and Baranger-Mozer microfield distribution functions
for strongly coupled plasmas.

It should be taken into account that the linearization
approximation for Debye-Hückel correlation functions is
not inalienable part of Baranger-Mozer scheme, which allows
the usage of any arbitrary accurate correlation function,
including of the nonlinearized Debye-Hückel ones as well.

2.9.2. Distribution of Microfield and Its Time Derivatives.
In the most general form, the joint distribution functions
of microfield and its time derivatives could be written as
Fourier-transform of its characteristic functions analogously
to the previous section [19–21, 74–81], if following Chan-
drasekhar to consider the values of derivatives at initial time
t = 0. These functions [74–81] describe microfield evolution
in time on sufficiently small time intervals.

Without loss of generality, as an example, we present the

function W(�F; �̇F; �̈F) [54–56, 80, 81] (compare with [19–21]):

W
(
�F; �̇F; �̈F

)
= 1

(2π)9

∫
d3�ρ

∫
d3�σ

∫
d3�ξ

· exp
[
−i
(
�ρ · �F +�σ · �̇F + �ξ · �̈F

)]
· A

(
�ρ;�σ ; �ξ

)
,

A
(
�ρ;�σ ; �ξ

)
= exp

[
−NC

(
�ρ;�σ ; �ξ

)]
.

(77)

It is worthy to underline that in spite of the presence
of the first and the second derivatives of microfield over
time, this is per se the instantaneous static distribution
function. At the same time, of course, it is very complex
function in 9-dimensional space of its variables. Using the
same designations and plasma composition, we express

lnA(�ρ;�σ ; �ξ) as in the previous section:

C
(
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)
= C(o)

(
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− N
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(
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(
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ϕs′
(
�ρ;�r2;�σ ; �ξ

)

· [gss′(�r1;�r2
)− gsr

(
�r1
)

gs′r
(
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(
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(
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(
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(
�r
)
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(78)

In distinction from the previous section, these expressions
contain the additional integration over thermal velocities �us
of field ions with the velocity distribution function ws(�us).

Moreover, �̇Es(�r) and �̈Es(�r) determine the first and the
second time derivatives of elementary electric field, produced
by arbitrary field ion of s species in the origin of reference
frame and having the same value of relative velocity at t = 0:
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(
�r
) = eZs

r3

[
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·
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(79)

where�n ≡ �r/r, and�vs = �us−�ur is the relative thermal velocity
of field ion of “s” species with respect to the test particle with
velocity �ur . It is seen that there are summands, containing �̇us,
that is,

�̇vs = �̇us − �̇ur = eZs

ms

�F
(
�r
)− eZr

mr

�F(0), (80)

where �F(�r) is the microfield in the location point of field ion
of “s” species, and ms,mr are masses of the field ion and test
particle correspondingly. These terms cause nonlinearity and
loss of locality of joint distribution, if to include them into
the expression for the second derivative.

Indeed, the microfield distribution at the origin of
reference frame becomes dependent on microfield values in
the total space. This controversy could be removed, assuming
that the thermal velocities of field ions are constant due
to stationarity conditions, as it was done in Chandrasekhar

papers [19, 20], namely, �̇us = 0 for all s. In the opposite case,
the back reaction of field ions requests special study, which is
beyond the frames of the present work.

On the other hand, there are terms due to polarization
effects as well. That is why the results of Chandrasekhar and
von Neuman could be reproduced only after discarding the
neutralization background of electrons by setting Ne = 0.
Here, it is supposed as before that all field ions are bare
nuclei.
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This joint distribution provide instantaneous low-
frequency distribution function of individual (but many-
body) ion component of plasma microfield and its time
derivatives, which are defined on time scales τ of the order
of ω−1

pe � τ � (viN
1/3
i )−1, where ωpe is the electron plasma

frequency, vi is the relative thermal velocity of field ions with
respect to the test particle.

We note that this distribution in distinction from Chan-
drasekhar results includes effects of neutralizing background
of plasma electrons and its polarization (or in the other
words the appearance of nonuniformity in distribution of

free electrons). The convolution over components �F or �̇F
leads to separate distributions of the field and its derivatives,
and after corresponding simplifications reproduces known
results.

As it was already pointed out, the computation of joint
distributions is very complex problem and it is possible now
to present only some unique examples of such calculations
[58, 70, 76], which contain as a rule many additional
approximations and simplifications (only the projections of
such functions are calculated with fixed values of a part of
variables).

So, one of few methods to characterize these distributions
is the calculations of their moments. This is achieved by the

convolution over d3 �̈F. After that, it is possible to obtain the

following expressions for the first moment of �̇F for a given

value of �F :
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(81)

These formulas [80, 81] could be rewritten in terms of
microfield distribution function similar to previous section:
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(82)

The expressions for �̈F could be obtained in a similar manner

by substitution �̈Es(�r) instead of �̇Es(�r) in the right part of

corresponding equations, if to put �̇us = 0 for all {s} as was
pointed out earlier.

To obtain results in more detail, the approach, presented
in the previous section, and the connection of spatial and
time derivatives of the field, produced at test particle with the
velocity�v in the origin of reference frame, are used (compare
with [19–21]):

〈
�̇Fi

)
�F
=
〈
∂Fi
∂xk

)
�F
〈ẋk〉�v �ei, (83)

where�ei are unit vectors of Cartesian reference frame, and the
symbol 〈· · · 〉�v designates the average over thermal velocities
of field ions. Substituting then in these expressions, the first
moments of nonuniformity tensor, obtained in the previous
section, we come to the next compact formulae (compare
with [19–21]):
〈
∂Fi
∂xk

)
�F
= 2πeN

3

{
BD
(
β
) (3FiFk

F2
− δik

)
+ 2 δik BDO

(
β
)}

,

(84)

where the universal functions BD(β) and BDO(β) are deter-
mined in the previous section.

After substitution and convolution over indexes of
components of �F and �ur the sought result is

〈
�̇F
)
�F
= −2πeN

3

{
BD
(
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)(

3
(
�nF · �ur

)
�nF − �ur

)

+2 BDO
(
β
)
�ur
}

, nF ≡
�F
F
.

(85)
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The contribution from microfield variation disappears due
to assumed isotropy of velocity distribution function of field
ions.

It is seen that contributions of polarization effects,
included in BD(β) and BDO(β), have different signs in the
expression for vector oriented along �ur , but, as it is possible
to assure, they do not compensate each other due to the
different symmetry of interactions (quadrupolar and scalar).

This does happen in the coefficient in front of �F. Using the
relation

�̇ur = eZr

mr

�F(0), (86)

where mr is the mass of test particle, it is possible to write
down the part of the moment over the second field derivative,
assuming �̇us = 0 for all {s}due to the independence of
ensemble of field particles on time:

〈
�̈F

(1)
〉
�F
= −4πe2ZrN

3

[
BD
(
β
)

+ BDO
(
β
)] �F(0)

mr
. (87)

This expression with the opposite sign is proportional to
“zz” component of microfield nonuniformity tensor in the

reference frame, in which �F is directed along �OZ:

〈
�̈F

(1)
〉
�F
= − eZr

〈
∂Fz
∂Z

)
�F ‖�OZ

�F(0)
mr

. (88)

This result describes the influence of neutralizing back-
ground on dynamical friction [80, 81], that is, the conse-
quence of plasma polarization effects. These terms do not
disappear in the (OCP) limit for ions, when the neutralizing
background has the constant density. So, the complete
recover of the Chandrasekhar and von Neuman results [19–
21] is possible only if to equal artificially this density to
zero. The other results on this issue could be found in [76–
79], where for advancing in the region of strongly coupled
plasmas, the MD methods and models, used in theory of
liquids, are applied.

It should be noted that in a row of problems on ion
dynamics, the joint distribution functions of microfield and
its time derivatives were also introduced in the case, when
the total field is simultaneously defined by its individual
and collective components. This question was considered in
detail in [80, 81, 168]. In particular, the derivation of the
expression for the second moment of the first derivative of
total microfield was analyzed:

〈 �̇F 2

⊥
F2

〉
�F
, (89)

which plays dominating role in the consideration of fluc-
tuating microfield time evolution (ion dynamics) on small
in comparison with ω−1

pi � (N1/3
i vTi)

−1 (or RDi N
1/3
i �

1) time scales [80, 81]. The principal result of [80, 81]
is that the asymptotic of this moment for small values
of reduced summary field does not change in comparison
with the results of Chandrasekhar and von Neuman (see
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Figure 18: Reduced values of longitudinal and perpendicular
second moments according to [170, 171]: dashed curves correspond
to Chandrasekhar and von Neuman results [19–21] for fixed
velocity values of test particle; solid curves are erroneous results
[170, 171] with account of Doppler broadening (see [170]); the
upper curves according to [170, 171] correspond to N = 1017 cm−3,
T = 12 700 K, and lower curves to N = 3 1017 cm−3, T = 14 800 K;
dotted curves the results that account for Debye screening due to
authors [170] statements; the axis of abscisses shows the reduced
microfield values.

[17, 19–21, 80, 81, 168]) in the case of three-dimensional
isotropic distribution of collective fields and with account
of the electron Debye screening and ion-ion correlations in
individual component. Thereby, it was shown that Griem
result [169–171] about the finiteness of the second moment
values in the limit of small values of summary field is
incorrect, but is the consequence of inconsistent performing
of averaging and violation of the additivity condition in
[169–171]. As these incorrect results [169–171] look like
graphically. the finiteness of the second moment (89) in the
limit of small values of summary microfield is shown in
Figure 18 from [170].

Alas it is worthy to note that the results presented in
this figure, as if corresponding to the account of Debye
screening, are obtained with the help of rather unfounded
and unreliable procedure (see [80, 81, 172, 173]). It must
be noted that in Griem papers [169–171], the derivation
of results from [168] was repeated word to word, except
absent in [168] incorrect resume on finiteness of the second
moment (89) in the limit of small values of summary
microfield. It follows from this analysis that the collective
component becomes more rapid than individual one with
increase of plasma coupling, and at Γ ∼ 1, the characteristic
scales of their time variation are of the same order of
magnitude.

In conclusion of this section, it is necessary to mention
that the first attempt to generalize Chandrasekhar and
von Neuman results [19–21] for the first and the second
moments of the first time derivative of microfield accounting
for Debye screening but without ion-ion correlations in
the middle of seventieth was made by Hey and Griem
[172, 173]. They used expansion over parameter a. In this
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respect, it is similar to Margenau approach, who attempted
by expansion over parameter Rc/R0 (Rc is the Coulomb
radius, R0 is the mean interparticle distance) to account for
the influence of ion-ion repulsion on distribution functions
[174]. Regrettably, such types of expansions are poor even
for establishing asymptotic limits and in fact integrally are
inapplicable for these functions due the absence of a real
small expansion parameter. Related to these approaches is the
method of the characteristic functions (or thermodynamic
potentials) expansion over Fourier variable in the absence
of any parameter of infinitesimality, which very often resort
to in theory of liquids, where it appears under term of “λ”
expansion [8]. The similar mathematical problems arise in
the method of collective variables of Bohm and Pines [30, 31]
also. The development of microfield theory has shown that
there is no proof of convergence of such a type of expansions,
and thereby their application is unjustified [80, 81].

2.10. Asymptotic Expansions. As was already noted, in fact,
all distribution functions and connected with them universal
functions have universal form of asymptotic at large and
small values of reduced field, but at the same time, the
procedure of those asymptotic derivation from general
expressions as a rule is rather complicated and laborious.
In the case of not so large plasma coupling, at large
values of reduced microfield asymptotic should approach the
distribution of nearest neighbor NN. For ions of the same
species with the charge Z, the following relations are valid
[53–62, 72, 73, 80, 81]:

WNN
(
β
) = 15

4(2π)1/2Z2

y5g
(
y
)

1 + ay + a2y2/2

· exp
[
ay − 1

Z

15
2
√

2π

∫ y

0
dx x2g(x)

]
,

BNN,D
(
β
) = 3

Z WNN
(
β
) y2

(
1 + ay + a2y2/3

)
g
(
y
)

1 + ay + a2y2/2

· exp
[
− 1
Z

15
2
√

2π

∫ y

0
dx x2g(x)

]

� 4
√

2 π Z

5 y3

(
1 + ay +

a2y2

3

)
exp

(−ay),

BNN,D0
(
β
) = C∞ +

1
2 ZWNN

(
β
) a2y4g

(
y
)

1 + ay + a2y2/2

· exp
[
− 1

Z

15
2
√

2π

∫ y

0
dx x2g(x)

]

� C∞ +
2(2π)1/2a2Z exp

(−ay)
15y

,

(90)

where the quantity y is expressed in units of r0 and is
determined by

β = Z
exp

(−ay)
y2

(
1 + ay

)
, (91)

and C∞ is determined from the other relation (see [57–62]).
When ay is small enough, β � Z/y2, then

BNN,D
(
β
) � 4

√
2 π

5
β3/2

Z1/2
,

BNN,DO
(
β
)− C∞� 2(2π)1/2a2

15

(
Zβ
)1/2 exp

⎛
⎝−a

(
Z

β

)1/2
⎞
⎠.
(92)

3. Fluctuating Microfields in Plasmas

As was already mentioned several times, the thermodynamic
formalism not always happens to be adequate for problems,
where the dynamics of time evolution of dipole interactions
and actually plasma microfields is essential. Especially,
this became critical for the sufficiently large effective time
scales of evolution. However, in these cases, the statistical
methods of modeling were developed, including as a rule
two stages: (i) statistical modeling of system time dynamics,
(ii) statistical average over random sampling from results of
previous stage. The systems that require such an approach
conventionally are called the systems “with partial memory
loss” [7], when in spite of stochastic character of the process,
the result often depends on prehistory of system evolutional
dynamics.

3.1. Correlation Function Expansion over Time. In a row of
problems and approaches, it is sufficient to follow only the
very initial stage of microfield time evolution. Then it is
possible to use the expansion over time of the state evolution
operator, and reduce the problem solution to finding various
moments of joint distribution functions of microfield over
the microfield time derivatives at the starting moment of
evolution (t = 0) [17, 19–21, 54–56, 74–81]. Chandrasekhar
and von Neuman [19–21] and V. I. Kogan were the first
who used this. This method could be applied to characterize
the evolution of microfield distributions [19–21, 74–81, 104,
105] itself. In particular, this method allows to separate the
ion dynamics contributions due to the different physical
effects like the amplitude (rotation of microfield vector) and
phase modulations (variation of microfield module) and the
finite life time of Stark substates due to electronic collisions
[168].

3.2. Method of Model Microfield. The method of model
microfield (MMM) is known for providing the closed
analytical expression for the spectrum of evolution operator
U(t) [86–94, 146], reducing the time dependent problem to
the statistical average of static evolution operators USt(t) over
quasistatic distributions of microfield:

〈U(ω)〉MMM = 〈USt(ω + iν)〉 + 〈νUSt(ω + iν)〉

· 〈νI − ν2USt(ω + iν)
〉−1〈νUSt(ω + iν)〉,

(93)
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where ν designates ν(�F) (the frequency of jumps in the
MMM Kangaroo-process), USt(ω + iν) is the Laplace trans-
form at z = −iω + ν of the static evolution operator,
the symbol 〈· · · 〉 designates the average over the static
microfield distribution function W(F), I is the unit operator.
This expression is valid if the evolution operator is the
function of only the difference between final and initial
moments of time. Hence, MMM is applicable only in the
absence of the U(t) explicit time dependence. There is
essential assumption in the derivation of this general result
that microfield changes in time by jumps and only by
their amplitude. The frequency of jumps ν(F) depends on
the microfield value F at the given time moment. This
character of changes was called Kangaroo-process [86–94,
146]. To close the procedure, it is necessary to know ν(F).
The most wide-spread way to close the MMM system of
equations and definition of ν(F) is based on equating the
microfield correlator C(t) to the mean square of microfield
with the weight function equal to the the product of the
static microfield distribution function W(F) and the factor
exp[−|ν(F)| · t] with the exponential decay in time with the
rate |ν(F)| [86–94]:

C(t) =
〈
�F(t) · �F(0)

〉
=
∫∞

0
dF W(F)F2 exp[−ν(F)t].

(94)

This significant correlation function 〈�F(t) �F(0)〉 was con-
sidered in many works: in the absence of Debye screening
implicitly by Cohen, Spitzer and Routly [128]; for the gas
of Coulomb particles by Kogan [129]; in the general form
on the basis of kinetic plasma theory by Rosenbluth and
Rostocker [130, 131]; by Taylor [132]; with account to
Debye screening by Lewis [133]. This correlation function
could be expressed via integral from the plasma structure
factor S(k,ω) [4, 5, 7–10] and has direct connections with
the problems of collisional transport and determination of
plasma conductivity. (In recent work of Gordienko [134]
an attempt was made to reconsider the canonical results
that the microfield correlator effectively acquires binary form
in the process of average [129]. In [134], on the basis of
quite unclear and entangled computations, the statement
is made about the existence of nonbinary, many-body and
essential contribution to the microfield correlator. However,
augmentations and derivations in [134] are based on a row of
rather strong, unreliable, and difficult to test assumptions of
statistical and mathematical character, which does not allow
to consider the results of [134] as correct.) Thus, in MMM,
the known analytical expression is substituted in the left-
hand side of (94), derived in [89, 90] for classical plasmas
in assumption of rectilinear trajectories and static Debye
screening in the neutral point:

C(t) = 4πN e2

D

〈(
D

vt
− 1

2

)
exp

(
−vt

D

))
v
, (95)

where 〈· · · 〉v designates the average over velocities of

field particles and

C(t) = 4πN e2

t

〈
1
v

)
v

[
1 + x2 − π1/2x

(
x2 +

3
2

)

· exp
(
x2)erfc(x)

]
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erfc
(
y
) = 2√

π
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y

exp
(−s2) ds, x ≡ ωpt√

2
,

〈
1
v

)
v
=

(
2 m

πkBT

)1/2

.

(96)

Often the paper of Rosenbluth and Rostocker [130, 131] is
unreasonably connected with this result.

In MMM additionally the μ- ion model (or the ion of
reduced mass, corresponding to the masses of perturbing
and test particles) is used. The result for C(t) is applied to
the same extent as for electrons and as for ions, because
the values of Debye radius, density, velocity, and reduced
mass of the pair of test and perturbing particles D,N , v,m
correspondingly are not specified.

The account of trajectory curvature in the case of calcu-

lations of 〈�F(t) �F(0)〉 in the charged point was performed
numerically in [94]. However, it is not sufficient especially
for strongly coupled plasmas.

The application of these methods [86–94, 128–134] to
ions suffers from essential defect in determining ν(F). The
thing is that the correlator of the fields at test-charged particle
could be expressed as the correlator of accelerations, the
integral of which over time should be equal to zero [8, 9].
At the same time, the analytical result for such a correlator
is unknown, and that is why often the correlator in neutral
point is used, which does not satisfy this condition.

It is worthy to note that MMM practical realization
requests usage of rather tedious and complex procedure for
the reduction of multiple products of irreducible spherical
operators, that is not published yet.

For the case of charged test particle, Boercker et al.
proposed the kinetic model [95], analogous to used in theory
of liquids [8–12]. In this model, the frequency of microfield
changes is constant ν(F) = const, and does not depend on
microfield value. By special selection of parameters, based on
the introduction of the dependence on frequency detunings
Δω, and using the relation with diffusion coefficient, the
authors were able to satisfy the condition of conversion to

zero of the integral of 〈�F(t)�F(0)〉 over time in the charged
point [95]. At the same moment, this model contains a good
few of other assumptions, which could not allow to give
unequivocally the preference to that or another method in
the case of the electric field description at test ion.

For calculations of this correlator, the MD methods are
applied also, but each concrete case corresponds to the fixed
plasma parameters, and it is difficult to detect scaling. The
study of this correlator in strongly coupled plasmas using
methods from the theory of liquids and Molecular Dynamics
(MD) simulations was performed in the series of papers by
Dufty et al. [79, 96, 104–107]. In [79, 96], certain criticism
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Figure 19: Model microfield correlation function C(t) according to
[96] in charged point for Γ = 10: 1 Coulomb interaction; 2 with
account to Debye screening for k = rDe/Ri = 1; points-results of
MD simultions.

on MMM is expressed in the case of its application for
description of microfield fluctuations at charged test particle.
This nevertheless seems rather strange, since MMM could
allow any closing in the sense of ν(F) calculations. For

example, the corresponding results for C(t) ≡ 〈�F(t) �F(0)〉
for small values of electron plasma-coupling parameter
(when RDe = Ri, Ri is the ion sphere radius in OCP)
from [96] are presented in Figure 19. It should be pointed
out that the parameter of screening k in this model is
uniquely related to plasma coupling parameter Γ, which in
this example is about 10. As could be seen in Figure 19, C(t)
is alternating-sign function that assures the conversion to
zero of

∫∞
0 dtC(t) = 0. There were also attempts to derive

the expression for correlator in the neutral point on the
basis of cluster expansion formalism [97] (see also [79]),
however, the application of these results in MMM itself led
to appearance of strange, nonphysical consequences [98].

In this respect, it is necessary to take caution to progress
in the construction of ν(F) and C(t) because insignificant
peculiarities in the behavior of this quantities could lead to
unforeseen nonphysical spectrum singularities. This is the
reflection of the fact that per se here there is situation of the
so-called “ill-posed inverse problem.”

Currently, there is also another significantly developed
method of Frequency Fluctuation Model (FFM) [99, 100],
ideologically adjoining to MMM. However, its principal
difference is that this model to the more extent than MMM
is a way to describe the spectra in the fluctuating microfield
than the method to describe microfield characteristics itself.
It is based on the assumption of the microfield fluctuation
frequency independence from the value of the electric
microfield strength, and in total, the statistical problem
settings correspond more to Kubo resolvent (see [88, 146]).
On the other hand, there is a possibility to model this
frequency using the methods from theory of liquids. Due to

application of the latter effectively the fluctuation frequency
starts to depend on frequency detunings from the line center
[95, 99, 100]. Then, the limits of small and large frequency
detunings could be expressed via “fundamental” parameters
(see [79, 95, 99, 100]). It was already mentioned that for some
time, the used ν(F) was obtained also in the process of special
MD simulations for corresponding parameters, which up to
now is rather laborious procedure. Regretfully, the details of
published FFM formulation do not allow to use it freely for
practical calculations.

3.3. Method of Molecular Dynamics. The method of molec-
ular dynamics is the simultaneous self-consistent solution of
equations of motion for the finite number of particles N in
the finite cell and allows to determine the time evolution of
summary electric microfield, acting on the test particle [101–
109].

The cell size is defined from the similar considerations as
in the Monte-Carlo method [34–39]. However, the simulta-
neous modeling of electrons and ions was not managed to
succeed even on the current supercomputers not only due
to the large difference of characteristic time scales but also
due to the complexity of sound accounting for the effects
of attraction between particles with the opposite signs of
charge.

As a rule, the quasiparticles are used with Debye
screening by plasma electrons. The numerical calculations
could be performed, for example, in cubic cell with periodic
boundary conditions, or elastic, or isotropic scattering on its
borders [108, 109]. If to use in calculations ensembles from
50 and 120 particles, the accuracy of results makes up about
∼10%. The trajectories in the system are evaluated on time
scales much larger than the correlation time τc ∼ r0/vi, where
r0 ∼ (Ne/Z)−1/3 is the mean distance between ions, vi the
mean ion velocity with respect to the emitter at rest. During
integration, the conservation of the total energy of the system
is controlled. Also, the test calculations on reproduction of
results for the static distribution functions are performed
[104–106], and on their basis, the additional subsidiary algo-
rithms for convergence acceleration are introduced [104–
107]. The other methods for acceleration of convergence
and reduction of fluctuations in the results of computations
with regard to the concrete mathematical setting of that or
another physical problem are used as well.

In the majority of performed MD calculations, the μ-
ion model was used. Nevertheless, the separate modeling of
the test particle motion is possible as well. The final result is
obtained by an average over the large number of “histories”
of time evolution. Following large effective time intervals,
MD had rather large fluctuations that, for example, made
difficult to recover impact limit in broadening by ions [101–
109].

The MD was used to study the dependencies of
microfield time evolution [105, 106, 135–137], the charac-
teristic time and spacial scales of screening setting during
simulations of microfield distribution functions [135–137]
(compare [84, 85, 125–127]). However, in [135–137] the
particles with negative sign had the same mass as positive
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Figure 20: Distribution of static ion microfield [135], produced
by finite number N of noninteracting particles, placed in cube: 1
N = 4; 2 N =27; 3 N =1000; 4 Holtsmark distribution; points-
microfield distribution for 27 particles, placed in sphere.

ions, which did not allow to model the real plasma screening
of ions by electrons. In series of papers of these authors, the
attention was payed to the effect of finiteness of particles
number in the effective sphere of interaction, which formally
did not permit to switch to thermodynamic limit:

N = lim
N →∞,V→∞

N
V

, (97)

being the key condition during conducting of thermody-
namic averages. Here, N is the total number of particles, V
is the total volume, N is the particles density. The display of
the finiteness of particles number effects could be followed
by results of modeling [135], presented in Figure 20. On the
other hand, it is seemed that, particularly, the damping of this
influence is achieved by operation with the large number of
tracked microfield time evolutions (configurations) during
the statistical average and the reduction of results dispersion
[101–109]. It follows from results of modeling [135–137],
presented in Figure 21, that Coulomb interaction shifts
somehow the maximum of distribution in the direction
of small fields with respect to the case of ideal plasma
with noninteracting quasiparticles. However, this shift is
much smaller than the shift, arisen due to hypothetic Debye
screening [135–137]. In other words, according to [135–
137], the distribution of instantaneous microfields does not
coincide with Debye field, which is evidently the result of
average over sufficiently large time interval. At the same time
the distribution of summary field experience more essential
shift [135–137] than the distribution of ion field, as far as
the correlation of like sign charges is less essential than the
correlation of charges with opposite signs.

At the same moment in cited works [135–137], the ques-
tion of applicability of static Debye shielding to the modeling
of the electric fields of plasma ions was considered. However,
as was assumed from intuitive notions, the Debye shielding
is settled for rather large time intervals in comparison with
characteristic time scales of the plasma electrons electric
fields variation. That is why the MD instantaneous microfield
distribution for this case becomes more similar to the
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Figure 21: Distribution of static ion microfield [135], produced by
positive charges (a) and by charges of both signs (b) (solid lines
correspond to Coulomb interaction, dashed lines to hypothetic
microfield distribution with Debye screening): 1: T → ∞modified
Holtsmark distribution accounting to finite number of particles in
modeling; 2: T = 1 eV, plasma coupling parameter d ≡ (rc/R0)3 =
0.006; 3: T = 0.5 eV, d = 0.05; 4 is nearest neighbor distribution
W(β) = (3/2) β−5/2 exp[−β−3/2] (solid lines are normalized by
condition

∫
dβW(β) = 1, dashed ones by-

∫
dβW(β) = 1/2; density

of like-sign charges N = N /R3 = 1018 cm−3, N =27, R = 0.03μ;
total density of particles 2N , 2N =54; β+ = F+/F+,0, βΣ = FΣ/FΣ,0,
F+,0 = (4π N /3)2/3 e, FΣ,0 = 22/3F+,0).

Holtsmark distribution [135–137] than to the Ecker-Müller
one. At the time when the works of Yakovlenko et al. were
performed, it was not yet possible to judge on the validity of
conventional results for the microfield distribution functions
(MDFs) of the low-frequency ion component of plasma
microfield with static Debye screening, since they could
manage joint simulations with only heavy negative particles,
not electrons. However, after several decades, the power
of computers allowed to consider and realize such task.
Professor Sergey Yakovlenko spoke against implementation
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of the term “molecular dynamics” in the case of plasma
proposing instead the term “method of dynamics of many
particles.”

Indeed, recently within the certain assumptions on
interaction potentials, MD modeling of plasma electrons
and ions electric fields action on the emitter was realized
simultaneously on the same footing with account of cor-
relations between them [138, 139, 182, 183]. The principal
moment, which allows to perform such modeling, is the
replacing of attracting ion-electron Coulomb potential at the
small distances either by finite potential or by potential of
“impermeable sphere.” Moreover, of course, this becomes
possible also due to the evident significant progress in recent
MD programming, that allowed to consider now the very
tiny time steps and huge numbers of evolution histories
[182].

In [138, 139], the results of these rather detailed and
interesting studies were related only to consideration of
evolution of plasma electrons microfield simultaneously with
the evolution of ion field with switched off and switched on
interaction between electrons and ions. Firstly, this program
was realized in [182]. These results were further developed in
[182, 183] that we follow in what follows. In [182, 183], the
interaction potential of particles with the same sign is taken
in the form

Vee,ii(r) = e2

r
exp

(
− r

λ

)
, (98)

where λ is taken to be about a half of the size of simulation
cubic cell ∼s/2. The electron-ion potential is approximated
with the function

Vei(r) = −e2

r

[
1− exp

(
− r

δ

)]
exp

(
− r

λ

)
, (99)

where the short-range regularization parameter δ is chosen
to satisfy in the limit of small r the value of ionization
potential of hydrogen atom. The total electric microfield is
evidently represented as the sum of summary plasma ions
and electrons fields, which is subdivided into slow S and fast
F microfield components:

�E(t) = �Ei(t) + �Ee(t) = �ES(t) + �EF (t). (100)

Introducing in [182] the average of the electron summary

field �Ee(t)Δt over variable time interval Δt provides the tool
for analysis of stochastic fluctuations:

�Ee(t)Δt = − 1
Δt

∫ Δt/2
−Δt/2

dt′ �Ee(t − t′). (101)

After that, the slow S and fast F components are defined as

�ES(t) = �Ei(t) + �Ee(t)Δt,

�EF (t) = �E(t)− �ES(t) = �Ee(t)− �Ee(t)Δt .
(102)

At the same time, due to ergodicity [182],

lim
Δt→∞

�Ee(t)Δt =
〈
�Ee(t)

〉
= 0. (103)
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Figure 22: MD correlation functions of electric fields for a = 0.8
from [182] at neutral point: black circles is correlation of summary

ion and summary electron fields 〈�Eion(0) · �Ee(t)〉; open circles

〈�Ee(0) · �Ee(t)〉; crosses is a correlation function of fast component

of total microfield 〈�EF,Δt(0) · �EF,Δt(t)〉 for Δt = 0.4 · τe; dashes-
exponential fit.

The conventional parameters of simulations are the electron-
electron and ion-ion mean distance r0 = (3/4πNe)

1/3, the
mean electric field modulus E0 = e2/r0

2, the electron
thermal velocity ve = (kBTe/me)

1/2, the electron and proton
coupling constants Γ = e2/(r0kBTe), and Debye length
rD = (kBTe/4πNee2)1/2, τe ∼ r0/ve. The conditions were
considered with a = 0.4 and a = 0.8, Ne = 1018 cm−3, Te ∼
1 eV. During simulations, the cell is taken about s∼ 3rD, and
the number of particles in the cell is N ∼ 1000. The intro-
duction of λ screening ensures the more rapid convergence
of results but has no deal with much more stronger Debye
screening [182]. As usual, the periodic boundary conditions
allow to address the infinite homogeneous system. During
simulations, the total energy is preserved with accuracy
about 1%. The authors of [182] correctly noticed that the
fast component could not represent the electron fields due to
correlations between ion and electrons, while all definitions
are the functions of the average time interval Δt that have
to be determined from physical peculiarities of the problem,
which are beyond the model. To our opinion in the case of
line broadening, the detuning from the line center could be
such a parameter to require ΔωΔt ∼ 1.

The results for correlation functions presented in
Figure 22 along with [182] are very instructive and phys-
ically reasonable. The symbol 〈· · · 〉 means as usual the
average over ensemble of microfield evolution histories.
The correlation functions itself are common and valuable
additional tool for study of fluctuations. In Figure 22, the
fast component looses correlation very soon, and the strong
anticorrelation of ionic and electron fields is pronounced.
The statistical independence of introduction slow and fast
microfield components is clearly demonstrated in Figure 22
too.
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Figure 23: MD distributions at neutral emitters for slow com-
ponent of total plasma microfield S from [182] for a = 0.8
monotonously shifted to smaller reduced microfield values versus
increasing intervals of time average Δt.

Astonishingly, the results of simulations in Figures 23 and
25 for slow component qualitatively coincide with previously
obtained results [135–137] for heavy negatively charged
particles in Figures 20 and 21. So, the main resume is
that for instantaneous microfields, the Debye shielding is
not realized, while the correlation between electrons and
ions shifts the realistic distribution for slow component
somewhere in between two Holtsmakians corresponding to
densities Ne and 2Ne in opposite direction from Hooper or
Baranger results, corresponding to the static Debye screening
model. However, additionally, it is seen that the ion field
distribution function obtained from the slow component in
the limit Δt → ∞ interestingly differs from the Hooper
result, thus showing that in this case the screening effect is
not static either.

This shift also detects the electron contribution into the
ionic distribution function. In Figure 24, the fast component
distribution functions are shifted more far from the ordinate
axis as the Δt increases. This is opposite to the behavior of
the slow microfield component in Figure 23, which is shifted
toward smaller fields while the Δt increases. The authors of
[182] thus reasonably state that due to symmetry relations
for Δt → ∞, both the slow and fast MDF should converge
to the same limit—common MDF. It should be noted that
the authors of [182] soundly outline the characteristic time
scales τ of processes for which the definitions of the fast and
slow components are introduced. Of course, like in the works
of BM, τ is related to inequality τe < τ < τi [182]. Resuming
discussion of MD simulations in [182], it is worthy to remind
earlier attempts of separation of slow and fast microfield
components on the basis of rather vague consideration in
[180], where no constructive instruments that could allow to
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Figure 24: MD distribution functions at neutral emitters for fast
component of total plasma microfield F and for electron distri-
bution function (dashes) from [182] for a = 0.8, monotonously
shifted to larger reduced microfield values versus increasing inter-
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Figure 25: MD distribution function at neutral emitters for slow
component of total plasma microfield from [182] for a = 0.4.

realize this general idea were proposed. In contrast, in [182],
the logically clear ab initio MD simulation method enabling
to perform this separation and study physical characteristics
of slow and fast components of microfield is created.

The obtained in [182, 183] results put under doubt
practically all ones, which were previously obtained on the
subject, and bid their reconsideration and confirmation.

Due to its complexity the MD method is computationally
time-consuming, and that is why more simple approach of
modeling using the motion of particles along the prescribed
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type of trajectories becomes sometimes more appropriate.
This latter approach could assure the achievement of the
same accuracy of calculations as MD using at least the quasi-
particle models with the lesser expenditure of computational
resources.

3.4. Modeling along Trajectories. The methods of computer
simulations using prescribed type of trajectories for particles
motion for modeling the microfield time evolution were
developed in works of Voslamber and Stamm [101–103], Sei-
del and Stamm [101–103], Stamm-Smith-Talin and Cooper
[104, 105], Gigosos and Cardenoso [140, 141], Hegerfeldt
and Kesting [142], Gigosos et al. [143, 144], Kesting [145],
and Stambulchik [190].

The method of modeling along the straight or hyperbolic
trajectories also uses the finite number of particles N
in the spherical cell of the finite radius “R” [140, 141],
which is determined by given plasma density. The trajectory
characteristics and localization of the particles inlet are
sampled randomly [140, 141], and the particle velocity is
sampled with the Maxwell distribution [140, 141]. The
interval of velocities is split into N equal regions, having
equal probability of sampling. To preserve isotropy, the
orientation of collision plane is spread over angles evenly,
and the range of impact parameters b is divided into N
identical regions, having the equal sampling probability, in
which the impact parameter value is generated using the
following distribution:

P(b)db = 3
R3

b
√
R2 − b2db. (104)

The trajectory of collision is described in terms of the μ-
ion model. After the particle leaves the cell, another particle
instead of it is injected randomly for conserving the total
number of particles in the cell [140, 141]. During this, the
module of particle impulse is attributed to the new particle
for the fulfillment of the conservation law of system energy.
Moreover, the impact parameter of the new particle had to
correspond to the same range of impact parameters, to which
belonged the impact parameter of a particle that left the cell.

Simultaneously, the evolution of summary electric field
of all particles produced at the place of test particle
localization is followed. The final result was determined
by the average over set of generated time histories, the
number of which could approach up to 20000 for the
achievement of appropriate accuracy not lower than ∼10%.
In order to decrease the number of those histories, the
average over the initial configurations is performed with
special discretization, which is the request to reproduce with
the help of this average the statistical microfield distribution
functions. This method allowed to perform simultaneously
the joint modeling of electric fields of ions and electrons
[143, 144], which provides valuable tool for implementation
in plasma spectroscopy, for example. The electric elementary
ion field is approximated using Debye potential for the
approximate account of electron-ion correlations.

Kesting managed to go beyond the frames of μ-ion
model, and elaborated more complex procedure for model-
ing the motion of test particle [145] as well.

4. Kinetic Plasma Theory

4.1. Microfield Distribution Functions Accounting to Dynami-
cal Electron Screening. As was mentioned, the construction
of the distribution function and its properties depend on
those time scales, during which the average over ensemble
is performed [24, 25].

The application of microfield distribution, for example,
in theory of spectral line broadening brings forward rather
tough requests. For small values of detunings from the
line center, the effective time of average are large, and
the screening of ions by electrons could be considered
static. However, with the extent of advancing into the
line wings, the effective average times become shorter, and
static screening does not have enough time to be settled
[24, 25]. That is why the approaches are necessary in
which the screening changes would be adequately accounted
for in construction of microfield distribution functions.
To some extent, this could be said about insufficiency of
thermodynamic approach for this row of problems, as far
as in thermodynamics two procedures of average could not
exist at the same time.

One of the ways to this could be the representation of
elementary electric field of separate field ion via the dielectric
plasma permeability [3–6]:

�Eeff

(
�r; t
)

= Ze

2π3i

∫
d3k

⎧⎪⎨
⎪⎩

�k
k2εl(k,ω)

+
�v−

(
�k
(
�k�v
)
/k2

)

ω[εt(k,ω)−(k2c2/ω2)]

⎫⎪⎬
⎪⎭

· exp
[
i
(
�k�r − ωt

)]
.
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The study of this expression had showed that the extent of
screening of the potential of field particle in collisionless
plasma is the complex function of its velocity value and
the distance to the point, where its electric field is detected,
as well as the angle between the velocity direction and the
radius-vector of observation point [125–127]. Meanwhile,
the extent of potential screening decreases with the increase
of velocity value and the radius-vector module. So, the Debye
screening could be possible only for particles at rest [3–
6, 125–127].

However, the straightforward implementation of this
expression for derivation of the instantaneous microfield
distribution function of low-frequency plasma microfield
component is difficult, as this field depends on time and
contains nonelectrostatic summand—the second term in
the curly brackets, describing the transversal electric field.
Moreover, the question arises what effects of interaction are
included in dielectric permeability? Presently, the methods
of account of plasma coupling effects (electron-electron or
ion-ion correlations) to dielectric permeability still are not
elaborated, and it is calculated in assumption of straight tra-
jectories of free particles. One more general objection stems
from the fact that per se the notion of dielectric permeability
is related to macroscopic method of description, that is, it
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is valid at scales L � rDe,i and thereby unable in principle
to describe processes on lesser scales, on which actually the
microfield notion is introduced.

Nevertheless, the formal substitution of this expression in
characteristic function is possible. As the notions and, more-
over, the methods of calculations of correlations functions,
depending on time, were not elaborated, in this case, one
could speak about the calculations of microfield distribution
functions only for noninteracting quasiparticles. However, it
is known that this procedure reproduces the Debye screening
of electric field [3–6].

For the separation of low-frequency component, the
dielectric permeability should be represented as the sum of
ion and electron contributions, and then the contribution
of the poles residuals of ion summand should be taken. As
the dynamical screening depends on the direction of particle
velocity with respect to its radius vector to the test particle, as
well as on the value of particle velocity [3–6, 125–127], this
considerably complicates not only the calculations but also
the interpretation of results.

The attempts of realization of this approach firstly are
based on discarding the nonelectrostatic terms in the expres-
sion for the electric field of moving field particle in terms
of dielectric permeability [82, 83]. In the paper of Ecker
and Schumacher [82], it is shown that the contribution of
nonelectrostatic terms converges to zero on time scale tmin �
1/ωpi that in truth exceeds the characteristic time scale of
forming the distribution function of instantaneous low-
frequency microfield component 1/ωpi � 1/(vTiN

1/3
i ) �

teff � 1/ωpe at least for ideal or weakly coupled plasmas.
According to the authors’ statement, it is equivalent to
condition NirDe

3 � 1 that by now does not allow to consider
the region of parameters a ∼ 1 reasonably. Moreover, from
the previous sections, it is evident that the distribution
function corresponding to time scales τeff � 1/(vTiN

1/3
i )

no longer could describe the instantaneous distribution of
individual component of ion microfield.

As one of their main results, the authors presume the
demonstration of factorization of the total distribution func-
tion into two independent distributions of high-frequency
and low-frequency microfield components. In assumption
of straight path trajectories firstly the substitution ω =
�k�voi, corresponding to the major contribution, which is

provided by the function ε−1
l (�k;ω), and then the change

of variables �r0i + �v0it = �r, which removes the explicit
dependence on time [62] and means the transition to the
intrinsic reference frame of the given particle, are performed.
Then similar to Hooper [27–29] and later to APEX [40–
44], the fitting parameter ξ is inserted inside the value of
the Debye screening radius of separate statically screened
ion. After that, it is assumed that the main term in the
expansion of natural logarithm of characteristic function
describes the microfield distribution with the elementary
ion field in the form of statically screened according to

Debye �E0(�r; ξ). The second term of expansion is chosen in

the form i�q[�Eeff(�r;�v) − �E0(�r; ξ)]ėxp[−i�q �E0(�r; ξ)], defining
some corrective function similar to the Baranger-Mozer
papers. However, the corrective function does not contain

in the integrand any correlation functions in distinction
from the Baranger-Mozer approach. The fitting parameter
value ξ was determined from the condition of the optimal
convergence of computations and turned out to be equal√

3/2. The resulting distribution shifted with respect to
the Baranger-Mozer distribution sideways small field values,
but did not reach the Ecker-Müller distribution, which is
localized still more nearer to the ordinate axis.

The other result, using this representation, was derived
within implementation of some version of Green function
formalism [83]. The distribution function in [83] depends
not only on the reduced field value but also on the value
of detuning from the line center with regard to problems
of spectral lines broadening [1, 2]. In this work, the second
nonelectrostatic summand in the expression for the field
of single charge in terms of plasma dielectric permeability
was discarded without any discussion or comments [83].
Regrettably, although the idea of the paper is physically
sound, the derivation itself is not quite clear, and alas did not
get confirmation in other papers.

In total, the results of this approach were not further
developed and were not carried to the form that is necessary
for practical calculations, and, moreover, there are certain
doubts about the range of its validity.

The questions about time and spacial scales for fixing
Debye screening in plasmas [125–127] again became the
subject of detailed analytical and computational studies in
the recent instructive works of Trofimovich and Krainov
[84, 85]. However, alas up to now it is not clear how it would
be possible to use these results in the theory of distribution
functions. Nevertheless, it is evident that they are related
to the functional choice of interaction potential and its
dependence on space and time variables.

4.2. Microfields due to Plasma Fluctuations. The theory of
plasma fluctuations has the whole row of interesting and
useful general relations for the correlation functions of
the current density, the charge density, the strengths of
electrical and magnetic fields [3–6, 147]. Nevertheless, the
physical settings that would allow within the fluctuations
theory notions and formalism to construct the microfield
distribution functions are unknown yet.

For the case of electrical fields in most general assump-
tions from the theory of fluctuations in plasma, it is
possible to obtain the following expressions for the Fourier
components of correlation functions of fluctuating electrical
fields in isotropic plasmas 〈Ej Ei〉�k,ω

[4, 5]:

〈
Ej Ei

〉
�k,ω
= 8π

�

exp[(� ω)/T] − 1

·
{
kikj
k2

Im εl
|εl|2

+

(
δi j −

kikj
k2

)
Im εt∣∣εt−η2

∣∣2

}
,

(106)

where l, t are the indecies of longitudinal and transverse

electrical fields correspondingly; ε(ω,�k) is the dielectric
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permeability; η = k c/ω is the index of refraction of the
plasma wave with the cyclic frequency ω and the wave vector
�k in the isotropic case.

Up to the moment the dielectric function is known
practically only for weakly coupled plasmas. Although for
strongly coupled plasmas recently a row of model representa-
tions was developed for the dielectric function, this problem
in total is not studied quite enough first of all due to the
variety of physical conditions realizable in strongly coupled
plasma [3–12, 148–159].

In the case of isothermal ideal isotropic classical plasmas
T � �ω, this expression for 〈Ej Ei〉�k,ω

might be reduced for
the Maxwell distributions over electrons and ions velocities
to the form [4, 5]

〈
Ej Ei

〉
�k,ω

= 32π2

ω

{
kikj
k2

1

|εl|2
(
Te Im κel + Ti Im κil
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+
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δi j−

kikj
k2

)
1∣∣εt−η2
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·
(
Te Im κet +Ti Im κit

)}
,

(107)

where Ti,e are ion and electron temperatures correspond-

ingly; κe,i(ω,�k) are the electron and ion electrical suscepti-
bilities correspondingly.

The dielectric permeability of ideal collisionless plasma is
determined by the expressions (compare with [4, 5])
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The expressions for κe,i(ω,�k) in the case of ideal collisionless
plasma have the forms (compare with [4, 5])
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As it is known, all these expressions could be reproduced
starting from the notions of elementary currents, produced
by non-interacting between each other charged plasma parti-
cles moving randomly along straight line trajectories [3]. The
generalization of these formulas and their asymptotic under
account of collisions could be found in the kinetic approach
for description of fluctuations in [6]. In spite of absence of
interactions, these particles, nevertheless, create the Debye
screening of the electric field in plasmas. Indeed, integrating
over cyclic frequencies the expression for the correlation
functions of microfields in the simplest case Ti = Te and
converging it over indexes i = j, after the inverse Fourier
transform, we obtain the expression [4, 5]

〈
E2〉

�r = 8πT

{
δ
(
�r
)

+
1

8πr2
De

exp(−r/rDe)
r

}
. (110)

The first summand in 〈E2〉�r contains the divergence at zero
which is interpreted as being due to the absence of spacial
correlations [6], whereas the integral from 〈E2〉�r over volume
is finite and equal, being divided on 8π, to the energy content
W per one structureless particle:

W =
∮

V
d3r

1
8π

〈
E2〉

�r =
3
2
T. (111)

This result again raises the question about proportions of
contributions into the obtained density of plasma energy
content 〈E2〉�r by plasma collective oscillations, which are
forming the plasma dielectric permeability, and by the
electrical fields from the individual particles that rapidly
decrease on the scales larger than Debye radius.

As the plasma dielectric permeability is a macroscopic
characteristic, the collective oscillations have macroscopic
origin either. This means that the characteristic spacial scale
of their variations at least for weakly coupled plasmas is
much larger than the Debye radius. At less scales, these
fields decay rapidly and thereby do not provide the essential
contribution into the individual microfield component,
whose scale of variation is less than the Debye radius in ideal
plasmas.

As all derivations of these results were based on collective
plasma oscillations, it would seem that it would be possible
to state that there is no contribution from the individual
component of the electric field, which in principle has
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nonthermodynamic origin. However, on the other hand,
these results could be derived just from simple notions about
the straight line trajectories of particles, having the Maxwell
distribution over velocities, and thus should correspond to
the individual plasma microfield component. However, both
statements are not quite correct as the energy is drawn from
the same fixed source (3/2)N T .

In truth, in order to make conclusion about the ratio
of energy density between the collective and individual
microfield components to 〈E2〉�r , it is necessary to study the
contributions from resonance regions under integration of

〈Ej Ei〉�k,ω
in the space (ω,�k), which actually are responsible

for collective plasma oscillations. Few examples of such
studies could be found in textbooks on plasma physics [191,
192].

Nevertheless, still the certain difficulties with the notions
about separation of individual and collective variables for
Hamiltonian of Coulomb particles do exist even for the
switched off interaction between them.

4.3. Dissolution Effect and Statistical Sums. One of the known
problems in thermodynamics of plasma and gas is the
divergence of statistical sums for bound states of partially
ionized atoms and ions at arbitrary finite temperatures [7,
10].

However, in the external electric field, the upper excited
atomic states are ionized due to the distortion of potential
and nonequal to zero probability of penetration under
the barrier so-called tunnel effect [146]. In plasma, the
microfield plays the role of such external electric field,
devastating the upper levels. This effect leads to the finite
number of really existing excited states and ensures the con-
vergence of statistical sums. The other physical consequence
is the lowering of ionization potential, which influences on
relation of equilibrium concentrations of atoms and ions,
and thereby on the degree of plasma ionization [146, 148–
159]. These tendencies both are visualized in observations by
decreasing of spectral line intensities, originating from the
upper levels to the extent of advancing to the continuum.
This phenomenon conventionally is called as the dissolution
effect of spectral lines.

The pointed out effects turn out to be very important
for plasma equation of state. Ones of the first Hammer,
Michalas [154–159] and Dappen [154–157] payed attention
on the microfield influence on plasma equation of state.
In recent works, the sensitivity of seismological Sun data
treatment to the choice of microfield distribution functions
was demonstrated [157], and the comparison of implemen-
tation of microfield distributions due to Hooper, APEX, and
Holtsmark was performed.

Not all the questions in this complex problem are
completely clear and actively disputed up to now (see, e.g.,
[158, 159, 161, 162]).

4.4. Microfield Influence on Rate Coefficients. The influence of
microfield on probabilities of elementary processes in plasma
leads to variation of the rate coefficients [146, 162], entering
in the balance equations for populations of atomic levels.

This influence is known for processes of excitation and ion-
ization (due to the lowering of ionization potential), charge
exchange, photoionization, autoionization and dielectronic
recombination (due to the levels structure change) [146],
and so forth. The electrical field influences also on the
absorption processes, the localization of continuum edge,
bremsstrahlung, and other processes, which could in its turn
determine the plasma thermodynamic characteristics, and,
in particular, the equation of state. However, this subject,
due to its extensiveness, complexity, and diversity, needs the
special analysis that is beyond the frames of the present work
(see, e.g., [146–159, 161, 162]).

5. Discussion

(i) It should be noted that convergence of cluster expansion
series of Baranger-Mozer and Hooper, and so forth, for
plasma microfield could not be recognized as rigourously
proved. In fact, these methods are based on practical
convergence of the terms of the first and second order of
density for the logarithm of characteristic function. The next
terms of expansion after the second cluster expansion term,
corresponding to more higher orders over density is difficult
to estimate strictly due to the lack of reliable data about
correlation functions of the third order and more higher
ones. Nevertheless, the results of these papers are physically
obvious and do not contradict to existing experimental data.

(ii) Numerous works, in which the cluster expansion
is built up with the help of diagrammatic technique, were
not considered. In series of papers, there were attempts to
renormalize electron-ion interaction, especially in the range
of noticeable plasma nonideality.

However, due to the long-range character of Coulomb
interaction in plasma, the convergence of renown
Bogolubov-Born-Green-Kirkwood-Yvon (BBGKY) chain
of equations [6–12] in this case is not rigourously proved
[11, 12, 160] at least within the classic theory domain
for point particles. The convergence of BBGKY chain in
plasmas is possible only for modified Coulomb potential at
small distances with the help of the introduction of strong
repulsion or various forms of pseudopotentials [7–12, 160]
or, in particular, for particles with finite sizes.

On the other hand, it is well known that the sum of
only ring diagrams is quite sufficient to reproduce static
Debye potential [7–12, 160]. However, in literature, devoted
to derivations of cluster expansions of characteristic func-
tions of plasma microfield distributions functions within
diagrammatic technique, the results depend on what type of
diagrams could be summed and calculated at least partially.
The substantial analysis of these questions is a very complex
problem and is beyond the scope of present consideration.

(iii) Remind, that the necessity to consider, namely, the
conception of instantaneous distribution functions, which
we adhere to in the present review, generally speaking, is also
under debate. In this discussion, it is stated that test particle is
a merely microprobe, detecting the state of a medium, which
had enough time to be set long ago before the measurement
process. Hence, from this point of view, the implementation
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of methods of conventional thermodynamics is sufficient to
perform averages. At the same time, the process of the test
particle equilibration with the medium and its dynamics
represent the separate problem, which has as thermodynamic
as statistical aspects.

(iv) We have to recognize that rather complicated theory
of joint distribution functions has a number of unresolved
questions up to now, connected, for example, with treatment
of the shifts of the microfield tensor of nonuniformity
distributions [19–21, 35, 66, 67], which appear also during
numerical modeling by Monte-Carlo method [37, 38]. These
results hold even for the gas of Coulomb particles, and seem-
ingly contradict to initial conditions of plasma isotropy [66,
67]. Meanwhile, these results also depend on the sequence of
integration in the corresponding multidimensional integrals.
All this did not get clear understanding so far.

(v) The recent results [182, 183] of ab initio MD
joint simulations of plasma ion and electron fields, and
the proposed procedure of their separation into slow and
fast microfield components together with the study of its
behavior versus the value of average time interval (see
[182, 183] and Section 3.3) opens the new era in the
investigations of plasma microfield properties and their
applications. This will cause obviously serious reanalysis and
reconsideration of many questions and notions. For example,
it could have drastic impact on the possible magnitude of
the aforementioned inhomogeneity effects due cancelation
of contributions from ions and electrons, the extent of which
could not be predicted from general consideration.

(vi) Thus we see that the whole row of calculations per-
formed in quasistatic approximation and in MD simulations
[135–137, 182, 184–189] demonstrate the significance of cor-
relations between subsystems with opposite signs of charges
and the necessity to develop and apply TCP models. The
more realistic distributions are localized between Holtsmark
for Ne and Holtsmark 2Ne distributions [182, 187, 188]. In
TCP again, we face the divergence of the second microfield
moment, which was made convergent in the Debye screened
OCP model after divergence for the Holtsmark distribution
of noninteracting field particles.

(vii) In consideration of thermodynamic properties as
already was discussed earlier, the implementation of static
screening notions within conventional thermodynamic ideas
is quite sufficient. However, the model of Debye screening
was criticized for many inconsistencies [46, 47, 154–156].
The discussion and search of more consistent models of
screening and more realistic potentials in plasmas is still
continuing (see, e.g., [193, 194] and references therein) as for
static and for dynamic conditions [182].

(viii) In some cases, as the attentive reader could see, we
preserved the title of articles in the reference list in attempt to
underline its significance for the development of the subject
and draw attention to their original results.

It should be noted that beside the covered in this
review problems, there are also many other interesting
ones (see recent reviews [195–198]) or other connected
with microfield notion, regrettably not touched here. For
example, these are an idea of “mean ion” [158], the so-called
NNN distribution [161], the distribution of microfields due

to third particle, peculiarities of microfield distributions
in dusty plasmas [163], and so on. At the same time,
the choice of works in the reference list was based on
some balanced merits: firstly, physical significance of ideas;
secondly, adequately chosen formalism that does not reduce
the work mainly to its study; thirdly, the final results available
for applications. However, of course, the reader must know
that this review is focused mainly on conceptual aspects of
the problem and only a highly condensed sketch of original
scientific papers, which contain much more detailed and
ample information on particular studies.
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Trägerwechselwirkung,” Zeitschrift für Physik, vol. 153, no. 3,
pp. 317–330, 1958.

[24] M. Baranger and B. Mozer, “Electric field distributions in an
ionized gas,” Physical Review, vol. 115, no. 3, pp. 521–525,
1959.

[25] B. Mozer and M. Baranger, “Electric field distributions in an
ionized gas. II,” Physical Review, vol. 118, no. 3, pp. 626–631,
1960.

[26] H. Pfennig and E. Trefftz, “Die Druckverbreiterung der
diffusen Heliumlinien, Vergleich zwischen messung und
Theorie im quasistatischen Bereich,” Zeitschrift für Natur-
forschung A, vol. 21, p. 697, 1966.

[27] C. F. Hooper Jr., “Electric microfield distributions in plas-
mas,” Physical Review, vol. 149, no. 1, pp. 77–91, 1966.

[28] C. F. Hooper Jr., “Low-frequency component electric
microfield distributions in plasmas,” Physical Review, vol.
165, no. 1, pp. 215–222, 1968.

[29] C. F. Hooper Jr., “Asymptotic electric microfield distributions
in low-frequency component plasmas,” Physical Review, vol.
169, no. 1, pp. 193–195, 1968.

[30] D. Bohm and D. Pines, “A collective description of electron
interactions: II. Collective vs individual particle aspects of the
interactions,” Physical Review, vol. 85, pp. 338–353, 1952.

[31] D. Bohm and D. Pines, “A collective description of electron
interactions: III. Coulomb interactions in a degenerate
electron gas,” Physical Review, vol. 92, no. 3, pp. 609–625,
1953.

[32] A. A. Broyles, “Stark fields from ions in a plasma,” Physical
Review, vol. 100, no. 4, pp. 1181–1187, 1955.

[33] A. A. Broyles, “Calculation of fields on plasma ions by
collective coordinates,” Zeitschrift für Physik, vol. 151, pp.
187–201, 1958.

[34] R. J. Tighe and C. F. Hooper, “Low-frequency electric
microfield distributions in a plasma containing multiply-
charged ions: extended calculations,” Physical Review A, vol.
15, no. 4, pp. 1773–1779, 1977.

[35] D. Gilles and A. Angelie, “Monte- Carlo distributions of
electric microfield,” Annales de Physique, vol. 11, no. 3,
supplement 3, p. 157, 1986.

[36] J. M. Caillol and D. Gilles, “Monte Carlo simulations of
the Yukawa one-component plasmas,” Journal of Statistical
Physics, vol. 100, no. 5-6, pp. 933–947, 2000.

[37] D. Gilles, “Calcul de la repartition statistique du microchamp
electrique dans les plasmas,” Internal CEA-Report, 1997.
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Quantum statistical approach is adopted for calculating the spectral line shapes of neutral helium in dense plasmas. Stark
broadening of isolated He I lines 5048 Å (21P − 41S), 3889 Å (23S − 33P), and 3188Å (23S − 43P) is presented. Based on
thermodynamic Green’s function, the electronic contribution to the shift and width is considered. The participation of ions to
the line broadening is treated in a quasistatic approximation, by taking both quadratic Stark effect and quadrupole interaction into
account. The calculated shifts and widths are compared with existing data.

1. Introduction

Plasma spectroscopy deals with the characteristics of radi-
ation emitted from a plasma. In dense plasmas, damping
of the emitted radiation occurs by means of several mech-
anisms; the most effective one is pressure broadening (Stark
broadening). The interaction between a radiating atom and
surrounding perturbing particles leads to Stark broadening.
High-speed electrons perturb the emitter by collisions,
causing the interruption of the spontaneous emission and
altering the emitter energy levels [1–4].

Line profile calculation is an interesting tool for both
laboratory and astrophysical plasma diagnostics, for exam-
ple, to determine the internal parameters, to understand
the microscopic processes within the plasma, and to check
the quality of the predicted experimental and theoretical
parameters [1, 2].

The emission spectra of helium and He-like ions with
their simple atomic structures are interesting for plasma
diagnostics such as in shock wave tube or pulsed arc plasmas
[5, 6] and in the astrophysical context, for example, stellar
atmospheres of hot stars and white dwarfs [7–9]. Helium
is used as a carrier gas in many laboratories and is weekly
interacting with materials and less harmful for plasma facing
components than hydrogen and its isotopes [5]. The He-
like ions may exist even at extremely high temperatures
and densities. Even ITER is started with helium discharge,
also He can be observed in discharge of JET. Spectroscopic

measurements of tokamak plasmas are not free from helium
[10].

Various approaches have been investigated to calculate
spectral line shapes in plasmas [9, 11–24]. In a semiclassical
approach helium lines were calculated by Griem et al. [22,
23], using an impact approximation for electrons with a
cutoff procedure, while almost stationary heavy ions are
treated in a quasistatic ion approximation due to the static
microfield. Also, molecular dynamics (MD) simulations have
been performed by Calisti et al. [25] and Gigosos et al. [26]
to include the influence of time-dependent microfield by
introducing two kinds of simulations for calculating He I
Stark line profiles.

Thermodynamic Green’s function approach is a powerful
tool to describe the Stark broadening [27–30]. In the
last two decades, a quantum statistical approach has been
developed, taking into account the medium effects by using
Green’s function [31–36]. In principle, this approach is
able to describe dynamical screening and strong collisions
by electrons, as well as the dynamic ion microfield, in a
systematic way. This quantum statistical approach has been
successfully applied to calculate the spectral line shapes of
hydrogen, helium, H-, and He-like ions in dense plasmas
[37–42].

In this paper thermodynamic Green’s function approach
is considered to calculate the pressure broadening of some
selected neutral helium lines. In Section 2 the definitions and
spectral properties of Green’s function approach to spectral
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line shapes of nonideal plasmas are presented. A review of the
basic formalism is introduced and extended to helium lines.
Section 3 provides the calculated shifts and full widths at
half maximum (FWHM) for nonoverlapping, isolated (non-
degenerate) He I lines 5048 Å (21P−41S), 3889 Å (23S−33P),
and 3188 Å (23S−43P) in dense plasmas. Finally, conclusions
are given in Section 4.

2. Theoretical Calculations

Microscopic formation of the spectral line shapes in dense
plasmas arises from perturbation of the radiative atom by
collective and many-body effects [1, 4]. Thus, the interaction
with the surrounding particles must be taken into account.
For example, screening is considered as an important
collective effect in plasmas. The influence of electrons and
ions may be treated separately due to the difference in
mass and mobility. Green’s function methods provide a
perturbative approach to correlation functions and quantum
effects of many-body systems. Two-particle Green’s function
is used to calculate the line shape and electron broadening
from the self-energy and the vertex function. From statistical
properties of the system, the current-current correlations
determine the absorption spectrum, which is utilized by Ross
[27]. Recently, further improvements of this approach have
been made by Röpke et al. [32], Hitzschke et al. [33], Günter
et al. [34], and Omar et al. [41].

Optical properties of many-particle systems are specified
by the dielectric function ε(q,ω) based on Green’s function
theory, which is the response of the medium to an external
electromagnetic field. The longitudinal dielectric function is
related to the polarization function Π(q,ω)

εl
(

q,ω
) = 1−V

(
q
)
Π
(

q,ω
)
, (1)

where V(q) = e2/(ε0q2) is the Fourier transformed Coulomb
potential. In terms of the absorption coefficient α(ω) and the
index of refraction n(ω), the transverse dielectric function
εt(q,ω) in the long wavelength limit q → 0 reads

lim
q→ 0

εt
(

q,ω
) =

[
n(ω) +

ic

2ω
α(ω)

]2

. (2)

In the visible region where the wavelength λ is large
compared with the atomic dimension aB, the transverse and
the longitudinal part of dielectric function coincide. The
absorption coefficient is proportional to the imaginary part
of the dielectric function

α(ω) = ω

cn(ω)
lim
q→ 0

Im ε
(

q,ω
)
,

n(ω) = 1√
2

lim
q→ 0

{
Re ε

(
q,ω

)
+
[(

Re ε
(

q,ω
))2 + A

]1/2
}1/2

,

(3)

where A denotes (Imε(q,ω))2. In thermal equilibrium, the
absorption coefficient is related to the emission coefficient
by Kirchoff ’s law [43]. In optically thin plasma, the emission
coefficient is proportional to the line emission. As mentioned

above, the dielectric function is related to the polarization
function Π(q,ω). Then the medium modifications of spec-
tral line shapes can be addressed to the bound-bound two-
particle polarization function, which concerns to dipole-
dipole autocorrelation function [36].

The perturber-radiator interaction leads to pressure
broadening, which contains electronic and ionic contribu-
tions. Describing the ionic contribution in the quasistatic
approximation by averaging over the ionic microfield at
radiating atom [31, 36, 44], we get

Ipr(ω)

∼
∑

i,i′, f , f ′
I
f , f ′
i,i′ (ω)

∫∞
0
dβP

(
β
)

× Im
〈
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〈
f
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[
�ω−�ωi f −Σi f

(
ω,β

)
+iΓV

i f

]−1
∣∣∣∣ f ′

�∣∣∣∣i′
�
.

(4)

Here, the ionic microfield distribution function P(β) is taken
according to the Hooper field distribution, and β = E/E0 is
the normalized field strength [45]. So �ωi f = Ei − Ef is the
unperturbed transition energy between the initial i and the
final f states; i′ and f ′ are the corresponding intermediate
states

I
f , f ′
i,i′ (ω) = 〈i|r| f 〉〈 f ′|r|i′〉 ω4

8π3c3
e−�ω/kBT , (5)

where 〈i|r| f 〉 is identified as a dipole matrix-element for the
transition between i and f states. The line profile itself is
determined by the vertex correction ΓV

i f for the overlapping
lines and by the self-energy corrections Σ of the initial and
final states

Σi f
(
ω,β

) = Re
[
Σi
(
ω,β

)− Σ f
(
ω,β

)]

+ i Im
[
Σi
(
ω,β

)
+ Σ f

(
ω,β

)]
.

(6)

Both electronic and ionic contributions occur in the self-
energy Σn(ω,β), which is assumed to be diagonal in the
atomic state n;

Σn
(
ω,β

) = Σion
n

(
β
)

+ Σel
n

(
ω,β

)
. (7)

The electronic self-energy is obtained by performing a
Born approximation with respect to the perturber-radiator
interaction [36]

ΔSE
n + iΓSE
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〈
n
∣∣∣Σel(En,β

)∣∣∣n〉

= − 1
e2
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d3q
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.

(8)

Here, the sum over α runs from n− 2 to n+ 2 discrete bound
states for virtual transitions, and the level splitting due to the
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ion microfield Eα(β) has been neglected [35]. So nB(ω) =
[exp (�ω/kBT)− 1]−1 is the Bose distribution function, and
Mnα(q) are the transition matrix-elements, given below. The
inverse dielectric function ε−1(q,ω) contains many particle
effects which account for the dynamical screening of the
interaction in the plasma:

Im ε−1(q,ω
) = − Im ε

(
q,ω

)
[
Re ε

(
q,ω

)]2 +
[
Im ε

(
q,ω

)]2 . (9)

The random phase approximation (RPA) for the dielectric
function is used:

εRPA(q,ω
) = 1− 2V

(
q
) ∫ d3p

(2π)3

fe
(
Ep

)
− fe
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)
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(10)

where Ep = �2p2/2me is the kinetic energy of electrons, and
fe(Ep) is the Fermi distribution function of the electrons,
approximated to the Boltzmann distribution function in the
degenerate limit

fe
(
Ep

)
	 1

2
ne

(
2π�2

mekBT

)3/2

exp

(
− �2p2

2mekBT

)
. (11)

The full expression of the inverse dielectric function has to
be used if the transition frequency ωnα becomes comparable
to the electron plasma frequency ωpl = (nee2/ε0me)

1/2.
However, in the high-frequency limit ωnα 
 ωpl, the inverse
dielectric function can be approximated by

Im ε−1(q,ω
) = −Im ε

(
q,ω

)
∣∣ε(q,ω

)∣∣2 ≈ −Im ε
(

q,ω
)
. (12)

This binary collision approximation leads to a linear behav-
ior of the electronic shift contribution with respect to the
electron density, whereas a nonlinear dependence of the
electronic shift with increasing electron density is expected
if the full expression of the inverse dielectric function is used
[33, 35].

The vertex function for the coupling between the upper
and the lower state is given by

ΓVi f =
2π
e2

∫
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V 2
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q
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me

)
.

(13)

The transition matrix-elements Mnα(q) describe the cou-
pling between free charges and bound states. In lowest order,
they are determined by the atomic eigenfunctions ψn(p)
of the radiating electron and depend on the momentum
transfer �q [34, 46]
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assuming that the ion with charge Z is much heavier than the
electron mi 
 me:
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Expanding the plane wave into spherical harmonics

exp
(
iq · r) = 4π
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l=0

l∑
m=−l

il jl
(
qr
)
Y∗lm
(
Ωq

)
Ylm(Ωr), (16)

where jl(qr) is the Bessel function, a multipole expansion
can be derived; for example, l = 0, 1, 2 gives the monopole,
dipole, and quadrupole contribution of the radiator-electron
interaction, respectively. The radial part of helium wave
function is calculated based on Coulomb approximation
method of Bates and Damgaard [47–49]. For more detail see
[41].

By using the Born approximation, the electronic self-
energy is overestimated. To avoid this we apply a cutoff
procedure and add the strong collision term in contrast to
partial summation of the three-particle T-matrix, which is
quite suitable for treating short-range interactions between
particles [50], where the result might be slightly modi-
fied. According to Griem, the cutoff parameter for the q-
integration is the inverse of the minimum limiting impact
parameter (qmax = 1/ρmin) [22, 36, 49, 51].

To determine the ionic self-energy, we approximate the
time-dependent microfield fluctuation by its static value.
In general, dynamic ionic microfield is important for
overlapping lines and at low electron density in the line
center [52, 53]. Due to the slow movement of heavy ions,
the ion microfield is assumed to be constant during the
time of interest for the radiation process. The static ionic
contribution to the ionic self-energy is treated by means
of the microfield concept including both quadratic Stark
effect and quadrupole effects. The first-order perturbation
term vanishes for nonhydrogenic like atoms because of
nondegeneracy with respect to the orbital quantum num-
ber l. According to second-order perturbation theory, the
quadratic Stark effect is proportional to the square of the
microfield [54]

Σ2
nlm(E) = e2|E|2

∑
n′,l′,m′

|〈n, l,m|z|n′, l′,m′〉|2
Enlm − En′l′m′

, (17)

where E is the microfield strength; n, l, and m are the well-
known principal, orbital, and magnetic atomic quantum
numbers, respectively. The quadrupole Stark effect is due
to the inhomogeneity of the ionic microfield. We use the
expression derived by Halenka [55]:

Σ3
nn′(E) = − 5

2
√

32π
eE0

r0
Bρ
(
β
)〈
n
∣∣3z2 − r2

∣∣n′〉. (18)

Here, Bρ(β) is the mean field gradient at a given field
strength, and the screening parameter ρ = r0/rD is taken
as the ratio between the mean particles distance r0 and the
Debye radius rD.
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Figure 1: Stark FWHM for the He I line 3889 Å as a function of
electron density. A comparison is made with the measured [6, 56–
61] and other theoretical data [22, 62].

3. Results and Discussions

The Stark broadening parameters for the transition (21P −
41S) 5048 Å are given in Table 1. Our width wth and shift
dth results are compared to calculated values of Bassalo
et al. (BCW) [66], measurements of Kelleher [56], and
measurements of Diatta [67]. Our calculations agree better
with the measured value by Kelleher [56] in contrast to the
results given by Bassalo et al. [66]. The measured shift by
Diatta [67] is obviously smaller than the calculated shifts
given in Table 1.

The Stark width and shift of the line (23S − 33P) 3889 Å
are measured by Pérez et al. [6]. The measured values were
in the plasma density range of (1 − 6) × 1022 m−3 and
temperature interval of (0.8−3)×104 K with a mean value of
2× 104 K. The error bar in the case of ne was ±10%, and the
uncertainty in the temperature evaluation was about 20%.
Recently, the FWHM of this line is measured by Gao et al.
[61] for a helium arc for density range (0.5− 4) × 1022 m−3.
Figures 1 and 2 include other available experimental [56–
60, 63] and theoretical results [22, 62]. The MD simulation
results of Gigosos et al. [62] have been performed for
independent as well as interacting particles in nonquenching
approximation. Our calculations are also presented, the
width shows a good agreement especially with the MD
simulations data of Gigosos et al. [62], where no Doppler

Gigosos et al., independent particles

Gigosos et al., interacting particles
Berg et al. [62]
Griem
Pérez et al. [6]
Morris and Cooper [60]
Kelleher [57]
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Figure 2: Stark shift for the He I line 3889 Å as a function of
electron density. A comparison is made with the measured [6, 56–
58, 63] and other theoretical data [22, 62].

broadening is included. Nonlinearity can be seen at very high
electron density. The discrepancy between the measured and
calculated line broadening may be related to self absorption
[61]. However, our results for the shift are overestimated, on
the other hand better agreement can be seen by comparing
our results in non-quenching approximation with the results
of Gigosos et al. [62], which give lower values of shift at high
electron density.

The Stark parameters of the line (23S − 43P) 3188 Å are
measured by Peláez et al. [64]. They made a spectroscopic
and interferometric analysis of a pulsed plasma. The electron
temperature (from 1900 K to 2300 K) was obtained from
the intensity ratio of He II lines. Electron density was
determined by interferometry, ranging from 1.25× 1022 m−3

to 6.22 × 1022 m−3. From these experimental results an
empirical calibration for the Stark parameters was obtained
in a broad range of electron densities [64]. The experimental
and various theoretical Stark parameters are reported by
Peláez et al. [64], and our results are included in Figures 3 and
4 for Stark width and shift as a function of electron density,
respectively, at the given plasma temperatures. Theoretical
predictions of Bassalo et al. (BCW) [24] can also be seen in
Figures 3 and 4. Further experimental results are presented,
carried out by Kelleher [56], Mijatovic′ et al. [65], Berg et
al. [58], and Soltwisch and Kusch [60]. The measured value
of Berg et al. [58] was compared with Griem’s theory [58]
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Table 1: The calculated FWHM and shift (without/with screening) for the line 5048 Å are given; wth and dth this work; wB and dB Bassalo et
al. [66]. The experimental wexp and dexp are included [56, 67].

ne Te wB wth wexp dB dth dexp

(1022 m−3) (103 K) (Å) (Å) (Å) (Å) (Å) (Å)

3.2 30.0 5.22/5.22 5.385/5.378 — 2.19/2.05 2.56/2.397 —

2.0 18.0 3.10/3.10 3.183/3.179 3.4 1.43/1.35 1.783/1.677 0.9 [67]

1.03±12% 20.9±20% 1.58/1.58 1.623/1.622 1.68 0.75/0.68 0.862/0.82 0.89 [56]
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Figure 3: The measured Stark FWHM and calculated values for He
I 3188 Å line versus electron density. The calculated Stark widths are
included from different approaches [22, 24, 56, 58, 60, 64, 65].

at electron density (1.5 ± 0.08) × 1023 m−3 and temperature
(2.9± 0.2)× 104 K.

4. Conclusions

The quantum statistical approach has been developed to
calculate spectral line shapes in dense plasmas. By using
thermodynamic Green’s function, a systematic perturbative
treatment of the polarization function has been performed
[33, 34, 46]. In contrast to the molecular dynamics (MD)
simulations, consistent quantum description is applied here
to calculate the Stark parameters by using the formalism
presented above. The calculated Stark shift and full width
at half maximum (FWHM) of He I lines 5048 Å (21P −
41S), 3889 Å (23S − 33P), and 3188 Å (23S − 43P) have
been calculated in the density range (1021 − 1024) m−3

and for temperatures between (0.5 − 6) × 104 K. In dense
plasmas the binary (few-particle) collision approximation
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Figure 4: The measured Stark shift and calculated values for He I
3188 Å line versus electron density. The calculated Stark shifts are
included from different theoretical approaches [22, 24, 56, 58, 64,
65].

is not appropriate to describe the collective interactions;
therefore at high densities the dynamical screening effect will
be more important seen (12), which reduces the linearity
of Stark parameters with increasing electron density. This
affects mostly the shift than the width, and it can be seen in
Figures 2 and 4. The Hooper microfield distribution function
is applicable for plasmas in the regime Γ ≤ 1, in which
the correlations between plasma particles are considered as
small perturbations. This distribution is not applicable in
strongly coupling regime, where the correlation effect is
important at high density, and therefore a new distribution
function should be adopted. Generally, our calculated line
widths show good agreement by comparing with other
results, while the shift is slightly overestimated for the lines
3889 Å and 3188 Å. However, by performing nonquenching
approximation better agreement can be seen.
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Moreover, our quantum statistical approaches can be
applied not only to investigate the line shapes of two-
electron atom but also to complex atoms. Furthermore, the
deformation of spectral line profiles can be investigated in a
strong magnetic field for stellar diagnostic.
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neutral helium lines,” Journal of Quantitative Spectroscopy and
Radiative Transfer, vol. 31, no. 4, pp. 301–313, 1984.

[10] M. Koubiti, H. Capes, L. Mouret, et al., “Density diagnostic
using Stark broadening of HeI spectral line emission from
Rydberg levels,” in Proceedings of the Workshop on Privacy
Enhancing Technologies (PET ’05), Forschungszentrum Jülich
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Statistics of Charged Particle Systems, Akademie, Berlin, Ger-
many, 1986.

[47] D. R. Bates and A. Damgaard, “The Calculation of the Abso-
lute Strengths of Spectral Lines,” Philosophical Transactions of
the Royal Society A, vol. 242, p. 101, 1949.

[48] I. I. Sobel’mann, Atomic Spectra and Radiative Transitions,
Springer, Berlin, Germany, 1992.

[49] H. R. Griem, “Stark broadening of isolated spectral lines from
heavy elements in a plasma,” Physical Review, vol. 128, no. 2,
pp. 515–523, 1962.
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1. Introduction

In magnetic fusion, detailed line shapes are of interest
for accurate diagnostics or radiative transfer simulations.
For plasma conditions and magnetic fields encountered in
the divertor of present and future tokamaks, an accurate
model for the line shape of the hydrogen isotopes should
include Zeeman and Stark effects, and retain the dynamics
of the ion-emitter interaction. Since we then have to solve
a quantum time-dependent problem, understanding the
role of time ordering becomes an important issue both
from the fundamental and computational points of view
(note, this problem is also investigated in other contexts,
e.g., [1–3]). Time ordering has already been studied in the
Stark broadening literature, but generally for the electron
broadening [4–7]. Our aim here is to investigate the role
of time ordering for the ion perturbation on hydrogen lines
for plasmas with temperature in the eV range, and densities
of about 1015 cm−3, conditions which are expected in the
divertor of the future ITER tokamak. We recall in Section 2
the basic formalism used for line shape calculations in the

presence of Stark and Zeeman effects, and briefly introduce
the issue of time ordering. Line shapes in the atom’s frame
of reference are considered, that is, in the Doppler free case.
We present in Section 3 an ab initio simulation technique
able to provide accurate line shapes including all the effects
of time ordering. Calculations of hydrogen line shapes of
Lyman and Balmer series are presented in Section 4, with
and without the effect of time ordering, and compared
to calculations performed in the static ion limit. The role
of time ordering and the issue of retaining it in a line
shape calculation are discussed in the conclusion for lines
with low and high principal quantum number of the upper
state.

2. Formalism

According to classical textbooks or review articles (e.g., [8–
10]), a line shape in the atom’s rest frame at a frequency
ω, I(ω), is given by the Fourier transform of the dipole
autocorrelation function C(t):
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I(ω) = 1
π

Re
∫∞

0
dtC(t)eiωt,

C(t) =
{

Tr
(
ρn
−→
d ⊥ ·U+

n′(t)
−→
d ⊥Un(t)

)}
.

(1)

Here, n and n′ denote the principal quantum number with

respect to the initial and final states, respectively;
−→
d ⊥ is the

dipole operator projected into the polarization plane; Un(t)
(resp., Un′(t)) is the evolution operator projected into the
subspace related to the initial (resp., final) states; ρn is the
density operator related to the initial states; the brackets
{· · · } stand for a statistical average over the perturbers’
states and the trace Tr(· · · ) is performed over the atomic
states. The evolution operator obeys the time-dependent
Schrödinger equation

i�
dUn

dt
(t) =

(
H0 −

−→
d n · −→E (t)

)
Un(t), (2)

where
−→
d n is the dipole projected into the subspace related to

n; H0 is the atomic Hamiltonian accounting for the Zeeman

effect, that is, H0 = Hat−−→μ ·−→B with−→μ ,
−→
B being, respectively,

the magnetic moment and the magnetic field; and
−→
E (t) =−→

E e(t) +
−→
E i(t) is the time-dependent electric field created at

the atom’s location by both electrons (e) and ions (i). In
our conditions of interest the electron contribution can be
safely described by an impact collision operator Φn. We will

therefore formally replace −−→d n · −→E e(t) by −i�Φn. We will
also use the interaction representation, that is, consider the
evolution operator Ũn(t) = exp((iH0/� + Φn)t)Un(t) which
obeys the following equation

i�
dŨn

dt
(t) = −−̃→d n(t) · −→E i(t)Ũn(t), (3)

where
−̃→
d n(t) = exp((iH0/� + Φn)t)

−→
d n exp((−iH0/� −Φn)t)

is the dipole operator in the interaction representation.
The Schrödinger equation in the interaction represen-

tation (3), associated with the initial condition Ũn(0) =
Un(0) = 1, admits as a formal solution the so-called Dyson
series expansion

Ũn(t) = 1 +
∑
p≥1

1
(i�)p

∫
0≤τ1≤···τp≤t

· · ·

×
∫
dτ1 · · ·dτpṼn

(
τp
)
· · · Ṽn(τ1),

(4)

where Ṽn(τ) = −−̃→d n(τ) ·−→E (τ). Following Baranger [11, 12],
we write this solution a time-ordered exponential of a matrix

Ũn(t) = T exp

(
1
i�

∫ t

0
dτṼn(τ)

)
. (5)

Here, T is the time ordering operator, defined by its action
on a product of time-dependent operators A(t1), . . . ,A(tp)
as follows:

T
[
A
(
tp
)
· · ·A(t1)

]
=
⎧⎪⎨
⎪⎩
A
(
tp
)
· · ·A(t1), if tp ≥ · · · ≥ t1,

0, otherwise.

(6)

Because of the presence of the T-operator in (5), the
evolution operator cannot in general be described by a pure
exponential of a matrix since the Ṽn-operator does not
commute with itself at different times. The time ordering
operator can only be dropped out in the limiting case where
the electric field does not evolve significantly during the time
of interest (quasistatic limit). In the following we will address
the general case by using a simulation code.

3. Assessment of Time Ordering by
Computer Simulations

3.1. The Numerical Simulation Method. The purpose of ab
initio simulations is to numerically reproduce the motion
of the charged particles in the plasma so as to obtain

the time-dependent electric microfield
−→
E i(t). Essentially, a

numerical simulation consists of (i) the calculation of a
set of realizations for the electric field; (ii) the numerical
integration of the Schrödinger equation for each realization;
(iii) the average of the evolution operators on a set of
realizations and the Fourier transform of the autocorrelation
function. In the simulations performed for this work,
we use a code [13] developed according to the method
reported in [14]. We consider that the ions move along
straight line trajectories with constant velocities, sampled
among the particles according to an equilibrium Maxwell
distribution function. The electrons (whose contribution
to line broadening is mostly negligible for our conditions
of interest) are not simulated here, but are described with
an impact collision operator (see previous section). The
treatment of the correlations between ions and electrons
is retained by using Debye screened fields. The largeness
of the ratio ρLi/λD between the ion Larmor radius and
the Debye length (of about 40 at N = 1014 cm−3, T =
1 eV, B = 5 T, i.e., typical conditions expected in the ITER
divertor) ensures the assumption of straight line trajectories.
A cubic cell with periodic boundary conditions is considered.
For each history of the electric field, the code solves the
time-dependent Schrödinger equation for the evolution
operator Ũn(t) according to the algorithm Ũn(t + Δt) =
Ũn(t + Δt, t)Ũn(t), with Ũn(t + Δt, t) being the infinitesimal
evolution operator between times t and t + Δt. The latter
operator is not affected by time ordering if the time step �t
is sufficiently small, and hence can be evaluated by a matrix
exponential

Ũn(t + Δt, t) = exp
(

1
i�
ΔtṼn(t)

)
. (7)

In the code, we use this property and calculate the expo-
nential according to the scaling squaring method (e.g., [15]).
This method is also used for the calculation of the expression
of Ũn(t) not accounting for time ordering, given by the
exponential of

∫ t
0dt

′Ṽn(t′)/i�.

3.2. Line Shape Calculations. Time ordering should play a
role on lines which are affected by ion dynamics, that is,
with a low upper principal quantum number n. To illustrate
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Figure 1: Zeeman-Stark profiles of (a) Lyα, (b) Lyβ, and (c) Dα, obtained at typical divertor conditions with the simulation method
accounting for time ordering (circles) or not (full line), and with the quasistatic approximation (dots). In each case, neglecting time ordering
leads to a dramatic underestimation of the line broadening, and provides more structure.

this point, we have successively calculated Lyα, Lyβ (whose

shapes are involved in the calculations of divertor plasma
opacity), and Dα (which is commonly observed in tokamak
experiments and routinely used for diagnostic purposes).
Figures 1(a), 1(b), and 1(c), show, for each line profile, the
result obtained with simulations retaining time ordering or
not, at N = 1015 cm−3, Te = Ti = 1 eV, B = 5 T, and in
perpendicular observation. The profiles resulting from the
quasistatic approximation are also plotted. In each case, the
Zeeman effect is important and leads either to a Lorentz
triplet structure (Lyα, Dα) or to an additional broadening
(Lyβ). As can be seen, neglecting time ordering leads to a
dramatic underestimation of the Stark effect. The Zeeman

components of Lyα and Dα are much narrower than those
obtained both with the exact solution and the quasistatic
approximation (note, by a factor of ∼3-4 in the case of the
lateral components of Lyα), and the Zeeman-Stark pattern
becomes visible on Lyβ when time ordering is neglected.
Another gain of structure is provided by the apparition of
Stark components, in particular on Lyβ where a splitting of
the lateral Zeeman components due to Stark effect is clearly
visible.

The underestimation of the Stark effect can be explained
by noting that, in the solution of Schrödinger’s equation
neglecting time ordering, the matrix exponential essentially

involves the time average of the electric field (1/t)
∫ t

0dt
′−→E i(t′).
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Figure 2: Profiles of (a) Dβ, (b) Dγ, and (c) D8. The effect of time ordering decreases as the upper principal quantum number increases,
that is, as the quasistatic limit for ions is approached.

This quantity vanishes on a time scale smaller than the time
of interest, a quantity usually defined as the inverse of the line
width. Therefore, except for very large frequencies (which
correspond to short times), the emitter-ion interaction
potential is very small and the resulting line shape becomes
very narrow. The line shape is even narrower than that
obtained using the quasistatic approximation because the
cancellation of the average electric field, equivalent to a
cancellation of the evolution operator oscillations, leads to
a slower decorrelation of the atomic dipole. The deviation
should be smaller for lines with a higher upper principal
quantum number n, because ion dynamics is less important
in this case. This is indeed illustrated in Figure 2, where a plot
of (a) Dβ, (b) Dγ, and (c) D8 are presented. For these lines,

the ratio ti/tc between the time of interest at half maximum ti
and the collision time tc is 14%, 9%, and 0.2%, respectively.
As shown, the role of time ordering becomes less and less
important as this ratio decreases, that is, as the ions become
static.

4. Conclusion

We have addressed the role of time ordering on hydrogen
Zeeman-Stark profiles in low-density plasmas, for typical
conditions of tokamak divertors. With numerical simula-
tions, we have shown that neglecting time ordering on
lines with a low upper principal quantum number leads to
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strong deviations, with a systematic underestimate of the
Stark width of the Zeeman components. This is interpreted
in terms of the time averaged electric field, namely, the
latter rapidly vanishes during the decorrelation of the atomic
dipole so that the resulting effective Stark effect is reduced.
Conversely, we have shown that the deviations are weak on
lines with a higher upper quantum number, merely because
they are much less affected by ion dynamics. This result,
of interest for spectroscopy of magnetic fusion experiments,
shows that: (i) the development of line shape models includ-
ing ion dynamics for Monte Carlo investigations of radiative
transfer (e.g., [16]) requires to account for time ordering; (ii)
in a similar way, time ordering must be accounted for in the
Stark broadening models used for Dα passive spectroscopy
diagnostics; (iii) obviously, the effect of time ordering
disappears as one approaches the validity conditions of the
static ion approximation, and this is clearly the case for high-
n lines in our divertor conditions. A possible extension of our
work would consist of a parameterization of the role of time
ordering on low-n lines, for diagnostic as well as for radiative
transfer calculation purposes.
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Küppers, “Detailed atomic, molecular and radiation kinetics
in current 2D and 3D edge plasma fluid codes,” Journal of
Nuclear Materials, vol. 363–365, no. 1–3, pp. 649–657, 2007.



Hindawi Publishing Corporation
International Journal of Spectroscopy
Volume 2010, Article ID 506346, 6 pages
doi:10.1155/2010/506346

Research Article

Hydrogen Stark Broadened Brackett lines
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Stark-broadened lines of the hydrogen Brackett series are computed for the conditions of stellar atmospheres and circumstellar
envelopes. The computation is performed within the Model Microfield Method, which includes the ion dynamic effects and makes
the bridge between the impact limit at low density and the static limit at high density and in the line wings. The computation gives
the area normalized line shape, from the line core up to the static line wings.

1. Introduction

Hydrogen is the most abundant element in the universe.
Its broad lines give noticeable features in the spectra of
stellar atmospheres [1–4]. These lines are very sensitive to
the interaction between hydrogen radiating atoms and the
surrounding charges, electrons, and ions (mostly protons),
which is connected to the random electric field generated
by these charges. The electric field has two components,
with different time scales: the rapidly varying electronic
field and the slowly varying ionic electric field. The net
field induces a strong mixing of the atomic states with the
same principal quantum number, from which the Stark
broadening originates. Astrophysical applications need to
know the full line shape, from line centre up to the line wings,
for a wide range of plasma conditions (i.e., electron density
Ne and temperature T).

Whereas hydrogen line shapes have been widely used
in stellar physics for the determination of gravity and/or
temperature in the visible and UV ranges, the recent
instrumental developments on various telescopes, such as
AMBER [5] and CRIRES [6] on VLTI and VLT, require the
availability of precise hydrogen lines in the infrared (i.e.,
between 1 and 5 μm). The latter are badly known [7].

This paper thus aims at providing a coherent description
of the line shapes of Brackett α, β, γ, which connect the
levels of principal quantum numbers n equal to 4, for the
lower state of the transition, and n′ equal to 5, 6, and 7, for

the upper state, and have central wavelengths of 4.05, 2.63,
and 2.12 μm. The chosen plasma conditions are relevant to
stellar photospheres and circumstellar environments (elec-
tron densities between 1010 and 1019cm−3 and temperatures
between 103 and 107 K). The plasma charges are assumed to
be electrons and protons. This is a standard approximation
for this type of study, although some improvements may be
possible by including the effect of ionization of He (which
is, by number of atoms, only 10% as abundant as hydrogen)
and traces of heavier elements.

We suppose that plasma collective effects are included
in the Coulomb interactions between the hydrogen bound
electron and the plasma charges by Debye screening. This
requires that the Debye length λd is larger than the mean
distance r0 between the protons or that the parameter a =
r0/λd is smaller than unity. Our tables will thus be limited
to the values of temperatures and densities satisfying the
following condition:

Ne < 2.6 109 T3 (
cm−3, K

)
, (1)

which is fulfilled for standard stellar atmospheres.
We assume also that the proton/electron density is small

enough to ensure that each line 4−n′(n′ = 5, 6 or 7) remains
distinguishable from the subsequent line 4 − (n′ + 1) of
the Brackett series. Using the Inglis-Teller [8] criterium, the
upper limit to the electron density Ne is thus

log
(
Ne,max

) = 22− 7.5 log(n′)
(
cm−3). (2)
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This, respectively, gives log(Ne,max) = 16.75, 16.16, and
15.66 for the n′ (= 5, 6 and 7) values considered in this paper.
However, in order to allow interpolation within the tables for
astrophysical applications, the line shapes for higher values of
Ne, up to a decade, have been computed.

Different methods can be used to generate high-quality
spectral line shapes for hydrogen lines perturbed by protons
and electrons: Molecular Dynamics for describing precisely
the ion dynamics effects in the line center [9, 10], quantum
theory for the electron contribution to the line wings [11],
and short range H–H+ molecular interactions also for the
line wings, leading to the apparition of quasimolecular
satellites, which are observed in the atmospheres of white
dwarfs [12]. However, they are limited either to part of
the profile, to restricted plasmas conditions, or to simple
lines like Lyman or Balmer lines. Thus, as for astrophysical
purposes, the tabulations go from the line centre up to the
line wings, and it is necessary to find a compromise between
accuracy and description of the whole profile.

In this context, the tabulations of Vidal et al. [13], using
Unified Theory for the electrons and static approximation
for the ions, have been used for stellar atmospheres, despite
the intrinsic lack of accuracy in the line center due to the
neglect of ion dynamics effects. The tabulations of Stehlé
et al., for the Lyman, Balmer [14, 15], and Paschen lines
[16], using Model Microfield Method, which was initially
developed by Brissaud et Frisch [17, 18] brought an impor-
tant improvement by taking into account the ion dynamics
effects. They are now used for atmospheres and for the
computation of radiative diffusion processes in the radiative
stellar envelopes [19]. In the case of partly ionized plasmas,
like for the atmospheres of cool stars, the contribution of
neutral broadening by hydrogen has to be included in the
line shape, especially in the line wings [20, 21]. This effect
will be neglected in the following.

In this paper we will present the Stark broadened
profiles of Brackett lines. They will be computed within the
formalism of Model Microfield Method, hereafter denoted
by MMM. We will neglect the fine structure effects, which
play a role, at low density, in the core of the lines with low n
quantum mumbers, like Lyα or Hα [22]).

For Brα, the profiles are computed at densities
log10(Ne(cm−3)) ranging from 10 to 18.5, by step of 0.5.
For each density, the profiles are computed at temperatures
equal to 1000, 2500, 5000, 10000, 19550, 39810, 79810,
158500, 316200, 63100, and 1259000 K, assuming that
condition 1 is satisfied. For Brβ , the computation stops at
log10(Ne(cm−3)) = 18 and for Brγ at 17.5, as explained
previously.

2. Method

The broadening of spectral lines results from the interactions
between the radiating hydrogen atom and the free ions
and protons. These two contributions can be described in
terms of interaction potentials, with the corresponding elec-
tronic and ionic plasma microfields Fel and Fion. Neglecting
quadrupolar and other contributions that play a role at high

densities [23], the dipolar potential of interaction between
the bound electron and the microfields may be written as

V(t) = −d · (Fel(t) + Fion(t)). (3)

The spectral line profile I(ω) (with area normalized to
unity) is thus defined in the Liouville space [24, 25], span-
ned by the states | i, f � (which stands for | ni, li,mi;n f , l f ,
mf �) as

I(ω) = 1
π
∑

i, f di, f · d∗i, f
Re

∑
i, f ,i′, f ′

di, f · d∗i′, f ′

× 〈U(ω)〉el,ion; i f ;i′ f ′ ,

(4)

where 〈U(ω)〉el,ion is the Fourier transform of the evolution
operator of radiating Hydrogen atom in the Liouville space,
averaged over the realizations of the stochastic dynamic
electronic and ionic microfields Fel and Fion. The term di, f ·
di′, f ′ is the product of dipole operator elements between
initial low states (denoted by i, i′) and final upper states
(denoted by f , f ′), of the hydrogen bound electron. As fine
structure and inelastic effects are neglected, one has Ef −Ei =
E′f − E′i = �ω0.

The two microfields are stochastic processes. It is thus
possible to define two distribution functions P(F) [26, 27],
respectively, associated to the slowly varying ionic and
rapidly varying electronic microfields. In order to take into
account the dynamic effects of these microfields, a model
for the dynamical statistics of field fluctuations is necessary.
In MMM, the microfield fluctuations are handled with a
statistical process model, where the microfield (electronic
or ionic) is assumed to be constant during a given time
interval. The microfield then jumps instantaneously to
another constant value for the next time interval. The
jumping times are assumed to follow a Poisson law, with a
field dependent frequency ν(F). The jumping frequency ν(F)
is chosen to reproduce the true field autocorrelation function
[17, 18, 28]. This method has been tested against asymptotic
impact and quasistatic limits and has been proved to lead to
very good results for hydrogen [29] and hydrogenic ion lines
[28].

The method has been already described in Stehlé and
Hutcheon [15], and we refer the reader to this paper for the
details. An important point is that it is possible to disentangle
the contributions of ions and fast electrons by introducing
a frequency dependent electronic relaxation operator γel(ω),
which is independent from ionic fields and thus may be
computed separately. The Fourier transform of the evolution
operator, 〈U(ω)〉el, averaged over all the realisations of the
electronic fields, may be written as

〈U(ω)〉el = i
[
ΔωI + iγel(ω)

]−1 , (5)

where Δω = ω − ω0 is the detuning from line center, and I is
the identity operator in the Liouville space.

Thus, this electron damping is first computed to account
for average effect of the electronic fields. Then, the static
Fourier transform of the evolution operator, 〈U(ω)〉el,ion,
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Figure 1: HWHM of Brα at 2500 K, in Å, versus electron density
Ne in cm−3 (black and squares: MMM Stark only; red and circles:
analytical impact formula; dashed green: MMM Stark profile with
Doppler convolution).

averaged over the realisations of the electronic and ionic
fields, may be written as

〈U(ω)〉el,ion = i
∫
P(Fion)dFion

[
ΔωI + d · Fion + γel(ω)

]−1
.

(6)

The MMM expression is more complex [17, 18] than this
one, which corresponds to the usual Unified Theory with
static ionic fields.

In order to reduce the dimensions of the Liouville space,
(16 × 25 = 400 states for Brα, i.e.), we use the formalism
of the reduced Liouville space, which takes advantage of the
invariance of the different operators, like d · d , by angular
average over all the orientations of the electric fields and
of the fact that the dipole tensor d in (4) is of rank 1
(see e.g. [28, 29]). However, the number of reduced states
| ni, li;n f , l f � (with |li − l f | ≤ 1) remains important
(i.e., 10 reduced Liouville states of rank 1 for Brα). Thus,
we use another approximation, already called “isotropic”
approximation in [15], which uses the diagonal form γiso

el (ω),
with equal diagonal matrix elements, instead of γel(ω). This
scalar tensor is deduced from the pure electronic profile
I(ω)el by the following relation:

I(ω)el = − 1
π

Im[Δω + iγiso
el (ω)]

−1
, (7)

or

γiso
el (ω) =

∑
i, f ;i′, f ′ di, f · d∗i′, f ′γel; i f ;i′ f ′(ω)∑

i, f di, f · d∗i, f
. (8)

The Stark profile is thus obtained after computing the
average over electronic field values, which gives γiso

el (ω),
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Figure 2: Same as Figure 1 for Brβ.

and then the average over the ionic fields, both using the
formalism of Model Microfield Method. The third step is
then the Doppler convolution, which gives the final line
shape.

3. Results

The three Brackett α,β, γ line shapes have been studied in a
wide range of stellar conditions, but we report hereafter only
a selection of results, relative to the line center and the line
wings.

3.1. Line Center. We present in Figures 1, 2, and 3 the
variations of the half-width (HWHM) of Brα, Brβ, and Brγ
lines for different values of the electron density. This quantity
is the detuning from the line center, at the point where the
profile reaches half the maximum value of the line profile
(which is not necessarily at the line center, as will be discussed
below). The figures show the half width of the MMM profile
with and without Doppler effect and also the value of the
impact half-width in its own validity range.

Hence, impact limit has been proved to be valid, for both
electron and ion contributions, in the line center and at low
densities. Moreover, it has been proved that the value of the
impact width is analytical and that the corresponding profile
is Lorentzian in the line center [30]. The validity condition of
the impact limit is that the half-width value is smaller than
the ion plasma frequency. Let us take the example of Brα.
At 1012 cm−3 and 2500 K the ion plasma frequency is equal
to 2.6 109 rd · s−1, whereas the ion impact contribution to
the HWHM is equal to 1.8 109 rd · s−1. At 1014cm−3, they are
respectively, equal to 2.6 1010 and 3.9 1010. The impact limit
should thus be reached gradually as the density decreases
below 1013cm−3.

Figure 1, relative to Brα, shows indeed that the half-
width of the Stark profile (black) tends to converge towards
the impact analytical limit (red) at these low densities.
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However, the convolution with the Doppler profile increases
the half-width value. As a consequence, the half width is
dominated by the Doppler broadening at low densities.
Similar behaviour occurs for the other lines, as may be on
Figures 2 and 3 for Brβ and Brγ.

At higher densities, the ion dynamic effects become
smaller in the line center (they are negligible in the line
wings, as will be seen below), and the line shape departs
from the Lorentzian shape. We found that, depending
on the temperature conditions, the Brackett β line may
present a small dip in the line center at moderate densities
of 1015 cm−3 and for the largest temperatures as seen in
Figure 4. This effect was well known in earlier tabulations
for the Lymanβ and Hβ lines. The dependence versus the
temperature is a consequence of the the electron impact
broadening, which varies in T−1/2 and which may fill (at low
T values) or not (at large T values) the central dip.

3.2. Line Shapes. Another typical behaviour of hydrogen
lines is the convergence towards the (Holtsmark) static limit
in the line wings, which scales as |Δω|−5.2 when the line
shape is expressed in angular frequency units (which is the
appropriate unit for the line shape computations). However,
traditionally, the line intensity was expressed in units of Δα =
Δλ/F0 , where F0 (esu) = 1.25 109(Ne)

2/3 is the normal Holts-
mark field. In these units, the Holtsmark limit is given by

I(Δα) = Kα

|Δα|5/2
(
λ0/F0 + Δα

λ0/F0

)1/2

� Kα

|Δα|5/2 for |Δα| 	 λ0

F0
,

(9)

where λ0 is the central wavelength, and Kα a constant, which
depends on the transition,

Kα = 1.512 for Brα, 2.401 for Brβ, 2.926 for Brγ. (10)
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Figure 4: MMM Brβ line at 1015 cm−3 versus Δα = Δλ/F0 without
Doppler convolution for different temperatures (red : 1000 K; blue
with empty circles : 2500 K; violet with empty squares: 10000 K;
green: 19950 K).
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Figure 5: MMM Brα line at Ne = 1012cm−3, with (red) and without
(blue) Doppler broadening, and the asymptotic Holstmark limit
(black) in |Δα|−5/2 for 11 different temperatures in K (1000, 2500,
5000, 104, 2 104, 3.98 104, 7.94 104, 1.58 105, 3.16 105, 6.31 105, 1.26
106). The corresponding values of the profiles in the line center are,
respectively, 0.28, 0.30, 0.34, 0.46, 0.56, 0.69, 0.88, 1.23, 1.45, 1.87,
without Doppler effect (blue), and, 0.102, 0.071, 0.053, 0.039, 0.028,
0.020, 0.014, 0.010, 0.0072, 0.0051, 0.0036 including Doppler effect
(red).

This variation in Δα of 9 introduces, at large detunings,
a “trivial” asymmetry between I(Δα) and I(−Δα) (which
does not exist between I(Δω) and I(−Δω)). Figures 5, 6
and 7 show the profiles I(Δα) of Brα, Brβ, and Brγ lines at
1012 cm−3 and various temperatures. The profiles, including
Doppler effects are reported in red color, and the pure Stark
profiles in blue.
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Figure 6: Same as Figure 5 but for Brβ, the values of the profiles
in the line center are, for the 11 different temperatures of Figure 5,
respectively, 0.124, 0.129, 0.136, 0.149, 0.168, 0.195, 0.233, 0.285,
0.355, 0.451, 0.579 without Doppler effect (blue), and 0.099, 0.082,
0.067, 0.053, 0.040, 0.030, 0.0215, 0.015, 0.011, 0.0078, 0.0056
including Doppler effect (red).
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Figure 7: Same as Figure 5 but for Brγ, the values of the profiles in
the line center are, f for the 11 different temperatures of Figure 5,
respectively, 0.107, 0.107, 0.109, 0.113, 0.121, 0.132, 0.150, 0.175,
0.211, 0.260, 0.327 without Doppler effect (blue), and 0.091, 0.080,
0.069, 0.057, 0.0450, 0.034, 0.025, 0.018, 0.013, 0.0094, 0.0067
including Doppler effect (red).

The profiles are area normalized, that is,
∫ +∞

−∞
I(Δα)× d(Δα) = 1. (11)

As a consequence, broad profiles have small values of
I(Δα = 0). For the density considered in Figures 5–7,
the Doppler profile dominates the Stark profile in the line

center and becomes indistinguishable, as expected, in the
line wings, where they follow the asymptotic limit of (9).
At higher densities (not reported here), the Doppler width
is smaller than the Stark width, and Doppler convolution is
no longer necessary.

4. Conclusions

This study shows that Stark broadened infrared Brackett lines
of hydrogen follow the same trends as the lines of lower series
which are more known theoretically and experimentally. This
study will allow missing absorption in the spectra of stellar
atmospheres in the infrared due to the lack of data to be filled
in a next future. Dedicated experiments and comparisons
with other methods, for instance, FFM [31], would be helpful
to test these theoretical results, which will be also constrained
by observational data. The corresponding tables will be
accessible at http://amrel.obspm.fr/stark-h.
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1. Introduction

The phenomenon of the acceleration of the (perturbing)
electrons by the ion field (AEIF) significantly reduces Stark
widths and shifts in plasmas of relatively high densities
and/or relatively low temperature. This phenomenon was
first described analytically in the binary approach in paper
[1] with subsequent analytical improvements in paper [2].
Then it was also described analytically in the multiparticle
approach in book [3] and paper [4]. The essence of this
phenomenon is the following.

Due to the presence of the ion field, perturbing electrons
are passing by the radiator at higher velocities than it would
be at the absence of the ion field. The increase of the
electron velocities translates into a decrease of the electron
broadening (i.e., a decrease of Stark widths and shifts). The
narrowing (and shift-reducing) phenomenon caused by the
AEIF is the realization of a direct coupling between electrons
and ions. It affects the spectral line shape in addition to the
effect of the indirect coupling between the electron and ion
broadenings (see, e.g., [3]). The latter coupling is indirect
because it is carried out via the radiating atom which acts
as an intermediary, this being manifested by the fact that the
coupling parameter depends on the quantum numbers of the

atomic states (as well as on the parameters of the electron
and ion microfields). In distinction to this, the coupling
parameter in the narrowing phenomenon does not depend
on the atomic quantum numbers. It should be emphasized
that in the conventional theory [5] there was no coupling of
any kind between the electrons and ions.

The analytically described direct and indirect couplings
of the electron and ion microfields combined with the
analytical description of the ion dynamics constituted a
highly advanced theory of the Stark broadening [3, 4]. A
code based on this analytical theory eliminated significant
discrepancies between variety of benchmark experiments
and previous theories and/or simulations [3, 4].

However, there are two different schools of thought on
what should be the ultimate test of various theories. One
school of thought considers the comparison with benchmark
experiments as the ultimate test of the theory. For spectral
line shapes in plasmas, benchmark experiments are those,
where plasma parameters are determined independently of
the spectral line shape theory to be tested.

Another school of thought insists that the ultimate test
of a particular theory is the comparison with results of
a code based on fully-numerical simulations starting from
the “scratch” rather than from some analytical advance.
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Within this school of thought, there have been recently
conducted fully numerical simulations trying to “mimic” the
phenomenon of AEIF [6]. Based on their fully-numerical
simulations conducted for the Hα line at just one value of the
electron density Ne and just one value of the temperature T ,
the authors of [6] claimed that the AEIF leads to an increase
of the electron-caused Stark width rather than to its decrease.

It should be emphasized that those simulations [6]
had lots of limitations. The primary limitation was their
employment of the binary version of the AEIF. Thus, their
results have no bearing on the analytical results for the AEIF
obtained in the multiparticle approach [3, 4]. Nevertheless,
the controversial results of simulation from [6] for the binary
version of the AEIF required a resolution.

In the current paper we resolve this issue as follows. Our
previous analytical calculations of the AEIF [1–4] were based
on the dynamical treatment of the perturbing electrons.
In other words, in [1–4] we calculated analytically how
the ion microfield changes the trajectories and velocities
of the individual perturbing electrons and then averaged
their contribution to the broadening over the ensemble of
electrons. In the current paper, instead of the dynamical
treatment we employ a statistical approach. Namely, we start
from the electron velocity distribution function modified by
the presence of the ion microfield—this modified electron
velocity distribution function had been calculated (for a
different purpose) by Romanovsky and Ebeling in the
multiparticle description of the ion microfield [7]. With the
help of the modified electron velocity distribution function
from [7], we then calculate the Stark broadening by electrons
within the framework of the conventional theory usually
assigned to Griem [5] (who is one of the coauthors of
[6]). The result shows that the electron Stark broadening
decreases.

Thus two totally different analytical approaches (dynam-
ical and statistical) agree with each other (by predicting a
decrease of the electron Stark broadening) and therefore
disprove the fully-numerical simulations from [6] (that
claimed an increase of the electron Stark broadening). In
conclusion we briefly discuss possible reasons for the failure
of the fully-numerical simulations from [6].

2. Analytical Calculations

Romanovsky and Ebeling [7] considered the instantaneous
state of a plasma as a set as “domains” (the size of the
domains being of the order of the Debye radius) with dif-
ferent constant values of the ion microfield F. The latter was
treated in the multiparticle description. The characteristic
time of the domain structure changes is of the order of
the inverse plasma frequency. By applying the statistical
approach, Romanovsky and Ebeling derived the following
(unnormalized) velocity distribution function of the plasma
electrons affected by the ion microfield

f (u)(v) =
(

2v
π

)∫∞
0
dt sin(tv) exp

[
−(vEt)

3/2 − (vTt)
2

4

]
,

(1)

where the superscript “u” stands for “un-normalized”, vT =
(2Te/m)1/2 is the mean thermal velocity of the electrons, and
vF is the scaled (to the dimension of velocity) characteristic
ion microfield defined as follows:

vE =
(
eEH
m

)[
m

4πe2Ni

]1/2

(Ti/Te)1/2. (2)

Here e, m, and Te are the electron charge, mass, and
temperature, respectively; Ni and Ti are ion density and
temperature, respectively; the quantity

EH = 2π
(

4
15

)2/3

eN2/3
i (3)

is the characteristic Holtsmark microfield. ( The authors of
[7] used FH in the form EH = 2π(4/15)2/3e(N2/3

i + N2/3
e ),

where Ne was the electron density—because the focus of
their study was the effect of the plasma microfield on the
ionization by very rapid electrons having the kinetic energy
much greater than Te . Those electrons were affected by both
the ion and electron microfields. ) The distribution function
f (v) becomes the Maxwell distribution if vE = 0 , and it
becomes the Holtsmark distribution if vT = 0.

Let us first consider the most practically important case
where vE � vT . In this case we can expand exp[− (vFt)

3/2] in
the integrand in (1):

f (u)
small(v) =

(
2v
π

)∫∞
0
dt sin(tv)

×
[

1− (vEt)
3/2
]

exp

[
− (vTt)

2

4

]
.

(4)

Here subscript “small” stands for a relatively small ion
density/field. After calculating the integral in (4) analytically
and then normalizing the corresponding distribution func-
tion (also analytically), we obtain the following normalized
velocity distribution function:

fsmall(v) =
[

4v2

π v9/2
T

]

×
[
π1/2v3/2

T exp
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− v2
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v2
T
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.

(5)

Here Γ(z) is the gamma-function, F(a, c; z) is the confluent
hypergeometric function.

At the stage preceding the averaging over velocities,
the electron impact broadening operator in the dipole
approximation has the following form (in accordance to the
conventional theory [5]):

Φ(v) = K

v2
, (6)

where K is a well-known operator that practically does not
depend on velocity (see, e.g., [8])

K = −
(

rara − 2rar∗b + r∗b r∗b
)[4πe4Ne

3�2

][
ln

(
ρmax

ρmin

)
+

1
2

]
.

(7)
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Figure 1: The electron broadening reducing factor R versus the
parameter X = vE/vT representing the scaled dimensionless ion
density/field. Here vT = (2Te/m)1/2, and vE is defined by (2), (3).

The next step is the usual averaging over velocities

Φsmall =
∫∞

0
dv v fsmall(v)Φ(v) (8)

By calculating the integral in (8) analytically, we obtained

Φsmall =
[

2K
π1/2vT

]⎡⎣1− 23/2 Γ(5/4)v3/2
E(

π1/2v3/2
T

)
⎤
⎦. (9)

From (9) it is clearly seen that as the parameter
vE/vT (representing the scaled dimensionless ion den-
sity/field) increases from zero, the electron impact broad-
ening decreases. Just this result alone disproves the claim by
the authors of [6] that the AEIF leads to an increase of the
electron-caused Stark width.

For completeness, let us now consider the opposite case:
vE � vT . In this case we can expand exp[−(vTt)

2/4] in the
integrand in (1):

f (u)
large(v) =

(
2v
π

)∫∞
0
dt sin(tv)

×
[

1− (vTt)
2

4

]
exp

[
−(vEt)

3/2
]
.

(10)

Here subscript “large” stands for a relatively large ion
density/field. After calculating the integral in (10) analyt-
ically and then normalizing the corresponding distribu-
tion function (also analytically), we obtain the normalized
velocity distribution function flarge(v). The expression for
flarge(v) is rather bulky, and we omit it (since it is only an
intermediate result). Then by using flarge(v), we perform the
usual averaging over velocities

Φlarge =
∫∞

0
dv v flarge(v)Φ(v). (11)

By calculating the integral in (11) analytically, we obtained
the following relatively simple result:

Φlarge =
[

9KΓ(11/3)
20πvE

][
1− 20v2

T

27Γ(11/3)v2
E

]
. (12)

To better visualize our results, we define in a natural way
the electron broadening reducing factor

R = Φ(vE/vT)
Φ(0)

. (13)

Figure 1 shows the dependence of the electron broadening
reducing factor R on the parameter X = vE/vT representing
the scaled dimensionless ion density/field. It is seen that the
new statistical approach used in this paper confirms that the
effect of the ion microfield on the electron broadening is the
reduction of the electron Stark widths and shifts.

3. Conclusions

We performed analytical calculations of the phenomenon
of AEIF based on the new statistical multiparticle approach
originating from Romanovsky-Ebeling’s paper [7]. We
showed that the results are in agreement with the previ-
ous analytical results obtained by a different (dynamical
rather than statistical) approach employed in [1–4]. Both
approaches demonstrated a decrease of the electron Stark
broadening. This is a clear indication that the results of
fully-numerical simulations [6] claiming an increase of the
electron Stark broadening are incorrect.

The failure of the fully-numerical simulations from [6]
could be due to quite general reasons. Complicated codes
(such as the one from [6]) require adequate verification and
adequate validation [9]. The verification is the determination
that the code solves the chosen model correctly. Validation is
the determination that the model itself captures the essential
physical phenomena with adequate fidelity. Post and Votta
[9] noted that without adequate verification and validation,
computational results are not credible.

Complicated codes are a collection of individual blocks
or components. Even if the individual blocks are relatively
accurate, the entire code may be not. In another publication
[10] Post and Votta emphasized that since a computational
simulation is only a model of nature, not nature itself,
there is no assurance that a collection of accurate individual
components will capture the emergent effects.

There are numerous failures of complicated large-scale
codes/simulations (see, e.g., [9]). In the area of plasma
fusion—the area for which spectral line shapes serve as
diagnostics—examples are the following [9]. By stretching
boundary conditions far beyond what could be scientifically
justified, computer simulations were able to “reproduce” the
exciting but wrong experimental discovery of sonolumines-
cent fusion. With regard to the International Thermonuclear
Experimental Reactor (ITER), preliminary computational
predictions in 1996 of inadequate performance by the pro-
posed facility were wrongly characterized as definitive. Those
predictions contributed to the 1998 US withdrawal from that
important and promising international undertaking.

So, the failure of the fully-numerical simulations from
[6] probably resulted from inadequate verification and/or
inadequate validation. By the way, the authors of [6] admit
that their simulations failed to reproduce straightforward
analytical calculations from [11] concerning the breakdown
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of the so-called “line space concept,” while they did not find
any intrinsic deficiency of those analytical calculations. (The
line space concept limits the lineshape calculations to the
direct product of the two manifolds, corresponding to the
upper and lower principal quantum numbers involved in the
radiative transition.) This failure of the authors of [6] should
have warned them about seemingly inadequate verification
and/or inadequate validation of their code.

The last but not least: other codes (developed by Alexiou,
who is one of the coauthors of [6]), that are similar in
nature to the one from [6], fail to agree with the benchmark
experiments by about 30%—as described in detail in [3].
This discrepancy with the benchmark experiments is by one
order of magnitude higher than the estimate of the code
inaccuracy provided in [6], so that the latter seems to be
significantly underestimated.
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allows estimates of the infilling of the interference dip by the disproportionality of the induced dipole moment and force. One
particular such model, using data from (Herman and Lewis, 2006), leads to the most realistic estimate for the infilling of the vector
interference dip yet obtained. In (Lewis, 2008) the drastic assumption was made that collision times occurred at equal intervals. In
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than the equal-intervals assumption. The interference dip is found to be a Lorentzian in this model.
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1. Introduction

Spectra resulting from dipole moments induced in molecular
collisions typically have the form of broad bands with widths
determined by the durations of those collisions [1]. However,
these broad bands often exhibit narrow features, which
result from the coherence or correlation of induced dipole
moments extending over successive or sometimes many
collisions. The most conspicuous such features are the vector
intercollisional interference dips found in the fundamental
bands of H2 − X spectra and in the pure translational bands
of mixtures of rare gas atoms [2]. Also well known are
scalar collisional interference features found in the R and P
transitions in the fundamental bands of HD− X spectra [3–
5] and the corresponding R transitions in the pure rotational
spectra [6, 7]. The terms “vector intercollisional interference”
or “vector collision-sequence interference” refer to the fact
that an internal H2 scalar transition operator is modulated
by a vector function of intermolecular displacement. Thus
only a Q branch is observed, with the intercollisional
dynamics being those which describe the vector property

(intermolecular force, to a good approximation) of the exter-
nal coordinates.

The present work is based on that of paper I, which
will henceforth be referred to as paper I. In paper it was
assumed that the collisions suffered by a molecule occur at
equally spaced times. This drastic Ansatz allowed the use of
the apparatus of discrete Fourier transforms. In this present
work it is assumed that the collision times of a given molecule
are distributed exactly as a Poisson process, which is in fact an
excellent approximation to reality (see [9, 10]). A summary
of this work has appeared in [11].

2. Poisson-Distributed Collision Times

At sufficiently low densities and for the study of interference
phenomena collisions can be assumed to be instantaneous;
the dipole moment induced in one atom or molecule by
interaction with a bath of dissimilar atoms or molecules can
be represented as

µ(t) =
∑
k

µkδ(t − tk)e−ιω0t, (1)
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where binary collision k occurs at time tk and the dipole
moment induced in collision k is µk. For the vector
interference dips in Q branches the quantity µ j is parallel
to and approximately proportional in magnitude to the
impulse (integrated force) fk experienced by a molecule in
the collision. Our models will be expressed in terms of these
impulses fk. A second assumption is that the velocities before
and after a collision are uncorrelated and are Gaussian:

P(. . . , vk, vk+1, vk+2, . . .) = . . . P(vk)P(vk+1)P(vk+2) . . . ,
(2)

where

P(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2π

e−(1/2)v2
in two dimensions,

1

(2π)3/2 e
−(1/2)v2

in three dimensions.
(3)

Then the persistence of velocity is zero. This is a fair
approximation in some useful cases, such as H2−H2, H2−He,
and HD−He, and a good approximation for systems such
as H2 in Ar. It is inappropriate for high-mass atoms or
molecules dilute in a fluid of low-mass molecules, such as
Ar in H2. Equations (2) and (3) are exact for hard spheres of
equal mass, as was first shown by Clerk Maxwell [12].

In general, as stated above, the collision times tk approx-
imate to a Poisson process, and in the present work it will be
assumed that they are drawn from a true Poisson process,
with frequency ν, whereas in paper I the collisions were
assumed to occur at equal intervals.

Equation (1) describes the transition moment for a
transition with frequency ω0 in the absence of shifting and
broadening mechanisms.

It will be assumed initially that N collisions lie in the
finite-time time interval [0,T) such that 0 ≤ t1 ≤ · · · ≤
tN−1 ≤ tN ≤ T . The time T is of course a random variable
if N is fixed, but when N is large the record length T can be
taken equal to its expectation value, which will be N/ν. The
Fourier transform of µ(t) is

a(ω) =
∫∞
−∞

eιωtµ(t) dt

=
∑
k

µke
ιω̃tk ,

(4)

where ω̃ ≡ ω − ω0. The unaveraged periodogram is given by

1
T
|a(ω)|2 = 1

T

∑
k

∑
k′
µk · µ∗k′eιω̃(tk−tk′ ), (5)

whence the spectrum itself is given by

S(ω) = lim
T→∞

1
T
〈|a(ω)|2〉

= ν
[〈

µk · µ∗k
〉

+ 2Re
〈
µk · µ∗k+1e

ιω̃(tk−tk+1)
〉

+2Re〈µk · µ∗k+2e
ιω̃(tk−tk+2)〉 + · · ·

]
.

(6)

In the present class of models, as stated above, µk is expressed
in terms of the impulse fk. Hence, in full generality,

µk = µk(vk, vk+1) (7)

whence, by (2) and (3),

〈µk · µk+p〉 = 〈µk〉2 = 0 for p ≥ 2. (8)

Then (6) for the spectrum becomes

S(ω)
ν

=
〈
µk · µ∗k

〉
+ 2Re

〈
µk · µ∗k+1e

ιω̃(tk−tk+1)
〉
. (9)

A principal assumption of the present model, and the
feature in which it differs from the class of models discussed
in paper I, is that the intervalsΔk ≡ tk+1−tk , k = 1, 2, . . . ,N−
1 between collisions are independent of the velocities of the
particle, that is, the collision times tk, . . . , tk′ , . . . are ran-
dom variables which constitute a Poisson process. Poisson-
distributed collision times are a good approximation for real
gases [9], even at high densities [10], though not exact.

If the random variables . . . tk, . . . , tk′ , . . . form a Poisson
process, then the intervals Δi are exponentially distributed
[13]:

P(Δi) = νe−νΔi . (10)

The intervals [0, t1) and [tN ,T) of durations Δ0 and ΔN ,
respectively, also follow the distribution law (11), this
constitutes a well-known “paradox” in the theory of Poisson
processes.

From (10) it follows immediately that

〈eιω̃(tk−tk+1)〉 = 〈e−ιω̃Δi〉 = ν

∫∞
0
e−(ν+ιω̃)Δ dΔ = ν

ν + ιω̃
.

(11)

Then the spectrum is, from (9), given by

S(ω)
ν

=
〈
µk · µ∗k

〉
+ 2Re

{〈
µk · µ∗k+1

〉 ν

ν + ιω̃

}
. (12)

The dipole moment or transition moment induced in
a collision is roughly but not exactly proportional to the
intermolecular force; the overlap parts differ in range by
about 25%. For purposes of calculating the intercollisional
interference the integrated induced dipole moment µk can
be taken parallel to the intermolecular force fk, but with
magnitude proportional to some nonlinear function of
the magnitude of the intermolecular force; specifically, we
consider

µk = fk
(

1 + α f
β
k

)
=
(

1 + α|vk+1 − vk|β
)

(vk+1 − vk),

(13)

where α and β are constants, which will not in general be
integerial. With this model for µk, the calculation of

max S = lim
ω→∞S(ω) =

〈
µk · µk

〉
,

min S = S(0) = 〈µk · µk〉 + 2
〈
µk · µk+1

〉 (14)

is exactly the same as in paper I.
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2.1. Two Dimensions. For two dimensions it was found in
paper I that

〈
µk · µk

〉
= 4 + α2β+3Γ

(
β

2
+ 2

)
+ α222β+2Γ

(
β + 2

)
,

〈
µk · µk+1

〉
= −2− 2αJ

(
β + 1, 1

)− α2J
(
β + 1,β + 1

)
,

(15)

where

J(ν, ν′) ≡
〈

(vk − vk−1) · (vk+1 − vk)|vk − vk−1|ν−1

×|vk+1 − vk|ν′−1
〉

= 3(ν+ν′)/2+1Γ(ν/2 + 3/2)Γ(ν′/2 + 3/2)
8

×2 F1

(
ν

2
+

3
2

,
ν′

2
+

3
2

; 2;
1
4

)
.

(16)

Note that ν and ν′ are exponents, typically fractional, and are
not connected in any way with the mean collision frequency
ν.

Because

J
(
β + 1, 1

) = 2β+1Γ

(
β

2
+ 2

)
, (17)

it follows that

min S = 2α2
(

22β+1Γ
(
β + 2

)− J
(
β + 1,β + 1

))
. (18)

For the power-law model, which is a limiting case for α�
1 of (13) such that

µk = fk f
β
k (19)

with β ≈ −0.25 (for which value see [14]), it can be shown
that

min S = 2
(

22β+1Γ
(
β + 2

)− J
(
β + 1,β + 1

)) = O
(
β2)

(20)

while

max S = 22β+2Γ
(
β + 2

)
. (21)

For the case β = −0.25, we obtain

min S

max S

∣∣∣∣
β=−0.25

= 0.0088399. (22)

2.2. Three Dimensions. The necessary integrals to evaluate
min S and max S in three dimensions are evaluated in
Appendix A. It is found that

〈
µk · µk

〉
= 6 + 2α

2β+3

√
π
Γ

(
β

2
+

5
2

)
+ α2 22β+3

√
π
Γ
(
β +

5
2

)
,

〈
µk · µk+1

〉
= −J3D(1, 1)− 2αJ3D

(
β + 1, 1

)

− α2J3D
(
β + 1,β + 1

)

= −3− 2α
2β+2

√
π
Γ

(
β

2
+

5
2

)

− α2 3β+3/2

2π
Γ

(
β

2
+

5
2

)2

× 2F1

(
β

2
+

5
2

,
β

2
+

5
2

;
5
2

;
1
4

)
.

(23)

Then from (14), it follows that

min S = α2

⎡
⎣22β+3

√
π
Γ
(
β +

5
2

)
− 3β+3/2

π
Γ

(
β

2
+

5
2

)2

× 2F1

(
β

2
+

5
2

,
β

2
+

5
2

;
5
2

;
1
4

)]
,

(24a)

max S = 6 + O(α). (24b)

The fact that

min S

max S
∝ α2 (25)

is in accord with discussions in [2, 15].
For the power-law model given in (19), we have

min S = 0.58β2 + O
(
β3), (26a)

max S = 6 + O
(
β
)

(26b)

and, for β = −0.25, we obtain

min S

max S

∣∣∣∣
β=−0.25

= 0.0064980 (27)

which may be compared with the two-dimensional value
given in (22).

3. Conclusions

In this paper, we have extended a class of model developed
in paper I for the study of collision-sequence interference
effects in collision-induced absorption, to include realis-
tic distributions of collision times. In these models, a
single particle is followed. Its collisions are supposed to
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be instantaneous. In paper I the collisions were assumed
to occur at equally spaced times, whereas in the present
work the collision times are distributed according to a
Poisson process. Velocities are supposed to be completely
randomized at each collision. It is supposed that the dipole
moment µk or μk induced in a collision is proportional to
the integrated intermolecular force fk or fk, respectively, or
a power or sum of powers of the integrated intermolecular
force.

It is important that the model spectra can be deter-
mined analytically, or at worst, reduced to straightforward
numerical integrations. The models of paper I, of [11], and
of the present work are among the few exactly soluble but
nontrivial models found in spectral line-shape studies.

The extension of the induced dipole moment model
to dipole moments which are proportional to an arbi-
trary power of the integrated intermolecular force shows
that the interference dip is partially filled in for any
disproportionality between induced dipole moment and
integrated induced dipole moment. In this paper, the
calculation is given for the three-dimensional case. For a
realistic value of the power the infilling is slight, being
about 0.6% of spectral maximum for the three-dimensional
case.

Appendix

A. Evaluation of Certain Integrals

A.1. Evaluation of 〈 f ν〉. In three dimensions, the Gaussian
distribution of velocities is given by

P(v) = 1

(2π)3/2 e
−(1/2)v2

(A.1)

whence

〈 f ν〉 = 1
8π3

∫
d3vd3v′e−(1/2)(v2+v′2)

∣∣v − v′
∣∣ν (A.2)

which, setting u = v − v′ and U = (1/2)(v + v′), yields

〈 f ν〉 = 1
8π3

∫
d3ud3Ue−(1/4)u2−U2

uν

= 2
π

(∫∞
0
dUU2e−U

2
)(∫∞

0
due−(1/4)u2

uν+2
)

= 2ν+1

√
π
Γ
(

ν + 3
2

)
.

(A.3)

Then

〈 f 〉 = 4√
π
= 2.2567583, 〈 f 2〉 = 6. (A.4)

A.2. Evaluation of J3D(ν, ν′). For these vectorial cross terms
we have

J3D(ν, ν′) = − 1

(2π)9/2

∫
d3vd3v′d3v′′e−(1/2)(v2+v′2+v′′2)

× ∣∣v − v′
∣∣ν−1∣∣v′ − v′′

∣∣ν′−1(v − v′) · (v′ − v′′).
(A.5)

We set u = v−v′ and u′ = v′ −v′′ and U = (1/2)(v +v′+v′′)
so that

⎛
⎜⎜⎝

v

v′

v′′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

2
3

u +
1
3

u′ +
2
3

U

−1
3

u +
1
3

u′ +
2
3

U

−1
3

u− 2
3

u′ +
2
3

U

⎞
⎟⎟⎟⎟⎟⎟⎠

,

1
2

(
v2 + v′2 + v′′2

) = 1
3
u2 +

1
3

u · u′ +
1
3
u′2 +

2
3
U2.

(A.6)

The Jacobian of the transformation ux,u′x,Ux ← vx, v′x, v′′x is

∣∣∣∣∣∣∣∣∣∣∣∣∣

2
3

1
3

2
3

−1
3

1
3

2
3

−1
3
−2

3
2
3

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 2

3
. (A.7)

Then

J3D(ν, ν′)

= − 1
54
√

2π9/2

∫
d3ud3u′d3U

× e−((1/3)u2+(1/3)u·u′+(1/3)u′2+(2/3)U2)

× uν(u′)ν′ cos ϑ

= −3(3+ν+ν′)/2

π

∫∞
0
du
∫∞

0
du′

×
∫ π

0
dϑ sin ϑuν+2(u′)ν′+2e−(u2+uu′ cos ϑ+u′2) cos ϑ

= 2× 3(3+ν+ν′)/2

π

∫∞
0
du

×
∫∞

0
du′uν(u′)ν′e−u

2−u′2 (uu′ coshuu′ − sinhuu′),

(A.8)
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where ϑ = �u, u′. This gives

J3D(ν, ν′) = 2× 3(3+ν+ν′)/2

π

∞∑
k=0

1
(2k + 1)!(2k + 3)

×
∫∞

0
du
∫∞

0
du′u2k+3+ν(u′)2k+3+ν′e−u

2−u′2

= 3(3+ν+ν′)/2

2π
Γ
(

2 +
ν

2

)
Γ
(

2 +
ν′

2

)

×
∞∑
k=0

(2 + ν/2)k(2 + ν′/2)k
(2k + 1)!(2k + 3)

= 3(1+ν+ν′)/2

2π
Γ
(

2 +
ν

2

)
Γ
(

2 +
ν′

2

)

×
∞∑
k=0

(2 + ν/2)k(2 + ν′/2)k
(5/2)kk!

(
1
4

)k

= 3(1+ν+ν′)/2

2π
Γ
(

2 +
ν

2

)
Γ
(

2 +
ν′

2

)

× 2F1

(
2 +

ν

2
, 2 +

ν′

2
;

5
2

;
1
4

)
.

(A.9)

Then

J3D(1, 1) = 3,

J3D
(
β + 1, 1

) = 2β+2

√
π
Γ

(
5 + β

2

)
,

J3D
(
β + 1,β + 1

) = 33/2+β

2π
Γ

(
5 + β

2

)2

×2F1

(
5 + β

2
,

5 + β

2
;

5
2

;
1
4

)
.

(A.10)
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A dipole correlation function which incorporates velocity-changing (motional narrowing) effects and the effects of speed-
dependent Lorentz relaxation rates into otherwise Voigt profile correlation functions is developed, based partly upon previous
work by the author. For the first time simple closed expressions, which lend themselves to elementary calculation beginning
only with the relevant parts of intermolecular interaction energies, are developed for the cubic time-dependent term within the
exponent describing the decay of the correlation function. This term is of first order in perturber number density, as are the
Lorentz parameters, and is complex, thereby allowing for narrowing, changing in shape and asymmetry in the line profile. “Soft”
and “hard” collisions play no explicit role, though both are variously present for each line. Quartic time dependencies are also
discussed, though they are thought to be negligible in nonhydrogen molecular spectroscopy. Finally, some comments are added
about a relevant technique for hydrogen spectra.

1. Introduction

For several decades, now, neutral species coherence transport
and relaxation has followed a number major thrusts, above
and beyond the simplest convolution of the optical coherence
interruption (Lorentz) and Gaussian (Doppler) contours, as
embodied in the Voigt profile for isolated spectral lines. To
mention a few, five such developments come immediately
to mind: (1) the incorporation of the speed dependence
of coherence destruction (with speed dependent Lorentz
lineshape parameters) within the Voigt convolution (SDVP
effect) [1–3]; (2) the incorporation of collisional reduction
of free-streaming molecular motions, which had previously
been assumed in the initial inclusion of Doppler broadening,
known as Dicke (or motional) narrowing [4]; (3) finite
duration of collision effects [5] as they influence narrow
lines that otherwise are regarded as having been generated by
effectively instantaneous collisions; (4) line-mixing effects,
in which coherent collisional mixing of the transition
of immediate interest with other nearby (frequency-wise)
transitions leads to an effective blending of contours in
which each becomes distorted into combination Lorentzian-
anomalous dispersion (Fano) contour [5–7]; (5) nonlinear

spectroscopies [8], where, in two-photon absorption, the
Doppler broadening may be cancelled out, due to the
opposite propagation direction (and therefore compensatory
momentum uptake by the excited molecule) of the two
photons involved in producing the absorption signals. Also,
in saturation spectroscopies, a primary interaction causes a
population “hole” to be produced at a selected frequency
corresponding to a specific Doppler velocity group, which
can then be broadened directly by velocity-changing colli-
sions for detection by a secondary beam. These are what
might be called “special effects” which lie outside of the scope
of this article, although the methods described herein are
sometimes useful in dealing with these phenomena [9]. Line
mixing effects can be readily introduced into the formalism
that will be described, though they will again be omitted
from the present discussion, for simplicity. Finite duration
effects fall into two categories, the first being that for a single
spectroscopic line the correlation function for nearly zero
time (equal to or less than the duration of typical collisions)
will differ from the more typical decaying exponential time
dependence seen in the longer time behavior. This gives
rise to a short time correction to the correlation function
which leads to the appearance of an additive (as opposed
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to multiplicative as in some literature; see [10], e.g.) low
intensity, broad frequency contribution that will ensure finite
nth moments of the intensity distributions for all n, as must
result for analytic forms of the correlation functions. [11–
14] The second finite-duration effect would be described
as true binary collisions throughout the collision sequences
which give rise to Lorentzian shapes. These would primarily
lead to slight quadratic (in density) Lorentzian width and
shift dependences. The finite duration-of-collision effects are
indeed important for the accurate description of narrow
isolated spectral features. Nonetheless, for purposes of
simplicity, they again will be omitted from further discussion
in the present theoretical treatment.

Of special interest in the present paper are the highly
detailed experimental studies of individual spectral lines,
such as those carried out by Pine et al. [15–17], and Wehr
[18, 19] for hydrogen halide spectra, by Rohart et al. [20,
21] for atmospheric ozone, by Lisak et al. [22] for water
vapor and by Priem et al. [23] and Wehr et al. [24, 25]
for CO. Self- and foreign gas-perturbed hydrogen Raman
spectra [26, 27] show effects related to those cases mentioned
above, though the analysis of the latter lies a bit outside
of the present development. Most of the articles cited con-
tain theoretical analyses and there exist many independent
theoretical analyses, too numerous to cite here. In the related
analysis, there have emerged two models that seem, in
varying situations, to be applicable to an understanding
of the experimental results: the “soft” collision model first
introduced by Galatry [10] in which, in collisions leading
to internal state coherence modification, collisions gently
act to reduce the free-streaming motions of molecules as
assumed in Doppler broadening, together with the intro-
duction of diffusional translational motions, and the “hard”
collision model first introduced by Rautian and Sobel’man
[28], in which, in addition to internal state coherence modifi-
cation, molecular motion is totally randomized to the extent
allowed by dynamical constraints. To a large extent these
models are still in use, though some efforts have been made
to bridge the gaps between the two pictures through the
introduction of an additional hardness parameter. In actu-
ality, both pictures operate separately but simultaneously, to
a greater or lesser extent in producing any given spectral
line, in that the distant collisions, which traditionally do not
substantially limit internal state coherence but are often the
primary cause of line shifts would typically be characterized
as being soft, only slightly altering translational motions
in any of the numerous such encounters, while the hard
collisions would accompany events in which the coherence
is often nearly terminated. In the present paper, we will
introduce a treatment which formally makes no delineation
between the soft and hard collision cases, including both
types in a “seamless” unified description of all of the above-
mentioned processes. Also included in a natural way are
all aspects of interference between internal state coherence
limitation and velocity changes, which can give rise to slight
asymmetries of the lines which have, on occasion, been
observed.

One of the difficulties of the descriptions of Dicke
narrowing is that there seem not to be any reasonably

transparent first principles expressions, or series of expres-
sions giving the relevant parameters associated with these
phenomena. In the present paper we shall, for the first
time, derive intuitively appealing closed expressions for the
relevant quantities, in terms of relevant parts of intermolec-
ular potential functions and intrinsic parameters such as
number density and temperature. The present work follows
a partial description which was first published in 2000
[29], which carried the capricious title utilizing the phrase
“Theory for Everything . . .” henceforth referred to as paper
I . However, the detailed expressions for relevant parameters
occurring in the correlation functions are newly derived in
the present paper. While the closely allied SDVP effects have
been variously discussed, the first description in which it
was systematically related to the time dependence of the
correlation function was provided by Looney [30], and that
treatment will be followed here, with modifications.

The dipole-dipole (or other optically active operators,
depending upon the spectroscopy being described) correla-
tion function for an isolated transition can be described as
having an exponential behavior of type [30, 31]:

exp
[
−γt − kBT

2m
k2t2 + βt3 − δt4 + · · ·

]
, t > 0. (1)

In the first term γ = γr + iγi represents the standard
internal state coherence interruption effect, providing a
Lorentz shape half-width at half maximum, γr , and line
shift, −γi. The second term expresses the Doppler effect
which, by itself, leads to the standard Gaussian lineshape
with k being the optical wavevector magnitude. The cubic
term depends upon the coefficient β, which we might call
the first motional narrowing coefficient. It is intrinsically
complex, due to correlations of internal phase perturbation
and translational velocity changes. Then δ is the second
motional narrowing coefficient, and so on. We will supply
closed expressions for ready calculation of β, and indicate
how one may approach the calculation of δ, in the unlikely
event that it would be needed. Higher order terms are
required to give a convergent expression for C(t) at very large
times, opposing the indefinite increase in the cubic term. But
explicit calculation would only proceed to the point that C(t)
becomes essentially zero, even with only the cubic term, and
the higher terms would remain as being negligible, at which
point the Fourier transform integration would be truncated.
Higher parameters are of unlikely practical significance
in virtually all nonhydrogen spectroscopy. In hydrogen
spectroscopy (through Raman, quadrupole or permanent
and collisionally induced dipole sharp line spectra in HD)
motional narrowing is extremely important [26, 27] at
moderately low densities (corresponding to around one to
ten atmospheres at room temperature). For these cases the
above-mentioned higher terms become important. While the
present theory surely applies (in a different limit) to these
cases, detailed studies will not be carried out at this time.
Nonetheless, an indication of how one might approach the
molecular hydrogen problem is suggested.

We will assume that classical paths are sufficient for the
description of collisional processes. As indicated, one can
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presumably make the entire calculation quantum mechan-
ically as has been done in the past for the calculation of
Lorentz lineshape parameters [32]. But there are other possi-
bilities: One might accept fully quantum computation for the
Lorentz parameters, accept as true in quantum mechanics as
well as classical mechanics the simple Doppler terms, and use
classical methods for the description of motional narrowing.
If ones interest is solely to understand motional narrowing,
measured values of the Lorentz parameters can be accepted,
while ensuring that the correct density dependences are
strictly adhered to throughout.

A note of caution should be expressed at the present
time. This is, that obtaining agreement between theory and
experiment on a single molecular line at a single density can
lead to deceptive satisfaction. One must strive to analyze all
lines that have been observed at all possible pressures, while
rigorously adhering to the correct pressure dependencies of
the real and imaginary parts of γ and β throughout.

2. Theoretical Considerations

The development of a correlation function describing iso-
lated spectral lines, omitting duration-of-collision effects,
essentially follows that of paper I . Minor changes will be
made, to more accurately reflect current notation. In partic-
ular, the subscripts “ f i” will be dropped from expressions
involving the correlation function, the choice of final and
initial states in the transition being obvious. Moreover, τ and
t will be replaced by t, t′, and vo, v will be replaced by v, v′,
respectively. Vectors will be denoted by boldface type.

The spectral line profile for absorption from a lower state
i to upper state f (normalized to the relevant dipole moment
matrix element squared) can be represented by the form

L f i(w) = |μ f i|2
π

Re
∫∞

0
Cf i(t) exp

[(
wf i −w

)
t
]
dt, (2)

where Cf i(t), the correlation function, satisfies the ensemble
average:

Cf i(t) ≡ C(t) =
{
U∗

f f (t)Uii(t) exp[ik · R(t)]
}

ens.avg.
, (3)

where k is the optical propagation vector, R is the molecular
displacement following time t relative to the position at time
t = 0, and Uf f and Uii are diagonal time-development
matrix elements for the respective internal molecular states
resulting from whatever collisional events may occur in the
time interval 0 → t. As indicated above, classical paths
are envisioned in the present description, though quantum
mechanical descriptions of the translational motion problem
can be readily developed. For the internal states, U∗

f f and Uii

can be written as product matrix elements for noncorrelated
random collisions. However, the same factorization cannot
be made for the translational factor. And it is this nonMarko-
vian property that has possibly inhibited the development
which now is presented here. Concentrating on the internal

states, for a single collision it is well known [33, 34] that the
product of U matrix elements can be put into the form

S(v; b, u) = exp
[
−iη f i(v; b, u)

]

×
(

1− S∗
(2)

f (v; b, u)− S(2)
i (v; b, u)

+S∗
(4)

f + S(4)
i + · · ·

)
,

(4)

where the superscripts (2), (4) indicate the order of col-
lisional inelastic perturbation. The phase shift term can
be represented quite exactly to all orders of perturbation

[35] while the inelastic terms, S(n)
f ,i , often are subject to

various mathematical approximations as the strength of
the collisional interruption increases [36]. While the ATC
treatment [33, 34] had envisioned the S(n)

f ,i terms as being
real, they are in general complex, at times contributing
significantly to line shifts, otherwise given solely by the phase
shifts [37–39].

In the present work, we will regard the calculation of
the collisional interruption quantities S(v; b, u) as being
completely settled, along with the calculation of outgo-
ing velocities following collisions. We will indicate such
dynamical processes as leading to post-collisional velocities
v′(v; b, u). Here v is the input velocity of the optically active
molecule, b being the vector impact parameter lying in the
plane perpendicular to (v − u), with u being the perturber
initial velocity in any particular encounter.

Following the development of paper I , we now think in
terms of a collision as being one in which b lies within a
somewhat large radius of collision B, in an attempt to think
about probabilities for zero collisions and a time distribution
for a first collision. The actual value of B is unimportant,
and it will be seen to fall away from the description as the
theory is developed. For now, in the interest of simplicity,
let us envision the perturbers as being motionless. According
to Poisson statistics, for collisions within radius B the
probability for there being no collisions in the interval 0 → t
is simply

exp
[−NvπB2t

]
, (5)

while the probability per unit time of a first collision is

dP(t)
1

dt
= −dP(t)

0

dt
= NvπB2 exp

[−NvπB2t
]
, (6)

with N being the perturber number density. Of course,
following the first collision there can be a multitude of
collisional events, though they will be included implicitly in
the appearance of correlation functions for times following
the first collision. For a specific initial velocity v, in the
absence of any collision, the correlation function will simply
be a translational (free-streaming) exponential exp[ik · vt],
so that C(v; t) will have a no-collision contribution:

exp
[−NvπB2t + ik · vt

]
. (7)

But now, in addition, we must include the first collision
contribution, distributed throughout the interval 0 → t:

∫ t

0
NvπB2dt′ exp

[−NvπB2t′
]
S(v)C(v′; (t − t′)), (8)
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where S contains the collisional interruption effects, and v′

represents the outgoing velocity in this first single collision.
Of course one has to specify the actual impact parameter
integration within B, and the integration on u, utilizing the
Maxwell distribution of perturber velocities f (u), with the
result

C(v; t) = exp
[−NvπB2t + ik · vt

]

+ N
∫ t

0
dt′ exp

[−NvπB2t′ + ik · vt′
]

×
∫ B

0
db
∫
du f (u)|v − u|S(v; b, u)C(v′; (t − t′)).

(9)

The integrations over b and u are two- and three-
dimensional, respectively. This equation contains the fun-
damental idea of this paper. As yet, however, this equation
is somewhat difficult to utilize in a practical way, and
the problem of how to specify B remains unsolved. These
difficulties can be remedied through the transformations
indicated in I and included in this paper, in the appendix.
The final equation from the appendix, which has eliminated
the troublesome feature of specifying B and which is capable
of yielding fundamental expressions for the line shape
parameters of current interest is repeated here:

C(v; t) = exp

[
ik · vt −N

∫ t

0
dt′
∫∞

0
db
∫
du

× f (u)|v − u|
(

1− S(v; b, u)
C(v′; t′)
C(v; t′)

)]

(10)

keeping in mind that v′ = v′(v; b, u) in accordance with
classical dynamics throughout. Note that this equation is
equivalent to (10) of paper I .

Over the years, as mentioned above, the collision effi-
ciency function S(v; bu) has been the subject of traditional
line shape studies within the classical path formalism. More
recently quantum mechanical treatments of the translational
motions have been included [32], with considerable success.
Within the present theoretical development it is difficult to
see how to include quantum translational motions because
of the difficulty of computing differential cross-sections for
internal state disruption.

3. Applications

The beauties of (10) are twofold. The first is purely concep-
tual, in that C(v; t) follows all possible collisional histories,
with many possible original and intermediate velocities, for
ending at time t having velocity v. But also, by redefining the
various time intervals and utilizing the principle of detailed
balance, by which the (v, u) → (v′, u′) process is equally
likely as its reverse process, one can see that C(v; t) also can
be viewed as applying to all histories such that one begins at
t = 0 with velocity v and ends up with the reverse array of
intermediate and final velocity v′. The second is the more
practical aspect of how to apply this equation to finding
correlation functions that are useful in describing the wealth

of spectra that can be illustrative of the effects of collisional
narrowing. To accomplish this, we will explicitly find the
complex t3-dependent term in the correlation function in a
closed form that represents such an expression for the first
time. In addition, we will point the reader in a direction
such as to be able to recover the t4 terms, if the need should
arise. We propose using an iterative technique, in which (10)
will be solved in successive orders of refinement, such that
the first nonVoigt term will be linear in number density of
perturbers, the second will be quadratic, and so on. To begin
with, let us rewrite (10) in the alternate form

C(v; t)

= exp[ik · vt]

× exp

[
−N

∫ t

0
dt′

∫∫
dbdu|v − u|

×
(

(1− S(v; b, u)) + S(v; b, u)
(

1− C(v′, t′)
C(v, t′)

))]
.

(11)

But the (1 − S(v; b, u)) term in this equation, by itself, is
simply the ordinary pressure broadening, thus

C(v; t) = exp

[
−γt + ik · vt −N

∫ t

0
dt′

∫∫
dbdu

× |v − u|S(v; b, u)
(

1− C(v′; t′)
C(v; t′)

)]
.

(12)

The third term in the exponent represents the complete effect
of motional narrowing. Denoting C(1)(v; t) as a first iteration
correlation function, we now use the collisionless form of the
ratio of C’s shown in (12) to be exp[−ik ·(v−v′)t′] to obtain

−N
∫∫

dbdu|v − u|S(v; b, u)t
(

1 +
exp[−ik · (v − v′)t]− 1

ik · (v − v′)t

)

(13)

following integration on t′, as the motional narrowing
exponent. In Taylor expansion form, this is

−N
∫∫

dbdu|v − u|S(v; b, u)

×
(
ik · (v − v′)t2

2
+
k2
(
vz − v′z

)2
t3

6
+ · · ·

) (14)

representing the lowest order motional narrowing terms
which should, in all cases, be computer friendly and which,
once computed, should allow one to find C(t) through the t3

motional narrowing. There are t3 terms in C(t) arising from
speed dependent Voigt profile effects, however, as will be seen
in the next section.

It is not so easy to proceed further from this point
without (elementary) computer analysis. Nonetheless, we
can make arguments which may indicate some of the basic
properties. Beginning with the first Taylor term we note that
integrating only over the angles for b and u, the average
velocity difference (v− v′) must take the direction of v itself.
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Therefore, this part of the exponent can be written in the
form exp[−ik · vXt2], with

X =
(
N

2

)∫∫
dbdu|v − u|S(v; b, u)

(
1− v · v′

v2

)
(15)

which is first order in perturber number density N . Although
X in the above expression probably varies with speed, in
general this will be a small effect compared r.m.s. value of
speed effect (and, indeed, with the speed dependence of γ
itself, which will be addressed below).

At this stage, therefore,

C(v; t) ∼= exp
[−γt + ik · v

(
t − Xt2)]. (16)

From (15) it is seen that X is complex, with the imaginary
part of β in C(t) ultimately arising from an interference
between internal collisional phase shifts and velocity (z-
component) changes.

The second term in (14), is less obvious in its effects,
and the averaging over b and v angles is more subtle. The
average will depend upon vx and vy , as well as vz. As such, this
term explicitly handles Doppler effects following collision
arising from the production of vz components generated
from all velocity components present at t = 0. The overall
effect of such terms might be quite small, however, as can be
seen by reference to typical situations. For collisions between
hydrogen halide and other molecules of somewhat similar
mass, for the longer range encounters, v will hardly change,
leaving (v − v′) as a very small quantity; for the closer
collisions that can indeed change v through scattering more
toward right angles, for which (v−v′) may be quite large, the
collisional interruption given by S(v; b, u) may be so large as
to effectively screen the dipole moments from being sensitive
to these velocity changes. Of course, for He being the foreign
gas, large angle scattering of the optically active molecule will
not be much of a factor, leaving (v− v′) as a very small term.
Similar arguments might hold for the term linear in (v − v′)
analyzed above, but in view of its first order appearance
this term might remain the principal source of the t3 term.
To address this question for either case, let us imagine that
the smaller angle scattering is most likely to survive the
coherence loss dictated by S(v; b, u). Thus, for polar and
azimuthal scattering angles ψ, χ, measured form the incident
velocity v direction, the term (1/2)k · (v − v′)t2 would be
proportional to (1/2)kvz(1 − cosψ)t2, and for small angles,
(1/4)kvzψ2t2 prior to averaging over ψ. Relative to this, the
term (1/6)k2(vz − vz′)

2t3 is proportional to (k2/6)(v2
z (1 −

cosψ)2+(v2
x+v2

y)sin2ψcos2χ). One immediately averages over
χ; the first term is quartic in the small scattering angle ψ, and
can therefore be ignored. (This shows that the major effect
in these terms comes from the vx, vy components of v being
collisionally diverted toward the ± z-directions.) Therefore
this term is approximately equal to (−k2/6)((v2

x +v2
y)/2)ψ2t3.

This suggests that the entire exponent for this term can be
written as

−N
6

k2t3
∫∫

dbdu f (u)|v − u|S(v; bu)(vz − v′z)
2

= −k2

(〈v2
x + v2

y〉
2

)
Yt3

(17)

with

Y = N

6

∫∫
dbdu f (u)|v − u|S(v; bu)

2
(
vz − v′z

)2

〈
v2
x + v2

y

〉 ; (18)

the factor 2 somewhat compensates the cos2χ averaging. In
this form, Y will tend to be insensitive to temperature, and is
proportional to N .

The overall correlation function C(t) is now found upon
averaging over vz, in the form

C(t)=
√

m

2πkBT

∫
dvz

×exp

⎡
⎣−γt− mv2

z

2kBT
+ikvzt(1−Xt)−

k2
〈
v2
x+v2

y

〉

2
Yt3

⎤
⎦

= exp
[
−γt −

(
kBT

2m

)
k2t2(1− Xt)2 −

(
kBT

m

)
k2Yt3

]

(19)

noting that 〈v2
x + v2

y〉 = 2kBT/m. The t4-term is quadratic in
N . By itself it gives an incomplete accounting of the entire
t4 dependence so we will, for present purposes, work only to
order t3, for which

C(t) = exp
[
−γt −

(
kBT

2m

)
k2t2 +

kBT

m
k2(X − Y)t3

]
. (20)

Comparison of small angle approximations reveals that
Y is about equal to 2X/3, tending to diminish the motional
narrowing. It actually represents a motional-broadening
effect associated with collisional production of vz velocity
components (from previously vy and vy components), as
noted. It is seen that both X and Y are complex quantities,
the imaginary parts leading to asymmetries in line shapes;
some of which have been observed.

For many spectra the fourth order, t4 terms in the
exponent of C(t) are entirely negligible. If they are needed
they will arise from the neglected t4 terms as noted above,
together with the second iteration C(2) in which the results of
the first iteration for C(1)(v; t) are included. The calculation
will follow the lines already set out, here, for C(1)(v; t),
leading to further integrations, for pairs of collisions, in
which not only (v, u) → v′, but also (v′, u′) → v′′. To
work this out in detail is straightforward, though this lies
beyond the scope of the present paper. In addition, there is
a (neglected) t4 term found in the next section.

Finally, as previously noted, hydrogen spectra are
extremely collisionally narrowed, such that an expansion in
terms of individually computed powers of t would seem
pointless. In this case, it might be possible to use a model for
the collisionally narrowed C(v; t) for all v, then for purposes
of calculating a next iteration result, insert the model forms
into (10) for use in the ratio C(v′; t)/C(v; t). In this manner
one can recover a once-refined result for C(v; t) for all v
and t. To the extent that the initial guess was reliable, the
corrections within the first refinement result will indeed be
small. This would then lead to correlation functions which
can then be averaged over v leading to a refined expression
for C(t) which in turn can be used directly to obtain the line
profile.
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4. Speed Dependent Voigt Profile Effects

For some time now it has been known that the speed-
dependence of internal coherence relaxation has had impor-
tance in determining the shape of spectral lines, shifting them
away from the simple Voigt profile [1–3, 23]. Because this
lies outside of the major thrust of the present paper we will
only sketch the manner in which these effects can provide
time-dependent terms in the correlation function C(t). This,
again, follows the development of Looney [30]. Beginning
with the form of C(v; t) leading to the voigt profile, one can
make simple changes that will lead to the appropriate time
dependences in the exponential decay rate for C(v; t). Let
us begin with the simple form of C(v; t), modified so as to
include velocity dependences of γ. Let γ(v) depend upon
the speed of the optically active molecule in the following
manner:

γ(v) = γo +

(
dγ

d(v2)

)
N

(
v2 − 〈v2〉) + · · · (21)

as a general expression, 〈v2〉 being the value for the mean
squared speed, about which we will expand. Subscript N is
used to remind us that this derivative is to be considered
for constant number density. For present purposes we work
within the quadratic approximation, for which we can write

γ(v) = γo + γ′
(
v2
x −

〈
v2
x

〉
+ · · · y, z

)
(22)

with γ′ = (dγ/dv2)N . The averages over velocity components
are easily accomplished, ignoring, for the moment, the
exp[−γot] term. We begin with the average over vx, using the
Maxwell distribution, such that

Cx(t) =
√

m

2πkBT
exp

[
− mv2

x

2kBT
− γ′

(
v2
x −

〈
v2
x

〉)
t

]
(23)

kB being the Boltzmann constant and m the mass of the
optically active molecule. We define the constant

Z = 2γ′kBT
m

(24)

for notational simplicity, so that Cx(t) can be readily
obtained, in the form

Cx(t) = (1 + Zt)−1/2 exp
[
γ′
〈
v2
x

〉
t
]
. (25)

By noting that 〈v2
x〉 = kBT/m, one can find through

expansion and subsequent identification of terms

Cx(t) =
(

1− 1
2
Zt +

3
8
Z2t2 − 5

16
Z3t3 + · · ·

)

×
(

1 +
1
2
Zt +

1
8
Z2t2 +

1
48

Z3t3 + · · ·
)

∼=
(

1 +
1
4
Z2t2 − 1

6
Z3t3

)
(26)

which is exact to terms in t3, provided that mod |Zt| < 1.
This will always be true for short enough times, and our
assumption is that it will be possible to do this for any
physically realistic times.

The same steps can be followed for the y-integration,
as well. With the z integration, we begin with the same
integral, but now with the Doppler (translational) phase
factor, exp[ikvz], leading directly to the result

Cz(t) =
√

m

2πkBT
exp

[
Zt

2

]

×
∫
dvz exp

[
− mv2

z

2kBT
(1 + Zt) + ikvzt

]

= (1 + Zt)−1/2 exp

[
Zt

2
− kBTk2t2

2m(1 + Zt)

]
.

(27)

Within terms to order t3, this is equivalent to the form

Cz(t) = exp

[
−
(
kBTk2

2m
− 1

4
Z2

)
t2 +

(
kBTk2Z

2m
− 1

2
Z3

)
t3

]
.

(28)

Note that Z is proportional to number density, so that the
simple Doppler distribution will be altered (in width, e.g.)
by terms quadratic in density, while the motional narrowing
term will contain parts linear, and varying as the third
power in density. While the change in the simple Doppler
correlation function will probably be beyond detection, we
will retain that term for reference, while dropping the Z3

term. By now multiplying the x-, y- and z-results, and
recovering the exp[−γot] factor, we find

CSDVP(t) = exp

[
−γot −

(
kBTk2

2m
− 3Z2

4

)
t2 +

kBTk2Z

2m
t3

]
.

(29)

This represents the Voigt correlation function, whose width
is supplemented the small (usually negligible) Z2t2 term and
by a further exponential t3 term. While γ′, and therefore Z
are presumably complex, the speed dependence of line shifts
is thought to be minimal, because the increase in collision
rate will be roughly matched by corresponding decreases
in phase shifts, tending toward cancelation of the speed
dependence. Therefore, we will assume Z to be real.

As described by Looney [30], the value of γ′ can be
inferred from the temperature dependence of γ, provided
that it is known. To see this, note that

γ′ =
(

dγ

d(v2)

)
N

= dT

d(v2)

(
dγ

dT

)
N

= m

3kB

(
dγ

dT

)
N

. (30)

This holds only if the perturbers are motionless (i.e., have
infinite mass). For finite mass perturbers, however, the
relative collision speeds will increase more rapidly with
temperature, and m must be replaced by the reduced mass
of the collision pair, with the result

γ′ = mmx

3(m + mx)kB

(
dγ

dT

)
N

, (31)

with mx being the mass of the perturbing molecule. This will
obviously be most valuable if the temperature dependence of
γ is known from separate measurements.
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5. Conclusions

As a result of the above analysis the t3 terms in the
correlation function are given by the contributions coming
from velocity-changing collisions (cf. (20)) together with the
above SDVP effect, equation (29), giving as a final result

β = kBT

m
k2
(
X − Y +

Z

2

)
(32)

with X , Y , and Z being given by (15), (18), and (24). Each
term is linear in perturber number density N .

To summarize, a formalism has been presented whereby
one can find the relevant terms for the dipole-dipole
correlation function needed to characterize the line shapes in
the impact approximation for isolated (atomic or) molecular
lines perturbed by foreign gases. Through standard tech-
niques this formalism could be extended to a fully quantum
description of the entirety of the collision problem treated
here. In addition, one could treat the problem of line-mixing
with neighboring transitions within the present formalism.
For purposes of clarity, neither of these steps is presented
here. The cubic time-dependent terms of the exponent
describing the exponential decay of the correlation function
have been explicitly found in terms of averages utilizing
only equilibrium velocity distributions and the variously
important terms of the perturber interaction with the
optically active molecule. Although both “soft” and “hard”
types of collisions occur for various impact parameters for
almost every line, the present theory makes no fundamental
distinction between these limits, and makes a seamless
transition from one to the other type of behavior.

For the velocity changing t3 effects there exist two
competing influences: A line narrowing due to the fact
that higher speed components tend to be reduced in
collisions and a line broadening associated with collisional
production of velocity components parallel to the optical
propagation vector, derived from pre-collision components
perpendicular to this direction. The two effects oppose one
another, with the broadening being about two thirds of the
narrowing. This means that the velocity-change broadening
will not dominate the narrowing, but at the same time it
is substantial. In addition, speed-dependent Voigt profile
effects are active in giving rise to a further t3 narrowing
exponential term (presuming that the speed dependence of
the ordinary Lorentz lineshape parameters shows an increase
with increasing velocity, which is the standard case).

In hydrogen molecular spectra the coherence limiting
effects are very small. Accordingly one can, at some pressures,
see a pronounced line narrowing. One might approach the
theoretical problem by using the best model form of C(v; t)
(based upon a Dicke type approach), then compute C(v; t)
using (10), with the ratio C(v; t′)/C(v′; t′) replaced by the
model result. C(v; t) will then show small correction terms,
if the initial guess is close to being correct.

Appendix

In this development we wish to convert the expression

C(v; t) = exp
[−NvπB2t + ik · vt

]

+ N
∫ t

0
dt′ exp

[−NvπB2t′ + ik · vt′
]

×
∫ B∫

dbdu f (u)|v − u|S(v; b, u)C(v′; (t − t′))

(A.1)

which was given as (9) into the form as shown in (10) of the
text. We begin by defining a reduced correlation function:

D(v; t) = C(v; t) exp
[
NvπB2t − ik · vt

]
(A.2)

which satisfies

D(v; t) = 1 + N
∫ t

0
dt′
∫ B∫

dbdu f (u)|v − u|S(v; b, u)

× exp[−ik · (v − v′)(t − t′)]D(v′; (t − t′)).
(A.3)

It now simplifies things if one replaces (t − t′) by t′ itself, for
mathematical convenience, giving simply

exp[−ik · (v − v′)t′]D(v′; t′) (A.4)

as the latter terms in (A.3). Now, differentiate D(v; t) with
respect to t, utilizing (A.3),

dD(v; t)
dt

= N
∫ B∫

dbdu f (u)|v − u|S(v; b, u)

× exp[−ik · (v − v′)t]D(v′; t).
(A.5)

Divide by D(v; t) itself, to obtain the logarithmic derivative,
and noting the initial condition D(v; 0) = 1, this can be
integrated and exponentiated to the form

D(v; t) = exp

[
N
∫ t

0
dt′
∫ B∫

dbdu f (u)|v − u|

×S(v; b, u)
(
D(v′; t′)
D(v; t′)

)
exp[−ik · (v − v′)t′]

]
.

(A.6)

Changing back to the corresponding equation in C(v; t), we
have

C(v; t) = exp

[
ik · vt −NvπB2t + N

∫ t

0
dt′
∫ B∫

dbdu

× f (u)|v − u|S(v; b, u)
(
C(v′; t′)
C(v; t′)

)]
.

(A.7)

It now looks as if the troublesome exponential
exp[−NvπB2t] still remains, but with v being the average
relative speed of collision, we note that

vπB2t =
∫ t

0
dt′
∫ B

0

∫
dbdu f (u)|v − u| (A.8)
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itself, so that the final result

C(v; t) = exp

[
ik · vt −N

∫ t

0
dt′

∫∫
dbdu f (u)|v − u|

×
(

1− S(v; b, u)
(
C(v′; t′)
C(v; t′)

))] (A.9)

is achieved, which is shown as (10) of the text. Importantly,
the actual specification of B is no longer necessary with
integration on all physically relevant b values being implied.

Acknowledgments

The author takes pleasure in acknowledging helpful conver-
sations with R. Ciuryło, J. C. Lewis, J. P. Looney, and R.
H. Tipping, and for help in manuscript preparation by A.
Grugan.

References

[1] P. R. Berman, “Speed-dependent collisional width and shift
parameters in spectral profiles,” Journal of Quantitative Spec-
troscopy and Radiative Transfer, vol. 12, no. 9, pp. 1331–1342,
1972.

[2] J. Ward, J. Cooper, and E. W. Smith, “Correlation effects in
the theory of combined doppler and pressure broadening-
I. Classical theory,” Journal of Quantitative Spectroscopy and
Radiative Transfer, vol. 14, no. 7, pp. 555–590, 1974.

[3] I. Shannon, M. Harris, D. R. McHugh, and E. L. Lewis,
“Low-pressure spectral line profiles: an analysis in terms of
symmetric speed-dependent Voigt profiles,” Journal of Physics
B, vol. 19, no. 10, pp. 1409–1424, 1986.

[4] R. H. Dicke, “The effect of collisions upon the doppler width
of spectral lines,” Physical Review, vol. 89, no. 2, pp. 472–473,
1953.

[5] J.-M. Hartmann, C. Boulet, and D. Robert, Collisional Effects
on Molecular Spectra, Elsevier, New York, NY, USA, 2008.

[6] M. Baranger, “Problem of overlapping lines in the theory of
pressure broadening,” Physical Review, vol. 111, no. 2, pp. 494–
504, 1958.

[7] A. C. Kolb and H. Griem, “Theory of line broadening in
multiplet spectra,” Physical Review, vol. 111, no. 2, pp. 514–
521, 1958.

[8] K. Shimoda, Ed., High-Resolution Laser Spectroscopy, Springer,
Heidelberg, Germany, 1976.

[9] R. M. Herman and E. W. Weber, “Comprehensive theory for
line broadening in high-resolution and nonlinear spectro-
scopies: application to the Na D lines,” Journal of Physics B,
vol. 16, no. 8, pp. 1323–1341, 1983.

[10] L. Galatry, “Simultaneous effect of doppler and foreign gas
broadening on spectral lines,” Physical Review, vol. 122, no. 4,
pp. 1218–1223, 1961.

[11] P. W. Anderson and J. D. Talman, Pressure Broadening of
Spectral Lines at General Pressures, Bell Telephone System
Technical Publications, Monograph 3117, 1956.
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Depolarized Raman spectra of compressed hydrogen gas have been computed rigorously previously for 36 K and 50 K (Gustafsson
et al. (2009)). The far wings of the rotational lines show asymmetry that goes beyond that expected from the theory for
intracollisional interference and Fano line shapes. Here we analyze the S0(0) line for pure hydrogen at 36 K in detail. The added
asymmetry stems partly from a shape resonance which adds significant intensity to the higher frequency side of the line profile.
The influence of the threshold energy for the rotational transition accounts for the remainder.

1. Introduction

The depolarized Raman spectrum of hydrogen shows a num-
ber of spectral lines corresponding to rotational transitions
with Δ jn=0,±2 in hydrogen molecule number n [1]. These
spectral features are broadened due to collisions between
the molecules and the corresponding width is approximately
inversely proportional to the time between the collisions.
The transitions with Δ jn=2 give rise to the so-called S-
lines which are located on the Stokes side of the spectrum
where the energy of the scattered photon is lower than that
of the incident photon. The incident light may also scatter
from pairs of hydrogen molecules in an interaction-induced
Raman process [2, 3]. The pairs are transient complexes
with a lifetime corresponding to the duration of the H2–H2

collisions. In gases under pressures of less than a few hundred
atmospheres the time between collisions is typically much
longer than the duration of the collisions. This implies
that the spectral features due to interaction-induced light
scattering are much broader than the pressure-broadened S-
lines.

At high gas pressures, collisionally interacting triples of
molecules will also scatter the light. In general the Raman
intensity may be expressed as a virial expansion [4] in powers
of the gas density, ρ, with the terms proportional to ρ, ρ2, ρ3,
and so forth, where the second and third term correspond to
binary and ternary collisions, respectively. The terms which
is linear in the density will come into play if broadening

mechanisms other than collisions dominate, such as Doppler
or natural line broadening. Here, the temperature is low
enough that Doppler broadening can be ignored as well as
the natural line width which is extremely small for rotational
states. Furthermore, in this work I consider the far wings
of the S-lines with frequency shifts on the order of 20 cm−1

from the line centers. Small detunings, that is, frequencies
approaching the line center, imply that a higher number of
subsequent collisions have to be taken into account, and
a higher number of terms in the virial expansion have to
be included. Detunings of about 20 cm−1 are large enough
so that single binary (H2–H2) collisions alone contribute to
the Raman intensity. The density-squared component of the
intensity is also what has been extracted in the experiments
that are relevant for this work [5].

The impact approximation [6, 7] for collisional broad-
ening considers single or several subsequent collisions and
can thus describe spectral lines at arbitrarily small detuning.
It does not, however, fully include the effects from mixing
of molecular states, such as the H2 rotational levels, jn. The
spectra in this work are computed with a close-coupling
scheme [8, 9] for the diatom-diatom scattering including the
angular momentum couplings exactly [10]. The method is
an extension of the radiative close-coupling theory [11] and
it is valid far from the line centers and for asymptotically
forbidden transitions. Thus it provides a correct description
of the wings of the monomer-allowed spectral lines, where
only isolated two-body collisions need to be considered.
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Figure 1: The S0(0) and S0(1) lines of the depolarized Raman
spectrum of hydrogen (65% para-H2, 35% ortho-H2) at 50 K. The
frequency of the rotational transitions are indicated with vertical
blue dotted lines. The solid curves represent the computed data [10]
and the filled circles a measurement [5].

Theory of far wings has been reviewed recently in chapter
V of the book by Hartmann et al. [12]. A perturbative theo-
retical treatment which includes intracollisional interference
was developed by [13] and applied to H2–H2 light scattering.
Furthermore, a nonperturbative model based on the sudden
description of the collisions [14, 15] has been applied to the
depolarized Raman spectrum of nitrogen. The calculation
in [10], which produced the theoretical data analysed in
this work, does not rely on either of those approximations.
It is an exact description of the collisional dynamics when
vibrational and higher energy modes may be ignored and
it represents the most accurate computation of the density-
squared component of the hydrogen Raman spectrum.

2. Computed Spectra

The details of the calculation of the depolarized light
scattering in compressed hydrogen gas may be found in [10].
Single binary collisions were taken into account, allowing
for evaluation of the virial term of the Raman cross section
which is proportional to the density squared. The close-
coupling scattering calculations were carried out on the
potential surface by Schäfer and Köhler [16] using the
static collision-induced polarizability surface from [17]. It
should be noted that the latter differs from the true dynamic
polarizability by an amount which is thought to be several
percent [2, 3].

The depolarized Raman intensity at a fixed temperature
is evaluated through

D(ν,T)=λ3
0

∑
j1i j2i

P j1iP j2i

∫ Emax

0
e−E/kTDj1i j2i(ν,E)dE, (1)
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Figure 2: The S0(0) line of the depolarized Raman spectrum of
pure hydrogen at 36 K. The frequency of the rotational transition
is indicated with the vertical blue dotted line. The solid curve
represents the computed data [10]. Computed data where only
the permanent polarizability is included is indicated with a green
dashed curve. Similarly, the spectrum due only to collision-induced
polarizability is indicated with a red dashed curve.

with the energy-dependent intensity defined by

Dj1i j2i(ν,E) = 2cν2
s

φ0φsh

∑
i∗

∑
f

∣∣∣S f
i (E)

∣∣∣2
, (2)

where the scattering matrix element S
f
i (E) for initial and

final angular momentum states i and f , corresponding to
incident and scattered photons with frequencies ν0 and νs,
respectively. λ0 is the thermal de Broglie wave length, φ0 and
φs are the incident and scattered photon fluxes, respectively,
in units s−1 cm−2 and Pj(T) is the rotational population for
H2 at temperature T . The summation over i∗ indicates all
initial angular momenta except for j1i and j2i. It has been
verified that an upper integration limit of Emax = 13 kT
provides convergence in (1).

Figure 1 shows the Raman spectrum at 50 K which is
dominated by the wings of the S(0) and S(1) lines, except
for at ν < 270 cm−2 where the purely translational collision-
induced band appears. The frequency shift ν = ν0 −
νs is positive for Stokes scattering. Experimental Raman
intensities are also shown and the agreement of the line
shapes is satisfactory. Considerable difficulty in the ab
initio calculations of the potential and polarizability surfaces
should be taken into account. Due to the low temperature
only two S lines appear in the spectrum; all the para-
and ortho-hydrogen molecules are in their lowest rotational
states 0 and 1, respectively.

In Figure 2 the theoretical result for pure parahydrogen at
36 K is presented. The results when permanent and collision-
induced polarizabilities (one at the time) are artificially
turned off are also displayed to aid the analysis of the asym-
metric broadening. There is strong destructive interference
between the permanent and collision-induced components
on the low frequency side of the S0(0) transition; inclusion
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Figure 3: The light scattering intensity versus collision energy for
frequency shifts of 329 cm−1 and 380 cm−1. The result where the
collision-induced part is excluded is shown with green dashed lines.

of both components gives a lower intensity than each of
them alone around 280 cm−1. The high frequency side,
on the other hand, shows an equally strong constructive
interference.

3. Rotational Line Shapes

It is helpful for the line shape analysis to briefly review the
absorption spectroscopy analogue to the process at hand.
The HD molecule has a tiny permanent dipole moment [18]
and its infrared spectrum has been investigated in great detail
both experimentally [19, 20] and theoretically [21–23]. For
example, in the spectrum of HD molecules in a helium bath
it has been established that an interference of the HD dipole
with the interaction-induced HD–He dipole gives rise-to-so-
called Fano line profiles for the R and P transitions. The
low density limit of the Fano line shape has a symmetric
Lorentzian term and an antisymmetric interference term
[24]. It appears that the mechanism should be the same in
a Raman spectrum when a permanent and an interaction-
induced polarizability interfere.

In the pioneering theoretical work on the depolarized
Raman line shapes in hydrogen Borysov and Moraldi [13, 25]
assumed a three component contribution to the intensity: a
pressure broadened allowed line described by a Lorentzian,
a collision-induced quasicontinuum, and the interference of
those two. For the first of those contributions the impact
approximation predicts a pressure-broadened symmetric
line shape described by a Lorentzian. If the collision-
induced polarizability is removed from the calculation of the
spectrum such a line shape is expected. The dashed (green)
curve in Figure 2 shows our theoretical result for the allowed
S-line which is clearly not symmetric. Intracollisional
interference accounts for some of the added asymmetry
when the collision-induced polarizability is included in the
calculation, that is, when the solid black curve deviates from
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Figure 4: Same as in Figure 3 but for a smaller energy range. For
380 cm−1 there is a shape resonance due to ( j1, j2, l, J) = (0, 0, 2, 2)
which is marked with an A. For 329 cm−1 there is structure due
to a predissociating state ( j1, j2, l, J) = (0, 2, 0, 2) (B) and shape
resonances on the ( j1, j2) = (0, 2) potential (C and D).

the sum of the dashed red and green curves. The asymmetry
that is observed when only the permanent polarizability is
included must, however, come about through a different
mechanism.

4. Analysis of Doo(v,E)

In the following analysis I will consider the case of pure
parahydrogen with the spectrum presented in Figure 2. It
should be noted that, due to the low temperature, all
H2-molecules are initially in their rotational ground state,
jn=0. The Raman intensity versus collision energy, D00,
which is given in (2) is shown for two frequency shifts
in Figure 3 over the whole energy interval required for an
accurate evaluation of the Boltzmann average in (1). The
two frequency shifts, 329 and 380 cm−1, were chosen so
that they are positioned roughly symmetrically relative to
the S0(0) transition at 354.4 cm−1. The allowed contribution
to the intensity is shown with dashed green curves and
those virtually coincide for 329 and 380 cm−1 above E ∼
50 cm−1. One may thus conclude that it is the low energy
behaviour that introduces the asymmetry that goes beyond
the intracollisional interference effect, which is displayed as
the difference between the solid black curves in Figure 3.

Figure 4 shows the same intensities for a low energy
range. For the frequency shift ν = 380 cm−1 a feature (A)
around E = 1.2 cm−1 is now clearly visible. A computation of
the cross section for different total angular momenta J (not
reported here) shows that the partial wave with J = l = 2 alone
gives rise to the feature. Thus it is consistent with a shape
resonance on the l = 2 effective potential

Veff(R) = V000(R) +
�2l(l + 1)

2mR2
, (3)
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Table 1: Raman intensity D at ν = 380 cm−1 and T = 36 K evaluated with three different upper energy limits, Emax , in the integral of (1).

Emax [erg] Emax [cm−1] Emax/kT D(ν,T) [cm6] fraction [%]

9.93× 10−16 5 0.200 0.103× 10−54 21.5

4.965× 10−15 25 1.00 0.265× 10−54 55.3

6.4545× 10−14 325 13.0 0.479× 10−54 100
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Figure 5: The effective potential for l = 1, 2, 3 (isotropic
component only). The quasi-bound state or shape resonance energy
corresponding to the the feature around 1.2 cm−1 in Figure 4 is
indicated with the dotted line.

which is plotted for three values of l in Figure 5. l is the orbital
angular momentum corresponding to the classical impact
parameter. The reduced mass of the H2–H2 pair is indicated
withm and the distance between the two diatoms with R. The
anisotropic components (Vγ1γ2γ(R) with not all indices being
zero) of the potential are not shown in Figure 5 but they are
included in the calculations of the data shown in Figures 1
through 4.

For the 329 cm−1 frequency shift the S0(0) threshold lies
at a collision energy E = 25.4 cm−1. A feature which is due to
a predissociating state (B) is clearly discernible about 3 cm−1

below that threshold in Figure 4, consistent with the value for
the bound state ( j1, j2, l, J) = (0, 2, 0, 2) which is computed
with the same potential in [26, 27] Immediately above the
threshold two shape resonances (C, D) corresponding to the
final rotational state’s effective potential are visible.

To investigate the contribution to the depolarized Raman
intensity at 380 cm−1 I have carried out test calculations
using different upper limits Emax in the energy integral, (1).
The corresponding intensities and their fraction of the total
are given in Table 1. It turns out that roughly a fifth of the
total intensity at that frequency is contained in the feature
which corresponds to the shape resonance labeled with an A
in Figures 4 and 5. Furthermore, more than half the intensity
comes from energies lower than 25 cm−1 which is close to the
S0(0) threshold for 329 cm−1.

5. Conclusion

The depolarized Raman spectra at low temperatures has
been analysed. Comparison with an experiment carried

out at 50 K [5] verifies satisfactory agreement between the
measured and computed spectra. The highly asymmetric
S0(0) line profile at 36 K has been investigated in great detail.
The conclusion is that intracollisional interference accounts
only for some of the observed asymmetry. The rest stems
from the low energy behaviour of the Raman intensity. For
example, there is a shape resonance feature which contributes
significantly to the intensity for positive detunings (ν >
354.4 cm−1).

HD–He with its very shallow potential well, is less
likely to show shape resonance features. This is a possible
explanation for that the intra-collisional interference theory
and the Fano line shape is so successful in describing the
infrared spectrum of HD in a He bath [20]. Also, since
the dipole of HD is so weak, the total intensities of the
allowed spectral lines are small. Previous studies of the HD
line shapes focused on the regions a few cm−1 from the
corresponding transition, compared with ∼25 cm−1 ≈ kT
which are considered here. Thus one expects a smaller role
played by threshold effects like that illustrated by comparing
the intensities for frequency shifts 329 and 380 cm−1 in
Figure 4.

Calculations of low-temperature collision-induced and
collision-broadened spectroscopic processes appear to be
rather challenging due to resonance features in the cross
section. Other methods to handle these are desired and a
scheme based on the Breit-Wigner theory [28] similar to that
worked out by Bennett et al. [29] for radiative association
would likely be useful.

It should also be noted that shape resonances depend
strongly on the details of the potential energy surface. This
has been investigated in detail for radiative association [30].
The principal aim in this work is to study the mechanisms
rather than evaluating accurate light scattering intensity. If
high accuracy is needed one should make sure to use the
most accurate potential available.
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1. Introduction

Plasmas formed by a Laser-Induced Optical Breakdown
(LIOB) in gases can be diagnosed using the Stark broadening
of hydrogen lines. In papers [1, 2], the LIOB was studied in
gaseous hydrogen, and the plasmas were diagnosed using H-
alpha line in [1] and H-beta line in [2].

In the latest paper [3], the LIOB was studied in a
pulsed methane flow; the plasma was diagnosed using time-
resolved measurements of profiles of H-alpha, H-beta, and
H-gamma-lines. However, in [3] the electron density was
deduced from the Stark broadening of only H-alpha and H-
beta lines, while the measured widths of the H-gamma line
have not been analyzed.

In the present paper we analyze the widths of the H-
gamma line measured in [3]. For 18 instants of time in
the range between 0.4 and 2.1 μs after the LIOB and for
2 different gas pressures, we deduce the electron density
Ne from the Stark broadening of the H-gamma line and
compare the results with the corresponding values of Ne

obtained from the H-alpha and H-beta lines.

2. Experimental Results

The time-resolved measurements of LIOB comprised typical
experimental arrangements for laser-induced breakdown

spectroscopy (LIBS): nominal nanosecond Q-switched laser
(8 ns, 75 mJ per pulse infrared 1064 nm radiation from a
model Continuum YG680-10 Nd:YAG laser), spectrometer
(1/2 m model 500 SpectraPro Acton Research Corporation)
and intensified linear diode array (model 1460 Princeton
Applied Research detector/controller optical multichannel
analyzer). The captured time-resolved data, averaged over
100 individual LIOB events, were detector-noise/background
corrected, wavelength and detector sensitivity calibrated.
Further details of the experimental procedures are summa-
rized in [3].

Individual profiles of the Balmer series lines H-alpha, H-
beta, and H-gamma were measured subsequent to optical
breakdown. Comparison of the recorded intensities of these
lines allows one, in principle, to infer electron temperature,
Te, provided that reasonable complete profiles are recorded.
Typical for our LIOB measurements however are incom-
plete H-beta and H-gamma line profiles due to significant
contribution of background radiation early in the methane
breakdown, high electron number density, Ne, early in the
plasma decay followed by occurrence of molecular spectra
that overlap Balmer series lines, particularly from C2.

Temperature estimates are inferred by using the relative
signal-strengths of the three line profiles H-alpha, H-beta,
and H-gamma, although several errors in determining Te are
noted. For example, determination of background radiation
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Table 1: Measured H-alpha widths.

tdelay [μs]
2.7× 105 Pa: 6.5× 105 Pa:

width [nm] width [nm]

0.4 2.8 ± 0.3 2.7 ± 0.3

0.5 2.4 ± 0.3 2.3 ± 0.3

0.6 2.1 ± 0.3 2.1 ± 0.3

0.7 1.9 ± 0.2 1.9 ± 0.2

0.8 1.7 ± 0.2 1.7 ± 0.2

0.9 1.6 ± 0.2 1.5 ± 0.2

1.0 1.4 ± 0.2 1.4 ± 0.2

1.1 1.3 ± 0.2 1.3 ± 0.2

1.2 1.2 ± 0.1 1.2 ± 0.2

1.3 1.1 ± 0.1 1.1 ± 0.1

1.4 1.0 ± 0.1 1.0 ± 0.1

1.5 1.0 ± 0.1 0.92 ± 0.1

1.6 0.89 ± 0.1 0.87 ± 0.1

1.7 0.86 ± 0.1 0.78 ± 0.1

1.8 0.79 ± 0.1 0.77 ± 0.1

1.9 0.77 ± 0.1 0.69 ± 0.1

2.0 0.73 ± 0.1 0.67 ± 0.1

2.1 0.70 ± 0.1 0.61 ± 0.1

at a particular time delay from LIOB, or application of
sensitivity and wavelength calibrations, or comparison of
line-profiles from separate 100-event averages recorded for
only one particular Balmer line at a time.

The results for the inferred Te are in the 10 000 K (time
delay 2.1 μs) to 20 000 K (time delay of 0.4 μs) range, using
the area of the incomplete H-beta and H-gamma lines and
the area of the H-alpha line in constructing Boltzmann plots,
analogous as discussed in [1]. For both gas pressures of 2.7×
105 Pa and 6.5×105 Pa, almost identical results are found for
Te. When extending the curve fitting beyond the measured
spectral windows used for the three lines, and using the area
of these extended profiles, typically 50% higher Te is found:
these temperatures constitute an upper limit of 15 000 K and
30 000 K for time delays of 2.1 μs and 0.4 μs, respectively, with
similar results obtained for both pressures.

Tables 1, 2, and 3 show measured FWHM of the H-
alpha, H-beta, and H-gamma lines, respectively, for two
different gas pressures: 2.7 × 105 Pa and 6.5 × 105 Pa. The
data are presented in tabular form for different time delays,
tdelay, from LIOB. The experimental error bars indicate the
estimated total error of determining the FWHM line widths
for the Balmer series lines.

3. Analysis

The combined contribution to the FWHM of the instru-
mental and Doppler broadening (as well as of the fine
structure) is negligibly small compared to the measured
widths. For example, for the H-gamma line those combined
contributions do not exceed 0.14 nm for tdelay = 0.4μs, when
the experimental FWHM is at least 10.4 nm, and do not
exceed 0.11 nm for tdelay = 2.1μs, when the experimental

Table 2: Measured H-beta widths.

tdelay [μs]
2.7× 105 Pa: 6.5× 105 Pa:

width [nm] width [nm]

0.4 10.0 ± 0.9 10.0 ± 0.5

0.5 9.0 ± 0.8 8.7 ± 0.5

0.6 8.1 ± 0.7 7.8 ± 0.5

0.7 7.4 ± 0.5 7.3 ± 0.4

0.8 6.8 ± 0.4 6.5 ± 0.4

0.9 6.3 ± 0.4 5.9 ± 0.4

1.0 5.9 ± 0.4 5.4 ± 0.4

1.1 5.3 ± 0.4 5.1 ± 0.3

1.2 5.0 ± 0.3 4.8 ± 0.3

1.3 4.7 ± 0.3 4.5 ± 0.3

1.4 4.4 ± 0.3 4.1 ± 0.3

1.5 4.1 ± 0.3 3.9 ± 0.3

1.6 3.9 ± 0.3 3.7 ± 0.2

1.7 3.8 ± 0.3 3.5 ± 0.2

1.8 3.6 ± 0.2 3.3 ± 0.2

1.9 3.3 ± 0.2 3.1 ± 0.2

2.0 3.1 ± 0.2 2.9 ± 0.2

2.1 2.9 ± 0.2 2.8 ± 0.2

Table 3: Measured H-gamma widths.

tdelay [μs]
2.7× 105 Pa: 6.5× 105 Pa:

width [nm] width [nm]

0.4 11.0 ± 2.0 10.4 ± 2.0

0.5 10.7 ± 2.0 9.5 ± 2.0

0.6 8.7 ± 1.5 8.6 ± 1.5

0.7 8.1 ± 1.5 7.8 ± 1.5

0.8 7.6 ± 1.5 6.7 ± 1.5

0.9 6.7 ± 1.5 6.3 ± 1.5

1.0 6.2 ± 1.5 6.2 ± 1.5

1.1 6.0 ± 1.0 5.8 ± 1.0

1.2 5.8 ± 1.0 5.5 ± 1.0

1.3 5.6 ± 1.0 5.4 ± 1.0

1.4 5.3 ± 1.0 5.1 ± 1.0

1.5 5.2 ± 1.0 5.1 ± 1.0

1.6 5.0 ± 1.0 4.7 ± 1.0

1.7 5.0 ± 1.0 5.0 ± 1.0

1.8 5.0 ± 1.0 4.6 ± 1.0

1.9 5.0 ± 1.0 4.4 ± 1.0

2.0 4.7 ± 1.0 3.6 ± 1.0

2.1 4.6 ± 1.0 3.6 ± 1.0

FWHM is at least 3.6 nm. A similar situation is for the H-
beta and H-alpha lines—except for few largest time delays
for the H-alpha line, where those contributions reach up to
about 15% of the measured FWHM and should be taken into
account.

For each of these three hydrogen lines, for 18 time delays
and 2 different gas pressures the values of the electron density
Ne were deduced based on the Stark broadening tables and
analytical results from [4, 5]. Table 4 shows the values of Ne
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Table 4: Deduced Ne for pressure of 2.7× 105 Pa.

tdelay [μs]
Hα Hβ Hγ

Ne [1017 cm−3] Ne [1017 cm−3] Ne [1017 cm−3]

0.4 5.0 ± 0.4 2.9 ± 0.8 2.6 ± 0.7

0.5 3.8 ± 0.4 2.5 ± 0.7 2.5 ± 0.7

0.6 3.0 ± 0.4 2.2 ± 0.6 1.9 ± 0.5

0.7 2.5 ± 0.4 1.9 ± 0.5 1.7 ± 0.5

0.8 2.1 ± 0.3 1.6 ± 0.4 1.5 ± 0.5

0.9 1.9 ± 0.3 1.4 ± 0.4 1.3 ± 0.4

1.0 1.6 ± 0.3 1.3 ± 0.4 1.2 ± 0.4

1.1 1.4 ± 0.2 1.2 ± 0.3 1.1 ± 0.25

1.2 1.3 ± 0.2 1.1 ± 0.3 1.05 ± 0.25

1.3 1.15 ± 0.2 1.0 ± 0.3 1.0 ± 0.28

1.4 1.0 ± 0.2 0.87 ± 0.3 0.95 ± 0.28

1.5 1.0 ± 0.2 0.79 ± 0.3 0.92 ± 0.28

1.6 0.90 ± 0.2 0.76 ± 0.2 0.90 ± 0.28

1.7 0.84 ± 0.1 0.75 ± 0.2 0.90 ± 0.29

1.8 0.72 ± 0.1 0.68 ± 0.2 0.90 ± 0.29

1.9 0.69 ± 0.1 0.60 ± 0.2 0.90 ± 0.29

2.0 0.63 ± 0.1 0.55 ± 0.2 0.80 ± 0.30

2.1 0.58 ± 0.1 0.50 ± 0.2 0.77 ± 0.29

Table 5: Deduced Ne for pressure of 6.5× 105 Pa.

tdelay [μs]
Hα Hβ Hγ

Ne [1017 cm−3] Ne [1017 cm−3] Ne [1017 cm−3]

0.4 4.9 ± 0.8 2.9 ± 0.8 2.4 ± 0.7

0.5 3.6 ± 0.7 2.4 ± 0.7 2.2 ± 0.6

0.6 3.0 ± 0.6 2.1 ± 0.6 1.8 ± 0.5

0.7 2.5 ± 0.5 1.8 ± 0.5 1.6 ± 0.5

0.8 2.1 ± 0.4 1.5 ± 0.4 1.3 ± 0.4

0.9 1.75 ± 0.4 1.3 ± 0.4 1.2 ± 0.4

1.0 1.6 ± 0.4 1.2 ± 0.4 1.2 ± 0.4

1.1 1.4 ± 0.3 1.1 ± 0.3 1.05 ± 0.25

1.2 1.3 ± 0.3 1.0 ± 0.3 1.0 ± 0.26

1.3 1.15 ± 0.3 0.92 ± 0.3 1.0 ± 0.28

1.4 1.0 ± 0.3 0.79 ± 0.3 0.91 ± 0.28

1.5 0.92 ± 0.3 0.76 ± 0.3 0.91 ± 0.28

1.6 0.86 ± 0.3 0.72 ± 0.3 0.78 ± 0.27

1.7 0.70 ± 0.3 0.66 ± 0.3 0.90 ± 0.29

1.8 0.69 ± 0.3 0.60 ± 0.3 0.77 ± 0.28

1.9 0.57 ± 0.3 0.55 ± 0.3 0.71 ± 0.28

2.0 0.55 ± 0.4 0.50 ± 0.4 0.51 ± 0.25

2.1 0.46 ± 0.4 0.48 ± 0.4 0.51 ± 0.25

deduced from these three hydrogen lines for the pressure
2.7 × 105 Pa; Table 5 shows the values of Ne deduced from
these three hydrogen lines for the pressure 6.5× 105 Pa.

The error bars of the deduced Ne are due to several
factors as follows. The primary factor is the error bars of the
experimental widths. There are two secondary factors: the
uncertainty in the temperature and the uncertainty in the
reduced mass of the pairs “perturber-radiator”. Speaking of

the latter, since the discharge occurs in methane (CH4), the
perturbers could be not only hydrogen ions (protons) but
also carbon ions. The reduced mass is μ = 0.5 for the pairs
H-H+ or μ = 0.923 for the pairs H-C+ and H-C++.

4. Conclusions

We demonstrated that time-resolved measurements of pro-
files of H-alpha, H-beta, and H-gamma lines provide good
diagnostics for the LIOB in methane.

The electron densities Ne deduced from the H-gamma
and H-beta lines showed generally a good agreement with
each other. At tdelay = 0.4μs and tdelay = 0.5μs, the electron
density Ne formally deduced from the H-alpha line exceeds
Ne deduced from the H-beta and H-gamma lines beyond
the error bars (while Ne deduced from the H-beta and H-
gamma lines agree with each other very well). This is a clear
indication that at tdelay = 0.4μs and tdelay = 0.5μs, the H-
alpha line experienced a significant self-absorption.

Besides, for the range of tdelay = 0.6–1.2 μs, the Mean
Probable Values (MPVs) of Ne formally deduced from the
H-alpha line significantly exceed MPV of Ne deduced from
the H-beta and H-gamma lines (though the disagreement is
within the error bars). Thus it is probable that at tdelay = 0.6–
1.2 μs, the H-alpha still experienced some self-absorption.

We mention that if we would have used the Stark
broadening diagnosis-map data from [6], we would have
deduced slightly different electron densities. This is because
the computational results of paper [6] are based on a
simulation model that neglects the direct coupling of the
electron and ion microfields taken into account analytically
in [4, 5].

We note that for a particular hydrogen line and for a
specific time delay, our experimental widths for the higher
pressure are generally lower than for the lower pressure.
However, generally the higher the pressure is, the higher
the expected electron density is. So, there should be some
additional broadening mechanism that is more effective at
the lower density than at the higher density. Such mechanism
could be electrostatic plasma turbulence, that is, some
regular or stochastic electrostatic waves in plasmas (see, e.g.,
[7, 8] and references therein).

Electrostatic waves produce an additional Stark broaden-
ing controlled by their amplitude. The collisional damping
of electrostatic waves increases with the density, so that their
amplitude and the additional Stark broadening decreases
with the density.

A future study should analyze this hypothesis in more
detail or provide an alternative explanation.
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Collision-induced absorption by hydrogen and helium in the stellar atmospheres of cool white dwarfs causes the emission
spectra to differ significantly from the expected blackbody spectra of the cores. For detailed modeling of radiative processes at
temperatures up to 7000 K, the existing H2–H2 induced dipole and potential energy surfaces of high quality must be supplemented
by calculations with the H2 bonds stretched or compressed far from the equilibrium length. In this work, we describe new dipole
and energy surfaces, based on more than 20 000 ab initio calculations for H2–H2. Our results agree well with previous ab initio
work (where those data exist); the calculated rototranslational absorption spectrum at 297.5 K matches experiment similarly well.
We further report the calculated absorption spectra of H2–H2 for frequencies from the far infrared to 20 000 cm−1, at temperatures
of 600 K, 1000 K, and 2000 K, for which there are no experimental data.

1. Introduction

It is well known that dense gases of infrared inactive
molecules such as H2 absorb infrared radiation. Absorp-
tion continua range from the microwave and far infrared
regions of the spectrum to the near infrared and possibly
into the visible. Collisionally interacting pairs of hydrogen
molecules possess transient electric dipole moments, which
are responsible for the observed absorption continua [1, 2].
Planetary scientists understood early on the significance of
collision-induced absorption (CIA) for the modeling of the
atmospheres of the outer planets [3, 4]. More recently, it was
shown that the emission spectrum of cool white dwarf stars
differs significantly from the expected blackbody spectrum
of their cores: CIA in the dense helium and hydrogen atmo-
spheres suppresses (filters) the infrared emissions strongly
[5–10]. Detailed modelling of the atmospheres of cool stars
with proper accounting for the collision-induced opacities is
desirable, but it has been hampered heretofore by the highly
incomplete or nonexisting theoretical and experimental data
on such opacities at temperatures of many thousands of
kelvin.

Quantum chemical calculations of the induced dipole
surfaces of H2–H2, H2–He and other complexes have been
very successful [11–14]. Based on such data, molecular
scattering calculations accounting for the interactions of
the molecular complexes with photons have been under-
taken which accurately reproduced the existing laboratory
measurements at low temperatures (T ≤ 300 K or so) [2].
At higher temperatures, virtually no suitable laboratory
measurements of such opacities exist, but reliable data are
needed. We therefore decided to extend such quantum
chemical calculations of the induced dipole (ID) and poten-
tial energy surfaces (PES) of H2–H2 complexes to highly
rotovibrationally excited molecules, as encountered at high
temperatures (up to 7 000 K) and photon energies up to
∼2.5 eV.

2. Ab Initio Calculations of the Induced
Dipole and Potential Energy Surfaces

At the temperatures characteristic of cool white-dwarf
atmospheres, the CIA spectra depend on transition dipole
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matrix elements with vibrational quantum numbers up
to v ≈ 7. To evaluate these matrix elements, we have
determined the induced dipoles and interaction energies of
pairs of hydrogen molecules with bond lengths ranging from
0.942 a.u. to 2.801 a.u. (1 a.u. = a0 = 5.29177249 · 10−11 m).
For comparison, the vibrationally averaged internuclear
separation in H2 is 1.449 a.u., in the ground vibrational state.
We have used MOLPRO 2000 [15] to calculate the PES for
H2–H2 and to calculate the pair ID by finite-field methods, at
coupled-cluster single and double excitation level, with triple
excitations treated perturbatively [CCSD(T)]. In this work,
we have employed MOLPRO’s aug-cc-pV5Z(spdf) basis,
consisting of (9s 5p 4d 3f) primitive Gaussians contracted
to [6s 5p 4d 3f]; this gives 124 contracted basis functions for
each of the H2 molecules. The basis gives accurate energies
and properties [16]; yet it is sufficiently compact to permit
calculations on H2 pairs with 28 different combinations of
H2 bond lengths, at 7 different intermolecular separations,
in 17 different relative orientations (the orientations listed
in Table 1), and at a minimum of 6 different applied field
strengths for each geometrical configuration.

In the calculations, the centers of mass of the two H2

molecules are separated along the Z axis by distances R
ranging from 4.0 to 10.0 a.u. The vector R joins molecule 2
to molecule 1. The molecular orientations are characterized
by the angles (θ1, θ2, ϕ12), where θ1 is the angle between the
Z axis and the symmetry axis of molecule 1, θ2 is the angle
between the Z axis and the symmetry axis of molecule 2, and
ϕ12 is the dihedral angle between two planes, one defined by
the Z axis and the symmetry axis of molecule 1 and the other
defined by the Z axis and the symmetry axis of molecule 2.

Calculations were performed first for two molecules
with bond lengths of r1 = r2 = 1.449 a.u., the ground-
state, vibrationally averaged internuclear separation. The
interaction energies were evaluated in the absence of an
applied field; then the pair dipoles were obtained from finite-
field calculations, grouped into three sets of 40. Within each
of the sets, the fields were confined to the XY , XZ, or YZ
planes, and the two components of the applied field were
selected randomly, in the range from 0.001 a.u. to 0.01 a.u.,
for a total of 120 calculations. For each fixed set of the bond
lengths, orientation angles, and intermolecular separation,
the total energies were fit (by least squares) to a quartic
polynomial in the applied field F:

E = E0 − μαFα −
(

1
2

)
ααβFαFβ

− 1
6
βαβγFαFβFγ

− 1
24

γαβγδFαFβFγFδ − · · · ,

(1)

where the Einstein convention of summation over repeated
Greek subscripts is followed. The coefficients of the linear
terms were selected from each fit, to obtain the Cartesian
components of the induced dipole moments μX , μY , and μZ .
In Table 1, our results for the components of the pair dipole
are given for pairs with r1 = r2 = 1.449 a.u.

In earlier work on the polarizabilities α for H2–H2 [16],
we conducted several tests of this fitting procedure: we
compared results from quartic fits with 120 different field
strengths, quartic fits with 200 different field strengths, and
quintic and sixth-order fits with 200 field strengths (at one
set of orientation angles and an intermolecular distance of
2.5 a.u., where the differences between the calculations were
expected to be magnified); we found excellent agreement
among the results from all of the fits. We also compared the
results from the random-field calculations with the values
obtained analytically, based on calculations with 6 or 8
selected values of the field strengths, for fixed orientation
angles and the full range of intermolecular separations.
The field values were grouped into the sets { f , 21/2 f ,
31/2 f , − f , −21/2 f , −31/2 f }, { f , 21/2 f , 51/2 f , − f , −21/2 f ,
−51/2 f }, and { f , 21/2 f , 31/2 f , 51/2 f , − f , −21/2 f , −31/2 f ,
−51/2 f }, with f = 0.001, 0.002, 0.003, and 0.004 a.u. At the
shortest intermolecular distance (R = 2.5 a.u.), the results
for f = 0.001 a.u. – 0.003 a.u. were affected by numerical
imprecision in the hyperpolarization contributions; at larger
R, they agreed well with the random-field results. Agreement
between the random-field results and the results obtained
with f = 0.004 a.u. was excellent for all R values. On this
basis, we have used random-field fits in the work with
r1 = r2 = 1.449 a.u., but we have used analytic fits
with 6 different field values for the computations with r1

or r2 /= 1.449 a.u. In [16], we also compared the results
obtained via analytic differentiation at the self-consistent
field (SCF) level using Gaussian 98 versus the results from
our SCF calculations, for the full range of intermolecular
separations and three different relative orientations, again
with excellent agreement. Basis set superposition error
(BSSE) has been shown to be negligible [16], as tested
by function counterpoise (“ghost-orbital”) methods. BSSE
occurs when the pair basis provides a better representation
of H2–H2 than the single-molecule basis provides for
an isolated H2 molecule. In these calculations, BSSE has
been suppressed by the large size of the single-molecule
basis.

The interaction mechanisms that determine the induced
dipole include classical multipole polarization, van der Waals
dispersion, and short-range exchange, overlap, and orbital
distortion. At long range, the leading term in the collision-
induced dipole comes from quadrupolar induction, which
varies as R−4 in the separation R between the molecular
centers [2]. The next long-range polarization term is of
order R−6; it results both from hexadecapolar induction
and from the effects of the nonuniformity of the local field
gradient (due to the quadrupole moment of the collision
partner). The magnitude of the latter term depends on the
dipole-octopole polarizability tensor E. At order R−7, back-
induction [17, 18] and dispersion [17–21] affect the pair
dipole. Back-induction is a static reaction field effect: the
field from the permanent quadrupole of molecule 1 polarizes
molecule 2, which sets up a reaction field that polarizes
molecule 1 (and similarly, with molecules 1 and 2 inter-
changed). The van der Waals dispersion dipole results from
dynamic reaction-field effects, combined with the effects of
an applied, static field [21], via two physical mechanisms.
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Table 1: Cartesian components μX , μY , and μZ of the H2–H2 dipole in a.u. (multiplied by 106) with bond lengths r1 = r2 = 1.449 a.u.

R (a.u.) 4.0 5.0 6.0 7.0 8.0 9.0 10.0

(θ1, θ2, ϕ12) μX

(π/12, π/6, π/3) 48 150 103 63 39 25 16

(π/12, π/4, π/6) −3675 −2393 −1393 −804 −480 −299 −195

(π/12, π/3, π/6) −2790 −1791 −1044 −607 −366 −230 −150

(π/12, 5π/12, π/6) −144 −28 −17 −16 −15 −11 −8

(π/6, π/4, π/3) 1417 1294 806 471 280 175 115

(π/6, π/3, π/4) 399 562 365 210 121 74 49

(π/6, 5π/12, π/3) 2065 1922 1196 695 411 255 167

(π/4, π/3, π/6) 1109 879 528 302 177 109 72

(π/4, 5π/12, π/6) 3481 2432 1424 815 481 299 195

(π/3, 5π/12, π/6) 2555 1804 1062 611 363 226 148

(7π/12, π/12, π/6) −7979 −5226 −3027 −1740 −1037 −648 −424

(7π/12, π/6, π/4) −9089 −5973 −3462 −1988 −1184 −740 −484

(7π/12, π/4, π/6) −11040 −7181 −4151 −2381 −1417 −885 −580

(7π/12, π/3, π/6) −9759 −6345 −3669 −2107 −1255 −785 −515

(π/2, π/12, π/6) −3628 −2337 −1341 −765 −452 −282 −184

(π/2, π/6, π/3) −3575 −2303 −1322 −754 −447 −278 −182

(π/2, π/4, π/6) −7071 −4535 −2606 −1489 −884 −551 −361

μY

(π/12, π/6, π/3) −6236 −4288 −2519 −1453 −864 −539 −352

(π/12, π/4, π/6) −3691 −2635 −1566 −908 −542 −338 −221

(π/12, π/3, π/6) −2801 −2088 −1257 −733 −440 −275 −180

(π/12, 5π/12, π/6) −1060 −952 −599 −355 −214 −135 −88

(π/6, π/4, π/3) −5443 −4082 −2455 −1429 −854 −533 −349

(π/6, π/3, π/4) −2847 −2414 −1496 −880 −529 −332 −217

(π/6, 5π/12, π/3) −1427 −1430 −916 −545 −330 −207 −136

(π/4, π/3, π/6) −1008 −1209 −793 −473 −286 −179 −117

(π/4, 5π/12, π/6) 419 −239 −224 −145 −90 −57 −37

(π/3, 5π/12, π/6) 404 −211 −199 −127 −78 −49 −32

(7π/12, π/12, π/6) −997 −877 −543 −317 −189 −118 −77

(7π/12, π/6, π/4) −2588 −2187 −1342 −780 −464 −290 −189

(7π/12, π/4, π/6) −2416 −1890 −1142 −662 −394 −246 −161

(7π/12, π/3, π/6) −2415 −1757 −1045 −604 −360 −225 −147

(π/2, π/12, π/6) −835 −798 −501 −294 −175 −109 −71

(π/2, π/6, π/3) −2521 −2367 −1481 −865 −515 −321 −210

(π/2, π/4, π/6) −1734 −1570 −976 −569 −339 −211 −138

μZ

(π/12, π/6, π/3) −15702 −5371 −2141 −1026 −568 −345 −223

(π/12, π/4, π/6) −35330 −12145 −4900 −2374 −1322 −808 −525

(π/12, π/3, π/6) −53105 −18342 −7486 −3664 −2053 −1258 −820

(π/12, 5π/12, π/6) −65061 −22550 −9278 −4573 −2574 −1580 −1032

(π/6, π/4, π/3) −19683 −6793 −2764 −1349 −755 −463 −301

(π/6, π/3, π/4) −37478 −13007 −5355 −2641 −1486 −914 −597

(π/6, 5π/12, π/3) −49514 −17248 −7156 −3553 −2008 −1237 −810

(π/4, π/3, π/6) −17837 −6231 −2596 −1293 −731 −451 −296

(π/4, 5π/12, π/6) −29903 −10485 −4400 −2205 −1253 −774 −509

(π/3, 5π/12, π/6) −12057 −4257 −1805 −913 −522 −323 −213

(7π/12, π/12, π/6) 65301 22600 9286 4573 2573 1580 1032

(7π/12, π/6, π/4) 49757 17294 7161 3553 2008 1237 810

(7π/12, π/4, π/6) 30125 10528 4404 2206 1253 775 510



4 International Journal of Spectroscopy

Table 1: Continued.

R (a.u.) 4.0 5.0 6.0 7.0 8.0 9.0 10.0

(7π/12, π/3, π/6) 12133 4272 1807 914 522 323 214

(π/2, π/12, π/6) 69310 24042 9916 4898 2761 1697 1109

(π/2, π/6, π/3) 53764 18746 7796 3879 2196 1354 887

(π/2, π/4, π/6) 34212 11998 5042 2532 1441 891 58

(1) Spontaneous, quantum mechanical fluctuations in the
charge density of molecule 1 produce a fluctuating field that
acts on molecule 2; then molecule 2 is hyperpolarized by
the concerted action of the field from 1 and the applied
field F. This sets up a field-dependent dynamic reaction field
at molecule 1, giving a term in the van der Waals energy
that is linear in the applied field F. (2) The correlations
of the fluctuations in the charge density of molecule 1
are altered by the static field F acting on 1; molecule 2
responds linearly to field-induced changes in the fluctuations
of the charge density of 1, again giving a term in the
van der Waals energy that is linear in the applied field F.
The precise functional forms of the short-range exchange,
overlap, and orbital-distortion effects on the dipole are not
known; however, these contributions are expected to drop off
(roughly) exponentially with increasing R [2].

The dipole moment of the pair can be cast into a
symmetry-adapted form, as a series in the spherical harmon-
ics of the orientation angles of molecules 1 and 2 and the
orientation angles of the intermolecular vector:

μ1
M(R, r1, r2) = (4π)3/2 3−1/2

∑
Aλ1λ2ΛL(R, r1, r2)

× Yλ1
m1 (Ω1)Yλ2

m2 (Ω2)YL
M−m(ΩR)

× 〈λ1λ2m1m2 | Λm〉〈ΛLm(M −m) | 1M〉,
(2)

where the sum runs over all values of λ1, λ2, m1, m2,Λ and m;
M = 1, 0, or −1, corresponding to the dipole components,

μ1
1 = −

(
1
2

)1/2(
μX + iμY

)
,

μ1
0 = μZ ,

μ1
−1 =

(
1
2

)1/2(
μX − iμY

)
.

(3)

In (2), Ω1 and Ω2 denote the orientation angles of molecules
1 and 2, that is, the orientation angles of the z axes of the
molecule-fixed frames, ΩR is the orientation angle of the
vector R (note that R runs from molecule 2 to molecule
1, in this work), and the quantities 〈λ1λ2m1m2 | Λm〉 and
〈ΛLM(M − m) | 1M〉 are Clebsch-Gordan coefficients.
Equation (2) follows immediately from the fact that the
collision-induced dipole of H2–H2 is a first-rank spherical
tensor, which is obtained by coupling functions of r1, r2, and
R. Therefore λ1, λ2, Λ, L, and the magnitudes of r1, r2, and
R completely determine the dipole expansion coefficients
Aλ1λ2ΛL(R, r1, r2).

The dipole coefficients arising from various long-range
polarization mechanisms are categorized in Table 2, through
order R−7. In this table, Θ denotes the molecular quadrupole
moment; α is the trace of the single-molecule polarizability;
α‖−α⊥ is the polarizability anisotropy, which is equal to αzz−
αxx in the molecular axis system, where z is the symmetry
axis; Φ is the hexadecapole moment; E is the dipole-octopole
polarizability, which has a second-rank spherical tensor
component E2 and a fourth-rank component E4. The van
der Waals dispersion dipole is given by an integral over
imaginary frequencies, where the integrand is a product
of the polarizability at imaginary frequency α(iω) and the
dipole-dipole-quadrupole hyperpolarizability B(0, iω). The
B tensor is a fourth-rank Cartesian tensor with spherical-
tensor components of ranks 0, 2, and 4.

For distinct molecules 1 and 2, or for chemically identical
molecules that have different bond lengths, all of the dipole
coefficients listed in Table 2 are nonzero, although some
of the coefficients may be quite small numerically. For
chemically identical molecules, when r1 = r2, the coefficients
A0001, A22Λ1 with Λ /= 1, A22Λ3 with Λ /= 3, and A2245 vanish;
the remainder are nonzero. The coefficients A0λλL and A24ΛL

can be obtained from the coefficients Aλ0λL and A42ΛL via the
relations

A0λλL = −P 12Aλ0λL,

A24ΛL = (−1)Λ+1P 12A42ΛL,
(4)

where P 12 interchanges the labels of molecules 1 and 2.
For centrosymmetric molecules such as H2, the dipole
coefficients Aλλ′ΛL vanish unless λ and λ′ are both even. Also,
due to the Clebsch-Gordan coefficients in (2), nonvanishing
contributions are found only if Λ = L − 1, L, or L + 1.
Coefficients with higher values of λ and λ′ than those listed
are of higher order than R−7 at long-range, although they
may represent significant short-range overlap effects.

From the dipole values in Table 1, we have obtained a set
of A coefficients by least-squares fit (at each R value) to (2),
for r1 = r2 = 1.449 a.u. From the fit, we have been able to
determine the coefficients A2021, A0221, A2023, A0223, A2211,
A2233, A4043, A0443, A4045, A0445, A4221, A2421, A4223, A2423,
A4233, A2433, A4243, A2443, A4245, A2445, A4255, A2455, A4265,
A2465, A4267, and A2467. We have kept all of these coefficients,
as well as A0001 and A2201, in the calculations with unequal
bond lengths for molecules 1 and 2. However, for R ≥
4.0 a.u and r1 = r2 = 1.449 a.u., the least squares fit shows
that the first ten coefficients are numerically important,
while the remaining coefficients are essentially negligible.
At R = 4.0 a.u., the remaining coefficients do not exceed
7.0 · 10−5 a.u. in absolute value, and the values drop off
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Table 2: Long-range dipole induction mechanisms that contribute to the coefficients Aλλ′ΛL of (2) for a pair of molecules A and B [17, 18].

Induction mechanism Power law Properties Coefficients

Quadrupolar field R−4 Θ, α A2023, A0223

Θ, α‖ − α⊥ A22Λ3, Λ = 2, 3, 4

Hexadecapolar field R−6 Φ, α A4045, A0445

Φ, α‖ − α⊥ A42Λ5, Λ = 4, 5, 6

A24Λ5, Λ = 4, 5, 6

Nonuniform field gradient R−6 Θ, E2 A2245

Θ, E4 A42Λ5, Λ = 4, 5, 6

A24Λ5, Λ = 4, 5, 6

Back-induction R−7 Θ, α, α‖ − α⊥ A0001

A2021, A0221

A2023, A0223

A2221

A22Λ3, Λ = 2, 3, 4

A2245

A4043, A0443

Θ, α‖ − α⊥ A2021, A0221

A2023, A0223

A22Λ1, Λ = 0, 1, 2

A22Λ3, Λ = 2, 3, 4

A2245

A4221, A2421

A42Λ3, Λ = 2, 3, 4

A24Λ3, Λ = 2, 3, 4

A42Λ5, Λ = 4, 5, 6

A24Λ5, Λ = 4, 5, 6

Dispersion R−7 α (iω), B0(0, iω) A0001

α (iω), B2(0, iω) A2021, A0221

A2023, A0223

α‖(iω)−α⊥(iω), B0(0, iω) A2021, A0221

A2023, A0223

α(iω), B4(0, iω) A4043, A0443

α‖(iω)−α⊥(iω), B2(0, iω) A22Λ1, Λ = 0, 1, 2

A22Λ3, Λ = 2, 3, 4

A2245

α‖(iω)− α⊥(iω), B4(0, iω) A4221, A2421

A42Λ3, Λ = 2, 3, 4

A24Λ3, Λ = 2, 3, 4

A42Λ5, Λ = 4, 5, 6

A24Λ5, Λ = 4, 5, 6

rapidly with increasing R. Table 3 gives our results for A2021,
A2023, A2211, A2233, A4043, and A4045; the other numerically
significant coefficients are given by the relations A0221 =
−A2021, A0223 = −A2023, A0443 = −A4043, and A0445= −A4045.

In Table 3, the results are also compared with results from
two earlier ab initio calculations of the H2–H2 dipole with
r1 = r2 = 1.449 a.u., reported by Meyer et al. [12], Meyer
et al. [13], and Fu et al. [22]. (The signs in Table 3 follow
from our choice of the positive direction of the intermolec-
ular vector R.) Meyer et al. [12, 13] used configuration-
interaction wave functions including single, double, and

triple excitations from a reference Slater determinant, in a (7s
1p) basis of Gaussian primitives on each H center, contracted
to [3s 1p] and augmented by a (3s, 2p, 2d) basis at the center
of the H–H bond, giving a total of 31 basis functions for H2

[11]. They performed calculations for 18 relative orientations
that provided 9 nonredundant Cartesian dipole components.
Fu et al. [22] employed the same basis to generate the CCSD
(T) wave functions, in calculations for H2–H2 in 13 relative
orientations, selected so that μY = 0 in all cases. To find the
dipoles, they used finite-field methods, with two fields that
were equal in magnitude but opposite in sign. From Table 3,
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Table 3: Dipole expansion coefficients Aλλ′ΛL (in a.u., multiplied by 106) for H2–H2 with r1 = r2 = 1.449 a.u. Results from this calculation,
compared with results of Meyer et al. [13] (MBF), Fu et al. [22] (FZB), long-range results [17, 18] through order R−7(LR), and quadrupole-
induced dipole coefficients (QID).

R (a.u.) 4.0 5.0 6.0 7.0 8.0 9.0 10.0

A2021 This work 9983 2123 407 73 13 4 2

MBF 10401 2190 429 84 20 7 —

FZB 10385 2184 427 83 19 6 —

LR 279 59 16 6 2 1 0

A2023 This work −20065 −8076 −3725 −1950 −1124 −695 −455

MBF −19967 −7953 −3688 −1939 −1119 −692 —

FZB −19949 −7946 −3685 −1938 −1118 −692 —

LR −19687 −7652 −3603 −1921 −1118 −695 −455

QID −17628 −7221 −3482 −1880 −1102 −688 −451

A2211 This work 402 86 18 3 0 0 0

MBF 332 74 14 2 0 0 —

FZB 332 74 14 2 0 0 —

LR −41 −9 −2 −1 0 0 0

A2233 This work 2020 977 514 289 171 107 70

MBF 1992 949 498 280 166 104 —

FZB 1991 949 498 279 166 104 —

LR 2588 1088 530 288 169 106 70

QID 2726 1117 538 291 170 106 70

A4043 This work 690 180 42 9 2 0 0

LR 204 43 12 4 2 1 0

A4045 This work −845 −283 −97 −37 −16 −8 −4

MBF −1523 −450 −135 −47 −19 −9 —

FZB −1517 −447 −134 −46 −19 −9 —

LR −1040 −273 −91 −36 −16 −8 −4

it is apparent that the results of Fu et al. (FZB) [22] agree well
with the earlier results given by Meyer et al. (MBF) [13].

For the largest coefficients,A2023 andA0223, our results are
in excellent agreement with both of the earlier calculations:
The percent differences between our results and those of
Meyer et al. [13] are largest at R = 5.0 a.u. (1.52%) and
R = 6.0 a.u. (0.99%); the remaining differences in these two
coefficients average to 0.48%. We have obtained results atR =
10.0 a.u., which were not given previously. The differences
between our values for A2233 and those of Meyer et al. [13]
are typically∼3% (smaller at R = 4.0 a.u.). Differences in the
values of A2021 and A0221 are ∼5% or less at short range (R ≤
6.0 a.u.), where these coefficients have their largest values. At
longer range, the absolute discrepancies are smaller, although
the differences are larger on a relative basis. The principal
differences in the dipole coefficients are attributable to the
inclusion of A4043 and A0443 in our work; this affects the
values of A4045, A0445, and A2211 (to a lesser extent).

In Table 3, the ab initio values of the coefficients are
also compared with values based on the quadrupole-induced
dipole model (QID) and the long range model (LR), which
is complete through order R−7. The LR calculations include
hexadecapolar induction, back-induction, and van der Waals
dispersion effects, in addition to quadrupolar induction. The
QID and LR calculations are based on the value of the
H2 quadrupole computed by Poll and Wolniewicz [23], the

value of Θ interpolated to r = 1.449 a.u. given by Visser
et al. [24], the hexadecapole computed by Karl et al. [25],
the polarizabilities and E-tensor values given by Bishop and
Pipin [26], and the dispersion dipoles computed from the
polarizability and dipole-dipole-quadrupole polarizability at
imaginary frequencies, also given by Bishop and Pipin [27].

The coefficient A2023 depends primarily on the
quadrupole-induced dipole: the difference between the
QID approximation and our result is ∼12% at R = 4.0 a.u.,
∼10.6% at R = 5.0 a.u., ∼6.5% for R = 6.0 a.u., and smaller
at larger R. The QID model gives remarkably good values for
this coefficient, even when R is quite small. Agreement with
the full long-range model is somewhat better, with errors
of ∼5.25% at R = 5.0 a.u. and only 1.88% at R = 4.0 a.u.
Quadrupole-induced dipole effects are also present in the
coefficient A2233; this coefficient fits the QID and LR models
quite well for R ≥ 6.0 a.u., but the percent errors in these
approximations are larger than those in A2023 for R = 4.0
and 5.0 a.u. It should be noted that the back-induction and
dispersion contributions have the same sign in A2023 but
opposite signs in A2233.

At long range the values of A4045 and A0445 depend
on hexadecapolar induction, which varies as R−6; there are
no other contributions through order R−7. We find strong
agreement between the values of these coefficients and the
hexadecapole-induced dipole terms (which determine LR),
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for R≥ 5.0 a.u.; short-range effects become significant when
R is reduced to 4.0 a.u. In contrast, A2021, A0221, A2211,
A4043, and A0443 seem to reflect the short-range exchange,
overlap, and orbital distortion effects predominantly. For
these coefficients, the leading long-range terms of back-
induction and dispersion vary as R−7; and they contribute
with opposite signs in each case, further reducing the net
effect of the long-range polarization mechanisms, in these
particular dipole coefficients.

As noted above, we have carried out calculations with
28 different combinations of bond lengths in molecules 1
and 2. Ab initio calculations have been completed for pairs
with each bond length combination, in each of the 17 relative
orientations, at each of 7 separations between the centers of
mass, and for at least six values of the applied field in the X ,
Y , or Z direction.

In the work of Meyer et al. on the absorption spectra
of H2–H2 pairs in the fundamental band, results for the
Cartesian components of the pair dipoles are listed for four
nonredundant pairs of bond lengths, (ro, ro), (ro, r−), (ro,
r+), and (r−, r+), with ro = 1.449 a.u., r = 1.111 a.u.,
and r+ = 1.787 a.u. [13]. Fu et al. [22] augmented this set
by the addition of a larger bond length, r++ = 2.150 a.u.,
and reported results for all ten nonredundant pairs of
configurations with the bond lengths drawn from the set
{ro, r , r+, r++}. In the current work, we have included ro,
three bond lengths smaller than ro (1.280 a.u., 1.111 a.u.,
and 0.942 a.u.), and four bond lengths larger than ro
(1.787 a.u., 2.125 a.u., 2.463 a.u., and 2.801 a.u.), in order
to examine new portions of the dipole surface, particularly
those that may become significant for photon absorption
at higher temperatures. The specific nonredundant length
combinations used in the calculations are (r1, r2) = (2.801,
2.125), (2.801, 1.787), (2.801, 1.449), (2.801, 1.280), (2.801,
1.111), (2.801, 0.942), (2.463, 2.125), (2.463, 1.787), (2.463,
1.449), (2.463, 1.280), (2.463, 1.111), (2.463, 0.942), (2.125,
1.787), (2.125, 1.449), (2.125, 1.280), (2.125, 1.111), (2.125,
0.942), (1.787, 1.449), (1.787, 1.280), (1.787, 1.111), (1.787,
0.942), (1.449, 1.449), (1.449, 1.280), (1.449, 1.111), (1.449,
0.942), (1.280, 1.111), (1.280, 0.942), and (1.111, 0.942), with
all bond lengths in a.u.

To illustrate the results for pairs with one or both
bond lengths displaced from ro (the averaged internuclear
separation in the ground vibrational state of H2), in Table 4
we list our values for the dipole expansion coefficients when
r1 = 1.787 a.u. and r2 = 1.449 a.u., and we compare with the
values given earlier by Fu et al. [22]. In general, we find
excellent agreement. The values of A0001, A2021, A0221, A2023,
A0223, A2233, A2243, and A2245 agree quite closely, particularly
given the extension of the basis set and the corrections for
hyperpolarization effects included in the current work. A
few of the coefficients show larger differences, based on
differences in the fitting procedures. In the current work,
we have omitted the coefficients A2221 and A2223, which were
included by Fu et al.; this contributes to the difference in the
fitted values of A2211. On the other hand, we have included
A4043 and A0443, which were omitted by Fu et al. [22]; this
probably accounts for the difference in the values ofA4045 and
A0445 shown in Table 4. Our inclusion of A4221, A2421, A4223,

A2423, A4243, A2443, A4245, A2445, A4265, A2465, A4267, and A2467

in the fitting procedure also causes slight shifts in the values
of the other coefficients.

No previous results are available for comparison when
one or both of the molecules in the pair have bond lengths
of 0.942 a.u., 1.280 a.u., 2.125 a.u, 2.463 a.u., or 2.801 a.u.
In Table 5, we provide results for one such combination of
bond lengths, with r1 = 2.463 a.u. and r2 = 1.787 a.u.
The coefficients listed in the top line of each set (and the
corresponding coefficients for other pairs of bond lengths)
were used in generating the rototranslational and vibrational
spectra. These were obtained from fits that included 26
dipole coefficients all together (with A2211 and A2233, but
not A2221 and A2223); immediately below those results in
each set, we list values obtained from fits with 27 dipole
coefficients (including A2221 and A2223, but not A2211). We
find that the coefficients A0001, A2021, A2023, A2243, A2245,
A4043, and A4045 are numerically “robust;” these coefficients
are little affected by the difference in the fitting procedure.
The coefficients A0221, A0223, A2233, A0443, and A0445 show
greater sensitivity, although the agreement tends to improve
as the separation between the molecular centers R increases
(particularly for A0223 and A2233). The full results for the new
potential energy surface and the pair dipoles, with individual
H2 bond lengths ranging from 0.942 a.u. to 2.801 a.u., will
be reported and analyzed in a subsequent paper. However,
here we note that the coefficients A2023, A0223, A2233, A4045,
and A0445 appear to be dominated by long-range induction
mechanisms, specifically quadrupolar induction for A2023,
A0223, and A2233, hexadecapolar induction for A4045 and
A0445, and E-tensor induction forA2245. When the logarithms
of the absolute values of these coefficients are plotted versus
the logarithms of the separations R between the molecular
centers of mass, over the range from 8.0 a.u. to 10.0 a.u., the
slopes are −4.20 for A2023, −4.08 for A0223, and −3.995 for
A2233, all close to the quadrupolar-induction value of −4.
Similarly, the slopes are −6.42 for A4045 and −6.34 for A0445,
close to the value of−6 for hexadecapolar induction; and the
slope is −5.84 for A2245, close to the value of −6 for E-tensor
induction [17].

3. About the Spectra

The absorption spectrum is a quasicontinuum, consisting
of many thousand highly diffuse, unresolved “lines,” cor-
responding to rotovibrational transitions from an initial
state {ν1, j1, ν2, j2}, to a final state {ν1

′, j1′, ν2
′, j2′}, of the

binary collision complex. Under the conditions encountered
in cool stellar atmospheres, vibrational quantum numbers ν
from 0 to about 5 occur with significant population numbers,
with rotational quantum numbers j up to 20 or so, for H2

molecules.
The isotropic potential approximation (IPA), which

neglects the anisotropic terms of the intermolecular poten-
tial, is used for the calculation of the spectra [2]. Each “line”
requires as input the matrix elements of the spherical dipole
components [2]

〈
ν1 j1ν2 j2 | Aλ1λ2ΛL(R, r1, r2) | ν1

′ j1′ν2
′ j2′
〉

, (5)
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Table 4: Dipole expansion coefficients Aλλ′ΛL (in a.u., multiplied by 106) for H2–H2 with r1 = 1.787 a.u. and r2=1.449 a.u. The results from
this calculation are compared with the results of Fu et al. (FZB), [22].

R (a.u.) 4.0 5.0 6.0 7.0 8.0 9.0 10.0

A0001 This work −22960 −5786 −1241 −203 −10 13 9

FZB −21869 −5518 −1232 −231 −29 6 —

A2021 This work 20653 4618 928 168 26 2 1

FZB 21290 4688 963 194 45 15 —

A0221 This work −10595 −2394 −486 −95 −16 −1 −2

FZB −11028 −2450 −508 −108 −28 −10 —

A2023 This work −32456 −12335 −5392 −2735 −1554 −957 −624

FZB −32287 −12113 −5368 −2749 −1568 −966 —

A0223 This work 23916 10071 4764 2525 1459 905 591

FZB 23778 9865 4685 2488 1439 889 —

A2211 This work 733 166 37 7 0 −2 0

FZB 528 126 26 3 0 0 —

A2233 This work 3079 1497 789 443 260 161 106

FZB 2952 1415 750 423 253 158 —

A2243 This work −316 −242 −150 −88 −55 −34 −23

FZB −375 −263 −148 −83 −49 −30 —

A2245 This work 416 180 86 39 19 10 5

FZB 433 184 72 29 13 6 —

A4043 This work 1981 529 123 29 8 3 1

A0443 This work −623 −185 −43 −9 0 1 0

A4045 This work −2079 −684 −224 −84 −35 −16 −9

FZB −3956 −1129 −322 −108 −43 −20 —

A0445 This work 989 364 131 53 23 12 5

FZB 1559 524 169 61 25 11 —

and the isotropic component of the intermolecular potential
for the initial (unprimed) state

〈
ν1 j1ν2 j2 | V000(R, r1, r2) | ν1 j1ν2 j2

〉
; (6)

the potential for the final state is given by a similar
expression, where all rotovibrational quantum numbers are
primed. The line shape calculations proceed with these
expressions as described elsewhere [2]. In (5), (6), as above,
R designates the intermolecular separation and r1, r2 the
intramolecular separations. The indices λ1λ2ΛL are the
expansion parameters of the spherical dipole components in
(2).

Figure 1 shows the calculated absorption coefficient
α(ν; T), normalized by the numerical density ρ squared,
at the temperature T of 297.5 K, and frequencies ν from
0 to 3000 cm−1 (the “rototranslational band”). Laboratory
measurements [28] are shown for comparison (•). Good
agreement of theory and measurements is observed.

We note that similarly good agreement of theory and
measurement was previously observed, based on an earlier
ab initio ID surface and a refined intermolecular potential
[2, 12]. In the present work, a more complete induced
dipole surface has been obtained and used, although the
extension has not significantly affected the rototranslational
band, shown in Figure 1. Additionally, a new potential energy
surface has been obtained and used in the current work.
This new potential surface (as well as the new ID surface)
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Figure 1: The calculated absorption spectrum of pairs of molecular
hydrogen in the rototranslational band of H2, at the temperature
of 297.5 K, and comparison with laboratory measurements (• from
[28]).

accounts for highly rotovibrationally excited H2 mole-
cules; and the new surfaces will be essential for our high-
temperature opacity calculations—but again, the extensions
of the potential surface are of little consequence for the
rototranslational band, Figure 1, near room temperature.

The new potential surface is believed to be accurate
in the repulsive region of the interaction, but it is not as
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Table 5: Dipole expansion coefficients Aλλ′ΛL (in a.u., multiplied by 106) for H2−H2 with r1 = 2.463 a.u. and r2 = 1.787 a.u. Results from the
fit used to calculate the spectra (top line in each set) are compared with an alternate fit, which includes A2221 and A2223, but not A2211.

R (a.u.) 4.0 5.0 6.0 7.0 8.0 9.0 10.0

A0001 −67727 −18429 −4357 −863 −119 8 14

−65778 −19365 −4616 −960 −112 22 25

A2021 61278 16009 3620 734 126 12 −3

61859 15730 3543 705 128 16 0.5

A0221 −23618 −6192 −1472 −322 −60 −9 −1

−14285 −4351 −1033 −235 −47 −10 −1

A2023 −77947 −28920 −11520 −5413 −2954 −1786 −1157

−78659 −28577 −11425 −5378 −2956 −1791 −1161

A0223 47485 20508 9741 5119 2948 1819 1185

53866 22606 10265 5251 2955 1809 1178

A2211 2759 674 164 37 4 −2 −1

A2221 9063 937 201 10 16 8 7

A2223 3803 2494 642 187 1 −19 −15

A2233 6468 3571 1978 1144 678 424 278

−2544 1369 1441 1024 666 430 282

A2243 −1604 −788 −575 −362 −223 −143 −94

−1711 −737 −561 −357 −223 −143 −95

A2245 4102 1139 545 266 129 66 35

4222 1082 530 260 129 67 36

A4043 8512 2914 742 175 45 14 5

8404 2966 756 181 44 13 4

A0443 −1310 −616 −178 −41 −8 0 1

−1531 −510 −149 −30 −8 −2 −1

A4045 −7655 −3106 −984 −339 −134 −62 −32

−7534 −3165 −1000 −345 −133 −61 −31

A0445 2393 1086 415 162 70 33 17

2640 968 382 150 71 35 19

extensively modeled in the well region, and at long range
(dispersion part). Nevertheless, the measurements of the
absorption spectra are as closely reproduced by the new ab
initio input, Figure 1, as they are by the earlier advanced
models. Apparently, the collision-induced absorption spectra
arise mainly through interactions in the repulsive part of
the potential, which is certainly consistent with previous
observations [2].

The new opacity calculations of the fundamental and
H2 overtone bands [29] show similar agreement with
measurements. Figure 2 shows the calculated normalized
absorption coefficients over a frequency band ranging from
the microwave region of the spectrum to the visible. In these
calculations, we have used the exact equilibrium populations
for the initial states, which at 2000 K consist of v = 0, 1,
and 2, with many different rotational states, including highly
excited states. For the final states (after a photon of energy up
to 2.5 eV has been absorbed), we have included much higher
rotovibrational states of the molecules. We have accounted
for all of these states rigorously, using the new intermolecular
potential and induced dipole surfaces.

The coarse structures seen in the spectrum correspond
roughly to the rototranslational band (peak near 600 cm−1),

the fundamental band of H2 (peak near 4200 cm−1), and
the first through fourth overtone bands of H2 (remaining
peaks). Unfortunately, no measurements exist for these high-
frequency data, but we feel that the results shown are of
comparable reliability to the results in Figure 1.

Calculations of the type shown supplement previous
estimates, especially at the highest frequencies [10, 30].
Presently, we are attempting calculations of H2–H2 opacities
at still higher temperatures (up to 7000 K). Moreover, similar
calculations are planned for H2−He and H2−H collisional
complexes.

4. Conclusion

We report opacity calculations of collisional H2–H2 com-
plexes for temperatures of thousands of kelvin and a
frequency range from the microwave to the visible regions
of the electromagnetic spectrum. The calculations are based
on new ab initio induced dipole and potential energy surfaces
of rotovibrating H2 molecules, and are intended to facilitate
modeling the atmospheres of cool stars. Agreement with
earlier theoretical work and laboratory measurements, where
these exist, is excellent.
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Figure 2: Calculated absorption spectrum of pairs of molecular
hydrogen, from the far infrared to the visible, at the temperatures
of 600 K (dashes), 1000 K (solid line), and 2000 K (dotted).
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The goal of the present work was the investigation of the possibility to use intensity distribution of the Q-branch lines of the
hydrogen Fulcher-α diagonal band (d3Π−u → a3

∑+
g electronic transition; Q-branch with v = v′ = 2) to determine the temperature

of hydrogen containing high-frequency electrodeless lamps (HFEDLs). The values of the rotational temperatures have been
obtained from the relative intensity distributions for hydrogen-helium and hydrogen-argon HFEDLs depending on the applied
current. The results have been compared with the method of temperature derivation from Doppler profiles of He 667.8 nm and Ar
772.4 nm lines. The results of both methods are in good agreement, showing that the method of gas temperature determination
from the intensity distribution in the hydrogen Fulcher-α (2-2)Q band can be used for the hydrogen containing HFEDLs. It was
observed that the admixture of 10% hydrogen in the argon HFEDLs significantly reduces the gas temperature.

1. Introduction

The high-frequency electrodeless lamps (HFEDLs) are well
known as a bright radiators of narrow and intense spectral
lines in wide spectral range from vacuum ultra violet to
infrared. These lamps are widely used in Atomic Absorption
Spectroscopy for the determination of metal concentrations
[1, 2], and they are of interest in plasma-surface interaction
investigations due to lack of electrodes [3, 4]. For the appli-
cation of HFEDLs and for the discharge plasma modeling it
is important to estimate the plasma parameters in the lamps.
It is of particular importance to determine and control the
gas temperature, since this parameter plays an important role
for many relevant plasma processes. In our previous work for
the discharge gas temperature estimation in HFEDLs we used
the high-resolution spectroscopy method of the emission
spectral line shape measurements using Fabry-Perot interfer-
ometer and Zeeman spectrometer and nonlinear spectral line
shape modeling [5]. However, the method of the line shape
modeling is very complicated due to the necessity to solve the
incorrect inverse task [6]. It is of great interest to find other
methods and verify their applicability for the determination

of plasma temperature in HFEDLs. In the case of hydrogen
containing plasmas, one of the commonly used techniques
for the determination of gas temperature is based on the
measurements of the intensity distribution in the rotational
bands of hydrogen molecule [7–18], for instance, (0-0), (1-
1), (2-2), and (3-3) Q-branches of Fulcher-α (d3Π−u →
a3Σ+

g ) electronic transition [9–18]. The determination of
the gas temperature from measured intensity distribution
in rotational bands is based on a certain theoretical model,
which involves series of assumptions about the mecha-
nism of the excitation-deexcitation of rotational-vibrational
(vibronic) levels of hydrogen. According to this model, the
translational gas temperature may be in equilibrium with
rotational temperature determined from either upper or
lower energy level depending on processes in plasma under
study [8, 12, 14].

For example, as it was shown by Tomasini et al. [12],
in the case of hydrogen containing microwave discharge
the ground state rotational temperature can be used at
pressure of 0.5 Torr to derive the gas temperature, while at
higher pressure (1 Torr) the authors observed discrepancy
between temperature obtained from the Doppler broadening
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and rotational temperature derived from the ground state
energies.

Garg et al. [14] compared temperature values obtained
from hydrogen Fulcher-α (0-0)Q-branch with those derived
from the rotational band of N2 molecule. They found that in
the microwave plasma at pressure 10 Torr, the H2 rotational
temperatures derived using upper and lower level rotational
constants are far from equilibrium with translational temper-
ature and they do not accurately represent the translational
temperature under their experimental conditions.

Iordanova [17] used the ground state rotational tem-
perature of hydrogen molecule to derive temperature of the
RF (excited at 27 MHz frequency) inductively driven H2

plasma in the pressure range 26–60 mTorr, estimating that
in this pressure range and at gas temperatures 300–900 K the
characteristic time between heavy particle collisions is much
longer than the radiation lifetime of the excited state, which
means that the rotational distribution in the excited state is
an image of the rotational distribution in the ground state.

Lebedev and Mokeev [18] used Fulcher-α (2-2)Q-branch
to determine the microwave plasma temperature at pressures
1–8 Torr. They argued that at pressure 1 Torr the collision
frequency vcoll is much smaller than the radiative destruction
frequency v∗ (vcoll � v∗), concluding that under their
experimental conditions the gas temperature can be derived
from the ground state rotational energies.

In each particular case, the relation between the rota-
tional and translational temperatures needs to be verified.
One way to establish the relationship between both temper-
atures is the comparison of the rotational temperature with
that obtained by other methods, for example, the rovibra-
tional bands of N2 molecule [14] or Doppler broadening of
the lines [12].

The Fulcher-α Q-branches have been used for the plasma
temperature determination in different kinds of discharges;
however for the diagnostics of the high-frequency electrode-
less discharge lamps (excited at about 100 MHz frequency) it
was not used before. Therefore, the goal of the present work
was to investigate the possibility to use relative intensities of
the Q-branch lines of the hydrogen Fulcher-α diagonal band
(d3Π−u → a3Σ+

g electronic transition; Q branch with v =
v′ = 2) in spectroscopic diagnostics of hydrogen containing
HFEDLs. In this paper, the H2 rotational temperature was
obtained from the intensity measurements of Fulcher-α
(2-2) Q-branch, and the results were compared with the
temperature derived from the measurements of Doppler
broadening of Ar and He atomic lines.

2. Experiment

The plasma sources under study was helium HFEDLs
with hydrogen (pHe ≈ 0.9 Torr, pH2 ≈ 0.1 Torr) and
argon HFEDLs with hydrogen (pAr ≈ 0.9 Torr, pH2 ≈
0.1 Torr) manufactured at the Institute of Atomic Physics and
Spectroscopy, University of Latvia. The cylindrical lamps with
diameter of 2 cm and the length of 4 cm were placed into an
induction coil and an inductive coupled discharge was exited
by means of a high-frequency field of about 100 MHz fre-
quency. The power of the discharge was changed, changing

the applied current i into the coil in the region 80–200 mA.
The gas temperature dependence from the current i in the
induction coil was investigated.

The gas temperature of hydrogen and helium or argon
containing HFEDL has been measured by two methods:
using the relative intensities of the hydrogen (2-2)Q branch
of Fulcher-α band and using the temperature derivation from
Doppler profile of He 667.8 nm (He I 21P–31D) and Ar
772.4 nm (Ar I 1s5–2p7) lines.

2.1. Experimental Setup for the Rotational Temperature
Determination. The light from the lamp was imaged on the
entrance slit of the spectrometer (JobinYvon SPEX 1000 M,
grating 1200 l · mm−1, focal length 1 m) and detected by
means of a charge-coupled device matrix detector (2048 ×
512 Thermoelectric Front Illuminated UV Sensitive CCD
Detector, Simphony). With this detector a spectral range of
about 15 nm can be recorded at one time. The resolving
power of the system spectrometer-CCD camera was ∼136
pixels · nm−1. The entrance slit was set at 30 μm. In Figure 1
the experimental setup for the temperature measurements is
shown.

The emission spectra of the discharge under study have
been recorded in the wavelength range λ = 620–630 nm,
containing first five lines of the (2-2)Q branch of the Fulcher-
α band system of the hydrogen molecule. Figure 2 shows
an example of the recorded emission spectra of hydrogen
containing HFEDL.

2.2. Experimental Setup for the Gas Temperature Determi-
nation from the Line Profile. The experimental setup for
the spectral line shape registration by means of the Fabry-
Perot interferometer is shown in Figure 3. The light, collected
from the lamp, is transmitted through the pressure-scanned
interferometer, focused on a monochromator, amplified and
registered by means of a photomultiplier. Line profiles of He
667.8 nm (or Ar 772.4 nm) line were recorded using mirrors
with a dielectric coating and a 1.4 cm spacer (free spectral
range of 0.36 cm−1).

The experimental work was organised in the following
way. First, the measurement session was performed to obtain
the gas temperature from the Fulcher-α band system of
hydrogen (the first session). The first five lines Q1–Q5

could be distinguished and their intensity measured. The
second session of measurements was performed to derive the
temperature from the Doppler profile of helium or argon
lines. After the second measurement session the control
measurements of the lamp spectra was made (the control
session).

3. Theoretical

3.1. Rotational Temperature Determination. The determina-
tion of the rotational temperature is based on the measure-
ments of relative intensity distributions in the vibronic bands
of Fulcher-α system; in this case, rovibronic line (Q1–Q5)
intensities of Q-branch of the hydrogen Fulcher-α diagonal
band (d3Π−u (v = 2) → a3Σ+

g (v′ = 2)electronic transition)
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Figure 1: The experimental setup for the measurements of gas temperature using H2 Fulcher-α (2-2)Q band.
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Figure 2: Example of a typical emission spectra of the hydrogen
containing plasma of HFEDL recorded at applied current i =
80 mA, in the wavelength region containing five lines of the (2-2)Q
branch of the Fulcher-α band system of the H2 molecule.

have been used. The transition diagram for these lines is
shown in Figure 4.

The method of the determination of the gas temperature
is described in detail in [8–10, 16, 19–21].

According to this model, the translational gas temper-
ature may be in equilibrium with rotational temperature
determined from either upper or lower energy level depend-
ing on processes in plasma under study [8, 12, 14, 16].

(i) The rotational temperature determined from the
excited upper level can be equal to the translational
temperature if the rotational relaxation time from
the upper to the lower level is much smaller than
the radiative lifetime (the destruction frequency of
the d3Πu state v∗ is lower than the neutral species
rotational mixing collision frequency vcoll, v∗ < vcoll),
and equilibrium between the rotational distribution
and the neutral velocity distribution is achieved.

(ii) If the upper level is only populated by direct electron
impact from the ground state, then the upper level
rotational distribution is the image of the lower level
rotational distribution. In this case the rotational
temperature obtained from the lower level can be
considered as a valid estimation of translational
temperature. This condition is satisfied for low-
pressure plasmas [14, 17].

It is necessary to mention that for the precise temperature
derivation from the Fulcher-α bands it is necessary to take

12 11 9 7 6 3

2
1

4

10
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5

Figure 3: Experimental setup for spectral line profile measurements
based on a pressure scanned Fabry-Perot interferometer. 1: Lamp
inside the generator; 2: lens; 3: Fabry-Perot interferometer; 4,
5: capillary; 6: vacuum chamber; 7: lens; 8: monochromator; 9:
photomultiplier; 10: power supply; 11: amplifier; 12: PC.

into account the excitation rate and vibrational distribution,
for example, as it was done in [19–21]. Kado et al. in their
work [19] show that there is a small discrepancy between
values of rotational temperature derived with and without
taking into account the vibrational excitation. However
within the framework of this study we will use simple model
with the following assumptions [8–10, 16]:

(1) the population distribution in the ground X1Σ+
g

(v′′ = 0) vibronic state obeys Boltzmann’s law (with
the rotational temperature equal to gas temperature
Tg);

(2) the excited states are populated mainly via electron
collisions from the ground X1Σ+

g (v′′ = 0) vibronic
state;

(3) the transitions with a change in angular momentum
|ΔN| ≥ 2 may be neglected, and the rate coefficients
are assumed to be independent of the rotational
quantum number;

(4) the effective lifetime of the excited state does not
depend on the rotational quantum number and is
much shorter than the relaxation time of rotational
levels.

In addition to the previous assumptions, if we assume
that the rovibronic transition probability of the Q lines of
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Figure 4: The transition diagram of the first five lines of hydrogen Fulcher-α (2-2)Q band.

Table 1: Transition parameters for the first five lines of (2-2)Q
branch of Fulcher-α band of hydrogen molecule [22–24].

Line EX0N , K N ga,s λ, nm

Q1 170,50 1 3 622.4815

Q2 509,80 2 1 623.0258

Q3 1015,10 3 3 623.8391

Q4 1681,60 4 1 624.9150

Q5 2503,80 5 3 626.2495

Fulcher-α (2-2) band does not depend on the rotational
quantum number, the population of the level d3Π−u (v = 2,
N) is related to the rotational temperature in the following
way:

NnvN

ga,s · (2N + 1)
∝ InvNn′v′N ′(

νnvNn′v′N ′
)3 · ga,s · (2N + 1)

∝ exp
(
−EX0N

Trot

)
,

(1)

where NnvN is the population of the level d3Π−u (v = 2,
N), InvNn′v′N ′ is measured intensity of a spectral line, νnvNn′v′N ′

is wavenumber of the radiative transition (in cm−1), ga,s is
statistical weight of the d3Π−u (v = 2, N) level, N is rotational
quantum number, EX0N is rotational energy of the ground
state (in K), and Trot is the temperature (in K). From (1) one
may conclude that it is possible to determine the rotational
temperature (equal to the gas temperature) by measuring
the line intensities and knowing the transition parameters.
The transition parameters for the lines of (2-2)Q branch of
Fulcher-α band can be seen in Table 1 [22–24].

To determine the plasma temperature the formula (1)
can be expressed through the logarithm in the following way:

ln

⎛
⎜⎝ InvNn′v′N ′(

νnvNn′v′N ′
)3 · ga,s · (2N + 1)

⎞
⎟⎠ = −EX0N

Trot
+ const, (2)

where in const all factors, which do not depend on the
rotational quantum number, are combined. For the deter-
mination of the gas temperature it is necessary to plot the
dependence of the logarithm of the reduced line intensity
(left side of (2)) on the molecular rotational energy in
the ground state EX0N . A typical semilogarithmic plot of
the Fulcher-α (2-2)Q branch lines is shown in Figures
5(a) and 5(b) for hydrogen-helium and hydrogen-argon
HFEDLs, respectively. The temperature then can be obtained
by applying the linear fit.

The linearity of these plots (Figure 5) indicates the
Boltzmann distribution over the rotational levels. It can
be seen that the point corresponding to the line Q5 is
higher (especially for the Ar + H2 HFEDL, see Figure 5(b)),
indicating the deviation from the Boltzmann distribution for
this rotational level. The difference is only about 5%; yet it
was excluded from the plots of Ar + H2 HFEDL.

3.2. Gas Temperature Determination from the Line Profile.
The gas temperature of the plasma under study has been
obtained from the Doppler widths of the shapes of spectral
lines (He 667.8 nm or Ar 772.4 nm), measured using Fabry-
Perot interferometer.

The problem is that spectral line profile, registered by
means of the interferometer, differs significantly from the
real one. The observed distribution f (x) is given by a
convolution:

f (x) =
∫ +∞

−∞
f ′′
(
x − y

) · f ′(y)dy + ξ(x), (3)

where f ′′(x) is the real profile of a spectral line, f ′(x) is the
instrument function, and ξ(x) is the function characterizing
random errors. To determine the real spectral line profile
f ′′(x) (in our case—the real Doppler profile), it is necessary
to solve the inverse task (see (3)). We used another method—
the line fitting by means of a nonlinear multiparameter chi-
square fit. It was assumed that the form of the experimental
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Figure 5: The semilogarithmic plot of scaled intensity of Fulcher-a (2-2)Q lines versus rotational energy of the molecular hydrogen ground
state: (a) He + H2 HFEDL and (b) Ar + H2 HFEDL, at i = 80 mA and i = 200 mA.

profile can be approximated by the Voigt function, which is a
convolution of the Gaussian and Lorentz functions:

V(a,ω) = a

π

∫ +∞

−∞
exp

(−z2
)
dz

a2 +
(
ω − y

)2 ,

a = ΔνL
ΔνG

√
ln 2, ω = 2(ν− ν0)

ΔνG

√
ln 2

z = (ν− ν′)
ΔνG

√
ln 2,

, (4)

where V(a,ω) is Voigt function describing the real line
profile, ΔνL is the Lorentzian width, ΔνG is the Gaussian
full-width at half-maximum (FWHM), ν0 is line-center
frequency, and ν is frequency. The profiles were fitted and
deconvoluted from the Lorentz function, mainly composed
of the instrumental function in our case, to obtain the real
Doppler profile. In the case of helium and argon discharges
we can neglect the effect of self-absorption which often has
to be taken into account [5]. An example of experimental
profile of He 667.8 nm line is shown in Figure 6.

The gas temperature has been calculated by well-known
formula:

T = μ ·
(
ΔλD
λ0

· 1
7, 16 · 10−7

)2

, (5)

where T is gas temperature (K), ΔλD is Doppler width
(FWHM), λ0 is wavelength at the centre of the line, and μ
is atomic mass of the species (in this case—atomic mass of
helium or argon).

4. Results and Discussion

4.1. He and H2 HFEDLs. In Figure 7 one may see the
comparison of the temperature for the He and H2 HFEDL,
obtained by means of the two methods: using the intensities
of the H2 rotational lines of the (2-2)Q branch of the Fulcher-
α band system and using the Doppler broadening of He
667.8 nm line.

The gas temperature ranging from 630 K to 740 K was
obtained, depending on the applied current (80–200 mA).
Relative uncertainty of the obtained temperature values
using both methods is less than 10% (the uncertainties were
obtained averaging results from the repeated measurements,
the dispersion is due to the variances in the line intensities
from measurement to measurement), and the difference
between the results of both methods does not exceed 10%,
too.

These results show that in the case of hydrogen con-
taining helium-HFEDL the rotational distribution of the
excited state can be considered as the image of the rotational
distribution of the ground state.

The results of both methods coincide within experimen-
tal error, showing that the method of the gas temperature
determination using molecular Fulcher-α (2-2)Q band of
the hydrogen can be successfully used for the spectroscopic
diagnostics of hydrogen containing HFEDLs. It is necessary
to point out that there is a slight discrepancy between the
rotational temperature and gas temperature at the applied
current of 100 mA; however this difference is just about
75 K.
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4.2. Ar and H2 HFEDLs. Concerning Ar and H2 HFEDL, we
used this lamp to estimate the gas temperature difference of
argon HFEDL in the presence of hydrogen admixture and
without it. As mentioned before, initially the HFELD was
filled with 0.9 Torr Ar and 0.1 Torr H2. In Figure 8(a) one
may see the emission spectra of the Ar + H2 HFEDL recorded
during the first measurement session, which consisted from
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Figure 8: The emission spectra of the Ar HFEDL recorded at
applied current i = 100 mA, in the wavelength region 622–
627 nm: (a) argon disharge with admixture of hydrogen (9 : 1)
with hydrogen Fulcher-α (2-2)Q first five lines (first measurement
session); (b) pure argon discharge without hydrogen (the control
session).

several repeated measurements to assess experimental uncer-
tainties. From this session we estimated the gas temperature
using the rotational line spectrum of hydrogen. Later we
operated the HFEDL so long until the hydrogen was diffused
out from the lamp through the walls. The diffusion of the
hydrogen was indicated registering the spectra in the same
spectral region as before. The lamp spectra showed at the
end that the Fulcher-α (2-2)Q band could not be detected
anymore (Figure 8(b)). Due to the fact that hydrogen was
lost from the lamp during measurements, also visually
one could observe the changing color of the discharge.
The gas temperature using the Doppler broadening of
argon lines was estimated during the second measurement
session.

In the Figure 9 the dependence of the estimated gas
temperature in dependence of the applied current is shown
for two cases described before. The Line 1 indicates the
temperature dependence for argon and hydrogen discharge
plasma, estimated from the H2 rotational lines of the (2-
2)Q branch of the Fulcher-α band system during the first
measurement session. Line 2 indicates the temperature for
argon plasma after degassing of hydrogen, estimated from
the Doppler broadening of Ar spectral line of 772.4 nm
wavelength during the second measurement session.

The temperature of argon discharge with admixture
of hydrogen was estimated about 620 K and changes not
significantly by varying the applied current. Temperature
estimated during second measurement session from Doppler
broadening was changed from 620 K up to 1050 K (at applied
current 180 mA) because of the hydrogen loses, namely,
the plasma temperature was increased. During the second
session the plasma content was changed and at the end only
argon plasma was present.
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the Ar and H2 containing HFEDL. Temperature values obtained
using Fulcher-α (2-2)Q band are compared with ones obtained
from Doppler profile of argon emission line with wavelength
772.4 nm. Line 1 is temperature of Ar + H2 (9 : 1) plasma obtained
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The difference between the temperatures of plasma with
10% admixture of hydrogen and pure argon plasma increases
with increasing applied current.

So the results, shown in Figure 9, allow concluding
that the addition of about 10% hydrogen in argon plasma
causes the significant decrease of the gas temperature. The
observation of argon emission quenching by the addition
of hydrogen has been reported elsewhere [11, 25–28]. For
instance, in [25, Page 349] it was mentioned that the addition
of hydrogen quenches the argon’s excited states, and in one
of our previous articles [11] we reported the observation of
the similar phenomenon in the microwave Ar + H2 plasma,
where the increase of the hydrogen percentage in the Ar
plasma decreased the population of resonant and metastable
states of Ar.

In addition, authors of [26] report the temperature
decrease with increasing the percentage of hydrogen in the
argon plasma (DC plasma).

One of the possible mechanisms involved in the cooling
of the plasma is quenching of excited argon atoms by
hydrogen molecules in the ground state, leading to excitation
with subsequent dissociation of H2 [27, 28]. Nevertheless it
needs to be verified by detailed analysis of excitation and
deexcitation processes in this kind of plasma.

5. Conclusion

From the results of our measurements we can conclude
that it is possible to use relative intensities of the (2-2)Q
branch of hydrogen Fulcher-α band for the gas temperature
determination also in hydrogen containing high-frequency

electrodeless lamps. The gas temperatures, obtained from
Fulcher-α (2-2)Q band, are in good agreement with the ones
obtained from the Doppler broadening of emission lines,
but it is necessary to investigate further the applicability
of this method for HFEDLs in the variety of experimental
conditions.

Our experiments show that adding 10% of hydrogen
in the argon high-frequency electrodeless discharge lamps
significantly reduces the plasma temperature comparing to
temperature of the plasma without hydrogen.
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from the lifetime of O(5So2) in the afterglow of pulsed discharges.
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1. Introduction

Low-pressure plasmas with electron densities below 1013

cm−3 are widely used for various material processing such
as dry etching and plasma-enhanced chemical vapor depo-
sition. The spectral line profiles of atoms and molecules in
low-pressure, low-density plasmas are governed by Doppler
broadening, which represents the velocity distribution func-
tion of atoms and molecules in plasmas. Since collisions
among neutral species in plasmas used for material process-
ing are frequent, it is expected that the velocity distribution
functions of atoms and molecules are approximated by
Maxwellian functions with widths corresponding to the
species temperatures. However, there are several processes
which deviate the velocity distribution functions of neutral
species from Maxwellian functions.

Spectral profiles of hydrogen Balmer lines have been
investigated intensively by optical emission spectroscopy,
and many authors have reported the existence of large
Doppler broadening in their spectral line profiles [1–
10]. The existence of large Doppler broadening means
that the velocity distribution function of emitting species
contains a high-energy component. A possible mechanism
for the production of the high-energy component is collision

between molecular hydrogen and ions. Another process
for explaining the existence of the high-energy component
is dissociative excitation of molecular hydrogen. This is
because electron impact dissociation of a diatomic molecule
is divided into two steps. The first step is electron impact
excitation to an electronic state having a repulsive potential
curve without changing the distance between nuclei. The
second step is automatic separation of nuclei along the
repulsive potential curve. Since the energy of the dissociated
state is lower than that of the repulsive potential curve imme-
diately after electron impact excitation, atoms produced after
dissociation have kinetic energies corresponding the energy
difference.

A reason why the investigations of the spectral line
profiles are concentrated in atomic hydrogen may be the
smallest mass number. Since the spectral resolution of optical
emission spectroscopy is not high, atomic hydrogen, which
has the widest Doppler broadening width (the smallest mass
number), is suitable for investigating the spectral line profile
by optical emission spectroscopy. In this work, we examined
the spectral line profile of the 5So2−5P1 transition of atomic
oxygen by diode laser absorption spectroscopy. Since diode
laser absorption spectroscopy has a much finer resolution
than optical emission spectroscopy, we can examine the
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detailed structure of the spectral line profile. In addition,
we propose a method for monitoring the relative degree
of dissociation of molecular oxygen in oxygen-containing
discharges from the spectral line profile of the 5So2−5P1

transition. The plasma processing industry requires a simple,
economical technique which is applicable to the monitoring
of plasma processing tools. The proposed method has
a potential as a plasma monitoring tool because of the
compactness, simplicity, and the economical price of a diode
laser.

2. Experiment

The plasma source and the system for diode laser absorption
spectroscopy are the same as those used in a previous work
[11], where we evaluated the gas temperatures in hydrogen
plasmas from the absorption line profile of the Balmer-α
line. We used pure oxygen at pressures from 30 to 100 mTorr
for discharge in this experiment. Helicon-wave plasmas were
produced by applying rf power at 13.56 MHz to a helical
antenna wound around a glass discharge tube of 1.6 cm inner
diameter. The plasma column with the same diameter as the
glass tube was confined radially by the uniform magnetic
field along the cylindrical axis of a vacuum chamber. The
strength of the magnetic field was adjusted to be 70 G to
avoid the distortion of the spectral line profile due to the
Zeeman effect. The plasmas were produced in a pulsed mode
with a discharge duration of 40 milliseconds and a repetition
frequency of 2 Hz to avoid the overheating of the plasma
source.

A commercial diode laser (TOPTICA, DL100) beam was
injected into the plasma from the radial direction of the
cylindrical vacuum chamber. The wavelength of the diode
laser beam was tuned around the line center of the 5So2−5P1

transition (777.539 nm). The tuning of the laser wavelength
was triggered at 15 milliseconds after the initiation of the
pulsed discharge, when the plasma reached the steady-state
condition. Sweeping the laser wavelength for±20 pm needed
20 milliseconds. The wavelength tuning of the diode laser
beam was monitored using a spectrum analyzer. The power
of the diode laser beam was attenuated below 10 μW to
avoid saturation. The laser beam transmitted through the
plasma was detected using a photomultiplier tube via a
monochromator.

3. Absorption Line Profile and
the Interpretation

For the sake of comparison, we produced an argon
plasma and measured the absorption line profile of
the 4s[3/2]o2–4p[3/2]2 transition at a wavelength of
763.510 nm. Figure 1 shows the absorption line profile
of the 4s[3/2]o2–4p[3/2]2 transition observed at an argon
pressure of 30 mTorr and an rf power of 1.5 kW. The open
circles illustrated in Figure 1(a) represent the experimental
result, and the solid curve shows the data fitting using
a Gaussian function corresponding to a temperature of
0.066 eV. Figure 1(b) shows the difference between the
experimental result and the data fitting. The difference
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Figure 1: Absorption line profile of the 4s[3/2]o2–4p[3/2]2 transi-
tion of argon observed at an rf power of 1.5 kW and a pressure of
30 mTorr. The open circles illustrated in (a) show the experimental
result, and the solid curve is the data fitting using a Gaussian
function with a temperature of 0.066 eV. The difference between the
experimental result and the data fitting is shown in (b).

shown in Figure 1(b) is fairly small, and the absorption line
profile of the 4s[3/2]o2–4p[3/2]2 transition was approximated
well by a Gaussian function.

Figure 2 shows the absorption line profile of the 5So2−5P1

transition of atomic oxygen observed in an oxygen plasma
produced at an oxygen pressure of 30 mTorr and an rf power
of 1.5 kW. The solid curve shown in Figure 2(a) represents a
Gaussian profile corresponding to a temperature of 0.12 eV.
It is clearly understood from Figure 2 that the absorption
line profile of the 5So2−5P1 transition was not approximated
by a Gaussian function. The comparison between the
experimental result and the data fitting indicates that the
velocity distribution function of the metastable 5So2 state of
atomic oxygen had a high-energy component. Figure 3 shows
the data fitting of the same experimental absorption line
profile with the superposition of two Gaussian functions
corresponding to temperatures of 0.072 and 0.37 eV. The
absorption line profile of the 5So2−5P1 transition observed
experimentally was approximated well by the superposition
of two Gaussian functions.
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Figure 2: Absorption line profile of the 5So2−5P1 transition of
atomic oxygen observed at an rf power of 1.5 kW and a pressure of
30 mTorr. The open circles illustrated in (a) show the experimental
result, and the solid curve is the data fitting using a Gaussian
function with a temperature of 0.12 eV. The difference between the
experimental result and the data fitting is shown in (b).

There is a possibility that the temperatures of positive
ions are higher than those of neutral species. In addi-
tion, there is a possibility that the velocity distribution
function of positive ions has a high-energy component
which is originated from the reflection of positive ions in
the sheath. Therefore, charge exchange collision between
positive ions and neutral species is a possible mechanism
for the generation of the high-energy component in the
velocity distribution function of neutral species. However,
the experimental result that the absorption line profile of
the 4s[3/2]o2–4p[3/2]2 transition of argon was approximated
well by a Gaussian function indicates that the velocity dis-
tribution function of the metastable 4s[3/2]o2 state of argon
is thermalized completely, and the high-energy component
originated from charge exchange collision is negligible in this
plasma source.

A reasonable mechanism for explaining the high-energy
component observed in the absorption line profile of the
5So2−5P1 transition of atomic oxygen is dissociative excita-
tion. In this interpretation of the spectral line profile, the

O2 plasma
5S◦2−5P1

1050−5−10

Wavelength detuning (pm)

Experiment
Fitting

High-T
Low-T

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

ab
so

rb
an

ce

(a)

1050−5−10

Wavelength detuning (pm)

−0.1

−0.05

0

0.05

0.1

D
ev

ia
ti

on

(b)

Figure 3: The same experimental absorption line profile as that
shown in Figure 2 and the data fitting using the superposition of
two Gaussian functions with temperatures of 0.072 and 0.37 eV. The
difference between the experimental result and the data fitting is
shown in (b).

low-energy component in the velocity distribution function
of O(5So2) is produced by the three-step process represented
by

O2 + e −→ O
(3Po, fast

)
+ O

(3Po, fast
)

+ e, (1)

O
(3Po, fast

)
+ M −→ O

(3Po, slow
)

+ M, (2)

O
(3Po, slow

)
+ e −→ O

(5So2, slow
)

+ e. (3)

Since the lifetime of O(3Po) is much longer than the
reciprocal of the collision frequency, the velocity distribution
function of O(3Po) is thermalized, and the high-energy com-
ponent (O(3Po, fast) in (1)) becomes negligible via elastic
collision processes (2). On the other hand, the high-energy
component in the velocity distribution function of O(5So2) is
considered to be produced by dissociative excitation:

O2 + e −→ O
(5So2, fast

)
+ O

(3Po, fast
)

+ e. (4)
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Figure 4: The density ratio of the high-temperature to low-temperature components as functions of (a) the rf power and (b) the oxygen
pressure.

Since the lifetime of O(5So2) is determined by the loss
processes described below and is much shorter than the
lifetime of O(3Po), the high-energy component (O(5So2, fast)
in (4)) is expected to survive in the velocity distribution
function.

4. Application to the Monitoring of
Degree of Dissociation

According to the aforementioned production processes, the
densities of the slow (low-energy) and fast (high-energy)
components in the velocity distribution function are given
by

[
O
(5So2, slow

)] = τkex[O]ne, (5)

[
O
(5So2, fast

)] = τkdiss[O2]ne, (6)

respectively, where τ is the lifetime of O(5So2), ne is the
electron density, and [X] stands for the density of species X.
The rate coefficients for (3) and (4) are represented by kex and
kdiss, respectively. Therefore, the density ratio of molecular
oxygen to atomic oxygen is evaluated by

[O2]
[O]

= kex

kdiss

[
O
(

5So2, fast
)]

[
O(5So2, slow)

] . (7)

The relative values of [O(5So2, slow)] and [O(5So2, fast)]
are estimated by integrating the two Gaussian functions
with low and high temperatures in the absorption line
profile of the 5So2−5P1 transition, respectively. Hence, if
we ignore the variation of kex/kdiss with respect to the
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Figure 5: Temporal variation of the absorbance at the line center of
the 5So2−5P1 transition in the afterglow phase of a pulsed discharge
at an rf power of 1.5 kW and a pressure of 50 mTorr.

discharge conditions, the relative variation of [O2]/[O]
is roughly evaluated by [O(5So2, fast)]/[O(5So2, slow)]. We
evaluated [O(5So2, fast)] and [O(5So2, slow)] at various dis-
charge conditions from the absorption line profiles. The
ratio [O(5So2, fast)]/[O(5So2, slow)] is plotted in Figure 4 as
functions of the rf power and the discharge pressure.
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Figure 6: Survival ratio of O2 as functions of (a) the rf power and (b) the oxygen pressure. The O2 density before discharge ([O2]0) was
evaluated from the gas pressure, and the survived O2 density ([O2]) was evaluated from the lifetime of O(5So2) in the afterglow phase.

5. Comparison with Degree of Dissociation
Evaluated from Lifetime of O(5So

2)

The major loss processes of O(5So2) are diffusion, sponta-
neous emission, and collisional quenching with O2, and the
lifetime τ in (5) and (6) are given by

1
τ
= kq[O2] +

1
τd

+
1
τr

, (8)

where kq is the rate coefficient for collisional quenching, τd
is the diffusion time constant, and τr is the radiative lifetime.
The values of kq and 1/τr are given in literature [12, 13] as
kq = 2.2×10−10 cm3/s and 1/τr = 5.6×103 s−1. The diffusion
time constant of O atoms in O2 plasmas produced in the
plasma source used in this experiment has been examined
in a previous work and was estimated as 1/τD < 2 × 103 s−1

at pressures higher than 30 mTorr [14, 15]. Therefore, the
dominant term in the right-hand side of (8) is kq[O2], and
the O2 density can be estimated by measuring the lifetime of
O(5So2).

Figure 5 shows the temporal variation of the absorbance
at the line center (− ln(It/I0) with I0 and It being the incident
and transmitted laser intensities, resp.) in the afterglow
phase of a pulsed discharge at an rf power of 1.5 kW and a
pressure of 50 mTorr. The slight increase in the absorbance
immediately after the termination of the rf power may be
due to the production of O(5So2) by recombination reactions.
After that, the absorbance decreased exponentially as shown
in Figure 5, and the decay time constant was evaluated to
be τ = 39 microseconds, corresponding to [O2] � 1.2 ×
1014 cm−3. Since the O2 density before the discharge was
[O2]0 = 1.6 × 1015 cm−3, the survival ratio of O2 in the
discharge was evaluated to be [O2]/[O2]0 � 0.07.

The survival ratio of O2 thus evaluated is plotted
in Figure 6 as functions of the rf power and the pres-
sure. It is reasonable that the survival ratio decreases
with the rf power as shown in Figure 6(a). The ratio
of [O(5So2, fast)]/[O(5So2, slow)] shown in Figure 4(a) also
decreases with the rf power. Hence, the monitoring of the
relative degree of dissociation from the absorption line
profile of the 5So2−5P1 transition is expected to work rather
nicely, provided that a smaller survival ratio of O2 directly
means a higher O atom density. On the other hand, accord-
ing to Figure 6(b), the survival ratio of O2 decreases with
the pressure, while the ratio of [O(5So2, fast)]/[O(5So2, slow)]
shown in Figure 4(b) is roughly constant. A possible expla-
nation for this discrepancy is the increase in kex/kdiss in
(7) with the pressure. This is because kex/kdiss decreases
with the electron temperature since the threshold electron
energy for (4) is higher than that for (3). Since the electron
temperature is usually a decreasing function of the pressure,
it is expected that the decrease in the survival ratio of
O2 is compensated by the increase in kex/kdiss, result-
ing in the roughly constant [O(5So2, fast)]/[O(5So2, slow)]
with the pressure. Further investigation is necessary to
evaluate the discharge conditions where this method is
applicable.

6. Conclusions

In this work, we investigated the absorption line profile
of the 5So2−5P1 transition of atomic oxygen by diode laser
absorption spectroscopy. The Doppler broadened absorption
line profile had a wing component corresponding to a
high-energy tail in the velocity distribution function of the
metastable 5So2 state and was fitted by the superposition of
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two Gaussian functions with high and low temperatures.
The comparison with the absorption line profile of the
4s[3/2]o2–4p[3/2]2 transition of argon suggests that the origin
of the high-energy component in the absorption line profile
of the 5So2−5P1 transition is electron impact dissociative
excitation of O2. We propose a method for monitoring the
relative degree of dissociation of O2 by the ratio of the
high-temperature to low-temperature components in the
absorption line profile. The relative degree of dissociation
estimated by the proposed method was compared with
the survival ratio of O2 evaluated from the lifetime of
the 5So2 state. As a result, a reasonable agreement was
obtained in the rf power dependence of the relative degree
of dissociation, but the agreement was insufficient in the
pressure dependence.

References

[1] K. Ito, N. Oda, Y. Hatano, and T. Tsuboi, “Doppler profile
measurements of balmer-α radiation by electron impact on
H2,” Chemical Physics, vol. 17, no. 1, pp. 35–43, 1976.

[2] R. S. Freund, J. A. Schiavone, and D. F. Brader, “Dissociative
excitation of H2: spectral line shapes and electron impact cross
sections of the Balmer lines,” The Journal of Chemical Physics,
vol. 64, no. 3, pp. 1122–1127, 1976.

[3] G. Baravian, Y. Chouan, A. Ricard, and G. Sultan, “Doppler-
broadened Hα line shapes in a rf low-pressure H2 discharge,”
Journal of Applied Physics, vol. 61, no. 12, pp. 5249–5253, 1987.

[4] T. Ogawa, N. Yonekura, M. Tsukada, et al., “Electron-impact
dissociation of water as studied by the angular difference
doppler profiles of the excited hydrogen atom,” Journal of
Physical Chemistry, vol. 95, no. 7, pp. 2788–2792, 1991.

[5] S. A. Bzenic, S. B. Radovanov, S. B. Vrhovac, Z. B. Velikic,
and B. M. Jelenkovic, “On the mechanism of Doppler
broadening of Hβ after dissociative excitation in hydrogne
glow discharges,” Chemical Physics Letters, vol. 184, no. 1–3,
pp. 108–112, 1991.

[6] J. M. Ajello, S. M. Ahmed, and X. Liu, “Line profile of H
Lyman-β emission from dissociative excitation of H2,” Physical
Review A, vol. 53, no. 4, pp. 2303–2308, 1996.

[7] M. Andrieux, J. M. Badie, M. Ducarroir, and C. Bisch, “The
evolution of the translational energy of hydrogen atoms in
a 2 MHz inductively coupled plasma deposition reactor,”
Journal of Physics D, vol. 31, no. 12, pp. 1457–1464, 1998.

[8] O. P. Makarov, J. M. Ajello, P. Vattipalle, I. Kanik, M. C. Festou,
and A. Bhardwaj, “Kinetic energy distributions and line profile
measurements of dissociation products of water upon electron
impact,” Journal of Geophysical Research A, vol. 109, no. A9,
article A09303, 2004.

[9] J. Jovović, N. M. Šišović, and N. Konjević, “Doppler spec-
troscopy of hydrogen Balmer lines in a hollow cathode water
vapour and argon-water vapour glow discharge,” Journal of
Physics D, vol. 41, Article ID 235202, 2008.

[10] J. Kipritidis, J. Khachan, M. Fitzgerald, and O. Shrier, “Abso-
lute densities of energetic hydrogen ion species in an abnormal
hollow cathode discharge,” Physical Review E, vol. 77, no. 6,
Article ID 066405, 9 pages, 2008.

[11] M. Aramaki, Y. Okumura, M. Goto, S. Muto, S. Morita,
and K. Sasaki, “Measurements of gas temperature in high-
density helicon-wave H2 plasmas by diode laser absorption
spectroscopy,” Japanese Journal of Applied Physics, vol. 44, no.
9A, pp. 6759–6763, 2005.

[12] T. Mori, K. Kanou, K. Mizuta, T. Kuramasu, Y. Ishikawa, and
S. Arai, “Reactions of highly excited oxygen atoms (2p33s,5 S)
with simple gas molecules,” The Journal of Chemical Physics,
vol. 97, no. 12, pp. 9094–9098, 1992.

[13] NIST Atomic Spectra Database,
http://physics.nist.gov/PhysRefData/ASD/index.html.

[14] J. Matsushita, K. Sasaki, and K. Kadota, “Dynamic variation
of the sticking coefficient of oxygen atoms in helicon-wave
excited high-density oxygen plasmas,” Japanese Journal of
Applied Physics, vol. 36, no. 7, pp. 4747–4751, 1997.

[15] R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties
of Gases and Liquids, McGraw-Hill, New York, NY, USA, 1977.


