
Scientific Programming

Software Engineering for CSE

Guest Editors: Jeffrey C. Carver, Neil Chue Hong, and Selim Ciraci

Software Engineering for CSE

Scientific Programming

Software Engineering for CSE

Guest Editors: Jeffrey C. Carver, Neil Chue Hong,
and Selim Ciraci

Copyright © 2015 Hindawi Publishing Corporation. All rights reserved.

This is a special issue published in “Scientific Programming.” All articles are open access articles distributed under the Creative Com-
mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Editorial Board

Siegfried Benkner, Austria
Barbara Chapman, USA
Alejandro J. C. Crespo, Spain
Frank De Boer, The Netherlands
Bronis R. de Supinski, USA
Dino Distefano, UK
Jack J. Dongarra, USA
Erik Elmroth, Sweden

Wan Fokkink, The Netherlands
Gianluigi Greco, Italy
Rajiv M. Gupta, USA
Bormin Huang, USA
Ananth Kalyanaraman, USA
Rafael Mayo, Spain
Irem Ozkarahan, USA
Can Özturan, Turkey

Jan F. Prins, USA
Thomas Rauber, Germany
Damian Rouson, USA
Walid Taha, USA
Giorgio Terracina, Italy
Jan Weglarz, Poland

Contents

Software Engineering for CSE, Jeffrey C. Carver, Neil Chue Hong, and Selim Ciraci
Volume 2015, Article ID 591562, 2 pages

High-Performance Design Patterns for Modern Fortran, Magne Haveraaen, Karla Morris,
Damian Rouson, Hari Radhakrishnan, and Clayton Carson
Volume 2015, Article ID 942059, 14 pages

Using Coarrays to Parallelize Legacy FortranApplications: Strategy and Case Study,
Hari Radhakrishnan, Damian W. I. Rouson, Karla Morris, Sameer Shende, and Stavros C. Kassinos
Volume 2015, Article ID 904983, 12 pages

Extracting UML Class Diagrams from Object-Oriented Fortran: ForUML, Aziz Nanthaamornphong,
Jeffrey Carver, Karla Morris, and Salvatore Filippone
Volume 2015, Article ID 421816, 15 pages

Editorial
Software Engineering for CSE

Jeffrey C. Carver,1 Neil Chue Hong,2 and Selim Ciraci3

1University of Alabama, Tuscaloosa, AL, USA
2Software Sustainability Institute, University of Edinburgh, Edinburgh, UK
3Microsoft, Redmond, WA, USA

Correspondence should be addressed to Jeffrey C. Carver; carver@cs.ua.edu

Received 11 March 2015; Accepted 11 March 2015

Copyright © 2015 Jeffrey C. Carver et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Workshop Overview

This special issue contains extensions of the best papers from
the First International Workshops on Software Engineering
for High Performance Computing in Computational Science
& Engineering (SE-HPCCSE 2013), which was held during
the SC’13 conference. For full details about the workshop
(and others in this series), please visit the workshop web-
site http://SE4Science.org/workshops, where the interested
reader can find an overview of the workshop, the schedule,
and links to the published proceedings. The goal of the
workshop was to bring together researchers from different
domains (i.e., computational science, software engineering,
and high-performance computing) to present their work and
discuss important issues related to the intersection of these
fields. Because the format of the workshop allows for short
paper presentations along with ample time for small group
discussion, this workshop provides a unique venue where
researchers fromdifferent backgrounds canmeet and interact
in amore informal setting.This editorial first briefly describes
the interesting results of the group discussions. Then, it
provides a brief overview of the three papers included in the
special issue.

2. Summary of Workshop Discussion

During the workshop, the attendees focused their discussion
on a number of topics. Here we summarize the discussion on
two of the most interesting.The first topic is the use of design
patterns in high-performance scientific software. In general,
attendees thought that using appropriate design patterns in

the right situation was beneficial. There was some discussion
about where scientific developers could find a good catalog of
existing patterns and where new patterns could be published.
One concern was whether design patterns are applicable in
situations where there is a large base of existing code. The
belief was that it is not worth the effort to tear down and
rewrite such code, just to take advantage of a design pattern.

The second topic was the use of unit testing. Recent
programming languages and development environments
provide unit testing frameworks, which makes it easier for
developers to adopt this approach.The attendees thought that
unit testing is necessary to ensure the correctness of high-
performance scientific software systems. However, while
support for unit testing is present in many languages, the
attendees agreed that the languages (such as Fortran) and
frameworks typically used for developing high-performance
scientific software do not have adequate support for unit
testing. The general consensus among the attendees was that
developers need to be introduced to widely used software
testing tools, such asmemory leak detectors and stress testing
frameworks.

At the end of the workshop, we conducted a larger group
discussion on the path forward in this field. During this
discussion, the attendees highlighted a number of barriers
that hamper further advancement. Some of these barriers
include the following:

(i) How to deal with reproducibility: is it really necessary
to have bitwise reproducibility?

(ii) Still a lot of tooling that is not available for the
languages commonly in use.

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 591562, 2 pages
http://dx.doi.org/10.1155/2015/591562

http://dx.doi.org/10.1155/2015/591562

2 Scientific Programming

3. Summary of Included Papers

This special issue includes three papers. The paper “Extract-
ing UML Class Diagrams from Object-Oriented Fortran:
ForUML” describes a tool that automatically extracts UML
class diagrams from Fortran source code. The paper “High-
Performance Design Patterns for Modern Fortran” describes
and evaluates a coarray MPI implementation of some pat-
terns that support asynchronous evaluation of expressions
comprised of parallel operations on distributed data. The
paper “Test-driven coarray parallelization of a legacy Fortran
application” describes 17 code modernization steps used
to refactor and parallelize a legacy Fortran program and
evaluates the performance of the resulting code.

Acknowledgments

We would like to thank the authors and the reviewers
for making the workshop and this special issue possible.
Jeffrey C. Carver would like to acknowledge partial support
from NSF-1243887. Neil Chue Hong was supported by the
UK Engineering and Physical Sciences Research Council
(EPSRC) Grant EP/H043160/1 for the UK Software Sustain-
ability Institute.

Jeffrey C. Carver
Neil Chue Hong

Selim Ciraci

Research Article
High-Performance Design Patterns for Modern Fortran

Magne Haveraaen,1 Karla Morris,2 Damian Rouson,3

Hari Radhakrishnan,4 and Clayton Carson3

1Department of Informatics, University of Bergen, 5020 Bergen, Norway
2Sandia National Laboratories, Livermore, CA 94550, USA
3Stanford University, Stanford, CA 94305, USA
4EXA High Performance Computing, 1087 Nicosia, Cyprus

Correspondence should be addressed to Karla Morris; knmorri@sandia.gov

Received 8 April 2014; Accepted 5 August 2014

Academic Editor: Jeffrey C. Carver

Copyright © 2015 Magne Haveraaen et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper presents ideas for using coordinate-free numerics in modern Fortran to achieve code flexibility in the partial differential
equation (PDE) domain. We also show how Fortran, over the last few decades, has changed to become a language well-suited for
state-of-the-art software development. Fortran’s new coarray distributed data structure, the language’s class mechanism, and its
side-effect-free, pure procedure capability provide the scaffolding on which we implement HPC software. These features empower
compilers to organize parallel computations with efficient communication. We present some programming patterns that support
asynchronous evaluation of expressions comprised of parallel operations on distributed data.We implemented these patterns using
coarrays and the message passing interface (MPI). We compared the codes’ complexity and performance. The MPI code is much
more complex and depends on external libraries.TheMPI code on Cray hardware using the Cray compiler is 1.5–2 times faster than
the coarray code on the same hardware. The Intel compiler implements coarrays atop Intel’s MPI library with the result apparently
being 2–2.5 times slower than manually coded MPI despite exhibiting nearly linear scaling efficiency. As compilers mature and
further improvements to coarrays comes in Fortran 2015, we expect this performance gap to narrow.

1. Introduction

1.1. Motivation and Background. The most useful software
evolves over time. One force driving the evolution of high-
performance computing (HPC) software applications derives
from the ever evolving ecosystemofHPChardware. A second
force stems from the need to adapt to new user requirements,
where, for HPC software, the users often are the software
development teams themselves. New requirementsmay come
from a better understanding of the scientific domain, yielding
changes in the mathematical formulation of a problem,
changes in the numerical methods, changes in the problem
to be solved, and so forth.

Oneway to plan for software evolution involves designing
variation points, areas where a program is expected to accom-
modate change. In aHPCdomain like computational physics,
partial differential equation (PDE) solvers are important.

Some likely variation points for PDE solvers include the
formulation of the PDE itself, like different simplifications
depending on what phenomena is studied, the coordinate
system and dimensions, the numerical discretization, and
the hardware parallelism. The approach of coordinate-free
programming (CFP) handles these variation points naturally
through domain-specific abstractions [1]. The explicit use of
such abstractions is not common in HPC software, possibly
due to the historical development of the field.

Fortran has held and still holds a dominant position in
HPC software. Traditionally, the language supported loops
for traversing large data arrays and had few abstractionmech-
anisms beyond the procedure. The focus was on efficiency
and providing a simple data model that the compiler could
map to efficient code. In the past few decades, Fortran has
evolved significantly [2] and now supports class abstraction,
object-oriented programming (OOP), pure functions, and

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 942059, 14 pages
http://dx.doi.org/10.1155/2015/942059

http://dx.doi.org/10.1155/2015/942059

2 Scientific Programming

a coarray model for parallel programming in shared or
distributed memory and running on multicore processors
and some many-core accelerators.

1.2. Related Work. CFP was first implemented in the context
of seismic wave simulation [3] by Haveraaen et al. and Grant
et al. [4] presented CFP for computational fluid dynamics
applications. These abstractions were implemented in C++,
relying on the language’s template mechanism to achieve
multiple levels of reuse. Rouson et al. [5] developed a
“grid-free” representation of fluid dynamics, implementing
continuous but coordinate-specific abstractions in Fortran
95, independently using similar abstractions to Diffpack
[6]. While both C++ and Fortran 95 offered capabilities
for overloading each language’s intrinsic operators, neither
allowed defining new, user-defined operators to represent the
differential calculus operators, for example, those that appear
in coordinate-free PDE representations. Likewise, neither
language provided a scalable, parallel programming model.

Gamma et al. [7] first introduced the concept of patterns
in the context of object-oriented software design. While they
presented general design patterns, they suggested that it
would be useful for subsequent authors to publish domain-
specific patterns. Gardner et al. [8] published the first text
summarizing object-oriented design patterns in the context
of scientific programming. They employed Java to demon-
strate the Gamma et al. general patterns in the context of a
waveform analyzer for fusion energy experiments. Rouson
et al. [9] published the first text on patterns for scientific
programming in Fortran and C++, including several Gamma
et al. patterns along with domain-specific and language-
specific patterns. The Rouson et al. text included an early
version of the PDE solver in the current paper, although no
compilers at the time of their publication offered enough
coverage of the newest Fortran features to compile their
version of the solver.

The work of Cann [10] inspired much of our thinking on
the utility of functional programming in parallelizing scien-
tific applications.The current paper examines the complexity
and performance of PDE solvers that support a functional
programming style with either of two parallel programming
models: coarray Fortran (CAF) and the message passing
interface (MPI). CAF became part of Fortran in its 2008
standard. We refer the reader to the text by Metcalf et al. [2]
for a summary of the CAF features of Fortran 2008 and to
the text by Pacheco [11] for descriptions of the MPI features
employed in the current paper.

1.3. Objectives and Outline. The current paper expands upon
the first four author’s workshop paper [12] on the CAF PDE
solver by including comparisons to an analogous MPI solver
first developed by the fifth author. We show how modern
Fortran supports the CFP domain with the language’s pro-
vision for user-defined operators and its efficient hardware-
independent, parallel programming model. We use the PDE
of Burgers [13] as our running theme.

Section 2 introduces the theme problem and explains
CFP. Section 3 presents the features of modern Fortran
used by the Burgers solver. Section 4 presents programming

patterns useful in this setting, and Section 5 shows excerpts
of code written according to our recommendations. Section 6
presents measurements of the approach’s efficiency. Section 7
summarizes our conclusions.

2. Coordinate-Free Programming

Coordinate-free programming (CFP) is a structural design
pattern for PDEs [3]. It is the result of domain engineering
of the PDE domain. Domain engineering seeks finding the
concepts central to a domain and then presenting these as
reusable software components [14]. CFP defines a layered set
of mathematical abstractions at the ring field level (spatial
discretization), the tensor level (coordinate systems), and the
PDE solver level (time integration and PDE formulation). It
also provides abstractions at the mesh level, encompassing
abstraction over parallel computations. These layers corre-
spond to the variation points of PDE solvers [1], both at the
user level and for the ever changing parallel architecture level.

To see how this works, consider the coordinate-free
generalization of the Burgers equation [13]:

𝜕 ⃗𝑢

𝜕𝑡
=]∇2 ⃗𝑢 − ⃗𝑢 ⋅ ∇ ⃗𝑢. (1)

CFP maps each of the variables and operators in (1) to
software objects and operators. In Fortran syntax, such a
mapping of (1) might result in program lines of the form
shown in Listing 1.

Fortran keywords are depicted in boldface. The first line
declares that u and u t are (distributed) objects in the tensor
class. The second line defines the parameter value corre-
sponding to]. The third line evaluates the right-hand side of
(1) using Fortran’s facility for user-defined operators, inwhich
the language requires to be bracketed by periods: laplacian
(.laplacian.), dot product (.dot.), and gradient (.grad.). The
mathematical formulation and the corresponding program
code both are independent of dimensions, choice of coordi-
nate system, discretisationmethod, and so forth. Yet the steps
are mathematically and computationally precise.

Traditionally, the numerical scientist would expand (1)
into its coordinate form. Deciding that we want to solve the
3D problem, the vector equation resolves into three compo-
nent equations. The first component equation in Cartesian
coordinates, for example, becomes

𝑢
1,𝑡
=] (𝑢

1,𝑥𝑥
+ 𝑢
1,𝑦𝑦
+ 𝑢
1,𝑧𝑧
)

− (𝑢
1
𝑢
1,𝑥
+ 𝑢
2
𝑢
1,𝑥
+ 𝑢
3
𝑢
1,𝑥
) .

(2)

Here, subscripted commas denote partial differentiation with
respect to the subscripted variable preceded by the comma;
for instance, 𝑢

1,𝑡
≡ 𝜕𝑢
1
/𝜕𝑡. Similar equations must be given

for 𝑢
2,𝑡

and 𝑢
3,𝑡
.

For one-dimensional (1D) data, (1) reduces to

𝑢
1,𝑡
=]𝑢
1,𝑥𝑥
− 𝑢
1
𝑢
1,𝑥
. (3)

Burgers originally proposed the 1D form as a simplified
proxy for the Navier-Stokes equations (NSE) in studies of

Scientific Programming 3

class(tensor):: u t, u
real:: nu = 1.0
u t = nu ∗ (.laplacian.u) − (u.dot.(.grad.u))

Listing 1

fluid turbulence. Equation (3) retains the diffusive nature
of the NSE in the first right-hand-side (RHS) term and the
nonlinear character of the NSE in the second RHS term.
This equation has also found useful applications in several
branches of physics. It has the nice property of yielding an
exact solution despite its nonlinearity [15].

Figure 1 shows the solution values (vertical axis) as a
function of space (horizontal axis) and time (oblique axis)
starting from an initial condition of 𝑢(𝑥, 𝑡 = 0) = 10 sin(𝑥)
with periodic boundary conditions on the semiopen domain
[0, 2𝜋). As time progresses, the nonlinear term steepens the
initial wave while the diffusive term dampens it.

3. Modern Fortran

Fortran has always been a language with a focus on high
efficiency for numerical computations on array data sets.
Over the past 10–15 years, it has picked up features from
mainstreamprogramming, such as class abstractions, but also
catered to its prime users by developing a rich set of high-level
array operations. Controlling the flow of information allows
for a purely functional style of expressions; that is, expressions
that rely solely upon functions that have no side effects. Side
effects influence the global state of the computer beyond the
function’s local variables. Examples of side effects include
input/output, modifying arguments, halting execution, mod-
ifying nonlocal data, and synchronizing parallel processes.

There have been longstanding calls for employing func-
tional programming as part of the solution to programming
parallel computers [10]. The Fortran 2008 standard also
includes a parallel programming model based primarily
upon the coarray distributed data structure. The advent of
support for Fortran 2008 coarrays in the Cray and Intel
compilers makes the time ripe to explore synergies between
Fortran’s explicit support for functional expressions and
coarray parallel programming. (Released versions of two
free compilers also provide limited support for coarrays: g95
supports coarrays in what is otherwise essentially Fortran 95
and GNU Fortran (gfortran) supports the coarray syntax but
runs coarray code as sequential code. Additionally, gfortran’s
prerelease development branch supports parallel execution
of coarray code with communication handled by an external
library (OpenCoarrays: http://www.opencoarrays.org) [16].
Ultimately, all compilers must support coarrays to conform
to the Fortran standard.)

3.1. Array Language. Since the Fortran 90 standard, the
language has introduced a rich set of array features. This
set also applies to coarrays in the 2008 standard as we
demonstrate in Section 3.4. Fortran 90 contained operations

u
(s

ol
ut

io
n)

10

5

0

−5

−10

x (space)

0 1 2 3 4 5 6 7

t
(ti

m
e)

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

Figure 1: Unsteady, 1D Burgers equation solution values (vertical
axis) over space (horizontal axis) and time (oblique axis). 1D Burgers
equation solution surface: red (highest) and blue (lowest) relative to
the 𝑢 = 0 plane.

to apply the built-in intrinsic operators, such as + and ∗, to
corresponding elements of similarly shaped arrays, that is,
mapping them on the elements of the array. Modern Fortran
also allows themapping of user-defined procedures on arrays.
Such procedures have to be declared “elemental,” which
ensures that, for every element of the array, the invocations
are independent of each other and therefore can be executed
concurrently. Operations for manipulating arrays also exist,
for example, slicing out a smaller array from a larger one,
requesting upper and lower range of an array, and summing
or multiplying all elements of an array.

This implies that, in many cases, it is no longer necessary
to express an algorithmby explicitly looping over its elements.
Rather a few operations on entire arrays are sufficient to
express a large computation. For instance, the following array
expressions, given an allocatable real array X, will in the first
line take 1-rank arrays A, B, and C, perform the elemental
functions +, sin, and ∗ on the corresponding elements from
each of the arrays, and pad the result with 5 numbers:

X = [sin(A + B) ∗ C, 0., 1., 2., 3., 4., 5.];
X = X(1 : 5).

In the second line, only the 5 first elements are retained.
Thus, for arrays A = [0., 0.5708], B = [0.5235988, 1.], and
C = [3, 5], the result is an array X = [1.5, 5., 0., 1., 2.].

3.2. Class Abstraction. Class abstractions allow us to associate
a set of procedures with a private data structure. This is the
basic abstraction mechanism of a programming language,
allowing users to extend it with libraries for domain-specific
abstractions. The Fortran notation is somewhat verbose
compared to other languages but gives great freedom in
defining operator names for functions, both using standard
symbols and introducing new named operators, for example,
. dot . as used above.

4 Scientific Programming

Pure function
Impure function

A
sy

nc
hr

on
ou

s
ex

ec
ut

io
n

Sy
nc

hr
on

iz
at

io
n

Assignment(=)

u(1)%xx() u(1)%yy() u(1)%zz() u(1) u(2) u(3)u(1)%y() u(1)%y()u(1)%x()

Operator(+)

Operator(+)Operator(+)

Operator(+)

Operator(∗) Operator(∗) Operator(∗)

Operator(∗)

Operator(−)

�

Figure 2: Calling sequence for evaluating the RHS of (2) and assigning the result.

The Fortran class abstractions allow us to implement the
CFP domain abstractions, such as ring and tensor fields.
Note that Fortran has very limited generic facilities. Fortran
variables have three intrinsic properties: type, kind, and
rank. Fortran procedures can be written to be generic in
kind, which allows, for example, one implementation to
work across a range of floating-point precisions. Fortran
procedures can also be written to be generic in rank, which
allows one implementation to work across a range of array
ranks. Fortran procedures cannnot yet be generic in type,
although there is less need for this compared to in languages
where changing precision implies changing type. In Fortran,
changing precision only implies changing kind, not type.

3.3. Functional Programming. A compiler can do better
optimizations if it knows more about the intent of the code.
A core philosophy of Fortran is to enable programmers to
communicate properties of a program to a compiler without
mandating specific compiler optimizations. In Fortran, each
argument to a procedure can be given an attribute, intent,
which describes how the procedure will use the argument
data. The attribute “in” stands for just reading the argument,
whereas “out” stands for just creating data for it, and “inout”
allows both reading and modifying the argument. A stricter
form is to declare a function as “pure,” for example, indicating
that the procedure harbors no side effects.

Purely functional programming composes programs
from side-effect-free procedures and assignments. This facil-
itates numerous optimizations, including guaranteeing that
invocations of such procedures can safely execute asyn-
chronously on separate partitions of the program data.
Figure 2 shows the calling sequence for evaluating the RHS

of (2) and assigning the result. Expressions in independent
subtrees can be executed independently of each other, allow-
ing concurrency.

When developing abstractions like CFP, the procedures
needed can be implemented as subroutines that modify
one or more arguments or as pure functions. Using pure
functions makes the abstractions more mathematical and
eases reasoning about the code.

3.4. Coarrays. Of particular interest in HPC are variation
points at the parallelism level. Portable HPC software must
allow for efficient execution on multicore processors, many-
core accelerators, and heterogeneous combinations thereof.
Fortran 2008 provides such portability by defining a par-
titioned global address space (PGAS), the coarray. This
provides a single-program, multiple-data (SPMD) program-
ming style that makes no reference to a particular parallel
architecture. Fortran compilers may replicate a program
across a set of images, which need to communicate when one
image reaches out to a nonlocal part of the coarray. Images
and communications are mapped to the parallel architecture
of the compiler’s choice. The Intel compiler, for example,
maps an image to a message passing interface (MPI) process,
whereas theCray compiler uses a proprietary communication
library that outperforms MPI on Cray computers. Mappings
to accelerators have also been announced.

For example, a coarray definition of the form given in
Listing 2 establishes that the program will index into the
variable “a” along three dimensions (in parenthesis) and one
codimension (in square brackets), so Listing 3 lets image 3,
as given by the this image () function, copy the first element
of image 2 to the first element of image 1. If there are less

Scientific Programming 5

real, allocatable:: a(:,:,:)[:]

Listing 2

if (this image() == 3) then
a(1, 1, 1)[1] = a(1, 1, 1)[2]

end if

Listing 3

than 3 images, the assignment does not take place. The size
of the normal dimensions is decided by the programmer.The
run-time environment and compiler decide the codimension.
A reference to the array without the codimension index, for
example, a (1, 1, 1), denotes the local element on the image that
executes the statement. Equivalently, the expression “a (1, 1, 1)
[this image ()]” makes the reference to the executing image
explicit.

A dilemma arises when writing parallel operations on
the aforementioned tensor object by encapsulating a coarray
inside it; Fortran prohibits function results that contain coar-
rays. Performance concerns motivate this prohibition; in an
expression, function results become input arguments to other
functions. For coarray return values to be safe, each such
result would have to be synchronized across images, causing
severe scalability and efficiency problems. The growing gap
between processor speeds and communication bandwidth
necessitates avoiding interprocessor coordination.

To see the scalability concern, consider implementing the
expression (𝑢 ∗ 𝑢)

𝑥
using finite differences with a stencil of

width 1 for the partial derivative, with data 𝑢 being spread
across images on a coarray. The part of the partial derivative
function 𝑢

𝑥
executing on image 𝑖 requires access to data from

neighboring images 𝑖 + 1 and 𝑖 − 1. The multiplication 𝑢 ∗ 𝑢
will be run independently on each image for the part of the
coarray residing on that image. Now, for (𝑢∗𝑢)

𝑥
on image 𝑖 to

be correct, the systemmust ensure that 𝑢∗𝑢 on images 𝑖−1, 𝑖,
and 𝑖 + 1 all have finished computing and stored the result in
their local parts of the coarray. Likewise, for the computation
of (𝑢 ∗ 𝑢)

𝑥
at images 𝑖 − 1 and 𝑖 + 1, the computation of 𝑢 ∗ 𝑢

at images 𝑖 − 2, 𝑖 − 1, and 𝑖 and 𝑖, 𝑖 + 1, and 𝑖 + 2, respectively,
must be ready. Since the order of execution for each image is
beyond explicit control, synchronization is needed to ensure
correct ordering of computation steps.

Because analyzing whether and when synchronization
is needed is beyond the compiler, the options are either
synchronizing at return (with a possibly huge performance
hit) or not synchronizing at return, risking hard to track data
inconsistencies. The aforementioned prohibition precludes
these issues, by placing the responsibility for synchronization
with the programmer yet allowing each image to continue
processing local data for as long as possible. Consider the call
graph in Figure 2. The only function calls requiring access to

nonlocal data are the 6 calls to the partial derivatives on the
top row. The remaining 9 function calls only need local data,
allowing each image to proceed independently of the others
until the assignment statement calls for a synchronization to
prepare the displacement function 𝑢 for the next time-step by
assigning to 𝑢

1,𝑡
.

4. Design Patterns

Programming patterns capture experience in how to express
solutions to recurring programming issues effectively from
a software development, a software evolution, or even a
performance perspective. Standard patterns tend to evolve
into language constructs, the modern “while” statement
evolved from a pattern with “if” and “goto” in early Fortran.

Patterns can also be more domain-specific, for example,
limited to scientific software [9]. Here we will look at patterns
for high-performance, parallel PDE solvers.

4.1. Object Superclass and Error Tracing. Many object-
oriented languages, from the origins in Simula [17] and
onwards, have an object class that is the ultimate parent of
all classes. Fortran, like C++, does not have a universal base
class. For many projects, though it can be useful to define a
Fortran object class that is the ultimate parent of all classes in
a project, such an object can provide state and functionality
that are universally useful throughout the project. The object
class itself is declared abstract to preclude constructing any
actual objects of type object.

The object class in Listing 4 represents a solution to the
problem of tracing assurances and reporting problems in
pure functions. Assertions provide one common mechanism
for verifying requirements and assurances. However, asser-
tions halt execution, a prohibited side effect. The solution is
to have the possible error information as extra data items
in the object class. If a problem occurs, the data can be set
accordingly and passed on through the pure expressions until
it ultimately is acted upon in a procedure where such side-
effects are allowed, for example, in an input/output (I/O)
statement or an assignment.

The object class in Listing 4 allows tracking of the
definedness of a variable declared to belong to the object
class or any of its subclasses. Such tracking can be especially
useful when dynamically allocated structures are involved.
The is defined function returns the value of the user defined
component. The mark as defined subroutine sets the value
of user defined to .true.. Using this systematically in each
procedure that defines or uses object data will allow a trace
of the source of uninitialized data.

A caveat is that the object class cannot be a superclass
of classes containing coarrays because the compiler needs
to know if a variable has a coarray component or not. We
therefore need to declare a corresponding co object class to
be the superclass for classes with coarray components.

4.2. Compute Globally, Return Locally. The behavioural
design pattern compute globally, return locally (CGRL) [9]
has been suggested as a way to deal with the prohibition on
returning coarrays from functions.

6 Scientific Programming

type, abstract:: object
logical:: user defined = .false.

contains
procedure:: is defined
procedure:: mark as defined

end type

Listing 4

In CGRL, each nonlocal operator accepts operands that
contain coarrays. The operator performs any global commu-
nication required to execute someparallel algorithm.On each
image, the operator packages its local partition of the result
in an object containing a regular array. Ultimately, when
the operator of lowest precedence completes and each image
has produced its local partition of the result, a user-defined
assignment copies the local partitions into the global coarray
and performs any necessary synchronizations to make the
result available to subsequent program lines. The asymmetry
between the argument and return types forces splitting large
expressions into separate statements when synchronization is
needed.

5. Implementation Example

In this section, we implement the functions needed to
evaluate (2), as illustrated in Figure 2. We follow the CGRL
pattern: the derivation functions take a coarray data structure
and return an array data structure, the multiplication then
takes a coarray and an array data structure and return an
array data structure, and the remaining operators work on
array data structures.The assignment then synchronizes after
assigning the local arrays to the corresponding component of
the coarray.

To avoid cluttering the code excerpts with error-
forwarding boiler plate, we first show code without this
and then show how the code will look with this feature in
Section 5.4.

5.1. Array Data Structure. First, we declare a local tensor
class with only local array data. It is a subclass of object. The
ampersand (&) is the Fortran line continuation character and
the exclamation mark (!) precedes Fortran comments. The
size of the data on each image is set by a global constant, the
parameter local grid size (see Listing 5).

The procedure declarations list the procedures that the
class exports. The generic declarations introduce the oper-
ator symbols as synonyms for the procedure names. The
four functions that are of interest to us are implemented
in Listing 6.

These are normal functions on array data. If executed in
parallel, each image will have a local instance of the variables
and locally execute each function. Notice how we use the
Fortran operators “+” and “−” directly on the array data
structures in these computations.

type, extends(object):: local tensor
real:: f(local grid size)

contains
!. . .
procedure:: add
procedure:: assign local
procedure:: state
procedure:: subtract
generic:: operator(+) => add
generic:: operator(−) => subtract
generic:: assignment(=) => assign local
!. . .
end type

Listing 5

pure function add(lhs, rhs) result(total)
class(local tensor), intent(in):: lhs, rhs
type(local tensor):: total
total%f = 1hs%f + rhs%f

end function
pure subroutine assign local(lhs, rhs)
class(local tensor), intent(inout):: lhs
real, intent(in):: rhs(:)
lhs%f = rhs

end subroutine
pure function state(this) result(my data)
class(local tensor), intent(in):: this
real:: my data(local grid size)
my data = this%f

end function
pure function subtract(lhs, rhs) &
result(difference)
class(local tensor), intent(in):: lhs, rhs
type(local tensor):: difference
difference%f = 1hs%f − rhs%f

end function

Listing 6

5.2. Coarray Data Structure. Listing 7 is the declaration of a
data structure distributed across the images.

The coarray declaration allows us to access data on other
images.

The partial derivative function takes a coarray data
structure as argument and returns an array data structure.
The algorithm is a simple finite difference that wraps around
the boundary. The processing differs depending on whether
this image () is the first image, an internal image, or the last
image num images(). An internal image needs access to data
from the next image above or below. The extremal images do
a wrap-around for their missing neighbors (see Listing 8).

In the tensor class, the local tensor class is opaque,
disallowing direct access to its data structure. Only proce-
dures from the interface can be used. These include a user-
defined assignment implicitly invoked in the penultimate

Scientific Programming 7

type, extends(co object):: tensor
private
real, allocatable:: global f(:)[:]
contains
!. . .
procedure:: assign local to global
procedure:: multiply by local
procedure:: add to local
procedure:: x => df dx
generic:: operator(∗) => &

multiply by local
generic:: assignment(=) => &

assign local to global
!. . .
end type

Listing 7

line of the df dx function. Note again how most of the
computation is done by using intrinsics on array data.We also
make use of the Fortran 2008 capability for expressing the
opportunity for concurrently executing loop traversals when
no data dependencies exist fromone iteration to the next.The
“do concurrent” construct exposes this concurrency to the
compiler.

The partial derivative functions, the single derivative
shown here, and the second derivative (omitted) are the
only procedures needing access to nonlocal data. Although a
synchronization must take place before the nonlocal access,
the requisite synchronization occurs in a prior assignment
or object initialization procedure. Hence, the full expres-
sion evaluation generated by the RHS of (2) occurs asyn-
chronously, both among the images for the distributed
coarray and at the expression level for the pure functions.

The implementation of the add to local procedure has
the object with the coarray as the first argument and a local
object with field data as its second argument and return type
(see Listing 9).

The rhs%state () function invocation returns the local
data array from the rhs local tensor and this is then added
to the local component of the coarray using Fortran’s array
operator notation.

Finally, the assignment operation synchronizes when
converting the array class local tensor back to the coarray
class tensor (see Listing 10).

After each component of the coarray has been assigned,
the global barrier “sync all” is called, forcing all images
to wait until all of them have completed the assignment.
This ensures that all components of the coarray have been
updated before any further use of the data takes place.
Some situations might also necessitate a synchronization
at the beginning of the assignment procedure: to prevent
modifying data that another image might be accessing. Our
chosen 2ndorder Runge Kutta time advancement algorithm
did not require this additional synchronization because no
RHS expressions contained nonlocal operations on the data
structure appearing on the LHS.

5.3. MPI Data Structure. Developing applications using MPI
necessitates depending on a library defined outside any
programming language standard. This often results in proce-
dural programming patterns instead of functional or object-
oriented programming patterns. To make a fair comparison,
we will employ a MPI data structure that uses the array data
structure shown in Section 5.1. In theMPI version, the 1Dgrid
was partitioned across the cores using a periodic Cartesian
communicator, as shown in the code listing in Listing 11.

Using this communicator allowed us to reorder the
processor ranks to make the communication more efficient
by placing the neighbouring ranks close to each other.
The transfer of data between the cores was done using
MPI SENDRECV, as shown in Listing 12. As in the case of
the coarray version, nonlocal data was only required during
the computation of the partial derivatives. The MPI version
of the first derivative function is shown in Listing 12.

MPI SENDRECV is a blocking routine which means
that the processor will wait for its neighbor to complete
communication before proceeding. This works as a de facto
synchronization of the data between the neighbours ensuring
that the data is current on all the processors. The c double
kind parameter used to declare the real variables in Listing 12
is related to the kind parameter MPI DOUBLE PRECISION
in the MPI communication calls. These must be in sync,
ensuring that the Fortran data has the same format as that
used in MPI calls, viz. double precision real numbers that are
compatible with C.

5.4. Error Tracing. The error propagating pattern is illus-
trated in the code in Listing 13.

The ! Requires test in Listing 13 checks that the two
arguments to the add function have the definedness attribute
set. It then performs the actual computation and sets the
definedness attribute for the return value. In case of an error
in the input, the addition does not take place and the default
object value of undefined data gets propagated through this
function.

The actual validation of the assurance and reporting
of the error takes place in the user-defined assignment
or I/O that occurs at the end of evaluation of a purely
functional expression. The listing in Listing 14 shows this for
the assign local to global procedure.

More detailed error reporting can be achieved by supply-
ing more metadata in the object for such reporting purposes.

6. Results

6.1. Pattern Tradeoffs. This paper presents two new patterns:
the aforementioned object and the CGRL patterns.The object
pattern proved to be lightweight in the sense of requiring sim-
ple Boolean conditionals that improve the code robustness
with negligible impact on execution time. The object pattern
is, however, heavyweight in terms of source-code impact:
the pattern encourages having every class extend the object
superclass, and it encourages evaluating these conditionals
at the beginning and end of every method. We found the
robustness benefit to be worth the source-code cost.

8 Scientific Programming

function df dx(this)
class(tensor), intent(in):: this
type(local tensor):: df dx
integer:: i, nx, me, east, west
real:: dx
real:: local tensor data(local grid size)
nx = local grid size
dx = 2. ∗ pi/(real(nx) ∗ num images())
me = this image()
if (me == 1) then
west = num images()
east =merge(1, 2, num images() == 1)
else if (me == num images()) then
west = me − 1
east = 1
else
west = me − 1
east = me + 1
end if
local tensor data(1) = 0.5 ∗ (this%global f(2) − this%global f(nx)[west])/dx
local tensor data(nx) = 0.5 ∗ (this%global f(1)[east] − this%global f(nx – 1))/dx
do concurrent(i = 2 : nx − 1)
local tensor data(i) = 0.5 ∗ (this%global f(i + 1) − this%global f(i − 1))/dx
end do
df dx = local tensor data

end function

Listing 8

function add to local(lhs, rhs) result(total)
class(tensor), intent(in):: lhs
type(local tensor), intent(in):: rhs
type(local tensor):: total
total = lhs%state() + rhs%global f(:)
end function

Listing 9

subroutine assign local to global(lhs, rhs)
class(tensor), intent(inout):: lhs
class(local tensor), intent(in):: rhs
lhs%global f(:) = rhs%state()
sync all
end subroutine

Listing 10

The CGRL pattern is the linchpin holding together the
functional expression evaluation in the face of a perform-
ance-related language restriction on coarray function results.
The benefit of CGRL is partly syntactical in that it enables
the writing of coordinate-free expressions composed of
parallel operations on coarray data structures. CGRL also

offers potential performance benefits by enabling particular
compiler optimizations. Fortran requires that user-defined
operator to have the “intent (in)” attribute, which precludes
a common side effect: modifying arguments. This goes a
long way toward enabling the declaration of the operator
as “pure,” which allows the compiler to execute multiple
instances of the operator asynchronously. One cost of CGRL
in the context of the CFP pattern lies in the frequent creation
of temporary intermediate values. This is true for most
compilers that deal naively with the functional programming
style, as precluding the modification of arguments inherently
implies allocating memory on the stack or the heap for each
operator result. This implies a greater use of memory. It also
implies latencies associated with each memory allocation.
Balancing this cost is a reduced need for synchronization
and the associated increased opportunities for parallel exe-
cution. A detailed evaluation of this tradeoff requires writing
a numerically equivalent code that exploits mutable data
(modifiable arguments) to avoid temporary intermediate
values. Such a comparison is beyond the scope of this paper.
More advanced approaches to compiling functional expres-
sions exist, as demonstrated by the Sisal compiler [10]. It
aggressively rearranges computations to avoid such memory
overhead. Whether this is possible within the framework of
current Fortran compilers needs to be investigated.

6.2. Performance. We have investigated the feasibility of our
approach using the one-dimensional (1D) form of Burgers
equation, (3). We modified the solver from [9] to ensure

Scientific Programming 9

subroutinempi begin
integer:: dims(1), periods(1), reorder
! prevent accidentally starting MPI
! if it has already been initiated
if (program status .eq. 0) then
callMPI INIT(ierr)
callMPI COMM SIZE(MPI COMM WORLD, num procs, ierr)
callMPI COMM RANK(MPI COMM WORLD, my id, ierr)
! Create a 1D Cartesian partition
! with reordering and periodicity
dims = num procs
reorder = .true.
periods = .true.
callMPI CART CREATE(MPI COMM WORLD, 1, dims, periods, reorder, MPI COMM CART, ierr)
callMPI COMM RANK(MPI COMM CART, my id, ierr)
callMPI CART SHIFT(MPI COMM CART, 0, 1, left id, right id, ierr)
program status = 1
endif

end subroutine

Listing 11

function df dx(this)
implicit none
class(tensor), intent(in):: this
type(tensor):: df dx
integer(ikind):: i, nx
real(c double):: dx, left image, right image
real(c double), dimension(:), allocatable, save:: local tensor data
nx = local grid resolution
if (.not.allocated(local tensor data)) allocate(local tensor data(nx))
dx = 2. ∗ pi/(real(nx, c double) ∗ num procs)
if (num procs > 1) then
callMPI SENDRECV(this%global f(1), 1,

MPI DOUBLE PRECISION, left id, 0, right image, 1,
MPI DOUBLE PRECISION, right id, 0, MPI COMM CART,
status, ierr)

callMPI SENDRECV(this%global f(nx), 1,
MPI DOUBLE PRECISION, right id, 0, left image, 1,
MPI DOUBLE PRECISION, left id, 0, MPI COMM CART,
status, ierr)

else
left image = this%global f(nx)
right image = this%global f(1)

end if
local tensor data(1) = 0.5 ∗ (this%global f(2) − left image)/dx
local tensor data(nx) = 0.5 ∗ (right image − this%global f(nx − 1))/dx
do concurrent(i = 2 : nx − 1)
local tensor data(i) = 0.5 ∗ (this%global f(i + 1) − this%global f(i − 1))/dx

end do
df dx%global f = local tensor data

end function

Listing 12

10 Scientific Programming

pure function add(lhs, rhs) result(total)
class(local tensor), intent(in):: lhs, rhs
type(local tensor):: total
! Requires
if (lhs%user defined() .and. &
rhs%user defined()) then
total%f = lhs%f + rhs%f
! Ensures
call total%mark as defined

end if
end function

Listing 13

subroutine assign local to global(lhs, rhs)
class(tensor), intent(inout):: lhs
class(local tensor), intent(in):: rhs

! Requires
call assert(rhs%user defined())
! update global field
lhs%global f(:) = rhs%state()
! Ensures
call lhs%mark as defined
sync all

end subroutine

Listing 14

explicitly pure expression evaluation. The global barrier
synchronization in the code excerpt above was replaced by
synchronizing nearest neighbors only (see Listing 15).

Figure 3 depicts the execution time profile of the dom-
inant procedures as measured by the tuning and analysis
utilities (TAU) package [18]. In constructing Figure 3, we
emulated larger, multidimensional problems by running with
128
3 grid points on each of the 256 cores. The results

demonstrate nearly uniform load balancing. Other than the
main program (red), the local-to-global assignment occupies
the largest inclusive share of the runtime. Most of that
procedure’s time lies in its synchronizations.

We also did a larger weak scaling experiment on the
Cray. Here, we emulate the standard situation where the user
exploits the available resources to solve as large a problem as
possible. Each core is assigned a fixed data size of 2 097 152
values for 3 000 time steps, and the total size of the problem
solved is then proportional to the number of cores available.
The solver shows good weak scaling properties; see Figure 4,
where it remains at 87% efficiency for 16 384 cores. We
have normalized the plot against 64 cores. The Cray has an
architecture of 24 cores per node, so our base measurement
takes into account the cost due to off-node communication.

Currently, we are synchronizing for every time step, only
reaching out for a couple of neighboring values (second
derivative) for each synchronization. We may want to trade

if (num images() == 1 .or. &
num images() == 2) then

sync all
else
if (this image() == 1) then
sync images([2, num images()])
elseif (this image() == num images()) then
sync images([1, this image() − 1])
else
sync images([this image() − 1, &

this image() + 1])
endif
endif

Listing 15

some synchronization for duplication of computations. The
technique is to introduce ghost values in the coarray, dupli-
cating the values at the edge of the neighboring images.These
values can then be computed and used locally without the
need for communication or synchronization. The optimal
number of ghost values depends on the relative speed
between computation and synchronization. For example,
using 9 ghost values on each side in an image, should reduce
the need for synchronization to every 8th time step, while it
increases computation at each core by 18/1283 = 1.4%. The
modification should be local to the tensor class, only affecting
the partial derivative (the procedures needing remote data)
and assignment (the procedure doing the synchronization)
procedures. We leave this as future work.

We also looked at the strong scaling performance of the
MPI and coarray versions by looking at change in execution
times for a fixed problem size. The strong scaling efficiency
for two different problem sizes is shown in Figures 5(a) and
5(b). We expect linear scaling; that is, the execution time will
halve when the number of processors are doubled. However,
we see that we obtain superlinear speedup during the initial
doubling of the number of processors. This superlinear
speedup is caused by the difference in speeds of the cache
memory. The large problems cannot fit entirely into the
heap, and time is consumed in moving objects from the
slower memory to the faster memory. As the problem is
divided amongst more and more processors, the problem’s
memory requirements become smaller, and is able to fit
in the faster memory that is closer to the processor. This
causes the superlinear speedup. As more processors are
added, communication between processors starts to become
expensive, and the speedup drops. We observe superlinear
speedup for both coarray and MPI versions. However, the
much greater speedup seen for the coarray version suggest
that its memory requirements are higher than those of the
MPI version. (These numbers may be slightly misleading, as
the MPI version used dynamically allocated data, while the
CAF version used statically allocated data. This may cause
the CAF version to use more memory than the MPI version.
Fixing this will causeminor changes in the numbers and close

Scientific Programming 11

(=)
=>

ass
ign local

to
global : te

nsor

Sync in
 ass

ign local
to

global : te
nsor

(x
x)
=>

d2
f dx2

: ten
sor

(∗
) =
>

multip
ly

by local
: te

nsor

(x
) =
>

df dx : te
nsor

(+
) =
>

add to
local

: te
nsor

(∗
) =
>

multip
ly :

 lo
cal

ten
sor

Sta
te :

 lo
cal

ten
sor

(−
) =
>

subtra
ct

: lo
cal

ten
sor

(=)
=>

ass
ign local

: lo
cal

ten
sor MPI ra

nk

5
20

35
50

65
80

95
110

125
140

155
170

185
200

215
230

245

2610.536

1740.357

870.179

0

3480.714

(s
)

(s
)

4000

0

Main
Constr

ucto
r :

ten
sor

Syn
c in

 co
nstr

ucto
r :

ten
sor

Function

Figure 3: Runtime work distribution on all images. Each operator is shown in parenthesis, followed consecutively by the name of the type-
bound procedure implementing the operator and the name of the corresponding module.The two points of synchronization are indicated by
the word ”sync” followed by the name of the type-bound procedure invoking the synchronization.

Effi
ci

en
cy

 (r
el

at
iv

e t
o
6
4

co
re

s)

1.0

0.8

0.6

0.4

0.2

0.0

Number of cores
64 128 256 512 1024 2048 4096 8192 16384

Cores Time (s) Efficiency
64

256
2048
4096
8192

10240
13312
16384

100.0
99.6
96.8
95.8
99.4
94.5
99.1
87.0

20414

20486

21084

21311

20543

21612

20591

23461

Figure 4: Weak scaling of solver for (3) using the coarray version on Cray.

the ratio between the MPI and CAF efficiency. We will have
these numbers available for the revision of this document.)

The raw execution times using the different versions on
Intel and Cray platforms are shown in Table 1. We chose a
smaller problem for the strong scaling experiments than for
theweak scaling experiments because of the limited resources
available with the Intel platform. We see that the coarray
version is slower than the MPI version on the same platform
for the same problem size. Comparing the actual runtimes
shown in Table 1 shows that using the Intel compiler, theMPI
version is about 2 to 2.5 times faster than the coarray version.
For the Cray compiler, the MPI version is about 1.5 to 2 times
faster than the coarray version. To understand the difference

in runtimes, we analyzed the CAF and MPI versions using
TAU and the Intel compiler. Using PAPI [19] with TAU and
the Intel compiler to count the floating-point operations, we
see that the MPI version is achieving approximately 52.2%
of the peak theoretical FLOPS for a problem with 819200
grid points using 256 processors whereas the CAF version is
achieving approximately 21% of the peak theoretical FLOPS.
The execution times for some of the different functions are
shown in Figure 6. We see that the communication routines
are taking the longest fraction of the total execution time.
However, the coarray syncing is taking significantly longer
than the MPI SENDRECV blocking operation. The Intel
coarray implementation is based on its MPI library, and

12 Scientific Programming

Table 1: Execution times for the CAF and MPI versions of the Burgers solver for different problem sizes using Intel and Cray compilers.

Cores
409600 grid points 819200 grid points

MPI CAF MPI CAF
Intel Cray Intel Cray Intel Cray Intel Cray

32 52.675 59.244 154.649 187.204 128.638 131.048 333.682 512.312
64 29.376 28.598 71.051 46.923 58.980 58.887 152.829 192.396
128 19.864 14.169 38.321 21.137 31.396 26.318 69.612 42.939
256 12.060 9.109 23.183 13.553 21.852 12.953 51.957 27.226
512 7.308 6.204 19.080 12.581 12.818 8.413 31.437 18.577

Sp
ee

du
p

(r
el

at
iv

e t
o
3
2

co
re

s)

16.0

8.0

4.0

2.0

1.0

Number of cores
32 64 128 256 512

Intel MPI
Cray MPI

Intel coarray
Cray coarray

(a) MPI versus CAF scaling for 409600 grid points

Sp
ee

du
p

(r
el

at
iv

e t
o
3
2

co
re

s)

16.0

32.0

8.0

4.0

2.0

1.0

Number of cores
32 64 128 256 512

Intel MPI
Cray MPI

Intel coarray
Cray coarray

(b) MPI versus CAF scaling for 819200 grid points

Figure 5: Strong scaling performance of the coarray andMPI versions of the solver for (3) using different platforms.The raw execution times
are listed in Table 1.

the overheads of the coarray implementation are responsible
for some of the slowdown. The greater maturity of the MPI
library compared to CAF also probably plays a role in the
superior performance of the MPI implementation. So, we
are likely to see the performance gap lessen as compiler
implementations of CAF improve over time.

6.3. Complexity. Other than performance considerations, we
also wanted to compare the pros and cons of the coarray For-
tran (CAF) implementation versus an MPI implementation
of the 1D form of the Burgers equation (3) in terms of code
complexity and ease of development.

The metrics used to compare the code complexity were
lines of code (LOC), use statements, variable declarations,
external calls, and function arguments. The results of this
comparison may be found in Table 2. As seen in Table 2,
theMPI implementation had significantly greater complexity
compared to the CAF implementation for all of the metrics
which were considered. This has potential consequences in
terms of the defect rate of the code. For example, comparing

theMPI version with the coarray version listed in Section 5.2,
we see that the basic structures of the functions are almost
identical. However, the MPI SENDRECV communication of
the local grid data to and from the neighbours is achieved
implicitly in the coarray version making the code easier
to read. Counterbalancing its greater complexity, the MPI
implementation had superior performance compared to the
CAF code.

Software development time should also be taken into
account when comparing CAF to MPI. Certain metrics of
code complexity have been shown to correlate with higher
defect rates. For instance, average defect rate has been shown
to have a curvilinear relationship with LOC [20]. So, an MPI
implementationmight drive higher defect density and overall
number of defects in a project, contributing to development
time and code reliability. Likewise, external calls or fanout has
shown positive correlation with defect density, also reducing
the relative attractiveness of the MPI implementation [21].
In addition, the dramatically increased number of arguments
for function calls, as well as the larger number of functions

Scientific Programming 13

Metric: time
Value: exclusive
Units: (s)
7.31

5.87
5.074
4.81
4.796

3.116
3.116
2.495
2.488

2.04
2.04
1.86
1.844

MPI Sendrecv()
add field [{/home/ha
.TAU application =>
d2f dx2 [{/home/har
df dx [{/home/hari/P
.TAU application =>
MPI Init()
.TAU application =>
.TAU application =>
.TAU application =>
multiply real [{/home
.TAU application =>
assign field [{/home/

(a) MPI execution profile

Metric: time
Value: exclusive
Units: (s)

19.148
9.197

6.851
6.081
5.815
5.199
5.004
3.897
3.87
3.332
3.332
3.328
2.853
2.472
2.066
1.98

sync assign field
.TAU application =
df dx

d2f dx2
.TAU application =

difference [{/home
.TAU application =
assign field
.TAU application =
.TAU application =
multiple [{/home/h
.TAU application =
.TAU application =
.TAU application =
.TAU application =
add field

(b) CAF execution profile

Figure 6: Execution profiles of MPI and CAF versions of Burgers solver.

Table 2: Code complexity of CAF versus MPI.

Metric CAF MPI
LOC 238 326
Use statements 3 13
Variables declared 58 97
External calls 0 24
Function arguments 11 79

which are used in theMPI implementation, suggests a higher
learning curve for novice parallel programmers compared to
CAF.

7. Conclusion

Motivated by the constant changing requirements on HPC
software, we have presented coordinate-free programming [1]
as an approach that naturally deals with the relevant variation
points, resulting in flexibility and easy evolution of code. We
then looked at the modern Fortran language features, such
as pure functions and coarrays, and related programming
patterns, specifically compute globally, return locally (CGRL),
which make such programming possible. We also looked at
implementing coordinate-free programming using MPI and
the advantages and disadvantages of theMPI implementation
vis-a-vis using only modern Fortran language features.

As a feasibility study for the approach, we used these
techniques in a code that solves the one-dimensional Burgers
equation:

𝑢
𝑡
=]𝑢
𝑥𝑥
− 𝑢𝑢
𝑥
. (4)

(Subscripts indicate partial differentiation for 𝑡 and 𝑥, time
and space coordinates, resp.) The functional expression style
enhances readability of the code by its close resemblance to
the mathematical notation. The CGRL behavioural pattern
enables efficient use of Fortran coarrays with functional
expression evaluation.

A profiled analysis of our application shows good load
balancing, using the coarray enabled Fortran compilers from
Intel and Cray. Performance analysis with the Cray compiler
exhibited goodweak scalability from64 to above 16 000 cores.
Strong scaling studies using MPI and coarray versions of
our application show that while the runtimes of the coarray
version lag behind the MPI version, the coarray version’s
scaling efficiency is on par with the MPI version.

Future work includes going from this feasibility study
to a full coordinate-free implementation in Fortran of the
general Burgers equation. This will allow us to study the
behaviour of Fortran on such abstractions. We also want to
increase the parallel efficiency by introducing ghost cells in
the code, seeing how well modern Fortran can deal with the
complexities of contemporary hardware architecture.

Disclosure

This is an extended version of a workshop paper presented at
SE-HPCSSE13 in Denver, CO, USA.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Thanks are due to Jim Xia (IBM Canada Lab) for developing
the Burgers 1D solver and Sameer Shende (University of
Oregon) for help with TAU. This research is financed in part
by the Research Council of Norway. This research was also
supported by Sandia National Laboratories, a multiprogram
laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the National Nuclear Security Admin-
istration under contract DE-AC04-94-AL85000. This work
used resources of the National Energy Research Scientific
Computing Center, which is supported by the Office of

14 Scientific Programming

Science of the US Department of Energy under Contract no.
DE-AC02-05CH11231. This work also used resources from
the ACISS cluster at the University of Oregon acquired by
a Major Research Instrumentation grant from the National
Science Foundation, Office of Cyber Infrastructure, “MRI-
R2: Acquisition of an Applied Computational Instrument for
Scientific Synthesis (ACISS),” Grant no. OCI-0960354.

References

[1] M. Haveraaen and H. A. Friis, “Coordinate-free numerics:
all your variation points for free?” International Journal of
Computational Science and Engineering, vol. 4, no. 4, pp. 223–
230, 2009.

[2] M. Metcalf, J. Reid, and M. Cohen, Modern Fortran Explained,
Oxford University Press, Oxford, UK, 2011.

[3] M.Haveraaen, H. A. Friis, and T. A. Johansen, “Formal software
engineering for computational modelling,” Nordic Journal of
Computing, vol. 6, no. 3, pp. 241–270, 1999.

[4] P. W. Grant, M. Haveraaen, and M. F. Webster, “Coordinate
free programming of computational fluid dynamics problems,”
Scientific Programming, vol. 8, no. 4, pp. 211–230, 2000.

[5] D.W.Rouson, R. Rosenberg, X. Xu, I.Moulitsas, and S. C.Kassi-
nos, “A grid-free abstraction of the Navier-Stokes equations in
Fortran 95/2003,”ACMTransactions onMathematical Software,
vol. 34, no. 1, article 2, 2008.

[6] A. M. Bruaset and H. P. Langtangen, “A comprehensive set
of tools for solvingpartial differential equations; Diffpack,” in
Numerical Methods and Software Tools in Industrial Mathe-
matics, M. Dæhlen and A. Tveito, Eds., pp. 61–90, Birkhäuser,
Boston, Mass, USA, 1997.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, Pearson
Education, 1994.

[8] H. Gardner, G. Manduchi, T. J. Barth et al., Design Patterns for
E-Science, vol. 4, Springer, New York, NY, USA, 2007.

[9] D. W. Rouson, J. Xia, and X. Xu, Scientific Software Design: The
Object-Oriented Way, Cambridge University Press, Cambridge,
Mass, USA, 2011.

[10] D. C. Cann, “Retire Fortran? A debate rekindled,” Communica-
tions of the ACM, vol. 35, no. 8, pp. 81–89, 1992.

[11] P. S. Pacheco, Parallel programming with MPI, Morgan Kauf-
mann, 1997.

[12] M. Haveraaen, K. Morris, and D. Rouson, “High-performance
design patternsfor modern fortran,” in Proceedings of the 1st
International Workshop on Software Engineering for High Per-
formance Computing in Computational Science and Engineering,
pp. 1–8, ACM, 2013.

[13] J. Burgers, “A mathematical model illustrating the theory of
turbulence,” in Advances in Applied Mechanics, R. V. Mises and
T. V. Kármán, Eds., vol. 1, pp. 171–199, Elsevier, New York, NY,
USA, 1948.

[14] D. Bjørner, Domain Engineering: Technology Management,
Research and Engineering, vol. 4 of COE Research Monograph
Series, JAIST, 2009.

[15] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. Zang, Spectral
Methods: Fundamentals in Single Domains, Springer, Berlin,
Germany, 2006.

[16] A. Fanfarillo, T. Burnus, S. Filippone, V. Cardellini, D. Nagle,
and D. W. I. Rouson, “OpenCoarrays: open-source transport

layers supporting coarray Fortran compilers,” in Proceedings of
the 8th International Conference on Partitioned Global Address
Space Programming Models (PGAS ’14), Eugene, Ore, USA,
October 2014.

[17] O.-J. Dahl, B.Myhrhaug, andK. Nygaard, SIMULA 67 Common
Base Language, vol. S-2, Norwegian Computing Center, Oslo,
Norway, 1968.

[18] S. S. Shende and A. D. Malony, “The TAU parallel performance
system,” International Journal of High Performance Computing
Applications, vol. 20, no. 2, pp. 287–311, 2006.

[19] J. Dongarra, K. London, S. Moore, P. Mucci, and D. Terpstra,
“Using PAPI for hardware performance monitoring on linux
systems,” in Conference on Linux Clusters: The HPC Revolution,
Linux Clusters Institute, 2001.

[20] C. Withrow, “Error density and size in Ada software,” IEEE
Software, vol. 7, no. 1, pp. 26–30, 1990.

[21] S. H. Kan,Metrics and Models in Software Quality Engineering,
Addison-Wesley, New York, NY, USA, 2nd edition, 2002.

Research Article
Using Coarrays to Parallelize Legacy Fortran Applications:
Strategy and Case Study

Hari Radhakrishnan,1 Damian W. I. Rouson,2 Karla Morris,3

Sameer Shende,4 and Stavros C. Kassinos5

1EXA High Performance Computing, 1087 Nicosia, Cyprus
2Stanford University, Stanford, CA 94305, USA
3Sandia National Laboratories, Livermore, CA 94550, USA
4University of Oregon, Eugene, OR 97403, USA
5Computational Sciences Laboratory (UCY-CompSci), University of Cyprus, 1678 Nicosia, Cyprus

Correspondence should be addressed to Damian W. I. Rouson; damian@rouson.net

Received 8 April 2014; Accepted 5 August 2014

Academic Editor: Jeffrey C. Carver

Copyright © 2015 Hari Radhakrishnan et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper summarizes a strategy for parallelizing a legacy Fortran 77 program using the object-oriented (OO) and coarray features
that entered Fortran in the 2003 and 2008 standards, respectively. OO programming (OOP) facilitates the construction of an
extensible suite of model-verification and performance tests that drive the development. Coarray parallel programming facilitates
a rapid evolution from a serial application to a parallel application capable of running on multicore processors and many-core
accelerators in shared and distributed memory. We delineate 17 code modernization steps used to refactor and parallelize the
program and study the resulting performance. Our initial studies were done using the Intel Fortran compiler on a 32-core shared
memory server. Scaling behavior was very poor, and profile analysis using TAU showed that the bottleneck in the performance was
due to our implementation of a collective, sequential summation procedure. We were able to improve the scalability and achieve
nearly linear speedup by replacing the sequential summationwith a parallel, binary tree algorithm.We also tested theCray compiler,
which provides its own collective summation procedure. Intel provides no collective reductions. With Cray, the program shows
linear speedup even in distributed-memory execution. We anticipate similar results with other compilers once they support the
new collective procedures proposed for Fortran 2015.

1. Introduction

Background. Legacy software is old software that serves a use-
ful purpose. In high-performance computing (HPC), a code
becomes “old” when it no longer effectively exploits current
hardware. With the proliferation of multicore processors and
many-core accelerators, onemight reasonably label any serial
code as “legacy software.” The software that has proved its
utility over many years, however, typically has earned the
trust of its user community.

Any successful strategy for modernizing legacy codes
must honor that trust. This paper presents two strategies
for parallelizing a legacy Fortran code while bolstering trust

in the result: (1) a test-driven approach that verifies the
numerical results and the performance relative to the original
code and (2) an evolutionary approach that leavesmuch of the
original code intact while offering a clear path to execution
on multicore and many-core architectures in shared and
distributed memory.

The literature on modernizing legacy Fortran codes
focuses on programmability issues such as increasing type
safety and modularization while reducing data dependancies
via encapsulation and information hiding. Achee and Carver
[1] examined object extraction, which involves identifying
candidate objects by analyzing the data flow in Fortran 77
code. They define a cohesion metric that they use to group

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 904983, 12 pages
http://dx.doi.org/10.1155/2015/904983

http://dx.doi.org/10.1155/2015/904983

2 Scientific Programming

global variables and parameters. They then extracted meth-
ods from the source code. In a 1500-line code, for example,
they extract 26 candidate objects.

Norton and Decyk [2], on the other hand, focused
on wrapping legacy Fortran with more modern inter-
faces. They then wrap the modernized interfaces inside an
object/abstraction layer. They outline a step-by-step process
that ensures standards compliance, eliminates undesirable
features, creates interfaces, adds new capabilities, and then
groups related abstractions into classes and components.
Examples of undesirable features include common blocks,
which potentially facilitate global data-sharing and aliasing
of variable names and types. In Fortran, giving procedures
explicit interfaces facilitates compiler checks on argument
type, kind, and rank. New capabilities they introduced
included dynamic memory allocation.

Greenough and Worth [3] surveyed tools that enhance
software quality by helping to detect errors and to highlight
poor practices. The appendices of their report provide exten-
sive summaries of the tools available from eight vendors with
a very wide range of capabilities. A sample of these capabili-
ties includes memory leak detection, automatic vectorization
and parallelization, dependency analysis, call-graph genera-
tion, and static (compile-time) as well as dynamic (run-time)
correctness checking.

Each of the aforementioned studies explored how to
update codes to the Fortran 90/95 standards. None of the
studies explored subsequent standards and most did not
emphasize performance improvement as a main goal. One
recent study, however, applied automated code transforma-
tions in preparation for possible shared-memory, loop-level
parallelization with OpenMP [4]. We are aware of no pub-
lished studies on employing the Fortran 2008 coarray parallel
programming to refactor a serial Fortran 77 application. Such
a refactoring for parallelization purposes is the central aim of
the current paper.

Case Study: PRM. Most commercial software models for
turbulent flow in engineering devices solve the Reynolds-
averaged Navier-Stokes (RANS) partial differential equa-
tions. Deriving these equations involves decomposing the
fluid velocity field, u, into a mean part, u, and a fluctuating
part, u󸀠:

u ≡ u + u󸀠. (1)

Substituting (1) into amomentumbalance and then averaging
over an ensemble of turbulent flows yield the following RANS
equation:

𝜌𝑢
𝑗

𝜕𝑢
𝑖

𝜕𝑥
𝑗

= 𝜌𝑓
𝑖
+

𝜕

𝜕𝑥
𝑗

[−𝑝𝛿
𝑖𝑗
+ 𝜇(

𝜕𝑢
𝑖

𝜕𝑥
𝑗

+
𝜕𝑢
𝑗

𝜕𝑥
𝑖

) − 𝜌𝑢󸀠
𝑖
𝑢󸀠
𝑗
] ,

(2)

where 𝜇 is the fluid’s dynamic viscosity; 𝜌 is the fluid’s density;
𝑡 is the time coordinate; 𝑢

𝑖
and 𝑢
𝑗
are the 𝑖th and 𝑗th cartesian

components of u; and 𝑥
𝑖
and 𝑥

𝑗
are the 𝑖th and 𝑗th cartesian

components of the spatial coordinate x.

1

2

3

1

2

3

4

5

6

7

8

9

10

Band number

Figure 1: Distribution of particles in bands in one octant.

The term−𝜌𝑢󸀠
𝑖
𝑢󸀠
𝑗
in (2) is called theReynolds stress tensor.

Its presence poses the chief difficulty at the heart of Reynolds-
averaged turbulence modeling; closing the RANS equations
requires postulating relations between the Reynolds stress
and other terms appearing in the RANS equations, typically
the velocity gradient 𝜕𝑢

𝑗
/𝜕𝑥
𝑖
and scalars representing the

turbulence scale. Doing so in the most common ways works
well for predicting turbulent flows in which the statistics of u󸀠
stay in near-equilibrium with the flow deformations applied
via gradients inu. Traditional RANSmodelswork lesswell for
flows undergoing deformations so rapid that the fluctuating
field responds solely to the deformation without time for the
nonlinear interactions with itself that are the hallmark of
fluid turbulence. The Particle Representation Model (PRM)
[5, 6] addresses this shortcoming. Given sufficient computing
resources, a software implementation of the PRM can exactly
predict the response of the fluctuating velocity field to rapid
deformations.

A proprietary in-house software implementation of the
PRM was developed initially at Stanford University, and
development continued at theUniversity of Cyprus.ThePRM
uses a set of hypothetical particles over a unit hemisphere
surface. The particles are distributed on each octant of the
hemisphere in bands, as shown in Figure 1 for ten bands. The
total number of particles is given by

𝑁particles = 4⏟⏟⏟⏟⏟⏟⏟

Number of octants in hemisphere

×
𝑁bands × (𝑁bands + 1)

2⏟⏟⏟

Number of particles in one octant

= 2 × 𝑁bands × (𝑁bands + 1) .

(3)

So, the computational time scales quadratically with the
number of bands used.

Each particle has a set of assigned properties that describe
the characteristics of an idealized flow. Assigned particle
properties include vector quantities such as velocity and

Scientific Programming 3

(a) Time = 0 seconds (b) Time = 2 seconds

(c) Time = 4 seconds (d) Time = 6 seconds

Figure 2: Results of a PRM computation. The particles are colored based on their initial location. The applied flow condition, shear flow
along the 𝑦-direction, causes the uniformly distributed particles to aggregate along that axis.

orientation as well as scalar quantities such as pressure.Thus,
each particle can be thought of as representing the dynamics
of a hypothetical one-dimensional (1D), one-component (1C)
flow. Tracking a sufficiently large number of particles and
then averaging the properties of all the particles (as shown
in Figure 2), that is, all the possible flows considered, yield a
representation of the 3D behavior in an actual flowing fluid.

Historically, a key disadvantage of the PRM has been
costly execution times because a very large number of
particles are needed to accurately capture the physics of
the flow. Parallelization can reduce this cost significantly.
Previous attempts to develop a parallel implementation of the
PRM using MPI were abandoned because the development,
validation, and verification times did not justify the gains.
Coarrays allowed us to parallelize the software with minimal
invasiveness and the OO test suite facilitated a continuous
build-and-test cycle that reduced the development time.

2. Methodology

2.1. Modernization Strategy. Test-Driven Development
(TDD) grew out of the Extreme Programming movement
of the 1990s, although the basic concepts date as far back as
the NASA space program in the 1960s. TDD iterates quickly
toward software solutions by first writing tests that specify
what the working software must do and then writing only
a sufficient amount of application code in order to pass
the test. In the current context, TDD serves the purpose of
ensuring that our refactoring exercise preserves the expected
results for representative production runs.

Table 1 lists 17 steps employed in refactoring and par-
allelizing the serial implementation of the PRM. They have
been broken down into groups that addressed various facets
of the refactoring process.The open-source CTest framework
that is part of CMake was used for building the tests. Our first
step, therefore, was to construct a CMake infrastructure that
we used for automated building and testing and to set up a
code repository for version control and coordination.

The next six steps address Fortran 77 features that have
been declared obsolete in more recent standards or have
been deprecated in the Fortran literature. We did not replace
continue statements with end do statements as these did not
affect the functionality of the code.

The next two steps were crucial in setting up the build
testing infrastructure. We automated the initialization by
replacing the keyboard inputs with default values. The next
step was to construct extensible tests based on these default
values, which are described in Section 3.

The next three steps expose optimization opportunities to
the compiler. One exploits Fortran’s array syntax. Two exploit
Fortran’s facility for explicitly declaring a procedure to be
“pure,” that is, free of side effects, including input/output,
modifying arguments, halting execution, or modifying non-
local state. Other steps address type safety and memory
management.

Array syntax gives the compiler a high-level view of
operations on arrays in ways the compiler can exploit with
various optimizations, including vectorization. The ability
to communicate functional purity to compilers also enables
numerous compiler optimizations, including parallelism.

4 Scientific Programming

Table 1: Modernization steps: horizontal lines indicate partial ordering.

Step Details
1 Set up automated builds via CMake1 and version control via Git2.
2 Convert fixed- to free-source format via “convert.f90” by Metcalf3.
3 Replace goto with do while for main loop termination.
4 Enforce type/kind/rank consistency of arguments and return values by wrapping all procedures in amodule.
5 Eliminate implicit typing.
6 Replace data statements with parameter statements.
7 Replace write-access to common blocks with module variables.
8 Replace keyboard input with default initializations.
9 Set up automated, extensible tests for accuracy and performance via OOP and CTest1.
10 Make all procedures outside of the main program pure.
11 Eliminate actual/dummy array shape inconsistencies by passing array subsections to assumed-shape arrays.
12 Replace static memory allocation with dynamic allocation.
13 Replace loops with array assignments.
14 Expose greater parallelism by unrolling the nested loops in the particle set-up.
15 Balance the work distribution by spreading particles across images during set-up.
16 Exploit a Fortran 2015 collective procedure to gather statistics.
17 Study and tune performance with TAU4.
1http://www.cmake.org/.
2http://git-scm.com/.
3ftp://ftp.numerical.rl.ac.uk/pub/MandR/convert.f90.
4http://tau.uoregon.edu/.

The final steps directly address parallelism and optimiza-
tion. One unrolls a loop to provide for more fine-grained
data distribution. The other exploits the co sum intrinsic
collective procedure that is expected to be part of Fortran 2015
and is already supported by the Cray Fortran compiler. (With
the Intel compiler, we write our own co sum procedure.)The
final step involves performance analysis using the Tuning and
Analysis Utilities [7].

3. Extensible OO Test Suite

At every step, we ran a suite of accuracy tests to verify that the
results of a representative simulation did not deviate from the
serial code’s results by more than 50 parts per million (ppm).
We also ran a performance test to ensure that the single-image
runtime of the parallel code did not exceed the serial code’s
runtime by more than 20%. (We allowed for some increase
with the expectation that significant speedup would result
from running multiple images.)

Our accuracy tests examine tensor statistics that are
calculated using the PRM. In order to establish a uniform
protocol for running tests, we defined an abstract base tensor
class as shown in Listing 1.

The base class provided the bindings for comparing
tensor statistics, displaying test results to the user, and
exception handling. Specific tests take the form of three child
classes, reynolds stress, dimensionality, and circulicity, that
extend the tensor class and thereby inherit a responsibility
to implement the tensor’s deferred bindings compute results
and expected results. The class diagram is shown in Figure 3.
The tests then take the form

if (.not. stess tensor%verify result (when)) &
error stop ‘Test failed.’

where stress tensor is an instance of one of the three child
classes shown in Figure 3 that extend tensor; “when” is an
integer time stamp; error stop halts all images and prints
the shown string to standard error; and verify result is
the pure function shown in Listing 1 that invokes the two
aforementioned deferred bindings to compare the computed
results to the expected results.

4. Coarray Parallelization

Modern HPC software must be executed on multicore pro-
cessors or many-core accelerators in shared or distributed
memory. Fortran provides for such flexibility by defining a
partitioned global address space (PGAS) without referencing
how to map coarray code onto a particular architecture.
Coarray Fortran is based on the Single Program Multiple
Data (SPMD) model, and each replication of the program is
called an image [8]. Fortran 2008 compilersmap these images
to an underlying transport network of the compiler’s choice.
For example, the Intel compiler uses MPI for the transport
network whereas the Cray compiler uses a dedicated trans-
port layer.

A coarray declaration of the form

real, allocatable :: a (:, :, :) [:]

facilitates indexing into the variable “a” along three regular
dimensions and one codimension so

a (1, 1, 1) = a (1, 1, 1) [2]

Scientific Programming 5

verify_result(logical)

computed_results(tensor)
expected_results(tensor)

reynolds_stress: real[6]
computed_results(reynolds_stress)

expected_results(reynolds_stress)

dimensionality: real[6]
computed_results(dimensionality)

expected_results(dimensionality)

circulicity: real[6]
computed_results(circulicity)

expected_results(circulicity)

reynolds_stress dimensionality circulicity

tests_passed(logical[∗])

Figure 3: Class diagram of the testing framework. The deferred bindings are shown in italics, and the abstract class is shown in bold italics.

module abstract tensor class
type, abstract :: tensor
contains

procedure(return computed results), deferred :: &
computed results

procedure(return expected results), deferred :: &
expected results

procedure :: verify result
end type
abstract interface
pure function return computed results(this) &

result(computed values)
import :: tensor
class(tensor), intent(in) :: this
real, allocatable :: computed values(:)

end function
! return expected results interface omitted

end abstract interface
contains
pure function verify result(this) &
result(all tests passed)
class(tensor), intent(in) :: this
logical :: all tests passed
all tests passed = all(tests passed(&
this%computed results(), this%expected results()))

end function
end module

Listing 1: Base tensor class.

copies the first element of image 2 to the first element of
whatever image executes this line. The ability to omit the
coindex on the left-hand side (LHS) played a pivotal role
in refactoring the serial code with minimal work; although
we added codimensions to existing variables’ declarations,
subsequent accesses to those variables remained unmodified
except where communication across images is desired.When

l = 0 ! Global particle number
do k = 1, nb ! Loop over the bands

dom = 1, k ! Loop over the particles in band
! First octant
l = l + 1
! Do some computations
! Second octant
l = l + 1
! Do some computations
! Third octant
l = l + 1
! Do some computations
! Fourth octant
l = l + 1
! Do some computations

end do
end do

Listing 2: Legacy particle loop.

necessary, adding coindices facilitated the construction of
collective procedures to compute statistics.

In the legacy version, the computations of the particle
properties were done using two nested loops, as shown
in Listing 2.

Distributing the particles across the images and executing
the computations inside these loops can speed up the execu-
tion time. This can be achieved in two ways.

Method 1 works with the particles directly, splitting them
as evenly as possible across all the images, allowing image
boundaries to occur in themiddle of a band.This distribution
is shown in Figure 4(a). To achieve this distribution, the two
nested do loops are replaced by one loop over the particles,
and the indices for the two original loops are computed from
the global particle number, as shown in Listing 3. However
in this case, the code becomes complex and sensitive to
precision.

6 Scientific Programming

1

2

3

1

2

3

4

5

6

7

8

9

10

Band number

(a) Partitioning of the particles to achieve even distribution of
particles

1

2

3

1

2

3

4

5

6

7

8

9

10

Band number

(b) Partitioning of the bands to achieve nearly even distribution
of particles

Figure 4: Two different partitioning schemes were tried for load balancing.

! Loop over the particles
do l = my first particle, my last particle, 4

k = nint(sqrt(real(l) ∗ 0.5))
m = (l − (1 + 2 ∗ k ∗ (k − 1) − 4))/4

! First octant
! Do some computations
! Second octant
! Do some computations
! Third octant
! Do some computations
! Fourth octant
! Do some computations

end do

Listing 3: Parallel loop by splitting particles.

Method 2 works with the bands, splitting them across the
images to make the particle distribution as even as possible.
This partitioning is shown in Figure 4(b).Method 2, as shown
in Listing 4, requires fewer changes to the original code
shown in Listing 2 but is suboptimal in load balancing.

5. Results

5.1. Source Code Impact. We applied our strategy to two serial
software implementations of the PRM. For one version, the
resulting code was 10% longer than the original: 639 lines
versus 580 lines with no test suite. In the second version,
the code expanded 40% from 903 lines to 1260 lines, not
including new input/output (I/O) code and the test code
described in Section 3. The test and I/O code occupied
additional 569 lines.

5.2. Ease of Use: Coarrays versus MPI. The ability to drop the
coindex from the notation, as explained in Section 4, was a big

! Loop over the bands
do k = my first band, my last band

! Global number
! of last particle in (k − 1) band
l = k ∗∗ 2 + (k − 1) ∗∗ 2 − 1
! Loop over the particles in band
dom = 1, k

! First octant
l = l + 1
! Do some computations
! Second octant
l = l + 1
! Do some computations
! Third octant
l = l + 1
! Do some computations
! Fourth octant
l = l + 1
! Do some computations

end do
end do

Listing 4: Parallel loop by splitting bands.

help in parallelizing the program without making significant
changes to the source code. A lot of the bookkeeping is
handled behind the scenes by the compiler making it possible
to make the parallelization more abstract but also easier to
follow. For example, Listing 5 shows the MPI calls necessary
to gather the local arrays into a global array on all the
processors.

The equivalent calls using the coarray syntax is the listing
shown in Listing 6.

Reducing the complexity of the code also reduces the
chances of bugs in the code. In the legacy code, the arrays

Scientific Programming 7

integer :: my rank, num procs
integer, allocatable, dimension(:) :: &

my first, my last, counts, displs
callmpi comm size(MPI COMM WORLD, num procs, ierr)
callmpi comm rank(MPI COMM WORLD, my rank, ierr)
allocate(my first(num procs), my last(num procs), &

counts(num procs), displs(num procs))
my first(my rank + 1) = lbound(sn, 2)
my last(my rank + 1) = ubound(sn, 2)
callmpi allgather(MPI IN PLACE, 1, MPI INTEGER, &
my first, 1, MPI INTEGER, MPI COMM WORLD, ierr)

callmpi allgather(MPI IN PLACE, 1, MPI INTEGER, &
my last, 1, MPI INTEGER, MPI COMM WORLD, ierr)

do i = 1, num procs
displs(i) = my first(i) − 1
counts(i) = my last(i) −my first(i) + 1

end do
callmpi allgatherv(sn, 5 ∗ counts(my rank + 1), &
MPI DOUBLE PRECISION, sn global, 5 ∗ counts, &
5 ∗ displs, MPI DOUBLE PRECISION, MPI COMM WORLD, ierr)

callmpi allgatherv(cr, 5 ∗ counts(my rank + 1), &
MPI DOUBLE PRECISION, cr global, 5 ∗ counts, &
5 ∗ displs, MPI DOUBLE PRECISION, MPI COMM WORLD, ierr)

Listing 5: Using MPI ALLGATHER to collect local arrays into a global array.

integer :: my first[∗], my last[∗]
my first = lbound(sn, 2)
my last = ubound(sn, 2)
do l = 1, num images()

cr global(:, my first[l]:my last[l]) = cr(:,:)[l]
sn global(:, my first[l]:my last[l]) = sn(:,:)[l]

end do

Listing 6: Coarray method of gathering arrays.

𝑠𝑛 and 𝑐𝑟 carried the information about the state of the
particles. By using the coarray syntax and dropping the
coindex, we were able to reuse all the original algorithms
that implemented the core logic of the PRM. This made it
significantly easier to ensure that the refactoring did not
alter the results of the model. The main changes were to add
codimensions to the 𝑠𝑛 and 𝑐𝑟 declarations and update them
when needed, as shown in Listing 6.

5.3. Scalability. We intend for PRM to serve as an alternative
to turbulence models used in routine engineering design
of fluid devices. There is no significant difference in the
PRM results when more than 1024 bands (approximately 2.1
million particles) are used to represent the flow state so this
was chosen as the upper limit of the size of our data set.
Most engineers and designers run simulations on desktop
computers. As such, the upper bound on what is commonly

available is roughly 32 to 48 cores on two or four central
processing units (CPUs) plus additional cores on one ormore
accelerators. We also looked at the scaling performance of
parallel implementation of the PRMusingCray hardware and
Fortran compiler which has excellent support for distributed-
memory execution of coarray programs.

Figure 5 shows the speedup obtained for 200 and 400
bands with the Intel Fortran compiler using the two particle-
distribution schemes described in the Coarray Parallelization
section. The runs were done using up to 32 cores on the “fat”
nodes of ACISS (http://aciss-computing.uoregon.edu/). Each
node has four Intel X7560 2.27GHz 8-core CPUs and 384GB
of DDR3 memory. We see that the speedup was very poor
when the number of processors was increased.

WeusedTAU [7] to profile the parallel runs to understand
the bottlenecks during execution. Figure 6 shows the TAU
plot for the runtime share for the dominant procedures using
different number of images. Figure 7 shows the runtimes for
the different functions on the different images. The heights
of the columns show the runtime for different functions on
the individual cores. There is no significant difference in the
heights of the columns proving that the load balancing is very
good across the images. We achieved this by mainly using
the one-sided communication protocols of CAF as shown in
Listing 6 and restricting the sync statements to the collective
procedures as shown in Listings 7 and 8. Looking at the
runtimes in Figure 6, we identified the chief bottlenecks to
be the two collective co sum procedures which sum values
across a coarray by sequentially polling each image for its
portion of the coarray. The time required for this procedure

8 Scientific Programming
Sp

ee
du

p
(r

el
at

iv
e t

o
sin

gl
e i

m
ag

e)

Number of coarray images

32

16

8

4

2

1
1 2 4 8 16 32

Split bands 200
Split bands 400

Split particles 200
Split particles 400

Figure 5: Speedup obtained with sequential co sum implementa-
tion using multiple images on a single server.

subroutine vector co sum serial(vector)
real(rkind), intent(inout) :: vector(:)[∗]
integer image
sync all
if (this image() == 1) then

do image = 2, num images()
vector(:)[1] = vector(:)[1] + vector(:)[image]

end do
end if
sync all
if (this image()/ = 1) vector(:) = vector(:)[1]
sync all

end subroutine

Listing 7: Unoptimized collective sum routine.

is 𝑂(𝑁images). The unoptimized co sum routine for adding
a vector across all images is shown in Listing 7. There is an
equivalent subroutine for summing a matrix also.

Designing an optimal co sum algorithm is a platform-
dependent exercise best left to compilers. The Fortran stan-
dards committee is working on a co sum intrinsic procedure
that will likely become part of Fortran 2015. But to improve
the parallel performance of the program, we rewrote the
collective co sum procedures using a binomial tree algorithm
that is 𝑂(log𝑁images) in time. The optimized version of the
co sum version is shown in Listing 8.

The speedup obtained with the optimized co sum routine
is shown in Figure 8. We see that the scaling performance of
the program becomes nearly linear with the implementation
of the optimized co sum routine. We also see that the scaling

subroutine vector co sum parallel(vector)
real(rkind), intent(inout) :: vector(:)[∗]
real(rkind), allocatable :: temp(:)
integer image, step
allocate (temp, mold = vector)
step = 2
do while (step/2 <= num images())
sync all
if (this image() + step/2 <= num images()) then
temp = vector + vector[this image() + step/2]

else
temp = vector

end if
sync all
vector = temp
step = step ∗ 2

end do
sync all
if (this image()/ = 1) vector = vector[1]
sync all

end subroutine

Listing 8: Optimized collective sum routine.

efficiency increases when the problem size is increased. This
indicates that the poor scaling at smaller problem sizes is due
to communication and synchronization [9].

The TAU profile analysis of the runs using different
number of images is shown in Figure 9.While there is a small
increase in the co sumcomputation timewhen increasing the
number of images, it is significantly lower than increase in
time for the unoptimized version.

To fully understand the impact of the co sum routines, we
also benchmarked the program using the Cray compiler and
hardware. Cray has native support for the co sum directive in
the compiler. Cray also uses its own communication library
onCray hardware instead of building on top ofMPI as is done
by the Intel compiler. As we can see in Figure 10, the parallel
code showed very good strong scaling on the Cray hardware
up to 128 images for the problem sizes that we tested.

We also looked at the TAU profiles of the parallel code on
the Cray hardware, shown in Figure 11. The profile analysis
shows that the time is spent mainly in the time advancement
loop when the native co sum implementation is used.

We hope that, with the development and implementation
of intrinsic co sum routines as part of the 2015 Fortran
standard, the Intel compiler will also improve its strong
scaling performance with larger number of images. Table 2
shows the raw runtimes for the different runs using 128 bands
whose TAU profiles have been shown in Figures 6, 9, and 11.
The runtimes for one to four images are very close but they
quickly diverge as we increase the number of images due to
the impact of the collective procedures.

Table 3 shows the weak scaling performance of the
program using the optimized co sum procedures using the
Intel compiler. The number of particles as shown in Figure 1
scales as the square of the number of bands. Therefore, when

Scientific Programming 9

Metric: time
Value: exclusive
Units: seconds

.TAU application => matrix_co_sum_serial

matrix_co_sum_serial

.TAU application

.TAU application => vector_co_sum_serial

vector_co_sum_serial

0.001

0.001

0.539 (37219.358%)

0.539 (37219.358%)

1.453 (100267.616%)

1.453 (100267.616%)

3.578 (246922.783%)

3.578 (246922.783%)

11.753 (811110.361%)

11.753 (811110.361%)

47.596 (3284726.756%)

47.596 (3284726.756%)

36.375
18.779 (51.626%)

9.794 (26.926%)
5.371 (14.766%)

2.472 (6.797%)
1.695 (4.661%)

0.004

0.004

0.959 (21948.832%)

0.959 (21948.832%)

1.016 (23261.172%)

1.016 (23261.172%)

1.674 (38315.516%)

1.674 (38315.516%)

4.399 (100706.323%)

4.399 (100706.323%)
27.483 (629190.839%)

27.483 (629190.839%)

intel_iprm_serial1.ppk - Mean
intel_iprm_serial2.ppk - Mean
intel_iprm_serial4.ppk - Mean

intel_iprm_serial8.ppk - Mean
intel_iprm_serial16.ppk - Mean
intel_iprm_serial32.ppk - Mean

Figure 6: TAUprofiling analysis of function runtimeswhen using the unoptimized co sum routines with 1, 2, 4, 8, 16, and 32 images.The .TAU
application is the main program wrapped by TAU for profiling, and .TAU application => refers to functions wrapped by TAU. This notation
is also seen in Figures 7 and 9.

Figure 7: TAU analysis of load balancing and bottlenecks for the parallel code using 32 images.

10 Scientific Programming

Sp
ee

du
p

(r
el

at
iv

e t
o

sin
gl

e i
m

ag
e)

Number of coarray images

32

16

8

4

2

1
1 2 4 8 16 32

128 bands
256 bands

512 bands
1024 bands

Figure 8: Speedup obtained with parallel co sum implementation using multiple images on a single server.

Metric: time
Value: exclusive
Units: seconds

intel_iprm_parallel1.ppk - Mean
intel_iprm_parallel2.ppk - Mean
intel_iprm_parallel4.ppk - Mean

intel_iprm_parallel8.ppk - Mean
intel_iprm_parallel16.ppk - Mean
intel_iprm_parallel32.ppk - Mean

.TAU application

.TAU application => vector_co_sum_parallel

vector_co_sum_parallel

.TAU application => matrix_co_sum_parallel

.TAU application => accumulate_2nd_moments

matrix_co_sum_parallel

38.789
18.606 (47.966%)

9.528 (24.562%)
5.096 (13.138%)

2.403 (6.195%)
1.736 (4.474%)

0.006

0.006

0.716 (11844.856%)

0.716 (11844.856%)

0.795 (13162.583%)

0.795 (13162.583%)

0.927 (15345.441%)

0.927 (15345.441%)

5.367 (88841.014%)

5.367 (88841.014%)

0.002

0.002

0.207 (8810.425%)

0.207 (8810.425%)

0.339 (14384.098%)

0.339 (14384.098%)

0.62 (26333.376%)

0.62 (26333.376%)

1.029 (43708.323%)

1.029 (43708.323%)

3.043 (129218.163%)

3.043 (129218.163%)

2.065
1.051 (50.894%)
0.471 (22.799%)
0.283 (13.687%)
0.158 (7.646%)
0.125 (6.006%)

0.672 (11126.941%)

0.672 (11126.941%)

Figure 9: TAU profiling analysis of function runtimes when using the optimized co sum routines with 1, 2, 4, 8, 16, and 32 images.

Scientific Programming 11

Sp
ee

du
p

(r
el

at
iv

e t
o

sin
gl

e i
m

ag
e)

Number of coarray images

32

16

8

4

2

1
1 2 4 8 16 32

128 bands
64 bands

256 bands

64

64

128

128

Figure 10: Speedup obtained with parallel co sum implementation using multiple images on a distributed-memory Cray cluster.

Metric: time
Value: exclusive
Units: seconds

cray_1.ppk - Mean
cray_2.ppk - Mean
cray_4.ppk - Mean

cray_8.ppk - Mean
cray_16.ppk - Mean
cray_32.ppk - Mean

main_

adv$setup_and_advance_module_

accumulate_2nd_moments$output_and_statistics_module_

896.719
449.256 (50.1%)

224.595 (25.046%)
112.369 (12.531%)

56.027 (6.248%)
27.957 (3.118%)

48.134
24.403 (50.697%)
12.215 (25.378%)
6.263 (13.012%)
3.293 (6.841%)
1.978 (4.11%)

31.599
23.662 (74.882%)
14.82 (46.902%)
17.001 (53.804%)
16.748 (53.002%)
13.47 (42.629%)

Figure 11: TAU profiling analysis of function runtimes when using the Cray native co sum routines with 1, 2, 4, 8, 16, and 32 images.

doubling the number of bands, the number of processors
must be quadrupled to have the same execution time. The
scaling efficiency for the larger problem drops because of
memory requirements; the objects fit in the heap and must
be swapped out as needed, increasing the execution time.

6. Conclusions and Future Work

We demonstrated a strategy for parallelizing legacy Fortran
77 codes using Fortran 2008 coarrays.The strategy starts with
constructing extensible tests using Fortran’s OOP features.
The tests check for regressions in accuracy and performance.
In the PRM case study, our strategy expanded two Fortran

77 codes by 10% and 40%, exclusive of the test and I/O
infrastructure. The most significant code revision involved
unrolling two nested loops that distribute particles across
images.The resulting parallel code achieves even load balanc-
ing but poor scaling. TAU identified the chief bottleneck as a
sequential summation scheme.

Based on these preliminary results, we rewrote our
co sum procedure, and the speedup showed marked
improvement. We also benchmarked the native co sum
implementation available in the Cray compiler. Our results
show that the natively supported collective procedures show
the best scaling performance even when using distributed
memory. We hope that future native support for collective

12 Scientific Programming

Table 2: Runtime in seconds for parallel using 128 bands, and different collective sum routines.

Number of Images
1 2 4 8 16 32

Intel Serial co sum 35.55 19.80 11.69 9.73 18.71 66.82
Intel Parallel co sum 37.30 19.33 10.00 6.17 4.62 5.41
Cray Native co sum 46.71 23.68 11.88 6.06 3.06 1.73

Table 3: Weak scaling performance of coarray version.

Number of images Number of bands Number of particles Particles per image Time in seconds Runtime per particle Efficiency
1 128 33024 33024 44.279 1.34 × 10

−3 1.000
4 256 131584 32896 44.953 1.37 × 10

−3 0.978
16 512 525312 32832 49.400 1.50 × 10

−3 0.893
2 256 131584 65792 101.03 1.54 × 10

−3 1.000
8 512 525312 65664 102.11 1.56 × 10

−3 0.987
32 1024 2099200 65600 129.75 1.98 × 10

−3 0.777

procedures in Fortran 2015 by all the compilers will bring
such performance to all platforms.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The initial code refactoring was performed at the Uni-
versity of Cyprus with funding from the European Com-
mission Marie Curie ToK-DEV grant (Contract MTKD-
CT-2004-014199). Part of this work was also supported by
the Cyprus Research Promotion Foundation’s Framework
Programme for Research, Technological Development and
Innovation 2009-2010 (ΔEΣMH 2009-2010) under Grant
TΠE/ΠΛHPO/0609(BE)/11. This work used resources of
the National Energy Research Scientific Computing Cen-
ter, which is supported by the Office of Science of the
U.S. Department of Energy under Contract no. DE-AC02-
05CH11231. This work also used hardware resources from
the ACISS cluster at the University of Oregon acquired by
a Major Research Instrumentation grant from the National
Science Foundation, Office of Cyber Infrastructure, “MRI-
R2: Acquisition of an Applied Computational Instrument for
Scientific Synthesis (ACISS),” Grant no. OCI-0960354. This
research was also supported by Sandia National Laboratories
a multiprogram laboratory operated by Sandia Corporation,
a LockheedMartin Company, for the National Nuclear Secu-
rity Administration under Contract DE-AC04-94-AL85000.
Portions of the Sandia contribution to this work were funded
by the New Mexico Small Business Administration and the
Office of Naval Research.

References

[1] B. L. Achee and D. L. Carver, “Creating object-oriented designs
from legacy FORTRAN code,” Journal of Systems and Software,
vol. 39, no. 2, pp. 179–194, 1997.

[2] C. D. Norton and V. K. Decyk, “Modernizing Fortran 77 legacy
codes,” NASA Tech Briefs, vol. 27, no. 9, p. 72, 2003.

[3] C. Greenough and D. J. Worth, “The transformation of legacy
software: some tools and processes,” Tech. Rep. TR-2004-012,
Council for the Central Laboratory of the Research Councils,
Rutherford Appleton Laboratories, Oxfordshire, UK, 2004.

[4] F. G. Tinetti and M. Méndez, “Fortran Legacy software: source
code update and possible parallelisation issues,”ACMSIGPLAN
Fortran Forum, vol. 31, no. 1, pp. 5–22, 2012.

[5] S. C. Kassinos and W. C. Reynolds, “A particle representa-
tion model for the deformation of homogeneous turbulence,”
in Annual Research Briefs, pp. 31–61, Center for Turbulence
Research, Stanford University, Stanford, Calif, USA, 1996.

[6] S. C. Kassinos and E. Akylas, “Advances in particle rep-
resentation modeling of homogeneous turbulence. from the
linear PRM version to the interacting viscoelastic IPRM,” in
New Approaches in Modeling Multiphase Flows and Dispersion
in Turbulence, Fractal Methods and Synthetic Turbulence, F.
Nicolleau, C. Cambon, J.-M. Redondo, J. Vassilicos, M. Reeks,
and A. Nowakowski, Eds., vol. 18 of ERCOFTAC Series, pp. 81–
101, Springer, Dordrecht, The Netherlands, 2012.

[7] S. S. Shende and A. D. Malony, “The TAU parallel performance
system,” International Journal of High Performance Computing
Applications, vol. 20, no. 2, pp. 287–311, 2006.

[8] M. Metcalf, J. K. Reid, and M. Cohen, Modern Fortran
Explained, Oxford University Press, 2011.

[9] H. Radhakrishnan, D. W. I. Rouson, K. Morris, S. Shende,
and S. C. Kassinos, “Test-driven coarray parallelization of a
legacy Fortran application,” in Proceedings of the 1st Interna-
tional Workshop on Software Engineering for High Performance
Computing in Computational Science and Engineering, pp. 33–
40, ACM, November 2013.

Research Article
Extracting UML Class Diagrams from Object-Oriented
Fortran: ForUML

Aziz Nanthaamornphong,1 Jeffrey Carver,2 Karla Morris,3 and Salvatore Filippone4

1Department of Information and Communication Technology, Prince of Songkla University, Phuket Campus,
Phuket 83120, Thailand
2Department of Computer Science, University of Alabama, Tuscaloosa, AL 35487, USA
3Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550-9610, USA
4Department of Civil and Computer Engineering, University of Rome ‘Tor Vergata’, Roma 00173, Italy

Correspondence should be addressed to Aziz Nanthaamornphong; aziz.nantha@gmail.com

Received 10 April 2014; Accepted 20 June 2014

Academic Editor: Selim Ciraci

Copyright © 2015 Aziz Nanthaamornphong et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Many scientists who implement computational science and engineering software have adopted the object-oriented (OO) Fortran
paradigm. One of the challenges faced by OO Fortran developers is the inability to obtain high level software design descriptions
of existing applications. Knowledge of the overall software design is not only valuable in the absence of documentation, it can also
serve to assist developers with accomplishing different tasks during the software development process, especially maintenance and
refactoring. The software engineering community commonly uses reverse engineering techniques to deal with this challenge. A
number of reverse engineering-based tools have been proposed, but few of them can be applied to OO Fortran applications. In
this paper, we propose a software tool to extract unified modeling language (UML) class diagrams from Fortran code. The UML
class diagram facilitates the developers’ ability to examine the entities and their relationships in the software system.The extracted
diagrams enhance softwaremaintenance and evolution.The experiments carried out to evaluate the proposed tool show its accuracy
and a few of the limitations.

1. Introduction

Computational research has been referred to as the third
pillar of scientific and engineering research, along with
experimental and theoretical research [1]. Computational
science and engineering (CSE) researchers develop software
to simulate natural phenomena that cannot be studied exper-
imentally or to process large amounts of data. CSE software
has a large impact on society as it is used by researchers
to study critical problems in a number of important appli-
cation domains, including weather forecasting, astrophysics,
construction of new physical materials, and cancer research
[2]. For example, US capabilities in science and engineering
are frequently called upon to address urgent challenges in
national and homeland security, economic competitiveness,
health care, and environmental protection [3]. Recently the

software engineering (SE) community has become more
interested in the development of software for CSE research.

In this critical type of software, Fortran is still a very
widely used programming language [4]. Due to the growing
complexity of the problems being addressed through CSE,
the procedural programming style available in a language
like Fortran 77 is no longer sufficient. Many developers have
applied the object-oriented programming (OOP) paradigm
to effectively implement the complex data structures required
by CSE software. In the case of Fortran developers, this
OOP paradigm was first emulated following an object-based
approach in Fortran 90/95 [5–7]. By including full support
for OOP constructs, the Fortran 2003 language standard
influenced the advent of several CSE packages [8–12].

One of the greatest challenges faced by CSE developers
is the ability to effectively maintain their software over its

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 421816, 15 pages
http://dx.doi.org/10.1155/2015/421816

http://dx.doi.org/10.1155/2015/421816

2 Scientific Programming

generally long lifetime [13].This challenge implies high devel-
opment and maintenance costs during a software system’s
lifetime. The difficulty of the maintenance process is affected
by at least three factors. First, most CSE developers are
not formally trained in SE. Second, some existing SE tools
are difficult to use in CSE development. In general, CSE
developers request tools to accommodate documentation,
correctness testing, and aid in design software for testability.
Unfortunately, most SE tools were not designed to be used in
the context of CSE development. Third, CSE software often
lacks the formal documentation necessary to help developers
understand its complex design. This lack of documentation
presents an even larger software maintenance challenge. The
objective of this work is to provide tool support for automat-
ically extracting UML class diagrams fromOO Fortran code.

To address this objective, we developed and evaluated the
ForUML tool. ForUML uses a reverse engineering approach
to transform Fortran source code into UML models. To
ensure flexibility, our solution uses a Fortran parser that does
not depend on any specific Fortran compiler and generates
output in the XMLMetadata Interchange (XMI) format. The
tool then displays the results of the analysis (the UML class
diagram) using the ArgoUML (http://argouml.tigris.org/)
modeling tool. We evaluated the accuracy of ForUML using
five CSE software packages that use object-oriented features
from the Fortran 95, 2003, and 2008 compiler standards.This
paper extends the workshop paper [14] by providing more
background information and more details on the transfor-
mation process in ForUML. Additionally, this paper includes
a discussion of the audience feedback during the Workshop
on Software Engineering for High Performance Computing in
Computational Science and Engineering (SE-HPCCSE’13).

The contributions of this paper are as follows:

(i) the ForUML tool thatwill helpCSEdevelopers extract
UML design diagrams from OO Fortran code to
enable them make good decisions about software
development and maintenance tasks;

(ii) description of the transformation process used to
develop ForUML, which may help other tool authors
create tools for the CSE community;

(iii) the results of the evaluation and our experiences using
ForUML on real CSE projects to highlight its benefits
and limitations;

(iv) workshop feedback that should help SE develop
practices and tools that are suitable for use in the CSE
domain.

The rest of this paper is organized as follows. Section 2
provides the background concepts related to this work.
Section 3 presents ForUML. Section 4 describes the evalua-
tion and our experiences with ForUML. Section 5 discusses
the evaluation results and limitations of ForUML. Finally,
Section 6 draws conclusions and presents future work.

2. Related Work

This section first describes important CSE characteristics that
impact the development of tool support. Next, it presents

two important concepts used in the development of ForUML,
reverse engineering and OO Fortran. Finally, because one of
the benefits of using ForUML is the ability to recognize and
maintain design patterns, the last subsection provides some
background on design patterns.

2.1. Important CSE Characteristics. This section highlights
three characteristics of CSE software development that dif-
ferentiate it from traditional software development. First,
CSE developers typically have a strong background in the
theoretical science but often do not have formal training
about SE techniques that have proved successful in other
software areas. More specifically, because the complexity of
the problems addressed by CSE generally requires a domain
expert (e.g., a Ph.D. in physics or biology) to even understand
the problem, and that domain expert generally must learn
how to develop software [15]. Wilson [16] stated that one of
the reasons why scientists tend to be less effective program-
mers is that they do not have the time to learn yet another
programming language and software tool. Furthermore, the
CSE culture, including most funding agencies, tends to view
software as the means to a new scientific discovery rather
than as a CSE instrument that must be carefully engineered,
maintained, and extended to enable novel science.

Second, some SE tools are difficult to use in a CSE devel-
opment environment [17]. CSE applications are generally
developed with software tools that are crude compared to
those used today in the commercial sector. Researchers and
scientists seek easy-to-use software that enables analysis of
complex data and visualization of complicated interactions.
Consequently, CSE developers often have trouble identifying
and using the most appropriate SE techniques for their
work, in particular as it relates to reverse engineering tasks.
Scientists interested in scientific research cannot spend most
of their time understanding and using complex software
tools. The limited interoperability of the tools and their
complexity are major obstructions to their adaptation by
the CSE community. For example, Storey noted that CSE
developers who lack formal SE training need help with
program comprehension when they are developing complex
applications [18]. To address this problem, the SE community
must develop tools that satisfy the needs of CSE developers.
These tools must allow the developers to easily perform
important reverse engineering tasks. More specifically, a
visualization-based tool is appropriate for program compre-
hension in complex object-oriented applications [19].

Third, CSE software typically lacks adequate develop-
ment-oriented documentation [20]. In fact, documentation
for CSE software often exists only in the form of subroutine
library documentation. This documentation is usually quite
clear and sufficient for library users, who treat the library
as a black box, but not sufficient for developers who need
to understand the library in enough detail to maintain it.
The lack of design documentation in particular leads to
multiple problems. Newcomers to a project must invest a
lot of effort to understand the code. There is an increased
risk of failure when developers of related systems cannot
correctly understand how to interact with the subject system.

Scientific Programming 3

In addition, the lack of documentationmakes refactoring and
maintenance difficult and error prone. CSE software typically
evolves over many years and involves multiple developers
[21], as functionality and capabilities are added or extended
[22]. The developers need to be able to determine whether
the evolved software deviates from the original design intent.
To ease this process, developers need tools that help them
identify changes that affect the design and determinewhether
those changes have undesired effects on design integrity.
The availability of appropriate design documentation can
reduce the likelihood of poor choices during themaintenance
process.

2.2. Reverse Engineering. Reverse engineering is a method
that transforms source code into a model [23]. ForUML
builds upon and expands some existing reverse engineering
work. The Dagstuhl middle metamodel(DMM) is a schema
for describing the static structure of source code [24].
DMM supports reverse engineering by representing models
extracted from source code written in most common OOP
languages. We applied the idea of DMM to OO Fortran.

The transformation process in ForUML is based on the
XMI format, which provides a standard method of mapping
an object model into XML. XMI is an open standard that
allows developers and software vendors to create, read,
manage, and generate XMI tools. Transforming the model
(Fortran code) to XMI requires use of themodel driven archi-
tecture (MDA) technology [25], a modeling standard devel-
oped by the object management group (OMG) [26]. MDA
aims to increase productivity and reuse by using separation
of concerns and abstraction. A platform independent model
(PIM) is an abstract model that contains the information to
drive one ormore platform specificmodels (PSMs), including
source code, data definition language (DDL), XML, and
other outputs specific to the target platform. MDA defines
transformations that map from PIMs to PSMs.

The basic idea of using an XMI file to maintain the meta-
data for UML diagrams was drawn from four reverse engi-
neering tools. Alalfi et al. developed two tools that use XMI
to maintain the metadata for the UML diagrams: a tool that
generates UML sequence diagrams for web application code
[27] and a tool to create UML-entity relationship diagrams
for the structured query language (SQL) [28]. Similarly,
Korshunova et al. [29] developedCPP2XMI to extract various
UML diagrams from C++ source code. CPP2XMI generates
an XMI document that describes the UML diagram, which
is then displayed graphically by DOT (part of the Graphviz
framework) [30]. Duffy and Malloy [31] created libthorin, a
tool to convert C++ source code into UML diagrams. Prior to
converting an XMI document into a UML diagram, libthorin
requires developers to use a third party compiler to compile
code into the DWARF (http://www.dwarfstd.org/), which is a
debugging file format used to support source level debugging.
In terms of Fortran, DWARF only supports Fortran 90, which
does not include all object-oriented features. This limitation
may cause compatibility problems with different Fortran
compilers. Conversely, ForUML is compiler independent and
able to generate UML for all types of OO Fortran code.

Doxygen is a documentation tool that can use Fortran
code to generate either a simple, textual representation with
procedural interface information or a graphical represen-
tation. The only OOP class relationship Doxygen supports
is inheritance. With respect to our goals, Doxygen has two
primary limitations. First, it does not support all OOP
features within Fortran (e.g., type-bound procedures and
components). Second, the diagrams generated by Doxygen
only include class names and class relationships but do not
contain other important information typically included in
UML class diagrams (e.g., methods, properties). Our work
expands upon Doxygen by adding support for OO Fortran
and by generating UML diagrams that include all relevant
information about the included classes (e.g., properties,
methods, and signatures).

There are a number of available tools (both open source
and commercial) that claim to transform OO code into
UML diagrams (e.g., Altova UModel, Enterprise Architect,
StarUML, and ArgoUML). However, in terms of our work,
these tools do not supportOOFortran. Although they cannot
directly create UML diagrams from OO Fortran code, most
of these tools are able to import themetadata describingUML
diagrams (i.e., the XMI file) and generate the corresponding
UML diagrams. ForUML takes advantages of this feature
to display the UML diagrams described by the XMI files it
generates from OO Fortran code.

This previous work has contributed significantly to the
reverse engineering tools of traditional software. ForUML
specifically offers a method to reverse engineering code
implemented with modern Fortran, including features in the
Fortran 2008 standard. Moreover, the tool was deliberately
designed to support important features of Fortran, such as
coarrays, procedure overloading, and operator overloading.

2.3. Object-Oriented Fortran. Fortran is an imperative pro-
gramming language. Traditionally, Fortran code has been
developed through a procedural programming approach that
emphasizes the procedures and subroutines in a program
rather than the data. A number of studies discuss approaches
for expressing OOP principles in Fortran 90/95. For example,
Decyk described how to express the concepts of data encapsu-
lation, function overloading, classes, objects, and inheritance
in Fortran 90 [6, 7, 32]. Moreover, several authors have
described the use and syntax of OO features in Fortran 2003
[33–35]. Table 1 presents important Fortran-specific terms
along with their OOP equivalent and some examples of
Fortran keywords.

The Fortran 2003 compiler standard added support for
OOP, including the following OOP principles: dynamic
and static polymorphism, inheritance, data abstraction, and
encapsulation. Currently, a number of Fortran compiler ven-
dors support all (or almost all) of the OOP features included
in the Fortran 2003 standard. These compilers include [36]

(i) NAG (http://www.nag.com/);
(ii) GNU Fortran (http://gcc.gnu.org/fortran/);
(iii) IBMXL Fortran (http://www-142.ibm.com/software/

products/us/en/fortcompfami/);

4 Scientific Programming

Table 1: Object-oriented Fortran terms (adapted from [12]).

Fortran OOP equivalent Fortran
keywords

Module Package Module
Derived type Abstract data type (ADT) Type
Component Attribute —
Type-bound procedure Method Procedure
Parent type Parent class —
Extend type Child class Extends

Intrinsic type Primitive type For example,
real, integer

(iv) Cray (http://www.nersc.gov/users/software/compilers/
cray-compilers/);

(v) Intel Fortran (https://software.intel.com/en-us/fortran-
compilers).

Fortran 2003 supports procedure overridingwhere devel-
opers can specify a type-bound procedure in a child type
that has the same binding name as a type-bound procedure
in the parent type. Fortran 2003 also supports user-defined
constructors that can be implemented by overloading the
intrinsic constructors provided by the compiler. The user-
defined constructor is created by defining a generic interface
with the same name as the derived type.

Algorithm 1 illustrates a snippet of Fortran 2003 code
in which the parent type shape (Line 2) is extended
by the type circle (Line 7). At runtime the compiler
invokes the type-bound procedure add (Line 18) whenever
an operator “+” (with the specified argument type) is used
in the client code. This behavior conforms to polymorphism,
which allows a type or procedure to take many object or
procedural forms.

Data abstraction is the separation between the interface
and implementation of the program. It allows developers
to provide essential information about the program to the
outside world. In Fortran, the private and public key-
words control access to members of the type. Members
defined with public are accessible to any part of the
program. Conversely, members defined with private are
not accessible to code outside the module in which the type
is defined. In the example, the component radius (Line 11)
cannot be accessed directly by other programs. Rather, the
caller must invoke the type-bound procedure set radius
(Line 13).

With the increase in parallel computing, the CSE com-
munity needs to utilize the full processing power of all
available resources. Fortran 2008 improves the performance
for a parallel processing feature by introducing the Coar-
ray model [37]. The Coarray extension allows developers
to express data distribution by specifying the relationship
between memory images/cores. The syntax of the Coarray
is very much like normal Fortran array syntax, except with
square brackets instead of parentheses. For example, the
statement integer:: m[∗] (Line 4) declares m to be an
integer that is sharable across images. Fortran uses normal

(1) module example

(2) type shape

(3) real :: area

(4) integer :: m[∗]

(5) end type

(6) ! Inheritance

(7) type, extends (shape) :: circle

(8) ! Data abstraction

(9) private

(10) ! Encapsulation

(11) real :: radius

(12) contains

(13) procedure :: set radius

(14) procedure :: add

(15) procedure :: area

(16) ! Polymorphism

(17) generic :: total => area

(18) generic :: operator(+) => add

(19) end type

(20) ! Overloads intrinsic constructor

(21) interface circle

(22) module procedure new circle

(23) end interface

(24) ! . . .

(25) end module

Algorithm 1: Samples code snippet of OOP constructs supported
by Fortran 2003.

rounded brackets () to point to data in local memory.
Although using Coarray requires the additional syntax, the
coarray has been designed to be easy to implement and to
provide the compiler scope both to apply its optimizations
within each image and among images.

2.4. Design Patterns. A design pattern is a generic solution
to a common software design problem that can be reused in
similar situations. Design patterns are made of the best prac-
tices drawn from various sources, such as building software
applications, developer experiences, and empirical studies.
Generally, we can classify the design patterns of the software
into classical and novel design patterns. The 23 classical
design patterns were introduced by the “Gang of Four” (GoF)
[38]. Subsequently, software developers and researchers have
proposed a number of novel design patterns targeted at
particular domains, for example, parallel programming [39,
40].

In general, a design pattern includes a section known
as intent. Intent is “a short statement that answers the
following questions: What does the design pattern do? What
is its rationale and intent? What particular design issues or
problem does it address?” [38]. For example, the intent of
the template method pattern requires that developers define
the skeleton of an algorithm in an operation, deferring some
steps to subclasses. Template method lets subclasses redefine
certain steps of an algorithmwithout changing the algorithm’s
structure. When using design patterns, developers have to
understand the intent of each design pattern to determine

Scientific Programming 5

whether the design pattern could provide a good solution to
a given problem.

Several researchers have proposed design patterns for
computational software implemented with Fortran. For
example, Weidmann [41] implemented design patterns to
enable sparse matrix computations on NVIDIA GPUs. They
then evaluated the benefits of the implementation and
reported that the design patterns provided a high level of
maintainability and performance. Rouson et al. [12] pro-
posed three new design patterns, called multiphysics design
patterns, to implement the differential equations, which are
integrated into multiphysics and numerical software. These
new design patterns include the semidiscrete, surrogate and
template class patterns. Markus demonstrated how some
well-known design patterns could be implemented in Fortran
90, 95, and 2003 [42, 43]. Similarly, Decyk et al. [4] proposed
the factory pattern in Fortran 95 based on CSE software.
These researchers presented the proposed pattern implemen-
tation in their particle-in-cell (PIC) methods [44] in plasma
simulation software. Decyk and Gardner [45] also described
a way to implement the strategy, template, abstract factory,
and facade patterns in Fortran 90/95.

3. ForUML

This section describes the rationale and benefits of developing
ForUML and details the transformation process used by
ForUML.

3.1. The Need for ForUML. TheCSE characteristics described
in Section 2.1 indicate that CSE developers could benefit from
a tool that creates systemdocumentationwith little effort.The
SE community typically uses reverse engineering to address
this problem.

Although there are a number of reverse engineering tools
[46] (see Section 2.2), those tools that can be applied to OO
Fortran do not provide the full set of documentation required
by developers.Therefore, we identified the need for a tool that
automatically reverses engineers OO Fortran code into the
necessary UML design documentation.

This work is primarily targeted at CSE developers who
develop OO Fortran. The ForUML tool will provide the
following benefits to the CSE community.

(1) The extracted UML class diagrams should support
software maintenance and evolution and help main-
tainers ensure that the original design intentions are
satisfied.

(2) The developers can use the UML diagrams to illus-
trate software design concepts to their teammembers.
In addition, UML diagrams can help developers visu-
ally examine relationships among objects to identify
code smells [47] in software being developed.

(3) Because SE tools generally improve productivity,
ForUML can reduce the training time and learning
curve required for applying SE practices in CSE soft-
ware development. For instance, ForUML will help
developers perform refactoring activities by allowing

Module

Procedure

Type

Component

Type-bound procedure

Statement Argument

Base type

0..∗

0..∗

0..∗

0..∗

0..∗

0..∗

0..∗

0..∗

Figure 1: The Fortran model.

them to evaluate the results of refactoring using
the UML diagrams rather than inspecting the code
manually.

Since Fortran 2003 provides all of the concepts of OOP,
tools like ForUML can help to place Fortran and other OOP
program languages on equal levels.

3.2. Transformation Process. The primary goal of ForUML
is to reverse engineering UML class diagrams from Fortran
code. By extracting a set of source files, it builds a collection
of objects associated with syntactic entities and relations.
Object-based features were first introduced in the Fortran
90 language standard. Accordingly, ForUML supports all
versions of Fortran 90 and later, which encompasses most
platforms and compiler vendors. We implemented ForUML
using Java Platform SE6 so that it could run on any client
computing systems.

The UML object diagram in Figure 1 expresses the model
of the Fortran language. The module object corresponds
to Fortran modules, that is, containers holding type and
procedure objects. The type-bound procedure and compo-
nent objects are modeled with a composition association
to instances of type. Both the procedure and type-bound
procedure objects are composed of argument and statement
objects. The generalization relation with base type object
leads to the parents in the inheritance hierarchy. When
generating the class diagram in ForUML, we consider only
the objects inside the dashed-line box that separates object-
oriented entities from the module-related entities.

Figure 2 provides an overview of the transformation
process embodied in ForUML, comprising the following
steps: parsing, extraction, generating, and importing. The
following subsections discuss each step in more detail.

3.2.1. Parsing. The Fortran code is parsed by the Open For-
tran Parser (OFP) (http://fortran-parser.sourceforge.net/).
OFP provides ANTLR-based parsing tools [48], including
Fortran grammars and libraries for performing translation
actions. ANTLR is a parser generator that can parse language
specifications in an EBNF-like syntax, a notation for formally
describing programming language syntax, and generate the
library to parse the specified language. ANTLR distinguishes
three compilation phases: lexical analysis, parsing, and tree
walking.

6 Scientific Programming

XMI

Object

Export

Object Object

Object Object

Object

Object

Object

Object

Fortran code

UML class diagram

ArgoUML

(4) Import

(1) Parsing

(2) Extraction

(3) Generating

Figure 2: The transformation process.

We have customized the ANTLR libraries to translate
particular AST nodes (i.e., type, component, and type-bound
procedure) into objects. These AST nodes are only the basic
elements ofUMLclass diagrams. In fact, aUMLclass diagram
includes classes, attributes, methods, and relations. The pars-
ing actions include two steps.The first step verifies the syntax
in the source file and eliminates source files that have syntax
problems. It also eliminates source files that do not contain
any instances of type and module. For example, ForUML
will eliminate modules that contain only subroutines or
functions. After this step, ForUML reports the results to the
user via a GUI. In the second step, the parser manipulates
all AST nodes, relying on the model described earlier.
Note that ForUML only manipulates the selected input
source files. Any associated type objects that exist in files
not selected by the user are not included in the class diagram.

3.2.2. Extraction. During the extraction process,
ForUML excerpts the objects and identifies their
relationships. ForUML determines the type of each
extracted relationship and maps each relationship
to a specific relationship’s type object. Based on
the example code in Algorithm 1, the type circle
inherits the type shape. As a consequence, the
extraction process will create a generalization object.
ForUML supports two relationship types: composition and
generalization.

(i) Composition represents the whole-part relationship.
The lifetime of the part classifier depends on the
lifetime of the whole classifier. In other words, a

composition describes a relationship in which one
class is composed of many other classes. In our
case, the composition association will be produced
when a type object refers to another type object in
the component. The association refers to a type not
provided by the user and as a result it does not appear
in the class diagram. In the UML class diagram, a
composition relationship appears as a solid line with a
filled diamond at the association end that is connected
to the whole class.

(ii) Generalization represents an is-a relationship be-
tween a general object and its derived specific objects,
commonly known as an inheritance relation. Similar
to the composition association, the generalization
association is not shown in the class diagram if the
source file of the base type is not provided by the user.
This relationship is represented by a solid line with a
hollow unfilled arrowhead that points from the child
class to the parent class.

3.2.3. Generating. We developed the XMI generator module
to convert the extracted objects into XMI notation based on
our defined rules for mapping the extracted objects to the
proper XMI notation. The rules for mapping the extracted
objects and XMI document are specified in Table 2.
In addition to these rules, we developed new stereotype
notations for the constructor, coarray constructs, type-bound
procedure overloading, and operator overloading, such
as ≪Constructor≫, ≪Coarray≫, ≪Overloading≫,
and ≪Overloading of +≫.

Scientific Programming 7

shape

area : real

m : integer

circle

≪Constructor≫ circle()

≪Overloading of total≫ area()

≪Overloading of +≫ add()

set radius()

module example

real :: area

end type

private

real :: radius

contains

end type

interface circle

procedure :: add

procedure :: area

end interface

end module

integer :: m[∗]

type shape

procedure :: set radius

generic :: total => area

module procedure new circle

type, extends (shape) :: circle

generic :: operator (+) => add
radius : real

≪Coarray≫

Figure 3: Sample code snippet of Fortran supported by ForUML.

Table 2: Fortran to XMI conversion rules.

Fortran XMI elements
Derived type UML: class
Type-bound Procedure UML: operation
Dummy argument UML: parameter
Component UML: attribute
Intrinsic type UML: DataType
Parent type UML: Generalization.parent
Extended type UML: Generalization.child

Composite UML: association
(the aggregation property as “composite”)

Figure 3 provides the sample Fortran code without proce-
dure implementation and its generated class diagram includ-
ing stereotypes.

3.2.4. Importing. To visually represent the extracted informa-
tion as a UML class diagram, we import the XMI document
into a UML modeling tool. We decided to include a UML
modeling tool directly in ForUML to prevent the user from
having to install or use a second application for visualization.
We chose to include ArgoUML as the UML visualization tool
in the current version of ForUML. We had to modify the
ArgoUML code to allow it to automatically import the XMI
document. Of course, if a user would prefer to use a different

modeling tool, he or she can manually import the generated
XMI file into any tool that supports the XMI format.

After importing the XMI file, ArgoUML’s default view of
the class diagram does not show any entities in the editing
pane. Like the WYSIWYG (“what you see is what you get”)
concept, the user needs to drag the target entity from a
hierarchical view to the editing pane. To help with this
problem, we added features so that ArgoUML will show all
entities in the editing pane immediately after successfully
importing the XMI document. Note that the XMI document
does not specify how to present the elements graphically, so
ArgoUML automatically adjusts the diagramwhen rendering
the graphics. Each graphical tool may have its own method
for generating the graphical layout of diagrams. The key
reasons why we chose to integrate ArgoUML into ForUML
are that (1) it has seamless integration properties as an
open source and Java implementation; (2) it has sufficient
documentation; and (3) it provides sufficient basic functions
required by the users (e.g., export graphics, import/export
XMI, zooming).

ForUML provides a Java-based user interface for execut-
ing the command. To create a UML class diagram, the user
performs these steps.

(1) Select the Fortran source code
(2) Select the location to save the output.
(3) Open the UML diagram.

Figures 4–7 show screenshots from the ForUML tool.
Figure 4 presents the graphical user interface (GUI) of

8 Scientific Programming

Figure 4: A graphical user interface of ForUML.

Figure 5: Selection of the Fortran code.

ForUML. Figure 5 illustrates how a user can select multiple
Fortran source files for input to ForUML. The Add button
opens a new window to select target file(s). Users can remove
the selected file(s) by selecting the Remove button. The Reset
button clears all selected files. After selecting the source
files, the user chooses the location to save the generated
XMI document (.xmi file). The Generate button activates
the transformation process. During the process, the user
can see whether each given source file is successfully parsed
or not (Figure 6). Once the XMI document is successfully
generated, the user can view the class diagram by selecting
the View button. Figure 7 illustrates the UML class diagram
that is automatically represented in the editing pane with
the ArgoUML. ArgoUML allows users to refine the diagram
and then decide to either save the project or export the XMI
document, which contains all the modified information.

4. Evaluation

To assess the effectiveness of ForUML, we conducted some
small experiments to gather data about its accuracy in
extracting UML constructs from code. This section also

Figure 6: Generating the XMI.

Figure 7: Viewing the UML class diagram.

provides some lessons learned from the studies and feedback
from the SEC-HPC’13 workshop audience.

4.1. Controlled Experiment. The following subsections pro-
vide the details of a controlled experiment to evaluate
ForUML. The accompanying website (http://aziz.students.cs
.ua.edu/foruml-eval.htm) contains all of the class diagrams.
The website also provides the ForUML executable (source
code is not available yet) for download.

4.1.1. Experimental Design. We evaluated the accuracy of
ForUML on five OO Fortran software packages by adopting
the definitions of recall and precision defined by Tonella and
Potrich [49].

(i) Recallmeasures the percentage of the various objects,
that is, type, components, type-bound procedure, and
associations, in the source code correctly identified by
ForUML.

(ii) Precisionmeasures the percentage of the objects iden-
tified by ForUML that are correct when compared
with the source code.

Scientific Programming 9

We performed the evaluations as follows.

(1) We manually inspected the source code to document
the number of relevant objects in each package. Note
that we performed this step multiple times to ensure
that the numbers were not biased by human error.

(2) We ran ForUML on each software package and
documented the number of relevant objects included
in the generated class diagram.

(3) To compute recall, we compared the number of
objects manually identified in the source code (Step
1) with the number identified by ForUML (Step 2).

(4) To compute precision, we determined whether there
were any objects produced by ForUML (Step 2) that
we did manually observe in the code (Step 1).

(5) We investigated whether the generated class diagrams
could present the design pattern classes existing in the
subject systems.

4.1.2. Subject Systems. The five software packages we
used in the experiments were (1) ForTrilinos (http://trilinos
.sandia.gov/packages/fortrilinos/); (2) CLiiME; (3) PSBLAS
(http://www.ce.uniroma2.it/psblas/); (4) MLD2P4 (http://
www.mld2p4.it/); and (5) MPFlows. We selected these soft-
ware packages because they were intentionally developed for
use in the CSE environment. Two of the software packages
(CLiiME and MPFlows) are not yet publicly available. A
description of each software package follows.

(1) ForTrilinos: ForTrilinos consists of an OO
Fortran interface to expand the use of Trilinos
(http://trilinos.sandia.gov/) into communities that
predominantly write Fortran. Trilinos is a collection
of parallel numerical solver libraries for the solution
of CSE applications in the HPC environment. To
provide portability, ForTrilinos extensively exploits
the Fortran 2003 standard’s support for interop-
erability with C. ForTrilinos includes 4 subpackages
(epetra, aztecoo, amesos, and fortrilinos), 36 files,
and 36 modules.

(2) CLiiME: community laser induced incandescence
modeling environment (CLiiME) is a dynamic sim-
ulation model that predicts the temporal response of
laser-induced incandescence from carbonaceous par-
ticles. CLiiME is implemented with Fortran 2003. It
contains 2 subpackages (model and utilities), 30 files,
and 29 modules. Additionally, this application con-
tains three design patterns, including factorymethod,
strategy, and surrogate.

(3) PSBLAS: PSBLAS 3.0 is a library for parallel sparse
matrix computations, mostly dealing with the itera-
tive solution of sparse linear system via a distributed
memory paradigm. The library assumes a data dis-
tribution consistent with a domain decomposition
approach, where all variables and equations related to
a given portion of the computation domain are
assigned to a process; the data distribution can be

specified in multiple ways allowing easy interfac-
ing with many graph partitioning procedures. The
library design also provides data management tools
allowing easy interfacing with data assembly proce-
dures typical of finite elements and finite volumes
discretization. Researchers have used versions of the
library in various application domains,mostly in fluid
dynamics and structural analysis, where it has been
successfully used to solve linear system with mil-
lions of unknowns arising in complex simulations.
The PSBLAS library version 3.0 is implemented
with Fortran 2003. PSBLAS contains 10 subpackages
(prec, psblas, util, impl, krylov, tools, serial, internals,
comm, and modules), 476 files, and 135 modules.

(4) MLD2P4: multi-level domain decomposition parallel
preconditioners package based on PSBLAS (MLD2P4
version 1.2) is a package of parallel algebraicmultilevel
preconditioners. This package provides a variety of
high-performance preconditioners for the Krylov
methods of PSBLAS. A preconditioner is an operator
capable of reducing the number of iterations needed
to achieve convergence to the solution of a linear
system; multilevel preconditioners are very powerful
tools especially suited for problems derived from
elliptic PDEs. This package is implemented with
object-based Fortran 95. The MLD2P4 contains only
one package (miprec), 117 files and 9 modules.

(5) MPFlows: multiphase flows (MPFlows) is a pack-
age developed for computational modeling of spray
applications. MPFlows is implemented with Fortran
2003/2008.The use of coarrays within this application
enables scalable CSE software package that works
without requiring the use of external parallel libraries.
MPFlows contains 2 subpackages (spray and utilities),
12 files, and 12 modules. Note that this package
contains two design patterns, including strategy and
surrogate.

4.1.3. Analysis. Table 3 shows the results of experiments. Each
cell represents the recall as a ratio between extracted data
and actual data.The results show that the recall reaches 100%
for all subpackages. Overall, there was only one error in
precision in the ForTrilinos subpackage of ForTrilinos. Our
analysis of the code identified a conditional preprocessor
statement (specified by the #if statement) as the source
of the problem. ForUML currently does not handle prepro-
cessor directives. During the experiments, only 6 files were
not parsed (0.89% of all files). The notification messages
informed the users which files were not processed and
specifically why each file could not be processed. Based on
code inspection, we found four files that do not conform to
the Fortran model described earlier (Figure 1). Those files do
not have the module keyword that is the starting point for
the transformation process. Other files exceptions were due
to ambiguous syntax; for example, Fortran keywords were
used as part of a procedure name (e.g., print, allocate).
Table 3 only shows the results for packages that have the

10 Scientific Programming

Table 3: Evaluation of ForUML: recall (extracted data/actual data).

Packages Subpackages Type Procedure Component Inheritance Composition

ForTrilinos

Epetra 16/16 304/304 17/17 12/12 2/2
Aztecoo 1/1 12/12 1/1 0/0 0/0
Amesos 1/1 7/7 1/1 0/0 0/0

ForTrilinos 48/48 11/11 139/139 4/4 4/4
CLiiME Model 23/23 167/167 61/61 32/32 32/32

PSBLAS Modules 50/50 1309/1309 160/160 34/34 28/28
prec 20/20 208/208 28/28 24/24 12/12

MLDP4 miprec 11/11 0/0 67/66 0/0 10/10
MPFlows Spray 10/10 55/55 29/29 2/2 3/3

Overall 180/180 2073/2073 503/503 108/108 91/91
(100%) (100%) (100%) (100%) (100%)

time advance(dt : real)
set quadrature(inout this : integrand,s : strategy)
get quadrature(model : integrand)
t(inout dState dt : integrand)
add(operator result : integrand)
multiply(lhs : integrand,operator result : real)

time advance(inout this : surrogate,dt : real)

runge kutta 4th

time advance(inout this : surrogate,this temp : real)

≪Coarray≫ index cell : integer▯
≪Coarray≫ p last : integer▯

≪Overloading of new particles≫ allocate particles(inout this : particles)
locate particles(inout this : particles)
all images relocate particles(inout this : particles)

assign(inout lhs : particles,rhs : local particles)
add(this : particles,add particles : local particles)
multiple(this : particles,multiple particles : real)

integrand
quadrature : strategy

surrogate

strategy

particles

time : real

interpolate(inout this : particles)

assign(rhs : integrand,inout lhs : integrand)

≪Coarray≫ p : real▯

Figure 8: The class diagram (partial): MPFlows.

type construct.We only evaluated the correctness of ForUML
current capabilities.

Figure 8 provides an example of an excerpt from a
class diagram derived from MPFlows. This diagram consists
of the implementation of two design patterns, including
strategy (inside the red box) and surrogate (inside the
blue box) patterns. In the strategy pattern, an interface
class strategy defines only the time integration method,
deferring to subclasses the implementation of the actual
quadrature schemes. The concrete strategy class (derived

class) runge kutta 4th provides the algorithm that
presents a part of the time advance method declared by
the strategy interface. Next, the surrogate pattern is very
similar in concept to an ATM. An ATM holds a surrogate
database for bank information that exists in another place.
The bank’s customer can perform transactions through the
ATM and circumvent a visit to the bank.The implementation
of the surrogate pattern introduces the surrogate
abstract class (virtual class in C++). The class integrand
has a component of class strategy meaning that

Scientific Programming 11

Factory Method

conductionEnergy
scatteringEnergy

absorptionEnergy

annealingEnergy

object

stamped : logical

Surrogate

Surrogate integrand

quadrature : strategy

Strategy strategy

ienergy

coatingEnergy

extinctionEnergy

sublimationexEnergy

radiationEnergy

sublimationEnergy
oxidationEnergy

thermionicEnergy

particle

energy : energyModels

OxidationEnergy(inout this : particle)

SublimationEnergy(inout this : particle)

AbsorptionEnergy(inout this : particle)

ConductionEnergy(inout this : particle)

AnnealingEnergy(inout this : particle)

RadiationEnergy(inout this : particle)

ScatteringEnergy(inout this : particle)

ThermionicEnergy(inout this : particle]

ExtinctionEnergy(inout this : particle)

CoatingEnergy(inout this : particle)

SublimationexEnergy(inout this : particle]

DmOxidation(inout this : particle)

DmSublimation(inout this : particle)

DmSublimationex(inout this : particle)

assign(inout lhs: particle,rhs : integrand)

Temperature(this : particle)

time(this : particle)

Energy(inout this : conductionEnergy,properties : physical properties,laser : laser properties)

≪Constructor≫ conductionEnergy(filename : character)

≪Constructor≫ absorptionEnergy(filename : character)

Energy(inout this : annealingEnergy,properties : physical properties,laser: laser properties)

Dmdt(inout this : annealingEnergy,properties : physical properties,laser : laser properties)

Dmd(inout this : coatingEnergy,properties : physical properties,laser : laser properties)

≪Constructor≫ coatingEnergy(filename : character)

Energy(inout this : extinctionEnergy,properties : physical properties,laser : laser properties)

Dmdt(inout this : extinctionEnergy,properties : physical properties,laser : laser properties)

≪Constructor≫ extinctionEnergy(filename : character)

Energ(inout this : sublimationexEnergy,properties : physical properties,laser : laser properties)

Dmdt(inout this : sublimationexEnergy,properties : physical properties,laser : laser properties)

≪Constructor≫ sublimationexEnergy(filename : character)

Energ(inout this : scatteringEnergy,properties : physical properties,laser : laser properties)

Dmdt(inout this : scatteringEnergy,properties : physical properties,laser : laser properties)

≪Constructor≫ scatteringEnergy(filename : character)

Energ(inout this : ienergy,properties : physical properties,laser : laser properties)

Dmdt(inout this : ienergy,properties : physical properties,laser : laser properties)

dm : real

Energ(inout this : sublimationEnergy,properties : physical properties,laser : laser properties)

Dmdt(inout this : sublimationEnergy,properties : physical properties,laser : laser properties)

≪Constructor≫ sublimationEnergy(filename : character)

Energ(inout this : thermionicEnergy,properties : physical properties,laser : laser properties)

Dmdt(inout this : thermionicEnergy,properties : physical properties,laser : laser properties)

≪Constructor≫ thermionicEnergy(filename : character)

Set quadrature(inout this : integrand,s : strategy

Get quadrature(model : integrand)

t(inout dState dt : integrand)

add(operator result : integrand)

multiply(lhs : integrand,operator result : real)

assign(rhs : integrand,inout lhs : integrand)

runge kutta 4th
runge kutta 2nd

Energ(inout this : radiationEnergy,properties : physical properties,laser : laser properties)

Dmdt(inout this : radiationEnergy,properties : physical properties,laser : laser properties)

≪Constructor≫ radiationEnergy(filename : character)

Energ(inout this : oxidationEnergy,properties : physical properties,laser : laser properties)

Dmdt(inout this : oxidationEnergy,properties : physical properties,laser : laser properties)

≪Constructor≫ oxidationEnergy(filename : character)

properties : physical properties

laser : laser properties

t(inout local d dt : particle)

add(lhs : particle,local sum : integrand)

Diameter(this : particle)

Dcoat(this : particle)

output state(inout this : particle,suffix : character)

Dmdt(inout this : conductionEnergy,properties : physical properties,laser : laser properties)

Dmdt(inout this : absorptionEnergy,properties : physical properties,laser : laser properties)

Energ(inout this : absorptionEnergy,properties : physical properties,laser : laser properties)

≪Constructor≫ annealingEnergy()

time advance(inout this : surrogate,this half : real)
time advance(inout this : surrogate,this temp : real)

time advance(inout this : surrogate,dt : real)

Energ(inout this : coatingEnergy,properties : physical properties,laser : laser properties)

time advanced(dt : real)

Figure 9: The class diagram (partial): CLiiME.

the surrogate allows us to pass an integrand child
class dummy argument to the type-bound procedures
implemented in runge kutta 4th. The class particle
contains components and type-bound procedures computing
the energy of the particle. In Fortran, each dummy argument
has three possible intent attributes including IN, OUT,
and INOUT. Therefore, each parameter, which is passed to
the operation in the diagram, needs to be specified with
a specific intent. In the class diagram, the keyword IN is
omitted because ArgoUML assumes that a parameter has the
IN by default.

4.2. Experience. The following subsections describe our
experiences using ForUML on a real CSE project and discuss
feedback on ForUML we received during the SE-HPCCSE’13
workshop.

4.2.1. CLiiME Project. ForUML played a significant role in
the development of the CLiiME package [50].The developers
used ForUML to validate the design after each code refac-
toring process. The developers compared the class diagram

produced by ForUMLwith the originally agreed upon design.
After comparison, they determined instances in which the
code implementation deviated from the design. Instead of
inspecting the source code manually, the developers were
able to make the comparison/decision with less effort. Also,
the developers were able to use the extracted UML diagrams
to identify code smells, places where the code might induce
some defects in the future. For instance, we inspected the
UML class diagrams and identified places where classes
had too many type-bound procedure or procedures with
too many arguments, all of which we corrected during the
refactoring process.

This project also deployed three design patterns. Figure 9
presents the UML class diagram of the CLiiME project,
including the strategy (inside the red box), surrogate (inside
the blue box), and factory method (inside the green box)
patterns.The factory method pattern indicates encapsulating
the subclass selection (∗Energy class) andobject construction
processes into one class (ienergy). We used ForUML to
confirm the correct implementation of those three design
patterns rather than reviewing the source code. In addition
to helping CLiiME developers, ForUML also influenced the

12 Scientific Programming

Figure 10: Example of larger classes.

development of PSBLAS version 3.1, by allowing a compre-
hensive and unitary view of the project.

The UML diagram must be properly arranged to foment
design comprehension. A large class diagram that contains
several classes and relationships requires additional effort
from users’ as they try to assimilate all the information.
Unfortunately, the built-in function layout in ArgoUML does
not refine the layout in diagrams that contain numerous
elements. Although ArgoUML provides the ability to zoom
in or zoom out, large diagrams can still be difficult to
view. Figure 10 shows an example of a UML class diagram
generated by ForUML that includes large classes. These
problems can be addressed by dividing the collection of
classes into smaller packages, which should improve the
diagram’s understandability. Another option is to provide
different settings for the information included in the class
diagrams, allowing a user to create diagrams with the level
of detail required for a particular task. This option can ease
the development and/or maintenance process by eliminating
irrelevant information.

4.2.2. SEC-HPC’13 Workshop. In addition to our own expe-
riences, we can make some observations based on the
discussions during the SE-HPCCSE’13 workshop regarding
the use of UML in CSE applications. UML helps partition
the coding workloads in large projects. For larger projects,
especially libraries, it is a matter of dwelling on the “use
cases” and designing an interface perhaps with UML. Then
feature coding tasks can be distributed to other developers.
In contrast, CSE has been reluctant to adopt object-oriented
design,whereas in other standardmathematics, linear algebra
design bears some similarly to OOP considering larger
mathematical structures as objects. Many audiences believed
that better SE practices, including adoption ForUML could
lead to a better adaptation of codes to multiple architectures.
However, one reason for the lack of advance SE in CSE is that
CSE developers try to use UML for everything. The audience
suggested that other domain specific languages (DSLs) could
be useful targets for generating information from legacy code.
Further, during the workshop’s discussion, there were some
questions that inspired us to study the impact of ForUML
on the CSE community. We believe that we can find answers
to these questions by conducting human-based studies of

ForUML. Below is a list of questions that arose during the
workshop.

(i) Is UML really useful for CSE developers?
(ii) Can ForUML and UML support larger application

sizes and multiple developers?
(iii) Many graphical design models serve multiple pur-

poses. Some users can convey a high-level design for
discussion, and others want to display the low-level of
design. In the context of CSE software development,
does UML serve all these needs well?

(iv) Which aspects of the CSE application should be
documented in the UML?

5. Discussion

Based on the experimental results, ForUML provided quite
precise outputs. ForUMLwas able to automatically transform
the source code into correct UML diagrams. To illustrate
the contributions of ForUML, Table 4 compares ForUML
with other visualization-based tools [18] that have features to
support program comprehension tasks. Based on this table,
one of the unique contributions of ForUML is its ability to
reverse engineered OO Fortran code. ForUML integrates the
capabilities of ArgoUML to visually display the class diagram.

We believe that ForUML can be used by three types of
people during the software development process, especially
for CSE software.

(1) Stakeholders or customers: ForUML generates docu-
mentation that describes the high-level structure of
the software. This documentation should make com-
munication between developers and the stakeholders
or customers more efficient.

(2) Developers: ForUML helps developers extract design
diagrams from their code. Developers might need
to validate whether the code under development
conforms to the original design. Similarly, when
developers refactor the code, they need to ensure that
the refactoring does not break exiting functionality or
decompose the architecture.

(3) Maintainers: they need a document that provides
adequate design information to enable them to make
good decisions. In particular, maintainers who are
familiar with other OOP languages can understand a
system implemented with OO Fortran.

However, ForUML has a few limitations that must be
addressed in the future as follows.

(1) Provide more relationships: two other relationships
that we frequently found in the Fortran applications
are as follows.

(i) Dependency: in practice, dependency is
most commonly used between elements (e.g.,
packages, folders) that contain other elements
located in different packages. The relationship

Scientific Programming 13

Table 4: A brief comparison between UML tools.

Features Rose enterprise [53] Doxygen Libthorin ForUML + ArgoUML Rigi [54]
Visualization UML Graph UML UML Graph
Reverse eng. (Fortran) No No Ver.90 Yes No
Hide/show detail Yes No Yes No No
Inheritance Yes No Yes Yes No
Layout A/M A A A/M A
Note: automatically adjusted (A) and manually adjusted (M).

is represented by a dashed line with an arrow
pointing toward a class that is an argument in a
procedure that is bound to another class.

(ii) Realization: it refers to the links between either
the interface or abstract and its implementing
classes. A dashed line is connected to an open
triangle for a type that extends an abstract type.

Note that although the current version of ForUML
does not support these relation types, the users can
edit the relationships in the ArgroUML after import-
ing the XMI document.

(2) Incorporation of other UML visualization tools: cur-
rently, ForUML integrates ArgoUML as the CASE
tool. We plan to build different interfaces to inte-
grate with other UML tools, so users can select
their tool of preference. Although many UML CASE
tools support the use of XMI documents, there are
several XMI versions defined by object management
group (OMG) and different tools support different
versions.We also plan to develop a plugin for Photran
(http://www.eclipse.org/photran/), to allow users to
automatically generate UML diagrams within the
IDE.

(3) Generate UML sequence diagram: a single diagram
does not sufficiently describe the entire software
system. Sequence diagrams are widely used to rep-
resent the interactive behavior of the subject system
[51]. To create UML sequence diagrams, we would
have to augment the ForUML extractor to build the
necessary relationships among objects necessary for
the generator to create the corresponding XMI code.

6. Conclusion and Future Work

This paper presents and evaluates the ForUML tool that can
be used for extracting UML class diagram from Fortran code.
Fortran is one of the predominant programming languages
used in the CSE software domain. ForUML generates a visual
representation of software implemented inOO Fortran in the
same way as is done in other, more traditional OO languages.
Software developers and practitioners can use ForUML to
improve the program comprehension process. ForUML will
help CSE developers adopt better SE approaches for the
development of their software. Similarly, software engineers
who are not familiar with scientific principles may be able to
understand a CSE software system just based on information

in the generated UML class diagrams. Currently, ForUML
can produce an XMI document that describes the UML class
diagrams.The tool supports the inheritance and composition
relationships that are the most common relationships found
in software systems. The tool integrates ArgoUML, an open
source UML modeling tool to allow users to view and
modify the UML diagramswithout installing a separate UML
modeling tool.

We have run ForUML on five CSE software packages
to generate class diagrams. The experimental results showed
that ForUML generates highly accurate UML class diagrams
from Fortran code. Based on the UML class diagrams
generated by ForUML, we identified a few limitations of its
capabilities. To augment the results of experiments, we have
created a website that contains all of the diagrams generated
by ForUML along with a video demonstrating the use of
ForUML. We plan to add more diagrams to the website
as we run ForUML on additional software packages. We
believe that ForUML conforms to Chikofsky and Cross II
[52] objectives of reverse engineering, which are identified
as follows: (1) to identify the system’s component and their
relationships and (2) to represent the system in another form
or at a higher level of abstraction.

In the future, we plan to address the limitations we have
identified. We also plan to conduct human-based studies
to evaluate the effectiveness and usability of ForUML by
other members of the CSE software developer community.
To encourage wider adoption and use of ForUML, we are
investigating the possibility of releasing it as open source
software. This direction can help us to get more feedback
about the usability and correctness of the tool. Demonstrating
that ForUML is a realistic tool for large-scale computational
software will make it an even more valuable contribution to
both the SE and CSE communities.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors gratefully thank Dr. Damian W. I. Rouson, at
Stanford University, and Dr. Hope A. Michelsen, member of
the Combustion Chemistry Department at Sandia National
Laboratories, for their useful comments and helpful discus-
sions which were extremely valuable.

14 Scientific Programming

References

[1] National Science Foundation, Cyberinfrastructure for 21st
Century Science and Engineering Advanced Computing Infra-
structure (Vision and Strategies Plan), 2012, http://www.nsf.gov/
pubs/2012/nsf12051/nsf12051.pdf.

[2] J. C. Carver, “Software engineering for computational science
and engineering,”Computing in Science and Engineering, vol. 14,
no. 2, Article ID 6159198, pp. 8–11, 2011.

[3] J. H. Marburget, “Report of the high-end computing revital-
ization task force (hecrtf),” Tech. Rep., National Coordination
Office for Information Technology Research and Development,
2004.

[4] V. K. Decyk, C. D. Norton, and H. J. Gardner, “Why fortran?”
Computing in Science and Engineering, vol. 9, no. 4, Article ID
4263269, pp. 68–71, 2007.

[5] E. Akin,Object-Oriented Programming via Fortran 90/95, Cam-
bridge University Press, Cambridge, UK, 2003.

[6] V. K. Decyk, C. D. Norton, and B. K. Szymanski, “Expressing
object-oriented concepts in Fortran 90,” ACM SIGPLAN For-
tran Forum, vol. 16, no. 1, pp. 13–18, 1997.

[7] V. K. Decyk, C. D. Norton, and B. K. Szymanski, “How to
support inheritance and run-time polymorphism in Fortran
90,” Computer Physics Communications, vol. 115, no. 1, pp. 9–17,
1998.

[8] D. Barbieri, V. Cardellini, S. Filippone, and D. Rouson, “Design
patterns for scientific computations on sparse matrices,” in
Proceedings of the International Conference on Parallel Processing
(Euro-Par ’11), vol. 7155 of LectureNotes in Computer Science, pp.
367–376, Springer, Berlin, Germany, 2012.

[9] S. Filippone and A. Buttari, “Object-oriented techniques for
sparse matrix computations in Fortran 2003,” ACM Transac-
tions on Mathematical Software, vol. 38, no. 4, article 23, 2012.

[10] K. Morris, D. W. I. Rouson, M. N. Lemaster, and S. Filippone,
“Exploring capabilities within ForTrilinos by solving the 3D
Burgers equation,” Scientific Programming, vol. 20, no. 3, pp.
275–292, 2012.

[11] D. W. Rouson, J. Xia, and X. Xu, “Object construction and
destruction design patterns in fortran 2003,” Procedia Computer
Science, vol. 1, no. 1, pp. 1495–1504, 2003.

[12] D. W. I. Rouson, H. Adalsteinsson, and J. Xia, “Design patterns
for multiphysics modeling in Fortran 2003 and C++,” ACM
Transactions on Mathematical Software, vol. 37, no. 1, article 3,
2010.

[13] Z.Merali, “Computational science: ...Error,”Nature, vol. 467, no.
7317, pp. 775–777, 2010.

[14] A. Nanthaamornphong, K. Morris, and S. Filippone, “Extract-
ing uml class diagrams from object-oriented fortran: Foruml,”
in Proceedings of the 1st International Workshop on Software
Engineering for High Performance Computing in Computational
Science and Engineering (SE-HPCCSE ’13), pp. 9–16, Denver,
Colo, USA, November 2013.

[15] J. C. Carver, “Report: the second international workshop on
software engineering for CSE,” Computing in Science and
Engineering, vol. 11, no. 6, Article ID 5337640, pp. 14–19, 2009.

[16] G. V. Wilson, “What should computer scientists teach to
physical scientists and engineers?” IEEE Computational Science
& Engineering, vol. 3, no. 2, pp. 46–55, 1996.

[17] J. C. Carver, R. P. Kendall, S. E. Squires, and D. E. Post, “Soft-
ware development environments for scientific and engineering
software: a series of case studies,” in Proceedings of the 29th

International Conference on Software Engineering (ICSE ’07), pp.
550–559, Minneapolis, Minn, USA, May 2007.

[18] M.-A. Storey, “Theories, tools and researchmethods in program
comprehension: past, present and future,” Software Quality
Journal, vol. 14, no. 3, pp. 187–208, 2006.

[19] M. J. Pacione, “Software visualisation for object-oriented pro-
gram comprehension,” in Proceedings of the 26th International
Conference on Software Engineering (ICSE ’04), pp. 63–65, May
2004.

[20] J. Segal, “Professional end user developers and software devel-
opment knowledge,” Tech. Rep., OpenUniversity, England, UK,
2004.

[21] M. T. Sletholt, J. E. Hannay, D. Pfahl, and H. P. Langtangen,
“What dowe know about scientific software development’s agile
practices?” Computing in Science and Engineering, vol. 14, no. 2,
Article ID 6081842, pp. 24–36, 2012.

[22] R. N. Britcher, “Re-engineering software: a case study,” IBM
Systems Journal, vol. 29, no. 4, pp. 551–567, 1990.

[23] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software
Development Process, AddisonWesley Longman, Boston, Mass,
USA, 1999.

[24] T. C. Lethbridge, S. Tichelaar, and E. Ploedereder, “The dagstuhl
middle metamodel: a schema for reverse engineering,” Elec-
tronic Notes in Theoretical Computer Science, vol. 94, pp. 7–18,
2004.

[25] OMG, OMG Model Driven Architecture (MDA), 1997,
http://www.omg.org/mda/.

[26] Object Management Group (OMG), 1997, http://www.omg.org.
[27] M. H. Alalfi, J. R. Cordy, and T. R. Dean, “Automated reverse

engineering of UML sequence diagrams for dynamic web appli-
cations,” in Proceedings of the IEEE International Conference
on Software Testing, Verification, and Validation Workshops
(ICSTW ’09), pp. 287–294, Denver, Colo, USA, April 2009.

[28] M. H. Alalfi, J. R. Cordy, and T. R. Dean, “SQL2XMI: reverse
engineering of UML-ER diagrams from relational database
schemas,” in Proceedings of the 15th Working Conference on
Reverse Engineering (WCRE ’08), pp. 187–191, Antwerp, Bel-
gium, October 2008.

[29] E. Korshunova, M. Petkovic, M. van den Brand, and M.
Mousavi, “CPP2XMI: reverse engineering of UML class,
sequence, and activity diagrams fromC++ source code,” in Pro-
ceedings of the 13th Working Conference on Reverse Engineering
(WCRE ’06), pp. 297–298, Benevento, Italy, October 2006.

[30] E. Gansner, E. Koutsofios, S. North, and K.-P. Vo, “A technique
for drawing directed graphs,” IEEE Transactions on Software
Engineering, vol. 19, no. 3, pp. 214–230, 1993.

[31] E. B. Duffy and B. A. Malloy, “A language and platform-
independent approach for reverse engineering,” in Proceedings
of the 3rd ACIS International Conference on Software Engineer-
ing Research,Management andApplications (SERA ’05), pp. 415–
422, Pleasant, Mich, USA, August 2005.

[32] V. K. Decyk, C. D. Norton, and B. K. Szymanski, “How to
express C++ concepts in Fortran 90,” Scientific Programming,
vol. 6, no. 4, pp. 363–390, 1997.

[33] W. S. Brainerd, Guide to Fortran 2003 Programming, Springer,
1st edition, 2009.

[34] M. Metcalf, J. Reid, and M. Cohen, Modern Fortran Explained,
Oxford University Press, New York, NY, USA, 4th edition, 2011.

[35] D. Rouson, J. Xia, and X. Xu, Scientific Software Design: The
Object-Oriented Way, Cambridge University Press, New York,
NY, USA, 1st edition, 2011.

Scientific Programming 15

[36] I. D. Chivers and J. Sleightholme, “Compiler support for the
Fortran 2003 and 2008 Standards Revision 11,” ACM SIGPLAN
Fortran Forum, vol. 31, no. 3, pp. 17–28, 2012.

[37] J. Reid, “Coarrays in the next fortran standard,” SIGPLAN
Fortran Forum, vol. 29, no. 2, pp. 10–27, 2010.

[38] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, Longman Publishing, Boston, Mass, USA, 1995.

[39] T. Mattson, B. Sanders, and B. Massingill, Patterns for Parallel
Programming, Addison-Wesley Professional, 1st edition, 2004.

[40] J. L. Ortega-Arjona, Patterns for Parallel Software Design, John
Wiley & Sons, 1st edition, 2010.

[41] M. Weidmann, “Design and performance improvement of a
real-world, object-oriented C++ solver with STL,” in Scien-
tific Computing in Object-Oriented Parallel Environments, Y.
Ishikawa, R. Oldehoeft, J. Reynders, andM.Tholburn, Eds., vol.
1343 of Lecture Notes in Computer Science, pp. 25–32, Springer,
Berlin, Germany, 1997.

[42] A. Markus, “Design patterns and Fortran 90/95,” ACM SIG-
PLAN Fortran Forum, vol. 25, no. 1, pp. 13–29, 2006.

[43] A.Markus, “Design patterns and Fortran 2003,”ACMSIGPLAN
Fortran Forum, vol. 27, no. 3, pp. 2–15, 2008.

[44] H. Neunzert, A. Klar, and J. Struckmeier, “Particle methods:
theory and applications,” Tech. Rep. 95-113, Fachbereich Math-
ematik, Universitat Kaiserslautern, Kaiserslautern, Germany,
1995.

[45] V. K. Decyk andH. J. Gardner, “Object-oriented design patterns
in Fortran 90/95: mazev1, mazev2 and mazev3,” Computer
Physics Communications, vol. 178, no. 8, pp. 611–620, 2008.

[46] H. A.Muller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R. Tilley,
and K.Wong, “Reverse engineering: a roadmap,” in Proceedings
of the Conference onThe Future of Software Engineering, pp. 47–
60, Limerick, Ireland, June 2000.

[47] M. Fowler, Refactoring: Improving the Design of Existing Code,
Addison-Wesley Longman, Boston, Mass, USA, 1999.

[48] T. J. Parr and R. W. Quong, “ANTLR: a predicated-LL(k) parser
generator,” Software: Practice and Experience, vol. 25, no. 7, pp.
789–810, 1995.

[49] P. Tonella and A. Potrich, “Reverse engineering of the UML
class diagram from C++ code in presence of weakly typed
containers,” in Proceedings of the IEEE International Conference
on Software Maintenance (ICSM ’01), pp. 376–385, Florence,
Italy, November 2001.

[50] A. Nanthaamornphong, K. Morris, D. W. I. Rouson, and H.
A. Michelsen, “A case study: agile development in the com-
munity laser-induced incandescence modeling environment
(CLiiME),” in Proceedings of the 5th International Workshop on
Software Engineering for Computational Science and Engineer-
ing, pp. 9–18, San Francisco, Calif, USA, May 2013.

[51] L. C. Briand, Y. Labiche, and Y. Miao, “Towards the reverse
engineering of UML sequence diagrams,” in Proceedings of the
10th Working Conference on Reverse Engineering, pp. 57–66,
Victoria, Canada, November 2003.

[52] E. J. Chikofsky and J. H. Cross II, “Reverse engineering and
design recovery: a taxonomy,” IEEE Software, vol. 7, no. 1, pp.
13–17, 1990.

[53] IBM, Rational Rose Enterprise, 2013, http://www-03.ibm.com/
software/products/en/enterprise/.

[54] Department of Computer Science University of Victoria, Rigi,
2001, http://www.rigi.cs.uvic.ca/rigi/blurb/rigi-blurb.html.

