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Active noise control generally aims at reducing an unwanted
and unpleasant sound referred to as the noise. The general
idea is very simple. However, there are many problems
related to the acoustic phenomena as well as control limita-
tions. Thus, the problem is still exciting and attracts attention
of a number of scientists originating from different scientific
disciplines. Rapid development of technology and extensive
research allow for manufacturing sensors and actuators
of more advantegous properties, designing more robust
and effective algorithms, and finally performing succesful
applications in different noise pollutted areas.

The aim of the special issue is just to present recent
advances in active noise control and its applications. I would
like to thank all the authors who accepted my invitation and
decided to share their work with a wide circle of readers,
what the open-access journal offers. The papers published
in this issue were peer-reviewed by independent experts. I
appreciate help of the experts very much. Even four reviews
per paper where made. Therefore, the eight papers which are
finally included in the issue are of very high quality. Below I
am barely announcing main topics discussed in the issue.

A novel audiointegrated approach to achieving active
noise control for incubators is proposed by L. Liu et al.
The system reduces excessive broadband noise in neonatal
care units and in incubators, which is generally due to
ventillation or breathing equipment. Therefore, the system
tries to protect against auditory damage to preterm infants
both due to short-term and long-term effects. At the same
time, the system recreates prenatal ambience for premature
infants. In particular, an efficient robust nonlinear FXLMS-
based adaptive control algorithm is presented. It allows for
stable operation of the ANC system in the presence of
impulsive interference in the input.

An integrated control system is designed by L. Wang
et al. to improve bass reproduction of the audio equippment

and cancel engine noise in the cabins of automobiles. The
problem is difficult because of the frequency overlap of the
bass audio sound and engine noise. On the other hand, small
volume of the cabin and poor low-frequency performance
of loudspeakers need special approach. The proposed system
equalizes the engine-noise harmonics based on the bass
information to enhance the low-frequency part of the audio
signal. The system responses also to variations of engine-
noise frequencies. Multifrequency approaches to active noise
equalization with frequency-sampling filters are used.

A system with a pair of loudspeakers is designed by D.
Bismor to create a virtual unidirectional sound source. It
enables successful cancellation of the acoustic feedback effect
and, if supplemented by an active control system, efficient
cancellation of the acoustic noise propagating downstream.
Both fixed parameter and adaptive solutions are used. In
the latter case, the problem of a hazard in tuning the
virtual unidirectional sound source and active noise control
algorithm is disclosed and guidelines for scheduling those
operations are given. The overall system has been validated
for noise control in an acoustic duct.

An active noise control system with online modelling of
time-varying acoustic paths is designed by J. Yuan. Contrary
to most publications, any external signal and thus persistent
excitation is not required. Instead, orthogonal adaptation is
used to cancel the acoustic feedback in order to recover the
reference signal. The proposed system’s behavior is stable
and converges quickly even in case of significant and rapid
changes of the acoustic path inside a duct.

A Hinf optimal control system with a pair of loudspeak-
ers is proposed by Y. Kobayashi and H. Fujioka. As a fixed
parameter solution it requires significantly less computations
than an adaptive solution and still recovers benefits of the
Swinbanks’ source. However, by considering the pair of
loudspeakers as two independent actuators, it gives more
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flexibility and better noise control results are possible. The
system is suitable for ventilation ducts in houses.

A modification of the FXLMS algorithm is proposed by
S. P. Lovstedt et al. in order to compensate for its frequency
dependent convergence behavior, which is particularly severe
for plants responding with high peaks and deep valleys.
Magnitude of the frequency response of the secondary path
model is modified using a genetic algorithm to equalize
eigenvalues of the autocorrelation matrix of the filtered-
reference signal, while preserving phase of the frequency
response of the model. As a result, higher attenuation and
faster convergence are observed. In the experiments, swept
tone noise and multiple tone noise, important in terms of
many practical applications, are considered.

An active sound intensity probe consisting of a sound
hard tube terminated by aloudspeaker and equipped with
a pair of microphones is designed by T. Kletschkowski and
D.Sachau. Active control techniques are used to generate
acoustic free field conditions in the tube. Thus, the probe
acts as a local sound absorber and therefore the effect of
the device on a source is reduced. The probe can be used
for sound source localization, especially in weakly damped
interior noise fields at low frequencies.

A state-feedback control system is proposed by V. Lhuil-
lier et al. in order to reduce sound transmission through a
panel excited by an acoustic wave. The effect of decreasing
eigen frequencies of high-radiation modes and thus reducing
vibration amplitudes at resonance frequencies by adding
active modal masses is used. This effect can also be consid-
ered as virtual transformations of structures that can be used
in the field of sound quality.

I believe that this special issue will be found interesting
by the active noise control community.

Marek Pawelczyk
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Excessive noise in neonatal care units and inside incubators can have a number of detrimental effects on an infant’s health. We
proposed a novel, audio-integrated approach to achieve active noise control (ANC) for infant incubators. We also presented
the implementation of the robust, nonlinear filtered-X least mean M-estimate algorithm, for reducing impulsive interference
in incubators. The healthcare application is further enhanced by integrating the “womb effect”, that is, by using intrauterine and
maternal heart sounds, proven to be beneficial to infant health, for soothing the infant and masking the residual noise. A computer
model for audio-integrated noise cancellation utilizing experimentally measured transfer functions is developed for simulations
using real medical equipment noise. The simulation of the audio integrated ANC system produced optimal results and the system
was further validated by real-time experiments to be robust and efficient.

Copyright © 2008 Lichuan Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Neonatal intensive care units (NICU) house and treat
premature infants until their organ systems are considered
fully developed. These infants are enclosed in incubators,
as shown in Figure 1, that monitor their vital statistics and
ensure that environmental conditions are maintained at
optimum levels. The incubators create the precise and con-
sistent environment [1], such as temperature and humidity,
controlled by microprocessor. However, according to the
American Academy of Pediatrics [2], high noise levels are
common in the NICU and in incubators, causing consid-
erable auditory damage to preterm infants [3]. The noise
is typically due to ventilation or breathing equipment and
human activity. Figure 2 is an example of the real incubator
noise in time domain with segments marked by impulse due
to respiratory pumps and the background equipment hum.
The consequences of exposing infants to incubator noise
vary from short-term effects such as sleep disturbance to
long-term effects such as delayed speech development. To
reduce medical equipment noise and external noise from
the NICU, passive control systems such as absorbers [4] are
not always efficient. This puts forth a need for an active
noise control (ANC) system that can cancel noise inside

the incubator adaptively [5, 6]. Another approach to create
a healthier ambience in NICUs is the introduction of
intrauterine audio into the incubator that allows the infant to
feel comforted. Intrauterine audio is a combination of low-
frequency sounds from the womb and includes the sound of
the muffled heartbeat which can be heard distinctly in the
background.

However, neither playing soothing audio nor applying
an ANC system is individually efficient creating the need
for an integrated system that can reduce harmful equipment
noise while simultaneously playing beneficial intrauterine
audio. To achieve this end, this paper proposes an innovative
application for neonatal healthcare—the intrauterine acous-
tics embedded active noise controller. The integrated system
aims at recreating prenatal ambience for premature infants
who are required to spend extended periods enclosed inside
infant incubators.

Section 2 of the paper discusses the positive effects of
playing uterine audio to premature infants. These positive
effects are both medical and psychological, and reflect
results from studies carried out over the last three decades.
Section 3 focuses on developing an ANC system utilizing
the filtered-X least mean square (FXLMS) algorithm for
cancellation of broadband noise using transfer functions
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Figure 1: Mobile incubator unit: Giraffe Incubator by GE Health-
care.
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Figure 2: Example wave form of incubator noise, sampling
frequency fs = 4 KHz.

measured from the real GE Healthcare Girraffe incubator.
The laboratory setup was modeled using the same incubator
shown in Figure 1. Section 4 introduces the novel filtered-
X least mean M-estimate (FXLMM) algorithm that is
found to be statistically robust in the presence of impulsive
interference in the input. Section 5 outlines the audio-
integration algorithm that introduces intrauterine audio
and allows it to be played simultaneously while the ANC
system is in operation. This integration serves two important
purposes—it provides a potential health benefit for infants
by utilizing womb sounds as heard by the infant and also
masks the residual noise after noise cancellation has been
performed. The algorithm is intended to prevent interference
from the soothing audio on the performance of the ANC
algorithm and ensures that the audio is not cancelled
by the ANC system. The audio interference cancellation
filter also performs online modeling of the secondary
path to enhance the performance of the ANC system.
Section 6 shows the simulation and real time experiment
results.

2. A STUDY OF NEONATAL RESPONSE
TO UTERINE SOUNDS

This section briefly reviews that the numerous benefits
intrauterine audio has on neonatal growth from [5]. It is
widely accepted that the brain of the fetus develops while
it is inside the womb. An infant’s ears begin to develop
when it is around eight weeks old and can be considered
fully developed by the twenty-fourth week. The development
of the inner ears and the nerve endings from the brain is
so advanced that the baby can hear the muffled sounds of
the heartbeat and the blood flowing through the umbilical
cord. The human cochlear system, which is considered fully
developed by the twenty-fourth week, transforms acoustic
vibrations into nervous influx allowing infants to have an
understanding of rhythm at a very early stage [7]. These
sounds form an imprint on the fetal brain and it has
been verified that post birth, the infant is comforted while
listening to it.

Playing soothing audio has always been known to relieve
stress and has in recent years become an established form of
therapy. There have been a number of studies that indicate
that music has a positive impact on premature infants yet
the kind of audio to be played is contentious. The various
available options include playing nature sounds, live and
recorded music. But “womb music” has consistently been
considered the most favorable choice. According to [7] the
womb is not a silent place and is typically awash with sounds.
Sounds that are heard inside the uterus include maternal
heartbeat, respiration, intestinal gurgling and sounds from
blood vessels. The maternal heartbeat heard by the infant is
a muffled version of the original as it passes through layers
of tissues before reaching the infant. A study conducted by
Rosner and Doherty in [8] states that “playing prerecorded
intrauterine sounds to newborns reportedly soothes the
babies.” The study concluded that 90% of infants who lis-
tened to intrauterine audio were calmed down significantly.

In another study conducted by Murooka et al. [9],
the authors used a piezoelectric microphone to record and
analyze intrauterine sounds. The sounds were found to be
mainly from blood vessels and were found to produce a
calming effect on 86% of the infants, and 30% of the infants
were found to have increased sleep cycles. The authors
asserted that playing such sounds externally recreates the
“in-utero” ambience for infants [9]. A pioneering study
conducted by Salk [10] exposed neonates to prerecorded
maternal heartbeat and concluded that test infants showed
increased weight gain and food intake. Flowers, McCain, and
Hilker combined uterine sounds with soft ballads and tested
the impact of music on nine African-American premature
infants. The infants displayed improvement in respiration
rate, oxygen saturation, and time spent in sleeping [11].

This paper therefore proposes the utilization of sound
files from a commercially available product—the Baby Sleep
System [12]. The soothing audio consists of intrauterine
heartbeat recorded through a condenser microphone, which
is a very accurate representation of uterine sounds as heard
by the infant. The heartbeats were taken at 72 beats per
minute, the rate of a relaxed adult heart. They were combined
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Figure 3: Magnitude response of the incubator wideband noise.

with the sound of blood and fluid movement to produce an
“in-utero” effect for the infant. This audio was incorporated
along with the ANC system and serves two main purposes.
The ANC system is optimized to cancel equipment and
external NICU noise to the maximum possible extent. The
audio integration allows for the soothing audio to be played
continuously without interfering with the ANC system. Also,
the integrated system can be considered cost effective as the
power amplifiers and loudspeakers used by the ANC system
can be used for playing the soothing audio, thus maximizing
the utility of resources.

3. ACTIVE NOISE CONTROL FOR THE INCUBATORS

The noise in incubator can be classified as broadband noise
because it covers a wide range of frequencies [13]. The
noise sources are some medical equipments in the ICU, such
as a blowers, nebulizers, humidifiers, and pumps. Figure 3
shows the magnitude spectrum of the recorded sample of
broadband incubator noise. We can find that the power of
the noise is spread over a wide spectrum of the noise signal.
The ANC systems can be used to cancel this high-power
wideband noise.

ANC is based on the principle of untilizing destructive
interference to cancel unwanted noise. The objective of an
ANC system is to generate an “antinoise” to cancel the
primary noise. The amount of noise which can be cancelled
depends on the accuracy of the amplitude and phase of this
antinoise [14].

The block diagram of a feedforward broadband ANC
system using the FXLMS algorithm is illustrated in Figure 4,
where P(z) is the transfer function of the primary path from
the noise source to the error microphones, S(z) is the transfer
function of secondary path and ̂S(z) is its estimate. The
primary noise d(n) inside the incubator is cancelled by the
antinoise y(n) generated by the adaptive filter W(z). The
antinoise is produced by the secondary loudspeakers and
e(n) is the residual noise picked up by the error microphone.

Primary path

P(z)

x(n) d(n) + e(n)

−

y′(n)

S(z)Adaptive filter
W(z)

̂S(z)

LMS

y(n)

Figure 4: Block diagram of ANC system with the FXLMS algo-
rithm.

In Figure 4, S(z) which is the secondary path between
e(n) and y(n), includes the secondary loudspeakers, error
microphones, and acoustic path between the loudspeakers
and the error microphones. The secondary path is modeled
offline and retained during the online operation of ANC. The
estimate compensates for the secondary-path effects [15].

The output of the adaptive filter can be represented
as [15]

y(n) = wT(n)x(n), (1)

where w(n) = [w0(n) w1(n) · · · wL−1(n)]
T

is the coef-
ficient vector of the adaptive filter W(z) and x(n) =
[x(n) x(n− 1) · · · x(n− L + 1)]T is the L×1 reference sig-
nal vector. The signal y(n) is filtered through the secondary
path S(z) and is subtracted from the primary noise d(n) to
generate the residual error e(n). The equations for simulation
are given by

d(n) = p(n)∗x(n),

y′(n) = s(n)∗y(n),

e(n) = d(n)− y′(n) = d(n)− s(n)∗[wT(n)x(n)
]

,

(2)

where∗ denotes the convolution operator, and p(n) and s(n)
are the primary and secondary path responses, respectively.
All these operations are carried out by the system internally
and the signals picked up in real-time ANC are the reference
signal x(n) and the residual error e(n). For the adaptive filter,
the weight update equation is

w(n + 1) = w(n) + μe(n)x′(n), (3)

μ is the step size; x′(n)= [x′(n) x′(n−1) · · · x′(n−L+1)]
T

is the reference signal vector x(n) filtered by the secondary
path model ̂S(z),

x′(n) = ŝ(n)∗x(n), (4)

where ŝ(n) is an accurate estimate of s(n).
The experimental setup is shown in Figure 5. One

microphone is placed on either side of the infant head. The
outputs from both are analyzed by a spectrum analyzer.
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Figure 5: Experiment setup by using the GE Healthcare Giraffe
Incubator.

The cancelling loudspeakers are placed in the incubator,
and can be seen behind the infant head. Typically the
offline modeling of the secondary paths from the cancelling
loudspeakers to the error microphones is using adaptive
filters with the least mean square algorithm. The magnitude
responses of the primary paths P(z) from the experimental
setup are shown in Figure 6.

Typically, white noise is used for adaptive system iden-
tification. But it is found to be annoying especially in
sensitive environments like the NICU. The proposed method
utilizes offline modeling approach. Nature’s sound, in this
case, the sound of a flowing stream is used. Nature’s
sounds are preferred owing to their flat spectrum and their
pleasing effect on the listener. The secondary paths estimator
converged for a filter length of 30. Satisfactory results of
offline modeling are shown in Figure 7.

4. NONLINEAR ALGORITHM FOR IMPULSE
NOISE SUPPRESSION

The performance of the linear adaptive filters degrade
dramatically in the presence of impulse noise, therefore
nonlinear algorithms are capable of reducing the adverse
effects [16]. The FXLMM algorithm is a simple and robust
method. It employs the mean M-estimation error objective
function and is capable of performing effectively in impulsive
environment [17–19].

The objective of the adaptive filter W(z) is to minimize
the least M-estimate function criterion ρ[e(i)] where ρ(·)
is the M-estimate function. The coefficient vector w(n) is
updated in the negative direction of the gradient vector

w(n + 1) = w(n)− μ∇JMP (5)

and the objective function is

JMP ≡ E
[

ρ
[

e(n)
]] ∼= ρ

[

e(n)
]

, (6)

where E[·] is the expectation operator, ρ(·) is chosen to be
the Hampel three-part redescending M-estimate function,
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Figure 6: Magnitude responses of the primary paths.

which is well known for its computational simplicity. It
defines as
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] =
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where ξ, Δ1, and Δ2 are the threshold parameters.
The objective function is minimized by

∇JMP =
∂JMP(n)

∂w(n)
= ∂ρ

[

e(n)
]

∂e(n)
∂e(n)
∂w(n)

. (8)

Let ψ[e(n)] be the first-order partial derivative of ρ[e(n)],
(8) becomes

∇JMP = ψ
[

e(n)
] ∂e(n)
∂w(n)

= ψ
[

e(n)
][− s(n)∗x(n)

]

= −q[e(n)
]

e(n)
[

s(n)∗x(n)
]

.

(9)

Define q[e(n)] ≡ ψ[e(n)]/e(n) as the weight function. Since
s(n) is the impulse response of the secondary path and
not available directly, we use its estimation to calculate the
gradient,

∇JMP
∼= −q

[

e(n)
]

e(n)
[

ŝ(n)∗x(n)
] = −q[e(n)

]

e(n)x′(n).
(10)
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Figure 7: Magnitude responses of the secondary paths.

Substituting (10) into (5), we can get the weight vector
update equation as

w(n + 1) = w(n) + μq
[

e(n)
]

e(n)x′(n), (11)

where μ is the step size parameter. Equation (11) is known
as the least M-estimate algorithm and can be viewed as a
generalization of the LMS algorithm. It becomes identical to
the LMS algorithm when noise e(n) is less than a threshold
ξ. When the signal error e(n) > ξ, q[e(n)] in (11) decreases
and reaches 0 when e(n) > Δ2. Thus, the least M-estimate
algorithm is capable of reducing the effect of large signal
error during the updating process [17].

5. INTRAUTERINE ACOUSTICS EMBEDDED
ACTIVE NOISE CONTROLLER

This section develops an algorithm that can integrate the
“comfort” audio with the existing ANC system, and provide
an environment that is capable of improving the health of
the infant by masking the undesired residual noise. The
comfort audio used is a combination of maternal heartbeat
and other intrauterine sounds [12]. Research has proven
that playing womb sound to infant in incubator showed
significant benefit in the respiration rate, sleep cycle, and
oxygen saturation [11]. Unfortunately, there are two main
issues with the integration of audio to the ANC system need
to be considered: first, the audio signal can act as interference
to the ANC system and impede proper adaptation; and
second, the ANC system can cancel the intended soothing
sound. Hence, a method must be devised to subtract the
audio from error signal before it is used to update the

Primary path

P(z)
x(n) d(n) + e a(n)

−

y′(n)

S(z)
Adaptive filter

W(z)

̂S(z)

LMS

y(n)

a′(n) +

−̂S(z)

LMS

e(n)

a(n)

x′(n)

Audio
source

Figure 8: Block diagram of the audio-integrated ANC system.

coefficients of the adaptive filter [20]. The block diagram of
the audio integration algorithm is shown in Figure 8. The
soothing audio a(n) is added to y(n) and can be heard by
the infant inside the incubator.

At the acoustic summing junction, the antinoise y′(n)
and the primary noise d(n) are combined to produce the
residual error e a(n). It contains the true error (residual
noise) e(n) and the component of audio. Therefore, by
subtracting the audio from the residual error e a(n), we can
get the true error, then the true error is used to update the
weight vector of the adaptive filter W(z). It should be noted
that the audio signal passed the secondary path, and filtered
by S(z), then it is subtracted. The z transform of residual
error e a(n) can be expressed as [21]

E A(z) = D(z)− S(z)
[

Y(z) + A(z)
]

. (12)

The adaptive filter ̂S(z) is used to cancel the audio inter-
ference on the performance of W(z). This filter generates

E(z) = E A(z) + ̂S(z)A(z). (13)

Then we can get the following equation by substituting
(12) into (13):

E(z) = D(z)− S(z)Y(z). (14)

We assume that S(z) = ̂S(z) and the audio is uncorrelated
with the primary noise. Then (13) can be expressed in time
domain as

e(n) = d(n)− [y(n)∗s(n)
]

(15)

which is the true error used to update W(z) by using the
FXLMS system.

The main advantage of this algorithm lies in its ability
to model the secondary path online. This involves the
estimation of the secondary path in parallel with the
operation of the ANC system. The S(z) filter is modeled
through a system identification scheme. It uses soothing
audio as the reference signal and treats the secondary path
as the unknown system. This makes the algorithm sensitive
to time-varying secondary paths.
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Figure 9: Block Diagram of the 1× 2× 2 FXLMS algorithm.

The key advantages of the intrauterine acoustic embed-
ded ANC system can be summarized as follows. (i) It re-
establishes pre-natal ambience thus fostering infant health.
(ii) The secondary path is modeled online making the
system more receptive to changes in the environment. (iii) It
is successful in masking residual error and in preventing
the audio from interfering with the updation. (iv) The
audio integration does not require supplementary hardware,
existing speakers and power amplifier of the ANC system can
be used making it cost effective.

6. SIMULATION AND EXPERIMENT RESULTS

6.1. Multichannel FXLMS algorithm

In the previous sections, we described the single channel
ANC system. In this section, an example of multichannel
ANC system, 1 × 2 × 2 FXLMS algorithm is used for real
experiment. Figure 9 shows the multichannel feedforward
ANC system using the 1 × 2 × 2 FXLMS algorithm. In this
system, two secondary speakers and two error microphones
are used independently. These two error microphones pick
up the residual errors e1(n) and e2(n) at different positions,
thus able to form two individual quiet zones centered at the
error microphones. The ANC algorithm used two adaptive
filtersW1(z) andW2(z) to generate antinoise y1(n) and y2(n)
to drive the two independent secondary speakers. In Figure 9,
d1(n) and d2(n) are the primary noises to be cancelled, S11(z),
S12(z), S21(z), and S22(z) are the secondary path transfer
functions, and P1(z) and P2(z) are the primary path transfer
functions.

The multichannel FXLMS algorithm is summarized as
follows:

yi(n) = wT
i (n)x(n), i = 1, 2,

wi(n + 1)

=wi(n)+μi
[

ei(n)x(n)∗ŝi1(n)+ei(n)x(n)∗ŝi2(n)
]

, i=1, 2,
(16)
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Figure 10: Simulated spectra at left error microphone before (ANC
OFF) and after (ANC ON) active noise control.

where w1(n) and w2(n) are weight vectors of the adaptive
filters W1(z) and W2(z), respectively, μ1 and μ2 are the
step sizes, ŝ11(n), ŝ12(n), ŝ21(n), and ŝ22(n) are the impulse

responses of ̂S11(z), ̂S12(z), ̂S21(z), and ̂S22(z), respectively.

Similar to the multichannel ANC system (as shown in
Figure 9), we extended the single-channel audio-integrated
ANC system (as shown in Figure 8) into a 1 × 2 × 2 mul-
tichanel system. In this multichannel intrauterine acoustics
embedded ANC system, the two adaptive filters W1(z) and
W2(z) are used to update the two antinoise y1(n) and y2(n).

6.2. Simulation results

To evaluate the performance of the innovative intrauterine
acoustic embedded ANC, we investigate the noise cancella-
tion achievement through simulation and real time experi-
ment.

In the simulation, we apply the intrauterine acoustics
embedded ANC system described in Section 6.1. The input
reference noise is taken from an incubator noise audio file
at first. The ANC system is simulated with measured P1(z),
P2(z), S11(z), S12(z), S21(z), and S22(z). A 60-tap filter with
step size of 0.1 is used for the adaptive noise cancellation
filter W1(z) and W2(z). The residual noise is found to be
16 dB lower than the input on average. The plots illustrating
the spectra of noise before (ANC OFF) and after (ANC
ON) cancellation at left error microphone and right error
microphone after assigning intrauterine audio are shown in
Figures 10 and 11.

To demonstrate the impulse noise suppress by non-
linear algorithms, the noise signal is interspersed with
high-amplitude random impulses (30 dB higher than back-
ground). The impulses are at time n = 40000, 52000, and
64000 and last for a length of 100 samples. The FXLMM
algorithm was implemented for the audio-integrated ANC
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system. The probabilities θξ , θΔ1 , and θΔ2 for determining
the threshold were taken to be 0.05, 0.025, and 0.005,
respectively, for 95%, 97.5%, and 99.5% confidence that the
error vector was in the interval [0, ξ], [0,Δ1], and [0,Δ2],
respectively [17]. A 60-tap adaptive filter with a step size
of 0.0007 was implemented. The results of incubator noise
cancellation are shown in Figures 12 and 13.

The simulation results show that the FXLMM algorithm
behaves in an identical manner to the FXLMS algorithm until
before the impulses are encountered. The FXLMS algorithm,
however, exhibits a degraded system performance with a very
high mean-squared error (MSE) in the presence of impulses.
The FXLMM algorithm is found to be more robust while
handling impulses. Comparing the MSE plots of the two
algorithms shows that the FXLMM algorithm has superior
performance in the presence of impulses and is more effective
in suppressing the adverse influence of impulse noise.
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Figure 13: Learning curves at right error microphone for the
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0 50 100 150 200 250 300 350 400

Frequency (Hz)

−70

−60

−50

−40

−30

−20

−10

0

10

A
m

pl
it

u
de

(d
B

)
Cancellation at left error microphone

ANC OFF
ANC ON

Figure 14: Real-time noise cancellation at left error microphone in
the incubator.

6.3. Real-time experiment results

A real-time experiment is set up as shown in Figure 5 with
the real GE Healthcare incubator, we use a 200 Hz sinusoidal
signal generated by a loudspeaker as the primary noise (60 dB
higher than the background), two antinoise loudspeakers
are fixed in the incubator, two error microphones are
placed near baby’s ears to pick up the noise residue, the
primary microphone is set on the top of the incubator in
order to collect the primary noise signal. A TI TMS320C30
DSP is used for the ANC system. The assembly language
is used for software developing in order to achieve the
real-time processing requirement [22]. For the real-time
experiment setup, the sampling frequency is 1.938 KHz, two
220-tap filters with the convergence factor of 0.0003 were
used for the adaptive noise cancellation filters W1(z) and
W2(z).
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Figure 15: Real time noise cancellation at right error microphone
in the incubator.

The real-time noise cancellation results based on the
real time experiment are shown in Figures 14 and 15. By
comparing the spectra of the noise before and after cancel-
lation, we can find that the residual noises are 30.231 dB
lower than the original noise at the left error microphone
and 23.685 dB lower at the right error microphone. After the
ANC system, the high power noise is dramatically reduced
into an acceptable range and not harmful any more.

7. CONCLUSION

In this paper, a novel neonatal healthcare application, the
intrauterine acoustics embedded active noise controller, has
been presented. The integration algorithm created a bene-
ficial environment for the infant and allowed the residual
noise from the ANC system to be masked. The ANC system
involved an adaptive method of noise cancellation using the
statistically robust FXLMM algorithm. It allowed for stable
operation of the ANC system in the presence of impulsive
interference in the input. Real transfer functions measured
from a laboratory setup were used to develop a computer
model for simulation of the ANC system. The integration
algorithm was proven to be highly advantageous as it allows
the secondary path to be modeled online making the system
more sensitive to changes in the environment. The real time
controller was found to be cost effective and displayed stable
performance in the real incubator.
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1. INTRODUCTION

Noise control and the high-quality bass reproduction in
automobile cabins are two interrelated problems. The later
can be difficult due to the high-level noise present and
the size of the loudspeakers that can be installed inside
the cars. Traditional passive noise control techniques are
only efficient at high frequencies. For the low-frequency
engine noises, passive techniques become costly and bulky,
which are not suitable for the use in automobile cabins.
Due to its effectiveness in reducing low-frequency noise, the
active noise control (ANC) [1] technique has received much
attention since 1980s [2, 3].

On the other hand, with the advancement of multimedia
digital signal processing (DSP) technologies, high-quality
audio reproduction is becoming possible for the automo-
biles. However, there are many challenges in reproducing
high-quality bass in cars due to the limited space and
acoustic properties, and the low-frequency noise present in
the cabins.

The ANC techniques generally produce good perfor-
mance in canceling the narrowband engine noise. However,
it does not offer complete control over the engine noise in

cabins. In some practical applications, it prefers to enhance
some preselected noise components to extract important
sound information. For example, the driver may want
to know how the engine is working when driving. Due
to its flexibility of amplifying or attenuating noises with
predetermined levels at certain frequencies, active noise
equalizer (ANE) [4] systems and other similar algorithms [5–
7] have potential applications.

High-quality audio reproduction in cabins can be diffi-
cult due to the engine noise and low-frequency performance
of the loudspeakers. With the flexibility of ANE system,
we propose a novel method to solve this problem. Instead
of trying to cancel the engine noise entirely, the proposed
integrated system equalizes the engine-noise harmonics
based on the bass information to enhance the low- frequency
part of audio signal. The main challenges are to track the
frequencies of engine harmonics and to tune these harmon-
ics to match the bass components of audio signal.In order
to integrate active noise control with bass enhancement, the
proposed system uses frequency-sampling filter (FSF) [8]
and multifrequency ANE [4] to tune the engine harmonics,
and convert the annoying low-frequency noise into desired
audio bass components.
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The remainder of this paper is structured as follows.
Section 2 presents the narrowband ANE system, followed
by a description of the proposed system in Section 3.
Simulation results under different driving conditions are
given in Section 4, and Section 5 concludes this paper.

2. NARROWBAND ACTIVE NOISE EQUALIZER

The single-frequency narrowband ANE [4] system is based
on an adaptive notch filter using the filtered-X least mean
square (FXLMS) [1] algorithm. As shown in Figure 1, the
secondary output is split into two branches: the canceling
branch and the balancing branch. A pseudoerror e′(n) is used
to trick the adaptive filter to converge to a desirable state
determined by the user. The pseudoerror can be expressed
as

e′(n) = d(n)− y(n)∗s(n). (1)

After convergence, the pseudoerror approaches zero. How-
ever, the actual residual noise e(n) converges to

e(n) = d(n)− (1− β)y(n)∗s(n) ≈ βd(n), (2)

where β is known as the gain factor determined by the user.
Depending on the gain factor β, ANE can be classified

into four operation modes [4]:

(i) cancellation mode (β = 0): ANE functions as the
conventional narrowband ANC;

(ii) attenuation mode (0 < β < 1): the amount of
attenuation is determined by β. Therefore, it is
possible to retain some portion of the noise at the
selected frequency;

(iii) neutral mode (β = 1): the noise passes through the
ANE system without attenuation;

(iv) enhancement mode (β > 1): the ANE functions as
an amplifier that enhances the noise component with
amount determined by β.

3. PROPOSED SYSTEM IN AUTOMOBILE CABINS

A proposed system in car cabins that integrates bass
enhancement and active noise equalizer is shown in Figure 2.
This system can be divided into three subsystems: (i) the
“bass extraction” block extracts bass components from
the car audio system based on the engine speed; (ii) the
“postprocessing” block processes; these bass components to
match with frequencies of engine harmonics; and (iii) the
“multifrequency ANE” block implements a multifrequency
ANE that enhances desired low-frequency audio components
using equalized engine harmonics. A detailed overview of
these subsystems is described as follows.
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3.1. Bass extraction

The audio signal components that will be enhanced are those
close to the engine-noise components, which are related
to the engine revolutions per minute (RPM). Because the
engine RPM is time varying, the engine-noise components
change accordingly, thus the filters must self-configure
according to the engine RPM to extract the desired audio sig-
nal components. In other words, the filter’s center frequency
should be tuned by the engine RPM.

As shown in Figure 3, the audio signal is passed through
a low pass filter with a cutoff frequency at 500 Hz, and the
audio signal is decimated to a lower sampling frequency of
1.5 kHz. Therefore, a lower computational load is achieved
for processing bass information of the audio signal.

To utilize engine noise for enhancing bass reproduction,
extraction of the audio signal at frequencies of engine
harmonics is needed. This requires a bank of passband
filters align with predominant engine harmonics. Fast online

reconfiguration and computational efficiency are important
considerations for designing the filter bank. The FSF is
chosen to meet these requirements. It is based on sampling
a desired amplitude spectrum to obtain the corresponding
filter coefficients. The number of FSF channels equals to
the number of predominant engine-noise harmonics, where
each channel corresponds to one engine harmonic. As shown
in Figure 4, the unique characteristic of the FSF structure
allows recursive implementation of finite-impulse response
filters, leading to both computational efficiency and fast
online reconfiguration. The transfer function of the FSF is
expressed as

H(z)

= 2
N

(
1− rLz−N

)∑
k≤N/2

(−1)kH(k)
1− rcos(2πk/N)z−1

1− 2rcos(2πk/N)z−1 + r2z−2
,

(3)

where N is the filter length, H(k) is frequency sample value
at channel k, and r is a radius of pole that is slightly less
than unity. Equation (3) shows that the FSF has N parallel
bandpass filters with center frequencies at 2πk/N , where k =
0, 1, . . . ,N − 1. Therefore, the parameter N controls center
frequencies of all bandpass filters. The following sections
further describe how to design an FSF for a particular engine.

3.1.1. Engine RPM and the fundamental
frequency of engine noise

This section investigates the fundamental and firing frequen-
cies of a 4-stroke engine. A sampling frequency of 1.5 kHz
is selected for the FSF processing block. This sampling
frequency restricts the range of engine noise to 600 Hz. For
a 4-stroke engine, the fundamental frequency is the product
of the firing frequency and number of the cylinders, where
the firing frequency is

firing frequency = 1
2
× RPM

60
Hz. (4)

The fundamental frequency of engine noise is the fourth
harmonic of the firing frequency. Depending on the engine
noise profile, the harmonics selected can be different. When
higher frequency harmonics are selected, this range will be
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lowered accordingly. For most cars and with the objective
of bass enhancement, the sampling frequency of 1.5 kHz is
reasonable.

3.1.2. Parametric factor

There are two methods in determining the main parameters
to control the filtering and center frequencies of FSF. One is
to set the filter length N as a constant value and change each
of the frequency sample values H(k). However, this approach
requires changing multiple sample values during online filter
reconfiguration. On the other hand, if we first set the relative
frequency samples at certain values, it is possible to achieve
the reconfiguration by changing only the FSF filter length N .
For example, when we set the filterH(k) at k = 10 to coincide
with the fundamental frequency of noise, the filter length can
be derived as

Fs
N
× 10 = 1

2
× RPM

60
× 4 =⇒ N =

[
Fs× 10× 30

RPM

]
. (5)

When the RPM is 2500, the corresponding filter length is 180.
It is also important to point out that the FSF does not incur
a higher computational load when the filter length increases.
This is because most frequency samples H(k) are zero and
only few frequency samples defined in the passband require
computation.

3.1.3. Transition band sample value

Rabiner et al. proposed some typical values for the coeffi-
cients in the transition band [9]. In the case of designing
the FSF for handling typical RPM from 1000 to 2500, the
filter length ranges from 180 to 450. If three samples are
used to define the frequency samples in the passband, the
optimum value for transition band is found to be 0.4 [10]
The illustration is shown in Figure 5.

3.1.4. Selecting suitable filter length/frequency resolution

As the sampling frequency Fs is 1500 Hz, the frequency
resolution for FSF is Fs/N . According to the relationship:

Fs
N
× k = 1

2
× RPM

60
× 4, (6)

where k is the sample index that is selected to align at the
engine noise frequency. As a result, index k controls the

resolution of the filter. Therefore, the optimal resolution
is determined by the frequency range of the engine noise.
Offline calibration is required for different engines to select
the proper value of k, which is set to the center frequency of
fundamental engine noise, and correspondingly determine
the frequency resolution.

3.2. Postprocessing

The signal power estimation is performed before sending to
postprocessing block. The process can be expressed as

Px(n) = λPx(n− 1) + (1− λ)x2(n), (7)

where Px(n) is the signal power, x(n) is the current sample,
and λ is known as the smoothing parameter or forgetting
factor, typically set between 0.9 to 0.999. There are many
options for the postprocessing block. Users can perform
different kinds of equalization. This paper proposes two
schemes. The bass enhancement scheme is designed for
higher amplification of equalized engine noise, and the
noise cancellation scheme is designed for more engine noise
reduction.

3.2.1. Bass enhancement scheme

The bass enhancement scheme emphasizes on the enhance-
ment of bass components in the audio signal. Using the
power estimation results obtained from previous block, the
gain factors βi, i = 1, 2, . . . ,Ns in the ANE systems can be the
calculated as

βi =
√
Pi × α, i = 1, 2, . . . ,Ns, (8)

where Pi is the power of the FSF’s output that corresponding
to the engine harmonic frequency, and α is a constant
that controls the volume of the sound in order to mix the
tuned engine noise with the original audio output. Users can
tune α to different levels of bass enhancement. The variable
Ns is the number of predominant engine noise harmonics
which is dependent on the particular engine type. If the in
cabin loudspeakers are incapable in reproducing the signal at
engine noise fundamental frequency, the perception of bass
can still be enhanced by other harmonics due to the famous
“missing fundamental” phenomenon.

In order to set the value of α that determines βi, it
is important to derive the relationship between the sound
pressure level of the audio signal and engine noise. In typical
audio system, the sound pressure level ranges from 50 dB to
80 dB. On the other hand, the engine noise level in a cabin
ranges from 45 dB to 75 dB [9]. For a 16-bit audio signal,
which is normalized to unit, the sound pressure level is stated
as

SPLA = 96 dB + 10 log10x
2(n) dB. (9)

This equation sets the maximum sound pressure level SPLA

to 96 dB when the amplitude of x(n) equals to 1.
To calibrate the value of factor α, it is assumed that if

the signal SPLA is 60 dB, the engine noise should be neither
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Figure 6: System block diagram of the multifrequency ANE.

amplified nor attenuated. According to (9) and setting SPLA

to 60 dB, the amplitude of the signal is computed as

AA = 10(SPLA−96)/20 ≈ 0.016. (10)

The power of the signal is approximately 1.28× 10−4. Setting
β to 1 results in α ≈ 88.

3.2.2. Noise cancellation scheme

It can be seen from the previous scheme that by tuning the
factor α, higher enhancement at the low frequency can be
achieved. However, at the same time, the timbre of the orig-
inal signal will also change. To fulfill the needs of enhancing
bass reproduction while maintaining a balanced timbre with
significant noise cancellation, we propose another scheme
known as the noise cancellation scheme.

In this scheme, when engine noise is louder than the
audio signal, a proper equalized engine noise is used to
enhance the audio signal. In order to maintain a better
timber, this scheme does not allow any amplification of the
engine noise, or the gain factors for engine noise harmonics
should be always smaller than one. The rationale behind this
scheme is to make the amplitude of the engine harmonics
equals to the corresponding amplitude of the audio signal
at that frequency. In this way, when there is audio signal
present at the engine noise harmonics, the ANE system
amplifies the amplitude of the engine noise to produce a 3 dB
enhancement of audio signal.

When the engine noise is lower than the audio signal,
we keep or cancel the engine noise harmonics depending on
whether the audio signal is present or not. As a result, the
gain factor for the ANE system is either one or zero. The
maximum gain of 3 dB is achieved when the engine noise
level equals the audio signal level. Therefore, to achieve the
desired gain adjustment in Section 2, a new gain scheme is
proposed as follows:

β =

⎧⎪⎪⎨
⎪⎪⎩
e(SPLA−SPLE)/γ, SPLO < SPLA < SPLE,

1, SPLO < SPLE < SPLA,

0, SPLA < SPLO,

(11)

where SPLA is the sound pressure level of audio at the
corresponding engine noise harmonic frequency, SPLE is the
sound pressure level of the engine noise harmonic, SPLO is
used as a threshold and is set to 45 dB, and γ is a constant
governing the equalization between the gain factor and
difference between the sound pressure level of audio signal
and engine noise.

To equalize the engine noise when SPLO < SPLA < SPLE,
the gain factor β is chosen such that

βAE = AA, (12)

where AE is the amplitude of the engine noise and AA is the
amplitude of the audio signal. Substituting (9) and (11) into
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(12), we have

AEe
(SPLA−SPLE)/γ = AA,

e(SPLA−SPLE)/γ = 10(SPLA−96)/20

10(SPLE−96)/20 .
(13)

Taking logarithm of both sides, we obtain

(
SPLA − SPLE

γ

)
log10e =

SPLA − 96
20

− SPLE − 96
20

. (14)

This results in

log10e

γ
= 1

20
, (15)

and γ ≈ 8.6859.
According to this gain factor scheme under a loud engine

noise condition, it is expected to achieve both reduction
of engine noise and a 3 dB bass enhancement at certain
frequencies.

3.3. Multifrequency ANE system

To perform the active control of the engine noise, we
designed a multifrequency ANE system consisting of sev-
eral independent single-frequency ANE systems connected
in parallel. Each single-frequency ANE is tuned to the
corresponding harmonic frequency of the engine noise.
The overall block diagram of the multichannel ANE is
shown in Figure 6. The number of the single-frequency
ANE system is determined by the number of the selected
predominant engine noise harmonics. Each ANE block has
its own gain factor tuned to the power of the related
audio component. When the audio signal is changing with
time, the equalization of the low-frequency signal responds
accordingly.

4. SIMULATION RESULTS

Performance of the proposed system is evaluated by both
a synthesized engine noise and a recorded in cabin engine
noise (Toyota Crown at passenger seat with the engine
running at around 2600 RPM). The reference signal is
generated using cosine wave with the center frequency at the
corresponding engine noise harmonic. Kim and Park showed
in [11] that the self-generated reference could achieve good
performance in ANC applications. Figures 7 and 8 show
the spectrogram and power distribution of the engine noise,
respectively. For this recorded engine noise, we select two
predominant frequency components and an FSF is used to
extract the bass audio information.

The audio signal used for the simulation is “Hotel
California” by The Eagles (live version). The sound clip was
taken from the start of the track, which consists of a bass
drum with some audience noise. This track makes it easier
to focus on the bass. The sound clip and simulation results
wave files are available at [12].
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Figure 7: Spectrogram of the recorded engine noise.

Frequency (Hz)

0 50 100 150 200 250 300 350 400

Po
w

er
(d

B
)

0

10

20

30

40

50

60

70

Figure 8: Power distribution of the recorded engine noise.

4.1. Bass enhancement scheme

The results shown in Figures 9 and 10 are the spectrograms
that show bass components of audio signal before and after
the process, respectively. The predominant engine noise
harmonics are attenuated (marked as circles in diagrams)
when the audio is absent, and tuned according to the gain
factor shown in Figure 11, when the audio is present.

To display the tuned engine noise more clearly, the
spectrogram of the tuned engine noise is shown in Figure 12.
It is observed that the tuned engine noise has a similar
spectrogram distribution as the audio signal.

The proposed system is also evaluated using synthesized
engine noise to test the effectiveness at defined harmonics. In
the following simulation, the synthesized engine is running
at 3000 RPM, with its predominant harmonic frequencies at
100, 200, 300, and 400 Hz. As seen from Figure 13, the engine
noise components at 100, 300, and 400 Hz are attenuated by
5, 8, and 15 dB. However, a 3 dB enhancement is achieved at
200 Hz. The equalized engine noise is equalized to enhance
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Figure 9: Spectrogram of the sound in cabin when system off.
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Figure 10: Spectrogram of the sound in cabin when system on.
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Figure 12: Spectrogram of the tuned noise.
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Figure 13: Bass enhancement scheme with synthesized engine
noise.

the bass component of the audio signal. The gain factor value
for the 200 Hz harmonic over the duration of simulation is
shown in Figure 14.

4.2. Noise cancellation scheme

In this simulation, we investigate the performance of the
proposed system under noise cancellation scheme. The
system is tested with the recorded engine noise (running at
2600 RPM) and with SPL of 75 dB. The spectrogram of this
engine noise is similar with those under bass enhancement
mode.

The tested audio file is extracted from a short speech clip.
We simulate the case when the driver is listening to news or
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Figure 15: Engine noise before and after processing.

making a phone call. The system adapts to cancel the engine
noise to achieve a better SNR for speech perception in the car
cabin. Engine noise before and after processing is shown in
Figure 15. It can be clearly observed that the most prominent
engine noise harmonics are reduced by 6 dB. Gain factor for
the fundamental frequency over the period of simulation is
shown in Figure 16.

Similar to the bass enhancement scheme, we evaluate
the system using audio signal and the synthesized engine
noise. As seen from Figure 17, the engine noise components
are significantly reduced, especially at 400 Hz since there
is very little audio component. The gain factor value for
200 Hz harmonic over the duration of simulation is shown
in Figure 18. Compared with the result obtained in bass
enhancement scheme, it clearly shows that the gain factor
value is confined in the range of 0 to 1, and engine noise is
never been amplified.
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Figure 16: Gain factor using noise cancellation scheme.
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Figure 17: Noise cancellation scheme with synthesized engine
noise.
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5. CONCLUSION

Instead of canceling the engine noise entirely, this paper
presented a system that utilizes the engine noise to enhance
the bass reproduction of audio signal in automobile cabins.
The proposed system integrated bass extraction, audio signal
processing, and active noise equalization to enhance desired
bass signal and reduce noise. Several engine noises and audio
signals are used to evaluate the performance of integrated
audio and active noise equalization system. Simulation
results showed that the proposed system can achieve audio
bass reproduction and noise reduction inside the car cabins.
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1. INTRODUCTION

Active noise control is mainly concerned with low-frequency
sounds that cannot be suppressed in passive manner at
reasonable cost. Other prerequisite for using ANC is that
it does not obstruct media flow in ducts, for example, air
conditioning ducts. Unfortunately, almost all duct applica-
tions have acoustic feedback; a phenomenon that can heavily
decrease or even destroy the results of otherwise properly set-
up control system [1, 2].

There are several methods for avoiding acoustic feedback
in duct applications [2–6]. The best one that avoids acoustic
feedback completely is to use nonacoustic reference sensor.
Unfortunately, this usually limits the application to cancel
the tonal sounds and does not allow for the reduction of
broadband noise. Another approach to acoustic feedback is
to internally process signal from the reference microphone
in a way allowing to compensate for this effect [2, 4–6].
This technique, usually called “feedback neutralisation,” uses
a model of acoustic feedback path to filter the controller
output and then subtract it from the reference signal. In the
simplest case, the model is obtained offline and does not
account for time variation of the feedback path. Moreover,

the method requires a model of the acoustic feedback path
and therefore is computationally more expensive.

The approach to acoustic feedback cancellation pre-
sented in this paper is called virtual unidirectional sound
source (VUSS). The method, in authors opinion, has some
advantages over well-known two loudspeaker active noise
control system in duct applications. First, it clearly separates
the subsystem responsible for neutralisation of undesired
feedback from active noise control part. Second, its adaptive
version can also be applied in case of varying acoustic
path responses. Last, virtual unidirectional sound source can
also be applied in more general active control of sound
applications, not only in active noise control. The paper
attempts to explain the theory behind VUSS as well as to
give some results showing its excellent performance in case
of ANC.

The paper is organised as follows. Section 2 sum-
marises physical basics necessary to understand principles
of VUSS operation and its advantage over one-loudspeaker
applications. In Section 3, the idea of VUSS is explained
together with the original detailed analysis of optimal (fixed)
design (Section 3.1) and adaptive approach (Section 3.2).
Finally, Section 4 gives the results of simulations and real
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Figure 2: Acoustic duct with two active loudspeakers.

experiments of feedforward active noise control system using
virtual unidirectional sound source.

2. ACOUSTICAL PHENOMENA IN DUCTS

The simplest solution to acoustic feedback cancellation
problem in case where omnidirectional microphone must be
used as the reference sensor is called feedback neutralisation
[2, 4–6]. With this approach, only one loudspeaker is
used, but the signal obtained from reference microphone
is processed in the way allowing for compensation of its
influence. If no compensation is performed, severe problems
can result. In the simplest case of attenuation of one tone,
the pressure distribution upstream secondary source [3]
takes shape of standing wave, presented with solid line
on Figure 1. If, for particular frequency of this tone, the
reference microphone is placed in standing wave nodal point,
it will give measurement equal to zero regardless of waves’
actual magnitude.

Another situation occurs when two loudspeakers are
used, as presented in Figure 2. Assume first loudspeaker is
placed in the duct at position x = 0 and the second at
position x = l. Denote pp+(x) as the complex pressure [3] at
location x produced by primary source emitting tonal sound:

pp+(x) = A e−ikx, (1)

where A is the complex amplitude of the sound wave and
where acoustic wave number k is equal to k = ω/c0, with ω
being wave angular frequency and c0 being the sound speed
in air.

Assume the two loudspeakers on Figure 2 produce sound
waves propagating upstream the duct, marked as pa1−(x)
and pa2−(x), and sound waves propagating downstream the

duct, marked as pa1+(x) and pa2+(x). Assume also that the
sound wave produced by the primary source is propagating
downstream the duct, as marked on the figure.

Assume that the complex pressure of sound wave gener-
ated by first “active” loudspeaker is given by

pa1+(x) = B e−ikx for x > 0,

pa1−(x) = B eikx for x < 0,
(2)

and the complex pressure of sound wave produced by the
second “active” loudspeaker is given by

pa2+(x) = C e−ik(x−l) for x > l,

pa2−(x) = C eik(x−l) for x < l,
(3)

where B and C are the complex amplitudes of the sound
waves.

In the situation described above it is possible to set
another condition on the system regardless of primary sound
source attenuation requirement. In the case of unidirectional
sound source, it may be the requirement of self-cancellation
of the secondary sound waves propagating upstream the
duct:

pa1−(x) + pa2−(x) = 0 for x < 0. (4)

In this case, the secondary sources have to be driven in
the way providing [3]

B = −C e−ikl. (5)

In the same time to achieve the main ANC goal, which
is to cancel the primary sound downstream the second
loudspeaker completely, it is necessary to set the complex
amplitude:

C = −A
2i sin(kl)

. (6)

The acoustic pressure level distribution for two loudspeakers
case has been shown with dashed line on Figure 1. The
figure shows that the sound pressure has been perfectly
cancelled at coordinates x > l while the absolute value of the
pressure level has not been affected by the secondary sources
at negative coordinates x. The zone between the secondary
loudspeakers (0 < x < l) is a transient zone.

Although two-loudspeaker system offers significant
improvement over one loudspeaker system, it has its draw-
backs too. Specifically, the above control law says that for
some frequencies for which sin(kl) is close to zero, both the
secondary sources will have to produce sound waves with
amplitude very large, compared with the amplitude A of the
primary waveform. Consider, for example, the case where
the loudspeakers are separated by the distance l = 0.3 m.
In this case the sound waves of frequency 570 Hz and all
its multiplies will result in sin(kl) equal to, or close to,
zero, depending on the actual speed of sound, and thus on
temperature, humidity, and so on. This fact will certainly
influence the performance of ANC system trying to attenuate
such sound waves (see, e.g., the drop in attenuation just
below 600 Hz on Figure 10).
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3. VIRTUAL UNIDIRECTIONAL SOUND SOURCE

It is well known that introducing the second “active” loud-
speaker allows to deal with many one-loudspeaker systems
difficulties [4]. Moreover, the analysis outlined in Section 2
proves that it allows also for (hypothetically) perfect cancel-
lation of the acoustic feedback. One of possible systems using
two secondary loudspeakers is called virtual unidirectional
sound source.

The idea of virtual unidirectional sound source (VUSS)
is to use digital signal processing algorithm to drive two
loudspeakers in such way that the sound produced by them
propagates only downstream the duct [7]. In fact, although
the sound generated by each loudspeaker propagates in both
directions, the processing algorithm tries to assure that the
sound waves propagating upstream the duct are actively
cancelled by themselves while those propagating downstream
the duct are amplified. The additional advantage of this
approach is that it is sometimes possible to equalise the
amplitude spectrum of the secondary path transfer function
(transfer function between signals t(i) and e(i) on Figure 3)
that plays very important role in active control of sound [4].

The block diagram of VUSS has been shown in Figure 3.
The system contains two “active” loudspeakers, L2a and L2b,
as well as two microphones: M1, generally called reference
microphone, and M2 called error microphone (the names
of the microphones correspond to the role they play in
active noise control). The signal to be processed by VUSS
is the set point value (or antinoise signal) t(i) produced
by ANC algorithm. It is filtered by two filters with transfer
functions, W1(z) and W2(z), and sent to the loudspeakers,
L2a and L2b, respectively. The error signals are obtained by
comparing values acquired from the microphones M1 and
M2 with their required values (set points). As the goal of
VUSS system is to cancel the influence of the set point value
t(i) at the microphone M1 point, the signal x(i) is compared
with zero (e1(i) = x(i) − 0 = x(i)). Similarly, as the desired
signal at the microphone M2 point is the delayed set point
value, the second error signal is calculated as e2(i) = e(i) −
to(i). The need for delaying the set point value t(i) comes
from condition on causality of the system: no filtration can
compensate for the delay time introduced by the acoustic

path between the loudspeakers and the M2 microphone. The
value of the delay ensuring causality of the algorithm should
be chosen before running the algorithm. The error signals
e1(i) and e2(i) are used by adaptive algorithm to update
parameters of the transfer functions W1(z) and W2(z) (in
case of optimal design they are used only for observing the
performance of the system).

3.1. Optimal and suboptimal filter designs

In this subsection, an attempt to derive analytical optimal
and suboptimal filter formulae will be made. The need for
suboptimal formula will be explained and feasibility of both
the solutions will be discussed.

3.1.1. Formulation using transfer functions

Suppose that the whole system presented in Figure 3 is linear
and the signal to be cancelled is deterministic, or random
wide-sense stationary [8]. Suppose that W1 and W2 are
infinite impulse response (IIR) filters. Figure 3 shows that
the control values u1(i) and u2(i) can be expressed as a
filtration of set point value t(i) by the W1 and W2 filters.
Using the notation of difference equation, this filtration can
be expressed as

u1(i) =W1(z)·t(i) = w1,0t(i) + w1,1t(i− 1) + · · ·

=
∞∑

n=0

w1,nt(i− n),

u2(i) =W2(z)·t(i) = w2,0t(i) + w2,1t(i− 1) + · · ·

=
∞∑

n=0

w2,nt(i− n),

(7)

where

W1(z) = w1,0 + w1,1z
−1 + w1,2z

−2 + · · · ,

W2(z) = w2,0 + w2,1z
−1 + w2,2z

−2 + · · · .
(8)

In the above equation, w1,n and w2,n are nth elements of the
W1 and W2 filter impulse response functions, and are also
called filter coefficients. Using this notation, the z−1 is treated
as discrete shift operator so that z−nt(i) = t(i− n).

From Figure 3 it also follows that the reference signal
x(i) due to the secondary sources measured by the M1
microphone can be expressed with the following difference
equation:

x(i) = S11(z)·u1(i) + S12(z)·u2(i), (9)

where S11(z) and S12(z) are impulse response functions of
electroacoustical paths between the reference signal x(i) and
the u1(i),u2(i) control values, including amplifiers, filters,
loudspeakers, and others.

Similarly, the signal e(i) measured by the microphone M2
due to the secondary sources can be given by

e(i) = S21(z)·u1(i) + S22(z)·u2(i). (10)
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Considering the above and the definitions of error signals
given in the previous subsection, the error signals can be
expressed as

e1(i) = S11·u1(i) + S12·u2(i),

e2(i) = S21·u1(i) + S22·u2(i)− to(i),
(11)

where the dependence of Snn transfer functions on z has been
omitted to simplify the notation.

The goal of the tuning algorithm is to drive error signals
to zero:

e1(i) = 0, e2(i) = 0. (12)

Substituting (7) and (11) into (12), recognising that
to(i) = z−Δt(i) gives for all t(i) /= 0

S11·W1(z) + S12·W2(z) = 0,

S21·W1(z) + S22·W2(z) = z−Δ,
(13)

where Δ samples delay time was introduced to assure
causality of the system.

Solving the above equation set gives the transfer func-
tions of optimal filters:

W1opt(z) = −z−Δ S12

S11·S22 − S12·S21
,

W2opt(z) = z−Δ
S11

S11·S22 − S12·S21
.

(14)

Unfortunately, (14) cannot be used in practise due to non-
minimumphase nature of transfer functions Snn leading to
instability of VUSS filters. Moreover, even when all the
transfer functions Snn are minimumphase, the subtraction in
denominator of (14) can still result in instability of the whole
filter. This is referred to in the literature as “unconstrained
controller” [3].

The suboptimal design of virtual unidirectional sound
source can be performed after omitting the second condition
from (12) set in mathematical derivations. In consequence, it
means we do not expect the transfer function from set point
value t(i) to microphone M2 signal e(i) to be pure delay,
but we allow it to take more complex form. Furthermore, it
means that the amplitude spectrum of this transfer function
will not be flat over the frequency range under consideration.
However, we still request cancellation of the secondary
sources influence on the reference signal x(i).

With control goal stated above, there are two equivalent
solutions that will be called suboptimal, namely,

W1sub(z) = −S12(z),

W2sub(z) = S11(z),
(15)

or

W1sub(z) = S12(z),

W2sub(z) = −S11(z).
(16)

Moreover, assuming the Snn transfer functions are of FIR
type, the suboptimal solutions are also FIR type.

It is, however, important to notice that in case of
suboptimal solution the secondary path transfer function
(transfer function between signals t(i) and e(i) on Figure 3)
is given by

S(z) = −S12·S21 + S11·S22, or

S(z) = S12·S21 − S11·S22.
(17)

(Again, the dependence of Snn transfer functions on z has
been omitted to clarify the notation.) This shows that in case
of no demand for equalisation of the secondary path transfer
function amplitude spectrum it can assume arbitrary shape,
potentially “worse” than in case of single secondary source.
This effect must be taken into account when estimating
secondary path models required by active noise control
algorithm (e.g., by using longer filters).

3.1.2. Formulation using reference signal matrix

The following subsection presents result obtained using the
approach presented in [3, 9], which is based on impulse
response of appropriate electroacoustic paths and on the
use of filtered-reference signals. Using this approach, the lth
error signal (l = {1, 2} in this case) can be expressed as a
sum of desired signals and contributions from m secondary
sources (with m = 2 in this case) as:

el(i) = −dl(i) +
2∑

m=1

J−1∑

j=0

slm( j)um(i− j), (18)

where slm( j) is the jth coefficient of impulse response of
electroacoustic path between the lth sensor and the mth
actuator and dl(i) is desired value of the lth sensor signal.
The length of impulse response can be arbitrary number J
guaranteeing desired accuracy.

In the same manner, the signals driving actuators can be
expressed as

um(i) =
N−1∑

n=0

wm,nt(i− n), (19)

where wm,n is the nth parameter of the Nth order wm FIR
filter impulse response.

Substituting (19) into (18) yields

el(i) = −dl(i) +
2∑

m=1

J−1∑

j=0

N−1∑

n=0

slm( j)wm,nt(i− j − n). (20)

To derive a matrix formulation for the above equation it is
necessary to reorganise the order of filtration of the set point
value t(i). To do this, it is necessary to assume that the filters
slm and wm,n are time invariant. If the filtered reference signal
is defined as

rlm(i) =
J−1∑

j=0

slm( j)t(i− j), (21)
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the error signals can be written as

el(i) = −dl(i) +
2∑

m=1

N−1∑

n=0

wm,nrlm(i− n). (22)

After defining

w(i) =
[
w1,i

w2,i

]
, rl(i) =

[
rl1(i)
rl2(i)

]
. (23)

Equation (22) can be expressed as

el(i) = −dl(i) +
N−1∑

n=0

wT(n)rl(i− n). (24)

Finally, the vector of two error signals can be defined as

e(i) =
[
e1(i) e2(i)

]T
(25)

and the vector of two desired signals can be defined as

d(i) =
[
d1(i) d2(i)

]T
, (26)

leading to the conclusive formula

e(i) = −d(i) + R(i)W, (27)

where

R(i) =
⎡
⎣

rT1 (i) rT1 (i− 1) · · · rT1 (i−N + 1)

rT2 (i) rT2 (i− 1) · · · rT2 (i−N + 1)

⎤
⎦ (28)

is called matrix of filtered reference signals, and

W =
[

wT(0) wT(1) . . . wT(N − 1)
]T

(29)

is the vector containing all the coefficients of both W1 and
W2 filters (the filters are time independent).

It is interesting to notice that in case of virtual unidi-
rectional sound source the vector of desired signals can be
instantiated as

d(i) =
[

0
t(i− Δ)

]
. (30)

Following the methodology presented in [9] the optimal
filter solution can be expressed as

Wopt =
[
E
{

RT(i)R(i)
}]−1

E
{

RT(i)d(i)
}

, (31)

where E{·} denotes expectation operator.
The matrix to be inverted is of dimension N × N , where

N is the filter length. Fortunately, it can be proved that
the matrix is block Toeplitz matrix [3], so effective iterative
methods can be applied for inversion. The expectation
operator tells that statistical properties of filtered set point
value t(i) will be taken into account. The expression under
the right-hand side expectation operator, in the above
equation, takes particularly the simple form of

RT(i)d(i) =
[

rT2 (i) rT2 (i− 1) · · · rT2 (i−N + 1)
]T

t(i− Δ).

(32)

3.1.3. Formulation in frequency domain

Applying the Fourier transform to (7) and (11) and substi-
tuting the transformed (7) into (11) yields

E1
(
eiωTp

) = S11
(
eiωTp

)
W1
(
eiωTp

)
T
(
eiωTp

)

+ S12
(
eiωTp

)
W2
(
eiωTp

)
T
(
eiωTp

)
,

E2
(
eiωTp

) = S21
(
eiωTp

)
W1
(
eiωTp

)
T
(
eiωTp

)

+ S22
(
eiωTp

)
W2
(
eiωTp

)
T
(
eiωTp

)

−To
(
eiωTp

)

(33)

with z = eiωTp , where Tp is a sampling period.
The above equations can be expressed in more conve-

nient matrix form as

e
(
eiωTp

) = −d
(
eiωTp

)
+ S
(
eiωTp

)
W
(
eiωTp

)
T
(
eiωTp

)
, (34)

where e( eiωTp), d( eiωTp), and W( eiωTp) are transformed
vectors defined by (25), (30), and (29), respectively, and the
matrix of transfer functions is defined as

S
(
e jωTp

) =
⎡
⎣
S11
(
eiωTp

)
S12
(
eiωTp

)

S21
(
eiωTp

)
S22
(
eiωTp

)

⎤
⎦ . (35)

The unconstrained controller can be found by minimising
the cost function equal to expectation of the sum of squared
errors, independently at each frequency [3]:

J = E
{

eHe
} = trace E

{
e eH

}
. (36)

Thus, the optimal controller is equal to

Wopt
(
eiωTp

) = S−1( eiωTp
)

Std
(
eiωTp

)
S−1
tt

(
eiωTp

)
, (37)

where matrices of power and cross spectral densities are
defined as

Std
(
eiωTp

) = E
{

d
(
eiωTp

)
T∗
(
eiωTp

)}
,

Stt
(
eiωTp

) = E
{
T
(
eiωTp

)
T∗
(
eiωTp

)}
.

(38)

Assume now that the set point value t(i) used during VUSS
learning phase is a sequence of white noise with expected
value σ2. The power spectral density matrix Stt is then equal
to

Stt
(
eiωTp

) = σ2, (39)

independent on ω, and the cross spectral density matrix Std

is equal to

Std
(
eiωTp

) =
[

0
e−iωTpΔσ2

]
. (40)

After evaluating inverse of transfer function block matrix
S( eiωTp), the optimal controller obtained with white noise
excitation becomes

Wopt
(
eiωTp

) = e−iωTpΔ

S11S22 − S12S21

[
−S12

S11

]
, (41)
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where the dependence of Snn transfer function on eiωTp has
been omitted to clarify the notation.

The above equation is consistent with the result obtained
in Section 3.1.1. It is, however, still the unconstrained
form of the controller which is not feasible for practical
implementation.

3.2. Adaptive filter solution

This subsection presents an alternative approach to optimal
and suboptimal filter designs discussed above. Now we will
try to develop an adaptive algorithm with the goal defined by
set of (12). We will assume that W1(z) and W2(z) are in form
of finite impulse response filters so the filter coefficients can
be stored in a vector similar to this defined by (29), but now
with coefficients varying slowly (compared to timescales of
plant dynamics) in time.

Although there are many algorithms that can be used
to tune filter coefficients [4], two-channel filtered-x LMS
algorithm was chosen for the following derivation and
experiments. Its advantages are simplicity and robustness,
even if speed of convergence is not the best. Using two-
channel FXLMS algorithm, the update equation is given by

W(i + 1) = W(i) + μRT(i)e(i), (42)

where μ is step size and R(i) and e(i) are defined by (28) and
(25), respectively.

The matrix of reference signals R(i) is generated by
filtration of the set point value by electroacoustic path
transfer functions S11(z) to S22(z). In practise, the latter
can be only estimated yielding a matrix of estimated plant
responses R̂(i). The estimation must take place before
running FXLMS algorithm and is usually done by separate
identification procedure. The same procedure can also be
turned on during active noise control phase after detecting
substantial changes in plant dynamics (e.g., changes in air
temperature).

To study convergence properties of the above algorithm,
it is necessary to substitute (27) into (42) with estimated
plant responses matrix, producing

W(i + 1) = W(i) + μ
[− R̂T(i)d(i) + R̂T(i)R(i)W(i)

]
. (43)

If the adaptive algorithm is stable, it will converge to the
solution setting the expectation value of the term in bracket
to zero [3]. The steady-state vector of filter coefficients will
therefore be equal to

W∞ =
{
E
[

R̂(i)R(i)
]}−1

E
[

R̂(i)d(i)
]
. (44)

The above result for the adaptive algorithm steady state
is in coincidence with the optimal solution presented in
Section 3.1.2 (31) if and only if the estimated matrix of
reference signals R̂ is equal to the true matrix of reference
signal. This validates, however, the methodology.

The precise consequences of nonperfect matching of true
plant responses contained in the matrix of reference signals
on adaptation process are still unknown. The strongest

M1 M2

L1

L2a L2b

x(i) u1(i) u2(i) e(i)

W1(z) W2(z)

t(i)

Adaptation

F(z)

+

−
0

Figure 4: Active noise control system using virtual unidirectional
sound source.

result has been shown by Wang and Ren [10], the sufficient
condition for stability of adaptation. Nevertheless it is not a
necessary condition and it has been obtained with the small
step size assumption.

During this research it was useful to introduce an
additional weight parameter β ∈ (0, 1) to specify which
of the goals defined in (12) should have more bearing on
adaptation process. For such case the definition of error
vector e(i) was modified as follows:

e′(i) =
⎡
⎣

(1− β)e1(i)

βe2(i)

⎤
⎦ =

[
(1− β) 0

0 β

]
e(i) = Be(i). (45)

When β is close to zero, the algorithm is better excited along
the modes responsible for neutralisation of the acoustic
feedback effect, while when β is close to one the algorithm
puts more stress on equalising the secondary path transfer
function.

Introducing the weight parameter β modifies the steady-
state vector of filter coefficients giving

W∞ =
{
E[R̂(i)BR(i)]

}−1
E[R̂(i)Bd(i)]. (46)

The maximum step size parameter, μ, assuring convergence
of the whole algorithm is given by

0 < μ <
2Re

(
λmax

)
∣∣λmax

∣∣2 , (47)

where λmax denotes maximum eigenvalue of R̂(i)BR(i)
matrix rather than R̂(i)R(i) as was in the original solution
[3]. The weight parameter β can therefore influence, to some
degree, the eigenvalues of the matrix under consideration.

4. ACTIVE NOISE CONTROL WITH VUSS

4.1. Active noise control algorithms

Feedforward active noise control system using virtual uni-
directional sound source has been shown in Figure 4. This
system uses a finite impulse response filter as control filter
with different adaptation algorithms. As in case of all
feedforward algorithms, only the reference value x(i) is used
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by the control filter F(z) to produce the set point value t(i).
The set point value is then processed by VUSS filters W1(z)
and W2(z) to give two control values u1(i) and u2(i) that
are amplified and sent to the loudspeakers (via amplifiers
and reconstruction filters not shown on the figure). The
adaptation algorithm on the other hand uses the reference
signal x(i) as well as the error signal e(i) to tune the control
filter coefficients.

The duct used in experiments described below was made
out of wood. It was 4 m long, with 0.2 × 0.4 m rectangular
section. One of the duct ends was terminated with noise
generating loudspeaker, while the other was opened. The
attenuating loudspeakers were of 0.16 m diameter and were
situated approximately in the middle of the duct. The
distance between the middles of the loudspeakers was equal
to 0.3 m. The reference microphone was located 1.23 m from
the middle of L2a loudspeaker, while the error microphone
was separated from L2b loudspeaker by the distance of
0.23 m.

It should be emphasised that the goal of active noise
control algorithm is in contradiction to the goal of the
virtual unidirectional sound source adaptation algorithm
[11]. The former tries to assure the compensation of sound
waves from both the primary and secondary sources at the
microphone M2 point without taking any notice of what
happens at the microphone M1 point. The goal of the
latter is to compensate sound waves from the secondary
sources only at the microphone M1 point and try to assure
the set point value appearing without any alternation at
the microphone M2 point. This leads to a conclusion that
both the algorithms should never operate at the same time.
Indeed, the experiments show that when both the adaptation
algorithms are in operation the whole system goes unstable.
Therefore, the VUSS adaptation algorithm is usually run
on the beginning of experiments and switched off after
adaptation is completed. Next, only ANC algorithm is in
use. Only when significant changes in the environment are
detected (e.g., temperature change above some level), the
ANC adaptation is temporarily frozen and the VUSS is
retuned.

FXLMS algorithm

The first of ANC filter adaptation algorithms tested was
Filtered-x LMS algorithm [4, 9]. Assume that the F(z) is an
FIR filter with coefficients (see Figure 4) in the ith sample of
time stored in a form of a vector f(i). In that case, the FXLMS
algorithm update equation is given by

f(i + 1) = f(i) + μ·x′(i)·e(i), (48)

where μ is the step size and x′(i) is the vector of reference
signal x(i) samples filtered by the secondary path transfer
function estimate, that is, an estimate of the transfer function
between set point value signal t(i) and error signal e(i).

If VUSS algorithm was working perfectly, the secondary
path transfer function would be equal to simple time
delay. Unfortunately, the study from Section 3.1 leads to
a conclusion that such perfect situation is impossible: the

VUSS algorithm has to “pay more attention” to neutralising
acoustic feedback and secondary path equalisation is only its
additional task.

RLS Algorithm

The second algorithm of ANC filter adaptation algorithms
tested was recursive least squares (RLS) algorithm (see, e.g.,
[9]). RLS algorithm uses very similar update equation in the
form

f(i + 1) = f(i) + k(i)·e(i), (49)

where k(i) is the gain vector showing how much the value of
e(i) will modify different filter coefficients. The gain vector is
calculated as

k(i) = P(i)·x(i), (50)

where P(i) is a matrix updated in each step according to the
following equation:

P(i) = 1
λ

(
P(i− 1)− P(i− 1)x(i− 1)xT(i− 1)P(i− 1)

λ + xT(i− 1)P(i− 1)x(i− 1)

)
.

(51)

The RLS algorithm usually converges faster than the LMS
algorithm [12].

Because RLS algorithm needs to update P matrix of
size equal to the number of filter coefficients in each
adaptation step, it requires computational effort of N2,
whereas LMS algorithm requires computational effort of N
only [13]. There is, however, a family of RLS algorithm
implementations called fast RLS algorithms that allows to
omit computation of P matrix and use a selection of row
vector instead [13, 14]. This work used one of such fast algo-
rithms, called fast transversal filter [15]. The algorithm was
parametrised as follows. The initial value of the minimum
sum of backward a posteriori prediction-error squares was
equal to 1 and the exponential weighting factor was equal to
0.9999. The algorithm showed no stability issues, as it was
expected on floating-point arithmetic platform.

Both the FXLMS and RLS algorithms were implemented
in C programming language. Testing and debugging were
performed using developed simulation platform for Linux
operating system. The platform allowed to emulate DSP
processor board behaviour and therefore the next step,
moving the code onto Texas Instruments TMS320C31 pro-
cessor board, was purely automatic. Another PC-computer
program was used to tune various algorithm parameters
and to acquire the results. The sampling frequency of 2 kHz
was chosen as frequency band up to 1 kHz was of the
author interest. It appeared that, due to hardware limitations,
appliable filter lengths were up to 70 with this sampling
frequency.

4.2. Testing sounds

The set of signals chosen for experiments is presented with
dashed line on Figures 12–17. Testing signals N1 and N2
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Table 1: The attenuation in simulations.

Signal Analytical solution + FXLMS Analytical solution + FXLMS Analytical solution + RLS

N1 9 dB 15 dB 16 dB

N2 16 dB 30 dB 33 dB

N3 10 dB 15 dB 16 dB

N4 15 dB 22 dB 22 dB

N5 9 dB 17 dB 18 dB

N6 6 dB 9 dB 8 dB
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Figure 5: Amplitude spectrum of transfer function between set
point value t(i) and x(i) (solid) and e(i) (dotted).
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Figure 6: Noise N2 attenuation using analytical VUSS solution. —
Spectrum with ANC, - - - spectrum without ANC.

were generated offline as white noise filtered with high-
order bandpass filter. Bandpass was 200–300 Hz in case of N1
signal and 700–800 Hz in case of signal N2. The former was
chosen to show low-frequency attenuation capabilities and
the latter to show high frequency attenuation. The N3 is a
signal acquired in close vicinity of a food processor. It has the
dominant frequency of about 270 Hz, but with substantial
amount of broadband noise. The N4 is a signal collected near
a power transformer. It has all the harmonics of 50 Hz visible
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Figure 7: Noise N5 attenuation using analytical VUSS solution. —
Spectrum with ANC, - - - spectrum without ANC.

with 250 Hz being the dominant. The N5 signal was recorded
in water power plant turbine proximity. It has the harmonics
of 100 Hz distinguishable among broadband noise. The last
signal N6 was recorded in small bureau with an electric
propeller fan turned on. It is similar to N5, but the dominant
frequency is higher.

All the signals were filed using 1000 samples. This ensem-
ble was repeated many times and (after amplification) sent
to loudspeaker L2 (see Figure 4). The results of attenuation
were measured with microphone M2 and calculated as

T = 10 log
(

MSV of e(i) without attenuation
MSV of e(i) with attenuation

)
[dB]. (52)

4.3. Simulation results

The simulations were performed using 150th order FIR
filters models of the duct paths, identified offline using
methodology presented in [16]. The algorithm for subopti-
mal VUSS filter solution described in Section 3.1 was tested
first. As expected, it allowed for very effective acoustical
feedback cancellation but at the cost of the secondary path
being substantially degenerated. The amplitude spectrum of
transfer function between set point value t(i) and both the
reference signal x(i) and error signal e(i) is presented on
Figure 5.
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Figure 8: Noise N2 attenuation using adaptive VUSS solution. —
Spectrum with ANC, - - - spectrum without ANC.
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Figure 9: Noise N5 attenuation using adaptive VUSS solution. —
Spectrum with ANC, - - - spectrum without ANC.

After tuning phase, the system was engaged to active
noise control algorithms: FXLMS and Fast RLS. The ANC
filter having 70 coefficients proved to be long enough to
cancel out the noise in case of tonal sounds, so this was the
chosen value. However, in case of N1–N6 signals attenuation
was only (as for simulations of feedforward controller) 6–
16 dB (with FXLMS algorithm, which proved to be better),
see Table 1. The examples of spectra of the signals observed
at the error microphone before and after attenuation have
been presented on Figures 6 and 7.

In the following experiments, adaptive algorithm
described in Section 3.2 was responsible for VUSS filters
tuning. The value of the β parameter (see (45)) has been
chosen as 0.5 to put the same effort into satisfying both
the goals defined by (12). The attenuation of tonal sounds
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Figure 10: Attenuation (in dB) of tonal sounds for adaptive filter
tuning. — RLS algorithm, - - - FXLMS algorithm.

1000800600400200

Frequency (Hz)

0

5

10

15

20

25

30

35

40

45
A

tt
en

u
at

io
n

(d
B

)

Figure 11: Comparison of attenuation of tonal sounds for analyt-
ical and adaptive VUSS filter tuning. — FXLMS algorithm with
analytical tuning, - - - RLS algorithm with analytical tuning, ... RLS
algorithm with adaptive tuning.

was also infinite in case of adaptive VUSS filters tuning.
But the attenuation of testing signals was slightly better:
9–30 dB in case of FXLMS algorithm and 8–33 dB in case
of RLS algorithm, see Table 1. The examples of spectra of
the signals observed at the error microphone before and
after attenuation have been shown on Figures 8 and 9. The
difference in amplitude spectrum of the N2 and N5 signals
without attenuation visible on these figures and on Figure 6
and 7 comes from the fact that this is the spectrum measured
with the M2 microphone, not the spectrum of the signal
driving the L1 loudspeaker.

Table 1 summarises the results obtained during sim-
ulations for broadband signals N1–N6. The simulation
experiments proved adaptive VUSS filters tuning superiority
over analytical suboptimal filter design.
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Figure 12: Noise N1 (broadband noise 200–300 Hz) attenuation.
— Spectrum with ANC, - - - spectrum without ANC.
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Figure 13: Noise N2 (broadband noise 700–800 Hz) attenuation.
— Spectrum with ANC, - - - spectrum without ANC.

4.4. Real experiments

To perform the real experiments using analytical filter design
it was necessary to identify the models of electroacoustic
paths S11(z) − S22(z) (see Figure 3) first. The identification
of FIR models of these paths was performed using LMS
algorithm prior to each experiment. Moreover, in case of
both the analytical and adaptive filter designs it was necessary
to identify the model of the secondary path before the ANC.
The identification of FIR model of this path was performed
after VUSS was tuned by online identification procedure.
The procedure, however, was disabled during the ANC.

The first ANC laboratory experiments used tonal sounds.
The frequency range between 100 and 950 Hz has been
checked with resolution of 20 Hz. The VUSS filter design was
performed using adaptive method. The attenuation obtained
during these experiments has been shown on Figure 10. The
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Figure 14: Noise N3 (food processor) attenuation. — Spectrum
with ANC, - - - spectrum without ANC.
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Figure 15: Noise N4 (power transformer) attenuation. — Spec-
trum with ANC, - - - spectrum without ANC.

figure shows that in frequency range from 150 to 950 Hz the
attenuation was between 14 and 33 dB (average 25 dB) for
FXLMS ANC algorithm and between 15 and 44 dB (average
30 dB) for RLS ANC algorithm.

The drop in attenuation above a frequency of about
420 Hz, especially distinct in case of RLS algorithm, can
be explained as the ducts first cut-on frequency appears at
425 Hz. The figure shows that the performances of both
FXLMS and RLS algorithms above first cut-on frequency
are similar. However, below a frequency of 400 Hz the
performance of RLS algorithm is up to 14 dB better than in
case of FXLMS algorithm.

The next step was to compare the performance of ANC
system in case of analytical and adaptive filter design. During
these experiments frequency range from 100 to 900 Hz was
tested with resolution of 100 Hz. The results are shown on
Figure 11. In all cases the efficiency of ANC algorithm with
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Table 2: The attenuation in real experiments.

Signal Adaptive solution + FXLMS Adaptive solution + RLS

N1 12 dB 14 dB

N2 7 dB 7 dB

N3 4 dB 8 dB

N4 13 dB 16 dB

N5 3 dB 8 dB

N6 3 dB 5 dB

10008006004002000

Frequency (Hz)

0

10

20

30

40

A
m

pl
it

u
de

(m
V

)

Figure 16: Noise N5 (power plant turbine) attenuation. —
Spectrum with ANC, - - - spectrum without ANC.

analytical VUSS tuning was worse than efficiency of the
same algorithm with adaptive VUSS tuning. Therefore, only
adaptive VUSS design was considered for the following tests.

Finally, the noise signals described in Section 4.2 were
used in real experiments. Although both FXLMS and RLS
ANC algorithms were checked for performance, the only
spectra presented on Figure 12 through Figure 17 are those
obtained with RLS algorithm, as this algorithm performance
was superior to FXLMS in all experiments. The attenuation
factors for both FXLMS and RLS algorithms are presented in
Table 2.

5. CONCLUSIONS

The idea of virtual unidirectional sound source presented in
this paper is based on theoretical study of wave propagation
in duct. VUSS itself is a special case of two-reference, two-
output system with a detailed analysis presented in Section 3.
Its application to active noise control in an acoustic duct
proved to be effective, resulting in 20–40 dB attenuation of
tonal sounds and 5–16 dB attenuation of complex signals
with broadband noise. The best results were obtained with
adaptive VUSS design together with RLS active noise control
algorithm. These results are comparable with similar results
reported by other authors. The results, however, do not show
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Figure 17: Noise N6 (electric propeller fan) attenuation. —
Spectrum with ANC, - - - spectrum without ANC.

one of the strengths of VUSS, the ability to adapt to time
varying feedback paths.
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1. INTRODUCTION

Most active noise control (ANC) systems are model depen-
dent. Let ̂P(z) and ̂S(z) denote estimates of primary and sec-
ondary path transfer functions P(z) and S(z). Either ̂S(z)
or both ̂P(z) and ̂S(z) must be obtained by initial system
identification for model-dependent ANC systems. Controller
transfer function C(z) of a model-dependent ANC system is
either designed by minimizing ‖ ̂P(z)+ ̂S(z)C(z)‖, or adapted
with the aid of ̂S(z) [1, 2]. If estimates ̂P(z) and ̂S(z) contain
too much error, a model-dependent ANC system may gen-
erate constructive instead of destructive interference. This is
mathematically equivalent to ‖P(z) + S(z)C(z)‖ > ‖P(z)‖
even if ‖ ̂P(z) + ̂S(z)C(z)‖ is minimized. If phase error in
̂S(z) exceeds 90◦ in some frequency, an ANC system adapted
by the filtered-X least mean square (FXLMS) algorithm may
become unstable [3–5]. An operator of a model-dependent
ANC system must have the knowledge and skill to obtain ac-
curate estimates of path models by initial system identifica-
tion for each individual application.

During the operation of an ANC system, changes of en-
vironmental or boundary conditions may cause significant

changes to path transfer functions P(z) and S(z). Since a
model-dependent ANC system only remembers initial path
estimates ̂P(z) and ̂S(z), variation of P(z) and S(z) may
cause mismatch with initial estimates ̂P(z) and ̂S(z) to de-
grade ANC performance. In cases of severe mismatch be-
tween path transfer functions and their initial estimates, a
model-dependent ANC system may generate constructive in-
stead of destructive interference, or even become unstable.

Model-independent ANC (MIANC) systems depend on
online path modeling or invariant properties of sound fields
to update or design controllers [6–8]. These systems avoid
initial path modeling and are adaptive to variations of en-
vironmental or boundary conditions of sound fields. Many
adaptive MIANC systems require invasive persistent excita-
tions to obtain accurate path estimates and ensure closed-
loop stability [6, 7, 9, 10]. Noninvasive MIANC systems are
able to ensure closed-loop stability without persistent ex-
citations, which are possible by a recently developed algo-
rithm, known as orthogonal adaptation [11, 12], if the pri-
mary noise signal is directly available as the reference signal.

In many real applications, the primary noise signal is not
necessarily available and the reference signal must be recov-
ered from the sound field [1, 2]. When an ANC system is
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Figure 1: Configuration of the proposed MIANC system.

active, a measured signal is a linear combination of primary
and secondary signals. Feedback of ANC signal in the mea-
surement is mathematically modeled by a feedback transfer
function F(z) from the controller to the reference sensor. Ac-
curate estimation of F(z) is as important as accurate estima-
tion of P(z) or S(z) [9, 13]. A complete noninvasive MIANC
(CNMIANC) system must be able to suppress the noise sig-
nal without injecting probing signals for online modeling of
P(z), S(z), and F(z). Most available methods for adaptive
feedback cancellation require persistent excitations [9, 13].
In this study, a new method is presented for adaptive feed-
back cancellation without persistent excitations.

It was proposed to use a pair of sensors to measure pres-
sure signals in ducts, from which traveling waves are re-
solved [14, 15]. The outbound wave could be used directly
as the reference signal without cancelling feedback signals if
an infinite-impulse-response (IIR) controller could be im-
plemented accurately [14, 15]. In reality, it is very difficult to
implement a stable ideal IIR ANC controller [16]. Most prac-
tical ANC systems use finite-impulse-response (FIR) con-
trollers. The outbound wave in a duct is a linear combina-
tion of primary noise and reflected version of feedback sig-
nal. Instead of using the outbound wave directly as the ref-
erence, the least mean square (LMS) algorithm is applied in
this study to cancel feedback signals in the outbound wave
before using it as the reference. Orthogonal adaptation is
combined with the proposed ANC configuration to imple-
ment a CNMIANC system. Experimental result is presented
to demonstrate the performance of the CNMIANC system.

2. SYSTEM CONFIGURATION AND MODEL

Figure 1 illustrates the configuration of the proposed ANC
system. The primary source is represented by the upstream
speaker and the secondary source is the midstream speaker.
Cross-sectional area of the duct is small enough such that
sound field in the duct can be modeled by a 1D sound field
in the frequency range of interest. Three microphone sensors
are installed in the duct, measuring signals p1, p2, and p3,
respectively. Since the primary noise signal is not available
to the ANC system, the reference signal is recovered from p1

and p2, while p3 is the error signal to be minimized by the
ANC system.

Let d denote the axial distance between p1 and p2. The
acoustical two-port theory [16, 17] has been applied by many
ANC researchers for the design and analysis of ANC systems.
It is adopted here as an analytical tool. An equivalent acousti-
cal circuit is shown in Figure 2 to model the two-microphone
system. The upstream part, from the primary source to loca-
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p1 p2

cos(kd) jZo sin(kd)

j
sin(kd)
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j
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j
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Figure 2: (a) Acoustical two-port circuit in the duct system, (b)
contribution by controller, and (c) contribution by primary source.

tion of p1, is equivalent to an acoustical source with strength
up and impedance Zp. The downstream part, from location
of p2 to the outlet, is represented by another acoustical source
with strength us and impedance Zs. Characteristic impedance
of the duct is represented by Zo.

The linear system theory allows one to solve p1 and p2

in Figure 2(a) by focusing on acoustical circuits of Figures
2(b) and 2(c) before adding two solutions together as the fi-
nal solution of Figure 2(a). For the case of up = 0, which is
represented by Figure 2(b), one obtains

p2|up=0 =
[

cos(kd) + j
Zo
Zp

sin(kd)
]

p1|up=0,

us − p2|up=0 =
[

Zs
Zp

cos(kd) + j
Zs
Zo

sin(kd)
]

p1|up=0,

(1)

where k is the wave number. One can solve, from (1),

p2|up=0 =
Zo
[

Zpcos(kd) + jZosin(kd)
]

(

Zs + Zp
)

Zocos(kd) + j
(

ZsZp + Z2
o

)

sin(kd)
us,

(2)

p1|up=0 =
ZoZp

(

Zs + Zp
)

Zocos(kd) + j
(

ZsZp + Z2
o

)

sin(kd)
us.

(3)

Similarly, for the case of us = 0, which is represented by
Figure 2(c), one obtains

p1|us=0 =
[

cos(kd) + j
Zo
Zp

sin(kd)
]

p2|us=0,

up − p1|us=0 =
[

Zp
Zs

cos(kd) + j
Zp
Zo

sin(kd)
]

p2|us=0,

(4)
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from which one can solve

p1|us=0 =
Zo
[

Zscos(kd) + jZosin(kd)
]

(

Zs + Zp
)

Zocos(kd) + j
(

ZsZp + Z2
o

)

sin(kd)
up,

(5)

p2|us=0 =
ZoZs

(

Zs + Zp
)

Zocos(kd) + j
(

ZsZp + Z2
o

)

sin(kd)
up.

(6)

Adding (2) and (6), one may write

p2 = p2|up=0 + p2|us=0

= Zo
[

Zpcos(kd) + jZosin(kd)
]

us + ZoZsup
(

Zs + Zp
)

Zocos(kd) + j
(

ZsZp + Z2
o

)

sin(kd)
.

(7)

The same method is applicable to (3) and (5) for

p1 = p1|up=0 + p1|us=0

= Zo
[

Zscos(kd) + jZosin(kd)
]

up + ZoZpus
(

Zs + Zp
)

Zocos(kd) + j
(

ZsZp + Z2
o

)

sin(kd)
.

(8)

The next step is to use complex factor α = Zo/((Zs +
Zp)Zocos(kd) + j(ZsZp +Z2

o )sin(kd)) to simplify (7) and (8).
The results read

p2 = α
{[

Zpcos(kd) + jZosin(kd)
]

us + Zsup
}

,

p1 = α
{[

Zscos(kd) + jZosin(kd)
]

up + Zpus
}

.
(9)

Since cos(kd) = 0.5(e jkd + e− jkd) and jsin(kd) = 0.5(e jkd −
e− jkd), (9) can be written as

p2 = α
{[

Zp + Zo
2

e jkd +
Zp − Zo

2
e− jkd

]

us

+
[

Zs + Zo
2

+
Zs − Zo

2

]

up

}

,

p1 = α
{[

Zs + Zo
2

e jkd +
Zs − Zo

2
e− jkd

]

up

+
[

Zp + Zo
2

+
Zp − Zo

2

]

us

}

.

(10)

Let

wi = α
{

Zs − Zo
2

up +
Zp + Zo

2
e jkdus

}

(11)

wo = α
{

Zp − Zo
2

us +
Zs + Zo

2
e jkdup

}

(12)

represent the in- and outbound waves in the duct. By com-
paring (10) with (11) and (12), one can see that (10) are
equivalent to

p2 = wi +woe
− jkd, p1 = wie

− jkd +wo. (13)

The in- and outbound waves can be resolved from p1 and p2

via
[

wi

wo

]

=
[

e− jkd 1

1 e− jkd

]−1 [
p1

p2

]

= 1
1− e−2 jkd

[−e− jkd 1

1 −e− jkd
][

p1

p2

]

.

(14)

In a digital implementation of ANC system, it is recom-
mended to select sampling interval δt such that its product
with sound speed c satisfies cδt = d. As a result, the delay op-
erator exp(− jkd) = z−1 becomes an exact one-sample delay
for discrete-time ANC systems.

3. FEEDBACK CANCELLATION

It is indicated by (12) that the outbound wave contains feed-
back from us that must be cancelled to recover the reference
signal. Let R1 = (Zp −Zo)/(Zp +Zo) denote the upstream re-
flection coefficient. By multiplying e− jkdR1 to (11), one ob-
tains

e− jkdR1wi = α
{
(

Zs − Zo
)(

Zp − Zo
)

2
(

Zp + Zo
) e− jkdup +

Zp − Zo
2

us

}

.

(15)

A subtraction of (15) from (12) enables one to write

wo − e− jkdR1wi = n, (16)

where

n= α
[(

Zs + Zo
)(

Zp + Zo
)

e jkd−(Zs − Zo
)(

Zp − Zo
)

e− jkd
]

2
(

Zp + Zo
) up

(17)

is only contributed by the primary source up.
Using cos(kd) = 0.5(e jkd + e− jkd) and jsin(kd) =

0.5(e jkd − e− jkd), one can see that the common denomina-
tor of p1, p2, and all transfer functions in the duct is
(

Zs + Zp
)

Zocos(kd) + j
(

ZsZp + Z2
o

)

sin(kd)

= 0.5
(

Zs+Zo
)(

Zp+Zo
)

e jkd−0.5
(

Zs−Zo
)(

Zp−Zo
)

e− jkd.
(18)

Substituting (18) into the definition of α (immediately after
(8)), one obtains

2Zo=α
[(

Zs +Zo
)(

Zp+Zo
)

e jkd−(Zs −Zo
)(

Zp −Zo
)

e− jkd
]

.
(19)

A further substitution of (19) into (17) leads to

n = Zoup
Zp + Zo

. (20)

This is the reference signal to be recovered by the proposed
ANC system.

A question to be answered here is why not recovering the
reference signal from a pressure signal such as p1. The hint
is (8) that may be expressed as p1 = F( jω)us + B( jω)up. In
view of (8), the acoustical feedback transfer function is

F( jω) = ZoZp
(

Zs + Zp
)

Zocos(kd) + j
(

ZsZp + Z2
o

)

sin(kd)
.

(21)

Since F( jω) is a transfer function with resonant poles, it has
an infinite impulse response (IIR). In many ANC systems, a
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finite-impulse-response (FIR) filter ̂F( jω) is used to approx-
imate F( jω). This means inevitable approximation errors in
the first place.

Besides, all transfer functions in a duct are sensitive to
values of Zo, Zs, and Zp. In particular, Zs is the impedance
of the entire downstream segment from the location of p2 to
the duct outlet. Objects moving near the duct outlet could
cause changes of Zs. A fracture in any downstream part may
also cause a significant change to Zs as well. If initial estimate
̂F( jω) is remembered by an ANC system, it is a stability issue
how significant will F( jω) − ̂F( jω) turn out as a result of a
small variation of Zs. An indicative answer might be

∂

∂Zs
F( jω) = −ZoZp

[

Zocos(kd) + jZpsin(kd)
]

[(

Zs + Zp
)

Zocos(kd) + j
(

ZsZp + Z2
o

)

sin(kd)
]2 .

(22)

The common denominator of p1, p2, and all transfer func-
tions in the duct has an alternative form in (18), which is
equivalent to

0.5
(

Zs + Zo
)(

Zp + Zo
)

e jkd − 0.5
(

Zs − Zo
)(

Zp − Zo
)

e− jkd

= 0.5
(

Zs+Zo
)(

Zp+Zo
)

e jkd
[

1−
(

Zs−Zo
)(

Zp−Zo
)

(

Zs+Zo
)(

Zp+Zo
) e−2 jkd

]

= 0.5
(

Zs + Zo
)(

Zp + Zo
)

e jkd
[

1− R1R2e
−2 jkd],

(23)

where R2 = (Zs − Zo)/(Zs + Zo) represents the downstream
reflection coefficient.

Since resonant frequencies of the duct are roots of the
common denominator, it is suggested by (22) and (23) that
all transfer functions in the duct, including the feedback
transfer function F( jω), are sensitive to variance of Zs at the
resonant peaks. The stronger the resonance, the more sensi-
tive of transfer functions with respect to Zs. If an ANC system
recovers the reference signal from a pressure signal like p1, a
small online variation of Zs may cause a significant mismatch
between F( jω) and initial estimate ̂F(z). As a result, closed-
loop stability is sensitive to possible variation of Zs.

If the reference signal is recovered from traveling waves
with (16), the situation will be different. In a discrete-time
implementation, one may rewrite (16) to n(z) = wo −
Fw(z)wi, where the acoustical feedback transfer function is
a delayed version of upstream reflection coefficient Fw(z) =
z−1R1(z). Here, R1 = (Zp − Zo)/(Zp + Zo) is only sensitive
to Zp and Zo. Characteristic impedance Zo is a real constant
depending on sound speed and cross-sectional area between
p1 and p2. It seldom changes significantly in online ANC op-
erations. As for Zp, it is the impedance of the upstream por-
tion from the primary source to the location of p1. In most
applications, p1 and p2 are measured as close as possible to
the primary source. Impedance Zp is deeply hidden in a very
short segment of the duct. Its variation, if any, would be cer-
tainly not as significant as that of Zs.

No matter how significant are the possible variations of
Zp or Zo, the passive upstream reflection always has a lim-
ited magnitude |R1| < 1. For each pair of fixed Zp and Zo,

|R1( jω)| does not have sharp peaks or dips as a function
of ω. In many cases, |R1| is constant for a pair of fixed Zp
and Zo. Let X( jω) denote the Fourier transform of x(t), then
X( jω) = L{x(t)} and x(t) = L−1{X( jω)} share many similar
properties. For example, if x(t) is a low-frequency function
of t, then the bandwidth of X( jω) is narrow in terms of ω.
Similarly, if X( jω) is a “low-frequency” function of ω, then
the time duration of x(t) is short (a narrow bandwidth in
terms of t). The fact that |R1| is a “low-frequency” function
of ω for each pair of fixed Zp and Zo implies short impulse
responses of R1(z). It is, therefore, reasonable to assume that
R1(z) = ∑m

k=0rkz
−k can be approximated by a FIR transfer

function with negligible errors (Assumption A1). If both Zp
and Zo are constant, R1 is a single constant. Resonant effects
in the duct are hidden in wave signals wi and wo without af-
fecting R1. This is a major difference between recovering the
reference signal from traveling waves and recovering the ref-
erence signal from a pressure signal.

Even if an estimate of Fw(z) is obtained by initial iden-
tification, it is less likely that online variations of environ-
mental or boundary conditions could cause significant mis-
match between Fw(z) and its initial estimate. The resultant
ANC system is semimodel independent if its reference signal
is recovered with (16) in combination with a MIANC adap-
tation algorithm such as orthogonal adaptation.

4. COMPLETE NONINVASIVE MIANC

Noninvasive model-independent feedback cancellation is
possible by applying LMS to (16). With assumption A1, on-
line estimate of the feedback transfer function is represented
by polynomial

̂R(z) =
m
∑

k=0

r̂k(t)z−k, (24)

where rk(t) is the kth coefficient for the tth sample. An esti-
mated version of (16) would be

n̂ = wo − z−1
̂R(z)wi, (25)

which has a discrete-time domain expression,

n̂(t) = wo(t)−
m
∑

k=0

r̂k(t)wi(t − k − 1). (26)

Coefficients of ̂R(z) = ∑m
k=0r̂k(t)z−k are updated with the

LMS algorithm as follows:

r̂k(t + 1) = r̂k(t) + μn̂(t)wi(t − k − 1), (27)

where μ > 0 is a small constant representing the LMS
step size. Since R1(z) = ∑m

k=0rkz
−k by assumption A1, the

discrete-time domain version of (16) is

n(t) = wo(t)−
m
∑

k=0

rkwi(t − k − 1). (28)
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Subtracting (28) from (27), one obtains

n̂(t)− n(t) =
m
∑

k=0

[

rk − r̂k(t)
]

wi(t − k − 1)

=
m
∑

k=0

Δrk(t)wi(t − k − 1),

(29)

where Δrk(t) = rk − r̂k(t) is the estimation error of rk. Let
Δr = [Δr0,Δr1, . . . ,Δrm]T and let �i(t) = [wi(t − 1),wi(t −
2),wi(t −m − 1)]T . It is possible to express (29) in an inner
product

n̂(t)− n(t) = ΔrT�i(t). (30)

Estimation residues of LMS algorithms are usually expressed
as inner products like (30). It has been proven that the LMS
algorithm is able to drive the convergence of these inner
products towards zero.

If the primary noise signal up was available, mathematical
model of the error signal may be expressed in the discrete-
time z-transform domain as e(z) = P(z)up(z) + S(z)us(z),
where the actuation signal would be synthesized as us(z) =
C(z)up(z). Since up is actually not available, the ANC sys-
tem has to recover n̂(z) from the outbound wave and then
synthesize us(z) = C(z)n̂(z) instead. After the convergence
of n̂(z) → n (z), one may express the mathematical model of
the error signal to

e(z) =
{

P(z)
[

1 +
Zp
Zo

]

+ S(z)C(z)
}

n(z), (31)

where (20) has been substituted. LetH(z) = P(z)[1+Zp/Zo],
then (31) becomes

e(z) = [H(z) + S(z)C(z)]n(z). (32)

It is mathematically equivalent to another ANC system
whose primary source is available to the controller as n(z),
with primary path transfer function H(z) and secondary
path transfer function S(z). Orthogonal adaptation is read-
ily applicable to (32) to implement a noninvasive MIANC
system.

It is assumed that H(z) and S(z) can be approximated
by FIR filters with negligible errors (Assumption A2). Let
hT = [h0 h1 · · · hm] and sT = [s0 s1 · · · sm] denote coef-
ficients of H(z) and S(z), respectively, the discrete-time do-
main version of e(z) = H(z)n(z)+S(z)us(z) is a discrete-time
convolution:

e(t) =
m
∑

k=0

hkn(t − k)−
m
∑

k=0

skus(t − k), (33)

where e(t), n(t), and us(t) denote samples of e(z),
n(z), and us(z), respectively. Introducing coefficient
vector θT = [hT sT] and regression vector φt =
[n(t) n(t−1) · · · n(t−m), us(t) us(t−1) · · · us(t−m)]T ,
one may rewrite (33) to

e(t) = θTφt. (34)

Let ̂H(z) and ̂S(z) denote online estimates of H(z) and S(z).
Path estimates ̂H(z) and ̂S(z) are obtained by minimizing es-
timation error as follows:

ε(z)=e(z)− ̂H(z)n(z)− ̂S(z)us(z)=ΔH(z)n(z)+ΔS(z)us(z),
(35)

where ΔH(z) = H(z) − ̂H(z) and ΔS(z) = S(z) − ̂S(z) are
online modeling errors. Let ̂θ T = [̂hT ŝT] denote online es-

timate of θT = [hT sT], then ̂hT = [̂h0
̂h1 · · · ̂hm] and

ŝ T = [ŝ0 ŝ1 · · · ŝm] represent the coefficients of ̂H(z) and
̂S(z), respectively. Similar to the equivalence between (34)
and e(z) = H(z)n(z) + S(z)us(z), (35) has a discrete-time
domain equivalence

εt = e(t)− ̂θ Tφt = Δ̂θ Tφt, (36)

where Δθ = θ − ̂θ is the online coefficient error vector. The
entire CNMIANC system performs three online tasks that are
mathematically represented by the minimization of three in-
ner products. The first is inner product given in (30); the sec-

ond one is given in (36); and the third one is ̂θ Tφt.
Equations (30) and (36) contain estimation errorsΔr and

Δθ. Most available estimation algorithms, such as LMS and
the recursive least squares (RLS), are very capable of driv-
ing inner products like (30) and (36) towards zero, or at
least minimizing their magnitudes [18]. A difficult problem
is how to force Δr→ 0 and Δθ → 0. Available solutions inject
significant levels of “persistent excitations” (invasive probing
signals) to the estimation system [6, 7, 9, 10, 13]. A unique
feature of the proposed CNMIANC is no persistent excita-
tions. The system works well without requiring Δr → 0 and
Δθ → 0.

For (30), minimizing the inner product in the right-
hand side implies convergence of n̂ → n in the left-hand
side. It would be great if Δr → 0 as well. Otherwise, Δr may
just converge to a FIR filter that filters out wi from wo. On
the other hand, minimizing the inner product in (36) only
implies εt → 0. The question is what does it further im-
plies? One may consider the equivalence between (34) and
e(z) = H(z)n(z) + S(z)us(z), which holds if one replaces
θT = [hT sT], H(z), and S(z) with respective estimates
̂θ T = [̂hT ŝT], ̂H(z), and ̂S(z). The equivalence is now be-

tween forcing ̂θ Tφt ≈ 0 and forcing

̂H(z)n(z) + ̂S(z)us(z) = [ ̂H(z) + ̂S(z)C(z)
]

n(z) ≈ 0. (37)

The CNMIANC system uses online estimates of ̂H(z) and
̂S(z) to solve C(z) that minimizes ‖ ̂H(z) + ̂S(z)C(z)‖2. This
is equivalent to forcing ̂θ Tφt ≈ 0. One can obtain

‖e‖ = ∥∥εt + ̂θ Tφt
∥

∥ ≤ ∥∥εt
∥

∥ +
∥

∥̂θ Tφt
∥

∥ (38)

by adding ̂θ Tφt to both sides of (36). As the CNMIANC sys-

tem drives εt = Δ̂θ Tφt → 0 and forces |̂θ Tφt| ≈ 0 ultimately,
it implies ultimate convergence of ‖e‖ → 0 even though Δθ
does not necessarily converge to zero [11, 12].
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Figure 3: Normalized PSDs of e(t) for (a) uncontrolled case
(dashed-black), (b) controlled case with up(t) available (solid-gray),
and (c) controlled case with recovered n̂(t) (solid-black).

5. EXPERIMENTAL VERIFICATION

A CNMIANC system was implemented and tested in an ex-
periment, with a configuration shown in Figure 1. Cross-
sectional area of the duct was 12×15 cm2. Two microphones
were placed 30 cm downstream from the primary speaker
with a space of d = 10 cm between p1 and p2. The distance
between p2 and the secondary speaker is represented by L in
Figure 1. To guarantee a causal ANC system, the value of L
must satisfy L > 2d such that the outbound wave is at least
two samples ahead of sound propagation in duct. The sam-
pling interval of the controller was 0.29 millisecond with a
sampling frequency of 3.448 Hz, which satisfies d = cδt with
c = 344 m/s and exp(jkd) = z. The cutoff frequency of an-
tialias filters was chosen to be 1200 Hz. The in- and out-
bound waves were recovered from pressure signals with (14).
The reference signal was recovered with (25). Coefficients of
̂R(z) were adapted with (27). Another online modeling pro-
cess used (34) to obtain coefficients of ̂H(z) and ̂S(z). The
ANC transfer function was solved by online minimization
of ‖ ̂H(z) + ̂S(z)C(z)‖2. The CNMIANC system was imple-
mented in a dSPACE 1103 board.

Error signal e(t) and primary noise up(t) were collected
as vectors e and up for three cases. In case 1, there was no
control action. In case 2, up(t) was available as the reference
signal for an ANC system to suppress noise in the duct. In
case 3, up(t) was not available and the CNMIANC system
had to recover n̂(t) from p1 and p2 for controller synthe-
sis. For each respective case, power spectral densities (PSD’s)
of e(t) and up(t) were computed with a MATLAB com-
mand called “pmtm()”. Computational results are denoted
as vectors Pe = pmtm(e) and Pp = pmtm(up), where ar-
gument vectors e and up represent measurement samples of
e(t) and up(t). The normalized PSD of e(t) was calculated as
Pne = 10log(Pe/Pp) for all three cases.

Shown in Figure 3 are normalized PSD of e(t) for the
three cases. For case 1, normalized PSD of e(t) is represented

by the dashed-black curve. For case 2, normalized PSD of
e(t) is plotted with the solid-gray curve. For case 3, normal-
ized PSD of e(t) is represented by the solid-black curve. Both
ANC systems were able to suppress noise with good control
performance as seen in Figure 3. The proposed CNMIANC
has slightly worse performance since its reference was the re-
covered signal n̂(t) instead of the true primary source up(t).
This is a small price to pay in case up(t) is not available to
the ANC system. The proposed CNMIANC system was stable
and able to recover the reference and suppress noise without
any persistent excitations.

The CNMIANC system was robust with respect to sud-
den parameter change in the duct. In the experiment, the
duct outlet was changed from completely open to completely
closed. Such a sudden change shifted all resonant frequencies
in the duct. Path transfer functions also changed suddenly.
The CNMIANC system remained stable and converged very
quickly.

6. CONCLUSIONS

The primary source is not necessarily available as the ref-
erence signal for ANC systems in all practical applications.
When the primary source is not available, the ANC system
must recover the reference signal from a sound field to which
ANC is applied. Feedback cancellation is an important issue
in ANC systems that recover reference signals from sound
fields. In most MIANC systems, persistent excitations are
required for online modeling of feedback path model and
adaptive feedback cancellation [9, 13]. In this study, a CN-
MIANC system is proposed that recovers reference signal
from traveling waves without persistent excitations. The cor-
responding feedback path model is the upstream reflection
coefficient and hence closer to an FIR filter than pressure
feedback transfer functions (IIR path models in resonant
ducts). Theoretical analysis and experimental results are pre-
sented to demonstrate the stable operation of the proposed
CNMIANC system.
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1. INTRODUCTION

Active noise cancellation (ANC) is to attenuate noise by
the same sound but opposite phase. This technique has
been practically used in air conditioning systems in large-
scale buildings, aircraft cabins, and so on [1]. However,
there are many fields such as ventilation ducts for small
buildings where ANC is desired but has not been applied
yet because the conventional adaptive algorithms for ANC
require expensive implementation.

In the previous study [2], by assuming that temperature
variation is small as in recent energy-efficient houses so
that time-invariant controller can achieve sufficient perfor-
mance, two types of time-invariant low-order controllers are
compared: one is based on the conventional adaptive filter
(the filtered-U recursive LMS algorithm) but the coefficients
are fixed by the stationary values. Another is obtained by a
robust control method (sampled-data H∞ control). It has
been shown that robust control design has advantage to
implement inexpensive ANC system for ventilation ducts,
because it gives a systematical way to design a controller
which is robust against not only plant dynamics variation
but also aliasing components of noise. However, further
improvement of the sound attenuation is desired.

The method originally proposed by Swinbanks [3] is well
known as an effective one for the improvement of the system
performance, where an additional loudspeaker is attached to
cancel out the upstream sound generated by a control source
[4]. The method has been examined in detail under adaptive
control setup [5]. However, the effect of Swinbanks’ source
under robust control setup has not been studied. Moreover,
experimental results applied to actual ventilation systems
installed in houses have not been reported.

In this paper, we examine robust control design of
active noise control systems with a pair of loudspeakers in
order to improve the system performance. By regarding the
loudspeakers as two independent sources, a single-input-
multiple-output (SIMO) controller is also designed to be
compared with Swinbanks’ source. The validity of robust
control design is shown by experimental results using a
ventilation duct installed in a real house.

It would be worth mentioning that there have been
many studies that deal with the design problem for duct
active noise control systems not only in the adaptive control
framework [1, 6] but also in the robust control framework
[7–10] under the simple duct setup, while the comparison
of the adaptive and robust control with a real ventilation
system has been firstly reported in [2]. Furthermore, robust
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Figure 1: Experimental apparatus.

Table 1: Experimental instruments.

Ventilation fan Kaneka corp. SV-200U (250 m3/h, energy-recovery ventilation)

Loudspeaker (SPK1) FOSTEX FW208N woofer speaker with wooden box enclosure

Loudspeaker (SPK2 & SPK3) FOSTEX FW108N woofer speaker with PVC pipe enclosure

Microphones Electlet condenser type

Sound-level meter RION NL-20

Power amplifier TOSHIBA TA8213K

High-pass filter NF ELECTRONIC INSTRUMENTS FV-664 (2 ch, 80 Hz, 24 dB/oct)

Low-pass filter 500 Hz 4th-order Butterworth

PC Dell Dimension 2200 (RT-Linux 3.2, kernel 2.4.22)

A/D, D/A CONTEC AD12-16(PCI), DA12-4(PCI) (12 bit, ±5 V, 10μs)

control system with Swinbanks’ source has not been studied
yet.

2. PROBLEM SETUP

Figure 1 and Table 1 show the block diagram and instalments
of the experimental apparatus which are the same in [2]
except that SPK3 and the corresponding D/A channel are
attached so that Swinbanks’ source is composed of the pair
of loudspeakers, SPK2 and SPK3.

In addition, for simplicity of robust control design in this
paper, SPK1 is used as a noise source in the modeling stage of
robust control design to examine frequency response of the
plant model, while in [2] actual fan noise is used.

Figure 2 shows the configuration of the ventilation
system installed in a two-stored real house which is also the
same as in [2]. The grilles are attached to the ceiling of each
floor, and the ANC system is connected between fresh-air
grilles and the ventilation fan.

In this paper, we examine the following cases to derive
the control sources SPK2 and SPK3.

Case (a)—a single loudspeaker—by setting v(t) = 0, only
SPK2 is used to generate control sound.

Case (b)—swinbanks’ source [5]—by setting

v(t) = −u(t − τ), τ = d

c0
, (1)

SPK3 is driven to cancel out the upstream sound generated
by SPK2, where d is the distance between SPK2 and SPK3,
and c0 is the sound speed.

Case (c)—an array of two loudspeakers—by setting v(t)
free to u(t), SPK2 and SPK3 are driven as independent
sources.

Our primal motivation is to improve the performance
by using a pair of loudspeakers (cases (b) and (c)) instead
of a single loudspeaker (case (a)) in the robust control
framework. In Swinbanks’ source, the upstream loudspeaker
is driven by a downstream one in an ad hoc way by (1). Hence
our second motivation is to further improve the performance
by giving more freedom to the upstream loudspeaker in
case (c), although it has been reported in adaptive control
framework that the performance is not improved if we
replace the delay in case (b) by an adaptive filter to enlarge
the design freedom [5].

In the experiments for case (b) below, (1) is approx-
imately implemented as a real-time module of RTLinux
that updates the signal v(t) at every 0.1 millisecond which
is considered to be short enough to avoid aliasing effect.
In addition, by letting d = 0.34 m from Figure 1 and
c0 = 344 m/s from normal temperature environment, we
use τ = 1 millisecond which exactly corresponds to 10
times of the period of the real-time module mentioned
above. Moreover, the cutoff frequency of HPF is deter-
mined by considering the frequency range of Swinbanks’
source given as [ f0, 5 f0], where f0 := d/12c0 [5]. The
sampling period of controller is 1 millisecond throughout
this paper.

3. ROBUST CONTROL DESIGN

The design procedure for case (a) is the same as in [10]. The
detail of the design procedure for case (c) is omitted but it is
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done by simply replacing the signal [u v ]
T

to u to apply the
design process of case (a).

3.1. Modeling

The plant models for Figure 1 are determined by frequency

response experiment. The system from [ w u ]
T

to [ z y ]
T

is considered as the plant transfer function G(s) for cases (a)
and (b) as

G(s) :=
[
Gzw(s) Gzu(s)

Gyw(s) Gyu(s)

]
, (2)

while for case (c) G(s) is defined by

G(s) :=
[
Gzw(s) Gzu(s) Gzv(s)

Gyw(s) Gyu(s) Gyv(s)

]
, (3)

where Gab(s) means the transfer function from the signal b
to the signal a.

Figure 3 shows the frequency response of G(s) and
corresponding nominal plant obtained by subspace-based

method where the order is 85. In the figures for Gzu(s) and
Gyu(s), two frequency response results are shown in blue and
yellow curves where the former corresponds to cases (a) and
(c), while the latter corresponds to case (b). On the other
hand, the frequency responses for Gzw(s) and Gyw(s) shown
in blue curves are commonly used to determine nominal
plant for all the cases.

In experimental results of case (a), the phase lag becomes
larger in the order of Gyw, Gzu, Gyu, and Gzw, of which
order coincides with that of the distance from corresponding
microphone to speaker. In case (b), remarkable change on
Gyu(s) is observed compared with case (a): the gain is smaller
in the whole frequency range, and the phase lag becomes
larger, which can be considered as the result that the distance
for sound traveling from the control source to reference
microphone becomes larger. This implies that the separation
of control input and measured output is improved so that
the better performance is expected [11]. Although such
remarkable change is not observed in Gzu(s), the gain is
slightly larger in the middle frequency range of Swinbanks’
source, which is the nature of the source reported in [5].

In addition, in order to guarantee the closed-loop system
stability against the modeling error of the nominal plant,
additive uncertainty model is introduced for feedback-path
transfer function. That is, for cases (a) and (b), Gyu(s) is
considered as

Gyu(s) = Gyu(s) + W(s)δ(s), (4)

where Gyu(s) is the nominal plant for Gyu(s), δ(s) is
normalized modeling error whose H∞ norm is less than
or equal to 1, and W(s) is a weighting function which is
determined to cover the modeling error as shown in Figure 4.
Similarly, for case (c) we define

[
Gyu(s) Gyv(s)

]
=
[
Gyu(s) Gyv(s)

]
+ W(s)Δ(s), (5)

where Δ(s) is 1× 2 normalized modeling error. Note that the
common weighting function is used for all cases as

W(s) = 0.015
(
s2 + 2ζ1ω1s + ω2

1

)
ω2

2ω
2
3

ω2
1

(
s2 + 2ζ2ω2s + ω2

2

)(
s2 + 2ζ3ω3s + ω2

3

) , (6)

where ω1 = 200, ζ1 = 0.9, ω2 = 650, ζ2 = 0.7, ω3 = 2200,
ζ3 = 0.6.

3.2. Controller design

According to the preparation above, sampled-data H∞
control synthesis [12] is applied to the following digital
controller design problem: find a discrete-time controller
Kd(z) which maximizes positive scalar α so that the following
conditions hold:

(i) the closed-loop system of Figure 5 is internally stable;
(ii) there exists positive scalar d such that L2 induced

norm of the closed-loop system is less than 1,
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Figure 3: Frequency response of plant.



Y. Kobayashi and H. Fujioka 5

103102101

Frequency (Hz)

−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

M
ag

n
it

u
de

(d
B

)

Case (a)

Additive uncertainty
W

(a)

103102101

Frequency (Hz)

−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

M
ag

n
it

u
de

(d
B

)

Case (b)

Additive uncertainty
W

(b)

Figure 4: Additive uncertainty and weight.

Table 2: Sound pressure level at each grille.

Grille
Sound pressure level (LAeq,10 s) [dB]

Without control With control

Case (a) Case (b) Case (c)

No. 1 34.2 33.0 (−1.2) 32.5 (−1.7) 32.1 (−2.1)

No. 2 40.4 38.8 (−1.6) 37.4 (−3.0) 37.3 (−3.1)

No. 3 31.9 30.5 (−1.4) 28.9 (−3.0) 29.2 (−2.7)

No. 4 41.2 39.1 (−2.1) 37.1 (−4.1) 37.2 (−4.0)

d

α

ζ

z

y

G

ν
d−1

vWp

u

W

S Kd H

Figure 5: Robust performance problem with scalings.

where S is the sampler with sampling period h= 1 millisec-
ond,H is the zeroth order hold, andWp(s) is a bandpass filter
given by

Wp(s) =
(

s

s + ωp1

)2( ωp2

s + ωp2

)2

,

ωp1 = 2π × 80, ωp2 = 2π × 400.

(7)

Note that the closed-loop system gain is robustly minimized
by maximizing α to improve control performance to attenu-
ate fan noise.

The design results are as follows. The maximal α = 4.64
was achieved for d = 1.07 for case (a), and the maximal
α = 5.87 was achieved for d = 1.56 for case (b), which
implies that the closed-loop performance will be improved
by Swinbanks’ source. Furthermore, α was further improved
by case (c) as α = 6.10 for d = 1.23, because of the less
conservative design. The order of Kd(z) is 93.

4. COMPARISON OF CONTROLLERS

In this section, both adaptive and robust controllers are
examined, where each adaptive controller for cases (a) and
(b) is determined as a fixed 100th IIR filter by using the
filtered-U RLMS method (see [2] for design process in
detail), while the controller for case (c) is determined as a
single-input-double-output fixed 100th IIR filter by using the
multiple-channel filtered-U RLMS method [6].

Figure 6 shows adaptive and robust controllers for cases
(a) and (b). It can be seen that for the adaptive controllers,
the peak gains at about 60, 90, and 100 Hz become smaller
when Swinbanks’ source is used, while the similar phe-
nomenon has been reported in [5]. The effect of Swinbanks’
source is also observed for the robust controllers shown as
the flat gain characteristic within the frequency range from
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Figure 6: Effect of Swinbanks’ source.
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Figure 7: Effect of SIMO design.

80 to 400 Hz, while for the case with a single loudspeaker,
relatively large peak at about 180 Hz is appeared.

Figure 7 shows adaptive and robust controllers for cases
(b) and (c). It can be seen for the robust controller of case
(c) that Swinbanks’ source characteristic is automatically
obtained, since (i) the gain characteristics of both channels
of the controller are similar and (ii) the phase difference
is around 180 deg. Note that this fact is firstly reported
in this paper. Furthermore, by examining the result in
detail, advantages of robust control design with case (c) are
observed. Firstly, from the gain characteristic, the controller

for case (c) has relatively large peaks at about 120 and
170 Hz compared with case (b), which suggests that the
flat gain characteristic of Swinbanks’ source is not essential
for performance improvement for actual ventilation system.
Secondary, in the frequency range around 60 ∼ 400, the
gain from y to v is slightly smaller than from y to u,
which can be interpreted as the result of robust control
design to compensate the attenuation of sound due to
propagation. In contrast, it might be difficult to give such a
reasonable interpretation for the adaptive controller of case
(c).
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Figure 8: Time response of z.

5. CONTROL EXPERIMENTS

In this section, robust controllers designed so far are com-
pared by control experiments.
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Figure 9: FFT analysis result of z.
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Figure 8 shows time response of error microphone signal
z, where the first 12.5 seconds are without control and
the following 12.5 seconds are with control. The smaller
sampling period (0.5 millisecond) is used for measurement
to observe intersample behavior within the sampling period
of the controller. It can be seen that cases (b) and (c) show
better performance than case (a), while in [5] it has been
reported by experimental result that the performances of
cases (a) and (b) are similar. This might be caused since
directional microphones are used in [5] but not used in this
paper.

Figure 9 shows the FFT analysis result of Figure 8. It can
be seen that the amplitude of z is reduced within 80 to
400 Hz.

It should be noted that the main frequency component
of noise occurs around 100 Hz whose noise shape differs
very much from the open-loop frequency response of Gzw

shown in Figure 3. Therefore, it is expected that the system
performance will be improved by setting the weight function
Wp(s) to consider the noise shape.

Table 2 shows sound pressure level measured below each
grille. It can be seen that the attenuation level of case (b) is
about twice the level of case (a), which shows the availability
of robust control design for Swinbanks’ source. On the other
hand, the advantage of case (c) could not be shown (i.e., the
attenuation level is similar to case (b)). It is not what we
expect from the design results with larger α. The reason of
this phenomenon is currently under study. One may pose
a conjecture that it is from the modeling error. We have
considered the modeling error from the control input to the
measured output, however, other modeling errors are not
reflected in the design. Especially the error of the transfer
function from v to z could greatly affect the experimental
result of case (c). Indeed, the gain characteristic in Figure 3
shows that there is a relatively large difference between the
experimental result and the nominal plant compared with
the other transfer functions. Hence we are working on the
improvement of the modeling for utilizing the potential
advantage of the design setup in case (c), by accounting the
modeling error and/or by setting the nominal plant order
higher in control design. We could report the results in the
future.

6. CONCLUSIONS

In this paper, we have examined a robust control design
of active noise control systems with a pair of loudspeakers,
and the validity of the design method has been shown
experimentally by using a ventilation system installed in a
real house. The results are summarized as follows.

(i) Firstly, by using Swinbanks’ source as a pair of
loudspeakers, it has been confirmed that the controller
designed by robust control method has flat gain
characteristic which has been reported in adaptive
control literature as an advantage of using Swinbanks’
source.

(ii) Secondly, by considering the pair of loudspeakers as
two independent actuators, it has been shown that the

controller designed by robust control method is more
acceptable than the one designed by adaptive control
method, since the similar effect of Swinbanks’ source
was automatically obtained by the former design but
not by the latter one.

(iii) Finally, by comparing the resultant noise attenuation
levels of robust controllers with both a single loud-
speaker and a pair of loudspeakers, the improvement
has been shown by the latter case (i.e., the attenuation
level was up to 4 dB while it was up to 2 dB for the
former case).

Therefore, we conclude together with the result of
[2] that the robust control design is useful to implement
inexpensive active noise control systems with a pair of
loudspeakers for ventilation ducts.
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1. INTRODUCTION

The most common control approach control (ANC) is the
filtered-x least mean squares (FXLMS) algorithm [1, 2]. One
of the limitations of the FXLMS algorithm is that it exhibits
frequency-dependent convergence behavior that can lead to
a significant degradation in the overall performance of the
control system. Two types of noise will be discussed as they
relate to this limitation.

(1) A single tone with time-varying frequency, such as
engine noise, where the engine firing frequency changes
along with the speed of the engine in revolutions per minute
(rpm) during operation. It is assumed that the signal power
of the tone in the reference remains the same, independent
of frequency. This type of noise will be referred to as “swept
tone noise.”

(2) Noise containing multiple quasistationary tones, such
as helicopter cabin noise, where multiple rotating parts
contribute strong tones that do not vary significantly in
frequency during normal operation. This type of noise will
be referred to as “multiple tone noise.”

Various adaptations to the FXLMS algorithm have been
developed in an effort to overcome the performance loss
due to its frequency-dependent convergence behavior. The
normalized FXLMS algorithm [3] has a variable convergence
parameter that changes with the power of the input for noise
containing a single tone. Clark and Gibbs and Lee et al.
[4, 5] developed a method to process tonal components of
a multiple tone noise problem separately allowing for a dif-
ferent convergence parameter for each tone. More uniform
convergence and increased overall attenuation of all tones are
achieved at the expense of more computational complexity.
Kuo et al. improved convergence for multiple tone noise by
optimizing the magnitude of internally generated reference
signals as the inverse of the secondary path magnitude [6].
This approach requires that the user have control over the
reference tone amplitudes. The drawback of most of these
approaches is that they increase the computational burden
of the algorithm, increase the algorithm’s complexity, or are
not applicable to one of the two types of noise considered
here.
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Elliot and Cook preconditioned the input to the LMS
update by using a second filter that was the inverse of the
minimum phase part of the secondary path estimate, thus
“whitening” the input and making convergence independent
of resonances in the secondary path [7].

Prior research by the authors proposed the eigenvalue
equalization filtered-x least mean squares (EE-FXLMS) algo-
rithm [8]. This algorithm improves performance without
increasing the computational burden or complexity of the
algorithm. The development of the algorithm came from
focusing on the eigenvalues of the autocorrelation matrix of
the filtered-x signal, which relate to the dynamics or time
constants of the modes of the system. Typically, there is a
large spread in the eigenvalues of this matrix, corresponding
to fast and slow modes of convergence. If the variance in
the eigenvalues of the autocorrelation matrix is minimized,
convergence properties will be more uniform and controller
parameters could be optimized for all frequencies leading
to increased performance (faster convergence speed and
additional noise attenuation) of the controller.

For the EE-FXLMS algorithm, adjustments to the sec-
ondary path estimate are made in the frequency domain.
The phase of the original secondary path transfer function
estimate is preserved while the magnitude coefficients are
adjusted to have the inverse trend of tones in the reference
signal. The new magnitude coefficients are combined with
the original phase response and transformed back into the
time domain, giving a new FIR estimate of the secondary
path to filter the reference signal. This is intended to equalize
the power of tonal components in the filtered-x signal,
which in turn would equalize the eigenvalues of the filtered-x
autocorrelation matrix.

Previously, the EE-FXLMS was implemented for swept
tone noise by making each secondary path transfer function
coefficient flat (equal amplitude) over frequency because, as
noted, the power of the reference signal was independent of
frequency. For multiple tones, the trend of the magnitude
coefficients was made to be the inverse trend of the
amplitudes of the tones in the reference signal. For both
cases, this led to more uniform eigenvalues (of the filtered-
x autocorrelation matrix), faster convergence times, and
additional attenuation at the error sensor [8].

This paper revisits the EE-FXLMS implementation to
modify the magnitude coefficients as motivation for inves-
tigating improved methods of adjusting the magnitude
coefficients. In this work, a genetic algorithm is used to find
the optimal magnitude coefficients for a limited frequency
range, swept tone noise, and for a specific set of reference
tones for multiple tone noise. Experimental results for ANC
in a mock cabin enclosure for these control implementations
are presented and compared.

2. BACKGROUND

The FXLMS algorithm involves adaptively filtering a refer-
ence signal taken from the noise source to create a control
signal that attenuates the unwanted noise. The LMS update
is used to change the control filter coefficients such that
the measured residual noise is minimized. The measured
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d(t)
+

y(t)

W(z)
u(t)

H(z)

Ĥ(z) LMS
update
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C(z): Plant

W(z): Adaptive filter

H(z): Actual secondary path

Ĥ(z): Secondary path estimate

Figure 1: Block diagram of the FXLMS algorithm.

residual is called the error signal and for this research,
it will be utilized to minimize a squared pressure (SP)
quantity. The mean squared error is a quadratic function
of the filter coefficients with a unique global optimum. The
LMS update is a gradient descent search method. It follows
the path of steepest descent on the error surface toward
the optimum filter weights. A block diagram for a single-
channel implementation of the FXLMS algorithm is shown
in Figure 1. In Figure 1, and in all equations presented, the
variable t is a discrete time index and the variable z a discrete
frequency domain index.

2.1. Secondary path transfer function

The FXLMS algorithm derives its name from the filtered-x
signal, r(t), which is the convolution of the reference signal

x(t), with ĥ(t), a finite impulse response (FIR) estimate of
the secondary path transfer function. The secondary path
transfer function (shown in Figure 1 as H(z)) includes the
effects of digital-to-analog and analog-to-digital converters,
filters, audiopower amplifiers, loudspeakers, the acoustical
transmission path, error sensors, and other signal condition-
ing.

The secondary path model, Ĥ(z), is estimated through
a process called system identification (SysID). The SysID
process is performed offline (before ANC is started) for the
fastest convergence of the algorithm where the secondary
path does not change significantly during operation of the
system. Band-limited white noise is played through the
control speaker(s) and the output is measured at the error
sensor(s). The measured impulse response is obtained as an
FIR filter, ĥ(t), that represents Ĥ(z). The coefficients of ĥ(t)
are stored and used to prefilter the input signal to the LMS
update to run control. While inclusion of Ĥ(z) is necessary
for stability, the FXLMS algorithm is robust to errors in
its estimation. The algorithm will converge (slowly) as long
as phase errors are less than 90◦ [1] and phase errors less
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than 40◦ do not significantly affect convergence [9]. The

gain applied to the reference signal by filtering it with ĥ(t)
does not affect the stability of the algorithm and is usually
compensated for by modifying the convergence parameter μ.

2.2. FXLMS convergence and eigenvalues of
filtered-x autocorrelation matrix

The time constants for the modes of convergence of the
ANC system are determined by the eigenvalues of the
autocorrelation matrix of the filtered-x signal [10]. While
the convergence parameter, μ, can be optimized to give
fast convergence for one mode, others will converge more
slowly. For swept tone noise, μ can be optimized for a
given frequency in the range of the sweep, but not for all
frequencies in the range. When the algorithm is controlling
a tone at a frequency other than that for which it was
optimized, convergence will be slower and attenuation less.
For multiple tone noise, the algorithm will be able to
attenuate portions of the total noise quickly while other tones
in the noise will linger and take longer to converge.

The properties of the filtered-x signal, and hence the
autocorrelation matrix, are a function of the magnitude
response of Ĥ(z) and the spectrum of the reference signal.
The autocorrelation matrix of the filtered-x signal is defined
as

R = E
[

r(t)rT(t)
]
, (1)

where E[·] denotes the expected value of the operand which
is the filtered-x signal vector, r(t), multiplied by the filtered-x
signal vector transposed rT(t). In general, it has been shown
that the FXLMS algorithm (or any of its variations) will
converge (in the mean) and remain stable as long as the
chosen μ satisfies the following equation [9]:

0 < μ <
2

λmax
, (2)

where λmax is the maximum eigenvalue of the autocorrelation
matrix.

In practice, it is computationally demanding to obtain
a real-time estimate of the autocorrelation matrix, so the
optimal μ is often selected through experimentation. In
this work, the structure of the eigenvalues of a given
ANC problem is explored using an offline estimate of the
autocorrelation matrix. This is done in a numerical analysis

program by taking an actual ĥ(t) model from a mock
cabin enclosure, convolving this with a reference signal for
the given noise application, computing the autocorrelation
matrix, and getting the eigenvalues. If a single frequency
reference signal is used, λmax can be computed for that
frequency. If the simulation is repeated over a range of
frequencies, λmax for a single tone at each frequency in that
range can be found. For control of a single tone, λmax is
the only eigenvalue of interest since it will determine the
convergence of the algorithm for that frequency. Figure 2

(solid line) shows an offline simulation using an actual ĥ(t)
from the mock cabin enclosure, and equal amplitude tonal
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Figure 2: Plot of normalized maximum eigenvalues over frequency
for original and modified (flat magnitude) eigenvalues.

inputs from 0–300 Hz. The disparity in λmax over frequency
shows how the convergence of the algorithm will change
as it controls a single tone swept through this range. The
range of interest from 0–300 Hz was selected because the
experimental hardware was set with a cutoff frequency at
400 Hz. The eigenvalues in the figure have been normalized
to the largest eigenvalue in the range.

The largest eigenvalue for a single tone occurs at about
125 Hz. This location corresponds to the largest μ that is
stable for the entire frequency range from 0–400 Hz as given
by (2). All other frequencies have a smaller eigenvalue and
could use a larger μ, and still be stable, if just that particular
frequency was targeted for control. Frequencies at the valleys
of the solid line in Figure 2 have the smallest eigenvalues and
could use the largest μ’s and still be stable, again if they were
the only frequencies targeted for control. The larger μ’s are
especially desirable for nonstationary noise as they lead to
faster convergence and increased attenuation.

For multiple tone noise that is stationary, the eigenvalues
are not computed for individual tones as before, but for
the composite reference signal containing all tones to be
controlled. In this case, the disparity among all of the
nonzero eigenvalues, not just λmax, gives information about
how different spectral components of multiple tone noise
will converge.

3. EIGENVALUE EQUALIZATION—PRIOR METHODS

If the variance in the eigenvalues of the autocorrelation
matrix was minimized, a single-convergence parameter
could then be chosen that would be nearly optimal for all
frequencies targeted for control and the algorithm would
converge at nearly the same rate at all frequencies or for
all modes of convergence. Additionally, “misadjustment”
errors that prevent the algorithm from converging to the
true optimal solution depend on the eigenvalues of the
autocorrelation matrix. Misadjustment error is larger when
there is large disparity in the eigenvalues [11]. Misadjustment
(and hence attenuation) can be improved by making these
eigenvalues equal.
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As previously stated, the autocorrelation matrix is
directly dependent on the filtered-x signal, which is com-
puted by filtering the input reference signal, x(t), with Ĥ(z).
Any attempt at equalizing the eigenvalues must be done by
altering either the reference signal or the secondary path
model. Adjusting the power of the reference signal has been
shown to be an effective way of doing this [6]; however, in
many applications this amount of control over the reference
signal is not feasible. We focus on making changes to Ĥ(z)
only. The span, defined as λmax divided by λmin, is used
as a metric to quantify any improvement in the eigenvalue
disparity. This ratio is the most important property, as
any change in the actual magnitude of the eigenvalues is
compensated for by making a complementary adjustment to
the magnitude of the convergence parameter μ.

3.1. Eigenvalue equalization applied to
swept tone noise

For swept tone noise, it has been shown that flattening the
magnitude coefficients of Ĥ(z), while preserving the phase
reduces the variance in the eigenvalues [8]. Figure 2 shows
both the original eigenvalues (solid line) and the modified
eigenvalues (dotted line) when the magnitude coefficients of
Ĥ(z) are flattened. In the figure, the eigenvalues for both
the original and modified cases have been normalized by the
largest of the original eigenvalues. The span for the original
eigenvalues in this range (0–400 Hz on the plot) is 1.385 ×
105 and the span for the flattened magnitude Ĥ(z) is 162.3.
These modifications to Ĥ(z) make a noticeable improvement
in the performance of the algorithm [8]. The more uniform
rate of convergence of all modes of the system is beneficial as
it speeds up the overall convergence of the error signal. For
dynamic signals, this increased rate of convergence equates to
greater attenuation, as it also results in more rapid tracking.

The eigenvalues are much more uniform, but still not
perfectly uniform. This is due to the finite resolution of the
digital system and of the sampled secondary path estimate.
The shape of the magnitude response, Ĥ(z), can only
be constrained to some value at its respective frequency
bins; there is no guarantee that the response of Ĥ(z) is
also flat between frequency bins. As an example, a 128
coefficient Ĥ(z) model sampled at 2000 Hz will have a
frequency resolution of 15.625 Hz. For swept tone noise,
the system may be excited at any frequency in the range of
the application. An estimate of the “analog” or continuous
response of Ĥ(z) between frequency bins can be made by
zero padding the 128-coefficient model before computing
the fast Fourier transform (FFT). The original, flattened, and
zero-padded flattened magnitude coefficients of Ĥ(z) from a
mock cabin are shown in Figure 3. The discrete magnitude
response is indeed flat at the frequency bin values, but the
zero-padded model shows that the true response deviates
from flat in between bins. This magnitude variation between
frequency bins in Ĥ(z) contributes to the residual variation
seen in the modified eigenvalues for the range.

Another source of variation may come from frequency
leakage when the reference signal gets downsampled before

being convolved with ĥ(t). Before being convolved with ĥ(t),
the reference signal is downsampled with the same sampling

frequency as was used to find ĥ(t); for this example, 2000 Hz
was used. In addition, only n number of samples are kept of
the reference signal at a given time, where n is the number

of coefficients in ĥ(t); for this example, 128 was used. This
downsampling process causes amplitude estimation error in
the frequency domain due to leakage. Thus if the original
reference signal is assumed to be equally weighted at each
frequency, as was done to create the eigenvalue simulations
shown in Figure 2, the actual reference signal used in those
simulations is no longer equally weighted over frequency.
This also contributes to residual variation in the eigenvalues.

3.2. Eigenvalue equalization applied to
multiple tone noise

When multiple noise sources are present, a reference signal
may be obtained from each and combined into a single-
reference signal. In some cases, the reference signal will
contain a fundamental frequency and harmonics from a
single-noise source. In either case, the combined tones in
the reference signal will in general have different amplitudes.
This weighting of the reference tones will be specific to
each application and depends on how the reference signals
are conditioned and combined. This frequency-dependent
weighting of the reference tones as well as the gain applied
by the secondary path estimate contributes to the eigenvalue
disparity for multiple tone noise. For multiple tone noise
in this research, an arbitrary (but specific, for consistency)
weighting was applied to the reference tones. The amplitude
of the reference signal tones was defined by

Tonal Amplitude = −0.0036∗(Tonal Frequency) + 1.18.
(3)

This gave a decreasing trend in amplitude for increasing
frequency that ranged from 1.0 at 50 Hz to 0.1 at 300 Hz. All
tones used for the multiple tone noise were in this range.

To equalize the eigenvalues for this case, a trend line
connecting the peaks of the tones (on a power spectrum plot)
in the reference is drawn. The inverse of this line gives the
desired trend for the magnitude coefficients in Ĥ(z), which
here corresponds to the inverse of (3). Since the tonal ampli-
tudes for the test case were specified, obtaining the inverse
trend line was straightforward. In actual implementation, an
offline “Ref ID” process would also be required. This would
entail recording the reference signal under normal operating
conditions for the system at the sampling frequency used
by the controller. The desired magnitude trend for the
modified Sys ID filter could be obtained from the fast Fourier
transform (FFT) or power spectrum plot of the reference.

This type of modified Ĥ(z) is designated as an “X-
inverse” model. Figure 4 shows the trend line for the
amplitude of tones in the reference as given by (3), the
desired magnitude response for Ĥ(z), and the zero-padded
response of the 256 coefficients X-inverse model. All curves
have been normalized in the figure. As before, the response
of the filter between bins deviates from the trend assigned
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Figure 3: Plot of original-, flattened-, and zero-padded flattened
magnitude coefficients of Ĥ(z).
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Figure 4: Reference tone amplitude trend line for multiple tone
noise signals with desired trend and zero-padded X-inverse model
magnitude responses.

the coefficients. Increasing the coefficients from 128 to 256
makes the magnitude response match the desired curve at
more points, but does not improve the variation between
bins. The same is true for the phase response.

This method will reduce the eigenvalue variation only
for some cases. If the tones in the reference are chosen to
correspond exactly to frequency bin values, the eigenvalues
are much more uniform using the X-inverse model than
using the original model. However, if the tones lie off these
frequency bin values, the eigenvalue span can be worse than
for the unmodified Ĥ(z).

Table 1: Comparison of eigenvalue span for original and X-inverse
models for multiple tones with frequencies on and off frequency bin
values.

Sys ID length Original X-inverse

Tones on bin values
128 4350 2.0

256 2162 2.0

Tones off bin values
128 217 16

256 239 991

Phase difference-original and x-inverse
Sys ID models (128 coefficients)
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Figure 5: Phase difference between 128-coefficient original and
X-inverse models with reference tones off frequency bin values.
Dashed lines indicate tonal frequencies.

Two reference signals containing six tones were made
for comparison; one with all six tones on frequency bins
(62.5, 93.75, 125, 171.875, 203.125, and 296.875 Hz) and
the other with these tones shifted slightly to lie between
bin values (50, 100, 130, 180, 200, and 280 Hz). The length
of the FIR filter model of Ĥ(z) was increased from 128 to
256 to double the resolution in an attempt to constrain the
magnitude response between bins to follow more closely the
desired trend. The eigenvalue span for these reference signals
with the original and X-inverse Ĥ(z) models of different
lengths were calculated. The results of these comparisons
are shown in Table 1. When the tones lie on the frequency
bins, the X-inverse model gives a significant improvement
in the eigenvalue span. For offbin frequencies the X-inverse
model is better than the original for the 128-coefficient filter,
but not as good as when the tones are on bins. When the
filter length is increased to 256, the span for the X-inverse
model was worse than the original model for offbin tones.
The span for the X-inverse model with 256 coefficients went
from 239 to 991 likely because the magnitude response of the
X-inverse model goes almost to zero at 200 Hz (see Figure 4).
Increasing the resolution by using a longer filter does not (at
least in some cases) improve the eigenvalue span. This gives
the desired magnitude response at a larger number of points,
but the deviation from the desired trend in between these
points is not necessarily improved.

The eigenvalue span for the 128-coeffficient X-inverse
model and tones at offbin frequency values was reduced
significantly over the original model from 217 to 16.
However, Figure 5 shows that the phase errors introduced
exceed stability limits near several tones in the reference.
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Horizontal lines mark 40◦ and 90◦ of phase error between
the original and modified phase response and vertical dashed
lines show the positions of offbin reference tones. Phase
errors introduced into regions where no tonal components
of the noise are being controlled will not affect the stability
or performance of the system. For helicopters, the tones
in the noise are very stable and do not shift in frequency
significantly, however, phase errors very near those tonal
frequencies are potentially problematic for both stability and
overall performance of the ANC system.

In this case, even though the eigenvalue span was
improved, the X-inverse model would not work well if used
in ANC since instability and poor performance would result
from the phase issues. This is another reason the X-inverse
method is inadequate.

The inability to control the magnitude and phase
response of the secondary path estimate in between fre-
quency bin values and the unpredictable changes that occur
in each when the magnitude coefficients of the original
model are modified make the X-inverse method of eigen-
value equalization inadequate. A genetic algorithm approach
was developed to optimize the magnitude coefficients, and
which can overcome these difficulties for multiple tone noise.

4. EIGENVALUE EQUALIZATION—GENETIC
ALGORITHM

A genetic algorithm was used to investigate the possibility
of getting more uniform eigenvalues over narrow bands of
frequencies for swept tone noise and for specific multiple
tone noise cases. Optimizing the magnitude coefficients of
Ĥ(z) in ways other than those described previously may
lead to improved eigenvalue span, but are not intuitive.
Genetic algorithms (GAs) [12, 13] have gained considerable
popularity in recent years for their ability to solve problems
with a large number of design variables, multiple local
minima and maxima, nondifferentiable functions, or some
combinations of these. They can work well for both discrete-
and real-valued problems. GA’s mimic the natural selection
process found in nature that allows individuals with the
best “fitness” to survive. Parents are chosen from the
most fit individuals of a population of randomly generated
designs. These parents are then sent through a reproduction
process to exchange and pass on genetic information to new
designs (children). As in nature, mutations are introduced
occasionally to provide for random variation. Parents and
children compete to be included in the next generation. As
the generations progress, the random designs converge to a
design that has the best fitness.

4.1. Genetic algorithm cycle

The genetic algorithm cycle used to optimize the magnitude
coefficients of Ĥ(z) can be broken down into nine steps.
A brief description of each step is now given. It should be
noted that other GA’s with different cost functions could
be investigated. The purpose of this work is to present one
such GA and compare the results to other easily implemented
techniques.

(1) Determine a coding for the design

Each design in a GA consists of a number of independent
variables chosen by the designer. Each independent variable
is called a “gene,” a set of genes giving one design, or
“chromosome.” As the desired result of the algorithm was

to obtain an optimized impulse response model, ĥ(t), that
could be used in physical experimentation, a 128 or 256

coefficient ĥ(t) for the mock cabin described in Section 6 was
obtained by the SysID process described in Section 2.1. The

FFT of ĥ(t) was then taken, and the phase information of
Ĥ(z) was preserved in a vector. The magnitude information
of Ĥ(z) was discarded, as the GA was implemented to find
the optimal magnitude coefficients by making each unknown
magnitude coefficient a gene. Each design then contained 64
or 128 genes, which were the unknown 128 or 256 magnitude
coefficients of Ĥ(z) (since they are mirrored about the
Nyquist frequency).

(2) Generate an initial population

Once the coding scheme for a single design was established,
a population of N designs was randomly generated. This was
done by randomly assigning a value between a minimum
value of 0.01 and a maximum of 10 for each gene (magnitude
coefficient) in the design. This range was chosen based on
some trial and error. If the minimum was set to zero, the
GA would make all the magnitude coefficients zero giving a
trivial solution of all zero eigenvalues. The maximum value
was set to 10 so that the generated designs were close to the
overall magnitude values for the original model. The process
was repeated N times to generate the entire population. In
general, designs with many genes require large population
sizes to maintain adequate diversity. The population size was
500.

(3) Calculate fitness for each design

After the initial population was randomly generated, each
design was evaluated and assigned a fitness value. Each
randomly generated set of magnitude coefficients was recom-
bined with the stored phase information, and the inverse
FFT was taken to get a new unique model for the impulse

response, ĥ(t). This new model was used to compute the
eigenvalues of the filtered-x autocorrelation matrix in the
same manner as explained in Section 4. For swept tone noise,
the eigenvalues were computed over a specified frequency
range and then normalized by the largest of the eigenvalues.
As the ideal normalized eigenvalue at each frequency would
be one, the fitness value was chosen as a sum of the squared
errors between the actual value of each eigenvalue in the
frequency range and one, as shown in (4):

fitness =
fend∑
fstart

(1− λk)2. (4)

The fitness value for multiple tone noise was simply the span
(λmax divided by λmin) of all nonzero eigenvalues.
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In addition, a penalty was applied to any design whose
phase response was in error by more than 40◦ in a range of
+/− 5 Hz around each of the tonal frequencies in the multiple
tone noise. This was done to decrease the design’s sensitivity
to tonal frequencies shifting. Constraining the phase in this
way ensures that the algorithm will remain stable for small
changes in the tonal frequencies. Designs whose performance
would be hindered by the phase error introduced by altering
the magnitude response were assigned a poor fitness value.

(4) Selection of parents

A tournament selection process was used to choose parent
designs from the population. A specified number of designs
were randomly selected to compete in the tournament.
The design with the best fitness wins the tournament and
was made a parent design. This process was repeated until
enough parents had been selected to make N children; a set
of two parent designs producing a single-child design.

(5) Perform crossover

A process called crossover exchanged traits from each parent
design and created children designs. In this way, new designs
were made that had traits from each parent. For this work,
blend crossover was used. In blend crossover, genes from
both parents are blended to make two new children genes.
This occurs gene by gene. First, a random number between
zero and one is chosen for each gene to determine whether
crossover will occur. If the random number is larger than the
user defined crossover probability, no crossover occurs. The
genes for the children, c1 and c2, are equal to the parent genes,
p1 and p2, respectively, so that if no crossover occurs for
any genes in the design, the children will be identical to the
parents. If the random number is less than the user specified
crossover probability, another random number is chosen. If
it is <0.5, the blend parameter, a, is calculated by

a = (2r)1/η

2
, (5)

and if the random number is ≥0.5, the blend parameter is

a = 1− (2− 2r)1/η

2
. (6)

The children genes c1 and c2 are created from the parent
genes p1 and p2 by

c1 = (a)p1 + (1− a)p2,

c2 = (1− a)p1 + (a)p2.
(7)

The value of η is chosen by the user. As η→0, the
crossover becomes uniform, meaning that c1 = p2 and c2 =
p1. As η→∞, a→1/2 and the children’s genes are the average
of the parent’s gene values.

The crossover probability was chosen to be 50% and η
was 0.5.

(6) Perform mutation

After crossover, some of the genes in the children designs are
mutated. Mutation provides for diversity and occasionally
introduces new beneficial information into a design. Higher
mutation probability maintains more diversity in the designs
as the generations progress and can help the algorithm
avoid converging on a local optimum in the design space.
Mutation can be made dynamic allowing for high diversity
initially, keeping the algorithm from settling prematurely in a
local optimum. In later generations, mutation is constrained
allowing the algorithm to randomly make fine adjustments
to the design once it is near what is hoped to be the global
optimum. Initially, mutation can cause the gene to become
any value in the allowable range for that gene. By the last
generation, when mutation occurs the new value for the gene
is only allowed to have a new value that is very close to
the original. The probability of mutation occurring does not
change, only how different the mutated gene is allowed to
be from its premutation value. This is done by introducing a
dynamic mutation parameter α:

α =
(

1− n− 1
N

)β
, (8)

where n is the current generation number and N is the total
number of generations. The exponent, β, is a user defined
parameter that weights the dynamic function of α. If β = 0,
α will always be one and the amount of mutation allowed
will be uniform for all generations. If β is greater than zero,
the amount of mutation allowed decreases as the generation
number increases.

A random number is chosen to determine whether
mutation will occur for each child gene. If the random
number is less than the user-specified mutation probability,
another random number, cmut, is chosen within the allowable
range for that gene. If cmut is less than the current value for
the gene, the new gene value is

cnew = cmin +
(
cmut − cmin

)α(
c − cmin

)(1−α)
, (9)

and if cmut is greater than the current value for the gene, the
new gene value is

cnew = cmax −
(
cmax − cmut

)α(
cmax − c

)(1−α)
. (10)

The mutation probability was chosen to be 50% and β
was set to 0.5.

(7) Measure fitness of children

Once all of the children were created through crossover and
mutation, the fitness value of each child was computed in the
same way as described in Step 3.

(8) Perform elitism

Once each child design has a fitness value, parents are made
to compete with children in a process called elitism. All of the
parents and children are sorted by their fitness value, and the
N number of designs with the best fitness value becomes the
starting generation for the next iteration of the algorithm.
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Original versus modified magnitude coefficients
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Figure 6: Original and modified magnitude coefficients of Ĥ(z) for
genetic algorithm run from 60–90 Hz.

(9) Repeat Steps 4–8 for M number of generations

Steps 4–8 were repeated for M number of generations. The
number of generations needed to be large enough to allow
the algorithm to converge on an optimum design. For the
work reported here, M was chosen to be in the range of 50–
200.

The optimization performed by the genetic algorithm is
all done offline as part of the setup of the ANC system after
the offline system identification routine. It is not run in real-
time and so is currently limited to use with systems where
the secondary path does not change significantly and can be
characterized offline.

4.2. Genetic algorithm results

(1) Swept tone noise

The GA was unable to produce a design that had lower
eigenvalue span than the flattened magnitude design when
optimizing for the entire range of frequencies from 0–
400 Hz. There were not enough degrees of freedom in the
design variables to get a better result. The frequency range
for swept tone noise was reduced to a much smaller range
to see if the genetic algorithm could improve the span of the
eigenvalues in a smaller range. The GA was run for swept
tone noise in the range 60–90 Hz with 128 filter coefficients.
The results for 60–90 Hz are shown in Figures 6 and 7.
Figure 6 shows the original- and new-modified magnitude
coefficients, and Figure 7 shows the resulting eigenvalues. As
before, the eigenvalues in both the original and modified
case have been normalized by the largest of the original
eigenvalues. The eigenvalues from the genetically optimized
magnitude coefficients are more uniform. The eigenvalue
span for the genetic algorithm model approach was 1.08,
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Figure 7: Normalized original and modified eigenvalues for genetic
algorithm run from 60–90 Hz.
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Figure 8: Fitness history for genetic optimization of 128-coefficient
Sys ID model.

which is improved over both the eigenvalue span of 4.578 and
2.45 from the original and the flattened models, respectively.

(2) Multiple tone noise

The GA was also run for the reference signal containing six
offbin tones, as described in Section 4.2, for 128 and 256
filter coefficients. The genetic algorithm was able to find a
magnitude response that is unlike the X-inverse model and
reduces the eigenvalue span to 5.8 for 128 coefficients and
5.3 for 256 coefficients. These values can be compared to
the results for the other methods shown in Table 1, which
have span values typically several orders of magnitude higher.
Figure 8 shows the fitness history of the best design in each
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Table 2: Comparison of eigenvalue span for original and GA magnitude coefficients for offbin tones shifted in frequency from the values for
which the GA optimized the model.

f shift −10 −6 −4 −2 0 2 4 6 10

Original model
128 span 193.5 209.3 217.5 220.7 216.8 213 201.1 202.2 392.7

256 span 64.4 265.5 444.0 361.7 238.5 169.6 174.8 500.0 1240.1

Genetic model
128 span 9.0 5.1 4.3 5.0 5.8 7.6 9.9 12.8 24.4

256 span 23.9 11.3 28.2 13.0 5.3 12.9 51.4 132.0 1309.2
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Figure 9: Magnitude of original and genetic 128-coefficient models along with the phase error in the genetic model.

generation of the 128-coefficient optimization and gives an
idea of the dynamics of the genetic optimization. The fitness
is the span plotted on a logarithmic scale.

The optimized magnitude coefficients found by the
genetic algorithm are specific to the noise problem given
to the genetic algorithm. If the tones shift in frequency
or change in amplitude, the result is no longer guaranteed
to be an optimum result. To see how sensitive the genetic
algorithm model is to shifts in the tonal frequencies, the
eigenvalue span for reference signals with all tones shifted by
+/− 2 Hz up to +/− 10 Hz was calculated. This is compared
to the original model in Table 2. In general, the farther the
tones get from the frequencies for which the magnitude
was optimized, the worse the span gets. It is difficult to
predict how sensitive a genetic model will be for any given
application without first performing the optimization. The
sensitivity will depend on how much the magnitude response
of the genetic model varies near the frequencies for which
it was optimized. The phase is guaranteed to be within
acceptable error +/− 5 Hz from the tonal frequencies by the
GA and so the design remains robust in terms of stability
for changes within this range. Where more shift in the tones
is anticipated the GA can be constrained accordingly. The
magnitude of both the original and genetic 128-coefficient
models is plotted together in Figure 9 along with the phase
error in the genetic model (difference between the two).

5. EXPERIMENTAL RESULTS

Experiments were performed to verify that the reduction
in eigenvalue span demonstrated in Section 4 also leads to
better ANC performance. First, the experimental setup will
be explained, then ANC results for swept sine noise over the

Error
sensor

Satellite
speaker

Noise
source

Subwoofer

Figure 10: Photo of inside of mock cab.

three ranges (60–90 Hz, 90–120 Hz, and 120–150 Hz) and for
multiple tone noise (at offbin frequencies) will be shown.

5.1. Experimental setup

The experiments were conducted inside a mock cabin
enclosure with nominal dimensions of 1.0 m × 1.5 m ×
1.1 m. The cabin has a steel frame, 0.01 m thick plywood
sides, and a 0.003 m thick Plexiglas front panel. A speaker
placed under a chair served as the primary sound source,
and two loudspeakers were setup in a single channel control
configuration. A crossover circuit routed the low-frequency
content (below 90 Hz) to a subwoofer on the floor of the cab,
and the high-frequency content (above 90 Hz) to a satellite



10 Advances in Acoustics and Vibration

Table 3: Comparison of control performance using original, flattened, and genetic ĥ(t) models for swept tone noise.

Frequency Type of μ Error Mic Reproducibility Additional reduction

range ĥ(t) model (0.1∗μmax) avg. reduction (dB) (dB) compared to original (in dB)

60–90 Hz
Original 1e-8 14.8 0.16

Flattened 3e-8 21.9 0.37 7.1

Genetic 5e-8 20.8 0.17 6.0

speaker mounted in the top corner of the cab, near the back.
An error microphone was placed on the ceiling near where an
operator’s head would be. The performance of the algorithms
will be reported at the error sensor. Figure 10 shows the cab,
error sensor, and speakers.

The adaptive control filter consisted of 32 taps for swept
tone noise and 100 taps for multiple tone noise. Secondary
path transfer functions were modeled with either 128 or
256 taps. The convergence coefficient, μ, was determined
experimentally by finding the largest stable value for the
noise signal under test and then scaling it back by a
factor of ten to ensure stability. All input channels were
simultaneously sampled at 2 kHz, and all input and output
signals had 16 bits of resolution. Fourth-order Butterworth
low-pass filters (400 Hz cutoff) provided antialiasing and
reconstruction of input and output signals, respectively.

5.2. Experimental results—swept tone noise

Each ĥ(t) model was tested for swept tone noise over the fre-
quency ranges 60–90 Hz, 90–120 Hz, and 120–150 Hz. A test
signal was created for each frequency range that consisted of a
sine wave being swept up and down over the frequency range
at a rate of 2 Hz/sec. The time-averaged sound pressure level
(SPL) over the entire duration of the test signal was measured
with and without control running. Each measurement was
performed three times for computation of an average and
to give a sense of the measurement’s reproducibility. The
attenuation (the difference in SPL with control off and
on) using all three ĥ(t) models is shown in Table 3. The
“reproducibility” shown in Table 3 was calculated in the same
manner as a standard deviation, although it is recognized
that the small sample size precludes referring to the result
as a statistically valid standard deviation.

In the range from 60–90 Hz, the SPL before running
control was about 95 dB (computed over the entire frequency
range) and about 73 dB with control for the flattened
magnitude model. Figure 11 shows a plot of the frequency
spectrum for both control on and control off for the 60–
90 Hz range.

The data show that control with the genetic and the
flattened models significantly outperformed control with

the original ĥ(t) model. For the range 60–90 Hz, control
with the genetic and flattened models outperformed the
original control by 6-7 dB, with control with the flattened
model providing 1 dB more control than the genetic model.
Experiments for other frequency ranges were also done with
similar results.

Error sensor microphone sound power level
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Figure 11: Sound pressure level (SPL) at the error sensor for 60–
90 Hz.

5.3. Experimental results—multiple tone noise

Multiple tone noise ANC experiments in the mock cab were
done using 128 and 256-coefficient original, X-inverse, and
genetic secondary path models with the reference signal
consisting of multiple offbin frequency tones, as described
in Section 4.2. For these tests, three 10-second time records
of the error signal were taken as follows:

(1) stationary error signal with control off;

(2) converging error signal from the time control was
turned on;

(3) stationary error signal after the algorithm had con-
verged to its eventual steady state level.

The measured performance for each test case was the
eventual amount of attenuation (in dB) at the error sensor,
calculated from the first and third time records and the
convergence time in seconds from the second-time record.
The convergence time was taken to be a measure of how
long it took the error signal, from the time that control
was enabled, to reach 1/e of its initial value (about 9 dB
attenuation), where e is the base of the natural logarithm.
The reason for choosing this was that the convergence time
essentially becomes a measure of the rate of attenuation,
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Figure 12: Learning curves for individual tones of multiple noise test case for 128-coefficient original, X-inverse, and genetic models.

Table 4: Comparison of control performance using original, X-

inverse, and genetic ĥ(t) models for multiple tone noise.

Sys ID type
Convergence time Eventual reduction Eignvalue

(sec) (dB) span

Normal 128 3.9 −19.5 217

Normal 256 6.3 −16.9 239

X-inverse 128 10+ −4.6 16

X-inverse 256 10+ −2.6 991

Genetic 128 1 −25.9 2.3

Genetic 256 2.2 −26.1 2.4

which was felt to be useful when comparing cases where
the overall level of attenuation may be significantly different.
These results are summarized in Table 4. When a signal did
not converge to 1/e of its initial value during the second-time
capture, it is reported as 10+ seconds. The actual convergence
time for these measurements was not calculated. The genetic
models for both 128 and 256 coefficients were better than
both the original and X-inverse models for both measures
of performance. Models that gave lower eigenvalue span
performed better with the exception of the 128-coefficient X-
inverse model whose performance was worse than expected.

Based on the eigenvalue span, the 128 coefficient X-
inverse model should have been a significant improve-

ment over the original model. The reason for the poor
performance is a result of phase errors introduced by
modifying the magnitude values. As for the magnitude
coefficients, preserving the phase coefficients guarantees the
phase response will be the same at frequency bins, but
changing the magnitude coefficients does have an influence
on the response in between these bins. As noted previously,
as long as the phase response modeled by the secondary
path estimate is within 90◦ of the true phase response, the
algorithm will be stable. Comparing the zero-padded phase
response for the original 128-coefficient model and the X-
inverse model reveals that the phase difference between the
two at 100 Hz (one of the tonal frequencies) approaches that
limit. While the errors in the original model of the secondary
path are not known, it is assumed that it is a better estimate
and the X-inverse model deviating from it by close to 90◦ is
the cause for the poor performance.

Figure 12 shows learning curves for the individual tones
in the multitone test case for the 128-coefficient model.
These are slices along tonal frequencies from a spectrogram
of the converging error signal. These plots show the different
rates of convergence for the individual tones in the noise. The
genetic model converges faster and to a lower level than the
other models at all tones except 280 Hz where performance is
similar for the original model. This is the fastest converging
mode for the algorithm for all secondary path models. The
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X-inverse model shows that the 180 Hz tone is diverging due
to the >90◦ phase error at that frequency (see Figure 5).

6. CONCLUSIONS

Use of a genetic algorithm to find optimum values for the
magnitude coefficients of the secondary path estimate for the
FXLMS algorithm while preserving the phase of Ĥ(z) has
been shown to reduce the variation in the eigenvalues of the
filtered-x autocorrelation matrix.

ANC in a mock cab using control with both the

flattened and genetic ĥ(t) models provided as much as 6-
7 dB additional attenuation over control with the original

ĥ(t) model. For these specific swept tone noise tests, the
genetically optimized ĥ(t) algorithm did not provide any
additional benefit over the flattened model, even though
the eigenvalues were more uniform. It is possible that
the improved eigenvalues resulting from the genetically
optimized model could lead to better performance in other
applications.

When considering the more general case for multiple
tone noise, with tonal frequencies not corresponding exactly

to frequency bins, control with the X-inverse ĥ(t) models

performed worse than the original ĥ(t) model. Genetic ĥ(t)
models were shown to give 6–9 dB additional attenuation
with faster convergence times.

Use of a genetic algorithm as an optimization method
in implementing the EE-FXLMS algorithm extends its utility
and increases the potential benefit of its use over the FXLMS
algorithm. With this method, the eigenvalue disparity can be
reduced while assuring performance limiting phase errors are
not introduced.

The optimization performed on the secondary path
estimate in the EE-FXLMS algorithm in this paper is limited
to applications where the secondary path model (at least
the phase response) is relatively stable since the secondary
path is only characterized and optimization performed as
part of the setup of an ANC system. Further work could be
done to implement the EE-FXLMS with genetic optimization
for a changing secondary path with an online Sys ID
routine [14]. The secondary path can be characterized online
periodically and the eigenvalue equalization performed in
the background while control is running. Everytime a newly
optimized secondary path model becomes available, it can be
updated and used to run control. The time it would take to
get a new-optimized model for the secondary path estimate
would be set by the time it takes for the genetic algorithm to
execute.
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1. INTRODUCTION

Noise pollution of enclosed interiors (e.g., aircraft cabins)
results in a limitation of human comfort. If noise reduction
techniques will be applied in such situations with success,
the sound sources at the interior wall that surrounds a
standing wave field have to be identified. Especially the
localization of low-frequency hot spots in weakly damped
enclosures requires the application of advanced measure-
ments techniques. Several noise source localization methods
have been established. The methods range from simple
sound pressure or sound intensity measurements to more
sophisticated methods as beamforming [1] and acoustic
holography [2, 3]. A drawback in applying these techniques
is that free-field conditions are required. Even though the free
field requirement does not have to be met using the inverse
boundary element method [4] or the inverse finite element
method [5], a well-validated numerical model of the interior
is needed, if these techniques will be applied with success.

To avoid the time and cost consuming processes of real-
izing artificial free-field conditions by introducing passive
damping to the interior (which in addition changes the
global characteristic of the investigated enclosure) or the

need of sophisticated numerical models, a prototype of a
new mechatronic sound intensity probe with an active free
field (SIAF), see [7], that only influences the local impedance
was developed. The fundamental idea is to generate acoustic
free-field conditions by active noise control. As shown in
Figure 1 (left), the three-dimensional sound field in front of
the interior wall is reduced to one dimension by a mechanical
device with sound-hard walls. This device is terminated by
a loudspeaker. The integrated microphone pair is used to
separate the remaining one-dimensional sound field inside
the device into its incident and the reflected components.
The reflected wave is cancelled by active noise control, as
shown in Figure 1 (right). In contrast to common active
noise control (ANC) techniques for ducts (e.g., [8, 9]) or
common sound tubes with standing wave fields that are used
to determine material properties, see [10], the application of
the SIAF-approach allows sound intensity measurements in
(global) standing wave fields using the local free field of the
device.

In a sound field consisting of a free field and a reverberant
part, the real part of the time averaged sound intensity
determines the free field part. This part vanishes in a purely
diffuse, reverberant sound field, and in a plane standing
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Figure 1: (left) Application and (right) functional principle of an intensity probe with an active free field [6].
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Figure 2: (a) Standing wave field with inactive SIAF and (b) and (c) intensity flow into active SIAF.

wave propagating inside a rigidly terminated enclosure, as
shown in [11]. If a spherical wave impinges on the sound
soft boundary of a common (passive) sound tube, parts
of its energy are reflected in amplitude and phase. In this
case, a source is not characterized correctly. A conventional
sound tube (without active control) that is placed directly
in front of the interior wall would change the impedance
of the area of investigation. The resulting impedance could
be determined by standard methods, see [10], but this
value would vary from point to point. In contrast to this
unwanted situation, the SIAF-approach enables both the
energy transport from the source into the mechanical device
as well as its quantification under comparable boundary
conditions inside the mechanical device. Because of the free
field inside the probe, the SIAF acts as a local sound absorber.
For this reason, the effect of the device on a source would be
reduced. A SIAF can therefore be applied for sound source
localization, especially in weakly damped interior noise fields
at low frequencies. This would—in general—not be possible,
if a standing wave field without any energy transport would
remain inside the mechanical device. Only the active free
field ensures that every acoustic hot spot on the investigated
interior wall may radiate into the local free field.

If a SIAF would be used in a standing wave field, but
not directly in front of the interior wall, it would still act
as a local sound absorber enabling an energy flow into the
mechanical device due to active control. This situation is
illustrated in Figure 2. Here, the (qualitative) sound pressure
distribution as well as the intensity flow (symbolized by black
arrows) was determined by two-dimensional time-harmonic

( f = 300 Hz) finite element simulations for an enclosure
with sound hard boundaries. The sound source was placed
in the center of the cavity. The SIAF is placed top right. The
results shown in Figure 2(a) prove that no intensity flow can
be measured if the SIAF is inactive. If the inner termination
of the SIAF is described by a free-field impedance boundary
condition (Z = 428.75 kgm−2 s−1), see Figures 2(b) and
2(c), an energy flow into the mechanical device is enabled.
The direction of this energy flow varies with the spatial
orientation of the probe, as shown in Figure 2. Therefore,
inside the mechanical device it would only be possible to
measure the local intensity in longitudinal direction which
is—in general—not the magnitude of the intensity vector.
Obviously, the localization of a single acoustic hot spot
would be impossible, if the SIAF acts as a local absorber
in the middle of the sound field. To identify a local source,
the SIAF has to be used close to the interior boundary as
shown in Figure 1 (left). The minimum working distance
should be chosen in such a way that contact between the SIAF
and the interior wall is excluded. The maximum working
distance has to be small enough to ensure that an energy flow
into the SIAF results only from a source that is located on
the investigated part of the boundary. Assuming an upper
frequency limit of 1kHz, due to the area of application of
ANC, the maximum working distance should be lower than
ten percent of the minimum wave length (e.g., 3 cm).

This paper is divided into four parts. The first explains
the calculation of the reflected wave and the control concept.
Furthermore, experimental results of tests that were per-
formed on a simplified test bed are reported. The second part
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Figure 3: Block-diagram for SIAF-approach based on wave separation in time domain.

presents the results of calibration tests that were performed
on a SIAF-prototype. A short summary is given in the third
part of the paper.

2. CONTROL STRATEGY AND PROOF OF CONCEPT

To realize free-field conditions, the sound field inside the
mechanical device has to be separated into its incident and
reflected components. This separation can be performed in
frequency as well as in time domain. As wave separation
in frequency domain requires a frequency domain control
algorithm, it was not applied. Instead, a time domain
approach was used for time-discrete adaptive control, as
illustrated in Figure 3.

As shown in [12], the reflected wave component of a
one-dimensional standing wave field can be determined by
employing two microphones and a time-delay. One of the
SIAF microphones has to be placed in front of the canceling
loudspeaker at x = 0, the other at a distance Δx. Assuming
plane wave propagation, the total pressure at the discrete
time step n picked up at the microphones is given by

p1(n) = pi(0,n) + pr(0,n),

p2(n) = pi(Δx,n) + pr(Δx,n)

= pi(0,n + N) + pr(0,n−N),

(1)

where the continuous time delay τ = TsN = Δx/c is given by
the separation distance Δx, the sample time Ts, the number
of delayed time steps N , and the speed of sound c. If p2(n) is
delayed by τ, the delayed sound pressure is defined as

p2τ(n) = p2(n−N) = pi(0,n) + pr(0,n− 2N), (2)

and the error signal e(n) that is calculated as follows

e(n) = p2τ(n)− p1(n) = pr(0,n− 2N)− pr(0,n) (3)

represents the reflected wave only. As shown in [12], the
calculation of the error signal fails, if the distance between
the microphones equals a multiple of one half of the wave
length, if (3) is analyzed for tonal excitation pr(0,n) =

A sin[2π f (nTs − x/c)]. As shown in [6], the time delay
number N is limited by Shannon’s law 1 ≤ N < Tmin/2TS,
there Tmin represents the periodic time of the highest
frequency of interest fmax.

As shown in Figure 3, the filtered reference least mean
square (FxLMS) algorithm was used to update the coeffi-
cients of the adaptive finite impulse response (FIR) filter
W(z). These coefficients are used to generate the driving
signal y(n) for the canceling loudspeaker. The acceleration of
the interior wall that in the simplest case is represented by the
membrane on the noise source was used as reference signal
x(n) that is required for adaptive feed foreword control.
A feedback controller would be independent of a reference
signal. But, in contrast to an adaptive control scheme based
on FIR filters, a feedback controller based on infinite impulse
response (IIR) filters is not unconditionally stable, see [13].
Offline plant modeling based on the common least mean
square algorithm was applied to identify the secondary path
model Ŝ(z). As shown in [13], the single-channel leaky
FxLMS algorithm can be summarized as follows.

(1) Adaptive filtering

y(n) = wT(n)x(n), (4)

where y(n) is the controller output at the discrete
time step n, w(n) is the L × 1 column matrix of the
filter coefficients for a FIR filter of length L, and x(n)
is the L × 1 column matrix of the buffered reference
signal x(n).

(2) Single-channel prefiltering

x′(n) =
I−1∑
i=0

ŝi (n)x(n− i), (5)

where I is the order of the FIR filter Ŝ(z).

(3) Weight vector update

w(n + 1) = vw(n) + μx′(n)e(n), (6)

where v is the leakage factor, μ is the convergence
factor, and e(n) is the error signal at the discrete time
step n.
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Figure 4: Broadband noise reduction obtained by SIAF approach
applied to a sound tube.

The choice of a proper filter length L depends on
parameters such as the characteristics of the error signal
(e.g., tonal or broadband), the impulse response of the
secondary path, and the computing power of the applied
signal processor. For tonal excitation, a filter length of L =
2 would be sufficient to determine amplitude and phase
of the control signal as well as to model the secondary
path. In practice, however, a filter length of L = 4 can be
advantageous, because of the nonideal transfer behavior of
many electro-dynamic loudspeakers at very low frequencies.
If broadband disturbances have to be controlled using a
certain sampling frequency, the number of filter taps must be
high enough to model the impulse response of the secondary
path in the analyzed frequency band but small enough to
guarantee causality.

To test the performance of the SIAF approach, the
algorithm was implemented on a real time processor (type:
dSpace DS1103). The time delay number was set to N = 2.
As motivated by Figure 3, a sound tube with a square cross-
section (edge length a = 92 mm) and upper frequency limit
fu ≈ 1864 Hz (according to [10, equation (2)]) terminated by
electro-dynamical loudspeakers (type: SPEAKA MT 60/80)
was used as a simplified test bed for first experiments.
Two microphones (type: Ono Sokki MI-1233) were used.
Microphone 1 was placed in front of the canceling loud-
speaker and microphone 2 in a distance of Δx = 13.7 cm.
In compliance with [10, equation (4)], the upper frequency
limit was reduced to fured ≈ 1152 Hz for this reason. An
accelerometer (type: B&K 4374) that was amplified by a
signal conditioner (type: B&K Nexus 2692) was used to
detect the reference signal. Furthermore, several analogue
high- and low-pass filters, respectively, (type: Kemo VBF21)
were applied to avoid aliasing. A multichannel FFT analyzer
(type: Ono Sokki DS2100) was used for data analysis.

The reduction of the reflected waves was analyzed for
a broadband disturbance with fmax < fured. The system
was excited by frequency-banded white noise (50 Hz ≤
f ≤ 1 KHz). Therefore, a filter length of L = 128 was

used for the adaptive weight vector w(n) as well as for
the secondary path model Ŝ(z). The sampling frequency
was set to fS = 5 kHz. The results shown in Figure 4
prove that the controller cancels a reflected wave, if and
only if the associated frequency is detected by the reference
sensor. A total reduction of −16.2 dB was achieved in the
analyzed frequency band. The SIAF-control-strategy was
applied successfully. Sound intensity was not determined
during this test.

3. DESIGN OF A PROTOTYPE AND
CALIBRATION TESTS

A first realization of a SIAF that is based on commercial
components is shown in Figure 5(a). It consists of a sound
source (type: B&K 4295) and a self-made cylindrical adapter
(inner diameter d = 38 mm). Two phase-matched micro-
phones (type: B&K 4295) were integrated into this adapter. A
portable FFT analyzer (type: B&K 3560B with a phase match
of ±0.017◦ at 50 Hz using B&K sound intensity probes) was
used for data processing. The microphone spacing was set
to Δx = 10 cm. According to [10, equation (4)], the upper
frequency is given by f SIAF

ured ≈ 1543 Hz.
An anechoic chamber was used to test the possibility

of calibrating the SIAF prototype. The experimental setup
is shown in Figure 5(b). An electro-dynamical loudspeaker
(type: PAB-8MK2) was used as the acoustic source, and
a free-field microphone (type: B&K 4188) was applied
to measure the sound pressure level at a fixed reference
point. An accelerometer (type: B&K 4374), amplified by
a signal conditioner (type: B&K Nexus 2692), was used
to assure a precise reproduction of the excitation and to
detect the reference signal. The radiated sound intensity
was measured for the third-octave band center frequencies
between 80 Hz and 500 Hz. First reference data were collected
by a conventional sound intensity probe (type: B&K 3595
with microphone pair 4197 using a spacer of 12 mm). The
measurements were then repeated using the SIAF prototype.
Signal processing was performed on a power computer (type:
dSpace DS1103). Tonal disturbances were used to test the
SIAF prototype. Therefore, a filter length of L = 4 was
used for the adaptive weight vector w(n) as well as for the
secondary path model Ŝ(z) which was remodeled for every
frequency. The time delay number was set to N = 2, and a
sampling rate of fS = 10 kHz was used for these tests.

The results shown in Figure 6(b) prove that the con-
troller was capable of reducing the reflected wave for all
analyzed frequencies. Only minor sound pressure deviations
between the SIAF microphones were measured. The results
presented in Figure 6(b) also confirm sound propagation
in a plane wave field, because the same amount of energy
was determined at the two measurement points. For this
reason and because of the fact that the distance between the
loudspeaker membrane and the front side microphone of
the SIAF was smaller than the triple diameter of the tube,
compare with [10], additional corrections for the losses along
the boundaries of the tube (needed for higher frequencies,
f > 500 Hz) were not taken into account.
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(a) (b)

Figure 5: (a) SIAF prototype, see [6], and (b) experimental setup for calibration tests.
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Figure 6: Sound pressure at the SIAF microphones: (a) uncontrolled and (b) controlled.

As proposed in [11], the sound intensity was calculated
from the imaginary part of the cross-spectral density G12( f )
between the two SIAF microphones (p-p probe):

I( f ) = − 1
2π f ρΔx

Im
[
G12( f )

]
, (7)

where ρ is the density of the fluid. An alternative approach
is given by the application of the combined sound-pressure,
particle-velocity probe (p-u probe) that is described in [14].
This probe consists of a small electret condenser microphone
and a particle velocity transducer. The latter is based on the
technique of the acoustic intensity meter that was proposed
in [15]. Particle velocity measurements using transducers
that were analyzed in [16] were only possible by using a
small fan to generate a permanent air flow. Because of the
nonlinearities of these transducer types, the permanent air
flow is needed to define the working point of the sensor. The
p-u probe, presented in [14], is independent of a permanent
air flow, and its application, especially in plane standing
wave fields, ensures that at least one of the transducers is
not located at a nodal point. If, however, the sound pressure
level exceeds the upper sound level—110 dB, see [17]—of the
electret microphone, the pressure sensor of the p-u probe can
cause nonlinearities, as shown in [18]. This operating mode
must be avoided, if a linear controller is applied. As shown

in [14], the application of a p-u probe is advantageous, if
the influence of background noise—coming from sources
outside the measurement plane—on the phase mismatch
between the sensors has to be reduced. In contrast to the
phase mismatch between the two microphones of a p-p
probe, the p-u phase mismatch is exacerbated in strongly
reactive sound fields (e.g., in a plane standing wave), see [14].
Furthermore, it is more difficult to calibrate a p-u probe than
a p-p probe, as concluded in [14].

The SIAF approach requires a wave separation in the
time domain that is based on two microphones. Therefore,
sound intensity measurement was performed according to
(7). This procedure enables a direct comparison between the
sound intensity that is measured using the SIAF approach
and the sound intensity that is determined by a conventional
p-p probe. The measurement limitations of this approach
for sound intensity measurement are summarized in [11].
Neglecting errors coming from off-axis measurements, the
quality of the results is determined by the phase mismatch
error, the finite difference approximation error, and the near
field error.

The phase mismatch between the two channels in the
analyzing system determines the “low-frequency limit,” see
[11]. As written in [11], the maximum phase mismatch
might be ±0.3◦ for a good probe and analyzer combination.



6 Advances in Acoustics and Vibration

Frequency (Hz)
−2

−1

0

1

2

3

4

5

M
ea

su
re

m
en

t
er

ro
r

(d
B

)

Plane wave error
Finite difference approximation error

1.3

0

1.2

0

1.2

0

1.3

−0.1

1.2

−0.1

1.5

−0.2

1.6

−0.2

0.8

−0.4

0.9

−0.6

(a)

Frequency (Hz)
−2

−1

0

1

2

3

4

5

D
ev

ia
ti

on
of

so
u

n
d

in
te

n
si

ty
(d

B
)

Without correction
With correction

4.1

0.4

4.2

0.6

2.1

−1.5

3.2

−0.4

3.6

0.1

3.3

−0.5

2.8

−1

3.2

0.3

2.2

−0.5

(b)

Figure 7: Effect of errors (a) on sound intensity measurement and (b) deviation in sound intensity.

The calibration tests were performed using phase matched
microphone-analyzer combinations. In this case, the phase
mismatch at low frequencies depends only on the micro-
phone spacing. Using a 12 mm spacer for the conventional
sound intensity probe and a spacing of 10 cm for the SIAF,
the change of phase over the spacer is given by ±1◦ and
±8.4◦ for the SIAF and for the lowest analyzed frequency,
respectively. Hence, phase mismatch errors were not taken
into account during the calibration tests. If the SIAF concept
is applied using a microphone-analyzer combination that is
not perfectly calibrated in phase, phase calibration (e.g., by a
procedure based on switching the microphones as described
in [10]) is required. As also outlined in [11], the finite
difference approximation error of an ideal two-microphone
sound intensity probe in a plane wave of axial incidence is
given by

EFD( f ) = 10 log10
sin kΔx

kΔx
, with k = 2π f

c
. (8)

This error determines the “high-frequency limit” of a p-
p probe. It has to be taken into account that, because the
pressure gradient that is needed to calculate the particle
velocity is approximated by a simple finite difference scheme
every time, the intensity is measured. If a p-u probe is
used for sound intensity measurements, EFD can be avoided,
because the particle velocity is measured directly. A finite
difference approximation of the pressure gradient is not
needed in this case. The “high-frequency limit” as well as
the “low-frequency limit” of a p-u probe is determined by
the frequency response curves of the microphone and the
particle-velocity transducer.

Using the calculations for a two microphone probe in a
sound field of a point source radiating into a free field, as
presented in [11], the near field error can be described as
follows:

ENF

(
Δx

x

)
= −10 log10

(
1− 1

4

(
Δx

x

)2)
. (9)

The near field error described by (9) is a function of the
separation distance between the two microphones Δx and

the distance from the source to the middle point between
the microphones x. A negligible near field error of 0.063 dB
was determined for the conventional sound intensity probe
with the 12 mm spacer (Δx = 1.2 cm, x = 5 cm), but it was
found that an overestimation of ENF = 2.4 dB has to be taken
into account for a SIAF (Δx = 10 cm, x = 7.6 cm) without a
surrounding tube.

In addition to these measurement limitations, and
because of the tube that surrounds the SIAF-microphone
pair, the deviations between plane wave propagation in one
dimension inside the SIAF and spherical wave propagation
in three dimensions have to be taken into account by RMS
values of the measured sound pressure:

EPW( f ) = 20 log10

(
p̃2

2·10−5 Pa

)
− 20 log10

(
p̃Ref

2·10−5 Pa

)
.

(10)

This error is in the following called plane wave error. It was
calculated as the difference between the sound pressure level
measured at SIAF-microphone 2 and the sound pressure
level measured at the reference microphone. The latter was
placed above the actively controlled SIAF, as shown in
Figure 5(b).

The frequency dependencies of the plane wave error
(that was derived from measurements) as well as of the
finite difference approximation error, given by (8), are shown
in Figure 7(a). It can be seen that the first results in an
overestimation of the measured sound pressure level. The
second leads to an underestimation of the measured sound
intensity level.

The deviation ΔI = ISIAF − IConv between the sound
intensity that was measured using the SIAF prototype and
the sound intensity that was determined by the conventional
probe is shown in Figure 7(b). It was found that these
deviations can be reduced, if (a) the near field error, (b) the
finite difference approximation error, and (c) the plane wave
error are used to calculate a corrected deviation ΔIcorr =
ΔI − (EFD +ENF + EPW). The corrected values are also shown
in Figure 7(b). Without correction, the measurement error
was at least 2.1 dB. Using the correction based on the three
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(a) (b) (c)

Figure 8: Pressure distribution and intensity flow in a free field with (a) one and (b) and (c) two sources.

Table 1: Sound intensity measured in an enclosure using the SIAF-prototype.

f /Hz 100 125 250 500

ISIAF/Wm−2 without control −0.043 −0.018 −0.002 −0.004

ISIAF/Wm−2 with control +0.056 +0.048 +0.018 +0.006

IConv/Wm−2 without control +0.536 +0.107 +0.292 +0.348

relevant error types, the mean deviation in the analyzed
frequency band, calculated as

ΔI := 10 log10

(
1
Nf

Nf∑
i=1

10|ΔIi|/10

10−12 Wm−2

)
, (11)

where Nf (representing the number of analyzed frequencies)
could be reduced from 3.24 dB down to 0.61 dB. The
maximum deviation was reduced from 4.2 dB down to
−1.5 dB. A minimum deviation of 0.1 dB was found at
200 Hz after correction. The results prove that the SIAF
prototype can be calibrated successfully under well-defined
boundary conditions. For practical use, however, a calibrator
that can easily be attached and coupled to a well-defined
sound source (e.g., a pistonphone) would be required.

The experimental setup shown in Figure 5(b) was a
simple example of a sound source that is located directly in
front of the entrance of the tube. To study the SIAF concept
for other arrangements, time-harmonic finite element sim-
ulations ( f = 300 Hz) were carried out in two dimensions
using free field conditions for the outer boundary of the
analyzed area. It was found, that a SIAF placed in a certain
distance to the surface of the source would again act as a
local absorber that changes the direction of the energy flow
as motivated by Figure 8(a). If two uncorrelated sources are
present, and the SIAF would again not be collocated to one
of these sources, the time average of the local intensity in
longitudinal probe direction would be measured, as shown in
Figure 8(b). This quantity would be determined by the sound
field generated by these interfering sources. If the SIAF is
placed between two sources with equal strength, as illustrated
by Figure 8(c), the uni-directional intensity component of
the source facing the open end of the sound tube would be
measured.

Using the arrangement consisting of loudspeaker, ac-
celerometer, and SIAF, compare with Figure 5(b), the pro-
totype was also tested in a typical lab. The reverberation
time of this room varies between 0.85 second at 125 Hz and
0.5 second at 400 Hz. The arithmetic mean in the frequency
band between 100 Hz and 5 kHz is given by 0.64 second
and corresponds to values desired for rooms of medium
size (250 m3–5000 m3), see [19]. In this situation, a positive
sound intensity was measured for every tested frequency,
if active noise control based on wave separation in time
domain was applied. The data shown in Table 1 indicates that
a SIAF can also be used to detect acoustic hot spots in weakly
damped interiors as proposed in [7].

The sound intensities that were measured directly in
front of the loudspeaker using the conventional sound
intensity probe—without the surrounding sound tube and
without active control—are also listed in Table 1. The
comparison of the results proves that the SIAF was indeed
capable of detecting the loudspeaker as an acoustic source.
In contrast to the calibration test that was performed under
idealized conditions, the magnitudes of ISIAF (with control)
and IConv cannot be compared, because the first quantifies the
energy transport of travelling plane waves that are absorbed
inside the SIAF, whereas the second quantifies the circulation
of energy in the (partly active and partly reactive) near field
of an acoustic source that acts in a standing wave field.

It is obvious that it is more sophisticated to calculate
the plane wave error for sound fields excited by more
complicated sources than used in the calibration tests.
Nevertheless, to identify a sound source by application of
the SIAF approach that works under conditions in which
conventional methods cannot be used, it is sufficient to
detect a positive energy flow, even if the absolute values are
not equal to values that can be measured with sensors of top-
level quality.
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4. SUMMARY AND OUTLOOK

The functioning principle as well as a prototype of a new
sound intensity probe was presented. It was found that
a free field can be realized inside this probe by active
noise control, if a microphone pair in combination with a
wave separation approach is used to determine the reflected
wave components. The FxLMS algorithm was used for the
signal control task using an accelerometer as a nonacoustic
reference sensor. This approach will be sufficient, if access to
a signal which is linearly related to the disturbance is given
(e.g., in an acoustic test center or during acoustic ground
tests of new aircrafts). It was shown that a sound intensity
probe with an active free field can be calibrated successfully
inside an anechoic chamber, if the finite difference approx-
imation errors that appear during numerical calculation of
the pressure gradient based on a two microphone technique,
the near field error, and the deviations between plane
wave propagation in one dimension and spherical wave
propagation in three dimensions are taken into account.
But, at this stage of development, the accuracy of the
SIAF is of course not as high as the accuracy of well-
established conventional probes. It was also found that,
because of the active-free field inside the probe, a SIAF
is capable of detecting an acoustic source inside standing
wave fields that typically appear in weakly damped interiors.
Future research will be focussed on the development of
a calibration procedure that allows calibration outside an
anechoic chamber. To be independent of a reference signal
that is well correlated to the disturbance, the application of
a stable feedback controller is intended. Furthermore, it is
planned to redesign the shape of the open end of the SIAF in
order to smooth the change of impedance along the inlet of
the probe by conical or exponential horns.
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1. INTRODUCTION

The acoustic transmission loss can be improved by passive
methods such as mass addition (Mass Law [1]), double panel,
and/or the use of sound absorbing materials. Most of these
techniques generally involve an increase in mass or volume to
provide a good insulation at low frequencies. However, this
is not convenient in the transport sector.

Active control can complete the passive methods and
reduce the sound produced by vibrating structures at low
frequencies. Various active control strategies have been
developed.

In the 1930s, research focused on active noise con-
trol ANC (Lueg’s Patent [2]) in which a secondary field
destructively interferes with the primary disturbance. How-
ever, these feedforward controllers are tricky to implement
because of the difficulty in measuring reference signal and
determining the feedback effect of the secondary sources
on the reference sensors. ANC was only successfully imple-
mented in applications, where disturbance is tonal such as
ducts and exhaust stacks [3].

Active structural acoustic control (ASAC) controllers
were then developed to reduce sound radiation by modifying
panel vibrations with shakers or piezoelectric patches.

The ASAC feedforward approach has the same draw-
backs as ANC. Moreover, for the low-frequency range,
the minimization of sound radiation achieved by “modal
restructuring” can increase the vibration levels [4]. This
method uses coupling between modes below the critical
frequency to create destructive interferences in the radiated
field.

If the disturbance signal is not available, control strate-
gies are limited to feedback controllers. The type of controller
differs as a function of the availability of a model. Elliott and
Johnson [5] showed that at low frequencies, reducing the
volume velocity of the panel leads to reduced sound power.

Networks of sensors [6, 7] or distributed sensors such
as PVDF film [8] have been implemented to evaluate the
volume velocity and to supply an SISO controller. System
stability is guaranteed [9] when the actuators and the sensors
are collocated and dual. An alternative to SISO controllers
called “decentralized MIMO” consists in scattering manifold
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independents control units on the structure [10]. The results
are fairly good but the technical resources needed are so
huge that smart structures cannot be easily introduced
in everyday equipment such as double-glazed windows,
machinery shielding, vehicles. Moreover, active damping
provides good performances without a model, but it is only
efficient in the vicinity of a resonance frequency.

The model-based control strategy presents several advan-
tages. It allows minimizing the number of sensors with
modal reconstruction [11] and reducing control energy by
nonlinear modal control [12, 13]. Complex and nonlinear
structures can also be controlled with modal adaptative
algorithm [14].

In the vibroacoustic field, accurate modeling is also
required to adjust the controller. Baumann et al. [15, 16]
proposed to compute sound power by using radiation filters.
These filters are introduced in the state space model of the
structure and the acoustic energy is incorporated in the cost
function. Experiments carried out by Bingham et al. [17]
and Dehandschutter et al. [18] demonstrated the validity of
this method, but this technique is limited by the number of
radiation filters that have to be introduced in the state space
formulation.

Below the critical frequency, transmission is mass con-
trolled [1]. Alujevic and Gardonio [19] showed that a light
panel controlled by an active virtual mass with decentralized
MIMO controllers behaves like a noncontrolled heavy panel.
Transmission loss is increased but the sound power peaks still
remain due to the lack of active damping.

The aim of this paper is to describe the reduction of
sound transmission by modifying the modal distribution.
When structures are relatively small and light, the panels
have low modal overlap, so in this case, modal control
appears to be adapted. It enables limiting the number of
active components and concentrating control energy on high
radiation efficiency modes. Active modal damping squeezes
sound power peaks and controls low radiation efficiency
modes which may be excited and transfer vibrating energy
to structure bounds. Moreover, above the critical frequency,
when the incidence angle is close to the coincidence angle,
the behavior of the panel is controlled by damping. Con-
sequently, transmission loss drops dramatically for a lightly
damped structure. The effect of adding modal masses shifts
the resonance frequencies to a less audible frequency range.
Also, the mass control of one eigen mode can be considered
as an addition of virtual modal mass. Thus, the acoustic
characteristics of the structure should be improved in the
upper frequency range.

This paper presents a state feedback controller which acts
on modal mass and modal damping. After the state-of-the-
art presented previously, Section 2 deals with modeling the
structure and the method used to compute the sound power.
Section 3 introduces the vibroacoustic controller driven by
modal accelerations and modal velocities. The principle
of this new “mass damping vibroacoustic modal control”
approach is shown in Section 4 on a simple one-dimensional
structure excited by a normal incident plane wave. It is
then compared to other vibroacoustic modal controls in
simulations.

2. MODELING

2.1. Structural modeling

The modal control enables concentrating control energy on
high-radiation efficiency modes and limiting the number
of active components. Moreover, the effectiveness of this
model-based strategy depends on the accuracy of the model-
ing. The first step consists in building a model that includes
the mass and the stiffness of the actuators. The structure is
divided into a finite number of elements. The equation of
motion governing the dynamic of the controlled system is

(
Ms +Ma

)
δ̈ + Csδ̇ +

(
Ks + Ka

)
δ = Fd + Fc, (1)

with Fd being the disturbance force, Fc the control force, δ
the displacement, M, C, K the mass, damping, and stiffness
matrices, respectively. The subscripts a and s denote the
actuators and the structure, respectively. The control effort
driven by the displacement, the velocity, and the acceleration
acts on the stiffness, the damping, and the mass of the
system, respectively. When the structure is lightly damped
and the modes are sufficiently decoupled, the linear system
is described by a set of decoupled modal equations after a
change of variable:

δ = φq, (2)

q̈i + 2ξiωi q̇i + ω2
i qi = φTi

(
Fd + Fc

) = fd(i) + fc(i), (3)

with qi being the modal amplitudes, ξi the modal viscous
damping ratio, φi the modal shapes, and ωi the frequency of
the ith mode. The response v of the structure can be given as
a linear combination of the modes:

v(x, y, z, t) =
N∑

n=1

qn(t)φn(x, y, z). (4)

The corresponding modal state variable form is given by

ẋ = Ax + Bu + Ew,

y = Cx +Du,
x =

{
q
q̇

}

, (5)

with x being the state vector, u the control vector, w the
disturbance noise, y the output vector, A, B, C, D the state
matrices and E the disturbance input matrix. From this
formulation, the transfer function of the modal velocities
can be easily computed and introduced into the following
acoustic modeling.

2.2. Acoustic modeling

To predict the acoustic performances, it is necessary to model
the sound radiation of the vibrating structure. The acoustic
power W can be calculated from the modal amplitudes and
from the frequency dependent radiation resistance matrix of
structural modes M [5]. The diagonal terms of M are the
self-radiation resistance and the off-diagonal terms are the
mutual radiation resistance. The global sound power W can
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be obtained by

W = q̇HMq̇, (6)

where the subscript H denotes the Hermitian. For complex
geometries,M can be calculated from the radiation resistance
matrix of elemental radiators and modal shapes. Each
element acts as an elementary radiator, where the specific
acoustic transfer impedance at position y on an infinite plane
to an observation point x is given by

z(x, y) = p(y)
v(x)

= jωρSe
2πr

e− jkr , (7)

with r being the distance between x and y, ρ the fluid density,
k the acoustic wave number, and Se the radiator area. It is
assumed that the elementary radiators radiate into free space
and are small compared to the acoustic wave length. The
sound power radiated by only one single element We is equal
to

We = Se
2

R
{
v∗e pe

}
, (8)

where pe and ve are, respectively, the pressure and the
complex velocity of the elemental radiator. R denotes the
real part and ∗ the conjugate. The global acoustic power W
radiated by a set of elemental sources is calculated with

W = S

2
R
{
vH p

}
, (9)

where v and p are, respectively, the velocity vectors and
pressure vectors of the radiators. Next, the matrix of acoustic
transfer impedances Z linking the pressure at each element
to the velocity at each element is introduced. ri j denotes
the distance between elemental sources. Rij is the radiation
resistance matrix of the elemental radiators. W becomes

W = Se
2

R
{
vHZv

} = Se
4
vH
(
Z + ZH

)
v = vHRv, (10)

with

Rij = Se
2

R
{
Zij
} = ω2ρS2

4πc

sin kri j
kri j

, (11)

with c being the speed of sound in the medium, ω the
frequency, and ρ the mass density of air. The acoustic power
can be obtained from the radiation resistance matrix of the
elemental radiators and the velocity of structural modes after
a change of variable (2),

W(ω) = vHR(ω)v = q̇HφHR(ω)φq̇,

M(ω) = φHR(ω)φ.
(12)

Then, for any structures and for any set of frequencies,
the radiation resistance matrix of structural modes M can be
calculated and approximated using a Laplace-domain multi-
input, multiple output transfer function M(s). M(s) is then
factorized into a stable causal radiation filter G(s) (13) and

W(s) is given by (14)

M(s) = GT(−s)G(s), (13)

W(s) = Q̇(−s)TM(s)Q̇(s), (14)

with Q̇(s) being the modal velocities in the Laplace domain.

3. MODAL MASS DAMPING
VIBROACOUSTIC CONTROL

3.1. Principle

When a structure is excited by a diffuse field below its critical
frequency, the transmission is “mass controlled” [1]. The
effect of mass addition at low frequency slides the resonance
frequencies to a less audible frequency range, while reducing
the vibration amplitudes. Therefore, the overall transmission
loss is raised. Removing the stiffness scales down the eigen
frequencies but increases the level of vibration. Reducing
eigen frequencies with stiffness control cannot be considered
due to the risk of instability.

If the frequency is slightly greater than the critical fre-
quency, the transmission will be “damping controlled” [1].
In case of lightly damped structures, active damping becomes
essential to reduce transmission. At higher frequencies, the
good sound insulation does not justify extending the control
bandwidth.

In the framework of small and lightly damped structures,
the modal control can be effective due to low modal overlap.
When the panel is excited by an acoustic plane wave, the
low-order modes (odd-odd) are highly excited. Controlling
only these high-radiation modes may lead to a considerable
reduction of sound power.

The aim of the modal mass—damping vibroacoustic
control— is to modify the modal distribution of the panel.
The natural frequencies of high-radiation modes can be
lowered by the addition of active modal mass and vibration
amplitudes can be reduced at resonances frequencies by
modal damping. The active modal mass can be consid-
ered as a virtual mass concentrated on controlled modes.
Consequently, the amplitudes of mass controlled modes are
reduced after resonances due to frequency shifts. Active
modal damping limits sound power peaks and the vibrations
of low-radiation modes. The control gain matrix is com-
puted with an optimal control algorithm. If the cost function
considers exclusively sound power, certain nonradiating
modes may be highly excited leading to risks of failure
and structure-born transmission. The control is driven by
modal acceleration and modal velocities from the derivative
state. In practice, modal displacements and velocities are
calculated from sensors signals with a Luenberger observer
[20]. Then, the reconstructed state feeds the controller whose
dynamics is nearly independant of the controlled structure.
For simplicity, observation problems are not treated in this
article:

u = −Kẋc = −
Nc∑

i=1

Kv(i)q̇i + Ka(i)q̈i. (15)
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Figure 1: Smart structure.

Then, the active mass and damping can be expressed in the
modal equation:
⎡

⎢
⎢
⎣1+ Ka(i) · fp(i)

︸ ︷︷ ︸
Active modal mass

⎤

⎥
⎥
⎦ q̈i+

⎡

⎢
⎢
⎣2ξiωi+ Kv(i) · fp(i)

︸ ︷︷ ︸
Active modal damping

⎤

⎥
⎥
⎦ q̇i+ω

2
i qi

= fd(i)− fp(i)
∑

j /= i
Kv( j)q̇ j + Ka( j)q̈ j

︸ ︷︷ ︸
Excitation of controlled modes

,

(16)

with fp(i) being the control effort at the ith mode, xc the
state vector of controlled modes, and Ka and Kv the gains
relative to modal accelerations and velocities. The state of the
controlled system can be calculated from (5) and (15) with
the following transfer function:

Y(s) = (C −DKs)((I + BK)s− A)−1
EW(s). (17)

Next, the modal velocities enables computing the sound
power. q̈ is a highpass filter. Consequently, when the
frequency is higher than the eigen frequencies of the mass
controlled modes and gains relative to the accelerations
are high, the frequency response function (FRF) of the
control will be constant. The problem of unwanted excitation
(spillover) of modes especially above the control bandwidth
has to be considered. In the control bandwidth, spillover
can be attenuated with good actuator positions. At high
frequency, the passive methods are sufficiently efficient.
For instance, in the framework of reducing the sound
transmission of the double panel (DP) the consequences
of spillover on the higher modes are limited due to their
good natural transmission loss (TL) in midrange and high
frequencies. The performances of DP can be increased at
low frequencies without excessive alteration of the TL at
higher frequencies by adding modal masses exclusively to
high radiation modes.

3.2. Optimization and adjustment

When the structure is assumed to be linear and its model
is available, the optimization method used can be the
linear quadratic (LQ) algorithm. The constant gains are
obtained after minimization of a quadratic cost function.

The optimal control seeks to minimize both the state
function of structural system x, which is usually vibration
energy or acoustic energy, and the control cost u. The control
gains are computed by solving Ricatti’s equation but using
the derivative of state vector ẋ does not allow computing
gains in this way. If the cost function considers the control
energy, the optimal gain may favor damping rather than mass
control due to the acceleration FRF. During experiments, the
maximal acceptable voltage of the transducers is a factor that
limits controller performances. Therefore, the cost function
computes the acoustic energy and forbids a control voltage
higher than the voltage limit. This can be defined as follows:

ifV ≤ Vmax, J =
∫ ωsuperior

ωinferior

Q̇(ω)HM(ω)Q̇(ω)dω,

ifV > Vmax, J = ∞.
(18)

4. APPLICATION TO A ONE-DIMENSIONAL
STRUCTURE

The aim of this section is to present modal adjustment
possibilities. Constraints such as number of components,
dimensions, saturation, and measurements are not discussed
in this first study. Simulations are performed on a one-
dimensional structure using the previously described control
approach. The structure is excited by a normal acoustic
plane wave to emphasize active modal mass control within
the framework of sound transmission. This modal method
enables concentrating control energy on high-radiation
efficiency modes and limits the number of actuators. Conse-
quently, the actuators are mainly used to act on the first odd
modes. The first step of this control strategy requires using
system model.

4.1. Modeling

The smart structure considered and shown in Figure 1 is a
clamped-clamped beam to which three piezoelectric patches
(P1 89 ceramics) are fixed. The dimensions and material
characteristics are given in Table 1. An FE Model is developed
using Ansys software, where the beam is modeled with
Solid45 elements (8 nodes with 3 mechanical dof/node) of
2.5×2.5×1.5 mm and the piezoelectric patches are modeled
with Solid5 elements (8 nodes with up to 6 dof/node
including structural and electrical dof) of 2.5×2.5×0.7 mm.
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Table 1: Simulations parameters.

Beam density ρbeam = 7800 Kg/m3 Beam width b= 4.0∗10−2 m

Beam Young modulus E= 2.1∗1011 Pa Beam height h= 1.5∗10−3 m

Modal damping ratio ξi = 0.01 Beam length lb= 6.0∗10−1 m

Ceramic density ρc = 7700 Kg/m3 Patch width bp= 3.0∗10−2 m

Ceramic Young modulus Y11= 6.67∗1010 Pa Patch height eP= 0.7∗10−3 m

Y33= 5.26∗1010 Pa Patch length lP= 8∗10−2 m

Permittivity εs11 = 1142 Position 1 A1 = 2.5∗10−3 m

εs33 = 668 Position 2 A2 = 4.25∗10−1 m

Piezoelectricity d31 = −108 pC/N Position 3 A3 = 1.625∗10−1 m

d33 = 240 pC/N

For the sake of simplicity, 3 identical patches are bonded to
the smart structure.

The first 14 modal shapes are extracted and the optimal
position of the actuators are sought by maximizing the
coupling coefficient k of one high-radiation efficiency mode
and minimization of coupling coefficient of other modes.
The generalized coupling coefficient ki j of the ith mode for
the jth piezoelectric patch bonded to the structure is defined
by Hagood and von Flotow [21] as follows:

k2
i j =

(
ωDij
)2 − (ωEi j

)2

(
ωEi j
)2 , (19)

where ωDij and ωEi j are, respectively, the natural frequencies
of the structure when the piezoelectric jth patch is open-
circuited and short-circuited. The modal coupling coefficient
is defined by Badel et al. [22]:

∣
∣αi j

∣
∣ =

√
C0PKPDik

2
i j withC0P = 2εs33lPb

eP
, (20)

where KPDi is the equivalent stiffness of the ith mode
and C0P is the null strain capacitance of the piezoelectric
patch. lP , b, and eP are, respectively, the length, width,
and thickness of the patches. Next, the modal coupling is
introduced in (2):

q̈i + 2ξiωiq̇i + ω2
i qi = fd(i) +

NActuators∑

j=1

αi jVj , (21)

where Vj is the control voltage of the jth patch. The results of
optimal placement are presented in Figure 1.

Once the structural modeling has been completed, the
radiation resistance matrix M(ω) is calculated in a frequency
band from 10 to 900 Hz and approximated using the Laplace-
domain multi-input, multiple output transfer function M(s)
(14). The eigen frequencies of the smart structure are
presented in Table 2.

4.2. Control gain matrix

4.2.1. Transferring control energy from damping to mass

In order to present the advantages of a derivative state
feedback control, the control effort is initially concentrated

Table 2: Eigen frequencies.

Mode 1 2 3 4 5 6 7 8

Frequency (Hz) 24 69 130 215 325 451 617 794

on modal damping before being transferred to modal mass.
The initial terms of the gain matrix relative to damping
can be calculated by solving the Ricatti equation stemming
from the minimization of the frequency weighted energy
cost function (22). Then, the terms relative to modal mass
are introduced and those such as maximal voltage actuators
inputs remain constant. The modal mass control is applied
here exclusively on the first mode because of its high
contribution to the sound power. Indeed, at low frequency
and for this type of structure, the sound power is mainly
radiated by volumetric modes [5].

In Figure 2, exclusive modal damping control is rep-
resented in blue. The considered excitation is a normal
acoustic plane wave which is uniform on all the plate. The
line color gets hotter when the first mode acceleration gain
increases. The left-hand plot shows the evolution of the
sound power of the controlled system computed with (14)
and (17). When the modal acceleration gain increases, the
first eigen frequency scales down and the overall sound
power is reduced by the active mass. However, limiting the
control effort does not allow still introducing as much active
modal damping. Consequently, the sound power peak of the
mass controlled mode is not reduced as in the exclusive active
damping control.

The performances of the controlled systems differ drasti-
cally according to the weighting on the mass and damping. If
the aim is to reduce the sound power peaks, the control will
focus its energy on damping. A good tradeoff between mass
and damping can be found when reducing sound power.

The right-hand side plot shows the control frequency
response of actuator A1. This frequency response becomes
constant when the gains applied to acceleration are high
compared to those applied to damping. With full damping,
the command is like a pass band filter, whereas it is like a
highpass filter in mass control. Consequently, the control
energy of the vibroacoustic modal mass control is slightly
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Figure 2: Transfer of control energy from modal damping to modal
mass: (a) sound power, (b) control.

higher than that of the regular state feedback controller. Note
that in Figure 2(b), the control voltage is calculated at the
initial state which leads to the highest control voltage. So, the
first peak of the control appears at 24 Hz.

4.2.2. Minimization of acoustic energy

In Figure 3(a), the cost function computed with (18)
between 10 and 900 Hz is drawn with respect to the accelera-
tion gain and velocity gain of the first eigen mode. When the
control voltage is higher than the maximal acceptable voltage
of the transducers, the cost function reaches infinity. The
bold line indicates the border beyond which the cost function
tends to infinity. The acoustic energy reaches a minimum for
a given gain couple. When the gain applied on acceleration
is high compared to that on the velocity, the acoustic energy
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Figure 3: Evolution of acoustic energy with respect to the
acceleration gain and the velocity gain on first eigen mode: (a)
sound power with optimal gains (b).

increases because of the peak on the first mode due to the
limitation of control voltage. The right-hand side plot shows
the sound power of the mass damping controlled system
computed with an optimal gain matrix.

The optimal gain matrix is obtained from the results
presented in Figure 3. Then, as shown in Figure 4(a) time
response simulation of the structure excited by a plane shock
normal wave is performed with the optimal gain matrix.
The sound power is presented in the left-hand side plot. The
high-frequency components of the sound power vanish after
a few oscillations due to the active damping on these modes.
Consequently, the sound power is mainly created by the first
mode which is initially more disturbed. In the right-hand
side plot, the first mode velocity shows that the mass effect
increases the oscillation period and the amplitude is reduced
with active damping.
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Figure 4: (a) Sound power, (b) first mode velocity.

4.3. Effects of the modal mass control compared to
other modal controls

4.3.1. Other approaches

In this section, the modal mass control is compared with
two other modal control approaches. The first is a pure
vibration control using a regular state feedback control with
gains computed by minimizing the frequency weighted (FW)
energy cost function (22):

J =
∫∞

0

(
xtQx + ρutu

)
dt. (22)

The second control strategy considers vibration and
acoustics. In Baumann et al.’ [15] development, the radiation
filters (RF) G(s) are converted to state space form (23) and
introduced in the augmented state space of the system (24):

ṙ = AGr + BGq̇,

z = CGr +DGq̇,
(23)

⎡

⎢
⎣

{
q̇
q̈

}

ṙ

⎤

⎥
⎦ =

[
A 0

0 BG AG

]
⎡

⎢
⎣

{
q

q̇

}

r

⎤

⎥
⎦ +

[
B
0

]

u, (24)

with z being the result of the passing velocity components
through the radiation filter. z2 is the sound power. In the
case of a normal incident plane wave, the general force decays
with increasing frequency, which is why an integrator term
is added in (26). If the optimal gain matrix is computed
by a minimization of z2, low-frequency modes will not
be controlled because the M(ω) terms are small when the
modes do not radiate independently. Consequently, the cost
function that considers the disturbance can be written as
follows:

JRad =
∫∞

0

(
zT2 z2 + ρuTu

)
dt, (25)

z2 = L−1(s−1G(s)Q̇(s)
)
, (26)

where z2
2 is the weighted sound power.

4.3.2. Transmission loss

Considering weak fluid-structure coupling, the parietal pres-
sure can be described with the so-called blocked pressure [1].
The disturbance load corresponds to the incident pressure is
given by

p(x) = −2pin, (27)

where pin is the amplitude of the wave of the acoustic plane
wave. The transmission loss can be defined as follows:

TL = 10 log10

(
Win

W

)
, (28)

withW being the radiated sound power andWin the incident
sound power defined by [23, 24]

Win =
∣∣pin

∣∣2
lb · b · cos

(
θi
)

2ρc
, (29)

where ρ is the fluid density, c the speed of sound in the
medium, and θi the incidence angle. For a normal incident
acoustic plane wave, θi = 0.

4.4. Comparison

Figure 5 presents the transmission losses of the uncontrolled
and controlled structure with the three different approaches.
The structure is still excited by a normal incident acous-
tic plane wave that exclusively disturbs odd modes. The
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Figure 5: Transmission loss.

three controllers are tuned so that the maximal voltage
inputs are the same. The modal mass damping controller
uses the optimal gain matrix determined previously. The
transmission losses of the FW and the RF controllers
have the same characteristics. They give good isolation
at resonance frequencies with damping. Consequently, the
peaks disappear but the general behavior of transmission loss
does not change. Note that the optimal gain matrix of the
RF controller is found without searching weighting factors
Q as in the frequency weight function (22). The modal
mass damping control reduces the peaks at the resonance
frequency with damping in the same way as FW and RF
controllers, and it also improves the general behavior of
the transmission loss due to the mass effect. This active
modal mass is above all a mass addition. The reduction
of the first eigen frequency from 24 Hz to 21.6 Hz leads to
the diminution of modal velocity after the first resonance.
Contrary to damping, the mass effect is not limited to the
vicinity of the resonance frequency of the controlled mode.

Also, the three controllers can generate spillover. This
phenomenon can be limited by considering residual modes
in the patch placement optimization and by introducing
them in the cost function [9]. Additional passive components
are frequently introduced to reduce the spillover induced by
the controllers. For future applications such as double panel
control, the spillover problem can be limited by the good
natural properties of the controllers in midrange and high
frequency.

5. CONCLUSION

A new modal active control is proposed in this paper. It
permits adjusting a frequency response template of the con-
trolled structure. This control has been developed within an

acoustic framework designed to reduce sound transmission
through a structure. For each mode, the active modal mass
addition lowers the eigen frequency of the mass controlled
mode and reduces its velocity after resonance. The use of
this method on a simple smart structure equipped with
piezoelectric patches is described with an explanation of the
concept by way of a simulation. The good performances
at resonance frequencies obtained with an active damping
controller can be completed with this approach which
modifies the modal distribution of the structure. The “mass
damping vibroacoustic modal control” is compared to other
control approaches which mainly use damping to reduce
sound transmission.

This preliminary study can be adapted to more complex
structures such as double panels. Indeed double panels
provide good transmission loss at midrange and high
frequencies, making it possible to concentrate control energy
on the first modes. Thus, the method proposed is well
adapted to this kind of structure. Moreover, the downward
shift of the eigen frequencies can be considered as virtual
transformations of structures that could be used in the field
of sound quality.
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