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Radio resource management (RRM) techniques such as
admission control, scheduling, subcarrier allocation, channel
assignment, power allocation, and rate control are essen-
tial for maximizing the resource utilization and providing
quality of service (QoS) in wireless networks. In many
cases, the performance metrics (e.g., overall throughput)
can be optimized if opportunistic algorithms are employed.
However, opportunistic RRM techniques always favor advan-
taged users who have good channel conditions and/or low
interference levels. The problem becomes even worse when
the wireless terminals have low mobility since the channel
conditions become slowly varying (or even static), which
might lead to long-term unfairness. The problem of fair
resource allocation is more challenging in multihop wireless
networks (e.g., wireless mesh networks and multihop cellular
networks). This special issue addresses some fairness issues
and solutions in using RRM techniques in modern wireless
communication systems.

We received an overwhelming response to our call for
paper of this special issue. From the large number of high
quality submissions we received, we have selected sixteen
papers grouped in six subtopics, namely, (1) fairness of RRM
in WiMAX networks, (2) fairness of RRM in OFDM/OFDMA
systems, (3) fairness of RRM in CDMA/UMTS systems, (4)
fairness of RRM in MIMO systems, (5) fairness of RRM
in multihop and mesh networks, and finally (6) fairness of
multiuser resource allocation.

In the first group, three papers address the fair resource
management in WiMAX networks.

The first paper titled “Fair adaptive bandwidth and
subchannel allocation in the WiMAX uplink” by A. Morell,
G. S. Granados, and J. L. Vicario proposes an uplink
scheduling mechanism for mobile WiMAX networks. The
scheduling mechanism implements a dynamic bandwidth
allocation solution in a network utility maximization frame-
work. The problem is decomposed into two subproblems,
namely, a flow allocation subproblem and a subchannel
allocation subproblem. To solve the optimization problem,
the authors apply the mean value cross-decomposition
method, which results in an implementation-friendly solu-
tion. The second paper titled “Fairness and QoS guarantees
of WiMAX OFDMA scheduling with fuzzy controls” by C.
L. Chen et al. proposes a fuzzy control-based scheduling
mechanism for WiMAX. The objective of the proposed
scheduling mechanism is to provide delay and jitter control
for real-time connections, and throughput control for non-
real-time connections. The scheduling method provides
intra- and interclass fairness with QoS guarantees, and it
has low implementation complexity. With intraclass fair-
ness, the connections within the same class achieve equal
degree of QoS. With interclass fairness, the connections
with QoS requirements achieve their demands and those
without QoS requirements equally share the remaining
resources.

The third paper titled “CDIT-based constrained resource
allocation for mobile WiMAX systems” by E Brah, J.
Louveaux, and L. Vandendorpe addresses the problem of
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subchannel assignment and power allocation for mobile
WIMAX systems. The authors consider a fast fading envi-
ronment, where the transmitter has only the channel distri-
bution information (CDI) instead of the full instantaneous
channel state information. The objective is to maximize
the ergodic weighted sum rate under long-term fairness,
minimum data rate requirement, and power budget con-
straints. The authors formulate the problem as a nonlinear
stochastic constrained optimization problem and provide an
efficient analytical solution based on Lagrange dual decom-
position framework. For the proposed CDIT-based resource
allocation framework, the trade-off between reduction in
computational complexity and performance degradation is
analyzed.

The papers in the second group consider the fair resource
allocation in OFDM/OFDMA systems.

The first paper titled “Cross-layer resource scheduling
for video traffic in the downlink of 4G wireless multicar-
rier networks” by F. Bokhari et al. presents a cross-layer
scheduling scheme which is designed for packet scheduling
and resource (subcarrier) allocation in the downlink of
4G wireless multicarrier networks. The authors propose an
adaptive method for parameter selection which integrates
packet scheduling with resource mapping. The performance
of the proposed scheme is compared to that of the Round
Robin and the Score-Based schedulers, considering varying
interference and network loading conditions in a multicell
environment. The authors further analyze the proposed
scheme with different fairness indices available in the liter-
ature in order to quantify the achieved fairness as compared
to the reference schemes.

The second paper titled “Busy bursts for trading-off
throughput and fairness in cellular OFDMA-TDD” by B.
Ghimire, G. Auer, and H. Haas proposes a decentralized
interference management algorithm for OFDMA operating
in TDD cellular systems. Interference aware allocation of
time-frequency slots is accomplished by letting receivers
transmit a busy burst (BB) in a time-multiplexed minislot,
upon successful reception of data. A link adaptation method
using BB signaling is proposed, where the transmission
format is dynamically adjusted based on the channel condi-
tions.

The third paper titled “A fair opportunistic access scheme
for multiuser OFDM wireless networks” by C. Gueguen and
S. Baey proposes a new access scheme for efficient support
of multimedia services in OFDM wireless networks. Access
to the medium is granted based on a system of weights that
dynamically accounts for both the experienced QoS and the
transmission conditions. This new approach enables the full
support of multimedia services with the adequate traffic and
QoS differentiation while maximizing the system capacity
and keeping a special attention on fairness.

In the third group, three papers investigate the fair
resource management in CDMA/UMTS networks.

The first paper titled “Decentralized utility maximiza-
tion in heterogeneous multi-cell scenarios with interference
limited and orthogonal air-interfaces” by Ingmar Blau et
al. treats the problem of resource allocation in terms of

optimum air-interface and cell selection in cellular multi-air-
interface scenarios. The adopted model applies to arbitrary
heterogeneous scenarios, where the air-interfaces belong to
the class of interference limited systems like UMTS or to a
class with orthogonal resource assignment such as TDMA-
based GSM or WLAN. The performance of the dynamic
algorithm is then evaluated for a heterogeneous UMTS/GSM
scenario.

The second paper titled “Joint throughput maximiza-
tion and fair uplink transmission scheduling in CDMA
systems” by C. Li and S. Papavassiliou studies the opti-
mal scheduling for uplinks of a code division multiple
access wireless system while satisfying the quality of ser-
vice requirement and maintaining fairness among users.
The throughput maximization problem is formulated as a
multiconstraint optimization problem and then expressed
as a weighted throughput maximization problem under
power and QoS weight constraints that nicely relate the
fairness. The authors use the concept of power index
capacities to convert the problem under investigation to a
binary knapsack problem, and then the optimal solution is
obtained through a global search mechanism using a two-
step approach.

The third paper titled “Spatial and temporal fairness
in heterogeneous HSDPA-enabled UMTS networks” by A.
Mader and D. Staehle investigates spatial and temporal
fairness aspects in HSDPA-enabled UMTS networks for
different link level scheduling schemes. Spatial fairness refers
to the spatial distribution of perceived data rates among
users while temporal fairness refers to the long-term time-
average user throughput. A flow-level simulation that is used
for this study considers traffic dynamics for both QoS flows
and best-effort (or elastic) flows. The impact of network-
wide interference and multipath propagation effects is also
considered.

In the fourth group, three papers address the fair resource
management in multihop and mesh networks.

The first paper titled “Outage probability versus fairness
trade-off in opportunistic relay selection with outdated
CSI” by J. L. Vicario et al. analyzes the performance
of opportunistic relay selection in a decode and forward
cooperative relaying wireless network. In order to achieve
global balance in terms of performance and tradeoff, a
relay selection strategy has been proposed based on max-
normalized SNR criterion. The tradeoff in terms of system
performance (outage probability) versus fairness (relay node
power consumption) among relays is studied for different
relay selection strategies using portfolio theory. The impact
of availability of accurate channel state information on the
performance is also investigated.

The second paper titled “Cross-layer optimal rate
allocation for heterogeneous wireless multicast” by A.
Mohamed and H. Alnuweiri addresses the problem of
rate allocation for heterogeneous multicast sessions over
multihop wireless networks. The problem is formulated
as a nonlinear optimization problem with an objective
to optimizing resource allocation while providing system-
wide fairness for end-to-end multirate multicast flows.
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Based on primal-dual and pricing methods, the problem
is decomposed into subproblems, which are easier to solve
in a modular structure. The authors propose an iterative
algorithm to solve the problem in a distributed ad hoc
network environment with asynchronous computations.

The third paper titled “A novel approach to fair routing in
wireless mesh networks” by J. Matti, H. Maitt4, and T. Braysy
proposes a novel centralized routing algorithm for wireless
mesh networks. The proposed scheme can assure fairness,
leads to a feasible scheduling, and does not collapse the
aggregate network throughput with a strict fairness criterion.

The papers in the fifth group address the problem of
fairness in RRM for MIMO systems.

The first paper in this group titled “On throughput-
fairness trade-off in virtual MIMO systems with limited feed-
back” by A. A. Dowhuszko et al. investigates the performance
of channel-aware scheduling algorithms designed for the
downlink of a wireless communication system. The study
focuses on a two-transmit antenna cellular system, where the
base station can only rely on quantized versions of channel
state information to carry out scheduling decisions. Virtual
MIMO system selects at each time instant a pair of users
that report orthogonal (quantized) channels. Closed-form
expressions for the achievable sum-rate of three different
channel-aware scheduling rules are presented using an
analytical framework.

The second paper titled “Throughput versus fairness:
channel-aware scheduling in multiple antenna downlink”
by E. A. Jorswieck, A. Sezgin, and X. Zhang studies the
trade-off of using four channel-aware scheduling algorithms
using majorization theory for a space-time coded multiple
antenna downlink system, where TDMA-based scheduling
is employed and spatial diversity is exploited. The scaling
laws of average sum rate and of average worst case delay
are derived. The impact of user distributions on the system
performance and the average worst case delay are analyzed.

The papers in the last group deal with the problem of
multiuser fair resource allocation.

The first paper titled “Optimal and fair resource allo-
cation for multiuser wireless multimedia transmissions” by
Z. Guan, D. Yuan, and H. Zhang proposes an optimal
and fair strategy for multiuser multimedia radio resource
allocation based on copetition, a mixture of cooperation and
competition. The copetition strategy is formulated as sum
utility maximization under constraints from both APP and
PHY and is shown to be effective to allocate power among
multiple video users.

The second paper titled “Performance analysis of SNR-
based scheduling policies in asymmetric broadcast ergodic
fading channels” by J. Perez et al. analyzes the performance
of SNR-based scheduling algorithms in broadcasting ergodic
fading channels by exploiting multiuser selection diversity.
At each fading state, the base station transmits to the user of
the highest SNR. By arranging weights to users according to
a specific scheduling policy, QoS or fairness can be achieved.

We hope the readership will find the papers in this special
issue useful for their research. Finally, we would like to
thank the authors of all submissions, the reviewers for their

enormous help with the review process, and the editorial staff
of EURASIP JWCN for their support during all phases of this
special issue.

Mohamed Hossam Ahmed
Alagan Anpalagan
Kwang-Cheng Chen

Zhu Han

Ekram Hossain
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In some modern communication systems, as it is the case of WiMAX, it has been decided to implement Demand Assignment
Multiple Access (DAMA) solutions. End-users request transmission opportunities before accessing the system, which provides an
efficient way to share system resources. In this paper, we briefly review the PHY and MAC layers of an OFDMA-based WiMAX
system, and we propose to use a Network Utility Maximization (NUM) framework to formulate the DAMA strategy foreseen in
the uplink of IEEE 802.16. Utility functions are chosen to achieve fair solutions attaining different degrees of fairness and to further
support the QoS requirements of the services in the system. Moreover, since the standard allocates resources in a terminal basis
but each terminal may support several services, we develop a new decomposition technique, the coupled-decompositions method,
that obtains the optimal service flow allocation with a small number of iterations (the improvement is significant when compared
to other known solutions). Furthermore, since the PHY layer in mobile WIMAX has the means to adapt the transport capacities
of the links between the Base Station (BS) and the Subscriber Stations (SSs), the proposed PHY-MAC cross-layer design uses this
extra degree of freedom in order to enhance the network utility.

Copyright © 2009 Antoni Morell et al. This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The wireless community has recently directed much atten-
tion on a variety of topics related to Worldwide Interop-
erability for Microwave Access (WiMAX) technologies as
a broadband solution. Two different standards are under
this commercial nomenclature: the IEEE 802.16 [1], with its
extension to mobile scenarios IEEE 802.16e [2], and the ETSI
HiperMAN [3]. Operating in the range of 2 GHz to 11 GHz,
WiIiMAX enables a fast deployment of the network even in
remote locations with low coverage of wired technologies,
such as the Digital Subscriber Loop (DSL) family, and it can
be used, among others, for wireless backhaul or last-mile
applications.

The IEEE 802.16 standards family provides manufactur-
ers with basically four different physical (PHY) layers [4].
Two of them are based on single carrier transmissions and
use Time Division Multiple Access (TDMA) whereas the
other two are based on multicarrier modulations and use
either TDMA or Orthogonal Frequency Division Multiple
Access (OFDMA). Within the multicarrier subgroup, the

WirelessMAN Orthogonal Frequency Division Multiplexing
(OFDM) uses a 256-point Fast Fourier Transform- (FFT-)
based OFDM modulation together with a TDMA scheme
to deploy a Point-to-Multipoint (PMP) subnetwork in the
frequency range from 2 GHz up to 11 GHz in Non-Line-of-
Sight (NLOS) propagation conditions. This PHY layer has
been accepted for fixed WiMAX applications, and it is often
termed as fixed WiMAX. Finally, WirelessMAN OFDMA
exploits the multicarrier principles to implement a more
flexible OFDMA access scheme. As in WirelessMAN OFDM,
it is intended for NLOS PMP applications in the 2 GHz—
11 GHz range. However, it uses a variable-size FFT ranging
from 128 up to 2048 subcarriers. This PHY layer has been
accepted for mobile WIMAX applications, and it is usually
termed mobile WiIMAX.

Concerning network topology, the basic configuration
is PMP with a Base Station (BS) serving many Subscriber
Stations (SSs). Not with standing, there is also a mesh
mode available where SSs can be linked directly to the
BS or routed through other SSs. This last mode is out
of the scope of this paper, where we consider the design
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of appropriate scheduling mechanisms in uplink using the
WirelessMAN OFDMA PHY layer and a PMP network. The
conceived scheduling mechanism is based on a Demand
Assignment Multiple Access (DAMA) strategy that imple-
ments a Dynamic Bandwidth Allocation (DBA) solution
(where bandwidth is understood as rate in a wide sense).
Jointly with flow allocation, we consider the adjustment
of the transmission parameters of the OFDM system, and
hence, the joint approach proposes a cross-layer interaction
between PHY and Medium Access Control (MAC) system
layers.

Previous works related to Radio Resource Management
(RRM) in WiMAX networks address a variety of scenarios,
from PMP to mesh, from TDMA to OFDMA access types,
and distinguishing single channel or multichannel networks,
most of them from a physical (PHY) layer perspective,
where the goal is to properly configure the transmission
parameters. At the best of our knowledge, two main
approaches are found in literature, namely: (i) formulate
the problem in a mathematical optimization framework and
(ii) develop heuristic algorithms. In the sequel, we briefly
review some of the works. In [5], the author proposes
an heuristic solution for the case of a single cell OFDMA
WIMAX network that maximizes the network sum-rate
under some fairness considerations by means of performing
subcarrier and power allocation. The authors in [6] analyze
how concurrent transmissions boost performance in mesh
type networks by proposing an interference-aware routing
and scheduling mechanism. In [7], the reader can find a
discussion about the advantages of a multichannel network.
Finally, [8] contributes with a mathematical optimization
solution that falls into the Network Utility Maximization
(NUM) framework, where a distributed optimal solution to
the established NUM problem is obtained using a convex
decomposition approach. The authors extend in [9] their
original work to generic OFDMA mesh networks, and the
contributions in [10-12] are within the same context. A
common feature in the last three references is that they split
the global rate control and resource allocation problem into
independent and smaller subproblems in order to alleviate
the complexity of the solution at the expenses of a certain
loss in optimality.

Our work follows the NUM framework to define the
underlying optimization problem as in [8] but modifies the
formulation in order to exactly fit the DAMA process that
is envisaged for the WIMAX uplink. The problem is then
decomposed (without any loss in optimality) using the Mean
Value Cross (MVC) decomposition method [13]. It allows to
separate the original joint problem into a flow optimization
problem (given fixed link capacities) and a radio resource
optimization problem (given fixed values of transmission
rates). The latter results in a linear program that can be
solved centrally at the BS, whereas a distributed solution that
uses the novel proposed coupled-decompositions method is
applied to the former.

The rest of the paper is organized as follows. Section 2
describes the system model. Section 3 reviews the MVC
decomposition technique and introduces the novel coupled-
decompositions method, whereas Section 4 solves the pro-

posed joint problem in Section 2. Finally, Section 5 gives
some numerical results, and Section 6 ends the paper with
the conclusions.

2. System Model

Let us consider a PMP OFDMA WiMAX network as depicted
in Figure 1, where a number of SSs share a subset of the
subchannels in the system. A subchannel in WiMAX is
made up of some of the system subcarriers and lasts for
several OFDM symbols in time. There exist different ways
to gather subcarriers into subchannels, which depend on the
permutation types (see in [4] a good review on WiMAX
aspects). In this work, we assume that the transmitting power
per subchannel as well as the set of subcarriers that form it
is given. Therefore, the different powers are not variables of
our allocation problem. Furthermore, each terminal allocates
the amount of power at each subchannel among the inner
subcarriers in order to optimize the transmitting rate. This
assumption can be found in [14], where the authors take into
account intercell interference to constrain the subchannel
transmitting powers. Note that one interesting extension is
then the inclusion of subchannel power allocation but it is
beyond the scope of this paper. In our framework, given a
specific allocation of subchannels to terminals {p;} (top left
part of the figure), each terminal is able to transmit at a
rate ¢'(p,), which is the sum of the rates that the SS attains
in its active subchannel subset (the subset allocated to the
terminal).

We further assume (as described in the IEEE 802.16 stan-
dard documents) that each terminal negotiates the resource
allocation for all traffic flows that go through it, that is, it
jointly requests transmission opportunities for the ongoing
connections without doing it on a flow basis. The advantage
of this procedure is that signaling is reduced, specially when a
significant number of connections have to be managed. The
disadvantage is that, depending on the particular mechanism
used to find the solution of the problem, it may not be
optimal. In that sense, solutions derived from distributed
optimization do not sacrifice optimality. The price to pay is
the time required to get the solution, and therefore, we are
interested in techniques that converge fast. In Figure 1, the
rate of the jth flow at the ith SS is labeled as .

The IEEE 802.16 standard defines five different schedul-
ing services that will provide Quality of Service (QoS) differ-
entiation among the multiple traffic types. These services are
(4] (i) the Unsolicited Grant Service (UGS) (ii) the real-time
Polling Service (rtPS) (iii) the non-real-time Polling Service
(nrtPS) (iv) the Best-Effort (BE) service, and (v) the extended
real-time Polling Service (ertPS). Let us model the DAMA
solution implemented in the WiMAX uplink by means of a
convex program [15] where the different scheduling services
are mapped using three parameters: the minimum rate that
has to be allocated to the connection (the jth flow at the ith

terminal) or m}, the rate requested or d!, and the priority
of the service or p; The desired QoS degree of each service

depends then on both m’] and p; For example, the UGS
that needs a constant rate can be requested just by plugging
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FIGURE 1: Reference model.

i
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pj- Another example is the ertPS that can be requested with

that rate into m’; and fixing d; = m’] regardless the value of

some amount of m; for the fixed allocation part and some
d} > m; for the variable rate part. The value p; is then used
to prioritize this flow against other competing connections.

In summary, the cross-layer system model used to char-
acterize the DBA part of WIMAX, including PHY and MAC
layer issues, responds to the following convex optimization
problem in maximization form [15, Section 4.1.3]:

N NX . . .
2. 2.Uj(rjs pj)
i=1j=1
N N
s.t. Z Zr]’
i=1j=1
N (1)
rj < dp,), i=1,...

max
{rj1.r

<G,

p; =0, ..,N,

where U}(rj»; pj») is the function that measures the utility
perceived by the connection when the rate r; is allocated.

The function has pj as a parameter. Furthermore, I' =
[py>...>py] collects the subchannel allocation per user (p,),
and the symbols < and = stand for component-wise non-
strict inequalities. Finally, ¢/(p;) = pfc;, where ¢; contains
the achievable rates of SS; at each possible subchannel, and
C is the rate at which the BS can transmit. Note that in
principle the allocation variables within each vector p; should
take the integer values 0 and 1 so that a given subchannel is
completely allocated to a certain SS, whereas the constraint
I'l < 1 forces that no more than one terminal gets the
subchannel. As it has been done in other works in literature
[16], we relax the integer constraints to pf-‘ > 0, which
allows us to represent the problem as a convex one (easy to

solve). Once the solution of the relaxed problem is found,
a suboptimal solution to the original problem (with integer
constraints) is obtained by means of employing rounding
algorithms. However, in the WiMAX scenario and taking
into account that an allocation is kept during several time-
slots, real-valued allocation variables have sense in practice
(by time sharing of subchannels). Indeed, if we consider that
the allocation lasts for T time slots, then it is possible to use
values in T with a granularity of 1/T.

Not with standing, the problem in (1) itself does not

guarantee a fair allocation of resources. Fortunately, such
distribution can be attained by means of employing adequate
utility functions, and a general formulation for fairness
was introduced in [17] under the nomenclature of (p,«)-
proportional fairness. A feasible rate vector r' (i.e., it attains
the generic network constraints Ar' < ¢) is said to be (p, a)-
proportionally fair (where p = [pi,..., er]T and « are
positive real numbers) if, given any other feasible rate vector
r}, it holds that

N’ -
Dpi-t
i=1

-
(rf

.
oo, vrtstrizo0 Arfxce (2

)

Accordingly, the utility functions that accomplish this fair-
ness criterion are [17]

pilog(r;), a=1,
Ui(ri; pira) = ri(““) (3)
pi 1— OC’ aF L

The reader can find in Figure 2 the plots of U;(r;; pi, &) for
a=0.1,a =1,and a = 3 (equal p; value).

Let us fix p = [1,...,1]7 and move from & — o to
a = 0. With « — oo, the solution is said to be max-min fair
[18, Section 6.5], and it is not possible (given feasibility, i.e.,
Ar < ¢) to increase any rate in the network, say r;j, without
decreasing another rate r, < rj. On the other hand, when
a — 0, the flow allocation problem leads to a max sum-
rate approach, and therefore, it drastically favors the users
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Utility versus rate (different degrees of fairness)
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FiGure 2: Different degrees of fairness («) in the definition of utility
functions.

with better links (it is then unfair). Intermediate solutions
allow a certain decrease in r, at the expenses of a greater
increase in r; depending on «. Note that in Figure 2 the
bigger the a value is, the higher the increase in r; will be in
order to compensate a utility loss in 7,. A common adopted
solution in literature is « = 1, and it was termed by Kelly
[19] as proportional fair. Moreover, this solution coincides
with the Nash Bargaining one, and therefore, it accomplishes
the recognized, axioms in game theory [20] of linearity,
irrelevant alternatives and symmetry [21].

We can conclude that there is no unique criterion to
define fairness but a series of them are explicitly character-
ized with the utility functions in (3). Furthermore, some
flows can be prioritized over the others within a specific fair-
ness framework (fixed by &) by particular adjustment of the
scale thanks to the parameters {p;}. In general, proportional
fairness (« = 1) provides a reasonable trade-off between
fairness and resource utilization (network throughput).

3. Decomposition in Convex Programming

Decomposition techniques are used to break down a given
optimization problem into a number of smaller problems,
usually termed the subproblems. The most used decompo-
sition methods in communications literature and in relation
to convex optimization are primal and dual decompositions
[22, 23]. It is usual to employ these decomposition tech-
niques as a tool to obtain distributed solutions to some
problems, as it is the case in Network Utility Maximization
(NUM) problems [24, 25]. The formulation in (1) is an
adaptation of the classical NUM to match the DBA problem
in OFDMA WiMAX. Recently, Palomar and Chiang provided
an exhaustive review on primal and dual decompositions

applied to the classical NUM and extensions of it [26]. In par-
ticular, they proposed multilevel decomposition approaches
to split the problem into different and coupled subsets of
variables (e.g., link powers and transmission rates). However,
the problem in primal and dual decompositions is that, in
general, they converge slowly and that an adaptation step
size has to be fixed by the user. So motivated, we base our
work in two distinct decomposition techniques: the Mean
Value Cross (MVC) decomposition [13] and the proposed
novel coupled-decompositions method. In the following, we
briefly review the former and describe the latter.

3.1. Mean Value Cross Decomposition. Consider the follow-
ing problem formulation from [13]:

rg{liyn c(x) +e(y)

s.t.  A1(x) +Bi(y) < by,
Ax(x) +By(y) < by, (4)
x € X,
YEY

where ¢ : R" — R,e : R” — R, A : Rm" — R™,
B, : R” — R™, A, : R" — R™,and B, : R — R™
are convex functions. The sets X and Y are also convex and
compact. It is further assumed that strong duality holds.

Construct now the partial Lagrangian function of the
problem (4) as

L(x,y,p) = c(x) +e(y) +p" (A1(x) +Bi(y) = b))  (5)

and minimize it over the variable x, including the constraints
that have not been taken into account in the Lagrangian
definition, to obtain the function K (y, u) as follows:

K(y; ,u) :mxin L(X) Y, ,u)
s.t. Az(X) < b2 — Bz(y), (6)
x € X,
which is convex in y and concave in g [13].

From K (y, ), the method defines the primal and the dual
subproblem by fixing either the primal variable y or the dual
variable p. After some manipulations, the primal subproblem
turns into

ply) =min ¢(x) +e(y)
st. Aj(x) <b; — Bl(y),
A, (x) < by — Ba(y),
xeX

(7)

and the dual subproblem into

d(w) = min  c(x) +e(y) + pT(A1(x) + Bi(y) — by)

s.t. Az(X) + Bz(Y) < b2)
x e X,
ye Y.

(8)
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Finally, the method is completed by passing filtered
versions of the primal and dual variables between the primal
and dual subproblems, as it is summarized in the following
algorithm.

Take starting points u° = 0 and y° € Y and letk = 1.
Repeat
(1) Let @ = (1/R)XZgp" = (/K" + ((k =

1)/k)ﬁk’1 and compute d(ﬁk) as in (8). Get yk
as the inner minimizer of d (ﬁk).

(2) Let 7* = (/K)SKy* 1 = (1/k)yk ! + ((k —
1)/k)?k_l and compute p(?k) as in (7). Get p*
as the inner Lagrange multiplier of p(¥*).

(3)k=k+1.

Until p(7°) — d(@") < €.

Further details on the MVC decomposition method can be
found in [13].

3.2. Coupled-Decompositions Method. Let us consider now
the following problem formulation:

]
min Zf](xj)

{Xj},y j=1
st x; € Xj, ]=.1>-..,]> 9)
hj(Xj)Syj, ]:1;---;]:
1y <,
YEY Y=Y x - XY,

where 1 is a column vector with all J entries equal to
one, and the subset Y is the cartesian product of J convex
one-dimensional subspaces that include the minimum and
maximum values of the variables {y;}, and thus, it is convex.
We consider that y is the dual variable associated to the
coupling constraint 17y < c. In the sequel, we briefly
describe the algorithm that we propose in order to solve
(9). However, the interested reader can find in [27, 28] an
extended and well-reasoned version of it.

The technique intertwines the primal and dual sub-
problems that are obtained when classical primal and dual
decompositions [22, Section 6.4] are applied to (9). In
primal decomposition, the J subproblems appear when vy is
fixed. Note that under this assumption the problem is fully
decoupled. Similarly, in dual decomposition we can relax
the coupling constraint 17y < ¢ (constructing a partial
Lagrangian of the problem with dual variable u), and ]
subproblems are defined (the problem fully decouples again)
for a fixed value of y. In both classical strategies, the succes-
sive updates of y and p are driven by the primal and dual
master problems. In the coupled-decompositions method,
the result of the primal subproblems is transformed using
a redefined dual master problem, the dual projection, and
plugged to the dual subproblems. Similarly, the output of the
dual subproblems is transformed using the primal projection
and fed to the primal subproblems. A flow diagram of the

Primal projection Dual projection
min lyo - ylI? min  (uf - ptt!)?
y uttl
TG , .
st. Dys=e stooptl e gk )
YEY

t+1

Primal subproblems Dual subproblems
i i(xj min  fj(x;) +uy;
gnyr}l fixj) X fi&xj) +uyj
V€Y Vi€Yj
hj(xj) < yj hj(xj) < y;

FiGure 3: Flow diagram of the coupled-decompositions method.

method is depicted in Figure 3. The algorithm starts with
4 = 0 and iterates as follows: dual subproblems — primal
projection — primal subproblems — dual projection —
dual subproblems.

Since primal and dual subproblems are extensively ana-
lyzed in literature (its formulation appears in Figure 3), let
us now detail the novel parts. Notwithstanding, a complete
iteration is revisited during the proof of the method. On
one hand, primal projection is pretty similar to the primal
master problem in primal decomposition. Assuming that y,
is constructed with the output of the J dual subproblems, the
primal projection solves the following optimization problem:

. Al12
min Ilyo — ¥1|
st. 1Ty <, (10)

ye

with the only particularity that the constraint 17y < ¢
must be attained with equality when the last update of
the Lagrange multiplier is 4 > 0. This is in accordance
with the Karush-Kuhn-Tucker (KKT) conditions for convex
problems [15, Section 5.5] (see more details in [27]). On
the other hand, the dual projection takes the output values
from the primal subproblems 1) and selects the values
within A{ that have been obtained with primal variables ;
not in the boundary of Y;. Let us collect this subset in
Ay. The motivation is that the nonselected values do not
directly impact on the value of y (it can be seen from the
KKT conditions of the problem; see more details in [27]).
Thereafter, the y update is found as

min ( 1 _ t)2
ptt = arg{ ! # # V[ (11)

sty e (MY, LA,

which updates ¢ with the value within A, that is closer to the
previous y value.
Proof of the method: See the appendix.
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4. Proposed Solution

Our solution uses a combination of both decomposition
techniques. First, an MVC decomposition is applied, mak-
ing it possible to split the joint problem into one flow
or bandwidth allocation subproblem and one subchannel
allocation subproblem. The latter depends on variables that
are available at the BS, and thus, it is not necessary to
explore distributed computations in order to solve it. On the
contrary, the former is distributed among the BS and the SSs
in order to be standard-compliant (the BS allocates aggregate
bandwidth to the SSs and these decide the final allocation to
flows and services). In this case, we use a two-level coupled-
decompositions strategy.

First, let us consider the problem in (1) and identify
rates with x and subchannel allocation variables with y in
the MVC decomposition formulation in (4). Rewriting the
original joint problem as

max Z ZU’ js p)

ki o1 j=1

N; )
Z”JI'SPI ¢, i=1,...,N, (12)
j=1
{ri} e R,
{p;} €4,
where R = {rj» | ml] <rl < d;-}andJ =1{p, | T1 =
1, p; = 0}, we can define the primal subproblem of the MVC

decomposition method as

max Z Z U'

{rj} i=1j=1
Ni (13)
Zr;- SpiTci, i=1,...,N,
j=1
{r]l:} eER
for fixed values of {p,} and the dual subproblem as
N N; .
max S U - (S ol
{rilip;} i=1j=1 i=1 j=1
. (14)
{ri} e ®,
{Pi} €4

for fixed values of the Lagrange multipliers {y;} that
are associated to the constraints that couple rates with
subchannel allocation variables in (12). Note that the two
subsets of variables are fully decoupled in (14), and thus, the
maximization in {p;} can be done independently solving the
following linear program:

max Z% (plci) (15)

{pi} € 3.

The joint problem is then solved as follows.

Choose a feasible subchannel allocation {p{} and let
k=1.

Repeat

(1) Letpl (l/k)z, Op, -1 forall i.

(2) Solve (13) using {p¥} and get the dual variables
{yi}.

(3) Let y, = (l/k)zl Oyk ! forall i.

(4) Solve (15) using {y,-} and get updated primal
variables {p;}.
(5)k=k+1.

Until convergence.

Since (15) is solved at the BS, the remaining issue is to
find the solution of (13). In order to avoid excessive DBA-
realted signaling in the subnetwork and to restrict ourselves
to the standard, we propose to solve it using a two-level
coupled-decompositions strategy. Note that we can rewrite
(13) as

max ZU’(y)
i=1

N
Zyi <C, (16)

y' <plc
Ml-<y D,

whereM’—ZJ 1m Di =N

U'(y) =1 L (17)

Note also that the dual Lagrange variable y; corresponds to
the constraint y* < plc; in (16). Therefore, we apply the
coupled-decompositions method to solve (16) at the upper
layer (BS), and we use it again at the lower layer (at each SS)
to solve (17) when it is required by the upper layer.

The iterations of the resulting two-level flow allocation
algorithm and the involved signaling are summarized in the
following list as well as in Figure 4.

(1) The dual variable y' (associated to zfil yi < Q) is
spread through the network, reaching each connec-
tion.

(2) Each connection computes the allocation given !
by means of solving the inner dual subproblems
(the constraints in m; and dj- can be obviated if

desired without affecting convergence). The SSs and

the BS get their own allocations by aggregation of the

allocations below them.
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FIGURE 4: 2-level flow allocation algorithm.

(3) The BS corrects the previous allocations (primal
projection) to attain >,y* < Cand y' < plc;, i =
1,...,N.

(4) The corrected allocations are used by the SSs to
perform inner iterations (within each SS) of the
coupled-decompositions method in order to obtain
new candidates y;.

(5) Finally, the BS updates the value of the dual variable
to u'*! using the dual projection and the previous y;
values.

Intuitively, the multilayer coupled-decompositions strat-
egy tries to find a consensus on the price y that has to be
paid for sharing the transport capacity C of the BS. Often,
primal variables are interpreted from a resource-oriented
perspective whereas dual variables take the role of prices
to be paid to use the resources [15, Section 5.4.4]. All
CIDs participate in principle in finding such optimal value.
However, the price of the connections within a particular SS
may be distinct from the global price u if, for example, its link
capacity is small (hence forcing the price to locally increase).
In these occasions, local prices y; that differ from the optimal
and global consensus price y are found.

Other works in literature [10-12] study a similar problem
within generic mesh OFDM networks. In general, they search
for suboptimal but affordable solutions, which are based on
decoupling the joint problem into independent optimization
programs that manage only a subset of the variables without
looking at the others. In this work, we suggest (for the
particular PMP WiMAX case) the derivation of the joint
optimal rate and subchannel allocation (under fairness
considerations), and we propose a distributed scheme that
achieves it. Moreover, the numerical results in the next
section show the practical interest of the mechanism in
terms of the number of iterations (i.e., directly related to

the amount of signaling). As a matter of fact, the proposed
method (possibly with extensions) can be used in other
scenarios to speed up the computation of optimization
problems or subproblems, either in optimal or suboptimal
decoupling approaches.

5. Numerical Results

Let us consider the network setup depicted in Figure 5 with 4
SSsand 9 connections (CIDs) in total. We choose logarithmic
utility functions (a = 1),

Uj(ris pj) = pj log (r}). (18)

Other policies balancing the solution towards the max-sum-
rate or the max-min-fair designs can be implemented by
fixing other « values using the same algorithm (as discussed
later). We fix all requests to 100 kbps (requests are emitted in
WiIiMAX in terms of bytes of information but we transform
them to rates taking into account the time basis) and all the
minimum granted rates to 1 kbps. All connections have the
same priority p; = 1. The available number of subchannels
is 7, all of them to be shared among the 4 SSs. We consider
the following transport capacities (in kbps) per subchannel
(10kHz of bandwidth) and user (given one realization of
flat-fading Rayleigh subchannels that have 10 dB of SNR in
mean):

[31.49 18.58 4.07 15.697
34.31 13.19 29.84 24.55
4.62 3791 13.37 34.80
20.54 50.62 38.91 30.92|. (19)
34.32 22.96 27.38 48.95
39.21 0.01 32.39 25.97
[ 22.10 23.69 47.14 3.86 |

[C1,C2>C3,C4] =
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FIGURE 5: Setup of the network under test.

Note that depending on the scheduling length (i.e., the
number of contiguous time slots in time that are allocated
in a single allocation phase, which fixes the granularity of
the p, values) and on the channel characteristics (coherence
time), it is reasonable to consider which values of ¢; may
be really achieved within each allocation phase (mid-term
values seem reasonable) so that one may resort to robust
designs in order to compute them. The output rate capacity
of the BS is 200 kbps, and the initial subchannel allocation is
T = [Lixs, 03] ” achieving the link capacities [¢!, ¢, ¢?, ¢*] =
[31.49,13.19, 13.37,30.92].

Figure 6 shows the evolution of the subchannel allo-
cation variables when we apply the proposed method,
achieving new link capacities [c!,c?, ¢, c*] = [89.39,86.83,
60.44,49.23]. In order to accelerate the convergence to the
solution, we have used instantaneous values of {y;} instead of
the time-average that is proposed in the MVC decomposition
method, averaging only the primal (allocation) variables.
This solution has been derived by other authors [8] using
a different approach (which validates it), and it is specially
relevant in the first iterations where the {y;} values show
abrupt changes and very high values. Note that in the figure
the final allocation is completely different from the initial one
(only SS1 keeps using subchannel 1) but the solution still
needs to be rounded to accommodate a practical scheduling
implementation, which has its implications also in terms of
convergence to the optimal solution because it may have
sense to truncate the algorithm after some iterations and
round that solution.

In Figure 7, we plot the resulting flow allocation per
connection (that correspond to the CIDs ordered from
left to right in Figure 5) and the final link capacity once
the subchannel allocation has been obtained for the four
scenarios specified in Table 1. The objective is to show how
fairness considerations impact in the final allocation. The
first Scenario is the same as in Figure 6, whereas Scenario
2 evaluates a different allocation scheme (with fairness
parameter &« = 0.1). In the next two scenarios, we study
the effect of different priorities using again a proportional
fairness approach (« = 1). The difference between Scenarios
3 and 4 is that Scenario 3 fixes the same requested rate for
all the connections (100 kbps), whereas Scenario 4 has two
possible requests (10 kbps and 100 kbps).

Evolution of subchannel allocation

m
i

Some subchannel allocation variables p}

0 1 1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50 55 60
Iterations

FIGURE 6: Evolution of some subchannel allocation variables p}".

We notice in the results of Scenario 1 that link capac-
ities have been adjusted (with the subchannel allocation
mechanism) in order to provide a similar allocation to all
connections. In Scenario 2, the allocation scheme favors
the best channels so that each subchannel is assigned to
the SS that experiences the maximum achievable rate at
that subchannel. Therefore, SS1 gets subchannels 1, 2, and
6; SS2 gets subchannels 3 and 4; SS3 gets subchannel 7;
S84 gets subchannel 5. The corresponding link capacities
are [c!,c%, ¢, ¢*] = [105.02,88.54,47.15,48.95]. The final
rate allocation is limited by the outcoming rate at the
BS (200kbps) so that SSs 3 and 4 limit their ongoing
connections to a lower rate than the connections in SSs 1
and 2, which share the remaining transport capacity. When
prioritized traffic flows appear, as in Scenario 3, granted rates
are balanced toward services depending on their priority
values. Accordingly, it can be seen that subchannel allocation
provides more link capacity to SSs 3 and 4. In Scenario
4, we further modify the requested rates with respect to
Scenario 3 and the highest priority services in Scenario 3,
(the ongoing connections of SS4) reach their requests. As
expected, remaining resources (remember that the BS can
manage no more than 200 kbps) are redistributed in order to
allocate more rate to services in SS3 (with priorities equal to
3) than to services within SS1 and SS2 (with priorities equal
to 1), while subchannel allocation favors the link BS-SS3 as
well.

Finally, our last result analyzes the efficiency of the novel
coupled-decompositions method (used to solve the flow
allocation subproblem) in terms of convergence speed. For
that purpose, we extend Scenario 1 to 20 SSs with 5 ongoing
connections on each. The mean received SNR is 15 dB, and
each ongoing connection in SSs 1-15 requests 100 kbps,
whereas each connection in SSs 16-20 requests 10 kbps. The
transport capacity at the BS is now increased to 1200 kbps.
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TaBLE 1: Scenario description.

Scenario number Service priorities p’

Fairness scheme «

Requested rate d} Granted rate m}

All equal to 1 1 All equal to 100 kbps All equal to 1 kbps

2 All equal to 1 0.1 All equal to 100 kbps All equal to 1 kbps
1 for services in SS1, SS2

3 3 for services in SS3 1 All equal to 100 kbps All equal to 1 kbps

5 for services in SS4

1 for services in SS1, SS2
4 3 for services in SS3 1
5 for services in SS4

100 kbps for services in SS1-SS3
10 kbps for services in SS4

All equal to 1 kbps

We plot in Figure 8 the evolution of the dual variable g,
that is, negotiated between the BS and the SSs when we
use both our novel proposed method and a classic dual
decomposition approach using the same 2-layer architecture.
Remember that classical decomposition methods need to
adjust the value of the step size of the gradient-based update.
In this particular case, we have found that a setup with
a(t) = 0.5/t at the highest level (i.e., between the BS
and the SSs) and «(t) = 0.005//t at the lowest (i.e.,
between SSs and connections) provides a satisfactory trade-
off between convergence and speed. However, the need of a
good adjustment is in practice an obstacle of the method,
and it is not easy to find a step providing that good trade-
off. On the contrary, one of the important advantages in
the coupled-decompositions method is that any user-defined
step is completely avoided. The other important advantage is
in the number of iterations required. As shown in the figure,
the novel technique converges in 5-6 iterations, contrary
to the dual decomposition strategy (both obtain the same
optimal solution), which needs more than 250 iterations.
This drawback of dual decomposition appears in other
works in literature, for example, in the numerical results of
[10], where it is used to obtain a distributed solution that
optimizes power and rate allocation within a mesh OFDM
network.

6. Conclusions

In this work, we have proposed an algorithm that imple-
ments the DAMA mechanism foreseen in the IEEE 802.16
WiMAX standard. Initially, we have introduced our system
model, which considers both flow and subchannel alloca-
tions in a cross-layer approach. Some PHY and MAC-layer
aspects of WIMAX that are relevant to our work have been
briefly reviewed as well as how to translate a series of fairness
definitions into a convex optimization framework. All this
has led us to formulate a network utility maximization
problem.

Since the standard fixes that resources should be
requested and granted in a terminal basis but we should
consider several traffic flows within each SS (may be with
different QoS requirements), we have proposed a distributed
solution to the original convex optimization problem in
order to fulfill these requirements while keeping the opti-
mality in the allocation. Furthermore, we have explored

the usage of our novel proposed coupled-decompositions
algorithm and a recently proposed MVC decomposition
method applied to distinct parts of the problem with the
goal of achieving a more practical design than with classical
primal and dual decompositions.

Results show that it is possible to find a solution to
the flow allocation subproblem with very few iterations and
without the manual setup of any parameter, as opposite to
a classical dual decomposition. The last statement applies
also to the subchannel allocation subproblem, which is
able to give a good approximation to the solution within
a reasonable number of iterations. Finally, we have shown
with an example that our strategy is able to attain a fair
distribution of resources and to support QoS by means of
traffic prioritization.

Appendix

A. Proof of Convergence of the
Coupled-Decompositions Method

First of all, we assume that strong duality [15, Section
5.2.3] holds, which is usually verified in convex programs,
so that the optimal primal variables attain the optimal
dual variables when plugged into the subproblems and vice
versa. In the following, the superscript ¢ indicates iteration
number although we omit it in some irrelevant occasions.
Equivalently, the objective value of the problem is the
same regardless it is solved directly (primal version) or by
maximizing the dual function (dual version) [15, Section
5.2]. We will prove that

AL =1t T = 1, (A.1)
where the relation A, = 1y is found by the application of
the KKT conditions (see more details in [27]) and p* is
the optimum value of the dual Lagrange variable. In the
following, we review a complete iteration of the method.

Let us consider that y' < p* (the proof is similar if y* >
p*) and recall the result in [28, Lemma 1], where it is shown
that the primal variable y; at the jth subproblem (primal or
dual) is a decreasing function of )tf)].. This fact together with

Ay = 1! forces

yi(Ao) = y¥, ¥, (A.2)
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FiGure 7: Three different allocation examples.

where equality is attained only when y € bd ¥; (boundary
of the subset) and therefore 17y > c.
In the primal projection, it is verified that

j/\] = y()j - k], k] > 0, V_] (A3)

thanks to the lemma below.

Lemma 1. Given the optimization problem in (10), its optimal
solution can be expressed as y* = yo — k withk 3= 0.

Proof. See Section B. O

Evolution of y using 2-layer cross-decompositions
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F1GuUre 8: Evolution of y value in the flow allocation subproblem.
Comparison between a classical dual decomposition strategy and
the proposed coupled-decompositions method.
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Ficure 9: Example of the situation before dual projection.

Applying the relationship between the primal and dual

variables of the subproblems to the previous ' value, it is
fulfilled that

f)j > )Lj», v j. (A.4)
Furthermore, given that ' is not the optimal value, it is
verified that some of the A values are j < A} whereas the
remaining ones are Ay < A¥, since it holds that 17y = c. In
other words, some of the y; values attain y; > y; whereas
the rest verify y; < y7. An example depicting the situation
before dual projection can be found in Figure 9.

Consider now that A contains a single element. Note
that a null vector is not possible since we assume that
the coupling constraint is active. Then we can prove the
following lemma.

Lemma 2. Leta primal point y attain 17y = cand y € Y. Let
also Ay be a vector containing the dual translation (computed
by primal subproblems) of the values in y that verify y € int Y
(interior of the subset). Then, if the vector Ay is in fact a scalar,

it is verified that
Ay < AR =pt, (A.5)

where '* is the optimum value of A for the selected position in
Ay (i-e., equal to u*).
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Proof. Using Lemma 1, we can state that all the values within
y except the kth element accomplish y; € inf Y; (i #k).
Therefore, it holds that yx < y¢ = y5. = y{. Applying
the relationship between subproblems (remember that both
in primal and dual subproblems, primal variables are a
decreasing function of dual variables and y(Ay) = y*), we
reach the desired result. O

t+1

Finally, we update p'*! using (11). Collecting all the
results obtained up to this point, we have that

‘ut+1 > Mt (A.6)

. . t . o s
since every value in A verifies Ay, > y'. Furthermore, it is
also true that

[/lHl < ‘u* (A.7)

since the value Ag, closer to y' (dual projection) accomplishes
Ay < A" = p*, which is derived from Lemma2 and
the discussion preceding it. Figure 9 provides a graphical
explanation. We can finally conclude that

ph < pttt < p*, (A.8)

The proof ends showing by contradiction that 4’ cannot
tend to a value smaller than y*. Assume that there exists a
value y™ where successive iterations converge. Then y* is a
stationary point of the method. In other words, a complete
iteration of the method starting from y* returns exactly the
same value. This enforces in the primal projection that y =
yo(u>), otherwise the values in A would increase and so the
update in g (dual projection). Given the relationship between
primal and dual subproblems, we see that the previous
equation is only attained if y> = p* since a lower value
u® < p* would obtain a primal point yo(u") from dual
subproblems such that 17y (™) > c.

Before concluding this section, we want to note that it is
possible to substitute the primal projection by the projection
into 1Ty = ¢ and the method still converges (it can be
similarly proved). It is a more practical option since the
projection can be analytically computed as [15, Section 8.1]

At

y ZY(t)+ (C_ITYS)I.

i (A9)

B. Proof of Lemma 1

First, note that a point ¥ = y, — k with k = 0 is feasible
since it attains both 17y < cand y € Y (assuming that
the intersection is not empty). Then, we have to proof that
a point that does not accomplish the equation y =y, — k for
positive values in k cannot be optimal for problem (10).

We proof this last result by induction. Assume a certain
vector k, called k™ that attains 17 (yg — k>) = c and k> 3=
0. Construct now a new vector kt from k> by fixing its Ith
element k| to —a with a > 0 and distributing the difference

Ik,‘> - k;r | among the rest of elements in k' so as to attain the

equality coupling constraint. In other words,

—a i
e : K =1y —c (B1
l {kiD‘FEi, i#l, € >0 ;z Yo —c¢. (B.1)

Let us introduce some results from majorization theory
[29] that we need to complete the proof. First, let the
components of x € R" be ordered in decreasing order and
express it as

X[1] = " = X[n)- (B.2)
Then, it is said [29, 1.A.1] that a vector y majorizes a vector
x (which we denote by y>"x), x,y € R" if

k k
me < Zy[,'], k=1,....,n—1,
i=1 i=1

n n
ZX[,‘] = Zy[i]'
i=1 i=1

(B.3)

From the definition above and the construction process of
kt, we can state that kT >Mk>,
Second, a real-valued function ¢ on a set A < R" is called
Schur-convex if [29, 3.A.1]
y>Mx on A = ¢(y) = ¢(x). (B.4)
And third, a function ¢(x) = >.;g(x;), where g is convex,
is Schur-convex [30, Corollary 3.1].

With those results in hand, we want to compare |ly,— y|1?
for k = k> and k = kt. Let us rewrite the quadratic norm as

llyo = $II* = [lyo — yo + K> = Zk,? (B.5)

and consider ¢(k) = >’ k7, which is a Schur-convex function.
Finally, since k' >Mk®>, we have

2 2

[IKH[" = (=], (B.6)

and thus, any solution where one element within k is negative

is not optimal (since the problem is convex and has a single

solution). The proof ends by induction of this result to an
arbitrary number of negative elements in k.

Notation

Ui(r;; pi, a): Utility achieved when entity 7 transmits at
rate ;. The utility is parameterized by a
priority p; (entity-dependant) and a shape
factor « (common to all utilities)

N: Number of SSs

N;: Number of active connections at the ith SS

rJ’:: Rate of the jth ongoing connection at the ith
SS

m} Minimum guaranteed rate to the jth

ongoing connection at the ith SS
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dj-: Requested rate of the jth ongoing
connection at the ith SS

C: Maximum outgoing rate at the BS

p;:  Subchannel allocation vector at the ith SS

Ci: Achievable rates at the ith SS (includes all
subchannels)

c'(p;): Maximum outgoing rate at the ith SS

I: Subchannel allocation matrix:
I=1lpy,..opyl o

R: Feasible rates subset: R = {r}lm} < rJ’- < d}}

§: Feasible allocations subset:

8 =1{p;IT1 < 1,p, = 0}
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1. Introduction

IEEE 802.16 standard (WiMAX) [1, 2] is one of the
most popular standards for fixed and mobile broadband
wireless access systems to provide last mile access. Due to
various users with diverse QoS requirements and wireless
communication technologies, the resource scheduler plays
an important role to provide fairness and QoS guarantees.
As summarized in [3], a resource scheduler in wireless
multimedia networks needs to possess the following features:
efficient link utilization, delay bound, low implementation
complexity, throughput, scalability, and fairness.

For WiMAX and OFDMA systems, various scheduling
algorithms have been proposed for achieving QoS guar-
antees. For example, Liu et al. [4] proposed a priority-
based scheduler which assigns each connection a priority
updated according to QoS parameters and channel state
and then assigns time slots to connections according to the
order of priority values. The method has low implementa-
tion complexity because the scheduler simply updates the
priority of each connection per frame and allocates time
slots to the connection with the highest priority. However,
it does not consider fairness and jitter issues which are
important metrics for real-time applications. To maintain

low implementation complexity under considering fairness
and jitter, we use the priority-based scheduling scheme for
initial priority assignment and afterward, the proposed a
fairness and QoS guaranteed scheduling approach with fuzzy
controls (FQFC) mechanism takes care of the scheduling
job using fuzzy control approach. Many algorithms have
been proposed to deal with the fairness problem, and can
be briefly divided into two categories. The first category
is to reduce the resource allocation problem into an
optimization problem. Based on the optimization theory,
for example, [5, 6] have good performance on spectrum
efficiency and system utilization. They formulate the cross-
layer optimization problem to maximize the average utility
of all active users subject to certain constraints. However,
in addition to implementation complexity, these methods
still suffer some problems. To achieve optimal spectrum
efficiency, the optimization approaches may, on the other
hand, fail to provide QoS guarantees. Moreover, the relation
between traffic specifications and network state is uncer-
tain. Uncertainty and dynamics in mobile environment
make exact modeling of objective function and constraints
impossible when performing the optimization steps. In
this paper, the FQFC adopts fuzzy control technique to
deal with the modeling problem. The reason we use
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fuzzy control is to tackle uncertainty and dynamics in
wireless communication environment. Among soft com-
puting methods, inference based on probability theory is
also widely used for modeling uncertainty and dynamics.
However, the controller based on probability must rely on
statistical observations to perform inference. Correctness
of statistical information is based on the law of large
number. In case that gathering large amount of statistic
information in short time is difficult, it will be infeasible.
Moreover, inference based on probability usually assumes
some specific probability model for result of feedback
observation to follow. As shown in [7], a single model usually
fails to represent the behaviors of dynamic environments
such as mobile wireless networks with sudden bursts or
changes.

The second category is a utility-based scheduler. A
utility function is a measure of relative satisfaction from
users’ requirements. The schemes in [8, 9] apply utility
functions to maximize the total utility of all connections.
Utility-based optimization approaches did guarantee QoS
of some connections but also starve others. On the other
hand, some approaches such as [10, 11] propose utility-
fair bandwidth adaptation schemes for multiclass traffic in
wireless networks. Rather than achieving resource fairness,
the bandwidth adaptation schemes make sure that all
connections can obtain similar utility values to achieve
the so-called utility fairness. These schemes are effective
in both achieving utility fairness and increasing network
resource utilization. However, the utility-fair schemes may
fail to provide QoS guarantees since it does not consider the
priority of the connections.

In this paper, our objective is to provide efficient control
for both QoS and fairness guarantees of WiIMAX OFDMA
scheduling. For QoS guarantees, we address the problem
of head-of-line (HOL) delay and jitter control for real
time applications and throughput control for nonreal-time
applications. The FQFC scheduler assigns each connection a
priority and TXOP, and adjusts them according to channel
quality, QoS requirements, and service classes. Due to uncer-
tainty and dynamics of the environment, it is difficult to find
out the mapping between priority and QoS requirements.
For fuzzy inference, it is the simplest way to model a
complex system when there is few and uncertain information
available. In the field of controller design, fuzzy controller is
one of the most popular approaches. Moreover, fuzzy control
has been widely used in researches on communication
networks such as [7, 12—17]. However, there are few articles
talking about using fuzzy control for WIMAX. In this paper,
the FQFC model is developed for WIMAX OFDMA systems
and is proved that both fairness and QoS are guaranteed.
Other fuzzy control methods [14-17] may be proved to
achieve certain degree of QoS. However, fairness is seldom
assured in these and state-of-the-art approaches. Then,
we define two types of fairness including intraclass and
interclass fairness. To achieve intraclass fairness, we set up
a reference goal to each connection according to the QoS
requirements, and make the connections achieve the goal by
priority scheduling and TXOP allocation. If each connection
can achieve its QoS requirement, intraclass fairness is

guaranteed. For achieving interclass fairness, the FQFC does
not allocate superfluous resources out of what required.
Compared to state-of-the-art methods, connections of high-
priority classes release more resources to lower priority
ones. Thus, the FQFC makes the connections without QoS
requirements evenly share the remaining resources. Based
on the priority scheduling and TXOP allocation methods,
the FQFC provides both intraclass and interclass fairness
with QoS guarantees and featuring low implementation
complexity.

This paper is organized as follows. In Section 2, we intro-
duce background including network configuration, MAC
QoS, PHY resource allocation, and fairness descriptions.
Section 3 describes the FQFC mechanism and depicts the
design of the fuzzy controllers for each service class. In
Section 4, we investigate the mechanism performance of QoS
and fairness through simulations. Finally, we conclude the
paper in Section 5.

2. Background

2.1. Network Configuration. WiMAX specifies two commu-
nication modes which form different topologies—point-to-
multipoint (PMP) and mesh modes. In PMP mode, a base
station (BS) centrally allocates downlink (from BS to SS) and
uplink (from SS to BS) resources to subscriber stations (SSs).
Al SSs are only allowed to communicate with a BS. In mesh
mode, SS can act as a router to assist its neighbor to relay
data. In the 802.16 standard, this mode is optional and is
not discussed in this paper. Hence, we focus on proposing
a downlink scheduling algorithm to provide QoS guarantees
in PMP mode.

IEEE 802.16 WIMAX PHY adopts the orthogonal
frequency-division multiple access (OFDMA) technology
based on OFDM modulation. The OFDMA technology
allows multiple users transmitting packets at the same
OFDMA symbol via different subchannels, such that wireless
resources are utilized ultimately.

2.2. Scheduling Services in MAC Layer. IEEE 802.16 MAC
protocol is connection-oriented; each connection is assigned
a connection ID (CID) and a single scheduling service deter-
mined by a set of QoS parameters. Four scheduling services
in the 802.16 standard are supported: unsolicited grant
service (UGS), real-time polling service (rtPS), nonreal-
time polling service (nrtPS), and best effort (BE). The
UGS supports real-time constant bitrate data streams, such
as voice over IP (VoIP) without silence suppression. The
QoS parameters of UGS service are minimum reserved
traffic rate, the tolerated jitter, maximum latency, and
request/transmission policy. The rtPS supports real-time
variable-rate data streams, such as MPEG video or VoIP
with silence suppression. The QoS parameters of rtPS are
maximum latency, request/transmission policy, minimum
reserved traffic rate, and traffic priority. The nrtPS supports
delay-tolerant variable-rate data streams, such as FTP. The
QoS parameters of nrtPS are minimum reserved traffic
rate, request/transmission policy, and traffic priority. The
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BE supports best-effort data streams. The QoS parameter
is request/transmission policy. In IEEE 802.16e [2], an
additional service class called extended real-time polling
service (ertPS) has superior efficiency than both UGS and
rtPS. It supports real-time variable-rate data streams, such
as VoIP with silence suppression. The QoS parameters
of ertPS are minimum reserved traffic rate, maximum
latency, request/transmission policy, and the tolerated jitter.
Hence, considering the QoS requirements of the four class
services, we calculate the reference goal as traffic specification
(TSPEC) according to these QoS parameters.

2.3. Resource Allocations in PHY Layer. 1EEE 802.16 OFDMA
system defines two types of subcarrier permutations, dis-
tributed subcarrier permutation and adjacent subcarrier per-
mutation. The former permutation type includes partially
and fully used subcarriers (PUSC and FUSC) which are
pseudo-randomly selected and grouped into subchannels,
while the later includes adaptive modulation and coding
(AMC), and only adjacent subcarriers are clustered to
form subchannels. Dispersing noise and interference in
fast changing environment, the PUSC and FUSC modes
are suitable for mobile networks. For AMC mode, the
BS allocates appropriate subchannels for connections with
larger SNR to enhance system performance, and it is suitable
for fixed or low mobility environment. To support mobile
WiMAX, the FQFC scheduling and allocation are based on
distributed subcarrier permutation.

In OFDMA, the basic allocation unit is a slot that
composes of one subchannel along with an OFDMA symbol,
such that the resource allocation becomes a two-dimensional
problem. By using the distributed subcarrier permutation,
all subchannels are the so-called equally adequate for all
SSs [18], and our resource allocation is based on Raster
algorithm [18], in which the frame is filled row by row, from
left to right and from top to bottom, and efficiently reduces
the burst numbers.

2.4. Fairness. In wireless networks, the fairness definition is
not straightforward. As described in [19], a fair resource
allocation usually does not produce equal connection data
rate because the diverse connections also suffer from diverse
channel conditions, network states, and dynamics. The
dynamics result from mobility and time-variant traffic spec-
ifications (TSPECs). Moreover, WiMAX needs to provide
QoS guarantees for four classes of scheduling services.
Therefore, for fairness, it is necessary to consider QoS
guarantees for different class connections. We define two
types of fairness described as follows.

(i) Intraclass fairness: the connections within the same
class achieve equal degree of QoS.

(ii) Interclass fairness: the connections with QoS require-
ments achieve exactly their demands, and those with-
out QoS requirements equally share the remaining
resources.

Hence, our objective is to achieve both intraclass and
interclass fairness.

Fuzzy controller !
I

I
I
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J, —| Defuzzifier !
| :
! 1
I ]
I Fuzzy | H
F
Co?érc(élslf d | inference | lllZ;y |
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e e \ !
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FIGURE 1: A general architecture of a fuzzy controller.

2.5. Fuzzy Controller. Classical controller requires model-
ing of the physical reality. This is significant in control
problems; however, it is difficult or even impossible to
construct precise mathematical models. The difficulty may
result from time-variant system behaviors, dynamics, and
uncertainty in mobile wireless communication environment.
Fuzzy controllers perform well under these circumstances.
A general fuzzy controller consists of four components: a
fuzzifier, a fuzzy rule base, a fuzzy inference engine, and a
defuzzifier. The interconnections among these components
and the controlled process are shown in Figure 1. The
fuzzifier maps crisp input into appropriate fuzzy sets to
express uncertainties. The fuzzy inference engine uses the
tuzzified measurements to evaluate the fuzzy implication
results. Finally, the defuzzifier deals with confliction of
fuzzy implications and transforms the fuzzy implication
results back to the crisp output. Two conditions are usually
monitored by the controller: error e and the derivative of the
error ¢’. With e and ¢, the fuzzy controller issues control
actions.

3. Design of the Proposed Scheduling
Mechanism

In this section, we describe the scheduling mechanism for
multiple connections with various QoS requirements. The
FQFC scheduler assigns two variables with fuzzy inference
values for each connection with CID i, that is, the priority
P; and the maximum number of packets TXOP; that
connection i can transmit in a frame duration. The FQFC
scheduler first initializes the two variables based on the
characteristics of connections and adjusts them, respectively,
by two fuzzy controllers to adapt to the dynamics of
system. As shown in Figure 2, the priority controller adjusts
P; according to channel quality, QoS requirements, and
service classes. With the priority, the FQFC decides the
transmission order of connections. The TXOP controller
adapts TXOP; according to transmission rate and the queue
length difference between two contiguous transmissions of
the MAC layer.

3.1. Controller Design for ertPS & rtPS. Unlike the UGS class
having the highest priority that constant bandwidth can be
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F1GURE 2: The proposed scheduling mechanism.

achieved by allocating fixed number of slots [1], the two
service classes, rtPS and ertPS, that both support the real-
time variable bit-rate data streaming require efficient and
effective control to achieve QoS guarantees and fairness. A
real-time connection of these two classes usually has two
QoS specifications, maximum allowable latency (deadline)
and jitter. The FQFC control for real-time connections
comprises three steps: (1) set up goal delay and tolerable
range, (2) adjust priority according to recent HOL delay,
and (3) adjust TXOP according to the jitter requirement.
The main idea is that the FQFC maintains the delay and
jitter of each connection below the delay and jitter goals,
respectively. First, we set the goal delay and the tolerable
range. Figure3 shows the control mechanism for real-
time connections. Goal delay controller determines goal
delay and tolerable range bounded by the lower and upper
bounds. Then, the priority controller decides transmission
order of connections, and the TXOP controller decides
the number of transmitted packets to maintain the jitter.
We describe the design of the three controllers as fol-
lows.

3.1.1. Goal Delay Controller. The purpose of the goal delay
controller is to control delay and jitter within a tolerable
range. If the delay exceeds the tolerable range, the FQFC
increases the priority. If the delay is below the tolerable range,
the FQFC decreases the priority. As shown in Figure 2, to
avoid packet dropping, the goal delay is below the deadline.
Since system load and transmission rate affect HOL delay
obviously, we use them to decide the goal delay. Due to
uncertainty and that the TSPEC changes rapidly in mobile
WiMAX environment, we cannot use exact formulation to
represent the goal delay. Therefore, we divide the delay space
into three parts and use fuzzy sets S (small), M (medium),
and L (large) to represent these three parts, respectively.
Then, we decide which part that the goal delay belongs to
according to the system load and transmission rate. The
goal delay controller selects a goal delay and sets its upper
and lower bounds to form a tolerable range for control.
We denote gi(t), g P(t), and g}(’w(t) as the goal delay of
connection i in the tth frame and its upper and lower bounds,
respectively. The goal delay controller uses triangular and
trapezoidal membership functions as shown in Figure 4. The
fuzzy input variables are system load (SL) and transmission

Deadline
/g Upper bound
ko)
3 Goal delay
a
©)
jan)
Iv ...... \,/ ........ Lower bound

Time (ms)

F1GURE 3: Control mechanism for real-time connection.

rate (TR), and the output function is the goal delay (GD).
The fuzzy sets of SL, TR, and GD are defined as follows:
T(SL) = {Low, Medium, High} = {L,M, H},
T(TR) = {Fast, Medium, Slow} = {F, M, S},
T(GD) = {Small, Medium, Large} = {S, M, L}.

According to system load, the controller decides the goal
delay gi°(t) by the following fuzzy rules.

(R1) If system load is L, then g}oad(t) is S.
(R2) If system load is M, then g}"ad(t) is M.
(R3) If system load is H, then g}oad(t) isL.

The following controller uses normalized data rate with
respect to the transmission rate in the highest modulation
mode to decide the goal delay g% ().

(R1) If transmission rate is F, then g/*(¢) is S.
(R2) If transmission rate is M, then g,-TX(t) is M.
(R3) If transmission rate is S, then g,-TX(t) isL.
Using Mandamni implication and the centroid defuzzi-

fier, we obtain the outputs, gl°*(¢) and g/*(t). Considering
system load and transmission rate, the final goal delay is

gi(t) = g°%(t) x wy + g () X wa, (1)

where w; and w, are the weighting factors of system load and
transmission rate, respectively.
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With goal delay g;(t) and required jitter j;(¢), we define
g7 (t) and gi°¥(t) as the upper and lower bounds of the
tolerable range, where g/ (t) = gi(t) + ji(t)/2 and g}ow(t) =
gi(t) — ji(t)/2.

3.1.2. Priority Controller for Real Time Services. Figure 5
shows the control system including the priority controller,
the WIMAX system plant, and the delay observer. The delay
observer detects the HOL delay d;(t). Then, the priority
controller compares it with the delay requirement g;(¢), and
adjusts priority P;(t). If e;(t) = d;(t) — g(t) is around zero,
the control system is stabilized around the requirement.

In our design, we denote negative, zero, and positive
forces with fuzzy singletons S, M, and L. The control actions
of these singletons at the conclusion parts of fuzzy rules are
as follows:

S: Pi(t) = Pi(t — 1) — 8i(¢),
M: Pi(t) = Pi(t — 1),
L: Pi(t) = Pi(t—1) + (Si(t),

where 6;(t) is the priority influence of connection i in the tth
frame. The priority controller must confirm that the HOL
delay will not exceed the deadline. Hence, it adapts J;()
according to the time duration between goal delay and the
deadline. Let D; be the deadline, AD; be the guard time before
the deadline, Pyps be the maximum priority of real-time
connections, and fgame be the frame duration. Then, we have

o Prips
%0 =15, —an, = &i(1))/tirame Y

Priority
Controller Plant
&i(t) ei(t) Pi(t)

Rdelay Error
—>

Observer
Odelay  dj(t)

FiGure 5: The block diagram of the control system for HOL delay.

As we can see in (2), when the goal delay is closer to the
deadline, the adaptation force of the priority is larger. We
depict the priority initialization and controlled direction as
follows.

(a) Priority Setting. When the connection is in an initial stage
or the HOL delay is below gi®¥(t), the priority controller
assigns the connection a priority according to channel
quality, QoS requirement, and service classes. For a real-time
connection i, the priority P;(¢) in the tth frame is assigned by
(3) which was proposed in [4]:

ri(t) 1 - ,
Prips X Riex X 0’ if Fi(t) = 1, ri(t) #0,
Pi(t) = 1 Pryps, if Fi(t) < 1, ri(t) #0,
0, if ri(t) =0,

(3)

where Ppps is the maximum priority of real-time connec-
tions, R™ is the data rate of connection i in the highest
modulation mode, and r;(t) is the data rate of connection i in
the tth frame. r;(t)/R™ is the normalized data rate and the
connection with high received SNR results in higher priority.
Fi(t) is the delay requirement indicator:

Fi(t) = D; — AD; — di(t) + 1, (4)

where D; is the deadline, AD; is the guard time before
the deadline, and d;(t) denotes the HOL delay. If Fi(¢f) =
1, the larger F;(t) denotes the higher satisfaction of delay
requirement, which causes lower priority. If F;(t) < 1, the
HOL delay has been over the guard time of deadline. The
connection should get resources immediately to avoid packet
losses. Hence, the priority is set as Pyps. When r;(¢) is zero,
the connection i is under deep fading and should not be
scheduled.

(b) Priority Controller. Let the controller action be the
priority P;(t). One of the input ¢;(¢) is the difference between
the actual value of the observed HOL delay d;(t) and the
desired value g;(t), that is, e;(t) = di(t) — gi(t). The universe
of e;(t) is [—gi(t), Di(t) — gi(t)]. The variable e;(¢) has three
linguistic values N, E, and P which represent fuzzy concepts
“Negative,” “Equal,” and “Positive,” respectively. The fuzzy
sets N, E, and P are characterized by the membership
functions shown in Figure 6.
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The other input of the controller is the difference between
two errors, which is defined as e;(t) = e;i(t) — e;(t — 1).
Substituting e;(¢t) = d;(t) — gi(¢) to e;(t), we obtain ¢;(t) =
di(t) — d;(t — 1). The universe of ¢; (¢) is [—d;(t — 1), D;(¢) —
di(t — 1)]. The linguistic values of ¢;(t), N, E’, and P’
also representing fuzzy concepts “Negative,” “Equal,” and
“Positive,” respectively, are characterized by the membership
functions as shown in Figure 7, where a = —d;(t — 1), b =
g —di(t=1), ¢ = g —di(t—1), d = g¥(H—di(t-1),
and e = D;(t) —d;(t — 1). Sign of these values constitutes four
cases as shown in Figure 7. The membership functions are
time-variant and change along with the variable d;(t — 1).

We consider four cases to design the fuzzy rule base as
follows.

Case 1. If HOL delay is too large, that is, d;(t — 1) > giup(t),
the priority should be increased with the large (L) step.

Case 2. Ifgl-up(t) > di(t — 1) > gi(t), maintaining priority at
the median (M) level is fine.

Case 3. 1t gi(t) > di(t — 1) > g}"w(t), maintaining priority at
the median (M) level is fine.
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Case 4. If HOL delay is too small, that is, d;i(t — 1) < g}ow(t),
the priority should be decreased with negative decrement (S).

Therefore, expanding the above cases with changing rate
e; (1), we have the linguistic inference rules

(R1) If e;(t) is P and €;(t) is P’, then P;(¢) is L,

(R2) Ife;(t) is P and €;(t) is E', then P;(t) is M,
(R3) If e;(t) is P and e;(t) is N', then P;(t) is M,
(R4) If e;(t) is E and e;(t) is P’, then P;(t) is M,
(R5) If e;(t) is E and e;(t) is E’, then P;(t) is M,
(R6) Ife;(t) is E and €;(t) is N', then P;(t) is M,
(R7) If e;(t) is N and e;(t) is P, then P;(t) is M,
(R8) Ife;(t) is N and e;(t) is E’, then P;(t) is M,
(R9) If e;(t) is N and e;(t) is N’, then P;(¢) is S.

Using Mandamni implication and the centroid defuzzifier,
we obtain the control action responding each HOL delay
di(1).

The priority controller makes the delay fall in the
tolerable range which is below the deadline. Hence, each
connection in the real-time class achieves the QoS speci-
fication, while intraclass fairness is guaranteed. When the
delay is below the tolerable range, the controller decreases the
priority for releasing the resources. This scheme guarantees
the jitter and interclass fairness at the same time.

(c) Priority Adaptation for Fairness. For making the connec-
tions within the same class achieve equal degree of QoS,
the priority controller adapts P;(t) by further considering
the packet loss rate. All connections should receive the same
packet loss rate. To compensate the packet losses in the tth
frame, we define the loss rate as loss;(t) and the scaling by
P;(1), if loss;(t) = 0,

Pi(t) = A

Pi(t) x max (ml

), if loss;(t) > 0,
(5)

where A is a constant to normalize the loss rate according to
the predefined precision. According to (5), if the connection
drops packets due to out of the deadline, the priority
controller allocates more resources by increasing the priority
for achieving intraclass fairness. Even if all connections are in
an extremely bad environment, they will suffer the same loss
rate.

3.1.3. TXOP Controller. The TXOP controller initiates the
TXOP based on frame duration tf,me and packet interval of
the ith connection t; as (6)

TXOP;(0) = [%"1 (6)

According to deficit round robin [20], the TXOP increases
as the number of packets in a queue increases. Let Q;(t)
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F1Gure 8: Control mechanism for nrtPS connection.

denote the number of packets in queue i in the tth frame.
The controller stores the bounded difference DCi(t) =
Qi(t)eQ;(t — 1) = max(Q;(t) — Q;(t — 1), —1) in the deficit
counter of connection i in the tth frame. Then, we add DC;(t)
to TXOP;(t)as follows:

TXOP;(t) = max (TXOP;(t — 1) + DCy(¢),0).  (7)

To avoid burst transmission, TXOP has an upper bound in

) - g )] )

TXOP;?(t) = [
tpi

3.2. Controller Design for nrtPS. The nrtPS connection
supports delay-tolerant variable-rate data streams and guar-
antees minimum reserved rate. The control mechanism
for nrtPS connections can be divided into three steps: (1)
setting up minimum reserved rate and an upper bound,
(2) adjusting the priority according to average throughput
of nrtPS connections and the required jitter of real-time
connections, and (3) adjusting TXOP of nrtPS connections
according to the required jitter. Figure 8 shows the control
mechanism for nrtPS connection.

If the average throughput is lower than minimum
reserved rate, the priority controller raises the priority to
increase the throughput. Moreover, the controller needs to
prevent large jitter from over-high priority. Besides, if the
average throughput exceeds the upper bound, the controller
decreases the priority to release the resource. We depict the
controller design as follows.

3.2.1. Priority Controller. The priority controller in nrtPS
class is easier than in the real-time class. The QoS require-
ment is only to guarantee the minimum reserved rate. Hence,
we do not use fuzzy control and simply use the priority-based
scheduler for nrtPS connections. Let T;(t) denote the average
throughput of connection i in the tth frame, and let R;(t)
denote the instantaneous data rate of connection i in the tth

frame. The average throughput in the tth frame is usually
estimated over a time constant f. using moving average as

- l) S Ti(t) + tl W Ri(1), ifi=i*
Ti(t+1)= 1 ‘ (9)
(1— ?) < Ti(t), if i %%,

c

where i* means connection i is scheduled in the tth frame.
For an nrtPS connection i, the priority P;(t) in the tth
frame is defined as

Pueps — 6i(1), if Fi(t) = 1, ri(t) #0,
PnrtPS) if Fi(t) < 1) ri(t) 7 O) (10)
O, lf Ti(l’) = 0,

Pi(t) =

where 6;(t) is the priority decrement, Pyps is the maximum
priority of nrtPS connection, and F;(t) is the throughput
requirement indicator which is the ratio of average through-
put with respect to the minimum reserved rate 7™

T;(t)

min *
T;

Fi(t) = (11)

If Fi(t) = 1, the throughput requirement is satisfied, and the
controller decreases the priority to release resource. When
Fi(t) < 1 implying that the average throughput is less than
the minimum reserved rate, the connection should get more
resources immediately to achieve the requirement. Hence,
at this time, the priority is set to the maximum Pyps. The
priority decrement §;(¢) is further defined as

TXOPz(t) X Lpacket

(0 = kX e

, (12)

where Lyacket is the packet length, T;" is the upper bound
of T;(t) which is the maximum sustained rate in the traffic

specification, and k is a constant representing system load.

3.2.2. TXOP Setting. For nrtPS, the FQFC sets TXOP;(t)
according to the throughput upper bound T;" as

(13)

TXOP;(t) = [T,.“p X tf—“‘1

Lpacket

3.2.3. TXOP Adaptation for Fairness. For intraclass fairness,
all nrtPS connections should have the same throughput ratio
of average throughput with respect to minimum reserved
rate. Via setting the upper bound T;* in (13), we control the
average throughput within the range between the minimum
reserved rate and the upper bound, and we make the
throughput ratio of all nrtPS connections the same. For
interclass fairness, the average throughput will not exceed the
upper bound. Hence, we can release more resources to the
connections without QoS requirements.
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3.3. Controller Design for BE

3.3.1. Priority Setting. For a BE connection i, the priority
P;(t) in the tth frame is defined as

Pgpg, ifr; 0,
Pi(t) = 1 BE 1 ri(t) # (14)
0, if r;i(t) =0,

where Pgg is the maximum priority of BE connection. All BE
connections have the same priority. For intraclass fairness,
we adopt the round robin scheduling for BE connections.

3.3.2. TXOP Setting. For fair resource allocation, the FQFC
sets the TXOP;(¢) according to the frame duration tame and
the packet interval of the ith connection t;, as (14):

TXOP (1) = | e | (15)
tip

In this paper, we also perform priority adaptation.
Therefore, the overhead, especially the complexity, will be
slightly higher than that of the priority-only method. Since
in centralized PMP mode, all traffic flows are managed by
base stations which have much more powerful computing
ability than SSs, the additional computation overhead will
not give any sensibly negative effect. Moreover, the proposed
controllers do not use any control/management packets for
fairness and QoS purposes. There is no additional network
overhead caused by the proposed FQFC.

4. Evaluations and Simulation Results

We first introduce intraclass and interclass fairness criteria
and then according to these criteria, we evaluate the perfor-
mances of the fairness.

4.1. Fairness Criteria. The descriptions of fairness indices are
as follows.

4.1.1. Intraclass Fairness Index. Intraclass fairness means that
the connections within the same class achieve equal QoS
guarantees. Because the connections in different service
classes have different QoS requirements, we define respective
intraclass fairness indices for real-time, nrtPS, and BE classes.

(a) Real-Time Connection. A connection belonging to the
real-time class requires strict maximum allowable latency
(deadline) and the tolerated jitter. Packet loss occurs when
packet delay is out of the deadline. Hence, we use loss
rate and jitter to evaluate the intraclass fairness of real-time
connections. We define a real-time indicator It as

1, if jitter; > jitterolerated>
Ipr,i = (16)

loss;, if jitter; < jitterilerated>

where loss;, jitter;, and jitterolerated are the loss rate, jitter, and
the tolerated jitter of connection i, respectively. If the jitter
is larger than the tolerated jitter, the connection does not

achieve QoS guarantees and we set the real-time indicator
to one. Otherwise, we set the real-time indicator as the loss
rate. Then, we utilize the real-time indicator to compute
the real time fairness index. If the real-time indicators of
all connections are closer to each other, the better intraclass
fairness is achieved. We define the real-time fairness index
FIgrt as the standard deviation of the real-time indicators of
all rtPS connections as follows:

Nrr 5
Flgr = Ner — 1 ;(IRTJ — Ikravg) "> (17)

where Nrt is the number of connections in the real time class,
and Irr,avg is the average real-time indicator. Thus, a smaller
value of Flgr represents better intraclass fairness of the real-
time class.

(b) nrtPS Connection. A connection belonging to the nrtPS
class requires minimum reserved rate. Hence, we use the
average throughput to evaluate the intraclass class fairness of
nrtPS connections. We define a nrtPS indicator Iy, as

T;
Ligri = (18)

min ’
T

where T; and T™™ are the average throughput and mini-
mum reserved rate of connection i, respectively. Then, we
introduce the throughput indicator to compute the nrtPS
fairness index. The nrtPS fairness index Flrr is defined
as the standard deviation of the throughput indicator of
connections in the same nrtPS class as follows:

1 Nirr

> (Inrr,j — InkTavg) s (19)
j=1

Flyrr =
nRT NnRT -1 -~

where Nyrr is the number of connections in nrtPS class, and
Iirt,avg is the average nrtPS indicator. Similar to the Flgr, a
smaller Fl,rr value represents better intraclass fairness of the
nrtPS class.

(c) BE Connection. A connection belonging to BE requires
no QoS metrics. We introduce the average throughput to
compute the BE fairness index. The BE fairness index is
defined as the standard deviation of the average throughput
of connections in the same BE class i as follows:

1 Nag 5
Flgg = | —— Ti— Tavg)"s 20
BE NBE 1 ];( j g) ( )

where Ngg is the number of connections in BE class, and
Tavg is the average throughput in the BE class. Smaller Flgg
represents better intraclass fairness of the BE class.

4.1.2. Interclass Fairness Index. According to the definition of
interclass fairness, the interclass fairness has two folds: (1) the
connections with QoS requirements achieve the demands;
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(2) the connections without QoS requirements equally share
the remaining resources.

For the first fold, we introduce a requirement indicator
Ir,; to show the degree of the connection close to the demands
as

Ip; = e F G, (21)

where k is a tunable parameter which determines the
tolerable range. x; and G; are the average state and the
QoS goal of class i, respectively. In the real-time class,
the average state is the mean loss rate, and its goal loss
rate is zero. In the nrtPS class, the QoS parameter is the
average throughput, and the goal is the minimum reserved
rate. The smaller the difference between the average state
and the QoS goal is, the larger requirement indicator is.
When the mean allocated resources for a class are away
from the requirement, no matter above or below the goal,
the requirement indicator decreases. When the allocated
resources reach the requirements exactly, not only the QoS
is guaranteed but also the remaining resources are most
preserved at the same time.

The BE class has no QoS requirement. For the second
part, we introduce Jain’s fairness index [21] as the BE fairness
index:

2
o ((zi_lT,-) o

n- z?:1T12>,

where 7 is the number of connections without QoS require-
ments. The index equals to one indicates perfect fairness in
the class without QoS requirements. Then, we utilize the
requirement indicator Iz; and the BE fairness index Ipg to
define the interclass fairness index as follows:

m
FI = a x > Ipw; + B x I,
i=1

n 23
S (23)
i=1

a+fp=1

In (23), m is the number of classes with QoS requirements,
and w; is the weighting factor of class i, which determines the
importance of the class. « and f are the weighting factors of
the classes with and without QoS requirements, respectively.
In contrast to the indices of intraclass fairness, a larger FI
value indicates better interclass fairness.

4.2. Simulation Configuration. The parameters used in this
simulation are listed in Table 1, where OFDM FFT size
represents the number of subcarriers an OFDMA symbol
composes. The packet length is 1024 bits, and the maximum
priority of each service class is Pyps = 1.0 and Pyyps = 0.8,
and for best effort, Pgg = 0.6. The weighting factors w;, a, f3
in (23) are all 0.5. Each connection uses a fixed modulation.
The FQFC allocates fixed number of time slots to UGS

connections. The FQFC adopts persistent resource allocation
[1, 22, 23] for UGS service because it has the highest
priority. We focus on the performance of real-time, nrtPS,
and BE connections. Besides, in our survey, the priority-
based scheduler was proposed only for WIMAX OFDM PHY
[4]. FQFC outperforms many state-of-the art schedulers
for WIMAX OFDM PHY. To present the improvement by
FQFC, we modify the priority-based scheduler in [4] to work
with WIMAX OFDMA PHY by using the Raster algorithm
and regard it as the priority-only scheduler. Then, FQFC
fuzzy controllers further improve the fairness and QoS
performance of the priority-only scheduler. There are four
simulation scenarios as follows.

(i) Scenario 1. We set 20 real-time connections. The
QoS requirements of real-time connection are the
loss rate, deadline, and required jitter. The traffic
rates of connections are 8 connections in 1 Mbps,
10 connections in 500 kbps, and 2 connections in
250 kbps. This scenario is to verify the guarantees
of maximum latency, the tolerated jitter, and the
intraclass fairness in real-time class. It is difficult
to find out the mapping between priority and QoS
requirements. We prove that the FQFC can efficiently
control the delay.

(ii) Scenario 2. We set 10 real-time connections and
10 nrtPS connections. The QoS parameter of nrtPS
connection is the minimum reserved rate. The traffic
rates are 2 real-time connections in 1 Mbps, 8 real-
time connections in 500 kbps, 5 nrtPS connections
in 1Mbps, and 5 nrtPS connections in 500 kbps.
This scenario is to verify the guarantees of minimum
reserved rate and fair resource allocation of the FQFC
scheme.

(iii) Scenario 3. We set 10 real-time connections, 10 nrtPS
connections, and 10 BE connections. BE connection
has no QoS requirement. The traffic rates are 1 real-
time connection in 1 Mbps, 9 real-time connections
in 500 kbps, 3 nrtPS connections in 750 kbps, 2 nrtPS
connections in 500kbps, 5 nrtPS connections in
1 Mbps, and 10 BE connections in 100 kbps. This
scenario is to verify the fair resource allocation of
FQFC.

(iv) Scenario 4. In this scenario, we simulate the wireless
link degrades. This will cause the modulation to
change. The experiment is designed to test the
robustness of the FQFC whether it can efficiently
track the goal delay when the channel quality
degrades. The simulated network consists of 1 BS and
10 SS (numbered from 1 to 10). In the downlink,
each SS with number i (i = 1 ~ 10) has 1 real-time,
1 nrtPS, and 1 BE connection with CID i, 10 + i,
20 + i, respectively. The connections from SS1 to
SS5 apply with QPSK modulation, and connections
from SS6 to SS7 apply with 16-QAM modulation.
All the other connections initially adopt 64-QAM
modulation. This is for simulating the different
channel conditions.
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TaBLE 1: Simulation parameters.
Parameter Value
System bandwidth 10 MHz
Frame duration 5ms
OFDMA FFT size 1024
Number of subchannels 30
Number of OFDMA symbols for DL 28
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FIGURE 9: Delay and jitter performances of real-time connections in
priority-only scheduler.

4.3. Performance Evaluation for Fairness and QoS Guarantees

4.3.1. Scenario 1: Intraclass Fairness and QoS Guarantees of
Real Time Connections. We compare the FQFC with the
priority-only scheduler [4]. The QoS is in terms of average
delay, delay jitter, and packet loss rate. As illustrated in
Figure 9, although the priority-only scheduler controls delay
of connection to be below the deadline, it cannot guarantee
tolerant jitter. Under the same simulation conditions, FQFC
guarantees both delay and jitter requirements as shown in
Figure 10. The average delay is close to the goal delay. The
result also shows that it is useful by controlling the HOL delay
in the tolerable range to guarantee the required jitter.

For intraclass fairness evaluation, from Figure 10, we can
see that the jitter of the connections using FQFC is still
smaller than the tolerated jitter in Figure 9. Figure 11 shows
the delay outage probabilities of the FQFC and the priority-
only scheduler. The FQFC disperses the outage probability
for intraclass fairness. Moreover, as summarized in Table 2,
the intraclass fairness index of the FQFC is much lower than
the one of the priority-only scheduler and is almost near to
zero. Hence, the FQFC guarantees the intraclass fairness for
real-time connections.

4.3.2. Scenario 2: Intraclass Fairness and QoS Guarantees of
Real-Time and nrtPS Connections. For QoS evaluation, we
introduce the throughput indicator defined as the ratio of the
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FiGURre 10: Delay and jitter performances of real-time connections
in FQFC.
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FIGURE 11: Average outage probability of rtPS connections.

TaBLE 2: Intraclass fairness index.

FQEC Priority-only

Scenario 1 Real-time 0.000131 0.504639

. Real-time 0 0.489360
Scenario 2

nrtPS 0.012748 0.081995

Real-time 0 0.502625

Scenario 3 nrtPS 0.003088 0.107002

BE 6.686637 84.312975

average throughput with respect to the minimum reserved
rate. In Figures 12 and 13, even adding nrtPS connections,
the FQFC still guarantees the delay and jitter specifications of
real-time connections. Then, we evaluate nrtPS connections
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FiGure 12: Delay and jitter performances of real-time connections
in priority-only scheduler.

by throughput indicators. Figure 14 shows that all nrtPS con-
nections with FQFC control keep their throughput indicators
almost the same about 1.15. The result means that the FQFC
guarantees minimum reserved rate. For the connections with
priority-only-based scheduler [4], the throughput indicators
of the last four nrtPS connections are higher than the others
since priority-only-based scheduler provides more resources
to the connections using high-bitrate modulation. The FQFC
focuses on making the connections of the same class achieve
the equal degree of QoS. As illustrated in Table 2, for nrtPS,
the intraclass fairness index of the FQFC is close to zero
which is much lower than the one of the priority-only
scheduler. Hence, the FQFC also guarantees the intraclass
fairness for the connections of the nrtPS class.

4.3.3. Scenario 3: Intra- and Interclass Fairness and QoS
Guarantees of All Classes. For QoS evaluation, Figures 15, 16,
and 17 show that the FQFC guarantees the delay and jitter of
real-time connections as well as guarantees the throughput
of nrtPS connections. Even for users with diverse QoS
requirements, the FQFC still provides QoS guarantees. For
BE connections, although they have no QoS requirement,
the remnant resources should be fairly allocated to all BE
connections. In Figure 18, BE connections under FQFC
control obtain throughputs and are not starved.

For intraclass fairness evaluation of the BE class, we
compare the FQFC with the priority-only scheduler regard-
ing average throughput. Figure 18 shows that the average
throughputs of all BE connections under the FQFC control
are nearly the same. The priority-only scheduler provides
more resource to the last four BE connections since they
employ higher rate modulation. Table2 shows that the
intraclass fairness index of the FQFC is close to zero,
which is much lower than the one of the priority-only
scheduler. For every real-time connection, FQFC sets the
goal delay below the deadline for a certain distance in
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FIGURE 13: Delay and jitter performances of real-time connections
in FQFC.
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FIGURE 14: Average throughput/minimum reserved rate of nrtPS
connections.

terms of the tolerable jitter. Since the goal is for prior-
ity and TXOP controllers to follow, intraclass fairness is
achieved when real-time connections have almost the same
loss rate and jitter performances based on the intraclass
fairness criteria. For nrtPS connections, the FQFC control
algorithm maintains their ratios of throughput achievement
over minimum reserved rate as close to 1 as possible.
Again, as long as BE connections can evenly share the
remained resources from real-time and nrtPS connections,
intraclass fairness of BE connections is achieved. Hence,
the FQFC guarantees the intraclass fairness for the BE
classes.

For interclass fairness evaluation, in Figure 17, the
throughput indicator of the FQFC is lower than the one of
the priority-only scheduler since the FQFC always preserves
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resources for lower priority classes. This causes the BE
connections get more resources. For interclass fairness
comparison, the FQFC outperforms priority-only scheduler
as shown in Figure 18. Table 3 shows that the interclass
fairness index of the FQFC is close to one. Hence, in
addition to intraclass fairness, the FQFC also guarantees the
interclass fairness. For priority-only scheduler, every real-
time connection grabs as many channel resources as possible.
Though delays can be lower than the deadlines, delay and
jitter differences among connections are not maintained. For
nrtPS connections, the differences of throughput ratios are
not controlled in priority-only scheduler. The differences
of channel resources grasped by the BE connections are,
therefore, obvious.
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FIGURE 17: Average throughput/minimum reserved rate of nrtPS
connections.
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TaBLE 3: Interclass fairness index.
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0.994669

Priority-only
0.677405

Scenario 3

4.3.4. Scenario 4: Link Degradation. In this scenario, we
evaluate the robustness of the FQFC against wireless link
degradation. At the 4.0th second, the wireless link from BS
to SS3 degrades, and the PHY layer adaptation mechanism
changes the modulation over this link from 64-QAM to
QPSK. At the 6.0th second, this link recovers to 64-QAM.
Figures 19 and 20, respectively, show the PDU delay of real-
time connection 3 and the average throughput of nrtPS con-
nections 13 in SS3, where the link degradation occurs at the
4.0th second. Figure 20 also shows the average throughput
of nrtPS connection 13 which is an external connection
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out of SS3. Figure 21 shows the average throughput of BE
connections 23 and 25. The simulation shows that

(i) when the link degradation occurs, the FQFC adjusts
the goal delay and the tolerable range according to
the updated modulation. The FQFC continues to
make the delay of real-time connection 3 fall in the
tolerable range as shown in Figure 19. Hence, the
FQFC can efficiently control the delay according to
the goal delay and the tolerable range;

(ii) the service curves of nrtPS connections 11 and 13
in Figure 20 distinguish a throughput drop from the
4.0th second to the 6.0th second, whereas FQFC
still maintains the throughput to meet the QoS
requirements. The service curves of BE connections
23 and 25 in Figure 21 also distinguish a throughput
drop from the 4.0th second to the 6.0th second.
The resources are released to guarantee the QoS of
real-time connection 7 as shown in Figure 19. For
intraclass fairness in nrtPS connections and BE con-
nections, all nrtPS connections keep almost the same
resource usage ratio. For interclass fairness, nrtPS
and BE connections release resources to guarantee
the QoS of real-time connections. Hence, the FQFC
guarantees both QoS and fairness even in case that
wireless link degrades.

5. Conclusions

A fairness and QoS guaranteed scheduling approach with
fuzzy controls FQFC algorithm is proposed for WiMAX
OFDMA systems. Different from the utility-fairness, new
fairness and QoS evaluation criteria in terms of loss rate,
jitter, and throughput are proposed for different classes.
The proposed FQFC scheme controls the delay, jitter,
and throughput QoS parameters efficiently providing both
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FIGURE 21: Average throughput of BE connections 23 and 25.

fairness and QoS guarantees. Rather than using hard com-
putation approaches such as utility-based optimizations, we
use fuzzy controller to perform scheduling and resource
allocations to resolve mapping among priority, transmission
opportunity, and QoS requirements. The proposed FQFC
scheme provides both intra- and interclass fairness guaran-
tees in addition to QoS guarantees while implementation is
with low complexity.
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1. Introduction

The mobile version of the Worldwide Interoperability for
Microwave Access (mobile WiIMAX) is one of the solutions in
the competition for wireless broadband applications in chal-
lenging mobile environments [1, 2]. The mobile WiMAX air
interface is based on orthogonal frequency division multiple
access (OFDMA) for improved performances in multipath
environments. One of the future aspects of OFDMA is the
subchannelization which allows to group a total number of
subcarriers into subsets of subcarriers called subchannels [3].
The major advantage of subchannelization is the provision
of frequency diversity. A byproduct of the subchannelization
is that the need for knowledge of radio channel quality is
reduced from per-subcarrier to per-subchannel resolution
and resources are allocated on per-subchannel basis. There
are three types of subchannelizations, namely, adaptive mod-
ulation and coding (AMC), partially used subchannelization
(PUSC), and fully used subchannelization (FUSC). With
AMC, the subchannels are composed of contiguous groups

of subcarriers. With both PUSC and FUSC, the subchannels
are composed of distributed subcarriers. For PUSC, the set of
used subcarriers, that is, data and pilots, is first partitioned
into subchannels, and then pilot subcarriers are allocated
within each subchannel. For FUSC, the pilot tones are
common for all subchannels and are allocated first and then
the remaining subcarriers are divided into data subchannels.
In general, AMC is well suited for stationary, portable, and
low mobility applications, whereas PUSC and FUSC are the
best alternatives for mobile applications. We employ FUSC
in this work. This method uses all the subchannels and
employs full-channel diversity by distributing the allocated
subcarriers to subchannels using a permutation mechanism.
Thanks to the frequency diversity provided by the FUSC,
the performance degradation due to fast fading in mobile
environments is minimized.

Mobile WiMAX aimed at delivering broadband mobile
services ranging from real-time interactive gaming, VoIP, and
streaming media to nonreal-time web browsing and simple
file transfers. Users have channels of different quality. With
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classical best effort transmission, unfair resource allocation
can lead to starvation of some users in bad channel
conditions. Therefore, the achievement of fairness among
users while satisfying users’ minimum rate requirements is
an important issue.

Most of the previous works on OFDMA resource allo-
cation have considered only the case where instantaneous
channel state (CSI) is available at the transmitter and
various algorithms based on instantaneous CSI have been
developed [4-14]. In [4], adaptive subcarriers assignment
to minimize the total transmit power is investigated. The
authors presented a heuristic algorithm, the so-called Hun-
garian algorithm, based on constructive assignment and
iterative improvement. Following the Hungarian approach,
[5] proposed an iterative algorithm for power minimization
and bit loading. The algorithm is considered as suboptimal
for adaptive modulation. To reduce the computational com-
plexity, [6] proposed low complexity and computationally
efficient bandwidth and power allocation algorithms to solve
the problem of minimizing the total power consumption
under bit error rate and transmission rate constraints.
In [7], the performance of bandwidth-constrained power
minimization and power minimization schemes in terms of
outage probability and packet error rate under user data
rate satisfaction are compared. It is shown that, in severe
shadowing environment with both frequency selective and
flat fading, the former scheme outperforms the later. Fairness
issues in a wireline multiaccess channel have been taken
into account in [8, 9]. The authors introduce the concept
of balanced capacity to characterize the multiuser channel
performance with total power constraints in [8] and they
extend the concept to individual power constraints in [9].
This concept of balanced capacity is closely related to the one
presented in [10] where a low complexity suboptimal algo-
rithm that maximizes the sum capacity while maintaining
proportional fairness among the users data rate is developed.
In [11], suboptimal resource grids and power allocation
algorithms to maximize the total throughput under user’s
data rate requirement are presented. Rate-power allocation
algorithms for expected mutual information maximization
based on partial channel knowledge have been developed
in [13]. In [14], the authors investigated the impact of
imperfect channel information on OFDMA-based systems
under fairness and minimum rate constraints. Instantaneous
resource allocation strategies are suitable for quasistatic
or slow fading environments. However, when the channel
variations are fast, the transmitter may not be able to adapt
to the instantaneous channel realization. Hence, CSI-aware
resource allocation is not suitable for environments with
high mobility.

When the channel state can be accurately tracked at
the receiver, the statistical channel model at the transmitter
can be based on channel distribution information feedback
from the receiver. We refer to knowledge of the channel
distribution at the transmitter as CDIT. Power allocation for
ergodic capacity maximization in relay networks based on
CDIT under high SNR regime has been studied in [15].

This paper addresses CDIT-based resource allocation
strategies for mobile WiMAX in all SNR regimes. The goal

is to adaptively assign subchannels and distribute the total
power to users with the objective to maximize the ergodic
weighted-sum rate under tunable long-term fairness, mini-
mum data rate requirements, and a total power constraint.
This constrained optimization problem is formulated as an
infinite dimensional stochastic problem. To efficiently solve
the problem, we propose an analytical method based on the
Lagrange dual decomposition framework. The remainder of
this paper is organized as follows. In Section 2, the system
model considered is described and the ergodic weighted-sum
rate is derived. The problem of multiuser resource allocation
based on CDIT is formulated in Section 3 and a solution
guideline is given. In Section 4, some simulation results are
presented. Finally, conclusions are drawn in Section 5.

2. System Model

Throughout the paper, we consider a single cell downlink
WIMAX communication from a base station (BS) to K
mobile user terminals, over a realistic frequency-selective
fast fading channel with total bandwidth B. The BS splits
up the downlink bandwith into different subchannels. Then
the data to be transmitted to different mobile user terminals
are amalgamated using downlink FUSC. After the downlink
subchannelization, the resulting frequency domain OFDMA
symbols are converted into time domain OFDMA symbols
using inverse FFT. Then a cyclic prefix is added to each
symbol to provide immunity against multipath propagation.
Finally the signal undergoes frequency upconversion before
it is transmitted from the base station to the user terminals.
We assume that the user terminal has perfect CSI to perform
coherent detection, but there is no fast feedback link to
perfect the CSI to the base station. Hence, the base station
has only channel distribution information (CDI), but no
knowledge of the instantaneous channel realizations. Assum-
ing that the receiver employs a maximum ratio combiner
(MRC), the effective SNR of user k at mth subchannel is given
by

1 N

Ykom = FkNo,% r;)gk,m(n)- (D)
In (1), N is the number of distributed subcarriers per-
subchannel, gk (1) is the channel gain of user k at subcarrier
n of mth subchannel, which is the product of the distance
attenuation and the fast fading gain, o7 is the noise variance,
[y is referred to as SNR gap related to the required bit
error rate of user k (BERy) and is approximated as Iy =
—In(5BERy/1.5) for QAM modulations [10]. We assume
a Rayleigh channel model. Hence yk,, is a central chi-
squared (x?) distributed random variable with two degrees
of freedom and with probability density function (pdf)

T)’k,m ()’k,m) = ;eiyk’m/?k,m’ )
yk,m

wherey,  is the mean of the yy,, distribution.
Each user is adaptively assigned a number of different
subchannels to send and receive data. An indicator pg, is
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used to represent whether the mth subchannel is assigned
to user k. Note that in a single cell OFDMA system, each
subchannel can be assigned to at most one user at any time,
that is, Zl,f:]pk,m € {0, 1} forall m. Due to the consideration
for the reduction of the signaling overhead in WIMAX, the
power is equally distributed across subcarriers within each
subchannel. We assume the duration of the transmission
codewords is long enough to undergo all channel realiza-
tions. We further assume perfect CDIT, thereby allowing
to take the expectation over the distribution. The ergodic
weighted-sum rate of the multiuser system is defined as

K 1 M
Uy = Ey{zwf > prmlog, (1 +Pk,myk,m)}, (3)

k=1"k m=1

where y = [le,..., ylf]T with ye = [yk15--5 VM) Phom
denotes the power allocated to the user k on subchannel m,
E,{-} represents the statistical expectation with respect to y,
Ry is user ks average data rate so far at the allocation time,
and «y is a tunable fairness parameter. Setting s to 1 results
in the proportional fair allocation. For ay = 0, this results in
maximum throughput allocation. The average user rates Ry
are updated according to

Re(t+1) = (1= = )Re0) + (o), (4)
Tc Tc
where ri(t) is the rate allocated to user k at time ¢ and 7, is
the parameter that controls the latency of the system. This
way, we consider both current rate as well as rates given to
the users in the past, what is suitable for long-term fairness
evaluation.

3. CDIT-Based Constrained Resource
Allocation

3.1. Formulation of the Problem. The issue is how to adap-
tively assign the M subchannels to the K users and distribute
the total power budget Py in order to maximize the ergodic
weighted-sum rate (3) while satisfying user’s minimum
rate and system fairness requirements under a total power
constraint. Mathematically, this constrained optimization
problem is formulated as

M

K
1
f* = max Ey{Zocf ZPk,mlng(l +pk,myk,m)%)

Phyns Phym =1 Rk mel

subject to

S (5)
Ey{ > Prmlog, (1+ Pk,myk,m)} > Ry,

m=1

K M
E}’{ Z z Pk,mpk,m} =< Ptot-

k=1m=1

The first constraint in (5) is for the user’s specific minimum
data rate demand. We assume that appropriate admission
control is performed such that the minimum data rates Ry

are feasible. The second constraint is system limitation on
transmits powers.

Note that the optimization problem (5) involves both
continuous variables px,, and boolean variable p ,,. Such
an optimization problem is neither convex nor concave with
respect to (Pkm» Piym)-

3.2. Solution Based on Lagrange Dual Decomposition. We can
solve problem (5) using the Lagrange dual decomposition
framework. Following the approach in [12], we relax p,, to
be pxm € [0,1]. Then pim can be regarded as time-sharing
factor. Thanks to the linearity property of the expectation,
the Lagrangian function of the primal problem (5) can be
expressed as

L)/ (Pk,m>Pk,m: Ak; ,"l)

K M Pk
= Z Z Ey,, {?@1082(1 + Pk,myk,m)}
k=1m=1 k
K M (6)
+ Z"k Z E,.. {Pk,m10g2 (1+ Pk,m)’k,m) }

k=1 m=1

K M K
- Mz Z Pk,mPk,m — zAkRk + UPot,
k

=1m=1 k=1

where A and y are Lagrangian multipliers. Let p;/,, and p,,
denote the optimal solution of (6). We first investigate the
problem for fixed values of A, and y. By Karush-Kuhn-Tucker
(KKT) first optimality condition [16], pf,, and p{,, should

satisfy the following:
8Ly < 0’ p;ck,m = 0’ (7)
apk,m Prem=Pim | = 0, p;ck,m >0,
. <0, pin=0
L
g Y =0, 0<pi,<l, (8)
Plom L py =pi,,
>0, pf,=1

For a nonzero power allocation and p,tm € (0,1), we
obtain from (7) and (8)

—(—ay)
ot E {Rk Tk
L Yiom In2 1+ p;im)’k,m

—uf=0 @

—(—ay)
E}’k,m{

) -In (1 +Pl><k,m)’k,m) —yp,im} =0. (10)

We deduce from (9) that pf, has to satisfy the following
condition:

Viom pln 2}
- =0, 11
1+ p;ck,myk)m Ay (1)

p;ck,mE)’k,m {

where Ay = ﬁé_af) + k.
When pf,, = 0, the value of py,, is undefined, and any
value can be taken without any influence on the objective
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function or on the constraints. On the other hand, for any
other positive value, pi,» vanishes out of the expression and
we get

Vim 7‘uln2}_
O e il vl L (12)

We can use the pdf of the SNR distribution (2) to transform
(12) into

" Yem yan) R S _
Jo (1+p,jmyk,m Ay ?k,me trdyim =0, (13)

which is equivalent to

puln2 _ _
Ak p;ck,%n)/k,m - p;ck,m))k,m
14
+exp( ! )E ( ! ) =0 "
p;:,m?k,m : P;ck,m?k,m ’
where
0 e—tx
Ei(x) =J ; dt (15)
1

is the exponential integral function of x [17].
Equation (10) is equivalent to

Ag
By |

mln(1+p,tmyk,m)—p,tm} =0. (16)

Using the pdf (2), (16) can be transformed into

h Ay * % )
4[0 (‘ulnzln(l—f_pk,myk,WI) pk,m
(17)
.;efyk.m/?k,mdyk’m =0,
)/k,m

which is finally equivalent to

e (s )m(G5 )
exp — E — - =0. (18)
win2 “P\pr 3 )\t ) T Pl

From (14) and (18), we derive

A 1 ]+

uln2 7% (19)

P;ck,m:[

where [x]" = max(0,x). The expression (19) is in the
form of multilevel water-filling power allocation with cut-off
subchannel SNR (y1n 2)/Ax below which we do not transmit
any power, and above which we transmit more power when
Vm 18 higher. The important difference is that, in contrast
to the CSIT-based allocation where the p/, depends on the
instantaneous channels realizations, the optimal allocation
here is dependent on the mean of the channel distribution,
and thus needs to be computed only when the statistics of
the channel has changed.

We have from (8) and (18) that

1, if Gem (pim) >0,
P}im = € (0) 1)) if Gk,m (P;:m) =0, (20)
0, if Gim (p,f)m) <0,
where
Ag 1 1
Gin (P ) = eXP( - )E( = )‘ e
" pk, /’tlnz plzk,m))k,m : p;ck,myk,m pk’

(21)

Due to the exclusive subchannel assignment constraint
in OFDMA, we can conclude that for each subchannel m, if
Gy, m are all different, then only the user with the largest Gy,
can use that subchannel. In other words,

p,i}wm =1, pi,.=0, Vk#k,, (22)

where

k¥ = arg max Grom (P m)- (23)

Substituting (19) into the Lagrange function (6) and thanks
to the exclusive subchannel assignment constraint, we obtain
the following per-subchannel dual problem:

*

g" = minLy (A, p), (24)
Aot

where L;‘ (Ak> u) is the dual function given by

—(—ay)
—(~ay) R, + Ak
L;; ()Lka.”) = E}’k,m 1Rk ! logz ( yan Yk,m>}

S(—ar)
R. 7+
+ AkE‘yk,m {logZ ( kHlnz kyk,m) } (25)

—(—ar)
R, + Ak 1
— AR — ( pln2 - Yk,m) ok

Next we turn to the optimization of the dual function (25)
over p and A. First we consider the optimization over Ay for
y fixed to find. We differentiate (25) with respect to Ax and
set the derivative to 0 to obtain

oLy R+

y k k_
- =1 - — R =0. 26
ke [a=az - ( Vim ¢ (26)

puln2

The optimum A} is derived from (26) as follows:

uln2 1
Vim R

sm k

A ()= 2R (27)

If some of the individual rate constraints are exceeded, the
corresponding Ak is equal to zero.
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Substituting (27) into (25) we obtain

Rk 2Ry u
ﬁ(“f) - +—_——+ ”Ptot

Ly (p) = -
Y “ k Yk,m ykm

n}ekle;‘ Mo p) =
(28)

We next consider the optimization of L} (u) over y. The
function L;‘j (4) can be shown to be a convex function of
u, which can then be minimized via a one-dimensional
search with geometric convergence. The optimal values p*
correspond to the ones that satisfy the total power constraint
(with equality).

We can conclude that, if Gy, are all different, then a given
subchannel m is exclusively assigned to the user %,’; satistying

Ky, = argmax Gi (B, (29)

where pf,, is the optimal power allocation given by

*(*‘xf) * +
N R )] , o
p*In2 Vi (30)
=0, ifk#kr.

3.3. Relative Duality Gap. The relative duality (optimality)
gap which indicates how far we are from the optimal value
can be expressed as

* _ f%
FRRE Sl A (1)

where f* > 0 and g* > 0 given in (5) and (24) are
the optimal values of the primal and dual problems. The
inequality follows from the positivity of f* and the weak
duality theorem [18].

Without the minimum rate constraints in (5), problem
(5) becomes a standard convex optimization problem, and
then the duality gap is zero. Due to the nonlinearity of the
minimum rate constraints, the convexity of problem (5) does
not hold. However, the nonconvex optimization problem (5)
for the investigated OFDMA-based WIMAX system fulfills
the time-sharing condition as defined in [19]. Then when
the power constraint is met tightly, that is, with equality, the
duality gap is zero, and thus solving the dual problem (24)
also solves the primal problem (5).

3.4. Instantaneous Resource Allocation Based on CSIT. In
order to assert the relevance of our approach, it was decided
to compare it to the instantaneous allocation based on partial
CSIT and to the instantaneous allocation based on perfect
CSIT.

3.4.1. Resource Allocation Based on Partial CSIT. Assuming
that partial channel state information is available at the
transmitter in the form of an estimate of the SNR, it has been
shown that resources can be optimally allocated based on this
partial CSIT (see, e.g., [13, 14]). Let ym and Pi» denote

the real and the estimated subchannel SNR. For Rayleigh
fading channels, yi,, conditioned on P, is a noncentral
chi-squared distributed random variable with two degrees of
freedom [13, 14]. Its probability density function (pdf) can
be approximated to a Gamma function as

%y,ii;”e-ﬂw (32)

Tyk,m(yk,m | ?k,m) =
In expression (32), & = (PemYom + 1)2/(2)?k,my‘;/,11+1) andf =
o/ (Pk,m+Yern) are the shape parameter and the rate parameter
of the Gamma pdf, respectively, where y,/, is the ratio of
the subchannel estimation error variance to the background
noise variance. I'(x) is the Gamma function of x.

Under the partial CSIT assumption, the optimization
goal is to maximize the expected weighted-sum rate instead
of the ergodic weighted-sum rate. In [14], the problem has
been formulated as

max E {Z Z faf 10g2 1+Pkm)/km) | )/km}) (33)

PlymsPhm el m= 1

subject to

M
Ey{ > Prmlogy (1 + pmyim) | )/)k,m} > Ry,

m=1
K M
Z z Prom = Prot.

k=1m=1

(34)

Using the pdf (32) and applying the KKT optimality
conditions, it has been shown in [14] that the optimal power
allocation p;’, is the solution of

B (*  Vim
I(a) Jo 1+ pf,vem

pln2
A =0. (35)

e*ﬁ}’k,m dyk)m —

Also by KKT optimality conditions, it has been shown in [14]
that a given subchannel m is exclusively assigned to the user
k; satisfying

k= argmkaxAka(p;tm), (36)
where

Vk m l)logz (1+ prym¥im)

(Pkm) r((x) (37)

X e’ﬁy""”dyk,m — UPkm-

3.4.2. Resource Allocation Based on Perfect CSIT. Under the
unrealistic perfect CSIT assumption, instead of maximizing

the ergodic or the expected weighted-sum rate, the optimiza-
tion goal is to maximize the instantaneous weighted-sum rate

pg}% Z E:f lePkmlng(l + PlomVkom)» (38)
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subject to

M
Zpk,mlogz(]- + pk,m)/k,m) = Rk;
m=t (39)

M
Z Pim = Ptot-
m=1

M=

k=1

From the KKT optimality conditions, the optimal power
allocation, solution of (39) is given by

Ak ,LT
pln2  yemd

Bin = | (40)
This is a multilevel water-filling power allocation with cut-
off subchannel SNR (y1n2)/A. The difference between (40)
and (19) is that the power allocation in (40) depends on the
instantaneous subchannel SNR yy,, while the one in (19)
depends on the mean of the SNR distribution y, .

We also deduce from KKT optimality conditions [14]
that a given subchannel m is exclusively assigned to the user

%:; (p;;;,m =1, prm = 0fork # Ej;) satisfying
l?;,ﬁ = mkaxAk(logz(l + PEVem) = UPE ) (41)

3.5. Feedback Reduction and Complexity Analysis. First,
thanks to the subchannelization, the need for knowledge of
radio channel quality in mobile WIMAX is reduced from
per-subcarrier to per-subchannel resolution and resources
are allocated on per-subchannel basis. Second, under CDIT-
based allocation, instead of feeding back the instantaneous
channel coefficients to the transmitter, the users simply feed
back the mean of the subchannel SNR distribution. Putting
these two facts together, the amount of feedback required for
the resource allocation reduces significantly.

Using a dual decomposition framework, the opti-
mization problem has been reduced to a per-subchannel
optimization, and the computational complexity has been
significantly decreased.

Since the optimal A} and y* depend on the mean of the
subchannel SNR distribution and not on the instantaneous
values, they need to be computed only when the statistic of
the channel has changed. We need to run the line search
to compute for y*. This is followed by the computation
of KM values of multipliers A} (27) and power allocation
values pj, (30). We assume the line search to require I,
iterations. The computation of A} and p,, requires O(KM)
operations. The overall complexity order for the CDIT-based
resource allocation is thus @ (KMI,,). Since I, is just constant
independent of K and M, the complexity is @ (KM). Once
uw*, Af, and ﬁ,fm have been determined, we do not need to
update them as long as the statistics of the fading channel
remains the same.

Both expressions (19) and (40) are in the form of
multilevel water-filling power allocation with cut-off sub-
channel SNR (#1n2)/Ak. Thus, the complexity in term of
water filling is the same. The main difference between (19)
and (40) is the amount of feedback required to perform
resource allocation. Recall that, for the CSIT-based scheme,

the allocation is performed after each OFDM symbol period.
Let N, be the number of OFDM symbol periods after which
the CDIT-based resource allocation is performed. Then a
rough estimation tells us that the complexity of the CDIT-
based allocation is reduced by 1/N; compared to the perfect
CSIT scheme.

3.6. Tradeoff Analysis. In the tradeoff analysis, we vary the
constraints, and see the effect on the maximized weighted-
sum rate. We define a relaxation coefficient #, for the
minimum rate constraint and replace the minimum rate
requirement Ry by (1 — #4)Ry to form a perturbed problem.
When #, = 0, this reduces to the original problem (5). By
increasing 74, the minimum rate constraints are relaxed. We
can also vary the fairness parameter o s. Setting o ¢ to 0 results
in the maximum throughput allocation. For ay = 1, this
results in the proportional fair allocation. The relaxation of
the constraints leads in general to an improvement of the
optimal objective. The tradeoff curves are found by solving
the perturbed problem for many values of 7, and a.

4. Simulation Results

To illustrate the performance of the proposed resource
allocation method, we perform simulations for a three-users
mobile WIMAX system with bandwidth divided into M = 8
subchannels. The subchannels are formed using the FUSC
which is suitable for mobile applications. The FFT size of
the OFDMA is 512 points. The performance is evaluated in
multipath channel environments modeled as a tapped delay
line with six taps as specified in the ITU M.1225 Vehicular
A channel model [20]. We consider a scenario where user
2 is every time closer to the base station than users 1 and
3 and the relative mean SNR difference between user 2 and
users 1 and 3 is —5dB and —3 dB, respectively, while the
minimum data rate demand of user 3 is higher than the one
of users 2 and 1 (Rs > R, > R;). The target bit error rate
is set to 107 (without channel coding). The performances
are evaluated using simulations over 10000 instances of
independent channel realizations. For all the simulations, the
total power is set to Pror = KM.

In Figure 1, the performance of the proposed adaptive
resource allocation is compared to those of optimal resource
allocation based on perfect CSIT, resource allocation based
on partial CSIT and a uniform power allocation. The result
shows that the proposed adaptive resource allocation brings
significant gain over resource allocation based on partial
CSIT with higher estimation error. We can observe that
when y,/, is small, that means the effect of the estimation
error is less dominant than the one of the background
noise, the optimization under partial CSI is closed to the
one under perfect CDIT. For very low estimation errors, the
partial CSIT-based scheme outperforms the perfect CDIT
scheme. The weighted-sum rate degrades quickly as the
estimation error grows, especially for high SNRs. The highest
weighted-sum rate is obtained with perfect CSIT but the
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FIGure 1: Maximized weighted-sum rate versus mean SNR for dif-
ferent resource allocation schemes and fairness parameter ay = 0.

4 T T T
35+ R
3. 4
N
T
z 25f 1
2 -
g 2t
=1
5
~ 15+¢
L
=
=4
1.
0.5

2
User number (k)

I Perfect CSIT [ Partial CSIT (ye/n = —8dB)

[ Perfect CDIT [ Partial CSIT (ye/n = —5dB)
[ Uniform-CDIT I Partial CSIT (ye/n = 0dB)
I Minimum rate requirements (R)

FiGUre 2: Users rates for different resource allocation schemes,
mean SNR of 15 dB and fairness parameter ay = 0.

difference in terms of performance is not so significant
compared to the difference of complexity between CDIT-
based and CSIT-based allocation schemes. The proposed
method outperforms the uniform power allocation.

Figure 2 shows the user’s rate for different allocation
schemes when the users minimum data rate demands are

o
&)

Weighted sum rate (bps/Hz)
g w B~
[\ 8] w w w =N X w w

—
w

0 0.2 0.4 0.6 0.8 1

—

Fairness parameter (o)

— Perfect CSIT-optimal -+ Perfect CDIT-uniform
-<- Partial CSIT (y,/n = —8dB) -©- Partial CSIT (y./, = 0dB)
—+— Perfect CDIT-optimal

FIGURE 3: Tradeoff between maximized weighted-sum rate and
fairness requirement for different resource allocation schemes and
mean SNR of 15 dB.

constrained to R3 = 2R, = 3R; and the fairness parameter
g is set to 0. We observe that under optimal allocation based
on perfect CDIT, the need of all users in terms of data rate is
satisfied. This is neither the case under allocation based on
partial CSIT with high estimation error nor under uniform
allocation where the high data rate demand of user 3 is not
satisfied.

Figure 3 illustrates the tradeoff between the maximized
weighted-sum rate and the fairness constraint when the
minimum rate demand is relaxed to (1 — #4)Rx with 0 <
g < 0.8. The average user rates are updated according
to (4) with 7, = 20. The maximum weighted-sum rate is
achieved when ay = 0 which is very unfair. We can see
that, as the fairness constraint is enforced, the weighted-
sum rate decreases. For ay = 1, the allocation is strictly fair
but inefficient in terms of sum rate. Looking at the solution
obtained for different values of ay, the system designer may
then make a choice about the configuration he considers to
be the most appropriate.

The tradeoff between reduced complexity and perfor-
mance degradation of the proposed CDIT-based resource
allocation in comparison with the perfect CSIT allocation is
shown in Figure 4. Adapting the transmission strategy to the
short-term channel statistics, that is, reducing N; increases
the performance but also increases the complexity. However,
if the transmission is adapted to the long-term channel
statistics, that is, for larger N, the complexity decreases
significantly but with a penalty on the performance. For
a CDIT-based allocation with a distribution taken over 16
OFDM symbol periods, the complexity is reduced by 93.75%
while the performance degradation in terms of weighted-
sum rate is less than 15%.
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FIGURE 4: Tradeoff between reduced complexity and performance
degradation of the CDIT-based allocation compared with the
perfect CSIT.

5. Conclusion

In this paper, we have presented a resource allocation method
that maximizes the ergodic weighted-sum rate of a multiuser
mobile WiMAX while satisfying user’s specific minimum rate
demand and system fairness requirement for a given power
budget. Though this is originally a nonlinear optimization
problem, the problem can be reformulated as a Lagrangian
dual problem. From this, a method has been proposed to
efficiently solve the problem. The proposed method can find
the optimal solution with significant lower computational
complexity than the optimal CSIT-based allocation schemes.
In fading environments, even with CDIT only, adaptive
resource allocation strategies provide performance gain for
OFDMA systems. Since user mobility is the principal driving
force for mobile WiMAX, CDIT-based resource allocation
strategies are of particular interest. These methods can be
applied to other mobile OFDMA-based wireless systems such
as Long Term Evolution (LTE) or High-Speed Downlink
Packet Access (HSDPA).
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1. Introduction

The approaching fourth-generation (4G) wireless commu-
nication systems, such as the Third-Generation Partnership
Project’s Long Term Evolution (3GPP LTE) [1] and the IEEE
802.16 standards family (e.g., [2]), are projected to provide a
wide variety of new multimedia services, ranging from high
quality voice to other high-data-rate wireless applications.
Another notable 4G wireless effort is the WINNER project,
which aims to develop an innovative concept in radio access
in order to achieve high flexibility and scalability with
respect to data rates and radio environments [3]. Concepts
developed in the WINNER project are applicable to evolving
4G standards due to common system considerations such as
orthogonal frequency-division multiple access- (OFDMA-)
based air interface, and support of relays and multiple-
antenna configurations.

Unlike wireline networks, wireless resources are scarce.
The data-rate capacity that a radio-frequency channel can

support is limited by Shannon’s capacity law. Moreover, due
to the time-varying nature of wireless channel, radio resource
management, especially packet scheduling and resource
allocation, is crucial for wireless networks. Traditionally,
the research on packet scheduling has emphasized QoS
and fairness issues, and opportunistic scheduling algorithms
have focused on exploiting the time-varying nature of the
wireless channels in order to maximize throughput. This
segregation between packet scheduling and radio resource
allocation is inefficient. As fairness and throughput are
reciprocally related, an intelligent compromise is necessary
to obtain the required QoS while exploiting the time-
varying characteristics of the wireless channel. Therefore,
it is important to merge the packet scheduling and the
resource allocation to design a cross-layer scheduling scheme
[4].

A number of scheduling schemes in the literature analyze
physical- (PHY-) and MAC-related design issues by assuming
that all users are backlogged, that is, all users in the system
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have nonempty buffers. However, it is shown in [5] that
this assumption is not always correct, since the number of
packets in the buffers can vary significantly, and there is a
relatively high probability that the buffers are empty. For
example, in time-slotted networks, the packets in the queues
are aggregated into time slots. Consequently, empty queues
and partially filled time slots will affect the system per-
formance. Furthermore, these non-queue-aware scheduling
algorithms lack the capability to provide required fairness
among user terminals (UTs). Hence, it becomes necessary to
consider queue states in scheduling and resource allocation
[6].

In recent years, some schemes have considered inte-
grating packet scheduling and radio resource scheduling
into queue and channel aware scheduling algorithms. In
[7], a weighted fair queuing (WFQ) scheduling scheme is
proposed, where the largest share of the radio resources
is given to the users with the best instantaneous channel
conditions in a code division multiplexing (CDM-) based
network. Another example of a queue- and channel-aware
scheduling algorithm is the modified-largest weighted delay
first (M-LWDF) algorithm, where priorities are given to
the users with maximum queuing delays weighted by
their instantaneous and average rates [8]. The associated
decision metrics in these schemes are based on the com-
bination of the delay and instantaneous channel rates.
Finding an optimal metric based on these parameters is
difficult due to varying requirements for different service
classes.

In this paper, we present a scheduler which comprises
packet scheduling and resource mapping taking both queue
and channel states into account. In the first level of schedul-
ing (packet scheduling), users to be served are selected based
on the token bank fair queuing (TBFQ) algorithm, consid-
ering fairness and delay constraints among users. Although
TBFQ was originally proposed for single-carrier time-
division multiple access (TDMA) systems [9], it has been
modified in this study by introducing additional parameters
that adaptively interact with the second level of scheduling
(resource mapping). These parameters take into account the
network loading and the user channel conditions. Based
on these parameters, the second-level scheduler assigns
resources to the selected users in an adaptive manner that
exploits the frequency selectivity of the OFDMA air inter-
face. The modified combined scheduling scheme is called
ATBEQ.

The performance of ATBFQ is studied in the con-
text of the WINNER wide-area downlink scenario and is
compared to that of the SB scheduling algorithm (which
was the baseline scheduling scheme in WINNER) [10]
and the RR scheme by extensive simulations. The rest
of this paper is organized as follows. In Section 2, the
ATBFQ algorithm is described in detail, along with its
parameter selection. Methods of fairness assessment are
addressed in Section 3. The system model and the sim-
ulation parameters are presented in Section 4. Simulation
results are provided in Section 5, followed by conclusions in
Section 6.

2. ATBFQ Scheduling Algorithm

2.1. Original TBFQ Algorithm. The TBFQ algorithm was
initially developed for wireless packet scheduling in the
downlink of TDMA systems [9, 11], and was later modified
for wireless multimedia services using uplink as well. Its
concept was based on the leaky-bucket mechanism which
polices flows and conforms them to a certain traffic profile.

A traffic flow belonging to user i is characterized by the
following parameters:

Ai: packet arrival rate,
r;: token generation rate,
pi: token pool size,

E;: counter that keeps track of the number of tokens
borrowed from or given to the token bank by flow i.

Each L-byte packet consumes L tokens. For each flow i, E; is
a counter that keeps track of the number of tokens borrowed
from or given to the token bank. As tokens are generated at
rate r;, the tokens overflowing from the token pool (of size
pi bytes) are added to the token bank, and E; is incremented
by the same amount. When the token pool is depleted and
there are still packets to be served, tokens are withdrawn
from the bank by flow 7, and E; is decreased by the same
amount. Thus, during periods when the incoming traffic rate
of flow i is less than its token generation rate, the token
pool always has enough tokens to serve arriving packets, and
E; increases and becomes positive and increasing. On the
other hand, during periods when the incoming traffic rate
of flow i is greater than its token generation rate, the token
pool is emptied at a faster rate than it can be refilled with
tokens. In this case, the connection may borrow tokens from
the bank. The priority of a connection in borrowing tokens
from the bank is determined by the priority index (P;), given
by

P =—. (1)

By prioritizing in this manner, we ensure that flows
belonging to UTs that are suffering from severe interference,
and shadowing conditions in particular, will have a higher
priority index, since they will contribute to the bank more
often.

2.2. ATBFQ Algorithm. In this study, the TBFQ algorithm,
originally proposed for single carrier TDMA systems, is
improved by introducing adaptive parameter selection and
extended to suit the WINNER multicarrier OFDMA systems
[12]. The motivation behind this modification was to
incorporate the design and performance requirements of
the scheduler in 4G networks into the original scheme. In
such networks, the utilization of the resources and hence
the performance of the network can be enhanced by making
use of the multiuser diversity provided by the multiple
access scheme being used. Also, such networks support users
with high mobility. Therefore, in order to make use of the
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channel feedback, faster scheduling (at a much smaller time
scale) is required. Another requirement is the ability to
maintain fairness and provide a minimum acceptable QoS
performance to all users.

The basic time-frequency resource unit in OFDMA is
denoted as a chunk. It consists of a rectangular time-
frequency area that comprises a number of subsequent
OFDM symbols and a number of adjacent subcarriers.
Packets from the traffic flows are exclusively mapped on to
these chunks based on QoS requirements obtained from the
higher radio link control (RLC) layer along with the channel
feedback received from the physical layer. The channel
feedback comprises signal-to-interference plus noise ratio
(SINR) which is measured in the downlink portion of the
frame j at the UTs, as shown in Figure 1. This feedback is then
provided to the BS in the uplink duration of the frame j + 1
and can be utilized for scheduling purposes at the MAC layer
in the downlink of the next frame, j + 2. The frame duration,
as mentioned in WINNER [13], is 0.6912 milliseconds. The
feedback is valid for two frame durations, which is less than
the coherence time for mobile speeds of up to 100 km/hr.

Like TBFQ, the ATBFQ scheduling principle is based
on the leaky-bucket mechanism. Each traffic flow i is
characterized by a packet arrival rate A;, token generation
rate 7;, token pool size p;, and a counter E; to keep track of
the number of tokens borrowed from or given to the token
bank. Fach L-byte packet consumes L tokens. As tokens are
generated at rate r;, the tokens overflowing from the token
pool are added to the token bank, and E; is incremented by

the same amount. When the token pool is depleted and there
are still packets to be served, tokens are withdrawn from the
bank by flow 7, and E; is decremented by the same amount.
A debt limit d; is set as a threshold to limit the amount a
UT can borrow from the bank. It also acts as a measure
to prevent malicious UTs (transmitting at unusually high
transmission rates) from borrowing extensively. The packets
are then queued in subqueues in a per-flow queuing (PFQ)
manner such that each subqueue belongs to a particular flow,
as shown in Figure 1.

The operation of the ATBFQ scheduler is shown by the
flowchart shown in Figure 2. This can be summarized by the
following steps, which are executed each time the scheduler
is invoked at the beginning of the frame.

Step 1. At the scheduler, information is retrieved from the
higher layer about all active users using the getActiveUsers()
function. An active user is defined as a backlogged queue
which has packets waiting to be served.

Step 2. Based on this list of active users, a priority is
calculated according to the index given by (1). The highest-
BorrowPriority() function is called to calculate this for all
active users N,.. This function then returns the user i with
the highest priority given by

i* (tx) = argmax(P;). (2)

1<i<Ny¢

Step 3. Using the borrowbudget() function, a certain budget
is calculated for the priority user i* which depends on the
token counter Ef, and the debt limit d;*, and is given by
E —d. E/ keeps track of how much the user has borrowed
or given to the bank. The debt limit d;* keeps track of how
much a user can further borrow from the bank in order to
accommodate the burstiness of the traffic over the long term.
Step 4. If the calculated budget is less than the bank size,
resources are allocated to the user i using the maxSINR()
function. This is the second level of scheduling, and deals
with allocation of chunk resources to the selected user i. This
allocation is based on the maximum SINR principle, where
the chunk j with the best SINR is given to the selected user
[14] and can be expressed by

j* () = argmax (y;; (1)), (3)

15j5Nchunks

where y;; is the SINR of the selected user 7 in chunk j. This is
the most opportunistic of all scheduling algorithms for time-
slotted networks. This means that the adaptive modulation
and coding (AMC) policy maximally exploits the frequency
diversity of the time-frequency resource, where a chunk is
allocated to only one user and a user can have multiple
chunks in a scheduling instant.

Step 5. The resourceMap() function determines the amount
of bits that can be mapped to the chunk depending on the
AMC mode used.

Step 6. Each time a chunk resource is allocated, the update-
Counter() function is called. This function updates the bank,
the counter E;, and the allocated budget.
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update active_users; principle
Break;
End if
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If (active_users == NULL) scheduled chunks with bit To output buffer ———>
Break; level granularity

FIGURE 2: Flowchart of scheduling operation.

The selected user i gets to transmit as long as (1) its queue
remains backlogged and (2) the allocated budget is less than
the total bank size and more than the number of bits that can
be supported with the lowest AMC mode (binary phase-shift
keying (BPSK) rate-1/2, considered in this study). If either
of these conditions is not satisfied, the user is classified as
nonactive. A new priority is calculated on the updated active
users, and Steps 1-6 are repeated. This procedure is repeated
until there are no chunk resources available or there are no
active users.

2.3. ATBFQ Parameter Selection. The performance of the
ATBFQ scheduler depends on its parameters that define the
debt limit, the burst credit (BC), and the token generation
rate. The token generation rate is critical to the extent to
which the burstiness of the UT traffic can be accommodated.
A UT in its burst mode transmits more data in a short
interval of time than its actual statistics, and hence, requires
more resources in order to maintain a certain QoS level. The
debt limit is set to —5 MB. The token generation rate should
be large enough to handle instantaneous bursty traffic. In
simulations, this generation rate has been considered three
times larger than the average packet arrival rate.

The burst credit for flow i (BC;) determines the amount
of bits selected user i* can receive in a frame. While this
quantity was a fixed value in TBFQ, it is adaptive in ATBFQ.
In a cellular network, the user loading level in terms of active
users per sector is highly dynamic, due to the ON and OFF
characteristics of the bursty traffic. It is observed through
simulations that for low-loading cases, a higher value for BC;
performs better, as shown in Table 1. On the other hand,
for high-loading conditions, a lower value for BC; is desired
as it exploits multiuser diversity, as shown in Table 2. It is
further seen that for both low- and high-loading conditions,

BC; should be adapted per user basis in order to obtain
high spectral efficiency. For UT i, this adaptive value can be
formulated as

3 ni(bits/sec/Hz) X M(Hz - sec) X Nchunks

BC;
l Nact

(4)

where #; is the past spectral efficiency, Nehunks 1S the number
of available chunks, M is the amount of time-frequency
resources in a chunk, and N, is the number of active UTs
in that particular scheduling frame. #; is a moving average
which is updated each time by averaging over the past 100
transmissions of user i.

3. Fairness Study

Opportunistic scheduling algorithms aim to provide high
throughput for UTs having good channel conditions (closer
to the BS), and consequently, experience a degraded perfor-
mance. In such cases, the overall throughput of the system is
maximized but the fairness amongst UTs is greatly affected.
Therefore, it is essential to design a performance metric that
is an appropriate indicator of the fairness. One such index is
the Jain’s fairness index proposed in [15]. This fairness index
is bounded between zero and unity, and has been widely
used [16, 17]. If a system allocates resources to n contending
UTs such that the ith user receives an allocation x;, then this
fairness index fi(x) is given by

2
[> %]

nSixg
where x; = 0. This index measures the equality of UT

allocation x. If x;s are equal for all UTs, then the fairness
index is 1 and the system is 100% fair, and vice versa. In this

Jilx) = (5)
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TasLE 1: Burst credit for ATBFQ for low loading (8 users).
Burst credit Queuing delay Packets dropped Throughput Spectral efficiency
(BC) (sec) (per frame) (Byte per frame) (bits/sec/Hz)
BC =1000 0.025 4.36 815.4 2.37
BC = 5000 0.017 0.76 1473.3 2.05
BC =10000 0.015 0.42 1546.6 1.98
Adaptive BC 0.012 0.30 1551.1 2.34

TaBLE 2: Burst credit for ATBFQ for high loading (20 users).

Burst credit Queuing delay Packets dropped Throughput Spectral efficiency
(BC) (sec) (per frame) (Byte per frame) (bits/sec/Hz)
BC = 1000 0.044 3.19 2299.4 2.09
BC =5000 0.036 3.98 2094.0 1.88
BC =10000 0.033 4.00 2090.4 1.87
Adaptive BC 0.038 2.01 2497.1 2.29

paper, the allocation metric “x” is defined as the ratio of UT
throughput and queue size, and is given by

TP;“JZ)

Qgtl)tz) > (6)

Xi =

where TPl-(t"tZ) is the transmitted throughput in bits for UT i

during the time interval [#;, ;] and ngt"m is the total number
of packets arriving in the queue for UT i during (t,,). In
simulations, (t1,%,) is chosen to be equal to 16 frame time
durations.

In (6), the throughput is normalized to avoid ambiguity
since the throughput alone as a metric does not provide an
insight into the overall fairness.

Another method of fairness assessment, proposed in
WIMAX standard [18], is determined by the normalized
cumulative distributive function (CDF) of throughput per
UT. The normalized UT throughput with respect to the

average throughput, Tifor UT i, is expressed by
~ T,
f=
! ( 1/”) Zj=1 T]

where T; is the instantaneous throughput of UT i in a
particular frame, and 7 is the total number of UTs. As stated
n [18], the CDF of this normalized throughput should lie
to the right of the coordinates (0.1, 0.1), (0.2, 0.2), and (0.5,
0.5).

The results using both of these fairness assessment
methods are discussed in detail in Section 5.

(7)

4. System Model and Simulation Parameters

ATBFQ is studied in the wide-area downlink scenario. To
reduce the simulation complexity, the bandwidth is reduced
to 15 MHz from the original 45 MHz. The chunk dimension
is given as 8 subcarriers by 12 OFDM symbols or 312.5 kHz x
345.6 microseconds. The frame duration is defined as 691.2
microseconds, that is, there are a total of 96 chunks per
frame.

F1GUre 3: Network layout.

The network layout under investigation is shown in
Figure 3. Each cell in the network has three sectors. A
frequency reuse factor of 1 in each sector (all resources are
used in each sector) is assumed. The UTs are uniformly
placed in the central sector.

Time- and frequency-correlated Rayleigh channel sam-
ples obtained from power delay profile for the WINNER wide
area scenario are used to generate the channel fading. The
user speed is defined as 70 km/hr, and the intersite distance
is 1 km. The following exponential path-loss model has been
used [19]

PL = 38.4 + 35.0log,,(d)[dB], (8)

where PL is the path loss in dB, and d is the transmitter-
receiver separation in meters.

The average thermal noise power is calculated with
a noise figure of 7dB. We have considered independent
lognormal random variables with a standard deviation of
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8 dB for shadowing. Sector transmit power is assumed to be
46 dBm, and chunks are assigned fixed equal powers.

The interference is modeled by considering the effect of
intercell interference and intracell interference on the sector
of interest in the central cell (denoted as sector 1in BS 1). For
this purpose, the interference from the first tier is taken into
account. In this case, for a link of interest in sector 1 in BS 1,
the interference will comprise 18 (6 BS X 3 sectors) intercell
and 2 intracell links.

The SINR obtained for chunk j of user i can be expressed
by
P sli)g}nal i,j

SINR;; =
/ (Pinter ij T Pintra i,j) + Phoise i,j ’

)

where Pslignal jj denotes the desired signal power in sector
1 in BS 1, and Phoise,; is the noise power. For the given
layout in Figure 3, intracell interference Pintra,;,j> and intercell

interference Pinter,;,; are given by the following expressions:

3
Pintrai,j = ZI?ZI’SXIy
- 10
s, (10)
Pinteri,j = Z ZI]"SXI:
b=2 s=1

where I;”S is the interference power for chunk j from sector s

in BS b. X; has a binary value defined by

1, x <AF,
X = (11)
0, x>AF,

where x is a uniform random variable defined over [0, 1], and
AF (activity factor) is defined as a probability for a particular
interfering link to be active. For example, AF of 1 denotes
a high level of interference where all the links are active
interferers (100% interference).

Adaptive modulation with block low-density parity-
check (B-LDPC) code is used. Thresholds for transmission
schemes are determined assuming a block length of 1704 bits
and 10% block error rate (BLER) as shown in Table 3 [13]. A
chunk using quadrature phase-shift queueing (QPSK) rate-
1/2 can carry 96 information bits. This is based on the
initial transmissions, that is, hybrid automatic repeat request
(HARQ) retransmissions are not considered. Real-time video
streaming traffic is used in this study. Two interrupted
renewal process (IRP) sources are superimposed to model
user’s video traffic in the downlink transmission as indicated
in [20]. The average packet rate of one UT is 1263.8 packets
per second. The resulting downlink data rate for each user is
1.92 Mbps.

The performance of the ATBFQ algorithm is compared
to that of the RR and the SB algorithms. The SB algorithm
was proposed in [10], and was modified to the WINNER
multicarrier OFDMA system for this work. It is a variation
of the proportional fair (PF) algorithm which is the most
widely adopted opportunistic scheduling algorithm [21].
The SB scheduler selects user i in slot k with the best score,

TaBLE 3: Lookup table for AMC modes and corresponding chunk
throughput.

AMC mode SINR (dB) Chunk throughput (bits)
BPSK 1/2 0.2311 = SINR > —1.7 48
BPSK 2/3 1.231 = SINR > 0.231 72
QPSK 1/2 3.245 > SINR > 1.231 96
QPSK 2/3 4.242 > SINR > 3.245 128
QPSK 3/4 6.686 > SINR > 4.242 144
16QAM 1/2  9.079 = SINR > 6.686 192
16QAM 2/3  10.33 = SINR >9.079 256
16QAM 3/4 14.08 = SINR > 10.33 288
64QAM 2/3 15.6 > SINR > 14.08 384
64QAM 3/4 SINR > 15.6 432

where the score is calculated based on the current rank
of the user’s SINR among its past values in the current
window {yi(tk), yi(tk=1)s...> Vi(tk—w+1)}, where p;(t) is the
SINR value of a user at time instant k, and W is the window
size. The corresponding score for the user 7 is given by

w-1 w-1

si(te) =14 D nwoenton + 2, into=neemnXn (12)
I=1 I=1

where Xj are i.i.d. random variables on {0, 1} with P,(x =
0) =P (x=1)=0.5.

Packets are scheduled on a frame-by-frame basis at the
start of every frame. Any packet that arrives at current frame
time will have to wait at least until the start of the next frame.
As video streaming has the most stringent delay requirement,
packets are dropped if they experience a delay in excess of 190
milliseconds. The simulation parameters are summarized in
Table 4; most of them are taken from the WINNER baseline
simulation assumptions [13].

5. Simulation Results

The performance results are classified into four categories:
(1) average user statistics, (2) performance of the cell-edge
users, (3) effect of varying user loading and interference
conditions, and (4) fairness analysis. Furthermore, the results
are compared to the SB and RR algorithms. The window
size plays an important role in the performance of the SB
algorithm [10]. The performance of ATBFQ has been studied
with different window sizes in the WINNER context [22, 23].

5.1. User Performance. Figure 4 shows the CDF of the packets
dropped per frame for low and high loading, respectively.
These curves indicate the opportunistic nature of SB, since
it tends to favor the users with good channel conditions.
Consequently, a higher drop rate, even at low loading, is
observed for SB.

The CDF of average user throughput per sector (mea-
sured in bytes per frame) for 8 and 20 user loading
cases is shown in Figure 5. ATBFQ performs better for the
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TaBLE 4: Summary of simulation parameters.

Parameter

Used value/model

Scenario

Channel model
Shadowing

Sector Tx antenna
UT receive antenna
Intersite distance
Signal bandwidth
Mobility

Sector Tx power
Scheduler
Interference model
Antenna configuration

Coding
AMC modes

AMC thresholds
Frame duration
Traffic model

Packet size

Packet drop criterion
Simulation time

Simulation tools

Wide area DL (frequency adaptive)

WINNER C2 channel

Independent lognormal random variables (standard deviation 8 dB)
120° directional with WINNER baseline antenna pattern
Omnidirectional

1000 m

15 MHz (i.e., 48 chunks which is 1/3rd of the baseline assumptions)
70 km/hr

46 dBm

Adaptive Token Bank Fair Queuing, score based, and round-robin
brute force method (central cell is considered with interference from the 1st-tier)
Single-in-single-out (SISO)

B-LDPCC

BPSK (rate 1/2 and 2/3), QPSK (rate 1/2, 2/3, and 3/4), 16QAM (rate 1/2, 2/3, and 3/4),
and 64QAM (rate 2/3 and 3/4)

With FEC block of 1728 bits and 10% BLER
0.6912 ms (scheduling interval)

1.9 Mbps 2IRP model for MPEG video

188 Bytes

Delay = 0.19 sec

60 sec

MATLAB and OPNET
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lower loading case, whereas SB achieves marginally higher =~ On the other hand, SB aims to maximize the throughput
throughput at higher loading. For the high loading case, itis ~ while being fair in the opportunistic sense.

observed that the CDF curve for ATBFQ has a steeper slope

indicating better fairness, since users are served with similar ~ 5.2. Cell-Edge User Performance. Figure 6 shows the packet
throughput. Note that this is not true for SB. As ATBFQ  transmit ratio (defined as the transmitted packet per total
attempts to maintain fairness, it tries to serve cell-edge users ~ packets generated) versus distance from BS for 20 users per
with poor channel conditions as compared to those located ~ sector. It can be observed that as the distance increases, the
closer to the BS. Therefore, ATBFQ also utilizes more chunks. packet transmit ratio for SB decreases, that is, the number of
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dropped packets increases. This can be further visualized by
the quadratic-fitted curves for both algorithms, which show
their respective trends with the varying distance. As SB tries
to maximize the throughput, the cell-edge users are affected,
and suffer packet losses. ATBFQ, on the other hand, is fair
in nature and shows enhanced performance for the cell-
edge users. If a cell-edge user is suffering from poor channel
conditions, ATBFQ gives it priority to transmit in the next
scheduling interval. By assigning priorities in such a manner,
ATBFQ considerably improves the spectral efficiency for the
cell-edge users, as shown in Figure 7.

5.3. Varying User Loading and Interference Conditions.
Performance indicators such as average dropped packets,
average UT throughput, and average UT queuing delay have

Queuing delay (s)

4 6 8 10 12 14 16 18 20
Number of users
—— RR(AF =10.7)

—%— ATBFQ (AF = 0.7)
—=— SB(AF = 0.7)

—4- RR (AF = 0.5)
—o— SB(AF = 0.5)
—»— ATBEQ (AF = 0.5)

FiGure 8: Average UT queuing delay versus number of UTs.

been considered in evaluating ATBFQ by comparison with
the reference SB and RR schemes.

Figures 8, 9, and 10 show the performance results
for average UT queuing delay, average packets dropped
per frame, and the total sector throughput, respectively,
in varying loading conditions for ATBFQ, SB, and RR.
The curves are plotted for two different AFs of 0.5 and
0.7 to model moderate and high interference situations,
respectively. ATBFQ outperforms the reference SB and RR
algorithms in terms of the above-mentioned performance
parameters for all loading conditions when the AF is 0.5.
In this case, the UTs experience better channel conditions
resulting from low interference. Hence, fewer chunks are
utilized to transmit data as compared to the number of
chunks utilized for a higher AE. Consequently, RR performs
better than SB at lower loading levels.

For low-to-medium loading with an AF of 0.7, it
is observed again that ATBFQ outperforms the reference
schemes in terms of all observed parameters. This trend
changes as network loading increases to 20 UTs per sector.
In this case, SB outperforms ATBFQ and RR in terms of
average UT queuing delay, average packets dropped per
frame, and the total sector throughput, respectively. This is
due to the fact that SB is opportunistic in nature, whereas
ATBFQ is fairness aware. As the number of UTs increases, SB
takes advantage of the multiuser diversity to achieve higher
throughput.

5.4. Fairness Analysis. The CDF of the Jain’s fairness index
given by (5) is shown in Figure 11. These curves represent
network loading of 20 UTs per sector with an AF of 0.7. It
is observed that ATBFQ achieves better fairness compared to
SB and RR. Figure 12 shows the CDF plot of the normalized
throughput given by (7) for 20 UTs per sector with an AF
of 0.7. By normalizing the throughput, the performance of
the cell edge users represented by the tail of the throughput
CDF curve is enhanced. It is again observed that a higher
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normalized throughput is achieved for ATBFQ compared
to that in SB, and the curve lies to the right of the above-
mentioned coordinates.

6. Conclusion

In this paper, the performance of the ATBFQ scheduling
algorithm with adaptive parameter selection is investigated
in the context of the 4G WINNER wide-area downlink
scenario. It is a queue- and channel-aware scheduling
algorithm which attempts to maintain fairness among all
users. Performance of ATBFQ is presented with reference to
the SB and RR schedulers. Being an opportunistic scheduler
belonging to the proportional fair class, SB aims to maximize
throughput by making use of multiuser diversity while trying
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FiGure 11: CDF of fairness index.
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FiGure 12: CDF of normalized throughput (zoomed in).

to maintain fairness. However, this comes at a certain cost,
since the cell edge users in this scheme, suffering from poor
channel conditions, are more severely affected. Also, due to
the bursty nature of the traffic, such users experience higher
queueing delays, resulting in a higher number of packet
dropping.

Contrary to SB, ATBFQ is a credit-based scheme which
aims to accommodate the burstiness of the users by assigning
them more resources in the short term, provided that long-
term fairness is maintained. For lower to medium loading,
ATBFQ provides higher throughput, lower queuing delay,
and a lower number of packets dropped as compared to SB
and RR. At high loading, ATBFQ still outperforms SB and
RR with regard to the queuing delay and packet dropping,
however, with a slight degradation in the sector throughput.
This is because ATBFQ attempts to satisfy users with poor
channel conditions by assigning more resources, even with a
lower chunk spectral efficiency. An overall improvement of
the performance of cell-edge users is observed in terms of
spectral efficiency and packet-dropping ratio for ATBFQ as
compared to SB and RR.

The observed throughput, queuing delay, and packet
dropping rate clearly indicate the superiority of the ATBFQ
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algorithm. This apparent improvement in the fairness per-
formance of the ATBFQ algorithm based on these perfor-
mance parameters is further validated by evaluating the
fairness indices available in the literature.

Acknowledgments

The authors would like to express their gratitude to Mr.
Jiangxin Hu for his technical support and Dr. Abdulka-
reem Adinoyi for providing his valuable comments on
the manuscript. They also thank OPNET Technologies,
Inc. for providing software license to carry out the sim-
ulations of this research. This work was a part of the
Wireless World Initiative New Radio (WINNER) project,
http://www.ist-winner.org/, with the support of the Natural
Sciences and Engineering Research Council (NSERC) of
Canada. Preliminary results of this work have been presented
in IEEE VTC2008-Spring and IEEE VTC2008-Fall confer-
ences.

References

[1] Overall Description: Stage 2 (Release 8), “3GPP Std. 3GPP
E-UTRA and E-UTRAN Technical Specification TS 36.300
V8.4.0, March 2008, http://www.3gpp.org/ftp/Specs/html-
info/36300.htm.

[2] IEEE 802.16 Std. 802.16j/D5, “Part 16: Air Interface for Fixed
and Mobile Broadband Wireless Access Systems—Multihop
Relay Specification,” June 2008, http://www.ieee802.org/16.

[3] “Project Presentation,” WINNER Deliverable D8.1, March
2004, http://www.ist-winner.org/deliverables_older.html.

[4] Q. Liu, X. Wang, and G. B. Giannakis, “A cross-layer
scheduling algorithm with QoS support in wireless networks,”
IEEE Transactions on Vehicular Technology, vol. 55, no. 3, pp.
839-847, 2006.

[5] S.Borst, “User-level performance of channel-aware scheduling
algorithms in wireless data networks,” in Proceedings of the
22nd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM °03), vol. 1, pp. 321—
331, San Francisco, Calif, USA, March-April 2003.

[6] D. Wu and R. Negi, “Effective capacity: a wireless link model
for support of quality of service,” IEEE Transactions on Wireless
Communications, vol. 2, no. 4, pp. 630—-643, 2003.

[7] A.Stamoulis, N. D. Sidiropoulos, and G. B. Giannakis, “Time-
varying fair queueing scheduling for multicode CDMA based
on dynamic programming,” IEEE Transactions on Wireless
Communications, vol. 3, no. 2, pp. 512-523, 2004.

[8] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting,
and R. Vijayakumar, “Providing quality of service over a
shared wireless link,” IEEE Communications Magazine, vol. 39,
no. 2, pp. 150-154, 2001.

[9] W. K. Wong and V. C. M. Leung, “Scheduling for integrated
services in next generation packet broadcast networks,” in Pro-
ceedings of the IEEE Wireless Communications and Networking
Conference (WCNC °99), vol. 3, pp. 1278-1282, New Orleans,
La, USA, September 1999.

[10] T. Bonald, “A score-based opportunistic scheduler for fading
radio channels,” in Proceedings of the 5th European Wireless
Conference (EW ’04), Barcelona, Spain, February 2004.

[11] W. K. Wong, H. Y. Tang, and V. C. M. Leung, “Token bank fair
queuing: a new scheduling algorithm for wireless multimedia

—
ur

=
>

—
o

services,” International Journal of Communication Systems, vol.
17, no. 6, pp. 591-614, 2004.

“Final Report on Identified RI Key Technologies, Sys-
tem Concept, and their Assessment,” WINNER I Deliv-
erable D2.10, November 2005, http://www.ist-winner.org/
deliverables_older.html.

“Test  Scenarios and Calibration Cases
WINNER II Deliverable D6.13.7, December
http://www.ist-winner.org/ deliverables.html.

R. Knopp and P. A. Humblet, “Information capacity and
power control in single-cell multiuser communications,” in
Proceedings of IEEE International Conference on Communica-
tions (ICC 95), vol. 1, pp. 331-335, Seattle, Wash, USA, June
1995.

R. Jain, D. Chiu, and W. Hawe, “A quantitative measure
of fairness and discrimination for resource allocation in
shared computer systems,” Tech. Rep. DEC-TR-301, Digital
Equipment Corporation, Maynard, Mass, USA, September
1984.

H. Sirisena, A. Haider, M. Hassan, and K. Fawlikowski,
“Transient fairness of optimized end-to-end window control,”
in Proceedings of IEEE Global Telecommunications Conference
(GLOBECOM ’03), vol. 7, pp. 3979-3983, San Francisco, Calif,
USA, December 2003.

G. Berger-Sabbate, A. Duda, O. Gaudoin, M. Heusse, and
E Rousseau, “Fairness and its impact on delay in 802.11
networks,” in Proceedings of IEEE Global Telecommunications
Conference (GLOBECOM ’04), vol. 5, pp. 2967-2973, Dallas,
Tex, USA, November-December 2004.

IEEE 802.16 Std., “IEEE 802.16m Evaluation Methodology
Document,” September 2007, http://www.ieee802.0org/16.
“Final report on link level and system level channel
models,” WINNER I Deliverable D5.4, November 2005,
http://www.ist-winner.org/deliverables_older.html.

“Traffic model for 802.16 TG3 MAC/PHY simulations,” IEEE
802.16 Work-in-progress document 802.16.3¢-01/30r1, March
2001, http://www.ieee802.0rg/16.

E. F. Chaponniere, P. J. Black, J. M. Holtzman, and D. N. C. Tse,
“Transmitter directed code division multiple access system
using path diversity to equitably maximize throughput,” US
Patent no. 6449490, September 2002.

“Inteference Avoidance Concepts,” WINNER II Deliverable
D4.7.2, June 2007, http://www.ist-winner.org/deliverables.
html.

E. A. Bokhari, W. K. Wong, and H. Yanikomeroglu, “Adaptive
token bank fair queuing scheduling in the downlink of 4G
wireless multicarrier networks,” in Proceedings of the 67th IEEE
Vehicular Technology Conference (VIC °08), pp. 1995-2000,
Marina Bay, Singapore, May 2008.

Issue 2
2006,



Hindawi Publishing Corporation

EURASIP Journal on Wireless Communications and Networking
Volume 2009, Article ID 462396, 14 pages
doi:10.1155/2009/462396

Research Article

Busy Bursts for Trading off Throughput and Fairness in

Cellular OFDMA-TDD

Birendra Ghimire,! Gunther Auer,?> and Harald Haas"3

! Institute for Digital Communications, Joint Research Institute for Signal and Image Processing, The University of Edinburgh,

EH9 3]L, UK

2DOCOMO Euro-Labs, Landsberger Strafie 312, 80687 Munich, Germany
3 School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany

Correspondence should be addressed to Harald Haas, h.haas@ed.ac.uk

Received 1 July 2008; Accepted 8 December 2008

Recommended by Mohamed Hossam Ahmed

Decentralised interference management for orthogonal frequency division multiple access (OFDMA) operating in time division
duplex (TDD) cellular systems is addressed. Interference aware allocation of time-frequency slots is accomplished by letting
receivers transmit a busy burst (BB) in a time-multiplexed minislot, upon successful reception of data. Exploiting TDD channel
reciprocity, an exclusion region around a victim receiver is established, whose size is determined by a threshold parameter, known
at the entire network. By adjusting this threshold parameter, the amount of cochannel interference (CCI) caused to active receivers
in neighbouring cells is dynamically controlled. It is demonstrated that by tuning the interference threshold parameter, system
throughput can be traded off for improving user throughput at the cell boundary, which in turn enhances fairness. Moreover, a
variable BB power is proposed that allows an individual link to signal the maximum CCI it can tolerate whilst satisfying a certain
quality-of-service constraint. The variable BB power variant not only alleviates the need to optimise the interference threshold
parameter, but also achieves a favourable tradeoff between system throughput and fairness. Finally, link adaptation conveyed by
BB signalling is proposed, where the transmission format is matched to the instantaneous channel conditions.

Copyright © 2009 Birendra Ghimire et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. Introduction

Orthogonal frequency division multiplexing (OFDM) has
been selected as a radio access technology for a number of
wireless communication systems, for instance, the wireless
local area network (WLAN) standard IEEE 802.11 [1], the
European terrestrial video broadcasting standard DVB-T [2],
and for beyond 3rd generation (B3G) mobile communica-
tion systems [3]. In OFDMA, the available resources are
partitioned into time-frequency slots, also referred to as
chunks, which can be flexibly distributed among a number of
users who share the wireless medium. Provided that channel
knowledge is available at the transmitter, resources can be
assigned to users with favourable channel conditions, giving
rise to multiuser diversity [4].

Interference management is one of the major challenges
for cellular wireless systems, as transmissions in a given cell
cause cochannel interference (CCI) to the neighbouring cells.

Full-frequency reuse where the transmitters are allowed an
unrestricted access to all resources causes high CCI, which
particularly impacts the cell-edge users [5-7]. Although CCI
can be mitigated by traditional frequency planning, this
potentially results in a loss in bandwidth efficiency due to
insufficient spatial reuse of radio resources. Fractional fre-
quency reuse (FFR) [4-6, 8] addresses this issue by realising
that in the cellular networks CCI predominantly affects users
near the cell boundary. FFR typically involves a subband with
full-frequency reuse that is exempt from any slot assignment
restrictions. The allocation of the remaining subbands is
coordinated among neighbouring cells, in a way that the
users in the given cell are denied access to subbands assigned
to the cell-edge users in the adjacent cells. To this end, in
[5] a user is classified as a cell-edge user based on the path
loss to the desired base station (BS). This approach ignores
the fact that the channel attenuation of the desired and
the interfering signals is uncorrelated, and therefore fails to
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exploit interference diversity. Moreover, frequency planning
results in a hard spatial reuse of the available resources. As
a result, it cannot cater for the dynamic traffic and load
across different sites. Furthermore, in systems where BSs
are dynamically added in an uncoordinated manner, such
as home base stations [9], reconfigurable frequency reuse
planning may prove to be increasingly cumbersome.

The busy-signal concept [10-16] has been identified
as an enabler for decentralised and interference aware
slot assignment. Receiver feedback informs a potential
transmitter about the instantaneous CCI it causes to the
“victim” receivers, which enables the transmitter to take
appropriate steps to avoid interference, such as deferring its
own transmission to another chunk. Early works [10, 11] rely
on dedicated frequency-multiplexed channels that carry nar-
rowband busy tones for channel reservation. As the protocol
requires the transceivers to listen to the out-of-band busy
tones whilst transmitting, complex RF units are required due
to additional filters and duplexers involved. This drawback
is avoided in [12-14], where time-multiplexed busy bursts
(BBs) serve as a reservation indicator for a reservation-based
medium access control (MAC) protocol. By transmitting an
in-band BB in an associated minislot following a successful
transmission, two important goals are accomplished [13, 14].
First, the transmitter of its own link is informed whether or
not the data is successfully received. Second, at the same time
potential transmitters of the competing links are notified
about ongoing transmissions, so that these transmitters can
take appropriate steps to avoid interference. Therefore, both
slot reservation and channel sensing tasks are accomplished.
Furthermore, interference diversity is exploited, in the way
that competing links may spatially reuse the same slot, given
the interfering links are sufficiently attenuated.

None of the busy tone-based MAC protocols [11-14]
allow for dynamic resource allocation where multiple users
share a set of parallel frequency slots of a broadband
frequency-selective radio channel, such as the 100 MHz
channel of the WINNER (Wireless world Initiative New
Radio, www.ist-winner.org) TDD mode [17].

By extending the BB concept to OFDMA [15, 16],
the channel reciprocity of TDD [18] is exploited for
decentralised interference management such that the chunks
can be dynamically assigned on a short-term basis thereby
ensuring a soft spatial reuse of chunks among cells. This
concept termed BB-OFDMA works in a completely decen-
tralised fashion and is therefore applicable to self-organising
networks, which may consist of cellular as well as ad hoc
network topologies.

The attainable system throughput of BB-OFDMA is
sensitive to the selected interference threshold [15, 16]. In
this paper, it is demonstrated how the interference threshold
can be tuned to tradeoff system throughput to enhance cell-
edge user throughput, thereby enhancing fairness. Moreover,
by using a variable BB power that takes into account the
quality of the intended link, a favourable tradeoff between
system throughput and fairness is achieved. A variable BB
power exhibits the further advantage that the sensitivity of
the selected interference threshold on the performance is
mitigated. Finally, BB-OFDMA with variable BB power is the

Duplex guard

DL data ;‘T\
chunk ;‘W
I

J BBDL
I BBUL

FIGURE I: Frame structure for OFDMA-TDD with BB signalling.

basis for a novel receiver-driven link adaptation algorithm.
System-level simulations demonstrate a significant improve-
ment both in terms of fairness and total system throughput
of BB-OFDMA, compared to the system with full-frequency
reuse, where attempts to avoid interference are not made.

The remainder of the paper is arranged as follows.
Section 2 describes the air interface of WINNER-TDD. The
allocation of radio resources among the competing user
population is discussed in Section 3. Section 4 introduces
the BB signalling mechanism and its variants as well as
the proposed link adaptation algorithm. The considered
Manbhattan grid deployment scenario and the system level
simulator are introduced in Section 5, and the simulation
results are discussed in Section 6. Finally, the conclusions are
drawn in Section 7.

2. System Model

A time-frequency slotted OFDMA-TDD air interface based
on the WINNER-TDD mode [8] is implemented, as illus-
trated in Figure 1. A chunk comprises of ny subcarriers and
1o OFDM symbols and represents a resource unit that can
be allocated to one out of U users located in cell g. Successive
downlink (DL) and uplink (UL) slots, each of which contains
Nc chunks, constitute a frame. A chunk with frequency index
1 < n < Nc at frame k is denoted by (n, k). The transmit
power of user v at chunk (n, k) is denoted by Tf,q [n,k].

The transmitted signal of chunk (n,k) propagates
through a mobile radio channel. The corresponding channel
gain G, 4[n, k] comprises radio effects such as distance-
dependent path loss, log-normal shadowing as well as
channel variations due to frequency-selective fading and
user mobility [19]. While channel variations of G, 4[n, k]
between adjacent chunks in time and frequency are taken
into account, fluctuations within a chunk are neglected. This
approximation is justified as long as the chunk dimensions
are significantly smaller than the coherence time and fre-
quency [20].
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The received signal power of user v can be expressed as
R, I, k] = RS, [n, K]+ IZ, [, k] + N, (1)

where N is the thermal noise power. Both the received signal
powers of the intended and the interfering links, denoted
by Rﬂ)q[rz,k] = Tﬂq[n,k]Gw[n,k] and Iﬂq[n,k], may vary
significantly between different chunks, as elaborated in more
detail in Section 4. The achieved signal-to-interference-plus-
noise ratio (SINR) at chunk (#, k) is in the form

RS, [n,k]

Vgl k] = W- (2)

3. Multiuser Resource Allocation

Provided that only one user per cell transmits on a given
chunk, the base station (BS) may flexibly assign chunks to
users, such that the intracell interference is avoided. How-
ever, as chunks may be simultaneously accessed by adjacent
cells, CCI is encountered. Multiuser resource allocation is
carried out by a score-based scheduler [21] variant, which
distributes the 1 < n < N¢ chunks among 1 < v < U users
served by the BS in cell q. Assuming that the channel gains
G, 4ln, k] are available at BS,, the score for user v at chunk
(n, k) is computed as

Nc

suglm k] = 14 > Y (G, (nki<G,,lekl} + Englmnk]l,  (3)
=1

where the Boolean operator Y, € {0,1} is set to 1 or
0 when the condition x is true or false, respectively. The
parameter €,4(n, k] € {0, oo} indicates whether or not user v
is granted access to chunk (n, k). For interference aware and
reservation-based MAC protocols such as BB-OFDMA (see
Section 4.4), setting €, 4[n,k] — oo ensures that user v in
cell g is denied access to chunk (#, k). This effectively avoids
radiation of CCI from cell g to any neighbouring cells that
use the same chunk (n, k).

Score based multiuser scheduling with reservation
assigns chunk (#, k) to user v if either a reservation indicator
was set in the previous frame, B;[n,k — 1] = v, or the score
given by (3) is minimised

argmins, g [n, k], Pgln,k—1]=0,
agln,k —{ v i (4)

ﬁv,q[nak - 1]>

In case €,4[n, k] — oo for all users, cell g leaves chunk (#, k)
unassigned in (4). The user v that is assigned chunk (#, k)
transmits data to its intended receiver. The set of chunks n €
{1,...,Nc} at time k, for which a,[n, k] = v are denoted by
Ay,q. Allocated chunks a,[n,k] = v whose achieved SINR
Yuqln, k] exceeds the target I', such that

otherwise.

v, ag[n k] =vand y,,[nk] =T,
b1, k] =1 ! Tna (5)

0, otherwise

represent the set of successfully allocated chunks of user v,
denoted by 8,4 < 4,4 [15].

For BB-OFDMA chunks with b,[n,k] #0 are reserved
and protected from interference at the next frame k + 1 by
setting the reservation indicator to B,[n,k] = by[n,k] in
(4). When the SINR target is not met, y,4[n,k] < T, the
reservation indicator is reset to f4[n, k] = bg[n,k] = 0.
These chunks A, 4 \ 8B, are released in a way that user v
is prohibited access in the next slot k + 1 by setting €, 4[n, k +
1] — oo. Subsequently, chunk (n,k + 1) is assigned to other
users by (4).

In a cellular OFDMA system without interference pro-
tection, there is no restriction for accessing any chunks, so
€yqln,k] = 0 Vn,k in (3) for all users in the cell. Moreover,
no reservation indicator is set, f4[n,k] = 0 Vn,k in (4),
irrespective of by [n, k] in (5).

4. Busy Burst Signalling

Interference management using busy burst (BB) signalling
[13, 14] establishes an exclusion region around active
receivers. An exclusion region defines an area around an
active receiver in cell g, where potential transmitters in
adjacent cells p#¢q must not transmit, so that excessive
CCI by close-by interferers is mitigated. In the context
of OFDMA, the exclusion regions are to be established
individually for each chunk (n,k) [15]. In BB-OFDMA, an
MAC frame is divided into data slots and BB minislots as
illustrated in Figure 1. The BS transmits data in slot “Data
DL” Provided that the SINR target for an allocated chunk
(n,k) is met, the intended mobile station (MS) transmits
a BB in the associated minislot “BB UL” at uplink chunk
(n, k). This reserves chunk 7 of “Data DL” for the next frame
k + 1. Likewise, for uplink data transmitted by the MS in
slot “Data UL,” the BB is transmitted by the intended BS in
the downlink minislot “BB DL.” In summary, BB-OFDMA is
described by the following protocol.

(1) All potential transmitters must sense the BB associ-
ated to the data chunk (n, k) prior to transmission.

(2) Transmitters are prohibited to access chunks where a
BB is detected above a given threshold.

The resulting BB signalling overhead amounts to 6.7%, as
2 OFDM symbols out of 30 OFDM symbols per frame are
used for BB signalling. However, instead of dismissing BB
signalling as overhead, the BB minislots may be utilised to
convey the feedback and control information. Hence, BB
signalling may serve as an alternative control channel.

To exemplify the principle of BB-enabled interference
avoidance in cellular system, a typical downlink and uplink
interference scenario is illustrated in Figure 2. In the down-
link shown in Figure 2(a), MS; has transmitted a BB after
successful reception from BS;. As BS; detects a strong BB
from MS;, BS; cannot spatially reuse this chunk with BS;.
In the uplink shown in Figure 2(b), BS; has transmitted a
BB after successful reception from MS;. While MS, is denied
access to this chunk, as it detects a strong BB from BS;,
MS3 is located outside the exclusion region of BS;, and may
therefore simultaneously access this chunk with MS;.
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BS;

<— Desired signal
<~ Link (s) not admitted (cause excessive CCI)
<+ Interfering signal

(a) Downlink

<— Desired signal
<X~ Link not admitted (cause excessive CCI)
<+ Interfering signal

(b) Uplink

F1GURE 2: BB signalling applied to cellular system. The arrows depict the direction of desired and interfering signals and their relative strength
is indicated by their width. The strength of BB signal is indicated by the darkness of the shade around the vulnerable receiver.

4.1. Two Competing Links. To mathematically describe BB-
enabled interference avoidance, let x = (7,q) define a
transmitter or receiver (either BS or MS) of user v within
cell g. With this notation, the channel gain of the intended
link at chunk (n,k) becomes Gy[n,k] = G,4[n,k]. The
channel gain of an interfering link, between transmitter
y = (u,p) of user p located in an adjacent cell p#gq
and receiver X, is denoted by Gyx[n,k]. In case two links
compete for resources, the CCI between transmitter y
and receiver x amounts to Id[n, k] = ny[n,k]T;,i[n,k].
(The term If[n,k] is equivalent to the CCI I [n,k] as
defined in (1). While the notation I¢[n, k] is preferred for
intercellular interference management, the latter is used
for intracell resource allocation. The same rule applies for
related quantities that denote transmitted and received signal
powers.) Likewise, T?[n, k] and I}t,’[n, k] = ny[n,k]T,‘g[n,k]
are the transmit power of the BB transmitter x (data receiver)
and the interfering BB power received at data transmitter y
(BB receiver), respectively.

Exploiting TDD channel reciprocity [18], transmitter y
can ascertain Id[n, k], the potential amount of interference
it causes to an existing link x, by measuring I,'?[n,k] at the
associated BB minislot [13]. Applying the channel reciprocity
property of TDD, Gyx[n, k] = Gxy[n, k], yields

T4[n, k]
d _ b i
ROmk] = Blnk] - 7 b

(6)
The maximum CCI Id[n, k] that a candidate transmitter
y may cause to an active receiver x is determined by the
interference threshold Iy, which is constant and known
to the entire network. When I,‘f[n,k] < Iy, transmitter y
is located outside the exclusion range of x. Provided that
T®[n, k] is known to the candidate transmitter y, (6) enables
y to verify whether Id[n,k] < Iy, by invoking the threshold
test [13, 14]

Tn, k]
b y -
I[n,k] - oK) = Iny (7)

In case Ty [n, k] = Ty [n, k], condition (7) reduces to
n,k] < I. (8)

By tuning Iy, the maximum CCI If[n, k] in (2) is adjusted,
which determines the size of the exclusion range around
active receivers.

4.2. Extension to Multiple Cells. In a multicell scenario,
signals from multiple links superimpose at the receiver. The
total interference at data receiver x amounts to

I)?[n)k] = Z TS[”a k] ) sz[n) k]) (9)
zeT
ZF#X
where 7 is the set of simultaneously active transmitters.
Likewise, the received BB at the data transmitter (BB
receiver) y yields

I}?[n,k] = Z TP [n,k] - Gyyln, k1, (10)
zeER
17y
where R is the set active receivers (BB transmitters).

Unlike the case when two links compete for resources,
I)'?[n,k] is no longer equivalent to I¢[n, k] in the threshold
test (8). This is because in (9) the interference powers from
multiple transmitters 7~ add up. Consequently, the total CCI
at data receiver x may exceed the tolerable threshold such
that I¢[n,k] > Iy, although the BB power (10) observed
by the individual interferers y € 7 is below the threshold,
I‘;[n,k] < I. On the other hand, in (10) the interfering
BB powers from multiple simultaneously active receivers
observed at y € T add up. It is, therefore, possible that
I}’[n,k] > I, so that link y is prohibited from accessing
chunk (n,k), although its individual CCI contribution,
T;,i [n,k] - Gyx[n, k] would be below Iy,. Note that the former
effect partly compensates the latter. Moreover, in many
cases the interference is dominated by one strong interfering
source. Therefore, the threshold test (8) provides a good
approximation to the level of interference potentially caused
to the active receivers.
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4.3. Initial Access in Contention. Initial access of unreserved
slots in BB-OFDMA is carried out in contention. During
contention, two or more transmitters from adjacent cells
may access chunk (n,k) simultaneously. As a result, one
or several links may encounter a collision on chunk (n, k),
where the SINR target is not met. To reduce the occurrence of
simultaneously accessed chunks in contention, a p-persistent
chunk allocation procedure is applied to BB-OFDMA, where
chunk (n, k) in cell g is accessed with probability p. Denoting
the outcome of the p-persistent chunk allocation with
the binary random variable y,[n,k] € {0, 1}, the access
probability yields P(x,[n,k] = 1) = p. The impact of p on
the system performance is investigated in Section 6.1.

4.4. Decentralised Chunk Reservation with BB Signalling. The
BB-OFDMA protocol enables a link x = (v,g) to contend
for a chunk once it is ensured that the CCI caused to the
coexisting links y in the neighbouring cells is below a given
threshold (8). Prior to accessing chunk (#, k), transmitter
x = (9,q) listens to the associated BB minislot. Whether a
user v within cell g may contend for chunk (n,k) in (4) is
controlled by

0, I° [nk] < Iy and y,[n,k] = 1,
€yl k] ={ . S (11)

o, otherwise.

Chunks, where a,[n,k] = v in (4), are allocated to user
v. Those chunks where the achieved SINR is above a
required SINR target, y,4[n, k] = T, are reserved by setting
the reservation indicator f,[n,k] = v in (4), and are
subsequently protected from CCI by BB broadcast. The BB
broadcast from the intended data receiver is observed as
a surge in the received BB power [14], which effectively
notifies the transmitter that the data of chunk (#, k) has been
correctly received. User v then reserves chunk # in the next
frame k + 1 by setting by[n,k + 1] = v in (5). On the other
hand, if the transmitter does not detect a BB surge, it is
understood that the SINR target was not met due to high
CCI. These chunks are released by a reset of the reservation
indicator to B,[n, k] = 0 and setting €, 4[n,k] — oo, so that
chunk (n, k + 1) may be assigned to other users.

4.5. Balancing System Throughput and Fairness. Cell-edge
users are particularly affected by CCI for two reasons. First,
the desired signal levels Rd[n, k] are, on average, much
weaker compared to users in close vicinity to the desired BS
due to relatively low channel gains on their intended links
Gx[n,k]. Second, cell-edge users suffer from high CCI in
the downlink, or cause high CCI to the adjacent cells in the
uplink.

By tuning the interference threshold Iy in (8), the
amount of CCI I¢[n, k] caused to the receiver of a preestab-
lished and coexisting link x = (v, q) is adjusted. Lowering
Iy, enforces a larger exclusion region around a vulnerable
receiver. This enables cell-edge users to meet their SINR
target I' with a greater likelihood. On the other hand, by
augmenting Iy, the number of simultaneously served links
increases, giving rise to an enhanced system throughput.

However, the cell-edge users are less likely to maintain
their SINR target as interference protection is gradually
eliminated. The chunks are released where the SINR target
is not met, which means that these chunks are no longer
reserved. Since the cell-centre users are less exposed to CCI,
the chunks released by the cell-edge users are likely to be
reallocated to the cell-centre users. As the allocation of the
resources is shifted from the cell-edge users towards the cell-
centre users, fairness is compromised. Hence, by adjusting
I, system throughput is traded off for fairness.

A common measure to quantify fairness is Jain’s fairness

index [22], defined by

U 2
‘Zv:l | £%q | )
F = U 2 (12)
Uzv:l | £v,q |

where U is the number of users in a given cell g. The user
throughput |8, 4| accounts for the number of successfully
transmitted/received bits by user v, as defined in (5). A
fairness index of F = 1 represents a perfectly fair system
where all users achieve the same throughput. On the other
extreme, a fairness index of 1/U represents an unfair system
where one user is served while all other users starve. We
note that the fairness definition (12) is a relative measure,
which ignores the absolute achieved throughput per user. To
this end, a good fairness index F may coincide with poor
spectrum utilisation. For instance, a system where two users
achieve 1 Mbps and 2 Mbps would result in a poorer fairness
index than a system where both users achieve only 0.5 Mbps.
When analysing fairness, the fairness definition (12) should
therefore be considered jointly with user throughput results.

(1) Consequences for the Downlink. In the downlink, MSs at
the cell edge are exposed to high CCI from transmitters in
adjacent cells (see Figure 2(a)). Note that the CCI observed at
a given cell (cell 1 in Figure 2(a)) is independent of the user
distribution in adjacent cells (cell 2 in Figure 2(a)), assuming
a constant transmit power T¢[n, k]. This implies that if BS,
lies within the exclusion region of MS;, resources reserved by
MS; cannot be spatially reused by any of the links in cell 2.
However, if Iy, is increased such that BS, is located outside
the exclusion region of MS;, all links in cell 2 qualify for
a spatial reuse of the resources reserved by MS;. However,
the SINR target at MS; is less likely to be met. Should the
SINR target at MS; not be met, this would cause the chunk
allocated to MS; to be released and reallocated to another
user served by BS; - possibly a user that is located closer to the
the serving BS;. Therefore, the cell-edge throughput would
suffer.

(2) Consequences for the Uplink. In the uplink, the trans-
mitters (MSs) are distributed uniformly over the coverage
area of the BS (see Figure 2(b)). Unlike the downlink, the
CCI at the tagged BS depends on which MS transmits in
the adjacent cell. To this end, the CCI observed at BS; in
Figure 2(b) depends on whether MS, or MS; transmits to
BS,. Suppose that in cell 2 both MS, and MS; contend with
MS; in cell 1 for chunks (n,k) and (n’, k). In case MS, and
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<— Desired signal
<+ Interfering signal

FIGURE 3: Busy burst with interference tolerance signalling (BB-
ITS) in the downlink. The ovals represent the exclusion region
formed with BB-ITS.

MS; simultaneously access chunk (#, k), while MS3; and MS;
simultaneously access chunk (1, k), the SINR at BS; tends
to be superior on chunk (n’, k) due to the lower CCI caused
by MS;. While MS, causes excessive CCI to BS;, MS; and
MS; may share chunk (n, k), although both users might be
located near the cell boundary. Thus the uplink benefits from
interference diversity due to the distributed location of mobile
users. As a result, the degradation of performance at the cell
edge at high Iy, in uplink mode is less severe compared to the
downlink.

4.6. Interference Tolerance Signalling via Busy Bursts. With
fixed power BB signalling, the same level of interference
protection is given to all links, disregarding the quality of
the intended link. In case two receivers MS; and MS, with
respective channel gains G; > G, are exposed to the same
interference, as illustrated in Figure 3, the SINR target I is
more likely met for MS; than for MS,. By allowing MS; and
MS, to transmit a BB with variable power, the individual
amount of interference that can be tolerated by MS; and
MS; is signalled to candidate transmitters in adjacent cells.
Exclusion regions of different size are effectively formed
around MS; and MS,, as illustrated in Figure 3.

For busy burst with interference tolerance signalling (BB-
ITS), the objective is that a given SINR target, yx[n, k] = T,
is maintained for an active receiver x. This means that the
maximum allowable interference depends on the intended
link quality R3[n,k]. Let I?°'[n, k] denote the interference
limit, for which the SINR (2) approaches yx[#n, k] = I'. Then
the tolerable interference at receiver x is upper bounded by

R¢[n, k]

I[n,k] < I°'[n, k] = i

- N. (13)
Adjusting the tolerable interference level (13) implies that
larger exclusion regions are formed for links with weak
desired signal levels R4[n, k] and vice versa.

To signal the variable interference tolerance level I [, k]
of a victim receiver x to candidate transmitters y in adjacent
cells, the BB transmit power T2[n,k] is adjusted, such that
the simple threshold test I)t,’[n,k] < Iy in (8) is retained.
Hence no additional information for channel sensing is
required for BB-ITS. The received BB power approaches
a fixed threshold, I;?[n,k] = I, if the CCI approaches

Idnk] = I[nk]. Inserting Id[n,k] = I[n k] and
I3 [n, k] = I, into (6) yields the variable BB power T% [, k] =
T;,i[n,k] - I/ [n, k]. Assuming that T;,i[n,k] is fixed and
denoted by T4, the BB transmit power is adjusted as follows
[23]:

b i [ Tm T
Ty[n,k]—mm (Rg[n,k]/F—N’TmaX , (14)

where TP

ax 1s the maximum BB transmit power. The min
operator ensures that T2[n,k] < Tb,.. Note that when
R,‘%[n,k]/l“ < N, we get yx[n,k] < T. In this situation,
the chunk is released and no BB is transmitted. Therefore,
it is ensured that T2[n,k] in (14) always has a positive
value. We note that IP[n,k] = T,'?[n,k] - Gyy[n,k] and
T . = T;,i[n,k] = T9[n,k]. It can be checked by plugging
(14) into (8) that the threshold test (8) effectively checks
if If[n,k] < I'[n,k], regardless of the threshold used, as
long as the BB transmit power is not clipped. In this paper,
we choose I, = —90dBm because the probability of BB
transmit power being clipped was found to be lower than
0.05 for the given deployment scenario with I' = 11.3dB
used. Furthermore, with this threshold, the received BB
at the intended transmitter (the lower bound of which is
approximated by Iy, - I') remains well above the noise floor
—117.8 dBm, such that it can be reliably detected.

4.7. Link Adaptation with BB Signalling. Receiver feedback
based on BB-ITS (see Section 4.6) allows for receiver-driven
link adaptation, where the chosen transmission rate is
adapted to the instantaneous channel conditions. Let M =
{1,...,M} be the set of supported modulation schemes.
Associated to each modulation scheme m € M is an SINR
target I' = I',, that must be achieved to satisfy a given frame
error rate (FER).

Provided that the channel response does not change
between successive frames, changes in I';, may be signalled
from receiver to transmitter through (14), since any fluctua-
tion in received BB power R2[n, k] = Gy[n, k] T2 [n, k] is due
to a change of I', in (14). In summary, BB-ITS serves two
important objectives. First, by adjusting the SINR target T,
the receiver implicitly signals to the transmitter through BB-
ITS that the transmission format should be changed; second,
by varying the BB power T2[n,k] in (14), the size of the
exclusion region around the active receiver is adjusted, so
that the required SINR target I, is met in successive frames.

Link adaptation with BB-ITS is carried out in two phases:
the contention phase, where the link is established and the
link adaptation (LA) phase, where the receiver adjusts its
transmission format to the current channel conditions.

Contention Phase. In contention, multiuser chunk allocation
is carried out as described in Section 4.3. To contend for an
unreserved chunk (#, k), transmitter x = (7, q) initially uses
the modulation scheme with the lowest spectral efficiency
my[n,k] = 1. Chunks that satisfy yx[n, k] = I'; are reserved
in the next frame k + 1 by BB signalling (see Section 4.4),
where the transmit power TP (n, k] in (14) is set using' = T'.
Then the transmission proceeds to the link adaptation phase.
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Link Adaptation Phase. The objective of the link adaptation
phase is to select the modulation scheme my[n, k] € M for
chunk (n, k), which yields the highest spectral efficiency, for
which yx[n,k] = Ty, (nk holds. By utilising BB-ITS link,
adaptation is accomplished without any explicit feedback.
The receiver executes the following algorithm.

(1) Calculate the achieved SINR yx[n, k] at chunk (n, k).

(2) Increment the number of bits per symbol based on

yx[n, k]
mx[n’k] + ]-) Vx[n,k] = me[n,k]+l)
my[n, k] < M,
my[n,k+1] = (15)
mx[”>k] -1, Vx[nyk] < me[n,k],
my[n, k], otherwise.

(3) If mx[n,k + 1] = 1, adjust the BB power (14) using
the SINR target I' = Iy, [nk+1) and transmit the BB.

(4) If mg[n,k + 1] < 1, terminate the link adaptation
phase and return to the contention phase.

The transmitter senses the BB minislot associated to chunk
(n,k). In order to determine the modulation scheme
my[n, k+1] requested by the receiver, the transmitter executes
the following algorithm.

(1) Measure the busy signal power received from the
intended data receiver RY[n,k] and compute the
difference to the BB power received from intended
data receiver in the preceding slot, AR = RY[n, k] —

R0[n, k — 1].
(2) The modulation format is adjusted based on AR as
follows:
my[n, k] +1, AR = I;AT,, — &,
myln,k+1] = A mg[n,k] =1, AR<IpAT,—1 +¢,  (16)
my[n, k], otherwise,

where AT, = I', — Tius1, m = ix[n, k]. The constant
& > 0 introduces a detection margin to enhance the
robustness towards estimation errors in ﬁ,‘}[n, k] due
to channel variations and noise.

(3) If my[n,k +1] = 1, transmit data on chunk (n,k + 1)
using the new modulation scheme #ix[n, k + 1].

(4) If mx[n,k + 1] < 1, terminate the link adaptation
phase and return to the contention phase.

Estimation errors due to channel variations and noise may
cause detection errors, so that i, [n, k] # myx[n, k]. Mismatch
between the selected modulation schemes at transmitter
and receiver can be mitigated if the transmitter announces
mx[n, k] together with payload data on chunk (#, k).

Manhattan deployment scenario
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FIGURE 4: Manhattan grid urban microcell deployment.

4.8. Benchmark System. Full-frequency reuse with adaptive
score-based chunk allocation (ASCA) is considered as the
benchmark system. This means that neither chunk reserva-
tion nor interference avoidance mechanisms is in place. In
order to maintain a fair comparison, the same fair scheduling
algorithm (3) as in BB-OFDMA is applied. With ASCA, the
score-based scheduler assigns chunk (n,k) to user v whose
score (3) is minimised

aq(n, k] = argmvinsy,q[n,k]. (17)

Chunk allocation for ASCA (17) corresponds to (4) by
setting the reservation indicator to zero, 4[n,k] = 0, and
by allowing a cell to access all chunks, which is achieved by
setting €,4[n, k] = 0 for all n, k in (3).

5. Manhattan Grid Deployment

An urban microcell deployment with a rectangular grid
of streets (Manhattan grid) as defined in scenario Bl in
WINNER [17] is considered, where antennas are mounted
below the rooftop. The deployment scenario consists of
building blocks of dimensions 200 m x 200m, interlaced
with the streets of width 30 m, forming a regular structure
called the Manhattan grid, as shown in Figure 4. The network
consists of 11 X 12 building blocks (72 BSs). However, the
performance statistics are collected only over the central core
of 3 X 3 building blocks (6 BSs), so as to reduce edge effects.
On average U = 10 MSs are served by one cell, uniformly
distributed in the streets and moving with a constant velocity
of 5km/h. BSs are placed in the middle of the street
canyons with an inter-BS distance of 4 building blocks, as
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depicted in Figure 4. Distance dependent path loss, log-
normal shadowing, and frequency selective fading are taken
into account, as specified in [24], channel model B1. While
the effect of user mobility on the channel response due to
the Doppler effect is taken into account, movement of users
along the streets is not considered during the duration of one
snapshot. Links where transmitter and receiver are located on
the same street are modelled as line-of-sight (LoS) channels,
with significantly lower path loss attenuation than nonline-
of-sight (NLoS) links [24]. WINNER channel models B1-
LOS and B1-NLOS [24] are used to model the LoS and
NLoS channels, respectively. MSs are connected to the BS
with the least path loss. A network synchronised in time and
frequency is assumed.

The traffic in the system is modeled as a burst of
100 protocol data units (PDUs) whose interarrival time is
exponentially distributed. A PDU of 112bit is assumed,
which is the smallest unit of data that can be transmitted in
one chunk. The average offered load per user L, is adjusted
by the interburst duration. It is considered that the arrival
times for different users are independent. The maximum
number of chunks that a user can be assigned in a given
slot is the total number of available chunks in a frame. The
simulation parameters are summarised in Table 1.

A 3/4-rate convolutional code and the SINR targets 'y,
for a given modulation scheme m are selected to attain a
packet error ratio of 1072 per PDU, given in Table 2. For non-
adaptive modulation, we consider a 16-QAM constellation
with m = 4 and a corresponding SINR target of 'y = 11.3 dB.
For link adaptation, the modulation schemes m € M are
chosen based on the achieved SINR targets I',,.

6. Results and Discussion

The performance of BB-OFDMA and the benchmark system
(ASCA) are evaluated in terms of user and system through-
put. User throughput is defined as the number of successfully
received bits per user per unit time. A transmission is
considered successful if the SINR target I' is met at the
receiver. The system throughput is defined as the aggregate
throughput of all users per cell.

6.1. Collisions Based on Access Probability. The likelihood of
achieving the SINR target during the initial access in con-
tention is depicted in Figure 5 for m = 4 with Iy = 11.3dB,
where m is the number of bits per symbol. The cell-edge
region suffers from collisions (SINR target not met) both
in the uplink (Figure 5(a)) and the downlink (Figure 5(b)).
Decreasing the access probability p substantially reduces the
occurrence of collisions, since the probability of simultane-
ous access of chunks in contention reduces (see Section 4.3).
In the downlink, cell-edge users suffer from weaker desired
signal power and at the same time experience strong CCI.
Furthermore, the users located at the street crossings at d =
115m are exposed to strong LoS interference from BSs in
the perpendicular streets. In the uplink, however, these users
cause CCI to the neighbouring cells; which may impact either
users at the cell-edge or users closer to the intended BS.

TasBLE 1: Simulation parameters.

Parameters Value
Carrier centre frequency 3.95GHz
System bandwidth B 89.84 MHz
No. of subcarriers (SCs) 1840
Subcarriers spacing A f 48.8 kHz
OFDM symbols/frame 2#,; 30
OFDM symbol duration Ty, 22.48 us
Frame duration 0.6912 ms
No. of chunks/frame Nc 230
Chunk size 1, X 1145 8 (freq.) x 15 (time) = 120
PDU size 112 bits
Access probability p 0.3

No. of sectors/cell 1

No. of users/cell U 10

Tx power/chunk T4 16.4 dBm
Antenna gain 0dBi
Noise level/chunk N —117.8 dBm
No. of snapshots 500
Snapshot duration 75ms
User load L, 30 Mbps

TaBLE 2: Look up table for modulation scheme.

Modulation, No. of link PDUs per slot Achieved SINR y (dB)
No transmission m = 0 —0<y<22
BPSK m = 1 22<y<52
QPSK m = 2 52<y<9.1
Cross 8-QAM m = 3 91<y<113
16-QAM m = 4 113 <y< 144
Cross 32-QAM m =5 144 <y<16.6
64-QAM m =6 16.6 <y <195
Cross 128-QAM m = 7 19.5 <y <225
256-QAM m = 8 225<y<o

Consequently, the SINR target is met with less likelihood
at street crossings and the cell edge in the downlink mode
compared to the uplink mode.

6.2. Setting the Threshold for Fixed Power BB Signalling. The
impact of the choice of interference threshold on the mean
system throughput is shown in Figure 6 for fixed 16-QAM
modulation with m = 4. It is seen that for lower values
of Iy, the amount of allocated resources (Set #) and the
achieved throughput (Set 8B) are approximately equal. This
is because at low Iy, larger exclusion regions around active
receivers are enforced. Thus, CCI is mitigated at the expense
of spatial reuse. By increasing I, the system throughput
gradually improves until the maximum is reached. However,
increasing Iy, introduces additional links that cause more
CCI to the existing links. As a result, some of the links
(mainly cell-edge users) are less likely to meet the SINR
target. Although it is desirable to maximise the spectral
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FIGURE 5: Probability of meeting the SINR target I' = 11.3dB
in contention for different access probabilities p, as a function
of the BS-MS distance d. At d = 115m, links are exposed to
strong LOS interference from cells in perpendicular streets, which
causes collisions in the downlink, while at d = 345 m, the MSs are
connected to BSs in a perpendicular street due to better channel
gains.

efficiency, it may be necessary to maintain a fair distribution
of resources to all users. Achieving a balance between
maximising spectral efficiency and enhancing fairness is
addressed in Section 6.3.

6.3. Impact of Interference Threshold on Fairness. Figure 7
shows the average user throughput versus distance d from
the serving BS. It is observed that the performance of
BB-OFDMA is sensitive to the chosen threshold Iy. The
system throughput is maximised for I, = —75dBm in the
downlink and for —85dBm in the uplink (see Figure 6).
However, these thresholds severely affect cell-edge user
throughput. Increasing interference protection by lowering
I, enhances user throughput at the cell edge at the expense
of system throughput. In the uplink (Figure 7(a)), the cell
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FIGURE 6: Mean system throughput versus I, for BB-OFDMA with
16-QAM modulation using fixed BB transmit power. The mean
system throughput is maximised for I, = —85dBm in the UL and
I, = —75dBm in the DL.

edge throughput (measured at d = 420 m from the desired
BS) improves from 1.5 Mbps (I, = —85dBm) to 3.08 Mbps
(Im = -95dBm), an approximately onefold increase,
whereas in the downlink (Figure 7(b)), user throughput
increases from 267kbps (I, = —75dBm) to 2.9 Mbps
(Im = —90dBm), an approximately tenfold increase. At
d = 115m, MSs are exposed to LOS interference from BSs
in perpendicular streets in the downlink. Consequently, high
CCI compromises throughput for these users. In the uplink,
MSs located at street crossings at d = 115 m transmit, so that
these users are not exposed to LOS interference. Hence the
uplink throughput of ASCA is not affected at d = 115m.
For BB-OFDMA, however, MSs located at street crossings
are exposed to strong BB signals from BSs in perpendicular
streets, which reduces the number of chunks such users can
compete for, causing a drop of throughput for users located
at street crossings.

Fairness is numerically quantified using Jain’s fairness
index (12). The cdf of the fairness distribution is presented in
Figure 8(a) for the uplink and Figure 8(b) for the downlink.
Applying the interference threshold that maximises system
throughput, I, = —75 dBm in the downlink and —85 dBm in
the uplink, results in median fairness index of F = 0.56 and
0.66, respectively. Increasing the interference protection by
lowering Iy, improves fairness, as this enables cell-edge users
to meet their SINR target. To this end, using I, = —95dBm
in the uplink and —90 dBm in the downlink, approximately
22% of system throughput, is traded off for median fairness
indices of F =~ 0.72. In the uplink, the median fairness index
can be further improved to 0.78 by setting I, = —100 dBm.
However, the improved fairness significantly degrades system
throughput (see Figure 6).

On the other hand, with BB-ITS, median fairness indices
of ~0.7 are achieved. The corresponding average uplink
and downlink user throughputs at the cell edge amount to
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FIGURE 7: Mean user throughput versus distance from the serving
BS, d, for BB-OFDMA with 16-QAM modulation for differ-
ent interference thresholds Iy. For comparison, results for full-
frequency reuse without interference protection termed ASCA are
also included. Note that at d = 115m, links are exposed to strong
LOS interference (data in downlink, BB in uplink) from cells in
perpendicular streets, which compromises throughput, while atd =
345 m, the MSs are connected to the BS in a perpendicular street due
to better channel gains.

2.57 Mbps and 2.99 Mbps, respectively. The corresponding
reduction in system throughput compared to the respective
optimal thresholds with fixed power BB is only 1% in the
uplink and 8% in the downlink. Note that BB-OFDMA
with fixed BB power requires a 22% reduction in system
throughput for a comparable performance at the cell edge.
In light of this, BB-ITS results in a better tradeoff between
system throughput and fairness.

For comparison, the median fairness resulting from
ASCA is F = 0.79 in the uplink and 0.59 in the downlink.
The corresponding average user throughputs at the cell edge
are 2.278 Mbps and 208 kbps, respectively. This means that
ASCA is more fair in the uplink compared to the downlink.
The reason is that in the downlink cell-edge users are
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FiGure 8: Cumulative distributive function (cdf) of Jain’s fairness
index (12) for BB-OFDMA compared to full-frequency reuse with-
out interference avoidance (ASCA) both with 16-QAM modulation.

exposed to high CCI, while in the uplink cell-edge users
cause high CCI to adjacent cells. Hence the detrimental
effects of interference on the uplink tend to be more equally
distributed among all users.

6.4. Comparison between BB-OFDMA and ASCA. Figures
9(a)-9(d) depict the cumulative distribution function (cdf)
of the user throughput and the system throughput. The
results shown in Figures 9(a)-9(b) demonstrate that BB-
enabled interference avoidance exhibits a gain in median
system throughput of up to 50% compared to ASCA, both
in uplink and downlink. Using a modulation format of m =
4bits per symbol and a 3/4-rate convolutional code, the
upper bound on system throughput achieved in an isolated
cell (CCI free system) is 111.8 Mbps. With Iy, = —85 dBm in
the uplink and —75 dBm in the downlink, a median system
throughput of about 90% and 85% of the upper bound (CCI
free system) is achieved.

Figures 9(c)-9(d) show the cdf of the user throughput
for BB-OFDMA and ASCA. When fairness is the primary
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FiGure 9: Cumulative distributive function (cdf) of system throughput and user throughput for BB-OFDMA with fixed BB power and BB-
ITS. The performance for full-frequency reuse without interference protection termed ASCA is included for comparison. BB-ITS results in
a favourable tradeoff between fairness and system throughput both in uplink and downlink.

concern, Iy, = —95dBm in the uplink and I, = —90dBm
in the downlink are preferable. Then the 10%-ile of the
achieved user throughput amounts to 1.48 Mbps in the
uplink (see Figure 9(c)) and 1.42 Mbps in the downlink (see
Figure 9(d)). In contrast, ASCA fails to deliver any downlink
throughput to more than 20% of the users. In the uplink, the
10%-ile of the user throughput of BB-OFDMA is improved
by 40% compared to ASCA. With these uplink and downlink
thresholds of I, = —95dBm and —90dBm, the median
system throughput of BB-OFDMA is still 15% and 18%
higher than that achieved with ASCA (see Figures 9(a)-9(b)).

The results of BB-OFDMA with variable BB power,
termed BB-ITS, are also included in Figures 9(a)-9(d). With
BB-ITS, the lower 10%-ile of user throughput achieved is
1.04 Mbps in uplink and 1.416 Mbps in downlink (see Fig-
ures 9(c)-9(d)), at a modest degradation in system through-
put (see Figures 9(a)-9(b)) compared to BB-OFDMA
with fixed threshold that maximises the respective system
throughput. BB-ITS, therefore, not only avoids the need for
tuning the interference threshold so as to match a certain
interference scenario (e.g., in uplink or downlink), but
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FiGure 10: Cdfs of system and user throughputs for BB-ITS and ASCA with LA. In the DL, the users that are located at the cell-edge benefit
whereas in the UL the users that are located closer to their desired BS benefit.

also achieves a preferable compromise between maximising
system throughput and maintaining fairness.

6.5. Link Adaptation with BB-Signalling. Figures 10(a)-10(b)
compare the system and user throughput achieved by per-
forming link adaptation (LA) with BB-ITS and ASCA. Both
BB-ITS and ASCA utilise the same link adaptation algorithm
presented in Section 4.7; the only difference is that for ASCA
interference protection is omitted. The results shown in
Figure 10(a) reveal that BB-ITS with link adaptation attains
an improvement of 50% (uplink) and 13% (downlink) in
median system throughput compared to ASCA with link
adaptation. Furthermore, Figure 10(b) shows that the BB-
ITS outperforms ASCA by a factor of 2.75 in terms of the
lower 10%-ile of the downlink user throughput. On the other
hand, the cell-edge user throughput of BB-ITS and ASCA
in the UL is comparable, while significant improvements of
up to 70% are observed for higher percentiles of the user
throughput in Figure 10(b).

By performing link adaptation with BB-ITS, the cell-edge
users benefit in the downlink, whereas the users that are
closer to their desired BS benefit in the uplink. The reason
for this opposite trend for the uplink and the downlink
is elaborated in the following. Due to the specific point-
to-multipoint structure in the downlink, the CCI observed
by the cell-edge users is dominated by the interference
originating from the closest BS. When a chunk is assigned
to a cell-edge user in the downlink, interference tolerance
signalling enforces that this chunk cannot be spatially reused
by the closest BS in an adjacent cell. By ensuring that, this
dominant interferer does not access this chunk, the achieved
SINR is greatly improved, potentially enough to meet the
higher SINR target(s), thus allowing for the higher-order
modulation schemes. In the uplink, on the other hand, the

chunks assigned to the cell-edge users are more likely to be
reused in the adjacent cells due to the distributed location of
the MSs transmitters (see Section 4.5). Consequently, it is less
likely that a more spectrally efficient modulation scheme can
be used by the cell-edge users. Furthermore, in the uplink,
the distance between the MSs (transmitters) and the victim
BSs (receivers) in neighbouring cells is larger for the cell-
centre MSs than the cell-edge users. Hence the cell-centre
users are more likely to be located outside the exclusion range
of BSs receivers (BB transmitters). This results in a larger
number of chunks that are available to be spatially reused
for the cell-centre users. Lastly, the cell-centre users also
benefit from higher SINRs as a result of which throughput
is particularly boosted by performing link adaptation.

7. Conclusions

In this paper, the busy signal concept for decentralised and
self-organised interference aware medium access has been
applied to OFDMA-TDD systems operated in Manhattan
grid deployment scenarios. An exclusion zone around victim
receivers is established by means of receiver feedback in the
form of time-multiplexed busy bursts (BBs), wherein no
active transmitter from an adjacent cell may be located. BB
enabled interference avoidance exhibits impressive gains in
system and user throughputs compared to the benchmark
system, with full-frequency reuse without interference avoid-
ance, both in the uplink and the downlink. The impact
of the BB specific threshold parameter that controls the
interference imposed on coexisting links in neighbouring
cells has been studied.

By adjusting this threshold parameter, the system benefits
from flexible operation of either achieving high system
throughput or enhanced fairness in terms of cell-edge
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user throughput. A onefold (uplink) and tenfold (down-
link) improvement in average cell-edge user throughput
is achieved at a reduction in system throughput of about
22% (~20 Mbps/cell) in both cases. BB-enabled interference
avoidance is therefore particularly powerful in enhancing
downlink cell-edge user throughput, since in the downlink
high interference is coupled with low-desired signal levels,
resulting in poor average SINRs at the cell edge. In the uplink,
on the other hand, cell-edge users cause high CCI, so that
the detrimental effects of uplink interference are distributed
more equally among all users, giving rise to interference
diversity.

By allowing each receiver to signal the amount of
interference it can tolerate, by using a variable busy burst
power, an even better tradeoff between system throughput
and fairness is achieved. Especially in the downlink, a tenfold
improvement has been achieved at the cost of only 8%
reduction in maximum system throughput. Furthermore,
this scheme also alleviates the need to adjust the BB threshold
parameter. The latter property is particularly important for
self-organising wireless networks, as the optimum choice
of the BB threshold is sensitive to changes in the network
topology, and may not be known a priori.

Finally, link adaptation has been combined with busy
burst-enabled interference avoidance, where changes in the
transmission format are implicitly signalled to the trans-
mitter by virtue of a variable BB power. BB signalling
with link adaptation attained a superior performance than
the benchmark system with link adaptation, both in terms
of system throughput and user throughput. Due to the
particular interference scenario, the cell-edge users achieved
larger gains in the downlink whereas the cell-centre users
benefitted more in the uplink. Consequently, larger gains
in system throughput in the uplink mode were achieved
compared to the gains achieved in the downlink mode.
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1. Introduction

Providing mobile multimedia transmission services with an
adequate QoS is very challenging. In contrast with wired
communications, wireless transmissions are subject to many
channel impairments such as path loss, shadowing, and
multipath fading [1-4]. These phenomena severely affect the
transmission capabilities and in turn the QoS experienced
by applications, in terms of data integrity but also in terms
of the supplementary delays or packet losses which appear
when the effective bit rate at the physical layer is low. The past
decades have witnessed intense research efforts on wireless
digital communications. Among all the studied transmission
techniques, IOrthogonal Frequency Division Multiplexing
(OFDM) has clearly emerged for future broadband wireless
multimedia networks (4G systems) and is already widely
implemented in most recent wireless systems like 802.11a/g
or 802.16. The basic principle of OFDM for fighting the
effects of multipath propagation is to subdivide the available
channel bandwidth in subfrequency bands of width inferior
to the coherence bandwidth of the channel (inverse of the
delay spread). The transmission of a high-speed signal on
a broadband frequency selective channel is then substituted

with the transmission on multiple subcarriers of slow speed
signals which are very resistant to intersymbol interference
and subject to flat fading. This subdivision of the overall
bandwidth in multiple channels provides frequency diversity
which added to time, and multiuser diversity may result
in a very spectrally efficient system subject to an adequate
scheduling.

MAC protocols currently used in wireless local area
networks were originally and primarily designed in the wired
local area network context. However, conventional access
methods like Round Robin (RR) and Random Access (RA)
are not well adapted to the wireless environment and provide
poor throughput. Much interest has recently been given
to the design of scheduling algorithms that maximize the
performance of multiuser OFDM systems. Opportunistic
scheduling techniques take advantage of multiuser diver-
sity by preferably allocating the resources to the active
mobile(s) with the most favourable channel conditions at
a given time. This technique was explored first in single
carrier communications [5]. More recently, opportunistic
scheduling has been exploited in multicarrier systems [6, 7].
These schemes are derived from the maximum signal-to-
noise ratio (MaxSNR), also known as maximum carrier



2 EURASIP Journal on Wireless Communications and Networking

Max
%
=
.
£ Round Robin
5
& Proportional fair
%D
e
c
= MaxSNR
Min Max

Overall throughput

FIGURE 1: Tradeoff between overall throughput and fairness.

to interference ratio (MaxC/I), technique which allocates
the resource at a given time to the active mobile with the
greatest SNR. Dynamically adapting the modulation and
coding allows then to always make the most efficient use of
the radio resource and come closer to the Shannon limit.
This maximizes the system capacity of an information theory
point of view. However, it assumes that the user with the
most favourable transmission conditions has information to
transmit at the considered time instant. It does not take into
account the variability of the traffic and the queuing aspects.

Pure opportunistic scheduling does not take into account
the delay constraints of the flows to convey and suffer of
a lack of fairness. References [8, 9] introduce opportunistic
schemes coupled with a system of quota. This improves fair-
ness but reduces the efficiency of utilization of the multiuser
diversity with prejudice on system throughput. Proportional
fair (PF) algorithms have recently been proposed to incorpo-
rate a certain level of fairness while keeping the benefits of
multiuser diversity [10—14]. The basic principle is to allocate
resources to a user, when its channel conditions are the most
favourable with respect to its time average. In these schemes,
fairness consists in guaranteeing an equal share of the total
available bandwidth to each mobile, whatever its position or
channel conditions.

However, performance analysis of PF-based protocols
has shown that fairness issues persist since these algorithms
do not ensure an equal throughput [15, 16]. The main
issues are fairness considering mobiles with unequal spatial
positioning, different traffic types, or different QoS tar-
gets. PF scheduling does not take into account the delay
constraints and is not well adapted to multimedia services
which introduce heterogeneous users, new traffic patterns
with highly variable bit rates and stringent QoS requirements
in terms of delay, and packet loss. Recently, [17] proposed
the multimedia adaptive OFDM proportional fair (MAOPF)
algorithm, an evolution of the classical PF that considers
multimedia services. The principle of the MAOPF is to share
the total available bandwidth among users proportionally to
their bit rate requirement. Although this enables the coexis-
tence of applications with unequal bit rates, heterogeneous
QoS requirements are still not well supported. Moreover, the
MAOPF allocates all OFDM subcarriers to the same mobile.
This does not fully take advantage of the multiuser diversity
and has a negative impact on the system capacity.

Mobile 1 ~ Mobile k

Maobile K

FiGgure 2: Allocation of radio resources among the set of mobiles
situated in the coverage zone of an access point.

This paper proposes a new MAC protocol for efficient
support of multimedia services in multiuser OFDM wireless
networks. This protocol, which we call the “Weighted Fair
Opportunistic (WFO)” protocol, applies cross-layer design
concepts taking into account both the OFDM physical
layer specificities (transmission conditions) and the higher
layer constraints (traffic patterns, QoS constraints). Physical
layer information are used in order to take advantage of
the time, frequency, and multiuser diversity and maximize
the system capacity. Higher layer information are exploited
in a weighted system that introduces dynamic priorities
between flows for ensuring the same QoS level to all mobiles.
This result in an efficient scheme which guarantees the
differentiated QoS constraints (data integrity and delay
targets) of heterogeneous traffic flows like those generated by
multimedia applications. Additionally, this bandwidth man-
agement avoids trading capacity for fairness as illustrated in
Figure 1.

The paper is organized as follows. Section 2 provides a
detailed description of the system under study. Section 3
introduces the QoS management principle embodied in
the proposed protocol. Section 4 describes the integrated
scheduling algorithm. In Section 5, we present a detailed per-
formance evaluation through a simulation study. Section 6
concludes the paper.

2. System Description

We focus on the proper allocation of radio resources among
the set of mobiles situated in the coverage zone of an access
point (see Figure2). We consider a centralized approach.
The packets originating from the backhaul network are
buffered in the access point which schedules the downlink
transmissions. In the uplink, the mobiles signal their traffic
backlog to the access point which builds the uplink resource
mapping.

We assume that the physical layer is operated using
the structure described in Figure 3 which ensures a good
compatibility with the OFDM-based transmission mode of
the IEEE 802.16-2004 [18, 19]. The total available bandwidth
is divided in subfrequency bands or subcarriers. The radio
resource is further divided in the time domain in frames.
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Each frame is itself divided in time slots of constant duration.
The time slot duration is an integer multiple of the OFDM
symbol duration. The number of subcarriers is chosen so
that the width of each subfrequency band is inferior to the
coherence bandwidth of the channel. Moreover, the frame
duration is fixed to a value much smaller than the coherence
time (inverse of the Doppler spread) of the channel. With
these assumptions, the transmission on each subcarrier is
subject to flat fading with a channel state that can be
considered static during each frame.

The elementary resource unit (RU) is defined as any
(subcarrier, time slot) pair. Each of these RUs may be
allocated to any mobile with a specific modulation order.
Transmissions performed on different RUs by different
mobiles have independent channel state variations [20].
On each RU, the modulation scheme is QAM with a
modulation order adapted to the channel state between the
access point and the mobile to which it is allocated. This
provides the flexible resource allocation framework required
for opportunistic scheduling.

The system is operated using time division duplexing
with four subframes: the downlink feedback subframe, the
downlink data subframe, the uplink contention subframe, and
the uplink data subframe. The uplink and downlink data
subframes are used for transmission of user data. In the
downlink feedback subframe, the access point sends control
information towards its mobiles. This control information is
used for signalling to each mobile the RU(s) which have been
allocated in the next uplink and downlink data subframes,
the modulation order selected for each of these RUs and
the recommended emission power in the uplink. In the
uplink contention subframe, the active mobiles send their
current traffic backlog and information elements such as
QoS measures and transmit power. The uplink contention
subframe is also used by the mobiles for establishing their
connections. This frame structure supposes a perfect time
and frequency synchronization between the mobiles and the
access point as described in [21]. Therefore, each frame
starts with a preamble used for synchronization purposes.
Additional preambles may also be used in the frame.

3. The WFO Protocol QoS Management
Principle

The crucial objective of the WFO protocol is to fully support
multimedia transmission services, including the widest range
of services: VoIP, videoconference, email, and file transfer.
This requires the coexistence of delay sensitive flows as well
as non-real-time traffic with looser delay constraints but
with tight data integrity targets. In order to deal with the
various and heterogeneous QoS requirements of multimedia
services, the WFO protocol relies on a generic approach of
QoS management.

We define a service flow as a traffic stream and its QoS
profile, in a given transmission direction. A mobile may have
multiple service flows both in the uplink and the downlink.
An application may also use several service flows enabling
for instance the implementation of Unequal Error Protection
schemes in the physical layer. Each service flow possesses its
own transmission buffer. In the following, index k is used to
designate a given service flow among the set of service flows
to be scheduled in a given transmission direction.

The QoS profile is defined as the set of parameters that
characterizes the QoS requirements of a service flow mainly
in terms of data integrity and delay. In the following, data
integrity requirements are specified by a bit error rate (BER)
target, which we denote by BER;ggeri for service flow k.
Delay requirements are specified at the packet level. We
assume traffic streams are organized at the MAC level in
blocks of bits of constant size that we call packets. The packet
delay is defined as the time between the arrival of the packet
in the transmission buffer and the time of its reception by the
mobile or the access point. This delay is roughly equal to the
packet waiting time in the service flow transmission buffer
neglecting the transmission and propagation delays.

Adequately specifying the delay requirements is challeng-
ing. We believe that the meaningful constraint is a limitation
of the occurrences of large delay values. By analogy with
the concept of outage used in system coverage planning,
we define the concept of delay outage. A service flow k is
in delay outage when its packets experience a delay greater
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than a given application specific threshold denoted Ty. We
define the packet delay outage ratio (PDORy) experienced
by each service flow k as the percentage of packets that
do not meet the delay threshold Ty in the total number of
packets transmitted. The experienced PDOR value is tracked
all along the lifetime of the service flows; at each transmission
of a packet of service flow k, the total number of packets
whose delay exceeded the delay threshold Ty divided by
the total number of packets transmitted since the beginning
of the connection is computed. Additionally, we define the
packet delay outage ratio target, denoted PDOR;arget, as the
maximum ratio of packets that may be delivered after the
delay threshold. This characterizes the delay requirements of
any service flow in a generic approach. Figure 4 illustrates
an example cumulative distribution of the packet delay of
service flow k at a given time instant. The objective of the
WEFO protocol is to regulate the experienced PDOR along
the lifetime of the service flow such as its value stays below
the PDOR target. This ensures the satisfaction of the delay
requirements at a short-time scale.

In the WFO protocol, QoS management is organized
in two parts: data integrity management and delay man-
agement. Data integrity is guaranteed by the physical layer
mainly by adapting the modulation scheme and the transmit
power to the mobile specific channel state. This is achieved
considering each service flow independently. Delay manage-
ment is performed considering all service flows jointly and
scheduling the packets according to their distance to the
PDOR target. Fairness is provided by guaranteeing the same
level of satisfaction of delay constraints to all service flows,
that is, guaranteeing the same PDOR to all service flows.
The joint satisfaction of the delay constraints relies on the
dynamics of the traffic streams that are multiplexed. Data
integrity and delay management are integrated using the
WFO scheduling algorithm.

4. The WFO Scheduling Algorithm

The core of the WFO protocol is its scheduling algorithm.
This scheduling is performed during the uplink data trans-
mission phase. The scheduler, located in the access node,
grants RUs to each service flow as a function of

(i) its QoS profile (BER target, delay threshold, and
PDOR target),

(ii) its currently experienced QoS (BER and PDOR),
(ii) its traffic backlog,

(iv) its channel state.

The QoS profile is signaled in the connection establishment
phase. In the uplink, the currently experienced PDOR and
the traffic backlog (buffer occupancy) are signaled by the
mobile in the contention subframe. The experienced BER
is tracked directly by the access node. Reciprocally, in
the downlink, the currently experienced PDOR and the
traffic backlog are calculated by the access node, and the
experienced BER is signaled.

Additionally, knowledge of the channel state is supposed
to be available at the receiver [22]. The current channel
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FIGURE 4: An example of packet delay CDF and experienced PDOR.

attenuation on each subcarrier and for each mobile is
estimated by the access node based on the SNR of the
signal sent by each mobile during the uplink contention
subframe. Assuming that the channel state is stable on a
scale of 50 milliseconds [23], and using a frame duration
of 2 milliseconds, the mobiles will transmit their control
information alternatively on each subcarrier so that the
access node may refresh the channel state information once
every 25 frames.

The WFO scheduling algorithm relies on weights that
set the dynamic priorities for allocating the resource. These
weights are built in order to satisfy two major objectives:
system throughput maximization and fairness as explained
below.

4.1. System Throughput Maximization. The WFO maxi-
mizes the system throughput in a MAC/PHY opportunistic
approach. Data integrity requirements of the service flows
are enforced considering each service flow independently
adapting the modulation scheme and the transmit power to
the mobile specific channel state. At each scheduling epoch,
the scheduler computes the maximum number of bits my,
that can be transmitted in a time slot of subcarrier n if
assigned to service flow k, for all k and all n. This number
of bits is limited by two main factors: the data integrity
requirement and the supported modulation orders.

The bit error probability is upper bounded by the symbol
error probability [6], and the time slot duration is assumed
equal to the duration T; of an OFDM symbol. The required
received power P, (g, k) for transmitting g bits in an RU while
keeping below the data integrity requirement BERargerk Of
service flow k is a function of the modulation type, its order,
and the single-sided power spectral density of noise Ny. For
QAM and a modulation order M on a flat fading channel [1],

2
_ 2Ny 1 BERtarget,k -
P.(q,k) = 3T [erfc (2 M-1), (1)

where M = 24, and erfc is the complementary error function.
P.(g,k) may also be determined in practice based on BER
history and updated according to information collected on
experienced BER.
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The transmit power Py, of service flow k on subcarrier
n is upper bounded to a value Py,,x which complies with the
transmit power spectral density regulation:

Pk,n =< Pmax~ (2)

Given the channel gain ay , experienced by service flow k on
subcarrier # (including path loss and Rayleigh fading),

Pr(% k) < Ak,nPrax. (3)

Hence, the maximum number of bits gy, of service flow
k which can be transmitted on a time slot of subcarrier n
while keeping below its BER target is

We further assume that the supported QAM modulation
orders are limited such as g belongs to the set § =
10,2,4,. .., qmax}. Hence, the maximum number of bits my ,
that will be transmitted on a time slot of subcarrier n if this
RU is allocated to the service flow k is

X X
o < [log, 1+ o X T X 0k
2Ny [erfc*l (BERtarget,k/z) ]

Mgy, =max{q €S, q < g} (5)

MaxSNR-based schemes allocate the resources to the
flows which have the greatest my,, values. This bandwidth
allocation strategy maximizes the bandwidth usage efficiency
but suffers of a significant lack of fairness. In order to provide
fairness while preserving the system throughput maximiza-
tion, a new parameter is introduced which modulates this
pure opportunistic resource allocation.

4.2. Fairness Support. The second major objective of the
WFO is to provide fairness, that is, guaranteeing the same
PDOR to all service flows as explained in Section 3. This is
achieved by extending the above cross-layer design to higher
layers. A new weighted fair (WF) parameter is introduced

based on the current estimation of the PDOR of service flow
k:

WF; = f(PDORy), (6)

where f is a strictly positive and monotonically increasing
function. The WFO scheduling principle is then to allocate
a time slot of subcarrier n to the mobile k which has the
greatest WFO parameter value WFOy,,, with

WEFOy,, = WFy X my . (7)

Based on the PDOR, the WF parameters directly account
for the level of satisfaction of the delay constraints for an
efficient QoS management. The PDOR is more relevant
and simpler to use than the service flow throughput, the
buffer occupancy, or the waiting time of each packet to
schedule which would introduce a great complexity in
the scheduling algorithm. The WFO parameters introduce
dynamic priorities that delay the flows which currently easily
respect their delay threshold to the benefit of others which go
through a critical period.

Our studies on the algorithm performance have shown
that a polynomial function f suits well

f(x) =1+ px~ (8)

The exponent parameter « allows being more sensitive and
reactive to PDOR fluctuations which guarantees fairness at a
short-time scale. 3 is a normalization parameter that ensures
that WFy and my ,, are in the same order of magnitude. Given
that PDORy has an order of magnitude 1072, B should be set
to 10%*. With this choice, WFy is always in the same order of
magnitude as my, and allows to manage both fairness and
system throughput maximization.

By extensive simulations, we analyzed the influence of the
value of the pair (@, ) on the performances of the WFO
scheduling scheme and adequately tuned f(x). Figures 5(a)
and 5(b) illustrate the calibration study. Here, half mobiles
are close to the access point and the second half, twice
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other farther. All mobiles run a same application with same
delay and BER requirements as described in Section 5.1.
Figure 5(a) represents the overall PDOR (computed on
all transmitted packets) obtained for different values of «
coupled with a 8 value of 10 as defined above. A cubic
exponent suits well offering sufficient reactivity to PDOR
fluctuations. Hence, in the following « is assumed to be equal
to 3. Figure 5(b) shows the WFO performances obtained for
each f3 value when « is set to 3. It confirms that when f3 is too
small, the weighted parameter has no influence and fairness
is lost. On the contrary, if 8 is too high, my , looses weight
in the scheduling, and the system throughput maximization
decrease. Good values for 3 range between 10° and 10°. In
the following, f3 is taken equal to 10°.

Additionally, Figures 5(a) and 5(b) show the potential of
the WFO. Indeed, when « or 8 equals zero, the function f is
constant and iy, only has influence in the scheduling. With
this setting, the WFO behaves as the MaxSNR yielding unfair
performances. In contrast, the adequate tuning of « and f3
brings the wanted fairness.

The dynamic priorities introduced by the WFO algo-
rithm evolve as a function of the specific channel condi-

tions and currently experienced QoS of each service flow
in a cross-layer higher layerss MAC/PHY approach. This
result in a well-balanced resource allocation which keeps
a maximum number of service flows active across time
but with continuously low traffic backlogs. Preserving this
multiuser diversity allows to continuously take a maximal
benefit of opportunistic scheduling and thus maximize the
bandwidth usage efficiency. Additionally, this also achieves a
time uniform fair allocation of the RUs to the service flows
ensuring the required short term fairness [24, 25].

4.3. Global WFO Scheduling Algorithm Description. The
WFO scheduling algorithm is detailed in Figure 6. The
scheduling is run subcarrier by subcarrier and on a time slot
basis for improved granularity. In the allocation process of
a given time slot, the priority of a service flow with respect
to another is determined by the magnitude of its WFO
parameter. All service flows are scheduled simultaneously in
a single run of the algorithm, whatever their QoS profile is.
QoS differentiation is achieved by means of the WFO param-
eters. Service flows with low delay constraints like best effort
traffic are qualified with a quite high delay threshold. As a
result, their PDOR is always very small compared to other
low latency traffic whose priority increases dramatically as
soon their smaller delay threshold is not respected. In the
following, we describe the proposed scheduling algorithm
step by step.

Step 1. The scheduler refreshes the current PDOR; and
buffer occupancy BOy values of each service flow k and com-
putes the my ,, WFy, and WFOy , parameters for each service
flow and each subcarrier. Then, n and t are initialized to 1.

Step 2. For subcarrier #, the scheduler selects the service flow
k with the greatest WFOy,, value.

Substep 2.1. If the virtual buffer occupancy (we define the
virtual buffer occupancy as the current buffer occupancy of
service flow k minus the number of bits already allocated
to this service flow) of service flow k is positive, the
schedulers go to Substep 2.2. Else, if all virtual buffers are
null or negative, the scheduler goes to Step 3. Otherwise, the
scheduler selects the next service flow k with the greatest
WEFOy,, value and restarts Substep 2.1.

Substep 2.2. The scheduler allocates time slot ¢ of subcarrier
n to service flow k with a capacity my, bits, removes my.,
bits of its virtual buffer, and increments the value of ¢. If ¢
is smaller than the maximum number fy.x of time slots by
subcarrier, go to Substep 2.1 for allocating the next time slot.
Else, go to next substep.

Substep 2.3. Increment the value of n. If »n is smaller than
the maximum number #m,x of subcarriers, go to Step 2 for
allocating the time slots of the next subcarrier. Otherwise, go
to Step 3.

Step 3. All virtual buffers are empty; or all time slots of all
subcarriers are allocated and the scheduling ends.
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5. Performance Evaluation

In this section, we compare the proposed weighted fair
opportunistic scheduling with the Round Robin (RR),
MaxSNR, PF, and MAOPF schemes implemented with
subcarrier by subcarrier allocation. Performance evaluation
results are obtained using OPNET discrete event simulations.

In the simulations, we assume 128 subcarriers and 5 time
slots in a frame. The channel gain model on each subcarrier
considers free space path loss and multipath Rayleigh fading
[4]. We introduce a reference distance d,.r for which the free
space attenuation equals arf. As a result the channel gain is
given by

d " 3.5
re 2
Ak,n = Qref X ( dk ) X ak,n’ (9)

where d is the distance to the access point of the mobile
owning the service flow k, and ag , represents the flat fading
experienced by this service flow k if transmitted on subcarrier
n. In the following, ax, is Rayleigh distributed with an
expectancy equal to unity.

The maximum transmit power satisfies

10log,, (P"Z‘:;;n X aref) = 31dB. (10)

The BER target is taken equal to 107, With this setting,
the value of my, for the mobiles situated at the reference
distance is 6 bits when af ,, equals unity.

We assume all mobiles run the same videoconference
application. This demanding type of application generates a
high volume of data with high sporadicity and requires tight
delay constraints which substantially complicates the task of
the scheduler. Each mobile has only one service flow with a
traffic composed of an MPEG-4 video stream [26] and an
AMR voice stream [27].

The problem we are studying is quite different with
the sum-rate maximization with water filling for instance.
The purpose of the scheduler proposed in this paper is
to maximize the traffic load that can be admitted in the
wireless access network while fulfilling delay constraints.
This is achieved by both taking into account the radio
conditions but also the variations in the incoming traffic. In
this context, we cannot for instance assume that each mobile
has some traffic to send at each scheduling epoch. Traffic
overload is not realistic in a wireless access network because it
corresponds to situations where the excess traffic experiences
an unbounded delay. This is why, in all our simulations,
the traffic load (offered traffic) does not exceed the system
capacity. In these conditions, the offered traffic is strictly
equal to the traffic carried over the wireless interface and all
mobiles get served sooner or later. The bit rate sent by each
mobile is equal to its incoming traffic. Fairness in terms of bit
rate sent by each mobile is rigorously achieved. The purpose
of the scheduler is to dynamically assign the resource units to
the mobiles at the best time in order to meet the traffic delay
constraints. This is why we adopted the PDOR as a measure
of the fairness in terms of QoS level obtained by each mobile.

TaBLE 1: First scenario setup.

Group Distance dj Delay threshold Ty Data rate
1 2 drer 80 ms 80 Kbps
2 3d.er 80 ms 80 Kbps

Four simulation scenarii were used in the performance
evaluation. In the first scenario, we analyzed the behavior of
the schedulers when mobiles occupy different geographical
positions. The second scenario examines the performance
of the schedulers when mobiles have heterogeneous bit rate
requirements. QoS differentiation is evaluated in the third
scenario. The fourth simulation scenario considers mobiles
with both heterogeneous geographical positions, bit rate, and
QoS requirements.

5.1. First Scenario: Influence of the Distance on the Schedulers
Performances. In wireless networks, it is well known that
the closest mobiles to the access point generally obtain
better QoS than mobiles more distant thanks to their higher
spectral efficiency. In order to study the influence of the
distance on the scheduling performances, a first half of
mobiles are situated close to the access point and a second
half 1.5 farther. The other parameters are identical for all the
mobiles as described in Table 1. The total number of mobiles
sets the traffic load.

First we focus on the fairness provided by each sched-
uler. Figures 7(a), 7(b), 7(c), and 7(d) display the overall
PDOR for different traffic loads considering the influence
of the distance on the scheduling. The classical RR fails
to ensure the same PDOR to all mobiles. Actually, the RR
fairly allocates the RUs to the mobiles without taking in
consideration that far mobiles have a much lower spectral
efficiency than closer ones. Moreover, the RR does not
take benefit of multiuser diversity which results in a bad
utilization of the bandwidth and in turn, poor system
throughput. Consequently, an acceptable PDOR target of 5%
is exceeded even with relatively low traffic loads. Based on
opportunistic scheduling, the three other schemes globally
show better QoS performances supporting a higher traffic
load. However, MaxSNR, PF, and MAOPF still show severe
fairness deficiencies (in this context where all mobiles have
an equal source bit rate, the MAOPF and PF perform
the same scheduling). Close mobiles easily respect their
delay requirement while far mobiles experience much higher
delays and go past the 5% PDOR target when the traffic load
increases. In contrast, the WFO provides the same QoS level
to all mobiles whatever their respective position. The WFO is
the only one to guarantee a totally fair allocation. This allows
to reach higher traffic loads with an acceptable PDOR for
all mobiles. Additionally, looking at the overall PDOR for all
mobiles at different traffic loads shows that, besides fairness,
the WFO provides a better overall QoS level as well.

Observing the mean buffer occupancy in Figure 8(a),
the WFO clearly limits the buffer occupancy to a same and
reasonable value whatever the position of the mobile. This
allows to stay under the PDOR target for any traffic load.
With its system of weights, the WFO dynamically adjusts the
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relative priority of the flows according to their experienced
delay. With this approach, sparingly delaying the closer
mobiles, the WFO builds on the breathing space offered by
the easy respect of the delay constraints of the closer mobiles
(with better spectral efficiency) for helping the farther ones.
The WFO interesting performance results are corroborated
in Figures 8(b) and 8(c), where the overall values of the mean
packet delay and jitter obtained using the WFO are smaller.

We then had a look at the QoS satisfaction level that
each mobile perceives across the lifetime of a connection.
We divided the connection of each mobile in cycles of five
minutes and measured the PDOR at the end of each cycle.
Figure 9 shows the CDF of end cycle PDOR values for a traffic
load of 960 Kbps, using, respectively, the MaxSNR, the PF,
and the WFO schemes (RR performances are not presented
here since they are not able to support this high traffic
load). We also estimated the mobile dissatisfaction ratio. We
checked if at the end of each cycle the delay constraint is
met or not. We then computed the mobile dissatisfaction
ratio defined as the number of times that the mobiles are
not satisfied (experienced PDOR> PDORarge) divided by
the total number of cycles (cf. Figure 10).

Highly unfair, MaxSNR fully satisfies the required QoS of
close mobiles at the expense of the satisfaction of far mobiles.
Indeed, only 54.5 percents of these latter experience a final
PDOR inferior to a PDOR target of 5% (cf. Figure 9(a)).
Unnecessary priorities are given to close mobiles which easily
respect their QoS constraints while more attention should
be given to the farther. These inadequate priority manage-
ment dramatically increases the global mobile dissatisfaction
which reaches 23% as shown in Figures 9(a) and 10(a).

PF brings more fairness and allocates more priority to
far mobiles. Compared to MaxSNR, PF offers a QoS support
improvement with only 12.8% of dissatisfied mobiles (cf.
Figures 9(b) and 10(a)). Fairness is still not total since the
farther mobiles have a lower spectral efficiency than the
closer ones due to path loss. All mobiles do not all benefit
of an equal average throughput despite they all obtain an
equal share of bandwidth. This induces heterogeneous delays
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and unequal QoS. This fairness improvement compared to
MaxSNR indicates however that some flows can be slightly
delayed to the benefit of others without significantly affecting
their QoS.

The WFO was built on this idea. The easy satisfaction of
close mobiles (with better spectral efficiency) offers a degree
of freedom which ideally should be exploited in order to help
the farther ones. WFO allocates to each mobile the accurate
share of bandwidth required for the satisfaction of its QoS
constraints, whatever its position is. With WFO, only 0.8
percents of the mobiles are dissatisfied (cf. Figures 9(c) and
10(a)). Additionally, compared to Figures 9(a), 9(b), and 9(c)
exhibits superimposed curves which proves the WFO high
fairness, included at short term.

Figure 10 shows that the WFO brings the largest level
of satisfaction. Indeed, for a tight PDOR target of 5% (see
Figure 10(a)), the dissatisfaction ratio with a high traffic load
of 1120 Kbps is equal to 18% with the WFO versus 29.7%
with the best of the other scheduling schemes. If we set the
PDOR target to 10%, the dissatisfaction ratio with a high
traffic load of 1120 Kbps is 0% with the WFO versus 13.8%
with the best of the other scheduling schemes (PF).

We finally studied the system capacity offered by the
four scheduling algorithms. Figure 11(a) shows the average
number of bits carried on a used subcarrier by each
tested scheduler under various traffic loads. As expected,
the nonopportunistic Round Robin scheduling provides a
constant spectral efficiency, that is, an equal bit rate per
subcarrier whatever the traffic load since it does not take
advantage of the multiuser diversity. The three other tested
schedulers show better results. In contrast with RR, with the
opportunistic schedulers (MaxSNR, PF, WFO), we observe
an interesting inflection of the spectral efficiency curve when
the traffic load increases. The join analysis of Figures 11(a)
and 11(b) shows that the spectral efficiency of opportunistic
scheduling is an increasing function of the number of active
mobiles, thanks to the exploitation of this supplementary

multiuser diversity. Consequently, MaxSNR, PF, and WFO
increase their spectral efficiency with the traffic load, and
the system capacity is highly extended compared to networks
which use classical scheduling algorithms. With these three
schedulers, all mobiles are served even at the highest traffic
load of 1280 Kbps.

The performance of the four schedulers can be further
qualified by computing the theoretical maximal system
throughput. Considering the Rayleigh distribution, it can
be noticed that af, is greater or equal to 8 with a
probability of only 0.002. In these ideal situations, close
mobiles can transmit/receive 6 bits per RU while far mobiles
may transmit/receive 4 bits per RU. If the scheduler always
allocated the RUs to the mobiles in these ideal situations,
an overall efficiency of 5bits per RU would be obtained
which yields a theoretical maximal system throughput of
1600 Kbps. Comparing this value to the highest traffic
load in Figure 11(a) (1280 Kbps) further demonstrates the
good efficiency obtained with the opportunistic schedulers
that nearly always serve the mobiles when their channel
conditions are very good. This result also shows that the
WFO scheduling has slightly better performances than the
two other opportunistic schedulers. Keeping more mobiles
active (cf. Figure 11(b)) but with a relatively lower traffic
backlog (cf. Figure 8(a)), the WFO scheme preserves mul-
tiuser diversity and takes more advantage of it obtaining a
slightly higher bit rate per subcarrier (cf. Figure 11(a)).

In the results described above, the traffic load was
varied by increasing or decreasing the number of mobiles
in the system, which modified the multiuser diversity. This
exhibited the opportunistic behavior of the schedulers and
especially their ability to take advantage of the multiuser
diversity brought with the increase of the number of mobiles.
We also studied below the ability of each scheduler to take
profit of the multiuser diversity brought by a given number
of users. In Figure 12, we provide complementary results
obtained in a context where the traffic load variation is done
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TaBLE 2: Second scenario setup.

TasLE 3: Third scenario setup.

Group Numb.e rof Distance Delay threshold Data rate Group Numb,e rof Distance Delay threshold Data rate
mobiles mobiles
9 1.6 dyet 80 ms 80 Kbps 1 7 2.7 dyef 80 ms 80 Kbps
2 3 1.6 dyef 80 ms 240 Kbps 2 7 2.7 dyes 250 ms 80 Kbps

through just increasing the mobile bit rate requirement and
keeping a constant number of users (10 mobiles). The results
in Figure 12(a) show that, like above, the WFO outperforms
the other scheduling schemes. With its weighted algorithms,
the WFO dynamically adjusts the mobiles priority and
ensures a completely fair allocation. WFO is the only one
which allows to reach higher traffic loads with an acceptable
PDOR for all mobiles. Additionally, even if the traffic load
increases without variation in the number of mobiles, the
WFO keeps more mobiles active across the time than the
other schemes and takes better advantage of the multiuser
diversity. The analysis of Figure 12(b). confirms that WFO
maximizes the average bit rate per subcarrier.

5.2. Second Scenario: Performance with Heterogeneous Bit Rate
Sources. In this simulation scenario, mobiles are divided in
two groups that differ only by their data rate as described in
Table 2.

The four opportunistic scheduling strategies provide
the same bandwidth usage ratio of 82% (RR performances
are not reported here and in the following because its
poor performances do not support the tested configura-
tions). However, delay management considerably differs.
Figure 13(a) shows the overall ratio of packets delivered after
the threshold time, respectively, in Group 1, Group 2, and
globally. The results show that the MaxSNR and the PF easily
respect the delay constraints of low bit-rate mobiles but fail
for the second group of mobiles. In contrast, the MAOPF
and the WFO schemes provide fairness with an equal and

moderate ratio of packets in delay outage whatever the
source bit rate. The overall PDOR obtained with the MAOPF
and the WFO is smaller than with the two other schemes.
Here, the two multimedia oriented schedulers provide fair
QoS management and better QoS support. Regarding the
perceived QoS, Figures 13(b) and 13(c) show that the WFO
outperforms the other schedulers including the MAOPF
which do not directly manage the PDOR fluctuations.

5.3. Third Scenario: Performance with Heterogeneous Delay
Constraints. We then studied the influence of heterogeneous
delay requirements on the scheduling performances. In this
simulation scenario, mobiles are divided in two groups that
differ only by their delay requirements (cf. Table 3).

In this context where all mobiles have an equal source
bit rate, the MAOPF and PF perform the same scheduling.
Figure 14 clearly shows that the WFO outperforms the three
other schemes ensuring fair QoS support and provides the
largest QoS satisfaction level. This is processed with the WFO
weighted system which dynamically controls the delay in
a generic manner by monitoring the distance to the delay
threshold thanks to a continuous and efficient regulation of
the PDOR. This provides full QoS differentiation.

As explained above, the sum of incoming traffics of the
mobiles is inferior to the system throughput. In this context,
the traffic of each mobile is served sooner or later, and the
bit rate sent by each mobile is equal to its incoming traffic.
Fairness is absolute in terms of bit rate sent by each mobile.
High-delay-sensitive mobiles are not served more often than
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other mobiles but earlier. It is only the time instant at which
each high-delay-sensitive mobile and background mobile is
served that differs. The purpose of the tested schedulers is to
set dynamic priorities between the different types of traffics.
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F1GURE 16: Mobile dissatisfaction when PDORarget = 5%.

5.4. Fourth Scenario: Global Scheduling Performances Analysis.
So far, we have analyzed the behavior of the schedulers in
simple contexts considering one criterion at a time for better
understanding its influence on the performances. In order to
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TasLE 4: Fourth scenario setup.

Group Numbg rof Distance Delay threshold Data rate
mobiles
1 2 2 dyer 80 ms 80 Kbps
2 1 2 dyes 80 ms 160 Kbps
3 2 2 drer 250 ms 80 Kbps
4 1 2 dret 250 ms 160 Kbps
5 2 2.4 dyes 80 ms 80 Kbps
6 1 2.4ds 80 ms 160 Kbps
7 2 2.4ds 250 ms 80 Kbps
8 1 2.4 dye 250 ms 160 Kbps

corroborate the good results of the WFO, we study in this
section the performance of the tested protocols in a more
general context. Eight groups of mobiles are considered here
as described in Table 4.

Figures 15, 16, and 17, respectively, show the overall
packet loss ratio and the dissatisfaction ratio with a PDOR
target set to 5% and 10% for each group of mobiles and on
the right, for all groups. MaxSNR provides a very poor QoS
in groups 2, 5, and 6, that is, when delay requirements are
stringent and the path loss or the source bit rate is high.
This result confirms that MaxSNR severely lacks fairness
in realistic scenarii. Mobile position has less consequences
on fairness with PF. However, PF still shows deficiencies
for mobiles with high data rate and tight delay threshold
(groups 2 and 6). In comparison with PF, MAOPF brings
more fairness between mobiles with heterogeneous data rate.
Groups 2 and 6 experience less difficulties but at the expense
of the satisfaction of groups 1 and 5. Globally, MaxSNR, PF,
and MAOPF provide comparable performance results, each
of them penalizing selectively some of the groups of mobiles.
In contrast, WFO performs an efficient multiplexing and
jointly manages all the mobiles so that they are all satisfied in
a same proportion whatever their respective QoS constraints,
positions, or data rate specificities. WFO allows to respect
the delay thresholds in equity for all mobiles and satisfy the
largest number.

6. Conclusion

In this paper, we propose a new MAC protocol for wireless
multimedia networks, called “weighted fair opportunistic
(WFO)” protocol. This access scheme operates on top of an
OFDM-based physical layer and shows a good compatibility
with the existing 802.16 standard. Full support of evolved
multimedia services and QoS differentiation is enabled with
the introduction of generic QoS attributes. Based on a
system of weights, the WFO scheduling introduces dynamic
priorities between the mobiles according to their transmis-
sion conditions and the delay they currently experience in
a higher layerssMAC/PHY cross-layer approach. With its
well-balanced resource allocation, the WFO scheme keeps
a maximum number of service flows active across time but
with relatively low traffic backlogs. Preserving the multiuser
diversity, it takes a maximal benefit of the opportunistic
scheduling technique for maximizing the system capacity.
Simulation results show that the WFO outperforms other
wireless OFDM-based scheduling schemes providing effi-
cient QoS management. Fairness is ensured whatever the
mobile position, the bit rate, or the delay constraints and
without never sacrificing system capacity.
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1. Introduction

In today’s wireless scenarios, new radio access technologies
(RATs) are emerging at frequent intervals. Although oper-
ators quickly introduce new wireless systems to the market
they still have a strong interest in exploiting their legacy
systems. Consequently, scenarios where an operator is in
charge of multiple air interfaces with overlapping coverage
are a common business case. Dense urban environments in
Europe, where users are often in the coverage of a cellular
TDMA-based GSM and CDMA-based UMTS systems, serve
as a good example. In this case, if services are offered
independently of the radio access technology and terminals
support multiple wireless standards, the operator has the
freedom to assign users to a cell and air interface of its choice.

Over the last years there has been growing interest
in academics and industry in which way these degrees of
freedom should be used and how users should be assigned

in heterogeneous wireless scenarios to exploit resources
more efficiently, incorporate fairness, and increase reliability.
Established concepts include load-balancing, service-based,
and cost-based strategies. Load-balancing strategies assign
users such that overload situations are avoided in one RAT
as long as there are resources left in a collocated radio system
[1]. More advanced approaches are service-based strategies
which select an RAT also in dependence of the requested
service type [2]. These strategies exploit the fact that one
wireless technology might be better suited to support a
certain service-class than another one due to different
granularities of distributable resources, different coding, and
modulation schemes. However, both approaches neglect the
fact that also the position and corresponding channel gain
of a user influence the efficiency of an RAT supporting a
service request. Reasons include different carrier frequencies
and corresponding channel models of RATs, base station
positioning, different interference situations and sensitivity
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to it. A concept that considers all earlier mentioned factors,
like the system load, service class, interference situation,
characteristics of the RAT, and users’ positions, is the cost-
based approach, introduced and analyzed in [3, 4]. There, it
was observed that all characteristics can be bundled together
in one cost parameter per user and RAT which suffice to
calculate a close to optimum assignment that maximizes
the total number of supportable voice users under static
conditions. Alternative approaches can be found in [5] and
references therein.

In this paper, we analyze in which way users of dif-
ferent service classes should be assigned in a heteroge-
neous scenario, thereby extending ideas from [3, 4]. Users
request either a fixed minimum data rate, for example,
as needed for voice services, or unconstrained best-effort
(BE) data services. We formulate the user assignment
as a utility maximization problem which is constrained
by the resources (such as power or bandwidth) of the
individual base stations (BSs) as well as users’ minimum
data rate requirements. The utilities represent quality of
service (QoS) indicators of the BE users and, by choosing
appropriate utility functions, give operators the freedom to
tune the operation point of the heterogeneous system. It
is important to note that although our model holds for
general concave utility functions we will adopt the concept
of a-proportional fairness introduced in [6] which allows to
variably shift the operation point between maximum sum
throughput, proportional fairness up to max-min fairness
by a single, parameterizable utility function. Related work
on utility maximization in nonheterogeneous interference
limited systems was carried out in [7-9], where the generally
nonconvex utility maximization problem was turned into
a convex representation (or supermodular game) using
specific techniques. The major difference to the approach
taken in this paper is that we consider a heterogeneous
scenario where the user-wise utilities are a function of the
individual link rates; this practical assumption significantly
complicates the analysis and neither of the approaches in
[7-9] can be applied. Based on the convex formulation and
by using structural properties, we present a decentralized
algorithm that solves the optimization problem for static
scenarios and derive simple assignment rules using the dual
representation of the utility problem. The insights gained
from the static setup are then adapted to dynamic scenarios
and we design a distributed protocol which requires minimal
information exchange between users and BSs and still
achieves considerable performance gains. Most importantly,
both algorithms allow operators to arbitrarily tune the
fairness-throughput tradeoff online without any system
changes. Although we cannot guarantee the convergence of
the simplified algorithm in the dynamic scenario we observe
a close to the global optimum operation in case a sufficient
number of users requests service and the variation of the
channel gains due to mobility is low. This is verified by the
derivation of an upper bound and comparison to simulation
results. Still, also for low service request rates and stronger
channel variations due to mobility and fading considerable
gains in terms of throughput and sum utility are obtained in
comparison to a load-balancing strategy.

Investigation area
8 Movement area

Main transmission
direction

Transceiver

Ficure 1: Playground with 40 GSM and 40 UMTS directional
transceivers (collocated).

The paper is organized as follows: after the introduction
of the system model and the utility concept in Section 2,
we will formulate the optimization problem in Section 3.
Algorithms that solve the problem in a decentralized way
for static and dynamic scenarios are presented in Section 4.
There, also the upper performance bound for the dynamic
scenario is derived. In Section 5, we eventually evaluate the
performance of the dynamic algorithm by comparing it
to a load-balancing approach. We conclude the paper in
Section 6.

Notations. In this work bold symbols denote vectors or
matrices, calligraphic letters sets, and | - | the cardinality of a
set. The transpose of a vector is ()T, x, is the mth element
of x, and E(-) is the expectation. The summation over sets is
definedas X6 = >, X, = {x:x =2, X, X, € X,,}.

2. System Model

We consider a wireless scenario in the down-link direction
where multiple RATs with partly overlapping coverage are
arranged in an area called playground. The set of RATs A =
Aorth U sAine thereby consists of two subsets: in RATs with
orthogonal resources a € Ao time or frequency slots or
subcarriers are assigned explicitly and users connected to one
BS do not interfere with each other. In interference limited
RATs a € oAy all users share the same bandwidth and
the power constitutes the distributable resource. Each RAT
a € s consists of a set of base stations m € M, and one
operator is assumed to control the set of all base stations
M = UzesMa. An exemplary scenario with one cellular
UMTS system belonging to the interference limited class and
one cellular GSM/EDGE air interface of the orthogonal class
is depicted in Figure 1.
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Since commercial wireless systems usually operate on
individual frequency bands, we assume that signals of dif-
ferent RATS are orthogonal to each other and no intersystem
interference takes place. Users can be affected by intra- and
intercell interference within one radio technology, however.

The set of users { can be divided into two subsets
and users are equally distributed on the playground; users
i € J, request a voice service with guaranteed data rate
and have priority to BE users i € J{, who do not have
any QoS guarantees. Furthermore, it is assumed that the
user equipment is able to cope with all RATs and the
service requests are independent of the technology giving the
operator the freedom to choose a cell and a RAT for each user
that is best suited from its perspective.

Next we will describe the two classes of RATs that are
covered in our scenario in more detail.

2.1. Orthogonal RATS. For the class of orthogonal systems
we assume a fixed transmission power per BS and that the
bandwidth, in terms of time or frequency slots, respectively,
is the resource continuously distributable between users.
Since commercial TDMA systems like GSM/EDGE usually
have low frequency reuse factors we will assume constant
intercell interference for this class of systems. The signal to
interference and noise ratio (SINR) of user i and a BS m of
this class

_ gi,mﬁm
Hm + Im

ﬁi,m Vm e Maa ac onrth, (1)
thus depends on the channel gain g, the BS power P,
the constant intercell interference I,,, the thermal noise #,,
and is independent of the assigned resource. The amount of
bandwidth assigned to user i by BS m is denoted by t; . It is
limited by the total, distributable bandwidth per BS T, and

the constraint

Zti,m

ied

=ty <Tp

Vm e My, a € Aorh. (2)

Due to the orthogonality of the users’ signals and since the
bandwidth is the distributable resource the relation between
a user’s data rate R;,, and the assigned resource is linear for
this class of RATSs:

Ri,m = Ei,mti,m. (3)

Here, R := f(Bim) denotes the link rate per time or
frequency slot between user i and base station m where
f(P) is a positive, nondecreasing SINR-rate mapping curve
corresponding to the coding and transmission technology of
the RAT a € Aqrh. By substituting (3) into (2) the achievable
rate region of each individual BS m € M, results in an I-
dimensional simplex, limited by the positive orthant and a
hyperplane:

R = {Rm : 25"—”“ < Ty Rim20Vie€ 1}, (4)
ieg “hm

where Ry, is the i-dimensional vector with entries R;,,. Since
the rate assignment in one cell does not influence the feasible

rate region of neighboring cells the feasible rate region of the
whole RAT results in the convex polytope

Z :Rm:

meMq

Ra = ac eA’orth. (5)

2.2. Interference Limited RATs. We assume that all users share
the same bandwidth and that resources are distributed in
terms of assigned power for BSs in interference limited air
interfaces like UMTS m € My, b € Ajne. The power of each
BS is limited by a sum constraint

Zpi,m :Pm Spm

ied

Vm e My, b € Ay, (6)

where p;,, is the power that BS m assigns to user i € J.
Users are sensitive to intracell and intercell interference in
interference limited systems and the SINR between BS m €
Mp, b € Ainr and user i € J is given by

ﬁi,m _ gi,mpi,m
Pgi,ij #iPjmt+ Zn¢mgi,npn + Ninf (7)

myn € My, be A, i,jed,

with p the orthogonality factor which accounts for a reduced
intercell interference. In this class of systems all links of one
BS share a limited power budget and are impaired by the
power assigned to other users in the air interface. A well-
known model for the link rate of these systems is given in

[10]:

Rim =Cp log (1 + Dbﬂi,m)

gi,mpi,m )
=Cplog| 1+D — = .
bio8 < bpgi,m(Pm_Pi,m)+zn¢mgi,npn+7’]inf

(8)

There, the positive constants Cy,, D; parameterize the system
characteristics such as bandwidth, modulation, and bit-error
rates. In (8), a user’s data rate is in general neither convex
nor concave in p (index omitted). Therefore, also the feasible
rate region is not convex, which in turn will be a requirement
to obtain a convex representation of the utility maximization
problem in Section 3. However, assuming that all BS transmit
with fixed transmission power and that the SINR of all links
is not too high we can approximate the data rate by

pi,m
Riy = Cylog (1 +Db)
Ii,m - Ppi,m

A 9
- Iib Dim 9)
i,m

=: Ri,mpi,m)

with

Pgi,mﬁm + Zn# meMy, gi,nﬁn + 7inf
Zim '

(10)

Ii,m =
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FIGURE 2: UMTS resource-rate mapping: quality of linear approxi-
mation (9).

The approximation in (9) represents the first order Taylor
expansion for p = 0 if one chooses A, = C,Dy. Clearly,
this approximation holds only for low data rates and since
we are interested in a good approximation for typical rates of
the UMTS system, it turns out to be practical to use a higher
slope A, > CpDy. Indeed we plotted the rates in (9) over p/I
for UMTS in Figure 2 and chose A, so that it intersects the
real rate curve at the origin and 100 kbit/s which covers the
range of rates that are typically assigned to users in UMTS
in our scenario quite well. Obviously, this is only a model,
but works fine for the problem at hand. We refer also to the
discussion in Section 5.

By solving the approximation in (9) for p and substitu-
tion into (6) the achievable rate region of BS m € M}, can be
represented by

=~

R = {Rm Y S <Py, Ry 2 0ViE 1}. (11)

ieg “hm

=

Since all BS are assumed to transmit with P, = P,
the intercell interference is independent of the resource
assignment and the achievable rate region of the whole RAT

results in
> R
meMy

eRh = be e’A)inf) (12)

which is a convex polytope as for the orthogonal RAT.

Our approach stands in clear contrast to [8] where a
convex feasible rate region for interference limited RATs was
obtained with the posynomial transform and assuming R =
C log(Df3). The posinomial approach has the advantage that
also the BS sum transmission power P, can be optimized.
However, the corresponding rate approximation is only valid
for high SINR and does not hold in our scenario. The linear
structure of our approximation will further lead to simple
assignment rules in Section 3.

2.3. Utility Concept and a-Proportional Fairness. Instead
of maximizing a fixed metric like the system throughput,
we will formulate the optimization problem in terms of
utility functions, which relate assigned resources, system
parameters as the SINR or the data rate to benefits such
as revenues, fairness or user satisfaction. More precisely,
we focus our investigations on utility functions which are
concave, strictly increasing and dependent on the user’s data
rate in the following form:

U= Z%( > Ri,m). (13)

iedy meM

Without loss of generality y; in (13) is given by

wilog (R;), ifa=1,
v (R;) = (14)

lRil_"‘, otherwise.

-«

Utilities defined by (13) and (14) correspond to the well-
established weighted a-proportional fairness [6], and are
from special interest for operators since they ensure flexible
tuning of the system fairness in a wide range. A rate
allocation R* is said to be a-proportional fair, if for any
feasible allocation R

Ri—Rf
>~ =0 (15)

i€dy 1

holds [6]. The parameter « in (14) hereby tunes the fairness-
throughput tradeoff; for « = 0 the system throughput will
be maximized, which might result in assignments where
only very few users are served and which is quite unfair.
A selection « = 1 leads to proportional fairness which is
equivalent to assigning equal shares of resources to all users
in our scenario. For « — oo the assignment converges to the
max-min fairness, where all users will be assigned equal data
rates and the overall system throughput will be low [6].
Note that the definition of the utility in terms of the sum
of a user’s link rates in (13) is more relevant for practical
application than, for example, the sum utilities of individual
links U = >;>,,w(Rim) used in [7, 9]. It turns out that
it is exactly this so-called nonseparable utility formulation
that leads to the desired characteristic that most users will
establish only a single link, as will be shown in Section 3. By
contrast, the separable utility in [7, 9] will favor multilink
operation and therefore the results cannot be applied to our
model. This follows from the concavity of ¢ and the Jensen’s
inequality; assume a user is assigned a certain sum rate R; that
can be split between two links R; ,,, and R; ,,, R; = R;, + R .
Then, it is beneficial in terms of the separable sum utility to
activate both links because y(R; ) + ¥(Ri,) = w(R;).

3. Problem Formulation

Having the system model and the utility concept introduced,
we now present the formal problem formulation. We want
to find the user assignment in a heterogeneous multicell
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scenario that maximizes the sum utility of all BE users under
the constraint that all voice users are assigned at least a
minimum data rate Rpyin,;. Based on the earlier presented
assumptions, the problem can be formulated as

max > y; ( > Ri,m) ,
iedy meM

subject to ZB”" <T,, VmewM,

ica Rim (P1)

D Rim = Rmini Vi€,
meM

Riy =20 Vime I, M,

with T, denoting available resources, [,, = P, Vm €
Mp, b € Aimpor I, = T,y Vim € Mgy a € Aorehy
respectively. Problem (P1) consists of a concave objective
over linear constraints and is therefore convex. Consequently,
a variety of ready-to-use algorithms exists to solve it [11].
However, neither give these algorithms insights into the
problem structure nor do they give a hint to a decentralized
solution. We therefore develop a different approach based
on duality [11, 12]; instead of solving (P1) directly we
transform it into an alternative problem which is known
to have the same solution as (P1) but can be solved in
a decentralized way. To obtain an expression for the dual
transform the Lagrangian function of (P1) is needed, which
has the following form:

LR A u,0) = > v ( > R,-,m)

iedy meM

- Sa(She )
meM ielei’m (16)

+ Zﬂt ( Z Ri,m - Rmin,i)

ied, meM

+ Z Z Ui,mRi,m-

i€l meM

Here A, y, 0 are nonnegative dual parameters. Next, we
introduce the dual function of (P1) which is defined as [11]

g o) = max L(R,u,1,0). (17)

Due to nonnegativity of the dual parameters one observes
that (17) is always larger than or equal to the solution of (P1).
Therefore, minimizing the unconstrained dual function over
the dual parameters

Jnin ¢ d,0) = min max L(Rwd0)  (18)
—_—

inner problem

yields an upper bound on the original optimization problem
(P1) and is called the dual problem of (P1). Furthermore,

by convexity of (P1) and since Slater’s conditions [11]
hold, the bound is tight and (18) and (P1) have the same
solution. Our motivation to use the dual formulation is the
possibility to decouple the optimization problem into an
inner maximization problem over the primal variables R
and an outer minimization over the dual parameters which
will be called outer loop further on. Additionally, the dual
problem allows to exploit structural properties which will
greatly simplify the algorithm design. The inner problem
can be solved by each base station individually as we will
see shortly. In addition, there exists a very limited number
of degrees of freedom for the selection of meaningful dual
parameters in the outer loop. To be more precise, only A
has to be optimized iteratively in the outer minimization. A
rate allocation R(A) that maximizes the inner problem can
be calculated directly for a given A independently of ¢ and p.
Before we go into the details the KKT conditions are given,
which are necessary and sufficient for the optimum solution
of (P1) (or equivalently (18))[11] and will be exploited later:

EETEED Rl
OLR%EHAL0) o ymic Mg, (19)

OR;
R},
MDD = —T, | =0 Vme M, (20)
ielRi»m
uk (Rmin,i - > R;j,,,) =0 Vield, (21)
meM
oy RE, =0 Vime 4, M. (22)

Here (-)* denotes the variables at the optimum.

3.1. Inner Problem. Rearranging terms in (16) results in the
following:

LR 0)= > v ( > Ri,m)

iedy meM

+> > Rim <0i,m - ;m +,Ui>

ied, meM LM

=|

£ S Rin (ai,m _ )

i€dy, meM Lm

+ Z /lmrm - ZHiRmin,b

meM ied,

From (23), one observes that (17) is only finite if and only if

A
Tim — ﬁ-m +ui=0 Vmie M, (24)
1,m
A
ﬁm >0 Vm,i € M, Jy, (25)

iy

3

and hence it follows that (24) and (25) are necessary condi-
tions to obtain a meaningful solution in (18). Furthermore,
the first KKT condition (19) has to hold for any rate
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assignment that solves (17) which after substituting (24) into
(23) simplifies to

oL :1//1'/< > Ri,m>+0i,m—/1m =0 Vm,ie M, J.
aRim’l meM im
(26)

=

Here, v;(x) = Jyj(x)/0x and (26) are necessary and
sufficient conditions for the maximum of the Lagrangian
function which is independent of the voice users. Although
the optimization of the dual parameters is formally per-
formed in the outer problem, one observes already here that
only certain ¢ can lead to the optimum solution of (P1).
More precisely, for a given 1 only one element 0, can be
chosen freely for each user i so that (26) is not violated. All
other elements 0;,,n # m result directly from o;,, by (26).
This is shown in the following example: assume one element
0;,m and A are given for user i from the outer loop. Then, for
the rate assignment that maximizes the inner problem u; :=
Wi (S menRim) = Au/Riym) — 0, has to hold (from (26)).
Since (26) is a necessary condition also for all n # m it follows
that 0;,, = ui(0im) + (Am/Ri,n), n# m which is therefore
uniquely determined by 0;,,. This observation reduces the
degrees of freedom to select meaningful ¢ to one scalar
element per user in the outer loop. From (26), it further
follows that 0;,, = 0 can only hold for m € Mpi(A), with

Mopti(A) = {m; EM:mj= argmmingm } (27)

im

This is a direct consequence of the nonnegativity of the dual
parameters and u; based on (26). Having 0;,, = 0, however,
is a necessary condition for R}, > 0 since for any optimum
rate assignment of (P1) the last KKT condition (22) has to
be fulfilled. Therefore, regardless of the outer optimization
we can already state here that 0;,, > 0Vn & Mop,i, i € Ly
and only rate assignments

=0 Vme Mopi(d),
Rim (28)
=0 else

have to be considered as solution for (P1). Furthermore,
setting oj,, = 0 m € Mop,; if possible is required to allow
for assignments with R; ,, > 0. Only if the maximum slope of
the utility function y’(0) is smaller than min,,(A,,/R; ) this
will result in 0,, > 0 Vim € Mop; then so that (26) is not
violated. In this case user i will not be assigned any resources.
The KKT conditions lead to similar optimality conditions for
the voice users; from (24) as well as the argumentation above
it follows that

Yi = min= Vie d,, (29)

m im

and that (28) is also a necessary condition for the voice users.
It is noted here that for a given A the solution of (17) is
uniquely determined (see proof of Theorem 1 in Section 4).
However, the corresponding rate assignment might not be
unique. Multiple optimum rate assignments can exist in the

rare case when 3{m,n € M, m# n : A\y/Ri sy = My/R;,} and
therefore | Mop,i(A)| > 1. For all other users it follows by (26)
and the discussions on ¢ that the rate assignment

m
b

[ (A
v ( it 9,00 > 2

Ri,m,-

me Mopt,i(/l)a Vi€ Jy,
Rim(A) = 3

Rmin,i

if m e Mopi(A), Vi€ 4y,

10 else
(30)

maximizes the inner problem and solves (17). In this case, the
rate assignment is unique and only depends on A. In (30),

y'~! is the inverse of the derivative of the utility function

with w’(w’fl(x)) = X.

Equation (30) gives some valuable insights to the opti-
mum cell/RAT selection of users and the corresponding
resource assignment. First, it can be shown that almost all
users are assigned to exactly one BS since |Mopil = 1 in
general. Second, this BS can be determined independently
by each user if A is known and under the assumption that
each user i can measure R;,, Vm € M. Both characteristics
rely on the linear connection between the data rate and the
assigned resources and on the user based utilities and greatly
simplify the distributed solution of (P1). In contrast, one
would obtain that Rf,, > 0 Vi,m € {, My, b € Ajyr under
the high SINR assumption in [7, 9], which implies that all
users have active connections to all BSs in the interference
limited air interface. Third, the maximum slope of the utility
function y;(0) defines a threshold which can be tuned to
switch off BE users with low R;,,, as will be described in
Section 5.

3.2. Outer Problem. Since for p (24) has to hold, A and
formally ¢ are the only dual parameters that have to be
considered in the outer optimization. In order to minimize
the dual (17), clearly all entries of ¢ have to be as small
as possible and chosen in a way that (26) holds. Therefore,
Oim; = 0 V{i,m] :i € Ly, m; € Mopti(A), A /Ripm; < w(0)}.
A subgradient approach can be applied to minimize the dual
over A [12]. Assume for a given )

R= argml?xaﬁ(R,i) (31)

is the solution of inner problem, obtained by (30). Then, the
following holds for the dual function [12]

g = LR = LR+ S (A~ Ap) [T = S R ||
mem ielRi,m

(32)

where the last equation is obtained by adding and subtracting
the terms Y ,c sAm(To — Dicy (Rim/Rim)) to L(R,1) and
the assumption that 0;,Ri,y = 0Vi,m € J, M. Further,
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it can be shown from (32) that the vector v, with v,, =
(T — Sicy(Rim/Rim)) is a subgradient.

A descriptive explanation of the subgradient approach
is as follows: for a given A#1* the rate assignment R
might either violate the feasible rate region constraint or
will not exploit all available resources. Both cannot be
optimal since the first case is not feasible and in the
latter case the assignment of more resources to any BE
user would increase the sum utility. Then, the subgradient
gives the direction how A should be updated so that the
resource constraints are less violated or more resources are
assigned. At the global optimum of (P1), all entries of
the subgradient will be zero and all resource constraints
are met with equality. The subgradient will be used in
the decentralized algorithm, which will be presented in
Section 4.

4. Algorithm

We will now present two decentralized algorithms for
(P1) in a static and dynamic scenario, respectively. In
the static setup, all user requests and channel gains are
assumed to be fixed, while in the dynamic one the requests
and user mobility are subject to stochastic processes.
The static algorithm hereby serves as motivation for the
dynamic one which is adapted for practical applications with
the advantage of requiring almost no signaling informa-
tion.

4.1. Static Scenario. Based on the optimality conditions of
the inner problem and the subgradient of the outer loop in
Section 3, we are able to formulate the static Algorithm 1,
where [ denotes the index of the iteration, §(I) is the step
size, and € a constant for the stopping criteria. The algorithm
consists of an iterative procedure where in each cycle at first
all BSs broadcast the BS weights A,, to all users. Then, each
user i evaluates 1,,/R;, for all BSs and sends an assignment
request (and the corresponding R;,; or R ;) to a BS m; €
Mopti- Next, each BS m individually calculates the rate
assignment for all users that sent an assignment request to
it. The rate assignment hereby depends on 1, and might lie
either inside, on, or outside the feasible rate region of BS
m and thereby either under exploit, meet with equality or
violate the resource constraint. Correspondingly, BS m will
update A,, using the subgradient and the cycle starts again by
broadcasting the updated BS weight. Although Algorithm 1
might not converge to the optimum rate assignment in case
I{mn € M,m#n : A/Ri,y = AS/Ri,} and therefore
results in IMopt,i(A*)l > 1, we can formulate the following
theorem.

Theorem 1. Assume that for the series lim;_.0(]) =
0, limsup,_ >,;6(I) = co holds and that a feasible allocation
for the voice users exists, then Algorithm 1 converges to the
optimum dual weights A*. In case | Mopi(A*)| = 1 Vi € { the
corresponding rate assignment of Algorithm 1 is also optimal.
Incasedie 4 : IeMopt,i(A*)l > 1 an optimum rate assignment

that solves (P1) can be obtained by solving the set of linear
equations:

*
Z R;.:m _ v//—l <m1n {mfinl/;m’w,l(o)}> 5 Vie 1[7,

mEM,,P,,,- LM
% .
> Rf, =Ruini Vi€ d,
mE,Mup,‘,'
DRfy=Tm Vme M.
ied

(33)

Proof. In Section 3.1, it was shown that steps (3) and (4)
of Algorithm 1 maximize the inner problem of (18) in case
[Mopt,i(A)] = 1 Vi € L. Step (5) corresponds to an update of
A in direction of the negative subgradient which was derived
in Section 3.2. Since (P1) is a convex optimization problem
and Slater’s condition holds, it is proven in [12] that the
dual problem (18) has the same solution as (P1). Further,
it is shown in [12] that dual subgradient algorithms like
Algorithm 1 converge to the global optimum for the given
step-width constraints. The proof can be extended to the case
where 3i € 4 : [Mopii(A)| > 1 by observing the fact that
the maximum of the inner problem is independent of the BS
m; € Mopy,i which is selected by user 7 in step (3) (however,
it clearly matters for complying with the feasible rate region
constraints); from (26) it follows that

R,‘ = ZR,‘)m = wlil (;m — 0i,m> Vm,z S M,lb (34)
m ,m
Gi

is necessary and sufficient for the maximization of the inner
problem and that by (21) >,,c 4(Rim = Rmin,i Vi € 4, holds.
Substituting this into the Lagrangian (23) together with (24)
results in a dual function

g =D vy &) - DGy THG)

i€dy iedy
(35)
+ Z /\mrm - Z !’liRmin,ia
meM ied,

which is independent of the actual BS selection of the users.
Therefore, Algorithm 1 will converge to the optimum 1* and
to the maximum utility also if 3i € £ : [Mop,i(A)| > 1.
The optimum rate assignment of users that are in multilink
operation results then from A* by solving the set of KKT
conditions which reduce to (33) since A}, >0Vm € M, y; >
0 Vi € {, for any nontrivial solution. O

4.2. Dynamic Scenario. In a dynamic scenario where users
and service requests follow stochastic mobility and traffic
models, respectively, applying Algorithm 1 might be a good
choice from a theoretic perspective. Practically, however,
the procedure is too expensive, since, having the optimum
user assignment at any point in time, it would have to
be executed any time a user’s channel gain or interference
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while !(»(»)" > €)[1(I < lnax)) do
(2) Each BS broadcasts A,, to all users.

end while

(1) Each BS initializes A,,,,v,, = 1Vm € M, [ = 0.

(3) Each user i € § evaluates Mp,i(A) with (27) and announces an assignment request to
mi(A) € Mopii(A). If [ Mopi(A)| > 1 it picks one BS of the set randomly.

(4) Based on the assignment requests each BS calculates the rate assignment that maximizes its
sum utility and that fulfills the voice user’s rate constraints corresponding to (30).

(5) Each BS evaluates its sub-gradient component v,,, = (T, —
updates its dual weight A, (I + 1) = A,,(I) = (D)3 I = 1+ 1.

(6) Assign users to m;(A*) with R;,, corresponding to (3), (4).

Dies (Ri,m/ﬁi,m)) and

ArLGoriTHM 1: Decentralized utility maximization.

situation changes (and therefore R) and in case a service
request arrives or leaves the system. Each execution thereby
might trigger reassignments of a whole set of users and
a considerable amount of signaling information would
have to be exchanged between users and BSs in each
iteration. ( It is noted here that higher utilities might
be obtainable in the dynamic scenario by exploitation of
mobility information or, e.g., under the fluid assumptions
[13].) We therefore suggest the following adaptation of
Algorithm 1 to a dynamic procedure which can be split
into two almost independently operating parts, the cell/RAT
selection of users and the resource assignment inside each
BS.

A user’s heterogeneous cell/RAT selection procedure is
described in Algorithm 2(a). It is similar to the one in the
static setup; the BSs broadcast 1 and each user selects a
BS m € Mopii. However, unlike in Algorithm 1 where all
users directly update their cell/RAT selection if A is updated
the selection is only triggered once at the beginning of
a service request or if the user would be dropped from
the air interface where it is currently assigned to. For the
selection, only local information (R;, can be measured
or estimated for all BSs by a user) and the BS weights
A are needed similar to the static procedure. After a user
selected a cell/RAT or in case that the request, the channel
or the interference situation changed, an update of the
resource assignment will be triggered in the corresponding
base station. Thereby, the triggers are independent for each
BS and no information from neighboring cells is needed
for the resource assignment. Also, contrary to the static
Algorithm 1, the resource update will not trigger the cell/RAT
selection of users and users stay assigned to their current
BS in general. Only in case a user cannot be supported
by a BS anymore and no intrasystem hand-over is possible
the user will execute Algorithm 2(a) again leading to a
possible intersystem hand-over. The resource assignment in
a cell will be updated following the iterative procedure in
Algorithm 2(b). Algorithm 2(b) maximizes the sum utility
of the BS over all BE users that are assigned to it and
assures that all voice users comply with their minimum
rate requirement. Thereby, the rates will be assigned in
a way that all available resources are exploited and that
the resource constraint of the BS is met with equality

before A is broadcasted again. This stands in clear contrast
to the static algorithm where A is updated based on the
subgradient.

Since in Algorithm 2 each user only actively selects a
RAT/cell once at its call setup and it does not trigger
reassignments of other users in general almost no signaling
information has to be exchanged between users and BSs. The
simplicity of Algorithm 2 however, comes at the cost of its
optimality. The influence of new users on A, mobility, and
the restriction that users stay in the actual air interface if
possible lead to situations where a user j might find itself
assigned to a BS m # Mpy,j(1). Wrong assignments will lead
to deviations of A and it cannot be guaranteed that the
procedure approaches to A*, which would be the optimum
weights for the current request and channel situation in the
static scenario. Since Algorithm 1 is difficult to implement in
our simulation tool, we will derive a simple upper bound.
The bound allows us to evaluate the maximum degradation
of an assignment obtained with the dynamic procedure from
the optimum solution of (P1). Since the bound overestimates
(P1), it is also an upper bound for Algorithm 1 and could be
used to evaluate the quality of the static Algorithm 1, which
might be nonoptimal in case IMopt,l—(A* )| > 1.

4.3. Utility Bound. Assume that the dynamic algorithm
approaches 1" and a rate assignment R€ at a certain point in
time. Then, there exists a corresponding dual function g(A")
which is an upper bound on (P1):

g) = max L(RAT) = £(RSA) = £(RF, A7)

(36)
> L(RSAT) = Dy ( > Rf,m)~

icedy meM

Therefore, the deviation to the global optimum of a rate
assignment R¢ can be bounded by the difference of L(R*,1")
and L(RE,A1)

AL= D yilRl) -

iedpnde

Rt _— RS
_ z /\+ Z( 1,m7 z,m) ,
meM " |:ielc Ripm

(37)



EURASIP Journal on Wireless Communications and Networking 9

request to m € Mopy.

while |v,,| > € do

(3) BS m evaluates its sub-gradient v,, =
An(l+1) =1, =Dyl =141
end while

(a) Cell/RAT Selection of user i.

(1) User i measures the channels and evaluates R;,, for all BS/RATSs in its vicinity
(2) Based on the broadcasted A user i evaluates Mpi(1) with (27) and sends an assignment

(b) Resource Assignment of BS m.

(1) Initialize v,,, [l = 1 if not initialized: A,, = 1

(2) For all users i that are assigned to BS m set Mop; = m and calculate R, with (30)
(T — Dicy (Rim/Rim)) and updates its dual weight

(3) Assign users R;,, corresponding to (2) and broadcast updated A,

ALGORITHM 2

with ¢ = {i € 4, m) ¢ Mopt)i(ﬁ)}. Only the rates R are
needed for the evaluation of the bound which can be easily
calculated by (30).

5. Simulation Results

In this section, the performance of Algorithm 2 will be
evaluated by comparing it to a load-balancing algorithm.
We therefore employ Alcatel-Lucent’s C++ based MRRM-
Simulator which is an event driven simulation environment
for heterogeneous wireless scenarios. It supports cellular
UMTS/HSDPA, GSM/EDGE air interfaces, a WiMAX hot-
spot, and different service classes such as VoIP, streaming,
circuit-switched voice and best-effort data services. For the
simulations we consider a 2-RAT scenario consisting of a cel-
lular GSM/EDGE and UMTS air interface with 42 BSs each.
The BSs of both RATs are arranged as indicated in Figure 1;
on each site there are 3 BSs with directional antennas of
both RATs collocated with the distance between sites being
2400 m. All RAT specific parameters are listed in Table 1.
Equally distributed inside the rectangular movement area
(see Figure 1), there are users that are moving corresponding
to the pedestrian mobility model in [14] with 3km/h and
randomly requesting services based on a Poisson process
with exponentially distributed service duration with a mean
of 120 seconds. For voice services a constant data rate of
12.2 kbit/s is required while no minimum requirements for
best-effort services exist.

The load-balancing strategy and Algorithm 2 differ only
by the cell/RAT selection procedure which are triggered at a
call setup or at an intersystem hand-over request. All other
mechanisms like intrasystem hand-overs and the triggers
themselves correspond to the standards and stay untouched.
Both algorithms perform the resource assignment inside a
BS corresponding to Algorithm 2(b) so that the sum utility
of each BS is maximized. In case of load balancing a new user
that requests service or an intersystem hand-over performs
the cell/RAT selection as follows: at first it short-lists one
BS of each air interface where the one with the strongest
pilot signal that could accept the call in the users vicinity is
selected. Usually, these are the closest UMTS and GSM BSs

TasBLE 1: Simulation parameters.

Praxumrs = 20 W

Praxcsm = 15 W

Time slots GSM T, = 21

Antenna pattern: Sector 90° [14]

Path-loss GSM [dB] , r distance in m: L = 132.8 + 381g(r — 3) [15]
Path-loss UMTS [dB] : L = 128.1 + 37.61g(r — 3) [14]

Rate-SINR mapping UMTS: C, = 1.4e9 D = le — 3

Thermal noise GSM, UMTS: —100 dBm

Intercell interference GSM: —105 dBm

Orthogonality factor UMTS: p = 0.4

to the user. Then, the user sends the request to the BS with
the lower load value. Hereby, the load values are obtained
by signaling and are defined as I, ,,, Iy,m in case of a voice or
best-effort requests, respectively:

\n

D2 VmE My, a € o,
icd, Tm
lv,m - p
,m
= Vm e My, b € Ains,
ig‘, Pm m b inf: (38)

1
lb’m = [Eielb ( - ) Vm (S :M

For the UMTS air interface the used normalized resource-
rate mapping curve and the linear approximation corre-
sponding to (9) are shown in Figure 2. The slope of the
linear approximation is chosen so that it intersects the real
rate mapping curve at the origin and at 100 kbit/s, which
corresponds to A, = 1.53¢6 bit/s. For the GSM air interface,
the envelope of the coding and modulation corresponding
to [15] serves as SINR-rate mapping with the additional
requirement from the standard that voice users are not able
to share a time slot with other users. As utility curve, a shifted
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version of the a-proportional fair curve with a = 1/2 is used,
which is a more throughput oriented metric:

R.
— 41000 — +/1000. (39)
bit/s

v(Ri) =
The shifting operation leads to a finite slope of the curve at
the origin which is essential to enable switching off users.
Otherwise, a user in a deep fade might be assigned almost
all resources, if lim, . oy’ (x) = oo.

In the simulation scenario, there are in average 10 voice
service call setup requests per second inside the movement
area which corresponds to approximately 36 active voice
users and a voice traffic load of 440kbit/s per cell area in
average. Additionally, a varying number of BE users request
service. For the simulation statistics, only the investigated
cells (see Figure 1) are considered. In Figure 3, the through-
put of the BE users based on the real SINR-rate mapping
and the approximation is shown over the average number of
active BE users. As can be observed, Algorithm 2 achieves up
to 30% more throughput compared to load-balancing. The
real and approximated rates match pretty well in the region
for low user request rates, but also at high load the deviation
is small compared to the gain. The sum utility per cell area
and the upper bound are shown in Figure 4. The utility gain
of Algorithm 2 compared to load-balancing is also almost as
large as of the throughput because of the low curvature of
y. The distance to the bound is of special interest; at high
call arrival rates the distance is almost zero, indicating that
Algorithm 2 performs close to optimum and no significant
gains could be achieved by using Algorithm 1 instead. At
lower rates this is different. Here, the dynamic procedure
pays the price for its simplicity in terms of performance loss.
The main reason for the loss results from the fluctuation of A.
At low request rates a user’s call setup or service termination
has a great impact on the resource allocation of the other
users in the cell and therefore leads to strong variations of
A over time. The fluctuation of A directly influences the set
of optimum BSs M, of users and therefore often leads to
the case that users find themselves assigned to a currently
nonoptimal BS. In this case, the dynamic algorithm looses
performance since the cell selection is only allowed once
per user in general. Higher utility values could be obtained
here by allowing users to perform intersystem hand-overs
so that each user would be assigned to Mop; again. This
characteristic is also reflected in the looseness of the bound.
Unlike to low request rates, if the average number of users in
a cell is high the influence of a single-user arrival or departure
from a cell on A is diminishing and a user’s optimum BS
hardly changes during the service time. In this case the
performance is almost optimal and the bound gets very tight.
The tightness also indicates that the influence of the users
pedestrian mobility and therefore the variation of R (and on
Mopt) is negligible in this scenario.

For the heterogeneous UMTS GSM/EDGE system the
following interpretation of the optimum assignment strategy
can be given. One observes that R is a monotonically
increasing function of a user’s SINR for both air interfaces.
Therefore, for a given A the optimum cell/RAT selection

2800 ' ' ' ' .' . ' [ S '
2600 |-

2400 |-
2200 F
2000 |-
1800 |/

1600 | - -

Sum be throughput (kbit/sper cell area)

1400

10 20 30 40 50 60 70
Average number of best effort users per cell area

—+— Algorithm 2 ++ Algorithm 2 approximation

—*— Load based * - Load based approximation

FiGure 3: BE throughput with and without linear approximation
(9) without slow fading.

Mopti = arg MinuAu/Rim(Bim) reduces to an SINR thresh-
old. This threshold depends on the air interface and the
service type through R(B) and on A which can be interpreted
as the load situation of the BS. The threshold characteristic
can be observed in Figure 5, where the BE user assignment
in terms of the selected RAT is shown by color shades;
Algorithm 2 assigns users to UMTS that are in the red
area close to the BSs and users in the blue area to GSM.
The border of both areas is characterized by the threshold
SINR of each RAT which has a lobe pattern because of the
directional antenna characteristics. The pattern looks very
regular in Figure 5 due to equal average loads in each cell
of an air interface (and therefore equal A for BSs of one
RAT) and collocated sites of UMTS and GSM BSs. However,
Algorithm 2 will also flexibly adapt itself to the optimum
configuration in case of arbitrary, not necessary collocated,
BS positioning and varying load situations without any
change in configuration of the algorithm. The optimum area
pattern will then of course look different. Contrary to the BE
users Algorithm 2 will assign almost all voice users to UMTS
in the presented scenario. This is due to the fact that time-
slot sharing is not possible in GSM for voice users. Therefore,
the maximum slot rate of a voice user is much lower than
in UMTS. Thus, a much lower A of the GSM BS compared
to the A of the UMTS BS would be required to make GSM
attractive for an assignment. This instance might suggest that
also the major part of the gain of Algorithm 2 is based on the
low effectivity of voice in GSM, which is not avoided in load
balancing. Simulations however show that also for pure BE
traffic gains of more than 20% are obtained.

So far slow fading has not been active in the simulations
to demonstrate that the utility bound can be tight and to
visualize the assignment policy of Algorithm 2 qualitatively.
In Figure 6, the sum utility and the bound is shown for
the scenario above however this time with slow fading
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FIGURE 4: Sum utility U = 3¢, ¥i(R;) and upper bound U + AL
without slow fading.
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FiGURE 5: RAT assignment of BE users without slow fading: 1 —
100% assigned to UMTS 0 — 100% assigned to GSM.

corresponding to [14] in both air interfaces with a variance
of 6dB. Considering load balancing, the slow fading does
hardly influence the performance. For Algorithm 2 however
the users’ mobility in connection with the slow fading has a
nonnegligible impact. Now, even small changes in position
can result in large channel gain and therefore R differences
which lead to more wrongly assigned users and looseness
of the bound. Nevertheless, still a gain of approximately
20% is achieved. Similarly the performance of Algorithm 2
decreases and the bound gets less tight without slow fading
in case the velocity is increased. For completeness, it is
noted here that in case users do not change their position
the tightness of the bound under slow fading is similar to
Figure 4.

The observations made in Section 3 and in the simula-
tions open up the way for even more simplified algorithms
that might be interesting for practical applications. For given

12000 |
10000 |
8000 |-

6000 |- - -

Sum utility (per cell area)

4000

10 20 30 40 50 60 70
Average number of best effort users per cell area

—+ Algorithm 2
—#— Load based
+- Bound algorithm 2

FIGURE 6: Sum utility and upper bound with slow fading 6 dB.

scenarios fixed base station weights A or service dependent
SINR, channel or even distance thresholds could be applied
for the cell/RAT selection or as triggers for intersystem hand-
overs. Additionally, in case users are subject to strong channel
variations, for example, by mobility or fading during a
service request updating the cell/RAT selection and therefore
executing Algorithm 2(a) at more frequent intervals is an
option to improve the performance and get close to the
optimum again.

6. Conclusions

In this paper, we developed an optimization framework for
wireless heterogeneous multicell scenarios. Having derived
the feasible rate regions for air interfaces with orthogo-
nal resource assignment and a convex approximation for
interference limited radio access technologies we introduced
a convex utility maximization problem formulation for
heterogeneous scenarios. We gained general insights on
the problem solution and derived simple assignment rules
that lead to the global optimum by exploiting the dual
problem formulation. These observations were then used
to develop decentralized algorithms for static scenarios
and then simplified for dynamic settings. Although the
simplifications came at the cost of the optimality still high
gains in comparison to a simple load-balancing algorithm
were obtained and close to optimum performance could be
shown by simulations based on a duality bound.

Acknowledgment

The authors are supported in part by the Bundesministerium
fiir Bildung und Forschung (BMBF) under Grant FK 01 BU
566.



12 EURASIP Journal on Wireless Communications and Networking

References

[1] J. Pérez-Romero, O. Sallent, and R. Agusti, “On the optimum
traffic allocation in heterogeneous CDMA/TDMA networks,”
1EEE Transactions on Wireless Communications, vol. 6, no. 9,
pp. 3170-3174, 2007.

[2] A. Furuskdr and J. Zander, “Multiservice allocation for
multiaccess wireless systems,” IEEE Transactions on Wireless
Communications, vol. 4, no. 1, pp. 174-183, 2005.

[3] L. Blau and G. Wunder, “User allocation in multi-system,
multi-service scenarios: upper and lower performance bound
of polynomial time assignment algorithms,” in Proceedings of
the 41st Annual Conference on Information Sciences and Systems
(CISS °07), pp. 41-46, Baltimore, Md, USA, March 2007.

[4] I. Blau, G. Wunder, I. Karla, and R. Siegle, “Cost based
heterogeneous access management in multi-service, multi-
system scenarios,” in Proceedings of the 18th IEEE International
Symposium on Personal, Indoor and Mobile Radio Communica-
tions (PIMRC ’07), pp. 1-5, Athens, Greece, September 2007.

[5] E.Stevens-Navarro, Y. Lin, and V. W. S. Wong, “An MDP-based
vertical handoff decision algorithm for heterogeneous wireless
networks,” IEEE Transactions on Vehicular Technology, vol. 57,
no. 2, pp. 1243-1254, 2008.

[6] J. Mo and J. Walrand, “Fair end-to-end window-based con-
gestion control,” IEEE/ACM Transactions on Networking, vol.
8, no. 5, pp. 556-567, 2000.

[7] S. Stanczak, M. Wiczanowski, and H. Boche, “Distributed
utility-based power control: objectives and algorithms,” IEEE
Transactions on Signal Processing, vol. 55, no. 10, pp. 5058—
5068, 2007.

[8] M. Chiang, “Balancing transport and physical layers in
wireless multihop networks: jointly optimal congestion con-
trol and power control,” IEEE Journal on Selected Areas in
Communications, vol. 23, no. 1, pp. 104-116, 2005.

[9] J. Huang, R. A. Berry, and M. L. Honig, “Distributed inter-
ference compensation for wireless networks,” IEEE Journal on
Selected Areas in Communications, vol. 24, no. 5, pp. 1074—
1084, 2006.

[10] A. Goldsmith, Wireless Communications, Cambridge Univer-
sity Press, New York, NY, USA, 2005.

[11] S. Boyd and L. Vandenberghe, Convex Optimization, Cam-
bridge University Press, New York, NY, USA, 2004.

[12] D. P. Bertsekas, Nonlinear Programming, Athena Scientific,
Belmont, Mass, USA, 2nd edition, 1995.

[13] S.Borst, A. Proutiére, and N. Hegde, “Capacity of wireless data

networks with intra- And inter-cell mobility,” in Proceedings

of the 25th IEEE International Conference on Computer Com-

munications (INFOCOM °06), pp. 1-2, Barcelona, Spain, April

2006.

ETSI, “Selection procedures for the choice of radio transmis-

sion,” Tech. Rep. 101 112 V3.1.0, UMTS, November 2001.

[15] ETSI, “Radio network planning aspects,” Tech. Rep. 101 362
V8.3.0, GSM, 1999.

(14



Hindawi Publishing Corporation

EURASIP Journal on Wireless Communications and Networking
Volume 2009, Article ID 564692, 15 pages
doi:10.1155/2009/564692

Research Article

Joint Throughput Maximization and Fair Uplink Transmission

Scheduling in CDMA Systems

Symeon Papavassiliou’? and Chengzhou Li®

I Network Management and Optimal Design Laboratory (NETMODE), Institute of Communications and Computer Systems (ICCS),

9 Iroon Polytechniou Street, Zografou 157 73, Athens, Greece

2School of Electrical and Computer Engineering, National Technical University of Athens (NTUA), 9 Iroon Polytechniou Street,

Zografou 157 73, Athens, Greece

3LSI Corporation, 1110 American Parkway NE, Allentown, PA 18109, USA

Correspondence should be addressed to Symeon Papavassiliou, papavass@mail.ntua.gr

Received 9 July 2008; Revised 10 December 2008; Accepted 20 February 2009

Recommended by Alagan Anpalagan

We study the fundamental problem of optimal transmission scheduling in a code-division multiple-access wireless system in order
to maximize the uplink system throughput, while satisfying the users quality-of-service (QoS) requirements and maintaining
fairness among them. The corresponding problem is expressed as a weighted throughput maximization problem, under certain
power and QoS constraints, where the weights are the control parameters reflecting the fairness constraints. With the introduction
of the power index capacity, it is shown that this optimization problem can be converted into a binary knapsack problem, where all
the corresponding constraints are replaced by the power index capacities at some certain system power index. A two-step approach
is followed to obtain the optimal solution. First, a simple method is proposed to find the optimal set of users to receive service for
a given fixed target system load, and then the optimal solution is obtained as a global search within a certain range. Furthermore, a
stochastic approximation method is presented to effectively identify the required control parameters. The performance evaluation
reveals the advantages of our proposed policy over other existing ones and confirms that it achieves very high throughput while
maintains fairness among the users, under different channel conditions and requirements.

Copyright © 2009 S. Papavassiliou and C. Li. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. Introduction

The continuous growth in traffic volume and the emergence
of new services have begun to change the structure and
requirements of wireless networks. Future mobile commu-
nication systems will be characterized by high throughput,
integration of services, and flexibility [1-5]. With the
demand for high data rate and support of multiple quality of
service (QoS), the transmission scheduling plays a key role in
the efficient resource allocation process in wireless systems.
The transmission scheduling determines the time instances
that a mobile user may receive service, as well as the resources
that should be allocated to support the requested service, in
order to make the resource distribution fair and efficient.
The fundamental problem of scheduling the users trans-
mission and allocating the available resources in a realis-
tic uplink code-division multiple-access (CDMA) wireless

system that supports multirate multimedia services, with
efficiency and fairness, is investigated and analyzed in this
paper. A transmission scheduling method which achieves
the maximum system throughput under the constraints
of satisfying certain users QoS requirements and main-
taining throughput fairness among them is provided and
evaluated.

1.1. Related Work and Motivation. A class of scheduling
schemes, namely, the opportunistic scheduling schemes,
has been proven to be an effective approach to improve
the system throughput by utilizing the multiuser diversity
effect [6, 7] in wireless communications. Specifically, for
a system with many users that have independent varying
channels, with high probability there is a user with channel
much stronger than its average SNR requirement. Therefore,
the system throughput may be maximized by choosing
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the user with “relatively best” channel for transmission at
a given slot. However, some fairness constraints must be
imposed on the scheduling policies to ensure the fair resource
allocation.

It has been shown in [8] that scheduling users one-by-
one can result in higher system throughput for high data
rate traffic in the CDMA downlink. However, this work
does not exploit the time-varying channel conditions. In
[7, 9], a high-speed data rate scheme (HDR) is introduced,
where the base station schedules the downlink transmission
of a single user at a given time slot with the data rates
and slot lengths varying according to the specific channel
condition. In [10-12], a transmission scheduling scheme for
multiple users, which considers both the channel condition
and queueing delay/length, is proposed and shown to be
throughput optimal if it is feasible. However, the fairness
issue is not explicitly addressed in that work. In [13-15],
a framework for opportunistic scheduling that maximizes
the system performance by exploiting the time-varying
channel conditions of wireless networks is presented. Three
categories of scheduling problems—the temporal fairness,
utilitarian fairness, and minimum-performance guarantee
scheduling—are studied and optimal solutions are given.

Although the downlink transmission assignment is
important for several applications, the efficient uplink
transmission scheduling plays an important role as well,
especially with the prevailing of multimedia communica-
tions and applications. It has been argued that the downlink
scheduling method is not suitable to be applied to the uplink
transmission scheduling, where simultaneous transmissions
may result in higher throughput [16, 17]. The uplink
transmission scheduling problem is more complicated and
requires further consideration of additional elements to
make the corresponding scheduling policies feasible [18].
The achievable throughput in such a case depends not only
on the service access time, but also on the transmission pow-
ers and the corresponding users interference. In addition,
multiple users can be scheduled simultaneously to transmit
in the same time slot, which is a major difference from
the wireline and TDMA-like scheduling schemes, making
the respective scheduling processes either inapplicable or
inefficient in the CDMA environment. The simple temporal
fairness scheduling, where the main resource to be shared is
the time, fails to provide rational fairness in this case. As a
result, the throughput optimal and fair uplink transmission
scheduling problem needs to jointly consider multiple factors
such as access time, transmission power, channel conditions,
and number of users to be scheduled at the same time.
Heuristic approaches to address the problem of short-term
fairness and demonstrate the tradeoff between fairness and
throughput under some special cases have been introduced
in [19-21].

Furthermore, how to maximize the throughput of uplink
CDMA system was first analyzed in [16]. The sole purpose
of uplink throughput maximization can be achieved by
choosing the “best” K users in terms of their received power,
when they transmit at their maximum power. However, such
throughput maximization does not consider fairness, that is,
the equal opportunity for all users to receiving service despite

their channel conditions. Therefore, among the objectives
of our approach in this paper is to identify the actual
“best” users that should transmit in order to maximize the
throughput, when the fairness constraints are introduced
and respected.

In [22], several scenarios of scheduling uplink CDMA
transmission with voice and data services are analyzed.
With the number of voice users and their corresponding
transmission rates fixed, that work attempted to maximize
the throughput of data service. It was shown that when the
synchronization overhead is reasonable, a smaller number
of simultaneous transmission users achieve higher system
throughput and at the same time lower the average transmis-
sion power. However, in this case the achievable throughput
is affected by the “weakest link.” Therefore, this approach
can be regarded only as a static analysis that considers the
relationship between the performance and the number of
users chosen for transmission. The problem of identifying
the actual set of users to transmit based on their channel
conditions, which may reduce the impact of the “weakest
link”, has not yet been investigated and is one of the main
objectives of our paper.

In addition, the problem of uplink CDMA scheduling is
further complicated by the fact that the conventional concept
of capacity used in the wireline networks, for example, total
bandwidth of the physical media, is not directly applicable in
the CDMA systems. In this case, the actual system capacity
is not fixed and known in advance, since it is a function of
several parameters such as the number of users, the channel
conditions, and the transmission powers.

Therefore, in summary the main contributions of this
paper are as follows. (1) Jointly consider the factors of
channel capacity, number of users and their interference,
transmit power, and fairness requirements. (2) Formulate an
optimization problem that stresses the fairness requirement
under time-varying wireless environment and proves the
existence of an optimal solution based on all constraints. (3)
Exploit the power index concept and power index capacity,
as a novel and effective way, to treat the fairness issue in
the transmission scheduling policy under the considered
uncertain and dynamic environment. (4) Devise a scheduling
policy that achieves throughput fairness among the users and
optimal system throughput under certain constraints.

1.2. Paper Outline. The rest of the paper is organized
as follows. In Section 2, the system model that is used
throughout our analysis is described, and the problem
of the uplink scheduling in CDMA systems is rigorously
formulated as a multiconstraint optimization problem. It
is demonstrated that this problem can be expressed as a
weighted throughput maximization problem, under certain
power and QoS constraints, where the weights are the
control parameters that reflect fairness constraints. Based
on the concept of power index capacity, this optimization
problem is converted into a simpler linear knapsack problem
in Section 3.1, where all the corresponding constraints are
replaced by the users power index capacities at some
certain system power index. The optimal solution of the
latter problem is identified in Sections 3.2 and 3.3, while
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in Section 3.4, a stochastic approximation method is pre-
sented in order to effectively identify the required control
parameters. Section 4 contains the performance evaluation
of the proposed method, along with some numerical
results and discussion, and finally Section 5 concludes the

paper.

2. System Model and Problem Formulation

In this paper, we consider a single cell DS-CDMA system
with B(k) backlogged users at time slot k. The users
channel conditions are assumed to change according to some
stationary stochastic process, while the uplink transmission
rate is assumed to be adjustable with the variable spreading
gain technique [23]. Each user i is associated with some
preassigned weight ¢; according to its QoS requirement. In
the following for simplicity in the presentation, we omit
the notation of the specific slot k from the notations and
definitions we introduce. Let us denote by r; the transmission
rate of user i in the slot under consideration. We assume
that the chip rate W for all mobiles is fixed, and hence the
spreading gain G; of user i is defined as G; = W/r;. Let
us also denote by y; the required signal-to-interference and
noise ratio (SINR) level of user i, by h; the corresponding
channel gain, and by p; the user i transmission power at a
given slot, which, however, is limited by the maximum power
value pi"™. Therefore, the received SINR y; for a user i is
given by

hipiGi / i
:))1.) 1:1,2,...,B(k)) (1)
(XEka]),j#ithj + Wi

where 79 is the one-sided power spectral density of additive
white Gaussian noise (AWGN), and « determines the
proportion of the interference from other users received
power. Without loss of generality in the following, we assume
a = 1. Obviously, to meet the SINR requirement, the received
SINR y; has to be larger than the corresponding threshold
yi, that is, y; > y;. In the following, we assume perfect
power control in the system under consideration, while
users are scheduled to transmit at the beginning of every
fixed-length slot. The objective of the optimal scheduling
policy Q* is to find the optimal number of allowable
users and their transmission rates, which achieves the
maximum system throughput while maintaining the fairness

property.

2.1. Problem Formulation. Let R(k) = Zf:(]f)r,»(k) denote
the total throughput in slot k. Our objective function is to
maximize the expectation of R(k) by selecting the optimal
transmit power vector (pi, p2,..., Pak)) and transmit rate

vector (r1,72,...,"B(k)), that is,

B(k)
maxE( z r,-) (2)

i=1

subject to specific SINR, maximum transmit power, and
fairness constraints as follows:

hipiG; ;
G >y, fori=1,2,...,B(k),
2j-1jzihipj+Wio
pisp::nax’ fori:l)za---rB(k)’ (3)
7i 7]‘ ..
— =—= forl<i j<B(k),
b 9 !

where 7; = E(r;) denotes the mean throughput of user i in
the corresponding backlogged period. It has been shown in
[15, 24] that the above-constrained optimization problem
can be considered as equivalent to the following problem
(4), where Z is the minimal value among all 7;/¢;, that is,
Z = min;{7i/¢;}. In (4), we transform the objective function
(2) into finding the optimal transmit powers and rates that
maximize the minimal normalized average rate Z. Therefore,

max Z,

st. Z < Q, 1 <i< B(k),

hipiW/r; l . (4)
B(k) £ >y i=12...,B(k),
istjzihipj+ Wno
pi < p™™, 1<ix<B(k).

Apparently, the solution of the above problem will finally
make Z = 7i/¢; for 1 < i < B(k) since one can always
reduce its throughput for the benefit of other users in order
to maximize Z. With the constraint Z = 7;/¢;, the objective
function then is generalized to

B(k)
max Z WiTi, (5)

i=1

where w; is an arbitrary positive number. Here the crucial
observation [24] is that the optimal scheduling policy will be
the one that maximizes the sum of weighted throughputs and
equalizes the normalized throughput. The maximization of
mean-weighted rate in (5) is obtained by the maximization
of the weighted rate in every slot, that is, maxZﬂ’f)wm
for every slot k. In conclusion, to obtain the optimal
uplink throughput while keeping fairness, we must solve the
following problem:

B(k)

max Z Wit (6)
i-1

]’lipiW/T,‘
BB z i
2j=tjzihipj+ Wio

s.t. i= 1)2)--~)B(k)) (7)

1 < i< B(k). (8)

The fairness constraint, that is, 7i/¢; = 7;/¢;, is
represented by the choice of w;. By adjusting the value of
w;, the user will get more or less opportunities to transmit
data, and hence the corresponding normalized throughput is
balanced. As we discuss later in this paper, the value of w; can

pi < pi™,
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be approximated by a stochastic approximation algorithm,
which has already found its application in [14, 15] under
similar situations. Note that since we assume perfect power
control in the CDMA system under consideration, only the
equality case of (7) is considered here.

The following Proposition 1 states that the optimal
solution is achieved when a user either transmits at full power
or does not transmit at all.

Proposition 1. The optimal solution that maximizes the
weighted throughput of problem (6) is such that

pi(k) € {0, p™},  fori=1,2,...,B(k). (9)

Proof. In order to minimize the multiple access interference,
users transmit with the minimum required power to meet
the required threshold y;. Therefore, we consider the equality
case of constraint (7). To maintain exactly the threshold y; for
user i, the achievable transmit rate is represented as

hipiW
(k) = — 5k . (10)
yi(zjzl,j;ti hjpj+ W’70)
The objective function then becomes
B(k) B) _
Z=Swr =y W b Coay
i=1

. B(k)

i1 Vi zjzl,j;&ihjpj"'wﬂo
Differentiating twice with respect to the transmit power

of a user m, we obtain

B(k)

0*Z Wil’liW pll’l%1
=2 2.

A2 , 3-
P iiiem V' (S5 i hips + Wro)

(12)

Since w; is positive number, obviously (12) is nonnegative,
while the objective function is a convex function of py,.
Hence, the optimal solution of this problem is that the
transmit power obtains the value of its boundary, that is,
either 0 or pj™*. O

In Section 3, the corresponding optimization problem
is transformed to an equivalent problem of a simpler
form, which facilitates the identification of the optimal
solution. However, in the following we first introduce
the concept of power index capacity which is used to
represent the corresponding constraints, under the problem
transformation.

2.2. Power Index Capacity. It has been shown in [25] that by
solving the constraints (7) and (8), the following inequality
must be satisfied if there exists a feasible power assignment

P = [p1> P2>---> PB(Ky] that meets the QoS requirements:
B(Zk)g- <1- oW
570 minepm {pPhi(Gilyi +1)}

(13)
noW

= 1 - N 5
ming <;<pi) | prhi/gi}

where

yi + Gi

gi (14)

is defined as the power index of user i [26]. Relation
(13) is the necessary and sufficient condition such that a
power and rate solution is feasible under constraints (7) and
(8) [25].

Let us regard ,g; as the actual system load, which is the
sum of power indices assigned to all backlogged users, while
we assume that there is a target system load . It should be
noted that y here is not fixed but has value 0 < y < 1.
The meaning and motivation for the definition of the target
system load y are that the system will attempt to provide the
appropriate scheduling in order to make the actual system
load >’ g; reach the target load (however, it serves as an upper
bound and cannot be exceeded). For an arbitrarily selected
y in the range of 0 < y < 1, there exist two possible cases
concerning the relationship between the actual system load
>.gi and the target system load. When considering small
values for the target system load v, the system can easily
make the actual system load > g; reach the target load under
consideration, that is, >.g; = y. On the other hand, when
y is large, especially when it approaches to 1, it may be
impossible for the actual achievable system load > g; to reach
y due to the limitation imposed by (13). Let us assume that
in time slot k the maximum system load this system can
achieve based on all users channel states and all possible
user schedulings is y* = max(>’g). We will now consider
the two cases mentioned above, that is, 0 < ¥ < y* and

v >yt

2.2.1. Target Load Is Less than or Equal to Maximum System
Load. If we assume 0 < y < y*, then the system load can
achieve the target load, >;¢i = y. Therefore, (13) can be
rewritten as follows:

min SLL hi} > oW , i<,
1<i<B(k) gi 1-vy
(15)
maxj,
therefore u > W Vi, 1 <i< B(k).
& -y

For each individual user, there is a limitation on the
maximum power index that it can reach, given by (15)

;’naxhi
p;,IOW , Gisy (16)

g<1-vy)

2.2.2. Target Load Is Larger than Maximum System Load. If
the target load is larger than the maximum system load, that
is, ¥ > y*, it means there will be no feasible transmission
power solution in (7) and (8) to achieve this target load and
therefore the relationship in (15) does not hold any more.
In this case, we simply apply the power index restriction of
(16) to each user. The consequence is that the final achieved
system load becomes ;¢ < y* < y since g < (I —
Y)pihi/moW < (1 — y*) pi™hi/noW.
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In fact, unless all possible transmission user sets are
searched, it is unknown in advance whether or not the actual
system load >’ g; can reach the chosen y. Therefore, applying
(16) to the case v > y* unifies the definition of the power
index range, within which a user can be assigned a feasible
power index without knowing the value of y*. One key
principle and rule regarding the algorithm proposed in this
paper is to assign to an individual user a power index that is
less than or equal to its power index capacity. In the power
index assignment algorithm described in Section 3.2, the
situation where >’ g; < ¥ may occur. However, it should be
noted here that as proven by Theorem 1 later in the paper, the
global optimal solution must be the one satisfying > g; = .
The target load range where y > y* is then not possible
to be the optimal solution. The intentionally introduced
restriction of (16) in the case of y > y* allows the algorithm
to rule out such values of y due to the fact that > ¢; < y in
this case.

2.2.3. Definition of Power Index Capacity. Hence, given the
system load y the maximum possible power index g; a user
can accept in (15) is determined by the maximum transmit

power pi*** and the channel gain h;.

Definition 1. In a CDMA system with B(k) backlogged users
at time slot k, given the target system power index vy, the
maximum power index that does not violate (13) for a single
user whose channel gain is h; is defined as the power index
capacity (PIC) m;(h;, w) of this user.

From (15), it can be easily found that the PIC of user i is

. ;’naxhl_
i (hiyy) = mm{u - "’)pqow ,w}. (17)

Note that in (17) the power index capacity is limited by the
target system power index. This is reasonable since a power
index capacity that is greater than y will have no practical
meaning and application. Furthermore, since our focus in
this paper is to find an optimal scheduling policy as well
as the optimal system load y, the value of y in (17) is not
determined in advance.

Intuitively, the power index represents the relationship
between the transmission power and the corresponding
interference that is caused to other users. If we considered
that the total system power index is fixed to v, larger
power index g; for user i indicates that it has relatively
higher signal-to-interference ratio compared to the other
users with smaller power index, while at the same time it
causes more interference to them. Accordingly, users with
high-power indices may lower their transmission power to
reduce the interference they may cause, which in turn means
that they will have smaller power index to limit the intracell
interference of the system, and therefore satisfy (13) that
guarantees the existence of a feasible transmission power
solution.

3. Problem Transformation and
Optimal Solution

3.1. Problem Transformation. The corresponding constraints
in terms of the power index can be represented as follows:

B(k)
max Z = ZW;‘fr(gi,Yi)a (18)
i=1
B(k)
gy, (19)
i=1
g <mhi,y), 1<i=<B(k), (20)
0<y<l (21)

Note that in the objective function we represent the rate
ri = f(gi» yi) as a function of power index g;, where
& W
1-giyi’
which converts the power index into transmission rate and
can be easily derived from (14) by replacing G; with W/r;.

In the following, let V. = {vi,vs,...,v;...} denote
the set that contains all the power and rate vec-
tors that satisfy constraints (7) and (8) and v; =
{Pu, P2yis+ > PB(k),i> T1L,i,T2)is -+ +» rB(k),i}- The elements pj,i and
r;i represent the transmit power and rate of the jth user in
the ith vector. Similarly, we define another set V' containing
the power and rate vectors v; that satisfy constraints (19),
(20), and (21). By definition, it is obvious that any power and
rate vector v; € V is feasible. However, since in constraint
(21), v may take a value, that is, close to 1 , the required
transmit power could also accordingly become larger than
maximum allowable transmit power p;"** if we simply look
at the result from (15). The following proposition states that
if perfect power control is assumed, for any rate (or power
index) vector that satisfies constraints (19), (20), and (21),
there always exists a feasible transmit power vector.

fr(gnyi) = (22)

Proposition 2. If the power index assignment for all B(k)
backlogged users satisfies constraints (19), (20), and (21), there
always exists a feasible transmit power assignment, that is,
pi < pi"™* for 1 <i < B(k).

Proof. Let vector g = {g1,,...,g8(k)} be the power index
vector that satisfies constraints (19), (20), and (21). Denote
Yy = Xf:(’f) g the sum of all power indices in vector g.
From the definition of power index capacity, the power index
capacity of each user is m;(h;, v) and g; < m;(h;, y). Based on
Definition 1 and (17), we have the following relation:

oW - mi(hi, ) -
h

_ oW - gi
PR

y<1 1 (23)

Hence, for any user i, the transmit rate may be chosen within
range

max gi < f. < pmax 24
Pl ﬂi(hi)V/) —pl—Pt > ( )
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which still satisfies the above inequality and proves this
proposition. The power control of the CDMA system will
choose the minimal transmit power, that meets the required
SINR. O

The following proposition proves that the two sets V
and V' contain the same elements, which means that (19),
(20), (21) and (7), (8) impose the same constraints over our
problem.

Proposition 3. Any vector v; € V is also included in set V',
while any vector v; € V' is also included in set V.

Proof. Suppose that v; € V, and therefore it satisfies
constraints (7), (8). It is apparent that p;; < p;“a". Since, as
shown earlier, constraints (7), and (8) can also be represented
by (13) [25], v; also satisfies (13). Using function (22),
we can convert the rate vector {ry;r.;,...,"sk)} into the
corresponding power index vector {gii,£2,i>--->£B(k),i}. Let

v = Z?ikl)gj,,'. For a feasible power and rate vector, with
known ¢ (0 < y < 1 [25]), we can find each user power
index capacity m;(hj,y). Since v; satisfies (13), based on
Proposition 2 and the definition of power index capacity, we
conclude that g;; < 7;(hj, ). That means that the assigned
powers and rates in v; also satisfy the constraints (19), (20),
and (21). Therefore, v; € V'.

Let us consider vector v; = {pj;, P2ir--+> Py 1,72,
~sTggyst € V. As before, the rate vector part can
be converted to corresponding power index vector
{gi,i)gz,,i’---’gz/a(k),i}- Let y = Z?ikl)g],',i and hence g]/',i =
n}(hj,tp) due to constraints (19), (20), and (21). Note that

for the case where y' > zfiﬁ)g]f’,», rr]'-(hj,t//) > rrj'-(hj,y/').

Based on the previous discussion, we can easily conclude
that the power vector is feasible. Therefore,

noW - g,

; ) (25)
Pj,ihj

y=<1-

which satisfies (13), for user j, 1 < j < B(k). Therefore,
vi €V. O

The above proposition shows that the optimal solution
can also be obtained with the new constraints since they
define the same solution set. Please note that, as mentioned
before, the fairness constraints in the original problem are
replaced by parameters w;s. The choice of the proper values
of w;s that maintain fairness is discussed in detail later in this
paper.

Among the new constraints, the right-hand sides of
inequalities (19) and (20) are not fixed values, but are
functions of the selected target system load w. Hence,
whether or not the final solution is feasible also depends
on the choice of y. For any value of y € [0, 1), there could
be many feasible solutions among which one will be the
optimal. Moreover, there must exist an optimal system load
y* that can achieve the overall best solution. It is natural
to regard the objective Z as the function of system load v,
Z = F(v), and thus Z is the local optimal result at some
specific y. The maximum Z is achieved when y = y*. The

ultimate objective of the proposed method is to find this
optimal y* and the optimal power index assignment vector
under it.

In Sections 3.2 and 3.3, we propose a two-step approach
to solve the optimization problem (17)—(20). More specif-
ically, in the first step (Section 3.2), we assume a fixed y
and then given that fixed parameter ¥ we propose a simple
method (greedy algorithm) trying to find the optimal set
of users to receive service. However, this optimality is not a
global optimality. In general, as mentioned before, ¥ could
get any value within the interval [0, 1). The global optimal
solution can be obtained when parameter y is chosen to be
the optimal one y*. The actual objective of the second step
of our approach (Section 3.3) is to find this optimal y*, by
which the global optimal set of users that will be scheduled
to receive service can be identified.

3.2. Greedy Algorithm for a Given System Load. Before
obtaining the best system load, we first discuss how to find
the local best solution. Assuming that the value of y € [0, 1)
is known, the right-hand sides of (19) and (20) can be
determined. Combining the two constraints together, we can
express the optimization problem (18) by replacing g; with
mi(hi, w)xi, 0 < x; < 1 as follows:

B(k)

maxZ = Z wif; (i (hi, W)xi) )’i),
i=1
o (26)

st. > mh,y)xi<y, 0<x<Ll

i=1

Note that (26) is a nonlinear continuous knapsack
problem with the x; taking continuous values between 0 and
1. In general, solving this type of problem is proven to be
difficult or even impossible in some cases [27]. However,
Proposition 1 limits the transmit power of a user i, to
either pi™* or 0 for the optimal solution. This condition
provides a possible method to solve the above nonlinear
knapsack problem. Without loss of generality, we suppose
that the optimal solution is when the first K users transmit
at their maximum power, p; = pi™, 1 =< i =< K.
The optimal system load is y* = Y& g. The following
theorem states that the power index of an individual user
is equal to its power index capacity under y*, that is,

&= m(hi, y*).

Theorem 1. Let the optimal solution allow K users to transmit
at their maximum power and the system achieves the system
load y*. The power index that an individual user received
in this case is equal to its power index capacity, that is, g =

m(hiy ).

Proof. For those users whose transmit powers are zero,
the corresponding power index capacities are also zero.
Therefore, their power indices are zero as well. Without loss
of generality, we assume that the K users under consideration
are identified as follows: 1 < i < K. Based on Proposition 1,
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we have
hip"™G;
B(k)
2imrypitipi + Wi

=y, forl<i<K (27)

Performing some manipulations in these K equations, we
have

., pmax K
%(1 _ Zg1> = Wl’lo, fOr 1<i<K. (28)
i i=1

Letting y* = 3% | ¢;, we obtain g; as

(1~ y)
= 29
& Wio (29)
From the definition of power index capacity, we find that g; =
w(hi, y*). O

With reference to the optimal solution of problem (26),
we can prove the following theorem.

Theorem 2. The optimal solution of the constrained optimiza-
tion problem (26) can be obtained by solving the following
linear 0-1 knapsack problem:

B(k)

w 7'[,‘(]’1,‘,1//)
maxZ = » wy—————"——
,-:21 yi 1= mi(hi,y)

Xis
B0 (30)
s.t. Zﬂ'i(hi;V/)xi =V, XxX= {0,1}.

i=1

Proof. Since f,(x,y:) = (W/yi)(x/(1 — x)) for user i, we
present the objective function of (26) as follows:

B(k)
maxZ’' = Zwiﬂwm. (31)
oy L -m(hy)x
Based on Proposition 1, we know that the optimal
solution is achieved when the transmit power of a user i is
either pj™* or 0. According to Theorem 1, in terms of power
index that means that users are assigned either their power
index capacity or 0 for the chosen system load y. In the above
relation (31), the solution for x; is either 1 or 0. Therefore,
we can modify (31) as follows without changing the final
optimal solution:

B(k)
w 7'[,‘(]/1,‘,1//)
max’Z = > wy— ————"——Xj, (32)
Z-ZZI yi 1= mi(hi,y)

where x; = {0,1}. O

Instead of solving for the optimal solution of the above
integer knapsack problem (30), which is in principle NP-
hard, we utilize a greedy algorithm (GA) in order to obtain
an approximate solution. Let Z, denote the result achieved
by the approximate solution, while Z and Z. denote the
corresponding results of the optimal solutions for the integer

and continuous knapsack problems, respectively. It has been
proven that Z, < Z < Z, [28]. Furthermore, let

wa__ W
oyl =ik y))’

which is a constant value for an individual user. Let us further
suppose that all backlogged users are sorted in descending
order according to w;(k)a;, that is, wi(k)a; = w;(k)a;, for
i < j. If it is not the case, these values can be sorted in
O(nlogn) time through an efficient procedure. Thus, the
optimal continuous solution of problem (30) is given by

(33)

x;=1, fori<s,
xj =0, forj>s, (34)
Yo — v — Yicti(hisy)

’ 75 (s ‘//)

An algorithm that finds the critical point s within O(#n)
time in a system with n users is provided in [28]. Based
on solution (34), the greedy algorithm (GA) obtains the
approximate solution U as follows:

U = max{Uy, U}, (35)
where
xi=1, fori<s,
U, = )
xj =0, forj=s,
(36)
x;=1, fori=s,
U, = )
xj=0, fori#s.

It has been shown in [28] that in worst case Z,/Z = 1/2.
Let Z represent the result that corresponds to the integer
solution of (32) when v is assigned a value from [0,1),
and Z* be the result when ¥ = y*. From the definition
of y*, we know that Z* is the maximum value among all
Z, that is, Z* = max,{Z}. Based on Proposition 1 and
the analysis in the previous subsection, it is easy to find
that y* = > mi(h;, v*)xi, xi = {0,1}. Therefore, when
the optimal system power index y* is chosen, Z, = Z =
Z. = Z*.Since Z, < Z < Z* and the equality Z, = Z*
holds only when v = y*, and the optimal solution can be
obtained.

3.3. Optimal System Load. As we discussed in the last
subsection the optimal solution of problem (26) depends
on the selected system load y. Relation (17) shows that the
power index capacity increases as y decreases. At the first
point when 7; = 1, the power index capacity reaches its
largest value and then it decreases linearly following the value
of y. Although a smaller value of ¥ may increase the single
user power index capacity at some range, the finally achieved
objective function could be low due to the small system load
y. On the other hand, setting large ¥ reduces the individual
user power index capacity as (17) indicates. The consequence
of smaller power index capacity is that more users are
required to share ¥, and probably a small objective function
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should be used due to the concavity of function f;(x, y;) that
converts the power index to throughput. Therefore, whether
or not the objective function reaches its maximum value
depends not only on the value of the system load y, but also
on how it is shared among the candidate users. There must
exist an optimal value of system load y* that can achieve the
maximum weighted rate.

Let the power index vector g denote the optimal solution,
which can be found through the method described in the
previous section for a given specific value of y. Apparently,
g is a function of y. The objective function (18) is the sum
of individual weighted rates that are obtained from g using
function f,(x,y;). Therefore, Z can also be regarded as a
function of y. Let FZ(y) be the function that gives the
maximum value of the sum of weighted rates at y. Then the
original optimization problem can be rewritten as follows:

maxZ = FZ(y),
(37)
st. 0<y<l

The optimal solution y* of the above problem and its
corresponding power index assignment by (34) with y = y*
provides the final optimal solution of (18).

Problem (37) is a simple unconstrained maximization
problem that searches for the maximum Z within the interval
[0,1). The disadvantage of (37) is that it does not have an
explicit expression. Hence, algorithms that rely on the first-
or second-order derivatives will not be applicable in this case.
Therefore, the searching process depends on the result of
(34). Note that every time when a new value of v is chosen,
the order of w;(k)a; may be different from that of previous
v.

The time of calculating the best result for a newly chosen
v, including the time of reordering the users (if needed),
is easily obtained as O(nlogn) + O(n) = O(nlogn) if n
is assumed to be large enough. Moreover, there are many
possible local maximum points within the range 0 < y < 1.
The final optimal ¥ must be a global best value. Although
in [29] many searching algorithms on how to locate the
minimum/maximum solution within a range are described,
to make these algorithms effective there must be only one
extreme point in the specified range. However, in general
it is not possible to know the range which contains only
the global optimal value. Thus, an exhaustive search within
[0,1) would be needed. However, the following proposition
provides a lower bound y° with respect to the searching
range instead of 0 in order to restrict the corresponding
feasible searching range.

Proposition4. The lower bound of the feasible searching range
is given by

v’ = min (15_1‘(‘), where {; £ p;“aXEW. (38)

B 1<i<B(k) Ho

Proof. With the decrease of the target system load v,
the individual power index, provided by (14), will keep
increasing till y reaches the point y; for user i, that is (1 —
vi)si = vi. With respect to user i, if ¢ < y; its power index

mi(hi, w) = y. y; is given by y; = ¢i/(1 + ¢;), which varies
with different users since their ¢; are not likely the same.
Let y° be the minimum among all y;’s. Once y < y© all
backlogged users will have the same power index capacities
mi(hi,w) = y. Define a small increment Ay and let ' =
v +Ay < yO. Apparently, for all users their power indices will
all have small increment Ay such that 7;(h;, ') = v + Ay.
Maintaining the previous power index assignment and giving
Ay to any backlogged user will help increase the objective
function (18). We hence can keep adding Ay to w till it
reaches y° = Ay + v, which proves this proposition. O

Since the optimal y can reside between ¥ and 1, we need
to calculate a series of sample values after every interval Ay.
Apparently, the smaller the Ay, the more samples we get and
thereby the more accurate is the obtained result. On the other
hand, it also increases the required computational time and
power.

Therefore, in practice we only use reasonably small Ay in
order to reduce the corresponding computational power and
complexity, while still obtain a good approximation of the
optimal solution. It should be noted though that in theory
when Ay becomes infinitely small the above methodology
can be used to find the optimal solution. Specifically, there
exists an algorithm with complexity of O(n*log n) that guar-
antees the finding of the optimal solution, however its high
complexity limits its applicability for real-time computations
and can be used only for benchmarking purposes. Let us
assume that the order in (34) is known and fixed. Under this
condition, there are only B(k) possible results satisfying the
optimal condition in Proposition 1, that is, try the maximum
transmission power in the fixed order with number of users
from 1 to B(k). The maximum result is the optimal one.
For any two users in the possible system load range from
(0, 1), their order of w;(k)a; will change at most three times.
Therefore, there are totally 1.5B(k)(B(k) — 1) order changes
for B(k) users. Every order change requires first the sorting
operation and then the comparison operation that have
complexity of O(nlog n) and O(n), respectively, which makes
the overall complexity of this method O(n* logn).

The optimal algorithm is described as follows.

(1) Find the m points of target system load, x; < x, <
- -+ < X, between [0, 1), where the users change their orders
in w;(k)e;. Such points represent actually any point that for
any two users i and j, wi(k)a; = w;(k)a;, which is,

wi(k)(1 = mi(hi, y)) = wilk) (1 — 7 (hj, y)). (39)

Based on the definition of power index capacity in (17),
the above equation will have at most three solutions.

(2) Once the order is fixed, sort all B(k) users by w;(k)a;
in descending order. The value «; can be calculated using any
number between [x;, x;41) since the order will be the same
within this range.

(3) Perform B(k) rounds of calculation of objective
function (6). In round i, let the largest i users transmit with
their largest transmit powers.

(4) Compare the result of round (i + 1) to that of round
i. If the result in round (i + 1) is less than round i, then stop
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the calculation. In that case, the result of round i is the best
result in this order between x; and xy41.

(5) The largest result obtained in step (4) is the global
optimal solution.

Once the order is fixed in the range [x;, x141) at step (2),
the method provided in Section 3.2 that finds the best local
solution can be applied here, which will provide the largest #,
1 < n < B(k), users with this fixed order. The only difference
is that the target system load is not provided directly by a
specific known value v, but lies within a specific range. Based
on Proposition 1, according to which the users allowed to
transmit will use their maximum transmission power, we
perform B(k) rounds of calculation in step (3) and compare
the results to find the optimal 7 users.

3.4. Fairness Conditions. As mentioned before, fairness is
controlled by the vector w = {wy,wa,..., Wk }. When
changing the values of w;, we are actually pursuing a set of
optimal fixed values w* = {w{,w},...,wg,,} that balance
the rate of users with varying channel conditions and hence
keep fairness. Since we do not know in advance the exact
distribution of the channel conditions, and the number of
users may also change, it is difficult to obtain vector w* in
advance. Therefore, a real-time algorithm is required that is
capable of converging w; toward w;, while maintaining the
asymptotic fairness. Stochastic approximation algorithm has
been proven to be effective in estimating such parameters.
Note that this algorithm has been implemented in [14, 15]
in order to solve similar problems. Generally, the stochastic
approximation algorithm is a recursive procedure for finding
the root of a real-value function f(x). In many practical
cases, the form of function f(x) is unknown. Therefore,
the result with the input variable x cannot be obtained
directly. Instead, the observations of the results, sometimes
with noise, will be taken. It has been proven that the root of
f(x) can be estimated with the observation Y, = f(x,) by
the following procedure:

Xnt1 = Xn — €Y, (40)

where ¢, > 0, &, — 0. We can simply let ¢, = 1/n. In most
situations, the value of f(x,) may not be directly available,
but instead the f(x,) + e,, where e, is the observation noise.
In this case, the above approximation approach still applies,
with the observed value replaced by Y, = f(x,) + e,. The
convergence of x, to the root requires E(e,) = 0.

Here, we define our function f(w) = {f(w1), f(w2),...,
f(wga)} as follows:

_ _E[rn(m] &
E[Srim)] 2%

(41)

f(wi)

whose root w;* will make f(w;) = 0 which satisfies the
fairness condition (3). The noise observation Y, in our case
is:

v - __nm i

- E[erj(n)] - Zj‘ﬁj' (42)

It is easy to prove that the mean of noise E[e,] =
E[f(w;)) — Y,] = 0. Therefore, the value of w;* is then
recursively obtained by

win+1) = win) — Y? (43)

However, Y, need to know the mean of total _system
throughput E[’;r;(n)]. We use a smoothed value R(n) to

approximate E[> jrj(n)] and update R(n) as follows:

R(n) =R(n—1B+(1-P)Dri(n-1), (44)
j

where f3 is the smooth factor which determines how the
estimated R(n) follows the change of actual achieved system
throughput. In the remaining of the paper, throughout the
performance evaluation of our approach, the value f = 0.999
is chosen. The numerical results presented in Sections 4.2.2
and 4.2.3, with respect to the convergence of w;’s and the
achievable fairness, demonstrate that such a method is very
effective in approximating the optimal values of w;" and
therefore controlling and maintaining fairness.

4. Performance Evaluation

In this section, we evaluate the performance of the proposed
method in terms of the achievable fairness and through-
put, via modeling and simulation. Furthermore, to better
understand the performance of the proposed scheduling
algorithm-in the following we refer to as throughput max-
imization and fair scheduling (MAX-FAIR)—we compare it
with the maximum throughput (MAX) scheme [16], which
achieves the maximum total uplink throughput by allowing
only the best k users in terms of their received power to trans-
mit, and with the HDR algorithm [7, 9], which is a single
user scheduling algorithm. The principles and operation of
HDR basically refer to a proportional fair scheduling scheme,
which can be used in the uplink scheduling to demonstrate
the one-at-a-time proportional fair scheduling. Following
the HDR principles the transmission of a single user at a
given time slot is scheduled, with the data rates and slot
lengths varying according to the specific channel condition.
In the MAX scheme parameter, k is determined by iteratively
comparing the throughput of best i users, 1 < i < N, where
N is the total number of users. The throughput achieved by
MAX scheme is regarded as the upper bound throughput
in the uplink CDMA scheduling. On the other hand, since
HDR achieves temporal fairness, we consider it here to
mainly observe the difference between temporal fairness and
throughput fairness and their corresponding advantages in
specific cases.

4.1. Model and Assumptions. Throughout our numerical
study, we consider a single cell DS-CDMA multirate system
with multiple active users. All active users are continuously
backlogged during the simulation and generate packets with
average size of 320 bytes. The maximum transmission power
is assumed the same for all users, that is, p;/"™* = 2 Watts,
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while the system chip rate is W = 1.2288 x 10°chip/s as
defined in IS-95 and the required SINR is y; = 8dB for
data service, the same for all users. The transmission time
is divided into 1 millisecond equal length slots, which is the
algorithm scheduling interval, while the simulation lasts for
1.7 X 10° slots.

To study the impact of the channel condition variations
on the system throughput and fairness performance, we
model the channels through an 8-state Markov-Rayleigh
fading channel model [30]. According to this model, the
channel has equal steady-state probabilities of being in any
of the eight states. We also assume that the coherent time is
much larger than the length of a time-slot, hence the channel
state is assumed to be constant within a time slot. At the
beginning of each time slot, the channel model decides to
transit to a new state, which can only be itself or one of its
neighbor states, that is, from state sto s,s+1, or s — 1. Table 1
summarizes the state transition probabilities for all the eight
states.

Furthermore, four different cases with respect to the
ranges of the average SNRs that are assigned to the various
users are considered. Specifically, Table 2 presents the corre-
sponding ranges and lists the assignment of the average SNRs
for each user for a seven-user scenario, under all these cases.
The four different cases represent four different scenarios
with respect to the SNR as follows (from top to bottom):
large SNR range with low SNR users, low SNR, middle
SNR, and high SNR. In the next subsection, we evaluate the
performance of MAX-FAIR, MAX, and HDR methods under
all four cases and compare their corresponding achieved
throughput and fairness.

In most of the numerical results presented in the next
subsection, unless otherwise is explicitly indicated, all users
are assumed to have the same weight. Such a scenario
allows us to better understand and compare the achievable
performances of the various scheduling schemes, when users
have different channel conditions. However, the operation
and effectiveness of the proposed MAX-FAIR policy is
also demonstrated in an environment, where users present
different weights.

4.2. Numerical Results and Discussion. The numerical results
presented in Sections 4.2.1 and 4.2.2 refer mainly to the
impact of some of the parameters associated with the pro-
posed MAX-FAIR algorithm on its operation and achievable
performance and allow us to obtain a better understanding
of its operational characteristics and properties. Then in
Sections 4.2.3 and 4.2.4, comparative results about the
achievable throughput and fairness of the MAX-FAIR, MAX
and HDR algorithms are presented.

4.2.1. Finite System Power Index Samples. Figure 1 shows the
sensitivity of the weighted throughput achieved by the MAX-
FAIR algorithm as a function of the number of samples used
to obtain these values. The last point in the horizontal axis
corresponds to the optimal value. It should be noted that
in the vertical axis, the depicted weighted throughputs are
normalized over the optimal value. Moreover, the different
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FIGURe 1: The impact of number of samples on the weighted
throughput (MAX-FAIR).

curves provided in this figure correspond to different
combinations of the SNR ranges and the number of active
users. As can be seen, the more samples we choose, the
closer is the obtained maximum value to the optimal value,
which clearly presents the tradeoff between the accuracy
and the required computational power, as discussed before
in Section 3.3. For instance, we observe that in the cases
with small SNR range (e.g., [0,1] dB), even 20 samples are
sufficient to get satisfactory results, while for the cases with
larger SNR range (e.g., [—3,3] dB), more samples may be
required.

Furthermore, as it can be observed from this figure, for
the case of [0,1] dB, the larger the number of active users
in the system, the less sensitive is the achievable maximum
result to the number of samples (i.e., the slope of the
corresponding curve becomes smoother as the number of
active users increases). On the other hand, when there are
users with high SNR values (e.g., [—3,3] dB), the increasing
number of active users makes the achieved throughput drop
slightly for small number of samples. This difference in the
system behavior is closely related to a different number of
simultaneously served users, under different SNR ranges and
channel conditions, as depicted by the different observed
service patterns in Figure 2.

Specifically, in Figure 2, we present the probabilities of
the number of simultaneously served users in each schedul-
ing cycle. For this experiment, we consider 40 backlogged
users in the system and perform 200 trials. In each trial,
users are randomly assigned the SNRs in the designated
SNR range, following the 8-state model [30] described in
Section 4.1. We observe that when there are users having
high SNR values, for example, in the cases of [—3,3] dB and
[2,4] dB, only a small number of users (at most 2 in this
experiment), are served concurrently. However, in the case
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TaBLE 1: Channel state transition probability.
s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8

Pss 0.9304 0.8419 0.8170 0.8216 0.8349 0.8590 0.8945 0.9616
Pss—1 0 0.069 0.0879 0.0894 0.0876 0.0777 0.0637 0.0384
Psstl 0.0696 0.0891 0.0951 0.089 0.0775 0.0633 0.0418 0

TaBLE 2: Simulation cases with different SNR(dB) distribution.

1 2 3 4 5 6 7

Case: [—3, 3] -3 -3 -3 0 0 0 3
Case: [—4,-2] —4 —4 —4 -3 -3 -3 -2
Case: [0,1] 0 0 0 1 1 1 1
Case: [2,4] 2 2 2 3 3 3 4

that all users have small SNR values, for example, in the case
of [—4,—2] dB, the number of simultaneously served users
increases significantly (it is distributed between 4 and 17 in
our case as can be seen by Figure 2). Such user distribution
indicates that in the case that a single user cannot consume all
the system resources (e.g., the case where users have low SNR
values), more users will be scheduled simultaneously in order
to achieve a more efficient resource utilization and as a result
increase the total system throughput. This also demonstrates
the advantage of our proposed scheduling algorithm over the
one-by-one scheduling algorithms that have been proposed
in literature. As a result, with respect to Figure 1, for the
case of [0,1] dB, multiple users are scheduled to reach the
maximal throughput. Increasing the number of active users
enables the system to schedule more available candidates
to achieve higher throughput, and therefore the achievable
result is less sensitive to the number of samples. However, for
the case [—3,3] dB at most only 1 or 2 users are scheduled
for simultaneous transmission. In the following experiments
and numerical results, we adopt the accuracy of 100 samples,
which is sufficient to reach 95% of the optimal-weighted
throughput.

4.2.2. Parameter Convergence by Stochastic Approximation.
As described in Sections 2.1 and 3.4, parameters w;’s are
used to represent the fairness constraints in our optimization
problem formulation. Figure 3 shows the dynamic change
of parameters w;’s as the system and time evolve , for two
different cases that correspond to two different SNR ranges.
A seven-user scenario is considered, while for demonstration
purposes for each case the corresponding values of only
two representative users are presented—one user with strong
channel and one user with weak channel. As mentioned
before, all the users are assigned the same weight in order
to more clearly demonstrate the influence of the channel
conditions on w;’s. It can be seen by this figure that the
converged values of w;’s have the effect of compensating users
with the weak channels and reducing the priority of users
with strong channels in the scheduling policy. In fact, the
converged values of w;’s will make both users (weak and
strong) to gain proper system resources and therefore achieve
fair throughput. Please note that it is the relative values of w;’s

Probability

12

8
Number of simultaneously served users

’

—— [—4,-2]dB
—— [0,1]dB

—— [-3,3]dB
—A— [2,4]dB

FiGure 2: The service pattern under different channel conditions
(i.e., SNRs) (MAX-FAIR).

that control the priority of accessing the system resources,
and not their absolute values. Furthermore, it should be
noted that the lower the average SNR of a weak user, the
larger the gap between the weak user and a strong user, which
has negative impact on the achievable system throughput, as
we will see in the following subsection.

4.2.3. Throughput and Fairness Performance. Figure 4 shows
the average throughputs of all the users under the MAX-
FAIR, MAX, and HDR methods, for a seven-user scenario
where the average SNR range is [—3,3] dB and the cor-
responding average SNR assignments to the seven users
are as shown in Table 2. In order to better demonstrate
the tradeoff between the computational complexity and the
achievable throughput of MAX-FAIR approach, we obtained
the corresponding results under two different cases with
respect to the number of power index samples (i.e., 20
and 100 samples). As observed in this figure the MAX-
FAIR with 100 power index samples achieves slightly higher
throughput, however it requires five times the computational
power of the MAX-FAIR with 20 power index samples.
When compared to other two scheduling schemes, MAX-
FAIR presents the best throughput-fairness performance
(balances the achievable throughput of all users) despite
the variable channel conditions of the different users,
which indicates that the fairness is well maintained under
the proposed scheduling algorithm. As mentioned before
in the paper, the main objective of HDR is to achieve
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FiGure 3: The convergence of w;’s for different users and different
SNR ranges (MAX-FAIR).
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FIGURE 4: Average throughput for the [—3,3] dB case.

temporal fairness. Therefore, under HDR scheduling each
user throughput is closely related to its channel conditions.
That is why in Figure 4 we observe that users 1, 2, and 3 have
smaller throughput than users 4, 5, and 6, while user 7 has the
largest throughput under the HDR scheme. Under the MAX
algorithm, user 7 consumes most of the system resources
and achieves much higher throughput than the rest of the
users due to the fact that the objective of MAX algorithm
is to achieve the highest possible total system throughput,
without however considering the fairness issue. In Figure 5,
we further measure and evaluate the fairness performance by
the standard deviation of the average throughput under all

x10*
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—— MAX-FAIR
—&- HDR
—— MAX

FiGURE 5: Standard deviation of achievable average throughputs.

the four different SNR cases. Among the three algorithms,
MAX-FAIR algorithm has the smallest deviation for all the
different cases under consideration, while the corresponding
values change only slightly from case to case. We also find
that in general the standard deviation increases as the SNRs
become higher. This happens because small fluctuation of
w; results in larger throughput change, if all the users have
higher SNR levels.

Figure 6 compares the corresponding average system
throughputs of the three algorithms under evaluation, for
the different SNR ranges (cases). As we expected, MAX-FAIR
outperforms HDR in most cases due to the simultaneous
scheduling of multiple users, as has been demonstrated
in Figure 2, and consequently results in higher resource
utilization. However, in the case of SNR range of [-3,3] dB,
MAX-FAIR achieves slightly lower throughput than the
HDR. The reason of that resides in the different fairness
criteria considered and satisfied in these two algorithms,
namely, the throughput fairness and temporal fairness. If
we examine again Figure 3, we notice that users that have
low average SNR (—3dB) (e.g., users 1, 2, and 3) finally
converge to a high w;, which enables them to have equal
opportunity to transmit under the MAX-FAIR scheduling
policy. Due to their weak channel conditions, their aver-
age throughputs will be low and hence the total system
throughput will become lower because of the satisfaction of
the throughput fairness constraint. However, as explained
before since access time is not the only resource to be
shared among the users in these systems, considering
throughput fairness instead of temporal fairness is more
meaningful in these systems and environments, despite
the slightly lower total throughput that can be achieved
in some cases under this consideration. One possible
alternative solution is to relax the fairness constraint if
the QoS permits it. Our experiments have demonstrated
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that after relaxing fairness to 85% of its original require-
ment, the MAX-FAIR catches up and outperforms the
HDR.

In order to obtain a more in-depth understanding of
the MAX-FAIR fairness operation, in Figure 7, we present
the achieved average throughputs for all the seven users
under MAX-FAIR scheme, for a scenario where the SNR
range is assumed to be [-3,3]dB, and the users are
assigned different weights. The different weights can be
considered as the mapping of different QoS requirements.
In this scenario, users 1 and 4 have weight 1, users 2
and 5 have weight 2, while users 3, 6, and 7 have weight
4. Figure 7 demonstrates that the MAX-FAIR successfully
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Figure 8: System throughput as a function of the number of
backlogged users.

schedules the transmissions and distributes the resources
so that the various users achieve throughput according to
their corresponding assigned weights. Specifically users with
weights 2 and 4 obtain, respectively, two times and four
times the throughput achieved by users with weight 1. In this
figure, we also present (on the right-hand side vertical axis)
the converged values of parameters w;’s. Here, the different
values of w;’s reflect both the channel condition variations
and the weight differences. Please note that the relationship
between w; and weight is not linear due to the nonlinearity
between the allocated resources and throughput.

4.2.4. Number of Users. Figure 8 shows the achieved total
system throughput under MAX and MAX-FAIR algorithms
as a function of the number of backlogged users, for the
case where the users SNRs are located within [0,1] dB
range. Please note that as mentioned before MAX algorithm
provides the maximum uplink transmission throughput
without considering the fairness property, and therefore
is assumed to provide the upper bound throughput in
uplink scheduling. From this figure, we can clearly observe
the great advantage of the proposed MAX-FAIR approach
and its ability to achieve very high throughput, while still
maintaining fairness. When the number of backlogged users
reaches a certain level, for example, 35 in this experiment,
the throughput becomes flat for both MAX-FAIR and MAX,
which means that the chances of improving the throughput
by opportunistic scheduling with multiple users have been
fully utilized.

5. Conclusions

In this paper, the CDMA uplink throughput maximization
problem, while maintaining throughput fairness among the
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various users, was considered. It was shown that such a prob-
lem can be expressed as a weighted throughput maximization
problem, under certain power and QoS requirements, where
the weights are the control parameters that reflect the
fairness constraints. A stochastic approximation method
was presented in order to effectively identify the required
control parameters. The numerical results presented in
the paper, with respect to the convergence of the control
parameters and the achievable fairness, demonstrated that
this method is very effective in approximating the optimal
values and therefore controlling and maintaining fairness.
Furthermore, the concept of power index capacity was used
to represent all the corresponding constraints by the users
power index capacities at some certain system power index.
Based on this, the optimization problem under consideration
was converted into a binary knapsack problem, where the
optimal solution can be obtained through a global search
within a specific range.

The performance of the proposed policy in terms of
the achievable fairness and throughput was obtained via
modeling and simulation and was compared with the perfor-
mances of other scheduling algorithms. The corresponding
results revealed the advantages of the proposed policy over
other existing scheduling schemes and demonstrated that
it achieves very high throughput, while satisfies the QoS
requirements and maintains fairness among the users, under
different channel conditions and requirements.
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1. Introduction

Mobile network operators continue to deploy the High-
Speed Downlink Packet Access (HSDPA) service in their
existing Universal Mobile Telecommunication System
(UMTYS) networks. From the users perspective, the HSDPA
promises high data rates (up to 14.4 Mbps with Release
5) and low latency. From the perspective of an operator,
HSDPA is hoped to play a key role for the much longed for
breakthrough of high-quality mobile data services. From a
technical perspective, HSDPA introduces a new paradigm
to UMTS; instead of adapting the transmit power to the
radio channel condition in order to ensure constant link
quality, HSDPA adapts the link quality to the radio channel
conditions. This enables a more efficient use of scarce
resources like transmit power, channelization codes, and also
hardware components.

The basic principle of the HSDPA is to adapt the
link to the instantaneous radio channel condition using
adaptive modulation and coding (AMC). HSDPA employs a
shared channel, the High-Speed Downlink Shared channel

(HS-DSCH), which is used by all HSDPA users. With a
shared channel, radio resources are occupied only if a
transmission occurs, which enables a more efficient transport
of bursty traffic. In each transport time interval (TTI), the
scheduler located in the NodeB decides about the users
to be scheduled and about their data rate. The scheduling
decision can be either on behalf of channel quality indicator
(CQI) reports from the user equipments (UE) to enable
opportunistic scheduling schemes which use the air interface
more efficiently, or simple nonopportunistic schemes like
round-robin can be used which shares the resources time fair
among the users.

An important aspect of HSDPA systems is the perceived
fairness of the connection metrics between the users. This
is in contrast to pure UMTS Release 99, where the circuit-
switched design of the radio bearers guarantees equal
Quality of Service (QoS) properties of all users of the same
service class [1]. However, since in HSDPA the theoretically
achievable data rate depends on the channel condition,
the actual achieved data rates depend on user location,
number of users, interference, scheduling discipline, and in
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integrated networks also on the number of dedicated channel
(DCH) connections. In this work, we distinguish between
two fairness aspects. Spatial fairness refers to the spatial
distribution of the perceived data rates within a cell or sector.
Temporal fairness refers to the long-term time-average user
throughput [2].

Our contribution is twofold: first, we propose a flow-
level simulation framework which takes on the one hand
physical layer aspects, scheduling disciplines, interference,
and radio resource management schemes into account, but
also allows for simulation of large networks due to its
analytical approach. Second, we investigate the impact of
three well-known scheduling disciplines, namely round-
robin, proportional fair, and Max C/I on the spatial user
distribution and on the system and user performance. One
of our main findings is that Max C/I scheduling, although
providing sum-rate optimal rate allocations in static system
scenarios, performs worse than proportional fair scheduling
if traffic dynamics are considered.

The remaining of this article is organized as follows:
in the next section, we motivate our work and give an
overview of the current literature. In Section 3, we give a
brief overview of the HSDPA. In Section 4, we explain radio
resource sharing between DCH and HSDPA connections and
formulate a model for the calculation of NodeB transmit
powers. In Section 6, a physical layer abstraction model for
the HSDPA is proposed which enables the calculation of
the average throughputs per flow for different scheduling
disciplines. Simulation scenarios and numerical results are
presented in Section 7, followed by a conclusion in Section 8.

2. Motivation and Related Work

The focus of this work is the impact of elastic flows on the
system performance. We have to distinguish between QoS
flows which require a fixed bandwidth, as for voice calls over
DCH transport channels, and “best-effort” or elastic flows
which adapt their bandwidth requirements to the currently
available bandwidth. Such a flow may be an FTP transfer or
the combined elements of a web page including inline objects
such as embedded videos, that may be transmitted in parallel
TCP connections. A flow can be loosely defined as a coherent
stream of data packets with the same destination address [3].
An important distinction between the two types of flows is
that QoS flows typically follow a time-based traffic model,
which means that the user wants to keep the connection for a
certain time span. In contrast, elastic flows are volume-based,
that is, the user is satisfied as soon as a certain data volume is
transmitted. An effect in this context which is that of spatial
inhomogeneity, which has been mentioned in [4] for systems
without AMC, and has been further investigated in [5, 6]
for pure single-cell HSDPA systems. Users with bad radio
conditions experience lower data rates than users with better
radio conditions, leading to a spatial unfairness, which we
define as the discrepancy between location-dependent user
arrival probabilities and the observed residence probabilities
in steady state. We investigate this effect in Section 7.1 for
different scheduling disciplines in a multicell scenario, that

is, with consideration of other-cell interference, and with
location-dependent arrival rates.

A related point is the system performance and fairness
of the perceived data rates under different scheduling
regimes. In the literature, a large number of fundamental
works investigate the tradeoff between fairness and system
capacity in a wireless systems with opportunistic scheduling.
Examples can be found in [2, 7-10], where in [7] the
concept of multiuser diversity (MUD) in downlink direction
has been investigated, motivated by the findings in [11]
for the uplink direction. For HSDPA systems, research
mainly concentrated on variations of the proportional fair
scheduler developed for the 1XEV-DO system [12]. Different
approaches exist to include QoS constraints on delay or
data rate into the scheduling decision [13-17]. The fairness
of different schedulers in HSDPA systems is investigated in
[18, 19]. Both works conclude that Max C/I provides the
highest system throughput. We compare user and system
throughput for round-robin, Max C/I, and proportional
fair scheduling. The results show that on the one hand, as
expected the two channel-aware schemes clearly outperform
round-robin scheduling, but on the other hand, proportional
fair scheduling leads to a higher time-average throughput
than Max C/I scheduling. We discuss this result in detail in
Section 7.2.

Statistically valid results for integrated UMTS networks
require long simulation runs or analytical approaches. An
intuitive example is the DCH blocking probability; a DCH
user which is located far from the antenna is subject to strong
interference from surrounding NodeBs, he may therefore
require a very high transmit power. If this user additionally
has a long call time, the influence on the blocking probability
is significant. Since such events occur not very often with
reasonable loads, long simulation runs are required. The
results in this work are therefore generated with a simulation
framework based on [20, 21], that uses analytic methods
to approximate the effects of the physical layer and the
scheduling discipline on flow level. This allows for accurate
and time-efficient simulations of large UMTS networks.

3. System Description

We consider a UMTS network where HSDPA and DCH
connections share the same radio resources, namely transmit
power and channelization codes. The core of the HSDPA is
the HS-DSCH, which uses up to 15 codes with spreading
factor (SF) 16 in parallel. The HS-DSCH enables two types
of multiplexing; time multiplex by scheduling the subframes
to different users, and code multiplex by assigning each user
a nonoverlapping subset of the available codes. The latter
requires the configuration of additional High-Speed Shared
Control Channels (HS-SCCHs). Throughout this work we
assume that only one HS-SCCH is present, hence consider
time multiplex only.

In contrast to dedicated channels, where the transmit
power is adapted to the propagation loss with fast power
control and thus enabling a more or less constant bit rate,
the HS-DSCH adapts the channel to the propagation loss
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FIGURE 1: Schematic view of the HSDPA transport channel.

SF 16 codes

with AMC. The UE sends CQI values to the NodeB. The
CQI is a discretization of the received signal-to-interference
ratio (SIR) at the UE and ranges from 0 (no transmission
possible) to 30 (best quality). The scheduler in the NodeB
then chooses a transport format combination (TFC) such
that a predefined target BLER, which is often chosen as 10%,
is fullfilled if possible. The TFC contains information about
the modulation (QPSK or 16QAM), the number of used
codes (from 1 to 15), and the coding rate resulting in a certain
transport block size (TBS) that defines the information bits
transmitted during a TTL. A number of tables in [22] define
a unique mapping between CQI and TFC. This means that
with an increasing CQI, the demand on code resources is also
increasing. This leads to cases where a high CQI is reported
to the NodeB, but the scheduler has to select a lower TBS due
to lacking code resources. A schematic view of the HSDPA
functionality is shown in Figure 1.

4. Sharing Code and Power Resources between
HSDPA and DCH

A key issue of the radio resource management in HSDPA
enhanced UMTS networks is the sharing of code and power
resources between DCHs, signaling channels, common chan-
nels, and finally channels required for the HSDPA, namely,
the HS-DSCH and the HS-SCCH. The signaling channels
and common channels mostly require a fixed channelization
code and a fixed power as for the pilot channel (CPICH)
or the forward access channel (FACH). The DCHs are
subject to fast power control which means that their power
consumption depends on the cell or system load that
determines the interference at the UE. The general level of
power consumption depends on the processing gain and the
required target bit-energy-to-noise ratio (E,/Ny) of the radio
access bearer (RAB).

The HSDPA requires code and power resources. Codes
are the channelization codes that are generated according to
the orthogonal variable spreading factor (OVSF) code tree.
The number of codes that is available for a certain spreading

factor (SF) is equal to the spreading factor itself. A 384 kbps
DCH occupies an SF 8 channelization code. Accordingly,
the maximum number of parallel 384 kbps users per sector
is theoretically 8. In practice, only 7 parallel 384 kbps users
are possible since the signaling and common channels also
require some code resources. Let us introduce an SF 512 code
as the basic code unit. Then, a DCH i with SF k occupies
¢i = 512/k code resources. An HSDPA code with SF 16
requires cgs = 32 code resources. Let Cpcy be the total
code resources occupied by all DCHs, Cccn be the resources
occupied by signaling and common channels, and, Cys =
nps - cus be the total number of code resources used by the
HSDPA where nys is the number of SF 16 codes allocated
to the HS-DSCH. The total number of code resources is
equal to Cior = 512. We consider adaptive code allocation
[23, 24], which is illustrated in a simplified view (pilot and
control channels are omitted) in Figure 2 for both transmit
power and channelization codes. We further assume that the
codes are always optimally arranged in the code tree, and
that no code tree fragmentation occurs. The number of codes
available for the HSDPA is then

| Got — Cccn — Cpen
NnHs = .
CHS

(1

Accordingly, the transmit power Ty consists of a
constant part Tccy for common and signaling channels, a
part Tpcy for DCHs, and a part Tys for the HS-DSCH. Let
T* be the target transmit power at the NodeB. Then, the HS-
DSCH power with adaptive power allocation is

Tus = T* = Tcen — Tocs (2)

where Tfis is the power reserved for the HS-DSCH, and Tpcy
is the total DCH power averaged over some period of time.

5. Calculation of Downlink Transmit Powers

We define a UMTS network as a set £ of NodeBs with
associated UEs, M . A DCH connection k corresponds to a
radio bearer at NodeB x € £ with data rate R, and code
resource requirements ck. Since the power consumed by the
DCH connection is subject to power control, the received
Ep/Ny & fluctuates around a target-E;/Np value g, which
is adjusted by the outer-loop power control such that the
negotiated QoS parameters like frame error rate are fulfilled.
A common approximation for the average E,/Ny value is

_ K . Tk,x " dk,x
Rk w - NO + Ik,oc + ;- Tx,tot " dk,x ’

&k 3)
where the orthogonality a; describes the impact of the
multipath profile for DCH k, di is the average path gain
between NodeB x and UE k, W is the system chip rate, and
Nj is the thermal noise density. We assume perfect power
control, that is, the mean E,/Ny value meets exactly the
target-E;/No such that & = g. The mean transmit power
requirement of a DCH connection follows then as

;. _ECR (W-No+1k,oc
kx = .

W dk,x +ag - Tx,tot)~ (4)
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The average other-cell interference comprises the
received powers of surrounding NodeBs such that
Itoe = Zye £\x Tyt * diy. The total NodeB transmit

powers can be calculated with an equation system over all
NodeBs. For that reason, we follow [25] and define the load
of NodeB x with respect to NodeB y as

Nxy = 2 Wk,y>
keMy
& Ry a, it L(k) =y, (5)

with wg,, = W

dy,y
it L(k)#y.
driy,k Y
After some algebraic modifications, this allows us to formu-
late the total DCH transmit power in a compact form as

Tx,DCH = Z ﬂx,y - Ty,tot- (6)
yeL

In this equation, we neglect the thermal noise since in a
reasonable designed network its impact on the transmit
power requirements is minimal. Note also that the equation
includes the case y = x for the own-cell interference. For the
total transmit power we introduce the boolean variable §, ns
indicating whether at least one HSDPA flow is active in cell
x. The total transmit power at NodeB x is then

Tx,tot = 6x,HS . T: + (1 - (Sx,HS)
7
" <Tx,CCH + Z ﬂx,y ) Ty,tot)~ ( )
yeL

This equation states that if the HS-DSCH is active, the total
transmit power is equal to the target power. Otherwise, it
consist only of the DCH transmit power and the transmit
power for common channels. Introducing the vectors

Vix] = dxus - TY + (1 = dxus) - Tecons (8)
and matrix
M(x, y] = (1 = dxps) * fxy 9)
leads to the matrix equation
T=V+M-T=T=(I-M)"-V, (10)

which provides the transmit powers of all NodeBs in the
system. The matrix I is the identity matrix, and T is the
vector of NodeB transmit powers Tyx. The DCH and HSDPA
transmit powers are then calculated with (6) and (2).

6. HSDPA Physical Layer Model

Consider an HS-DSCH with power Tys = Aps + Tior and nps
parallel codes allocated to the HS-DSCH. Accordingly, the
SIR at UE i for a RAKE receiver with perfect maximum ratio
combining is equal to

Ttot ' di
»PX
= Ans -
Vi Z W - No + Ioc,i + Zreﬂ’\p Tt - di,r,x,

pEP

(11)

where d; . is the instantaneous propagation gain of signal
path p € £. The UE measures the SIR and maps it to the
maximum CQI with a transmission format that achieves a
frame error rate of 10%. In [26] the following relation of SIR
and CQI q is given:

q= max(O,min(SO, [M + 16.62J)). (12)

1.02

The CQI-value g defines the maximum possible TBS
v(q), that can be transmitted in one TTI. It also defines the
number of required parallel codes nys(q). If the number of
available codes nps is less than nps(g), the scheduler selects
the maximum possible TBS value according to nps. This
means that an optimal usage of resources is only possible
if the transmission format according to the reported CQI
utilizes all available codes. If too few code resources are
available, power resources are wasted, and if too few power
resources are available, the CQI is too small to utilize all
available codes. The reported CQI value depends essentially
on the multipath profile, the users’ location, the available
HS-DSCH power, and the other-cell power. The number of
codes required for a certain CQI value depends on the CQI
category.

Above equations give the CQI and TBS for a concrete
instance of the propagation gains in particular of the
multipath component power. For a simplified simulation
and evaluation of the HSDPA performance, an approximate
model for the HSDPA bandwidth similar to the orthogo-
nality factor model for DCH is required. The orthogonality
factor [27] is used to determine the signal-to-interference
ratio for a DCH i as

w Ty - dy
h Ri Tiother + & - Tiown ’ (13)
where W/Rj is the processing gain, Ijother is the other-
cell interference, and Iigwn = Txtot - dxi is the own-cell
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interference. The orthogonality factor « specifies the part of
the power received from the own cell that contributes to the
interference due to multipath propagation. It captures the
impact of the multipath profile in a single value between 0.05
and 0.4 depending on the multipath profile. For a deeper
discussion of the orthogonality factor model please refer to
[28-30] and the references therein.

Actually, the values yk, Iown, and Iopner are mean values
averaged over the short-term fading. More precisely, we
should write (13) as

Ely;] = w Ty dyi
' R; E[Ii,other] ta- E[Ii,own]
(14)
W T 1
Ri Tx,tot E[Ii,other]/E[Ii,own] + 0(.

The orthogonality factor model is not applicable to the
HSDPA since it only yields the mean SIR. However, for the
evaluation of the average HSDPA data rate of a UE at a
certain location, the distribution of the reported CQI values
is required. The essential assumption of the orthogonality
factor model is that the mean normalized SIR, that is, the last
fraction in (14), is a function of the ratio X of average other-
cell received power and average own-cell received power (or
short other-to-own-cell power ratio)

Zi _ E[Ii,other] _

z)q&x Ty,tot : dy,i
E[Ii,own] '

Tx,tot - dx,i

(15)

In [20], the orthogonality factor model is enhanced to
yield not only the mean but also the standard deviation of
the SIR in decibel scale as a function of %;. Assuming that
the distribution of the SIR follows a normal distribution that
is entirely characterized by its mean and standard deviation,
the distribution of the reported CQI values, pcqi(q), is
obtained from the cumulative density function (CDF) of
the distribution of the SIR. Truncating the CQI distribution
according to the available codes for the HS-DSCH yields the
distribution of the TBS as

pear(v(q)),  if v(g) < v*,
30

pTBS(V) = Z pCQI(q): else, (16)
q=v*

where v* is the maximum allowed TBS according to the
available code resources. Accordingly, we denote the CDF of
the CQI and TBS values with Pcqi(g) and Prgs(v).

The physical layer abstraction model gives also insights
into the impact of system parameters like multipath channel
profile, number of available codes and, UE category. Figure 3
shows the gross data rate, that is, the throughput a single UE
would achieve, depending on the other-to-own-interference
ratio for the ITU Vehicular A, Pedestrian A, and Vehicular
B multipath propagation models. A profile with a strong
dominating path, like in Pedestrian A, enables indeed very
high data rates up to 13 Mbps. In contrast, profiles with a
relatively strong second path, like Vehicular A and Vehicular
B, lead to significantly lower data rates due to a higher

Mean TBS (kbit)

-30 -20 —10 0
Other-to-own cell power ratio X (dB)

—— ITU Pedestrian A
—— ITU Vehicular A
—— ITU Pedestrian B

F1GURE 3: Gross data rate for different channel profiles.
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FIGURE 4: Gross data rates for different UE categories.

intersymbol interference. In fact, with these two models,
it is sufficient to provide five SF 16 codes for the HS-
DSCH. Figure 4 shows the gross data rates for different UE
categories, which reflect the capability for 16QAM, number
of parallel codes and, interscheduling time. Interesting is
that UEs without QAM 16 support (categories 11 and 12)
have significantly lower data rates than UEs with QAM 16,
although the transport block sizes are identically (categories
1-6).

6.1. Scheduling. The scheduler in the NodeB has a large
influence on the user-level and system-level performance of
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the HSDPA. Several proposals exist for HSDPA scheduling,
from which we considered three of the most common
schemes. The channel-blind round-robin scheme selects
users consecutively for transmission. The MaxTBS-scheduler
chooses always the user with the currently best possible
TBS, including restrictions due to code resources. Finally,
the proportional fair scheduler selects the user which
has the proportionally best TBS in relation to its past
throughput.

Channel-aware schedulers like MaxTBS and propor-
tional fair benefit from multiuser diversity [7]. With an
increasing number of users in a cell, the probability to
see at least one user with good radio conditions also
increases. If “strong” users are favored by the scheduler,
the aggregated cell throughput increases. Exploitation of
multiuser diversity is therefore in the end beneficial for the
overall system capacity, also because reduced transmission
times for volume-based users leads to longer time periods
where the HS-DSCH is switched off—which in turn reduces
interference.

6.1.1. Round-Robin Scheduling. The round-robin scheduler
selects the users consecutively for transmission. In a suf-
ficiently long time interval, the probability that a user k
is selected is therefore approximately 1/|.M|. Round-robin
is a channel-blind scheduling discipline, which means that
the average throughput of each mobile depends only on
its channel condition and the number of users in the
cell, but not on the channel conditions of other users.
Consequently, the cell throughput does not benefit from
multiuser diversity. However, round-robin is robust and does
not suffer from any convergence issues like proportional fair
scheduling in some cases [31], and it is easy to implement
due to its simple principle. Round-robin is an allocation-
fair scheduling discipline in the sense that, to every user, the
same amount of radio resources in terms of codes and power
are allocated. This approach is often sufficient to prevent
starvation of users at the cell edge.

6.1.2. MaxTBS Scheduling. With MaxTBS (or Max C/I)
scheduling, the user with the currently best TBS is scheduled.
This scheduling discipline maximizes the sum-rate capacity
(in our context the cell throughput) given the saturated case,
that is, all users have at least one packet to transmit [32, 33].
If two or more users have the maximum possible TBS, a
random user out of this set is selected with equal probability.
In contrast to round-robin scheduling, the throughput of
a user depends not only on its own location, but also
on the location of the other users. In [6], this scheduling
discipline is modeled as a priority queue, where locations
closer to the NodeB have higher priority than locations
farther away. However, it is also possible to calculate the
average throughput directly from the TBS distributions of
the users. In this work we use the formulation we developed
in [21]. MaxTBS strongly favors the user with the best
channel quality. This implicates that users with weak radio
conditions are penalized and perceive on average very low
data rates, leading to unfair rate allocations. We show in the

next section how this behavior negatively affects the average
throughput if traffic dynamics are considered.

6.1.3. Proportional Fair Scheduling. Proportional fair (PF)
scheduling is a scheduling discipline which has been devel-
oped for the 1xEv-DO-system in the downlink [12]. The
basic principle is to allocate each user proportional to its link
quality and its past throughput. This is achieved by selecting
the user that has the best instantaneous relative throughput
over its past throughput, which is often calculated with
a sliding window approach. However, different versions of
PF scheduling exist. The most fundamental difference is
the way how the past throughput is calculated. The first
variant updates the past throughput every scheduling period
regardless whether the user has been scheduled or not, the
second variant updates the past throughput only if the user is
indeed chosen for transmission. The difference between both
versions is that in the first case the mean throughput of a user
is proportional to its channel quality only, while in the second
case it is also related to the generated traffic. In [31, 34]
it is argued that both variants approximately lead to the
same results in case of statistically identical fades and infinite
backlogs. The second assumption is reasonable during the
interevent time, while the first assumption is contradicted by
the fact that the shape of the CQI distribution depends on the
level of received other-cell interference. A direct formulation
of the flow-average throughput and a comparison between
both variants can be found in [21].

7. Flow-Level Performance Results

UMTS networks are dynamic systems because of the mutual
dependency among the transmit powers of different cells.
This means that a well-designed performance evaluation
has to consider networks with a reasonable size in order
to capture these effects and their impact on flow-level
performance properly. We consider two different types of
networks: a 19-NodeB hexagonal layout with a NodeB
distance of 1.2 km, and an irregular layout with 22 NodeBs
which is generated from a Voronoi tessellation. The network
areas are partitioned into area elements with an edge length
of 25 m. Figure 5 shows the irregular network with antenna
locations (dots) and arrival cluster centers (stars). In the
hexagonal layout, user arrive according to a homogeneous
Poisson process such that arrival rates are equal for all area
elements. In the irregular network, users arrive according to
a clustered Poisson process as described in [25] and shown in
Figure 6; the total arrival rate Ay in an area element f results
from the superposition of circular clusters with constant
arrival rates. In the irregular network therefore not only the
layout but also the arrival process is heterogeneous.

Results are generated with a time-dynamic simulation
which considers the HSDPA data traffic of a user as a flow
with a certain data volume. The network area is discretized
into a set of area elements with an edge length of 25m.
The time axis is divided in interevent times. We assume that
between two events the users stay roughly within an area
element.
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FIGURE 5: Irregular network layout. Dots indicate NodeB (antenna)
locations, stars mark cluster centers.

FIGURE 6: Inhomogeneous arrival densities. Darker colors indicate
higher probability of arrival.

We consider two types of events: arrival events, that is,
the arrival of a new user into the system, and departure
events, which may occur if an HSDPA user has received
all its data or if the call time of DCH user is reached.
On arrival of a new user, admission control for DCH and
HSDPA is performed. The admission control for DCH
connections is threshold-based. An incoming connection
is blocked if the total transmit power including the new
connection exceeds the target transmit power, or if the
available code resources are not sufficient. For this purpose,

the required transmit power is calculated at the serving
NodeB under the worst-case assumption that all NodeBs
transmit with the target power in order to prevent possible
outage. For the HSDPA, we assume a count-based admission
control which restricts the maximum number of concurrent
connections to a fixed value. If the incoming connection is
admitted into the system, the call time or the data volume,
depending on the user type, is calculated according to the
respective distribution parameters. We assume exponentially
distributed call times with mean E[T] = 120 s for DCH users
and exponentially distributed flow sizes with mean volume
E[V] = 100KB for HSDPA users. The arrival rate of the
DCH users is determined from the offered DCH code load
defined as

As  cs
= = R 17
pe sé Us Ciot (17)

where y; = 1/E[T;], and the index s denotes the service class
of the radio bearer.

On each event, the system variables are recalculated
if necessary. If the event is generated by a DCH arrival
or departure, HSDPA code resources in the relevant cells
are decreased or increased according to the DCH code
requirements. Additionally, the total transmit powers are
updated for all NodeBs in order to capture the new inter-
ference situation. Transmit power recalculation is also done
if the HS-DSCH is switched on or off because of HSDPA
user arrivals or departures. In all cases, the data volume
transmitted by HSDPA wusers within the past interevent
time is subtracted from their remaining data volumes. New
HSDPA data rates are calculated, taking the new radio
resource and interference situation into account. Finally, the
expected departure times of the HSDPA users are updated
according to the remaining data volumes and data rates.

7.1. Volume-Based Traffic Model and Spatial Fairness. As
mentioned before, an important distinction between QoS
and elastic flows is that QoS flows typically follow a time-
based traffic model, which means that the user wants to
keep the connection a certain time span, for example, for the
time of a conversation. In contrast, elastic flows are volume-
based, that is, the user leaves the system as soon as a certain
data volume is transmitted. In reality, the user behavior is
a mixture between both models, depending on factors like
user satisfaction, pricing models, type of content. However,
the two models can be seen as the extremes of the actual user
behavior.

A time-based traffic model implicates that the number of
currently active users is independent of the perceived data
rates. Moreover, the spatial distribution of the number of
users is corresponding to the spatial arrival process; if users
arrive with arrival rate A, the number of concurrently active
users in steady-state follows according to Little as A/, if no
blocking occurs.

A volume-based traffic model means that users stay
in the system until their service demands are fullfilled.
Therefore, the number of active users depends on the
assigned data rates. In HSDPA systems, the data rate depends
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on the channel quality, which means that users with low
average channel qualities stay longer in the system than
those with good channel qualities. Since the average channel
quality is dominated by the other-cell interference, users
at the cell edges stay longer in the system than users in
the center of the cell. This implies that the spatial arrival
process and the spatial steady state distribution are not
directly related anymore, a fact that complicates planning
of HSPDA networks significantly. One reason is that Monte
Carlo methods [35] now have to estimate the spatial user
population for every snapshot, which is difficult without
knowledge of the the currently ongoing flows. With round-
robin scheduling, a direct formulation of the mean transfer
time was found in [5, 24], since in that case the data rates
of the users only depend on the number of users and their
position, but are otherwise independent of each other.

We now clarify the effect of spatial heterogeneity with
some example scenarios. Figure 7 shows the arrival proba-
bility and the residency probability versus the distance to
the antenna for cell number 2 from the irregular scenario.
The arrival probability describes the probability that a user
arrives in this cell at a certain point, while the residence
probability reflects the spatial distribution of the users in the
cell in steady state. The spiky shape of the curves is due to the
discretization of the cell area into area elements. It is obvious
that arrival and residence probabilities are not equal, and that
the magnitude of the deviation depends on the scheduling
discipline. MaxTBS scheduling shows the highest deviation,
since users close to the antenna leave the system much earlier
than users farther away. An interesting result is that residence
probabilities with proportional fair scheduling fir slightly
better to the arrival probabilities if compared to round-robin
scheduling. We will see later that this effect comes from the
fact that the proportional fair scheduler favors users on the
cell edges.

Figure 8 shows the corresponding ratio between arrival
and residence probability in the same cell. With time-based
users, the ratio would be equal to one at all distances. With
volume-based users and MaxTBS-scheduling, the probability
to meet a user at the cell edge is four times higher than the
arrival probability at the same location.

The deviation of arrival and residence probabilities is
the result of spatial unfairness regarding the data rate
allocation. This is demonstrated in Figure 9, which shows
the average user throughput depending on the distance
to the antenna. MaxTBS-scheduling favors strongly user
in the cell center, and thus shows the highest degree of
unfairness. Proportional fair and round-robin scheduling
lead to more balanced results. The difference between round-
robin and proportional fair reflects the scheduling gain due
to multiuser diversity. Note that the gain of the proportional
fair scheduler over the round-robin scheduler is nearly
independent of the distance.

Finally, in Figure 10, the same statistic for the center cell
of the homogeneous scenario is shown, but in a scenario with
a higher DCH load of p. = 0.6. Here, the lack of resources
leads to low throughputs, such that the aforementioned
favoring of user at the cell edge with proportional fair
scheduling is clearly visible. This is caused by the higher
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FIGURE 7: Arrival and residence probabilities for cell 2 in the
irregular network with inhomogeneous user arrivals and DCH
offered load p. = 0.4. The black line with diamond markers
indicates the user arrival probability.
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FIGURE 8: Ratio between arrival and residence probabilities.
MaxTBS-scheduling leads to the highest inhomogeneity.

variance of the TBS distribution of users which experience
more other-cell interference than users close to the antenna,
see also [36] for a discussion of this effect.

7.2. Impact of Scheduling Disciplines. We now investigate
the impact of different scheduling disciplines on the overall
performance of the network. We consider the homogeneous
scenario with hexagonal cell layout and increase the offered
DCH load from 0.1 to 0.8.
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Figure 11 shows the resulting time-average cell and user
throughput versus the offered DCH load. As expected, the
channel-aware scheduling disciplines lead to better results
than the channel-blind round-robin discipline, regardless
of the DCH load. However, with higher DCH load,
the difference between the scheduling disciplines becomes
smaller, since the lack of code resources prevents an efficient
exploitation of multiuser diversity. An interesting result is
that proportional-fair scheduling leads to higher throughput
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FIGURE 11: Time-average user and cell throughput versus offered
DCH load for different scheduling disciplines.

curves than MaxTBS-scheduling, which is at a first glance
counter intuitive. MaxTBS-scheduling maximizes cumulated
data rates (the sum-rate) for a static scenario, that is, for a
fixed number of ongoing flows and consequently also during
any interevent time [32]. This also means that MaxTBS-
scheduling always leads to a higher cell throughput than
proportional-fair scheduling if we consider the same snap-
shot for both schedulers, reflecting the well known tradeoff
between system capacity (defined as cell throughput) and
fairness of data rate allocation (see, e.g., [10]).

However, this unfairness means that in cases where
the differences between the average channel conditions are
large, the MaxTBS scheduler has a strong tendency to
overproportionally favor the best user, such that the data
rates of the remaining UEs are very low. These users stay
very long in the system which is then reflected in the
time-average cell and user throughput. With proportional-
fair scheduling the data rate of users with good channel
conditions is lower, however this is compensated with lower
sojourn times of users with bad channel conditions. Note
that in principle this also holds for round-robin scheduling,
but channel-blindness overweights this effect such that the
average throughput is indeed lower.

In the literature, some numerical results seem to con-
tradict the results presented here. In [37, 38], the system
throughput for round-robin, proportional fair and Max C/I
(i.e., MaxTBS) is shown, and it is concluded that Max C/I
scheduling provides the highest average cell throughput.
However, the results apply to static scenarios with persistent
data flows for a fixed number of users. In such a scenario,
MaxTBS scheduling is optimal, but it is not comparable with
the flow-level throughput in system with traffic dynamics.
In [19], users arrive according to a Poisson process and
request 100 KB of data, which is incidentally the same
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average amount of data as in our scenario. However, users
are dropped from the system if they stay longer than 12.5
seconds in the system, such that the time-average user
sojourn time is reduced. So, in fact this study employs
a mixture between time-and volume-based traffic model.
Consequently, the results show a small performance gain
for Max C/I scheduling. Similarly, in [18] users are dropped
from the system if their throughput is lower than 9.6 kbps.
It is not clear over which time span the throughput is
measured, but the dropping of low-bandwidth users skews
the time-average throughput to the benefit of the Max C/I
scheduler.

Figure 12 shows the CDF of the user and cell throughputs
for an offered DCH load of p. = 0.4. The CDF of the MaxTBS
scheduler confirms the time-average throughput curves; a
large portion of the probability weight is on very low data
rates, but in the same time the higher quantiles, for example,
for 0.8, are higher than for proportional fair and round-robin
scheduling. In terms of fairness, it is remarkable that the
shape of the curves for Round-robin and proportional-fair
are similar with exception of a small peak for low data rates
for the proportional fair scheduler. Also note the stair-like
shape of cell-throughput CDF for low data rates, which is
caused by preemption from DCH connections.

Figure 13 exemplarily demonstrates the behavior of the
three schedulers for scenario with three users which have
fixed data volumes and X-values of —20dB, —10dB, and
0dB. The figure shows the remaining total data volume
versus time. Figure 14 shows the corresponding data rates.
With MaxTBS scheduling, the first and second users leave
the system faster than with the other disciplines (indicated
by the vertical dashed lines), but the remaining data volume
of the “worst” user with £ = 0dB is so large that in total, the
proportional-fair scheduler needs less time to transport the
whole data volume. Note that it depends on channel profile
and cell layout how large the advantage of the proportional-
fair scheduler is and whether it exists at all.

8. Conclusion and Outlook

We investigated spatial and temporal fairness aspects of
integrated HSDPA-enhanced UMTS networks on flow level.
Results have been generated with a flow-level simulation
which considers the network-wide interference situation
and its impact on DCH transmit powers and HSDPA data
rates. The latter are calculated with a physical layer abstrac-
tion model which considers code resources, multipath-
propagation, HS-DSCH transmit power, and different
scheduling disciplines.

The numerical results have been generated within two-
network scenarios: a homogeneous scenario with hexagonal
cells and equal arrival rates over the whole space, and an
inhomogeneous scenario with irregular-shaped cells and
location-dependent arrival densities. An expected result is
that the shared-bandwidth approach of the HSDPA transport
channel leads to spatial user residence probabilities which
are different to the corresponding arrival probabilities. The
degree of unfairness depends on the employed scheduling
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discipline; “greedy” scheduling disciplines like MaxTBS
lead to a high unfairness, while channel-blind round-robin
scheduling and proportional fair scheduling show similar
results. However, proportional-fair scheduling has a nearly
constant relative gain in terms of throughput over round-
robin scheduling independent of the distance to the antenna
and of the arrival densities.

A further objective of this paper is to understand the
flow-level performance of different scheduling disciplines.
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The comparison between round-robin, proportional fair,
and MaxTBS scheduling showed that, remarkably, propor-
tional fair scheduling has a slight performance gain in
terms of average cell and user throughput. The reason is
that although MaxTBS-scheduling maximizes the sum rate
within a static scenario, traffic dynamics, and the high
unfairness of the data rate allocation with MaxTBS favors
in the end proportional fair scheduling. This shows that the
consideration of traffic dynamics is a crucial point of the
performance evaluation of shared bandwidth systems, and
it encourages further investigations of the relation between
physical layer parameters and flow-level performance.
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1. Introduction

Cooperative diversity has been shown to be an efficient
way to combat wireless impairments using low-complexity
terminals [1-4]. Basically, these schemes allow for the
exploitation of spatial diversity gains without the need of
multiantenna technology. Different spatial paths are pro-
vided by sending/receiving the information to/from a set of
cooperating terminals working as relays. By doing so, most of
the advantages of multiple-input multiple-output (MIMO)
techniques [5] can be extracted while keeping the complexity
of the individual terminals reduced. Indeed, the benefits
captured by cooperative communications are well extended
in the research community, and standardization groups
are considering the inclusion of cooperative techniques in
practical systems. For instance, the IEEE 802.16j Relay Task
Group [6] is involved in the incorporation of relaying
mechanisms in the standard adopted by the new wireless
system WiMAX [7].

Among the set of cooperative techniques, opportunistic
relay selection (ORS) is a useful strategy for practical
implementation [8]. This is because ORS is a low-complexity

strategy consisting only in activating the best relay (in
accordance to a given performance metric). Apart from
the inherent simplicity of the proposed technique, this
strategy avoids the need of synchronization (needed by most
distributed space-time coding schemes) and reduces the
power consumption of the terminals.

When ORS is implemented in a real system, however,
there may exist a delay between the instants when the
selection process is encompassed and the actual transmission
of data from the selected relay takes place. In other words, the
channel state of the selected relay considered at the selection
decision can substantially differ from the actual one and, as a
result, system performance is affected.

Besides, in an ORS scheme only the best relay is allowed
to cooperate with the source. If channel conditions are
not statistically equal for all relays, ORS may be unfair
among relays. That is, relays with the worst channel
conditions are never selected, and all the cooperation is
performed by a reduced set of relays. This can induce a
negative effect in the network behavior as one (or more)
relay(s) can waste all the battery energy for the sake of
cooperation.
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Contributions. In this paper, we concentrate our efforts on
the analytical study of the behavior of ORS based on decode
and forward protocol in a realistic situation where the
channel state information (CSI) available at the selection
procedure is outdated. More specifically, we derive the exact
expression for the outage probability, which is defined as
the probability where the instantaneous capacity is below a
target value. In order to improve the fairness of ORS, we
adopt a fair relay selection strategy where the relay with the
largest normalized SNR is selected for relaying the source’s
information. Furthermore, we explore the existing trade-
offs in terms of system performance versus fairness among
relays when different relay selection strategies are adopted.
To do so, we propose an analysis tool inspired by mean
versus standard deviation plots adopted in modern portfolio
theory [9, 10]. In particular, we adapt such representation to
the proposed ORS scenario by illustrating the gain in terms
of system performance versus the difference among relays
in terms of power consumption. As shown in the paper,
this kind of representation is quite useful to quantify what
the performance versus fairness trade-off of the proposed
relaying strategy is.

Relation to Prior Work. The study of the impact of outdated
CSI on ORS has been addressed by few works. For instance, it
was shown in [11] that a selection relaying mechanism based
on localization knowledge can outperform an opportunistic
scheme with instantaneous information. Although it was not
explicitly discussed, the reason for that is that available CSI
was subject to delays. As a consequence, the selection scheme
proposed in [11] may work better when decisions are made
based on location information instead of instantaneous but
outdated CSI (localization variations are considerably slower
than those induced by the wireless channel). In this work,
we shed some light into this issue by providing an analytical
study of the behavior of ORS when CSI is outdated.
Concerning the fairness analysis of cooperative strategies,
some studies deal with this topic in literature. In [12,
13] cooperation protocols based on power rewards were
proposed for energy-constrained ad hoc networks in order to
attain a fair situation where all the nodes run out of energy
simultaneously. With the same objective in mind, a relay set
selection protocol was proposed in [14]. In particular, the
authors of that work proposed a multistate energy allocation
method, where in each state a different set of relays are
selected until these relays run out of energy. The fairness
nature of the proposed strategy comes from the fact that
the same energy is allocated to all the nodes of the active
set, being this energy optimized with the aim of minimizing
outage probability. In [15-17], cooperative schemes based on
ORS with amplify and forward were adopted. The authors
in [15] focused the study on the comparison of round
robin with centralized and distributed ORS-based selection
strategies. Clearly, better performance was achieved with
the ORS strategies while preserving fairness in the temporal
domain. In that case, nonetheless, fairness was assured due to
the i.i.d channel modeling of the proposed scenario. In [16],a
power saving technique was proposed, where transmit power
at the relays was minimized according to SNR constraints.

By doing so, a good balance between the diversity gain and
fairness of battery usage was obtained but complexity and
signaling requirements of the system were increased with
the proposed power allocation method. On the other hand,
the authors in [17] proposed a selection scheme based on
the selection of the relay with the best weighted SNR aimed
at improving the fair behavior of ORS (measured by the
percentage of power consumption). In our work, we also
consider a selection scheme based on weighted SNR but,
as discussed later, different considerations must be adopted
in the proposed scenario based on decode and forward
protocol, and different conclusions are drawn. Besides, we
propose a fairness analysis tool inspired in portfolio theory
to facilitate the study of the existing trade-offs in terms of
system performance versus fairness among relays in a realistic
scenario where available CSI is subject to delays.

Organization. The corresponding system model is presented
in Section 2. In Section 3, a closed-form expression for the
outage probability of the proposed relay selection mecha-
nism is derived, and some numerical results are provided to
evaluate the performance of different relay selection schemes.
After that, the fairness of the different relaying strategies is
illustrated in Section 4 by using outage probability versus
standard deviation of the power consumption plots. Finally,
in Section 5, the summary and conclusions of this paper are
presented.

2. System Model

Consider a wireless network where one mobile unit (source)
sends information to the base station (destination). In order
to improve system performance, a cooperative mechanism is
considered. In particular, an ORS strategy is adopted in a sce-
nario with K mobile units of the network working as relays.
In Figure 1, we present an example of the proposed scenario.
Notice that we have considered a parallel relay topology [18]
where relays are linearly placed halfway between the source
and the destination, in a segment of length d, where d is also
the distance of the source-destination link. It is worth noting,
however, that the main results obtained in this paper depend
on the relay selection mechanisms but not on the specific
relay arrangement.

2.1. Signal Model. For the sake of notation simplicity, we
define an arbitrary link A-B between two nodes A and B.
Node A can be the source (A = S) or the kth relay (A = k),
while node B can correspond to the kth relay (B = k) or to the
destination (B = D). With this model in mind, the received
signal in the link A-B can be written as follows:

rg = hapxs + np, (1)

where x4 € C is the transmitted symbol from node A with
power Py = E[|x41?], np € Cis AWGN noise with zero mean
and variance ¢? (independent of the value of B), hyp € C
is the channel response between nodes A and B modeled as
hap ~ CN(0,0% ) (Rayleigh fading), being o7 5 the channel
strength depending on the simplified path-loss model [19],
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Gﬁ’B = (/16/47Id0)2(dA,B/d0)7", with A, standing for the carrier
wave-length, d, is a reference distance, dap is the distance
of the link A-B, and y is the path-loss coefficient (being y
= 3 in this work). We assume a block-fading channel where
the channel response remains constant during one time-slot
and that the different channels (for changing A or B) are
independently distributed. Concerning power allocation, we
consider that total transmit power of the system, P, is evenly
distributed among the source and the selected relay, k*, that
is, Ps = Pg+ = 0.5P. We denote by yap = Palhag|?/0? the
instantaneous signal-to-noise ratio (SNR) experienced in the
link A-B in a given time-slot and by y, , = Paoj /07 its
long-term average. Also, we define )4 g as the SNR employed
by the relay selection mechanism, which can differ from the
actual SNR SNR y,4 5 but both of them have the same long-
term average E(Yap] = E[yas] = Y4 (further details can be
found in Section 2.3).

Finally, it is worth pointing out that one of the main
scopes of this work is to show the impact of outdated CSI on
relay selection decisions, and, for the sake of mathematical
tractability, we will be considering the capacity of a single
carrier system. The study can be easily extended to OFDM by
applying the same analysis to each subcarrier simultaneously,
and, hence, it is applicable to WIMAX on a subcarrier per
subcarrier basis.

2.2. Relaying Mechanism. In this work, we consider a half-
duplex two-hop decode and forward (DF) protocol as relay-
ing strategy. When using half-duplex DEF, the transmission is
divided in two time-slots. In the first time-slot, the source
transmits the information to the relays, which attempt to
demodulate and decode this information. In the second
time-slot, the relays encode again the information and
retransmit it to the destination [4]. In an ORS scheme,
only the best relay is allowed to cooperate with the source.
More specifically, the subset of relays able to decode the
information is named as the decoding subset £ 4, and, from

that subset, the relay with the best relay-destination channel
quality retransmits the information (see Figure 2).

Unlike other approaches, the scheme proposed in this
work selects the relay with the largest normalized SNR
instead of the largest absolute SNR because of practical
considerations. In other words, the selected relay k* is such
that:

¢ wepplel) emsll) o
T ol By, @

The reason why we propose this selection strategy is due
to the fairness introduced in the selection procedure as all
relays will be chosen with the same probability. Thus, the
power consumption of the different terminals is uniformly
distributed, while diversity gains can still be efficiently
extracted. This can help to improve the acceptance by the
different users of cooperation mechanism since all of them
contribute to common welfare with the same amount of
battery. Notice that this strategy was also presented in [17]. In
that paper, however, it was shown that the benefits provided
by the largest normalized SNR in terms of fairness were not
significant. It is then worth recalling that a different scenario
based on amplify and forward was presented, and, for that
reason, different conclusions were drawn (further details in
Section 4.1). If the selection were based on the absolute SNR,
some users may be reluctant to participate since they may
experience battery consumption faster than the average.
Notice that the relay selection approach makes its
decision based on the estimated version of the SNR, Ji p.
Concerning the accuracy of this estimate, it will depend
on the way that CSI is provided. Here, we discuss two
methodologies according to the adopted duplexing mode,
that is, frequency (FDD) or time (TDD) division duplexing.

(i) FDD: since uplink and downlink channels operate at
different frequency bands, feedback mechanisms are
required. First of all, relays belonging to the decoding
subset send a signalling message to the destination
(i.e., BS) indicating that they are able to relay the
message. This signalling message can be, for instance,
a pilot sequence used by the BS to estimate the
instantaneous SNRs of the different relays. Once the
different SNRs are estimated, the BS selects the relay
with the best quality and broadcasts this decision via
a selection command (only log, K bits required).

(ii) TDD: in the case that channel reciprocity between
the uplink and downlink holds, each of the relays
is able to know its own CSI. TDD: in the case that
channel reciprocity between the uplink and downlink
holds, each of the relays is able to know its own CSI.
With this information, a possible selection strategy
is that proposed in [20]. Those relays belonging to
the decoding subset start a timer. The timer of each
relay adopts as initial value a parameter inversely
proportional to its instantaneous SNR. Then, the
timer that first expires is that belonging to the best
relay. In order to avoid collision, this relay signals
its presence to the rest of relays via a flag packet
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FIGUrE 2: Cooperative communications scheme based on ORS with DE.

before the relaying procedure is started (further
details about strategies to avoid collision can be
found in [20]). Clearly, channel reciprocity holds
in TDD when the time coherence of the channel
is higher than the time difference between uplink
and downlink time slots. In the opposite case, the
methodology adopted for the FDD case should be
considered as well. With this information, a possible
selection strategy is that proposed in [20]. Those
relays belonging to the decoding subset start a timer.
The timer of each relay adopts as initial value a
parameter inversely proportional to its instantaneous
SNR. Then, the timer that first expires is that
belonging to the best relay. In order to avoid collision,
this relay signals its presence to the rest of relays via
a flag packet before the relaying procedure is started
(further details about strategies to avoid collision can
be found in [20]).

As can be observed in both strategies, there exists a time
delay, Tp, between decision and relay transmission instants
that may affect system performance.

2.3. Modeling of CSI Delay. We consider that the SNR
estimates available at the selection procedure were obtained

from a channel state, hp, which differs from the actual
channel response at the relay retransmission instant, Ay p,

due to the effect commented above. Indeed hyp is an
outdated version of h p, that is, these two random variables
are samples of the same Gaussian process. Then, hyp

conditioned on fzk,D follows a Gaussian distribution [21]:

hip | Ek,D ~ @N(Pkﬁk,D: (1- P}%)O-]i])): (3)

where parameter pi (with 0 < pr =< 1) is the correlation
coefficient between hyp and hip (degree of CSI accuracy),

having different expressions according to the channel model.
Under the assumption of Jakes’ model, for instance, the
correlation coefficient takes the value px = J,(2mf4 Tp,),
where f;, stands for the Doppler frequency, Tp, is the delay
mentioned in the previous subsection, and J,(-) denotes the
zero-order Bessel function of the first kind.

From the above discussion, it is straightforward to show
that the actual SNR, yy p, conditioned on its estimate, Jx,p =
Py Iﬁk,D |2/02, follows a noncentral chi-square distribution
with 2 degrees of freedom, whose probability density func-
tion (pdf) takes the following expression [21]:

fyk,D\?k,p(yk,D | ?k,D)

2 A
L - Owowiolmpi-e (ZVPW"DV"’D) ,

o (1-pD) Ten(1-p})
(4)

where Iy(-) stands for the zero-order-modified Bessel func-
tion of the first kind, and one should take into consideration
that the long-term average of Jxp is equal to E[Pxp] =

Ellhp*Pe/0? = E[hkp |2 )Pe/0} = Ty p-

3. Outage Probability Analysis

In this section, we analyze the behavior of the proposed
relay selection strategy in terms of outage probability. To do
so, we first obtain an analytical expression for the outage
probability. After that, we show some numerical examples
where the proposed fair strategy is compared to other
existing relay selection strategies.

3.1. Analytical Expression of the Outage Probability. The
outage probability is defined as the probability where the
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instantaneous capacity of the system is below a predefined
value R. Since we consider a two-hop DF scenario, we should
start the analysis by studying the decoding subset D&, that
is, the subset of relays that are not in outage in the source-to-
relay link:

8 = {k:log,(1+ysk) = 2R} = {k:ysx = 28— 1}. (5)

Note that we have considered that outage in the first hop
occurs when instantaneous capacity is lower than 2R (as it
will do in the relay-to-destination link). By doing so, the
resulting end-to-end spectral efficiency is R as the proposed
two-hop scheme requires two time-slots to transmit the
information from the source to the destination.

By defining now D4, as an arbitrary decoding subset
with [ relays, we can easily compute its probability as [8]
follows:

Prob(D4;) = 1_[ Prob(ys; = y) 1_[ Prob(ys; < y)
€D JEDS
el 2L (-2)
€D Vs,i jEDS Vs,

(6)

where the second equality comes from the Rayleigh fading
assumption, and y has been defined as y = 22R—1 for the sake
of notation simplicity. With this last expression, the outage
probability of ORS can be written as follows [8]:

K

= Z ZProb(outage | D3E;)Prob(D4S;), (7)
1=0 D4

Pout(y)

where the second summation is over all the possible decoding
subsets D4 (i.e., the (If ) possible subsets of I relays taken
from the K relays). As for Prob(outage | D4;), this is the
probability where the selected relay is in outage conditioned
on the fact that the decoding subset is £D4;. In [8], this
probability was solved by assuming an ideal scenario with
an absolute SNR selection. Our contribution here is to
adapt the outage expression to a (realistic) scenario with
outdated CSI and a max-normalized SNR strategy. Indeed,
the only term in (7) affected by these two particularities is
Prob(outage | &D4;). This is because a node belongs to the
decoding subset if it has perfectly decoded the information,
which is independent of CSI delays and relay selection
decisions. Conversely, Prob(outage | £4;) depends on the
relay selection accuracy, and this clearly depends on both
pr and how the relay has been selected. When I = 0, that
probability is clearly equal to 1 as there are no active nodes to
relay the transmission. For [ > 0, we should first define A o5,
as the event where relay k is selected (i.e., k* = k) under the
assumption that the decoding subset is D 4;. By doing so, we
can re-rewrite Prob(outage | D4;) as follows:

Prob(outage | D4))

> Prob(ykp < y | Ak.ps)Prob(Axns,)
keDS)

Z J Fykn\ykn(y | )’kD)

kEi)/S[
X finlasoy, PeD | Ak0s) dPr,p Prob(Ax ps)

J J fykDWkD(ykD | )’kD)
ke.fo& Ykp=0J Yk

X fiplaeos Pk | Akns) dyi,p dPins

(8)

where F(-) stands for the cumulative density function
(CDF), Prob(sAkps) is equal to 1/I due to the fairness
property of the proposed relay selection strategy (i.e., all the
normalized estimated SNRs have the same statistics), and

fYk,DWk,D(yk)D | )/;k,D) s given by (4). Note that f?k,n\v“skmﬁ (?k)D |
Ak,ps) can be easily computed since this relay selection
problem is statistically equivalent to the scheduling problem
observed in a multiuser broadcast channel with indepen-
dently distributed Rayleigh fading channels and a max-
normalized SNR scheduler. More specifically, the following
equation can be obtained [22]:

ff/k,b\e/’ok,m, ()/)k)D | ‘A’kw@&)

leXP(—)A’k,D/?k,D)< ( ykD>)H 9)
=]l————"(1-exp .
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By plugging (9) and (4) into (8), we obtain an integral
equation already solved in a previous work by the authors
related with multiuser diversity and delayed CSI [21] (details
are omitted for brevity):

Prob(outage | D 4;)

o (1-1\ (=)"
> s ()55

keD 4§ m=0

g (1 ‘e"p<‘ yk,DuyinZlH;z)m)))'

Finally, by introducing (10) along with (6) in (7), the outage
probability can be written as follows:

[(-ew(-32))
s ()5
<(r-ew (-5 om)

Yip
Il )
= Vsi/ jens, Vs,

(11)

where the first term is related to the case that the decoding
subset is an empty set (i.e., [ = 0).

(10)

out()’)
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Finally, it is worth noting that although the analysis has
been carried out from an information theoretic point of
view, it can be readily extended to a practical scheme with
adaptive coding and modulation (e.g., a WIMAX system).
Notice that the expression derived in this section evaluates
the probability of having instantaneous SNR lower than a
specified value given by the Shannon capacity, y, and this
value can be set equal to the different SNR thresholds of the
adaptive coding and modulation modes.

3.2. Numerical Evaluation. As far as numerical evaluation is
concerned, special attention has been paid to carry out a fair
comparison in a realistic scenario. It has been considered
the wireless scenario presented in Section 2 with a parallel
relay topology as shown in Figure 1, where the distance of
the source-to-destination link is d = 100 meters, the carrier
frequency is set to f. = 3.5 GHz (in close alignment with the
commercial WIMAX equipments deployed in the European
Community), the target rate is R = 1 bits/seg/Hz, and the
number of relays is K = 5. In order to obtain the outage
probability of the proposed system, we adopt Monte Carlo
simulation, whgre in each realization the different channels
(hs» hk,p, and hy p) are modeled as described in Sections 2.1
and 2.3. Finally, we define system SNR as the average received
SNR of the single-hop scheme. For each value of system SNR,
the cooperative schemes use the same total power P as that
needed by the single-hop scenario to achieve this SNR value.
By doing so, we are fairly evaluating the advantage of using
cooperation as the total transmit power of the system is kept
constant. Besides, for the sake of benchmarking, we compare
the outage probability of the proposed cooperative scheme
with that obtained without cooperation and the following
relay selection strategies.

(1) Round robin. This strategy is theoretically the fairest
strategy as it is based on iteratively selecting the
different relays of the decoding subset.

(ii) Conventional ORS (max SNR). Clearly this technique
does not care about fairness among relays as it selects
the relay with the maximum absolute SNR.

As observed in Figure 3, the outage probability expres-
sion derived in the previous subsection completely agrees
with the simulation results. It is also observed that the
proposed max-normalized SNR strategy is able to extract
the diversity gains of the cooperative system as results
corresponding with p = 1 are quite overlapped with those
obtained with the (outage optimal) max SNR scheme.
However, performance of both strategies is quite sensitive to
the value of p. Outage performance is significantly affected
when p moves away from 1. In particular, one can observe
that only a slight improvement can be obtained by using
ORS-based cooperation with respect to a direct transmission
strategy when p = 0.5. Apart from that, it is also observed
that the gap between the max-normalized and max SNR
strategies becomes wider for decreasing values of p. This is
because the higher SNR peaks generation capability of the
conventional ORS strategy compensates more efficiently the
CSI uncertainties.

0
10 f

Outage probability

0 2 4 6 8 10 12 14 16 18 20
System SNR (dB)

o0 Max-norm SNR
* Max SNR

—— No cooperation
Round robin

FIGURE 3: Outage probability versus system SNR for the different
communication strategies and values of p. For the max-normalized
SNR strategy, symbols are associated with the simulated results
whereas lines correspond to the theoretical expression. (K = 5 relays,
R =1bit/s/Hz, d = 100 m).

As for the round-robin strategy, it is clearly observed
that this is not a useful technique in terms of outage
probability as better performance can be obtained without
cooperation. This is mainly due to the fact that better
results can be obtained by concentrating total power and
transmission time in a single-hop communication instead
of dividing them between the source and a relay terminal
that has been selected (data link layer) without CSI (physical
layer) considerations. It is then emphasized the need of
adopting cross-layer strategies in the design of cooperative
communication systems.

4. Fairness Analysis

In the previous section, we have explored the performance
of the different transmission techniques in terms of outage
probability. Nonetheless, this analysis has been performed
without considering the fairness among selected relays; this
last issue is important to improve the acceptance by the
different users of cooperation mechanisms. In this section,
we concentrate our efforts on the study of the fairness
behavior of the different relay selection mechanisms, and
we show that there exists a trade-off in terms of system
performance versus fairness among relays. To do so, we use
a graphical representation based on modern portfolio theory
that helps to easily quantify such trade-off.

4.1. Fairness Criterion. In this work, we measure the fairness
among relays in terms of the percentage of power con-
sumption used for relaying purposes. This metric was also
adopted in [17] but, here, some differences are observed as
we consider a scenario based on decode and forward where
the power used by the selected relays remains constant. In
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the proposed scenario, in particular, the power consumption
destined to cooperation purposes is originated by the
following mechanisms.

(1) Receiving procedure. In the first time-slot of the
decode and forward procedure, the receiver circuitry
of each relay consumes power to receive the signal
and to measure the SNR in order to estimate if the
relay is able to decode signal.

(2) Relay selection mechanisms. According to the relay
selection strategies presented in Section 2.2, relays
belonging to the decoding subset dedicate battery
power to the following actions:

(i) EDD: battery power is mainly used to transmit
the signaling message to the destination indi-
cating that the relay is able to retransmit the
information.

(ii) TDD: power consumption is mainly caused by
the internal timing procedure and, in the case
of the best relay, by the transmission of the flag
packet to the rest of relays.

(3) Decoding and retransmission procedure. Once the
relay selection procedure is finished, the selected
relay decodes/encodes the source’s information and
retransmits it to the destination. Clearly, this is the
most power demanding mechanism where the fair
behavior of the relay selection strategy plays a crucial
role.

As will be commented in the next subsection, we study
the fairness by analyzing the standard deviation of power
consumption among relays (adopting a similar approach
than that presented in [17]). Therefore, mechanism (1)
described above does not affect the standard deviation
measure as all the relays perform that procedure. Basically,
differences among relays will be observed in mechanisms
(2) and (3). However, because mechanism (2) is carried out
by all the relays in the decoding subset and the involved
power consumption can be neglected in comparison with
that destined to (3), we focus our study in the analysis of the
decoding and retransmission procedure. In such a procedure,
a fix amount of power is consumed when it is executed.
On one hand, decoding and encoding the source’s message
always need the same power budget. On the other hand,
the proposed scenario considers that selected relays transmit
with the assigned constant power P’ = 0.5P. As a result,
computing the amount of percentage of power allocated
to each relay is equivalent to obtaining the percentage of
time where each relay is active. In such circumstances, the
standard deviation of the percentage of power consumption
of the different relays is obtained in this work by computing
the standard deviation of the fraction of time periods where
relays are activated for relaying the source’s information. For
that reason, we propose the use of the max-normalized SNR
strategy as all the relays in the decoding subset will be chosen
with the same probability. As commented previously, the
behavior of the proposed strategy could be quite different
when a different relaying protocol is adopted (see, e.g., [17]).

4.2. System Performance versus Fairness Trade-offs Representa-
tion. As observed in Section 3.2, the fair behavior provided
by the max-normalized SNR and round-robin strategies
penalizes system performance (specially for decreasing values
of p in the former case). Therefore, it seems that there
exists a trade-off in terms of the degree of fairness among
the different relays and its impact in terms of system
performance. In this section, we are devoted to show the
existence of such a trade-off with the help of an analysis
tool inspired by means versus standard deviation plots
adopted in modern portfolio theory [9, 10]. This kind of
representation is used in financial market theory with the
aim of assessing the existing trade-offs in terms of the
expected profit (mean) versus the possible risk (standard
deviation) when a possible investment is considered. In
this work, we adapt such representation to the proposed
wireless scenario based on cooperative communications
by illustrating the gain in terms of system performance
(outage probability) versus the difference among relays in
terms of power consumption (standard deviation of the
percentage of power consumption). By doing so, we can
easily quantify what the performance versus fairness trade-
off of the different relaying strategies is.

Before analyzing the behavior of the different relaying
schemes, it is worth mentioning that this portfolio-based
representation is also adopted in several works related with
the design of resource allocation mechanisms in wireless
networks. More specifically, Bartolome introduced this
methodology in the wireless communications community
to study the degree of fairness of the MIMO Broadcast
Channel with zero-forcing transmit beamforming when
different bit allocation techniques are adopted [23]. By
using the mean versus standard deviation plots, trade-offs in
terms of global rate versus fairness among users were easily
showed. Then, it was proved that this approach facilitates
the design and comparison of different resource allocation
algorithms according to the desired degree of fairness. This
technique can also be found in studies about the comparison
of optimum versus zero-forcing beamforming [24], design
of fair algorithms in a context where an orthogonal linear
precoding is adopted [25, 26], and the study of the robustness
of multiuser systems against CSI imperfections [27].

In Figure 4, the outage probability versus the standard
deviation of the power consumption of the different relays is
represented for the relay selection mechanisms discussed in
the previous section, where each point in the plot of the ORS-
based cooperation mechanisms (max-norm SNR and max
SNR) is related with a different p (with p = {0.1,0.5,0.8,1}).
We start the analysis by considering a scenario with system
SNR equal to 10dB. Although the consideration of the
direct transmission could not make sense here, we have
included the outage probability of this case in order to assess
if system performance gain obtained with a cooperative
strategy justifies the battery consumption of the terminals
for relaying purposes. Notice that the standard deviation
of the direct transmission case is set equal to 0. Besides,
it is also worth noting that the standard deviation of the
ORS-based mechanisms does not depend on parameter p
as relay selection decisions are independent of the level of
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CSI inaccuracy. In other words, the standard deviation of
the power consumption depends on the degree of fairness
applied by the ORS-based schemes on the relay selection
procedure, but for a given degree of fairness, it is only the
outage probability that depends on the quality of the channel
estimate but not the power consumption distribution.

As observed in the figure, the highest standard deviation
is obtained with the max SNR strategy. Clearly, it is observed
how the good performance results of the conventional
ORS strategy are attained at the expense of a considerable
reduction in terms of fairness. Indeed, the standard deviation
observed in that case amounts to approximately 13%,
resulting in a faster battery consumption of those relays with
better channel conditions. Concerning the max-normalized
SNR and round robin strategies, the fairer behavior of
these strategies is reflected by the lower standard deviation
obtained in these cases (1.6% and 2%, resp.).

Surprisingly, the fairest cooperative strategy is the max-
normalized SNR strategy instead of the round robin one. The
round robin scheme iteratively selects the different relays of
the decoding subset. In the case of low and medium system
SNRs, the probability that the decoding subset has all the
relays of the system is reduced. In these circumstances, relays
closer to the source have a higher probability to be able to
retransmit the signal and, thus, to belong to the decoding
subset. Then, the power consumption of these relays in
relaying procedures is higher than that used by the rest of
relays. When the rest of relays are in the decoding subset, the
relay selection mechanism selects them iteratively without
taking into account that these relays have not been activated
for too long, and some actions should be adopted in order
to compensate this situation. In the max-normalized SNR
strategy, however, relays are selected when their SNRs are in
their own peaks, and, then, some compensation actions are
implicitly carried out by the selection strategy.

The origin of this last effect is clarified by analyzing
in Figure 4 results corresponding to a scenario with system
SNR equal to 20 dB. As observed, the standard deviation of
both the round robin and max-normalized SNR strategies
is quite similar. In that case, the decoding subset has the
K relays of the system with a high probability, and, then,
the problems reducing the fair behavior of these strategies
are alleviated. In the figure, one can also observe that the
conventional ORS strategy is less fair when the system SNR is
increased. This is because in the low- and mid-SNR regimes
situations where the decoding subset is only formed by the
worst relays can happen. In those cases, the relay selection
mechanism will activate a subset of relays that never will be
chosen when all the relays of the system are in the decoding
subset. In order to extend such analysis, we also present
a graphical representation where the SNR dependance of
the system is clearly reflected (see Figure 5). As observed
in the figure, when the SNR of the system is increased,
the fairness of the round robin and max-normalized SNR
strategies is improved, whereas the system becomes less
fair in the max SNR case due to the reasoning discussed
above.

As for the existing trade-offs in terms of system per-
formance versus fairness, one can easily assess the behavior
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of the different strategies thanks to the proposed represen-
tation. More specifically the following conclusions can be
drawn.

(i) The best performance results are obtained with the
conventional ORS strategy. However, the fairness of
the system is considerably penalized.

(ii) An appropriate strategy to exploit cooperative diver-
sity while keeping a good performance versus fair-
ness trade-off is the max-normalized SNR strategy.
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Indeed, it is shown that this strategy can present a
better fairness behavior than that provided by round
robin.

(iii) For low p values and high system restrictions in terms
of outage probability, conventional ORS strategy
could be the most appropriate strategy. For high p
values, however, it is clear that more benefits are
obtained with max-normalized SNR as similar results
are obtained in terms of outage probability but the
fairness among relays is substantially improved.

(iv) The round robin strategy is not useful for exploiting
cooperation benefits.

Finally, one can also notice that the proposed represen-
tation helps to assess the viability of using a cooperative
technique as direct transmission results have also been
included in the figures. In particular, one can observe in
Figures 4 and 5 that it could be better to use a direct
transmission when the SNR is high and/or CSI is not
accurate enough (low p values). This is because, similar
outage probability results can be obtained without destining
battery power to cooperation purposes.

5. Conclusions

In this work, we have studied the impact of outdated CSI
in cooperative systems. The analysis has been carried out in
terms of the trade-off of outage probability versus fairness
of the system. To do so, an analytical expression has been
obtained for the outage probability of an ORS scenario,
whereas the difference among relays in terms of power
consumption has been considered as a fairness measure
and obtained by means of simulations. In order to assure
a good balance in terms of performance versus fairness,
we have proposed a relay selection strategy based on the
max-normalized SNR criterion. The proposed strategy has
been compared with existing relay selection strategies with
the help of an analysis plot inspired in modern portfolio
theory. In particular, we have represented the existing trade-
offs of the different relaying mechanisms by plotting the
outage probability versus the standard deviation of the power
consumption. It has been shown that the max-normalized
SNR guarantees a good performance versus fairness trade-
off when available CSI is sufficiently accurate. When CSI is
not accurate enough, however, direct transmission could be
a better strategy.
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1. Introduction

The one-hop broadcast characteristic of the MAC layer in
wireless ad hoc networks has triggered the use of multicast
communication scheme as one of the natural strategies
that can multiply the overall network throughput with very
limited overhead. This is because multicast packets are
forwarded once to reach all the multicast members in the
neighborhood using a single transmission, and this effect
increases even more in multihop ad hoc networks.
Heterogeneous multicast, also called multirate multicast,
is an efficient mode of data delivery for many multimedia
applications, especially those operating in real time such as
audio/video teleconferencing and TV broadcasting. In mul-
tirate multicast, the receivers of a multicast group are offered
service at different rates commensurate with their capabilities
(e.g., processing power limitations) or based on their local
network conditions (e.g., surrounding wireless link states).

Therefore, multirate schemes have a great advantage over
unirate multicast (or homogeneous multicast) in adapting
to diverse receiver requirements and heterogeneous network
conditions.

The simplest way of attaining multirate multicast is by
frame dropping. In this approach, intermediate nodes in
a multicast tree may drop data frames to lower the rate
for the downstream nodes. Another way is by hierarchical
encoding or layered streaming which is particularly suitable
for audio/video traffic. In this approach, the sender provides
data in several layers organized in a hierarchy. Receivers
subscribe to the layers cumulatively to provide progressive
refinement [1]. This means that the receiver can only choose
from a discrete set of data rates on each link. Another method
of attaining multirate multicast which is particularly suitable
for overlay multicast [2] is stream adaptation through
transcoding [3] using intermediate media gateways, thus
allowing the receivers to choose their streaming rates from



2 EURASIP Journal on Wireless Communications and Networking

a broader continuous range. We assume that the network has
one or more of these capabilities.

In this paper, we present an optimal resource allocation
algorithm for heterogeneous multicast over wireless ad hoc
networks. Multirate multicast has a distinct advantage com-
pared to unirate multicast especially for optimal resource
allocation. This is because unirate multicast techniques are
often unable to efficiently allocate network resources for
multicast groups that have some congested group members
(receivers). For such multicast groups, unirate multicast
techniques tend to allocate rates based on the most congested
receivers potentially wasting significant network resources.
On the other hand, multirate multicast allows the rate to
change for designated tree members to accommodate the
congested receivers downstream. Hence, it provides more
flexibility in allocating rates across the multicast tree such
that the overall network resource utilization is maximized
(see the example in Section 2). Our heterogeneous multicast
solution has the following key features.

(1) It guarantees optimal resource utilization while pro-
viding system-wide fairness for end-to-end multirate
multicast flows.

(ii) It guarantees steering the entire network toward
the optimal point in real time, and hence reacts
robustly to network conditions (e.g., mobility and
route changes) as they occur.

(iii) It is based on primal-dual and pricing methods
which facilitate the decomposition of the resource
optimization problem into subproblems that are
easier to solve in a modular structure.

(iv) For network deployment, we design a cross-layer
framework that utilizes a measurement-based tech-
nique for MAC-layer channel capacity estimation,
and a light-weight network HELLO protocol for con-
structing contention domains to allow for allocating
resources across end-to-end multicast sessions.

(v) This cross-layer solution also works in a truly dis-
tributed network environment, with limited over-
head, and with no synchronization requirements
between node calculations.

The problem of resource allocation for unicast flows has
been investigated before in [4-6]. In these works, common
pricing mechanism has been used whereby each network
resource calculates a price that represents the relationship
between the load on the network resource and the capacity
that it can offer. Resource allocation for multirate multicast
in wired networks has been studied in [7, 8]. An iterative
algorithm based on subgradient techniques [9] has been
employed to account for the nondifferentiability of the pri-
mal problem. The authors in [2] proposed an overlay strategy
for allocating resources over a multirate multicast tree by
considering each link as a point-to-point unicast session.
Rates are then allocated across each unicast session such that
the aggregate utility across all unicast sessions is maximized.
The problem of optimal and fair resource allocation has been
widely studied in the context of wired networks. Among

these studies (e.g., [2, 4, 5, 7, 8]), price-based methods
have shown to be effective in achieving a decentralized
solution for rate allocation. The location-based contention,
time-varying wireless channel characteristics, and multirate
multicast in one-hop broadcast wireless medium represent
both challenges and opportunities which we addressed in our
model.

The remainder of this paper is organized as follows.
In Section 2, we explain the terminology used for hetero-
geneous multicast and formulate the optimization prob-
lem. The approach for multirate multicast is presented in
Section 3. We present our distributed asynchronous algo-
rithm for heterogeneous multicast in Section 4. We provide
the simulation results in Section 5 and finally, we conclude
this paper in Section 6.

2. Model and Problem Formulation

2.1. Model and Notations. Table 1 highlights the notations
used by the model. We consider a wireless ad hoc network
consisting of a set of nodes V spread over a wireless space,
each with a specific transmission range and interference
range. We exploit the protocol model explained in [10] and
leveraged in [6] for wireless packet transmission. In this
model, the transmission from node i is successfully received
bynode j (i, j € V) if (1) the distance between the two nodes
is no more than a certain range (i.e., transmission range), and
(2) for all other nodes k € V simultaneously transmitting
over the same channel, the distance between j and k is more
than a specific range (i.e., the interference range). For some
protocols which require acknowledgment from j to i (e.g.,
IEEE 802.11 MAC), node i is also required to be interference
free at the time of sending the acknowledgment.

We model the wireless ad hoc network as a directed graph
G = (V,E), where E is the set of wireless “virtual” links
produced as a result of nodes located within the transmission
range of each other. Each wireless link e € E has two end
nodes i and j (i.e., e = {i, j}). The network is shared by a
set of M end-to-end multicast groups. Each multicast group
m has a unique source node s, a set of receivers R,, =
{Tm1>Tm2>. ..}, and uses a subset of wireless links E,, and a
subset of nodes V,, for either receiving or relaying traffic.
Note that R,,, € V,,,.

We further divide the multicast tree nodes into gateway
nodes and relay nodes as shown in Figure 1. Gateway nodes
are the nodes that have rate control capabilities through
one of the methods explained before, such as layered
transmission, transcoding and frame dropping. Relay nodes
on the other hand merely forward data frames without
performing any rate change. We use v; to denote a gateway at
node i. If v; is a member of multicast tree m, hence denoted
by vyi, then v; can control the rate of the downstream nodes.

A fundamental difference between the unicast and mul-
ticast cases is the fact that one-hop broadcast may be used
to transfer traffic from one sending node to one or more
receiving nodes. To capture this notion, the one-hop data
transmission from one sending node i to a set of receiving
nodes ] < V,, within the multicast flow m along one or
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O Relay node
@ Gateway node

Fi1GURE 1: Multirate multicast network model.

more wireless links (branches) is referred to as a multicast
subflow of m or f,,;. Each multicast subflow uses one or more
branches b,,;; from one sending node i to a set of receiving
nodes ] € Vi, thatis, fii = {bmij : Vbuij = {i,j} j €]},
with a cardinality K,; equal to the number of branches of
fmi- We also define an active wireless link a;; € E to be the
wireless link that carries traffic from at least one multicast
group, and A < E is the set of all active links. Also, aj
refers to the aggregated multicast subflow from node i and
is represented by the set of active links a;; Vj € J that
are used by one or more multicast subflows f,; Vm € M
simultaneously.

For simplicity, we will assume that a packet is successfully
transmitted over a multicast subflow f,,; if (1) the packet
reaches all receiving nodes J on all the branches b;j; (2)
acknowledgments (using the notation of IEEE 802.11 MAC
standards) have been transmitted successfully from all these
receiving nodes back to the sending node i [11]. Based on
this assumption, the protocol model can be extended for
multicast subflows as follows: the traffic from two different
subflows on a group of active wireless links contend if either
the sending node or any of the receiving nodes of one subflow
are within the interference range of the sending node or any
of the receiving nodes of the other subflow.

The multicast subtree starting from gateway node v and
ending at either a terminal node or another gateway node is
denoted by T,. In Figure 1, T, starts at node 1 and ends
at the set of nodes {4,5,10}, and T,,, starts at node 5 and
ends at the set of nodes {6,7}. This set of terminal nodes for
subtree T, is denoted by J,.

Each multicast subtree T, has a rate x, (expressed in
bits/s) which is allowed to vary within the rate interval
I, = [wy, W,] [5], and I is the set of all such intervals. F,
denotes the set of multicast subflows that belong to subtree
Ty.Ym = {Um1> Unma, ...} is the set of all gateway nodes that are
members of group m, and Y is the set of all gateway nodes
on all multicast trees Vm € M. Each multicast group has
at least one gateway node (i.e., group source is considered a
gateway node) to control the rate to the downstream nodes.
We use the notation 7, (v) to indicate the parent gateway
node of gateway node v by going upstream toward the source
of group m (e.g., Um1 = 7m(vma)). Note that the source node
has no parent gateway node (i.e., 7(vy1) = @).

Also, note that for one multicast group m, any gateway
node in the path between the source node and any receiver
node may control the transmission by reducing the rate on
this path to improve the overall network resource utilization
(see the example in Section 2). Therefore, the rate that a
gateway node is using for transmission at any given time
must be greater than or equal to the maximum rate of
all downstream gateway/receiver nodes. For example, in
Figure 1, the rate used by v, for transmission must be
greater than or equal to the maximum rate used by any of the
gateway nodes vy,4, Or U,;5. This adds a set of new constraints
to the resource allocation problem which can be formulated
by the following linear inequalities:

Xp £ X0y VOEY, 1mu(v)#0 VmeM, (1)

where x, is the rate used by the gateway node v, and x,, () is
the rate used by parent gateway of gateway node v across the
multicast group m.

To model the contention between the active wireless
links, we use a contention domain mechanism [12] by
forming a logical contention graph G, = (V,E.). Each
vertex in G, corresponds to the aggregated multicast subflow
aj which carries the traffic from one or more subflows
simultaneously. A link between two vertices indicates that
the traffic on the two aggregated subflows contend with
each other. A complete subgraph in G, is referred to as a
clique. A maximal clique is the clique that is not part of
any other clique. This clique represents the maximal set of
active wireless links that contend with each other. This means
that only one “subflow” within this clique may transmit
a packet at a time [6]. Therefore, the sum of the rates
over the maximal clique cannot exceed the channel capacity
achieved by using a particular scheduling mechanism in the
MAC layer (e.g., IEEE 802.11 DCF). The following inequality
formulates these set of constraints:

> xy<cp

vi(E,nVE) # &

Vq€Q, (2)

where g is a maximal clique in the set of all maximal cliques
Q, ¢4 is the achieved channel capacity for clique g based on
the scheduling discipline used in the MAC layer, and V¢ < A
are the set of vertices in G, that belong to clique q.

Next we present an example to illustrate the above
notation and highlight the main difference between unirate
and multirate multicast with respect to allocating rates in
an ad hoc network. Figure 2 shows an example of an ad
hoc network where there are 8 nodes connected through
wireless links. The network contains 2 sessions m, m, where
m, has a traffic with fixed rate 800kbps. Session m; uses
node 1 as the group source, and the receiving nodes are
5, 6, whereas m; uses node 7 as the group source, and the
receiving node is 8. The aggregated subflows are represented
by one node in the contention graph as shown in Figure 2(b).
Assume that the channel capacity is 1 Mbps, which means
that the aggregate rate for each maximal clique cannot exceed
1 Mbps. In this case, the rate on subflow f,4 cannot exceed
200 Kbps because the traffic on that subflow contends with
fm7 and hence they both exist in the same maximal clique.
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TaBLE 1: Notations used by heterogeneous multicast model.

Vin Set of ad hoc nodes on a multicast group m

E. Set of virtual wireless links used by a multicast group m

Sm Source node for a multicast group m

Ry, Set of receivers on a multicast group m

Upni Gateway on node i controlling downstream nodes on multicast group m
Soni Subflow starting on node i on multicast group m

ay Set of active wireless links branching from node i to set of nodes J

Ty, Multicast subtree starting at gateway node v,

Xy Rate used by gateway node v

Xt (0) Rate used by parent gateway of gateway node v

q Maximal clique in the set Q

Cy Estimated channel capacity for clique g

A (v) Set of all children gateways of gateway node v along multicast group m
Pq Price for utilizing resources on clique g

P Price due to forwarding traffic by gateway node v

Avi Total price incurred by subflow f,; on all cliques

Ao (i) Accumulated price for subtree T, at node i

7, (i) The parent node of node i along subtree T,

B Configurable time window for rate and price calculations

Using unirate multicast, we cannot assign a rate to group
m; higher than 200 Kbps because one of the receivers in this
multicast session is congested. This means that using unirate
multicast we allocate the rate based on the most congested
receiver. On the other hand, multirate multicast using node 4
as a gateway node can make the rate allocation more efficient
because, in this case, the rate used by source node 1 is allowed
to exceed 200 Kbps provided that gateway node 4 will adjust
this rate to 200 Kbps before forwarding the traffic to the
downstream nodes. It can be shown that the rate used by
source node 1 can be increased to 333 Kbps in this case.

2.2. Mathematical Formulation. First, we assign a utility
function U, (x,) for each gateway node on every multicast
group m € M to measure the degree of service satisfaction
based on assigning a specific rate x, to that gateway node.
An example of a logarithmic utility function to achieve
intersession proportional fairness is given in Section 5. The
utility function also serves as a network-wide efficient
tool for achieving certain fair allocation behavior (e.g.,
proportional fairness, max-min fairness) as shown in [4].
The optimization problem is to find the set of rates assigned
to all gateway nodes for all multicast groups such that the
aggregated utility function of all gateway nodes is maximized.
This can be formulated with the following modified set of
constraints:

(P): maximize z U,(x,)

veY

subject to Z Xl <c¢p VqeEQ
v:(F,nVd) 2 @
Xp<Xg, (), VUVEYp:mu(v)2@ VYmeM,
x, €1, VYveY,

(3)

@

: 800 kbps

Gateway
node

(a) An example of a multirate multicast ad hoc network

(b) Multicast contention graph
GL’ = (Vo Ec)

F1Gure 2: Example for resource allocation in unirate and multirate
multicast.

where Ty, represents the number of multicast subflows which
belong to both clique g and the subtree T,. Throughout the
rest of the paper, we will make the following assumptions to
facilitate the solution for the primal problem (P).
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Assumption 1. There exists at least one vector X € I such that
SeEnvhXv < ¢g Vq € Qand X, € I, (i.e., which means
XUG(Fﬁch)WU < Cq Vq (S Q)

Assumption 2. On the interval I,,, all the utility functions
U, Vv € Y are increasing, strictly concave, and twice
continuously differentiable.

Note that if we restrict each multicast group to have only
one gateway (source) node, then the constraints in (1) will be
eliminated and problem (P) will reduce to unirate multicast.

3. Solution Approach

Solving the resource allocation problem (P) with a cen-
tralized approach requires the knowledge of the utility
functions and the knowledge of all contention domains and
multicast groups, which is impractical. Instead we propose
a decentralized scheme that minimizes the coordination
between networks nodes and adapts robustly to network
changes. The key to our solution is the use of the duality
theory [13] which suggests solving the dual problem by
introducing additional dual variables called prices using the
same notation as in [4, 6, 8].

The first step is to define the Lagrangian function
L(x, p, p") for the optimization problem (P) as follows:

L(X:P;P,) = Z UU(XU) + Z Pq(Cq — xvl"qv)

veY qeQ
+ Z Po (X () — X0)
veY
= Z [Uv(xv)_xv ( Z quqv"'P;_ Z p;>:|
veY qeQ v €N, (V)
+ 2. Pacor
q€Q

(4)

where A,,(v) is the set of all children gateway nodes of node
v (if any) along multicast session m. Vectors p = (p; Vq €
Q) and p’ = (p, Vv € Y) are two vectors of Lagrange
multipliers. Ty, represents the number of multicast subflows
that belong to subtree T, and clique g simultaneously. Again
we notice that the first term of (4) is separable in x,, and this
entails

max Z [Uv(xu) - x,,(Z Pqlqw + Py — z p;)]
eY q€eQ V' EA(v)

Xvely v

= Z anax[UU(xU) —xu(z Pqlqv + Py — Z p;)]
vey el q€Q v ENy (V)

(5)

Which means that this objective function can be divided
into |Y| separate subproblems. Each subproblem for subtree
T, can be solved locally if the values of clique prices p; Vq :
(F, NV # &, gateway forwarding price p;, and all children

gateway forwarding prices p,, Vv’ € A, (v) are known. The
objective function of the dual problem then becomes

D(p,p")
= mgle(x, pp")

= Z PqCq

q€Q
+Z¥Iax[U”(x“)_xv<Z Plqw+ply = 2 PL'>]>
vey T q€Q v’ €A (V)

(6)

and the dual problem (D) for the primal problem (P) as
explained in [13] can then be defined as follows:

(D): g%n D(p). (7)
p'=0

Equation (7) suggests that to find the optimal rates in
a decentralized fashion, we need to find the optimal prices
p and p’ by solving the constraint-less problem (D). In the
following, we will see that p” can be calculated locally at each
gateway node and p can also be calculated locally for each
contention domain, hence decentralized solution for end-to-
end optimal rates is possible as will be discussed later.

3.1. Interpretation of Prices. Consider P,(T,) as the profit of
the subtree T, which can be defined as follows:

Pv(Tv):Uv(xv)_xv<zpqrqv+p;_ Z pz,/)

qeqQ v eN, (V)

(8)

This profit represents the difference between the utility
that subtree T, gains by having rate x, (i.e., Uy(x,)) minus
the summation of prices (denoted by U(x,)) that this subtree

has to pay for gaining such transmission rate, which is
defined as

lNJ(xv) = Z Palquxo + poxy — Z Doy Xo- (9)

qeQ v eA(v)

This summation of prices is divided into three compo-
nents:

(1) 2geqPqlqvxy which can be interpreted as the total
price for utilizing resources on all cliques Vq €
Q such that F, n V{#@. In this case, pg can
be interpreted as the price per unit bandwidth
consumed at clique q.

(ii) pyx, is the price that subtree T, must pay to the
parent subtree of the same group in order to have
traffic with rate x, forwarded to it. In this case, p;,
is the price per unit bandwidth for forwarding traffic
to subtree T,.

(iii) X yen,, ) PuXo is the total revenue that subtree T,
gains by forwarding traffic with rate x, to all children
subtrees with each term p;, x, indicating the revenue
for forwarding traffic to subtree T, such that v’ €
A (v).
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Note that at optimality, p;, = 0 if x, < xg,() since p;,
indicates the price when the constraints (1) are violated or
the maximum possible rate is used (i.e., x, = Xz, (»)). This
means that a subtree T, is not charged for using rate x, if
this rate is less than the rate at parent gateway node 7, (v).

For p, we can, similarly, define the price for one subflow
fvi € Ty as the total price for consuming bandwidth on all
maximal cliques g € Q as follows:

hi= > pg (10)
q:(fueVd 2@

Moreover, we can also define the aggregated price for
subtree T, as a result of consuming bandwidth on all
maximal cliques g € Q as follows:

IS

a(F,nV) 7 @

Pal'qo- (11)

A crucial aspect of our solution is how to calculate the
individual subtree clique prices A, Yv € Y in a decentralized
way given the prices of the individual maximal cliques
Pq Vq € Q. To facilitate presentation, we introduce the
following new terms:

(1) my(i): the parent node of node i along subtree T,;

(2) Ay(i): the accumulated price for subtree T, at node i.

Note that, along subtree T, there is no parent node for
the gateway node v, that is, 71,(v) = &, and the accumulated
price at the vA,(v) = 0. We can then define the accumulated
subtree price recursively as follows:

/\u (ﬂv(l)) + Avn,,(i)

A (i) =
) errv(i)

vie T, (12)
where Ky, (i) is the cardinality of subflow fyz, ().

Theorem 1. If J, defines the set of terminal nodes for subtree
Ty, then the subtree clique price can be calculated as follows:

Ao = D0 A (0). (13)

i€J,

Proof is given in Appendix A.

3.2. Aggregated Subtree Price Calculation. In Section 4 we will
explain the iterative method for calculating both clique price
Pq (hence subflow price from (10)) and the forwarding price
for each gateway node p,. In order to calculate the total price
defined by (9) at any gateway node v, we need to calculate
the accumulated price on each branch recursively using (12)
until we hit either a terminal node or another gateway node
v € Ap(v). Each gateway node v' € A, (v) subtracts
the forwarding price p,, from the accumulated price to get
the net price for the branch leading to that gateway node.
Children gateway nodes and terminal nodes which are part
of T, then send the net price value back to node v to calculate
the subtree aggregate price per unit bandwidth A(T,) by
simply aggregating all net branch prices and the forwarding
price p, as follows:

MT) =d+p,— > pi. (14)

v €Ay (V)

4, Optimal Resource Allocation for
Heterogeneous Wireless
Multicast (ORAHWM)

We present a distributed iterative algorithm that solves the
primal problem (P) by applying the gradient projection
method [13] to the dual problem (D). This implies that
the clique prices p,(t +1) Vg € Q and forwarding prices
P, Vv €Y are calculated iteratively as follows:

palt+1) = [pq(t)—vcaDa(g(t))] ,

K (15)
, , aD (' ()1
put+ 1) = | o) - ag’;v(t))] ,

where o > 0 is the gradient step-size. Since U, Vv € Y
are concave functions, D(p, p’) is continuously differentiable
and the gradients for D(p, p’) with respect to p and p’ are
defined as follows:

aD(p,p) _

5 = 2 %@l 4€Q  (16)
pq vi(F,n V) # &
al)%p’,’” = () = %0, (V) € Ve (17)

Substituting in (15) we get the supply and demand
equations for calculating p and p” as follows:

po(t+1) = [pq(t) - oc(cq - > xu(t)rqv)] , (18)

vi(FynV) # @
pot+1) = [p(1) — a(xm, ) (1) — x,(1)]". (19)

We calculate the subtree aggregate price A(Ty,t + 1)
defined by (14) at time (¢ + 1) using the clique, and
forwarding price values from (18) and (19) as explained in
Section 3.2. Finally, the transmission rate used by gateway
node v at time (t + 1) is calculated as follows:

x(t+1) = [U;(M(Tot+ 1)) ] (20)

In order to prove the convergence of the algorithm described
by (15)-(20), we define the following new terms. Let Y, =
2.qeqlqu indicate the number of subflows in subtree T,
and Y = maxyeyY, + |An(v)| — 1, indicate the maximum
summation of subflows in T, plus number of children
gateway nodes in A,,(v) Vv € Y, where 1, = 1 if ,,,(v) # &,
and zero otherwise. Let Z = maxgeq.,eylqo be the number
of subflows in the most congested clique g € Q, and y =
maxy,ey)y indicate the upper bound onall U}/ (x,) Vv € Y.
We can obtain the following convergence result, the proof of
which is in Appendix B.

Theorem 2. For step-size values of a that satisfy the inequality
0 < a < 2y/YZ, starting from any initial rate x(0) (x, €
I, Yv €Y), clique prices p(0) = 0 Vq € Q, and forwarding
prices p'(0) = 0 Yv € Y, the sequence of vectors x(t) =
(xp(t), v € Y) converges to the unique optimal solution of
problem (P).
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4.1. Synchronous Versus Asynchronous Computations. Equa-
tions (15)—(20) assume that the price and rate iterations are
performed at time t = 1,2,3,..., which implies that the
price and rate calculations happen at the same time using a
synchronous computation scheme. Such synchronization is
however difficult to attain in a distributed network environ-
ment where nodes do not have any global synchronization
clock. Practically speaking, asynchronism inevitably happens
for price and rate calculations at any node because the node
may not have the exact current value of the rate, the clique,
or the forwarding price. Instead, it receives a sequence of
recent values at different time instances. Therefore, the node
will use a weighted average of these values in estimating the
price or the rate at any given time. For example, for node i to
calculate p,(t + 1) from (18), it needs all the rates x,(¢) Vv :
(F,n V) £ @, at exactly time t. However, because node i may
not have the rates at time t, it keeps the rate values at times
(t —B) <t < t, where B is a configurable time window
for rate and price calculations. Then, it estimates the rates at
time ¢ using the following weighted average:

t t
()= > b, ) x, () with > bl(t, 1) =1 (21)
t'=t—B t'=t—B
This asynchronous mechanism is general and allows for
deploying any estimation policy for the rates or prices. The
simulations in Section 5 show that our algorithm attains
convergence using some popular update policies such as

(i) latest instant estimation: only the last received value

for x,(r) for some v € [t — B,...,t], is used to
estimate X,(¢), that is, b1(t',t) = 1ift' = rand 0
otherwise;

(ii) latest average estimation: only the average over the
latest k received values is used for estimation, that is,
b?(t’, t)>0fort' =1t —k+1,...,7and 0 otherwise.

The details for the asynchronous algorithm for hetero-
geneous wireless multicast are shown in Algorithm 1. In
order to understand the association of this algorithm with
the network architecture, we assume that each node i in the
network has zero or more multicast subflows f,; Vv € Y
depending on the traffic passing by this node. Even though
the algorithm suggests that the clique procedure at clique g
can be performed by a designated node from that clique
(i.e., clique master), in our simulations we perform the clique
procedure at each node i separately for all cliques that have
fui 0 V& # @. The subflow procedure is performed by each
node i that has one or more multicast subflows f,; Vv € Y
by simply calculating the accumulated prices at the branches
of f,; based on the accumulated price at i. Finally, active
gateway nodes (i.e., gateway nodes that have traffic from one
or more multicast groups passing by them) perform the
subtree procedure by calculating the optimal rate x,(t + 1)
based on the aggregated prices for this subtree.

The estimation of the price and rate values at time ¢
(i.e., a?v(t),f)q(t),iv(i, t) and p;(t)) from the received values
at time instances in the range (t — B) < t' < t may follow
any policy such as the latest instant estimation or the latest

average estimation as explained before. The support for these
different update policies demonstrates the versatility of our
asynchronous algorithm. The following theorem illustrates
the convergence of this model (detailed proof is given in
[14]).

Theorem 3. For step-size values of a that are sufficiently small,
starting from any initial rate x(0) (x,, € I, Vm € M)
and clique prices p(0) = 0 Vq € Q, every accumulation
point (x*;p*) of the sequence (x(t);p(t)) generated by
the asynchronous Algorithm 1 (ORAWHM) is primal-dual
optimal.

4.2. Time-Varying Network Environment. So far, we assume
that the cliques achieved capacity and the set of group
utility functions are not functions of time (i.e., they do
not change with time). However, due to online calculation
and subproblem decomposition, it can be shown that our
solution will work in the case when these quantities change
with time.

For example, the clique capacity may be time-varying
depending on the scheduling discipline used at the MAC
layer. In this case, (16) will be the same except the current
clique capacity c,(t) is used in place of the constant capacity
cp. For deploying our algorithm in a real network, we
account for the time-varying channel capacity by using
a bandwidth management mechanism for estimating the
channel capacity based on [15]. In general, if the change in
the environment parameters is relatively slow, our solution
can track the changes in the optimal rates based on changing
these quantities with time. This is shown in our experimental
evaluation discussed in Section 5.

4.3. Cross-Layer Architecture for ORAHWM. Figure 3 depicts
the cross-layer architecture of ORAHWM showing the main
procedures and the interaction of ORAHWM with the
different layers including MAC, routing, and transport layers.
In this architecture, we use the common IEEE 802.11 DCF as
the MAC protocol with multicast extensions as presented in
[11]. Multicast ad hoc on demand distance vector (MAODYV)
[16] is used to provide a distributed routing scheme for the
multicast sessions. We also use UDP with rate control in the
transport layer to minimize the communication overhead
through avoiding the excessive feedback packets used by
other transport protocols (e.g., TCP).

We use the channel capacity estimator to measure
the channel capacity in real time in the MAC layer. For
this purpose, we devise a cross-layer mechanism which
combines the multicast aware MAC protocol (MMP) [11]
with a bandwidth management mechanism for measuring
the channel capacity based on [15]. For details about this
mechanism, please refer to [17]. We also use the HELLO
packets for conveying the clique price information in the
routing layer. The information from channel capacity esti-
mator and HELLO packets jointly establish the requirements
to calculate the dual gradient for clique prices described by
(16). To construct the contention domains, we allow the
price information to be broadcasted as part of the HELLO
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Clique procedure (by clique g): At times ¢t € T,
(1) Receive rates x,(t') from all subtrees T, where F, N V{ # &
(2) Update clique price as follows

pa(t+1) = [pq(t) — oc(cq - Z J?v(t)l"qu>] , VqeQ

vi(FynVd) 2 @

(3) Send p,(t + 1) to all nodes of group m such that F,, N Vizo

Subflow procedure (by subflow f,;): At times t € T%,
(1) Receive prices p,(t') from maximal cliques g where f,; N Vi@
(2) Calculate the subflow price (per hop price) A,; as follows

Lts= 3 p®
a:(fuinVd) 2
(3) Calculate the accumulated price on each branch b,;; € f,;

NGy t+1) = Ao (i, 1) }A.Ui(H 1)

(4) Forward A,(j, t + 1) to all children subflows of f,;, if no children, send A,(j,t + 1) to v.

Subtree procedure (by gateway v): At times t € T,
(1) Receive the net prices A, (i,t") — p;(¢') from all terminal nodes of T, (i.e., Vi € J,),
and all children gateway nodes Vi € A,,(v) // (note: p; =0 Vi€ J,).
2)Iifmp(v) # 2 Il (ie, v #s,)
(i) Receive rate Xy, () (#'") from parent subtree of T,
(ii) Calculate the next forwarding price p; (¢ + 1) as follows:

Pu(t+1) = [pi(6) = a(Bn, (1) = ()]
Else p,(t+1) =0
(3) Calculate the next subtree aggregate price A(T,, t + 1) as follows:

MT,t+1) =p,(t+ D+ > (A1) - pit)

i€ (I mUAm(v))
(4) Calculate the next subtree rate as follows:
x,(t+1) = U Y (MTy, t+1))
(5) Send x,(t + 1) to all cliques g where F, N V& # &

ArLgoriTHM 1: ORAHWM: asynchronous distributed algorithm.

______________________________________

Transport layer .

UDP Genél/recei@ < - -@ate contr@
ata

Routing layer 4

MAODV Send/receive)¢ _ _(Hello agent )- -
data
MAC layer Channel
802.11 Scheduler }-->( capacity
estimator,

— Data paths
--~- Control paths

FiGURE 3: Cross-layer architecture for ORAHWM.
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packets to all neighboring nodes within 3 hops away. Such
multihop protocol-based scheme in calculating the maximal
cliques is proven to work when the interference range is
greater than or equal to the transmission range, given that
nodes within the same interference range are reachable to
each other through multihop communication, as shown in
[6]. Feedback packets from the terminal nodes and gateway
nodes can be used to convey the rate and accumulated
price information which are used by the subtree procedure to
calculate the dual gradient for forwarding prices described by
(17) and the aggregated subtree price in (14) and hence the
next subtree rate described by (20).

5. Simulation Results

In all our experiments, we use the utility functions U, (x,) =
gIn(x,)) x, > 0 for imposing proportional fairness [4]
amongst the multicast groups, where g, is the differentiation
gain for gateway node v, that is, x, (t) = g,/A, (). The default
transmission and interference ranges are 250 m and 550 m,
respectively. We implemented all the simulations using
nanosecond-2 simulator. Unless otherwise stated, we use the
latest instant estimation for asynchronous calculations.

5.1. Effect of Time-Varying Wireless Channel. In this exper-
iment, we study the effect of time-varying wireless channel
on the speed of convergence for our algorithm ORAHWM.
we deployed our algorithm in a real network that uses
multicast aware IEEE 802.11 DCF MAC scheduler [11] with
a bandwidth management mechanism for measuring the
channel capacity (i.e., channel capacity estimator in Figure 3)
based on [15] and (MAODV) [16] for routing. We take
as an example the network in Figure 4 with 3 multicast
sessions as shown in Figure 4(a) and the corresponding
contention graph as shown in Figure 4(b) . We use equal
differentiation gains, that is, g, = 1 Vv € M. However,
we start each of these sessions in a different time to test
the ability of our algorithm to track network changes. The
start times of sessions my,m,, m3 are 20,40,60 seconds,
respectively, and the initial rates x,(0) Vv € M are selected
from a uniform distribution in the range 50-250 kbps. We
have fixed all the other parameters including the step-size,
and we measured the rate of each multicast session against
time. Figure 5 shows the result using a time-varying channel
capacity realized by the MAC scheduler. From this figure,
we observe that although the MAC channel capacity (i.e.,
the basic rate of sending data in IEEE 802.11 DCEF) is
set to 1 Mbps, the achieved channel capacity changes with
time and does not go above 800 Kbps. Nevertheless, our
algorithm continuously tracks the change in channel capacity
and provides proportional fairness amongst all the multicast
sessions based on the current available channel capacity. We
also notice that the algorithm spends less than 2 seconds to
achieve the optimal rates every time a new multicast session
is added, which is deemed reasonable. However, intuitively,
this convergence speed is affected by the number of hops that
each multicast session spans and hence it may decrease in
larger networks as we will see in the following experiments.

(a) Multicast network with flow

pattern
- - =~ ~o
s a4(2,3} S
L N
, N
’ AN
/ \’5\ E
oy 7 \
PN FET
/ <
h \
X 1
g1 I
\ 1
\ I
\ /
N >/
W5 Sy
N b2 Q7 ,
N ,
~ 7z
~ //
S~ ai{4} Ptd

(b) Resulting contention graph

FIGURE 4: Effect of time-varying wireless channel.
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Figure 5: Convergence for time-varying channel capacity using
IEEE 802.11 DCF scheduling.

5.2. Convergence in Random Network for Unirate Multicast.
In this experiment, we study the convergence behavior of our
algorithm ORAHWM with respect to both calculated rate
and throughput in a randomly generated wireless network
as shown in Figure 6. This network consists of 30 nodes
deployed randomly over the 1000 x 1000 m? wireless space.
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FiGuRre 6: Random wireless network with 30 nodes.

TABLE 2: Multicast traffic pattern.

Session Source/gateway Receivers

n V1o 11> 1125 1135 114
m; U2 16> 117> 118> 119
ms U3y 726> 127> 128> 129

We started 3 multicast sessions m, m,, and mj3 at time 20
seconds, each with one source and gateway node v,,; and
four receivers as shown in Table 2 using &« = 107%. The
differentiation gain for all the three sessionsis g, = 1 Vv €
M).

Figure 7 shows the calculated rates and receiver through-
put of each multicast session with time. From these results,
we observe that our algorithm attains convergence with
satisfactory speed even in relatively large-scale networks. We
also observe that the throughput achieved by each receiver
on all sessions follows the calculated rates fairly well, which
confirms the correctness of the calculated rates. Note that
the optimal calculated rates are different for each session
depending on the size of the multicast tree and how much
resources each session consumes from the total network
resources. If this discrimination based on tree topology is
undesirable, it can be compensated using different differen-
tiation gains (g,) on each session, which will be discussed
in the next experiment. We also observe that the time spent
by the algorithm to achieve full optimality is almost 35
seconds in such large fully distributed network. However,
after 5 seconds only, the rates start to approach optimal point
gradually. This indicates that, although the algorithm may
not have enough time to achieve full optimality especially
in large-distributed environments, it will always attempt
to approach optimal point and follow network changes
concurrently and satisfactorily.
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(b) Receiver throughput

Ficure 7: Convergence of ORAHWM in large random networks.

5.3. Effect of Changing Differentiation Gains on the Calculated
Rates and Aggregate Utility. In these experiments, we study
the effect of changing the differentiation gains on the
calculated rates for unirate and multirate multicast sessions.
We consider the small topology shown in Figure 8. Two
sessions m; and my are sharing this network with source
and receiver nodes as shown in Figure 8. we consider 3 cases
where we change the differentiation gain and show the effect
on the calculated rates in each case. Case 1 is the unirate
multicast where we use one gateway/source node for each
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(a) Multicast network topology

(b) Contention graph

FiGure 8: Effect of changing differentiation gains on the calculated
rates and aggregate utility.

multicast group, and we use equal differentiation gains for
both sessions (i.e., gy, = £u,, = 5). For both cases 2 and 3, m,
gateway node 4 for rate control and the differentiation gain
v, 18 set to. Case 2 uses differentiation gains g,,, = 3, gu,, =
2 whereas case 3 uses gy, = 4, gv,, = 1. In all cases we start
both multicast groups at t = 20 seconds, we fix all the other
parameters including & = 3 x 1077, and we set the channel
capacity for all maximal cliques to 1 Mbps.

Figure 9 shows the calculated rates and the aggregated
utility for the 3 cases. We notice that for case 1 (unirate),
as expected, our algorithm ORAHWM will discriminate
against session m; because it uses more wireless links
and hence utilizes more network resources. This happens
because for unirate, ORAHWM deals with each session
as one entity regardless of how large this session is and
how many links it uses. Multirate with additional gateway
nodes can reduce this effect by providing more flexibility
to assign more priority to some parts of the tree which
in turn affects the aggregate utility of the entire system.
This is depicted by the results in Figures 9(b) and 9(c). We
notice that by increasing the differentiation gain for T,
we can increase the aggregate utility (shown in Figure 9(d)).
Therefore, assigning differentiation gains to different parts of
the multicast trees is a crucial aspect of this algorithm and
may call for a mechanism to assign these differentiation gains
in real time in order to maximize the overall aggregate utility.
For example, multicast subtrees which serve large number of
uncongested receivers will be assigned higher differentiation
gains, while multicast subtrees with fewer congested receivers
will be assigned lower differentiation gains.

5.4. Effect of Time-Varying Channel and Mobility on the
Convergence of ORAHWM. In these experiments, we study

the effect of changing network conditions including chang-
ing capacity and node mobility on the convergence of our
algorithm ORAHWM. We consider the same topology and
multicast sessions shown in Figure 8, and we use the g,,, =
4’ 8oy = L.

First we study the effect of measuring the real capacity
on each clique using the MAC layer channel capacity
estimator as explained in Section 4.3. Figure 10 shows the
result of using a time-varying channel capacity realized by
the MAC scheduler IEEE 802.11 DCF with channel data
rate 1 Mbps. From this figure, we observe that although the
achieved channel capacity changes with time, our algorithm
continuously tracks the change in channel capacity fairly well
and provides proportional fairness amongst all the multicast
sessions based on the current available channel capacity.

We also study the impact of mobility and route changes
on the convergence of our algorithm by generating a mobility
pattern where node 2 moves from position 1 to position 2
as shown in Figure 8(a) with average speed of 3m/s and
pause time 20 seconds. Figure 11 shows the rates calculated
by our algorithm with time. The figure shows 3 different
regions depending on the change of routes resulting from
the node mobility. In region 1, only node 6 is receiving
traffic for both multicast sessions. As expected in this case,
our algorithm converges to the same rates of case 3 in the
previous experiment. As node 2 moves to region 2, the routes
for which are shown by Figure 8, both receivers at nodes 5,
and 6 become active for session m; and the optimal rates
converge to the same values, after some transient period,
despite the route changes. When node 2 moves to region 3,
both the receivers at node 6 and node 4 become inactive for
session m; and session m, can now use the whole channel
for its traffic. Therefore, the optimal rate for m;, in this case
is 1 Mbps whereas the capacity is divided amongst the 3
subflows fi1, fi12, and fi3 for m.

5.5. Effect of Using Multirate on the Total Throughput for
Multicast Flows. In this experiment we study the effect of
using gateway nodes for rate control as part of a multicast
group. Consider Figure 12 which shows two multicast groups
m; and m, sharing an ad hoc network on 11 nodes as
shown in Figure 12. m; uses gateway/source node 1 (i.e.,
v11), and has 3 receivers, namely, 7,3, and ry while m,
uses gateway/source node 6 (i.e., v2¢) and has two receivers,
namely, 719 and r;;. Here, to study the impact of using
multirate multicast we consider two cases. Case 1 is the
unirate multicast with equal differentiation gains for both
multicast groups (i.e., g, = v, = 3). For case 2, m; uses
an additional gateway node at 4 (i.e., v14) for rate control. In
this case, we set g»,, = 2, g»,, = 1 so the total differentiation
gain is similar to case 1, and we set g,,, = 3.

Figures 13 and 14 show the calculated rates and receiver
throughput for cases 1 and 2, respectively. We notice that
in each case convergence is attained, and the throughput
achieved by all receivers on each group tracks the calculated
rates appropriately. Comparing the two figures, we notice
the effect of using gateway node vy4 for m; which lowers
the optimal rate on the subtree T,,, (i.e., x,,,) allowing the
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FiGure 9: Effect of changing differentiation gains on the calculated rates and aggregate utility.

other rates x,,, and x,,, to increase drastically. This happens
because we set the differentiation gain g,,, = 1 giving this
subtree lower priority based on our knowledge that this
subtree has only one receiver (r9), and the surrounding
area has traffic load more than for example, T,,, and we
used vy4 to give us the flexibility of setting x,,, accordingly.
Such knowledge can either be communicated between the
receivers and gateway nodes or tuned manually by an
administrator.

To study the effect of this heterogeneity within my;
we measure the aggregate utility and the total throughput
achieved by each group for cases 1 and 2. Figures 15 and 16

show the results for these measurements. We see from
Figure 15 that the aggregate utility achieved for case 2 is
better as a result of using gateway node v;4 because both
rates x,,, and x,,, increased significantly by reducing x,,,.
This increase in rates caused the overall throughput achieved
by both multicast groups to increase drastically (i.e., =30%)
as shown in Figure 16.

6. Concluding Remarks

In this paper we have presented the resource optimization
algorithm for the case of multirate multicast (ORAHWM)
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50
over multihop ad hoc networks. We have introduced the 0 . . . . . . . .
notion of gateway nodes used to control the rates for 20 40 60 80 100 120 140 160 180 200
multirate multicast groups and provided the optimization Time (s)

model that realizes the optimal rates used by each gateway
node in order to maximize the overall aggregate utility s e
for the entire system. We also discussed the cross-layer N
architecture that can be used for deploying this algorithm in

real networks. We proposed a mechanism for calculating the

subtree price based on the branch accumulated price which FI1GURE 13: Case 1 (unirate): calculated rate and throughput without
allows the calculation to occur in a totally distributed and ~ using gateway node v,,.

— 17 == To

(b) Receiver throughput
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F1GURE 14: Case 2 (multirate): calculated rate and throughput using
gateway node vy4 for rate control on m;.

asynchronous way. Utilizing the flexibility of using gateway
nodes across the multicast trees, ORAHWM is expected to
increase the aggregate utility of the system and boost the
overall throughput achieved by each multicast group by as
high as 30% provided that the differentiation gains are set
appropriately.

Appendices
A. Proof of Theorem 1

Proof. Assume that J,(h) is the set of all nodes i € T, such
that the depth of i is h, and H is the maximum depth of the
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FIGURE 15: Aggregate utilities for cases 1 (unirate) and 2 (multirate).
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Ficure 16: Total throughput for each multicast group for cases 1
and 2: th, is total throughput for m;, th; is total throughput for m,.

subtree T),. Now it is easy to recognize that

b=twt > At D> Ay

i€J,(1) i€J,(H-1)

(A1)

where A,, is the clique price for subflow f,, € F, branching
from the gateway node v. Next, we proceed by induction
based on H as follows.

(i) ForH =1,
S i) = S A= KKA A (A2)
i€J, i€J,(1) vy



EURASIP Journal on Wireless Communications and Networking 15

(i) For H = 2,
. Ao/ Koy + A (i
> M= 3 Tt
i€3,(2) i€3,(2) mm, (i)
Ao/ Ky + Api
- 3 MBuethio g, )
i€J,(1) vi
=dwt > hi=h
i€J,(1)

Notice that if f,;&F,, then A,; = 0.
(iii) Assume that for H = n — 1,

Z /\v(i) = /\v = /\vv t--F Z /\ub (A-4)
i€J,(n—-1) i€J,(n-2)
(iv) Hence, for H = n,
Z A, (i) = Z M X K,
. . Kvi
i€J,(n) i€J,(n—1) (AS)
:)LUU+"'+ Z Avi:Aw
i€3,(n-1)
therefore the result follows. O
B. Proof of Theorem 2

The proof follows the same way as [4, Theorem 1]. We

define A to be the set of gateway nodes that have A, (v) # @.
Then the vector of forwarding prices p’ is defined as p’ =

(p,, Vv € A). First we prove the following lemma.

Lemma 1. If 4,u = (p,p’) are any two (|Q| + Al x 1
feasible system price vectors, that is, 4, > 0, then based on
Assumptions 1 and 2, VD satisfies the Lipscitch condition

VD) — VD@)||, = %na —al. (B)
Proof. From (15), we have VD = C—Tx, where Cis the (1Ql+
IIN\I) X 1 capacity vector with ¢; = 0 Vi € IN\, and T is the
(1Ql + IIN\I) X Y| constraints matrix. N

Let (0x/0u)(u) denote the | Y| X (|Q| 4+ |A|) matrix whose
(i, j) element (0x;/du;)(u) is

~

ax; U (W) = uy = U (),
B ) = T Gy ) = = U0 g )
uj
0, 0.W.
If we define S;(u) as follows:
1
e i U/(W)) = u; < Ul (),
By = | T Gayyy U =y < ULOw), - 5
0, 0.W,
then (dx;/du;)(u) in matrix form can be written as
ax,- a1
| S | = B (B.4)
8uj

where B(u) = Diag(Bi(u); i € Y) is the diagonal matrix with
diagonal elements f3;(#). Hence,

V2D = _f[%(u)] — fB(u) T, (B.5)
]

Now from [18, Proposition A.25(e)] and knowing that
V2D = TB(p)IT is symmetric (ie, [[TB(p)IT|l, =
ITB(p)I7T|,,), then we have

ITB) T, < |ITB(w) I,

= max )y [IA"B(u)lA"T]jj,
]
j

- max 35 08
i

= max 3 B8 X i
i Iz

(B.6)

where > ;i T;; represents the sum of subflows in each

maximal clique j* Vj" : (Fi n chl # &) plus the number
of children gateway nodes for each subtree Tj, which is by
definition < Y. Then we have

IR B £7]], < sz (B.7)

From [19, Theorem 9.19] we have for (B.7)
1906 - VD@, = Fla-al,  ®8)
hence the result follows. O

Proof. (Theorem 2) from Lemma 1, the dual objective func-
tion D is lower bounded and VD is Lipschitz. Then, limit
point u* of the sequence {u(t)} generated by the gradient
projection algorithm for the dual problem is dual optimal
provided that 0 < a < 2y/YZ (see [18, Proposition 3.4]).

Let {u(t)} be a subsequence converging to u*. Since
U/(x;) is defined on a compact interval [w;, W], it is
continuous and one-to-one (because of the strict concavity
of U;(x;)). Thus, its inverse is continuous (see [19, Theorem
4.17]) and hence from (20), x(u) is continuous. There-

fore, lim;_ « x(t) = x(u*) and that proves the result of
Theorem 2. O
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1. Introduction

Wireless mesh network (WMN) [1] has recently appeared
as a promising technology, which can increase coverage
area and capacity of existing wireless networks. With the
help of of-the-shelf wireless mesh routers, large, previously
possibly unreachable, areas can have wireless access to, for
example, the Internet. As these routers are becoming less
expensive, the introduction of multiple radios to each router
is becoming economically possible. multiradio concept with
multiple noninterfering channels can significantly improve
the overall network capacity, thus current WMN research has
been concentrated to multiradio WMN.

In wireless networks, users or subscribers can experience
unfairness depending on their location in the network.
Users with multiple hops to destination are given less
bandwidth than those with fewer hops. The unfairness
stems from the shared wireless medium and unfair net-
work protocols that are designed to maximize network
capacity, that is, the aggregate throughput or do not take
into account the fairness at all. Maximizing capacity and
ensuring fairness are contradictory requirements and usually
maximizing capacity has been preferred [2]. Unfairness is
also present in multihop multichannel WMN. Users with

multiple hops can be completely starved, while capacity, in
terms of throughput, is maximized. This is naturally not
fair, especially if the users pay the same amount for the
service.

Usually routing in WMN has been seen from the point
of view of the mesh routers (e.g., in [3]). As they are,
mesh routers do not generate traffic, they only forward
traffic of users and other routers. Thus, routing should be
seen from the point of view of the users, who are also the
paying customers. In addition, subscribers can be unevenly
distributed in the network; the number of subscribers
registered to a mesh router can vary significantly. This is
neglected in most of capacity and routing studies, where one
user per router is assumed (e.g., in [4]). Therefore, as the
number of subscribers per router increase, so should its share
to the limited network capacity. As discussed above, there is
a need for a new or improved routing protocol or algorithm,
which takes into account the special characteristics and
applications of WMN as well as the distinct needs of users.

The rest of this paper is organized as follows. In Section 2
some related studies are discussed briefly. Section 3 presents
needed concepts and definitions. Section 4 presents the
SAFARI algorithm and shows simulation results. Section 5
interprets the simulation results and draws conclusions.
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2. Related Work

Fairness in medium access control (MAC), scheduling and
network layer has been studied to some extent (e.g., [5-7]).
These papers observe fairness in the different layers of the
protocol stack and propose their solutions. However, fairness
is a cross-layer problem, and thus MAC-layer solutions are
useless if higher layer protocols are unfair. This is not true
vice versa; an ideal transport protocol can enforce fairness
even if the underlying MAC protocol is unfair [7].

Several papers have appeared that have taken linear
programming (LP) approach to routing and fairness. One
of the benchmark paper in LP-based routing, with several
linear constraints, is presented in [8]. The paper addresses
two interrelated questions: what is the maximum throughput
capacity of an arbitrary (ad hoc) network with given source-
destination pairs can this maximum throughput capacity be
achieved by jointly routing packets and scheduling transmis-
sions?

The authors devise an LP formulation that maximizes
aggregate rates and incorporates any requirements that can
be modeled as linear constraints. The paper provides a
proof that using their LP formulation, all needed packet
transmissions can be feasibly scheduled and that their
solution to the maximum concurrent flow problem is a
constant factor away from the optimal. The problem in their
proposed scheme is that the authors use an infinitesimally
divisible flow model for data transmission. This means that
data packet can be divided into pieces and transmitted along
all possible paths between source and destination, which
lead to very complex receiver structures and possibly to a
long delay between the arrival of the first and the last data
segment. In addition, storing and updating of all possible

routing paths leads to large routing tables and network
overhead.

In [3], optimized routing in WMN is considered with
fairness constraints. The paper points out that past work
can be categorized into two different strategies: heuristic
and optimization problem. Heuristic methods lack the
theoretical foundation to analyze how well the method
is working, while optimization problems can be far too
complex in practise or make too much simplified assump-
tions. The paper inspects and analyzes optimal routing with
uncertain traffic demand and fairness constraints, thus the
authors end up with a stochastic maximum concurrent flow
optimization problem. Unfortunately, their LP-formulation
seeks to maximize scaling factor §, which defines the fraction
of traffic that can be transmitted for each flow, instead of
guaranteeing fairness.

In [4], a topology control algorithm (TCA) and a new
routing metric suitable for WMN, namely, collision domain
(CD), are presented. The term topology control refers to
any set of network operations that lead to a connected
topology, for example, node placement, channel assignment,
power control, and routing. It is shown that the proposed
TCA performs better than conventionally used metrics, that
is, hop count and interference, in the terms of minimum
collision domain. On the other hand, the paper makes
simplified assumptions such as one user per router, absolute
fairness is said to be enforced and only one radio per router
is assumed.

Our work is mainly based on the work by Malekesmaeili
et al. [4] and Kumar et al. [8]. From [4], the topology
control concept and collision domain routing metric are
taken as baseline for routing with modifications. From
(8], linear programming-based approach to rout and rate
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maximization are adopted with modifications to constraints
and routing path selection. The essence of this work is to
develop a fair subscriber-aware routing algorithm for WMN,
in which the positions of subscribers are taken into account
in order to ensure fairness without crippling the network
performance. The algorithm is called Subscriber Aware Fair
Routing in WMN (SAFARI).

3. Preliminaries

In this section, basic definitions and concepts are introduced
and explained. We consider multiradio WMN modeled as a
graph G = (V, E), where V is the set of nodes and E the set of
wireless links (edges). Each link e € E has a certain amount
of data to send, x(e), and each e has a set of interfering links
I(e), which is based on the transmitter-receiver (Tx-Rx)
model [8].

3.1. Network Model. We consider WMN comprising of mesh
users, mesh routers, and mesh gateway routers. Mesh users
can be mobile and nomadic with stringent power constraints,
mesh routers are considered to be stationary without power
constraints, and mesh gateway routers are similar to mesh
routers except that they have gateway properties, that is, they
can connect to an external network. Our network model is
illustrated in Figure 1.

3.2. Fairness. In the context of wireless networks, fairness
means that every user receives a fair share of the network
resources (e.g., time and frequency), taking into account
user’s service requirements. Different services can have very
different requirements, for example, voice calls have strict
delay requirements and relatively low data rates, while file
downloading has high bandwidth and low delay require-
ments. These different requirements should be taken into
account, when designing a fair network protocol.

It is important to notice that assuring fairness is a cross-
layer problem, since unfairness occurs in MAC (e.g., channel
access and scheduling) and transport layers (e.g., congestion
control). Current network protocols (e.g., IEEE 802.11)
ensure user fairness only on one-hop communication or seek
to maximize aggregate throughput of the network [4].

Three popular definitions of fairness are absolute, max-
min, and proportional fairness. Absolute fairness is defined
as equal rates among all users, max-min fairness is enforced
if no user can increase its rate without decreasing some other
users’ smaller rate at the same time, and a set of allocated
rates is proportionally fair if any other feasible rate allocation
results in zero- or negative-aggregate change.

In this work, we use a simple fairness index A € [0, 1]:

I min(R) )

max(R)’

where R is the set of user rates, R = {ry,72,...,7n,|}, where
N, is the number of users. When A = 0, some user’s rate
are allowed to starve and when A = 1, absolute fairness
is enforced. Together with linear programming-based rate
allocation, our fairness index enforces proportional fairness

when A > 0 and also satisfies quality of service (QoS)
requirements if minimum allowable rate is set to QoS
threshold.

3.3. Collision Domain. In the work in [9], WMN capacity
has been addressed in form of a bottleneck collision domain
(BCD). In order to get a formal definition of BCD, we need
to first define CD and the corresponding CD load. CD of
link e(i, j), Ce, is the set of wireless links E, which need to
be silent due to the shared nature of the wireless medium,
when link e(i, j) € E is active. The link e itself is also included
in C,, since it also contends over the medium. Indices i and j
are the transmitting and receiving nodes, respectively. More
formally, C, is defined as

C. =e+1(e), (2)

where I(e) is the set of edges interfering with edge e, for all
ecE.

Each link e(i, j) for all i, j €V has a certain amount of
data to send, x(e), and all the data is accumulated in the
collision domain. Thus, CD load of link e is defined as

Ci(e) = x(e)+ > x(f), (3)
fel(e)

where x(f) is the amount of data on link f € E.

BCD is the collision domain that has the most data to
forward in an arbitrary topology, thus limiting the capacity of
the network. More formally, BCD of a network C;, is defined
as

Cb = maX(Cl)) (4)

where C; is the set of CD loads, that is, C; = {Ci(1),
Ci(2),...,Ci(n)},n = |E|-|E| is the number of edges in the
network.

In Figure 2, collision domain of a link 4 — 3 is
illustrated with the two shaded circles. In other words,
collision domain of a link 4 — 3 is the set of links included
or intersecting the two shaded circles. The consideration of
collision domain models the performance degradation of
multihop communication in contrast to single-hop, thus it
captures essential properties of MAC protocol without actu-
ally making assumptions of the used MAC-layer protocol.

The technology-dependent link capacity (theoretical
maximum throughput (TMT)) is calculated in [10], and it
was used in [9] to assess link capacity, which is also limiting
the network capacity since the accumulated traffic of a link
cannot exceed the link capacity. In Figure 2, the total load of
the collision domain Cy . 3 is 20 U since it is the accumulated
traffic oflinks 7 — 6,9 — 5,5 - 4,6 — 4,4 — 3,3 — 2
and 2 — 1, where U is the amount of data that mesh user
transmits and it is same to all users (Figure 2) for simplicity
of notation. Thus, the throughput per node G,, is bounded
by G,, < TMT/20 [9]. Note that this is not necessarily the
BCD of the network. The above calculation needs to be done
to every link in order to find the BCD.

C; can be used as a cumulative routing metric, combined
with Tx-Rx model, it reflects wireless interference, it takes
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into account network congestion in a certain area and models
MAC-layer collisions since interfering nodes are not allowed
to transmit simultaneously. The BCD can be used to estimate
the maximum number of users in a network with a fixed data
rate since if each user transmits at rate r, then C, = m-r,
where m € Z*, and the link bandwidth is L, the throughput
per node Gy, will be bounded by G,, < L/m [9]. Thus, the
number of users the network can support is
Gm L

Ny=—< )
Y R, T mR,

(5)
where the required data rate for each user is R,,.

3.4. Routing Metrics. A good routing metric for WMN is
aware of network topology, takes into account network
characteristics, and is isotonic [11]. Isotonicity means that
the order of path lengths of two paths is preserved if they are
appended or prefixed by a common third path. An isotonic
metric assures loop-free routing, simple implementation,
and minimum weight paths using Dijkstra’s algorithm.
Proposed routing metrics for WMN are hop count,
distance, weighted cumulative expected transmission time
(WCETT), and CD. Hop count is used in AODV [12],
but it fails to address WMN characteristics and network
congestion. Distance-based metric is usually used with
modified Dijkstra’s algorithm and it suffers from same things
as hop count-based metric. WCETT was proposed by Draves
et al. [13] and it is a combination of loss rate with a priori-
known packet loss probability, bandwidth, and interference
of a link. Unfortunately, WCETT is not isotonic as shown
in [11]. CD was proposed as a routing metric by [4], which
is an excellent choice since it models wireless interference,
MAC layer collisions, and is isotonic. Based on the above
discussion, CD is used in this work as a routing metric.

3.5. Linear Programming. LP is a mathematical optimization
method that seeks to optimize (i.e., minimize or maximize)
a linear objective function subject to equality and inequality

constraints. In our work, we are using LP to maximize
the user rates with capacity and fairness constraints with a
selected path. Our LP is modified from [8] and is formulated
as follows:

maxz ri subject to, (6)
ieV
x(e) + Z x(f) < TMT VeeE, (7)
fel(e)
ri=Ar; Vi, jeV, i#j, (8)
R, <ri <R,, 9)

where r; is the rate of user i and TMT is the theoretical
maximum throughput (i.e., physical data rate a link can
transmit [10]), R, is the minimum required rate, and
R,, is the maximum feasible rate. However, (7) is the
capacity constraint, (8) is the fairness constraint, and (9)
is constraining the rates. Solving this optimization problem
leads to a rate allocation R = {ry,7,...,7n,|} that can be
feasibly scheduled, as shown later on.

The obtained rate allocation is dependent on the random
positions of the users. Thus, the obtained aggregate through-
put varies significantly with different user positions and there
is a need for statistical processing. For this reason, standard
deviation, o, is introduced as

(10)

where N is the number of random drop of users to the
network area, the kth rate allocation, zx is the sum of user
rates on kth random drop:

IR |

2= > Re(l), (11)

I=1
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where Ry is the rate allocation of kth random drop of users,
and z is the average of all rate allocations with certain number
of users:

1

Z:N

M=

2. (12)

=1

3.6. Channel Assignment. The main purpose of any channel
assignment (CA) algorithm is to minimize interference,
maximize aggregate throughput, as well as capacity or
fairness. The assignment of radios and channels to mesh
nodes is far from trivial. In [14], it is proved that simply
assigning first channel to the first node and second channel
to second node, and so forth, is far from optimal.

In [15], a taxonomy of CA schemes is presented and a
new CA algorithm, called mesh-based traffic and interfer-
ence aware channel assignment (MeshTiC), is introduced
and evaluated. The MeshTiC assigns channels to links in
decreasing order based on a link’s rank

A(i)

Rank(i) = m,

(13)
where A(i) is the aggregate traffic that traverses through a
certain node i, H(7) is the minimum number of hops from
node i that needs to be done in order to reach a gateway, and
N, (i) is the number of radios in node i. MeshTiC has been
chosen here since it takes into account the traffic load on
links, can be modified to incorporate interference, and has
low complexity.

4. Proposed Algorithm: SAFARI

Next, the centralized SAFARI algorithm is explained in
detail, pseudocode and simulation results are presented.
The SAFARI algorithm uses CD as a cumulative routing
metric, assigns channels to links using a modified version
of the MeshTiC algorithm, and uses a linear programming
framework to assign rates to users taking into account
capacity, fairness, and rate constraints, see (6), (7), (8), (9).

MeshTiC algorithm is modified such that in (13), A(i)
is estimated by using CD of link i based on the initial
geographical positions of users and H(i) is estimated as
distance to the nearest gateway. This way CA is fixed until
user positions change dramatically, and channels can be
assigned before routing and rate allocation.

Next, a high-level pseudocode of the SAFARI algorithm is
presented in Algorithm 1. In Table 1, the used abbreviations
in the pseudocode are explained. In Algorithm 1, on line 1,
necessary network information is collected, that is, router,
gateway router, and user positioning V, and the set of wireless
links E. This serves as a basis for the whole algorithm to
work. The positions of routers and gateways are easy-to-
obtain since they are stationary, and they are handled by a
centralized entity. The positions of users can be obtained
by multilateration or simply modeling the position by the
routers the user can reach.

On line 2, link weight matrix G is calculated based on
the initial positions of users, CD and Tx-Rx models. The

(1) Collect network information: V and E.
(2) Compute initial estimate of G.
(3) Assign channels to E, update G accordingly.
(4) Solve best known paths using G and FW.
(5) for k = 1to |S| do
(6)  For user k, choose the router from which the
best known path
(7)  to any gateway is shortest.
(8)  Connect to this router.
(9) end for
(10) Sort users such that users in low CD regions are
routed first.
(11) Store the order in S,c,,.
(12) for k = 1 to |Spew| do
(13)  Calculate paths from S (k) to all gateway
routers using FW.
(14)  Choose optimal gateway router and select the
corresponding path.
(15)  Update G.
(16) end for
(17) Solve the LP-problem in order to find optimized
rates.

ALGorITHM 1: SAFARI.

TaBLE 1: Abbreviations used in the pseudocode.

Abbreviation Explanation

CD Collision domain

E Set of edges

Fw Floyd-Warshall’s algorithm

GG, j) A graph %epresentin.g .Cl
on each link forall i,jeV

S Set of mesh users (i.e., sources)
New routing order based on

Snew to which router each user is
connected to

\'% Set of all nodes in the network

G ultimately determines the routing path selection and it is
modified several times in SAFARI so that it always reflects
the current network condition. The first calculation of G
does not take into account CA, since the used MeshTiC CA
algorithm needs an estimate of the traffic demand and it is
estimated using CD based on the initial positions of users.

On line 3, channels are assigned using modified MeshTiC
and G is updated to match CA. Channels can be now assigned
to E, since we have an estimate of traffic in the network.
G needs now to be updated to match CA. In other words,
the Tx-Rx model takes into account the CA, that is, links
interfere only if links are within the interference range and
use the same channel.

On line 4, the best known paths are solved using G and
FW’s algorithm. In this context, the best-known paths are
the “shortest” paths to gateways and they are used in the
determination of the best router for each user to attach to
(lines 6-8). Modified FW is used, since it can be made to
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incorporate CD metric and performs necessary routing with
relatively short time, that is, running time of FW is O(|V]?).
The determination of the router each user attaches to is
decided now by simply selecting the router from which the
path to any gateway is “shortest”. With this kind of router
selection, the randomness of user positions is diminished
and overall network throughput is increased, since in most
cases, the router selection procedure leads to smaller number
of hops for user to reach destination.

The routing order is decided on line 10. Low CD areas,
that is, links and corresponding nodes with low C; are routed
first since these areas are usually at the border of a network,
thus their routing is essential. This comes from the fact that
when the users are far away from gateways, the number of
hops increases. Now, if far away users are routed last, their
number of hops increases even more. Keep in mind that
as the number of hops increase, the capacity constraints
become stricter and the throughput decreases while delay
increases. Thus, the aggregate number of hops in the network
should be minimized, and routing far-away-users first is one
way to do it.

On lines 13-15, every user is routed in the decided order
to the best gateway and G is updated to reflect current
network condition. Each user is routed individually using
FW’s algorithm and the best gateway is selected according
to cumulative CD metric. The main reason for using FW
is that even a large number of gateways does not increase
running time of the algorithm. This is the final routing path
selection. After every user’s routing, G is updated according
to and along the chosen path.

Line 17 executes LP-problem, which allocates the highest
possible rates subject to capacity and fairness constraints.
Solving the LP-problem (6), (7), (8), (9), optimal rate
allocation with chosen paths is performed.

The original contributions of SAFARI are as follows.

(1) Positions of users are taken into account in

(i) CA by traffic load estimation with the help of
CD,

(i) determination of which router each user atta-
ches to.

(2) Determination of routing order.

The positions of users are taken into account in CA so
that in the rank calculation (13), the traffic load is estimated
with CD. In addition, the positions of users help to determine
the router each user attaches to. This is determined by
finding the best-known paths to the best gateways using FW’s
algorithm with CD estimated by user positions. With our
router selection scheme, the number of users attached to each
router is not random, as in cases where simply the closest
router is chosen, but determined by considering transmit
powers, available gateways, and other users’ positions.

4.1. Feasibility of the Algorithm. When comparing the
SAFARI algorithm to any wireless network routing algo-
rithm, several similarities and differences arise. Every routing

algorithm needs to collect network information, at least V
and E, in order to be able to route data from source to
destination. Also, every routing algorithm should have at
least an estimate of link weights, that is, hop count, distance,
interference, bandwidth, or CD, in order to compute G.
Finally, every routing algorithm needs a path selection
algorithm (e.g., Dijkstra or FW). These properties are
also implemented in SAFARI, and thus there is no extra
complexity in that regard.

There are a few factors that increase SAFARI’s complexity
compared to, for example, a simple distance-based routing
algorithm. The calculation of best-known paths and the
following router selection for each user increases complexity
compared to algorithms where simply the closest or the
farthest router is selected. Sorting users so that low CD
regions are routed first increases complexity only slightly
since all the necessary information is already calculated and
stored in G. The biggest factor increasing complexity is
the recursive path selection with FW and updating G. This
recursion is done because it allows the routing algorithm
to adapt to changing traffic conditions. In addition, rate
allocation by LP-problem solving increases the complexity
and running time especially with a large number of users.
Based on the above discussion, it can be stated that the
performance gain of SAFARI, as shown later, comes with the
cost of increased complexity. Nevertheless, this increase in
complexity is not too great to make SAFARI infeasible for
practical implementation since FW’s algorithm is the most
complex with a running time proportional to O(|V|?). Thus,
SAFARI can be solved in polynomial time.

Since SAFARI’s rate allocation is based on the LP-
formulation by Kumar et al. [8], it can be shown that
this rate allocation leads to feasible scheduling. The feasible
scheduling of SAFARI is formalized in Theorem 1.

Theorem 1. The LP formulation (6), (7), (8), (9) (i.e.,
rate allocation) used in the SAFARI algorithm results in a
stable schedule, that is, flows are given enough transmission
opportunities in a finite period of time. In addition, the rate
allocation is a constant factor away from the optimal solution
to the corresponding flow problem.

The proof of feasible scheduling in a TDMA-based
system is based on [8, Lemma 1]. The intuition behind the
proof is that link flows can only be scheduled in finite time
if there are enough transmission opportunities for each flow,
that is, there is enough bandwidth on the link. The detailed
proof is available in [8].

Lemma 1. A sufficient condition for link flow stability,

VecE, «x(e)+ z x(f) = TMT, (14)
fflz(e)

wherel = (e), is a subset of edges in 1(e) which are greater than
or equal to e in length.

4.2. Simulations. The simulations are performed using MAT-
LAB software version R2007b. In Table 2, the most important
simulation parameters are presented. The communication
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TaBLE 2: Simulation parameters.

Parameter Value
Communications range 20./50 m
Interference range 40./50 m
Link capacity (TMT) 43 Mbps
Number of radios 1,3 and 12
Number of users 1-20
N 750
R, 0 Mbps
Rn 3 Mbps
Step size A 0.1
Step size users 1
Topology Figure 3

range is fixed and set to 20./50 m, since routers are 100 m
and 20/50 m apart as shown in Figures 3(a) and 3(b).
Thus, most of the routers can reach eight other routers.
The interference range is fixed and set to 40+/50 m, which
is twice the communication range. The number of users
in simulations varies between 1-20. This choice allows the
observation of the effect of number of users on throughput
and fairness, and keeps simulation times bearable. Number
of random drop of users, N, into the simulation area is set
to 750, since the achieved throughput varies significantly
with different user positions. Users are dropped following a
uniform distribution into the simulation area. The step size
of Ais set to 0.1 and it defines the incremental value A is given
in simulations. This choice allows for observing the tradeoff
between throughput and fairness. The step size of users is
set to the minimum (i.e., one) in order to observe the effect
of users on throughput. Link capacity is set to 43 Mbps, as
one of the options for link capacity defined and calculated
in [10], and is assumed to be constant. The lower and upper
bounds for user rates, R, and Ry,, respectively, are set such
that total starvation of users is enabled and that user rates
have a realistic upper bound enabled by the physical layer
data rate.

In the simulations, it is assumed that each user has the
same QoS requirement and the corresponding data rate is
tried to achieve with limitations from the LP constraints. The
number of routers is kept relatively low since when there is
too many routers leads to very long simulation times. On
the other hand, using only a few routers is not practical,
since then the routing algorithm is tied to only a couple of
possible paths. In the simulations, defined numbers of users
are dropped uniformly into an area covered by a certain
predefined topology (e.g., Figures 3(a) and 3(b)), are allowed
to exceed this area by 100 m, and routed to destinations
using the algorithm in question. This is done several hundred
times since the distribution of users has a significant effect on
performance.

There are three algorithms that are used throughout the
following simulations. The first one implements SAFARI
algorithm and is referred to as SAFARI in the following.
The second one implements the TCA proposed in [4] and
is referred to as CD metric in what follows. The third one
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FIGURE 3: Two reference topologies used in simulations.

is a simple distance-based algorithm that uses Dijkstra’s
algorithm, and is referred to as distance metric in what
follows.

The following simulation results are obtained in a 7 x 7
grid topology with four gateways and 45 routers as shown
in Figure 3(a) (see [4]), and a 7 X 7 grid topology with one
gateway and 48 routers as shown in Figure 3(b), where red
circles are gateways and green diamonds are routers.

4.2.1. Comparison. In Figures 4-6 and Table 3, comparison
of the three used routing schemes by illustrating routing
paths, corresponding throughputs, and BCD are presented
with 30 users, 12 channels, and A = 1. The red circles
are gateways, green diamonds routers, blue dots users, red
lines router-to-router routing paths, and blue lines user-to-
router hops. Figure 4 shows how each user, using SAFARI,
selects the best router for itself and how two paths, for two
different users, are separated at a node in order to avoid
congestion on that link. In other words, the two users are
guided now along noninterfering paths. It is obvious that
using SAFARI leads to higher transmit powers on users, see
the blue lines, while the number of hops is diminished. The
increased transmit power can be unwanted in some scenarios
but if power consumption is not a crucial issue, higher data
rates are achieved.

Figure 5 shows the corresponding routing paths with
the same user positions. Now, users are connected to the
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FIGURE 5: Routing done with CD metric.

nearest router and are then routed using CD as a metric.
It is obvious that using CD metric leads to lower power
consumption while the number of hops is increased. Similar
to SAFARI, CD metric also guides users to noninterfering
paths. The main difference between these two schemes is that
with CD metric, the number of hops is greater, thus finding
noninterfering paths is harder. This is shown so that a fewer
number of noninterfering paths are selected.

Figure 6 illustrates the path selection with distance metric
scheme. It can be seen that also this scheme selects the nearest
router for each user to attach to. Then, the paths are selected
blindly without considering CA and link congestion. This
leads to shorter paths than using CD mietric scheme but some
links are heavily congested, and thus limiting the network
capacity. The distance metric scheme is the simplest scheme
while worst on the performance, as seen later on.

Table 3 shows the achieved throughput and BCD using
SAFARI, CD metric, and distance metric schemes with the
shown user positions in Figures 4-6. SAFARI achieves
almost twice as much throughput than the two others and
has significantly lower-average BCD. CD metric performs
slightly better than distance metric. As mentioned before, this
performance gain comes with the cost of increased transmit
power and algorithmic complexity.

Figures 7-9 show the average traffic distribution on each
gateway and router using the three models with topology
shown in Figure 3(a), 12 channels, A = 1, 20 users, and 1000
random drop or users. The traffic distribution is obtained so
that the number of users attached or passing a router/gateway
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FIGURE 6: Routing done with distance metric.

TaBLe 3: Corresponding-achieved throughput and BCD from
Figures 4-6.

Algorithm Throughput (Mbps) BCD (Mbps)
SAFARI 5.584 2.45
CD metric 2.972 3.7
Distance metric 2.687 5.5

is summed up in each random drop, and after 1000 drops, it
is divided by the number of users and number of random
drops. Horizontal axis shows the router/gateway indices as
presented in Figure 3(a). It can be seen that using SAFARI
in Figure 7, some routers are used rarely, especially the ones
far away from gateways. This is due to the fact that SAFARI
selects routers to users so that routers close to gateways are
preferred. This location-dependent router starvation should
be taken into account in the deployment of routers, that
is, sometimes network deployment cost can be reduced by
deploying less routers. Another remark is that besides the
starved routers, SAFARI performs load balancing to some
extent, that is, traffic is divided evenly among routers that
are at equivalent network positions (e.g., routers next to
gateways).

In Figure 8, the same traffic profile is presented with CD
metric. This scheme performs load balancing, which is shown
especially in gateways, indices 14, as the number of users per
gateway is equal in the long run. With CD metric, routers are
not starved in any location and the traffic is divided smoothly
among routers. This is another advantage of CD as a routing
metric, it inherently performs load balancing. The difference
to SAFARI, which also uses CD as a metric, is the router-
selection procedure and routing order, which disables full-
load balancing among routers.

In Figure 9, the traffic profile using distance metric model
is shown. It is obvious that this model fails to achieve load
balancing, which is shown in uneven gateway utilization and
heavy congestion in some routers. This illustrates the effect
of using blind distance-based routing and not taking into
account network condition.

These results show that SAFARI is superior to the two
other schemes with this topology, number of users, A, and
number of channels. Next, the performance of SAFARI is
shown in scenarios where several parameters are changed.
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TABLE 4: Average number of hops using the three simulation models.

Algorithm 1 gateway, 1 gateway, 4 gateways, 4 gateways,
1 channel 12 channels 1 channel 12 channels
SAFARI 2.08 2.25 1.43 1.43
CD metric 2.48 2.65 1.85 1.91
Distance metric 2.48 2.48 1.86 1.84
TaBLE 5: Percentage of starved users.
Algorithm 1 gateway, 1 gateway, 4 gateways, 4 gateways,
1 channel 12 channels 1 channel 12 channels
SAFARI 0.820 0.464 0.401 0.148
CD metric 0.910 0.554 0.631 0.290
Distance metric 0.913 0.628 0.640 0.337

Average number of users per router
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FIGURE 7: Traffic distribution among routers with SAFARI scheme.
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Figure 8: Traffic distribution among routers with CD metric
scheme.

4.2.2. Number of Hops and Starved Flows. First, the average
number of hops users need to make in order to reach a
gateway, and the percentage and positions of starved users
are observed in topologies presented in Figures 3 with 1 and
12 channels, A = 0, 20 users, and 1000 random drops. In
Table 4, the average number of hops users need to make
in order to reach a gateway are presented. It can be seen
that SAFARI has the lowest number of hops in all the four

Average number of users per router
(=}
=
v

0 4 8 12 16 20 24 28 32 36 40 44 4850

Router index

FiGure 9: Traffic distribution among routers with distance metric
scheme.

simulated cases, on the average approximately 0.5 hops less
than the other simulation cases. With one channel, the CD
metric and distance metric have the same number of hops,
while with 12 channels, the CD metric has more hops. This
stems from the fact that CD metric avoids congested areas,
which inevitably leads to more hops. In addition, the number
of hops is lower with 4-gateway case, since now there is a
gateway closer to more users than in 1-gateway case (see
Figures 3(a) and 3(b)).

In Table 5, the percentage of starved users (i.e., when
ri = Obps) are presented with the same parameters as in
Table 4. It is obvious that severe unfairness occurs especially
with low number of channels and gateways. Blocking 90%
of users in order to maximize the aggregate throughput is
very unfair and noneconomical to service providers as users
will not tolerate such blocking percentages. The SAFARI has
the lowest percentage in all the cases, even though it only
guarantees reasonable performance with 4 gateways and 12
channels with 14.8 % blocking rate. CD metric is better than
distance metric and they both have a poor performance in all
the four cases. The results in Table 5 points out why A = 0
is not a good choice even though it maximizes the aggregate
throughput.
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TABLE 6: Average distance in meters to gateway of starved users.

Algorithm 1 gateway, 1 gateway, 4 gateways, 4 gateways,
1 channel 12 channels 1 channel 12 channels
SAFARI 307 307 199 205
CD metric 321 327 237 236
Distance metric 322 318 240 246
7

Throughput (Mbps)
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FiGure 10: Throughput versus number of users with 1 channel and
A=1
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Figure 11: Standard deviation versus number of users with 1
channeland A = 1.

In Table 6, the average distance to nearest gateway of
starved users are presented. One should know that the maxi-
mum distance to a gateway is 400+/2 ~ 566 m since users are
allowed to be dropped 100 m outside the routers. It is obvious
that the starvation distance does not depend on the number
of channels rather it depends on the availability of gateways
nearby. SAFARI has the lowest starvation distance value in
all the cases, which means that users that are far away are

not that easily starved. CD metric and distance metric have
starvation distances of same magnitude.

4.2.3. Effect of Number of Channels. Next, the number of
channels is limited to one in order to see how the three
considered models perform in a single-channel environment.
Naturally, there is no need for a CA in this case and all links
that are within each other’s interference range interfere with
each other.

Figure 10 shows how throughput behaves as a function
of number of users in a network defined by Figure 3(b), with
one channel and A = 1. It can be seen that when there is
only a few users in the network, all of the users can transmit
at their peak rate. After 2-3 users, the network becomes
crowded and all the users rates need to be constrained, which
results in a steady decrease in the overall throughput. As
the number of users grow, the throughput starts to saturate.
SAFARI achieves the best performance when the number of
users is greater than two, and CD metric is slightly better than
distance metric.

In Figure 11, the standard deviation (see (10)) of the
three models is plotted in the same case as in Figure 10.
In these simulations, the standard deviation measures the
variation in the aggregate throughput between each random
drop of users. It is apparent that all the three models have a
large standard deviation when compared to the correspond-
ing throughput. This reflects the fact that user positions
have a significant effect on the throughput, thus taking
into account the user positions can lead to performance
gain. The standard deviation of CD mietric and distance
metric are almost identical conforming the superiority of
CD to distance as a path metric. SAFARI has the highest
standard deviation, which can be explained by considering
the following two cases.

(1) Users are positioned so that it can be exploited, for
example, near gateways or far away from each other,
thus using SAFARI leads to high throughput.

(2) Users are poorly positioned, for example, forming
clusters, and taking into account their positions, does
not lead to a significant performance gain.

Figure 12 plots throughput as a function of the fairness
index (1) with 1 channel, 20 users, and in the topology
shown in Figure 3(b). This simulation result points out
the tradeoff between throughput and user fairness. When
A = 0, some users are allowed to completely starve and
other users, who are usually near gateways, are given the
whole bandwidth. This leads to high throughput but is very
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FiGure 12: Throughput versus farness index with 1 channel and 20
users.

unfair and undesirable. When the fairness index increases,
the throughput decreases, which stems from the fact that
now user rates are restricted to or near the smallest user rate.
In addition, in this simulation scenario, SAFARI achieves
the highest throughput, it can provide consistently twice as
much throughputs than the other two models, which achieve
throughput of same magnitude. It should be pointed out
that since throughput saturates quickly as fairness index
increases, even a relatively low fairness criterion is able to
lower the overall throughput; but as pointed out earlier, cases
with low A are unfair and most of the attention should be
focused near A = 1.

Standard deviation, in the same simulation case as in
Figure 12, is presented in Figure 13. As expected, the highest
standard deviation occurs with A = 0, since with this fairness
index value, the aggregate throughput is also highest, and CD
metric and distance metric cases have a very similar standard
deviation curves. SAFARI has again the highest standard
deviation which stems from the above enumerated reasons.

Figure 14 plots the average BCD with respect to the
number of users with 1 channel, A = 1, and in a topology
illustrated in Figure 3(b). Now, rate allocation is not used
since user rates are fixed beforehand. Using (5), it is obvious
that the average BCD should be as low as possible in order to
have maximum number of users in a network. Considering
this fact, the SAFARI is once again the best one and CD
metric the second best. SAFARI’s dominance starts show with
4 users, and CD metric starts to outperform distance metric
after ten users. Average BCD versus fairness index is not
plotted here since with fixed equal user rates (i.e., A = 1),
the BCD versus fairness index plot would be meaningless.

In the following, the results presented in Figures 10-14
are referred to as baseline simulation set. Next, the number of
channels is increased to 12 and the corresponding results as
in the baseline simulation set are presented in Figures 15-19.
Once again, SAFARI achieves the best performance measured
in throughput and average BCD. Now, the performance gain
compared to distance metric is almost 100% and compared
to CD metric it is approximately 40% (see Figures 15-16).
One should notice that with increasing number of channels,
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F1GURE 13: Standard deviation versus farness index with 1 channel
and 20 users.
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FiGure 14: BCD versus number of users with 1 channel and A = 1.

CD metric starts to outperform distance metric. This stems
from the fact that with many channels, CD metric can
choose noninterfering paths for different flows, which leads
to smaller CD loads on links, thus throughput increases.

It can bee seen by comparing Figures 15-16 to Figures
10, 12, that using 12 channels instead of one results in
500% throughput increase when A = 1. This shows the
benefit of multiradio concept (i.e., with increasing cost
comes increased performance). One should notice that even
though the number of orthogonal channels is increased from
one to 12, the throughput is not increased with the same
ratio. This stems from the fact that 12 channels does not
result in empty I(e), that is, some links still interfere with
each other which leads to strict capacity constraints and
lower throughput enhancement.

Figures 17 and 18 point out that the higher throughputs
of SAFARI and CD metric, in Figures 15 and 16, compared to
distance metric come with the cost of increased ¢. One might
notice that the standard deviations of SAFARI and CD metric
fluctuate somewhat, while distance metric results in smooth
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curves. The fluctuation illustrates the significant effect on
user positions within the network, even averaging over 750
random drop of users (Table 2) it cannot completely average
the achieved throughput.

Figure 19 shows that SAFARI has the lowest average BCD,
and CD metric increases gap to distance metric. This result
reassures the benefit of CD as a routing metric compared to
simple distance-based metric. Comparing Figures 14 and 19,
it is clear that increasing the number of channels from one to
12 decreases the average BCD to one third with SAFARI and
CD metric. Distance metric case does not decrease its average
BCD as much as the others.

5. Conclusions and Summary

The simulation results show that the proposed routing algo-
rithm SAFARI outperforms CD and distance-based routing
algorithms in terms of the increased network throughput
and the number of admitted users. The performance gain
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Figure 17: Standard deviation versus number of users with 12
channelsand A = 1.
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Ficure 18: Standard deviation versus fairness index with 12
channels and 20 users.

comes mainly from the fact that users positions are taken
into account instead of neglecting them, as in the CD and
distance-based routing. The information of user position is
exploited in the CA and in the selection of the best router to
each user to attach to. The second factor that contributes to
the performance gain is the routing order. By first routing the
users in low CD regions (i.e., usually users far away from the
gateways), shorter paths are obtained and which leads to less
strict capacity constraint and fairness is easier to achieve. The
CD metric is shown to be a suitable metric for WMN and its
inherent capability to avoid congested areas in the network
is a very useful quality. In addition, SAFARD’s LP-based rate
allocation leads to user rates that can be scheduled.

The performance gain comes with the cost of increased
complexity, transmit power, and statistical variation of the
achieved throughput. The increase in complexity can be
remarkable when compared to a simple hop count-based
routing with fixed rates. Factors effecting the complexity are
the router selection procedure, LP-based rate allocation, and
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the recursive calling of FW’s algorithm and CD estimate
update in the final routing phase. The increased complexity
and the need for more transmit power can be too much for
some systems or users. Nevertheless, SAFARI can be solved
in polynomial time. If the increased complexity of SAFARI is
too much for a system, CD metric-based routing can be used
with reasonable performance. An estimate of the CD of each
link can be obtained by a centralized entity or by spectrum
sensing at each node.

The scientific contribution of this work is the developed
SAFARI algorithm. The novelty of SAFARI comes from the
usage of the information of user positions in CA, router
selection, and routing. Another new feature is the routing
order selection that is based on the network congestion
so that users in low-congestion areas are routed first. This
routing order selection leads to higher throughput, mainly
since users in low-congested areas are usually at the edge of a
network and thus routing them first leads to shorter routing
paths on the average.

Since our rate allocation is based on the one proposed in
[8], the assigned rates can be feasibly scheduled. On a more
widespread scope for future research, the overall feasibility
and practicality of SAFARI needs to be investigated in more
detail.
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1. Introduction

The deployment of multiple transmit (Tx) antennas at
the base station (BS) has emerged as an effective way for
improving the overall throughput in a wireless commu-
nication system. This is because multiuser multiple-input
multiple-output (MIMO) downlink systems offer multiple
channel directions to send independent information streams
to multiple users simultaneously within the same resource
block, capitalizing the so-called spatial multiplexing gain [1].
However, resource allocation in multiuser MIMO systems
is not a trivial task because users should be selected taking
into account not only their spatial compatibility, but also
their individual channel strengths [2]. The construction of
optimal schedulers in terms of throughput makes imperative
the investigation of the sum-rate upper bound that can
be achieved in this situation. However, such a myopic
approach is not enough for real-life wireless applications

if the scheduler does not share common channel resources
fairly among all the participating users as well. Based on
this, intensive research has been carried out in the past few
years to study the interaction between these two conflicting
goals and design fair channel-aware scheduling rules for
delay-constrained data connections. In this context, this
work provides an analytical framework for quantifying the
throughput gain of different multiuser scheduling strategies
in MIMO downlink channel with different types of partial
channel state information (CSI) in the transmitter. The use
of a well-known fairness performance metric, Jain’s fairness

index [3], is also suggested as a simple way to evaluate
the short-term fairness that is traded off at the expense of
additional throughput gain.

Recent theoretical results show that the optimal
transmission scheme in an MIMO downlink channel is dirty

paper coding (DPC) [4], but it faces serious implementation



2 EURASIP Journal on Wireless Communications and Networking

issues in practical systems due to its high complexity,
especially when the number of participating users is large.
Linear beamforming (LBF) is a suboptimal strategy in
which each user stream is multiplied independently by a
beamforming weighting vector for transmission through
multiple antennas. Despite its reduced complexity, LBF
achieves a large portion of DPC capacity and exhibits
the best tradeoff between complexity and performance
[5]. In particular, a simpler strategy based on zero-forcing
beamforming (ZFBF) has been shown to be optimal in terms
of sum capacity in the limit of a large number of users [6].
All these capacity results rely on the assumption that perfect
CSI is available at the transmitter. However, this condition
is hard to satisfy in practical systems, particularly when
frequency-division duplex (FDD) is implemented because in
practice mobiles report their channel estimates to the BS via
a rate-constrained reverse channel.

One of the simplest approaches to reduce feedback
overhead involves each user quantizing his instantaneous
vector channel according to a finite collection of vectors
(beamformer codebook) that is maintained at both extremes
of the link [7]. After selecting the optimal quantization
vector, receiver feeds back the corresponding codeword index
through a B-bit (per user) reverse channel at the beginning of
each transmission block. This feedback is used to capture the
channel direction information (CDI), and was first considered
for point-to-point MIMO channels in [8, 9]. System sum-
rate capacity with only CDI is bounded as the number of
users increases because channel quality information (CQI)
is not available in transmission to exploit multiuser diver-
sity and obtain the double-logarithmic growth in system
throughput with the number of users [10]. Based on this,
both CDI and CQI feedbacks are necessary if we want to
achieve both multiplexing and multiuser diversity gains at
the same time. As expected, we later show that CQI should
be the channel magnitude in low Tx power regime, while
it should be proportional to the signal-to-interference power
ratio (SIR) when Tx power is high.

Limited feedback techniques have already been consid-
ered in 3G cellular standards, where two antenna schemes
have been emphasized so far due to implementation con-
straints. In 3G Partnership Project (3GPP), closed-loop (CL)
transmit-diversity (TD) techniques come in two classes:
quantized phase information (mode 1) and direct channel
quantization (mode 2) [11]. The quantized phase algorithm
uses a fixed number of bits to quantize phase angles to
perform equal gain beamforming at the transmitter. The
direct channel quantization allocates a fixed number of bits
for the gain and phase of each channel entry separately,
as opposed to more sophisticated vector quantization tech-
niques that quantize gain and phase jointly. Our motivation
is to study the performance when combining channel-
aware scheduling rules with ZFBF prefiltering in case of
practical (commercial) beamformer codebook designs. Note
that this principle is equivalent to virtual MIMO concept for
the uplink of a time-division multiple-access (TDMA)-based
cellular system, where many users with only one Tx antenna
transmit independently to the BS on the same resource block.
Our analysis reveals that in the presence of 3GPP physical

layer signaling, the additional multiuser diversity gain that
is obtained at the cost of relegating fairness considerations
over short time scales is quite important. However, it was
also observed that the implementation of simpler scheduling
procedures, such as the one presented in [12], offers a
good balance between implementation complexity, short-
term fairness, and system sum-rate performance. Although
we concentrate on the two CL techniques in the FDD mode
of the wideband code division multiple access (W-CDMA)
downlink, a similar procedure can be used to extend the
analysis to other FDD MIMO systems with limited feedback.

The rest of the paper is organized as follows: Section 2
introduces the system model, presents the feedback model
for CDI and CQI, and describes the scheduling strategies
and spatial prefiltering technique that will be analyzed.
Section 3 studies the statistics of desired signal energy and
mutual interference, proposes a probability distribution
approximation for them, and derives an accurate closed-
form expression for the achievable rate per user when BS
simultaneously transmits to a pair of semiorthogonal users
without exploiting multiuser diversity. Section 4 extends the
analysis when channel norm CQI or SIR CQI is available in
transmission to perform user selection. Section 5 introduces
the criterion that is used to carry out the fairness study of
the different schemes over short-time scales. Section 6 ana-
lyzes the performance of the different scheduling strategies,
quantifying the different tradeoffs between throughput and
fairness that they provide. Finally, conclusions are drawn in
Section 7.

2. System Model

The system consists of a single BS with M; = 2 Tx antennas
and K active user equipments (UEs) with single-element
antennas. In case of flat fading and rich scattering, the
channel gain from a Tx antenna ¢ to a UE k is described by a
zero-mean circularly symmetric complex Gaussian random
variable (RV) hy,, for t = 1,...,M; and k = 1,...,K.
We assume that all UEs are homogeneous and experience
independent fading, and that they have a low-rate, reliable,
and delay-free feedback channel to the BS.

A block fading channel model is employed, that is,
channels remain constant during each block of transmitted
symbols, and channels between temporally separate trans-
mission blocks are independent. Transmitted codewords
of fixed rate span multiple independent fading blocks;
therefore, when the number of blocks is large, the system is
able to achieve nonzero ergodic capacity. Note that instead of
fixed rate codes, high-speed downlink packet access (HSDPA)
[13] exploits variable rate coding, where the BS selects
modulation and coding scheme according to CQI reports.
However, it has been shown in [14] that both fixed rate
and variable rate coding strategies achieve the same capacity
when channel variation satisfies a compatibility assumption
meaning that the input distribution that maximizes mutual
information is the same regardless of the channel state. We
note that block fading channels with constant Tx power
satisfy this compatibility assumption.
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In our system model, the signal received by a user k is
n=hx+n, k=1,...,K, (1)

where x € CM*1 is the transmitted vector signal from the BS
antennas containing information symbols of selected users,
h; € C*M: is the channel gain vector, and ny is zero-mean
complex additive white Gaussian noise with power Nj. In
order to facilitate the analysis, the channel and noise entries
are normalized to have unit variance. The average power
constraint of the input signal implies that E{x'x} < P,
where P is the total Tx energy per channel use, (-)' denotes
Hermitian transpose, and E{-} denotes expectation. As with
HSDPA, we do not consider the possibility of employing fast
power control mechanisms at the BS; thus, P remains fixed.
Since the noise has unitary variance, P takes on the meaning
of total Tx signal-to-noise power ratio (SNR).

As the number of participating users grows, the introduc-
tion of user selection mechanisms enables the BS to choose
up to M; out of K mobiles to use the channel. In this context,
4 is the set that contains the indices of selected UEs at
any given time. Transmit vector x is related to information
symbols {s; : i € 4} via linear beamforming; that is, x =
>ics Wisi, where Tx weights {w; : i € 4} are appropriately
selected according to BS spatial prefiltering technique and
quantized versions of channel states {f),- 1 i € 4} available
in transmission. Based on this, rewriting (1) in a more
convenient way, it is possible to observe that received signal

= (hwose + > (hew)s + me, ked (2)
' les, ik ey
dy: Desired Signal Noise

qk: Mutual Interference

is actually composed by three different parts. Active user
set 4 is chosen according to the implemented scheduling
policy and will ideally try to provide a reasonable tradeoff
between throughput and fairness according to quality-of-
service requirements of the supported application.

2.1. Feedback Model for Channel Direction Information and
Channel Quality Information. The feedback scheme assumes
that each UE has perfect CSI in reception, and each of them
quantizes the normalized channel vector lle = hy/||lhg]l to a
unit norm M;-dimensional vector ﬁk, which is selected from
a common quantization codebook C = {cj,...,cs}, where
B refers to the number of reported CDI bits per mobile user.
Each UE quantizes its channel vector to the codeword that
forms the minimum angle to it, or equivalently

hy = argmaé( coszé(hk,cl) = argmax|hkc | (3)

Note that only the index i needs to be reported because
quantization codebook € is known to both transmitter and
mobile users a priori.

Narula et al. noticed in [7] that CL beamforming is
invariant to the channel being multiplied by /¥ for any phase
angle 9. Therefore, it can be assumed that the first coefficient

ﬁk,l of channel vector ﬂk is real, and without loss of

generality, CDI feedback solution can be fully characterized
by (M; — 1) complex coefficients. More precisely, when
focusing on 2 Tx antennas, CDI feedback is composed
by a smgle complex coefficient hkz = Qe J“’k where oy
and ¢ are quantized magnitude and phase of the weight
applied in the second Tx antenna. Specifically, in W-CDMA
mode 1 CL TD solution, only phase information of the
feedback weight is quantized with 2 bits (i.e., the magnitude
remains constant), while in mode 2 both magnitude and
phase are independently quantized with 1bit and 3 bits,
respectively [11]. In both cases, uniform quantization is
applied for phase information. In mode 2, the stronger
channel receives 6 dB more power than the weaker one.
Even though CL TD mode 2 was later removed from the
specification with the motivation of simplifying the 3GPP
standard, we also consider this feedback mode in order to
quantify performance gain when the amount of reported
CDI grows.

In addition to the CDI, each user feeds back a CQI that is
used at BS for scheduling purposes. In this work, we consider
two different definitions for CQI:

Q(hy) = [hy[’,

sy E{|d]’

A = el @
| hewg |

= .2
Sicsizk | ewr|*

that are proportional to the selected users channel norm and
SIR, respectively. Channel norm CQI is suitable for noise-
limited communication systems, such as those that employ
TDMA schemes or spatial multiplexing strategies with
imperfect CSI at the transmitter in low-SNR regions. Note
that this is the CQI definition that W-CDMA specification
contains. On the other hand, SIR CQI does a better job in the
presence of interference-limited systems, such as those that
implement spatial multiplexing policies with imperfect CSI
at the transmitter in high Tx power regimes. We assume that
the CQI is reported to the BS without quantization; however,
previous works have already observed that the number of
bits for CQI quantization can be kept relatively low with an
appropriate CQI feedback design [15, 16].

2.2. Scheduling Strategies. Seeking a reasonable balance
between throughput and fairness, a scheduler achieving
proportional fairness (PF) criterion was first proposed in
[17]. This PF scheduler selects at each time slot the user
with the highest transmission rate relative to its current
average throughput. In the classical version, the average rate
is tracked by an exponential window with time constant
t.. The proper selection of parameter f. allows to control
the maximum starvation period (i.e., the maximum time
between two successive service offerings) for the packet
scheduling scheme. The combination of PF scheduler along
with ZFBF precoding has been proposed in [6] as a natural
alternative to provide an equal share of common resources
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among users in a space-division multiple-access (SDMA)
system with multiuser diversity. Even though important
results on tradeoffs between throughput and fairness have
been reported, no closed-form formula for sum-rate per-
formance has been provided since PF algorithm is hard to
analyze. Keeping this in mind, we will study the behavior
of simpler schemes that will allow us to derive closed-
form expressions for the performance of ZFBF-PF when
t. is tuned to maximize system throughput or fairness,
respectively.

Optimal user set solution in terms of throughput
demands an exhaustive search over all possible groups
with up to M; out of K members at a time, taking into
account their spatial compatibility and CQI. In order to
avoid this search in the presence of many users, suboptimal
semiorthogonal user selection (SUS) procedure was used
instead as an accurate approximation for ZFBF-PF upper
bound, see [6, 10]. On the other hand, we use pure orthogonal
round-robin (ORR) scheme proposed in [12] as a simple
lower bound for ZFBF-PF when CSI is not taken into account
to perform scheduling. We note that the idea behind pure
ORR scheme is simple. Select both, primary and secondary
users in round-robin (RR) taking into account their spatial
compatibility. Since primary user is selected according to
its waiting time at the BS, all active users will have an
explicit guarantee to be scheduled at least one time in a
round.

2.3. Zero-Forcing Beamforming Scheme. Let H(8) =

[ﬁ,{(l), s ﬁ,{(m) ] " be the concatenated unit norm quantized
vectors of selected users in set 8 = {m(1),...,7(|8])}, where
()" denotes vector transpose. The ZFBF matrix is given by
the pseudoinverse of the channel as

W($) =B =B HSOAS'],  ©)
where Tx weight w,(;; € CM*1, obtained by normalizing the
ith column of W, represents Tx weight for user 7z(i). In ZFBF,
Tx weights satisfy orthogonality criterion in transmission;
that is, ﬁjwi = 0 for i,j € 48, j#i. Even though ZFBF
is not the optimal choice among all possible LBF schemes,
we focus on it because its analytical simplicity enables to
obtain closed-form expressions for achievable sum-rate that
are asymptotically optimal as the Tx power grows. Note that
when the number of users K is large and the codebook
contains orthogonal codewords (such as W-CDMA CL
modes), W($) = H($)".

3. Achievable Rate per Beam without
Exploiting Multiuser Diversity

This section derives a closed-form expression for the achiev-
able rate per user (beam) when BS simultaneously transmits
to a pair of spatial-compatible UEs (i.e., semiorthogonal
in terms of their quantized CDI) without considering CQI
reports to perform scheduling. The derived expression is
used in Section 6 to quantify the actual system throughput
of pure ORR and hybrid ORR proposals as well.

3.1. Probability Distributions of Desired Signal and Mutual
Interference. Following the model (2) we construct two RVs,
2 2

Xi = |hewi |7, Yi = |hews|”. (6)

Here, the first RV gives the desired signal energy while the

second RV represents the contribution of mutual interfer-
ence due to simultaneous transmission. In these equations,

Wi = h}: is the Tx weight vector that maximizes received

energy for user k (i.e., the best Tx weight), while w; = lAllT is
the Tx weight vector that minimizes received energy of the
same user (i.e., worst Tx weight). In the coming sections,
we deduce usable formulae for achievable rates in different
cases based on modeling the distributions of X and Y,
denoted by f.(x) and f,(y), by chi-square (y*) distribution
approximations. To justify this claim, we use Nakagami’s
distribution [18]

_ L (FN e
f(”‘ﬁ(g) yrle @)

as an accurate approximation to model the signal energy
behavior of our RVs, where I'(-) denotes the Gamma
function and

92
T E{(y-9))

represent the so-called SNR gain and fading figure, respec-
tively. Note that the SNR gain provides information on the
coherent combining gain, whereas the fading figure indicates
the degree of signal variation. If ¥ € N, then f(y) is
the normalized y?-distribution with r = 2% degrees of
freedom. If we select Tx weights randomly, then there is
neither coherent combining power gain (i.e., § = 1), nor
Tx diversity gain (i.e., # = 1). On the other hand, in the
presence of unquantized Tx weights, full Tx beamforming
gain is achieved (i.e., § = 2and ¥ = 2).

According to the analysis presented in Appendix A.2, the
first-order corrected version when approximating f,(x) by an
x*-distribution with 4 degrees of freedom is given by

g = By}, F (8)

2
ful) = (gi) xe~ /395 (b, + byx + by),
L (EXE) ~ 2(1—bo) _ 2(1-by)
e T
9)

Similarly, Appendix A.1 derives the first-order corrected
version when f,(y) is approximated by an exponential
distribution (i.e., y2-distribution with 2 degrees of freedom).
In this case,

£,y ~ (;)e%l/%)y(awz rary +a),
Y

_ BV} _2(1 - ao) ~ (1-ay)

ap = (29%), a = 9)/ , a2 = — (29%) .

(10)
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3.2. Probability Distribution Approximations with Determin-
istic Codebook Design. Let us assume that CDI codebook is
selected using a deterministic design with fixed number of
bits to quantize the gain and phase portions of each channel
independently, see Section 2.1. Then, each weight vector
admits an orthogonal counterpart. Hence, for any weight wy,
there exists a weight w; such that w,;r w; = 0. Note that while
beams are orthogonal in transmission, the orthogonality is
lost in the receiver because Tx weights are selected based

on quantized versions of actual channel direction hy. After
working out (6), we arrive at

Xie = [wig]* [ hia |7+ [war | ez |

+ 2| wig| [wak | [ | [ Bz | cosor,
2 2 2 2 (11)
Vi = [wo| " Thit | "+ [wik ]| k2 |

=2 wik| [wak| | e | | ka | cos grs

where @ = Z(hk1) — L(hio) + $k is the phase difference
between both channel gains after applying the corresponding
Tx weight vector. Let us denote by Z; the sum of Xj and Y.
Then, we find by (11) that

Zr =X+ Y = |hk,1|2+|hk,2|2 (12)

follows an y*-distribution with 4 degrees of freedom and
mean E{Z;} = 2.

The SNR gains and fading figures for both W-CDMA
CL TD modes are derived analytically in Appendix B, see
Table 1. According to these results, fading figures ¥, ~ 2
and ¥, =~ 1 in the both CL TD methods. This indicates
that the shapes of distributions f.(x) and f,(y) are close
to x*-distribution with r, = 4 and r, = 2 degrees of
freedom, respectively. ( A similar procedure can be used to
compute both SNR gains and fading figures when the BS is
equipped with more than two Tx antennas, with the only
difference that mutual interference would become the sum
of (M; — 1) i.i.d. RVs in this situation.) It has already been
observed in [12] that these approximations greatly simplify
the computation of closed-form expressions for achievable
sum-rate. However, in order to have a better distribution
fitting, we propose to use the first-order correction for
x%-distribution approximation, as detailed in Appendix A.
Coefficients a; and b; for both CL TD feedback modes
have been derived analytically based on the first two raw
moments of RVs X and Yi. These moments are computed
in Appendix B, and coefficients are presented in Table 2.

3.3. Achievable Rate for Spatial Multiplexing with CDI and
No CQI When BS applies SDMA to simultaneously serve a
pair of UEs that report orthogonal CDI codewords (no CQI),
the achievable rate per user when Tx power is evenly divided
between both users (i.e., P/2) is

B (1/2)PXy
Cr(P) = [E{log2<1+(1/2)PYk+No>} (13)

= log, (e)[E{log, (Zx + Np) } — E{log, (Vi + No)}],
(14)

TaBLE 1: SNR gains and fading figures in case of CL TD mode 1
and 2.

(a) SNR gains

Mode 1 Mode 2

1 .
g, 1+\E 1.3+1.6sm%
1 LT
%y I- > 0.7 — 1.6sin s

(b) Fading figures

Mode 1 Mode 2
Fe 1.9104 1.9919
Fy 0.7714 0.6816

TasLE 2: Coefficients for first-order correction y*-approximation
with CL TD mode 1 and 2.

(a) fi(x) approximation

Mode 1 Mode 2
bo 1.0469 1.0041
b, —0.0549 —0.0043
b, 0.0107 0.0007

(b) f,(y) approximation

Mode 1 Mode 2
ay 1.1481 1.2336
a, —1.0116 —5.3265
a, 0.8634 15.1827

where Ny = 2Ny/P. Based on the fact that Zj is y* distributed
with 4 degrees of freedom (4, = 2),

E{log, (Z + Nj)} = jo log,(z + Nj)ze " dz.  (15)

At this stage, we use the relation derived in Appendix C

J:loge(y + c)ﬁ(ﬁy)"e’ﬂy dy = n! [loge(c) + eﬁci Ei+1(ﬂc)] ,
i=0
(16)

where E, (z) represents the exponential integral function of
order n, see (5.1.4) of [19]. After combining (15) and (16),
we obtain

E{log, (Zi + Ng)} = log, (Ng) + e [Ei (Ng) + E2 (Np) .
(17)
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To compute the latter expectation in (14), we use approxima-
tion (10) and formula (16), that is,

E{log, (Y +Ng)}

h n( 1Y -
= Jo log, (y +Ng) (?)e W3Y (ayy* + ary + ao)dy
Y

(Zaﬁy + (Zlg»y + ‘10) [108 (No) + eND/%EI (;fj )]

7

/ N,
+ 2@g5+a§,) e P E, ( 90
y

)"’ (20295)31\]‘;/%53 <;]i)’
(18)

where coefficients a; and SNR gain §,,, depend on the number
of bits assigned to report CDI to the transmitter (see Tables 2
and 1). Replacing (17) and (18) in (14), final approximation
to estimate the achievable rate per beam with only CDI
feedback is obtained.

3.3.1. Low-SNR Regime. Assume that Tx power is small.
Then, after applying Taylor series expansion in (13), we find
that

Cr(P) = [E{Xk}

logz(e) P < Ny. (19)

Hence, achievable rate of an individual user decays linearly
with Tx power in a low-SNR regime.

3.3.2. High-SNR Regime. As expected, proposed SDMA
scheme admits an interference-limited behavior in high Tx
power regime since reported CDI is not perfect. A formula
for this upper bound is obtained from expression of Ci(P),
given by (14) combined with (17) and (18), as follows. First,
we write all exponential integral functions of order n > 1 in
terms of E;(z) using recursive relationship (5.1.14) of [19],
that is,

Lo

Eui(2) = 7[6
n

Z—zE,(2)], n=12,.... (20)

Then, we let P grow and apply approximation for E;(z) that
is valid for small z values, that is,

Ei(z) = —€p —log,(z) z—0. (21)
Here, €¢ = 0.5772... is Eulers’ constant. After these
preparations, we find that all terms containing logarithm of P
vanish, and we are able to compute the final limit when P —
co. It turns out that asymptotic formula admits expression in
terms of SNR gain and fading figure as

3, +1
Jim Ck(P)zlogz(e)[ 4; —loge(g,y)]. (22)

According to this formula, asymptotic upper bounds are
equal to 3.3211 and 5.1223 bps/Hz for CL TD modes 1 and 2,
respectively.

3.4. Achievable Rate for Single User Transmission with CDI
and No CQI. For comparison purposes, we also introduce a
single user approach (or TDMA scheme), where all Tx power
is assigned to a single user in RR fashion. In this situation,
achievable rate becomes

CTDMA(P) — E{10g2<1 + P)(k)}
Ny

= log, (e) [[E{loge (Xk + 1\;0)} — log, (I;O)}

(23)

Here, we could use first-order corrected distribution f,(x)
according to (9), but from Table 2 we find that by = 1 and
b1, b, =~ 0 for both CL TD feedback modes. Hence,

[E{loge (Xk + %) } ~ J log, (x + &> (gx)zxemg*)" dx
(24)

and we can apply relation (16) to derive the final closed-form
expression

2N 2N
TDMA (D) ~, (2No)/(P§) 0 0
C (P) = log,(e)e [E1<ng> +E2<ng)}
(25)

where SNR gain §, depends on the number of bits used for
CDI quantization, see Table 1.

3.4.1. Low-SNR Regime. Applying Taylor series expansion in
(23), we arrive to an approximation that resembles the one
presented in (19). Based on this, it is possible to conclude
that achievable rate admit linear dependence on Tx power
when SNR is low.

3.4.2. High-SNR Regime. Rewriting E,(-) in (25) using
recursive formula (20) and considering approximation (21),

we see that
o 2Ny
8e PG,

log2< P ) +log,(%x), P> Np.

C™PMA(py ~ log,(e) [1

Thus, achievable rate increases logarithmically with the Tx
power when SNR is high. As expected, the use of CL TD
provides an additional logarithmic SNR gain in this case.

4. Achievable Rate per Beam When
Exploiting Multiuser Diversity

When the number of active users is large, there exist with
high probability more than one user reporting any given
CDI codeword. In this situation, the best strategy in terms
of throughput is to select the UE with the best CQI among
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all users with identical CDI. In this section, we extend the
previous analysis to a scenario where the BS exploits users
CQI to reap multiuser diversity gain. Derived expressions are
used in Section 6 to quantify the actual system throughput of
ZFBE-SUS and hybrid ORR proposals as well.

4.1. Alternative RVs to Study the Effect of CQI Feedback.
According to the model introduced in Section 2.1, each UE
feeds back a quantized version of its CDI selected from a
common codebook. Thus, we construct the following two
RVs:

1

& ~ 2
X = Ihow | = g

Xk
h - ==,
[Bewi |” =7
1 Y @7)
N Ing 2 2 k
Y. = |thz| = 7||hk||2 |thz| = ka.

In our model both, channel direction lle and channel
magnitude |lhxl| are independent. Therefore, Tx weight
vector wy (and w;) does not depend on the channel strength.
Thus, it is possible to conclude that both X and Yy are
independent with respect to Zg. This property will be useful
when deriving performance behavior for the different SDMA
schedulers that will be analyzed.

4.2. Achievable Rate for Spatial Multiplexing with CDI and
Channel Norm CQI. In this part, we analyze the effect
of exploiting multiuser diversity when CQI reports are
proportional to the channel norm (i.e., Q(hy) = |lhi]|?> =
Zi). The procedure consists of selecting the user with the
largest channel norm among all the users that report a given
CDI codeword. The analysis that we apply here is similar
to the one already employed in Section 3.3. However, the
main difference is found in the modeling of the desired
signal and mutual interference, that become Z,X; and
Zn) 17;(, respectively, with Z,) = max;-, . ,Z;. Based on these
considerations, the achievable rate per beam when there are
n users reporting the same CDI codeword is

(1/2)PZ ) X ) } (28)

(1/2)PZy) ?k + Ny

= log, (e)[E{log, (Z() + N§)} — Eflog, (Z(n Vi + N§) 1,
(29)

C%\,If)’rm(P) = [E«{log2 (1 +

where Z(,) is the largest order statistic of n independent
and identically distributed (i.i.d.) y* RVs with 4 degrees of
freedom (4, = 2). Based on this, the probability distribution
function (PDF) of Z(,) becomes

fon®) = [y (@] = nlEe, D, (30

where F;, (2) is the corresponding highest cumulative distri-
bution function (CDF) given by

F,,(2) = Z (-1)F (") e (1 +2)k. (31)
k=0 k

At this stage, combining PDF expression (30) along with
relation (16), we are now able to compute

E{log, (Zoy +Ni)} = | log,(z+ Ng) £, (2)dz

n k
= Z(_l)kﬂ (:) ZLk,l(N(;)’
k=1

=1

, k-1 1
Lt (Ng) = [((k—;))! k’]

X {[ HZI Em(kN(;)ekNo} +log, (N(;)}.

m=1
(32)

We now compute the approximation for the distribution
of the resulting mutual interference Z,) Y. Firstly, based on
the fact that RVs Z; and Y} are independent, we have that

(2T} = 2120} - Lelz),

(33)
CE
"z )

E{Y;}

€123, %7) Wiz,

where the statistics of Yj are computed in Appendix B and
first two raw moments of RV Z,y can be derived analytically
based on the PDF information presented in (30) (see [20]):

T, e (M) (K l(l+1)!]
[E{Z(n)}—k_l[( 1) (k)l_zl(l) 2 >

N RV Ay l(Z+2)!]
[E{Z(n)}_kzl[( 1) (k)l_zl(l> kl+3 .

When dealing with numbers of users that can be handled in
realistic scenarios, it is possible to observe that ¥, 5 ~ 1.
However, in order to show that this fading figure does not
grow indefinitely with n, the following asymptotic upper
bound for F, 5 is derived:

E{Zw Vi}
E{ZL)Y(} — E2{Zn Yy}
2
2E{Y}} - 393

(35)

based on the fact that E>{Z,)}/Var{Z,)} — 0 as n grows.
We note that according to this formula, asymptotic upper
bounds for this fading figure are equal to 1.8838 and 1.5509
for CL TD modes 1 and 2, respectively.
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At this stage, we use (10) to approximate f;,5(u) in order
to compute

E{log, (Zum Y + N§) }

0

1
G2y
x [a%? +a\u + a" | du

(n) (n) (n)
~ [2a)" 9;,1); +a"Gz,5+ap" ]

X [loge(N(;) +eN/Smi By (NO )]
G2y

(36)

No/Sein Ny
+[2a)" ﬁw? + ai")gzm;]e " WEZ(% O )

2y

’

/ N N,

Zmy

where .5 = E{Zwn Y} and coefficients af") are derived
analytically based on the first two raw moments of RV Z,,) Y

according to

2E{Y}E{Z,)) - 695 {Zim}
3G4EHZ i } ’

—AE{YZE{Z)} + 12§ B {Z )}

(n)
a;’ = , (37)
! 39; E? {Z(n) }

w  LEIZIE(Z3)

a =
0 3 9»%/ E {Z(n)}
Replacing (32), (36), and (37) in (29), the final closed-form

approximation to estimate the achievable rate per beam with
CDI and channel norm CQI feedback is obtained.

a =

4.2.1. Low-SNR Regime. Applying Taylor series expansion in
(28) when the Tx power is low,

1P &
Chy™(P) = logz(e)EﬁO[E{Z(,,)}[E{Xk}
(38)
_ E{Zw}
E{Zi}
The asymptotic behavior of the largest order statistic of n

ii.d. ¥ RVs with 2M; degrees of freedom has been reported
in [15] to be

Cr(P) P < Nj.

. M1
[E{y(n)} = IOge(Tl) + IOge |:(M—1)':| + €y, (39)
where notation ¢, = d, denotes asymptotic equivalence,
defined as lim, . «(c,/d,) = 1. Based on this, multiuser
diversity gain in case of channel norm CQI and M; = 2 is
given by

Norm
C(ng ~ [E{Z(n)}
Cx E{Zx}

1
= log,(n) + 560 P < Nj. (40)

4.2.2. High-SNR Regime. A scheduler that relies on channel
norm CQI to perform user selection has always the same
asymptotic behavior, which does not depend on the number
of active users. This is because SIR feedback is not considered
for scheduling purposes; therefore, both the desired signal
and mutual interference tend to grow with the same propor-
tion as Tx power increases. So, we conclude that the upper
bound for any smart scheduling scheme in this situation is
identical to the one already obtained in Section 3.3.

4.3. Achievable Rate for Spatial Multiplexing with CDI and SIR
CQI. The effect of exploiting multiuser diversity when users
reports are proportional to the received SIR is analyzed in
this part. The procedure consists of scheduling the user with
the largest SIR CQI

. X Zr—-Yx Zk(l—?k) l—?k
hy) =—7 = = ~ = —) 41
Q(hy) Y, Y, AA A (41)

which reduces to select the user that minimize Yi. Based on
this, the achievable rate per beam when there are n users
reporting the same CDI codeword and SIR CQI is given by

(1/2)PZ[1 - 17(1)])}
(1/2)PZi Y1) + No

CoN(P) = [E{log2 <1 +

, 42

~ log,(e)[E{log, (Z + Ny)} 4
~ E{log, (Z Y0y + N) H,

where 17(1) = min;_;, , 17,». We now need to find out an

approximation for the distribution of the mutual interfer-
ence Zj 17(1). Thus, we first study the behavior of RV 17'(1 ).

According to [9, 21], the CDF Fj(y) for any well-
designed codebook satisfies Fy-(y) = Fy(y) for 0 < y < 1,
where

—-B/(M;-1),

2ByMi=17 0 < y< 2
Fy(y) = (43)
y = 2B

represents quantization error CDF when quantization cell
upper bound (QUB) approach is employed as a performance
upper bound for any CDI codebook design. Based on this, it
is possible to observe that the CDF of RV Ye=1- Illewkl2
in case of M; = 2 (and both CL TD feedback modes) will
be upper bounded (in all its range) by the CDF of a uniform
RV in [0,27®]. Since the kth-order statistic of n uniformly
distributed RVs in [0, 1] is Beta distributed according to

n!

A < | _ n—k
Juo W) = G i 7

O<uc=<l,
(44)

the following expressions for the first two-ordered raw
moments result:

k
E{Uw} =
, k(k +1) (43)
E{U}}

T+ )(n+2)
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Taking into account that RVs Z; and ?k are independent, it is
possible to lower bound the first two raw moments of mutual
interference Zx Y1) as

E{ZY)} = §-E{Y0)} 2<213> [ : }

(n+1)

~ 1 2
E{Z Y} §6(43) [(114-1)(114-2)}

where these approximations are asymptotically tight as n
grows. According to these results, we see that fading figure
Fi, = (n+2)/(2n + 1), which is still close to 1 for both CL
TD feedback modes when dealing with numbers of users that
can be handled in realistic scenarios.

Using first-order corrected version presented in (10) to
approximate f, (u) by an exponential distribution with

(46)

parameter §.5, = E{Z 17(1) }, it is possible to see that

E{log, (Z« Y + Ng) }

- J:loge(u+N6)(

1 )e(l/g,zy(l))u
G50

x [652 + &P u+ a" | du

o(n) < (n) < (n)
~ [2a2” G2y, A1 Gy, g ]

) [lf’ge (Ng) + €30 By ( > )]

2y

(47)

(a2, () Ni/§5 Ny
+ [2612 o T g’27(1>]e U y“)Ez(g ¥ )
ZY(1)

g2 Ni/ges No
+202 972')7“)@ }(1)E3( N ))
2ym
where coefficients dg”) are derived analytically based on the
first two raw moments of RV Z; Y(y):

A0 = (452) (n—1D(n+1)°

(n+2) ’
L _ g1y (n—D(n+1)
4’ = -2 nt2) (48)
o(n) _ é (I’l‘i‘l)
“0 7(2)(114—2)'

Replacing (17), (47), and (48) in (42), final closed-form
approximation to estimate the achievable rate per beam with
CDI and SIR CQI feedback is obtained.

4.3.1. Low-SNR Regime. Schedulers that rely on SIR CQI to
perform user selection do not provide any multiuser diversity
gain when Tx power is low. This is because they do not
consider channel norm information to carry out decisions.

4.3.2. High-SNR Regime. Because the reported SIR CQI is
not perfect, the achievable rate still has an interference-
limited behavior in this situation. However, the correspond-
ing asymptotic upper bound grows logarithmically with the
number of users. The closed-form expression for this upper
bound is obtained replacing SNR gain and fading figure
approximations in (22). After some manipulations, final
expression

n+3/2

m) +log,[28(n+1)] (49)

Jim CIN(P) = logy (o)
results, which reduces to B + log,(n) when the number of
participating users is large. Therefore, multiuser selection
policy based on SIR CQI provides a logarithmic increase in
limiting achievable rate [10]. This is in contrast to previous
findings, where system rate improvement due to multiuser
diversity effect was only by a factor of a double logarithm
with respect to the number of users.

5. Short-Term Fairness: Concepts and
Performance Metric

Fairness in wireless networks indicates how equally radio
resources are allocated among mobile users. Fairness should
always be evaluated within a window in time. Those schedul-
ing algorithms that obtain high fairness over a relatively
short-time window are denoted as short-term fair, while the
algorithms that obtain high fairness over an infinite-time
window are denoted as asymptotically fair. The provision of
short-term fairness characteristics for any multiuser diversity
scheme is important because networking protocols usually
have timers at different protocol layers that interact with
each other in an unpredictable manner. An expiration of
a timer is a bad event for an end-to-end connection. Such
an event is usually interpreted as an indicator of congestion
and loss of connectivity [22]. Thus, short-term fairness is
always desirable for any packet scheduling procedures that
reap multiuser diversity gain.

Several measures of fairness have been introduced in
literature. Perhaps the simplest indicator is the so-called
Jain’s fairness index (JFI), introduced in [3] and used in
recent papers such as [23] to characterize fairness behavior
over a finite horizon:

Ef {Re} _ Eiv {Re}
Ew{R?}  [E3, {Ri} + Var{R¢}’

F(W) = (50)

where Ry is an RV that describes the amount of resource
allocated to user k, Ew {Ri} is the expectation calculated
within a time window of length W (time slots), and Var { Ry }
is the corresponding variance.

Jain’s fairness index has several properties that makes
it a suitable fairness measure. For example, the index is
continuous and bounded between zero and unity. Moreover,
JFI does not depend on the amount of the shared resource
and on the number of participating users. The boundedness
of JFI aids intuitive understanding of the fairness index.
Even though an ideal fair distribution of common resources
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would result in an index of 1, values above 0.95 are typically
considered to indicate excellent fairness properties.

Resource allocation can be measured either in terms of
the number of time slots assigned to a given user (within a
window), or in terms of the throughput that was experienced
by the user in these allocated time slots. However, here we
only focus on the latter definition since achieving time-
slot fairness in the presence of time-varying channels does
not necessary imply a fair allocation of throughput in
the assigned time slots. Throughput fairness curves for
the different scheduling procedures introduced so far are
presented in Section 6.3 with the goal of quantifying the
short-term fairness performance that is sacrificed at the
expense of obtaining additional multiuser diversity gain in
our virtual MIMO system sum rate.

6. Performance Evaluation:
Throughput-Fairness Behavior in
Virtual MIMO

The actual virtual MIMO system sum rates for three different
scheduling procedures and two CQI definitions are studied
in this section based on intermediate results derived in
Sections 3 and 4. The schedulers select at each time a pair
of users that report orthogonal CDI codewords and differ
with respect to their usage of CQI in scheduling decisions.
Note that in those situations where scheduler fails to find
a set of semiorthogonal users, the BS may either schedule
transmission to a single user or resign the channel use
at that time instant. Even though the former approach is
most reasonable for a real-world system implementation,
in this work we focus on the latter since we want to
provide a representative characterization for TDMA and
SDMA schemes when they work independently, leaving aside
complex interactions between them that makes sum rate
performance difficult to analyze.

6.1. Virtual MIMO System Sum Rate with CDI and No CQI.
In this part, we consider the case of scheduling a pair of
semiorthogonal users when no CQI is available at BS to
perform user selection. We work on a simple case, known as
pure ORR scheduler [12], where both primary and secondary
users are selected in RR. Note that the performance in this
case is equivalent to the one observed in case of PF scheduler
when window size is tuned to optimize short-term fairness
(large throughput tracking window). As expected, achievable
sum rate is given by

CORR(P) = 2Ck(P), (51)

where closed-form approximation for Ci(P) was derived in
Section 3.3. Virtual MIMO system sum rate for pure ORR
scheme is analyzed in Section 6.3. However, we now focus
on analyzing the throughput behavior of an individual user
when its selection does not take into account CQI reports.
Figure 1 shows the achievable rate (per beam) for pure
ORR scheme when the CDI is represented by CL TD modes
1 and 2. The curves correspond to analytical approximation

: : : : 7. Mode 1-
-5 0 5 10 15 20 25
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FIGURE 1: Achievable rate per beam for two-antenna mode 1 and
2 in the presence of Rayleigh fading and constant Tx power. Solid
curves refer to TDMA-RR when total Tx power is normalized to
P/2. Dashed curves refer to achievable rate per beam for spatial
multiplexing with no CQI, and dash-dotted curves represent the
asymptotic upper bound behavior presented in (22). In all cases,
point values (“*”) were simulated to verify the analytical results.

(51) (dashed curves) along with its corresponding asymp-
totic upper bounds (dash-dotted lines). The achievable rate
for TDMA-RR is also included in these plots (solid lines). To
make a fair comparison, Tx power in case of TDMA-RR is
equal to the power per beam in case of pure ORR scheduling.
As expected, the achievable rate for both TDMA-RR and
pure ORR tends to be identical as Tx power decreases.

6.2. Virtual MIMO System Sum Rate with both CDI and CQI.
Simple hybrid ORR proposals, known as ORR-Norm and
ORR-SIR depending on the type of CQI that mobiles report,
were introduced in [12] as improved versions of pure ORR
scheme. These hybrid schedulers guarantee a certain degree
of fairness by selecting the primary user according to its
waiting time in transmission and exploit multiuser diversity
in the selection of the secondary semiorthogonal user. Thus,
achievable sum rate in this situation is now given by

Caat' (P, K)
= Cr(P)
K-1

+ > {[(K; 1) (273)"(1 - 2-3)’(’“} C&?I(P)}.
n=1

(52)

The first term in (52) represents the achievable rate for the

primary user selected in RR (Section 3.3), while the second
term approximates the achievable rate for the secondary user
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FIGURE 2: Achievable rate per beam for two-antenna mode 1 and 2
in the presence of Rayleigh fading and constant Tx power. Dashed
curves refer to achievable rate per beam for spatial multiplexing
with channel norm CQI and different number of users reporting
identical CDI (n = 1,2,4,8). Dash-dotted curves represent
the asymptotic upper bound behavior presented in (22). In all
cases, point values (“*”) were simulated to verify the analytical
results.
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FIGURE 3: Achievable rate per beam for two-antenna mode 1 and
2 in the presence of Rayleigh fading and constant Tx power. Solid
curves refer to TDMA-RR when total Tx power is normalized to
P/2. Dashed curves refer to achievable rate per beam for spatial
multiplexing with SIR CQI and different number of users reporting

identical CDI (n = 1,2,4,8). In all cases, point values (“*”) were
simulated to verify the analytical results.

10
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FIGURE 4: Virtual MIMO system sum-rate for two-antenna mode
1 (K = 16) and mode 2 (K = 64) in the presence of Rayleigh
fading, constant Tx power, and channel norm CQI. Solid curves
with stars (“x”) refer to TDMA-RR, while solid lines with triangles
(“v”) correspond to TDMA-BUS. Dashed curves with circles (“o”),
dashed curves with squares (“[J”) and dashed curves with diamonds
(“©”) refer to pure ORR (ZFBF-PF throughput lower bound),
ORR-Norm and ZFBF-SUS (ZFBF-PF throughput upper bound),
respectively. Dash-dotted curves represent the asymptotic upper
bound presented in (22). In all cases, point values (“*”) were
simulated to verify the analytical results.

selected according to the channel norm CQI (Section 4.2)
and SIR CQI (Section 4.3).

Throughput upper bound for ZFBE-PF scheme is
achieved when users instantaneous rates are not normalized
by their average throughput before performing selection
(small throughput tracking window). This is equivalent to
choosing the set of users that maximize sum rate at each
time slot without considering short-term fairness issues. It
has already been observed in Section 2.2 that SUS procedure
provides a simple way to obtain a set of semiorthogonal users
with large CQI. Based on this, achievable sum rate in this
situation can be represented by

Ceai(P,K)
< Cad(P)
K2l K-1 n K-n-1
+> {[( ; ) (27B)"(1-273) }C&?I(P)}.
n=1
(53)

The first term in (53) represents the achievable rate of
the user with the best CQI among all active users, while
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FIGURE 5: Virtual MIMO system sum-rate for two-antenna mode 1
(K = 16) and mode 2 (K = 64) in the presence of Rayleigh fading,
constant Tx power, and SIR CQI. Solid curves with stars (“x”) refer
to TDMA-RR, while solid lines with triangles (“V”) correspond to
TDMA-BUS. Dashed curves with circles (“o”), dashed curves with
squares (“[J”) and dashed curves with diamonds (“¢”) refer to pure
ORR (ZFBEF-PF throughput lower bound), ORR-SIR and ZFBF-
SUS (ZFBE-PF throughput upper bound), respectively. In all cases,
point values (“x”) were simulated to verify the analytical results.

the second term approximates the achievable rate of the
user with the largest CQI among all users that satisfy
orthogonality criterion (with respect to the first selected
user). Note that final closed-form expression in this case
is actually a tight upper bound because now independence
assumption between ordered statistics of individual users
rates in both terms is no longer valid. Virtual MIMO system
sum rates for both hybrid ORR and ZFBF-SUS (both CQI
definitions) are analyzed in Section 6.3. We now focus on the
achievable rate of an individual user when its selection takes
advantage of CQI reports.

Figures 2 and 3 show the achievable rate (per beam)
when users are selected based on channel norms CQI and
SIR CQ], respectively. These curves correspond to analytical
approximations (29) and (42) (dashed curves), along with
their simulated point values (“*”). Again, it is observed that
the proposed approximations follow simulated values well
for different numbers of users in both CL TD modes. As
expected, the use of SIR CQI instead of channel norm CQI
provides a better performance at high-SNR regimes.

6.3. Tradeoff Analysis of Throughput and Fairness in Virtual
MIMO Systems. We are now ready to analyze the interaction

Jain fairness index

Jain fairness index

0 50 100 150 200 250
Window size

(b)

F1GUrE 6: Virtual MIMO system throughput fairness index for two-
antenna mode 1 (K = 16) and mode 2 (K = 64) in the presence
of Rayleigh fading, constant Tx power (P = 5dB), and channel
norm CQI. Solid curves with stars (“*”) refer to TDMA-RR, while
solid lines with triangles (“V”) correspond to TDMA-BUS. Dashed

« »

curves with circles (“o”), dashed curves with squares (“0J”) and
dashed curves with diamonds (“¢”) refer to pure ORR (ZFBF-
PF fairness upper bound), ORR-Norm and ZFBF-SUS (ZFBF-PF
fairness lower bound), respectively.

between overall system throughput and short-term through-
put fairness that the different channel-aware scheduling
procedures introduced so far are able to provide. In this
context, Figures 4 and 5 present the actual virtual MIMO
system sum rate for pure ORR, hybrid ORR-CQ]I, and ZFBF-
SUS schemes when both channel norm CQI and SIR CQI are
exploited, respectively. These curves correspond to analytical
approximations (51), (52), and (53), along with their
simulated point values (“*”). In addition, performances of
TDMA-RR and TDMA-BUS (i.e., the TDMA scheme that
selects the user with the highest channel gain at each time)
are also included for the sake of comparison. To complement
these plots, Figures 6 and 7 show the short-term fairness
behavior for these schemes when using the fairness index
introduced in (50) as a performance measure for different
time-window horizons.

When analyzing these curves, it is straightforward to
observe that, as expected, those schemes that reap higher
multiuser diversity gain require a larger window size to
achieve a certain degree of throughput fairness. Even though
interesting tradeoffs between throughput and fairness can be
reported when comparing these figures, perhaps the most
important conclusion to highlight is that the simultaneous
transmission to a set of smartly selected users provides
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FiGgure 7: Virtual MIMO system throughput fairness index for two-antenna mode 1 (K = 16) and mode 2 (K = 64) in the presence of
Rayleigh fading, constant Tx power (P = 15dB), and SIR CQI. Solid curves with stars (“x”) refer to TDMA-RR, while solid lines with
triangles (“V”) correspond to TDMA-BUS. Dashed curves with circles (“o”), dashed curves with squares (“IJ”) and dashed curves with
diamonds (“©”) refer to pure ORR (ZFBF-PF fairness upper bound), ORR-SIR and ZFBF-SUS (ZFBEF-PF fairness lower bound), respectively.
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FIGURE 8: Required window size to achieve short-term throughput fairness with two-antenna mode 1 in the presence of Rayleigh fading,
constant Tx power, and both CQI definitions. Curves with circles (“o”), stars (“*”) and squares (“0J”) refer to pure ORR, TDMA-RR and
ORR-CQY], respectively. In all cases, dash-dotted curves represent a fairness index of 0.8, solid lines correspond to a fairness index of 0.9, and

dashed curves refer to a fairness index of 0.95.

a better performance both, in terms of throughput and
fairness, when compared to an analogous TDMA scheme.
For example, when comparing TDMA-RR and pure ORR
schemes, it is noticed that the latter provides as much
as 15% (35%) more throughput in case of CL TD mode
1 (mode 2) without affecting considerably the short-term
fairness degree that the former provides. Similar results

are obtained when comparing TDMA-BUS with ZFBF-SUS,
but in this situation some throughput gain is traded off
with an increase of the short-term fairness. It is impor-
tant to highlight that the amount of CDI feedback does
not impact considerably on the fairness of the schemes
introduced so far if the ratio between the total number of
users and the number of CDI codewords remains constant;
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however, it actually has a direct effect on the multiuser
diversity gain that these scheduling procedures provide ,
particularly when dealing with SIR CQI in high Tx power
region.

Finally, Figure 8 shows the window size that is required
to attain a certain level of short-term fairness as a function
of the number of users in case of CL TD mode 1 with

channel norm CQI (P = 5dB) and SIR CQI (P = 15dB),
respectively. In these figures, dash-dotted curves represent
a fairness index of 0.8, solid lines correspond to a fairness
index of 0.9, and dashed curves refer to a fairness index of

0.95. Only TDMA-RR, pure ORR, and ORR-CQI schemes

are included. This is because both ZFBF-SUS and TDMA-
BUS do not provide acceptable fairness levels within practical
window sizes. According to these curves, the time window
that is required to achieve a certain degree of fairness grows
linearly with the number of users. As expected, the slope
of the curves depends not only on the requested fairness
level, but also on the scheduling scheme. Note that both Tx
power and CQI definition have a weaker effect on fairness
performance. In all cases, pure ORR is the scheme with
the best behavior. Note that the gap between TDMA-RR
and ORR-CQI tends to grow as required level of fairness
increases; however, for fairness levels up to 0.9, performance
difference between these two schemes is almost negligible.
We highlight that similar behavior is observed in case of CL
TD mode 2.

7. Conclusions

In this paper, we investigated the tradeoff between maximiz-
ing system throughput and achieving throughput fairness
in virtual MIMO downlink systems with quantized chan-
nel direction information and different types of channel
quality information in the transmitter. We proposed a
new theoretical approach to derive closed-form approxima-
tions to quantify throughput performance when combining
different scheduling rules with zero-forcing beamforming.
The short-term fairness analysis of the different schemes
was performed using Jain’s fairness index as performance
metric. The advantages and disadvantages of the different
schemes were highlighted by visualizing our closed-form
expressions.

In our proposed theoretical model both desired signal
energy and mutual interference in reception are modeled
with first-order corrected versions of chi-square distribu-
tions, with characterization parameters obtained based on
the first two raw statistics of these signals. The derived
expressions were validated using existing 3GPP physical
layer signaling structures. Our analysis revealed that simple
scheduling procedures allow to reap a large fraction (in the
order of 80%) of the sum-rate performance that greedy
scheduling provides. This overall throughput performance
was obtained without affecting considerably the optimal
short-term fairness behavior that the end user would per-
ceive.

Appendices

A. Error Correction

When approximating a generic distribution f(y) (with
unknown closed-form formula) by a y?-distribution with r
degrees of freedom and mean #, the error

_ 1 r\” r/2-1 ,—[r/(2n)]

results. We shall express this error in terms of the raw
moments E{y"} and the generalized Laguerre polynomials

u et ok
K o

i (k + oc) (—u)
. Hi M
o \k-i) &
These polynomials are orthogonal over the entire real line
with respect to the weighting function u%e™%; therefore,

(k+a)!
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u

(A.2)

(A.3)

where Jy; is the Kronecker delta function. The orthogonality
property stated above is equivalent to saying that if y is a y?-
distribution with r degrees of freedom and mean #, then

(k+ a)!

E{L® By L (By)} = {  olk!
0, k#1

(A4)

with « = /2 — 1 and 8 = r/(2n). Hence, the error can be
written as a series

p

e(y) = o

(By)e Py [Z cWL (/Sy)]. (A.5)

k=2

Series starts with k = 2 because moments of &(y) of order
up to 1 are null. In following sections, we show how can

coefficients C,(C“) be expressed in terms of the (known) raw
moments of y.

A.1. First-Order Correction for Exponential PDF Approxi-
mation. Let us first concentrate on the first-order error
corrected version for f(y) when fading figure ¥ = 1. This
approximation is obtained retaining the first nonzero term
of the sum in (A.5), that is,

B

LBy e P+ GULY (By))

f(y) ~ (A.6)
Since in this case the exponential distribution (i.e., Xz_
distribution with r = 2 degrees of freedom) is the most
suitable approximation, we have that « = 0 and f = 1/7.
It follows from (A.2) that

LY (By) = %[(ﬁy)2 —4(By) +2]. (A7)
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Therefore, we only need to determine C. In order to do so,
we have that

[ 10 6reay

= J LO(By)pe S [COLE (By))dy
k

=2

i (A.8)
= [Ty @ype s ay

+ 30 1 @nL Bype dy,
k=3

Orthogonality property introduced in (A.4) states that
integral in the first term equals 1, while all integrals in the
sum are null. Based on these considerations, it is possible to
see that

[ 10 Bpetay =t (A9)

Following an alternative analysis, that is, replacing L(zo) (By)
by expression (A.7), we also have that

[, 1 @petay = 3 [ @prenay-2f Bpedy
0 0 0

+ J:s(y)dy.
(A.10)

The last two integrals vanish because the moments of e(y) of
order up to 1 are null. Therefore,

J:Lio) (By)e(y)dy

- %U:Ufy)zf (y)dy ~ J:wy)zﬁe*ﬂy ar| am

Combining (A.9) and (A.11), C§°) = (1/2)B*E{y*} —1 results.
Replacing it in (A.6), final first-order corrected expression
when fitting f(y) as an exponential RV with parameter 7! =
E{y} results as follows:

f(y) = BePr(ary* + ary + ao),

@ =B =3B ai=—FEO} 2B, ao=3PE(.
(A.12)

A.2. First-Order Correction for x?-Distribution with Four
Degrees of Freedom PDF Approximation. In this section, we
work on the first-order error corrected version for f(y)
when fading figure ¥ = 2. Again, this approximation is
obtained retaining the first nonzero term of the sum in (A.5)
considering « = 1 and f = 2/5. Note that now the most

suitable y?-distribution to approximate f(y) should have
r = 4 degrees of freedom. Therefore, approximation

f(y) = Brye Pr[1+ CVLY (By)] (A.13)

results. One more time, it is possible to derive from (A.2) that

1By = S1Bp -6y +6l. (A14)

Keeping in mind that we need to obtain C;l), it can be
observed that

J:L(z”(ﬁy)e(y)dy

- J : Lgl)(ﬁwﬁzw‘ﬁyi [CLY (By))dy
2 (A.15)

= [T ety

+ > Cz(cl)J . LV (By)LY (By)BPye P dy.
k=3

According to the orthogonality property introduced in (A.4),
the integral in the first term is now equal to 3, while all the
other integrals inside the sum remain null. Based on this, we
find that

J:L(Zl)(ﬁy)s(y)dy — 3¢y, (A.16)

As an alternative approach, we now replace Lgl)(ﬂy) by
expression (A.14). Therefore,

[ 1 Bnedy =3[ Bpiedy - 3] Bpedy
0 0 0

N 3J:£(y)dy.
(A.17)

The last two integrals vanish because the moments of ¢(y) of
order up to 1 are null. Therefore,

[, 1 Bpetnay

= %Um(ﬂy)zf (y)dy - J:(ﬁy)zﬁzye”gy dY] (A.18)

Combining (A.16) and (A.18), we are able to arrive at Cgl) =
(1/6)B*E{y*} — 1. Replacing this value in (A.13) allows us
to conclude that the first-order error corrected version when
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approximating f(y) with a y?-distribution with 4 degrees of
freedom, and parameter f~! = (1/2)E{y} is equal to

f(y) = BPye P (byy? + by + by),
_ i 4 21 _ 1 2
b2 - 1218 [E{V } 2[; >
1 (A.19)
by = — B E{y’} + 3B,
bo = %ﬁzE{)fz} -2
B. SNR Gains and Fading Figures for W-CDMA
Closed-Loop Transmit-Diversity Modes

Let us first compute the SNR gains when the best/worst Tx
weight is selected for transmission. Working on (11) taking

into account that [wi | = /1 — &7 and [wax| = &,

E{Xe} = (1 - @) E] b5y +RE] [}

ADA

+24/1 - ockock[E{|hk|(l) |hk|(2)}[E{cosgok},
. , . ) (B.1)
E{Yi} = “k[E{ |hk|<z)} +(1- ‘Xk)[E{|hk|(l)}

— 21 - @aE] [ he| ) | ) }E{ cos i}
result, where |h|) and |hil(2) are the first- and second-
order statistic of two i.i.d. Rayleigh RVs with mean E{|h|} =

\/m/4, respectively. Similarly, in case of second-order raw
moments,

E{X¢}
= (1= &) E{ Il fy ] +200 - )GE] [ helfy [ el $y )
X [1 4 2E{cos* ¢} ] +4m&k[E{cosq)k}
[ (L=@)Ef [ he| o i [Ty F+GRE] B 3y | )} ]
+ &l B Iy
E{Y¢}
= FE] [he| (| +2(0 = G)GRE] [ |y L e | 0}
x [1+2E{cos?gi}] — 41 — RZ&E{ cos gy}
s [G2E] | e gy [ Gy F+ (=) B { L e [ e )]

+ (1 - &) ] [l
(B.2)

result. In this situation, RV ¢y is uniformly distributed on
[—n/2N0, 1/2Nr), where N, is the number of bits used to
quantize phase angles. Therefore, E{cos ¢x} = (4/7) sin(n1/4)
and E{cos’gpx} = 1/2 + 1/m in case of CL TD mode 1, and

Ef{cos gx} = (8/m)sin(n/8) and E{cos’gx} = (1/2)++/2/m in
case of CL TD mode 2. Similarly, &y = /0.5 and ax = /0.2
for both CL TD modes 1 and 2, respectively. Single raw
moments and product raw moments of the order statistics
of RV |h| are obtained by using recurrence relations (13.4)
and (13.7) of [24]. Replacing all these results, we find that

1
g'x:1+\/;)
1
9»y=1_\/;

(B.3)
E{X2}=2+l+3 !
k 7 2’
1 1
E{Y?}=2+=-3./=,
RAREEEEENE
assuming CL TD mode 1, and
g, =13+ L6sin (%)
G, = 0.7 — L6sin (%)
(B.4)
3.84 n 128 |1
E{X{} =2 +(4.8+—) ins+—./=,
{X:} 9 ) sing T3
3.84 m 128 |1
E{Y} :1.1—(4.8——) in-+—,/=,
el 7 )T T 2

considering CL TD mode 2. Combining these raw moments
in (8), fading figure expressions

324212 _32-2J12
TR+ Un+J172° Y2+ Yn - V172

(B.5)

result assuming CL TD mode 1, and

F
- 2.97 + 4.16 sin(n/8) — 1.28+/1/2
© —0.07 +3.84(1/6 + 1/m) sin(n/8) + 1.28(1 + 1/m)/1/2°
‘77}’
- 1.77 — 2.24 sin(n/8) — 1.28/1/2
© —0.67 +3.84(-2/3 + 1/m) sin(n/8) + 1.28(1 + 1/m)/1/2
(B.6)
considering CL TD mode 2.
C. Useful Closed-Form Expression
Our aim is to compute the integral
La(B0) = | log,(y+ B(By)"e ™ dy,
0 (C.1)

n=01,...; B>0, c¢>0.
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Let us use formula (8.356.4) of [25] and integrate (C.1) by
parts. Then, we find that

*T(n+1,py) dy

Lu(B, ) = nllog, (c) + JO o (C.2)

Here, we have by (6.5.3), (6.5.2), (6.5.13), and (6.5.11) of
[19] that

0 " *© B
[Hrr LB gy s LT )
k=0

0 ytc — E 0 )/+C

Then, by using (3.383.10) of [25] and (6.5.9) of [19], we
obtain

By
N dy = kleF Ey1(Bc). (C4)
After combining the last three formulas, we get the desired
result:

L,(B,¢c) =n! [loge(c) + eﬁci Ek+1(ﬁc)] ,

k=0 (C.5)

n=01,...; B>0, c¢>0.
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1. Introduction

The optimal strategy for maximizing the sum capacity with
perfect channel state information (CSI) of a cellular single-
input single-output (SISO) multiuser channel is to allow
only the user having the best channel conditions in terms
of SNR to transmit at each time slot (TDMA). This result
in [1] has induced the notion of multiuser diversity [2],
that is, the achievable capacity of the system increases with
the number of the users. The corresponding scheduling
policy is called maximum throughput scheduler (MTS). Sub-
sequently, TDMA-based channel-aware scheduling schemes
which consider temporal fairness [3] or stringent rate
constraints under energy efficiency [4] are developed.

A major disadvantage of MTS is its unfairness toward
users at the cell edge. On the other hand, the most fair
but channel unaware scheduler is the round robin scheduler

(RRS) [5], that is, all transmissions take place in a strict
numerical order. The MTS and RRS leave room for various
channel aware schedulers that lie in between these two. In
order to increase the fairness for users at the cell edge, the so-
called proportional fair scheduler (PFS) can be applied. The
PES weights the instantaneous transmission rates by their
averages to find the best user and achieves equal activity
probability for all users [6]. Yet another scheduler, which is
referred to as opportunistic round robin scheduling (ORS),
was introduced in [7]. It is a combination of the RRS and
MTS. The comparison of different schedulers with respect
to different performance criteria is a highly viable research
area. For instance, in [8], the throughput guarantee violation
probability is approximated and simulated for different
schedulers in different channel models. The asymptotic
throughput of channel-aware schedulers is analyzed in [9].
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In order to quantitatively measure the impact of the
scheduler on the fairness, different measures are proposed in
the literature [10—12]. The Jain fairness index (JFI) defined
in [10], also known as the global fairness index (GFI)
[13], provides a single number between zero and one that
measures the fairness even for resource scheduling in finite
windows. The average fairness defined in [11] is developed
from an information theoretic point of view. The worst-case
delay as it is used in, for example, [12] measures the average
number of transmissions needed until all users were active at
least m times.

Obviously, there exists a tradeoff between average
throughput and average fairness [14]. In this paper, we
study this tradeoff for the four scheduling algorithms MTS,
RRS, PES, and ORS. The main novelty lies in the systematic
approach to this problem using majorization theory. This
tool helps understanding the impact of user distributions
within the cell on the system performance and on the average
worst-case delay. The application of majorization theory
allows to analytically and qualitatively assess the advantages
and disadvantages of the four channel-aware schedulers. The
contributions of the paper are as follows.

(1) In Section 2.5, closed form expressions for the four
scheduler for arbitrary nonsymmetrical user distri-
butions are derived.

(2) The impact of the user distribution on the average
sum rate is analyzed in Section 3, and it is shown that
the average sum rate is increased with asymmetrical
user distributions for MTS. For all other schedulers
(RRS, PFS, and ORS), it decreases.

(3) Different fairness measures and their properties are
discussed in Section 4. Furthermore, we study the
impact of the user distribution and its connection to
the service probabilities.

(4) The asymptotic performance for high SNR or large
number of users is analyzed in Section 5.

(5) In Section 6, the sum rate of MTS, RRS, and PFS
under a fixed rate constraint is derived, and the
impact of user distributionis characterized.

(6) In Section 7, we illustrate the theoretical results with
numerical single-cell multiuser simulations.

The paper is concluded in Section 7. Parts of the results for
single-antenna transmitter are presented without proofs in
[15]. The impact of interferer locations on the downlink
performance of the system is studied in [16].

2. System Model and Preliminaries

In this section, we present the system model, the channel
model, the measure of the user distribution based on
majorization, the high-SNR performance measures, and the
four scheduler. Our approach to the cross-layer analysis of
these scheduling algorithms is physical layer oriented.

2.1. System Model. In the signal model, there are K mobile
users which are served by a base station in downlink
transmission. The base station has multiple antennas (nr),
the mobiles have one antenna each. Denote the channels to
the users as hy,...,hg. The base applies an OSTBC [17, 18]
in order to exploit spatial diversity without spatial feedback
overhead. Spatial feedback contains information about the
spatial signatures of the user channels, whereas channel
quality information contains scalar values . The data stream
vectors di,...,dx of dimension 1 X M of the K users are
weighted by a power allocation p;,..., px and added before
they come into the OSTBC as x,...,Xy. The output of the
OSTBC is a vector x = [x1,...,X,,.] of dimension 1 X nr
(compare to system model in [19]). The code rate is given by
r. = M/nr. Note that the framework can be extended also to
other code classes [20].

Each mobile first performs channel matched filtering
according to the effective OSTBC channel. Afterward, the
received signal at user k of stream # is given by

K

Yion = ak Z Xln + ie,ns
I=1

l1<n=<M, (1)

with fading coefficients o = a,% = ||hkl|*/n7, transmit stream
n intended for user [ as X}, and noise for stream n as ng .
There are M parallel streams for each mobile. However, all
streams have the same properties in terms of ax and noise
statistics. Therefore, we restrict our attention without loss of
generality to the first stream n = 1 and omit the index in the
following. Let pi be the power allocated to user k within one
block, that is, px = E[|xk|?]. We assume a short-term power
constraint, that is, S5_, px < P. The noise power at the
receivers is 0. The transmit power is distributed uniformly
over the ny transmit antennas, and each data stream has an
effective power pi/nr. We incorporate this weighting into the
transmit SNR given by p = P/nro?.

The mobiles feed back their scalar channel quality
indicators, that is, their fading coefficient a,...,ax to the
base and we assume these numbers are perfectly known at
the base station. As such, the base has perfect information
about the channel norm but not about the complete fading
vectors.

2.2. Channel Model. The channel vectors hi,...,hx are
modeled as independently zero-mean complex Gaussian
distributed vectors with covariance matrix ¢ I in rich
multipath environment. The variance ¢, depends mainly on
the distance of the user to the base, and it is called average

channel power. Therefore, the fading coefficients «;, ..., ax
are independently y?-distributed with ny complex degrees of
freedom weighted by the average channel power cy,...,cx,

that is, using independent standard y;_-distributed random
variables wy, ..., wk, the fading coefficients are expressed as
Ak = CkWk.

2.3. Measure of User Distribution. The distance of the mobile
k to the base station is determined by the average channel
power ck. In the following, we refer to the vector of average
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channel powers ¢ = [cy,...,cx] as the user distribution. In
order to guarantee a fair comparison between different user
distributions, we constrain the sum variance to be equal to
the number of users, that is, Zszle = K. Without loss
of generality, we order the users in a nonincreasing way
according to their fading variances, thatis, ¢; > ¢; > + -+ >
ck- The constraint regarding the sum of the fading variances
verifies that we compare scenarios in which the channel
carries the same average sum power. We need the following
definitions [21].

Definition 1. For two vectors X,y € R", one says that the
vector X majorizes the vector y and writes x > y if >[" x>
Sty form=1,...,n—1and X}_xk = >_ yk (note that
sometimes majorization is defined by the sum of the smallest
m components [22]).

The next definition describes a function @ which is
applied to the vectors x and y with x > y.

Definition 2. A real-valued function ®@ defined on A C R”
is said to be Schur convex on 4 if from x > y on 4 follows
®(x) = PO(y). Similarly, ® is said to be Schur concave on A if
from x > y on +4 follows ®(x) < O(y).

Majorization is a useful tool to study the impact
of vectors which can be partially ordered. The common
monotony properties of scalar functions correspond to the
Schur-convex property of vector functions. The reason for
the term “Schur-convex” instead of “Schur-monotone” is
that every symmetric and convex vector function is Schur-
convex. Majorization is a large and active area of research in
linear algebra, with entire books [21] devoted to its theory
and application.

It is worth mentioning that majorization induces only a
partial order on vectors with more than two components,
that is, not all possible vectors can be compared with each
other. This is due to the fact that vectors with more than two
components cannot be totally ordered. However, a sufficient
number of vectors can be compared. Also, the extreme cases
can be used for comparison with any other vector. For more
information about this measure of user distribution and its
application see [23, Section 4.2.1].

2.4. High-SNR Measures 8. and L. The quantitative
performance is analyzed using the high-SNR offset concept
from [24]. Denote by C(p) the average throughput as a
function of the SNR. The two high-SNR measures are
introduced as follows:

Clp)

80 = lim ,
p=log(p)

Clo) (2)
2= - )

The measures 4, and L. are referred to as high-SNR
slope and the high-SNR power offset, respectively. At
high SNR, the average throughput behaves like C(p) =

8 ((p[dB]/3dB) — L) + O(1). For convenience, these high-
SNR measures are defined in 3 dB units. For further discus-
sion, see [24, Section 2]. These two high-SNR measures are
useful if two systems are compared which differ either in their
multiplexing gain, that is, the slope of the average throughput
curve at high SNR, or which have equal 4., but are shifted at
high SNR.

2.5. Types of (Channel Aware) Scheduling. Since the base
station has only partial CSI in form of the channel norm, we
restrict all scheduling strategies to TDMA-based scheduling.
From the single-antenna downlink, it is well known that if
perfect CSI is available at the base station, the sum rate is
maximized by single-user transmission to the best user only
[1], that is, TDMA achieves the sum capacity. This result
leads to the notion of multiuser diversity and the concept
of opportunistic communication [2]. This scheduler is called
MTS, and the achievable average sum rate is given by

R [l (1+pmaibd)].

Note that the average sum rate of the MTS can be written in
integral representation as

K
(C e T(nr, (t/ck))
RM;_JQ 1+pt|:1_1_[<1_ F(nT) ):|dt’ (4)

k=1

using the incomplete gamma function I'(a,z) =
|7 exp(—=t)t*"'dt. The case with single-antenna base
and symmetrically distributed users (¢ = 1) is studied in
[25]. The MTS is unfair from a user perspective because
mobiles at the cell edge have less probability to be served.

The opposite type of scheduler is the round robin
scheduler (RRS). It is not channel aware but it minimizes the
average worst-case delay, that is, the average time until every
user has been served at least once. The average sum rate is
given by

K
R{R, = [E[ ! > log (1 +p||hk||2>}
k=1

|

(5)
|k
= [E|:Kg:1 log (1 +pckwk)}.

Note that (5) can be rewritten for ny = 1 in closed form as

R - LS EL D) en(L), ©

o N e \pa

where the exponential integral is given by Ei(a,x) =
T exp(—tx)tadt.

These two schedulers are the two most extreme cases.
The MTS maximizes the average sum rate, whereas the
RRS minimizes the average worst-case delay. A compromise
between the two is the proportional fair scheduler (PFS)
[2]. For the analysis, we use the so-called relative SNR
scheduler. The user is served which has the highest ratio of
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the instantaneous rate to average rate. Hence, the achievable
sum rate is given by

REE, = E[log (1 +p|lhi|[*)]
i [Ibel* 7
with k* = arg max
1<k<K Ck

In reality, the average transmission rate is updated from
transmission interval to transmission interval. Here, we use
the ergodic formulation of the scheduler (let the window
length t. — o0). Note that (7) can be rewritten as

K
Rigm = g [log(1+P6k1rg§>Ing)], (8)

because the scheduling probability of all users is equal to 1/K.
For ny = 1, (8) can be rewritten in closed form as

1 KK L K ] Ve
— E E -1 E'(l,—) Pek) 9
Kk:1l:1( ) 1 ! pCk ¢ ©)

Another interesting channel-aware scheduler is proposed
in [7]. The one-round version [26] of the relative oppor-
tunistic round robin scheduler (ORS) guarantees the same
average worst-case delay as the RRS but exploits a certain
amount of multiuser diversity. It consists of K rounds and
initializes the set of available users 4 with 4 = {1,...,K}.
Within each step, the relative best user maxe 5 (|| [|2/cx) out
of the set of available users is picked and removed from the
set. After K steps, it is guaranteed that all users were active at
least once.

For our analysis, we need the representation in the
following lemma.

Lemma 1. The average sum rate of the ORS (13) can be
written as

(10)

Proof. The CDF of the relative ORS is derived for ny = 1 in
[27, Equation (6)] and is given by

e W), (11)

Mx

1 K
PO= 5 Y

n=1i

Ul
—

For general ny > 1, it reads

1 K K
P(t)zﬁzz<

n

I(nr, (t/c;))
S ) a

We use the integration by parts rule fZ f(x)g' (x)dx =
If(x)g(x)lﬁ - fgf’(x)g(x)dx. Now, identify f(x) = log(1 +
px) and g(x)" = p(x), respectively, with the pdf of the
relative ORS p(x). Choose carefully g(x) = P(x) — 1 to
assure existence of the first part. Then, we obtain finally the
representation in (10). O

The sum rate performance for ny = 1 can be further
simplified as in [27, Equation (8)] to obtain the closed form
expression

K K
Rom = 22 22

((1+))/ci) 1+ 7
L Ei(l, ]).
I+ Ci

With the sum rate expressions in (4), (5), (8), and (10),
we are now ready for the analysis of the user distribution ¢ in
the next section.

3. Analysis of Sum Rate Performance

In this section, we analyze the impact of the user distribution
on the sum rate performance of the four scheduler. One
main question is whether the standard assumption about
a symmetric user distribution, which is made often for
simplification, leads to an upper or lower bound on the real
system throughput. First, we present the theoretical results,
and then we discuss their meaning in the paper context.

3.1. Schur-Convexity and Schur-Concavity Properties. The
following result is provided in [28] for n7 = 1 and
restated and proved here for nr > 1. It states that a more
asymmetrical user distribution increases the average sum
rate with MTS.

Theorem 1. Let ¢ and d be two different average user powers.
The average sum rate of the MTS is Schur-convex with respect
to user powers ¢ and d, that is,

=d = RYT (¢) = RMT (d). (14)

The proof can be found in [28, Theorem 1] for the single-
antenna np = 1 case. We present in Appendix A the more
general proof for convenience.

The impact of the user distribution on the performance
of the RRS is analyzed in the next result.

Theorem 2. The average sum rate of the RRS is Schur-concave
with respect to the vector of average user powers ¢, that is,

=d = R (c) < RER (). (15)

Proof. Define the average sum rate as a function of ¢ as

RN (0) = — > E[log (1 + pcews) ], (16)

==
M

and check Schur’s condition [23] directly

IR (c) IR, (0)
8(:1 aCZ
(17)
] o]
1+ pciwy L+pewy 1
O
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The impact of the user distribution on the performance
of PFS is derived analogously in Theorem 3.

Theorem 3. The average sum rate of the PES is Schur-concave
with respect to the vector of average user powers ¢, that is,

cx=d= R (c) <R (d). (18)

sum

Proof. Start from the representation in (8) and check Schur’s
condition

ORI () _ ORGn(©)

dcy 0c,
_ 1 [ pC1MAax <<k W ] (19)
K L1+ pcimaxi<j<xw;
1 [ pC2Max| <<k W] ] 0
K L1+ pemaxiqcxwi ]~
0

Finally, the impact of the user distribution on the sum
rate performance of ORS is characterized in the next result
which is proved in Appendix B.

Theorem 4. The average sum rate of the ORS is Schur-concave
with respect to the vector of average user power ¢, that is,

¢ = d = Ry (c) < RG(d). (20)
3.2. Discussion of Schur Properties. Let us restate the results
from the last section in words. The sum rate of MTS improves
with more asymmetrically distributed users. The sum rate
of RRS, ORS, and PFS decreases with more asymmetrically
users. Hence, the four results indicate that the common
assumption about symmetrically distributed users leads to
the following.

(1) A lower bound to the sum rate performance of MTS.

(2) An upper bound to the sum rate performance of RRS,
ORS, and PFS.

This implies that a correct analysis even in terms of the
sum rate does always require assumptions on the user
distribution. In conclusion, there is only one scheduler which
improves for asymmetrically distributed users, namely, the
MTS. The average sum rates of the other scheduler, PFS,
ORS, and RRS, decrease with more asymmetrically dis-
tributed user.

4. Fairness Analysis

In this section, the fairness properties of the four schedulers
are analyzed. First, the average worst-case delay is proposed
as a proper physical layer motivated delay measure. The
impact of the service probabilities of the users on the worst-
case delay is studied. Then, two other common fairness
measures are reviewed, namely, Jain’s fairness index and the
dispersion. It is shown that all three measures are Schur-
convex functions with respect to the service probabilities of
the users. Finally, the connection between user distribution
and service probability and delay is discussed.

4.1. Analysis of Average Worst-Case Delay. In order to capture
the fairness of the different scheduler, the average worst-case
delay is considered. The average worst-case delay E[D,, k]
measures the average number of transmissions that are
needed until all K users have been active at least m times.
We define Dy = E[D;k].

The two most fair schedulers are the RRS and ORS. Both
have an average worst-case delay of mK because all users are
guaranteed to be active within a block of K transmissions.
Especially, it takes K transmissions until every users has
transmitted exactly once, that is,

D™ = DP® = K. (21)

The PFS normalizes the users channels. Therefore, the
probability that user k being active is, independently of k,
1 < k < K, equal to 1/K. Especially, it is independent of the
user distribution c. The result from [29] applies for m = 1:

DS = KI:I — (1 - exp(—x))“dx. (22)

Note that (22) can be written as
DS = K(¥(K + 1) +y), (23)

with the ¥-function [30, 6.3] and Euler’s constant y [30,
6.1.3].

The analysis of the MTS is more difficult. Rewrite the
average worst-case delay [12, Section 3.3] without dropping
probability as

* K ' (m, dt)
MTS _ _ _ 2\ GkE)
D) 7n'[0 (1 k_|1(1 o ))dt. (24)

For m = 1, the expression in (24) says how many packets
are transmitted on average until every user has at least
transmitted one. The coefficients dj in (24) are related to the
probability that user k is chosen 7x = di/K. For the MTS, we
prove the following result.

Theorem 5. The average worst-case delay E[D, k] is Schur-
convex with respect to d, that is,

di = dy — DVTS(d,) > DMTS(dy). (25)
Proof. In order to check Schur’s condition, [23] consider

OE[Dik](d) ~ JE[Dik](d)
ad, ad;

w K (26)
=TT~ exp (— dit))g (o, o),
013

with g(t,d\,dr) = texp(—dt)(1 — exp(—dit)) —
texp(—dit)(1 — exp(—dyt)) = 0 for all d; = d,, and
t = 0. It follows that the integral in (24) is greater than or
equal to zero. O

Theorem 5 formally states the intuitive fact that the
average worst-case delay grows if some users are less frequent
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active on average. If the probability that user k is active is
equal to 1/K, independently of k, then the expression in
(24) is minimized. Note that a similar analysis has been
performed in the different context of birthday matching in
[31].

4.2. Jain’s Fairness Index and Dispersion. In [10], a quanti-
tative measure of fairness is introduced. It is called Jain’s
fairness index (JFI) or global fairness index (GFI) [13].
Define x; as the amount of a resource that is distributed to
user k. Then, JFI is defined as [10, Equation (2)]

(WK)SKE %)
JH= (VK)Sf % 7

Let us specialize this general definition to the case in which
one resource is one transmission. The JFI is averaged over L
transmissions [27]

E((/K)SE %)
EL(1/K)SE_ 5

JFI(L) = (28)

Denote by 7 the probability that user k is active within L
transmissions, then x; = mL. Collect # = [m,...,7x]. Let
L — oo to obtain the long-term average JFI as

(W/RSE m)’
= (VK)o mp 2

Note that S5, = 1, and hence (29) leads to the dispersion
of p:

Dsp(m) = (30)

K 2"
DI,

Interestingly, this measure of fairness is closely related to
majorization theory. The function in (30) is symmetric and
concave in 7 and therefore Schur concave [23, Proposition
2.8]. A function is called symmetric if the argument vector
can be arbitrarily permuted without changing the value of
the function.

Corollary 1. The dispersion is a Schur-concave function of the
vector 7, that is,

7y = my = Dsp(m;) < Dsp(m,). (31)

4.3. Connection of User Distribution, Service Probability, and
Delay. From the results in the last sections, it follows that
the impact of the user location on the different fairness
measures depends on the resulting service probability vector
7. Therefore, we have to map the user distribution vector ¢
to the service probability vector 7. The concrete mapping
depends on the chosen scheduler. For PFS, the service
probabilities of all users are equal to 7y = 1/K and thus
independent of c.

In order to apply majorization theory to the analysis
of the average worst-case delay as a function of the user

distribution, we have to transfer the partial order for user
distributions to the partial order for probability that a user
k is picked.

Define the vector of probabilities that user k is picked =
as a function of the user distribution ¢, that is,

me(c) = Pr[ckwk > rlna}z( clwz]
#

- Z J“HKAZO ‘[aﬂkfz:‘lﬂxa o (32)

neP\k
o K nr=1 ,—(ap/T(nr)ck)
a e
k d
——  da.
J’akza,,l k=1 Ck

The RHS in (32) contains all possible disjunct events, that
is, all permutations, such that ewx > ¢y Wn, = Cp,Wn, =
> Cre Wne - The sum over all probabilities, that is,
integrals with certain limits, gives the probability that user
k is picked.
Unfortunately, the next result is an impossibility result.
It shows that it is not possible to say that if ¢ = d then
automatically 7(c) = m(d).

Corollary 2. The mapping from the vector of user distributions
to the vector of service probabilities is not order preserving with
respect to the partial order majorization.

Proof. We provide a counterexample. Consider the user
distribution vectors c¢= [5,3,2]" and d= [4,4,2]" and ny =
1. The resulting activity probabilities computed according
to (32) are given by m(c) = [0.6428,0.1786, 0.1786]7 and
n(d) = [0.4167,0.4167,0.1666] . Majorization cannot be
used to compare these two vectors because 7;(c) > 7m,(d) but
m(c) + my(c) < m(d) + mp(d). O

Even though the connection between user distribution
and service probability is not order preserving with respect
to the partial order of majorization, it does not imply
that the average worst-case delay is not a Schur-convex or
Schur-concave function of the user distribution. Due to the
complicated dependency of the average worst-case delay and
the user distribution via (32), the following observation is
stated as a conjecture.

Conjecture 1. The average worst-case delay of MTS as a
function of the user distribution is Schur-convex, that is, ¢ =
d = E[Dik(c)] = E[D;k(d)].

5. Asymptotic Characterizations

In this section, we characterize the average sum rate of the
different scheduling schemes for high SNR or for a large
number of users. The scaling laws of the schemes are derived
as a function of the user distribution. These results provide
more quantitative but closed form expressions for the sum
rate performance of the four schedulers.
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5.1. High-SNR Behavior. The high-SNR slope 4. as defined
in (2) for all four scheduling schemes is equal to one because

Jo log(1+ px) pdf (x)dx

80 = lim

p=o log(p)
(7. log(1+ px)

- J: pdf (x)dx = 1.

It is allowed to swap integration and limit by applying the
dominated convergence theorem. In general, any TDMA
scheme could have at most a high-SNR slope of one. The
high-SNR power offset is different for the four schedulers.
It is derived in the following result.

Theorem 6. The high-SNR power offset is characterized for
four cases as follows.

(1) For MTS, the high-SNR power offset is bounded from
below and above by

y +log (T(1 +nr) 1/"T Z( k! ( )log(k)
(34)

> LM > y —log (Knr).

For nt = 1, the lower bound in (34) is equal to the
lower bound result in [23, Theorem 2].

(2) For RRS, the high-SNR power offset as a function of the
user distribution is given by

L (c) = Z — log (ck). (35)
For nt = 1, we obtain the closed form expression
(compare to [15])

K
Lot (¢) = Z —log (ck). (36)

(3) For PFS, the high-SNR power offset as a function of the
user distribution is given by

w2 (),

(37)

Lo (c) = —¥(n

(4) For ORS, the high-SNR power offsets as a function of
the user distribution is given by

1 K K n-1 _ 1)]
fZZZ o
(38)

c,COOOR (C) -

The proof of Theorem 6 follows similar lines as in
[32, Theorem 2] and is, therefore omitted. Note that the
Schur convexity of (36) can be directly observed and this
approves the result in (15). However, in (37) and (38), the
Schur convexity cannot be directly observed because of the
alternating sum.

The high-SNR power offsets fulfill the following inequal-
ity chain:

LM < {LPF, LGV < LR (39)
The order of PFS and ORS depends on the user distribution
and number of antennas at the base station scenario. Note

that the average worst-case delay does not scale with the SNR.

5.2. Scaling with Number of Users. First, consider the case in
which the users are symmetrically distributed, that is, ¢ = 1.
The scaling behavior with K — oo for fixed SNR p can
be easily shown by considering a simple upper and lower
bounds on the average sum rate. The average sum rate of RR
does not scale with K at all.

Corollary 3. For symmetrically distributed users ¢ = 1, the
average sumrates of MTS, PFS, and ORS scale for large K with
log(K), that is,

ORI R
K- log(K) K- log(K)
(40)
ROR (K) 3

sum

TRk log(K)

The case in which the users are not symmetrically
distributed is discussed in the numerical results section. The
scaling of the average worst-case delay with the number of
users is also of interest and is thus studied in Corollary 4. It
follows directly from (21) and (23).

Corollary 4. For symmetrically distributed users, the average
worst-case delay scales linearly with K for RRS and ORS. For
MTS and PFS, it scales as K log(K), that is,

. DRRS(K) . DYRS(K)
S S
(41)
D}'™(K) D{™(K)
m = lim =
K-wKlog(K) K-~Klog(K)

The case in which the users are not symmetrically
distributed is discussed also in the numerical results section.
Note that the scaling law for MTS and PFS in (41) is the
best case as shown in Theorem 5, the case in which the users
are symmetrically distributed offers the lowest average worst-
case delay.

6. Fixed Rate Allocation and Long-Term
Power Constraint

In this section, we consider a certain communication
scenario which leads to a slightly modified performance
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function on the physical layer. Usually, the traffic is divided
into classes (see, e.g., traffic classes in [33]) which require
a certain SNR level to guarantee successful delivery of the
user contents. In the following, we study the behavior of the
sum rate under fixed rate allocations for the three schedulers
(MTS, RRS, and PFS) as a function of the user distribution
for comparison with the sum rate behavior from the last
section.

Let us assume that we have only one fixed transmission
rate Ry available, and each scheduled user obtains its
information packet with that rate. Therefore, a certain SNR
is needed for successful transmission. Denote the long-term
sum transmit power constraint at the base station as Py, that
is,

K
Earoa [Zpk(al,...,ak)] <P, (42)
k=1

We consider the three schedulers MTS, RRS, and PES. The
power allocation at the base station for all three schedulers is
channel inversion under the long-term power constraint.

Theorem 7. The achievable sum rate for fixed rate transmis-
sion of the RRS is given by

K
R 1 l ( pr )
_1 1+ —2c ), 4
Rsum,fx K kgl og(t+ E[(1/ckwy)] )

The achievable sum rate for fixed rate transmission of the
MTS is given by

pPe ) (44)

RMT 1o (1 +
sum, fx & E[ (1/max) <k<k ckwi) ]

Finally, the sum rate for fixed rate transmission of the PFS
is given by

pPe
1/ckmax; <<k W) |

|k
Rflfm)fx =X ;;1 log (1 + Al ) (45)
Proof. We will use one framework to derive the achievable
sum rate for fixed rate transmission [34]. Denote the
instantaneous channel power of the scheduled user as (.
Then, the instantaneous achievable rate is log(1 + p{p(())
with power p({) allocated. This instantaneous rate should be
equal to the fixed rate Ry under the average power constraint
in (42). We solve

Ry = log (1 +p¢p({)) (46)

for p({) and normalize the constant cp with respect to the
long-term power constraint to obtain the optimal power
allocation

cp Pg 1

- = (47)
¢ ¢ E[/A]

Equation (47) is simply channel inversion with long-term
power constraint, that is,

p) =

1
¢

E[p({)] =Pe[E[ ] ! P;. (48)

E[1/¢] ~°°

Inserting (47) into (46) yields

Pe ) (49)

Ry = log (1 +P[E[1/(]

Then expressions in (43), (44), and (45) follow when we use
the effective channels { after scheduling. O

The impact of the user location on the sum rate
performances is characterized in the following corollary.

Corollary 5. The sum rate of RRS with fixed rate constraint is
Schur concave with respect to c. The sum rate of PFS with fixed
rate constraint is Schur concave with respect to c.

The sum rates with fixed rate constraint and long-term
power constraint for RRS and PFS show the same behavior
as the sum rate with short-term power constraint.

Proof. We verify indirectly Schur’s condition for the RRS and
PES and thereby leave the expectation unsolved. Both sum
rates Rb¥ and RE® can be written as functions of the user
distribution ¢

pckPe ) (50)

L
y(c) = X Z log (1 + ELx]
k=1

for some random variable x. The function in (50) is
symmetric with respect to ¢. The sum of concave functions
in ¢, is Schur-concave (see, e.g., [23, Proposition 2.7] or [21,
3.C.1]). O

Regarding the impact of the user distribution on the
MTS sum rate with fixed rates, we observe that the behavior
depends on the number of antennas and number of users.
We leave this for future research.

7. Numerical Simulations

In this section, we present illustrations which validate and
explain the theoretical results from the last sections. The
performance for the case with symmetrically distributed
users ¢ = 1 is compared to the case with asymmetrically
users. For the asymmetrically user distribution, we choose
the exponential decaying model

K
and normalize Z c =K. (51)
k=1

¢k = exp(—tk),

For K = 20 and t = 0.2, we obtain the user distribution
¢ = [3.6930,3.0236,2.4755,2.0268, 1.6594, 1.3586,
1.1123,0.9107,0.7456, 0.6105, 0.4998, 0.4092,
0.3350,0.2743,0.2246,0.1839, 0.1505, 0.1232, 52

0.1009, 0.0826].

In the numerical simulations, for each data point, 100 000
Monte Carlo runs are performed to compute the averages.
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Average performance (symmetrical)
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FIGURE 1: Average sum rate, worst-case delay, and dispersion for
K = 20 symmetrically and asymmetrically distributed users.

7.1. General Results. In Figure 1, the average sum rate, the
average worst-case delay, and the dispersion are shown for
the four studied schedulers. In Figure 1(a), the users are
symmetrically distributed, that is, ¢ = 1, whereas in Figure
1(b), the users are asymmetrically distributed according to
the model in (51) with ¢+ = 0.2. The results in Figure 1
illustrate the following observations. The average sum rate
of MTS increases with more asymmetrically distributed
users (compare to (14)), while the average sum rate of
all three other schedulers decreases (compare to (15),
(18), and (20)). However, PFS outperforms ORS for the
symmetrical scenario, whereas it is the other way round
for the asymmetrical scenario. Another observation is that
the average worst-case delay is more differentiated than
the dispersion. This underlines that the average worst-
case delay is better suited for fairness analysis than the
JFI-based dispersion. Finally, the average worst-case delay
for the asymmetrical scenario of the PFS and ORS tends
to grow without bound. Therefore, taking the tradeoff
between fairness and average sum rate into account, the
PFS and ORS perform reasonable well. PES is advantageous
in symmetric scenarios whereas ORS performs better in
asymmetric scenarios.

Scaling with number of users (symmetrical distribution)
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Scaling with number of users (symmetrical distribution)
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FIGURE 2: Average sum rate and worst-case delay versus number of
users for symmetrically distributed users.

7.2. Scaling with Number of Users. In Figures (2) and (3),
we show the average performance of the four scheduling
algorithms for symmetrically distributed as well as asymmet-
rically distributed users. The derived scaling laws in (40) and
(41) are confirmed. The interesting observation is that for the
asymmetrical case, PFS outperforms OFS for a small number
of users, whereas it is the other way round for large number
of users.

The average worst case delay for MTS and PFS
increases with asymmetrical user distribution as predicted
in Theorem 5. As soon as a single ¢, approaches zero, the
average worst-case delay approaches infinity. The round-
based schedulers RRS and ORS are robust against the
asymmetrical user distribution.

The main observation in this section is that for practical
scenarios in which fairness is important as well as users are
randomly distributed within the cell, ORS clearly outper-
forms PFS. Note that the results presented here hold for a
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Scaling with number of users (assymetrical with t = 0.2)

Average sum rate (bpcu)
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FIGURE 3: Average sum rate and worst-case delay versus number of
users for asymmetrically distributed users.

static scenario in which we place the users only once inside
the cell and simulate the small-scale fading. Mobility as well
as traffic models is left for further research.

7.3. Multiple Antenna Case—OSTBC. The application of
OSTBC yields to a tradeoff between the code rate and the
number of degrees of freedom of the channel gain. The code
rate rc decreases with the number of antennas, whereas the
number of degrees of freedom of the ¥? distributed channel
gain increases. For an OSTCB with nr transmit antennas, it
is shown in [35] that the maximum achievable code rate is
given by

|[(nr+1)/2]+1

(e + 1)72] (53)

re(nr) =

9.5 T T T T
o
—~ 9 i
=
O
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8 7 6 5 4
Average worst-case delay
—><= PFS o MTS
O RRS x ORS

FIGURE 4: Average sum rate/worst-case delay tradeoff, nr =
{1,2}; K =4; SNR = 20dB.

The code rate rc(ny) starts at rc(1) = rc(2) = 1 and
decreases to lim,,, _. « rc(nr) = 1/2. Therefore, we restrict the
numerical simulations to the case ny = 2.

In Figure 4, the achievable average sum rate versus
average worst-case delay tradeoff is shown for a two antenna
BS with four users at SNR = 20 dB for the four schedulers.
The PES is operated at ten window length operating
points t,= 2%, k = 1,...,10. The RRS has lowest delay,
whereas the MTS has largest delay but best performance.
The closure of the convex hull of all operating points
gives the achievable sum rate/delay region. The dashed
line shows the single-antenna case. It can be observed
that two antennas increase average sum rate as well as
decrease the average worst-case delay significantly. Note that
no additional (spatial) feedback is required to achieve this
gain.

8. Conclusions

In this paper, we proposed an approach to analyze qualita-
tively the tradeoff between system throughput and fairness
in a multiuser multiple antenna downlink transmission
system. Four representative (three of them channel aware)
schedulers were studied for different user distributions
using majorization theory. The sum rate of MTS improves
with asymmetrical user distribution, whereas the sum rate
of all other schedulers improves with symmetrical user
distribution. MTS and RRS serve as upper and lower bounds
on throughput and lower and upper bounds on worst-
case delay, respectively. The throughput-delay tradeoff of
the four schedulers is characterized; if fairness as well as
performance is important, the optimal choice will depend
on the user distribution and the number of users. Finally, the
gain of using multiple antennas without increased feedback
overhead at the base station is illustrated.
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Appendices
A. Proof of Theorem 1

Proof. In the proof, we verify Schur’s condition directly.
Therefore, we need the first derivative of RMT with respect
to ¢; and ¢; given as

ORML (™ pt 15[(1 - F(nT,(t/ck)))
ocy o L+pt, I'(nr)

, (1  T(nr, (t/c))) ) (t"=1/c,)
r(nT) C%F(I’IT)

K

(-2

() g e ()

Xp (:Tt)dt,

ORYim J ©_pt
dc; 0

(A1)

Define the two functions

K

T(nr, (t/ck))
1+ptn<l_ IT(nT) )’

flp,t,c) =

I (nr, (t/q))) (t/e)" ( - g)

glhee) = (1 a I'(nr) T (ny) e

() Gy e (-2
(A2)

in order to express the difference of the first derivatives of the
sum rate of the MTS as

9 RMT RMT

YPsum _ YSsum

dc, J flpt,08(t 1, cr)d.

(A.3)
The following properties of the functions f and g are easily
verified; f is monotonic increasing from zero to one. The
function g is g(t = 0) = 0, has one zero at t* : g(t*) = 0, and
is negative for all ¢ < t* and positive for all ¢ > t*. Therefore,
we can lower bound (A.3) by using the zero t* as

9 RMT 9 RMT

sum

G = e | slhane)d:

(A4)

Finally, the integral in (A.4) can be computed in closed form

1 1

Jo gltenc)dt = 2a6l(1+nr)Jm

nr
. {Zﬁf(m +1)[ca—c1]+T(ny+ 1/2)4"T<Z—1)
2
C
. [61'2F1 (HT,ZWT;H'nT;—(*))
(%)

— ok (”T»znT§ 1+n7;— <?))]},
1

(A.5)

where ,F;(a, b;c;z) is the Gauss hypergeometric function
[30, Chapter 15]. For single-antenna BS, we set ny = 1 to
obtain

G(C],Cz, 1) = 0, (A6)
which is in perfect agreement with the result and its
proof in [28]. Since, the function G(ci, ¢, ny) is monotonic
increasing with n, this implies that

ORME,  ORNL
T e 2 flp,t*,€)Gler,c0,mr) 20, (A7)
which verifies Schur’s condition for Schur convexity. O
B. Proof of Theorem 4

Proof. The proof is similar to the proof in Appendix A. The
difference is that we have two sums in the integral instead
of the product. Starting from the representation in (10), the
difference of the first partial derivatives with respect to ¢; and
¢, respectively, is computed

aR?ﬁn_J” p 1
dcy - 01+pl’K2

$ U= (Xt )kt exp (= )

P T(nr) — T(ngp, t/e) ™!
ORgim _ J “p 1
o Jo 1+ptK?
Z (1 = (C(ng, t/c)/T(nr))) kt" exp ( — t/cs) "
1 [(nr) - T(ngp,t/e) ey
(B.1)
Define the two functions
$lp.t) = 1+pt
)/(f:ChCz,k:”T)
(1= (T(np, t/e)/T(nr) ktmr exp (= t/cy)  (B.2)

T(nr) = T(nr,t/c)) ™

(1= (T(nr,t/c2) /T (7)) ke exp (~ t/c)
[(nr) — T(ng, t/cy)cy™

>

in order to rewrite the difference of the first derivatives as

aROR aROR
B 8c1 B Bcz

| K e (B.3)
"2 J $(p: )y (t,c1, 2,k ) dt.
k=170

The properties of the functions ¢ and y are as follows. ¢ is
monotonic decreasing with respect to t, and y has similar
properties as the function g in the proof in Appendix A.
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y(t = 0) = 0, it has on zero at t* : g(t*) = 0, it is negative for
all t < t* and positive for all ¢ > t*. Therefore, we obtain an
upper bound on A in (B.3) as

K 0
A< 1 Zgb(p, t*)J y(t,c1, 0, k,ny)dt = 0, (B.4)
K5 0

because fgoy(t, c1, ¢, k,np)dt = 0. This verifies Schur’s
condition for Schur concavity and completes the proof.  [J
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1. Introduction

Radio resource allocation (RRA) for multimedia services
has drawn a lot of attention because of its capability of
offering an efficient way to handle the resources. In previous
research, much attention has been paid to system efficiency
improvement, that is, maximizing system utility [1-8]. It
is shown that the Nash Bargaining Solution (NBS), a well-
defined notion in game theory, can be used to maximize
the sum of Peak Signal-to-Noise Ratios (PSNRs) in rate
allocation for collaborative video transmissions [1]. Optimal
resource allocation for multiuser wireless transmissions is
studied in [2] from an information theoretic perspective, and
it is shown that sum rate maximization (SRM) is suboptimal
when taking video quality into account. This work has
been extended to joint power and subcarrier allocation for
mutiuser video transmission in multi-carrier systems [3].
In [4], Application (APP), MAC, and Physical (PHY) layers
are jointly optimized using Cross-Layer Design (CLD) for
streaming video delivery in a multiuser wireless environ-
ments, and two objective functions are introduced, that is,
minimizing the sum of mean square error (MSE) of all video
users, maximizing the sum of PSNRs. As a continuous work

of [4, 5] proposed an application-driven cross-layer opti-
mization strategy and discussed the challenges in CLD for
multiuser multimedia services. Two Layering, as Optimiza-
tion Decomposition (LOD) methods, dual decomposition
and gradient projection-based decomposition, are used in
[6, 7] for downlink utility maximization (DUM) assuming
utility functions at APP layer are concave, increasing, and
differentiable. The maximization of weighted sum of data
rates in cross-layer resource allocation is addressed in [8],
and an improved conjugate gradient method under given
power constraint is presented as well.

In the work mentioned above, all the resource allocation
methods try to maximize the global utility function. There
are also several resource allocations that run in a distributive
way, for instance, ReSerVation Protocol (RSVP) was used to
allocate bandwidth among multiple multimedia streams over
internet based on the Traffic SPECifications (TSPECs) [9];
air time fairness allocates transmission time proportionally
to TSPECs to eliminate the passive impact of cross-layer
strategies employed in different transmitters [10]. Propor-
tional fairness was introduced [11] to allocate resources
based on users’ rate requirements, and further applied to rate
controlling [12]. In [1], the Kalai-Smorodinsky Bargaining
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Solution (KSBS) was used to allocate rates amongst multiple
video users such that the utility achieved by each user is
proportional to the maximum utility achievable.

Both maximization based and distributive policies work
in a competitive way as explained by the following two
examples. Utility maximization can actually be viewed as a
process in which all users compete for resources according
to the criteria that the Highest Quality Improvement the
Highest Possibility Resources (HQIHPR) [2]. Using KSBS,
users compete for resources to make efficient use of the
resource and achieve higher utility. The disadvantage of
these competitive policies is that they do not consider user’s
quality of service (QoS) satisfication degree, meaning that
they are not suitable for multimedia services. To address
this disadvantage, we propose an optimal and fair policy for
multimedia resource allocation, which introduces a judicious
mixture of competition and cooperation, such that user’s
QoS satisfication degree is taken into account. The idea
behind this judicious mixture is Co-opetition, a concept
from economic [13]. Co-opetition has been employed in
decentralized resource management [14] and collaborative
multimedia resource allocation in our preliminary work
[15]. It is shown that co-opetition can provide better tradeoff
between system efficiency and fairness.

Main contribution of this paper relies on the proposal
of a novel co-opetition strategy for RRA in multimedia
services, which is both optimal and fair. In this paper,
optimal represents sum utility maximization (SUM) subject
to the constraints on individual utility. It is worth to mention
that the value of optimal sum utility might be smaller
than that achieved by the unconstrained SUM, due to the
constraints. Fair is defined to describe that, compared to
unconstrained SUM, our strategy can result in fairer resource
allocation. The additional fairness from our strategy comes
from the individual utility constraint. Recall that the uncon-
strained SUM allocates resources in a competitive way, which
has no constraint on individual utility. Our co-opetition
strategy suggests a judicious mixture of competition and
cooperation in resource allocation. We formulate the co-
opetition strategy mathematically and solve it efficiently
using LOD method. This mathematical formulation would
help to get a better insight into the essential of competition
and cooperation behaviors of users in RRA. We apply our
strategy to wireless resource allocation for multiuser video
transmissions and evaluate its performance by comparing
with existing competition based mechanisms.

The rest of this paper is organized as follows. In Section 2,
we formulate the co-opetition strategy, and in Section 3 we
implement it by employing LOD method. In Section 4, we
apply the co-opetition strategy to power allocation amongst
multiple video users together with numerical results for
performance evaluation. Conclusion is drawn in Section 5.

2. Problem Setup

We consider RRA over a downlink transmission with N
users. We assume that the resource available at PHY layer
is denoted by X. Denote R C R, as the rate region

achievable at PHY layers, and assume that R is convex and
compact. Convexity assumption means that time-sharing
mode is enabled at PHY layer. Let U,(r,), 7, € Ro~+ denote
the user #’s utility function, which is assumed to be concave,
increasing, and differentiable. An example of utility is PSNR
for video services [16]. Each user has a minimum desired
rate, denoted by ry,, which should be at least guaranteed.
That means

Tn = Ton (1)

otherwise, user #n would not be served. A competition strat-
egy should be employed to develop our co-opetition strategy.
In this paper, we focus on optimization-based strategy, that
is, sum utility maximization (SUM). Investigation based
on distributive and competition-based strategies will be
accommodated in our future work. For SUM, system utility
function U : Ré‘ﬂr — R+ is defined as

N
U(r) = > Un(ra), (2)
n=1
where r = (r1,...,ry). Hence, SUM can be written as
maxU(r), s.t.r, = ron. (3)
reR

To allow co-opetition, we first define the notion of
satisfied user. A user is called satisfied user if its achieved QoS
is above or equal to predefined QoS threshold, Uy,. Then the
basic idea of co-opetition can be described as follows. During
the process of RRA, in which all users compete for resources
to achieve SUM, users who have achieved Uy, stop competing
temporarily, until all resources have been allocated or all
users have been satisfied. Denote rate required by user # to
achieve Uy, with 7,1, and denote 7, as (s - ., 'Nm). We
distinguish the following two cases.

(1) If fy, € R, co-opetition allocates resources such that
the minimum utility of all users is Uy, that is, U, >
Uth> Vn.

(2) If i & R, co-opetition allocates resources such that
the maximum utility of all users is Uy, that is, U, <
Uth> Vn.

Thus, our co-opetition strategy reads

max U(r),

reRr

%

s.t. 1y = 1on,
(4)

U, = Up, Vn, if ry € R,

2

U, < Up, Vn, if rip & R.

Introducing Uy, provides better tradeoff between system
efficiency and fairness. For example, for video services in
which PSNR is chosen as a QoS metric, Uy can be set
corresponding to PSNR = 35 dB, above which user could
achieve good video quality and user’s video satisfaction
degree increases very slowly as PSNR increases. In this
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case, rate, which can translate to resources at PHY layer,
is more important to unsatisfied users. In the following,
we investigate how the LOD method is used to solve (4)
efficiently.

3. LOD Method

LOD is a well-defined technique for network utility maxi-
mization (NUM) by decomposing the NUM into a set of
subproblems coupled with each other. Each subproblem is
associated with a protocol layer, in which it can be solved
separately [17].

3.1. Rewrite Co-opetition Strategy. We assume it is known
whether 7, can be achieved or not. In the case of rjy € R,
U, > Uy, translates into r, > r,m, and U, < Uy, translates
into r, < 1,4, otherwise. We also assume that

Tuth > Ton (5)

always satisfies. Then constraints in (4) can be rewritten as

ﬂhSFSOO, ifr:hEJR,
S (6)
0<r<rm IfraéR,

where 7 = (r1,...,r8),70 = (to1,...,7on)( In the case of

ro & R, total resource available cannot guarantee all users the
minimum resource required, and some users will deny to be
served. In this paper, we assume the minimum resource of all
users can be always guaranteed, that is, 7y € R.) . We observe
that, no matter i, € R or not, the constraint has the same
form of

Tlow < 7 < Tupps (7)
with Flow = (115> 1Iv)> Tupp = (Fut>-..> run). Hence, (4) can
be rewritten as

max U(r), S.t. Fow <7 < Fupp. (8)

reRr
3.2. Dual Decomposition. To solve (8) with LOD, (8) is firstly

modified by introducing an additional variable s, then the
primal function (8) reads

)

After introducing the Lagrangian factors

A=)
) (10)
M=y A0

the Lagrangian function of (9) is written as

S — Tow

erdd)=vo () (D)

with X > 0,)[/ > 0. Thus, the dual function is

g(/{,)_t”) =squ(stf,X,X’), (12)

The maximization in (9) can be solved by searching the

optimum A and A7 such that the dual function is minimized,
that is,

I}Siflg(l,/ll). (13)

Based on the analysis afore, (12) can be decomposed into
two subproblems as

-

(L) =ga (LA) g (1), (14)

where

- -

gA(A,/\/) = mz}x(U(s_) + (X’T - XT)S_'— X’Tﬁow)) (15)

gr (/1') = r};aﬂ}fﬁf. (16)

r<fupp

For given A and A/, the above two-maximization can be
solved independently at APP layer for (15) and at PHY
layer for (16). So far, we have transformed the original
maximization, (8), into its dual problem.

3.3. Solving (13), (15) and (16). As mentioned above, for

each fixed A and /{', (15) and (16) have to be solved. Denote
G(s) as the item to be maximized in (15), that is,

G(s) = U(E) + (1T = A7)5 = A Fign. (17)
Then G(s) is continuous and differentiable, and further
denote Sy as set of s = (s1,...,sy) such that

So—{f'ags(;) —O,n—l,...,N}. (18)

Then (15) can be solved via efficiently selecting the optimum
s*, such that

§* = argmax G(s). (19)

S‘ESO

Maximization of (16) refers to weighted sum rate maxi-
mization (WSRMax) at constraint of maximizing individual
rate for certain PHY layer setup. r € R is a general constraint
usually corresponding to given power or bandwidth. 7 < rypp
can be translated into individual constraint. Recall that, R is
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| 1. Original optimization |

|2. Determine whether all users can be satisfied or not |

Dual decomposition

3. LOD method

Outer iteration: subgradient method

gA An > /1;; gp
Inner iteration
APP layer PHY layer
optimization optimization

FiGure 1: Illustration of the implement of co-opetition strategy.

assumed to be convex and compact, thus the domain of (16),
denoted with R/,

R’:RO{F

F < Fapp | (20)

is also convex and compact. WSRMax over R’ is a well-
researched problem and there are many efficient solutions for
a wide range of PHY layer setups [3, 8, 18].

Hereafter, we assume that for each /{ and X’, (15) and

(16) can be solved efficiently. Then the optimum A and As
can be determined, for example, using either sub-gradient
method, cutting plane method or ellipsoid method [19]. In
Section 5, we would show how to solve (13), (15) and (16)
more concretely through power allocation.

3.4. Determining Whether ty, € R or Not. Note that is i,
not necessarily achievable. Whether 7, € R or not can be
determined by userwisely computing the minimum resource
required to achieve ry,. Fortunately again there are several
solutions available for different scenarios. For example, in
[20] a generic procedure, CLARA, was presented for cross-
layer resource minimization subject to a set of constraints
on the overall QoS. [21] proposed an iterative algorithm
which monotonically converges to the unique allocation
with optimal sum power efficiency. This is actually another
hot topic as opposed to utility maximization in this paper,
namely, cost minimization to achieve certain QoS.

3.5. Summery of LOD Method. In this Section, we have
mapped our co-opetition strategy, (4), to a standard con-
strained optimization over convex domain, that is, (8).
Moreover, importantly, through applying the LOD, many
well-researched solutions are available which make our
co-opetition strategy more applicable. Finally, since the
resource allocation in this paper can be formulated as
a convex optimization, the LOD method has worst-case
polynomialtime complexity [17]. It will be shown that the
LOD method converges within limited iterations. Figure 1

is a brief description to apply the co-opetition strategy.
We investigate how co-opetition can be applied to power
allocation in detail.

4. RRA Using Co-Opetition

In this Section, we first describe the system scenario, and
then illustrate the co-opetition strategy in detail. Finally,
numerical results are presented for performance evaluation
through comparing with competition-based strategy.

4.1. System Setup. We consider downlink N-user video
transmission in a cell with a base-station (BS) which acts
as the central spectrum manager (CSM). At APP layer, users
transmit same or different video sequences. We choose PSNR
as user’s utility as it is the only widely accepted video QoS
metric and choose the rate-distortion (RD) model proposed
in [16] to describe user’s average RD behavior as this model
applies well to the state-of-the-art video encoder [22]. Then
user’s utility can be defined as

255%(r, — Roy)
DOn(rn - ROn) + Un ’

Uy(r,) = 10 log (21)

where Ry, Do, and y, are sequence parameters, which are
dependent on video sequence characteristics, such as spatial
and temporal resolution, delay constraints as well as the
percentage of INTRA coded macro-blocks [1, 16]. Dy, is the
minimum rate that should be at least guaranteed for user n,
therefore in this work we assume that r,, > Roj.

At PHY layer, the BS has limited transmit power, Pyo.
Let P = (Py,...,PN) represent the power allocated to all the
users, thus we have ZI::]P,, < Pi. Each user is assumed
to experience an AWGN channel, whose capacity, C,(P,), is
given by

by
Cn(Pn) =B '10g2(1+0_2), (22)

n,n

where B and 02, denote bandwidth available and receiver
noise power, respectively.

It is assumed that private information of each user,
including ROn,DOn,/«tn,Grzl,n, are sent to CSM, where power
allocation is made. Then CSM sends back the decision of
power allocated to each user. Note that, more complicated
PHY layer setups can also be taken into account, such as
multicarrier and multiple antennas systems over Rayleigh
fading channels. However, employing simple PHY layer setup
would help to highlight the focus of this paper, investigating
optimal and fair criteria for RRA. It is worth mentioning
that the co-opetition strategy can be easily extended to other
scenarios.

4.2. Co-Opetition Strategy.

4.2.1. CO-opetition Formulation. According to the common
sense in the field of video signal processing, the PSNR
threshold can be set to different values, such as 40dB,
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35dB, or 32 dB, representing perfect, good and acceptable
video quality, respectively. The PSNR threshold can also be
set dynamically according to the total resources available,
the number of users, and so forth. As an illustration, we
choose QoS threshold as PSNR = 35dB corresponding to
good video quality, that is, Uy, = 35 dB in (4). Denote

};th as (Pith, ..., Pnm) representing power required by users
to achieve PSNR of 35 dB. Using co-opetition strategy, if

sum(lgth) < Piot( sum(ﬁth) means calculating the sum of

all members in Py, i.e., EQ\LIP”)&,.) , the lower and upper
bounds of achievable PSNR are set at Uy, = 35dB and
Uypp = 0, respectively, and Uiy = —o0 and Uypp = 35dB

otherwise. Correspondingly, when we have sum(};th) < Piots
lower and upper bounds of rates are figw = (F1ths...>"N.h)
and rypp, = oo, respectively, and rigw = (Roi,...,Ron) and
fupp = (rith>-..>"N,m) otherwise. In this paper, it is easy
to calculate Py, g, 7, corresponding to PSNR threshold, for
both (21) and (22) are invertible and monotonic increasing
functions. Thus, given PSNR threshold, sum(ﬁth) < Py Or
not can be easily determined, and consequently, both ri,y and
Tupp are known.

Given each user’s utility definition in (21) and (22),
system utility writes

N
b\ _ 2552(Cn(Pn) — ROn)
US (P) a 10% log DOn(Cn(Pn) - ROn) +,“n ’ (23)

where C,(P,) refers to as r,. We assume that capacity
approaching channel codes is employed at PHY layer. Then
our co-opetition strategy writes

-

max U (P) N

N
S.t. an < Ptot) (24)

n=1

Tow, < C < Tupp

where C = (Ci(P1),...,Cn(Py)). Note that (24) has the
same form as (8). The first constraint on the sum of the
power (24) corresponds to r € R in (8).

4.2.2. The Implement of Co-opetition. Using LOD, maximiza-
tion of (24) can be decomposed into

2552(Cn - ROn)
Dy (cy — Ron) + Un

N
max » 10log
¢ n=1

N (25)
+ Z ((A; - An)Cn - A;ﬂ%,low)

n=1

where ¢’ = (ci,...,cn), and
ol P
max BZ/\,,]O&(I + 02"),
n=1 n,n

N (26)
s.t. zpn =< Ptot
n=1

Py < Pyuppy V1

where P, ,pp is defined as the upper bound of transmit power
of user n corresponding to 7, ypp.

The optimum variable of (25), ¢* = (cf,...,c}), can be
obtained by simply making the partial derivative ofg, and let
it equal to 0,

10p,

— 2 - ~ 77 2 \e1n
Dou(cn = Ron)” + pin(cn — Ron) (A, — A,)In10

0, Vn.
(27)
Then we have

U3 +4Doy - tmp — yy,
. on P T H (28)

2D0n ’

C: = Ron +

where tmp = 10u,/(A, — A;,).

As mentioned in Section 3.3, (26) can be solved at PHY
layer by the weighted sum rate maximization with thecon-
straints of total and individual power. Note that C,(P,) in
(22) is concave and increasing with respect to P,, thus the
item to be maximized in (26) is also concave increasing. The
domain of (26) is formed by two linear inequalities, each
of which forms a convex domain together with P, > 0, Vn.
Thus the domain of (26) is also convex, and (26) is accessible
to conventional convex optimization techniques, such as
feasible direction method and projected gradient method.
In this paper the feasible increasing direction method is
employed (see the Appendix for details).

So far, given fixed A, A/, two subproblems, (25) and (26),
have been solved. We denote the optimal values of them
with gi (X, /) and 4 ) respectively. In the following, the
optimum 1, /{/, denoted by X*,X’*, will be determined such
that the sum of gf (/{, ):/) and gp ():) is minimized, that is,

(X*,X’*) = argmingy (/{, )I/) +gp (/{) (29)
PwY

Note that, the dual function might not be differentiable or, in
other words, (29) is not accessible to classical computational
method, such as steepest descent method. In this paper we
employ the sub-gradient method, which applies to both
differentiable and nondifferentiable dual functions. Much
like the feasible increasing direction method, sub-gradient

method also searches the optimal A and A’ iteratively. The
main iteration writes

Yk+1 \k
i = 5 — akgﬂ‘, (30)
Ark+l 1k
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TABLE 1: test video sequences (videoID, video type, temporal level (TL), frame rate).

1D Video sequence 7 D, Ry
1 Foreman (CIE, TL = 4, 30 Hz) 5232400 0 0
2 Coastguard (CIE, TL = 4, 30 Hz) 6329700 4.3 0
3 Mobile (CIE, TL = 4, 30 Hz) 38230000 1 44040
4 Foreman (QCIE TL = 4, 30 Hz) 2653300 0 19614
5 Foreman (CIF, TL = 4, 15Hz) 2760000 1 20720
6 Foreman (CIE, TL = 2, 30 Hz) 4610000 3 55080

PSNR (dB)

33+

100 200 300 400 500 600 700 800
Total transmit power, Piot

—o— NBS_SP (Foreman)
-0+ NBS_SP (Mobile)

—&— Co-opetition (Foreman)
--g-- Co-opetition (Mobile)

FiGure 2: Plot of individual PSNRs achieved by the co-opetition,
NBS SP. User 1: Foreman (CIE, TL= 4, 30 Hz), user 2: Mobile (CIF,
TL = 4,30 Hz).

where of is the step-size which can be set as constant, and
g* denotes the sub-gradient at (Ak,17%). Note that, P =

(Pyy..., PN)T at ();k,);/k) rightly forms a sub-gradient, so the
sub-gradient can be obtained almost without any cost.

4.3. Numerical Results. In this subsection, the proposed co-
opetition strategy (co-opetition) is evaluated by comparing
with the strategy proposed in [1], which allocates resources
using the Nash bargaining Solution of Same bargaining
Power (NBS_SP). For the sake of comparison, we use the
same test sequences as those in [1], and we list the parameters
in Table I for reader’s convenience.

4.3.1. Comparison in Terms of Individual PSNR. In this
experiment we focus on individual PSNRs in the case of
two users. At APP layer, user 1 transmits Foreman sequence
of CIF resolution at 30 Hz, and user 2 transmits Mobile
sequence of CIF resolution at 30 Hz. At PHY layer, we set the
bandwidth to B = 250 kHz, and let the receiver noise power
tobedZ, = 50and o7, = 1 for user 1 and user 2, respectively.

1:  Setk=1andPk =0, Vn, Precision e = 10
Repeat:

2: Determine Vg§ using(A.1)

3. Determine d according (A.4) and(A.5)

4: Determine o using(A.6)

5. Compute P! using(A.8)

Until: I(Vglg)quk\ <&

ArcoriTHM 1: Feasible increasing direction method.

Total transmit power Py varies from 50 to 800. Figure 2
shows the individual PSNRs achieved by these two schemes.
If NBS_SP is employed, user 1 can achieve higher PSNR that
user 2 or, in other words, it is very hard for user 2 to achieve
satisfying video quality (PSNR > 35). In the case of Py >
200, user 1 can always be satisfied. Note in this case, user 1’s
video satisfaction degree increases very slowly as the PSNR
increases, but significantly for user 2. Taking this observation
into account, co-opetition imposes individual constraint
on each user (see (4)). For example, with Py = 200,
which can not satisfy two users simultaneously, co-opetition
decreases user I’s PSNR to 35dB, and consequently, user
2’s PSNR achieves an improvement about 1dB. If have
350 < Py < 650, user 2’s PSNR is improved such that
user 2 is just satisfied. Note, in these two cases, co-opetiton
keeps user 1 satisfied, while user 2 either be satisfied or
achieve much QoS improvement. It is worth to mention
that, under a given total transmit power constraint, NBS_SP
can achieve higher total PSNR of two users than that in co-
opetition. This is because the NBS_SP maximizes the sum
of PSNRs without taking the individual PSNR constraints
into account. The co-opetition works in quite a different
way. It maximizes the sum of PSNRs under the constraints
of individual PSNR. Therefore, the co-opetition is not only
optimal ( As stated in Section 1, in this paper the optimal
means sum utility maximization under certain constraints,
differing from unconstrained optimization.) , but also fairer
than NBS_SP. This argument is further verified with other
experiments

4.3.2. Comparison in Terms of the Number of Satisfied
Users and Minimum PSNRs. We study a more complicated
scenario with nine users, each transmitting a sequence ran-
domly selected from Table 1. They also experience different
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Number of satisfied users

200 400 600 800 1000 1200
Total transmit power, Piot

—8— Co-opetition
—6— NBS_SP

(a)

Minimum PSNR (dB)

22

200 400 600 800 1000 1200

Total transmit power, Pyot

—8— Co-opetition
—6— NBS_SP

(b)

FiGURE 3: Plot of the number of satisfied users (a) and minimum PSNRs (b) achieved by co-opetition and NBS_SP in the case of nine users.
Id of sequences transmitted are 3, 6, 1, 3, 5, 1, 3, 2, 2, respectively. These sequences are randomly selected from Table 1. Bandwidth B is set
to 400 KHz for all users, and the receiver noise power are set to 16, 7, 5, 1, 19, 12, 24, 12, 11, respectively, again by random generation.

Number of satisfied users

34 dB 36 dB

500 1000 1500 2000 2500 3000

Total transmit power, Pyo

—&— Co-opetition
—6— NBS_SP

(a)

36

34

32

30

28

Minimum PSNR (dB)

26

34dB
24 : :

27 \ \ \ \ \
500 1000 1500 2000 2500 3000

Total transmit power, Py

—8— Co-opetition
—6— NBS_SP

(b)

FIGURE 4: Plot of the number of satisfied users (a) and minimum PSNRs (b) achieved by NBS_SP and adaptive co-opetition. System setup is
the same as that of Figure 3. 32 dB, 34 dB, and 36 dB refer to PSNR thresholds corresponding to different Py.

receiver noises randomly generated from 0 to 25. Figure 3
shows the number of satisfied users and the minimum
PSNRs achieved by NBS_SP and co-opetition. We observe
that, the co-opetition always outperforms the NBS_SP. For
example, in the case of Py = 1250, co-opetition can make
all users satisfied, but only 6 users satisfied by NBS_SP.
With respect to the minimum PSNR, which is an important
criteria evaluating system in the worst case, improvement of
around 6 dB can be achieved when Pi,; = 200. Note that,
NBS_SP can only make minimum PSNRs from about 25 dB

to 29 dB, corresponding to poor video quality, while above
32dB for co-opetition leading to acceptable video quality.
Recall that, the co-opetition implies a judicious mixture
of competition and cooperation. Through competition,
the best system efficiency can be achieved. However, pure
competition, for example, NBS_SP, might make very high
PSNRs for some users, for example, users transmitting
simple video content or having good channel quality, but low
PSNRs for the others. This disadvantage is eliminated by co-
copetition through introducing cooperation among users.
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37

PSNR (dB)

36.5 b

35.5 b

358—= ®
0 5 10 15

Number of iterations

—8— Foreman
—6— Mobile

—— Optimal average PSNR
—*— Average PSNR

(®)

FiGUre 5: Plot of individual PSNRs and average PSNR. User 1:
Foreman (CIF, TL = 4, 30 Hz), user 2: Mobile (CIF, TL = 4, 30 Hz).
(a): Py = 200 and (b): Py, = 500.

Again, this experiment indicates that co-opetition provides
a good tradeoff between system efficiency and fairness.

4.3.3. Adaptive Co-opetiton Strategy. In previous experi-
ments, the threshold PSNR is fixed to be 35dB. In order
to consider more fairness in resource allocation, adaptive
threshold can be employed. As an illustration, we present
a simple method to set the threshold PSNR. More optimal
and fair scheme for determining the threshold PSNR will be
investigated in our future work. We employ PSNR = 32 dB,
34 dB and 36 dB to represent acceptable, good and very good
quality, respectively. Denote resources required by the three

levels with R, Ry, Ry, then threshold PSNR, PSNRy,, can be
determined as follows

PSNRth = 32 dB, lf Rtot < R 5

PSNRy, = 34dB, if Ry < Ryt < Ry, (31)

PSNRy, = 36dB, if Ry < Rt <Ry,

where Ry is denote as total resources available.

Same system setup as that in previous experiment is used.
We observe from Figure 4(a) that, co-opetition employing
adaptive PSNRy, still outperforms the NBS_SP. Moreover,
adaptive PSNRy, is more concerned with fairness than that
using fixed threshold. For example, in the case of low
resource, for example, Pt < 500, PSNRy, = 32 dB is selected.
Consequently, an improvement of about 3 dB and 2 dB can
be achieved for the minimum PSNRs compared to NBS_SP
and co-opetition using fixed threshold (see Figure 3(b)),
respectively. Note, these improvements are significantly
important for users having low PSNRs. Although these
improvements come from further decreasing the maximum
achievable PSNR, it can provide fairer resource allocation.
For instance, in Figure 4(a), it is very easy for all users to
achieve similar quality level using co-opetition. Moreover,
PSNRy, can also be set to a very high level, for example, 36 dB
in the case of Py > 2500. An important advantage of this
is that all users can be guaranteed high video quality, but
cannot by fixed PSNR threshold and NBS_SP.

4.3.4. Optimality Verification. Our co-opetition is also opti-
mal. As stated in Section 1, optimal means sum utility
maximization (SUM) under individual constraints. The
optimality is verified by experimental analysis in the case
of two users. Results of two examples of them are shown
in Figure 5(a) and Figure 5(b). System setup is the same as
that in Figure 2. The optimal average PSNRs are achieved
by exhaustive search. Recall that the LOD method consists
of inner and outer iterations. In each inner iteration, the
power allocation is initiated corresponding to (Ro;, Rg) for
Figure 5(a) and (rym,72m) for Figure 5(b). In the outer

iteration, the values of A and A/ are initialized randomly.
Figures 5(a) and 5(b) show the results of outer iterations.

From these two figures, we can see that our strategy is
optimal under individual constraints. In Figure 2, Pis = 200
cannot satisfy two users simultaneously. Therefore the PSNR
of user 1 is pegged at the threshold PSNR = 35dB. The
optimal average PSNR can be achieved after 14 iterations. In
Figure 5(b), Pior = 500 can make satisfying PSNR for both
the two users. We observe that, user 2’s PSNR has only little
fluctuation, and converges to the threshold. At the optimal
power allocation, both the two users’ PSNRs are above or
equal to the threshold. All these coincide with the results in
Figure 2.

4.3.5. Summarization. To summarize, threshold PSNR plays
importantly in adaptive/nonadaptive co-opetition strategies.
It provides radio resource allocation (RRA) with more
flexible tradeoff between system efficiency and fairness
among users.
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5. Conclusion

In this paper, we have presented an optimal and fair co-
opetition strategy for multiuser multimedia RRA. Following
contributions and conclusions have been made and drawn

(1) We formulate the co-opetition strategy as sum utility
maximization under constraints from both APP and
PHY layers. APP layer constraints imply that co-
opetition takes the QoS satisfaction degree into
account in RRA.

(2) We show that the co-opetition strategy can be
implemented efficiently through applying the LOD
method. Therefore the co-opetition strategy can
easily apply to real time multimedia services.

(3) We apply the co-opetition strategy to power alloca-
tion among multiple video users. Numerical results
indicate that co-opetition can result in an improved
number of satisfied users and significant improve-
ment in minimum PSNRs as well. A simple method
for adaptively determining threshold PSNR is also
presented, such that fairer resource allocation can be
achieved.

(4) We conclude that co-opetition, that is, mixture of
cooperation and competition, is more applicable to
multiuser multimedia RRA than pure competition
based strategy. Co-opetition strategy is not only
optimal, but also fair.

Our future work is to design more feasible co-opetition
strategy for different system setups, including multicarrier
and multiple antennas systems. We also wish to extend our
preliminary work to future heterogenous network, in which
users not necessarily run in a collaborative way.

Appendix

Feasible Increasing Direction Method

Feasible Increasing direction method iteratively searches the
optimum variable, p* = (Pf,...,PY), by in each iteration
selecting a feasible increasing direction and update step size.
Denote Pk = (P{‘,...,Pllﬁ,) as power allocation in the kg
iteration, then Pk satisfies the constraints in (26). Denote
d7‘ e RN, a* as the direction and step size employed in the ke,
iteration, then d7‘, ok and PF*! can be determined as follows.

Denote gp(ﬁ) as the item to be maximized in (26), then
the gradient of gp(I;) at I;k, denoted with V gﬁ, writes

ogh agk\ "
k_ [ 98P 8p
Vgp = <8P1""’8PN) , (A.1)
where

8g§ B BA,
oP, (ag,n + P,,)lnz'

(A2)

If P* is strictly feasible, that is,

N
an < Pyot
n=1 (A3)
Py < Puuppy n€{L,...,N}
then set
d* = vgk. (A4)

Otherwise, denote l(};") as set of indexes of active con-
straints, for example, if P, = P,yp,1 < n < N, then

n € 4(P5). 0 € L(P¥) refers to SN P, = Py Then dk
can be obtained by solving following maximization through
linear programming,

max (Vgﬁ)Tcﬁ‘

st.dy <0,Vn € 1(PY),
(A.5)

M=

d, <0, if0 e l(ﬁk)

n=1

-1l=<d,<1,ne{l,...,N}

If (Vglg)Ttﬁ‘ = 0, then P* is optimal. Otherwise, compute
o by solving following one-dimension maximization,
max ¢(ak) =gp (};k + ockcik)
(A.6)
st 0<af< Kmax>

where
+o00,
. N
if >d,<0,d <0, Vn,
n=1
y k
Ptot_ Z Pm P _ Pk
min m=1 n,upp n
N b k b
®max =1 Zmzl dm dn

it 0,n¢1(PF),

£ 0ca(P) nea(R).
(A7)

Given d* and ak, PX*1 can be set as
PR+l = Pk gk gk, (A.8)

Then the feasible increasing direction method can be sum-
marized in Algorithm 1.
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1. Introduction

It is well known that the capacity region of broadcast ergodic
fading channels is achieved by superposition coding at the
transmitter and successive interference cancellation at the
receivers (SC-SIC). Using SC-SIC, the transmitter transmits
simultaneously to all users using multiresolution coding,
and the receivers perform successive decoding. Although
optimum in terms of capacity, SC-SIC is complex, and it is
not necessarily the best method to use in practical systems
because decoding and channel estimation errors can degrade
its performance significantly [1].

More feasible are the orthogonal TDMA strategies based
on users opportunistic scheduling, where a single user is
selected to be transmitted at each fading state. Once a user is
selected, the transmitter allocates all the available resources
to him (bandwidth and power) utilizing a code adapted
to the channel state. Since the channels between the base
station and the users usually fade independently, this scheme
effectively exploits the multiuser diversity inherent to the
broadcast (BC) channel (see, e.g., [2] and references therein).
Opportunistic scheduling is commonly used in modern

wireless standards as IS-856 (also called CDMA 2000 1xEV-
DO), mobile WIMAX, and HSPA [3-5].

In multiuser diversity, the resulting long-term users’
rates are determined by the specific scheduling policy. Many
criteria have been proposed to schedule the users. Among
them, we focus on the so-called SNR-based scheduling
policies where the user with the highest weighted signal-to-
noise ratio (SNR) is selected to be transmitted. A particular
case is the so-called “absolute SNR-based scheduling” (ASS)
[6], where the user with the highest channel gain at
each channel state is selected. It is well known that ASS
maximizes the overall throughput (sum-rate) [2]. Although
ASS achieves the sum-rate, it favors users who have good
average channel conditions producing quite different indi-
vidual users’ rates in asymmetric broadcast channels. On
the other hand, the “normalized SNR-based scheduling”
(NSS) schedules the users according to the instantaneous
channel gain normalized by its own average [6, 7]. NSS
strategy favors users with poor average channel conditions
and penalizes advantaged users producing similar users’ rates
but at expense of a lower overall throughput. In fact, there is
a tradeoff between maximizing the overall throughput and
achieving throughput fairness. Other common scheduling
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criterion is based on the instantaneous achievable rates
instead on the SNR. In this case the base station transmits to
the user with the highest normalized achievable rate [2, 8, 9].
Since the achievable rate is monotonically increasing with the
SNR, both scheduling criteria are interchangeable. Further,
in BC channels the power constraint at the base station is
usually based on the maximum power rather than the long-
term average power. Therefore, we assume that the transmit
power is constant.

Some performance analyses of opportunistic scheduling
can be found in the technical literature. In [6, 7] closed-form
expressions for the achievable rates using ASS and NSS are
derived. In [10] analytical expressions for the sum-rate of
BC channel are derived using ASS and considering different
adaptive power allocation strategies. All these performance
analyses are restricted to specific scheduling algorithms.

In this work we derive a general closed-form expression
for the rates achievable by any SNR-based scheduling
algorithm. It generalizes other expressions proposed in the
technical literature that are restricted to a single specific
scheduling strategy (e.g., ASS and NSS). Each scheduling
algorithm is parameterized by a set of weights assigned
to the users, so the user with the best weighted channel
is selected at each channel fading state. There is a point-
to-point correspondence between the scheduling weights
and the boundary points of the achievable rates region.
The derived expression explicitly describes this relationship.
The expression is a simple function of the channel fading
parameters, the transmitted power, and the scheduling
weights. With the help of this function we solve some
interesting inverse problems. For example, the computation
of the minimum required transmit power and the optimum
scheduling strategy to achieve a given users’ rates. Other
problem considered is the computation of the optimum
scheduling preserving a given relationship among the users’
rates for a given transmit power. These inverse problems are
formulated as systems of nonlinear equations involving the
derived expression.

The rest of the paper is organized as follows. Section 2
shows the BC ergodic channel model. Section 3 presents
the parametrization of the SNR-based scheduling policies,
where the ASS and the NSS are particular cases. In Section 4
we derive the closed-form expression for the achievable
users’ rates as a function of the channel fading statistics, the
transmit power, and the scheduling algorithm. In Section 5
we pose the inverse problems as set of nonlinear equations
involving the derived expression. Simulation results are
presented in Section 6. Finally, conclusions are drawn in
Section 7.

2. Channel Model

A narrowband broadcast channel with K users is considered.
We assume that the transmitter and receivers have a single
antenna. The transmitter is subject to an average power
constraint denoted by P. We assume independent and iden-
tically distributed (i.i.d.) AWGN noise at the Rx antennas,
with single-sided power spectral density denoted by N, for

all users. The receivers’ bandwidth is denoted by B, so the
noise power at the receivers is BNy. The baseband-equivalent
channel response between the transmitter and the kth user
is denoted by hy, k = 1,...,K. We assume that the hy are
independent and differently distributed (i.d.d.) zero-mean
circularly symmetric complex Gaussian (ZMCSCG) random
variables. Then, the channel power gains g = |hie® will
be exponentially distributed with cumulative distribution
functions (c.d.f.) given by

Fk(x)zlexp<x>, x =0, (1)

8k

where g, denotes the average power gain for the kth user
channel: g, = E{gi}. The probability density functions
(p.d.f.) will be

= %, x> 0. (2)
8k

We assume, without loss of generality, that the channel
is normalized so g'1 = K, where g = [gl,gz,...,gK]T and
1 is the all-ones vector of size K. Under this normalization,
the SNR averaged for all users and fading states will be p =
P/BNj. Note that the average SNR and the transmit power
are interchangeable.

3. SNR-Based Scheduling

The SNR-based scheduling strategies can be parameterized
by a set of normalized weights associated with the users, so
the system selects the user with the highest weighted channel
response.

The set of all possible weight vectors is the subset in RX
given by

SW={w:[wlwz---wK]leS>O,wT1=K}. (3)

Then, at each channel state, the system selects the user
according to arg max {7}, where #; = wsg;.

In particular, the ASS and the NSS algorithms correspond
tow = 1 and w = al - /§g, respectively, where a is a
normalization factor to fulfill the constrain of (3), and -/
denotes elementwise division.

Different scheduling weights lead to different achievable
users’ rates. Therefore, there is a one-to-one correspondence
between all the possible weight vectors and the points on the
boundary of the rates region. The achievable rates using ASS
and NSS are two of such points.

4. Achievable Rates

Let us define the following effective channel gain for the sth
user:

0, Ns < H—s
gs* = 1 (4)
g s > N—s
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where r7_; = maxy z s {wgk}. The p.d.f. of g* can be expressed
as follows:

fs* (x) = PrOb{r]s < ’775}6(36) + fs(x)ﬁfs (st)r (5)

where §(x) is the Dirac delta function, f;(x) is given by (2),
and F_(x) is the c.d.f. of #_ given by

o= [15(2)

k#s

(6)
K
Aol il
k+#s (ngk)
This expression can be expressed as follows:
Foi(x) = Z ¢i(1— i) exp (— xq"1i), (7)

ies

where S is the set of binary words of length K, ¢; = (- 1)iT1,
is denotes the sth component of the vector i, and q =

[(@,w) ' @w) "+ - (Gewx) 1", From (7) and (2), the
second term of (5) reduces to

. 7 _ Ts
 Dies Cils exg( xwsq'i) R
N

F)F ((xw,) =

The rate for the sth user will be the rate of the effective
point-to-point channel with channel gain gF. Then, for
a given channel distribution g, scheduling vector w and
average SNR p, the achievable rate by the sth, user will be

Ri(g,w,p) = J:logz(l + px) [ (x)dx
i )
= Jo log, (1 +px)f5(x)ﬁ,s (xws)dx.

Substituting (8) in (9), this can be expressed as follows:
T-
E, (qu ‘), (10)
P

where E;(-) denotes the exponential-integral function of
the first order [11]. Equation (10) explicitly provides the
coordinates of the boundary point of the rates region relative
to the scheduling vector w, for a given channel distribution g
and average SNR p. It has some interesting properties.

. lsexp (wqi/p)
' wg,(qTi)In2

RS(g’W)P) == Z
i€S,i#0

(i) Ry(g,w,p) is always a continuous strictly increasing
function of p, for any g and w. It is demonstrated
from (9) that the log function is continuous strictly
increasing and that f*(x) is positive and continuous.
Therefore, for a given channel distribution g, the
boundaries of the rates region for different values of
p never overlap.

(i) For any g and p the rates region is convex.

SNR =20dB

R, (bps/Hz)
w

SNR=10dB

'\.\ SNR = 0dB
0 1 1 1 1 1
0 1 2 3 4 5 6
Ry (bps/Hz)

Ficure 1: Ergodic rates’ regions for a two-users channel when
3,/g, = 3dB.

SNR =20dB

R, (bps/Hz)
(3]

SNR =10dB
1 L
SNR =0dB
0 [ f f f f f
0 1 2 3 4 5 6 7
R, (bps/Hz)

Fiure 2: Ergodic rates’ regions for a two-users channel when
2,/%, = 10dB.

(iii) R(g,w, p) is continuously differentiable in the con-
vex region S,,. The derivatives with respect to w are

oR, ciisixgws | e E1(x)(x—1) —1
owr S0 wig.g,In2 x2 ’
OR; Cils ( i T,) eEi(x)(x—1) -1
= — — -q'1i 3 N
ows icoir08s In2\ g w; X

(11)

where x = w,q"i/p.

5. Inverse Problems

With the help of expression (10), it is easy to solve some
interesting inverse problems.

Problem 1. Given a channel distribution g° objective rates
vector R® = [RRS - - - R‘I’<]T, to find the minimum required
average SNR (or transmit power) and the scheduling vector
to achieve such rates, this problem can be formulated as
follows:

R(g°w,p) —R°=0, stweS,, p>0, (12

where

R(g’w,p) = [Ri(g"W,p) - - - R (8% wip) ] (13)
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Considering the constrain w'1 = K, the expression (12)
is a system of K nonlinear equations with K unknowns.
Since R(g%, w, p) is one-to-one and continuous, there will be
a unique solution.

Problem 2. Given a channel distribution g° and an average
SNR p?, to find the maximum achievable rates preserving
a given relationship among the users’ rates as well as the
scheduling vector to achieve such rates, this problem can be
formulated as follows:

R(g°w,p°) —ar’ =0, st w€eSy,, a>0, (14)

where a is a scale factor to be determined, and r* is any vector
fulfilling the desired relationship among the users’ rates.
Considering the constrain w1 = K, expression (14) is a
system of K nonlinear equations with K unknowns including
a. Again, it has a unique solution (w*, a*) which provides the
required scheduling strategy and the maximum achievable
rates R = a*r°.

Other similar problems can be formulated. Due to the
properties of R(g, w, p) (see Section 3), all these problems are
well suited to be solved by using conventional gradient-based
iterative algorithms. For each problem, the Jacobian matrix
can be easily obtained from (11).

6. Numerical Results

Expression (10) gives the achievable users’ rates for a given
broadcast channel distribution, defined by g, for a given
weight vector w and for a given average SNR p. By varying
w in (10), we obtain the boundary points of the rates
region. As examples, Figures 1 and 2 show the rates regions
for a two-users broadcast channel where g,/g, = 2 and
2,/8, = 10, respectively. The different curves correspond to
different values of average SNR, or equivalently to different
transmit powers. The figures also show the points that give
the maximum sum-rate, which is achieved using ASS.

Figures 3 and 4 show the individual users rates, as a
function of the average SNR, for a 10-users channel using
NSS and ASS, respectively. The average channel gains are
linearly distributed according to g, = ak, k = 1,...,K,
where a = 2/(K + 1) is a constant determined by the channel
normalization and K = 10.

Figure 3 shows that the NSS algorithm is not totally fair
in terms of rates (it is strictly fair in terms of channel access
time). The fair scheduling vector can be obtained solving
Problem 2 for r° = 1. Figure 5 shows the optimum weights
and the resulting individual rate for different values of
average SNR. The optimum scheduling vector changes slowly
with the average SNR, especially in the high-SNR regime.
We have used a conventional iterative Gauss-Newton method
to solve (14). Figure 6 shows the convergence of the users’
weights for p = 10 dB. Starting at wy = 1, the algorithm finds
the solution after only 4 iterations. To reduce the number of
iterations, the starting weights can be heuristically chosen as
a function of the average channel gains by assigning higher
weights to the worse users’ channels. For example, wy = 1-/g
would be a better starting point.
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Individual rates (bps/Hz)
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FiGure 3: Individual rates for the 10-users channel using NSS.

Individual rates (bps/Hz)

Average SNR (dB)

FIGURE 4: Individual rates for the 10-users channel using ASS.

5 4
“
@ 4+ : g
=
.203_
z
"o User 2
g 20 :
=]

—
T

5 10 15 20 25
Average SNR (dB)

(=)

(=)

All users

Rates (bps/Hz)
o
w

0 5 10 15 20 25
Average SNR (dB)

FIGURE 5: Optimum weight vectors for fair scheduling in the 10-
users channel and individual rate.
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FiGure 6: Convergence of the weight vectors for fair scheduling in
the 10-users channel using a conventional Gauss-Newton method.
The average SNRis p = 10 dB.
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F1GURE 7: Optimum weights and achievable rates for the two groups
of users. The first five curves correspond to the first five users.

Now, assume that we are interested in achieveing differ-
ent users’ rates in the same asymmetric channel. The users
are divided in two groups; so the objective rates for the
first group double the rates for the second. The first group
comprises the users from one to five and the second group
from six to ten. To obtain the required scheduling vectors,
we solve (14) for r{ = 2, k = 1,...,5and 1} = 1, k =
6,...,10. Figure 7 shows the achievable individual rates and
the scheduling weights to obtain such rates relationship. The
convergence to the optimum weights, using a conventional
Gauss-Newton algorithm, is depicted in Figure 8 when the
average SNR is p = 10 dB. After 5 iterations, the algorithm
finds the optimum weights.

Users” weights

Iterations

FiGure 8: Convergence of the weight vectors in the 10-users channel
using a conventional Gauss-Newton method. The average SNR is
p =10dB.
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FIGURE 9: Mininum required average SNR and optimum scheduling
weights to achieve the objective rates in different channels deter-
mined by the parameters A.

As example of Problem 1, we compute the minimum
average SNR to achieve the following set of rates R} =
k/K, k =1,...,K. Again, we consider a 10-users channel but
now the average channel gains are given by g, = a for k =
l,...,4and by g, = aA, for k = 5,...,8, wherea = 2/(A +
1). Note that the users are grouped in two sets. In each set
the channels are identically distributed. The ratio between
the average channel gains of the two sets is determined by
the parameter A. Figure 9 shows the required average SNR
to achieve the objectives rates R} = k/Kbps/Hz and the
optimum scheduling weights, as a function of A. Note that as
the average channel gains diverge (A increases), the required
SNR increases.
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7. Conclusions

In this paper we studied the performance of the multiuser
selection diversity, in broadcast ergodic fading channels,
under different SNR-based scheduling schemes. At each
fading state, the base station transmits to the user with
the highest weighted SNR. By assigning the weights to the
users, the base station can arrange the users according to a
prescribed quality of service or degree of fairness. Each set of
weights corresponds to a specific scheduling policy. We have
derived a closed-form expression for the achievable users’
rates as a function of the scheduling weights, the transmit
power, and the channel fading statistics. With the help of
this expressions, we show how to obtain the optimum (in
terms of transmit power) scheduling policy to achieve a
prescribed set of users’ rates. Also, given a transmit power,
we obtain the scheduling policy that maximizes the overall
throughput preserving a given relationship among the users’
rates.
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