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Since its invention by the Hans Berger of the electroencepha-
lography (EEG) in 1929, it was a strong scientific curiosity
in analysis of human brain activity. In fact, the electroen-
cephalography (EEG) and magnetoencephalography (MEG)
have developed into one of the most important and widely
used quantitative diagnostic tools in analysis of brain sig-
nals and patterns. EEG and MEG potentially contain a rich
source of information related to functional, physiological,
and pathological status of the brain. In particularly, they are
essential for the identification of mental disorders and brain
rhythms extremely useful for the diagnosis and monitoring
of brain activity and offer not only the functional but also
pathological, physiological, and metabolic changes within
the brain and perhaps other parts in the body.

Recording and analysis of the EEG and MEG now in-
volve a considerable amount of signal processing for S/N en-
hancement, feature detection, source localization, automated
classification, compression, hidden information extraction,
and dynamic modeling. These involve a variety of innovative
signal processing methods, including adaptive techniques,
time-frequency and time-scale procedures, artificial neural
networks and fuzzy logic, higher-order statistics and nonlin-
ear schemes, fractals, hierarchical trees, Bayesian approaches,
and parametric modeling. This special issue contributes to
the current status of EEG and MEG signal processing and
analysis, with particular regard to recent innovations. It re-
ports some promising achievements by academic and com-
mercial research institutions and individuals, and provides
an insight into future developments within this exciting and
challenging area of functional brain imaging.

Noninvasive functional brain imaging has become an im-
portant tool used by neurophysiologists, cognitive psycholo-
gists, cognitive scientists, and other researchers interested in
brain function. In the last five decades the technology of non-

invasive functional imaging has flowered, and researchers to-
day can choose from EEG, MEG, PET, SPECT, MRI, NIRS,
and fMRI. Each method has its own strengths and weak-
nesses. Development of signal processing tools mitigates the
problems and alleviates some of the weaknesses.

This issue includes the following contributions which
cover a wide range of signal processing techniques for anal-
ysis, understanding, and recognition of EEG/MEG informa-
tion.

The first paper, “Canonical source reconstruction for
MEG” by J. Mattout et al., describes a new, simple but effi-
cient solution to the problem of reconstructing electromag-
netic sources into a canonical or standard anatomical space.
Electromagnetic lead fields are computed using the warped
mesh, in conjunction with a spherical head-model (which
does not rely on individual anatomy). The ensuing forward
model is inverted using an empirical Bayesian scheme that
was described previously in several publications. This enables
the pooling of data from multiple subjects and the reporting
of results in stereotactic coordinates. Furthermore, it allows
the graceful fusion of fMRI and MEG data within the same
anatomical framework.

The second paper, “A subspace method for dynamical es-
timation of evoked potentials” by S. Georgiadis et al., de-
scribes method for single-channel trial-to-trial EP charac-
teristics estimation. Prior information about phase-locked
properties of the EPs is assessed by means of estimated signal
subspace and eigenvalue decomposition. Then for those situ-
ations that dynamic fluctuations from stimulus-to-stimulus
could be expected, prior information can be exploited by
means of state-space modeling and recursive Bayesian mean
square estimation methods (Kalman filtering and smooth-
ing). The authors demonstrate that a few dominant eigen-
vectors of the data correlation matrix are able to model
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trend-like changes of some component of the EPs, and that
Kalman smoother algorithm is to be preferred in terms of
better tracking capabilities and mean square error reduction.
They also demonstrate the effect of strong artifacts, partic-
ularly eye blinks, on the quality of the signal subspace and
EP estimates by means of independent component analysis
(ICA) applied as a prepossessing step to the multichannel
measurements.

The third paper, “Inferring functional brain states using
temporal evolution of regularized classifiers,” by A. Zhdanov
et al., proposes a framework for functional brain state infer-
ence problem that utilizes the temporal information present
in the brain signals. This application suggests that the rela-
tion between the regularization parameters and the temporal
profile of the classifier helps improving the classifier accu-
racy.

In the fourth paper, “Removing ocular movement arte-
facts by a joint smoothened subspace estimator,” by R. Robert
Phlypo et al., a joint smoothened subspace estimator calcu-
lates the low- and high-order statistic information subject
to the constraint that the resulting estimated ocular move-
ment artifact source is smooth in time domain. This re-
sults in combination of blind source separation with differ-
ent order statistics. The results have been compared to those
of well-known blind source separation methods and have
shown the capability of the system in mitigating the ocular
artefacts automatically.

The fifth contribution, “A framework to support auto-
mated classification and labeling of brain electromagnetic
patterns,” by G. A. Frishkoff et al., focuses on patterns in av-
eraged EEG (ERP) data to define high-level rules and con-
cepts for ERP components and to design an automated data
processing system that implements these rules. This is with a
broader objective of designing an oncology-based system to
support cross laboratory, cross paradigm, and cross modal
integration of brain functional data.

The next paper, “Statistical modeling and analysis of
laser-evoked potentials of electrocorticogram recordings
from awake humans,” by Z. Chen et al., provides a compre-
hensive analysis of electrocorticogram recorded using inva-
sive laser stimulation. Both averaging and single trial laser-
evoked potentials (LEP) have been considered. Then the
LEPs have been extracted from both types of trials, and the
variations in power, amplitude, and latency have been stud-
ied using probabilistic modeling, factor analysis, indepen-
dent component analysis, wavelet domain, and quantitative
and qualitative analyses.

The seventh paper“A Novel constrained topographic in-
dependent component analysis for separation of epileptic
seizure signals,” by Min Jing and Saeid Sanei, addresses a con-
strained source separation method which exploits the corre-
lation among the nearby brain sources as well as character-
istics of the seizure signals in space and frequency domains
to highlight the sources of interest. In this method the space-
frequency characteristics of the data is utilized as the con-
straint term in the update equation of the topographic ICA
system. The results clearly show that the synchronously gen-
erated seizure sources are grouped together.

The next paper, “Clustering approach to long term
spatio-temporal interactions in epileptic electroencephalo-
graph,” by A. Hegde et al., attempts to identify the spatio-
temporal interactions of an epileptic brain using an exist-
ing nonlinear dependency measure based on a clustering ap-
proach. The mutual interactions have been analyzed using
an index measure based on a self-organizing map (SOM)
network. The results report a long-term structural connec-
tivity related to various seizure states. In addition, the au-
thors have aimed at developing engineering tools to deter-
mine spatiotemporal groupings in a multivariate epileptic
brain.

The ninth paper, “Automatic seizure detection based on
time-frequency analysis and artificial neural networks,” By A.
T. Tzallas et al., uses an artificial neural network system for
detection of epileptic seizures from a set of features estimated
from time-frequency domain EEG data.

Next paper, “Canonical decomposition of ictal scalp EEG
and accurate source localisation: principles and simulation
study,” by M. De Vos et al., uses a dipole-based method for
localization of epileptic seizure sources. In this method
a canonical decomposition procedure extracts the seizure
source by a three-way model assumption.

The eleventh paper, “The implicit function as squash-
ing time model a novel parallel nonlinear EEG analysis
technique distinguishing mild cognitive impairment and
Alzheimer’s disease subjects with high degree of accuracy,”
by M. Buscema et al., introduces an ANN-based method in
which the MCI and AD can be classified based on the spatial
information content of the restino EEGs. In this procedure
the ANNs do not use EEGs as the input; rather, the inputs for
the classification are the weights of the connections within
the ANN to generate the recorded EEG data. The introduced
TWIST system selects the best features.

The last paper, “The P300 as a marker of waning atten-
tion and error propensity,” By Avijit Kumar Datta, Rhodri
Cusack, Kari Hawkins, Joost Heutink, Christopher Rorden,
Ian Robertson, and Tom Manly, studies and examines the
variation of P300 ERP with respect to the error in respond-
ing to the stimuli. During the course of this research it has
been found that errors are associated with significant reduc-
tion in the amplitude of preceding P300, and the fluctuations
in P300 amplitude across the task formed a reliable associate
of individual error propensity, supporting its use as a marker
of our sustained control over action.
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We describe a simple and efficient solution to the problem of reconstructing electromagnetic sources into a canonical or standard
anatomical space. Its simplicity rests upon incorporating subject-specific anatomy into the forward model in a way that eschews
the need for cortical surface extraction. The forward model starts with a canonical cortical mesh, defined in a standard stereotactic
space. The mesh is warped, in a nonlinear fashion, to match the subject’s anatomy. This warping is the inverse of the transforma-
tion derived from spatial normalization of the subject’s structural MRI image, using fully automated procedures that have been
established for other imaging modalities. Electromagnetic lead fields are computed using the warped mesh, in conjunction with
a spherical head model (which does not rely on individual anatomy). The ensuing forward model is inverted using an empirical
Bayesian scheme that we have described previously in several publications. Critically, because anatomical information enters the
forward model, there is no need to spatially normalize the reconstructed source activity. In other words, each source, comprising
the mesh, has a predetermined and unique anatomical attribution within standard stereotactic space. This enables the pooling of
data from multiple subjects and the reporting of results in stereotactic coordinates. Furthermore, it allows the graceful fusion of
fMRI and MEG data within the same anatomical framework.

Copyright © 2007 Jérémie Mattout et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

Source reconstruction in neuroimaging, particularly PET
and fMRY], is usually into a standard anatomical space (e.g.,
that defined by the Atlas of [1]). Reconstruction into a
canonical space facilitates the formal or informal meta-
analysis of findings in imaging neuroscience and provides a
useful framework within which to define structure-function
relationships. In PET and fMRI the construction of spa-
tially normalized images comprises two distinct steps. First,
the raw data are reconstructed into images of source activ-
ity within the subject’s own anatomical space. Second, these
data are then spatially normalized into a standard space us-
ing a template matching approach (e.g., [2]). For EEG and
MEG, however, source reconstruction and spatial or anatom-
ical normalization cannot be separated because the recon-
struction depends upon the spatial configuration of sources.

The central idea, upon which this work is based, is
to include anatomical variability in a forward model that
links MEG responses to canonical sources. Specifically, the

anatomical differences between a particular subject and a
canonical subject (who conforms to the standard space) en-
ter the forward model. Note that these differences are ex-
pressed in both cortical anatomy and in the geometrical and
physical properties of other tissues (e.g., skull and scalp),
through which electromagnetic fields propagate to the sen-
sors. However, we restrict ourselves here to the effect of inter-
subject variability in cortical anatomy, given that for MEG,
spherical conductor models, which need not incorporate
subject specific information about the head, generally pro-
vide a sufficiently good approximation compared with more
realistic head models such as those using boundary element
methods (BEM) see [3, 4]. In contradistinction, the inverse
solution is highly sensitive to the source location and orien-
tation, when defined by the cortical anatomy [5]. The nice
thing about the approach used here is that spatial normaliza-
tion becomes an implicit part of the inverse solution. In this
paper, we describe how this can be implemented using fully
automated procedures that are already in routine use and are
freely available as academic software (see Software note).
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The basic idea is to formulate a forward or generative
model of how a specific subject’s MEG data were caused and
then invert this model using standard Bayesian techniques.
We start with a canonical subject whose anatomy conforms
to a predefined space; the MNI-space based upon the Ta-
lairach and Tournoux system [1]. This is the same space
as used by the SPM software and, more generally, by the
neuroimaging community when reporting fMRI and PET
results. A canonical mesh is defined within this space, coding
the position and orientation of dipolar sources. Warping the
mesh to match the subject’s anatomy creates a subject specific
model. After warping, subject specific forward fields (i.e., a
gain matrix) are computed using standard electromagnetic
forward modelling procedures. In this paper, we use a single-
sphere head model, fit to the template scalp surface. The re-
sulting forward model has two components an anatomical
component that displaces and reorientates the dipoles into
subject specific anatomy and an electromagnetic component
that projects the source activity to measurement space (i.e.,
channels). Reconstruction of the canonical sources corre-
sponds to the inversion of this forward model, given some
data. The conditional estimates of source activity can then be
treated within a canonical space. In other words, the source
activity is associated with the original mesh (before warping).

There are several advantages of the approach described
in this paper. The primary advantage is that it allows for
anatomically informed source reconstruction into a standard
space that facilitates inter-subject pooling and standardized
reporting of results. The second main advantage is that it
does not entail the accurate extraction of a subject specific
cortical surface. This means that the spatial constraints can
be based upon any anatomical information, irrespective of
whether its quality would support cortical surface extraction
or not. Another advantage is that the estimation can proceed
even in the absence of a subject’s MRI. In this instance, the
reconstruction assumes that the subject’s anatomy was, in
fact, canonical. A final advantage, which will be pursued in
a subsequent paper, is that conditional uncertainty about the
subject’s anatomy can be handled gracefully during Bayesian
inversion. It is worth noting that the two key methodologies,
namely, estimating the mapping from canonical to subject
specific anatomical space and Bayesian inversion of MEG for-
ward models, are fully established and in routine use. Fur-
thermore, because they are fully automated and determinis-
tic, there is no need for human intervention, which renders
the procedure totally reproducible.

The aim of this paper is first to motivate and to describe
the operational details of a fully automated canonical source
reconstruction. Second, we demonstrate, quantitatively, the
performance of this inverse-normalized canonical mesh ap-
proach in comparison with (i) reconstructions based upon
the subject’s native mesh and (ii) the canonical mesh with-
out any spatial transformation. In a later paper, we will use
canonical reconstructions in a hierarchical model of multi-
subject responses measured with EEG and MEG. This paper
is restricted to the analysis of single subjects.

This paper is organized as follows. In Section 1 we review
the theoretical aspects of the procedure. This entails a brief

review of our Bayesian approach to conventional forward
models. We then consider spatial normalization. Finally, we
see how these two components are integrated to enable
canonical source reconstruction. The second section is an
empirical demonstration of the utility of the approach. Be-
cause the estimation scheme is Bayesian, we can use Bayesian
model comparison to evaluate different models. This com-
parison rests on the log evidence or likelihood of the data
given a particular model (having integrated out any depen-
dencies on the model’s parameters or hyperparameters). Put
simply, we can quantify the likelihood of any given data set
given one model, relative to another. Here, we compare three
sorts of models: first, a baseline model where the electro-
magnetic model was based upon a canonical mesh without
spatial transformation. The second model, used to explain
the same data, incorporated anatomically informed spatial
transformations of the canonical mesh. We also evaluated a
gold-standard model where the cortical mesh was obtained
from a cortical surface extraction, using the subject’s MRI
data. We hoped to show that including the spatial transfor-
mation in the reconstructions would yield a greater log evi-
dence than for the baseline model, and that this log evidence
was not significantly less than for the gold-standard model
based upon the subject’s cortical surface.

2. THEORY
2.1. Bayesian source reconstruction

In a series of papers [6, 7] we have described a Bayesian ap-
proach to inverting forward models for EEG and MEG. These
forward models start with a subject specific cortical dipole
mesh or three-dimensional grid, referred to as the subject’s
source space. This, in conjunction with the position of the
sensors, is used to compute a Gain matrix L in the usual way,
under quasistatic Maxwellian assumptions. The inversion of
the ensuing electromagnetic forward model uses a hierar-
chical linear observation model and conforms to parametric
empirical Bayes (PEB) using restricted maximum likelihood
(ReML). The Bayesian aspect accommodates the regulariza-
tion required for ill-posed inverse problems. The empirical
aspect allows us to identify the ReML estimators of hyperpa-
rameters A controlling multiple noise and prior covariance
components, Qfl) and QEZ), respectively. The key advantage
of this approach is that it can accommodate multiple pri-
ors in a principled and efficient way. Its efficiency stems from
the fact that the ReML scheme estimates covariance compo-
nents in low-dimensional sensor space, as opposed to high-
dimensional source space.

The objective function used by this scheme is equivalent
to the ReML objective function, which, as shown in [8], is
identical to the (negative) variational free energy

F=(lnp(ylj,/\)+p(jI)t)—lnq)q, (1)

where y is the data, j are the source activities, and q(j) is
their conditional or posterior density. Under Gaussian as-
sumptions, when F is maximized; q(j) = p(j | y,A), and
the (negative) free energy becomes the log likelihood of the
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FIGURE 1: Bayesian inversion scheme.

model or its log evidence F — In p(y | A) [9]. We have shown
how the log evidence can be used to compare and adjudicate
among different models comprising different prior covari-
ance components or different source configurations [7]. We
use exactly the same approach below, to compare three dif-
ferent sorts of anatomical source models, each with slightly
different configurations of a cortical mesh subtending the
lead fields. Figure 1 provides a schematic that summarizes
this Bayesian inversion scheme.

2.2. Spatial normalization

Spatial normalization is a term that refers to the warp-
ing or mapping of a subject specific image into a stan-
dard anatomical space. It is used routinely in fMRI and
PET to enable inter-subject pooling. The parameters 6; that
define the transformation x(® — x(" are identified using

a Bayesian scheme that incorporates constraints on the

smoothness of the transformation [2]. xf") represents the
position of the ith control point after # iterations. In brief,
the warping is parameterized in terms of spatial basis func-
tions (in SPM, we use a discrete cosine set). These encode
the change in position effected by each transform param-
eter dx/00;. The coefficients of these basis functions maxi-
mize their conditional probability (i.e., maximize the like-
lihood and prior density). The likelihood is computed us-
ing a forward model, which mixes several canonical tem-
plates and then warps them to predict the observed im-
age. The mismatch between the warped mixture of tem-
plates and the observed image constitutes a prediction er-
ror. Under Gaussian assumptions this error gives the like-
lihood of the observed image, given the mixing and warp-
ing parameters. Rough transformations are penalized by ap-
propriate shrinkage priors on the coefficients, formulated
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in terms of their covariance. The parameters are computed
using a Newton method. The inverse of the template warping
is applied to the image and the process iterated until conver-
gence and the image is spatially normalized (see Figure 2 for
a schematic).

Once the normalizing transformation has been identi-
fied, given some structural image it is usually applied to spa-
tially normalize the subject’s functional time series so that
analysis can proceed in standard space. A full description of
the assumptions and procedures entailed by spatial normal-
ization can be found in a series of papers [10, 11]. Here,
we do not use the spatial transformation to normalize re-
constructed sources but to spatially unnormalize a canonical
mesh to inform the forward model about how that subject’s
electromagnetic signals were generated. This simply involves
applying the inverse spatial transformation x" — x® to the
locations of the canonical mesh dipoles.

2.3. Canonical source reconstruction

Canonical source reconstruction is identical to our Bayesian
source reconstruction (see Figure 1) with the addition of an

anatomical component to the forward model. This com-
ponent is the spatial transformation of a canonical cortical
mesh to match the subject’s anatomy using the inverse of
the spatially normalising transformation (see Figure 3). Af-
ter transformation, the subject specific mesh is used in the
usual way to create an electromagnetic forward model that is
inverted as described above. The evidence for this model that
comprises both the anatomical and electromagnetic compo-
nents can then be used to compare different models.

In the next section, we apply the above theory to both
synthetic and real MEG data. Our primary goal is to ascer-
tain the relative likelihoods of the different models consid-
ered. However, we also take the opportunity to demonstrate
the procedure and provide a worked example of its applica-
tion.

3. MODEL COMPARISON

3.1. Anatomical models

In what follows, we use the following acronyms for the
meshes used by the models, which differ only in their
anatomical information.
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(i) SCS (subject’s cortical surface) refers to the mesh
obtained from cortical surface extraction, using the
subject’s structural MRI. This constitutes our gold
standard in the sense it makes the least anatomical as-
sumptions. The meshes were obtained using the Brain-
VISA! software [12, 13]. A “fine” mesh was used to
generate the synthetic MEG data, while a “coarse”
mesh was used to reconstruct the cortical activity,
comprising 7204 and 4004 vertices, respectively.

(ii) CCS (canonical cortical surface) refers to a subject spe-
cific canonical mesh obtained by applying an inverse
spatial transformation to a template mesh in canonical
space (the TCS). The transformation is derived by nor-
malising the subject MRI as described in Section 2.2.

(iii) TCS (template cortical surface) refers to the (un-
transformed) template mesh in canonical space. This
model would be used typically when no structural
MRI of the subject is available.

To build the TCS, a cortical mesh of a neurotypical male was
extracted from his structural MRI, using BrainVISA. This
furnished a high-density mesh, with a uniform discrete cov-
erage of the grey/white matter interface. This mesh corre-
sponds to the TCS currently available in the latest release
of the SPM software package (see Software note). Here we
use the TCS mesh downsampled to 4004 vertices, to match
the SCS for source reconstruction. For any given mesh, each
vertex location corresponds to a dipole position, whose ori-
entation is fixed perpendicular to the surface. Note that our
forward models, based on high-density meshes, could be re-
placed with low-density meshes with free dipole orientations
to compensate for the loss of degrees of freedom implicit in
reducing dipole number.

The single subject we considered here was a healthy fe-
male volunteer who participated in an MEG study of face
perception. We chose a female to deliberately maximize the
differences between subject and template anatomy.? This en-
abled us to assess the effectiveness of the warping procedure,
under a substantial anatomical distance between SCS and
TCS. Furthermore, it induced a greater difference between
the warped (CCS) and unwarped (TCS) cortical surfaces,
whose influence on the ensuing reconstruction could be ob-
served. Clearly, we anticipate formal and anecdotal replica-
tions of the analyses presented in this paper that will allow
its conclusions to be generalized to the population of normal
subjects.

The two anatomical models for this subject (SCS and
CCS) as well as the template mesh (TCS) were compared in
the context of simulations and real experiment. In all cases,
the sensor locations were registered to source space and the
gain matrix was computed using a single sphere-head model
[14], fit to the template scalp mesh. The latter was obtained
with BrainVISA and used to get the best fitting sphere to be

! http://www.brainvisa.info [12].

2 By maximizing anatomical differences, we refer to cortical size and shape.
The gender difference ensures a global difference in size. Moreover, differ-
ences in the shape and location of sulci are clearly visible (see Figure 4).

used in the forward computation. As a consequence, the head
model was common to each anatomical model and based on
the template geometry. We are thus in the position to com-
pare the models, based on their representation of the corti-
cal anatomy only. Bayesian inversion of the ensuing forward
model assumed independent channel noise and simple min-
imum norm priors (i.e., Qfl) and Q,(Z) were identity matri-
ces). This corresponds to the classical minimum norm solu-
tion, although the relative weight of the likelihood and prior
are optimized using ReML as opposed to the conventional
L-curve heuristic. ReML has been shown to provide opti-
mal hyperparameter estimates [6, 7], when compared to al-
ternative schemes. Furthermore, this Bayesian inversion en-
ables us to use log-normal hyperpriors on the hyperparam-
eters and enforce a positive contribution of each variance
component [9].

Although the log evidence reflects both goodness of fit
and model complexity [15], the complexity term for each
model was exactly the same. This is because the only differ-
ence between the models was in the location of the dipoles
encoded by the cortical meshes. In short, the three models
compared here match perfectly in terms of complexity and
number of free parameters (degrees of freedom).

3.2. Analyses of real data

The MEG dataset came from the female subject, who par-
ticipated in a multimodal study on face perception (for de-
scription of paradigm see [16]). The subject made symmetry
judgments on faces and scrambled faces. The MEG data were
acquired on a 151-channel CTF Omega system at the Well-
come Trust Laboratory for MEG Studies, Aston University,
England. The epochs (80 face trials, collapsing across familiar
and unfamiliar faces, and 84 scrambled trials) were baseline
corrected from —100 milliseconds to 0 millisecond, averaged
over trials and bandpass filtered (between 1 and 30 Hz). The
subject’s T1-weighted MRI was obtained at a resolution of
1 x 1 x 1 mm?. The subject’s head shape was digitized with
a 3D Polhemus Isotrak and was used to coregister the MEG
sensor locations to anatomical space using a rigid-body (six-
parameter) affine transformation. Figure 4 shows the three
meshes SCS, CCS, and TCS defining the three models.

3.3. Results forreal data

The two types of event-related fields (faces and scram-
bled) were subtracted to isolate a face-specific effect occur-
ring around 170 milliseconds after stimulation (“M170”).
Figure 5 shows the MEG setup and the M170 component
elicited. Average responses, over a time window from 150
to 190 milliseconds, were estimated using the three mod-
els described above. The resulting log evidences are shown
in Table 1. Figure 6 shows the corresponding maps of peak
responses (conditional expectations of source activity at the
time bin containing the maximum response).

Although slightly different, the estimated responses all
show very similar activation patterns, namely in inferior oc-
cipital gyri (mostly right) and bilateral orbitofrontal poles.
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FiGure 3: Overview of canonical source reconstruction.

FIGURE 4: Surface rendering (upper row) and meshes (lower row) encoding the three cortical models: SCS (a), CCS (b), and TCS (c). CCS
(red) and TCS (green) meshes are superimposed on the SCS mesh (blue).
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FIGURE 5: (a) Sensor locations coregistered with the subject’s MRI-
derived meshes of the cortical, skull, and scalp surfaces; (b) sensor
data for the difference between faces and scrambled event related
fields.

TaBLE 1: Log evidences obtained using the real MEG dataset for the
three anatomical models.

SCS CCS TCS
14084 14072 14058

Log evidence

It should be noted that our simple minimum-norm solu-
tion has favored superficial activity (a well-known property
of minimum norm solutions); analyses of the same data us-
ing more realistic models (with multiple sensor and source
covariance components) place the maximum response more
ventrally in both the fusiform and orbitofrontal regions [17].
However, we used the simplest model because this is the most
established and our focus here is on differences in the recon-
structed activity.

The log evidences for the three models are relatively close.
One can assess the differences (log ratios or Bayes factors) us-
ing the semantics proposed by Kaas and Raftery by analogy
with classical inference [15, 18]. In this context, a Bayes factor
of twenty means that the data are twenty times more likely to
have been generated by one model relative to another (cf.,
of P-value of .05). A Bayes factor of twenty corresponds to
a difference in log evidence of about three, which is the typ-
ical threshold one would use to declare that one model was

Caudal view

oo

Ventral view

(a) SCS (b) CCS (c) TCS

FIGURE 6: Caudal (upper row) and ventral (lower row) views of the
cortical source energy estimated at the peak of the M170 for each of
the three anatomical models: SCS (a), CCS (b), and TCS (c). Maps
have been normalized to their maximum.

better than another. Given that the differences among the log
evidences for our models were about twelve, there is strong
evidence that SCS is better than CCS and that CCS is bet-
ter than TCS. However, one cannot generalize from a single
illustrative example. In Section 3.4, we present an extensive
simulation study to assess quantitatively and statistically the
difference between the three models.

3.4. Syntheticdata

MEG data were simulated using the fine SCS mesh and the
MEG setup described in Section 3.2 (see Figures 4(a) and 5,
resp.). A hundred independent simulations were preformed,
each using a single-extended source. For each simulation,
the active source comprised a cluster of dipoles. Each cluster
was constructed by selecting a random dipole and its near-
est mesh neighbors, up to second order (including the near-
est neighbors of the nearest neighbors). The cluster size was
7 + 3 dipoles. Since the dipoles are spread uniformly over
the cortical surface, this random dipole selection ensures that
all brain regions were represented equally, over simulations.
The activity of each source was modelled (over 321 time bins)
with two gamma functions, whose parameters were selected
randomly, subject to the constraint that the simulated activ-
ity reached a peak within time window modelled. Finally,
after projection to sensor space, white Gaussian noise was
added (SNR = 8dB) (see Figure 7 for an example of sim-
ulated data).

The three models were inverted for each of the hundred
simulated datasets. Since we know the true cortical activity,
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FIGURE 7: Example of a synthetic MEG dataset and its associated
inverse solutions. Each map has been normalized to its maximum.

we supplemented our model comparison using the log ev-
idence with the localization error (LE). LE is the distance
between the true source and the dipole exhibiting the max-
imum estimated energy. This comparative metric comple-
ments the log evidence and speaks to the performance of
the inversion in terms of the deployment of reconstructed
activity, which is an important consideration in multisub-
ject studies. To calculate LE for the SCS-(resp., CCS and
TCS) based solution, we used the dipole on the coarse SCS
(resp., CCS and TCS) which was closest to the truly activated
source on the fine SCS.

3.5. Simulation results

Figure 7 shows an example of synthetic data and the three
solutions obtained for each mesh. Figure 8 shows the distri-
butions (whisker plots) of the log evidence and LE over all
simulations, for each of the three cortical models. The vari-
ance of the log evidences over source configurations is large.
It is worth emphasizing here that a given log evidence has
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(b) Localization error

Ficure 8: Whisker plots of the log evidences and LE values obtained
with synthetic MEG data (similar to the example shown in Figure 7)
for each of the three anatomical models (SCS, CCS, and TCS).

no meaning in itself. It only becomes meaningful when com-
pared to the log evidence of another model applied to the
same data.

The means of the log evidences, over models, show the
same tendency as in the real-data example. Furthermore, the
one-way within-dataset ANOVA on the log evidences was
significant (F = 7.81; P < .0005***). Specifically, multiple
comparisons with Bonferroni correction show that the only
significant differences are between TCS and the two other
models; suggesting that there is no demonstrable difference
in the performance of the Bayesian inversion of the SCS and
CCS models. Similarly, the one-way within-dataset ANOVA
on the localization errors proved significant (F = 15.25;
P < .0005***). Again, multiple comparisons with Bonfer-
roni correction show that the only significant pairwise differ-
ences are between TCS and the two other models.

To summarize, the localizations based on the reference
mesh (SCS) are significantly better than the ones based on
the anatomically uninformed template mesh (TCS). Criti-
cally, when we transform the template mesh into the subjects
anatomical space (CCS) there is no significant difference in
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localization error. Note that these results are obtained despite
the fact that the SCS model should have been the best; since
the synthetic data were generated using the similar, but with
higher resolution, SCS model.

4. CONCLUSION

In this paper we have described a simple solution to the prob-
lem of reconstructing electromagnetic sources in a canoni-
cal anatomical space. Its simplicity rests on embedding sub-
ject specific anatomy into an extended forward model in a
way that circumvents the need for cortical surface extrac-
tion. The forward model starts with a canonical cortical
mesh, defined in a standard stereotactic space. The mesh
is then warped into the subject’s anatomical space. A con-
ventional electromagnetic forward model is computed us-
ing the resulting warped mesh. The ensuing forward model
is inverted using an established Bayesian scheme. Criti-
cally, the canonical mesh is warped using the inverse of the
transformation used in conventional spatial normalization.
This means that subject specific anatomy, encoded by the
spatial transformation, can be derived from the subject’s
structural image using fully automated spatial normaliza-
tion procedures that do not rely on high resolution or con-
trast.

The contribution of this work is twofold: first, con-
ceptually we have formulated the problem of inter-subject
anatomical variability as an explicit part of the forward
model. This entails the notion of a canonical subject, whose
cortical mesh is transformed anatomically to produce sub-
ject specific mesh. This places important constraints on indi-
vidual meshes that enter the forward model; critically there
must exist a diffeomorphic anatomical mapping between any
subject and the canonical subject. We can exploit this con-
straint by always starting with the canonical mesh and warp-
ing it to match each subject. This has several fundamental
advantages. First, it eschews the problems of cortical sur-
face extraction from an individual’s MRI; second it uses all
the anatomical information in the MRI to construct a sub-
ject specific forward model (this information is not just con-
fined to the cortical surface but includes all the information
used in spatial normalization). Third, it ensures the corti-
cal mesh is topologically valid (because it is derived under
the diffeomorphism constraint). Finally, it enforces a stan-
dard solution space that facilitates inter-subject averaging
and reporting. These standard spaces have proved very useful
in fMRL

The second contribution is the use of Bayesian model
comparison, based on the model evidence or marginal like-
lihood to compare competing forward models. This en-
abled us to show that the models based on canonical
meshes were at least as good as those based on individ-
ual cortical surface extraction. This provided a quantita-
tive and principled way to explore model space and as-
sess advances in model specification, of the sort addressed
here.

We used Bayesian model comparison and localization er-
ror to evaluate the advantage of anatomically informed mod-

els (CCS) and to establish their construct validity in rela-
tion to conventional forward models based on cortical sur-
face extraction (SCS). Importantly, our results do not show
any systematic difference between the SCS and CCS mod-
els. This supports the idea that CCS is a sufficiently anatom-
ically informed model to furnish a reasonable solution to
the inverse problem. In other words, MEG data do not con-
tain enough information about the fine-scale spatial con-
figuration of sources to distinguish between the two mod-
els. Furthermore, TCS was significantly different from the
other two models. This suggests that SCS or CCS should
be used when possible. However, in the absence of struc-
tural MRI for any given subject, TCS remains a reason-
able approximation, provided that it can be appropriately
coregistered with the MEG data. The latter issue is cru-
cial and will be addressed in a subsequent paper on op-
timizing use of template meshes, using only spatial infor-
mation about sensor space (i.e., fiducials and head-shape
data). Note finally, that we have focused on MEG and the
use of a spherical head model. Although this approach could
generalize to EEG in a straightforward way, we have not
evaluated it yet in that context. This will require a care-
ful analysis, due to the sensitivity of EEG to the geometry
(and conductivity) of head tissues. This geometry is also
subject specific and has been ignored here, because it is
less important for MEG. However, a more realistic subject
specific head model could be derived using the same ap-
proach used for the cortical mesh. This would entail using
more realistic spheres or a boundary element model based
on a canonical subject and warping it as described above.
Again, Bayesian model comparison would enable us to as-
sess the quantitative effect of realistic head tissue model-
ing.

To conclude, we have focussed on demonstrating the va-
lidity of the CCS model. This anatomically informed model
has the twofold advantage of eschewing the need for corti-
cal extraction and affording a one-to-one mapping with the
canonical cortical surface. The latter is important for pooling
results over subjects and reporting single subject or group lo-
calizations in the same stereotactic space. It also enables us
to consider a full hierarchical model for multisubject anal-
ysis: namely, a unified inference scheme for group averages,
instead of the conventional two-stage procedures (e.g., [17]).
This includes, for example, incorporation of spatial priors on
the MEG/EEG inverse solution based on normalized fMRI
results from a group of subjects. This will be the focus of fu-
ture work.

Software note

The algorithms described in this paper are available within
SPM5 and can be downloaded from http://www.fil.ion.ucl
.ac.uk/spm. It is worth emphasizing that the canonical cor-
tical surface, given any subject’s MRI, can be obtained auto-
matically and robustly using the well-established spatial nor-
malization schemes described in Section 2.2. SPM5 uses a
unified forward model for anatomical deformations that in-
cludes tissue classification and inhomogeneity correction.
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1. INTRODUCTION

Evoked potentials (EPs) and ongoing brain activity os-
cillations, obtained by scalp electroencephalogram (EEG)
recordings, have been linked with various cognitive pro-
cesses and provide means for studying cerebral brain func-
tion [1]. An EP is usually considered to be a wave or com-
plex elicited by and time-locked to a physiological or non-
physiological stimulation or event. EPs are buried into back-
ground brain activity, and nonneural activity like muscle
noise. Since many parallel mental processes may occur si-
multaneously in the brain, it is difficult to observe and de-
termine an evoked potential on a single-trial base. Therefore,
the simplest way to investigate EPs is to use ensemble aver-
ages of time-locked EEG epochs obtained by repeated stimu-
lation. It is well known that this signal enhancement implies
a loss of information related to trial-to-trial variability, and
nonstationary features of event-related phenomena.

The generation mechanism of evoked responses is not
precisely known in many situations. EPs are assumed to
be generated either separately of ongoing brain activity, or
through stimulus-induced reorganization of ongoing activ-
ity. For example, it might be possible that during the per-

formance of an auditory oddball discrimination task, the
brain activity is being restructured while attention is focused
on the target stimulus [2]. Phase synchronization of ongo-
ing brain activity is one possible mechanism for the gener-
ation of event-related responses. That is, following the on-
set of a sensory stimulus, the phase distribution of ongo-
ing activity changes from uniform to one which is centered
around a specific phase [3]. Moreover, several studies have
concluded that averaged EPs are not separate from ongoing
cortical processes, but rather, are generated by phase syn-
chronization and partial phase resetting of ongoing activity
[4, 5]. However, phase coherence over trials observed with
common signal decomposition methods (e.g., wavelets) can
result both from a phase-coherent state of ongoing rhythms
and from the presence of a phase-coherent event related po-
tential, which is additive to ongoing EEG [6]. Furthermore,
stochastic changes in amplitude and latency of different com-
ponents of the EPs are able to explain significant part of in-
tertrial variability of the measurements [6-9].

Several methods have been proposed for EP estimation
and denoising; see, for example, [10-13]. In general, most of
the methods for single-trial EP analysis aim to decompose
the measurements into relevant components or to explain
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the data through some parameters. The parametrization
gives the necessary means to investigate, for example, the
changes that the stimulus causes to the ongoing EEG signal,
or that the repetition of the test causes to the responses. Most
of the methods are based on an explicit model or on some
specific assumptions for the EPs. Every decomposition then
involves at least two main considerations. On the one hand, if
the resulting estimates follow too closely the measurements,
it is possible that some features of the data are still going to be
hidden by phenomena unrelated to the stimulation. On the
other hand, if the estimates do not follow the measurements,
some features may have been neglected. Usually a balance be-
tween these considerations is made and care is given to the
correct interpretation of a parametrization that is able to re-
veal specific features of the experiment.

The performance and applicability of every single-trial
estimation method depends on the prior information used
and the statistical properties of the EP signals. Here, we fo-
cus on the case that some parameters of the EPs change dy-
namically from stimulus to stimulus. This situation could
be a trend-like change of the amplitude or latency of some
phase-locked component of the EPs. Although, for example,
the above-mentioned methods [10—13] could be used to es-
timate such changes, they do not take into account in the es-
timation procedure this trend-like variability.

The most obvious way to handle time variations between
single-trial measurements is subaveraging of the measure-
ments in groups. Subaveraging could give optimal estimators
if the EPs are assumed to be invariant within the subaveraged
groups. A better approach is to use moving window or expo-
nentially weighted average filters; see, for example, [14, 15].
Other adaptive methods have also been proposed for EP es-
timation, especially for brain stem potential tracking, for ex-
ample, [16]. The statistical properties of some average filters
and different recursive estimation methods for EP estimation
have been discussed through Kalman filtering in [17]. Some
smoothing methods have also been proposed for modeling
trial-to-trial variability in EPs (e.g., [18]).

An elegant way to describe trial-to-trial variations in EPs
can be given through state-space models. State-space mod-
eling for single-trial dynamical estimation considers the EP
as a vector-valued random process with stochastic fluctua-
tions from stimulus to stimulus [17]. Then, past and future
realizations contain information of relevance to be used in
the estimation procedure. Recursive estimates for the states,
that are optimal in the mean square sense, are given by
Kalman filter and smoother algorithms. Of importance is
also the parametrization of the problem and the selection
of an observation model for the measurements. For exam-
ple, in [16, 17] generic observation models were used based
on shifted Gaussian-shaped smooth functions. While other
generic observation models could also be considered, when
all the measurements are available, data-based observation
models can be used.

In this paper, we extend the method presented in [17]
to the use of Kalman smoother algorithm. We demonstrate
that for batch processing the use of the smoother algorithm
is preferable. Fixed-interval smoothing improves the track-
ing performance of EP characteristics and reduces greater the

noise. In parallel, we propose a novel method for state-space
modeling of EPs. The method is based on the eigenvalue
decomposition of the ensemble data correlation matrix. A
few dominant eigenvectors form a signal subspace that can
be used for single-trial estimation. Subspace-based methods
have already been proposed for EP estimation, for example,
in [12, 19]. However, these approaches do not take into ac-
count in the estimation procedure the situation that some
characteristics of the EPs change dynamically from stimulus
to stimulus. In this paper, we demonstrate that such a signal
subspace can be used to model dynamic changes present in
EP measurements.

The approach is demonstrated with simulated and real
measurements obtained by an auditory EP experiment. Fi-
nally, we investigate the effect of strong artifacts on the qual-
ity of the estimates by means of independent component
analysis (ICA), which is applied as a prepossessing step on
the multichannel measurements.

2. METHODS

The sampled potential (from channel /) relative to the succes-
sive stimulus or trial ¢ can be denoted with a column vector

of length M:

z(1)
z(2)

zZr = 5 t=1,...,T, (1)

2(M)

where T is the total number of trials.

2.1. Linear estimation and additive noise model

A widely used model for EP estimation is the additive noise
model. The observations are then assumed to be of the form

Zt = St + Uy (2)

The vector s; corresponds to the part of the activity that is re-
lated to the stimulation, and the rest of the activity vy is usu-
ally assumed to be independent of the stimulus and the EP.
Single-trial EPs can be further modeled as a linear combina-
tion of some preselected basis vectors. Then, the observation
model takes the form

z¢ = Hi0; + vy, (3)

where H; is the observation matrix, which contains the basis
Vectors ¥, ..., ¥,y of length M in its columns, and 6; is a
parameter vector of length k. The estimated EPs §; can then

be obtained by using the estimated parameters 6, as follows:
gt = Htét. (4)

By treating both 6; and v; as random, the estimator @t that

minimizes the mean square Bayes cost Bys = E{l| 0 — @t I3
is given by the conditional mean [20]

0: = E{6: | 2} (5)
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of the posterior distribution

p(0: 1 z) o< p(z | 0:)p(6:)
oc py, (ze — Hib; | 0:) p(6;).

By taking into account the linear observation model, and that
0; and v, are assumed uncorrelated, that is, Cy,,, = 0. the
linear conditional mean estimator takes the form [20]

(6)

0= (HIC,'H + Co1) (HICylze+ Cglmg)s (7)

where Cy, and 7 are, respectively, the covariance and the
mean of 6;. C,, is the covariance of the zero mean measure-
ment noise, and (-)” denotes transpose. The estimator is op-
timal in the mean square sense among all possible estima-
tors, not only linear, if 8; and v, are Gaussian. In Bayesian
estimation this is also called the maximum a posteriori esti-
mator (MAP), and Cg, and 7, represent prior information
about the parameters ;. If they are not available, we can as-
sume Cy ' = 0 corresponding to infinite prior variance for
the parameters. In this case, the estimator reduces to the or-
dinary minimum variance Gauss-Markov estimator, which
treats the parameters as nonrandom. If we assume that the
errors are independent with equal variances C,, = o2 I. the
estimator is identical to the ordinary least squares estimator

6, = (H'H,) 'H=z, (8)

2.2, State-space modeling of EPs

Estimators of the form (7) can be used to model time-varying
characteristics of EPs, for example, in terms of amplitude and
latency estimates of some characteristic peak of the signals.
However, such estimators do not take into account situations
that some dynamical behavior is expected from stimulus to
stimulus. A mathematical plausible way to incorporate prior
information for estimation about time-varying phenomena
is given through state-space modeling.

The measurement vectors z; can be considered as realiza-
tions of a stochastic vector process, that depends on some un-
observed parameters 0, (state vector) through the model (3).
The parameters 0, are the quantities that we are primarily
interested in, and their form depends on the parametrization
of the estimation problem. In order to model the time evo-
lution of the hidden process 6, a linear first-order Markov
model can be used, that is,

0; = Fi0,-1 + wy, 9)

with some initial distribution for 6. Equations (3) and (9)
form a linear state-space model, where F; and H; are prese-
lected matrices. Other important assumptions for the model
are

(i) for every i#j, the observation noise vectors v;,v; as
well as the state noise vectors w;, w; are mutually inde-
pendent and also mutually independent of the initial
state 6,

(i) the vectors w;, v; are mutually independent for all , j.

For the white noise sequences w; and vy, we can also assume
E{w:} = 0and E{v;} = 0 for every ¢, but the covariances C,,,
C,, can still be time-varying.

2.3. Kalman filter and smoother algorithms

The Kalman filtering problem is related to the determination

of the mean square estimator 9 for the state 6; given the ob-
servations z,. ..,z This is equal to the conditional mean

ét:E{Gt |Z],...,Zt} :E{Qt |Zt}, (10)
that relates to the density [20]
P(et | Zy) o< P(Zt | et)P(et | Zi-1), (11)

where
26, 1Z) = jp(et 16,)p(8r1 | Zo1)dO, 1. (12)

The optimal linear mean square estimator can then be ob-
tained recursively by restricting to a linear conditional mean,
or by assuming v; and w; to be Gaussian [20]. The recursive
estimator can be written as

~ -1 ~
et = (HtTCLTtle-'—CngFI) (HtTCL;IZt+Cg”1H@,\t,1),
(13)

where @,“,1 is the prediction of 8; based on @,,1 and @,71 =
E{6i_1 1 zi-1,...,21} is the optimal MS estimate at time t — 1.
Clearly this is of the form (7), which is the Bayesian MAP es-
timator using the last available estimate as prior information.
After adding the initializations, Kalman filter algorithm can
be written as follows.

(i) Initialization:

Cy = Cay»
P (14)
0o = E{6,}.
(ii) Prediction step:
at\t—l = Fib, 1, (15)

_ T
Céum = FCy, Fi +Co,.

(iii) Filtering step:

-1
Kt = Caru—lHtT (Htcat\t—lHtT + Cvt) >

0, = O + K (20 — Hibyjimn), (16)
C@l = (I — K¢H;)C;

Ore-1

fort = 1,..., T. The matrix K is called the Kalman gain ma-
trix.

If all the measurements are available, that is, z;,t =
1,..., T, then the fixed interval smoothing problem can be
considered, that is,

0, = E{0, | z1,...,2r} = E{6, | Zr}, (17)
that relates to the density [21]

01 | Gz)P(etﬂ | ZT)
P(6t+1 | Z)

A6
(18)

P(et | Zr) = P(et | Z) J P(
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The last form suggests again a recursive estimation procedure
for the determination of the conditional density. It is thus
possible to compute filtered and prediction distributions in
a forward (filtering) recursion, and then execute a back-
ward recursion with each smoothed distribution p(6; | Zr)
relying upon the quantities calculated in the forward run
and the previous (in reverse time) smoothed distributions
p(Bee1 | Zp). This property enables the formulation of the
forward-backward method for the smoothing problem [22],
which gives the smoother estimates as corrections of the filter
estimates. So for the linear or Gaussian case the smoothing
problem is complete through the backward recursion.

Smoothing:

— (~FT
At - Ceth+1C9[+l\t’

AS

Gt = ét +At(aj+1 - éHl\t)) (19)

_ - s _ " T
Gy = Gy, +At(C9M cew)At )

fort = T - 1,T — 2,...,1. For the initialization of the
backward recursion the filter estimates can be used, that is,

07 = Or.
2.4. Signal and noise subspaces

Singular value decomposition (SVD) has many theoretical
and practical applications in signal processing and identifi-
cation problems [23]. In relatively high signal-to-noise ratio
conditions (SNR), SVD of a data matrix can divide measure-
ments into signal and noise subspaces. Alternatively, it can
also be understood in terms of principal component regres-
sion (PCR) as a combined method for signal enhancement
and optimal model dimension reduction [24]. The subspace
method has been used to enhance stimulus phase-locked ac-
tivity in different studies (e.g., [19]).

The available data matrix Z = [zi,...,2zr] € RM*T,
which has as columns the EEG sampled epochs relative to
the stimulation, can be decomposed as

Z=UzvT, (20)

where U € RM*M gatisfies UTU = I, V e RT*T satis-
fies VIV = I, and £ € RM*T is a pseudodiagonal matrix
with nonnegative diagonal elements o; such that 0, = 0, =
> Ominom,r) = 0. If M < T, then X has the form
¥ = [Z,0], where ¥, = diag(o1,...,0u) and 0 is a zero
matrix. If M > T, then X has the form X = [ZOl ], where
¥, = diag(oy,...,0r). Only r singular values are nonzero,
where r = rank(Z).
For the additive noise model and relatively small noise
the following decomposition can be considered:

Z =[U,U,] [% ZO] Ve, v,]". 1)

The matrix X, contains the k largest singular values and Uj
the respective left singular vectors associated mainly with the
signals s;. Thus the matrices (Us, X, Vi) represent a signal

subspace, and (U,, Z,, V,) represent primarily the noise sub-
space.
From the SVD of the matrix Z = ULV T we also have

zz"¥ = uziuT. (22)

This means that the left singular vectors of Z are the eigen-
vectors of the matrix ZZ7, or the eigenvectors of the data
correlation matrix

ﬁzz? (23)

R=

If we denote with H, the matrix with columns the k dom-

inant eigenvectors, then the ordinary least squares estimator
for the parameters 6; becomes

0, = (H'H,) 'H'z, = Hz,. (24)

Estimates for the EPs can then be obtained from (4). Quan-
titatively, the first basis vector is the best mean-square fit
of a single waveform to the entire set of epochs. Thus, the
first eigenvector is similar to the mean of the epochs, and

the corresponding parameters or principal component 6,(1)
(t = 1,2,...,T) reveal the contribution of the eigenvector
to each epoch. The rest of the dominant eigenvectors model
primarily amplitude differences between individual EP peak
components, and latency variations from trial to trial. There-
fore, since this basis contains prior information about phase-
locked characteristics of the EP signals, we consider the fol-
lowing state-space model for dynamical estimation:

0r = 011 + wr, (25)
Zr = HSQ[ + vy,
with the selections F; = I, t = 1,...,T, that is, a random
walk model, and H; = H; for all t. Estimates for the param-
eters can then be obtained by Kalman filter and smoother
algorithms for different selections of state and observation
noise covariance matrices. Thus, the applicability of the pro-
posed method relates on the quality of the signal subspace
in low signal-to-noise ratio conditions, as well as on the as-
sumption of hidden dynamical behavior from trial-to-trial.

2.5. Artifact correction by ICA

Individual EEG channels measure superimposed activity
generated simultaneously by various brain sources. The be-
havior of the sources is stochastic and generally nonstation-
ary. In addition, artifact sources, such as eye blinks, can dis-
tort statistical properties of the signals and increase complex-
ity. For the problem of blind source separation (BSS) of the
multichannel EEG measurements, target is to recover unob-
served brain generated initial source signals by using only the
available sensor data and some statistical properties assumed
for the sources [25, 26].

Fundamentally, the basic problem that BSS attempts
to solve assumes a set of L measured data points x, =
(en(1)y s x0(D), .. x0(L)T at time instant n (n = 1,...,N)
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to be a linear combination of m unknown sources y, =

(yn(l),...,yn(m))T, that is
Xp = Ay, + vy (26)

For EEG measurements, L is the number of available chan-
nels, and the measurements can be summarized in a matrix
X having the vectors x, in its columns and different channel
recordings in each row. A time-invariant mixing matrix A is
the common approach for ICA and BSS of EEG, for example,
in event-related studies [3]. This model can be interpreted as
the fixed biophysical structure of the brain itself whilst the
sources distributed within this structure change their inten-
sity over time [25].

A general formulation for BSS without any assumptions
(prior information) about the nature of the data, noise, or
mixing system will leave the problem of EEG separation in-
tractable. Therefore, some basic assumptions are needed. For
example, the goal of ICA is to recover independent sources
given only sensor observations that are unknown linear mix-
tures of unobserved independent source signals [27, 28].

The assumption of physiological independence of the
sources can be quite obvious in some situations, for example,
when used in artifact rejection separating brain signals from
ocular artifacts. Note that the ICA model considers the sig-
nals as independent and identically distributed, and requires
non-Gaussian sources. Thus, by ignoring time structure, the
estimation is based solely on investigating structure across
the sensors as estimated by the sample distribution of the
measurements, and an embedded density parametrization
(differentiating at least between sub-Gaussian and super-
Gaussian sources). Therefore, the model might not be able
to separate every kind of sources (e.g., stationary Gaussian
random processes). However, in many situations predomi-
nant artifacts show a highly kurtotic sample distribution that
enables estimation.

ICA methods carry ambiguities about the ordering and
the overall amplitude and sign of the estimated sources. The
rows of the data matrix X are the EEG channel recordings
and are decomposed as X = AY, where Y has in its rows the
independent components. The mixing matrix A contains the
spatial information of the sources obtained at the sensors.
Therefore, the columns of A are the spatial distributions of
the estimated sources, which are normalized to unit variance.
For example, eye movements and eye blinks project mainly
to frontal sites. An artifact source can be eliminated and re-
moved from the measurements by backprojection.

3. RESULTS

In this section, we present the performance of Kalman fil-
ter and smoother algorithms on tracking dynamic variations,
and estimating single-trial EPs in a simulated and a real data
set. In parallel, we investigate the performance of the method
when the signal subspace is enhanced by rejecting eye-related
artifacts with the use of ICA.

IC1
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F1GURE 1: Blink-related components estimated with ICA. Time acti-
vations (left) and scalp activations (right). The left plots correspond
to the first minute of the measurement set.

3.1. Measurements and artifact removal

EEG measurements were obtained from a standard oddball
paradigm with auditory stimulation (1 subject, 60 EEG chan-
nels, reference: ears). In the recording, 569 auditory stimuli
were presented with an interstimulus interval of 1 second.
Eighty-five percent of the stimuli were the standard tones at
800 Hz. Fifteen percent were the deviant tones at 560 Hz. The
deviant tones were randomly presented. The subject was sit-
ting in a chair, and was asked to press a button every time
he heard the deviant target tone. The sampling rate of the
measurements was 500 Hz.

Reduction in noise for EEG signals can be done with lin-
ear filtering without altering the basic ICA model [27]. If we
further assume less sources than sensors and that the sensor
noise is relatively small, then principal component analysis
(PCA) on the data covariance matrix and dimension reduc-
tion can be used to reduce the noise and to prevent overlearn-
ing [27]. For the analysis, the data were digitally filtered in the
range (1-35 Hz). All the measurement set (about 10 minutes)
was used for the estimation of the separating matrix. The di-
mension of the data was reduced with PCA to 31, by keeping
eigenvectors associated with eigenvalues larger than 1, result-
ing in more than 99% of explained variance. The FastICA al-
gorithm in parallel form [27] was used for the estimation of
independent components.

By visual inspection of the estimated components and
scalp activations two components showed to be related to
eye activity. The blink components are presented in Figure 1.
On the left, the time activations corresponding to the first
minute of the recordings are presented, and on the right
the spatial distributions. Furthermore, these components did
not show any significant correlation with the two types of
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stimuli (standard and target). Correlation with stimulation
time was investigated by computing EP image plots for ev-
ery estimated component. The component-based EP image
plots are not shown here, but such images are also used in
the next section (Figures 3 and 5). EP image plots are con-
structed by color-coding potential variations occurring in
single-trial epoch vectors (e.g., [3]). The thin color-coded
horizontal bars, each representing a single-trial, are, for ex-
ample, stacked row-by-row according to data collection time
(data epochs sampled relative to successive stimulus or trial
t) producing an EP image.

Note that PCA-based dimension reduction is a rather
subjective approach for the determination of the number
of brain source signals in EEG measurements [25]. Some
relatively weak brain sources, as measured at the sensors,
may be eliminated. Additionally, some estimated indepen-
dent components may remain the mixture of more than one
source signals. However, by computing different EP image
plots we did not observe any significant loss of phase-locked
EP activity. Furthermore, filtering and dimension reduction
provided good estimates for the blink components and fast
convergence for the FastICA algorithm. Therefore, the per-
formance was considered satisfactory for ocular artifact re-
moval, and for the demonstration needs of the proposed
subspace method for dynamical estimation of single-channel
single-trial EPs.

3.2. Single-trial estimation

Real EEG data were used as background EEG activity, or
noise, in the simulations. From the recordings, we used only
the channel CZ, after preprocessing and artifact removal by
ICA. Only ocular artifacts were considered. As background
activity for the simulations, we sampled prestimulus EEG
epochs from —500 milliseconds to 0 millisecond relative to
the standard stimulus onset. Simulated EPs were constructed
according to the additive noise model by superimposing
upon the selected real EEG epochs linear combinations of
2 Gaussian-shaped functions. In order to be consistent to
the real measurements (standard tones and N100/P200 com-
plex), each pseudoreal EP vector has two Gaussian peaks: a
negative after 100 milliseconds and a positive after 200 mil-
liseconds. Trial-to-trial sinusoidal variations for the ampli-
tude and latency of the second peak were generated. Random
variations were also added to the amplitudes, latencies, and
widths of both simulated peaks.

The estimated time-varying SNR with respect only to the
second peak can be seen in Figure 2 as a function of the
stimulus number ¢. Therefore, the important assumption in
the simulations is the trend-like behavior in low signal-to-
noise ratio conditions. By construction the simulated EPs
have trend-like trial-to-trial characteristics. This can be ob-
served in Figure 3 (left) and the EP image plots. In the same
figure (bottom, left), they are also presented the 10 dominant
eigenvectors of the data correlation matrix obtained before
and after EEG addition.

It must be noted that the aim in the creation of the sim-
ulations was that the average of the simulated EPs is close
to the average of the real measurements (standard tones and
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FIGURE 2: Time-varying SNR(dB) for the simulated second peak
as a function of the stimulus number (trial) ¢, that is, SNR; =
10 log,, > ;s7(i)/> jvi(i), t = 1,..., T, where s, are the simulated
noise-free single-trial EPs and v, prestimulus EEG epochs sampled
relative to the standard tone from channel CZ after ocular artifact
removal with ICA. The sums were considered in a smaller interval
around 200 milliseconds covering only the second peak (see also
Figure 3).

N100/P200 complex at channel CZ). The average of the real
measurements has a negative peak around 110 milliseconds
(N100) with amplitude about —4uV, and a positive peak
(P200) around 230 milliseconds with amplitude about 5 uV'.
Then the simulations were created as follows. For the first
peak random variability in a small range in amplitude and
latency was simulated that gives ensemble average with peak
amplitude about —4 V' at the required latency. For the sec-
ond peak dynamic variability was created with range of about
10uV (2-12 V) in amplitude and about 45 milliseconds in
latency, such that the average has peak amplitude about 6 V'
and similar latency to the real measurements. Then prestim-
uli EEG was added. In that respect, SNR conditions were not
directly considered, but instead a reasonable range for the
time-varying behavior was assumed that can produce simi-
lar average with the real measurements.

For estimation the state-space model (25) was selected.
For the covariances we used C,, = 03I and C,, = ¢2I for
every stimulus ¢. Then the selection of the last variance term
is not essential since only the ratio 02/02 has effect on the
estimates. Then the choice C,, = I can be made and care
should be given to the selection of o2 In general, if it is tuned
too small, fast fluctuations of EPs are going to be lost, and if it
is selected too big the estimates have too much variance and
they will tend to be similar to the ordinary least squares or
principal component regression solution. The selection can
be based on experience and visual inspection of the estimates
as a balance between preserving expected dynamic variability
and greater noise reduction.

In order to identify an optimal value for the variance
term o2, for the simulations we calculated root mean square
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FiGure 3: Simulations resembling the N100/P200 auditory complex and obtained estimates. For background noise prestimuli EEG samples
relative to standard tones from channel CZ after ocular artifacts removal were used. Left: simulations (Gaussian functions) and noisy simula-
tions, single-trials as image plots (up), and the respective 10 dominant eigenvectors of the data correlation matrix (bottom). The EP images
represent stimulus locked stacked epochs (row-by-row). The color-maps describe the amplitude level in ¢V, y-axis represents successive
stimulus or trial ¢, and the x-axis represents within a trial latency variation. Right: single-trial estimates as image plots with Kalman filter and
smoother (up) and estimated variability of the second positive peak (bottom). Simulated amplitude and latency trends (light bold), estimates
based on Kalman filter (dark thin) and based on fixed-interval Kalman smoother (dark bold). For estimation the selection 02 = 1072 was

used.

errors (RMSEs) between the estimates based on the noisy
data and the noiseless simulated EPs. The RMSEs were com-
puted with respect to the second peak only over a smaller
time interval around 200 milliseconds. For initialization of
the algorithms we used half the data set by filtering back-
wards in time. The last estimates were used for initializ-
ing the forward run. Finally, the last state estimate of the
Kalman filter forward run was used to initialize the backward
smoothing procedure.

Means of RMSEs over all single-trials for different values
of state noise variance parameter and for different dimen-
sions of the observation matrix are presented in Figure 4 as
contour plots for Kalman filter (top) and smoother (middle).
In all the cases, Kalman smoother provides smaller error than

the filter. This is to be expected, since all the measurements
are included in the estimation procedure. The reduction of
the error during backward smoothing is due to greater noise
cancellation, as well as better tracking of the dynamic fluc-
tuations. Optimal values of ¢2 for all the selected observa-
tion matrices are between 107 and 1072, By considering the
contour plots and by inspection of the estimates, around 10
eigenvectors are enough for tracking the dynamic fluctua-
tions. Single-trial estimates for that dimension (k = 10) and
with the selection 02,= 1072 are presented in Figure 3 as im-
age plots for Kalman filter and smoother. In the right (bot-
tom) of the same figure they are presented estimates for the
single-trial latency and amplitude of the second peak as a
function of the stimulus number or trial t.
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FIGURE 4: Means of RMSEs for different values of the state noise
variance parameter 02 and different number of dominant eigen-
vectors included in the observation model. Contour plots of the
means for Kalman filter (top) and smoother (middle). Means when
10 eigenvector are included in the observation model (bottom). In
all plots the x-axis is in logarithmic scale.

State-space representation and a few dominant eigenvec-
tors obtained from the ensemble data correlation matrix are
able to model the amplitude and latency changes. Bayesian
recursive mean square estimation is able to reveal the hidden
dynamic variability under unfavorable signal-to-noise ratio
conditions. Clearly, Kalman smoother tracks better the dy-
namic changes and reduces greater the noise.

For the real measurements we considered epochs 0-500
milliseconds after the presentation of the standard tones
from channel CZ before and after eye artifact removal. For
the two data sets we selected 10 eigenvectors of the data
correlation matrix for estimation. The strong blink contri-
butions clearly affect the eigenvectors and the signal sub-
space, especially after the first half of the measurements,
see Figure 5. This can also be seen by observing the first
two eigenvectors that reflect mainly blink artifacts. How-
ever, since the blinks occur random enough, recursive mean
square estimation is largely reducing their contribution.
This can be observed in Figure 5 from the estimates, which
are obtained with Kalman smoother with the same choices
02=10"2 and k = 10 for both data sets. The estimated dy-
namic variability of the second peak (P200) in terms of am-
plitudes and latencies is presented in the left (bottom) of the
same figure.

Some representative individual single-trial estimates are
presented in Figure 6 for the simulations (left) and real
EP measurements (right). The estimates for the simula-
tions and the real EP measurements (standard tones and
N100/P200 complex) are based on the artifact corrected EEG
and Kalman smoother algorithm. The identification of peak
potentials from raw measurements can be misleading even

in simple simulations (e.g., stimulus number t = 50, left).
The proposed method produced accurate estimates for the
simulations even in very low SNR conditions (e.g., stimu-
lus number t = 450, left). This is because we assumed a
trend-like variability. The evaluation of the estimates for the
real EPs is naturally more difficult. For example, clear N100
and P200 peaks are obtained for stimuli 50 and 250 (right).
Though, the identification of peaks is not trivial for stimu-
lus 450 (right). However, it must be noted that the proposed
method does not make assumptions for the number of peaks
and their exact form. This information is obtained from the
estimated signal subspace and the included eigenvectors.

In summary, the proposed approach for single-trial dy-
namical estimation of EPs consists of the following steps. (1)
Band-pass filter the selected EEG channels. This has as an
effect on the improvement of the quality of the signal sub-
space. For example, it can reduce high-frequency compo-
nents, and therefore, it can provide smoother eigenvectors
and estimates. (2) Enhance the quality of the signal subspace.
If the EEG epochs contain strong artifact contributions, such
as eye blinks, an artifact correction method can be applied,
for example, ICA. (3) Estimate the data correlation matrix
and compute eigenvectors. In the simplest case, a basic ar-
tifact correction method based on thresholding of potential
values and excluding very noisy single-trial epochs can be ap-
plied prior to the computation of the correlation matrix. (4)
Select a few dominant eigenvectors to form the observation
model for estimation. The estimated signal subspace must
be able to model latency changes for different phase-locked
EP components. (5) Estimate EP characteristics with Kalman
smoother algorithm. The smoothing parameter can be se-
lected by visual inspection of the estimates (EP image plots),
and by considering the expected trial-to-trial variability of
individual peaks.

4. DISCUSSION AND CONCLUSION

We presented a new dynamical estimation method for single-
trial EP estimation based on a state-space representation for
the trial-to-trial evolution of EP characteristics. The method
uses the eigenvalue decomposition of the data correlation
matrix for the identification of the state-space model. This
is an extension of the method presented in [17], where a
generic observation model was used. A few dominant eigen-
vectors obtained from the ensemble measurements incor-
porate prior information about shape characteristics and
within trials correlations of individual EP peaks. This ap-
proach takes also into account individual subject character-
istics for estimation. Therefore, the method is applicable for
different types of EP experiments as long as dynamical be-
havior from trial-to-trial could be expected. For a Gaussian
basis selection like in [17], someone has to select the number
of basis vectors and their width. This is not always trivially
easy, since a given wave shape may perform in a different way
for every individual peak. Therefore, a benefit of SVD is the
rather easy selection of observation model that can take into
account shape information about different peaks and indi-
vidual subject characteristics. However, for very weak EPs a
generic observation model may have better performance.
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FIGURE 5: N100/P200 auditory complex, measurements from channel CZ. EEG epochs relative to the standard tones (0-500 milliseconds
after auditory stimulation), and obtained estimates. Left: EEG epochs as image plots after and before blink correction (up) and the respective
10 dominant eigenvectors of the data correlation matrix (bottom). The EP images represent stimulus locked stacked epochs (row-by-row).
The color-maps describe the amplitude level in pV, y-axis represent successive stimulus or trial ¢, and the x-axis within a trial latency
variation. Right: single-trial estimates as image plots with Kalman smoother (up) based on artifact corrected measurements and original
measurements respectively, amplitude and latency estimates of the P200 peak (bottom) based on original measurements (thin) and artifact
corrected measurements (bold). For estimation the selection 02= 107 was used.

Estimates for the state parameters are obtained with
Kalman filter and fixed-interval smoother algorithms. Both
share the optimality of Bayesian recursive mean square es-
timation. The fixed-interval smoothing method estimates
better the hidden dynamic changes and reduces greater the
noise. Therefore, it should be preferred when all the mea-
surements are available. The same behavior can be shown
when other observation models are considered, for exam-
ple, generic basis vectors as in [17]. Therefore, the present
paper introduces the use of Kalman smoother algorithm for
dynamical estimation of EPs. The use of the filter is appro-
priate for online estimation. However, compromises between
better tracking capabilities and almost online estimation can
be searched in terms of fixed-lag smoothing methods [29].

For the demonstration of the methods we used mea-
surements from an auditory experiment (oddball paradigm).
Since the aim was to investigate to performance of the meth-
ods when strong artifacts exist, we only considered the stan-
dard tone measurements and not the deviant and the P300
target response. For this data set the blink artifacts were
more prominent for the standard tones. In addition, the es-
timates of latency and amplitude of the P200 peak (slower
and smaller responses towards the end of the measurements)
just show that even in ordinary experiments some dynamic
behavior from stimulus to stimulus could be expected. How-
ever, the method should be addressed to the study of more
specific experimental settings. The investigation of latency
or amplitude estimates could, for example, be used to study
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FIGURE 6: Representative single-trial estimates based on Kalman smoother algorithm. Estimates for the simulations (left) and for the real
measurements (right) (standard tones and N100/P200 complex after ocular artifact correction by ICA). Measurements and noisy simulations
(dark thin), noise-free simulations (light bold), and estimates (dark bold).

possible habituation effects due to repetition of stimuli, or to
study cognitive changes due to time-varying task difficulty or
extra distraction. Latency or amplitude changes of peak po-
tentials can also be used to track changes caused by sedative
drugs during anesthesia.

EP measurements are usually made with multiple elec-
trodes providing spatial information for the experiment.
This information can be used at least to remove artifacts from
the signals. We showed by means of ICA that even when the
signal subspace is distorted from characteristic artifacts the
method is still able to track changes in EP peak components.
This is because in the filtering or smoothing procedure phe-
nomena uncorrelated from trial to trial are largely elimi-
nated. In fact, this is exactly the main advantage of dynam-
ical estimation for single-trial EP analysis. However, accu-
rate artifact removal or further elimination of undesirable
brain generated components can enable better quality for the

signal subspace and individual channel measurements. Ex-
tensions to multichannel measurements could be searched
by applying the method to each channel separately. Then
the variable signal-to-noise ratio conditions from channel
to channel should be considered. Another approach could
be to direct introduce spatial information in the state-space
model. Such multichannel extensions could be investigated
for further development of the method. Finally, the signal
subspace method can be extended to multichannel measure-
ments. Then it could, for example, be combined with BSS
methods.

REFERENCES

[1] E. Niedermeyer and E Lopes da Silva, Electroencephalogra-
phy: Basic Principles, Clinical Applications, and Related Fields,
Williams and Wilkins, Baltimore, Md, USA, 1999.



Stefanos D. Georgiadis et al.

11

(2]

(3

(4

(11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

J. Intriligator and J. Polich, “On the relationship between back-
ground EEG and the P300 event-related potential,” Biological
Psychology, vol. 37, no. 3, pp. 207-218, 1994.

S. Makeig, S. Debener, J. Onton, and A. Delorme, “Mining
event-related brain dynamics,” Trends in Cognitive Sciences,
vol. 8, no. 5, pp. 204-210, 2004.

S. Makeig, M. Westerfield, T.-P. Jung, et al., “Dynamic brain
sources of visual evoked responses,” Science, vol. 295, no. 5555,
Pp. 690-694, 2002.

B. H. Jansen, G. Agarwal, A. Hegde, and N. N. Boutros, “Phase
synchronization of the ongoing EEG and auditory EP gen-
eration,” Clinical Neurophysiology, vol. 114, no. 1, pp. 79-85,
2003.

V. Mikinen, H. Tiitinen, and P. May, “Auditory event-related
responses are generated independently of ongoing brain activ-
ity,” NeuroImage, vol. 24, no. 4, pp. 961-968, 2005.

W. A. Truccolo, M. Ding, K. H. Knuth, R. Nakamura, and S. L.
Bressler, “Trial-to-trial variability of cortical evoked responses:
implications for the analysis of functional connectivity,” Clin-
ical Neurophysiology, vol. 113, no. 2, pp. 206-226, 2002.

K. H. Knuth, A. S. Shah, W. A. Truccolo, M. Ding, S. L.
Bressler, and C. E. Schroeder, “Differentially variable compo-
nent analysis: identifying multiple evoked components using
trial-to-trial variability,” Journal of Neurophysiology, vol. 95,
no. 5, pp. 3257-3276, 2006.

A. Holm, P. O. Ranta-aho, M. Sallinen, P. A. Karjalainen, and
K. Miiller, “Relationship of P300 single-trial responses with re-
action time and preceding stimulus sequence,” International
Journal of Psychophysiology, vol. 61, no. 2, pp. 244-252, 2006.
S. Cerutti, V. Bersani, A. Carrara, and D. Liberati, “Analysis of
visual evoked potentials through Wiener filtering applied to a
small number of sweeps,” Journal of Biomedical Engineering,
vol. 9, no. 1, pp. 3—-12, 1987.

M. von Spreckelsen and B. Bromm, “Estimation of single-
evoked cerebral potentials by means of parametric modeling
and Kalman filtering,” IEEE Transactions on Biomedical Engi-
neering, vol. 35, no. 9, pp. 691-700, 1988.

P. A. Karjalainen, J. P. Kaipio, A. S. Koistinen, and M. Vauhko-
nen, “Subspace regularization method for the single-trial esti-
mation of evoked potentials,” IEEE Transactions on Biomedical
Engineering, vol. 46, no. 7, pp. 849-860, 1999.

R. Quian Quiroga and H. Garcia, “Single-trial event-related
potentials with wavelet denoising,” Clinical Neurophysiology,
vol. 114, no. 2, pp. 376-390, 2003.

N. V. Thakor, C. A. Vaz, R. W. McPherson, and D. F. Han-
ley, “Adoptive Fourier series modeling of time-varying evoked
potentials: study of human somatosensory evoked response
to etomidate anesthetic,” Electroencephalography and Clinical
Neurophysiology, vol. 80, no. 2, pp. 108-118, 1991.

C. Doncarli, L. Goerig, and P. Guiheneuc, “Adaptive smooth-
ing of evoked potentials,” Signal Processing, vol. 28, no. 1, pp.
63-76, 1992.

W. Qiu, C. Chang, W. Liu, et al., “Real-time data-reusing adap-
tive learning of a radial basis function network for tracking
evoked potentials,” IEEE Transactions on Biomedical Engineer-
ing, vol. 53, no. 2, pp. 226-237, 2006.

S. D. Georgiadis, P. O. Ranta-aho, M. P. Tarvainen, and P.
A. Karjalainen, “Single-trial dynamical estimation of event-
related potentials: a Kalman filter-based approach,” IEEE
Transactions on Biomedical Engineering, vol. 52, no. 8, pp.
1397-1406, 2005.

B. L. Turetsky, J. Raz, and G. Fein, “Estimation of trial-to-trial
variation in evoked potential signals by smoothing across tri-
als,” Psychophysiology, vol. 26, no. 6, pp. 700-712, 1989.

(19]

[20]

(21]

(22]

(23]
(24]

[25]

(26]

(27]

(28]

(29]

A. Cichocki, R. R. Gharieb, and T. Hoya, “Efficient extrac-
tion of evoked potentials by combination of Wiener filter-
ing and subspace methods,” in Proceedings of IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP °01), vol. 5, pp. 3117-3120, Salt Lake, Utah, USA,
May 2001.

H. W. Sorenson, Parameter Estimation: Principles and Prob-
lems, Marcel Dekker, New York, NY, USA, 1980.

M. Askar and H. Derin, “A recursive algorithm for the bayes
solution of the smoothing problem,” IEEE Transactions on Au-
tomatic Control, vol. 26, no. 2, pp. 558-561, 1981.

H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likelihood
estimates of linear dynamic systems,” AIAA Journal, vol. 3, pp.
1445-1450, 1965.

G. H. Golub and C. E van Loan, Matrix Computations, The
Johns Hopkins University Press, Baltimore, Md, USA, 1989.

L. Jolliffe, Principal Component Analysis, Springer, New York,
NY, USA, 1986.

C.J. James and C. W. Hesse, “Independent component analy-
sis for biomedical signals,” Physiological Measurement, vol. 26,
no. 1, pp. R15-R39, 2005.

A. Cichocki, “Blind signal processing methods for analyzing
multichannel brain signals,” International Journal of Bioelec-
tromagnetism, vol. 6, no. 1, 2004.

A. Hyvirinen, J. Karhunen, and E. Oja, Independent Compo-
nent Analysis, John Wiley & Sons, New York, NY, USA, 2001.
A. Cichocki and S. Amari, Adaptive Blind Signal and Image
Processing, Learning Algorithms and Applications, John Wiley
& Sons, New York, NY, USA, 2002.

J. Kaipio and E. Somersalo, Statistical and Computational In-
verse Problems, Springer, New York, NY, USA, 2005.



Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2007, Article ID 52609, 8 pages
doi:10.1155/2007/52609

Research Article

Inferring Functional Brain States Using Temporal
Evolution of Regularized Classifiers

Andrey Zhdanov,'-2 Talma Hendler, 3 Leslie Ungerleider,* and Nathan Intrator?

! Functional Brain Imaging Unit, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 64239, Israel

2The School of Computer Science, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel

3 Psychology Department and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

*Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institute of Health (NIH),

Bethesda, MD 20892-1366, USA

Correspondence should be addressed to Andrey Zhdanov, zhdanova@post.tau.ac.il

Received 18 February 2007; Accepted 16 July 2007

Recommended by Saied Sanei

We present a framework for inferring functional brain state from electrophysiological (MEG or EEG) brain signals. Our approach
is adapted to the needs of functional brain imaging rather than EEG-based brain-computer interface (BCI). This choice leads to
a different set of requirements, in particular to the demand for more robust inference methods and more sophisticated model
validation techniques. We approach the problem from a machine learning perspective, by constructing a classifier from a set of la-
beled signal examples. We propose a framework that focuses on temporal evolution of regularized classifiers, with cross-validation
for optimal regularization parameter at each time frame. We demonstrate the inference obtained by this method on MEG data
recorded from 10 subjects in a simple visual classification experiment, and provide comparison to the classical nonregularized
approach.

Copyright © 2007 Andrey Zhdanov et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

Historically, the goal of inferring person’s functional state
from brain signals on a single-trial basis was most extensively
pursued in the field of EEG-based brain-computer interface
(BCI) design [1, 2]. EEG-based BCI systems attempt to dis-
tinguish among a small number of consciously controllable
mental states from accompanying EEG signals, using the re-
sponse potential evoked by the stimulus [3, 4]. This approach
is often based on machine learning principle using a set of la-
beled examples to construct a (usually linear) classifier. First
BCI experiments utilized a single-trial ERP setup in which
subject was presented with stimuli in a controlled fashion
and communicated his or her decision by changing men-
tal state (e.g., focus of attention) [3]. Another approach to
BCI design attempts to infer subject’s mental state exclusively
from EEG signals without relying on pacing cues [5-7]. Typ-
ically, this free-paced BCIs would split ongoing EEG activity
into short (usually less than 1 second) intervals and examine

each interval independently in search of EEG patterns, char-
acteristic of one of the predefined mental states.

A wide variety of different algorithms utilizing differ-
ent features of EEG signal were proposed over the last three
decades. The simplest ones like the one described in [8]
rely on subjects learning to control their cortical potentials
at certain electrode locations, thus reducing the classifica-
tion algorithm to simple thresholding. More complex algo-
rithms use spatial [9] or spatio-temporal [5-7, 10, 11] fea-
tures of the EEG signal in conjunction with some classifica-
tion techniques. Typically, these algorithms treat either raw
EEG data or energy of some predefined frequency bands
(such as motor-related y and  rhythms) as features. Those
features are then fed into some classifiers to produce the fi-
nal classification. Most BCIs use a variation of a linear clas-
sifier such as regularized fisher linear discriminant analysis
(LDA) [5], common spatial patterns [9], or support vector
machines (SVM) [12]. Some attempts are also made to ad-
dress the problem with nonlinear classifiers such as artificial
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neural networks [11]. An extended discussion on compara-
tive merits of linear and non-linear methods can be found in
[13].

One type of EEG signal features particularly widely used
in BCI is the amount of energy in a certain frequency band.
Large neuronal populations are capable of generating large-
scale synchronized oscillatory electrical activity observable
by EEG. As a general rule, the frequency of such oscillatory
activity is believed to decrease as the number of neuronal as-
semblies forming the network increases [14]. This activity
is transient and can be evoked (event-related synchroniza-
tion, ERS) or suppressed (event-related desynchronization,
ERD) by various experimental events such as stimulus pre-
sentation. Two particular frequency bands—the Rolandic y
rhythm (7-13 Hz) and the central  rhythm (above 13 Hz)—
are particularly useful for BCI design as they are amenable to
conscious control by means of motor imagery (see [15, 16]).
More extensive discussion of the ERS/ERD phenomenon can
be found in [4].

Current BCI systems are capable of achieving typical
classification accuracies in the range of 80-95% for a two-
outcome classification trial (one exception is a report in [17]
of 100% classification accuracy over 160 trials).

Recently, application of mental state inference techniques
to brain research received a lot of attention from the fMRI
community [18-21]. While it has been a valuable tool in
investigation of endogenously triggered changes of mental
states such as bistable perceptual phenomena, it suffers from
low temporal resolution. Unlike fMRI, electrophysiological
measurements (EEG and MEG) provide a rich source of tem-
poral information; therefore, it is expected that the analysis
of the temporal evolution of these signals can be used for
fine temporal mental state inference. While mental state in-
ference from EEG signals has been researched extensively in
the BCI context, there is little investigation into EEG- and
MEG-based inference as a functional neuroimaging research
technique.

To be useful outside the BCI domain, inference tech-
niques need to satisfy a set of requirements that differs sig-
nificantly from the requirements of the BCI design.

(1) The choice of functional states that need to be distin-
guished is often outside the experimenter’s control.

(2) The subject is not trained to improve the inference ac-
curacy.

(3) The inference techniques need to be applicable to
modalities other than EEG. In particular, inferring
functional states from MEG or fMRI signals raises two
major problems: (a) the dimension of input data is
much higher than that of EEG and (b) due to techni-
cal and cost limitations, the amount of available data
is much smaller.

(4) Theinference method attempts to provide a physiolog-
ically meaningful interpretation of the inference crite-
ria.

(5) Unlike with BCI, the experimenter has greater control
over the experimental environment, making scenarios
that require relatively complicated setups (for exam-

FiGgure 1: Examples of the stimulus category presented to the sub-
jects.

ple, single-trial evoked response potentials (ERPs) ex-
periments) much more attractive.

These differences require a more high-dimensional and ro-
bust classifiers than those used for BCL In addition, the
scarcity of data for MEG and fMRI modalities means that
more advanced model validation techniques (such as cross-
validation, bootstrapping, etc.) are needed.

In this work, we describe a framework for inference of
the temporal evolution of functional states. We formulate
the inference problem as that of discriminating between two
classes of signals time locked to experimental events. Central
concepts of the proposed framework are the temporal evo-
lution of regularized linear classifiers constructed from in-
stantaneous signal values and their relation to the regulariza-
tion parameter. We investigate the behavior of these quanti-
ties on MEG dataset from a simple classification experiment
that involves switches between two stimulus categories. We
construct a classifier by choosing the combination of time-
point and regularization parameter that jointly minimize es-
timated misclassification rate and analyze the classifier’s per-
formance.

2. MEGEXPERIMENTAL SETUP

The MEG experiment was performed on 10 healthy volun-
teer subjects at the Lab of Brain and Cognition, National
Institute for Mental Health (NIMH), Bethesda, Maryland.
The study was approved by the Institutional Review Board
committee of the NIMH. During the experiment, MEG sig-
nals were recorded while subjects were presented with images
from two different categories—faces and houses. The images
of faces were taken from the Ekman and Friesen [22] and
KDEF [23] databases and were composed of 4—6 female or
male particulars exhibiting fearful or neutral facial expres-
sion (for an example of a particular, see Figure 1). The images
were presented in twelve (subjects TE and ZK) or eight (the
remaining 8 subjects) 40-second-long epochs separated by
10-second rest intervals of a grey screen with fixation. Dur-
ing each epoch, the subject was presented only with images
of faces and houses (no blanks, fixation screens, etc. were
used), with the stimulus switching between face and house
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TaBLE 1: Number of training samples for each subject.

Subject CT ER FB JMB JMM MC MKN SH TE ZK
No. of switches from house to face 42 39 47 48 74 65 80 55 57 72
No. of switches from face to house 39 36 46 44 68 61 76 56 53 66
at irregular intervals—approximately every several seconds.  is given by
The numbers of switches for each subject are summarized in -1
Table 1 pr=X (n,-u) 3)

Throughout the experiment, the subjects were requested
to fixate at a black point in the center of the screen and report
the stimulus category switches by pressing the button corre-
sponding to the category that appeared (i.e., face or house)
with the right hand. The MEG experiment used in our study
served as a control condition in a larger emotional binocular
rivalry experiment.

2.1. Data acquisition and preprocessing

MEG signals were recorded using 275-sensor whole-head
CTF-275 system by VSM MedTech Ltd. Coquitlam, Canada.
Because of a failure of one of the sensors, only 274 chan-
nels were recorded. All the sensors were 2nd-order axial gra-
diometers. The data was sampled at 600 Hz.

For computational efficiency reasons, the MEG signals
were downsampled to 60 Hz. Then they were segmented into
intervals of [—0.33 1] seconds or [—20 60] samples around
the stimulus switch. Next, each interval was baseline cor-
rected by subtracting the average of the first 20 samples from
each sample in the interval. In this manner for each subject,
we obtained several dozens of signals, each containing 274
(number of channels) * 81 (number of time slices) values.
Each of the signals was associated with class label “face” if it
was recorded while stimulus switched from house to face and
with class label “house” otherwise.

3. FISHER LDA-BASED FRAMEWORK FOR
FUNCTIONAL BRAIN STATE INFERENCE

In a classical Fisher LDA setup, one is given two sets of

scalars, X = {x1,x2,...,x,} and Y = {y1,¥92,..., ¥m}, and
the Fisher separation measure is given by
i — 1y |
d(x,y) = T2 (1)
0i +0;

where y, and y, are means and o, and o, are standard de-
viations of the two sets. The separation measure quantifies
the “distinctiveness” of the two sets and can be thought of as
signal-to-noise ratio of the associated classification problem.

For two sets of k-dimensional column vectors (represent-
ing labeled samples of two classes), X = {x1,%2,...,X,} and
Y = {y1,¥2-..>¥m}, the direction ps in the k-dimensional
space that maximizes the Fisher separation between the pro-
jections of X and Y,

ps = argmaxd(p'X, p'Y), (2)
p

where ¥ = X, + X, is the sum of covariance matrices for X
and Y and g, p —vector means of X and Y (see [24] for
details). The inversion of X is problematic when the dimen-
sionality of X is high and the number of observations is small.
In that case, X is singular or close to singular, due to dimen-
sions where the variance is zero or very small, and the inver-
sion leads to large errors in the estimation of correct values
even for dimensions where the variance is large.

Below, we extend this approach to temporal signals and
address the singularity of the covariance matrix.

Following the MEG data preprocessing, we obtain a set
of labeled signals, each signal being a matrix of 274 channels
sampled at 81 consecutive time points (timeslices). Our main
goal is to develop a method for inferring correct label from
the signal matrix.

We assume a time-point-wise correspondence among the
signals (the assumption is partially justified by the fact that
the segmentation is timelocked to the stimulus). This as-
sumption implies entrywise correspondence of the signal
matrices, allowing us to treat each signal as a point in a
274 % 81-dimensional feature space. Thus, we can formulate
our inference problem as a high-dimensional pattern classi-
fication problem.

Such high-dimensional classification problem poses 2
challenges:

(1) feature selection—selecting a small subset of the 274 %
81-dimensional feature set that is most informative of
the signal label.

(2) classifier construction—building robust classifier from
the selected feature subset.

3.1. Feature selection

There are many possible strategies for the feature selection
step. In this study, we employed a very simple strategy of
selecting the set of 274 MEG sensor readings from a single
most predictive time-point as a feature set for the classifier
construction step (i.e., selecting the most predictive column
from the 274 by 81 feature matrix). This reduces the dimen-
sion of the data from 274 x 81 to 274. We evaluate the pre-
dictiveness of each timepoint by evaluating the performance
of the resulting classifier using 100-fold cross-validation on
all the data available.

3.2. Classifier construction

Once a set of 274 features is selected, one needs to construct
a classifier for 274-dimensional vectors using a set of several
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FiGure 2: (a) Classifier error rates for all 10 subjects; regularization parameter and the input time slice were selected to minimize the
classification error using 100-fold cross-validation. (b) Control results obtained using the same algorithm on data with randomly scrambled
target labels; both plots show average error estimated using 100-fold cross-validation; error bars denote 1-std-wide margin around the

estimate.
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FIGURE 3: Prediction error at the best time slice versus log of regularization parameter. (a), (b) predictable subjects—ZK and JMB. (c), (d)
unpredictable subjects—TE and ER. (e), (f) control experiments, in which category labels for subjects ZK and JMB were randomly scrambled
before constructing the classifier. Classifier’s prediction error was estimated using 100-fold cross-validation on 20% of the data. Dotted lines
denote 1-std-wide margins of the estimate. The dotted vertical line marks the global minimum of the smoothed error estimate (smooth red

line).
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FIGURE 4: MEG sensor weight maps for the 10 subjects. Each map corresponds to the time slice and the regularization value that yield lowest
prediction error estimate for the given subject. The maps are presented in the order of increasing classifier error (from left to right and from

top to bottom).
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FIGURE 5: Error rate as a function of regularization parameter for
subject ZK. Solid blue line denotes the average error rate over 100-
fold cross-validation, dotted lines mark 1-std-wide margin; the ver-
tical line marks the minimum of the smoothed error rate (red line).
Three plots below show the distribution of sensor weights corre-
sponding to different values of the regularization parameter.

dozens of labeled examples. We construct the classifier by
computing from the labeled examples the optimal projection
direction py in the 274-dimensional space using regularized
Fisher LDA (see above). A new sample s is classified by pro-
jecting it onto py and applying a simple nearest-neighbor
rule: for two classes X (faces) and Y (houses), decide that s
belongs to X if

[Pys —Piucl < |pys —piu, | (4)

and that s belongs to Y otherwise.

Regularization technique

We construct the classifier using Fisher LDA with slightly
modified version of regularization described in [25]:

* =T+ demax], (5)

where emay is the largest eigenvalue of the covariance matrix.
Normalizing the second term of (5) by emax allows a heuristic
estimation of the relation between A and the condition num-
ber of X. To illustrate this, let us assume that X is diagonal; in
which case, its entries along the main diagonal are its eigen-
values. The condition number ¢ of £* is then given by

emax + e
c= max max , (6)
€min T Aemax
where emin is the lowest eigenvalue of X. Since in our case the
number of data samples is less than the data dimension, X is
degenerate and has the lowest eigenvalue e, = 0. Substitut-
ing zero for emin in (6) gives us the relation between A and the
condition number
1+A
c=———. 7
: @)
While (7) holds strictly only if X is diagonal, it can be used
for heuristic approximation of ¢ as a function of A for any
degenerate covariance matrix.

3.3. Relationships between A and time

We argue that relations among A, timepoint index ¢, and the
classifier accuracy (estimated, e.g., by cross-validation) pro-
vide a wealth of information on both statistical and biological
aspects of the problem (see the results section). This infor-
mation can be utilized to guide feature selection, and evalu-
ate data quality and other tasks. The current version of the
proposed mental state inference technique uses this infor-
mation to perform a very simple optimization—it selects the
combination of t and A yielding the lowest prediction error
estimate.

The final classification of each signal is performed by do-
ing single timepoint classification using the values of t and A
that minimize the estimated error.
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FIGURE 6: (a) Temporal stability of the best separating timeslice as a function of regularization parameter for subject JMB. The upper plot
shows the accuracy of the classifier as a function of timeslice and regularization parameter. The accuracy is denoted by the color according to
the colorbar above the plot. Timeslice yielding maximum accuracy for each value of the regularization parameter is marked by a black dot.
The lower part of the plot shows the best (over all timeslices) error plotted against the regularization parameter using the same timescale as

the upper part. (b) Same as (a) but for subject MKN.

3.4. Computational experiments

We estimated the classifier accuracy for each timeslice in the
interval [—0.33 1] seconds and each value of the regulariza-
tion parameter A € [107°,1]. According to (7), the lower
limit of A = 107> yields regularized matrix £* with condi-
tion number of order of magnitude 10°, which is the largest
value for which the computation of the inverse of X+AemaxI is
still numerically stable. Using the values from the lower part
of the range corresponds to the fixed diagonal regularization
proposed in [26]. 300 values of A were sampled uniformly
on the logarithmic scale (i.e., the ratio of the two successive
samples was constant) from the interval [107> 1].

For each timeslice and each value of A, the classifier ac-
curacy was estimated with 100-fold cross-validation using all
the data available. In each iteration of the cross-validation,
80% of the data was used for training the classifier and 20%
for testing.

4. RESULTS
4.1. Overall error rates

The lowest (over all timeslices and regularization parameter
values) error rates achieved for each subject are summarized
in Figure 2. Since minimizing the error over any free parame-
ters biases, the error estimate downwards; we compare the es-
timated error to the estimate obtained by applying exactly the
same algorithm to the data with randomly scrambled class
labels (see Figure 2(b)). The difference between the mean er-
ror estimates is significant for all subjects (P < 1072 for all
subjects, estimated using Student’s t-test).

4.2. Relation between classifier error and
regularization parameter

For a classification problem that uses regularization, one
typically expects that the (estimated) classifier error as a
function of regularization parameter exhibits a clear global
minimum. In our case, the classification error when plot-
ted against the regularization parameter clearly revealed such
minimum in some subjects, while in others it remained com-
pletely flat (see Figure 3). Subjects that produced such flat
plots also tended to achieve lower classification accuracy,
which lead us to speculate the convexity of the plot might
be indicative of the amount of noise in the data. One might
think of the phenomenon in terms of a continuum of dif-
ferent signal-to-noise ratios: the more noise there is in the
subject’s data, the more similar it is to the random controls,
both in terms of minimal achievable error and in terms of
convexity of the plot.

4.3. Best separating weight maps

The set weights assigned to the MEG channels by the regular-
ized Fisher LDA analysis can be interpreted as a weight map
over the MEG helmet surface indicating the contribution of
each point to the classification decision.

We examined the weight maps obtained for the combina-
tion of A and timeslice that yield the lowest estimated predic-
tion error. The maps display a prominent structure consist-
ing of several small clusters of interleaved positive and neg-
ative weights (see Figure 4). As expected from animal single
unit and fMRI human studies [27], this structure is fairly lo-
calized to occipitotemporal regions that might correspond to
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a neural source in the fusiform gyrus. The structure seems
to be more clearly exhibited in the predictable subjects. We
also investigated the relation between the value of A and the
structure of corresponding weight maps. As one could have
expected, increasing the regularization parameter causes the
resulting optimal weight maps to become smoother (see
Figure 5).

4.4. Spatiotemporal structure of the signal and its
relation to the regularization parameter

Another item of particular interest is the temporal structure
of the signal and its relation to the regularization parameter.
We discovered that the stability of the best separating times-
lice as a function of regularization and classifier performance
as a function of regularization are closely related. The tempo-
ral location of the best separating timeslice tends to be more
stable for the A values that yield lower classification error (see
Figure 6).

The figure also reveals that the most informative times-
lices are located approximately 0.2 seconds after the stimu-
lus switch. This finding is consistent with previous findings
about the N170 wave—an increase in negative potential at
the parietal parts of the scalp, approximately 0.17 seconds
after stimulus presentation [28, 29]. One can also see that
there are other timeslices in addition to those located at 0.2
seconds, that can potentially contribute to improved classifi-
cation (e.g., the timeslices located near 0.32 and 0.5 seconds
in Figure 6(b)).

4.5. Comparison to other classification techniques

Finally, we compared regularized Fisher LDA to two other
more straightforward techniques: sensorwise difference of
average signals for faces and houses and sensorwise differ-
ence normalized by sensorwise signal variance (see Figure 7).
Note that each classifier attains best separation at a different
time. Regularized Fisher linear discriminant differs from the
other methods in 3 aspects: (1) it achieves much lower er-
ror rate: 14% against 37% and 39% for the other methods;
(2) the global minimum of the error function is much more
clearly localized in time; (3) the corresponding weights map
shows a prominent pattern localized to the sensors located
over occipital region of the brain.

4.6. Neuronal basis of the classification

The differential neuronal activity that allows distinguishing
between the two types of stimulus switches can be attributed
to the differences in visual processing of the stimulus, the dif-
ferences in the planning and execution of the response motor
task, or both. However, observations support the notion that
differences in activity detected by the classifier are predomi-
nantly of the visual category processing nature. First, the clas-
sifier accuracy when plotted as a function of time peaks at
about 200 milliseconds which is consistent with other find-
ings regarding the N170 wave and its role in face process-
ing [28, 29]. As expected from N170 distribution, weight
maps resulting from the presented classification tend to as-
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Figure 7: Comparison between different linear discrimination
methods for subject JMB. (a) Using sensorwise difference of mean
signals for two conditions as weights. (b) Same as (a) but the weight
of each sensor is normalized by the variance of the signal at that sen-
sor. (c) Regularized Fisher linear discriminant analysis. The plots
depict error estimate of the classifier as a function of time slice of
MEG signal to which it was applied. Dotted lines denote 1-std-
wide margin around the estimate. The maps depict distribution of
weights over the scalp (flattened helmet viewed from above) at the
time slice that yields best separation (marked by blue arrow).

sign higher importance to sensors located over the occipital
and temporal lobes. Finally, behaviorally there was no signif-
icant difference between average reaction times for the two
stimulus categories suggesting that for both stimulus classes
the motor-related neuronal activity is similar.

5. CONCLUSIONS

We have proposed a new framework for the functional brain
state inference problem. The framework utilizes temporal in-
formation present in EEG and MEG signals and is particu-
larly adapted to the needs of functional neuroimaging. Appli-
cation of the framework to MEG data suggests that the rela-
tion between regularization parameter and temporal profile
of the classifier reveals a lot of structure that can be utilized
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for improving classification accuracy. This structure can be
exploited to construct more accurate classifiers, for example,
by fusing information across different combinations of regu-
larization parameters and times. The proposed classification
framework opens a new horizon for whole-brain functional
imaging where combined temporal and spatial characteris-
tics of brain signals can reveal the underlying physiological
mechanism of an individual’s functional state. It can further
promote studies on internally driven mental events such as
spontaneous switching in awareness, emerging of volition,
and formulation of intention.
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demonstrate that the method is able to suppress blinking and saccade artefacts in a fully automated way.
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1. INTRODUCTION

Recording of cerebral activity by means of the electroen-
cephalogram (EEG) is a widespread technique that is well
embedded in today’s healthcare environment. The potentials
recorded at the patient’s scalp are a direct reflection of cere-
bral activity patterns and thus may serve as an indication
to neurological diseases such as epilepsy, encephalopathies
and sleep disorders. Being a noninvasive technique with a
high temporal resolution, it is also frequently used in exper-
imental settings in neurophysiology and psychology, where
responses to external stimuli are measured.

Although the first article mentioning EEG registration al-
ready dates from 1924 (Hans Berger), there still remain a lot
of side effects, inherent to the recording, that are to be dealt
with. The major issue to be tackled when preprocessing the
EEG is the contamination of the signal by artefacts. The lat-
ter hamper the interpretation by physicians of the cerebral
activity, since they are often many times larger in amplitude
than the neuronal activity of interest. The most well-known
interfering sources are power line noise, muscle activity, and
ocular movements. The classical frequency bands of inter-

est in the EEG are situated between half a Hertz (delta band
lower limit) and approximately 35-40 Hz (gamma band up-
per limit), although studies are found where in upper lim-
its of gamma activity in evoked potentials extend beyond
the classical 35-40 Hz limits up to 80 Hz [1]. Even scalp ef-
fects up to 200 Hz have been recorded as reported in [2],
tagged as oscillation in the high gamma frequency band (60—
200 Hz) while test persons imagined they were singing. In
general, though, power line noise is easy to deal with since
the main spectral bands of interest are usually limited be-
tween 0 Hz and 35 Hz. Because in these cases there is no spec-
tral overlap with the EEG bands of interest, a simple low-
pass or Notch filter with cancellation at 50 or 60 Hz suffices
for the elimination of this artefact. Muscle artefact suppres-
sion is harder to resolve since the frequencies are situated in
the upper part of the EEG spectrum. Moreover, the activ-
ity of the muscles stems from fast changing polarization of
different muscle fibers, displaying undeterministic (low au-
tocorrelation) behaviour. From this point of view, De Clercq
et al. [3] proposed to make use of the canonical correlation
analysis method to reduce the influence of muscle activity in
EEG recordings. For ocular movement artefact suppression
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several solutions have already been put forward. Neverthe-
less, we will focus on the latter, showing where previous tech-
niques fail and can thus be ameliorated and how to validate
these studies based on objective measures derived from sim-
ulated data.

Whenever ocular movements are present in the EEG,
the underlying cerebral activity cannot be interpreted by the
physician, the experienced EEG technician, or the automated
file processor. In the past, many solutions have been pre-
sented to suppress artefacts as much as possible. One of the
earliest techniques was to request the patients or subjects
to move their eyes as little as possible in order to obtain a
nice and clean EEG recording. However, working with chil-
dren and disabled people, which are still the main groups in
clinical settings, seemed quasi infeasible. Besides, the current
trend is shifting more and more to long-term monitoring, a
set up in which it is infeasible to ask the subjects to avoid
moving their eyes during recording. Also, when considering
task related potential distributions through event related po-
tentials, the creation of an additional task (staring) decreases
the amplitude and the visibility of the cerebral response in
the grand average related to the primary task, see, for exam-
ple, [4-6]. Therefore, rejection of trials or segments contam-
inated with ocular artefacts has been put forward as an alter-
native solution. Although very commonly used in the past,
this technique suffers from huge data losses since sponta-
neous blinks occur at a ratio of approximately 20 per minute
[7]. For statistical tests based on long-term recorded data,
this loss of data is highly unwanted, since the statistical results
would suffer from the absence of the discarded data epochs.
The same holds for examinations of seizure onsets in long-
term recordings of epileptic patients, a period that may be
heavily contaminated by muscular and ocular artefacts [8].
Moreover, for some ERP processing the blinking of the eyes
are temporally highly correlated with the cerebral response of
interest. Hence, this would result in an unwanted rejection of
epochs of interest. [9].

For these reasons and because of increasing computa-
tional resources, the trend is shifting toward artefact correc-
tion methods. Although correction would be beneficial and
preferable to rejection for the reasons mentioned above, it is
claimed that rejection is still to be preferred over correction
in EEG recordings of children [10]. Some of the more widely
spread correction methods in research and clinical uses are
the temporal and spectral regression techniques [11-13] and
source separation or extraction methods [14, 15]. The regres-
sion methods, differentiated based on details in the imple-
mentation, all start from a set of reference signals and cal-
culate the weighted contribution of each of those references
at the recording sites or electrodes [12, 13, 16]. Although
these methods have proven to be able to cope with different
eye movement artefacts in the EEG, the major drawback is
still the cross contamination between the reference electro-
oculogram (EOG) channels and the EEG channels. It can-
not be guaranteed that the EOG is free from contributions of
cerebral origin, because propagation takes place in the same
way as the ocular potentials influence the scalp potentials or
EEG. This can be simply explained by the electrical property
of reciprocity. Therefore, it is required that the reference used

to perform regression with is well chosen and appropriately
preprocessed. Recent studies [16, 17] showed that there exist
means to tackle this problem by using adapted versions of the
EOG channels. However, the validity of these results in clini-
cal data is questionable, since the findings are based on a con-
struction model that is equivalent to the correction process,
hence biasing the outcome toward the presented method.

Apart from these regression techniques, a lot of research
has been done on blind source separation (BSS) models. The
EEG, being narrowband potential measurements that are the
resultant from current sources in the brain, can be described
by the linear approximation of the Maxwell equations for
volume conduction. This also implies that the measurements
are an instantaneous reflection of the underlying activity, and
thus no delays should be considered. The general linear and
instantaneous mixture model is given by

x(t) = As(t) + (1), (1)

where x(t) € RM are the measured data from m electrodes
sampled at time instance ¢, s(t) € RY are the n sources, at
time instant £, A € RM*YN is the linear mixing matrix, and
#(t) is the additive noise. The ith column of A, a;, is a measure
for the spreading of the activity of the ith source in s, s;, to
the scalp electrodes, that is, the so-called source topography.
Since x(t) and s(t) can be seen as random samples sampled
independently from a multivariate distribution, we omit the
time index ¢ throughout the subsequent work, with explicit
usage only there where needed to interpret the variables or
the equations they are involved in. The additive noise in (1),
when not negligible, will be considered as one of the sources
in the subsequent work, and thus the term #(t) can and will
be dropped.

In the midtwentieth century, the most commonly used
model to solve for the estimated sources (and their corre-
sponding topographies), given only the measurement data
x, was that of principal component analysis (PCA) [18], a
technique based on the well-known singular value or eigen-
value decomposition (SVD, resp., EVD, also known as the
Karhunen-Loeve transform in information theory). These
methods try to estimate underlying sources, based on max-
imisation of variance in a decorrelation framework for the
sources and their topographies. However, many researchers
have pointed out that the constraint of orthogonality on the
source topographies does not stroke with the reality of the
physiological sources underlying the EEG. Indeed, there is
no ground on which we should assume that physiological
source topographies are mutually orthogonal. Nevertheless,
some interesting results based on these assumptions have
been published recently, for example, [16, 19, 20].

In the last decade, independent component analysis
(ICA) has become a popular technique to decompose the
EEG signal into cerebral and noncerebral source estimates.
The extra assumption of maximal source independence has
found a lot of support in the EEG research community. In
contrast to PCA/SVD, the sources no longer need to have
mutually uncorrelated topographies, meaning the topogra-
phies are no longer constrained to be orthogonal. To solve for
the linear and instantaneous mixture model subjected to the
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constraint of maximal independence, the source estimates §;
for the sources s; in (1) can be obtained through maximi-
sation or minimisation of an appropriate object function,
called a contrast. There exist a lot of contrasts in literature
that one could optimise for in order to obtain maximally
independent sources. Among the most popular are those of
Hyvirinen and Oja [21] (Kurtosis based with a nonlinearity
in the updating function), Lee et al. [22] (maximum likeli-
hood based), Belouchrani et al. [23] (joint diagonalisation
over a specific set of matrices) and Comon [24] or Cardoso
and Souloumiac [25] (both cumulant tensor based). The first
application of ICA to solving the EEG problem came from
Makeig et al. [14] where they attempted to separate the raw
EEG signal into physiological sources. An extension thereof
was given in [15]. The research presented in the latter has
been based on patient data as well as simulations and shows
some of the abilities of ICA in EEG applications. In spite of
the use of PCA/SVD in the preprocessing step of ICA imple-
mentations, the so-called whitening, PCA/SVD itself is often
regarded as an inferior BSS algorithm compared to ICA.

In this paper, we show that by careful selection of a pa-
rameter set we can use the benefits of SVD, namely, a limited
number of samples needed to estimate the covariance ma-
trices with a sufficient precision, to our advantage in EOG
source interference suppression. Although the results ob-
tained by a such decomposition suffer a lot from method-
ological artefacts. Therefore we introduce an additional es-
timation step carried out by ICA (we used JADE [23]) and
merge both results through a joint smoothened subspace
estimator. The method of Canonical Correlation Analysis
(CCA) [26] is an excellent candidate method for the latter,
since the linear combination between both subspaces is au-
tomatically calculated and prevents us from introducing pre-
fixed weighting scalars. Moreover, the subspace estimator re-
duces the subspace to the smoothest components only. For
objective validation we propose a dipole-based model with
eye activity modelling based on the model described in [7].

For ocular artefact suppression, other methods, such as
wavelet transforms [27], the use of neural networks [28],
and advanced filtering techniques [29], have been proposed.
However, they form a minority and the reports on their suc-
cess (or failure) are not much discussed in literature. We like
to inform the reader that the given list of methods is certainly
not exhaustive, but the given background should suffice to
demonstrate the weaknesses in the current methods and to
support the strategy we opted for.

2. MATERIALS AND METHODS
2.1. Materials

The patient data were collected at the Laboratory for Clini-
cal and experimental neurophysiology (LCEN), at the Ghent
University Hospital (Ghent, Belgium). Data were used from
ten patients. The EEGs were recorded using a Telefactor Bee-
hive system at a sample rate of 200 Hz. Twenty-one electrodes
were placed on the patients’ heads according to the 10-20 in-
ternational system, together with six electrodes covering the
lower temporal regions. One patient, showing numerous eye

movement artefacts, was chosen to display the results on pa-
tient data, while the others were used for resampling as dis-
cussed below in Section 2.2.

In the rest of the paper, we consider the EEG as a 27-
channel recording as defined above. Nevertheless, the pre-
sented method is valid for all average reference-based record-
ings with a reasonable number of channels M, including
frontal channels.

2.2. EEG simulation model

The use of patient data has an enormous drawback in that
there exists no way to qualify the performance of the algo-
rithms, except for subjective scoring by physicians or experi-
enced EEG readers. The latter are often ambiguous and suf-
fer from interscorer variability [30]. We therefore propose to
use a simulation model that simulates EEG data, given cer-
tain patient specifications. The method consists of building
a dataset based upon forward modelling of dipoles. The cal-
culation of the electrical field created by randomly activated
cortical dipoles in a three-layer spherical head model (brain
tissue, skull, and scalp) gives rise to the potentials at the re-
spective electrodes. Each dipole is chosen to have a radial ori-
entation, since the cortical activation patterns are known to
be perpendicular to the cortical layers, a result of the physical
layout of the pyramidal cortical cells [31]. The latter are then
filtered according to spectral statistics derived from the pa-
tient data. An additional ocular dipole is added following the
model in [7]. To add a waveform mimicking an eye blink we
simulate the electrical shortcut that is created by the closure
of the eyelid by a Gaussian bell curve and the eyeball rotation
by a rotating dipole. An example of the resulting potentials
due to these eye movements are given in Figure 1.

The strength of the model lies in the separate modelling
of the activity of interest e, which is actually the artefact
source, and the background activity b. By consequence, any
method that has as a goal to separate the activity of interest
from the background EEG can be evaluated using this model
in combination with appropriate measures. The most simple
measure would be the direct comparison between the back-

ground b and its estimate b returned by the method under
investigation. The difference, which can also be expressed as
a function of an estimate of the activity of interest €, may be
given as the average sample distance asd:

M

asd = ;4213{ (b —B)Z} = &i}s{m} 2)

i=1

where b, e, IA), and e € RM are the samples of the background
or the activity of interest used either by the simulation model
or estimated by the algorithm under investigation, respec-
tively. This measure, although attractive because of its sim-
plicity, does not reveal any details about the source of error.
Therefore we will turn to more sophisticated error measures
to compare different methods and their performance, see 2.8.
However, the asd measure will further on be used to esti-
mate appropriate parameter settings for the pSVD method,
as discussed in 3.1 and for evaluation of the algorithms un-
der noise and relative scaling of b with respect to e.
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Ficure 1: The potentials resulting from the simulated eye move-
ments for horizontal saccade (a) and blinking (b).

To have a measure of performance in different scenarios,
we define the SNR level as the mean ratio between the back-
ground signal and the eye movement at the samples where
contamination occurs. Consider the set of all time instances
t in the observed window W, we can take a subset contain-
ing only artefact contaminated samples t € 7(C ‘W). The
definition of SNR is then given as follows:

lecer Il (3)

SNR = 101lo —_—
810 by |12

where || -||r denotes the Frobenius norm of the observation
matrix.

2.3. BSS

The model that is used in the linear BSS framework is based
on a direct mixture model:

X = As, (4)

where the measurements x € RM are linear combinations
of the sources s € RM through a mixture A € RM*M, We
assume an equal number of sources with respect to the mea-
surements. In the latter case, the inverse of A exists whenever
A is full column rank. The aim of BSS algorithms is to find
an estimate of s, S, by estimating the unmixing matrix W. In
the ideal case the matrix W would be equal to A~!, and thus
the source estimates s would equal the original sources s in
the mixture. However, in most cases the estimated sources

are only an approximation to the real sources and it is up
to the user to find out whether the approximation is suffi-
cient for his application. These techniques are termed blind
since they only use the available data x as prior information,
although some authors suggest to call databased source sep-
aration techniques semi blind since one always has to start
from some additional basic assumption(s) [32], see below in
Sections 2.3.1 and 2.3.2. However, to avoid confusion with
the field of communications, where semi blind is used for
methods where some parts of the source signals are known a
priori, we dissuade the use of the terminology in any circum-
stances where the latter is not the case.

2.3.1. Piecewise SVD

In a decomposition based on SVD, the additional basic as-
sumption is the decorrelation or linear independence of the
sources as well as of the topographies while pursuing maxi-
mal variance of the estimated sources. The temporal and spa-
tial decorrelations are derived from the left and right corre-
lation matrices of X, where X is the stacking of all samples
x(t) in a rectangular window of size T. If we denote by t,
the first sample index of the window, then X = [x(#)x(ty +
1)+ -x(t0+ T — 1)]. The decomposition of the data is given
as

X =Uzv7, (5)

with X € RMXT the measurements, U and V the eigen-
vectors of XXT and X”X, respectively, and a matrix X con-
taining the therewith associated singular values on its diag-
onal. The columns of U can be seen as the (mutually un-
correlated or orthogonal) source voltage distribution maps
at the electrodes known as topographies. The columns of V
are the (mutually uncorrelated or orthogonal) source activa-
tions and the ith singular value o; on the diagonal of X is a
measure for the explained variance by the corresponding i-th
source in the original measurement data X. The sources are
ordered according to their nondecreasing associated o; with
increasing index i.

When using the SVD in our source separation model
we will use it in a sliding window of T = 32 samples
(160 milliseconds), moving with 8 samples per window posi-
tion. The chosen windowing parameters are justified in 3.1.
For each window d the SVD decomposition is calculated and
the source topography u; associated with the source v; with
maximal variance (o) is checked upon Criterion 1.

Criterion 1. The signal X is deflated by a topography u,(d)
iff argmax jc; = abs(topojTul(d))/(Itopoj||u1(d)|) > 0.6.

In the above criterion, deflation of X is performed by set-
ting the corresponding o,(d) to zero in the reconstruction
(cf. (5). The template library containing the vectors topo ; is
given in Table 1. This library is build from vectorially tran-
scribed versions of the descriptions of spatial maps associated
to ocular activity as can be found in [33]. The topographies
in the table are reduced to the affected electrodes only, un-
mentioned electrodes are set to zero in the reference spatial
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TaBLE 1: The template library composed of column vectors (here
transposed and limited to their core information) as used in Crite-
rion 1.

Fpl Fp2 Fpz F7 F8 FT9 FT10 F3 F4 C3 C4
topo, 1 1 05 0 0 0 0O 0 0 0 O
topo, 1 0 0 0O 0O O 0O 0 0 0 O
topo, 0 1 0 0 0O O 0O 0 0 0 O
topo, 0 0 1 0 0 0 0 0 0 0 0
topo, 0 0 0O 1 0 0 0 0 0 0 0
topo, 0 0O 0 0 1 0 0 0 0 0 0
topo, 0 0 0 1 -1 1 -1 0 0 0 0
topo, 1 I 1 0 0 0 0 1 1 1 1

maps. The first four topographies in the library contain maps
generally associated with blinks, while the last four describe
the eye gazing and horizontal movements.

Criterion 1 is no more than thresholding the subspace
correlation [34] between the first component in U(d)(u;(d))
and the template library composed of [topo,topo, - - -
topog] as given in Table 1. The fuzziness included in the
threshold (0.6) is due to the generality of the library and the
mismatch between the true correlation and the estimated cal-
culated correlation from an SVD based on 32 samples only.
The short time windows are chosen as such as to cope with
the nonstationarity of the EEG that is caused by the waxing
and waning of sources in the background. The window of 32
samples or 160 milliseconds is a tradeoff between the oscil-
latory processes of 80—100 milliseconds [35] and a sufficient
sample size for the SVD calculation, see Section 3.1 for more
details. The reconstructed EEG with the locally deflated sub-
spaces is then calculated for the first 8 samples of window d,
given the results calculated for the windows d —3---d — 1,
as the mean of these local reconstructions:

1 . . .
X2 .= ZZ U(d — j)ZP(d = j)Visgjer--.is(jon) (d — ),

=0
(6)

where P denotes putting the first eigenvalue on the diagonal
of Z to zero when required so by the deflation criterion (Cri-
terion 1). The i-th sample is the first sample of window d. The

final result XD is then the concatenation of all the subwin-
dows d that are corrected as above in (6). From here on we
will call this deflation method piecewise SVD (pSVD) [20]
referring to the window per window deflation approach.

23.2. ICA

ICA algorithms try to find a decomposition based on the
constraint of maximal statistical independence between the
sources. In EEG, we may assume the model to be linear and
instantaneous as given in (1) if the sources are stationary dur-
ing the observation. Assume for a while that this constraint
has been met. The maximal statistical independence of the
sources is then a weaker constraint than the one used in the
SVD, in the sense that there are no assumptions made about

the topographies. It involves also an indeterminacy concern-
ing permutation and scaling of the sources [24]. For this rea-
son we cannot rely on the ordering of the components in the
decomposition nor on the variances of the estimated sources
for our selection criteria. Hence, we test all the component
topographies of the decomposition against the decision rule
in criterion 1. When testing all the topographies upon their
subspace correlation with the template library we might find
that multiple components obey the Criterion. In that case the
data gets deflated by the subspace containing all these com-
ponents. This can be done in the reconstruction of x (4) by
setting all columns in A associated to the sources in s con-
taining ocular activity (according to Criterion 1) to zero. The

obtained cleaned dataset will subsequently be called XIDC A

ICA decompositions were taken from windows of 2000
samples or 10 seconds at 200 Hz sampling rate. This is a suf-
ficient tradeoff between the nonstationarity and the samples
needed to obtain an appropriate decomposition [36]. We
here use the algorithm of JADE/COM1 [24, 37] because of its
stability and its statistically robust approach. The algorithm
does not suffer from initialisation, nor from parametrisation
issues.

2.4. Joint smoothened subspace estimation

In a last step, both the estimates of the ocular components,

D D .. .
Xgvp and Xjc,, are fed to a joint smoothened subspace esti-
mator (JSSE). The algorithm that lends itself best to calculate
the joint smoothened component(s) is the canonical correla-
tion analysis (CCA). Let the subspaces estimated by the SVD
and the ICA algorithm be Y and Z, respectively. Since there
is no linear component from the pSVD algorithm that can
be estimated (the general mixing matrix is nonexisting, it is
a chain of short time linear mixtures), we use the piecewise
back projected versions of the components onto the original
EEG subspace, that is y = x — x&p, to represent the subspace
Y. If we take as a basis for Z,z = x — xf)CA, we can calcu-
late a common, smoothened component for the subspaces ¥
and Z by calculating the CCA for the joint subspace. For this,
we proceed as follows (see also [26, 34] for more details on
the canonical correlation analysis and calculation of angles
between subspaces).

(1) Take the QR decomposition of the joint signal space of
the stacked matrix P = (¥), where Y = [y(to)y(t, +
1)---y(to+T)] and Z = [z(to)z(to+1) - - - z(to + T)].
The joint signal subspace can be found by taking the
SVD of P = U,X,V! and truncating at a noise level
of 1%, that is PP = UEPV!, where 2P describes
the signal subspace formed by retaining only the p
highest eigen values which acumulate to 99% of the
total energy and where the relative energy is calcu-
lated as " jcse 07/ Zf\il o?. The QR decomposition of
these sources results in VI = QyRy. Repeating this
for a time delayed version of P gives VI (1) = Q;R,,
where both Qp,Q; € RN*N are orthogonal and both
Ry, R; € RV*M are quasi upperdiagonal. T is taken one
sample period.
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(2) Calculate the SVD of Qg Q, = UquV:.
(3) The joint and smoothened component is then found

by taking 01...jU;1___jR0, where 07...; denote the first
j entries in the diagonal of X put on the diagonal in a
j x j matrix and Ug,...; are the first j columns of U,.

The number of components j that are to be retained depends
on the angles between the estimated components and the two
subspaces. The cosine of these angles are given in descending
order on the diagonal of X. To describe the common sub-
space between both ¥ and Z, it suffices to limit the number
of components to the ones that are exceeding a subspace cor-
relation of 0.9.

To find the source contribution in the original dataspace,
we have to calculate back each of the estimated source con-
tributions. The estimated source can be expressed as

§=U;,Qf
L(VPRyDT

T
Uq
_1\T
Ul (Ry!) VP
Ug,l

(7)

(Ry") " (=P) "UTP.

From (7), it can be seen that the source can be expressed as
a function of Y and Z, with a mixing matrix that is equal to

U;I(Ral)T(ZSD)flUST. The expression of Y as a function of
the original data is piecewise linear which makes the result-
ing sources in s a weighted sum of a piecewise linear mixture
(pSVD) and a completely linear mixture (JADE) of the orig-
inal data in x.

2.5. Reconstruction phase

To have an adequate reconstruction of our artefact free data,
we need to deflate our original dataspace by the projection
of both subspaces % and Z projected on the common sub-
space as returned by JSSE. Since these subspaces are a mix-
ture of stationary, linear mixing and a nonstationary (and
thus temporal nonlinear) mixing, respectively, the mixing
matrix should be evaluated piecewise (i.e., temporally non-
stationary), see (6) and (7). However, the estimated com-
ponent §; returned by the JSSE can be seen as being lin-
early mixed in the data, since it is itself already a combi-
nation of stationary and nonstationary source estimates (y
and z, and their respective stationary and nonstationary mix-
ing matrix, as stated above). Hence, we might calculate its
contribution as the least squares estimate between our orig-
inal data x and a linear mixture h; € R™ of the component
Sii € {i,Vi: |Z;| = 0.9}. This is given by

h; :argmhinE{Hx—h,-?,-Hz}. (8)

To deflate the dataspace X (associated with x) by the sub-
space # spanned by the vectors h;, we use an iterative proce-
dure, replacing x in (8) by the current estimate of the back-

ground activity f)(k) (f)(l) being x itself). Subsequently the
projection of h; onto the already calculated subspace #? =

span[hiha - - - hi—1] is subtracted from h; by using a Gram-
Schmidt orthogonalisation procedure [34, pages 230-232].
The new estimate of the background estimate is then calcu-
lated as

b(k+1) = (I - h;(hTh;) 'hT)b(k), (9)

where I is the identity matrix in RM*M and (h/ hi)flhiT is the
(left) Moore-Penrose pseudoinverse of h;.

2.6. Alternatives to the proposed method

As noted in the introduction, the concept of ICA can be ap-
proached in different ways, yet leading to the same objective
of mutual information reduction or maximal mutual inde-
pendence. For comparison we include three ICA algorithms
based on different point of views on statistical independence,
that is, FastICA, JADE/COM]1, and SOBI.

2.6.1. FastICA

FastICA [21] is probably the most widely spread ICA method
in various research communities. The popularity of FastICA
can be explained mainly through its ease of use and the vari-
ous possibilities to manipulate the objective, see [15, 38, 39]
amongst others. Basically, the algorithm is supported by the
general definition of statistical independence, saying that
variables are independent if they are uncorrelated through
every function. Furthermore, the method makes use of the
optimal decorrelation function, namely the inverse cumula-
tive density function of the source variables. Both assump-
tions are united in the decorrelation of the output of a fixed
nonlinear function (e.g., tanh, x*) of the prewhitened data.
This has been shown to be similar to maximising the kur-
tosis of the estimated sources in case the nonlinear function
approximates the inverse cumulative density function.

2.6.2. JADE or COM1

The JADE [25] and COM1 [24] algorithms are both based
on the maximisation of the marginal source cumulants by
minimising the cross-cumulants of fourth order, either by
jointly diagonalising tensor slices (JADE), either by pairwise
processing of the entry signals (COM1). The idea originates
from the Edgeworth expansion of the density functions, pro-
viding a sufficient statistic when truncated at order four. Both
algorithms return equal performance rates and differ mainly
in computational complexity [24, 37].

2.6.3. SOBI

Relying solely on second order techniques, SOBI is an ICA
algorithm using spatial as well as temporal information from
the observed dataset!. The objective is to jointly decorrelate

! This is in contrast with all of the above algorithms which consider the
observations as stochastic independent realisations and thus neglecting
any possible temporal dependencies.
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F1GURE 2: The asd as a function of the correlation threshold 9 and
of the window length T.

the data spatially and temporally, based on the information
in the autocorrelation matrices of the data Ry(gyx(;)- The in-
put to the algorithm requires an additional set of time lags
upon which SOBI will act. For this work, the set of time lags
T hasbeen chosenas T = {7;|0 < 7; < 4% T, Vi € Z}, where
T; is the sampling period of the signal.

2.7. pSVD

Although not an ICA algorithm, we have a closer look at
pSVD as it is one of the basic methods underlying JSSE. It is
mainly used here to contrast the performance of pSVD out-
side, respectively, within the JSSE framework.

2.8. Evaluation measures

For a comparison, we evaluate the method and put its out-
come next to that of the underlying basic techniques of pSVD
and FastICA and the alternatives JADE and SOBI. Since sim-
ple measures such as asd do not suffice for a detailed er-
ror evaluation, we opt for performance measures as they are
given in [40]. The measures take into account the source in-
terferences, the methodological artefact and the total distor-
tion. For clarity the definitions of the measures used here are
repeated from [40] below.

Definition 1. Source to interference ratio is given as SIR =
2 2
10 log o (Ils [/ lleil ).

Definition 2. Source to artefact ratio is given as SAR =
10 log 1o((llst + eill7)/ lleall).

Definition 3. Source to distortion ratio is given as SDR =
10 log 1o (lIsell7/(lle; + eall7)).

Where [|- ]| denotes the Frobenius norm of its argument,
s; is the source estimate, and e; and e, are the interference and
artefact error, respectively.

The advantages of this set of measures is that it splits up
the error in the estimated source §; into a contribution that
is related to the projection on the original source space of s;

(s¢), a projection of §; on the subspace spanned by the vec-
tors S, Vk#j (interference €;) and an artefactual source that
is the projection on the remaining subspace which cannot be
explained by any of the above two projections (artefact €,).
The latter is directly related to our methodologically intro-
duced error or to numerical (round off) errors. The defini-
tions of the above-mentioned measures resemble the familiar
SNR definitions but are slightly altered to share mutually as
little information as possible.

Note that we have omitted the noise term in all defi-
nitions, because we do not evaluate any noise perturbation
studies. Noise perturbation studies of the pSVD algorithm
can be found in [20] and for the JADE/COMI1 algorithm in
[24], amongst others.

3. RESULTS
3.1. Parameter settings

To have an optimal parameter set for pSVD we minimalise
the asd on a group of 250 simulated datasets over a set of
correlation parameters and window lengths. Since we want to
keep the library as general as possible, no changes are made
in the spatial reference maps topo;, Vi : 1 < i < 8§, restrict-
ing the tuning to the two parameters mentioned above. The
correlation parameter 9 and the window length T were var-
ied independently, whereupon the minimum asd (mean over
the 250 datasets) was found at a window length of T = 32
with a correlation threshold 9 = 0.7.

Figure 2 shows the mean values of asd as a function of
T and 9. The minimum is reached at T = 32 and 9 = 0.7,
respectively. Nevertheless, from hereon a threshold value of
9 = 0.6 is chosen in Criterion 1 to make the method as ro-
bust as possible to small changes in the data. It can be seen
from Figure 2 that this small alteration in 9 does not change
a lot in the final asd value, but it will ensure a better perfor-
mance in patient data where there is a higher effect of inter-
fering background activity. Taking a value that is greater than
0.75 results in a value that is equal to no change, that is there
is no component that will be identified as being close enough
to the template library. From Figure 2 it is clear that the op-
timal window length is 32. Increasing the number of samples
suffers from the orthogonality constraint and the stationarity
assumptions that are made during this long-lasting window,
decreasing the number of samples will result in an insuffi-
cient sample size for a robust estimation of the correlation.

3.2. Simulated data

We show the consecutive steps for the artefact reduction
with JSSE on a simulated dataset with an SNR of —18 dB.
Figure 3 shows the simulated dataset consisting of the back-
ground EEG and ocular artefacts. There are 4 blinks in the
dataset with varying amplitude and varying topography (left
and right eye blink). Figure 4 shows the results of JSSE act-
ing on the dataset in Figure 3. In Figure 5, the intermedi-
ate estimated sources are displayed for JADE and pSVD to-
gether with the final estimate through their combination us-
ing JSSE.
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FIGURE 3: An example of a simulated dataset with blinks at an average of 5 dB above the background EEG level (SNR -5 dB).
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F1GURE 4: The cleaned simulation dataset.

TaBLE 2: Results from 250 runs of simulations for which the mean
was taken over SNR levels of —20 dB to 10 dB.

SOBI JADE FastICA pSVD JSSE
SIR (dB) 21.71 14.93 17.74 26.06 17.07
SAR (dB) 10.58 15.51 12.28 18.98 39.51
SDR (dB) 8.50 9.36 10.16 17.97 14.80

In Table 2, we show the results from 250 trials on simu-
lated datasets for an SNR (see (3)) range of —20dB to 0 dB.
We compare the combined subspace method JSSE to the
underlying algorithms that provide the subspace estimation
(JADE and pSVD) and the two proposed alternatives SOBI
and FastICA. To see the behaviour of the algorithms as a
function of the SNR values of the datasets, we set out SDR,
SAR and SIR values against SNR in Figure 6.

3.3. Patientdata

Figures 7 and 9 contain two snippets of patient datasets
recorded at the Ghent University Hospital. Figure 7 con-
tains clear blinking artefacts at seconds 1, 3, and 7, whereas
Figure 9 contains clear saccades at seconds 1, 5, and 8. Both
dataframes have been subjected to JSSE of which the ob-
tained results can be seen in Figures 8 and 10, respectively.
For clarity, the spectrum of JSSE that accompanies the re-
sults in Figure 7 (i.e., the values on the diagonal of X ob-
tained at the second step of JSSE, see Section 2.4) are given
in Figure 12 and a profile of the pSVD correction is given in
Figure 11. The latter shows how many windows were deflated
to reconstruct the current 8 samples.

Figure 13 shows two scalp maps, representing the weigh-
ing of a source estimate of JADE, respectively, JSSE onto the
scalp electrodes (both components were taken to correspond
to the same eye movement, i.e., a right eye blink). The scalp
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FIGURE 5: The first extracted source as estimated by JADE, pSVD, and JSSE. The ordening by JADE was done with descending kurtosis.
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map associated to the JSSE component is given by the en-
try h; in the topographical matrix H. Remember that a scalp
map reflecting the activity of the eye movement estimated
by pSVD cannot be given, since it includes nonstationarities
which are inherent to the method of pSVD.

4. DISCUSSION

Combining two statistical estimation algorithms through
the JSSE results in an ameliorated eye movement estima-
tion from the EEG. The motivation to use short time statis-
tics (pSVD) to cope with the nonstationarity of the cere-
bral activity is justified in the sense that it results in a min-
imisation of interference from other sources present in the
EEG (reflected in maximal SIR), although it might intro-
duce too much artefactual components caused by its win-
dowing (SAR). Using the prior that in most cases eye move-
ments are independent from the cerebral processes, the re-
sults of JADE show a quite good artefact suppression—
although lower than that of pSVD—in the considered win-
dow (SAR) but are disappointing with respect to the inter-
ference suppression (SIR). The introduction of the joint and
smoothened subspace estimation offers a solution hereto by
augmenting the SAR through joining the advantages of both
techniques. The results in Table 2 and Figure 6 show that the

extracted component results in an interference and distor-
tion suppression that are close to the pSVD results, while the
enoying windowing artefact is suppressed outstandingly in
its combination with JADE through the JSSE.

From Figure 6, it can be seen that the price to pay for
a such amelioration in artefact suppression is an approxi-
mately constant 3 dB loss in SDR with respect to piecewise
corrected EEG (pSVD). For the interference suppression, this
even runs up to 17dB (at an SNR level of 0dB), although
being acceptable at reasonable SNR levels (approx., 8 dB at
—15dB SNR). We thus have to give in on both SDR and SIR
if a gain in SAR is of importance. From Figure 11 it can be
seen that methodological artefacts can be introduced quite
easily by the windowing that is inherent to the pSVD method.
Since the first component of each local SVD decomposition
does not necessarily the same spatial projection, the recon-
struction introduces discontinuities related to the window-
ing. The reconstruction being influenced by a possible non-
stationarity of the eye movement vector, nonstationarities in
the background activity as well as the on/off switching caused
by the binary decision process. The latter is directly reflected
in the artefact error and by consequence in both the SDR and
SAR values.

Experiments on patient EEG showed promising results
concerning the suppression of blinks and saccades. Although
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FIGURE 7: An example fragment of blinking artefacts. The blinks are clearly visible at seconds 1, 3, and 7.
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F1GURE 8: The results after having subjected the blink fragment of Figure 7 to JSSE.
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FIGURE 9: An example fragment of saccades. The saccades are clearly visible at seconds 1, 5, and 8.
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F1GURE 10: The results after having subjected the saccade fragment of Figure 9 to JSSE.
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FiGURre 11: The pSVD profile associated with the blink fragment of
Figure 7. The bars denote the number of deflations that occurred
for each 8 sample window (with a maximum of 4 occurrences, see
text).
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FiGURe 12: The spectrum of the subspace angles as obtained by

the blink frame of Figure 7. The dashed horizontal line denotes the
threshold level of 0.9.

it is difficult, or even impossible, to show objective measures
for evaluation, we observe that the estimated topographies
are close to the topographies as estimated through JADE. An
exemplar topography as in Figure 13 shows that the topog-
raphy is spatially even more concentrated around the eye,
pointing at a closer to dipole behaviour, which is in line with
the model proposed in [7].

From Figure 12 it can be seen that the chosen threshold
for the spectrum of the JSSE falls in the spectral gap. Al-
though this is not always the case, the threshold at 0.9 of-
fers a reliable reconstruction in the majority of the cases as
proved by the simulation results and the two patient frames
presented, where even on visual inspection it can be seen that

(a) (b)

FiGure 13: The topography of the first source of JADE (a) and an
estimation of the JSSE topography, based on the reconstruction in

(9) (b).

the method leaves almost no traces at the time spots where it
interacted on the EEG recording (see Figures 4, 8, and 10).
One could of course think of other subspace combin-
ing methods. The simplest form being the reconstruction
of the EEG by taking a weighted sum of both partial re-
constructions as they are given by JADE and pSVD, respec-
tively. However, the disadvantage would be that the errors are
added while JSSE has a more sophisticated error suppression
with respect to the errors introduced by the two supporting
methods (see Figure 6 and Table 2). Yet another combination
method would be to take a threshold onto the profile pro-
vided by pSVD (as in Figure 11) and only consider the time
instances of the ICA (in our case, this would be JADE) recon-
struction that are labelled by this thresholding, leaving the re-
maining time instances untouched. Unfortunately, this does
not resolve for the artefact suppression. On the contrary,
the discontinuities will be more articulated if the threshold
would be augmented (resulting in lower values of SAR), and
the interference at the time instances considered will not ex-
ceed the performance of a regular ICA algorithm. Moreover,
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itis implicitly assumed that the background activity would be
stationary along the complete frame (i.e., 10 seconds in our
case), which is quite in contrast with the findings in [35].

5. CONCLUSION

This study shows the importance of combining BSS tech-
niques with different order statistics. It convincingly shows
that merging short time signal characteristics (pSVD) with
more global measures (JADE) into a joint smoothened sub-
space estimator (JSSE) provides acceptable to outstanding
results compared to many of the commonly used standard
ICA techniques. More specifically, it follows directly from our
simulations that the proposed method is superior in artefact
suppression, while it keeps up with the methods of FastICA,
JADE, pSVD, and SOBI concerning the interference and dis-
tortion suppression, especially at low (highly negative) SNR
values.

The proposed method has proven to be capable of sup-
pressing ocular artefacts in the EEG in a fully automated way,
relying on a set of patient-independent reference topogra-
phies as a prior.
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1. INTRODUCTION

The complexity of brain electromagnetic (EM) data has led
to a variety of processes for EM pattern classification and la-
beling over the past several decades. The absence of a com-
mon framework may account for the dearth of statistical
metaanalyses in this field. Such cross-lab, cross-paradigm re-
views are critical for establishing basic findings in science.
However, reviews in the EM literature tend to be infor-
mal, rather than statistical: it is difficult to generalize across
datasets that are classified and labeled in different ways.

To address this problem, we have designed a framework
to support automated classification and labeling of patterns
in electroencephalographic (EEG) and magnetoencephalo-
graphic (MEG) data. In the present paper, we describe the
framework architecture and present an application to aver-
aged EEG (event-related potentials, or ERP) data collected
in a visual word recognition paradigm. Results from this
study illustrate the importance of combining top-down and

bottom-up approaches. In addition, they suggest the need
for ongoing system evaluation to diagnose potential sources
of error in component analysis, classification, and labeling.
We conclude by discussing alternative analysis pathways and
ways to improve efficiency of implementation and testing of
alternative methods. It is our hope that this framework can
support increased collaboration and integration of ERP re-
sults across laboratories and across study paradigms.

1.1. Classification of ERPs

A standard technique for analysis of EEG data involves aver-
aging across segments of data (trials), time-locking to stim-
ulus or response events. The resulting measures are charac-
terized by a sequence of positive and negative deflections dis-
tributed across time and space (scalp locations). In princi-
ple, activity that is not event-related will tend towards zero
as the number of averaged trials increases. In this way, ERPs
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provide increased signal-to-noise, and thus increased sen-
sitivity, to functional (e.g., task) manipulations. Signal av-
eraging assumes that the brain signals of interest are time-
locked to (or “evoked by”) the events of interest. As illus-
trated in recent work on induced (nontime-locked) versus
evoked (time-locked) EEG activity, this assumption does not
always hold ([1, 2]).

In the past several decades, researchers have described
several dozen spatiotemporal ERP patterns (or components),
which are thought to index a variety of neuropsychologi-
cal processes. Some patterns are observed across a range of
experimental contexts, reflecting domain-general processes,
such as memory, decision-making, and attention. Other pat-
terns are observed in response to specific types of stimuli,
reflecting human expertise in domains such as mathematics,
face recognition, and reading comprehension (for reviews see
[3,4]). Previous investigations of these patterns have demon-
strated the effectiveness of ERP methods for addressing basic
questions in nearly every area of psychology.

Given the success of this methodology, ERPs are likely
to remain at the forefront of research in clinical and cog-
nitive neuroscience, even as newer methods for EEG and
MEG analyses are developed as alternatives to signal averag-
ing (e.g., [1, 2, 5-7]).

At the same time, ERP methods face some important
challenges. A key challenge is to identify standardized meth-
ods for measure generation, as well as objective and reli-
able methods for identification and labeling of ERP com-
ponents. Traditionally, researchers have characterized ERP
components in respect to both physiological (spatial, tem-
poral) and functional criteria [8, 9]. Physiological criteria in-
clude latency and scalp distribution, or topography. For ex-
ample, as illustrated in Figure 1, the visual “P100 compo-
nent” is characterized by a positive deflection that peaks at
~100 milliseconds after onset of a visual stimulus (A) and is
maximal over occipital electrodes, reflecting activity in visual
cortex (B).

Despite general agreement on criteria for ERP compo-
nent identification [9], in practice such patterns can be hard
to identify, particularly in individual subjects. This difficulty
is due in part to the superposition of patterns generated by
multiple brain regions at each time point [10], leading to
complex spatial patterns that reflect the mixing of under-
lying patterns. Given this complexity, ERP researchers have
adopted a variety of solutions for scalp topographic analysis
(e.g., [11, 12]). It can therefore be difficult to compare re-
sults from different studies, even when the same experimen-
tal stimuli and task are used.

Similarly, researchers use a variety of methods for de-
scribing temporal patterns in ERP data [13]. For example,
early components, such as the P100, tend to be character-
ized by their peak latency, while the time course of later com-
ponents, such as the N400 or P300, is typically captured by
averaging over time “windows” (e.g., 300-500 milliseconds).
The latency of other components, such as the N400, has been
quantified in a variety of ways. Finally, there is variability
in how functional information (e.g., subject-, stimulus-, or
task-specific variables) is used in ERP pattern classification.
Some patterns, such as the P100, are easily observed as large

deflections in the raw ERP waveforms. Other patterns, such
as the mismatch negativity are more reliably seen in differ-
ence measures, calculated by subtracting ERP amplitude in
one condition from the ERP amplitude in a contrasting con-
dition. This inconsistency may lead to confusion, particularly
when the same label is used to refer to two different measures,
as is often the case.

1.2. Outline of paper

In summary, the complexity of ERP data has led to multi-
ple processes for measure generation and pattern classifica-
tion that can vary considerably across different experiment
paradigms and across research laboratories. Ultimately, this
limits the ability both to replicate prior results and to gener-
alize across findings to achieve high-level interpretations of
ERP patterns.

In light of these challenges, the goal of this paper is
to describe a framework for automated classification and
labeling of ERP patterns. The framework presented here
comprises both top-down (knowledge-driven) and bottom-
up (data-driven) methods for ERP pattern analysis, classi-
fication, and labeling. Following, we describe this frame-
work in detail (Section 2) and present an application to pat-
terns in ERP data from a visual word processing paradigm
(Section 3). Section 4 describes approaches to system eval-
uation. Section 5 describes data mining for refinement of
expert-driven (top-down) methods. In Section 6, we draw
some general conclusions and discuss extensions of our
framework for representation of patterns in source space,
and ontology development to support cross-paradigm,
cross-laboratory, and cross-modal integration of results in
EM research.

2. PATTERN CLASSIFICATION FRAMEWORK

As illustrated in Figure 2, our framework comprises five main
processes.

(i) Knowledge engineering. Known ERP patterns are cata-
loged (1). High-level rules and concepts are described
for each pattern (2).

(ii) Pattern analysis and measure generation. Analysis
methods are selected and applied to ERP data (3). The
goal is transformation of continuous spatiotemporal
data into discrete patterns for labeling. Statistics are
generated (4) to capture the rules and concepts identi-
fied in (2).

(iii) Data mining. Unsupervised clustering (7) and super-
vised learning (8) are used to explore how measures
cluster, and how these clusters may be used to identify
and label patterns using rules derived independently of
expert knowledge.

(iv) Operationalization and application of rules. Rules are
operationalized by combining metrics in (4) with prior
knowledge (2). Data mining results (7-8) may be used
to validate and refine the rules. Rules are applied to
data, using an automated labeling process (6) detailed
below.
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FIGURE I: (a) Time course of P100 pattern, plotted at left occipital electrode, O1. Time is plotted on the x-axis (0~700 milliseconds); each
vertical hash mark represents 100 milliseconds. Amplitude is plotted on the y-axis (scale, +4 uV). The dark vertical line marks the time of
peak amplitude (~120 milliseconds). (b) Scalp topography of the P100 pattern, plotted at the time of peak amplitude. Red, positive. Blue,

negative.

Following, we describe how these processes have been im-
plemented in a series of MATLAB procedures. We then re-
port results from the application of this process to data from
a visual word processing experiment. Results are evaluated
against a “gold standard” that consists of expert judgments
regarding the presence or absence of patterns, and their pro-
totypicality, for each of 144 observations (36 subjects x4 ex-
periment conditions).

2.1. Knowledge engineering (process 1, 2)

The goal of knowledge engineering is to identify concepts
that have been documented for a particular research domain.
Based on prior research on visual word processing we have
tentatively identified eight spatiotemporal patterns that are
commonly observed from ~100 to ~700 milliseconds after
presentation of a visual word stimulus, including the P100,
N100, late N1/N2b, N3, P1r, MFN, N400, and P300. Space
limitations preclude a detailed discussion of each pattern (see
reviews in [3, 4]). The left temporal N3 and medial frontal
negativity (MFN) components are less well known, but have
been described in several high-density ERP studies of visual
word processing (e.g., [14-16]). The P1r [17] has also been
referred to as a posterior P2 [18]. The late N1/N2b has var-
iously been referred to as an N2, an N170, and a recogni-
tion potential (see [15] for discussion and references). It is
not clear that the late N1/N2 represents a component that is
functionally distinct from the N1 and N3, though it some-
times emerges in tPCA results as a distinct spatiotemporal
pattern (e.g., see Section 3). These eight patterns reflect a
working taxonomy of ERP in research on visual word pro-
cessing between ~60-700 milliseconds. Application of the
present framework to large numbers of datasets collected
across a range of paradigms, and across different ERP re-
search labs, would contribute to the refinement of this tax-
onomy.

A note of caution is in order, concerning the labels for
scalp regions of interest (ROIs). By convention, areas of the

TaBLE 1: Spatial and temporal concepts used to define the eight tar-
get patterns. Regions of interest (ROIs) are defined in Appendix A.

Pattern Window ROI
P100 60-150 occipital
N100 151-230 occipital
N2 231-300 post-temporal
Plr 250-400 parietal
N3 250-400 left anterior
MFN 250-450 frontal

N4 350-550 parietal
P300 401-700 parietal

scalp are associated with anatomical labels, such as “occipi-
tal,” “parietal,” “temporal,” and “frontal” (see Table 1). It is
well known, however, that a positive or negative deflection
over a particular scalp ROI is not necessarily generated in
cortex directly below the measured data. ERP patterns can
reflect sources tangential to the scalp surface. In this instance,
the positive and negative fields may be maximal over remote
regions of the scalp, reflecting a dipolar scalp distribution
(e.g., with a positive maximum over frontal scalp regions,
and a negative maximum over temporal scalp regions). Thus,
the ROI labels should not be interpreted as literal references
to brain regions. The ROI clusters used in the present study
are shown in Appendix A.

2.2. Datasummary

Prior to analysis, ERP data consist of complex waveforms
(time series), measured at multiple electrode sites. To sim-
plify analysis and interpretation of these data, a standard
practice is to transform the ERPs into discrete patterns. Tra-
ditional methods for data summary include identification of
peak latency within a specified time window (“peak picking”)
and computing the mean amplitude over a time window
for each electrode (“windowed analysis”), or averaged over
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FIGURE 2: Pattern classification and labeling scheme. Knowledge engineering (processes 1, 2) includes “top-down” specification of ERP con-
cepts and rules, formulated by domain experts. Component analysis and measure generation (processes 3, 4) yield summary metrics that are
used for pattern classification and labeling. Implementation and operationalization of pattern rules (processes 5, 6) are detailed in Section 2.
Data mining (processes 7, 8) includes “bottom-up” or data-driven methods for clustering and discovery of pattern rules (Section 5). System

evaluation is detailed in Section 4.

electrode clusters (regions of interest—ROIs). An alternative
method is principal components analysis (PCA), which de-
composes the data into “latent” patterns, or factors. The fol-
lowing subsection describes this method in detail, and ex-
plains the utility of PCA for automated pattern classification.

2.2.1.  Temporal PCA methods (process 3)

PCA belongs to a class of factor-analytic procedures, which
use eigenvalue decomposition to extract linear combinations
of variables (latent “factors”) in such a way as to account
for patterns of covariance in the data parsimoniously, that is,
with the fewest factors. Mathematically, the goal of PCA is to
take intercorrelated variables (x1,...,x,) and combine them
such that the tranformed data, the “principal components”
(PC), are linear combinations of x, weighted to maximize the
amount of variance captured by each eigenvector (v;):

PCy = viix1 +vipxo + - - -+ VX (1)
In this way, the original set of variables (xi,...,x,) is “pro-
jected” into a new data space, where the dimensions of this
new space are captured by a small number of latent factors
(the eigenvectors).

In ERP data, the variables (xi,...,x,) are the microvolt
readings either at consecutive time points (temporal PCA)
or at each electrode (spatial PCA). The major source of co-
variance isassumed to be the ERP components, characteristic
features of the wave form that are spread across multiple time
points and multiple electrodes. Ideally, each latent factor cor-
responds to a separate ERP component, providing a statis-
tical decomposition of the brain electrical patterns that are
superposed in the scalp-recorded data. To achieve this ideal
factor-to-pattern mapping, the factors may be “rotated” so
that the variance associated with the original variables (time-
points) is redistributed across the factors in such a way that
maximizes “simple structure,” that is, that achieves a simple
and transparent mapping from variables to factors. (See [19]
for a review of PCA and related factor-analytic methods for
ERP data decomposition.)

In the present application, we used temporal PCA (tPCA)
as implemented in the Dien PCA Toolbox [20]. In temporal
PCA, the data are organized with the variables correspond-
ing to time points and observations corresponding to the dif-
ferent waveforms in the dataset. The waveforms vary across
subjects, electrodes, and experimental conditions. Thus, sub-
ject, spatial, and task variance are collectively responsible for
covariance among the temporal variables. The data matrix
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is then self-multiplied and mean-corrected to produce a co-
variance matrix. The covariance matrix is subjected to eigen-
value decomposition, and the resulting nonnoise factors are
rotated using Promax to obtain a more transparent relation-
ship between the PCA factors and the latent variables of in-
terest (i.e., ERP components).

After transformation of the ERP data into factor space,
the data are projected back into the original data space, by
multiplying factor scores by factor loadings and by the stan-
dard deviation at each timepoint (see the appendix in [21]).
In this way, it is possible to visualize and extract information
about the strength of the pattern at each electrode, to deter-
mine the spatial distribution of the pattern for a given subject
and experiment condition. Visualizing the spatial projection
of each factor in this way is useful in interpreting tPCA re-
sults (e.g., see Figure 3(b)).

For our initial attempts to automate data description
and classification, tPCA offered several advantages over tra-
ditional methods. First, tPCA is able to separate overlap-
ping spatiotemporal patterns. Second, tPCA automatically
extracts a discrete set of temporal patterns. Third, when im-
plemented and graphed appropriately, tPCA results are eas-
ily interpreted with respect to previous findings, as illus-
trated below. tPCA is therefore easily incorporated in an
automated process for ERP pattern extraction and classifi-
cation. In the final section, we address some limitations of
tPCA as a method of ERP pattern analysis.

2.2.2. Measure generation (process 4)

For each tPCA factor, we extracted 32 summary metrics that
characterize spatial, temporal, and functional dimensions of
the data. The full set of metrics, along with their definitions,
is listed in Appendix C. Note that our expert-defined rules,
which were used for the tPCA autolabeling process, mainly
involved two metrics (see Section 2.2.3 for details): In-mean
(ROI) and TI-max. In-mean (ROI) represents the amplitude
over a region-of-interest (ROI), averaged over electrode clus-
ters for each latent factor at the time of peak latency, after the
factor has been projected back into channel space. TI-max
is the peak latency and is measured on the factor loadings,
which are sign-invariant.

Although these two metrics intuitively capture the spa-
tial and temporal dimensions of the ERP data that are most
salient to ERP researchers, our prior data mining results sug-
gested that additional metrics might improve the tPCA au-
tolabeling results [22, 23]. In particular, some failures in the
autolabeling process (i.e., cases where the modal factor for
a given pattern did not show a match to the rule in a given
condition, for a given subject) were due to component over-
lap that remained even after tPCA. For example, in one of
our four pilot datasets [23], the P100 pattern was partially
captured by a factor corresponding to the N100. For some
subjects, most of the P100 was in fact captured by this “N100
factor.” The factor showed a slow negativity, beginning before
the stimulus onset, and the P100 appeared as a positive going
deflection that was superposed on this sustained negativity.
However, because the rule specified that the mean amplitude

over the occipital electrodes should be positive, the factor did
not meet the P100 rule criteria.

To address this issue, we implemented onset and offset
metrics. Each onset latency was estimated as the midpoint of
four consecutive sliding windows in which corresponding t-
tests (threshold, P = .05) indicated that the means of their re-
spective windowed signals diverged significantly from a base-
line value, typically zero. The subsequent offset was the tem-
poral midpoint at which the four consecutive t-tests showed
their windowed signal means returned to baseline. The pro-
cedure is implemented as described in [24].

Using the onset latency to determine a “baseline” (0-
point or onset) for each pattern, we then computed peak-to-
baseline and baseline-to-peak metrics to capture phasic de-
flections that could be confused with slow potentials. The
baseline intensity was computed as the signal mean within
an interval centered on component onset. We predicted that
data mining results would incorporate these measures to
yield improved accuracy in the labeling process.

In addition, we added metrics to capture variations in
amplitude due to experimental variables. Four measures
were computed: Pseudo-Known (difference in response to
nonwords versus words), RareMisses-RareHits (difference in
response to unknown rare words versus words that we cor-
rectly recognized), RareHits-Known (difference in response
to rare versus low-frequency words), and Pseudo-RareMisses
(difference in nonwords versus missed rare words). Because
prior research has shown that semantic processing can affect
the N2, N3, MEN, N4, and P3 patterns, we predicted that the
data mining procedures would identify one or more of these
metrics as important for pattern classification.

2.2.3.  Rule operationalization (process 5)

Rules for each ERP pattern were formulated initially based on
results from prior literature and were operationalized using
metrics defined in Process 4 (Section 2.2.2). After application
of the initial rules to test data, we evaluated the results against
a “Gold Standard” (see Section 4 for details) and modified
the pattern rules to improve accuracy. For example, after ini-
tial testing, the visual “P100” pattern (P100v) was defined as
follows: for any n, FA,, = P100v if and only if

(i) 80 ms < TI-max (FA,) < 150 milliseconds,
(ii) In-mean(ROI) > 0,
(iii) EVENT (FA,) = stimon,
(iv) MODALITY (EVENT) = visual,

where FA,, is defined as the nth tPCA factor, and P100v is
the visual-evoked P100 (“v” stands for “visual”). TI-max is
the time of peak amplitude, In-mean(ROI) is the mean am-
plitude over the region-of-interest (ROI), and ROI for P100v
is specified as “occipital” (i.e., mean intensity over occipital
electrodes). “Stimon” refers to stimulus onset, which is the
event that is used for time-locking single trials to derive the
ERP. “MODALITY” refers to the stimulus modality (e.g., vi-
sual, auditory, somatosensory, etc.). See Appendix B for a full
listing of rule formulae.
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These rules represent informed hypotheses, based on ex-
pert knowledge. As described below (Section 5), bottom-
up methods can be used to refine these rules. Further, as
the rules are applied to larger and more diverse sets of
data, they are likely to undergo additional refinements (see
Section 4.1).

2.2.4. Automated labeling (process 6)

For each condition, subject, and tPCA factor, we used MAT-
LAB to compute temporal and spatial metrics on that fac-
tor’s contribution to the scalp ERP. The values of the met-
rics specified in the expert defined rules were then com-
pared to rule-specific thresholds that characterized specific
ERP components. Thresholds were determined through ex-
pert definitions that were formulated and tested as de-
scribed in Section 2.2.3). The results of the comparisons were
recorded in a true/false table, and factors meeting all crite-
ria were flagged as capturing the specified ERP component
for that subject and condition. All data were automatically
saved to Excel spreadsheets organized by rule, condition, and
subject.

2.3. Datamining

As described in Section 2.1, ERP patterns are typically dis-
covered through a “manual” process that involves visual in-
spection of spatiotemporal patterns and statistical analysis to
determine how the patterns differ across experiment condi-
tions. While this method can lead to consensus on the high-
level rules and concepts that characterize ERP patterns in
a given domain, operationalization of these rules and con-
cepts is highly variable across research labs, as described in
Section 1. Bottom-up (data-driven) methods can contribute
to standardization of rules for classifying known patterns,
and possibly to discovery of new patterns, as well. Here
we describe two bottom-up methods, unsupervised learning
(i.e., clustering) and supervised learning (i.e., decision tree
classifiers).

2.3.1.  Clustering (process 7)

In this study, we used the expectation-maximization (EM) al-
gorithm for clustering [25], as implemented in WEKA [26].
EM is used to approximate distributions using mixture mod-
els. It is a procedure that iterates around the expectation (E)
and maximization (M) steps. In the E-step for clustering, the
algorithm calculates the posterior probability, h;;, that a sam-
ple j belongs to a cluster C;:

p(Dj | 6;)m;
ZEVIZ]P(DJ | em)”m,

hij = P(Ci | D)) = (2)

where 7; is the weight for the ith mixture component, D;
is the measurement, and 0; is the set of parameters for
each density functions. In the M-step, the EM algorithm
searches for optimal parameters that maximize the sum of
weighted log-likelihood probabilities. EM automatically se-

lects the number of clusters by maximizing the logarithm of
the likelihood of future data. Observations that belong to the
same pattern type should ideally be assigned to a single clus-
ter.

2.3.2. Classification (process 8)

We use a traditional classification technique, called a deci-
sion tree learner. Each internal node of a decision tree rep-
resents an attribute, and each leaf node represents a class la-
bel. We used J48 in WEKA, which is an implementation of
C4.5 algorithm [27]. The input to the decision tree learner
for the present study consisted of a pattern factor metrics
vector of dimension 32, representing the 32 statistical met-
rics (Appendix C). Cluster labels were used as classification
labels. The labeled data set was recursively partitioned into
small subsets as the tree was being built. If the data instances
in the same subset were assigned to the same label (class),
the tree building process was terminated. We then derived
If-Then rules from the resulting decision tree and compared
them with expert-generated rules.

3. APPLICATION: VISUAL WORD PROCESSING

The ERP data for this study consisted of 144 observations (36
subjects x4 experiment conditions) that were acquired in a
lexical decision task (see [28] for details). Participants viewed
word and pseudoword stimuli that were presented, one stim-
ulus at a time, in the center of a computer monitor and made
word/nonword judgments to each stimulus using their right
index and middle fingers to depress the “1” and “2” keys on a
keyboard (“yes” key counterbalanced across subjects). Stim-
uli consisted of 350 words and word-like stimuli, including
low-frequency words that were familiar to subjects (based on
pretesting) and rare words like “nutant” (which were unlikely
to be known by participants). Letters were lower-case Geneva
black, 26 dpi, presented foveally on a white screen. Words and
nonwords were matched in mean length and orthographic
neighborhood [29, 30].

3.1. ERP experimentdata

ERP data were recorded using a 128-channel electrode ar-
ray, with vertex recording reference [31]. Data were sam-
pled at a rate of 250 per second and were amplified with a
0.01 Hz highpass filter (time constant ~10 seconds). The raw
EEG was segmented into 1500 milliseconds epochs, starting
500 milliseconds before onset of the target word. There were
four conditions of interest: correctly classified, low-frequency
words (Known); correctly classified rare words (RareHits),
rare words rated as nonwords (RareMisses); and correctly
classified nonwords (Pseudo).

Segments were marked as bad if they contained ocular
artifacts (EOG > 70 uV), or if more than 20% of channels
were bad on a given trial. The artifact-contaminated trials
were excluded from further analysis.

Segmented data were averaged across trials (within sub-
jects and within conditions) and digitally filtered with a 30-
Hz lowpass filter. After further channel and subject exclusion,
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bad (excluded) channels were interpolated. The data re-
referenced to the average of the recording sites [32], using
a polar average reference to correct for denser sampling over
superior, as compared with inferior, scalp locations [33, 34].
Data were averaged across individual subjects, and the result-
ing “grand-averaged” ERPs were used for inspection of wave-
forms and topographic plots.

4. TPCA AUTOLABELING RESULTS

Temporal PCA (tPCA) was used to transform the ERP data
into a set of latent temporal patterns (see Section 2.2.1 for
details). We extracted the first 15 latent factors from each of
the four datasets, accounting for approximately 80% of the
total variance. These 15 tPCA factors were then subjected to
a Promax rotation.

After the tPCA factors were projected back into the
original data space (Section 2.2.1), we applied our expert-
defined rules to determine the percentage of observations
that matched each target pattern. Results are shown in
Table 2.

We assigned labels to the first 10 factors based on the
correspondence between the target patterns and the tPCA
factors. Results were as follows: Factor 4 = P100, Factor 3 =
N100, Factor = N2, Factor 7 = N3/P1r, Factor 2 = MFN/N4,
and Factor 9 = P3. Figure 3 displays the time course and to-
pography for these six pattern factors.

Note that many patterns showed splitting across two or
more factors. This may reflect misallocation of pattern vari-
ance across the factors (i.e., inaccuracies in the tPCA decom-
position), inaccuracies in rule definitions, or both. A com-
plementary problem is seen in the case of factors 2, 7, and 10,
which show matches to more than one target pattern. Again,
this may reflect misallocation of variance. Alternatively, these
results may suggest a need to refine our pattern descriptions,
the rules that are used to identify pattern instances, or both.
In either case, these findings point to the need for systematic
evaluation of results. Diagnosing potential sources of error is
the first step towards systematic improvements of methods.

4.1. Evaluation of top-down methods

In our framework, top-down methods for pattern classifica-
tion are dependent on the accuracy of both the data sum-
mary methods and the expert-defined rules. In particular,

(1) data summary methods should yield discrete patterns
that reflect different underlying neuropsychological
processes, or “components;”

(2) rules that are applied to summary metrics should be
implemented in a way that effectively discriminates be-
tween separate patterns.

Our initial efforts have led to encouraging classification re-
sults, as illustrated above. However, several findings suggest
the need to consider possible misallocation of variance in the
data summary process, and ways of optimizing pattern rules.

4.1.1. Diagnosing misallocation of variance

A well-known critique of PCA methods, including tempo-
ral PCA, is that inaccuracies in the decomposition can lead
to misallocation of variance ([21, 35]). For example, in our
results, the left temporal N3 and parietal P1r patterns were
both assigned to a single factor (cf. [15] for similar results).
Recent methods can achieve separation of patterns that have
been confounded in an initial PCA (see [19] for a discus-
sion). A more serious problem is that of the pattern split-
ting: well-known patterns like the P100 are expected to map
to a single rule (factor). Indeed, this simple mapping was
obtained in 3 or our 4 pilot datasets [23]. Splitting of the
P100 across two factors therefore suggests a possible misal-
location of variance in the tPCA. A future challenge will be
to develop rigorous methods of diagnosing misallocation of
variance in the decomposition of ERPs. In the final section,
we consider alternatives to tPCA, which may address this
issue.

4.1.2.  Comparison with a “gold standard”

The validity of our tPCA autolabeling procedures was as-
sessed by comparing autolabeling results with a “gold stan-
dard,” which was developed through manual labeling of pat-
terns. Two ERP analysts visually inspected the raw ERPs for
each subject and each condition. For each target pattern, the
analysts indicated whether the pattern was present, based
on inspection of temporal data (waveforms, butterfly plots)
and spatial data (topography at time of peak activity in pat-
tern interval). Analysts also provided confidence ratings and
rated the typicality of each pattern instance using a 3-point
scale.

An initial set of ratings on 100 observations (25 subjects
x4 conditions) was collected. Raters met to discuss results
and to calibrate procedures for subsequent ratings. Experts
then proceeded to label another 116 ERP observations (4 ob-
servations were omitted due to a technical error in the data
file). This set of labeled data constituted the “gold standard”
for system evaluation.

Interrater reliability for test data was computed for two
of the patterns (P100 and N100) using the Spearman-Brown
prophecy coefficient [36]. Results are graphed in Table 3 (“*”
= moderate reliability, “**” = high reliability).

For both patterns, the highest level of reliability was re-
flected in the typicality ratings. In addition, reliability was
considerably higher for the P100 pattern. Inspection of the
data revealed that the low reliability for N100 “presence”
judgments was due to a systematic difference in use of cat-
egories: one rater consistently rated as “not present” cases
where the other rater indicated the pattern was “present” but
atypical (“1” on typicality scale).

Accuracy of the autolabeling procedures was defined
as the percentage of system labels that matched the gold-
standard labels (%Agr; see Table 4). Across the eight patterns,
the autolabeling results and expert ratings had an averaged
Pearson r correlation of +.36. This leads to an effective inter-
rater reliability of +.52 as measured by the Spearman-Brown
formula. Note that while the %Agr was relatively high for the
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TaBLE 2: Percentage of ERP observations for each factor that matched expert-defined rule criteria.

% Observations meeting pattern criteria

Factor P100 N100 N2 N3 Plr MFN N4 N3
Fac#01 — — — — — — — —
Fac#02 — — — — — 36.81 9.72 59.72
Fac#03 — 82.64 — — — — — —
Fac#04 82.64 — — — — — — —
Fac#05 — — — — — — — —
Fac#06 — — — — — — — —
Fac#07 — — 69.44 42.36 64.58 22.92 — —
Fac#08 34.72 — — — — — — —
Fac#09 — — — — — — — 56.94
Fac#10 — 51.39 51.39 — — — — —
Fac#11 — — — 47.92 25.69 34.03 35.42 —
Fac#12 — — — — — — — —
Fac#13 — — — 59.03 62.50 40.97 — —
Fac#14 — — — — — — — —
Fac#15 — — — — — — — 9.72
Pattern | FacOl | Fac02 | Fac03 | Fac04 | Fac05 | Fac06 | Fac07 - a OZC?I;IS)
P1 - - - 82.64 - - - v
N1 - - 82.64 - - - - N Fac03
(204 ms)
N2 - - - - - - | 69.44 '
N3 - - - - - - 42.36
’/'- N Fac07
Pir - - - - - - | 6458 \‘/ \ (276 ms)
MEN - 36.81 - - - - 22.92
N4 - 9.72 - - - - - m Fac02
. / E (408 ms)
P3 - 59.72 - - - - -

(a)

FIGURE 3: Autoclassification and labeling results. (a) Percentage of observations matching rule criteria for each pattern. (b) Topogragraphy
and (c) time course of pattern factors.

TaBLE 3: Interrater reliability (Spearman-Brown r). TasBLE 4: Comparison of autolabeling with expert labels.
Presence Confidence Typicality Pattern Person r Spearman-Brwon %Agr
P100 517 AT* 72%* P100 0.60 0.75 0.90
N100 —.04 .35% .45% N100 0.26 0.41 0.84
N2 0.12 0.21 0.53
N3 0.41 0.58 0.63
N100 (0.84), the Spearman-Brown coefficient was consider- Pir 0.47 0.64 0.76

ably lower (0.41), consistent with the lower interrater relia-

o . MFN 0.33 0.49 0.40
bility observed between ERP analysts for this pattern. N4 037 0.54 0.81
P3 0.30 0.46 0.64

5. DATA MINING RESULTS

Input to the data mining (“bottom-up”) analyses consisted
of 32 metrics for each factor, weighted across each of the  for each observation were a combination of the autolabel-
144 labeled observations (total N = 4608). Pattern labels  ing results (pattern present versus pattern absent for each
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factor, for each observation), combined with typicality rat-
ings, as follows. Observations that met the rule criteria (“pat-
tern present” according to autolabeling procedures) and were
rated as “typical” (rating > “1”) were assigned to one cat-
egory label. Observations that either failed to meet pattern
criteria (“pattern absent”) or were rated as atypical (“1” on
rating scale), or both, were assigned to a second category. The
combined labels were used to capitalize on the high reliabil-
ity and greater sensitivity of the typicality + presence/absence
ratings, as compared with the presence/absence labels by
themselves.

For the EM procedures, we set the number of clusters to
be 9 (8 patterns + nonpatterns). We then clustered the 144
observations derived from the pattern factors, based on the
32 metrics. As shown in Table 5, the assignment of obser-
vations to each of the 9 clusters largely agreed with the re-
sults from the top-down (autolabeling) procedures (compare
Table 2).

Ideally, each cluster will correspond to a unique ERP pat-
tern. However, as noted above, inaccuracies in either the data
summary (tPCA) procedures, or the expert rules, or both,
can lead to pattern splitting. Thus, it is not surprising that
patterns in our clustering analysis were occasionally assigned
to two or more clusters. For instance, the P100 pattern split
into two clusters (clusters 4 and 5), consistent with the auto-
labeling results (Table 2).

Supervised learning (decision tree) methods were used to
derive pattern rules, independently of expert judgments. Ac-
cording to the information gain rankings of the 32 attributes,
TI-max and In-mean(ROI) were most important, consistent
with our previous results [22]. These findings validate the use
of these two metrics in expert-defined rules. Decision trees
revealed the importance of additional spatial metrics, sug-
gesting the need for finer-grained characterization of pattern
topographies in our rule definitions. In addition, difference
measures (Pseudo-RareMisses and RareMisses-RareHits) were
highly ranked for certain patterns (the N2 and P300, resp.),
suggesting that functional metrics may be useful for classifi-
cation of certain target patterns.

6. CONCLUSION

The goal of this study was to define high-level rules and
concepts for ERP components in a particular domain (vi-
sual word recognition) and to design, evaluate, and optimize
an automated data processing and labeling stream that im-
plements these rules and concepts. By combining rule def-
initions based on expert knowledge (top-down approach)
with rule definitions that are generated through data mining
(bottom-up approach), we predicted that our system would
achieve higher accuracy than a system based on either ap-
proach in isolation. Results suggest that the combination
of top-down and bottom-up methods is indeed synergistic:
while domain knowledge was used effectively to constrain the
number of clusters in the data mining, decision tree classi-
fiers revealed the importance of additional metrics, including
multiple measures of topography and, for certain patterns,
functional metrics that correspond to experiment manipula-
tions.

Ongoing work is focused on the following goals:

(i) refinement of procedures for expert labeling of pat-
terns in the “raw” (untransformed) ERP data;
(ii) testing of alternative data summary and autolabeling
methods;
(iii) modification of rules and concepts, based on integra-
tion of bottom-up and top-down classification meth-
ods.

6.1. Alternative data summary procedures

In the present study, we applied temporal PCA (tPCA) to de-
compose ERP data into discrete patterns that are input to
our automated component classification and labeling pro-
cess. PCA is a useful approach because it is automated, is
data-driven, and has been validated and optimized for de-
composition of event-related potentials [21]. At the same
time, as illustrated here, PCA is prone to misallocation of
variance across the latent factors. Further, differences in the
time course of patterns across subjects and experiment con-
ditions are a particular problem for tPCA methods: latency
“jitter” can lead to mischaracterization of patterns [7].

For this reason, we are currently testing alternative ap-
proaches to ERP component analysis. One approach involves
application of sequential (temporo-spatial) PCA. Temporo-
spatial PCA is a refinement and extension of temporal PCA
(see [12, 19] for details). The factor scores from the tempo-
ral PCA, which quantify the extent to which their respective
latent factors are present in the ERP data, undergo a spatial
PCA. The spatial PCA further decomposes the factor scores
into a second tier of latent factors that capture correlations
between channels across subjects and conditions. The latent
factors from the two decompositions are then combined to
yield a finer decomposition of the patterns of variance that
are present in the ERP data.

6.1.1.  Windowed analysis of ERPs

The second approach is to adopt the traditional methods
of parsing ERP data into discrete temporal “windows” for
analysis. By focusing on temporal windows corresponding to
known ERP patterns, the algorithms we developed for ex-
tracting statistics from the tPCA factors can be extended to
the raw ERP, with some modification. While the raw ERP
is more complex, with overlapping temporo-spatial patterns,
the autolabeling process applied to raw ERPs would corre-
spond directly to the expert “gold standard” labeling proce-
dure. Furthermore, it would not be subject to one weakness
of tPCA, namely, that the time courses of the factor loadings
are invariant across subjects and conditions.

6.1.2. Microstate analysis

We are also evaluating the use of microstate analysis, an ap-
proach to ERP pattern segmentation that was introduced
by Lehmann and Skrandies [37]. Microstate analysis is a
data parsing technique that partitions the ERP into win-
dows based upon characteristics of its evolving topography.
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TaBLE 5: EM clustering results (NP: nonpatterns).
1 2 3 4 5 6 7 8

P100 0 0 0 0 60 49 0 0 0
N100 0 0 0 0 0 7 30 77
N2 104 0 0 0 17 0 0 3 8
N3 5 0 0 0 4 2 2 40 1
Plr 11 0 14 0 14 6 5 51 0
MEN 0 0 0 56 0 9 0 0 0
N4 0 0 0 15 0 1 0 0 0
pP3 0 113 0 2 0 0 0 0 0
NP 26 28 22 197 39 16 33 64 20

Consecutive time slices, whose topographies are similar un- ~ APPENDICES

der a metric, such as global map similarity, are grouped
together into a single microstate. This microstate in turn
corresponds to a distinct distribution of neuronal activity.
Microstate analysis may hold promise for separating ERP
components that have minimal temporal overlap. Moreover,
this method has been implemented as a fully automated
process (see [38] for downloadable software and [39, 40]
for discussion of automated segmentation using microstate
analysis).

6.2. Development of neural electromagnetic
ontologies (NEMO)

In previous work [22] we have described progress on the de-
sign of a domain ontology mining framework and its ap-
plication to EEG data and patterns. This represents a first
step in the development of Neural ElectroMagnetic Ontolo-
gies (NEMO). The tools that are developed for the NEMO
project can be used to support data management and pattern
analysis within individual research labs. Beyond this goal,
ontology-based data sharing can support collaborative re-
search that would advance the state of the art in EM brain
imaging, by allowing for large-scale metaanalysis and high-
level integration of patterns across experiments and imag-
ing modalities. Given that researchers currently use different
concepts to describe temporal and spatial data, ontology de-
velopment will require us to develop a common framework
to support spatial and temporal references.

A practical goal for the NEMO project is to build a
merged ERP-ERF ontology for the reading and language do-
main. This accomplishment would demonstrate the utility of
ontology-based integration of averaged EEG and MEG mea-
sures, and make strong contributions to the advancement of
multimodal neuroinformatics. To accomplish this goal, we
have developed concurrent strategies for representation of
ERP and ERF data in sensor space and in source (anatom-
ical) space. To link to these ontology databases and to sup-
port integration of EM measures with results from other
neuroimaging techniques, we are working to extend our pat-
tern classification process to brain-based coordinate systems,
through application of source analysis to dense-array EEG
and whole-head MEG datasets.

A. CHANNEL GROUPINGS FOR SPATIAL METRICS
(REGIONS OF INTEREST—ROIS)

Left inital 77,78, 83, 84, 85, 86,
T cltocaptta 89, 90, 91, 92, 95, 96
SEETRelT L " . . 59, 60, 64, 65, 66, 67,
Pita e Right occipital 69,7071, 72, 74,75
Left 27,28, 33, 34, 35, 39,
40, 41, 44, 45, 46, 49,
. $ee anterotemporal 128
ol SRR Right 1,2, 109, 110, 114,
’ e e’ e e anterotemporal 115,116, 117, 120,
.o S e P 121,122, 123,125
e 3 Left 50. 56, 57, 58, 63, 64
. ‘. posterotemporal | 65, 69
Right 91, 96, 97, 100, 101,
posterotemporal | 102, 108
SRS . 5,6,7,12,13,21
. ~ .l Medial frontal 107, 113, 119
7,31, 32,37, 38, 42,
Left parietal 43, 48, 52, 53, 54, 60,
61, 67
78,79, 80, 81, 86, 87,
Right parietal 88, 93, 94, 99, 104,
105, 106, 107

B. ERP PATTERN RULES HYPOTHESIZED FOR
VISUAL WORD RECOGNITION

Rule #1 (pattern PT, = P100)
Let ROI = occipital (average of left and right occipital). For any
n, FA, = PT, iff

(i) 60ms < TI-max (FA,) < 150 ms AND
(ii) |IN-mean(ROI) | > .4mV AND
(iii) IN-mean(ROI) > 0.
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TABLE 6

Metric

Description

Pseudo-known
RareMisses-RareHits

Difference in mean intensity over ROI at time of peak latency (Nonwords-Words)

Difference in mean intensity over ROI at time of peak latency (RareMisses-RareHits)

Function RareHits-Known Difference in mean intensity over ROI at time of peak latency (RareHits-Known)
Pseudo-RareMisses Difference in mean intensity over ROI at time of peak latency (Nonwords-RareMisses)
IN-max Maximum intensity (in microvolts) at time of peak latency
IN-max to Baseline Maximum intensity (in microvolts) at time of peak latency with respect to intensity at TI-begin
IN-min Maximum intensity (in microvolts) at time of peak latency
Intensity IN-min to Baseline Maximum intensity (in microvolts) at time of peak latency with respect to intensity at TI-begin
SP-max Channel associated with maximum intensity, IN-max
SP-max ROI Channel group (ROI) containing SP-max
SP-min Channel associated with manimum intensity, IN-min
SP-min ROI Channel group (ROI) containing SP-min
IN-mean ROI Mean intensity (in microvolts) at time of peak latency for a specified channel group
IN-LOCC Mean intensity (in microvolts) at time of peak latency for left occipital channel group
IN-ROCC Mean intensity (in microvolts) at time of peak latency for right occipital channel group
IN-LPAR Mean intensity (in microvolts) at time of peak latency for left parietal channel group
IN-RPAR Mean intensity (in microvolts) at time of peak latency for right parietal channel group
IN-LPTEM Mean intensity (in microvolts) at time of peak latency for left posterior temporal channel group
Space IN-RPTEM Mean intensity (in microvolts) at time of peak latency for right posterior temporal channel
group
IN-LATEM Mean intensity (in microvolts) at time of peak latency for left anterior temporal channel group
IN-RATEM Mean intensity (in microvolts) at time of peak latency for right anterior temporal channel group
IN-LORB Mean intensity (in microvolts) at time of peak latency for left orbital channel group
IN-RORB Mean intensity (in microvolts) at time of peak latency for right orbital channel group
IN-LFRON Mean intensity (in microvolts) at time of peak latency for left frontal channel group
IN-RFRON Mean intensity (in microvolts) at time of peak latency for right frontal channel group
SP-cor Correlation between factor topography and topography of target pattern
TI-max Latency (in milliseconds) of maximum or minimum amplitude
Time TI-begin Onset (in milliseconds) of waveform excurstion containing peak intensity
TI-end Conclusion (in milliseconds) of waveform excurstion containing peak intensity

TI-duration

Duration (in milliseconds) of pattern, equal to TI-begin minus TI-end

Rule #2 (pattern PT, = N100)

Let ROI = occipital (average of left and right occipital). For any

n, FA, = PT, iff
(1) 151 ms < TI-max (FA,) < 229 ms AND

Rule #4 (pattern PT, = N3)

Let ROI = left anterior temporal. For any n, FA, = PT, iff
(1) 250 ms < TI-max (FA,) < 400 ms AND

(ii) |IN-mean(ROI)| > .4 mV AND
(iii) IN-mean(ROI) < 0.

Rule #3 (pattern PT; = N2)

Let ROI = occipital-temporal (average of occipital, posterior
temporal). For any n, FA, = PTj; iff
(i) 230 ms < TI-max (FA,) < 300 ms AND
(ii) |IN-mean(ROI)| = .4 mV AND
(iii) IN-mean(ROI) < 0.

(ii) |IN-mean(ROI)| = .4 mV AND
(iii) IN-mean(ROI) < 0.

Rule #5 (pattern PTs = P1r)

Let ROI = parietal temporal (average of left parietal, right pari-
etal) For any n, FA, = PTs iff

(i) 250 ms > TI-max (FA,) < 400 ms AND
(ii) |IN-mean(ROI)| = .4 mV AND
(iii) IN-mean(ROI) > 0.
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Rule #6 (pattern PTg = MFN)

Let ROI = frontocentral (average of left frontocentral, right
frontocentral) For any n, FA, = PT¢ iff

(1) 250 ms < TI-max (FA,) < 450 ms AND
(i) |IN-mean(ROI)| > .4mV AND
(iii) IN-mean(ROI) < 0.

Rule #7 (pattern PT; = N4)

Let ROI = parietal temporal (average of left parietal, right pari-
etal) For any n, FA, = PT7 iff

(i) 350 ms < TI-max (FA,) < 550 ms AND
(ii) |IN-mean(ROI)| > .4 mV AND
(iii) IN-mean(ROI) < 0.

Rule #8 (pattern PTg = P300)

Let ROI = parietal temporal (average of left parietal, right pari-
etal) For any n, FA,, = PTs iff

(1) 401 ms > TI-max (FA,) < 700 ms AND
(ii) |IN-mean(ROI)| > .4mV AND
(iii) IN-mean(ROI) > 0.

C. STATISTICAL METRICS

For statistical metrics see Table 6.
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1. INTRODUCTION offers some superior features that are unavailable for EEG

Pain is an essential function for the organism to enable im-
mediate awareness of actual or threatening injury for further
adopting a self-protective behavior. Roughly speaking, pain
is a complex and subjective experience in the brain; it in-
volves sensory, affective, cognitive, and motivational compo-
nents and is associated with autonomous activity, nocifensive
reflexes and reactions. In clinical practice, neurophysiological
evaluation of pain in humans has been an important subject
of research in the last decade (Bromm and Lorenz [1]).

In the literature, there are many approaches for monitor-
ing and measuring the pain-related brain activities, includ-
ing electroencephalogram (EEG), magnetoencephalogram
(MEG), and fMRI. In particular, the electrocorticogram
(ECoG) records directly the cortical (electrical) activities
from subdural electrode grids that are implanted in the hu-
man subjects for collecting information for surgical treat-
ments of medically intractable epilepsy (i.e., patients in the
hospital upon approval). As an invasive recording tool, ECoG

or MEG recordings. Specifically, unlike EEG that measures
the electrical potentials recorded from the scalp, ECoG di-
rectly records the potentials from the cortical surface, thereby
having a higher signal-to-noise ratio (SNR) and higher spa-
tial resolution (because of closer electrode spacing). Conse-
quently, activities in beta or gamma bands are better recorded
in ECoG due to less spatial summation and phase cancelation
(or high-cut filter effect) than in scalp EEG recordings.

Since the energy of the infrared laser can be used to
produce a brief thermal stimulus applied to the skin such
as to selectively activate the skin nociceptor, the recordings
of brain responses to short laser pulses (the so-called laser-
evoked potentials, or LEPs) have increasingly become a use-
ful method for evaluating the function of central nociceptive
pathways. The roles of LEPs for detecting abnormalities in
patients have been noted (Garcia-Larrea et al. [2]). Gener-
ally, there are two or three major peaks in the pain-evoked
LEPs, which may be generated in multiple regions. In the lit-
erature, most research efforts focused on two peaks of the
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LEPs, the so-called N2 and P2, which correspond to the ver-
tex negative-positive complex.! The timing when the peak
of the LEP appears is referred to the latency of LEPs. Typ-
ically, N2 was found around 150—-400 milliseconds, and P2
was found around 230-500 milliseconds, depending on the
laser pulse duration and intensity, as well as the stimulus site
or area (Bromm and Lorenz [1]). The difference in latency
is essentially related to the response differences in periph-
eral conduction distance. Specifically, LEP reflects an inte-
grative cortical response to the painful laser stimuli rather
than a simple reaction of the sensory cortex to it; thus, in
the healthy subject the amplitude of cortical LEPs correlates
with the subjective sensation of pain, rather than with the
physical stimulus intensity (Garcia-Larrea et al. [2]). For in-
stance, paying attention to the laser stimulus simultaneously
increases the subjective pain sensation and the LEP ampli-
tude, both of which decrease in turn when the subject is
distracted from the stimulus (Garcia-Larrea et al. [3]). In
addition to the amplitude, the latencies of the LEPs are of-
ten important for the neurophysiological evaluation of pain
(Bromm and Lorenz [1]). In a later section, we will analyze
the amplitudes and latencies of LEP components N2 and P2
in detail. As suggested in the literature, the negative compo-
nent (N2) seems to be induced mainly by the activation in
the bilateral operculoinsular cortices and contralateral pri-
mary somatosensory cortex (SI) (e.g., Tarkka and Treede [4],
Tannetti et al. [5]), and the positive component (P2) is mainly
generated by the cingulate gyrus (e.g., Tarkka and Treede [4],
Lenz et al. [6], Iannetti et al. [5]). However, it should also be
noted that both N2 and P2 could be recorded and observed
at multiple cortical regions simultaneously (e.g., Ohara et
al. [7-9]); therefore, although there may be some evidence
that one LEP is more related to a particular region than the
other, a full understanding of their underlying mechanisms
remains unclear.

In the previous studies (Ohara et al. [8]) of the ECoG
recordings from the awake humans, it was found that atten-
tion to painful cutaneous laser stimuli enhances pain-related
LEPs in cortical regions receiving nociceptive input, typically
at multiple cortical sites (Ohara et al. [9]). Specifically, it
was observed that at primary somatosensory (SI), parasyl-
vian (PS), and medial frontal (MF: anterior cingulate and
supplementary motor area) cortex areas, the amplitudes of
the negative (N2*) and positive (P2**) LEP components®
were enhanced by attention to (counting stimuli), in com-
parison with distraction from the stimuli (reading for com-
prehension). It was suggested therein that attention controls
both early (N2*) and late (P2**) pain-related input to SI
(and other) cortical regions, while the late positive deflec-
tions (that follow the P2** peak) are specifically related to

! This is in contrast to the earliest component N1, which is a lateralized,
relatively small negative peak.

2 In the previous studies, the authors were not sure if the ECoG-LEPs cor-
respond to the scalp-recorded LEPs (N2 and P2), therefore they used the
nomenclatures N2* and P2**. Here, for simplicity, we use N2 and P2 for
referring to these two LEPs. The LEPs can also be labeled by polarity and
latency; when the latency is known, we also use N150 or P200 for the same
reference purpose.

attention. It was also reported in other independent EEG
studies (e.g., Legrain et al. [10, 11]) that LEPs can be modu-
lated by selective spatial attention. In [7], Ohara et al. ob-
served that attention to painful stimuli leads to enhanced
event-related desynchronization (ERD) in cortical regions
receiving input from nociceptors, and the alpha ERD is more
widespread and more intense during attention to the laser
than distraction from the stimuli. This was also consistent
with the observations from other studies using EEG or MEG
recordings (Mouraux et al. [12], Ploner et al. [13]).

In recent years, many statistical tools, such as princi-
pal component analysis (PCA), independence component
analysis (ICA), parallel factor analysis (PARAFAC), common
spatial subspace decomposition (CSSD), statistical wavelet
thresholding (SWT), and Kalman filtering, have been used
for analyzing biological or biomedical data, including EEG,
MEG, and fMRI (e.g., Lee et al. [14], Cao et al. [15, 16],
Makeig et al. [17], Anemiiller et al. [18], Miwakeichi et
al. [19], Browne and Cutmore [20], Wang et al. [21], Galka
et al. [22], Cichocki [23, 24]). The common goal of these
mathematical tools is to discover the hidden components
underlying the data and extract the markers for character-
izing specific events (e.g., event-related potentials). In addi-
tion, combing ICA or other statistical tools with advanced
time-frequency analysis methods has also been advocated in
cognitive neuroscience and neuroimaging (e.g., Makeig et
al. [25], Merup et al. [26]).

In this paper, we conduct both quantitative and qualita-
tive analyses of ECoG data induced by pain stimuli controlled
by a laser pulse. The investigation is focused on two selected
human subjects under several different controlled stimuli
conditions: attention, distraction, as well as under different
laser intensity levels. Statistical analysis was conducted for
both averaging trials and single trials. The averaging-trial
study attempts to find out the dominant and common com-
ponents (especially LEPs) by averaging all trials (of one sub-
ject) under the same conditions. In contrast, the single-trial
study aims to search for instantaneous brain waves and to
analyze the corresponding LEP properties (such as the am-
plitude and latency). The signal-trial analysis is important
because the spontaneous brain activities that are regarded as
“noise” are often diminished by averaging. We believe that
the results obtained from the single trials, if analyzed appro-
priately, often offer extra information that is unavailable in
the averaging-trial study (e.g., Makeig et al. [25]).

To achieve our goal, we select proper processing proce-
dures and mathematical tools, including factor analysis (FA)
and ICA, to the experimental recordings. This builds on the
assumption that within a short timescale the ECoG record-
ings are approximated by an instantaneous linear generative
model that is corrupted by additive noise. The LEPs of in-
terest and other instantaneous brain activities are assumed
to be mutually independent. To blindly separate the sources
of interest (i.e., LEPs), we first resort on a dimensionality re-
duction procedure followed by an efficient and robust ICA
estimation method. In addition, with eigenvalue decompo-
sition, an energy ratio threshold is defined to reject non-
significant components, which are regarded as the interfering
noise from the raw ECoG recordings. The values of these two
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statistical analysis methods have been demonstrated in both
averaging and single trials (e.g., Cao et al. [15, 16]). In terms
of single-trial analysis, wavelet-based time-frequency analy-
sis is also used to assist the quantitative analysis of Z-score
transformed power across different frequency bands. Whilst
these statistical methods are not new the contribution of this
paper is to integrate these methods with careful computa-
tional procedures and present a systematic study of the ECoG
recordings for their LEP characterizations, which might offer
some insights for the neurophysiological or clinical practice.
To our best knowledge, we are in the first position or for the
first time, to employ the statistical ICA tools to pain-related
ECoG recordings. We describe the computational modeling
and analysis in detail and present some interpretations and
discussions from our experimental results. On the one hand,
we strive to relate the results to the reported neurophysiolog-
ical observations in the literature; on the other hand, we also
pinpoint several interesting findings and observations in our
single-trial data analysis.

2. DATA
2.1. Recordings

To obtain the ECoG recordings, special grid electrodes were
implanted on the cortical surface of the subjects (i.e., pa-
tients for surgical treatment of epilepsy). The grid consisted
of platinum-iridium circular electrodes (2.3 mm diameter)
with a center-to-center distance between electrodes of 1 cm
(Ad-Tech, Racine, Wis, USA). The LEPs were recorded with
the implanted grid electrodes over the SI, PS, and MF re-
gions; see Figure 1 for an illustration. During recordings, the
subjects wore goggles and reclined on a bed, quietly wake-
ful with eyes open. Painful heat stimulation was delivered to
the contralateral hand dorsum (contralateral to the grid) by
a Thulium YAG laser (Neurotest, Wavelight Inc., Starnberg,
Germany). The duration of each pulse was 1 millisecond and
the beam diameter was 6 mm. Laser energy level was deter-
mined to produce a painful sensation of 3-4/10 on a decimal
scale (with 0 denoting no pain, and 10 denoting the most
intense pain). The ECoG signals were recorded with sam-
pling frequency 1000 Hz. The recordings were carried out at
the Johns Hopkins Hospital between 1999 and 2003 (Ohara
etal. [7-9]). The protocol was reviewed and approved annu-
ally by the Institutional Review Board of the Johns Hopkins
Hospital and all subjects signed an informed consent for the
studies.

2.2. Subjects

For the purpose of presentation clarification and due to space
limit, we have chosen two human subjects in the current
study. The statistics of the recording setup regarding the se-
lected two subjects are listed in Table 1. Specifically, the first
subject was a 21-year old woman with medically intractable
seizures since age 10; her neurological examinations and
brain magnetic resonance images (MRIs) were normal. Sub-
dural electrode grids were planted over the frontal-central-
parasylvian cortex (no. 1-64 channels) and the medial wall of

the left hemisphere (no. 65-80 channels). The second subject
was a 21-year old man with complex partial seizures since age
4, whose MRI showed a small cavernoma in the right pari-
etal lobe (contralateral to the side of the implantation). The
ECoG signals were recorded from the left fronto-parietal lobe
(64 channels) and medial frontal lobe (16 channels). All the
signals were recorded with reference to one intracranial elec-
trode.

2.3. Experimental paradigm

There are two types of experimental protocols designed for
subjects: attention/distraction, and intensity. In the attention
condition, the subject was asked to count the number of
painful stimuli and to report both that number and the av-
erage pain intensity after each run of laser pulses; in the dis-
traction condition, the subject read a magazine article and
answered questions about it after the run. In these two con-
ditions, constant level of laser intensity was used for the sub-
ject, and 38 laser pulses were delivered with an interstimulus
interval that was randomly varied between 50 and 10 seconds
within each run. Additionally, in the intensity experiment,
varying levels of laser stimuli were delivered to the subject,
and the subject was asked to rate the subjective pain sensa-
tion according to the decimal scale.

2.4. Filtering

Upon loading the raw ECoG recordings to the computer,
the data were amplified and band-pass filtered at 0.1-300 Hz
(Astro-Med, Inc., West Warwick, RI, USA). Subsequently, we
conducted a simple notch filtering procedure to filter out the
AC components of power supply (60 Hz).

3. MATHEMATICAL MODELING AND ANALYSIS
3.1. Generative model

The experimental data are assumed to be generated by a
probabilistic generative model that is described by two equa-
tions as follows:

Xt=ﬂ+BZt+6t, (1)
Zy = ASt, (2)

where t denotes the time index. Equation (1) is essentially
a factor analysis (FA) model, where z; € R” is the hid-
den variable called “factor,” the m X n matrix B is called
the “loading matrix,” x;, € R™ denotes the observed multi-
channel signals measured in the electrodes, g € R™ denotes
the constant mean vector that is often assumed to be zero,
and €; € R™ denotes the additive uncorrelated noise that
corrupts the measurements. Equation (2) describes a linear
mixture model that is related to the blind source separation
(BSS) problem of our interest, where s; € RN denotes the
independent source signals originated from the brain, A de-
notes a linear mixing matrix that roughly models the mix-
ing process and the stationary propagation or scattering ef-
fect within a short timescale (say, 200 to 600 mesc); and the
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X Bad
channels

FiGure 1: The implanted electrodes’ layout; the somatosensory cortex that is associated with the sensation of the pain is located in the
parietal lobe of the brain. (a) subject 1; (b) subject 2 (where CS and SF correspond to no. 8 and no. 64 channels, resp.); (¢), (d) implanted
grids imposed on the reconstructed 3D magnetic resonance images of two subjects. Note that the number of implanted grids shown on the
3D images is more than the number of the available channels shown in Table 1; because of the limitation in data acquisition, only a subset
of the grids were selected (CS: central sulcus; SF: sylvian fissure; CiS: cingulate sulcus; MCiS: marginal CiS).

mixed signals consist of the hidden factor z; obtained in (1).
In the current setting of this paper, we assume m >n = N.

No doubt that the generative model described by (1) and
(2) is somewhat oversimplified for the ECoG data. How-
ever, we believe that the instantaneous linear mixing model
is rather reasonable at a short timescale and therefore can be
used in the first step. In addition, we assume that matrices A
and B are constant within the a short duration of measure-
ments. Now, the statistical estimation problem is to infer the
independent sources s; given the observed x;. We will tackle
this problem via these two statistical tools as described below.
Notably, similar methodology has been applied to MEG or
EEG recordings with successes in some other real-life record-
ings (e.g., Cao et al. [15, 16]).

3.2. Factor analysis

Without loss of generality, we assume that g = 0, and the fac-
tor variables satisfy E[z;] = 0 and E[zz!] = C,, where C, is
the covariance matrix; and the noise is Gaussian distributed
with zero mean and covariance matrix X, which we denote
by € ~ N (0,X). In light of (1), we have

E[x] =0,

3
E[xx!] = C, = BC,BT + X. ®)
If z; is Gaussian distributed, then x; is also Gaussian dis-
tributed. If we further restrict that the factor z; is whitened,
then C, =1 (where I denotes the identity matrix); this
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assumption is reasonable since we can always scale the load-
ing factors B to satisfy the original model equation. Typi-
cally, dim(x) > dim(z), therefore FA is also a dimensionality-
reduction method. A close examination of our experimental
multielectrode recordings indicates that there are strong cor-
relations between adjacent electrodes, which therefore justi-
fies the necessity of dimensionality reduction.

From a probabilistic point of view, we can write p(z;) =
N(0,1), then p(x,) = N (O, BB” + 3). Under the Gaussian
assumption of the factor analyzer, the posterior probability
p(z; | x;) is also Gaussian, with mean and covariance, re-
spectively, defined by

E[z | x] = (BTZ'B+1I) 'B'x 'x,, (4)

Cov(z | x] = (BT 'B+1)"". (5)

Now the goal of FA is to estimate the unknown matrices
B and X, given the observed data {x,;}. In the literature, two
types of estimation procedures can be employed.

o Maximum likelihood estimation

By deriving the log likelihood function (see the appendix)
with respect to the unknown variables, we can use itera-
tive optimization procedures, such as the gradient ascent or
expectation-maximization (EM) algorithm, to obtain the op-
timal solution. Upon obtaining the maximum likelihood es-
timates of B and X, we can further calculate the hidden factor
z; by (4).

e Least-squared estimation

Given observed samples {xt}thl, we can calculate the sam-
ple covariance matrix (assuming zero mean) and conduct its
eigenvalue decomposition (EVD) as follows:

M~

C. = % xx! = UAUT, (6)

t=1

where U is the m X m orthogonal matrix that consists of
eigenvectors as its column vectors, A is a diagonal matrix
that consists of the diagonal entries as eigenvalues. Note that
when the noise is zero or the noise is negligible and has a di-
agonal covariance matrix, then FA reduces to PCA as a spe-
cial case. Upon PCA, we can empirically estimate the noise
covariance. Let U, denote an m X n matrix that consists of
the first n dominant eigenvectors, then we can estimate the
noise covariance by

2 = C, - U,A, UL, (7)
and estimate the loading matrix by
B=U,A" (8)

Finally, the factor variable z; is produced by a linear transfor-
mation:

zZ = th) (9)

where Q = (ﬁTfflﬁ)‘lﬁTf‘.il. Note that in this case, the
dimensionality of z; can be determined by PCA with dimen-
sionality reduction, whereas the remaining components are
considered to be “significant” in terms of variance or energy
contribution.

3.3. Independent component analysis

Upon performing the model reduction using FA, we further
aim to apply the blind source separation (BSS) approach, us-
ing the tool of ICA (e.g., Cichocki and Amari [27]), to re-
cover the hidden sources in (2). Roughly speaking, ICA is
built upon the assumption that the hidden sources in s; are
mutually independent and subject to an instantaneous linear
mixing.

There are many ICA/BSS algorithms available in the liter-
ature. To our interest, two kinds of batch (i.e., noniterative)
ICA/BSS algorithms are considered.

Time-domain method

Specifically, we focus on the BSS algorithms based on gen-
eralized EVD of the time-delayed cross-correlation matrices
or cumulant statistics, such as the SOBI (second-order blind
identification) and JADE (joint approximate diagonalization
of eigen-matrices) algorithms. These methods are fast and
noniterative (thereby independent of the initial conditions).
In our experiments, we have tried and compared the SOBI
and JADE algorithms, and found that their results were qual-
itatively similar. However, JADE is more desirable and pre-
ferred since it incorporates higher-order statistics.

Time-frequency method

Specifically, the source separation criterion of this method is
conducted in time-frequency domain based on joint diago-
nalization of the spatial time-frequency distribution (TFD).
A representative example is the algorithm described by
Févotte and Doncarli [28]. This method is more intuitively
appealing (by taking into account of the information in both
time and frequency) and has been demonstrated to be robust
to noise.?

Notably, although the hidden factor z is whitened (with
zero mean and unit variance), it is still likely that the mix-
ing matrix is ill-conditioned, which thereby makes the esti-
mation of its inverse (or Moore-Penrose pseudoinverse), the
demixing matrix W = A™! (or W = AT = (ATA)'AT),
rather difficult, especially in single-trial experiments. One
way to overcome this problem is to conduct a two-stage ICA
procedure. The essence of the two-stage ICA is as follows:
the role of the first-stage ICA is “rough tuning,” which pro-
duces a guess (or poor estimate) of the ill-conditioned mix-
ing matrix; and the final “fine tuning” job is accomplished by
the second-stage ICA routine. The trick of such a two-stage

3 The Matlab code is available at http://www-sigproc.eng.cam.ac.uk/~
cf269.
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TABLE 1: Summary of the experimental recordings of two human subjects.
Subject Condition Laser intensity No. of electrodes No. of runs No. of trials at each run
1 Attention 720 m] 89 3 38, 38, 38
1 Distraction 720 m] 89 3 38, 38, 38
2 Attention 720m] 80 2 38, 38
2 Distraction 720 m] 80 2 38, 38
2 Intensity 480 m] 80 4 8,12,10, 10
2 Intensity 640 m] 80 4 11,11, 12, 10
2 Intensity 800 mJ 80 4 10, 10, 10, 10

ICA often helps to recover the hidden components in many
ill-conditioned scenarios—if it is not the case, the second-
stage ICA simply produce improved or similar results as in
the first-stage ICA.

The significance of the (uncorrelated or independent)
components is determined by their relative energy (or vari-
ance). Physiologically, we believe those sources that have rel-
ative great energy are more meaningful in terms of repeata-
bility. In practice, selecting the number of principal com-
ponents is done by EVD followed by a threshold selection.
In our experiments, five to eight principal components were
typically selected, which account for about 97-99% of the to-
tal energy. Specifically, let A = diag{A;,A,,...,A,} denote the
diagonal matrix that contains the nondecreasing eigenvalues
M =X =+ =), = 0, the number of significant compo-
nents, k, is chosen according to the following criterion:

1A
k =argminL; s.t.L;= éjllj > Th, (10)

in which the threshold Th was empirically set as 0.97; the
nonnegative eigenvalue indicates the relative significance of
specific component in terms of its energy contribution.

3.4. Identification of interested source by deflation

Let y'V = Wz and y = W@y denote, respectively, the
first- and second-stage ICA unmixing equations, where W(!)
and W® denote the associated unmixing matrices; then the
final unmixed signals, y;, can be estimated as

yi = Wz, = WOWWlz, (11)

where W = W@W denote the global (combined) unmix-
ing matrix.? Notably, each column of W~! contains the rela-
tive strengths of a source component at the individual scalp
electrodes, which can be used to identify the interested source
component.

Given the estimated y; = [y1(£), y2(t),..., yu(t)]T, we
can also reconstruct the partial hidden factor by projecting

4 If only one-stage ICA is used, then W) = I, y(1) = z, and W = W),

the ith component of y;, denoted by y;(t), backward onto the
subspace®

2 = WT0,...,0,%:(6),0,...,0]" = [Wi].pi(0), (12)

where [WT]; denotes the ith column vector of the matrix W,
Furthermore, we can reconstruct the specific source of in-
terest in the observed data space (i.e., the scalp signals con-
tributed merely to the ith source)

% = Q'% = Q'WH[0,...,0, yi(£),0,...,0]". (13)

By projecting X; to the original channels’ positions (i.e., the
8 X 8 electrode layout), we essentially identify the source(s)
of interest. It should be noted that the “source identification”
here is only limited to the two-dimensional scalp surface, and
does not refer to localization of the three-dimensional spatial
position of the “voxel.”

In addition, in order to evaluate the relative contribution
of every electrode to the extracted independent component
(especially for the LEP), we need to consider the joint ef-
fect of X, and W. For this purpose, we may also calculate the
weighted estimate of the sensor space X; as follows:

~ T A~ ~ A~ A~ T

Xe =wi OX = [wiXi(t), wnXa(8),..., winka()] ", (14)
where © denotes the Hadamard (elementwise) product, w; =
[Wi1, Wi, . . ., Win] denotes the ith row vector of the matrix W,
and X; = [X1(t),%2(t),...,%,(t)]T is the back-projected sen-
sor space from the ith independent source via (13). As a dis-
tinction, we call the reconstructed X; in the sensory space as
“unweighted map” and the reconstructed X; in the sensory
space as “weighted map.” Notably, because of the degeneracy
of W, the “weighted map” is subject to the scaling and alge-
braic sign uncertainties.

3.5. Time-frequency analysis

In addition to analyzing temporal signals, we also resort on
time-frequency analysis tools (such as the short-time Fourier
transform, or Wigner-Ville distribution, and wavelet trans-
form) to extract more information for quantitative compar-

> If the demixing matrix is square, then the matrix pseudoinverse W will
reduce to the matrix inverse W1,
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isons. Specifically, wavelet analysis is appealing and consid-
ered superior to the short-time Fourier transform for non-
stationary signals, including EEG (e.g., Mallat [29]; Tallon-
Baudry et al. [30], Diizel et al. [31], Mouraux et al. [12],
Ohara et al. [7]). Here, we choose the continuous wavelet
transform for our purpose because of its adaptive time-
frequency analysis via multiscale decomposition. However,
because of the uncertainty principle, in order to obtain a good
frequency resolution, sufficient time samples are required. In
the experiments, we will use the Wigner-Ville distribution for
an illustration purpose, while in the quantitative analysis we
will use the continuous wavelet transform.

For a temporal signal x(t) (i.e., the raw recordings from
one electrode channel), the power of its continuous-time
wavelet transform is described by

X (t,wo) = |x(8) % w(t,wo) |, (15)

where * denotes convolution product between the signal
and the mother wavelet function, and y (¢, w) is a complex-
valued Morlet mother function:

)
v (two) = (0271)71/4 exp (ﬁ) exp (j2mwot), (16)

where j = /=1, and ¢ is the bandwidth parameter. The
width of the Morlet wavelet, defined by 20wy, is set to 7 in
our study.® The central frequency wy ranges from 1 to 60 Hz
in steps of 1 Hz. To analyze the specific temporal window of
interest, we select a 100-millisecond prestimulus period and
a 500-millisecond poststimulus period, with a total window
length 600 milliseconds.

To compare the power change between the prestimu-
lus and poststimulus periods, we need to introduce some
“relative” measures to obtain a baseline for the poststimu-
lus power. This is important because we are not interested
in the “absolute” power statistic per se, but interested in the
stimulus-induced relative power change. In the literature, the
measure of event-related band power change (ERBP) was de-
fined as (e.g., Ohara et al. [7])

X(t, wo)

ERBP (t,wq) = IOIOg( (o)
0

) dB),  (17)

where m(w,) denotes the median power envelope during the
prestimulus period. Alternatively, we can use another mea-
sure, which we refer to as “Z-score transformed poststimulus
power,” by using the Z-score transformation (e.g., Browne
and Cutmore [20]):

X(t,wp) = , (18)

6 Generally, the greater the width parameter is, the better frequency resolu-
tion we can obtain; nevertheless, this is at the cost of sacrificing temporal
resolution. The temporal resolution has a reciprocal relationship with re-
spect to the frequency resolution.
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F1GURE 2: The original (upper panel, unit 4#V?) versus Z-score trans-
formed (bottom panel, unitless) wavelet scalogram of one selected
channel in a single trial (subject 2, attention task, laser intensity
720 mJ). The white dash lines indicate the laser stimulus onset. As
seen, the ERS and ERD are highlighted more clearly by the Z-score
transformation given by (18).

where p(wy) and o(wy) are, respectively, the mean and stan-
dard deviation of the power in a specific channel band (with
center frequency wy) during the prestimulus period. The mo-
tivation of (18) is to introduce baseline power values across
different frequency bands for the poststimulus power statis-
tics, which are used for standardized comparisons. In do-
ing so, the low-amplitude component at high frequency will
be highlighted, which also makes the time-frequency atom
in the gamma (> 32Hz) band more visible. See Figure 2
for an illustrative example. Note that the Z-score power
value can be negative; the positive values indicate the event-
related synchronization (ERS), and the negative values in-
dicate the event-related desynchronization (ERD), both be-
tween the prestimulus and poststimulus periods. Hence, the
Z-score transformation provides a clearer understanding of
the time-frequency map (in terms of relative power change).

In some cases, the resulted Z-score transformed post-
stimulus power will be converted to a two-dimensional time-
frequency distribution map, denoted by E(¢, ), and further
normalized to unity such that [[ E(t, w)dw dt = 1, which we
refer to as the normalized power. In doing so, each time-
frequency atom can be interpreted by a nonnegative prob-
ability in the time-frequency plane.

4. COMPARATIVE EXPERIMENTS FOR
AVERAGING TRIALS

We first apply the above described computational proce-
dure and statistical tools for averaging trials, the signal-trial
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Trial average (subject 1, counting)

(a)

Time (s)

(c)

Trial average (subject 1, reading)

Time (s)
(b)

Trial average (subject 2, reading)

FIGURE 3: The averaging waveforms (arbitrary scaling) from averaging trials for both subjects in two tasks. As seen, the averaging evoked

potentials are not clearly evident in these plots.

experiments will be treated later in more detail. The experi-
mental results reported in this section will be illustrated for
subject 1; two kinds of conditions, counting and reading, are
considered.

4.1. Extraction of laser-evoked potentials

First, we aim at extracting LEPs for the averaging-trial ex-
periments. Specifically, according to the laser onset tag, the
ECoG recordings (of all channels) were averaged upon the
total number of trials at each run. By doing so, the effect of
the visual or muscle artifacts may be greatly reduced. How-
ever, it is difficult to identify the LEPs from the averaging
ECoG waveforms of all channels (see Figure 3). Not only the
peaks of the LEPs are less evident, the averaging waveforms
still suffer from noise and artifact corruption.

To overcome these issues, we then apply the statistical
tools (FA and ICA) to further process these trial-averaging
signals. In the averaging-trial experiments for subject 1, we
selected five independent components for the purpose of ex-
tracting LEPs. These five independent components are con-

sidered to be “significant” because they contribute mostly to
the averaged ECoG data in terms of variance or energy.” Due
to the averaging/smoothing effect, one-stage ICA procedure
(with the JADE algorithm) was found typically sufficient in
the experiments.® The experimental results for the subject 1,
in the time domain as well as in the time-frequency domain,
are illustrated in Figures 4 and 5. As observed in the figures,
we can extract typical peaks around 150 milliseconds and 200
milliseconds, which might correspond to the hypothetic N2
and P2 peaks (or N2* and P2**) of LEPs, which we also re-
fer to as N150 and P200, respectively; the other components
can be viewed as other significant independent spontaneous
brain activities. These findings were confirmed in both atten-
tion (counting) and distraction (reading) conditions.

7 Specifically, the two LEP components are more significant and relatively
robust in that they remain approximately unchanged when we vary (in-
crease or decrease) the selected number of components by 1 or 2.

8 This is in contrast to the two-stage ICA procedure in single-trials; this is
often witnessed by the observation that the outcomes of the second-stage
ICA are not much different from the results of the first-stage ICA.
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FIGURE 4: Left panels: five estimated significant independent components (ICs) extracted from averaging-trial experiment of the counting
task (attention situation) for subject 1. Right panels: the associated time-frequency distribution (TFD) maps.
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FIGURE 5: Left panels: five estimated significant independent components (ICs) extracted from averaging-trial experiment of the reading task
(distraction situation) for subject 1. Right panels: the associated time-frequency distribution (TFD) maps.

Next, we conduct the task of LEP source identification.
This is done by back-projecting the ith independent com-
ponent (i.e., the estimated LEP) back to the observed sen-
sor space. Specifically, the power contour maps of N2 (N150)
and P2 (P200) under the attention and distraction conditions

are illustrated in Figures 6 and 8, respectively. The results are
qualitatively close (but not identical) to the previous study
(Ohara et al. [7, 8]), in which the LEP peak was found over
the interhemispheric (medial) surface. We also plot the com-
bined contributions of the power contour map for N150 and
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FIGURE 6: Source identification in the averaging trial of subject 1: the back-projected 8 x 8 (first 64 channels) scaled amplitude contour
map of the LEP peak at N150 (the 5th independent source at 150 milliseconds, left panel) and P200 (the 4th independent source at 200
milliseconds, right panel) in the counting task (attention condition).
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FIGURE 7: Left panel: the “weighted” map of LEP-N150 (compared to the “unweighted” map the left panel of Figure 5) from (14). Right panel:
the back-projected 8-by-8 (first 64 channels) power (i.e., the absolute value of the amplitude) contour map of the two LEPs, N150 and P200,
averaged between 120 milliseconds to 240 milliseconds (subject 1, attention condition).
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FIGURE 8: Source identification in the averaging trial of subject 1: the back-projected 8-by-8 (first 64 channels) scaled amplitude contour
map of the LEP peak at N150 (the 3rd independent source at 150 milliseconds, left panel) and P200 (the 4th independent source at 200
milliseconds, right panel) in the reading task (distraction condition).
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FIGURE 9: Source identification in the averaging trial of subject 2: the back-projected 8-by-8 (first 64 channels) scaled amplitude contour
map of the LEP peak at N2 and P2 in the counting (top 2 panels) and reading (bottom 2 panels) tasks.

P200, averaged from 120 milliseconds to 240 milliseconds, as
shown in Figure 7. As seen in the figure, in the LEP-N2 (i.e.,
N150), the greatest brain activities happen around the vertex
(Cz)—the upper right corner of the 88 electrode layout (see
Figures 1, 6, and 7), these observations were consistent with
our early result (Ohara et al. [7, 8]), as well as other indepen-
dent findings using EEG and fMRI with a similar setup (e.g.,
see Figure 1 of Iannetti et al. [5]). Similarly, we also obtained
the LEPs’ mappings for subject 2 (see Figure 9).

4.2. Relative power

We compare the time-frequency distribution (TFD) power
between the prestimulus and poststimulus periods. The av-
eraged total power (per channel) and the averaged power
(per channel) of specific frequency bands, including theta
(4-7.5 Hz), alpha (8-12 Hz), beta (12.5-32 Hz), and gamma
(32-60 Hz), are all calculated. In Table 2, we summarize the
statistics of two subjects under the attention (counting) and
distraction (reading) conditions. The corresponding scatter
plots of prestimulus and poststimulus power (of selected fre-
quency bands) of all channels are shown in Figures 10 and
11.

From Table 2, several observations are noteworthy.

(i) The power in the poststimulus period is generally
greater than that in the prestimulus period, which is
obviously evidenced in terms of total power, 6 and «
power.

(ii) The 8 power increase (or ERS) is relatively more pro-
nounced in the attention condition than in the distrac-
tion condition.

(iii) The B power remains roughly the same level after the
laser stimulus, regardless of the undertaken tasks.

(iv) The y power is typically small in all conditions, with
slightly greater value in the attention condition than
in the distraction condition.

It is noteworthy that the above observations are consistent
with the findings reported in neuroscience and neurophysi-
ology (to name a few, Bromm and Lorenz [1], Garcfa-Larrea
et al. [2], Ohara et al. [7]). Although the statistics summa-
rized in Table 2 are calculated based on the averaging trials,
statistical test (see the next subsection) on single trials also
reveals statistical significance.
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TasBLE 2: The relative power comparisons between prestimulus period (100 milliseconds) and poststimulus period (500 milliseconds) in the
averaging-trials. The statistics are averaged over the total number of channels (namely, divided by 89 and 80 for subjects 1 and 2, resp.) and
the relative time period. The values are unitless, reflecting the ratio among the normalized energy of the time-frequency map.

Subject 1 Subject 1 Subject 2 Subject 2

(counting) (reading) (counting) (reading)
Ave. prestimulus total power 0.0667 0.0796 0.0748 0.0969
Ave. prestimulus 6 power 0.0160 0.0265 0.0175 0.0333
Ave. prestimulus a power 0.0048 0.0105 0.0112 0.0102
Ave. prestimulus § power 0.0047 0.0078 0.0136 0.0087
Ave. prestimulus y power 0.0021 0.0019 0.0026 0.0025
Ave. poststimulus total power 0.1867 0.1841 0.1850 0.1806
Ave. poststimulus 6 power 0.0486 0.0617 0.0539 0.0502
Ave. poststimulus « power 0.0074 0.0124 0.0154 0.0160
Ave. poststimulus 3 power 0.0051 0.0073 0.0134 0.0104
Ave. poststimulus y power 0.0024 0.0024 0.0033 0.0023

4.3. Statistical hypothesis testing

In order to evaluate the results of the averaging trials, we con-
duct some statistical hypothesis tests in order to confirm the
“statistical meaning” of the extracted LEPs. This procedure is
necessary because the result of the extracted LEPs in the av-
eraging trials does not tell anything in statistical sense about
each single trial; namely, we need to be sure if the results we
are tempted to interpret are due to random effects from av-
eraging, or due to the consistent causality in all or most of
individual single trials.

Two popular hypothesis testing methods we consider
here are the ANOVA (analysis of variance, or F-test) and
Mann-Whitney test (or U-test). In our experiments, we first
use the Mann-Whiteny test to calculate the so-called P-value.
Second, we also apply a logarithm transformation of the
raw samples in attempt to obtain the Gaussianity (i.e., the
raw samples are lognormal distributed, as confirmed by the
Shapiro-Wilk test), and then apply the ANOVA to calculate
the P-values.’

To conduct the statistical tests, we apply the estimated
unmixing matrix W from the averaged trial to each single
trial; then we obtain the surrogate “single-trial LEP”1? for in-
dividual single trials, for either LEP-N150 or LEP-P200. For a
specific LEP component, we expect that there is a consistent
and significant difference between the prestimulus and post-
stimulus periods in terms of their absolute values. In our
case, the statistical test was conducted in the time-frequency
domain. For instance, for the LEP-N150 (or LEP-P200), ac-
cording to its time-frequency map, we empirically choose a

9 It should be noteworthy that it is also possible to apply the logarithm
transformation to the samples before the Mann-Whitney test; in this case,
the P-values will remain unchanged, except that the standard deviation
will become smaller after the logarithm transformation.

10 'We call it surrogate single-trial LEP because the LEP is not estimated di-
rectly from individual single trial alone; instead, its recovery arises from
the unmixing matrix that is estimated based on averaging all single trials.

window around the maximum power value (i.e., the magni-
tude) in the time-frequency map,!! and further conducted
the Mann-Whitney test for each extracted LEP component
in all single trials, in which the comparison was done in the
time-frequency domain. Specifically, we compared the aver-
age mean of the power value inside the time-frequency win-
dow centered around the maximum point (which in the time
domain corresponds to the extracted LEP peak) with that of
the prestimulus period (with the same time-frequency win-
dow size), both averaged across all frequency bins. Conse-
quently, we may expect that the signal amplitude in the re-
gion of interest is significantly greater than that of the base-
line. The statistical hypothesis testing results are summa-
rized in Table 3, and the corresponding boxplots are shown
in Figure 12. As seen in the table, the P-values of U-test are
all smaller than .05, and three of them are much smaller than
.01, consequentially, they are statistically significant. For the
sake of completeness and sanity check, we also calculated
the P-values that are not associated with the LEPs, (i.e., the
other independent components extracted from the averaged-
trials), we have consistently observed that their P-values are
greater than .2 (around .2 ~ .6); hence, we can conclude that
these non-LEP components obtained in the averaged trials
are ascribed by the random effect that is not consistent in
each single trial.

5. QUALITATIVE AND QUANTITATIVE ANALYSES
OF SINGLE-TRIAL RECORDINGS

The averaging-trial experiments and statistical tests de-
scribed above present an informative baseline and guideline
for further single-trial experiments. As we mentioned earlier,

1 Typically, the window of temporal axis is centered at 150 milliseconds
(or 200 milliseconds) with width 30 milliseconds, and the window of fre-
quency axis covers from 4.5 to 6.5 Hz (with the resolution of 0.25 Hz for
each frequency bin).
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F1GURE 10: The scatter plots of prestimulus and poststimulus power comparisons in averaging trials for 89 channels (subject 1, left: counting

task, right: reading task).
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FIGURE 11: The scatter plots of prestimulus and poststimulus power comparisons in averaging trials for 80 channels (subject 2, left: counting

task, right: reading task).

it is well known that by averaging the ECoG recordings, we
might lose some valuable information due to cancelation.
For this reason, single-trial experimental findings would be
also interesting. Nevertheless, single-trial analysis is more
challenging because of the random background activities and
artifacts; hence, obtaining consistent yet interpretable results
is quite difficult. To succeed, we may require additional care
or more sophisticated processing. Table 4 lists the operation
comparisons between the averaging and single-trial analyses
at each stage of procedure.

Notably, in contrast to the averaging-trial experiments in
which the artifact effects are greatly reduced, strong artifacts
may exist in the single-trial experiments. In practice, artifacts
(often with low-frequency components) are sometimes ob-
served by visual inspection. In this case, we will be cautioned
about using these “bad” channels. A simple solution is to dis-
card them or average with their neighboring channels. Selec-

TABLE 3: Statistical hypothesis testing statistics of various extracted
LEPs in averaging trials for subject 1. The Mann-Whitney U-test
was applied to the “absolute value” of the raw samples, and the
ANOVA F-test was applied to the logarithm transformation of the
absolute value of the raw samples. The N/A implies that the sam-
ples are neither normally nor log-normally distributed and there-
fore cannot be used for ANOVA.

P-value Counting Counting Reading Reading
(N150) (P200) (N150) (P200)
U-test .0029 .0013 7% 1073 .0269
F-test .0003 N/A 6x107° .0183

tion of bad channels is often assisted with the reference of
averaging trials. For instance, channels with extremely high
amplitude and low frequency are generally regarded as eye
movement artifacts. Since the FA/ICA statistical methods
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FIGURre 12: Boxplots of the absolute value of raw samples, together with their Mann-Whitney test P-values on the counting (left panel) and

reading (right panel) tasks (subject 1, laser intensity 720 m]).

TAaBLE 4: A comparison of main operations between the averaging and single-trial analyses.

Routine Averaging trials Single trials Purpose

Averaging Yes No Smoothing

FA+PCA Yes Yes Noise and dimensionality reduction
first-stage ICA Yes Yes Extracting independent sources
second-stage ICA No Optional Fine tuning of the sources

Source identification Yes Yes Locating the LEPs of interest
WVD Optional Optional Visualization

Wavelet transform Yes Optional Z-score transform

Statistical test Optional Optional Testing hypothesis

described above can somehow reduce these effects, hence
only those channels with obvious artifacts were removed in
the experimental procedure.

In the sequel, we will conduct qualitative and quantitative
comparisons of single-trial recordings for different measure-
ments listed in Table 1.

5.1. Setup

In single-trial experiments, the number of independent com-
ponents usually varies from trial to trial (for the purpose of
extracting LEPs), and we typically choose the number be-
tween 5 and 8. This is because in individual single trials, some
small-amplitude but potentially important components at
high frequency may play a crucial role, which is also inter-
esting to observe. For the same purpose, we will use the two-
stage ICA procedure (JADE algorithm followed by TFD joint
diagonalization) described earlier in Section 3.

Upon extracting the LEP of interest, we further identify
the LEP localization in the sensor space and focus on the
analysis on one specific channel (in contrast to the analy-
sis of all channels in the averaging trials). Specifically, we
will examine the single-trial recordings under attention and
distraction conditions, as well as the statistics of the LEP

attributes (latency and amplitude) with varying pain levels
(i.e., given different laser intensities).

5.2. Single trials versus averaging trials

In the single-trial experiments, we apply the above-described
procedure with the goal of extracting the LEPs under differ-
ent conditions, and the results obtained in the averaging tri-
als are considered to be the baselines for qualitative compar-
ison.

Typically, not all single trials have good quality record-
ings compared with the averaging trials. Here we show a few
successful examples that are capable of identifying the mark-
ers of the LEPs. Notably, in our experiments, it was observed
that the LEP-N2 can be easily identified, while the LEP-P2 is
more difficult to separate. See Figure 13 for two illustrations
under different setting conditions.

In order to evaluate the variability between different sin-
gle trials, we apply the estimated demixing matrix W ob-
tained from averaging trials to all individual single trials,
by which we obtain a set of LEP components for N150
and P200 (one pair for each single trial). Furthermore,
we may use the available tools of the EEGLAB tool-
box (http://www.sccn.ucsd.edu/eeglab; Delorme and Makeig
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FIGURE 14: Left and middle panels: event-related (log) power spectral perturbation (ERSP, in dB, top row) and inter-trial coherence (ITC,

from 0 to 1, bottom row) changes time locked to the LEP components in

single trials (subject 1, attention task). Right panel: cross-coherence

between LEP N150 and P200, with magnitude plot (from 0 to 1; top row) and phase plot (from —180 to 180 degree; bottom row).

[32], Delorme et al. [33], Makeig et al. [25]) to visualize the
event-related spectral perturbation (ERSP) and the intertrial
coherence (ITL) for the specific LEP components, as well as
the cross-coherence between the independent LEP compo-
nents. Specifically, the ERSP shows the spectral power change
from prestimulus baseline (in dB) relative to the stimulus on-
set; and the ITL measures the consistency or reproducibil-
ity of the phase of stimulus-locked trial activity in the se-
lected independent components. For instance, see Figure 14
for an illustrative example of two LEP components obtained
from the attention task (recalling Figure 4). As seen in the fig-

ure, the cross-coherence magnitude (from 0 and 1) indicates
the degree of synchronization between two independent LEP
components, and the cross-coherence phase (from —180 to
180 degree) indicates that the LEP-N150 component is lead-
ing ahead of the LEP-P200 component.

5.3. Attention versus distraction

For subjects 1 and 2, consistent alpha waves were found
among many (but not all) single trials in the reading task
(i.e., distraction condition); whereas in the counting task
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FIGURE 15: Left panels: the 5 estimated sources extracted from a single-trial experiment of the reading task (subject 2). The 5th independent
source contains typical alpha waves. Right panels: the corresponding time-frequency representation.

TaBLE 5: Comparative statistics of the relative power of the normalized wavelet scalogram followed by Z-score transformation (for subject
2, no. 14 electrode) in single-trial analysis. The mean and standard deviation (mean + SD) statistics are calculated by averaging the number

of trials in each run.

Run No. of trials Intensity 0 power a power B power y power
la 8 480 m]J 0.10 £ 0.76 0.24 £0.76 0.33 £0.70 0.27 £ 0.62
la 11 640 mJ 0.22 £ 0.83 0.09 +0.48 0.03 £ 0.30 0.10 £ 0.49
la 10 800 mJ 0.57 +£2.92 0.09 =0.72 —0.03 £0.39 0.14 = 0.67
1b 12 480 mJ 0.38 = 1.63 0.19+0.73 0.25 +0.44 0.22 = 0.40
1b 11 640 mJ 0.58 £ 0.91 0.22 £ 0.57 0.08 = 0.58 0.05 +0.48
1b 10 800 mJ 0.66 +1.23 0.59 £0.79 0.47 £ 1.39 0.41 +0.92
2a 10 480 m]J 0.29 = 0.61 0.40 = 0.57 0.53 = 1.26 0.43 = 0.66
2a 12 640 mJ 0.76 = 1.62 0.35+0.93 0.21 = 0.66 0.11 = 0.61
2a 10 800 mJ 0.77 £ 2.11 0.24 = 0.69 0.12 = 0.33 0.36 = 0.51
2b 10 480 m]J —0.16 = 0.30 —0.04 = 0.31 0.17 £ 0.28 0.31 +£0.38
2b 10 640 mJ 0.30 = 0.93 0.34 = 0.85 0.28 = 0.84 0.05 = 0.44
2b 10 800 mJ 0.64 = 1.56 0.21 = 0.59 0.10 = 0.27 0.20 = 0.33

(i.e., attention condition), the significant alpha component
was not observed in most of single trials. In some reading
tasks, no obvious LEP was identified, while the dominant al-
pha waves can be observed. See Figure 15 for an illustration.
In such cases, since there are no clear LEP peaks being ob-
served, it remains an open question that whether this phe-
nomenon is ascribed to “habituation to the pain” or “loss of
attention.” The reason that alpha rhythms appear frequently
in the reading task might be due to the fact that the subject
was in a relatively relaxed mood (especially compared with
the counting task).

In addition, we also measure the coherence of signal-trial
ECoG data under different conditions. In Figure 16, the co-
herency of alpha (8-12 Hz) and beta (12.5-32 Hz) bands be-
tween pairwise channels during the poststimulus period is
illustrated. In order to visualize the coherency, putting all
connections in one plot will be informative. Specifically, the
complete 8-by-8 layout illustrates the first 64 electrodes’ po-
sitions; at each electrode’s position, we also plot aN 8-by-
8 contour plot that represents the pairwise coherence be-
tween a specific electrode and the other electrodes, in which
the specific electrode is marked by a relatively big filled
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FIGURE 16: Pairwise coherence maps between the first 64 channels (subject 1, laser intensity 720 m]) averaged over all single trials within
a duration of 800 milliseconds in poststimulus period. (a) alpha-range coherence in the counting task; (b) alpha-range coherence in the
reading task. (c) beta-range coherence in the counting task; (d) beta-range coherence in the reading task.

circle. As seen, typically there is strong coherence in the
range of neighboring electrodes. Comparing Figure 16(a)
with Figure 16(b), and Figure 16(c) with Figure 16(d), we
can observe that there is stronger coherence in the alpha and
beta bands in the distraction condition than in the attention
condition.

5.4. LEP-component power versus laser intensity

For the same human subject in a series of single trials, it is ex-
pected that varying the level of stimuli (by changing the laser
intensity), the amplitude and latency of the LEPs will conse-
quently vary, so does the power of the LEP components in the
time-frequency map. For this purpose of analyzing the power

of LEP components at difference frequency bands, we have
conducted quantitative and comparative analysis for subject
2 under varying controlled conditions.

The power statistics are summarized in Table 5. It should
be noted that the power values in Table 5 refer to the “Z-
score transformed” poststimulus power according to (18),
and all the values are averaged over the total number of tri-
als in each run. The statistics are calculated for the first 64
channels including the one that has the highest power con-
tribution (no. 14 channel) at each trial. The scatter plots of
the Z-score transformed power for theta, alpha, beta, and
gamma bands are shown in Figure 17. In the off-diagonal
subplots, the scatter plots of cross-band power are shown;
whereas the diagonal subplots show the histograms of the



Computational Intelligence and Neuroscience

18
20 1 0.909 0.591 0.837
10 S o o ° 0.909 1 0.734 0.843
_18 -t . ds C=los591 0734 1 0772
4 0.837 0.843 0.772 1
2 ’- o0 o ©
of & £ ¥
-2 0 0 .0303 0
i . . . p_| © 0 0 0
0 290 F*. » ~.0303 .0003 0 0
-2 . 0 0 0 0
4 L] L]
2 (A o > .
of £ i » l
-2
10 0 10-5 0 5-5 0 5-5 0 5
(a)
20 1 0.868 0.563 0.732
10 o’ . * c_|0868 1 0814 0.704
0 - - - ~ 10563 0814 1 0721
5 - s 0.732 0.704 0.721 1
0| enl® »° F 3
s . 0 0 .0559 .0003
4 P 0 0 0 .0009
2 . oo : “1.0559 o 0 .0005
9 o = L & .0003 .0009 .0005 0
% ° e %o o
bt A J 5 0
0 g .
L I,,,
-5 0 5-5 0 5-5 0 5-5 0 5
(b)
10 . . . 1 0.841 0.866 0.801
5 . g ~, 0.841 1  0.691 0.694
_g l S i | C=1loses 0691 1 0660
2 e pry 0.801 0.694 0.660 1
ol Pl
0
1 0 0 .0269 0
5 . . . p_| © 0 .0016 .0014
0 PRl oy ~1.0265 .0016 0 .0047
s 0 .0014 .0047 0
4
2 .o}. o.. oy .
0 [ »: 2
-10 0 10-5 0 5-5 0 5-5 0 5

F1GURE 17: The scatter plots (using the MATLAB function “plotmatrix”) of the Z-score transformed power for the theta, alpha, beta, and
gamma bands: (a) 480 mJ, (b) 640 mJ, (c) 800 mJ, each based upon 40, 44, and 40 single trials, respectively. At each panel, the diagonal plots
show the histograms of Z-score power of the associated frequency bands (from left to right, theta, alpha, beta, and gamma); the off-diagonal
plots show the scatter plots of Z-score power across different frequency bands. Matrix C contains the correlation coefficients, and matrix P
contains the associated P-values from the student’s ¢-test.
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FiGurke 18: The graphical illustration of the laser intensity presentation orders at different runs (1a, 1b, 2a, and 2b). Note that the combined
62 trial sequences of “la + 1b” and “2a + 2b” are of identical order.
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power distribution in the relative frequency bands. In each
subplot, the correlation coefficient between the power across
different frequency bands is also calculated (stored in matrix
C), as well as the associated P-values for the student’s t-test
(stored in matrix P). As seen, with different levels of laser
intensities, the Z-score transformed power across different
bands is correlated to certain degree: as the laser intensity in-
creases, the degree of correlation at certain frequency bands
(e.g., between theta and alpha) tends to decrease. A cut-off
correlation coefficient of 0.7 was considered as a sign of sig-
nificance. Each P-value indicates the probability of testing
the hypothesis of no correlation, or the probability of get-
ting a correlation as large as the observed value by random
chance, when the true correlation is zero. If P(i, j) is small
(say, less than 0.05), then the correlation C(j, j) is statistically
significant.

From our data analysis, several observations are notewor-

thy.

(i) Compared to the prestimulus period, the power across
different frequency bands in the poststimulus period
mostly (or in majority) increases, as evidenced by
the positive mean values of the Z-score transformed
(relative) power, although their standard deviations
are relative large.

(ii) In one specific run, the general trend is that the
Z-score transformed 6 power increases as the laser
intensity increases; it seems that no general rule can be
found for «, 8, and y power among our experiments.

(iii) In different runs (i.e., 1a, 1b, 2a, 2b), the mean power
statistics with the same laser intensity often vary.
This is not unreasonable because in each run the
conditions of the subject may be different; in addition,
the (random) order for presenting the laser stimuli is
also different in each run (see Figure 18), their overall
effects (say, e.g., between 480 — 640 — 800 and
640 — 800 — 480) would be certainly distinct. Such a
“hysteresis” phenomenon is well known in psychology
and psychophysics. In an effort to investigate this
phenomenon, we take the 800 m]J intensity level as an
example. According to Figure 18, the total numbers
of 480 mJ, 640 mJ, and 800 mJ preceding 800 m]J are
10, 16, and 14, respectively. In order to compare
their effects on the Z-score power, we calculate the
means and standard deviations of different frequency
bands under these three different conditions (namely,
480 — 800, 640 — 800, 800 — 800), and the results
are shown in Figure 19. It is interesting to observe
from the figure that their Z-score power statistics are
quite different especially at the low-frequency (theta
and alpha) bands. Generally, the Z-score power are
highest for 480 — 800, followed by 640 — 800, and
then lowest for 800 — 800—this is not surprising
considering the sensation habituation effect. Statistical
tests show at the theta and alpha bands, the pairwise
comparison of Z-scored power among three condi-
tions is statistically significant (ANOVA, P < .01).

5.5. LEP amplitude and latency versus laser intensity

Consistent with the previous studies (Ohara et al. [7, 8]),
the peak amplitudes were measured from the baseline value,
which was defined as the averaged value during the pres-
timulus period. Latencies were measured as the time of the
peak amplitude (except for the artifact) for each component;
and peak was regarded as significant when the peak am-
plitude was above the mean + SD prestimulus level. How-
ever, in the previous studies, peak amplitudes and latencies
were both measured from reproducible, averaged waveforms;
here, we attempt to measure the latencies from single trials,
while the amplitude will still be measured from averaging
(over the trials at each run) because of its strong random-
ness; and the standard deviation of the amplitude estimate is
calculated based on 4 independent runs among the record-
ings. In the meantime, we will focus the measurements on
the first 64 electrodes (channels) for the primary somatosen-
sory (SI) region, while the analyses for the parasylvian and
medial frontal (MF) regions are ignored here. As observed
in our experiments (Table 6), the averaged amplitudes of the
LEPs (for both N2 and P2) increase as increasing laser inten-
sity, except for one case of P2 under the 800 mJ condition;
however, the mean statistic is also accompanied with a rel-
atively large standard deviation, which reflects the random
variations of measurement and/or subject conditions.

In our single-trial experiments, it was found that the la-
tencies of the LEPs vary from trials to trials, evidenced by
a large standard deviations (see Figure 20). In addition, by
varying the laser intensity, the LEP-N2 and LEP-P2 also ex-
hibit different attributes in terms of latency and amplitude.
The corresponding statistics are summarized in Table 6 and
Figure 20. Specifically, several observations are noteworthy.

(i) As seen in Table 6, the stronger is the laser intensity,
the sooner the LEP appears; namely, the value of the
LEP latency is smaller. See Figure 21 for two illustrative
results.

(ii) When the laser intensity is small (e.g., 480 mJ), it is
quite difficult to extract the LEP (either one or two)
with the available ICA technique. This is partly because
the LEP is so weak that it is overwhelmed in the back-
ground “noise” (brain activities). Indeed, it is even dif-
ficult to identify the peaks via visual inspection from
the averaging recordings.

Generally, the amplitude of the LEP is a reflection of the
sensation of the pain. Although it seems difficult to dis-
cover quantitative relationship between the intensity of
the laser beam and the amplitude/latency of the LEPs, it
is qualitatively clear that there exists correlation between
them, especially when the intensity difference is large. This
phenomenon might serve as a useful evaluation tool in the
clinical practice.

To evaluate the statistical significance of the LEP peak
amplitude and latency, we also conduct statistical tests
based on their single-trial measurements. We first conduct
a robust linear regression fit (using the MATLAB function
“robustfit”) between the laser intensity value (regression
variable) and the measure of interest (amplitude or latency
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TaBLE 6: Comparative results of the estimated amplitudes and latencies of the LEPs (subject 2, under rating condition) from single and
averaging trials. The last row indicate the selected number of single trials (by excluding some bad trials) used to evaluate the latencies.

N2 (SI region) P2 (SI region)
Intensity (m]) 480 640 800 480 640 800
Latency (milliseconds) 260 178 122 300 248 171
Amplitude (uV) —121+18 —125+23 —150 + 41 112 £ 31 126 = 55 98 + 20
No. of trials 28 36 34 22 26 26

of the LEP), and then obtain Pearson’s correlation statistic 7.
Next, we calculate the ¢ statistic as follows:
rve€ —2
= —, 19
— (19)
where ¢ denotes the number of regression sample pairs.
From the t-statistic, we can further evaluate the statistical
significance (i.e., P-value) from the t-table. In our case, we
found the linear fit for LEP’s latency is significant (r = 0.87,
P <.05); however, the linear fit for LEP’s amplitude is not
significant.

5.6. Subjective sensation versus laser intensity

Finally, we follow the procedure of Ohara et al. [34] to an-
alyze the relationship between the subjective sensation (in

terms of pain rating) and the laser intensity. Specifically, the
subject was asked to rate the pain level in decimal scale (0
no pain, 10 the most intense pain sensation). The mean and
standard deviation statistics are calculated based on all sin-
gle trials given three different laser intensities, as shown in
Figure 22. Generally, it is seen that the average subjective
pain sensation increases as the level of the laser intensity
increases. Statistical tests show significant sensation differ-
ences between different levels of laser intensities (ANOVA,
P < .001 between 480 mJ and 800m]J; P < .05 between
640 mJ and 800 mJ). Moreover, we also evaluate the correla-
tion between subjective sensation and LEP amplitude; how-
ever, no significant correlation was observed between the
pain sensation rating and LEP amplitude for subject 2. We
suspect this is partially due to the large variations among
the subjective pain rating, even with the same laser intensity
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FIGURE 20: The error bars (mean + SD) of the estimated latencies (from single trials) for LEP-N2 (left panel) and LEP-P2 (right panel) with
varying laser intensities. The dotted lines indicate the estimated latencies from the averaging trials.

(specifically, the mean + SD of the pain rating value for
laser intensities 480 mJ, 640 mJ, and 800 mJ are 0.15 =+ 0.70,
1.05 + 1.49, and 2.10 + 2.47, resp.). Although our data here
seem to suggest that the subjective pain sensation and the
objective LEP attribute observation might not be necessarily
correlated, we should also be cautioned that the pain is a very
complex sensation and is susceptible to many human factors
and experimental conditions. Verification of any claim in this
matter require more data and careful analysis.

6. DISCUSSION AND CONCLUSION

In this paper, we have used the statistical tools of FA/ICA for
extracting and analyzing the LEPs. To our best knowledge,
the statistical analysis and quantitative results reported here
are among the new (if not the first) reports that apply sophis-
ticated and systematic statistical analyses to the laser-induced
pain data in the literature. In both averaging and single trials,
we have demonstrated that the pain-evoked event potentials
can be extracted and further analyzed with careful design of
statistical procedure, and that the ICA/BSS approaches show
a promising role in analyzing the multichannel ECoG data
recorded from the awake human subjects. Our results here
have also validated our previous findings in the early investi-
gations and the reported neurophysiological observations in
the literature. This is encouraging in that it justifies the mer-
its of blind signal processing for neurobiological or physi-
ological data analysis. The next challenge of this line of re-
search is to extract consistently less-dominant (in terms of
power) and potentially important pain-related components

that are beyond the LEPs from single trials, which will be the
subject of future study.

We have focused on one particular type of blind sig-
nal processing tool (namely, ICA) in this paper. However,
we make no claim that the choice is unique or optimal. In-
deed, we have been aware of the strengthes and weaknesses of
the ICA during the experimental investigations (e.g., Makeig
et al. [25]), although other improved ICA models, such as the
spatially constrained ICA (Ille et al. [35], Hesse and James
[36]) or the temporally constrained ICA (James and Gibson
[37]), can be considered. It is also noteworthy to point out
several other powerful blind signal processing tools and sta-
tistical algorithms, which might be valuable for the future in-
vestigation:

(i) nonnegative matrix factorization (NMF) (e.g., Lee
and Seung [38]), which is an approximate matrix
factorization method for nonnegative data (e.g.,
spectra, or time-frequency map). Unlike ICA, the
independence assumption is relaxed or unnecessary
in NME on the other hand, extra constraints (such as
the smoothness or sparsity) can be imposed for this
statistical model.'?

(ii) parallel factor analysis (PARAFAC) (e.g., Bro [39]),
which is a well-suited method for analyzing high-
dimensional tensorial data; PARAFAC can be viewed

12 For various implementation, see online resources and MATLAB tool-
boxes developed in our lab: http://www.bsp.brain.riken.jp/ICALAB/
nmflab.html.
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compared with another subject (right panel, averaged over 124 single trials, data from Ohara et al. [34]).

(iii)

as a generalization of higher-order FA or high-
dimensional NMF (if additional nonnegativity

constraint is imposed).
common spatial subspace decomposition (CSSD)

(Wang et al. [21]), which is a spatial filtering method
for extracting signal components specific to one
condition from multichannel electrode recordings
given multiple task conditions. This kind of common
spatial pattern algorithm may be used for evaluating
the ECoG recordings under different task conditions;

however, unlike the ICA method, it is a supervised
algorithm that uses labeled data for classification.

In addition to the above-mentioned statistical tools, it would
be also interesting to investigate the instantaneous brain
activities and dynamics (Makeig et al. [25]), which may pro-
vide useful information of interactions inside the brain for
specific patients with ECoG recordings. Finally, we believe
what we reported here is only the first step towards a com-
plete “statistical” understanding of the pain-evoked ECoG
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data, the substantiation of our observations, claims, and con-
clusion made in this article would require more experimental
verification of ECoG recordings in the future.

APPENDIX

MAXIMUM LIKELIHOOD ESTIMATION OF
FACTOR ANALYSIS

Let us consider a general factor analysis (FA) model as fol-
lows:

x; = u+Bz, + €, (A.1)

where x; € R™ denotes the observed variable, g denotes the
mean vector, z; € R” denotes the hidden variable called “fac-
tor,” and B is an m X n “loading matrix.” With the proba-
bilistic assumptions that z; ~ N (0,1I), €, ~ N(0,X), and
E[z:€;] = 0, then we may derive that

E[x | z:] = u+ Bz,
Cov [Xt) Z[] = B.

E[x] =,

A2
Var [x;] = BBT + Z, (4.2)

Let 0 = (u,B,X) denote the unknown parameters, then
the log likelihood of the FA model is written as

zlnp(xt | 0)

t=1

T
T 1
—ElnIZI - E;x?xt

L(0)

|
N | —
M~

{(x —Bz) 27 (x, - Bz) | (A.3)

-
Il
—_

T
—Iln IZ| - 1 > tr[xex! ]
2 25

N | —

T
Z tr[(x; — Bz) (x; — Bz,) '£7'],

where tr[-] denotes the trace operator, and |X| denotes the
determinant of X. Maximizing £ () with respect to the un-
known parameters yields the maximum likelihood estimate.
An elegant solution can be obtained by using the iterative EM
algorithm.
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1. INTRODUCTION

Epilepsy is the most common brain disorder only second to
stroke, which affects nearly 60 million people in the world
[1]. Many studies have been carried out from different as-
pects in order to explore the mechanisms of epileptogen-
esis and the possible solutions for anticipation and thera-
pia [1-5]. Seizure detection has been under research for ap-
proximately three decades [6]. The most popular methods
are based on time-frequency analysis [7] and artificial neural
networks [8]. These methods do not exploit the multichan-
nel electroencephalogram (EEG) information effectively.
Independent component analysis (ICA) has been in-
creasingly applied to brain signal analysis for decomposi-
tion of multivariate EEGs to extract the desired sources. It
has found a fruitful application in the analysis of multichan-
nel EEGs [9] including epileptic seizure signals. The applica-
tions include the implementation of joint approximate diag-
onalization of eigenmatrices (JADE) and fastICA for seizure
detection [10, 11], artifact rejection from epileptic intracra-
nial EEGs by minimization of mutual information [12] and
spatial filtering [13], and tracking of the epileptiform ac-
tivity by incorporating the spatial constraint within the fas-
tICA [14]. A novel approach proposed in [15, 16] applied an
ICA approach to separate the seizure signals for prediction

purpose and verified the predictability of epileptic seizure
from the scalp EEGs. The main concept of this approach is
to consider the seizures as independent components which
are linearly and instantaneously combined together and with
the noise and artifacts over the scalp. Subject to the mutual
independency of the sources, the independent components
can be separated by ICA algorithms and the seizure sources
can be selected by postprocessing. The traditional nonlin-
ear analysis methods can be applied to these seizure compo-
nents for investigation of predictability. This approach can be
further improved if a better performance of separation can
be achieved. The objective of this work is to develop such
method which can provide more plausible estimation of the
seizure sources and eventually pave the way for the prediction
of epileptic seizures from the scalp EEGs.

The conventional ICA model is built based on the statis-
tical assumptions such that (1) the source signals are statis-
tically independent; (2) the independent components must
have nonGaussian distributions; (3) the number of inde-
pendent components are less or equal to the number of in-
put channels [17]. The ICA model has its own limitations.
Apart from the scale ambiguity and the permutation prob-
lem, sometime the classic ICA cannot take all the prior phys-
iological information into account and the results of sep-
aration cannot be interpreted physiologically. That is why
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in real applications the ICA algorithms have been modified
to incorporate the relevant additional information into the
separation processing as constraints to enhance both effi-
ciency and efficacy of the process.

Topographic ICA (TICA) proposed by Hyvirinen et
al. [18] is a modified ICA model, which relaxes the
assumption of statistical independency of the components,
considering the components topographically closed to each
other are not completely independent but have certain de-
pendencies. The dependencies are used to define a topo-
graphic order between these components. This provides a
very efficient method for separation of the multichannel EEG
source signals. Generally, the EEG recordings reveal the sum
of the action potentials of the neural cells, which are very
complicated to be understood physiologically and mathe-
matically. The dependencies between such sources cannot
be simply cancelled out by some statistical assumptions. In
this paper, we show how TICA works for the separation of
the epileptic seizure EEGs, and how the performance can be
improved by introducing novel spacial and frequency con-
straints in TICA. (In this paper, the constrained TICA is de-
noted as CTICA).

The paper is organized as follows. Section 2 describes
the algorithm development. First, the basic TICA model and
principles are explained. Then, the CTICA model is devel-
oped. Section 3 gives the experimental results obtained by
applying the proposed methods to the epileptic seizure EEGs.
The performance of CTICA and TICA is compared, and the
superiority of CTICA is demonstrated by comparing with
other commonly used ICA algorithms. The final section con-
cludes the paper.

2. ALGORITHM DEVELOPMENT

2.1. TopographicICA

The conventional noise-free ICA model can be expressed as
x(t) = As(t), (1)

where x(t) = [x1(t), %2(t),...,x,(t)]T, x € R" is the vector
of observed signals at time ¢, (-)T denotes transpose opera-
tion, s(t) = [s1(£),52(t),...,5m(£)]T is the unknown indepen-
dent source, s € R™, m < n for over-determined mixtures,
and A € R™" is the mixing matrix. The estimated sources
y(t) = [1(£), y2(t),..., ym(£)]T can be obtained by a sepa-
ration matrix W through the inversion of the above mixing
model,

y(t) = Wx(1), (2)

where W = AT is the pseudoinverse of the mixing matrix and
WA = L In the conventional ICA, the sources are assumed
to be completely statistically independent, and the estimated
signals have no particular order. But in most real applica-
tions, some sources may be more or less dependent on each
other, such as the EEG sources which are fired from close
locations within the cortex. In order to estimate the depen-
dency of the independent components, Hyvirinen et al. pro-

posed the TICA [18]. In TICA, the independency of the com-
ponents has been relaxed, which means that the sources geo-
metrically far from each other in topography are considered
approximately independent and those close to each other
are assumed to have certain dependencies. The dependency
is defined as the higher-order correlation between the esti-
mated sources, such as the correlation of the energies:

cov(sf,s7) = Esis;} — E{s}}E{s}} # 0, (3)
where cov(-) is the covariance of the two sources s; and s;,
and E{-} is the expectation operator. Therefore, the esti-
mated sources from the TICA are still uncorrelated, but their
energies are not.

In the TICA model, the variances of estimated com-
ponents are not constant, instead, they are generated by
some high-order independent variables. These variables are
mixed linearly in the topographic neighborhood, which are
defined by a neighborhood function k(i j). Based on this
model, the estimated components in the same neighborhood
are energy-correlated. The approximation of the density of
source s is given as [18]

ps)=]]exp (G(Zh(i, k)sf)), (4)
k i

where k is the index of the components within the same
neighborhood. G(-) is the scalar function defined by incor-
porating certain nonlinearity. In this work, G(-) has been de-
fined in [18]:

G(y) = —aJe +y, (5)
where « and € are scalar constants.

The approximation of the log likelihood of this model is
given in the following equation; more details of the deriva-
tion can be found in [18]:

N n n

log L(W) =Z ZG(Zh(z 7)(wix(t)) >+Nlog(|detW|),
t= =1 =1

(6)

where w; is the column vector of the unmixing matrix, N
is the length of the data, and h(i, j) is the neighborhood
function, which can be defined as a monotonically decreas-
ing function of some distance. The second term of the above
equation can be ignored, since the unmixing matrix is con-
strained to be orthogonal and the determinant of an orthog-
onal matrix is one. Therefore, the estimation of the TICA
model changes to choosing the optimal matrix Wy, that
maximizes the above log-likelihood function. The estimation
of maximization of the log likelihood of (6) can be found by

0
aw 10gL(W)|w Wopt =0. (7)



M. Jing and S. Sanei

The gradient is obtained as [18]

N n n

Vw =2 S x(Ox(0) 3 hik, j)g(zhu, j)(wiTX(t))2>,
t=1 j=1 i=1

®)

where g(-) is the derivative of the scalar function G(-).

2.2. Constrained topographic ICA

The estimated components from the TICA may be depen-
dent if they fall into the same neighborhood, that is, the
sources coming from the nearby location will be grouped
together. However, the performance of TICA algorithm has
certain limits. It may not be easy to get the sources grouped
together unless the nearby sources are active at the same time.
In [18], in order to obtain better visualization results, the ex-
periment was designed to generate some typical high energy
sources, such as biting teeth for 20 seconds. However, in most
cases of real applications, the source signals may not be so
significant, or there may be only one or two of active sources.
Another factor is the number of input channels. It is obvious
that the more input channels, the more information one can
have and the better results can be achieved. This can be an-
other limitation for the practical applications. However, the
performance can be improved by introducing certain con-
straints into the algorithm.

Adding prior information, as a constraint, to classic ICA
has been previously applied to EEG signal separation and
analysis [15, 19-23]. The conventional ICA does not exploit
the dependency of the sources, therefore, does not always
provide the desired outputs. For EEGs, there is valuable prior
knowledge which can help to separate the desired sources. In
this study, we consider two constraints which are based on
spatial and frequency information. Firstly, in the focal epilep-
tic seizures, the location of the seizure sources, “epileptogenic
zone,” is often known as the prior information. Secondly,
the seizure signals manifest themselves within certain fre-
quency band. Based on the research findings from the clini-
cians and the neurologists, although the dominant frequency
may vary for different types of seizures, the frequency band
of the epileptic seizure onset is normally from 2.5 to 15.5 Hz.
(Frequencies below 2.5 Hz are considered to be mainly due to
eye-blinking artifacts) [24-26]. Therefore, the constraint can
be determined based on both spatial and frequency domain
information. The model of the constrained TICA problem
can be expressed as

maxJ,,(W), s.t. minJ.(W), 9)

where J,,(W) is the main cost function, which is based on
TICA as shown in (6). J.(W) is the constraint which can be
defined as minimizing the distance between the output and a
reference signal:

N
J.(W) = argmvinz [[wlx(t) — yr(t)||§, (10)

t=1

where y, is the reference signal defined based on the spatial
and frequency constraints and || - ||, measures the Euclidean

distance. The CTICA is then changed to an unconstrained
function by using a Lagrange multiplier. Therefore, the over-
all cost function is written as

JW,A) = Ju(W) = AJ.(W), (11)
where A = diag{A;},i = 1,...,m, is a diagonal weight ma-
trix formed by

A = p - diag(cor(y,, y1)), (12)

where p is an adjust constant, cor(-) is the correlation mea-
surement, and y; is the ith estimated source. Then, the update
equation is obtained as

(W)

W(k+1) = W(k) +‘u(k){W + A (X(WX - Y,)T)},
(13)

where y is the learning rate which is updated iteratively. Y, is
the matrix with the reference signal y, in each row.

3. EXPERIMENT

The experiments consist of the application of the proposed
CTICA algorithm to two patients with focal epileptic seizure.
Generalized seizure was not considered in this work because
the main purpose of this study was to investigate the pre-
dictability of epileptic seizure which is possible for only focal
seizures. The epileptogenic zone was confirmed by the clini-
cal experts as the prior information. Both patients’ data con-
tained epileptic seizure onset were truncated from the orig-
inal long recording EEGs and were used in the experiments
to validate the algorithm. The first experiment compared the
performance of CTICA and TICA in terms of the signal-to-
interference ratio (SIR). The second experiment provided the
comparison of CTICA and three algorithms in terms of cor-
relation measurement. Both experiments used topography to
assist the visualization of the results.

In order to evaluate the performance, SIR was defined to
be the averaged signal energy for the estimated source y(t)
from the direct source divided by the energy stemming from
the other sources; higher value of SIR indicates a better per-
formance:

m —112 2
SIR = (1/m) 37" W' | <|Yi|2> (14
(V/m(m — 1)) 3 35 W5t [y 1)

where W;;! includes the diagonal elements in the inverse of
unmixing matrix, that is, the weights from source y; to sensor
x;. The oft-diagonal elements W{jl provide the weights from
the source y; to the sensor x;. It shows how the source y;
interferes the source y;, since each column of the inverse of
unmixing matrix indicates the distribution of each source in
the mixtures.

The parameters used in the experiments were set up as
follows. In (5), the scalar function G(-) parameters « and €
are chosen, respectively, as 1 and 0.005 refering to [18]. The
adjust constant p in (12) was chosen between 6 to 10 based
on the experiments performance. The initial value of learn-
ing rate g in (13) was set to 0.1.
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FiGure 1: Multichannel EEG signals from an epilepsy patient in-
cluding the seizure onset.
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FiGure 2: The EEG source signals estimated by TICA.

3.1. Experiment|

3.1.1.  Data acquisition and the experiment setup

The multichannel EEGs with the frontal focal epileptic
seizure were recorded using the standard silver cup electrodes
applied according to the “Maudsley” electrode placement
system, which is a modification of the extended 10-20 system
[27]. This system provides a more extensive coverage of the
lower part of the cerebral convexity, increasing the sensitivity
for the recording from basal subtemporal structures. The 16
channels EEGs were sampled at 200 Hz and bandpass filtered
in the frequency range of 0.3-70 Hz. The system input range
was 2 mV and the data were digitized with a 12-bit analog-to-
digital converter [15]. The signals were preprocessed by first
removing the baseline to alleviate the effect of low frequency
artifacts. Then, the EEGs were filtered by a 10th order But-
terworth digital filter with a cut frequency of 45 Hz in order
to eliminate the 50 Hz frequency component. The EEGs used
in the following experiment were truncated from the original
recordings to include the duration of 10 seconds with seizure
onset as shown in Figure 1.

F1GURE 3: The EEG source signals estimated by TICA.

3.1.2. Reference

The reference signal was obtained by first averaging the spe-
cial channels closed to the epileptogenic zone. In these ex-
periments, F3, F4, F7, E8, C3, and C4 were selected. Then,
3-15Hz bandpass filtering was undertaken to extract the in-
formation within the seizure frequency band. The final ref-
erence is a vector bounded within the designed spatial and
frequency information of the seizure.

3.1.3.  Neighborhood function

The neighborhood function indicates how the estimated
sources are energy correlated with each other, which can be
defined as a function of the width of the neighborhood. In
this study, because of the limited number of input channels,
the function was chosen as the simple one-dimensional form,
suchash(i, j) = 1,if [i— j| < m, otherwise, h(i, j) = 0, where
m is the width of the neighborhood. It can be noticed that the
neighborhood function is symmetric as h(i, j) = h(j,1).

3.1.4. Results

The separation results of TICA and CTICA are given in Fig-
ures 2 and 3. Figure 7 gives the convergence curve of CTICA.
Both algorithms used the width of neighborhood m = 1. A
simple detection rule based on the dominant frequency and
respective estimated spectrum is applied to select the sources
which have the significant ictal activities. The source with a
maximum spectrum amplitude higher than a threshold and
also with the dominant frequency in the seizure band, is
taken as a seizure source. These sources are IC7, IC8, IC9, and
IC10 in Figure 2, IC5, IC6, IC7, and IC8 in Figure 3. One can
see that the high amplitude spike signals are separated from
the other sources. Another distinct source related to the eye
blink can be seen from two of the outputs, which is IC12 in
Figure 2 and IC4 in Figure 3.

It may not be easy to decern the differences between
the source candidates only by visual inspection of the time
course of the sources, hence the topography was used to
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Topography reveals how the source signal contributes to each
recordings, for example, one can notice that, in both sets
of results, the distribution of eye blink (IC12 in Figure 4
and IC4 in Figure 5) appears on the area near the electrodes
Fpl and Fp2. It can be found that the four selected ICs are
grouped together. The difference is, in Figure 5, the selected
ICs (IC5, 1C6, IC7, and IC8) from the CTICA are localized in
the frontal region, but in Figure 4, the distribution of the cor-
responding sources (IC7, IC8, IC9, and IC10) by the TICA
are rather dispersed. For instance, for IC10, the spatial distri-
bution is highlighted in both frontal and temporal areas. A
similar result can be noticed for IC11.

The performance of the algorithm was evaluated by the
average of five trials for both TICA and CTICA. The SIR was
calculated based on the definition given in (14). Figure 6 il-
lustrates the separation performance (SIR) via the changes
of the width of the neighborhood. It can be noticed that
the SIR of TICA decreases with the increase of the neigh-
borhood width. This is because the wider the neighborhood
is, the more the source will be separated based on energy
correlation. However, for the CTICA, due to the spatial and
frequency constraints, the SIR slightly decreases at the be-

Number of iterations

F1GURE 7: Algorithm convergence of CTICA.

ginning, then stays approximately at certain level. It shows
that, generally, the CTICA has a better performance than the
TICA. It also works better than the TICA when the width of
the neighborhood increases.

3.2. Experimentli

3.2.1. Data acquisition and the experiment setup

In order to validate the performance of CTICA, in the sec-
ond experiment, CTICA and other three popular ICA algo-
rithms (JADE, SOBI, and Infomax) were applied to a patient
with the right temporal seizure. The multichannel EEGs were
obtained from a simultaneous EEG-fMRI recording system,
in which the data were recorded during the fMRI scanning
process. The fMRI scan period was 3 seconds and the scan-
ner artifacts within EEGs were removed by the data provider.
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FIGURE 8: The separated sources from four ICA algorithms. The
source which had the maximum correlation with the reference was
selected from each algorithm.

The 64 channels EEGs were sampled at 250 Hz and filtered
by a 10th order Butterworth low-pass digital filter with a cut
frequency of 45 Hz. The data were then truncated with du-
ration of 10 seconds for the separation. The reference signal
was formed by averaging the signals from two electrodes T8
and P8. The width of the neighborhood function was m = 1.
The rest of the parameters was set as in the first experiment.

3.2.2. Results

The performance of the four algorithms were compared
in terms of correlation coefficient. For each algorithm, the
source which had the maximum correlation with the refer-
ence was selected, are the correlation coefficient is shown in
Table 1. It can be seen that the source obtained from CTICA
has the maximum correlation with the reference and the
source from Infomax has the minimum correlation.

The time course of the selected source is shown in
Figure 8. It can be noticed that the source from Infomax has
clear spikes with a period of 3 seconds, which is the same as
the fMRI scan period. The spikes were most likely the fMRI
scanner artifacts remained in the EEGs, and Infomax seemed
not to separate these artifacts from the desired sources.

JADE

FiGure 9: Topography of the selected sources from four algorithms.

TasLE 1: Correlation between reference and selected source.

JADE
0.5510

CTICA
0.6832

SOBI
0.5142

Infomax
0.3292

Figure 9 compares the topography of the sources selected
from the four algorithms. It can be seen that although the
topography does not highlight them at the area of interest
(which can be due to the depth of the sources), the sources
from JADE and CTICA have shown the distribution around
the these regions (the right temporal area), and CTICA per-
forms better than JADE. SOBI does not provide the promis-
ing result in the area of interest. Topography of the source
from Infomax highlights a quite large area in the brain, which
is typically caused by the scanning process. This also matches
its source time course, in which the spikes were due to the
scanner artifacts (as in Figure 8).

4. CONCLUSION

A novel constrained topographic ICA algorithm has been de-
veloped for separation of the epileptic seizure signals, which
not only relaxes the independence assumption of nearby
sources, but also further constrains the mixing model in
spatial and frequency domains by using application-specific
knowledges of epileptic seizures in the form of an averaged
and band-limited reference signal. The CTICA algorithm
achieves better performance than other ICA algorithms in
terms of the SIR and correlation with the reference signal.
This provides very promising results for further application
of epileptic seizure analysis.
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1. INTRODUCTION

There is sufficient evidence to believe that the brain dynamics
can be effectively modeled through complex nonlinear inter-
actions. Application of nonlinear dynamical measures [1, 2]
such as short-term Lyapunov exponents (STLmax) and cor-
relation dimension on an epileptic brain have revealed that
the complexity of the brain dynamics reduces significantly as
a seizure is approaching. In other words, the temporal dy-
namics of the brain progresses from a “high-dimensional”
nonconvergent (chaotic) state to a much smaller dimensional
“chaotic” state.

Much of the analysis on temporal dynamics focuses on
analyzing and characterizing the irregular behavior of the
time signal of either intracranial or scalp EEG. However, it
is important to realize that the brain is a multidimensional
system with a large set of neuronal oscillators that are phys-
ically and functionally coupled together. Obviously, neurons
communicate with each other through synaptic potentials re-
sulting in microscopic action potential discharges. Abnormal
neural population synchrony can also produce mesoscopic
transient activity, clinically called sharp waves or spikes. De-

pending on the pathophysiological states, the nature of the
spikes with respect to their frequency of occurrence, ampli-
tude, and shape, can be very distinctive. Particularly in an
epileptic brain, it would be natural to expect the distinc-
tions between interictal, preictal, and ictal spikes could pos-
sibly be a consequence of the dynamical changes in spatio-
temporal communications between various regions of the
brain. Therefore, it is essential to unravel the functional con-
nectivity of the neural networks and analyze how the struc-
tures change during seizure events.

Even though observations that the macroscopic EEG
cannot be distinguished from linearly correlated noise [3],
many nonlinear approaches have been able to extract inter-
regional coupling information in a manner that would not
have been possible by spectral approaches. Nonlinear depen-
dencies between multiple signals have been studied in the last
two decades, with the hope of enhancing the tool set pro-
vided by the linear methods. Unfortunately, they have faced
some practical implementation problems such as sensitiv-
ity to noise, choice of parameters, and the high computa-
tional cost. Most of the state-space methods rely on finding
the functional dependencies between two-time series based
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on how their trajectories in the embedded phase space de-
scribe each other. Inspired by the similarity—index (SI) tech-
nique introduced by Arnhold et al. [4], we earlier proposed a
self-organizing map (SOM)-based computationally efficient
measure, SOM-SI [5, 6], to measure asymmetric dependen-
cies between time sequences. Conceptually, the SI and the
SOM-SI methods rely on the assumption that if there is a
functional dependency between two signals, the neighboring
points in the state space of one signal correspond to neigh-
borhoods of their counterpart. The SOM-SI method maps
the embedded data from signals onto a quantized output
space through an SOM [7, 8] specialized on these signals,
and utilizes the activation of SOM processing elements (PE)
to infer about the influence directions between the signals.
This approach reduces the computational complexity dras-
tically by exploiting the accurate quantization properties of
the SOM in representing the dynamics of the signal in the
phase space. Our previous work [6] showed that the SOM-
SI was capable of determining the temporal evolution of de-
pendencies between various cortical sites, at different stages
of temporal lobe epileptic seizures.

Epileptic seizures, in particular, are characterized by dy-
namic states (interictal, ictal, preictal, and postictal) that
are known to possess both local and global spatio-temporal
groupings. Channels associate and deassociate in time; how-
ever, depending on the psycho-physiological state of the
brain, certain groups of channels might have a higher like-
lihood of sharing same channel connectivities, thus forging a
long-term association. In epileptic intracranial EEG, identi-
fying such state-dependent clusters may provide us with use-
ful insights on the evolution of brain patterns during seizure
states. In this study, we propose a spatio-temporal clustering
model to qualitatively analyze the spatio-temporal groupings
in multidimensional epileptic structures. Unlike in many
other clustering approaches, where dynamical features ex-
tracted from the data are used as basis to determine group-
ings, our proposed clustering approach uses the dependen-
cies among the original data recordings to do the same. Our
approach, in short, essentially seeks to analyze the regional
grouping of cortical sites at different stages of a seizure, based
on their mutual interactions.

On a clinical perspective, this study intends to investigate
spatio-temporal relationships across various regions of an
epileptic brain to help determine the epileptic focus and the
dynamical changes that lead to a seizure. In order to achieve
this ultimately goal, it is necessary to develop appropriate sig-
nal processing tools that extract features to cluster different
regions of the brain based on their functional dependencies.
The highlight of this clustering measure is that it uses a sim-
ilarity or a proximity matrix that is entirely data-dependent
to determine regional dependencies. Our idea is two folds:
(a) to propose a novel tool to determine clusters and present
synthetic simulations and real data to support the validity
and robustness of this measure, (b) to apply this measure
on real-epileptic data and present a detailed clinical inves-
tigation on the outcome. The study was made on 8 complex
partial seizures from 2 patients suffering from temporal lobe
epilepsy. The conclusions of this paper are based on observa-
tions from these 8 seizures only.

The paper is organized as follows. We first present a
brief review of SOM-SI in Section 2. Section 3 discusses
the spectral-clustering approach and the proposed spatio-
temporal cluster model. Data description is provided in Sec-
tion 4 followed by clinical evaluation of the clustering ap-
proach on the epileptic EEG data, in Section 5. Section 6 dis-
cusses about potential directions for future study.

2. SIMILARITY INDEX (SI) MEASURE
(A) Original SI measure

Assume that X and Y are two time series generated by a sys-
tem, which are embedded into two vector signals in time us-
ing delays. N(X | Y) is defined as the average dependency of
X on Y and it can be written as [5],

N'R(X) —RMX | Y
D (X) ( )

R"(X) ’

N(XIY)=%

(1

n=0
where R"(X) is the average Euclidean distance between the
state-vector of X" and the remaining state-vectors in X. The
Y-conditioned Euclidean distance R"(X | Y) measures the
average Euclidean distance between X" and the vectors in X
whose corresponding time partners are the k-nearest neigh-
bors of Y”. This measure takes values in [0, 1], where 0 im-
plies no coupling and 1 implies perfect synchronization [4].
Average dependence of Y on X, N(Y | X), is similarly com-
puted. The difficulty with this approach is that at every time
instant #, we must search for the k nearest neighbors of the
current embedded signal vectors among all N sample vectors;
this process requires O(N?) operations. This high complexity
hinders real-time implementation and analysis. In addition,
the measure depends heavily on the free parameters, namely,
the number of nearest neighbors and the neighborhood size
¢. The neighborhood size € needs to be adjusted every time
the dynamic range of the windowed data changes.

2.1. SOM-based similarity index (SOM-SI)

The self-organized-map- (SOM-) based SI algorithm [5] is
fundamentally aimed at reducing the computational com-
plexity of the SI technique. The central idea is to create a
statistically quantized representation of the dynamical sys-
tem using an SOM [7, 8]. An SOM is a neural-network in
which spatial patterns from the input space are mapped onto
an ordered output space consisting of a set of processing ele-
ments (PE). Thus each PE in the SOM, based on its location
on the map, compactly models different features/dynamics
of the input.

For best generalization, the map needs to be trained to
represent all possible states of the system (or at least with
as much variation as possible). As an example, if we were
to measure the dependencies between EEG signals recorded
from different regions of the brain, it is necessary to create an
SOM that represents the dynamics of signals collected from
all channels. The SOM can then be used as a prototype to
represent any signal recorded from any spatial location on
the brain, assuming that the SOM PEs have specialized in the
dynamics from different regions.
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One of the salient features of the SOM is topology preser-
vation; that is, the neighboring PEs in the feature space cor-
respond to neighboring states in the input data. In the appli-
cation of SOM modeling to the similarity index concept, the
topology preserving quality of the SOM will be of added ad-
vantage, because of the fact that the neighboring PEs in the
feature space will now correspond to neighboring states in
the input data.

Assume X and Y are two time series generated by a sys-
tem, which are embedded into two vector signals in time-
using delays. Define the activation region of a PE in the SOM
as the set of all input vectors (the embedded signal vectors)
for which the PE is the winner based on some distance metric
(Euclidean in most cases). Let X,, be the set of time indices of
input vectors x; that are in the activation region of the winner
PE corresponding to the input vector x, at time n. Similarly
define the set Y.

Then the procedure to estimate the directed SOM-SI be-
tween X and Y is as follows:

(1) Train an SOM using embedded vectors from both X
and Y as the input.

(2) At time n, find WY, the winner PE for vector x,, and
find W;/, the winner PE for vector Vn-

(3) To find R"(X), compute the average Euclidean distance
between W} and all the other winner PEs in the SOM.
Similarly, compute R*(Y).

(4) Determine the sets X, and Y,, for W) and Wy, respec-
tively.

(5) Determine the nearest PEs W,{ i corresponding to vec-
tors y;, where j € X,. Determine the nearest PEs W ;
corresponding to vectors y;, where j € Y.

(6) Calculate R"(X | Y) = (l/q)Z;LlIIW,’j — W,’f,j\l, where
q is the number of elements in X,. Calculate R*(Y |
X) = (l/q)E]q»:l [|Wy — W,{jll, where g is the number
of elements of Y,,.

(7) Compute the ratios,

N*(X|Y) = (R"(X)-R"(X | Y))/R"X), 2)
N"(Y | X) = (R"(Y) = R(Y | X))/R"(Y).

(8) Find interdependencies N(X | Y) and N(Y | X) as the
average of N*(X | Y) and N"(Y | X) over all n.
(9) Compute the SOM-SI as the difference,

x=N( | X)-NX|Y). 3)

Positive values of y indicate that influence of X on Y is more
than the influence of Y on X, while negative values indicate
the opposite. Higher magnitude of y indicates a stronger cou-
pling of the signals.

The computational savings of the SOM approach is an
immediate consequence of the quantization of the input
(signal) vector space. The nearest neighbor search involves
O(NM) operations as opposed to O(N?) in the original SI,
where M is the number of PEs. Traditionally M < N, hence,
SOM-SI offers a significantreduction in computations com-
pared to original SI.

3
SOM-1
0.6 (trained on
0.2 training set-1)
-0.2
—-0.6
-1 SOM-2
0 20 40 60 80 100 (trained on
Test st training set-2)

FiGure 1: Experimental setup to compare SOM-Similarity Indices
obtained from two (2) separate maps.

2.2. Testing the robustness of SOM-SI on
multiple SOMs

To illustrate the accuracy of the SOM-based measure, we pre-
viously presented a few experimental simulations [5, 9] in-
volving synthetically constructed linear and nonlinear inter-
active models. Results from each of them demonstrated the
accuracy of our quantized measure, validated through sta-
tistical quantification with results from the original SI mea-
sure. For application on seizures especially, a 25 X 25 sized,
2-dimensional SOM grid was trained to embed all the dy-
namical states of an EEG attractor. SOM, being one of the
most important elements of this improvised measure, one of
the pre-requisites of this approach, is to ensure that: (a) for
data modeling purposes, the training set captures the vari-
ance found in the dynamics of the ictal states from all the
channels for a given patient and (b) the similarity indices
computed using the SOM’s processing elements are indepen-
dent of the SOM and the corresponding training dataset. Put
in other words, pair-wise similarity indices computed on two
separate SOMs should be significantly close to each other if
not equal.

While the previous test results [9] were a testimony to
the former, the independence of the observed interactions
through similarity indices to a given SOM needed to be
tested before proceeding with extensive data analysis. From
the multivariate EEG data samples of an epileptic patient,
two separate training sets were constructed. One of the train-
ing sets (say training set-1) consisted of portions of data sam-
pled from the interictal, ictal, preictal, and postictal states of
seizures 1 and 2. The other training set (say training set-2)
consisted of data portions picked around seizure 4 and 5. Us-
ing the same normalization procedures on both the sets and
with the same set of training parameters as before, two sep-
arate SOMs (called as SOM-1 and SOM-2 for convenience)
were trained. Post training, the SOM-similarity indices were
obtained from pair-wise analysis of interdependence among
channels chosen from the ROF and LOF regions of the brain,
as illustrated in Figure 1.

Test data from three (3) recording sites in right or-
bitofrontal region (namely, ROF1, ROF2, and ROF3) and 3
sites from left orbitofrontal regions (namely LOF1, LOF2,
and LOF3) were picked from intervals surrounding seizures
4, 5, 6, 7 and seizure 11, respectively. The similarity index
profiles {N'(X | Y)},and {N*(X | Y)}, obtained from com-
puting the SOM-SI on large intervals (say time t = 1,...,T)
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of seizure data are quantitatively compared using the classi-
cal correlation coefficient and error-percentage as the com-
parison metrics. The error-percentage is computed as fol-
lows:

N'(X | ) = N2(X | Y»}T @
t=1

fer = 100 NUXTY),

where N(X | Y) is the normalized interdependency of X
on Y. Note that the notations X and Y are used to denote
the two channels of interest. Normalized error e quantifies
the percentage difference between the interdependency val-
ues from SOM-2 and SOM-1, keeping interdependency value
from SOM-1 as the reference. From the error population, the
fraction of the absolute error values less than 20% and the
fraction less than 10% are computed to determine the degree
of dependence of the SOM-SI measure on the data used to
train a SOM.

For illustration, the results from analyzing the interde-
pendency of LOF3 on LOF4 on various seizures are shown in
Figure 2. The histograms correspond to the error ensembles
obtained from analyzing over long seizure intervals. Quali-
tatively, the superimposed traces in Figure 2 indicate the ex-
tent of agreement or disagreement between the SOM-SI pro-
files. Table 1 compiles a summary of the agreement between
the SOM-SI profiles for about 13 hours of EEG data. A large
fraction of errors less than 20%, supported by a high corre-
lation coefficient between the two SOM-SI profiles, suggests
that there was very little disparity between the SOM-SI pro-
files from SOM-1 and SOM-2. Besides, the high percentages
also seem to suggest the EEG data dynamics might not vary
drastically from one seizure to another, and therefore the
two SOM models produced almost identical SI results. This
finding consequently supports our original belief that a well-
trained SOM and a well-picked training dataset is sufficient
to carry out inter-dependency analysis on all the seizures of a
patient.

Overall, pair-wise analyses of the interdependency
among 6 channels (15 combinations) on 5 seizures of the
epileptic patient were performed on SOM-1 and SOM-2. The
average correlation coefficient and the error results between
the SOM-SI profiles are shown in Table 2.

Results from Table 2 indicate that in around 80% of the
times, the differences between the SOM-SI results are less
than 20%. This is not surprising considering that the dif-
ferences are measured in percentages (3), and therefore even
small discrepancies in the case of small dependency values
can appear magnified. In addition, we also speculate that the
discrepancies could be the outcome of the two SOMs being
trained in an identical fashion instead of being fine-tuned to
obtain the lowest reconstruction error in each.

In general, if the SOMs can be designed to obtain the low-
est reconstruction error, by iteratively choosing the best sets
of parameters, a slight improvement in the performances can
be easily achieved; but as it stands, a slight discrepancy can
nevertheless be always expected although it may have very
little impact in the overall scheme of analysis.

3. SPATIO-TEMPORAL CLUSTERING MODEL

Often time series structures collected from a multi-dimen-
sional dynamical system share similar information that re-
flect system wide interactions or even synchronization abili-
ties. By definition, the word similar could mean that the in-
formation shared among a set of channels are stronger than
the information they share with other channels. Such spatial
similarities could possibly be transient up to a few seconds
or could even stretch to several minutes or hours. As we pos-
tulated earlier, dynamial similarities in spatio-temporal be-
havior could be one of the driving factors to trigger certain
events in biological systems. From a clinical point of view,
we believe that analyzing the temporal changes in channel
similarities could reveal some interesting aspects about the
epileptic brain.

Similarity-based time-series clustering [10, 11] is a well-
researched topic in the area of dynamical graph theory. It is
an extremely useful approach to characterize spatial group-
ings in time sequences. Similar time sequences are typically
grouped based on their mutual interactions. In this study, us-
ing the SOM-SI as a computational tool to derive the dis-
tance/similarity/proximity matrix, we propose a clustering
model to dynamically analyze the spatio-temporal groupings
in mutivariate time sequences.

3.1. 1 Model for spatio-temporal clustering

In this section, we propose a clustering approach to extract
information on spatio-temporal distribution of multivariate
time measurements. A 3-fold approach, consisting of spatial-
discretization of the data using spectral-clustering technique
[12, 13], temporal quantification using Hamming distance,
followed by application of another clustering technique, is
presented in Figure 3. The rational will become apparent
during the explanation.

Spectral clustering is one of the many clustering meth-
ods that use subspace decomposition on data-derived affinity
matrix to achieve data-clustering. Using kernel methods, the
data samples are projected onto a higher dimensional space
where the discriminant analysis is much easier. Projecting the
data onto a feature space results in tightly formed clusters
such that the between cluster entropy is maximized and the
within-cluster entropy is minimized. In our study, we apply
the standard spectral clustering algorithm by Ng et al. [12] to
spatially cluster the similarity indices obtained by the SOM-
SI technique.

Pair-wise evaluation of SOM-SI measure on all the possi-
ble combinations (CY, where N is assumed to be the number
of channels) of a portion of a multivariate time series leads
to k = 2*(CY) similarity indices in [0, 1]. k is multiplied by 2
because of the asymmetric nature of the SOM-SI measure. If
we imagine the time series as various inter-connected nodes
in a multidimensional graph, the SOM-SI similarity indices
represent the affinity or rather the weights of the connection
between those nodes. Therefore, we can translate them into
a square matrix of size N X N, where N is the number of
channels. Since the weighting is normalized between 0 and 1,
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FiGure 2: Comparing interdependencies between channels LOF3 and LOF4. Left: SOM-similarity profiles from the output of SOM-1 and
SOM-2 are superimposed. Right: Histogram of the errors in %. Top: Seizure 4 and 5. Middle: Seizure 6 and 7. Bottom: Seizure 11.

TasBLE 1: Quantitative comparisons between the SOM-SI profiles obtained from SOM-1 and SOM-2. LOF3 and LOF4 data was projected on
each of the SOMs and then the SOM-SI measure was applied to analyze the dependency of LOF3 on LOF4.

Interdependency N(LOF3| LOF4)

Correlation Coefficient (%)

Fraction of error less than 20%

Fraction of error less than 10%

Seizure 6 and 7 95.74 0.8504 0.5597
Seizure 4 and 5 98.45 0.9234 0.7543
Seizure 11 91.59 0.6452 0.3614
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TABLE 2: Summary of the comparisons between the SOM-SI profiles from SOM-1 and SOM-2. Each row represents the statistics (mean and
variance) of pair-wise SOM-SI analyses of the epileptic EEG data from 6 channels (15 combinations).

Correlation Coefficient (%)

Fraction of error less than 20%

Fraction of error less than 10%

Seizure 6 and 7 94.32 +2.85 0.79 = 0.1 0.54 +0.12
Seizure 4 and 5 97.46 + 1.08 0.91 + 0.06 0.73 +0.12
Seizure 11 93.24 = 2.06 0.71 £ 0.08 0.41 £ 0.07

Multichannel __ EEG analyses where associations last longer, it is important

data_ | Time-delay Spectral- to identify channel groupings over a longer time-window.

embedding clustering State-dependent connections can be quantified by clus-

tering rows of the e matrix that are similar with each

other over a longer time interval, say T. In this con-

Temporal Clustering text, we propose a simple statistic that computes the rel-

quantification ative frequency of any two channels sharing the same la-

using hamming bels/groupings to determine the degree of similarity. In other

Fi1GURE 3: Block diagram to extract spatio-temporal groupings in-
formation in Multivariate EEG structures.

the diagonal elements, representing the affinity of a channel
with itself, are coded as 1.

However, to be able to perform spectral-decomposition
on an affinity matrix, Ng’s algorithm [12] requires that the
affinity matrix be square and symmetric in nature. This is
because the eigen decomposition yields orthogonal column
vectors (also called eigenvectors) only if the projection ma-
trix is square-symmetric. The asymmetric matrix can be
transformed to a symmetric matrix by adding it to its trans-
pose and dividing each entry by 2. Following the eigen de-
composition on the transformed affinity matrix, we have a
set of labeled clusters representing the membership of the
channels.

If the above procedure is repeated over consecutive
time (7) windows (overlapping or nonoverlapping), chan-
nel groupings obtained on each time window (t = 1---T)
can be arranged in a matrix (of dimension N x T') as in (5).

322. 31

122. 32
Kepect = [+« « o oo o | (5)

312.....12

To characterize the average clustering of the channels
over a longer period of time, we propose another, albeit sim-
ple, hierarchical clustering approach that uses Hamming dis-
tance to derive the proximity matrix.

3.2. 2 Temporal quantification using
hamming distance

We showed in the previous section that the multivariate time
series can be grouped by using similarity-based clustering
techniques such as spectral clustering. The spectrally clus-
tered labels specify the groups of channels exhibiting high de-
gree of within-cluster similarities and low degree of between-
cluster similarities. Often in applications such as epileptic

words, in a time window of length T, we check the average
number of times when the two channels of interest, share the
same cluster label.

In an algebraic context, the above operation is equivalent
to computing pair-wise Hamming distance in a time window
T. Similarity can be quantified by subtracting the Hamming
distance from 1. That is, if d,hjam is the hamming-distance be-
tween channels “/” and “j,” similarity in probabilistic terms
can be obtained as

im _ ham
pi" = 1-d" (6)

Thus, computing the pair-wise similarity for all i and j
combinations will result in a P matrix of size N X N (N is the
number of channels). For convenience, we will call the matrix
P the cluster-similarity matrix in all our future references.

Finally, hierarchical clustering on the cluster-similarity
matrix P will yield information on the cluster groupings over
a time T. In the context of EEG data, clustering will thus en-
able us to know the groups of channels that have similar be-
havioral structure in the brain, over a longer time frame.

4. EPILEPTIC EEG DATA DESCRIPTION

Intracranial EEG signals were recorded from the hippocam-
pus, subtemporal and frontal cortex structures of epileptic
patients having a history of complex-partial and secondary
generalized seizures of temporal lobe focus, using bilaterally
and surgically implanted electrodes (Figure 4). The clinical
motivation for the location of the electrodes was mainly to
identify focal area for presurgical evaluation. Using ampli-
fiers with an input range of +0.6 mv, the recorded signals
were converted to a narrow-band using an antialiasing fil-
ter with a cutoff range between 0.1 Hz and 70 Hz. Using an
analog-to-digital converter with 10-bit quantization preci-
sion, the narrow-band signals were sampled/digitized at 200
samples/sec. Measurements involved recording EEGs from
multiple sensors (28 to 32, with common reference channels)
and the recordings spanned over 6 continuous days. A total
of 55 seizures, of temporal lobe onset were recorded from 5
patients, in the range of 6 to 18 seizures for each patient.
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FIGURE 4: Diagram of the depth and subdural electrode mon-
tage in an epileptic brain. Electrode strips are placed over the left
orbitofrontal (LOF), right orbitofrontal (ROF), left subtemporal
(LST), right subtemporal cortex (RST). Depth electrodes are placed
on the left temporal depth (LTD) and right temporal depth (RTD),
to record hippocampus EEG activity.

The distinction of these patients from general patients
with temporal lobe epilepsy is their seizures are medically re-
fractory. In other words, these patients’ seizures cannot be
controlled by the currently available anticonvulsant medica-
tions. We note that all the patients had to undergo surgery as
part of their treatment.

5. RESULTS

In the last section, we proposed a spatio-temporal model to
extract groupings from long-term multivariate recordings. In
this section, we will focus on the application of that model
on the epileptic intracranial EEG time series. The first part of
the section will describe the details on the application of the
model and the second part will discuss the results of analy-
ses on 8 seizures, from 2 patients. With respect to selecting
seizures for our analysis, the underlying reasoning was to be
able to understand the following:

(a) complex partial types of seizures;

(b) how the functional relationships among different cor-
tical sites of the brain changed over time; and

(c) the temporal variability of functional relationships
across successive seizures.

For (c), we selected pairs of seizures that were neither too
close nor too distant in time to introduce coupling from pre-
vious seizure events or external effects of many other envi-
ronmental variables. Therefore, we picked pairs of seizures
that were between 60 minutes and 6 hours apart only. The
minimum of 60 minutes was chosen so that the second
seizure was not in the postictal region of the preceding
seizure. Pairs of seizures more than 6 hours apart were treated
as seizures in isolation and therefore were left out of the se-
lection.

5.1. 1 Application on epileptic intracranial EEG data

The temporal changes in the spatial structure of an epilep-
tic brain was analyzed on twenty four (24) representative
channels recorded bilaterally from the orbitofrontal, tem-
poral, and subtemporal regions on the brain. One of the
fundamental requirements for analyzing the dynamics of a
non linear system is to construct the state-space attractor
from just a single recording of the time series. From previous
studies that estimated intracranial EEG attractor size using
correlation-dimension techniques [14, 15], the EEG state-
space dimensionality using Taken’s embedding theorem [16]
was bounded between 3 and 10. In our intracranial EEG data,
the embedding dimension (#1) and the delay (7) were chosen
to be m = 10 and 7 = 4. The parameters were compatible
with other studies [14, 15], performed on the same data. The
following steps describe the procedure to track the spatio-
temporal connectivity patterns in intracranial EEG data.

(1) The intracranial EEG attractors were reconstructed in
the high dimensional state space. On nonoverlapping
10-second epochs, one set of pair-wise interdepen-
dence values among 24 channels are computed using
the SOM-SI measure.

(2) The similarity indices, from every window, are trans-
lated into a symmetric similarity/affinity/proximity
matrix. With the number of clusters (say n;) specified
apriori as discussed below, spectral clustering on the
affinity matrix results in channels being labeled as one
of the n; clusters.

(3) Steps 1 and 2 are repeated for all the successive
windows, representing 10-second stationary segments.
However, the overall ability of the channels to associate
with each other over longer time duration needs to be
quantified.

On T: 30-minute time segments (equal to 90, 10-second
windows), pair-wise Hamming-distance based cluster-
similarity matrix P is computed among all the channels. The
matrix elements essentially index the probability of channels
to group into the same cluster over a 30-minute time interval.

Spectral clustering or any other clustering algorithm on
the cluster-similarity matrix P will result in final cluster
memberships. The number of clusters is fixed to n, as spec-
ified below. For computing similarity indices in step 1, the
epoch length of 10 seconds is chosen as a tradeoff between
stationarity and sample-size requirements. Also note that the
successive windows are 10 seconds apart (alternate 10-second
windows) for reasons specific to computational feasibility.

We now describe step 2 in more details. The channel in-
terdependencies obtained from SOM-SI represent the spatio-
temporal correlation indices obtained by computing pair-
wise similarity index among 24 channels. In spectral clus-
tering jargon, the resulting matrix can be interpreted as an
affinity matrix representing the pair-wise distances between
24 nodes. After spectral-clustering, we have a set of labeled
clusters representing the membership of the channels [17].
Repeating this procedure on every 10-second window will
yield a discrete-valued matrix Kgpect Similar to (5).
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Typically, the choice for the number of clusters #; in step
2 is conditioned on the significant eigenvalues. The dimen-
sionality of the space will affect tremendously the computa-
tional complexity of the overall procedure. In our analysis,
the sum of the first 3 eigenvalues typically ranged from 60%
to 80% of the total variance, due to changes in seizure states.
Considering this variability between epochs, and the fact that
the number of clusters need to be the same for all epochs in
order to be able to determine the overall grouping in chan-
nels (using cluster-similarity matrix P), we fixed the number
of clusters to n; = 3.

Experimental studies using nonlinear dynamics have
shown [1, 2] that the quantitative descriptors of EEG exhibit
seizure precursors in the form of interictal to preictal state
transitions. The preictal transition time is not exactly known,
however the literature [1, 2] suggests that it has a broad range
of 5 minutes to 60 minutes before seizure. Therefore in step 5,
as a tradeoff between state transition periods and time reso-
lution, we choose a 30-minutes time window to characterize
both the preictal and the postictal periods.

Patient P093

This patient had a history of complex partial seizures, local-
ized in the mesial structures of the temporal lobe. Surgery
revealed a lesion (mesial temporal sclerosis) in the right hip-
pocampus (RTD electrodes) region. The set of 24 channels
are listed below:

Channels 1 to 4: LTD3, LTD5, LTD7, LTD9,

Channels 5 to 8: RTD4, RTD6, RTDS, RTD10,

Channels 9 to 12: LST1, LST2, LST3, LST4,

Channels 13 to 16: RST1, RST2, RST3, RST4,

Channels 17 to 20: LOF1, LOF2, LOF3, LOF4,

Channels 21 to 24: ROF1, ROF2, ROF3, ROF4.

Before data analysis, a validation test was utilized to check
whether application of different clustering algorithms on P
would consistently result in same cluster memberships or
not. For a given number of clusters 7, it turned out that all
the clustering algorithms including spectral clustering pro-
duced the same outputs. Therefore, we decided to choose the
simple hierarchical clustering algorithm used in Matlab 6.5
owing to its graphical support.

Cluster-similarity matrices P indicating the probability
that two channels share the same grouping in a 30-minute
time segment are shown gray-scale coded in Figure 5. Pre-
seizure analysis on 30-minute windows is shown for up to
3 hours. Similarly, the postseizure analysis is shown for the
first 30 minutes. The ability of the left side channels to have
a higher tendency to group together compared to the right
hemisphere channels is quite noticeable from Figure 5. In ad-
dition, the orbitofrontal lobes seem like the only brain area to
have a high probability of making a cross-hemisphere group-
ing. On the left hemisphere, the LST and the LTD channels
are consistently seen to share the same clusters.

To confirm the observations from Figure 5, the hierar-
chical clustering algorithm was applied on each of those P
matrices. Figure 6 graphically illustrates two instances of the
clustering outputs through dendrograms. A dendrogram is
strictly defined as a binary tree with a distinguished root that

has all the data items at its leaves. Conventionally, all the
leaves are shown at the same level of the drawing. The or-
dering of the leaves is arbitrary. The heights of the internal
nodes are related to the metric information (P here) used to
form the clustering. Using a threshold of 0.4 and the average-
linkage technique to determine fusion levels, clustering was
performed on a predefined number of clusters (#n,). For de-
termining apriori the number of clusters #,, several dendro-
grams were visually analyzed. There seemed to be at least 3 to
4 strong groupings among channels in most of the dendro-
grams. For consistency, therefore, we chose to fix the number
of clusters n, to 3 for all the analyses.

Both dendrograms in Figure 6 clearly translate the spatial
patterns observed in the corresponding P matrices of Fig-
ure 5. The top dendrogram in Figure 6 corresponds to the
2.5-t0-3 hour time window (indicated by —5) in Figure 5. It
is easy to see that the dendrogram considers the RTD and the
RST as isolated clusters due to their weak between-cluster fu-
sion level. Since the number of clusters #, is restricted to 3, all
the remaining channels form a single large cluster. Similarly,
the bottom dendrogram in Figure 6 corresponds to the P ma-
trix indicated by —1 in Figure 5. In this case, the RST and the
RTD channels group into one cluster; also well supported by
a dark patch in Figure 5. This enables the LST/LTD chan-
nels and the LOF/ROF channels to group together as separate
clusters.

The overall cluster configuration is listed in Table 3.

We summarize the spatial patterns at different time inter-
vals of seizure 11 as follows.

(1) The LST and the LTD channels, in particular, exhibit
a strong tendency to belong to the same group.

(2) The LOF and the ROF channels form a strong bilat-
eral homologous connection, as seen from all the matrices in
Figure 5.

(3) Relatively strong similarity can be seen between RTD
and the RST channels.

(4) Common observation in all the matrices is the strong
similarity between the left hemisphere channels as opposed
to the right hemisphere channels. This is reflected in the abil-
ity of LOF channels to have a higher probability of sharing
clusters with other left hemisphere channels, as seen in Fig-
ure 5.

(5) Interestingly, no temporal changes are seen in the
spatial-patterns yet.

5.2. Statistical validation

The cluster configurations observed from analyzing 30-
minute segments necessitates validation. Previously [9], we
partially validated our model (up to the spectral cluster-
ing stage), using synthetically coupled multivariate time se-
quences (both nonlinear and linear). Simulations involv-
ing creation of dynamic graphs involve multidimensional
time series that continuously change cluster memberships
over time. Determining the average spatio-temporal group-
ings from a collection of multivariate time series is relatively
easier to be demonstrated in linear coupling cases. How-
ever, nonlinear dynamic model constructions are extremely
hard and mostly nontrivial. We therefore decided to pursue
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FIGURE 5: Seizure 11 of patient P093: Number in bracket indicates the 30-minute time interval when the cluster-similarity matrices were
computed. The cluster-similarity matrices represent the probability that two channels share the same cluster label in a 30-minute time

interval.

TABLE 3: Spatio-temporal groupings as obtained for seizure 11 of patient P093.

P093, Seizure 11 C; C, Cs
Preseizure, (2.5-3 hrs) RTD RST LTD, LST, LOF, ROF
Preseizure, (2-2.5 hrs) RTD, RST LOF, ROF LTD, LST
Preseizure, (1.5-2 hrs) RTD, RST LOF ROF LTD, LST
Preseizure, (1-1.5 hrs) RTD, RST LOF, ROF LTD, LST
Preseizure, (30 mins—1 hr) RTD, RST LOEFE ROF LTD, LST
Preseizure, (0-30 mins) RTD, RST LOEFE ROF LTD, LST
Postseizure, (30 mins—1hr) RTD, RST LOEFE ROF LTD, LST
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a verification of the time-averaged cluster groupings on the
intracranial EEG data, using the quasisurrogate analysis tech-
nique [18-20].

Recall that the cluster groupings obtained over 30-
minute time segments involve two steps. First step con-
sists of applying spectral clustering technique on the SOM-
similarity indices (computed on 10-second intracranial EEG
data segments). Then similar grouping patterns among
channels are extracted by using hierarchical clustering ap-
proach on the cluster-similarity matrices P. In order to val-
idate this 2-step approach, we define our hypothesis as fol-
lows.

Ho: The average within-cluster channel interaction at
each window (out of 91, 10-second windows) is not sig-
nificantly different from the corresponding between-cluster
channel interactions.

We propose to test this hypothesis on all the 3 () clus-
ters separately, for every 10-second window within the 30-
minute period. Within-cluster interaction is computed by
averaging the pair-wise similarity indices for all the chan-
nels within a cluster. For between-cluster interaction, the
pair-wise interactions among 3 channels picked randomly
from each of the 3 clusters are computed. A between-cluster
interaction statistic is formed by computing the average
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TABLE 4: P093, Seizure 11: Over each 30-minute (91 samples total) window, number of times the within-cluster interaction is greater than

between-cluster interaction, at 95% significance level.

P093, Sz 11 -5 —4 -3 -2 -1 0(Sz) 1
C1 1 1 0.91 0.95 0.99 1 0.93
C2 0.82 0.89 0.96 0.91 0.89 0.85 0.98
C3 0.95 0.55 0.80 0.70 0.46 0.46 0.97
TABLE 5: Spatio-temporal groupings as obtained for seizures 4 and 5 of patient P093.
P093, Seizure 4 and 5 C C, Cs
Preseizure 4, (30—60 mins) RTD, RST LOE ROF LTD, LST
Preseizure 4, (0-30 mins) RTD, RST LOF, ROF LTD, LST
Postseizure 4, (0—30 mins) RTD LTD, LST, LOF, ROF RST
Postseizure 4, (30 mins—1 hr) RTD LOE ROF LTD, LST, RST
Preseizure 5, (30 mins—1 hr) RTD LTD, LST, LOE, ROF RST
Preseizure 5, (0-30 mins) RTD LTD, LST, LOE, ROF RST
Postseizure 5, (301 hr) RTD LTD, LST, LOE ROF RST

interactions from random selection of 3 channels (one from
each cluster) over a number of trials. We found that this
statistic follows a quasinormal distribution, implying that the
within-cluster interaction value can now be compared with
the mean and the variance sample estimates of the between-
cluster statistic. Mathematically, we construct the z-score as
follows

- 1C, = (G|
Zi=12w Y20y —12,...,90and i=1,2,3, (7)
t G(Cb)

where C@t is the within-cluster interaction at time “t”, for
cluster “17; (Cp, ) is the mean and o(Cy,) is the standard devia-
tion of the between-cluster interaction at time “t”; Z! reflects
the z-score and is considered significant at the 95 percentile
significance if Zi > 1.96 (reject Hp). In Table 4, the bolded
value in each cell represents the number of windows (out of
91) having significant z-score in the 30-minute period corre-
sponding to Figure 5 (P093, Seizure 11). It is easy to observe
that the null-hypothesis Hy is rejected beyond doubt, vali-

dating the clustering results.

Seizures 4, 5,6 and 7:

Spatio-temporal clustering analyses, similar to the one de-
scribed on seizure 11 were performed on several other
seizures, of the same patient P093. The cluster-similarity ma-
trices P obtained from time intervals surrounding seizures 4
and 5 and 6 and 7 of patient P093 are shown in Figures 8
and 9, respectively. Channel groupings for the same are listed
in tables 5 and 6, respectively. All the 4 seizures present very
consistent groupings.

(1) Consistent to the observation in seizure 11, we ob-
serve the temporal depth and the subcortical regions of the
left hemisphere are always grouped together.

(2) Once again, the association of ROF-LOF areas into
the same cluster suggests a strong homologous connection
between the orbitofrontal areas of the brain. This observation
is also in agreement with those in seizure 11.

(3) The dendrograms once again presented 4 unam-
biguous clusters in the form of RST, RTD, LST/LTD, and
LOF/ROFE. The fusion levels, indicating the strength of con-
nection between clusters, often turn out in favor of RTD and
RST to be grouped separately. Owing to the fact that we
have predefined the number of clusters to 3, the LST, LTD,
LOF & ROF channels will consequently get grouped into one
cluster.

(4) Once again, temporal changes are not very evident
in the spatial patterns. However, observing Figures 8 and 9
and their corresponding dendrograms (not shown), the fu-
sion levels and the topology of the connections change with
time. These changes can only be quantified using statistical
tests such as Mantel test statistics or the Double Permutation
Statistics (DPS).

Patient P092

In this section, we present the summary results of the clus-
tering analyses performed on patient P092 suffering from
a lesion (mesial temporal sclerosis) in the medial temporal
lobe structures of the right hemisphere. Channel configura-
tion for the patient P092 is as follows:

Channels 1 to 4: LTD1, LTD3, LTD5, LTD7,

Channels 5 to 9: RTD2, RTD4, RTD6, RTDS, RTD12,

Channels 10 to 13: LST1, LST2, LST3, LST4,

Channels 14 to 17: RST1, RST2, RST3, RST4,

Channels 18 to 21: LOF1, LOF2, LOF3, LOF4,

Channels 22 to 24: ROF1, ROF2, ROF3.

Note that a separate 25 X 25-sized, 2-dimensional EEG-
SOM grid was created to model the data dynamics of P092.
Postspectral clustering analysis on 30-minute data segments
led to some interesting observations.

Figure 10 shows the dendrograms created for seizure seg-
ments 2 hours prior to seizure 1 and 30 minutes preseizure,
respectively. As before, the number of clusters (1) specified
in the spectral-clustering step after SOM-SI block was fixed
to 3. The fusion levels between most of the channel clusters
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F1GURE 7: Statistical validation of the clustering results. In each panel, thick lines are used to represent the profiles of the three clusters in a 30-
minute time interval. The thin lines are the surrogate profiles indicating between-cluster interactions. Cluster veracity can be visually verified

by observing that amplitudes representing within-cluster interaction for cluster profiles are mostly higher that the amplitudes representing
between-cluster interaction for surrogate profiles, at each time instance.

TABLE 6: Spatio-temporal groupings as obtained for seizure 6 and 7 of patient P093.

P093, Seizure 6 and 7 C; C, Cs
Postseizure 6, (0—30 mins) RTD, RST LTD, LST LOE ROF
Preseizure 7, (30 mins—1 hr) RTD, RST LTD, LST LOF, ROF
Preseizure 7, (0-30 mins) RTD LTD, LST, LOE, ROF RST
Postseizure 7, (0—30 mins) RTD LTD, LST, RST LOF, ROF
Postseizure 7, (30 mins—1 hr) RTD LTD, LST, LOE, ROF RST
Postseizure 7, (1 hr-1.5 hrs) RTD LTD, LST, LOF, ROF RST

is greater than 0.4, indicating a lack of strong connectivity Cluster number 1: LTD and LST,

between regions. Cluster number 2: RTD and RST,

For the second level of clustering, as before, let the num- Cluster number 3: LOF and ROFE.

ber of clusters n; be fixed at 3. Cluster analysis on the 30 min-
utes segment 2 hours prior to seizure 1 (top dendrogram in
Figure 10) results in the following groups of channels:

Observe the cluster formed from LTD and LST chan-
nels, in the dendrogram. It is made up of two subclusters,
a large and a small cluster. The small cluster consists of only
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FIGURE 8: Seizures 4 and 5 of patient P093. Number in bracket indicates the 30-minute time interval when the cluster-similarity matrices
were computed. The cluster-similarity matrices represent the probability that two channels share the same cluster label in a 30-minute time

interval.

two channels, LTD (3 and 5) and fuses with the other sub-
cluster at a very high fusion level (implying weak link). If
n, was to be increased to 4, the clustering algorithm would
classify this subcluster as an independent cluster. A detailed
analysis on all seizures in P092 revealed a strong intrachan-
nel correlation (or low fusion level) between channels LTD
(3 and 5) and a weak interchannel correlation with the rest
of the channels. Surrogate analysis also confirmed the im-
balance by having very few rejections for the cluster consist-
ing of LTD (3 and 5) channels. It is obvious that the average

interaction (within-cluster interaction) of the largest clus-
ter would be pulled down if there are subclusters that have
a strong within-subcluster interaction, but a weak between-
subcluster interaction. Consequently, the within-cluster in-
teraction of the largest cluster can be expected to be as
weak as or marginally better than the between-cluster in-
teractions, leading to fewer rejections of the null hypothesis
Ho.

This problem can possibly be overcome by increasing the
number of clusters to 4 or more. However, for consistency,
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FIGURE 9: Seizures 6 and 7 of patient P093: Number in bracket indicates the 30-minute time interval when the cluster-similarity matrices
were computed. The cluster-similarity matrices represent the probability that two channels share the same cluster label in a 30-minute time

interval.

we let the number of clusters n, be fixed at 3 in the rest of the
analyses.

Seizures 1, 3, and 4:

For illustration, the cluster-similarity matrices correspond-
ing to seizure 1 is shown in Figure 11. Overall, the spatio-
temporal clustering results for seizures 1, 3, and 4 are sum-
marized in Tables 7 to 9.

From the cluster results of patient P092, we note the fol-
lowing:

(1) The nonfocal zone LTD has a strong coupling with
the LST region. Correspondingly, strong affinity is observed
between RTD and RST as well. These observations are consis-
tent with the observations for P093. However, unlike in P093,
we also see here that LTD connects and disconnects with sev-
eral other channels, depending on the seizure state.

(2) As in P093, we observe an exclusively strong connec-
tion between ROF-LOF regions at all stages surrounding a
seizure. There are few instances where the ROF breaks into a
separate group. We do not have any explanation for this drift
in ROF, at this point in time.
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TABLE 7: Spatio-temporal groupings as obtained for seizure 1 of Patient P092.

P092, Seizure 1

G

G

Cs

Preseizure, (1.5-2 hrs)
Preseizure, (1-1.5 hrs)
Preseizure, (30 mins—1 hr)
Preseizure, (0-30 mins)
Postseizure, (0-30 mins)
Postseizure, (301 hr)

RTD, RST
RTD
RTD, RST
RTD, RST
RTD, RST
RTD

LTD, LST (1, 3, 4)
LST, RST, LOE, ROE, LTD (1, 7)
LTD, LST
LTD, LST
LTD, LST
LTD, LST, LOE, RST

LOFE, ROF, LST (2)
LTD (3, 5)
LOE, ROF
LOFE, ROF
LOE, ROF

ROF
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FIGURE 11: Seizure 1 of patient P092 Number in bracket indicates the 30-minute time interval when the cluster-similarity matrices were
computed. The cluster-similarity matrices represent the probability that two channels share the same cluster label in a 30-minute time

interval.

TABLE 8: Spatio-temporal groupings as obtained for seizure 3 of Patient P092.

P092, Seizure 3 C C, Cs

Preseizure, (1.5-2 hrs) RTD LST, LTD, RST LOEFE ROF
Preseizure, (1-1.5 hrs) RTD LST, LTD, RST LOF, ROF
Preseizure, (30 mins—1 hr) RTD, RST LST, LTD LOE ROF
Preseizure, (0-30 mins) RTD, RST LST, LTD LOE ROF
Postseizure, (0-30 mins) RTD, RST LST, LTD LOFE ROF
Postseizure, (30—1 hr) RTD, RST LST, LTD LOF, ROF

TaBLE 9: Spatio-temporal groupings as obtained for seizure 4 of Patient P092.

P092, Seizure 4 C, C, Cs

Preseizure, (1.5-2 hrs) RTD, RST LST, LTD LOF, ROF
Preseizure, (1-1.5 hrs) RTD, RST LST, LTD LOF, ROF
Preseizure, (30 mins—1 hr) RTD LST, LTD, RST LOF, ROF
Preseizure, (0-30 mins) RTD, RST LST, LTD LOE ROF
Postseizure, (0-30 mins) RTD, RST LST, LTD LOF ROF
Postseizure, (301 hr) RTD, RST LST, LTD LOE ROF
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(3) Statistics from the surrogate analyses confirmed the
veracity of the technique in most of the cases. As pointed out
earlier, discrepancies occurred in a few instances for the clus-
ters containing LTD (3, 5) channels.

Finally, we summarize the analysis on 2 patients and 8
complex partial seizures:

(1) Contrary to the accepted view that the seizure activity
initiates in the focal zone followed by a gradual propagation
to other regions, we observed that the spatial organization
reflected by EEG activity exhibits either minimal or no pro-
gressive changes from the focal zone (RTD) to other zones
(based on how it groups with other regions in the brain).

(2) Evidence show stronger ipsilateral connection be-
tween the LTD and LST zones compared to the connection
strength between RTD-RST. Statistical analysis to check if a
significant difference in intrahemisphere coupling strengths
exists is needed.

(3) We also found evidence to show a strong cross-
hemispheric activity by observing consistent groupings of the
right and left orbitofrontal lobes at all seizure states.

(4) Patient P093 was seen to have qualitatively lesser
spatio-temporal changes in its P matrices than P092 across
the 30-minute analysis. It remains to be checked whether a
significant change in the spatial organization before seizure
is a pre-requisite to its initiation.

6. DISCUSSION

In this study, we applied the SOM-based similarity index
measure to analyze the mutual interactions among critical
areas of an epileptic brain. Based on the functional relation-
ships, we analyzed long term structural connectivity’s related
to various seizure states by proposing a spatio-temporal clus-
tering model. On analyzing 8 complex partial seizures from 2
patients suffering from temporal lobe epilepsy, we found that
the orbitofrontal regions always exhibit a strong homologous
connectivity while maintaining a low relationship with other
regions. The left subtemporal and the lefttemporal depth re-
gions (nonfocal hemisphere) were identified to have a strong
ipsilateral connection, regardless of seizure states. Finally, we
found that the epileptic focus, namely, the right hippocam-
pus depth region, maintained a relatively strong connection
with the right subtemporal region. Interestingly, the config-
uration of the groupings between different regions always re-
mained the same, regardless of whether the patient was in an
interictal, preictal, or postictal state although the inter-region
connectivity strengths seemed to vary slightly across states.

So far, because of the data size, we were constrained to
analyze only on 8 seizures from 2 patients. Future effort
in this direction would be to apply the proposed approach
on a larger set of seizures and more patients. In addition,
since we analyzed only complex partial seizures, it would
be worthwhile to check the cluster grouping in other types
of seizures such as partial secondary generalized and sub-
clinical seizures.

Recall from the results that certain channels were always
grouped together regardless of the seizure states. This raises a
question if this pattern is unique to an epileptic patient, and
therefore be considered as a blueprint of seizures. While it

is almost impossible to obtain intracranial EEG on normal
subjects, one plausible way to answer this speculation would
be to apply the proposed clustering approach on scalp EEG
data from normal subjects and then analyze the differences
in groupings with that of scalp EEG obtained from seizure
patients.

One of our other main objectives in this study was
to develop engineering tools to determine spatio-temporal
groupings in a multivariate epileptic brain. We proposed a
similarity-based clustering approach and used it to extract
hidden structures from an epileptic brain. One of the ob-
vious limitations with any clustering approach is determin-
ing the optimal number of clusters. Techniques to address
cluster size have been researched, without much success. In
eigenvector-based methods such as spectral clustering, clus-
ter size can possibly be approximated to be equal to the num-
ber of eigenvectors corresponding to significant eigenvalues.
In multiple datasets however, the optimal cluster size need
not have to be the same across different datasets rendering
cluster comparisons weak. In our approach, we analyzed a
large number of data sets and empirically, fixed the cluster
size to 3. This may not be an efficient or a systematic ap-
proach to tackle the problem. Theoretic efforts are needed
to develop a mathematical criterion that allows us to deter-
mine a fixed cluster size, suitable to all groups of data. Be-
sides, exploring tools better than clustering to unravel hidden
patterns in multidimensional time sequences would be very
beneficial.
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INTRODUCTION

The recording of seizures is of primary interest in the evaluation of epileptic patients. Seizure is the phenomenon of rhythmicity
discharge from either a local area or the whole brain and the individual behavior usually lasts from seconds to minutes. Since
seizures, in general, occur infrequently and unpredictably, automatic detection of seizures during long-term electroencephalograph
(EEG) recordings is highly recommended. As EEG signals are nonstationary, the conventional methods of frequency analysis
are not successful for diagnostic purposes. This paper presents a method of analysis of EEG signals, which is based on time-
frequency analysis. Initially, selected segments of the EEG signals are analyzed using time-frequency methods and several features
are extracted for each segment, representing the energy distribution in the time-frequency plane. Then, those features are used
as an input in an artificial neural network (ANN), which provides the final classification of the EEG segments concerning the
existence of seizures or not. We used a publicly available dataset in order to evaluate our method and the evaluation results are
very promising indicating overall accuracy from 97.72% to 100%.

Copyright © 2007 A. T. Tzallas et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

nied by impairment or loss of consciousness: psychic, auto-

Epilepsy is one of the most common neurological disorders
with a prevalence of 0.6-0.8% of the world’s population.
Two-thirds of the patients achieve sufficient seizure control
from anticonvulsive medication, and another 8—10% could
benefit from resective surgery. For the remaining 25% of pa-
tients, no sufficient treatment is currently available [1]. The
epilepsy is characterized by a sudden and recurrent mal-
function of the brain, which is termed “seizure.” Epileptic
seizures reflect the clinical signs of an excessive and hyper-
synchronous activity of neurons in the brain. Depending on
the extent of the involvement of other brain areas during
the course of the seizure, epilepsies can be divided into two
main classes. Generalized seizures involve almost the entire
brain, while focal (or partial) seizures originate from a cir-
cumscribed region of the brain (epileptic focus) and remain
restricted to this region. Epileptic seizures may be accompa-

nomic or sensory symptoms, or motor phenomena [2, 3].
Traditionally, suspected seizures are evaluated using a
routine electroencephalogram (EEG), which is typically a 20-
minute recording of the patient’s brain waves. Because a rou-
tine EEG is of short duration, it is unlikely that actual events
are recorded. Routine EEGs may record interictal hallmarks
of epilepsy, including spikes, sharp waves, or spike-and-wave
complexes. However, diagnostic difficulties arise when a per-
son has a suspected seizure, or a neurological event of un-
clear etiology, not obvious in the routine EEG. The current
gold standard is the continuous EEG recording along with
video monitoring of the patient, which usually requires in-
patient admission. This is a costly endeavour, which is not
always available. The patient is away from his environment
and routine, which may be associated with factors that pro-
voke the patient’s events [4]. The introduction of portable
recording systems (ambulatory EEG), however, has allowed



Computational Intelligence and Neuroscience

out-patient EEG recording to become more common. This
has the advantage that patients are monitored in their nor-
mal environment without the reduction in seizure frequency
usually occurring during in-patient sessions [4, 5].

Clinical neurophysiologists can then periodically review
the EEG recordings and analyze the seizures that may have
occurred during the monitoring session. However, review-
ing a continuous EEG recording lasting several days can be a
time-consuming process. In practice, the patient can indicate
that a seizure occurs through the use of an alarm button, so
that only the recording sections around the use of the button
need to be analyzed. Unfortunately, in many cases, patients
are not aware of the occurrence of their own seizures. An au-
tomated seizure detection system can thus be of great inter-
est in identifying EEG sections that need to be reviewed. The
main difficulty with it lies in the wide variety of EEG pat-
terns that can characterize a seizure, such as “low-amplitude
desynchronization, polyspike activity, rhythmic waves for a
wide variety of frequencies and amplitudes, and spikes and
waves” [6]. In extracranial recordings, EMG, movement, and
eye blink artefacts often obscure seizures. Thus, from the
pattern recognition point of view, the problem is extremely
complex.

Research in automated seizure detection began in the
1970s and various algorithms addressing this problem [5—
7] have been presented. Methods for automatic detection of
seizures may rely on the identification of various patterns
such as an increase in amplitude [8], sustained rhythmic ac-
tivity [9, 10], or EEG flattening [11]. Several algorithms have
been developed based on spectral [12-18] or wavelet features
[19-23], amplitude relative to background activity [12, 24]
and spatial context [24-27]. Chaotic features [28-31] such
as correlation dimension [32, 33], Lyapunov exponents [34],
and entropy [35] have also been proposed to characterize the
EEG signal. These features can then be used to classify the
EEG signal using statistical methods [28-30], nearest neigh-
bour classifiers [36], decision trees [16], ANNs [21, 34], sup-
port vector machines (SVMs) [18, 37], or adaptive neuro-
fuzzy inference systems [23, 35] in order to identify the oc-
currence of seizures. It is crucial for seizure detection sys-
tems to result in high sensitivity, even if this results in a large
number of false detections. Such systems can then be used
to reduce considerably the amount of data that need to be
reviewed; neurophysiologists can then easily discard false de-
tections.

In addition, to seizure detection systems, warning sys-
tems have also become increasingly valuable since detection
of seizures at an early stage can warn the patient that a seizure
is occurring. Also, they alert medical staff, and allow them
to perform behavioral testing to further assess which specific
functions may be impaired as a result of a seizure and help
them in localizing the source of the seizure activity. Tech-
niques used to forecast seizures include time-domain anal-
ysis [38], frequency-based methods [39], nonlinear dynam-
ics and chaos [31, 40], methods of delays [41], and intelli-
gent systems [42]. Advances in seizure prediction promise to
give rise to implantable devices able to warn of impending
seizures and to trigger therapy to prevent clinical epileptic
attacks [2]. Treatments such as electrical stimulation of focal

drug infusion could be given on demand and might elimi-
nate side effects in some patients taking antiepileptic drugs.

Consequently, epileptic seizures give rise to changes in
certain frequencies bands. Recent works have focused on the
analysis of the 6 (0.4—4 Hz), 0 (4-8 Hz), a (8-12Hz), (12—
30 Hz) rhythms, and their relation to epilepsy. An epilep-
tic signal is nonstationary, having time-varying frequency
components. Time-frequency (TF) representations combine
both time and frequency information into a single represen-
tation and have proven to be powerful tools for the analysis of
nonstationary signals [43], and have been used for neonatal
seizure detection [44, 45].

In this work, we use TF analysis in order to extract several
features from EEG segments, and subsequently use these fea-
tures to classify the segments concerning epileptic seizures.
The method is divided into three stages. Initially, TF analy-
sis is performed for each EEG segment and its spectrum is
acquired. Then, several features are extracted from it, mea-
suring the fractional energy on specific TF windows. For this
purpose, several partitions on the time axis and the frequency
axis are tested. Finally, these features are used as inputs in an
ANN, which provides the final classification according to the
specified number of categories. A dataset of 500 EEG seg-
ments is used, while the method is evaluated for four differ-
ent classification problems, each of them addressing a differ-
ent interpretation of the medical problem and thus differ-
ent selection of EEGs from the whole EEG segment dataset is
required for each classification problem. TF analysis and fea-
ture extraction, reflecting the energy distribution over the TF
plane, have been employed only for neonatal epileptic seizure
detection and have not been previously applied in general
epileptic seizure detection. In addition, no work addresses all
four classification problems, which are directly related to the
diagnosis provided by an expert. The obtained results indi-
cate high accuracy compared to other existing approaches.

The rest of the paper is structured as follows. In
Section 2, the dataset used in our work along with the em-
ployed methodology is described in detail. Then, the eval-
uation procedure and the obtained results are presented
(Section 3), followed by an extensive discussion regarding
them (Section 4). Finally, some concluding remarks are in-
cluded in Section 5.

2. MATERIALS AND METHODS

The flowchart of the proposed method is shown in Figure 1.
Below the dataset and its partitions used are briefly discussed
and the three stages (time-frequency analysis, feature extrac-
tion, and classification) of the method are explained in detail.

2.1. Dataset

An EEG dataset, which is available online [46] and includes
recordings for both healthy and epileptic subjects, is used.
The dataset includes five subsets (denoted as Z, O, N, F, and
S) each containing 100 single-channel EEG segments, each
one having 23.6-second duration. The subsets Z and O have
been acquired using surface EEG recordings of five healthy
volunteers with eyes open and closed, respectively. Signals in
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FiGure 2: Exemplary EEG segments from each of the five subsets (Z,
O, N, F, and S). From top to bottom: subset Z to subset S. The am-
plitudes of surface EEG recordings are typically in the order of some
uV. For intracranial EEG recordings, the amplitudes range around
100 V. For seizure activity, these voltages can exceed 1000 pV.

two sets have been measured in seizure-free intervals from
five patients in the epileptogenic zone (set F) and from the
hippocampal formation of the opposite hemisphere of the
brain (set N). Finally, subset S contains seizure activity, se-
lected from all recording sites exhibiting ictal activity. Sub-
sets Z and O have been recorded extracranially, using stan-
dard electrode positioning (according to the international
10-20 system [47]), whereas subsets N, F, and S have been
recorded intracranially. More specifically, depth electrodes
are implanted symmetrically into the hippocampal forma-

tion. EEG segments of subsets N and F were taken from all
contacts of the relevant depth electrode [46]. In addition,
strip electrodes are implanted onto the lateral and basal re-
gions (middle and bottom) of the neocortex. EEG segments
of the subsets S were taken from contacts of all electrodes
(depth and strip). All EEG signals were recorded with the
same 128-channel amplifier system, using an average com-
mon reference. The data were digitized at 173.61 samples
per second using 12 bit resolution and they have the spec-
tral bandwidth of the acquisition system, which varies from
0.5 Hz to 85 Hz. Typical EEG segments (one from each cate-
gory of the dataset) are shown in Figure 2.

In our analysis, we use the above-described dataset to cre-
ate four different classification problems and then we tested
our method with all of them.

(1) In the first, all the EEG segments from the dataset
were used and they were classified into three different
classes: Z and O types of EEG segments were combined
to a single class, N and F types were also combined to
a single class, and type S was the third class. This set is
the one closest to real medical applications including
three categories; normal (i.e., types Z and O), seizure-
free (i.e., types N and F) and seizure (i.e., type S).

(2) In the second, again all the EEG segments from the
dataset were used and they were classified into two dif-
ferent classes: Z, O, N, and F types are included in the
first class and type S in the second class. This is also
close to real medical applications, being slightly sim-
pler than the previous, classifying the EEG segments
into nonseizures and seizures.

(3) The third has similar classes with the first, that is,
normal, seizure-free and seizure, but not all the EEG
segments from the dataset were employed. The nor-
mal class includes only the Z-type EEG segments, the
seizure-free class the F-type EEG segments, and the
seizure class the S-type.

(4) The fourth has similar classes with the second, that is,
normal and seizure, but again not all the EEG seg-
ments from the dataset were employed. The normal
class includes only the Z-type EEG segments while the
seizure class includes the S-type.

The above classification problems are shown in detail in
Table 1.

2.2. Time-frequency analysis

In the proposed method, the smoothed pseudo-Wigner-Ville
distribution (SPWVD) [48, 49] is applied to each EEG seg-
ment, defined as

SPWVD,(t, w)
- f: h(T)( j: g(s—t)x(s+%>x* (s— %)ds) e /endr,
(1)

where x(-) is the signal, f is the time, w is the frequency,
and g(-) and h(-) are time and frequency smoothing window
functions, respectively. SPWVD can substantially suppress
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TaBLE 1: The classes and the corresponding number of EEG seg-
ments of the four classification problems.

Classification

problem Classes Number of EEG segments
Normal (Z, O) 200
1 Seizure-free (N, F) 200
Seizure (S) 100
Total 500
5 Nonseizure (Z, O, N, F) 400
Seizure (S) 100
Total 500
Normal (Z) 100
3 Seizure-free (N) 100
Seizure (S) 100
Total 300
4 Normal (Z) 100
Seizure (S) 100
Total 200

TasLE 2: The frequency ranges (Hz) of four frequency subbands (4,
5,7,and 13).

Frequency subbands
4 5 7 13
0-4 0-2.5 0-2 0-2
4-8 2.5-5.5 2-4 2-4
8-12 5.5-10.5 4-6.5 4-6
1240 10.5-21.5 6.5-9 6-8
— 21.5-43.5 9-12 8-10
— — 12-25 10-12
Frequency ranges (Hz) — — 25-40  12-16
— — — 16-20
— — — 20-24
— — — 24-28
— — — 28-32
— — — 32-36
— — — 36-40

the cross terms, which is a major limitation of the time-
frequency analysis. The time smoothing window was selected
to be a Hamming 64-point length window, which was the
same for all tests performed for evaluation. The length of the
frequency smoothing window is not always the same; we have
selected several different frequency resolutions (64, 128, 256,
and 512 points length window), and we tested the method for
all of them. Time-frequency (TF) analysis is used to calculate
the spectrum of the signal. Figure 3 shows the spectrum of
five EEG segments, one of each of the original dataset cate-
gories (Z, O, N, E, and S), using a 512-point length window.

2.3. Feature extraction

The spectrum of the signals, computed using TF analysis, is
used to extract several features. To do that, a grid is used,
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FiGure 3: The obtained spectrum for five EEG segments, one for
each of the original dataset categories (Z, O, N, F, and S).

based on a time and a frequency partition. In the time do-
main, two different partitions were used, having three and
five equal-sized windows, respectively, while in the frequency
domain, four different partitions were used, which divide the
frequency domain in 4, 5, 7, and 13 subbands. These sub-
bands, which are not always equal, are shown in Table 2 and
they are created using medical knowledge about the EEG
and the features that are expected to be found in certain
frequency bands for the specific types of EEG segments in-
cluded in the original dataset. All the combinations between
these time and frequency partitions are used, in order to ex-
tract several sets of features. The result of the application of
TF analysis in an EEG segment for different combinations of
time windows and frequency subbands is shown in Figure 4.
Each feature, f (i, j), is calculated as

£, j) = L L SPWVD, (1, w)daw dt, @)

where t; is the ith time window and w; is the jth frequency
band. Each feature represents the fractional energy of the sig-
nal in a specific frequency band and time window; thus the
total feature set depicts the distribution of the signal’s energy
over the TF plane. Therefore, it is expected that each feature
set carries sufficient information related to the nonstation-
ary properties of the signal and thus, it can be useful for the
classification process. The feature set initially is represented
as an N X M matrix, where N is the number of time win-
dows and M is the number of frequency subbands, and then
it is reshaped into an N - M size vector. The length of the fea-
ture vector is not the same in all cases and it depends only on
the time and frequency partitions. In all cases, an additional
feature is used, which is the total energy of the signal. Thus,
in each case the total number of features is N-M + 1.
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F1GURE 4: The spectrums obtained for various combinations of time and frequency partitions: (a) 3 time windows and 4 frequency subbands,
(b) 5 time windows and 4 frequency subbands, (¢) 3 time windows and 5 frequency subbands, (d) 5 time windows and 5 frequency subbands,
(e) 3 time windows and 7 frequency subbands, (f) 5 time windows and 7 frequency subbands, (g) 3 time windows and 13 frequency subbands,

and (h) 5 time windows and 13 frequency subbands.

2.4. Classification

The calculated features are fed into a feed-forward artificial
neural network (ANN). To reduce the dimensionality of the
input patterns, principal component analysis (PCA) is em-
ployed with the threshold set to 1%. The architecture of the
neural network is different in each classification problem: N
inputs (N is the number of features resulted from the PCA),
one hidden layer with 4%N neurons, and M outputs (M is
the number of the classes), each of them being a real num-
ber in the interval [0, 1]. The units in the hidden layer are
sigmoid units with hyperbolic tangent as activation function,
while the outputs are linear. Half of the patterns of the dataset
were randomly selected to be used for training, while the rest
were used for testing. The network is trained using a standard
backpropagation algorithm [50]. Ten different training-test

sets were created for each classification problem and thus ten
different neural networks were optimized. The final result is
obtained as the average of their results.

3. RESULTS

The four classification problems, described above, are used
to evaluate the proposed method. For each of them, all com-
binations between frequency resolutions (64, 128, 256, or
512), time windows (3 or 5), and frequency bands (4, 5, 7,
or 13) were tested; totally 32 different combinations for each
classification problem. For each problem, half of the EEG
segments, randomly selected, were used for the training of
the neural network, while the other half for testing.

The size of the confusion matrix depends on the classi-
fication problem: 3 X 3 for problems (1) and (3), 2 X 2 for



Computational Intelligence and Neuroscience

TABLE 3: Results for the first classification problem, in terms of sensitivity (Sens), specificity (Spec), and selectivity (Sel) in % values. Those
are given for all TF resolutions (64, 128, 256, and 512), time windows (3 and 5), and frequency subbands (4, 5, 7, and 13).

4
NF

Frequency subbands

Classes 70

70

5
NF

7
NF

13

70 70 NF

98.90
98.00
97.06
95.40
95.53
93.44

94.20
98.53
97.72
91.90
95.07
92.55

97.00
98.40
93.81
90.80
98.40
93.42

Sens
Spec
Sel

Sens

Time
windows

Frequency
resolution

Spec
Sel

97.90
97.53
96.36
95.70
96.20
94.38

96.80
97.80
96.70
95.50
94.40
91.92

95.60
99.75
98.96
88.80
99.85
99.33

95.80
95.67
93.65
96.20
96.27
94.50

93.20
95.80
93.67
92.90
96.27
94.31

93.80
99.35
97.30
92.20
98.20
92.76

96.10
98.27
97.37
93.30
95.33
93.02

97.80
95.53
93.59
93.30
93.87
91.02

90.80
99.30
97.01
88.60
98.55
93.86

99.20
97.60
96.50
95.90
96.73
95.14

95.50
98.87
98.25
92.70
96.47
94.59

97.40
99.35
97.40
97.40
98.75
95.12

Sens
Spec
Sel

Sens

Time

Frequency 128
windows

resolution

Spec
Sel

97.90
96.80
95.33
96.80
95.67
93.71

95.20
96.80
95.20
93.10
96.40
94.52

91.20
99.15
96.41
92.00
98.90
95.44

99.60
98.00
97.08
96.30
95.33
93.22

96.90
98.13
97.19
93.60
96.07
94.07

94.60
99.80
99.16
89.80
98.85
95.13

96.80
95.47
93.44
96.20
94.93
92.68

93.20
95.47
93.20
91.60
97.60
96.22

87.40
98.65
94.18
93.00
97.75
91.18

96.60
98.27
97.38
95.20
96.80
95.20

95.70
97.20
95.80
93.50
95.40
93.13

98.00
99.05
96.27
93.80
98.65
94.56

Sens
Spec
Sel

Sens

Time

Frequency 256 me
windows

resolution

Spec
Sel

98.20
93.53
91.01
94.90
95.27
93.04

90.80
95.87
93.61
92.40
94.13
91.30

87.20
99.25
96.67
89.80
99.05
95.94

98.00
97.20
95.89
94.00
95.53
93.35

96.00
97.93
96.87
91.90
94.73
92.08

96.20
99.70
98.77
92.80
98.45
93.74

96.50
97.60
96.40
96.80
92.47
89.55

98.00
97.67
96.55
92.00
97.33
95.83

93.00
99.05
96.07
85.00
98.30
92.59

97.50
98.20
97.31
95.70
95.47
93.37

95.00
96.67
95.00
90.20
96.27
94.15

93.80
98.55
94.18
95.80
98.10
92.65

Sens
Spec
Sel

Sens

Time

Frequency 51
windows

. 2
resolution

Spec
Sel

98.50
97.33
96.10
95.60
95.27
93.09

97.30
98.13
97.20
92.70
95.93
93.83

91.60
99.20
96.62
90.00
98.25
92.78

97.30
98.53
97.79
92.30
93.60
90.58

95.70
97.20
95.80
90.40
93.27
89.95

96.40
98.80
95.26
90.00
98.70
94.54

98.80
98.20
97.34
96.00
95.67
93.66

99.00
98.20
97.35
95.70
94.13
91.58

93.00
99.85
99.36
83.20
99.30
96.74

problems (2) and (4). Results for each class 7 are derived in
terms of sensitivity (Sens), specificity (Spec), and selectivity
(Sel):

Sens;

3)

_ Number of patterns of class i classified in class i

>

Total number of patterns in class i
Spec;
_ Number of patterns not in class i classified notin class i
Total number of patterns notin class i

(4)
Sel,-

_ Number of patterns of class i classified in class i
Total number of patterns classified in class i

(5)

The results for the classification problems (1)—(4) are shown
in Tables 36, respectively.
The accuracy (Acc), defined as

(6)

Acc = Trace(cm),

where cm is the confusion matrix, defined as

cm; ; = number of patterns belonging to class i

(7)

and classified to class j,

is calculated for each confusion matrix. The computed ac-
curacies, along with the standard deviations are presented
in Table 7. Additionally, the initial number of features and
the reduced number of features after the PCA application
are presented. For each classification problem, overall re-
sults have been derived, that is, the maximum and minimum
accuracies (for all combinations between frequency resolu-
tions, time windows, and frequency subbands) as well as the
average accuracy and the standard deviation. For the first
classification problem, the best obtained accuracy is 97.72%,
achieved for 512 frequency resolution, 3 time windows, and
13 frequency subbands. For the second classification prob-
lem, the best obtained accuracy is 97.73%, achieved for 512
frequency resolution, 3 time windows, and 5 frequency sub-
bands. For the third classification problem, the best obtained
accuracy is 99.28%, achieved for 128 frequency resolution,
3 time windows, and 4 frequency subbands. Finally, for the
fourth classification problem, the best obtained accuracy is
100%, achieved in most of the cases; in 28 out of 32 different
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TABLE 4: Results for the second classification problem, in terms of sensitivity (Sens), specificity (Spec), and selectivity (Sel) in % values.
Those are given for all TF resolutions (64, 128, 256, and 512), time windows (3 and 5), and frequency subbands (4, 5, 7, and 13).

Frequency subbands 4 5 7 13
Classes ZONF S ZONF S ZONF S ZONF S
Sens 98.40 97.60 98.55 95.60 99.30 96.00 99.10 92.40
Spec 97.60 98.40 95.60 98.55 96.00 99.30 92.40 99.10
Frequency 64 Time Sel 99.39 93.85 98.90 94.28 99.00 97.17 98.12 96.25
resolution windows Sens 97.70 97.00 99.35 93.20 98.70 91.80 98.65 91.80
Spec 97.00 97.70 93.20 99.35 91.80 98.70 91.80 98.65
Sel 99.24 91.34 98.32 97.29 97.97 94.64 97.96 94.44
Sens 99.50 98.40 99.25 92.60 99.55 96.80 98.05 92.40
Spec 98.40 99.50 92.60 99.25 96.80 99.55 92.40 98.05
Frequency 128 Time Sel 99.60 98.01 98.17 96.86 99.20 98.17 98.10 92.22
resolution windows Sens 99.50 97.80 99.05 92.80 98.95 93.20 98.10 94.80
Spec 97.80 99.50 92.80 99.05 93.20 98.95 94.80 98.10
Sel 99.45 98.00 98.22 96.07 98.31 95.69 98.69 92.58
Sens 99.25 99.00 98.90 86.40 99.45 96.60 99.40 93.60
Spec 99.00 99.25 86.40 98.90 96.60 99.45 93.60 99.40
Frequency 256 Time Sel 99.75 97.06 96.68 95.15 99.15 97.77 98.42 97.50
resolution windows Sens 98.55 96.20 99.00 94.40 98.70 94.20 97.15 92.60
Spec 96.20 98.55 94.40 99.00 94.20 98.70 92.60 97.15
Sel 99.05 94.31 98.61 95.93 98.55 94.77 98.13 89.04
Sens 98.90 96.20 99.05 94.20 98.85 95.60 99.70 94.20
Spec 96.20 98.90 94.20 99.05 95.60 98.85 94.20 99.70
Frequency 512 Time Sel 99.05 95.63 98.56 96.12 98.90 95.41 98.57 98.74
resolution windows Sens 98.35 95.00 98.65 92.60 98.75 93.40 98.85 89.20
Spec 95.00 98.35 92.60 98.65 93.40 98.75 89.20 98.85
Sel 98.74 93.50 98.16 94.49 98.36 94.92 97.34 95.10

evaluations of the fourth classification problem we obtained
accuracy 100%.

For the first two classification problems, the obtained
accuracies of the different evaluations varied significantly;
almost 6.5% (max-min) for both of them, with average
95% and standard deviation 1.7%. For the third classifica-
tion problem, the max-min difference is 3% and the av-
erage 97.94%, with 0.75% standard deviation. Finally, for
the fourth classification problem, the max-min difference is
1.3% and the average 99.92%, with 0.26% standard devia-
tion.

4. DISCUSSION

We have proposed an automated method for seizure detec-
tion in EEG recordings. The method is based on TF analysis
of the EEG segments and extraction of several features from
the spectrum of the signal. These features are fed into neural
networks, which provide the final classification of the EEG
segments. The method is evaluated using four different clas-
sification problems originated from the type of medical diag-
nosis, which can be obtained. The effect of different param-
eters of the method on the classification accuracy is exam-

ined. Those parameters are the frequency resolution of the
TF analysis, the length of the time window, and the width of
the frequency subbands used in the feature extraction. The
different combinations among all the afore-mentioned pa-
rameters result in a large number of different experimental
settings (32) for each classification problem (4) and 10 differ-
ent realizations (selections of training/test datasets) for each
of them—totally 1280 optimized and evaluated ANNs—and
results are presented for all of them. This is considered an
extensive validation procedure, which can sufficiently exploit
the potentials of the proposed method.

In this method, the SPWVD has been employed for the
TF analysis of the EEG signals. Other distributions have been
also tried but the better results were obtained for SPWVD.

The frequency resolution, used in the TF analysis, does
not greatly affect the accuracy of the proposed method; the
average accuracies of all different combinations of time win-
dows and frequency subbands, for the four classification
problems, are 96.71%, 97.13%, 96.7%, and 96.87% for 64,
128, 256, and 512 points length windows, respectively. It is
obvious that the use of 128 points length window slightly im-
proves the results. On the other hand, the number of the time
windows is important for the analysis; in the case of three
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TABLE 5: Results for the third classification problem, in terms of sensitivity (Sens), specificity (Spec), and selectivity (Sel) in % values. Those
are given for all TF resolutions (64, 128, 256, and 512), time windows (3 and 5), and frequency subbands (4, 5, 7, and 13).

Frequency subbands 4
Classes Z F S

5 7 13
S zZ F S Z F S

Sens 99.00 93.80 96.60
98.90 97.80 98.00
97.83 9552  96.02
Sens 94.60 8420 96.40
5 Spec 9450 9620 96.90
Sel 8958 91.72 93.96

3 Spec
Time Sel
windows

Frequency
resolution

97.80
98.60
97.22
96.40
95.80
91.98

95.20
98.50
96.95
92.40
95.30
90.77

98.20 97.00 87.80 97.80 97.40 98.00 93.20
98.50 94.60 98.30 98.40 99.30 94.60 98.90
97.04 89.98 96.27 96.83 98.54 90.07 97.69
92.80 95.20 92.80 94.80 90.20 90.60 93.60
99.70  97.40 9550 9850 96.40 92.80 98.00
99.36  94.82 91.16 96.93 92.61 86.29 95.90

Sens 99.20 90.60 97.40
96.50 98.50 98.60
93.41 96.79 97.21
Sens 9540 91.60 95.60
5 Spec 9730 95.60 98.40
Sel 9464 91.24 96.76

3 Spec
Time Sel

Frequency 128
windows

resolution

99.40
97.00
94.31
98.20
97.80
95.71

93.40
97.50
94.92
96.20
96.00
92.32

92.80 99.40 98.60 93.00 97.40 95.80 93.40
98.30 98.60 9750 99.40 98.50 96.40 98.40
96.47 97.26 95.17 98.73 97.01 93.01 96.69
92.20 9500 9540 9520 96.40 90.60 94.00
99.50 98.30 96.00 98.50 95.40 97.80 97.30
98.93 96.54 9226 96.95 91.29 9537 94.57

Sens 92.00 92.80 98.80
97.90 9540 98.50
95.63 90.98 97.05
Sens  95.60 91.40 95.40
5 Spec 97.40 9570 98.10
Sel 9484 9140 96.17

3 Spec
Time Sel

Frequency 256 me
windows

resolution

99.20
97.90
95.94
90.20
97.10
93.96

96.20
96.50
93.22
92.80
93.00
86.89

92.60 96.40 96.00 94.00 98.20 97.80 95.20
99.60 97.80 96.60 98.80 98.40 97.80 99.40
99.14 9563 9339 9751 96.84 95.69 98.76
94.40 9420 91.00 92.40 98.40 91.80 97.00
98.60 95.70 94.50 98.60 96.60 98.20 98.80
97.12 91.63 89.22 97.06 93.54 96.23 97.59

Sens 99.80 9520 96.20
98.20 98.30 99.10
96.52  96.55 98.16
Sens 97.60 85.80 95.40
5 Spec 9470 96.60 98.10
Sel 9020 92.66 96.17

3 Spec
Time Sel

Frequency 51
windows

. 2
resolution

99.60
98.40
96.89
98.00
97.50
95.15

97.40
98.60
97.21
91.20
96.50
92.87

96.20 9420 9420 94.60 99.40 96.40 93.80
99.60 98.00 9520 9830 9830 9730 99.20
99.18 9593 90.75 96.53 96.69 94.70 98.32
94.00 91.40 92.60 96.40 96.20 94.00 89.40
97.60 9790 9450 97.80 96.50 94.20 99.10
95.14 9561 89.38 95.63 93.22 89.02 98.03

time windows, the average accuracy of all different com-
binations between the frequency resolutions and frequency
subbands, for all four classification problems, is 97.52%,
while the accuracy in the case of five time windows is 96.2%.
This means that analyzing EEG segments of approximately
8-second length reveals more information for the epilep-
tic seizures than having 5-second windows. Other statisti-
cal measurements lead to the same conclusion; in the case
of three time windows, the minimum accuracy of all cases
is 93.04% and the standard deviation 1.8%, while the accu-
racy for five time windows is 91.08% and the standard devi-
ation 2.9%, respectively. Finally, concerning the number of
frequency subbands, again the reported average accuracies
for all combinations among the frequency resolutions and
the time windows, for all classification problems, are 97.07%,
96.87%, 96.84%, and 96.62% for 4, 5, 7, and 13 frequency
subbands, respectively. This gives indications that the sepa-
ration in &, 0, «, and f rhythms is the one that mostly de-
tects the TF components that characterize the signal regard-
ing epileptic seizures, compared to 5 and 7, which have been
used in other methods [20, 22], and 13, which is defined in
this work to examine if a frequency resolution with a large
number of frequency subbands improves the classification

accuracy. The results indicate that all selections for frequency
subbands result in similar high-average accuracies—the dif-
ference between the best and worst age accuracy is 0.45%.
This can be justified since they are generated either based on
expert knowledge or have been previously proposed in the
literature. Concerning the frequency subbands, the higher
their number, is the lower (slightly) the average accuracy ob-
tained.

To our knowledge, TF analysis and feature extraction,
which reflect the energy over the TF plane, have been only
applied in the analysis of neonatal EEG signals (and mainly
for neonatal epileptic seizure detection) and not EEG signals
in general. Moreover, the quality of the proposed method can
be proved from the obtained results. The accuracy achieved
by our method for the epileptic seizure detection is more
than satisfactory and also its automated nature makes it suit-
able to be used in real clinical conditions. Besides the feasibil-
ity of a real-time implementation of the proposed method,
the diagnosis can be made more accurate by increasing the
number of parameters. A system that may be developed as
a result of this study may provide feedback to the experts for
classification of the EEG signals quickly and accurately by ex-
amining the EEG signal.
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TaBLE 6: Results for the fourth classification problem, in terms of sensitivity (Sens), specificity (Spec), and selectivity (Sel) in % values. Those

are given for all TF resolutions (64, 128, 256, and 512), time windows (3 and 5), and frequency subbands (4, 5, 7, and 13).

Frequency subbands 4 5 7 13

Classes Z S Z S Z S Z S

Sens 100 100 100 100 100 100 100 100

Spec 100 100 100 100 100 100 100 100

Frequency Time Sel 100 100 100 100 100 100 100 100
resolution windows Sens 100 100 100 100 100 100 100 100
Spec 100 100 100 100 100 100 100 100

Sel 100 100 100 100 100 100 100 100

Sens 100 100 100 100 100 100 100 99.80

Spec 100 100 100 100 100 100 99.80 100

Frequency —,o  Time Sel 100 100 100 100 100 100 99.80 100
resolution windows Sens 100 100 100 100 100 100 100 100
Spec 100 100 100 100 100 100 100 100

Sel 100 100 100 100 100 100 100 100

Sens 100 100  99.80 9760 100 100 100 98.80

Spec 100 100  97.60  99.80 100 100  98.80 100

Frequency s, Time Sel 100 100  97.65  99.80 100 100  98.81 100
resolution windows Sens 100 100 100 100 100 100 100 100
Spec 100 100 100 100 100 100 100 100

Sel 100 100 100 100 100 100 100 100

Sens 100 100 100 100 100 100 100 99.00

Spec 100 100 100 100 100 100  99.00 100

Frequency 5,  Time Sel 100 100 100 100 100 100  99.01 100
resolution windows Sens 100 100 100 100 100 100 100 100
Spec 100 100 100 100 100 100 100 100

Sel 100 100 100 100 100 100 100 100

Table 8 presents a comparison between our method and
other methods proposed in the literature. Only methods
evaluated in the same dataset are included so that a com-
parison between the results is feasible. For the two classes’
problem, using only the Z and S types of EEG segments, the
results obtained from the evaluation of our method are the
best presented for this dataset. The difference between our
result and all other results proposed in the literature varies
from 0.4% to 10%. The second two classes’ problem that we
used to evaluate our method also presents high-accuracy re-
sults (97.73%). It is worth to mention here that a method
that discriminates EEGs into nonseizure and seizure is much
closer to the expert needs.

Regarding the three classes’ problem, the results obtained
from our method are the best presented for this dataset, ei-
ther using only the Z, E and S types or all the available
dataset. In the case of using the third problem to evaluate
our method (i.e., only the Z, F, and S types), the difference
between our results and all others’ results varies from 2.5% to
13.4%. In the case of using the first classification problem to
evaluate our method (i.e., the Zand O, F and N, S types), the
difference between our results and all others’ results ranges
from 1% to 12%. The second case has also the advantage of

being a more realistic classification, dividing the dataset to
normal, seizure-free, and seizure EEGs, and thus being closer
to clinical conditions.

Still, however, there are several other aspects either tech-
nical or medical which must be addressed. From the tech-
nical point of view, although we have examined the ef-
fect of various parameters (frequency resolution, number of
time windows, and frequency bands), some other, like time-
frequency distributions (e.g., reduced interference distribu-
tions), have not been explored. Furthermore, we mainly fo-
cused on the effects of the parameters related to frequency
analysis, either for the calculation of the spectrum of the
signal or for the frequency resolution for feature extraction.
More detailed examination of the time resolution for feature
extraction may also reveal important information regarding
the seizure detection; this feature will be addressed in fea-
ture communications. From the medical point of view, the
most important feature is that currently the method is used
to characterize predetermined (with respect to their length)
EEG segments. An important aspect is also the modification
of the proposed method in order to be able to automatically
detect highly suspicious segments (regardless of their length)
into long time EEG recordings and classify them.
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TABLE 7: Accuracy (%), standard deviation (in the parenthesis), and initial number of features/reduced number of features after PCA appli-
cation, for all classification problems (1, 2, 3, and 4) reported, for all TF resolutions (64, 128, 256, and 512), time windows (3 and 5), and

frequency subbands (4, 5, 7, and 13).

Classification problem

Frequency resolution Time windows Frequency subbands ) 5 3 4
96.64 (0.34) 13/3  96.47(0.45) 13/3  98.24 (0.33) 13/3 100 (0) 13/3
5 97 (0.76) 16/3  97.07(0.78) 16/3  97.96 (0.61) 16/3 100 (0) 16/3
94.36 (0.58) 22/5 94.2 (0.89) 22/5 98.64 (0.34) 22/5 100 (0) 22/5
64 13 95.72 (0.71) 40/4  95.2 (1.25) 40/4  97.76 (0.33) 40/4 100 (0) 40/4
93.08 (0.96) 21/4 91.73 (0.84) 21/4 97.56 (0.39) 21/4 100 (0) 21/4
5 94.24 (0.54) 26/4 93.87 (1.08) 26/4  98.12 (0.6) 26/4 100 (0) 26/4
94.08 (0.7) 36/4  94.27 (0.95) 36/4 97.32 (0.19) 36/4 100 (0) 36/4
13 92.36 (0.81) 66/4 91.47 (0.82) 66/4 97.28 (0.37) 66/4 100 (0) 66/4
97.36 (0.34) 13/3  95.73 (0.47) 13/3  99.28 (0.17) 13/3 100 (0) 13/3
3 95.48 (0.33) 16/3  95.2(0.61) 16/3  97.92 (0.32) 16/3 100 (0) 16/3
97.52 (0.25) 22/4 97 (0.47) 22/4 99 (0.34) 22/4 100 (0) 22/4
128 13 93.48 (0.80) 40/5  95.53 (1.3) 40/5  96.92 (0.42) 40/5 99.9 (0.32) 40/5
94.92 (0.71) 21/4  94.2 (1.41) 21/4  99.16 (0.35) 21/4 100 (0) 21/4
5 94.36 (0.72) 26/4 95.53 (0.71) 26/4  97.8 (0.28) 26/4 100 (0) 26/4
93.92(1.1) 36/4  95.2(0.93)36/4  97.8(0.39) 36/4 100 (0) 36/4
13 93.72 (0.9) 66/5  93.67 (1.18) 66/5 97.44 (0.47) 66/5 100 (0) 66/5
4 96.52 (0.27) 13/3  94.53 (0.42) 13/3 99.2 (0) 13/3 100 (0) 13/3
3 5 93.04 (0.78) 16/3 96 (0.7) 16/3 96.4 (0.53) 16/3  98.7 (0.82) 16/3
96.84 (0.35) 22/5 95.47 (0.53) 22/5 98.88 (0.41) 22/5 100 (0) 22/5
)56 13 96.4 (0.9) 40/6  97.07 (0.84) 40/6  98.24 (0.39) 40/6  99.4 (0.52) 40/6
94.24 (0.8) 21/4  94.13 (1.21) 21/4 98.08 (0.53) 21/4 100 (0) 21/4
s 92.88 (0.53) 26/5 92.47 (1.18) 26/5 98.08 (0.49) 26/5 100 (0) 26/5
92.92 (0.6) 36/5 92.53 (0.61) 36/5  97.8 (0.43)36/5 100 (0) 36/5
13 92.52 (0.71) 66/5 95.73 (0.84) 66/5 96.24 (0.63) 66/5 100 (0) 66/5
4 95.76 (0.28) 13/3  97.07 (0.72) 13/3  98.36 (0.4) 13/3 100 (0) 13/3
3 5 96.64 (0.34) 16/4 97.73 (1) 16/4 98.08 (0.62) 16/4 100 (0) 16/4
96.48 (0.59) 22/5 94.33 (0.85) 22/5 98.2(0.28) 22/5 100 (0) 22/5
51 13 97.72 (0.38) 40/6  96.53 (0.69) 40/6  98.6 (0.47) 40/6  99.5 (0.53) 40/6
93.52 (0.67) 21/5  92.93(0.9) 21/5 97.68 (0.41)21/5 100 (0) 21/5
5 93.32 (0.46) 26/5 94.4 (1.1) 26/5 97.44 (0.43) 26/5 100 (0) 26/5
91.08 (1.18) 36/5 93.47 (0.88) 36/5 97.68 (0.45) 36/5 100 (0) 36/5
13 93.32 (1.16) 66/5  93.2 (1.47) 66/5 96.92 (0.5) 66/5 100 (0) 66/5
Total
Max 97.72 97.73 99.28 100
Min 91.08 91.47 96.24 98.7
Average 94.73 94.81 97.94 99.92
SD 1.78 1.63 0.75 0.26

5. CONCLUSIONS

In this paper, we explored the ability of the TF analysis
to classify EEG segments which contain epileptic seizures.
We have extracted several time-frequency features and we
examined the effect of the parameters entering the problem,
that is, the frequency resolution of the time-frequency analy-
sis and the number of time windows and frequency subbands
used for feature extraction. Promising results have been re-

ported after the evaluation of the proposed method in four
different classification problems, derived from a well-known
database. However, several types of artefacts have been re-
moved from this database after visual inspection. This is a
limitation of the evaluation of our method and thus further
evaluation under real clinical conditions is required in or-
der to fully exploit its potential. Another limitation is that in
the current study high-frequency components (over 40 Hz)
were not measured and thus taken under consideration; the
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TABLE 8: A comparison of the results obtained by our method and others’ methods (classification accuracy) for two and three categories

classification problems.

Classes Authors (year) Method Dataset Accuracy
. Nonlinear preprocessing filter, diagnostic
Nigam etal. [15] (2004) artificial neural network (LAMSTAR) ZS 97:2
.. Time & frequency domain features, recur-
1. [14] (2 ? Z, .
Srinivasan et al. [14] (2005) rent neural network (RNN) S 99-6
2 Entropy measures, adaptive neurofuzzy
K thal et al. [42] (2005 . Z,S 92.22
annathal etal. [42] ( ) inference system (ANFIS)
Kannathal et al. [35] (2005) Chaotic measures, surrogate data analysis Z,S ~ 90
Polat et al. [16] (2006) Fast Fourier transform (FFT), decision 7S 98.72
tree (DT)
Subasi [22] (2007) Discrete wavelet transform (DWT), mix- 7.8 95
ture of expert model
. Time frequency (TF) analysis, artificial
Th k (2 > Z, 1
is work (2007) neural network (ANN) S 00
. Time frequency (TF) analysis, artificial
This work (2007) neural network (ANN) (Z,O,N, F), S 97.73
Lyapunov exponents, recurrent neural
Guler et al. [34] (2005) network (RNN) Z,ES 96.79
3 . Discrete wavelet transform (DWT), adap-
Sadati et al. [23] (2006 . ’ Z,ES 85.9
adati etal. [23] ( ) tive neural fuzzy network (ANFN)
. Time frequency (TF) analysis, artificial
This work (2007) neural network (ANN) Z,ES 99.28
. Time frequency (TF) analysis, artificial
Th k (2 > Z,0), (N, F), 72
is work (2007) neural network (ANN) (Z,0), (N, F), S 97.7

employment of high-frequency components, such as gamma
activity, and their importance concerning epileptic seizure
detection will be addressed in a future communication. Fi-
nally, several technical aspects can be further investigated,
such as different techniques for feature reduction and alter-
native classification algorithms.
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Long-term electroencephalographic (EEG) recordings are important in the presurgical evaluation of refractory partial epilepsy for
the delineation of the ictal onset zones. In this paper, we introduce a new concept for an automatic, fast, and objective localisation
of the ictal onset zone in ictal EEG recordings. Canonical decomposition of ictal EEG decomposes the EEG in atoms. One or more
atoms are related to the seizure activity. A single dipole was then fitted to model the potential distribution of each epileptic atom.
In this study, we performed a simulation study in order to estimate the dipole localisation error. Ictal dipole localisation was very
accurate, even at low signal-to-noise ratios, was not affected by seizure activity frequency or frequency changes, and was minimally
affected by the waveform and depth of the ictal onset zone location. Ictal dipole localisation error using 21 electrodes was around
10.0 mm and improved more than tenfold in the range of 0.5-1.0 mm using 148 channels. In conclusion, our simulation study of
canonical decomposition of ictal scalp EEG allowed a robust and accurate localisation of the ictal onset zone.
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1. INTRODUCTION

Epilepsy is one of the most common, severe neurological dis-
eases. People suffering from epilepsy, who are not helped by
medication, can potentially benefit from epilepsy surgery [1].
In order to remove the epileptogenic region, a precise local-
isation of the epileptic focus is mandatory. One of the di-
agnostic tools to localize this region of seizure onset zone
is recording of ictal scalp electroencephalogram (EEG) [2].
The EEG measures electric potential distributions at discrete
recording sites on the scalp. These potential distributions are
the direct consequence of internal electrical currents associ-
ated with the synchronous firing of neurons. EEG recordings
have an excellent temporal resolution, but a rather poor spa-
tial accuracy due to the limited number of recording sites
and the shielding effect of the skull. Visual analysis of EEG
recordings aims to determine which lobe or which electrodes
are activated. A challenging problem in neuroscience is to es-
timate in a more objective and precise way the regions of the
brain that are active, given only the measured potential dis-
tributions.

Estimating the electrical source in the brain from the
scalp EEG is a difficult problem since an infinite number
of internal electrical currents can generate the same poten-
tial distribution on the scalp. Several different approaches to
solve this source localisation or inverse problem exist based
on different assumptions [3, 4]. One assumption is that the
surface potentials are generated by a dense set of dipolar
sources distributed on the cortical surface. The most pop-
ular method from this “distributed source” family is Loreta
[5]. In a second approach, which is the most common, a lim-
ited number of “equivalent dipoles” are assumed to generate
the measured potential distribution [6]. Dipole modeling is a
well-established technique for localising interictal spikes, see,
for example, [7, 8] and references herein. Ictal EEG record-
ings have been subjected to dipole modeling much less of-
ten than interictal spikes. The seizure discharge is a very
complex pattern. Mainly artifacts, such as electromyogram,
movement, eye blinks, and eye movements artifacts, render
modeling difficult [9]. Even visual analysis of seizure onset
can be significantly improved by removing muscle artifacts
[10]. Moreover, the low signal-to-noise ratio of the seizure
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signal can render the correct localisation very diffuse. How-
ever, when source localisation of seizure onset would be pos-
sible, it can reduce the need for invasive intracranial EEG
recordings. So far, the results of ictal EEG source localisation
have been discouraging. One study reports that the used “in-
verse solution” [11] is not useful at all for localising seizure
onsets [12]. Some studies were restricted to temporal lobe
seizures [13, 14]. One reason to select temporal lobe seizures
is that source analysis is most reliable during periods of rel-
ative signal stationarity in order to average repetitive ictal
waveforms, which is more common in temporal than in ex-
tratemporal lobe seizures. Another reason for selecting only
temporal lobe seizures is that extratemporal lobe seizures are
much more frequently contaminated by severe artifacts. Two
other studies were not restricted to temporal lobe seizures.
Gotman [9] obtained reliable models for seizure onset in 6
out of 15 patients (40%) and Boon et al. [15] in 31 out of 100
patients (31%). In the latter study, the ictal EEG was filtered
with a narrowband filter (1-14 Hz), while ictal seizure activ-
ity is known to consist of rhythmical waves with a frequency
between 3 and 29 Hz [16]. Filtering should be avoided be-
cause these filters suppress all high-frequency activity, in-
cluding electrical brain activity. Moreover, muscle artifacts
filtered by a lowpass filter can resemble cerebral activity [17].
All these studies illustrate how difficult it is to reliably esti-
mate ictal sources, and indicate that the current ictal scalp
EEG source analysis tools can not be used for a reliable lo-
calisation of the ictal onset zone during presurgical evalu-
ation. A recent study on source analysis developed a novel
integrative approach to characterise the structure of seizures
in the space, time, and frequency domains and showed some
promising results [18].

The localising value of dipole modeling of ictal EEG can
be improved by first removing artifacts and afterwards es-
timating the sources [19]. Another possibility is to decom-
pose the measured EEG in a sum of individual contributions
of distinct brain sources and localising the epilepsy-related
source in order to estimate the epileptic focus. Space-time
decomposition techniques like principal component analysis
(PCA) and independent component analysis (ICA) of mul-
tichannel EEG can be used for artifact removal [20, 21] or
for extracting activities of interest [22, 23]. However, in or-
der to obtain a matrix decomposition like PCA and ICA, as-
sumptions like orthogonality or independence—which are
physically maybe irrelevant—have to be imposed. Recently,
we have shown that a space-time-frequency decomposition
of a three-way array containing wavelet-transformed EEG by
the canonical decomposition (Candecomp), also known as
parallel factor analysis (Parafac), reliably separated a seizure
atom from the noise and background activity with a sen-
sitivity of more than 90% [24]. This work was inspired by
[25, 26]. The main advantage of this decomposition is that
no extra assumptions have to be imposed. After the decom-
position, the potential distribution over the electrodes of the
epilectical activity was obtained, and displayed as a 2D image.
Electrodes with large potential amplitudes could be consid-
ered as close to the focus. The aim of the present study was
twofold. First, we wanted to investigate whether it was pos-
sible to localise the ictal onset zone in the head by applying
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FiGure 1: The Candecomp model with R components.

dipole source localisation after canonical decomposition of
ictal EEG recordings. Second, we wanted to investigate the
accuracy of this localising method with realistic simulations
under different conditions. We were especially interested (i)
in the influence of the frequency of the seizure activity on the
localisation, (ii) how the dipole localisation would be influ-
enced by changes in frequency, and (iii) if the dipole estima-
tion accuracy could be improved by increasing the number
of electrodes.

We start by revising the canonical decomposition of a
higher-order array (Section 2.1). We then define how we con-
structed realistically simulated EEG (Section 2.2), assessed
the accuracy of our method (Section 3) and finally discuss
our results (Section 4).

2. MATERIALS AND METHODS
2.1. Method

In our application, a three-way data array X with dimensions
(space, scale, time) is obtained by wavelet-transforming ev-
ery channel of the original (or simulated) EEG matrix. The
continuous wavelet transform C at scale a and time t of a
signal x(t) is defined as

Cla,t) = Jio x(t)e* (a,t,7)dT (1)

with ¢* the chosen wavelet. Different real wavelets can be
used. In this study, we used a biorthogonal wavelet with de-
composition order 3. From the scale a of the wavelet, the fre-
quency f of the signal can be estimated as

(2)

with f; the center frequency of the wavelet and At the sam-
pling period.

The trilinear Candecomp [27-29] is a generalisation of
the singular value decomposition (SVD) for higher orders. It
is defined for a three-way array X (I X J X K) as

R
Xijk = > Qirbjrcir + €ijis (3)
r=1
where R is the number of components used in the Cande-
comp model and e;jx are the residuals containing the unex-
plained variation. A pictorial representation of the Cande-
comp model is given in Figure 1. The Candecomp model is
a trilinear model: fixing the parameters in two modes, x;jx
is expressed as a linear function of the remaining parame-
ters. Another equivalent and useful expression of the same
Candecomp model is given with the Khatri-Rao product o,
defined as the column-wise Kronecker product [30].
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Stack the elements of the tensor X7</>*K in a matrix X/*K
as

X 1)y+jk = Xijk- (4)

Construct a matrix E in a similar way. Collect the elements
air in A; bjr in B and ¢k, in C. Then

XUXK _ (AI><R o) B]><R) (CKXR)T + EUXK. (5)

Comparing the number of free parameters of a generic
tensor and a Candecomp model, it can be seen that this
model is very restricted. The advantage of this model is its
uniqueness under mild conditions [31-33]:

ka+kp+kc>=2R+2 (6)

with ky the k-rank of matrix M. The k-rank of matrix M
is defined as the maximal number r such that any set of r
columns of M is linearly independent. For tensors of which
one dimension is greater than the rank, another less restric-
tive condition has recently been derived in [34].

The canonical decomposition is usually computed by
means of an alternating least-squares (ALS) algorithm [30].
This means that the least-squares cost function

2

R
f(A,B,C)zHX—ZAroB,oCr (7)

r=1

is minimized by means of alternating updates of one of its
matrix arguments, keeping the other two matrices fixed. Be-
cause the canonical decomposition is a multilinear decom-
position, each update just amounts to solving a classical
linear least-squares problem. The convergence may be lo-
cal. To increase the probability that the global minimum is
found, the algorithm is reinitialized a couple of times. Since
the introduction of the ALS algorithm, other computational
schemes have been proposed [34-37].

When Candecomp is used for seizure localisation, 2 sec-
onds of EEG at the seizure onset is wavelet transformed. The
obtained three-way array is decomposed with Candecomp
with R atoms. Several techniques exist to determine the op-
timal number of atoms [30]. Corcondia was used to deter-
mine the optimal number of atoms R. After decomposition,
each atom has a component in the space (a;), time (b;), and
frequency domain (c;). The seizure atom(s) can be selected
based on characteristic signatures in the different domains.
At the ictal onset, seizure activity is recognised by rhythmical
activity that is well localised in space and frequency. This was
also described in [38]. Another possibility is to reconstruct
the decomposed atoms in EEG settings by means of the in-
verse continuous wavelet transform (ICWT) [39]. We illus-
trate this approach with an example. EEG containing clear
ictal activity in the right temporal lobe is given in Figure 2.
The seizure starts at Second 3, and the EEG between Second
3 and 5 is wavelet transformed and decomposed with Cande-
comp (see Figure 3). Corcondia indicated that a decomposi-
tion in two atoms would be appropriate. The first atom is
recognized as seizure atom. The frequency component peaks

Time (s)

FIGURE 2: 10 seconds of EEG containing the start of a seizure.

around 3 Hz and the time component is a rhythmical wave-
form that increases in amplitude. When this component is
reconstructed in EEG settings, pure ictal activity can be seen
(see Figure 4). Because the atoms in the canonical decompo-
sition have a very simple, trilinear structure, we propose to
fit only 1 dipole for every atom. We expect that, when a pa-
tient suffers from multifocal epilepsy, different atoms will be
related to activity generated by the different dipoles.

Dipole estimation then determines the dipole’s coordi-
nates and orientation that best generate the given potential
distribution in a least-squares sense. For computational sim-
plicity, we used a spherical head model in this study.

2.2. Simulation

Consider a matrix X of dimension 500-by-21 representing
a 21-channel EEG section of 2.0 seconds long. Each vector
Xs, = 1,...,21 of X contains the time course of an EEG
channel:

X = [X1,X2,...,X21]". (8)

In this simulation study X includes both seizure activity, and
superimposed noise. Both signals are described as follows.

2.2.1.  Synthetic seizure activity

The EEG of the ictal activity was generated using a fixed
dipole in a three-shell spherical head model. The different
time courses generated by the dipole are described below.
The amplification factors at each electrode were computed
by solving the forward problem for a dipole in a three-shell
spherical head model consisting of a brain, a skull, and a
scalp compartment [40]. Each compartment had a specific
conductivity with a ratio equal to 1:1/16:1 for the brain,
skull, and scalp compartment, respectively [41]. The brain
and scalp conductivity was 3.3 x 10~#/Qmm [42]. Radii of
the outer boundary of the brain, skull, and scalp region equal
to, respectively, 8 cm, 8.5 cm and 9.2 cm were used. Anumber
of 21 electrodes were used: Fp2, F8, T4, T6, O2, F4, C4, P4,
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FIGURE 3: Seconds 3 to 5 of the seizure shown in Figure 2 are decomposed with the canonical decomposition with 2 atoms. (a) (b) the spatial
potential distributions of the two atoms. (¢) The frequency content of the atoms. (d) The time course of the atoms. First atom drawn in solid
line correspond with (a). Dash-dotted line correspond with (b). First atom is seizure atom.

Fz, Cz, Pz, Fpl, F7, T3, T5, O1, F3, C3, and P3 placed accord-
ing to the 10-20 system for electrode placement [43] and ad-
ditional electrodes T1 and T2 on the temporal region. The
time course of the scalp potentials was stored in a 500-by-21
dimensional matrix A, representing 2 seconds of EEG with
sample frequency of 250 Hz.

Unless otherwise stated, dipole coordinates x (left ear to
right ear), y (posterior to anterior) and z (up, through the
Cz electrode) were [—0.5 0 0.1] and the dipole orientations
dy, dy, and d, were [1 0 0].

The following seizure characteristics were simulated:

(A) Seizure activity in patients with mesial temporal lobe
epilepsy (MTLE) is typically expressed by a 4 Hz si-
nusoidal waveform [44]. In a first simulation we esti-
mated the dipole localisation error when seizure activ-
ity was represented by a 4 Hz sinusoid at different noise
levels (see Figure 5(a)). We also investigated the influ-
ence of the specific waveform and estimated the local-
isation error when seizure activity was represented by
a 4 Hz sawtooth, instead of a sinusoidal wave, at differ-
ent noise levels.

(B) Ictal EEG activity can have a frequency in the delta,
theta, alpha, or beta range. In a second simulation,
therefore, we estimated the influence of the frequency

(©)

(D)

of the seizure signal on ictal scalp EEG source locali-
sation at a fixed noise level. We were particularly in-
terested if the possible overlap in frequency content
between faster ictal activity and seizure activity would
bias the decomposition and thus the dipole estimate.
Epileptic seizure activity can rapidly change in fre-
quency. Ictal EEG activity is often characterized by
low-voltage fast activity in the beta range which grad-
ually slows down to alpha or theta frequencies with
increasing amplitude. The canonical decomposition
exploits frequency information during the decompo-
sition. In order to test possible shortcomings of the
canonical decomposition of ictal EEG, we wanted to
estimate the accuracy when the model is violated. In
a third simulation, we assessed the dipole localisation
error when the frequency changed during the 2 sec-
onds under investigation. This does not give a trilin-
ear signal after wavelet transformation. We simulated
a chirp that linearly changed in frequency from 8 Hz at
the start to 4 Hz at the end of the considered 2 seconds.
The signal also doubled in amplitude.

In our previous study [24], two atoms were obtained
after the decomposition of in vivo seizures and a
distinction could be made between a seizure and a
nonseizure atom. An interesting question is how well
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FIGURE 4: The seizure atom from Figure 3 is reconstructed in EEG
coordinates after canonical decomposition.

different dipoles generating similar ictal signals will be
distinguished from each other. Such activity can be
measured in the case of multifocal epilepsy. In a fourth
simulation, we considered two rhythmical sources fir-
ing at the same frequency separated from each other
by about 1cm: the second dipole had coordinates
[—0.4 0 0.1]. These dipoles generated similar potential
distributions at the scalp.

(E) In a fifth simulation, the influence of the dipole lo-
calisation was investigated. Deeper sources generate a
weaker signal captured by the electrodes and are pos-
sibly less accurately separated from background EEG.
We varied the z-coordinate of the dipole between 0 and
0.8. x and y were kept fixed at —0.5 and 0, respectively.

(F) 21-channel EEG does not have an optimal spatial res-
olution due to the low spatial sampling. In a last sim-
ulation, we investigated how much the dipole localisa-
tion error could be improved by using dense array EEG
[45]. We used 148 electrodes, uniformly distributed
over the realistic domain of the same spherical head
model.

2.2.2. Noise

A 500-by-21 noise matrix B contained 2 seconds of awake
background EEG activity, recorded with the same electrode
configuration as in (A), from a normal subject. On this ma-
trix B, muscle artifacts were superimposed. These muscle ar-
tifacts were separated from contaminated background activ-
ity using BSS-CCA [46]. For the last simulation with dense-
array EEG, the noise was Gaussian, because no background
EEG was available with this high number of electrodes.

2.2.3. Thesimulated signal

In the simulation study the noise matrix B is superimposed
on the signal matrix A containing the epileptical activity:
X(A\)=A+1-B )

with A € R. The root mean-squared (RMS) value of the sig-
nal is then equal to

-1

L (A(n, s)) (10)

S:N¢

MZ

RMS(A) = \J

0

with N the number of time samples; and the RMS value of
the noise is equal to

SN
RMS(A-B)zJS.lNZZ A-B(n,s))’ (11)
The signal-to-noise ratio (SNR) is then defined as follows:
_ RMS(A)
SNR = RMS(A-B)’ (12)

Changing the parameter A alters the noise level of our simu-
lated signal.

3. RESULTS

Figure 6(a) shows the dipole localisation error in function
of the SNR when one dipole was fitted on the potential dis-
tribution extracted with Candecomp. At an SNR of 0.4, the
localisation error became smaller than 1 cm and at an SNR
of 0.7, the error between the simulated and the fitted dipole
was only 5 mm. At SNRs lower than 0.26, there was no atom
that clearly corresponded to the seizure activity as can be
seen by the large localisation error. At higher noise levels, one
atom contained pure rhythmical activity as can be seen by the
sudden improvement in dipole localisation error. Figure 6(b)
shows the dipole fit error when a sawtooth was used to sim-
ulate ictal EEG. The error was slightly larger compared to the
perfect sinusoidal signal, but still in the same range.

Figure 7 shows the dipole localisation error for different
frequencies of the simulated epileptic signal at an SNR of 0.7
(see Figure 5(b)). From this figure, it can be seen that the ac-
curacy of the separation of ictal EEG and the dipole fit does
not depend on the frequency of the signal. At all frequen-
cies, a dipole is fitted with an error smaller than 1 cm. This
means that even when the frequency content of ictal activity
overlaps with frequency content of muscle artifacts, a good
separation is obtained.

Figure 8 shows the dipole localisation error in function
of the SNR when the simulated epileptic signal changed in
frequency and amplitude during the considered 2 seconds.
The figure strongly resembles Figure 6(a). This means that,
although the signal is not well localised in frequency, the de-
composition still reliably detects the correct location. This
does not mean that the seizure activity is fully separated
into one atom. When we looked at the frequency component
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FiGure 5: Simulated data. (a) The time course of the scalp potentials reflecting the 4 Hz epileptiform activity on each electrode. (b) The

simulated data matrix for an SNR equal to 0.7.
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FI1GURE 6: (a) The dipole localisation error in function of the noise level when a sinus waveform was used as epileptic signal. (b) Idem as (a)

but a sharp wave was used as epileptic signal.

of the epileptic atom, this component had maximal values
around 6 Hz, that is, the average of the start (8 Hz) and end
frequency (4 Hz), while the frequency component in the first
simulation peaked around 4 Hz. When the epileptic atom is
reconstructed (see Figure 9), the change in frequency is not
captured and the reconstruction is poor in the beginning
and at the end. This is also reflected by a lower Candecomp
fit percentage. In the first simulation, the fit percentage was
about 75%, while in this simulation only 58% of the activity
could be modeled. However, the best trilinear approximation
captures a good localisation.

Figure 10 shows in (a) the simulated localisation of two
close dipoles and in (b) the estimated localisation with the
proposed method at an SNR of 0.7. The Corcondia [30] in-
dicated that three atoms were the correct number of atoms

for this simulated EEG. Two of them corresponded to the
2 dipolar foci. The localisation error was for both sources
about 5mm, which indicates that a reliable separation and
localisation was obtained.

The dipole localisation error as a function of the position
of the dipole is shown in Figure 11.

The last figure, Figure 12, shows the dipole estimation er-
ror when 148 electrodes are used to acquire the EEG. It can
be seen that with a high spatial sampling, the estimation ac-
curacy became about 1 mm.

4. DISCUSSION

In [24], we introduced an automatic, fast, and sensitive
method for visualizing the ictal onset zone. The method was
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FiGure 7: The dipole localisation error as a function of the seizure
frequency.
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FiGure 8: The dipole localisation error as a function of the noise
level, when the seizure activity is changed in frequency during the
time interval under investigation.

based on the multiway Candecomp of wavelet-transformed
EEG in distinct “atoms.” After the decomposition, one atom
could be identified as the epileptical atom, and the spatial
component of this atom revealed the focus. The method was
also validated on a large number of in vivo seizures, and was
not influenced by the presence of strong artifacts. However,
in that study, the extracted localising information was lim-
ited to the 2D potential distribution of epileptic activity over
the electrodes. In the present study, we looked at the 3D lo-
calisation in a spherical head, and investigated the localising
accuracy of a dipolar source fitted to the extracted potential
distribution.

It is known that an infinite number of internal electrical
currents correspond with exactly the same potential distribu-
tion on the scalp. The discussion if dipolar sources are supe-
rior to distributed sources is beyond the scope of this study.

We chose the dipolar source because it is most popular. It is
known that the generator of ictal activity can be an extended
area, and that a dipole situated in a certain region should be
considered as the center of mass of a larger activated brain re-
gion [7]. In [25], source densities were computed after Can-
decomp.

We present here the framework for seizure onset localisa-
tion with Candecomp as preprocessing step for EEG source
localisation. In fact, we focussed in the paper on seizure ac-
tivity. However, the method can also be used to localise all
origins of oscillatory activity. We have shown that in a spher-
ical head model with realistically simulated EEG, our algo-
rithm correctly localised the seizure-related atom with an ac-
curacy of about 5 mm, even at SNR ratios that are lower than
one encounters during real ictal recordings. SNRs below 1
mean that the signal contains more noise than signal (see,
e.g., Figure 5). Although the shape of seizure activity will not
be perfectly sinusoidal, we have shown that the exact shape of
the seizure signal did not really influence the localisation ac-
curacy. In a second simulation, we have shown that the local-
isation error does not depend on the frequency of the epilep-
tic signal, and that overlapping frequency content of signal
and noise, representing muscle artifacts, does not lower the
reliability of the decomposition. The third simulation inves-
tigated a more challenging, but maybe more realistic situa-
tion in which the frequency of the seizure changed during the
considered time interval. The resulting atom could not fully
capture the exact frequency-varying signal, as indicated by
a lower fit-percentage of Candecomp and the reconstructed
epileptic signal. However, the best trilinear approximation
still reliably localised the signal. We should emphasize that
Candecomp is an interesting decomposition method due to
its uniqueness properties. However, the trilinear decomposi-
tion in space-time-frequency components really restricts the
activity that can be fully captured. When the frequency con-
tent changes in time at a fixed position, the exact signal will
not be fully separated. However, the best trilinear approxima-
tion will separate a rhythmical signal at the correct location.
A similar result is observed when a moving dipole was sim-
ulated. Moving activity cannot be captured with a trilinear
model, but the best approximation will result in an “average”
localisation. The fourth simulation showed that the localisa-
tion error is quite insensitive to dipole localisation. In [47],
it was observed that dipoles closer located to the scalp, are
slightly better estimated due the higher SNR associated with
higher dipoles. However, in our simulation this effect is neg-
ligible. We investigated also the situation in which two dipo-
lar sources generating the same signal were placed near each
other. This simulates multifocal epilepsy. The Corcondia [30]
indicated that three atoms were the correct number of atoms
for this simulated EEG. Two of them corresponded to the
2 dipolar sources. This example illustrates the interesting
uniqueness property of Candecomp [30] for EEG source lo-
calisation. When matrix decomposition techniques like SVD
or independent component analysis (ICA) would have been
used to decompose the EEG, only 1 rhythmical source would
be extracted as the 2 simulated sources are not independent
nor uncorrelated. It would then not be obvious to determine
the correct number of dipoles. In our approach, Candecomp
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F1GURE 10: (a) The original dipole localisation of two simulated dipoles. (b) The dipole localisation when three atoms were estimated with

Candecomp.
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Figure 11: The dipole localisation error as a function of the z-
coordinate of the dipole, in order to assess the influence of the depth
of the dipole location.

determines the optimal number of components and only 1
dipole will correspond to each atom. Tensor decomposition
techniques offer clearly advantages over matrix decomposi-
tion techniques as preprocessing technique for EEG source
localisation. The last simulation assessed the accuracy when
more electrodes are used. It is known that dipole localisation
based on 21 electrode measurements gives only an approx-
imate indication of source localisation. However, using 148
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SNR

Figure 12: The dipole localisation error as a function of the noise
level, when the EEG is recorded with 148 electrodes.

electrodes can reduce the dipole estimation error to less than
1 mm at the same low SNR’s. So we think it is worth to record
the EEG with denser spatial sampling.

The current simulation study is the most reliable valida-
tion of our method. In the future, we plan to validate our
method on in vivo seizures with a gold standard. This gold
standard can be intracranial EEG, ictal SPECT, or the site of
epilepsy surgery in patients who were rendered seizure free.
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Comparing the estimated dipole localisation to other data,
like ictal SPECT or MR-visible lesions, however, will be bi-
ased by the accuracy of the onset delineation with these di-
agnostic tools. We anticipate that the higher sensitivity and
objectivity of our Candecomp method as compared with vi-
sual assessment of the ictal EEG’s will improve and stream-
line the noninvasive presurgical evaluation of patients with
refractory partial epilepsy.
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Objective. This paper presents the results obtained using a protocol based on special types of artificial neural networks (ANNs)
assembled in a novel methodology able to compress the temporal sequence of electroencephalographic (EEG) data into spatial in-
variants for the automatic classification of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) subjects. With reference
to the procedure reported in our previous study (2007), this protocol includes a new type of artificial organism, named TWIST.
The working hypothesis was that compared to the results presented by the workgroup (2007); the new artificial organism TWIST
could produce a better classification between AD and MCL. Material and methods. Resting eyes-closed EEG data were recorded in
180 AD patients and in 115 MCI subjects. The data inputs for the classification, instead of being the EEG data, were the weights
of the connections within a nonlinear autoassociative ANN trained to generate the recorded data. The most relevant features were
selected and coincidently the datasets were split in the two halves for the final binary classification (training and testing) performed
by a supervised ANN. Results. The best results distinguishing between AD and MCI were equal to 94.10% and they are considerable
better than the ones reported in our previous study (~92%) (2007). Conclusion. The results confirm the working hypothesis that
a correct automatic classification of MCI and AD subjects can be obtained by extracting spatial information content of the resting
EEG voltage by ANNs and represent the basis for research aimed at integrating spatial and temporal information content of the
EEG.

Copyright © 2007 Massimo Buscema et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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magnetic resonance imaging) and the good results in the
study of brain function obtained with techniques dealing

The electroencephalogram (EEG), since its introduction,
was considered the only methodology allowing a direct
and online view of the “brain at work” At the same
time, abnormalities of the “natural” aging of the brain
have yet been noticed in different types of dementias.
The introduction of different structural imaging technolo-
gies in the 1970’ and 1980’s (computed tomography and

with regional metabolism, glucose and oxygen consump-
tion, and blood flow (single-photon emission computed to-
mography, positron emission tomography, functional mag-
netic resonance imaging) during the following two decades
closet the role of EEG in a secondary line, particularly in
the evaluation of Alzheimer’s dementia (AD) and related
dementias.
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Lately, EEG computerized analysis in aged people has
been enriched by various modern techniques able to man-
age the large amount of information on time-frequency pro-
cesses at single recording channels (wavelet, neural networks,
etc.) and on spatial localization of these processes [2-10].
The results have encouraged the scientific community in ex-
ploring electromagnetic brain activity, which changes by ag-
ing and can greatly deteriorate, through the different stages of
the various forms of dementias. The use of neural networks
represents an alternative and very promising attempt to make
EEG analysis suitable for clinical applications in aging—
thanks to their ability in extracting specific and smooth char-
acteristics from huge amounts of data. Computerized pro-
cessing of a large quantity of numerical data in wakeful re-
laxed subjects (“resting” EEG) made easier the automatic
classification of the EEG signals, providing promising results
even using relatively simple linear classifiers such as logis-
tic regression and discriminant analysis. Using global field
power (i.e., the sum of the EEG spectral power across all elec-
trodes) as an input, some authors reached an accurate differ-
ential diagnosis between AD and MCI subjects with accu-
races of 84% and 78%, respectively[11, 12]. Using evaluation
of spectral coherence between electrode pairs (i.e., a measure
of the functional coupling) as an input to the classification,
the correct classification reached 82% when comparing the
AD and normal aged subjects [13, 14].

Spatial smoothness and temporal fluctuation of the EEG
voltage are considered as measures of the synaptic impair-
ment, along with the notion that cortical atrophy can affect
the spatiotemporal pattern of neural synchronization gener-
ating the scalp EEG. These parameters have been used to suc-
cessfully discriminate the respective distribution of probable
AD and normal aged subjects [15]. The interesting new idea
in that study [15] was the analysis of resting EEG potential
distribution instant by instant rather than the extraction of a
global index along periods of tens of seconds or more.

Table 1 summarizes the results of a higher preclassifica-
tion rate with ANN’s analysis than with standard linear tech-
niques, such as multivariate discriminatory analysis or the
nearest-neighbour analysis [16]. Some authors [17] devel-
oped a system consisting of recurrent neural nets processing
spectral data in the EEG. They succeeded in classifying AD
patients and non-AD patients with a sensitivity of 80% and
a specificity of 100%. In other studies, classifiers based on
ANNS, wavelets, and blind source separation (BSS) achieved
promising results [18, 19]. In a study from the same work-
group of this paper, we used a sophisticated technique based
on blind source separation and wavelet preprocessing devel-
oped by Vialatte et al. [18] and Cichocki et al. [20-22] re-
cently, whose results appear to be the best in the field when
compared to the literature. We named this method BWB
model (blind source separation + wavelet + bumping mod-
eling), [1]. The results obtained in the classifications tasks,
comparing AD patients to MCI subjects, using the BWB
model, ranged from 78.85% to 80.43% (mean = 79.48%).

The aim of this study is to assess the strength of a novel
parallel nonlinear EEG analysis technique in the differential
classification of MCI subjects and AD patients, with a high
degree of accuracy, based on special types of artificial neural

networks (ANNs) assembled in a novel methodology able to
compress the temporal sequence of electroencephalographic
(EEG) data into spatial invariants. The working hypothesis
is that this new approach to EEG based on nonlinear ANNs-
based methods can contribute to improving the reliance of
the diagnostic phase in association with other clinical and in-
strumental procedures. Compared to the results already pre-
sented by the workgroup [1], the included new artificial or-
ganism TWIST could produce a better classification between
AD and MCIL.

2. MATERIAL AND METHODS

The IFAST method includes two phases.

(1) A squashing phase: an EEG track is compressed in or-
der to project the invariant patterns of that track on
the connections matrix of an autoassociated ANN. The
EGG track/subject is now represented by a vector of
weights, without any information about the target (AD
or MCI).

(2) “TWIST” (training with input selection and testing)
phase: a technique of data resampling based on the ge-
netic algorithm GenD, developed at Semeion Research
Center. The new dataset which is composed by the
connections matrix (output of the squashing phase),
plus the target assigned to each vector, is splitted into
two sub samples, each one for five times with a similar
probability density function, in order to train, test, and
validate the ANN models.

2.1. The IFAST method

2.1.1.  General philosophy

The core of this new methodology is that the ANNs do not
classify subjects by directly using the EEG data as an input.
Rather, the data inputs for the classification are the weights of
the connections within a recirculation (nonsupervised) ANN
trained to generate the recorded EEG data. These connec-
tion weights represent a model of the peculiar spatial features
of the EEG patterns at the scalp surface. The classification,
based on these weights, is performed by a standard super-
vised ANN.

This method, named IFAST (acronym for implicit func-
tion as squashing time), tries to understand the implicit
function in a multivariate data series compressing the tem-
poral sequence of data into spatial invariants and it is based
on three general observations.

(1) Every multivariate sequence of signals coming from
the same natural source is a complex asynchronous dy-
namic highly nonlinear system, in which each chan-
nel’s behavior is understandable only in relation to all
the others.

(2) Given a multivariate sequence of signals generated
from the same source, the implicit function defin-
ing the above-mentioned asynchronous process is
the conversion of that same process into a complex
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TaBLE 1: EEG automatic classification (* = severe AD ** = mild AD; S. no. = Sample; N. aged = normal aged; ANN = artificial neural
networks; LDA = linear discriminant analysis; ACC = accuracy (%); SE = sensibility; SP = specificity).

Author year S. no. AD N. aged MCI Length (s) Classificators ACC SE SP
ANN LDA

Pritchard et al. (1994) 39 14 25 nd X X 85 nd nd
Besthorn et al. (1997) nd nd nd nd X X 86.60

Huang et al. [6, 11] 93 38 24 31 nd X 81 84 78
Knott et al. (2001) 65 35 30 nd X 75

Petrosian et al. [17] 20 10 10 120 X 90 80 100
Cichocki et al. [20] 60 38 22 20 X 78.25 73 84
Melissant et al. [16] 36 15* 21 40 X 94 93 95
Melissant et al. [16] 38 28%* 10 40 X 82 64 100

hypersurface, representing the interaction in time of
all the channels’ behavior.

(3) The 19 channels in the EEG represent a dynamic sys-
tem characterized by asynchronous parallelism. The
nonlinear implicit function that defines them as a
whole represents a metapattern that translates into
space (hypersurface) that the interactions among all
the channels create in time.

The idea underlying the IFAST method resides in think-
ing that each patient’s 19-channel EEG track can be syn-
thesized by the connection parameters of an autoassociated
nonlinear ANN trained on the same track’s data.

There can be several topologies and learning algorithms
for such ANNS; what is necessary is that the selected ANN be
of the autoassociated type (i.e., the input vector is the target
for the output vector) and that the transfer functions defin-
ing it benon linear and differentiable at any point.

Furthermore, it is required that all the processing made
on every patient be carried out with the same type of ANN,
and that the initial randomly generated weights have to be
the same in every learning trial. This means that, for every
EEG, every ANN has to have the same starting point, even if
that starting point is random.

We have operated in two ways in order to verify this
method’s efficiency.

(1) Different experiments were implemented based on the
same samples. By “experiment,” we mean a complete
application of the whole procedure to every track of
the sample.

(2) The second way is using autoassociated ANNs with
different topologies and algorithms on the entire sam-
ple in order to prove that any autoassociated ANN can
carry out the task of translating into the space domain
the whole EEG track through its connections.

2.1.2. Thesquashing phase

The first application phase of the IFAST method may be de-
fined as “squashing.” It consists in compressing an EEG track

Autoassociative backpropagation with two layers

Input
X(n)

F1GURE 1: Autoassociative backpropagation ANN with W;; = 0, as
the connections on the main diagonal are not present.

in order to project the invariant patterns of that track on the
connections of an auto-associated ANN.

More formally

if

F;() = implicit function of the i-th EEG track
X; = matrix of the values of the i-th EEG

Wi, = trained matrix of the connections of the i-th

EEG (* = objective of the squashing)
Wo,, = random starting matrix, the same for all EEGs
then in the case of a two-layered autoassociated ANN

X,‘ = Fi(Xi, Wi* W()Jyk); con W()j’j =0.

k>
Wi, = 0 means that every ith EEG track is pro-
cessed by the two-layered autoassociated ANN in
which W;; = 0, as the connections on the main di-

agonal are not present (see Figure 1).

It is possible to use different types of autoassociated
ANNs to run this search for spatial invariants in every
EEG.

(1) A backpropagation without a hidden unit layer and
without connections on the main diagonal (for short,
AutoBp):
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New recirculation network

Input
X(n)
Output
X(n+1)
Second hidden
layer

First hidden
layer

F1GURE 2: New recirculation network (NRC), with one connection
matrix and four layers of nodes: one input layer, one output layer,
and two layers of hidden nodes.

This is an ANN featuring an extremely simple learning
algorithm:

N
Output; = f <Z Input;- Wi + Biasi)
J

1
- 1+ e—(Z?’Input}--W,,J-*—Bias,') > Wi’i =0

(Input; — Output;) - f' (Output,)

= (Input; — Output;) -Output;- (1 — Output;);
AW;; = LCoef-(S,--Inputj, LCoef € [0,1],
ABias; = LCoef- ;.

d;

(1)

AutoBP is an ANN featuring N> — N internode connections
and N bias inside every exit node, for a total of N? adaptive
weights. This algorithm works similarly to logistic regression
and can be used to establish the dependency of variables from
each others.

The advantage of AutoBP is due to its learning speed,
in turn due to the simplicity of its topology and algorithm.
Moreover, at the end of the learning phase, the connec-
tions between variables, being direct, have a clear conceptual
meaning. Every connection indicates a relationship of faded
excitement, inhibition, or indifference between every pair of
channels in the EEG track of any patient.

The disadvantage of AutoBP is its limited convergence
capacity, due to that same topological simplicity. That is to
say, complex relationships between variables may be approx-
imated or ignored (for details, see [23, 24]).

(2) New recirculation network (for short, NRC) is an orig-
inal variation [25] of an ANN that has existed in the
literature [26] and was not considered to be useful to
the issue of autoassociating between variables.

The topology of the NRC which we designed includes
only one connection matrix and four layers of nodes: one
input layer, corresponding to the number of variables; one
output layer whose target is the input vector; two layers of
hidden nodes with the same cardinality independent from
the cardinality of the input and output layers. The matrix
between input-output nodes and hidden nodes is fully con-

nected and in every learning cycle, it is modified both ways,
according to the following equations:

N
Hiddenl; = f (Z Input;- Wi; + BiasHiddeni)
j
1 .
L4 e el

Output; = R-Input; + (1-R)

— f(Net?Iiddenl) _

M
f (Z Hiddenl;-W;; + BiasOutputj>

= R-Input; + (1 — R)-f(Netjoutput)
1
= R-Input; + (1 - R)- [ g N

R € [0, 1]/* Projection Coefficient*/
Hidden2; = R-Hiddenl; + (1 — R)

N
-f (Z Output;- Wj; + BiasHidden,-)
)

= R-Hidden1; + (1 — R)- f (Netidden2)
1

e N etHfiddenz >

= R-Hidden2; + (1 — R)-
1+
AW;j,; = LCoef- (Input; — Output;)-Hidden1;
ABiasOutput; = LCoef- (Input; — Output;);
LCoef € [0, 1]/*Learning Coefficient*/
AW,.; = LCoef- (Hidden1; — Hidden2;) -Output;

ABiasHidden; = LCoef- (Hidden1; — Hidden2;).
(2)

NRC then features N? internode adaptive connections and
2-N intranode adaptive connections (bias). The advantages
of NRC are its excellent convergence ability on complex
datasets and, as a result, an excellent ability to interpolate
complex relations between variables.

The disadvantages mainly have to do with the vector cod-
ification that the hidden units run on the input vectors mak-
ing the conceptual decoding of its trained connections diffi-
cult.

(3) Autoassociative multilayer perceptron (for short,
AMLP) may be used with an auto-associative purpose
(encoding)— thanks to its hidden units layer, that de-
composes the input vector into main nonlinear com-
ponents. The algorithm used to train the MLP is a typ-
ical backpropagation algorithm [27].

The MLP, with only one layer of hidden units, features
two connection matrices and two intranode connection vec-
tors (bias), according to the following definitions:

N = number of input variables
= number of output variables;
M = number of nodes in the hidden layer;
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Multilayer perceptron
(IFAST : noise reduction)

Input (n)

Hidden

Output

F1GURE 3: Multilayer perceptron; its hidden units layer decomposes
the input vector into main nonlinear components.

C = total number of internode and intranode connec-
tions (bias);

C=2:-N-M+N+M. (3)

The advantages of MLP are its well-known flexibility and
the strength of its backpropagation algorithm. Its disadvan-
tages are the tendency to saturate the hidden nodes in the
presence of nonstationary functions, and the vector codifica-
tion (allocated) of the same hidden nodes.

(4) Elman’s hidden recurrent [28] can be used for autoas-
sociating purposes, again using the backpropagation
algorithm (for short, autoassociative hidden recurrent
AHR, see Figure 4). It was used in our experimentation
as a variation for MLP with memory set to one step. It
is not possible to call it a proper recurring ANN in this
form, because the memory would have been limited to
one record before. We used this variation only to give
the ANN an input vector modulated at any cycle by the
values of the previous input vector. Our purpose was
not to codify the temporal dependence of the entrance
signals, but rather to give the ANN a “smoother” and
more mediated input sequence. The number of con-
nections in the AHR BP is the same as an MLP with
extended input, whose cardinality is equal to the num-
ber of hidden units:

C=2-N-M+N+M+ M>. (4)

The software IFAST (developed in Borland C) [29] pro-
duces the squashing phase through the training operated by
these four networks; in the “MetaTask” section the user can
define the whole procedure by selecting

(i) the files that will be processed (in our case every com-
plete EEG),

Autoassociative hidden recurrent

Input (n — 1)

Hidden
State units

FIGURE 4: Elman’s hidden recurrent ANN for auto-associating pur-
poses using the backpropagation algorithm.

(ii) the type of network,

(iii) the sequence of the records for every file (generally
random),

(iv) the number of epochs of training,

(v) a training stop criterion (number of epochs or mini-
mum RMSE),

(vi) the number of hidden nodes of the autoassociated net-
work, which determines the length of the output vec-
tor of the file processed

(vii) the number of matrices, depending on the type of the
autoassociated network selected,
(viii) the learning coefficient and delta rate.

2.2. TWIST

From this phase, the procedure is completely different from
the one described in our precedent work [1]. The choice of
following a different methodology was due to the will of im-
proving the classification results and removing causes of loss
of information.

In the former study, the dataset coming from the squash-
ing phase was compressed by another autoassociated ANN,
in the attempt of eliminating the invariant pattern, codified
from the previous ANN, relating to specific characteristic of
the brain (anxiety level, background level, etc.) which is not
useful for the classification, leaving the most significant ones
unaltered. Then the new compressed datasets were split into
two halves, (training and test) using T&T [30] evolutionary
algorithm, for the final binary classification.

Rather in this work, the elimination of the noisiest fea-
tures and the classification run parallel to each other. We
will show that the new procedure has obtained better per-
formances.

First of all, a new dataset called “Diagnostic DB” was cre-
ated for easier understanding. The diagnostic gold standard
has been established, for every patient, in a way that is com-
pletely independent of the clinical and instrumental exami-
nations (magnetic resonance imaging, etc.) carried out by a
group of experts whose diagnosis has been also reconfirmed
in time.
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The diagnoses have been divided into the following two
classes, based on delineated inclusion criteria:

(a) elderly patients with “cognitive decline” (MCI);
(b) elderly patients with “probable Alzheimer” (AD);

We rewrote the last generated dataset, adding to every H,,
vector the diagnostic class that an objective clinical examina-
tion had assigned to every patient. The H,, vectors represent
the invariant traits s as defined by the squashing phase for ev-
ery m-th subject EEG track, that is, the columns number of
the connections matrix depending on the specific autoasso-
ciated network used.

Then the dataset is ready for the next step. This new phase
is called TWIST [31] and includes the utilization of two sys-
tems T&T and IS [30], both based on a genetic algorithm,
GenD, developed at Semeion Research Centre [32].

T&T systems are robust data resampling techniques able
to arrange the source sample into subsamples, each one with
a similar probability density function. In this way the data
split into two or more subsamples in order to train, test, and
validate the ANN models more effectively.

The IS system is an evolutionary system for feature selec-
tion based on a wrapper approach. While the filter approach
looks at the inner properties of a dataset providing a selec-
tion that is independent of the classification algorithm to be
used afterwards, in the wrapper approach various subsets of
features are generated and evaluated using a specific classifi-
cation model using its performances as a guidance to opti-
mization of subsets.

The IS system reduces the amount of data while con-
serving the largest amount of information available in the
dataset. The combined action of these two systems allows us
to solve two frequent problems in managing artificial neural
networks:

(1) the size and quality of the training and testing sets,

(2) the large number of variables which, apparently, seem
to provide the largest possible amount of information.
Some of the attributes may contain redundant infor-
mation, which is included in other variables, or con-
fused information (noise) or may not even contain any
significant information at all and be completely irrele-
vant.

Genetic algorithms have been shown to be very effective
as global search strategies when dealing with nonlinear and
large problems.

The “training and testing” algorithm (T&T) is based on
a population of n ANNs managed by an evolutionary sys-
tem. In its simplest form, this algorithm reproduces several
distribution models of the complete dataset Dr (one for ev-
ery ANN of the population) in two subsets (dPr], the train-
ing set, and d™ the testing set). During the learning pro-
cess each ANN, according to its own data distribution model,
is trained on the subsample d%tr] and blind-validated on the
subsample d\*'.

The performance score reached by each ANN in the test-
ing phase represents its “fitness” value (i.e., the individual
probability of evolution). The genome of each “network in-

dividual” thus codifies a data distribution model with an as-
sociated validation strategy. The n data distribution models
are combined according to their fitness criteria using an evo-
lutionary algorithm. The selection of “network individuals”
based on fitness determines the evolution of the population,
that is, the progressive improvement of performance of each
network until the optimal performance is reached, which is
equivalent to the better division of the global dataset into
subsets. The evolutionary algorithm mastering this process,
named “genetic doping algorithm” (GenD for short), created
at Semeion Research Centre, has similar characteristics to a
genetic algorithm [33-37] but it is able to maintain an in-
ner instability during the evolution, carrying out a natural
increase of biodiversity and a continuous “evolution of the
evolution” in the population.

The elaboration of T&T is articulated in two phases.

In a preliminary phase, an evaluation of the parameters
of the fitness function that will be used on the global dataset
is performed. The configuration of a standard backpropaga-
tion network that most “suits” the available dataset is deter-
mined: the number of layers and hidden units, some possi-
ble generalizations of the standard learning law, the fitness
values of the population’s individuals during evolution. The
parameters thus determined define the configuration and
the initialization of all the individual networks of the pop-
ulation and will then stay fixed in the following computa-
tional phase. The accuracy of the ANN performance with
the testing set will be the fitness of that individual (i.e., of
that hypothesis of distribution into two halves of the whole
dataset).

In the computational phase, the system extracts from the
global dataset the best training and testing sets. During this
phase, the individual network of the population is running,
according to the established configuration and the initializa-
tion parameters.

Parallel to T&T runs “Input Selection” (1S), an adaptive
system, based on the same evolutionary algorithm GenD,
consisting of a population of ANN, in which each one car-
ries out a selection of the independent and relevant variables
on the available database.

The elaboration of IS, as for T&T, is developed in two
phases. In the preliminary phase, a standard backpropaga-
tion ANN is configured in order to avoid possible over fitting
problems. In the computational phase, each individual net-
work of the population, identified by the most relevant vari-
ables, is trained on the training set and tested on the testing
set.

The evolution of the individual network of the popula-
tion is based on the algorithm GenD. In the L.S. approach,
the GenD genome is built by n binary values, where # is the
cardinality of the original input space. Every gene indicates
if an input variable is to be used or not during the evalua-
tion of the population fitness. Through the evolutionary al-
gorithm GenD, the different “hypotheses” of variable selec-
tion, generated by each ANN of the population, change over
time, at each generation; this leads to the selection of the best
combination of input variables. As in the T&T systems, the
genetic operators crossover and mutation are applied on the
ANNSs population; the rates of occurrence for both operators
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are self-determined by the system in an adaptive way at each
generation.

When the evolutionary algorithm no longer improves its
performance, the process stops, and the best selection of the
input variables is employed on the testing subset.

The software based on TWIST phase algorithm (devel-
oped in C-Builder [31]) allows the configuration of the ge-
netic algorithm GenD:

o the population (the number of individual networks),
e number of hidden nodes of the standard BP,

e number of epochs,

o the output function SoftMax,

o the cost function (classification rate in our case).

The generated outputs are the couple of files SetA and
SetB (subsets of the initial db defined by the variables se-
lected) that will be used in the validation protocol (see
Section 2.3).

2.3. The validation protocol

The validation protocol is a fundamental procedure to ver-
ify the models’ ability to generalize the results reached in the
Testing phase of each model. The application of a fixed proto-
col measures the level of performance that a model can pro-
duce on data that are not present in the testing and/or train-
ing sample. We employed the so-called 5 X 2 cross-validation
protocol (see Figure 6) [38]. This is a robust protocol that
allows one to evaluate the allocation of classification errors.
In this procedure, the study sample is randomly divided ten
times into two subsamples, always different but containing a
similar distribution of cases and controls.

The ANNS good or excellent ability to diagnostically
classify all patients in the sample from the results of the con-
fusion matrices of these 10 independent experiments would
indicate that the spatial invariants extracted and selected
with our method truly relate to the functioning quality of
the brains examined through their EEG.

2.4. Experimental setting

2.4.1. Subjects and diagnostic criteria

The population study included

(a) 180 AD patients (gender: 50 males/130 females; age:
mean = 77 + 6.78 SD, range from 54 to 91; MMSE:
mean = 19.9, + 4.89 SD, range from 5 to 30);

(b) 115 MCI subjects (gender: 49 males/66 females; age:
mean = 76 + 6.37 SD, range from 42 to 88; MMSE:
mean = 25.2, + 2.35 SD, range from 17.3 to 29).

The samples were matched for age, gender, and years of
education. Part of the individual data sets was used for pre-
vious EEG studies [2—4]. In none of these studies we ad-
dressed the specific issue of the present study. Local institu-
tional ethics committees approved the study. All experiments
were performed with the informed and overt consent of each
participant or caregiver.

The present inclusion and exclusion criteria for MCI
were based on previous seminal studies [39-46] and de-
signed for selecting elderly persons manifesting objective
cognitive deficits, especially in the memory domain, who did
not meet criteria for a diagnosis of dementia or AD, namely,
with, (i) objective memory impairment on neuropsycho-
logical evaluation, as defined by performances > 1.5 stan-
dard deviation below the mean value of age and education-
matched controls for a test battery including memory rey
list (immediate recall and delayed recall), Digit forward and
Corsi forward tests; (ii) normal activities of daily living as
documented by the patient’s history and evidence of inde-
pendent living; (iii) clinical dementia rating score of 0.5; (iv)
geriatric depression scale scores < 13.

Exclusion criteria for MCI were: (i) mild AD, as di-
agnosed by the procedures described above; (ii) evidence
of concomitant dementia such as frontotemporal, vascular
dementia, reversible dementias (including pseudodepressive
dementia), fluctuations in cognitive performance, and/or
features of mixed dementias; (iii) evidence of concomitant
extrapyramidal symptoms; (iv) clinical and indirect evidence
of depression lower than 14 as revealed by GDS scores; (v)
other psychiatric diseases, epilepsy, drug addiction, alcohol
dependence, and use of psychoactive drugs including acetyl-
cholinesterase inhibitors or other drugs enhancing brain cog-
nitive functions; (vi) current or previous systemic diseases
(including diabetes mellitus) or traumatic brain injuries.

Probable AD was diagnosed according to NINCDS-
ADRDA criteria [47]. Patients underwent general medical,
neurological, and psychiatric assessments and were also rated
with a number of standardized diagnostic and severity in-
struments that included MMSE [48], clinical dementia rat-
ing scale [49], geriatric depression scale [50], Hachinski is-
chemic scale [51], and instrumental activities of daily living
scale [52]. Neuroimaging diagnostic procedures (computed
tomography or magnetic resonance imaging) and complete
laboratory analyses were carried out to exclude other causes
of progressive or reversible dementias, in order to have a ho-
mogenous probable AD patient sample. The exclusion cri-
teria included, in particular, any evidence of (i) front tem-
poral dementia diagnosed according to criteria of Lund and
Manchester groups [53]; (ii) vascular dementia as diagnosed
according to NINDS-AIREN criteria [54] and neuroimaging
evaluation scores [55, 56]; (iii) extra pyramidal syndromes;
(iv) reversible dementias (including pseudo dementia of de-
pression); (v) Lewy body dementia according to the criteria
by McKeith et al. [57]. It is important to note that benzodi-
azepines, antidepressant, and/or antihypertensive drugs were
withdrawn for about 24 hours before the EEG recordings.

2.4.2. EEGrecordings

EEG data were recorded in wake rest state (eyes-closed),
usually during late morning hours from 19 electrodes po-
sitioned according to the international 10-20 system (i.e.,
Fpl, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3,
Pz, P4, T6, O1, O2; 0.3-70Hz filtering band passes). A
specific reference electrode was not imposed to all record-
ing units of this multi-centric study, since any further data
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FIGURE 6: 5 X 2 validation protocol for the independent identifica-
tion of the spatial invariants of EEGs.

analysis was carried out after EEG data were rereferenced
to a common average reference. The horizontal and verti-
cal electrooculogram was simultaneously recorded to mon-
itor eye movements. An operator controlled, online, the sub-
ject and the EEG traces by alerting the subject any time there
were signs of behavioural and/or EEG drowsiness in order to
keep the level of vigilance constant. All data were digitized
(5 minutes of EEG; 0.3-35Hz band pass 128 Hz sampling
rate).

The duration of the EEG recording (5 minutes) allowed
the comparison of the present results with several previous
AD studies using either EEG recording periods shorter than
5 minutes [58—62] or shorter than 1 minute [7, 8]. Longer
resting EEG recordings in AD patients would have reduced
data variability, but they would have increased the possi-
bility of EEG “slowing” because of reduced vigilance and
arousal.

EEG epochs with ocular, muscular, and other types of
artefact were preliminarily identified by a computerized
automatic procedure. Those manifesting sporadic blinking
artefacts (less than 15% of the total) were corrected by an
autoregressive method [63].

The performances of the software package on EOG-EEG-
EMG data related to cognitive-motor tasks were evaluated
with respect to the preliminary data analysis performed by
two expert electroencephalographists (gold standard). Due
to its extreme importance for multicentric EEG studies, we
compared the performances of two representative “regres-
sion” methods for the EOG correction in time and frequency
domains. The aim was the selection of the most suitable
method in the perspective of a multicentric EEG study. The
results showed an acceptable agreement of approximately
95% between the human and software behaviors, for the de-
tection of vertical and horizontal EOG artifacts, the mea-
surement of hand EMG responses for a cognitive-motor
paradigm, the detection of involuntary mirror movements,
and the detection of EEG artifacts. Furthermore, our re-
sults indicated a particular reliability of a “regression” EOG
correction method operating in time domain (i.e., ordinary
least squares). These results suggested the use of the software
package for multicentric EEG studies.

Two independent experimenters—blind to the diag-
nosis— manually confirmed the EEG segments accepted for
further analysis. A continuous segment of artefact-free EEG
data lasting for 60 seconds was used for subsequent analyses
for each subject.
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2.4.3.  Preprocessing protocol

The entire sample of 466 subjects was recorded at 128 Hz for
1 minute. The EEG track of each subject was represented by
a matrix of 7680 sequential rows (time) and 19 columns (the
19 channels).

The squashing phase was implemented using the four au-
toassociative ANNSs described [29]:

(a) an autoassociative BP with 2 layers (ABP);
(b) a new recirculation ANN (NRC);

(c) an autoassociative multilayer perceptron with 3 layers
(AMLP);

(d) an autoassociative hidden recurrent (AHR).

Every autoassociative ANN independently processed ev-
ery EEG of the total sample in order to assess the different
capabilities of each ANN to extract the key information from
the EEG tracks.

After this processing, each EEG track is squashed into
the weights of every ANN resulting in 4 different and inde-
pendent datasets (one for each ANN), whose records are the
squashing of the original EEG tracks and whose variables are
the trained weights of every ANN.

After TWIST processing, the most significant features for
the classification were selected and at the same time the train-
ing set and the testing set with a similar function of proba-
bility distribution that provides the best results in the classi-
fication were defined.

The validation protocol 5x2CV was applied blindly to
test the capabilities of a generic supervised ANN to correctly
classify each record (the number of inputs depending on the
number of variables selected by IS).

A supervised MLP was used for the classification task,
without hidden units. In every experimentation, in fact, we
were able to train perfectly the ANN in no more than 100
epochs (root mean square error (RMSE) < 0.0001). That

means that in this last phase, we could have used also a linear
classifier to reach up the same results.

3. RESULTS

The experimental design consisted in 10 different and inde-
pendent processing for the classification AD versus MCI. Ev-
ery experiment was conducted in a blind and independent
manner in two directions: training with subsample A and
blind testing with subsample B versus training with subsam-
ple B and blind testing with subsample A.

Table 3 shows the mean results summary for the classifi-
cations of AD versus MCI, compared to the results obtained
in the experimentations reported in a previous study [1],
based on a different protocol (without the TWIST phase).

Regarding the protocol IFAST-TWIST, the ABP and AHR
achieved the best results comparing AD with MCI subjects
(94.10% and 93.36%), but all the performances are consid-
erably better than those obtained in the previous study.

Tables 4, 5, 6 and 7 show the details of the results obtained
by each autoassociated ANN, where

SE = sensibility,
SP = specificity,
VP+ = positive predictive value,
VP— =negative predictive value,

LR+ = likelihood ratio for positive test results (bench-
mark value > 2),

LR— = likelihood ratio for negative test results (bench-
mark value < 0.2),

AUC = area under ROC curve (average ROC curve cal-
culated by the threshold method),

Figures 8, 9, 10, and 11 show the respective average Roc
curves.
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TABLE 2: Autoassociative ANN types and parameters used during the processing.

ANN parameters type AbP NRC AMLP AHR
Number of inputs 19 19 19 19
Number of outputs 19 19 19 19
Number of state units 0 0 0 10
Number of hidden units 0 19 10 10
Number of weights 361 399 409 509
Number of epochs 200 200 200 200
Learning coefficient 0.1 0.1 0.1 0.1
Projection coefficient Null 0.5 Null Null

TABLE 3: Summary and comparison of AD results versus MCIL.

Blind classification AD versus MCI

Type of input vector Sensitivity Specificity Accuracy
ABP 90.73 97.46 94.1
NRC 89.27 93.32 91.29
AMLP 92.42 94.14 93.28
AHR 92.11 92.61 92.36

TABLE 4: Details of the ABP results.

ABP results (%)

ANN SE SP A.MeanAcc. W.MeanAcc. Errors VP+ i LR+ LR—- AUC

FF_Bp(ab) 97.14 94.92 96.03 96.12 5 95.77 96.55 19.1 0.03 ~0.98
FF_Bp(ba) 84.31 100 92.16 89.87 16 100 77.78 + Inf 0.16 ~0.928
Mean results 90.73 97.46 94.1 93 10.5 97.88 87.17 + Inf 0.1 ~0.948

* Average ROC curve calculated by the threshold method.

TaBLE 5: Details of the NRC results.

NRC results (%)

ANN SE SP A.MeanAcc. W.MeanAcc. Errors VP+ VP- LR+ LR- AUC

FF_Bp(ab) 84.16 96.15 90.16 88.24 18 97.7 75.76 21.88 0.16 ~0.898
FF_Bp(ba) 94.37 90.48 92.42 92.54 10 91.78 93.44 9.91 0.06 ~0.932
Mean results 89.27 93.32 91.29 90.39 14 94.74 84.6 15.90 0.11 ~0.926

TABLE 6: Details of the AMLP results.

AMLP results (%)
ANN SE SP A.MeanAcc. W.MeanAcc. Errors VP+ VP- LR+ LR- AUC
FF_Bp(ab) 93.26 92.19 92.72 92.81 6 94.32 90.77 11.94 0.07 ~0.930
FF_Bp(ba) 91.57 96.08 93.82 93.28 7 97.44 87.5 23.35 0.09 ~0.935
Mean results 92.42 94.14 93.28 93.05 6.5 95.88 89.14 17.65 0.08 ~.933

TaBLE 7: Details of the AHR results.

AHR results (%)

ANN SE Sp A.MeanAcc. W.MeanAcc. Errors VP+ N LR+ LR— AUC
FF_Bp(ab) 97.22 89.23 93.23 93.43 9 90.91 96.67 9.03 0.03 ~0.940
FF_Bp(ba) 87 96 91.5 90 15 97.75 78.69 21.75 0.14 ~0.904

Mean results 92.11 92.62 92.37 91.72 12 94.33 87.68 15.39 0.09 ~0.926
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ROC: AD versus MCI average ROC (AUC ~ 0.948)
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F1GURE 8: The average ROC curve of the ABP performance (thresh-
old method).

ROC: AD versus MCI average ROC (AUC ~ 0.926)
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F1GURrE 9: The average ROC curve of the NRC performance (thresh-
old method).

4. DISCUSSION

Various types of nonreversible forms of dementias represent
a major health problem in all those countries where the av-
erage life span is progressively increasing. There is a growing
amount of scientific and clinical evidences that brain neural
networks rearrange their connections and synapses to com-
pensate neural loss due to neuro degeneration [64]. This pro-
cess of plasticity maintains brain functions at an acceptable
level before clear symptoms of dementia appear. The length
of this presymptomatic period is currently unknown but, in
the case of AD, often preceded by MCI, it lasts several years.
Despite the lack of an effective treatment, able to block pro-
gression and/or to reverse the cognitive decline, it is generally
agreed that early beginning of the available treatment (i.e.,

ROC: AD versus MCI average ROC AMLP (AUC ~ 0.933)

SE

Sp

Figure 10: The average ROC curve of the AMLP performance
(threshold method).

ROC: AD versus MCI average ROC AHR (AUC ~ 0.926)

SE

Sp

FiGure 11: The average ROC curve of the AHR performance
(threshold method).

inhibitors of anticholinesterase drugs) provides the best re-
sults [65]. A significant advancement in the fight against de-
mentias would be to have in our hands a non-invasive, easy-
to-perform, and low-cost diagnostic tool capable of screen-
ing with a high rate of positive prognostication a large at-risk
population sample (i.e., MCI, subjects with genetic defects
and a family history of dementias or other risk factors). To
test this issue, we performed automatic classification of MCI
and AD subjects extracting with ANN s the spatial content of
the EEG voltage. The results showed that the correct auto-
matic classification rate reached 94.10% for AD versus MCI,
better than the classification rate obtained with the more ad-
vanced currently available nonlinear techniques. These re-
sults confirm the working hypothesis that this EEG approach
based on ANNs can contribute to improve the precision of
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the diagnostic phase in association with other clinical and
instrumental procedures.

The present results suggest that the present variant of
IFAST procedure (TWIST) could be used for a large screen-
ing of MCI subjects under control, to detect the first signs of
conversion to AD for triggering further clinical and instru-
mental evaluations crucial for an early diagnosis of AD (this
is invaluable for the beginning of cholinergic therapies that
are generally carried out only in overt AD patients due to
gastro intestinal side effects). Indeed, the actual percentage
of correct discrimination between MCI and probable AD is
around 94%. This rate is clearly insufficient for the use of the
[FAST procedure for a diagnosis, due to 6% of misclassifica-
tions. The present results prompt future studies on the pre-
dictive value of cortical EEG rhythms in the early discrimina-
tion of MCI subjects who will convert to AD. This interest-
ing issue could be addressed by a proper longitudinal study.
MCI subjects should be divided into “converted” and “sta-
ble” subgroups, according to final out-come as revealed by
followup after about 5 years (i.e., the period needed for con-
version of all MCI subjects fated to decline over time based
on the mentioned literature). That study should demon-
strate that the spatial EEG features at baseline measurement
as revealed by the IFAST procedure might be discriminated
between MCI converted and MCI stable subjects. Further-
more, baseline values of spatial EEG features in individual
MCI subjects should be successfully used as an input by
the IFAST procedure to predict the conversion to demen-
tia. This intriguing research perspectives are the sign of the
heuristic value of the present findings. However, apart from
clinical perspectives, the present findings have an intrinsic
value for clinical neurophysiology. They provided further
functional data from a large aged population to support the
idea that spatial features of EEG, as a reflection of the corti-
cal neural synchronization, convey information content able
to discriminate preclinical stage of dementia (MCI) from
probable AD.

Furthermore, the evaluation of that diagnostic contribu-
tion may motivate future scientific studies probing its use-
fulness for prognosis and monitoring of AD across temporal
domain.

Although EEG would fulfil up all the previous require-
ments, the way in which it is currently utilized does not guar-
antee its ability in the differential diagnosis of MCI, early
AD, and healthy nonimpaired aged brains. The neurophys-
iologic community always had the perception that there is
much more information about brain functioning embedded
in the EEG signals than those actually extracted in a routine
clinical context. The obvious consideration is that the gener-
ating sources of EEG signals (cortical postsynaptic currents
at dendritic tree level) are the same ones as those attacked
by the factors producing symptoms of dementia. The main
problem is that usually in the signal-to-noise ratio the latter
is largely overcoming the former.

This paper suggests that the reasons why the clinical use
of EEG has been somewhat limited and disappointing with
respect to early diagnosis of AD and identification of MCI—
despite the progresses obtained in recent years—are due to
the following, erring, general principles:

(A) identify and synthesizing the mathematical compo-
nents of the signal coming from each individual
recording site, considering the EEG channel as explor-
ing only one, discrete brain area under the exploring
electrode, and suming up all of them in attempt to re-
construct the general information;

(B) focusing on the time variations of the signal coming
from each individual recording site,

(C) mainly employing linear analysis instruments.

The basic principle which is proposed in this work is very
simple; all the signals from all the recording channels are
analyzed together—and not individually—in both time and
space. The reason for such an approach is quite simple; the
instant value of the EEG in any recording channel depends,
in fact, upon its previous and following values, and upon
the previous and following values of all the other recording
channels.

We believe that the EEG of each individual subject is de-
fined by a specific background signal model, distributed in
time and in the space of the recording channels (19 in our
case). Such a model is a set of background invariant features
able to specify the quality (i.e., cognitive level) of the brain
activity, even in so a called resting condition. We all know
that the brain never rests, even with closed eyes and if the
subject is required to relax. The method that we have applied
in this research context completely ignores the subject’s con-
tingent characteristics (age, cognitive status, emotions, etc.).
It utilized a recurrent procedure which squeezes the signif-
icant signal and progressively selects the features useful for
the classification.

5. CONCLUSIONS

We have tested the hypothesis that a correct automatic clas-
sification of MCI and AD subjects can be obtained extract-
ing spatial information content of the resting EEG voltage by
ANNS. The spatial content of the EEG voltage was extracted
by a novel step-wise procedure. The core of this procedure
was that the ANNs did not classify individuals using EEG
data as an input; rather, the data inputs for the classification
were the weights of the connections within an ANN trained
to generate the recorded EEG data. These connection weights
represented a useful model of the peculiar spatial features
of the EEG patterns at scalp surface. Then the new system
TWIST, based on a genetic algorithm, processed the weights
to select the most relevant features and at the same time to
create the best subset, training set, and testing set, for the
classification. The results showed that the correct automatic
classification rate reached 94.10% for AD versus MCI. The
results obtained are superior to those obtained with the more
advanced currently available nonlinear techniques. These re-
sults confirm the working hypothesis and represent the basis
for research designed to integrate EEG-derived spatial and
temporal information content using ANNs.

From methodological point of view, this research shows
the need to analyze the 19 EEG channels of each person as
a whole complex system, whose decomposition and/or lin-
earization can involve the loss of many key information.
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The present approach extends those of previous EEG
studies applying advanced techniques (wavelet, neural net-
works, etc.) on the data of single recording channels; it also
complements those of previous EEG studies in aged people,
evaluating the spatial distributions of the EEG data instant by
instant and the brain sources of these distributions [2—10].

With complex systems, it is not possible to establish a pri-
ori which information is relevant and which is not. Nonlin-
ear autoassociative ANNSs are a group of methods to extract
from these systems the maximum of linear and nonlinear as-
sociations (features) able to explain their “strange” dynamics.

This research also documents the need to use different
architectures and topologies of ANNs and evolutionary sys-
tems within complex procedures in order to optimize a spe-
cific medical target. This study’s EEG analysis used

(1) different types of nonlinear autoassociative ANNs for
squashing data;

(2) a new system, TWIST, based on a genetic algorithm,
which manages supervised ANNs in order to select the
most relevant features and to optimize the distribution
of the data in training and testing sets;

(3) a set of supervised ANNs for the final patterns recog-
nition task.

Itis reasonable to conclude that ANNs and other adaptive
systems should be used as cooperative adaptive agents within
a structured project for complex, useful applications.

NOTE

IFAST is a european patent (application no. EP06115223.7—
date of receipt 09.06.2006). The owner of the patent is Se-
meion Research Center of Sciences of Communication, Via
Sersale 117, Rome 00128, Italy. The inventor is Massimo
Buscema. For software implementation, see [53]. Dr. C. D.
Percio (Associazione Fatebenefratelli per la Ricerca) orga-
nized the EEG data cleaning.
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1. INTRODUCTION

“Absent-minded” slips of action often result from the inap-
propriate production of an automatic or routine response
[1]. Many of us will have repeatedly attempted to switch
on light bulbs that we “know” need replacing, or automat-
ically driven a familiar route when we were intending to go
elsewhere. Although routine activities may be skilfully per-
formed with little requirement for continuous control, there
are occasions when such unsupervised actions can have se-
rious consequences, from personal accidents to major disas-
ters [2]. Moreover, the tendency to make such action errors
significantly increases following traumatic brain injury, fo-
cal frontal lesions, and in some developmental disorders [3—
12]. Here we examine whether time-locked EEG components
may be sensitive to different states in which such errors are
more or less likely to occur.

Slips of attention have been studied both in terms of pre-
dicting difficulties faced by clinical groups and in develop-
ing models of normal executive control over action. Norman
and Shallice [13] and Shallice [10], for example, proposed

an influential framework in which routine actions are con-
trolled in a relatively automatic or stimulus-driven manner.
Within this view, the expression of one behavioral sequence
rather than another is governed by a competitive process de-
termined by the strength of environmental triggers. Via such
a system, apparently complex activities such as those involved
in driving a car can be performed appropriately with lit-
tle requirement for higher-level control. The second level of
control, termed supervisory attention, is then proposed to
modulate action selection if, for example, the most active be-
havioral sequence is inappropriate in relation to an overall
goal. Such control is also experienced subjectively as effort-
ful and conscious attention. More recently proposed frame-
works draw similar distinctions. Dehaene and Naccache [14],
for example, argue for a fronto-parietal circuit that acts as a
“global workspace,” regulating more routine processes and
which is associated with conscious effort. One set of condi-
tions under which supervisory control is argued to be crucial
is that presented in sustained attention tasks. In such tasks,
the environmental triggers for goal-related behavior are re-
duced to a minimum, either by making the task “boring,”
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increasing the time over which a participant has to self-
maintain a readiness to respond, and/or increasing the dura-
tion beyond a point of tedium [15-17]. The more successful
a task is in reducing environmental support, the greater is its
emphasis on the internal, or “endogenous,” maintenance of
the appropriate processing stance.

Robertson et al. [9] developed a simple paradigm de-
signed to assess self-maintained attention to current action.
In the sustained attention to response task (SART), partic-
ipants’ watch-as-single digits are presented on a computer
screen at a regular, invariant rate. They are asked to press
a single button for each digit as it appears. The rhythmic
nature of this response, coupled with the lack of selection,
was designed to rapidly establish a relatively automatic, task-
driven response. Periodically and unpredictably, however, a
“no-go” target is presented to which no response should be
made. In order to maximize the chances of not making an
error, it has been argued, participants must try and counter
the tendency to lapse into routine responding and maintain a
high degree of control over action throughout the task. This
brief and reliable task has proved to be sensitive to the fre-
quency of everyday action lapses in traumatically brain in-
jured patients [9] and in neurologically healthy volunteers
[18].

The electroencephalogram (EEG) signal reflects brain ac-
tivity including that which is in response to a specific envi-
ronmental event. Such event-related responses are often dif-
ficult to separate from other activity on a trial-by-trial basis.
If time-locked signals to many identical events are averaged,
however, the unrelated signal tends to cancel out and the
event related potentials (ERPs) emerge. The electrophysio-
logical correlates of performance on tasks, such as the SART,
that emphasise alternation between responding and not re-
sponding (termed “go/no-go” tasks) have been extensively
examined [19-23]. The emphasis in such studies has been on
differential responses to the presentation of the no-go stimu-
lus relative to the go trial. Méntysalo [23], for example, found
increased amplitude of a negative component (N200) and a
positive component (P300) on no-go trials a feature subse-

quently interpreted by Kok [22], and by Eimer [19] as re-
flecting response-inhibition processes. Jackson et al. [20] also
found that the P300 component to the visual stimulus was
more rapidly suppressed during no-go trials. These studies
place emphasis on what happens after a “no-go” trial is pre-
sented. The focus here is on what happens before a no-go trial
is unexpectedly presented. If, as has been argued, the abil-
ity to control action on no-go trials is determined by a pre-
existing attentive state (sustained attention during the task),
then it may be possible to assess this independently of overt
behavior using ERP measures. Our hypothesis was that cor-
rect go trials that precede a correctly withheld response in a
no-go trial should show evidence of this heightened attentive
control relative to go trials that precede an error. A concep-
tual advantage of this approach lies in the degree to which
other factors that might influence the ERP are controlled. In
each case, the comparison is between correct go trials that
are identical in terms of the stimulus presented (go), the re-
sponse made (press), the instructional set (do not press for

no-gos), and the probability of a subsequent trial being a no-
go signal (1/8). If reliable differences emerge between trials
that precede an action slip and those that do not, this can
be interpreted with some confidence as being related to the
attentional state of the participant under which subsequent
errors are more or less likely.

There were cogent reasons for us to focus on the P300
ERP component as a likely predictor of errors in the SART
go/no-go tasks. The P300 is a positive wave occurring ap-
proximately in 300 milliseconds following stimulus presenta-
tion [24, 25]. In contrast to some earlier components within
the ERP, the P300 has been argued to reflect higher-level pro-
cesses that are sensitive to task context, such as attentive se-
lection [24, 26]. Increased P300 amplitude has been reported
when participants detect that they have made an error in
go/no-go tasks [27, 28], which may be interpreted in terms
of error detection or the consequent establishment of a more
attentional stance in which subsequent error probability is
reduced. Further, studies have shown that the P300 is signifi-
cantly reduced in survivors of traumatic brain injury, a group
who have particular difficulty in avoiding errors on the SART
[29-31].

In the current study, a group of neurologically healthy
volunteers performed multiple blocks of the SART task to es-
tablish whether variations in P300 amplitude were associated
with action errors in the SART. For each participant, the 250
no-go trials from the 10 blocks of the SART were first indexed
and sorted according to whether the participant had made a
commission error, by incorrectly pressing the response key,
or had correctly withheld the response. For each of these cat-
egories, the visual ERPs to go trials that immediately preceded
these no-go trials were then averaged first for each partici-
pant and then for the group of 25 participants as a whole.
From previous studies, we anticipated sufficiently high error
rates in this group to allow a reasonable comparison between
events prior to a correct no-go trial and prior to an action
error.

Previous studies have shown that SART is relatively re-
liable in picking up enduring individual differences in er-
ror propensity. In addition to the hypothesis that relatively
high or low P300 amplitude would be associated at a within-
subject level with different subsequent error rates, we there-
fore further hypothesized that individual differences in the
degree to which the P300 component was maintained across
all of the go trials would be associated with individual differ-
ences in error rates.

For both analyses, there were advantages if gross individ-
ual differences in P300 amplitude (e.g., due to the quality of
electrode contact, skull thickness, etc.) could be reduced. To
this end, we expressed P300 in proportion to that of an ear-
lier ERP component, the P200 (P200 : P300 ratio). The P200
should be subject to the same intersubject differences affect-
ing absolute amplitude but, in being thought to reflect more
perceptual aspects of the neural response, less likely to be
modulated by current attentional engagement with the task.
For this reasoning to be valid, it would be necessary to addi-
tionally demonstrate in the current task that variations in the
P300 are related to subsequent error while variations in the
P200 are not.
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The hypotheses can therefore be summarized as follows.

(1) Having first grouped no-go trials according to whether
or not an error occurred, the average amplitude of the
P300 on preceding go trials will vary in relation to the
outcome on those subsequent no-go trials. The earlier
and more perceptual P200 will not.

(2) If so, this will allow us to reduce gross between-subject
differences by expressing P300 amplitude relative to
that of the P200 (P200 : P300). Averaged across the
group, we then predict that the “normalized” P300
value will differ between go-trials preceding an error
and those preceding a correct no-go trial.

(3) In addition to those go trials that immediately precede
no-go trials, we would expect the degree to which the
normalized P300 amplitude is maintained across the
task as a whole to reflect error rates. Specifically, in a
correlational analysis, the mean normalized P300 am-
plitude (P200 : P300) across all go trials will be associ-
ated with individual differences in error propensity.

2. MATERIALS AND METHODS
2.1. Participants

Following ethical committee approval, 25 neurologically
healthy right-handed volunteers (13 women and 12 men, age
range 20—47) gave informed consent for their participation
in the study.

2.2. Electrophysiological recording and averaging

EEG recordings were made from 3 midline sites (Fz, Cz,
Pz) using silver/silver chloride electrodes (Grass). Four ad-
ditional electrodes were applied for eye blink and move-
ment monitoring, grounding, and reference. The electrodes
were referenced to the right mastoid during recording. The
horizontal electro-oculogram electrodes were referenced to
each other. The EEG and EOG signals were amplified with
a bandwidth of 0.05-100 Hz. The digitization rate for the
analogue-to-digital conversion was 500 samples per second.
Prior to averaging, artefact rejection was performed on the
data to discard epochs in which amplifier saturation, eye
movements, blinks or excessive muscle, or movement arte-
facts occurred. The same rejection criteria were used for all
participants. In some cases, the rejection values for eye arte-
facts were individually adjusted, to correct for individual
differences in amplitudes of artefacts and EEG. This proce-
dure resulted in an average rejection of no more than 2% of
the trials for each of the 25 subjects included in the analy-
sis. Electromyogram signals (EMG) in the responding hand
were monitored using bipolar silver/silver chloride electrodes
from an index finger flexor (first dorsal interosseous mus-
cle) and an index finger extensor (extensor indicis). EEG
was amplified 20 000 fold, EMG 1000 fold, and EOG 2000
fold using AC coupled amplifiers (Biopac Systems Inc., Santa
Barbara). Filtering was 10 Hz—5 KHz, 1-35 Hz, and 0.05 Hz—
100 Hz for EMG, EEG, and EOG, respectively. Full-wave rec-
tification of the EMG was performed digitally. All data was
digitized at 500 Hz, indexed for go, no-go stimulus, correct

FIGURE 1: Selection of trials for the main comparison. Each figure
represents the sequence of events in the SART where go trials are de-
fined by any digit between 1 and 9 (except 3) and the no-go target
by the 3. In each sequence, the participant is responding correctly
to go trials. In the upper panel, the presentation of the target is fol-
lowed by a correctly withheld response. In the lower panel, by an
error, the correct go trials prior to these no-go signals (highlighted)
form the basis of the comparison.

and incorrect response, archived, and averaged offline using a
purpose-written averaging program. For stimulus-locked av-
erages, the P300 was defined as the maximum positive peak
amplitude between 250-450 milliseconds after stimulus pre-
sentation. Latencies of peaks were clearly identifiable in each
case.

2.3. Behavioral task: the sustained attention
to response test

The task [32] was presented on a Dell Latitude laptop com-
puter isolated from the mains supply. On each trial, a sin-
gle digit (1-9) was selected at random and presented for
250 milliseconds, followed by a mask for 900 milliseconds,
at the center of the 185 mm X 245 mm screen. Participants,
who were at a comfortable viewing distance from the screen
(around 40 cm), were asked to press a mouse button with the
index finger of their preferred hand as quickly as possible af-
ter each digit presented, with the exception of 3, to which no
response should be made. They were asked to press the but-
ton “as quickly but as accurately as possible” following the
onset of the trial. The randomization meant that 25 no-go
trials (3 seconds) appeared unpredictably amid 200 go trials
(all digits other than 3) in each block. Each participant com-
pleted 10 blocks with the opportunity to rest from the task
between each.

Testing took place in a quiet, darkened room that was free
from distraction. The total testing session, including setting
up and removing the recording electrodes, lasted for approx-
imately 3 hours. Figure 1 illustrates the sequence of events in
the task and the two types of go trial (defined by immedi-
ately subsequent no-go trial error) that inform the main ERP
comparison of this study.
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3. RESULTS
3.1. Performance on the task

The participants completed 10 blocks of the SART, compris-
ing 2000 go trials and 250 (11.1%) randomly intermixed
no-go targets. The participants correctly withheld their re-
sponses to 147.72 (59%) of the 250 no-go trials (SD 16.12)
and made errors of commission on an average of 102.28
(41%) of these trials (SD 16.105). As is common, errors of
omission (i.e., not pressing the response key on go trials) were
very rare, occurring on an average of 0.55 of the 2000 go trials
(0.061%, SD 0.17%).

3.2. ERPs to the visual stimulus prior to a correct
no-go trial and prior to an action error

Previous behavioral studies with the SART suggest that, other
than in severely brain injured individuals, correct responses
on no-go trials are likely to outweigh errors of commission.
As reported above, this was the case with the healthy par-
ticipants tested here. Correct responses accounted for about
60% of the no-go trials with around 40% attracting action er-
rors. This error rate is somewhat highly compared with pre-
vious studies and may be related to the presentation of 10
consecutive blocks, rather than the more conventional single
block. This higher rate is, however, to our advantage in com-
paring pre-error and pre-correct go trials. With both cate-
gories yielding between 80 and 170 trials per person (pre-
error mean = 102.28, SD 16.11, range 80—147, pre-correct
mean = 147.72, SD 16.10, range 103-170), there are suffi-
cient numbers for noise to tend towards zero in the averaged
signals for each participant in both categories, with these
values then being again averaged across the group. Any dif-
ferences between the waveforms should not therefore be at-
tributable to a disparity between the overall number of error
and correct trials. However, the risk of this unlikely confound
is further reduced by our focus on a single wave, the P300,
as the component that should show a difference. If it is the
P300 which is indeed different while other components are
broadly equivalent, it is less likely that differential amounts
of noise, which would be distributed across the signal, would
have such a specific effect.

The Pz ERPs for go trials before an error and before a
correct response suppression are presented in Figure 2 below.
Figure 2(a) shows the pattern that preceded a correct no-go
trial while Figure 2(b) shows the pattern preceding an action
error. Each panel shows (from top to bottom) averaged recti-
fied agonist and antagonist muscle electromyogram (EMG),
averaged scalp electroencephalogram (EEG; at Pz), and av-
eraged electrooculogram (EOG; used in controlling for eye
movements).

In both Figures 2(a) and 2(b), a triphasic response is ob-
served in Pz EEG with peaks of each wave occurring at sim-
ilar latencies (270 milliseconds, 384 milliseconds, and 544
milliseconds in Figure 2(a), and 250 milliseconds, 388 mil-
liseconds, and 542 milliseconds in Figure 2(b)). The ampli-
tude and latency of the positivity between 200-300 millisec-
onds after the onset of the trial (P200) is strikingly similar to

the two trial types. Given that these go trials are effectively
identical, other than in what subsequently happens, it is per-
haps not surprising that the early perceptual components of
the ERPs are so similar. As discussed above, we therefore ex-
ploited this stable feature in order to allow a comparison of
the P300 components that was relatively free from the influ-
ence of noise and inter-subject variables such as signal inten-
sity. The amplitude of the P300 component was therefore ex-
pressed as a ratio of the P200 amplitude for each participant
averaged across the two trial “types” illustrated in Figure 1.

Comparison of the P300/P200 ratio between trials pre-
ceding an action error (mean 0.92, SD 0.33, n = 25) and trials
preceding correct withholding of the response (mean 1.28,
SD 0.48) reveals a robust and statistically significant differ-
ence (t(24) = 3.63, P < .001). Moreover, Figure 3 shows that
the median P300/P200 ratio prior to an action error falls be-
low even the interquartile range of the P300/P200 prior to a
correct no-go trial.

In both Figures 2(a) and 2(b), EOG traces are flat un-
til 600 milliseconds after presentation of the visual stimulus.
This lack of contamination of eye movement allows confi-
dent interpretation of EEG traces and P300/P200 ratios that
we have obtained. Although similar responses were seen at
Cz and Fz sites, these were less compelling in magnitude and
did not reach statistical significance for this group size. For
brevity we will therefore focus on the Pz results in subsequent
analyses (see later for discussion).

In summary, in two groups of go trials which are identical
other than in what occurs on the subsequent no-go trial, there
appears to be a difference reflected in the P300 at Pz which
is related to the probability of a subsequent error. When this
amplitude is relatively low, errors are more likely. For reasons
outlined in the introduction, therefore, it is tempting to ar-
gue that this component is reflecting some form of enhanced
attention to the stimulus/task which makes errors less likely.

3.3. Individual differences in error propensity

In the previous section we considered only those go-trials
that immediately preceded no-go trials. If it is the case, as
the results suggest, that an increased P300 amplitude is asso-
ciated with more attention and fewer errors, it might be ex-
pected that the mean value of this marker across the whole
task could reflect an individual’s capacity to maintain an
attentive state and overall “resistance” to inhibition errors.
To examine this, we examined the Pearson correlation be-
tween each participant’s (averaged) normalized P300 ampli-
tude across all of the 2000 go trials in the task and their over-
all commission error rates on no-go trials.

The relationship was statistically significant (Pearson’s r
= —0.46, P < .05), the lower the relative average amplitude
of the P300, the more action lapses a particular participant
was prone to make. This relationship is further illustrated by
the division of the participants into “high” and “low” rela-
tive P300 groups based on a median split. As can be seen in
Figure 4, 12 participants with low Pz P300/P200 ratio values
(between 0.34 and 1.07) had a mean error rate of 47% (SD
15.4%) while 13 participants with high Pz P300/P200 ratio
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FiGure 2: The difference between go trials preceding a correct or erroneous no-go trial. Each figure shows EEG (at Pz), finger muscle activity
(extensor/flexor), and eye movements (left and right) averaged across all available relevant trials. The crucial difference between these go
trials appears to be in the amplitude of the P300 ERP peak, highlighted in the grey band.

values (between 1.09 and 2.25) made significantly fewer er-
rors (32.5% (SD 13.4%); t(23) = 2.51, P = .02).

3.4. Errordetection and reaction time effects

So far we have seen that a reduced relative amplitude of the
Pz P300 is associated with a higher probability of an error
on a subsequent no-go trial and, over all of the go trials in
the task, associated with increased no-go error propensity.
We have so far interpreted this in terms of reflecting waning
attention to the stimulus and task. However, before we can
do that with confidence, there are a couple of potential con-
founds that should be addressed. These are “contamination”
of our go trial ERPs with processes related to the detection of
a previous error and the possibility that trials preceding errors
had rather different reaction times to those preceding correct
no-go trials.

The SART is a continuous task. If one has a high over-
all rate of errors on no-go trials, it is more probable that any

given go trial might have occurred after a previous error, as
well as possibly preceding other errors. If one made errors on
100% of no-go trials, for example, all but the first go trials
may be considered to have “followed” an error. This is im-
portant because increases in the P300 have been associated
with error detection, albeit that this is a feature that appears
to be relatively short lived in the ERP trace [27, 28, 33]. It is
possible, therefore, that the relationships so far reported be-
tween Pz P300 amplitude and subsequent error and overall
error rates are mediated by error detection factors, although
it should be noted that, were this the case, the direction of
this relationship would be reversed (more errors = higher
P300 amplitude). To examine this possibility, we compared
the mean Pz P300/P200 ratio for those go trials that immedi-
ately preceded no-go trials, with the average for all go trials.
Go trials that occur immediately before a no-go trial tend, by
definition, to be as distant from a previous no-go trial as it
is possible to be within the task and are therefore less likely
to be influenced by error detection processes triggered by
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FIGURE 4: Propensity to error is associated with the maintenance of
the P300 : P200 ratio across the task. The boxplot shows error fre-
quencies for participants with high or low mean P300 values (de-
fined by a median split of the total participant group), respectively.

a previous mishap. If our previously reported correlation was
substantially due to error-detection processes, we would ex-
pect the relationship between the P300 amplitude in these tri-
als and overall error rates to be reduced. In fact, if anything,
it was enhanced (Pearson’s r = 0.57, P < .01).

Finally, we investigated whether the predictive qualities
of the normalized Pz P300 may be mediated by reaction time
(RT) differences. The relationship between mean RT to go

stimuli and error rates across subjects did not, however, reach
statistical significance (r = —0.281, P = .174), meaning that,
in this group, we could not predict errors on the basis of how
fast individuals were responding. In addition, there was no
relationship between mean RT of participants and mean am-
plitude of their normalized P300 response (r = 0.1, P = .455,
n = 25), further suggesting that the relationship between in-
dividual error propensity and P300 amplitude was not medi-
ated by response speed differences.

4. DISCUSSION

In this study, we asked participants to perform a simple
go/no-go tasks in which no-go targets appeared infrequently
and unpredictably within a random sequence. Previous re-
search has suggested that this task is sensitive to everyday ab-
sentminded lapses in people with brain-injuries and healthy
participants. Furthermore, there is evidence to suggest that
success on no-go trials is related to how well people are
able to maintain active attentive control over their responses,
rather than allowing them to be “driven along” by the repeti-
tive, regular pacing. The basis for this study was that, if there
is a fluctuating state of attention allocation in which errors
are sometimes more probable and sometimes less, we might
be able to see this within fluctuating electrophysiological sig-
nal before the critical no-go target has even appeared.

The results were consistent with this view. From the ran-
dom sequence of trials in the task, we first found go trials
that happened to have occurred before a no-go trial. We then
divided these into those that had been followed by a correct
response suppression and those that had been followed by an
error. The EEG was then averaged for each grouping, time-
locked to trial onset. It is again important to stress that, from
the participants’ perspective, trials preceding no-go signals
hold no special status, indeed, any given go trial is around 8
times more likely to be followed by another go trial than a no-
go trial. The ERPs on go trials had a characteristic triphasic
pattern. Given that the trials are perceptually indistinguish-
able, it was not surprising that the early perceptual response
in the EEG was similar whether the go trial occurred before
an error or a correct no-go trial. A substantial difference was,
however, apparent in the P300. When its amplitude was rel-
atively low, it was associated with increased errors on subse-
quent no-go trials. When its amplitude was relatively high,
participants were more likely to succeed in withholding their
responses on subsequent no-go trials. As might be expected
from this finding, the degree to which the amplitude of the
P300 was maintained across the task was associated with in-
dividual error propensity among the participants.

It seems, therefore, that the P300 formed an electrophys-
iological marker of something that is probabilistically asso-
ciated with subsequent error. It is tempting to view this as a
fluctuating “top-down” goal-directed signal which, if it could
speak, would be saying things like “watch out, don’t press
on the no-go trial, don’t get distracted, keep focusing on the
task, and so forth.” However, the averaging of the ERPs to
the onset of each trial makes it less likely that we are directly
sampling the intensity of such a signal. Instead, we are more
probably detecting the consequence of that maintained stance
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in the attention/decision making allocation to each digit. In
the SART, the really important presented digit is the one
nominated as the no-go target. The others just mean that the
current trial is not a no-go target and, when no-go trials are
rare, arguably this encourages a stance in which evaluation
becomes rather scant (and in which commission errors are
more likely). This would be reflected in the reduced P300 to
each digit presentation. The influence of a maintained goal-
directed stance would be to resist this and encourage more
active trial-by-trial decision making about the response with
reference to the digit. This would be reflected in increased
digit-onset locked P300 amplitude. The results are therefore
consistent with many previous studies associating the P300
with increased attention to a particular stimulus (e.g., [19—
23, 32]). The novel feature or argument here is in the relation
of this individual stimulus processing to some more gener-
ally maintained executive stance to the task. More simply, it
might be expressed as If there is a good attention at trial n
(high P300), then it is more likely that there will be good at-
tention at trial n + 1—which will be particularly useful if it
happens to be a no-go trial.

There are a number of confounds or different interpreta-
tions of these findings which we have attempted to address.
The first is that the results are an artefact of the different
number of pre-error and pre-correct trials delivered to us
by the participants. The actual number of trials contribut-
ing to the averages was, however, relatively high (between 80
and 147 for pre-error trials and between 103 and 170 for pre-
correct trials). The averaging process should, therefore, have
had a reasonable opportunity to reduce the contribution of
random noise to near zero levels, and therefore a differential
contribution of noise to the comparison should be minimal.
In addition, and assuming that noise would be temporally as
well as randomly distributed, the inference is strengthened
by our focus on the P300 and the lack of marked difference
in other components within the ERPs. Finally, in this respect,
we further minimized the risk by expressing the magnitude
of the P300 as a ratio of the P200. This process should fur-
ther cancel any noise difference (in that the P200 should be
equally susceptible) as well as offering other advantages in
terms of normalizing the response. A second concern was
that the P300 association with error was mediated by pre-
vious error detection. The observations that error detection
has generally been associated with an increase in P300 (rather
than the decrease that we see here associated with more er-
rors), and that the “error-signal” is a rather short-lived phe-
nomenon [34-36] both suggest that this account is unlikely.
Furthermore, by comparing the correlation with overall er-
ror rates in go trials that immediately preceded no-go tri-
als (which are as “far as you can get” from a previous no-go
trial and hence error) with go trials in general, we found the
P300 magnitude was increased, not decreased, with remote-
ness from an error. Finally, we found no significant differ-
ences in reaction times that could account for the results.

Despite this, we still need to be cautious. The statistically
significant differences and correlations that we report are all
from the Pz region. Although they were broadly in a con-
sistent direction, the differences at Cz and Fz were less im-
pressive. However, the site of biggest ERP signal difference

may not be obviously connected to the origins of that dif-
ference and it seems improbable that the prefrontal cortex is
not in some way involved in the allocation and maintenance
of attention [32, 37-40]. It is also true that a plethora of
functional imaging and other results now suggest that pari-
etal regions tend to be coactivated with those of the dorso-
and ventro-lateral prefrontal cortex in tasks requiring effort-
ful or conscious processing [14]. While the current study may
have little to say about the location(s) of the sources of the
observed ERP differences, other studies may be more use-
ful guides. Robertson et al. [32] examined ERP correlates of
go no-go task performance in head-injured and healthy par-
ticipants. As with our study, they found no significant dif-
ferences between no-go and visually identical go trials in the
early perceptual components in the ERP (up to and including
the 200 milliseconds bin) in either group. For the healthy par-
ticipants, increased amplitude at P300 did differentiate the
trial types and was interpreted by the authors as reflecting in-
creased attention and/or the launching of an inhibitory signal
to prevent a response. In this respect, the healthy participants
showed a greater differential response to no-go trials than the
patient group, which may be reflected in their relatively lower
error rates. Interestingly, in terms of our current discussion,
Roche et al. identified two components in their P300. The
P300 was reported to be maximal at the frontal electrode
site whilst the slightly later P300b was of greater magnitude
and most apparent at the Pz site. It is possible to question
whether the common coactivation of frontal and parietal re-
gions in effortful tasks which is commonly seen in functional
magnetic resonance imaging (fMRI) studies reflects the si-
multaneous engagement of a large distributed network or
whether, for example, parietal activity may be a secondary
consequence of frontal activation. The combination of the
good temporal resolution of ERPs and the spatial resolution
of fMRI may be necessary to further address this question.
Electrophysiological measures such as this provide one
route out of the conceptual circularity inherent in some
purely behavioral analyses. Errors on the SART have previ-
ously been attributed to the poor maintenance of attention
with that poor maintenance being marked by the occurrence
of the error. This is a reasonable but circular argument that
requires additional measures such as the frequency of atten-
tion problems in everyday life, self-reports of “task unrelated
thought” propensity, and the effect of cues to maintain atten-
tion, if it is to be sustained [41]. An alternative, though not
mutually exclusive, account might emphasise response inhi-
bition efficiency as contributing towards errors in the task.
Following Logan et al. [42] we might therefore view success
or failure on a no-go trial as depending upon the outcome of
arace between the erroneous “go” response and an inhibitory
signal launched at the start of the trial. We would know if
the internal “stop!” signal was a good or poor competitor
based on the number of errors made and we would explain
the number of errors made based on the hypothetical speed
of this signal. Again, independent measures of response in-
hibition from other tasks or from everyday life would be re-
quired to avoid circularity. The advantage of the electrophys-
iological approach used here is that we can see that there is
some influence at work before the critical no-go trial has been
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presented. Whether or not a race model is accurate or ap-
propriate (and there are good reasons to believe it is both),
the results suggest that there is something in place biasing the
odds of that race before it has begun. This seems to chime
with everyday experience of inhibitory failures. Returning to
the light bulb example, if one enters the dark room thinking
“Concentrate. .. habit tells you to switch on the light but you
know that, in this case, it will not help!”, then—with luck—
the action error is less likely.

This issue is not trivial as there are, as discussed, many
clinical groups said to suffer from inhibitory deficits. In ad-
dition to the possibility of tweaking the efficiency of in-
hibitory control, perhaps pharmacologically, the results sug-
gest that other interventions could serve to reduce the con-
sequences of inhibitory difficulty. These would include pro-
grams designed to help people recognize situations in which
a more attentive stance might offset inhibitory slips, training
in maintaining such a stance, and the use of cues to externally
support such maintenance when necessary. These programs
would have application in rehabilitation of neurological pa-
tients and also assist situations where prolonged vigilance
is vital such as in industrial or military scenarios. Although
tasks such as the SART may be somewhat artificial models
of aspects of everyday situations, their value lies in allowing
close, controlled analysis of cognitive failures and, therefore,
in refining understanding and evaluating interventions. They
are also, in their repetitive structured way, compatible with
the averaging over multiple similar events necessary for ERP
analysis. We conclude that identifying EEG markers, such as
the P300, which appear to reflect a well maintained top-down
stance to a task therefore has multiple potential benefits in
predicting and preventing potentially catastrophic errors in
civilian and military life.
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