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Transportation is a key driver of development, enabling people 
to have access to jobs, education, health, and goods. Still, the 
unintended consequences of transportation constitute a big risk, 
threatening the global sustainable development. About 64% of 
global oil consumption and 23% of the worldwide CO2 emissions 
are attributed to transportation [1]. Moreover, every year, con-
gestion accounts for billions of dollars due to wasted time and 
fuel consumption, and the World Health Organization (WHO) 
[2] estimated that 1.3 million people died on roads in 2015. 
Connected and Automated Vehicles (CAVs) hold the potential 
to improve the current operational safety and e�ciency of the 
transportation system by relieving drivers from some or all the 
driving tasks and enabling the cooperation among vehicles, 
between vehicles, and roadway infrastructure or other road users.

A variety of CAV applications have been devised, modeled, 
simulated, and deployed to substantialize their performance 
recently. �ey mostly target various tra�c scenarios and con-
texts including tra�c coordination at intersections and merg-
ing, dynamic speed control on the highway, tra�c forecasting, 
and anticipative vehicle control. �ese research e�orts have 
revealed the bene�ts of CAVs, including the potential to 
improve safety [3], alleviate tra�c congestion [4] and reduce 
fuel consumption and emissions [5, 6].

With the full penetration of CAVs, the tra�c can be oper-
ated in a fully automated manner achieving undoubtedly 
improved tra�c performances. However, many challenges 

remain before a massive deployment of CAVs can be witnessed. 
It is then expected that CAVs will gradually appear in the mar-
ket, increasing the complexity of the current transportation 
system as vehicles with di�erent levels of connectivity and 
automation will start interacting with manually driven vehi-
cles. �ere have been some early e�orts to explore the impli-
cations of these complex interactions [7–10]. Overall, these 
early attempts seem to show a consensus on the bene�ts of 
higher market penetrations of vehicles enabled with connec-
tivity and/or automation, but there is still a large level of uncer-
tainty regarding the e�ects of lower market penetrations. 
Furthermore, a priori prediction of interaction between human 
and CAVs, now relying on simulation methodologies needs 
new numerical developments in order to be more representa-
tive of the reality. �e design of prospective scenarios is also a 
challenge while trying to predict the impact of a system that 
will not be widespread in the market before several decades.

�e ongoing and future research will probably provide 
more insights and innovative frameworks for analysis. �is 
special issue includes research and review articles focusing on 
the connectivity in vehicular tra�c with the presence of auton-
omous vehicles for potential improvement in tra�c perfor-
mances. It covers seven novel research articles including one 
review describing the modeling of tra�c with CAVs, and use 
of CAVs for tra�c light control and monitoring the tra�c 
network, which are summarized as follows:
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1. Modeling Traffic with CAVs

Review Article: Simulation-Based Connected and Automated 
Vehicle Models on Highway Sections: A Literature Review.

In this paper, Wooseok et al. conducted a detailed review 
on modeling methods of vehicle motion that are used in recent 
simulation-based studies of the intelligent vehicles (CAVs with 
various levels of autonomy), and provided new insights for 
future intelligent vehicle analyses, potential scopes, and 
research gaps. �e connectivity of vehicles is essential to 
improve the roadway capacity by the automated vehicles 
(AVs). However, the improvements in the roadway capacity 
and energy consumption in traffic directly depend on the mar-
ket-penetration rate of intelligent vehicles. �e necessity of 
experimental calibration of models recently developed for AVs 
is highlighted, and the comprehensive study of the socio-eco-
nomic impact of such vehicles has not been conducted. With 
respect to the car-following and lane-changing characteristics 
of intelligent vehicles, empirical data are needed for the model 
calibration.

Article: Modeling Microscopic Car-Following Strategy of 
Mixed Traffic to Identify Optimal Platoon Configurations for 
Multiobjective Decision-Making.

In this paper, a naïve strategy for microscopic car-fol-
lowing in a mixed traffic scenario has been proposed. 
Depending on the driving system of consecutive vehicles, a 
vehicle with an automated driving system (ADS) may decide 
either to use adaptive cruise control (ACC) or a cooperative 
adaptive cruise control (CACC) scheme for driving. 
Specifically, this study explores the influences of ADS mar-
ket-penetration and platoon properties on the overall per-
formance of the mixed traffic stream. It is confirmed from 
the simulation that the grouping of ADS vehicles using a 
CACC system provides maximum mobility benefits and 
environmental improvements at the cost of reduced safety. 
It is proposed that, for a comprehensive balance in mobility, 
safety, and environmental advantages the platoon configu-
ration should be adjusted dynamically considering the ADS 
market penetrations in the mixed traffic.

Article: Modified Traffic Flow Model with Connected 
Vehicle Microscopic Data for Proactive Variable Speed Limit 
Control.  

�e variable speed limit (VSL) technique using model 
predictive control (MPC) framework has the potential to 
improve the traffic flows on the freeways. However, the MPC 
framework directly relies on the traffic state prediction model 
in deciding the optimal speed of the traffic. �is paper extends 
a VSL technique based on an MPC framework by incorporat-
ing microscopic online data for better prediction of the traffic 
flows using METANET macroscopic model. Simulations con-
ducted on the VISSIM platform confirm that the proposed 
method improves the speed prediction accuracy, and hence 
improves mobility performance.

Article: Modeling and Prediction of Ride-Sharing 
Utilization Dynamics.

An efficient ride-sharing scheme may significantly reduce 
traffic congestion and facilitate better transportation services 
to realize smart cities. �is paper analyzes a dataset of over 14 

million taxi trips taken in New York City and proposes a net-
work-centric approach for modeling and forecasting the 
potential ride-sharing utilization over time. Despite significant 
volatility of ride-sharing utilization, using the proposed 
approach the potential utilization can be forecasted reliably a 
few hours ahead of time.   

2. Traffic Light Control Considering CAVs

Article: Context-Aware Intelligent Traffic Light Control 
through Secure Messaging.

�is paper presents a secure messaging method for vehi-
cle-to-infrastructure (V2I) communication, and based on it a 
traffic light control scheme has been developed. Using com-
putationally lightweight protocol, the privacy of individual 
vehicles is maintained among themselves, while the identity 
of emergency vehicles and public transportation is securely 
received by the trusted controller of traffic lights. Compared 
to the existing traffic light control schemes, the proposed traf-
fic responsive signal control scheme—adaptive Webster’s 
method—significantly reduces the waiting time of vehicles in 
both light and heavy traffic conditions.

Article: A Separation Strategy for Connected and 
Automated Vehicles: Utilizing Traffic Light Information for 
Reducing Idling at Red Lights and Improving Fuel Economy.   

Efficient flows of CAVs at a signalized intersection can be 
realized by forming platoons of suitable size. Within a platoon, 
all vehicles run through the intersection at the same speed and 
hence their trajectories are parallel to each other. However, for 
passing through successive intersections, the same platoon 
may not be able to pass through the next intersection fully in 
the given green signal. In this paper, a scheme for both velocity 
control and separation strategy of CAVs has been proposed 
that takes into account the traffic efficiency and fuel-saving 
simultaneously. Simulation results show that the proposed 
scheme improves both the travel time and fuel economy sig-
nificantly on a typical urban road with successive signalized 
intersections.  

3. Traffic Monitoring Using CAVs

Article: Potentialities of Autonomous Vehicles for Online 
Monitoring of Motorway Traffic.

Connectivity in vehicular traffic opens a new reliable way 
to collect traffic information online over a road-network, 
which may provide essential information for an effective 
control measure. Particularly, CAVs can be used as virtual 
sensors in estimating the traffic volumes on the road-ways. In 
this paper, based on the hypothesis that CAV traffic volume is 
a direct portion of total traffic volume, a new method of 
monitoring real-time traffic volume has been proposed. 
Furthermore, the capabilities of the proposed method are 
demonstrated using an experimental study based on vehicle 
navigation data available from smartphones. �e developed 
method is found to be effective when the probe volume data 
are available at least with the penetration rate of 0.05 or higher.   
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 e potential of an e�cient ride-sharing scheme to signi�cantly reduce tra�c congestion, lower emission level, and drivers’ stress, 
as well as facilitating the introduction of smart cities has been widely demonstrated in recent years. Furthermore, ride sharing can be 
implemented within a sound economic regime through the involvement of commercial services that creates a win-win for all parties 
(e.g., Uber, Ly� or Sidecar).  is positive thrust however is faced with several delaying factors, one of which is the volatility and 
unpredictability of the potential bene�t (or utilization) of ride-sharing at di�erent times, and in di�erent places. Better understanding 
of ride-sharing dynamics can help policy makers and urban planners in increase the city’s “ride-sharing friendliness” either by 
designing new ride-sharing oriented systems, as well as by providing ride-sharing service operators better tools to optimize their 
services. In this work the following research questions are posed: (a) Is ride-sharing utilization stable over time or does it undergo 
signi�cant changes? (b) If ride-sharing utilization is dynamic can it be correlated with some traceable features of the tra�c? and (c) 
If ride-sharing utilization is dynamic can it be predicted ahead of time? We analyze a dataset of over 14 million taxi trips taken in 
New York City. We propose a dynamic travel network approach for modeling and forecasting the potential ride-sharing utilization 
over time, showing it to be highly volatile. In order to model the utilization’s dynamics, we propose a network-centric approach, 
projecting the aggregated tra�c taken from continuous time periods into a feature space comprised of topological features of the 
network implied by this tra�c.  is feature space is then used to model the dynamics of ride-sharing utilization over time.  e results 
of our analysis demonstrate the signi�cant volatility of ride-sharing utilization over time, indicating that any policy, design, or plan 
that would disregard this aspect and chose a static paradigm would undoubtably be either highly ine�cient or provide insu�cient 
resources. We show that using our suggested approach it is possible to model the potential utilization of ride sharing based on the 
topological properties of the rides network. We also show that using this method the potential utilization can be forecasting a few 
hours ahead of time. One anecdotal derivation of the latter is that perfectly guessing the destination of a New York taxi rider becomes 
nearly three times easier than rolling a “Snake Eyes” at a casino.

1. Introduction

 e increasing availability of portable technologies gives new 
fuel to studies on metropolitan transportation optimization, 
pushing urban design one step closer towards the long sought 
concept of “smart cities” [1, 2]. Mobile devices and ubiquitous 
connectivity make it easier than ever to collect data on the way 
people live in cities and big-data analytic methods facilitate the 
extraction of actionable insights from it. City administrators 
and policy makers can in turn act upon such results to enhance 
city management, channeling current advancements in data 
analysis for the immediate improvement of urban quality of life.

Many of the fundamental problems in big cities nowadays 
relate to cars.  e high number of vehicles congests the streets, 

vehicles standing in tra�c jams increase air pollution while 
also increasing traveling times, signi�cantly increasing pas-
sengers’ stress levels. Availability of large-scale datasets accom-
panied with recent advancements in the analysis of big-data 
and the development of novel models of human mobility give 
rise to new possibilities to study urban mobility.

Such new models include for example the work of [3] in 
which large-scale mobile phone data were analyzed in order 
to characterize individual mobility, show that human travel 
patterns are far from random, and are e�ciently describable 
by a single spatial probability distribution. Similarly, [4] show 
that mobile phone data can be used as a proxy to examine 
urban mobility and [5] analyzes social network data of di�er-
ent cities to �nd that mobility highly correlates with the 
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distribution of urban points of interest. Mobile technologies 
are also the enablers of many successful consumer applica-
tions, such as Waze [6], that provide tra�c-aware city naviga-
tion by using data provided by the community. Alternative 
ways of moving in the city, such as autonomous mobili-
ty-on-demand and short-term car rental have been identi�ed 
among the possible solutions to the ever-growing transport 
challenge [7].

Ride sharing has the potential of improving tra�c condi-
tions by reducing the number of vehicles on the roads, reduc-
ing the emission of CO2 and the fuel consumption per person, 
and giving the riders the opportunity to socialize with people 
(that otherwise would have been �erce “road competitors”). 
A recent study [8] shows that tra�c in the city of Madrid can 
be reduced by 59% if people are willing to share their home-
work commute ride with neighbors. Even if they are not will-
ing to ride with strangers, but only with friends of friends (for 
safety issues), the potential reduction is still up to 31%. 
Another recent study [9] had shown that on-demand route-
free public transportation based on mobile phones outper-
forms standard �x-route assignment methods when comparing 
traveling times.  ese results encourage the deployment and 
policies supporting ride sharing in urban settings.

However, despite such evidence and others, ride-sharing 
adoption rate in cities worldwide is slower than what can be 
expected given the clear bene�ts of ride-sharing [10, 11]. One 
important reason, as suggested by [12–14] and others is the 
uneven, and o«en unstable, potential bene�ts associated with 
ride-sharing. When the value that can be extracted from using 
a service such as Ly� [15], Uber [16], or Sidecar [17] is high at 
one part of the city, but signi�cantly lower at another neigh-
borhood, or worse—suddenly decreases for a period of two 
days—potential users of the service are much likely to opt for 
a private car usage [18].

In this work we propose a data-driven framework to 
dynamically predict the impact, or potential utilization, of ride 
sharing in a city, at di�erent times, and in di�erent regions. 
Speci�cally, the technique we propose provides both policy 
makers as well as ride-sharing operators tools for assessing the 
future bene�t of ride-sharing, encapsulated through the per-
cent of rides saveable through merging of nearby departures 
and destinations. Simply put, a shared taxi service can use this 
proposed technique in order to know ahead of time what the 
ride-sharing demand is going to be (at various places in the 
city), whereas municipal services can dynamically change tolls 
and service fees in order to incentivize the use of ride-sharing 
in “low hours” that are predicted in advance.

Our method is based on analyzing the network features 
of the dynamic O–D matrix as represented by data collected 
by various sources, such as mobile phone call records, or sen-
sors mounted on the taxis themselves. In our research, we 
show a clear correlation between such properties and the por-
tion of “merge-able rides”. We have analyzed the e�cacy of 
our proposed network-oriented method using a dataset of over 
14 million taxi trips taken in New York City during January 
2013 [19].

 is work is structured as follows: Section 2 presents an 
overview of the relevant related research in the �eld. In 
Section 3, we discuss the data and analytic methodologies that 

were used for this work: starting with the calculation of the 
average ride-sharing potential as a function of the maximum 
delay a taxi-user would be willing to sustain, we demonstrate 
that more than 70% of the rides can be shared when users are 
willing to undertake up to 5 minute delay. We then demon-
strate that urban ridesharing potential is not only highly 
dynamic, but that it can also be predicted using the analysis 
of the rides that took place in the city a few hour beforehand. 
We present a method for comprising a dynamically changing 
network using the taxi-rides, and analyzing the topological 
properties of this network (Section 4). We analyze the dynam-
ics of these properties over time, and demonstrate our ability 
to accurately predict changes in the utilization of ride-sharing 
several hours in advance. Concluding remarks and suggestions 
for future works are contained in Section 5.

2. Related Work

Network features can signal and are o«en used to predict 
events or properties that are external to the network, but in¯u-
ence it. A network can o«en be built on easily available data 
and serve as an important source for predictions regarding 
various (seemingly unrelated) events and large-scale deci-
sion-making processes [20–22]. Features of a phone call net-
work can signal the occurrence of an emergency situation or 
predict trust among individuals [23], and speci�c behaviors 
in a Twitter account can identify a spammer [24]. Such dis-
coveries had sparked the interest of researchers in di�erent 
research �elds, who could bene�t from this new ability to 
model large-scale human dynamics. One of the �elds most 
in¯uences by this evolving research thrust was the data-driven 
study of human mobility and its potential application for 
Intelligent Transportation Systems [11, 25–28].

It has been recently shown that in trying to detect semantic 
network events (such as an accident or a tra�c jam) it is crucial 
to understand the underlying structure of the network these 
events are taking place at [29, 30], the role of the link weights 
[31], as well as the response of the network to node and link 
removal [32]. Past research [33] had pointed out the existence 
of powerful patterns in the placement of links, or that clusters 
of strongly tied together individuals tend to be connected by 
weak ties [31]. It was also shown that this �nding provides 
insight into the robustness of the network to particular pat-
terns of link and node removal, as well as into the spreading 
processes that take place in the network [34, 35]. In addition, 
recent work had demonstrated the trade-o� between the num-
ber of individuals (the width of the data) and the amount of 
information available from each one (the depth of the data), 
with respect to the ability to accurately model crowds behavior 
[36–38]. An analytical approach to this problem discussing 
the (surprisingly large) amount of personal information that 
can be deduced by an “attacker” who has access to one’s per-
sonal interactions’ meta-data can be found in [39–41].

One of the �rst works that examined the statistical distri-
bution of event appearance in mobility and communication 
networks have found that these follow a power law principle 
[42], and that such distribution is signi�cantly a�ected by 
anomalous events that are external to the networks [43]. A 
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method for filtering mobile phones Call Data Records (CDRs) 
in space and time using an agglomerative clustering algorithm 
in order to reconstruct the origin-destination urban travel 
patterns was recently suggested in [44].  

Recent works that have been analyzing data collected by 
the pervasive use of mobile phones have broadly supported 
the notion that most of human mobility patterns are affected 
by a relatively small number of factors, easily modeled, and 
very predictable [4, 45–47]. A comprehensive survey of 
ride-sharing literature can also be found in [48] and another 
recent relevant study that developed spatial, temporal, and 
hierarchical decomposition solution strategy for ride-sharing 
is presented in [49].

To-date, much of the research related to ride sharing has 
focused on understanding the characteristics of ride-sharing 
trips and users. In a recent survey of app-based, on-demand 
rideshare users in San Francisco, researchers found that 45% 
of ridesharers stated they would have used a taxi or driven 
their own car had ridesharing not been available, while 43% 
would have taken transit, walked, or cycled [50].

A recent work by Santi et al. [51] introduces a way of 
quantifying the benefits of sharing. �e study applies to a 
GPS dataset of taxi rides in New York City and uses the 
notion of shareability network to quantify the impact and 
the feasibility of taxi-sharing. When passengers have a 
5 minutes flexibility on the arrival time, and they are willing 
to wait up to 1 minutes a�er calling the cab, over 90% of the 
sharing opportunities can be exploited and 32% of travel 
time can be saved. �e authors have also shown that the 
problem is computationally tractable when we look for shar-
ing a taxi among two people with the option of in-route 
picking up. Furthermore, sharing solutions involving more 
people are not tractable, but do not provide a significant 
improvement with respect to solutions involving only two 
people. Similar results have been demonstrated using a the-
oretical model analyzing Autonomous Mobility On Demand 
system, demonstrating that a combined predictive position-
ing and ridesharing approach is capable of reducing cus-
tomer service times by up to 29% [52].

An extensive simulation infrastructure for ride-sharing 
analysis is suggested in [53], allowing the initialization and 
tracking of a wide variety of realistic scenarios, monitoring 
the performance of the ride-sharing system from different 
angles, considering different stakeholders interests and con-
straints. �e simulative infrastructure is claimed to use an 
optimization algorithm that is linear in the number of trips 
and makes use of an efficient and fully parallelized indexing 
scheme.

In another study by Cici et al. [8] mobile phone data and 
social network data were used to estimate the benefits of ride 
sharing on the daily home-work commute. Mobile phone data 
are easier to collect than GPS traces, and have a higher pene-
tration, providing a good sample of a city mobility. Social 
network data are used to study the effect of friendship on the 
potential of ride sharing, showing that if people want to travel 
only with friends then expected ride-sharing benefits are neg-
ligible. On the other hand, when people are willing to ride 
with friends of friends the achieved efficiency resembles this 
of the variant that also allows riding with strangers (implying 

that safety issues may have significant effect on the actual suc-
cess of a ride-sharing solution).

A similar study has been presented by [54] calculating 
shareability curves using millions of taxi trips in New York 
City, San Francisco, Singapore, and Vienna, showing that a 
natural rescaling collapses them onto a single, universal curve. 
�e authors presented a model that predicts the potential for 
ride sharing in any city, using a few basic urban quantities and 
no adjustable parameters.

�e issue of pricing policies in ride-sharing services have 
gained significant attention recently. with the booming expan-
sion of commercial ride-sharing services such as Uber, Ly� 
and others. �e work of [55] studies dynamic pricing policies 
for ride-sharing platforms. As such platforms are two-sided 
this requires economic models that capture the incentives of 
both drivers and passengers. In addition, such platforms sup-
port high temporal-resolution for data collection and pricing. 
�e combination of the latter requires stochastic models that 
capture the dynamics of drivers and passengers in the 
system.

In [56] the authors highlight the impact of the demand 
pattern of the underlying network on the platforms optimal 
profits and aggregate consumer surplus. In particular, the 
authors establish that both profits and consumer surplus are 
maximized when the demand pattern is balanced across the 
networks locations. In addition, the authors show that profits 
and consumer surplus are monotonic with the “balancedness” 
of the demand pattern (as formalized by the patterns structural 
properties).

�e work of [57] proposes a recommendation framework 
to predict and recommend whether and where should 
ride-sharing users wait in order to maximize their chances of 
getting a ride. In the framework, a large-scale GPS data set 
generated by over 7,000 taxis in a period of one month in 
Nanjing, China was utilized to model the arrival patterns of 
occupied taxis from different sources.

�e recent work of Alexander and Gonzalez [11] uses 
smart-phone data in order to model the behavior of an urban 
population in Boston, in an attempt to assess the impact of 
efficient ride-sharing service on the urban traffic, and specif-
ically on the expected levels of congestion. �is data-centric 
approach leads to a highly accurate modeling of the mobility 
patterns in the city. However, much like most of the recent 
work on this subject, the researchers have followed an aggre-
gative modeling, that tries to find the static long-term defini-
tive mobility patterns, purposely omitting any dynamic 
fluctuations.

In another study, researchers from the Microso� Research 
Center [58] analyzed the ride data of 12,000 taxis during 
110 days in order to model the mobility patterns of potential 
passengers. Using this probabilistic model, the researchers 
were able to build a recommendation system for taxi drivers 
that would maximize their profits (yielding an overall 10% 
improvement in the overall profits) and a second recommen-
dation system for passengers, advising them where to turn in 
order to maximize their chances of finding a vacant taxi (with 
67% accuracy). A similar research can be found in [59].

A recent review of dynamic ridesharing systems [60] 
focused on the optimization problem of finding efficient 
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As a �rst step in modeling the feasibility and e�ciency of 
ride-sharing schemes using taxi rides in New York City, a com-
prehensive understanding of the data itself is required. How 
do the rides distribute over the various geographic locations? 
Are there patterns that emerge when observing the O’D matrix 
of the various rides? Can we use those in order to predict the 
destinations of passengers when they board a taxi at a certain 
location?  e �gures below attempt to answer some of the 
Power Low distribution) strongly implying on the potential of 
a network-centric approach as the method of choice with 
respect to the modeling of the dynamics of the data.

Some of the following illustrations analyzing the dataset’s 
statistical properties were �rst presented in our previous pub-
lication [70].  ese illustrations appear here to contribute to 
the reader’s understanding of the nature of the data and the 
behavior dynamics it encapsulates.

Figure 1 reports the distribution of rides per day of the 
week and per hour of the day. As can be seen in the �gure, the 
number of rides has a far-from-uniform time distribution. 
More speci�cally, the number of rides is higher in the middle 
of the week and is lower during the weekend. In addition, the 
daily rides distribution peaks, as expected, in the morning 
hours and around 6-7 pm.

We use the set of taxi ride records to construct a “rides 
network” ��1 ,�2, comprising of |�| nodes representing equally 
sized squared regions of New York City, and a set of |�| edges, 
such that each edge (�, �) ∈ � corresponds to a connection 
between two regions �, � ∈ � if and only if there exists at least 
one ride from region � to region � in the time-frame referred 
to by the network. Such a connection exists if and only if a ride 
started at some time � departing at � and reaching �, or vice 
versa, such that �1 ≤ � ≤ �2 is contained in the time period 
de�ned for the network ��1 ,�2.

As we create edges only based on rides that were created 
during a certain period of time the network may change (and 
quite signi�cantly so) for various values selected for �1 and �2.  
As the time period de�ned by these values increases the 

matches between passengers and drivers.  is ride-matching 
optimization problem determines vehicle routes and the 
assignment of passengers to vehicles considering the con¯ict-
ing objectives of maximizing the number of serviced passen-
gers, minimizing the operating cost, and minimizing passenger 
inconvenience. Another study [61] presented an algorithm 
that increases the potential destination choice for ride-sharing 
schemes set by considering alternative destinations that are 
within given space-time budgets.

On a similar note, a recent study [62] analyzed the bene�ts 
of meeting points in ride-sharing systems, investigating the 
potential bene�ts of introducing meeting points in a ride-shar-
ing system. With meeting points, riders can be picked up and 
dropped o� either at their origin and destination or at a meet-
ing point that is within a certain distance from their origin or 
destination.  e increased ¯exibility results in additional fea-
sible matches between drivers and riders, and allows a driver 
to be matched with multiple riders without increasing the 
number of stops the driver needs to make. A similar approach 
for the optimization of such meetings points was discussed in 
[63].

 e challenge of rides-matching was also discussed in 
works such as [64, 65] or [66], which have demonstrated that 
2,000 vehicles (15% of the taxi ¯eet in New York) of capacity 
10 passengers (or 3,000 vehicles of capacity of 4 passengers) 
can serve 98% of the New York taxi demand within a mean 
waiting time of 2.8 minutes and mean trip delay of 3.5 min.

A path merging approach, which instead of merging rides 
to and from the same locations calculate new paths which go 
through the same locations of the original trips, at the same 
order, and thus improves the ability to merge rides, was dis-
cussed in [67].

In a recent theoretical study [68] where the combinatorial 
optimization of ridesharing matching problem was tackled 
using the proof of the equivalence between classical centroid 
clustering problems and a special case of set partitioning called 
metric k-set partitioning, in which an e�cient expectation 
maximization algorithm was used to achieve a 69% reduction 
in total vehicle distance, as compared with no ridesharing.

A fully decentralized reputation-based approach is dis-
cussed in [69], using a peer-to-peer architecture to provide 
self-assembling ride-sharing infrastructure capable of func-
tioning with no central authority or regulator.

3. Dataset and Methodology

Our analysis was performed using a dataset of 14,776,615 taxi 
rides collected in New York City over a period of one month 
(January 2013) [19]. Each ride record consists of the following 
�elds: pick-up time, pick-up longitude, pick-up latitude, drop-
o� longitude, drop-o� latitude, number of passengers per ride, 
average velocity, and overall trip duration. Times granularity 
is second-based and positional information has been collected 
via GPS technology by the data provider. From this raw data 
sample, we omit records containing missing or erroneous GPS 
coordinates, as well as records that represent rides that started 
or ended outside Manhattan, yielded a cleaned dataset con-
taining 12,784,243 rides.
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Figure 1: Probability Density Function (PDF) of the number of rides 
per day of week/hour of day. A«ernoon peaks are centered on average 
around 7 pm.
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the degrees of the nodes of the network �. A ‘degree’ of a node 
� ∈ � is the number of nodes � is connected to through edges 
in �, where such nodes represent the actual destinations pas-
sengers who boarded a taxi at location � chose to go to. Namely, 
a degree of a node � represents, therefore, the number of pos-
sible destinations a passenger boarding a taxi on location �
may chose to go to. An important observation is that the pop-
ularity of a node � as re¯ected both by its in-degree (i.e. the 
number of origins passengers depart from in order to get to �)  
as well as by its out-degree (i.e. the number of destinations 
passengers leaving � may go to) is independent of the 
 geographic size or shape of node � – as all nodes refer to 
 equally-sized square regions.

Interestingly, analyzing the distribution of this property 
reveals that whereas there are some nodes with a high degree 
(probably corresponding to main train stations or large 
administration facilities) the vast majority of the nodes have 
a very low degree. In other words – for the vast majority of 
the locations in New York, it is extremely easy to predict the 
destination of a passenger starting his ride there (as a low 
degree implies a low number of possible destinations, and a 
high chance of guessing the correct one).  is observation 
is quite remarkable, as it implies that taxi users are much 
more predictable than may seem. Indeed, it seems that when 
one boards a taxi, one’s destination can quite accurately be 
predicted.

Speci�cally, in 24% of the possible origins of a taxi ride in 
New York City, the number of possible destination of a pas-
senger leaving these origins is on average 5, and in 43% of the 
origins it is 10. A quick arithmetics yields that if at some point 
in time we would pick a random person just boarding a taxi 
anywhere in New York, we would have more than 7.5% of 

network is expected to contain more edges, with the densest 
network received for � = �−∞,∞ being the network that is 
based on the complete aggregation of all the rides. In order to 
encapsulate the tra�c properties of a certain point in time �
we would observe the time period circumventing �. Similarly, 
in order to analyze the network dynamics, that is – the way it 
changes over time, we would analyze the evolution of the net-
work properties for networks created in nonidentical, yet par-
tially-overlapping time periods.  is methodology is 
extensively used in Section 4.

For di�erent granularity of city partitioning (re¯ecting 
through the use of di�erent sizes of the square regions) di�erent 
ride networks would be produced. However, Network  eory 
implies that changing this parameter would not a�ect the exist-
ence of various mathematic invariants such as the network’s 
“Scale Free-ness” or its expected small diameter [71], but rather 
– mainly change the sparsity of the network and its number of 
nodes. During this work we have examined several sizes of 
squared-regions, ranging from rectangular regions of 0.0156 
square miles in size, to 1 square mile, obtaining similar results. 
 e analysis below is based on square tiles of 0.39 square mile 
(i.e. 1 square kilometer). In such a case, when taking 
� = �−∞,∞, the network that aggregates all the rides, it com-
prises 813 nodes and 58,014 edges. Figure 2 illustrates the geo-
graphical distribution of the nodes �� on the map of New York.

Figure 3 illustrates the distribution of the number of trips 
on the various O-D routes in the taxi network. By weight we 
refer to the number of trips that took place through this edge 
and by Frequency we refer to the number of edges that have a 
speci�c weight. Note the small number of edges who have 
more than 500 rides (approximately 5,000 edges out of 58,000 
edges). Similarly, over 47,000 edges have less than 50 rides 
passing through them.  is observation coincides well with 
the fact that human mobility is known to follow a power low 
distribution [3].

As we analyze the network properties of graph implied by 
the taxi rides, it is interesting to observe the characteristics of 

Figure 2: Illustration of the rides network �, portrayed on the map 
of NYC. It can be seen that the network has high density through the 
city, with a few empty spots in Staten Island.
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Figure 3: Edge weights of the taxi rides network �, denoting the 
number of trips per edge (namely, between every two nodes in the 
city).  e X-axis denotes the number of trips per edge (representing 
a pair of origin-destination nodes), and the Y-axis (shown in a log-
scale) represents the number of edges who have such number of trips.
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(1)   e routing-agnostic scheme is signi�cantly less sen-
sitive to the temporary changes in the infrastructure, 
such as detours, tra�c jams, accidents, and so on.

(2)  Merging rides based only on their origin and destina-
tion makes our ride-sharing policy entirely agnostic 
to the routing decision of the driver. Alternatively, 
the approach that is based on allowing rides to be 
merged even if they do not leave from the same ori-
gin, but are rather partially overlapping, depends on 
the assumption that the route of the “containing ride” 
indeed passes through the origin of the second ride. 
 is assumption in turn depends on either perfectly 
guessing the routing decisions of the driver, or – dic-
tating those decisions to the driver by the ridesharing 
service.

(3) As a result, our routing-agnostic approach is also 
expected to be easier to implement in real-life sce-
nario, as it requires less cooperation from the drivers.

(4)  In addition, the increased simplicity of the routing-ag-
nostic approach makes it easier to optimize from a com-
putational point of view.  e routing-aware approach 
discussed in [51] has a time complexity of �(�2log(�))
when merging pairs of rides [72], becomes much 
harder when triple rides merging is allowed [73], and 
eventually becomes computationally unfeasible for 
larger numbers of rides-to-be-merged [51].

(5) When comparing the merging e�ciencies of our 
proposed routing-agnostic approach with the rout-
ing-aware one, it is shown that whereas the latter 
is slightly more e�cient when long wait-times are 
allowed (increasing our proposed 73% sharability to 
93% for 5 minutes maximal delay), the improvement 
for shorter wait times becomes signi�cantly smaller 
(this is illustrated by comparing Figure 5 to Figure 3 
in [51]).

Figure 6 shows the probability density function (pdf) of the 
number of rides per edge. As can be seen from the �gure, 
the distribution is heavy tailed and seems to follow a 

guessing precisely his or her destination.  is probability is 
about three times higher than rolling a “Snake Eyes” (two 1’s 
in a 6-sides dice). See Figure 4 for more details.

In this context, it is also important to note that in this work 
we are less interested in the speci�c characterization of nodes 
having high (or low) degrees, but rather – in the dynamics 
those values represent over time, as discussed in detail in the 
following sections.

In order to analyze the “sharability”, or the ability to merge 
rides using the same vehicle at an overlapping times, we 
applied a simpli�ed version of the methodology used by Santi 
et al. [51] to calculate the potential bene�ts of ride sharing: 
Let �� = (��, ��, ��� , ��� ), � = 1 ⋅ ⋅ ⋅ � be � trips where �� denotes 
the origin of the trip, �� the destination, and ��� , ���  the starting 
and ending times, respectively. We say that multiple trips ��
are shareable if there exists a route connecting all of their ori-
gins and destinations in any order where each �� precedes the 
corresponding ��.

Sharability, or ‘ridesharing utilization’ is expressed in terms 
of the number of rides that can be ‘merged’, as a function of 
the guaranteed quality of service, expressed through the num-
ber of latency minutes agreeable by the passengers – the max-
imum time delay in catching a ride and arriving at destination, 
representing the maximum discomfort that a passenger can 
experience using the service. In other words, given a prede-
�ned level of discomfort passengers are willing to undertake 
(expressed in a prolonged wait-time), the ride-sharing utili-
zation depicts the portion of rides that are redundant and can 
be saved by merging with other rides to and from the same 
locations.

Our analysis aims at �nding pairs of rides, which are rep-
resented in the network by the same edge (i.e., have the same 
origin and destination), that can be shared. For each edge, we 
examine its corresponding set of originating rides, and count 
the number of ride pairs that can be merged, taking into con-
sideration the maximum time delay parameter.

 e main di�erence between our approach and the one 
discussed in [51] is that we only merge rides that leave the 
same origin ‘tile’ and go to the same destination ‘tile’.  ere 
are several advantages for this approach:
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Figure 4:  e distribution of nodes degrees in the taxi rides network, representing the number of possible destinations a passenger boarding 
a taxi at some location in the city may chose to go to. Note the surprisingly high number of origins with very low degrees – number of possible 
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some cases, even the merging of two rides at a time might have 
resulted in overcrowding of the vehicle.

In order to assess the e�ect of these two potential phenom-
ena over our analysis, we can observe the distribution of the 
number of passengers per trip in the data. While doing so, we 
arti�cially segregate trip made using private taxi caps (that can 
board up to 4 passengers) and trips made with larger vehicles 
(capable of boarding from 5 to 48 passengers):

(i) 49.22 percent of the trips have 1 passenger.
(ii) 24.22 percent of the trips have 2 passengers.
(iii) 15.72 percent of the trips have 3 passengers.
(iv) 10.84 percent of the trips have 4 passengers.

We examine two approaches for the assessment of the 
actual theoretical ride-sharing utilization.

Greedy merging, assuming an even distribution of number 
of passengers: in this approach, we analyze the merging process 
in a two-phase greedy approach. In the �rst phase, we assume 
that all the original trips that can be merged are indeed 
merged, and are done so under the assumption that the num-
ber of passengers is distributed approximately uniformly, with 
respect to the various geographic locations.  en, the resulting 
merged trips are merged again, if possible.  is analysis 
approach should result in a lower bound for the actual 
ride-sharing utilization, as in real life our ride-matching algo-
rithm would aspire for maximizing the number of merged 
rides, where possible.

Optimal merging: in this approach we assume that when-
ever two rides are merged, the number of passengers they have 
receives the value that would result in the most e�cient merg-
ing scheme possible (con�ned to the overall distribution of 
the numbers of passengers for rides).  is analysis approach 
should result in an upper bound for the actual ride-sharing 
utilization, as in real life there will be times where the only 
way to merge rides would be in a suboptimal way.

Following is a detailed analysis of both approaches:
Greedy merging: the expected distribution of the merged 

trips for the �rst phase would be:

  (i)  In 24.23 percent of the pairs, we would merge a trip 
that has 1 passenger with a trip that has 1 passenger. 
 is results in a merged trip of 2 passengers.

 (ii)  In 23.84 percent of the pairs, we would merge a trip 
that has 1 passenger with a trip that has 2 passengers. 
 is results in a merged trip of 3 passengers.  ese 
trips cannot be merged, assuming the greedy 2-step 
approach.

(iii) In 15.48 percent of the pairs, we would merge a trip 
that has 1 passenger with a trip that has 3 passengers. 
 is results in a merged trip of 4 passengers, that 
cannot be further merged.

(iv) In 5.87 percent of the pairs, we would merge a trip 
that has 2 passengers with a trip that has 2 passen-
gers.  is results in a merged trip of 4 passengers, 
that cannot be further merged.

(v)  In 30.58 percent of the pairs, we would not be able to 
merge the trips, has these would be pairs that either 

power-law. In other words, most of the edges (i.e., pairs of 
origin-destination) induce a small number of rides, while a 
small number of edges induce an extremely high number of 
rides.

Figure 5 presents the percentage of shareable rides as a 
function of the maximum time delay parameter. Results are 
encouraging: more than 70% of the rides can be shared when 
passengers can accept a delay of up to 5 minutes. As expected, 
the bene�t of ride sharing increases when the passengers are 
willing to take a higher discomfort, and the percentage of 
shareable rides is more than 90% when passengers can wait 
30 minutes or more.

It should be noted that the simpli�ed analysis illustrated 
in Figure 5 assumes that two rides that took place at the same 
time can always be merged, regardless of the number of pas-
sengers in each ride. Since the average number of passengers 
per ride is 1.7 and most of the rides involve a single passenger, 
the number of saved rides could have been even higher by 
merging more than 2 rides at a time. On the other hand, in 
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Figure 5: Percentage of merged rides (for the entire network).

102 103 104 105
Rides

10–2

10–3

10–4

10–5

10–6

10–7

D
en

sit
y

γ = 1.54

Figure 6: Probability Density Function of the number of rides per 
edge.



Journal of Advanced Transportation8

ride-sharing utilization of the current supply and demand 
scheme (as appears in Section 4.2), as well as (b) serve as a 
prediction method for estimating changes in this utilization, 
in the near future, up to a few hours (as shown in Section 4.3).

4.1. �e Need for Dynamic Ridesharing Optimization and 
Prediction. Mainstream transportation analysis models 
(such as [74–78] and many more) approach the problem 
of transportation forecasting and analysis through the use 
of long-term data aggregation. Simply put, the dominating 
approach today sees the accurate approximation of the 
“steady state”, or “average state”, of the transportation system 
as the most e�cient way to understand the behavior of the 
system, and to use this understanding in order to reach better 
decisions [79]. Such decisions are o«en concerned with the 
locations, type, or size of new infrastructures that should be 
built, large-scale budgets investment alternatives or long-term 
policy revisions [80].

When examining the rapidly expanding �eld of rideshar-
ing this approach su�ers an inherent limitation, as it is not 
well adequate for the nature of decisions ridesharing operators 
and regulators are required to make. As ridesharing uses exist-
ing roads and metropolitan infrastructure, does not require 
setting �xed-place stations of �xed-paths, and o«en uses exist-
ing vehicles, it is mostly located “outside” the realm of these 
analysis methodologies. Furthermore, ridesharing introduces 
a new set of factors that traditional methods usually cannot 
easily cope with, such as dynamic changes in fares, which may 
signi�cantly in¯uence network properties such as global con-
gestion [81].

Analyzing ridesharing using the existing models would 
be ine�cient at best. Taking the static approach using a long-
term aggregation of the supply and demand would inevitably 
result in a model that would be optimized for the average 
states of the rides network, ignoring its inherent volatility 
(that is caused due to daily and weekly patterns as well as 
irregular spikes created by events such as street-parties, sports 
events, etc.).

Interestingly, as shown in Section 4.2, the dynamic rides 
network spends only an extremely small portion of the time 
in those average network states. Furthermore, our analysis 
demonstrates that overlooking the dynamic nature of the traf-
�c scheme disregards the vast majority of the network states, 
as manifested in the O–D matrix, as well as the possible 
ridesharing utilization of it. Speci�cally, this phenomenon is 
demonstrated in Figure 7 that reveals that the system spends 
approximately 33% of the time in states that have a potential 
utilization of either 50% above the monthly average, or 50% 
below it.

Ignoring this dynamic nature of the urban rides system 
through the use of a static analysis model (which is the main-
stream approach of today) will be inherently limited in its 
e�ciency.  e key to unlocking the development of e�ective 
next generation ridesharing systems, therefore, lays in an anal-
ysis that is rooted in the understanding of its dynamic nature, 
and the way to use it in order to develop proactive strategies 
that dynamically adapt their forecast using an ad-hoc analysis 
of the network’s state.

(a) have one of the trips with 4 passengers, or (b) 
having a trip with 2 passengers and a trip with 3 pas-
sengers, or (c) having two trips having 3 passengers 
each.

 e second phase will, therefore, be able to merge another 
0.2423 ⋅ 0.2423 ⋅ 100 = 5.87 percent of the original pairs, which 
re¯ects a 5.87 ⋅ 2 = 11.74 percent increase. Overall, this would 
sum up to 100 − 30.58 + 11.74 = 81.16 percent of the naive 
potential utilization (namely, the utilization that is calculated 
under the assumption that all rides are merge-able, and that 
we do not merge more than two rides.

Optimal merging: assuming an optimal merging scheme 
we can calculate the merging of the relevant New York City 
data as follows:

 (i)   e 10.84 percent of the rides that have 4 passengers 
cannot be merged at all.

 (ii)   e 24.22 percent of the rides that have 2 passengers 
would be merged among themselves.

 (iii)   e 15.72 percent of the rides that have 3 passengers 
would be merged with a matching 15.72 percent of 
the rides that have 1 passenger.

 (iv)   is would leave another (49.22 − 15.72 =) 33.5 per-
cent of the rides, that have 1 passenger.  ese rides 
would be merged in a 4-to-1 ratio, virtually implying 
a 33.5 ⋅ 1.5 = 50.25 percent save.

Altogether, the actual optimal theoretical utilization would 
sum up to 24.22 + 15.72 + 15.72 + 50.25 = 105.91 percent 
(namely, under the assumption of optimal merging the bene�t 
from merging 4 rides of a single passenger more than com-
pensates the loss due to rides with 4 passengers.

 erefore, the actual theoretical utilization for the New 
York City taxi dataset, denoted as �, would be bounded by:

such that � is the potential utilization that is calculated 
throughout this work, using the method that was described 
above, ignoring the e�ect of multiple merges, as well as the 
e�ect of over-population of rides.

4. Analyzing the Dynamic Ride-Sharing 
Network

In the previous section we have described the taxi data that 
were used for this study, illustrated various mathematical 
properties of these, and discussed the way they can be analyzed 
for the purpose of assessing the potential ability of ride-sharing 
schemes to merge rides between similar locations (denoted as 
the ride-sharing potential utilization). In this section we 
demonstrate the inability of static analytic approaches to e�-
ciently model this utilization and suggest an alternative 
approach, that is based on the construction of multiple net-
work-snapshots, derived using a sliding-window based aggre-
gation of the taxi rides. We show that this technique can serve 
as a valuable methodology for both (a) assessing the potential 

(1)0.8116 ⋅ � ≤ � ≤ 1.0591 ⋅ �
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properties of this dynamic network, which we show are 
not only highly correlated with the potential ride-sharing 
utilization at the corresponding points in time, but can also 
predict the utilization few hours ahead of time.

We divide the rides dataset into hourly aggregated snap-
shots, creating 31 × 24 = 744 sub-networks, each is denoted 
by ���,��+1, such that �� represents the �-th hour in the month. 
An illustration of one such sub-network is shown in Figure 8. 
Intuitively, we see that most of the nodes are highly connected, 
but a considerable number of nodes are connected to only one 
other node in the network.

Similarly to Figure 5 in which the potential bene�t of 
ride-sharing over the entire data was shown, we have per-
formed the same calculation for every hourly network sepa-
rately. Figure 9 presents the average potential ride-sharing 

A potential example for this approach can be found in [82], 
containing a computational study aimed at identifying envi-
ronments in which the use of “dedicated drivers” are most 
useful. As urban supply and demand environments are con-
stantly (and signi�cantly) changing (as demonstrated in our 
analysis of the New York taxi data), it is therefore likely that a 
strategy that detects the times where the use of such drivers is 
most e�cient and upon such detection – launches these driv-
ers to supply the demand (this can be done using a dynamic 
change in the commission drivers are required to pay, giving 
such drivers a temporary priority in certain roads, or forbid-
ding them from granting service on a regular basis expect from 
when their service is required) – would achieve a superior 
performance compared to a static strategy that does not react 
to such changes.

Another example can be the work of [83] in which the size 
of a carsharing ¯eet is optimized in order to maximize the 
monetary operational savings. Again, such an approach 
reaches the global optimization assuming a static approach, 
whereas the incorporation of the dynamic nature of the system 
could yield a signi�cant.  is could be done for example by 
allowing the ̄ eet operators to dynamically use the services of 
a public service (such as Uber or Ly«), rented cars, or private 
drivers. Using such service when needed will allow to reduce 
the ongoing basic cost.

4.2. Dynamic Network Analysis. As discussed in previous 
sections, one of the main hurdles that prevents the wide 
adoption of ride-sharing might be the high volatility of its 
potential utilization, and the extreme unpredictability of it. In 
this section, we propose to mitigate this problem by using a 
dynamic network that represents the evolving travel patterns 
in the city.  at is, a multitude of rides-networks, representing 
data of �xed-length periods of time, each of which starting 
at di�erent points in time of equal distances. Such “sliding 
window” approach is useful for tracking changes in various 
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Figure 7: Dynamics of the potential ride-sharing utilization over time. X-axis denotes the time, given in 5-minute granularity. Y-axis denotes 
the change of the potential utilization compared to its monthly average.

Figure 8: An illustration of the rides sub-network ��144,�145, denoting 
the structure that is implied by the aggregation of the rides between 
the 144-th and the 145-th hour of the month.
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(4)  Average Betweenness Centrality: each node � in the 
network � has a calculate-able betweenness central-
ity score [84], representing the portion of “shortest 
paths” between all the node-pairs in the network, that 
pass through �. Formally, for a network node � ∈ �
this is de�ned as:

where ��,�, is the total number of shortest paths from 
node � to node � and ��,�(�) is the number of those 
paths that pass through �.

Averaging these values yields an estimation of 
the network’s e�ciency, with respect to the number 
of nodes whose adequate availability is required in 
order to preserve the network’s ability to maintain 
e�cient ¯ow without increasing the length or dura-
tions of trips between arbitrary points [28, 85].

(5)  Average Closeness Centrality: the closeness centrality 
of a node [86] is a measure of centrality in a network, 
calculated as the sum of the length of the shortest paths 
between the node and all other nodes in the graph.  us 
the more central a node is, the closer it is to all other 
nodes. For a node � ∈ �, the measure is de�ned as:

Averaging the closeness centrality over all the net-
work’s nodes yields an estimation of the compact-
ness of the network, that is – how short it is to travel 
between an arbitrary pair of network nodes.

(6)  Average Eigenvalue Centrality: eigenvalue centrality 
[87] (also called eigencentrality or eigenvector cen-
trality) is a measure of the in¯uence of a node in 
a network. It assigns relative scores to all nodes in 
the network based on the concept that connections 
to high-scoring nodes contribute more to the score 
of the node in question than equal connections to 
low-scoring nodes.

For a given graph � with an adjacency matrix � the cen-
trality score of a node � ∈ �, denoted as �(�), is de�ned as

where �(�) is a set of the neighbors of � and � is the graph’s 
largest positive real eigenvalue.  is can be accurately esti-
mated by taking the ��ℎ component in the eigenvector that 
corresponds to the largest positive real eigenvalue.

 e use of eigenvalues to analyze propagation phenomena 
over networks can be see for example in [88], where its usa-
bility for predicting the epidemic potential of viruses is 
demonstrated.

We use a linear regression to �t these features for the cal-
culated potential utilization, as well as a multiple linear regres-
sion to �t the potential utilization for the entire set of network 
properties. As can be seen in Figure 10, these features show a 
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utilization taken on all hourly networks, as a function of the 
maximal delay allowed (notice that this is in fact a lower 
bound, since we arti�cially prevent passengers from being 
merged with rides “outside” their hourly network). It can be 
seen that this produces a lower utilization than the previous 
calculation using the overall aggregation (approximately 10% 
decrease), caused by the fact that each pair of nodes has a lower 
probability of being connected.

We now extract a set of six common network properties 
for each tra�c-network ��� ,��, to be used as the features values 
representing each network.  ese features encapsulate various 
topological aspects of the network and enable us to project 
each hourly-collection of tra�c data (containing a large and 
apriorically unknown number of rides) into a single coordi-
nate in a 6-dimensional feature-space.

(1) Number of Nodes: the number of nodes in the net-
work �, denoted as |�|, representing the number of 
unique pick-up and drop-o� locations of rides made 
during this time window. Note that although all the 
networks refer to the same dataset, and the same geo-
graphic environment, di�erent networks may have 
di�erent values of |�|, since at di�erent time-seg-
ments di�erent locations may be “active”.

(2)  Number of Edges: the number of edges in the network 
�, denoted as |�|, representing the number of unique 
pick-up to drop-o� pairs of rides made during this 
time window.  is is also the number of nonzero 
elements of the temporal O’-D matrix that is derived 
from this network.

(3)  Network Density: the average degree of the network’s 
nodes, de�ned as |�|/|�|.  is property represents 
the average number of unique drop-o� locations per 
pick-up location (and vice versa) and is associated 
with the predictability of rides made during this time 
window, and is also related to the system’s entropy.
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Figure 9:  Potential of ride-sharing utilization, measured as the 
percentage of potentially merged rides (averaged over all sub-
networks), as a function of maximal delay agreeable by the passengers. 
 e �gure is based on the result presented [70].
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matrix over time.  e use of eigenvalues to analyze propaga-
tion phenomena over networks can be seen for example in 
[88, 89], where its usability for predicting the epidemic poten-
tial of viruses (both human and computer-based) is demon-
strated. Additional mathematical analysis on the role of 
eigenvalues in the analysis of network structures can be found 
in [90].  is property, known to encapsulate various behavio-
ral characteristics of the people whose mobility patterns the 
network is depicting, displays a clear (and easy to predict and 
understand) daily pattern, on top of which signi�cant and 
erratic spikes are added, as can be seen in Figure 12.  ese 
spikes seem to appear sporadically, lacking any clear patterns 
or internal regularity, implying again the need for understand-
ing the dynamic aspects of the network.

Now, let us perform a similar analysis over the potential 
ride-sharing utilization, looking at its evolution over time.  e 
results of this analysis, presented in Figure 7, clearly demon-
strate a similar dynamics to the couple of network properties 
mentioned earlier. Speci�cally, it can be seen that alongside the 
dominating daily pattern (and weaker, but still easy to see, 
weekly one), there are clear changes in the potential utilization. 
 ese changes take various shapes and forms, from sudden 
decrease in the daily peak (as can be seen around � = 1400), 
to changes in the intra-weekly peaks (the �rst week analyzed 
showing a ‘U-shaped’ form among its days, the second week 
showing an equal-peaks dynamics, and the third week showing 
an extremely high Monday and Tuesday, and weaker Wednesday, 
 ursday and Friday), and others. Surprisingly, the magnitude 
of these changes may even exceed the dominating daily pattern. 
For example, the change between the �rst Tuesday (around 
� = 200) and the third Tuesday (� = 4100) is 90% compared 
to the monthly average, whereas the average change in potential 
utilization between workdays and weekends is only 70%.

high correlation with the potential utilization for this hourly 
network (the �gure reports the adjusted � squared to account 
for the di�erent number of predictors).

4.3. Ride-Sharing Potential Prediction. In the previous section, 
we have shown that the monthly rides can be partitioned into 
hourly aggregative snapshots, each of di�erent characteristics 
(and speci�cally, network oriented ones), and di�erent ride-
sharing potentials. In addition, we have demonstrated the 
correlation between these network properties and the ride-
sharing potentials of the rides the corresponding networks 
are implied from (as appears in Figure 10). In this section, we 
discuss whether this correlation can also be used for predictive 
purposes. Speci�cally, can we deduce from the current values 
of various network properties how the change in the ride-
sharing potential compared to its current value.

In order to do so, we �rst analyze the evolution of various 
network properties of the hourly aggregative rides network ���,��+1
over time. Figure 11 illustrates the evolution of the mean nodes’ 
degree of the rides network as a function of time (that is, the 
average over all of the network’s nodes’ degrees, for all the dynamic 
hourly networks). For the sake of clarity, we have increased the 
time granularity used in the analysis, so that the hourly networks 
are now generated with 5-minute intervals, thus signi�cantly 
overlapping, and subsequently generating a smoother and easier 
to read graph.  e change from the monthly average of the mean 
degree as a function of time is portrayed, clearly showing a dom-
inant daily pattern. However, on top of this pattern we can see 
signi�cant hourly ̄ uctuations, tens of percent in magnitude.  is 
reveals the existence of strong volatility in the rides dynamics 
alongside the predicted daily and weekly dynamics.

A similar dynamics is observed when analyzing the evo-
lution of the largest eigenvalue of the rides-network’ adjacency 
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Figure 10: Adjusted �2 of the correlation between seven features of the hourly rides network and the potential ride-sharing utilization for 
this network. Most features have low quality of �t, but the combined mixture of all seven results in a remarkably high correlation (�2 = 0.82). 
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compared to the rides between � and � + 1.  at is, the change 
in the momentary ride-sharing utilization between “now” 
(time �) and “in an hour” (time � + 1). It is easy to see that 
this representation reveals a clear and strong negative corre-
lation between the two.

Trying to increase our lookahead and predict the change 
in the dynamic ride-sharing utilization from a 2 hours time-
frame, Figure 14 illustrates the correlation between the value 
of the largest eigenvalue of the rides network at time � and the 
change in the potential utilization between time � (aggregated 
to � + 1) and � + 2 (aggregated to � + 3). Again, a clear strong 
negative correlation is easily visible. For example, in times 
where the value of the largest eigenvalue of the rides network 
is smaller than 0.012, the potential ride-sharing utilization was 

At this point, we ask the following question: “can we �nd 
a statistical correlation between current values of the rides 
network properties and future values of the potential ride-shar-
ing utilization?”.  is question is of interest, as such a corre-
lation would allow us to predict future changes in the potential 
utilization, providing valuable tools for both ride-sharing 
users, operators, and regulators.

We �rst address this question by comparing network prop-
erties values at time � with potential utilization of at time � + 1
(1 hour prediction). Figure 13 presents an example of such a 
comparison, in the form of a scatter plot showing for each 
point in time � a dot whose X-axis is the mean nodes’ degree 
of the network ��,�+1 and whose Y-axis is the change in the 
potential utilization of the rides between � + 1 and � + 2
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Figure 11: Dynamics of the mean degree of the rides network nodes. X-axis denotes the time, given in 5 minutes granularity. Y-axis denotes 
the change of the mean degree of the network compared to its monthly average.
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Figure 12: Dynamics of the largest eigenvalue of the rides-dynamic network over time. X-axis denotes the time, given in 5-minute granularity. 
Y-axis denotes the change of the largest eigenvalue of the network compared to its monthly average.
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(400 m and 800 m, denoting the pick-up and drop-o� dis-
tances that still allow rides to be merged), 3 values of time 
tolerance (30 s, 2 minutes and 5 minutes, denoting the time 
passengers would be willing to wait in order to merge their 
rides) and 3 values of prediction horizon (no prediction, 
1 hour prediction and 2 hours prediction).  e results include 
a scatter plot of the data, e�ects of the various properties, 
ANOVA, and other statistical analyses as appearing in 
Supplementary Figures 17–34.

 e e�ectiveness of the prediction as a function of the 
prediction horizon (i.e., the distance between the point in time 
where the prediction is calculated and the point in time this 

statistically guaranteed (during the month of the observation) 
to signi�cantly increase in the coming 2 hours. Similarly, larg-
est eigenvalue of 0.014 would indicate a signi�cant decrease 
in the ride-sharing potential within the next 2 hours.

Figures 13 and 14 are based on the analysis of the �rst 3 weeks 
of January 2013.  ese observations were then validated using 
the last week of January, as can be seen in Figures 15 and 16.

Once demonstrating the predictive power of the dynamic 
network’s properties with respect to the network’s future 
ride-sharing potential, we can now construct a multiple linear 
regression model that would �t all of these 6 properties. We 
have created 18 models, for 2 values of distance tolerance 
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Figure 13: Change in potential ride-sharing utilization (Y-axis), 1 hour prediction, as a function of the mean degree of the rides network 
(X-axis).
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Figure 14: Change in potential ride-sharing utilization (Y-axis), 2 hours prediction, as a function of the largest eigenvalue of the rides network 
(X-axis).
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Supplementary Figures 41–46, created for a scenario with dis-
tance tolerance of 800 meters, time tolerance of 5 minutes, and 
prediction horizon of 2 hours.

5. Summary and Future Work

As the popularity of ride-sharing systems grow, its users-base 
gradually transform from early adopters to mainstream con-
sumers. Whereas the �rst are characterized by a keen a�ection 

prediction refers to) is illustrated in Supplementary Figures 
35–40, showing the �2 of the model (both ordinal and adjusted) 
as a function of the time horizon (between 0 and 12 hours), 
for several values of distance tolerance and time tolerance. It 
can clearly be seen that in general (and as expected) the accu-
racy of the model decreases with the increase in the prediction 
horizon used (that is, when the model tries to predict the 
behavior of the system further into the future).  

 e e�ect of each feature, depicted by the adjusted 
response plot for its various values, is presented in 
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Figure 15: Change in potential ride-sharing utilization (Y-axis), 1 hour prediction, as a function of the mean degree of the rides network 
(X-axis), created for the last week of the data.
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(an NP-hard optimization problem) in real-time and devel-
oped heuristics to quantify potential ride-sharing demand. 
�ese algorithms reroute trips in order to match them with 
similar, overlapping trips, explicitly capturing demand for 
ridesharing relative to passenger’s willingness to experience 
prolonged travel time. However, finding an optimal solution 
to this problem is not computationally plausible (even under 
extreme limitations of the problem’s space [94]), and even the 
calculation of approximation heuristics would be computa-
tionally intense when done ad-hoc. �erefore, the ability to 
use current traffic dynamics in order to predict properties of 
an efficient near-future ride-sharing scheme – such as the 
method we propose in this work – can be used to make this 
process significantly more efficient [95, 96].

Future work should focus on the analysis of the correlation 
we find in this paper, trying to detect traces of possible cau-
salities. Are network properties merely correlated with 
ride-sharing utilization, or do they possess an active influence 
over it? Evidence of the latter would enable us to offer urban 
designers and policy makers an innovative tool for encourag-
ing and facilitating the adoption of ride-sharing systems. 
Alternatively, incentives and fees could be better moderated, 
used as “remedies” in the case of a change in the travel patterns, 
in order to balance it and maintain a sustainable ride-sharing 
paradigm. Another approach could be the pipelining of the 
dynamic ride-sharing utilization forecast as the input of mod-
els intended to predict the benefits of ride-sharing on the 
overall traffic [97].

Recent works have demonstrated the benefit of tracking 
the network’s dynamics in order to improve collaborative deci-
sion making [98, 99]. A possible continuation of the current 
work can analyze ride-sharing optimization as a case of decen-
tralized decision-making process, using the technique that is 
presented here.

As the prediction of future ride-sharing potential is ulti-
mately needed for optimization purposes (of the overall travel 
time, congestion or any other utilization metric) of a dynamic 
coverage problem, comparing the performance of any pro-
posed method to the theoretical results that are available for 
various types of such decentralized collaborative coverage 
challenges (see [100–105] and specifically [106]) can also be 
of value.

Finally, as our suggested approach is agnostic to the actual 
route taken by the drivers it would be interesting to see 
whether the introduction of ride-sharing affects additional 
factors such as detours (that for a merged ride may become 
cost-effective), usage of toll-routes, etc.

Data Availability

�e taxi data used to support the findings of this study, 
encompassing a dataset of over 14 million individual taxi 
trips taken in New York City, are accessible at the NYC Taxi 
repository [19].
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for innovative solution that are powered by cutting edge tech-
nologies and aim to disrupt the governing paradigm in the 
field, the latter are o�en interested mainly in the advantages 
these services can offer them with as smallest change in their 
habits as possible. With respect to ride sharing, these new users 
are willing to sustain far less wait-time and are extremely more 
susceptible to inconvenience than their preceding tech-savvy 
innovation-hungry early users. �e key to a scalable mature 
ride-sharing infrastructure is found in the level of service such 
systems will provide, mainly measured by the availability of 
vehicles when they are needed. Alas, the availability maximi-
zation is immediately linked to a reduction in the financial 
savings that the service can offer. In other words, a further 
expansion of ride-sharing is being constrained among others 
by the ability to offer high utilization, defined as the ability to 
“merge” similar rides in a way that would not require the pas-
sengers to sustain more than a minimal delay in their trips.

�is optimization problem was extensively discussed in 
previous literature (comprehensive literature review can be 
found in Section 2). However, the conventional approach to this 
problem assumed a static environment which needs to be opti-
mized. By finding the optimal number of cars, or optimal pricing 
policy, the efficiency (or potential) of the system was assumed 
to be calculable in a robust way – a key component in the deci-
sion of operators where to deploy new systems, in the design of 
relevant urban legislations by municipal policy makers, and of 
course in the likelihood of passengers to use these services.

In this work we discussed the dynamic nature of ride-shar-
ing systems. Specifically, we were interested whether ride-shar-
ing utilization is stable over time (which coincides with the 
implicit assumption of most previous works in this field) or 
does it undergo significant and o�en rapid changes (which 
would imply the inherent inefficiency of schemes assuming a 
static nature). We modeled the ride-sharing utilization using 
the known New York Taxi dataset and clearly show that it is 
highly dynamic, and that any system that would be designed 
for the “average” utilization would be highly inefficient.

We then show that assuming a dynamic approach the taxi 
data can be modeled as a sequence of data-snapshots, resulting 
in a dynamic traffic-network model. Several recent works have 
shown that network features can effectively be used to predict 
a variety of events and properties, e.g., emergency situations, 
individuals’ personality and spending behaviors [91, 92]. We 
used a similar technique in order to project the taxi data as 
into a feature space comprised of topological features of the 
dynamic network implied by this traffic. �is (dynamic) fea-
ture space is then used to model the dynamics of ride-sharing 
utilization over time.

Using this approach we were able to demonstrate a clear 
correlation between the utilization of the ride-sharing system 
over time and several topological features of the network it 
creates. In addition, we demonstrated that the potential benefit 
of ride sharing expressed as the percentage of rides that can 
be shared with a limited discomfort for riders can also be pre-
dicted a few hours in advance. Such prediction can be used as 
a tool for an accurate short-term forecasting of the ride-shar-
ing potential in cities and metropolitan areas.

Researchers in [8, 51, 93] and others have focused on 
addressing the computational challenges of trip-matching  
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This study provides a literature review of the simulation-based connected and automated intelligent-vehicle studies. Media and
car-manufacturing companies predict that connected and automated vehicles (CAVs) would be available in the near future.
However, society and transportation systemsmight not be completely ready for their implementation in various aspects, e.g., public
acceptance, technology, infrastructure, and/or policy. Since the empirical field data for CAVs are not available at present, many
researchers develop micro or macro simulation models to evaluate the CAV impacts. This study classifies the most commonly
used intelligent-vehicle types into four categories (i.e., adaptive cruise control, ACC; cooperative adaptive cruise control, CACC;
automated vehicle, AV; CAV) and summarizes the intelligent-vehicle car-following models (i.e., Intelligent Driver Model, IDM;
MICroscopicModel for Simulation of IntelligentCruiseControl,MIXIC).The review results offer new insights for future intelligent-
vehicle analyses: (i) the increase in the market-penetration rate of intelligent vehicles has a significant impact on traffic flow
conditions; (ii) without vehicle connections, such as the ACC vehicles, the roadway-capacity increase would be marginal; (iii)
none of the parameters in the AV or CAVmodels is calibrated by the actual field data; (iv) both longitudinal and lateral movements
of intelligent vehicles can reduce energy consumption and environmental costs compared to human-driven vehicles; (v) research
gap exists in studying the car-following models for newly developed intelligent vehicles; and (vi) the estimated impacts are not
converted into a unified metric (i.e., welfare economic impact on users or society) which is essential to evaluate intelligent vehicles
from an overall societal perspective.

1. Introduction

With the advancement of the intelligent driving assis-
tance system (IDAS), automobile drivers are becoming less
required to perform simple driving tasks. An early stage of the
IDAS is a cruise control (CC) system, and this evolves toward
adaptive cruise control (ACC) and cooperative adaptive
cruise control (CACC) systems. These systems mainly assist
an acceleration control for longitudinal movements based
on the gap distance and speed difference between preced-
ing and current vehicles. In the meantime, connected and
automated vehicles (CAVs) have gained increasing attention
accompanied by tremendous investments from both public
and private sectors [1, 2].

Self-driving (automated) vehicles could play a significant
role in the future transportation system. Since this revolution-
ary conceptwas first introduced in 1920s, theCAV technology

has evolved drastically over the last several decades. Despite
the uncertainty as to when the CAV technologies will be
publicly available, they will likely have enormous impacts on
our transportation systems over the upcoming decades [3–8].

As of April 2009, Google’s self-driving cars (Waymo)
have been driven over eight million miles using a variety of
platforms [9, 10]. Numerousmanufacturers—includingAudi,
BMW, Cadillac, Ford, GM, Mercedes-Benz, Nissan, Toyota,
Volkswagen, and Volvo—have begun testing automated vehi-
cles, and they aim to sell such vehicles by 2020 [11, 12]. Mean-
while, partially automated vehicles are now available. The
current models are equipped with ACC, collision avoidance,
parking assist systems, and lane departure warning features
[10, 13].

Researchers acknowledge that the development of CAVs
will generate significant changes in our daily life and society
as a whole. To estimate the impacts of CAVs, the vastmajority
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of researchers have been conducting a simulation-based anal-
ysis because (i) the real field data on the CAV’s performance
are limited [14–16] and (ii) many studies deal with high
market shares for CAVs [17–19], which is hypothetical, far
from the current reality. It is crucial to understand the
impacts of CAVs early in their development to avoid costly
mistakes before their widespread implementation.

We can broadly categorize simulation-based studies into
micro and macro models according to a network scale and
fundamental models of the simulation. Most of the micro
simulation based studies reviewed in this paper develop
their own ACC, CACC, AV, or CAV car-following models
to estimate the impacts of these intelligent vehicles. That
is primarily because no car-following model had existed
to adequately describe the car-following characteristics of
intelligent vehicles. Such studies develop the commonly used
car-following models, e.g., IDM [20] and MIXIC [21], to
mimic intelligent-vehicle characteristics. On the other hand,
macro simulationmodel needs a traffic assignment procedure
which can be applied by using activity-based models [22–
25] or modified traditional four-step models [5]. Moreover,
each simulation study has applied a different approach and
examined a distinct performance measure(s) (e.g., micro
stability, throughput, acceleration, and headway profiles;
macro link traffic volume, link travel time, etc.). In this review
paper, we focusmainly on themicro simulation based studies
considering longitudinal dynamics.

There have been many newly developed car-following
models to analyze the impacts of the intelligent (ACC,
CACC, AV, and CAV) vehicles. However, the concepts of
the intelligent vehicles, terminologies, vehicle performances,
and evaluation criteria vary depending on the research topic.
To the best of our knowledge, there have been no review
studies summarizing the simulation-based intelligent-vehicle
studies and their impact analyses. The primary contributions
of this study are (i) to define intelligent-vehicle types with
the hierarchical classification; (ii) to offer a summary of the
simulation-based intelligent-vehicle studies and its impact;
(iii) to discuss the implications from the previous literature
and the limitations of previous studies.

The remainder of this paper is structured as follows.
In the following section, we define the most commonly
used intelligent-vehicle types and propose hierarchical clas-
sifications. Section 3 reviews intelligent-vehicle studies and
introduce the commonly used car-followingmodels for intel-
ligent vehicles. The intelligent-vehicle’s impacts and previous
studies’ limitations are described in Section 4. The paper
concludes with key implications/lessons learned from the
review results and our suggestion regarding potential future
studies.

2. Intelligent-Vehicle Classifications
and Definitions

Figure 1 illustrates the definitions of four key intelligent-
vehicle types with the hierarchical classification reporting the
related studies for each category, incorporating the sensing
and communications of intelligent vehicles. The ACC is an

advanced version of the earlier CC system. The primary
function of the CC vehicle is to maintain a desired speed set
by a driver. On the other hand, the ACC vehicle controls an
acceleration based on a distance gap and a speed difference
between preceding and current vehicles. In addition, the
ACC systems can appropriately accelerate and decelerate
with regard to preceding vehicles’ speed changes. The CACC
system includes a communication function, compared to
ACC, that shares the acceleration, deceleration, a breaking
capability, and vehicle positions through vehicle to vehicle
(V2V) communications [26]. The communication allows the
CACC vehicle to have a significantly shorter time headway
(i.e., 0.5 seconds) compared to the ACC (i.e., 1.4 seconds).
Moreover, the parameters are shared among the CACC-
platooned vehicles, so, theoretically, they do not need to guar-
antee the minimum safety distance. Many previous studies
show that CACC has the potential to improve both the traffic
flow [27] and the string stability [28]. The CACC system is
not commercially available for now but has been discussed
in many studies due to its potential capacity increase under
platoon driving. The IDAS’s ultimate goal is that humans do
not need to control vehicles at all. The USDOT [26] defines
the fully automated vehicle as the vehicle capable of full-time
automated driving under any road and environmental condi-
tions, while CAVs contain all AV functions with the V2V and
V2X functions. For highway sections, one of the key differ-
ences betweenCACCandCAVmight be an automated lateral
movement. Most of the CACC studies assume the lateral
movement is made by human drivers. The above-mentioned
vehicle concepts are completely new compared to the conven-
tional car-followingmovements developed for human-driven
vehicles.Therefore, the related terminologies and concepts in
the reviewed literature varies and are not firmly classified.

We categorize the literature according to the intelligent-
vehicle types. Such studies often use mixed definitions of the
intelligent-vehicle types. Therefore, we define the intelligent-
vehicle types used in each study and group them in the
appropriate category.

3. Connected and Automated
Vehicle Simulations

3.1. Simulation-Based Intelligent-Vehicle Studies. Tables 1 and
2 show the studies reviewed in this paper focusing on the
simulation-based intelligent-vehicle modeling studies and
their impact analyses. The review result shows that most
of studies focus on the car-following model development
for intelligent vehicles and examine their traffic impacts
(e.g., throughput, stability, vehicle speed). Several studies
estimate the energy and environmental impacts (e.g., fuel
consumption and emission) and safety impacts using travel
speed, time-to-collision (TTC), and post-encroachment-
time (PET). Our literature review offers a comparative
examination of the simulation-based models developed for
the intelligent-vehicle analysis. The review is conducted
examining the following criteria: (i) the objectives of the
study, (ii) basemodel, (iii) simulation scenarios, (iv) analyzed
vehicle types, (v) evaluation criteria, and (vi) main results.
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�e ACC system controls brake and throttle systems to maintain safe following 
distance based on a predefined speed and gap distance chosen by a driver [14, 29–32].

ACC

AVCACC CAV

CACC utilizes 
communication between 
the vehicles and/or the 

road structures including 
all functions of ACC. 
�e system enables 

platoon driving [2, 27, 
33–38]. 

�e full-time 
automated driving 
system under all 

roadway and 
environmental 

conditions that can be 
managed by a human 
driver [17–19, 39, 40].

�e full-time automated 
driving system 

including both the 
CACC and AV features

[15, 41–46].

(a) References: ACC [14, 29–32], CACC [2, 27, 33–38], AV [17–19, 39, 40], and CAV [15, 41–46]

CACC and CAV

ACC and AV

Measuring the range and rate via radar, lidar or video processing

Receiving acceleration information directly through communication

(b)

Figure 1: (a) intelligent-vehicle definitions with their classifications, (b) illustrations of sensing and communications by intelligent vehicles.
Source: Figure 1(b) [18].

Because the use of intelligent vehicles on public roads
will gradually increase under mixed-traffic situations with
manual vehicles, many studies adopt a variety of scenarios
regarding different market-penetration rates of intelligent
vehicles. A small number of studies simulate only extreme
100% penetration rate of intelligent vehicles with no consid-
eration of gradual growths [17, 32].

One interesting observation is that most analyzed vehi-
cle types are limited to our four vehicle categories (see
Figure 1). However, the studies barely consider manual
vehicles equipped with V2V communication transponders,
which send the current location and speed of the vehicle to
the nearby intelligent vehicles. One study by Shladover, Su
[27] defines these vehicle-awareness device (VAD) equipped
manual vehicles as the “Here I Am” (HIA) vehicle. The
result shows that the increase in the HIA vehicles can also
contribute to the improvement of road capacity.

In terms of results, many of simulation-based studies
found consistent outcomes in terms of traffic performance:
throughput increases with higher intelligent-vehicle pene-
tration rates, while some contradictory results exist for the
ACC vehicles’ performance. For instance, Kesting, Treiber
et al. [14, 31] conclude that the ACC vehicle can improve
road capacity under small penetration, but the results by
VanderWerf, Shladover [32] and Shladover, Su [27] show

the ACC vehicles’ impact might be marginal. Meanwhile, a
research gap exists regarding inconsistency in the previous
studies’ assumptions, scenarios, and evaluation criteria.

Our review result shows that the IDM andMIXICmodels
are the most often used models, as benchmark car-following
models. Several studies tried to modify these models to
explain the longitudinal movements of intelligent vehicles
(e.g., IDM [14, 30, 31, 46] and MIXIC [45, 52, 62]). Both
models and their applications are discussed in further detail
in the following sections.

3.2. Car-Following Models for Intelligent Vehicles. Because
of the newly introduced unprecedented systems, we need
new car-following models to simulate intelligent vehicles.
Conventional car-following models are developed based on
human-driving characteristics. However, intelligent vehicles
have different car-following characteristics.The accompanied
sensor technology allowsCAVs to see the down-stream traffic
situations beyond human drivers’ visibilities. Furthermore,
the agile CACCs and CAVs communicate (e.g., V2V or V2X)
with each other in order to improve traffic streams. Recently,
there have been the research efforts to develop intelligent-
vehicle car-following models by enhancing the conventional
car-following models (e.g., IDM [14, 30, 31, 46] and MIXIC
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Table 1: Simulation-based intelligent-vehicle studies: objectives, models, and scenarios.

Ref # Objectives Base model(s) Scenarios

[32]

Develop the ACC and
CACC car-following

models and estimate their
impact.

An error-based control
law for the ACC and

CACC.
The lane change is under

human control.

A 100% market-penetration rate of each vehicle
type.

[29]

Examine the ACC vehicles’
lane-changing effects
compared to manual

vehicles.

Manual vehicle: Pipes
model [47].

ACC model from [48].
Comprehensive Modal

Emissions Model
(CMEM).

Position of ACC vehicles (2, 4, 6, 8th in the
string of 10 vehicles).

Market-penetration rate of ACC (5%, 10%, 15%
and 30%).

[31]

Propose the ACC-based
traffic-assistance system

intended to improve traffic
flow and road capacity.

IDM Market-penetration rate of ACC (0%, 5%, 15%
and 25%).

[14]

Propose the ACC-based
traffic assistance system
aimed at improving the
traffic flow and road

capacity.

IDM Market-penetration rate of ACC (0%, 5%, 15%
and 25%).

[30]
Propose the new ACC

car-following model with
its impact analysis

IDM with
constant-acceleration
heuristic (CAH).

Market-penetration rate of ACC (10%, 20%,
30%, 40%, and 50%).

[18]

Propose an analytical
framework to estimate the
AVs’ impacts on highway

sections.

Car-following model for
manual vehicles in

[49, 50].
First order control law

for AVs.

Different combinations of manual vehicles,
AVs, and CAVs (0-100 % by 10% gap).

[19]
Develop an improved

cellular automaton as an
AV modeling platform.

Cellular Automaton

The lane-changing rules in the same and
opposite direction.

Market-penetration rate of ACC (0%, 50%, and
100%).

[46]

Develop a cooperative IDM
(CIDM) to examine the

system performance under
different proportions of the

AVs.

The Full Velocity
Difference

Model (FVDM) and
IDM.

Market-penetration rate of the AVs (0%, 5%,
15%, and 25%).

[45]

Propose an acceleration
framework to address the

limitations of
micro-simulation models
in capturing the changes in
driver behavior in a mixed

environment.

MIXIC model for the AV
modeling.

IDM for the CAV
modeling.

Market-penetration rate of the CAVs and AVs
(0%, 20%, 40%, 60%, 80%, and 100%).

[44]

Develop a
micro-simulation

framework for CAVs to
analyze the impact on fuel
consumption and travel

time.

Optimal control for
CAVs.

Gipps model for manual
vehicles [51].

Two single-lane merging roadways where
CAVs communicate to each other.

[15]

Propose a
hardware-in-the-loop

(HIL) testing system for the
CAV applications.

Hardware-in-the loop
(HIL) testing.

Type I: String leader’s smooth acceleration and
deceleration between 20-30mph.

Type II: Sharp brakes from 30mph to 10mph
and quick recovery to 30mph.

Type A: Perfect communication/radar.
Type B: Compromised communication/radar
(radar delay 100ms; radar noise = 0.05; DSRC
Latency = 100ms and DSRC Packet Loss =10%).
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Table 1: Continued.

Ref # Objectives Base model(s) Scenarios

Examine the impact of the
CACC vehicles on traffic
flow characteristics of a
multilane highway.

IDM

Arrival rate scenarios: 7,000v/h (moderate),
8,000v/h (saturated),

9,000v/h (oversaturated), 10,000v/h
(oversaturated).

Penetration rates of CACC varied in multiples
of 20% (truck is fixed in 10%).

[52]

Develop a simulation
framework to facilitate the
heavy-duty vehicle (HDV)
platooning and establish
the related concept and

operations.

Carbon dioxide emission
model [53].

The HDM platoon
model with the
ACC/CACC

car-following model.

Average density, average travel time, and
average travel speed.

[17] Investigate AVs’ impact on
traffic performance.

Calibration on car
following model
(Wiedemann 99).

Lane changing behavior
based

on a research project
[54].

Each vehicle type of a 100%
market-penetration rate.

[37]

Extend the CACC
modeling framework to

incorporate new algorithms
describing the interactions
between the CACC and
manual vehicles in mixed

traffic.

The CACC model
reported in [55].

The anticipatory lane
change (ALC) for lane

changing.

Market-penetration rate of the CACC (0%,
20%, 40%, 60%, 80% and 100%).

[36]

Investigate the impact of
the CACC vehicle string

operation on the capacity of
multilane highway with
merging bottlenecks.

The ACC and CACC
car-following models

developed [33].

Market-penetration rate of the CACC (0%,
20%, 40%, 60%, 80% and 100%).

[56]

Propose a new algorithm
for the CACC systems for
collaborative driving based

on the use of agent
technology and

information sharing.

Effective CACC
(ECACC) algorithm
consists of speed and

distance control
algorithms.

Market-penetration rate of the CACC (0%,
20%, 40%, 60%, 80% and 100%).

[27]

Estimate the effect on
highway capacity of varying
market-penetrations of

vehicles with the ACC and
the CACC.

The manual vehicle:
NGSIM oversaturated

freeway flow model [57].
ACCs: Proprietary to

Nissan.
CACCs: Car-following
behavior was described

[33].

The ACC and CACC vehicles 10 % increase
proportion.

[21]
Investigate the impact of
the CACC on traffic-flow

characteristic.
MIXIC model Market-penetration rate of the CACC (0%,

20%, 40%, 60%, 80% and 100%).

[58]

Develop the models of both
ACC and CACC control
systems based on real
experimental data.

IDM

Ten consecutive CACC and five consecutive
ACC vehicles.

A mixed case, where the two first followers are
ACC-equipped and the next seven are

CACC-equipped.
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Table 1: Continued.

Ref # Objectives Base model(s) Scenarios

[59]

Estimate the emissions and
energy use (i.e., fuel

consumption) associated
with an Automated

Highway System (AHS)
using advanced simulation

modeling tools.

Smart AHS framework
developed at PATH

program.
Congestion levels (LOS A - F).

[60]

Analyze roundabout safety
level in the circumstances
where different numbers of
the AVs are mixed with

manual vehicles.

Safety impact: Surrogate
Safety Assessment
Model (SSAM).
Manual vehicles:
Wiedemann 74.

AVs: VISSIM parameter
adjustment.

Market-penetration rate of the AVs (0%, 10%,
25%, and 50%).

[61]

Develop the
decision-making CAV
control algorithm in the

VISSIM for safety
evaluations.

Safety impact: SSAM.
CAV: External driver
model API written in

C++.
Manual vehicles:
Wiedemann 99.

Market-penetration rate of the CAVs (0%, 25%,
50%, 75%, and 100%).

Daily based estimation, Monday to Friday.

[45, 52, 62]). In this section, we summarize the commonly
used car-following models adapted for intelligent vehicles.

3.2.1. Intelligent Driver Model (IDM). In this section, we dis-
cuss the IDM, first developed by Treiber, Hennecke [20]. The
IDM is the most commonly used model for the intelligent-
vehicle simulations because it is one of the simplest and
accident-free models producing realistic acceleration profile
in a single lane situation [63]. The IDM is closer to the ACC
vehicles than to human-driven vehicle characteristics because
it does not have an explicit reaction time and is given in
a continuously differentiable acceleration function [63]. By
changing some parameters, we can use the IDM itself as ACC
or a human-driven vehicle model. Additionally, the modified
IDM is applied to simulate CAVs [46]. The basic function of
IDM is as follows:

𝑎𝐼𝐷𝑀 (𝑠, V, ΔV) = 𝑑V
𝑑𝑡

= 𝑎 [1 − ( V
V0

)𝛿 − (𝑠∗ (V, ΔV)
𝑠 )2]

(1)

𝑠∗ (V, ΔV) = 𝑠0 + V𝑇 + VΔV
2√𝑎𝑏 (2)

where 𝑠 denotes the current distance to the preceding vehicle,𝑠0 denotes the minimum gap, 𝑠 ∗ (V, ΔV) denotes desired
(safety) gap, V denotes the current speed, V0 is the desired
(safety) speed, ΔV is speed difference between the current
vehicle and the preceding vehicle, 𝛿 is the parameter that
decides the magnitude of acceleration decrease depending
on the velocity V, 𝑇 denotes the constant desired gap, and 𝑎
and 𝑏 denote comfortable acceleration and deceleration rates,
respectively.

The IDM results in plausible acceleration and deceler-
ation rates in most situations. However, when the current

vehicle gap is significantly lower than the desired gap, the
deceleration rate becomes unrealistically high. In fact, when
it comes to the human-driven vehicles, drivers assume that
the preceding vehicle will not suddenly stop with the hardest
deceleration without any reason. Therefore, the current gap
smaller than the desired gap distance is considered a relatively
mild-critical situation [64]. To address this issue, Kesting,
Treiber [30] combined the IDM and the Constant Acceler-
ation Heuristics (CAH) to limit the unrealistic deceleration
rates. The fundamental assumption of the CAH model is
that the preceding vehicle will not change its acceleration
suddenly in following few seconds.

There are three underlying conditions of the CAH: (i)
the acceleration of the vehicle under consideration and the
preceding vehicle will not change in the applicable future
(generally, a few seconds); (ii) no safe time headway or
minimum distance is required at any moment; and (iii)
drivers react without delay (zero reaction time) [30].

For given actual values of the gap 𝑠, current speed V,
the preceding vehicle speed V1, and its acceleration 𝑎1, the
maximum acceleration 𝑎𝐶𝐴𝐻 that prevents crashes is given by

𝑎𝐶𝐴𝐻 (𝑠, V, V1, 𝑎1)

=
{{{{{{{

V2𝑎𝑙
V21 − 2𝑠𝑎𝑙 if V1 (V − V1) ≤ −2𝑠𝑎𝑙,
𝑎𝑙 (V − V1)2 𝜃 (V − V1)2𝑠 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(3)

where the effective acceleration 𝑎𝑙 =min (𝑎1, V) is used to avoid
artefacts thatmay be caused by preceding vehicleswith higher
acceleration capabilities. The condition V1(V − V1) ≤ −2𝑠𝑎𝑙 is
true if the vehicles have stopped at the time that theminimum
gap s = 0 is reached. Otherwise, negative approaching rates do
not make sense to the CAH and are therefore eliminated by
the Heaviside step function Q.
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Table 2: Simulation-based intelligent-vehicle studies: analyzed vehicle types, evaluation criteria, and main results.

Ref # Analyzed
vehicle types Evaluation criteria Main results

[32] Manual vehicle,
ACC, CACC Throughput

Throughput of the manual, ACC, and CACC vehicles were,
respectively,

2,050, 2,200, and 4,550 vehicles/h.

[29] Manual vehicle,
ACC

Fuel consumptions
and environmental
effect (CO, HC, CO2,

NOx)

The smooth response of the ACC vehicles has a beneficial effect
on the environment.

These benefits vary with the levels of the disturbance, the
position of the ACC vehicle in the string of manually driven

vehicles and the ACC vehicle penetration.

[31] Manual vehicle,
ACC Throughput

A small proportion (5%) of ACC vehicles can improve the traffic
flow.

An increasing proportion of ACC vehicles reduces traffic
congestion.

[14] Manual vehicle,
ACC Throughput

ACC vehicles improve the traffic stability and the road capacity.
25% of ACC eliminates traffic congestion during simulation (the
cumulated travel time without ACC vehicles is 4,000 hours, but

with 25% ACC vehicles 2,500 hours).

[30] Manual vehicle,
ACC Throughput 1% more ACC vehicles will lead to an increase in the road

capacities by about 0.3%.

[18] Manual vehicle,
CAV, AV Throughput

Increasing CAVs will have significant implications on the road
capacity of highways.

Road capacity efficiency will be dependent on the level of
automation.

The lane capacity increases from 2,046 to 6,450
vehicles/hour/lane with CAVs increases from 0% to 100%.

[19] Manual vehicle,
AV Throughput

AVs could considerably improve traffic flow.
The lane-changing frequency between neighboring lanes

evolves with traffic density.
AV lane changing seems to be much less pronounced than that

of the AV car-following.

[46] Manual vehicle,
CAV

Average speed
dispersion, travel
time, space mean

speed

Increasing percentage of AVs will reduce the total travel time
and smooth traffic oscillations.

[45]
Manual vehicle,

connected
vehicle, AVs

Stability and
throughput

CAVs can improve string stability, and automation is more
effective in preventing shockwave formation and propagation.
Substantial throughput increases under certain penetration

scenarios.

[44] Manual vehicle,
CAV

Fuel consumption,
travel time,
throughput

CAVs can contribute to significant fuel consumption and travel
time reduction.

CAVs allow for more stable traffic patterns even for high density
traffic.

[15] Manual vehicle,
CAV

Speed, vehicle
position profile

Effectiveness of the CACC in absorbing certain disturbance and
oscillation of speeds.

Speed oscillation decreases as vehicle position in the string
increases.

Perfect communication/radar contributes string stability.

Manual vehicle,
CACC Throughput

A low-to-moderate penetration rate of CACC, the CACC
impact is not statistically significant (advantages observed with

a 40% or more CACC).
A very large improvement is noticed at a high penetration rate

of CACC, especially in high traffic conditions.
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Table 2: Continued.

Ref # Analyzed
vehicle types Evaluation criteria Main results

[52]
Manual vehicle,
HDV with ACC,
CACC functions

Fuel consumption
Space mean speed

The increasing HDV platooning in traffic flow results in more
dramatic improvements on traffic efficiency.

Deceleration of the first HDV to a low speed during platoon
formation will increase the formation time to a large extent in

medium and heavy traffic.

[17] Manual vehicle,
AV

Average density
Average travel time
Average travel speed

The average density of autobahn segment remarkably improved
(8.09%) during p.m. peak hours in the AV scenario.

The average travel speed enhanced relatively by 8.48%.
The average travel time improved by 9.00% in the AV scenario.

[37] Manual vehicle,
CACC Throughput

Freeway capacity is 90% higher in a 100% CACC penetration
compared to 0%.

The capacity increase is insignificant under low to medium
CACC market-penetrations (e.g., 20–60%) in the absence of

additional management strategies.

[36] Manual vehicle,
CACC Bottleneck capacity

The freeway capacity increases quadratically as the CACC
increases, with a maximum of 3080 vehicles/hour/lane at 100%

CACC penetration.
The disturbance from the on-ramp traffic can reduce the

freeway capacity by up to 13% but the bottleneck capacity still
increases in as CACC increase.

There is very little gain in merge bottleneck capacity as CACC
penetration increases from 0% to 20% when the on-ramp

demand is high.
A rapid increase in bottleneck capacity from 80% to 100%
CACC penetration, especially with high on-ramp inputs.

[56] Manual vehicle,
CACC Throughput

The congestion reduction is higher when the
market-penetration rate of the CACC-equipped vehicle

increases. At a low penetration rate, the effect of the CACC on
traffic dynamics is not significant.

[27]

Manual vehicle,
ACC, CACC,
and Here-I-Am
(HIA) vehicle

Highway throughput

The use of ACC was unlikely to change lane capacity
significantly.

The CACC can increase capacity greatly after its
market-penetration reached moderate to high percentages
(4000 vehicles/hour if all are the CACC or vehicle awareness

device-VAD equipped).
The capacity benefits of CACC can be accelerated at somewhat

lower market-penetrations, if the rest of the vehicles are
equipped with VADs.

[21] Manual vehicle,
CACC Throughput

The CACC can improve traffic-flow characteristics.
A low market-penetration rate of the CACC (< 40%) would not

have an impact on the throughput.

[58]

Four ACC and
CACC

experimental
vehicles

Speed, distance gap,
time gap

The IDM controller in the experimental test vehicles does not
perceptibly follow the speed changes of the preceding vehicle.

Strings of consecutive ACC vehicles are unstable, amplifying the
speed variations of preceding vehicles.

Strings of the consecutive CACC vehicles overcome these
limitations, providing smooth and stable car following

responses.

[59]

Manual vehicle
Non-platooned

AVs
Platooned AVs

Fuel consumption
Emissions (HC, CO,

NOx)

The AHS has much lower average fuel consumption operating
under congested conditions, because of its smoother traffic flow,

but slightly lower average fuel consumption at free-flow.
The AHS operating at 60 mph has substantially lower emissions
per vehicle-mile traveled than non-automated traffic at the same

average speed.
Vehicles that platoon in an AHS can expect additional 5 - 15%
fuel savings and emission reduction due to the aerodynamic

drafting effect.
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Table 2: Continued.

Ref # Analyzed
vehicle types Evaluation criteria Main results

[60]

Manual vehicle,
Heavy

commercial
vehicle-HGV,

AVs

Average travel speed
An increase of travel speed and decrease of average stop delay

with the increase of percentage of the AVs.
Increases in estimated crash number at roundabouts when the

AVs percentage is increased in terms of rear-end conflict.

[61] Manual vehicle
CAV

Conflicts based on the
threshold values of
TTC (1.5 seconds)

and PET (5 seconds).

The CAVs bring about compelling benefit to road safety as
traffic conflicts significantly reduce even at relatively low

market-penetration rates
(12–47%, 50–80%, 82–92% and 90–94% for 25%, 50%, 75% and

100% CAV penetration rates respectively).

By combining acceleration from the IDM and the CAH,
Kesting, Treiber [30] proposed the ACCmodel as formulated
in (4). The ACC model produces different acceleration rates
based on the IDM or the CAH depending on the following
conditions.TheACCmodel produces the same acceleration if
both the IDM and the CAH reach the same acceleration out-
put. If the IDMproduces the unrealistically high deceleration,
while the CAH deceleration is in comfortable deceleration

range, the situation is considered to be mildly critical, and
the ACC acceleration stays above the CAH acceleration
minus the comfortable deceleration. If both the IDM and
the CAH result in acceleration significantly below −b, the
situation is seriously critical, and the ACC acceleration must
not be higher than the maximum of the IDM and CAH
acceleration. The ACC acceleration should be a continuous
anddifferentiable function of the IDMandCAHacceleration.

𝑎𝐴𝐶𝐶 = {{{{{
𝑎𝐼𝐷𝑀 𝑎𝐼𝐷𝑀 ≥ 𝑎𝐶𝐴𝐻,
(1 − 𝑐) 𝑎𝐼𝐷𝑀 + 𝑐 [𝑎𝐶𝐴𝐻 + 𝑏 tanℎ (𝑎𝐼𝐷𝑀 − 𝑎𝐶𝐴𝐻𝑏 )] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (4)

The ACC model contains one additional parameter 𝑐 com-
pared to the IDM. 𝑐 is named as a coolness factor. When𝑐 = 0, the ACC model reverts to the IDM, while if 𝑐 = 1, the
sensitivity of gap changes vanishes under small gaps and no
velocity difference exists. Kesting, Treiber [30] have assumed
c =0.99 (see Table 1).

Zhou, Qu [46] developed the cooperative intelligent
demand model (CIDM) using the IDM as the benchmark
model and examined the system performance of CAVs.
Communication of the CAV is applied by using the concept
of spatial anticipation in the human driver model (HDM)
[65, 66].TheHDManticipation is applied to the CIDMwhich
splits the IDM’s 𝑎𝑛 into (5) based on (1).

𝑎𝑛 (Δ𝑥, V𝑛, ΔV) = 𝑎𝑓𝑟𝑒𝑒𝑛 + 𝑛−1∑
𝑚

𝑎𝑖𝑛𝑡𝑛𝑚 (Δ𝑥𝑛𝑚, V𝑛, ΔV𝑛𝑚) (5)

The base IDM (1) consists of two parts: one is the acceleration
term comparing the current speed v to the desired speed
𝑎𝑓𝑟𝑒𝑒 = 𝑎(1 − (V/V0)𝛿), and another one is the breaking term
𝑎𝑏𝑟𝑒𝑎𝑘 = −𝑎(𝑠∗(V, ΔV)/𝑠)2 that compares the current distance
with the desired distance 𝑠∗. In (5), 𝑎𝑓𝑟𝑒𝑒𝑛 is the same definition
of 𝑎𝑓𝑟𝑒𝑒(V), and 𝑎𝑖𝑛𝑡𝑚𝑛 is the same definition of 𝑎𝑏𝑟𝑒𝑎𝑘 in (1) with
the consideration of V2V interaction.

3.2.2. The MICroscopic Model for Simulation of Intelligent
Cruise Control (MIXIC). To estimate the impact of intelligent

vehicles, the modeling framework should be able to ana-
lyze different assumptions of intelligent-vehicle character-
istics according to different functionalities. Furthermore,
the modeling frameworks should be capable of estimating
their impacts on traffic performance, safety, fuel consump-
tion, emission, and noise emission. With consideration of
these requirements, a stochastic simulation model MIXIC
is developed by Van Arem, De Vos [62]. As an early
developed intelligent-vehicle model, the MIXIC is one of the
most applied models for the cooperative intelligent-vehicle
simulations. The reasons behind its widespread application
are the following: (i) The MIXIC model incorporates the
V2V communication by sharing speed, acceleration, and/or
braking capabilities between the preceding and current
vehicles. Such model capability allows better simulations of
the characteristics of CACC. (ii) The model is calibrated
for different two-, three-, and four-lane situations, which
results in a well-adjusted traffic flow model, corresponding
to real-life situations. Additionally, the MIXIC results were
found reliable where the detailed calibration of vehicles’
performances is not available [62]. In this section, we discuss
the basic MIXIC model and its applications.

For the basic MIXIC model [21], the acceleration sys-
tem can be divided into two distinct components: (i) the
acceleration controller delivering reference values and (ii) a
vehicle model transforming the reference values into actually
realized values. Therefore, the reference acceleration is deter-
mined by a controller and then fed into the vehicle model.
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The reference acceleration (6) can be computed based on
the difference between current and intended speed (𝑎𝑟𝑒𝑓V) or
the distance and the speed (𝑎𝑟𝑒𝑓𝑑) differences between the
current vehicle and the preceding vehicle. The acceleration
demand is given by the most restrictive one of the two. The
acceleration (2m/𝑠2) and deceleration (-3m/𝑠2) are limited for
driver comfort.

𝑎𝑟𝑒𝑓 = min (𝑎𝑟𝑒𝑓V , 𝑎𝑟𝑒𝑓𝑑) (6)

where V𝑖𝑛𝑡 and V denote the intended and the current speed
of the CACC vehicle in meters per second. The reference
acceleration demand based on speed difference is given by

𝑎𝑟𝑒𝑓V = 𝑘 ∙ (V𝑖𝑛𝑡 − V) (7)

where k as a constant speed-error factor.
The distance-based reference acceleration computation

is slightly more complex. Let V𝑝 denote the speed of the
preceding vehicle and let 𝑟 and 𝑟𝑟𝑒𝑓 denote the current
and reference clearances relative to the preceding vehicle in
meters, respectively. Let 𝑎𝑝 denote the acceleration of the
preceding vehicle. The reference acceleration based on the
distance and speed difference between current and preceding
vehicles is given by

𝑎𝑟𝑒𝑓𝑑 = 𝑘𝑎 ∙ 𝑎𝑝 + 𝑘V ∙ (V𝑝 − V) + 𝑘𝑑 ∙ (𝑟 − 𝑟𝑟𝑒𝑓) (8)

with 𝑘𝑎, 𝑘V, and 𝑘𝑑 being constant factors frequently used in
previous studies [45, 67] as 1, 0.58𝑠−1, and 0.1𝑠−2, respectively.

The reference clearance 𝑟𝑟𝑒𝑓 is defined as the maximum
value among the safety following distance (𝑟𝑠𝑎𝑓𝑒), the follow-
ing distance according to the system time setting (𝑟𝑠𝑦𝑠𝑡𝑒𝑚), and
a minimum allowed distance (𝑟𝑚𝑖𝑛), set at 2 meters.

𝑟𝑟𝑒𝑓 = max (𝑟𝑠𝑎𝑓𝑒, 𝑟𝑠𝑦𝑠𝑡𝑒𝑚, 𝑟𝑚𝑖𝑛) (9)

The safe following distance (𝑟𝑠𝑎𝑓𝑒) is computed using the
current vehicle speed (V), deceleration capability of the
preceding vehicle (𝑑𝑝), and the current vehicle (d).

𝑟𝑠𝑎𝑓𝑒 = V2

2 ∙ ( 1
𝑑𝑝 − 1

𝑑) (10)

For simplicity, the MIXIC model assumes a communication
delay to be zero. In addition, the current and preceding
vehicles can share braking capabilities using a V2V com-
munication. The communication information includes the
precise speed, acceleration, maximum braking capability,
warnings regarding hazards in front, and fault warnings. The
following distance according to the system time-gap setting
is given by

𝑟𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑡𝑠𝑦𝑠𝑡𝑒𝑚 ∙ v (11)

where 𝑡𝑠𝑦𝑠𝑡𝑒𝑚 is assumed as 0.5 seconds if the preceding
vehicle has the CACC function and 1.4 seconds otherwise.

Talebpour and Mahmassani [45] developed the CAV
model based on the MIXIC model considering sensor detec-
tion ranges of CAVs. The study uses individual sensors to

create the input data for the MIXIC model. The assumed
sensors are Smart-Micro Automotive Radar (UMRR-00 Type
30) with 90 m ± 2.5% detection range and ±35 horizontal
Field of View (FOV). Each sensor updates the sensing
information every 50 milliseconds and can track up to 64
objects.

The fundamental assumption of the study is that the
speed of AVs is low enough to allow it to stop at the
sensor detection range since an autonomous vehicle can
observe vehicles only in its sensor detection range. This is
equivalent to the assumption that there is a vehicle at a
complete stop right outside of the sensor detection range.
Moreover, if a preceding vehicle is spotted, it is reasonable
to assume that the speed of the autonomous vehicle should
be low enough to allow stopping if its preceding vehicle
decides to decelerate with its maximum deceleration rate and
reach a full stop. Considering the maximum of the possible
deceleration for the autonomous vehicle and its leader, we can
calculate the maximum of the safe speed using the following
equations:

�𝑋𝑛 = (𝑋𝑛−1 − 𝑋𝑛 − 𝑙𝑛−1) + V𝑛𝜏 + V2𝑛−12𝑎𝑑𝑒𝑐𝑐𝑛−1 (12)

�𝑋𝑛 = min (𝑆𝑒𝑛𝑠𝑜𝑟𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑛𝑔𝑒,�𝑋𝑛) (13)

V𝑚𝑎𝑥 = √−2𝑎𝑑𝑒𝑐𝑐𝑖 �X (14)

where 𝑛 and 𝑛 − 1 denote the autonomous vehicle and its
leader, respectively. 𝑋𝑛 is the location of vehicle n, 𝑙𝑛 is the
length of vehicle 𝑛, V𝑛 is the speed of vehicle n, 𝜏 is the reaction
time of vehicle n, and 𝑎𝑑𝑒𝑐𝑐𝑛 is the maximum deceleration of
vehicle n.Then, the acceleration of a vehicle can be calculated
by

𝑎𝑑𝑛 (𝑡) = 𝑘𝑎𝑎𝑛−1 (𝑡 − 𝜏) + 𝑘V (V𝑛−1 (𝑡 − 𝜏) − V𝑛 (𝑡 − 𝜏))
+ 𝑘𝑑 (𝑠𝑛 (𝑡 − 𝜏) − 𝑆𝑟𝑒𝑓)

(15)

where S𝑛 is the spacing and s𝑟𝑒𝑓 is the maximum of the
following three values: the minimum distance (s𝑚𝑖𝑛), the
following distance based on the reaction time (s𝑠𝑦𝑠𝑡𝑒𝑚), and
the safe following distance (s𝑠𝑎𝑓𝑒). In the study by Talebpour
and Mahmassani [45], the minimum distance is set at 2.0
meters and s𝑠𝑦𝑠𝑡𝑒𝑚 and s𝑠𝑎𝑓𝑒 are calculated as follows.

𝑠𝑠𝑎𝑓𝑒 = V2𝑛−12 ( 1
𝑎𝑑𝑒𝑐𝑐𝑛 − 1

𝑎𝑑𝑒𝑐𝑐𝑛−1 ) (16)

𝑠𝑠𝑦𝑠𝑡𝑒𝑚 = V𝑛𝜏 (17)

Finally, the acceleration of the autonomous vehicle can be
calculated using the following equation:

𝑎𝑛 (𝑡) = min [𝑎𝑑𝑛 (𝑡) , 𝑘 (V𝑚𝑎𝑥 − V𝑛 (𝑡))] (18)

where k is a model parameter which is the same as the basic
MIXIC model [45].
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4. Discussions

In this section, we summarize the literature review results
regarding intelligent vehicle’s impacts according to differ-
ent vehicle types and performance measures. Addition-
ally, the limitations and implications from previous studies
are discussed. An increasing number of researchers have
been studying intelligent vehicles with a recognition of
its potential impacts on the future transportation system.
However, important future impacts/developments remain
uncertain, i.e., the capacity increase, the market-penetration
growth, safety issues, public acceptance, regional economic
impact, and/or future policies. Under such uncertain-
ties, many researchers conduct simulation-based intelligent-
vehicle analysis based on their own assumptions. However,
the concept, assumptions, and even terminologies across
various studies are inconsistent and even conflicting because
the real-life data acquisition is not accessible at present. Our
review results offer the following insights into simulation-
based intelligent-vehicle studies.

First, we notice thatmost studies predict that the through-
put could be increased with growing market-penetration
rates of intelligent vehicles under the mixed-traffic condition
with manual vehicles [14, 18, 19, 27, 30–32, 36, 37, 45].
However, the results are contradictory regarding vehicle
types. The ACC studies conducted by Kesting, Treiber et
al. [14, 31] show that the small portion (5%) of ACCs
can still improve lane capacity. Furthermore, approximately
25% of the ACC eliminates traffic congestion during their
simulation. In addition, Kesting, Treiber [30] estimate the
road capacity elasticity of the ACC penetration: 1% more
ACCs can increase road capacity by about 0.3%. Conversely,
a few other studies have been skeptical regarding the ACC
vehicles’ impacts on road capacity. VanderWerf, Shladover
[32] show that the ACC road capacity impact (i.e., 2,200
vehicles/hour/lane) could be minor compared to manual
vehicles (i.e., capacity 2,050 vehicles/hour/lane) while the
CACC could offer a significant impact (i.e., capacity up
to 4,550 vehicles/hour/lane). Moreover, Shladover, Su [27]
conclude that ACCs are not likely to change lane capacity
significantly while the CACC can substantially contribute
with moderate to high penetration rates (e.g., approximately
4,000 vehicles/hour/lane when all vehicle are the CACC or
VAD-equipped vehicles).

Meanwhile, most CACC and CAV simulation studies
estimate a positive road capacity increase with increasing
market-penetration rates. Olia, Razavi [18] simulate the
CAVs under mixed-traffic conditions with the assumption of
increasing 10% gap of CAVs. The result shows a 100% pene-
tration rate of CAVs could increase road capacity from 2,046
to 6,450 vehicles/hour/lane. Liu, Kan [37] conduct multilane
andmixed-traffic highway simulations by increasing CACCs’
gap by 20%.The results show that the freeway capacity could
be approximately 90% higher with a 100%CACC penetration
rate, compared to 0%. Although researchers conduct micro
simulations based on different assumptions, they concede
that vehicle connectivity (V2V) is one of the key factors in
improving road capacity which could allow short headways
while maintaining high-speed levels.

Second, both longitudinal and lateral movements of
intelligent vehicles could offer benefits in terms of reducing
energy and environmental costs. Ioannou and Stefanovic
[29] estimate the environmental effects (i.e., CO, HC, CO2,
NOx, and fuel consumption) caused by lateral movements
of the ACC vehicles based on different market-penetration
rates and the position of the ACC vehicle in a string
of 10 vehicles. Their results show that the smooth lane
change feature has a positive effect on environment. Barth
[59] estimates emissions and energy consumption under
the automated highway system (AHS) operation at various
congestion levels (LOS A-F). The study result shows that
an AHS has a slightly lower average fuel consumption (5-
15%) than a nonautomated highway operating at free flow
conditions, but much lower average fuel consumption, under
congested conditions because of smoother traffic flows of
AVs. Additionally, platooned vehicles in an AHS can expect
additional 5-15% fuel savings and emission reductions due
to aerodynamic-drafting effects. Analyzing the AV impacts
on GHG emissions and energy use, Wadud, MacKenzie [4]
developed several illustrative scenarios and showed that AVs
can reduce GHG emissions and the energy use by nearly
half. However, the study did not employ empirical data or
micro simulation for the estimation and simply used the
results from previous simulation studies. Rios-Torres and
Malikopoulos [44] develop a micro simulation framework
for CAVs to estimate fuel consumption and travel time.
The result shows that CAVs can significantly reduce fuel
consumption and travel time.

Third, none of the parameters in the AV or CAV simu-
lation models is calibrated by the real field data. However,
there have been ongoing efforts trying to connect intelligent-
vehicle simulations (e.g., CACC or low-automation level
AVs) to actual field experiments. Bu, Tan [33] develop a
V2V-based CACC experimental system retrofitted on two
Infinity FX45s models that are originally equipped with
the ACC systems. The experimental result indicates that
the CACC-equipped vehicles can perform better than the
ACC vehicles by operating with a 0.6 to 1.1 second-gap,
compared to a range of 1.1 to 2.2 seconds with the ACC. The
shorter gap by theCACC implies a potential highway capacity
increase. Milanés, Shladover [2] used the dedicated short-
range communication (DSRC) equipped with four Infinity
M56s models (ACC equipped) to test the CACC systems
under various road situations (different vehicle gaps, cut-in
and -out of manual vehicles) on public roads. The CACC
vehicles clearly show their potential in increased highway
capacity and traffic flow stability.

Fourth, since the first car-following concept was intro-
duced by Pipes [47] and Reuschel [68], traffic engineers and
traffic psychologists have developed various car-following
models to explain human-driven vehicle characteristics [69].
However, a research gap exists for modeling machine-driven
car-following characteristics. This gap leads to a high depen-
dency on a few previously developed car-following models
(e.g., IDM or MIXIC) in the literature. Furthermore, we
found that the vast majority of simulation-based studies aim
to measure only the longitudinal performance of intelligent
vehicles. Note that the introduced IDM and MIXIC models
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are also limited to the analysis of a longitudinal movement’s
impacts. In fact, very few studies focus on the impacts of
the lateral movement of intelligent vehicles [29, 37]. This can
be because lateral movements are expected to have relatively
lower benefits than those of longitudinal movements. As
a result, existing models are limited to the explanation of
intelligent vehicles’ lateral movements.

Finally, as our review shows, many studies are dependent
on simulation-based intelligent-vehicle analysis. Addition-
ally, the intelligent-vehicle impacts have been calculated
according to various performance measures (e.g., through-
put, environmental effect, energy consumption, and safety).
However, there is much less attention to their broader
impacts, combining these impacts into a unified metric
(e.g., the overall economic impact or social welfare impacts).
Without such overarching criteria, we are unable to provide a
clear optimal pathway about how to implement and regulate
AVs when comparing intelligent-vehicle alternatives to each
other.

5. Conclusion

With the fast growth in intelligent-vehicle technologies, the
conventional transportation system will experience drastic
changes. This evolutionary transportation system is chal-
lenging researchers and practitioners to estimate intelligent-
vehicle impacts on road transportation and society. In
this paper, we review and summarize the simulation-based
impact analysis studies for intelligent vehicles. The present
study is, therefore, timely and significant in terms of both
understanding the current stage of intelligent-vehicle analysis
and predicting the future impacts.

In our literature review, we found that the concept
of intelligent vehicle is simulated based on a variety of
assumptions. Furthermore, there are no firmly defined ter-
minologies for each vehicle type. To offer insights, we define
and classify the commonly used intelligent vehicles into four
categories (ACC, CACC, AV, and CAV). One important note
is that different studies use their own assumptions for the
intelligent vehicles’ capabilities. This can lead to inconsistent
conclusions.

More than a half of intelligent-vehicle studies adopt
the road capacity as the primary performance measure.
Intuitively, one of the most effective functions of intelligent
vehicles is the vehicle connections that enable high-speed
operations under small headway gaps. This is suggested as
a solution that could considerably increase road capacity.
Despite inconsistent results, most studies agreed that vehicle
connectivity can significantly contribute to the road capacity
increase. In addition to the connectivity, the general agree-
ment of most studies is that the increase in the market-
penetration rate of intelligent vehicles highly improves road-
way capacity.

Regarding simulation models, the most frequently
adapted car-following models are the IDM [20] and MIXIC
model [62]. However, the IDM assumes unrealistically high
deceleration rates when the current vehicle’s gap to the
preceding vehicle is much smaller than the desired gap. To
overcome this issue, Kesting, Treiber [30] adapt the CAH

model and develop the ACC acceleration control model. On
the other hand, the MIXIC model is simulated for the CACC
by Van Arem, Van Driel [21] and Talebpour, Mahmassani
[45]. However, we should note that none of parameters
for the AV or CAV is calibrated based on real field data
since level 3 or higher levels of AVs are still immature [16].
Therefore, no adequate empirical data for the calibration of
intelligent vehicles is available at present.

Our findings indicate that the impact analysis of intelli-
gent vehicles is still in a preliminary stage involving many
uncertainties. Although new models have been developed to
capture the car-following and lane-changing characteristics
of intelligent vehicles, empirical data are needed for the
model calibration. Furthermore, a set of standardized driving
characteristics of intelligent vehicles is necessary for future
research studies as most studies use different assumptions on
the key features of intelligent vehicles.
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ing: The impact of vehicle automation on mobility behaviour,
2016.

[14] A. Kesting, M. Treiber, M. Schönhof, and D. Helbing, “Adaptive
cruise control design for active congestion avoidance,” Trans-
portation Research Part C: Emerging Technologies, vol. 16, no. 6,
pp. 668–683, 2008.

[15] J. Ma, F. Zhou, Z. Huang, and R. James, “Hardware-in-the-loop
testing of connected and automated vehicle applications: a use
case for cooperative adaptive cruise control,” in Proceedings of
the 2018 21st International Conference on Intelligent Transporta-
tion Systems (ITSC ’18), IEEE, 2018.

[16] D. Milakis, B. Van Arem, and B. Vanwee, “Policy and society
related implications of automated driving: A review of literature
and directions for future research,” Journal of Intelligent Trans-
portation Systems: Technology, Planning, and Operations, vol. 21,
no. 4, pp. 324–348, 2017.

[17] E. Aria, J. Olstam, and C. Schwietering, “Investigation of
automated vehicle effects on driver’s behavior and traffic perfor-
mance,” Transportation Research Procedia, vol. 15, pp. 761–770,
2016.

[18] A. Olia, S. Razavi, B. Abdulhai, and H. Abdelgawad, “Traffic
capacity implications of automated vehicles mixed with regular
vehicles,” Journal of Intelligent Transportation Systems, vol. 22,
no. 3, pp. 244–262, 2018.

[19] Y. Liu, J. Guo, J. Taplin, and Y. Wang, “Characteristic analysis
of mixed traffic flow of regular and autonomous vehicles using
cellular automata,” Journal of Advanced Transportation, vol.
2017, Article ID 8142074, 10 pages, 2017.

[20] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic
states in empirical observations and microscopic simulations,”
Physical Review E: Statistical, Nonlinear, and SoftMatter Physics,
vol. 62, no. 2, pp. 1805–1824, 2000.

[21] B. Van Arem, C. J. G. Van Driel, and R. Visser, “The impact
of cooperative adaptive cruise control on traffic-flow character-
istics,” IEEE Transactions on Intelligent Transportation Systems,
vol. 7, no. 4, pp. 429–436, 2006.

[22] D. J. Fagnant and K. M. Kockelman, “The travel and envi-
ronmental implications of shared autonomous vehicles, using
agent-based model scenarios,” Transportation Research Part C:
Emerging Technologies, vol. 40, pp. 1–13, 2014.

[23] P. M. Boesch, F. Ciari, and K. W. Axhausen, “Autonomous
vehicle fleet sizes required to serve different levels of demand,”
Transportation Research Record, vol. 2542, no. 1, pp. 111–119,
2016.

[24] T. D. Chen and K. M. Kockelman, “Management of a shared
autonomous electric vehicle fleet: Implications of pricing

schemes,” Transportation Research Record, vol. 2572, no. 1, pp.
37–46, 2016.

[25] J. Liu, K. M. Kockelman, P. M. Boesch, and F. Ciari, “Tracking a
system of shared autonomous vehicles across the Austin, Texas
network using agent-based simulation,” Transportation, vol. 44,
no. 6, pp. 1261–1278, 2017.

[26] L. Greer, J. L. Fraser, D. Hicks, M. Mercer, and K. Thompson,
Intelligent Transportation Systems Benefits, Costs, And Lessons
Learned: 2018 Update Report. United States. Dept. of Trans-
portation. ITS Joint Program Office; 2018.

[27] S. E. Shladover, D. Su, and X.-Y. Lu, “Impacts of cooperative
adaptive cruise control on freeway traffic flow,” Transportation
Research Record, vol. 2324, no. 1, pp. 63–70, 2012.

[28] D. A. Reece and S. A. Shafer, “A computational model of
driving for autonomous vehicles,” Transportation Research Part
A: Policy and Practice, vol. 27, no. 1, pp. 23–50, 1993.

[29] P. A. Ioannou andM. Stefanovic, “Evaluation of ACC vehicles in
mixed traffic: Lane change effects and sensitivity analysis,” IEEE
Transactions on Intelligent Transportation Systems, vol. 6, no. 1,
pp. 79–89, 2005.

[30] A. Kesting, M. Treiber, and D. Helbing, “Enhanced intelligent
driver model to access the impact of driving strategies on
traffic capacity,” Philosophical Transactions of the Royal Society
A: Mathematical, Physical & Engineering Sciences, vol. 368, no.
1928, pp. 4585–4605, 2010.

[31] A. Kesting, M. Treiber, M. Schönhof, and D. Helbing, “Extend-
ing adaptive cruise control to adaptive driving strategies,”
Transportation Research Record, vol. 2000, no. 1, pp. 16–24, 2007.

[32] J. VanderWerf, S. Shladover, N. Kourjanskaia, M. Miller, and H.
Krishnan, “Modeling effects of driver control assistance systems
on traffic,”Transportation Research Record, no. 1748, pp. 167–174,
2001.

[33] F. Bu, H.-S. Tan, and J. Huang, “Design and field testing of a
cooperative adaptive cruise control system,” in Proceedings of
the 2010 American Control Conference, IEEE, 2010.

[34] K. C. Dey, L. Yan, X. Wang et al., “A review of communication,
driver characteristics, and controls aspects of cooperative adap-
tive cruise control (CACC),” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 2, pp. 491–509, 2016.

[35] J. Ding, H. Pei, J. Hu, and Y. Zhang, “Cooperative adaptive
cruise control in vehicle platoon under environment of i-VICS,”
in Proceedings of the 2018 21st International Conference on
Intelligent Transportation Systems (ITSC ’18), IEEE, 2018.

[36] H. Liu, X. Kan, S. E. Shladover, X.-Y. Lu, andR. E. Ferlis, “Impact
of cooperative adaptive cruise control on multilane freeway
merge capacity,” Journal of Intelligent Transportation Systems:
Technology, Planning, and Operations, vol. 22, no. 3, pp. 263–
275, 2018.

[37] H. Liu, X. Kan, S. E. Shladover, X.-Y. Lu, and R. E. Ferlis,
“Modeling impacts of Cooperative Adaptive Cruise Control on
mixed traffic flow in multi-lane freeway facilities,” Transporta-
tion Research Part C: Emerging Technologies, vol. 95, pp. 261–279,
2018.

[38] S. Yu and Z. Shi, “The effects of vehicular gap changes with
memory on traffic flow in cooperative adaptive cruise control
strategy,” Physica A: Statistical Mechanics and its Applications,
vol. 428, pp. 206–223, 2015.

[39] C. Goodin, J. T. Carrillo, D. P. McInnis et al., “Unmanned
ground vehicle simulation with the virtual autonomous nav-
igation environment,” in Proceedings of the 2017 International
Conference on Military Technologies (ICMT ’17), IEEE, 2017.



14 Journal of Advanced Transportation

[40] X. Mao, Y. Xu, S. Mita, H. Chin, and H. Tehrani, “Navigating
automated vehicle through expressway toll gate,” in Proceedings
of the 2018 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2018.

[41] P. Fernandes andU.Nunes, “Platooning of autonomous vehicles
with intervehicle communications in SUMO traffic simulator,”
in Proceedings of the 13th International IEEE Conference on
Intelligent Transportation Systems, IEEE, 2010.

[42] D. Jia, D. Ngoduy, and H. L. Vu, “A multiclass microscopic
model for heterogeneous platoon with vehicle-to-vehicle com-
munication,”Transportmetrica B: Transport Dynamics, pp. 1–25,
2018.

[43] A. Kemeny, E. Icart, A. Sepchat, F. Colombet, S. Espié, and J-
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Most previous prediction based Variable Speed Limit (VSL) control strategies focused on improving traffic mobility based on the
macroscopic traffic data. Nowadays, the emerging technologies provide access to the microscopic traffic flow data, which better
captures the details of traffic flow dynamics in the VSL controlled environment. Thus, in this paper, the microscopic traffic flow
data were utilized as a supplement to predict the evolutions of traffic flow parameters. The proposed VSL control algorithm adopts
the Model Predictive Control (MPC) framework, which employs a modified version of the classic traffic flowmodel METANET to
take advantage of the microscopic data in traffic flow predictions. The microscopic traffic simulation software VISSIM was used to
establish an experimental simulation platform and perform real time traffic responsive control based on field data. The proposed
control strategy was evaluated against the no-VSL control and macroscopic-based VSL controlled scenario. The results show that
utilizing the proposed modified METANETmodel reduced the error in speed prediction accuracy and improved system mobility
performance.

1. Introduction

Urban freeways provide efficient and convenient traffic ser-
vice for road users and play a significant role in accelerating
the development of regional economy [1].With the rapid eco-
nomic development, the great increase in car-ownership has
aggravated the traffic congestion. Thus, traffic mobility and
safety have become major challenges in freeway operations.
Due to the restriction of urban space and the high cost of
infrastructure construction, the problems may not be solved
simply by expanding road facilities. To ease traffic congestion,
some traffic control measures have been adopted, such as
Route Guidance [2, 3], Ramp Metering [4, 5], and Variable
Speed Limits (VSL). Among these measures, VSL control
draws widely attentions. It determines a dynamic speed limit
according to the current traffic flow states, climatic, road
environments, etc. The main benefits of VSL control are as
follows: (1) improves traffic operations through regulating
the mainstream traffic flow and delaying the forthcoming
traffic breakdown for potential capacity gain and higher

level of service, (2) mitigates the speed differences between
individual vehicle for fewer traffic collisions, and (3) reduces
the vehicle stop frequencies for vehicle emission and air
pollution [6–8].

The MPC control framework has recently been widely
adopted in proactive freeway control simulations implement-
ing VSL. The essential core of the MPC framework is the
included traffic state prediction model for process control.
For this approach, the performance of VSL control strategy
depends heavily on the accurate prediction of traffic-flow
parameters, whichwill be used for quantitatively determining
the dynamic speed limits. To adapt the limitation of the
traditional data collection methods, existing VSL control
methods adoptmacroscopic trafficflowdata that can be easily
collected, such as speed, volume, and density. Enabled by the
fast-emerging technologies, such as internet of vehicles, the
real-time microscopic traffic data, such as the acceleration
rate, can be collected by the in-vehicle or roadside sensors [9].
This newly available data sourcemay better capture the details
of traffic flow dynamics in the VSL controlled environment.
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Thus, in this paper, a VSL control strategy based on a
modified METANET model utilizing the microscopic traffic
data was proposed. In the modified model, the microscopic
data are used in the prediction model as a supplement to
predict the evolution of the traffic dynamics. By analyzing
higher resolution data, such as the individual acceleration
rate and headway at second-by-second level, the responding
and evolving of the traffic flow to the control measure can
be modeled more accurately, thus improves the prediction
accuracy.Themodifiedmodel with proposed control strategy
was implemented in a simulated freeway to validate their
feasibility and control performance.

The next sections present a brief literature review of
existing VSL control strategies, followed by the descriptions
of the basic and modified METANET models. The following
sections present the model validation through an application
of the proposed control strategy using VISSIM simulation
and the conclusions.

2. Literature Review

The studies of VSL control in Europe and North America,
traced back to 1990s, have provided valuable state-of-the-art
and practical experiences [10]. Various VSL control strategies
have been proposed and can be grouped into three categories:
rule-based VSL control strategies, feedback controller-based
VSL control strategies, and model-based VSL control strate-
gies.

The rule-based control strategies use real-time traffic
measurements as a basis for real-time control. The decision
tree strategy can be categorized as rule-based control strategy,
which is the earliest to be developed for VSL control. It uses
an algorithm that defines an indicator, such as density, as a
criterion for determining whether to start the VSL control.
Decision tree-based strategies are straightforward for field
implementation. Lee et al. [11] proposed a real-time conflict
prediction model and showed that the precursors of conflict
could be decided in an objective manner to replace the sub-
jective classificationmode used in the analysis. In 2006, Lee et
al. [12] proposed a VSL strategy that reduced the speed limit
when the potential conflict exceeded a preset threshold. The
optimal speed limit was selected based on several thresholds
associated with safety. The results suggested that the number
of potential conflicts were decreased, but travel time was
increased.

In 2011, Carlson et al. [13] designed a simple local feed-
back controller Mainstream Traffic Flow Control (MTFC)
to improve traffic-flow efficiency. The control strategy was
evaluated using simulation and the performance of the
controller was shown to approach the optimal control effect.
In 2013, the same group of authors [14] proposed two simple
feedback controllers that relied on readily available real-time
measurements for local MTFC via VSL. The results showed
that the feedback controllers had satisfactory control effects.
Recently, Iordanidou et al. [15, 16] proposed an extended
feedback-based VSL control strategy, considering multiple-
bottleneck locations, and obtained good results.

The Model Predictive Control- (MPC-) based VSL con-
trol strategy is a model-based VSL control strategy, of which

the model has predictive function. The limitation of the
rule-based control strategies is that traffic conditions may
have already broken down before VSL is deployed. Thus,
Model Predictive Control (MPC) has emerged as a new
approach to address this limitation. The MPC is a valuable,
widely used framework for VSL control of freeways [17]. In
model experiment, future traffic conditions (e.g., congestion)
are foreseen before they even occur, and VSL strategies are
deployed to reduce traffic volume in the expected congestion
area, see, for example, Khondaker et al. [18].The framework
uses a model to predict future traffic states. The MPC-based
VSL control strategies consider future traffic conditions and
quantitatively evaluate the impact of VSL control on traffic-
flow dynamics to keep traffic flow at high efficiency, especially
during congested periods. In 2005, Zhang et al. [19] used
MPC to design a roadway controller that reduced traffic
congestion. In 2009, Zegeye et al. [20] used MPC to evaluate
the impact of dynamic speed limit control and the results
showed a reduction in total time spent. In 2010, Ghods et
al. [21] solved the problem of real-time optimal control of
traffic flow in a freeway network with a promising approach
by casting the underlying dynamic control problem in an
MPC framework. Hadiuzzaman et al. proposed a modified
Cell Transmission Model (CTM) based onDaganzo’s original
model [22] and usedMPC to alter the speed limit dynamically
[23, 24]. In 2017, Han et al. [25] developed a fast MPC based
approach for VSL coordination to resolve freeway jam waves.
This MPC approach is based on a more accurate discrete
first-order model that keeps the linearity property of the
classical discrete first-order model and takes capacity drop
into consideration. The simulation results demonstrated that
the proposed control strategy resolved the jam wave with a
real-time feasible computation speed [26].

As a macroscopic modeling tool, the METANET model,
developed by Papageorgiou et al. [10], and its extensions
are widely used. One of the pioneering MPC-based VSL
control strategies was proposed by Hegyi [27] and Hegyi et
al. [28, 29]. The authors modified the METANET model, for
example, by proposing a revised the desired speed term. The
new desired speed is the minimum of the targeted speed
based on the current traffic conditions and the displayed
speed limit. The MPC framework was adopted to determine
the optimal speed limit. Hence, Hegyi et al. [29] proposed
an extended METANET model with modeling of dynamic
speed limits and mainstream origins. The results showed
that the VSL can prevent traffic breakdown and maintain a
higher outflow. In 2010, Carlsonet al. [30] incorporated VSL
in the METANETmodel as an additional control component
leading to an extended optimal control formulation. The
results showed that traffic-flow efficiency was substantially
improved when VSL control measures were used. In 2012,
Hadiuzzaman et al. [23] replaced the fundamental diagram
with the VSL control variable in the relaxation term of the
METANET model, the proposed traffic dynamics with the
control strategy were implemented in a freeway corridor
using the MPC framework. The analysis was carried out in
VISSIM and the results showed that VSL was mostly effective
during congestion periods in terms of mobility. In 2014, Sun
et al. [31] proposed a new extension of METANET model in
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which traffic state variables were modeled and predicted. In
addition, VSL values were optimized using MPC. Yu et al.
[32] proposed an extended METANET model, in which the
desired speed term was modified to minimize the total crash
risk.The results showed that traffic safety improved and speed
homogeneity was enhanced. The MPC based VSL control
have been proven effective in the preceding researches.

However, most previous VSL control strategies predicted
traffic-flow states using collected macroscopic traffic data to
determine the VSL control signal. Due to lack of micro-
scopic traffic flow data, the prediction accuracy maybe
compromised in certain circumstances, such as low density
(free flow). With the development of new sensoring and
communication technologies, microscopic traffic data can
be collected and incorporated into the formulation of the
basic METANET model for better modeling the responding
and evolving of the traffic flow under VSL controlled envi-
ronment. Thus, in this paper, a modified METNET model
incorporating microscopic traffic data will be proposed to
establish an MPC based proactive VSL control strategy
that further improves the prediction accuracy and freeway
operation efficiency.

3. Methodology

3.1. Model Formulation

3.1.1. Macroscopic METANET Model. In this paper the
authors adopted the MPC framework that incorporates the
METANET model and its extensions, which are valuable
tools widely used to make accurate prediction of traffic-flow
variables. The METANET model is deterministic, discrete-
time, discrete-space, and macroscopic, making it very suit-
able for model-based traffic control [27].

According to the conservation equation of fluid motion,

𝜕𝜌
𝜕𝑡 +

𝜕𝑞
𝜕𝑥 = 𝐻

󸀠 − 𝑆󸀠 (1)

where 𝐻󸀠 = average inflow from onramp at position 𝑥
(veh) and 𝑆󸀠 = average outflow of the off-ramp at position 𝑥
(veh).

If the number of lanes of segment 𝑖 is 𝜆𝑖 and the length of
segment 𝑖 is 𝐿 𝑖, (1) becomes

𝜆𝑖 [𝜌𝑖 (𝑘 + 1) − 𝜌𝑖 (𝑘)]
𝑇 + 𝑞𝑖 (𝑘) − 𝑞𝑖−1 (𝑘)

𝐿 𝑖
= ℎ𝑖 (𝑘) − 𝑠𝑖 (𝑘)

𝐿 𝑖
(2)

After adjustment, the conservation equation of vehicles is
obtained as

𝜌𝑖 (𝑘 + 1) = 𝜌𝑖 (𝑘)
+ 𝑇
𝐿 𝑖𝜆𝑖 (𝑞𝑖−1 (𝑘) − 𝑞𝑖 (𝑘) + ℎ𝑖 (𝑘) − 𝑠𝑖 (𝑘))

(3)

where 𝜌𝑖(𝑘) = density of segment 𝑖 at time 𝑘 (veh/km/ln);
𝑞𝑖(𝑘) = traffic flow of segment 𝑖 at time 𝑘 (veh/h); ℎ𝑖(𝑘) = on-
ramp flow of segment 𝑖 at time 𝑘 (veh/h) and 𝑠𝑖(𝑘) = off-ramp
flow of segment 𝑖 at time 𝑘 (veh/h).

The outflow of segment 𝑖 is equal to the density multiplied
by the average speed and the number of lanes of that segment.
That is,

𝑞𝑖 (𝑘) = 𝜌𝑖 (𝑘) ⋅ V𝑖 (𝑘) ⋅ 𝜆𝑖 (𝑘) (4)

When adjusting towards the desired speed, there will a
brief delay related to the drivers’ reaction time and vehicle
acceleration capability. In other words, to reach the desired
speed at position △𝑥 ahead, a certain time and spacing are
required for the vehicle to adjust according to the observation
of the downstream traffic-flow state. If the adjustment time is
△𝑡, then

V (𝑥, 𝑡 + △𝑡) = 𝑈 [𝜌 (𝑥 + △𝑥, 𝑡)] (5)

Applying Taylor series expansion to each side of (5), then

V (𝑥, 𝑡) + △𝑡 ⋅ 𝜕V (𝑥, 𝑡)𝜕𝑡
= 𝑈 [𝜌 (𝑥, 𝑡)] + △𝑥 ⋅ 𝑑𝑈 [𝜌]𝑑𝜌 ⋅ 𝜕𝜌 (𝑥, 𝑡)𝜕𝑥

(6)

In previous researches, △𝑥 was set to be an aver-
age value of 1/(2𝜌) based on the empirical data [10, 27],
while (𝑑𝑈[𝜌]/𝑑𝜌) is the sensitivity of adjusting towards the
anticipated speed, considering segment density. Defining
(𝑑𝑈[𝜌]/𝑑𝜌) = 𝛾(𝑥, 𝑡), (6) becomes

V (𝑥, 𝑡) + △𝑡 ⋅ 𝜕V (𝑥, 𝑡)𝜕𝑡
= 𝑈 [𝜌 (𝑥, 𝑡)] + 𝛾 (𝑥, 𝑡)

2𝜌 ⋅ 𝜕𝜌 (𝑥, 𝑡)𝜕𝑥
(7)

where
𝜕V (𝑥, 𝑡)
𝜕𝑡 = 𝜕V

𝜕𝑥 ⋅
d𝑥
d𝑡 +

𝜕V
𝜕𝑡 (8)

Based on (8), (7) can be written as

𝜕V
𝜕𝑡 =

1
△𝑡 {𝑈 [𝜌] +

𝛾
2𝜌 ⋅

𝜕𝜌
𝜕𝑥 − V} − V ⋅ 𝜕V𝜕𝑥 (9)

After discretizing and rearranging (9), one obtains

V𝑖 (𝑘 + 1) = V𝑖 (𝑘) + 𝑇
𝜏𝑖(𝑘) (𝑈 [𝜌𝑖 (𝑘)] − V𝑖 (𝑘))

− 𝑇
𝐿 𝑖 V𝑖 (𝑘) [V𝑖 (𝑘) − V𝑖−1 (𝑘)] + 𝛾𝑖(𝑘)𝑇

𝜏𝑖(𝑘)𝐿 𝑖
⋅ 𝜌𝑖+1 (𝑘) − 𝜌𝑖 (𝑘)𝜌𝑖 (𝑘) + 𝜅

(10)

𝑈[𝜌𝑖 (𝑘)] = V𝑓𝑟𝑒𝑒,𝑖 ⋅ exp [− 1
𝑎𝑚 (

𝜌𝑖 (𝑘)
𝜌𝑐𝑟𝑖𝑡 )

𝑎𝑚] (11)
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Figure 1: Variation of density corresponding actual and basic METANET predicted speeds: (a) actual density and (b) actual speed and basic
METANET predictions.

where U[𝜌i(k)] = desired speed of segment 𝑖 (km/h), 𝛾i(k)
= a parameter with negative value, sensitivity of adjusting
towards the anticipated speed of segment 𝑖 at time 𝑘, 𝜏i(k) =
driver adjustment delay coefficient of segment 𝑖, 𝜅 = positive
compensation coefficient to avoid the error brought by too-
small 𝜌𝑖(𝑘), vf ree,i = free-flow speed of segment 𝑖 (km/h), am
= model parameter of segment, and 𝜌crit = critical density
(veh/km/ln).

In the basicMETANETmodel, 𝛾i(k), 𝜏i(k), and 𝜅 are treated
as constant model parameter. Thus, (10) becomes

V𝑖 (𝑘 + 1) = V𝑖 (𝑘) + 𝑇
𝜏 (𝑈 [𝜌𝑖 (𝑘)] − V𝑖 (𝑘))

− 𝑇
𝐿 𝑖 V𝑖 (𝑘) [V𝑖 (𝑘) − V𝑖−1 (𝑘)] + 𝛾𝑇

𝜏𝐿 𝑖
⋅ 𝜌𝑖+1 (𝑘) − 𝜌𝑖 (𝑘)𝜌𝑖 (𝑘) + 𝜅

(12)

3.1.2. Proposed Macroscopic METANET Model with Micro-
scopic Connected Vehicle Data. The term△𝑥 in (6) indicates
the lag of speed adjustments. In the basic METANETmodel,
△𝑥 is assumed to an empirical averaged value of 1/(2𝜌), and
(𝑑𝑈[𝜌]/𝑑𝜌) was replaced as a constant system parameter.
In other words, the distance required for speed adjustment
was set to be half of the headway, by simply assuming
averaged vehicle headway as the ideal situation. However,
this assumption is not always consistent with field imple-
mentation. Although this assumption is relatively accurate
under high density, under lowdensity circumstances the large
averaged headway will cause significant model mismatches,
as illustrated in Figure 1.

As noted in Figure 1, before 8:35 am, the density is
comparatively higher and the prediction error of the basic
METANET model is lower than 35%. On the other side,
after 8:35 am, prediction error of the basic METANETmodel
grows larger as the density decreases. Noticing this model
mismatches, an extra model parameter 𝜅was introduced into
the basic METANET model as compensation coefficient to
reduce the error in the low-density region [10]. Nonetheless,

the error of speed prediction at low density may still be large
in some cases, as shown in Figure 1(b). Therefore, a model
modification utilizing the microscopic data was proposed to
overcome this mismatch in this paper.

In the basicMETANETmodel, since the actual individual
vehicle status is unknown, the vehicle is assumed to be
equally distributed along the road segment (by taking the
segment averaged headway). Thus, the distance required for
speed adjustment △𝑥 was set to half of the headway, which
clearly will not represent all the circumstances in the real
world. This distance required for speed adjustment should
be a function of the current traffic condition: influenced
by the interactions between individual vehicles, or in the
other words, individual vehicle spacing when the traffic
is congested and affected by the individual driving char-
acteristic (acceleration/deceleration status) when the traffic
is light. Therefore, taking advances of the state-of-the-art
technologies, microscopic data were collected in this study
to derive a modified METANET model, which utilized the
microscopic data to model this dynamic term. In the field,
when the density is high, the distance for speed adjustment
is mainly influenced by the interactions between vehicles,
as indicated by the headway. Thus, the term△𝑥 is expressed
mathematically as a hybrid sigmoid function of the individual
headway and acceleration, as follows:

𝑆ℎ (𝑦) ⋅ ℎ𝑖 + 𝑆𝑎𝑐𝑐 (𝑦) ⋅ 𝐹 (𝑎𝑐𝑐) (13)

𝑆ℎ (𝑦) = 1
1 + 𝑒−𝑦 (14)

𝑆𝑎𝑐𝑐 (𝑦) = 𝑒−𝑦
1 + 𝑒−𝑦 (15)

𝑦 = tan [(𝜌𝑖 (𝑘)𝜌0 − 𝜌∧)𝜋] (16)

𝐹 (𝑎𝑐𝑐) = V2𝑖+1 (𝑘) − V2𝑖 (𝑘)
2 × 𝑎𝑐𝑐𝑖 (𝑘) (17)

where ℎ𝑖 = averaged individual headway of vehicles in
segment 𝑖(km), 𝐹(𝑎𝑐𝑐) = distance function of averaged
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and 𝑦.

individual acceleration of vehicles(km), 𝑆ℎ(𝑦), 𝑆𝑎𝑐𝑐(𝑦) = coef-
ficient related to density, 𝜌𝑖(𝑘) = density of segment 𝑖 at
time 𝑘(veh/km/ln), 𝜌∧, 𝜌0 = model parameter for shaping
the sigmoid function, 𝑦 = function of density, V𝑖(𝑘) = mean
speed of segment 𝑖 at time 𝑘(km/h), and 𝑎𝑐𝑐𝑖(𝑘) = averaged
individual acceleration of vehicles of segment 𝑖 at time
𝑘(km/h2).

The mathematical interpretation of established sigmoid
model (13) is illustrated in Figure 2.

As demonstrated in Figure 2(a), in data set the density
ranges from 10 to 110 while 𝑦 ranges approximately from -4
to 4.The value of 𝑆ℎ(𝑦) and 𝑆𝑎𝑐𝑐(𝑦) are continuous between 0
and 1. As shown in Figure 2(b), when the density is relatively
large, the sensitivity depends mainly on 𝑆ℎ(𝑦), as observed
in the field. And going the other way around as the density
decreases. This means for better representing of the traffic
flow dynamics, the formulated sensitivity term was mainly
influenced by the individual vehicle at large densities and
by the vehicle acceleration status in the low-density region.
The formulated sensitivity term is less sensitive when the
density is either too large or too low, and otherwise when the
density is moderate. Noted that through this modification,
the extra constant model parameter 𝜅 in the basic MEATNET
model was neglected since no compensation is needed.
The proposed microscopic METANET model improved the
prediction accuracy, as shown in Figure 3, and the speed
predicted by the modified METANET model is closer to the
actual data.

Then, the density and volume of segment 𝑖 at the next
time step are determined using (3) and (4). The speed is
determined by the modified model:

V𝑖 (𝑘 + 1) = V𝑖 (𝑘) + 𝑇
𝜏 (𝑈 [𝜌𝑖 (𝑘)] − V𝑖 (𝑘))

− 𝑇
𝐿 𝑖 V𝑖 (𝑘) [V𝑖 (𝑘) − V𝑖−1 (𝑘)] + 𝛾𝑇

𝜏𝐿 𝑖
⋅ [ 1
1 + 𝑒−𝑦 ⋅ ℎ𝑖 +

𝑒−𝑦
1 + 𝑒−𝑦 ⋅ 𝐹 (𝑎𝑐𝑐)]

⋅ [𝜌𝑖+1 (𝑘) − 𝜌𝑖 (𝑘)]

(18)

where 𝑦 is given by (16).

In the MPC-based VSL control strategy proposed in
this paper, (19) is derived from the proposed microscopic
METANETmodel.The desired speed 𝑈[𝜌𝑖(𝑘)] is replaced by
the speed limit 𝑢𝑖(𝑘). Thus, the prediction speed under the
VSL control is determined by

V𝑖 (𝑘 + 1) = V𝑖 (𝑘) + 𝑇𝜏 (𝑢𝑖 (𝑘) − V𝑖 (𝑘))

− 𝑇
𝐿 𝑖 V𝑖 (𝑘) [V𝑖 (𝑘) − V𝑖−1 (𝑘)] + 𝛾𝑇

𝜏𝐿 𝑖
⋅ [ 1
1 + 𝑒−𝑦 ⋅ ℎ𝑖 +

𝑒−𝑦
1 + 𝑒−𝑦 ⋅ 𝐹 (𝑎𝑐𝑐)]

⋅ [𝜌𝑖+1 (𝑘) − 𝜌𝑖 (𝑘)]

(19)

3.1.3. Constraints. The constraints of the METANET model
by Cao et al. [33] are adopted in this paper. Let𝑉𝑚𝑖𝑛,𝑉𝑚𝑎𝑥 and𝑉𝑑 be the minimum speed, maximum speed, and maximum
speed difference. Then, based on safety, driver compliance,
traffic-flow characteristics, and other considerations, the
speed limit is determined based on the following constraints:

(1) To guarantee drivers’ safety, the optimal speed limit
must be lower than the maximum speed:

𝑢𝑖 (𝑘) ≤ Vmax (20)

(2) To maintain operating efficiency, the optimal speed
limit must be higher than the minimum speed:

𝑢𝑖 (𝑘) ≥ Vmin (21)

(3) For safe operation, the difference in the speed limits
of two consecutive time steps should be less than the
maximum difference:

𝑢𝑖 (𝑘) − 𝑢𝑖 (𝑘 + 1) ≤ Vd (22)

(4) Not all vehicle drivers are able to drive at the speed
limit. Therefore, to ensure that the speed limit is
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Figure 3: Comparison of speeds of basic and modified METANET models: (a) actual and predicted speeds and (b) percentile prediction
error of basic and modified METANETmodel.

more suitable for actual traffic conditions, the dif-
ference between the optimal speed limit and the
speed detected downstream should be less than the
maximum difference:

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑘) − V𝑖+1 (𝑘 − 1)󵄨󵄨󵄨󵄨 ≤ Vd (23)

3.2. Model Validations. To calibrate the proposed model
modification, the parameters of the basic and modified
METANET (18) and (19) were first calibrated using field data.
The data for the modified model were collected on a typical
freeway (Whitemud Drive freeway, Edmonton, Canada). The
actual data were collected for 100 continuous days. Fifty
days of the data were used for model calibration, where
model performance was measured using the error between
predicted and actual values. The optimal parameters that
produced the minimum error were selected.

The other 50 days of data were used for model validation.
These data and the optimal parameters were used in the
prediction model to predict traffic-flow state. As shown in
Figure 3, before 8:35 am, the speed predicted by the modified
METANET model is lower than the speed predicted by
the basic METANET model, which is closer to the actual
speed. The largest percentage of prediction error reduction
is 14.9%. After 8:35 am, the speed predicted by the modified
METANET model is generally larger than that predicted
by the basic METANET model, which is also closer to the
actual speed.The largest errors of the basicMETANETmodel
for the high and low-density ranges are 34.7% and -29.1%,
respectively, while those of the modified model are 19.8% and
-17.0%, respectively.The results show that the modifiedmodel
has reduced the errors of the basic METANET model for the
two density ranges by 14.9% and 14.1% in average.

3.3. Model Predictive Control. In this paper, an MPC frame-
work is used to solve the problem of optimal speed limit
for implementing proactive VSL control. In MPC, the time
horizon is 𝑘 discrete time steps. As shown is Figure 4, at
each time step 𝑘, the optimal speed limits are computed over
a prediction horizon 𝑁𝑝. The current traffic state variables
are used as input to determine the optimal speed limits.

Based on collected traffic data, for every input, the VSL-
controlled future traffic states over the 𝑁𝑝 horizon are
predicted by the prediction model at the current time. The
control input implements a control interval 𝑇𝐶, which is
selected to improve traffic conditions.

As shown in Figure 5, the traffic flow in segment 𝑖 is
continuous, namely, it follows the conservation equation of
fluid motion. The speed, density, and volume are temporal
and spatial variables for each freeway segment. Thus, the
three traffic-flow variables are functions of time and position.
Thevariables𝜌𝑖(𝑘) and 𝑞𝑖(𝑘) represent the density and volume
at a certain moment and position, respectively, while 𝑡 is time
and𝑥 is coordinate of the position along the driving direction.

The objective function of VSL optimization was set
as the weighted sum of total time spent (TTS) and total
travel distance (TTD), in order to improve the mobility of
the network, as suggested by Cao et al. [33] and couple
other previous studies. The speed limits associated with the
minimum objective function are selected as the optimal
speed limits. The traffic states are updated dynamically after
adopting the optimal speed limits, which are then forwarded
to the framework again for optimizing the control input in
the next time step. The objective function is given by

𝐽 =
𝑁𝑝

∑
𝑗=1

𝑀

∑
𝑖=1

(𝛼𝑇𝑇𝑆𝑇𝜆𝑖𝐿 𝑖𝜌𝑖 (𝑘 − 1 + 𝑗)

− 𝛼𝑇𝑇𝐷𝑇𝜆𝑖𝐿 𝑖𝜌𝑖 (𝑘 − 1 + 𝑗) V𝑖 (𝑘 − 1 + 𝑗))
(24)

where 𝑁𝑝 = total time step,𝑀 = number of segments, 𝑇 =
time step of the evolution of traffic flow, 𝜆𝑖 = number of lanes
of segment 𝑖, 𝐿 𝑖 = length of segment 𝑖 (km), 𝜌𝑖(𝑘 − 1 + 𝑗) =
density of segment 𝑖 at time 𝑘−1+𝑗 (veh/km/ln), V𝑖(𝑘−1+𝑗)=
mean speed of segment 𝑖 at time 𝑘−1+𝑗 (veh/km/ln), and𝛼𝑇𝑇𝑆
and 𝛼𝑇𝑇𝐷 = weighting factors for TTS and TTD, respectively.

4. Application

4.1. Simulation Experiment. To evaluate and analyze the
MPC-based VSL control strategy using the modified
METANET model, an urban freeway corridor is selected
as the experimental simulation site. The selected freeway
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Table 1: Comparison of the objective function for no VSL, basic and modified METANET-VSL controls.

Time Objective Function
No VSL Basic METANET Modified METANET

6:30-6:50 392.3 381.1 381.1
6:50-7:10 610.0 798.6 806.5
7:10-7:30 2739.6 2539.9 2505.5
7:30-7:50 5527.7 2932.8 3465.9
7:50-8:10 8613.2 2589.7 2515.2
8:10-8:30 9445.6 2617.7 1049.4
8:30-8:50 3779.2 736.5 624.9
Total 31107.6 12596.3 11348.5
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Figure 4: MPC-based control framework.
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Figure 5: Schematic diagram of the METANETmodel.

is about 9 km long with three lanes in each direction. For
modeling, the corridor is further divided into 13 segments
including five on-ramps (r1, r2, r3, r4, and r5) and six off-
ramps (s1, s2, s3, s4, s5, and s6), and the VSL board locations
are marked, as shown in Figure 6.

The trafficdatawere collected on-site using loop detectors
installed in each segment, and the experiment was conducted
for a peak-hour period of two and a half hour. The VISSIM
simulation software was selected to establish the network
simulation platform.Theauthors chose 10 random simulation
seeds in the experiment, and the all simulation results in this
paper are based on the average of the 10 different scenarios.
The simulation resolution is 5 per second in this paper, since
a higher resolution will lead to high computational load.
Using MATLAB, the MPC-based VSL control strategy that

includes the modified METANET model was implemented
on the simulated site. The simulation platform was calibrated
by minimizing the difference between actual and predicted
traffic state variables.

In the experiment, three different control scenarios were
evaluated in the simulation platform: (1) no control, (2) VSL
control based on the basic METANET model, and (3) VSL
control based on the modified METANET model.

4.2. Analysis Results. The basic demand profile of the exper-
iment site is shown in Figure 7 as the volume variations in
the uncontrolled scenario. On the profile, two bottlenecks can
be recognized around segments L4 and L8. At Segment L4,
parts of the vehicles entering the mainline freeway through
on-ramp r1 want to leave the mainline through off-ramp s2.
The weaving segment in-between results in chaotic traffic
operation and serious congestion. A similar weaving section
exists around segment L8, and significant capacity drop can
be observed as well.

The evaluation results of the objective function for No-
VSL, basic METANET-VSL, and modified METANET-VSL
controls (using an interval of 20 s) are shown in Table 1 and
Figure 8. As illustrated, under free-flow condition (before
7:00 AM), traffic conditions of the three tested scenarios are
nearly identical. After 7:10 am, the traffic demand continued
to increase. In both METANET-VSL controlled scenarios,
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the adopted traffic flow model was able to predict the forth-
coming traffic breakdown and determined to advise reduced
speed limit in advance for overall speed stability (6:50 to 7:10
AM). Thus, in the time slice, the objective function values in
both controlled scenario were worse than the uncontrolled
case. In addition, since the proposed model modification
captures the speed dynamics more accurately during the
density oscillation, the proposed modified control scenario
determines to maintain a lower VSL value at 7:30 to 7:50
AM. As a result, the objective function performance in that
time slice is not as good as the basic METANET controlled
scenario, which mistakenly predicted the traffic flow has
recovered and raised the VSL. Instead, the proposedmodified
VSL control maintained a more stable and sustainable traffic
flow, which avoids the traffic breakdown occurred later in the

basic METANET controlled scenario shortly after 8:00 AM.
Overall speaking, the combined TTS and TTD for the basic
and proposed modified METANET controlled scenario were
reported to be 12,596.3 and 11,348.5, indicating an improve-
ment of 10% in terms of the mobility performance and
evenmore significant when comparing with the uncontrolled
scenario. Clearly, themodifiedMETANET-basedVSL control
strategy plays a better role in improving traffic mobility.

For segment densities, a comparison of no-VSL and
basic and modified METANET-VSL controls is shown in
Figure 9. The density of Segment L8 increased significantly
since around 7:30 am and remained high until nearly the end
of the study period. The congestion propagates upstream to
L7 and such. It can be observed that both the severity and
duration of the congestion has been significantly reduced
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Figure 9: Comparison of segment densities of No-VSL, basic, and modified METANET-VSL controls: (a) no-VSL control; (b) basic
METANETmodel; (c) modified METANETmodel.

by the deployed VSL control strategy, especially in the two
identified bottlenecks (segment L4 and L8). From 8:00 to
8:15 am, the density of segment L8 has been maintained
at approximately 70 veh/km/ln for basic METANET model
control and around 40 veh/km/ln for proposed modified
METANET VSL control.

By capturing the variations of the speed dynamics, the
METANET-model activated the VSL to prevent capacity
drop and relieve traffic congestion. Taking Segment L8 as an
example, under modified-METANET control, comparison
between the speed limit and the actual speed was shown
in Figure 10. Before 6:50 am, the modified-METANET VSL
control was not activated since the traffic congestion did

not emerge before 7:00 am. Before that congestion, the
modified-METANET model had predicted the speed drop
and lowered the speed limit in advance. As a result, the
modified-METANET model improved the minimum seg-
ment speed to approximately 40km/h and shortened the
congestion duration. After the congestion relieved, the speed
limit recovered gradually.

5. Conclusions

This paper proposed a modified METANET model that
utilizes themicroscopic traffic-flow data. AMPC framework-
based control strategy incorporates the proposed modified
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model was established to capture the variations of traffic flow
dynamics, which enables the VSL control to prevent dramatic
decline of link speed beforehand and gains improvement on
the freeway mobility performance.

The proposed formulation of the anticipation term in the
modified METANETmodel is more reasonable and compre-
hensive. The proposed modification takes in the microscopic
traffic-flow data, such as individual vehicle headway and
accelerations, to better interpreted the progress of drivers
adjusting toward the anticipated speed. The proposed mod-
ified model can produce more accurate prediction results,
which provides a more reliable basis for achieving further
improvement in VSL control applications. The modified
METANET model has reduced the prediction error by up
to 14.9% and 14.1% for the low and high-density ranges,
respectively.

As a result, traffic mobility was substantially improved
along with the reduced prediction error. The VISSIM soft-
ware was used to establish a field data based experimen-
tal simulation platform for model validations. To evaluate
the control benefits, the traffic-flow states of the modified
METANET-based VSL control strategy were compared with
those of the No-VSL control and basic METANET-based
VSL controlled scenario. The modified METANET model
has achieved substantial improvements in terms of mobil-
ity performance. The simulation results demonstrated that
the modified METANET model reduced segment density,
increased segment speed, and shortened the congestion
period, indicates the improved freewaymobility. More initia-
tives to aid the speed prediction of the model should continue
to be explored in the future.
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Copyright © 2018 Mükremin Özkul et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In this paper, we propose STCM, a context-aware secure traffic control model to manage competing traffic flows at a given
intersection by using secure messages with real-time traffic information. The vehicle is modeled as a virtual sensor which reports
the traffic state, such as its speed and location, to a traffic light controller through a secure and computationally lightweight protocol.
During the reporting process, a vehicle’s identity and location are kept anonymous to any other vehicle in the system. At an
intersection, the traffic light controller receives the messages with traffic information, verifies the identities of the vehicles, and
dynamically implements and optimizes the traffic light phases in real-time. Moreover, the system is able to detect the presence
of emergency vehicles (such as ambulances and fire fighting trucks) in the communication range and prioritize the intersection
crossing of such vehicles to in order tominimize their waiting times.The simulation results demonstrate that the system significantly
reduces thewaiting time of the vehicles in both light andheavy trafficflows compared to the pretimed signal control and the adaptive
Webster’s method. Simulation results also yield effective robustness against impersonating attacks from malicious vehicles.

1. Introduction

With the increase in the number of vehicles on roads, traffic
congestion is becoming a serious problem in urban areas
as it increases travel times and fuel consumption [1]. Traffic
light control systems manage incompatible traffic flows by
restricting the free flow of the traffic using distinct time
intervals or phases at road intersections and at pedestrian
crossings. Besides ensuring the safe crossing of traffic, traffic
signal control systems try to reduce the waiting times of
vehicles at an intersection by appropriately adjusting the
timing of the light sequences.

Traditional traffic light control systems use fixed-cycles
that are computed as an approximation of the traffic flow
based on the historical traffic flow data at an intersection.
Such a pattern is followed regardless of the real-time traffic
state throughout the day. On the other hand, an adaptive
light control system uses the real-time traffic data coming
from fixed roadside sensors, such as loop detectors or video
cameras, and adopts traffic light timings continuously based
on real-time traffic information.

Recently, vehicular mobile wireless ad hoc networks
(VANETs) have been a primary focus of study to develop
applications that would increase the road safety and the
efficiency of traffic flows. In this context, significant research
of VANETs has been carried out where vehicles are used as
sensor nodes to create intelligent traffic light systems (ITL).

An ITL dynamically changes the traffic light timings
based on the traffic information gathered from the vehicles in
the VANETs.The traffic along routes with higher vehicle den-
sity are prioritized with longer green light timing compared
to other routes.

In this collaborative system, the correctness of claimed
identity (i.e., the characteristics of the vehicle) and location
information is an important issue since it affects the function-
ality of the scheduling algorithm.

In the literature, existing ITL control systems ignore
security control mechanisms assuming that data coming
from the vehicles (such as identity, location, and other
reported information) are authentic and reliable. However,
a vehicle can try to cheat or deceive the control system by
broadcasting false traffic information or pretending to be
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multiple vehicles in order to increase the apparent number of
vehicles observed by the ITL. In this way, the vehicle receives
an increased portion of the green light timing. A further
weakness in ITL control systems is that private data may be
exposed by each vehicle’s identity andmade publicly available
during information dissemination.

Our goal is to design an ITL control system which re-
duces the time required to cross an intersection and is
able to prioritize the movement of emergency vehicles at
given intersections without compromising the privacy of the
participants.

To achieve this goal, we are aiming to achieve the follow-
ing properties.

(1) Security: the system must be robust against attacks
frommalicious participants; i.e., a vehicle should not
be able to manipulate the decisions of the traffic
controller on the light timings and sequences or to
claim multiple identities.

(2) Privacy: the anonymity of a vehicle should be pre-
served at all times.The identity of the vehicle V and its
related information such as location and speed should
be known only to a trusted authority.

(3) Veracity: the authenticity and integrity of the mes-
sages sent by a vehicle should easily be verified by a
trusted authority with a computationally efficient and
lightweight protocol.

(4) Efficiency: the system adapts promptly to real-time
changes in the state of the traffic and minimizes the
waiting time that vehicles spend at an intersection.

(5) Scalability: the system should scale regardless of the
increase in the number of vehicles at an intersection.

2. Related Work

In a fixed-timing traffic light control system, a precalculated
pattern is periodically repeated based on the historical traffic
data. These systems do not operate in real-time and are
only efficient when the traffic flow is stable and regular at
the intersection during the day. However, there are several
circumstances that may alter the traffic state such as accidents
or maintenance work on specific roads. As a result, a prefixed
control system is not able to respond to the traffic demand in
real-time.

Traffic light control systems have been widely studied in
the literature and adopted in practice. One approach is to
use physical sensors and devices (e.g., loop detectors, video
cameras with content-analysis capabilities, and wireless sen-
sors) to detect the presence of and to classify the vehicles [2]
in order to forecast vehicle density at an intersection. Using
this approach [3, 4], the traffic light controller optimizes the
phase timings based on the real-time inputs coming from the
loop detectors installed in the proximity of or immediately
before the stop line for the intersection. Loop detectors detect
the presence of and count the number of vehicles that pass
over them. Data collected in real-time are sent to the light
controller which adjusts the traffic cycles based on the vehicle
density at an intersection.

Even though an adaptive system reduces the waiting
time of vehicles compared to a fixed time control, the infra-
structure used in the systems entails high installation,
maintenance, and operational costs and needs frequent
human intervention. Moreover, loop detectors are not reli-
able under adverse weather conditions (e.g., the perfor-
mance of the video cameras is reduced in rainy or foggy
conditions or at night since visual contact with vehicles
is restricted), they are ineffective in oversaturated traffic
conditions (e.g., whenever the vehicle queue grows beyond
the installed infrastructure), and they are not able to
detect the passage of emergency vehicles approaching an
intersection.

Due to the drawbacks in using road sensors, recently,
vehicle actuated systems have been introduced to develop
intelligent traffic lights using wireless communications. In
such systems, vehicles play a crucial role in the decision-
making process as they become the source of information.
Through vehicular ad hoc networks (VANET), vehicles share
traffic information with each other or with roadside units
(RSUs) within their transmission range using Dedicated
Short-Range Communications (DSRC). A vehicle, acting as
a virtual sensor, is equipped with an on-board unit and peri-
odically sends messages including the vehicle’s ID, current
speed, and location. Such information can be sent exclusively
to the roadside unit through a vehicle-to-infrastructure
(V2I) communication as in [5] or such messages may be
sharedwith other vehicles through a vehicle-to-vehicle (V2V)
communication, as proposed in [6], before they reach the
roadside unit.

The roadside unit continuously collects the data and
by using dynamic programming, an optimal light phase
sequence is determined to reduce the total queue length at the
intersection. To optimize the computation several approaches
have been proposed. In [7], the authors proposed a model
in which speed and position data are gathered from the
vehicles’ broadcast messages and used to divide the traffic
into vehicle platoons; each platoon is then treated separately
to optimize the traffic flow. Recently, in [8], a virtual wait
area in front of the road intersection is defined for each
traffic flow and the vehicles inside this area are considered
ready to cross the intersection. Each vehicle uses multihop
communications and advertises itself within the transmission
range by broadcasting amessage.The size of the vehicle queue
in each wait area is computed using the broadcast data of the
vehicles.

Roadside units might not be available at every intersec-
tion, especially in rural areas, raising the need for a self-
coordination process among vehicles. The issue has been
discussed for the first time in [9], proposing an adaptive traffic
signal system based on car-to-car communication and the
creation a virtual traffic light (VTL) controller. The advantage
of the VTLs on the other intelligent systems is that they
do not require the installation and maintenance costs of
permanent infrastructure. The vehicles autonomously elect
a leader vehicle which coordinates the traffic lights at the
intersection. The coordinator election in a VTL has been
discussed in [10] and an optimized distributed algorithm has
been proposed in [11].
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Figure 1: The system architecture with communication protocol.

The use of VTL becomes problematic once the number
of vehicles increases over a certain threshold. The system
approaches a lack of scalability by facing two issues: (a) the
election process for the coordinator could be problematic
in VTLs showing poor performances (as discussed in [12])
and (b) the coordinator should afford all the computation
required to collect the data, take a decision, and forward it
to the other vehicles in the network.

The involvement of vehicles in the decision process,
beside computation, has raised another issue: that of the
reliability of the data they share. Adversary vehicles can
collude to get a higher priority and time to cross through
an intersection. Although the proposed intelligent controls in
[7, 9–11] are more efficient in terms of reducing vehicle delay
times and increasing traffic flow than the prefixed controls
and actuated systems, the security issues of the models are
not addressed at all. The aforementioned intelligent traffic
systems operate under the assumption that data from par-
ticipating vehicles is fully accurate; i.e., that all identity and
location reports from the vehicles are veracious. However, a
malicious vehicle can try to cheat a traffic light control by
simply broadcasting a bogus identity, e.g., impersonating an
emergency vehicle or pretending to be multiple vehicles by
replaying the messages of other vehicles to increase the green
time allotted to the cheating vehicle’s road section. Therefore,
an accurate and reliable method of real-time information
verification is a key aspect in implementing an efficient and
intelligent traffic light controller.

Recently, several secure message delivery protocols for
VANETs have been proposed. In [13], the authors pro-
pose a privacy-preserving framework for continuous track-
ing and verification of the vehicles using a computation-
ally lightweight cryptography. In the model, each vehicle

announces its location periodically through anonymous
beacons to the nearby vehicles, which collect and report
the received beacons to a location authority. The location
authority processes the reported beacons to verify and infer
the positions of the vehicles. In our system, information about
location is not saved by the transportation authority. In the
VANETs, anonymous authentication schemes to verify the
authenticity of vehicles as presented in [14, 15] are a well-
adapted method that avoids revealing real identities by using
multiple certificates and pseudo identities.

To address these problems, we propose a traffic light
control system using secure messages of vehicles in VANET.
A vehicle only sends anonymous messages to announce its
presence to a traffic controller in a way that the movements
of a vehicle are not tractable and the real identity is hidden
from the vehicles. The reliable messages obtained from the
vehicles provide the basis of efficient light timing for a traffic
controller.

3. System Layout

In this section we outline the system and the notation that
will be employed during the analysis and implementation.

The system architecture and the communication protocol
are represented as seen in Figure 1. The system consists
of a trusted authority (TA) which maintains a database of
registered vehicles and communicates with the vehicles via a
3G/4G network and Traffic Light Controllers (TLC) installed
at road intersections. Once a vehicle starts, it needs to go
through a sign-up process with the TA. Once this phase is
completed, the vehicles mostly communicate with the TLCs.

TLCs do not communicate with each other; hence
they do not share information (except with the TA). This
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Figure 2: The grid system. 𝑉1 shows a standard vehicle located in a single site 𝑃 and 𝑉2 shows a longer vehicle, an ambulance, modeled by
using two adjacent sites.

communication strategy preserves the private information of
each participant, both their true identity and location at each
instant of time.

We will use a two-dimensional triangular grid with a
fixed coordinate system as shown in Figure 2. This model is
introduced in [16]. Each point 󳨀→𝑝 = (𝑥, 𝑦) of this system is
called a site and may contain at most one object. A vehicle is
an object of specific kind; it is an automaton which is self-
propelled. As an automaton, its state information includes
data such as the unique ID given by the trusted authority,
current location, speed obtained by the on-board units,
time, its vehicle category, etc. Each vehicle is equipped with
a wireless communication unit (such as Dedicated Short-
Range Communications (DSRC) and a temper proof Global
Positioning System receiver (GPS)) and has 3G/4G capability.
The vehicles can move to one of the six neighboring sites and
can change and update their state by applying a rule from the
rule set. The movable set 𝑀V of a vehicle V contains the set
of neighboring empty sites in the direction of the traffic flow
where a vehicle can go in the next update. An empty movable
set 𝑀V of a vehicle V means that V cannot apply movement
rules.

A list of consecutive sites between grid boundaries with
the same movement direction is called a lane, and a set of
neighboring lanes (facing independent directions) is called a
road.

A road intersection 𝐼 is a set of sites which connects the
lanes with different traffic directions.The set of inbound lanes
in an intersection 𝐼 define the incoming traffic flow, and the
set of outbound lanes define the outgoing traffic flow.

The traffic controller manages the traffic flow into and
through the intersection by updating the rules to each traffic
flow using time intervals. The sets of these rules are called
phases. These rules define the movable sets which were
mentioned above. In a red phase, a vehicle has an empty𝑀V,
whereas a green phase results in a nonempty𝑀V.

Phases allow at most two flows to proceed simultaneously
into and through the intersection without conflicting with
each other. The resulting decisions made by TLC are dis-
played by the classical traffic lights.

Let 𝑃�푖�푗 be a pair of unconflicting flows 𝑖 and 𝑗, where𝑖, 𝑗 ∈ {1, 2, . . . , 8}, as seen in Figure 3(a). During an active

phase, flows are allowed to cross the intersection transition to
the next phase in the sequence. From this time the controller
restarts the phase sequence, which is called a traffic light cycle
configuration 𝐶�푡 = {𝑃15, 𝑃26 , 𝑃37 , 𝑃48}, at time 𝑡, as follows:

P15 󳨀→ P26 󳨀→ P37 󳨀→ P48. (1)
Note that a light cycle is flexible in the sense that there

are no constraints on the phase sequences and timings or the
time intervals between the phases. The controller can reorder
the current phase 𝐶�푡 at an emergency event or use a different
phase sequence on the next cycle 𝐶�푡+1.
3.1. Encoded Data. Initially, a vehicle is registered to the
trusted authority (TA), which manages the sign-in process,
distributes digital certificates and a set of pseudo IDs to the
vehicles, keeps the identity information of the vehicles in its
database, and is totally trusted by all the vehicles.

When a vehicle starts, it initiates communication using
traffic controllers or through the cellular network and estab-
lishes a symmetric key with the TA. First, a vehicle V sends
a registration request at time 𝑡0 to the TA which verifies
the identity, 𝑖𝑑 of V, and returns the triplet (𝐾V; 𝑟V; 𝑜V) to the
vehicle, where 𝐾V is a short-term symmetric key, and 𝑟V and𝑜V are two random integers. Both parties initialize a counter𝑛 to the value 𝑟V and increment it by 𝑜V at every message sent
by V. A time dependent secret 𝑠V(𝑡) serves for the TA to verify
the identity of the vehicle V and the integrity of the messages
it sends. The secret is computed and encrypted as follows.

First,
𝑠V (𝑡) = 𝐸�퐾V {𝑟V + 𝑛𝑜V} . (2)

Then at every 𝜏�푏 seconds, the vehicle periodically broad-
casts a beacon inwhich it sends location and speed to TLCs in
the communication range through the wireless IEEE 802.11p
standard. The beacon message is calculated as follows:

B = ⟨𝐸�퐾V {(𝑙 ‖ 𝑠) ⊕ 𝑠V (𝑡)} , 𝑡�푠�푡�푎�푚�푝, 𝜎}⟩ (3)

where 𝑙 is the location of the vehicle on the grid system, 𝑠 is the
vehicle speed which is appended to the location information,
and both 𝑙 and 𝑠 are XOR’edwith the encoded data 𝑠V(𝑡), 𝑡�푠�푡�푎�푚�푝
is used to prevent a message replay attack, and the 𝜎 is the
beacon digest obtained by using a hash function, e.g., SHA-1.
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Figure 3: (a) Traffic flows at the intersection. (b) The sites with dots show the movable set for the phase sequence 𝑃26.

4. Traffic Light Controller

In the system, the vehicles act like virtual sensors and perform
the task of reporting the traffic information to a traffic
controller in the communication range.

The traffic controller is physically centered at the inter-
section and has access to the TA database. It receives beacons
from the vehicles to detect their presence, determine their
location and speed, and monitor the traffic state in real-time.
Whenever a beacon is received, itmust be verified for veracity.
For each message 𝑏 received, the traffic controller determines
the vehicle V which the message belongs to as follows:

(1) Define 𝑡�푏�푒�푎�푐�표�푛 the time the beacon 𝑏 is received.
(2) For each 𝑤 ∈ S, where S is the set of vehicles to be

verified, compute

𝑖 = ⌊𝑡�푏�푒�푎�푐�표�푛 − 𝑡0�푤𝜏�푏 ⌋ , (4)

where 𝑖 represents the index of the precomputed
encoded data value and 𝑡0�푤 represents the time when
TA has received the sign-up request from the vehicle𝑤.

(3) It retrieves the secret value 𝑥�푖�푤 that matches 𝑥�푖V.
If there is a match, the traffic controller identifies V to be

the vehicle that has sent the beacon and includes the vehicle
in the set of authenticated vehiclesVwhich are in the vehicle
queue to cross the intersection.

4.1. Phase Scheduling. The traffic controller dynamically exe-
cutes the phase sequence according to assigned priority to
each direction or skips a green phase as necessary, e.g., in the
case of prioritizing the passage of emergency vehicles. Valid
beacons allow the traffic controller to define the traffic state at
a time 𝑡, such that the traffic controller has the exact number
of waiting vehicles, the length of vehicle queues, the types of
vehicles, and the vehicular density in a traffic flow on each
road section.

When all phases of a current cycle are executed, the traffic
controller computes the new phase timings to each flow as
follows:

𝑇�푝ℎ�푎s�푒 = 𝑛�푙 + 𝑐 ⋅ 𝑡�푐𝑠 (5)

where 𝑛�푙 is a time constant used to compensate vehicle stop-
and-go movements caused by the phase changes, 𝑐 is the
number of sites occupied with vehicles, 𝑡�푐 is the time per
vehicle to enter the intersection, and 𝑠 is the mean speed on
the road.

The phase timings are granted to each traffic flow based
on of the number of vehicles at the road intersection,
therefore assigning more phase timing to traffic flow with a
higher density. To prevent vehicles waiting very long in traffic
flow with low density an upper time limit 𝑡�푚�푎�푥 is set for each
phase timing.

A phase to traffic flow can be skipped in the next cycle
if there is no vehicle within the communication distance.
Priority of the traffic flows is also defined at this stage.
Whenever an emergency vehicle is detected, the respective
traffic flow is given highest priority to cross independent of
the present traffic state at the intersection.

Then, the traffic controller periodically broadcasts the
phase timing information (every 1 second), which also
includes information about the time remaining for the cur-
rent phase, the phase sequence, and times through beacons
at the intersection.

4.2. Emergency and Public Transport. Emergency vehicles
need to reach their destination as quickly as possible. There-
fore, they need to be given higher priority at an intersection.
Such vehicles warn and announce their presence to the others
with visual and sound alarms in the neighborhood, so that
a nonemergency vehicle is to yield and allow the emergency
vehicle to pass through the intersection.

Even though vehicles should always respond in a timely
way to the alarms and give the right of way to emergency
vehicles, sometimes careless drivers may miss or ignore the
alarm, hence causing delays to response times of emergency
vehicles. In ourmodel, an emergency vehicle approaching the
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intersection is identified by the beacons it broadcasts, after
which the active phase is interrupted if necessary or the phase
time is extended to provide the safe passage of the emergency
vehicle without any significant delay.

First, a priority index 𝑘 = (0-highest, 1-high, 2-normal, 3-
low, 4-lowest) is set in the traffic rule set to detect the emer-
gency vehicles approaching the intersection. The emergency
vehicles have the highest priority, while a nonemergency
vehicle such as a truck has the lowest priority. A further
classification of the vehicles can be defined into several
different categories; e.g.,medical, police and security, fire, and
rescue, as in the work [17], depending on their importance.
If an emergency vehicle is detected in the traffic flow served
by the current green phase, the controller simply extends the
phase time until the vehicle passes through the intersection
in a way that creates a green wave effect for the quick passage
of the vehicle to its destination. For the cases in which the
vehicle is present in a flow other than the served green
phase, the current phase is interrupted and the green phase is
granted to the flow where the vehicle is approaching. Finally,
the phase sequence is restored to its initial configuration
before the emergency event.

The traffic controller virtually extends the phase time for
vehicles such as buses or taxis used in the public transporta-
tion structure. Here, depending on the size of the vehicle and
the time of the day, the traffic controller doubles or triples the
time assigned per vehicle.

5. Security and Privacy Analysis

In this section, we analyze the security aspect of the traffic
light control system. We pay particular attention to message
alteration, replay attacks, and identity impersonation of a
vehicle.

5.1. Message Alteration. In the system, a vehicle cannot claim
to be another vehicle, since at the initial sign-up the TA
requires a valid digital certificate. Therefore, a vehicle cannot
deny having sent a beacon because a verifiable signature
guarantees the beacon’s integrity. Furthermore, the identity of
a vehicle and its report is verified with the encoded, 𝑠V, data
upon receiving the reports.

In amessage alteration attack, an adversary tries to change
or modify the information in a beacon of its neighbors.
However, a beacon at time 𝑡 always includes the encoded data
toTA, and the identity of a vehicle is verifiedwith the encoded
data 𝑠V upon receiving the beacon by the traffic controller.
Since only the vehicle V can create the valid encoded data 𝑠V
at the time 𝑡, a trusted authority can verify the validity and
integrity of the information in the beacon.

5.2. Replay Attacks. In this attack, an adversary vehicle uses
and replays the beacons which are sent by its neighbors at an
earlier time. It then tries to increase the number of vehicles in
the traffic flow or impersonates an emergency vehicle to have
priority crossing.

However, the traffic controller first determines the time
the encoded data is generated and compares with the 𝑡�푠�푡�푎�푚�푝
of the received beacon.

If the time is outside the allowable time interval of 𝜏�푏,
an adversary replays a beacon it recorded at an earlier time,
validation of the 𝑡�푠�푡�푎�푚�푝 will fail, and the beacon will be treated
as old and and then simply discarded.

In a case for which a beacon is successfully replayed in
the window of 𝜏�푏, only the first valid beacon is processed
and the others are dropped without processing. Moreover,
each beacon has a different time dependent secret of 𝑠V
for two consecutive time instants 𝑡 and 𝑡 + 1. If the same
encoded data were detected, the time registered would not
match. Therefore, the code contained in the beacon along
with the 𝑡�푠�푡�푎�푚�푝 guarantees the freshness of the beacon. Thus,
the system is secure against any replay attack.

5.3. Sybil Attacks. In Sybil [18] attacks, an adversary vehicle
claims multiple identities and impersonates another. Recall
that the decision of the traffic light controller is based on the
numbers and the types of vehicles gained, from the broadcast
beacons of the vehicles. Therefore, a dishonest vehicle may
present multiple identities with the intent of increasing the
number of vehicles at an intersection. At the sign-in, each
vehicle receives a set of pseudo IDs and a symmetric key by
trusted authority using a valid digital certificate. For this type
of attack to succeed, a vehicle must obtain a number of valid
certificates of other vehicles or fabricate a valid certificate
which is virtually impossible with the use of digital signature
certificates. This attack only is effective when the security of
the TA is compromised.

A vehicle must obtain a number valid of certificates of
other vehicles as fabricating a valid certificate or a pseudonym
is not possible with public-key-based digital signatures. An
adversary vehicle is not able to usemultiple identities at once.

5.4. Privacy. Pseudonym changing techniques are the main
solution adopted to provide privacy and anonymity in
VANETs. In the system, each vehicle is assigned multiple
certificates with pseudo identities by the TA. At the initial
sign-in phase a vehicle’s certificate is verified, and then a
symmetric key is established with the TA and the vehicle.
Then, instead of using one fixed certificate, each message is
signed using pseudonym certificates by the vehicle.

6. Simulation

In this section, the performance of our proposed system is
evaluated against the prefixed time and actuated Webster’s
traffic control in terms of average vehicle waiting times.Then,
the system security is tested under the influence of adversary
vehicles which broadcast bogus beacons or impersonate
truthful vehicles by simply replaying their beacons.

6.1. Simulation Settings. Our proposal is evaluated through
OMNET++wireless simulator, a discrete-event network sim-
ulator based on C++ [19], and Simulation of Urban Mobility
(SUMO) [20], a realistic open source traffic simulator for
vehicular traffic. SUMO generates the vehicular traffic and
is used to obtain the traffic information, including speed
and location, from the vehicles. OMNET++ implements a
framework for simulating wireless communications and uses
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Table 1: The simulation parameters for waiting times.

Parameter Value
Number of vehicles per two-lane road 500 - 1800 per hour
Beacon transmission rate 1 x per second
Transmission range ≅ 200𝑚.
Road length 100 sites at each approach
Simulation duration 70 min.

the IEEE 802.11p protocol stack at both the physical and
Media Access Control (MAC) protocol layers. VEINS [21]
is a framework for vehicular network simulations, which
through TraCI [22] serves as an interface between SUMOand
OMNET++ and maps the vehicles as a mobile network node
in OMNET++.

The prefixed time control is set to have 45 seconds of
green time and 3 seconds offset for the phase changes.
Webster’s equation is used to compute the optimal cycle time𝐶�표 which minimizes vehicle delays at an intersection for the
adaptive traffic lights control and is defined as follows:

𝐶�표 = 1.5𝐿 + 51 − ∑𝑌�푖 (6)

where𝑌�푖 is the ratio of an upstream flow rate to the saturation
flow at the same approach for the phase 𝑖 and 𝐿 is unusable
offset times per cycle including all-red periods. Here, the
green phase is given time in proportion to the degree of the
saturation on its approach.

The main simulation parameters are summarized in
Table 1.

The simulation map is based on a four-leg road inter-
section. At the intersection, a roadside unit is positioned,
receives the traffic information from the vehicles, and broad-
casts the cycle information to the vehicles. All the roads have
two lanes in the same traffic direction and have a total length
of 1 km upstream and downstream of the intersection.

At each road, the maximum speed limit is set to 40 km/h.
A random distribution of the speed is specified for the
vehicles between the range 25 km/h to 40 km/h. The typical
passenger car length is equal to 5 m., and intervehicle distance
at full stop is set to 2.5m.The vehicles periodically broadcast
beacons at intervals of 1 second whereas a RSU is set to
broadcast at an interval of 1 second for dissemination of phase
timings at the intersection.

6.2. System Performance. In the simulation, several vehicle
densities are used to evaluate the effects of density over the
vehicle waiting times at the intersection. First, the traffic
flow is set to a constant 600 vehicles/hour for the north-
south flow, defined as the P48, while east-west traffic flow
density is varied from light to high density levels several
times during the simulation. The east-west flow has four
different vehicle density rates, 500, 800, 1000, and 1400 v/h
(vehicles/hour), defined as the P26, which is considered to
be light and medium vehicle density levels. The simulation
starts with the 500 v/h east-west vehicle density and then is
switched to the next level at 10min. intervals, and then from
the peak density level it reverts to the initial light density
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Figure 4: The comparison of the light control systems under light
and medium traffic flows.

level. Second, the model is tested under heavy vehicle density
levels where the east-west traffic flow density is set to 1400,
1800, and then back 1400 v/h. The simulation is run in a
period of 70 minutes where the initial 5 minutes is defined
as the warm up period after which the measurements are
recorded. The average vehicle waiting time is expressed in
seconds and represent the time a vehicle takes to cross the last
250 meters of an intersection (this is the average distance of
wireless communication), and the results are plotted at 5min.
intervals in all the traffic light control systems.

Figure 4 shows the performance evaluation of the model
in light and medium traffic flows compared to the prefixed
time method and adaptive Webster’s method, in terms of
average vehicle waiting times.

From the results, it can be observed that as the vehicle
density increases the average vehicle waiting times also
increase in all methods. However, our model exhibits a linear
increase compared to the fixed time and Webster’s control
systems.This is due to the vehicles need towaitmore than one
green phase at the intersection, resulting in an exponential
increase of the vehicle delay times. Moreover, as seen in
Figure 5, the model recovers faster in heavy vehicle densities
than in the other two systems since the density drops toward
a medium level over time.

The magnitude of the waiting times reduction obtained
using our model varies in the range of 35% in the light vehicle
densities and 25% in heavy densities with the other methods
considered here.

6.3. System Security. In this section, the effect of adversary
vehicles on the average waiting times is tested in the system.
Recall that a green phase timing depends proportionally on
the number of vehicles (vehicles that truthfully participate
in the system by periodically broadcasting the encoded data,
penetration level) in the respective road section.

Figure 6 shows the results of the vehicle waiting times
under several rates of adversary vehicles in the traffic flows.
Here, the north-south bound vehicles always broadcast cor-
rect information; whereas in the east-west flow the number
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Figure 5: The comparison of the light control systems under heavy
traffic flow.

8.06 6.4 5.49 5.02

23.67

32.46

49.06

72.74

13.33

23.34
30.01

34.27

0
10
20
30
40
50
60
70
80
90

100

5 10 15 20 25 30 35
Simulation Time (minutes)

north-south
east-west
all vehicles

W
ai

tin
g 

Ti
m

e (
se

co
nd

s)

Figure 6: The system performance under adversary vehicles.

of the truthful vehicles is decreased over time during the
simulation.Thewaiting times for all vehicles between the 70%
and 90% penetration levels are similar to those for the 100%
levels. There is, however, an increase in average waiting times
under the penetration levels of 50% and lower.

Specifically, the waiting times of east-west flow dramat-
ically increase as the levels of truthful vehicles goes below
50%. Therefore, the result indicates that the system is not
affected by the bogus messages since the adversary vehicles
are not considered in determining the signal timing, which
causes an increase of the waiting times. Note that the north-
south waiting times improve over time since the number of
the vehicles increases proportionally relative to the east-west
flow.

6.4. Emergency and Public Transport. Figure 7 shows the
average waiting times of the emergency vehicle which cross
the intersection. The emergency vehicles make up 1.5% of
all vehicles and are entered into the simulation with Poisson
arrival rate. A vehicle usually experiences some peak waiting
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Figure 7: Emergency vehicles waiting times.

times whenever it is caught up at a red phase in the
prefixed and Websters’ control methods, whereas our system
consistently exhibits minimum waiting times throughout
the simulation. However, the average waiting times per
vehicle increase, up to 30% in some cases as compared with
the results in which no emergency vehicle exists due to
extended and interrupted phases to the flows to prioritize
the emergency vehicles. This can be considered an acceptable
trade-off given the benefits of near elimination of the waiting
times of the emergency vehicles.

Note that the simulation scenario assumes the vehicle
queue at the road section on which an emergency vehicle
is present is within the boundaries of the communication
distance.

In the next simulation, the size of the public vehicles,
buses, is virtually increased at every 12 minutes from 1 site
to 9 sites in a simulation of one hour. The east-west flow
has a density of 800 v./h and contains additional traffic of 60
buses per hour, whereas north-south flow is set to 600 v./h
with no public vehicles present. Figure 8 shows the effect of
virtual resizing on wait times of vehicles. The results show
the decrease in wait times in east-west flow as the size of the
buses increases. Naturally, north-south flow wait times are
affected inversely with a trade-off that favors public transport
vehicles.

7. Conclusions

In this paper, we presented a traffic light control system
which operates on the exchange of messages between the
vehicles and a traffic light controller. The system maintains
the anonymity of the vehicles at all times and uses a compu-
tationally lightweight encryption protocol. At the same time
the system allows a trusted authority to identify the vehicles
including those that are used in cases emergency and public
transportation.

The simulation results show that the system is efficient in
optimizing the waiting times of the vehicles and significantly
reduces thewaiting time of emergency vehicles. Furthermore,
the system is robust against network attacks from adversary
vehicles, and the vehicles that try to cheat the system with
bogus messages to gain some advantage over the intersection
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Figure 8: Public transport vehicle; bus; wait times with different site
values.

crossing end up with a disadvantage in terms of longer
waiting times.

Clearly, in real life application, not all the vehicles are
registered within the TA.The system needs a certain number
of vehicles to actively participate in order for the system
to be beneficial and efficient. As the results depicted in
Figure 6 imply, if the participation rate is less than 60% the
performance of the system degrades.

Even though not explicitly shown in the paper, the system
can easily be deployed at urban intersections where the
commuter pedestrian traffic is high. Here, the participants
with a mobile unit with wireless capabilities, such as a smart-
phone or a tablet, can participate by simply using a mobile
application or some specific carry on device.

Moreover, the traffic controller is able to dynamically pri-
oritize the traffic flows based on the vehicle types present in
traffic in real-time by simply changing the index values set in
the system. During rush hours, public transport vehicles like
buses and other similar vehicles can be given higher passage
priorities to encourage the usage of public transportation and
consequently reduce the number of private vehicles in traffic.

For the ease of presentation, we have assumed that
vehicles do send the GPS coordinates to the TLC. However,
it is easy to see that sending the type of vehicle and its size
and proving its location by replaying the messages of the
neighboring vehicles is sufficient. Unfortunately, this would
impose some cumulative delays and overall loss of efficiency
in the system.
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Microscopic detail of complex vehicle interactions in mixed traffic, involving manual driving system (MDS) and automated
driving system (ADS), is imperative in determining the extent of response by ADS vehicles in the connected automated vehicle
(CAV) environment. In this context, this paper proposes a naı̈ve microscopic car-following strategy for a mixed traffic stream
in CAV settings and specified shifts in traffic mobility, safety, and environmental features. Additionally, this study explores the
influences of platoon properties (i.e., intra-platoon headway, inter-platoon headway, and maximum platoon length) on traffic
stream characteristics. Different combinations of MDS and ADS vehicles are simulated in order to understand the variations of
improvements induced by ADS vehicles in a traffic stream. Simulation results reveal that grouping ADS vehicles at the front of
traffic stream to apply Cooperative Adaptive Cruise Control (CACC) based car-following model will generate maximummobility
benefits for upstream vehicles. Both mobility and environmental improvements can be realized by forming long, closely spaced
ADS vehicles at the cost of reduced safety. To achieve balanced mobility, safety, and environmental advantages from mixed traffic
environment, dynamically optimized platoon configurations should be determined at varying traffic conditions and ADS market
penetrations.

1. Introduction

Vehicles with diverse levels of integrated connectivity and
automated control systems are considered to be pushing
a technological leap towards diminished trip delay, fuel
efficiency, reduced emission, and enhanced safety of road
traffic. Although a purely automated vehicle-based traffic
stream could take decades to become a reality, introducing
and gradually increasing market shares of automated driving
system-based vehicles in traffic streams would enable us to
perceive and harness the potential gains from these technolo-
gies. Varied perceptions of mixed traffic streams and their
collaborative motion dynamics hindered both researchers
and practitioners from progressing with these technologies.
Furthermore, the ideal compositions of automated vehicles
in mixed traffic conditions remain unfamiliar to most. In
response to these problems, this study proposes a simple

yet effective car-following strategy for mixed traffic stream
and measures the resulting impact on mobility, safety, and
the environment. Additionally, the car-following strategy
involved platoon development in a connected automated
vehicle (CAV) environment and the study explores various
platoon configurations to determine platoon parameters at
different traffic states to obtain utmost benefits.

Numerous studies have been conducted by acclaimed
researchers and practitioners to interpret the complex
dynamics of combined traffic movements [1–6]. While these
studies transcended in conceiving the levels of impact of auto-
mated driving technologies through simplified to complex
macroscopic and mesoscopic modeling, the motivation of
the present was shaped by the need of modeling microscopic
car-following behavior in heterogeneous traffic in order to
study macroscopic consequences from mobility, safety, and
environmental perspectives. With that intention, this study
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gives insights into a wide variation of distinct forms of
impact while simulating automated-control-enabled vehicles
on ideal locations and distributions along traffic stream.
These insights into mixed traffic movements and platoon
characteristics will motivate researchers to consider other
unattended aspects of mixed traffic dynamics (e.g., lane-
changing, gap acceptance, and merging) in order to rectify
perceived benefits. Similarly, traffic operational authorities
can take these lessons into account to impose different control
strategies (e.g., dynamic aggregated controls for manually
driven vehicles, dynamic personalized controls on connected
vehicles) on traffic to attain maximum improvements with
regard to reduced travel time, collision rates, greenhouse gas
emissions, etc.

The rest of the paper is organized as follows:The next sec-
tion summarizes the existing literature on car-followingmod-
els and strategies for mixed traffic and also touches on studies
that identify the different form of impact that automated
vehicles have on traffic. The proposed car-following strategy
is described in the following section. The description of
simulation procedures and the discussion on obtained results
are covered, respectively, in two subsequent sections. The
following section proposed an approach to obtain dynamic
optimal platoon configuration for specific traffic state. The
last section provides the synopsis of findings of the study and
also gives recommendations for future research.

2. Literature Review

As the primary aim of this study relates to car-following
strategy for mixed traffic environment, the literature related
to car-following models for both forms (i.e., manual, auto-
mated) of driving system is explored here. Numerous micro-
scopic car-following models have been proposed to imitate
driving pattern of manual driving system [7–12]. Among the
proposed stimulus-response-based car-following models, the
intelligent driver model (IDM) is widely used in literature
to depict manual driving dynamics. The ability of this
model to define numerous microscopic (e.g., desired velocity
and acceleration/deceleration limits) and macroscopic (e.g.,
capacity, capacity drop, and fundamental diagram) phe-
nomena made it the prevalent model. On the other hand,
due to rapid growth of CAV technology, the longitudinal
control models for automated vehicles were also examined by
researchers [13–18]. These studies provide us with structures
to work on car-following strategy in mixed traffic environ-
ment and identify the extents of potential paradigm shifts.

A clear distinction of the driving system is dictated by
the operational authority. While the manual driving system
(MDS) represents driving systems controlled by humans, the
motion dynamics of vehicles with the automated driving
system (ADS) are mandated by distinct levels of automation.
ADS vehicles’ longitudinal movements are commonly por-
trayed with adaptive cruise control (ACC) and cooperative
adaptive cruise control (CACC). Many studies have analyzed
the contributions of longitudinal control system of ADS
vehicles on traffic mobility [19–28]. While mobility was the
main focus of these studies, the impact of traffic movement
from safety and environmental perspectivewas often ignored.

Yeo et al. [29] proposed an integrated car-following and lane
changingmodel to performmicrosimulation of oversaturated
freeway traffic. The proposed algorithm considered complex
dynamic interactions at a microscopic level to replicate
vehicle movements. However, the aptitude of this model to
capture possible consequences was not tested. Wang et al.
[30] proposed a car-following control for autonomous vehicle
and identified the impact, focusing mainly on traffic flow
characteristics. Liberis et al. [31] took amacroscopic approach
to identify traffic mobility parameters in a heterogeneous
traffic environment. The authors used the market penetration
rate of connected vehicles to estimate traffic states. Moreover,
other researchers studied the impact of introducing ADS
based vehicles with conventional vehicles [32–36] on flow
and mobility. Reviews of these studies provide us with the
opportunity to constructively examine the contributions of
earlier studies, identify the necessities to improve current
knowledge, and uncover the latent insights to progress
promptly with CA technology.

While the mobility attributes of traffic flow were widely
discussed in many studies, the safety and environmental
aspects, which are equally if not more important, were
relatively unexplored by a majority of the studies. The impact
of automated vehicles on both safety and mobility was dis-
cussed by Fernandes andNunes [37].They studied platooning
of ADS vehicles with different communication schemes at
various flow rates to improve roadway capacity. Several
studies assessed the safety aspects of CAV based traffic.
According to the National Highway Traffic Safety Admin-
istration (NHTSA), a complete adaptation of CAV based
traffic movements would annually prevent 439,000–615,000
crashes [38]. Li et al. [39] evaluated the impact of CACC
control on reducing rear-end collisions on freeways. The
study shows a reduction in safety improvements with increas-
ing market share of ADS vehicles. Rahman and Abdel-Aty
[40] compared potential improvement in longitudinal safety
due to varying market penetration of connected vehicles.
According to the analysis presented, the managed-lane CAC
control outperformed multilane control with regard to traf-
fic safety. The report of Zabat et al. [41] stated that the
presence of boundary layer along closely spaced vehicles
would reduce aerodynamic drag, resulting in reduced fuel
consumption and less emission. Platoon-wide environment-
friendly CACC system was studied by Wang et al. [42] and
their objective assessment attained 2% fuel saving with 17%
emission reductions. Mamouei et al [43] argued that fuel-
economy based ACC control model would not lead to highly
conservative driving dynamics of traffic.

Although the reviewed studies had remarkable contri-
butions that helped to clarify the roles and influences of
ADS vehicles in traffic, the inadequacy of multiobjective
decision-making approach to address ADS vehicles’ poten-
tial has influenced this research further to investigate the
complex interdependencies of mixed traffic. This research
seeks to contribute on three research gaps identified from
the literature. These gaps are (i) the significance of ADS
vehicles’ position and distributions along traffic stream, (ii)
the variations of traffic flow attributes (i.e., mobility, safety,
and environmental) resulting from structural changes of
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Figure 1: Proposed car-following strategy for mixed traffic.

CACC platoons, and (iii) adjusting platoon configurations
dynamically to obtain balanced benefits from considered
traffic attributes.

3. Proposed Car-Following Strategy for
Individual Vehicle

Interactions and behaviors of vehicles at microscopic levels
have macroscopic implications. Factors like maximum accel-
erations, comfortable decelerations, preferred timeheadways,
etc. are directly linked to traffic mobility, safety, and envi-
ronmental aspects. Car-following models provide individual
vehicles’ acceleration from dynamic interactions with adja-
cent vehicles, control constraints to generate velocity, and
position to determine vehicle trajectory. The car-following
models of vehicles in mixed traffic were schemed here
to simulate real-traffic movements. As mentioned earlier,
the existence of two types of vehicle driving system was
considered for combined traffic. The proposed driving strat-
egy identified all potential combinations of leading vehicle
and subject vehicle based on driving systems to determine
suitable car-following models.

The proposed car-following mechanism presumed that
MDS vehicles would maintain conventional car-following
behavior irrespective of the leading vehicle’s driving system
[Figure 1]. In this regard, intelligent driver model (IDM)
[10] was chosen to represent manual drivers’ car-following
behavior. Extensive applications of thismodel across different
studies developed this model as a perfect example to simulate
MDS vehicles’ car-following behavior. An enhanced version
of traditional IDM was used to determine a realistic longitu-
dinal control decision of MDS vehicles (see (1)). Discretized
kinematic equations were used for all vehicles irrespective
of the driving system to determine vehicle’s velocity and
position (see (2) and (3)).

V̇ (𝑡 + Δ𝑡) = 𝑎[
[
1 − (V (𝑡)

V0
)4

− (𝑠0 + max [0, V (𝑡) × 𝑇 + (V (𝑡) × ΔV (𝑡)) /2√𝑎𝑏]
𝑠 )

2]
]

(1)

V (𝑡 + Δ𝑡) = V (𝑡) + 𝑎 (𝑡) × Δ𝑡 (2)

𝑝 (𝑡 + Δ𝑡) = 𝑝 (𝑡) + V (𝑡) × Δ𝑡 + 12𝑎 (𝑡) × Δ𝑡2 (3)

where V̇ is acceleration of vehicle (m/s2), v is velocity
(m/s), 𝑝 is vehicle position (m), 𝑎 is maximum acceleration
(set as 3 m/s2), V0 is desired velocity (35m/s), 𝑠0 is leading gap
at jam density (5 m), 𝑏 is desirable deceleration (-3 m/s2), ΔV
is velocity difference with leading vehicle, and 𝑇 is preferred
time headway (2.5 sec).

To demonstrate the car-following mechanism of ADS
vehicles, both ACC and CACC based car-following were
implemented. A MDS based leading vehicle would prompt
ADS vehicle to follow ACC with relatively high preferred
time headway. Provided that the leading vehicle had ADS,
the subject vehicle would choose CACC based car-following.
Whether the subject vehicle would join the CACC platoon
depends on the leading vehicle’s platoon ID. Platoon ID is
an identification number assigned to an ADS vehicle that
represents its order of position in the platoon. If an ADS
vehicle is a part of a platoon, it will have a fixed platoon ID;
otherwise its platoon ID will contain a platoon ID = 0 (zero).
While travelling through roads, the built-in communication
technology of ADS vehicles would enable them to identify the
leading vehicles driving system as well as platoon ID. If the
platoon ID of the leading vehicle was equal to the maximum
platoon length, then the subject vehicle would form a new
platoonbymaintaining inter-platoon headway and as a leader
of the newplatoon. In addition, if the leading vehicle’s platoon
ID was lower than maximum platoon length, the subject
vehicle would join the platoon by maintaining intra-platoon
headway. We adopted the ACC and CACC car-following
models developed in [17]. The accelerations of the subject
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vehicle were determined with respect to relative position and
velocity. The following equation was used to determine the
acceleration of the subject vehicle:

V̇ (𝑡 + Δ𝑡) = 𝑘1 (Δ𝑝 (𝑡) − V (𝑡) × 𝑇 − 𝑠0) + 𝑘2ΔV (𝑡) (4)

where 𝑘1, 𝑘2 are control constants for relative distance
and speed, respectively (𝑘1, 𝑘2 > 0) and Δ𝑝(𝑡) is position
difference with leading vehicle. The stability of the proposed
ACC system was proved in [17]. Suitable 𝑘1, 𝑘2 values were
chosen according to [17] to implement realistic simula-
tion accounting for the sensitivity of these factors. Similar
approach of dual consensus was taken by Wang et al. [18]
where both position and velocity consensus were considered
to determine acceleration/deceleration decision. While both
ACC and CACC car-following models used (4) to determine
acceleration values for ADS vehicles, higher preferred time
headways (𝑇 = 1.5 sec) distinguish ACC mode with CACC
mode (𝑇 ≤ 1.0 sec).

4. Simulation Procedures

Amicroscopic simulation structure was built onMATLAB to
replicate vehicles’ motion on a two-lane directional highway.
The simulation environment was grounded on numerical
analysis-based car-following behavior. All previously men-
tioned motion dynamic equations were coded to follow pro-
posed car-following strategy. A stream of 20 vehicles follow-
ing a controlled leading vehicle was simulated for numerous
scenarios. The time headways between the vehicles in traffic
stream were manipulated to simulate distinct traffic flow
rates. In the simulation environment, the acceleration of the
first vehicle was controlled consciously to generate multiple
shockwaves and to observe the reaction of the vehicles behind
it. Each simulation ran for 1000 time steps and 20 times
for each scenario. The preferred time headway (T) for MDS
vehicles was considered as a normally distributed variable
with mean value of 2.5 sec and standard deviation of 0.5 sec.
Multiple runs for each scenario were executed to ensure that
the obtained outcome was free from anomaly. The average
values of 20 runs were listed for analysis. In the beginning
of the simulation, the first vehicle was travelling at 25 m/s for
210 time steps and then accelerated at 0.167 m/s3 rate for 60
time steps followed by steady state (acceleration/deceleration
rate = 0 m/s3, velocity = 35 m/s) for 120 time steps. Finally,
the controlled vehicle at front decelerated again at 0.167m/s3
rate for 60 time steps to regain 25m/s velocity and moved
with constant velocity for the remaining time steps. The
maximum velocity was set to 35 m/s. The combinations
generated from the following variables sets were simulated
to represent various traffic states encountered in roadways as
well as to identify the variations on improvements obtained
by introducing the ADS vehicles in the connected automated
vehicle (CAV) environment:

(a) Initial flow rate (veh/hr): (i) 1400, (ii) 1800, (iii) 2400
(b) ADS market share (%): (i) 25, (ii) 50, (iii) 75
(c) Maximum platoon length (vehicle): (i) 3, (ii) 4, (iii) 5,

(iv) 6

(d) Inter-platoon headway (sec): (i) 2, (ii) 4, (iii) 6, (iv) 8

(e) Intra-platoon headway (sec): (i) 0.5, (ii) 0.75, (iii) 1.0,
(iv) 1.25

The variables sets were restricted by the above values to
limit the analysis and discussions within manageable ranges
while covering awide range of variations in traffic conditions.
Platoon parameters (i.e., maximum platoon length, inter-
platoon headway, and intra-platoon headway) were varied
within reasonable ranges to identify observable trends. Two
distinct driving systems were simulated by assigning specific
values of driving system (0 for MDS, 1 for ADS). The
driving system values assigned for vehicles were used to
implement the proposed car-following strategy on the CAV
environment. Assigned driving systemvalueswere also useful
to adopt proper sets of motion dynamic equations.

5. Analysis, Results, and Findings

�.�. Impact of ADS Vehicles Location and Distribution. Before
analyzing the mobility, safety, and environmental aspects
of ADS vehicles on traffic, the influences of ADS vehicles
location and distribution in traffic stream were explored. It
was hypothesized that the positions of ADS vehicles in traffic
stream dictated their impacts on the remaining vehicles. To
prove this hypothesis, the proposed car-following strategy
was simulated by allotting ADS vehicles at diverse com-
binations of positions with gradually increasing the initial
flow rate and ADS market share. To clearly comprehend the
significance of vehicle position more clearly and to reduce the
intricacy of comprehension, only two features were analyzed:
acceleration fluctuation of MDS vehicle in the vehicle group
and variations ofmaximum traffic flow at varying traffic state.
Since numerous combinations of ADS vehicles’ distribution
are viable at different penetration rates of ADS vehicles, only a
handful of combinations were selected to cover most possible
variations.

Initially, these distributions were generated by placing
ADS vehicles as far apart as possible (--% Comb-1) in
the vehicle stream while maintaining target ADS market
share. Gradually, ADS vehicles were grouped together in
different combinations. The purpose of placing ADS vehicles
in such an order was to visualize and measure the impact
of ADS vehicles location and distribution along the vehicle
stream. The combinations are listed in Table 1. The first
column of the table shows percentages of ADS vehicles in
the traffic stream. The numbers in second column of Table 1
identify the position ID of ADS vehicles in the traffic stream.
Other vehicles, except the positions mentioned in the table,
were MDS vehicles. The last column of the table provides
distinct combination name of each distribution of ADS
vehicles. These combinations were simulated on developed
simulation environment by virtually placing ADS vehicles
in the mentioned position IDs of the vehicle stream and by
following proposed car-following strategy for mixed traffic.
The listed combinations in Table 1 were assumed to represent
varying ranges of ADS vehicles distribution on vehicle group.
Analyzing these sets of vehicle location and distribution
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Table 1: List of ADS vehicle combinations simulated for different market penetrations.

ADSMarket Share Distribution of ADS vehicles (position) Combination Name

25%

4, 8, 12, 16, 20 25% Comb-1
4, 5, 10,11, 16 25% Comb-2
5, 6, 7, 13, 14 25% Comb-3
9, 10, 11,12 17 25% Comb-4
2, 3, 4, 5, 6 25% Comb-5

16, 17, 18, 19, 20 25% Comb-6

50%

2, 4, 6, 8, 10, 12, 14, 16, 18, 20 50% Comb -1
2, 3, 6, 7, 10, 11, 14, 15, 18, 19 50% Comb -2
2, 3, 4, 8, 9, 10, 14, 15, 16, 20 50% Comb -3
2, 3, 4, 5, 10, 11, 12, 13, 18, 19 50% Comb -4
2, 3, 4, 5, 6, 7, 8, 9, 10,11 50% Comb -5

75%
2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20 75% Comb-1
2, 3, 4, 5, 6, 9,10, 11, 12, 13, 16, 17, 18, 19, 20 75% Comb-2
2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20 75% Comb-3

provided the opportunity to shed light on resulting impacts
due to ADS vehicles’ position on traffic stream.

From the analysis, the simulation outcomes of the ini-
tial flow rate of 1800 veh/hr with different ADS market
penetration are provided in Figure 2 to demonstrate the
influences of ADSvehicles position and distribution along the
stream from both microscopic and macroscopic perspective.
Figure 2(a) represents the variations of maximum flow rates
resulting from the proposed car-following strategy at listed
combinations. Figure 2(b) shows the average coefficient of
variations (CoV) of acceleration of MDS vehicles in the
simulated vehicle stream. Boxplots for a specific combination
were plotted from the maximum flow rate and average CoV
of acceleration data of simulated scenarios with varying
platoon parameters, as listed before. Macroscopic analysis
on maximum flow rates at different ADS vehicle shares
(Figure 2(a)) identified the pattern of gradual increment with
increasing ADS shares in the traffic. Observations of different
combinations revealed that combinations with scattered ADS
vehicles lead to lower maximum flow rates in comparison
to combinations with grouped ADS vehicles. Additionally,
grouping ADS vehicles at the front of the vehicle stream
(i.e., 25% Comb-6, 50% Comb-5, and 75% Comb-3) resulted
in 6.7-11.5% higher maximum flow rates in comparison to
the scattered distribution of ADS vehicles (i.e., 25% Comb-
1, 50% Comb-1, and 75% Comb-1). Analysis on microscopic
characteristics ofMDSvehicleswas undertaken bymeasuring
the averageCoVof acceleration at differentmarket shares and
combinations of ADS vehicles. The resulting analysis showed
a gradual decreasing CoV of acceleration with increasing
shares of ADS vehicles. Similar to macroscopic analysis, the
maximum amount of decrease in CoV (1.69–6.63%) was
observed from combinations with ADS vehicles at the front
of the traffic stream grouped together. Specific analysis on
maximum platoon length’s influence on acceleration fluctu-
ations of MDS vehicles revealed that increasing maximum
platoon length reduced the average coefficient of variation of
acceleration for ADS vehicles. Similar analysis on the other
two platoon parameters (i.e., inter-platoon headway and

intra-platoon headway) demonstrated a reciprocal relation
with acceleration fluctuations (increasing inter- and intra-
platoon headway increased the average CoV of acceleration).

The analysis of the remaining initial flow rates and ADS
market share revealed that creating platoons of ADS vehicles
by positioning them at the front of traffic stream would
be beneficial to the rest of vehicles in the traffic stream.
Furthermore, increasing market shares of ADS vehicles
could gradually reduce the acceleration fluctuation of MDS
vehicles. Finally, increasing the flow rates could inversely
influence traffic flow improvements with a specific ADS
location and distribution combination. The notion of traffic
flow improvements guided the authors in this study to
exploremobility improvement potentials of the proposed car-
following strategy by placing ADS vehicles at ideal positions
along the traffic stream.

�.�. Impact on Mobility. Since creating platoons of ADS
vehicles was found to be the most effective way of acquiring
associated benefits, influences of ADS vehicles on traffic
mobility were examined with respect to three key variables
of platooning: intra-platoon headway, inter-platoon headway,
and maximum platoon length. Combinations of these three
variables within listed sets were utilized to generate various
platoon scenarios for simulation and analysis. The impact
of these platoon structures on mobility was measured and
compared with the help of two parameters: Average Travel
Time (ATT) (see (5)) and Average Travel Distance (ATD)
(see (6)). Later, case scores were computed by providing
equal weights to ATT and ATD (see (7)). Different cases of
platoon configurationswere simulated and evaluated through
case scores. Higher dispersion from base-case (0% ADS
share) scores indicated higher mobility improvements. The
objective of this analysis was to identify the optimal platoon
configuration to improve mobility by increasing ATD and
reducing ATT.The following equations were used to identify
the mobility gains.

𝐴𝑇𝑇 = ∑𝐽𝑗=1𝐴𝑇𝑇𝑗𝐽 = 𝐼∑
𝑖=1

(𝑝𝑖,𝑗 − 𝑝𝑖,𝑗−1)
V𝑖,𝑗

(5)
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Figure 2: Influences of ADS vehicles’ position on (a) maximum flow rate and (b) average coefficient of variation of accelerations.

𝐴𝑇𝐷 = ∑𝐽𝐽=1 𝐴𝑇𝐷𝑗𝐽 ,
𝐴𝑇𝐷𝑗 = (𝑝𝐼,𝑗 − 𝑝1,𝑗)𝐼

(6)

𝑆𝑐𝑜𝑟𝑒𝐶𝑎𝑠𝑒 𝑘 = ∑𝐽𝐽=1 V1,𝑗 (𝐴𝑇𝐷𝑗,𝐶𝑎𝑠𝑒 𝑘)𝐽 − (𝐴𝑇𝑇𝐶𝑎𝑠𝑒 𝑘) (7)

Here, i is vehicle index (I = ��), j is time index (J
= 1000), V𝑖,𝑗 is velocity of vehicle i at time step j, 𝑝𝑖,𝑗 is
position of vehicle i at time step j, and 𝑆𝑐𝑜𝑟𝑒𝑆𝐶𝑎𝑠𝑒 𝑘 is score

of case k. Aforementioned (Section 4) platoon variables
(i.e., maximum platoon length, inter-platoon headway, and
intra-platoon headway) were explored to generate distinct
platoon scenarios. The combinations of these parameter sets
produced 64 distinct platoon configuration cases that were
simulated for different traffic flows and ADSmarket shares to
detect the capability ofmobility improvements.Moreover, the
limits of mobility improvements due to variation of platoon
configurations were also revealed in this analysis. Obtained
mobility improvements from base cases at different traffic
states are presented in Figure 3(a). The three-quarter circles
showed comparative mobility progresses at different flow
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Figure 3: Variations of mobility benefits due to varying platoon configurations at (a) different flow rates and ADS shares and (b) specific flow
rate (1800 veh/hr) and ADS share (75%).
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rates and ADS market shares simulated for the analysis. The
color bar in Figure 3(a) indicated the extent of generated
mobility score improvements. Figure 3(b) reveals detailed
analysis for a specific flow rate and ADS share. For clear
understanding of the impact of platoon configurations at a
specific traffic state, mobility improvements at initial flow
rate of 1800 veh/hr and 75% ADS share are provided in
Figure 3(b) as an example. As observed in Figure 3(b),
sixty-four (64) separate platoon configurations are generated
from listed parameter set (Section 4). Parameters for each
case are listed in the table in Figure 3(b). The mobility
improvement column was calculated by comparing the base
case (flow rate = 1800 veh/hr, ADS share = 0%) with
the corresponding cases and transforming the value into a
percentage. Negative percentages indicate impaired mobility
and positive percentages denote improved mobility resulting
from a specific platoon configuration. When inspecting
Figure 3(b), it was found that maximum mobility benefits
(0.204% improvement on case score) could be obtained from
Case 33 (platoon configuration: intra-platoon headway =
0.50 sec, inter-platoon headway = 2 sec, and max. platoon
length = 5) and Case 49 (platoon configuration: intra-platoon
headway = 0.50 sec, inter-platoon headway = 2 sec, and max.
platoon length = 6) for that specific traffic state. A declining
trend ofmobility gainswas capturedwith increasing inter and
intra-platoon headway. Additionally, increasing maximum
platoon length parameter showed expansion with regard to
mobility which came to a halt at maximum platoon length =
5.

An exploration of Figure 3(a) revealed that increasing
ADS market could bring broader mobility enhancement at
higher flow rates (yellow to green bands on 2400 veh/hr flow
rate). IncreasedADS share at lowflow rates had a diminishing
effect on mobility (light red to deep red bands on 1400
veh/hr flow rate). Another finding of this analysis was that
the closely spaced ADS vehicles with long platoons would
generate moremobility improvements. Hence, the maximum
mobility benefit was experienced in Case 33 and Case 49.
Although the analysis concluded that closely spaced, long
ADS platoons could attain higher mobility benefits, close
proximity of ADS platoons and long chain of ADS vehicles
in these platoon configurations would severely restrict merg-
ing vehicles from neighboring lanes, on-ramps, side roads,
etc.

Analysis on platoon parameters at different traffic state
revealed that, with other parameters being constant, increas-
ing platoon length resulted in improved mobility gains.
Similar investigation on inter-platoon headway presented
that increase in inter-platoon headway would reduce traf-
fic mobility if other two parameters remain constant at
a specific traffic state. Analysis of intra-platoon headways
coincides with the insights of inter-platoon headway anal-
ysis. Therefore, compactness of ADS vehicles would bring
more mobility benefits in roadway sections with minimal
conflict points (e.g., spans between on/off-ramps on free-
ways and sections between intersections in arterial). The
notion of conflict points led to the next section of this
study, examining the impact of ADS vehicles on traffic
safety.

�.�. Impact on Safety. Although Cases 33 and 49 were
found to be an obvious choice among 64 tested platoon
configuration cases with respect to mobility enhancements,
all aforementioned cases were examined again to identify
the potential impact on traffic safety. Findings from ADS
vehicles location and distribution influenced the simulation
of safety improvements by placing a series of ADS vehicles
at the front of traffic stream to obtain optimal benefits. Since
no merging traffic was considered, the safety enhancements
were examined as a measure of potentials to reduce rear-
end collision risks. Three safety surrogate measures were
considered in this regard: time-to-collision (TTC), time
exposed time-to-collision (TET), and time integrated time-
to-collision (TIT).

TTC, TET, and TIT, introduced by Hayward, Minder-
houd, and Bovy [44, 45], were widely used by traffic safety
researchers. The time required for two successive vehicles in
the same lane to hit if they maintain their current velocity
is represented by TTC. Higher TTC would indicate safer
traffic condition. TTC can be used to evaluate safety of a
traffic environment, since lower TTC is indicative of potential
dangerous situation [46]. Both TET andTIT are derived from
TTC to measure safety improvements from macroscopic
standpoint. Since TET is the summation of instances when
TTC are lower than threshold value, the lower TET value is
expected at safer traffic conditions. TET value was measured
by (9) where TTC values for each vehicle at each time stamp
(𝑇𝑇𝐶𝑖,𝑗) were compared with the threshold TTC (𝑇𝑇𝐶∗)
value to calculate TET value for each scenario. TIT measures
the value of TTC lower than the threshold TTC. Similar to
TET, a higher TIT value indicates higher safety concerns. The
values of these parameters weremeasured using the following
equations:

𝑇𝑇𝐶𝑖,𝑗 = {{{{{
𝑝𝑖−1,𝑗 − 𝑝𝑖,𝑗 − 𝐿
V𝑖,𝑗 − V𝑖−1,𝑗

𝑖𝑓 V𝑖,𝑗 > V𝑖−1,𝑗

𝐼𝑛𝑓 𝑖𝑓 V𝑖,𝑗 ≤ V𝑖−1,𝑗
(8)

𝑇𝐸𝑇 = 𝐽∑
𝑗=1

𝑇𝐸𝑇𝑗,

𝑇𝐸𝑇𝑗 = 𝐼∑
𝑖=1

𝛿𝑗Δ𝑗, 𝛿𝑗 = {{{
1 ∀0 < 𝑇𝑇𝐶𝑖,𝑗 < 𝑇𝑇𝐶∗
0 𝑒𝑙𝑠𝑒

(9)

𝑇𝐼𝑇 = 𝐽∑
𝑗=1

𝑇𝐼𝑇𝑗,

𝑇𝐼𝑇𝑗 = 𝐼∑
𝑖=1

[ 1𝑇𝑇𝐶𝑖,𝑗 −
1𝑇𝑇𝐶∗] .Δ𝑗

∀0 < 𝑇𝑇𝐶𝑖,𝑗 < 𝑇𝑇𝐶∗
(10)

The threshold TTC values to measure TET and TIT
were set as 2.5 sec, similar to standard perception reaction
time. Resulting changes with regard to safety are displayed
in Figure 4. Figure 4(a) presents total TET and average
TIT values over the simulation period on base cases which
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Figure 4: (a) Base-case safety parameter values at varying flow rates. (b) Changes in total TET, (c) variations of averageTIT values considering
MDS vehicles only, and (d) variations of average TIT values considering all vehicles, due to varying platoon configurations at different flow
rates and ADS shares.
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were utilized to measure safety improvements gained with
the introduction of ADS vehicles. Figure 4(b) displays the
range of changes on total TET values at different traffic
states with varying platoon structures. Increasing ADS shares
showed a gradual decline of total TET values. The extent of
declination was much higher in higher flow rates. However,
an exception was observed at high flow rates and lower ADS
shares (flow rate = 2400 veh/hr, ADS share = 25%) where
total TET value increased from base traffic states. Therefore,
it can be stated that higher ADS share is required to bring
noticeable safety improvements with increasing flow rates.
Figures 4(c) and 4(d) show analysis results of average TIT
changes. As shown in earlier figure (Figure 3(a)), both fac-
tional circles revealed resulting improvements on averageTIT
parameters. Figure 4(c) shows resulting safety improvements
of the vehicle stream for different platoon configurations,
ADS shares, and flow rates by comparing with base average
TIT values. This analysis considered average TIT values of
MDS vehicles only in the traffic stream. Average TIT values
of MDS vehicles in the CAV environment were compared
with corresponding vehicles on base case for this analysis.
The average TIT reduction of MDS vehicles was found to
be within the range of -20.76%–8.55%. Additionally, higher
safety gains were achieved with shorter platoons including
ADS vehicles sparsely spaced.

On the other hand, Figure 4(d) shows the analysis by
comparing average TIT values of all vehicles with base case.
For this analysis, it was assumed that there was no collision
risk for ADS vehicles (average TIT values = 0 for ADS
vehicles), irrespective of platoon configurations. Comparison
between Figures 4(c) and 4(d) shows significantly higher
improvements on average TIT values for all vehicles over
MDS vehicles.The range of average reduction is much higher
in Figure 4(d). Detailed analysis of safety enhancement for a
specific traffic state provided further insights on the impact
of platoon configurations. For instance, simulation results
of 1800 veh/hr flow rate with 75% ADS share traffic state
revealed that increasing ADS vehicles’ stretch over the traffic
stream resulted in greater safety benefits for the remaining
vehicles. Hence, the maximum safety gain was attained from
Case 16 (-10.23% reduction on average TIT of MDS vehicles)
for this specific traffic state. Although a similar pattern was
observed for other traffic states, unexpectedly high safety
concerns were experienced for some cases (dark red strip in
Figure 4(c) for 2400 veh/hr with 25% ADS share). Moreover,
maximum safety gains on MDS vehicles were obtained on
50% ADS share at 1800 veh/hr flow. The findings from safety
impact analysis have led us to conclude that increasing ADS
vehicles with increasing flow rates would improve safety of
all vehicles if ADS vehicles form short, sparse platoon in start
of traffic stream. Although rear-end collision risk for MDS
vehicles would proportionately reduce with increasing ADS
share at comparatively high and low flow rate, this correlation
between safety gain and ADS share did not hold true for flow
rates near capacity level.

Exploring the evolution pattern of platoon parame-
ters provided important insights into safety feature. While
other parameters (i.e., inter-platoon headway and max. pla-
toon length) remain the same, continuous increment of

intra-platoon headway showed reduction on rear-end col-
lision expectation. Inter-platoon headway followed similar
pattern to intra-platoon headway. However, range of safety
improvement in both parameters depends on maximum
platoon length. Magnitude of safety gains was much higher
at small platoons (i.e., max. platoon length = 3) than big
platoons (i.e., max. platoon length).

�.�. Impact on Environment. Environmental implications
of proposed car-following mechanism were measured with
respect to fuel consumption and emission reduction. While
numerous models were available and utilized in the literature
[47–49], the integrational simplicity of the VT-micro model
[50–52] with car-following model persuaded us to implement
this model. Output from car-following models can be directly
used on the VT-micro model as input to estimate environ-
mental impact due to vehicle dynamics which makes this
model a perfect candidate for this analysis. According to the
VT-micro model, the fuel consumption of or emission rate of
ith vehicle at time step j can be measured using the following
equations:

ln (𝑀𝑂𝐸𝑖,𝑗) =
{{{{{{{{{{{

3∑
𝑙=0

3∑
𝑚=0

𝐾𝑙,𝑚 × V𝑙𝑖,𝑗 × 𝑎𝑚𝑖,𝑗 𝑖𝑓 𝑎 ≥ 0
3∑
𝑙=0

3∑
𝑚=0

𝐾󸀠𝑙,𝑚 × V𝑙𝑖,𝑗 × 𝑎𝑚𝑖,𝑗 𝑖𝑓 𝑎 < 0 (11)

where 𝑀𝑂𝐸𝑖,𝑗 is measure of effectiveness with respect
to fuel consumptions, CO2 emissions, and NOx emissions
for vehicle i at time j and 𝐾𝑙,𝑚 are regression coefficients for
MOEs at powers l andm.The values of regression coefficients
are obtained from [50]. V𝑙𝑖,𝑗 is velocity of vehicle i at time jwith
power l. 𝑎𝑚𝑖,𝑗 is acceleration of vehicle i at time jwith powerm.

Analysis using the VT-micro model for the base case
(0% ADS share) measured average fuel consumptions, CO2
emissions, and NOx emissions of the vehicles in simulated
traffic stream at different flow rates, which is presented in
Figure 5(a). Simulation results indicated that the lowest fuel
consumption, CO2 emission, andNOx emission at base traffic
state occurred at 1800 veh/hr flow rate. Therefore, low flow
rates do not necessarily ensure low environmental impact.
The transformation in environmental impact resulting from
varying shares of ADS vehicles is demonstrated in Figures
5(b), 5(c), and 5(d). Gradual increments of ADS share showed
a continuous reduction in fuel consumption. However, CO2
and NOx emissions for the traffic stream followed a different
trend. As previous figures, the fractional circles displayed
changes in average environmental parameters resulting from
varying platoon structures and traffic states (i.e., flow rates
and ADS shares). For a specific traffic state (i.e., flow rate
and ADS share), the effect on environment demonstrated
similar patterns to the impact on mobility. As an example, we
can examine the platoon structures for 1800 veh/hr flow rate
with 75% ADS share. The observations of this specific traffic
state revealed that environmental benefits kept increasing
with the gradual compaction of ADS vehicle in traffic stream.
For instance, maximum reduction on fuel consumption was
obtained for Case 33 and Case 49 (platoon configuration:
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Figure 5: Observed variations of (a) environmental parameters at base case, (b) fuel consumption, (c) CO2 emission, and (d) NOx emission
for varying platoon structures at different traffic state.

intra-platoon headway = 0.50 sec, inter-platoon headway
= 2 sec, and max. platoon length = 5 and 6, respectively)
which reduced average fuel consumption by 4.87% from the
base case, whereas Cases 48 and 64 (platoon configuration:
intra-platoon headway = 1.25 sec, inter-platoon headway =
8 sec, and max. platoon length = 5 and 6] reduced fuel
consumption by 1.42% and 1.44%, respectively. A similar
pattern was observed for the other two parameters (i.e., CO2
emission and NOx emission) for this traffic state. Detailed
analysis of the environmental impact identified a propor-
tional relation between fuel consumption reduction and ADS
share at all simulated traffic flow rates. However, the extent of
improvements varied at different flow rates. As for CO2 and

NOx emission, the relation between emission reduction and
ADS share was found to be proportionate at lower flow rates
(i.e., 1400, 1800 veh/hr). At high flow rate (i.e., 2400 veh/hr),
higher reduction was obtained at lowADS share. Out analysis
of the environmental impact of ADS vehicles and formed
platoons provided us with the insights of fuel consumption,
CO2 emission, and NOx emission characteristics in order to
make informed decision regarding platoon structures with an
aim to attain optimal environmental benefits.

Close inspection of platoon parameters revealed similar
inclinations to mobility. Unlike mobility gains, the degree of
environmental gainswas significantly higher at larger platoon
sizes (i.e.,max. platoon length= 5,6) in comparison to smaller
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platoons (i.e., max. platoon length = 3,4). Furthermore, the
increments of intra and inter-platoon headway values showed
steady declination of environmental benefits at a specific
traffic state with other parameters being constant.

6. Identification of Optimal Platoon
Parameter Set

An analysis of proposed car-following strategy delivered
insights regarding mobility, safety, and environmental
improvement potentials due to presence of ADS vehicles at
mixed traffic conditions. One key finding of the analysis was
that the expectation to obtain multiobjective improvements
(i.e., mobility, safety, and environmental) from single
platoon configuration was impractical. Since mobility
and environmental developments maintained a reciprocal
relationship with safety enhancements, a suboptimal platoon
configuration could be determined to procure maximum
gains from these three features. Another compelling
outcome of prior analysis involved recognizing the fact that
both traffic flow rates and ADS market shares impacted
obtained benefits. Hence, achieving maximum mobility,
safety, and environmental advantages from fixed suboptimal
platoon configuration at different flow rates was unrealistic.
To this end, it was necessary to present an approach that
identified dynamic suboptimal platoon configurations for
multiobjective decision-making purposes.

Influenced byKhondaker andKattan [53], an analysis was
performed to identify the suboptimal platoon configurations
to maximize mobility, safety, and environmental gains gener-
ated by ADS vehicles. Collective influences from these three
features were measured by placing different weights on them
to get resulting variations on improvements (Figure 6(b)).
Four sets of multiobjective functions were investigated to
obtain suitable platoon structure. Sets for platoon variables
were chosen from earlier analyses to identify suboptimal
configurations.

The optimization of platoon variables for different mul-
tiobjective function identified each features’ (i.e., mobility,
safety, and environmental) individual and collective inclina-
tions. To obtain clear and precise insights of these trends,
the group of vehicles with 1800 veh/hr flow rate and 75%
ADS market penetration is demonstrated in Figure 6. The
improvements obtained due to ADS vehicles were scaled
within [0 1] using extreme values from prior analysis of
all the features (Figure 6(a)). For mobility improvements,
the scenario scores were scaled within the above-mentioned
range. Extreme average TIT values measured in safety impact
analysis were applied to measure safety scores of different
platoon configurations. Similarly, environmental score was
calculated by assigning equal weights to three components of
environmental impact (i.e., fuel consumption, CO2 emission,
and NOx emission) while scaling them within the range of
0 and 1. This action was performed due to variations of
units in measures of effectiveness and to bring them in the
same scale for optimization. Reviews of individual features
identified a gradual reduction of mobility and environmental
improvements with an increase of intra and inter-platoon

headway. However, safety improvements showed opposite
pattern. Figure 6(b) shows the results of a set of objective
functions with predefined weight put on mobility, safety, and
environmental aspect. The goal of this analysis is to obtain
suboptimal platoon configurations for predefined objective
sets and also to identify the objective functionwithmaximum
benefits from the assorted weight sets. Analysis of combined
impacts identified that maximum benefits for all objective
functions were achieved with the platoon configuration of
intra-platoon headway = 0.50 sec, inter-platoon headway = 2
sec, and maximum platoon length = 5/6 vehicles. The objec-
tive of this analysis was to present an approach to identify
suboptimal platoon configurations suitable for specific flow
rates and ADS market share with specific motivation to assist
in multiobjective decision-making.

7. Conclusion and Future Extensions

The objective of the study was to obtain rationalized insight
on mixed traffic movements and evaluate the impact that
ADS vehicles will supposedly have on traffic. While the
potential of connectivity and automated controls is astound-
ing, the extent of harnessing the benefits depends on dis-
cerning their influences on traffic. In this regard, we have
proposed a näıve car-following mechanism for mixed traffic
and analyzed their motion dynamics to determine the pos-
sible improvements. Initially, the location and distributions
of ADS vehicles along the traffic stream were discovered to
be moving forward with established framework to obtain
the highest rewards. The mobility, safety, and environmental
gains obtained from CAV traffic stream were examined for
varying traffic flow, ADS market penetration, and platoon
configurations with the intention of determining the limits
of these potential improvements. The final stage of this study
was the analysis to obtain optimal platoon configurations to
achieve maximum collective improvements.

The findings of the research show that, to obtain max-
imum mobility benefits, close and compact platoons are
favorable in roadway sections without side frictions. How-
ever, segments with on-ramps, off-ramps, side roads, etc.
need to be researched in the future to account for side
frictions and their consequences on collectivemobility, safety,
and environmental gains. Identifying suboptimal platoon
configurations for varying flow rates and market shares
of ADS vehicles will assist traffic operation authorities to
propose traffic state responsive dynamic platoon structures.
Utilizing these platoon configurations will make the best
use of ADS vehicles on prevailing traffic conditions to
obtain maximum gains. Future research based on this study
will account for vehicles with conflicting movements (i.e.,
lane changing, merging traffic from on-ramps, diverging
traffic towards off-ramp, etc.) and propose potential improve-
ments.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 6: Observed variations of (a) individual features due to diverse platoon variables listed and (b) listed multiobjective function sets
resulting from changing platoon variables.
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The fact that real-time autonomous vehicle (AV) traffic volume can be collected without a field detector by virtue of advanced
global positioning system (GPS) and wireless communication technologies can render a promising solution to online monitoring
of traffic volume in the upcoming AV era. To demonstrate this opportunity, this paper proposes a newmethod tomonitor real-time
motorway traffic volumes for road locations where no detector is installed using AV traffic volume.Themodeling concept is based
on the obvious fact that AV traffic volume is a direct portion of total traffic volume.The capabilities of themethod are demonstrated
through an experimental study using real-world GPS-enabled smartphone vehicle navigation data. The results show that online
motorway traffic volume can be effectively monitored throughout the day with 5.69% average error at the 14.91% penetration rate
of AVs during the daytime. Therefore, it is expected that AVs can at least be used as complementary means for the role of vehicle
detectors in the near future due to the fact that the detection range of AVs is not spatially constrained.

1. Introduction

Real-time traffic volume is essential for traffic control and
management in intelligent transportation systems (ITS).
Since the introduction of ITS, various vehicle detectors that
are based on in-roadway and over-roadway sensor tech-
nologies have been utilized to monitor traffic flow variables
(i.e., volume, speed, and density). Typically, the spatially
consecutive and dense deployment of vehicle detectors is
utilized for the instant and accurate monitoring of the
variables due to the fact that the spatial coverage of current
detectors ranging from conventional inductive loop to radar
sensing is constrained to fixed point or fixed short length.
This surveillance strategy requires extensive budgets and
resources in order to guarantee the reliability of monitored
information. In addition, vehicle detectors are operated
without the change of their locations in many cases after they
are installed in the field.

To address these obstacles from the perspective of ITS
infrastructure management and the constrained spatial cov-
erage of vehicle detectors, several investigations to produce

the three traffic variables for unmeasured points or road
sections using advanced data have been introduced in our
literature review. The existing studies have been focused
on travel speed or density, showing remarkable and dis-
tinguished estimation accuracy according to the data used.
Despite the importance of traffic volume, however, any
method for dynamic traffic volume still has not been reported
even under the condition of advanced data. As such, dynamic
traffic volume estimation for unmeasured locations is a
new research topic for solving the spatially constrained and
fixed coverage of vehicle detectors and then for reducing
the budgets and resources for surveillance infrastructure in
modern and near future ITS.

Fortunately, it is expected that AVs play a key role as a
new moving probe source by virtue of an advanced global
positioning system (GPS) and communication technologies
for their driving. To mine this promising opportunity, the
aim of this study is to initiatively demonstrate the potential
of autonomous vehicles (AVs) for producing dynamic traf-
fic volumes for an unmeasured location by using a novel
method. The proposed method in this paper is to develop
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a new concept that contracts and then expands AV traffic
volumes into overall traffic volumes. In addition, based on the
analysis results, some findings and research directions for the
online monitoring of traffic volume in the present and near
future era are discussed.

2. Literature Review

Despite advanced vehicle detection technologies in modern
ITS, it seems that the measurements are insufficient due
to constrained space coverage (i.e., fixed point or short-
length detection area) and the high costs of installation and
maintenance. To address these hindrances, academic inves-
tigations to dynamically estimate three traffic flow variables
(i.e., volume, speed, and density) have been conducted using
advanced (probe) data. Note that the literature review of this
paper is focused on academic research in which real-world
advanced data was employed to produce the three variables.

For the dynamic measurement of travel speed or time,
four types of probes have been employed: automatic vehicle
identification (AVI) [1], vehicle-based GPS mobile sensor
[2, 3], cellular phone (CP) [4–6], and GPS-enabled CP [7, 8].

Probe data that is collected from AVI or vehicle-based
GPS mobile sensor systems was employed as a direct portion
of vehicle travels in [1–3]. AVI probe data from the San
Antonio TransGuide system was employed for estimating
average link travel time in [1]. The study demonstrated that
a low sampling rate, less than 1%, can represent average link
travel time effectively. Travel speed was estimated using GPS-
based taxi probe data in [2, 3]. The two studies indicated that
imperfect probe data can be used formonitoring traffic status
in practice. The results of the two studies in [1, 2] are similar
to [9, 10] in terms of a minimum sampling rate of 1∼3%.

CP probe data based on tracking CP footprints in a
cellular communication network was used to measure travel
speed and time between freeway locations in [4–6]. The
potentialities of a CP-based system for monitoring traffic
status were demonstrated. Despite the reliable measurement
accuracy of the CP probe, research indicated in [4] that the
noise of the CP probe should be addressed successfully. The
noise problem occurs when travel speed is low. Thus, CP-
based monitoring systems are suitable for a high-speed road-
way such as a motorway [5]. The measurement accuracy was
highly improved through an advanced tracking algorithm in
[6].TheCP-based systemonlymeasures traffic status between
two fixed cells (i.e., antennas), as the system totally relies on
the geographical configuration of cells. Therefore, the CP-
based system is not suitable for measuring traffic status in an
urban road network.

Noticeably, two studies demonstrated that the spatiotem-
poral dotted trajectory of an individual GPS-enabled smart-
phone can be employed as an effective traffic probe to
measure accurate traffic status in [7, 8]. The two studies
proved that a 2-3% penetration of GPS probes in the driver
population is sufficient to measure accurate traffic speed [7].
The uncertainty of speed measurements caused by the noise
of a GPS signal was effectively addressed in [8]. The study
showed that the behaviors of speed measured by smartphone
trajectory are statistically the same as those of actual speed.

The strength of the trajectory probe is suitable for various
measurements of traffic status without spatial constraints.

A few studies for estimating traffic density [11] and hourly
traffic volume [12, 13] have been reported. A combination
method of a kinematic wave model and a probability model
for dynamically estimating traffic density was developed
based on reconstructing individual vehicle trajectory using
heterogeneous data (loop detector, AVI probe, andGPSprobe
data) in [11]. An innovative methodology for estimating
hourly traffic volumes using cellular-phone call count and
its probability crossing intercell boundaries was proposed in
[12, 13].The two studies demonstrated that cellular-phone call
data can be employed for inferring hourly traffic volumes,
where the resulting estimation error was 20%. Despite the
initiative efforts, it can be seen that more accuracy should be
achieved with more short time length such as a level of five-
minute data aggregation for the applications of ITS.

Based on the literature review on the dynamic estimation
of the traffic variables using advanced probe data, several
studies for traffic speed and density have reached an accept-
able level in terms of estimation accuracy. However, more
investigations of traffic volume need to be performed at a
level of acceptable accuracy. In a strict sense, research for
estimating dynamic traffic volumes has not been reported or
highly correlated using advanced probe data that is a direct
portion of traffic volume. In addition, the dynamic evolution
of traffic volume behaves like a chaotic system [14, 15].That is,
a time-series of traffic volume data naturally reveals intensive
and wide fluctuations in ergodic and nonperiodic manners.
This fact makes it difficult to directly estimate reliable traffic
volumes by using either direct low probe data from a GPS-
enabled vehicle or indirect probe data from a GPS-enabled
mobile phone. More importantly, a new approach should be
developed, which is capable of adaptively recognizing the
temporal evolution of traffic volumes even in the case when
the penetration rate of probe data available to traffic volume is
low. In this context, the direct monitoring of dynamic traffic
volume using the trajectory probe data of AV is one of new
research directions in modern ITS.

3. Methodology

3.1. Approach Concept. The operation of AVs should be sup-
portedwith advanced GPS and communication technologies.
That is, AVs that are on a driving service can be considered
a moving GPS probe in a road network. It is also surely
expected that detailed point-to-point operation trajectory
data can be stocked by virtue of the GPS technology, and then
the trajectory data can be transferred to an advanced data
centre through the communication technology online. This
develops the assumption that AV probe volume is a direct
portion of total traffic volume or at least is very highly related
to that in some way. If this assumption is reasonable, then
traffic volume at a target road location can be produced using
a suitable relationship between probe volumes and traffic
volumes that are collected from the nearby locations of the
target road location. Moreover, the AV trajectory data is not
spatially constrained unlike existing vehicle detectors, and
thus, the probe volume can be accurately monitored at any
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road location. This implies in turn that traffic volume at any
road location (used by AVs) can be effectively monitored
using the probe volume. Therefore, it is expected that AVs
render golden opportunities against the traffic surveillance
system of modern and future ITS.

To demonstrate the potential of AVs for the real-time
monitoring of traffic volume, a new method to produce
dynamic traffic volume at any road location using AV
probe volume data is proposed in this study. The method
is developed on the basic concept that probe volume data
provide key information to solve the uncertainty problem
in the direct monitoring of traffic volume. This modeling
approach is also supported by the fact that probe volume is at
least a direct portion of traffic volume. The method consists
of two modeling concepts: contraction and expansion of
probe volume. In the contraction method, time-series probe
volume data are adjusted into suitable data by eliminating
its unnecessary random noise. The method also adaptively
interpolates zero probe volume values into useful values,
because zero probe volume values inevitably occurs when
either traffic volume and/or the penetration rate of AV is
low. In the expansion method, an adjusted probe volume at
a road location where a traffic volume estimation is desired is
converted into a traffic volume value by using a relationship
between adjusted probe volumes and traffic volumes. As such,
the combination of the two methods can solve the problem of
direct monitoring traffic volume efficaciously by diminishing
the number of uncertainties that inevitably occurs in solving
this problem.

3.2. Contraction Method. It is natural that the temporal
evolution of AV probe volume reveals more wide relative
variations than that of overall traffic volume under the
condition that the penetration rate (0.0∼1.0) of AV to traffic
volume is less than 1.0. This is because the probe volume is
a sort of random sample with a given penetration rate. In
this case, undesirable estimation results (i.e., over- and under-
estimation problems) are unavoidable when a time series
of probe volume data that includes the random-sampling
variation in itself is directly used for the monitoring of traffic
volume without any filtering process. This problem becomes
more serious when the sampling variability of collected
temporal probe volumes increases under the condition of low
AV penetration rates and/or low traffic volumes. Zero probe
volumes can also occur frequently, even when traffic volumes
are low and AV penetration rates are not low.

To address this problem effectively and to ensure the reli-
ability of traffic volumemonitoring, two processes that adjust
raw probe volumes into suitable probe volumes are essentially
required as follows: unnecessary random variations that
intrinsically exist in rawprobe volumes should be filtered; and
zero probe volume values should also be interpolated with
useful values. The two processes are concurrently conducted
by a contraction method proposed in this study.

The contraction method is devised based on the assump-
tion that the temporal variation of actual traffic volumes is
highly related to that of raw probe volumes. This assumption
could be reasonable if the raw probe volume that include
random-sampling variation is a part of the traffic volume.
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Figure 1: Distributions of relative variation.

Thus, the unnecessary variation of raw probe volumes can be
removed by using the distribution of relative variation (RV)
of raw temporal probe volumes and that of RV of temporal
traffic volumes. To measure time-series RV values, time-
series values and moving-average values for traffic volume
and probe volume are defined as follows. Let 𝑠 = {𝑡𝑔, 𝑢𝑝, 𝑑𝑛}
be the target location (𝑡𝑔) and the upstream and downstream
of 𝑡𝑔, respectively. Let 𝑥 = {𝑞, 𝑝} be a set of traffic volume
(𝑞, vehicles per length of time interval) and probe volume
(𝑝, vehicles per length of time interval). Let X = {Q, P}
be time-series sets of 𝑥. Note that a form of time series
(i.e., a series of time intervals) at the present time interval
(𝑡) toward the past is defined as T = [(𝑡), (𝑡 − 1), . . . , (𝑡 −𝑑)], where d is the embedding size of time series. Let X𝑠 =
[𝑥𝑠(𝑡), 𝑥𝑠(𝑡 − 1), . . . , 𝑥𝑠(𝑡 − 𝑑)] be a time series of 𝑥 for 𝑠. Let
X𝑏𝑠 = [𝑥𝑏𝑠 (𝑡), 𝑥𝑏𝑠 (𝑡−1), . . . , 𝑥𝑏𝑠 (𝑡−𝑑)] be a time series ofmoving-
average values for X and 𝑠, where each element of X𝑏𝑠 (i.e.,𝑥𝑏𝑠 (𝑖)) is calculated as [∑𝑚𝑘=0 𝑥𝑠(𝑖 − 𝑘)]/[𝑚 + 1] with 𝑚 (≥ 1),
(∀𝑥, 𝑠, and 𝑖 ∈ T). Let R𝑋𝑠 = [𝑟𝑥𝑠 (𝑡), 𝑟𝑥𝑠 (𝑡−1), . . . , 𝑥𝑥𝑠 (𝑡−𝑑)] be a
time series of RV values for X and 𝑠.Thus, each element of R𝑋𝑠
is computed using each element of X𝑠 and that of X𝑏𝑠 (where
if 𝑠 = 𝑡𝑔, then X ̸= Q), as follows:

𝑟𝑥𝑠 (𝑖) = 𝑥𝑠 (𝑖) − 𝑥𝑏𝑠 (𝑖)𝑥𝑏𝑠 (𝑖) , ∀𝑠, 𝑥, 𝑖, 𝑖 ∈ T (1)

Figure 1 shows the RV distributions of traffic and probe
volumes (i.e., R𝑄𝑠 andR

𝑃
𝑠 ), where the variance of probe volume

is greater than that of traffic volume. The RV distribution
of probe volume can be adjusted similar to that of traffic
volume using the standard deviation. This statistical principle
is employed tomodify a variation of temporal probe volumes.
Let 𝜎𝑋𝑠 be the standard deviation of R𝑋𝑠 (where if 𝑠 = 𝑡𝑔, then
X ̸= Q). Let P𝑎𝑠 = [𝑝𝑎𝑠 (𝑡), 𝑝𝑎𝑠 (𝑡 − 1), . . . , 𝑝𝑎𝑠 (𝑡 − 𝑑)] be a time
series of adjusted probe volumes for 𝑠. Finally, each element
of P𝑎𝑠 is estimated based on each component of P𝑏𝑠 and the rate
of 𝜎𝑄𝑠 to 𝜎𝑃𝑠 as
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𝑝𝑎𝑠 (𝑖) = 𝑝𝑏𝑠 (𝑖) × [1.0 + 𝑟𝑝𝑠 (𝑖) × 𝜎𝑄𝑠𝜎𝑃𝑠 ] ,
∀𝑠, 𝑖, 𝑠 ̸= 𝑡𝑔, 𝑖 ∈ T

(2)

Thus, each probe volume (i.e., 𝑝𝑠(𝑖)) is contracted into𝑝𝑎𝑠 (𝑖) by removing unnecessary random-sampling variation.
Additionally, 𝑝𝑎𝑠 (𝑖) is effectively generated in the case of a low
value of𝑝𝑠(𝑖), and 𝑝𝑠(𝑖) is also interpolated with a useful value
even when 𝑝𝑠(𝑖)=0.0, if 𝑝𝑏𝑠 (𝑖) > 0.0, 𝜎𝑃𝑠 > 0.0, and 𝜎𝑄𝑠 > 0.0.

Due to the fact that no traffic volume is collected at
the target location, it is impossible to directly compute the
adjusting factor (i.e., the rate of 𝜎𝑄𝑠 to 𝜎𝑃𝑠 ). Therefore, it is
assumed that 𝜎𝑃𝑡𝑔 (i.e., the standard deviation of R𝑃𝑡𝑔) is more
similar to 𝜎𝑃𝑠 when P𝑏𝑡𝑔 is nearer to P𝑏𝑠 , (𝑠 ̸= 𝑡𝑔), from the
viewpoint of RV distribution of probe volume. This can be
supported by the rational reasoning that penetration rates of
AV between the three locations are similar or at least not
significantly different, and then the similarity of P𝑏𝑠 values
between different locations highly relies on Q𝑏𝑠 values even
though Q𝑏𝑡𝑔 cannot be estimated. Based on this assumption,
closeness (𝑐𝑠) between P𝑏𝑡𝑔 and P𝑏𝑠 can be a direct solution
to combine the two adjusting-factor values of upstream and
downstream locations into an adjusting-factor value for 𝑡𝑔.
Euclidean distance metric that is one of direct and widely
applied techniques to determine the degree of similarity in
the time-series analysis of discrete dynamical system [15] is
used in this study, and 𝑐𝑠 between P𝑏𝑡𝑔 and P𝑏𝑠 is calculated as

𝑐𝑠 = [󵄨󵄨󵄨󵄨󵄨𝑝𝑏𝑡𝑔 (𝑡) − 𝑝𝑏𝑠 (𝑡)󵄨󵄨󵄨󵄨󵄨2 +, . . . ,
+ 󵄨󵄨󵄨󵄨󵄨𝑝𝑏𝑡𝑔 (𝑡 − 𝑑) − 𝑝𝑏𝑠 (𝑡 − 𝑑)󵄨󵄨󵄨󵄨󵄨2]1/2 , 𝑠 ̸= 𝑡𝑔

(3)

The inverse of 𝑐𝑠 (i.e., 𝑐𝑠−1 > 0.0) that is effectively utilized
in pattern selection-based traffic volume forecasting [15,
16] is employed to weight the two adjusting-factor values
of upstream and downstream locations. According to this
consideration, a value of adjusting factor (i.e., the rate of 𝜎𝑄𝑡𝑔
to 𝜎𝑃𝑡𝑔) for 𝑡𝑔 at (𝑡) is estimated using a weighted average
function, which combines the two adjusting-factor values by𝑐𝑠−1. Finally, a contracted probe volume (𝑝𝑎𝑡𝑔(𝑡)) for 𝑡𝑔 at (𝑡) is
computed as

𝑝𝑎𝑡𝑔 (𝑡) = 𝑝𝑏𝑡𝑔 (𝑡)
× [1.0 + 𝑟𝑝𝑡𝑔 (𝑡) × ∑𝑠 ((𝜎𝑄𝑠 /𝜎𝑃𝑠 ) × 𝑐𝑠−1)∑𝑠 𝑐𝑠−1 ] ,

𝑠 ̸= 𝑡𝑔
(4)

As such, 𝑝𝑡𝑔(𝑡) is modified into 𝑝𝑎𝑡𝑔(𝑡) by using the two
adjusting-factor values (i.e., 𝜎𝑄𝑠 /𝜎𝑃𝑠 ) and the inverse of 𝑐𝑠 (i.e.,𝑐𝑠−1). Furthermore, 𝑝𝑎𝑡𝑔(𝑡) is robustly estimated when a value
of 𝑝𝑡𝑔(𝑡) is very low, and 𝑝𝑡𝑔(𝑡) is also interpolated with a
useful value even when𝑝𝑡𝑔(𝑡)=0.0, if𝑝𝑏𝑡𝑔(𝑡) > 0.0, 𝑟𝑝𝑡𝑔(𝑡) > 0.0,
and 𝜎𝑃𝑠 > 0.0.

3.3. Expansion Method. To expand the contracted probe vol-
ume (i.e., 𝑝𝑎𝑡𝑔(𝑡)) to a traffic volume (i.e., 𝑞𝑡𝑔(𝑡)) for the target
location (𝑡𝑔) at time interval (𝑡), a weighted power curve
is employed to determine a relationship between contracted
probe volumes (i.e., 𝑝𝑎𝑠 (𝑖), , 𝑠 ̸= 𝑡𝑔, 𝑖 ∈ T) and traffic volumes
(i.e., 𝑝𝑠(𝑖), , 𝑠 ̸= 𝑡𝑔, 𝑖 ∈ T) in this study. The expansion
method is stated according to two parts: a weighting function
and the determination of an optimal fitting curve. From the
perspective of temporal development of traffic flow, it is self-
evident that the temporal evolution of traffic flow nearer
to (𝑡) is more related to traffic flow at (𝑡) [14–16]. This is
considered with the bisquare weighting function that was
introduced to explain nonstationary relationships between
spatial elements in [17]. Let𝑊𝑠 = [𝑤𝑠(𝑡), 𝑤𝑠(𝑡 − 1), . . . , 𝑤𝑠(𝑡 −𝑑)] be a series of weight values (0.0∼1.0) for T.Thevariation of
weight value according to the proximity of time is illustrated
in Figure 2(a), which can be efficaciously used in the case
that the penetration rate of AV varies according to the time
periods of day (e.g., peak and off-peak time). The bisquare
function for temporal nonstationarity can be expressed as

𝑤𝑖 = [1 − ( 𝑖𝑑)
2]2 , 𝑖 = [0, 1, . . . , 𝑑] (5)

In order to find an optimal power curve, traffic volume
data and contracted probe volume data for upstream and
downstream locations are used as a dependent variable and
an independent variable, respectively. The dependent and
independent variables are defined as follows. Let Q = [Q𝑢𝑝,
Q𝑑𝑛] and P = [P𝑎𝑢𝑝, P

𝑎
𝑑𝑛] be sets of traffic volumes and adjusted

probe volumes for the upstream and downstream locations,
respectively. In addition, let W = [W𝑢𝑝, W𝑑𝑛] be a set of
weight values for the two locations. For the convenience of
the description of the expansionmethod, these definitions are
redefined with the number of observations (N=2×(d+1)). Let
Q = [𝑞1, 𝑞2, . . ., 𝑞𝑁] and P = [𝑝1, 𝑝2, . . ., 𝑝𝑁] be dependent
and independent variables, and let W = [𝑤1,𝑤2, . . .,𝑤𝑁] be a
set of weight values.

The temporal evolution of traffic volume states reveals
intensive variation in ergodic and nonperiodic manners [14,
15]. Hence, it is natural that the temporal variation of probe
volumes varies more steeply and widely than that of traffic
volumes, even though the probe is a direct part of traffic
volume. Thus, if a linear regression model is employed,
then unacceptable results (e.g., repetitive overestimations
and underestimations, and even negative estimations) can
occur by failing the directionality of relationship between P
and Q. To prevent these undesirable results, a power curve
with versatility in curve fitting (ranging from logarithmic,
linear, to positively exponential types) is used to understand
the relationship between the two variables as shown in
Figure 2(b). The power curve for the members of [P, Q] (i.e.,
[𝑝𝑖, 𝑞𝑖], 𝑖 ∈ 𝑁) is defined as

𝑞𝑖 = 𝛼 ⋅ 𝑝𝑖𝛽 + 𝛾 (6)

where 𝛼 (>0.0) and 𝛽 (>0.0) are the coefficient and exponent
of 𝑝𝑖, respectively; 𝛾 (0.0≤ 𝛾 ≤ 𝛾𝑚𝑎𝑥) is a constant term; 𝛾𝑚𝑎𝑥
= min{𝑞𝑠}; and 𝑞𝑠 is an average of elements of Q𝑠, where 𝑠 =
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Figure 2: Power curve for expansion of probe volume.

{𝑢𝑝, 𝑑𝑛}. To prevent negative estimations, 𝛼 is greater than
0.0 and 𝛾 is greater than or equal to 0.0. 𝛽 is greater than 0.0
and 𝛾 is less than or equal to 𝛾𝑚𝑎𝑥, since traffic volumes do not
decrease according to the increase of probe volumes. For an
optimal curve that minimizes total estimation error, a local
error for each observation can be expressed as

𝜖𝑖 = 𝑞𝑖 − (𝛼̂ ⋅ 𝑝𝑖𝛽 + 𝛾) (7)

where 𝛼̂, 𝛽, and 𝛾 are optimal 𝛼, 𝛽, and 𝛾 values, respectively,
and 𝜖𝑖 is the estimation error for observation 𝑖, 𝑖 ∈ 𝑁.

As mentioned, temporal traffic volumes fluctuate widely,
and then the quantity of traffic volume varies from low to high
levels. Thus, a family of the residual sum of squares that are
widely employed as an objective function for determining an
optimal fitting can have a ‘bias and variation problem’ in the
case of low traffic volumes [18].That is, the low traffic volume
can be over- or underestimated, due to its low contributions
in decision-making of an optimal curve fitting.

To handle this problem effectively, the sum of a weighted
absolute relative error is used as an objective function of a
minimization problem to determine an optimal power curve.
The absolute relative error also provides an unbiased basis
[18], and thus, it is widely used as a performance measure
in the area of time-series estimation and prediction. Here, a
minimization problem for determining an optimal expansion
curve is defined as

Min. ∑𝑁𝑖=1𝑤𝑖 × 󵄨󵄨󵄨󵄨󵄨󵄨𝑞𝑖 − (𝛼̂ ⋅ 𝑝𝑖𝛽 + 𝛾)󵄨󵄨󵄨󵄨󵄨󵄨 /𝑞𝑖∑𝑁𝑖=1𝑤𝑖
S.T. 0.0 < 𝛼̂,

0.0 < 𝛽,
0.0 ≤ 𝛾 ≤ 𝛾𝑚𝑎𝑥

(8)

Once, the estimated values of 𝛼̂, 𝛽, and 𝛾 for an optimal
curve are identified through solving the minimization prob-
lem, a traffic volume for 𝑡𝑔 at (𝑡) is directly produced as

𝑞𝑡𝑔 (𝑡) = 𝛼̂ ⋅ 𝑝𝑎𝑡𝑔 (𝑡)𝛽 + 𝛾 (9)

where 𝑞𝑡𝑔(𝑡) and 𝑝𝑎𝑡𝑔(𝑡) is the estimated traffic volume and the
adjusted probe volume for 𝑡𝑔 at (𝑡), respectively.
4. Results and Potentialities

4.1. Study Design. In order to demonstrate the potential of
GPS probe data collected by autonomous vehicles, a case
study was conducted using two types of data: GPS probe
volume data and traffic volume data. The GPS probe data
that was collected by a smartphone vehicle navigation system
is most similar to the probe data of autonomous vehicles
under the present conditions, due to the fact that the vehicle-
probe volume is a direct portion of traffic volume. In this
context, it seems at least that the used probe data contains
the characteristics of probe data that are collected through
autonomous vehicles, even though the features of mixed
traffic flow with general vehicles and autonomous vehicles
have not been investigated with real-world data so far.

The used motorway data is shown in Figure 3. The test
bed is a part of the Seoul External Circulation Motorway
100, one of the main motorways in South Korea. The target
road location consists of four lanes, and the upstream road
section includes one interchange and one junction and the
distance is 11.6 km. The downstream road section contains
two interchanges and four junctions and the distance is 25.6
km. It can be seen that the test-bed conditions are unfavorably
severe for the experimental condition, whereas the test-bed
conditions are desirable to demonstrate the potential of the
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proposed method in this paper. One-week individual point-
to-point trajectory data was collected on December 24-30,
2016. The individual data was aggregated with a 5-minute
interval. In addition, traffic volume data with a 5-minute
aggregation was collected by an electronic toll collection
system.

The temporal evolution of the two types of data are shown
in Figure 4. The traffic volume varies from 27 to 442, and
its temporal development reveals intensive variation in terms
of relative percentage difference (RPD) (%), [𝑥(𝑡 + 1) −𝑥(𝑡)]/𝑥(𝑡) × 100. RDP values range widely from -21.10 to
39.27. Regarding the probe volume ranges from 0 to 82, the
RDP values vary from -100.0 to 800.0 except for a zero probe
volume. As such, it is obvious that the temporal evolution
of probe volumes exhibits more intensive and steep variation
than that of traffic volumes by means of RDP. Despite these
intensive variations, the statistical correlation between the
two types of data is up to 0.933. This fact directly indicates
that the probe volume is a direct portion of traffic volume and
can reflect the features of traffic volume in some way.

Figure 5 shows the penetration rate (PR) of probe volume
to traffic volume, where PR= [probe volume / traffic volume].
PR widely varies spanning from 0.06 to 0.25 with an average
of 0.149. It seems that the evolution behavior of PR according
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Figure 5: Penetration rate according to traffic volume.

to traffic volume is near to a mixed state but also has a
closed boundary condition. The width of variation becomes
narrower when traffic volumes increase, due to the fact that
the sampling variability decreases when either the sample size
(i.e., probe volume) increases or the variance of population
(i.e., traffic volume) decreases. Moreover, a trend curve of PR
shows logarithmic growth and increases when traffic volumes
increase. This is because drivers have a tendency to use
more vehicle navigation systems when their travel distance
increases and because traffic congestion usually occurs at
daytime.

To measure the performance of the propose method in
this paper, the following four performance measures were
carefully selected. Absolute percentage error (APE, %) and
relative percentage error (RPE, %) provide a useful basis for
comparison when traffic volume varies widely [15, 16]. APE
and RPE have a weakness in the case of low traffic volume,
as the relative temporal variation of low traffic volume is
high. In this vein, straight error for lane (SEL, vehicles per
lane), which can be useful in practice, is introduced in this
study. The hit rate, one of crucial performance measures for
real-life applications, was also utilized with RPE and SEL. In
addition, the mean of APEs was employed to analyze and
identify the optimal parameter values (i.e., 𝑑 and 𝑚 values)
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of the presented method. APE, RPE, and SEL are expressed
as

APE (%) = 󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦𝑖󵄨󵄨󵄨󵄨𝑦𝑖 × 100, 𝑦𝑖 > 0.0 (10)

RPE (%) = (𝑦𝑖 − 𝑦𝑖)𝑦𝑖 × 100, 𝑦𝑖 > 0.0 (11)

SEL (veh) = (𝑦𝑖 − 𝑦𝑖)𝑙 (12)

where 𝑦𝑖 and 𝑦𝑖 is the observed value and the estimated value
of sample 𝑖, respectively, and 𝑙 is the number of lanes.

4.2. Results and Findings. The proposed model was devel-
oped based on the combination of the contraction and
conversion method (C2C). Hence, the performances of the
C2C method are highly dependent on the 𝑚 and 𝑑 values in
terms of estimation accuracy. The𝑚 and 𝑑 values contribute
key roles to contract the temporal variation of probe volumes,
and the 𝑑 value highly influences the determination of
optimal curve fitting. The effects of the combination of the
two parameter values on estimation accuracy are shown
with estimation error rates in Figure 6. As for the 𝑚 value,
the estimation error curve steeply decreases (𝑚=3󳨀→9) and
then stays (𝑚=9󳨀→11) at the optimal error space and then
increases (𝑚=11󳨀→18) when the 𝑑 values are greater than
9. This indicates that a locality of temporal evolution of
probe or traffic volumes exists in terms of moving average,
even though the temporal development of probe and traffic
volumes reveals intensive and steep variations. Regarding
the 𝑑 value, the estimation error exponentially decreases to
the optimal error space and then gradually increases when
the 𝑑 value increases with little variation. This indirectly
implies that a locality of temporal evolution of probe or
traffic volumes exists in terms of determination of optimal
relationship between probe and traffic volumes, whether the

boundary condition is obvious or not. The optimal error
space is very stable within a minimal error +0.5%, which
indicates that suitable parameter values can be analyzed and
determined within the margin of error on a daily or monthly
basis in advance.

In addition, the optimal 𝑚 and 𝑑 values of 10 and 14,
respectively, were selected for more analysis.

Two relationships between 𝛼 and 𝛽 values according to 𝛾
values are shown in Figures 7(a)-7(b), where the explanatory
power of probe volume data is divided into two regimes with
an obvious boundary condition. As for 𝛾=0.0, the 𝛽 value
exponentially decreases when the 𝛼 value increases, showing
a high relationship with the 𝑅2 value of 0.93. The cases of𝛽 < 1.0 reach to 83.02%. This means that the relation-
ships between probe and traffic volumes are logarithmic in
many cases. This fact also indicates that negative estimations
inevitably arise in the case of very low probe volume if a
linear relationship is used, which is directly connected to the
prediction failure. Regarding the case of 𝛾 >0.0, the 𝛽 value
steeply decreases according to the increment of the 𝛼 value,
and the two parameters are more highly connected than the
upper relationship by means of 𝑅2. The cases of 𝛽 > 1.0 are
up to 91.90%. This indicates that the relationships between
probe and traffic volumes are upward inmany cases.This fact
also implies that the underestimation problem unavoidably
occurs when probe volume is very low if a single linear
relationship is employed. Therefore, it can be seen in our case
that if a linear model is used, estimation failure inevitably
occurs in the case of low traffic volume except for a few cases
of 𝛾 >0.0.

Figure 8 demonstrates the time-series variations of raw
probe volumes and contracted probe volumes. Extreme
variations, which can cause undesirable estimation results,
are adjusted within the range of temporal variations of traffic
volumes. The standard deviation of the RDP (SDRDP) of
raw probe volume is 76.94%, whereas that of filtered probe
volume is 7.73%. Similarly, adjustment gain is up to 89.95%
[=(76.94-7.73)/76.94×100]. The SDRDP value of adjusted
probe volume is also similar to that of traffic volume (7.45%).
This suggests that extreme estimations can be effectively
prevented through the contraction of temporal variation of
probe volumes.

The relationships between probe volumes and traffic
volumes for the before and after cases are shown in Figure 9.
The contraction method effectively improves the relationship
of the two variables in terms of 𝑅2, where the 𝑅2 value
increases from 0.84 to 0.95. It can be seen at least that
this result is acceptable, even considering that the natural
attribute of 𝑅2 increases when the number of observations
increases. Specifically, the effect of variation contraction is
distinguished in the case when traffic volumes are less than
100. This is because temporal traffic volumes exhibit less
variation than that of probe volumes as shown in Figure 4.
In the same context, the explanatory power of probe volumes
is remarkably improved when traffic volumes are greater than
300.

The analysis results are summarized with three traffic
volume regimes in Table 1, showing noticeable performances.
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For all regimes, it can be seen that the accuracy performance
of the C2C method is at least comparable to those of modern
vehicle detectors in terms of the mean of APE (MAPE,
%), 5.69%. Note that the accuracy performances of traffic
counting for inductive loop, laser scanner, weight-in-motion
(WIM) piezoelectric, and WIM quartz detectors in the case
of 5-minute data aggregation were reported as 10.6, 24.1, 7.4,
and 17.6% by means of MAPE, respectively [19]. The worst
performances for APE and RPE measures are shown in the
low-volume regime, excluding SEL as shown inFigures 10 and
11. The APEs are greater than 20% for several cases, which
is undesirable from the standpoint of forecasting. Note that
the tolerable detection error in the case of vehicle detectors
should not vary fromactual volumes bymore than 20.0% [12].
Despite these undesirable performances, forecasting for the
low regime can be also acceptable with the maximal SEL of
4.73, which is almost equal to one vehicle per one minute in
practice.The hit rate within RPE±10.0%does not reach 90.0%

for all regimes, whereas the hit rate within SEL±10 vehicles
are up to 98.86%. On the contrary, in the cases of middle and
heavy volume regimes, the APE values are less than 10.0%
in most cases as shown in Figure 10, where the temporal
variation of estimations concurswith that of the observations.
The hit rate within RPE±10% is also up to 91.27%. In addition,
the hit rate within RPE±20.0% for the middle and heavy
regimes reaches 99.61% (Figure 11(a)). Moreover, the worst
cases that span to -32.32% or +32.60% occur in the late-
night hours, even though they are acceptable in terms of SEL
within ±3.0 vehicles (Figure 11(b)). Note that the accuracy
performances of the proposed method for the case of low
traffic volume are comparable to those of pattern selection-
based single-interval forecasting [15, 16] in terms of MAPE.
Therefore, traffic volumes estimated from AV probe volumes
can also be regarded as a promising option for traffic volume
detection.

4.3. Present and Future Potentialities. For more real-world
applications in the present and near future, more analysis
for the potential of the C2C method was conducted through
both the data-aggregation level and the penetration rate of
AVs. Figure 12 shows the performances of the hit rate within
RPE±10% according to data-aggregation levels. Note that
accuracy performances (MAPE) for inductive loop, video
image, laser scanner, WIM piezoelectric, and WIM quartz
detectors in the case of 15-minute data aggregation were
reported as 9.4, 34.1, 19.8, 5.7, and 12.3, respectively [19].
As for the 10-minute aggregation level, the hit rate reached
88.39% with the MAPE of 4.85% for all regimes and was
up to 94.65% with the MAPE of 3.77% when traffic volume
(vehicles/ 10 min) is greater than 200. In regard to the 15-
minute and 30-minute aggregation levels, it can be seen that
the performance of the C2C method is obviously compara-
ble to the required detection accuracy for modern vehicle
detectors. Accordingly, it is expected that the C2C method
for directly monitoring traffic volumes can at least be feasible
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Table 1: Summary of the results.

Performance
Measures

All regimes Low regime Middle regime Heavy regime
Cases (volume) 481 (<100) 532 (<300) 1003 (300≤)

APE (%) Mean 5.69 9.93 6.08 3.45
Max. 32.60 32.60 21.62 15.74

Median 3.98 8.41 5.04 2.73
RPE (%) Mean 0.17 0.47 0.22 -0.01

Max. 32.60 32.60 21.62 15.74
Min. -32.32 -32.32 -19.53 -12.53
SD 7.91 12.51 7.67 4.42

HR±10% 83.28 57.80 80.45 97.01
HR±20% 96.83 87.94 98.87 100.00

SEL (veh) Mean -0.01 0.02 0.12 -0.10
Max. 14.00 4.73 12.87 14.00
Min. -12.07 -6.02 -12.07 -11.89
SD 3.45 1.49 3.74 3.92

HR±5 veh 85.07 99.79 82.52 79.36
HR±10 veh 98.86 100.00 98.87 98.31

Note: SD stands for standard deviation.
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Figure 9: Efficacy of the contraction method.

as complementary means for the role of vehicle detectors if
vehicle trajectory data is available with the penetration rate
of 0.15%. Moreover, the levels of estimation reliability can be
flexibly considered and employed according to the various
tactics of traffic operation and control.

In order to demonstrate the potentialities of AV probe
volume according to the penetration rate of AVs in the
near future, we conducted a random simulation to generate
temporal probe volume data. The penetration rate of the
probe data used in our case study was employed for the
basis of the probability of random selection (rather than a

simple random sampling) to consider actual sampling rate.
In addition, it is not easy for a random-sampling method to
realistically mimic the temporal evolution of probe volumes
while considering that of traffic volumes, due to the chaotic
behaviors of traffic flow as mentioned before.The probability
of selection was computed as

𝑝𝑠𝑒𝑙 = 𝑃𝑅𝑑𝑃𝑅𝑟 (13)

where 𝑝𝑠𝑒𝑙 (0.0∼1.0) is the probability of selection, 𝑃𝑅𝑟 (0.0-
1.0) is the real-world penetration rate of probe volume to
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Figure 11: Distributions of estimation errors according to traffic volumes.

traffic volume, and 𝑅𝑃𝑑 (0.0 ≤ 𝑃𝑅𝑑 ≤ 𝑃𝑅𝑟) is a desired
penetration rate. Thus, a random sample value for each time
interval (𝑡) was generated by using 𝑝𝑠𝑒𝑙 and a probe volume at
(𝑡). 14 scenarios of 𝑝𝑑 from 0.01 to 0.14 were repeated twenty
times for each probe volume data for the day time (06:00-
24:00).

Figure 13 shows the performances of the C2C method
according to each scenario with the median of 20 MAPE val-
ues. The estimation errors exponentially decrease when the
penetration rate increases. The span of errors also decreases
from 1.80% to 0.16% as the penetration rate increases. Based
on the results, it can be seen that the monitoring accuracy
of 93.77% can be accomplished within the maximum average
error of 6.63% at the penetration rate of 0.05. In addition,
it seems that the penetration rate of 0.10 can yield the
monitoring accuracy of 94.78%.These analysis results suggest
that the direct monitoring of real-time traffic volumes can be
realized since the introduction of AVs to real roadways.There
are also obvious possibilities that the monitoring accuracy

can be improved dramatically according to the results of
this study, where the error curve does not converge within
a minimum error space. Furthermore, the probe volume
of autonomous vehicles can be combined with that of a
smartphone car navigation system (or a vehicle-GPS system)
to guarantee the monitoring accuracy of real-time traffic
volume until the market occupancy of AVs reaches a suitable
level.

5. Conclusion Remarks

It is expected that autonomous vehicles can render new
solutions to fundamental hindrances and unsolved academic
issues in modern ITS. One of the fundamental hindrances
is vehicle detectors that are essential for real-time traffic
surveillance, which requires extensive budgets and resources
in order to guarantee the reliability ofmonitored information.
In addition, their spatial coverage of detection is constrained
to fixed point or fixed short length.
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Figure 12: Predictability of the proposed model according to the aggregation level.

To realize this opportunity, a new concept for direct
real-time monitoring was initiatively introduced in this
paper. Using real-world probe volume data collected from
a smartphone car navigation system, the potentialities of
autonomous vehicles for direct monitoring of traffic volumes
for road locations where real-time traffic volumes are desired
were demonstrated with a novel and practical approach. The
results were noticeable in terms of explanation of temporal
variation of real-life traffic volumes. It turned out that the
monitoring accuracy of the developedmethod is at least com-
parable to the actual detection accuracy of modern vehicle
detectors, and it can reliably meet the required detection
accuracy of vehicle detectors. Therefore, it can be seen that

the direct monitoring of traffic volume is one of promising
approaches to solve the current hindrance of traffic volume
surveillance. In addition, the developed method is instantly
feasible when probe volume data is available at least with the
penetration rate of 0.05.

This study contributes a first step in proposing a promis-
ing solution to the direct monitoring of real-time traffic
volumes. Despite the meaningful results of this research,
there are other opportunities in direct real-time monitoring
of traffic flow for unobserved road locations with advanced
methodologies. We are still conducting investigations to
improve the performance of the method and are searching
for new potentialities in modern ITS.



12 Journal of Advanced Transportation

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

M
A

PE
 (%

)

Penetration rate (0.0 - 1.0)

Figure 13: Predictability according to penetration rate.

Data Availability

The smartphone vehicle navigation data used to support
the findings of this study were provided only for academic
research by SK Telecom.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the University of Incheon
(International Cooperative) Research Grant in 2014.

References

[1] F. Dion and H. Rakha, “Estimating dynamic roadway travel
times using automatic vehicle identification data for low sam-
pling rates,”Transportation Research Part B:Methodological, vol.
40, no. 9, pp. 745–766, 2006.

[2] X. Li, W. Shu, M. Li, H.-Y. Huang, P.-E. Luo, and M.-Y. Wu,
“Performance evaluation of vehicle-based mobile sensor net-
works for traffic monitoring,” IEEE Transactions on Vehicular
Technology, vol. 58, no. 4, pp. 1647–1653, 2009.

[3] X. Zhan, S. Hasan, S. V. Ukkusuri, and C. Kamga, “Urban
link travel time estimation using large-scale taxi data with
partial information,” Transportation Research Part C: Emerging
Technologies, vol. 33, pp. 37–49, 2013.

[4] H. Bar-Gera, “Evaluation of a cellular phone-based system
for measurements of traffic speeds and travel times: a case
study from Israel,” Transportation Research Part C: Emerging
Technologies, vol. 15, no. 6, pp. 380–391, 2007.

[5] K. Sohn and K. Hwang, “Space-based passing time estimation
on a freeway using cell phones as traffic probes,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 9, no. 3, pp.
559–568, 2008.

[6] A. Janecek, D. Valerio, K. A. Hummel, F. Ricciato, and H.
Hlavacs, “The Cellular Network as a Sensor: From Mobile
Phone Data to Real-Time Road Traffic Monitoring,” IEEE

Transactions on Intelligent Transportation Systems, vol. 16, no.
5, pp. 2551–2572, 2015.

[7] J. C. Herrera, D. B. Work, R. Herring, X. Ban, Q. Jacobson,
and A. M. Bayen, “Evaluation of traffic data obtained via GPS-
enabled mobile phones: the Mobile Century field experiment,”
Transportation Research, Part C: Emerging Technologies, vol. 18,
no. 4, pp. 568–583, 2010.

[8] G. Guido, V. Gallelli, F. Saccomanno, A. Vitale, D. Rogano,
and D. Festa, “Treating uncertainty in the estimation of speed
from smartphone traffic probes,” Transportation Research Part
C: Emerging Technologies, vol. 47, no. 1, pp. 100–112, 2014.

[9] M. Chen and S. I. J. Chien, “Determining the number of probe
vehicles for freeway travel time estimation by microscopic
simulation,”Transportation Research Record, no. 1719, pp. 61–68,
2000.

[10] M. Chen and S. I. J. Chien, “Dynamic freeway travel time
prediction using probe vehicle data,” Transportation Research
Record, no. 1768, pp. 157–161, 2001.

[11] W. Deng, H. Lei, and X. Zhou, “Traffic state estimation
and uncertainty quantification based on heterogeneous data
sources: A three detector approach,” Transportation Research
Part B: Methodological, vol. 57, pp. 132–157, 2013.

[12] N. Caceres, L. M. Romero, F. G. Benitez, and J. M. Del Castillo,
“Trafficflow estimationmodels using cellular phone data,” IEEE
Transactions on Intelligent Transportation Systems, vol. 13, no. 3,
pp. 1430–1441, 2012.

[13] N. Caceres, L. M. Romero, and F. G. Benitez, “Inferring origin-
destination trip matrices from aggregate volumes on groups of
links: A case study using volumes inferred from mobile phone
data,” Journal of AdvancedTransportation, vol. 47, no. 7, pp. 650–
666, 2013.

[14] E. I. Vlahogianni, M. G. Karlaftis, and J. C. Golias, “Statistical
methods for detecting nonlinearity and non-stationarity in uni-
variate short-term time-series of traffic volume,”Transportation
Research Part C: Emerging Technologies, vol. 14, no. 5, pp. 351–
367, 2006.

[15] B. Yoon and H. Chang, “Potentialities of data-driven non-
parametric regression in urban signalized traffic forecasting,”
Journal of Transportation Engineering, vol. 10, 2014.

[16] H. Chang and B. Yoon, “High-speed data-driven methodology
for real-time traffic flow predictions: practical applications of
ITS,” Journal of Advanced Transportation, vol. 2018, Article ID
5728042, 11 pages, 2018.

[17] F. Fotheringham,C. Brunsdon, andM.Charlton,Geographically
weighted regression: the analysis of spatially varying relationship,
Wiley, Chichester, England, 2003.

[18] D.Mohamad, K. Sinha, T. Kuczek, andC. Scholer, “Annual aver-
age traffic prediction model for county roads,” Transportation
Research Record, no. 1617, pp. 69–77, 1998.

[19] P. Bellucci and E. Cipriani, “Data accuracy on automatic traffic
counting: The SMART project results,” European Transport
Research Review, vol. 2, no. 4, pp. 175–187, 2010.



Research Article
A Separation Strategy for Connected and Automated
Vehicles: Utilizing Traffic Light Information for Reducing Idling
at Red Lights and Improving Fuel Economy

Lin-heng Li , Jing Gan, and Wen-quan Li

School of Transportation, Southeast University, China

Correspondence should be addressed to Lin-heng Li; leelinheng@seu.edu.cn

Received 6 March 2018; Revised 16 June 2018; Accepted 17 July 2018; Published 29 July 2018

Academic Editor: Md. A. S. Kamal

Copyright © 2018 Lin-heng Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Vehicle platoon composed of a group of connected and automated vehicles (CAVs), a coordinated movement strategy, has been
widely proposed to address a range of traffic problems. The motion of vehicle in the platoon passing signalized intersections can
significantly affect their total trip time and fuel consumption. With the development of advanced communication technology such
as V2V and V2I, CAVs can automatically obtain and use the upcoming traffic light timing information to find optimal velocity
profiles that can avoid idling at red lights. This paper proposes an optimal velocity control and separation strategy for the platoon
to minimize the trip time and reduce fuel consumption as much as possible. Simulation results show that with the introduction
of the velocity control and separation strategy, the total trip time and fuel consumption decrease by 19.2% and 18.1%, respectively.
Thus the effectiveness of the proposed strategy is demonstrated.

1. Introduction

In the connected and automated vehicles (CAVs) system,
vehicles are capable of sharing information and sensing
local environment with each other via the advanced com-
munication technologies (e.g., V2V and V2I). The vehi-
cles’ information (e.g., location and velocity) and the road
transportation infrastructure information (e.g., the traffic
light timing, including the phase cycle length, the green
phase length, and the start of the first green phase) will be
obtained by every vehicle. After receiving such information,
the internal decision-making mechanism will make corre-
sponding driving decisions and then achieve the level of
automatic driving. Under this circumstance, all CAVs will
be platooned through communication and automated control
technologies [1]. With CAV platooning, consecutive vehicles
are similar to two concatenated carriages of a train and thus
shall have much less time headway compared with a pair of
conventional human driven vehicles.

All these potential benefits are linked to the expecta-
tion that CAVs can significantly improve traffic capacity,
efficiency, and safety [2–5]. Studies by Lioris et al. have

shown that traffic capacity at signalized intersections could
be doubled when vehicles on the road are connected to
an intelligent network without changing the signal control
[6, 7]. Chang and Edara also examined whether the road
traffic efficiency could be further improved under CAVs
environment [8].

World Oil Outlook 2016, issued by Organization of
Petroleum Exporting Countries (OPEC), predicted that most
of the oil consumed today and in the future will come
from the road transportation sector. By 2040, the road
transportation sector will represent 44% of global oil demand
[9]. All the benefits provided by vehicle platooning are also
linked to reduce fuel consumption. Lammert et al. conducted
a comprehensive investigation on the effect of platooning on
fuel consumption of class 8 vehicles, and they found saving
of up to 6% for the leading vehicle and 10% for the following
vehicle [10]. Alam et al. proposed a particular test to study
the fuel reduction that heavy duty vehicle platooning enables
and the analysis with respect to the influence of a commercial
adaptive cruise control on the fuel consumption [11]. Tsugawa
et al. presented an automated truck platoon that has been
developed under a national ITS project named Energy ITS;
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the results in their study show that the fuel can be saved by
about 14 % [12].

Even if vehicle platooning has a certain advantage in
traffic capacity improvement and fuel-saving, a huge wastage
of traffic capacity and fuel will occur due to the stoppage
at signalized intersection during its red phase. Idling at
red lights will decrease traffic capacity and increase fuel
consumption from many aspects:(1) Stop-and-go motion. X. Zhang et al. proved that
fuel consumption and exhaust gas emission can remarkably
decrease when the acceleration and deceleration of vehicles
are pretty gentle; idling at red light or traveling in a mode
of stop-and-go will consume more fuel and emit more
greenhouse gases comparing with the vehicles in free flow
[13]. Research by Wan N et al. emphasized that, due to
vehicles’ stop-and-go motion, they need to consume more
energy than that during cruising [14].(2) Intersection delays. Intersection delays may include
queue delay and control delay. Ch. Ravi Sekhar et al. esti-
mated delay and fuel loss during idling at signalized inter-
sections. The simulation results showed that heavy delays
and a huge wastage of fuel at intersections are caused due
to stoppage of vehicles during the red phase of the signals,
because many vehicles need to stop as a consequence of
their arrival either during the red interval or during the
green interval when the queue of vehicles that had formed
during the previous red interval has not yet fully dissipated
[15].(3) Congestion. On the other hand, heavy delays at
intersections may result in traffic congestion especially in
heavy volume arterial corridor, which will cause a large
amount of financial loss, including more traffic capacity and
fuel loss. INRIX, a joint traffic data company in London,
quantitatively analyzed the impact of traffic congestion on
Britain, France, Germany, and the United States. In 2013,
the four countries lost 200 billion dollars caused by traffic
congestion, accounting for 0.8% of the total GDP of the four
countries.

Therefore, a number of benefits can be obtained in
limiting the idling time at red light. These benefits include
increasing traffic efficiency, saving in fuel use, reduction in
exhaust emissions, and even vehicle life extension. In recent
years, the exponential increase in the number of vehicles
in urban city has resulted in congestion and more fuel
consumption at intersections. Traffic efficiency improvement
and fuel economy have been paid more attention than ever.
Thus, from the perspective of traffic efficiency improvement,
travel comfort, and traffic energy conservation, it is of great
importance to keep the traffic flow smooth and reduce red
light idling.

Besides the fuel wastage at intersection due to the oper-
ation of signals, fuel consumption can also be affected by
other factors along the entire trip, such as cruising speed,
the intervehicle distance, and traffic conditions [16]. With
the advanced control system installed on CAVs, all the
vehicles can realize autonomous velocity control along the
entire trip. Motivated by the problems mentioned above,
this paper investigates one optimal platoon velocity control
and separation strategy defined to find the optimal velocity

profiles on signalized arterials that can avoid idling at red
lights and improve fuel economy along the entire trip.

The rest of this paper is organized as follows. Section 2
introduces the conceptualization of vehicle platoon and ana-
lyzes the optimization goals in this study. Section 3 proposes
the optimal platoon separation and velocity control strategy
used in this paper to minimize the trip time and reduce the
fuel consumption. The simulation results are presented and
discussed in Section 4, and conclusion is given in Section 5.

2. Problem Statement

In this section, the conceptualization of the vehicle platoons
in a short length is firstly introduced.Then the objective func-
tion of reducing the platoons idling at red lights is formulated.
Finally, the formula for the minimum fuel consumption is
introduced.

2.1. Conceptualization of Vehicle Platoons. Maiti et al. pro-
vided a detailed concept of vehicle platoon [1]. A vehicle
platoon generally consists of one leader vehicle and a number
of follower vehicles. The leader vehicle takes all decisions
on behalf of the whole platoon and controls all the platoon
members accordingly; all vehicles in the same platoon share
the same velocity. Each platoon has its own ID. And the size
of platoon is a dynamic property, which implies the current
number of vehicles in platoon; themaximum size of a platoon
means the maximum number of vehicles grouping together
in a platoon. Each vehicle in a platoon also has its vehicle
ID. As mentioned above, the role of a vehicle can be divided
into leader vehicle and follower vehicle; the role may get
updated by platoon operations (e.g., separation or merging),
which means follower vehicle may change into leader vehicle
when doing the separation operation, and leader vehicle will
also become follower vehicle when the merging operation
happens.

A platoon of CAVs is actually a network of dynamical
systems, S. E. Li et al. presented a four-component framework
to model, analyze, and synthesize a platoon of CAVs from
the perspective of multiagent consensus control [17]. When
a platoon is driving on the road, the leader vehicle can
communicate with the transportation infrastructure relying
on the V2I technology. The leader vehicle transmits the
platoon’s position, size, destination, and other traffic param-
eters to the transportation infrastructure, to avoid idling at
red lights; the leader vehicle can obtain feedback velocity
information from the control center who can give feedback
on optimal velocity to the leader vehicle according to the
green light duration and traffic flow information. When
the leader vehicle receives the velocity information, it will
transfer this velocity information to other follower vehicles
immediately through V2V technology. Therefore vehicles in
the sameplatoon can share the same velocity and then achieve
unified operation; the platoon driving schematic diagram
can be shown in Figure 1. As for the quality of information
flow exchange among vehicles, some scholars addressed the
internal stability and scalability issue for platoon under
different information topologies; e.g., Y. Zheng et al. have
studied the influence of information flow topology on the
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Figure 2: Schematic of the trajectory and velocity of leader vehicle.

internal stability and scalability of homogeneous vehicular
platoon [18].

2.2. Idling at Red Light. The process of vehicle stopping at the
red light and leaving when the light turns green is actually
the stop-and-go motion, as mentioned in Section 1; in order
to enhance vehicles’ safety, energy efficiency, andmobility, the
idling at the red light should be reduced as much as possible.

The schematic of the candidate trajectory and velocity of
the leader vehicle at each intersection is shown in Figure 2;
the green and the blue dotted lines denote the candidate
trajectories of the leader vehicle in a platoon at different
velocity, with the parameters defined as follows:

(1) The traffic light information of 𝑖th intersection is
represented by {𝑟𝑖𝑗, 𝑔𝑖𝑗}; 𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑚, 𝑗 = 1, 2 ⋅ ⋅ ⋅∞,
where 𝑟𝑖𝑗 is the start of 𝑗th red phase and𝑔𝑖𝑗 is the start
of 𝑗th green phase at 𝑖th signalized intersection.

(2) 𝑑𝑖 is the distance between consecutive intersections,
that is, the distance between the 𝑖-1st traffic light and
the ith traffic light (called 𝑖th segment); in particular,
for a platoon, 𝑑1 is the distance to the first upcoming
traffic light and the 𝑑2 is the distance between the
first upcoming traffic light and the second traffic light,
which can be estimated from the vehicle’s GPS and the
traffic light’s location information.

(3) Let 𝑙denote average length of a vehicle and 𝛿 represent
Gap distance between a pair of consecutive vehicles in
a platoon

Our goal is to find a permit velocity of platoon which
aids in minimizing idling at the red light. The problem of
idling at the red light can be transformed into the platoon’s
waiting time at the traffic light. Based on the signal timing
information and platoon information, total waiting time of
all vehicles at all traffic lights can be calculated as

𝑍
= 𝑛∑
𝑘=1

𝑚∑
𝑖=1

{𝑡𝑖𝑟 − mod[𝑑𝑖 + 𝜃V𝑖𝑝 (𝑘) + (𝑘 − 1) (𝑙 + 𝛿)
V𝑖𝑝 (𝑘) 𝑡𝑖𝑐𝑦𝑐𝑙𝑒 ]} (1)

where

Z is the sum of the platoon’s waiting time at all the
traffic lights;
𝑘 is the vehicles’ ID number in a platoon, 𝑘 = 1, 2,⋅ ⋅ ⋅ n;
𝑖 is the traffic lights’ number during the trip, 𝑖 = 1, 2,⋅ ⋅ ⋅m;
𝑡𝑖𝑟 is the red light duration in the 𝑖th traffic light, 𝑡𝑖𝑟 =𝑔𝑖𝑗 − 𝑟𝑖𝑗;𝜃 is the compensation time, for the case of 𝑟𝑖1 ̸= 0;
V𝑖𝑝(𝑘) is the passing velocity of 𝑘th vehicle in a platoon
at 𝑖th signalized intersection;
𝑡𝑖𝑐𝑦𝑐𝑙𝑒 is the cycle of traffic signals at the 𝑖th traffic light;
𝑡𝑖𝑐𝑦𝑐𝑙𝑒 = 𝑔𝑖,𝑗 − 𝑔𝑖,𝑗−1 𝑜𝑟 𝑟𝑖,𝑗 − 𝑟𝑖,𝑗−1.
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Vehicles in the same platoon share the same veloc-
ity; 𝑖.𝑒., V𝑖𝑝(𝑘) = V𝑖𝑝, where V𝑖𝑝 denotes the passing velocity
of a platoon at 𝑖th signalized intersection whose unit is m/s.
Specifically, 𝑍 only takes a result greater than 0; that is, when
the operation result of 𝑍 is less than 0, the final result of 𝑍 is
equal to 0.

2.3. Fuel Consumption. Before studying the influence of
idling at red light and velocity on fuel consumption, we
introduce the fuel consumption model. Many efforts have
been made to understand the relationship between traffic
activities and fuel consumption rate; many researchers mod-
eled fuel consumption as a function of vehicle load and
average speed [19–22]. There are a number of microscopic
fuel consumption models; we use the model proposed by
Kamal et al. [23]. This is because of its simplicity; calculating
the fuel consumption only uses the instantaneous velocity
of platoon. Based on this model, optimal velocity could be
found to minimize fuel consumption. Kamal et al. sampled
sufficient data from a passenger size vehicle and fitted it into a
third order polynomial curve that approximates the relation
between fuel consumption rate and velocity. In this model,
the fuel consumption rate 𝑚̇ is estimated as

𝑚̇ = 𝛼0 + 𝛼1V𝑖𝑝 + 𝛼2 (V𝑖𝑝)2 + 𝛼3 (V𝑖𝑝)3 (2)

where 𝛼0, 𝛼1,𝛼2, and 𝛼3 are corresponding coefficients,
whose values are presented in Table 3.

Hence, during the whole trip, for each vehicle in the same
platoon, the fuel consumption can be calculated as

𝐽 = [𝛼0 + 𝛼1V𝑖𝑝 + 𝛼2 (V𝑖𝑝)2 + 𝛼3 (V𝑖𝑝)3] 𝑡𝑖 (𝑘) (3)

where 𝑡𝑖(𝑘) represents the trip time of 𝑘th vehicle of
platoon in 𝑖th segment.

Assuming that all the vehicles run at constant speed
in each segment ignoring the acceleration or deceleration
process, then, for all vehicles in a platoon passing all the
intersections without idling, the total fuel consumption can
be calculated as

𝐽 = 𝑛∑
𝑘=1

𝑚∑
𝑖=1

[𝛼0
V𝑖𝑝

+ 𝛼1 + 𝛼2V𝑖𝑝 + 𝛼3 (V𝑖𝑝)2]
⋅ [𝑑𝑖 + (𝑘 − 1) (𝑙 + 𝛿)] .

(4)

2.4. Optimization Problem and Complexity Analysis. The
objective of this paper is to minimize two performance
indexes 𝑍 = 𝑓(V𝑖𝑝(𝑘)) and 𝐽 = 𝑓(V𝑖𝑝(𝑘)), 𝑖.𝑒., the waiting
time at red lights and fuel consumption, by determining
velocity profiles V𝑖𝑝(𝑘) = {V1, V2, . . . V𝑚} for each vehicle at
each segment subject to certain constraints, which will be
introduced in detail in Section 3. Obviously, the total waiting
time at all the traffic light can be reduced to 0 as long as all
the vehicles pass with a suitable velocity to ensure no idling
at red light.

Y. Zheng et al. analyzed the complexity of a known green
light optimal velocity (GLOV) problem, finding, e.g., optimal
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Figure 3: Allowable velocity bound for platoon.

velocity that can avoid idling at red lights and minimize the
trip time [24]. The complexity analysis shows that GLOV
with binary velocity choices belongs to NP-complete, which
means it cannot be numerically solved in polynomial time
unless P=NP. Intuitively, it is muchmore difficult to solve this
problem with more velocity choices; the number of possible
solutions will increase exponentially.

In order to ensure effective solution to our proposed
problem, approximation algorithm is proposed in the fol-
lowing optimization strategy. We consider finding optimal
velocity profiles for each platoon to save fuel consumption as
much as possible while ensuring the improvement of traffic
efficiency, that is, to let the maximum number of vehicles
pass without idling at red light as much as possible even
if the current velocity does not guarantee the lowest fuel
consumption.

3. Optimization Strategy

This section focuses on the introduction and analysis of opti-
mization strategy to solve the problem defined in Section 2.

3.1. Allowable Bounds Analysis for Optimal Velocity Selection.
To ensure that all the vehicles in the platoon could pass all
the traffic lights without idling at red lights, it must be firstly
met that the leader vehicle in a platoon can pass through the
intersection during its green phase. The allowable velocity
bound for a platoon is shown in Figure 3, with the parameters
defined as follows:

(1) V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑎𝑥 (𝑖, 𝑗) and V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑖𝑛 (𝑖, 𝑗) represent the maximum
and minimum theory velocity of the leader vehicle of
a platoon to pass the 𝑖th traffic light without idling
during its 𝑗th green phase, respectively. Assuming
that the vehicles run at constant speed in each
segment ignoring the acceleration or deceleration
process, then the maximum and minimum theory
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velocity for the leader vehicle can be calculated as
V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑎𝑥 (𝑖, 𝑗) = 𝑑𝑖/𝑔𝑖𝑗, V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑖𝑛 (𝑖, 𝑗) = 𝑑𝑖/𝑟𝑖𝑗.

(2) V𝑙𝑖𝑚𝑖𝑡𝑟𝑜𝑎𝑑 denotes the maximum velocity limit of the road,
which is specified by the government agency on each
segment. In this paper, assuming that it is the same for
all segments along the road and setting it as 20m/s in
following simulation, it is worth noting that its value
may be greater or less than V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑎𝑥 , or even equal to
V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑎𝑥 .

(3) Let V𝑝𝑒𝑟𝑚𝑖𝑡𝑚𝑎𝑥 (𝑖, 𝑗) present themaximumpassing velocity
for a platoon to pass the intersection without idling.

For example, if [V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑖𝑛 (1, 1), V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑎𝑥 (1, 1)] ∩ [0, V𝑙𝑖𝑚𝑖𝑡𝑟𝑜𝑎𝑑] ̸= 0
and the leader vehicle wants to pass the first upcoming traffic
light during the first green light, the passing velocity V𝑝 should
belong to the set intersection[V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑖𝑛 (1, 1), V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑎𝑥 (1, 1)] ∩[0, V𝑙𝑖𝑚𝑖𝑡𝑟𝑜𝑎𝑑], as shown in the shaded part in Figure 2. In this case,
V𝑝𝑒𝑟𝑚𝑖𝑡max (𝑖, 𝑗)
= {{{

min {V𝑡ℎ𝑒𝑜𝑟𝑦max (𝑖, 𝑗) , Vlim𝑖𝑡𝑟𝑜𝑎𝑑} , if V𝑡ℎ𝑒𝑜𝑟𝑦max (𝑖, 𝑗) ̸= Vlim𝑖𝑡𝑟𝑜𝑎𝑑
V𝑡ℎ𝑒𝑜𝑟𝑦max (𝑖, 𝑗) = Vlim𝑖𝑡𝑟𝑜𝑎𝑑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(5)

However, if V𝑙𝑖𝑚𝑖𝑡𝑟𝑜𝑎𝑑 < V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑖𝑛 (1, 1)whichmeans[V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑖𝑛 (1, 1),
V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑎𝑥 (1, 1)]∩[0, V𝑙𝑖𝑚𝑖𝑡𝑟𝑜𝑎𝑑] = 0, the leader vehicle has to decrease
current velocity and pass the first upcoming traffic light in
its second green phase only if [V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑖𝑛 (1, 2), V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑎𝑥 (1, 2)] ∩[0, V𝑙𝑖𝑚𝑖𝑡𝑟𝑜𝑎𝑑] ̸= 0, as shown by the blue dotted line in Figure 3;
the passing velocity should also follow the restriction of V𝑝 ∈
[V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑖𝑛 (1, 2), V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑎𝑥 (1, 2)] ∩ [0, V𝑙𝑖𝑚𝑖𝑡𝑟𝑜𝑎𝑑].

To sum up, the leader vehicle will find the possibility of
passing during 𝑗th green phase at 𝑖th signalized intersection
until the set intersection [V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑖𝑛 (𝑖, 𝑗), V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑎𝑥 (𝑖, 𝑗)] ∩ [0, V𝑙𝑖𝑚𝑖𝑡𝑟𝑜𝑎𝑑]
is not empty.That is, to ensure that all vehicles can pass all the
traffic lights without idling, our optimal velocity solution V𝑖𝑝
for a platoon should satisfy

V𝑖𝑝 ∈ [𝑑𝑖𝑟𝑖𝑗 ,
𝑑𝑖𝑔𝑖𝑗] ∩ [0, V𝑙𝑖𝑚𝑖𝑡𝑟𝑎𝑜𝑑] ̸= ⌀, j = 1, 2, ⋅ ⋅ ⋅∞. (6)

3.2. Velocity Control and Separation Strategy of Platoon. The
detailed process of separation strategy of platoon will be
introduced in this section.

According to the concept of vehicle platooning, all
vehicles in the same platoon share the same velocity, which
means the follower vehicles’ trajectory will be parallel to the
trajectory of the leader one. If we draw a line parallel to the
V𝑖𝑝 velocity line of the leader vehicle, the intercept on the
position axis is the maximum platoon size that can pass the𝑖th intersection during one of its green phases, as shown in
Figure 4. It is easy to find that the number of vehicles of a
platoon that can pass without idling will increase with the
increase of passing velocity.
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Figure 4: Schematic of the separation strategy.

Let 𝐿(V𝑝) denote the maximum platoon size at velocity V𝑝
and 𝐿(𝑝𝑙𝑎𝑡𝑜𝑜𝑛) represent the real platoon size.

𝐿 (V𝑝) = V𝑝𝑟𝑖𝑗 − 𝑑𝑖
𝐿 (𝑝𝑙𝑎𝑡𝑜𝑜𝑛) = (𝑛 − 1) (𝑙 + 𝛿) (7)

If 𝐿(V𝑝) is less than 𝐿(𝑝𝑙𝑎𝑡𝑜𝑜𝑛), some follower vehicles
will stop at the red light if they keep the current velocity.
To avoid idling at red light for the rest vehicles, they need
to decelerate to pass during the next green phase. In other
words, the rest vehicles should separate from the original
platoon and recombine to a newplatoon, that is, our proposed
velocity and separation strategy. A new replanning velocity V󸀠𝑝
will be given to this new platoon to ensure that the maximum
number of vehicles in this new platoon can pass the traffic
light in the next green light.

The maximum number of vehicles that can pass during
the first green phase at the first upcoming intersection can be
calculated as

𝑛𝑝 = ⌈V𝑝𝑡 − 𝑑1𝑙 + 𝛿 ⌉ . (8)

As introduced in Section 2.1, each platoon has its own
ID, and the vehicles in each platoon also have their own
IDs, respectively (e.g., the leader vehicle, 2nd vehicle,. . ., 𝑛𝑝th
vehicle, (𝑛𝑝+1)th vehicle,. . .,𝑚th vehicle). When the platoon
needs to do the separation strategy, the leader vehicle will
send the separation command to the (𝑛𝑝 + 1)th vehicle,
who will become the new leader vehicle of a new platoon
and obtain a replanning velocity V󸀠𝑝. Therefore, there exist
a separation point (SP) between 𝑛𝑝th vehicle and(𝑛𝑝 + 1)th
vehicle, as shown in Figure 4.

Vehicles before the separation point (SP) belong to the
original platoon, which will pass the first intersection during
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Figure 5: The fuel consumption at different velocity.

its first green phase. The new platoon consists of those
vehicles behind SP that need to decelerate to V󸀠𝑝 to avoid idling
at red light. The velocity space for the replanning velocity V󸀠𝑝
is similar to the passing velocity V𝑝 except 𝑗 = 2, 3, ⋅ ⋅ ⋅∞.

V󸀠𝑝 ∈ [V𝑝𝑡𝑟𝑖𝑗 ,
V𝑝𝑡𝑔𝑖𝑗 ] ∩ [0, V𝑙𝑖𝑚𝑖𝑡𝑟𝑜𝑎𝑑] ̸= ⌀, j = 2, 3, ⋅ ⋅ ⋅∞ (9)

Let V𝑓𝑢𝑒𝑙
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

denote the optimal velocity in case of lowest
fuel consumption. According to the fuel consumption for-
mula (4) with the parameters’ value in Table 3, we can see that
when the velocity is equal to 13.5m/s, the fuel consumption is
minimal, as shown in Figure 5. That is V𝑓𝑢𝑒𝑙

𝑜𝑝𝑡𝑖𝑚𝑎𝑙
= 13.5𝑚/𝑠.

On the one hand, our first goal in this paper is to
improve traffic efficiency by avoiding idling at red light; at
each section for a platoon, we can choose the maximum
passing velocity V𝑝𝑒𝑟𝑚𝑖𝑡𝑚𝑎𝑥 for a platoon, which can ensure that
maximumnumber of vehicles can pass without idling. On the
other hand, a goal to minimize fuel consumption as much
as possible is also taken into consideration in this paper as
mentioned in Section 2. Obviously, the optimal fuel velocity
does not necessarily satisfy the need for letting maximum
number of vehicles pass at each green phase. In other words,
the maximum passing velocity V𝑝𝑒𝑟𝑚𝑖𝑡𝑚𝑎𝑥 is not necessarily the
most fuel-efficient. Hence, a velocity control strategy is also
considered based on the separation strategy. The velocity
control and separation strategy to obtain the optimal platoon
velocity profiles for all vehicles in the platoon is shown in
Figure 6.

Take the first intersection, for example; one optimal solu-
tion to the problem defined in Section 2 can be constructed
by the following steps:

Step 1. Check if V𝑓𝑢𝑒𝑙
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

belongs to the interval[V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑖𝑛 (1, 1),
V𝑝𝑒𝑟𝑚𝑖𝑡𝑚𝑎𝑥 (1, 1)], where V𝑝𝑒𝑟𝑚𝑖𝑡𝑚𝑎𝑥 (1, 1) satisfies (5); if it belongs to it,
turn to Step 2; otherwise, turn to Step 3.

Step 2. Compare the maximum platoon size 𝐿(V𝑓𝑢𝑒𝑙
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

) at ve-
locity V𝑓𝑢𝑒𝑙

𝑜𝑝𝑡𝑖𝑚𝑎𝑙
and the actual platoon size L(𝑝𝑙𝑎𝑡𝑜𝑜𝑛),

which can be calculated according to (7). If 𝐿(V𝑓𝑢𝑒𝑙
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

) ≥𝐿(𝑝𝑙𝑎𝑡𝑜𝑜𝑛), which means that all vehicles in the original
platoon can pass the first intersection during its first green
phase with velocity V𝑓𝑢𝑒𝑙

𝑜𝑝𝑡𝑖𝑚𝑎𝑙
, then choose the passing velocity

V𝑝 = V𝑓𝑢𝑒𝑙
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

. Otherwise, turn to Step 3.

Step 3. Compare the platoon size 𝐿(V𝑝𝑒𝑟𝑚𝑖𝑡𝑚𝑎𝑥 ) with velocity
V𝑝𝑒𝑟𝑚𝑖𝑡𝑚𝑎𝑥 and the actual platoon size 𝐿(𝑝𝑙𝑎𝑡𝑜𝑜𝑛). If 𝐿(V𝑝𝑒𝑟𝑚𝑖𝑡𝑚𝑎𝑥 ) ≥𝐿(𝑝𝑙𝑎𝑡𝑜𝑜𝑛), which means that the platoon can pass the inter-
section with a velocity below V𝑝𝑒𝑟𝑚𝑖𝑡𝑚𝑎𝑥 , taking into account fuel
economy, the platoon passwith velocity V𝑝 thatminimizes the
fuel consumption:

V𝑝 = {{{
V𝑎𝑙𝑙𝑚𝑖𝑛 if 𝐽 (V𝑎𝑙𝑙𝑚𝑖𝑛) ≤ 𝐽 (V𝑝𝑒𝑟𝑚𝑖𝑡𝑚𝑎𝑥 )
V𝑝𝑒𝑟𝑚𝑖𝑡𝑚𝑎𝑥 if 𝐽 (V𝑎𝑙𝑙𝑚𝑖𝑛) > 𝐽 (V𝑝𝑒𝑟𝑚𝑖𝑡𝑚𝑎𝑥 ) (10)

where V𝑎𝑙𝑙𝑚𝑖𝑛 means the minimum velocity that can ensure
all vehicles pass without idling when 𝐿(V𝑝𝑒𝑟𝑚𝑖𝑡𝑚𝑎𝑥 ) ≥ 𝐿(𝑝𝑙𝑎𝑡𝑜𝑜𝑛).

V𝑎𝑙𝑙𝑚𝑖𝑛 = (𝑛 − 1) (𝑙 + 𝛿) + 𝑑1𝑟11 (11)

If 𝐿(V𝑝𝑒𝑟𝑚𝑖𝑡𝑚𝑎𝑥 ) < 𝐿(𝑝𝑙𝑎𝑡𝑜𝑜𝑛), which means that all vehicles
cannot pass the intersection during its first green phase, even
with the max velocity, then turn to Step 4.

Step 4. The original platoon is separated into two new
platoons: platoon 1.1 and platoon 1.2. To ensure that as many
vehicles as possible can pass the intersection within a green
phase, the new platoon 1.1 will pass the intersection with
velocity V𝑝𝑒𝑟𝑚𝑖𝑡𝑚𝑎𝑥 . And for the new platoon 1.2, return to Step 1
again to find an optimal passing velocity V󸀠𝑝 to pass the
intersection during its next green phase.

For the remaining intersections, the process to find the
optimal velocity solution is almost similar to the above
steps, except that at Step 1, we check if V𝑓𝑢𝑒𝑙

𝑜𝑝𝑡𝑖𝑚𝑎𝑙
belongs to

[V𝑡ℎ𝑒𝑜𝑟𝑦𝑚𝑖𝑛 (𝑖, 1), V𝑝𝑒𝑟𝑚𝑖𝑡𝑚𝑎𝑥 (𝑖, 1)] for 𝑖th intersection.

4. Simulation Case Studies

The route is assumed to have 4 intersections, and the param-
eters of the traffic light location and timing information are
shown in Table 1.The platoon and road information is shown
in Table 2. The parameter values of fuel economy model (5)
are shown in Table 3.The simulations are run inMATLAB on
an Intel� Core�i7 processor with 3.40 GHz processing speed
per core, 8 GB of RAM.

4.1. Simulation 1: Conventional Strategy without Separation
Strategy. Firstly, we study the case of conventional strategy;
the separation strategy is not activated.

In the simulation, we consider a platoon of 20 vehicles.
Figure 7 shows the simulation results of the velocity profile of
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Table 1: Traffic light location and timing information.

𝑑𝑖 (𝑚) 𝑡𝑖𝑟 (𝑠) 𝑡𝑖𝑐𝑦𝑐𝑙𝑒 (𝑠) 𝑟𝑖1 (𝑠)𝑖 = 1 500 30 50 10𝑖 = 2 500 39 59 9𝑖 = 3 500 30 50 45𝑖 = 4 500 40 65 22
Table 2: Platoon and road information.

Parameter Value Unit
𝑙 5 𝑚𝛿 1 𝑚𝑛V𝑒ℎ𝑖𝑐𝑙𝑒 20 veh
V𝑙𝑖𝑚𝑖𝑡𝑟𝑜𝑎𝑑 20 𝑚/𝑠

Table 3: Parameters value of fuel consumption.

Coefficient Value Unit
𝛼0 0.1569 𝑚𝐿/𝑠𝛼1 2.450 × 10−2 𝑚𝐿/𝑚𝛼2 −7.415 × 10−4 𝑚𝐿𝑠/𝑚2𝛼3 5.975 × 10−5 𝑚𝐿𝑠2/𝑚3
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Figure 6: The process of our proposed velocity control and separation strategy.

each vehicle in the platoon under conventional circumstance.
It is not difficult to see that most of vehicles in this platoon
will be idle at all intersections, except that a small number of
vehicles do not have to wait for the red light only at the third
intersection.This is because of the lack of velocity control and
separation strategy.

4.2. Simulation 2: Separation Strategy with Minimum Fuel
Consumption. To solve the deficiency of conventional strat-
egy, we propose a velocity control and separation strategy
that takes into account the traffic efficiency and fuel-saving
simultaneously as introduced in Section 3.2. The velocity
profile of each vehicle in the platoon under this strategy is
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Figure 7: Trajectory of vehicles of platoon without separation
strategy.
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Figure 8: Trajectory of vehicles of platoon with separation strategy
(minimum fuel consumption).

shown in Figure 8. One can see that the separation of original
platoon occurs at the first intersection, dividing it into two
new platoons. The separation point is located at the 11th
vehicle, and the velocity profile of 1st vehicle and 11th vehicle
is

V𝑝 (1) = {12.5𝑚/𝑠, 20𝑚/𝑠, 18.6𝑚/𝑠, 13.1𝑚/𝑠}
V𝑝 (11) = {12.5𝑚/𝑠, 8.3𝑚/𝑠, 14.5𝑚/𝑠, 9.3𝑚/𝑠} . (12)

4.3. Simulation 3: Separation Strategy without Considering
Fuel-Saving. In order to better understand howour proposed
velocity control and separation strategy achieves fuel-saving
under the premise of guaranteeing that maximum number of
vehicles can pass the intersection without idling, we imple-
ment another simulation in which all the vehicles choose the
maximum velocity to pass intersections without considering
fuel-saving. This simulation is almost similar to simulation
2 except that all vehicles pass all the intersections with
maximum passing velocity V𝑝𝑒𝑟𝑚𝑖𝑡𝑚𝑎𝑥 . Figure 9 shows velocity
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Figure 9: Vehicles’ trajectory of platoon with separation strategy
(maximum passing velocity).

profile of each vehicle in the platoon under this circumstance.
The velocity profile of 1st vehicle and 11th vehicle with this
strategy is as follows:

V𝑝 (1) = {12.5𝑚/𝑠, 20𝑚/𝑠, 20𝑚/𝑠, 12.5𝑚/𝑠}
V𝑝 (11) = {12.5𝑚/𝑠, 8.3𝑚/𝑠, 20𝑚/𝑠, 7.9𝑚/𝑠} . (13)

Comparing with our proposed separation strategy that
considers fuel-saving, we find that the main difference
between these two different situations is reflected at the third
intersection. Under the premise of ensuring that all vehicles
can pass without idling, our proposed separation strategy
chooses the velocity that canminimize the fuel consumption,
but this strategy chooses the maximum velocity to pass the
intersection.

4.4. Evaluation of Proposed Velocity Control and Separation
Strategy. Figure 10 shows that the fuel consumption and total
travel time decrease with the introduction of our proposed
velocity control and separation strategy.

One can see that the fuel consumption of each vehicle
decreases dramaticallywith our proposed separation strategy.
For the platoon with 20 vehicles, the total fuel consumption
decreases by 18.1% comparing with the conventional strategy.
Byminimizing the fuel costs, we also implicitly increase some
of the societal benefits of our proposed platoon separation
strategy. Minimizing fuel consumption is equivalent to min-
imizing emissions [25]. Also, when we minimize the fuel
costs, longer platoons are preferred as the total savings will
be higher with more following vehicles in the system.

With our proposed separation strategy, the total travel
time decreases by 19.2% compared with the conventional
strategy. The first ten cars are particularly noticeable thanks
to velocity control and separation strategy. In other words,
traffic efficiency has improved. And longer platoons are
associated with more efficient road utilization since the
vehicles within a platoon drive closer together. The reduced
space utilization as a result of platooning might help improve
the traffic throughput.
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Figure 10: The total fuel consumption and the total travel time of each vehicle.

Intuitively, passing with the maximum velocity means
that the travel time is the minimum. It is worth noting
that this conclusion is only valid for a single intersection.
Interestingly, for multiple intersections, the total travel time
is not necessarily the smallest even if the maximum velocity
is selected at each intersection, which is determined by the
difference of signal phase between two consecutive signalized
intersections. If the green phase difference of two adjacent
intersections is very gentle, vehicles cannot pass these two
intersections continuously during the same green phase due
to the maximum velocity limit. In other words, even if the
maximum speed is selected at the previous intersection,
the platoon can only pass the consecutive intersection until
its next green phase by reducing more velocity. This will
probably lead to a decrease in the overall average speed,
which in turn increases the total travel time. As we can see in
Figure 10, the travel time of 10th–20th vehicle in simulation 2
is slightly less than that in simulation 3, although maximum
velocity is selected at each intersection in simulation 3.This is
because the green phase difference between 3rd and 4th inter-
section is very gentle. Therefore, passing with the maximum
velocity may not necessarily improve traffic efficiency; on the
contrary, choosing the optimal fuel consumption may even
improve traffic efficiency in some cases.

5. Conclusion

A velocity control and separation strategy aimed at avoiding
idling at red light and reducing fuel consumption as much as
possible was proposed in this paper. The simulation results
suggested that our proposed strategy effectively improves
the performance of the platoon. The total travel time and
the fuel consumption were reduced by 19.2% and 18.1%,
respectively. The ultimate objectives of platooning are to
enhance highway safety, improve traffic utility, and reduce
fuel consumption. The main novelty and contribution of this
work is providing an optimal platoon velocity controlmethod

and a separation strategy at signalized intersection that
considers both traffic utility improvement and fuel economy.
Additionally, it is worth noting that the using scenarios of
this strategy involvemultiple intersections instead of only one
single signalized intersection, and this strategy can be applied
to full autonomous or semiautonomous vehicles in the
future.

Several extensions to the present study are desired in
the future. Some assumptions made in this study could be
violated, and we caution against generalizing the results.
We would like to mention that the simulation results are
based on the assumption that all vehicles run at a constant
velocity ignoring the acceleration or deceleration process.
Actually, the fuel consumption and the state of the platoon
system may change with the acceleration or deceleration
process. Additionally, this paper only considers the sepa-
ration strategy of a single static platoon and ignores the
dynamics of platooning process between multiple platoons.
Thedynamics increase the complexity of the decision-making
process.

Therefore, each problem discussed above presents an
important and very challenging research topic. In the future
work, the impact of acceleration and deceleration process on
fuel consumption and travel time needs to be investigated
to examine the validation of the simulation results. Nev-
ertheless, this paper provides an explicit strategy to better
improve the traffic efficiency and fuel-saving in a vehicle pla-
toon.
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