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After the finding by Peyton Rous that filtered extracts from
chicken sarcoma generated new sarcoma, numbers of
pathogens have been found to be oncogenic. Microorgan-
isms and their metabolites, as well as chronic inflammation,
have also been considered to cause cancers. Almost 20% of
all cancers worldwide are estimated to be associated with
infections. However, we believe cancers caused by infection
include many effective preventive measures, which include a
potential target for novel cancer diagnostics, therapeutic
approaches, and the possibility of prevention by vaccination.
In this special issue, we intend to correct papers concerning
current knowledge of infection-associated cancers, spanning
basic biology, and potential clinical applications. $e focus
will be on molecular mechanisms to understand infection-
attributable cancers, on tumor microenvironment including
tumor immune response, on development of novel bio-
markers for diagnosis and for predicting prognosis, and on
animal models for studying infection-associated cancers.
$e purpose of this special issue is to present the recent
progress in these exciting fields. A brief summary of all
accepted papers is provided below.

M. A. Hernández-Luna et al. reviewed the suggested
bacterial molecular mechanisms and their possible role in
development and progression of gastrointestinal neoplasms,
focusing mainly on colon neoplasms, where the bacteria
Fusobacterium nucleatum, Escherichia coli, Bacteroides fra-
gilis, and Salmonella enterica infect.

$e paper by G. Zhang et al. has developed an ELISA
assay to detect infection of human beta retrovirus (HBRV).
As a result, anti-HBRV antibodies were detected with a

significant difference in patients with breast cancer and
primary biliary cholangitis compared to controls.

F. I. Bussière et al. showed a novel way for H. pylori to
promote genome instabilities through the inhibition of
TERT levels and telomerase activity in a mice model. $e
inflammation and ROS-mediated mechanism could play an
important role in the early steps of gastric carcinogenesis.

$e review by C. K. Chan et al. focused on current
situation on human papillomavirus epidemiology in de-
veloping countries, where incidence of cervical cancer is
high.

$e paper by Y. S. Li et al. focused on the multiple
functions of deubiquitinating enzymes (DUBs) in RIG-I-like
receptors and stimulators of interferon gene-mediated an-
tiviral signaling pathways, oncovirus regulation of NF-κB
activation, oncoviral life cycle, and the potential of DUB
inhibitors as therapeutic strategies.

A. R. Adams et al. investigated the size of HPV preva-
lence in female sex workers (FSWs) to provide information
for future assessment of the impact of vaccine introduction
in Ghana.$ey found a high HPV prevalence with high risk-
HPV genotypes (HPV-16, HPV-35, HPV-33/39/-68, HPV-
52/51/59, and HPV-18) among FSWs in the Greater Accra
Region and concluded the efficacy of preventable vaccines.

L. S. D. Libera et al. investigated HPV prevalence, ge-
notype distribution, and prognosis aspect in anal cancers in
the Midwestern Region of Brazil by a retrospective study.
$ey also reported that gender, histological type, and the
presence of distant metastasis were observed as prognostic
factors.
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F. D. Felice et al. reviewed the evidence-based literature
supporting the deintensification strategies in HPV-related
oropharyngeal squamous cell carcinoma management, in-
cluding radiotherapy dose and/or volume reduction, re-
placement of cisplatin radiosensitising chemotherapy, and
the use of transoral surgery. $ey aimed at raising clinicians
in describing the clinical data, the therapeutic implication,
and the most promising treatment strategies in HPV-related
oropharyngeal cancer scenarios.
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Mouse mammary tumor virus (MMTV) is a betaretrovirus that plays a causal role in the development of breast cancer and
lymphoma in mice. Closely related sequences that share 91–99% nucleotide identity with MMTV have been repeatedly found in
humans with neoplastic and inflammatory diseases. Evidence for infection with a betaretrovirus has been found in patients with
breast cancer and primary biliary cholangitis and referred to as the human mammary tumor virus and the human betaretrovirus
(HBRV), respectively. Using the gold standard technique of demonstrating retroviral infection, HBRV proviral integrations have
been detected in cholangiocytes, lymph nodes, and liver of patients with primary biliary cholangitis. However, the scientific
biomedical community has not embraced the hypothesis that MMTV like betaretroviruses may infect humans because reports of
viral detection have been inconsistent and robust diagnostic assays are lacking. Specifically, prior serological assays using MMTV
proteins have produced divergent results in human disease. Accordingly, a partial HBRV surface (Su) construct was transfected
into HEK293 to create an ELISA.-e secreted HBRV gp52 Su protein was then used to screen for serological responses in patients
with breast cancer and liver disease. A greater proportion of breast cancer patients (n� 98) were found to have serological
reactivity to HBRV Su as compared to age- and sex-matched control subjects (10.2% versus 2.0%, P � 0.017, OR� 5.6 [1.25–26.3]).
Similarly, the frequency of HBRV Su reactivity was higher in patients with primary biliary cholangitis (n � 156) as compared to
blood donors (11.5% vs. 3.1%, P � 0.0024, OR� 4.09 [1.66–10.1]). While the sensitivity of the HBRV Su ELISA was limited, the
assay was highly specific for serologic detection in patients with breast cancer or primary biliary cholangitis, respectively (98.0%
[93.1%–99.7%] and 97.0% [93.4%–98.6%]). Additional assays will be required to link immune response to betaretrovirus infection
and either breast cancer or primary biliary cholangitis.

1. Introduction

Breast cancer is the most frequent cancer diagnosis among
females and a leading cause of cancer deaths worldwide [1, 2].
Several viruses have been linked with the development of
human breast cancer, but none have been established as having
a causal etiology [3, 4]. One such agent resembles mouse
mammary tumor virus (MMTV), a murine betaretrovirus that

plays a direct role in the development of breast cancer in mice
[5]. Indeed, cloned betaretrovirus nucleotide sequences from
humans reportedly share between 91% and 99% identity with
various regions of the MMTV genome [6–9]. However, di-
agnostic assays are lacking to reproducibly detect betaretrovirus
infection in humans [10].

MMTV does not encode an oncogene but rather acti-
vates growth pathways by insertional mutagenesis to
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promote carcinogenesis in mice [11]. -e diagnosis of
MMTV infection in mice can be challenging. -e viral
burden is below the limits of detection in blood, and the
agent is encoded as an endogenous retrovirus in most mice;
therefore, exogenous viral genomic nucleic acid sequences
cannot easily be distinguished from the endogenous ex-
pression of MMTV [12]. Furthermore, inadequate humoral
responses are made by weanling pups infected via ingestion
of MMTV in milk due to the tolerizing effects of neonatal
infection by the oral route [13]. Accordingly, a diagnosis of
MMTV infection is made by assessing the skewing of T-cell
receptor V-β subsets to demonstrate the MMTV super-
antigen effect [14].

Evidence for human infection first surfaced in 1971,
when B-type particles resembling MMTV were observed by
electron microscopy in the milk of breast cancer patients
[15]. Breast cancer patients were also reported to harbor
betaretrovirus nucleic acid sequences and/or proteins in
various samples, including milk [16], serum [17], salivary
glands [18], as well as breast cancer tissue [19], cyst fluid [20],
and breast cancer cells in culture [21, 22]. -ereafter,
betaretrovirus sequences resembling MMTV were PCR-
cloned from breast cancer tissues derived from various
countries, and the agent was referred to as the human
mammary tumor virus [7, 23–27].

In 2003, a human betaretrovirus (HBRV) was charac-
terized in patients with primary biliary cholangitis (PBC;
previously known as primary biliary cirrhosis [28]), an
inflammatory autoimmune liver disease. -e agent was
predominantly detected in perihepatic lymph nodes and was
shown to promote the expression of mitochondrial auto-
antigens in cocultivation studies with cholangiocytes, a well-
characterized PBC disease-specific phenotype [9, 29]. Evi-
dence of human betaretrovirus proviral integrations was
subsequently demonstrated in PBC patients by ligation-
mediated PCR and Illumina sequencing, using a bio-
informatics pipeline that ensured the exclusion of all se-
quences potentially related to murine or HERV sequences.
More than 2,200 unique HBRV integrations were identified,
and the majority of PBC patients were found to have evi-
dence of proviral integrations linked with HBRV RNA
production in cholangiocytes [30]. In clinical trials, PBC
patients on combination antiretroviral therapy have shown
biochemical and histological improvement with therapy
[31–34].

-e hypothesis that a betaretrovirus may be linked with
human breast cancer has gained little traction over the years
because of the inconsistency of findings in different reports,
a concern for cross-reactivity with human endogenous
retroviruses (HERV) and the low level of viral burden
[10, 35, 36]. With regard to the potential for a link with
betaretrovirus infection and PBC, investigators have either
been unable to detect viral infection [37] or to confirm the
specificity of HBRV infection in PBC patients [38]. Fur-
thermore, serological studies using MMTV preparations as
substrate have been unable to demonstrate specific antibody
reactivity to defined MMTV proteins [37, 39]. While HBRV
shares between 93% and 97% amino acid identity with the
MMTV envelope protein, consistent differences have been

observed between HBRV Env compared to MMTV Env that
may alter antigenicity [6]. In the present study, we expressed
the HBRV gp52 surface (Su) protein in human cells to create
an enzyme-linked immunosorbent assay (ELISA). Herein,
we report the seroprevalence of anti-HBRV gp52 Su reac-
tivity in patients with breast cancer, patients with liver
disease, and healthy subjects.

2. Materials and Methods

2.1. Ethics. -e study protocol was approved by the Human
Ethics Review Board from the University of Alberta and
institutional review boards/ethics committees at each site.
-e project was conducted in accordance with the Decla-
ration of Helsinki (1964).

2.2. Patient Samples. A serum panel of breast cancer patients
(n� 98) and age/sex-matched controls (n� 102) was ob-
tained from the Alberta Tomorrow Project, a longitudinal
study tracking 55,000 adults in Alberta [40]. Liver disease
patient serum was prospectively collected from the hep-
atology outpatients at the Zeidler Clinic, University of
Alberta Hospital from January 2003 to December 2014.
Serum from 156 patients with PBC, 46 with primary scle-
rosing cholangitis (PSC), 16 with autoimmune hepatitis
(AIH), 25 with nonalcoholic fatty liver disease (steatosis), 8
with alcoholic liver disease (ALD), 19 with viral hepatitis, 6
with cryptogenic liver disease, and 19 with miscellaneous
liver disease. Healthy blood donors’ serum samples (n� 194)
were provided by the Department of Transfusion Medicine,
National Institute of Health, Bethesda, MD.

2.3. RecombinantDNAExpressionConstructs. -eHBRV Su
was derived from HBRV sequences obtained from a PBC
patients’ perihepatic lymph node [6]. -e HBRV Su coding
sequence was cloned into pcDNA3.1 (Invitrogen) vector
along with a TAP tag at the 3′ terminus of the HBRV Su [41]
and 4 copies of M-PMV cytoplasmic transport element
(CTE) downstream [42]. -e expressed HBRV envelope
protein sequence corresponds to amino acids 99 to 455 in the
surface region that includes the receptor-binding domain,
which shares 97% and 98% amino acid identity with MMTV
Su [6] (see supplementary material for HBRV Su and
MMTV Su alignment; Supplementary Figure 1).

2.4. Cell Culture, Transfection, and Stable Cell Line
Generation. HEK293T cells (ATCC) were routinely main-
tained in Dulbecco’s modified Eagle’s medium supple-
mented with 10% fetal bovine serum (Gibco) and 100 μg/ml
noromycin. Transfection of HEK293T was performed using
PEI as described previously [43]. Briefly, 105 cells were
seeded in 6-well plates one day before transfection, and 2 μg
of each plasmid was used for each well. To generate stable
HEK293T cell lines harboring pHBRV Su-TAP-4C FW, the
pHBRV Su-TAP-4C FW-puromycin plasmid was linearized
with PvuI and transfected into HEK293T cells. Individual
clones were selected with puromycin (Invitrogen).
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2.5. Western Blot Analysis. Secreted HBRV Su protein in
400 μl supernatant was precipitated with TCA and dissolved
in PBS. Cell lysates were prepared from transfected and
stable cells using RIPA buffer with complete proteinase
inhibitor (Roche). Approximately 2×106 cells were collected
and washed twice with ice-cold PBS, incubated with RIPA
buffer on ice for 30min, and centrifuged at 20,000×g for 30
minutes. Proteins from cell supernatant and lysate were
quantified using the BCA assay (Bio-Rad), and 50 μg and
100 μg of total protein from cell lysate and supernatant,
respectively, were resolved by 10% sodium dodecyl sulfate-
(SDS-) polyacrylamide gel electrophoresis (PAGE) and
transferred to nitrocellulose membrane as previously de-
scribed (Figure 1) [44].

Western blot analysis was performed using the primary
polyclonal goat anti-MMTV envelope gp52 antibody (kindly
provided by Dr. Susan Ross, University of Pennsylvania),
mouse monoclonal anti-Flag antibody (Sigma-Aldrich), and
IRDye goat anti-mouse and rabbit anti-goat secondary
antibodies (LI-COR). Reacting membranes were visualized
with LI-COR Odyssey infrared imaging system. -e anti-
MMTV envelope gp52 antibody has demonstrable reactive
biliary epithelial cells extracted from a liver transplant re-
cipients with PBC (Supplementary Figure 2), previously
shown to have HBRV infection with documented HBRV

proviral integrations and HBRV RNA by the QuantiGene
assay and in situ hybridization [30].

For detection of serological reactivity to HBRV Su,
100 ng of purified protein was resolved on a 10% SDS-PAGE
minigel (Bio-Rad) and transferred to nitrocellulose mem-
brane. -e membrane was cut into 5mm wide stripes. Each
stripe was incubated with serum from a breast cancer patient
or a control (1 : 400 dilution) and IRDye goat anti-human
secondary antibody.

2.6. Scale-Up of HBRV Su Production and Purification and
Characterization. Stable cells expressing HBRV Su were
expanded to 12×15 cm cell cultural dishes in Dulbecco’s
modified Eagle’s medium supplemented with 10% fetal
bovine serum. -e medium in each plate was replaced with
25ml Pro293™ CD serum-free medium (Lonza) when cells
reached 95% confluence.-emediumwas collected after 5-6
days of incubation and centrifuged at 3,000 g for 20min.-e
clarifiedmediumwas adjusted to pH 8.0 and filtered through
a 0.22 μm filter before purification.

Purification of HBRV Su was performed on 1ml Histrap
FF crude column and buffers as suggested by the supplier
(GE Healthcare) using an ÄKTA explorer 100 (Amersham
Pharmacia Biotech).-e conditioned medium was loaded to
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Figure 1: (a) -e single spliced mRNA of betaretrovirus Env encodes the signal peptide, surface, and transmembrane proteins. (b) -e
HBRV Su construct used for mammalian expression contained the cytomegalovirus immediate early promoter, HBRV SP, and Su, a TAP
tag; pCMV-Su-4c contained 4 copies of M-PMV CTE inserted in the downstream of Su-TAP in either the sense (pCMV-Su-4c) or the
antisense (pCMV-Su-4cr) orientation. (c) Only the pCMV-Su-4c containing the CTE in the correct orientation produced sufficient HBRV
Su protein in the cell pellet and supernatant as shown by the western blot analysis.
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the equilibrated column at the rate of 1ml/min, and the
column was then washed with 20ml binding buffer and
eluted into 10× 0.5ml fractions using elution buffer. -e
peak elution fraction was combined and changed to proteins
storage buffer by ultrafiltration (Millipore, 30 kDa cutoff
limit concentrator, 4000 g for 20min). -e final preparation
was aliquoted for storage at − 80°C for ELISA. -e 10 eluted
fractions were assessed by western blot analysis using anti-
MMTV Env antibody or anti-FLAG antibody and 10% SDS-
PAGE gels stained with Coomassie R-250 blue stain (Bio-
Rad). -e protein concentration was determined by BCA
assay (Pierce) using bovine serum albumin (BSA) as a
standard.

2.7. HBRV Su ELISA. ELISA was performed at room tem-
perature with all sera in duplicate using high-binding
microplates (Greiner, Monroe, USA). Briefly, wells were
coated with 100 μl of 2 ng/μl purified HBRV Su in PBS for 18
hours and blocked with 1% BSA in PBS for 3 hours. Serum
was incubated at 100 μl/well at a 1 : 400 dilution in PBS with
1% BSA (Sigma) for 1 hour. A serial dilution of polyclonal
anti-MMTV Env was included on each plate as a standard
and then incubated with 100 μl/well donkey anti-human and
donkey anti-goat secondary antibodies (Jackson Immuno-
Research Lab) for 1 hour. -e plate was washed 3× 5min
after each step using PBS with 0.5% Tween. Plates were
developed with 100 μl/well tetramethylbenzidine substrate
(TMB, Sigma) for 20min and then stopped with 50 μl/well
2N H2SO4. -e absorbance at 450 nm and 540 nm (back-
ground) was measured with EMAX Plus Microplate Reader
(Molecular Devices, USA) and the cutoff level was estab-
lished using the reactivity of control samples by adding the
mean background level to 3× S.D. Two-tailed Fisher’s exact
test was used to assess significant differences in frequency
between different groups, followed by calculation of the odds
ratio (Baptista–Pike methodology) along with sensitivity,
specificity, positive predictive value, negative predictive
value, and likelihood ratio (Wilson Brown methodology)
using Prism 8 software.

3. Results

3.1. HBRV Su Expression in HEK 293T Cells. A mammalian
expression system was employed to express the HBRV Su
because prior attempts to express multiple constructs
expressing HBRV Env protein in bacteria and baculovirus
systems were not sufficiently productive. MMTV Env
protein is encoded by a single spliced mRNA in mice, which
produces a signal peptide (SP p14), surface (Su gp52), and
transmembrane domain (TM gp36) (Figure 1(a)); the Su
protein is generated by removal of the signal peptide by
signal peptidase and cleavage of the transmembrane domain
by cellular Furin. -erefore, a mammalian expression vector
pCMV Su-Tap was constructed, using the cytomegalovirus
immediate early promoter to drive protein expression and a
TAP tag to enable protein purification (Figure 1(b)). Using
the pCMV-Su-TAP construct, very little HBRV Su protein
was detected in lysates from transfected HEK293T cells

(Figure 1(c)). -erefore, an M-PMV cytoplasmic transport
element (CTE) was incorporated into the construct to in-
crease protein expression [42]. To this end, two additional Su
expression constructs were generated with the 4 copies of
M-PMV CTE inserted in the downstream of Su-TAP for
expression studies. Following expression in HEK293T, in-
creased production of HBRV Su was observed in cell lysates
transfected with the pCMV-Su-Tap-4c but not in cells with
the pCMV-Su-Tap-4cr construct that had the CTE arranged
in the antisense orientation. Moreover, we were able to
detect secreted Su protein in the medium of the cells
transfected with the pCMV-Su-Tap-4c plasmid two days
after transfection (Figure 1(c)).

3.2. Large-Scale Production and Purification of HBRV Su.
Since abundant HBRV Su protein was secreted from
293Tcells transfected with the pCMV-Su-Tap-4c plasmids, a
strategy was developed to purify the protein directly from a
large-scale cell culture medium (Figure 2(a)). Stable
293T cell lines were generated following transfection with
the pCMV-Su-Tap-4c plasmid and the cells with the highest
Su secretion in the culture medium were expanded to
12×15 cm cell culture dishes using DMEM supplemented
with 10% FBS. When cells reached 90–95% confluence, the
medium was replaced with serum-free medium and incu-
bated for another 5 days before collection. Approximately
300ml was obtained for each batch, which was then purified
with chromatography to derive 150–200 μg HBRV Su
protein. SDS-PAGE revealed that the purified Su protein was
homogeneous and devoid of other contaminants. Western
blot analysis with polyclonal anti-MMTV Env confirmed
that the purified protein was HBRV Su along with select
serum from seropositive and negative breast cancer and
control samples (Figures 2(b) and 2(c)).

3.3. Detection of Anti-HBRV Su Protein Antibodies by ELISA.
-e ELISA protocol was established using 200 ng/well of
purified HBRV Su. -e antibody response was calculated by
converting the optical density reading to the equivalent ng/
ml reactivity of the positive control, polyclonal anti-MMTV
Env antibody. -e background reactivity was calibrated
using the serum samples from the age/sex-matched healthy
controls used as a comparison group for the breast cancer
patients. -e cutoff level (mean background+ 3× S.D.) was
calculated as 61 ng/mL and samples found to be greater than
this were considered positive (Figure 3). Accordingly, a
greater proportion of breast cancer patients (10.2%) were
found to have serological reactivity to HBRV Su versus 2.0%
of age- and sex-matched control subjects (Figure 3:
P � 0.017, OR� 5.6 [1.25–26.3]).

-e seroprevalence of HBRV Su reactivity in patients
with PBC was comparable to that observed in patients with
breast cancer (Figure 3: 11.5% vs. 10.2%). -e frequency of
HBRV Su reactivity was significantly higher in PBC patients
vs. blood donors (11.5% vs. 3.1%, P � 0.0024, OR� 4.09
[1.66–10.1]). In prior studies using the gold standard
methodology of detecting HBRV integrations in patients’
cholangiocytes, subjects with cryptogenic liver disease and
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AIH were found to harbor infection, and in this study,
isolated reactivity was observed in subjects with cryptogenic
liver disease (16.7%) and AIH (6.3%), whereas other subjects
with liver disease were universally negative (Figure 3(b)).

While reactivity in healthy blood donors was incre-
mentally higher than the healthy age/sex-matched com-
parison group for the breast cancer patients, the difference
was not found to be significant (3.1% vs. 2.0%; P � 0.72).
-e sensitivity of the HBRV Su ELISA was limited in
detecting reactivity in patients with breast cancer and PBC
as compared to their respective control groups (10.2%
[5.6%–17.8%] and 11.5% [7.4%–17.5%]), whereas the assay
was highly specific for serologic detection in patients with

breast cancer and PBC, respectively (98.0% [93.1%–99.7%]
and 97.0% [93.4%–98.6%]). Accordingly, the positive
predictive values (83.3% [55.2%–97.0%] and 75.0% [55.1%–
88.0%]) were diagnostically more useful that the negative
predictive values (53.2% [46.1%–60.2%] and 57.7% [52.3%–
62.9%]) for patients in the breast cancer and the liver
disease study groups.

4. Discussion

-is is the first report using an HBRV ELISA for assessing
the seroprevalence of infection in patients. Approximately
10% of breast cancer and PBC patients had detectable anti-
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Figure 2: (a) Schematic showing large scale HBRV Su protein purification from the supernatant of HEK293T cells using a His-tag
column. (b) Coomassie blue staining and western blot analysis demonstrate the purity of the HBRV gp52 protein using anti-MMTV gp52
Su in sequential elutions. (c) Western blot confirmation of ELISA positive and negative samples demonstrates reactivity using select
breast cancer, PBC, and blood donor control samples. -e breast cancer serum sample used in lane 7 is positive by western blot and
negative by ELISA.
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HBRV Su, and the test was found to be highly specific for
both disorders. -e likelihood ratio for having breast cancer
with HBRV Su reactivity was 5.2 and for having PBC with
HBRV Su reactivity was 3.7; the difference in likelihood
ratios probably reflects the chosen control groups for each
disorder. Notably, the breast cancer control subjects were
mainly middle-aged women and therefore a more suitable
control group for the PBC patients, who are also predom-
inantly female; whereas the blood donors were more of an
admixture of both sexes. -e healthy comparison groups
revealed a sizeable population seroprevalence of ∼2-3%.
-ese data are in keeping with the hypotheses that HBRV
infection may only be disease related in genetically pre-
disposed individuals [10, 45].

Prior seroprevalence studies using MMTV proteins have
been widely inconsistent. For example, an ELISA-based
study using MMTV proteins demonstrated serological re-
activity in 26% of breast cancer patients and 8% of healthy
controls [46]. A similar study found no difference between
breast cancer patients and their respective controls [47] and
a study using 4 strains of MMTV reported only nonspecific
reactivity in breast cancer patients, although reactivity
consistent with the molecular weights of viral proteins was
observed in individual strains of MMTV [39]. In studies of
patients with liver disease, MMTV western blot reactivity

was attributed to autoreactivity with the antimitochondrial
antibody, which is found in up to 95% of patients and used
for diagnosing PBC [29], whereas similar MMTV western
blot studies employing mitochondrial proteins to remove
the autoantibodies from PBC patients’ serum demonstrated
the presence of signal to the betaretrovirus gp52 surface
protein [48]. As the purified antimitochondrial antibody has
no reactivity with HBRV Su, we can conclude that humans
do make humoral responses to HBRV based on our ELISA.

A second issue to be addressed is that the prevalence of
infection detected by the HBRV Su ELISA was somewhat
lower than other reports using different techniques to di-
agnose disease. Indeed, our western blots (Figure 2(c)) show
reactivity to one breast cancer sample that was negative by
the ELISA, suggesting that our cutoff level may have been
too stringent. Using nonserological techniques, a meta-
analysis of molecular epidemiological studies reported a
prevalence of 40% HBRV infection in Western countries
based on PCR detection of betaretrovirus sequences in breast
cancer samples [49]. An even higher prevalence of infection
has been reported in PBC patients based on the presence of
proviral HBRV integrations detected by ligation-mediated
PCR and Illumina sequencing, with provirus found in 58%
of cholangiocytes from patients with PBC as compared to 7%
of nonautoimmune liver disease controls [30]. -e
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Figure 3: (a) A higher percentage of reactivity to HBRV Su was observed in breast cancer patients’ sera versus age/sex-matched healthy
controls (10/98 vs. 2/102; P � 0.017). (b) Anti-HBRV reactivity was highest in patients with PBC (18/156) and found in AIH (1/16),
cryptogenic liver disease (1/6), and healthy blood donors (6/194), whereas reactivity was not observed in patients with PSC, steatosis
(NAFLD), ALD, or miscellaneous liver disease (PBC vs. blood donors 11.5% vs. 3.1%, P � 0.0024, OR� 4.09 [1.66–10.1]).
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discrepancy of a higher frequency of viral infection in tissue
as compared to a lower seroprevalence of anti-HBRV Su
reactivity may be partly explained by observations from
neonatal mouse infection. Weanling pups have a high risk of
developing breast cancer from MMTV infection because
they become immunotolerant to viral infection. -is occurs
because MMTV is taken up in the gut-associated lymphoid
tissue along with bacterial lipopolysaccharide, which triggers
a cascade of events. -e lipopolysaccharide/viral complex
engages Toll-like receptor 4 that in turn triggers an IL-4- and
IL-6-dependent production of IL-10, which renders the
mouse unresponsive to MMTV Su and prevents the for-
mation of neutralizing antibodies [13]. It is currently un-
known whether a similar immunological process may occur
in humans with HBRV infection. Notably, the cellular
immune response to HBRV peptides is more prevalent in
patients with liver disease [50].

Our overall goal was to derive a reliable and repro-
ducible diagnostic ELISA to investigate the frequency of
HBRV infection. In prior experiments, we used bacterial or
baculovirus expressed proteins but failed to generate suf-
ficient amounts of pure viral protein. We also generated
serological data using the bacterially expressed Gag pro-
teins, and while a higher seroprevalence was observed in our
PBC population as a whole, no significant differences were
found between patients and controls with liver disease.
Notably, cross reactivity with retroviral Gag (Group Anti-
Gen) is a common occurrence in patients with any viral
infection due to the positively charged antigenic determi-
nants in capsid and core proteins surrounding the viral
genome [51, 52]. For this ELISA, a novel strategy for large-
scale production of purified and secreted HBRV Su protein
was developed using HEK 293T cells. -ree factors con-
tributed to the production of HBRV Su sufficient for
multiple ELISAs: these included (i) using multiple copies of
CTE downstream of the Su coding region to enhance HBRV
Su expression and secretion; (ii) ensuring the stable ex-
pression of HBRV Su protein in human cells; and (iii)
replacing the FBS containing medium with serum-free
medium to remove a source of protein contamination and
ensure the high purity of protein after chromatography
purification. We can also speculate that the use of HBRV
rather than MMTV proteins to assess the betaretrovirus
seroprevalence likely improved the accuracy of the assay.
Nevertheless, more sensitive assays employing cellular
immune responses to viral peptides [50], for example, will
be required to improve the sensitivity for the detection of
immune response to HBRV.

5. Conclusions

An HBRV ELISA has been constructed by expressing HBRV
env in HEK293 to produce purified HBRV Su protein. -e
ELISA detection of HBRV Su antibodies is highly specific for
both breast cancer and PBC, but the assay may lack sen-
sitivity as higher prevalence rates for HBRV infection have
been recorded using other techniques. Further studies may
permit testing whether anti-HBRV is linked with breast
cancer, by screening archived predisease serum from

patients participating in the Alberta Tomorrow Project who
subsequently developed breast cancer. Accordingly, we will
be able to study whether anti-HBRV Su predates the de-
velopment of disease and may act as a biomarker for breast
cancer.
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Helicobacter pylori infection causes chronic gastritis and is the major risk factor of gastric cancer. H. pylori induces a chronic
inflammation-producing reactive oxygen species (ROS) which is a source of chromosome instabilities and contributes to the
development of malignancy. H. pylori also promotes DNA hypermethylation, known to dysregulate essential genes that maintain
genetic stability. .e maintenance of telomere length by telomerase is essential for chromosome integrity. Telomerase reverse
transcriptase (TERT) is the catalytic component of telomerase activity and an important target during host-pathogen interaction.
We aimed to investigate the consequences of H. pylori on the regulation of TERT gene expression and telomerase activity.
In vitro, hTERT mRNA levels and telomerase activity were analysed in H. pylori-infected human gastric epithelial cells. In
addition, C57BL/6 and INS-GAS mice were used to investigate the influence of H. pylori-induced inflammation on TERT levels.
Our data demonstrated that, in vitro, H. pylori inhibits TERTgene expression and decreases the telomerase activity. .e exposure
of cells to lycopene, an antioxidant compound, restores TERT levels in infected cells, indicating that ROS are implicated in this
downregulation. In vivo, fewer TERT-positive cells are observed in gastric tissues of infected mice compared to uninfected, more
predominantly in the vicinity of large aggregates of lymphocytes, suggesting an inflammation-mediated regulation. Furthermore,
H. pylori appears to downregulate TERT gene expression through DNA hypermethylation as shown by the restoration of TERT
transcript levels in cells treated with 5′-azacytidine, an inhibitor of DNA methylation. .is was confirmed in infected mice,
by PCR-methylation assay of the TERT gene promoter. Our data unraveled a novel way for H. pylori to promote genome
instabilities through the inhibition of TERT levels and telomerase activity. .is mechanism could play an important role in the
early steps of gastric carcinogenesis.

1. Introduction

Helicobacter pylori is a gastric pathogen that infects half of
the human population worldwide. .is bacterium is re-
sponsible for chronic inflammation and gastroduodenal
diseases, including gastric adenocarcinoma and mucosa-
associated lymphoid tissue (MALT) lymphoma [1, 2]. H.
pylori is, to date, the first and only bacterium identified as a

type I carcinogenic agent in humans [3]. .e complex in-
terplay between bacterial, host, and environmental factors
plays a fundamental role in the development of gastric
cancer lesions. Prolonged inflammation and long-term
persistence of H. pylori contribute to gastric carcinogenesis,
via dysregulation of signaling pathways, cell proliferation,
and chromosome instability [4, 5]. H. pylori is an efficient
inducer of DNA damage such as DNA double-strand breaks

Hindawi
Journal of Oncology
Volume 2019, Article ID 5415761, 13 pages
https://doi.org/10.1155/2019/5415761

mailto:eliette.touati@pasteur.fr
https://orcid.org/0000-0002-3450-1773
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/5415761


(DSBs) and mutations in the nuclear and mitochondrial
DNA [6–9]. .e genotoxic activity of H. pylori infection is
largely associated with chronic inflammation of the gastric
mucosa and the resulting oxidative stress, leading to a
harmful environment for the host and promotion of car-
cinogenesis [10]. Oxidative stress is a source of DNA damage
and telomere shortening [11]. Recently, a unique H. pylori-
induced pattern of DNA damage accumulation has been
shown preferentially in transcribed regions and in proximal
regions of telomeres [12]. H. pylori is also a source of ab-
errant DNA methylation in the host cells [5, 13]. In a
previous study, we reported that H. pylori inhibits the ex-
pression of the transcription factors USF1 and USF2 (up-
stream stimulating factors 1 and 2) genes, by DNA
hypermethylation of their promoter region [14]. USF1 and
USF2 regulate among others the transcription of TERT
coding for the telomerase reverse transcriptase (TERT), the
major component of telomerase [15, 16].

Telomerase maintains the telomere length essential for
chromosome stability and integrity [17]. .is ribonucleo-
protein is also involved in cell transformation
and lymphocyte activation [18]. .e telomerase complex
includes the reverse transcriptase catalytic subunit (TERT)
and a telomerase RNA component (TERC). It elongates
telomere ends by adding TTAGGG repeats and prevents
telomere shortening during cell division. It is regulated
mainly at the TERT transcriptional level [15]. In addition to
telomere elongation, hTERT (human TERT) plays a role in
diverse cellular processes, such as the transcriptional
modulation of Wnt-β-catenin signaling pathway and DNA
damage response [19]. Importantly, hTERT is a strategic
target for bacterial infection, as previously reported for
Listeria monocytogenes which promotes hTERTdegradation
[20].

Telomerase activation is an essential event during the
carcinogenesis process, allowing cells to proliferate indefi-
nitely and to avoid apoptosis. In most advanced carcinomas
and soft cancer tissues, telomerase expression is upregulated
[21]. Increased hTERT transcription is observed in more
than 85% of tumor cells and is lower in most somatic cells
[22]. Slightly elevated levels of TERT mRNA and protein
were also reported in 45 to 50% of intestinal metaplasia and
gastric ulcer cases, and 79% of gastric cancer showed higher
TERT levels [23]. In H. pylori-positive patients, telomere
reduction has been reported in the gastric mucosa [24].
Moreover, reactive oxygen species (ROS) overproduction
during H. pylori-induced chronic inflammation has been
demonstrated as a cause for telomere shortening [25].

In the present study, the consequences of H. pylori in-
fection on TERTwere investigated in vitro in human gastric
epithelial cells and in mouse models at an early step of the
development of gastric preneoplasia. Our data reveal that H.
pylori infection downregulates TERT gene expression
through DNA methylation and thus impairs telomerase
activity. Given the role of telomerase in the control of
chromosome integrity and epithelial cancer development,
these mechanisms could promote the transition between the
chronic stage of the infection and the development of
neoplasia.

2. Materials and Methods

2.1. Bacterial Strains and Growth Conditions. H. pylori
strains B38, isolated from a MALT lymphoma patient
[26, 27] (obtained from Pr F. Mégraud, Bordeaux, France),
7.13 and its derivative mutants ∆cagA and ∆cagE [28]
(obtained from Pr RM Peek Jr, Vanderbilt, USA), as well as
SS1 [29], a mouse-adapted human strain, were grown on
10% blood agar under microaerobic conditions with the
following antibiotics-antifungal cocktail: amphotericin B
2.5 μg·ml− 1, polymyxin B 0.31 μg·ml− 1, trimethoprim
6.25 μg·ml− 1, and vancomycin 12.5 μg·ml− 1. Bacteria lysates
were obtained by passage of bacterial suspensions through a
French pressure cell as previously described [30]. Protein
concentration of supernatants was measured with the DC
Protein assay (Biorad, Hercules, CA).

2.2. Cell Culture and Infection. Human adenocarcinoma
gastric cell lines AGS (CRl-1739 and ATCC-LGC), MKN45
(CVCL_0434), and KatoIII (CVCL_0371), a gift from Dr C.
Figueiredo, Porto, Portugal, were grown in DMEMmedium
with 10% fetal bovine serum and 1% penicillin-streptomycin
(Life Technologies Corporation, Carlsbad, CA) for AGS and
MKN45 cells and with 20% fetal bovine serum for KatoIII
cells (Life Technologies Corporation, Carlsbad, CA, USA).
Bacteria were added at a multiplicity of infection (MOI) of
20, 50, and 100 bacteria per cell for 12, 24, and 48 h. To
inhibit DNA methylation, cells were treated with 5′-aza-
cytidine 1 μM (Sigma Chemical Co., St. Louis, MO) for 3
days, prior to infection for 48 h. To avoid any effect of 5′-
azacytidine on bacteria and as similar results were obtained
with live bacteria and lysate on TERT expression, cells were
then treated with H. pylori B38 lysate (20 μg·ml− 1), equiv-
alent to 108 bacteria for 106 epithelial cells. To inhibit ROS
production, cells were treated with lycopene 5 μM (Sigma
Chemical Co., St. Louis, MO), dissolved in dimethyl sulf-
oxide (DMSO) 25%, prior to H. pylori infection, as previ-
ously described [31]. Control cells were incubated with
DMSO 2.5% corresponding to the final concentration of
DMSO in the vehicle solvent in the culture medium.

For gene expression analysis, total RNA was extracted
from cells, as previously described [14]. Proteins were iso-
lated by lysis of cells in NP40 buffer and analysed byWestern
blot using antibodies against TERT (sc-7212; 1/200; Santa
Cruz Biotechnology, CA, USA) and GAPDH (sc-25778; 1/
200; Santa Cruz Biotechnology, CA, USA).

2.3. Measurement of Intracellular ROS. .e production of
ROS was assessed using the ROS-sensitive fluorescent probe
2′,7′-dichlorodihydrofluorescein diacetate (H2-DCF-DA)
(Sigma Aldrich) as previously described [32]. In brief, the
H2-DCF-DA probe freely enters the cells where it is cleaved
to nonfluorescent and impermeant product, which is later
oxidized by ROS to DCF, a fluorescent compound. For these
assays, 4×104 MKN45 cells were plated in 96-well plates, in
quintuplicate. .e following day, these cells were treated
with 10 μMH2-DCF-DA for 30 minutes at 37°C and washed
3 times with PBS. Afterwards, cells were exposed for 24 h to
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either different concentrations of bacterial extracts
(20 μg·ml− 1, 50 μg·ml− 1, or 100 μg·ml− 1) obtained from the
7.13H. pylori strain or the vehicle control. H2O2 (5mM) was
used as a positive control, andWTMKN45 cells were used as
a reference for ROS production at basal levels. DCF fluo-
rescence was measured using an excitation/emission
wavelength of 488/530 nm with an Infinite M200PRO
microplate reader (Tecan).

2.4. Animal Infection

2.4.1. Ethical Statement. Mouse experiments were carried
out in strict accordance with the recommendations in the
Specific Guide for the Care and Use of Laboratory Animals
of the Institut Pasteur, according to the European Directives
(2010/63/UE). .e project was approved by the Comité
d’Éthique en Expérimentation Animale (CETEA), Institut
Pasteur and the Ministère de l’Enseignement Supérieur et de
la Recherche, France (Ref 00317.02).

Two different mouse models were used in this study..e
first model consists of six-week-old specific pathogen-free
(SPF) C57BL/6 male mice (Charles Rivers, France), which
were orogastrically infected with H. pylori SS1 (107 cfu/
100 μl) for 12 and 18 months (n� 6/group). Control mice
received peptone trypsin broth alone. .e second model
corresponds to INS-GAS mice, which are transgenic for the
human gastrin, leading to an exacerbated development of
gastric neoplasia in the presence of H. pylori, as early as 7–9
months after infection [33]. .ree couples of SPF INS-GAS/
FVB mice were kindly provided by Pr. T.C. Wang (Co-
lumbia University, NY, USA) and bred at the animal facility
of the Institut Pasteur. Six-week-old INS-GAS/FVB male
mice (n� 6/group) were infected with H. pylori SS1 as de-
scribed above, for 8 months. At each time point, mice were
sacrificed and stomachs were collected and used for the
quantification of gastric colonization, histological analysis,
RNA extraction, and genomic DNA isolation as previously
described [6, 14].

2.5. PCR and Real-Time qPCRAnalysis. RNA extraction and
cDNA synthesis were performed as previously described
[14]. Gene expression in human gastric epithelial cells was
measured by real-time quantitative PCR (qPCR) analysis
using TaqMan® Gene Expression Assays (Applied Bio-
systems, .ermo Fischer Scientific, France). TaqMan gene
expression primers were hTERT (Hs99999022_m1) and 18S
(Hs99999901_s1) (Applied Biosystems, .ermo Fischer
Scientific, France) as the endogenous control. For mouse
analysis, primers were mTERT (Mn01352136-m1) and
GAPDH (Mn99999915-g1) as an endogenous control (Ap-
plied Biosystems, .ermo Fischer Scientific, France).
Quantitative PCR was performed in triplicate. .e expres-
sion of hTERT and mTERT was normalized to Ct values
obtained for 18S and GAPDH, respectively, using the ΔCt
formula: Ct gene–Ct housekeeping gene. For each experi-
ment, fold changes for TERT RNA levels were determined
from this calculation for infected samples to the uninfected

control 2− (ΔΔCt), for at least two independent biological and
three technical replicates.

2.6. Detection of Protein Levels by Western Blot. After co-
culture with H. pylori, cells were lysed in NP-40 buffer
containing protease inhibitors; 20 μg per lane were separated
on a 12% Mini-PROTEAN® TGX Stain-Free™ Precast Gel
(BioRad) and transferred onto Trans-Blot® Turbo™ Midi
PVDF Transfer Packs using a Trans-Blot® Turbo™ Transfer
System (BioRad). TERT (H-231) antibodies (Ref sc-7212,
Santa Cruz Biotechnology, CA, USA; dilution 1/500) and
GAPDH ((FL-335) sc-25778, Santa Cruz Biotechnology, CA,
USA; 1/100) were used, followed by a goat anti-rabbit IgG-
HRP (sc-2054, Santa Cruz Biotechnology, CA, USA; 1/
10000). Detection was performed using the Clarity™
Western ECL Substrate (BioRad) and revealed using a
ChemiDoc XRS (Bio-Rad). Western blot data were quan-
tified by densitometry using Image Lab software (Bio-Rad).

2.7. Telomerase Repeat Amplification Protocol Assay (TRAP
Assay). Telomerase activity was analysed by TRAP assay
[34] using a TRAPeze® telomerase detection kit (Chemicon-
Millipore, Billerica, MA), according to the manufacturer’s
instructions. In brief, the telomerase activity in cell extracts
(150 ng) was evaluated by its ability to extend the 3′ end of an
oligonucleotide substrate with telomeric repeats
(GGTTAG). .e primary telomerase products were then
amplified by PCR, generating a ladder of products with 6
base increments starting at 50 nucleotides length. Reaction
products were detected by electrophoresis on 12.5% non-
denaturing polyacrylamide gel (PAGE) stained with SYBR®Green followed by UV detection (Gel Doc System, Bio-Rad).

2.8. Histology and Immunohistochemistry. For both mouse
models, C57BL/6 and INS-GAS, stomachs from uninfected
orH. pylori SS1-infected mice were fixed in 4% formalin and
then embedded in low-melting point paraffin (Poly Ethylene
Glycol Distearate; Sigma, USA). Four μm thick paraffin
sections were deparaffinised in absolute ethanol, air-dried,
and then stained with hematoxylin-eosin (H&E) or used for
immunolabeling. Immunostaining of B and T lymphocytes
was performed using anti-CD45R (RM2600, 1/40, Invi-
trogen, Carlsbad, CA, USA) and anti-CD3 (A0452; 1/75,
DAKO, Carpinteria, CA, USA), respectively. In situ ex-
pression of TERTwas visualized by immunodetection with a
rabbit polyclonal antibody against telomerase catalytic
subunit (Ref 600-401-252; 1 : 200; Rockland Immuno-
chemicals Inc., Gilbertsville, PA, USA). .e staining was
revealed using peroxidase detection as previously described
[6, 14].

2.9. Determination of DNA Methylation Status in the Mouse
TERT-Promoter Region. Two distinct regions of the
mTERT-promoter region were selected between nucleotides
− 7 to − 326 (segment I) and − 791 to − 1028 (segment II) (see
Figure 1(b)). Segment I corresponds to a CpG island region
including GC boxes and a noncanonical E-box (− 197 to
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Figure 1: DNA methylation downregulates hTERT gene expression during H. pylori infection. (a) AGS gastric epithelial cells were treated
with 5′-azacytidine (1 μM) for 3 days before incubation with H. pylori B38 lysate (20 μg·ml− 1) for 48 h. Quantification of hTERT gene
expression was performed by real-time qPCR. 5′-azacytidine treatment restores hTERT gene expression in cells stimulated with H. pylori
B38 lysate. Results are expressed as mean± SD of at least 2 independent experiments in duplicate. p< 0.0001; one-way ANOVA
Kruskal–Wallis test followed by Dunn’s multiple comparison (infected versus uninfected ∗∗p< 0.01; ∗∗∗p< 0.001; infected versus aza-
cytidine treated± infection ••p< 0.01; ••••p< 0.0001) (b) Structure of the mTERT gene-promoter region in mice, containing a CpG island
(hatched box, I and E-box element (black box, II)). (c) DNA methylation status of mTERT-promoter regions analysed by promoter
methylation PCR assay, on genomic DNA isolated from the gastric mucosa of H. pylori SS1-infected (18 months) and uninfected mice, as
described in the Experimental procedures. A representative gel of amplified methylated DNA is reported (upper panel) with each well
corresponding to one mouse. (d) Quantification for each amplified methylated DNA fragment using BIO-PROFIL Bio-1D++ (Biosystems)
software (lower panel), showing H. pylori-induced DNA hypermethylation in both mTERT-promoter regions I and II.
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Figure 2: Continued.
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− 202) [35]. Segment II presents a canonical E-box sequence
at position − 837. DNA methylation status was analysed
using the Promoter Methylation PCR assay (Panomics,
Redwood City, CA). Genomic DNA was extracted from 18-
month-infected and uninfected mouse stomachs as previ-
ously described [6] and digested with BanII restriction
enzyme (New England Biolabs, Ipswich, MA). .e meth-
ylated DNA was isolated according to the manufacturer’s
instructions; segments I and II were amplified by PCR using
the following primers: 5′-GCCCGAGAAGCATTCTGTAG-
3′ and 5′-CACTGAGAGTCCACGACGAA-3′ for the seg-
ment I, and 5′-GAAAGCTGAAGGCACCAAAG-3′ and 5′-
GATGGCAGCTCTGCTAGGTT-3′ for the segment II
(GenBank NG_055506.1). .e PCR products were detected
by agarose gel electrophoresis (Gel Doc System, Bio-Rad),
and the band intensities were quantified by using Quantity
One software (Bio-Rad).

2.10. Statistical Analysis. Statistical analysis was performed
using the Student’s t test or Mann–Whitney test, after being
assessed for normality of samples distribution, for com-
parison between two groups. .e one-way ANOVA
Kruskal–Wallis test was used for comparison of more than 2
groups, followed by Dunn’s multiple comparison to com-
pare the mean rank of each column to the mean rank of the
control column. Results were expressed as mean± SD of
separate experiments. A p value ≤0.05 was considered
significant using GraphPad Prism® 8 (GraphPad Software
Inc., La Jolla, CA, USA).

3. Results

3.1. hTERT Expression and Telomerase Activity Are Down-
regulated in H. pylori-Infected Gastric Epithelial Cells.
Human TERT (hTERT) gene expression was measured by
RT-qPCR in the gastric epithelial cell line AGS, infected for

24°h withH. pylori strain B38, a clinical isolate from aMALT
lymphoma patient [26, 27]. As compared to controls, hTERT
mRNA levels were decreased in infected cells after 24°h
(Figure 2(a), upper panel). A similar inhibition was observed
at the TERT protein level (Figure 2(a), lower panel). .e
same inhibitory effect on hTERT gene expression was seen
in cells treated with H. pylori B38 bacterial extract
(20 μg·ml− 1) for 24°h (Figure 2(b)), suggesting that this
downregulation does not require a direct bacterium-epi-
thelial cell interaction and involves one (or more) soluble
bacterial factors..e inhibition of hTERTgene expression by
H. pylori was also confirmed in several gastric epithelial cell
lines, MKN45 and KatoIII (Figure 2(c)).

Under our experimental conditions of infection, we
verified that the decrease of TERT levels was not due to
apoptosis. After 24 h and 48°h infection with H. pylori strain
B38, 77.3% and 70% of the cells were negative for annexin V
and 7-aminoactinomycin D staining (live cells), respectively,
as compared to 79% and 75.5% in the controls.

We next examined the consequences of H. pylori in-
fection on telomerase activity using the Telomeric Repeat
Amplification Protocol (TRAP) assay [34], which allows the
ability of the telomerase to add telomeric repeats at the 3′end
of an oligonucleotide substrate to be determined. As re-
ported in Figure 2(d), a lower telomerase activity was ob-
served when testing the protein extracts of H. pylori B38-
infected cells, as indicated by the lower intensity and smaller
size of the DNA fragments synthesised by these samples,
compared to protein extracts from uninfected cells. .is
effect is particularly observed at 24°h after infection, com-
pared to the pattern of DNA fragments obtained with heat-
inactivated samples and samples from the uninfected con-
dition at the same time point (Figure 2(d)). .us, H. pylori
infection inhibits hTERT gene expression and telomerase
activity. As reported in Figure 2(e), hTERT gene expression
is also downregulated in AGS cells infected with the on-
cogenic H. pylori strain 7.13 [28] and with the isogenic
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H. pylori 50 100 50 100–
+––
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Figure 2: H. pylori inhibits hTERT gene expression and telomerase activity in gastric epithelial cells. (a) hTERT gene expression (upper
panel) was measured by real-time qPCR, and protein levels were analysed by western blot (lower panel) in human gastric epithelial cell lines
AGS infected withH. pylori B38 atMOI 20, 50, and 100 for 24 h. (b) hTERTgene expressionmeasured in AGS cells treated withH. pylori B38
bacterial extracts (20 μg·ml− 1) for 24 h. (c) MKN45 and KatoIII gastric epithelial cell lines infected with H. pylori B38 for 24 h and 48 h at
MOI 100. (d) Telomerase activity analysed by TRAPeze® assay in AGS cell extracts prepared from cells infected with H. pylori B38 for 12 h
and 24 h (MOI 100). C+, positive control using commercial telomerase-positive cell extracts; C− , negative control. For each analysed
condition, heat-inactivated cell extracts obtained after incubation at 85°C for 10min were also analysed..e displayed gel is representative of
2 independent experiments performed in duplicate. (e) hTERTgene expression is also inhibited in AGS cells infected by the H. pylori strain
7.13 (MOI 50 and 100) in a CagA- and CagE-independent manner. $p< 0.001, one-way ANOVA analysis followed by Dunn’s multiple
comparison (infected versus uninfected ∗p< 0.05; ∗∗p< 0.01). (f ) Oxidative stress generated by exposure of cells to H2O2 10mM for 24 h
inhibits the hTERTgene expression. (g) Representative western blot of AGS cells infected 24 h with H. pylori 7.13 as in (d) and treated with
lycopene 5 μM. Lycopene abolished the H. pylori-mediated inhibition of TERT. Results are expressed as mean± SD of three independent
experiments (infected versus uninfected ∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001). p< 0.001, one-way ANOVA Kruskal–Wallis followed by
Dunn’s multiple comparison (infected versus uninfected ∗p< 0.05; ∗∗p< 0.01) (a and e).
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mutants 7.13 ∆cagA and 7.13 ∆cagE deficient for the on-
cogenic protein CagA [36] and the virulence factor CagE
required for a functional type IV secretion system, respec-
tively [37]. .ese results indicate that H. pylori down-
regulates hTERT gene expression through a CagA- and
CagE-independent mechanism.

.e production of ROS has been reported during H.
pylori infection [10, 38, 39] and is confirmed under our
experimental conditions in H. pylori-infected gastric epi-
thelial cells (Supplementary materials; Figure S1). Similar to
H. pylori infection, the exposure of cells to hydrogen per-
oxide (H2O2) led to a significant decrease of hTERT gene
expression (Figure 2(f )). In addition, the treatment of cells
with lycopene, an efficient singlet oxygen quencher [40],
previously shown to prevent ROS production in H. pylori-
infected cells [31], abolished the inhibitory effect of the
infection on the TERT protein levels (Figure 2(g)). .ese
data support that the inhibition of hTERT level during the
infection could be regulated by an ROS-mediated
mechanism.

3.2. Downregulation of TERT Gene Expression in H. Pylori
SS1-Infected Mice Is Associated with Chronic Inflammation.
We then took advantage of the ability of the H. pylori strain
SS1 to chronically colonize (i.e., for several months) the
gastric mucosa of mice [29], to investigate mTERT gene
expression in C57BL/6 mice infected for 12 and 18 months.
.e measure of H. pylori gastric colonization loads con-
firmed that mice were successfully infected (Supplementary

materials; Figure S2(a)). Histological analysis of infected
stomachs showed active gastritis as indicated by the semi-
quantitative evaluation of histological score grading of the
inflammatory lesions (Supplementary materials;
Figure S2(b)), as previously reported under the same con-
ditions of infection [6, 14]. Hyperplastic gastric lesions and
more severe metaplasia were observed in mice infected for
18 months (Supplementary materials; Figure S2(b)). Large
inflammatory cell aggregates mostly constituted of
B lymphocytes, as shown by the antigen B220-positive
staining, were observed in the gastric mucosa of mice after
12 and 18 months of infection (Figures 3(a) and 3(e)). In
contrast, no T lymphocytes were found in the inflammatory
infiltrates (Figures 3(a) and 3(f)).

mTERT gene expression was quantified by RT-qPCR in
the gastric tissues of mice. H. pylori inhibited mTERT gene
expression after 12 and 18 months of infection (p � 0.0028
and p � 0.017, respectively) (Figure 3(b)). Under these
conditions, immunohistochemistry analysis of TERT on
gastric tissue sections (Figure 3(c)) showed a significantly
lower number of TERT-positive gastric cells at 18 months
(2.8-fold), compared to uninfected mice (Figure 3(d)). It is
important to note the absence of TERT staining in the vi-
cinity of the large aggregates of lymphocytes in the gastric
mucosa and submucosa, at both 12 and 18months of in-
fection (Figure 3(c)). In accordance with this, we found that
the number of TERT-positive cells is inversely correlated
with the inflammatory score grading (Figure 3(e)), sug-
gesting that lower TERT levels correlate with an exacer-
bation of inflammatory lesions. .emTERTgene expression
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Figure 3: H. pylori infection decreases mTERT expression in the gastric mucosa of C57BL/6 mice, in the presence of large B lymphocyte
aggregates. (a, d) H&E staining and immunostaining of B (b, e) and T (c, f ) lymphocytes in gastric sections in infected mice, 12months
after H. pylori SS1 infection (d, e, f ) and in control mice (a, b, c). Inflammatory infiltrates were observed in the stomach of infected mice,
in the lamina propria and submucosa (c). High number of B lymphocytes (e) and a low number of T lymphocytes (f ) were present in
the inflammatory cell infiltrates in the infected gastric submucosa (e) compared to uninfected (b and c, respectively). Sections of the stomach
from the uninfected mice were negative for both B (b) and T (c) lymphocyte staining. Original magnification ×4, bar: 250 μm (a, b, c), and
×10, bar: 100 μm (d, e, f ). (b) mTERT gene expression in gastric tissues of H. pylori SS1-infected mice at 12 and 18 months after infection
quantified by real-time qPCR (Taqman). Results are expressed as means± SD of three independent experiments (infected versus uninfected
∗p< 0.05; ∗∗p< 0.01). (c) TERT immunolabeling in gastric tissue sections from uninfected mice (a, c) andH. pylori SS1-infected (b, d) after
12 (a, b) and 18 (c, d) months. Lower TERT staining is observed in the gastric mucosa in the area of the inflammatory B lymphocyte
infiltrates in infected samples. Original magnification: ×10, bar: 100 μm (a, b), and ×4, bar: 250 μm (c, d). (d) Number of TERT-positive cells/
mm2 mucosal area in gastric tissue sections of uninfected and infected samples at 12 and 18 months. Results are expressed as mean± SD
(infected versus uninfected ∗p< 0.05) according to Mann–Whitney analysis. (e) Inverse correlation between the number of TERT-positive
cells/mm2 mucosal area and the total score grading inflammatory lesions in uninfected (white symbols) and infected mice (black symbol),
indicating that TERT level decreases with the exacerbation of gastric inflammation. Each symbol represents one mouse.
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was also investigated in INS-GAS transgenic mice. .ese
mice, which develop gastric neoplasia in the presence of H.
pylori infection [33], are a powerful tool to study the early
events of gastric carcinogenesis associated with the infection.
As expected, H. pylori SS1-infected INS-GAS mice showed
more severe lesions than infected C57BL/6 mice, with
atypical gastric hyperplasia and high-grade dysplasia after 8
months (Supplementary materials; Figures S3(a) and S3(c)).
At 8 months after infection, mTERT gene expression was
lower in infected INS-GAS mice as compared to uninfected.
.ese data support that the increase in the severity of gastric
lesions is inversely correlated with TERT levels.

3.3. Downregulation of mTERT Gene Expression during H.
Pylori Infection Is Mediated by DNA Hypermethylation. A
potential link between H. pylori-related promoter CpG is-
lands methylation and telomere shortening has been sug-
gested in the gastric mucosa of infected patients [41]. In
addition, multiple levels of regulation of hTERT gene ex-
pression have been previously reported by methylation of
CpG islands at its promoter region [42]. In order to de-
termine if DNA hypermethylation could be involved in the
H. pylori-mediated inhibition of the TERT gene expression,
we first tested the effect of a pretreatment of AGS cells with
5′-azacytidine, an inhibitor of DNA methylation, before
incubation withH. pylori B38 extracts. Under this condition,
hTERTgene expression was restored to control levels in cells
exposed to bacterial extracts (Figure 1(a)). .ese data
suggest that H. pylori-induced DNA hypermethylation is
responsible for the downregulation of hTERT gene ex-
pression during the infection.

Aberrant DNAmethylation is frequently associated with
chronic inflammation, as observed in gastritis patients [43].
We investigated, in the mouse model, the DNA methylation
status at the promoter region of the mTERT gene
(Figure 1(b)), on genomic DNA samples extracted from the
gastric mucosa of uninfected C57BL/6 mice and mice in-
fected for 18 months with H. pylori. Using a promoter PCR
methylation assay, two regions of themTERTpromoter were
analysed including the CpG island (I) in the core-promoter
region and an upstream segment containing a canonical
E-box (II) (Figure 1(b)). In both cases (I and II), higher
amounts of DNA-methylated fragments were observed by
PCR amplification in infected mice (3-fold), compared to
uninfected mice (Figures 1(c) and 1(d)). .ese data suggest
that, in the presence of gastric chronic inflammation and
preneoplastic lesions in mice, H. pylori induces DNA
hypermethylation at the promoter region of the mTERT
gene, leading to the downregulation of its expression.

4. Discussion

Impaired telomerase activity and shortened telomere length are
associated with genetic instability and an increased risk of
gastric cancer [44]. Telomerase could constitute an important
target during the interaction of H. pylori with gastric epithelial
cells. In the present study, we demonstrated that H. pylori
infection leads to inhibition of TERT gene expression through

DNAhypermethylation and impairment of telomerase activity,
in human gastric epithelial cells..e decrease in TERT levels is
confirmed in H. pylori-infected mice after 12 and 18 months,
together with the induction of inflammation and exacerbation
of the severity of gastric lesions. .ese results were also vali-
dated in the INS-GAS mouse model that presents H. pylori-
induced gastric preneoplasia at 8 months after infection. In
accordance with our data, previous studies reported that H.
pylori infection causes telomere shortening [24, 25]. Moreover,
H. pylori eradication in gastritis patients was shown to result in
increased telomere length and telomerase activity [45]. Im-
portantly, a preferential and massive accumulation of DNA
damage close to the telomeric regions, associated with the
impairment of DNA repair systems, has been reported in H.
pylori-infected cells and could trigger loss of telomeres [12].
Our data indicate that telomerase dysfunction, resulting in
shortened telomere length, can be considered as a key event at
the early steps of gastric carcinogenesis during H. pylori
infection.

Telomerase deficiency and telomere dysfunction have
been reported during chronic inflammatory diseases and
contribute to inflammation-associated pathogenesis [46, 47]
H. pylori infection is characterized by an infiltration of
polymorphonuclear cells within the gastric mucosa, as ob-
served in infected mice [6]. In previous studies, the path-
ogenicity of H. pylori infection has been shown to be related
to chronic inflammation-associated oxidative stress and
DNA damage [48]. Both H. pylori and inflammatory cells
constitute a source of ROS [10]. In the present study, the
TERT gene expression was found to be decreased in H2O2-
treated gastric epithelial cells in vitro, indicating an ROS-
mediated downregulation. In accordance with these results,
the treatment of H. pylori-infected cells with the antioxidant
lycopene led to the restoration of TERTmRNA and protein
levels. .us, our findings suggest that the decrease of TERT-
positive cells in the gastric mucosa of infected mice might be
an ROS-mediated regulation due to the oxidative stress
generated during inflammation. In line with this, it was
reported that low-grade chronic inflammation in mice can
directly promote ROS-mediated telomeric DNA damage,
which is repaired less efficiently than elsewhere in the
chromosome [49, 50].

DNA methylation plays a key role during the early steps
of carcinogenesis [51]. InH. pylori-infected individuals, high
levels of CpGmethylation have been associated with a higher
risk of gastric cancer [43, 52, 53]. A potential link between
telomere length shortening and promoter CpG island
methylation has been described in the gastric mucosa of H.
pylori-positive patients [41]. Importantly, ROS-induced
oxidative stress during chronic inflammation is associated
with aberrant DNA hypermethylation of tumor suppressor
gene-promoter region [54]. Furthermore, HOCl and HOBr
produced by polymorphonuclear cells during inflammation
are also able to interact with DNA and promote DNA
methylation [55]. Our data show thatH. pylori induces DNA
hypermethylation at the E-box and CpG island present in
the core-promoter region of themTERT gene, leading to the
downregulation of its expression. However, the shutting
down of TERT expression could, in addition, result from
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indirect mechanisms through DNA methylation of genes
coding for transcriptional regulators as tumor suppressors.
.e transcription factors USF1 and USF2 activate the
transcription of hTERT through E-box interaction [15, 16].
Indeed, we previously showed that H. pylori induces DNA
hypermethylation in the promoter region of USF1 and USF2
genes, inhibiting their expression, and consequently
resulting in diminished USF1/USF2-E-box binding at the
hTERT promoter [14].

In H. pylori-infected mice, we showed a decrease in
mTERT gene expression as early as the stage of gastritis and
the initial development of preneoplastic lesions. Decrease in
TERT gene expression has direct consequences on telome-
rase activity, as we observed in H. pylori-infected gastric
epithelial cells, in vitro. Both models of H. pylori infection
showed the accumulation of DNA damage [6–8], pre-
dominantly observed at the ends of chromosomal arms [12].
Importantly, H. pylori DNA damage activity is associated
with the impairment of DNA repair systems and p53 de-
ficiency [5], and it plays an important role at the origin of
genomic translocations and chromosome end fusion ob-
served in gastric tumors [12]. Dysregulation of the DNA
repair system and telomerase activity play a pivotal, decisive
role in the decision at the cross-road between the preneo-
plastic stage and cancer development. At premalignant
stages, telomerase deficiency is associated with shortened
telomeres, leading to chromosomal instabilities, cell cycle
arrest, and replicative senescence. .is step needs the ac-
tivation of the p53-mediated DNA damage response.
However, duringH. pylori infection, the p53-mediated DNA
damage response is deficient, thus increasing chromosome
instabilities and consequently the promotion of tumori-
genesis [56]. .is mechanism needs the reactivation of
telomerase andmaintenance of telomere length. Between the
premalignant stage and cancer, TERT expression is thus
reactivated resulting in unlimited cellular proliferation and
tumorigenesis [57], as described during hepatocarcino-
genesis (HCC) to enable malignant transformation and
HCC development [58]. TERT expression has been reported
to be reactivated in 85% of all cancers [59]. Importantly,
reactivation of TERT expression is also associated with
TERT-promoter mutations, currently found in many types
of cancers. As an example in melanoma, T>G at − 57 base
pairs from the transcription start site (TSS) generates an
E-twenty-six (ETS) transcription factor-binding site that
leads to the upregulation of TERT transcription [60].
.erefore, we propose that telomerase deficiency, together
with H. pylori-induced chronic inflammation, promotes
accumulation of chromosome instabilities, driving cell
transformation at the earliest stage toward preneoplastic
phase. It is during later stages of carcinogenesis that the
activation of TERT expression and telomerase activity may
occur, resulting in an uncontrolled proliferation pattern and
tumorigenesis, previously reported in gastric cancer [61, 62].

5. Conclusions

In conclusion, our study demonstrates that H. pylori in-
fection inhibits TERT gene expression through DNA

hypermethylation at its promoter region. .is down-
regulation occurs during chronic gastritis and the devel-
opment of preneoplastic lesions. .is regulation is mediated
through ROS production induced by the infection and
chronic inflammation. .e decrease in TERT levels is as-
sociated with a progressive shortening of telomeres with
direct consequences on cell differentiation and proliferation,
thus contributing to the early steps of the gastric carcino-
genesis process.
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Supplementary Materials

Figure S1: H. pylori induces ROS production in gastric
epithelial cells. MKN45 cells treated with H2DCFDA were
exposed to increasing concentrations of bacterial extracts
(BEs) of H. pylori strain 7.13 or to a vehicle control. WT
MKN45 (mock) cells were used to assess basal levels of ROS,
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and H2O2 (5mM) was used as a positive control. Intra-
cellular DCF fluorescence (readout of ROS production) was
measured using an excitation/emission wavelength of 488/
530. Results are expressed as means± SEM of a represen-
tative experiment (n� 3). Treated cells compared to vehicle
control: ∗∗∗p< 0.001; ∗∗∗∗p< 0.0001. Figure S2: gastric in-
flammatory and preneoplastic lesions are induced in H.
pylori chronically infected mice. (a) Quantification of
stomach colonization by H. pylori SS1 after 12 and 18
months of infection. Each symbol corresponds to a single
mouse. (b) Semiquantitative evaluation of histologic lesions
induced by H. pylori in the gastric mucosa of mice. .e
microscopic changes (inflammation, hyperplasia, and
metaplasia) were semiquantitatively scored on H&E-stained
paraffin sections from 0 to 5 according to Eaton and Coll [4].
.e scores of inflammation were similar at 12 and 18months
after infection. However, hyperplasia was only observed in
mice infected for 18 months; at this stage, histologic lesions
are associated with a higher severity of metaplasia as
compared to the lesions observed in 12-month infected
mice. Infected mice compared to noninfected ∗p< 0.05.
Figure S3: H. pylori inhibits mTERT gene expression in the
gastric mucosa of INS-GAS transgenic mice. INS-GAS
transgenic mice were chronically infected with H. pylori SS1
for 8 months, and gastric lesions were compared to non-
infected mice as described in Materials and Methods. (a)
Representative histological changes in gastric mucosa of H.
pylori infected (b) and noninfected (a) mice. (b) Quantifi-
cation of H. pylori gastric colonization at 8 months after
infection. Each symbol corresponds to a single mouse. (c)
Semiquantitative evaluation of the histologic lesions induced
by H. pylori in the gastric mucosa of mice. .e microscopic
changes (inflammation, hyperplasia, and metaplasia) were
scored from 0 to 5 on H&E-stained paraffin sections,
according to [65]; Original magnification: ×4, bar: 250 μm
(a); ×10, bar: 100 μm (b). .e gastric mucosa of noninfected
mice was thickened due to the presence of hyperplasia,
dilatation of gastric glands, and metaplasia that occur
spontaneously in the INS-GAS mice. In the infected mice,
the severity of these lesions is higher than in noninfected
mice. (d) mTERT gene expression quantified by real-time
RT-PCR from RNA isolated from the gastric mucosa of
infected and noninfected mice. Values represent the
mean± SEM of three independent measurements for each
group of mice. Infected mice compared to noninfected;
∗p< 0.05; ∗∗p< 0.01. (Supplementary Materials)
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Viral infections contribute as a cause of 15–20% of all human cancers. Infection by oncogenic viruses can promote different stages
of carcinogenesis. Among many types of HPV, around 15 are linked to cancer. In spite of effective screening methods, cervical
cancer continues to be a major public health problem. +ere are wide differences in cervical cancer incidence and mortality by
geographic region. In addition, the age-specific HPV prevalence varies widely across different populations and showed two peaks
of HPV positivity in younger and older women. +ere have been many studies worldwide on the epidemiology of HPV infection
and oncogenic properties due to different HPV genotypes. However, there are still many countries where the population-based
prevalence has not yet been identified. Moreover, cervical cancer screening strategies are different between countries. Organized
cervical screening programs are potentially more effective than opportunistic screening programs. Nevertheless, screening
programs have consistently been associated with a reduction in cervical cancer incidence and mortality. Developed countries have
achieved such reduced incidence and mortality from cervical cancer over the past 40 years. +is is largely due to the imple-
mentation of organized cytological screening and vaccination programs. HPV vaccines are very effective at preventing infection
and diseases related to the vaccine-specific genotypes in women with no evidence of past or current HPV infection. In spite of the
successful implementation of the HPV vaccination program in many countries all over the world, problems related to HPV
prevention and treatment of the related diseases will continue to persist in developing and underdeveloped countries.

1. Introduction

According to the World Health Organization’s (WHO) sta-
tistics, common cancers are one of the most prevalent causes
of mortality worldwide with 8.2 million deaths in 2012, and
this trend has not changed in recent years. Viral infections
contribute to 15–20% of all human cancers, whereby several
viruses play considerable roles in the multistage development
of malignant cancers. Over the past two decades, it has be-
come obvious that several viruses play an important role in
the development of human cancers. Around 15% to 20% of
cancer cases are associated with viral infections. Oncogenic
viruses can facilitate various stages of carcinogenesis [1]. One

of the viruses contributing to the statistics of cancerous
diseases is human papillomavirus (HPV). HPV is a virus that
can be sexually transmitted, and high-risk HPVDNA is found
to be present in 99.7% of cervical cancer specimens [2].
Within 12 to 24months of exposure to the virus, 90% of HPV
infections are cleared or become inactive. However, infections
by the high-risk HPV types persist which then increase the
risk of progression to cervical cancer [3].

HPV is a double-stranded DNA virus belonging to the
Papovaviridae family. Almost 200 HPV types have been
identified with more than 40 types colonizing the genital
tract. All HPV infection types are divided into two groups
based on their carcinogenic properties; these are high risk
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and low risk. High-risk types include 16, 18, 31, 33, 35, 39,
45, 51, 52, 56, 58, 68, and 59. Others are classified as potential
high-risk (which are 53, 66, 70, 73, and 82). Currently, it is
well known and proven that HPV16 and 18 are the most
virulent high-risk genotypes, causing about 70% of all in-
vasive cervical cancer in the world [4].

At the present time, we have a relatively clear picture of
HPV infection’s natural history, oncogenic properties,
screening, and prevention algorithms. However, HPV in-
fection rates continue to persist, especially in developing
countries, where cervical cancer incidence and prevalence
are still high. +is is due to different reasons, which include
low socioeconomic status, lack of population awareness, and
inadequately implemented screening and vaccination pro-
grams. +us, it is necessary to continue this discussion and
to refocus attention of specialists and population worldwide
to HPV infection and related diseases.+e aim of this review
article is to summarize updated information regarding the
aforementioned aspects of HPV infection and related can-
cers, including also discussions about the HPV genome and
molecular events leading to cancer development following
an HPV infection. Enhanced knowledge of HPV status and
cancer progression events contributes to the improvement of
the future management of patients with cervical lesions; this
in turn can help mitigate cervical cancer progression among
HPV-infected women.

2. The HPV Genome

Papillomavirus genome is comprised of a small double-
stranded and highly conserved DNA with an approximate
size of 8000 base pairs and consists of three regions. +e
molecular biology of this small DNA molecule is complex.
+ere are six early proteins, three regulatory proteins (E1,
E2, and E4) and three oncoproteins (E5, E6, and E7) encoded
in 4000 base pairs (bp) that participate in viral replication
and transformation of cell. Another 3000 bp region of DNA
molecule encodes two structural proteins L1 and L2 that
compose the capsid of virus. +e viral DNA replication and
transcriptional regulatory elements are controlled by a long
control region (LCR) that is encoded in a 1000 bp region [5].

Upon the viral evolution, accumulation of numerous
lineage-defining genetic variations in these regions can lead
to speciation into separate HPV types. Sequence variations
such as single-nucleotide polymorphisms or genetic muta-
tions within L1, LCR, E6, and E7 regions of HPV can de-
termine families, relatedness, and phylogeny of the HPV
types. HPV type can be defined as an entity based on the
more than 10% difference in the DNA sequence of the L1
gene between two genomes. However, the difference be-
tween 2% and 10% determines the HPV subtypes. In ad-
dition, the variants are entities that define less than 2% of
dissimilarities between HPV genomes. According to recent
studies, there are 60 out of 160 HPV types associated with
mucosal epithelia and categorized as Alphapapillomavirus
genus (alpha-PV) [6]. Furthermore, alpha-PV can be clas-
sified into nine groups: alpha-5 (HPV23, 51, 69, and 82),
alpha-6 (HPV30, 53, 56, and 66), alpha-7 (HPV18, 39, 45, 59,
68, 70, 85, and 97), and alpha-9 (HPV16, 31, 33, 35, 52, 58,

and 67), which include mostly the oncogenic high-risk types
[7]. However, there are also Betapapillomavirus and Gam-
mapapillomavirus genus that have not been investigated in
detail yet [8].

According to Papillomavirus Nomenclature Committee,
each HPV type can be differentiated into phylogenetic
lineages in terms of geographic distribution, pathogenicity,
regulation of transcription, and immunological response [9].
+e alpha-9 HPV16 type has been further classified into four
phylogenetic lineages: A, B, C, and D. Phylogeny A is divided
further into four sublineages A1, A2, A3, and A4. Sub-
lineages A1, A2, and A3 include European HPV DNA se-
quences while A4 includes Asian sequences isolated
worldwide. Lineage B is classified as B1 and B2 sublineages,
which comprise the African HPV sequences. Lineage C is
also referred to as African sequences. Lineage D consists of 3
sublineages: D1, D2, and D3 that include Asian-American
and North American sequences. HPV intratypic molecular
variants can be distinguished based on oncogenic potentials
in spite of their phylogenetic relatedness. Several research
studies associate the HPV16 lineage D as being more tu-
morigenic in comparison with the other lineages [10].

3. Association between HPV Infection and
Cervical Lesions

+e vast majority of HPV infections are transitory and
become undetectable in 12–24months [4, 11–14]. However,
in some women whose infections continue to persist, the risk
of developing precancerous conditions is significant. Many
studies confirmed that persistent infection with an onco-
genic HPV type is themain risk factor for detecting a cervical
intraepithelial neoplasia (CIN) that may range from CIN1 to
CIN3 and cancer [12, 13, 15]. In the VIVIANE study, the
researchers found that HPV33 and HPV16 were associated
with the highest risk of CIN development, followed by
HPV18, HPV31, and HPV45 [13].

Natural history of CIN lesions is different depending on
its grade. CIN1 is a low-grade squamous intraepithelial
lesion (LSIL). According to statistical data, over 70–80% of
CIN1 lesions spontaneously regress without treatment or
become undetectable [11, 16]. +us, CIN1 reflects a state of
infection rather than a stage in disease development. De-
tection of CIN1 following HPV infection does not therefore
automatically represent disease progression. Furthermore,
obvious clearance may be attributed to an inability to detect
the infection [13]. +erefore, clearance rates should be
interpreted with caution.

CIN2 and CIN3 are considered high-grade dysplasia or
high-grade squamous intraepithelial lesion (HSIL); however,
they are different whereby CIN2 less commonly progresses
to cancer. CIN2 develops in two different ways; the annual
regression rate of CIN2 in adult women is estimated to range
from 15 to 23%, with up to 55% regressing by 4–6 years
[16, 17], whereas approximately 2% of CIN2 lesions develop
to CIN3 within the same period. CIN3 is considered a true
precancer with the potential to progress to invasive cancer at
a rate of 0.2% to 4% within 12months [16, 18]. Untreated
CIN3 has a 30% probability of becoming invasive cancer
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over a 30-year period, although only about 1% of properly
treated CIN3 will become invasive [12, 16, 18, 19]. Ade-
nocarcinoma of the cervix is distinct from squamous cell
carcinoma as it arises from the glandular epithelium of the
endocervical canal and its immediate precursor is adeno-
carcinoma in situ. +e time from HPV infection to cervical
cancer development is typically 20 years; therefore, rapid
progression of cervical cancers rarely occurs [20].

+e link between high-risk HPV types and cervical cancer
development contributed to the introduction of novel screening
programs. For example, testing for the presence of high-risk
HPV is recommended as a screening tool by theWHO and the
European Guidelines for Quality Assurance for Cervical Cancer
Screening [21, 22]. HPV testing has been found to be effective in
detection of precancerous cervical lesions particularly in pop-
ulation-based cervical screening programs [23]. +e establish-
ment of the causal link between HPV and cervical cancer, along
with an understanding of the epidemiology and natural history
of HPV infection, has led to a new model for cervical carci-
nogenesis: HPV acquisition, HPV persistence, progression to
precancer, and invasion [24], which helps guide age-appropriate
interventions to prevent cervical cancer.

4. Pathogenesis of Cervical Cancer
Development following HPV Infection

Cervical cancerogenesis can be defined as the complex
mechanism of uncontrolled cellular division that can involve
HPV gene integration together with other cellular changes and
epigenetic factors. As the HPV infection occurs, the DNA can
undergomutations under the cellular and other environmental
conditions leading to viral DNA integration and operationwith
the hostDNA synthesismachinery. As a result, virus can escape
cellular and immune defensemechanisms while promoting cell
proliferation and inhibiting cellular apoptotic mechanisms.

Oncogenic potential of HPV16 depends on the regulation
of viral transcriptional factors. At the initiation of viral in-
fection, the HPV16 genome can be presented as unintegrated
small DNAmolecule also called episome and results in benign
and precancerous lesions of the cervix. However, HPV16 can
integrate its genome into the host genome, which in turn can
lead to the development of cervical carcinoma and cervical
intraepithelial neoplasia grade III [10]. Viral genome in-
tegration in combinationwith dysregulation of the E2 protein,
which is a repressor of the oncoprotein, contributes towards
the carcinogenic process. +ese events cause overexpression
of E6 and E7 proteins that eventually contribute to viral
carcinogenesis by altering cellular apoptotic mechanism
[5, 10]. Overexpression of E6 and E7 alone is insufficient to
contribute to the cancerogenesis as other genetic and epi-
genetic factors also need to be established.

+ere are many types of HPV, which are found to be
associated with cancerous diseases—16, 18, 31, 33, 35, 39, 45,
51, 52, 56, 58, 59, 68, 73, and 82 types [4]. +e most car-
cinogenic HPV type is HPV16, and 50% of all cervical
cancers are associated with HPV16 [15]. In HPV16-positive
cells, it is found that E6 and E7 viral genes are retained
integrated into the host genome and are expressed, although
in some HPV16-infected cells E6/E7 overexpression can be

absent. Moreover, E6/E7 overexpression is also found in
cells infected by other HPV types [25, 26]. E6 and E7 are
small proteins of 150 and 100 amino acids without any
known enzymatic activity, but they can influence the host
cell activity by binding with cellular proteins. E6, for ex-
ample, binds with E6-associated binding protein (E6AP), a
ubiquitin ligase leading to a structural change in E6 allowing
it to bind with p53, the cell cycle control tumor suppressor
protein to form a trimeric complex E6/E6AP/p53 (Figure 1).

+is binding leads to the degradation of p53 and thus
leads to cell proliferation. E7, on the other hand, binds pRb
causing its inactivation and degradation. Both the low-risk
and high-risk E7 protein has been shown to target the pRB
family members including p107 (RBL1) and p130 (RBL2) for
degradation [27]. pRb downregulates E2F a transcription
factor. As pRb is deactivated by E7, E2F is upregulated and
cell proliferation genes are activated. Furthermore, E6 and
E7 have been shown to form complexes with hundreds of
other proteins in the host cell [28–30] and it will be in-
teresting to understand the functions and consequence of
what these complexes do. It is important to note that E6 and
E7 transforming and oncogenic properties involve other
cancer pathways not involving p53 or pRB. For example, E7
stimulates telomerase activity [31] and E6/E7 has been
shown to deregulate miRNA linked to carcinogenesis [32].
E7 has also been shown to interact with histone deacetylase-
(HDAC1-3-) enhancing E2F activation that is associated
with differentiation and viral replication [33].

miRNA plays an important role in the posttranscriptional
control of the expression of host genes. Recent studies pro-
posed that HPV E6, E7, and E5 oncoproteins regulate the host
miRNA profile. In HPV-associated cervical cancer cells, a
number of miRNAs such as miR-21, miR-143, and miR-9 are
overexpressed, thus targeting CCL20 (chemokine (C-C)motif
ligand) and promoting migration of HPV16-positive can-
cerous cells. However, overexpression of some miRNAs such
as miR-203 inhibits HPV amplification. +us, in the HPV-
infected cancer cells, miR-203 is suppressed by HPV E7 gene
overexpression, leading to the induction of viral replication.
Deregulation of miRNA expression can occur mostly due to
epigenetic methylation of miRNA promoters [34].

E6 belonging to tumorigenic HPV types harbors a PDZ
binding motif (PBM) at the C terminus which facilitates the
binding of E6 to a number of proteins containing the PDZ
site. +e binding of E6 to these proteins leads to inactivation
and degradation. Examples of such proteins include po-
tential tumor suppressors such as Dlg [35], MAGI-1 [36],
and Scribble [37, 38].

+e epigenetic control of viral and host gene expression
plays an important role in carcinogenesis by involving changes
inDNAmethylation,modifications of histones, and noncoding
RNAprofile. Cervical carcinogenesis is strongly associated with
persistent HPV infection that can further affect both the host
genome and the viral genome methylation process [34].

E6 and E7 have been shown to bind DNA methyl-
transferases (DNMT) which impairs their activity leading to
hypermethylation of CpG islands which can eventually lead
to possible silencing of host tumor suppressors [30, 39].
Some studies showed decreased methylation of the upstream
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regulatory region (URR) in the cervical cancer cells in
comparison with normal cells, whereas other studies de-
scribed increased methylation of the viral genome [40].
+ese studies’ discrepancies can be explained by the viral life
cycle stages, type of HPV genome integrations, cervical
cancer stages, and other factors. However, methylation of
viral DNA can be defined as the host cellular defense
mechanism. So, it is still poorly investigated if HPV DNA
methylation is beneficial for viral cancerogenesis [34].

It has been suggested that increased methylation of CpG
dinucleotides within E2 binding site (E2BS) on the host
genome canmodify interaction of different factors and result
in abnormal cell differentiation with further disease pro-
gression [34]. As a result, this hypermethylation event re-
duces the binding affinity of the viral regulatory protein E2
to E2BS, thus leading to E6 and E7 overexpression and
further epigenetic inhibition of tumor suppressor genes [10].
Some studies suggest that CpG region methylation can be
used as a biomarker of cervical cancer detection.

5. Epidemiology of Cervical Cancer

Cervical cancer is the leading genital cancer among women
worldwide, with almost half a million new cases per year
(GLOBOCAN, 2012) [41]. In 2015, 526,000 women developed

cervical cancer worldwide and caused 239,000 deaths [42].+e
majority of cervical cancer cases are squamous cell carcinoma
[41]. In spite of effective screening methods, cervical cancer
continues to be a major public health problem [4].

+e mortality from cervical cancer varies in different geo-
graphic regions.+e age-standardized incidence rate for cervical
cancer is much lower in developed countries at 5.0 per 100,000
compared to developing countries at 8.0 per 100,000 [43].
Similarly, the age-standardized mortality rate for cervical cancer
is lower in developed nations at 2.2 per 100,000 compared with
developing nations at 4.3 per 100,000. For example, in sub-
Saharan Africa, there were 34.8 new cases and 22.5 deaths per
100,000 women, while in Western Asia there were only 4.4 new
cases and 1.9 deaths per 100,000 women in 2012 [44]. In
comparison, Northern America is found to be the region with
the third-lowest cervical cancer rate in the world [43].

Limited statistical data are available on cervical cancer in
Central Asia [43]. From the existing sources, it is found that
the incidence rates of cervical cancer in many countries of
Central Asia are quite high (ranging from 9.9 per 100,000
women in Tajikistan to 29.4 per 100,000 in Kazakhstan)
compared to Europe (ranging from 4.0 per 100.000 in
Finland and 7.0 per 100.000 in Germany) [43–45]. Ap-
proximately 25,700 women are diagnosed with cervical
cancer and 12,700 die from this disease annually in the
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Central Asian countries [46]. +e mortality rates range from
4.9 per 100,000 women in Tajikistan to 11.2 per 100,000 in
Kyrgyzstan [41, 46]. +e indicators are higher than in
Western European countries (incidence rates ranging from
2.1 per 100,000 women in Malta to 12.2 per 100,000 in
Portugal; mortality rates ranging from 0.8 per 100,000
women in Iceland to 3.6 per 100,000 in Portugal) [46].

Cervical cancer has a bimodal age distribution with the
majority of cases occurring among women in their 30s and
40s, the age at which women are often raising families and
ensuring the financial viability of their families and com-
munities. In addition to the risk of death, cervical cancer is
associated with increased morbidity, including bleeding,
pain, and kidney failure, which are difficult to treat, espe-
cially in communities with poor access to healthcare [47].

6. Prevalence of HPV in the General Population
and in Cervical Cancer Patients

HPV infections are widespread all over the world; however,
prevalence and type distribution are heterogeneous [48].+e
age-specific HPV prevalence varies in young and advanced
age women populations [49]. A comprehensive meta-
analysis assessing the global prevalence of cervical HPV
infection among women without cervical lesions revealed
that almost 12% of females worldwide are positive for HPV
DNA [50].

+ere have been many studies worldwide on the epi-
demiology of HPV infection and oncogenic properties due
to different HPV genotypes [4]. One of the international
studies found that 10.4% of patients with normal cytology
have been detected with either high- or low-risk HPV types.
Women in less developed countries and those who are
younger than 25 years old have a higher prevalence, ranging
from 15 to 45% [50]. +e highest HPV prevalence was
observed in sub-Saharan Africa (24%), Eastern Europe
(21.4%), and Latin America (16.1%) and the lowest in
Northern America (4.7%) and Western Asia (1.7%). +e
HPV type 16 was the most common virus worldwide with
prevalence rates accounting for 32.3% of all infections in
Southern Asia, 28.9% in Southern Europe, 24.4% inWestern
Europe, 24.3% in Northern America, and 12% in Africa [51].

According to the Extended Middle East and North
Africa (EMENA) study, in the Middle East, the incidence of
HPV shows lower rates compared to the rest of the world
[52]. For instance, in Qatar HPV prevalence among the
general population of women with normal or abnormal
cytology recently estimated 6.1% [52]. +e authors detected
the presence of various HPV genotypes with a high prev-
alence of low-risk HPV types, particularly type 81.

Very limited data are available on HPV prevalence,
incidence, and genotype-specific dissemination in Central
Asia and Eastern Europe. For example, according to the
report of HPV Information Centre (2017), no data on the
epidemiology of HPV infection are available in Kazakhstan
(which is a Central Asian country), and only a few articles on
the epidemiology of HPV infection in Kazakhstan were
published in international peer-reviewed journals and sev-
eral articles in local medical journals [53]. +e authors’

findings demonstrated that 43.6% of the patients attending
gynecologic clinic were HPV positive. +e most prevalent
types detected were HPV16 (18.4%) and HPV18 (9.22%),
followed by HPV types 33, 51, and 52 (nearly 5% each) [53].

+e prevalence of HPV infection among Africans is
higher than in the European population with 26.3% in
Nigeria, 47.9% in Guinea, 41% in South Africa, and 38.8–
42.3% in Kenya [54, 55]. Possibly high prevalence of HPV
among women in sub-Saharan African countries is more
prominent due to high exposure of human immunodeficiency
virus (HIV) in the country, and cervical cancer may become
epidemic if cervical cancer knowledge is not increased and the
barriers for early screening services will still exist [56].

Other studies highlighted that some special populations
have a higher risk of acquiring HPV infection. A study in-
vestigated the prevalence of HPV infection among the ado-
lescent population in Uganda has shown significantly high
distribution of high-risk HPV types (16, 18, 31, 52, and 58),
which is 51.4% [57]. +e reasons for such high prevalence
were explained by sexual behavior, which includes early age of
sexual debut and multiple sexual partners. +ose factors put
young women at higher risk of HPV infection [50].

With the development of highly sensitive HPV DNA
testing, studies have confirmed that most cervical cancer
specimens have detectable HPV DNA, and greater than 90%
contain DNA for HPV16, 18, 31, 33, 39, 45, 52, or 58 [7]. It
should be noted that women who develop cervical cancer
have often had the same type of high-risk HPV detected in
cervical specimens 3 to 5 years prior to their cancer in-
cidence. Unfortunately, HPV genotyping can only detect
current infection; therefore, we are not able to understand
when in the lifetime HPV has had a carcinogenic effect [58].

Some investigators have identified regional differences in
the prevalence of squamous cell carcinoma linked to HPV
infection. In a meta-analysis of 85 studies, which included
10,058 women with cervical cancer, HPV16 prevalence
predominated in squamous cell carcinoma, ranging from
46% in Asia to 63% in North America. +e second most
prevalent type was HPV18, found in 10–14% of squamous
cell carcinoma specimens.+e frequency of adenocarcinoma
among all invasive cervical cancers also remains significant.
It ranges from 4% in Africa to 32% in North America. As
expected, high-risk HPV type 18 was found to be dominant
in adenocarcinoma cases with a prevalence that ranges from
37% to 41%. +e next most common HPV types are type 16
and type 45, which were found in 26–36% and 5–7% of
samples, respectively [50]. According to the meta-analysis
that included 133 studies and 14,595 women, combination of
HPV16 and 18 contributes to 74–77% of squamous cell
carcinoma in Europe and North America, and 65–70% of
squamous cell carcinoma in Africa, Asia, and South/Central
America [50]. While data from meta-analyses are limited by
their reliance on the HPV DNA testing methods of each
individual study, multiple studies collecting samples from
large cohorts have confirmed the presence of the same HPV
types in invasive cervical cancer specimens.

Several international studies investigated the prevalence
of HPV types in invasive cervical cancer specimens. One of
those studies explored the most prevalent types in 1918
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women with cervical cancer. For that purpose, cervical
cancer cells were directly tested for HPV types and the
researchers found the following HPV types to be the most
prevalent: HPV16, 18, 45, 31, 33, 52, 58, and 35 [59].
Similarly, an international study conducted in 38 countries
tested invasive cervical cancer paraffin block samples from
10,575 women for the presence of certain HPV types. +e
researchers found HPV DNA in 8977 of the samples, which
comprise 85% of all specimens. HPV16 or 18 was detected in
71%, and types 31, 33, 35, 45, 52, and 58 were detected in an
additional 20% of the HPV-positive samples.

Having a high incidence and mortality from cervical
cancer makes the screening program very important. En-
hancing public awareness of underlying causal factors is a
high priority for developing an appropriate cancer control
and prevention program.

7. Cervical Cancer Screening

It is well known that cervical cancer screening can reduce
cervical cancer incidence and mortality [60]. Cervical cancer
screening strategies are different between countries. Some
countries have population-based programs, whereby women in
the target population are individually identified and invited to
attend the screening. In opportunistic screening, invitations
depend on the individual’s decision or on encounters with
healthcare providers. Organized cervical screening programs
may achieve high participation at regular intervals with equal
access, and high-quality standards for diagnosis, thus potentially
more effective than opportunistic screening [61, 62]. Examples of
organized programs for cervical cancer screenings exist in high-
income countries such as the United Kingdom, Australia,
Canada, Finland, the Netherlands, and Singapore. On the other
hand, Eastern European countries have an opportunistic
screening with lower-screening coverage and lower-immuni-
zation coverage and show high cervical cancer incidence and
mortality rates [42]. In most of the Central Asian countries, the
Caucasus region, the Russian Federation, and the Western
countries of the former SovietUnion, cervical cancer screening is
mainly opportunistic and characterized by cytology testing,
using Romanowsky staining and generally low or unreported
coverage [63]. Nevertheless, cervical cancer screening contrib-
utes to a decrease in cervical cancer incidence andmortality [64].

HPV vaccine was introduced later. Developed countries
have accomplished reduction of cervical cancer incidence
and mortality during the last 40 years due to the in-
troduction of cytological smear screening [65]. For instance,
since the introduction of the Pap smear cytology testing in
the 1950s and 1960s, cervical cancer incidence and mortality
have declined in the United States with organized cervical
cancer screening programs and screening rates of 83% [66].
In the Northern European countries, an organized screening
program was established in the 1960s and their effects on
cervical cancer incidence and mortality have been accurately
investigated [62]. However, in the greater part of Europe,
evaluation systems are insufficient and nonstandard.

At the same time, cervical cancer prevalence remains at a
high level in developing countries of Central and South-East
Asia, Africa, and Eastern Europe, where cervical cancer

screening programs are not properly implemented due to a
variety of reasons (socioeconomic, geographic, etc.). Pop-
ulation coverage by screening program in developing
countries ranges between 6 and 8% [67]. In recent years,
international recommendations for screening have been
developed to include HPV testing, where available [68].
Despite marked advances in knowledge about cervical
cancer and effective screening, cervical cancer screening
programs have variable efficacy depending on availability of
resources, implementation strategies, quality of laboratory
and pathology testing, and community awareness [69].
Effective cytological screening of cervical specimens and
HPV genotyping require materials and specialists that are
complicated and expensive for many low-income countries
[70]. Even in developed countries with advanced healthcare
systems and long-standing cervical cancer screening mo-
dalities, population coverage is not perfect [71].

+ere is also discrepancy in the frequency of the
screening tests among countries and age groups [72]. In
developed countries like England and the USA, screening is
scheduled every 3 years for women aged 21–29; starting from
30 years old until 65 years old, the screening tests are
recommended for every 5 years [73–75]. Results of the
population-based survey of adults aged 50–70 in England
suggest that although awareness of the purpose of early
detection screening is high, awareness that screening can
prevent cancer is low across all demographic groups [74].

In most of the developing countries of Africa, Central
Asia, South-East Asia, Eastern Europe, screening is sched-
uled every 5 years or even rarer [72, 76]. However, there are
several exclusions. For instance, in Kyrgyzstan, republic of
Central Asia, there is no cervical cancer screening program
at all [63]. In South Africa, a national cervical screening
policy was formulated in 2000 and allowed for three free
cervical smear tests, conducted at 10-year intervals from the
age of 30 years [72]. +is policy has been implemented in
some areas; however, there is currently no population-wide
screening program in South Africa.

Although the recommended screening modalities for
cervical cancer have contributed to a reduction in cervical
cancer incidence and mortality due to cervical cancer, the
benefits of cervical cancer screening are yet to be fully re-
alized in countries with poorly organized screening pro-
grams for women at risk. +e updated WHO
recommendations for cervical cancer screening and pre-
vention are summarized in Table 1 [21].

It is also noteworthy that even in countries with orga-
nized screening services, these benefits are not maximized in
underserved, uninsured, and underrepresented populations
due to factors such as cost, access problems, anxiety, dis-
comfort with the screening procedure, and fear of cancer or
poor health literacy, all of which contribute to poor out-
comes for cervical cancer [77].

Incorporation of HPV testing into cervical cancer
screening strategies has the potential to allow both increased
disease detection and increased length of screening intervals
(decreasing harms such as psychosocial impact of screening
positive, additional clinical visits and procedures, and
treatment of lesions destined to resolve).
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8. HPV Vaccination

Statistical data from the recent years show that utilization of
HPV vaccines is very effective for preventing infection and
disease related to the specific HPV genotypes [78]. Vacci-
nation programs have been very successfully implemented
in many countries all over the world [78, 79].

+ere are three commercially prophylactic vaccines
available; these are Cervarix (a bivalent vaccine against HPV16
and HPV18), Gardasil (a tetravalent against HPV6, 11, 16, and
18), and Gardasil 9 (9-valent vaccine against HPV6, 11, 16, 18,
31, 33, 45, 52, and 58).+ey are noninfectious subunit vaccines
containing viral-like particles (VLP) derived from the assembly
of the recombinant expression of L1major capsid protein of the
HPV in yeast (Gardasil) and in insect cells (Cervarix). Ad-
ministration of the vaccine is carried out by intramuscular
injection with three doses of prime/boost series over a 6-month
period. Early analysis shows that even a single dose can reduce
infection and is effective in preventing the persistent incidence
of infection and premalignant neoplasia [80].+e exceptionally
strong and lasting antibody response has been well docu-
mented; for example, the 100% seroconversion rate in young
healthy women, preadolescent boys, and girls with antibody
response remains stable for over a decade [81]. +e exact
molecular mechanism however is still elusive in humans as
HPV hosting organism, and presently, there is no human
model to study the mechanism except on transgenic mouse
models and xenograft models [38]. Screening remains to be the
only form of prevention for 2 to 3 generations of women
beyond the adolescent target age for vaccination [82].

At the present time, we have an abundance of evidence
from multiple countries, with a different level of HPV vac-
cination coverage and implementation strategies that show
the vaccines are effective [78]. In developing countries with
long-standing screening programs, catch-up vaccination

cohorts and established registration have demonstrated re-
ductions in the diagnosis of CIN in screening women due to
vaccination [78]. For example, the researchers from Scotland
show a reduction of low- and high-grade CIN associated with
high uptake of the HPV bivalent vaccine at the population
level [83]. Results from one of the recent studies from Japan
demonstrated that women aged 20–24 years who received
HPV vaccination had significantly lower rates of abnormal
cervical cytology results when compared to those who did not
receive the vaccine [79]. An Australian study found that
vaccination employing tetravalent HPV vaccine helps to re-
duce cases of HSIL and LSIL in females [84]. Research
findings from Canada suggest that the HPV vaccination was
moderately effective in preventing HSIL among adolescents
but far less effective in the older age groups, especially among
those with a history of abnormal cytology [85].

Taking into consideration the present efforts to increase
HPV vaccinations for primary cervical cancer prevention,
early detection of precancerous cervical lesions through
screening remains to be very important in order to timely
diagnose and reduce cervical cancer incidence and mortality.
+is is especially true in low-income regions where HPV
vaccination has not yet implemented and supported at the
governmental level [86]. Developed countries, with well-
established cervical cancer screening programs, have achieved
an impressive reduction in cervical cancer incidence and
mortality, while developing countries with lack of HPV
vaccination and/or worse modalities of screening programs
still have a high level of adverse outcomes [87]. +ese dis-
crepancies in HPV vaccination envelopment could explain
the differences in incidence, prevalence, and mortality linked
to cervical cancer in different countries in the world.

HPV vaccination for the prevention of high-risk HPV
types is expected to reduce cervical cancer burden [88].
Supporting HPV vaccines’ effectiveness against cervical

Table 1: WHO recommendations on cervical cancer screening and prevention in the low- and middle-income countries.

Primary prevention: vaccination Secondary prevention: screening

Methods

Inclusion of HPV vaccine in the national immunization
schedule:
(i) Bivalent
(ii) Tetravalent

(i) Cervical cytology (conventional Pap
smear and liquid-based)
(ii) Visual inspection with acetic acid
(VIA)/visual inspection with Lugol’s iodine
(VILI)
(iii) HPV testing for high-risk HPV types
(i.e., types 16, 18,31, 33, 45, and 58)

Target age group (years) and
gender

Girls 9–14 years
old Girls over 15 years old Women 30–49 years old

Frequency and intervals

2 doses 3 doses (i) Once in life time
(ii) Once in 10 years
(iii) Once in 5 years
(a) VIA/cytology every 3- to 5-year

interval;
(b) HPV testing minimum every 5-year

interval

6-month
interval

Bivalent: 0, 1, 6 months; tetravalent: 0, 2, 6
months

Programmatic consideration School-based delivery strategy

(i) Organized program
(ii) Unorganized/opportunistic/sporadic

initiatives
(a) Screen-and-treat approach
(b) Screen-diagnose-treat approach
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cancer is difficult due to the long period between initial in-
fection and cancer development. Surrogate markers therefore
have been proposed to determine vaccines’ effectiveness on a
shorter term, such as population-based continuous moni-
toring of high-grade precursor lesions such as CIN3 [89].
Statistics received from studies that covered large cohorts of
women after implementation of Cervarix or Gardasil have
shown that both vaccines are effective in order to reduce the
frequency of precancerous lesions associated with the vaccine
genotypes [90]. On the other hand, even the nonavalent
Gardasil vaccine cannot prevent all cervical cancer cases due
to type specificity and time of implementation.

+ere are also apparent limitations and the public health
challenges in attempting to implement HPV vaccination
programs. +ese limitations and challenges include the
vaccine’s type specificity, required to be given prior to ex-
posure, the three-dose schedule, ethical issues in targeting
age group of early adolescence, and potential communica-
tion challenges around HPV being a sexually transmitted
infection [78]. +erefore, large groups of women in ad-
vanced age who have not received vaccination are still under
the risk of cervical cancer development. Furthermore, HPV
screening and vaccination being complementary preventive
options are often implemented as separate and non-
coordinated public health programs. +erefore, to address
this inaccuracy, the recently created “HPV FASTER” pro-
tocols aim at combining both strategies with the purpose of
accelerating the reduction of cervical cancer incidence and
mortality, making the programs both cost-effective and
sustainable [91].+e proposal of “HPV FASTER” protocol is
to offer HPV vaccination to women in a broad age range of 9
to 45 years irrespective of HPV status.

In developing countries, reduction of cervical cancer
incidence and mortality could be achieved only with gov-
ernmental guidance by the implementation of sustainable
and effective screening and vaccination programs.

9. Conclusion

Cervical cancer is associated with considerable morbidity
and mortality all over the world. It is well known that one of
the main causative agents for cervical cancer is high-risk
HPV strains, and this type of malignancy is preventable.
High incidence of cervical cancer with considerable mor-
tality is an evidence of HPV infection abundance with the
absence of the HPV screening and low public awareness of
the problem. Substantial incidence and mortality from
cervical cancer make the screening program very important.
Enhancing public awareness of underlying causal factors is a
priority that should be emphasized for prevention programs.
Incorporation of HPV testing into screening strategies has a
high potential to decrease morbidity and mortality from
cervical cancer. +e knowledge of HPV prevalence and type
distribution could contribute to the successful vaccination
program implementation. +e educational health pro-
motion projects for the population should be provided to
reinforce the knowledge and conversance of this public
health problem. From the review given here, it is clear that
the HPV screening along with the vaccination program

should be implemented and supported at a governmental
level in developing countries with high incidence and
mortality of cervical cancer.
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Worldwide, neoplasms of the gastrointestinal tract have a very high incidence and mortality. Among these, colorectal cancer,
which includes colon and rectum malignancies, representing both highest incidence and mortality. While gallbladder cancer,
another neoplasm associated to gastrointestinal tract occurs less frequently. Genetic factors, inflammation and nutrition are
important risk factors associated with colorectal cancer development. Likewise, pathogenic microorganisms inducing intestinal
dysbiosis have become an important scope to determine the role of bacterial infection on tumorigenesis. Interestingly, in human
biopsies of different types of gastrointestinal tract cancer, the presence of different bacterial strains, such as Fusobacterium
nucleatum, Escherichia coli, Bacteroides fragilis and Salmonella enterica have been detected, and it has been considered as a high-
risk factor to cancer development. -erefore, pathogens infection could contribute to neoplastic development through different
mechanisms; including intestinal dysbiosis, inflammation, evasion of tumoral immune response and activation of pro-tumoral
signaling pathways, such as β catenin. Here, we have reviewed the suggested bacterial molecular mechanisms and their possible
role on development and progression of gastrointestinal neoplasms, focusing mainly on colon neoplasms, where the bacteria
Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis and Salmonella enterica infect.

1. Introduction

Worldwide, neoplasms affecting gastrointestinal tract are
among the most frequent in incidence and mortality [1].
Gastrointestinal tract neoplasms are including: colon, rec-
tum, stomach, pancreas, biliary tract and esophagus [2]. -e
main factors associated with development of gastrointestinal
tract malignancies are alcohol consumption and smoking
[3–5], high fat diets [6–9]; as well as, ageing, gender and race
[10–13]. In addition, pathogenic microorganisms such as
viruses and bacteria infecting the gastrointestinal tract, are
being studied as possible triggers for development of neo-
plasms. In this regard, the role of Helicobacter pylori in the
development of gastric cancer has been extensively studied
[14]. However, other bacteria have also been associated with
development of gastrointestinal neoplasms, especially in
colon, rectum and gallbladder. -is review describes the
possible roles of Fusobacterium nucleatum, Escherichia coli,
Bacteroides fragilis and Salmonella enterica on cancer

development. -ese bacteria have been considered as
emerging pathogenic bacteria associated with development
of colorectal cancer, which includes colon and rectum
neoplasms, [15]. Here, we have focused on colon cancer, a
neoplasia with a very high incidence on worldwide pop-
ulation, registering in 2018; 850,000 new cases and a mor-
tality rate of 550,000 individuals [1].

2. Fusobacterium nucleatum

Fusobacterium nucleatum (F. nucleatum) is an adherent and
invasive Gram-negative anaerobic bacterium. F. nucleatum
resides mainly in oral cavity and is usually associated with
periodontal disease [16]. Nevertheless, in last years, this
bacterium has been detected in primary lesions [17], biopsies
[18, 19], and stools [20] of patients with colon cancer, so
bacterium has also been linked to development and pro-
gression of this neoplasia. In addition, different regions of
human colon are colonized by F. nucleatum [21]. However,
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in patients with colon cancer, F. nucleatum has been located
mainly on cecum and rectum [22, 23], where it is prefer-
entially localized into tumor tissue [24, 25]. An important
factor associated with F. nucleatum recruitment into tumor
is over-expression of Gal-GalNAc molecules by tumor cells,
which promote bacterial adhesion via Fap2 protein [26].
Likewise, high levels of anti-Fusobacterium IgA and IgG
antibodies have been detected in sera of colon cancer pa-
tients [27], which could be used as biomarkers in early
diagnosis of this neoplasia. Additionally, infection by
F. nucleatum has been associated with a low survival of colon
cancer patients [28], as well as increased resistance to
chemotherapy treatment [29].

Previous studies have reported the association of
F. nucleatum and colon cancer, although the presence of this
bacterium in infected people is highly variable and in-
consistent. In this regard, infection with F. nucleatum has
been detected in 15% of North American population with
colon cancer, while more than 60% of infected patients have
been found in Chinese population [25, 28, 30, 31]. In-
terestingly, common characteristics found in all colon
cancer patients with F. nucleatum infection were micro-
satellite instability (MSI), methylation phenotype of CpG
island (CIMP), as well as BRAF and KRAS genes mutations
[23, 25, 32].

On the other hand, infection with F. nucleatum in
C57BL/6 APCMin/+ mice induced tumorigenesis regardless
of colitis development [20], unlike the infection by enter-
otoxigenic Bacteroides fragilis, which initially produces co-
litis and subsequently tumors [33]. -erefore, several
mechanisms inducing tumor by F. nucleatum have been
proposed, including β catenin signaling pathway activation,
which is upregulated in colon cancer [34]. In this pathway, β
catenin is phosphorylated by PAK-1 through F. nucleatum-
TLR4 interaction [35]. Likewise, binding of F. nucleatum
FadA adhesin to E-cadherin expressed on host cells activates
the Wnt/β catenin pathway promoting cell proliferation
[36]. Additionally, a significant decrease on expression of
TOX family proteins (thymocyte selection-associated high-
mobility group box) after F. nucleatum infection has been
shown [37]. -ese proteins regulate important cellular
functions such as growth, apoptosis, DNA repair and
metastatic processes [38]. Interestingly, an important de-
crease on TOX family proteins expression has been asso-
ciated with advanced tumors.

Another mechanism associated with development and
progression of colon cancer induced by F. nucleatum have
been linked to inflammation. -us, in colon cancer patients
infected with F. nucleatum, an important increase on TNF-α
and IL-10 expression levels have been shown in adenomas, a
precursor lesion of colon cancer [17]; while into tumor, IL-6
and IL-8 increased levels were induced by F. nucleatum.
Both IL-6 and IL-8 are proinflammatory cytokines regulated
by NF-κB transcription factor, a link between inflammation
and cancer; and NF-κB activation has been also shown
in colon cancer [18, 36]. Additionally, F. nucleatum infec-
tion increased the chemokine CCL20 expression [39],
a chemokine related with both colon cancer progression
[40], and -17+ lymphocytes mediated inflammatory

response [41]. Likewise, F. nucleatum induced inflammation
could be regulated by microRNAs, such as miR-135b; be-
cause a correlation between F. nucleatum and miR-135b
overexpression in colon cancer patients has been found [42].
So it has suggested that miR-135b could also be used as a
biomarker in early detection of colon cancer [43]. However,
the role of F. nucleatum in development and progression of
colon cancer remains to be understood.

Finally, microsatellite instability (MSI) in colon cancer
has been linked to capability to evade immune response by F.
nucleatum infected tumor cells [31]. In this fact, CD3+ [32],
and T CD4+ lymphocytes subsets were decreased into the
tumor after F. nucleatum infection [37], but proportions of T
CD8+, CD45RO+, or FOXP3+ lymphocytes subsets were
not modified [32]. In addition, the binding of F. nucleatum
Fap2 protein with TIGIT [44], a receptor with tyrosine-
based inhibitory motif (ITIM) expressed on NK cells [45],
leads to an important decreased on lymphocytes infiltration
into tumor. -is way, tumor is protected from an effective
immune cells attack [44]. -e proposed mechanisms are
summarized in Figure 1(a).

3. Escherichia coli

Escherichia coli (E. coli) is a Gram-negative bacteriumwidely
distributed in nature, including human intestinal micro-
biome. -e E. coli strains are classified into 5 phylogenetic
groups: A, B1, B2, D, and E [46]. -e main E. coli strains
associated with human disease belong to B2 group and are
also related to colon cancer [47, 48]. To date, the role of
pathogenic E. coli strains in carcinogenesis is not completely
known; however, chronic inflammation in gastrointestinal
tract that they promote has been suggested as the trigger
mechanism [49]. Because, this chronic inflammation in-
duces pathologies such as Crohn’s disease [50], an important
risk factor to develop colon cancer [51]. Alternatively,
molecular mechanisms induced directly by bacteria have
been described. In vitro studies have shown that pathogenic
strains such as Adherent-Invasive Escherichia coli (AIEC)
and Enteropathogenic Escherichia coli (EPEC), secrete
cyclomodulin colibactin [52] and effector protein EspF [53],
respectively, which are involved in development and pro-
gression of colon cancer. Although the specific mechanisms
associated to colon cancer induced by pathogenic E. coli have
started to become elucidated recently. -e molecular
mechanisms associated to colon cancer and pathogenic
E. coli are described in Figure 1(b).

3.1.Adherent-InvasiveEscherichia coli. -emain pathogenic
E. coli strain found in tumor tissue from colon cancer pa-
tients is Adherent-Invasive Escherichia coli or AIEC [54]. On
infection, AIEC binds to CEACAM6 (cellular adhesion
receptor associated to carcinoembryonic antigen) [55],
which is overexpressed on intestinal epithelial cells of both
Crohn’s disease and colon cancer patients [56]. To date, it is
still unknown what induces overexpression of CEACAM6
on the intestinal epithelium in these patients, although it has
been shown that IL-6 is related to induction of CEACAM6

2 Journal of Oncology



Fusobacterium Fusobacterium

Fusobacterium

Fusobacterium Fusobacterium

TLR4

Autophagy
Chemoresistance

PAK1

β-catenin

Micro-RNA
(miR-18a∗/4802)

Proliferation

TOX family
Apoptosis
DNA repair
Metastasis

Colonic epithelium cell (CEC) CEC

Fad A

E-cadherin

Fap2

Gal-GalNAc

NF-κB

TNF-α
IL-6
IL-8

miR-135b

BRAF
KRAS Mutation

MSI
CIMP

(a)

DNA repair

Colonic epithelium cell (CEC) CEC

AIECpks+

CEACAM6

pks+
Colibactin p53

SUMOylation

Senescence

DNA alkylation

Mutagenesis Mutagenesis

TJ

TJ

MSH2
MLH1

Migration

Ruption

EspF
Proliferation
Survival
Metastasis

EPEC
EGFR

p p

(b)

Figure 1: Oncogenic activity of Fusobacterium nucleatum and Escherichia coli. (a) Gal-GalNAc overexpression in colon cells promotes the
recruitment of Fusobacterium nucleatum via the Fap2 protein. After interacting with TLR4, the bacterium activates the protein PAK 1 and in
turn, β catenin; the latter can also be activated through the effect of FadA on E-Cadherin. Activation of these signaling pathways promotes
cellular proliferation and decreases proteins of the TOX family, which are associated with decreased apoptosis, failures in DNA repair and
increasedmetastases. Likewise, bacterial interaction with TLR4 and its signaling viaMYD88, modulates specificmicroRNAs that activate the
autophagy associated with chemotherapy resistance. Also, Fusobacterium nucleatum increases the inflammatory process characterized by
the presence of cytokines such as TNF-α, IL-6 and IL-8, that are regulated by the transcription factor NF-κB, whose increased activation has
also been documented in colon cancer. Fusobacterium nucleatum has also been shown to be associated with the development of mutations in
the genes BRAF and KRAS, microsatellite instability (MSI) and the methylation phenotype in CpG islands (CIMP). (b). -e Adherent
Invasive Escherichia coli strain (AIEC) colonizes the intestinal epithelium and uses CEACAM6 to invade the cells of the colonic epithelium;
once internalized, it produces colibactin, a cyclomodulin encoded by the pks island, that damages DNA by alkylation and promotes the
development of mutations. Colibactin also fosters cellular senescence by favoring SUMOylation of p53. Infection with the Enteropathogenic
Escherichia coli (EPEC) strain, promotes the autophosphorylation of EGFR, a protein associated with an increase in proliferation, survival
and metastases; it also decreases the expression of the DNA repair proteins, MLH1 and MSH2, and favors the rupture of tight junctions, a
process involved in the development of metastases. All these EPEC-dependent mechanisms have been associated with the EspF protein.
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expression [57]. Additionally, it well is known that infection
with AIEC stimulates IL-6 production [58]. Taking all these
finding together, it is suggested that AIEC could regulate its
own infective capacity on intestinal epithelium by both
increasing IL-6 production and CEACAM6 expression, and
when bacterium has penetrated and invaded the intestinal
epithelium, carcinogenesis could be induced through se-
cretion of colibactin, although the true mechanism is not
completely known.

3.2. Colibactin and the pks Island. Colibactin is a cyclo-
modulin encoded in the genotoxic pks island (polyketide
island). -e pks island has been found in different E. coli
strains [59, 60]. Colibactin is a secondarymetabolite produced
by non-ribosomal peptide synthetase (NRPS)–polyketide
synthase (PKS) (NRPS-PKS). Although the synthesis of
colibactin is not completely known, it has been shown that a
multi-enzymatic complex is required in which several genes
of pks island participate [61, 62].-emain role of colibactin in
carcinogenesis has been associated with DNAdamage [63], by
acting as an alkylating agent [64, 65], inducing DNA mu-
tations and promoting tumor development.

On the other hand, because of the synthesis of colibactin
has not yet been achieved, which has prevented the un-
derstanding of the molecular mechanism of this cyclo-
modulin, most studies designed to evaluate the role of
colibactin in carcinogenesis have been limited to study the
pks island function. In vitro infection of cell lines with E. coli
pks+ strains induced a cell cycle arrest, aneuploidy and
tetraploidy [66, 67]; as well as, cell senescence via miR-20a-
5P, which inhibits the expression of SUMO-specific protease
1 (SENP-1) [52]. SENP-1 is a protein that induce deSU-
MOylation of p53 [68], an important transcription factor
involved in regulation of cellular senescence and develop-
ment of colon cancer [69]. On the other hand, the role of the
pks island has been evaluated in experimental murine
models. -e inflammatory environment in mice intestinal
epithelium induced upon infection, both spreading of E. coli
pks+ and increased risk of colon cancer were produced
[49, 70]. In a xenotransplant murine model, infection with E.
coli pks + strains lead to a significant increase in tumor size,
while infection with E. coli pks–strains do not [52].

3.3. Enteropathogenic Escherichia coli. Enteropathogenic
Escherichia coli or EPEC, is the second pathogenic strain of
E. coli associated to colon cancer [71, 72], and it has been
suggested that EPEC infection might be involved in some
molecular pathways involved in colorectal tumorigenesis
[72]. In vitro studies have shown that infection with EPEC
stimulates macrophage-inhibitory cytokine-1 (MIC-1)
production, a cytokine related to metastasis by inducing
both, increasing survival and spreading of tumor cells
through a GTPase Rho A-dependent pathway [73]. Like-
wise, autophosphorylation of EGFR receptor, was induced
upon EPEC infection [74]; this is a upstream activator of
both prosurvival phosphoinositide 3-kinase/Akt and
proinflammatory mitogen-activated protein (MAP) kinase
pathways. -ese molecular mechanisms have been

associated with colon cancer [75], and poor prognosis in
patients [76].

However, it has been shown that EPEC can degrade
EGFR receptor via EspF protein [77]; this effector protein is
internalized to epithelial cells through the E. coli type III
secretion system [78]. Interestingly, this process can be
inhibited by EspZ, another protein that is also internalized
into epithelial cell through the same secretion system [77].
On the other hand, EspF has also been associated with other
mechanism inducing cancer, such as decreasing levels of
DNA repair proteins MLH1 and MSH2 (mismatch repair
MMR) [53, 71], which are widely related to colon cancer
[79]. Further, EspF could also contribute to colon cancer
metastasis by promoting detachment and dissemination of
tumor cells through rupturing tight junction proteins such
as Occludin and Claudin on intestinal epithelium [80].

Finally, other proteins produced by pathogenic E. coli
strains and related to carcinogenesis have been studied.
-ese proteins include: (1) Cytolethal distending toxin
(CDT), which blocks cell cycle [81], and induces malignant
transformation of epithelial cells [82], (2) Cycle inhibiting
factor (Cif ), which induces nuclear DNA elongation on cells
and stimulates DNA synthesis even when infected cells are
not actively dividing [83] and (3) Cytotoxic Necrotizing
Factor 1 (CNF1), which induces gene transcription and
cellular proliferation by GTPases activation [84].

4. Bacteroides fragilis

-e bacteroides is a normal inhabitant of human intestine
and represent about 30% of intestinal microbiota [85]. -ese
bacteria have a very important role on mucosal immune
system development [86], and intestinal homeostasis [87].
Bacteroides fragilis (B. fragilis) is classified within bacteroides
species and is an anaerobic Gram-negative bacterium col-
onizing about 0.5% to 2% of whole human intestine
[86, 88, 89]. Two Bacteroides fragilis strain has been de-
scribed: (a) non-toxigenic B. fragilis or NTBF and (b)
toxigenic B. fragilis or ETBF, which is characterized by a 6 kb
pathogenicity island encoding to a metalloproteinase, also
known as B. fragilis toxin (BFT) or fragilysin [90], of which 3
isoforms have been identified [91].

It has been shown that while NTBF has a protective effect
against the development of colitis and colon cancer [92],
ETBF has been associated with a wide variety of clinical
manifestations ranging from a simple diarrhea to in-
flammatory bowel disease and colitis [93], both considered
as high-risk factors to develop colon cancer. ETBF has al-
ready been associated to colon cancer [88], because bacteria
has been detected in stool and biopsies obtained from colon
cancer patients [94], particularly in early cancer stages [95].
However, a very low proportion of ETBF has been detected
in stools from healthy individuals [96].

Although role of enterotoxigenic B. fragilis in develop-
ment of colon cancer has not been completely described;
different studies have shown that carcinogenesis induced by
ETBF is through BFTtoxin, which is present in ETBF but not
in NTBF bacteria strains. BTF toxin is a multifunctional
protein; thus, it could induce to tumorigenesis through
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several mechanisms including activation of c-Myc [97], and
consequently an increase on spermine oxidase (SMO) ex-
pression [98], an enzyme increasing reactive oxygen species
(ROS), which favors cellular injury and carcinogenesis.

Another possible mechanism of ETBF toxin-mediated
carcinogenesis, could be through host immune system
dysregulation, inducing the recruitment and accumulation
of Treg lymphocytes in intestinal lamina in response to
bacteria [99], which subsequently suppress the mucosal -1
response and polarizing to-17 lymphocytes response [100]
by increasing IL-17 secretion [33]. Interestingly, increased
levels of IL-17 have been detected on early weeks post-in-
fection, after that; its expression was decreased. However, in
APCMin/+ mice, the early and temporary increased on IL-17
was enough to trigger tumorigenesis [101]. On this regards,
it has been suggested that activation of Stat3 [102] and NF-
κB [103] pathways by immune responding cells and colonic
epithelial cells (CECs) may be involved [104]. Furthermore,
ETBF also polarizes IL-17-secreting TCRcδ+ T lymphocytes
[105], promoting the differentiation and recruitment of
myeloid-derived suppressor cells (MDSC) into the tumor
[106, 107], which has been associated with a poor prognosis
of colon cancer patients [108]. Because IL-17 up regulates
CXCL1, CXCL2 and CXCL5 chemokines expression, also
has been involved on MDSC recruitment [104]. Addition-
ally, T lymphocyte proliferation is inhibited by high levels of
Nitric Oxide (NO), and arginase 1 (Arg1) a potent metabolic
enzyme induced and produced by an increase on MDSC
population [107], this way several mechanisms of evasion of
anti-tumor immune response by tumor cells are generated.

Finally, ETBF could trigger carcinogenesis through β
catenin pathway activation, by disrupting the adherent
E-cadherin gap junctions, similar than F. nucleatum,
[109, 110].-emolecular carcinogenic mechanisms of ETBF
are summarized in Figure 2(a).

5. Salmonella enterica

Salmonella enterica represents a broad range of bacteria,
including serotypes such as Salmonella Typhi (S. Typhi),
Salmonella Paratyphi (S. Paratyphi), Salmonella Enteritidis
(S. Enteritidis) and Salmonella Typhimurium (S. Typhimu-
rium) [111]. In recent years, development of colon cancer
[112], gallbladder cancer [113], and other gastrointestinal
tract neoplasms have been associated with Salmonella enterica
infection. Also, It has been found that bacteria may modulate
host immune response [114], promoting carcinogenesis by
both DNA damage and increasing proliferation, as well as cell
migration through induction of chronic inflammation [115].
At least, two proteins of Salmonella enterica have been as-
sociated with an increased risk of developing colon cancer.
-e former is typhoid toxin; a cyclomodulin sharing features
with the E. coli CDT [116], increasing cellular survival and
promoting intestinal dysbiosis [117]. Both mechanisms are
involved with development of inflammatory bowel disease
and colon cancer [118]. -e second protein is AvrA, an ef-
fector protein secreted by bacteria through type III Secretion
System [119], and it has been detected in stool samples from
colon cancer patients [120].

-us, the main protein of Salmonella enterica associated
with carcinogenesis is AvrA. It has been suggested that most
important role of AvrA in colon cancer may be related to
inflammatory and immune response dysregulation, through
several mechanisms such as: inhibition of NF-ΚB signaling
pathway [121], inhibition of IL-12, INF-c and TNF-α se-
cretion [122], inhibition of IL-6 transcription and increasing
on IL-10 transcription [123]. On the other hand, AvrA has
been associated to tumors on intestinal epithelium through
activation of Wnt/β catenin, inducing cellular proliferation
[124], by both β catenin phosphorylation (activation) and
deubiquitination (decreased degradation) [125]. -ese
mechanism are important in signaling pathway associated
with colon cancer development [126]. Likewise, JAK/STAT
signaling pathway is activated by AvrA [127], which regulates
several mechanisms such as: apoptosis, cellular proliferation
and differentiation, as well as inflammatory response, all these
important events involved in carcinogenesis [128]. Addi-
tionally, the function of p53 transcription factor is affected by
AvrA acetyl transferase activity [129], leading to cell cycle
arrest and inhibition of apoptosis by decreasing pro-apoptotic
proteins (such as Bax), dependent of p53 acetylation [130].
-e carcinogenic mechanisms associated to Salmonella
enterica are summarized in Figure 2(b).

5.1. Salmonella enterica and Gallbladder Cancer. Gallbladder
cancer is the main type of neoplasia affecting the biliary tract.
Worldwide, the incidence of this neoplasia is low. In-
terestingly, it has been shown that gallbladder cancer occurs
more frequently in geographic regions with a high incidence
of Salmonella infection [113, 131–134]. -erefore, a greater
interest has been generated in searching for a possible as-
sociation between Salmonella infection and development of
gallbladder cancer. On this respect, Typhoidal Salmonella
serotypes as S. Typhi and S. Paratyphi have been detected in
most of the biopsies from patients with gallbladder cancer
[113, 135–137], however, DNA traces of Non-typhoidal
Salmonella serotypes as S. Typhimurium and S.Choleraesuis
have also been found in gallbladder cancer biopsies [135].
-ese findings have suggested that Salmonella (which may
be undetected for years, because it can produce biofilm on
cholesterol biliary stones [138]), could represent an im-
portant risk factor in development of gallbladder cancer
[132], because inflammation and epithelial injury associated
to cholelithiasis is induced by Salmonella [139] and chole-
lithiasis is a common clinical manifestation in most patients
with gallbladder cancer [137]. However, the mechanism
triggering carcinogenesis by Salmonella enterica in gall-
bladder is not completely known, but it has been suggested
that a chronic inflammation of gallbladder is induced [140],
after bacteria arrival to gallbladder from either blood cir-
culation or bile [141].

Additionally, recruitment of some immune cells, in-
cluding activated macrophages expressing COX-2 is in-
creased upon Salmonella enterica infection [142]. COX-2 is
an important enzyme that promotes the development of
gastrointestinal tract tumors [143, 144]. Also, bacteria in-
duced inflammation leads to mutations of TP53 gene,
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Figure 2: Oncogenic activity of Bacteroides fragilis and Salmonella enterica. (a) Enterotoxigenic Bacteroides fragilis (ETBF) stimulates
carcinogenesis in colonic epithelium through the BFT toxin. -is toxin leads to an increase in reactive oxygen species (ROS) by inducing
spermine oxidase expression via c-Myc. Likewise, BFTcuts E-cadherin, thus activating β catenin which stimulates cellular proliferation. BFT
also modulates the host’s immune response by promoting Treg lymphocytes to polarize the response to -17 lymphocytes, thus increasing
IL-17 secretion which in turn, activates NF-κB in the colonic epithelium; this results in the secretion of the chemokines CXCL1, CXCL2 and
CXCL5 that recruit MDSC, thus favoring evasion from the immune response. -e presence of ETBF has also been associated with STAT3
activation. (b). Salmonella enterica releases two proteins that promote carcinogenesis: the typhoid toxin that induces cellular proliferation,
and the AvrA protein that is internalized via the Type 3 Secretion System(T3SS). AvrA activates the β catenin and STAT3 pathways, and also
causes the acetylation of p53. Additionally, Salmonella enterica leads to the activation of the MAPK/AKTpathway. -e activation of these
pathways promotes an increase in proliferation and cellular differentiation, and decreases apoptosis.
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increasing the risk of developing gallbladder cancer [145].
Finally, in vitro infection of cell lines and gallbladder
organoids with S. Typhimurium, led to malignant trans-
formation though MAPK and AKT signaling pathways ac-
tivation. Similarly, in vivo activation of these signaling
pathways resulted in tumor development in mice [134].

6. Conclusions

Recently, the number of publications referring an associa-
tion between pathogenic bacteria and development of gas-
trointestinal tumors, has increased exponentially. -e best
example and widely reported is Helicobacter pylori and
gastric cancer. However, emerging bacteria such as Fuso-
bacterium nucleatum, Escherichia coli, Bacteroides fragilis
and Salmonella enterica have also been involved in devel-
opment of cancer, particularly colon cancer.

In this review, it is suggested that infection by pathogenic
bacteria may be a high-risk factor associated with the de-
velopment of neoplasms in gastrointestinal tract. Mecha-
nisms such as, inflammation, modulation and evasion of
immune response and activation of signaling pathways, such
as the β-catenin pathway; all are potential triggers of
carcinogenesis.

-e inducing tumor mechanisms can be evaluated in
murine models, such as APCMin/+, a specific mice model to
study intestinal tumorigenesis [146]. In this experimental
model, developing colon cancer mechanisms by Fusobacte-
rium nucleatum, Escherichia coli, Bacteroides fragilis and
Salmonella enterica have been identified. However, effects of
coinfection with these bacteria and tumor development re-
mains to be analyzed, because ETBF and E. coli pks+ strains
have been found simultaneously in patients with adenoma-
tous polyps, a precursor lesion of colon cancer [147]. Nev-
ertheless, ETBF is a very common bacterium in colon cancer
patients but also in healthy individuals [96], so it remains to
be elucidated whether ETBF has a role on induction of
carcinogenesis. Another possible mechanism through bac-
teria may trigger cancer is by biofilm.-is structure produced
by a community of bacteria, more common in ascending
colon [148], could increases carcinogenic metabolites con-
centration, such as polyamines [149], which are related to an
important increase on reactive oxygen species. In addition,
biofilm has been associated with decreased expression of
E-cadherin on colonic epithelial cell, an over activation of IL-6
and Stat3 in epithelial cell [148], all these mechanisms are
involved in colon cancer. -e mechanisms above described,
are used by Fusobacterium nucleatum, Escherichia coli, Bac-
teroides fragilis and Salmonella enterica. -erefore, further
studies are required to understand the specific roles of these
four bacteria in development of neoplasms on gastrointestinal
tract, specifically in colon cancer.

7. Future Perspectives

Worldwide, colon cancer has very high incidence and
mortality. Here we have described that infection with either
bacteria such as F. nucleatum, E. coli, B. fragilis or S. enterica
represent an important risk factor that promote cell

transformation (carcinogenesis). In this regards, detection of
promoting carcinogenesis bacterial proteins, such as
cyclomodulin, colibactin, BFT, AvrA or EspF may be used as
a biomarker for early detection of colon cancer, as it has been
proposed for Fap2 [150]. Because early detection of tumor
can increase both healing and survival. Moreover, it would
generate new and appropriate strategies to block bacterial
proteins activity, thus complementing the traditional
treatment to neoplasms of gastrointestinal tract.
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Background. Approximately 90% of all anal cancers are associated with human papillomavirus (HPV), especially high-risk
genotypes such as HPVs 16 and 18. Objective. To investigate the clinical and prognostic aspects of anal cancers associated
with the presence, as well as the genotypic distribution of human papillomavirus (HPV). Methods. A retrospective study
carried out over a 10-year period, using clinical and molecular data, with PCR analysis and reverse hybridization (INNO-
LIPA kit), in anal cancers. ,e data analysis was done using descriptive univariate statistics, and the survival curves were
made using the Kaplan–Meier and log-rank methods. Results. Of the 81 formalin-fixed and paraffin-embedded specimens,
HPV prevalence was 69% and was significantly higher in squamous cell carcinomas (SCC) than in other anal tumors
(p � 0.0001). Female patients had a higher prevalence of HPV (p � 0.01). Multiple infections were detected in 14.3% of cases.
,e most prevalent genotypes were HPVs 16, 33, and 18. ,e overall survival at 60 months was 44.3%, and the prognostic
factors included gender (p � 0.008) with greater survival for men (52.9%) in comparison to women (29.6%), histological
type (p � 0.01), SCC (54.4%), adenocarcinomas (37.5%), other carcinomas (14.2%), and the presence of distant metastasis
(p � 0.01). Survival was not influenced by the presence of HPV (p � 0.54). Conclusions. ,e association of HPV to anal
cancer was found in this study, especially in SCC. However, the presence of HPV did not influence the prognosis of patients
with anal cancer.

1. Introduction

Approximately 5% of all cancers worldwide are associated
with human papillomavirus (HPV), and the proportion of

anal cancer attributed to HPV is 90%, with genotypes 16 and
18 found in more than 70% of these cancers [1–5]. Anal
cancer is a rare tumor that corresponds to approximately 2%
of cancers that affect the gastrointestinal system [6]. About

Hindawi
Journal of Oncology
Volume 2019, Article ID 6018269, 10 pages
https://doi.org/10.1155/2019/6018269

mailto:larisse.dalla@gmail.com
https://orcid.org/0000-0003-3437-7458
https://orcid.org/0000-0001-9949-9988
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/6018269


48,000 new cases of anal cancer are diagnosed every year
worldwide, with a peak incidence in the age group between
58 and 64 years [7–9].

In Brazil, data on anal cancer are scarce, but it is es-
timated to correspond to 1% to 2% of all colorectal cancers
[10]. In 2010, 274 deaths from anal cancer were recorded in
the country, with 98 cases in men and 176 cases in women
[11]. In 2013, 348 deaths were recorded, with 106 in men
and 242 in women. In 2014, 1,100 new cases of anal cancer
were estimated in Brazil [10]. According to the Population
Based Cancer Registry of Goiânia, between 1989 and 2008,
a total of 117 cases of anal cancer were diagnosed in the city,
but more recent data were not available. A study carried out
in Goiânia, a city in the Midwest region of Brazil, described
42 cases of anal cancer, of which 38 were tested for HPV
DNA and 76% were positive for the presence of HPV DNA
[12].

,e most common histological type of anal cancer is
squamous cell carcinoma (SCC), followed by adenocarci-
noma [2, 6, 13]. HPV can be considered an essential factor
for the development of SCC, as well as its precursor lesions
such as anal intraepithelial neoplasia (AIN) [14, 15]. Several
factors contribute to HPV-induced anal carcinogenicity,
such as early onset of sexual activity, sexual practices in-
volving anal intercourse, prior exposure to high-risk HPV
genotypes, history of anogenital injury, and other cancers
associated with HPV. ,e major risk groups include men
who have sex with men, transsexual women, and in-
dividuals carrying human immunodeficiency virus (HIV)
[14–18].

,e role of HPV in the prognosis of anal carcinomas is
poorly understood, as well as its influence on the clinical
aspects of this tumor [14–16]. Although patients diagnosed
with primary cancers associated with HPV respond well to
treatment, there is a risk for a second exposure or relapse of
HPV infection [14, 18]. Classical aspects of staging, such as
tumor size, metastatic lymph node involvement, and distant
metastasis, remain the main factors that influence the
prognosis of anal carcinomas [6, 19, 20].

,e goal of this study was to evaluate the prognostic,
sociodemographic, and clinical aspects of individuals with
anal cancer associated with the detection and genotypic
distribution of HPV, as well as the influence of HPV in-
fection on the prognosis of this tumor.

2. Methodology

2.1. Type of Study and Sample Selection. ,is is a retro-
spective study that investigated HPV prevalence and ge-
notype distribution in a group of anal cancer patients
assisted in a cancer reference center from Goiânia, a middle-
sized city in the Midwest region of Brazil, during a period of
10 years.

A sample size calculation was not performed since we
aimed to include in the study all the cases that were di-
agnosed as anal cancer in the Pathology Department of the
center. Our reference sample came from the registry of the
Pathology Laboratory, so initially, a list of 140 patients
diagnosed with anal cancers from 2000 to 2010 was

consulted. After pathological/clinical review, 85 cases of
anal cancers were considered eligible. A description of the
inclusion and exclusion criteria of the cases was presented
in Figure 1.

,e selected cases were those that presented histo-
pathological diagnoses of anal cancer confirmed by two
pathologists, those with clinical data available in the medical
records, and those with paraffin blocks available and suffi-
cient for molecular analyses. Cases that were not confirmed
as primary anal cancer were excluded. Since we aimed to
evaluate five-year overall survival, the retrospective study
that was initiated in 2016 considered patients that were
diagnosed until 2010.

,is study was approved by the Research Ethics Com-
mittee of the Association to Combat Cancer in Goiás (CEP/
ACCG) under CEP: 272,288.

2.2. Preparation of Samples. After selection of the paraffin
blocks containing the tumor specimens, each block was
serially sectioned with the use of a microtome and the
sections packed in properly identified 2ml sterile micro-
tubes. ,e microtome knives were changed between sam-
ples, and the equipment was cleaned with ethanol for each
new block. From each block, slides containing tumor
fragments were prepared and stained using hematoxylin and
eosin and reviewed by a pathologist. ,e diagnosis of anal
carcinoma was confirmed for each case, based on the
classification criteria for tumors from the World Health
Organization [21].

2.3. DNA Extraction. Viral DNA extraction was performed
using the phenol-chloroform-isoamyl alcohol method; the
paraffin removal was done with the organic solvent xylol
and cell digestion performed with proteinase-K. ,e final
DNA precipitation was done with isopropanol and DNA
purification with 70% ethanol. As dewaxing of the sample
can lead to tissue loss and consequent degradation of the
DNA present in the sample [22], the amount of DNA
extracted and its purity were evaluated by spectropho-
tometry (,ermo Scientific NanoDrop Products). ,e
samples were submitted to polymerase chain reaction
(PCR) to amplify the endogenous control, a fragment of the
human gene glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). Samples negative for endogenous control were
re-extracted.

2.4. Detection of HPV Genotype. Our study employed the
INNO-LiPA HPV Genotyping Extra test (Innogenetics NV,
Ghent, Belgium) to detect and genotype HPV DNA, fol-
lowing the manufacturer’s instructions. ,is assay can
identify 28 different HPV genotypes, including all known
HR-HPV genotypes and probable HR-HPV genotypes (16,
18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 73, and
82), as well as several LR-HPV genotypes (6, 11, 40, 43, 44,
54, and 70) and a number of additional types (69, 71, and 74),
based on nested PCR amplification of a fragment (65 base
pairs) of the L1 region of the HPV genome. Amplified
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products were denatured under alkaline conditions and
immediately incubated with the test strips in hybridization
buffer. ,e results were visually interpreted by two in-
dependent investigators by comparing them with a template
provided with the assay. ,e kit allows simultaneous de-
tection of multiple genotypes in a single sample. Several
publications have already proved the performance of the
assay in cervical scrapes and in formalin-fixed and paraffin-
embedded (FFPE) tissue.

,e study employed the INNO-LiPA HPV Genotyping
Extra test (Innogenetics NV, Ghent, Belgium) to detect and
genotype HPV DNA. ,is assay is a reverse line hybrid-
ization assay validated by several previous studies. ,e
physical state of HPV was not investigated.

In genotyping, only those samples that presented a single
genotype of HPVwere considered as single infections, and the
samples that had more than one HPV genotype were con-
sidered multiple infections. In cases of multiple HPV in-
fections with at least one high-risk genotype, the result was
considered to be high-risk HPV. In cases that contained only
low-risk genotypes, the sample was considered low-risk HPV.

,e entire laboratory procedure, from sample handling
to HPV detection and genotyping, followed the international
standards for HPV testing by the World Health Organiza-
tion [23].

2.5. Statistical Analysis. Sociodemographic and clinical and
pathological data were collected on appropriate forms and
transferred to spreadsheets, Microsoft Excel, version 2013.
,e database was digitized by two independent researchers
and compared for data verification and database cleanup.
,e data were transferred to GraphPad Prism version 4.0
and analyzed using descriptive statistics, in order to gen-
erate prevalence estimates with respective confidence
intervals.

For the age group, the mean and standard deviation
were calculated. In order to evaluate the possible associ-
ations between the analyzed variables, a univariate analysis
was performed considering the level of significance
p< 0.05 and chi-square test (χ2). In order to evaluate the
associations between the results obtained for HPV de-
tection and the other variables, odds ratios (OR) were
calculated with a 95% confidence interval (CI) and sig-
nificance level of 5%.

,e Kaplan–Meier method was used to calculate sur-
vival, and the log-rank test was used to compare survival
curves against prognostic factors for anal cancer. Death was
considered independent of its cause.

,e cases included in the study did not present HIV
infection status registered in the patient files, and therefore,
these data were not used as a prognostic factor.

Total cases (2000–2010)
(n = 140)

Exclusions

Duplicates (8)
Rectal cancer (28)
Colon cancer (4)

Cases are consistent with the 
inclusion criteria

Cases with confirmed 
histopathological diagnosis

Clinical/pathological data available in 
medical records

Prostate cancer (3)
Vulvar cancer (3)

Cervical cancer (2)

(n = 85)

Vaginal cancer (2)

Exclusions
Skin cancer (2)

Tissue specimens not 
available (3)

Anal intraepitelial 
neoplasia (2)

Insufficient material/ 
specimens (1)

No histopathologic sample 
prior to radiotherapy (1)

Total exclusions (n = 4) Cases with sufficient samples for 
DNA extraction

Total exclusions (n = 55)

Cases with DNA extraction
Cases with qualitative/quantitative 

analysis of DNA (spectrophotometry: 
NanoDrop)

Cases with genotyping (PCR + 
reverse hybridization)

(n = 81)

Cases included at the end of the 
analysis
(n = 81)

Figure 1: Flowchart of case sample selection.
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3. Results

3.1. Sample Characteristics. Sampling included 81 cases of
anal cancer. ,e characteristics of patients with anal cancer
are presented in Table 1.

,e majority of the patients were female (63%). Age
ranged from 36 to 92 years, and the overall mean age at
diagnosis was 61.57 years (±12.73); mean age for women
was 62.47 years (±13.01) and for men 60.03 years
(±12.30).

Lymph node metastases were reported in 25.9% of pa-
tients, and inguinal lymph nodes were the most compro-
mised (data not shown). Distant metastases were described
in 8.6% of the group, with the liver and lung being the most
affected organs. At the end of 60months following diagnosis,
55.6% of the patients had reported deaths.

Most of the samples (52%) were diagnosed as anal
squamous cell carcinoma, followed by adenocarcinomas
(39.5%). ,e majority of SCC and adenocarcinomas were in
T1-T2 stages (p � 0.01).,e other types of anal cancers were
in advanced stages, but without lymph node spread. Both
SCCs and adenocarcinomas presented cases with distant
metastasis.

3.2. Prevalence of HPV DNA. ,e prevalence of HPV DNA
for the evaluated group was 69.1%. Only 25 patients were
negative for HPV DNA. Table 2 presents the prevalence of
HPV and its association with the social, demographic,
clinical, and pathological characteristics investigated. HPV
was more prevalent in women than in men (OR 3.18 95%
CI 1.19–8.48). ,e mean age of the group at diagnosis
was similar in HPV-negative (63 years± 11.6) and HPV-
positive patients (61 years± 13.2). HPV was significantly
associated with anal SCC (OR 9.51 95% CI 2.96–30.50)
(Table 2).

3.3. HPV Genotype Distribution. Of all patients with anal
cancer positive for HPV DNA, 85.7% had a single HPV-type
infection, while 14.3% had multiple HPV types. ,e geno-
typic distribution of HPV and the presence of single and
multiple infections of all genotyped samples are described
and presented in Figure 2. ,e most prevalent genotypes in
squamous cell carcinomas and anal adenocarcinomas were
HPVs 16, 18, and 33. In the other types, the most common
were HPVs 16 and 33 (Table 3).

3.4. Survival. Overall survival at 60 months for patients with
anal cancers was 44.3% (Figure 3). ,e mean follow-up was 31
months (±59.4) with a minimum of 1 month and a maximum
of 191 months. ,e prognostic factors were being female
(Figure 4(a)), squamous cell carcinoma (Figure 4(b)), and the
presence of distant metastasis (Figure 4(c)). Survival was not
influenced by the presence of HPV (Figure 4(d)), lymphatic
dissemination (p � 0.84), or tumor size (p � 0.08); however,
all individuals with T3 or larger tumors were deceased after 38
months.

4. Discussion

HPVwas present in 69% of anal cancer samples, andHPV 16
was the most prevalent genotype (78.5%), followed by HPV

Table 1: Sociodemographic and clinical/pathological characteris-
tics of patients with anal cancers (n 81).

n %
Gender

Female 51 63.0
Male 30 37.0

Age at diagnosis (years)
<61 years 38 46.9
≥61 years 43 53.1

Marital status
Single 37 45.7
Married 40 49.4

Ethnicity
White 29 35.8
Brown (pardo) 48 59.3
Black 4 4.9

Smoker
Yes 22 27.2
No 54 66.6

Alcohol consumption
Yes 17 21.0
No 58 71.6

Tumor location
Anal canal 59 72.8
Anal border 8 9.9
Both 14 17.3

Histological type
SCC 42 51.9
Adenocarcinoma 32 39.5
Others 7 8.6

Treatment
Surgery 65 80.2
Radiotherapy 62 76.5
Chemotherapy 51 63.0
No treatment 4 4.9

Size of tumor
T1-2 58 71.6
T3-4 22 27.2
Not specified 1 1.2

Lymph node metastasis
Yes 21 25.9
No 60 74.1

Distant metastasis
Yes 7 8.6
No 74 91.4

Sites of distant metastasis
Liver 2 2.5
Lung 2 2.5
Bladder 1 1.2
Uterus 1 1.2
Vagina 1 1.2

Death record
Yes 45 55.6
No 36 44.4

SCC: squamous cell carcinoma. Others: basaloid carcinoma, neuroendo-
crine, and cloacogenic. Number of patients with data not informed: marital
status 4 (4.9%); smoking 5 (6.2%); alcohol consumption 6 (7.4%); and not
specified size of tumor 1 (1.2%).
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33 (10.7%) and HPV 18 (8.9%). Although the prevalence of
HPV in the anal cancers evaluated was lower than the overall
percentage reported in other studies [2, 8, 14, 15, 20–25], it is

worth noting that this study included a relatively large
number of anal adenocarcinomas (39.5%) and that there are
few studies investigating the association of HPV with this

Table 2: HPV DNA and anal cancers, according to sociodemographic and clinical/pathological characteristics.

Variables HPV+ (n) % HPV − (n) % p OR (CI 95%)
Gender
Female 40 78.4 11 21.6 0.01∗ 3.18 (1.19–8.48)
Male 16 53.3 14 46.7

Age at diagnosis (years)
<61 years 26 68.4 12 31.6 0.89 0.93 (0.36–2.41)
≥61 years 30 69.8 13 30.2

Marital status
Single 24 64.9 13 35.1
Married 29 72.5 11 27.5 0.46 0.70 (0.26–1.84)

Smoker
Yes 15 68.2 7 31.8 0.97 0.98 (0.33–2.86)
No 37 68.5 17 31.5

Alcohol consumption
Yes 11 64.7 6 35.3 0.63 0.76 (0.24–2.39)
No 41 70.7 17 29.3

Lesion location
Anal canal 38 64.4 21 35.6 0.55 0.60 (0.11–3.26)
Anal border 6 75.0 2 25.0
Both 12 85.7 2 14.3

Histological type
SCC 37 88.1 5 11.9 0.0001∗ 9.51 (2.96–30.50)
Adenocarcinoma 14 43.8 18 56.2
Others 5 71.4 2 28.6

Size of tumor
T1-2 41 70.6 17 29.3 0.44 1.50 (0.52–4.25)
T3-4 14 63.6 8 36.4

Lymph node metastasis
Yes 14 66.7 7 33.3 0.77 0.85 (0.29–2.48)
No 42 70.0 18 30.0

Distant metastases
Yes 5 71.4 2 28.6 1.00 1.13 (0.20–6.25)
No 51 68.9 23 31.1

Death
Yes 30 66.7 15 33.3 0.59 0.76 (0.29–2.00)
No 26 72.2 10 27.8

SCC: squamous cell carcinoma. Others: basaloid carcinoma, neuroendocrine, and cloacogenic; number of patients with data not informed that they were
positive for HPV: marital status 3; smoking 4; alcohol consumption 4; and size of tumor not specified 1. ∗Statistically significant values for p≤ 0.05.

SI
MI

HPV 58
HPV 56
HPV 52
HPV 11

HPV 6
HPV 39
HPV 74
HPV 35
HPV 18
HPV 33
HPV 16

G
en

ot
yp

es

5 10 15 20 25 30 35 40 45 500
Absolute frequency (n)

Figure 2: Frequency of 11 HPV genotypes detected in single infection and multiple infections in anal cancers. SI: single infection; MI:
multiple infection. Low-risk HPV (LR): 6 and 11. High-risk HPV (HR): 16, 18, 33, 35, 39, 52, 56, 58, and 74.
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Table 3: Distribution of HPV genotypes according to histological type of anal carcinoma.

HPV
SCC (37/42) Adenocarcinoma

(14/32)
Other carcinomas

(5/7)
n % n % n %

HPV 16 only 25 67.6 9 64.3 2 40.0
HPV 16 and others 4 10.8 1 7.1 1 20.0
HPV 18 only 2 5.4 1 7.1 0 0.0
HPV 18 and others 0 0.0 0 0.0 0 0.0
HPV 16 and HPV 18 1 2.7 1 7.1 0 0.0
Others single HPV 5 13.5 2 14.3 2 40.0
HPV negative 5 11.9 18 56.3 2 28.6
Other HPV: HPV 6, 11, 33, 35, 39, 52, 56, 58, and 74. Other carcinomas: basaloid carcinoma, neuroendocrine, and cloacogenic.
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Figure 3: Five-year overall survival for patients with anal cancer (Kaplan–Meier method).
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histologic type of anal cancer [23–26]. SCC is the histo-
logical type most associated with the presence of HPV. In
our study, the prevalence of the virus in this histological
type was 88%, and HPV 16 was present in 82% of the
genotyped samples. ,e high prevalence of HPV in anal
SSC has also been observed in 15 other studies, in which the
overall prevalence of HPV ranged from 60.6% to 100%
[1, 2, 8, 14–16, 20–28]. ,ese large number of SCC cases
positive for HPV suggest that virus infection is a necessary
cause for this type of anal cancer, as well as cervical cancer,
mainly because the transition zone of the anal canal is very
similar to the cervical squamocolumnar junction. Because
HPV is a virus that is highly tropic in regions covered by
squamous epithelium or high proliferative cell activity,
these sites become more vulnerable to viral infection
[6, 29].

Unlike SCC, adenocarcinoma of the anus is not in-
trinsically related to HPV infection. In some studies, this
histological type is not analyzed because it is considered an
extension of rectal cancer [30]. In this study, the adeno-
carcinomas included (39.5%) were classified histologically
and clinically as primary anal cancers, of which 43.8% were
infected by HPV, mainly by high-risk genotypes, such as
HPV 16.

Samples from two individuals were classified as low-risk
HPV (HPV 6 and HPV 11) during genotyping. ,ese ge-
notypes are responsible for papillomatous lesions and are
not considered carcinogenic [29, 31]. It is complicated to
define the association of cancer or a precursor lesion with a
specific HPV genotype, since the molecular methods used in
genotyping generally do not preserve the tissue architecture
[22]. Moreover, the PCRmethod detects the HPV genome in
the tumor but does not distinguish whether or not HPV is
transcriptionally active, making it impossible to conclude
which genotype(s) were actually involved in the carcino-
genesis [1, 4, 17].

Multiple infections were observed in 14.3% of patients, a
considerably higher value than in the other studies
[25, 28, 32, 33].,e genotyping used in this study is based on
the technique of reverse hybridization, which in this study
identified a larger number of HPV genotypes and the
presence of multiple infections. ,is method uses SPF10
primer oligonucleotides that are able to amplify a broad
spectrum of HPV genotypes by virtue of their high sensi-
tivity [2, 13, 32].

As expected, HPV 16 was the most prevalent genotype
and was present in 100% of multiple infections. Genotype 16
is considered to be high risk and tends to persist in the host
for a longer time [34]. Its oncogenic potential is related to its
high expression of the viral oncoproteins E6 and E7, and its
ability to integrate the viral genome into host cell DNA
[29, 31]. Cell targets of HPV oncoproteins are primarily pRb
and p53; however, underlying mechanisms associated with
other cellular proteins may occur during carcinogenesis
leading to cell cycle progression, evasion of apoptosis, DNA
damage, and suppression of the immune response [35].

In the analyzed anal carcinomas, HPV 33 was the second
most prevalent genotype (10.7%), followed by HPV 18
(8.92%). ,e presence of HPVs 16 and 18 is already well
established, and both are targets of HPV prophylactic
vaccines [13, 36–39]. In our research, only two samples
showed both genotypes. ,e high prevalence of HPV 33 has
been found before in other studies, ranging from 2 to 11.9%
[20, 24, 25, 27] and suggests that the vaccine might have
greater coverage if this genotype were included in the free
vaccination program in developing countries such as Brazil,
similar to, for example, the introduction of the nonavalent
vaccine that includes the genotypes HPVs 16, 18, 31, 33, 45,
52, 58, 6, and 11 [36].

Regarding the analysis by gender, the prevalence of HPV
in anal cancers was higher in women (78.4%), as observed in
other studies [1, 2, 25, 32, 37]. Persistent long-term HPV
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Figure 4: Survival curves for patients with anal cancer according to clinical and pathological characteristics. (a) Gender; (b) tumor
histological type; (c) metastasis (M); (d) HPV detection. Others include basaloid carcinoma, neuroendocrine, and cloacogenic.
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infections or newly acquired infections may contribute to
the increased susceptibility in women when associated with
hormonal or immunological status changes [1, 2, 32, 37, 40].

,e incidence of anal cancer increases with age, and the
peak incidence occurs between 50 and 70 years with the
mean age at diagnosis being 62 years [2, 32]. In this study,
age ranged from 36 to 92 years, and the mean age at di-
agnosis was 61 years. Similar ages were reported in different
studies [2, 13, 25, 26].

Overall survival at 60 months was 44.3%. In the United
States, the five-year survival for anal cancer is higher, around
67% [41]. It is important to emphasize that Brazil is still a
country with many socioeconomic problems, and access to
health services, although free of charge, fails due to delays in
patient services, and patients do not always have access to
educational information for the prevention and treatment of
diseases. In this way, anal cancers end up being stigmatized,
surrounded by prejudices. In addition, their symptoms are
very similar to common diseases of the anus, making their
diagnoses neglected, and as a result, diagnoses are performed
in more advanced stages and not always easy to treat
[6, 42, 43].

Little is known about the prognostic importance of
HPV in anal cancers, and the number of studies that deal
with the relationship between survival and HPV infection
in anal cancer is low [19, 20, 24, 34, 44]. ,e presence of the
virus as a prognostic factor was investigated in this study;
however, the results obtained did not allow a significant
conclusion about these variables. Some studies have
considered the presence of the virus as an important factor
in the prognosis of anal cancer [19, 20, 34]. Biomarkers
such as p16 have been investigated for prognostic use in
anal intraepithelial neoplasias and anal carcinomas
[20, 34, 44].

In this study, gender (p � 0.008), histological type
(p � 0.01), and the presence of distant metastasis (p � 0.01)
were observed as prognostic factors. Women with anal
cancer had a worse prognosis (29.6%) when compared with
men (52.9%). ,ese data reflect the need for follow-up of
women, not only with the Pap smear, which is intended for
the detection of cervical cancer, precancerous lesions, and
other genital diseases but also the introduction of anuscopy
as a screening method for the detection of anal cancer in
women [43].

Regarding histological type, patients with anal adeno-
carcinoma had shorter survival compared to patients with
SCC. Some studies have suggested that patients with anal
adenocarcinoma have a worse prognosis, but these studies
are limited by their sample size [37, 45]. Although the
etiology of adenocarcinoma is very similar to that of SCC, it
originates from the glandular tissue generally from the upper
part of the anal canal, making it difficult to distinguish it
from the adenocarcinoma of the lower rectum
[24, 30, 45, 46]. ,e Franklin study (2016) has shown that
survival in patients with anal and rectal adenocarcinomas is
significantly worse than in those with anal SCC regardless of
the type of treatment, suggesting that adenocarcinomas
exhibit unique and aggressive behavior in relation to the site
of other carcinomas [45].

It is unclear whether samples negative for HPV DNA are
actually negative or whether these cases have actually been
triggered by other carcinogens. At the molecular exami-
nation, only five of 42 SCC samples were negative for HPV.
,e rest of the negative anal cancers were adenocarcinomas
or cloacogenic, basaloid, and neuroendocrine carcinomas.

,e lack of some relevant information in the medical
records limited the ability to investigate some variables, such
as sexual behavior, which is known to increase the risk of
HPV infection [14, 43, 47]. Even so, our data adequately
represented the reality of individuals with anal cancer in the
Midwestern region of Brazil, in the service area of this re-
ferral hospital.

,e association of HPV to anal cancer has been dem-
onstrated in this study, especially in SCC. However, the
presence of HPV did not influence the prognosis of patients
with anal cancer. ,e most prevalent genotypes were HPVs
16, 33, and 18. Further research on the role of HPV and its
genotypes in anal carcinogenesis needs to be planned, and
the prognostic aspects of anal cancer need to be better
elucidated. Risk groups considered for anal cancer com-
prised mostly of HIV-positive individuals and men who
have sex with men; however, as shown in this study, women
need to be included in new public policies of this group.
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Infection-related cancer comprises one-sixth of the global cancer burden. Oncoviruses can directly or indirectly contribute to
tumorigenesis. Ubiquitination is a dynamic and reversible posttranslational modification that participates in almost all cellular
processes. Hijacking of the ubiquitin system by viruses continues to emerge as a central theme around the viral life cycle.
Deubiquitinating enzymes (DUBs) maintain ubiquitin homeostasis by removing ubiquitin modifications from target proteins,
thereby altering protein function, stability, and signaling pathways, as well as acting as key mediators between the virus and its
host. In this review, we focus on the multiple functions of DUBs in RIG-I-like receptors (RLRs) and stimulator of interferon genes
(STING)-mediated antiviral signaling pathways, oncoviruses regulation of NF-𝜅B activation, oncoviral life cycle, and the potential
of DUB inhibitors as therapeutic strategies.

1. Introduction

About 15-16% of cancer cases are attributable to infection
[1]. Viral infection is one of the main risk factors for
the development of infection-related cancers. Currently, the
known oncogenic viruses include Epstein-Barr virus (EBV)
[2–4], Kaposi sarcoma herpes virus (KSHV) [5], human T-
cell lymphotropic virus type 1 (HTLV-1) [1, 6], hepatitis B
virus (HBV), hepatitis C virus (HCV), human papillomavirus
(HPV), and human immunodeficiency virus type 1 (HIV-1)
[7]. EBV, also known as human herpes virus 4, was the first
virus to be associated with human malignancy. EBV is a
double-stranded DNA virus. EBV infects approximately 95%
of theworld’s population,which is themost common andper-
sistent viral infection in humans. HTLV was the first human
retrovirus to be identified. About 3–5% of HTLV-1-infected

individuals develop adult T-cell leukemia/lymphoma (ATL),
which is an aggressive and lethal malignancy with few effec-
tive therapeutic options [8]. Hepatocellular cancer (HCC)
is the fifth most prevalent malignant tumor and the third
leading cause of cancer-related deaths. HCC is a highly lethal
cancer and is mainly associated with chronic HBV and HCV
infections with about 80% of HCC caused by HBV and HCV
infections [9]. Around 5%of global human cancers are caused
by HPV [10]. HIV infection increases cancer risk mostly
by immunosuppression and chronic immune activation [7]
(Table 1).

The fate and function of most proteins depend on post-
translational modifications [11]. Ubiquitin is a posttransla-
tional modifier and a key regulatory molecule participat-
ing in various cellular activities. Aberrant ubiquitin system
activity is linked to many diseases, including cancer [12],
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Table 1: Viral caused cancer types.

Virus type Cancer-related virus Cancer types Mechanisms Ref.

RNA virus

HIV-1
Lymphomas (most EBV-positive),
KSHV-caused Kaposi sarcoma, and

HPV-associated cervical and Anogenital
carcinomas

indirect [12]

HTLV-1 Adult T-cell leukemia/lymphoma (ATL) direct [6, 11]

HCV Hepatocellular cancer, Non-Hodgkin
lymphoma (especially B-cell lymphoma) indirect [14]

DNA virus

HBV Hepatocellular cancer indirect [14]

HPV
Cervix, Anal, Vulvar, and Penile cancers,
and a subset of head and neck squamous

cell carcinomas
direct [1]

KSHV Kaposi sarcoma, primary effusion
lymphoma direct [10]

EBV
Nasopharyngeal carcinoma, Gastric

cancer, Non-Hodgkin lymphomas (nhls),
and Burkitt lymphoma, Nature

killer/T-cell lyphoma

direct [7–9]

infection [13, 14], and neurodegeneration [15]. All viruses
need host machinery to maintain infection and replication.
Therefore, oncoviruses rely on the ubiquitin system at many
levels, and even hijack the ubiquitin system to satisfy their
survival needs. Ubiquitination is dynamic and it can be
reversed by deubiquitinating enzymes (deubiquitinases or
DUBs). This explains why DUBs are the main regulators in
the interactions between the virus and its host. Some viruses
even encode viral deubiquitinating enzymes to affectmultiple
host cell processes. However, relevant research findings are
very limited. Thus far, identifying and taking full advantage
of viral-related DUBs is a continuing challenge [13]. Here, we
review current knowledge from both the host and viral points
of view, discussing how the DUBs are involved in the viral life
cycle and howoncoviruses avoid or utilize theDUBs to satisfy
their survival needs.

2. General Functions of DUBs

DUBs maintain ubiquitin system homeostasis by cleav-
ing polyubiquitin chains or completely removing ubiquitin
chains from ubiquitinated proteins and then generating and
recycling free ubiquitin [16]. Deubiquitination has important
functions in regulating the ubiquitin-dependent pathways,
including cell cycle regulation, cell death, protein degrada-
tion, protein function, gene expression, and signal transduc-
tion [17]. Thus far, about 100 DUBs have been identified in
six different families and are classified into two categories
(Table 2) [18, 19]. Imbalances in DUBs activities are involved
in multiple diseases, including cancer, inflammation, neu-
rological disorders, and microbial infections [17]. DUBs,
such as A20, OTULIN, and CYLD, mediate NF-𝜅B and cell
death to maintain optimal signal transduction and immune

homeostasis [20]. Compared with normal cells, cancer cells
need elevated synthesis of growth-promoting proteins and
protein-degradation capacity to satisfy uncontrolled mitosis.
Much research has focused on studying their function and
substrates to elucidate the role of DUBs in specific diseases.
Abnormal expression of DUBs-encoding genes has been
detected in human cancers. A mutant tumor suppressor gene
CYLD has been identified in familial cylindromatosis and
CYLD is downregulated in multiple cancer types [21]. Hajek,
et. al have identified a distinct subset of HPV-associated head
and neck squamous cell carcinomas that have TRAF�/CYLD
mutations [22]. Multiple oncoviruses utilize these DUBs
to edit ubiquitin chains and alter ubiquitin signaling, con-
tributing to virus infection, replication, and pathogenesis. To
date, vaccines against HBV and HPV have already begun
to decrease the incidence of cancers attributed to these
oncoviruses. However, other oncoviruses have no existing
vaccines. In addition to prevention by vaccines, targeting
the interplay between oncoviruses and their host might give
rise to effective and inexpensive treatment strategies with
minimal toxicity.

3. DUBs Participate in Antiviral
Innate Responses

As the first line of host defense against viral infection, host
pattern recognition receptors (PRRs), including RLRs, toll-
like receptors (TLRs), and cytosolic dsDNA sensors (such
as STING), recognize viral nucleic acids inducing innate
immune responses, resulting in the production of type I
interferons (IFNs) and proinflammatory cytokines [23, 24].
Using or bypassing host immune signaling is important for
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Table 2: DUBs classification.

Categories Families DUBs

Cysteine proteases

USP USP 1-8, USP 9X, USP 9Y, USP 10-16, USP 17 L1, USP 17 L2, USP 18-26, USP 27X,
USP 28-54, USP L1, CYLD

UCH UCH L1, UCH L3, UCH L5, BAP1
MJD ATXN3, ATXN3L, JOSD1, JOSD2

OTU OTUB1, OTUB2, OTUD1, OTUD3, OTUD4, OTUD5, OTUD6A, OTUD6B,
OTUD7A, OTUD7B, A2O, HIN1L, VCPIP1, TRABID, YOD1

MINDY FAM63A, FAM63B, FAM188A, FAM188B

Metalloproteases JAMM AMSH, AMSH-LP, BRCC36, COPS5, COPS6, EIF3F, EIF3H, MPND, MYSM1,
PSMD7, PSMD14, PRPF8

Six classes of DUBs in the human genome are classified into two categories, cysteine proteases, and metalloproteases. Five classes are cysteine proteases:
USP, ubiquitin-specific proteases; UCH, ubiquitin carboxyl-terminal hydrolases; MJD, Machado-Joseph disease protein domain proteases; OTU, ovarian-
tumor proteases; MINDY, motif interacting with Ub-containing DUB family. One class is metalloproteases: JAMM, JAMM/MPN domain-associated
metallopeptidases.

viruses to successfully establish infection. A thorough under-
standing of the molecular mechanisms between virus-related
deubiquitination and antiviral innate immunity signaling
is necessary for the control of infectious diseases and for
developing therapeutic targets.

�.�. DUBs Are Involved in RLRs-Mediated Innate Immunity
against RNA Oncoviruses. RNA viruses are mainly recog-
nized by RLRs. RLRs recognize viral RNAs through the RNA
helicase domain (RLD), and then interact with the mito-
chondrial antiviral signaling protein, MAVS [25]. The RLRs
include retinoic acid-inducible gene I (RIG-I) andmelanoma
differentiation-associated gene 5 (MDA5), which belong to a
family of cytosolic host RNA helicases that recognize distinct
nonself RNA signatures and trigger innate immune responses
against several RNAviral infections. After recognition of viral
RNA through the RNA helicase domain (RLD), RIG-I or
MDA5 binds to MAVS. The K63-linked polyubiquitination
of these adaptors is essential for signal activation. On the
other hand, DUBs have also been shown to regulate antiviral
innate immunity. Some DUBs negatively regulate the innate
immune system to guard against excessive self-destructive
immune responses and thus play a critical role inmaintaining
the balance of the immune system. USP21 [26], USP3 [27],
andCYLD [28] negative regulate RIG-I andMDA5 activation
by binding to and removingK63-linked polyubiquitin chains.
The deubiquitinases OTUB1/2 [29, 30] and MYSM1 [31]
inhibit K63-linked ubiquitination of TRAF3/6 and negatively
regulate IFNs production. OTUD1 can also remove K48-
linked ubiquitination from Smurf1, which targets MAVS
for K48-linked ubiquitination and degradation, contributing
to the degradation of MAVS [25]. Zhang et al. found
that RNA viral infection can utilize the OTUD1-Smurf1 axis
through the NF-𝜅B signaling pathway to promote down-
regulation of the MAVS, TRAF3, and TRAF6 proteins and
IFNs production [32]. In addition to the DUBs mentioned
above, the host also uses positive regulation of DUBs against
viral infection. USP15 reduces the K48-linked ubiquitination
of TRIM25 (targeting RIG-I K63-linked ubiquitination and
activation) leading to its stabilization [33] and promoting

RIG-I activation. USP25 clears virus-triggered K48-linked
ubiquitination, promoting the stability of TRAF3 and TRAF6
[34] and positively regulating RNA virus-triggered innate
immune responses. USP1 and UAF1 bind to TBK1, remove its
K48-linked polyubiquitination, and reverses the degradation
process of TBK1.ThisUSP1–UAF1 complex enhances TLR3/4
and RIG-I–induced IFN regulatory factor 3 (IRF3) activation
and subsequent IFN-𝛽 secretion [35]. These studies indicate
that DUBs play a critical role in regulating the virus-triggered
RIG-I-like pathway and IFNs production, which are crucial
for RNA viruses to establish efficient infection at an early
stage (Figure 1).

�.�. DUBs Are Involved in STING-Mediated Innate Immunity
against DNA Oncoviruses. Host cells express multiple
cytosolic DNA sensors to recognize exogenous viral nucleic
acids, such as DAI, DDX41, IFI16, and cyclic GMP-AMP
synthase (cGAS). These sensors trigger signaling pathways
and activate the adaptor protein stimulator of IFN genes
(STING; also known as MITA) to induce the expression of
type I IFN [36]. STING is a key adaptor protein for most
DNA sensing pathways. Ubiquitination of STING caused
by viral infection plays critical roles in virus-triggered
signaling [37]. K27- or K63-linked ubiquitination mediated
by various E3 ubiquitin ligases, such as TRIM32, AMFR, and
INSIG1 [38, 39], is essential for full activation of STING.
Double-stranded DNA viruses, such as EBV, use ubiquinase
TRIM29 to ubiquitinate and degrade STING, suppressing
host innate immunity that leads to the persistence of
DNA viral infections [40]. HSV infection can recruit
USP21 to STING through p38-mediated phosphorylation
of USP21 at Ser538. USP21 deubiquitinates the K27/63-
linked polyubiquitin chain on STING, thereby leading to
reduced production of type I IFNs [41]. During HTLV-1
and HBV infection, Tax and HBV polymerases decrease
the K63-linked ubiquitination of STING and disrupt the
interactions between STING and TBK1, which leads to loss
of STING function and subsequent impairment of IRF3
activation, IFN-induction, and an antiviral response [42, 43].
In addition, USP13 removes K27-linked polyubiquitin
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Figure 1: DUBs participate in antiviral innate immunity. During virus infection, K63-linked polyubiquitination of RLRs promotes their
interaction with MAVS and signal transmission. USP15 inhibits K48-ubiquitination of RNA sensor RIG-I to inhibit RIG-I degradation;
A20, CYLD, USP3, and USP21 inhibit K63-ubiquitination of RIG-I to negatively regulate RIG-I activation. USP3 inhibits K63 ubiquitination
of MDA5 to inhibit its activation. RIG-I and MDA5 bind to and activate MAVS. Activated MAVS works as a scaffold to recruit various
TRAFs, leading to TBK1/I�B kinase @ (IKK-@)-mediated phosphorylation and nuclear translocation of IRF3 and IRF7, and production of
IFNs and OTUD1 stabilizes MAVS by removing K48-ubiquitination. Deubiquitinases OTUB1/2, MYSM1, and DUBA inhibit K63-linked
ubiquitination of TRAF3 or TRAF6 and negatively regulate IFNs production. HSV infection can recruit USP21 to deubiquitinate the K27/63-
linked polyubiquitin chain on STING. USP13 removes K27-linked polyubiquitin chains from STING and thereby impairs the recruitment of
TBK1 to reduce the antiviral immune response against DNA viruses. USP18 recruits USP20 in an enzymatic activity-independentmanner and
facilitates USP20 to remove K33- and K48-linked ubiquitin chains from STING, thereby preventing degradation of STING caused by DNA
virus infection. USP7 interacts with TRIM27 and removes its K48-linked polyubiquitination, promoting the degradation of TBK1. USP1 and
UAF1 inhibit K48 polyubiquitin chains to stabilize TBK1 contributing to IFNs production.

chains from STING and then decreases the antiviral immune
response against DNA viruses by disrupting the recruitment
of TBK1 [44]. To inhibit DNA viral infection, USP18 recruits
USP20 in an enzymatic activity-independent manner and
facilitates USP20 to remove K33- and K48-linked ubiquitin
chains from STING, thereby preventing degradation of
STING caused by DNA viral infection [45] (Figure 1).
HPV upregulates UCHL1 to clear K63-linked ubiquitin
chains from TRAF3, resulting in a lower amount of the
downstream signaling complex TRAF3-TBK-1 to suppress
the type I IFN pathway [46]. Further research is still needed
to find and clarify the functions of DUBs during viral
infection. More information will help control infectious
diseases and facilitate the development of clinical antiviral
therapies.

4. DUBs Regulate Oncovirus Infection and
Activation in an NF-𝜅B-Dependent Manner

RLR-, TLR-, and STING-induced innate immune response
contribute to activation of NF-𝜅B. NF-𝜅B signaling plays
an essential role in immune regulation and its role has
been explored in almost all aspects of cellular activity. To
achieve successful infection, oncoviruses have developed
mechanisms to hijack the NF-𝜅B pathway. Multiple DUBs
are key regulators of NF-𝜅B signaling. Several DUBs, such as
CYLD and A20, have been extensively studied in the negative
regulation of NF-𝜅B signaling. During the viral infection
stage, HCV stimulation upregulates A20/ABIN1 expression,
thereby suppressing NF-𝜅B activity and leading to inefficient
M1macrophage polarization to promote HCV infection [58].
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Table 3: Oncoviruses encoded v-DUBs.

oncovirus v-DUB Deubiquitination
types targets pathways Ref.

EBV BPLF1
Lys48- or

Lys63-linked
polyubiquitin

TRAF6, NEMO, I𝜅B𝛼
Inhibits TLR

signaling and NF-𝜅B
pathway

[47, 48]

KSHV ORF64
Lys48- or

Lys63-linked
polyubiquitin

RIG-I
Inhibits

RIG-I-mediated-IFN
signaling

[49]

EBV deubiquitinating Enzyme (v-DUB) BPLF1 inhibits TLR
signaling through both MyD88- and TRIF-dependent path-
ways by removing ubiquitin chains from signaling interme-
diates, such as TRAF6, NEMO, and I𝜅B𝛼 [59, 60]. This leads
to reduced NF-𝜅B activation and proinflammatory cytokine
production in response to EBV and contributes to virus
infectivity. During the infection stage, oncoviruses upregulate
NF-𝜅B inhibitory DUBs or encode viral DUBs disrupting
secretion of antiviral cytokines and interferingwith the innate
antiviral immune responses by inhibiting NF-𝜅B activation.

NF-𝜅B activation also plays an important role in virus
reactivation, replication, and virus-mediated cell transforma-
tion. HIV inhibits CYLD to facilitate the NF-𝜅B pathway,
playing an important role in HIV reactivation from latency
[61]. HTLV-1- encoded Tax inactivates the NF-𝜅B negative
regulators, A20 and CYLD, which allows chronic NF-𝜅B
activation in HTLV-1-transformed cells [62]. USP20 deubiq-
uitinates TRAF6 andTax, thus suppressing interleukin 1𝛽 (IL-
1𝛽)- and Tax-induced NF-𝜅B activation, suggesting USP20
as a key negative regulator of Tax-induced NF-𝜅B signaling
[63]. The HPV-encoded E6 protein targets CYLD, resulting
in ubiquitination and proteasomal degradation of CYLD to
induce NF-𝜅B activation [64]. In keratinocytes, HPV infec-
tion inhibits CYLD expression, resulting in enhanced K63-
linked polyubiquitination and nuclear translocation of BCL-
3, which leads to activation of the NF-𝜅B signaling pathway
[65, 66]. Mutation of CYLD in HPV-positive head and neck
squamous cell carcinomas (HNSCCs) leads to the activation
of NF-𝜅B signaling and maintenance of episomal HPV in
tumors. In KSHV-infected primary effusion lymphoma cell
lines, KSHV-encoded viral FLICE inhibitory protein (vFLIP)
K13 can induce NF-𝜅B activation, which upregulates A20
expression. A20 interacts with K13 and blocks K13-induced
excessive NF-𝜅B activation in a negative feedback manner
[67, 68]. The regulation of NF-𝜅B signaling by oncoviruses is
not only important for the viral life cycle, but also contributes
to the development of malignant tumors. Focusing on the
role of DUBs in viral biology and NF-𝜅B may contribute to
infection-related cancer prevention and treatment.

5. Oncoviruses Use Host DUBs or
Encode v-DUBs to Facilitate Viral
Infection and Replication


.�. EBV. EBV-encoded latent membrane protein 1 (LMP1)
is an important tumorigenic protein. Our previous studies
have shown that LMP1 rescues p53-induced cell cycle arrest

and apoptosis by promoting K63-linked ubiquitination of
p53. LMP1 also inhibits cell necroptosis by modulating
RIPK1/3(receptor interacting protein kinase 1/3) ubiquitina-
tion [69, 70]. LMP1 can also induce the expression of UCH-
L1 and it may contribute to viral transformation and the
progression of lymphoid malignancies [71, 72]. EBV nuclear
antigen 1 (EBNA1) plays important roles in promoting
EBV genome replication and persistence, and EBV latent
gene expression. EBNA1 interacts with USP7, which is also
known as herpes virus associated ubiquitin-specific protease
(HAUSP). The EBNA1 and USP7 interaction can promote
cell survival and contribute to EBNA1 functions at the EBV
oriP and inhibit p53-mediated antiviral responses [73]. The
EBV nuclear antigen 3 (EBNA3) family targets and inter-
acts with USP46/USP12 deubiquitination complexes. The
complex exhibits DUB activity and contributes to EBNA3-
mediated lymphoblastoid cell growth [74]. Besides utilizing
host DUBs, EBV can also encode the viral deubiquitinating
enzyme, BPLF1, which is an immune evasion gene product
that can suppress antiviral immune responses during primary
infection [47]. BPLF1 is expressed during the late phase of
lytic EBV infection and is incorporated into viral particles. It
can eliminate K63- and/or K48-linked ubiquitin chains and
act as an active DUB during the productive lytic cycle and
EBV infection [48] (Table 3).


.�. KSHV. KSHV-encoded viral interferon regulatory factor
1 (vIRF1) can bind to USP7 and decrease the deubiquitinase
activity ofUSP7 for stabilizing p53, thereby disrupting the p53
signaling pathway [73]. Latency-associated nuclear antigen
(LANA) induces the expression of UCH-L1, which might
lead to viral transformation and the progression of lymphoid
malignancies [71]. KSHV encoded tegument protein ORF64,
which has deubiquitinase activity can inhibit the ubiquitina-
tion of RIG-I and suppress RIG-I-mediated IFN signaling. It
is necessary for KSHV infection [49] (Table 3).


.�. HPV. E6 and E7 are the main oncoproteins encoded by
HPV. USP11 and USP15 can greatly increase the steady state
level of HPV-16 E6 and E7 by reducing their ubiquitination
and degradation, thereby increasing the oncogenic potential
of HPV [75, 76].


.�. HIV. HIV-1 Tat is encoded at an early stage after infec-
tion and is in charge of enhancing viral production. USP7 and
USP47 stabilize the HIV-1 Tat protein by removing its K48
polyubiquitination chain [77]. The stabilization of Tat leads
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Table 4: Chemical DUB inhibitors.

DUB
Inhibitors(DIs) target Cancer types reference

HBX 41,108 USP5, 7, 8 and UCH-L3 myeloma [50]
HBX -19,818 USP7 colon carcinoma [51]
HBX-28,258 USP7 colon carcinoma [51]
P5091 USP7 myeloma [50]
P22077 USP7 - [52]
GW7674 USP1 non-small cell lung cancer [53, 54]
ML323 USP1 and some DUBs non-small cell lung cancer and osteosarcoma [53, 54]
b-AP15
(VLX1500) UCHL5, USP14 and some DUBs nonspecific [55]

WPI 130 USP5/USP9x/USP14/UCHL1/UCHL5 breast cancer [56, 57]
PR-619 broad-range DUB inhibitor - [52]

to enhanced HIV-� gene expression, facilitates virus spread,
and also reduces immune recognition in HIV-1- expressing
cells [78].


.
. HCV. HCV encodes the core protein and nonstructural
(NS) proteins NS3 and NS5A and promotes oncogenic trans-
formation, replication, and virus assembly [9]. Studies show
thatNS5A binds to the ovarian tumor protein, deubiquitinase
7B (OTUD7B) and enhances OTUD7B DUB activity, which
may contribute to viral replication and infection [50].

Oncoviruses utilize host DUBs to stabilize viral proteins,
which increases the oncogenic potential of oncoviruses.
Oncogenic viral products disturb host cell signaling pathways
by enhancing the level of specific DUBs or DUB activity to
promote viral genome replication and persistence. One DUB
exhibited an opposite role in different oncoviruses, which
indicates that if a DUB is used as an antiviral target, the
potential effect on other viruses must be considered. Further
studies are still needed to describe the detailed mechanisms
between DUBs and oncoviruses.

6. DUB Inhibitors (DIs) as Potential
Therapeutic Strategies

Inhibition of proteasome deubiquitinating activity is a new
cancer therapy. Most DIs are small molecule compounds,
exerting their function by suppressing DUB activity. The
ubiquitin-specific proteases (USPs) are the largest and the
most diverseDUB family and genemutations, altered activity,
or abnormal expression of USPs has been linked to multiple
cancer types. USPs attractive are therapeutic targets and
interest is growing in the development of enzyme selective
or specific chemical inhibitors as antiviral and anticancer
agents. The USP7-specific small molecule inhibitors, HBX41,
108, andP5091, induce apoptosis by stabilizing p53 inmultiple
myeloma cells resistant to conventional bortezomib therapies
[55]. b-AP15 inhibits USP14 and UCHL5 and was shown
to inhibit tumor growth in multiple solid tumor mouse
models and attenuated tumor invasion in acute myelogenous
leukemia in in vivo models [56]. WPI130 targets USP5,
USP9X, and USP14 and inhibits viral progeny production

of several RNA viruses, induces apoptosis, and suppresses
growth of breast cancer cells [53, 57]. The USP1 inhibitors,
GW7647 and ML323, attenuate growth of leukemic cells,
non-small-cell lung cancer cells, and osteosarcoma cells [52,
54]. In light of these findings, DIs could be significant as
potential therapeutic modalities in the treatment of multiple
cancers. Given the multiple functions of DUBs in viral infec-
tion, developing inhibitors targeting the functional activities
of virus-associated DUBs or virus-encoded DUBs might
contribute to the reduction of oncovirus infections and could
be used in infection-related cancers as accessory treatments
(Table 4).

7. Conclusions and Perspectives

DUBs are central component in the ubiquitin signaling
system to modulate proteostasis and have been shown to
participate in all aspects of the viral life cycle. To escape from
host immune responses, hijacking of the ubiquitin system
by viruses continues to emerge as a central theme around
virus infection and replication. In this review,we summarized
recent studies focusing on the role of deubiquitinases in
antiviral immune responses, modulation of the NF-𝜅B path-
way, as well as on RNA and DNA oncovirus infection, repli-
cation, and pathogenesis. However, the detailed mechanisms
between viruses, host, and DUBs are still not clear. As for the
potential use of DIs as therapeutic strategies against cancer,
many have been identified but none have been used clinically.
As a new cancer therapy target, many challenges remain to
be addressed for further understanding of DUBs function
in order to develop compounds that inhibit or induce their
activity to control the pathogenesis of oncoviruses.
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Cervical cancer is a largely preventable diseasemediated by persistent infectionwith high-riskHumanPapillomaviruses (Hr-HPV).
There are now three approved vaccines against the most common HPV genotypes. In Ghana, mortality due to cervical cancer is on
the rise, due to the absence of an organized and effective cervical cancer prevention and control program. Data on circulating HPV
genotypes is important for studying the likely impact of mass introduction of HPV vaccination of the female population before
sexual debut. High HPV prevalence has been reported in Female Sex Workers (FSWs), who constitute an important active group
for maintenance of HPV in the population. This study was conducted to determine the size of HPV prevalence in this group and
to provide information for future assessment of the impact of vaccine introduction in the country. We conducted a cross-sectional
study where the snowballing technique was used to identify and select FSW’s ≥18 years, operating within suburbs of Greater Accra
Region (GAR). A risk factor assessment interview was conducted and cervical swabs were collected for HPV-DNA detection and
genotyping by Nested Multiplex PCR. Hundred participants, age ranging from 18 to 45 years, median 24 years, were studied. The
prevalence of Cervical HPV was 26%. Eleven genotypes were detected comprising 9 high-risk in order of decreasing prevalence
HPV-16 (8%), HPV-35 (5%), HPV-33/39/-68 (3%), HPV-52/51/59 (2%) and HPV-18 (1%) and 2 Low-risk types, HPV-42(3%), and
HPV-43 (1%). Three women had HPV types that could not be genotyped by our method. Oral contraceptives use was associated
with a reduced chance of HPV infection (P=0.002; OR=0.19, 95% CI 0.07-0.54). This study found a high HPV prevalence among
FSWs in the GAR. A high number of Hr-HPV genotypes seen are vaccine preventable, providing additional compelling argument
for implementing a national cervical cancer prevention plan including vaccination.

1. Introduction

Globally, cervical cancer remains a primary cause of mor-
bidity and mortality, with estimated 569,847 new cases and
311,365 attributable deaths in 2018 [1, 2].Thehighest incidence
has been reported in low and middle income countries,
particularly in Sub-SaharanAfricawhere it is the secondmost

common female malignancy [3]. In Ghana, it is likely the
commonest cancer among women. Current estimates indi-
cate that every year 3,151 women are diagnosed with cervical
cancer and 2,119 die from the disease in the country [4].

Infection of the cervix by a high-risk Human Papillo-
mavirus (HPV), a common sexually transmitted infection, is
necessary for the development of cervical cancer [5]
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Many studies have found a direct association of HPV
infection with sexual behaviour and have indicated that
a high number of lifetime partners may lead to a higher
transmission of HPV leading to higher cervical cancer rates
[6–8].

Female sex workers (FSWs) are a group of females who
provide sexual services for economic remuneration. Due to
exposure to multiple sexual partners in their occupation,
they are prone to various sexually transmitted infections,
includingHPV. Sexual contact with FSWs plays an important
role in HPV transmission and might be a major contributor
to the prevalence of HPV and cervical cancer among women
in the general population. Also, through the transmission of
the virus to their male clients, they increase the risk of penile
cancers among thesemen [9]. Furthermore, due to their likely
interaction with foreign clients and sex tourists, they may
possibly have a role in the genotype diversity of HPV in the
country.

In Ghana, mortality due to cervical cancer is on the
rise, most likely due to the lack of an organized preven-
tion and control program. Information on circulating HPV
genotypes is crucial for determining the impact of cervical
cancer control programmes, including HPV immunization.
The high rates of HPV reported among FSWs make them
a priority group for study as we seek to characterize the
prevalent HPV genotypes in the country in order to predict
the likely impact of the current vaccines in reducing the
incidence of cervical cancer after introduction of mass female
vaccination in the country. The study also looked at other
factors that may increase the risk of HPV, contribute to
persistence of infection, and/or promote progression ofHPV-
induced changes in the cervical epithelium. Here, we report
the first study of cervical HPV and its associated risk factors
among FSW’s in Ghana.

2. Methods

2.1. Study Design and Population. This was a cross-sectional
study undertaken between February and July 2016 in Greater
Accra, one of the ten administrative regions of Ghana
(and which houses the national capital) with a predomi-
nantly urban population. A risk factor assessment interview
was conducted for 100 out of the 109 FSWs who were
reached through snowballing, to elicit data on their basic
demographics, sexual activities and behaviours (including
the age of sexual debut), reproductive history, menarche,
sexually transmitted disease (STD) history, screening his-
tory, and smoking habit (past and present). Only FSWs
of age 18 years and above and had been a sex worker for
at least 6 months were included in the study. The Ethics
and Protocol Review Committee of School of Biomedical
and Allied Health Sciences, University of Ghana, approved
this study (SBAHS/10161447/AA/MLS/2015-2016). Partici-
pants were fully informed about the purpose, procedures,
risks, and benefits of participating in this study and Informed
consent was obtained from all subjects.

2.2. Specimen Collection. Following the interviews, a Gynae-
cologist collected exfoliated cells from the cervix into tubes

containing DNAgard� (Biomatrica, SanDiego, CA, USA) for
HPV-DNAdetection and genotyping. Samples were collected
by single use, disposable equipment.

2.3. HPVTesting. HPVdetection and typing were carried out
by Nested multiplex PCR. [10]. A single consensus forward
primer (GP-E6-3F) and two consensus back primers (GP-
E7-5B and GP-E7-6B) were used for HPV DNA detection
in the first round PCR. The PCR reaction mix of 25𝜇l
contained 10X PCR buffer, 2.5mM MgCl

2
200𝜇M of each

of the four deoxyribonucleoside triphosphates (dNTP’s),
15pmols of each E6/E7 consensus primers, and 1.25 units
of Taq polymerase enzyme. Five microliters (5𝜇l) of DNA
extracts was used as a template for the amplification reactions
using a thermal cycler (Robocycler Gradient 96, Strategene,
USA). The cycling parameters for the first round PCR with
E63F/E75B/E76B consensus primerswere as follows: 94∘C for
four minutes, followed by 40 cycles of 94∘C for one minute,
40∘C for twominutes, 72∘C for twominutes, and a single final
elongation step of 72∘C for 10 minutes. In the second round
PCR, Primers for the identification of high-risk genotypes 16,
18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, and 68 and low-risk
genotypes 6/11, 42, 43, and 44 were used. The primers were
used in four cocktails, each containing four to five different
primer pairs. Two microliters of first round PCR product, 15
pmols of forward, and reverse primers for genotyping were
used. The other parameters remained the same as used in
the first round PCR. However, the cycling parameters were as
follows: 94∘C for four minutes followed by 35 cycles of 94∘C
for 30 seconds, 56∘C for 30 seconds, 72∘C for 45 seconds, and
a single final elongation step of 72∘C for four minutes [10].
Positive and negative controls were included in each round
of amplification.

The amplicons were resolved on 2% agarose gel stained
with 0.5𝜇g/ml ethidium bromide. Ten microliters of each
sample was added to 2𝜇l of orange G (10X) gel loading dye
for the electrophoresis. Hundred base pair DNA molecular
weight marker (Sigma, MO, USA) was run alongside the
PCR products. The gel was prepared and electrophoresed
in 1X TAE buffer using an electrophoresis tank at 80 volts
for one hour and the gel photographed over an Ultraviolet
(UV) transilluminator [10]. HPV genotypes were identified
by comparing the molecular weight of the bands observed to
positive control band and or the expected amplicon sizes in
each primer cocktail.

2.4. Data Analysis. The data obtained through the question-
nairewas checked for accuracy and entered into the computer
using Microsoft Excel (2016) Programme and was analysed
using SPSS version 20 (IBMCorp. Armonk, NewYork, USA).
Exploratory analysiswas first carried out to obtain descriptive
statistics. Charts and tables were used to summarize data and
display figures where appropriate. The number and propor-
tion of HPV DNA positives and type-specific HPV infection
were calculated. To assess the association between HPVDNA
positivity and sociodemographic and sexual behavioural
factors, odds ratios (ORs) and 95% CIs were calculated using
logistic regression. In all statistical considerations a p-value
<0.05 was considered statistically significance.
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Figure 1: Age-specific HPV prevalence.

3. Results

3.1. Participant Characteristics. A total of 100 FSW, ages
ranging from 18 to 45 years with a median age of 24 years,
were interviewed. More than half (58%) of them were below
25 years. The level of education among the women was
generally low, with the vast majority, 74% (74/100), having
at most basic education while 6% (6/100) reported to be
illiterates. The median length of sex work was 2 years with
a range of 0.5-26 years. About a half (53%) of the sex workers
reported engaging in other economic activities (mostly petty
trading) while the rest (47%) were full time sex workers.
Seventy-seven percent of the subjects who remember their
age at sexual debut recalled it to be ≥16 years and 59% of them
had at least a child. Condom use always was reported by 82%
(82/100) of the study participants whereas oral contraceptive
use was reported by 20%. Two (2%) subjects reported to be
HIV positive while 14/100 (14%) had had gonorrhoea, 4/100
(4%) syphilis, 3/100 (3%) genital warts, and 2/100 (2%) herpes
before. A third (33%) of themhad ever smoked cigarettewhist
17% are active smokers. Only 9/100 (9%) had ever undergone
cervical cancer screening.

3.2. HPV Prevalence and Genotypes. The overall HPV preva-
lence (any HPV) was 26% (26/100). Eleven genotypes were
detected comprising 9 high-risk types and 2 low-risk types.
The high-risk HPV types in order of decreasing preva-
lence were HPV-16 (8%; 8/100), HPV-35 (5%; 5/100), HPV-
33/39/68 (3%; 3/100), and HPV-51/52/59 (2%; 2/100) HPV-
18 (1%;1/100). HPV 42, (3%; 3/100) and HPV-43 (1%; 1/100)
were the low-risk HPV types found. In addition 3% (3/100)
had HPV that could not be typed by our method (Table 1).
There were 21% single HPV infections (including the three
that we could not type) and 5%multiple HPV infections. The
5 multiple infections comprised two each of quadruple- and
double-infections and one triple infection. The highest HPV
infection rate was among women aged below 25 years with

17% (17/100) (Figure 1). Of the HPV positive women, 73.1%
(19/26) were infected with only high-risk types, 3.9% (1/26)
were with only low-risk types, and 11.5% (3/26) had both
high- and low-risk types.

Table 2 shows the cytological changes found in the high-
risk HPV cases detected with 3 cases each of ASCUS, LSIL,
and HSIL.

3.3. Risk Factors for HPV Infection. To identify putative risk
factors for HPV infection, we performed univariate regres-
sion analysis and the results are presented in Table 3. HPV
infection was found not to be significantly associated with,
age, education, smoking, average number of clients per week,
previous sexual disease, condom use, age at sexual debut,
and parity. In contrast, the use of oral contraceptives was
the only variable that significantly influenced HPV Infection
(P=0.002). Female sex workers who used oral contraceptives
had 19% reduced odds of having HPV infection compared to
those who did not (OR=0.19, 95% CI 0.07-0.54).

4. Discussion

Studies have indicated that a high number of lifetime partners
may lead to a higher transmission of HPV [6, 7]. The nature
of work conducted by sex workers predisposes them to an
increased risk of HPV infection. This study found a crude
HPV prevalence of 26% among female sex workers in the
Greater Region, which is higher than the WHO estimate of
19.5% HPV Prevalence in women from Western Africa at a
given time [3]. This is consistent with existing reports of the
elevated HPV prevalence in Female sex workers compared
to women in the general population. Similar studies in
other African countries have shownmuch higher prevalence:
Madagascar (36.7) among 90 FSWs [11], Senegal (43.5%)
among 681 FSWs [12], Tunisia (39.2%) among 51 FSWs [13],
Burkina Faso (66.1%) among 360 FSWs [14], Kenya (55.6%);
among 789 FSWs [15], South Africa (62.6%), among 99
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Table 1: Type-specific HPV prevalence.

HPV type Single infections Multiple infections Total (%)
n=100(100)

High-risk infections
16 4 4 8(8)
35 4 1 5(5)
33 2 1 3(3)
39 3 0 3(3)
68 1 2 3(3)
51 2 0 2(2)
52 1 1 2(2)
59 2 0 2(2)
18 0 1 1(1)
sub-total 19 10 29(29)
Low-risk infections
42 2 1 3(3)
43 0 1 1(1)
sub-total 2 2 4(4)
Un-typeable
X 3 0 3(3)
Total (LR+HR+X) 24 12 36(36)

Table 2: Cytologic changes in HR-positive individuals.

Cytology results HR-Genotypes
NILM 16, 18, 68
NILM 16,35,68
NILM 33
NILM 39
HSIL 16,33,68
NILM 52
NILM 35
NILM 16
NILM 16
NILM 16
NILM 39
LSIL 16
LSIL 35
ASCUS 51
HSIL 51
NILM 35
HSIL 39
ASCUS 16,52
NILM 35
LSIL 33
NILM 59
ASCUS 59

FSWs [16]. These variations could be due to difference in
sampling strategies and HPV assays employed [17] besides
risk factors which are known to vary by region. Though
we employed a comparatively more sensitive HPV assay

(NMPCR) [10] to the conventional PCR (with either MY09-
MY11 or GP5+-GP6+ primers) utilized in some of the studies
above, we recorded a lower HPV prevalence compared to
those studies. This may likely be due to the fact that 36%
of the FSWs from the Burkina Faso study, 35.2 % from the
Kenya study, and 50.3% from the South African study were
HIV positive compared to the very low 2% in this study.
Cervical HPV infections are substantially more common
among women infected with HIV, compared with HIV-
uninfected women with similar sexual histories due to their
impaired immunity and this has been reported by several
studies [18–20].

Ahighnumber ofHPVpositive FSWs (17/26), thoughnot
statistically significant, were below 25 years.This is consistent
with reports in a global review of HPV prevalence among
female sex workers [8]. This observation may be linked with
acquisition of high rates of HPV following commencement
of sex work. Secondly, this may be related to power play
as older sex workers are better able to negotiate condom
use than younger sex workers, although condom use does
not provide full protection from HPV infection. This could
also be ascribed to young sex workers enticing more clients
than older sex workers culminating in an increased rate of
exposure to HPV. It is however worth stating that more than
half (58%) of our study subjects were within this age bracket
and therefore this age trend could have also been due to this
selection bias.

The high-risk HPV genotypes detected in decreasing
order of prevalence were 16 (8%), 35 (5%), 33/39/68 (3%),
51/52/59 (2%), and 18 (1%). These genotypes are similar to
what is seen in studies in Ghanaian women with and without
cervical cancer and elsewhere in Africa but with vary-
ing individual genotype prevalence [21–25]. About 50% of
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Table 3: Results of univariate logistic regression analysis of risk factors for HPV infection.

Variables HPV (+) HPV (-) OR (95% CI) P-value
Age(years)
<25 17 41 0.65 (0.26- 1.67) 0.38
25-34 3 23 3.46 (0.9412.67) 0.06
35-44 6 9 0.46 (0.15-1.46) 0.19
45-54 0 1 - -
Education
No formal education 1 5 1.81 (0.20-16.27) 0.60
Basic 18 56 1.38 (0.52-3.71) 0.52
Higher 7 13 0.59 (0.20-1.66) 0.31
Time in prostitution (years)
<1 6 17 1.45(0.48-4.38) 0.51
1-2 6 27 1.47(0.55-3.94) 0.46
3-4 6 13 0.65(0.21-1.94) 0.44
≥5 8 15 0.58(0.20-.1.65) 0.31
Full time sex worker
Yes 13 34 0.85 (0.35-2.08) 0.72
Average clients per week
≤14 14 40 1.01 (0.41-2.71) 0.99
>14 12 34 1.05 (0.43-2.66) 0.92
Contraceptive
Condom 20 62 1.55 (0.52-4.66) 0.44
Oral contraceptive 11 9 0.19(0.07-0.54) 0.002∗
Age at sexual debut(yrs.)
<16 7 16 0.74 (0.27-2.09) 0.58
16-20 19 55 1.07 (0.38-2.93) 0.90
>20 0 3 - 0.99
No. of Children
0 11 30 0.93 (0.37-2.30) 0.88
1-2 14 36 0.81 (0.33-1.99) 0.65
≥3 1 8 3.03 (0.36-25.47) 0.31
Smoking History
Current smoking 7 10 0.42 (0.14-1.26) 0.12
Past smoking 9 24 0.91 (0.35-2.32) 0.84
STI in the past
Yes 9 14 0.44(0.16-1.11) 0.11
Past STI type
Genital warts 1 1 0.34(0.02-5.68) 0.46
Gonorrhoea 5 9 0.58(0.12-5.68) 0.36
Syphilis 2 2 0.33(0.04-2.50) 0.29
Herpes 1 1 0.34(0.02-5.68) 0.46
HIV 2 0 - -

high-risk-HPV genotypes detected in this study are covered
by the Nona-valent vaccine (Gardasil� 9, Merck) [26] and
therefore the introduction of this vaccine and ultimately a
national vaccination policy would positively impact cervical
prevention efforts in the country. However, the fact that not
all high-risk-HPV detected in this and several other studies
in Ghanaian women with and without cervical cancer are
vaccine types means cervical screening will continue to play
an important role in cervical cancer prevention efforts in the

country even after the institution of a national vaccination
policy. For example, HPV-35, the second most common
HPV type found in this study, is not a vaccine type. In
another study conducted in Ghana among HIV seropositive
and negative women, HPV-35 was the commonest genotype
detected and was significantly associated with Squamous
intraepithelial lesions [25]. The low-risk-HPV genotypes
detected, in decreasing order of prevalence, were 42 and 43.
These two genotypes were the two common low-risk types



6 Journal of Oncology

detected in a study involving pregnant women attending
antenatal clinic at the Korle-Bu teaching hospital in Accra
[23].

Oral contraceptives use significantly influenced HPV
infection (P=0.002), with about 19% decreased chance of
HPV infection in oral contraceptive users compared to
nonusers (OR=0.19, 95%CI 0.07-0.54). However, a systematic
review of 19 epidemiological studies of the risk of genital
HPV infection and oral contraceptive use concluded that
there was no evidence for a strong positive or negative
association between HPV positivity and ever use or long
duration use of oral contraceptives [27]. There was lack of
significant association of HPV infection with known risk
factors such as smoking, age at sexual debut, number of sexual
partners, and history of STI. These findings could be due
to the small sample size and/or the reliability or otherwise
of the information provided by the study subjects. The risk
factors assessed in this study relied on self-reported data and
therefore prone to both recall and social appeal bias.

This is the first report of cervical HPV and associated
risk factors among FSW’s in Ghana. Our study also has some
limitations: this study was done on a small scale; therefore
a larger study with a higher statistical power is needed to
determine the extent of HPV infection in this population.
Also, the convenience sampling method employed means the
prevalence of HPV cannot be generalised to the whole female
sex worker population in the Greater Accra.

5. Conclusion

This study found a high HPV prevalence among a cohort
of female sex workers in the Greater Accra Region. A high
number of the high-risk HPV seen in this population are vac-
cine preventable, providing additional compelling argument
for implementing a national cervical cancer prevention plan
including vaccination.
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Patients with human papillomavirus- (HPV-) related oropharyngeal squamous cell carcinoma (OPSCC) have a better prognosis
than HPV-negative OPSCC when treated with standard high-dose cisplatin-based chemoradiotherapy. Consistent with this
assertion and due to younger age at diagnosis, novel approaches tominimize treatment sequelaewhile preserving survival outcomes
become of paramount importance. Here, we critically reviewed the evidence-based literature supporting the deintensification
strategies in HPV-related OPSCC management, including radiotherapy dose and/or volume reduction, replacement of cisplatin
radiosensitising chemotherapy, and the use of transoral surgery. Undoubtedly, further researches are needed before changing the
standard of care in this setting of patients.

1. Introduction

Despite oropharyngeal squamous cell carcinoma (OPSCC)
representing only 0.9% of all cancer sites, its incidence is
rapidly growing worldwide, with an estimated 173,495 new
cases in 2018 [1]. The highest incidence rates are seen in
the western countries [2]. During the past two decades
OPSCC diagnosis increased among men and/or women
in different European nations, such as United Kingdom,
France, Germany, Denmark, and Sweden [2, 3]. The main
reason is oncogenic human papillomavirus (HPV) type
16 infection and nowadays HPV-related OPSCC, primarily
located in tonsil and base of tongue, is considered a distinct
disease entity [4]. Patients with HPV-related OPSCC have
a much better prognosis than those with tobacco/alcohol-
driven disease, despite a higher stage at diagnosis due to
a typical small primary in the oropharynx with massive
regional nodal involvement. Compared with HPV-negative
OPSCC, HPV-related OPSCC affects younger patients with
a lower comorbidity index, a higher socioeconomic status,
and a history of multiple sexual partners and orogenital
sexual practice [5]. Intensity modulated radiation therapy

with concurrent cisplatin-based chemotherapy represents
the standard treatment, when appropriate. This definitive
chemoradiotherapy (CRT) approach aims to eradicate tumor
cells and minimize both acute and late toxicities. Given
the favorable prognosis in a younger patient cohort, novel
treatment regimens with the same tumor control and lower
toxicity rates are a welcome change.

Here, we presented a critical review of recent advances
in the management of HPV-related OPSCC. We focused on
the existing literature regarding the proposal applications of
radiation therapy and systemic therapy. An assessment of new
staging system specifically for HPV-related OPSCC and its
development was also reported.

2. Materials and Methods

Key HPV-related OPSCC references were derived from a
systematic PubMed query. Articles were obtained using
the following combinations of research criteria: “inten-
sity modulated radiotherapy”, “imrt”, “radiation therapy”,
“de-intensification”, de-escalation”, “immune check-point
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Table 1: Independent external validation of the 8th edition staging of HPV-related oropharyngeal cancer.

5-y OS by 8th edition TNM stage
Author Year of publication Patients Primary treatment I II III IV
O’Sullivan [6] 2016 1907 S: 34; RT: 1873 85% 78% 53% NA
Haughey [7] 2016 704 S: 704 90% 84% 48% NA
Cramer [8] 2017 15116 S: 6465; RT: 7841; CHT: 276 87.4%∗ 76.6%∗ 63.1%∗ 20.7%∗
Malm [9] 2017 435 S: 166; RT: 269 92.3% 87.2% 73.6% 40.0%
Porceddu [10] 2017 279 RT: 279 93.6% 81.9% 69.1% NA
international collaboration on oropharyngeal cancer network for staging (ICON-S) study
∗4-year overall survival
5-y OS: 5-year overall survival; S: surgery; RT: radiotherapy; CHT: chemotherapy; NA: not applicable

∗Hand searching not included

30 articles identified∗

36 eligible articles

86 full-text articles

447 articles screened

361 articles excluded because of
different subject

5 no English; 30 review; 5 duplicate
articles; 10 editorial 

6 excluded because old version of
updated manuscript

Figure 1: Literature search.

inhibitors”, “cetuximab”, “cisplatin”, “platinum”, “toxicity”,
“quality of life”, “chemotherapy”, “induction”, “treatment”,
“transoral surgery”, “tors”, “hpv”, “head and neck cancer”,
“oropharyngeal”, “oropharynx” (Figure 1). Hand searching
(meeting proceedings of European Society ofMedical Oncol-
ogy, European SocieTy for Radiotherapy &Oncology, Ameri-
can Society for Radiation Oncology and American Society of
Clinical Oncology) and clinicaltrials.gov were also used. The
last literature search was done in January 2019. Only English
written publications were selected. Titles and abstracts of
search results were screened to determine eligibility in the
manuscript.

3. Results

3.1. New Classification System for HPV-Related Oropha-
ryngeal Cancer. The 8th edition American joint commit-
tee on cancer (AJCC) tumor, lymph node, and metasta-
sis (TNM) staging manual on OPSCC introduced signifi-
cant modifications from the prior 7th edition [11]. HPV-
related OPSCC—based on the overexpression of the cyclin-
dependent kinase p16—was part of a separate section. It
specifically resulted in a change of T and N categories, due
to the important need to discriminate between the different
stage groups compared to OPSCC associated to other causes.
HPV-related OPSCC clinical (c) T classification no longer
included a cT4b category, because 5-year overall survival was
similar for patients classed as cT4a and cT4b according to

7th edition TNM staging system [6]. N classification, both
clinical and pathological (p), represented the main change
from the tobacco/alcohol-drivenOPSCC. Because cN1, cN2a,
and cN2b (7th edition TNM) cohorts had similar impact
on 5-year survival, they were grouped as one cN1 category,
including ≥ 1 ipsilateral lymph nodes, none larger than 6 cm
whereas cN2c was reserved for contralateral or bilateral
lymph nodes, none larger than 6 cm, and cN3 included ≥
1 lymph nodes larger than 6 cm. The combination of cT
and cN into stages—stage I (cT1-2 cN0-1), stage II (cT1-2
cN2 or cT3N0-2), and stage III (cT4 or cN3)—depicted an
adequate discrimination in HPV-related OPSCC prognosis
groups. Interestingly only distant metastatic disease (M1) was
considered stage IV.

The rationale for these changes is based on the inter-
national collaboration on oropharyngeal cancer network for
staging (ICON-S) multicentre cohort study, including 1907
patients with HPV-related OPSCC from seven institutions
across Europe and North America [6]. Several independent
external validations have been proposed [7–10]. Details are
listed in Table 1. Results showed similar or even better 5-
years overall survival ratesweighed against the ICON-S study.
Globally, these cohorts confirmed that the new classification
in HPV-related OPSCC provided better survival discrimina-
tion across the different stage categories compared to the 7th
edition TNM. Several considerations should be addressed.
Firstly, this favorable effect could be mainly driven by the
high treatment strategy (surgery and/or CRT). An illustrative
example included cT2cN1 disease, now stage I (8th edition
TNM) and previously stage III (7th edition TNM).Therefore,
it remains unknown whether the high survival rate observed
in HPV-related OPSCC patients represents an effective good
prognosis factor or merely reflects an overtreatment in this
population. Secondly, other factors, such as age, smoke, and
alcohol, may potentially even better stratify this setting of
patients.

pN categories focused only on number of positive lymph
nodes, using a cut-off of 4 to discriminate between pN1
(≤ 4 positive lymph nodes) and pN2 (> 4 positive lymph
nodes). Pathologic data emerged from surgical HPV-related
OPSCC cohort of 704 patients from five cancer centers [7].
It should be noted that the presence of bilateral/contralateral
lymph nodes had prognostic impact (p=0.049) in the uni-
variate analysis for overall survival, as well as extranodal
extension (ENE) having a positive trend (p=0.060). An
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external validation, based on 3745 patients from the national
cancer database (NCDB), concluded that ENE could play a
prognostic role in HPV-related OPSCC [12]. Results showed
a significant negative ENE effect (p < 0.001) on survival. But
this effect remained statistically significant when stratified
by N-stage only for pN1 disease. Further studies with large
cohort of patients are necessary to validate these patholog-
ical changes. But, again, maybe, to improve discrimination
between pathological groups, more factors, such as bilater-
ally/contralaterally and ENE, should be considered.

3.2. Radiation Therapy in HPV-Related Oropharyngeal Can-
cer. When appropriate, definitive cisplatin-based CRT using
intensity modulated technique (IMRT) is the standard of care
in OPSCC. But this approach has drawbacks in terms of
toxicity and subsequent patient quality of life (QoL). Consid-
ering the good prognostic value of HPV-driven disease, novel
treatment paradigms have been proposed in HPV-related
OPSCC. These treatment strategies include (i) radiation
dose deescalation, (ii) radiation volume deescalation, (iii)
induction response-based therapy, (iv) transoral surgery and
deintensification of adjuvant treatment. The joint aim is to
determine whether a less intensive regimen could minimize
toxicity while maintaining similar cure rates.

Radiation Dose Deescalation. Late RT-related toxicity repre-
sents a significant burden to OPSCC survivors, because it
negatively impacts on their QoL and their ability to function
in society. The dose delivered to surrounding tissues plays
a crucial role in the development of late toxicity. A dose-
effect relationship between dose exposure—maximum dose
(Dmax) and/or mean dose (Dmean) and/or percentage of
volume receiving x Gy (Vx)—of a specific organ at risk
(OAR) and development of its related toxicity has been
well established. For instance, a Dmean greater than 50Gy
to pharyngeal constrictor muscles, a Dmean greater than
26Gy to parotid gland, and a V50 greater than 40.5%
to mandible can, respectively, cause moderate to severe
swallowing impairment, xerostomia, and osteoradionecrosis
[13–15]. Ideally each OAR in the head and neck region
should receive a low dose exposure to reduce the risk of
RT-induced toxicity. But, in OPSCC, RT with curative intent
requires large treatment fields and high doses to be effective.
Traditionally the total dose delivered to eradicate clinical and
subclinical disease is 70Gy (2Gy per fraction) and 50Gy
(2Gy per fraction), respectively. Therefore it is not always
feasible to respect all OARs dose constraints, especially for
those structures in close proximity to burden tumor, such
as dysphagia-related structures, parotid gland, and mandible.
Given the IMRT technical ability (that permits including
OARs in the optimization process) and the low incidence
of regional failures in the elective volume (that receives a
prophylactic dose of 50Gy), deintensification RT strategies
could result in toxicity reduction without compromising sur-
vival outcomes [16, 17]. Radiation dose deescalation strategies
are currently under investigation. A phase III randomized
clinical trial was performed to evaluate the dose reduction
effect on late toxicity and regional tumor control in head
and neck cancer patients [18]. Independently of HPV status,

200 patients with head and neck carcinoma were randomized
to the standard dose of 50Gy versus the experimental dose
of 40Gy prescribed to the elective nodal volumes. Primary
end-point was dysphagia at 6 months of follow-up. Results
showed a trend to less dysphagia (p = 0.02) and less salivary
gland toxicity (p = 0.01) at 6 months without differences in
overall, disease-free, and disease-specific survival, as well as
local, regional, and distant control. But absolute numbers of
regional recurrences and distant metastases were too small to
draw definitive conclusions on the safety of dose deescalation
to 40Gy to the elective nodal volume. For sure it represents an
interesting approach especially in the context of HPV-related
OPSCC, due to the long life expectancy of a patient once his
cancer is cured.

Aparallel betweenHPV-relatedOPSCCandHPV-related
anal canal carcinoma could be even more interesting. In fact,
these two malignancies presented similar tumor histology
and viral etiology. A main consideration can be made in
the context of organ preservation strategy, using combined
CRT modality. In anal canal carcinoma, a total dose of
59.4Gy (1.8Gy per fraction) with concurrent chemotherapy
is recommended to assure a curative intent [19]. Therefore
it could be reasonable to prescribe a lower radiation dose
(≤ 60Gy) plus concomitant chemotherapy in the treatment
of HPV-related OPSCC. It might result in similar clinical
outcomes decreasing toxicity rates. Evidence is accumulating
that radiation dose deescalation can refer to primary tumor
target volume [20]. In a phase II trial, 43 favorable risk
HPV-related OPSCC patients were treated with IMRT to
a total dose of 60Gy (2Gy per fraction) plus concomitant
weekly cisplatin (30mg/m2 per week). Compared to standard
CRT regimen, radiation dose was reduced by 16% (70 to
60Gy) and cumulative chemotherapy dosage was reduced
by 60% (300mg/m2 to 180mg/m2). Primary end-point was
pathological complete response (pCR) based on biopsy of
the primary site and a limited or selective neck dissection
of pretreatment positive lymph node regions. This allowed
for a more patient safety standpoint due to authors being
worried for detrimental outcomes of deintensified strategy.
The pCR rate was 86% with relatively decreased toxicity.
Globally results were encouraging, but a randomized clinical
trial to make a direct comparison to standard regimen is
paramount to assess the real impact of deintensified CRT on
both long-term tumor control and toxicities.

Recently, the Memorial Sloan-Kettering Cancer Cen-
ter group performed a pilot study to test hypoxia imag-
ing—18F-fluorodeoxyglucose (18F-FDG) and dynamic 18F-
fluoromisonidazole (18F-FMISO) positron emission tomog-
raphy (PET)—as selection criteria for radiation dose deesca-
lation to gross nodal disease in HPV-related OPSCC patients
[21]. Stages III-IVb HPV-related OPSCC (7th edition)
patients without pretreatment hypoxia or with resolution
of hypoxia within 1 week of treatment on intratreatment
18F-FMISO PET received a 10Gy dose reduction (from
70Gy to 60Gy) to either the primary site and/or lymph
node(s). Of the 33 patients enrolled, 10 patients (30%) met
the criteria for radiation dose deescalation. At a median
follow-up of 32 months, the 2-year locoregional control,
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overall survival, and distant metastasis-free survival were
100%, 100%, and 97%, respectively, with minimal toxicity.
This approach emphasized the potential role of 18F-FMISO
PET to guide therapeutic decisions, but further studies are
necessary.

Several studies attested the high radiosensitivity of HPV-
related OPSCC, reporting comparable clinical outcomes in
patients with HPV-positive head and neck cancer treated
with definitive RT alone instead of standard CRT [22–24].
The reported influence of tumor HPV-status on RT respon-
siveness should be considered in radiation dose deescala-
tion strategies, even though exactly how to individualized
treatment remains uncertain. In this context, the NRG
Oncology cooperative group is leading a randomized phase
II trial (NCT02254278) to test exclusive modestly reduced-
dose IMRT (60Gy, 2.4Gy per fraction) versus CRT (weekly
40mg/m2 cisplatin and 60Gy, 2Gy per fraction) in 296
planned patients with cT1-2, cN1-2b, or cT3, N0-2b (7th
edition) HPV-related OPSCC and a lifetime cumulative
smoking history < 10 pack-years [25].

Radiation Volume Deescalation. Several investigators
assumed that limited radiation to the ipsilateral neck without
compromising locoregional control could be feasible in
selected patients also in the HPV era [26–30]. In general,
elective neck irradiation is not recommended if subclinical
disease risk is < 10%, due to RT morbidity [29]. Compared
to bilateral irradiation, unilateral neck irradiation permitted
to better spare OARs and reduce the risk of RT-related side
effects, such as xerostomia, improving patients’ QoL [26]. A
recent publication showed that ipsilateral RT continued to be
safe and contralateral neck failure remained low for patients
with cT1-2 cN0-2b (7th edition) HPV-related tonsillar cancer
[30]. With regard to control of lymphatic spread, a careful
case selection—well-lateralized lesion, without extension to
soft palate or tongue base, without muscle involvement or
any suspicion of deeper penetration, and no contralateral
neck lymph node metastasis— become essential. Prospective
clinical trials addressing the suitability of ipsilateral radiation
in HPV-related OPSCC are warranted to confirm the
efficacy of this approach. Restaging of HPV-related OPSCC
series according to 8th edition TNM and reevaluation of
previous treatment indications could result in a change of
the therapeutic strategies for HPV-related OPSCC. Probably
radiation volume deescalation is only imaginable in low-risk
HPV-positive patients.

Induction Response-Based Therapy. Different groups have
pursued an approach of radiation dose deescalation following
the use of induction chemotherapy [31–35].

The Optima trial was a phase II deescalation study
designed for patients with HPV-related OPSCC [31]. Induc-
tion chemotherapy was adopted to identify favorable patients
to apply significantly lower (chemo) radiation doses than
standard CRT. Patients were classified as low-risk (≤ T3,
≤ N2b, ≤ 10 pack-year history) and high-risk (T4 or ≥
N2c or >10 pack-year history). They received induction
chemotherapy, including 3 cycles of carboplatin (AUC 6) and
nab-paclitaxel (100mg/m2). Based on response to induction

treatment, locoregional therapy was stratified as (i) low-
dose RT alone to 50Gy (2Gy per fraction) in low-risk
patients with ≥ 50% response, (ii) low-dose CRT to 45Gy
(1.5Gy twice-daily fraction and paclitaxel, 5-fluorouracil, and
hydroxyurea) in low-risk patients with 30-50% response or
high-risk patients with ≥ 50% response, (iii) standard-dose
CRT to 75Gy (1.5Gy twice-daily fraction and paclitaxel,
5-fluorouracil, and hydroxyurea) in poor responders. Pri-
mary site biopsy and neck dissection were performed only
after deescalated (C)RT for pathologic confirmation. The
primary endpoint was 2-year progression-free survival (2-
y PFS). With a median follow-up of 29 months, the 62
patients enrolled achieved excellent 2-y PFS rates (95% for
low risk patients, 94% for high risk patients). Severe acute
toxicity, including oral mucositis, skin dermatitis, and PEG-
tube requirement, was significantly lower with deescalated
treatment. These results compare favorably to the historical
control and justified the evaluation of this strategy in a larger
comparative trial. But it should be noticed that standard-dose
CRT scheme—1.5 Gy twice-daily fraction and paclitaxel, 5-
fluorouracil, and hydroxyurea—differed from the standard of
care cisplatin-based CRT treatment.

Similarly, the ECOG-ACRIN Cancer Research Group
trial evaluated induction chemotherapy (cisplatin, paclitaxel,
and cetuximab) followed by concurrent cetuximab and RT to
54Gy (2Gy per fraction), complete responders, or 69.3Gy
(2.1Gy per fraction), no-complete responders, in HPV-
related OPSCC patients [32]. The primary end-point was 2-
y PFS. Globally, 80 patients were evaluated. After a median
follow-up of 35.4 months, 2-y PFS was 80% in cohort with
clinical complete response. Interestingly, treatment failures
occurred within 2 years after accrual and were recorded on
patients with a > 10 pack-year smoking history. Significantly
fewer patients treated with dose deescalation had difficulty
swallowing solids or impaired nutrition.

Another ongoing US single-arm phase II trial inves-
tigated whether weekly paclitaxel CRT with radiation
dose deescalation would maintain survival outcomes while
improving functional outcomes [33]. After two cycles of
paclitaxel/carboplatin-based induction chemotherapy, com-
plete or partial responders received 54Gy (2Gy per fraction)
and those with less than partial or no responses received
60Gy (2Gy per fraction). The primary endpoint was 2-y
PFS. A total of 45 patients with stages III-IV (7th edition)
HPV-relatedOPSCCwere enrolled.Median follow-upwas 30
months and 2-y PFS rate was 92% with an acceptable toxicity
profile.

The Quarterback is an active phase III trial that directly
compared a radiation dose deescalation to the standard of
care in HPV-positive patients [34]. After 3 cycles of docetaxel
cisplatin and 5-fluorouracil induction chemotherapy, patients
with a clinical or radiographic complete/partial response are
randomized to receive a reduced (56Gy) or standard (70Gy)
dose RT with weekly carboplatin. A total of 365 patients
with advancedHPV-related oropharynx cancer, nasopharynx
cancer, or unknown primary are planned to determine the
comparative rate of PFS at 3 years. Preliminary results—based
on 23 patients enrolled and 20 randomized–have been pre-
sented at ASCO meeting in 2017 and the 2-y PFS rates were
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87.5% for those patients receiving standard dose and 83.3%
for those patients receiving dose deescalation [35].

Globally, all these studies indicated that HPV-related
OPSCC could be successfully treated with a sequential
treatment strategy of induction chemotherapy followed by
radiation dose deescalation preserving both clinical and
functional outcomes.Definitive phase III randomized clinical
trials adopting the 8th edition TNM classification and stan-
dard of care treatment arm are paramount to confirm these
results, define appropriate candidates, and alter standard
clinical practice. Surely, independently of radiation treat-
ment modalities—dose deescalation, volume deescalation,
and following induction chemotherapy—the high-quality RT
is paramount to guarantee reliable treatment outcome.

Transoral Surgery and Deintensification of Adjuvant Treat-
ment. Adjuvant (C)RT dose reduction following primary
transoral surgery is also being proposed as an alternative
deescalation treatment strategy for HPV-related OPSCC. Its
main advantage is the proper adjuvant treatment based on
objective criteria driven by pathologic staging. To our knowl-
edge, there are as yet no published prospective randomized
data on this topic, but several clinical trials are ongoing [36–
41]. Actually, the Mayo Clinic group presented at ASTRO
2017meeting the results of the phase II MC1273 trial but full-
text is still not available [36]. This study included patients
with HPV-related OPSCC and ≤ 10 pack-year smoking
history. Following surgery with negative margins, patients
with ≥T3, ≥N2, lymphovascular invasion, or perineural
invasion received 30Gy (1.5Gy twice daily fraction) with
concomitant docetaxel. In case of evidence of extracapsular
spread, patients received the same treatment plus a simul-
taneous integrated boost to nodal levels with extracapsular
spread to 36Gy (1.8Gy twice daily fraction). Results showed
a locoregional control rate (95%) comparable to historical
controls. No patients required feeding tube. Based on these
data, a phase III multicenter study (DART-HPV trial) has
been designed and is actively accruing [37]. A total of 214
are planned. Patients are randomized to receive deescalated
adjuvant docetaxel-based CRT (30Gy in 1.5 Gy fractions
twice daily in intermediate risk patients or 36Gy in 1.8 Gy
fractions twice daily in high risk patients) versus standard of
care treatment with weekly cisplatin 40mg/m2 concomitant
to RT to 60Gy delivered in 2Gy per fraction. Primary end-
point is adverse events rate at 2 years.

The ECOG-ACRIN Cancer Research Group designed a
phase II trial for stages III-IVb HPV-related OPSCC [38].
cN0 patients are not eligible. Based on their risk status —low
risk: no adverse pathological features, intermediate risk:
T1-3, N2a-2b, perineural and/or vascular invasion or close
margins, and high risk: positivemargins and/or extracapsular
spread—patients are assigned to (i) transoral robotic surgery
(TORS) alone (low risk), (ii) TORS and low-dose RT, 50Gy
2Gy per fraction (intermediate risk), (iii) TORS and standard
dose RT, 60Gy 2Gy per fraction (intermediate risk), and
(iv) TORS and standard dose weekly platinum-based CRT,
66Gy 2Gy per fraction (high risk). Patients classified as
intermediate risk are randomized to low-dose or standard
dose treatment arm. Primary end-point is 2-y PFS.

In the ADEPT trial, HPV-related OPSCC patients
received either RT alone (60Gy, 2 Gy per fraction) or weekly
cisplatinum-based CRT (60Gy, 2 Gy per fraction) after
margin-clearing TORS of their T1-4a oropharynx primary
(7th edition) and a neck dissection with extracapsular spread
in their lymph nodes [39]. Primary end-points were 5-year
disease-free survival and 5-year locoregional control.

The primary outcome of the prospective randomized
PATHOS study is to improve patient-reported swallowing
outcome testing adjuvant dose deescalation RT in order to
continue to a phase III noninferiority study with overall
survival as the primary end-point [40]. Patients with stage
T1-3, N0-2b (7th edition) HPV-related OPSCC, are enrolled.
Following surgery and based on pathological risk factors for
recurrence, patients will receive (i) no adjuvant treatment, (ii)
randomization to adjuvant RT to 60Gy (2Gy per fraction) or
50Gy (2Gy per fraction), and (iii) randomization to adjuvant
weekly cisplatin-based CRT to 60Gy (2Gy per fraction) or
RT alone to 60Gy (2Gy per fraction).

An interesting approach was proposed by the Memorial
Sloan Kettering Cancer Center [41]. Investigators conducted
a pilot study using 18F- FMISO PET to identify HPV-related
OPSCC patients eligible for adjuvant dose deescalation.
Patients received surgery to primary tumor only, whereas
lymph nodes were evaluated by 18F- FMISO PET. Patients
without hypoxia or with resolution at intratreatment 18F-
FMISO PET received 30Gy (2Gy per fraction) to the tumor
bed and neck with 2 cycles of concurrent high-dose cis-
platin or carboplatin/5-FU. Patients with persistent hypoxia
received standard CRT up to 70Gy. Neck dissection was
performed 4 months after CRT. In total 19 patients were
enrolled and 15 patients were deescalated to 30Gy. Globally,
18 out of 19 patients (95%) remain disease free. A multicenter
trial to validate these pilot results is ongoing.

In summary, waiting for definitive results of the proposed
trials, no firm conclusions can be drawn. We agree with
the principle of pathological risk and functional imaging
assessment to guide treatment deescalation decisions.

3.3. Systemic Therapy in HPV-Related Oropharyngeal Cancer.
Efforts to minimize acute and late toxicity of primary CRT in
HPV-related OPSCC patients also include systemic therapy.
The options are (i) replacing cisplatin with the epidermal
growth factor receptor (EGFR) inhibitor cetuximab and (ii)
replacing cisplatin with immune check-point inhibitors.

ReplaceCisplatinwithCetuximab.Cetuximab is an IgG1mon-
oclonal antibody against the EGFR approved by the US Food
and Drug Administration in 2006 due to its proven survival
benefit (median survival from 29.3 months to 49 months)
without increasing the common toxic effects compared to
RT alone in locally advanced head and neck cancer (IMCL-
9815 trial) [42]. The updated data of IMCL-9815 trial for
subgroup analyses of patient and tumor factors suggested a
potential increased survival benefit from cetuximab in those
patients with early T stage and advanced N stage OPSCC, age
< 65 years, and high performance status [43]. Importantly,
the IMCL-9815 trial was not powered for this subgroup
analysis. Therefore these data could be ascribable to chance,
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but it should be noted that these characteristics are common
to patients with HPV-related disease and this finding has
encouraged research groups to test the use of cetuximab in
these patients. Two randomized noninferiority trials, the De-
ESCALaTE HPV trial and the RTOG 1016 trial, proposed
cetuximab for treatment deescalation strategy inHPV-related
OPSCC [44, 45]. The aim was to reduce standard cisplatin-
based CRT toxicity profile while preserving survival efficacy.
Final data analyses were published online in November 2018.
Contrary to expectations, replacing cisplatin with cetuximab
demonstrated a significantly detrimental impact on survival
end-points, in both trials. In light of these results, RT
plus cetuximab cannot be considered a deescalation strategy
to reduce toxicity while maintaining survival in patients
with HPV-related OPSCC. Cisplatin-based CRT remains the
standard of care.

Replace Cisplatin with Immune Check-Point Inhibitors. Dur-
ing the past few years, there has been an exciting development
of immunotherapy, especially check-point inhibitors in dif-
ferent human malignancies, including head and neck cancer
[46]. The immune check-point inhibitors represent a suc-
cessful immunotherapeutic approach, due to their peculiar
ability to target lymphocyte receptors, as opposed to target
therapy, such as cetuximab, that act directly on the tumor cells
[47]. They mainly include antiprogrammed death-1 (PD-1)
antibody and anticytotoxic T lymphocyte associated antigen
4 (CTLA-4) antibody. Nivolumab and pembrolizumab are
both anti-PD-1 antibody and are recommended as categories
1 and 2a, respectively, in recurrent and/or metastatic head
and neck cancer (nonnasopharyngeal cancer) if disease pro-
gresses on or after platinum-based chemotherapy [4]. Based
on phase III CheckMate 141 study (nivolumab) and phase Ib

KEYNOTE-012 trial (pembrolizumab), deintensification by
replacing cisplatinwith immune check-point inhibitors could
represent a promising strategy to achieve optimum disease
control with minimal long-term toxicities in HPV-related
OPSCC with favorable risk disease.

A phase II study with safety lead-in has been designed
to test safety, tolerability, and efficacy of anti-CTLA4 (ipili-
mumab) and anti-PD-1 (nivolumab) in combination with RT
up to 60Gy (2Gy per fraction) in patients with 8th edition
stages T1N2, T2N1-2, and T3N0-2 HPV-related OPSCC [48].
This study is not yet recruiting.

[To note, the potential role of RT combination with these
agents has recently been proposed in patients with HPV-related
OPSCC with smoking status > 10 pack-years, stage T1-2N2b-
N3, or ≤ 10 pack-years, stages T4N0-N3 or T1-3N3 [49].
The aim is to test the safety of nivolumab added to several
CRT regimens, including weekly cisplatin, high-dose cisplatin,
cetuximab, or IMRT alone. Final data collection for primary
outcome measures is estimated in March 2019.]

Enrolment in current trials of RT plus immune check-
point inhibitors in this patient population should be strongly
encouraged where possible.

4. Conclusions

At present, HPV-related OPSCC can be considered a distinct
disease primarily as a consequence of its anatomical location
and its viral aetiology. Its optimal treatment approach is still
not well-defined. For sure, HPV-related OPSCC is extremely
sensitive to radiation exposure and patients generally are
complete responders and long-term survivors. Therefore
over the years scientific interest has shifted to new stratagems
to potentially improve functional outcomes. Figure 2
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summarizes the main deintensification strategies, based
upon the published literature discussed above. We believe
that Figure 2 could add value to the indirect comparisons
of these methods. It must be appreciated that its bullet
points are suggestions to standardize protocols and develop
a gold-standard assessment panel. In fact, an important
question is how to best implement both intradisciplinary
and interdisciplinary into the current HPV-related OPSCC
management. Actually, the vast majority of clinical trial is
testing different approaches. Thus, in the coming years, there
will be a big data disorder that could delay the expected
change in the standard of care. It should emphasize the
importance of a trial design and the value to compare
what is already conformed to the standard. In addition,
accurate patient selection should be critical to optimal
implementation of a new strategy. Research groups should
endeavor to consider such observations to implement and
optimize clinical results. At present no changes in HPV-
related OPSCCmanagement should be made outside clinical
trials.
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