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Artificial intelligence (AI) in computer games covers the
behaviour and decision-making process of game-playing
opponents (also known as nonplayer character or NPC).
Current generations of computer and video games offer
an amazingly interesting testbed for Al research and new
ideas. Such games combine rich and complex environments
with expertly developed, stable, physics-based simulation.
They are real-time and very dynamic, encouraging fast and
intelligent decisions. Computer games are also often multia-
gents, making teamwork, competition, and NPC modelling
key elements to success. In commercial games, such as
action games, role-playing games, and strategy games, the
behaviour of the NPC is usually implemented as a varia-
tion of simple rule-based systems. With a few exceptions,
machine-learning techniques are hardly ever applied to state-
of-the-art computer games. Machine-learning techniques
may enable the NPCs with the capability to improve their
performance by learning from mistakes and successes, to
automatically adapt to the strengths and weaknesses of a
player, or to learn from their opponents by imitating their
tactics.

In this special issue, we introduce a number of interesting
papers contributing to a wide range of these topics and
reflecting the current state of Al for Computer Game in
academia. A total of 20 papers have been submitted to
this special issue, of which 9 high-quality papers have been
accepted after the peer review process.

This special issue starts with the first paper “Performance
simulations of moving target search algorithms” by Peter
Kok Keong Loh et al. In this paper, the authors focused on
the design of moving target search (MTS) algorithms for
computer generated bots. MTS algorithms pose important

challenges as they have to satisfy rigorous requirements
which involve combinatorial computation and performance.
In this paper, the authors investigate the performance and
behaviour of existing moving target search algorithms when
applied to search-and-capture gaming scenarios. As part
of the investigation, they also introduce a novel algorithm
known as abstraction MTS. They conduct performance
simulations with a game bot and moving target within
randomly generated mazes of increasing sizes and reveal that
abstraction M TS exhibits competitive performance even with
large problem spaces.

The second paper is proposed by Julio Clempner and
is entitled “A shortest-path lyapunov approach for forward
decision processes.” In this paper, the author presents a
formal framework for shortest-path decision process prob-
lem representation. Dynamic systems governed by ordinary
difference equations described by Petri nets are considered.
The trajectory over the net is calculated forward using a dis-
crete Lyapunov-like function. Natural generalizations of the
standard outcomes are proved for the deterministic shortest-
path problem. In this context, the authors are changing the
traditional cost function by a trajectory-tracking function
which is also an optimal cost-to-target function for tracking
the net. This makes an important contribution in the
conceptualization of the problem domain. The Lyapunov
method introduces a new equilibrium and stability concept
in decision process for shortest path.

The third paper is entitled “Fractal analysis of stealthy
pathfinding aesthetics” authored by Coleman Ron. In this
paper, the author uses a fractal model to analyze aesthetic
values of a new class of obstacle prone or “stealthy”
pathfinding which seeks to avoid detection, exposure, and



openness in videogames. This study is interesting since in
general the artificial intelligence literature has given relatively
little attention to aesthetic outcomes in pathfinding. The
data reported, according to the fractal model, suggests
that stealthy paths are statistically significantly unique in
relative aesthetic value when compared to control paths.
The author also shows that paths generated with different
stealth regimes are also statistically significantly unique.
These conclusions are supported by statistical analysis of
model results on experimental trials involving pathfinding in
randomly generated, multiroom virtual worlds.

The next paper is proposed by Frank Dignum et al.
and discusses “Games and agents: designing intelligent
Gameplay” Multiagent system research offers a promising
technology to implement cognitive intelligent NPC’s. How-
ever, the technologies used in game engines and multiagent
platforms are not readily compatible due to some inherent
differences of concerns. Where game engines focus on real-
time aspects and thus propagate efficiency and central con-
trol, multiagent platforms assume autonomy of the agents.
Increased autonomy and intelligence may offer benefits for a
more compelling gameplay and may even be necessary for
serious games. However, it raises problems when current
game design techniques are used to incorporate state of
the art multiagent system technology. In this paper, the
authors focused on three specific problem areas that arise
from this difference of view: synchronization, information
representation, and communication. They argue that current
attempts for integration still fall short on some of these
aspects. They show that to fully integrate intelligent agents
in games, one should not only use a technical solution, but
also a design methodology such as OperA, that is amenable
to agents.

The fifth paper presents “A multiagent potential fields
based bot for real-time strategy games” authored by Johan
Hagelback et al. The paper discusses bots for real-time
strategy (RTS). A bot controls a number of units that will
have to navigate in a partially unknown environment, while
at the same time avoid each other, search for enemies, and
coordinate attacks to fight them down. “Potential fields” is
a technique originating from the area of robotics where it
is used in controlling the navigation of robots in dynamic
environments. The authors present a multiagent potential
field based bot architecture which is evaluated in two
different real-time strategy game settings and compare it, in
terms of performance, and configurability, to other state-of-
the-art solutions. The authors show that the solution is a
highly configurable bot which can match the performance
of traditional RTS bots. They also show that a multiagent
potential field-based bot is highly competitive in a resource
gathering scenario.

The next paper is “Combining artificial intelligence
methods for learning bots in a real time strategy game”
authored by Robin Baumgarten et al. The authors describe
an approach to simulate human game-play in strategy
games using a variety of Al techniques, including simulated
annealing, decision tree learning, and case-based reasoning.
They have implemented an Al-bot that uses these techniques
to form a novel approach to plan fleet movements and attacks

International Journal of Computer Games Technology

in DEFCON, a nuclear war simulation strategy game released
in 2006 by Introversion Software Ltd, Surrey, UK. They
describe how the Al-bot operates, and the experimentation
they have performed in order to determine an optimal
configuration for it. With this configuration, the proposed
Al-bot beats Introversion’s finite state machine automated
player in 76.7% of 150 matches played.

The seventh paper is “Enhancing artificial intelligence on
a real mobile game” by Fabio Aiolli et al. Mobile gaming
represents a killer application that is attracting millions of
subscribers worldwide; yet, several technical issues in this
context remain unsolved. One of the aspects crucial to the
commercial success of a game is ensuring an appropriately
challenging artificial intelligence (AI) algorithm against
which to play. However, creating this component is partic-
ularly complex as classic search Al algorithms cannot be
employed by limited devices such as mobile phones or, even
on more powerful computers, when considering imperfect
information games (i.e., games in which participants have
not a complete knowledge of the game state at any moment).
In this paper, the authors propose to solve the imperfect
information game issue by resorting to a machine learning
algorithm which uses profiling functionalities in order to
infer the missing information, and making the Al able to
efficiently adapt its strategies to the human opponent. They
studied a very simple and computationally light machine
learning method that can be employed with success, enabling
Al improvements for imperfect information games even on
mobile phones. They present results on a simple game called
Ghosts which show the ability of their algorithm to quickly
improve its own predictive performance as the number of
games against the same human opponent increases. A mobile
phone-based version of the game has been also created which
can be played either against another player or against the Al
algorithm.

The eighth paper is “Breeding terrains with genetic
terrain programming—the evolution of terrain generators”
by Miguel Frade et al. Although a number of terrain
generation techniques have been proposed during the last
few years, all of them have some key constraints. Modelling
techniques depend highly upon designer’s skills, time, and
effort to obtain acceptable results, and cannot be used to
automatically generate terrains. The simpler methods allow
only a narrow variety of terrain types and offer little control
on the outcome terrain. The Genetic Terrain Programming
technique, proposed, based on evolutionary design with
genetic programming, allows designers to evolve terrains
according to their aesthetic intentions or desired features.
This technique evolves terrain programmes (TPs) that are
capable of generating a family of terrains - different terrains
that consistently present the same morphological charac-
teristics. This paper presents a study about the persistence
of morphological characteristics of terrains generated with
different resolutions by a given TP. Results show that it
is possible to use low resolutions during the evolutionary
phase without compromising the outcome and that terrain
macrofeatures are scale invariant.

Finally, the last paper is “Fine-tuning parameters for
emergent environments in games using artificial intelligence”
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authored by Vishnu Kotrajaras et al. This paper presents the
design, development, and test results of a tool for adjusting
properties of emergent environment maps automatically
according to a given scenario. Adjusting properties for a
scenario allows a specific scene to take place while still
enables players to meddle with emergent maps. The tool uses
genetic algorithm and steepest ascent hill-climbing to learn
and adjust map properties. The authors shows that using
the proposed tool, the need for time consuming and labour-
intensive parameter adjustments when setting up scenarios
in emergent environment maps, is greatly reduced. The tool
works by converting the paths of events created by users
for a map to the properties of the map that plays out the
scenario set by the given paths of events. Test results show
good properties preservation.

Abdennour El Rhalibi
Kok Wai Wong
Marc Price
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The design of appropriate moving target search (MTS) algorithms for computer-generated bots poses serious challenges as
they have to satisfy stringent requirements that include computation and execution efficiency. In this paper, we investigate the
performance and behaviour of existing moving target search algorithms when applied to search-and-capture gaming scenarios. As
part of the investigation, we also introduce a novel algorithm known as abstraction MTS. We conduct performance simulations
with a game bot and moving target within randomly generated mazes of increasing sizes and reveal that abstraction MTS exhibits

competitive performance even with large problem spaces.
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1. Introduction

In most RPG/adventure-based computer games, different
types of bots act as adversaries to players. For example, in
the recently launched Hellgate [1], players need to defend
against and fight computer-generated demonic hordes. In
such games, each generated bot is typically incorporated
with suitable algorithms that enable it to locate and move
towards a player. Each bot also has a “detection range or
area” within which, it can detect a player. Unlike existing
algorithms for static targets [2, 3], algorithmic designs for
moving target search (MTS) algorithms are inherently more
involved. The computational and memory requirements are
significant. In some computer games, search algorithms
can take up as much as 70% of CPU time [4-6]. This
is due to the large number of objects (e.g., player, NPC,
building, and walls) that need to be taken into consideration
in the game environment [7]. The computational and
memory requirements are also high when multiple bots
communicate to find strategic paths as shown in our earlier
work on Team Al [8]. Graphics also consume a significant
proportion of computational resources leaving a limited
amount for game AI [4]. Many contemporary graphics-
intensive computer games are real-time, however, which

means that bot responses to a player must be made as soon
as possible. Such a scenario poses conflicting demands on the
design of MTS algorithms.

This paper presents a study of the performance and
behaviour of existing moving target search (MTS) algorithms
in a maze search-and-capture scenario. As part of the study,
we include a novel MTS algorithm called abstraction MTS
and evaluate its performance and behaviour against the
existing algorithms. Section 2 of this paper reviews three
existing widely used MTS algorithms. Section 3 states the
definitions and notations on which subsequent sections
are based. The design of the abstraction MTS algorithm
is detailed in Section 4. Section 5 describes the perfor-
mance and behavioural analyses. The paper concludes with
Section 6 followed by the Acknowledgments and References.

2. Survey

In a contemporary player-bot engagement-based computer
game, the bot’s response and behaviour are designed to be
as realistic as possible. For example, a bot would be able to
sense (detect) a player within its visibility region and not
beyond. To make the game more engaging and playable,
a typical bot should not be able to detect beyond some



finite region. Deep look-ahead search techniques that would
be useful in certain games like chess would add an unfair
advantage to a bot’s capabilities and reduce the engagement
and playability of the game [9]. In our work, therefore, we
focus on algorithm designs that exploit “neighbourhood”
information—information that can be determined within a
finite detection region surrounding a bot. In this section,
we review three well-known existing MTS algorithms for
moving targets: basic moving-target search, weighted mov-
ing target search, and commitment and deliberation moving
target search algorithms.

2.1. Basic Moving Target Search. The basic moving target
search (BMTS) algorithm [10] is a generalisation of the
learning real-time A* algorithm [11]. A matrix of heuristic
values is maintained during the search process to improve
their accuracy. The upper bounds on space and time
complexities of B-MTS are N? and N3, respectively, where N
is the number of states in the problem space. Although MTS
could converge to an optimum path (solution) eventually, it
suffers from heuristic depression [10], which is a set of states
with heuristic values not exceeding those of all neighbouring
states. This may occur since heuristic value updates are
localised leaving state inaccuracies over other areas in the
problem space. In a heuristic depression, an agent repeatedly
traverses the same subset of neighbouring states without
visiting the rest. The agent may also continue to look for
a shorter path even though a fairly good path to the target
has been found. This would incur additional computational
overheads and reduce bot performance during game play.

2.2. Weighted Moving Target Search. In certain scenarios, an
optimal solution may not be needed and suboptimal paths
may be found in a shorter time. The weighted moving target
search (WMTS) algorithm [12] reduces the amount of explo-
ration in MTS and accelerates convergence by producing a
suboptimal solution. It allows a suboptimal solution with &-
error and J-search (real-time search with upper bound) to
achieve a balance in solution path quality and exploration
cost. During the search, heuristic values are brought as close
as possible to, but not reaching, the actual values. So, there
is no guarantee that the search will eventually converge to
an optimal solution. It is also important to determine a
value of § such that it can restrain exploration and find
better solutions. The amount of memory space increases as
d increases.

2.3. Commitment and Deliberation Moving Target Search.
With the commitment and deliberation moving target search
(CDMTS) algorithm [10], the agent may ignore some of
the target’s moves. The agent only updates the target’s
moves when the agent is not in a heuristic depression. The
commitment to the current target state increases if the agent
moves in a direction where the heuristic value is reducing. If
the agent is in a depression, it ignores the target’s moves and
commitment is set to 0. During deliberation, real-time search
is performed when heuristic difference decreases, and offline
search is performed when the agent is in heuristic depression.
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The offline search is used to determine the boundary of the
heuristic depression. The CDMTS algorithm improves upon
the efficiency of BMTS since the agent can exit from the
heuristic depression faster.

3. Preliminaries

To simplify the problem, we prohibit movements in the
third dimension (e.g., jumping, climbing) by either the bot
or the player. The problem space is then reduced to that
of a two-dimensional (2D) region, whereby movements of
both bot and player are restricted to left, right, forwards, and
backwards. We also require that the size of the problem space
can be varied with obstacles generated and placed randomly.
The unobstructed locations (no obstacles) in the maze are
defined as a set of states and all traversals between a state and
neighbouring states are defined by a set of edges with edge
cost = 1.

In the following, we will use the terms “agent” or “bot”
and “target” or “player” interchangeably. From each state,
the agent or target can move to any of a maximum of
four neighbouring states (representing locations to the left,
right, forward, and backward directions) if unobstructed. The
target moves randomly and slower than the agent so that the
target will be acquired in a finite time. The goal for the agent
is then to find a path from starting state s to the current target
state g, if there is at least one path from s to g. The goal is
accomplished if both agent and target occupy the same state.
We define the following:

§ = current state;
g = goal state;
s" = other state (not s or g);

succ(s) = the set of successor states of s (neighbour
states of state s);

j(a, b) = total edge cost from state a to state b;
h(a, b) = heuristic value from state a to state b;

h*(a,b) = minimal heuristic value from state a to
state b considering all alternative paths;

f(s,g) = j(s,8") + h(s',g), where f is the computed
cost of a path from sto g

To guarantee the completeness of the algorithm, we
assume that the minimum heuristic value is never overes-
timated, that is, h(a,b) < h*(a,b) [10]. This is the case
in the previous 3 algorithms surveyed. Information that
includes the maze configuration, target position, and target
movement pattern are not available initially. As shown in
Figure 1, the agent can only detect the target’s position if the
target is within detection range r, regardless of whether there
is an obstacle between them.

To simplify the calculation, the detection area is repre-
sented as a square and the value r is greater than one to
emulate a bot equipped with above average human player’s
sensory-detection capabilities. For comparison purpose,
the target (human) may be assumed to have a detection
area with r = 1. This is typical in the more challenging
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Target

| . \ Obstacle

.7

Agent
r = detection range

r>1

FIGURE 1: Target is detected within range.

contemporary games. In the case of BMTS, WMTS, and
CDMTS, the agent does not know the value of h* (g, b) until
it finds an optimal solution. A path (so, s1,...,5,) is optimal
if and only if h(s;) = h*(s;) for 0 < i < n, where h*(s;)
equals the actual cost from s to the goal and h(s;) equals
the heuristic value. Heuristic value is computed with the
Manhattan distance method.

4. Abstraction Moving Target Search
Algorithm Design

Each of the existing MTS algorithms employs a heuristic
array table in its learning process. For each state s, we need
to store the heuristic value with all states. That is, we need
to store the state pairs: h(s, k), where k € S (problem state
space) except h(s,s) = 0. Group values are stored in a 2D-
array, abstract. Also, since h(x, y) = h(y, x), the total memory
needed is upper-bounded by (n? — n)/2, where n is the
number of states in S. To solve this problem, we apply the
abstraction maze approach. Our approach is to have a 2-level
search as illustrated by an example of an abstraction maze in
Figure 2.

Figure 2 shows that when the agent detects the target, it
checks if the target position belongs to a group. If so, the
agent will determine the best abstraction move list AL and
required real move list(s) RL to acquire the target. In this
example, AL = {4,1,2,5}. Using group numbers to simplify
representation, three real move lists would be generated as
follows: real move list 1 = {4,1,1,1}, real move list 2 =
{1,1,2}, and real move list 3 = {2,2,5,5,5}. Each real move
list contains a movement path up to the next group head and
the last leading up to the target.

Specifically, each node x in the abstraction maze may be
labeled with a number which indicates an associated group,
gry. These group values are stored in a 2D-array labeled
abstract. A group p also has a group head, hd(p). The group
head is used as a base to measure the cost (distance) to
all nodes in the same group. The distance from a node s
to its group head, gr;, must be less than some constant
abstractDistance. That is, j(s, hd(grs)) < abstractDistance. In
the example in Figure 2, abstractDistance is equal to 3. Each
group also maintains a list of its neighbours. For example,
the neighbours of group 1 are groups 2, 3, and 4.

Agent

[] Real move list 1
E9 Real move list 2
Real move list 3

FIGURE 2: Abstraction maze example.

In the initialisation step of the algorithm, the starting
point of the agent is set at the location of the head of group
1 and number AbstractNode is set to 1. The variable number
AbstractNode is defined as the number of groups that has
been created. During exploration, after the agent has moved
to a new state (position) s’, it will check if this node has
a group. If it has not, the agent will check if the nearest
head distance is less than abstractDistance. If it is, then apply
setAbstract method. In setAbstract method, the current node
will be grouped with the nearest group head. If the nearest
head distance is not less than abstractDistance, then number
AbstractNode is increased by one and the current node will
become a new group head. Formally, this is expressed as
follows.

For each s'¢&gr;, (where gri € Abstract and 1 < i <
|Abstract|):

j(s',hd(gri)) < abstractDistance) = setAbstract (s,
gri);

j(s'shd(gri)) = abstractDistance) = (gry = number
AbstractNode +1 A hd(gr) = s').

The above process then repeats with the new group gr.

The abstraction moving target search (AMTS) algorithm
is shown in Figure 3. The abstraction move list guides the
agent’s movement sequence in the abstraction maze. The
real move list guides the agent’s movement sequence in the
original (unabstracted) maze. Variable detectTarget denotes
if the agent currently detects the target and exploreLocation
denotes the nearest node location which does not belong to
any group. If the agent does not detect the target, it will move
according to the last generated real move list and complete
the moves in this list. If the target has been acquired at the
completion of moves in the real move list, withinRange is
set to false and the run ends. Otherwise, the algorithm is
repeated with the next detection of the target by the agent. If
the real move list is empty, the algorithm attempts to generate



detectTarget == true

True

exploreLocation
= nearest node
with no group

True

Real move list is empty
Target position has a group
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False False

Real move list is empty

True

| Get latest target position |

Move agent to Generate
exploreLocation abstraction
move list

withinRange = false

Position tracking
algorithm

Do nothing|

Current agent state ==
latest target position

Generate real
move list

Move the
agent

Remove first element
in real move list

True

withinRange = false

FIGURE 3: Abstraction MTS algorithm.

one, based on the last known abstraction maze position of
the agent. The agent then follows the moves in this generated
real move list.

However, if the agent detects the target, withinRange is
set to true and the target position ¢ is checked for association
with a group. If it is, the agent will generate an abstraction
move list (with the latest target position) and real move list.
Each real move list contains a movement path up to the next
group head and the last real move list with a path up to the
target. Both abstraction and real move lists are then used
to guide the agent’s movement to acquire the target. When
agent state is the same as the target position, withinRange is
set to false so that the next search-acquisition cycle can begin.
If, on the other hand, the target position is not associated
with a group, the agent finds the nearest node with no group
and continues with exploration from this location using the
position tracking algorithm. Formally, this is expressed as
follows.

While (withinRange = TRUE):

for all gry, where gry € succ(gr,), find f_. (grv,
gre) = j(gre,gre) + higre,gry);

for fmin(gry,gr) = AL = {grs, gry,..., g1} ARL =
{s,51,82,... hd(gry)} = repeat generating RL for next
group till s, = t, where s € gr;.

Abstraction MTS does not employ heuristic values and,
therefore, does not learn. To reduce first move decision
latency, each real move list is generated after the previous one
has been traversed. This process continues until the agent
arrives at the target location. When the agent traverses a real
move list, it will ignore the target’s move. It only updates the
target’s position when it generates a new real move list. In
this way, it will be faster to search for the target with lower
memory requirements.
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5. Performance Simulation and Analysis

The simulation was conducted for 6 different maze sizes: 50x
50, 100 % 100, 150 X 150, 200 x 200, 250 X 250, and 300 x 300.
All algorithms had the same starting points for their agent
and target in the same maze. The starting points of agent and
target are random and the heuristic distance between their
starting points is at least half of the diagonal length of the
maze. For each maze, every algorithm was executed 100 times
and the average of the results was recorded.

5.1. Results. The results show that the degree of learning
required in the algorithm depends on the target game
application. For turn-based games like chess and weiqj,
compute-intensive learning algorithms based on heuristics
are effective propositions. However, for real-time action
games where expected responses are in seconds or millisec-
onds, compute-intensive learning approaches significantly
degrade playability. For real-time MTS gaming scenarios,
in specific, an adaptive algorithm, with minimal or no
learning but favouring faster acquisition, proves a more
viable solution.

Figure 4 shows an example of a maze used in our
experiments. The black portions represent the pathways in
the maze. In this particular maze, there are two entry/exit
points (top-left and bottom-right). White portions indicate
walls in the maze. Each maze is essentially a square n x n grid.

Since all algorithms incorporate the same position
tracking routine, the number of exploration moves is similar
for all algorithms. In position tracking routine, the agent
only needs to check the value of its neighbour. So, the other
four algorithms should have a constant time, independent of
maze size. Figure 5 shows the number of agent steps taken by
the moving target search algorithm to acquire the target. The
number of moves required for the learning process depends
on the difference between the heuristic value and the actual
value. As this value difference increases, the agent takes more
steps to update the heuristic value. Weighted MTS incurs
additional moves to find alternate path to the target. Because
of this, weighted MTS has the worst performance in a perfect
maze. Commitment MTS has the second best performance.
It can be explained by the behaviour of the target that moves
randomly. Because of that, the target will not move far away
from initial position. So, it will be better for the agent to
ignore some of target move to reduce learning process.

Each point on the graph represents an average of 100
runs of the AMTS algorithm. Although the agent and
target start at the same locations for each run, the target
moves randomly. In some of the runs, it is possible that
the target approaches the agent more closely leading to an
acquisition with less moves. The target’s movement can also
be influenced to an extent by the maze topology generated.
The maze in Figure 4, for example, has a number of linear
pathways without many junctions with the result that the
target may have a net effect of moving along one dimension
without deviation, leading it closer to the agent despite
starting further away. On the whole, therefore, the average
number of moves may drop even when the maze size
increases. This is shown in Figure 5, from 100 to 150 nodes
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FIGURE 4: Two-dimensional maze generated by Daedalus program
[13].
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as well as from 250 to 300 nodes. As the problem space
increases, however, the overall trend shown by the AMTS
algorithm is still an increasing number of moves.

Figure 6 shows the maximum time required for each
movement in the moving target search algorithm. It is known
that BMTS, WMTS, and CDMTS have O(1) computation
complexity and O(n?) memory requirements. The upper
bound for computation complexity is O(p*); where p is
the actual path length and k is number of branching in
a node (constant value) [8]. Hence, the performance of
these algorithms scales exponentially with increasing maze
size. AMTS, however, has computation complexity that
depends on the maze structure and the actual path length.
The computation complexity is also greatly reduced by
introducing abstraction maze and computing partial path
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based on neighbouring abstract group information instead
of problem space-wide heuristic arrays. This results in the
performance of AMTS being linear rather than exponential.
As shown in Figure 6, the increase rate for computation
complexity in AMTS is on average linear, and the upper
bound of memory storage in AMTS is O(n); where n is
number of states.

Since the target movement is random, there could be
instants in some runs when the target leaves the detection
range of the agent while it is executing either “abstracted”
or “real” moves. As a result, the agent switches back to
exploration with the position tracking algorithm before it
can complete the movements that lead to target acquisition.
This invariably leads to a higher overhead in decision time
per move even though the target starts off closer to the agent
in a smaller maze. However, since the target moves slower
than the agent, these “irregularities” do not occur often.
Figure 6 shows such an irregularity occurring from 200 to
250 nodes before the max time per move increases again.

6. Conclusion

This paper compared and analysed several variants of the
MTS algorithm. The main focus of performance, such as
effectiveness of learning and speed of response, has been
compared with various algorithms. Overall, abstraction MTS
has the best performance. It may have the highest exploration
move, but it has the lowest MTS move. However, there
are some weaknesses of abstraction MTS that we will be
studying.

(1) It is difficult to determine abstractDistance correctly,
especially when the agent does not know the size of
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maze. AbstractDistance is the distance from one node
to its group head.

(2) As the maze size increases, it will take a longer time to
generate the movement path.

(3) Abstraction MTS may not generate optimal path
since it computes complete path in abstraction level,
not in actual maze.
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1. Introduction

The shortest-path problem (see [1-3]) plays a fundamental
role in Petri nets theory, since it can be used to model
processes. The analysis of these models can show useful
information about the process. For example, deadlocks,
equilibrium points, and so forth can be identified by
computational analysis.

While it is possible to analyze such processes using the
existing classical theory through the Bellman’s equation with
the cost criterion ([4-15]), much of this theory has few
disadvantages. Bellman’s equation is expressed as a sum over
the state of a trajectory needs to be solved backwards in
time from the equilibrium point (target point). It results
in an optimal function when it is governed by Bellman’s
principle, producing the shortest path needed to reach
a known equilibrium point. Notice that the necessity to
know the equilibrium point beforehand when applying the
equation is a significant constrain, given that, in many
practical situations, the state space of a Petri net is too large
for an easy identification of the equilibrium point.

Moreover, algorithms using Bellman’s equation usually
solve the problem in two phases [16]: preprocessing and
search. In the preprocessing phase, the distance is usually
calculated between each state and the equilibrium points
(final states) of the problem, in a backward direction. Then,
in the search phase, these results are employed to calculate
the distance between each state and the equilibrium points,
leading the search process to a forward search.

Tracking the state space in a forward direction allows
the decision maker to avoid invalid states that occur in the
space generated by a backward search. In most cases, the
forward search gives the impression to be more useful than
the backward search. The explanation is that in the backward
direction, when the case of incomplete final states arises,
invalid states appear causing problems.

Shortest-path problem [17, 18] can be classified by
two key categories [19]: (a) the single-source shortest-path
problem where the goal is to find the shortest path from
a given node to a target node (e.g., the algorithms of
Dijkstra and Bellman-Ford); and (b) the all-pairs shortest-
path problem is a similar problem in which the objective is



to determine the shortest path between every pair of nodes in
the net (e.g., the algorithms of Floyd-Warshall and Johnson).

We are concerned about the first case. However, we
consider dynamical systems governed by difference equations
described by Petri nets. The trajectory over the net is calcu-
lated using a discrete Lyapunov-like function. A Lyapunov-
like function is considered as a distance function denoting
the length from the source place to the equilibrium point.
This work is concerned with the analysis of the decision
process where a natural form of termination is ensured by
an equilibrium point.

Lyapunov-like functions can be used as forward trajec-
tory-tracking functions. Each applied optimal action pro-
duces a monotonic progress towards an equilibrium point.
Because it is a solution to the difference equation, naturally it
will lead the system from the source place to the equilibrium
point.

It is important to note that there exist areas of re-
search using Petri nets as modeling tool where the use
of a Lyapunov-like function is inherent. For instance, the
“Entropy” function is a specific Lyapunov-like function used
in Information Theory as a measure of the information
disorder. The “free Gibbs energy function” is a Lyapunov-like
function used in molecular biology for calculating the energy
change in a metabolic network.

This paper introduces a modeling paradigm for shortest-
path decision process representation in Petri nets theory.
The main point of this paper is its ability to represent the
characteristics related only with the global system behavior,
and those characteristics related with the trajectory-tracking
behavior.

Within the global system behavior properties, we show
notions of stability. In this sense, we call equilibrium point to
the place in a Petri net that its marking is bounded and it is
the last place in the net (sink).

In the trajectory-tracking behavior properties frame-
work, we define the trajectory function as a Lyapunov-
like function. By an appropriate selection of the Lyapunov-
like function, it is possible to optimize the trajectory. By
optimizing the trajectory, we understand that it is the
minimum trajectory-tracking value (in a certain sense). In
addition, we use the notions of stability in the sense of
Lyapunov to characterize the stability properties of the Petri
net. The core idea of our approach uses a nonnegative
trajectory function that converges in decreasing form to a
(set of) final decision states. It is important to point out that
the value of the trajectory function associated with the Petri
net implicitly determines a set of policies, not just a single
policy (in case of having several decisions states that could be
reached). We call “optimum point” the best choice selected
from a number of possible final decision places that may be
reached (to select the optimum point, the decision process
chooses the strategy that optimizes the trajectory-tracking
value).

As a result, we show that the global system behavior
properties and the trajectory-tracking behavior properties of
equilibrium, stability, and optimum-point conditions meet
under certain restrictions: if the Petri net is finite, then we
have that a final decision place is an equilibrium point.
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The paper is structured in the following manner. The
next section discusses the motivation of the work. Section 3
presents the formulation of the decision model, and all
the structural assumptions are introduced there, giving a
detailed analysis of the equilibrium, stability, and optimum-
point conditions for the global system behavior properties
and the trajectory tracking behavior parts of the Petri net.
Section 4 presents the properties of the model. Finally, in
Section 5 some concluding remarks are outlined.

2. Motivation

In this paper, we consider dynamical systems in which the
time variable changes discretely, and the system is governed
by ordinary difference equations. Let us consider systems of
first-order difference equations given by

neNy, (1)

Sn+l = f(sna an): Sny = S0>

where s; with i € N are the state variable of the system, s is
the initial state, a; and i € N are the action of the system,
NY = {ng,ng + 1,...,mp + k,...}, ny > 0. The system is
specified by the state transition function f, which is always
assumed as a one-to-one function for any fixed aand n € N,
continuous in all its arguments.

Lyapunov defined a scalar function L, called a Lyapunov-
like function, inspired by a classical energy function, which
has four important properties that are sufficient for establish-
ing the domain of attraction of a stable equilibrium point:
(a) Is* such that L(s*) = 0; (b) L(s) > 0 for all s#s*; (c)
L(s) — oo whens — oo;and (d) AL = L(si+1) — L(s;) < 0
for all i, s; # s*. The condition (a) requires the equilibrium
point to have zero potential by means of a translation to
the origin, (b) means that the Lyapunov-like function to be
semipositive defined, (c) means that there is no s* reachable
from some s, and (d) means that the Lyapunov-like function
has a minimum at the equilibrium point.

The main idea of Lyapunov is attained in the following
interpretation: given an isolated physical system, if the
change of the energy E for every possible state s is negative,
with the exception of the equilibrium point s*, then the
energy will decrease until it finally reaches the minimum at
s*. Intuitively, this concept of stability means that a system
perturbed from its equilibrium point will always return to it.

A system is stable [20, 21] if for a given set of initial states
the state of the system ensures (i) to reach a given set of states
and stay there perpetually or, (ii) to go to a given set of states
infinitely often. The conventional notions of stability in the
sense of Lyapunov and asymptotic stability can be used to
characterize the stability properties of discrete event systems.
An important advantage of the Lyapunov approach is that
it does not require high-computational complexity but the
difficulty lies in specifying the Lyapunov-like function for a
given problem.

At this point, it is important to note that the Lyapunov-
like function L is not unique, however the energy function
of a system is only one of its kind. A system whose energy E
decreases on the average, but not necessarily at each instance,
is stable but E is not a Lyapunov-like function.
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FIGURE 1: An illustrative example of finding the shortest path in a
grid world.

Lyapunov-like functions [22] can be used as trajectory-
tracking functions and optimal cost-to-target functions. As
a result of calculating a Lyapunov-like function, a discrete
vector field can be built for tracking the actions over the net.
Each applied optimal action produces a monotonic progress
(of the optimal cost-to-target value) toward an equilibrium
point. In this sense, if the function decreases with each
action taken, then it approaches an infimum/minimum (that
converges asymptotically or reaches a constant).

From what we have stated before, we can deduce the
following geometric interpretation of distance [22]: (a) L(s)
is a measure of the distance from the starting state s to any
state s in the state space (this is straightforward from the fact
that 3s* such that L(s*) = 0 and L(s) > 0 for all s=#s*);
and (b) the distance from the stating state sy to any state
sn in the state space decreases, when n — oo. It is because
L(siv1) — L(s;) < 0 forall 4, s; # s*.

A Lyapunov-like function can be considered as a distance
function denoting the length from the initial state to the
equilibrium point. It is important to note that the Lyapunov-
like function is constructed to respect the constraints
imposed by the difference equation of the system. In contrast,
a Euclidean metric does not take into account these factors.
For that reason, the Lyapunov-like function offers a better
understanding of the concept of the distance required to
converge to an equilibrium point in a discrete dynamical
system.

By applying the computed actions, a kind of discrete
vector field can be imagined over the search graph. Each
applied optimal action yields a reduction in the optimal
cost-to-target value, until the equilibrium point is reached.
Then, the cost-to-target values can be considered as a discrete
Lyapunov function.

In our case, an optimal discrete problem, the cost-to-
target values are calculated using a discrete Lyapunov-like
function. Every time a discrete vector field of possible actions
is calculated over the decision process. Each applied optimal
action (selected via some “criteria”) decreases the optimal
value, ensuring that the optimal course of action is followed
and establishing a preference relation. In this sense, the
criteria change the asymptotic behavior of the Lyapunov-like
function by an optimal trajectory-tracking value.

Usually, the criterion in optimization problems is related
with the choice of whether to minimize or maximize
the optimal action. If the problem is related with energy
transformations, as is classically the case in control theory,
then the criterion of minimization is applied. However, if
the dilemma involves a reward, typical in game theory, then
maximization is considered. In this work, we will arbitrary
consider the criterion of minimization.

The Lyapunov-like function can be employed as a
trajectory-tracking function through the use of an operator,
which represents the criterion that selects the optimal
action that forces the function to decrease and approaches
an infimum/minimum. It forces the function to make a
monotonic progress toward the equilibrium point. The
Lyapunov-like function can be defined, for example, as

L*(sp1) = min L(f (sn,a;)) (2)

which means that the optimal action is chosen to reach
the infimum/minimum. The function L* works as a guide
leading the system optimally from its initial state to the
equilibrium point.

Example 1. To illustrate the shortest-path problem, let us
consider a grid world (see Figure 1). At each time step, an
agent is able to select an action among a finite set A of actions,
for example, A = {Up,Down, Left, Right}. A transition
model specifies how the world changes when an action is
executed. An “equilibrium point” s* is a natural final state
of the system. Therefore, the shortest-path problem is a
search through the state space for an optimal path to the
equilibrium point s*, using a deterministic transition model.
The value of a state s is a number V(s) that intuitively
speaking expresses the desirability of state s. For instance,
let us consider the state-value function V' being equal to the
min function [23] as a specific Lyapunov-like function able
to lead an agent to an equilibrium point in a grid world.

Example 2. The relative entropy or Kullback-Leibler [24, 25]
distance between two probability distributions g;;; and g7,
is defined as

N N q"\k
Vigha') =2 D ajlos 5 - (3)

In the above definition, we use the convention (based
on continuity arguments) that Olog(O/injlk) = 0 and

q}j‘ « log(q}j‘ /0) = oo, The relative entropy is always
nonnegative and is zero ifand only if qj; , = g7 - V(q',4%) is
a distance-like function between distributions since it is not
symmetric and does not satisfy the triangle inequality.

Example 3. Glycolysis pathway (see Figure 2) is well known
and described [11, 26, 27]. It is a ten-step catabolic pathway
that makes use of eleven different enzymes. The outcome are
the conversion of glucose in two molecules of pyruvate with
concurrent net production of 2 ATPs. Glycolysis process can
be divided in two stages: (1) the conversion of glucose to
glyceraldehyde 3-phosphate with a required input of 2 ATPs,



(2) the conversion of glyceraldehyde 3-phosphate to pyruvate
with a net output of 4 ATPs.

Glycolysis can be informally explained from an energetic
perspective as follows. The initial amount of glucose may be
represented as a ball at the top of an irregular hill. Every
time the ball bounces, the hill represents a reaction state in
the breakdown of the sugar process. Each bounce of the ball
corresponds to a change in free energy level. This energy
change is modeled by the Gibbs energy function which is a
Lyapunov-like function. It is important to note that bounces
are irregular (reaching lower and higher energy levels) and
determined by the environment conditions. The final state
(pyruvate) is represented by the bottom of the hill where the
ball reaches a steady state (not bounces).

Let us explain the Petri net dynamics of the system model
as follows. Continuing with the ball and hill explanation, let
us suppose that the ball, representing the product pyruvate,
is at the bottom of the hill. And let us suppose that there is
no net force able to move the ball either up or down the hill.
That means that the reactions (forward and backward) are
evenly balanced. Therefore, the substances and products are
in equilibrium, and no net dynamics will take place. That is,
“the metabolic network system is in equilibrium.”

3. Formulation

We introduce the concept of decision process Petri nets
(DPPNs) by locally randomizing the possible choices, for
each individual place of the Petri net [23, 28].

Definition 1. A decision process Petri net is a 7-tuple
DDPN = {P,Q,F, W, M,,r, U}, where
(1) P = {po, p1> P2>---» Pm} 1s a finite set of places,

(i) Q = {q1,92, ...
(iii) F € I U O is a flow relation, where I = (P x Q) and
Oc(QxP)suchthat PN Q=@ andPuUQ#+# d,

(iv) W: F — NI is a weight function,

,qn} 1s a finite set of transitions,

(v) Mp: P — N is the initial marking,

(vi)m: I — R4 is a routing policy representing the
probability of choosing a particular transition, such
that for each p € P, ij:(p,qj)gn((p, q;) =1,

(vii) U: P — R, is a trajectory-tracking function.

We adopt the standard rules about representing nets as
directed graphs, namely, places are represented as circles,
transitions as rectangles, the flow relation by arcs, and
markings are shown by placing tokens within circles [29].
As usual, we will denote ze = {y|(z,y) € F} and ez =
{yl(y,2) € F}, forall z € I U O. A source place is a place
po € P such that epy = & (there are no incoming arcs into
place po). A sink place is a place py € P such pre = @
(there are no outgoing arcs from pys). A net system is a pair
¥ = (N,Mp) comprising a finite net N = (P,Q,F) and
an initial marking M. A transition g € Q is enabled at a
marking M, denoted by M|[q), if for every p € g, we have
that M(p) = 1. Such a transition can be executed, leading to
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amarking M' defined by M’ = M — eq+qe. We denote this by
M[q)M'" or M[)M'. The set of reachable markings of X is the
smallest (with respect to set inclusion) set [My) containing
My and such thatif M € [My) and M[)M’, then M' € [M,).

The previous behavior of the DPPN is described as
follows. When a token reach a place, it is reserved for the
firing of a given transition according to the routing policy
determined by U. A transition g must fire as soon as all the
places p; € P contain enough tokens reserved for transition
q. Once the transition fires, it consumes the corresponding
tokens and immediately produces an amount of tokens in
each subsequent place p, € P. When 7(1) = 0 for: € I means
that there are no outgoing arcs in the place-transitions Petri
net (i.e., p € 1is a sink).

In Figure 2, we have represented partial routing policies
7 that generate a transition from state p; to state p,, where
p1> p2 € Pas follows.

Case 1. The probability that g; generates a transition from
state p; to p, is 1/3. But, because ¢; transition to state p, has
two arcs, the probability to generate a transition from state
p1 to p» is increased to 2/3.

Case 2. We set by convention for the probability that g;
generates a transition from state p; to p, is 1/3 (1/6 plus 1/6).
However, because g transition to state p, has only one arc,
the probability to generate a transition from state p; to p; is
decreased to 1/6.

Case 3. Finally, we have the trivial case when there exists only
one arc from p; to g; and from ¢, to p;.

It is important to note that, by definition, the trajectory-
tracking function U is employed only for establishing a
trajectory tracking, working in a different execution level of
that of the place-transitions Petri net. The trajectory-tracking
function U in no way change the place-transitions Petri net
evolution or performance.

Uk(-) denotes the trajectory-tracking value at place p; €
P at time k and let Uy = [Uk(+),..., Uk(-)]T denote the
trajectory-tracking state of DDPN at time k. FN : F —
R; is the number of arcs from place p to transition q (the
number of arcs from transition g to place p).

Consider an arbitrary p; € P and for each fixed transition
g;j € Q that forms an output arc (g, pi) € O, we look at
all theprevious places pj, of the place p; denoted by the list
(set) Py = {pn + h € nij}, where ni; = {h : (pn,qj) €
I, (g, pi) € O}, that materializes all the input arcs (py, q;) €
I and forms the sum

> Y (pmqj» pi) Uk (pn), (4)

hen;j

where W(pn,qj, pi) = 7n(pn,q;)*(FN(q;, pi)/FN(pn,q;))
and the index sequence j is the set « = {j : q; € (pn,qj) N
(gj» pi) & pn running over the set e p,, }.

Remark 1. ep,,. denote the previous places to p; for a fixed
transition g; € Q.
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FIGURE 2: Glycolysis and pentose-phosphate pathways model.
Continuing with all the g;’s, we form the vector indexed =~ where
by the sequence j identified by (jo, ji,...,js) as follows:
) > ¥(pm i POUL (p1)s ]
z \I'(Ph"Jjo)Pi) Uk(Ph)) h€nij
hEr],“ .
" _ Z \P(Ph,q]‘ppi)UE” (ph);---)
a= , (7)
z \P(Ph"le)Pi) Uk(Ph):---) (5) hensj,
henij, ' qj
> ¥(pn ;) U (pn)
> ¥ (pmqjp> pi) Uk (pn) | heny, i
henij, |

Intuitively, vector (5) represents all the possible trajectories
through the transitions g;s to a place p; for a fixed i, where j
is represented by the sequence (ji, j2,...,jr) and f = #(k).

Then, formally we define the trajectory-tracking function
U as follows.

Definition 2. The trajectory-tracking function U with
respect a decision process Petri net DDPN = {P,Q,F, W,
My, m, U} is represented by the following equation

. Ui(po) ifi=0,k=0,
95\ =
U (p) {L((x) ifi>0,k=0,i>0k>0,

the function L : D < R? — R, is a Lyapunov-like function
which optimizes the trajectory-tracking value through all
possible transitions (i.e., through all the possible trajectories
defined by the different g;s), D is the decision set formed by
the j’s;0 < j < f, ofall those possible transitions (g;p;) € O,
Y(pn, qj> pi) = (pn, q;)* (FN(qj, pi)/FN(pr, ;) nij is the
index sequence of the list of previous places to p; through
transition g;, py(h € #;;) is a specific previous place of p;
through transition g;.

Example 4. OR-Path (see Figure 3). Define the Lyapunov-
like function L in terms of the Entropy H(p;) = —pilnp;
as L = min;_;, o (—ailna;):

,,,,,
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Ficure 5: AND-path example.

(i) Uk=0(po) = 0.2,
(i) U, (p1) = LI¥(Po» qa» p1) Ui o(po)] = min H[1
0.2] = H[0.2] = 0.321,
(iii) UL (p2) = LI¥(p1, qur p2) UL (p1), ¥ (P15 qes p2)
UL o (p1)] = min H[1/3%0.321,2/3%0.321] =
min[0.239,0.329] = 0.239.

Example 5. AND-Path (see Figure 4). Define the Lyapunov-
like function L in terms of the Entropy H(p;) = —p;ln p; as
L =min;-y,_jo(—ailna):

(i) Uk=o(po) = 0.2,

(i) UL, (p1) = LI¥(po, ga> 1)U (po)] = min H[1%
0.2] = H[0.2] = 0.321,

(iii) U (p2) = LI¥(po> gb» p2) Ui o (po)] = min H[1x
0.2] = H[0.2] = 0.321,

(IV) U]?C:()(p3) = L[\P(pl) qﬁP3)U1?C:0(P1) +\P(P2,qcy
p3)UE (p2)] = min H[1%0.321 + 1%0.321] =
H[0.642] = 0.284.

From the previous definition, we have the following
remark.

Remark 2. (i) Note that the Lyapunov-like function L
guarantees that the optimal course of action is followed
(taking into account all the possible paths defined). In
addition, the function L establishes a preference relation
because, by definition, L is asymptotic; this condition gives
to the decision maker the opportunity to select a path that
optimizes the trajectory-tracking value.

(ii) The iteration over k for U is as follows:

(1) for i = 0 and k = 0 the trajectory-tracking value is
Uo(po) at place py and for the rest of the places p; the
trajectory-tracking value is 0;

(2) for i = 0 and k > O the trajectory-tracking value
is U,zj (pi) at each place p;, and is computed by
taking into account the trajectory-tracking value of
the previous places pj, for k and k — 1 (when needed).

Property 1. The continues function U(-) satisfies the follow-
ing properties:

(1) 3p* € P such that

(a) if there exists an infinite sequence {p;};, €
P with p, — p®such that 0 < --- <
n— oo

U(pn) < U(pn-1) -+ - < U(p1), then U(p?) is
the infimum, that is, U(p?) = 0;

(b) if there exists a finite sequence pi,...,ps € P
with p1,...,p, — p® such that C = U(p,) <
U(pu-1) -+ < U(p1), then U(p®) is the min
imum, thatis, U(p®) = C,where C € R, (p? =
pn)§

(2) U(p) > 0o0r U(p) > C, where C € R, forall p € P
such that p # p%;

(3) for all p;, pi-y € P such that p;_;<yp; then AU =
U(pi) = U(pi-1) <O0.

From the previous property, we have the following
remark.

Remark 3. In property 1 point 3, we state that AU = U(p;) —
U(pi-1) < 0 for determining the asymptotic condition of
the Lyapunov-like function. However, it is easy to show that
such property is convenient for deterministic systems. In
Markov decision process, systems are necessary to include
probabilistic decreasing asymptotic conditions to guarantee
the asymptotic condition of the Lyapunov-like function.

Property 2. The trajectory-tracking function U : P — Ry is
a Lyapunov-like function.

Proof. Proof comes straightforward from the previous defi-
nitions. O

Remark 4. From Properties 1 and 2, we have the following :

(i) U(p®) = 0 or U(p?) = C means that a final state
is reached. Without lost generality, we can say that
U(p*) = 0 by means of a translation to the origin.
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(ii) In Property 1, we determine that the Lyapunov-like
function U(p) approaches to a infimum/minimum
when p is large thanks to property (d) of the defi-
nition the Lyapunov-like function (see motivation).

(iii) Property 1, point 3 is equivalent to the following
statement: 3{&;}, & > 0 such that |[U(p;) —U(pi-1)| >
&;, for all pi> pi-1 € P such that pi-1=<upi.

Explanation. Intuitively, a Lyapunov-like function can be
considered as trajectory-tracking function and optimal cost
function. In our case, an optimal discrete problem, the cost-
to-target values are calculated using a discrete Lyapunov-
like function. Every time a discrete vector field of possible
transitions is calculated over the decision process. Each
applied optimal transition (selected via some “criterion,”
e.g., min(-)) decreases the optimal value, ensuring that the
optimal course of action is followed and establishing a
preference relation. In this sense, the criterion changes the
asymptotic behavior of the Lyapunov-like function by an
optimal trajectory-tracking value. It is important to note that
the process finished when the equilibrium point is reached.
This point determines a significant difference with Bellman’s
equation.

Example 6 (Conc-Path (see Figure 2)). Biochemical pathway
of the free energy profile of the glycolysis and pentose-
phosphate. The following was adapted from Biochemistry
Lehninger et al. [26] and Campbell and Farrel [30]. The
free energy changes were calculated using the steady-state
metabolite concentrations in RBC’s and the equation U =
RT In([Products]/[Reactants]). U = 0 was set arbitrarily at
the end of the pathway after the pyruvate kinase step. The
overall reaction for the pathway is shown in Figure 1. Because
L:D < R" — R4, we will use the function min;_, o (a; €
D) to select the proper element of the vector « € D:

(i) Uk—o(Glucose) = 17.17 kcal/mol;

(i1) U,?“ZO(G6P) = L[¥(Glucose, g,, G6P) *
U o (Glucose)] = G[¥(po, qa» 1)U (po)] =
9.17 kcal/mol.

A decision is taken and gy is selected instead of gx based
in the environment condition modeled via the routing policy
(1/3,2/3).

(i) U ,(F6P) = L[¥(G6P, q, F6P)x U/’ ,(G6P)] =
G[2/3%x U ,(p1)] = 8.98 kcal/mol.
(ii) UL ,(FBP) = L[¥(F6P, q., FBP)* Ul ,(F6P)] =
G[¥(p2, qe> p3)* Ui, (p2)] = 3.90 keal/mol.
(iii) U ,(DHP) = L[¥(FBP, q4, DHP)* U} ((FBP)] =
GI¥(p3, qa> pa)* U, (p3)] = 3.71 keal/mol.
The Conc-Path is calculated at ps.

N _ (L[¥(FBP, qa, GAP)x U/ ((FBP)]
(i) Ui=o(GAP) _{L[‘I’(DHP, qe» GAP)% U (DHP)]
[ GI¥(p3,qa> ps)* Ul (p3)]

= = 4.00 kcal/mole.
{G[‘I’(p4,qe, ps) kU™ (p)] cavmote

(ii) U, (BPG) = L[¥(GAP, g7, BPG)* U} ,(GAP)] =
GI¥(ps,qs, pe)* Uil o (ps)] = 3.71 keal/mol.

(iii) U, (3PG) = L['¥(BPG, q¢, 3PG) x U |(BPG)] =
G¥(pe> 4g> P7)* Ui o (ps)] = 4.10 keal/mol.

(iv) U, (2PG) = L[¥(3PG, g1, 2PG)* U ,(3PG)] =
G[¥(p7, qn> ps)* U, (p7)] = 4.20 kcal/mol.

(v) UL (PEP) = L[¥(2PG, g;, PEP)* U} ,(2PG)] =
G[Y(ps, qi» po) * U,f’zo(pg)] = 4.00 kcal/mol.

(vi) UZLO(Pyruvate) = L[¥Y(PEP, q;, Pyruvate)
U{Lo(PEP)] = G[¥(po, qj» pro)* ULy (po)] =
0 kcal/mol.

(vii) UZL o(Pyruvate) = 0 was set arbitrarily at the end of
the pathway, that is, after the pyruvate kinase step.

Remark 5. We are using [] to denote the OR-Path, > to
denote the AND-Path, and {| to denote the Conc-Path.

4. Properties of the Model

We will identify the global system properties of the DPPN as
those properties related with the PN.

Theorem 1. The decision process Petri net DDPN =
{P,Q,F, W, My, m, U} is bounded by a place p* of the system.

Proof. Let us suppose that the DPPN is not finite. Then p* is
never reached. Therefore, it is possible to evolve in time 7 and
to reduce the trajectory function value over p*. However,
the Lyapunov-like trajectory function converges to zero when
n — oo (or reached a minimum), thatis, U, = 0 or U, =
C. O

Theorem 2. Let DDPN = {P,Q,F,W,My,m,U} be a
decision process Petri net bounded by a place p*. Then, a
Lyapunov-like trajectory function can be constructed if and
only if p* is reachable from s.

Proof. (=) If U is a Lyapunov-like function then by the
previous theorem p* is reachable.

(=) By induction, let us construct the optimal inverse
path from p* to po. At each discrete time n € N in
descending order (# is the maximum place index) the place
of a system p, is observed and a transition gx € Q leading
to pu—1 is chosen. We choose the trajectory function U as the
best choice set of states. We continue this process until py is
reached. Then, the trajectory function U is a Lyapunov-like
function. O

Notation. Let N = {0,1,2,...}, N7 = {ng,no+ 1,...
k,...}, no=0, R=(—00,0)and R, = [0, ).

Let us consider systems of first ordinary difference
equations given by

x(n+1) = y[n,x(n)]

x(no) = xo

»Ho +

for n € N°, (8)

where x(n) € R? and v : N}’ x R — R is continuous in
x(n).



Definition 3. The n-vector valued function ¢(n, ng,xo) is a
solution of (8) if ¢ (19, n0,x0) = xo and ¢(n + 1,19,x9) =
v(n, ¢(n,ng,x0)) foralln € N,

Definition 4. The system (8) is said to be (see [20, 21])
practically stable if, given (1,A) with 0 < A < A, it holds
that

|x0| <A = |x(n,n0,x0)| <A, VneNP n =0 (9)

Definition 5. The system (8) is said to be (see [20, 21])
uniformly practically stable, if it is practically stable for every
no = 0.

Definition 6. A continuous function « : [0,00) — [0, )
belongs to class K if it is strictly increasing and «(0) = 0.

Let us consider [21] the vector function v(n,x(n)), v :
N™ x RY — R? and let us define the variation of v relative
to (8) by

Av=v(n+1,x(n+1)) —v(n,x(n)). (10)
Then, we have the following results [20, 21, 31, 32].

Theorem 3. Let v : NI x R" — R, be a continuous
function in x, such that for 3, € K, it holds that B(|x|) <
v(n,x(n)) < a(lx|) and Av(n,x(n)) < w(n,v(n,x(n))) holds
forn € NP, x(n) € R", where w : NY* x Ry — R is
a continuous function in the second argument. Suppose that
y(n,u) = u+w(n,u) is nondecreasingin u, 0 < A < Aare given
and finally that «(A) < B(A) is satisfied. Then, the stability
properties of

u(n+1) =y(n,u(n)), u(ng) =ug =0 (11)

imply the corresponding stability properties of the system (8).

Proof. The stability properties are preserved for the follow-
ing.
(1) Practically stable. Let us suppose that u(n + 1) is
practically stable for (a(A),5(A)) then, we have that uy <
a(d) = lu(n,ng,up)l < P(A) for n = ny, where u(n, ny, uo)
is the solution of (11). Let |xo] < A, we claim that
|x(n,ng,x0)| < A for n > ng. If not, there would exist
n; = no and a solution x(n, ng, x9) such that |x(n;)| = A
and |x(n)] < A for ng < n < n;. Choose uy = v(ng,xp),
then v(n,x(n)) < u(n) for all n = ng. ( If not v(n, x(n))
u(n) and v(n + Lx(n + 1)) > u(n +1) = yn,un))
un+1) < vin+ Lix(n+ 1)) = Av(n,x9) + v(n,x(n))
w(n,v(n))+v(n,x(n)) = y(n,v(n))—v(n,x(n))+v(n,x(n)) <
y(n,u(n)) which is a contradiction) . Hence we get that
B(A) < B(x(n)l) < v(n,x(m)) < u(ni,no,up) < B(A)
(where the last inequality is because the condition |xg| < A =
v(ng,x0) < a(A)), which cannot hold therefore, system (8) is
practically stable.

(2) Stable. Suppose that system (11) is stable, that is,
for all ¢ > 03¢ = &(e,ng) > 0 such that if uy < & =
[u(n, ng, ug)| < B(e) for n = ny. Now, since v is a continuous
function in x, there exists a § = &(e,ny) > 0 such that if
[xo] < & = |v(ng,x0)| < & then setting v(ng,x0) equal to

A IA

International Journal of Computer Games Technology

uo by the comparison principle (which was implicitly proved
in point 1) implies that v(n,x(n)) < u(n) for all n > ny.
Taking & equal to the one given from the continuity of v,
|x(n, ng, xo)| < € for n > ng. If not, there would exist n; > ny
such that [x(n1)| = e and |x(n)| < & for ng < n < n; but then

Ble) < B(x(m)) < v(ny,x(m))

2
< u(m,no,uo) < ﬁ(E) (1 )

which cannot hold therefore, we must have that
|x(n, ng, x0)| < € for n > ny as desired.

(3) Asymptotically stable. We know that system (8) is
stable, the fact that it is asymptotically stable follows thanks
to

0< ’}ergoﬁ( |x,|) < ’}ijrgov(n,x(n))

13
sl{mu(n)zoﬁlijlq|xn|20. (13)

(4) Uniformly stable. Assume that the comparison
system is uniformly stable, meaning that 3§ = &(¢) > 0
(independent of n) such that uy < & = |u(n, no, up)| < B(¢)
for n = np and let § > 0 independent of n such that |xy| <
& = |x(n,np,x0)| < ¢ for m > ng. Since v is a decreasing
function there exists a a € K such that v(n,x(n)) < a(|x,]).
Then, choosing 8 = a~ (&) works (if |xg| < 6 = a7 1(&) =
v(no,x0) = |v(ng,x0)| < allxgl) < &) and choosing uy =
v(no, x9) we arrive to the inequality

B(|x(n)]) < v(n,x(n)) < u(n,ng,up) < Ple). (14)

But Jis independent of n. Therefore, the system (8) is
uniformly stable. O

We will extend the last theorem to the case of several
Lyapunov functions. Let us consider a vector Lyapunov
function v(n,x(n)), v : N©° x R — R? and let us define
the variation of v relative to (8). Then, we have the following
theorem.

Theorem 4. Letv:N™ x R4 — R pea continuous function
in x, define the function vo(n,x(n)) = Zlevi(n,x(n)) such
that it satisfies the estimates:

B(lxl) < vo(n,x(n)) (Ix) fora,pe X,

<
Av(n,x(n)) < w(n,v(n,x(n))) 13

no

forn € NP, x(n) € RY, where w : N x R — RP is
a continuous function in the second argument. Assume that
y(n,u) 2 u+ w(n,u) is nondecreasing in u, 0 < A < J are
given and a(A) < B(A) is satisfied. Then, the practical stability
properties of

u(n+1) = y(n,un)), u(ng) =ug =0 (16)

implies the corresponding practical stability properties of system

(8).

Proof. (1) Let us suppose that u(n + 1) is practically stable
for (a(A),B(A)). Then we have that Zleuox < ald) >
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Z;ilu,-(n, no, up) < B(A), for n = ngy, where u;(n, ny, uo)
is the vector solution of (16). Let |xo| < A, we claim that
|x(n, ng, x9)| < A for n > ny. If not, there would exist n; > n,
and a solution x(n, 1y, x9) such that |x(n;)| = A and |x(n)| <
A for ny < n < ny. Choose uy = v(ng, xo), then v(n,x(n)) <
u(n, ng, up) for all n = ny. Therefore we have that f(A) <
Blx(n)) < vo(ni,x(m)) < SEiui(ni,no,ue) < P(A)
which cannot hold. As a result, system (8) is practically
stable.

(2) From the continuity of v with respect to the second
argument, it is always possible to make vo (19, x9) < Z}‘D:luo,v <
a(d) = vy(n,x(n)) < Zfllu,»(n,no,uo) < B(A). We want
to prove that |x(n,ng,x)| < A for n = ng. If it is not
true, there exists an n; > ng and a solution x(n,ng, xo)
such that |[x(n;)| = A and |x(n)| < A for ng < n < ny.
Then, we have that f(A) < B(Ix(m)]) =< vo(n,x(n1)) <
Zleui(nl, 1o, tg) < B(A)!, which proves our claim. ]

Remark 6. 1f in the point 1 of the proof it is not true that
v(n,x(n)) < e(n,ng, ep) and v(n+1,x(n+1)) > e(n+1, np, ey),
then we have that y(n,e(n)) = e(n+1,n9,e9) < v(n+1,x(n+
1)) = Avin,xg) + v(n,x(n)) < w(n,v(n)) + v(n,x(n)) =
y(n,v(n)) — v(n,x(n)) + v(n,x(n)) = y(n,v(n)) < y(n,e(n))
which is a contradiction.

Then, we have the following result [21].
Corollary 1. From Theorem 5, the following hold.

(1) If w(n,e) = 0, the uniform practical stability of (8)
which implies structural stability [21, 33] is obtained .

(2) If w(n,e) = —c(e), for ¢ € K, the uniform practical
asymptotic stability of (8) [21] is obtained .

Example 7. The diamond is the stable form of carbon at
extremely high pressures while the graphite is the stable
form at normal atmospheric pressures. Regardless of that,
diamonds appear stable at normal temperatures and pres-
sures, but, in fact, are very slowly converting to graphite.
Heat increases the rate of this transformation, but at normal
temperatures the diamond is uniformly practically stable.

For Petri nets, we have the following results of stability
[31].

Proposition 1. Let PN be a Petri net. Therefore, PN is
uniform practical stable if there exists a @ strictly positive m
vector such that

Av =uTAD < 0. (17)

Moreover, N is uniform practical asymptotic stability if the
following equation holds:

Av =uTAD < —c(e), forc e X. (18)

Proof. Let us choose as our candidate Lyapunov function
y(M) = MT® with ® and m vector to be chosen. It
is simple to verify that v satisfies all the conditions of
Theorem 3. Therefore, the uniform practical asymptotic

stability is obtained if there exists a strictly positive vector ®
such that equation (17) holds. O

Proposition 2. Let PN be a Petri net. Therefore, PN is
uniformly practically stable if there exists a @ strictly positive
m vector such that

Av=uTAD <0 <= AD < 0. (19)

Proof. =) Since u’ A® < 0 holds, therefore for every u we
have that AQ < 0.
<) This came from the fact that u is positive. O

Remark 7. The if-and-only-if relationship of (19) exists from
the fact that u is positive.

Example 8. The biochemical pathway of the glycolysis
(Figure 1). The incidence matrix is as follows:

-1 1. 0 0 0 0 0 0 0 00
0 -11 0 0 0 0 0 0 00
00 -110 000 0 00
00 0 -11 1 00 0 00
00 0 0 -11 00 0 00
00 0 0 0 11 0 0 00
00 0 0 0 0 -1 1 0 00
00 0 0 0 0 0 -11 00
00 0 0 0 0 0 0 —-110
o000 000 0 0 —11 ]

(20)

Choosing o =1,1,1,1,1/2,1/2,1/2,1/2,1/2,1/2,1/2], ® >
0, we obtain that A® = [0,0,0,-1/2,0,0,0,0,0,0] conclud-
ing stability.

Definition 7. An equilibrium point with respect to a decision
process Petri net DDPN = {P,Q,F, W, My, n, U} is a place
p* € P such that M;(p*) = S< oo, foralll = k, and p* isa
sink.

Theorem 5. The decision process Petri net DDPN =
{P,Q,F, W, My, m, U} is uniformly practically stable iff there
exists a @ strictly positive m vector such that Av = uT A® < 0.

Proof. =) It follows directly from Propositions 1 and 2.

<) Let us suppose by contradiction that u”’ A® > 0 with
® fixed. From M’ = M + uT A we have that M'® = MO +
u’A® > M®. Then, it is possible to construct an increasing
sequence MO < M'® < - -+ < M"® < --- which grows
up without bound. Therefore, the DDPN is not uniformly
practically stable. O

Remark 8. Tt is important to underline that the only places
where the DPPN will be allowed to get blocked are those
which correspond to equilibrium points.

We will identify the trajectory-tracking properties of
the DPPN as those properties related with the trajectory-
tracking value at each place of the PN. In this sense, we
will relate an optimum point the best possible performance



10

choice. Formally we will introduce the following definition
[23].

Definition 8. A final decision point p; € P with respect to a
decision process Petri net DDPN = {P,Q,F, W,M,,n, U}
is a place p € P where the infimum is asymptotically
approached (or the minimum is attained), that is, U(p) = 0
or U(p) = C.

Definition 9. An optimum point p® € P with respect to a
decision process Petri net DDPN = {P,Q,F, W, My, w, U} is
a final decision point ps € P where the best choice is selected
“according to some criteria.”

Property 3. Every decision process Petri net DDPN =
{P,Q,F, W, My, n, U} has a final decision point.

Remark 9. In case that Apy,..., p, € P, such that U(p,) =
-+ =U(py) = 0, then py,..., p, are optimum points.

Remark 10. The monotonicity of U guarantees that it is
possible to make the search starting from the decision
points.

Then, we can conclude the following theorem.

Theorem 6. Let DDPN = {P,Q,F, W, My, n, U} be a finite
decision process Petri net and let (po, p1,..., pn) be a realized
trajectory which converges to p® such that 3¢; : Uy —
Uil > €; (with €; > 0). Let € = min{€;}, then the optimum
decision point p” is reached in a time step bounded by
O(U()/E).

Proof. Let us suppose that p® is never reached, then, p* is not
a sink (the last place) in the decision process Petri net. So, it
is possible to find some output transition to p*. Therefore,
it is possible to reduce the trajectory function value over p*
by at least €. As a result, it is possible to obtain a lower value
than C (that is a contradiction). O

Theorem 7. Let DDPN = {P,Q,F,W,My,m,U} be a
decision process Petri net. Then, U converges to an optimum

(final) decision point p*(py).

Proof. We have to show that U converges to an optimum
(final) decision point p“(ps). By the previous theorem, the
optimum decision point p* is reached in a time step bounded
by O(Uy/€), therefore U converges to p2. O

Proposition 3. Let DDPN = {P,Q,F,W,My,n,U} be a
decision process Petri net and let p® € P be an optimum point.
Then U(p®) < U(p), for all p € P such that p<y p™.

Proof. We have that U(p?) is equal to the minimum or the
infimum. Therefore, U(p®) < U(p) for all p € P such that
p<up™. O

Theorem 8. The decision process Petri net DDPN =
{P,Q,F,W,My,m,U} is uniformly practically stable iff
U(pin) = U(pi) = 0.
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Proof. (=) Let us choose v = Id(U(p;)), then Av =
U(pi+1) — U(pi) = 0. Then by the autonomous version of
Theorem 4 and Corollary 1 the DPPN is stable.

(=) We want to show that the DPPN is practically stable,
that is, given 0 < A < A, we must show that |U(p;)| < A. We
know that U(py) < A and since U is nondecreasing, we have
that |[U(pi)| < |[U(po)| <A < A. O

Theorem 9. Let DDPN = {P,Q,F,W,My,m,U} be a
decision process Petri net. If p* € P is an equilibrium point,
then it is a final decision point.

Proof. Let us suppose that p* is an equilibrium point, we
want to show that its trajectory-tracking value has asymp-
totically approached an infimum (or reached a minimum).
Since p* is an equilibrium point, by definition, it is bounded
and it is a sink, for example, its marking can not be modified.
But, this implies that the routing policy attached to the
transition(s) that follows p* is 0 (in case there is such
a transition(s), i.e., worst case). Therefore, its trajectory-
tracking value can not be modified and since the value is
a decreasing function of p;, an infimum or a minimum is
attained. Then, p* is a final decision point. O

Theorem 10. Let DDPN = {P,Q,F, W, My, , U} be a finite
and nonblocking decision process Petri net (unless p € P is an
equilibrium point). If p € P is a final decision point, then it is
an equilibrium point.

Proof. 1f py is a final decision point, since the DDPN is finite,
there exists a k such that Ux(ps) = C. Let us suppose that p
is not an equilibrium point.

Case 1. Then, it is not bounded. So, it is possible to
increment the marks of p s in the net. Therefore, it is possible
to modify its trajectory-tracking value. As a result, it is
possible to obtain a lower value than C.

Case 2. Then, it is not bounded and it is not a sink. So, it
is possible to fire some output transition to ps in such a
way that its marking is modified. Therefore, it is possible to
modify the trajectory-tracking value over py. As a result,
it is possible to obtain a lower trajectory-tracking value
than C. O

Corollary 2. Let DDPN = {P,Q,F, W, M,,n, U} be a finite
and nonblocking decision process Petri net (unless p € P is
an equilibrium point). Then, an optimum point p* € P is an
equilibrium point.

Proof. From the previous theorem, we know that a final
decision point is an equilibrium point and since in particular
p? is final decision point, then it is an equilibrium point. [J

5. Completeness

Theorem 11. Let DDPN = {P,Q,F,W,My,m, U} be a
decision process Petri net and let (po, p1,..., pn) be a realized
trajectory which converges to p* such that 3€; : |Uyy — Uil >
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€; (withe; > 0). Let € = min{e;}, then an optimum point p*
is reached in a time step bounded by O(Uy/€).

Proof. Let us suppose that p* is never reached, then p* is
not the last place in the decision process Petri net. So, it is
possible to find some output transition to p*. Therefore, it is
possible to reduce the trajectory function value over p* by at
least €. As a result, it is possible to obtain a lower value than
C (that is a contradiction). O

Remark 11. The complexity time O(Uy/€) differs with that
of the Dijkstra’s algorithm.

Remark 12. Each path in DDPN corresponds to a trajectory
of/in a given system. The trajectory-tracking function value
of U at the source place (Uj™") divided by € = min{e;}
equals the length of the shortest-path. Then, the infimum is
equivalent to the infimum length over all paths in DDPN.

Theorem 12. Let DDPN = {P,Q,F,W,My,n,U} be a
decision process Petri net. Then, U converges to a point p*.

Proof. We have to show that U converges to a point p*. By
the previous theorem, the optimum point p* is reached in
a time step bounded by O(Uy/€), therefore U converges to
p*. O

Proposition 4. The finite and nonblocking (unless p € P is
an equilibrium point) condition over the DDPN can not be
relaxed.

Proof. (1) Let us suppose that the DDPN is not finite, that
is, p is in a cycle, then the Lyapunov-like function converges
when k — o0, to zero, thatis, L(p) = 0 but the DPPN has no
final place therefore, it is not an equilibrium point.

(2) Let us suppose that the DDPN blocks at some place
(not an equilibrium point) p € P. Then, the Lyapunov-like
function has a minimum at place p, lets say L(p) = Cbut pis
not an equilibrium point, because it is not necessary to have
a sink in the net. O

6. Conclusions

In this work, a formal framework for shortest-path decision
process problem representation has been presented. Whereas
in previous work, attention was restricted to tracking the
net using a utility function Bellman’s equation, this work
uses a Lyapunov-like function. In this sense, we are changing
the traditional cost function by a trajectory-tracking func-
tion which is also an optimal cost-to-target function for
tracking the net. This makes a significant difference in the
conceptualization of the problem domain. The Lyapunov
method introduces a new equilibrium and stability concept
in decision process.
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1. Introduction

Nonplayer character (NPC) agents in videogames depend
on pathfinding to navigate virtual worlds autonomously.
The literature on artificially intelligent pathfinding has
generally focused on machine efficiency and shortest paths.
While these concerns cannot be neglected, they may be
of secondary or even doubtful benefit if, in videogames,
they lead to movement lacking in sensori-emotional or
aesthetic qualities that would otherwise appeal to player
expectations of plausibility, intelligence, beauty, and so forth.
Indeed, pathfinding without aesthetic considerations tends
to look unrealistic and mechanical, detracting from a game’s
immersive potential and frustrating players [7].

Aesthetics, however, pose challenges. According to a
modernist, Kantian view [10], aesthetics in general and
notions of beauty and matters of taste in particular are
thought to be subjective, relative, and presumably beyond
the pale of automation. Yet, game researchers and developers
have side-stepped these dilemmas, asking not what is beauty
in pathfinding but rather what is knowable about such
beauty which can be captured by heuristics called “aesthetic
optimizations” [17] and “aesthetic corrections” [7].

These efforts have yielded encouraging results and
drawn attention to basic issues of incorporating aesthetics
in pathfinding. Unfortunately, they have depended almost

entirely on anecdotal arguments rather than metrics that
facilitate hypothesizing about and testing aesthetic outcomes
under more quantifiable, independently verifiable regimes.
These investigators have furthermore addressed only beau-
tifying heuristics that navigate by straight lines, smooth
turns, and avoiding obstacles without tracking them. Such
movement, although appealing in some contexts, is not
appropriate for all forms of play and types of games.

In this paper, we use fractal analysis to examine a new
pathfinding aesthetic which we call “stealthy.” These paths,
obstacle-prone by nature, are reminiscent of and suitable
for covert movement in first-person shooter, role playing,
and other types of games wherein the goal is to avoid
detection, exposure, all-out encounters—concepts we define
mathematically later. We use fractal analysis since, among
other reasons we discuss later, this approach has been shown
to reliably predict and comport with player expectations of
aesthetic appeal in pathfinding [4]. What is interesting is that
stealthy pathfinding has a statistically significantly unique
fractal signature compared to controls which have not been
treated with stealth regimes.

We develop a simple cost heuristic to generate stealth
effects, that is, stealthy movement patterns. In a series of
N = 100 experimental trials involving randomly generated,
multiroom virtual worlds, we show that the fractal model
reliably discriminates between stealthy paths versus two types



of control paths with p ~ 107 and p ~ 107", depending,
respectively, on the stealth effect. We show furthermore that
paths with different stealth effects are unique compared
to one another with p ~ 107°. These results confirm
previous studies of fractals as a reliable metric for measuring
pathfinding aesthetic outcomes.

2. Background and Related Work

The fractal dimension, originally developed by Mandelbrot
in his seminal paper [11] as we describe below, has been used
by others to assess aesthetic values in artistic masterpieces
like Jackson Pollack’s “action paintings” [8, 18] and Bach’s
Brandenburg Concertos [20]. Investigators working in these
areas were not specifically interested in pathfinding or even
for that matter, artificial intelligence.

The artificial intelligence literature, however, is generally
silent on pathfinding aesthetics. For example, see texts
like those of Bourg and Seemann [2], Millington [13],
and Russell and Norvig [19] that cover various forms of
automated movement but do not discuss aesthetics.

Rabin [17], Higgins [7], and Stout [22] have noted
the need for aesthetic considerations in pathfinding and
proposed arguments and heuristics to improve aesthetic
outcomes in ways likely to appeal to player expectations
of “realism,” “beauty,” and so forth. For Botea et al. [1],
the main interest is machine performance. However, they
acknowledge, if only in passing, that navigation in games is
incomplete without aesthetic concerns. These efforts, in any
case, have all focused on how to achieve aesthetic outcomes
but not grading, scoring, or in any way, measuring them.

For precisely this reason, Coleman [3] put forth the
beauty intensity, R, as a relative, nonlinear measure of aes-
thetic appeal in pathfinding. Thus, a path object, Py, is said to
have more “working beauty” than a control or reference path
object, Py, provided that 2R(P;|Py) > 0. While R was shown
to give commonsense results in accordance with straight
lines, smooth turns, and avoiding obstacles without tracking
them, values of R are not readily intuitive except in a strictly
lattice sense. A is furthermore mathematically undefined for
some path objects. The implication is that R is parametric;
it uses explicit, internal assumptions about pathfinding and
aesthetics.

Coleman [4] subsequently proposed a fractal model,
G, which is similar to and mildly correlated with R as a
relative, nonlinear measure, that is, G(P;|Py) > 0 implies that
P; has more “fractal beauty” than a reference path object,
Py. However, G is a more reliable and intuitive estimator
according, respectively, to its variance-to-mean ratio and
relationship to textured sensory data. Most importantly
for the present study, G is nonparametric. It makes no
assumptions about pathfinding or even aesthetics. Thus, G
tends to provide more reliable, conservative results.

In this paper, we use G to study a new pathfinding regime,
the stealth effect, in relation to controls. We examine paths
treated with stealth regimes versus “standard” paths, that
is, with no beautifying treatments and “aesthetic” paths,
that is, with beautifying treatments. While Coleman [4] was
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completely analytical, the present effort is both analytical and
generative.

3. Fractal Dimension

Mandelbrot developed the fractional (or fractal) dimension
as a way to analyze irregularly shaped geometric objects
which are no-where differentiable (i.e., textured) and self-
similar [11, 12, 14]. Mandelbrot observed furthermore that
the fractal dimension, D, of a surface, S, is greater than
its topological dimension, n [11, 12], that is, n < D <
n + 1. Mandelbrot suggested that fractals offered a better
description of objects found in nature (e.g., coastlines).

The fractal dimension has different interpretations that
come under two general mathematical categories: stochastic
and geometric [21]. The stochastic interpretation assumes
Brownian fluctuations [20] and might be employed, for
instance, in time series analysis. In this paper, we use a
geometric interpretation based on the Hausdorff dimension
[20]:

D(S) = lim (28 NelS)
e—0 loge

> (1)
S is a surface, ¢ is a yardstick or ruler, and N,(S) is the
number of self-similar objects or subcomponents covered by
the ruler. For fractal objects, log N.(S) will be greater than
log(1/¢) by a fractional amount.

One way of interpreting the Hausdorff dimension is
through the box counting dimension, that is, reticular cell
counting. In this case, if the ruler is a uniform grid of square
cells, then a smooth surface passes through twice as many
cells if the cell length is reduced by a factor of two. A fractal
object passes through more than twice as many cells if the cell
length is reduced by a factor of two.

For instance, the coastline of Maine, USA , is not straight
or smooth but highly textured with inlets, outcrops, and
keys. Researchers using the box counting dimension have
estimated its fractal dimension to be between 1.11 and 1.37
depending on where and how measurements are taken [23].

Reticular cell counting is intuitive and straightforward
computationally. We use it to estimate the fractal dimension
by computing the regression slope of log(1/¢) versus log
N(S). We use a slightly modified version of FracTop [9],
which reliably computes the fractal dimension using reticular
cell counting, where ¢ = {2,3,4,6,8,12,16,32,64,128} in
pixels are the default rulers. The input to FracTop is a 2D
image in Portable Network Graphics (PNG) [16] format
which we explain later how to generate given a virtual world.

4. Fractal Model: G

The fractal model we describe is from Coleman [4]. We
review it here for the sake of completeness.

Let the surface, S, consist of W, {B/}, and P. W is a
finite state-space in Euclidean R". We assume n = 2 or
n = 3. For analysis purposes, however, the perspective is
two dimensional. For example, if the game is a first person
shooter, the veiw is from above, looking down on walls,
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FiGure 1: Example of virtual world, W, in 2D perspective with start
and goal configurations.

rooms, and hallways. Yet, the NPC perceives the world as a
set of rigid-body obstacles, {B/}, in two or three dimensions.
See Figure 1 as an example.

Let W:x,y—tfor0<x<w, 0<y<h,wherew and
h are width and length features, respectively, of W, and t is a
state, namely, t € {0,1,2}. W contains the set {B/}, namely,
Bi=W:Bi-x, Bi-y—2.

W also contains A, a “free flying” rigid-body (i.e., the
NPC), which has configurations or steps such that A’ =
W : Al-x, Ai-y. These steps define a path object, P, for
i = 0---L from A" (start = 0) to A% (goal = L),
where A"l = W : Al-x + Ax, Ay + Ay —1and Ax,Ay €
{—1,0,1}. All other states of W are “open” or unoccupied,
namely, W : x, y — 0. For the worlds we generate, A “tracks”
an obstacle if W : A-x + k, Al-y + k— 2, where k = 1.

Let D(P) be shorthand notation for the fractal dimension
of P for a particular world, W, which includes the open states
of W, P, and {B/}. Let G be the “fractal beauty” of a path,
Py, in relation to a reference path, Py, as

G(P1|Py) = D(P1) — D(Py). (2)

G is constrained in that W, At and A%°d are assumed
to be the same for both P; and Py. Thus, we say P; has more
“fractal beauty” than Py only if

G(P,|Py) > 0. (3)

Py is said to have less fractal beauty than Py if G < 0. If
G = 0, then P; and Py are said to have the same fractal beauty.

5. Stealthy Pathfinding

G does not specify how to find a path. That is the role of
pathfinding. In principle, therefore, any suitable pathfinding
algorithm suffices. We start with the A* algorithm [2] as
a base. Aside from being generally regarded as the “work
horse” of pathfinding for games, A* is simple, flexible, and

straightforward with well-known space and time character-
istics [19]. The “standard” A*, for instance, the one given by
Bourg and Seemann [2], does not have an aesthetic objective.

Others have sought to reduce or correct these aesthetic
deficiencies through beautifying heuristics [1, 7, 17, 22], that
is, if the path score subject to minimization is

f(Astart’Agoal) _ g(Astart) + h(Agoal)’ (4)

where g is the known cost from the start configuration and
h is the heuristic estimate to the goal configuration. (For
h, we use Manhattan metric, namely, h(A8%) = [AX]| +
[AY|(see [9]) for further information.) By adding a penalty
or surcharge to h for turns or zigzags, A* tends to generate
paths with straight lines and smooth turns. Coleman [3] goes
further and also penalizes wall tracking within some radius,
k, that is, an NPC navigating a game world by following a
wall or obstacle may appear to be using the object and not
A.L Thus, it is best to avoid such objects.

Yet in a competitive game world setting, the NPC would
not necessarily traverse the middle of a hallway in a straight
line or make “pleasant,” predictably smooth turns. Indeed,
wall tracking is precisely what an NPC might conceivably
do if it is seeking to avoid detection, dodge an opponent, or
evade a trap.

Whereas the standard A* is wall-neutral and “aesthetic”
A* is wall-adverse, we define a “stealthy” A* as one which
is obstacle-prone, that is, rather than ignoring obstacles or
penalize the NPC for tracking them, the stealthy A* rewards
such paths according to the following schedule if W : Af-x +
k, Al-y + k— 2, where k = 1:

H(A%y) = (1 - y)-h(A®Y), (5)

where y is called stealth effect and (1—y) is the discount. (Note
the discount may in fact behave like a surcharge for some val-
ues of y.) Equation (5) supersedes the heuristic component
of the A* algorithm. The nonheuristic component does not
change.

We state the following lemmas.

Lemma 1. Cor(h,y) = 0, that is, there is no correlation
between the stealth effect, y, and the heuristic cost, h.

Proof. By inspection of (5), there is no dependency between
the discount and h. O

Lemma 2. Three possible values of y give distinct characteris-
tics per the relations below:

y = 0 standard or obstacle-neutral search,

y < 0 aesthetic or obstacle-adverse search,

y > 0 stealthy or obstacle-prone search.
Proof. If y = 0, (5) degenerates to the standard search. If y <

0, the discount becomes a surcharge for tracking an obstacle.
If y > 0, the heuristic cost is discounted. O



Lemma 3. At the limit, there is no stealth effect and H
converges to h, that is,

H(y) =H(y=0)=h ©6)
limy -0

Proof. See Lemma 2. O

6. Experimental Design

Under experimental conditions, G may be regarded as “black
box,” that is, we input two objects, Py and P;, and we get a
result, a statistic called G subject to constraints we mentioned
above. The experiment, thus, does not ask whether internally
the regression lines for Py and P; are statistically different
(they may or may not be), what kind of regression we are
using, how we measure the fractal dimension, and so forth.
The G is deliberately and completely blind to these questions.
The only concern for experimental purposes is whether there
are systematic deviations from expectation, that is, our null
hypothesis, which cannot be explained by chance. We use two
controls for this purpose.

Lemma 1 suggests we can generate the stealthy paths
without modifying the A* cost heuristic directly. Indeed,
per Lemma 2 we use the standard A* from Bourg and
Seemann [2] as one of our experimental controls, in this
case, pathfinding without beautifying treatment. The other
experimental control, the aesthetic A*, is from Coleman [3].

Lemma 3 states that paths are distinguishable only for
sufficiently large, nonzero y. However, Lemma 3 does not
suggest how to choose y. Thus, we selected y = 10% for one
run and y = 15% for another run as these seemed to us a
reasonable basis for experimental and illustration purposes.
Note that a “run” is a series of “trials” which we explain
below.

These pathfinding algorithms, standard, aesthetic, and
stealthy, are embedded, respectively, in multiroom virtual
worlds, W, generated by the Wells [24] random level
generator. The Wells level generator takes as input a “level”
which defines the width and height of the world. It also takes
as input a seed which randomizes the configuration of the
world in terms of rooms and interconnecting hallways as
{B/}. The Wells level generator also creates A" and A8,
respectively, in the first and last rooms. We use the three types
of pathfinding (i.e., aesthetic, standard, and stealthy) to find a
path from A% to A% in each world. Finally, for each world
we compute G(P;|Py), where P, is a stealthy path and Py a
reference or control path, either aesthetic or standard.

To compute G, we convert the virtual world to a PNG
[16] image. We generate level “10” worlds which are 50 x 50
tiles. Each tile is 10 x 10 pixels and each A and B/ occupies
a single tile. A’ are ovals 10 pixels in diameter and B/ are
squares 10 pixels in length. This is the input to FracTop which
calculates the fractal dimension, D(P), using reticular cell
counting. Finally, we then compute G according to (2).

Each random multiroom virtual world, W,,, is an
independent Bernoulli trial. A trial is successful provided
that G(P] stealthy|P0aesthetiC) <OA G(Pstealthy |Postandard) > 0. The
trial is a failure otherwise. If s is the number of successes in
N trials and f is the number of failures where N = s + f,
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FIGURE 2: Aesthetic pathfinding with beautifying treatment for trial
18.

then the null hypothesis is Hy : s < f. To conservatively
estimate the P-value, we use the one-tailed Binomial test, a
nonparametric test (6] for N = 100 trials in two runs, one
for y = 10% and one for y = 15%.

We also analyze stealthy paths compared to each other,
namely, less stealthy (y = 10%) versus more stealthy
(y = 15%) pathfinding. In this case, a trial is suc-
cessful if G(Pystedlthy 15%) pystealthy 10%) . o and a failure if
G(Plstealthy 15%|P0aesthetic 10%) =0. Again, we have HO S5 < f

7. An Example

To make these ideas clearer, we go through a randomly
selected trial, number 18. Namely, the Wells random seed
is 18. Readers can view the results of all 100 trials of 400
images online at the author’s website [5]. Figure 2 shows the
multiroom, virtual world and aesthetic pathfinding for this
trial from At to A8°4l, The o symbols represent “bread
crumbs” which constitute the path in the time domain.

Figure 3 shows the same random virtual world with
stealthy (y = 15%) pathfinding.

Figure 4 shows the stealthy path for y = 10%. Notice
that the difference between 10% and 15% is the little “jog”
in the upper-left quadrant. We discuss this further in the
conclusion section.

In general, one can easily see the difference between
stealthy paths and the control paths. The standard path
swerves from wall to wall seeming almost to wander. In a
sense, the standard path is making random choices since the
wall does not affect the cost heuristic. Yet in the stealthy case,
the wall is sought out where possible. This movement gives a
visual impression of avoiding opening spaces, that is, middle
of the room or hallway. In other words, the aesthetic path
is less covert compared to the standard one. The stealthy
ones, however, appear more covert than both aesthetic and
standard paths.
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TaBLE 1: Fractal dimensions, D(P), for each path, P, of trial 18.

Figure p D(P)

2 Aesthetic 1.557638
3 Stealthy (15%) 1.550786
4 Stealthy (10%) 1.549607
5 Standard 1.547505

TABLE 2: G(P;|Py).

Py
P, Aesthetic ~ Stealthy 15%  Stealthy 10% Standard
Aesthetic 0
Stealthy 15% 0.006852 0
Stealthy 10% 0.008031 0.001179 0
Standard 0.010132 0.003281 0.002101 0

Table 1 gives a quantitative assessment, namely, the
fractal dimension, D(P), for each path, P, according to the
four objectives shown in Figures 2-5.

Table 2 gives G(P;|Py) as the intersection of rows and
columns starting in the control or “D(Py)” column gives G
for this trial.

We organized Table 2 for readability; namely, the lower
triangle is a positive transpose of the upper triangle
(not shown). The zeros along the diagonal represent
G(P1|Py) = 0, where P = Py. For instance, the aes-
thetic path compared to the stealthy path as the reference,
G(p,esthetic| pystealth 15%) _ 1 557638 — 1.550786 = 0.006852.

From a purely quantitative perspective, Table 2 shows the
objectives in order of decreasing fractal beauty and one can
readily see that the null hypothesis, Hy, is not supported
by this single trial. Both stealthy paths’ fractal dimensions
are numerically between the aesthetic path and the standard
path.

In other words, the numerical relationships are some-
what different from visual impressions. We do not attempt
to explain this phenomenon here. We only note that the
movement patterns are visually distinct and consistent, and
as we observe below, statistically significant from the model’s
perspective.

8. Results

The raw data consists of 400 results: 100 standard paths,
100 aesthetic paths, 100 paths for y = 10%, and 100 paths
for y = 15%. The full data sets may be found online at
the author’s website [5]. Figure 6 gives the histogram dis-
tribution of G(Plstealthy|Postandard) and G(P1 aesthetic‘POstealthy)
for the y = 15%. run. The proportions of mean G are
0.001675 + 0.001661 and 0.007203 + 0.002285, respectively.
(The notation “+” is the standard deviation.)

Figure 7 gives the statistical histogram distribution of
G(Plstealthy|Postandard) and G(Plaesthetic|Postealthy) for the y =
10% run. The proportions of mean G are 0.001275+0.001503
and 0.007603 + 0.002257, respectively.
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TaBLE 3: Number of successes and failures and P-value.

y Trials s f P
15% 100 84 16 2.391E - 13
10% 100 78 22 2.169E — 09

These two charts are generally similar. They both show
that stealthy paths tend to have more fractal beauty than
standard ones, while aesthetic paths have more fractal beauty
than stealthy ones. The distribution is somewhat more
dispersed for y = 15% compared to y = 10% when
the standard path is the control. Yet, this is precisely what
Lemma 3 predicts.

Table 3 gives the results in terms of the number of
successes (s) and failures (f) and the P-value based on the
one-tailed binomial test.

Thus, we can reject the null hypothesis and accept its
logical alternative. Namely, stealthy paths are unique in terms
of their aesthetic value.

Table 4 addresses the question of how less stealth (y =
10%) versus more stealth (y = 15%) affects pathfinding. The
P-value is based on the one-tailed binomial test.
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TaBLE 4: Number of successes and failures and P-value.

y s f p
15% versus 10% 64 36 1.759E — 03

The data in Table4 suggests that stealth effects y =
15% versus y = 10% are unique among themselves. In
other words, there is a measurable, statistically significant
difference.

9. Conclusions

We have shown that stealthy pathfinding is a unique aesthetic
objective in relation to controls which have beautifying
treatment and no such treatment. There is also a small but
nevertheless statistically significant difference between the
two stealth effects, y = 10% versus y = 15%. In fact, a closer
inspection of the data suggests that the “jog” in Figure 3 is the
difference. Future research might seek to better understand
this more clearly.

We noted that the quantitative pattern measured by
the model is somewhat different from visual inspections
of the virtual worlds. This discrepancy is consistent but
seemingly counterintuitive. Future work might set up further
experiments to explore the matter further.

We chose y on the basis of trial and error. In fact, after
collecting the data for y = 10% versus y = 15%, we
subsequently tried other values, for instance, y = 5% versus
y = 20%. We found no differences compared to y = 10%
versus y = 15%, respectively. We speculate that the range
of y effectiveness is constrained by the virtual world size.
Future efforts might study y more systematically in relation
to parameters which generate the virtual world.
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1. Introduction

The gaming industry has changed dramatically over the past
few years. Where the development focus used to be on the
graphical possibilities of the games, that is, the naturalness of
the image rendering, the near movie realism of the graphics
now increasingly contrasts with the rather primitive and
unnatural behavior of the characters. With behavior, we do
not mean the animation of the character, but its cognitive
behavior, that is, the reaction and interaction with other
characters, the consistency over time of its goals, and so forth.
Therefore, the focus is now shifting toward more natural
behavior of the game characters. This shift changes the focus
on the techniques to be used as well. Whereas geometric
techniques and graphics were the prime focus, now it seems
the time to introduce more serious Al techniques, see for
example [1]. We see an increasing use of techniques such
as fuzzy logic and neural networks to enhance the decision
functions of the characters, see [2] for an example. These
features are very useful to make individual behaviors look
more realistic and in some cases make them blend into a
crowd in a natural way.

The game developers community has also recognized
the importance of making characters appear intelligent over
longer periods of time. Finite state machines are most
often used to model the life cycle behavior of a character.
Each state describes an important state of the character
that determines its choice of available actions. Although
this works fine for simple behavior, Orkin [3] realized that
more flexible planning is needed for complex behavior. In
EE.A.R., planning techniques based on STRIPS [4] and goal-
oriented action planning [5] are introduced. This leads to
more natural behavior because the goals of the character
are separated from the plans generated to reach the goal.
Therefore, the failure of a plan does not directly lead to giving
up a goal but rather leads to generating an alternative plan
including the new information about the world that led to
the failure of the first plan. Interestingly enough though, little
reference is made in this work to the research performed in
the agent community about dynamic and real-time planning,
which would be directly applicable such as [6].

Despite these examples, few commercial games have
focused on making characters within games behave more
natural on a cognitive level. Probably the main exception was



the Soar Quakebot build in SOAR for Quake II. However,
this was done (successfully) as an academic project, but the
Soar Quakebot was not incorporated in later commercial
versions of Quake. This is partly explained by the fact
that Quake like most video games does not require more
complicated behavior than that of film characters played
by actors like Sylvester Stalone or Arnold Schwarzenegger.
Not much intelligence is needed to emulate that behavior
yet. However, if we want to move beyond the shooting and
fighting games toward games in which multiple characters
interact naturally over extended episodes or serious games
to train people leading teams in stressful situations, we need
more cognitive believable behavior of the characters. One
of the problems mentioned in [3] is the implementation of
believable and natural communication between characters.
This can be done by giving them additional information,
not available to normal players. Also the use of special
environmental characteristics can provide the illusion that
characters are cooperating, while they merely all react to
the same environmental cue. These features are for instance,
used in EE.A.R. to create a realistic appearance. However,
this trick can only be used in well-defined environments and
everything has to be preprogrammed.

The more complex the games become and the more
elaborate the interactions between the characters during
the game, the more difficult it will become to design
these characters without the use of specialized tools geared
toward implementing intelligent agents in a modular way.
We aim for characters that are programed using agent
technology that actually incorporates deliberation on actions
and cooperation, rather than simulated intelligence through
clever tricks. Thus this seems an excellent area for applying
intelligent agent technology such as that being developed
within computer science faculties at the universities, which
already for a decade has developed models, techniques, and
tools to design software based on design concepts such as
goals, intentions, plans, and beliefs. Some first attempts to
connect game engines with this type of agents have been
made, for example [7, 8]. However, these are very specific to
game engine and agent type, no general solutions have been
proposed. The main issue of this paper is thus, given that
it makes sense to use ideas from agent research in gaming,
as seems to be supported by the growing amount of work
in games that incorporates (parts of) agent concepts and
technologies, what would be necessary to make use of the
agent technology as developed for the multiagent platforms?

The techniques used in agent technology do not seam-
lessly fit with those used in game technology. Agent technol-
ogy has hardly bothered about efficiency issues up till now.
Most applications are not real-time ones or still have large
time scales. Moreover, agent technology usually assumes
distributed control and a certain level of autonomy of the
agents. This is in stark contrast with game technology in
which the game engine dictates the application, and strict
time constraints are used in order to render the images
naturally and efficiently.

In this paper, we explore the possibilities to join the game
to existing agent technologies despite some inherent incom-
patibilities. We will focus on some of the most apparent
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problem areas and also show how they can be solved in a
structural way. A main assumption of this paper is that we
want to use agent platforms and the associated technology
to develop the intelligent agents, because platforms such as
JADEX, Jack, Jason, and 2APL [9] provide optimal support
for developing the agents themselves. This will, therefore,
support the design principle of separation of concerns, which
is important for complex systems. The way to design a
complex system is to separate different concerns and tackle
them separately using the most appropriate tools for that part
and joining them later. This principle can already be seen in
the game technology where the game engine is built from
physics engine, animation engine, and so forth, each taking
care of one part of the design of the game. So, the challenge
is to connect the agents developed on these platforms to the
game engines on which the rest of the game is developed. The
work reported in this paper is based on our experiences of
connecting the 2APL platform to several game engines. These
experiences led us to the conviction that in order to fully
integrate agents in games, one should not only use a technical
solution, but also a design methodology that is amenable to
agents. We aim to support this claim as well in this paper. The
areas that we will specifically look at are: synchronization,
information representation, and communication.

As the agents will run in separate threads from the
game engine (in principle using the agent platform), the
actions of the agents and the game engine also have to be
synchronized explicitly, for example, in order to make the
agents behave according to the laws of physics. The problem
of synchronization is of course not new; neither will we
present completely new solutions. However, the solution
should take the peculiarities of the games and agents into
consideration.

Information filtering is needed to provide both the agents
and the game engine with the right type of information at
the right time. Whereas the geometric information might
be the most important for the game engine, the agent
wants to get its information at a higher knowledge level.
For example, instead of knowing the rotation angle of a
rectangular object, the agent just wants to know that the
door is open. Conversely, the agent might perform an action
to move a fire hose toward the house which has to be
translated to more geometric actions that can be used by the
game engine. The idea of using different knowledge levels
to solve different types of problems dates back to Allen
Newell [10] who distinguished, for example, a biological,
cognitive, rational, and social level. Each knowledge level
represents the information in a format that is suited for that
particular type knowledge and may also contain its own type
of problem solving methods. We actually propagate the same
idea and claim that agents need a different (cognitive or
rational) knowledge level from the game engine, which uses
a biological (or physical) knowledge level.

Communication is the last area that we will consider
explicitly. We will mainly look at communication between
different characters in a game. In most games, coordination
between characters is preprogrammed and thus communica-
tion is only needed on a small scale. In multiagent systems,
communication is one of the pillars of the whole system
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and thus takes a prominent place in both design as well
as technology. We will show how communication can be
adequately integrated with the game engine to provide the
agents with easy communication, while keeping it visible for
the game engine.

The rest of the paper is ordered as follows. First, we
will discuss the state of the art with respect to games
and agents and identify problem areas. In Section 3, we
describe some applications of (serious) games that rely on
intelligent behavior and are currently difficult to achieve,
but will be more readily attainable using our approach. In
Section 4, we will describe our vision on connecting games
and agents, using three different perspectives to alleviate
the problems of Section 2 and enable games described in
Section 3. In Section 5, we will discuss the different parts of
our approach and indicate their contribution to the type of
gaming scenarios described in Section 3. Finally, we will draw
some conclusions and sketch directions for future work in
Section 6.

2. State of the Art

In this section, we discuss several approaches to the integra-
tion of agents in game engines. As said in the introduction,
many games already advertise the use of Al; however, the
meaning of the term agent differs between game developers
and Al researchers. In the next subsection, we discuss the
type of agent we will focus on in this paper. Subsequently,
we discuss different ways in which agents are connected to
game engines.

2.1. Software Agents. In the game developer community,
the term software agent usually refers to some character
or unit within the game. In contrast, in the area of agent
research, many definitions of software agents are used, which
can lead to confusion when the term is used by different
communities. (For some attempts to get to a common
definition and characterize agents, see, e.g., [11]). However,
there are some features of agents that are generally accepted
in the community, which we will also adhere to in this paper.
Software agents should be autonomous, proactive, reactive,
and socially able. In this paper, we assume the following,
more specific, definition of software agent: a software agent
is a piece of software that has its own goals available (is
proactive) and will try to achieve them without intervention
of a user or other program (is autonomous), while sensing its
environment and reacting to possible changes (is reactive).
Additionally, agents in a multiagent system (MAS) are not
centrally controlled, execute asynchronous, and should be
able to communicate with each other, the user(s) and the
environment. Software agents might be able to learn and
adapt, but we do not consider these features as essential for
agents.

The above definition mentions the generally accepted
features of agents, but of course is still quite vague. However,
it does give an indication of what type of features one
generally expects in agents. Without going into a complete
classification of agents, we do want to mention a few types

of software agents that are already used in the context of
gaming. Most important are the virtual agents or believable
characters. They are especially useful for user interfaces
and as such the emphasis is on natural interaction of the
characters with persons, see [12, 13] for examples of these
types of agents. The goals of these types of agents exist
only implicit in the way that the rules with which they
react to the environment are modeled and ordered in a
way to resemble the fact that they have a goal. Because
these types of agents usually have only one goal (something
like assisting the user to understand or use the system),
this will work fine. However, this approach fails when the
character has more complicated goals or several goals that
are competing. This happens particularly when more than
one virtual agent is present at the same time and they
have to cooperate which is usually avoided in this type of
applications.

Much work on using multiple agents with (relatively)
simple behavior is done in the area of (agent-based) social
simulation (see, e.g., [14]). These agent systems focus on the
emergent behavior of the system as a result of the interactions
of the agents according to simple rules. Some work where
multiple agents have been used in a simulation environment
for training is [15]. In this work, the agents represent
individuals or groups that interact in a virtual village, region,
or country. Their goal is to study how the behavior of groups
influences that of other groups or individuals. In these
simulations, the agents are not really autonomous. They
react to their environment through relatively simple rules.
More importantly they do not plan but only execute actions
one by one. Planning can be simulated by manipulating the
environment in such a way that sequences of actions are
forced after the first action is taken. However, it is difficult
to program long-term goals in these agents.

In the research on multiagent systems (MASs), the
starting point is that each agent represents a point of view
or party with its own goal. Therefore, usually each agent
runs in its own thread such that it can be autonomous.
Also, agents usually contain some mechanism to deliberate
about which action to take next in order to reach their
own goal. The interactions between the agents emerge from
the fact that the goals of the agents are not independent
and thus the agents need each other to achieve their goals.
Therefore, the design of agent interactions in such a way that
all agents can reach their goal is of prime importance. This
is illustrated by the amount of game theory-related research
reported at the recent MAS conferences [16]. In MAS,
the communication facilities play a crucial role. Because
not all interactions are preprogrammed, a high degree of
flexibility is needed to handle the communication. The de
facto standard communication language is the FIPA ACL
[17], which is based on speech act theory and can be used to
pass information, but also to request or order actions. MAS
platforms support communication by providing addresses of
all agents, delivering messages in the right order, and so forth.
The most widespread MAS platform is JADE(X), which is
provided as a library of JAVA classes and fully supports the
use of FIPA ACL communication (and thus provides easy
interoperability with other FIPA ACL compliant platforms).



Good examples of applications of MAS are logistics and
virtual organizations. In these business applications, the
benefits of representing the stakeholders by their own agent
that pursues the goal of that party while interacting with the
other parties (either cooperatively or competitively) becomes
obvious. It is this kind of MAS that we are aiming to connect
to the games. Taking this type of MAS as a starting point
provides a means to design each virtual character with its
own goal, while being able to interact with other characters
to reach its goal.

Also in MAS, there are several types of agents. We are
particularly interested in intelligent agents, which will use
some form of logic to perform their deliberation. That is,
they are able to reason about their own goals and plans,
to check which plan is best to achieve their goal given the
current situation of the world, and to replan when the
situation changed. The most well-known type of intelligent
agents is the so-called BDI agent [18], which are specified
(and sometimes implemented [19, 20]) in terms of the
agent’s beliefs, desires, and intentions. We believe that the
BDI agents are most suitable to implement consistent long-
term intelligent behavior in games. They seem a natural
extension to the work started by the use of goal-oriented
action planning in gaming as they also make explicit use
of goals and planning. However, they also incorporate
mechanisms to effectively use communication and other
interaction mechanisms in their action deliberation.

Some platforms that are more geared toward the use
of agents for cognitive simulation (and thus, like the BDI
agents, seem suitable for use within the gaming area) are
SOAR [21] and ACT-R [22]. In this paper, we do not commit
to a particular platform, but rather try to propose a more
generic framework that can be used by most agent types
and platforms. We thus will only refer to properties that are
shared by most (well-known) agent platforms.

2.2. Connecting Games and Agents. Current work on com-
bining agent systems such as the described above and game
environments either uses a server or client-side approach.
The server-side approach can be said to be the traditional
approach used in game design. In server-side approaches, the
decision-making process of the agents is usually completely
integrated into the game, resulting in agents that have to
make decisions within one time step of the game loop.
As such, server-side approaches have not made use of the
available agent systems. Examples of this approach are Quake
III [23], Never Winter Nights [24], EE.A.R. [25], and Bos
Wars [12]. In contrast, agents in client-side approaches are
separate applications using the network information that is
usually sent to a client game (a game instance that connects
to a server for the world information, such as the one used
by the human player). Some examples of this approach
are Gamebot [26] connecting to Unreal Tournament 2003,
Flexbot [27] connecting agents to Half-life, and Quakebots
(28] in Quake II. Most of these types of implementations are
made for research purposes.

Intelligent human-like behavior is important in the first
person shooter games because in the newest ones, the agents
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control single avatars just like humans can control their
avatar. Thus bots should be intelligent enough to perform
in a way that makes their avatar resemble an avatar of a
human player. In real-time strategy games, a whole team
is controlled by a single agent. The team members are just
executing basic instructions received from this top level
control. In this setting the emphasis is more on the quality
of the strategy and winning the game than on whether
the strategy resembles that of human players. Finally, the
pace of first person shooter games is higher than in most
other game genres, necessitating quicker decision making
and use of heuristics. For some games, it is claimed that
more sophisticated agent technologies are used, but this is
difficult to verify because most games are not open source.
Most games also have no publications from the creators and
third party publications are often inconsistent. So, in this
paper, we use a rather old game (Quake III), but we believe
very prototypical for this approach, to illustrate our point,
because it was the only open source game that we could
access and thus reliably discuss.

In order to get a better understanding of the state-of-the-
art approaches, we will analyze Quake III as a prototypical
example of the server-side approach and one of the few of
which the code is open source and thus inspectable and
Gamebots as a good example of the client-side approach. For
both approaches, the analysis will be made according to three
major aspects: synchronization, information representation,
and communication.

2.2.1. A Server-Side Approach: Quake III. In Quake III, the
agents are completely integrated in the default game loop in
the same way as the physics engine, the animation engine,
and rendering engine. The agent’s decisions are defined by
a sequence of method calls, and the methods return the
action that has to be performed at that time step. Direct
method calls can be used for many different decision-
making processes, for example, hard coding approaches,
directly specifying what to return with a certain input; fuzzy
logic, mapping the right output to a certain set of input
variables; or finite state machines, identifying the situation
the agent is in and executing the corresponding method call.
Independent of the particular decision-making strategy, the
whole process is completely synchronized. This limits the
complexity of behavior because in a synchronized process all
decisions have to be made within one time step, and complex
decisions would slow down a game too much.

Figure 1 gives an impression of the implementation of
agents in Quake III. On the lowest level in the figure, a
translation from the raw engine data to a representation
more suitable for agents has been created, called the area
awareness system (AAS). The heart of the AAS is a special
3D representation of the game world that provides all the
information relevant to the bot. The AAS informs the bot
about the current state of the world, including information
relevant to navigation, routing, and other entities in the
game. The information is formatted and preprocessed for
fast and easy access and usage by the bot. For instance, to
navigate the bot receives information from the AAS about the
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locations of all static items, and it can ask the AAS whether a
certain location is reachable. The AAS is responsible for route
planning. The first level also executes the actual actions of
the agent and facilitates the decision process of the agents.
However, the agents are highly dependent on the data they
can extract from the AAS, for example, an agent cannot
decide to take another route to a certain item. To illustrate the
importance of the linkage between the engine and the agents,
this part constitutes over 50% of the entire agent code.

On the second and third levels of the architecture, the
information from the AAS can be used to check whether the
bot’s goals are reached or how far off they are. Depending
on the character that a bot plays, the fuzzy logic control
determines which of the possible paths the bot should start
navigating.

Little communication between agents takes place in a
normal game of Quake III; it is only used to assign roles
in team play situations. Communication is implemented
by using the chat system for sending simple text messages.
More cooperation between agents would require improved
communication facilities. Moreover, currently it is assumed
that communication is always successful, which is usually not
guaranteed in realistic multiagent scenarios.

2.2.2. A Client-Side Approach: Gamebots. Gamebots [8]
has been created as a research platform for making the
connection between agent research and a computer game,
namely, the Unreal Tournament environment, and is one
of the most used client-side implementations. In client-
side approaches, agents are running as completely separate
programs from the server and are usually communicating
through network sockets. Network communication between
agents and other external software programs has been
successfully used in other multiagent systems. Gamebots was
designed for educational purposes, and therefore, multiple
client implementations have been created, for example, one
using the scripting language TCL, a SOAR bot, and a JAVA-
based implementation.

Figure 2 shows a diagram of the different Gamebot
modules in combination with the JAVAbot extension. The
Gamebot API forms the extension to Unreal Tournament
that is needed to connect a client-side program to the
Unreal Tournament. The JAVAbot API is the client side
of the coupling. Having a general JAVA API on this side
facilitates the connection to most agent platforms because
they are usually also JAVA based. Information is sent from
the game engine to the agents through the Gamebot and
JAVADbot APIs by two types of messages: synchronous and
asynchronous messages. The synchronous messages are sent
at a configurable interval. They provide information about
the perceptions of the bot in the game world and a status
report of the bot itself. Asynchronous messages are used for
events in the game that occur less often and are directly sent
to the agent (but do not interrupt the large synchronous
message).

Gamebots is actually not a pure client-side solution
because the server is also modified to supply a special
world representation to the bot. There are some pure client
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FiGure 1: The Quake III bot architecture as described in the
developer documentation. This figure shows the close coupling
between the various levels of abstraction (Copied from [28]).
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platform

Gamebot JAVAbot
API API

FiGure 2: The Gamebot architecture showing that a server-side
module is needed to translate the game data to terms the agent can
process.

agent implementations, but they are usually only created
for cheating purposes. In this case, the processing of the
data is done in the bot itself because it pretends to be a
human client game. Doing this filtering on the server is
more efficient because only the useful information needs to
be communicated. This server modification, the Gamebots
network API, performs a similar task and for similar reasons
as the area awareness system in Quake III. This clarifies why
the Gamebot API is specific for Unreal Tournament; it needs
to know the internal representation of the game world in
order to make the translation (efficiently).

The Gamebot API does not provide information about
the complete environment, but only about objects that are
perceivable by the bot. Thus, if a bot wants to gather
information about the complete environment, it has to
(physically) explore it. To navigate, for example, the agent
receives information about predefined navigation nodes in
the game map, but only the currently observable nodes are
returned. The agent thus does not know what exists around
the corner, let alone that it can reason about it. Due to
the representation choices made in Gamebots, information
about the environment has to be stored at the agent side
of the system. This results in large differences between the
agent’s representation of the environment and the actual
environment of the game engine. For complex bots, the
information provided by the Gamebot API quickly becomes
too limited to make intelligent decisions. For example, the
agent cannot know the spawning location of a certain power-
up, and therefore, it cannot plan to go there.

There is no facility for communication between agents
in the Gamebots API because Gamebots was not designed
for adding a multiagent system with interacting agents to
the game. It is allowed to add multiple agents to one game,
but there are no facilities for direct interaction between these
agents. It is possible to create a separate communication



system between the agents by bypassing the API and the
engine. However, this solution is not only inelegant, but also
restrains the game environment to have any influence on
the communication. An advantage of separating the game
engine and the agents in different processes is that there
are no strict time limits on the reasoning process of the
agents. A disadvantage of using a fixed API is that the agent
receives information it does not need and it cannot access
information that it might need.

2.3. Multiagent Interaction. In the previous paragraph, we
have seen two examples of ways to connect agents to
games. These approaches are limited to a technical way of
connecting agents to a game. On the level of game design,
few games have tried to leverage these approaches from
the start of the game design to add multiple agents and
create a more compelling game play. Current games are
generally not created with multiagent interaction in mind;
interaction is not implemented at all or added as an extra
feature in a later phase. For games in which interaction is
simple, this is not problematic. For example, Quake III has
a game mode in which two teams strive to capture each
others flag. The player plays one character in a team, while all
the other characters, from his own and the opposing team,
are computer-controlled agents. Although the interaction
between agents and between agents and the player is limited,
the game conveys the feeling of a dynamic interactive world.
The same can be said about the communication between
characters in EE.A.R. Although the communication looks
quite natural it is actually added to the interaction scene
afterward. It thus serves more to enhance reality than that
it has a function in the gameplay! See [3] for a description of
the problems encountered.

If the interaction in a game becomes more complex and
the multiagent interaction is not an intricate part of the
design process, some unexpected or unbelievable behavior
might occur. For instance, users who were testing the game
“Elder Scrolls: Oblivion” by Bethesda games [29] noticed
that if they gave one character a rake and the goal “rake
leaves” and another a broom and the goal “sweep paths”
this worked smoothly. But when they swapped the items,
so that the raker was given a broom and the sweeper was
given the rake, in the end one of them killed the other
so he could get the proper item. If the communication
between agents in this game would have been possible, they
could have communicated about their goals, and solved
their problem. In the academic community, much work has
been done on sharing, exchanging, and rejecting goals [30].
So far, this has not been absorbed by the game developer
community.

Current games also do not facilitate multiple agents
requiring complex decision making. In order to generate
agent behavior, complex computation may be required. For
instance, in a real-time strategy game, an opponent agent
needs to observe the playing field, assess the state of his own
units, make an assessment of the strategy of its opponents,
generate a strategy, form a plan to execute that strategy,
coordinate plans with other agents within the same faction,
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and in some cases evaluate actions in order to learn from
them for future battles. Depending on the algorithms used,
this can take considerable processing time. Current games
make high demands on computer processors in order to
display graphics, simulate physics, create 3D audio, and
perform network communication, amongst others. Many
games are, therefore, forced to minimize the processing
time used for individual agents. If each agent has its own
reasoning process running in parallel to generate behavior,
this can spiral out of control quickly. This is certainly the
case in games with many characters in a scenario. Current
games, therefore, often forego the generation of complex
behavior and script the behavior of nonplaying characters.
For instance, in a first-person shooter game, two computer-
controlled players happen to be within equal distance of
a power-up. In the current game Al design approaches,
such players enter a scripted line of reasoning, resulting
in the decision to retrieve the power-up. This will lead
them toward the same area in the game and within the
shooting range of each other. This behavior is an example
of nonrealistic behavior due to oversimplification in a
script.

A human player expects the entire game world to persist
even when not present in a particular area. Many games have
an optimized design that allows a game to be compressed to
events, behaviors, and reactions that directly surround the
player, and therefore, only the ones visible to the player. So
when a nonplaying character falls out of the scope of the
player, the game engine no longer simulates the interaction
between a nonplaying character and its environment. Thus
the game is optimized and the demands on computer
hardware are reduced. However, simulating only parts of the
game world might result in unrealistic behavior. For instance,
in large first-person shooter games, the positions of guards
are reset (or their behavior no longer updated) when the
player has reached a certain distance. Each time the player
returns to the initial area, the guards will be at the same places
or even have become alive again while they were killed before.
The example shows that simulating an agent depending on
the position of the play can lead to discontinuities in the
game world.

Conclusion. Most state-of-the-art games use a server-side
model with tightly integrated agents. As we have seen,
this approach restricts the reasoning time of the agents
considerably. An asynchronous solution is more suitable
and will be used as a starting point in the next sections.
Translating the raw game data to information more suitable
for the agents is done in most computer games, but usually
in a very restrictive way. In Section 5.2, we propose a more
flexible solution. Many of the current games do not use
communication at all, and if they do, only for simple tasks
and in an ad hoc fashion. Modern games are not created
with multiagent interaction in mind. This results in games
without or with very simple interaction, or in unexpected
behavior in more complicated scenarios. We propose to
make the agent interaction an intricate part of the whole
development process.
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3. Using Intelligent Agents

In this section, we describe some applications of (serious)
games that really leverage intelligent agent technology in a
way that is currently not practiced. These examples serve to
illustrate the usefulness of our approach. The examples in
Section 3.1 mainly focus on problems related to information
representation. Section 3.2 about multiagent systems stresses
the importance of finding solutions for communication
issues. The area of synchronization is addressed throughout
the whole section.

3.1. Serious Gaming. Besides the purpose of entertainment,
games are also used for training and education. These so-
called serious games are for example used for the training
of pilots, soldiers, and commanders in crisis situations.
The training scenarios often involve complex and dynamic
situations that require fast decision making. By interacting
with these games, the player learns about the consequences
of his actions from the reactions of the environment and
other (nonplayer) characters to his behavior. Explanations
can enhance the player’s understanding of a situation [31].
Several approaches of self-explaining agents have been
proposed [32-34]. In addition to performing interesting
behavior, such agents are able to explain the underlying
reasons for it afterward. By understanding the motivations
of the other characters in the game, the player learns how his
behavior is interpreted by others.

An example of a serious game to which explanation
capabilities could be added is virtual training for leading
firefighters. In such training, the player (training to become
a leading firefighter) has to handle an incident in the game,
and is surrounded by virtual characters representing his team
members, police, bystanders, or victims. A possible scenario
is a fire in a building. During the training session, the player
commands his team members to go inside a building and
extinguish a fire. The player’s team enters the building, but
after a while he still does not see the fire shrink from the
outside. To better understand the situation, he might ask the
virtual characters to explain their behavior. Their possible
answer is that they saw a victim inside the building, and
decided to save the victim first before extinguishing the fire.

The scenario just given is described on a high level. The
virtual characters get commands from the player such as go
to the building, find the fire, and extinguish the fire. When they
explain their behavior, they refer to abstract concepts such as
priorities between different tasks (saving a victim has priority
over extinguishing a fire). However, the abstract decisions
that the characters make result into actions that have to
be executed and visualized in the virtual environment.
Instead of the description go to the building, more specific
information is required on the implementation level, for
example, the coordinates of the agent’s starting position,
exact path, and final position. So in order to perform actions
in the virtual world, the high-level descriptions generated by
an agent’s reasoning process have to be translated to low-level
descriptions required by the game engine.

Besides acting in the environment, agents sense their
environment and information goes from the game engine to

the agent. The low-level information that is made available
by the engine is not immediately useful to the agents. Instead
of the exact positions of all the entities and objects in the
game at every time step, agents use abstractions, for example,
someone is going inside a building, exploring a building takes
some time, and the entity in the building is a victim who
needs help. The low-level information provided by the game
engine needs to be translated to concepts that are useful
for the agent. For instance, information about the course
of the coordinates of a character could be translated to the
more abstract description that the character enters a building,
and if a state holds for a certain amount of time steps, this
could be translated to the high-level concept for a while. This
concept has to be flexible, as the agent might decide to take
an action at time “t,” but the game engine can only process
its action a few steps later. After translating the available low-
level information to concepts that agents use, an agent itself
can select which of the high-level information will influence
its future actions.

For the generation of explanations about agent behavior,
a high-level representation of the agent’s reasoning process
is needed. For instance, agents implemented in a BDI
programming language appropriate for the addition of
explanation capabilities. Concepts such as goals, beliefs, and
plans are explicitly represented in BDI agents and thus
available for reasoning and the generation of explanations.
Moreover, it has been demonstrated that BDI agents are
suitable for developing virtual nonplayer characters for
computer games [35]. A nonplaying character however needs
to act in and sense its virtual environment, in which other
representations of the game world are used. The example
illustrates the need of a middle layer in serious gaming,
where a translation between the two representation levels
takes place.

3.2. Multiagent Systems. Multiple intelligent nonplaying
characters bring additional challenges to game design. Cur-
rently there are few facilities that allow efficient multiagent
behavior. Issues that should be addressed are for example
how an agent determines whether there are other agents in
the game. If so, how can it communicate with these other
agents? How does it know that a message has reached the
intended agent? How is information filtered such that it
allows an agent to reason about social concepts, for example,
about groups, group goals, and roles within a group?

In the firefighting scenario sketched in the previous
subsection, the team members of the leading firefighter
(player) are intelligent agents (nonplayers). Although they
have to execute the commands of the player, they still need
intelligence of their own. In the first place because they
might take initiatives by themselves; in the scenario the
nonplaying characters decided to save the victim first instead
of extinguishing the fire as the commander had told them.
Second, because they act in a team and have to coordinate
their actions with each other. For instance, if the group has to
decide whether to go left or right, they have to communicate
to each other in order to make a common decision. Or, only
one of the characters needs to carry an axe for opening doors,



but the others have to know that one of the team members is
responsible for this task.

Suppose that a team of firefighters goes into a building
with the goal to extinguish a fire. One of the members is
responsible for opening locked doors and another has to
extinguish the fire. If the first carries an axe and the second an
extinguisher, this will work smoothly. However, the situation
in which the door opener carries an extinguisher and the
fire extinguisher and axe is more complex and requires
communication. The door opener has to be aware of the
other character, come up with the idea to communicate
with it, send the right message, wait—long enough—for the
result, and finally connect the right action to it. The next
action of the door opener depends on the information it
receives from the fire extinguisher.

We believe that the communication between different
agents in a game should go through the game engine instead
of taking place on the agent platform because the effect
of communication has influence on the game world itself
and not only on the agents. For instance, if the two agents
in the scenario successfully communicated and decided to
exchange their tools, this needs to happen physically in the
virtual environment as well. If communication would not go
through the game engine, there is a danger that processes
in the game world and between the agents are no longer
synchronized. For example, if the agents agree to swap items,
they would both send a message to the game engine and
believe that the items will be successfully exchanged in the
game world. This however is not obvious. The actual swap
in the virtual world is managed by the game engine, for
example, one agent puts down its tool, has its hands free
to receive the other tool, and the other agent picks up the
tool from the ground. For such a process, it is crucial that
the game engine receives the messages from both agents at
the same time, or at least connects them to each other. This
can be better realized if the game engine is included into the
communication loop.

In turn, physical changes in the world have effect on
communication as well. For example, if the door opening
agent asks a team member to take over, it expects this
member to come and take his axe. By perception, the
agent derives whether its colleague perceived the message
and decided to assist, or if it should communicate more.
The colleague might have a good reason to refuse, for
example, it has to assist a third agent already. It could
communicate this to the requesting agent. The timing of this
communication and the action to help the third agent should
be synchronized; otherwise the requesting agent might for
example unjustly belief that it is being ignored. Such timing is
facilitated by including communication into the game loop.

Further issues concerning careful time management
include a translation of time for the game engine to time
for the agents. For instance, if the door opening agent sends
the message what tool are you carrying? To the other agent,
it expects a reaction. It is not realistic to expect a response
directly in the next time step, the game engine could give
priority to other processes first and the other agent might
need some time to reason about the question. However,
the agent also should not wait indefinitely because it could
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be that the message never arrived, or that the other agent
misunderstood the content, and so forth. So after a certain
amount of time, the agent has to react, for example, by
sending the same message again, or by sending a message did
you understand my previous message? In the middle layer, a
translation of time for the game engine (a number of time
steps) to time for the agents (time in which a reaction could
be expected) has to be made.

The examples in this subsection aim to make clear
that communication is more than just an exchange of
information. After sending a question or a command, the
sender expects an answer or action. If it does not see an
effect of its communication action for whatever reason, the
sender will react on that. Decisions of agents depend on the
information they receive by communication and perception,
and their communication actions have effect on the game
world and the behavior of other agents. Therefore, the
communication processes and the actions in the game world
have to be well synchronized.

4. Connecting Games and Agents, Our Vision

In Section 2, we have shown current approaches to integrate
agents in game engines. It is clear that those solutions
are pragmatic but do not really give room to fully use all
aspects of agent technology in the game environment. In
Section 3, we have illustrated how agent technology can
contribute to the use of game for serious purposes and a
more compelling interaction between NPC characters. To
overcome issues with synchronization, information repre-
sentation, and communication, we analyze the connection
between game and agent technology from three different
perspectives, that is, the infrastructural, conceptual, and
design perspectives.

For our solution, we look at the connection between the
agents and the game engine starting from infrastructural
point of view. The main requirement is that on the one
hand the game engine should have some control over the
actions of the agents in order to control the overall game
play and preserve physical realism. For instance, if an agent
wants to move in a straight line to a position in the game
world, but there is a wall in between the agent and that point,
then the game engine will prevent the agent from moving
to the point it wants to get to, that is, the agent cannot just
move through walls. On the other hand, the agents should
be autonomous to a certain level. For instance, if an agent
is walking to a way point, but is reconsidering his decision
and wants to turn back, it should not first have to walk to
the way point and only there be able to turn back. Also, we
want the agents to be able to keep reasoning full time and not
being restricted to specific time slots allocated by the game
engine.

An important consideration in the connection between
the agents and the game engine is which information is
available to the agent and when and how does it get that
information. Moreover, we have to consider when agents can
perform actions in the game and which actions are available
to the agent. With respect to the latter, one should think
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more in terms of abstractions than in terms of forbidden
actions. For example, can an agent open a door or should it
manipulate a door object position to another position? Often
the translation between these types of actions is provided for
the avatars steered by the user. However, it is not clear that the
same set of translations applies for the nonplaying characters
in the game. For example, current animation engines are
capable of performing rudimentary path planning. This
means that actions become available to characters to move
through a room without bumping into any object with one
command. These commands might not be available for the
human players, but are very efficient for the nonplaying
characters.

The above considerations all relate to the connection
of a single agent to the game engine. In general, one
would like to connect a complete multiagent system to
the game in which the agents also can communicate and
coordinate their actions. In order to fully profit from agent
technology, one would want especially to have the agents
using their own high-level communication protocols that
facilitate coordination. These communication facilities are
standard provided by the agent platforms on which the
agents reside normally. As we have seen, the facilities for
communication within the game engines are rather primitive
and/or ad hoc. So they are not very suitable for this type of
communication, unless we extend them considerably.

The next question thus becomes how to connect the
agent platforms to the game engine. Several solutions are
possible. First, one can integrate the functionality of these
platforms in the game engine. In this case, the agents can be
built as if they are running on an agent platform. Second,
one can distribute the functionality over the game engine and
the agents. This means that some rudimentary functionality
is incorporated in the game engine, but the agents have
to get some more elaborate communication functionalities
to compensate for the loss of some features. For example,
they might have to keep track of the other agents they can
communicate with (storing agent names and addresses). A
last option is to let the agents run on their own platform and
connect the platform to the game engine. One problem with
this option is that the platform runs in parallel to the game
engine and all types of interactions between the agents are
not available to the game engine. This might potentially lead
to a loss of control and inconsistencies between the agents
and the game engine.

We will opt for a position in the middle. We will transfer
some of the communication functionalities to the game
engine to preserve consistency and control. However, we
also will keep the agents running within their own platform.
This is mainly done for some other facilities provided by
the platforms, such as efficient sharing of reasoning engines
by the agents and monitoring and debugging interfaces
for the agents. The last parts are important for designing
and implementation, but can be decoupled in the runtime
version of the game. In order to address all issues, we
divide the connection into three stances: an infrastructural,
a conceptual, and a design stance.

As indicated above, the infrastructural connection
requires adjustments on both the agent as well as on the game

engine side. Therefore, although the connection principles
might be platform independent, the actual implementation
will not be completely platform independent. The standard
way to ameliorate this point is to create a middleware API.
Basically, connecting agent (platforms) to game engines is
not different from connecting any other software together.
So, in the end, we also will make use of the means available to
connect independent threads of software. However, what is
different is the perspective. In most applications that connect
software, there will be a single thread of control that is well
defined. In our case, we want a kind of shared control that
is different from traditional software solutions. It means that
our infrastructural solutions should take this perspective of
shared control already in mind and be as flexible as possible
in order to define the way control is shared on higher
levels. So, in our middleware, one can define the standard
constructions that we assume to exist on both sides, but
the way they work together is kept as flexible as possible.
The exact sharing of control is defined in the infrastructural
stance. We describe the infrastructural stance in more detail
in Section 5.1.

The translations between information representations
that are needed to connect the agents to the game are
described using a conceptual stance. Most important will be
the translation of actions of the agent into actions within the
game engine and translations of changes in the world into
percepts that can be handled by the agent. We aim to use the
high-level architecture (HLA) standard for this purpose. This
stance is described in Section 5.2.

Finally, it is important to incorporate the agents explicitly
in the design method of the games. The type of data that has
to be generated or kept depends crucially on the ways that
the agents need to use them. Therefore, if the world is first
created and the agents are only added in the end, they might
not have enough information available to act intelligently.
For example, if an agent has to take cover it should know the
distinction between an iron bar fence and stone wall of the
same dimensions. If the only data available is that there is an
obstacle of certain dimensions, this information can hardly
be deduced. Designing the environment with the possible
actions and perceptions of the agents in mind will drastically
change the way the world is created. In Section 5.3, we will
show that the agent-oriented OperA framework is a good
starting point for such a design methodology.

In Table 1, we summarize how the different issues that we
focused on are dealt with within the different stances. In this
table, we denote the technique that is used in a particular
stance to deal with an issue. Please note that the issues are
not all of the same type. Synchronization, for example, is a
technical issue that is, therefore, not really discussed in the
design stance. In contrast, communication is such a general
issue that it has elements that are dealt with in all the different
stances.

5. Three Stances to View the Connection

In this section, we will discuss the three stances (infrastruc-
tural, conceptual, and design stance) in our approach more
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extensively. For each of them, we will indicate their contribu-
tion to gaming scenarios as described in the previous section.
As argued before, the topics of synchronization, information
filtering, and communication play a fundamental role in
coupling games and agents. So they all will be covered in
this section as well. Synchronization is mainly addressed in
the subsection about the infrastructural stance. Information
filtering receives most attention in the subsection about the
conceptual stance. Communication involves several aspects;
it is, therefore, discussed in all of the three subsections.

5.1. Infrastructural Stance. In our approach, we view the
game engine and agents as asynchronous processes because,
as discussed in Section 2, agents that are part of the game
loop are restricted in their reasoning by time. Therefore,
we believe that a synchronous approach is not suitable
for intelligent agents with complex reasoning processes.
Although we are investigating a coupling between two
specific types of asynchronous processes, infrastructurally
our case is similar to other asynchronous couplings.

There are four basic tasks that need to be performed
by the infrastructure. First, information about the game
environment needs to be provided to the agents to allow
them to reason about the game. Second, the actions that
the agents have selected to perform in the game need to be
transferred to the game engine to allow them to be executed.
Third, the communication between agents can be effected
by the game environment and thus needs to flow from the
agents, through the game engine, back to the agents. Last,
the infrastructure needs to provide a central time. The latter
is relatively simple and done by sending timed events to both
game engine and agents.

When an agent requires information from the game
engine, a distinction is made between information about
static and dynamic game entities. Static entities have proper-
ties that are fixed for the duration of the game, for example,
buildings, mountains, and roads. Dynamic entities contain
properties that change continuously. For example, victims
have changing health, firefighters change position, and fire
spreads through a building. For static entities, the engine
can inform that the entity is static and include the requested
properties. After such a message, the agent normally does not
need to update this information anymore. This thus provides
for some efficiency in the information flow.

For dynamic entities, the game engine sends a message
when entities become (un)perceivable for the agent. The
conditions for perceivability are defined conceptually. In
the filtering layer is decided which events are relevant for
that specific agent. This in contrast to fixed APIs used
in current work where all agents receive the same event
types. After being subscribed to a dynamic entity, the game
engine will keep sending updates about these properties.
This mechanism prevents the agent from being flooded by
information about all possible entities and their properties,
while not limiting it to predefined aspects of the game world.
One could see the decision-making process that selects which
events are selected as part of the agent but this is not a
necessity.
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TaBLE 1: Contribution of each stance to the three challenges of
connecting agents to games.
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FIGURE 3: Event queues in the infrastructure allow both the agent
platform and the game engine the flexibility to select events based
on their own criteria.

In order to execute actions in the game world, an agent
sends a request to the game engine. However, the agent’s
actions might be of a different type than the game engine’s
actions, for instance, open a door versus move object x to
position y, z. Moreover, the timing of the request might
not correspond to the game loop, so directly executing
these actions in the game engine is in general not possible.
Therefore, we propose to implement the actions of the
agents in the game world by a queue structure which
contains a description of the action plus possible timing
constraints. Figure 3 shows a diagram of the information
flow of the action requests. A requested action is inserted at
the end of the queue to keep an ordering of the requested
actions. At the beginning of each new time step of the
game loop, the engine selects actions to perform. One
possible approach would be to always select the actions
at the top of the queue. The game engine however is
able to select actions based on other criteria. For example,
certain actions might be preferred by the game engine or
a higher priority might be given to actions by a certain
agent.

Normally agents expect an external action to behave
like a method call and the agent waits for the result. But
because actions in the game world are not always executed
right away, do not always succeed, and sometimes have
unexpected results, we separate the request of performing the
actions from the result. The result of the execution of the
actions is sent back from the game engine to the agent in a
separate message. Agents do not have to stop their reasoning
process to wait for this message. When the message arrives,
the information can be used for further reasoning. This is
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significantly different from normal multiagent programing.
There are different ways to cope with this delayed feedback.
There is no guarantee that the engine responds within a
certain time limit. An agent could be programed in such a
way that it assumes that the action failed if no response is
received within a fixed amount of time. Or an agent can
assume that all actions succeed and if a negative response
is received from the engine, this information is corrected.
More elaborate reasoning about this information is also
possible.

When comparing this approach to the Gamebots model,
it is obvious that there are some similarities. Gamebots
also uses separate asynchronous processes and some adjust-
ments can be made on the timing of information passing.
However, there are some advantages to using the approach
suggested in this section. The main difference is that there
is a lot more flexibility on the kind of information that
is passed from the engine to the agent because of the
usage of a subscription model instead of the fixed APIL
For example, in the subscription model, the agent could
subscribe to a very specific property such as the health
information of another character. With the fixed information
passing used in Gamebots, all predefined information is
continuously sent, and therefore, such specific properties
are omitted. The timing is also more flexible on both
sides of the system. When using Gamebots, information
is either sent to the agent at a fixed time interval or
directly for synchronous or asynchronous, respectively. It
is not possible to change the timing or the amount of
information that is sent, although the interval between
messages is configurable. In the subscription model, the
agent can request information whenever it is convenient.
On the game side, the engine selects the requested actions
from the input queue at its own time and with its own
selection criteria. In the Gamebots approach, the actions
requests all have to be executed immediately in the next time
step.

Communication between agents is organized in a similar
way to action requests and information passing. Sending
a message to another agent is treated as a type of action
request, where the action consists of delivering information
to another agent. Communication plays an important role
in multiagent systems, which is why we prefer using a
separate queue for communication requests. Again the game
engine can have its own preferences about the selection of
messages from this queue. The game engine determines how
a communication request is handled. For example, if an
agent shouts, the engine determines which agents receive
this message. Similar to action requests, the agents also
receive feedback about the result of sending the message.
Because the game environment can influence the success
and effect of the communication, it is clear that it should
pass through the game engine and cannot be organized
through the multiagent system platform (as is normally
done).

5.2. Conceptual Stance. The second stance in our framework
connects the character’s mental capabilities (implemented

11

in the software agent) to their physical counterpart (imple-
mented in the game engine), in a similar fashion as the pineal
gland was supposed to connect the mind and the body in
Rene Descartes’ dualist worldview [36]. In this section, we
will discuss the mapping of agent reasoning symbols to game
engine data.

5.2.1. Conceptual Agreement. The most important aspect of
this stance consists of a translation between concepts in the
game engine and the agent. For example, when an agent
wants to execute the action go to the building, this should be
translated in the game engine to find object called building,
check object can be reached, plan path to object, follow path
to object, and vice versa. In order to create this mapping,
we need to define a consistent common representation.
This representation functions as an agreement or contract
between the game engine and the agent. While each has a
different internal representation of the concept, both have
to respect the meaning of the concept as defined in the
agreement.

The agreement will cover the way the world can be
perceived by the agent (game engine to agent mapping)
and the way the world can be acted upon by the agent
(agent to game engine mapping). These agreements are
called the object perception model (OPM) and the object
interaction model (OIM). They are inspired by HLA. HLA
is a simulation interoperability standard [37]. HLA was
designed to allow different simulations to connect and
participate in a shared scenario. However, it was not designed
to connect agents to simulations or games. One aspect that
is required for the case of connecting an agent is filtering of
data. An agent should only receive data that is relevant for the
agent. For example, if an agent is fighting a fire in a building,
it is of little use to receive a message that there is a player
on the other side of the game world that lost his helmet.
In HLA, there is only control over data distribution among
participants by the use of a publish-subscribe approach.
However, in the case of agents, the need for information is
highly dynamic and based on the situation at hand and the
line of reasoning by the agent. Therefore, the condition under
which subscriptions should change needs to be represented.
In the case of agents, we will extend the HLA approach with
more control over data distribution. This extended control
will create a more dynamic publish-subscribe approach in
which a party is only subscribed to certain information in
relevant situations.

First, we will describe the object perception model. The
OPM represents both the entities that can be perceived
(ontological representation) and the condition in which they
can be perceived (qualification representation). In HLA, the
common ontological representation is defined in the federate
object model (FOM) which is an instantiation of the object
model template (OMT). In the case of agents, we will not
need many of the data types defined in the OMT and we can
use a general syntax such as XML. For example, a firefighter
in our scenario can observe other characters. The following
XML description indicates which features of the characters it
can perceive:
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<class name=“Character”>

<property>
<name>ID</name>
<type>number</type>

</property>

<property>
<name>Distance</name>
<type>meters</type>

</property>

<property>
<name>Direction</name>
<type>Orientation</type>

</property>

<property>
<name>Tool</name>
<type>Tool</type>

</property>

</class>

Stating that one can perceive the character’s distance and
the tool it carries. An agent can for instance subscribe to
perception messages about other characters. Only when it
is relevant should the agent actually receive these messages.
This is accomplished with the Poss() operator. It means
that only messages will be sent when the situation satisfies
some constraints. For instance, the conditions in which the
characters can be perceived can be described as follows:

Poss(Perceive(Character, ID)) <
(Dist(Character, ID) < 150 A LineofSight
(Character, ID) A Direction(Character, ID, towards)

So, a character can only be perceived if it is closer than 150
meters and one looks in the right direction. Both the agent
and the game engine need to interpret the OPM based on
this common representation.

In the case of the game engine, the part of the game
loop that sends world data to the agents contains a list of
agents that have the capability “perception.” This capability
is described in the OIM (which we will introduce hereafter).
It also contains a list of objects of the type “Character” It
compares the x, y, z positions and checks if the distance
is smaller than 150 meters, checks if there is a line of
sight between each agent and each character and checks
the relative orientation of agent and character. If these
actions satisfy the perception rule in the OPM, the game
engine sends an asynchronous message to the queue of
the perceiving agent. The message contains the “Character”
object with the properties as defined in the OPM.

The mapping of concepts between game engine and
agent can be facilitated by software tools that automate some
of such mappings. For example, Kynapse from Kynogon [38]
is able to analyze geometric data and extract path planning
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information from this data. This in fact is an automated
step to translate game engine information to concepts with
which an agent can reason. For information other than path
planning, additional tools could be developed.

In the case of an agent created in an agent language
such as 2APL, it will interpret the OPM straightforward as
an incoming event of the type perceive with a number of
parameters.

Event (Perceive (Character, ID, Distance, Direction, Tool),
TIMESTAMP). The timestamp indicates the time the event
was received. These types of events are stored in the so-called
event base of the 2APL agent. It can use reasoning rules to
decide what to do with these perceptions. For example, it can
update its belief base each time such an event is received, but
it can also restrict updates to characters that are closer than
50 meters or of which the distance changed more than 100
meters.

Second, we will describe the object interaction model.
The OIM represents the capabilities of the agent to interact
with the world. It denotes the possible interactions, the
conditions under which they are possible, and the effects
of an action. In HLA, interactivity between simulations is
achieved through sending specific interaction events. These
interactions are messages specifying events that happen in
a simulation. Based on the subscriptions of a simulation, it
will receive all corresponding events. In the case of agents
and games, we again need more precise control over which
interactions are relevant for an agent. This helps reduce
processing load on the agent side and optimize the game on
the game engine side. We again take inspiration from HLA
and define the interaction relevant properties of objects using
XML. We then extend this with rules specifying constraints
and consequences concerning the actions. We continue the
firefighter example and describe an agent (which can be
viewed as an object that can interact) that can open doors:

<Agent name="“Door-opener”>
<general>
<property>
<name>HoldsOpeningTool</name>
<type>Tools</type>
</property>
</ general>
<physical>
<property>
<name>height</name>
<type>meters</type>
</property>
</physical>
<sensor name="eyes” >
<property>

<name>Range</name>
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<type>meters</type>
</property>
</sensor>
<capability name=“Open door”>
<property>
<name>target</name>
<type>Door</type>
</property>
</capability >
</Agent>

We force agreement on the circumstances before and after
the action in a similar fashion as done in [39] by specifying
pre- and postconditions of the action:

PRE: Poss(OpenDoor(Agent, Door)) <
Closed(Door) A Distance(Agent, Door) < 1
AHolds(Agent, Axe)

POST: Done(OpenDoor(Agent, Door))
= Open(Door) A Poss(Backdraft(Door)).

So the agent can open a door if the door is closed and it stands
near to the door and is holding an axe. If a door is opened,
its state is changed to open and the agent is automatically
subscribed to messages that indicate a back draft explosion
occurred.

Similar to perception, both the agent and the game
engine will need to interpret the OIM. For the game
engine, this means that the “Door-opener” agent will be
subscribed to asynchronous messages (as described in the
previous section) about “Door” objects in its vicinity. This is
interpreted from the appearance of door objects both in the
agent properties and in the interaction rules. Additionally,
the game engine processes code to execute “OpenDoor”
actions sent by the “Door-opener” agent (i.e., changing the
status of the door to open) while it ignores such actions from
other agents. It changes the physical representation of the
door by turning it ninety degrees. Following this, the game
engine recalculates fire and heat intensity and the oxygen
level in the room behind the door. If a door is opened in a
room that is very hot but contains little oxygen, the game
engine will produce a message indicating that a back draft
explosion occurred.

The link to the agent side has to be made through the
capabilities of the agent. In 2APL, this is an easy process
because the capabilities of an agent are given explicitly in
the agent program with their pre- and postconditions. For
example,

{Closed(Door), Distance(Agent,Door) < 1,
Holds(Agent,Axe) } OpenDoor
{Open(Door)}
By forcing agreement on the concepts used between agents
and the game engine, each can have their own internal

representation while there is an agreement on what can be
communicated and on what level of abstraction.
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5.2.2. Communication. In a multiagent setting where agents
need to coordinate their actions, they must communicate.
Communication between agents can be achieved in similar
fashion as actions and perception of the agent. The action
of an agent now is the sending of a message, while the
perception consists of the reception of a message. Sending
a message consequently requires describing the pre- and
postconditions. Receiving a message is controlled by an agent
subscribing on messages and by the game engine when it
determines that an agent can sense an action. In this case, we
do not only specify the agreement between agent and game
engine, but also between agents. So there are three or more
parties that need to conform to the agreement instead of two
in the previous case. We will call this agreement the agent
communication model (ACM).

The definition of the ACM will contain the type of
things that can be communicated (communication content
representation) between agents. This representation is only
relevant to the agents in the game. The ACM also specifies
when communication can take place (qualification represen-
tation). This specifies the impact of the environment upon
communication. For instance, if an agent is far away, it
may not be able to communicate. These factors are relevant
for the game engine that is responsible for simulating the
environment.

There already exists a formalism that provides a com-
munication content representation. It provides a way to
communicate such things as beliefs among agents or propose
an action or communicate with multiple agents. Within the
FIPA standard [17], these communicative acts are already
defined. We propose to use the FIPA standard to establish
a game-specific message structure. For example, in our
firefighting game, agent A may propose to agent B that A
opens the door to the building:

(propose

:sender (agent-identifier:name A)
:receiver (set (agent-identifier:name B))
:content

“((action A (open door))”
:ontology Fire-fighting
:in-reply-to proposal2
:language fipa-sl)

The message is translated to the concepts internal to both
the agent and the game engine. The game engine will, upon
reception of the above message, send this message to agent B
and automatically subscribe agent A to the communication
messages of agent B. This is because agent A and B can
now be said to be in a dialogue and it is likely that agent A
would like to receive an answer. The game could progress
such that agent B replies affirmatively and the game engine
receives an action from agent A to open the door and an
action from agent B to go through the door. The game engine
will now have enough information to know that this is a
coordinated action and that the order of actions (as implied
by the dialogue) is to process the door opening action first
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and the movement action second. The game engine therefore
takes these messages from the incoming actions queue and
processes these together (coordinated) and in the right order.

To describe the impact of the environment on communi-
cation, we have to augment the linguistic representation with
information about the environment. Since communication is
a form of action, the same qualification representation needs
to be made explicit. These qualification rules will also need
to specify the ramifications of communication. This allows
us on the one hand to specify what is needed when agents
want to communicate (e.g., that they are close together) and
on the other hand the (side) effects of communication (e.g.,
if other agents than the message recipient are nearby they too
may receive the message):

PRE: Poss(Send(Propose(Action,Agent)))
< Dist(Agent)<5
POST: Done(Send(Propose(Action,Agent)))
A Dist(Agent’)<5 =
Poss(Receive(Propose(Action,Agent)))

5.2.3. Time. Time is an important aspect in the connection
between game engine and agent. Both need to agree on a
reference of time. In our approach, the game engine provides
the time by sending periodic time messages to all agents. The
meaning of these time messages is defined in the OPM:

<class name=“time”>
<property>
<name>value</name>
<Type>Seconds</type>
</property>

</class>

The game engine will translate its own data in milliseconds to
seconds and send the messages. The agent will translate these
time messages into meaningful symbols that are relevant to
the agents updating a belief it formed an hour ago to an “old
belief” or “stale belief.” Additional to these time messages
a game designer is free to add additional facilities, such as
allowing agents to query how much time passed between
two events. Such a service could provide the translation from
milliseconds in the game engine to concepts such as “just
now,” “a while,” and “long ago.”

The above contracts (i.e., OPM, OIM, and ACM) will
be derived from the game design process in the design
stance. For instance, it is established that a game interaction
takes place in a scene called “building” The game designer
can then start to construct the contracts that describe the
concepts of that building that are relevant to both agents and
the game engine.

5.3. Design Stance. In the previous sections, we discussed
how agents could be connected to game engines infrastruc-
turally and conceptually. However, creating these connec-
tions does not automatically mean that they are used in a
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proper way. Game design uses several methodologies [40],
but all consider aspects such as rules, play, and culture. We
will follow [41] and distinguish the following channels.

(i) The abstract rules governing the game play. For
example, this determines the strength of weapons or
what is needed to open doors, and so forth.

(ii) The storyline. This determines the overall narrative.
For example, in Quake, the story is about capturing a
flag.

(iii) The user interface. How is the game environment
represented and how does the user interact with it.

(iv) Look and feel. What emotions are generated by the
game, what kind of feeling it gives. For example, are
enemies extraterrestrial beings or soldiers?

Current practice in game design assumes that the human
players are intelligent. The game rules are meant to regulate
how the users can interact with the game and ensure that the
storyline is kept. At this moment, the only place where Al
plays a significant role is on intelligent path planning. All
characters have to do some form of path planning to get
around in the world and this is a nice modular task that
can be enhanced by some more realistic or intelligent path
planning. Looking at the different channels, we see that it
mainly influences the look and feel channel as it makes the
characters move more natural. It thus has no fundamental
influence on the game play.

This will be quite different when the characters are played
by software agents that can be autonomous, adaptive, and
intelligent and moreover can communicate with each other.
Once these features are added, it is unclear whether the same
game rules still ensure the same game play. Once characters
can reason about the world, start cooperating and adapting
to the players, the game might fundamentally change of
character, and it is not directly clear if it will change for the
better!

If we want to add software agents that can behave more
intelligent and adaptive, we should also design the game
rules such that the game profits from this behavior. Thus,
we should take the capabilities of the characters already into
account when designing the game rules! For example, a game
rule that determines that in a firefighter training, at least one
of three doors is locked to make the firefighting more difficult
becomes useless if the characters learn how to open a locked
door as quick as a nonlocked door. This becomes even more
apparent if we consider that agents might also communicate
(in a more or less unrestricted way). Adding communication
capabilities to agents means that they can start to cooperate
and thus circumvent some of the rules in the game. For
example, one character can start extinguishing the fire while
the other saves a victim. The one that goes inside the building
to save the victim can be determined by which of the two
knows the building better. This can be easily determined
through communication, but is hard to preprogram. It does
mean that the agents will be able to achieve more than when
used independently. This kind of elements should thus also
be modeled in the game rules channel. In general, one would
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have to take into account who can communicate with whom
and whether communication always succeeds. In a realistic
environment, a character might only be able to communicate
by “talking” to characters in the same physical space while
other characters are overhearing the conversation.

In multiagent systems, communication mechanisms pro-
vide standard ways of dealing with these issues. However,
they do not assume the agents operate in a game environ-
ment. Thus the mechanisms would have to be adjusted to
the game engine.

The above points illustrate that, if we assume that
characters are played by intelligent software agents that can
communicate, the game rules should be designed in such
a way that the storyline will still be guaranteed. Moreover,
if we assume the characters to act intelligently, they should
also have the means to do so, that is, they should have the
right information available at the right time. For example, if
a character has to avoid being seen, it does not make sense
to duck behind an obstacle which happens to be an iron
fence. However, if geometric features of the obstacles are the
only available information, it will be hard to create intelligent
behavior based on them.

This pleads for the fact that we should take possible
intelligent behavior and the requirements for this behavior
on the world already into account in an early design stage.
One could also argue to start modeling the agents using an
agent-oriented software methodology. This at least ensures a
proper modeling of the agents and their interactions in the
game. However, agent-oriented methodologies hardly take
the environment in which the agents operate into account.
Therefore, the modeling of the actual world and the intricate
interactions that are needed in the game environment are not
supported sufficiently.

This leaves only one way open, which is a new design
methodology that allows designing the game environment
and the agents concurrently. We believe that there are good
starting points for creating such a methodology if we use
an agent-oriented methodology that also takes the agent’s
organization into account.

Roughly the methodology should start with designing
the game rules and storyline at a high level. At this level,
the specific actions that take place are not fixed yet, but
only the required landmarks that the game should pass
through. In the next stage, the designer should determine
which agents would possibly play a role in the different scenes
that lead to these landmarks. Note that the order of scenes

might still vary. He can then decide which requirements
have to be fulfilled by the agents to perform their actions
in the different scenes and what kind of information should
they have available if they want to exhibit some intelligent
behavior. Besides these requirements, he also has to give
the constraints on the actions, for example, opening a door
requires an axe, to ensure that “intelligent” behavior does not
lead to completely unexpected and unwanted behavior.

The requirements on the availability of information lead
to requirements on the conceptual contracts. The boundaries
on the actions lead to requirements on the capabilities of the
agents, for example, the precondition of opening a door is to
carry an axe.

5.3.1. A Design Methodology: OperA. We propose to use
OperA [42] as a starting point of a framework to model
games incorporating agents. OperA provides a model for
agent organizations that enables the specification of organi-
zational requirements and objectives, and at the same time
allows participants to act according to their own capabilities
and demands. It still needs to be extended with a more
elaborate environment model to capture the game world
aspects. In this paper, we will focus on the specification
part of the agents. Role descriptions in OperA define the
activities and services that have to be performed to achieve
the game objectives. These objectives are distributed over
the objectives of the agents. Role descriptions also define the
rights and capabilities of the agents.

By clearly defining these capabilities in an early design
stage, we can guarantee that they are implemented in the
game world (through a conceptual translation). Table 2
shows an example of a role description for an agent of
the type “leading firefighter” From this description, the
objectives of this type of agent become clear and it already
gives some idea about the information needed by the agent to
realize these objectives. A part of the game rules is specified
by the norms. The rights of the agents also define a part of the
game rules and need to be translated to actual capabilities in
the game engine.

In OperA, the overall storyline is specified by the
interaction structure. The main purpose of this structure is
to specify an ordering between separate scenes in the game
and to make sure that required states are always reached.
The ordering is not always linear; scenes can be executed
multiple times. The actors that participate in the scenes of
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TaBLE 2: Role definition in OperA.
Role: leading firefighter
Objectives Fire_under_control, victims_save
Subobjectives {get_to_disaster_location, situation_assessment, plan_of_attack, extinguish_fire, rescue_victims}
Rights Command_team_members, order_ambulance, get_experts
OBLIGED inform(headquarters, plan_of_attack) BEFORE NOW+10 IF DO safe(victim) or DO extinguish(fire)
THEN PERMITTED damage(building)
Norms
OBLIGED ensure_safety(team)
OBLIGED safe(victims) BEFORE extinguish(fire)
TaBLE 3: Interaction scene in OperA.
Interaction scene: save victim
Roles Leading_firefighter(1), door_opener(1), fire_extinguisher(1), ambulance(2), victim(3)
Results rl = VT € victim, safe(T)

PATTERN(r1) =

{DONE(T, at(H,T)) BEFORE DONE(B, secure_area),

Interaction patterns

DONE(B, secure_area) BEFORE DeadlineH,

DONE(M, stabilise(H) BEFORE Dead(H))
DONE(T, transport_to_ambulance(H))

}

PERMITTED (E, blow_obstacles)

Norms

OBLIGED (M,stabilise(T) BEFORE Dead(T))

OBLIGED (B, extinguish_fire BEFORE transport(H))

the game and the way they interact are defined in the scene
level description. Figure 4 shows a graphical representation
of a possible interaction structure. The transitions between
the different scenes are specified in the interaction structure
to make sure that a scene is entered and terminated in such a
way that the storyline is guaranteed.

A scene is a formal description of the interaction space
between different agents for a specific part of the game.
In these scenes, the types and number of participating
agents are defined, and the interaction between the agents
themselves and the environment. The result of a scene is
specified and optionally norms can be added.

Table 3 shows a possible description of the “save victim”
scene from the interaction structure above. For each role that
is possibly active in this scene, we specify the number of
agents that fulfill that role. For example, there is one lead-
ingfirefighter and there are three victims. Most importantly,
the desired results of the scene and the interaction patterns
between the different roles are specified. In an interaction
scene, separate norms and permissions can be specified that
determine specific game rules for the interaction.

Starting from the interaction patterns of the scenes,
different messages and other forms of communication can
be specified, and a platform-independent design can be
created. The ordering of these communicative actions can be
strictly defined by a protocol or, more flexible, an interaction
diagram. From this platform-independent model, we can
move on to the platform-specific phase, in which the agent
interface and the interaction specifications are implemented.
If certain inherent limitations on the communication are

known in advance, these limitations should already be taken
into account during the platform-independent design phase.
If they surface during the implementation phase, it is usually
better to go back and adjust the platform-independent
design. In the design phase, the agents’ knowledge about
the environment and themselves should be modeled. This
information can later be used in the platform-specific design
to create the data models.

After we specified the agent roles and interactions,
decisions have to be made about the agent implementation.
The requirements that the agents need to fulfill have to be
taken into account in this step. For example, if the agents
have to be able to explain themselves [43], it is necessary
that they use high-level concepts in their reasoning, such as
beliefs, intensions, and goals. A logical decision in case of
this requirement would be to implement the agents in a BDI
programing language. Another example could be learning
or adapting agents; the appropriate agent type needs to
be selected to allow for the expected adaptability. Also the
learning algorithm itself, the elements that are adapted and
the feedback type have to be chosen.

The multiagent interaction also has to be specified more
precisely. In the interaction scenes, we already define a
high-level definition of the interaction. As we have seen in
Section 3.2 (multiagents systems), certain tradeoffs have to
be made on the amount of communication. In the design
phase, a clear definition has to be made of what information
is passed on and when. Designing decisions also have to be
made about the activity of characters that are not playing an
active role in the current scene.
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Besides specifying the technical requirements, some
quality requirements have to be kept into consideration as
well. An important quality requirement for computers is that
the agents and other parts of game respond fast enough. The
behavior of agents should be believable. Games should be
esthetically pleasing and a certain atmosphere in the design
is desired. These quality requirements are mostly related to
the look and feel channel and the user interface channel.
Sometimes they can be translated to a technical specification,
but most of the time they have to be considered during
the whole development process without being captured by
a precise technical requirement.

6. Conclusion

There is consensus among game developers that intelligent
characters for games can make games better. However,
there is a difference in the approach to bring intelligence
about between the game developers and the artificial intel-
ligences researchers. Consequently, using agent technology
in combination with game technology is not trivial. Because
agents are more or less autonomous they should run in
their own thread and can only be loosely coupled to
the game engine. Synchronizing the agents with the game
thus becomes an important point. Once the agents are
synchronized not all problems are solved. Because agents
usually function on a more abstract level than the game
world representation allows. A translation is needed between
the game world information and processes to the beliefs
and actions of the agents. Finally, agents should be able
to communicate not only with the game world but also
with each other. Thus there is a need for communication
mechanisms that connect both the agents and the game
world. We have seen that current combinations of games and
agents only deliver limited or ad hoc solutions for all these
issues.

In this paper, we argue that improving the Al in games
by using agent technology to its full extent involves solving
the issues above. Furthermore, solving the synchroniza-
tion, information representation, and communication issues
requires more than constructing a technical solution for the
loosely coupling of some asynchronous processes. Although
this aspect is a fundamental part of the coupling, we also need
to provide support on a conceptual and design level. Using a
conceptual stance allows for connecting the agent concepts to
the game concepts such that agent actions can be connected
to actions that can be executed through the game engine
and that agents can reason intelligently on the information
available from the game engine.

We also argue that coupling agents to games requires
a design methodology including agent notions from an
early stage in the design process in order to allow a full
integration of agent characteristics in the game and to profit
from specific agent characteristics such as communication,
cooperation, reasoning, proactive behavior, and adaptivity.

In Section 5, we have shown how each of the three stances
can contribute to the use of agents in games. We have also
shown some standards and tools that could be used in each
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of the three stances. We have successfully tested the synchro-
nization principles explained in the infrastructural stance by
coupling the Pilgrim game engine (under development at
TNO, Soesterberg, The Netherlands) with the 2APL agent
platform.

We have shown that the HLA standard is a good starting
point to describe the filtering in the conceptual stance. The
ease of the translation between the game engine and the agent
concepts, of course, also depends on the specific platforms
used. The Pilgrim game engine appeared very suitable for
this approach because all game objects have a property tree
describing all the properties of that object, thus allowing
for an easy translation to a common representation (OPM).
In a similar fashion, the properties of the 2APL agents
are available in a declarative format and could easily be
converted to the common representation (OIM). Finally,
the agent-based methodology OperA seems to offer a good
starting point for combining agent-oriented and game-
oriented methodologies.

As a future work, we hope to build some support tools
to facilitate the modeling and implementation of games with
agents, making use of the framework sketched in this paper.
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1. Introduction

A real-time strategy (RTS) game is a game in which the
players use resource gathering, base building, technological
development and unit control in order to defeat its oppo-
nent(s), typically in some kind of war setting. The RTS game
is not turn-based in contrast to board games such as Risk
and Diplomacy. Instead, all decisions by all players have to
be made in real time. Generally the player has a top-down
perspective on the battlefield although some 3D RTS games
allow different camera angles. The real-time aspect makes
the RTS genre suitable for multiplayer games since it allows
players to interact with the game independently of each other
and does not let them wait for someone else to finish a turn.

In RTS games computer bots often “cheats,” that is, they
have complete visibility (perfect information) of the whole
game world. The purpose is to have as much information
available as possible for the artificial intillegence (AI) to
reason about tactics and strategies in a certain environment.
Cheating is, according to Nareyek, “very annoying for the
player if discovered” and he predicts the game Als to get

a larger share of the processing power in the future which
in turn may open up for the possibility to use more
sophisticated Als [1]. The human player in most modern
RTS games does not have this luxury, instead the player only
has visibility of the area populated by the own units, and the
rest of the game world is unknown until it gets explored. This
property of incomplete information is usually referred to as
Fog of War or FoW.

In 1985, Ossama Khatib introduced a new concept while
he was looking for a real-time obstacle avoidance approach
for manipulators and mobile robots. The technique which
he called Artificial Potential Fields moves a manipulator in a
field of forces. The position to be reached is an attractive pole
for the end effector (e.g., a robot) and obstacles are repulsive
surfaces for the manipulator parts [2]. Later on Arkin [3]
updated the knowledge by creating another technique using
superposition of spatial vector fields in order to generate
behaviors in his so called motor schema concept.

Many studies concerning potential fields are related to
spatial navigation and obstacle avoidance (see, e.g., [4, 5]).
The technique is really helpful for the avoidance of simple



obstacles even though they are numerous. Combined with an
autonomous navigation approach, the result is even better,
being able to surpass highly complicated obstacles [6].

Lately some other interesting applications for potential
fields have been presented. The use of potential fields in
architectures of multi agent systems is giving quite good
results defining the way of how the agents interact. Howard
et al. developed a mobile sensor network deployment using
potential fields [7], and potential fields have been used in
robot soccer [8, 9]. Thurau et al. [10] have developed a game
bot which learns reactive behaviours (or potential fields) for
actions in the first-Person Shooter game Quake II through
imitation.

The article is organised as follows. First, we propose
a methodology for multiagent potential field- (MAPFs-)
based solution in an RTS game environment. We will show
how the methodology can be used to create a bot for a
resource gathering scenario (Section 4) followed by a more
complex tankbattle scenario in Section 5. We will also present
some preliminary results on how to deal with imperfect
information, Fog of War (Section 6). The methodology has
been presented in our previous papers [11, 12]. This article
summarises the previous work and extends it by adding new
experiments and new results. Last in this article, we have a
discussion and line out some directions for future work.

2. A Methodology for Multiagent
Potential Fields

When constructing a multiagent potential field-based system
for controlling agents in a certain domain, there are a
number of issues that we must take into consideration. It
is, for example, important that each interesting object in the
game world generates some type of field, and we must decide
which objects can use static fields to decrease computation
time.

To structure this, we identify six phases in the design of
an MAPF-based solution:

(1) the identification of objects;

(2) the identification of the driving forces (i.e., the fields)
of the game;

(3) the process of assigning charges to the objects;

(4) the granularity of time and space in the environment;
(5) the agents of the system;

(6) the architecture of the MAS.

In the first phase, we may ask us the following questions.
What are the static objects of the environment? That is, what
objects keep their attributes throughout the lifetime of the
scenario? What are the dynamic objects of the environment?
Here we may identify a number of different ways that objects
may change. They may move around, if the environment has
a notion of physical space. They may change their attractive
(or repulsive) impact on the agents. What is the modifiability
of the objects? Some objects may be consumed, created, or
changed by the agents.
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In the second phase, we identify the driving forces of
the game at a rather abstract level, for example, to avoid
obstacles, or to base the movements on what the opponent
does. This leads us to a number of fields. The main reason
to enable multiple fields is that it is very easy to isolate
certain aspects of the computation of the potentials if we
are able to filter out a certain aspect of the overall potential,
for example, the repulsive forces generated by the terrain
in a physical environment. We may also dynamically weight
fields separately, for example, in order to decrease the
importance of the navigation field when a robot stands
still in a surveillance mission (and only moves its camera).
We may also have strategic fields telling the agents in what
direction their next goal is, or tactical fields coordinating the
movements with those of the teammate agents.

The third phase includes placing the objects in the
different fields. Static objects should typically be in the field
of navigation. The potentials of such a field are precalculated
in order to save precious run time CPU resources.

In the fourth phase, we have to decide the resolution of
space and time. Resolution of space means how detailed the
navigation in the game world should be. Should for example
the agents be able to move to every single point in the world,
or should the game world be divided into a grid with tiles
of for example 4 X 4 points in the world? Resolution of time
means how often the potential fields should be updated. If
the agents are able to move around in the environment, both
these measures have an impact on the lookahead. The space
resolution obviously, since it decides what points in space
that we are able to access, and the time in that it determines
how far we may get in one time frame (before it is time to
make the next decision about what to do).

The fifth phase is to decide what objects to agentify and
set the repertoire of those agents: what actions are we going
to evaluate in the lookahead? As an example, if the agent
is omnidirectional in its movements, we may not want to
evaluate all possible points that the agent may move to, but
rather try to filter out the most promising ones by using some
heuristic, or use some representable sample.

In the sixth step, we design the architecture of the MAS.
Here we take the unit agents identified in the fifth phase,
give them roles, and add the supplementary agents (possibly)
needed for coordination, and special missions (not covered
by the unit agents themselves).

3. ORTS

Open real-time strategy (ORTS) [13] is a real-time strategy
game engine developed as a tool for researchers within arti-
ficial intelligence (AI) in general and game Al in particular.
ORTS uses a client-server architecture with a game server and
players connected as clients. Each timeframe clients receives
a data structure from the server containing the current game
state. Clients can then call commands that activate and
control their units. Commands can be like “move unit A
to (x, y) or attack opponent unit X with unit A” The game
server executes the client commands in random order.

Users can define different types of games in scripts where
units, structures, and their interactions are described. All



International Journal of Computer Games Technology

types of games from resource gathering to full real-time
strategy (RTS) games are supported.

We will begin by looking at a one-player resource
gathering scenario game called Collaborative Pathfinding,
which was part of the 2007 and 2008 ORTS competitions
[13]. In this game, the player has 20 worker units. The goal
is to use the workers to mine resources from nearby mineral
patches and return them to a base. A worker must be adjacent
to a mineral object to mine, and to a base to return resources.
As many resources as possible will be collected within 10
minutes.

This is followed by looking at the two-player games,
Tankbattle, which was part of the 2007 and 2008 ORTS
competitions [13] as well.

In Tankbattle, each player has 50 tanks and five bases.
The goal is to destroy the bases of the opponent. Tanks are
heavy units with long fire range and devastating firepower
but a long cool-down period, that is, the time after an attack
before the unit is ready to attack again. Bases can take a lot of
damage before they are destroyed, but they have no defence
mechanism of their own so it may be important to defend
our own bases with tanks. The map in a tankbattle game
has randomly generated terrain with passable lowland and
impassable cliffs.

Both games contain a number of neutral units (sheep).
These are small indestructible units moving randomly
around the map. The purpose of sheep is to make pathfind-
ing and collision detection more complex.

4. Multiagent Potential Fields in ORTS

First we will describe a bot playing the Collaborative
Pathfinding game based on MAPF following the proposed
methodology. Collaborative Pathfinding is a 1-player game
where the player has one control center and 20 worker units.
The aim is to move workers to mineral patches, mine up to
10 resources (the maximum load a worker can carry), then
return to a friendly control center to drop them off.

4.1. Identifying Objects. We identify the following objects in
our application: Cliffs, Sheep, Base stations, and workers.

4.2. Identifying Fields. We identified five tasks in ORTS: avoid
colliding with the terrain, avoid getting stuck at other moving
objects, avoid colliding with the bases, move to the bases
to leave resources, and move to the mineral patches to get
new resources. This leads us to three major types of potential
fields: a field of navigation, a strategic field, and a tactical field.

The field of navigation is a field generated by repelling
static terrain. This is because we would like the agents to
avoid getting too close to objects where they may get stuck,
but instead smoothly pass around them.

The strategic field is a dynamic attracting field. It makes
agents go towards the mineral patches to mine, and return to
the base to drop off resources.

Own workers, bases, and sheep generate small repelling
fields. The purpose of these fields is the same as for obstacle
avoidance; we would like our agents to avoid colliding with

each other and bases as well as avoiding the sheep. This task
is managed by the tactical field.

4.3. Assigning Charges. Each worker, base, sheep, and cliffs
has a set of charges which generates a potential field around
the object. These fields are weighted and summed together
to form a total potential field that is used by our agents for
navigation.

Cliffs, for example, impassable terrain, generate a
repelling field for obstacle avoidance. The field is constructed
by copying pregenerated matrixes of potentials into the field
of navigation when a new game is started. The potential all
cliffs generate in a point (x, y) is calculated as the lowest
potential a cliff generates in that point. The potential pgig(d)
in a point at distance d from the closest impassable terrain

tile is calculated as:
—80

5 ifd >0,
(d/8) (1)

-80 ifd=0.

paie(d) =

Own worker units generate repelling fields for obstacle
avoidance. The potential pyorker(d) at distance d from the
center of another worker is calculated as

-20 if d <6,

16 —2-d ifd€]e6,8]. @

pworker(d) = 1.429- {

Sheep. Sheep generate a small repelling field for obstacle
avoidance. The potential pseep(d) at distance d from the
center of a sheep is calculated as

-20 ifd <8,

2-d-25 ifde]8 12.5]. ®)

psheep(d) = 0.125- {

Own bases. The own bases generate two different fields
depending on the current state of a worker. The base
generates an attractive field if the worker needs to move to
the base and drop off its resources. Once it has arrived at the
base, all the resources are dropped. The potential pattractive(d)
at distance d from the center of the base is calculated as

240 - d-0.32 if d < 750,

0 if d > 750. @)

pattractive(d) = {

In all other states of the worker, the own base generates
a repelling field for obstacle avoidance. Below is the function
for calculating the potential powns(d) at distance d from the
center of the base. Note that this is, of course, the view of
the worker. The base will effect some of the workers with
the attracting field while at the same time effect the rest with
a repelling field. If a point is inside the quadratic area the
base occupies, the potential in those points is always 10000
(potential used for impassable points):

6-d —258 ifd <43,

0 ifds>4a3 O

pownB(d) =0.125- {

Minerals, similar to own bases, generate attractive fields
for all workers that do not carry maximum loads and a



No resources Arrived at mineral

Move to mineral

Drop resources Gather

Return to base

Arrived at base Has ten resources

FIGURE 1: The finite state machine used by the workers in a resource
gathering scenario.

repelling field for obstacle avoidance when they do. The
potential of the attractive field is the same as the attractive
field around the own base in (4).

In the case when minerals generate a repelling field, the
potential pmineral(d) at distance d from the center of a mineral
is calculated as

-20 ifd <8,

20-2-d if d €]8,10]. ©)

Pmineral(d) = 1.429- {

4.4. The Granularity of the System. Since the application is
rather simple, we use full resolution of both the map and the
time frames without any problems.

4.5. The Agents. The main units of our system are the
workers. They use a simple finite state machine (FSM)
illustrated in Figure 1 to decide what state they are in (and
thus what fields to activate). No central control or explicit
coordination is needed, since the coordination is emerging
through the use of the charges.

4.6. The Multiagent System Architecture. In addition to the
worker agents, we have one additional agent that is the
interface between the workers and the game server. It receives
server information about the positions of all objects and
workers which it distributes to the worker agents. They then
decide what to do, and submit their proposed actions to the
interface agent which in turn sends them through to the
ORTS server.

4.7. Experiments, Resource Gathering. Table 1 shows the
result from the Collaborative Pathfinding game in 2008 years’
ORTS tournament. It shows that an MAPF-based bot can
compete with A*-based solutions in a resource gathering
scenario. There are however some uncertainties in these
results. Our bot has disconnected from the server (i.e.,
crashed) in 30 games. The reason for this is not yet clear
and must be investigated in more detail. Another issue is that
Uofa has used the same bot that they used in the 2007 years’
tournament, and the bot had a lower score this year. The
reason, according to the authors, was “probably caused by
a pathfinding bug we introduced” [14]. Still we believe that
with some more tuning and bug fixing our bot can probably
match the best bots in this scenario.
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TaBLE 1: Experiment results from the Collaborative Pathfinding
game in 2008 years’ tournament.

Team Matches Avg. Resources Disconnected
BTH 250 5630.72 30
Uofa 250 4839.6 0

5. MAPF in ORTS, Tankbattle

In the 2-player Tankbattle game, each player has a number
of tanks and bases, and the goal is to destroy the oppo-
nent bases. In [11] we describe the implementation of an
ORTS bot playing Tankbattle based on MAPF following
the proposed methodology. This bot was further improved
in [12] where a number of weaknesses of the original bot
were addressed. We will now, just as in the case of the
Collaborative pathfinding scenario, present the six steps
of the used methodology. However, there are details in
the implementation of several of these steps that we have
improved and shown the effect of in experiments. We will
therefore, to improve the flow of the presentation, not
present all of them in chronologic order. Instead we start by
presenting the ones that we have kept untouched through the
series of experiments.

5.1. Identifying Objects. We identify the following objects in
our application: Cliffs, Sheep, and own (and opponent) tanks
and base stations.

5.2. Identifying Fields. We identified four tasks in ORTS:
Avoid colliding with the terrain, Avoid getting stuck at other
moving objects, Hunt down the enemy’s forces, and Defend the
bases. In the resource gathering scenario we used the two
major types: field of navigation and strategic field. Here we
add a new major type of potential field: the defensive field.

The field of navigation is, as in the previous example
of Collaborative pathfinding, a field generated by repelling
static terrain for obstacle avoidance.

The strategic field is an attracting field. It makes units go
towards the opponents and place themselves on appropriate
distances where they can fight the enemies.

The defensive field is a repelling field. The purpose is to
make own agents retreat from enemy tanks when they are in
cooldown phase. After an agent has attacked an enemy unit
or base, it has a cooldown period when it cannot attack and it
is therefore a good idea to stay outside enemy fire range while
being in this phase. The defensive field is an improvement to
deal with a weakness found in the original bot [11].

Own units, own bases, and sheep generate small repelling
fields. The purpose is the same as for obstacle avoidance; we
would like our agents to avoid colliding with each other or
bases as well as avoiding the sheep. This is managed by the
tactical field.

5.3. Assigning Charges. The upper picture in Figure 2 shows
part of the map during a tankbattle game. The screenshots
are from the 2D GUI available in the ORTS server. It
shows our agents (light-grey circles) moving in to attack an
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(b)

FIGURE 2: Part of the map during a tankbattle game. The upper
picture shows our agents (light-grey circles), an opponent unit
(white circle), and three sheep (small dark-grey circles). The lower
picture shows the total potential field for the same area. Light areas
have high potential and dark areas have low potential.

Popponent (a)

MSD MDR
a

F1GURE 3: The potential popponent(@) generated by opponent units as
a function of the distance a.

opponent unit (white circle). The area also has some cliffs
(black areas) and three sheep (small dark-grey circles). The
lower picture shows the total potential field in the same
area. Dark areas have low potential and light areas have high
potential. The light ring around the opponent unit, located
at maximum shooting distance of our tanks, is the distance
from which our agents prefer to attack opponent units. The
picture also shows the small repelling fields generated by our
own agents and the sheep.

Cliffs. Cliffs generate the same field as in the resource
gathering scenario, see Section 4.3.

Popponent (a)

F1GURE 4: The potential popponent(@) generated by the opponent that
is in the middle.

The Opponent Units and Bases. All opponent units and
bases generate symmetric surrounding fields where the
highest potential is in a ring around the object with a
radius of maximum shooting distance (MSD). MDR refers
to the Maximum Detection Range, the distance from which
an agent starts to detect the opponent unit. The reason why
the location of the enemy unit is not the final goal is that
we would like our units to surround the enemy units by
attacking from the largest possible distance. The potential
all opponent units generate in a certain point is then equal
to the highest potential any opponent unit generates in that
point, and not the sum of the potentials that all opponent
units generate. If we were to sum the potentials, the highest
potential and most attractive destination would be in the
center of the opponent unit cluster. This was the case in
the first version of our bot and was identified as one of its
major weaknesses [11]. The potentials poppu (d) and popps(d)
at distance d from the center of an agent and with D = MSD
and R = MDR are calculated as

240/d(D - 2) if d € [0,D - 2],
Poppu(d) = 0.125- 1240 if d e [D-2,D],
240 - 0.24(d - D) if d €]D,R],
360/d(D - 2) if d € [0,D - 2],
Poppp(d) = 0.125- 1 360 if d € [D-2,D],
360 — 0.32(d — D) if d €]D,R].
(7)

I = [a, b[ denote the half-open interval, where a € I, but
bel.

Own units generate repelling fields for obstacle avoid-
ance. The potential pownu(d) at distance d from the center
of a unit is calculated as:

=20 ifd <14

32-2-d ifd€]14,16] ®

Pownu(d) = 0.125- {

Own bases generate repelling fields similar to the fields
around the own bases described in Section 4.3.

Sheep generate the same weak repelling fields as in the
Collaborative pathfinding scenario, see Section 4.3.

5.4. The Multiagent Architecture. In addition to the interface
agent dealing with the server (which is more or less the



6 International Journal of Computer Games Technology
TABLE 2: Experiment results from the original bot.
Team Wins ratio Wins/games Avg. units Avg. bases Avg. score
NUS 0% (0/100) 0.01 0.00 —46.99
WarsawB 0% (0/100) 1.05 0.01 —42.56
UBC 24% (24/100) 4.66 0.92 —17.41
Uofa.06 32% (32/100) 4.20 1.45 —16.34
Average 14% (14/100) 2.48 0.60 -30.83
Y HP=8
- Y =
— /\ - //\ \
A B C
- - - A B C
Dmg=3 Dmg=3 Dmg=3 Dmg=3 Dmg=3 Dmg=3

FIGURE 5: Attacking most damaged unit within firerange.

same as in the collaborative pathfinding scenario), we use
a coordinator agent to globally coordinate the attacks on
opponent units to maximise the number of opponent units
destroyed. The difference between using the coordinator
agent compared to attacking the most damaged unit within
fire range is best illustrated with an example.

In Figure 5, the own units A, B, and C does 3 damage to
opponent units. They can attack opponent unit X (can take
8 more damage before it is destroyed) and unit Y (can take 4
more damage before it is destroyed). Only unit A can attack
enemy unit Y. The most common approach in the ORTS
tournament [13] was to attack the most damaged enemy unit
within firerange. In the example both enemy unit X and Y
would be attacked, but both would survive to answer the
attacks.

With the coordinator agent attacks would be spread out
as in Figure 6. In this case enemy unit X would be destroyed
and only unit Y can answer the attacks.

5.5. The Granularity of the System. Each unit (own or
enemy), base, sheep, and cliffs has a set of charges which
generates a potential field around the object. These fields are
weighted and summed together to form a total potential field
that is used by our agents for navigation.

In [11] we used pregenerated fields that were simply
added to the total potential field at runtime. To reduce
memory and CPU resources needed, the game world was
split into tiles where each tile was 8 X 8 points in the game
world. This proved not to be detailed enough and our agents
often got stuck in terrain and other game objects. The results
as shown in Table 2 are not very impressive and our bot only
won 14% of the played games.

Some notes on how the results are presented:

(i) Avg units. This is the average number of units (tanks)
our bot had left after a game is finished.

FIGURE 6: Optimise attacks to destroy as many units as possible.

(ii) Avg bases. This is the average number of bases our bot
had left after a game is finished.

(iii) Avg score. This is the average score for our bot after a
game is finished. The score is calculated as

score = 5(ownBasesLeft — oppBasesLeft)

+ ownUnitsLeft — oppUnitsLeft. ©)
In [12] we proposed a solution to this problem. Instead
of dividing the game world into tiles, the resolution of the
potential fields was set to 1 X 1 points. This allows navigation
at the most detailed level. To make this computationally
feasible, we calculate the potentials at runtime, but only for
those points that are near own units that are candidates to
move to in the next time frame. In total, we calculate nine
potentials per unit, eight directions, and the potential of
staying in the position it is. The results, as shown in Table 3,
show a slight increase in the number of games won and a
large improvement in the game score.

5.6. Adding an Additional Field. Defensive Field. After a unit
has fired its weapon, the unit has a cooldown period when it
cannot attack. In the original bot our agents were, as long
as there were enemies within maximum shooting distance
(MSD), stationary until they were ready to fire again. The
cooldown period can instead be used for something more
useful and in [12] we proposed the use of a defensive field.
This field makes the units retreat when they cannot attack
and advance when they are ready to attack once again. With
this enhancement, our agents always aim to be at MSD of the
closest opponent unit or base and surround the opponent
unit cluster at MSD. The potential pdefensive(d) at distance d
from the center of an agent is calculated using the formula in

wy-(—800+6.4-d) if d <125,

0 if d > 125. (10)

Pdefensive(d) = {
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TABLE 3: Experiment results from increased granularity.
Team Wins ratio Wins/games Avg. units Avg. bases Avg. score
NUS 9% (9/100) 1.18 0.57 -32.89
WarsawB 0% (0/100) 3.03 0.12 -36.71
UBC 24% (24/100) 16.11 0.94 0.46
Uofa.06 42% (42/100) 10.86 2.74 0.30
Average 18.75% (18.75/100) 7.80 1.09 -17.21
TABLE 4: Experiment results from defensive field.

Team Wins ratio Wins/games Avg. units Avg. bases Avg. score
NUS 64% (64/100) 22.95 3.13 28.28
WarsawB 48% (48/100) 18.32 1.98 15.31
UBC 57% (57/100) 30.48 1.71 29.90
Uofa.06 88% (88/100) 29.69 4.00 40.49
Average 64.25% (64.25/100) 25.36 2.71 28.50

The use of a defensive field is a great performance
improvement of the bot, and it now wins over 64% of the
games against the four opponent teams (Table 4).

5.7. Local Optima. To get stuck in local optima is a problem
that is well known and that has to be dealt with when using
PFE. Local optima are positions in the potential field that have
higher potential than all their neighbouring positions. An
agent positioned in a local optimum may therefore get stuck
even if the position is not the final destination for the agent.
In the first version of our bot, agents that had been idle for
some time moved in random directions for some frames.
This is not a very reliable solution to the problem since there
are no guarantees that the agents will move out of, or will not
directly return to, the local optima.

Thurau et al. [15] describe a solution to the local
optima problem called avoid-past potential field forces. In this
solution, each agent generates a trail of negative potentials on
previous visited positions, similar to a pheromone trail used
by ants. The trail pushes the agent forward if it reaches a local
optimum. We have introduced a trail that adds a negative
potential to the last 20 positions of each agent. Note that an
agent is not affected by the trails of other own agents. The
negative potential used for the trail is set to —0.5.

The use of pheromone trails further boosts the result and
our bot now wins 76.5% of the games (see Table 5).

5.8. Using Maximum Potentials. In the original bot, all
potential fields generated by opponent units were weighted
and summed to form the total potential field which is used
for navigation by our agents. The effect of summing the
potential fields generated by opponent units is that the
highest potentials are generated from the centres of the
opponent unit clusters. This makes our agents attack the
centres of the enemy forces instead of keeping the MSD to
the closest enemy. The proposed solution to this issue is that,
instead of summing the potentials generated by opponent
units and bases, we add the highest potential any opponent

unit or base generates. The effect of this is that our agents
engage the closest enemy unit at maximum shooting distance
instead of trying to keep the MSD to the centre of the
opponent unit cluster. The results from the experiments are
presented in Table 6.

5.9. A Final Note on the Performance. Our results were
further validated in the 2008 ORTS tournament, where
our PF-based bots won the three competitions that we
participated in (Collaborative Pathfinding, Tankbattle, and
Complete RTS). In the Tankbattle competition, we won all
100 games against NUS, the winner of last year, and only lost
four of 100 games to Lidia (see Table 7 [14]).

6. Fog of War

To deal with FoW, the bot needs to solve the following
issues: remember locations of enemy bases, explore unknown
terrain to find enemy bases and units, and handle dynamic
terrain due to exploration. We must also take into consider-
ation the increase in computational resources needed when
designing solutions to these issues. To enable FoW for only
one client, we made a minor change in the ORTS server.
We added an extra condition to an IF statement that always
enabled Fog of War for client 0. Due to this, our client is
always client 0 in the experiments (of course, it does not
matter from the game point of view if the bots play as client
0 or client 1). The changes we made to deal with these issues
come below.

6.1. Remember Locations of the Enemies. In ORTS, a data
structure with the current game world state is sent, each
frame from the server to the connected clients. If Fog of War
is enabled, the location of an enemy base is only included in
the data structure if an own unit is within the visibility range
of the base. It means that an enemy base if has been spotted
by an own unit and that unit is destroyed, the location of the
base is no longer sent in the data structure. Therefore our bot
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TaBLE 5: Experiment results from avoid-past potential field forces.
Team Wins ratio Wins/games Avg. units Avg. bases Avg. score
NUS 73% (73/100) 23.12 3.26 32.06
WarsawB 71% (71/100) 23.81 2.11 27.91
UBC 69% (69/100) 30.71 1.72 31.59
Uofa.06 93% (93/100) 30.81 4.13 46.97
Average 76.5% (76.5/100) 27.11 2.81 34.63
TaBLE 6: Experiment results from using maximum potential, instead of summing the potentials.
Team Win % Wins/games Avg. units Avg. bases Avg. score
NUS 100% (100/100) 28.05 3.62 46.14
WarsawB 99% (99/100) 31.82 3.21 47.59
UBC 98% (98/100) 33.19 2.84 46.46
Uofa.06 100% (100/100) 33.19 4.22 54.26
Average 99.25% (99.25/100) 31.56 3.47 48.61

TaBLE 7: Results from the ORTS Tankbattle 2008 competition.

Team Total win % Blekinge Lidia NUS
Blekinge 98 — 96 100
Lidia 43 4 — 82
NUS 9 0 18 —

has a dedicated global map agent to which all detected objects
are reported. This agent always remembers the location of
previously spotted enemy bases until a base is destroyed, and
distributes the positions of detected enemy tanks to all the
own units.

The global map agent also takes care of the map sharing
concerning the opponent tank units. However, it only shares
momentary information about opponent tanks that are
within the detection range of at least one own unit. If all units
that see a certain opponent tank are destroyed, the position
of that tank is no longer distributed by the global map agent
and that opponent disappears from our map.

6.2. Dynamic Knowledge about the Terrain. 1f the game world
is completely known, the knowledge about the terrain is
static throughout the game. In the original bot, we created
a static potential field for the terrain at the beginning of each
new game. With Fog of War, the terrain is partly unknown
and must be explored. Therefore our bot must be able to
update its knowledge about the terrain.

Once the distance to the closest impassable terrain has
been found, the potential is calculated as

—10000 ifd <1,
-5
i =+——= if d €]1,50],
pterram(d) (d/8)2 1 ] ] (11)
0 if d > 50.

6.3. Exploration. Since the game world is partially unknown,
our units have to explore the unknown terrain to locate the

hidden enemy bases. The solution we propose is to assign an
attractive field to each unexplored game tile. This works well
in theory as well as in practice if we are being careful about
the computation resources spent on it.

The potential punknown generated in a point (x,y) is
calculated as follows.

(1) Divide the terrain tile map into blocks of 4 x 4 terrain
tiles.

(2) For each block, check every terrain tile in the block.
If the terrain is unknown in ten or more of the (at
most 16) checked tiles the whole block is considered
unknown.

(3) For each block that needs to be explored, calculate the
Manhattan Distance md from the center of the own
unit to the center of the block.

(4) Calculate the potential punknown €ach block generates
using (12) below.

(5) The total potential in (x,y) is the sum of the
potentials each block generates in (x, y):

md .
Punknown(md) = (0'25 ~ 3000 ) if md < 2000,

0 if md > 2000.

(12)

6.4. Experiments, FoOW Bot. In this experiment set we have
used the same setup as in the Tankbattle except that now
our bot has FoW enabled, that is, it does not get information
about objects, terrain, and so forth that is further away than
160 points from all of our units. At the same time, the
opponents have complete visibility of the game world. The
results of the experiments are presented in Table 8. They
show that our bot still wins 98.5% of the games against
the opponents, which is just a minor decrease compared to
having complete visibility.

It is also important to take into consideration the changes
in the needs for computational resources when FoW is
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TaBLE 8: Experiment results when FoW is enabled for our bot.
Team Wins ratio Wins/games Avg. units Avg. bases Avg. score
NUS 100% (100/100) 29.74 3.62 46.94
WarsawB 98% (98/100) 32.35 3.19 46.70
UBC 96% (96/100) 33.82 3.03 47.67
Uofa.06 100% (100/100) 34.81 4.27 54.90
Average 98.5% (98.5/100) 32.68 3.53 49.05
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FiGure 7: The average frame time used for bots with perfect and
imperfect information about the game world.

enabled, since we need to deal with dynamic terrain and
exploration field. To show this we have run 100 games
without FoW against team NUS and 100 games with FoW
enabled. The same seeds are used for both. For each game
we measured the average time in milliseconds that the bots
used in each game frame and the number of own units
left. Figure 7 shows the average frame time for both bots in
relation to number of own units left. It shows that the FoW-
enabled bot used less CPU resources in the beginning of a
game, which is probably because some opponent units and
bases are hidden in unexplored areas and less potential field-
based on opponent units have to be generated. Later in the
game, the FoOW bot requires more CPU resources probably
due to the exploration and the dynamic terrain fields.

In the next set of experiments we show the performance
of the exploration field. We ran 20 different games in this
experiment, each in which the opponent faced both a bot
with the field of exploration enabled, and one where this
field was disabled (the rest of the parameters, seeds, etc.
were kept identical). Figure 8 shows the performance of the
exploration field. It shows how much area that has been
explored given the time of the game. The standard deviation
increases with the time since only a few of the games last
longer than three minutes.

In Table 9, we see that the use of the field of exploration
(as implemented here) does not improve the results dramati-
cally. However, the differences are not statistically significant.

—— No FoW field
-x- FoW field

FiGure 8: The average explored area given the current game time
for a bot using the field of exploration, compared to one that does
not.

TaBLE 9: Performance of the bot with and without field of
exploration in 20 matches against NUS.

Version Won Lost Avg. units Avg. bases
With FoE 20 0 28.65 3.7
Without FoE 19 1 27.40 3.8

7. Discussion

We have shown that the bot can easily be modified to
handle changes in the environment, in this case a number
of details concerning the agents, the granularity, the fields,
and also FOW. The results show that FoW initially decreases
the need for processing power and in the end, it had a very
small impact on the performance of the bot in the matches.
However, this has to be investigated further. In Figure 8, we
see that using the field of exploration in general gives a higher
degree of explored area in the game, but the fact that the
average area is not monotonically increasing as the games go
on may seem harder to explain. One plausible explanation is
that the games where our units do not get stuck in the terrain
will be won faster as well as having more units available to
explore the surroundings. When these games end, they do
not contribute to the average and the average difference in
explored areas will decrease. Does the field of exploration
contribute to the performance? Is it at all important to be
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able to explore the map? Our results (see Table 9) indicate
that—it in this case—may not be that important. However,
the question is complex. Our experiments were carried out
with an opponent bot that had perfect information and thus
was able to find our units. The results may have been different
if also the opponent lacked perfect information.

It is our belief that MAPF-based bots in RTS games
have great potential even though the scenarios used in the
experiments are, from an Al perspective, quite simple RTS
scenarios. In most modern commercial RTS games, the Al
(and human player) has to deal with base building, eco-
nomics, technological development, and resource gathering.
However, we cannot think of any better testbed for new
and innovative RTS games Al research than to test it in
competitions like ORTS.

8. Conclusions and Future Work

In Section4 we introduced a methodology for creating
MAPE-based bots in an RTS environment. We showed how
to deal with a gathering resources scenario in an MAPF-
based bot. Our bot won this game in the 2008 years’
ORTS competition, but would have ended up somewhere in
the middle in 2007 years’ tournament. The bot had some
problems with crashes, and more work can be done here to
further boost the result.

This was followed by Section 5 where we showed how to
design an MAPF-based for playing a tankbattle game. The
performance of the first version of our bot was tested in the
2007 years’ ORTS competition organized by the University of
Alberta. The results, although not very impressive, showed
that the use of MAPF-based bots had potential. A number
of weaknesses of the first version were identified, solutions
to these issues were proposed and new experiments showed
that the bot won over 99% of the games against four of the
top teams from the tournament. This version of the bot won
the 2008 years’ tournament with an almost perfect score of
98% wins.

Some initial work has been done in this direction. Our
bot quite easily won the full RTS scenario in the 2008 years’
ORTS tournament, but more has to be done here. The full
RTS scenario in ORTS, even though handling most parts of a
modern RTS game, is still quite simple. We will develop this
in the future to handle a larger variety of RTS game scenarios.

Another potential idea is to use the fact that our solution,
in many ways, is highly configurable even in runtime. By
adjusting weights of fields, the speed of the units, and so forth
in real time, the performance can be more or less changed as
the game goes on. This can be used to tune the performance
to the level of the opponent to create games that are more
enjoyable to play. One of our next projects will focus on this
aspect of MAPEF-based bots for RTS games.
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1. Introduction

DEFCON is a multiplayer real-time strategy game from
Introversion Software Ltd., for which a screenshot is pro-
vided in Figure 1. Players compete in a nuclear war simula-
tion to score as many points as possible by hitting opponent
cities. The game is divided into stages, beginning with placing
resources (nuclear silos, fleets of ships, airbases, and radar
stations; see Figure 1) within an assigned territory, then
guiding fleet manoeuvres, bombing runs, fighter attacks, and
finally missile strikes.

The existing single-player mode contains a computer
opponent that employs a finite state machine with five states
which are carried out in sequence:

(1) placement of ground units and fleet,

(2) scouting by planes and fleet to uncover structures of
the opponent,

(3) assaults on the opponent with bombers,

(4) a full strike on the opponent with missiles from silos,
submarines, and bombers,

(5) a final state, where fleets of ships approach and attack
random opponent positions.

Once the state machine has reached the fifth state, it remains
in that state for the remainder of the game. This results in a
predictable strategy that may appear monotonous to human
players.

We have designed and implemented a novel two-tiered
bot to play DEFCON: on the bottom layer, there are
enhanced low-level actions that make use of in-match history
and information from recorded games to estimate and pre-
dict opponent behavior and manoeuvre units accordingly.
The information is gathered in influence maps (see also
[1]) and is used in synchronous attacks, a movement desire
model, fleet formation, and target allocation. On top of
these tactical means, we have built a learning system that
is employed for the fundamental long-term strategy of a
match. The operation of this system is multifaceted and
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F1GURE 1: Screenshot of DEFCON.

relies on a number of Al techniques, including simulated
annealing, decision tree learning, and case-based reasoning.
In particular, the Al-bot maintains a case-base of previously
played games to learn from, as described in Section 2. It uses
a structure placement algorithm to determine where nuclear
silos, airbases, and radars should be deployed. To do this, the
Al-bot retrieves games from the case-base, ranks them using
a weighted sum of various attributes (including life span and
effectiveness) of the silos, airbases and radars in the previous
game, and then uses the ranking to determine placement of
these resources in the game being played, as described in
Section 3.

Our Al-bot also controls naval resources, organized into
fleets and metafleets (i.e., groups of fleets). Because these
resources move during the game, the Al-bot uses a high-
level plan to dictate the initial placement and metafleet
movement/attack strategies. To generate a bespoke plan to fit
the game being played, the Al-bot again retrieves cases from
the case-base, and produces a plan by extracting pertinent
information from retrieved plans via decision tree learning,
as described in Section 4.

During the game, the Al-bot carries out the metafleet
movement and attack plan using a movement desire model
which takes its context (including the targets assigned
to ships and opponent threats) into account. The Al-
bot also controls low-level actions at game-time, such
as the launching of plane bombing runs, attempting to
destroy incoming missiles, and launching missile attacks
from fleets. As described in Section 5, we implemented
various more sophisticated controls over these low-level
actions. In particular, we enabled our AI-bot to synchronize
the timing of planes when they attack opponent silos. We
also implemented a simulated annealing approach to solve
the problem of assigning bombing targets to planes and
opponent cities to missiles.

We have performed much experimentation to fine-
tune our Al-bot in order to maximize the proportion of
games it wins against Introversion’s own player simulator. In
particular, in order to determine the weights in the fitness
function for the placement of silos and airbases, we have
calculated the correlation of various resource attributes with
the final score of the matches. We have also experimented
with the parameters of the simulated annealing search for
assignments. Finally, we have experimented with the size of
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the case-base to determine if/when overfitting occurs. With
the most favorable setup, in a session of 150 games, our Al-
bot won 76.7% of the time. We describe our experimentation
in Section 6.

The superiority of our Al-bot leads to the question of
whether higher ability implies higher enjoyability for human
players. To this end, we have proposed a hypothesis and
conducted an initial survey, which we describe in Section 7.
In Sections 8 and 9, we conclude with related work and some
indication of future work.

2. Learning from Previous Games

2.1. Learning Cycle Overview. The design of the learning bot
is based on an iterative optimization process, similar to that
of a typical evolutionary-based process. An overview of the
cycle is depicted in Figure 2.

Given a situation requesting a plan, a case-base of
previous plan—game pairs is used to select matching plans
according to a similarity measure described in the next sub-
section. This subset of plans is then used in a generalization
process to create a decision tree, where each node contains
an atomic plan item, as described in Section 4.1. The new
plan is generated as a path in the decision tree, derived by
starting at the root node and then descending to a leaf node
by choosing each branch through a fitness-proportionate
selection. The fitness function for the quality of this plan is
the game itself, where the Al-bot plays according to the plan,
described in Sections 3, 4, and 5. Together with the plan itself,
the obtained game data and outcome form a new case. As
the decision tree learning requires both positive and negative
examples, the new case is retained regardless of the actual
outcome of the match.

2.2. A Case-Base of Plans. We treat the training of our Al-
bot as a machine learning problem in the sense of [2], where
an agent learns to perform better at a task through increased
exposure to the task. To this end, the Al-bot is able to store
previously played games in a case-base, and retrieve games in
order to play its current match more effectively. After a game
is played, the Al-bot records the following information as an
XML data-point in the case-base:
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FiGure 3: Launched opponent missiles during a match, showing
wave-pattern of attacks. The time shown is in-game time.

(i) the starting positions of the airbases, radar stations,
fleets, and nuclear silos for both players;

(i) the metafleet movement and attack plan which was
used (as described in Section 4);

(iii) performance statistics for deployed resources which
are for nuclear silos the number of missiles attacked
and destroyed and planes shot down by each silo, for
radar stations the number of missiles identified, and
for airbases the number of planes launched and the
number of planes which were quickly lost;

(iv) an abstraction of the opponent attacks which took
place; we abstract these into waves, by clustering
using time-frames of 500 seconds and a threshold of 5
missiles fired (these settings were determined empir-
ically, see Figure 3 for a typical attack distribution);

(v) routes taken by opponent fleets;

(vi) the final scores of the two players in the game.

Cases are retrieved from the case-base using the starting
configuration of the game. There are 6 territories that players
can be assigned to (North America, Europe, South Asia, etc.),
hence there are °P, = 30 possible territory assignments in a
two-player game, which we call the starting configuration of
the game. This has a large effect on the game, so only cases
with the same starting configuration as the current game
are retrieved. For the rest of the paper, we assume that a
suitable case-base is available for our AI-bot to use before and
during the game. How we populate this case-base is described
in Section 6. Cases are retrieved from the case-base both at
the start of a game—in order to generate a game plan, as
described in Section 4.3—and during the game, in order to
predict the fleet movements of the opponent. At the start of
a game, cases are retrieved using only the starting territory
assignments of the two players.

3. Placement of Silos, Airbases, and Radars

Airbases are structures from which bombing runs are
launched; silos are structures which launch nuclear missiles
at opponent cities and defend the player’s own cities against
opponent missile strikes and planes; and radar stations are
able to identify the position of enemy planes, missiles, and
ships within a certain range. As such, all these structures are
very important, and because they cannot be moved at game
time, their initial placement by the AI-bot at the start of the
game is a key to a successful outcome. The Al-bot uses the
previously played games to calculate airbase, silo, and radar
placement for the current game. To do this, it retrieves cases
with the same starting configuration as the current game,
as described above. For each retrieved game, it analyzes the
statistics of how each airbase, silo, and radar performed.

Each silo is given an effectiveness score as a weighted sum
of the normalized values for the following:

(a) the number of enemy missiles it shot at;
(b) the number of enemy missiles it shot down;
(c) the number of enemy planes it shot down;

(d) the time it survived before being destroyed.

With respect to the placement of silos, each case is ranked
using the sum of the effectiveness of its silos. Silo placement
from the most effective case is then copied for the current
game. The same calculations inform the placement of the
radar stations, with the effectiveness given by the following
values:

(a) the number of enemy planes detected;

(b) the number of enemy planes detected before other
radars;

(c) the number of enemy ships detected;

(d) the time it survived before being destroyed.

Finally, the placement of airbases is determined with
these effectiveness values:

(a) the number of planes launched;
(b) the number of units destroyed by launched planes;

(c) the time it survived before being destroyed.

To find suitable weights in the weighted sum for
effectiveness, we performed a correlation analysis for the
retaining/losing of resources against the overall game score.
This analysis was performed using 1500 games played
randomly (see Section 4.3 for a description of how randomly
played games were generated). In Figure 4, we present the
Pearson product-moment correlation coefficient for each of
the AI-bot’s own resources.

We note that—somewhat counter-intuitively—the loss
of carriers, airbases, bombers, fighters, battleships, and
missiles is correlated with a winning game. This is explained
by the fact that games where fewer of these resources were
lost will have been games where the Al-bot did not attack
enough (when attacks are made, resources are inevitably
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lost). For our purposes, it is interesting that the retention of
silos is highly correlated with winning games. This informed
our choice of weights in the calculation of effectiveness for
silo placement: we weighted value (d), namely, the time a
silo survived, higher than values (a), (b), and (c). In practice,
for silos, we use 1/10, 1/3, 1/6, and 2/5 as weights for values
(a), (b), (c), and (d), respectively. We used similar correlation
analyses to determine how best to calculate the effectiveness
of the placement of airbases and radar stations.

4. Planning Ship Movements

An important aspect of playing DEFCON is the careful
control of naval resources (submarines, battleships, and
aircraft carriers). We describe here how our Al-bot generates
a high-level plan for ship placement, movement, and attacks
at the start of the game, how it carries out such plans (see
Figure 5 for a sea attack), and how plans are automatically
generated.

4.1. Plan Representation. It is useful to group resources into
larger units so that their movements and attacks can be
synchronized. DEFCON already allows collections of ships
to be moved as a fleet, but players must target and fire
each ship’s missiles independently. To enhance this, we have
introduced the notion of a metafleet which is a collection
of a number of fleets of ships. Our Al-bot will typically
have a small number of metafleets, (usually 1 or 2) with
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each one independently targeting an area of high opponent
population. The metafleet movement and attack plans
describe a strategy for each metafleet as a subplan, where
the strategy consists of two large-scale movements of the
metafleet. Each subplan specifies the following information.

(1) In what general area (sea territory) the ships in the
metafleet should be initially placed, relative to the
expected opponent fleet positions.

(2) What the aim of the first large-scale movement
should be, including where (if anywhere) the
metafleet should move to, how it should move there,
and what general target area the ships should attack,
if any.

(3) When the metafleet should switch to the second
large-scale movement.

(4) What the aim of the second large-scale movement
should be, including the same details as for (2).

4.2. Carrying out Metafleet Movements at Game-Time. Sea
territories—assigned by DEFCON at the start of a game—
are split into two oceans, and the plan dictates which one
each metafleet should be placed in. The exact positions of
the metafleet members are calculated at the start of the
game using the case-base, that is, given the set of games
retrieved, the Al-bot determines which sea territory contains
on average most of the opponent’s fleets. Within the chosen
sea territory, the starting position depends on the aim of
the first large-scale movement and an estimation of the
likelihood of opponent fleet encounter which is calculated
using the retrieved games. This estimation uses the fleet
movement information associated with each stored game in
the case-base. The stored information allows the retrieval of
the position of each fleet from the stored game as a function
of time. For any given position, the closest distance from that
position which each fleet obtains during the game can be
calculated. The likelihood of enemy fleet encounter is then
estimated by the fraction of games in which enemy fleets get
closer to the observed position than a predefined threshold.

There are five aims for the large-scale movements,
namely,

(a) to stay where they are and await the opponent’s fleets
in order to engage them later,

(b) to move in order to avoid the opponent’s fleets,
(c) to move directly to the target of the attack,
(d) to move to the target avoiding the opponent’s fleet,

(e) to move towards the opponent’s fleet in order to
intercept and engage them.

The aim determines whether the AI-bot should place
the fleets at (i) positions with high-opponent encounter
likelihoods (in which case, large-scale movements (a) and (e)
are undertaken), (ii) positions with low-opponent encounter
likelihoods (in which case, large-scale movements (b) and
(d) are undertaken), or (iii) positions which are as close
to the attack spot as possible (in which case, large-scale
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FiGURrE 6: Fleet formation in DEFCON with front direction shown.
Each circle indicates a separate fleet of up to three ships.

movement (c) is undertaken). To determine a general area
of the opponent’s territory to attack (and hence to guide a
metafleet towards), our Al-bot constructs an influence map
[1] built using opponent city population statistics. It uses
the map to determine the centers of the highest population
density, and assigns these to the metafleets.

We implemented a central mechanism to determine both
the best formation of a set of fleets into a metafleet, and
the direction of travel of the metafleet given the aims of
the large-scale movement currently being executed. During
noncombative game-play, the central mechanism guides the
metafleets towards the positions dictated in the plan (see
Figure 6), but this does not take into account the opponent’s
positions.

Hence, we also implemented a movement desire model to
take over from the default central mechanism when an attack
on the metafleet is detected. This determines the direction for
each ship in a fleet using (a) proximity to the ship’s target
if this has been specified (b) distance to any threatening
opponent ships, and (c) distance to any general opponent
targets. A direction vector for each ship is calculated in light
of the overall aim of the large-scale metafleet movement. For
instance, if the aim is to engage the opponent, the ship will
sail in the direction of the opponent’s fleets.

The movement desire model relies on being able to
predict where the opponent’s fleets will be at certain times in
the future. To estimate these positions, our Al-bot retrieves
cases from the case-base at game-time, and looks at all the
various positions the opponent’s fleets were recorded at in
the case. It then ranks these positions in terms of how close
they are to the current positions of the opponent’s fleets. To
do this, it must assign each current opponent ship to one of
the ships in the recorded game in such a way that the overall
distance between the pairs of ships in the assignment is as low
as possible. As this is a combinatorially expensive task, the
Al-bot uses a simulated annealing approach to find a good
solution, which is described in more detail in Section 5. Once
assignments have been made, the five cases with the closest
assignments are examined and the fleet positions at specific
times in the chosen retrieved games are projected onto the
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FIGURE 7: Full selected path through the decision tree. Chosen
path is highlighted in bold, not chosen branches are truncated.
Remaining plan items are filled in randomly, in this case this is
second large-scale movement, first attack time, and number of
carriers in metafleet.

current game to predict the future position of the opponent’s
fleets. The five cases are treated as equally likely, thus fleets
react to the closest predicted fleet positions according to the
aim of their large-scale movement, for instance, approach or
avoid it.

4.3. Automatically Generating Plans. As mentioned above,
at the start of a game, the starting configuration is used to
retrieve a set of cases. These are then used to generate a
bespoke plan for the current game as follows. Firstly, each
case contains the final score information of the game that
was played. These are ranked according to the Al-bot’s score
(which will be positive if it won, and negative if it lost).
Within this ranking, the first half of the retrieved games
are labeled as negative, and the second half are labeled as
positive. Hence, sometimes, winning games may be labeled
negative and, at other times, losing games may be labeled
positive. This is done to achieve an example set that generates
a more detailed decision tree using the ID3 algorithm, as
described below.

These positive and negative examples are used to derive
a decision tree which can predict whether a plan will lead
to a positive or a negative game. The attributes of the
plan in the cases are used as attributes to split over in the
decision tree, that is, the number of metafleets, their starting



sea territories, their first and second large-scale movement
aims, and so on. Our Al-bot uses the ID3 algorithm [2]
to learn the decision tree. This algorithm builds a decision
tree by iteratively choosing the attribute with the highest
information gain (i.e., the amount of noise reduction when
splitting the dataset according to the attribute) to split the
data. ID3 is a greedy algorithm that grows the decision tree
top-down until all attributes have been used or all examples
are perfectly classified. By maximizing the entropy, that is,
making sure that there are roughly the same number of
negative and positive examples, ID3 generates a deeper tree,
because it takes more steps to perfectly classify the data. As we
see below, this is beneficial, as each path in the tree represents
a partial plan, with longer paths dictating more specific plans.

We portray the top nodes of an example tree in Figure 7.
In this example, we see that the most important factor for
distinguishing positive and negative games is the starting sea
territory for metafleet 1 (which can be in either low, mid,
or high enemy threat areas). Next, the decision tree uses the
aim of the second large-scale metafleet movement, the attack
time, and the number of battleships in metafleet 1.

Each branch from the top node to a leaf node in these
decision trees represents a partial plan, as it will specify the
values for some—but not necessarily all—of the attributes
which make up a plan. The Al-bot chooses one of these
branches by using an iterative fitness-proportionate method,
that is, it chooses a path down the tree by looking at the
subtree below each possible choice of value from the node it
is currently looking at. Each subtree has a set of positive leaf
nodes, and a set of negative leaf nodes, and the subtree with
the highest proportion of positive leaf nodes is chosen (with
a random choice between equally high-scoring subtrees).
This continues until a leaf node is reached. Having chosen
a branch in this way, the Al-bot fills in the other attributes
of the plan randomly. The number of randomly assigned
attributes depends on the size of the case-base, for 35 cases
this is about 3 attributes.

5. Synchronizing Attacks

In order for players not to have to micromanage the playing
of the game, DEFCON automatically performs certain
actions. For instance, air defence silos automatically target
planes in attack range, and a battleship will automatically
attack hostile ships and planes in its range. Players are
expected to control where their planes attack, and where
missiles are fired (from submarines, bombers, and silos).

5.1. Attacks as Assignment Problems. As mentioned above,
the Al-bot uses an influence map to determine the most
effective general radius for missile attacks from its silos,
submarines, and bombers. Within this radius, it must assign
a target to each missile. This is a combinatorially difficult
problem, so we frame it as an instance of the assignment
problem [3], and our Al-bot searches for an injective
mapping between the set of missiles and the set of cities
using a simulated annealing heuristic search. To do this,
it calculates the fitness of each mapping as the overall
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F1GURE 8: Synchronized attack in DEFCON.

population of the cities mapped onto, and starts with a
random mapping. Using two parameters, namely the starting
temperature S and the cool-down rate ¢, a pair of missiles
is chosen randomly, and the cities they are assigned to
are swapped. The new mapping is kept only if the fitness
decreases by no more than S times the current fitness. When
each missile has been used in at least one swap, S is multiplied
by ¢ and the process continues until S reaches a cut-off value.

For most of our testing, we used values S = 0.5, ¢ = 0.9,
and a cut-off value of 0.04, as these were found to be effective
through some initial testing. We also experimented with
these values, as described in Section 6. Note that the mapping
of planes to airbases for landing is a similar assignment
problem, and we use a simulated annealing search process
with the same § and c values for this.

Only silos can defend against missiles, and silos require
a certain time to destroy each missile. Thus attacks are more
efficient when the time frame of missile strikes is kept small,
so we enabled our Al-bot to organize planes to arrive at a
target location at the same time.

To achieve such a synchronized attack, our AI-bot makes
individual planes take detours so that they arrive at the time
that the furthest of them arrives without detour (see Figure 8
for an example of a synchronized attack using this method).
Basic trigonometry gives two possible detour routes and our
Al-bot uses the influence map to choose the route which
avoids enemy territory the most.

6. Experimentation

We tested the hypothesis that our Al-bot can learn to
play DEFCON better by playing games randomly, then
storing the games in the case-base for use as described
above. To this end, for experiment 1, we generated 5 games
per starting configuration (hence 150 games in total), by
randomly choosing values for the plan attributes, then using
the Al-bot to play against Introversion’s own automated
player. Moreover, whenever our Al-bot would ordinarily use
retrieved cases from the case-base, uninformed (random)
decisions were made for the fleet movement method, and the
placement algorithm provided by Introversion was used. The
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TABLE 1: Performance versus simulated annealing parameters.

S c Games won (%) Mean score differential
0 0 53.3 13.3
0.3 0.75 73.3 22.7
0.5 0.9 76.7 33.2
01.01.00 0.95 69.0 34.9
01.01.00 0.99 73.3 33.0

five games were then stored in the case-base. Following this
populating of the case-base, we enabled the AI-bot to retrieve
and use the cases to play against Introversion’s player 150
times, and we recorded the percentage of games our Al-bot
won. We then repeated the experiment with 10, rather than 5
randomly played games per starting configuration, then with
15, and so on, up to 70 games, with the results portrayed in
Figure 9.

We see that the optimal number of cases to use in
the case-base is 35, and that our Al-bot was able to beat
Introversion’s player in 76.7% of the games. We analyzed
games with 35 cases and games with 40 cases to attempt to
explain why performance degrades after this point, and we
found that the decision tree learning process was more often
using idiosyncracies from the cases in the larger case-base,
hence overfitting. We describe some possible remedies for
overfitting in Section 8.

Using the 35 cases optimum, we further experimented
with the starting temperature and cool-down rate of the
simulated annealing search for mappings. As described in
Section 5, our Al-bot uses the same annealing settings for all
assignment problems, and we varied these from no annealing
(S = ¢ = 0) to very high annealing (S = 1.0, ¢ = 0.99).
As portrayed in Table 1, we recorded both the proportion
of wins in 150 games and the score differential between the
players. We see that our initial settings of S = 0.5, ¢ = 0.9
achieved the highest proportion of wins, whereas the setting
S = 1.0, ¢ = 0.95 wins fewer games, but does so more
convincingly.

7
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FiGure 10: Graph for enjoyability as a function of bot ability
(hypothetical).

In a final set of experiments, we tried various different
metafleet planning setups to estimate the value of learning
from played games. We found that with random generation
of plans, our Al-bot won 50% of the time, and that by using
hand-crafted plans developed using knowledge of playing
DEFCON, we could increase this value to 63%. However, this
was not as successful as our case-based learning approach,
which—as previously mentioned—won 76.7% of games.
This gives us confidence to try different learning methods,
such as getting our Al-bot to play against itself, which we aim
to experiment with in future work.

7. Discussion

We achieved the initial goal of building an Al-bot that
can consistently beat the one written by Introversion and
included with the DEFCON distribution. Its capability to
learn and improve from previous experience makes it more
competitive, and thus we can assign a higher ability to our
bot. This observation leads us to the question of whether
increased ability of a computer opponent translates into
increased enjoyability for human players.

7.1. Ability versus Enjoyability. We define enjoyability in the
context of computer games as the desire to play again after
a match, that is, the number of games a user wants to play
before he/she gets bored or frustrated and thus stops enjoying
the game. We hypothesize that there is a correlation between
ability and enjoyability.

In Figure 10, we portray a hypothetical graph with the
ability of the bot (in terms of the percentage of games won
against an opponent) plotted against the desire to play again
(in terms of the number of games played before the player
gets bored). Bots with a fixed strength are therefore points on
the ability-axis, indicated by the dotted vertical lines. If our
hypothesis is valid, a function similar to the blue graph might
emerge. The rationale behind this is that too low or too high
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FIGURE 11: Graph for enjoyability as a function of time (hypotheti-
cal).

bot ability will bore or frustrate the player and negatively
affect his/her desire to play again. The maximum of this
function is the ability of a bot that optimizes the enjoyability
of playing against it.

Figure 11 shows a hypothetical progression of enjoyabil-
ity (as a qualitative measure; the player is asked to rate his
desire to play again after each match) over time (i.e., over the
number of games played against a bot). As the Introversion
bot is fairly predictable, we would expect the player to get
bored of it after he/she learns how to defeat it quite quickly,
indicated by a sharp drop of enjoyability. An alternative,
more challenging bot might start with a lower enjoyability
as it seems too hard to beat. However, the player’s desire to
play again should then rise as he/she gets better and learns
how to win against the alternative bot. The raised difficulty
is expected to delay the drop in enjoyability as it takes longer
to consistently win against the bot. We indicate in Figure 11
the idea of a shelf event, that is, a user getting so upset (e.g.,
through frustration or boredom) with a game that he stops
playing it and puts it on his shelf forever. This event can
be associated with a very low desire to play again and is
indicated as a line in the graph.

7.2. Player Survey. To approach the question of enjoyability
versus ability in strategy games, we conducted a pilot survey
with students, none of which had played DEFCON before.
The sample size of 10 is too small to yield statistically
significant results, but it provided valuable responses for
further improvement of our Al-bot and helped us to remedy
inaccuracies in the test protocol. The test was carried out
as a blind test, that is, half the subjects played against the
original Al-bot and the other half against our Al-bot. All
other game parameters such as starting territories and game
mode were identical. After each of the 10 successive matches
against their computer opponent, the players were asked to
rate their enjoyment, frustration, difficulty, desire to play
again and confidence of winning the next match. The results
are portrayed in Figure 12.

The results indicate that the novices were overburdened
with the increased strength of the new Al-bot, as they won
39% of the games against our Al-bot, while the test group
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FiGure 13: Comparison of survey results on the desire to play again
(range from 1 = very low to 6 = very high) after each played game.
Introversions bot is shown in red, while the new bot is shown in
black.

won 56% of the games against the original DEFCON bot.
This was reflected in the answers of the questionnaire, where
the people playing the original bot were less frustrated
(Figure 14) and more confident of winning (Figure 15),
which resulted in an often higher desire to play again; see
Figure 13. Also, we found that the choice of the starting
configuration had a very strong impact on the perceived
difficulty of the bots. For instance, in the test games, no player
won as Europe against the Al-bot playing South America.
On the other hand, the bots always lost playing North Asia
against Europe. Therefore, great care has to be taken when
choosing starting configurations for subsequent surveys.
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after each played game. Introversions bot is shown in red, while the
new bot is shown in black.

Regarding our initial hypothesis from Section 7.1, we
cannot draw any conclusive results yet, as the sample size and
the time-span (i.e., number of games played in the survey)
were too small to establish trends. This requires further
testing and a survey with a bigger sample size, as described
in Section 9. However, our initial survey does indicate
that—at least for DEFCON—enjoyability and ability are
not correlated in a simple positive manner, which is an
interesting finding.

8. Related Work

The use of case-based reasoning, planning, and other Al
techniques for board games is too extensive to cover, hence
it is beyond the scope of this paper. Randall et al. have
used DEFCON as a test-bed for Al techniques, in particular
learning ship fleet formations [4]. Case-based reasoning has
been used in [5] for plan recognition in order to predict
a player’s actions when playing the Space Invaders game.
They used a simplified planning language which did not need
preconditions and applied plan recognition to abstract state-
action pairs. Using a plan library derived from games played
by others, they achieved good predictive accuracy. In the real-
time strategy game Wargus, a dynamic scripting approach
was shown to outperform hand-crafted plans, as described
in [6]. Moreover, hierarchical planning was tested in an
Unreal Tournament environment by [7], who showed that
this method had a clear advantage over finite state machines.

A comparison of artificial neural networks and evolu-
tionary algorithms for optimally controlling a motocross
bike in a video game was investigated in [8]. Both methods
were used to create riders which were compared with
regard to their speed and originality. They found that the
neural network found a faster solution but required hand
crafted training data, while the evolutionary solution was
slower, but found solutions that had not been found by
humans previously. In commercial games, scripting and/or
reactive behaviors have in general been sufficient to simulate
planning, as full planning can be computationally expensive.
However, the Dark Reign game from Activision uses a form
of finite state machines that involves planning [9], and the
first-person shooter game EE.A.R employs goal-oriented
action planning [10].

8.1. Other Applications. Although the developed bot is
in itself already an application of the used techniques,
the underlying concept of combining artificial intelligence
methods to benefit from synergy effects is applicable to
many problems, including, but not restricted to, other
strategy computer games that have similar requirements of
optimizing and planning actions to be able to compete with
skilled humans.

In particular, the combination of case-bases and decision
trees to retrieve, generalize, and generate plans is a promising
approach that is applicable to a wide range of problems that
exhibit the following properties.

(i) Discrete attributes. The problem state space must be
discrete or discretizable. This is required for decision
tree algorithms to build trees. Attributes with a
low cardinality are preferable, as a high number of
possible values can cause problems with the decision
tree learning algorithm.

(ii) Recognizable opponent states. Problem instances must
be comparable through a similarity measure, which
is required for retrieving cases. In a game domain, it
should be based on opponent attributes or behavior
to allow an adaptation to take place.
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(iii) Static problem domain. The interpretation of a plan
has to be constant, or else the similarity measure
might retrieve irrelevant cases that show similarity to
an obsolete interpretation. This also means that, for
a hierarchical planner, lower-level plans should not
change much when reasoning on high-level plans, as
the case-base is biased towards previously successful
plans.

(iv) Availability of training sets. The problem has to be
repeatable or past instances of problem-solution pairs
have to be available to train the case-base.

8.2. Future Work. There are many ways in which we can fur-
ther improve the performance of our Al-bot. In particular,
we aim to lessen the impact of over-fitting when learning
plans, by implementing different decision tree learning skills,
filling in missing plan details in nonrandom ways, and by
trying other logic-based machine learning methods, such as
Inductive Logic Programming [11]. We also hope to identify
some markers for success during a game, in order to apply
techniques based on reinforcement learning. There are also a
number of improvements we intend to make to the control
of low-level actions, such as more sophisticated detours that
planes make to synchronize attacks.

With improved skills to both beat and engage players,
the question of how to enable the Al-bot to play in a
multiplayer environment can be addressed. This represents
a significant challenge, as our Al-bot will need to collaborate
with other players by forming alliances, which will require
opponent modelling techniques. We aim to use DEFCON
and similar video games to test various combinations of
Al techniques, as we believe that integrating reasoning
methods has great potential for building intelligent sys-
tems. To support this goal, we are developing an open
Al interface for DEFCON, which is available online at
http://www.introversion.co.uk/defcon/bots/.

The initial results of the survey and the discussion of
ability versus enjoyability raise another important point for
the future direction of our research. Usually it is a practice in
academic Al research to strive for an algorithm that plays at
maximum strength, that is, it tries to win at all costs. This
is apparent in the application of Al techniques to playing
board games. Chess playing programs, for example, usually
try to optimize their probabilities of winning. However, this
behavior may be undesirable for opponents in modern video
games. It is not the goal of the game to make the player lose
as often as possible, but to make him/her enjoy the game.
This may involve opponents that act nonoptimally, fall for
traps, and make believable mistakes. This behavior is another
aspect we hope to improve in our bot in the future. It also
suggests further player studies, as it is imperative to evaluate
the enjoyability and believability of a bot through player
feedback.

9. Conclusion

We have implemented an Al-bot to play the commercial
game DEFCON, and showed that it outperforms the existing
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automated player. In addition to fine-grained control over
game actions, including the synchronization of attacks,
intelligent assignment of targets via a simulated annealing
search, and the use of influence maps, our Al-bot uses plans
to determine large-scale fleet movements. It uses a case-base
of randomly-planned previously played games to find similar
games, some of which ended in success while others ended
in failure. It then identifies the factors which best separate
good and bad games by building a decision tree using 1D3.
The plan for the current game is then derived using a fitness-
proportionate traversal of the decision tree to find a branch
which acts as a partial plan, and the missing parts are filled
in randomly. To carry out the fleet movements, ships are
guided by a central mechanism, but this is superceded by a
movement-desire model if a threat to the fleet is detected.
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1. Introduction

Mobile phones have brought into our lives the possibility
and the willingness to be always reachable by anybody; they
have almost become an extension of ourselves, making us
Homo Mobilis for how much we tend to never separate
from them [1]. Service providers are riding this wave by
continuously offering new appealing services. Among the
others, mobile games represent a great and ever-increasing
source of revenue in the mobile service market. Indeed,
market studies report incomes for the wireless gaming
industry in the order of billions of US dollars worldwide and
with a 40% growth each year [2—4].

Gaming has always been one of people’s favorite digital
applications. Nowadays, three main reasons have enabled its
success even in the mobile market [5]. First, the incredible
proliferation of mobile phones, which have surpassed in
number base line phones in countries such as Finland
and Italy, thus creating hundreds of millions of poten-
tial customers. Second, technological advances have trans-
formed mobile phones from a cordless version of a regular
phone into a hand-held computer able to deliver quality

audio/video and quickly run complex algorithms, as those
required by recent games. Third, the increasing availability
of wireless connectivity (i.e., GPRS, UMTS, Bluetooth, Wi-
Fi) provides the possibility to play online with other people
and allows to create new business models where the game is
bought online and directly downloaded in the mobile phone.

While the trend toward a massive use of mobile games is
out of dispute, several technical problems remain unsolved;
the market success of future (and present) mobile games
also passes through providing valid answers to them. For
instance, a challenging research issue is related to the
availability of an adequate Al algorithm. Indeed, users often
play alone against the AI; this could happen to avoid the
connectivity cost to play against another mobile user, or
because a mobile phone may have gaming capabilities but no
connectivity, or just because the user prefers so. Therefore,
the game has to be endowed with an Al that is fun to play
against: neither too trivial, nor too tough. Unfortunately,
classic searching techniques may not be feasible for the
considered context for two main reasons: (i) a game could be
played on mobile phones with limited computational power,
(ii) these techniques might not function when considering



certain games. Elaborating on this second point, we have
to remember that games can be classified into two main
categories, perfect information games (e.g., Chess) and imper-
fect information games (e.g., Poker), depending on whether
participants have or do not have a complete knowledge of
the game state at any moment. When players have just a very
limited knowledge of the game state, resorting to traditional
state space searches, may result in an AI which behaves
similarly to a random decision maker.

As a case study for this problem, we have created a
mobile phone-based version of an imperfect information
game named Ghosts, a simple board game played by two
opponents. The board game has been invented by Alex
Randolph and is sold in Germany by Drei Magier Spiele.
Its original (German) name is: “Die guten und die bdsen
Geister,” that is, “good and bad ghosts;” for brevity, we simply
name it Ghosts. The game is particularly interesting for our
study as players do not have a complete knowledge of the
game state: they can both see the position of game pieces
on the board, but they cannot see the type of the opponent’s
ones. Depending on this information, different tactics will
be adopted (i.e., attack the opponent’s piece, leave it alone,
run away from it). Therefore, in order to win, a player has
also to infer the type of each of the opponent’s pieces. This
information can be extracted from the player’s behavior, also
keeping in mind that different players can adopt different
strategies, for instance, by resorting more or less frequently
to bluffing.

To this aim, as main research contribution of this work,
we have developed a new kind of Al solution that is able
to adapt the gaming strategy to the current human player
inferring unknown information about the game state. Our
solution employs machine learning techniques to mimic
the human’s ability in intuiting the opponent’s intentions
after several game sessions and is hence particularly helpful
with imperfect information games. Simply, it associates the
behavior features of a player with a presumed type of a
piece; by observing how a player acts in different game
state configurations, the Al becomes able to classify tactics
employed by that player and to adapt to them.

Even if this Al solution represents our main scientific
contribution, while creating our mobile version of the game
Ghosts, we have not overlooked at two practical problems
that are crucial in the successful deployment of a real
mobile game: (i) compatibility with the highest number of
mobile phones in the market and (ii) connectivity among
players’ mobile phones [5]. To this aim, we have evaluated
possible alternatives and finally adopted the state-of-the-
art technology that allows the widest compatibility and
connectivity among existing mobile phones.

The rest of the paper is organized as follows. Since we
developed a real mobile game with an original Al solution,
in Section 2, we discuss development issues that are at
the basis of implementative choices and, in Section 3, we
overview related Al scientific works. Then, in Section 4,
we technically present our developed mobile game. As our
novel Al approach represents the main research contribution
of this work, we devote Section5 to discuss its details.
Section 6 describes the experimental scenario and reports the
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corresponding outcomes. Finally, in Section 7, we provide a
conclusion and future directions for this work.

2. Technical Development Background

In this section we provide background information about
two technical issues which are very important to take into
account in order to develop a successful mobile game,
namely, compatibility and connectivity.

2.1. Compatibility. The current mobile gaming panorama is
affected by a significant fragmentation problem that pre-
cludes making a game available to the entire mobile market
[6]. This is caused by both the absence of a standard in
terms of software platform for mobile phones [5] and by the
specific characteristics (e.g., screen size) of different phones,
even when produced by the same manufacturer. Indeed, if
game designers wanted to fully exploit the features of a given
device, they should renounce to have that game also running
on entry-level phones. Another practiced solution is that of
developing multiple versions of the same game to have one
version specifically designed for each class of mobile phone;
clearly this solution has a cost.

Currently, we can identify three software platforms that
emerge as the most popular ones when considering mobile
games with connectivity capabilities: Symbian [7], Binary
Runtime Environment for Wireless (BREW) [8], and Java
Micro Edition (Java ME) [9]. The first one is a proprietary
operating system that has been developed by a consortium
among Nokia, Sony Ericsson, Siemens, Panasonic, and
Samsung. As these brands represent a very wide portion of
the global mobile market, Symbian can be considered a very
popular operating system. Symbian applications have also
the advantage of being fast as they are generally written in
C++ and can make use of specific features of the considered
mobile phone. This may require specific programming
skills and raises compatibility issues with other software
platforms.

BREW is a development platform for mobile phones and
it is based on C++. As a main advantage, BREW is located
between the application layer and the operating system of
the mobile phone; this way, it offers a simple interface
to the programmer to handle different system/networking
details. Unfortunately, BREW is not a free platform and this
significantly limits its popularity.

Finally, Java ME is a Java application environment
designed for devices with limited capabilities in terms of
processing power, memory, and graphics. Its Connected
Limited Device Configuration (CLDC) is composed by a
set of libraries specifically designed to run Java applications
on limited devices; this set of libraries is extended by the
Mobile Information Device Profile (MIDP) that embodies
a set of APIs for the GUI, the data storage, and the
networking functionalities. The latest release, MIDP 2.0,
provides specific APIs also to generate 3D graphics for
games. Mobile applications written in Java ME are named
MIDlet and, although they do not run as fast as applications
purposely designed for a particular device or platform, their
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main advantage is that, potentially, they can be run on any
Java ME-compatible device.

All these platforms have both pros and cons, thus
demonstrating the need for a solution that will enable the
automatic porting of any mobile game on any mobile phone.
However, this is not the aim of this work; we simply note
that currently Java ME with MIDP 2.0 is the solution that
provides the widest portability of the developed software.

2.2. Connectivity. Different communication technologies are
available today on most of mobile phones (e.g., GPRS,
UMTS, Bluetooth, Wi-Fi); thereby, being able to exploit
them has become an important aspect in the success of a
mobile game [5]. The current mobile scenario is dominated
by 2G and 3G (GPRS and UMTS, resp.). Phone service
providers have done huge investments on this technology;
therefore, this communication means present the advantage
of being available almost anywhere. Yet, its bandwidth,
latency, and cost often block users from using it.

Bluetooth connectivity is also very popular today as only
really cheap mobile phones are produced today without
it. Bluetooth was designed to implement personal area
networks (PANs) and, thereby, its bandwidth and latency
also allow to support multimedia applications [10]. Trans-
missions happen only in a ~10 m range, which implies that
players have to be one in front of (or beside) the other
to play together; yet, this proximity in the real world is
often part of the fun of playing together. Finally, Bluetooth
communications are not billed.

Wi-Fi is another communication technology that can
be free of charge (or available at a low fixed cost). Its
transmission range is in the order of 100 m but can be
used as well to play online with other people all around the
world by simply connecting to the Internet through an access
point in proximity [11]. Unfortunately, Wi-Fi capabilities are
currently present only on expensive mobile phones; plus,
while walking in a street, there might not be around any
freely accessible Wi-Fi access point thus impeding its use.

The optimal solution would be that of having the game
enabled to work on any of the aforementioned connectivity
means and choosing, at any moment, the “best” among
the available ones (e.g., the fastest, the cheapest, the most
reliable) [12, 13]. However, if a mobile game producer
decides to create a game with only one connectivity option,
we deem that the chosen one should be Bluetooth as it is
available on almost any new mobile phone and its use is
free of charge. The combination of these two characteristics
makes users willing to use it for their leisure.

3. Artificial Intelligence Related Work

In this paper, we present a novel Al approach for imperfect
information games; we hence deem important to devote this
section to provide a discussion about related work in Al.
The first self-learning gaming program, that is, Checkers,
was created in 1959 and represented a very early demon-
stration of the fundamental concept of Al in games [14].
Nowadays, all video games include some Al that may act

as a virtual opponent or as a component of the game itself.
Yet, the Al of current games show only little advancements if
compared to its ancestors; only for few specific games the Al
has achieved great improvements (e.g., Chess [15]).

As already stated in Section 1, games can be categorized
into two main classes: games where the players possess
perfect information about the current game state (e.g., Chess,
Tic-tac-toe) and games where players can rely on imperfect
information only (e.g., Poker, Rock-paper-scissors). The Al
of perfect information games can easily evaluate a given
game state by just searching all possible continuations to a
fixed depth. For this kind of games, the main problem in
developing an Al is related to the capability of precomputing
correct evaluations of each game state and then storing and
retrieving them in an efficient manner [16-18].

Instead, with imperfect information games, deep search
may not be feasible and storing precomputed evaluations
might not result in significant improvements in the AIs
strength [19, 20]. In this case, techniques like temporal dif-
ference learning are also unsuitable as the intermediate states
of a game are only partially determined [21]. Alternative
solutions have hence to be explored to enhance the level of
the Al For instance, simulation search [22-25] evaluates the
possible next moves by self-playing a multitude of simulated
game sessions, considering the current state as the starting
point and utilizing different values for the indeterministic
parameters (i.e., dice rolls, cards held by the opponent player,
etc.). To generate real-time responses during the game,
these simulations can be run before the game and statistics
can be stored to be promptly available during the game.
Unfortunately, the branching factor of certain games may
considerably limit the effectiveness of this technique.

To this aim, in Section 5 we discuss a new machine
learning approach that mimics the human’s ability in
evaluating important information about the current game
state that goes beyond, for instance, the board position
[26]. In essence, our mechanism models the opponent’s
behavior over several game sessions so as to be able to exploit
the weaknesses and the typical behaviors of the considered
human player.

4. A Representative Case of Imperfect
Information Game: Ghosts

For our study, we need a simple, yet representative exemplar
of imperfect information game. Ghosts embodies a perfect
case as, not only it belongs to this class of games, but it is
also governed by few simple rules, which makes it easier to
appreciate the improvement produced by the employment of
our Al solution.

The rules of Ghosts are listed hereinafter. Two players
have to place 8 ghosts each at the back of a 6 X 6 board as
shown in Figure 1. Each player has 4 good ghosts and 4 bad
ghosts, but the information about which are good and which
are bad is hidden to the opponent player. On each turn,
a player moves one of her/his ghosts one square vertically
or horizontally; if by doing so the ghost is moved onto an
opponent’s ghost, the latter is captured by the former. In



FIGURE 1: Initial setup of Ghosts.
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order to win, different possibilities are available to a player:
(1) having all of her/his bad ghosts captured by the opponent
player, (ii) capturing all the good ghosts of the opponent
player, (iii) moving one of her/his good ghosts off the board
from one of the opponent’s corner squares. Clearly, one of
the interesting aspects of Ghosts is its bluffing element which
is differently utilized by different human players.

4.1. Development of Ghosts for Mobile Phones. The develop-
ment of the digital version of Ghosts for mobile phones has
passed through three different phases: creating the GUI and
the basic logic of the game, enabling communication among
two mobile phones, adding the AI with our player profiling
capability. We discuss in this section the first two of these
phases, which are related to the practical implementation of
the game; we leave the third one to the next section as its
research contribution deserves a deeper and different kind of
discussion.

To create the game, we decided to use Java ME. This
choice was motivated by several reasons. First, developing
mobile games through the APIs of MIDP 2.0 is quite
simple. Second, Java ME comes also with an emulator that
facilitates software development before trying it on real
mobile devices. Third, we wanted to create a game with the
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highest portability on different devices; indeed, we tested our
final game on various mobile phones (Nokia 7610, 6630,
6670, 6260, N70, N95) and it perfectly worked in all cases.

Unfortunately, memorizing data related to a mobile game
cannot be done in a trivial way as we would do with
regular computer-based games. The problem is related to
the employed mobile device; indeed, in our phone, we
had to resort to a specific data structure named Record
Management System (RMS). More in detail, Figure 2 shows
that RMS is modeled on the basis of a simple database where
stored data are organized in records.

The connectivity of the game has been ensured through
Bluetooth. We are currently adding the possibility to exploit
Wi-Fi and we plan to enable GPRS and UMTS in the future;
however, having to choose just one connectivity means to
start with, we preferred Bluetooth since it is available on most
of the mobile phones on the market, its use is free of charge,
and it does not require networking infrastructure (i.e., access
points, game servers) to work.

With Bluetooth connectivity, one of the involved devices
has to act as a server and the other(s) can be client(s). In
our game, which phone acts as a server and which one as
a client is explicitly chosen by the two players when starting
the game session. With the help of Figure 3 we describe the
various phases to initiate a game session among two mobile
phones. First, our Ghosts application has to be started on
both mobile phones to enable the local device. A choice is
made between activating the game as a server or as a client;
then, in the former case, the service is created and waits for
a client, whereas in the latter case, the client has to search
for devices within its transmission range. Once a device is
found, the client searches for a specific service (i.e., the game
server) on that device; if the service is discovered then the
connection is established and messages (e.g., game moves)
can be transmitted in turn from one device to the other in
order to play the game (our game prototype running on a
mobile phone is shown in Figure 4).

5. Enhancing the AI with Player
Profiling Capabilities

The last component of our mobile game is represented by
the AT algorithm that allows players to play in solo mode; it
is also the most interesting from a research point of view.

Problems in game Al are typically grouped with respect
to certain characteristics. One of the most intriguing is
related to how much information is available to the players.
This leads us to distinguish between perfect information
games and imperfect information games. The latter is more
interesting as it represents a more challenging case.

Ghosts embodies a good case study as it falls in the class of
imperfect information games, yet, it is simple enough to be
analyzed. In Ghosts, a player does not have any information
about the type of the opponent’s ghosts (i.e., good or bad);
thereby, any search state space-based technique, for example,
min-max algorithms, will fail. In other words, without any
other heuristic judgment, the behavior of a machine driven
player could not be better than any trivial random player.



International Journal of Computer Games Technology

Local
device

Discovery

MIDlet agent

getlocalDevice ()

getDiscoveryAgent ( )

retrieveDevices ()

startInquiry ()

deviceDiscovered ()

searchServices ()

servicesDiscovered ()

getConnectionURL ( )

5
Connection
Service Remote (L2CAP or
record connector device stream)

Connector.open ()

getRemoteDevice ()

receive

send

F1GuURrE 3: Connection steps through Bluetooth.

FIGURE 4: Our final Ghosts game running on a mobile phone.

Indeed, in order to plan its moves, an Al algorithm would
certainly benefit from some other source of information
about the type of the opponent’s ghosts (the missing
information). We propose to get this additional information
from the playing style of a player. The basic assumption we
make is that different players have different playing behaviors
(being aggressive, bluffing, etc.) and they tend to move pieces
of a certain type in a similar way when facing similar game
situations. Specifically, our claim is that by knowing the
playing style of a player, it is possible to recognize the type
of a given ghost by its moves. We can then use a machine
learning algorithm [21] to compile a behavior profile of good
and bad pieces of a player. During future game sessions, this
knowledge can be used to predict the type of a ghost in the
board and possibly to define higher level game heuristics, like
min-max algorithms, based on these predictions. This kind

of prediction can be easily seen as a classification problem in
machine learning, as discussed in the following section.

5.1. Machine Learning for Classification. One of the most
important problems in machine learning is classification. In
this setting, given a set of preclassified instances, one wants
to predict the class of new instances never seen before. In the
simplest case we have two labels, say {—1,+1}, denoting that
an instance belongs (+1), or not belongs (—1), to a given
concept (or class). Instances of the problem are described
by d-dimensional vectors, each component containing the
value of a given attribute (feature) relative to the instance. In
general, it is assumed that the instance-class pairs are drawn
according to a fixed (but unknown) probability distribution.
Moreover, the set of preclassified examples, that is, the
training set, is assumed to be drawn according to the same
probability distribution.

Various algorithms have been designed to solve this
problem; they can be grouped into two big families: discrim-
inative and nondiscriminative methods. Given any class, a
nondiscriminative method tries to estimate the probability
of an instance using the training examples; then, it uses the
Bayes rule (or similar, [27]) to estimate the probability of
each class given an instance; finally, through these estimates,
any new instance can be classified with the most likely
class. Note that each class is treated independently and the
estimation of the probability of instances given the class can
be done by using instances of that class only.

A discriminative method tries to directly estimate the
posterior probability of each class given the instance. For this
last estimate, all the examples of the training set have to be
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FIGURE 5: Percentage of error of the prototype-based machine learning algorithm (proportion of times a type of a piece on the board is
wrongly predicted) for 10 different game sessions. The x-axis represents the moves of the player during that game session (the number of
moves for a game varies on different game sessions).

used together. Generally, a nondiscriminative method tends One of the most successful discriminative classification
to be more efficient and computationally less demanding  methods is the Support Vector Machine (SVM) [28]. With
than discriminative methods. However, discriminative meth- this method, instances are mapped into a very large feature

ods usually have best performances. space where a linear separator (a hyperplane) is found by
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the learning algorithm. Advantages of SVM with respect
to previously devised methods, like neural networks, for
example, are the solid theoretical framework on which they
are defined and the small number of hyperparameters that a
user has to tune to use them. Furthermore, since the SVM
solution can be found by optimizing the dual of a convex
constrained quadratic objective function, this solution does
not suffer of local minima as neural networks do. Moreover,
the solution can be expressed in the very simple form of a
linear combination of functions which depend on training
instances in the original (lower dimensional) space.

The problem with SVM is that, since the generated model
is defined on the basis of a subset of training examples, the
evaluation of the decision function can be onerous when
the training set size is big. This makes SVM quite unsuitable
when a fast reaction of the classifying system is expected (e.g.,
in a real-time application) or when the utilized device has
limited computational capabilities. Furthermore, the storage
memory required by the model generated by an SVM is of an
order linear with the cardinality of the training set, and this
could be an issue when devices with a very limited memory
should be used (e.g., mobile devices).

Among nondiscriminative classification methods, proto-
type-based methods are probably the easiest and less com-
putationally demanding. In this method, a prototype is
built for each class representing the common patterns of
instances of the associated class. Specifically, once given a
distance metric between instances, the basic idea is to build
a prototype vector for each class, having the same dimension
of the instances, in such a way to minimize the mean value
of the distances between the prototype and each of the
instances of the class. Once these prototypes are built, a new
instance is classified with the class associated with the closest
prototype. This method is theoretically founded when some
statistical assumptions are made about the distribution of
the examples and is empirically demonstrated to obtain good
performances.

5.2. Prototype-Based Classification in Ghosts . Since our par-
ticular application is thought to work even with very limited
computational resources, we have adopted a prototype-based
classifier as the machine learning methodology. Specifically,
for each player, a prototype of good and a prototype of bad
ghost behavior are trained based on 17 features which have
been considered informative to determine the nature of a
ghost in the game.

In particular, the following features have been chosen: 8
features with binary values representing what was the initial
position of the piece on the board among the eight possible
ones, 5 features representing the moves of the piece during
the game session (if it is the first piece that the player moved,
if it is the second piece that the player moved, the number
of backward, forward, and lateral moves already performed
by that piece), and the remaining 4 features representing
the piece’s behavior when it has been under threat of being
captured (how many times it has reacted by capturing the
opponent piece, how many times it has escaped by moving
to another board position, how many times it has remained
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FIGURE 6: Averaged leave-one-out error obtained by the machine
learning algorithm varying the number of game logs used for
training.

on its position, and how many times it has moved from its
square to threat another opponent’s piece).

To build the prototype for a player, our algorithm needs
first to collect data, that is, the training set, from previous
game sessions with the same human player. For each of these
sessions and for each piece a corresponding feature vector is
built according to the criteria above which are based on the
behavior of the piece in the game. The prototype for good
(or bad) pieces is then determined as the average among
the feature vectors representing good (or bad) pieces. More
formally, given G = {g1,..., g} the set of feature vectors for
good pieces of a given player, and B = {by,...,b,} the set of
available feature vectors for bad pieces of the same player, the
prototype vectors are computed as:

1< 1<
PG ==>g, Py = => b, (1)
nia i

Now, let be given a new feature vector f representing the
profile of a piece of unknown type on the board; a badness
score can hence be computed by using the normalized
distance with respect to the player prototypes, that is,

d(f,Pg) —d(f,Pp)
d(f,Pg)+d(f,Pp)’

where d(x, y) is the Euclidean distance between vectors x
and y. Note that the score is always a number between —1
(definitely good) and +1 (definitely bad).

On each move in the middle of a game session, the
prediction of the type of the pieces on the board is performed
in the following way. First, since the exact number of good
and bad pieces (1, and ny, resp.) still on the board is a known
information, a badness score for each of these pieces can be
computed by utilizing (2). Then, the pieces are ranked based
on this score and the n;, highest score pieces are predicted to
be bad pieces.

The error committed in a prediction is computed as
the number of bad pieces which are actually predicted as
good ones. Needless to say, with the ranking method we
used to discriminate between bad and good pieces, this error

s(f) =

(2)



also corresponds to the number of good pieces which are
incorrectly predicted as bad.

6. Experimental Results

In this section, experimental results showing the effectiveness
of our profiling methodology are reported. The experimental
setting consisted in a mobile phone-based version of Ghosts.
A user played a set of 81 games against other human players.
Game logs of these matches, containing the initial state of the
board and all the moves of the two players, have been stored
during the games.

6.1. Evaluation of the Profile Construction in a Single Game
Session. First, we studied the reliability of our profiler during
a game session. Clearly, at the beginning of a game, the
profile cannot be precise as some features of a piece may
still be unavailable or underestimated. Thus, even if the
models generated by our prototype-based machine learning
algorithm were perfect, the correct classification of a piece
may be difficult at the early stage of a game session, given
the low informative degree of its profile. We can expect the
prediction error to decrease whenever the profile becomes
more and more informative and complete. However, this
represents a desirable property as, in general, it is not so
important to have a very low error when the game is at
the very beginning, whereas it becomes crucial as the game
session proceeds.

In particular, plots in Figure 5 give the percentage of
error that affects our machine learning algorithm during
ten single game sessions. Instantaneous values of the error
percentage are provided at each move performed during the
game session. Needless to say, the total number of moves
to conclude a game session is variable; this is why charts in
Figure 5 have different ranges of the values on the x-axis.
Note that 50% of error means that two good (and two bad)
ghosts out of four were wrongly labeled as bad (good), 25%
represents the case with only one good (and one bad) ghost
wrongly labeled, and 0% error is the case when the system
provides a perfect prediction of the type of all the ghosts
in the board. As anticipated, the precision of the predictor
quickly improves as a game session continues and six out of
the ten charts in Figure 5 achieve a percentage of 0% error
during the second half of the game session.

6.2. Evaluation of the Machine Learning Algorithm. In a
second set of experiments, we evaluated the performance
of the machine learning algorithm. This has been done by
estimating the probability to make errors in future match
games. To this end, a leave-one-out procedure has been
used. This measure, very common in the machine learning
community for evaluating the expected performance of a
classifier, provably gives a statistically unbiased estimate of
the expected percentage of mistakes that a classifier will
make. To compute these statistics, for each available game
session log, a model has been generated by removing that
game log from the set and training the prototype-based
classifier on the remaining 80 game logs. Then, the mean
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error in the left out game log is computed as the proportion
of piece type guess mistakes out of the total guesses during
the game. Finally, all these mean errors have been collected
and averaged to obtain a final estimate of the algorithm’s
performance. In particular, with the considered set of 81
game logs, the leave-one-out estimate resulted in a 26.3%
error.

We also wanted to show how the prototype-based
classifier improves its accuracy as the number of previously
stored game logs increases. To this aim, we have exploited
again the leave-one-out procedure but this time considering
different training set sizes (consisting of 5, 10, 25, 50, 80
game logs). For each chosen training log set sizes, the leave-
one-out procedure has been repeated each time considering
a different left out game log; the averaged resulting error
percentages are reported in Figure 6. As expected, with a
larger size of the training set, the machine learning algorithm
is able to build a more reliable prototype of the player’s
profile, thus improving the performance of the prediction
system.

7. Conclusion and Future Work

The mass adoption of mobile phones in our society has
transformed them from gadgets into commodities. The tech-
nical features of these devices have reached a quality level that
makes them able to run multimedia applications. One of the
most successful mobile applications is certainly represented
by gaming and, in this paper, we discussed technical issues
related to this context. In particular, we have proposed an
original solution that improves the capability of the Al by
allowing it to profile its human opponent and exploit her/his
weaknesses. Our approach is particularly useful for imperfect
information games and for games running on devices with
limited computational capabilities (e.g., mobile phones),
where a pure searching algorithm could not be employed; at
the same time, it can be easily plugged into any standard Al
or temporal difference learning-based algorithm to enhance
its performance.

As a real testbed for our solution, we created a mobile
phone-based game also considering the state-of-the-art
in compatibility and connectivity technology available on
today’s phones. The game that we have chosen for our
experiments is Ghosts, an imperfect information game that
can be either played against another player or against the
Al algorithm. Results gathered during our experimental
evaluation demonstrate that our approach achieves the
desired goal of an effective profiling of the player.

Intentionally, we have chosen a very simple machine
learning technique for our experiments for two main
reasons. First, we wanted to be sure that the chosen
algorithm could be run, producing the desired goal, even
on a device with limited computational capabilities. Second,
our experiments were intended to prove the viability of
our general method and they achieved this goal; in the
future, more complex machine learning algorithms such as,
for instance, SVM [28] can be utilized; also, an extended
set of features to profile the opponent’s behavior could be
evaluated.
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Another attractive future direction for this work would
be that of applying recent machine learning methods which
can deal with problems different from the classification one.
In fact, it can be noted that the reduction of the Ghosts
game to a classification problem is not the only one possible.
Actually, the real need in the Ghosts game is to decide which
the good and bad pieces are once we have a rank of the
pieces based on their “badness;” then, ad hoc approaches to
learn rankings and preferences (e.g., [29]) can be exploited
to improve the performance of the system.

Finally, we also plan to apply our solution to more
complex imperfect information games such as Invisible Chess
and Kriegspiel which are heterodox chess variation in which
players are not informed of their opponents position and
moves [30, 31].
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1. Introduction

Artificial terrain generation techniques are an important
facet of graphical applications that attempt to represent a
real or an imaginary world. Among those applications are
computer animation, architecture, virtual reality, and video
games (for a more extensive list of examples check the Virtual
Terrain Project, http://www.vterrain.org/Misc/Why.html).
On the virtual terrain field, much of the research has been
focused on how to accelerate the visualisation of large
terrains to achieve interactive frame rates. As a result, many
level of detail (LOD) algorithms have been developed [1-3],
which increase rendering speeds by using simpler versions of
the geometry for objects that have lesser visual importance
such as those far away from the viewer [4]. This approach
have been successfully applied on many video games, a field
where artificial terrain generation techniques are probably
more prominent.

On the other hand, terrain generation has received less
attention in the literature. Fractal-based techniques are still
the most prevalent, specially on video games, in spite of the

several generation techniques existing today (see Section 2).
This happens because of their speed, ease of implementation,
and ability to create irregular shapes across an entire range of
LODs. Nevertheless, these techniques allow only a confined
variety of terrain types [2, 5], little control on the outcome,
and are only focused on the generation of realistic terrains.
Although this is important, it might prevent designers from
achieving their goals when they attempt to represent an
alien or an exotic looking terrain. Fractal-based techniques
do not allow designers to express their full creativity or
to evolve a terrain accordingly to their aesthetic feelings
rather than realism. The terrain novelty might have a positive
impact on a product’s target audience and increase their
interest. The Genetic Terrain Programming (GTP) technique
[6] allows the evolution of Terrain Programmes (TPs) based
on aesthetic evolutionary design with Genetic Programming
(GP). For a specific resolution, it is known the ability of those
TPs to generate a family of terrains—different terrains, but
with coherent morphological features. This paper presents
a set of experiments to study the perseverance of terrain
morphological features across different resolutions. This is



a desired characteristic by video games’ designers, as it will
enable them to adapt the terrain to the required processing
power, without recurring to additional algorithms. This
property will also help to improve performance during the
TPs’ evolutionary phase.

Section 2 introduces some background about the tra-
ditional terrain generation techniques and their main con-
strains. It also presents an overview of evolutionary systems
applied to terrain generation. Section 3 describes the GTP
technique, the developed tool, and the achieved results.
Finally, the conclusions and future work are presented on
Section 4.

2. Background

Artificial terrain generation has been addressed by several
researchers for a long time, and therefore many techniques
and algorithms have been developed. To establish a base line
of comparison with real algorithms, Saunders [7] proposed
the following list of traits that an ideal terrain generation
algorithm should have

(i) low requirements of human input,

(ii) allow a high degree of human control,

(iii) to be completely intuitive to control,

(iv) produce models at arbitrary levels of detail,
(v) fast enough for real-time applications,

(vi) to be able to generate a wide variety of recognisable
terrain types and features,

(vii) to be extensible to support new types of terrain.

Some of the listed characteristics are in tension with
one another, such as low requirements of human input
and high degree of human control. This means that all
terrain generation techniques had to choose priorities and
made some compromises regarding their traits. Another
important attribute of a terrain generation technique is
how it represents a terrain. The chosen data structure will
influence the way the terrain is built, the available tools to
manipulate it, and might affect also the terrains features
that can be represented. Height maps are probably the most
common method used to represent terrains, although other
data structures exist. Formally, a height map is a scalar
function of two variables, such that for every coordinate pair
(x, y) corresponds an elevation value h, as shown in (1). In
practice, a height map is a two-dimensional rectangular grid
of height values, where the axis values are spaced with regular
intervals valid over a finite domain (see Figure 1). The most
common data structure to represent them is 2D arrays filled
with the elevations values:

h= f(x,y). (1)

The regular structure of height maps is their main
advantage, since it allows the optimisation of operations
such as rendering, collision detection, and path finding. The
render of huge height maps in real time is now possible due
to the creation of several continuous level of detail (CLOD)
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FIGURE 1: A discrete height map example.

algorithms [1-3], which render highly visible areas of the
terrain with detailed geometry, using progressively simpler
geometry for more distant parts of the terrain. Collision
detection is greatly simplified if one of the objects is a
height map, because only a few surrounding triangles need
to be checked for collision. A second advantage is the fact
that height maps are compatible with grey-scale images (if
the heights values are normalised). This means that image
processing and computer vision techniques may be used to
construct, modify, and analyse terrain models represented
as height maps. For example, a height map can be stored,
imported, or exported using an image file format, or a filter
can be applied to smooth a rough terrain. Finally, Geographic
Information Systems (GIS) use height maps to represent
real-world terrain, which are commonly built using remote
sensing techniques such as satellite imagery and land surveys.
This is another advantage due to the significant amount of
real-world terrain models available to work with.

The main limitation of height maps is the inability to
represent structures where multiple heights exist for the same
pair of coordinates. So, height maps are inherently unable
to represent caves, overhangs, vertical surfaces, and other
terrain structures in which multiple surfaces have the same
horizontal coordinates. Fortunately, only a small percentage
of natural terrain fall into this category, and this limitation
can be overcome by using separate objects placed on top of
the terrain model. A second disadvantage of height maps is
that it has a finite uniform resolution, which means there is
no simple way to handle a terrain with different local levels of
details. If the resolution is chosen to match the average scale
of the features in the terrain, then any finer-scale features will
be simplified or eliminated. Conversely, if the resolution is
chosen to be high enough to capture the fine-scale features,
areas containing only coarse features will also be captured
at this same high resolution, an undesirable waste of space
and processing time. Ideally, a terrain representation for
terrain generation would either be infinite in resolution, or
else would adaptively increase its resolution to accommodate
the addition of fine-scale details, rather than requiring a
prior decision about resolution. A third disadvantage of
height maps is its inadequacy to represent terrain on a
planetary scale. Rectangular height maps do not map directly
to spheroid objects; usually a two-pole spherical projection
is used, and in those cases the density of height field points
will be substantially greater in areas near the poles than at
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those near the equator. For the purpose of our technique,
the advantages of height maps outcome their shortcomings,
though.

2.1. Traditional Terrain Generation Techniques. Traditional
techniques for terrain generation can be categorised into
three main groups: (1) measuring, (2) modelling, and (3)
procedural. Next, we briefly review each of these techniques.

(1) Measuring techniques gather elevation data through
real-world measurements, producing digital elevation mod-
els  (http://rockyweb.cr.usgs.gov/nmpstds/demstds.html).
These models are commonly built using remote sensing
techniques such as satellite imagery and land surveys. One
key advantage of measuring techniques lies in the fact that
they produce highly realistic terrains with minimal human
effort, although this comes at the expenses of the designer
control. In fact, if the designer wants to express specific
goals for the terrain’s design and features, this approach
may be very time-consuming since the designer may have to
search extensively for real-world data that meet her targeted
criteria.

(2) Modelling is by far the most flexible technique
for terrain generation. A human artist models or sculpts
the terrain morphology manually using a 3D modelling
programme (e.g., Maya, 3D Studio (http://www.autodesk
.com/fo-products), or Blender (http://www.blender.org)), or
a specialised terrain editor programme (e.g., the editors that
ship with video games like Unreal Tournament 2004 (http:
/[www.mobygames.com/game/unreal-tournament-2004),
SimCity 4 (http://simcity.ea.com/about/simcity4/overview
.php), or SimEarth (http://www.mobygames.com/game/
simearth-the-living-planet)). The way the terrain is built is
different depending on the features provided by the chosen
editor, but the general principle is the same. With this
approach, the designer has unlimited control over the terrain
design and features, but this might be also a disadvantage.
By delegating most or all of the details up to the designer,
this technique imposes high requirements on the designer
in terms of time and effort. Also the realism of the resulting
terrain is fully dependent on the designer’s skills.

Finally, (3) procedural techniques are those in which
the terrains are generated programmatically. This category
can further be divided into physical, spectral synthesis, and
fractal techniques.

Physically-based techniques simulate the real phenomena
of terrain evolution trough effects of physical processes such
as erosion by wind (http://www.weru.ksu.edu), water [8],
thermal [9], or plate tectonics. These techniques generate
highly realistic terrains, but require an in-depth knowledge
of the physical laws to implement and use them effectively.
Physically-based techniques are also very demanding in
terms of processing power.

Another procedural approach is the spectral synthesis.
This technique is based on the observation that fractional
Brownian motion (fBm) noise has a well-defined power
spectrum. So random frequency components can be easily
calculated and then the inverse fast Fourier transform (FFT)
can be computed to convert the frequency components into
altitudes. The problem of using this technique for simulating

real-world terrain is that it is statistically homogeneous and
isotropic, two properties that real terrain does not share [9].
Furthermore, it does not allow much control on the outcome
of terrains’ features.

Self-similarity is the key concept behind any fractal
technique. An object is said to be self-similar when magnified
subsets of the object look like (or identical to) the whole
and to each other [10]. This allows the use of fractals to
generate terrain which still looks like terrain, regardless of
the scale in which it is displayed [11]. Every time these
algorithms are executed they generate a different terrain due
to the incorporated randomness. This class of algorithms
is the favourite one by game’s designers, mainly due to
their speed and simplicity of implementation. There are
several tools available that are predominantly based on
fractal algorithms, such as Terragen (which is a hybrid frac-
tal/modelling tool) (http://www.planetside.co.uk/terragen)
and GenSurf (a mapping tool for Quake 3 Arena video game)
(http://tarot.telefragged.com/gensurf). However, generated
terrains by this techniques are easily recognised because
of the self-similarity characteristic of fractal algorithms.
Besides, not all terrain types exhibit the self-similar property
across all scales. For example, both photos from Figure 2 are
from Death Valley (Calif, USA), but seen at very different
scales. On Figure 2(a) is a close-up of cracked dried mud
in a creek from the Death Valley and on Figure 2(b) is a
satellite image of the same region. As is easily verified, in
this case there is no self-similarity between the two scales
of these terrain photos. Although these algorithms present
some parameters that can be tweaked to control, for example,
the roughness, the designer does not have control on the
resulting terrain features.

2.2. Evolutionary Terrain Generation Techniques. Evolution-
ary algorithms (EAs) are a kind of bioinspired algorithms
that apply Darwin’s theory [12] of natural evolution of
the species, where living organisms are rewarded through
their continued survival and the propagation of its own
genes to its successors. There are four main classes of EAs:
genetic algorithms (GAs) [13], evolutionary strategies [14],
GP [15], and evolutionary programming [16]. Evolutionary
algorithms can be seen as search techniques [17]. They are
able to achieve good solutions to many types of problems,
thanks to their flexibility and adaptability to different search
scenarios. This characteristic is the key factor of success in
such diverse fields as engineering, art, biology, economics,
marketing, genetics, operations research, robotics, social
sciences, physics, and chemistry. Apart from their use as opti-
misers, evolutionary algorithms have also been used as an
experimental framework to validate theories about biological
evolution and natural selection, particularly through work in
the field of artificial life [18].

Evolutionary design is a branch of evolutionary com-
putation which has its roots in three different disciplines:
computer science, evolutionary biology, and design. Evolu-
tionary design has taken place in many different areas over
the last decade. Designers have optimised selected parts of
their designs using evolution; artists have used evolution to
generate aesthetically pleasing forms; architects have evolved
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FIGURE 2: Images of Death Valley: (a) “cracked mud on the way to the borax haystacks,” by redteam, Creative Commons license, (b) a satellite
image from NASA (public domain). On this example, there is no self-similarity between the two scales of this region.
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FIGURE 3: Evolutionary design categories.

new building plans from scratch; computer scientists have
evolved morphologies and control systems of artificial life.
Evolutionary design can be divided into four main categories
[19]: evolutionary design optimisation, creative evolutionary
design, evolutionary art, and evolutionary artificial life
forms. However, some author’s work may be included in two
or more categories creating four overlapping subcategories
shown in Figure 3.

Evolutionary art systems are similar in many ways.
They all generate new forms or images from the ground
up (random initial populations); they rely upon a human
evaluator to set the fitness value of an individual based on
subjective evaluation, such as aesthetic appeal; population
sizes are very small to avoid user’s fatigue and allow a quick
evaluation, and user interfaces usually present a grid on the
screen with the current population individuals, allowing the
user to rank them. However, they differ on their phenotype
representations [20].

GP has been the most fruitful evolutionary algorithm
applied to evolve images interactively. Karl Sims used GP to
create and evolve computer graphics by mathematical equa-
tions. The equations are used to calculate each pixel [21]. He
created several graphic art pieces including Panspermia and
Primordial Dance, and also allowed visitors to interact with
his interactive art system at art shows and exhibitions. His
Galapagos (http://www.karlsims.com/galapagos/index.html)
is an L-system-based interactive evolutionary computation
(IEC) system that allows visitors to create their own graphic
art through their interaction.

Tatsuo Unemi developed Simulated Breeding ART
(SBART) [22, 23], an IEC graphics system open to public.
SBART wuses GP to create mathematical equations for
calculating each pixel value and its (x,y) coordinates. As
GP nodes, SBART assigns the four arithmetic fundamental
operators (+, —, X, and +), power, sqrt, sin, cos, log, exp, min,
and max. The terminal nodes are constants and variables.
Three values at each pixel are calculated using one generated
mathematical equation by assuming that the constants are
3D vectors consisting of three real numbers, and the variables
are a 3D tuple consisting of (x, ¥,0). The three calculated
values are regarded as members of a vector (hue, lightness,
and saturation), and are transformed to RGB values for
each pixel. These three values are normalised to values in
[—1,1] using a saw-like function. The SBART’s functions
were expanded to create a collage [24]. A human user
selects preferred 2D images from 20 displayed images at each
generation, and the system creates the next 20 offspring.
Sometimes exporting/importing parents among multiple
SBART instances is allowed. This operation is iterated until
the user obtains a satisfactory image.

In Neuro Evolutionary Art (NEvAr) [25], of Machado
and Cardoso, the function set is composed mainly of
simple functions such as arithmetic, trigonometric, and logic
operations. The terminal set is composed of a set of variables
x,y, and random constants. The phenotype (image) is
generated by evaluating the genotype for each (x,y) pair
belonging to the image. In order to produce colour images,
NEVATr resorts to a special kind of terminal that returns a
different value depending on the colour channel—red, green,
or blue—that is being processed. This tool focuses on the
reuse of useful individuals, which are stored in an image
database and led to the development of automatic seeding
procedures.

To the best of our knowledge, Ong et al. [26] were the
first authors to propose an evolutionary approach to generate
terrains. They proposed an evolutionary design optimisation
technique to generate terrains by applying genetic algorithms
to transform height maps in order to conform them to the
required features. Their approach breaks down the terrain
generation process into two stages: the terrain silhouette
generation phase, and the terrain height map generation
phase. The input to the first phase is a rough 2D map
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laying out the geography of the desired terrain that can be
randomly generated or specified by the designer. This map
is processed by the first phase to remove any unnaturally
straight edges and then fed to the second phase, along with a
database of preselected height map samples representative of
the different terrain types. The second phase searches for an
optimal arrangement of elevation data from the database that
approximates the map generated in the first phase. Since the
height map generation algorithm is inherently random, the
terrains generated from two separate runs of the algorithm
will not be the same, even if they use the same map.

We proposed a new technique, based on aesthetic evolu-
tionary design, designated GTP [6]. Our approach consists
on the combination of interactive evolutionary art systems
with GP to evolve mathematical expressions, designated TPs,
to generate artificial terrains as height maps. GTP relies on
GP as evolutionary algorithm, which creates mathematical
expressions as solutions (further details are presented on
Section 3).

2.3. Genetic Programming. Genetic programming (GP) is an
evolutionary computation (EC) technique that automatically
solves problems without requiring the user to know or
specify the form or structure of the solution in advance. More
precisely, GP is a systematic domain-independent method
for getting computers to solve problems automatically start-
ing from a high-level statement of what needs to be done.
In GP, a population of computer programmes is evolved.
Generation by generation, a population of programmes
is stochastically transformed into new, hopefully better,
populations of programmes [27]. Due to its heuristic nature,
GP can never guarantee results. However, it has been
used successfully in many areas, such as [17] artificial life,
robots and autonomous agents, financial trading, neural
networks, art, image and signal processing, prediction and
classification, and optimisation.

Algorithm 1 shows the basic steps of GP. The generated
programmes are run for evaluation (Line 3) and compared
with some ideal. This comparison is quantified to give
a numeric value called fitness. The best programmes are
chosen to breed (Line 4) and produce new programmes for
the next generation (Line 5). The primary genetic operators
used to create new programmes from existing ones are the
following:

(i) crossover: the creation of a child programme by
combining randomly chosen parts from two selected
parent programmes,

(ii) mutation: the creation of a new child programme
by randomly altering a randomly chosen part of a
selected parent programme.

In GP, programmes are usually expressed as trees rather
than as lines of code. For example, Figure 4 shows the tree
representation of the programme max(x + x,x + 3% y). The
variables and constants in the programme (x, y, and 3) are
leaves of the tree, or terminals in GP terminology. The
arithmetic operations (+, *, and max) are internal nodes

called functions. The sets of allowed functions and terminals
together form the primitive set of a GP system.

For those who wish to learn more about GP, the book
A Field Guide to Genetic Programming from Poli et al. [27]
has a very good introduction to GP. A thoroughly analysis on
this topic is provided on the book Genetic Programming—On
the Programming of Computers by Means of Natural Selection
by Koza [15], the main proponent of GP who has pioneered
the application of Genetic Programming in various complex
optimisation and search problems.

3. Genetic Terrain Programming

Current terrain generation techniques have their own advan-
tages and disadvantages, as detailed in Section 2. Notwith-
standing the importance of real-looking terrains, none of the
existing methods focused on generating terrains accordingly
to designers’ aesthetic appeal. The main goals of GTP are
to address the weaknesses of existing methods, allowing
also the generation of aesthetic terrains. Thus, providing a
better way of generating virtual terrains for a broad range of
applications, with a special emphasis on video games.

In light of the idealised terrain generator, the goals of
GTP are (in order of decreasing importance) as follows:

(1) capable of generating diverse features and terrain
types, both aesthetic and realistic,

(2) extensibility,
(3) intuitive to control,
(4) automated generation with arbitrary resolution,

(5) low requirements of human input.

To achieve these goals, we use aesthetic evolutionary
design with GP, where the phenotypes are terrains repre-
sented as height maps. This approach consists of a guided
evolution, through interactive evolution, according to a
specific desired terrain feature or aesthetic appeal. The
extensibility and ability to generate diverse features and
terrain types are assured by the GP. The diversity of solutions
is directly dependent on the GP terminal and function sets.
So, the extensibility feature can be easily achieved by adding
new functions and terminals. The designer will guide the
terrains evolution, performing this way the control of the
outcome, by selecting which ones he prefers for his specific
goals. Consequently, the software tool will be easy and
intuitive to use with low input requirements. The outcome of
the interactive evolution will be TPs, which are mathematical
expressions with incorporated randomness. Those TPs can
be used, like a procedural technique, to automatically
generate different terrains with different resolutions and the
same consistent features.

3.1. Method. The initial population is created randomly,
with trees depth size limited initially to 6 and a fixed
population size of 12. The number of generations is decided
by the designer, who can stop the algorithm at any time.
The designer can select one or two individuals to create
the next population, and the genetic operators used depend
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: repeat

probabilities

7: return the best-so-far individual

: Randomly create an initial population of programs from the available primitives

Execute each program and ascertain its fitness

Select one or two program(s) from the population with a probability based on
fitness to participate in genetic operations

5:  Create new individual program(s) by applying genetic operations with specified

6: until an acceptable solution is found or some other stopping condition is met (e.g.,
a maximum number of generations is reached)

ArLgoriTHM I: Genetic programming basic algorithm [27].

FIGURE 4: GP tree representation of max(x + x, x + 3% y).

upon the number of selected individuals. If one individual is
selected, only the mutation operator will be used. In case the
designer chooses to select two individuals, both the standard
crossover and mutation operators [15] will be applied (see
Table 3). Like in others IEC systems, the fitness function
relies exclusively on designers’ decision, either based on his
aesthetic appeal or on desired features.

According to Bentley [20], the designer is likely to
score individuals highly inconsistently as he might adapt
his requirements along with the evolved results. So, the
continuous generation of new forms based on the fittest
from the previous generation is essential. Consequently,
nonconvergence of the EA is a requirement. Evolutionary
art systems do not usually use crossover operators on their
algorithms, because EAs are used as a continuous novelty
generators, not as optimisers. Therefore, in our algorithm,
the use of two individuals for breeding the next generation
should be limited. The extensive use of crossover operator
will converge the population to a single solution, leading
to the loss of diversity and limiting the designer to explore
further forms.

Each GP individual is a tree composed by functions,
listed in Table 1, and height maps as terminals (see Table 2).
Most terminals depend upon a random ephemeral constant
(REC) to define some characteristics, such as the spectrum
value of fftGen. All terminals have some form of randomness,
which means that consecutive calls of the same terminal will
always generate a slightly different height map. This is a
desired characteristic because we want to be able to create
different terrains by each TP, but we want them to share

TasLE 1: GP functions.

Name

plus(hy, hy)
minus(hy, h,)
multiply(hy, hy)

Description

Arithmetical functions

sin(h)

cos(h) Trigonometric functions

tan(h)

atan(h)

myLog(h) Returns 0 if & = 0 and log(abs(h))

otherwise

Returns 0 if hlfz is NaN or Inf, or has
. . . ha
imaginary part, otherwise returns h;
Returns h; if h, = 0and h; + h,

myPower(hy, h,)

myDivide(h;, hy)

otherwise
myMod(hy, hy) Returns 0 if h, = 0 and mod (hy, hy)
otherwise
mySqrt(h) Returns sqrt (abs(h))
negative(h) Returns —h
FFT(h) 2D discrete Fourier transform
smooth(h) Circular averaging filter with r = 5
gradient X (h) Returns the gradient (dh/dx or dh/dy)
gradient Y (h) of a height map h. Spacing between

points is assumed to be 1

the same features. All terminals generate surfaces that are
proportional to the side size of the height map. This ensures
that the terrain features of a TP are scale invariant. Figure 5
shows height maps of size 30 X 30 generated by terminals
fftGen, gauss, step, and sphere. Except rand, all terminals
depend upon a random ephemeral constant (REC) to define
some characteristics. REC is a special terminal that creates
values randomly which remain constant until it disappears
from the GP tree due to the use of a genetic operators.
Figure 6 presents an example of a TP in tree form with two
REC values represented in grey ellipses within the terminals.

While in [23, 24], the mathematical equations are used to
calculate both the pixel value and its coordinates, in GenTP
only the height will be calculated. The (x, y) coordinates will
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FIGURE 5: Examples of height maps terminals fftGen, gauss, step, and sphere.

TaBLE 2: GP terminals.

Name Description

Map with random heights between 0
and 1

Spectral synthesis-based height map,
whose spectrum depends on an REC:
1/(fREC)

Gaussian bell shape height map, whose
wideness depends on an REC

rand

ftGen

gauss

Flat inclined plane height map whose
orientation depends on an REC within
8 values

plane

Step shape height map whose
step orientation depends on an REC within
4 values

Semisphere height map whose centre
location is random and the radius
depends on an REC

sphere

be dictated by the matrix position occupied by the height
value.

In GTP, the 12 individuals of the population must be
executed during the interactive evolutionary phase to be
evaluated by a designer, which will choose the TPs for the
next generation. This means that using high resolution on
this phase will consume more time, and the application
will be less responsive. An additional variable (that will

FIGURE 6: Example of a GP tree individual with two RECs (in grey
ellipses).

be denoted as s) is introduced in all terminals to control
the resolution during the TP execution. The axis values in
the terminals’ functions are discrete with regular intervals,
and the variable s controls the spacing between axis values
by specifying the height map grid size, which covers a
predefined area. The greater is the s value, the lesser is
the distance between each grid point and greater is the
resolution.

3.2. GenTP Tool. To implement this new technique, we
developed Generator of Terrain Programs (GenTP) [28],
an application developed with GPLAB (http://gplab
.sourceforge.net/), an open source GP toolbox for MATLAB
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TABLE 3: Parameters for a GTP run.

Objective
Function set
Terminal set

Selection and fitness

Generate realistic or aesthetic terrains
Functions from Table 1, all operating on matrices with float numbers
Terminals from Table 2 chosen randomly

Decided by the designer accordingly to desired terrain features or aesthetic appeal

Population Fixed size with 12 individuals; initial depth limit 6; no tree size limits; random initialisation
If 2 individuals are selected: 90% subtree crossover and 10% mutation; if just one individual is
Parameters selected: 50% mutation (without crossover)
Three mutation operators are used with equal probability: (1) Replace mutation where a random
node is replaced with a new random tree generated by the grow method; (2) Shrink mutation
where a random subtree (S) is chosen from the parent tree and replaced by a random subtree of S;
Operators (3) Swap mutation where two random subtrees are chosen from the parent tree and swapped,
whenever possible the two subtrees do not intersect. One crossover operator is used: subtree
crossover where random nodes are chosen from both parent trees, and the respective branches are
swapped creating two offsprings
Termination Can be stopped at any time by the designer, the “best” individual is chosen by the designer
( Main interface N Analyze interface h
Interactive evolution Resolu'tion,
- rotation,
Generation n — 1 | Zoom
Generation n .
Multiple
TP1 ..t " ]_L]executions
- Lo of the
Lo TP12 same TP
A== L\l
e e
—)_—)‘ Family of terrains i
lj“lnal TP e y !
Generation module | with coherent :
1 morphological
Outputas VRML2 ! P .gA !
R I characteristics i
or grey-scale images  !--—--—---—-===-—--——

FIGURE 7: GenTP’s functional modules.

(http://www.mathworks.com/). GenTP has three functional
modules (depicted in Figure 7):

(i) interactive evolution,
(ii) analyse,

(iii) generation.

The interactive evolution module is where the GP is
implemented, and the designer chooses the desired terrains
for the next generation, for the analyse or generation
modules. Figure 8 shows the graphical user interface (GUI)
of GenTP’s main interface, which is the visible part of the
interactive evolution module. The 12 individuals of current
population are represented as 3D surfaces and displayed in
a 3 x 4 grid. Each TP is evaluated to produce a height map
of size 100 x 100 to be displayed to the designer. The height
map size can be changed, but should be kept small otherwise
it might have a negative impact in the tool responsiveness.
We will return to this point later on Section 3.3.

The GenTP main GUI allows a designer to select one
or two individuals to create the next population generation.

F1IGURE 8: GenTP main user’s interface.

The number of selected TPs will influence their evolution.
If just one TP is selected—only the mutation operator will
be applied—the next generation will present few variations
from the selected individual, and the TP will evolve slowly.
On the other hand, if the designer opts to select two
individuals, the next generation will present more diversity
and the evolved TPs can change their look more dramatically.

On the bottom of the main GUI, the designer can see
the TP mathematical expression that generated the selected
terrain and save it on a text file or database. This option will
allow the integration of TPs, as a procedural technique, to
produce terrains for example on a video game.

Although the main interface serves its purpose, some
times it is difficult to see all TP features due the display
angle used to show the generated terrain. It may be also
difficult to inspect small details of a generated terrain, and
it is not possible to test the TP’s features perseverance across
multiple executions. For these reasons, it might be difficult
for the designer to chose the TPs for the next generation. To
solve these limitations, the analyse module was added to our
application. This new functionality opens a new window, see
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FIGURE 10: Family of terrains from TP in (2): (a) represented as
grey-scale images, (b) rendered with 3D studio.

Figure 9, and performs 8 consecutive executions of the TP
selected from the main interface. To allow a more detailed
analysis of the TP characteristics, this interface allows the
designer to rotate, zoom, and change the terrains resolution.
This way the designer has more information about a TP to
decide if it will be selected, or not, for the next generation.
When the designer achieves the desired TP, then he can
save it in a file, or can pass it to the generator module. This
module is responsible for the generation of height maps, as
many as desired, from the selected TP. Those height maps
can be saved as VRML 2.0 permitting its import from other
applications, such as 3D modelling and render tools.

3.3. Experimental Results. Our previous work [6] has shown
the ability of our technique to evolve TPs capable of
generating a family of height maps (different terrains that
share the same morphological characteristics). Figure 10
shows terrains from a TP evolved with river beds in mind,

[N

FIGURE 11: Family of terrains from TP in (3): (a) represented as
grey-scale images, (b) rendered with 3D studio.

and Figure 11 shows terrains from a TP evolved to obtain a
family of aesthetic terrains. All these results were obtained
with a fixed resolution of 200 x 200.

An experiment was conducted to test the perseverance of
terrain features across several resolutions and the consequent
impact in generation time on our evolutionary tool [29]. A
set of TPs was chosen to generate terrains with grid sizes from
50 to 450 with increments of 50. To perform these tests, it
was necessary to modify the terminals in order to include the
variable s to specify the resulting height map size.

Figures 12, 13, 14, and 15 present the results of TP’s
shown in (4), (5), (6), and (7) at three different resolutions
with grid sizes of 50 x 50, 150 x 150, and 450 x 450.

TP = myLog (myLog (cos(minus (fftGen (2.00),

fiGen (3.75) @
TP = myLog (myLog (myLog(myLog (myLog ( 3)
myLog(fftGen (3.00)))))))

TP = myLog (myLog (myMod (myLog (fftGen (s, 3.75)),
myLog (myLog (fftGen (s, 4.25))))))
(4)
TP = myPower (cos(myDivide (myLog (smooth(
fftGen(s,2.75))), myMod (sin(fftGen (s,0.50)),
myDivide (myLog (smooth (fftGen (s,2.75))),
myMod ((sin(fftGen (s,0.50))), fftGen (s,2.25))))))
(5)
TP = multiply( sin(fftGen(s, 3.00)), smooth(
multiply(sin(cos(sin(cos(multiply(fftGen (s, 1.75),

fftGen (5,0.75)))))), fftGen (s,0.50))))
(6)
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FIGURE 12: Exotic terrain generated by TP in (4), with resolutions
50 x 50, 150 x 150, and 450 x 450.

TP = plus (fftGen (s,2.00),
smooth (myMod (gauss (s, 0.75), (7)
cos(fftGen (s,1.00)))))

In these experiments, all TPs have preserved their main
features independently of the chosen grid size. Due to the
inherent randomness embedded in terminals, consecutive
calls of the same TP will always generate a slightly different
height map. This is a desired characteristic, that can be
controlled by fixating the random number seed. Note that
when generating terrains at different resolutions, the amount
of necessary random numbers will vary accordingly with the
chosen resolution. This explains the differences from terrains
at different resolutions generated by the same TP.

Figure 16 shows the average time of 10 executions of
each TP at each grid size on a Pentium Core 2 Duo at
1.66 GHz with 2 GB of RAM. As expected, the generation
time increases at a quadratic pace with the increase of the
number of grid points, for example, for TP 7 from 18.4
millisecond at 50 x 50 to 1066.0 millisecond at 450 x 450.
The generation time also increased, as anticipated, with the
number of TP’s nodes.

The values presented on Figure 16 are the times for
generating each individual. The time to generate the entire
population must be multiplied by the population size. For
TP 5 (with 17 nodes) with a resolution of 450 x 450,
each individual takes 3.122 seconds. So, to generate an
entire population of 12 indviduals, 37.464 seconds will be

FIGure 13: Exotic terrains generated by TP in (5), with resolutions
50 x 50, 150 x 150, and 450 x 450.

needed. A delay of this magnitude is not negligible and will
have a negative impact on the response time of interactive
application such as our tool. According to Card et al. [30]
and Testa and Dearie [31],

(i) 0.1 second is about the limit for having the user feel
that the system is reacting instantaneously, meaning
that no special feedback is necessary except to display
the result;

(ii) 1.0 second is about the limit for the user’s flow of
thought to stay uninterrupted, even though the user
will notice the delay. Normally, no special feedback
is necessary during delays of more than 0.1 but less
than 1.0 second, but the user does lose the feeling of
operating directly on the data;

(iii) 10 seconds are about the limit for keeping the user’s
attention focused on the dialogue. For longer delays,
users will want to perform other tasks while waiting
for the computer to finish, so they should be given
feedback indicating when the computer expects to
be done. Feedback during the delay is especially
important if the response time is likely to be highly
variable, since users will then not know what to
expect.
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FIGURE 14: Mountains generated by TP in (6), with resolutions 50 X
50, 150 x 150, and 450 X 450.

The response times should be as fast as possible to keep
designer’s attention focused on the application. Our goal is
to keep generation times for the entire population around 1
second and never exceeding 10 seconds. The generation time
depends on the chosen resolution and on each individual
number of nodes, which tends to increase with the number
of GP generations, a phenomenon known as bloat [27]. So,
from the responsiveness point of view, the use of the lowest
resolutions for the evolutionary phase is better. However, if
the used resolution is too low the output might not represent
all the terrain features, specially small details, and force the
designer to use the analyse window more often. This will
increase the time needed by the designer to choose the best
terrain at each generation and consequently the overall time
to achieve the desired terrain. A compromise must be made
between the terrain resolution for the evolutionary phase and
the application responsiveness. From our set of experiences
we found the grid size of 100 X 100 to be the best settlement.
Short generation times will be also advantageous for the
future implementation of automated terrain evolution.

Once the TP is designed it can be used on a video game
like any other procedural technique. On this case, the time
for generating a new terrain is negligible, given that it will be
generated before the game begins, during the “load” period.

FIGURE 15: Volcanoes generated by TP in (7), with resolutions 50 x
50, 150 x 150, and 450 x 450.

4. Conclusions and Future Work

This paper presented the GTP technique which allows the
evolution of TPs to produce terrains accordingly to designers’
aesthetic feelings or desired features. Through a series of
experiments we have shown that the feature persistence
is independent of the chosen resolution. This means that
during the evolutionary phase low resolutions can be used
without compromising the result. Consequently less time
will be required for our evolutionary tool, enabling it to
be more responsive, which is an important characteristic
on interactive tools. Additionally, the resulting TPs can be
incorporated in video games, like any other procedural
technique, to generate terrains, with the same features,
independently of the chosen resolution.

Some game publishers require that all players have the
same game “experience” if they make the same choices.
They want to measure or obtain quality control both on
the user experience side as well as on the development
and testing end. This requirement seems to contradict
our goal of achieving different terrains with the same TP.
However, if a TP is incorporated on a video game as a
procedural technique, our technique can deliver two levels of
control regarding randomness. First, a specific TP will always
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FIGURE 16: Terrain generation times versus grid sizes.

generate terrains with the same features, this means that in
spite of the present randomness those terrains are similar and
not completely random. Second, if full control over the final
terrain is required the seed for the random number generator
can be kept the same across separate runs of the TP, allowing
the same terrain to be regenerated as many times as desired.

The TPs’ scale invariance showed in our results preludes
the implementation of a zoom feature. Fixating the random
number generator seed is not enough to implement this
feature due to the variation of the amount of necessary
random numbers accordingly with the zoom. Besides, some
terminals, like rand and fftGen, are not based on continuous
functions. Other improvement to our technique will be the
composition of a terrain through the use of several TPs,
previously stored on a database, where the generated terrains
will be joined on a credibly and smooth way. This will allow
the control over localised terrain features. We also want
to implement the GTP technique as a Blender plug-in to
increase both the flexibility and the target audience for our
technique.

The search for a terrain with a specific feature might be a
tiresome endeavour on interactive evolutionary applications
[20]. Therefore, it is desirable to automate, as much as
possible, the task of evaluating TPs to avoid designers
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fatigue. We plan to develop fitness functions to perform
the automatic evaluation of TPs accordingly to a feature by
means of statistic measures. Another future work will be
the inclusion of more features in our technique in order to
generate full landscapes including textures, vegetation, and
buildings.
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1. Introduction

For computer games that rely on players interacting with
the game maps, emergent and realistic environments become
crucial to their degree of realism. Emergent environments
can be created on a map by dividing the map into cells,
augmenting the cells with various physical properties, and
building rules for influencing properties between each cell
[1]. Natural phenomena, such as the spreading of fire or the
flow of water, look more dynamic and realistic than similar
phenomena created using scripts [2].

Emergent maps have been widely used in ecological
modeling [3], but for computer games, emergent maps have
not seen much use. One reason is because when a given
scenario is required to take place on a map, every property
of every cell needs to be set in order to produce such
scenario. Developers need to put in a lot of time and effort.
Moreover, scenarios that have not been well set may behave
in ways that the developers had not anticipated. One way to
produce a scenario is to make properties inactive and play
out the scenario using a script, and then switch the properties

back on later. This solution has a limitation because players
cannot interfere with the scenario. Players must wait until
the scenario is completely played out before being able to
do any change to parts of the map that are changed by the
scenario. In ecological modeling, an emergent map is used
by setting all its properties first (usually imitating a real world
map) then allowing the scenario to play itself out. The study
of what causes a given scenario is through trial and error.
Therefore, it will be very useful if, given a scenario, natural
properties that cause it can be found automatically.

We present in this paper a hybrid of genetic algorithm
and steepest ascent hill-climbing for adjusting properties of
every cell on a cellular automata map in order to produce
a given scenario. With a tool based on our technique, game
developers are able to focus on designing their scenario and
spend much less time setting cell properties. Controllable
games scenarios lead to the following features, which are
usually unavailable in emergent games.

(i) Editable scenario—scenario are very important for
games. Crucial moments in a game story can be revealed
using well-set scenarios. Furthermore, a well-set scenario can
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provide challenge for players. Normally, a scenario is played
out using scripts, sacrificing any possible interactions from
players. Our editable scenario is different. Developers can
specify how a scene is played out just like writing scripts to
dictate what happens during the game, but the environment
remains emergent throughout the entire play.

(ii) In-game cut scene—although cut scenes produced as
movies can be used, in-game cut scenes can tell stories while
players are still in the middle of scenarios, without disrupting
game flow.

2. Related Works

Regarding game environment, Sweetser and Wiles [1] have
developed and tested a cellular automata map for real-time
strategy games. Sweetser’s experimental system was called
EmerGEnT system. Although EmerGEnT system did not
model an environment in great detail, it was good enough
for using in games, with fire, water, and explosions being
integrated into its cellular automata properties. EmerGEnT
system can be divided into 3 levels. The first layer is the
behavior layer, which shows the effects that players see. The
second layer is the rule layer, which controls behavior both
between cells and within each cell. The final layer is the
property layer, which determines how cells interact according
to the rules. Sweetser’s work, although consists of many
physical properties, does not provide any feature for setting
cell properties following given effects that users see.

A probabilistic model can also be used to simulate fire
in broad scale over long time periods [3, 4]. Hargrove’s
model was designed for simulating real forest fires. It
included humidity, fuel types, wind, and firebrand. These
factors influenced the probability of fire spreading from
one cell to another, and the probability of isolated cells
getting ignited. Probabilistic models do not perform well
for small cell sizes compared to thermodynamic models.
To be able to work with cells in a game map, which
generally represents small areas, thermodynamic models are
more suitable. Probabilistic models are also more difficult
to control compared to thermodynamic models, which have
precise rules for events.

Hill-climbing can be used for tuning system parameters.
Merz et al. [5] developed Opi-MAX for tuning MAX’s
numeric parameters. MAX is an expert system for high-level
diagnosis of customer-reported telephone troubles. It can be
customized by changing a set of numeric parameters. Opi-
MAX uses a searching algorithm called greedy hill-climbing
to optimize parameters. It works by randomly changing
parameters one by one. A parameter is repeatedly changed
from its initial value and each of its change effect can be
observed from overall output. A change that results in a
better output will be carried out, and a change that does not
contribute to a better output will be ignored. Each parameter
is changed for a constant number of times. The system stops
when all parameters are dealt with. This technique, however,
is not suitable for our work, since we have no good initial
values of any property. It can be used to help improving some
partially tuned parameters, nevertheless. Therefore, we use it
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for fine-tuning environment properties adjusted during our
genetic algorithm runs.

Neural networks can also be used for parameter tuning.
Legenstein et al. [6] developed a movement prediction
method for objects moving on 8 x 8 grids. Each cell on a grid
provides an input to the recurrent unsupervised neural net-
works. It can predict object movement by predicting sensor
inputs, which are numeric values like cell properties. Given
previous events, Legenstein et al. work predicts the next
event, while our work predicts the initial condition given
a sequence of events in time. We have experimented with
neural networks but found that results were unsatisfactory.
Fire only followed given waypoints for about 50% and spread
out of the waypoints more than 100%. We believe it was
because cells that had different cell properties were allowed
to produce similar events (even though the intensity of fire
might be different). Therefore, fires with different intensity
were trained with similar events, causing the neural network
to fail to learn effectively. Therefore, we switched to genetic
algorithm.

Breukelaar and Bick [7] used genetic algorithm to
generate cellular automata’s transition rules that display a
desired behavior. The work was demonstrated by finding
rules that evolve all cells to the same state by majority, evolve
cells to form a checkerboard, and evolve cells to form desired
bitmaps. The main focus was to find transition rules, given
a single parameter. In our work, the rules are given, but we
need to find several parameter values of all cells at the start
of each scenario. Therefore, the genetic encoding is totally
different from [7]. Karafyllidis [8] used genetic algorithm
to convert continuous-state cellular automata that predicts
forest fire spreading to discrete-state cellular automata that
outputs nearest results. The number of cells and states for
the discrete-state version were also minimized. The outcome
cellular automata were used to build a dedicated parallel
processor for real-time processing. Only one parameter was
used in each cell. It was the rate of fire spreading. Using
only one parameter allows faster execution. However, such
approximation is not applicable for our work since we want
players to still be able to physically change all properties of
each cell.

3. Tool for Adjusting Properties of
Emergent Environment Maps

3.1. Overview. We base our cellular automata maps and rules
on EmerGEnT system [1]. Our tool can adjust properties
in EmerGEnT system-like map automatically to create a
scenario of fire spreading and water flowing that matches
the scenario given by a user. Properties that our tool adjusts
include material, temperature, mass, damage, and wetness
for the spreading of fire, and height for the flow of water.
Paths of both kinds of events are controlled by waypoints
(currently, there are two kinds of events, fire and water
flow). Each waypoint is defined by its position, the time
an event takes place at that position, and the radius of the
event, as shown in Figure 1. The tool then creates a timetable
containing the beginning and the end of each event on every
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F1gure 1: Waypoint.
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cell. Impossible paths, such as fire crossing water ways or
fire spreading in the opposite direction to the wind, are not
produced. When a fire is spreading, its burning area moves
along the given waypoints. For water, flooding areas never
dry out. At the beginning of the spreading of fire, an object
that changes temperature to 3000 units is put into the first
waypoint at the time given by a user. For water, an object
that adds 30 units of water per unit time is put into the
first waypoint at the time given by the user. There can be
more than one starting waypoint for both fire and water,
depending on each designed scenario. The map properties
are then adjusted by genetic algorithm, with steepest ascent
hill-climbing being applied at selected generations. Finally,
the best chromosomes are kept to be included in the
initial population of genetic algorithm when adjusting other
scenarios. These chromosomes will be chosen during genetic
algorithm if they fit any newly given scenario.

3.2. Genetic Algorithm. Each individual in our population
contains 2 strands of chromosomes, chromosomes that store
properties related to fire (see Figure 2) and chromosomes
that store properties related to water (see Figure 3). Separat-
ing fire and water properties results in a reduced search space
for each type of events because for each type of events, there
are some properties unrelated to it. Properties related to fire
include material, temperature, mass, damage, and wetness.
There is, according to EmerGEnT model, only 1 property
related to water. It is the water’s height. All property values
are stored in real number, except the material value, which
is stored as an integer representing the material identifier
of a cell. Each cell does not need a special firing condition
because its properties (including how much it burns and
how much water is in it) constantly change according to
properties of neighbor cells and related properties within
that cell, according to the terrain physical rules given for
EmerGEnT model. In order for a scenario to take place, we
only need a starting condition, which the system gives by
putting in fire sources or water sources at starting waypoints.

Our genetic algorithm has population of 1000 chromo-
somes and evolves for 100 generations. The initial population
is generated randomly, with some limited range defined
for each value in order to speedup convergence. A new
generation is selected from the following.

(i) The highest fitness chromosome.

(ii) The first 1% elitist chromosomes. These will be
subjected to mutation.

Cell(0,0) temp

Cell(0,0) mass

Cell(0,0) damage

Cell(0,0) wetness

Cell(0,0) material

Cell(7,7) temp

Cell(7,7) mass

Cell(7,7) damage

Cell(7,7) wetness

Cell(7,7) material

FiGure 2: Chromosome for fire event.

Cell(0,0) height

Cell(7,7) height

F1GURE 3: Chromosome for water event.

(iii) The crossover of chromosomes chosen by (1).
selectPopulation is an integer used to identify a
chromosome. The lower the value, the higher the
fitness of the selected chromosome. For example, if
selectPopulation is 0, we know we have selected the
highest fitness chromosome. Function random(a, b)
returns a random number between a and b, but not
including b. Equation (1) guarantees that the bottom
half of the chromosomes will never be chosen for
crossover. After the crossover finishes, half of the
resulting chromosomes are mutated.

Our genetic algorithm uses elite strategy because it tries to
select elite chromosomes first. The first 1% of the highest
fitness chromosomes is selected for certain and the rest are
in the top half:

opulationSize
ppi> ] (1)

selectPopulation = random (0, random(2, 6)

When we perform a crossover between two chromosomes,
each property value on the first chromosome can be



combined with its counterpart from the second chromo-
some. We use uniform crossover with blending defined by

(2):
Prew1 = Bp1+ (1= B)p2,
Pnew2 = ﬂPZ + (1 _ﬁ)PL

From (2), p; is a property value (in real number) selected
from the first chromosome, for example, it can be the
temperature of a cell at coordinate (2, 3) in our map, as
defined by the first chromosome. p, is a corresponding
property value from the second chromosome. For example, if
p1 is the temperature of a cell at coordinate (2, 3), as defined
by the first chromosome, then p, must be the temperature
of a cell at coordinate (2, 3), as defined by the second
chromosome. pnew: is the new value of that property in the
first resulting chromosome. ppewz is the new value of that
property in the second resulting chromosome. f is used to
combine the values from p; and p,. The value of  varies
in each crossover. f3 is selected randomly from 0, 1 and a
random value between 0 and 1. The chance of selecting each
choice from these 3 choices is equal. We experimented with
2 other ratios for these 3 choices on 3 sample maps (the first
map has more than 1 fire path, the second map has a very
long fire path, and the third map contains a very long water
flow). With all other settings equal, on average, equal ratio
gave the best result. Therefore, we decided to use it in our
genetic algorithm.

Mutation rate of 10, 20, and 30% were tested on the
3 sample maps above. It was found that the mutation
rate of 20% gave the best result on average. Therefore, we
choose the mutation rate of 20% for our genetic algorithm.
The mutation range is constrained to be within 50 units
away from the old value in order to prevent very odd
chromosomes with low fitness from being produced.

The fitness value of each chromosome is calculated from
the average of the fitness of each time unit that events occur,
with weight defined by (3). Any time frame that contains
event(s) at waypoint(s) is given a higher fitness value than
a time frame with no event point in order to make the scores
at event points stand out. Events occurring later in a scenario
are also considered more important than events occurring
early in the scenario. This allows different starting scenes for
a single scenario

(2)

i 0.2 %t
ﬁtness}mypolnt = (1.8 + 7) X fitness;,
timemax
i 0.2 X%t 3)
fitness; o VPO = (0.8 7) x fitness;.
timemax

Our fitness functions were defined after several experiments.
fitness, P is the fitness value at time ¢, if that time
contains event(s) at waypoint(s). The importance of that
time frame has also been weighed into its value. timep,y is the
maximum time frame that the current scenario takes place.

fitness; is the fitness value at time t before being given any

: non-waypoint . L. int
weight. fitness; " T " is defined similar to fitness; T,

except that it is given less weight due to its lack of event
points.
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The fitness of each time frame before weighing (fitness;)
is defined in (4) as follows:

>t fitness (relevantCell;)
m X 10

fitness; = , (4)
relevantCell; is a cell that burns or floods at time t or was
designed to burn or flood at time ¢ (we do not count a cell
twice, however). The number 7 is the sum of the number of
cells that actually burn or flood at time t and the number
of cells designed to burn or flood at time ¢ (again, we do
not count a single cell twice). fitness(c) is a fitness value of
cell c. It can have a negative value depending on whether
the cell being in the designed path or not (see below). m is
the number of cells designed to burn or flood at time ¢. The
maximum fitness score for each cell is 10. If our parameter
tuning is perfect, cells designed to burn or flood at time ¢ will
actually burn or flood at that time frame with fitness value
equal to 10. In addition, no other cells will burn or flood.
Therefore, n will equal to m and the value of fitness; will be 1.

The value of fitness(c) is calculated from each of the
following steps.

(i) If a cell outside specified paths produces events—Ilose
1 point if an adjacent cell is inside any event path. If the
cell does not have any adjacent path, 5 points are deducted
instead. This discourages events outside the specified path.

(ii) If a cell does not produce an event when the event
is set to occur—gain points equal to two times the cell
temperature divided by maximum temperature if the event is
a spreading of fire. The maximum score obtainable from this
portion of the function is 2. Water events get no score here.
The reason the fire situation gets some score even though the
cell does not produce the event is because high temperature
gives the cell a probability of burning in later time frames,
which can result in similar fire events later on.

(iii) If a cell produces an event at its specified time—gain
8 points. Get additional points according to (5) and (6) for
fire and water, respectively,

2% Burn

0.5%MaxBurn’ (5)

addScorege =
For (5), Burn is the intensity of fire in the calculated cell
and MaxBurn is the maximum possible value of Burn. The
maximum score from this equation is limited to 2. Any burn
that spreads with at least half the intensity of the maximum
intensity will get full mark. The reason we need addScoregy is
to encourage all fires to burn fast. From our experiment, this
can prevent fires from dying out unexpectedly in the middle
of scenarios:

2xfluid
0.5%MaxFluid"

For (6), fluid is the amount of water currently in the cell.
MaxFluid is the maximum amount of water that cell can
contain. Similar to (5), (6) has its maximum value being
2 and it is needed in order to prevent water from flowing
not as far as designed. The difference from (5) is that we
use the amount of water instead of speed. This is because
in our model, based on Sweetser’s, there is no water speed
parameter.

(6)

addScoreyater =
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TaBLE 1: Result of hill-climbing test.

Setting 20th—100th 60th—100th 100th Not use
Average Map 1 0.516818 0.542901 0.527788 0.476567
Average Map 2 0.448464 0.457916 0.447966 0.406109
Average Map 3 0.669976 0.66909 0.669541 0.669655
Average All 0.545086 0.556636 0.548431 0.517444
int tuneValueFire = 27;
real bestFitness;
for each cell{
//tune for fire event
real currentFitness = - - - . //calculate the cell’s fitness value

While (tuneValueFire >0){

trial results above) {

}else {

}
} // end while
} /] end for each cell

Find the fitness when add the temperature value by tuneValueFire
Find the fitness when subtract the temperature value by tuneValueFire
Find the fitness when add the mass value by tuneValueFire

Find the fitness when subtract the mass value by tuneValueFire

Find the fitness when add the damage value by tuneValueFire

...//try both add and subtract for all parameters of fire chromosomes

if (the best fitness value (compared to currentFitness) is found from the tuning

select a modification that causes such fitness
commit changes according to the selected modification

tuneValueFire = tuneValueFire;

ArcoriTHM 1: Pseudocode for steepest ascent hill-climbing on fire related values.

(iv) If a cell produces a specified event before its intended
starting time, but not more than 1 time unit—gain 4 points.
This is to allow a slightly different scenario to still gain points.

(v) If a cell still produces a given event after its intended
end time, but not more than 4 time unit—in case of fire,
gain 5 points minus the difference between current time
and end time. If the difference in time is just 1, the score
will be 4, similar to the score when an event takes place
before its intended starting time. But we give points for other
nearby time frames in order to allow for fire trails. From
our experiments, fire trails are very important for an overall
fitness of fire events. There is no score for water remaining
in a cell, however, since our system follows Sweetser’s model
that lets water stay in a cell indefinitely.

3.3. Steepest Ascent Hill-Climbing. We use steepest ascent
hill-climbing to the best chromosome, with the same fitness
function as our genetic algorithm, in order to improve map’s
properties. Table 1 shows the effect of steepest ascent hill-
climbing used in our tool, in term of fitness values com-
pared among four settings. Three settings employ steepest
ascent hill-climbing at every 20 generations of the genetic
algorithm.

In the first setting, we start applying it at the 20th
generation. In the second setting, we start applying it at
the 60th generation. In the third setting, we apply the
algorithm only to the last generation (100th generation).
In the fourth setting, we do not use steepest ascent hill-
climbing algorithm. Each setting is tested on three different
maps of 8 X 8 cells. For each map, each setting is tested
3 times. The test maps are chosen to represent 3 scenarios
that could be set by developers. Map 1 contains a fire that
breaks into 2 paths. Map 2 contains a long path of fire. Map
3 contains water flow. Each property is tuned in sequence
until it cannot be tuned further. The values used in tuning
come from observations during experiments. The algorithm
for tuning fire-related parameters is shown in pseudocode
in Algorithm 1. For water events, the algorithm is similar,
except it works only on water-related parameter.

The result shows that, on average, tests that steepest
ascent hill-climbing are applied to have noticeably better
fitness values than the tests without steepest ascent hill-
climbing. From Table 1, it seems that starting to apply
steepest ascent hill-climbing at the 60th generation gives
the best fitness value (except in Map 3, where its fitness
value is slightly lower than the fitness values from other
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tests). More experiments are needed in order to determine
whether steepest ascent hill-climbing produces a significantly
better result than ordinary genetic algorithm in our problem.
We, therefore, run our parameter tuning with genetic
algorithm alone and with our steepest ascent hill-climbing
as the genetic algorithm enhancement (we apply the second
setting from Table 1). The testing setup and its outcome are
discussed in Section 4.

3.4. Emergent Editor. Our tool for adjusting properties of
emergent environment maps is in the form of a map editor.
We name the editor emergent editor. Its features can be
divided into 4 parts.

(i) Path editor (Figure 4)—a user can define, edit, or
delete waypoints of fire events and water events.

(ii) Automatic properties adjustment (Figure 5)—this
feature adjusts map properties automatically according to a
given scenario defined by paths of events.

(iii) Event player (Figure 6)—it can show the original
scenario defined by paths of events, and the scenario created
after the map properties are set.

(iv) Property editor (Figure 7)—a user can also view or
edit map properties directly from this view.

4, Testing and Results

In this section, we first discuss results from experiments
using genetic algorithm enhanced by steepest ascent hill-
climbing (which gives better results than using genetic algo-
rithm alone). Then we discuss whether using steepest ascent
hill-climbing really gives significantly better results statisti-
cally. Finally, an experiment showing how our parameter-
tuning tool can help map designers save time is presented.
Testing is initiated by creating paths of events randomly
on a map of 8 X 8 cells. Paths of events are limited to total

of 6 waypoints. Events with the same number of waypoints
are tested between 2-5 times. Each waypoint has its radius
of one or two cells. The total running time of each event
is limited to 50 time units. The wind direction is chosen
randomly between no wind and random direction. From
100 tests, using genetic algorithm and steepest ascent hill-
climbing, our result shows that the tool preserves 75.09%
of event points at waypoints on average and produces event
points outside given scenarios by only 2.3% on average.

Figure 8 shows our test result grouped by the number of
waypoints. The horizontal axis represents various fire and
water scenarios. Fm;m;... m, represents n fire paths in the
map, where the first path has m; waypoints, the second
path has m, waypoints, and so on. Wm;m;...m, represents
water paths in the same way. The vertical axis represents the
percentage of event points for each scenario.

Figure 9 illustrates one of the test scenarios with 3
waypoints of fire spreading. Figure 9(a) shows the events
designed to take place at 3 points in time, while Figure 9(b)
shows actual events that take place after the actual parameter
adjustment at the same points in time. Darker cells are forest
cells, while lighter cells are grass cells. There is also a water
cell at the middle-bottom of the map (white cell). Cells with
white circles are cells that catch fire.

There are 11 tests that our tool gives less than half
of events correctly at waypoints. When we look into their
causes, we discover that their scenarios are impossible to take
place. Fire was set to burn longer than the fuel in the map
could support. Water was set to flow too quick or too far from
its source. In our system, the further away from its source, the
slower the water can flow. This is because there are more cells
to absorb water.

In order to find out whether steepest ascent hill-climbing
significantly enhances the accuracy, we run the experiment
again, with and without steepest ascent hill-climbing, and
compare their results using a paired ¢-test.
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The paired t-test result for the number of preserved
waypoints informs us that the two-tailed P value is less
than .0001. By conventional criteria, this difference is
considered to be extremely statistically significant. The
difference between the mean of the experiment using steepest
ascent hill-climbing and the experiment that does not use
steepest ascent hill-climbing equals to 2.2953264. The 95%
confidence interval of this difference is from 1.3483512 to
3.2423016. The intermediate values used in calculations
include t = 4.8094, df = 99, and standard error of difference
=0.477. For the percentage of outside fire path, the difference
is found to be not quite statistically significant. The 95%
confidence interval of this difference is from —3.10873116

to 0.26262415. For the percentage of outside water path, the
difference is found not to be statistically significant. The 95%
confidence interval of this difference is from —0.29874686 to
0.40685569.

From the t-test results, we can conclude that using
steepest ascent hill-climbing gives a significant boost to the
number of preserved waypoints. Therefore, it should be
used in conjunction with genetic algorithm for tuning map
parameters.

In order to test whether the tool that uses our parameter-
tuning technique actually benefits scenario designers, we
perform an experiment by having 6 testers manually
tune the maps from Section 3.3 for 30 minutes per map
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TaBLE 2: Tuning accuracy results from testers and the tool.

Tester ID Waypoint preserved Outside path
(%) (%)
1 55.68 1.23
2 61.11 0.00
3 62.47 0.00
4 42.22 45.47
5 51.11 0.00
6 35.56 0.00
Average tester 5136 778
result
Our tool result 76.05 10.06

(the 30-minute period is the time our testers are willing
to spend). We compare the testers’ results with the results
obtained by our tool in Table 2.

From Table 2, it can be seen that our tool is much more
precise in preserving waypoints, given an equal period of
operation time. Therefore, our tool is capable of producing
accurate scenarios faster than human. For outside fire and
water paths, our tool performs worse than human. This turns
out to be because most of the testers cheat by removing fuel
from all outside paths. This cheat cannot be done in actual
nature simulations or games because it will produce very
unnatural maps. For tester 4 who does not cheat, the amount
of outside path is 45.47%. This is another good indication
that using our tool can save valuable development time.

5. Conclusion

From our experiment, we conclude that genetic algorithm,
with help from steepest ascent hill-climbing technique, can
be used effectively for adjusting parameters in emergent
maps which leads to simple-to-control scenarios without the
need to manually edit any property.

Some problems, such as fire burning out before the
expected ending time and water running too slowly or too
short in distance, still need to be solved. This can be solved
by having the algorithm also adjust the initial temperature
of fire and the amount of water at the first waypoint. There
are also other possible improvements. It may be useful to
allow users to control scenarios with other means besides
creating paths of events. Increasing the speed of the tool
will allow a better use with bigger maps and more complex
environments. Other kinds of emergent environments, such
as environments used for actual ecological modeling, are
good candidates for expanding the value of our tool.
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