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In most problems of sequential signal processing, measured
or received data are processed in real time. Typically, the data
are modeled by state-space models with linear or nonlinear
unknowns and noise sources that are assumed either Gaus-
sian or non-Gaussian. When the models describing the data
are linear and the noise is Gaussian, the optimal solution is
the renowned Kalman filter. For models that deviate from
linearity and Gaussianity, many different methods exist, of
which the best known perhaps is the extended Kalman filter.

About a decade ago, Gordon et al. published an article on
nonlinear and non-Gaussian state estimation that captured
much attention of the signal processing community [1]. The
article introduced a method for sequential signal processing
based on Monte Carlo sampling and showed that the method
may have profound potential. Not surprisingly, it has incited
a great deal of research, which has contributed to making se-
quential signal processing by Monte Carlo methods one of
the most prominent developments in statistical signal pro-
cessing in the recent years.

The underlying idea of the method is the approximation
of posterior densities by discrete random measures. The mea-
sures are composed of samples from the states of the un-
knowns and of weights associated with the samples. The sam-
ples are usually referred to as particles, and the process of
updating the random measures with the arrival of new data
as particle filtering. One may view particle filtering as explo-
ration of the space of unknowns with random grids whose
nodes are the particles. With the acquisition of new data, the
random grids evolve and their nodes are assigned weights
to approximate optimally the desired densities. The assign-
ment of new weights is carried out recursively and is based
on Bayesian importance sampling theory.

The beginnings of particle filtering can be traced back to
the late 1940s and early 1950s, which were followed in the last
fifty years with sporadic outbreaks of intense activity [2]. Al-
though its implementation is computationally intensive, the
widespread availability of fast computers and the amenability
of the particle filtering methods for parallel implementation
make them very attractive for solving difficult signal process-
ing problems.

The papers of the special issue may be arranged into four
groups, that is, papers on (1) general theory, (2) applica-
tions of particle filtering to target tracking, (3) applications
of particle filtering to communications, and (4) applications
of particle filtering to speech and music processing. In this is-
sue, we do not have tutorials on particle filtering, and instead,
we refer the reader to some recent references [3, 4, 5, 6].

General theory

In the first paper, “Global sampling for sequential fil-
tering over discrete state space,” Cheung-Mon-Chan and
Moulines study conditionally Gaussian linear state-space
models, which, when conditioned on a set of indicator vari-
ables taking values in a finite set, become linear and Gaus-
sian. In this paper, the authors propose a global sampling al-
gorithm for such filters and compare them with other state-
of-the-art implementations.

Guo et al. in “Multilevel mixture Kalman filter” pro-
pose a new Monte Carlo sampling scheme for implement-
ing the mixture Kalman filter. The authors use a multilevel
structure of the space for the indicator variables and draw
samples in a multilevel fashion. They begin with sampling
from the highest-level space and follow up by drawing sam-
ples from associate subspaces from lower-level spaces. They
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demonstrate the method on examples from wireless commu-
nication.

In the third paper, “Resampling algorithms for particle
filters: A computational complexity perspective,” Bolić et al.
propose and analyze new resampling algorithms for particle
filters that are suitable for real-time implementation. By de-
creasing the number of operations and memory access, the
algorithms reduce the complexity of both hardware and DSP
realization. The performance of the algorithms is evaluated
on particle filters applied to bearings-only tracking and joint
detection and estimation in wireless communications.

In “A new class of particle filters for random dynamic sys-
tems with unknown statistics,” Mı́guez et al. propose a new
class of particle filtering methods that do not assume explicit
mathematical forms of the probability distributions of the
noise in the system. This implies simpler, more robust, and
more flexible particle filters than the standard particle filters.
The performance of these filters is shown on autonomous
positioning of a vehicle in a 2-dimensional space.

Finally, in “A particle filtering approach to change de-
tection for nonlinear systems,” Azimi-Sadjadi and Krish-
naprasad present a particle filtering method for change de-
tection in stochastic systems with nonlinear dynamics based
on a statistic that allows for recursive computation of likeli-
hood ratios. They use the method in an Inertial Navigation
System/Global Positioning System application.

Applications in communications
In “Particle filtering for joint symbol and code delay esti-
mation in DS spread spectrum systems in multipath envi-
ronment,” Punskaya et al. develop receivers based on several
algorithms that involve both deterministic and randomized
schemes. They test their method against other deterministic
and stochastic procedures by means of extensive simulations.

In the second paper, “Particle filtering equalization
method for a satellite communication channel,” Sénécal
et al. propose a particle filtering method for inline and
blind equalization of satellite communication channels and
restoration of the transmitted messages. The performance of
the algorithms is presented by bit error rates as functions of
signal-to-noise ratio.

Bertozzi et al. in “Channel tracking using particle filter-
ing in unresolvable multipath environments,” propose a new
timing error detector for timing tracking loops of Rake re-
ceivers in spread spectrum systems. In their scheme, the de-
lays of each path of the frequency-selective channels are esti-
mated jointly. Their simulation results demonstrate that the
proposed scheme has better performance than the one based
on conventional early-late gate detectors in indoor scenarios.

Applications to target tracking
In “Joint tracking of manoeuvring targets and classification
of their manoeuvrability,” by Maskell, semi-Markov models
are used to describe the behavior of maneuvering targets. The
author proposes an architecture that allows particle filters to
be robust and efficient when they jointly track and classify
targets. He also shows that with his approach, one can classify
targets on the basis of their maneuverability.

In the other paper, “Bearings-only tracking of manoeu-
vring targets using particle filters,” Arulampalam et al. inves-
tigate the problem of bearings-only tracking of maneuvering
targets. They formulate the problem in the framework of a
multiple-model tracking problem in jump Markov systems
and propose three different particle filters. They conduct ex-
tensive simulations and show that their filters outperform the
trackers based on standard interacting multiple models.

Applications to speech and music

In “Time-varying noise estimation for speech enhancement
and recognition using sequential Monte Carlo method,” Yao
and Lee develop particle filters for sequential estimation of
time-varying mean vectors of noise power in the log-spectral
domain, where the noise parameters evolve according to a
random walk model. The authors demonstrate the perfor-
mance of the proposed filters in automated speech recogni-
tion and speech enhancement, respectively.

Hainsworth and Macleod in “Particle filtering applied to
musical tempo tracking” aim at estimating the time-varying
tempo process in musical audio analysis. They present two
algorithms for generic beat tracking that can be used across
a variety of musical styles. The authors have tested the algo-
rithms on a large database and have discussed existing prob-
lems and directions for further improvement of the current
methods.

In summary, this special issue provides some inter-
esting theoretical developments in particle filtering theory
and novel applications in communications, tracking, and
speech/music signal processing. We hope that these papers
will not only be of immediate use to practitioners and the-
oreticians but will also instigate further development in the
field. Lastly, we thank the authors for their contributions and
the reviewers for their valuable comments and criticism.

Petar M. Djurić
Simon J. Godsill
Arnaud Doucet
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Petar M. Djurić received his B.S. and M.S.
degrees in electrical engineering from the
University of Belgrade in 1981 and 1986, re-
spectively, and his Ph.D. degree in electrical
engineering from the University of Rhode
Island in 1990. From 1981 to 1986, he was a
Research Associate with the Institute of Nu-
clear Sciences, Vinca, Belgrade. Since 1990,
he has been with Stony Brook University,
where he is a Professor in the Department of
Electrical and Computer Engineering. He works in the area of sta-
tistical signal processing, and his primary interests are in the theory
of modeling, detection, estimation, and time series analysis and its
application to a wide variety of disciplines including wireless com-
munications and biomedicine.

Simon J. Godsill is a Reader in statisti-
cal signal processing in the Department
of Engineering, Cambridge University. He
is an Associate Editor for IEEE Transac-
tions on Signal Processing and the Jour-
nal of Bayesian Analysis, and is a Mem-
ber of IEEE Signal Processing Theory and
Methods Committee. He has research inter-
ests in Bayesian and statistical methods for
signal processing, Monte Carlo algorithms
for Bayesian problems, modelling and enhancement of audio and
musical signals, tracking, and genomic signal processing. He has
published extensively in journals, books, and conferences. He has
coedited in 2002 a special issue of IEEE Transactions on Signal
Processing on Monte Carlo methods in signal processing and or-
ganized many conference sessions on related themes.

Arnaud Doucet was born in France on the
2nd of November 1970. He graduated from
Institut National des Telecommunications
in June 1993 and obtained his Ph.D. degree
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In many situations, there is a need to approximate a sequence of probability measures over a growing product of finite spaces.
Whereas it is in general possible to determine analytic expressions for these probability measures, the number of computations
needed to evaluate these quantities grows exponentially thus precluding real-time implementation. Sequential Monte Carlo tech-
niques (SMC), which consist in approximating the flow of probability measures by the empirical distribution of a finite set of
particles, are attractive techniques for addressing this type of problems. In this paper, we present a simple implementation of the
sequential importance sampling/resampling (SISR) technique for approximating these distributions; this method relies on the fact
that, the space being finite, it is possible to consider every offspring of the trajectory of particles. The procedure is straightforward
to implement, and well-suited for practical implementation. A limited Monte Carlo experiment is carried out to support our
findings.

Keywords and phrases: particle filters, sequential importance sampling, sequential Monte Carlo sampling, sequential filtering,
conditionally linear Gaussian state-space models, autoregressive models.

1. INTRODUCTION

State-space models have been around for quite a long time
to model dynamic systems. State-space models are used in a
variety of fields such as computer vision, financial data anal-
ysis, mobile communication, radar systems, among others. A
main challenge is to design efficient methods for online esti-
mation, prediction, and smoothing of the hidden state given
the continuous flow of observations from the system. Ex-
cept in a few special cases, including linear state-space mod-
els (see [1]) and hidden finite-state Markov chain (see [2]),
this problem does not admit computationally tractable exact
solutions.

From the mid 1960s, considerable research efforts have
been devoted to develop computationally efficient methods
to approximate these distributions; in the last decade, a great
deal of attention has been devoted to sequential Monte Carlo
(SMC) algorithms (see [3] and the references therein). The
basic idea of SMC method consists in approximating the con-
ditional distribution of the hidden state with the empirical
distribution of a set of random points, called particles. These
particles can either give birth to offspring particles or die,

depending on their ability to represent the distribution of the
hidden state conditional on the observations. The main dif-
ference between the different implementations of the SMC
algorithms depends on the way this population of particles
evolves in time. It is no surprise that most of the efforts in
this field has been dedicated to finding numerically efficient
and robust methods, which can be used in real-time imple-
mentations.

In this paper, we consider a special case of state-space
model, often referred to in the literature as conditionally
Gaussian linear state-space models (CGLSSMs), which has re-
ceived a lot of attention in the recent years (see, e.g., [4, 5,
6, 7]). The main feature of a CGLSSM is that, conditionally
on a set of indicator variables, here taking their values in a
finite set, the system becomes linear and Gaussian. Efficient
recursive procedures—such as the Kalman filter/smoother—
are available to compute the distribution of the state variable
conditional on the indicator variable and the observations.
By embedding these algorithms in the sequential importance
sampling/resampling (SISR) framework, it is possible to de-
rive computationally efficient sampling procedures which
focus their attention on the space of indicator variables.
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These algorithms are collectively referred to as mixture
Kalman filters (MKFs), a term first coined by Chen and Liu
[8] who have developed a generic sampling algorithm; closely
related ideas have appeared earlier in the automatic con-
trol/signal processing and computational statistics literature
(see, e.g., [9, 10] for early work in this field; see [5] and the
references therein for a tutorial on these methods; see [3]
for practical implementations of these techniques). Because
these sampling procedures operate on a lower-dimensional
space, they typically achieve lower Monte Carlo variance than
“plain” particle filtering methods.

In the CGLSSM considered here, it is assumed that the
indicator variables are discrete and take a finite number of
different values. It is thus feasible to consider every possible
offspring of a trajectory, defined here as a particular realiza-
tion of a sequence of indicator variables from initial time 0 to
the current time t. This has been observed by the authors in
[5, 7, 8], among many others, who have used this property to
design appropriate proposal distributions for improving the
accuracy and performance of SISR procedures.

In this work, we use this key property in a different way,
along the lines drawn in [11, Section 3]; the basic idea con-
sists in considering the population of every possible offspring
of every trajectory and globally sampling from this popula-
tion. This algorithm is referred to as the global sampling (GS)
algorithm. This algorithm can be seen as a simple implemen-
tation of the SISR algorithm for the so-called optimal impor-
tance distribution.

Some limited Monte Carlo experiments on prototypal
examples show that this algorithm compares favorably with
state-of-the-art implementation of MKF; in a joint symbol
estimation and channel equalization task, we have in particu-
lar achieved extremely encouraging performance with as few
as 5 particles, making the proposed algorithm amenable to
real-time applications.

2. SEQUENTIAL MONTE CARLO ALGORITHMS

2.1. Notations and definitions

Before going further, some additional definitions and nota-
tions are required. Let X (resp., Y) be a general set and let
B(X) (resp., B(Y)) denote a σ-algebra on X (resp., Y). If Q
is a nonnegative function on X×B(Y) such that

(i) for each B ∈ B(Y), Q(·,B) is a nonnegative measur-
able function on X,

(ii) for each x ∈ X, Q(x, ·) is a measure on B(Y),

then we call Q a transition kernel from (X, B(X)) to
(Y, B(Y)) and we denote Q : (X, B(X))≺(Y, B(Y)). If for
each x ∈ X, Q(x, ·) is a finite measure on (Y, B(Y)), then
we say that the transition is finite. If for all x ∈ X, Q(x, ·)
is a probability measure on (Y, B(Y)), then Q is said to be a
Markov transition kernel.

Denote by B(X) ⊗ B(Y) the product σ-algebra (the
smallest σ-algebra containing all the sets A × B, where A ∈
B(X) and B ∈ B(Y)). If µ is a measure on (X, B(X)) and Q
is a transition kernel, Q : (X, B(X))≺(Y, B(Y)), we denote

by µ ⊗ Q the measure on the product space (X × Y, B(X) ⊗
B(Y)) defined by

µ⊗Q(A×B)=
∫
A
µ(dx)Q(x,B) ∀A∈B(X), B∈B(Y). (1)

Let X : (Ω, F ) → (X, B(X)) and Y : (Ω, F ) → (Y, B(Y))
be two random variables and µ and ν two measures on
(X, B(X)) and (Y, B(Y)), respectively. Assume that the
probability distribution of (X ,Y) has a density denoted by
f (x, y) with respect to µ ⊗ ν. We denote by f (y|x) =
f (x, y)/

∫
Y f (x, y)ν(dy) the conditional density of Y given X .

2.2. Sequential importance sampling

Let {Ft}t≥0 be a sequence of probability measures on
(Zt+1, P (Z)⊗(t+1)), where Z

def= {z1, . . . , zM} is a finite set with
cardinal equal to M. It is assumed in this section that for any
λ0:t−1 ∈ Zt such that ft−1(λ0:t−1) = 0, we have

ft([λ0:t−1, λ]) = 0 ∀λ ∈ Z, (2)

where for any τ ≥ 0, fτ denotes the density of Fτ with respect
to the counting measure. For any t ≥ 1, there exists a finite
transition kernel Qt : (Zt, P (Z)⊗t)≺(Z, P (Z)) such that

Ft = Ft−1 ⊗Qt. (3)

We denote by qt the density of the kernel Qt with respect to
to the counting measure, which can simply be expressed as

qt
(
λ0:t−1, λ

) =


ft
([
λ0:t−1, λ

])
ft−1

(
λ0:t−1

) if ft−1
(
λ0:t−1

)�= 0,

0 otherwise.
(4)

In the SIS framework (see [5, 8]), the probability distribu-
tion Ft on Zt+1 is approximated by particles (Λ(1,t), . . . ,Λ(N ,t))
associated to nonnegative weights (w(1,t), . . . ,w(N ,t)); the esti-
mator of the probability measure associated to this weighted
particle system is given by

FNt =
∑N

i=1 w
(i,t)δΛ(i,t)∑N

i=1 w(i,t)
. (5)

These trajectories and weights are obtained by drawing N in-
dependent trajectories Λ(i,t) under an instrumental probabil-
ity distribution Gt on (Zt+1, P (Z)⊗(t+1)) and computing the
importance weights as

w(i,t) = ft
(
Λ(i,t)

)
gt(Λ(i,t))

, i ∈ {1, . . . ,N}, (6)

where gt is the density of the probability measure Gt with
respect to the counting measure on (Zt+1, P (Z)(t+1)). It is
assumed that for each t, Ft is absolutely continuous with
respect to the instrumental probability Gt, that is, for all
λ0:t ∈ Zt+1 such that gt(λ0:t) = 0, ft(λ0:t) = 0. In the SIS
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framework, these weighted trajectories are updated by draw-
ing at each time step an offspring of each particle and then
computing the associated importance weight. It is assumed
in the sequel that the instrumental probability measure sat-
isfies a decomposition similar to (3), that is,

Gt = Gt−1 ⊗ Kt, (7)

where Kt : (Zt , P (Z)⊗t)≺(Z, P (Z)) is a Markov transition
kernel:

∑M
j=1 Kt(λ0:t−1, {zj}) = 1. Hence, for all λ0:t−1 ∈ Zt,∑M

j=1 gt([λ0:t−1, zj]) = gt−1(λ0:t−1), showing that whenever
gt−1(λ0:t−1) = 0, gt([λ0:t−1, zj]) = 0 for all j ∈ {1, . . . ,M}.
Define by kt the density of the Markov transition kernel Kt
with respect to the counting measure:

kt
(
λ0:t−1, λ

) =


gt
([
λ0:t−1, λ

])
gt−1

(
λ0:t−1

) if gt−1
(
λ0:t−1

)�= 0,

0 otherwise.
(8)

In the SIS framework, at each time t, for each particle Λ(i,t−1),
i ∈ {1, . . . ,N}, and then for each particular offspring j ∈
{1, . . . ,M}, we evaluate the weights

ρ(i, j,t) = kt
(
Λ(i,t−1), zj

)
(9)

and we draw an index J (i,t) from a multinomial distribution
with parameters (ρ(i,1,t−1), . . . , ρ(i,M,t−1)) conditionally inde-
pendently from the past:

P
[
J (i,t) = j | Gt−1

] = ρ(i, j,t), i∈{1, . . . ,N}, j∈{1, . . . ,M},
(10)

where Gt is the history of the particle system at time t,

Gt = σ
((
Λ( j,τ),w( j,τ)), 1 ≤ j ≤ N , 1 ≤ τ ≤ t

)
. (11)

The updated system of particles then is

Λ(i,t) = [
Λ(i,t−1), zJ (i,t)

]
. (12)

If (Λ(1,0), . . . ,Λ(N ,0)) is an independent sample from the dis-
tribution G0, it is then easy to see that at each time t, the
particles (Λ(1,t), . . . ,Λ(N ,t)) are independent and distributed
according to Gt; the associated (unnormalized) importance
weightsw(i,t) = ft(Λ(i,t))/gt(Λ(i,t)) can be written as a product
w(i,t) = ut(Λ(i,t−1), zJ (i,t) )w(i,t−1), where the incremental weight
ut(Λ(i,t−1),ZJ (i,t) ) is given by

ut
([
λ0:t−1, λ

]) def= qt
(
λ0:t−1, λ

)
kt
(
λ0:t−1, λ

) ∀λ0:t−1 ∈ Zt, λ ∈ Z. (13)

It is easily shown that the instrumental distribution kt which
minimizes the variance of the importance weights condition-
ally to the history of the particle system (see [5, Proposition
2]) is given by

kt
(
λ0:t−1, ·) = qt

(
λ0:t−1, ·)∑M

j=1 qt
(
λ0:t−1, zj

) for any λ0:t−1 ∈ Zt .

(14)

The choice of the optimal instrumental distribution (14) has
been introduced in [12] and has since then been used and/or
rediscovered by many authors (see [5, Section II-D] for a dis-
cussion and extended references). Using this particular form
of the importance kernel, the incremental importance sam-
pling weights (13) are given by

ut
(
Λ(i,t−1), zJ (i,t)

) = M∑
j=1

qt
(
Λ(i,t−1), zj

)
, i ∈ {1, . . . ,N}.

(15)

It is worthwhile to note that ut([Λ(i,t−1), zj]) = ut([Λ(i,t−1),
zl]) for all j, l ∈ {1, . . . ,M}; the incremental importance
weights do not depend upon the particular offspring of the
particle which is drawn.

2.3. Sequential importance sampling/resampling

The normalized importance weights w̄(i,t) def= w(i,t)/
∑N

i=1 w
(i,t)

reflect the contribution of the imputed trajectories to the im-
portance sampling estimate FNt . A weight close to zero in-
dicates that the associated trajectory has a “small” contri-
bution. Such trajectories are thus ineffective and should be
eliminated.

Resampling is the method usually employed to com-
bat the degeneracy of the system of particles. Let [Λ(1,t−1),
. . . ,Λ(N ,t−1)] be a set of particles at time t − 1 and let
[w(1,t−1), . . . ,w(N ,t−1)] be the associated importance weights.
An SISR iteration, in its most elementary form, produces
a set of particles [Λ(1,t), . . . ,Λ(N ,t)] with equal weights 1/N .
The SISR algorithm is a two-step procedure. In the first step,
each particle is updated according to the importance tran-
sition kernel kt and the incremental importance weights are
computed according to (12) and (13), exactly as in the SIS al-
gorithm. This produces an intermediate set of particles Λ̃(i,t)

with associated importance weights w̃(i,t) defined as

Λ̃(i,t) = [
Λ(i,t−1), zJ̃ (i,t)

]
,

w̃(i,t) = w(i,t−1)ut
(
Λ(i,t−1), zJ̃ (i,t)

)
, i ∈ {1, . . . ,N},

(16)

where the random variables J̃ (i,t), i ∈ {1, . . . ,N}, are drawn
conditionally independently from the past according to a
multinomial distribution with parameters

P
[
J̃ (i,t) = j

∣∣Gt−1
] = kt

(
Λ(i,t−1), zj

)
,

i ∈ {1, . . . ,N}, j ∈ {1, . . . ,M}. (17)

We denote by S̃t = ((Λ̃(i,t), w̃(i,t)), i ∈ {1, . . . ,N}), this in-
termediate set of particles. In the second step, we resam-
ple the intermediate particle system. Resampling consists in
transforming the weighted approximation of the probability
measure Ft , FNt = ∑N

i=1 w̃
(i,t)δΛ̃(i,t) , into an unweighted one,

F̃Nt = N−1
∑N

i=1 δΛ(i,t) . To avoid introducing bias during the
resampling step, an unbiased resampling procedure should
be used. More precisely, we draw with replacements N in-
dices I(1,t), . . . , I(N ,t) in such a way that N (i,t) = ∑N

k=1 δi,I(k,t) ,
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the number of times the ith trajectory is chosen satisfies

N∑
i=1

N (i,t) = N , E
[
N (i,t) | G̃t

] = Nw̃(i,t)

for any i ∈ {1, . . . ,N},
(18)

where G̃t is the history of the particle system just before the
resampling step (see (11)), that is, G̃t is the σ-algebra gener-
ated by the union of Gt−1 and σ(J̃ (1,t), . . . , J̃ (N ,t)):

G̃t = Gt−1∨σ
(
J̃ (1,t), . . . , J̃ (N ,t)). (19)

Then, we set, for k ∈ {1, . . . ,N},
(
I(k,t), J (k,t)) = (

I(k,t), J̃ (I(k,t),t)),

Λ(k,t) = [
Λ(I(k,t),t−1), zJ (k,t)

]
, w(k,t) = 1

N
.

(20)

Note that the sampling is done with replacement in the sense
that the same particle can be either eliminated or copied sev-
eral times in the final updated sample. We denote by St =
((Λ(i,t),w(i,t)), i ∈ {1, . . . ,N}) this set of particles.

There are several options to obtain an unbiased sample.
The most obvious choice consists in drawing the N particles
conditionally independently on G̃t according to a multino-
mial distribution with normalized weights (w̃(1,t), . . . , w̃(N ,t)).
In the literature, this is referred to as multinomial sam-
pling. As a result, under multinomial sampling, the particles
Λ(i,t) are conditional on G̃t independent and identically dis-
tributed (i.i.d.). There are however better algorithms which
reduce the added variability introduced during the sampling
step (see the appendix).

This procedure is referred to as the SISR procedure. The
particles with large normalized importance weights are likely
to be selected and will be kept alive. On the contrary, the
particles with low normalized importance weights are elimi-
nated. Resampling provides more efficient samples of future
states but increases sampling variation in the past states be-
cause it reduces the number of distinct trajectories.

The SISR algorithm with multinomial sampling defines a
Markov chain on the path space. The transition kernel of this
chain depends upon the choice of the proposal distribution
and of the unbiased procedure used in the resampling step.
These transition kernels are, except in a few special cases, in-
volved. However, when the “optimal” importance distribu-
tion (14) is used in conjunction with multinomial sampling,
the transition kernel has a simple and intuitive expression. As
already mentioned above, the incremental weights for all the
possible offsprings of a given particle are, in this case, iden-
tical; as a consequence, under multinomial sampling, the in-
dices I(k,t), k ∈ {1, . . . ,N}, are i.i.d. with multinomial distri-
bution for all k ∈ {1, . . . ,N},

P
[
I(k,t) = i|G̃t

]

=
(∑M

j=1 qt
(
Λ(i,t−1), zj

))
w(i,t−1)∑N

i=1

(∑M
j=1 qt

(
Λ(i,t−1), zj

))
w(i,t−1)

, i ∈ {1, . . . ,N}.

(21)

Recall that, when the optimal importance distribution is
used, for each particle i ∈ {1, . . . ,N}, the random variables
J̃ (i,t), i ∈ {1, . . . ,M}, are conditionally independent from
Gt−1 and are distributed with multinomial random variable
with parameters

P
[
J̃ (i,t) = j | Gt−1

] = qt
(
Λ(i,t−1), zj

)
∑M

j=1 qt
(
Λ(i,t−1), zj

) ,

i ∈ {1, . . . ,N}, j ∈ {1, . . . ,M}.
(22)

We may compute, for i, k ∈ {1, . . . ,N} and j ∈ {1, . . . ,M},

P
[(
I(k,t), J (k,t)) = (i, j) | Gt−1

]
= E

[
P
[
I(k,t) = i, J̃ (i,t) = j | G̃t

]∣∣Gt−1
]

= E
[
P
[
I(k,t) = i | G̃t

]
1(J̃ (i,t) = j)

∣∣Gt−1
]

=
(∑M

j=1 qt
(
Λ(i,t−1), zj

))
w(i,t−1)∑N

i=1

(∑M
j=1 qt

(
Λ(i,t−1), zj

))
w(i,t−1)

× P[J̃ (i,t) = j | Gt−1
]

= qt(Λ(i,t−1), zj)w(i,t−1)∑N
i=1

(∑M
j=1 qt

(
Λ(i,t−1), zj

))
w(i,t−1)

= w̄(i, j,t),

(23)

showing that the SISR algorithm is equivalent to drawing,
conditionally independently from Gt−1, N random variables
out of N ×M possible offsprings of the system of particles,
with weights (w̄(i, j,t), i ∈ {1, . . . ,N}, j ∈ {1, . . . ,N}).

Resampling can be done at any time. When resampling is
done at every time step, it is said to be systematic. In this case,
the importance weights at each time t, w(i,t), i ∈ {1, . . . ,N},
are all equal to 1/N . Systematic resampling is not always rec-
ommended since resampling is costly from the computa-
tional point of view and may result in loss of statistical ef-
ficiency by introducing some additional randomness in the
particle system. However, the effect of resampling is not nec-
essarily negative because it allows to control the degener-
acy of the particle systems, which has a positive impact on
the quality of the estimates. Therefore, systematic resam-
pling yields in some situations better estimates than the stan-
dard SIS procedure (without resampling); in some cases (see
Section 4.2 for an illustration), it compares favorably with
more sophisticated versions of the SISR algorithm, where re-
sampling is done at random times (e.g., when the entropy
or the coefficient of variations of the normalized importance
weights is below a threshold).

2.4. The global sampling algorithm

When the instrumental distribution is the so-called optimal
sampling distribution (14), it is possible to combine the sam-
pling/resampling step above into a single sampling step. This
idea has already been mentioned and worked out in [11,
Section 3] under the name of deterministic/resample low
weights (RLW) approach, yet the algorithm given below is
not given explicitly in this reference.

Let [Λ(1,t−1), . . . ,Λ(N ,t−1)] be a set of particles at time t−1
and let [w(1,t−1), . . . ,w(N ,t−1)] be the associated importance
weights. Similar to the SISR step, the GS algorithm produces
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a set of particles [Λ(1,t), . . . ,Λ(N ,t)] with equal weights. The
GS algorithm combines the two-stage sampling procedure
(first, samples a particular offspring of a particle, updates the
importance weights, and then resamples from the popula-
tion) into a single one.

(i) We first compute the weights

w(i, j,t)=w(i,t−1)qt
(
Λ(i,t−1), zj

)
, i∈{1, . . . ,N}, j∈{1, . . . ,M}.

(24)

(ii) We then draw N random variables ((I(1,t), J (1,t)), . . . ,
(I(N ,t), J (N ,t))) in {1, . . . ,N} × {1, . . . ,M} using an un-
biased sampling procedure, that is, for all (i, j) ∈
{1, . . . ,N} × {1, . . . ,M}, the number of times of the
particles (i, j) is

N (i, j,t) def= ∣∣{k ∈ {1, . . . ,N}, (I(k,t), J (k,t)) = (i, j)
}∣∣ (25)

thus satisfying the following two conditions:

N∑
i′=1

M∑
j′=1

N (i′, j′,t) = N ,

E
[
N (i, j,t)

∣∣Gt−1
] = N

w(i, j,t)∑N
i′=1

∑M
j′=1 w

(i′, j′,t)
.

(26)

The updated set of particles is then defined as

Λ(k,t) = [
Λ(I(k,t),t−1), zJ (k,t)

]
, w(k,t) = 1

N
. (27)

If multinomial sampling is used, then the GS algorithm is a
simple implementation of the SISR algorithm, which com-
bines the two-stage sampling into a single one. Since the
computational cost of drawing L random variables grows lin-
early with L, the cost of simulations is proportional to NM
for the GS algorithm and NM + N for the SISR algorithm.
There is thus a (slight) advantage in using the GS implemen-
tation. When sampling is done using a different unbiased
method (see the appendix), then there is a more substantial
difference between these two algorithms. As illustrated in the
examples below, the GS may outperform the SISR algorithm.

3. GLOBAL SAMPLING FOR CONDITIONALLY
GAUSSIAN STATE-SPACE MODELS

3.1. Conditionally linear Gaussian state-space model

As emphasized in the introduction, CGLSSMs are a partic-
ular class of state-space models which are such that, condi-
tional to a set of indicator variables, the system becomes lin-
ear and Gaussian. More precisely,

St = Ψt
(
Λ0:t

)
,

�Xt = ASt �Xt−1 + CSt �Wt,

�Yt = BSt �Xt +DSt
�Vt ,

(28)

where

(i) {Λt}t≥0 are the indicators variables, here assumed to
take values in a finite set Z = {z1, z2, . . . , zM}, where
M denotes the cardinal of the set Z; the law of {Λt}t≥0

is assumed to be known but is otherwise not specified;
(ii) for any t ≥ 0, Ψt is a function Ψt : Zt+1 → S, where S is

a finite set;

(iii) {�Xt}t≥0 are the (nx × 1) state vectors; these state vari-
ables are not directly observed;

(iv) the distribution of �X0 is complex Gaussian with mean
�µ0 and covariance Γ0;

(v) {�Yt}t�0 are the (ny × 1) observations;

(vi) { �Wt}t�0 and {�Vt}t�0 are (complex) nw- and nv-

dimensional (complex) Gaussian white noise, �Wt ∼
Nc(0, Inw×nw ) and �Vt ∼ Nc(0, Inv×nv ), where Ip×p is the

p×p identity matrix; { �Wt}t�0 is referred to as the state

noise, whereas {�Vt}t�0 is the observation noise;
(vii) {As, s ∈ S} are the state transition matrices, {Bs, s ∈ S}

are the observation matrices, and {Cs, s ∈ S} and
{Ds, s ∈ S} are Cholesky factors of the covariance ma-
trix of the state noise and measurement noise, respec-
tively; these matrices are assumed to be known;

(viii) the indicator process {Λt}t≥0 and the noise observa-

tion processes {�Vt}t≥0 and { �Wt}t≥0 are independent.

This model has been considered by many authors, following
the pioneering work in [13, 14] (see [5, 7, 8, 15] for author-
itative recent surveys). Despite its simplicity, this model is
flexible enough to describe many situations of interests in-
cluding linear state-space models with non-Gaussian state
noise or observation noise (heavy-tail noise), jump linear
systems, linear state space with missing observations; of
course, digital communication over fading channels, and so
forth.

Our aim in this paper is to compute recursively in time an
estimate of the conditional probability of the (unobserved)
indicator variable Λn given the observation up to time n+∆,

that is, P(Λn | �Y0:n+∆ = �y0:n+∆), where ∆ is a nonnegative in-
teger and for any sequence {λt}t≥0 and any integer 0 ≤ i < j,

we denote λi: j
def= {λi, . . . , λj}. When ∆ = 0, this distribution

is called the filtering distribution; when ∆ > 0, it is called the
fixed-lag smoothing distribution, and ∆ is the lag.

3.2. Filtering

In this section, we describe the implementation of the GS al-
gorithm to approximate the filtering probability of the indi-
cator variables given the observations

ft
(
λ0:t

) = P[Λ0:t = λ0:t | Y0:t = y0:t
]

(29)

in the CGLSSM (28). We will first show that the filtering
probability Ft satisfies condition (3), that is, for any t ≥ 1,
Ft = Ft−1 ⊗ Qt; we then present an efficient recursive algo-
rithm to compute the transition kernel Qt using the Kalman
filter update equations. For any t ≥ 1 and for any λ0:t ∈ Zt+1,



Global Sampling for Sequential Filtering 2247

under the conditional independence structure implied by the
CGLSSM (28), the Bayes formula shows that

qt
(
λ0:t−1; λt

)∝ f (�yt|�y0:t−1, λ0:t) f (λt|λ0:t−1). (30)

The predictive distribution of the observations given the in-
dicator variables f (�yt|�y0:t−1, λ0:t) can be evaluated along each
trajectory of indicator variables λ0:t using the Kalman filter
recursions. Denote by gc(·;µ,Γ) the density of a complex cir-
cular Gaussian random vector with mean �µ and covariance
matrix Γ, and for A a matrix, let A† be the transpose conju-
gate of A; we have, with st = Ψt(λ0:t) (and Ψt is defined in
(28)),

f (�yt|λ0:t,�y0:t−1)

= gc
(
�yt;Bstµt|t−1

[
λ0:t

]
,BstΓt|t−1

[
λ0:t

]
B†st +DstD

†
st

)
,

(31)

where �µt|t−1[λ0:t] and Γt|t−1[λ0:t] denote the filtered mean
and covariance of the state, that is, the conditional mean
and covariance of the state given the indicators variables λ0:t

and the observations up to time t − 1 (the dependence of
the predictive mean �µt|t−1[λ0:t] on the observations y0:t−1 is
implicit). These quantities can be computed recursively us-
ing the following Kalman one-step prediction/correction for-
mula. Denote by �µt−1([λ0:t−1]) and Γt−1([λ0:t−1]) the mean
and covariance of the filtering density, respectively. These
quantities can be recursively updated as follows:

(i) predictive mean:

�µt|t−1
[
λ0:t

] = Ast�µt−1
[
λ0:t

]
; (32)

(ii) predictive covariance:

Γt|t−1
[
λ0:t

] = AstΓt−1
[
λ0:t

]
ATst + CstC

T
st ; (33)

(iii) innovation covariance:

Σt
[
λ0:t

] = BstΓt|t−1
[
λ0:t

]
BTst +DstD

T
st ; (34)

(iv) Kalman Gain:

Kt
[
λ0:t

] = Γt|t−1
[
λ0:t

]
Bst

(
Σt[λ0:t]

)−1
; (35)

(v) filtered mean:

�µt
[
λ0:t

] = �µt−1
[
λ0:t−1

]
+Kt

[
λ0:t

](
�yt−Bst�µt|t−1

[
λ0:t−1

])
; (36)

(vi) filtered covariance:

Γt
[
λ0:t]=

(
I − Kt[λ0:t−1]Bst

)
Γt|t−1

[
λ0:t

]
. (37)

Note that the conditional distribution of the state vector �Xt
given the observations up to time t, y0:t, is a mixture of
Gaussian distributions with a number of components equal
to Mt+1 which grows exponentially with t. We have now at

hands all the necessary ingredients to derive the GS approx-
imation of the filtering distribution. For any t ∈ N and for
any λ0:t ∈ Zt+1, denote

γt(λ0:t)
def=


 f (�y0|λ0) f

(
λ0
)

for t = 0,

f (�yt|λ0:t,�y0:t−1) f (λt|λ0:t−1) for t > 0.
(38)

With these notations, (30) reads qt(λ0:t−1; λt) ∝ γt(λ0:t).
The first step consists in initializing the particle tracks.

For t = 1 and i ∈ {1, . . . ,N}, set �µ (i,0) = �µ0 and Γ(i,0) = Γ0,
where �µ0 and Γ0 are the initial mean and variance of the state
vector (which are assumed to be known); then, compute the
weights

wj =
γ0(zj)∑M

j′=1 γ0
(
zj′

) , j ∈ {1, . . . ,M}, (39)

and draw {Ii, i ∈ {1, . . . ,N}} in such a way that, for j ∈
{1, . . . ,M}, E[Nj] = Nwj , where Nj =

∑N
i=1 δIi, j . Then, set

Λ(i,0) = zIi , i ∈ {1, . . . ,N}.
At time t ≥ 1, assume that we have N trajectories

Λ(i,t−1) = (Λ(i,t−1)
0 , . . . ,Λ(i,t−1)

t−1 ) and that, for each trajec-
tory, we have stored the filtered mean �µ (i,t−1) and covariance
Γ(i,t−1) defined in (36) and (37), respectively.

(1) For i ∈ {1, . . . ,N} and j ∈ {1, . . . ,M}, compute
the predictive mean �µt|t−1[Λ(i,t−1), zj] and covariance
Γt|t−1[Λ(i,t−1), zj] using (32) and (33), respectively.
Then, compute the innovation covariance Σt[Λ(i,t−1),
zj] using (34) and evaluate the likelihood γ(i, j,t) of
the particle [Λ(i,t−1), zj] using (31). Finally, compute
the filtered mean and covariance �µt([Λ(i,t−1), zj]) and
Γt([Λ(k,t−1), zj]).

(2) Compute the weights

w(i, j,t) = γ(i, j,t)∑N
i′=1

∑M
j′=1 γ

(i′, j′,t)
,

i ∈ {1, . . . ,N}, j ∈ {1, . . . ,M}.
(40)

(3) Draw {(Ik, Jk), k ∈ {1, . . . ,N}} using an unbiased
sampling procedure (see (26)) with weights {w(i, j,t)},
i ∈ {1, . . . ,N}, j ∈ {1, . . . ,M}; set, for k ∈ {1, . . . ,N},
Λ(k,t) = (Λ(Ik ,t−1), zJk ). Store the filtered mean and
covariance �µt([Λ(k,t)]) and Γt([Λ(k,t)]) using (36) and
(37), respectively.

Remark 1. From the trajectories and the computed weights it
is possible to evaluate, for any δ ≥ 0 and t ≥ δ, the posterior

probability of Λt−δ given �Y0:t = �y0:t as

P̂
[
Λt−δ = zk | �Y0:t = �y0:t

]

∝




N∑
i=1

w(i,k,t), δ = 0, filtering,

N∑
i=1


 M∑

j=1

w(i, j,t)


δΛ(i,t−1)

t−δ ,zk
, δ>0, fixed-lag smoothing.

(41)
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Similarly, we can approximate the filtering and the smooth-
ing distribution of the state variable as a mixture of Gaus-
sians. For example, we can estimate the filtered mean and
variance of the state as follows:

(i) filtered mean:

N∑
i=1

M∑
j=1

w(i, j,t)�µt
([
Λ(i,t−1), zj

]
); (42)

(ii) filtered covariance:

N∑
i=1

M∑
j=1

w(i, j,t)Γt
([
Λ(k,t−1), zj

])
. (43)

3.3. Fixed-lag smoothing

Since the state process is correlated, the future observations
contain information about the current value of the state;
therefore, whenever it is possible to delay the decision, fixed-
lag smoothing estimates yield more reliable information on
the indicator process than filtering estimates.

As pointed out above, it is possible to determine an es-
timate of the fixed-lag smoothing distribution for any delay
δ from the trajectories and the associated weights produced
by the SISR or GS method described above; nevertheless, we
should be aware that this estimate can be rather poor when
the delay δ is large, as a consequence of the impoverishment
of the system of particles (the system of particle “forgets”
its past). To address this well-known problem in all parti-
cle methods, it has been proposed by several authors (see
[11, 16, 17, 18]) to sample at time t from the conditional

distribution of Λt given �Y0:t+∆ = �y0:t+∆ for some ∆ > 0.
The computation of fixed-lag smoothing distribution is also
amenable to GS approximation.

Consider the distribution of the indicator variables Λ0:t

conditional to the observations �Y0:t+∆ = �y0:t+∆, where ∆ is a
positive integer. Denote by {F∆

t }t�0 this sequence of proba-
bility measures; the dependence on the observations �y0:t+∆

being, as in the previous section, implicit. This sequence
of distributions also satisfies (3), that is, there exists a fi-
nite transition kernelQ∆

t : (Zt, P (Z)⊗t)≺(Z, P (Z)) such that
F∆
t = F∆

t−1 ⊗ Q∆
t for all t � 1. Elementary conditional prob-

ability calculations exploiting the conditional independence
structure of (28) show that the transition kernel Q∆

t can be
determined, up to a normalization constant, by the relation

Q∆
t

(
λ0:t−1; λt

)∝
∑

λt+1:t+∆

∏t+∆
τ=t f (�yτ|�y0:τ−1, λ0:τ) f (λτ|λ0:τ−1)∑

λt:t+∆−1

∏t+∆−1
τ=t f (�yτ|�y0:τ−1, λ0:τ)f (λτ|λ0:τ−1)

,

(44)

where, for all λ0:t−1 ∈ Zt, the terms f (�yτ|�y0:τ−1, λ0:τ) can be
determined recursively using Kalman filter fixed-lag smooth-
ing update formula.

Below, we describe a straightforward implementation of
the GS method to approximate the smoothing distribution
by the delayed sampling procedure; more sophisticated tech-
niques, using early pruning of the possible prolonged trajec-
tories, are currently under investigation. For any t ∈ N and
for any λ0:t ∈ Zt+1, denote

D∆
t

(
λ0:t

) def=
∑

λt+1:t+∆

t+∆∏
τ=t+1

γτ
(
λ0:τ

)
, (45)

where the function γτ is defined in (38). With this notation,
(44) may be rewritten as

Q∆
t

(
λ0:t−1; λt

)∝ γt
(
λ0:t

) D∆
t

(
λ0:t

)
D∆
t−1

(
λ0:t−1

) . (46)

We now describe one iteration of the algorithm. Assume
that for some time instant t � 1, we have N trajectories

Λ( j,t−1) = (Λ
( j,t−1)
0 , . . . ,Λ

( j,t−1)
t−1 ); in addition, for each trajec-

tory Λ( j,t−1), the following quantities are stored:

(1) the factor D∆
t−1(Λ( j,t−1)) defined in (45);

(2) for each prolongation λt:τ ∈ Zτ−t+1 with τ ∈
{t, t + 1, . . . , t + ∆ − 1}, the conditional likelihood
γτ(Λ( j,t−1), λt:τ) given in (38);

(3) for each prolongation λt:t+∆−1 ∈ Z∆, the filtering con-
ditional mean �µt+∆−1([Λ( j,t−1), λt:t+∆−1]) and covari-
ance Γt+∆−1(Λ( j,t−1), λt:t+∆−1).

One iteration of the algorithm is then described below.

(1) For each i ∈ {1, . . . ,N} and for each λt:t+∆ ∈ Z∆+1,
compute the predictive conditional mean and co-
variance of the state, �µt+∆|t+∆−1([Λ(i,t−1), λt:t+∆]) and
Γt+∆|t+∆−1([Λ(i,t−1), λt:t+∆]), using (32) and (33), re-
spectively. Then compute the innovation covariance
Σt+∆[(Λ(i,t−1), λt:t+∆)] using (34) and the likelihood
γt+∆(Λ( j,t−1), λt:t+∆) using (31).

(2) For each i ∈ {1, . . . ,N} and j ∈ {1, . . . ,M}, compute

D∆
t

(
Λ(i,t−1), zj

) = ∑
λt+1:t+∆

t+∆∏
τ=t+1

γτ
([
Λ(i,t−1), zj , λt+1:t+τ

])
,

γ(i, j,t) = γt(Λ(i,t−1), zj)
D∆
t

(
Λ(i,t−1), zj

)
D∆
t−1

(
Λ(i,t−1)

) ,

w(i, j,t) = γ(i, j,t)∑M
i′=1

∑N
j=1 γ

(i′, j′,t)
.

(47)

(3) Update the trajectory of particles using an unbiased
sampling procedure {(Ik, Jk), k ∈ {1, . . . ,N}} with
weights {w(i, j,t)}, i ∈ {1, . . . ,N}, j ∈ {1, . . . ,M}, and
set Λ(k,t) = (Λ(Ik ,t−1), zJk ), k ∈ {1, . . . ,N}.
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4. SOME EXAMPLES

4.1. Autoregressive model with jumps

To illustrate how the GS method works, we consider the
state-space model

Xt = aΛtXt−1 + σΛtεt,

Yt = Xt + ρηt,
(48)

where {εt}t≥0 and {ηt}t≥0 are i.i.d. unit-variance Gaussian
noise. We assume that {Λt}t≥0 is an i.i.d. sequence of ran-

dom variables taking their values in Z
def= {1, 2}, which is

independent from both {εt}t≥0 and {ηt}t≥0, and such that
P[Λ0 = i] = πi, i ∈ Z. This can easily be extended to deal
with the Markovian case. This simple model has been dealt
with, among others, in [19] and [20, Section 5.1]. We focus in
this section on the filtering problem, that is, we approximate
the distribution of the hidden state Xt given the observations
up to time t, Y0:t = y0:t. For this model, we can carry out the
computations easily. The transition kernel qt defined in (30)
is given, for all λ0:t−1 ∈ Zt, λt ∈ Z, by

qt
(
λ0:t−1, λt

)∝ πλt√
2πΣt

[
λ0:t

] exp

(
−

(
yt − µt|t−1

[
λ0:t

])2

2Σt
[
λ0:t

]
)

,

(49)

where the mean µt|t−1[λ0:t] and covariance Σt[λ0:t] are com-
puted recursively from the filtering mean µt−1([λ0:t−1]) and
covariance Γt−1([λ0:t−1]) according to the following one-step
Kalman update equations derived from (32), (33), and (34):

(i) predictive mean:

µt|t−1
[
λ0:t

] = aλtµt−1
[
λ0:t

]
; (50)

(ii) predictive covariance:

Γt|t−1
[
λ0:t

] = a2
λt
Γt−1

[
λ0:t

]
+ σ2

λt
; (51)

(iii) innovation covariance:

Σt
[
λ0:t

] = Γt|t−1
[
λ0:t

]
+ ρ2; (52)

(iv) filtered mean:

µt
[
λ0:t

] = µt|t−1
[
λ0:t−1

]
+

Γt|t−1
([
λ0:t

])
Γt|t−1

([
λ0:t

])
+ ρ2

× (
yt − µt|t−1

[
λ0:t−1

])
;

(53)

(v) filtered covariance:

Γt
[
λ0:t

] = ρ2Γt|t−1
([
λ0:t

])
Γt|t−1

([
λ0:t

])
+ ρ2

. (54)

We have used the parameters (used in the experiments car-
ried out in [20, Section 5.1]): ai = 0.9 (i = 1, 2), σ1 = 0.5,

σ2 = 1.5, π1 = 1.7, and ρ = 0.3, and applied the GS and the
SISR algorithm for online filtering. We compare estimates of
the filtered state mean using the GS and the SIS with sys-
tematic resampling. In both case, we use the estimator (42)
of the filtered mean. Two different unbiased sampling strate-
gies are used: multinomial sampling and the modified strat-
ified sampling (detailed in the appendix).1 In Figure 1, we
have displayed the box and whisker plot2 of the difference
between the filtered mean estimate (42) and the true value of
the state variables for N = 5, 10, 50 particles using multino-
mial sampling (Figure 1a) and the modified stratified sam-
pling (Figure 1b). These results are obtained from 100 hun-
dred independent Monte Carlo experiments where, for each
experiment, a new set of the observations and state variables
are simulated. These simulations show that, for the autore-
gressive model, the filtering algorithm performed reasonably
well even when the number of particles is small (the differ-
ence between N = 5 and N = 50 particles is negligible;
N = 50 particles is suggested in the literature for the same
simulation setting [20]). There are no noticeable differences
between the standard SISR implementation and the GS im-
plementation of the SISR. Note that the error in the estimate
is dominated by the filtered variance E[(Xt − E[Xt|Y0:t])2];
the additional variations induced by the fluctuations of the
particle estimates are an order of magnitude lower than this
quantity.

To visualize the difference between the different sam-
pling schemes, it is more appropriate to consider the fluc-
tuation of the filtered mean estimates around their sam-
ple mean for a given value of the time index and of the
observations. In Figure 2, we have displayed the box and
whisker plot of the error at time index 25 between the fil-
tered mean estimates and their sample mean at each time
instant; these results have been obtained from 100 inde-
pendent particles (this time, the set of observations and
of states are held fixed over all the Monte Carlo simula-
tions). As above, we have used N = 5, 10, 50 of particles and
two sampling methods: multinomial sampling (Figure 2a)
and modified stratified sampling (Figure 2b). This figure
shows that the GS estimate of the sampled mean has a
lower standard deviation than any other estimators included
in this comparison, independently of the number of par-
ticles which are used. The differences between these esti-
mators are however small compared to the filtering vari-
ance.

4.2. Joint channel equalization and symbol detection
on a flat Rayleigh-fading channel

4.2.1. Model description

We consider in this section a problem arising in transmis-
sion over a Rayleigh-fading channel. Consider a communi-

1The Matlab code to reproduce these experiments is available at
http://www.tsi.enst.fr/∼moulines/.

2The lower and upper limits of the box are the quartiles; the horizontal
line in the box is the sample median; the upper and lower whiskers are at 3/2
times interquartiles.
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Figure 1: Box and whisker plot of the difference between the filtered mean estimates and the actual value of the state estimate for 100
independent Monte Carlo experiments. (a) Multinomial sampling. (b) Residual sampling with the modified stratified sampling.

cation system signaling through a flat-fading channel with
additive noise. In this context, the indicator variables {Λt} in
the representation (28) are the input bits which are transmit-
ted over the channel and {St}t≥0 are the symbols generally
taken into an M-ary complex alphabet. The function Ψt is
thus the function which maps the stream of input bits into a
stream of complex symbols: this function combines channel
encoding and symbol mapping. In the simple example con-
sidered below, we assume binary phase shift keying (BPSK)
modulation with differential encoding: St = St−1(2Λt − 1).
The input-output relationship of the flat-fading channel is
described by

Yt = αtSt +Vt, (55)

where Yt , αt, St , and Vt denote the received signal, the fading
channel coefficient, the transmitted symbol, and the additive
noise at time t, respectively. It is assumed in the sequel that

(i) the processes {αt}t�0, {Λt}t�0, and {Vt}t�0 are mutu-
ally independent;

(ii) the noise {Vt} is a sequence of i.i.d. zero-mean com-
plex random variables Vt ∼ Nc(0, σ2

V ).

It is further assumed that the channel fading process is
Rayleigh, that is, {αt} is a zero-mean complex Gaussian pro-
cess; here modelled as an ARMA(L,L),

αt−φ1αt−1−· · ·−φLαt−L = θ0ηt+θ1ηt−1+· · ·+θLηt−L, (56)
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Figure 2: Box and whisker plot of the difference between the filtered mean estimates and their sample mean for 100 independent particles
for a given value of the time index 25 and of the observations. (a) Multinomial sampling. (b) Residual sampling with the modified stratified
sampling.

where φ1, . . . ,φL and θ0, . . . , θL are the autoregressive and the
moving average (ARMA) coefficients, respectively, and {ηt}
is a white complex Gaussian noise with zero mean and unit
variance. This model can be written in state-space form as
follows:

�Xt+1 =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

φL φL−1 · · · φ1


 �Xt +



ψ1

ψ2
...
ψL


ηt ,

αt =
[

10 · · · 0
]
�Xt + ηt ,

(57)

where {ψk}1≤k≤m are the coefficients of the expansion of
θ(z)/φ(z), for |z| ≤ 1, with

φ(z) = 1− φ1z − · · · − φpzp,

θ(z) = 1 + θ1z + · · · + θqz
q.

(58)

This particular problem has been considered, among others,
in [10, 16, 18, 21, 22].

4.2.2. Simulation results

To allow comparison with previously reported work, we
consider the example studied in [16, Section VIII]. In this
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example, the fading process is modelled by the output of a
Butterworth filter of order L = 3 whose cutoff frequency
is 0.05, corresponding to a normalized Doppler frequency
fdT = 0.05 with respect to the symbol rate 1/T , which is a
fast-fading scenario. More specifically, the fading process is
modelled by the ARMA(3, 3) process

αt − 2.37409αt−1 + 1.92936αt−2 − 0.53208αt−3

= 10−2(0.89409ηt + 2.68227ηt−1

+ 2.68227ηt−2 + 0.89409ηt−3
)
,

(59)

where ηt ∼ Nc(0, 1). It is assumed that a BPSK modulation
is used, that is, St ∈ {−1, +1}, with differential encoding and
no channel code; more precisely, we assume that St = St−1Λt,
where Λt ∈ {−1, +1} is the bit sequence, assumed to be
i.i.d. Bernoulli random variables with probability of success
P(Λt = 1) = 1/2.

The performance of the GS receiver (using the modified
residual sampling algorithm) has been compared with the
following receiver schemes.

(1) Known channel lower bound. We assume that the true
fading coefficients αt are known to the receiver and
we calculate the optimal coherent detection rule Ŝt =
sign({α∗t �Yt}) and Λ̂t = Ŝt Ŝt−1.

(2) Genie-aided lower bound. We assume that a genie al-
lows the receiver to observe Ỹt = αt + Ṽt, with
Ṽt ∼ Nc(0, σ2

V ). We use Ỹt to calculate an estimate
α̂t of the fading coefficients via a Kalman filter and
we then evaluate the optimal coherent detection Ŝt =
sign({α̂∗t �Yt}) and Λ̂t = Ŝt Ŝt−1 using the filtered fad-
ing process.

(3) Differential detector. In this scenario, no attempt is
made to estimate the fading process and the input bits
are estimated using incoherent differential detection:

Λ̂t = sign({Y∗t �Yt−1}).
(4) MKF detector. The SMC filter described in [16, Sec-

tions IV and V] is used to estimate Λt. The MKF de-
tector uses the SISR algorithm to draw samples in the
indicator space and implements a Kalman filter for
each trajectory in order to compute its trial sampling
density and its importance weight. Resampling is per-
formed when the ratio between the effective sample
size defined in [16, equation (45)] and the actual sam-
ple size N is lower than a threshold β. The delayed
weight method is used to obtain an estimate of Λt with
a delay δ.

In all the simulations below, we have used only the concur-
rent sampling method because in the considered simulation
scenarios, the use of the delayed sampling method did not
bring significative improvement. This is mainly due to the
fact that we have only considered, due to space limitations,
the uncoded communication scenario.

Figure 3 shows the BER performance of each receiver ver-
sus the SNR. The SNR is defined as var(αt)/ var(Vt) and the
BER is obtained by averaging the error rate over 106 sym-
bols. The first 50 symbols were not taken into account in
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Figure 3: BER performance of the GS receiver versus the SNR. The
BER corresponding to delays δ = 0 and δ = 1 are shown. Also
shown in this figure are the BER curves for the MKF detector (δ = 0
and δ = 1), the known channel lower bound, the genie-aided lower
bound, and the differential detector. The number of particles for the
GS receiver and the MKF detector is 50.

counting the BER. The BER performance of the GS receiver is
shown for estimation delays δ = 0 (concurrent estimation)
and δ = 1. Also shown are the BER curves for the known
channel lower bound, the genie-aided lower bound, the dif-
ferential detector, and the MKF detector with estimation de-
lays δ = 0 and δ = 1 and resampling thresholds β = 0.1
and β = 1 (systematic resampling). The number of particles
for both the GS receiver and the MKF detector is set to 50.
From this figure, it can be seen that with 50 particles, there is
no significant performance difference between the proposed
receiver and the MKF detector with the same estimation de-
lay and β = 0.1 or β = 1. Note that, as observed in [16],
the performance of the receiver is significantly improved by
the delayed-weight method with δ = 1 compared with con-
current estimate; there is no substantial improvement when
increasing further the delay; the GS receiver achieves essen-
tially the genie-aided bound over the considered SNR.

Figure 4 shows the BER performance of the GS receiver
versus the number of particles at SNR = 20 dB and δ = 1.
Also shown in this figure is the BER performance for the
MKF detector with β = 0.1 and β = 1, respectively. It can
be seen from this plot that when the number of particles is
decreased from 50 to 10, the BER of the MKF receiver with
β = 0.1 increases by 67%, whereas the BER of the GS receiver
increases by 11% only. In fact, Figure 4 also shows that, for
this particular example, the BER performance of the GS re-
ceiver is identical to the BER performance of an MKF with
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Figure 4: BER performance of the GS receiver versus the number
of particles at SNR = 20 dB and δ = 1. Also shown in this figure are
the BER curves for the MKF detector with β = 0.1 and β = 1.

the same number of particles and a resampling threshold set
to β = 1 (systematic resampling). This suggests that, contrary
to what is usually argued in the literature [5, 16], systematic
resampling of the particle seems to be, for reasons which re-
main yet unclear from a theoretical standpoint, more robust
when the number of particles is decreased to meet the con-
straints of real-time implementation.

Figure 5 shows the BER performance of each receiver ver-
sus the SNR when the number of particles for both the GS
receiver and the MKF detector is set to 5. For these simula-
tions, the BER is obtained by averaging the error rate over
105 symbols. From this figure, it can be seen that with 5 par-
ticles, there is a significant performance difference between
the proposed receiver and the MKF detector with the same
estimation delay and a β = 0.1 resampling threshold. This
difference remains significant even for SNR values close to
10 dB. Figure 5 also shows that, for this particular example,
the BER performance of the GS receiver is identical to the
BER performance of an MKF with the same estimation delay
and a resampling threshold β set to 1.

5. CONCLUSION

In this paper, a sampling algorithm for conditionally linear
Gaussian state-space models has been introduced. This algo-
rithm exploits the particular structure of the flow of proba-
bility measures and the fact that, at each time instant, a global
exploration of all possible offsprings of a given trajectory of
indicator variables can be considered. The number of trajec-
tories is kept constant by sampling from this set (selection
step).

The global sampling algorithm appears, in the example
considered here, to be robust even when a very limited num-
ber of particles is used, which is a basic requirement for
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Figure 5: BER performance of the GS receiver versus the SNR. The
BER corresponding to delay δ = 1 is shown. Also shown in this
figure are the BER curves for the MKF detector (δ = 1, β = 0.1),
the known channel lower bound, the genie-aided lower bound, and
the differential detector. The number of particles for the GS receiver
and the MKF detector is 5.

the implementation of such a solution in real-world appli-
cations: the global sampling algorithm is close to the optimal
genie-aided bound with as few as 5 particles and thus pro-
vides a realistic alternative to the joint channel equalization
and symbol detection algorithms reported earlier in the lit-
erature.

APPENDIX

MODIFIED STRATIFIED SAMPLING

In this appendix, we present the so-called modified stratified
sampling strategy. Let M and N be integers and (w1, . . . ,wM)
be nonnegative weights such that

∑M
i=1 wi = 1. A sam-

pling procedure is said to be unbiased if the random vector
(N1, . . . ,NM) (where Ni is the number of times the index i is
drawn) satisfies

M∑
i=1

Ni = N , E[Ni] = Nwi, i ∈ {1, . . . ,M}. (A.1)

The modified stratified sampling is summarized as follows.

(1) For i ∈ {1, . . . ,M}, compute [Nwi], where [x] is the
integer part of x; then compute the residual number
Ñ = N −∑M

i=1[Nwi] and the residual weights

w̃i = Nwi −
[
Nwi

]
Ñ

, i ∈ {1, . . . ,M}. (A.2)
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(2) Draw Ñ i.i.d. random variables U1, . . . ,UÑ with a uni-
form distribution on [0, 1/Ñ] and compute, for k ∈
{1, . . . , Ñ},

Ũk = k − 1
Ñ

+Uk. (A.3)

(3) For i ∈ {1, . . . ,M}, set Ñi as the number of indices
k ∈ {1, . . . , Ñ} satisfying

i−1∑
j=1

wj < Ũk ≤
i∑
j=1

wj. (A.4)
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[21] F. Ben Salem, “Récepteur particulaire pour canaux mobiles
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Télécommunications (ENST) in Paris in the
same year. After working for General Elec-
tric Medical Systems as a Research and De-
velopment Engineer, he received the Ph.D.
degree from the ENST in Paris in 2003. He
is currently a member of the research staff
at France Telecom Research and Development.

Eric Moulines was born in Bordeaux, France, in 1963. He re-
ceived the M.S. degree from Ecole Polytechnique in 1984, the Ph.D.
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Recherche des Télécommunications (CNET). Since 1990, he was
with ENST, where he is presently a Professor (since 1996). His
teaching and research interests include applied probability, math-
ematical and computational statistics, and signal processing.



EURASIP Journal on Applied Signal Processing 2004:15, 2255–2266
c© 2004 Hindawi Publishing Corporation

Multilevel Mixture Kalman Filter

Dong Guo
Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
Email: guodong@ee.columbia.edu

Xiaodong Wang
Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
Email: wangx@ee.columbia.edu

Rong Chen
Department of Information and Decision Sciences, University of Illinois at Chicago, Chicago, IL 60607-7124, USA
Email: rongchen@uic.edu

Department of Business Statistics & Econometrics, Peking University, Beijing 100871, China

Received 30 April 2003; Revised 18 December 2003

The mixture Kalman filter is a general sequential Monte Carlo technique for conditional linear dynamic systems. It generates sam-
ples of some indicator variables recursively based on sequential importance sampling (SIS) and integrates out the linear and Gaus-
sian state variables conditioned on these indicators. Due to the marginalization process, the complexity of the mixture Kalman
filter is quite high if the dimension of the indicator sampling space is high. In this paper, we address this difficulty by developing a
new Monte Carlo sampling scheme, namely, the multilevel mixture Kalman filter. The basic idea is to make use of the multilevel or
hierarchical structure of the space from which the indicator variables take values. That is, we draw samples in a multilevel fashion,
beginning with sampling from the highest-level sampling space and then draw samples from the associate subspace of the newly
drawn samples in a lower-level sampling space, until reaching the desired sampling space. Such a multilevel sampling scheme can
be used in conjunction with the delayed estimation method, such as the delayed-sample method, resulting in delayed multilevel
mixture Kalman filter. Examples in wireless communication, specifically the coherent and noncoherent 16-QAM over flat-fading
channels, are provided to demonstrate the performance of the proposed multilevel mixture Kalman filter.

Keywords and phrases: sequential Monte Carlo, mixture Kalman filter, multilevel mixture Kalman filter, delayed-sample method.

1. INTRODUCTION

Recently there have been significant interests in the use of
the sequential Monte Carlo (SMC) methods to solve on-
line estimation and prediction problems in dynamic systems.
Compared with the traditional filtering methods, the sim-
ple, flexible—yet powerful—SMC provides effective means
to overcome the computational difficulties in dealing with
nonlinear dynamic models. The basic idea of the SMC tech-
nique is the recursive use of the sequential importance sam-
pling (SIS). There also have been many recent modifications
and improvements on the SMC methodology [1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12].

Among these SMC methods, the mixture Kalman filter
(MKF) [3] is a powerful tool to deal with conditional dy-
namic linear models (CDLMs) and finds important applica-
tions in digital wireless communications [3, 13, 14]. A sim-
ilar method is also discussed in [15] for CDLM system. The
CDLM is a direct generalization of the dynamic linear model

(DLM) [16] and it can be generally described as follows:

xt = Fλt xt−1 + Gλt ut ,

yt = Hλt xt + Kλt vt,
(1)

where ut ∼ N (0, I) and vt ∼ N (0, I) are the state and ob-
servation noise, respectively, and λt is a sequence of random
indicator variables which may form a Markov chain, but are
independent of ut and vt and the past xs and ys, s < t. The
matrices Fλt , Gλt , Hλt , and Kλt are known, given λt .

An important feature of CDLM is that, given the trajec-
tory of the indicator {λt}, the system becomes Gaussian and
linear, for which the Kalman filter can be used. Thus, by us-
ing the marginalization technique for Monte Carlo computa-
tion [17], the MKF focuses on the sampling of the indicator
variable λt other than the whole state variable {xt , λt}. This
method can drastically reduce Monte Carlo variances associ-
ated with a standard sequential importance sampler applied
directly to the space of the state variable.
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Figure 1: The multilevel structure of the 16-QAM modulation used
in digital communications. The set of transmitted symbol A1 =
{si, j , i = 1, . . . , 4, j = 1, . . . , 4} is the original sampling space, and
the centers A2 = {c1, c2, c3, c4} constitute a higher-level sampling
space.

However, the computational complexity of the MKF can
be quite high, especially in the case of high-dimensional in-
dicator space, due to the need of marginalizing out the indi-
cator variables. Fortunately, often the space from which the
indicator variables take values exhibits multilevel or hierar-
chical structures, which can be exploited to reduce the com-
putational complexity of the MKF. For example, a multilevel
structure of the 16-QAM modulation used in digital commu-
nications is shown in Figure 1. The set of transmitted sym-
bols A1 = {si, j , i = 1, . . . , 4, j = 1, . . . , 4} is the original sam-
pling space, and the centers A2 = {c1, c2, c3, c4} constitute
a higher-level sampling space. Thus, based on the observed
data, for every sample stream, we first draw a sample (say
c1) from the higher-level sampling space A2 and then draw a
new sample from the associated subspaces s1,1, s1,2, s1,3, s1,4 of
c1 in the original sampling space A1. In this way, we need not
sample from the entire original sampling space, and many
Kalman filter update steps associated with the standard MKF
can be saved.

This kind of hierarchical structure imposed on the in-
dicator space is also employed in the partitioned sampling
strategy [18], which greatly improved the efficiency and the
accuracy for multiple target tracking over the original SMC
methods. However, in this paper, the hierarchical structure is
employed to reduce the computational load associated with
MKF, especially for high-dimensional indicator space, while
retaining the desirable properties of MKF.

Dynamic systems often possess strong memories, that is,
future observations can reveal substantial information about
the current state. Therefore, it is often beneficial to make use
of these future observations in sampling the current state.
However, an MKF method usually does not go back to regen-
erate past samples in view of the new observations, although
the past estimation can be adjusted by using the new impor-
tance weights. To overcome this difficulty, a delayed-sample
method is developed [13]. It makes use of future observa-
tions in generating samples of the current state. It is seen
there that this method is especially effective in improving

the performance of the MKF. However, the computational
complexity of the delayed-sample method is very high. For
example, for a ∆-step delayed-sample method, the algorith-
mic complexity is O(|A1|∆), where |A1| is the cardinality of
the original sampling space. Here, we also provide a delayed
multilevel MKF by exploring the multilevel structure of the
indicator space. Instead of exploring the original entire space
of future states, we only sample the future states in a higher-
level sampling space, thus significantly reducing the dimen-
sion of the search space and the computational complexity.

In recent years, the SMC methods have been success-
fully employed in several important problems in communi-
cations, such as the detection in flat-fading channels [13, 19,
20], space-time coding [21, 22], OFDM system [23], and so
on. To show the good performance of the proposed novel re-
ceivers, we apply them into the problem of adaptive detection
in flat-fading channels in the presence of Gaussian noise.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly reviews the MKF algorithm and its variants.
In Section 3, we present the multilevel MKF algorithm. In
Section 4, we treat the delayed multilevel MKF algorithm.
In Section 5, we provide simulation examples. Section 6 con-
cludes the paper.

2. BACKGROUND OF MIXTURE KALMAN FILTER

2.1. Mixture Kalman filter

Consider again the CDLMs defined by (1). The MKF exploits
the conditional Gaussian property conditioned on the indi-
cator variable and utilizes a marginalization operation to im-
prove the algorithmic efficiency. Instead of dealing with both
xt and λt, the MKF draws Monte Carlo samples only in the
indicator space and uses a mixture of Gaussian distributions
to approximate the target distribution. Compared with the
generic SMC method, the MKF is substantially more efficient
(e.g., it produces more accurate results with the same com-
putational resources).

First we define an important concept that is used
throughout the paper. A set of random samples and the
corresponding weights {(η(i),w(i))}mi=1 is said to be properly
weighted with respect to the distribution π(·) if, for any mea-
surable function h, we have∑m

j=1 h
(
η( j)

)
w( j)∑m

j=1 w
( j) −→ Eπ

{
h(η)

}
as m −→ ∞. (2)

In particular, if η( j) is sampled from a trial distribution
g(·) which has the same support as π, and if w( j) =
π(η( j))/g(η( j)), then {(η( j),w( j))}mj=1 is properly weighted
with respect to π(·).

Let Yt = (y0, y1, . . . , yt) and Λt = (λ0, λ1, . . . , λt). By re-
cursively generating a set of properly weighted random sam-

ples {(Λ( j)
t ,w

( j)
t )}mj=1 to represent p(Λt | Yt), the MKF ap-

proximates the target distribution p(xt | Yt) by a random
mixture of Gaussian distributions

m∑
j=1

w
( j)
t Nc

(
µ

( j)
t ,Σ

( j)
t

)
, (3)
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where

µ
( j)
t = µt

(
Λ

( j)
t

)
, Σ

( j)
t = Σt

(
Λ

( j)
t

)
(4)

are obtained with a Kalman filter on the system (1) for the

given indicator trajectory Λ
( j)
t . Denote

κ
( j)
t �

[
µ

( j)
t ,Σ

( j)
t

]
. (5)

Thus, a key step in the MKF is the production at time t of the

weighted samples of indicators {(Λ( j)
t , κ

( j)
t ,w

( j)
t )}mj=1 based

on the set of samples {(Λ( j)
t−1, κ

( j)
t−1,w

( j)
t−1)}mj=1 at the previous

time (t − 1). Suppose that the indicator λt takes values from
a finite set A1. The MKF algorithm is as follows.

Algorithm 1 (MKF). Suppose at time (t−1), a set of property

weighted samples {(Λ( j)
t−1, κ

( j)
t−1,w

( j)
t−1)}mj=1 is available with re-

spect to p(Λt−1 | Yt−1). Then at time t, as the new data yt
becomes available, the following steps are implemented to
update each weighted sample.

For j = 1, . . . ,m, the following steps are applied.

(i) Based on the new data yt , for each ai ∈A1, run a one-
step Kalman filter update assuming λt = ai to obtain

κ
( j)
t−1

yt , λt=ai−−−−−→ κ
( j)
t,i �

[
µt

(
Λ

( j)
t−1, λt = ai

)
,Σt

(
Λ

( j)
t−1, λt = ai

)]
.

(6)

(ii) For each ai ∈A1, compute the sampling density

ρ
( j)
t,i � P

(
λt = ai | Λ( j)

t−1, Yt

)
∝ p

(
yt | λt = ai,Λ

( j)
t−1, Yt−1

)
P
(
λt = ai | Λ( j)

t−1

)
.

(7)

Note that by the model (1), the first density in (7) is
Gaussian and can be computed based on the Kalman

filter update (6). Draw a sample λ
( j)
t according to the

above sampling density. Append λ
( j)
t to Λ

( j)
t−1 and ob-

tain Λ
( j)
t . If λ

( j)
t = ai, then set κ

( j)
t = κ

( j)
t,i .

(iii) Compute the importance weight

w
( j)
t = w

( j)
t−1 · p

(
yt | Λ( j)

t−1, Yt−1

)
∝ w

( j)
t−1 ·

|A1|∑
i=1

ρ
( j)
t,i .

(8)

The new sample {Λ( j)
t , κ

( j)
t ,w

( j)
t } is then properly

weighted with respect to p(Λt | Yt).
(iv) Perform a resampling step as discussed below.

2.2. Resampling procedure

The importance sampling weight w
( j)
t measures the “quality”

of the corresponding imputed indicator sequence Λ
( j)
t . A rel-

atively small weight implies that the sample is drawn far from
the main body of the posterior distribution and has a small
contribution in the final estimation. Such a sample is said

to be ineffective. If there are too many ineffective samples,
the Monte Carlo procedure becomes inefficient. To avoid the
degeneracy, a useful resampling procedure, which was sug-
gested in [7, 11], may be used. Roughly speaking, resampling
is to multiply the streams with the larger importance weights,
while eliminating the ones with small importance weights.
A simple, but efficient, resampling procedure consists of the
following two steps.

(1) Sample a new set of streams {Λ̃( j)
t , µ̃( j)

t , Σ̃
( j)
t }mj=1 from

{Λ( j)
t ,µ

( j)
t ,Σ

( j)
t }mj=1 with probability proportional to

the importance weights {w( j)
t }mj=1.

(2) To each stream in {Λ̃( j)
t , µ̃( j)

t , Σ̃
( j)
t }mj=1, assign equal

weight, that is, w̃
( j)
t = 1/m, j = 1, . . . ,m.

Resampling can be done at every fixed-length time inter-
val (say, every five steps) or it can be conducted dynamically.
The effective sample size can be used to monitor the varia-
tion of the importance weights of the sample streams and to
decide when to resample as the system evolves. The effective
sample size is defined as in [13]:

m̄t � m

1 + υ2
t

, (9)

where υt, the coefficient of variation, is given by

υ2
t =

1
m

m∑
j=1

(
w

( j)
t

w̄t
− 1

)2

, (10)

with w̄t =
∑m

j=1 w
( j)
t /m. In dynamic resampling, a resampling

step is performed once the effective sample size m̄t is below a
certain threshold.

Heuristically, resampling can provide chances for good
sample streams to amplify themselves and hence “rejuvenate”
the sampler to produce a better result for future states as
the system evolves. It can be shown that the samples drawn
by the above resampling procedure are also indeed properly
weighted with respect to p(Λt | Yt), provided that m is suf-
ficiently large. In practice, when small to modest m is used
(we use m = 50 in this paper), the resampling procedure
can be seen as a tradeoff between the bias and the variance.
That is, the new samples with their weights resulting from the
resampling procedure are only approximately proper, and
this introduces small bias in the Monte Carlo estimation. On
the other hand, however, resampling significantly reduces the
Monte Carlo variance for future samples.

2.3. Delayed estimation

Model (1) often exhibites strong memory. As a result, fu-
ture observations often contain information about the cur-
rent state. Hence a delayed estimate is usually more accurate
than the concurrent estimate. In delayed estimation, instead
of making inference on Λt instantaneously with the poste-
rior distribution p(Λt | Yt), we delay this inference to a later
time (t + ∆), ∆ > 0, with the distribution p(Λt | Yt+∆).
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As discussed in [13], there are primarily two approaches to
delayed estimation, namely, the delayed-weight method and
the delayed-sample method.

2.3.1. Delayed-weight method

In the concurrent MKF algorithm, if the set {(Λ( j)
t+δ ,w

( j)
t+δ)}mj=1

is properly weighted with respect to p(Λt+δ | Yt+δ), then
when we focus our attention on λt at time (t + δ), we have
that {(λ( j)

t ,w
( j)
t+δ)}mj=1 is properly weighted with respect to

p(λt | Yt+δ). Then any inference about the indicator λt,
E{h(λt) | Yt+δ}, can be approximated by

E
{
h
(
λt
) | Yt+δ

}
∼= 1

Wt+δ

m∑
j=1

h
(
λ

( j)
t

)
w

( j)
t+δ , Wt+δ =

m∑
j=1

w
( j)
t+δ.

(11)

Since the weights {w( j)
t+δ}mj=1 contain information about the

future observations (yt+1, . . . , yt+δ), the estimate in (11) is
usually more accurate than the concurrent estimate. Note
that such a delayed estimation method incurs no additional
computational cost (i.e., CPU time), but it requires some ex-
tra memory for storing {λ( j)

t , . . . , λ
( j)
t+δ}mj=1. For most systems,

this simple delayed-weight method is quite effective for im-
proving the performance over the concurrent method. How-
ever, if this method is not sufficient for exploiting the con-
straint structures of the indicator variable, we must resort to
the delayed-sample method, which is described next.

2.3.2. Delayed-sample method

An alternative method of delayed estimation is to generate

both the delayed samples and the weights {(λ( j)
t ,w

( j)
t )}mj=1

based on the observations Yt+∆, hence making p(Λt | Yt+∆)
the target distribution at time (t + ∆). The procedure will
provide better Monte Carlo samples since it utilizes the fu-
ture observations (yt+1, . . . , yt+∆) in generating the current
samples of λt . But the algorithm is also more demanding
both analytically and computationally because of the need
of marginalizing out λt+1, . . . , λt+∆.

For each possible “future” (relative to time t − 1) symbol
sequence at time (t + ∆− 1), that is,

(
λt, λt+1, . . . , λt+∆−1

) ∈A∆
1 , (12)

we keep the value of a ∆-step Kalman filter {κ( j)
t+τ(λt+τt )}∆−1

τ=0 ,
where

κ
( j)
t+τ
(
λt+τt

)
�
[
µt+τ

(
Λ

( j)
t−1, λt+τt

)
,Σt+τ

(
Λ

( j)
t−1, λt+τt

)]
, τ = 0, . . . ,∆−1,

(13)

with λba � (λa, λa+1, . . . , λb). Denote

κ
( j)
t−1 �

{
κ

( j)
t−1,

{
κ

( j)
t+τ
(
λt+τt

)}∆−1
τ=0 : λt+τt ∈Aτ+1

1

}
. (14)

The delayed-sample MKF algorithm recursively propagates
the samples properly weighted for p(Λt−1 | Yt+∆−1) to those
for p(Λt | Yt+∆) and is summarized as follows.

Algorithm 2 (delayed-sample MKF). Suppose, at time (t+∆−
1), a set of properly weighted samples {(Λ( j)

t−1,κ
( j)
t−1,w

( j)
t−1)}mj=1

is available with respect to p(Λt−1 | Yt+∆−1). Then at time
(t + ∆) as the new data yt+∆ becomes available, the following
steps are implemented to update each weighted sample.

For j = 1, 2, . . . ,m, the following steps are performed.

(i) For each λt+∆=ai∈A1, and for each λt+∆−1
t ∈A∆

1 , per-
form a one-step update on the corresponding Kalman

filter κ
( j)
t+∆−1(λt+∆−1

t ), that is,

κ
( j)
t+∆−1

(
λt+∆−1
t

) yt+∆ , λt+∆=ai−−−−−−−→ κ
( j)
t+∆

(
λt+∆−1
t , λt+∆ = ai

)
. (15)

(ii) For each ai ∈A1, compute the sampling density

ρ
( j)
t,i � P

(
λt = ai | Λ( j)

t−1, Yt+∆

)
= P

(
λt = ai | Λ( j)

t−1

)

×
∑

λt+∆t+1∈A∆
1

[ ∆∏
τ=0

p
(

yt+τ | Yt+τ−1,Λ
( j)
t−1, λt = ai, λt+τt+1

)

×
∆∏

τ=1

P
(
λt+τ | Λ( j)

t−1, λt = ai, λt+τ−1
t+1

)]
.

(16)

Note that the second density in (16) is Gaussian and
can be computed based on the results of the Kalman

filter updates in (15). Draw a sample λ
( j)
t according to

the above sampling density. Append λ
( j)
t to Λ

( j)
t−1 and

obtain Λ
( j)
t . Based on this sample, form κ

( j)
t using the

results from the previous step.

(iii) Compute the importance weight. If λ
( j)
t−1 = ak and

λ
( j)
t = ai, then

w
( j)
t = w

( j)
t−1

p
(
Λ

( j)
t | Yt+∆

)
p
(
Λ

( j)
t−1 | Yt+∆−1

)
P
(
λ

( j)
t | Λ( j)

t−1, Yt+∆

)

∝ w
( j)
t−1

∑
λt+∆t ∈A∆+1

1

[∏∆
τ=0 p

(
yt+τ | Yt+τ−1,Λ

( j)
t−1, λt+τt

)
∑

λt+∆−1
t ∈A∆

1

[∏∆−1
τ=0 p

(
yt+τ | Yt+τ−1,Λ

( j)
t−1, λt+τt

)

×
∏∆

τ=0 P
(
λt+τ | Λ( j)

t−1, λt+τ−1
t

)]
∏∆−1

τ=0 P
(
λt+τ | Λ( j)

t−1, λt+τ−1
t

)]
∝ w

( j)
t−1

ρ
( j)
t−1,k

p
(

yt−1 | Yt−2,Λ
( j)
t−1

)

× P
(
λt−1 = ak | Λ( j)

t−2

) |A1|∑
i=1

ρ
( j)
t,i .

(17)
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(iv) Resample if the effective sample size is below a certain
threshold, as discussed in Section 2.2.

Finally, as noted in [13], we can use the above delayed-
sample method in conjunction with the delayed-weight
method. For example, using the delayed-sample method, we

generate delayed samples and weights {(Λ( j)
t ,w

( j)
t )}mj=1 based

on observations Yt+∆. Then with an additional delay δ, we
can use the following delayed-weight method to approximate
any inference about the indicator λt:

E
{
h
(
λt
) | Yt+∆+δ

}
∼= 1

Wt+δ

m∑
j=1

h
(
λ

( j)
t

)
w

( j)
t+δ , Wt+δ =

m∑
j=1

w
( j)
t+δ.

(18)

3. MULTILEVEL MIXTURE KALMAN FILTER

Suppose that the indicator space has a multilevel structure.
For example, consider the following scenario of a two-level
sampling space. The first level is the original sampling space
Ω with Ω = {λi, i = 1, 2, . . . ,N}. We also have a higher-level
sampling space Ω̃ with Ω̃ = {ci, i = 1, 2, . . . , Ñ}. The higher-
level sampling space can be obtained as follows. Define the
elements (say ci) in the higher-level sampling space as the
centers of subset ωi in the original sampling space. That is,

ci = 1∣∣ωi

∣∣ ∑
j

λ jI
(
λj ∈ ωi

)
i = 1, 2, . . . , Ñ , (19)

where ωi, i = 1, 2, . . . , Ñ , is the subset in the original sam-
pling space

Ω =
Ñ⋃
i

ωi, ωi

⋂
ωj = ∅, i, j = 1, . . . , Ñ , i�= j. (20)

We call ci the parent of the elements in subset ωi and ωi the
child set of ci. We can also iterate the above merging proce-
dure on the newly created higher-level sampling space to get
an even higher-level sampling space.

For example, we consider the 16-QAM modulation sys-
tem often used in digital communications. The values of the
symbols are taken from the set

Ω = {(a, b) : a, b = ±0.5,±2.5
}
. (21)

As shown in Figure 1, the sampling space Ω can be divided
into four disjoint subsets:

ω1=
{

(0.5, 0.5), (0.5, 2.5), (2.5, 0.5), (2.5, 2.5)
}

,

ω2=
{

(−0.5, 0.5), (−0.5, 2.5), (−2.5, 0.5), (−2.5, 2.5)
}

,

ω3=
{

(−0.5,−0.5), (−0.5,−2.5), (−2.5,−0.5), (−2.5,−2.5)
}

,

ω4=
{

(0.5,−0.5), (0.5,−2.5), (2.5,−0.5), (2.5,−2.5)
}
.

(22)

Moreover, the centers of these four subspaces are c1 =
(1.5, 1.5), c2 = (−1.5, 1.5), c3 = (−1.5,−1.5), and c4 =
(1.5,−1.5). Thus, we have obtained a higher-level sampling
space composed of four elements. Then the MKF can draw
samples first from the highest-level sampling space and then
from the associated child set in the next lower-level sampling
space. The procedure is iterated until reaching the original
sampling space.

For simplicity, we will use ci,l to represent the ith symbol
value in the lth-level sampling space. Assume that there are,
in total, L levels of sampling space and the number of ele-
ments at the lth level is |Al|. The original sampling space is
defined as the first level. Then the multilevel MKF is summa-
rized as follows.

Algorithm 3 (multilevel MKF). Suppose, at time (t− 1), a set

of properly weighted samples {(Λ( j)
t−1, κ

( j)
t−1,w

( j)
t−1)}mj=1 is avail-

able with respect to p(Λt−1 | Yt−1). Then at time t, as the
new data yt becomes available, the following steps are imple-
mented to update each weighted sample.

For j = 1, . . . ,m, perform the following steps.

(A1) Draw the sample c
( j)
t,L in the Lth-level sampling space.

(a) Based on the new data yt, for each ci,L ∈ AL,
perform a one-step update on the corresponding

Kalman filter κ
( j)
t−1(λt−1) assuming ct,L = ci,L to ob-

tain

κ
( j)
t−1

(
λt−1

) yt , ci,L−−−→ κ
( j)
t,i

(
λt−1, ci,L

)
. (23)

(b) For each ci,L ∈ AL, compute the Lth-level sam-
pling density

ρ
(i, j)
t,L � P

(
ct,L = ci,L | Λ( j)

t−1,Yt

)
= p

(
yt | ci,L,Λ

( j)
t−1, Yt−1

)
P
(
ci,L | Λ( j)

t−1, Yt−1

)
.

(24)

Note that by the model (1), the first density in (24)
is Gaussian and can be computed based on the
Kalman filter update (23).

(c) Draw a sample c
( j)
t,L from the Lth-level sampling

space AL according to the above sampling density,
that is,

P
(
c

( j)
t,L = ci,L

)
∝ ρ

(i, j)
t,L , ci,L ∈AL. (25)

(A2) Draw the sample c
( j)
t,l in the lth-level sampling space.

First, find the child setω
( j)
l in the current lth-level sam-

pling space for the drawn sample c
( j)
t,l+1 in the (l + 1)th-

level sampling space, then proceed with three more
steps.

(a) For each c
( j)
i,l , i = 1, 2, . . . , |ω( j)

l | in the child setω
( j)
l ,

perform a one-step update on the corresponding

Kalman filter κ
( j)
t−1(λt−1) to obtain

κ
( j)
t−1

(
λt−1

) yt , c
( j)
i,l−−−→ κ

( j)
t,i

(
λt−1, c

( j)
i,l

)
. (26)
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(b) For each c
( j)
i,l , compute the sampling density

ρ
(i, j)
t,l � P

(
ct,l = c

( j)
i,l | Λ( j)

t−1,Yt

)
= p

(
yt | c( j)

i,l ,Λ
( j)
t−1, Yt−1

)
P
(
c

( j)
i,l | Λ( j)

t−1, Yt−1

)
.

(27)

Note that the first density in (27) is also Gaussian
and can be computed based on the Kalman filter
update (26).

(c) Draw a sample c
( j)
t,l according to the sampling den-

sity, that is,

P
(
c

( j)
t,l = c

( j)
i,l

)
∝ ρ

(i, j)
t,l , c

( j)
i,l ∈ ω

( j)
l . (28)

Repeat the above steps for the next level until we draw

a sample λ
( j)
t = c

( j)
t,1 from the original sampling space.

(A3) Append the symbol λ
( j)
t to Λ

( j)
t−1 and obtain Λ

( j)
t .

(A4) Compute the trial sampling probability. Assuming the

drawn sample c
( j)
t,l = c

i, j
t,l in the lth-level sampling space

and the associated sampling probability is ρ
(i, j)
t,l , then

the effective sampling probability P̃(λ
( j)
t | Λ( j)

t−1, Yt) can
be computed as follows:

P̃
(
λ

( j)
t | Λ( j)

t−1, Yt

)
=

L∏
l=1

ρ
(i, j)
t,l . (29)

(A5) Compute the importance weight

w
( j)
t = w

( j)
t−1

p
(
Λ

( j)
t−1, λ

( j)
t | Yt

)
p
(
Λ

( j)
t−1 | Yt−1

)
P̃
(
λ

( j)
t | Λ( j)

t−1, Yt

)
= w

( j)
t−1

p
(

yt | λ( j)
t , Yt−1

)
P
(
λ

( j)
t | Λ( j)

t−1, Yt−1

)
∏L

l=1 ρ
(i, j)
t,l

.

(30)

(A6) Resample if the effective sample size is below a certain
threshold, as discussed in Section 2.2.

Remark 1 (complexity). Note that the dominant computa-
tion required for the above multilevel MKF is the update of
the Kalman filter in (23) and (26). Denote J � |A1| and
Kl � |ωl|. The number of one-step Kalman filter updates
in the multilevel MKF is N = ∑L

l=1 Kl. Consider the 16-
QAM and its corresponding two-level sampling space shown
in Figure 1. There are N = 8 one-step Kalman filter updates
needed by the multilevel MKF, whereas, the original MKF
requires J = 16 Kalman updates for each Markov stream.
Hence, the computation complexity is reduced by half by the
multilevel MKF.

Remark 2 (properties of the weighted samples). From (30),
we have

w
( j)
t−1 = w

( j)
t−2

p
(
Λ

( j)
t−2, λ

( j)
t−1 | Yt−1

)
p
(
Λ

( j)
t−2 | Yt−2

)
P̃
(
λ

( j)
t−1 | Λ( j)

t−2, Yt−1

) . (31)

Substituting it into (30), and repeating the procedure with

w
( j)
t−2, . . . ,w

( j)
1 , respectively, we finally have

w
( j)
t

=
p
(
Λ

( j)
t−1, λ

( j)
t | Yt

)
P̃
(
λ

( j)
1 | Λ( j)

0 , Y1

)
· · · P̃

(
λ

( j)
t−1 | Λ( j)

t−2, Yt−1

)
P̃
(
λ

( j)
t | Λ( j)

t−1, Yt

) .
(32)

Consequently, the samples {Λ( j)
t ,w

( j)
t }mj=1 drawn by the above

procedure are properly weighted with respect to p(Λt | Yt)

provided that {Λ( j)
t−1,w

( j)
t−1}mj=1 are properly weighted with re-

spect to p(Λt−1 | Yt−1).

4. DELAYED MULTILEVEL MIXTURE
KALMAN FILTER

The delayed-sample method is used to generate samples

{(λ( j)
t ,ω

( j)
t )}mj=1 based on the observations Yt+∆, hence mak-

ing p(Λt | Yt+∆) the target distribution at time (t + ∆). The
procedure will provide better Monte Carlo samples since it
utilizes the future observations (yt+1, . . . , yt+∆) in generating
the current samples of λt . But the algorithm is also more de-
manding both analytically and computationally because of
the need of marginalizing out λt+1, . . . , λt+∆.

Instead of exploring the “future” symbol sequences in
the original sampling space, our proposed delayed multilevel
MKF will marginalize out the future symbols in a higher-
level sampling space. That is, for each possible “future” (rel-
ative to time t − 1) symbol sequence at time (t + ∆), that is,

(
λt, ct+1,l, . . . , ct+∆,l

) ∈A1 ×A∆
l (l > 1), (33)

where ct,l is the symbol in the lth-level sampling space,

we compute the value of a ∆-step Kalman filter {κ( j)
t+τ(λt,

ct+τt+1,l)}∆τ=1, where

κ
( j)
t+τ
(
λt , ct+τt+1,l

)
�
[
µt+τ

(
Λ

( j)
t−1, λt, ct+τt+1,l

)
,Σt+τ

(
Λ

( j)
t−1, λt, ct+τt+1,l

)]
, τ=1, . . . ,∆,

(34)

with cba,l � (ca,l, ca+1,l, . . . , cb,l). The delayed multilevel MKF
recursively propagates the samples properly weighted for
p(Λt−1 | Yt+∆−1) to those for p(Λt | Yt+∆) and is summa-
rized as follows.

Algorithm 4 (delayed multilevel MKF). Suppose, at time (t−
1), a set of properly weighted samples {(Λ( j)

t−1, κ
( j)
t−1,w

( j)
t−1)}mj=1

is available with respect to p(Λt−1 | Yt+∆−1). Then at time t,
as the new data yt+∆ becomes available, the following steps
are implemented to update each weighted sample.

For j = 1, . . . ,m, apply the following steps.
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(A1) For each λt = ai ∈ A1, and for each ct+∆t+1,l ∈ A∆
l , per-

form the update on the corresponding Kalman filter

κ
( j)
t+∆−1(λt, ct+∆−1

t+1,l ), that is,

κ
( j)
t+τ−1

(
λt , ct+τ−1

t+1,l

) yt+τ , ct+τ,l−−−−−→ κ
( j)
t+τ
(
λt, ct+τt+1,l

)
. (35)

(A2) For each ai ∈A1, compute the sampling density

ρ
( j)
t,i � P

(
λt = ai | Λ( j)

t−1, yt+∆
)

=
∑

ct+∆t+1,l∈A∆
l

p
(

yt+∆
t , λt, ct+∆t+1,l | Λ( j)

t−1, Y
( j)
t−1

)
∝ P

(
λt = ai | Λ( j)

t−1

)
×

∑
ct+∆t+1,l∈A∆

l

[ ∆∏
τ=0

p
(

yt+τ | Yt+τ−1,Λ
( j)
t−1, λt = ai, ct+τt+1,l

)

×
∆∏

τ=1

P
(
ct+τ,l | ct+τ−1

t+1,l , λt = ai,Λ
( j)
t−1

)]
.

(36)

(A3) Draw a sample λ
( j)
t according to the above sampling

density, that is,

P
(
λ

( j)
t = λi

)
∝ ρ

( j)
t,i . (37)

(A4) Append the sample λ
( j)
t to Λ

( j)
t−1 and obtain Λ

( j)
t .

(A5) Compute the importance weight

w
( j)
t = w

( j)
t−1

p
(
Λ

( j)
t−1, λ

( j)
t | Yt+∆

)
p
(
Λ

( j)
t−1 | Yt+∆−1

)
P
(
λ

( j)
t | Λ( j)

t−1, Yt+∆

)
∝ w

( j)
t−1

∑
Ct+∆
t+1,l∈A∆

l
p
(

yt+∆
t , ct+∆t+1,l, λ

( j)
t | Λ( j)

t−1, Yt−1

)
∑

Ct+∆−1
t,l ∈A∆

l
p
(

yt+∆−1
t , ct+∆−1

t,l | Λ( j)
t−1, Yt−1

)
ρ

( j)
t,i

= w
( j)
t−1

∑
Ct+∆
t+1,l∈A∆

l

[∏∆
τ=1 p

(
yt+τ |Yt+τ−1,Ct+τ

t+1,l, λ
( j)
t ,Λ

( j)
t−1

)
∑

ct+∆−1
t,l ∈A∆

l

[∏∆−1
τ=0 p

(
yt+τ | Yt+τ−1,Ct+τ

t,l ,Λ
( j)
t−1

)
×
P
(
λ

( j)
t | Λ( j)

t−1, Yt−1

)∏∆
τ=1 P

(
ct+τ,l | ct+τ−1

t+1,l ,Λ
( j)
t

)]
∏∆−1

τ=0 P
(
ct+τ,l | Ct+τ−1

t,l ,Λ
( j)
t−1

)
ρ

( j)
t,i

] .

(38)
(A6) Do resampling if the effective sample size is below a

certain threshold, as discussed in Section 2.2.

Remark 3 (properties of the weighted samples). Similar to
the multilevel sampling algorithm in Section 3, it can be

shown that the samples {Λ( j)
t ,w

( j)
t }mj=1 drawn by the above

procedure are properly weighted with respect to p(Λt | Yt+∆)

provided that {Λ( j)
t−1,w

( j)
t−1}mj=1 are properly weighted with re-

spect to p(Λt−1 | Yt+∆−1). However, the likelihood function

p(yt+τ | Yt+τ−1,Ct+τ
t,l ,Λ

( j)
t−1) is not simply a Gaussian distri-

bution any more, but a mixture of Gaussian components.
Since the mixture of Gaussian distribution is implausible to
be achieved within the rough sampling space, it has to be ap-
proximated with a Gaussian distribution computed by the

Kalman filter assuming that the elements in the higher-level
sampling space are transmitted. Therefore, some bias will be
introduced into the computation of the weight. On the other
hand, we make use of more information in the approxima-

tion of better distribution p(Λ
( j)
t−1, λ

( j)
t | Yt+∆), which makes

the algorithm more efficient than the original MKF.

Remark 4 (properly weighted samples). To mitigate the bias
problem introduced in the weight computation, instead of
(38), we can use the following importance weight:

w
( j)
t = w

( j)
t−1

p
(
Λ

( j)
t−1, λ

( j)
t | Yt

)
p
(
Λ

( j)
t−1 | Yt−1

)
P̃
(
λ

( j)
t | Λ( j)

t−1, Yt+∆

)
= w

( j)
t−1

p
(

yt | λ( j)
t , Yt−1

)
P
(
λ

( j)
t | Λ( j)

t−1, Yt−1

)
ρ

( j)
t,i

.

(39)

Similar to the multilevel sampling algorithm in Section 3, it

is easily seen that the samples {Λ( j)
t ,w

( j)
t }mj=1 drawn by the

above procedure are properly weighted with respect to p(Λt |
Yt) provided that {Λ( j)

t−1,w
( j)
t−1}mj=1 are properly weighted with

respect to p(Λt−1 | Yt−1). Since the whole procedure is just
to get better samples based on the future information, de-
layed weight may be very effective. Furthermore, there is no
bias anymore in the weight computation although we still ap-
proximate the mixture Gaussian distribution with a Gaussian
distribution as in Remark 3.

Remark 5 (complexity). Note that the dominant computa-
tion required for the above delayed multilevel MKF is mainly
in the first step. Denote J � |A1| and M � |Al|. The number
of one-step Kalman filter updates in the delayed multilevel
MKF can be computed as follows:

N = J + JM + · · · + JM∆ = J
M∆+1 − 1
M − 1

. (40)

Note that the delayed-sample MKF requires J∆+1 Kalman up-
dates at each time. Since usually M � J , compared with the
delayed-sample MKF, the computational complexity of the
delayed multilevel MKF is significantly reduced.

Remark 6 (alternative sampling method). To further reduce
the computational complexity in the first step, we can take
the alternative sampling method composed of the following
steps.

Algorithm 5 (alternative sampling method). (1) At time t+∆,
for each ct+∆t,l ∈ A∆

l , perform the update on the correspond-

ing Kalman filter κ
( j)
t+∆−1(ct+∆−1

t,l ), that is,

κ
( j)
t+τ−1

(
ct+τ−1
t,l

) yt+τ , ct+τ,l−−−−−→ κ
( j)
t+τ
(
ct+τt,l

)
. (41)

(2) Select K paths from ct+∆t+1,l based on the computed
weight

∆∏
τ=0

p
(

yt+τ | Yt+τ−1,Λ
( j)
t−1, ct+τt,l

)
P
(
ct+τ,l | ct+τ−1

t,l ,Λ
( j)
t−1

)
. (42)
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(3) For each λt = ai ∈ A1, and for each path k in the
selected K paths, perform the update on the corresponding

Kalman filter κ
( j)
t+∆−1(λt, c

t+∆−1,k
t+1,l ), that is,

κ
( j)
t+τ−1

(
λt, c

t+τ−1,k
t+1,l

) yt+τ , ct+τ,lk−−−−−−→ κ
( j)
t+τ
(
λt, c

t+τ,k
t+1,l

)
. (43)

(4) For each ai ∈A1, compute the sampling density

ρ
( j)
t,i � P

(
λt = ai | Λ( j)

t−1

)
×

K∑
k=1

[ ∆∏
τ=0

p
(

yt+τ | Yt+τ−1,Λ
( j)
t−1, λt = ai, c

t+τ,k
t+1,l

)

×
∆∏

τ=1

P
(
ckt+τ,l | ct+τ−1,k

t+1,l , λt = ai,Λ
( j)
t−1

)]
.

(44)

The weight calculation can be computed by (40) for the
target distribution p(λt | Yt) or (45) for the target distri-
bution p(λt | Yt+∆). Besides the bias that resulted from the
Gaussian approximation in Remark 3, the latter also intro-
duces new bias because of the summation over K selected
paths, other than the whole sampling space in higher level.
However, the first one does not introduce any bias as in
Remark 4. Denote J � |A1| and M � |Al|. The number
of one-step Kalman filter updates in the delayed multilevel
MKF can be computed as N = JK + M∆.

Remark 7 (the choice of the parameters). Note that the per-
formance of the delayed multilevel MKF is mainly dominated
by the two important parameters: the number of prediction
steps ∆ and the specific level of the sampling space Al. With
the same computation, the delayed multilevel MKF can see
further “future” steps (larger∆) with a coarser-level sampling
space (larger l), whereas it can see the “future” samples in a
finer sampling space (smaller l), but with smaller ∆ steps.

Remark 8 (multiple sampling space). In Algorithm 5, we can
also use different sampling spaces for different delay steps.
That is, we can gradually increase the sampling space from
the lower level to the higher level with an increase in the delay
step.

5. SIMULATIONS

We consider the problem of adaptive detection in flat-fading
channels in the presence of Gaussian noise. This problem is
of fundamental importance in communication theory and
an array of methodologies have been developed to tackle
this problem. Specifically, the optimal detector for flat-fading
channels with known channel statistics is studied in [24, 25],
which has a prohibitively high complexity. Suboptimal re-
ceivers in flat-fading channels employ a two-stage structure,
with a channel estimation stage followed by a sequence de-
tection stage. Channel estimation is typically implemented
by a Kalman filter or a linear predictor, and is facilitated by
per-survivor processing (PSP) [26], decision feedback [27],
pilot symbols [28], or a combination of the above [29].

Other suboptimal receivers for flat-fading channels include
the method based on a combination of a hidden Markov
model and a Kalman filtering [30], and the approach based
on the expectation-maximization (EM) algorithm [31].

In the communication system, the transmitted data sym-
bols {st} take values from a finite alphabet set A1 = {a1,
. . . , a|A1|}, and each symbol is transmitted over a Rayleigh
fading channel. As shown in [32, 33], the fading process is
adequately represented by an ARMA model, whose param-
eters are chosen to match the spectral characteristics of the
fading process. That is, the fading process is modelled by the
output of a lowpass Butterworth filter of order r driven by
white Gaussian noise

{
αt
} = Θ(D)

Φ(D)

{
ut
}

, (45)

where D is the back-shift operator Dk, ut � ut−k; Φ(z) �
φrzr + · · ·+φ1z+ 1; Θ(z) � θrzr + · · ·+θ1z+θ0; and {ut} is
a white complex Gaussian noise sequence with unit variance
and independent real and complex components. The coef-
ficients {φi} and {θi}, as well as the order r of the Butter-
worth filter, are chosen so that the transfer function of the
filter matches the power spectral density of the fading pro-
cess, which in turn is determined by the channel Doppler
frequency. On the other hand, a simpler method, which uses
a two-path model to build ARMA process, can be found
in [34]; the results there closely approximate more complex
path models. Then such a communication system has the fol-
lowing state-space model form:

xt = Fxt−1 + gut, (46)

yt = sthHxt + σvt, (47)

where

F �



−φ1 −φ2 · · · −φr 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 , g �


1
0
...
0

 . (48)

The fading coefficient sequence {αt} can then be written as

αt = hHxt , h �
[
θ0 θ1 · · · θr

]
. (49)

In the state-space model, {ut} in (46) and {vt} in (47) are the
white complex Gaussian noise sequences with unit variance
and independent real and imaginary components:

ut
i.i.d.∼ Nc(0, 1), vt

i.i.d.∼ Nc(0, 1). (50)

In our simulations, the fading process is specifically mod-
eled by the output of a Butterworth filter of order r = 3
driven by a complex white Gaussian noise process. The cut-
off frequency of this filter is 0.05, corresponding to a normal-
ized Doppler frequency (with respect to the symbol rate 1/T)
fdT = 0.05, which is a fast-fading scenario. That is, the fading
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coefficients {αt} are modeled by the following ARMA(3,3)
process:

αt − 2.37409αt−1 + 1.92936αt−2 − 0.53208αt−3

= 10−2(0.89409ut + 2.68227ut−1 + 2.68227ut−2

+ 0.89409ut−3
)
,

(51)

where ut ∼ Nc(0, 1). The filter coefficients in (51) are chosen
such that Var{αt} = 1. However, a simpler method, which
uses a two-path model to build ARMA process, can be found
in [34].

We then apply the proposed multilevel MKF methods to
the problem of online estimation of the a posteriori probabil-
ity of the symbol st based on the received signals up to time
t. That is, at time t, we need to estimate

P
(
st = ai | Yt

)
, ai ∈A1. (52)

Then a hard maximum a posteriori (MAP) decision on sym-
bol st is given by

ŝt = arg max
ai∈A1

P
(
st = ai | Yt

)
. (53)

If we obtain a set of Monte Carlo samples of the transmitted

symbols {(S
( j)
t ,w

( j)
t )}mj=1, properly weighted with respect to

p(St | Yt), then the a posteriori symbol probability in (52) is
approximated by

p
(
st = ai | Yt

) ∼= 1
Wt

m∑
j=1

1
(
s

( j)
t = ai

)
w

( j)
t , ai ∈A1, (54)

with Wt � ∑m
j=1 w

( j)
t .

In this paper, we use the 16-QAM modulation. Note that
the 16-QAM modulation has much more phase ambiguities
than the BPSK in [13]. We have provided the following two
schemes to resolve phase ambiguities.

Scheme 1 (pilot-assisted). Pilot symbols are inserted period-
ically every fixed length of symbols; the similar scheme was
used in [20]. In this paper, 10% and 20% pilot symbols are
studied.

Scheme 2 (differential 16-QAM). We view the 16-QAM as
a pair of QPSK symbols. Then two differential QPSKs will
be used to resolve the phase ambiguity. Given the trans-
mitted symbol st−1 and information symbol dt , they can
be represented by the QPSK symbol pair as (rst−1,1, rst−1,2)
and (rdt ,1, rdt ,2), respectively. Then the differential modula-
tion scheme is given by

rst ,1 = rst−1,1 · rdt ,1, rst ,2 = rst−1,2 · rdt ,2. (55)

The two-QPSK symbol pair (rst ,1, rst ,2) will be mapped to the
16-QAM symbols and then transmitted through the fading
channel. The traditional differential receiver performs the
following steps:

rdt ,1 = rdt ,1 · r∗st−1,1, rdt ,2 = rst ,2 · r∗st−1,2. (56)

0 5 10 15 20 25

Eb/N0 (dB)

10−3

10−2

10−1

100

B
E

R

PSP (10% pilot)
PSP (20% pilot)
Multilevel (10% pilot)
MKF (10% pilot)
Multilevel (20% pilot)
MKF (20% pilot)
Genie bound

Figure 2: The BER performance of the PSP, MKF, and multilevel
MKF for pilot-aided 16-QAM over flat-fading channels.

We next show the performance of the multilevel MKF
algorithm for detecting 16-QAM over flat-fading channels.
The receiver implements the decoding algorithms discussed
in Section 3 in combination with the delayed-weight method
under Schemes 1 and 2 discussed above. In our simulations,
we take m = 50 Markov streams. The length of the symbol
sequence is 256. We first show the bit error rate (BER) per-
formance versus the signal-to-noise (SNR) by the PSP, the
multilevel MKF, and the MKF receiver under different pilot
schemes without delayed weight in Figure 2 and with delayed
weight in Figure 3. The numbers of bit errors were collected
over 50 independent simulations at low SNR or more at high
SNR. In these figures, we also plotted the “genie-aided lower
bound.”1 The BER performance of PSP is far from the ge-
nie bound at SNR higher than 10 dB. But the performance
of the multilevel MKF with 20% pilot symbol is very close
to the genie bound. Furthermore, with the delayed-weight
method, the performance of the multilevel MKF can be sig-
nificantly improved. We next show the BER performance in
Figure 4 under the differential coding scheme. As in the pilot-
assisted scheme, the BER performance of PSP is far from the
genie bound at SNR higher than 15 dB. On the contrary, the

1The genie-aided lower bound is obtained as follows. We assume that
at each time t, a genie provides the receiver with an observation of the
modulation-free channel coefficient corrupted by additive white Gaussian
noise with the same variance, that is, ỹt = αt + ñt , where ñt ∼ Nc(0, σ2).
The receiver employs a Kalman filter to track the fading process based on
the information provided by the genie, that is, it computes α̂t = E{αt | ỹt}.
An estimate of the transmitted 16-QAM is obtained by slicing (yt α̂�t ).
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Figure 3: The BER performance of the PSP, the MKF with delayed
weight (δ = 10), and the multilevel MKF with delayed weight (δ =
10) for pilot-aided 16-QAM over flat-fading channels.

performance of the multilevel MKF is very close to that of the
original MKF although there is a 5 dB gap between the genie
bound and the performance of the multilevel MKF.

The BER performance of the MKF and the multilevel
MKF with or without delayed weight versus the number of
Markov streams is shown in Figure 5 under the differential
coding scheme. The BER is gradually improved from the
value 0.16 to the value about 0.08 for multilevel MKF, 0.07
for MKF, 0.065 for multilevel MKF with delayed weight, and
0.062 for MKF with delayed weight with 25 Markov streams.
However, the BER performance can not be improved any-
more with more than 25 streams. Therefore, the optimal
number of Markov streams will be 25 in this example.

Next, we illustrate the performance of the delayed multi-
level MKF. The receiver implements the decoding algorithms
discussed in Section 4. We show the BER performance ver-
sus SNR in Figure 6, computed by the delayed-sample or
the delayed multilevel MKF with one delayed step (∆ = 1).
The BER performance of the MKF and the MKF with de-
layed weight is also plotted in the same figure. In the de-
layed multilevel MKF, we implement two schemes for choos-
ing the sampling space for the “future” symbols. In the first
scheme, we choose the second-level (l = 2) sampling space
A2 = {c1, c2, c3, c4}, where ci, i = 1, . . . , 4, are the solid circles
shown in Figure 1; and in the second scheme, we choose the
third-level (l = 3) sampling space A3 = {c1 + c2, c3 + c4}. It
is seen that the BER of the multilevel MKF is very close to
that of the delayed-sample algorithm. It is also seen that the
performance of the multilevel MKF method is conditioned
on the specific level sampling space. The performance of the
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Multilevel with delayed weight (δ = 10)
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Figure 4: The BER performance of the PSP, the MKF, and the mul-
tilevel MKF for differential 16-QAM over flat-fading channels. The
delayed-weight method is used with δ = 10.
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Figure 5: The BER performance of the MKF, and the multilevel
MKF for differential 16-QAM over flat-fading channels versus the
number of Markov streams. The delayed-weight method is used
with δ = 10.

delayed multilevel MKF based on the second-level sampling
space A2 is nearly 2 dB better than that based on the third-
level sampling space A3.
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Figure 6: The BER performance of the delayed multilevel MKF with
the second (l = 2)-level or the third (l = 3)-level sampling space for
the differential 16-QAM system over flat-fading channels. The BER
performance of the delayed-sample method is also shown.

6. CONCLUSION

In this paper, we have developed a new sequential Monte
Carlo (SMC) sampling method—the multilevel mixture
Kalman filter (MKF)—under the framework of MKF for
conditional dynamic linear systems. This new scheme gener-
ates random streams using sequential importance sampling
(SIS), based on the multilevel or hierarchical structure of the
indicator random variables. This technique can also be used
in conjunction with the delayed estimation methods, result-
ing in a delayed multilevel MKF. Moreover, the performance
of both the multilevel MKF and the delayed multilevel MKF
can be further enhanced when employed in conjunction with
the delayed-weight method.

We have also applied the multilevel MKF algorithm and
the delayed multilevel MKF algorithm to solve the problem
of adaptive detection in flat-fading communication channels.
It is seen that compared with the receiver algorithm based on
the original MKF, the proposed multilevel MKF techniques
offer very good performance. It is also seen that the receivers
based on the delayed multilevel MKF can achieve similar per-
formance as that based on the delayed-sample MKF, but with
a much lower computational complexity.
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Newly developed resampling algorithms for particle filters suitable for real-time implementation are described and their analysis
is presented. The new algorithms reduce the complexity of both hardware and DSP realization through addressing common issues
such as decreasing the number of operations and memory access. Moreover, the algorithms allow for use of higher sampling
frequencies by overlapping in time the resampling step with the other particle filtering steps. Since resampling is not dependent
on any particular application, the analysis is appropriate for all types of particle filters that use resampling. The performance of
the algorithms is evaluated on particle filters applied to bearings-only tracking and joint detection and estimation in wireless
communications. We have demonstrated that the proposed algorithms reduce the complexity without performance degradation.
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1. INTRODUCTION

Particle filters (PFs) are very suitable for nonlinear and/or
non-Gaussian applications. In their operation, the main
principle is recursive generation of random measures, which
approximate the distributions of the unknowns. The ran-
dom measures are composed of particles (samples) drawn
from relevant distributions and of importance weights of
the particles. These random measures allow for computation
of all sorts of estimates of the unknowns, including mini-
mum mean square error (MMSE) and maximum a posteriori
(MAP) estimates. As new observations become available, the
particles and the weights are propagated by exploiting Bayes
theorem and the concept of sequential importance sampling
[1, 2].

The main goals of this paper are the development of re-
sampling methods that allow for increased speeds of PFs, that
require less memory, that achieve fixed timings regardless of
the statistics of the particles, and that are computationally
less complex. Development of such algorithms is extremely

critical for practical implementations. The performance of
the algorithms is analyzed when they are executed on a dig-
ital signal processor (DSP) and specially designed hardware.
Note that resampling is the only PF step that does not de-
pend on the application or the state-space model. Therefore,
the analysis and the algorithms for resampling are general.

From an algorithmic standpoint, the main challenges in-
clude development of algorithms for resampling that are
suitable for applications requiring temporal concurrency.1

A possibility of overlapping PF operations is considered be-
cause it directly affects hardware performance, that is, it in-
creases speed and reduces memory access. We investigate se-
quential resampling algorithms and analyze their computa-
tional complexity metrics including the number of opera-
tions as well as the class and type of operation by perform-
ing behavioral profiling [3]. We do not consider fixed point

1Temporal concurrency quantifies the expected number of operations
that are simultaneously executed, that is, are overlapped in time.
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precision issues, where a hardware solution of resampling
suitable for fixed precision implementation has already been
presented [4].

The analysis in this paper is related to the sample
importance resampling (SIR) type of PFs. However, the anal-
ysis can be easily extended to any PF that performs resam-
pling, for instance, the auxiliary SIR (ASIR) filter. First, in
Section 2 we provide a brief review of the resampling opera-
tion. We then consider random and deterministic resampling
algorithms as well as their combinations. The main feature
of the random resampling algorithm, referred to as residual-
systematic resampling (RSR) and described in Section 3, is
to perform resampling in fixed time that does not depend on
the number of particles at the output of the resampling pro-
cedure. The deterministic algorithms, discussed in Section 4,
are threshold-based algorithms, where particles with mod-
erate weights are not resampled. Thereby significant savings
can be achieved in computations and in the number of times
the memories are accessed. We show two characteristic types
of deterministic algorithms: a low-complexity algorithm and
an algorithm that allows for overlapping of the resampling
operation with the particle generation and weight computa-
tion. The performance and complexity analysis are presented
in Section 5 and the summary of our contributions is out-
lined in Section 6.

2. OVERVIEW OF RESAMPLING IN PFs

PFs are used for tracking states of dynamic state-space mod-
els described by the set of equations

xn = f
(

xn−1
)

+ un,

yn = g
(

xn
)

+ vn,
(1)

where xn is an evolving state vector of interest, yn is a vector
of observations, un and vn are independent noise vectors with
known distributions, and f (·) and g(·) are known functions.
The most common objective is to estimate xn as it evolves in
time.

PFs accomplish tracking of xn by updating a random

measure {x(m)
1:n ,w(m)

n }Mm=1,2 which is composed of M parti-
cles x(m)

n and their weights w(m)
n defined at time instant n,

recursively in time [5, 6, 7]. The random measure approxi-
mates the posterior density of the unknown trajectory x1:n,
p(x1:n|y1:n), where y1:n is the set of observations.

In the implementation of PFs, there are three important
operations: particle generation, weight computation, and re-
sampling. Resampling is a critical operation in particle filter-
ing because with time, a small number of weights dominate
the remaining weights, thereby leading to poor approxima-
tion of the posterior density and consequently to inferior es-
timates. With resampling, the particles with large weights are
replicated and the ones with negligible weights are removed.

2The notation x1:n signifies x1:n = {x1, x2, . . . , xn}.

After resampling, the future particles are more concentrated
in domains of higher posterior probability, which entails im-
proved estimates.

The PF operations are performed according to

(1) generation of particles (samples) x(m)
n ∼ π(xn|x(imn−1)

n−1 ,

y1:n), where π(xn|x(imn−1)
n−1 , y1:n) is an importance density

and i(m)
n is an array of indexes, which shows that the

particle m should be reallocated to the position i(m)
n ;

(2) computation of weights by

w∗(m)
n = w

(imn−1)
n−1

a
(imn−1)
n−1

p
(

yn
∣∣x(m)

n
)
p
(

x(m)
n
∣∣x(imn−1)

n−1

)
π
(

x(m)
n
∣∣x(imn−1)

n−1 , y1:n
) (2)

followed by normalization w(m)
n = w∗(m)

n /
∑M

j=1 w
∗( j)
n ;

(3) resampling i(m)
n ∼ a(m)

n , where a(m)
n is a suitable resam-

pling function whose support is defined by the particle

x(m)
n [8].

The above representation of the PF algorithm provides a
certain level of generality. For example, the SIR filter with

a stratified resampling is implemented by choosing a(m)
n =

w(m)
n for m = 1, . . . ,M. When a(m)

n = 1/M, there is no re-
sampling and i(m)

n = m. The ASIR filter can be implemented

by setting a(m)
n = w(m)

n p(yn+1|µ(m)
n+1) and π(xn) = p(xn|x(m)

n−1),
where µ(m)

n is the mean, the mode, or some other likely value

associated with the density p(xn|x(m)
n−1).

3. RESIDUAL SYSTEMATIC RESAMPLING
ALGORITHM

In this section, we consider stratified random resampling al-

gorithms, where a(m)
n = w(m)

n [9, 10, 11]. Standard algorithms
used for random resampling are different variants of strati-
fied sampling such as residual resampling (RR) [12], branch-
ing corrections, [13] and systematic resampling (SR) [6]. SR
is the most commonly used since it is the fastest resampling
algorithm for computer simulations.

We propose a new resampling algorithm which is based
on stratified resampling, and we refer to it as RSR [14]. Sim-
ilar to RR, RSR calculates the number of times each particle
is replicated except that it avoids the second iteration of RR
when residual particles need to be resampled. Recall that in
RR, the number of replications of a specific particle is deter-
mined in the first loop by truncating the product of the num-
ber of particles and the particle weight. In RSR instead, the
updated uniform random number is formed in a different
fashion, which allows for only one iteration loop and pro-
cessing time that is independent of the distribution of the
weights at the input. The RSR algorithm for N input and M
output (resampled) particles is summarized by Algorithm 1.

Figure 1 graphically illustrates the SR and RSR methods
for the case of N = M = 5 particles with weights given
in Table 1. SR calculates the cumulative sum of the weights

C(m) = Σm
i=1w

(i)
n and compares C(m) with the updated uni-

form number U (m) for m = 1, . . . ,N . The uniform number
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Purpose: generation of an array of indexes {i}N1 at time
instant n, n > 0.

Input: an array of weights {wn}N1 , input and output
number of particles, N and M, respectively.

Method:
(i) = RSR(N ,M,w)
Generate a random number ∆U (0) ∼U[0, 1/M]
for m = 1–N

i(m) = �(w(m)
n − ∆U (m−1)) ·M� + 1

∆U (m) = ∆U (m−1) + i(m)/M −w(m)
n

end

Algorithm 1: Residual systematic resampling algorithm.

U (0) is generated by drawing from the uniform distribution
U[0, 1/M] and updated by U (m) = U (m−1) + 1/M. The num-
ber of replications for particle m is determined as the num-
ber of times the updated uniform number is in the range
[C(m−1),C(m)). For particle 1, U (0) and U (1) belong to the
range [0,C(1)), so that this particle is replicated twice, which
is shown with two arrows that correspond to particle 1. Par-
ticles 2 and 3 are replicated once. Particle 4 is discarded
(i(4) = 0) because no U (m) for m = 1, . . . ,N appears in the
range [C(3),C(4)).

The RSR algorithm draws the uniform random number
U (0) = ∆U (0) in the same way but updates it by ∆U (m) =
∆U (m−1) + i(m)/M − w(m)

n . In the figure, we display both

U (m) = ∆U (m−1) +i(m)/M and ∆U (m) = U (m)−w(m)
n . Here, the

uniform number is updated with reference to the origin of the
currently considered weight, while in SR, it is propagated with
reference to the origin of the coordinate system. The difference
∆U (m) between the updated uniform number and the cur-
rent weight is propagated. Figure 1 shows that i(1) = 2 and
that ∆U (1) is calculated and then used as the initial uniform
random number for particle 2. Particle 4 is discarded because
∆U (3) = U (4) > w(4), so that �(w(4)

n − ∆U (3)) ·M� = −1 and
i(4) = 0. If we compare ∆U (1) with the relative position of the
U (2) and C(1) in SR, ∆U (2) in RSR with the relative position
of U (3) and C(2) in SR, and so on, we see that they are equal.
Therefore, SR and RSR produce identical resampling result.

3.1. Particle allocation and memory usage

We call particle allocation the way in which particles are
placed in their new memory locations as a result of resam-
pling. With proper allocation, we want to reduce the number
of memory accesses and the size of state memory. The allo-
cation is performed through index addressing, and its execu-
tion can be overlapped in time with the particle generation
step. In Figure 2, three different outputs of resampling for
the input weights from Figure 1 are considered. In Figure 2a,
the indexes represent positions of the replicated particles. For
example, i(2) = 1 means that particle 1 replaces particle 2.
Particle allocation is easily overlapped with particle genera-
tion using x̃(m) = x(i(m)) for m = 1, . . . ,M, where {x̃(m)}Mm=1

is the set of resampled particles. The randomness of the re-
sampling output makes it difficult to realize in-place storage
so that additional temporary memory for storing resampled

particles x̃(m) is necessary. In Figure 2a, particle 1 is replicated
twice and occupies the locations of particles 1 and 2. Particle
2 is replicated once and must be stored in the memory of x̃(m)

or it would be rewritten. We refer to this method as particle
allocation with index addressing.

In Figure 2b, the indexes represent the number of times
each particle is replicated. For example, i(1) = 2 means that
particle 1 is replicated twice. We refer to this method as par-
ticle allocation with replication factors. This method still re-
quires additional memory for particles and memory for stor-
ing indexes.

The additional memory for storing the particles x̃(m) is
not necessary if the particles are replicated to the positions
of the discarded particles. We call this method particle alloca-
tion with arranged indexes of positions and replication factors
(Figure 2c). Here, the addresses of both replicated particles
and discarded particles as well as the number of times they
are replicated (replication factor) are stored. The indexes are
arranged in a way so that the replicated particles are placed
in the upper and the discarded particles in the lower part of
the index memory. In Figure 2c, the replicated particles take
the addresses 1 − 4 and the discarded particle is on the ad-
dress 5. When one knows in advance the addresses of the dis-
carded particles, there is no need for additional memory for
storing the resampled particles x̃(m) because the new particles
are placed on the addresses occupied by the particles that are
discarded. It is useful for PFs applied to multidimensional
models since it avoids need for excessive memory for storing
temporary particles.

For the RSR method, it is natural to use particle alloca-
tion with replication factor and arranged indexes because the
RSR produces replication factors. In the particle generation
step, the for loop with the number of iterations that corre-
sponds to the replication factors is used for each replicated
particle. The difference between the SR and the RSR meth-
ods is in the way the inner loop in the resampling step for SR
and particle generation step for RSR is performed. Since the
number of replicated particles is random, the while loop in
SR has an unspecified number of operations. To allow for an
unspecified number of iterations, complicated control struc-
tures in hardware are needed [15]. The main advantage of
our approach is that the while loop of SR is replaced with a
for loop with known number of iterations.

4. DETERMINISTIC RESAMPLING

4.1. Overview

In the literature, threshold-based resampling algorithms are
based on the combination of RR and rejection control and
they result in nondeterministic timing and increased com-
plexity [8, 16]. Here, we develop threshold-based algorithms
whose purpose is to reduce complexity and processing time.
We refer to these methods as partial resampling (PR) because
only a part of the particles is resampled.

In PR, the particles are grouped in two separate classes:
one composed of particles with moderate weights and an-
other with dominating and negligible weights. The particles
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Figure 1: (a) Systematic and (b) residual systematic resampling for an example with M = 5 particles.

Table 1: Weights of particles.

m w(m) i(m)

1 7/20 2

2 6/20 1

3 2/20 1

4 2/20 0

5 3/20 1

with moderate weights are not resampled, whereas the negli-
gible and dominating particles are resampled. It is clear that
on average, resampling would be performed much faster be-
cause the particles with moderate weights are not resampled.
We propose several PR algorithms which differ in the resam-
pling function.

4.2. Partial resampling: suboptimal algorithms

PR could be seen as a way of a partial correction of the vari-
ance of the weights at each time instant. PR methods con-
sist of two steps: one in which the particles are classified as
moderate, negligible, or dominating and the other in which
one determines the number of times each particle is repli-
cated. In the first step of PR, the weight of each particle is
compared with a high and a low threshold, Th and Tl, re-
spectively, where Th > 1/M and 0 < Tl < Th. Let the num-
ber of particles with weights greater than Th and less than Tl

be denoted by Nh and Nl, respectively. A sum of the weights
of resampled particles is computed as a sum of dominat-
ing Wh =

∑Nh
m=1 w

(m)
n for w(m)

n > Th and negligible weights

Wl =
∑Nl

m=1 w
(m)
n for w(m)

n < Tl. We define three different

types of resampling with distinct resampling functions a(m)
n .
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Figure 2: Types of memory usages: (a) indexes are positions of the
replicated particles, (b) indexes are replication factors, and (c) in-
dexes are arranged as positions and replication factors.

The resampling function of the first PR algorithm (PR1)
is shown in Figure 3a and it corresponds to the stratified re-
sampling case. The number of particles at the input and at
the output of the resampling procedure is the same and equal
to Nh + Nl. The resampling function is given by

a(m)
n =



w(m)
n for w(m)

n > Th or w(m)
n < Tl,

1−Wh −Wl

M −Nh −Nl
otherwise.

(3)

The second step can be performed using any resampling al-
gorithm. For example, the RSR algorithm can be called using

(i) = RSR(Nh+Nl,Nh+Nl,w
(m)
n /(Wh+Wl)), where the RSR is

performed on the Nh +Nl particles with negligible and dom-
inating weights. The weights have to be normalized before
they are processed by the RSR method.

The second PR algorithm (PR2) is shown in Figure 3b.
The assumption that is made here is that most of the
negligible particles will be discarded after resampling, and
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Figure 3: Resampling functions for the PR algorithms (a) PR1, (b) PR2, and (c) PR3.

consequently, particles with negligible weights are not used
in the resampling procedure. Particles with dominating
weights replace those with negligible weights with certainty.
The resampling function is given as

a(m)
n =




w(m)
n +

Wl

Nh
for w(m)

n > Th,

1−Wh −Wl

M −Nh −Nl
for Tl < w(m)

n < Th,

0 otherwise.

(4)

The number of times each particle is replicated can be found
using (i) = RSR(Nh,Nh + Nl, (w(m)

n + Wl/Nh)/(Wh + Wl)),

where the weights satisfy the condition w(m)
n > Th. There are

only Nh input particles and Nh +Nl particles are produced at
the output.

The third PR algorithm (PR3) is shown in Figure 3c. The
weights of all the particles above the threshold Th are scaled
with the same number. So, PR3 is a deterministic algorithm

whose resampling function is given as

a(m)
n =




Nh + Nl

M
for w(m)

n > Th,
1
M

for Tl < w(m)
n < Th,

0 otherwise.

(5)

The number of replications of each dominating particle may
be less by one particle than necessary because of the round-
ing operation. One way of resolving this problem is to assign
that the first Nt = Nl − �Nl/Nh�Nh dominating particles are
replicated r = �Nl/Nh� + 2 times, while the rest of Nh − Nt

dominating particles are replicated r = �Nl/Nh� + 1 times.
The weights are calculated as w∗(m) = w(m), where m rep-
resents positions of particles with moderate weights, and as
w∗(l) = w(m)/r +Wl/(Nh +Nl), where m are positions of par-
ticles with dominating weights and l of particles with both
dominating and negligible weights.
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Figure 4: OPR method combined with the PR3 method used for final computation of weights and replication factors.

Another way of performing PR is to use a set of thresh-
olds. The idea is to perform initial classification of the parti-
cles while the weights are computed and then to carry out the
actual resampling together with the particle generation step.
So, the resampling consists of two steps as in the PR2 algo-
rithm, where classification of the particles is overlapped with
the weight computation. We refer to this method as over-
lapped PR (OPR).

A problem with the classification of the particles is the
necessity of knowing the overall sum of nonnormalized
weights in advance. The problem can be resolved as follows.
The particles are partitioned according to their weights. The
thresholds for group i are defined as Ti−1, Ti for i = 1, . . . ,K ,
where K is the number of groups, Ti−1 < Ti and T0 = 0. The
selection of thresholds is problem dependent. The thresholds
that define the moderate group of particles satisfy Tk−1 <
W/M < Tk. The particles that have weights greater than Tk

are dominant particles, and the ones with weights less than
Tk−1, negligible particles.

In Figure 4, we provide a simple example of how this
works. There are four thresholds (T0 to T3) and non-
normalized particles are compared with the thresholds and
properly grouped. After obtaining the sum of weights W , the
second group for which T1 < W/M < T2, is the group of par-
ticles with moderate weights. The first group contains parti-
cles with negligible weights, and the third group is composed
of particles with dominating weights. An additional loop is
necessary to determine the number of times each of the dom-
inating particles is replicated. However, the complexity of
this loop is of order O(K), which is several orders of mag-
nitude lower than the complexity of the second step in the
PR1 algorithm (O(M)). Because the weights are classified, it
is possible to apply similar logic for the second resampling
step as in the PR2 and PR3 algorithms. In the figure, the par-
ticles P1 and P2 are replicated twice and their weights are cal-
culated using the formulae for weights for the PR3 method.

4.3. Discussion

In the PR1, PR2, and PR3 algorithms, the first step requires
a loop of M iterations for the worst case (of number of com-
putations) with two comparisons per each iteration (classi-
fication in three groups). Resampling in the PR1 algorithm
is performed on Nl + Nh particles. The worst case for the
PR1 algorithm occurs when Nl + Nh = M, which means

that all the particles must be resampled, thereby implying
that there cannot be improvements from an implementation
standpoint. The main purpose of the PR2 algorithm is to im-
prove the worst-case timing of the PR1 algorithm. Here, only
Nh dominating particles are resampled. So, the input num-
ber of particles in the resampling procedure is Nh, while the
output number of particles is Nh +Nl. If the RSR algorithm is
used for resampling, then the complexity of the second step
is O(Nh).

PR1 and PR2 contain two loops and their timings depend
on the weight statistics. As such, they do not have advan-
tages for real-time implementation in comparison with RSR,
which has only one loop of M iterations and whose process-
ing time does not depend on the weight statistics. In the PR3
algorithm, there is no stratified resampling. The number of
times each dominating particle is replicated is calculated af-
ter the first step and it depends on the current distribution
of particle weights and of the thresholds. This number is cal-
culated in O(1) time, which means that there is no need for
another loop in the second step. Thus, PR3 has simpler op-
erations than the RSR algorithm.

The PR algorithms have the following advantages from
the perspective of hardware implementation: (1) the resam-
pling is performed faster on average because it is done on a
much smaller number of particles; (2) there is a possibility
of overlapping the resampling with the particle generation
and weight computation; and (3) if the resampling is used
in a parallel implementation [17], the number of exchanged
particles among the processing elements is smaller because
there are less particles to be replicated and replaced. There are
also problems with the three algorithms. When Nl = 0 and
Nh = 0, resampling is not necessary. However, when Nl = 0
or Nh = 0 but not at same time, the PR algorithms would not
perform resampling even though it could be useful.

Application of the OPR algorithm requires a method for
fast classification. For hardware and DSP implementation, it
is suitable to define thresholds that are a power of two. So, we
take that Ti = 1/2K−i for i = 1, . . . ,K and T0 = 0. The group
is determined by the position of the most significant “one”
in the fixed point representation of weights. Memory alloca-
tion for the groups could be static or dynamic. Static alloca-
tion requires K memory banks, where the size of each bank
is equal to the number of particles because all the particles
could be located in one of the groups. Dynamic allocation is
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Figure 5: Performance of the PR3 algorithm for different threshold
values applied to joint detection and estimation.

more efficient and it could be implemented using ways simi-
lar to the linked lists, where the element in a group contains
two fields: the field with the address of the particle and the
field that points out to the next element on the list. Thus,
dynamic allocation requires memory with capacity of 2M
words. As expected, overlapping increases the resources.

5. PARTICLE FILTERING PERFORMANCE
AND COMPLEXITY

5.1. Performance analysis

The proposed resampling algorithms are applied and their
performance is evaluated for the joint detection and esti-
mation problem in communication [18, 19] and for the
bearings-only tracking problem [7].

5.1.1. Joint detection and estimation

The experiment considered a Rayleigh fading channel with
additive Gaussian noise with a differentially encoded BPSK
modulation scheme. The detector was implemented for a
channel with normalized Doppler spreads given by Bd =
0.01, which corresponds to fast fading. An AR(3) process
was used to model the channel. The AR coefficients were ob-
tained from the method suggested in [20]. The proposed de-
tectors were compared with the clairvoyant detector, which
performs matched filtering and detection assuming that the
channel is known exactly by the receiver. The number of
particles was N = 1000.

In Figure 5, the bit error rate (BER) versus signal-to-
noise ratio (SNR) is depicted for the PR3 algorithm with
different sets of thresholds, that is, Th = {2M, 5M, 10M}
and Tl = {1/(2M), 1/(5M), 1/(10M)}. In the figure, the PR3
algorithm with the thresholds 2M and 1/2M is denoted as
PR3(2), the one with thresholds 5M and 1/5M as PR3(5),
and so on. The BERs for the matched filter (MF) and for
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Figure 6: Comparison of the PR2, PR3, and OPR algorithms with
SR applied to the joint detection and estimation problem.

the case when the SR is performed are shown as well. It is
observed that the BER is similar for all types of resampling.
However, the best results are obtained when the thresholds
2M and 1/2M were used. Here, the effective number of par-
ticles that is used is the largest in comparison with the PR3 al-
gorithm with greater Th and smaller Tl. This is a logical result
because according to PR3, all the particles are concentrated
in the narrower area between the two thresholds producing
in this way a larger effective sample size. PR3 with thresholds
2M and 1/2M slightly outperforms the SR algorithm which
is a bit surprising. The reason for this could be that the parti-
cles with moderate weights are not unnecessarily resampled
in the PR3 algorithm. The same result is obtained even with
different values of Doppler spread.

In Figure 6, BER versus SNR is shown for different re-
sampling algorithms: PR2, PR3, OPR, and SR. The thresh-
olds that are used for the PR2 and PR3 are 2M and 1/2M. The
OPR uses K = 24 groups and thresholds which are power of
two. Again, all the results are comparable. The OPR and PR2
algorithms slightly outperform the other algorithms.

5.1.2. Bearings-only tracking

We tested the performance of PFs by applying the resampling
algorithms to bearings-only tracking [7] with different initial
conditions. In the experiment, PR2 and PR3 are used with
two sets of threshold values, that is, Th = {2M, 10M} and
Tl = {1/(2M), 1/(10M)}. In Figure 7, we show the number
of times when the track is lost versus number of particles, for
two different pairs of thresholds. We consider that the track
is lost if all the particles have zero weights. In the figure, the
PR3 algorithm with thresholds 2M and 1/2M is denoted as
PR3(2) and the one 10M and 1/10M as PR3(10). The used
algorithms are SR, SR performed after every 5th observation,
PR2, and PR3. The resampling algorithms show again similar
performances. The best results for PR2 and PR3 are obtained
when the thresholds 10M and 1/10M are used.
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Figure 7: Number of times when the track is lost for the PR2, PR3,
and SR applied to the bearings-only tracking problem.

5.2. Complexity analysis

The complexity of the proposed resampling algorithms is
evaluated. We consider both computation complexity as well
as memory requirements. We also present benefits of the
proposed algorithms when concurrency in hardware is ex-
ploited.

5.2.1. Computational complexity

In Table 2, we provide a comparison of the different resam-
pling algorithms. The results for RR are obtained for the
worst-case scenario. The complexity of the RR, RSR, and PR
algorithms is of O(N), and the complexity of the SR algo-
rithm is of O(max (N ,M)), where N and M are the input and
output numbers of particles of the resampling procedure.

When the number of particles at the input of the resam-
pling algorithm is equal to the number of particles at the out-
put, the RR algorithm is by far the most complex. While the
number of additions for the SR and RSR algorithms are the
same, the RSR algorithm performs M multiplications. Since
multiplication is more complex than addition, we can view
that the SR is a less complex algorithm. However, when N is a
power of two such that the multiplications by N are avoided,
the RSR algorithm is the least complex.

The resampling algorithms SR, RSR, and PR3 were im-
plemented on the Texas Instruments (TI) floating-point
DSP TMS320C67xx. Several steps of profiling brought about
five-fold speed-up when the number of resampled parti-
cles was 1000. The particle allocation step was not consid-
ered. The number of clock cycles per particle was around
18 for RSR and 4.1 for PR3. The SR algorithm does not
have fixed timing. The mean duration was 24.125 cycles
per particle with standard deviation of 5.17. On the pro-
cessor TMS320C6711C whose cycle time is 5 nanoseconds,
the processing of RSR with 1000 particles took 90 microsec-
onds.

Table 2: Comparison of the number of operations for different re-
sampling algorithms.

Operation SR RR RSR PR3

Multiplications 0 N N 0

Additions 2M + N 6N 3N 2N

Comparisons N + M 3N 0 2N

5.2.2. Memory requirements

In our analysis, we considered the memory requirement not
only for resampling, but also for the complete PF. The mem-
ory size of the weights and the memory access during weight
computation do not depend on the resampling algorithm.
We consider particle allocation without indexes and with in-
dex addressing for the SR algorithm, and with arranged in-
dexing for RSR, PR2, PR3, and OPR. For both particle allo-
cation methods, the SR algorithm has to use two memories
for storing particles. In Table 3, we can see the memory ca-
pacity for the RSR, PR2, and PR3 algorithms. The difference
among these methods is only in the size of the index memory.
For the RSR algorithm which uses particle allocation with ar-
ranged indexes, the index memory has a size of 2M, where M
words are used for storing the addresses of the particles that
are replicated or discarded. The other M words represent the
replication factors.

The number of resampled particles for the worst case of
the PR2 algorithm corresponds to the number of particles in
the RSR algorithm. Therefore, their index memories are of
the same size. From an implementation standpoint, the most
promising algorithm is the PR3 algorithm. It is the simplest
one and it requires the smallest size of memory. The replica-
tion factor of the dominating particles is the same and of the
moderate particles is one. So, the size of the index memory of
PR3 is M, and it requires only one additional bit to represent
whether a particle is dominant or moderate.

The OPR algorithm needs the largest index memory.
When all the PF steps are overlapped, it requires a different
access pattern than the other deterministic algorithms. Due
to possible overwriting of indexes that are formed during the
weight computation step with the ones that are read during
particle generation, it is necessary to use two index-memory
banks. Furthermore, particle generation and weight compu-
tation should access these memories alternately. Writing to
the first memory is performed in the resampling step in one
time instance whereas in the next one, the same memory is
used by particle generation for reading. The second mem-
ory bank is used alternately. If we compare the memory re-
quirements of the OPR algorithm with that of the PR3 algo-
rithm, it is clear that OPR requires four times more memory
for storing indexes for resampling.

5.2.3. PF speed improvements

The PF sampling frequency can be increased in hardware
by exploiting temporal concurrency. Since there are no data
dependencies among the particles in the particle generation
and weight computation, the operations of these two steps
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Table 3: Memory capacity for different resampling algorithms.

SR without indexes SR with indexes RSR PR2 PR3 OPR

States 2NsM 2NsM NsM NsM NsM NsM

Weights M M M M M M

Indexes 0 M 2M 2M M 4M

Generation of particles

Weight computation

Resampling

L T T

(a)

Generation of particles

Weight computation

Resampling

L T Lr

(b)

Figure 8: The timing of the PF with the (a) RSR or PR methods and (b) with the OPR method.

can be overlapped. Furthermore, the number of memory ac-
cesses is reduced because during weight computation, the
values of the states do not need to be read from the mem-
ory since they are already in the registers.

The normalization step requires the use of an additional
loop of M iterations as well as M divisions per observation. It
has been noted that the normalization represents an unnec-
essary step which can be merged with the resampling and/or
the computation of the importance weights. Avoidance of
normalization requires additional changes which depend on
whether resampling is carried out at each time instant and
on the type of resampling. For PFs which perform SR or RSR
at each time instant, the uniform random number in the re-
sampling algorithm should be drawn from [0,WM/M) and
updated with WM/M, where WM is the sum of the weights.
Normalization in the PR methods could be avoided by in-
cluding information about the sum WM in the thresholds by
using Thn = ThWM and Tln = TlWM . With this approach,
dynamic range problems for fixed precision arithmetics that
appear usually with division are reduced. The computational
burden is decreased as well because the number of divisions
is reduced from M to 1.

The timing operations for a hardware implementation,
where all the blocks are fine-grain pipelined are shown in
Figure 8a. Here, the particle generation and weight calcula-
tion operations are overlapped in time and normalization is
avoided. The symbol L is the constant hardware latency de-
fined by the depth of pipelining in the particle generation and
weight computation, Tclk is the clock period, M is the num-
ber of particles, andT is the minimum processing time of any
of the basic PF operations. The SR is not suitable for hard-
ware implementations, where fixed and minimal timings are
required, because its processing time depends on the weight
distribution and it is longer than MTclk. So, in order to have

resampling operation performed in M clock cycles, RSR or
PR3 algorithms with particle allocation with arranged in-
dexes must be used. The minimum PF sampling period that
can be achieved is (2MTclk + L).

OPR in combination with the PR3 algorithm allows for
higher sampling frequencies. In the OPR, the classification
of the particles is overlapped with the weight calculation as
shown in Figure 8b. The symbol Lr is the constant latency of
the part of the OPR algorithm that determines which group
contains moderate, and which contains negligible and domi-
nating particles. The latency Lr is proportional to the number
of OPR groups. The speed of the PF can almost be increased
twice if we consider pipelined hardware implementation. In
Figure 8b, it is obvious that the PF processing time is reduced
to (MTclk + L + Lr).

5.3. Final remarks

We summarize the impact of the proposed resampling algo-
rithms on the PF speed and memory requirements.

(1) The RSR is an improved RR algorithm with higher
speed and fixed processing time. As such, besides for
hardware implementations, it is a better algorithm for
resampling that is executed on standard computers.

(2) Memory requirements are reduced. The number of
memory access and the size of the memory are reduced
when RSR or any of PR algorithms are used for mul-
tidimensional state-space models. These methods can
be appropriate for both hardware and DSP applica-
tions, where the available memory is limited. When the
state-space model is one dimensional, then there is no
purpose of adding an index memory and introducing
a more complex control. In this case, the SR algorithm
is recommended.
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(3) In hardware implementation and with the use of tem-
poral concurrency, the PF sampling frequency can be
considerably improved. The best results are achieved
for the OPR algorithm at the expense of hardware re-
sources.

(4) The average amount of operations is reduced. This is
true for PR1, PR2, and PR3 since they perform re-
sampling on a smaller number of particles. This is
desirable in PC simulations and some DSP applica-
tions.

6. CONCLUSION

Resampling is a critical step in the hardware implementation
of PFs. We have identified design issues of resampling algo-
rithms related to execution time and storage requirement.
We have proposed new resampling algorithms whose pro-
cessing time is not random and that are more suitable for
hardware implementation. The new resampling algorithms
reduce the number of operations and memory access or al-
low for overlapping the resampling step with weight compu-
tation and particle generation. While these algorithms min-
imize performance degradation, their complexity is reduced
remarkably. We have also provided performance analysis of
PFs that use our resampling algorithms when applied to
joint detection and estimation in wireless communications
and bearings-only tracking. Even though the algorithms are
developed with the aim of improving the hardware imple-
mentation, these algorithms should also be considered as
resampling methods in simulations on standard comput-
ers.

ACKNOWLEDGMENT

This work has been supported under the NSF Awards CCR-
0082607 and CCR-0220011.

REFERENCES

[1] J. M. Bernardo and A. F. M. Smith, Bayesian Theory, John
Wiley & Sons, New York, NY, USA, 1994.

[2] J. Geweke, “Antithetic acceleration of Monte Carlo integra-
tion in Bayesian inference,” Journal of Econometrics, vol. 38,
no. 1-2, pp. 73–89, 1988.

[3] A. Gerstlauer, R. Domer, J. Peng, and D. Gajski, System Design:
A Practical Guide with SpecC, Kluwer Academic Publishers,
Boston, Mass, USA, 2001.
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In recent years, particle filtering has become a powerful tool for tracking signals and time-varying parameters of random dynamic
systems. These methods require a mathematical representation of the dynamics of the system evolution, together with assumptions
of probabilistic models. In this paper, we present a new class of particle filtering methods that do not assume explicit mathematical
forms of the probability distributions of the noise in the system. As a consequence, the proposed techniques are simpler, more
robust, and more flexible than standard particle filters. Apart from the theoretical development of specific methods in the new
class, we provide computer simulation results that demonstrate the performance of the algorithms in the problem of autonomous
positioning of a vehicle in a 2-dimensional space.

Keywords and phrases: particle filtering, dynamic systems, online estimation, stochastic optimization.

1. INTRODUCTION

Many problems in signal processing can be stated in terms of
the estimation of an unobserved discrete-time random signal
in a dynamic system of the form

xt = fx(xt−1) + ut , t = 1, 2, . . . , (1)

yt = fy(xt) + vt, t = 1, 2, . . . , (2)

where

(a) xt ∈ RLx is the signal of interest, which represents the
system state at time t;

(b) fx : RLx → Ix ⊆ RLx is a (possibly nonlinear) state
transition function;

(c) ut ∈ RLx is the state perturbation or system noise at
time t;

(d) yt ∈ RLy is the vector of observations collected at time
t, which depends on the system state;

(e) fy : RLx → Iy ⊆ RLy is a (possibly nonlinear) transfor-
mation of the state;

(f) vt ∈ RLy is the observation noise vector at time t, as-
sumed statistically independent from the system noise
ut.

Equation (1) describes the dynamics of the system state vec-
tor and, hence, it is usually termed state equation or system
equation, whereas (2) is commonly referred to as observation
equation or measurement equation. It is convenient to dis-
tinguish the structure of the dynamic system defined by the
functions fx and fy from the associated probabilistic model,
which depends on the probability distribution of the noise
signals and the a priori distribution of the state, that is, the
statistics of x0.

We denote the a priori probability density function (pdf)
of a random signal s as p(s). If the signal s is statistically
dependent on some observation z, then we write the con-
ditional (or a posteriori) pdf as p(s|z). From the Bayesian
point of view, all the information relevant for the estimation
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of the state at time t is contained in the so-called filtering pdf,
that is, the a posteriori density of the system state given the
observations up to time t,

p
(

xt|y1:t
)
, (3)

where y1:t = {y1, . . . , yt}. The density (3) usually involves
a multidimensional integral which does not have a closed-
form solution for an arbitrary choice of the system structure
and the probabilistic model. Indeed, analytical solutions can
only be obtained for particular setups. The most classical ex-
ample occurs when fx and fy are linear functions and the
noise processes are Gaussian with known parameters. Then
the filtering pdf of xt is itself Gaussian, with mean mt and
covariance matrix Ct, which we denote as

p
(

xt|y1:t
) = N

(
mt , Ct

)
, (4)

where the posterior parameters mt and Ct can be recur-
sively computed, as time evolves, using the elegant algorithm
known as Kalman filter (KF) [1]. Unfortunately, the assump-
tions of linearity and Gaussianity do not hold for most
real-world problems. Although modified Kalman-like solu-
tions that account for general nonlinear and non-Gaussian
settings have been proposed, including the extended KF
(EKF) [2] and the unscented KF (UKF) [3], such tech-
niques are based on simplifications of the system dynam-
ics and suffer from severe degradation when the true dy-
namic system departs from the linear and Gaussian assump-
tions.

Since general analytical solutions are intractable, Baye-
sian estimation in nonlinear, non-Gaussian systems must
be addressed using numerical techniques. Deterministic ap-
proaches, such as classical numerical integration procedures,
turn out ineffective or too demanding except for very low-
dimensional systems and, as a consequence, methods based
on the Monte Carlo methodology have progressively gained
momentum. Monte Carlo methods are simulation-based
techniques aimed at estimating the a posteriori pdf of the
state signal given the available observations. The pdf esti-
mate consists of a random grid of weighted points in the state
space RLx . These points, usually termed particles, are Monte
Carlo samples of the system state that are assigned nonnega-
tive weights, which can be interpreted as probabilities of the
particles.

The collection of particles and their weights yield an em-
pirical measure which approximates the continuous a poste-
riori pdf of the system state [4]. The recursive update of this
measure whenever a new observation is available is known
as particle filtering (PF). Although there are other popular
Monte Carlo methods based on the idea of producing em-
pirical measures with random support, for example, Markov
Chain Monte Carlo (MCMC) techniques [5], PF algorithms
have recently received a lot of attention because they are par-
ticularly suitable for real-time estimation. The sequential im-
portance sampling (SIS) algorithm [6, 7] and the bootstrap
filter (BF) [8, 9] are the most successful members of the PF
class of methods [10]. Existing PF techniques rely on

(i) the knowledge of the probabilistic model of the dy-
namic system (1)-(2), which includes the densities
p(x0), p(ut), and p(vt),

(ii) the ability to numerically evaluate the likelihood
p(yt|xt) and to sample from the transition density
p(xt|xt−1).

Therefore, the practical performance of PF algorithms in
real-world problems heavily depends on how accurate the
underlying probabilistic model of choice is. Although this
may seem irrelevant in engineering problems where it is rel-
atively straightforward to associate the observed signals with
realistic and convenient probability distributions, in many
situations, this is not the case. Many times, it is very hard
to find an adequate model using the information available
in practice. In other occasions, the working models obtained
after a lot of effort (involving, e.g., time-series analysis tech-
niques) are so complicated that they render any subsequent
signal processing algorithm impractical due to its high com-
plexity.

In this paper, we introduce a new PF approach to deal
with uncertainty in the probabilistic modeling of the dy-
namic system (1)-(2). We start with the requirement that the
ultimate objective of PF is to yield an estimate of the sig-
nals of interest x0:t, given the observations y1:t. If a suitable
probabilistic model is at hand, good signal estimates can be
computed from the filtering pdf (3) induced by the model,
and a PF algorithm can be employed to recursively build up
a random grid that approximates the posterior distribution.
However, it is often possible to use signal estimation methods
that do not explicitly rely on the a posteriori pdf, for example,
blind detection in digital communications can be performed
according to several criteria, such as the constrained mini-
mization of the received signal power [11] or the constant
modulus method [12, 13]. Such approaches are very popular
because they are based on a simple figure of merit, and this
simplicity leads to robust and easy-to-design algorithms.

The same advantages in robustness and easy design can
be gained in PF whenever a complex (yet possibly not
strongly tied to physical reality) probabilistic model can be
substituted by a simpler reference for signal estimation. Con-
trary to initial intuition, estimation techniques based on
ad hoc, heuristic, or, simply, alternative references, differ-
ent from the state posterior distribution, are not precluded
by the use of the PF methodology. It is important to real-
ize that the procedure for sequential build-up of the ran-
dom grid is not tied to the concept of a posteriori pdf. We
will show that, by simply specifying a stochastic mechanism
for generating particles, the PF methodology can be success-
fully used to build an approximation of any function of the
system state that admits a recursive decomposition. Specif-
ically, we propose a new family of PF algorithms in which
the statistical reference of the a posteriori state pdf is sub-
stituted by a user-defined cost function that measures the
quality of the state signal estimates according to the avail-
able observations. Hence, methods within the new class are
termed cost-reference particle filters (CRPFs), in contrast
to conventional statistical-reference particle filters (SRPFs).
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As long as a recursive decomposition of the cost function is
found, a PF algorithm, similar to the SIS and bootstrap meth-
ods, can be used to construct a random-grid approximation
of the cost function in the vicinity of its minima. For this rea-
son, CRPFs yield local representations of the cost function
specifically built to facilitate the computation of minimum-
cost estimates of the state signal.

The remainder of this paper is organized as follows.
The fundamentals of the CRPF family are introduced in
Section 2. This includes three basic building blocks: the cost
and risk functions, which provide a measure of the quality of
the particles, and the stochastic mechanism for particle gen-
eration and sequential update of the random grid. Since the
usual tools for PF algorithm design (e.g., proposal distribu-
tions, auxiliary variables, etc.) do not necessarily extend to
the new framework, this section also contains a discussion on
design issues. In particular, we identify the factors on which
the choice of the cost and risk functions will usually depend,
and derive consequent design guidelines, including a useful
choice of parameters that leads to a simple interpretation of
the algorithm and its connection with the theory of stochas-
tic approximation (SA) [14].

Due to the change in the reference, convergence results
regarding SRPFs are not valid for CRPFs. Section 3 is devoted
to the problem of identifying sufficient conditions for asymp-
totically optimal propagation (AOP) of particles. The stochas-
tic procedure for drawing new samples of the state signal and
propagating the existing particles using the new samples is
the key for the convergence of the algorithm. We term this
particle propagation step as asymptotically optimal when the
increment in the average cost of the particles in the filter after
propagation is minimal. A set of sufficient conditions for op-
timal propagation, related to the properties of the sampling
and weighting methods, is provided.

Section 4 is devoted to the discussion of resampling in the
new family of PF techniques. We argue that the objective of
this important algorithmic step is different from its usual role
in conventional PF algorithms, and exploit this difference
to propose a local resampling scheme suitable for a straight-
forward implementation using parallel VLSI hardware (note
that resampling is a major bottleneck for the parallel imple-
mentation of PF methods [15]).

Computer simulation results that illustrate the validity
of our approach are presented in Section 5. In particular, we
tackle the problem of positioning a vehicle that moves along
a 2-dimensional space. An instance of the proposed CRPF
class of methods that employs a simple cost function is com-
pared with the standard auxiliary BF [9] technique. Finally,
Section 6 contains conclusions.

2. COST-REFERENCE PARTICLE FILTERING

The basics of the new family of PF methods are introduced
in this section. We start with a general description of the
CRPF technique, where key concepts, namely, the cost and
risk functions, particle propagation, and particle selection,
are introduced. The second part of the section is devoted to
practical design issues. We suggest guidelines for the design

of CRPFs and propose a simple choice of the algorithm pa-
rameters that lead to a straightforward interpretation of the
CRPF technique.

2.1. Sequential algorithm

The ultimate aim of the method is the online estimation of
the sequence of system states from the available observations,
that is, we intend to estimate xt|y1:t, t = 0, 1, 2, . . . , accord-
ing to some reference function that yields a quantitative mea-
sure of quality. In particular, we propose the use of a real cost
function with a recursive additive structure, that is,

C
(

x0:t|y1:t, λ
) = λC

(
x0:t−1|y1:t−1, λ

)
+�C

(
xt|yt

)
, (5)

where 0 < λ < 1 is a forgetting factor, �C : RLx × RLy → R
is the incremental cost function, and C(x0:t|y1:t, λ) complies
with the definition

C : R(t+1)Lx ×RtLy ×R −→ R. (6)

We should remark that (5) is not the only recursive decom-
position that can be employed. A straightforward alternative
is to choose a cost function which is built at time t as the
convex sum

C
(

x0:t|y1:t, λ
) = λC

(
x0:t−1|y1:t−1, λ

)
+ (1− λ)�C(xt|yt).

(7)

This form of cost function is perfectly valid for the defini-
tion and construction of CRPFs and choosing it would not
affect (or would affect trivially) the arguments presented in
the rest of this paper, including the asymptotic convergence
results in Section 3. However, we will constrain ourselves to
the familiar form of (5) for simplicity.

A high value of C(x0:t|y1:t, λ) means that the state se-
quence x0:t is not a good estimate given the sequence of ob-
servations y1:t, while a low value of C(x0:t|y1:t, λ) indicates
that x0:t is close to the true state signal. The sequence x0:t is
said to have a high cost, in the former case, or a low cost, in
the latter case. Particularly notice the recursive structure in
(5), where the cost of a sequence up to time t − 1 can be up-
dated by solely looking at the state and observation vectors
at time t, xt , and yt , respectively, which are used to compute
the cost increment�C(xt|yt). The forgetting factor λ avoids
attributing an excessive weight to old observations when a
long series of data are collected, hence allowing for potential
adaptivity.

We also introduce a one-step risk function of the form

R : RLx ×RLy −→ R,

xt−1, yt �R
(

xt−1|yt
) (8)

that measures the adequacy of the state at time t−1 given the
new observation yt. It is convenient to view the risk function
R(xt−1|yt) as a prediction of the cost increment �C(xt|yt)
that can be obtained before xt is actually propagated. Hence,
a natural choice of the risk function is

R
(

xt−1
∣∣yt
) = �C

(
fx
(

xt−1
)∣∣yt

)
. (9)
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The proposed estimation technique proceeds sequen-
tially in a similar manner as the BF. Given a set of M
state samples and associated costs up to time t, that is, the
weighted-particle set (wps)

Ξt =
{

x(i)
t , C(i)

t

}M
i=1, (10)

where C(i)
t = C(x(i)

0:t|y1:t, λ), the grid of state trajectories is
randomly propagated when yt+1 is observed in order to build
an updated wps Ξt+1. The state and observation signals are
those described in the dynamic system (1)-(2). We only add
the following mild assumptions:

(1) the initial state is known to lie in a bounded interval
Ix0 ⊂ RLx ;

(2) the system and observation noise are both zero mean.

Assumption (1) is needed to ensure that we initially draw a
set of samples that is not infinitely far from the true state x0.
Notice that this is a structural assumption, not a probabilis-
tic one. Assumption (2) is made for the sake of simplicity
because zero-mean noise is the rule in most systems.

The sequential CRPF algorithm based on the structure
of system (1)-(2), the definitions of cost and risk functions
given by (5) and (8), respectively, and assumptions (1) and
(2), is described below.

(1) Time t = 0 (initialization). DrawM particles from the
uniform distribution in the interval Ix0 ,

x(i)
0 ∼U

(
Ix0

)
, (11)

and assign them a zero cost. The initial wps

Ξ0 =
{

x(i)
0 , C(i)

0 = 0
}M
i=1 (12)

is obtained.
(2) Time t+1 (selection of the most promising trajectories).

The goal of the selection step is to replicate those particles
with a low cost while high-cost particles are discarded. As
usual in PF methods, selection is implemented by a resam-
pling procedure [7]. We point out that, differently from the
standard BF, resampling in CRPFs does not produce equally
weighted particles. Instead, each particle preserves its own
cost. Notice that the equal weighting of resampled particles
in standard PF algorithms comes from the use of a statisti-
cal reference. In CRPF, preserving the particle costs after re-
sampling actually shifts the random grid representation of
the cost function toward its local minima. Such a behavior
is sound, as we are interested in minimum cost signal esti-
mates. Further issues related to resampling are discussed in
Section 4.

For i = 1, 2, . . . ,M, compute the one-step risk of particle
i and let

R(i)
t+1 = λC(i)

t + R
(

x(i)
t |yt+1

)
(13)

which yields a predictive cost of the trajectory x0:t according
to the new observation yt. Define a probability mass function
(pmf) of the form

π̂(i)
t+1 ∝ µ

(
R(i)

t+1

)
, (14)

where µ : R → [0, +∞) is a monotonically decreasing func-
tion. An intermediate wps is obtained by resampling the

trajectories {x(i)
t }Mi=1 according to the pmf π̂(i)

t+1. Specifically,

we select x̂(i)
t = x(k)

t with probability π̂(k)
t+1, and build the

set Ξ̂t+1 = {x̂(i)
t , Ĉ(i)

t }Mi=1, where Ĉ(i)
t = C(k)

t if and only if

x̂(i)
t = x(k)

t .
(3) Time t + 1 (random particle propagation). Select an

arbitrary conditional pdf of the state pt+1(xt+1|xt) with the
constraint that

Ept+1(xt+1|xt)
[

xt+1
] = fx

(
xt
)
, (15)

where Ep(s)[·] denotes expected value with respect to the pdf
in the subindex. Using the selected propagation density, draw
new particles

x(i)
t+1 ∼ pt+1

(
xt+1|x̂(i)

t

)
(16)

and update the associated costs

C(i)
t+1 = λĈ(i)

t +�C(i)
t+1, (17)

where

�C(i)
t+1 = �C

(
x(i)
t+1

∣∣yt+1
)

(18)

for i = 1, 2, . . . ,M.
As a result, the updated wps Ξt+1 = {x(i)

t+1, C(i)
t+1}Mi=1 is ob-

tained.
(4) Time t + 1 (estimation of the state). Estimation pro-

cedures are better understood if a pmf π(i)
t+1, i = 1, 2, . . . ,M,

is assigned to the particles in Ξt+1. The natural way to define
this pmf is according to the particle costs, that is,

π(i)
t+1 ∝ µ

(
C(i)
t+1

)
, (19)

where µ is a monotonically decreasing function.
The minimum cost estimate at time t+ 1 is trivially com-

puted as

i0 = arg max
i

{
π(i)
t+1

}
,

x̃min
0:t+1 = x(i0)

t+1

(20)
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and its physical meaning is obvious. An equally useful esti-

mate can be computed as the mean value of x(i)
t+1 according to

the pmf π(i)
t+1, that is,

x̃mean
t+1 =

M∑
i=1

π(i)
t+1x(i)

t+1. (21)

Note that x̃mean
t+1 can also be regarded as a minimum cost es-

timate because the particle set Ξt+1 is a random-grid local
representation of the cost function in the vicinity of its min-
ima. In fact, estimator (21) has slight advantages over (20).

Namely, the averaging of particles according to the pmf π(i)
t+1

yields an estimated state trajectory which is smoother than
the one resulting from simply choosing the particle with the
least cost at each time step. Besides, computing the mean

of the particles under π(i)
t+1 may result in an estimate with a

slightly smaller cost than the least cost particle, since x̃mean
t+1

is obtained by interpolation of particles around the least cost
state.

Sufficient conditions for the mean estimate (21) to attain
an asymptotically minimum cost are given in Section 3.

We will refer to the general procedure described above as
a CRPF algorithm. It is apparent that many implementations
are possible for a single problem, so in the next section, we
discuss the choice of the functions and parameters involved
in the method.

2.2. Design issues

An instance of the CRPF class of algorithms is selected by
choosing

(i) the cost function C(·|·),
(ii) the risk function R(·|·),

(iii) the monotonically decreasing function µ : R → [0,
+∞) that maps costs and risks into the resampling and
estimation pmfs, as indicated in (14) and (19), respec-
tively,

(iv) the sequence of pdfs pt+1(xt+1|xt) for particle genera-
tion.

The cost and risk functions measure the quality of the par-
ticles in the filter. Recall that the risk is conveniently inter-
preted as a prediction of the cost of a particle, given a new ob-
servation, before random propagation is actually carried out
(see the selection step in Section 2.1). Therefore, the cost and
the risk should be closely related, and we suggest to choose
R(·|·) according to (9). Whenever possible, both the cost
and risk functions should be

(i) strictly convex in the range of values of xt, where the
state is expected to lie, in order to avoid ambiguities in
the estimators (20) and (21) as well as in the selection
(resampling) step,

(ii) easy to compute in order to facilitate the practical im-
plementation of the algorithm,

(iii) dependent on the complete state and observation sig-
nals, that is, it should involve all the elements of xt and
yt.

A simple, yet useful and physically meaningful, choice of
C(·|·, ·), R(·|·) that will be used in the numerical examples
of Section 5 is given by

C
(

x0
) = 0, (22)

�C
(

xt
∣∣yt
) = ∥∥yt − fy

(
xt
)∥∥q, (23)

R
(

xt
∣∣yt+1

) = ∥∥yt+1 − fy
(
fx
(

xt
))∥∥q, (24)

where q ≥ 1 and ‖v‖ = √vTv denotes the norm of v. Given a
fixed and bounded sequence of observations y1:t, the optimal
(minimum cost) sequence of state vectors is

x
opt
0:t = arg min

x0:t

{
C
(

x0:t
∣∣y1:t, λ

)}

= arg min
x0:t

{ t∑
k=0

λ(t−k)�C
(

xt
∣∣yt
)}
.

(25)

We call x
opt
0:t optimal because it is obtained by minimization

of the continuous cost function, and it is in general different
from the minimum cost estimate obtained by CRPF, which
we have denoted as x̃min

0:t in Section 2.1.
With the assumed choice of cost and risk functions given

by (22)–(24), the invertible observation function fy : RLx →
Iy ⊆ RLy , and yt ∈ Iy , for all t ≥ 1, it is straightforward to
derive a pointwise solution of the form1

x
opt
t = arg min

xt

{�C
(

xt
∣∣yt
)} = f −1

y

(
yt
)
. (26)

Therefore, as the CRPF algorithm randomly selects and
propagates the sample states with the least cost, it can be un-
derstood (again, under assumption of (22)–(24)) as a nu-
merical stochastic method for approximately solving the set
of (possibly nonlinear) equations

yt − fy
(

xt
) = 0, t = 1, 2, . . . . (27)

Furthermore, setting q = 1 in (23) and (24), we obtain a
Monte Carlo estimate of the mean absolute deviation solu-
tion of the above set of equations, while q = 2 results in a
stochastic optimization of the least squares type.

This interpretation of the CRPF algorithm as a method
for numerically solving (27) allows to establish a connec-
tion between the proposed methodology and the theory of
SA [14], which is briefly commented upon in Appendix A.

The function µ : R → [0, +∞) should be selected to
guarantee an adequate discrimination of low-cost particles
from those presenting higher costs (recall that we are inter-
ested in computing a local representation of the cost func-
tion in the vicinity of its minima). As shown in Section 5,
the choice of µ has a direct impact on the algorithm perfor-
mance. Specifically, notice that the accuracy of the selection
step is highly dependent on the ability of µ to assign large
probability masses to lower-cost particles.

1Note, however, that additional solutions may exist at ∇x fy(x) = 0 de-
pending on fy(·).
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A straightforward choice of this function is

µ1
(
C(i)
t

) = C(i)
t

−1
, C(i)

t ∈ R \ {0}, (28)

which is simple to compute and potentially useful in many
systems. It has a serious drawback, however, in situations

where the range of the costs, that is, maxi{C(i)
t }−mini{C(i)

t },
is much smaller than the average cost (1/M)

∑M
i=1 C(i)

t . In
such scenarios, µ1 yields nearly uniform probability masses
and the algorithm performance degrades. Better discrimina-
tion properties can be achieved with an adequate modifica-
tion of µ1, for example, with

µ2
(
C(i)
t

) = 1(
C(i)
t −mink

{
C(k)
t

}
+ δ

)β , (29)

where 0 < δ < 1 and β > 1. When compared with µ1, µ2

assigns larger masses to low-cost particles and much smaller
masses to higher-cost samples. The discrimination ability of
µ2 is enhanced by reducing the value of δ (i.e., δ  0) and/or
increasing β. The relative merit of µ2 over µ1 is experimen-
tally illustrated in Section 5.

The last selection to be made is the pdf for particle prop-
agation, pt+1(xt+1|xt), in step 3 of the CRPF algorithm. The
theoretical properties required for optimal propagation are
explored in Section 3. From a practical and intuitive2 point
of view, it is desirable to use easy-to-sample pdfs with a large
enough variance to avoid losing tracks of the state signal,
but not too large, to prevent the generation of too dispersed
particles. A simple strategy implemented in the simulations
of Section 5 consists of using zero-mean Gaussian densities
with adaptively selected variance. Specifically, the particle i is
propagated from time t to time t + 1 as

x(i)
t+1 ∼ N

(
fx
(

x̂(i)
t−1

)
, σ2,(i)

t ILx
)
, (30)

where ILx is the Lx × Lx identity function and the variance

σ2,(i)
t is recursively computed as

σ2,(i)
t = t − 1

t
σ2,(i)
t−1 +

∥∥x(i)
t − fx

(
x̂(i)
t−1

)∥∥2

tLx
. (31)

This adaptive-variance technique has appeared useful and ef-
ficient in our simulations, as illustrated in Section 5, but al-
ternative approaches (including the simple choice of a fixed
variance) can also be successfully exploited.

3. CONVERGENCE OF CRPF ALGORITHMS

In this section, we assess the convergence of the proposed
CRPF algorithm. In particular, we seek sufficient conditions

2Part of this intuition is confirmed by the convergence theorem in
Section 3.

for AOP of the particles from time t − 1 to time t. Let
Ξt = {x(i)

t , C(i)
t }Mi=1 be the wps computed at time t. We say

that Ξt has been obtained by AOP from Ξt−1 if and only if

lim
M→∞

∣∣�C
(

x
opt
t

∣∣yt
)−�Ct

∣∣ = 0 (in some sense), (32)

where x
opt
t is the optimal state according to (26) and

�Ct =
M∑
i=1

�(i)
t �C(i)

t , (33)

with a pmf �(i)
t ∝ µ(�C(i)

t ), is the mean incremental cost at
time t. The results presented in this section prove that AOP
can be ensured by adequately choosing the propagation den-
sity and function µ : R → [0,∞) that relates the cost to the

pmf ’s π̂(i)
t and π(i)

t . Notice that π(i)
t = �(i)

t when λ = 0.
A corollary of the AOP convergence theorem is also es-

tablished that provides sufficient conditions for the mean
state estimate given by (21), for the case λ = 0, to be asymp-
totically optimal in terms of its incremental cost.

3.1. Preliminary definitions

Some preliminary definitions are necessary before stating
and proving sufficient AOP conditions. If the selection
and propagation steps of the CRPF method are considered
jointly, it turns out that, at time t, M particles are sampled as

x(i)
t ∼ pM

′
t (x), (34)

where M′ < ∞ denotes the number of particles available at
time t − 1 and sampling the pdf pM

′
t (x) amounts to resam-

pling M times in Ξt−1 = {x(i)
t−1, C(i)

t−1}M′
i=1 and then propagat-

ing the resulting particles and updating the costs to build the

new wps Ξt = {x(i)
t , C(i)

t }Mi=1 (note that we explicitly allow
M �= M′). Although other possibilities exist, for example, as
described in Section 4, when multinomial resampling is used
in the selection step of the CRPF algorithm, the pdf in (34) is
a finite mixture of the form

pM
′

t (x) =
M′∑
k=1

π̂(k)
t pt

(
x
∣∣x(k)

t−1

)
. (35)

We also introduce the following notation for a ball cen-
tered at x

opt
t with radius ε > 0:

S
{

x
opt
t , ε

} = {x ∈ RLx :
∥∥x− x

opt
t

∥∥ < ε}, (36)

and we write

SM
{

x
opt
t , ε

} = {x ∈ {x(i)
t

}M
i=1 :

∥∥x − x
opt
t

∥∥ < ε} (37)

for its discrete counterpart built from the particles in Ξt.
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3.2. Convergence theorem

Lemma 1. Let {x(i)
t }Mi=1 be a set of particles drawn at time t

using the propagation pdf pM
′

t (x) as defined by (34), let y1:t be a
fixed bounded sequence of observations, and let �C(x|yt) ≥ 0
be a continuous cost function, bounded in S{x

opt
t , ε}, with a

minimum at x = x
opt
t .

If the three following conditions are met:

(1) any ball with center at x
opt
t has a nonzero probability un-

der the propagation density, that is,

∫
S{x

opt
t ,ε}

pM
′

t (x)dx = γ > 0 ∀ε > 0, (38)

(2) the supremum of the function µ(�C(·|·)) for points
outside S(x

opt
t , ε) is a finite constant, that is,

Sout = sup
xt∈RLx \S(x

opt
t ,ε)

{
µ
(�C

(
xt
∣∣yt
))}

<∞, (39)

(3) the supremum of the function µ(�C(·|·)) for points in-
side SM(x

opt
t , ε) converges to infinity faster than the iden-

tity function, that is,

lim
M→∞

M

Sin
= 0, (40)

where

Sin = sup
xt∈SM(x

opt
t ,ε)

{
µ
(�C

(
xt
∣∣yt
))}

, (41)

then the set function µt : A ⊆ {x(i)
t }Mi=1 → [0,∞) defined as

µt
(
A ⊆ {x(i)

t

}M
i=1

) = ∑
x∈A

µ
(�C

(
x
∣∣yt
))

(42)

is an infinite discrete measure (see definition in, e.g., [16]) that
satisfies

lim
M→∞

Pr

[
1− µt

(
SM
(

x
opt
t , ε

))
µt
({

x(i)
t

}M
i=1

) ≥ δ

]
= 0 ∀δ > 0, (43)

where Pr[·] denotes probability, that is,

lim
M→∞

µt
(
SM
(

x
opt
t , ε

))
µt
({

x(i)
t

}M
i=1

) = 1 (i.p.), (44)

where i.p. stands for “in probability.”

See Appendix B for a proof.

Theorem 1. If conditions (38), (39), and (40) in Lemma 1
hold true, then the mean incremental cost at time t,

�Ct =
M∑
i=1

�(i)
t �C

(
x(i)
t

∣∣yt
)
, (45)

converges to the minimal incremental cost as M →∞,

lim
M→∞

∣∣�C
(

x
opt
t

∣∣yt
)−�Ct

∣∣ = 0 (i.p.). (46)

See Appendix C for a proof.
Finally, an interesting corollary that justifies the use of the

mean estimate (21) can be easily derived from Lemma 1 and
Theorem 1.

Corollary 1. Assuming (38), (39), and (40) in Lemma 1, and
forgetting factor λ = 0, the mean cost estimate is asymptotically
optimal, that is,

lim
M→∞

∣∣�C
(

x̃mean
t

∣∣yt
)−�Ct

(
x

opt
t |yt

)∣∣ = 0 (i.p.), (47)

where

x̃mean
t =

M∑
i=1

π(i)
t x(i)

t . (48)

See Appendix D for a proof.

3.3. Discussion

Theorem 1 states that conditions (38)–(40) are sufficient to
achieve AOP (i.p.). The validity of this result clearly depends
on the existence of a propagation pdf, pM

′
t [·], and a measure

µt with good properties in order to meet the required condi-
tions.

It is impossible to guarantee that condition (38) holds
true in general, as the value of x

opt
t is a priori unknown, but

if the number of particles is large enough and they are evenly
distributed on the state space, it is reasonable to expect that
the region around x

opt
t has a nonzero probability. Intuitively,

if the wps is locked to the system state at time t− 1, using the
system dynamics to propagate the particles to time t should
keep the filtering algorithm locked to the state trajectory. In-
deed, our computer simulation experiments give evidence
that the propagation pdf is not a critical weakness, and the
proposed sequence of Gaussian densities given by (30) and
(31) yields a remarkably good performance.

Conditions (39) and (40) are related to the choice of µ
or, equivalently, the measure µt. For the proposed cost model
given by (22) and (23), it is simple to show that condition
(39) holds true, both for µ = µ1 and µ = µ2, as defined in (28)
and (29), respectively. The analysis of condition (40) is more
demanding and will not be addressed here. An educated in-
tuition, also supported by the computer simulation results in
Section 5, points in the direction of selecting µ = µ2 with a
small enough value of δ.
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PE 1

PE 6PE 2

PE 3

PE 4

PE 5

Figure 1: M = 6 processors in a ring configuration for parallel im-
plementation of the local resampling algorithm.

4. RESAMPLING AND PARALLEL IMPLEMENTATION

Resampling is an indispensable algorithmic component in
sequential methods for statistical reference PF, which, oth-
erwise, suffer from weight degeneracy and do not converge
to useful solutions [4, 7, 15]. However, resampling also be-
comes a major obstacle for efficient implementation of PF
algorithms in parallel VLSI hardware devices because it cre-
ates full data dependencies among processing units [15]. Al-
though some promising methods have been recently pro-
posed [15, 17], parallelization of resampling algorithms re-
mains an open problem.

The selection step in CRPFs (see Section 2.1) is much less
restrictive than resampling in conventional SRPFs. Specifi-
cally, while resampling methods in SRPFs must ensure that
the probability distribution of the resampled population is
an unbiased and unweighted approximation of the original
distribution of the particles [4], selection in CRPFs is only
aimed at ensuring that the particles are close to the locations
that produce cost function minima. We have found evidence
of state estimates obtained by CRPF being better when the
random grid of particles comprises small regions of the state
space around these minima. Therefore, selection algorithms
can be devised with the only and mild constraint that they do
not increase the average cost of particles.

Now we briefly describe a simple resampling technique
for CRPFs that lends itself to a straightforward paralleliza-
tion. Figure 1 shows an array of independent processors con-
nected in a ring configuration. We assume, for simplicity,
that the number of processors is equal to the number of
particles M, although the algorithm is easily generalized to
a smaller number of processing elements (PEs). The ith PE

(PEi) contains the triple {x(i)
t , C(i)

t , R(i)
t+1} in its memory. The

proposed local resampling technique proceeds in two steps.

(i) PEi transmits {x(i)
t , C(i)

t , R(i)
t+1} to PEi+1 and PEi−1

and receives the corresponding information from its
neighbors. This communication step can be typically
carried out in a single cycle and, when complete, PEi
contains three particles {x(k)

t , C(k)
t , R(k)

t+1}i+1
k=i−1.

(ii) Each PE draws a single particle with probabilities ac-
cording to the risks, that is, for the ith PE:

x̂(i)
t = x(k)

t , Ĉ(i)
t = C(k)

t , k ∈ {i− 1, i, i + 1}, (49)

with probability π̂(k)
t = µ(R(k)

t+1)/
∑i+1

l=i−1 µ(R(k)
t+1).

Note that, in two simple steps, the algorithm stochasti-
cally selects those particles with smaller risks. It is appar-
ent that the method lends easily to parallelization, with very
limited communication requirements. The term local resam-
pling comes from the observation that low-risk particles are
only locally spread by the method, that is, a PE containing a
high-risk particle can only get a low-risk sample from its two
neighbors.

5. COMPUTER SIMULATIONS

In this section, we present computer simulations that illus-
trate the validity of our approach. We have considered the
problem of autonomous positioning of a vehicle moving
along a 2-dimensional space. The vehicle is assumed to have
means to estimate its current speed every Ts seconds and it
also measures, with the same frequency, the power of three
radio signals emitted from known locations and with known
attenuation coefficients. This information can be used by a
particle filter to estimate the actual vehicle position.

Following [18], we model the positioning problem by the
state-space system

(i) state equation:

xt = Gxxt−1 + Gvvt + Guut ; (50)

(ii) observation equation:

yi,t = 10 log10

(
Pi,0∥∥ri − xt

∥∥αi
)

+wi,t, (51)

where xt ∈ R2 indicates the position of the vehicle in the
2-dimensional reference set, Gx = I2 and Gv = Gu = TsI2

are known transition matrices, vt ∈ R2 is the observable
vehicle speed, which is assumed constant during the in-
terval ((t − 1)Ts, tTs), and ut is a noise process that ac-
counts for measurement errors of the speed. The vector yt =
[y1,t, y2,t, y3,t]T collects the received power from three emit-
ters located at known reference locations ri ∈ R2, i = 1, 2, 3,
that transmit their signals with initial power Pi,0 through a
fading channel with attenuation coefficient αi, and, finally,
wt = [w1,t,w2,t,w3,t]T is the observation noise. Each time
step represents Ts seconds, the position vectors xt and ri have
units of meters (m), the speed is given in m/s, and the re-
ceived power is measured in dB. The initial vehicle position
x0 is drawn from a standard 2-dimensional Gaussian distri-
bution, that is, x0 ∼ N (0, I2).

We have applied the proposed CRPF methodology for
solving the positioning problem and, for comparison and
benchmarking purposes, we have also implemented the pop-
ular auxiliary BF [9], which has an algorithmic structure (re-
sampling, importance sampling, and state estimation) very
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Parameters. For all i,
λ = 0.95; q = 1, 2; δ = 0.01; β = 2; M = 50; σ2,(i)

0 = 10.
Initialization. For i = 1, . . . ,M,

x(i)
0 ∼U(−8, +8),

C(i)
0 = 0.

Recursive update. For i = 1, . . . ,M,

R(i)
t+1 = λC(i)

t + ‖yt+1 − fy(Gxx(i)
t + Gvvt+1)‖q.

Multinomial selection (resampling).

pmf : π̂(i)
t+1 =




(R(i)
t+1)−1∑M

l=1(R(l)
t+1)−1

(function µ1),

(R(i)
t+1 −min j∈{1,...,M} R

( j)
t+1 + δ)−β∑M

l=1(R(l)
t+1 −min j∈{1,...,M} R

( j)
t+1 + δ)−β

(function µ2).

Selection. (x̂(i)
t , Ĉ(i)

t ) = (x(k)
t , C(k)

t ), k ∈ {1, . . . ,M}, with probability π̂(k)
t+1.

Variance update.

t ≤ 10: σ2,(i)
t+1 = σ2,(i)

t ,

t > 10: σ2,(i)
t = t − 1

t
σ2,(i)
t−1 +

‖x(i)
t − fx(x̂(i)

t−1)‖2

tLx
.

Let x(i)
t+1 ∼ pt+1(xt+1|x̂(i)

t ), where

E
pt+1(xt+1|x̂(i)

t )
[xt+1] = fx(x̂(i)

t ),

Cov
pt+1(xt+1|x̂(i)

t )
[xt+1] = σ2,(i)

t+1 I2,

x(i)
0:t+1 = {x̂(i)

0:t , x(i)
t+1},

C(i)
t+1 = λĈ(i)

t + ‖yt+1 − fy(x(i)
t+1)‖q.

State estimation.

π(i)
t ∝ µ1(C(i)

t ) or π(i)
t ∝ µ2(C(i)

t ),

x̃mean
t =

M∑
i=1

π(i)
t x

(i)
t .

Algorithm 1: CRPF algorithm with multinomial resampling for the 2-dimensional positioning problem.

similar to the proposed CRPF family. Algorithm 1 summa-
rizes the details of the CRPF algorithm with multinomial se-
lection, including the alternatives in the choice of function µ.
The selection step can be substituted by the local resampling
procedure shown in Algorithm 2. A pseudocode for the aux-
iliary BF is also provided in Algorithm 3.

In the following subsections, we describe different com-
puter experiments that were carried out using synthetic data
generated according to model (50)-(51). Two types of plots
are presented, both for CRPF and BF algorithms. Vehicle tra-
jectories in the 2-dimensional space, resulting from a single
simulation of the dynamic system, are shown to illustrate the
ability of the algorithms to remain locked to the state trajec-
tory. We chose the mean absolute deviation as a performance
figure of merit. It was measured between the true vehicle tra-
jectory in R2 and the trajectory estimated by the particle fil-
ters and its unit was meter. All mean-deviation plots were
obtained by averaging 50 independent simulations. Both the
BF and the CRPF type of algorithms were run with M = 50
particles.

5.1. Mixture Gaussian noise processes

In the first experiment, we modeled the system and observa-
tion noise processes ut and wt, respectively, as independent

and temporally white, with the mixture Gaussian pdfs:

ut ∼ 0.3N
(

0,
√

0.2I2
)

+ 0.4N
(

0, I2
)

+ 0.3N
(

0,
√

10I2
)
,

wl,t ∼ 0.3N (0, 0.2) + 0.4N (0, 1)

+ 0.3N (0, 10), l = 1, 2, 3.

(52)

In Figure 2, we compare the auxiliary BF with perfect knowl-
edge of the noise distributions, and several CRPF algorithms
that use the cost and risk functions proposed in Section 2.2
(see (22)–(24)). For all CRPF methods, the forgetting factor
was λ = 0.95, but we ran algorithms with different values of
q, q = 1, 2, and functions µ1 and µ2 (see (28) and (29)). For
the latter function µ2, we set δ = 0.01 and β = 2. The prop-
agation mechanism for the CRPF methods consisted of the
sequence of Gaussian densities given by (30) and (31), with

initial value σ2,(i)
0 = 10 for all i.

Figure 2a shows the system trajectory in a single run and
the estimates corresponding to the BF and CRPF algorithms.
The trajectory started in an unknown position close to (0, 0)
and evolved for one hour, with sampling period Ts = 2 sec-
onds. It is apparent that all the algorithms remained locked
to the vehicle position during the whole simulation interval.
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Local selection (resampling) at the ith PE.

For k = i− 1, i, i + 1, π̂(k)
t+1 =




(
R(k)

t+1

)−1

∑i+1
l=i−1

(
R(l)

t+1

)−1

(
µ1
)
,

(
R(k)

t+1 −min j∈{i−1,i,i+1} R
( j)
t+1 + δ

)−β
∑i+1

l=i−1

(
R(l)

t+1 −min j∈{i−1,i,i+1} R
( j)
t+1 + δ

)−β (
µ2
)
.

Selection. (x̂(i)
t , Ĉ(i)

t ) = (x(l)
t , C(l)

t ), l ∈ {i− 1, i, i + 1}, with probability π̂(l)
t+1.

Algorithm 2: Local resampling for the CRPF algorithm.

Initialization. For i = 1, . . . ,M,

x(i)
0 ∼ N (0, I2),

w(i)
0 = 1

M
.

Recursive update.
For t = 1, . . . ,K ,

For i = 1, . . . ,M,
x̂(i)
t = fx(x(i)

t−1),

κi = k, with probability p(yt|x̂(k)
t )w(k)

t−1,

x(i)
t ∼ p[xt|x(κi)

t−1].

Weight update. w̃(i)
t = p(yt|x(i)

t )

p(yt|x̂(κi)
t )

.

Weight normalization. w(i)
t = w̃(i)

t∑M
k=1 w̃

(k)
t

.

Algorithm 3: Auxiliary BF for the 2-dimensional positioning
problem.

The latter observation is confirmed by the mean absolute
deviation plot in Figure 2b. The deviation signal was com-
puted as

et = 1
50

1
2

50∑
j=1

∣∣∣x1,t, j − xest
1,t, j

∣∣∣ +
∣∣∣x2,t, j − xest

2,t, j

∣∣∣, (53)

where j is the simulation number, xt, j = [x1,t, j , x2,t, j]T is the
true position at time t, and xest

t, j = [xest
1,t, j , x

est
2,t, j]

T is the cor-
responding estimate obtained with the particle filter. We ob-
serve that the CRPF algorithms with µ2 attained the lowest
deviation and outperformed the auxiliary BF. Although it is
not shown here, the auxiliary BF improved its performance
as the sampling period was decreased,3 and achieved a lower
deviation than the CRPFs for Ts ≤ 0.5 second. The reason
is that, as Ts decreases, the correlation of the states increases
due to the variation of Gu, and the BF exploits this statistical
information better. Therefore, we can conclude that the BF
can be more accurate when strong statistical information is
available, and that the proposed CRPFs are more robust and

3Obviously, the BF will also deliver a better performance as the number
of particles M grows. In fact, it can be shown [4] that the estimate of the
posteriori pdf and its moments obtained from the BF converge uniformly
to the true density and the true values of the moments. This means that, as
M → ∞, the state estimates given by the BF become optimal (in the mean
square error sense) and that for large M, the BF will outperform the CRPF
algorithm.

steadily attain a good performance for a wider range of sce-
narios. This conclusion is easily confirmed with the remain-
ing experiments presented in this section.

Figures 3 and 4 show the trajectories and the mean ab-
solute deviations for the BF and CRPF algorithms when the
sampling period was increased to Ts = 5 seconds and Ts = 10
seconds, respectively. Note that increasing Ts also increases
the speed measurement error. As before, the CRPF tech-
niques with µ2 outperformed the BF in the long term.

Because of its better performance, we also checked the
behavior of the CRPF method that uses µ2 for different val-
ues of parameter δ. Figure 5a shows the true position and the
estimates obtained using three different values of δ, namely,
0.1, 0.01, and 0.001, with fixed β = 2. All the algorithms ap-
pear to perform similarly for the considered range of values.
This is confirmed with the results presented in Figure 5b in
terms of the mean absolute deviation. They also illustrate the
robustness and stability of the method.

In the following, unless it is stated differently, the CRPF
algorithm was always implemented with µ2 and parameters
q = 2, δ = 0.01, and β = 2. The sampling period was also
fixed and was Ts = 5 seconds.

5.2. Mixture Gaussian system and observation
noise—Gaussian BF

Figure 6 shows the results (trajectory and mean deviation)
obtained with the same system and observation noise distri-
butions as in Section 5.1 when the auxiliary BF (labeled as BF
(Gaussian)) is mismatched with the dynamical system and
models the noise processes with Gaussian densities:

p[ut] = N (0,
√

0.2I2),

p[wl,t] = N (0, 0.2), l = 1, 2, 3.
(54)

It is apparent that the use of the correct statistical infor-
mation is critical for the bootstrap algorithm (in the figure,
we also plotted the result obtained when the BF used the true
mixture Gaussian density—labeled as BF (M-Gaussian)).
Note that the CRPF algorithm also drew the state particles
from a Gaussian sequence of densities (see Section 2.2), but
it attained a superior performance compared to the BF.

5.3. Local versus multinomial resampling

We have verified the performance of the CRPF that uses the
new resampling scheme proposed in Section 4. The results
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Figure 2: Mixture Gaussian noise processes. Ts = 2 seconds. (a)
Trajectory. (b) Mean absolute deviation.

can be observed in Figure 7. The CRPF with local resampling
shows approximately the same performance as the BF with
perfect knowledge of the noise statistics. Although it presents
a slight degradation with respect to the CRPF with multi-
nomial resampling, the feasibility of a simple parallel imple-
mentation makes the local resampling method extremely ap-
pealing.

5.4. Different estimation criteria

Figure 8 compares the trajectory and mean deviation of
two CRPF algorithms that used different criteria to obtain
the estimates of the state: the minimum cost estimate x̃min

t
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Figure 3: Mixture Gaussian noise processes. Ts = 5 seconds. (a)
Trajectory. (b) Mean absolute deviation.

(see (20)) and the mean cost estimate x̃mean
t (see (21)). It is

clear that both algorithms performed similarly and outper-
formed the BF in the long term.

5.5. Laplacian noise

Finally, we have repeated our experiment by modeling the
noises using Laplacian distributions, that is,

p[ut] = L
(

0,
√

0.5I2
) = 1

0.5
e−|ut|/0.5,

p
[
wl,t

] = 0.3L(0, 0.5) = 1
0.5

e−|wl,t|/0.5, l = 1, 2, 3.
(55)
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Figure 4: Mixture Gaussian noise processes. Ts = 10 seconds.
(a) Trajectory. (b) Mean absolute deviation.

Figure 9 depicts the results obtained for the BF with perfect
knowledge of the probability distribution of the noise and
the CRPF algorithm. Again, the proposed method attained
better performance in terms of mean absolute deviation.

6. CONCLUSIONS

Particle filters provide optimal numerical solutions in prob-
lems that amount to estimation of unobserved time-varying
states of dynamic systems. Such methods rely on the knowl-
edge of prior probability distributions of the initial state
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Figure 5: Different δ values. Ts = 5 seconds. (a) Trajectory.
(b) Mean absolute deviation.

and noise processes that affect the system, and require the
ability to evaluate likelihood functions and the state tran-
sition densities. Under these assumptions, different meth-
ods have been proposed that recursively estimate posterior
densities by generating a collection of samples and associ-
ated importance weights. In this paper, we introduced a new
class of particle filtering methods that aim at the estimation
of system states from available observations without a priori
knowledge of any probability density functions. The proposed
method is based on cost functions that measure the quality
of the state signal estimates given the available observations.
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Figure 6: Mixture Gaussian system and observation noise—
Gaussian BF. Ts = 5 seconds. (a) Trajectory. (b) Mean absolute de-
viation.

Since they do not assume explicit probabilistic models for the
dynamic system, the proposed techniques, which have been
termed CRPFs, are more robust than standard particle fil-
ters in problems where there is uncertainty (or a mismatch
with physical phenomena) in the probabilistic model of the
dynamic system. The basic concepts related to the formu-
lation and design of these new algorithms, as well as theo-
retical results concerning their convergence, were provided.
We also proposed a local resampling scheme that allows for
simple implementations of the CRPF techniques with paral-
lel VLSI hardware. Computer simulation results illustrate the
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Figure 7: Local versus multinomial resampling. Ts = 5 seconds.
(a) Trajectory. (b) Mean absolute deviation.

robustness and the excellent performance of the proposed al-
gorithms when compared to the popular auxiliary BF.

APPENDICES

A. CRPF AND STOCHASTIC APPROXIMATION

It is interesting to compare the CRPF method with the SA
algorithm. The subject of SA can be traced back to the 1951
paper of Robbins and Monro [19], and a recent tutorial re-
view can be found in [14].



A New Class of Particle Filters 2291

86420−2
×104

x

−2

0

2

4

6

8

10
×104

y

True trajectory
BF
CRPF (mean)
CRPF (min)

(a)

8006004002000

t × 5 (s)

0

50

100

150

200

250

Jo
in

t
m

ea
n

ab
s.

de
v.

(m
)

BF
CRPF (mean)
CRPF (min)

(b)

Figure 8: Different estimation criteria. Ts = 5 seconds. (a) Trajec-
tory. (b) Mean absolute deviation.

In a typical problem addressed by SA, an objective func-
tion that has to be minimized involves expectations, for ex-
ample, the minimization of E(Q(x,ψt)), where Q(·) is a
function of the unknown x and random variables ψt. The
problem is that the distributions of the random variables are
unknown and the expectation of the function cannot be an-
alytically found. To make the problem tractable, one approx-
imates the expectation by simply dropping the expectation
operator, and proceeding as if E(Q(x,ψt)) = Q(x,ψt). Rob-
bins and Monro proposed the following scheme that solves
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Figure 9: Laplacian. Ts = 5 s. (a) Trajectory. (b) Mean absolute
deviation.

for xt:

x̂t = x̂t−1 + γtQ
(
x̂t−1,ψt

)
, (A.1)

where γt is a sequence of positive scalars that have to satisfy
the conditions

∑
t γt = ∞,

∑
t γ

2
t <∞. In the signal processing

literature, the best known SA method is the LMS algorithm.
The CRPF method also attempts to estimate the un-

known xt without probabilistic assumptions. In doing so, it
actually aims at inverting the dynamic model and, therefore,
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it performs SA similarly to RM though by other means.4 In
CRPF, the dynamics of the state are taken into account both
through the propagation step and by recursively solving the
optimization problem (25). Further research in CRPF from
the perspective of SA can probably yield new and deeper in-
sight of this new class of algorithms.

B. PROOF OF LEMMA 1

The proof is carried out in two steps. First, we prove the im-
plication

1− δ
δ

Sout lim
M→∞

EpM′t
nM

µt
(
SM
(

x
opt
t , ε

)) = 0 (B.1)
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lim
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Pr
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SM
(

x
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t , ε

))
µt
({

x(i)
t

}M
i=1

) ≥ δ


 = 0 (B.2)

for any ε, δ > 0. Then, we only need to show that (B.1) holds
true under conditions (38)–(40) in order to complete the
proof.

Straightforward manipulation of the inequality in (43)
leads to the following equivalence chain that holds true for
any ε, δ > 0:

lim
M→∞

Pr


1− µt

(
SM
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x
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))
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where we have exploited that
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))
+ µt
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))
.

(B.6)

Using the notation

1A(x) =

1 if x ∈ A,

0 otherwise,
(B.7)

4Note, however, that the notion of inversion must be understood in a
broad sense, since fy may not necessarily be invertible and, even if f −1

y exists,
it may happen that yt does not belong to its domain.

for the indicator function, we can write
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where nM is the cardinality of the discrete set {x(i)
t }Mi=1 \

SM(x
opt
t , ε). Therefore, using (B.8) and the equivalence be-

tween (B.3) and (B.5), we arrive at the implication
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Since both µ(�C(xt|yt)) ≥ 0 and (1 − δ)SoutnM/δ > 0,
we can use the relationship [16, equation 4.4-5] to obtain

Pr
[
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SoutnM
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x
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t , ε
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(B.10)

where we have used the fact that the supremum Sout does
not depend on M or nM . When jointly considered, (B.9) and
(B.10) yield the implication (B.1)⇒(B.2) and we only have to
show that (B.1) holds true in order to complete the proof.

The expectation on the left-hand side of (B.1) can be
computed by resorting to assumption (38), which yields, af-
ter straightforward manipulations,

lim
M→∞

EPr[nM]
[
nM
] = (1− γ) lim

M→∞
M (i.p.). (B.11)

Substituting (B.11) into (B.1) yields
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where the last equality is obtained from assumptions (39)
and (40). The proof is complete by going back to implication
(B.1)⇒(B.2).
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C. PROOF OF THEOREM 1

Using Lemma 1, we obtain that the set SM(x
opt
t , ε) has

(asymptotically) a unit probability mass after the propaga-
tion step, that is,

lim
M→∞
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for all ε > 0.
We write the upper bound on the right-hand side of

(C.3) as a function of the radius ε:
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It can be easily proved that limM→∞ #SM(x
opt
t , ε = 1/

√
M) =

∞, where # denotes the number of elements in a discrete set.
Since limM→∞ 1/

√
M = 0 and it is assumed that �C(·|yt) is

continuous and bounded in S(x
opt
t , ε) for all ε > 0, it follows

that

B
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)
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and, by exploiting the fact that the left-hand side of (C.2)
does not depend on ε, we can readily use (C.5) to obtain
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which concludes the proof.

D. PROOF OF COROLLARY 1

When λ = 0, �(i)
t = π(i)

t and, according to Lemma 1,
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for all ε > 0. Hence, we can write the mean state estimate (in
the limit M →∞) as
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and, therefore, the incremental cost of the mean state esti-
mate can be upper bounded as

lim
M→∞
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Using inequality (D.3) and the obvious fact that�C(x
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is minimal by definition, we find that
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where B(ε) is the same as defined in (C.4). Therefore, we can
apply the same technique as in the proof of Theorem 1 and,
taking ε = 1/

√
M, we obtain

lim
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which concludes the proof of the corollary.
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ciado en Informática (M.S.) and Doctor en
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We present a change detection method for nonlinear stochastic systems based on particle filtering. We assume that the parameters
of the system before and after change are known. The statistic for this method is chosen in such a way that it can be calculated
recursively while the computational complexity of the method remains constant with respect to time. We present simulation
results that show the advantages of this method compared to linearization techniques.
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1. INTRODUCTION

Page states the change detection problem as follows [1]:
“Whenever observations are taken in order it can happen that
the whole set of observations can be divided into subsets, each
of which can be regarded as a random sample from a common
distribution, each subset corresponding to a different parameter
value of the distribution. The problems to be considered in this
paper are concerned with the identification of the subsamples
and the detection of changes in the parameter value.”

We refer to a change or an abrupt change as any change
in the parameters of the system that happens either instan-
taneously or much faster than any change that the nominal
bandwidth of the system allows.

The key difficulty of all change detection methods is that
of detecting intrinsic changes that are not necessarily directly
observed but are measured together with other types of per-
turbations [2].

The change detection could be offline or online. In on-
line change detection, we are only interested in detecting the
change as quickly as possible (e.g., to minimize the detection
delay with fixed mean time between false alarms), and the
estimate of the time when the change occurs is not of impor-
tance. In offline change detection, we assume that the whole
observation sequence is available at once and finding the es-
timate of the time of change could be one of the goals of the
detection method. In this paper, we limit our concern to on-
line detection of abrupt changes.

The change detection methods that we consider here can

be classified under the general name of likelihood ratio (LR)
methods. Cumulative sum (CUSUM) and generalized LR
(GLR) tests are among these methods. CUSUM was first pro-
posed by Page [1]. The most basic CUSUM algorithm as-
sumes that the observation signal is a sequence of stochastic
variables which are independent and identically distributed
(i.i.d.) with known common probability density function be-
fore the change time, and i.i.d. with another known probabil-
ity density after the change time. In the CUSUM algorithm,
the log-likelihood ratio for the observation from time i to
time k is calculated and its difference with its current mini-
mum is compared with a certain threshold. If this difference
exceeds the threshold, an alarm is issued.

Properties of the CUSUM algorithm have been studied
extensively. Its most important property is the asymptotic
optimality, which was first proven in [3]. More precisely,
CUSUM is optimal, with respect to the worst mean delay,
when the mean time between false alarms goes to infinity.
This asymptotic point of view is convenient in practice be-
cause a low rate of false alarms is always desirable.

In the case of unknown system parameters after change,
the GLR algorithm can be used as a generalization of the
CUSUM algorithm. Since, in this algorithm, the exact infor-
mation of the change pattern is not known, the LR is maxi-
mized over all possible change patterns.1

1If the maximum does not exist, the supremum of the LR should be cal-
culated.
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For stochastic systems with linear dynamics and linear
observations, the observation sequence is not i.i.d. Therefore,
the regular CUSUM algorithm cannot be applied for detec-
tion of changes in such systems. However, if such systems
are driven by Gaussian noise, the innovation process asso-
ciated with the system is known to be a sequence of indepen-
dent random variables. The regular CUSUM algorithm or its
more general counterpart, GLR, can be applied to this inno-
vation process [2, 4].

In this paper, we are interested in the change detection
problem for stochastic systems with nonlinear dynamics and
observations. We show that for such systems, the complexity
of the CUSUM algorithm grows with respect to time. This
growth in complexity cannot be tolerated in practical prob-
lems. Therefore, instead of the statistic used in the CUSUM
algorithm, we introduce an alternative statistic. We show that
with this statistic, the calculation of the LR can be done re-
cursively and the computational complexity of the method
stays constant with respect to time.

Unlike the linear case, change detection for nonlinear
stochastic systems has not been investigated in any depth.
In the cases where a nonlinear system experiences a sudden
change, linearization and change detection methods for lin-
ear systems are the main tools for solving the change de-
tection problem (see, e.g., [5]). The reason this subject has
not been pursued is clear; even when there is no change,
the estimation of the state of the system, given the observa-
tions, results in an infinite-dimensional nonlinear filter [6],
and the change in the system can only make the estimation
harder.

In the last decade, there has been an increasing interest
in simulation-based nonlinear filtering methods. These fil-
tering methods are based on a gridless approximation of the
conditional density of the state, given the observations. Grid-
less simulation-based filtering, now known by many differ-
ent names such as particle filtering (PAF) [7, 8], the con-
densation algorithm [9], the sequential Monte Carlo (SMC)
method [10], and Bayesian bootstrap filtering [11], was first
introduced by Gordon et al. [11] and then it was rediscovered
independently by Isard and Blake [9] and Kitagawa [12].

The theoretical results regarding the convergence of the
approximate conditional density given by PAF to the true
conditional density (in some proper sense) suggest that this
method is a strong alternative for nonlinear filtering [7]. The
advantage of this method over the nonlinear filter is that PAF
is a finite-dimensional filter. The authors believe that PAF
and its modifications are a starting point to study change de-
tection for nonlinear stochastic systems. In this paper, we use
the results in [13] and we develop a new change detection
method for nonlinear stochastic systems.

In [13], we showed that when the number of satel-
lites is below a critical number, linearization methods such
as extended Kalman filtering (EKF) result in an unaccept-
able position error for an integrated inertial navigation sys-
tem/global positioning system (INS/GPS). We also showed
that the approximate nonlinear filtering methods, the projec-
tion particle filter [13], in particular, are capable of providing
an acceptable estimate of the position in the same situation.

If the carrier phase is used for position information in an
integrated INS/GPS, one sudden change that happens rather
often is the cycle slip. A cycle slip happens when the phase
of the received signal estimated by the phase lock loop in the
receiver has a sudden jump. An integrated INS/GPS with car-
rier phase receiver is used as an application for the method
introduced in this paper for detection of a cycle slip with
known strength.

In Section 2, we state the approximate nonlinear filter-
ing method used in this paper. In Section 3, we briefly define
the change detection problem. In Section 4, we review the
CUSUM algorithm for linear systems with additive changes.
Then, in Sections 5 and 6, we present a new change detection
method for nonlinear stochastic systems. In Section 7, we lay
out the formulation for an integrated INS/GPS. In Section 8,
we present some simulation results. In Section 9, we summa-
rize the results and lay out the future work.

2. APPROXIMATE NONLINEAR FILTERING

Consider the dynamical system

xk+1 = fk
(

xk
)

+ Gk
(

xk
)

wk,

yk = hk
(

xk
)

+ vk,
(1)

where the distribution of x0 is given, xk ∈ Rn, yk ∈ Rd, and
wk ∈ Rq, and vk ∈ Rd are white noise processes with known
statistics, and the functions fk(·) and hk(·) and the matrix
Gk(·) have the proper dimensions. The noise processes wk,
vk, k = 0, 1, . . . , and the initial condition x0 are assumed in-
dependent.

We assume the initial distribution for x0 is given. The
goal is to find the conditional distribution of the state,
given the observation, that is, Pk(dxk|Yk

1), where Yk
1 =

{y1, y2, . . . , yk} is the observation up to and including time
k. The propagation of the conditional distribution, at least
conceptually, can be expressed as follows [6].

Step (1). Initialization:

P0
(
dx0

∣∣y0
) = P

(
dx0

)
. (2)

Step (2). Diffusion:

P(k+1)−
(
dxk+1

∣∣Yk
1

)
=
∫
P
(
dxk+1

∣∣xk
)
Pk
(
dxk

∣∣Yk
1

)
.

(3)

Step (3). Bayes’ rule update:

P(k+1)
(
dxk+1

∣∣Yk+1
1

)
= p

(
yk+1

∣∣xk+1
)
P(k+1)−

(
dxk+1

∣∣Yk
1

)
∫
p
(

yk+1
∣∣xk+1

)
P(k+1)−

(
dxk+1

∣∣Yk
1

) . (4)

Step (4). k ← k + 1; go to Step (2).

We have assumed that P(dyk+1|xk+1)= p(yk+1|xk+1)dyk+1

and p(yk+1|xk+1) is the conditional density of the observa-
tion, given the state at time k + 1.

The conditional distribution given by the above steps
is exact, but in general, it can be viewed as an infinite-
dimensional filter, thus not implementable. PAF, in brief,
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Step (1). Initialization.
Sample N i.i.d. random vectors x1

0, . . . , xN
0 with

the initial distribution P0(dx).

Step (2). Diffusion.
Find x̂1

k+1, . . . , x̂N
k+1 from the given x1

k , . . . , xN
k ,

using the dynamic rule:

xk+1 = fk
(

xk

)
+ Gk

(
xk

)
vk.

Step (3). Use Bayes’ rule and find the empirical
distribution

PN
k+1(dx) =

N∑
j=1

p
(

yk+1

∣∣x̂
j
k+1

)
∑N

i=1 p
(

yk+1

∣∣x̂i
k+1

)δx̂
j
k+1

(dx).

Step (4). Resampling.
Sample x1

k+1, . . . , xN
k+1 according to PN

k+1(dx).

Step (5). k ← k + 1; go to Step (2).

Algorithm 1: Particle filtering.

is an approximation method that mimics the above calcu-
lations with a finite number of operations using the Monte
Carlo method. Algorithm 1 shows one manifestation of PAF
[7, 11].

It is customary to call x1
k , . . . , xN

k particles. The key idea
in PAF is to eliminate the particles that have low importance
weights p(yk|xk) and to multiply particles having high im-
portance weights [11, 14]. The surviving particles are thus
approximately distributed according to PN

k (dx). This auto-
matically makes the approximation one of better resolution
in the areas where the probability is higher.

In the simulations in this paper, we use a modified ver-
sion of the classical PAF method called projection PAF. For
completeness sake, we repeat the algorithm that was given in
[13]. In projection PAF, we assume that the conditional den-
sity of the state of the system, given the observation, is close
to an exponential family of densities S defined as follows.2

Definition 1 (Brigo [15]). Let {c1(·), . . . , cp(·)} be affinely in-
dependent3 scalar functions defined on k dimensional Eu-
clidean space Rk. Assume that

Θ0 =
{
θ ∈ Rp : Υ(θ) = log

∫
exp

(
θTc(x)

)
dx <∞

}
(5)

is a convex set with a nonempty interior, where c(x) =
[c1(x), . . . , cp(x)]T . Then S, defined as

S = {p(·, θ), θ ∈ Θ
}

,

p(x, θ) := exp
[
θTc(x)− Υ(θ)

]
,

(6)

where Θ ⊆ Θ0 is open, is called an exponential family of
probability densities.

2For details of the assumptions and the convergence results for the pro-
jection PAF, see [13].

3{c1, . . . , cp} are affinely independent if for distinct points x1, x2, . . . ,

xp+1,
∑p+1

i=1 λic(xi) = 0 and
∑p+1

i=1 λi = 0 imply λ1 = λ2 = · · · = λp+1 = 0
[16].

Step (1). Initialization.
Sample N i.i.d. random vectors x1

0, . . . , xN
0 with

the density p0(x).

Step (2). Diffusion.
Find x̂1

k+1, . . . , x̂N
k+1 from the given x1

k , . . . , xN
k ,

using the dynamic rule:

xk+1 = fk
(

xk

)
+ Gk

(
xk

)
vk.

Step (3). Find the MLE of θ̂(k+1)− , given x̂1
k+1, . . . , x̂N

k+1:

θ̂(k+1)− = arg max
θ

N∏
i=1

exp
(
θTc

(
x̂i
k+1

)− Υ(θ)
)
.

Step (4). Use Bayes’ rule

p
(

x, θ̂(k+1)
)

= exp
(
θ̂T(k+1)−c(x)− Υ

(
θ̂(k+1)−

))
p
(

yk+1

∣∣x
)

∫
exp

(
θ̂T(k+1)−c(x)− Υ

(
θ̂(k+1)−

))
p
(

yk+1

∣∣x
)
dx

.

Step (5). Resampling.

Sample x1
k+1, . . . , xN

k+1 according to p(x, θ̂k+1).

Step (6). k ← k + 1; go to Step (2).

Algorithm 2: Projection particle filtering for an exponential family
of densities.

With this definition for the exponential family of densi-
ties, the projection PAF algorithm is stated as in Algorithm 2.

3. CHANGE DETECTION: PROBLEM DEFINITION

Online detection of a change can be formulated as follows
[2]. Let Yk

1 be a sequence of observed random variables
with conditional densities pθ(yk|yk−1, . . . , y1). Before the un-
known change time t0, the parameter of the conditional den-
sity θ is constant and equal to θ0. After the change, this pa-
rameter is equal to θ1. In online change detection, one is in-
terested in detecting the occurrence of such a change. The
exact time and the estimation of the parameters before and
after the change are not required. In the case of multiple
changes, we assume that the changes are detected fast enough
so that in each time instance, only one change can be con-
sidered. Online change detection is performed by a stopping
rule [2]

ta = inf
{
k : gk

(
Yk

1

) ≥ λ
}

, (7)

where λ is a threshold, {gk}k≥1 is a family of functions, and ta
is the alarm time, that is, the time when change is detected.

If ta < t0, then a false alarm has occurred. The crite-
rion for choosing the parameter λ and the family of functions
{gk}k≥1 is to minimize the detection delay for the fixed mean
time between false alarms.

4. ADDITIVE CHANGES IN LINEAR
DYNAMICAL SYSTEMS

Consider the system

xk+1 = Fkxk + Gkwk + ΓkΥx
(
k, t0

)
,

yk = Hkxk + vk + ΞkΥy
(
k, t0

)
,

(8)
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where xk ∈ Rn, yk ∈ Rd, and wk ∈ Rq and vk ∈ Rd are
white noise processes with known statistics. Fk , Gk, HK , Γk,
and Ξk are matrices of proper dimensions, and Υx(k, t0) and
Υy(k, t0) are the dynamic profiles of the assumed changes,
of dimensions ñ ≤ n and d̃ ≤ d, respectively. wk and vk
are white Gaussian noise processes, independent of the initial
condition x0. It is assumed that Υx(k, t0) = 0 and Υy(k, t0) =
0 for k < t0, but we do not necessarily have the exact knowl-
edge of the dynamic profile and the gain matrices Γk and Ξk.

For the case of known parameters before and after
change, the CUSUM [2] algorithm can be used, and it is well
known that the change detection method has the following
form:

ta = min
{
k ≥ 1 | gk ≥ λ

}
,

gk = max
1≤ j≤k

Skj ,

Skj = ln

∏k
i= j pρ(i, j)

(
εi
)

∏k
i= j p0

(
εi
) ,

(9)

where εi is the innovation process calculated using Kalman
filtering assuming that no change occurred, and ρ(i, j) is the
mean of the innovation process at time j conditioned on the
change occurring at the time i. p0 and pρ(·,·) are Gaussian
densities with means 0 and ρ(·, ·), respectively. The covari-
ance matrix for these two densities is the same and is calcu-
lated using Kalman filtering. SKj is the LR between two hy-
potheses: change occurrence at j and no change occurrence.

When the parameter after change is not known, GLR can
be used to calculate gk [4]:

gk = max
1≤ j≤k

sup
Υx ,Υy

Skj . (10)

The solution for (10) is well known and can be found in
many references (see [2]).

Similar to nonlinear filtering, change detection for non-
linear stochastic systems results in an algorithm that is in-
finite dimensional. Linearization techniques, whenever ap-
plicable, are the main approximation tool for studying the
change detection problem for nonlinear systems. Although
linearization techniques are computationally efficient, they
are not always applicable. In the sections to come, we pro-
pose a new method based on nonlinear PAF that can be used
for change detection for nonlinear stochastic systems.

5. NONLINEAR CHANGE DETECTION:
PROBLEM SETUP

Consider the nonlinear system

xk+1 = f ikk
(

xk
)

+ Gik
k

(
xk)wk,

yk = hik
k

(
xk
)

+ vk,
(11)

where

ik =



0, k < t0,

1, k ≥ t0,
(12)

and the functions f0
k (·), f1

k (·), h0
k(·), h1

k(·) and the matrices
G0
k(·), G1

k(·) have the proper dimensions. The sudden change
occurs when ik changes from 0 to 1.

In this setup, Skj can be written as follows:

Skj = ln
p
(
Yk

j

∣∣Y j−1
1 , t0 = j

)
p
(
Yk

j

∣∣Y j−1
1 , t0 > k

) . (13)

Writing (13) in a recursive form, we get

p
(
Yk

j

∣∣Y j−1
1 , t0 = j

) = k∏
i= j

p
(

yi
∣∣Yi−1

1 , t0 = j
)
, (14)

where p(yi|Yi−1
1 , t0 = j) can be written as follows:

p
(

yi
∣∣Yi−1

1 , t0 = j
) =

∫
p
(

yi
∣∣xi
)
P
(
dxi

∣∣Yi−1
1 , t0 = j

)
. (15)

To find P(dxi|Yi−1
1 , t0 = j) or equivalently to find the density

p(xi|Yi−1
1 , t0 = j)4 in (15), one needs to find an approxima-

tion for the corresponding nonlinear filter. We assume that
this approximation is done using either PAF or projection
PAF [13].

To calculate the LR in (13), we must calculate the con-
ditional densities of the state, given the observation for two
hypotheses (change occurrence at j and change occurrence
after k). This means that two nonlinear filters should be im-
plemented just to compare these two hypotheses. Therefore,
it is clear that to use an algorithm similar to (9), k parallel
nonlinear filters should be implemented. In Figure 1, we see
that the computational complexity of the CUSUM algorithm
grows linearly with respect to time. In most applications, this
growth is not desirable. One possible way to approximate the
CUSUM algorithm is to truncate the branches that fork from
the main branch in Figure 1. We will explain this truncation
procedure and its technical difficulties in the next few lines.

Recall that the main branch (horizontal) and the branch-
es forked from it in Figure 1 are representing a series of
nonlinear filters with specific assumptions on the change
time. The dynamic and observation equations for all forked
branches are the same and the only difference is the initial
density. If the conditional density of the state, given the ob-
servation for a nonlinear system, with the wrong initial den-
sity converges (in some meaningful way) to the true condi-
tional density (initialized by the true initial density), we say
that the corresponding nonlinear filter is asymptotically sta-
ble [17].

For asymptotically stable nonlinear filters, the forked
branches in Figure 1 converge to a single branch, therefore,
there is no need to implement several parallel nonlinear fil-
ters. In other words, after each branching, the independent
nonlinear filter is used for a period of time and then this
branch converges to the branches that have forked earlier,

4If the density exists.
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P(xk|Yk−1
0 , t0 = 1)

P(xk|Yk−1
0 , t0 = 2)

P(xk|Yk−1
0 , t0 = 3)

P(xk|Yk−1
0 , t0 = k − 2)

P(xk|Yk−1
0 , t0 = k − 1)

P(xk|Yk−1
0 , t0 ≥ k)

P(xk−1|Yk−2
0 , t0 = 1)

P(xk−1|Yk−2
0 , t0 = 2)

P(xk−1|Yk−2
0 , t0 = k − 2)

P(xk−1|Yk−2
0 , t0 ≥ k − 1)

P(x4|Y3
0 , t0 = 1)

P(x4|Y3
0 , t0 = 2)

P(x4|Y3
0 , t0 = 3)

P(x4|Y3
0 , t0 ≥ 4)

P(x3|Y2
0 , t0 = 1)

P(x3|Y2
0 , t0 = 2)

P(x3|Y2
0 , t0 ≥ 3)

P(x2|Y1
0 , t0 = 1)

P(x2|Y1
0 , t0 ≥ 2)P(x1|Y0

0 , t0 ≥ 1)

Figure 1: Combination of nonlinear filters used in the CUSUM change detection algorithm.

that is, joins them. The time needed for the branch of the in-
dependent nonlinear filter to join the other forked branches
depends on the convergence rate and the target accuracy of
the approximation.

Although the procedure mentioned above can be used for
asymptotically stable nonlinear filters, there are several prob-
lems associated with this method. The known theoretical re-
sults for identifying asymptotically stable filters are limited to
either requiring ergodicity and the compactness of the state
space [18, 19, 20], or very special cases of the observation
equation [17]. The rate of convergence of the filters in differ-
ent branches is another potential shortcoming of the men-
tioned procedure. If the convergence rate is low in compar-
ison to the rate of parameter change in the system, then the
algorithm cannot take advantage of this convergence.

6. NONLINEAR CHANGE DETECTION: NONGROWING
COMPUTATIONAL COMPLEXITY

In this section, we introduce a new statistic to overcome
the problem of growing computational complexity for the
change detection method. We emphasize that the parame-
ters of the system before and after change are assumed to
be known. Therefore, the conditional density of the state of
the system, given the observation, can be calculated using a
nonlinear filter. We show that this statistic can be calculated
recursively.

Consider the following statistic:

Tk
j = ln

p
(
Yk

j

∣∣Y j−1
1 , t0 ∈ { j, . . . , k}

)
p
(
Yk

j

∣∣Y j−1
1 , t0 > k

) . (16)

The change detection algorithm based on statistic Tk
j can

be presented as

ta = min
{
k ≥ j | Tk

j ≥ λ or Tk
j ≤ −α

}
, (17)

where j is the last time when Tk
j ≥ λ or Tk

j ≤ −α, and λ > 0
and α > 0 are chosen such that the detection delay is mini-
mized for a fixed mean time between two false alarms.

For the rest of this paper, we assume that the probability
of change at time i condition on no change before i is q, that
is,

P
(
t0 = i | t0 ≥ i

) = q. (18)

Without loss of generality and for simplifying the nota-
tion, we assume that j = 1. To calculate the statistic Tk

1 , it is
sufficient to find P(dxk , t0 ≤ k|Yk

1) and P(dxk , t0 > k|Yk
1).

Then Tk
1 is given by

Tk
1 = ln

(
(1− q)k(

1− (1− q)k
)
∫
P
(
dxk , t0 ≤ k

∣∣Yk
1

)
∫
P
(
dxk , t0 > k

∣∣Yk
1

)
)

= ln

(
(1− q)k(

1− (1− q)k
)W1

k

W0
k

)
,

(19)
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where W0
k =

∫
P(dxk , t0 > k|Yk

1) and W1
k =

∫
P(dxk , t0 ≤

k|Yk
1). Therefore, to calculate Tk

1 recursively, it is sufficient to
calculate P(dxk , t0 ≤ k|Yk

1) and P(dxk, t0 > k|Yk
1) recur-

sively. P(dxk+1, t0 ≤ k + 1|Yk+1
1 ) can be written as follows:

P
(
dxk+1, t0 ≤ k + 1

∣∣Yk+1
1

)

= P
(
dxk+1, t0 ≤ k + 1, yk+1

∣∣Yk
1

)
∫
P
(
dxk+1, t0 ≤ k + 1, yk+1

∣∣Yk
1

)
+
∫
P
(
dxk+1, t0 > k + 1, yk+1

∣∣Yk
1

)

= p
(

yk+1
∣∣xk+1, t0 ≤ k + 1)P

(
dxk+1, t0 ≤ k + 1

∣∣Yk
1

)
∫
p
(

yk+1
∣∣xk+1, t0 ≤ k + 1

)
P
(
dxk+1, t0 ≤ k + 1

∣∣Yk
1

)
+
∫
p
(

yk+1
∣∣xk+1, t0 > k + 1

)
P
(
dxk+1, t0 > k + 1

∣∣Yk
1

)

= p1
(

yk+1
∣∣xk+1

)
P
(
dxk+1, t0 ≤ k + 1

∣∣Yk
1

)
∫
p1
(

yk+1
∣∣xk+1

)
P
(
dxk+1, t0 ≤ k + 1

∣∣Yk
1

)
+
∫
p0
(

yk+1
∣∣xk+1

)
P
(
dxk+1, t0 > k + 1

∣∣Yk
1

) ,

(20)

where p1(yk+1|xk+1) is the conditional density of the state
xk+1, given the observation yk+1, under the hypothesis that
change has occurred and p0(yk+1|xk+1) is the same condi-

tional density under the hypothesis that no change has oc-
curred. Similarly, for P(dxk+1, t0 > k + 1|Yk+1

1 ), we have the
following:

P
(
dxk+1, t0 > k + 1

∣∣Yk+1
1

)
= p0

(
yk+1

∣∣xk+1
)
P
(
dxk+1, t0 > k + 1

∣∣Yk
1

)
∫
p1
(

yk+1
∣∣xk+1

)
P
(
dxk+1, t0 ≤ k + 1|Yk

1

)
+
∫
p0
(

yk+1
∣∣xk+1

)
P
(
dxk+1, t0>k + 1

∣∣Yk
1

) . (21)

Also, we have

P
(
dxk+1, t0 ≤ k + 1

∣∣Yk
1

)
=
∫
P
(
dxk+1, t0≤k + 1|xk , t0≤k, Yk

1

)
P
(
dxk , t0≤k

∣∣Yk
1

)

+
∫
P
(
dxk+1, t0 ≤ k+1|xk , t0>k, Yk

1)P
(
dxk , t0>k

∣∣Yk
1

)

=W1
k

∫
P

k+1

1

(
dxk+1

∣∣xk
)
P
(
dxk

∣∣t0 ≤ k, Yk
1

)

+ qW0
k

∫
P
(
dxk+1

∣∣xk, t0 = k + 1
)
P
(
dxk

∣∣t0 > k, Yk
1

)
,

(22)

P
(
dxk+1, t0 > k + 1|Yk

1

)
= (1− q)W0

k

∫
P

k+1

0

(
dxk+1

∣∣xk
)
P
(
dxk

∣∣t0 > k, Yk
1

)
.

(23)

In (22) and (23), P
k+1

0 (dxk+1|xk) and P
k+1

1 (dxk+1|xk) are the
Markov transition kernel under the hypothesis that no
change has occurred before k + 1 and change has occurred
before k, respectively. P(dxk+1|xk, t0 = k + 1) is the Markov
transition kernel under the hypothesis that the change has
occurred at k + 1. For the dynamics in (11), we have
P(dxk+1|xk, t0 = k + 1) = P

k+1

0 (dxk+1|xk).

Equations (19)–(23) show that the statistic Tk
1 can be cal-

culated recursively. They also show that in the prediction step
of the nonlinear filter at each time instance, only two con-
ditional distributions should be calculated, P(dxk+1, t0 ≤
k + 1|Yk

1) and P(dxk+1, t0 > k + 1|Yk
1). Therefore, if a

PAF method is used to approximate (22) and (23), we only
need two sets of particles to approximate these two condi-
tional distributions. In the Bayes’ rule update step and the
resampling step of the PAF, (20) and (21) are used. One pos-
sible way of implementing (19) in (23) using a PAF method
is as follows.

In Algorithm 3, the same number of particles is used to
find the conditional distribution before and after change.
This guarantees that always enough numbers of particles are
available for approximating the conditional densities before
and after change.

In the remaining sections, we use the introduced statistic
Tk
j for detecting a sudden change in the phase measurement

of an integrated INS/GPS.

7. INTEGRATED INS/GPS

GPS provides worldwide accurate positioning if four or more
satellites are in view of the receiver. Although the satellite
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Step (1). Initialization.
Sample 2N i.i.d. random vectors x1

0, . . . , xN
0 with

the weight W0
0 /N , and xN+1

0 , . . . , x2N
0 with the

weight W1
0 /N and W1

0 = 1−W0
0 = ε, with the

initial distribution P0(dx, t0 > 0). (Since we start
with the assumption that no change has
happened, ε is either 0 or a very small number.)

Step (2). Diffusion.
Find x̂1

k+1, . . . , x̂N
k+1 from the given x1

k , . . . , xN
k

using the dynamic rule:

xk+1 = f0
k

(
xk

)
+ G0

k

(
xk

)
vk ,

and find x̂N+1
k+1 , . . . , x̂2N

k+1 from the given
xN+1
k , . . . , x2N

k using the dynamic rule:

xk+1 = f1
k

(
xk

)
+ G1

k

(
xk

)
vk.

Step (3). Find an estimate for P(dxk+1|t0 > k, Yk
1) and

P(dxk+1|t0 ≤ k, Yk
1) either by using empirical

distributions

PN
(k+1)−

(
dxk+1

∣∣t0 > k, Yk
1

) = 1
N

N∑
j=1

δ
x̂
j
k+1

(
dxk+1

)
,

PN
(k+1)−

(
dxk+1

∣∣t0 ≤ k, Yk
1

) = 1
N

2N∑
j=N+1

δ
x̂
j
k+1

(
dxk+1

)
,

or by using Step (3) of Algorithm 2. Then

PN
(k+1)−

(
dxk+1, t0 > k + 1|Yk

1

)
= (1− q)W0

k P
N
(k+1)−

(
dxk+1

∣∣t0 > k, Yk
1

)
,

PN
(k+1)−

(
dxk+1, t0 ≤ k + 1|Yk

1

)
= qW0

k P
N
(k+1)−

(
dxk+1

∣∣t0 > k, Yk
1

)
+ W1

k P
N
(k+1)−

(
dxk+1

∣∣t0 ≤ k, Yk
1

)
.

Step (4). Use Bayes’ rule in (20) and (21) to calculate
PN
k+1(dxk+1, t0 > k + 1|Yk+1

1 ) and PN
k+1(dxk+1, t0 ≤ k +

1|Yk+1
1 ). Then set W0

k+1 =
∫
PN
k+1(dxk+1, t0 > k + 1|Yk+1

1 )
and W1

k+1 =
∫
PN
k+1(dxk+1, t0 ≤ k + 1|Yk+1

1 ).

Step (5). Resampling.
Sample x1

k+1, . . . , xN
k+1 according to PN

k+1(dxk+1,
t0 > k + 1|Yk+1

1 )/W0
k+1.

Sample xN+1
k+1 , . . . , x2N

k+1 according to PN
k+1(dxk+1,

t0 ≤ k + 1|Yk+1
1 )/W1

k+1.

Step (6). k ← k + 1; go to Step (2).

Algorithm 3: Change detection using particle filtering.

constellation guarantees availability of four or more satel-
lites worldwide, natural or man-made obstacles can block the
satellite signals easily. Integrating dead reckoning or INS with
GPS [21, 22, 23, 24] is a method to overcome this vulnera-
bility. Here, INS or the dead reckoning provides positioning
that is calibrated by the GPS. In this section, we consider the
case of an integrated INS/GPS. In [25], we showed that using
nonlinear filtering for positioning is essential. We compared
the proposed PAF with regular PAF and EKF.

Table 1: Definition of the parameters for WGS84 reference frame.

a 6378137.0 m Semimajor axis

b 6356752.3142 m Semiminor axis

ωie 7.292115× 10−5 Earth angular velocity

e (
√
b(a− b))/a Ellipsoid eccentricity

Using carrier phase measurements enables the differen-
tial GPS to reach centimeter-level accuracy. A phase lock loop
cannot measure the full-cycle part of the carrier phase. This
unmeasured part is called integer ambiguity that requires to
be resolved through other means. In this paper, we assume
that the integer ambiguity is resolved (see, e.g., [26]). How-
ever, the measured phase can experience a sudden change
undetected by the phase lock loop. This sudden change is
called the cycle slip and if it is undetected by the integrated
INS/GPS, it results in an error in the estimated position. We
will use the method introduced in this paper to detect such
changes.

We consider the observation equation provided by the ith
GPS satellite at time k to have the form

yik = ρi
(
px, py , pz

)− ρi
(
bx, by , bz

)
+ ni

(
t, t0

)
+ cδ + vik,

(24)

where [px, py , pz]T and [bx, by , bz]T are the rover and
(known) base coordinates at time k, respectively, ρi(x1, x2, x3)
is the distance from point [x1, x2, x3]T to satellite i, δ is a com-
bination of the receiver clock bias in the base and the rover, c
is the speed of light, vik is the measurement noise for the ith
satellite signal, t0 is the unknown moment of the cycle slip,
and ni(t, t0) = 0 for t < t0 and ni(t, t0) = ni for t ≥ t0, where
ni is the change in phase measurement due to the cycle slip.

The main goal in the simulations is to detect the change
in the phase measurement as soon as it happens.

Here we point out that the nonlinearity in measurement
is not solely due to the function ρ. Integrated INS/GPS re-
quires coordinate transformations between INS parameters
and GPS parameters, which contributes to the nonlinearity
of the measurement.

Parameters of an integrated INS/GPS are expressed in
different coordinate systems. The GPS measurements are
given in an earth-centered earth-fixed (ECEF) frame [27, 28].
The GPS position is given either in the rectangular coordi-
nate system (see (24)) or in the geodetic coordinate system
with the familiar latitude, longitude, and height coordinate
vector [pλ, pφ, ph]T . For the latter, the earth’s geoid is approx-
imated by an ellipsoid. Table 1 shows the defining parame-
ters for the geoid according to the WGS84 reference frame.
The parameters and measurements of INS are given in the
local geographical frame or in the body frame system, where
the velocity is given by the north-east-down velocity vec-
tor [vN , vE, vD]T . The transformation matrix from the body
frame to the local geographical frame is given by the matrix
Rb2g . In this paper, we assume the estimation problem for the
gyro measurements is solved, hence Rb2g is known.
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The GPS clock drift and the INS equations constitute key
dynamics in integrated INS/GPS. The INS dynamic equation
can be expressed as follows (see [25] for details):

d



pλ

pφ

ph


 =




1
Rλ +ph

0 0

0
1(

Rφ +ph
)

cos
(
pλ
) 0

0 0 −1






vN

vE

vD


dt,

d



vN

vE

vD


 =







− v2
E

Rφ +ph
tan

(
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)− 2ωie sin

(
pλ
)
vE

+
vNvD
Rλ +ph

vEvN
Rλ +ph

tan(λ) + ωie sin(pλ)vN

+
vEvD
Rφ +ph

+ 2ωie cos
(
pλ
)
vD

− v2
N

Rλ +ph
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E
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(
pλ
)
vE




+Rb2g





ãu

ãv
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 +



bu

bv

bw




 +




0

0
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dt + dwv
t ,

(25)

where g = 9.780327 m/s2 is the gravitational accelera-
tion, Rλ = a(1− e2)/(1− e2 sin2(pλ))3/2, Rφ = a/(1 −
e2 sin2(pλ))1/2, [ãu, ãv, ãw]T and [bu, bv, bw]T are the ac-
celerometer measurement and the accelerometer measure-
ment bias, respectively, both expressed in the body frame,
and wv is a vector-valued Brownian motion process with zero
mean and known covariance matrix. The measurement bias
b = [bu, bv, bw]T has the dynamics

db = −abbdt + dwb
t , (26)

where wb
t is a vector-valued Brownian motion with zero

mean and known covariance matrix, and ab is a small posi-
tive constant. The receiver clock drift δt is represented by the
integration of an exponentially correlated random process ρt
[24]:

dρt = − 1
500

ρtdt + dw
ρ
t ,

dδt = ρtdt,
(27)

where w
ρ
t is a zero-mean Brownian motion process with vari-

ance σ2
ρ = 10−24. This dynamic model is typical for a quartz

TCXO with frequency drift rate 10−9 s/s [24].

8. SIMULATIONS AND RESULTS

The dimension of the dynamical system in the simulation is
eleven. The state of the dynamical system x is given as follows:

x = [pλ, pφ, ph, vN , vE, vD, bu, bv, bw, ρ, δ
]T
. (28)

The differential equation describing the dynamics of the sys-
tem is the combination of the differential equations in (25),
(26), and (27). Here we assume that ab = 0.001 and that the
covariance matrices for the Brownian motions in the INS dy-
namic equations Σb and Σv are diagonal. To be more specific,
Σb = 10−6I and Σv = 10−4I , where I is the identity matrix
of the proper size. The observation equation is given in (24),
where yi is one component of the observation vector. The di-
mension of the observation vector is the same as the number
of available satellites. In (24), the observation is given as a
function of the position in the ECEF rectangular coordinate
system that is then transformed to the geodetic coordinate
system [25].

For the simulation, we simply chose an eleven-dimen-
sional Gaussian density for the projection PAF. This choice of
density makes the random vector generation easy and com-
putationally affordable. To be able to use the projection PAF,
we used the maximum likelihood criteria to estimate the pa-
rameters of the Gaussian density before and after Bayes’ cor-
rection.

We used two Novatel GPS receivers to collect navigation
data (April 2, 2000). From this data, we extracted position in-
formation for the satellites, the pseudorange, and the carrier
phase measurement noise powers for the L1 frequency. From
the collected information we generated the pseudorange and
the carrier phase data for one static and one moving receiver
(base and rover, respectively). We assume that for the car-
rier phase measurement, the integer ambiguity problem is
already solved (see [26] for details). The movement of the
INS/GPS platform was simulation based and it was the basis
for the measurement data measured by the accelerometers,
the gyros, the GPS pseudorange, and the GPS carrier phase
data.

As a precursor, we note that in the simulation in [13]
we showed that for an integrated INS/GPS when the num-
ber of satellites is less than a critical number, projection PAF
provides a very accurate estimate of the position, while the
position solution given by EKF is unacceptable. In Figures 2
and 3, a comparison of the position estimation error in the
rectangular coordinate system for one typical run of each
method is shown. For that simulation, we assumed that the
GPS receiver starts with six satellites. At time t = 100, the
receiver loses the signal from three satellites, and it gains one
satellite signal back at t = 400. From these two figures, it
is clear that when the number of satellites in view is below
a certain number (here four satellites), the EKF is unable to
provide a reasonable estimate of the position for the inte-
grated INS/GPS. Since the error of the position estimate of
linearization methods is unacceptable even when no change
in the phase measurement occurs, using these methods in the
presence of an abrupt change is fruitless as well.
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Figure 2: Position estimation error (= Euclidean distance between
Cartesian position vector and its estimate) for three methods: EKF,
PAF, and projection PAF. The system starts with six satellites in view.
At t = 100 seconds, the signals from three satellites are lost. At t =
400 seconds, the system regains the signal from one satellite.
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Figure 3: Details of Figure 2, where the difference between the pro-
jection PAF method and the PAF method is clear.

To apply our method described in (17) for sudden
phase change detection in an integrated INS/GPS, we use
projection PAF as our nonlinear filtering method. We use the
CUSUM algorithm to evaluate the proposed changed detec-
tion scheme. We compare the statistic in (17) with that of
the CUSUM algorithm. We wish to emphasize that in the ex-
ample given in this section, we assume that the parameter of
change, before and after the change, is known and the only
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Figure 4: The plot of Tk
j with respect to time for 100 independent

runs of an INS/GSP system. At time t = 15, the receiver loses three
satellites. The cycle slip in channel one occurred at t = 20 seconds.
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Figure 5: The plot of gk with respect to time for 100 independent
runs of an INS/GSP system. gk is the statistics used in the CUSUM
algorithm. At time t = 15, the receiver loses three satellites. The
cycle slip in channel one occurred at t = 20 seconds.

unknown parameter is the change time. In the future, we will
address the more general problem of unknown change pa-
rameters.

For the simulation in this paper, we assumed that the
phase lock loop associated to satellite one experiences a cy-
cle slip at time t = 20 and the phase changes suddenly. The
size of the change is one cycle. We assumed that the GPS re-
ceiver starts with six satellites. At time t = 15, the receiver
loses three satellites (we eliminate them from the data). We
used Algorithm 2 to calculate the statistic in the CUSUM al-
gorithm gk and Algorithm 3 and projection PAF to calculate
Tk
j . In Figure 4, we have plotted Tk

j with respect to time for
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100 independent runs. In Figure 5, we have plotted the statis-
tic gk for the same 100 independent runs. The figures show
that there are sudden changes both in Tk

j and gk when a cy-
cle slip occurs, and this is true for all 100 runs. These fig-
ures also show that for this simulation, the performance of
the algorithm given in this paper is comparable to the per-
formance of the CUSUM algorithm. This simulation shows
that Tk

j can be used successfully to detect the cycle slip with
known strength.

9. CONCLUSION AND FUTURE WORK

In this paper, we developed a new method for the detec-
tion of abrupt changes for known parameters after change.
We showed that unlike the CUSUM algorithm, the statistic
in this method can be calculated recursively for nonlinear
stochastic systems. In the future, we intend to extend our re-
sults to the case where the parameters after change are un-
known. The major obstacle in this extension is the complex-
ity of the change detection method.
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We develop a new receiver for joint symbol, channel characteristics, and code delay estimation for DS spread spectrum systems
under conditions of multipath fading. The approach is based on particle filtering techniques and combines sequential importance
sampling, a selection scheme, and a variance reduction technique. Several algorithms involving both deterministic and random-
ized schemes are considered and an extensive simulation study is carried out in order to demonstrate the performance of the
proposed methods.

Keywords and phrases: direct sequence spread spectrum system, multipath fading, particle filters, signal detection, synchroniza-
tion.

1. INTRODUCTION

Direct sequence (DS) spread spectrum systems are robust
to many channel impairments, allow multiuser CDMA and
low-detectability signal transmission, and, therefore, are
widely used in different areas of digital communications. Un-
like many other communication systems, however, spread
spectrum receivers require additional code synchronization,
which can be a rather challenging task under conditions of
multipath fading, when severe amplitude and phase varia-
tions take place.

The problem of joint symbol, delay, and multipath esti-
mation has been addressed in the literature before (see e.g.,
[1, 2]), and proved to be a difficult one due to its inher-
ited nonlinearity. The previously proposed approaches were
mainly based on the use of the extended Kalman filter (EKF).
However, many of them concentrated on the channel param-
eters and delay estimation only; moreover, in a number of

cases, when EKF methods were applied, the estimated pa-
rameters were divergent [1]. Joint signal detection and chan-
nel estimation was performed using deterministic maximum
likelihood (DML) methods [3, 4]. However, since the un-
known parameters of interest were assumed deterministic in
this case, a serious drawback of DML-type approaches was
the phenomenon of error propagation. Later, a stochastic
maximum likelihood (ML) approach for the estimation of
channel parameters was adopted with consequent symbol
detection using Viterbi algorithms [5]. The space-alternating
generalized expectation maximization (SAGE) scheme for
maximum a posteriori (MAP) estimation was presented in
[6].

In this paper, we propose to estimate the channel param-
eters, code delays, and symbols jointly using particle filtering
techniques—a set of powerful and versatile simulation-based
methods recently appeared in the literature (see [7] for a sur-
vey). The idea is to approximate the posterior distribution of
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interest by swarms of N (N � 1) weighted points in the sam-
ple space, called particles, which evolve randomly in time in
correlation with each other and either give birth to offspring
particles or die according to their ability to represent the dif-
ferent zones of interest of the state space.

The methods have already been successfully applied to
problems arising in digital communications, in particu-
lar, demodulation in fading channels [7, 8, 9] and detec-
tion in synchronous CDMA [10]. In all this work, the un-
known fading channel characteristics were integrated out
and only the symbols needed to be imputed. The algorithm,
thus, made use of the structure of the model, and the un-
known state involved discrete parameters only. Later inves-
tigation [10, 11], however, revealed some concerns regard-
ing the efficiency of the standard randomized particle fil-
tering techniques in this context. It has been shown that,
for a fixed computational complexity, more efficient de-
terministic schemes could be designed leading to an im-
proved performance of the receiver. We attempt here to
study these results further, and compare various random-
ized and nonrandomized approaches. Iltis [12] has recently
developed a particle filtering method to address a problem
closely related to ours. However, in his approach, the un-
known symbol sequence is obtained through a standard al-
gorithm, and only channel parameters and code delays are
estimated using particle filtering. The problem we are deal-
ing with is more complex, since it involves both discrete
(symbols) and continuous-valued (delays) unknowns. The
deterministic particle method, unfortunately, is not applica-
ble directly in this case. However, in view of the recent re-
sults, we propose to combine it with sequential importance
sampling for the mixed, discrete and continuous-valued pa-
rameter case, followed by an appropriate selection proce-
dure. The resulting algorithm explores the state space in a
more systematic way at little or no extra cost in compari-
son with the standard particle filtering, employing a subop-
timal importance distribution. We develop and test this ap-
proach against other deterministic and stochastic schemes,
and demonstrate its performance by means of an extensive
simulation study.

The remainder of the paper is organized as follows. The
model specifications and estimation objectives are stated
in Section 2. In Section 3, a particle filtering method is
developed for joint symbol/channel coefficients/code de-
lay estimation. This section also introduces and reviews
several alternative deterministic and stochastic schemes,
with simulation results and comparisons presented in
Section 4. Some conclusions are drawn at the end of the pa-
per.

2. PROBLEM STATEMENT AND
ESTIMATION OBJECTIVES

Transmitted waveform

We denote, for any generic sequence κt, κi: j � (κi, κi+1, . . . ,
κj)T, and let dn be the nth information symbol, and stx(τ)
the corresponding analog bandpass spread spectrum signal

waveform transmitted in the symbol interval of duration T :

stx(τ) = Re
[
sn
(
d1:n

)
u(τ) exp

(
j2π f0τ

)]
for (n− 1)T < τ ≤ nT ,

(1)

where sn(·) performs the mapping from the digital sequence
to waveforms and corresponds to the modulation technique
employed, f0 denotes the carrier frequency, and u(τ) is a
wideband pseudonoise (PN) waveform defined by

u(τ) =
K∑
k=1

ckη
(
τ − kTc

)
. (2)

Here, c1:K is a spreading code sequence consisting of K chips
(with values {±1}) per symbol, η(τ − kTc) is a rectangu-
lar pulse of unit height and duration Tc, transmitted at
(k − 1)Tc < τ ≤ kTc, and Tc is the chip interval satisfying
the relation Tc = T/K .

Channel model

The signal is passed through a noisy multipath fading chan-
nel which causes random amplitude and phase variations on
the signal. The channel can be represented by a time-varying
tapped-delayed line with taps spaced Ts seconds apart, where
Ts is the Nyquist sampling rate for the transmitted waveform;
Ts = Tc/2 due to the PN bandwidth being approximately
1/Tc (see sampling theorem [13]). The equivalent discrete-
time impulse response of the channel is given by

ht =
L−1∑
l=0

f (l)
t δt,l, (3)

where t is a discrete time index, t = 1, 2, . . . . By L we under-
stand the maximum number of paths (nonzero coefficients

of ht) of the channel [5], f (l)
t are the complex-valued time-

varying multipath coefficients arranged into the vector ft,
and δt,l denotes the Kronecker delta, which is 1 if t = l, and 0
otherwise.

We assume here that the channel coefficients ft and code
delay θt propagate according to the first-order autoregressive
(AR) model:

ft = Af t−1 + Bvt , vt
i.i.d.∼ Nc

(
0, IL

)
, (4)

θt = γθt−1 + σθϑt, ϑt
i.i.d.∼ N (0, 1), (5)

which corresponds to a Rayleigh uncorrelated scattering
channel model; here A � diag(α(0), . . . ,α(L−1)), B �
diag(σ (0)

f , . . . , σ (L−1)
f ), with σ (l)

f being the standard deviation,

and α(l) accounting for the Doppler spread (see [2, 14] for
details and discussion on the use of higher-order AR). In
this paper, matrices A, B, and parameters γ and σθ are as-
sumed known. Directions on the choice of these parameters
are given in [2, 14].
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Received signal

The complex output of the channel sampled at the Nyquist
rate, (in which case, t = 2K(n − 1) + 1, . . . , 2Kn samples
correspond to the nth symbol transmitted, that is, dn ↔
y2K(n−1)+1:2Kn) can, thus, be expressed as

yt = C
(
d1:n, θt

)
+ σεt, εt

i.i.d.∼ Nc(0, 1), (6)

where C(d1:n, θt) =
∑L−1

l=0 f (l)
t srx((t − l)Ts − θt) and σ2 is

the noise variance.1 The noise sequences ϑt , εt, and v(l)
t , l =

0, . . . ,L−1 are assumed mutually independent and indepen-

dent of the initial states f0 ∼ Nc(f̂0,Σf ,0), θ0 ∼ N (θ̂0,Σθ,0).
The received waveform srx(τ) is obtained after ideal lowpass
filtering of rectangular pulses and is given by [2]

srx(τ)

=sn
(
d1:n

) K∑
k=1

ck
1
π

[
Si
(

2π
τ−(k−1)Tc

Tc

)
−Si

(
2π

τ − kTc

Tc

)]
,

for (n− 1)T < τ ≤ nT ,
(7)

where

Si(φ) =
∫ φ

0

sin(ϕ)
ϕ

dϕ. (8)

Estimation objectives

The symbols dn, which are assumed i.i.d., the channel char-
acteristics ft, and the code delay θt are unknown for n, t > 0.
Our aim is to obtain sequentially in time an estimate of
the joint posterior probability density of these parameters
p(d1:n, f0:2Kn, θ0:2Kn|y1:2Kn), and some of its characteristics,
such as the MAP estimates of the symbols

d̂1:n = arg max
d1:n

p
(
d1:n|y1:2Kn

)
, (9)

and the minimum mean square error (MMSE) estimates
of the channel characteristics E(f0:2Kn|y1:2Kn) and the delays
E(θ0:2Kn|y1:2Kn). This problem, unfortunately, does not ad-
mit any analytical solution and, thus, approximate methods
must be employed. One of the methods that has proved to be
useful in practice is particle filtering, and, in the next section,
we propose a receiver based on the use of these techniques.

3. PARTICLE FILTERING RECEIVER

Particle filtering receivers have already been designed in
[7, 8, 9], although for a much simpler case including sym-
bols estimation only. The problem considered here is more
complicated since an additional continuous parameter is in-
volved, and, in this section, the particle filtering algorithm

1The case of non-Gaussian noise can be easily treated using the tech-
niques presented in [9].

for the joint estimation of all unknown parameters is de-
tailed. We begin our treatment with incorporating a variance
reduction technique, namely, Rao-Blackwellisation, and then
proceed with the derivation of the particle filtering equations
for the estimation of the required posterior distribution. The
alternative deterministic and stochastic approaches are con-
sidered at the end of the section.

3.1. Rao-Blackwellisation

In this paper, we follow a Bayesian approach and, given the
measurements y1:2Kn, base our inference on the joint pos-
terior distribution p(d1:n, f0:2Kn, θ0:2Kn|y1:2Kn). A straightfor-
ward application of particle filtering would, thus, focus on
the estimation of this joint probability distribution, and, con-
sequently, obtain the estimates of d1:n, f0:2Kn, and θ0:2Kn se-
quentially in time. It is beneficial, however, to improve the
standard approach by making most of the structure of the
model and applying the variance reduction techniques.

Indeed, similar to [7, 8, 9, 15], the problem of estimat-
ing p(d1:n, f0:2Kn, θ0:2Kn|y1:2Kn) can be reduced to a one
of sampling from a lower-dimensional posterior p(d1:n,
θ0:2Kn|y1:2Kn). If the approximation of p(d1:n, θ0:2Kn|y1:2Kn)
could be obtained, say, via particle filtering:

p̂N
(
d1:n, θ0:2Kn|y1:2Kn

)
=

N∑
i=1

w̃(i)
n δ
({
d1:n, θ0:2Kn

}− {d(i)
1:n, θ(i)

0:2Kn

})
,

(10)

one could compute the probability density p(f0:2Kn|y1:2Kn,
d1:n, θ0:2Kn) using the Kalman filter associated with (4) and
(6). As a result, the posterior p(f0:2Kn|y1:2Kn) could be ap-
proximated by a random mixture of Gaussians

p̂N
(

f0:2Kn|y1:2Kn
)

=
∫
θ0:2Kn

∑
d1:n

p
(

f0:2Kn|y1:2Kn,d1:n, θ0:2Kn
)

× p̂N
(
d1:n, θ0:2Kn|y1:2Kn

)
dθ0:2Kn

=
N∑
i=1

w̃(i)
n p
(

f0:2Kn|y1:2Kn,d(i)
1:n, θ(i)

0:2Kn

)
(11)

leading to lower variance of the estimates and, therefore, in-
creased algorithm efficiency [15].

Strictly speaking, we are interested in estimating the in-
formation symbols only with the tracking of the channel
being naturally incorporated into the proposed algorithm.
However, following this approach, the MMSE (conditional
mean) estimates of fading coefficients can, of course, be ob-
tained if necessary as follows:

ÊN
[

f2K(n−1)+1:2Kn|y1:2Kn
]

=
∫

f2K(n−1)+1:2Kn p̂N
(

f0:2Kn|y1:2Kn
)
df0:2Kn

=
N∑
i=1

w̃(i)
n E
[

f2K(n−1)+1:2Kn|y1:2Kn,d(i)
1:n, θ(i)

0:2Kn

]
,

(12)
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with E[f2K(n−1)+1:2Kn|y1:2Kn,d(i)
1:n, θ(i)

0:2Kn] being computed by
the Kalman filter, with 2K steps required for each symbol
transmitted.

3.2. Particle filtering algorithm

We can now proceed with the estimation of p(d1:n,
θ0:2Kn|y1:2Kn) using particle filtering techniques. The method
is based on the following remark. Suppose N particles

{d(i)
1:n, θ(i)

0:n}Ni=1, where θn denotes

θn = θ2K(n−1)+1:2Kn for n = 1, 2, . . . , (13)

can be easily simulated according to an arbitrary conve-
nient importance distribution π(d1:n, θ0:n|y1:n) (such that
p(d1:n, θ0:n|y1:n) > 0 implies π(d1:n, θ0:n|y1:n) > 0).

Then, using the importance sampling identity, an esti-
mate of p(d1:n, θ0:n|y1:n) is given by the following point mass
approximation:

p̂N
(
d1:n, θ0:n|y1:n

) = N∑
i=1

w̃(i)
n δ
({
d1:n, θ0:n

}− {d(i)
1:n, θ(i)

0:n

})
,

(14)

where w̃(i)
n are the so-called normalized importance weights,

w̃(i)
n = w(i)

n∑N
j=1 w

( j)
1:n

, w(i)
n ∝ p

(
d(i)

1:n, θ(i)
0:n|y1:n

)
π
(
d(i)

1:n, θ(i)
0:n|y1:n

) , (15)

and yn denotes

yn = y2K(n−1)+1:2Kn (16)

for n = 1, 2, . . .. The distribution π(d(i)
1:n, θ(i)

0:n|y1:n) has to ad-

mit π(d(i)
1:n−1, θ(i)

0:n−1|y1:n−1) as a marginal distribution so that
one could propagate this estimate sequentially in time with-
out subsequently modifying the past simulated trajectories.

The weights w(i)
n could also be updated online in this case:

w(i)
n ∝ w(i)

n−1p
(

yn|d(i)
1:n, θ(i)

1:n, y1:n−1
)

× p
(
d(i)
n , θ(i)

n |d(i)
n−1, θ(i)

n−1

)
π
(
d(i)
n , θ(i)

n |d(i)
1:n−1, θ(i)

0:n−1, y1:n
) . (17)

The sequential importance sampling described above is
combined with a selection procedure when the effective sam-
ple size N̂eff

N̂eff =
[ N∑

i=1

(
w̃(i)
n

)2
]−1

(18)

falls below some fraction of N , say Nthres (see [15] for de-
tails). This helps to avoid the degeneracy of the algorithm by
discarding particles with low normalized importance weights
and multiplying those with high ones.

Given for the (n − 1)th symbol N particles {d(i)
1:n−1,

θ(i)
0:n−1}Ni=1 distributed approximately according to p(d1:n−1,

θ0:n−1|y1:n−1), the general particle filtering receiver, proceeds
as in Algorithm 1.

Sequential importance sampling step
For i = 1, . . . ,N , sample

(d̃ (i)
n , θ̃

(i)

n ) ∼ π(dn, θn|d(i)
1:n−1, θ(i)

0:n−1, y1:n).
For i = 1, . . . ,N , evaluate the importance

weights w(i)
n up to a normalizing constant.

For i = 1, . . . ,N , normalize w(i)
n to obtain w̃(i)

n .

Selection step

If N̂eff < Nthres, multiply/discard particles

{d̃ (i)
n , θ̃

(i)

n }Ni=1 with respect to high/low
w̃(i)

n to obtain N unweighted particles
{d(i)

1:n, θ(i)
1:n}Ni=1.

Algorithm 1: Particle filtering algorithm.

For i = 1, . . . ,N ,
sample d̃ (i)

n ∼ p(dn), set w(i)
n = 1.

For t = 2K(n− 1) + 1, . . . , 2Kn,
sample θ̃(i)

t ∼ p(θt|θ(i)
t−1),

perform one-step Kalman filter update

(w(i)
n = w(i)

n p(yt|d1:n, θ(i)
0:t−1, θ̃(i)

t , y1:t−1)).

For i = 1, . . . ,N , normalize w(i)
n to obtain w̃(i)

n .

Algorithm 2: Sequential importance sampling (prior as impor-
tance distribution).

3.3. Implementation issues

The choice of importance distribution and selection scheme
is discussed in [16]; depending on these choices, the compu-
tational complexity of the algorithm varies.

3.3.1. Importance density

Prior density

The simplest solution is to take the prior as an importance
distribution, that is,

π
(
dn, θn|d1:n−1, θ0:n−1, y1:n

) = p
(
dn
)
p
(
θn|θn−1

)
= p

(
dn
) 2Kn∏
t=2K(n−1)+1

p
(
θt|θt−1

)
,

(19)

then wn becomes

wn ∝ p
(

yn|y1:n−1,d1:n, θ0:n
)

=
2Kn∏

t=2K(n−1)+1

p
(
yt|d1:n, θ0:t, y1:t−1

)
,

(20)

and requires evaluation of 2K one-step Kalman filter updates
for each symbol as shown in Algorithm 2.

If K is long, it is useful to resample the particles at inter-
mediate steps between t = 2K(n − 1) + 1 and t = 2Kn. One
can also use Markov chain Monte Carlo (MCMC) steps to
rejuvenate the particles and in particular dn.
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Suboptimal importance density

Of course, using the prior distribution in our case can be
inefficient, as no information carried by the observations is
used to explore the state space. The optimal choice, in a sense
of minimizing the conditional variance of the importance
weights [15], would consist of taking

π
(
dn, θn|d1:n−1, θ0:n−1, y1:n

) = p
(
dn, θn|d1:n−1, θ0:n−1, y1:n

)
,

(21)

as an importance density. From Bayes’ rule, p(dn, θn|d1:n−1,
θ0:n−1, y1:n) may be expressed as

p
(
dn, θn|d1:n−1, θ0:n−1, y1:n

)
= p

(
yn|y1:n−1,d1:n−1,dn, θ0:n−1, θn

)
p
(
dn
)
p
(
θn|θn−1

)
p
(

yn|y1:n−1,d1:n−1, θ0:n−1
) ,

(22)

in which case,

wn = p
(

yn|y1:n−1,d1:n−1, θ0:n−1
)

=
∫
θ̆n

M∑
m=1

[
p
(

yn|y1:n−1,d1:n−1,dn = m, θ0:n−1, θ̆n
)

× p
(
dn = m

)
p
(
θ̆n|θn−1

)
dθ̆n

]
(23)

cannot be computed analytically. Our aim then is to de-
velop a suboptimal importance density “closest” to p(dn,
θn|d1:n−1, θ0:n−1, y1:n).

The probability density p(dn, θn|d1:n−1, θ0:n−1, y1:n) can
be factorized as

p
(
dn, θn|d1:n−1, θ0:n−1, y1:n

)
= p

(
dn|d1:n−1, θ0:n, y1:n

)
p
(
θn|d1:n−1, θ0:n−1, y1:n

)
,
(24)

where p(dn|d1:n−1, θ0:n, y1:n) would be an optimal impor-
tance function if θn were fixed given by

p
(
dn|d1:n−1, θ0:n, y1:n

) = p
(

yn|y1:n−1,d1:n−1,dn, θ0:n
)
p
(
dn
)

p
(

yn|y1:n−1,d1:n−1, θ0:n
) .

(25)

The second term in (24), p(θn|d1:n−1, θ0:n−1, y1:n), unfortu-
nately presents a problem since the integral in (23) cannot be
evaluated in closed form. As a solution, we propose to use the
prior density p(θn|θn−1) instead of p(θn|d1:n−1, θ0:n−1, y1:n)
and, thus, employ the following suboptimal importance
function (see [17] for a similar approach developed indepen-
dently):

π
(
dn, θn|d1:n−1, θ0:n−1, y1:n

)
= p

(
dn|d1:n−1, θ0:n, y1:n

)
p
(
θn|θn−1

)
.

(26)

For i = 1, . . . ,N ,
For m = 1, . . . ,M, w(i,m)

n = 1,
For t = 2Kn + 1, . . . , 2K(n + 1),

sample θ̃(i)
t ∼ p(θt|θ(i)

t−1),
for m = 1, . . . ,M, perform one-step Kalman

filter update
(w(i,m)

n = w(i,m)
n p(yt|d(i)

1:n−1,dn = m, θ(i)
0:t−1,

θ̃(i)
t , y1:t−1)).

Evaluate the importance weight w(i)
n up to a

normalizing constant:

w(i)
n ∝

M∑
m=1

w(i,m)
n p

(
dn = m

)
.

For i = 1, . . . ,N , normalize w(i)
n to obtain w̃(i)

n .

Algorithm 3: Evaluation of importance weights (suboptimal im-
portance distribution).

The importance weights in this case can be calculated as

wn ∝ p
(

yn|y1:n−1,d1:n−1, θ0:n
)

=
M∑

m=1

p
(

yn|y1:n−1,d1:n−1,dn = m, θ0:n−1, θn
)
p
(
dn = m

)
,

(27)

where θn is drawn from the prior Gaussian distribution with
mean γθn−1 and variance σ2

θ :

θ(i)
n ∼ N

(
γθ(i)

n−1, σ2
θ

)
for i = 1, . . . ,N. (28)

The importance weight w(i)
n in (27) does not actually depend

on d(i)
n , and the weights evaluation and selection steps can be

done prior to the sampling of d(i)
n as in Algorithm 3.

For each symbol detection, this procedure requires the
evaluation of the M 2K-step-ahead Kalman filters, which is
quite computationally expensive. Further research should,
therefore, concentrate on development of other more effi-
cient suboptimal importance distributions on a case by case
basis.

3.3.2. Selection

As far as the selection step is concerned, a stratified sam-
pling scheme [18] is employed in this paper since it has the
minimum variance one can achieve in the class of unbiased
schemes [19]. The algorithm is based on generating N points
equally spaced in the interval [0, 1], with the number of off-
spring Ni for each particle being equal to the number of
points lying between the partial sums of weights qi−1 and qi,

where qi =
∑i

j=1 w̃
( j)
t . The procedure can be implemented in

O(N) operations.

3.4. Deterministic particle filter

The use of the suboptimal importance distribution described
in Section 3.3.1 increases the efficiency of the algorithm in
comparison with the standard approach using the prior.



Particle Filtering for DS Spread Spectrum Systems 2311

However, as shown in [11], if one already opts for (27), and
all the calculations have to be performed anyway, it might be
better to base our approximation of p(d1:n, θ0:n|y1:n) directly
on

p̂N×M
(
d1:n, θ0:n|y1:n

)
=

N∑
i=1

M∑
m=1

w̃(i,m)
n δ

({
d1:n, θ0:n

}− {d(i)
1:n−1,dn = m, θ(i)

0:n−1, θ(i)
n

})
,

(29)

where corresponding weights w̃(i,m)
n are equal to

w(i,m)
n ∝w̃(i)

n−1p
(

yn|y1:n−1,d(i)
1:n−1,dn=m, θ(i)

0:n−1, θ(i)
n

)
p
(
dn=m

)
,

(30)

and θ(i)
n is still drawn from its prior (28). Indeed, all possible

“extensions” of the existing state sequences at each step n are
considered in this case, and one does not discard unneces-
sarily any information by selecting randomly one path out of

the M available. In the above expression, w̃(i)
n−1 is the weight of

the “parent” particle, which has M “offspring” instead of the
usual one, resulting in a total number of N ×M particles at
each stage. This number increases exponentially with time,
and, therefore, a selection procedure has to be employed at
each step n.

The simplest way to perform such selection is just to
choose the N most likely offspring and discard the others
(as, e.g., in [20]). The superiority of this approach over other
methods in the fully discrete framework is shown in [10, 11].
A more complicated procedure involves preserving the par-
ticles with high weights and resampling the ones with low
weights, thus reducing their total number to N . An algorithm
of this type is presented in [21] but other selection schemes
can be designed. Contrary to the case involving the discrete
parameters only, in this scenario, a resampling scheme with
replacement could be employed, since θ(i)

n is chosen ran-
domly. Therefore, stratified resampling could be used in or-
der to select N particles from N ×M particles available.

Whether we choose to preserve the most likely particles,
employ the selection scheme proposed in [21], or stratified
resampling, the computational load of the resulting algo-
rithms at each time step n is that of N × M × 2K Kalman
filters, and the selection step in the first two cases is imple-
mented in O(N × M logN × M) operations. Of course, if
M is large, which is the case in many applications, all these
methods are too computationally expensive to be used, and
one should employ a standard particle filter.

4. SIMULATION RESULTS

In the following experiments the bit error rate (BER) and the

tracking delay error (θt−θ̂t) were evaluated by means of com-
puter simulations. Gray-encoded M-ary differential phase
shift keyed (MDPSK) signals were employed, with mapping
function

sn = exp
(
jφn
)
, φn =

n∑
j=1

M∑
m=1

2πm
M

δ
(
dj − dm

)
. (31)
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Figure 1: Bit error rate performance (4DPSK signal, N = 100).

In order to assess the performance of the proposed ap-
proaches we first applied them to a simpler case of synchro-
nization in flat fading conditions, L = 1, for a system with
no spectrum spreading employed, c1 = 1, K = 1. In the first
experiment, 4DPSK signals were considered with the aver-
age signal-to-noise ratio (SNR) varying from 5 to 20 dB. The
AR coefficients for the channel, (4), were set to α(0) = 0.999,
σ (0)
f = 0.01, and the delay model parameters in (5) were

chosen to be the same, γ = 0.999 and σθ = 0.01. The BER
obtained by the particle filtering receiver employing prior
(PFP) and suboptimal (PFS) importance distributions, and
the deterministic receiver preserving N most likely particles
(DML) and using stratified resampling (DSR) is presented
in Figure 1. The marginal maximum a posteriori estimate
(MMAP)

d̂n = arg max
dn

p
(
dn|y1:2Kn

)
(32)

was employed to obtain the symbols. The number of par-
ticles used in these algorithms was equal to N = 100, and
little or no improvement in BER was gained by increasing
this number for deterministic schemes. For the randomized
approaches, the number of particles required to achieve the
BER of DSR algorithm was equal to N = 1200. In Figure 2,
the mean square delay error (MSE) is presented as a function
of the number of particles N for SNR = 10 dB:

θ̂MSE = 1
2KLd

2KLd∑
n=1

(
θn − θ̂n

)2
, (33)

where Ld is a length of the symbol sequence, Ld = 1000. The
results for the different SNRs are given in Figure 3. As one
can see, the deterministic particle filter with stratified resam-
pling slightly outperforms the receiver selecting most likely
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Figure 2: Mean square delay error for the different number of par-
ticles (4DPSK, SNR = 10 dB).
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Figure 3: Mean square delay error via SNR (4DPSK N = 100).

particles, and is more efficient than both standard particle
filtering schemes.

The particle filtering approach was also compared with
the EKF method [2] in the second experiment. The algo-
rithm was simplified to consider channel and code delay esti-
mation only (the transmitted symbols were assumed known
as, e.g., with pilot symbols being used). Otherwise, simu-
lation set-up was the same (N = 100 particles were em-
ployed). The results for the SNR = 10 dB presented in
Figure 4 demonstrate good performance of the particle filter-
ing method. Please note that deterministic particle filter is in
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Figure 4: The error in delay estimation.
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a sense a variant of the conventional per-survivor processing
(PSP) algorithm combined with the randomized particle fil-
tering procedure for the channel and delay estimation. Thus,
this procedure has proved more efficient, even in the situa-
tion which is more favorable for EKF, that is, which does not
involve the uncertainty associated with the unknown trans-
mitted symbols. Simulations demonstrating the superiority
of the particle filtering approach over RAKE receiver for re-
lated problems are presented in [22]; for symbol detection,
the comparison of the particle filtering methods with other
well-known approaches could be found in [8, 9, 23].
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Finally, we applied the proposed algorithm to perform
joint symbols/channel coefficients/code delay estimation for
DS spread spectrum systems with K = 15, L = 4. A binary
DPSK modulation scheme was employed with the multipath
channel response and AR coefficients chosen as in Channel
B in [2]. As shown in Figure 5, the algorithm employing 100
particles exhibits good BER performance. A tracking error
trajectory for 100 information symbols (corresponding to
1500 chips and 3000 channel samples) and an average SNR
equal to 10 dB is presented in Figure 6. Figure 7 also illus-
trates the mean square delay error as a function of SNR for
Ld = 1000.

5. CONCLUSION

In this paper, we propose the application of particle filter-
ing techniques to a challenging problem of joint symbols,
channel coefficients, and code delay estimation for DS spread
spectrum systems in multipath fading. The algorithm is de-
signed to make use of the structure of the model, and incor-
porates a variance reduction technique. The work is based
on the recent results on the superiority of the DML ap-
proach in a fully discrete environment [10, 11]. The method
cannot be applied straightforwardly, however, and several
procedures combining both deterministic and randomized
schemes are considered. The algorithms are tested and com-
pared. Although computer simulations show that all meth-
ods are capable of providing good performance, in this par-
ticular case involving additional continuous-valued param-
eters, the deterministic scheme employing stratified resam-
pling turns out to be the most efficient one. The choice of
the algorithm might, however, be application-dependent, so
further investigation is necessary. The receiver can be ex-
tended to address multiuser DS-CDMA transmission, using
the techniques proposed in [24], for example, or simplified

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002
5 10 15 20

SNR (dB)

M
ea

n
sq

u
ar

e
de

la
y

er
ro

r

PFS

DSR

N = 100

DS spread spectrum system

Figure 7: Mean square delay error via SNR.

to consider channel tracking only since it is naturally incor-
porated in the proposed algorithm. Future research should
concentrate on the development of suboptimal importance
distributions and selection schemes capable of increasing the
algorithm efficiency.
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We propose the use of particle filtering techniques and Monte Carlo methods to tackle the in-line and blind equalization of a
satellite communication channel. The main difficulties encountered are the nonlinear distortions caused by the amplifier stage
in the satellite. Several processing methods manage to take into account these nonlinearities but they require the knowledge of a
training input sequence for updating the equalizer parameters. Blind equalization methods also exist but they require a Volterra
modelization of the system which is not suited for equalization purpose for the present model. The aim of the method proposed
in the paper is also to blindly restore the emitted message. To reach this goal, a Bayesian point of view is adopted. Prior knowledge
of the emitted symbols and of the nonlinear amplification model, as well as the information available from the received signal,
is jointly used by considering the posterior distribution of the input sequence. Such a probability distribution is very difficult to
study and thus motivates the implementation of Monte Carlo simulation methods. The presentation of the equalization method
is cut into two parts. The first part solves the problem for a simplified model, focusing on the nonlinearities of the model. The
second part deals with the complete model, using sampling approaches previously developed. The algorithms are illustrated and
their performance is evaluated using bit error rate versus signal-to-noise ratio curves.

Keywords and phrases: traveling-wave-tube amplifier, Bayesian inference, Monte Carlo estimation method, sequential simulation,
particle filtering.

1. INTRODUCTION

Telecommunication has been taking on increasing impor-
tance in the past decades and thus led to the use of satellite-
based means for transmitting information. A major imple-
mentation task to deal with such an approach is the atten-
uation of emitted communication signals during their trip
through the atmosphere. Indeed, one of the most important
roles devoted to telecommunication satellites is to amplify
the received signal before sending it back to Earth. Severe
technical constraints, due to the lack of space and energy
available on board, can be solved thanks to special devices,
namely, traveling-wave-tube (TWT) amplifiers [1]. A com-
mon model for such a satellite transmission chain is depicted
in Figure 1.

Although efficient for amplifying tasks, TWT devices suf-
fer from nonlinear behaviors in their characteristics, thus im-
plying complex modeling and processing methods for equal-
izing the transmission channel.

The very first approaches for solving the equalization
problem of models similar to the one depicted in Figure 1
were developed in the framework of neural networks. These
methods are based on a modelization of the nonlinearities
using layers of perceptrons [2, 3, 4, 5, 6]. Most of these ap-
proaches require a learning or training input sequence for
adapting the parameters of the equalization algorithm. How-
ever, the knowledge or the use of such sequences is some-
times impossible: if the signal is intensely corrupted by noise
at the receiver stage or for noncooperative applications, for
instance.
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Figure 2: Identification of the model depicted in Figure 1 with a
Volterra filter.

Blind equalization methods have thus to be considered.
These methods often need precise hypothesis with the emit-
ted signals: Gaussianity or circularity properties of the proba-
bility density function of the signal, for instance [7]. Recently,
some methods make it possible to identify [8] or equalize
[9, 10, 11] blindly nonlinear communication channels un-
der general hypothesis. These blind equalization methods as-
sume that the transfer function of the system can be modeled
as a Volterra filter [12, 13].

However, for the transmission model considered here, a
Volterra modelization happens to be only suitable for the
task of identification and not for a direct equalization. For
instance, a method based on a Volterra modelization of the
TWT amplifier and a Viterbi algorithm at the receiver stage
is considered in [14]. Such an identification method can be
easily implemented through a recursive adaptation rule of
the filter parameters with a least mean squares approach (cf.
Figure 2). The mean of the quadratic error (straight line) and
its standard deviation (dotted lines) are depicted in Figure 3
for 100 realizations of binary phase shift keying (BPSK) sym-
bol sequences, each composed of 200 samples. Similarly, the
equalization problem of the transmission chain 1 can be con-
sidered with a Volterra filter scheme, adapted with a recursive
least squares algorithm as depicted in Figure 4. However, in
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Figure 4: Equalization of the model depicted in Figure 1 with a
Volterra filter.

this case, the error function happens not to converge show-
ing that the Volterra filter is unstable and that the system is
not invertible with such modelization.

It is then necessary to consider a different approach
for realizing blindly the equalization of this communication
model. The aim of this paper is thus to introduce a blind
and sequential equalization method based on particle filter-
ing (sequential Monte Carlo techniques) [15, 16]. For re-
alizing the equalization of the communication channel, it
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seems interesting to fully exploit the analytical properties of
the nonlinearities induced by TWT amplifiers through para-
metric models of these devices [1]. Sequential Monte Carlo
methods, originally developed for the recursive estimation of
nonlinear and/or non-Gaussian state space models [17, 18],
are well suited for reaching this goal. The field of communi-
cation seems to be particularly propitious for applying par-
ticle filtering techniques, as shown in the recent literature of
the signal processing community [15, 19] and this issue and
of the statistics community (see [20, 21], [16, Section 4]).
Such Monte Carlo approaches were successfully applied to
blind deconvolution [22], equalization of flat-fading chan-
nels [23], and phase tracking problems [24], for instance.

The paper is organized as follows. Firstly, models for the
emitted signal, the TWT amplification stage, and the other
parts of the transmission chain are introduced in Section 2. A
procedure for estimating the emitted signal is considered in
a Bayesian framework. Monte Carlo estimation techniques
are then proposed in Section 3 for implementing the com-
putation of the estimated signal under the assumption of a
simpler communication model, focusing on the nonlinear
part of the channel. This approach uses analytical formu-
lae of the TWT amplifier model described in Section 2 and
sampling methods for estimating integral expressions. The
method is then generalized in Section 4 for building a blind
and recursive equalization scheme of the complete transmis-
sion chain. The sequential simulation algorithm proposed is
based on particle filtering techniques. This approach makes
it possible to process the data in-line and without the help
of a learning input sequence. The performance of the algo-
rithm is illustrated by numerical experiments in Section 5.
Finally, some conclusions are drawn in Section 6. Details of
the Monte Carlo approach are given in Appendix A.

2. MODELING OF THE TRANSMISSION MODEL

The model of the satellite communication channel depicted
in Figure 1 is roughly the same as the one considered for var-
ious problems dealing with TWT amplifiers devices (cf., e.g.,
[2]). The different stages of this communication channel are
detailed below.

2.1. Emission stage

The information signal to transmit is denoted by e(t). It is
usually a digital signal composed of a sequence of Ne symbols
(ek)1≤k≤Ne . The signal is transmitted under the analog form

e(t) =
Ne∑
k=1

ekI[(k−1)T ,kT[(t), (1)

where T denotes the symbol rate and IΩ(·) is the indicator
function of set Ω. Symbols ek are generated from classical
modulations used in the field of digital telecommunication,
like PSK or quadratic amplitude modulation (QAM), for in-
stance. In the following, the case of 4-QAM symbols is con-
sidered. Each symbol can be written as

ek = exp
(
ıφk
)
, (2)

where the sequence of samples (φk)1≤k≤Ne is independently
and identically distributed from

U{π/4,3π/4,5π/4,7π/4}, (3)

where UΩ denotes the uniform distribution on the set Ω.
The signal is emitted through the atmosphere to the satellite.
The emission process is modeled by a Chebyshev filter. This
class of filters admits an IIR representation and their param-
eters, particularly their cutoff frequency, depend on the value
of symbol rate T [2]. A detailed introduction to Chebyshev
filters is given in [25], for instance. In the present case, the
emission filter is assumed to be modeled with a 3 dB band-
width equal to 1.66/T . The emitted signal is altered during
its trip in the atmosphere by disturbance signals. These phe-
nomena are modeled by an additive corrupting noise ne(t),
which is assumed to be Gaussianly, independently, and iden-
tically distributed:

ne(t) ∼ NCC
(
0, σ2

e

)
, (4)

where NCC
(
0, σ2

e

)
is a complex circular Gaussian distribu-

tion, with zero-mean and variance equal to σ2.

Remark 1. The amplitude of signal (1) is adjusted in practice
at the emission stage in order to reach a signal-to-noise ratio
(SNR) roughly equal to 15 dB during the transmission.

2.2. Amplification

After being received by the satellite, the signal is amplified
and sent back to Earth. This amplification stage is processed
by a TWT device. A simple model for TWT amplifier is an
instantaneous nonlinear filter defined by

z = r exp(ıφ) �−→ Z = A(r) exp
(
ı
(
φ + Φ(r)

))
, (5)

where r denotes the modulus of input signal. Amplitude gain
and phase wrapping can be modeled by the following expres-
sions:

A(r) = αar

1 + βar2
, (6)

Φ(r) = αpr2

1 + βpr2
. (7)

These formulae have been shown to model various types of
TWT amplifier device with accuracy [1]. Figures 5 and 6 rep-
resent functions (6) and (7) for two sets of parameters esti-
mated in [1, Table 1] from real data and duplicated in Table 1.
Curves with straight lines represent functions obtained with
the set of parameters of the first row of Table 1. The ones with
dashed lines represent functions obtained with the other set
of parameters.

A drawback of model (5) is that it is not invertible in a
strict theoretical sense, as drawn in Figure 5. However, only
the amplificative and invertible part of the system, repre-
sented above the dotted line on Figure 5, will be considered.
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Figure 5: Amplitude gain (6) of TWT models.
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Figure 6: Phase wrapping (7) of TWT models.

Signal processing in the satellite also performs the task of
multiplexing. The devices used for this purpose are modeled
by Chebyshev filters. Tuning of their parameters is given in
[2], for instance. In the present case, filters at the input and at
the output of the amplifier are assumed to have bandwidths
equal, respectively, to 2/T and 3.3/T .

2.3. Reception

The transmission of the signal back to Earth is much less
powerful than at the emission stage. This is mainly due to se-
vere technical constraints because of the satellite design. The
influence of the atmospheric propagation medium is then
modeled by a multipath fading channel [26, Section 11], with
one reflected path representing an attenuation of 10 dB in
this case: z(t) → z(t) + αz(t − ∆). Moreover, the signal is
still corrupted by disturbance signals, modeled by an additive
noise signal nr(t), Gaussianly, independently, and identically

Table 1: Parameters of (6) and (7) measured in practice.

αa βa αp βp

2 1 4 9.1

2.2 1.2 2.5 2.8

distributed:

nr(t) ∼ NCC
(
0, σ2

r

)
. (8)

This noise is always much more intense than at the emission
stage. This is mainly due to the weak emission power avail-
able in the satellite. The received signal, denoted as r(t), is
sampled at rate Ts.

2.4. Equalization

The goal of equalization is to recover emitted sequence
(ek)1≤k≤Ne from the knowledge of sampled sequence
(r( jTs))1≤ j≤Nr . The equalization method proposed in this
paper consists in estimating symbol sequence (φk)1≤k≤Ne

by considering its posterior distribution conditionally to se-
quence (r( jTs))1≤ j≤Nr of samples of the received signal:

p
((
φk
)

1≤k≤Ne

∣∣(r( jTs
))

1≤ j≤Nr

)
. (9)

To reach this goal, a Bayesian estimation procedure is consid-
ered with the computation of maximum a posteriori (MAP)
estimates [27].

Remark 2. Bayesian approaches have already been success-
fully applied in digital signal processing in the field of mobile
communication. In [28], for instance, autoregressive models
and discrete-valued signals are considered.

The computation of the estimates is implemented via
Monte Carlo simulation methods [16, 29]. As the complete
transmission chain is a complex system, a simpler model fo-
cusing on the nonlinear part of the channel is considered
in the following section, where Monte Carlo estimation ap-
proaches are introduced. These estimation techniques will be
used in the equalization algorithm for the global transmis-
sion chain in Section 4.

3. MONTE CARLO ESTIMATION METHODS

As a first approximation, to focus on the nonlinearity of the
model, only a TWT amplifier is considered in a transmission
channel corrupted with noises at its input and output parts
as shown in Figure 7.

The received signal r(t) is assumed to be sampled at sym-
bol rate T . The problem is then to estimate a 4-QAM sym-
bol φ a priori distributed from (3) with the knowledge of the
model depicted in Figure 7 (cf. relations (4), (6), (7) and (8)),
and information of a received sample r. A Bayesian approach
is developed [27] by considering the posterior distribution

p(φ|r) (10)
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Figure 7: Simple communication channel with TWT amplifier.

and its classical MAP estimate. The method proposed in the
following consists in estimating values of distribution (10)
thanks to Monte Carlo simulation schemes [29] using re-
lations (6) and (7) which model nonlinearities of the TWT
amplifier in a parametric manner.

3.1. Estimation with known parameters

In order to further simplify the study, parameters of the
transmission channel depicted in Figure 7 are firstly assumed
to be known. In the sequel, the coefficients of expressions (6)
and (7) are denoted by the symbol TWT. This information
is taken into account in the posterior distribution (10) thus
becoming

p
(
φ
∣∣A, σe, TWT, σr , r

)
, (11)

where A denotes the amplitude of the emitted signal. From
Bayes’ formula, the probability density function of this dis-
tribution is proportional to

p
(
r
∣∣A,φ, σe, TWT, σr

)× p
(
φ
∣∣A, σe, TWT, σr

)
. (12)

The prior distribution at the right-hand side of the above ex-
pression reduced to p(φ), which is given by (3). The problem
is then to compute the likelihood

p
(
r
∣∣A,φ, σe, TWT, σr

)
. (13)

Indeed, this formula can be viewed (cf. Appendix A) as the
following expectation:

E
{

exp
(
− 1

σ2
r

∣∣r − TWT(x)
∣∣2
)}

(14)

with respect to the random variable x which is Gaussianly
distributed:

x ∼ NCC
(
A exp(ıφ), σ2

e

)
. (15)

Considering a sequence of samples (x�)1≤�≤N independently
and identically distributed from (15), a Monte Carlo approx-
imation of (14) is given by

1
N

N∑
�=1

exp
(
− 1

σ2
r

∣∣r − TWT
(
x�
)∣∣2

)
(16)

which is accurate for a number N of samples large enough.
References [29, 30] provide detailed ideas and references
about Monte Carlo methods. To illustrate such an approach,
approximation (16) is computed for the emitted symbol φ =
π/4 and the values of TWT amplifier parameters given by

Table 2: Estimates of (11), SNRe = 10 dB, SNRr = 3 dB, 100 real-
izations.

φ p̂(φ|r)

π

4
0.69± 0.28

3π
4

0.13± 0.21

5π
4

0.02± 0.05

7π
4

0.16± 0.24

the first row of Table 1. Amplitude A of the emitted signal
equals 0.5 and variances of transmission noises are such that
SNRe = 10 dB and SNRr = 3 dB. One hundred realizations
are simulated and, for each, a sequence (15) of 100 samples
is considered. Table 2 gives mean values obtained from (16)
and their standard deviations.

The error of the estimated values (16) of probabilities
(11) might seem quite large as the standard deviations can
be reduced providing a larger number of samples. In the se-
quel, we are only interested in obtaining rough estimates of
(11), enabling comparison of mean values for different φ as
shown in Table 2. Thus, even with a reduced number of sam-
ples (15), it is possible to estimate accurately the MAP esti-
mate of (11).

Performance of the Monte Carlo estimation method is
then considered with respect to SNR at the input and out-
put of the amplifier (cf. Figure 7). The bit error rate (BER)
is computed by averaging the results obtained with a MAP
approach. Statistics of the Monte Carlo estimates (16) of dis-
tribution (11) are computed with 100 realizations of symbol
sequences composed of 1, 000 samples each. For each esti-
mate, sequences (15) composed of 100 samples are consid-
ered. The results of these simulations for SNRe taking val-
ues 10, 12, and 15 dB are depicted in Figure 8 and curves
from the bottom to the top are associated to decreasing
SNRe.

The Bayesian approach and its Monte Carlo implemen-
tation make it possible to estimate the emitted signal with
accuracy for a wide range of noise variances (cf. Figure 8).
However, the estimation method described previously re-
quires the knowledge of the model parameters. For many ap-
plications in the field of telecommunication, it is necessary
to assume these parameters unknown. It is the case for non-
stationary transmission models and for communication in
noncooperative contexts like passive listening, for instance.
The equalization problem of the simplified model depicted
in Figure 7 is now tackled in the case where the parameters
(A, σe, TWT, σr) of the transmission channel are assumed to
be unknown.

3.2. Estimation with unknown parameters

If the parameters are unknown, there are, at least, two
Bayesian estimation approaches to be considered with re-
spect to posterior distribution (10). A first method consists
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Figure 8: Mean BER values for MAP estimates of signals ver-
sus SNRr in dB, model of Figure 7 with known parameters
(A, σe, TWT, σr), for various SNRe values.

in dealing with the joint distribution of all the parameters of
the model

p
(
φ,A, σe, TWT, σr

∣∣r). (17)

This method makes it possible theoretically to jointly esti-
mate the emitted symbols and the parameters of the trans-
mission channel by implementing MAP and/or posterior
mean approaches. The probability density function of dis-
tribution (17) being generally very complex, Markov chain
Monte Carlo (MCMC) simulation methods [29, 30] can be
used to perform these estimation tasks. Such an approach
is developed in [31] particularly for equalizing the complete
transmission chain depicted in Figure 1. However, results ob-
tained with this method happen not to give accurate esti-
mates of the model parameters in practice. Indeed, MCMC
methods are generally useful for estimating various models
in the field of telecommunication [28, 32].

Another approach consists in considering a marginalized
version of distribution (10) with respect to the parameters of
the model:

p(φ) =
∫
p
(
φ,A, σe, TWT, σr

∣∣r)d(A, σe, TWT, σr
)
. (18)

Such a technique, called Rao-Blackwellization in the statistics
literature, for example, [33, 34], makes it possible to improve
the efficiency of sampling schemes (see [20, 21], [16, Section
24]). From Bayes’ formula, the integrand of expression (18)
is proportional to

p
(
r
∣∣φ,A, σe, TWT, σr

)× p
(
φ,A, σe, TWT, σr

)
. (19)

Assuming that symbols and the model parameters are inde-
pendent, expression (18) is proportional to

p(φ)×
∫
p
(
r
∣∣φ,A, σe, TWT, σr

)
p
(
A, σe, TWT, σr

)
× d

(
A, σe, TWT, σr

)
.

(20)

From the study of the previous case, the likelihood term in
the integrand can be computed via a Monte Carlo estimate
of expression (14) with a sequence of samples (15). An ap-
proach to estimate (18) is then to consider the integral ex-
pression in (20) as the expectation

Ep(A,σe ,TWT,σr )
{
p
(
r
∣∣φ,A, σe, TWT, σr

)}
(21)

which is estimated via a Monte Carlo approximation of the
following form:

1
Np

Np∑
k=1

p
(
r
∣∣φ,Ak, σe(k), TWTk, σr(k)

)
, (22)

where (Ak, σe(k), TWTk, σr(k))k=1,...,Np is a sequence of sam-
ples independently and identically distributed from the prior
distribution

p
(
A, σe, TWT, σr

)
. (23)

Remark 3. The algorithm for sampling distribution (17) in-
troduced in [31] requires also the setting of prior distribution
(23).

The model of the parameters includes generally prior in-
formation thanks to physical constraints. For instance, the
TWT amplifier is assumed to work in the amplificative part
of its characteristic (cf. Figure 5). Thus, as a first rough ap-
proximation, it can be assumed that A ∼U[0,1] a priori. This
parameter is also tuned such that SNRe equals 15 dB during
the emission process (cf. Remark 1) implying the constraint
σe = 0.2A. In a less strict case, it is sufficient to assume that
σe ∼ U[0.01,0.5]. The parameters (αa,βa,αp,βp) of the TWT
amplifier are supposed to be independent of other variables
of the system and also to be mutually independent. From the
values introduced in Table 1, an adequate prior distribution
is

(
αa,βa,αp,βp

) ∼U[1,3] ×U[0,2] ×U[1,5] ×U[2,10]. (24)

The extremal values of the downlink transmission noise vari-
ance σr can be estimated with respect to prior ranges of values
defined above. A uniform U[0.1,1.1] prior distribution for σr is
thus chosen. Once all prior distributions have been defined,
it is possible to implement a Monte Carlo estimation proce-
dure for (20) with the help of approximations (22) and (16).
Such an approach is tested for the computation of values of
posterior distribution for an emitted symbol φ = π/4 consid-
ering that the values of the TWT amplifier are given by the
first row of Table 1, that the amplitude of the emitted signal
is given by A = 0.5, and that noise variances are such that
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Table 3: Estimates of (10), SNRe = 10 dB, SNRr = 3 dB, 100 real-
izations.

φ p̂(φ|r)
π

4
0.61± 0.21

3π
4

0.23± 0.20

5π
4

0.05± 0.03

7π
4

0.12± 0.14

SNRe = 10 dB and SNRr = 3 dB. One hundred estimations
are simulated and for each realization, sequences of 100 sam-
ples (

Ak, σe(k), TWTk, σr(k)
)

1≤k≤Np
(25)

are drawn from distribution (23). For each sequence, as in
the case where the model parameters are known, approxima-
tions (16) are computed from sequences (25) composed of
100 samples each. Table 3 shows the mean values of the es-
timated (22) and their standard deviations computed from
these simulations.

As for the previous case, where parameters (A, σe, TWT,
σr) are known, we are only interested in obtaining rough
mean values of Monte Carlo estimates of the MAP expres-
sion (10) and thus do not consider larger sample sizes for
reducing the standard deviation of these estimates.

Performance of this Monte Carlo estimation method is
now considered with respect to uplink and downlink SNR.
As previously, BERs are computed by averaging results ob-
tained with a MAP approach for the Monte Carlo estimate
(22) of posterior distribution (10). One hundred realizations
of 1 000-symbol sequences are considered for each value of
SNR. For every Monte Carlo estimate, sequences (25) and
(15) are composed of 100 samples. The results of simulations
for SNRe equal to 10, 12, and 15 dB are depicted in Figure 9.
Curves from the bottom to the top are associated to a de-
creasing uplink SNR. As a comparison, the estimated mean
values of BER in the case where the parameters of the TWT
amplifier are known are represented with dashed lines.

Performance is not much corrupted in the case where
model parameters are unknown. Thus, considering the poste-
rior distribution of interest (18), marginalized with respect to
these parameters, seems to be a good strategy for tackling the
equalization problem. An in-line simulation method based
on the Monte Carlo estimation techniques previously devel-
oped is proposed hereinafter for realizing the equalization of
the complete transmission chain depicted in Figure 1.

4. PARTICLE FILTERING EQUALIZATION METHOD

4.1. Transmission model

Equalizing the complete satellite communication channel de-
picted in Figure 1 is a difficult problem as it requires taking
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SNRe=10 dB

SNRe=12 dB

SNRe=15 dB

Figure 9: Mean BER values for MAP estimates of signals versus
SNRr in dB, model of Figure 7 with unknown/known parameters
(A, σe, TWT, σr) (straight/dashed lines), for various SNRe values.

into account several phenomena:

(1) effects of the filters modeling, emission, and multi-
plexing stages;

(2) attenuation of the received signal mainly due to multi-
ple paths during the downlink transmission;

(3) correlation induced by filters and emission and fading
models.

An equalization method is proposed for this model
within a Bayesian estimation framework [27]. It consists in
considering the posterior distribution of the sampled sym-
bols conditionally to the sequence of the received samples:

p
((
e
(
jTs
))

1≤ j≤Nr

∣∣(r( jTs
))

1≤ j≤Nr

)
. (26)

An estimation procedure is then implemented by computing
the MAP estimate of distribution (26). Monte Carlo estima-
tion methods developed in the previous paragraphs can be
slightly modified in order to take into account the parame-
ters of the complete transmission chain (cf. points (1) and
(2) above).

The correlation of the samples at the receiver stage
mainly comes from the linear filters in the channel. In fact,
this problem yields to the estimation of parameter p: the
number of received samples per symbol rate p = T/Ts, as
parameters of Chebyshev filters at the emission and multi-
plexing stages depend on its value.

Computing the correlation of the received samples makes
it possible to give an estimate of p [31] in the case where this
quantity is an integer, and thus to estimate the parameters
of the filters. In the sequel, we consider that this is the case,
assuming that a proper synchronization processing has been
performed at the receiver stage. This task can also be achieved
via Monte Carlo simulation methods [24]. This parameter p
will be used in an explicit manner in the recursive equaliza-
tion algorithm introduced in Section 4.3.
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Figure 10: Formal updating scheme of a particle filter.

An MCMC simulation scheme [29, 30], for the batch
processing of received data, was studied in [31]. A sequen-
tial simulation method for sampling the distribution (26) is
now introduced, as many applications in the field of telecom-
munication require in-line processing methods when data is
available sequentially.

4.2. Sequential simulation method

A sequential method for sampling distribution (26) can be
implemented via particle filtering techniques [15, 16]. The
wide scope of this approach, originally developed for the re-
cursive estimation of nonlinear state space models [17, 18,
20, 21], is well suited for the sampling task of this equaliza-
tion problem. The basic idea of particle filtering is to generate
iteratively sequences of the variables of interest, each of them
denoted as a “particle,” here written as

(
x0(i), x1(i), . . . , xt(i)

)
1≤i≤M (27)

such that particles (xt(1), . . . , xt(M)) at time t are distributed
from the desired distribution, denoted as pt(x). This goal can
be reached with the use of two “tuning factors” in the algo-
rithm:

(i) the way the particles are propagated or diffused,
xt(i) → xt+1(i), in the sampling space, namely, the
choice of a proposal or candidate distribution;

(ii) the way the distribution of particles (xt(1), . . . , xt(M))
approximates the target distribution pt(x): by affecting
a weight wt(i) to each particle depending on the pro-
posal distribution, and updating these weights with an
appropriate recursive scheme.

These two tasks are illustrated in Figure 10, where each “ball”
stands for a particule xt(i) whose weight is represented by the
length of an associated arrow.

Such recursive simulation algorithm is referred to as se-
quential importance sampling or particle filtering in the liter-
ature [16, 18, 20, 21] of Monte Carlo methods. A good choice
of the candidate distribution generally makes it possible to
reduce the computational time of the sampling scheme, as

(1) Initialization. Sample φ0(i) ∼U{π/4,3π/4,5π/4,7π/4},
set the weights w0(i) = 1/M for i = 1, . . . ,M, set
j = 1.

(2) Importance sampling. Diffuse, propagate the
particles by drawing

φ̃ j(i) ∼ p
(
φj

∣∣φj−1(i)
)

(28)

for i = 1, . . . ,M, and actualize the paths[
φ̃0(i), . . . , φ̃ j(i)

] = [φ0(i), . . . ,φj−1(i), φ̃ j(i)
]
.

(3) Compute, update the weights

w̃ j(i) = p
(
r
(
jTech

)∣∣φ̃ j(i)
)×wj−1(i), (29)

and normalize them: wj(i) = w̃ j(i)/
∑M

k=1 w̃ j(k).
(4) Selection/actualization of particles. Resample M

particles (φ0(i), . . . ,φj(i)) from the set

(φ̃0(i), . . . , φ̃ j(i))1≤i≤M according to their weights
(wj(i))1≤i≤M and set the weights equal to 1/M.

(5) j ← j + 1 and go to (2).

Algorithm 1: Equalization algorithm.

explained in the next paragraph. Such Monte Carlo simula-
tion scheme is now proposed to tackle the sequential sam-
pling of distribution (26).

4.3. Equalization algorithm

In the present case, phase samples φj = φ( jTs) of the emitted
signal are directly sampled. The simulation scheme which is
considered is the bootstrap filter [15, 16, 17, 18] and is given
in Algorithm 1.

The important sampling and computation steps (28) and
(29) are detailed hereinafter.

The information brought by parameter p, number of re-
ceived samples per symbol duration, is taken into account
via the proposal distribution (28). Indeed, candidates for
particles φ̃ j(i) can be naturally sampled from the following
scheme:

(i) Set φ̃ j(i) = φ̃ j−1(i) with probability 1− 1/p;

(ii) Sample φ̃ j(i)∼U{π/4,3π/4,5π/4,7π/4} with probability 1/p.

This sampling scheme is very simple and can easily be
improved by considering φ̃kp(i) ∼ U{π/4,3π/4,5π/4,7π/4} and

φ̃kp+s(i) = φ̃kp(i) for 1 ≤ k ≤ p − 1, for instance. How-
ever, the scheme above gives sufficiently accurate results as a
first approximation, due to its flexibility (if a false symbol is
chosen, there is probability to switch to other symbols again)
and its ability to deal with possible uncertainty on the value
of parameter p. This scheme is also efficient to limit the neg-
ative effect of sample impoverishment due to the resampling
step, as detailed hereinafter. The proposed scheme, however,
does not take into account completely the information com-
ing from emission and received signals and if some coding
techniques are used to generate the symbols, this knowledge
should be introduced in the sampling scheme (28) if possible.
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The computation of weights (29) is realized by using sim-
ilar Monte Carlo approaches to the ones introduced previ-
ously, including filters and their parameters in expressions
(14) and (18). In this respect, Algorithm 1 can be seen as a
Rao-Blackwellized particle filter [20, 21] where the parame-
ters of the channel, considered here as nuisance parameters,
are integrated out. This generally helps to lead to more robust
estimates in practice [16, 33, 34].

A crucial point in the implementation of particle fil-
tering techniques lies in the resampling stage, step (4) in
Algorithm 1. As the computations for sampling the candi-
dates (28) and updating the weights (29) can be performed
in parallel, the resampling step gives the main contribu-
tion in the computing time of the algorithm as its achieve-
ment needs the interaction of all the particles. This stage is
compulsory in practice if one wants the sampler to work
efficiently. This is mainly due to the fact that the sequen-
tial importance sampling algorithm without resampling in-
creases naturally the variance of the weights (wj(i))1≤i≤M
with time [20, 22, 35]. In such case, only a few particles are af-
fected nonnegligible weights after several iterations, implying
a poor approximation of the target distribution and a waste
of computation.

To limit this effect, several approaches can be considered
[15]. One consists in using very large numbers of particles M
and/or in performing the resampling step for each iteration
[17, 18]. However, resampling too many times often leads
to severe sample impoverishment [16, 20, 21]. Other meth-
ods, also aiming at minimizing computational and memory
costs, consist in using efficient sampling schemes for diffus-
ing the particles [20] and performing occasionally the resam-
pling stage when it seems to be needed [15, 21]. When to
perform resampling can be decided by measuring the vari-
ance of weights via the computation of the effective sam-
ple size M/(1 + var(w̃ j(i))), whose one estimate is given by

1/
∑M

i=1 w
2
j (i) [15, 16, 21, 35]. In this case, the resampling

stage can be performed each time the estimated effective
sample size is small, measuring how the propagation of the
particles in the sampling space is efficient. This quantity
equals M for uniformly weighted particles and equals 1 for
degenerated cases where all the particles have zero weights
except one.

It is also possible to compute the entropy of the weights,
describing “how far” the distribution of the weights is from
the uniform distribution. Indeed, the entropy is maximized
for uniform weights and minimized for the degenerated con-
figurations as mentioned above. In this sense, the entropy
of weights quantifies the information of the samples and
measures the efficiency of representation for a given popu-
lation of particles. This approach is adopted in [24, 36], for
instance, and also in our algorithm as follows. Step (4) of
Algorithm 1 is therefore replaced by the computing of en-
tropy of the weights

H
(
wt(1), . . . ,wt(M)

) = − M∑
i=1

wt(i) log
(
wt(i)

)
(30)

and a resampling/selection step is processed only if the con-
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Figure 11: (a) Estimated effective sample size (ESS) and (b) entropy
(H) of the weights for one realization of the particle filtering algo-
rithm, M=100 particles, resampling performed when ESS ≤ M/10
or H ≤ logM/2.

dition

H
(
wt(1), . . . ,wt(M)

)
≤ λ× max

w(1),...,w(M)
H
(
w(1), . . . ,w(M)

) = λ logM
(31)

holds, assuming that λ is a threshold value set by the user.
To show that the estimated effective sample size and en-
tropy lead to similar results for the resampling task, their
values for one realization of the algorithm are depicted in
Figure 11.

Also, the resampling step can be performed via different
techniques [18, 21]. In the sequel, we use the general multi-
nomial sampling procedure [16, 18].

As the variable of interest φ is distributed from a set of
discrete values, using large numbers of particles M happened
to be unnecessary. Simulations have shown that several
dozens are sufficient for the problem considered here. This
is also the case for other Monte Carlo simulation methods
used for estimating telecommunication models [37]. More-
over, the degeneracy phenomenon is not really a nuisance in
the present case as the simulation algorithm Algorithm 1 is
only used in a MAP estimation purpose and not for com-
puting mean integral estimates as (18) and (A.4), for in-
stance.

Some simulations concerning performance of the equal-
ization algorithm with this sequential sampling scheme are
now presented.
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Figure 12: Mean± standard deviation (straight/dotted lines) of the
BER values for MAP estimates of signals versus SNRr in dB, model
of Figure 1 for SNRe= 12 dB.

5. NUMERICAL EXPERIMENTS

The equalization method was run for 100 realizations of se-
quences of 1 000 samples for each value of SNR at the receiver
stage and for SNR equal to 12 dB at the emission stage. The
number of received samples per symbol rate is p = 8. The
channel model is depicted in Figure 1.

(a) The amplifier model is described in Section 2.2 where
parameters are set as the first row of Table 1.

(b) The fading channel is composed of one delayed traject
of 3 samples (∆ = 3Ts; cf. Section 2.3) and 10 dB at-
tenuated in comparison with the principal trajectory.

For each realization, the emitted symbol sequence is esti-
mated by considering the MAP trajectory computed from
a Monte Carlo approximation of the distribution (26) with
M = 50 particles (27). Weights (29) are computed with
the help of Monte Carlo estimation techniques introduced
in Section 3.2, considering sequences of 100 samples. In our
simulations, the value for threshold (31) λ = 0.1 gave accept-
able estimation results. The mean values (straight lines) and
their associated variances (dotted lines) of the BER of MAP
estimates are depicted in Figure 12.

The equalization algorithm was also run for different val-
ues of uplink SNR: 10 dB and 15 dB. The mean values of the
BER computed from the estimated phases are depicted in
Figure 13. Curves from the bottom to the top are associated
to a decreasing SNRe.

One of the advantages of the proposed equalization
method is its robustness with respect to nonstationarities
of the transmission channel. This property comes from the
MAP estimation procedure considering the distribution (18)
marginalized with respect to channel parameters. Simula-
tions including perturbations of the parameters of the trans-
mission chain lead to similar results to those presented in
Figures 12 and 13. On the other hand, in case of dysfunc-
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Figure 13: Mean BER values for MAP estimates of signals versus
SNRr in dB, model of Figure 1 for various SNRe values.

tion in devices of the amplifier and/or of the filters or if sud-
den change of noise intensities happens during the trans-
mission, the estimation method remains almost insensitive
to these changes. The approach currently developed cannot
thus be used for diagnostic purposes, as it is the case for cer-
tain methods based on neural networks [4]. An interesting
hybrid approach is proposed in the conclusion to cope with
this task.

In order to compare the performance of the equaliza-
tion method, BERs computed from the MAP estimates of the
symbols are compared with ones obtained with signals esti-
mated by an equalizer built from a 2-10-4 multilayer neural
network, using hyperbolic tangents as activation functions
[3]. The mean values (straight lines) and standard deviations
(dotted lines) of BER computed from Monte Carlo MAP es-
timates are represented in Figures 14 and 15. The mean val-
ues of BER computed from signals estimated with the neural
network method are depicted in dashed lines.

The two methods give similar results for this configura-
tion. Nevertheless, an important and interesting characteris-
tic of the sequential Monte Carlo estimation method is that
it does not require any learning sequence for equalizing the
transmission chain, contrary to approaches based on neu-
ral networks. The proposed method is thus efficient in the
context of blind communication. A calibration step is at least
necessary in order to estimate the number of received sam-
ples per symbol rate. This tuning can be realized in a simple
manner by computing the correlation of the received sam-
ples.

6. CONCLUSION

The particle filtering equalization method proposed in this
paper makes it possible to estimate sequentially digital signals
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Figure 14: Mean± standard deviation (straight/dotted lines) of the
BER values for MAP estimates of signals versus SNRr in dB, model
of Figure 1 for SNRe= 15 dB. Means of the BER values for the signals
estimated with neural networks are depicted in dashed lines.

transmitted through a satellite communication channel. The
approach takes explicitly into account the nonlinearities in-
duced by the amplification stage in the satellite thanks to
a Bayesian estimation framework implemented via Monte
Carlo simulation methods. This approach enables to estimate
recursively the distribution of interest, namely, the posterior
distribution of the variables, marginalized with respect to the
parameters of the transmission chain.

An advantage of this approach is that it is robust to non-
stationarities of the channel. On the contrary, the method
cannot detect these nonstationarities and thus be employed
to predict some dysfunction of transmission devices, as it
is the case for certain neural networks approach. Therefore,
it seems interesting to use Markov chain and/or sequential
Monte Carlo methods to train appropriate neural networks
models. This approach was successfully applied in the field of
statistical learning, for instance [16, Section 17].

As for many particle-filtering-based methods, the imple-
mentation of the sampling algorithm is generally demanding
in terms of computing time, if compared to classical nonsim-
ulation approaches, especially for tackling problems arising
in the field of digital communication [19].

However, an advantage of the proposed Monte Carlo
equalization method is that it does not require the knowl-
edge of any learning input sequence in order to update
the equalizer parameters. To the best of our knowledge, it
seems at the moment the only method for achieving di-
rectly the blind equalization task of such transmission chan-
nel. This blind property can be of premium importance in
the framework of communication in noncooperative con-
text. This is the case in passive listening, for instance, or
when transmission of learning sequences cannot be com-
pleted correctly because of intense noises during the trans-
mission.
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Figure 15: Mean± standard deviation (straight/dotted lines) of the
BER values for MAP estimates of signals versus SNRr in dB, model
of Figure 1 for SNRe= 15 dB. Means of the BER values for the signals
estimated with neural networks are depicted in dashed lines.

APPENDICES

A. MONTE CARLO ESTIMATION OF POSTERIOR
DISTRIBUTION p(φ|A, σe, TWT, σr , r)

As stated in Section 3.1, the problem is to compute likelihood
(13). A solution consists in integrating this expression with
respect to y, the amplified signal (cf. Figure 7):

∫
p
(
r, y

∣∣A,φ, σe, TWT, σr
)
dy. (A.1)

From Bayes’ formula, this expression is proportional to∫
p
(
r
∣∣y,A,φ, σe, TWT, σr

)
p
(
y
∣∣A,φ, σe, TWT, σr

)
dy.

(A.2)

As downlink transmission noise is assumed to be Gaussian
(cf. (8)), the likelihood is yielding

p
(
r
∣∣y, σr

)∝ exp

(
− |r − y|2

σ2
r

)
. (A.3)

The right probability density function in integral (A.2) can
be computed by marginalizing it with respect to x, the signal
to amplify (cf. Figure 7):

p
(
y
∣∣A,φ, σe, TWT, σr

)
=
∫
p
(
y, x

∣∣A,φ, σe, TWT, σr
)
dx

∝
∫
p
(
y
∣∣x,A,φ, σe, TWT, σr

)
× p

(
x
∣∣A,φ, σe, TWT, σr

)
dx.

(A.4)
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The signal y is entirely determined by the signal x from re-
lations (6) and (7). The left probability density function in
integral (A.4) thus equals

p
(
y
∣∣x,A,φ, σe, TWT, σr

) = δ
(
y − TWT(x)

)
. (A.5)

The right probability density function in expression (A.4)
yields

p
(
x
∣∣A,φ, σe

)∝ exp

(
−
∣∣x − A exp(ıφ)

∣∣2

σ2
e

)
(A.6)

as the uplink transmission noise is assumed to be Gaussian
(cf. (4)). Expression (13) is thus proportional to

∫
exp

(
− 1

σ2
r

∣∣r−TWT(x)
∣∣2
)

exp

(
−
∣∣x−A exp(ıφ)

∣∣2

σ2
e

)
dx

(A.7)

and the above formula can be viewed as an expectation

E
{

exp
(
− 1

σ2
r

∣∣r − TWT(x)
∣∣2
)}

, (A.8)

where

x ∼ NCC
(
A exp(ıφ), σ2

e

)
. (A.9)
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“Equalization of satellite mobile communication channels us-
ing RBF networks,” in Proc. IEEE Workshop on Personal In-
door and Mobile Radio Communication (PIMRC ’98), Boston,
Mass, USA, September 1998.

[3] G. J. Gibson, S. Siu, and C. F. N. Cowen, “Multilayer percep-
tron structures applied to adaptive equalisers for data com-
munications,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal
Processing (ICASSP ’89), vol. 2, pp. 1183–1186, Glasgow , UK,
May 1989.

[4] M. Ibnkahla, N. J. Bershad, J. Sombrin, and F. Castanié,
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We propose a new timing error detector for timing tracking loops inside the Rake receiver in spread spectrum systems. Based
on a particle filter, this timing error detector jointly tracks the delays of each path of the frequency-selective channels. Instead of
using a conventional channel estimator, we have introduced a joint time delay and channel estimator with almost no additional
computational complexity. The proposed scheme avoids the drawback of the classical early-late gate detector which is not able
to separate closely spaced paths. Simulation results show that the proposed detectors outperform the conventional early-late gate
detector in indoor scenarios.

Keywords and phrases: sequential Monte Carlo, multipath channels, importance sampling, timing estimation.

1. INTRODUCTION

In wireless communications, direct-sequence spread spec-
trum (DS-SS) techniques have received an increasing inter-
est, especially for the third generation of mobile systems. In
DS-SS systems, the adapted filter typically employed is the
Rake receiver. This receiver is efficient to counteract the ef-
fects of frequency-selective channels. It is composed of fin-
gers, each assigned to one of the most significant channel
paths. The outputs of the fingers are combined proportion-
ally to the power of each path for estimating the transmitted
symbols (maximum-ratio combining). Unfortunately, the
performance of the Rake receiver strongly depends on the
quality of the estimation of the parameters associated with
the channel paths. As a consequence, we have to estimate
the delay of each path using a timing error detector (TED).
This goal is generally achieved in two steps: acquisition and

tracking. During the acquisition phase, the number and the
delays of the most significant paths are determined. These
delays are estimated within one half chip from the exact de-
lays. Then, the tracking module refines the first estimation
and follows the delay variations during the permanent phase.
The conventional TED used during the tracking phase is the
early-late gate-TED (ELG-TED) associated with each path. It
is well known that the ELG-TED works very well in the case
of a single fading path. However, in the presence of multipath
propagation, the interference between the different paths can
degrade its performance. In fact, the ELG-TED cannot sepa-
rate the individual paths when they are closer than one chip
period from the other paths, whereas a discrimination up to
Tc/4 can still increase the diversity of the receiver (Tc de-
notes the chip time) [1]. When the difference between the
delays of two paths is contained in the interval 0–1.5Tc, we
are in the presence of unresolvable multipaths. This scenario
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corresponds, for example, to the indoor scenario. The prob-
lem of unresolvable multipaths has recently been analyzed in
[2, 3, 4].

Particle filtering (PF) or sequential Monte Carlo (SMC)
methods [5] represent the most powerful approach for the
sequential estimation of the hidden state of a nonlinear dy-
namic model. The solution to this problem depends on the
knowledge of the posterior probability density (PPD) of the
hidden state given the observations. Except in a few special
cases including linear Gaussian system models, it is impos-
sible to analytically calculate a sequential expression of this
PPD. It is necessary to adopt numerical approximations. The
PF methods give a discrete approximation of the PPD of the
hidden state by weighted points or particles which can be re-
cursively updated as new observations become available.

The first main application of the PF methods was target
tracking. More recently, these techniques have been success-
fully applied in communications, including blind equaliza-
tion in Gaussian [6] and non-Gaussian [7, 8] noises and joint
symbol and timing estimation [9]. For a complete survey of
the communication problems dealt with using PF methods,
see [10].

In this paper we propose to use the PF methods for es-
timating the delays of the paths in multipath fading chan-
nels. Since these methods are based on a joint approach,
they provide optimal estimates of the different channel de-
lays. In this way, we can overcome the problem of the ad-
jacent paths which causes the failure of the conventional
single-path-tracking approaches in the presence of unresolv-
able multipaths. Moreover, we will combine the PF-based
TED (PF-TED) with a conventional estimator for estimating
the amplitudes of the channel coefficients. We will also apply
the PF methods to the estimation of the channel coefficients
in order to jointly estimate the delays and the coefficients.

This paper is organized as follows. In Section 2, we will
introduce the system model. Then in Section 3, we will
describe the conventional ELG-TED and the PF-TED. In
Section 4, we will present the conventional estimators of the
channel coefficients and the application of the PF methods
to the joint estimation of the delays and the channel coeffi-
cients. In Section 5, we will give simulation results. Finally,
we will draw a conclusion in Section 5.

2. SYSTEM MODEL

We consider a DS-SS system sending a complex data se-
quence {sn}. The data symbols are spread by a spreading se-
quence {dm}Ns−1

m=0 where Ns is the spreading factor.
The resulting baseband equivalent transmitted signal is

given by

e(t) =
∑
n

sn

Ns−1∑
m=0

dmg
(
t −mTc − nT

)
, (1)

where Tc and T are respectively the chip and symbol period
and g(t) is the impulse response of the root-raised cosine fil-
ter with a rolloff factor equal to 0.22 in the case of the uni-
versal mobile telecommunications system (UMTS) [11].

Channel

sn

dm

g(t) h(t, τ)

n(t)

g∗(−t) r(t)

Figure 1: Equivalent lowpass transmission system model.

h(t, τ) denotes the overall impulse response of the multi-
path propagation channel with Lh independent paths (wide-
sense stationary uncorrelated scatterers (WSSUS) model):

h(t, τ) =
Lh∑
l=1

hl(t)δ
(
τ − τl(t)

)
. (2)

Each path is characterized by its time-varying delay τl(t) and
channel coefficient hl(t).

The signal at the output of the matched filter is given by

r(t) =
Lh∑
l=1

hl(t)
∑
n

sn

Ns−1∑
m=0

dmRg
(
t −mTc − nT − τl(t)

)
+ ñ(t),

(3)

where ñ(t) represents the additive white gaussian noise
(AWGN) n(t) filtered by the matched filter and

Rg(t) =
∫ +∞

−∞
g∗(τ)g(t + τ)dτ (4)

is the total impulse response of the transmission and receiver
filters.

Figure 1 shows the equivalent lowpass transmission
model considered in this paper.

The output of the matched filter is used as the input of the
Rake receiver. The Rake receiver model is shown in Figure 2.
The Rake receiver is composed of L branches corresponding
to the L most significant paths. In the lth branch, the received
and filtered signal r(t) is sampled at time mTc +nT + τ̂l in or-
der to compensate the timing delay τl of the associated path
with the estimate τ̂l. The outputs of each branch are com-
bined to estimate the transmitted symbols. The output of the
Rake receiver is given as

ŝn = ŝ(nT) = 1
Ns

L∑
l=1

ĥ∗l
Ns−1∑
m=0

d∗mr
(
mTc + nT + τ̂l

)
. (5)

3. THE TIMING ERROR DETECTION

3.1. The conventional TED

The Rake receiver needs good timing delays and channel es-
timators for each path to extract the most signal power from
the received signal and to maximize the signal-to-noise ratio
at the output of Rake receiver.
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r(t)

1/Ts

nT + mTc + τ̂1(t)

Interpolator/
decimator

d̂∗m

1
Ns

Ns−1∑
m=0

ĥ∗1

∑ ŝn
...

...

nT + mTc + τ̂L(t)

Interpolator/
decimator

d̂∗m

1
Ns

Ns−1∑
m=0

ĥ∗L

Figure 2: Rake receiver model.

The conventional TED for DS-SS systems is the ELG-
TED. The ELG-TED is devoted to the tracking of the delay
of one path. It is composed of the early and late branches.
The signal r(t) is sampled at time mTc + nT + τ̂l ± ∆. In this
paper, we will use ∆ = Tc/2. We will restrict ourselves to the
coherent ELG-TED where the algorithm uses an estimation
of the transmitted data or the pilots when they are available.
The output of a coherent ELG-TED associated with the lth
path is given by

xn = x(nT)

= Re

{
ŝ∗n h

∗
l

(n+1)Ns−1∑
m=nNs

(
r
(
mTc + τ̂l +

Tc

2

)

− r
(
mTc + τ̂l − Tc

2

))
d̂∗m

}
.

(6)

The main limitation of the ELG-TED is its discrimination ca-
pability. Indeed, when the paths are unresolvable (separated
by less than Tc), the ELG-TED is not able to correctly dis-
tinguish and track the path. This scenario corresponds for
example to the indoor case.

These drawbacks motivated the proposed PF-TED.

3.2. The PF-TED

We propose to use the PF methods in order to jointly track
the delay of each individual path of the channel. We assume
that the acquisition phase has allowed us to determine the
number of the most significant paths and to roughly estimate
their delay.

The PF methods are used to sequentially estimate time-
varying quantities from measures provided by sensors. In
general, the physical phenomenon is represented by a state
space model composed of two equations: the first describes
the evolution of the unknown quantities called hidden state
(evolution equation) and the second the relation between the
measures called observations and the hidden state (observa-
tion equation). Given the initial distribution of the hidden
state, the estimation of the hidden state at time t based on the
observations until time t is known as Bayesian inference or
Bayesian filtering. This estimation can be obtained through

the knowledge of two distributions: the PPD of the sequence
of hidden states from time 1 to time t given the correspond-
ing sequence of observations and the marginal distribution
of the hidden state at time t given the sequence of the obser-
vations until time t. Except in a few special cases including
linear Gaussian state space models, it is impossible to analyt-
ically calculate these distributions. The PF methods provide a
discrete and sequential approximation of the distributions. It
can be updated when a new observation is available, without
reprocessing the previous observations. The support of the
distributions is discretized by particles, which are weighted
samples evolving in time.

Tracking the delay of the individual channel paths can be
interpreted as a Bayesian inference. The delays are the hidden
state of the system and the model (3) of the received samples
relating the observations to the delays represents the observa-
tion equation. We notice that this equation is nonlinear with
respect to the delays and as a consequence, we cannot analyt-
ically estimate the delays. To overcome this nonlinearity, we
propose to apply the PF methods.

The PF methods have previously been applied for the de-
lay estimation in DS-CDMA systems [12, 13]. In [12], the
PF methods are used to jointly estimate the data, the chan-
nel coefficients, and the propagation delay. In [13], the PF
methods are combined with a Kalman filter (KF) to respec-
tively estimate the delay propagation and the channel coef-
ficients; the information symbols are assumed known, pro-
vided by a Rake receiver. In both papers, the delays of each
channel path are considered known and multiple of the sam-
pling time; therefore, only the propagation delay is estimated.
In this paper, the approach is different. We suppose that each
channel path has a slow time-varying delay, unknown at the
receiver. This environment can represent an indoor wireless
communication. We assume that the information symbols
are known or have been estimated essentially for three rea-
sons:

(i) the computational complexity of the receiver should
be reduced;

(ii) the channel estimation is typically performed trans-
mitting known pilot symbols, for example using a spe-
cific channel as the common pilot channel (CPICH) of
the UMTS;
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Figure 3: Structure of the proposed PF-TED.

(iii) the PF methods applied to the estimation of the in-
formation symbols perform slightly worse than simple
deterministic algorithms [12, 14].

Firstly, we will apply the PF methods only to the estima-
tion of the delays of each channel path, considering that the
channel coefficients are known. In the next paragraph, we
will introduce the estimation of the channel coefficients.

The structure of the proposed PF-TED is shown in
Figure 3. This estimator operates on samples from the
matched filter output taken at an arbitrary sampling rate 1/Ts

(at least Nyquist sampling). Then, the samples are processed
by means of interpolation and decimation in order to ob-
tain intermediate samples at the chip rate 1/Tc. These sam-
ples are the input of the particle filter. In order to reduce the
computational complexity of the PF-TED and since the time
variation of the delays is slow with respect to the symbol du-
ration, we choose that the particle filter works at the symbol
rate 1/T . Moreover, in order to exploit all the information
contained in the chips of a symbol period, the equations of
the PF algorithm are modified. The PF algorithm proposed
in this paper is thus the adaptation of the PF methods to a
DS-SS system.

Following [15], the evolution of the delays of the channel
paths can be described as a first-order autoregressive (AR)
process:

τ1,n = α1τ1,n−1 + v1,n,

...

τL,n = αLτL,n−1 + vL,n,

(7)

where τl,n for l = 1, . . . ,L denotes the delay of the lth channel
path at time n, α1, . . . ,αL express the possible time variation
of the delays from a time to the next one, and v1, . . . , vL are
AWGN with zero mean and variance σ2

v . Note that the time
index n is an integer multiple of the symbol duration.

The estimation of the delays can be achieved using the
minimum mean square error (MMSE) method or the max-
imum a posteriori (MAP) method. The MMSE solution is
given by the following expectation:

τ̂n = E
[
τn|r1:n

]
, (8)

where τn = {τ1,n, . . . , τL,n} and r1:n is the sequence of received
samples from time 1 to n. The calculation of (8) involves the
knowledge of the marginal distribution p(τn|r1:n). Unlike the
MMSE solution that yields an estimate of the delays at each
time, the MAP method provides the estimate of the hidden
state sequence τ1:n = {τ1, . . . , τn}:

τ̂1:n = arg max
τ1:n

p
(
τ1:n|r1:n

)
. (9)

The calculation of (9) requires the knowledge of the PPD
p(τ1:n|r1:n).

The simulations give similar results for the MMSE
method and the MAP method. Hence, we choose to adopt
the MMSE solution as in [9]. In order to obtain samples from
the marginal distribution, we use the sequential importance
sampling (SIS) approach [16]. Applying the definition of the
expectation, (8) can be expressed as follows:

τ̂n =
∫
τnp

(
τn|r1:n

)
dτn. (10)

The aim of the SIS technique is to approximate the
marginal distribution p(τn|r1:n) by means of weighted par-
ticles:

p
(
τn|r1:n

) ≈
Np∑
i=1

w̃(i)
n δ
(
τn − τ(i)

n

)
, (11)

where Np is the number of particles, w̃(i)
n is the normalized

importance weight at time n associated with the particle i,

and δ(τn − τ(i)
n ) denotes the Dirac delta centered in τn = τ(i)

n .
The phases of the PF-TED based on the SIS approach are

summarized below.
(1) Initialization. In this paper, we apply the PF meth-

ods for the tracking phase, assuming that the number of the
channel paths and the initial value of the delay for each path
have been estimated during the acquisition phase [17]. We
assume that the error on the delay estimated by the acquisi-
tion phase belongs to the interval (−Tc/2,Tc/2). Hence, the a
priori probability density p(τ0) can be considered uniformly
distributed in (τ̂0−Tc/2, τ̂0 +Tc/2), where τ̂0 is the delay pro-
vided by the acquisition phase. Note that the PF methods can
be used also for the acquisition phase. However, the number
of particles has to be increased, because we have no a priori
information on the initial value of the delays.

(2) Importance sampling. The time evolution of the parti-
cles is achieved with an importance sampling distribution.
When rn is observed, the particles are drawn according to
the importance function. In general, the importance func-
tion is chosen to minimize the variance of the importance
weights associated with each particle. In fact, it can be shown
that the variance of the importance weights can only increase
stochastically over time [16]. This means that, after a few it-
erations of the SIS algorithm, only one particle has a nor-
malized weight almost equal to 1 and the other weights are
very close to zero. Therefore, a large computational effort is
devoted to updating paths with almost no contribution to
the final estimate. In order to avoid this behavior, a resam-
pling phase of the particles is inserted among the recursions
of the SIS algorithm. To limit this degeneracy phenomenon,
we need to use the optimal importance function [16], given
by

π
(
τ(i)
n |τ(i)

1:n−1, r1:n
) = p

(
τ(i)
n |τ(i)

n−1, rn
)
. (12)
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Unfortunately, the optimal importance function can be ana-
lytically calculated only in a few cases, including the class of
models represented by a Gaussian state space model with lin-
ear observation equation. In this case, the observation equa-
tion (3) is nonlinear and thus, the optimal importance func-
tion cannot be analytically determined. We can consider two
solutions to this problem [16]:

(i) the a priori importance function p(τ(i)
n |τ(i)

n−1);
(ii) an approximated expression of the optimal impor-

tance function by linearization of the observation

equation about τ(i)
l,n = αlτ

(i)
l,n−1 for l = 1, . . . ,L.

Since the second solution involves the derivative calculation
of the nonlinear observation equation, and hence very com-
plex operations, we choose the a priori importance function
as in [9]. Considering that the noises vl,n for l = 1, . . . ,L in
(7) are Gaussian, the importance function for each delay l is

a Gaussian distribution with mean αlτ
(i)
l,n−1 and variance σ2

v .
(3) Weight update. The evaluation of the importance

function for each particle at time n enables the calculation
of the importance weights [16]:

w(i)
n = w(i)

n−1
p
(
rn|τ(i)

n
)
p
(
τ(i)
n |τ(i)

n−1

)
π
(
τ(i)
n |τ(i)

1:n−1, r1:n
) . (13)

This expression represents the calculation of the importance
weights if we only consider the samples of the received sig-
nal at the symbol rate. However, in a DS-SS system we have
additional information provided by Ns samples for each sym-
bol period due to the spreading sequence. Consequently, we
modify (13) taking into account the presence of a spreading
sequence. Indeed, observing that the received samples are in-

dependent, the probability density p(rn|τ(i)
n ) at the symbol

rate can be written as

p
(
rn|τ(i)

n

) = (n+1)Ns−1∏
m=nNs

p
(
rm|τ(i)

n

)
. (14)

Considering (3) at the chip rate and recalling the assump-

tions of known symbols, the probability density p(rm|τ(i)
n ) is

Gaussian. Typically, the received sample rm is complex. For
the calculation of the Gaussian distribution, we can write rm
as a bidimensional vector with components being the real
part and the imaginary part of rm. The probability density

p(rm|τ(i)
n ) is thus given by

p
(
rm|τ(i)

n

) = 1
πσ2

n
exp

{
− 1

σ2
n

∣∣rm − µ(i)
m

∣∣2
}

, (15)

where σ2
n is the variance of the AWGN ñ(t) in (3) and the

mean µ(i)
m is obtained by

µ(i)
m =

L∑
l=1

hl,nsn

m+3∑
k=m−3

dkRg
(
mTc − kTc − nT − τ(i)

l,n

)
. (16)

In order to reduce the computational complexity of the PF-
TED, in (16) we have assumed that the contribution of the
raised cosine filter Rg to the sum on the spreading sequence is
limited to the previous 3 and next 3 samples. By substitution
of (15) in (14), the latter becomes

p
(
rn|τ(i)

n

) = ( 1
πσ2

n

)Ns

exp

{
− 1

σ2
n

(n+1)Ns−1∑
m=nNs

∣∣rm − µ(i)
m

∣∣2
}
.

(17)

Assuming the a priori importance function, (13) yields

w(i)
n = w(i)

n−1p
(
rn|τ(i)

n

)

= w(i)
n−1

(
1

πσ2
n

)Ns

exp

{
− 1

σ2
n

(n+1)Ns−1∑
m=nNs

∣∣rm − µ(i)
m

∣∣2
}
.

(18)

Finally, the importance weights in (18) are normalized
using the following expression:

w̃(i)
n = w(i)

n∑Np

j=1 w
( j)
n

. (19)

(4) Estimation. By substitution of (11) into (10), we ob-
tain at each time the MMSE estimate:

τ̂n =
Np∑
i=1

w̃(i)
n τ(i)

n . (20)

(5) Resampling. This algorithm presents a degeneracy
phenomenon. After a few iterations of the algorithm, only
one particle has a normalized weight almost equal to 1 and
the other weights are very close to zero. This problem of the
SIS method can be eliminated with a resampling of the parti-
cles. A measure of the degeneracy is the effective sample size
Neff , estimated by

N̂eff = 1∑Np

i=1

(
w̃(i)
n
)2 . (21)

When N̂eff is below a fixed threshold Nthres, the particles are
resampled according to the weight distribution [16]. After
each resampling task, the normalized weights are initialized
to 1/Np.

4. THE ESTIMATION OF THE CHANNEL COEFFICIENTS

4.1. The conventional estimators

Channel estimation is performed using the known pilot sym-
bols. If we suppose that the channel remains almost un-
changed during the slot, the conventional estimator of the
channel coefficients of the lth path is obtained by correlation
using the known symbols [18]:

ĥl = 1
NpilotNs

Npilot−1∑
n=0

Ns−1∑
m=0

s∗n d
∗
mr
(
mTc + nT + τ̂l,n

)
, (22)
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where Npilot is the number of pilots in a slot. For each path,
the received signal is sampled at time mTc +nT + τ̂l,n in order
to compensate its delay. Then the samples are multiplied by
the despread sequence and summed on the whole sequence
of pilot symbols. The problem of this estimator is that when
the delays are unresolvable, the estimation becomes biased.
To eliminate this bias, we can use an estimator based on the
maximum likelihood (ML) criterion. In [1, 19], a simplified
version of the ML estimation is proposed. The channel coef-
ficients which maximize the ML criterion are given by

ĥ = P−1a, (23)

where ĥ = (ĥ1, . . . , ĥL), P is an L × L matrix with elements
Pi j = Rg(τi,n − τj,n), and a is the vector of the channel coeffi-
cients calculated using (22).

4.2. The PF-based joint estimation of the delays
and the channel coefficients

We can apply the PF methods to jointly estimate the delays
of each path and the channel coefficients with a very low ad-
ditional cost in terms of computational complexity. This is
a suboptimal solution, since the observation equation (3) is
linear and Gaussian with respect to the channel coefficients.
The optimal solution is represented by a KF. However, com-
bining the PF methods and the KF to jointly estimate the de-
lays and the channel coefficients involves the implementation
of a KF. It is better to use the particles employed for the delay
estimation and to associate to each particle the estimation of
the channel coefficients.

In this case, the hidden state is composed of the L de-
lays and the L channel coefficients of each individual path.
When a particle evolves in time, its new position is thus de-
termined by the evolution of the delays and the evolution of
the channel coefficients. The delays evolve as described for
the PF-TED. For the channel coefficients, we assume that the
time variations are slow as, for example, in indoor environ-
ments. Hence, the evolution of the channel coefficients can
be expressed by the following first-order AR model:

h1,n = β1h1,n−1 + z1,n,

...

hL,n = βLhL,n−1 + zL,n,

(24)

where β1, . . . ,βL describe the possible time variation of the
channel coefficients from a time to the next one and z1, . . . , zL
are AWGN with zero mean and variance σ2

z . The parameters
of the channel AR model (24) are chosen according to the
Doppler spread of the channel [20]. Notice that this joint es-
timator operates at the symbol rate as the PF-TED.

As for the delays, we only consider the MMSE method
for the estimation of the channel coefficients and we use the
a priori importance function:

π
(
h(i)
n |h(i)

1:n−1, r1:n
) = p

(
h(i)
n |h(i)

n−1

)
, (25)

where hn = {h1,n, . . . ,hL,n}. Considering that the noises zl,n
for l = 1, . . . ,L in (24) are Gaussian, the importance function
for the channel coefficients is a Gaussian distribution with
mean βlh

(i)
l,n−1 and variance σ2

z . To determine the positions of
the particles at time n from the positions at time n− 1, each
particle is drawn according to p(τ(i)

n |τ(i)
n−1) and (25).

The calculation of the importance weights is very simi-
lar to the case of the PF-TED. The only difference is that the
channel coefficients hl,n are replaced by the support of the

particles h(i)
l,n to calculate the mean (16).

5. SIMULATION RESULTS

In this section, we will compare the performance of the con-
ventional ELG-TED and the PF-TED. In order to demon-
strate the gain achieved using the latter, we will consider
different indoor scenarios with a two-path Rayleigh channel
with the same average power on each path and a maximum
Doppler frequency of 19 Hz corresponding to a mobile speed
of 10 Km/h for a carrier frequency of 2 GHz. The simulation
setup is compatible with the UMTS standard. In these con-
ditions, the time variations of the channel delays can be ex-
pressed by the model (7), with α1 = · · · = αL = 0.99999
and σ2

v = 10−5 [15]. Moreover, the time variations of the
channel coefficients can be represented by the model (24),
β1 = · · · = βL = 0.999 and σ2

z = 10−3.
In these simulations, a CPICH is used. In each slot of

CPICH, 40 pilot symbols equal to 1 are expanded into a chip
level by a spreading factor of 64. The spreading sequence is a
PN sequence changing at each symbol.

5.1. Tracking performance

We assume that the channel coefficients are known to eval-
uate the TED’s tracking capacity and the simulation time is
equal to 0.333 second, corresponding to 500 slots. We have
firstly considered the delays of the two paths varying accord-
ing to the following model:

τ1,n = α1τ1,n−1 + v1,n,

τ2,n = α2τ2,n−1 + v2,n,
(26)

where α1 = α2 = 0.999, σ2
v,1 = σ2

v,2 = 0.001, τ1,0 = 0, and
τ2,0 = 1.

Figure 4 shows one realization of the considered delays
and the tracking performance of two ELG-TEDs used for the
estimation of the two delays. We assume that Es/N0 = 10 dB,
where Es is the energy per symbol and N0 is the unilateral
spectral power density. The classical ELG-TED presents dif-
ficulties to follow the time variation of the two delays, espe-
cially when the delay separation becomes less than 1Tc.

However, it is very important for the TED to distinguish
the different paths of the channel to enable the Rake receiver
to exploit the diversity contained in the multipath nature
of the channel. In [1], it has been shown that the gain in
diversity decreases as the separation between the paths de-
creases. In particular, a loss of 2.5 dB in the performance of
the matched filter bound for a BER equal to 10−2, passing
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Figure 4: Delay tracking with the conventional ELG-TED.
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Figure 5: Delay tracking with the PF-TED.

from Tc to Tc/4, has been observed. Moreover, it has been
noted that an interesting gain in diversity occurs if the TED
distinguishes paths separated by more than Tc/4. On the
other hand, it has been found that the performance of the
matched filter bound for a separation of Tc/8 is very close
to the one obtained with only one path. Consequently, the
TED discrimination capacity has to be equal to Tc/4. Unfor-
tunately, the ELG-TED fails to distinguish all the paths with
a delay separation less than 1Tc. In Figure 5, we can observe
how the discrimination capacity of the TED can be improved
using the PF methods.
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Figure 6: Delay tracking with the conventional ELG-TED.

In order to better highlight this behavior, we have fixed
the delay of the first path at 0 and the delay of the second
path is decreasing linearly from 2Tc to 0 over a simulation
time of 0.333 second corresponding to 500 slots. We assume
that Es/N0 = 10 dB, where Es is the energy per symbol and
N0 is the unilateral spectral power density.

Firstly, we consider that the channel coefficients are
known to evaluate the TED’s tracking capacity. Figure 6 gives
a representative example of the evolution of the two esti-
mated delays using two ELG-TEDs. As soon as the difference
between the two delays is lower than 1Tc, due to the cor-
relation between the two paths, the estimated delays tend to
oscillate around each real delay. The ELG-TEDs are no longer
able to perform the correct tracking of the delays. On the
other hand, as shown in Figure 7, the proposed PF-TED is
able to track almost perfectly the two paths. These results
have been obtained using a particle filter with only 10 par-
ticles.

Then, we have introduced the estimation of the channel
coefficients into the TED. Figure 8 shows the results obtained
with two ELG-TEDs combined with the conventional esti-
mator based on the correlation. As soon as the difference
between the two delays is lower than 1Tc, the detectors no
longer recognize the two paths: the weaker path merges with
the stronger one.

In Figure 9, the PF-TED is also associated with the con-
ventional estimator of the channel coefficients based on the
correlation. When the delay of the second path becomes less
than 1Tc, the channel estimator decreases its capacity to
track the time variations of the channel coefficients and the
PF-TED cannot track the delays of the two paths. To im-
prove the channel estimation, we associate the PF-TED with
the ML estimator, as shown in Figure 10. In this case, the
PF-TED can track the delay of the second path up to Tc/2.
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Figure 7: Delay tracking with the PF-TED.
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Figure 8: Delay tracking with the conventional ELG-TED associ-
ated with a conventional channel coefficient estimator based on the
correlation.

For smaller delays, the PF-TED continues to distinguish the
two paths, but it cannot follow the time variations of the sec-
ond delay. The delay of the second path remains close to the
values estimated at Tc/2.

Using the PF methods to jointly estimate the delays and
the channel coefficients, we can notice in Figure 11 that the
PF-TED can track the time variations of the second path.
This solution implies only a low additional cost in terms of
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Figure 9: Delay tracking with the PF-TED associated with a con-
ventional channel coefficient estimator based on the correlation.
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Figure 10: Delay tracking with the PF-TED associated with a con-
ventional channel coefficient estimator based on the ML.

computational complexity with respect to the PF-TED, since
it exploits the set of particles used for the delay estimation for
the channel coefficient estimation.

5.2. Mean square error of the delay estimators

In this section, we will compare the estimation of the mean
square error (MSE) estimating τn of the ELG-TED and
the PF-TED with the lower posterior Cramer-Rao bound
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Figure 11: Delay tracking with a joint delay and channel coefficient
estimator based on the PF methods.

(PCRB). In the Bayesian context of this paper, the PCRB [21]
is more suitable than the Cramer-Rao bound [22] to evaluate
the MSE of varying unknown parameters.

The PCRB for estimating τn using r1:n has the form

E
(
τ̂n − τn

)2 ≥ J−1
n,n, (27)

where Jn,n is the right lower element of the n×n Fisher infor-
mation matrix.

In [21], the authors have shown how to recursively eval-
uate Jn,n. For our application, the nonlinear filtering system
is

τn+1 = ατn + vn,

rn = zn
(
τn
)

+ ñn,
(28)

where the second relation represents the nonlinear observa-
tion equation (3) at chip rate.

Since the spreading sequence is different at each chip
time, we have to evaluate zn(τn) at this rate.

From the general recursive equation given in [21], the se-
quence {Jn,n} can be obtained as follows:

Jn+1,n+1 = σ−1
v + E

[
�τn+1zn+1(τn+1)

]2
σ−1
n

− (ασ−1
v

)2(
Jn,n + α2σ−1

v

)−1
.

(29)

In order to calculate E[�τn+1zn+1(τn+1)], we have applied
a Monte Carlo evaluation. We generate M i.i.d. state trajec-
tories of a given length Nt {τi0, τi1, . . . , τiNt

} with 1 ≤ i ≤ M
by simulating the system model defined in (28) starting from
an initial state τ0 drawn from the a priori probability density
p(τ0). For the calculation, we fixed M = 100.
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Figure 12: Comparison of the PCRB with the MSE estimating τn of
ELG-TED and PF-TED.

In Figure 12, we show the comparison of the PCRB with
the MSE estimating τn of the ELG-TED and PF-TED. For
both algorithms, we use a uniform initial pdf p(τ0). For the
PF-TED, the 10 particles were initialized uniformly in the
interval {−Tc/2,Tc/2}. The signal-to-noise ratio Es/N0 was
fixed to 10 dB. We can see in Figure 12 that the PF-TED out-
performs the ELG-TED and reaches the PCRB bound after
15 slots. The slow convergence of the ELG-TED and PF-TED
compared to the PCRB can be explained since the two TEDs
are updated at each symbol while the PCRB bound is calcu-
lated for each chip.

5.3. Performance evaluation

Figure 13 shows the BERs versus Es/N0 considering a two-
path channel with the same average power on each path. The
delays of the first and second paths were respectively fixed at
0 and 1Tc. The same maximum Doppler frequency as above
was used. The BER values have been averaged over 50 000
bits.

When using two ELG-TEDs, except when the channel is
known, the performance is very poor compared to the max-
imum achievable performance (known delays and channel
coefficients). On the other hand, the PF-TED with channel
coefficients known or estimated reaches the optimal perfor-
mance. We can conclude that the considered TED must be
able to separate the different paths of the channel, otherwise
the performance of the Rake receiver breaks down.

6. CONCLUSIONS

In this paper we have proposed to use the PF methods in or-
der to track the delay of the different channel paths. We have
assumed that an acquisition phase has already provided an
initial estimation of these delays.
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Figure 13: Performance comparison of the ELG-TED and the PF-
TED.

We have firstly considered that the channel coefficients
are known. We have compared the tracking capacity of the
conventional ELG-TED and the proposed PF-TED. We have
shown that when the delays of the channel paths become very
close (less than 1Tc), the ELG-TED is unable to track the
time variations of the delays. However, the PF-TED contin-
ues to track the delays.

We have introduced the channel coefficient estimation to
the TED. We have considered two classical methods: the es-
timation based on the correlation using pilot symbols and
the estimation based on the ML criterion. We have shown
that the ELG-TED with estimation of the channel coefficients
loses the capacity to distinguish the paths when the delays
are very closed. On the other hand, the PF-TED associated
with the classical two-channel estimator is able to separate
the different paths. However, for very close delays the chan-
nel estimators prevent the PF-TED from tracking the time
variations of the delays. We have proposed to estimate jointly
the delays and the channel coefficients using the PF methods
to avoid this loss of tracking. We have found that the joint
estimation enables a better tracking of the delays.

Finally, we have seen that it is very important for the Rake
receiver that the TED can distinguish the different paths of
the channel. We have observed that in the case of unresolv-
able paths, the ELG-TED confuses the paths and the perfor-
mance of the Rake receiver is very poor.

As a conclusion, we can say that the PF-TED based on
the joint estimation of the delays and the channel coefficients
can be a good substitute of the classical ELG-TED, specially
for indoor wireless communications. Moreover, the compu-
tational complexity of the PF-TED is very limited, since we
have used only 10 particles.

REFERENCES

[1] H. Boujemaa and M. Siala, “Rake receivers for direct sequence
spread spectrum systems,” Ann. Telecommun., vol. 56, no. 5-6,
pp. 291–305, 2001.

[2] V. Aue and G. P. Fettweis, “A non-coherent tracking scheme
for the RAKE receiver that can cope with unresolvable multi-
path,” in Proc. IEEE International Conference on Communica-
tions (ICC ’99), pp. 1917–1921, Vancouver, BC, Canada, June
1999.

[3] R. De Gaudenzi, “Direct-sequence spread-spectrum chip
tracking in the presence of unresolvable multipath compo-
nents,” IEEE Trans. Vehicular Technology, vol. 48, no. 5, pp.
1573–1583, 1999.

[4] G. Fock, J. Baltersee, P. Schulz-Rittich, and H. Meyr, “Channel
tracking for RAKE receivers in closely spaced multipath envi-
ronments,” IEEE Journal on Selected Areas in Communications,
vol. 19, no. 12, pp. 2420–2431, 2001.

[5] A. Doucet, J. F. G. de Freitas, and N. J. Gordon, Eds., Sequen-
tial Monte Carlo Methods in Practice, Springer, New York, NY,
USA, 2001.

[6] J. S. Liu and R. Chen, “Blind deconvolution via sequential
imputations,” Journal of the American Statistical Association,
vol. 90, no. 430, pp. 567–576, 1995.

[7] R. Chen, X. Wang, and J. S. Liu, “Adaptive joint detection
and decoding in flat-fading channels via mixture Kalman fil-
tering,” IEEE Transactions on Information Theory, vol. 46, no.
6, pp. 2079–2094, 2000.

[8] E. Punskaya, C. Andrieu, A. Doucet, and W. J. Fitzgerald,
“Particle filtering for demodulation in fading channels with
non-Gaussian additive noise,” IEEE Trans. Communications,
vol. 49, no. 4, pp. 579–582, 2001.

[9] T. Ghirmai, M. F. Bugallo, J. Mı́guez, and P. M. Djurič, “Joint
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(ENST), Paris, France, in 1967 and the
Ph.D. in physical science from University
of Paris XI, Orsay, France, in 1972. He has
spent his entire career with the Conserva-
toire National des Arts et Métiers (CNAM),
where he became a Professor of electrical
engineering in 1982. Since 1984, he is also
the Director of the Laboratoire des Signaux et systemes. His main
research interests lie in image and signal processing for medical ap-
plications, Digital television, and HF communication.



EURASIP Journal on Applied Signal Processing 2004:15, 2339–2350
c© 2004 Hindawi Publishing Corporation

Joint Tracking of Manoeuvring Targets
and Classification of Their Manoeuvrability

Simon Maskell
QinetiQ Ltd, St. Andrews Road, Malvern, Worcestershire WR14 3PS, UK
Email: smaskell@signal.qinetiq.com

Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

Received 30 May 2003; Revised 23 January 2004

Semi-Markov models are a generalisation of Markov models that explicitly model the state-dependent sojourn time distribution,
the time for which the system remains in a given state. Markov models result in an exponentially distributed sojourn time, while
semi-Markov models make it possible to define the distribution explicitly. Such models can be used to describe the behaviour of
manoeuvring targets, and particle filtering can then facilitate tracking. An architecture is proposed that enables particle filters to
be both robust and efficient when conducting joint tracking and classification. It is demonstrated that this approach can be used
to classify targets on the basis of their manoeuvrability.

Keywords and phrases: tracking, classification, manoeuvring targets, particle filtering.

1. INTRODUCTION

When tracking a manoeuvring target, one needs models that
can cater for each of the different regimes that can govern the
target’s evolution. The transitions between these regimes are
often (either explicitly or implicitly) taken to evolve accord-
ing to a Markov model. At each time epoch there is a proba-
bility of being in one discrete state given that the system was
in another discrete state. Such Markov switching models re-
sult in an exponentially distributed sojourn time, the time
for which the system remains in a given discrete state. Semi-
Markov models (also known as renewal processes [1]) are
a generalisation of Markov models that explicitly model the
(discrete-state-dependent) distribution over sojourn time. At
each time epoch there is a probability of being in one discrete
state given that the system was in another discrete state and
how long it has been in that discrete state. Such models of-
fer the potential to better describe the behaviour of manoeu-
vring targets.

However, it is believed that the full potential of semi-
Markov models has not yet been realised. In [2], sojourns
were restricted to end at discrete epochs and filtered mode
probabilities were used to deduce the parameters of the time-
varying Markov process, equivalent to the semi-Markov pro-
cess. In [3], the sojourns were taken to be gamma-distributed
with integer-shape parameters such that the gamma vari-
ate could be expressed as a sum of exponential variates;
the semi-Markov model could then be expressed as a (po-
tentially highly dimensional) Markov model. This paper

proposes an approach that does not rely on the sojourn
time distribution being of a given form, and so is capa-
ble of capitalising on all available model fidelity regarding
this distribution. The author asserts that the restrictions of
the aforementioned approaches currently limit the use of
semi-Markov models in tracking systems and that the im-
proved modelling (and so estimation) accuracy that semi-
Markov models make possible has not been realised up to
now.

This paper further considers the problem of both track-
ing and classifying targets. As discussed in [4], joint track-
ing and classification is complicated by the fact that sequen-
tially updating a distribution over class membership neces-
sarily results in an accumulation of errors. This is because,
when tracking, errors are forgotten. In this context, the ca-
pacity to not forget, memory, is a measure of how rapidly the
distribution over states becomes increasingly diffuse, making
it difficult to predict where the target will be given knowledge
of where it was. Just as the system forgets where it was, so any
algorithm that mimics the system forgets any errors that are
introduced. So, if the algorithm forgets any errors, it must
converge. In the case of classification, this diffusion does not
take place; if one knew the class at one point, it would be
known for all future times. As a result, when conducting joint
tracking and classification, it becomes not just pragmatically
attractive but essential that the tracking process introduces
as few errors as possible. This means that the accumulation
of errors that necessarily takes place has as little impact as
possible on the classification process.
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There have been some previous approaches to solving the
problem of joint tracking and identification that have been
based on both grid-based approximations [5] and particle fil-
ters [6, 7]. An important failing of these implementations is
that target classes with temporarily low likelihoods can end
up being permanently lost. As a consequence of this same
feature of the algorithms, these implementations cannot re-
cover from any miscalculations and are not robust. This ro-
bustness issue has been addressed by stratifying the classi-
fier [4]; one uses separate filters to track the target for each
class (i.e., one might use a particle filter for one class and a
Kalman filter for another) and then combines the outputs to
estimate the class membership probabilities and so classifica-
tion of the target. This architecture does enable different state
spaces and filters to be used for each class, but has the defi-
ciency that this choice could introduce biases and so system-
atic errors. So, the approach taken here is to adopt a single
state space common to all the classes and a single (particle)
filter, but to then attempt to make the filter as efficient as pos-
sible while maintaining robustness. This ability to make the
filter efficient by exploiting the structure of the problem in
the structure of the solution is the motivation for the use of
a particle filter specifically.

This paper demonstrates this methodology by consider-
ing the challenging problem of classifying targets which differ
only in terms of their similar sojourn time distributions; the
set of dynamic models used to model the different regimes
are taken to be the same for all the classes. Were one using
a Markov model, all the classes would have the same mean
sojourn time and so the same best-fitting Markov model.
Hence, it is only possible to classify the targets because semi-
Markov models are being used.

Since the semi-Markov models are nonlinear and non-
Gaussian, the particle-filtering methodology [8] is adopted
for solving this joint tracking and classification problem. The
particle-filter represents uncertainty using a set of samples.
Here, each of the samples represent different hypotheses for
the sojourns times and state transitions. Since there is uncer-
tainty over both how many transitions occurred and when
they occurred, the particles represent the diversity over the
number of transitions and their timing. Hence, the parti-
cles differ in dimensionality. This is different from the usual
case for which the dimensionality of all the particles is the
same. Indeed, this application of the particle filter is a spe-
cial case of the generic framework developed concurrently by
other researchers [9]. The approach described here exploits
the specifics of the semi-Markov model, but the reader inter-
ested in the more generic aspects of the problem is referred
to [9].

Since, if the sojourn times are known, the system is linear
and Gaussian, the Kalman filter is used to deduce the param-
eters of the uncertainty over target state given the hypothe-
sised history of sojourns. So, the particle filter is only used for
the difficult part of the problem—that of deducing the tim-
ings of the sojourn ends—and the filter operates much like a
multiple hypothesis tracker, with hypotheses in the (contin-
uous) space of transition times. To make this more explicit,
it should be emphasised that the complexity of the particle

filter is not being increased by using semi-Markov models,
but rather particle filters are being applied to the problem
associated with semi-Markov models. The resulting compu-
tational cost is roughly equivalent to one Kalman filter per
particle and in the example considered in Section 6 just 25
particles were used for each of the three classes.1 The au-
thor believes that this computational cost is not excessive
and that, in applications for which it is beneficial to capi-
talise on the use of semi-Markov models—which the author
believes to be numerous—the approach is practically useful.
However, this issue of the trade-off between the computa-
tional cost and the resulting performance for specific appli-
cations is not the focus of this paper; here the focus is on
proposing the generic methodology. For this reason, a sim-
ple yet challenging, rather than necessarily practically useful,
example is used to demonstrate that the methodology has
merit.

A crucial element of the particle filter is the proposal dis-
tribution, the method by which each new sample is proposed
from the old samples. Expedient choice of proposal distri-
bution can make it possible to drastically reduce the num-
ber of particles necessary to achieve a certain level of per-
formance. Often, the trade-off between complexity and per-
formance is such that this reduction in the number of parti-
cles outweighs any additional computation necessary to use
the more expedient proposal distributions. So, the choice of
proposal distribution can be motivated as a method for re-
ducing computational expense. Here, however, if as few er-
rors as possible, are to be introduced as is critically impor-
tant when conducting joint tracking and classification, it is
crucial that the proposal distribution is well matched to the
true system. Hence, the set of samples is divided into a num-
ber of strata, each of which had a proposal that was well
matched to one of the classes. Whatever the proposal dis-
tribution, it is possible to calculate the probability of ev-
ery class. So, to minimise the errors introduced, for each
particle (and so hypothesis for the history of state transi-
tions and sojourn times), the probability of all the classes
is calculated. So each particle uses a proposal matched to
one class, but calculates the probability of the target being
a member of every class. Note that this calculation is not
computationally expensive, but provides information that
can be used to significantly improve the efficiency of the fil-
ter.

So, the particles are used to estimate the manoeuvres and
a Kalman filter is used to track the target. The particles are
split into strata each of which is well suited to tracking one of
the classes and the strata of particles used to classify the target
on the basis of the target’s manoeuvrability. The motivation
for this architecture is the need to simultaneously achieve ro-
bustness and efficiency.

This paper is structured as follows: Section 2 begins
by introducing the notation and the semi-Markov model

1This number is small and one might use more in practical situations,
but the point is that the number of particles is not large and so the compu-
tational expense is roughly comparable to other existing algorithms.
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Figure 1: Diagram showing the relationship between continuous time, the time when measurements were received, and the time of sojourn
ends. The circles represent the receipt of measurements or the start of a sojourn.

structure that is used. Section 3 describes how a particle fil-
ter can be applied to the hard parts of the problem, the esti-
mation of the semi-Markov process’ states. Some theoretical
concerns relating to robust joint tracking and identification
are discussed in Section 4. Then, in Section 5, efficient and
robust particle-filter architectures are proposed as solutions
for the joint tracking and classification problem. Finally, an
exemplar problem is considered in Section 6 and some con-
clusions are drawn in Section 7.

2. MODEL

When using semi-Markov models, there is a need to distin-
guish between continuous time, the indexing of the measure-
ments, and the indexing of the sojourns. Here, continuous
time is taken to be τ, measurements are indexed by k, and
manoeuvre regimes (or sojourns) are indexed by t. The con-
tinuous time when the kth measurement was received is τk.
The time of the onset of the sojourn is τt ; tk is then the in-
dex of the sojourn during which the kth measurement was
received. Similarly, kt is the most recent measurement prior
to the onset of the tth sojourn. This is summarised in Table 1
while Figure 1 illustrates the relationship between such quan-
tities as (tk + 1) and tk+1.

The model corresponding to sojourn t is st. st is a discrete
semi-Markov process with transition probabilities p(st|st−1)
that are known; note that since, at the sojourn end, a transi-
tion must occur, so p(st|st−1) = 0 if st = st−1;

p
(
st|st−1

) = p
(
st|s1:t−1

)
, (1)

where s1:t−1 is the history of states for the first to the (t−1)th
regime and similarly, y1:k will be used to denote the history
of measurements up to the kth measurement.

For simplicity, the transition probabilities are here con-
sidered invariant with respect to time once it has been de-
termined that a sojourn is to end; that is, p(st|st−1) is not a
function of τ. The sojourn time distribution that determines
the length of time for which the process remains in state st is
distributed as g(τ − τt|st):

p
(
τt+1|τt , st

)
� g

(
τ − τt|st

)
. (2)

The st process governs a continuous time process, xτ ,
which given st and a state at a time after the start of the so-
journ xτt+1 > xτ′ > xτt has a distribution f (xτ|xτ′ , st). So, the

Table 1: Definition of notation.

Notation Definition

τk Continuous time relating to kth measurement

τt Continuous time relating to tth sojourn time

tk Sojourn prior to kth measurement; so that τtk≤τk≤τtk+1

kt Measurement prior to tth sojourn; so that τkt≤τt≤τkt+1

st Manoeuvre regime for τt < τ < τt+1

distribution of xτ given the initial state at the start of the so-
journ and the fact that the sojourn continues to time τ is

p
(
xτ|xτt , st, τt+1 > τ

)
� f

(
xτ|xτt , st

)
. (3)

If xk is the history of states (in continuous time), then a
probabilistic model exists for how each measurement, yk, is
related to the state at the corresponding continuous time:

p
(
yk|xk

) = p
(
yk|xτ1:τk

) = p
(
yk|xτk

)
. (4)

This formulation makes it straightforward to then form
a dynamic model for s1:tk process and τ1:tk as follows:

p
(
s1:tk , τ1:tk

)=

 tk∏

t′=2

p
(
st′ |st′−1

)
p
(
τt′ |τt′−1, st−1

)p(s1
)
p
(
τ1
)
,

(5)

where p(s1) is the initial prior on the state of the sojourn time
(which we later assume to be uniform) and p(τ1) is the prior
on the time of the first sojourn end (which we later assume
to be a delta function). This can then be made conditional on
s1:tk−1 and τ1:tk−1 , which makes it possible to sample the semi-
Markov process’ evolution between measurements:

p
({
s1:tk , τ1:tk

} \ {s1:tk−1 , τ1:tk−1

}|s1:tk−1 , τ1:tk−1

)
∝ p

(
s1:tk , τ1:tk

)
p
(
s1:tk−1 , τ1:tk−1

)
=
(∏tk

t′=2 p
(
st′ |st′−1

)
p
(
τt′ |τt′−1, st−1

))
p
(
s1
)
p
(
τ1
)

(∏tk−1
t′=2 p

(
st′ |st′−1

)
p
(
τt′ |τt′−1, st−1

))
p
(
s1
)
p
(
τ1
)

=
tk∏

t′=tk−1+1

p
(
st′ |st′−1

)
p
(
τt′ |τt′−1, st−1

)
,

(6)
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where A \ B is the set A without the elements of the set B.
Note that in this case {s1:tk , τ1:tk} \ {s1:tk−1 , τ1:tk−1} could be the
empty set in which case, p({s1:tk , τ1:tk} \ {s1:tk−1 , τ1:tk−1}|s1:tk−1 ,
τ1:tk−1 ) = 1.

So, it is possible to write the joint distribution of the st
and xτ processes and the times of the sojourns, τ1:tk , up to
the time of the kth measurement, τk, as

p
(
s1:tk , xk, τ1:tk |y1:k

)
∝ p

(
s1:tk ,τ1:tk

)
p
(
xk, y1:k|s1:tk , τ1:tk

)
= p

(
s1:tk ,τ1:tk

)
p
(
xk|s1:tk , τ1:tk

)
p
(
y1:k|xk

)

= p
(
s1:tk ,τ1:tk

)
p
(
xτk |xτtk , stk

) tk∏
t′=2

p
(
xτt′ |xτt′−1 , st′−1

)

× p
(
xτ1

) k∏
k′=1

p
(
yk′ |xτk′

)

∝ p
(
s1:tk−1 , xk−1, τ1:tk−1|y1:k−1

)
︸ ︷︷ ︸

The posterior at k−1

× p
({
s1:tk , τ1:tk

} \ {s1:tk−1 , τ1:tk−1

}|s1:tk−1 , τ1:tk−1

)
︸ ︷︷ ︸

Evolution of semi-Markov model

× p
(
yk|xτk

)
︸ ︷︷ ︸

Likelihood

p
(
xτk |xτtk , stk

)
p
(
xτk−1|xτtk−1

, stk−1

)
︸ ︷︷ ︸

Effect on xτ of incomplete regimes

×

 tk∏

t′=tk−1+1

p
(
xτt′ |xτt′−1 , st′−1

)
︸ ︷︷ ︸

Effect on xτ of sojourns between k−1 and k

.

(7)

This is a recursive formulation of the problem. The an-
notations indicate the individual terms’ relevance.

3. APPLICATION OF PARTICLE FILTERING

Here, an outline of the form of particle filtering used is given
so as to provide some context for the subsequent discussion
and introduce notation. The reader who is unfamiliar with
the subject is referred to the various tutorials (e.g., [8]) and
books (e.g., [10]) available on the subject.

A particle filter is used to deduce the sequence of sojourn
times, τ1:tk , and the sequence of transitions, s1:tk , as a set of
measurements are received. This is achieved by sampling N
times from a proposal distribution of a form that extends the
existing set of sojourn times and the st process with samples
of the sojourns that took place between the previous and the
current measurements:

{{
s1:tk , τ1:tk

} \ {s1:tk−1 , τ1:tk−1

}}i
∼ q

({
s1:tk , τ1:tk

} \ {s1:tk−1 , τ1:tk−1

}|{s1:tk−1 , τ1:tk−1

}i
, yk
)

,

i = 1, . . . ,N.
(8)

A weight is then assigned according to the principle of im-
portance sampling:

w̄i
k=wi

k−1

p
({
s1:tk , τ1:tk

}i\{s1:tk−1 , τ1:tk−1

}i|{s1:tk−1 , τ1:tk−1

}i)
q
({
s1:tk , τ1:tk

}i \ {s1:tk−1 , τ1:tk−1

}i|{s1:tk−1 , τ1:tk−1

}i
, yk
)

× p
(
yk|
{
s1:tk , τ1:tk

}i)
.

(9)

These unnormalised weights are then normalised:

wi
k =

w̄i
k∑N

i′=1 w̄
i′
k

, (10)

and estimates of expectations calculated using the (nor-
malised) weighted set of samples. When the weights become
skewed, some of the samples dominate these expectations,
so the particles are resampled; particles with low weights are
probabilistically discarded and particles with high weights
are probabilistically replicated in such a way that the expected
number of offspring resulting from a given particle is propor-
tional to the particle’s weight. This resampling can introduce
unnecessary errors. So, it should be used as infrequently as
possible. To this end, a threshold can be put on the approxi-
mate effective sample size, so that when this effective sample
size falls below a predefined threshold, the resampling step is
performed. This approximate effective sample can be calcu-
lated as follows:

Neff ≈ 1∑N
i=1

(
w̄i
k

)2 . (11)

It is also possible to calculate the incremental likelihood:

p
(
yk|y1:k−1

) ≈ N∑
i=1

w̄i
k, (12)

which can be used to calculate the likelihood of the entire
data sequence, which will be useful in later sections:

p
(
y1:k

) = p
(
y1
) k∏
k′=2

p
(
yk′ |y1:k′−1

)
, (13)

where p(y1) � p(y1|y1:0), so can be calculated using (12).

4. THEORETICAL CONCERNS RELATING TO JOINT
TRACKING AND CLASSIFICATION

The proofs of convergence for particle filters rely on the abil-
ity of the dynamic models used to forget, the errors intro-
duced by the Monte Carlo integration [11, 12]. If errors are
forgotten, then the errors cannot accumulate and so the algo-
rithm must converge on the true uncertainty relating to the
path through the state space.
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Conversely, if the system does not forget, then errors will
accumulate and this will eventually cause the filter to di-
verge. This applies to sequential algorithms in general, in-
cluding Kalman filters,2 which accumulate finite precision er-
rors, though such errors are often sufficiently small that such
problems rarely arise and have even less rarely been noticed.

For a system to forget, its model needs to involve the
states changing with time; it must be ergodic. There is then
a finite probability of the system being in any state given that
it was in any other state at some point in the past; so, it is not
possible for the system to get stuck in a state. Models for clas-
sification do not have this ergodic property since the class is
constant for all time; such models have infinite memory. Ap-
proaches to classification (and other long memory problems)
have been proposed in the past based on both implicit and
explicit modifications of the model that reduce the memory
of the system by introducing some dynamics. Here, the em-
phasis is on using the models in their true form.

However, if the model’s state is discrete, as is the case with
classification, there is a potential solution described in this
context in [4]. The idea is to ensure that all probabilities are
calculated based on the classes remaining constant and to run
a filter for each class; these filters cannot be reduced in num-
ber when the probability passes a threshold if the system is
to be robust. In such a case, the overall filter is condition-
ally ergodic. The approach is similar to that advocated for
classification alone whereby different classifiers are used for
different classes [13].

The preceding argument relates to the way that the fil-
ter forgets errors. This enables the filter to always be able to
visit every part of the state space; and the approach advo-
cated makes it possible to recover from a misclassification.
However, this does not guarantee that the filter can calculate
classification probabilities with any accuracy. The problem is
the variation resulting from different realisations of the er-
rors caused in the inference process. In a particle-filter con-
text, this variation is the Monte Carlo variation and is the
result of having sampled one of many possible different sets
of particles at a given time. Put more simply; performing the
sampling step twice would not give the same set of samples.

Equation (13) means that, if each iteration of the tracker
introduces errors, the classification errors necessarily accu-
mulate. There is nothing that can be done about this. All that
can be done is to attempt to minimise the errors that are in-
troduced such that the inevitable accumulation of errors will
not impact performance on a time scale that is of interest.

So, to be able to classify targets based on their dynamic
behaviour, all estimates of probabilities must be based on the
classes remaining constant for all time and the errors intro-
duced into the filter must be minimised. As a result, clas-
sification performance is a good test of algorithmic perfor-
mance.

2It is well documented that extended Kalman filters can accumulate lin-
earisation errors which can cause filter divergence, but here the discussion
relates to Kalman filtering with linear Gaussian distributions such that the
Kalman filter is an analytic solution to the problem of describing the pdf.

5. EFFICIENT AND ROBUST CLASSIFICATION

The previous section asserts that to be robust, it is essential
to estimate probabilities based on all the classes always re-
maining constant. However, to be efficient, the filter should
react to the classification estimates and focus its effort on the
most probable classes (this could equally be the class with
the highest expected cost according to some nonuniform cost
function but this is not considered here).

To resolve these two seemingly contradictory require-
ments of robustness twinned with efficiency, the structure of
the particle filter can be capitalised upon. The particle fil-
ter distinguishes between the proposal used to sample the
particles’ paths and the weights used to reflect the disparity
between the proposal and the true posterior. So, it is possi-
ble for the proposal to react to the classification probabili-
ties and favour proposals well suited to the more probable
classes while calculating the weights for the different classes;
this is equivalent to Rao-Blackwellising the discrete distribu-
tion over class for each particle.

One could enable the system to react to the classification
probabilities while remaining robust to misclassification by
each particle sampling the importance function from a set
of importance samplers according to the classification prob-
abilities. Each importance sampler would be well suited to
the corresponding class and each particle would calculate the
weights with respect to all the classes given its sampled values
of the state.

However, here a different architecture is advocated; the
particles are divided into strata, such that the different strata
each use an importance function well suited to one of the
classes. For any particle in the jth stratum, Sj , and in
the context of the application of particle filtering to semi-
Markov models, the importance function is then of the form
q({s1:tk , τ1:tk}\{s1:tk−1 , τ1:tk−1}|{s1:tk−1 , τ1:tk−1}, yk, Sj). The strata
then each have an associated weight and these weights sum to
unity across the strata. If each particle calculates the proba-
bility of all the classes given its set of hypotheses, then the
architecture will be robust. It is then possible to make the ar-
chitecture efficient by adding a decision logic that reacts to
the weights on the strata; one might add and remove strata
on the basis of the classification probabilities. The focus here
is not on designing such a decision logic, but to propose an
architecture that permits the use of such logic.

To use this architecture, it is necessary to manipulate
strata of particles and so to be able to calculate the total
weight on a class or equally on a stratum. To this end, the
relations that enable this to happen are now outlined.

The classes are indexed by c, particles by i, and the strata
by j. The model used to calculate the weights is M and the
stratum is S. So, the unnormalised weight for the ith particle

in stratum Sj , using model Mc, is w̄
(i, j,c)
k .

The weight on a stratum, p(Sj|y1:k), can be deduced from

p
(
Sj|y1:k

)∝ p
(
y1:k|Sj

)
p
(
Sj
)
, (14)

where p(Sj) is the (probably uniform) prior across the strata.
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This leads to the following recursion:

p
(
Sj|y1:k

)∝ p
(
yk|y1:k−1, Sj

)
p
(
Sj|y1:k−1

)
, (15)

where p(yk|y1:k−1, Sj) can be estimated using a minor modi-
fication of (12) as follows:

p
(
yk|y1:k−1, Sj

) ≈∑
i,c

w̄
(i, j,c)
k . (16)

Similarly, for the classes,

p
(
Mc|y1:k

)∝ p
(
yk|y1:k−1,Mc

)
p
(
Mc|y1:k−1

)
, (17)

where

p
(
Mc|y1:k

) =∑
j

p
(
Sj ,Mc|y1:k

)

=
∑
j

p
(
Sj|y1:k

)
p
(
Mc|Sj , y1:k

)
,

p
(
Mc|Sj , y1:k

)∝∑
i

w̄
(i, j,c)
k .

(18)

To implement this recursion, the weights of the classes
are normalised such that they sum to unity over the particle
in the strata:

w
(c|i, j)
k � w̄

(i, j,c)
k

w̄
(i, j)
k

, (19)

where w̄
(i, j)
k is the total unnormalised weight of the particle:

w̄
(i, j)
k �

∑
c

w̄
(i, j,c)
k . (20)

These weights are then normalised such that they sum to
unity within each strata:

w
(i| j)
k � w̄

(i, j)
k

w̄
( j)
k

, (21)

where w̄
( j)
k is the total unnormalised weight of the stratum:

w̄
( j)
k �

∑
i

w̄
(i, j)
k . (22)

These weights are also normalised such that they sum to
unity across the strata:

w
( j)
k � w̄

( j)
k∑

j w̄
( j)
k

. (23)

The skewness of each stratum is then used to assess
whether that stratum has degenerated and so if resampling is
necessary for the set of particles in that stratum. This means
that the weight relating to Mc for the ith particle within the
jth stratum is

w
(i, j,c)
k ∝ w

( j)
k w

(i| j)
k w

(c|i, j)
k . (24)

For j = 1 : NM

Initialise: w
( j)
0 = 1/NM

For i = 1 : NP

Initialise: w
(i| j)
0 = 1/NP

Initialise: x
(i, j)
0 ∼ p(x0)

For c = 1 : NM

Initialise: w
(c|i, j)
0 = 1/NM

End For
End For

End For
For k = 1 : NK

Implement recursion

End For

Algorithm 1

So, with NP particles and NM classes (and so NM strata),
running the algorithm over NK steps can be summarised as
follows in Algorithm 1. p(x0) is the initial prior on the state
and Implement Recursion is conducted as in Algorithm 2
where Vj is the reciprocal of the sum of the squared weights,
on the basis of which one can decide whether or not it is nec-
essary to Resample. NT is then the threshold on the approxi-
mate effective sample size which determines when to resam-
ple; NT ≈ (1/2)NP might be typical. Note that the resam-
pling operation will result in replicants of a subset of some
of the particles within the jth stratum, but that for each copy
of the ith particle in the jth stratum, w

(c|i, j)
k is left unmodi-

fied.

6. EXAMPLE

6.1. Model

The classification of targets which differ solely in terms of the
semi-Markov model governing the st process is considered.
The classes have different gamma distributions for their so-
journ times but all have the same mean value for the sojourn
time, and so the same best-fitting Markov model. As stated in
the introduction, this example is intended to provide a diffi-
cult to analyse, yet simple to understand, exemplar problem.
The author does intend the reader to infer that the specific
choice of models and parameters are well suited to any spe-
cific application.

The xτ process is taken to be a constant velocity model;
an integrated diffusion process

f
(
xτ+∆|xτ , s

) = N
(
xτ+∆;A(∆)xτ ,Qs(∆)

)
, (25)

where N (x;m,C) denotes a Gaussian distribution for x, with
mean, m, and covariance, C, and where

A(∆) =
[

1 ∆

0 1

]
,

Qs(∆) =



∆3

3
∆2

2
∆2

2
∆


 σ2

s ,

(26)
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Initialise w̄k = 0
For j = 1 : NM

Initialise Vj = 0
Initialise output classification probabilities: P̄c

k = 0
Initialise w̄

( j)
k = 0

For i = 1 : NP

Initialise w̄
(i, j)
k = 0

Sample x
(i, j)
k ∼ q(xk|x(i, j)

k−1, yk , Sj)
For c = 1 : NM

w
(i, j,c)
k = w

( j)
k−1w

(i| j)
k−1w

(c|i, j)
k−1

w̄
(i, j,c)
k = w

(i, j,c)
k (p(yk|x(i, j)

k ,Mc)

×p(x
(i, j,c)
k |x(i, j)

k−1,Mc)/q(x
(i, j)
k |x(i, j)

k−1, yk , Sj))

w̄
(i, j)
k = w̄

(i, j)
k + w̄

(i, j,c)
k

w̄
( j)
k = w̄

( j)
k + w̄

(i, j,c)
k

w̄k = w̄k + w̄
(i, j,c)
k

P̄c
k = P̄c

k + w̄
(i, j,c)
k

End For
End For

End For
For c = 1 : NM

Pc
k = P̄c

k/w̄k , which can be output as necessary

For j = 1 : NM

w
( j)
k = w̄

( j)
k /w̄k

For i = 1 : NP

w
(i| j)
k = w̄

(i, j)
k /w̄

( j)
k

For c = 1 : NM

w
(c|i, j)
k = w̄

(c|i, j)
k /w̄

(i, j)
k

End For
Vj = Vj + (w

(i| j)
k )2

End For
Resample jth stratum if 1/Vj < NT

End For

Algorithm 2

where the discrete state, st, takes one of two values which dif-
fer in terms of σ2

s ; σ2
1 = 0.001 and σ2

2 = 100.
The data are linear Gaussian measurements of position

p
(
yk|xτk

) = N
(
yk;Hxτk ,R

)
, (27)

where

H =
[

1 0
]

, (28)

and R = 0.1. The measurements are received at regular inter-
vals such that τk − τk−1 = 0.5 for all k > 1.

The three classes’ sojourn distributions are

g
(
τ − τt|st,Mc

) =




G
(
τ − τt ; 2, 5

)
, st = 1, c = 1,

G
(
τ − τt ; 10, 1

)
, st = 1, c = 2,

G
(
τ − τt ; 50, 0.2

)
, st = 1, c = 3,

G
(
τ − τt ; 10, 0.1

)
, st = 2, ∀c,

(29)

g(τ; 2, 5)
g(τ; 10, 1)
g(τ; 50, 0.2)

0 2 4 6 8 10 12 14 16 18 20

Sojourn time, t
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Figure 2: Sojourn time distributions for st = 1 for the different
classes.

where G(x;α,β) is a gamma distribution over x, with shape
parameter α and scale parameter β. Figure 2 shows these dif-
ferent sojourn time distributions. Note that since the mean
of the gamma distribution is αβ, all the sojourn distri-
butions for st = 1 have the same mean. Hence, the ex-
ponential distribution (which only has a single parameter
that defines the mean) for all three classes would be the
same.

Since there are only two discrete states, the state transi-
tion probabilities are simple:

p
(
st|st−1

) =



0, st = st−1,

1, st �= st−1.
(30)

This means that, given the initial discrete state, the so-
journ ends define the discrete-state sequence.

p(s1) is taken to be uniform across the two models and
p(τ1) = δ(τ1 − 0), so it assumed known that there was a
transition at time 0. x0 is initialised at zero as follows:

x0 =
[

0

0

]
. (31)

6.2. Tracking of manoeuvring targets

A target from the first class is considered. A Rao-Blackwel-
lised particle filter is used. The particle filter samples the so-
journ ends and then, conditional on the sampled sojourn
ends and state transitions, uses a Kalman filter to exactly de-
scribe the uncertainty relating to xτ and a discrete distribu-
tion over class to exactly describe the classification probabil-
ities (as described previously).
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For the proposal in the particle filter, (6), the dynamic
prior for the st process is used, with a minor modification:

q
({
s1:tk , τ1:tk

} \ {s1:tk−1 , τ1:tk−1

}|{s1:tk−1 , τ1:tk−1

}
, yk
)

� p
({
s1:tk , τ1:tk

} \ {s1:tk−1 , τ1:tk−1

}|s1:tk−1 , τ1:tk−1 , τtk+1 > τk,Mj
)

=
∫
p
({
s1:tk , τ1:tk+1

} \ {s1:tk−1 , τ1:tk−1

}
|s1:tk−1 , τ1:tk−1 , τtk+1 > τk,Mj

)
dτtk+1,

(32)

that is, when sampling up to time τk, the st process is ex-
tended to beyond τk, but the sample of the final sojourn time
is integrated out (so forgotten); the proposal simply samples
that the next sojourn is after the time of the measurement,
not what time it actually took place. This exploits some struc-
ture in the problem since τtk+1 has no impact on the estima-
tion up to time τk and so classification on the basis of y1:k.
The weight update equation simplifies since the dynamics are
used as the proposal:

w̄i
k = wi

k−1p
(
yk|
{
s1:tk , τ1:tk

}i)
, (33)

where p(yk|{s1:tk , τ1:tk}i) can straightforwardly be calculated
by a Kalman filter with a time-varying process model (with
model transitions at the sojourn ends) and measurement up-
dates at the times of the measurements.

Having processed the k measurement, the ith particle
then needs to store the time of the hypothesised last sojourn,

τ(i)
tk , the current state, s(i)

tk , a mean and covariance for xτk , and

a weight, w(i)
k .

Just NP = 25 particles are used and initialised with sam-
ples from p(s1) and p(τ1) (so all the same τ1). Each particles’
initial value for the Kalman filter’s mean is the true initial
state, m. The initial value for the covariance is then defined
as C:

C =

100 0

0 10


 . (34)

The weights are all initialised as equal for all the particles.
Resampling takes place if the approximate effective sample
size given in (11) falls below NT = 12.5. Since each parti-
cle needs to calculate the parameters of a Kalman filter, the
computational cost is roughly equivalent to that of a multi-
ple hypothesis tracker [14] with 25 hypotheses; here the hy-
potheses (particles) are in the continuous space of the times
of the sojourn ends rather than the discrete space of the asso-
ciations of measurements with the track. The computational
cost is therefore relatively low and the algorithm is therefore
amenable to practical real-time implementation.

With NP particles and NK iterations, the algorithm is im-
plemented as in Algorithm 3.

The true trajectory through the discrete space is given in
Figure 3. The hypothesis for the trajectory through the dis-
crete space for some of the particles is shown in Figure 4.
Note that, as a result of the resampling, all the particles
have the same hypothesis for the majority of the trajectory
through the discrete space, which is well matched (for the

For i = 1 : NP

Initialise wi
0 = 1/NP

Initialise τi1 = 0
Initialise si1 as 1 if i > NP/NM or 2 with otherwise
Initialise Kalman filter mean mi

0 = m
Initialise Kalman filter covariance Ci

0 = C

End For
For k = 1 : NK

Initialise V = 0
Initialise w̄k = 0
For i = 1 : NP

Sample {s1:tk , τ1:tk}i \ {s1:tk−1 , τ1:tk−1}i
∼ p({s1:tk ,τ1:tk}\{s1:tk−1 ,τ1:tk−1}|{s1:tk−1 ,τ1:tk−1}i)

Calculate mi
k and Ci

k from mi
k−1 and Ci

k−1

using si1:tk \ si1:tk−1
Calculate p(yk|{s1:tk , τ1:tk}i) from yk , mi

k ,
and Ci

k
w̄i

k = wi
k−1p(yk|{s1:tk , τ1:tk}i)

w̄k = w̄k + w̄i
k

End For
For i = 1 : NP

wi
k = w̄i

k/w̄k

V = V + (wi
k)2

Resample if 1/V < NT

End For

Algorithm 3
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Figure 3: True trajectory for target through st state space.

most part) to the true trajectory. The diversity of the parti-
cles represents the uncertainty over the later part of the state
sequence with the particles representing different hypothe-
sised times and numbers of recent regime switches.

6.3. Classification on the basis of manoeuvrability

The proposals that are well suited to each class each use the
associated class’ prior as their proposal:

q
({
s1:tk , τ1:tk

} \ {s1:tk−1 , τ1:tk−1

}|{s1:tk−1 , τ1:tk−1

}
, yk, Sj

)
� p

({
s1:tk , τ1:tk

} \ {s1:tk−1 , τ1:tk−1

}|{s1:tk−1 , τ1:tk−1

}
,Mj

)
.

(35)

The weight update equation is then
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Figure 4: A subset of the particles’ hypothesised trajectories through st space. (a) Particle 1. (b) Particle 2. (c) Particle 3. (d) Particle 4.
(e) Particle 5. (f) Particle 6. (g) Particle 7. (h) Particle 8. (i) Particle 9.

w̄
(i, j,c)
k = w

(i, j,c)
k−1

p
(
yk|
{
s1:tk , τ1:tk

}(i, j)
)
p
({
s1:tk , τ1:tk

}(i, j) \ {s1:tk−1 , τ1:tk−1

}(i, j)|{s1:tk−1 , τ1:tk−1

}(i, j)
,Mc

)
p
({
s1:tk , τ1:tk

}(i, j) \ {s1:tk−1 , τ1:tk−1

}(i, j)|{s1:tk−1 , τ1:tk−1

}(i, j)
,Mj

) . (36)

Having processed the k measurement, the ith particle in

the jth stratum stores the time of the hypothesised last so-

journ, τ
(i, j)
tk , the current state, s

(i, j)
tk , a mean and covariance

for xτk , a weight for each class, w
(c|i, j)
k , and a weight, w

(i| j)
k .
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Figure 5: Standard deviation (std) of estimated classification probabilities, (p (class)), across ten filter runs for simulations according to
each of the three models, labelled as 1, 2, and 3. (a) Data simulated from class 1. (b) Data simulated from class 2. (c) Data simulated from
class 3.

Each stratum also stores w
( j)
k . The reader is referred to the

preceding sections’ summaries of the algorithms for the im-
plementation details.

NP = 25 particles are used per stratum, each is initialised
as described previously with a uniform distribution over the
classes and with the weights on the strata initialised as be-
ing equal. Resampling for a given stratum takes place if the
approximate effective sample size given in (11) for the stra-
tum falls below NT = 12.5. Since each of the NM = 3 strata
has NP = 25 particles, the computational cost is approx-
imately that of a multiple hypothesis tracker which main-
tains 75 hypotheses; the algorithm is practicable in terms of
its computational expense.

However, it should be noted that, for this difficult prob-
lem of joint tracking and classification using very similar
models, the number of particles used is small. This is inten-
tional and is motivated by the need to look at the difference

between the variance in the class membership probabilities
and the variance of the strata weights.

Ten runs were conducted with data simulated according
to each of the three models. The number of particles used
is deliberately sufficiently small that the inevitable accumu-
lation of errors causes problems in the time frame consid-
ered. This enables a comparison between the time variation
in the variance across the runs of the classification probabil-
ities and the variance across the runs of the strata weights.
So, Figures 5 and 6 show the time variation in the variance
across the runs of these two quantities. It is indeed evident
that there is significant variation across the runs; the errors
are indeed accumulating with time. It is also evident that this
accumulation is faster for the importance weights than for
the classification probabilities. This implies that the choice
of importance function is less important, in terms of robust-
ness of the estimation of the classification probabilities, than
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Figure 6: Variance of strata weights across ten filter runs for simulations according to each of the three models. (a) Data simulated from
class 1. (b) Data simulated from class 2. (c) Data simulated from class 3.

calculating the probabilities of all the classes for every sam-
ple.

It is difficult to draw many conclusions from the varia-
tions across the true class. Since such issues are quite spe-
cific to the models and parameters, which are not the fo-
cus of this paper, this is not further investigated or dis-
cussed.

7. CONCLUSIONS

Particle filtering has been applied to the use of semi-Markov
models for tracking manoeuvring targets. An architecture
has been proposed that enables particle filters to be both ro-
bust and efficient when classifying targets on the basis of their
dynamic behaviour. It has been demonstrated that it is pos-
sible to jointly track such manoeuvring targets and classify
their manoeuvrability.
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We investigate the problem of bearings-only tracking of manoeuvring targets using particle filters (PFs). Three different (PFs) are
proposed for this problem which is formulated as a multiple model tracking problem in a jump Markov system (JMS) framework.
The proposed filters are (i) multiple model PF (MMPF), (ii) auxiliary MMPF (AUX-MMPF), and (iii) jump Markov system PF
(JMS-PF). The performance of these filters is compared with that of standard interacting multiple model (IMM)-based trackers
such as IMM-EKF and IMM-UKF for three separate cases: (i) single-sensor case, (ii) multisensor case, and (iii) tracking with hard
constraints. A conservative CRLB applicable for this problem is also derived and compared with the RMS error performance of
the filters. The results confirm the superiority of the PFs for this difficult nonlinear tracking problem.

Keywords and phrases: bearings-only tracking, manoeuvring target tracking, particle filter.

1. INTRODUCTION

The problem of bearings-only tracking arises in a variety of
important practical applications. Typical examples are sub-
marine tracking (using a passive sonar) or aircraft surveil-
lance (using a radar in a passive mode or an electronic war-
fare device) [1, 2, 3]. The problem is sometimes referred to
as target motion analysis (TMA), and its objective is to track
the kinematics (position and velocity) of a moving target us-
ing noise-corrupted bearing measurements. In the case of au-
tonomous TMA (single observer only), which is the focus of
a major part of this paper, the observation platform needs to
manoeuvre in order to estimate the target range [1, 3]. This
need for ownship manoeuvre and its impact on target state
observability have been explored extensively in [4, 5].

Most researchers in the field of bearings-only tracking
have concentrated on tracking a nonmanoeuvring target.
Due to inherent nonlinearity and observability issues, it is
difficult to construct a finite-dimensional optimal Bayesian
filter even for this relatively simple problem. As for the
bearings-only tracking of a manoeuvring target, the prob-
lem is much more difficult and so far, very limited research
has been published in the open literature. For example, inter-
acting multiple model (IMM)-based trackers were proposed
in [6, 7] for this problem. These algorithms employ a con-
stant velocity (CV) model along with manoeuvre models to
capture the dynamic behaviour of a manoeuvring target sce-
nario. Le Cadre and Tremois [8] modelled the manoeuvring
target using the CV model with process noise and developed
a tracking filter in the hidden Markov model framework.
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This paper presents the application of particle filters
(PFs) [9, 10, 11] for bearings-only tracking of manoeuvring
targets and compares its performance with traditional IMM-
based filters. This work builds on the investigation carried
out by the authors in [12] for the same problem. The ad-
ditional features considered in this paper include (a) use of
different manoeuvre models, (b) two additional PFs, and
(c) tracking with hard constraints. The error performance
of the developed filters is analysed by Monte Carlo (MC)
simulations and compared to the theoretical Cramér-Rao
lower bounds (CRLBs). Essentially, the manoeuvring tar-
get problem is formulated in a jump Markov system (JMS)
framework and these filters provide suboptimal solutions to
the target state, given a sequence of bearing measurements
and the particular JMS framework. In the JMS framework
considered in this paper, the target motion is modelled by
three switching dynamics models whose evolution follows a
Markov chain. One of these models is the standard CV model
while the other two correspond to coordinated turn (CT)
models that capture the manoeuvre dynamics.

Three different PFs are proposed for this problem: (i)
multiple model PF (MMPF), (ii) auxiliary MMPF (AUX-
MMPF), and (iii) JMS-PF. The MMPF [12, 13] and AUX-
MMPF [14] represent the target state and the mode at ev-
ery time by a set of paired particles and construct the joint
posterior density of the target state and mode, given all mea-
surements. The JMS-PF, on the other hand, involves a hybrid
scheme where it uses particles to represent only the distribu-
tion of the modes, while mode-conditioned state estimation
is carried out using extended Kalman filters (EKFs).

The performance of the above algorithms is compared
with two conventional schemes: (i) IMM-EKF and (ii) IMM-
UKF. These filters represent the posterior density at each time
epoch by a finite Gaussian mixture, and they merge and mix
these Gaussian mixture components at every step to avoid
the exponential growth in the number of mixture compo-
nents. The IMM-EKF uses EKFs while the IMM-UKF utilises
unscented Kalman filters (UKFs) [15] to compute the mode-
conditioned state estimates.

In addition to the autonomous bearings-only tracking
problem, two further cases are investigated in the paper: mul-
tisensor bearings-only tracking, and tracking with hard con-
straints. The multisensor bearings-only problem involves a
slight modification to the original problem, where a second
static sensor sends its target bearing measurements to the
original platform. The problem of tracking with hard con-
straints involves the use of prior knowledge, such as speed
constraints, to improve tracker performance.

The organisation of the paper is as follows. Section 2
presents the mathematical formulation for the bearings-only
tracking problem for each of the three different cases in-
vestigated: (i) single-sensor case, (ii) multisensor case, and
(iii) tracking with hard constraints. In Section 3 the relevant
CRLBs are derived for all but case (iii) for which the ana-
lytic derivation is difficult (due to the non-Gaussian prior
and process noise vectors). The tracking algorithms for each
case are then presented in Section 4 followed by simulation
results in Section 5.

2. PROBLEM FORMULATION

2.1. Single-sensor case

Conceptually, the basic problem in bearings-only tracking is
to estimate the trajectory of a target (i.e., position and veloc-
ity) from noise-corrupted sensor bearing data. For the case
of a single-sensor problem, these bearing data are obtained
from a single-moving observer (ownship). The target state
vector is

xt =
[
xt yt ẋt ẏt

]T
, (1)

where (x, y) and (ẋ, ẏ) are the position and velocity compo-
nents, respectively. The ownship state vector xo is similarly
defined. We now introduce the relative state vector defined
by

x � xt − xo =
[
x y ẋ ẏ

]T
(2)

for which the discrete-time state equation will be written.
The dynamics of a manoeuvring target is modelled by mul-
tiple switching regimes, also known as a JMS. We make the
assumption that at any time in the observation period, the
target motion obeys one of s = 3 dynamic behaviour models:
(a) CV motion model, (b) clockwise CT model, and (c) anti-
clockwise CT model. Let S � {1, 2, 3} denote the set of three
models for the dynamic motion, and let rk be the regime vari-
able in effect in the interval (k−1, k], where k is the discrete-
time index. Then, the target dynamics can be mathematically
written as

xk+1 = f(rk+1)(xk, xo
k, xo

k+1

)
+ Gvk

(
rk+1 ∈ S

)
, (3)

where

G =




T2

2
0

0
T2

2
T 0

0 T




, (4)

T is the sampling time, and vk is a 2 × 1 i.i.d. process noise
vector with vk ∼ N (0, Q). The process noise covariance ma-
trix is chosen to be Q = σ2

a I, where I is the 2 × 2 identity
matrix and σa is a process noise parameter. Note that Gvk
in (3) corresponds to a piecewise constant white acceleration
noise model [16] which is adequate for the large sampling
time chosen in our paper. The mode-conditioned transition
function f(rk+1)(·, ·, ·) in (3) is given by

f(rk+1)(xk, xo
k, xo

k+1

) = F(rk+1)(xk
) · (xk + xo

k

)− xo
k+1. (5)
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Here F(rk+1)(·) is the transition matrix corresponding to
mode rk+1, which, for the particular problem of interest, can
be specified as follows. F(1)(·) corresponds to CV motion and
is thus given by the standard CV transition matrix:

F(1)(xk
) =



1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1


 . (6)

The next two transition matrices correspond to CT transi-
tions (clockwise and anticlockwise, respectively). These are
given by

F( j)(xk
)=




1 0
sin
(
Ω

( j)
k T
)

Ω
( j)
k

−
(
1− cos

(
Ω

( j)
k T
))

Ω
( j)
k

0 1

(
1− cos

(
Ω

( j)
k T
))

Ω
( j)
k

sin
(
Ω

( j)
k T
)

Ω
( j)
k

0 0 cos
(
Ω

( j)
k T
) − sin

(
Ω

( j)
k T
)

0 0 sin
(
Ω

( j)
k T
)

cos
(
Ω

( j)
k T
)




,

j = 2, 3,
(7)

where the mode-conditioned turning rates are

Ω(2)
k = am√(

ẋk + ẋok
)2

+
(
ẏk + ẏok

)2
,

Ω(3)
k = −am√(

ẋk + ẋok
)2

+
(
ẏk + ẏok

)2
.

(8)

Here am > 0 is a typical manoeuvre acceleration. Note that
the turning rate is expressed as a function of target speed (a
nonlinear function of the state vector xk) and thus models 2
and 3 are clearly nonlinear transitions.

We model the mode rk in effect at (k − 1, k] by a time-
homogeneous 3-state first-order Markov chain with known
transition probability matrix Π, whose elements are

πi j � P
(
rk = j|rk−1 = i

)
, i, j ∈ S, (9)

such that

πi j ≥ 0,
∑
j

πi j = 1. (10)

The initial probabilities are denoted by πi � P(r1 = i) for
i ∈ S and they satisfy

πi ≥ 0,
∑
i

πi = 1. (11)

The available measurement at time k is the angle from
the observer’s platform to the target, referenced (clockwise
positive) to the y-axis and is given by

zk = h
(

xk
)

+ wk, (12)

where wk is a zero-mean independent Gaussian noise with
variance σ2

θ and

h
(

xk
) = arctan

(
xk
yk

)
(13)

is the true bearing angle. The state variable of interest for esti-
mation is the hybrid state vector yk = (xT

k , rk)T . Thus, given a
set of measurements Zk = {z1, . . . , zk} and the jump-Markov
model (3), the problem is to obtain estimates of the hybrid
state vector yk. In particular, we are interested in computing
the kinematic state estimate x̂k|k = E[xk|Zk] and mode prob-
abilities P(rk = j|Zk), for every j ∈ S.

2.2. Multisensor case

Suppose there is a possibility of the ownship receiving addi-
tional (secondary) bearing measurements from a sensor lo-
cated at (xsk, ysk) whose measurement errors are independent
to that of the ownship sensor. For simplicity, we assume that
(a) additional measurements are synchronous to the primary
sensor measurements that (b) there is a zero transmission de-
lay from the sensor at (xsk, ysk) to the ownship at (xok , yok). The
secondary measurement can be modelled as

z′k = h′
(

xk
)

+ w′k, (14)

where

h′
(

xk
) = arctan

(
xk + xok − xsk
yk + yok − ysk

)
(15)

and w′k is a zero-mean white Gaussian noise sequence with
variance σ2

θ′ . If the additional bearing measurement is not re-
ceived at time k, we set z′k = ∅. The bearings-only track-
ing problem for this multisensor case is then to estimate
the state vector xk given a sequence of measurements Zk =
{z1, z′1, . . . , zk, z′k}.

2.3. Tracking with constraints

In many tracking problems, one has some hard constraints
on the state vector which can be a valuable source of infor-
mation in the estimation process. For example, we may know
the minimum and maximum speeds of the target given by
the constraint

smin ≤
√(

ẋk + ẋok
)2

+
(
ẏk + ẏok

)2 ≤ smax. (16)



2354 EURASIP Journal on Applied Signal Processing

Suppose some constraint (such as the speed constraint) is
imposed on the state vector, and denote the set of constrained
state vectors by Ψ. Let the initial distribution of the state vec-
tor in the absence of constraints be x0 ∼ p(x0). With con-
straints, this initial distribution becomes a truncated density
p̃(x0), that is,

p̃
(

x0
) =



p
(

x0
)

∫
x0∈Ψ p

(
x0
)
dx0

, x0 ∈ Ψ,

0 otherwise.
(17)

Likewise, the dynamics model should be modified in such a
way that xk is always constrained to Ψ. In the absence of hard
constraints, suppose that the process noise vk ∼ g(v) is used
in the filter. With constraints, the pdf of vk becomes a state-
dependent truncated density given by

g̃
(

v; xk
) =



g(v)∫
v∈G(xk) g(v)dv

, v ∈ G
(

xk
)
,

0 otherwise,
(18)

where G(xk) = {v : xk ∈ Ψ}.
For the bearings-only tracking problem, we will consider

hard constraints in target dynamics only. The measurement
model remains the same as that for the unconstrained prob-
lem. Given a sequence of measurements Zk and some con-
straint Ψ on the state vector, the aim is to obtain estimates of
the state vector xk, that is,

x̂k|k = E
[

xk

∣∣Zk,Ψ
]

=
∫

xk p
(

xk

∣∣Zk,Ψ
)
dxk ,

(19)

where p(xk|Zk,Ψ) is the posterior density of the state, given
the measurements and hard constraints.

3. CRAMÉR-RAO LOWER BOUNDS

We follow the approach taken in [12] for the development
of a conservative CRLB for the manoeuvring target tracking
problem. This bound assumes that the true model history of
the target trajectory

H∗
k =

{
r∗1 , r∗2 , . . . , r∗k

}
(20)

is known a priori. Then, a bound on the covariance of x̂k was
shown to be

E
[(

x̂k − xk
)(

x̂k − xk
)T]

≥ E
[(

x̂k − xk
)(

x̂k − xk
)T∣∣∣H∗

k

]

≥ [J∗k ]−1
,

(21)

where the mode-history-conditioned information matrix J∗k
is

J∗k = E
[(∇xk log p

(
xk, Zk

))(∇xk log p
(

xk , Zk
))T∣∣∣H∗

k

]
.

(22)

Following [17], a recursion for J∗k can be written as

J∗k+1 = D22
k −D21

k

(
J∗k + D11

k

)−1
D12

k , (23)

where, in the case of additive Gaussian noise models applica-

ble to our problem, matrices D
i j
k are given by

D11
k = E

{(
F̃

(r∗k+1)
k

)T
Q−1

k F̃
(r∗k+1)
k

}
,

D12
k = −E

{(
F̃

(r∗k+1)
k

)T}
Q−1

k = (D21
k

)T
,

D22
k = Q−1

k + E
{

H̃T
k+1R−1

k+1H̃k+1
}

,

(24)

where

F̃
(r∗k+1)
k =

[
∇xk

(
f(r∗k+1)(xk)

)T]T
,

H̃k+1 =
[∇xk+1h

T
k+1(xk+1)

]T
,

(25)

Rk+1 = σ2
β 	→ Rk+1 = σ2

θ is the variance of the bearing mea-
surements, and Qk is the process noise covariance matrix.
The Jacobian F̃(1)

k for the case of r∗k+1 = 1 is simply the transi-

tion matrix given in (6). For r∗k+1 ∈ {2, 3}, the Jacobian F̃
(r∗k+1)
k

can be computed as

F̃
( j)
k =




1 0
∂ f

( j)
1

∂ẋk

∂ f
( j)

1

∂ẏk

0 1
∂ f

( j)
2

∂ẋk

∂ f
( j)

2

∂ẏk

0 0
∂ f

( j)
3

∂ẋk

∂ f
( j)

3

∂ẏk

0 0
∂ f

( j)
4

∂ẋk

∂ f
( j)

4

∂ẏk




, j = 2, 3, (26)

where f
( j)
i (·) denotes the ith element of the dynamics model

function f( j)(·). The detailed evaluation of F̃
( j)
k is given in the

appendix.
Likewise, the Jacobian of the measurement function is

given by

H̃k+1 =
[

∂h

∂xk+1

∂h

∂yk+1

∂h

∂ẋk+1

∂h

∂ẏk+1

]
, (27)

where

∂h

∂xk+1
= yk+1

x2
k+1 + y2

k+1

,
∂h

∂yk+1
= −xk+1

x2
k+1 + y2

k+1

,

∂h

∂ẋk+1
= ∂h

∂ẏk+1
= 0.

(28)
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For the case of additional measurements from a sec-
ondary sensor, the only change required will be in the com-
putation of D22

k . In particular, Rk+1 and H̃k+1 will be replaced
by R′k+1 and H̃′

k+1, corresponding to the augmented measure-
ment vector (zk+1, z′k+1). These are given by

R′k+1 =
[
σ2
θ 0

0 σ2
θ′

]
,

H̃′
k+1 =




∂h

∂xk+1

∂h

∂yk+1

∂h

∂ẋk+1

∂h

∂ẏk+1

∂h′

∂xk+1

∂h′

∂yk+1

∂h′

∂ẋk+1

∂h′

∂ẏk+1


 ,

(29)

where σ2
β′ 	→ σ2

θ′ is the noise variance of the secondary sensor,

and the first row of H̃′
k+1 is identical to (27). The elements of

the second row of H̃′
k+1 are given by

∂h′

∂xk+1
= yk+1 + y01

k+1 − y02
k+1(

xk+1 + x01
k+1 − x02

k+1

)2
+
(
yk+1 + y01

k+1 − y02
k+1

)2 ,

∂h′

∂yk+1
= −(xk+1 + x01

k+1 − x02
k+1

)
(
xk+1 + x01

k+1 − x02
k+1

)2
+
(
yk+1 + y01

k+1 − y02
k+1

)2 ,

∂h′

∂ẋk+1
= ∂h′

∂ẏk+1
= 0.

(30)

The simulation experiments for this problem will be car-
ried out on fixed trajectories. This means that for the cor-
responding CRLBs, the expectation operators in (24) vanish
and the required Jacobians will be computed at the true tra-
jectories. The recursion (23) is initialised by

J∗1 = P−1
1 , (31)

where P1 is the initial covariance matrix of the state estimate.
This can be computed using the expression (38), where we
replace the measurement θ1 by the true initial bearing.

4. TRACKING ALGORITHMS

This section describes five recursive algorithms designed for
tracking a manoeuvring target using bearings-only measure-
ments. Two of the algorithms are IMM-based algorithms and
the other three are PF-based schemes. The algorithms con-
sidered are (i) IMM-EKF, (ii) IMM-UKF, (iii) MMPF, (iv)
AUX-MMPF, and (v) JMS-PF. All five algorithms are applica-
ble to both single-sensor and multisensor tracking problems,
formulated in Section 2.

Sections 4.1, 4.2, 4.3, 4.4, and 4.5 will present the ele-
ments of the five tracking algorithms to be investigated. The
IMM-based trackers will not be presented in detail; the inter-
ested reader is referred to [7, 12, 16] for a detailed exposition
of these trackers. Section 4.6 presents the required method-
ology for the multisensor case while Section 4.7 discusses the
modifications required in the PF-based trackers for tracking
with hard constraints.

4.1. IMM-EKF algorithm

The IMM-EKF algorithm is an EKF-based routine that has
been utilised for manoeuvring target tracking problems for-
mulated in a JMS framework [7, 12]. The basic idea is that,
for each dynamic model of the JMS, a separate EKF is used,
and the filter outputs are weighted according to the mode
probabilities to give the state estimate and covariance. At
each time index, the target state pdf is characterised by a fi-
nite Gaussian mixture which is then propagated to the next
time index. Ideally, this propagation results in an s-fold in-
crease in the number of mixture components, where s is the
number of modes in the JMS. However, the IMM-EKF algo-
rithm avoids this growth by merging groups of components
using mixture probabilities. The details of the IMM-EKF al-
gorithm can be found in [7], where slightly different motion
models to the one used here were proposed.

The sources of approximation in the IMM-EKF algo-
rithm are twofold. First, the EKF approximates nonlinear
transformations by linear transformations at some operating
point. If the nonlinearity is severe or if the operating point
is not chosen properly, the resultant approximation can be
poor, leading to filter divergence. Second, the IMM approx-
imates the exponentially growing Gaussian mixture with a
finite Gaussian mixture. The above two approximations can
cause filter instability in certain scenarios.

Next, we provide details of the filter initialisation for the
EKF routines used in this algorithm.

4.1.1. Filter initialisation

Suppose the initial prior range is r ∼ N (r̄, σ2
r ), where r̄ and

σ2
r are the mean and variance of the initial range. Then, given

the first bearing measurement θ1, the position components
of the relative target state vector is initialised according to
standard procedure [12], that is,

x1 = r̄ sin θ1, y1 = r̄ cos θ1, (32)

with covariance

Pxy =
[
σ2
x σxy

σyx σ2
y

]
, (33)

σ2
x = r̄2σ2

θ cos2 θ1 + σ2
r sin2 θ1, (34)

σ2
y = r̄2σ2

θ sin2 θ1 + σ2
r cos2 θ1, (35)

σxy = σyx =
(
σ2
r − r̄2σ2

θ

)
sin θ1 cos θ1, (36)

where σθ is the bearing-measurement standard deviation. We
adopt a similar procedure to initialise the velocity compo-
nents. The overall relative target state vector can thus be ini-
tialised as follows. Suppose we have some prior knowledge
of the target speed and course given by s ∼ N (s̄, σ2

s ) and
c ∼ N (c̄, σ2

c ), respectively. Then, the overall relative target
state vector is initialised as

x̂1 =




r̄ sin θ1

r̄ cos θ1

s̄ sin(c̄)− ẋo1
s̄ cos(c̄)− ẏo1


 , (37)
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where (ẋo1, ẏo1) is the velocity of the ownship at time index 1.
The corresponding initial covariance matrix is given by

P1 =




σ2
x σxy 0 0

σyx σ2
y 0 0

0 0 σ2
ẋ σẋ ẏ

0 0 σẏẋ σ2
ẏ


 , (38)

where σ2
x , σxy , σyx, σ2

y are given by (34)–(36), and

σ2
ẋ = s̄2σ2

c cos2(c̄) + σ2
s sin2(c̄),

σ2
ẏ = s̄2σ2

c sin2(c̄) + σ2
s cos2(c̄),

σẋẏ = σẏẋ =
(
σ2
s − s̄2σ2

c

)
sin(c̄) cos(c̄).

(39)

4.2. IMM-UKF algorithm

This algorithm is similar to the IMM-EKF with the main dif-
ference being that the model-matched EKFs are replaced by
model-matched UKFs [15]. The UKF for model 1 uses the
unscented transform (UT) only for the filter update (because
only the measurement equation is non-linear). The UKFs for
models 2 and 3 use the UT for both the prediction and the
update stage of the filter. The IMM-UKF is initialised in a
similar manner to that of the IMM-EKF.

4.3. MMPF

The MMPF [12, 13] has been used to solve various manoeu-
vring target tracking problems. Here we briefly review the
basics of this filter.

The MMPF estimates the posterior density p(yk|Zk),
where yk = [xT

k , rk]T is the augmented (hybrid) state vec-
tor. In order to recursively compute the PF estimates, the MC
representation of p(yk|Zk) has to be propagated in time. Let
{yi

k−1,wi
k−1}Ni=1 denote a random measure that characterises

the posterior pdf p(yk−1|Zk−1), where yi
k−1, i = 1, . . . ,N , is

a set of support points with associated weights wi
k−1, i =

1, . . . ,N . Then, the posterior density of the augmented state
at k − 1 can be approximated as

p
(

yk−1|Zk−1
) ≈ N∑

i=1

wi
k−1δ

(
yk−1 − yi

k−1

)
, (40)

where δ(·) is the Dirac delta measure. Next, the posterior pdf
at k can be written as

p
(

yk|Zk
)∝ p

(
zk
∣∣yk
) ∫

p
(

yk
∣∣yk−1

)
p
(

yk−1
∣∣Zk−1

)
dyk−1

≈ p
(
zk
∣∣yk
) N∑
i=1

wi
k−1p

(
yk
∣∣yi

k−1

)
,

(41)

where approximation (40) was used in (41). Now, to repre-
sent the pdf p(yk|Zk) using particles, we employ the impor-
tance sampling method [9]. By choosing the importance den-
sity to be p(yk|yk−1), one can draw samples y∗

i

k ∼ p(yk|yi
k−1),

i = 1, . . . ,N . To draw a sample from p(yk|yi
k−1), we first draw

a sample from p(rk|rik−1) which is a discrete probability mass

function given by the ith row of the Markov chain transition
probability matrix. That is, we choose r∗

i

k ∼ p(rk|rik−1) such
that

P
(
r∗

i

k = j
) = πi j . (42)

Next, given the mode r∗
i

k , one can easily sample x∗
i

k ∼
p(xk|xi

k−1, rik) by generating process noise sample vi
k−1 ∼

N (0, Q) and propagating xi
k−1, r∗

i

k , and vi
k−1 through the

dynamics model (3). This gives us the sample {y∗
i

k =
[(x∗

i

k )T , r∗
i

k ]T}Ni=1 which can be used to approximate the pos-
terior pdf p(yk|Zk) as

p
(

yk
∣∣Zk
) ≈ N∑

i=1

wi
kδ
(

yk − y∗
i

k

)
, (43)

where

wi
k ∝ wi

k−1p
(
zk
∣∣y∗

i

k

)
. (44)

Note that p(zk|y∗i

k ) = p(zk|x∗i

k ) which can be computed us-
ing the measurement equation (12). This completes the de-
scription of a single recursion of the MMPF. The filter is ini-
tialised by generating N samples {xi

1}Ni=1 from the initial den-
sity N (x̂1, P1), where x̂1 and P1 were specified in (37) and
(38), respectively.

A common problem with PFs is the degeneracy phe-
nomenon, where, after a few iterations, all but one particle
will have negligible weight. A measure of degeneracy is the
effective sample size Neff which can be empirically evaluated
as

N̂eff = 1∑N
i=1 w

i
k

2 . (45)

The usual approach to overcoming the degeneracy problem
is to introduce resampling whenever N̂eff < Nthr for some
threshold Nthr. The resampling step involves generating a
new set {yi

k}Ni=1 by sampling with replacement N times from
the set {y∗

i

k }Ni=1 such that

P
(

yi
k = y∗

j

k

) = w
j
k. (46)

4.4. AUX-MMPF

The AUX-MMPF [14] focuses on the characterisation of pdf
p(xk, i, rk|Zk), where i refers to the ith particle at k − 1.
This density is marginalised to obtain a representation of
p(xk|Zk).

A proportionality for the joint probability density p(xk,
i, rk|Zk) can be written using Bayes’ rule as

p
(

xk, i, rk
∣∣Zk
)

∝ p
(
zk
∣∣xk
)
p
(

xk, i, rk
∣∣Zk−1

)
= p
(
zk
∣∣xk
)
p
(

xk

∣∣rk, i, Zk−1
)
p
(
rk
∣∣i, Zk−1

)
p
(
i
∣∣Zk−1

)
= p
(
zk
∣∣xk
)
p
(

xk

∣∣xi
k−1, rk

)
p
(
rk
∣∣rik−1

)
wi
k−1,

(47)
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where p(rk|rk−1) is an element of the transition proba-
bility matrix Π defined by (9). To sample directly from
p(xk, i, rk|Zk) as given by (47) is not practical. Hence, we
again use importance sampling [9, 14] to first obtain a sam-
ple from a density which closely resembles (47), and then
weight the samples appropriately to produce an MC repre-
sentation of p(xk, i, rk|Zk). This can be done by introducing
the function q(xk, i, rk|Zk) with proportionality

q
(

xk, i, rk
∣∣Zk
)∝p

(
zk
∣∣µik(rk))p(xk

∣∣xi
k−1, rk

)
p
(
rk
∣∣rik−1

)
wi
k−1,
(48)

where

µik
(
rk
) = E{xk

∣∣xi
k−1, rk

}
= f(rk)(xi

k−1, xo
k−1, xo

k

)
.

(49)

Importance density q(xk, i, rk|Zk) differs from (47) only
in the first factor. Now, we can write q(xk, i, rk|Zk) as

q
(

xk, i, rk
∣∣Zk
) = q

(
i, rk
∣∣Zk
)
g
(

xk

∣∣i, rk, Zk
)

(50)

and define

g
(

xk

∣∣i, rk, Zk
)

� p
(

xk

∣∣xi
k−1, rk

)
. (51)

In order to obtain a sample from the density q(xk, i, rk|Zk),
we first integrate (48) with respect to xk to get an expression
for q(i, rk|Zk),

q
(
i, rk
∣∣Zk
)∝ p

(
zk
∣∣µik(rk))p(rk∣∣rik−1

)
wi
k−1. (52)

A random sample can now be obtained from the density

q(xk, i, rk|Zk) as follows. First, a sample {i j , r jk}Nj=1 is drawn
from the discrete distribution q(i, rk|Zk) given by (52). This
can be done by splitting each of the N particles at k − 1
into s groups (s is the number of possible modes), each
corresponding to a particular mode. Each of the sN parti-
cles is assigned a weight proportional to (52), and N points

{i j , r jk}Nj=1 are then sampled from this discrete distribution.

From (50) and (51), it is seen that the samples {x
j
k}Nj=1 from

the joint density q(xk, i, rk|Zk) can now be generated from

p(xk|xi j
k−1, r

j
k). The resultant triplet sample {x

j
k, i j , r

j
k}Nj=1 is a

random sample from the density q(xk, i, rk|Zk). To use these
samples to characterise the density p(xk, i, rk|Zk), we attach

the weights w
j
k to each particle, where w

j
k is a ratio of (48)

and (47), evaluated at {x
j
k, i j , r

j
k}, that is,

w
j
k =

p
(
zk
∣∣x

j
k

)
p
(

x
j
k

∣∣xi j
k−1, r

j
k

)
p
(
r
j
k

∣∣rijk−1

)
wij
k−1

p
(
zk
∣∣µijk (rk))p(x j

k

∣∣xi j
k−1, r

j
k

)
p
(
r
j
k

∣∣rijk−1

)
wij
k−1

= p
(
zk
∣∣x

j
k

)
p
(
zk
∣∣µijk (rk)) .

(53)

By defining the augmented vector yk � (xT
k , i, rk)T , we can

write down an MC representation of the pdf p(xk, i, rk|Zk) as

p
(

xk, i, rk
∣∣Zk
) = p

(
yk
) ≈ N∑

j=1

w
j
kδ
(

yk − y
j
k

)
. (54)

Observe that by omitting the {i j , r jk} components in the
triplet sample, we have a representation of the marginalised
density p(xk|Zk), that is,

p
(

xk

∣∣Zk
) ≈ N∑

j=1

w
j
kδ
(

xk − x
j
k

)
. (55)

The AUX-MMPF is initialised according to the same proce-
dure as for MMPF.

4.5. JMS-PF

The JMS-PF is based on the jump Markov linear system
(JMLS) PF proposed in [18, 19] for a JMLS. Let

Xk =
{

x1, . . . , xk
}

,

Rk =
{
r1, . . . , rk

} (56)

denote the sequences of states and modes up to time index k.
Standard particle filtering techniques focused on the estima-
tion of the pdf of the state vector xk. However, in the JMS-
PF, we place emphasis on the estimation of the pdf of the
mode sequence Rk, given measurements Zk = {z1, . . . , zk}.
The density p(Xk,Rk|Zk) can be factorised into

p
(

Xk,Rk

∣∣Zk
) = p

(
Xk

∣∣Rk, Zk
)
p
(
Rk

∣∣Zk
)
. (57)

Given a specific mode sequence Rk and measurements Zk,
the first term on the right-hand side of (57), p(Xk|Rk, Zk),
can easily be estimated using an EKF or some other nonlin-
ear filter. Therefore, we focus our attention on p(Rk|Zk); for
estimation of this density, we propose to use a PF.

Using Bayes’ rule, we note that

p
(
Rk

∣∣Zk
) = p

(
zk
∣∣Zk−1,Rk

)
p
(
rk
∣∣rk−1

)
p
(
zk
∣∣Zk−1

) p
(
Rk−1

∣∣Zk−1
)
.

(58)

Equation (58) provides a useful recursion for the estimation
of p(Rk|Zk) using a PF. We describe a general recursive al-
gorithm which generates N particles {Ri

k}Ni=1 at time k which
characterises the pdf p(Rk|Zk). The algorithm requires the
introduction of an importance function q(rk|Zk,Rk−1). Sup-
pose at time k − 1, one has a set of particles {Ri

k−1}Ni=1 that
characterises the pdf p(Rk−1|Zk−1). That is,

p
(
Rk−1

∣∣Zk−1
) ≈ 1

N

N∑
i=1

δ
(
Rk−1 − Ri

k−1

)
. (59)
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Now draw N samples rik ∼ q(rk|Zk,Ri
k−1). Then, from (58)

and the principle of importance sampling, one can write

p
(
Rk

∣∣Zk
) ≈ N∑

i=1

wi
kδ
(
Rk − Ri

k

)
, (60)

where Ri
k ≡ {Ri

k−1, rik} and the weight

wi
k ∝

p
(
zk
∣∣Zk−1,Ri

k

)
p
(
rik
∣∣rik−1

)
q
(
rik
∣∣Zk,Ri

k−1

) . (61)

From (60), we note that one can perform resampling
(if required) to obtain an approximate i.i.d. sample from
p(Rk|Zk). The recursion can be initialised according to the
specified initial state distribution of the Markov chain, πi =
P(r1 = i).

How do we choose the importance density q(rk|Zk,
Rk−1)? A sensible selection criterion is to choose a proposal
that minimises the variance of the importance weights at
time k, given Rk−1 and Zk. According to this strategy, it
was shown in [18] that the optimal importance density is
p(rk|Zk,Ri

k−1). Now, it is easy to see that this density satis-
fies

p
(
rk
∣∣Zk,Ri

k−1

) = p
(
zk
∣∣Zk−1,Ri

k−1, rk
)
p
(
rk
∣∣rik−1

)
p
(
zk
∣∣Zk−1,Ri

k−1

) . (62)

Note that p(rk|Zk,Ri
k−1) is proportional to the numerator of

(62) as the denominator is independent of rk. Also, the term
p(rk|rk−1) is simply the Markov chain transition probability
(specified by the transition probability matrix Π). The term
p(zk|Zk−1,Rk), which features in the numerator of (62), can
be approximated by one-step-ahead EKF outputs, that is, we
can write

p
(
zk
∣∣Zk−1,Rk

) ≈ N
(
νk
(
Rk, Zk−1

)
; 0, Sk

(
Rk, Zk−1

))
, (63)

where νk(·, ·) and Sk(·, ·) are the mode-history-conditioned
innovation and its covariance, respectively. Thus, p(rk|rk−1)
and (63) allow the computation of the optimal importance
density.

Using (62) as the importance density q(·|·, ·) in (61), we
find that the weight

wi
k ∝ p

(
zk
∣∣Zk−1,Ri

k−1

)
. (64)

Since rk ∈ {1, . . . , s}, the importance weights given above can
be computed as

wi
k ∝ p

(
zk
∣∣Zk−1,Ri

k−1

)
=

s∑
j=1

p
(
zk
∣∣Zk−1,Ri

k−1, rk = j
)
p
(
rk = j

∣∣rik−1

)
.

(65)

Note that the computation of the importance weights in
(65) requires s one-step-ahead EKF innovations and their
covariances.

This completes the description of the PF for estimation of
the Markov chain distribution p(Rk|Zk). As mentioned ear-
lier, given a particular mode sequence, the state estimates are
easily obtained using a standard EKF.

4.6. Methodology for the multisensor case

The methodology for the multisensor case is similar to that
of the single-sensor case. The two main points to note for
this case are that (a) the secondary measurement is processed
in a sequential manner assuming a zero time delay between
the primary and secondary measurements and (b) for the
processing of the secondary measurement, the measurement
function (15) is used in place of (13) for the computation
of the necessary quantities such as Jacobians, predicted mea-
surements, and weights.

4.7. Modifications for tracking with hard constraints

The problem of bearings-only tracking with hard constraints
was described in Section 2.3. Recall that for the constraint
xk ∈ Ψ, the state estimate is given by the mean of the pos-
terior density p(xk|Zk,Ψ). This density cannot be easily con-
structed by standard Kalman-filter-based techniques. How-
ever, since PFs make no restrictions on the prior density or
the distributions of the process and measurement noise vec-
tors, it turns out that p(xk|Zk,Ψ) can be constructed using
PFs. The only modifications required in the PFs for the case
of constraint xk ∈ Ψ are as follows:

(i) the prior distribution needs to be p̃(x) defined in (17)
and the filter needs to be able to sample from this den-
sity;

(ii) in the prediction step, samples are drawn from the
constrained process noise density g̃(v; xk) instead of
the standard process noise pdf.

Both changes require the ability to sample from a truncated
density. A simple method to sample from a generic truncated
density t̃(x) defined by

t̃(x) =



t(x)∫
x∈Ψ t(x)dx

, x ∈ Ψ,

0 otherwise
(66)

is as follows. Suppose we can easily sample from t(x). Then,
to draw x ∼ t̃(x), we can use rejection sampling from t(x)
until the condition x ∈ Ψ is satisfied. The resulting sample
is then distributed according to t̃(x). This simple technique
will be adopted in the modifications required in the PF for
the constrained problem.1 With the above modifications, the
PF leads to a cloud of particles that characterise the posterior
density p(xk|Zk,Ψ) from which the state estimate x̂k|k and its
covariance Pk|k can be obtained.

1This rejection sampling scheme can potentially be inefficient. For more
efficient schemes to sample from truncated densities, see [20].
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5. SIMULATION RESULTS

In this section, we present a performance comparison of the
various tracking algorithms described in the previous sec-
tion. The comparison will be based on a set of 100MC simu-
lations and where possible, the CRLB will be used to indicate
the best possible performance that one can expect for a given
scenario and a set of parameters. Before proceeding, we give
a description of the four performance metrics that will be
used in this analysis: (i) RMS position error, (ii) efficiency
η, (iii) root time-averaged mean square (RTAMS) error, and
(iv) number of divergent tracks.

To define each of the above performance metrics, let
(xik, yik) and (x̂ik, ŷik) denote the true and estimated target po-
sitions at time k at the ith MC run. Suppose M of such MC
runs are carried out. Then, the RMS position error at k can
be computed as

RMSk =

√√√√√ 1
M

M∑
i=1

(
x̂ik − xik

)2
+
(
ŷik − yik

)2
. (67)

Now, if J−1
k [i, j] denotes the i jth element of the inverse in-

formation matrix for the problem at hand, then the corre-
sponding CRLB for the metric (67) can be written as

CRLB
(

RMSk
) = √J−1

k [1, 1] + J−1
k [2, 2]. (68)

The second metric stated above is the efficiency parameter η
defined as

ηk � CRLB
(

RMSk
)

RMSk
× 100% (69)

which indicates “closeness” to CRLB. Thus, ηk = 100% im-
plies an efficient estimator that achieves the CRLB exactly.

For a particular scenario and parameters, the overall per-
formance of a filter is evaluated using the third metric which
is the RTAMS error. This is defined as

RTAMS =
√√√√√ 1(

tmax − �
)
M

tmax∑
k=�+1

M∑
i=1

(
x̂ik − xik

)2
+
(
ŷik − yik

)2
,

(70)

where tmax is the total number of observations (or time
epochs) and � is a time index after which the averaging is
carried out. Typically � is chosen to coincide with the end of
the first ownship manoeuvre.

The final metric stated above is the number of divergent
tracks. A track is declared divergent if its estimated position
error at any time index exceeds a threshold which is set to be
20 km in our simulations. It must be noted that the first three
metrics described above are computed only on nondivergent
tracks.
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Figure 1: A typical bearings-only tracking scenario with a manoeu-
vring target.

5.1. Single-sensor case

The target-observer geometry for this case is shown in
Figure 1. The target which is initially 5 km away from the
ownship maintains an initial course of −140◦. It executes a
manoeuvre in the interval 20–25 minutes to attain a new
course of 100◦, and maintains this new course for the rest
of the observation period. The ownship, travelling at a fixed
speed of 5 knots and an initial course of 140◦, executes a ma-
noeuvre in the interval 13–17 minutes to attain a new course
of 20◦. It maintains this course for a period of 15 minutes
at the end of which it executes a second manoeuvre and at-
tains a new course of 155◦. The final target-observer range
for this case is 2.91 km. Bearing measurements with accuracy
σθ = 1.5◦ are received every T = 1 minute for an observation
period of 40 minutes.

Unless otherwise mentioned, the following nominal filter
parameters were used in the simulations. The initial range
and speed prior standard deviations were set to σr = 2 km
and σs = 2 knots, respectively. The initial course and its stan-
dard deviation were set to c̄ = θ1 + π and σc = π/

√
12, where

θ1 is the initial bearing measurement. The process noise pa-
rameter was set to σa = 1.6 × 10−6 km/s2. The MMPF and
AUX-MMPF used N = 5000 particles while the JMS-PF used
N = 100 particles. Resampling was carried out if N̂eff < Nthr,
where the threshold was set to Nthr = N/3. The resampling
scheme used in the simulations is an algorithm based on or-
der statistics [21].

The transition probability matrix required for the jump
Markov process was chosen to be

Π =



0.9 0.05 0.05
0.4 0.5 0.1
0.4 0.1 0.5


 (71)
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Table 1: Performance comparison for the single-sensor case.

Algorithm/ RMS error (final) RTAMS Improvement Divergent
CRLB (km) (%) η (km) (%) tracks

IMM-EKF 1.18 40 22 1.07 0 0
IMM-UKF 0.80 28 32 0.72 32 1

MMPF 0.59 20 43 0.44 59 0
AUX-MMPF 0.55 19 46 0.47 56 0

JMS-PF 0.77 27 33 0.64 40 0
CRLB 0.25 9 100 0.21 80 —
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Figure 2: RMS position error versus time for a manoeuvring target
scenario.

and the typical manoeuvre acceleration parameter for the fil-
ters was set to am = 1.08× 10−5 km/s2.

Figure 2 shows the RMS error curves corresponding to
the five filters: IMM-EKF, IMM-UKF, MMPF, AUX-MMPF,
and JMS-PF. A detailed comparison is also given in Table 1.
Note that the column “improvement” refers to the percent-
age improvement in RTAMS error compared with a baseline
filter which is chosen to be the IMM-EKF. From the graph
and the table, it is clear that the performance of the IMM-
EKF and IMM-UKF is poor compared to the other three fil-
ters. Though the final RMS error performance of the IMM-
UKF is comparable to the JMS-PF, since it has one divergent
track, its overall performance is considered worse than that
of the JMS-PF. It is clear that the best filters for this case
were the MMPF and AUX-MMPF which achieved 59% and
56% improvement, respectively, over the IMM-EKF. Also
note that the JMS-PF performance is between that of IMM-
EKF/IMM-UKF and MMPF/AUX-MMPF. From the simula-
tions, it appears that the relative computational requirements
(with respect to the IMM-EKF) for the IMM-UKF, MMPF,
AUX-MMPF, and JMS-PF are 2.6, 23, 32, and 30, respec-
tively.

The rationale for the performance differences noted
above can be explained as follows. There are two sources of
approximations in both IMM-EKF and IMM-UKF. Firstly,
the probability of the mode history is approximated by the
IMM routine which merges mode histories. Secondly, the
mode-conditioned filter estimates are obtained using an EKF
and an UKF (for the IMM-EKF and IMM-UKF, respec-
tively), both of which approximate the non-Gaussian pos-
terior density by a Gaussian. In contrast, the MMPF and
AUX-MMPF attempt to alleviate both sources of approxima-
tions: they estimate the mode probabilities with no merging
of histories and they make no linearisation (as in EKF) and
characterise the non-Gaussian posterior density in a near-
optimal manner. Thus we observe the superior performance
of the MMPF and AUX-MMPF. The JMS-PF on the other
hand is worse than MMPF/AUX-MMPF but better than
IMM-EKF/IMM-UKF as it attempts to alleviate only one
of the sources of approximations discussed above. Specifi-
cally, while the JMS-PF attempts to compute the mode his-
tory probability exactly, it uses an EKF (a local linearisa-
tion approximation) to compute the mode-conditioned fil-
tered estimates. Hence, note that even if the number of par-
ticles for the JMS-PF is increased, its performance can never
reach that of the MMPF/AUX-MMPF. It is interesting to note
from the improvement figures for the JMS-PF and MMPF
that the first source of approximation is more critical than
the second one. In fact, the contributions of the first and
second sources of approximation appear to be in the ratio
2 : 1.

It is worth noting that in the above simulations, the per-
formance of the AUX-MMPF is comparable to that of the
MMPF. This is expected due to the low process noise used
in the simulations as one would expect the performance of
the AUX-MMPF to approach that of MMPF as the process
noise tends to zero. However, for problems with moderate to
high process noise, the AUX-MMPF is likely to outperform
the MMPF.

Next, we illustrate a case where the IMM-EKF shows a
tendency to diverge while the MMPF tracks the target well for
the same set of measurements. Figure 3a shows the estimated
track and 95% error ellipses (plotted every 8 minutes) for the
IMM-EKF. Note that the IMM-EKF covariance estimate at 8
minutes is poor as it does not encapsulate the true target po-
sition. This has resulted in not only subsequent poor track
estimates, but also inability to detect the target manoeuvre.
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Figure 3: IMM-EKF tracker results. (a) Track estimates and 95% confidence ellipses. (b) Mode probabilities.

76543210

x (km)

−3

−2

−1

0

1

2

y
(k

m
)

Target
Ownship
95% confidence ellipses
Track estimates

(a)

4035302520151050

Time (min)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
od

e
pr

ob
ab

ili
ty

CV model
CT (correct)
CT (opp)

(b)

Figure 4: MMPF tracker results. (a) Track estimates and 95% confidence ellipses. (b) Mode probabilities.

This is clear from the mode probability curves shown in
Figure 3b, where we note that though there is a slight bump
in the mode probability for the correct manoeuvre model,
the algorithm is unable to establish the occurrence of the ma-
noeuvre. The overall result is a track that is showing a ten-
dency to diverge from the true track.

For the same set of measurements, the MMPF shows ex-
cellent performance as can be seen from Figure 4. Here we
note that the 95% confidence ellipse of the PF encapsulates
the true target position at all times. Notice that the size of
the covariance matrix shortly after the target manoeuvre is
small compared to other times. The reason for this is that the
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Figure 5: RMS position error versus time for a multisensor case.

target observability is best at that instant compared to other
times. For the given scenario, both the ownship manoeuvre
and the target manoeuvre have resulted in a geometry that
is very observable at that instant. After the target manoeu-
vre, the relative position of the target increases and this leads
to a slight decrease in observability and hence slight enlarge-
ment of the covariance matrix. The mode probability curves
for the MMPF shows that unlike the results of IMM-EKF, the
MMPF mode probabilities indicate a higher probability of
occurrence of a manoeuvre. The overall result is a much bet-
ter tracker performance for the same set of measurements.

5.2. Multisensor case

Here we consider the scenario identical to the one consid-
ered in Section 5.1, except that an additional static sensor,
located at (5 km,−2 km), provides bearing measurements to
the ownship at regular time intervals. These measurements,
with accuracy σθ′ = 2◦, arrive at only 3 time epochs, namely,
at k = 10, 20, and 30. Figure 5 shows a comparison of IMM-
EKF, IMM-UKF, and MMPF for this case. It is seen that the
MMPF exhibits excellent performance, with RMS error re-
sults very close to the CRLB. The detailed comparison given
in Table 2 shows that MMPF achieves a final RMS error accu-
racy that is within 8% of the final range. By comparing with
the corresponding results for the single-sensor case, we note
that the final RMS error is reduced by a factor of 2.5. Inter-
estingly, the IMM-EKF and IMM-UKF performance is very
poor and is worse than their corresponding performance
when no additional measurement is received. Though this
may seem counterintuitive, it can be explained as follows.
For the given geometry, at the time of the first arrival of the
bearing measurement from the second sensor, it is possible
that due to nonlinearities and low observability in the time
interval 0–10 minutes, the track estimates and filter calcu-

lated covariance of the IMM-based filters are in error, lead-
ing to a large innovation for the second sensor measurement.
The inaccurate covariance estimate results in an incorrect fil-
ter gain computation for the second sensor measurement. In
the update equations of these filters, the large innovation gets
weighted by the computed gain which does not properly re-
flect the contribution of the new measurement. The conse-
quence of this is filter divergence. It turns out that for the
ownship measurements-only case, even if the track and co-
variance estimates are in error, the errors introduced in the
filter gain computation are not as severe as in the multisensor
case. Furthermore, as the uncertainty is mainly along the line
of bearing, the innovation for this case is not likely to be very
large. Thus the severity of track and covariance error for this
particular scenario is worse for the multisensor case than for
the single-sensor case. Similar results have been observed in
the context of an air surveillance scenario [12].

5.3. Tracking with hard constraints

In this section, we present the results for the case of bearings-
only tracking with hard constraints. The scenario and pa-
rameters used for this case are identical to the ones con-
sidered in Section 5.1. This time, however, in addition to
the available bearing measurements, we also impose some
hard constraints on target speed. Specifically, assume that we
have prior knowledge that the target speed is in the range
3.5 ≤ s ≤ 4.5 knots. This type of nonstandard information
is difficult to incorporate into the standard EKF-based algo-
rithms (such as the IMM-EKF), and so in the comparison
below, the IMM-EKF will not utilise the hard constraints.
However, the PF-based algorithms, and, in particular, the
MMPF and AUX-MMPF, can easily incorporate such non-
standard information according to the technique described
in Section 4.7.

Figure 6 shows the RMS error in estimated position for
the MMPF that incorporates prior knowledge of speed con-
straint (referred to as MMPF-C). The figure also shows
the performance curves of the IMM-EKF and the standard
MMPF that do not utilise knowledge of hard constraints.
A detailed numerical comparison is given in Table 3. It can
be seen that the MMPF-C achieves 83% improvement in
RTAMS over the IMM-EKF. Also, observe that by incorpo-
rating the hard constraints, the MMPF-C achieves a 50% re-
duction in RTAMS error over the standard MMPF that does
not utilise hard constraints (emphasising the significance of
this nonstandard information). Incorporating such nonstan-
dard information results in highly non-Gaussian posterior
pdfs which the PF is effectively able to characterise.

6. CONCLUSIONS

This paper presented a comparative study of PF-based track-
ers against conventional IMM-based routines for the prob-
lem of bearings-only tracking of a manoeuvring target. Three
separate cases have been analysed: single-sensor case; mul-
tisensor case, and tracking with speed constraints. The re-
sults overwhelmingly confirm the superior performance of
PF-based algorithms against the conventional IMM-based
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Table 2: Performance comparison for the multisensor case.

Algorithm/ RMS error (final) RTAMS Improvement Divergent
CRLB (km) (%) η (km) (%) tracks

IMM-EKF 5.03 173 3 3.16 0 17
IMM-UKF 3.51 121 4 2.32 27 7

MMPF 0.25 8 63 0.22 93 1
CRLB 0.15 5 100 0.13 96 —

Table 3: Performance comparison for tracking with hard constraints.

Algorithm
RMS error (final) RTAMS Improvement Divergent

(km) (%) (km) (%) tracks
IMM-EKF 1.37 47 1.21 0 0

MMPF 0.53 18 0.44 64 0
MMPF-C 0.12 4 0.20 83 0
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Figure 6: RMS position error versus time for the case of tracking
with speed constraint 3.5 ≤ s ≤ 4.5 knots.

schemes. The key strength of the PF, demonstrated in this
application, is its flexibility to handle nonstandard informa-
tion along with the ability to deal with nonlinear and non-
Gaussian models.

APPENDIX

JACOBIANS OF THE MANOEUVRE DYNAMICS

The Jacobians F̃
(r∗k+1)
k , r∗k+1 ∈ {2, 3}, of the manoeuvre dynam-

ics can be computed by taking the gradients of the respective

transitions. Let f
( j)
i (·) denote the ith element of the dynam-

ics model function f( j)(·) and let (ẋtk, ẏtk) denote the target
velocity vector. Then, by taking the gradients of f( j)(·) for

j = 2, 3, the required Jacobians can be computed to give
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∂ẋk

∂ f
( j)

2

∂ẏk
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∂ẏk
,

(A.2)



2364 EURASIP Journal on Applied Signal Processing
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ẋtk
)2

+
(
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for j = 2, 3.
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We present a method for sequentially estimating time-varying noise parameters. Noise parameters are sequences of time-varying
mean vectors representing the noise power in the log-spectral domain. The proposed sequential Monte Carlo method generates
a set of particles in compliance with the prior distribution given by clean speech models. The noise parameters in this model
evolve according to random walk functions and the model uses extended Kalman filters to update the weight of each particle as
a function of observed noisy speech signals, speech model parameters, and the evolved noise parameters in each particle. Finally,
the updated noise parameter is obtained by means of minimum mean square error (MMSE) estimation on these particles. For
efficient computations, the residual resampling and Metropolis-Hastings smoothing are used. The proposed sequential estimation
method is applied to noisy speech recognition and speech enhancement under strongly time-varying noise conditions. In both
scenarios, this method outperforms some alternative methods.

Keywords and phrases: sequential Monte Carlo method, speech enhancement, speech recognition, Kalman filter, robust speech
recognition.

1. INTRODUCTION

A speech processing system may be required to work in con-
ditions where the speech signals are distorted due to back-
ground noise. Those distortions can drastically drop the per-
formance of automatic speech recognition (ASR) systems,
which usually perform well in quiet environments. Similarly,
speech-coding systems spend much of their coding capacity
encoding additional noise information.

There have been great interests in developing algo-
rithms that achieve robustness to those distortions. In gen-
eral, the proposed methods can be grouped into two ap-
proaches. One approach is based on front-end process-
ing of speech signals, for example, speech enhancement.
Speech enhancement can be done either in time-domain,
for example, in [1, 2], or more widely used, in spectral
domain [3, 4, 5, 6, 7]. The objective of speech enhance-
ment is to increase signal-to-noise ratio (SNR) of the pro-
cessed speech with respect to the observed noisy speech
signal.

The second approach is based on statistical models of
speech and/or noise. For example, parallel model combina-
tion (PMC) [8] adapts speech mean vectors according to
the input noise power. In [9], code-dependent cepstral nor-
malization (CDCN) modifies speech signals based on prob-
abilities from speech models. Since methods in this model-
based approach are devised in a principled way, for example,
maximum likelihood estimation [9], they usually have bet-
ter performances than methods in the first approach, par-
ticularly in applications such as noisy speech recognition
[10].

However, a main shortcoming in some of the methods
described above lies in their assumption that the background
noise is stationary (noise statistics do not change in a given
utterance). Based on this assumption, noise is often esti-
mated from segmented noise-alone slices, for example, by
voice-activity detection (VAD) [7]. Such an assumption may
not hold in many real applications because the estimated
noise may not be pertinent to noise in speech intervals in
nonstationary environments.
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Recently, methods have been proposed for speech en-
hancement in nonstationary noise. For example, in [11],
a method based on sequential Monte Carlo method is ap-
plied to estimate time-varying autocorrelation coefficients of
speech models for speech enhancement. This algorithm is
more advanced in its assumption that autocorrelation coef-
ficients of speech models are time varying. In fact, sequen-
tial Monte Carlo method is also applied to estimate noise
parameters for robust speech recognition in nonstationary
noise [12] through a nonlinear model [8], which was re-
cently found to be effective for speech enhancement [13] as
well.

The purpose of this paper is to present a method based
on sequential Monte Carlo for estimation of noise parameter
(time-varying mean vector of a noise model) with its appli-
cation to speech enhancement and recognition. The method
is based on a nonlinear function that models noise effects on
speech [8, 12, 13]. Sequential Monte Carlo method generates
particles of parameters (including speech and noise parame-
ters) from a prior speech model that has been trained from a
clean speech database. These particles approximate posterior
distribution of speech and noise parameter sequences given
the observed noisy speech sequence. Minimum mean square
error (MMSE) estimation of the noise parameter is obtained
from these particles. Once the noise parameter has been es-
timated, it is used in subtraction-type speech enhancement
methods, for example, Wiener filter and perceptual filter,1

and adaptation of speech mean vectors for speech recogni-
tion.

The remainder of the paper is organized as follows. The
model specification and estimation objectives for the noise
parameters are stated in Section 2. In Section 3, the sequen-
tial Monte Carlo method is developed to solve the noise pa-
rameter estimation problem. Section 4.3 demonstrates appli-
cation of this method to speech recognition by modifying
speech model parameters. Application to speech enhance-
ment is shown in Section 4.4. Discussions and conclusions
are presented in Section 5.

Notation

Sets are denoted as {·, ·}. Vectors and sequences of vec-
tors are denoted by uppercased letters. Time index is in the
parenthesis of vectors. For example, a sequence Y(1 : T) =
(Y(1) Y(2) · · · Y(T)) consists of vector Y(t) at time t,
where its ith element is yi(t). The distribution of the vector
Y(t) is p(Y(t)). Superscript T denotes transpose.

The symbol X (or x) is exclusively used for original
speech and Y (or y) is used for noisy speech in testing en-
vironments. N (or n) is used to denote noise.

By default, observation (or feature) vectors are in log-
spectral domain. Superscripts lin, l, c denote linear spec-
tral domain, log-spectral domain, and cepstral domain. The
symbol ∗ denotes convolution.

1A model for frequency masking [14, 15] is applied.

2. PROBLEM DEFINITION

2.1. Model definitions

Consider a clean speech signal x(t) at time t that is corrupted
by additive background noise n(t).2 In time domain, the re-
ceived speech signal y(t) can be written as

y(t) = x(t) + n(t). (1)

Assume that the speech signal x(t) and noise n(t) are un-
correlated. Hence, the power spectrum of the input noisy sig-
nal is the summation of the power spectra of clean speech sig-
nal and those of the noise. The output at filter bank j can be
described by ylin

j (t) =∑m b(m)|∑L−1
l=0 v(l)y(t − l)e− j2πlm/L|2,

summing the power spectra of the windowed signal v(t) ∗
y(t) with length L at each frequency m with binning weight
b(m). v(t) is a window function (usually a Hamming win-
dow) and b(m) is a triangle window.3 Similarly, we denote
the filter bank output for clean speech signal x(t) and noise
n(t) as xlin

j (t) and nlin
j (t) for jth filter bank, respectively. They

are related as

ylin
j (t) = xlin

j (t) + nlin
j (t), (2)

where j is from 1 to J , and J is the number of filter banks.
The filter bank output exhibits a large variance. In order

to achieve an accurate statistical model, in some applications,
for example, speech recognition, logarithm compression of
ylin
j (t) is used instead. The corresponding compressed power

spectrum is called log-spectral power, which has the follow-
ing relationship (derived in Appendix A) with noisy signal,
clean speech signal, and noise:

ylj(t) = xlj(t) + log
(
1 + exp

(
nlj(t)− xlj(t)

))
. (3)

The function is plotted in Figure 1. We observed that this
function is convex and continuous. For noise log-spectral
power nlj(t) that is much smaller than clean speech log-

spectral power xlj(t), the function outputs xlj(t). This shows
that the function is not “sensitive” to noise log-spectral
power that is much smaller than clean speech log-spectral
power.4

We consider the vector for clean speech log-spectral
power Xl(t) = (xl1(t), . . . , xlJ(t))T . Suppose that the statistics
of the log-spectral power sequence Xl(1 : T) can be modeled
by a hidden Markov model (HMM) with output density at
each state st (1 ≤ st ≤ S) represented by mixtures of Gaussian∑M

kt=1 πstktN (Xl(t);µlstkt ,Σ
l
stkt

), where M denotes the number

2Channel distortion and reverberation are not considered in this pa-
per. In this paper, x(t) can be considered as a speech signal received by a
close-talking microphone, and n(t) is the background noise picked up by
the microphone.

3In Mel-scaled filter bank analysis [16], b(m) is a triangle window cen-
tered in the Mel scale.

4We will discuss later in Sections 3.5 and 4.2 that such property may
result in larger-than-necessary estimation of the noise log-spectral power.
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Figure 1: Plot of function ylj(t) = xlj(t)+log(1+exp(nlj(t)−xlj(t))).

xlj(t) = 1.0; nlj(t) ranges from −10.0 to 10.0.

of Gaussian densities in each state. To model the statistics of
noise log-spectral power Nl(1 : T), we use a single Gaussian
density with a time-varying mean vector µln(t) and a constant
diagonal variance matrix Vl

n.
With the above-defined statistical models, we may plot

the dependence among their parameters and observation se-
quence Yl(1 : t) by a graphical model [17] in Figure 2.
In this figure, the rectangular boxes correspond to discrete
state/mixture indexes, and the round circles correspond to
continuous-valued vectors. Shaded circles denote observed
noisy speech log-spectral power.

The state st ∈ {1, . . . , S} gives the current state index at
frame t. State sequence is a Markovian sequence with state
transition probability p(st|st−1) = ast−1st . At state st, an index
kt ∈ {1, . . . ,M} assigns a Gaussian density N (·;µlstkt ,Σl

stkt
)

with prior probability p(kt|st) = πstkt . Speech parameter
µlstkt (t) is thus distributed in Gaussian given st and kt; that
is,

st ∼ p
(
st|st−1

) = ast−1st , (4)

kt ∼ p
(
kt|st

) = πstkt , (5)

µlstkt (t) ∼ N
(·;µlstkt ,Σl

stkt

)
. (6)

Assuming that the variances of Xl(t) and Nl(t) are very
small (as done in [8]) for each filter bank j, given st and kt, we
may relate the observed signal Yl(t) to speech mean vector
µlstkt (t) and time-varying noise mean vector µln(t) with the
function

Yl(t) = µlstkt (t)+log
(
1+exp

(
µln(t)−µlstkt (t)

))
+wstkt (t), (7)

where wstkt (t) is distributed in N (·; 0,Σl
stkt

), representing the
possible modeling error and measurement noise in the above
equation.

Furthermore, to model time-varying noise statistics, we
assume that the noise parameter µln(t) follows a random walk
function; that is,

µln(t) ∼ p
(
µln(t)|µln(t − 1)

)
= N

(
µln(t);µln(t − 1),Vl

n

)
.

(8)

We collectively denote these parameters {µlstkt (t), st, kt,

µln(t);µlstkt (t) ∈ RJ , 1 ≤ st ≤ S, 1 ≤ kt ≤ M, µln(t) ∈ RJ} as
θ(t). It is clearly seen from (4)–(8) that they have the follow-
ing prior distribution and likelihood at each time t:

p
(
θ(t)|θ(t − 1)

)
= ast−1st πstkt

×N
(
µlstkt (t);µlstkt ,Σ

l
stkt

)
N
(
µln(t);µln(t − 1),Vl

n

)
,

(9)

p
(
Yl(t)|θ(t)

)
= N

(
Yl(t);µlstkt (t)

+ log
(
1 + exp

(
µln(t)− µlstkt (t)

))
,Σl

stkt

)
.

(10)

Remark 1. In comparison with the traditional HMM, the
new model shown in Figure 2 may provide more robustness
to contaminating noise, because it includes explicit modeling
of the time-varying noise parameters. However, probabilistic
inference in the new model can no longer be done by the ef-
ficient Viterbi algorithm [18].

2.2. Estimation objective

The objective of this method is to estimate, up to time t, a
sequence of noise parameters µln(1 : t) given the observed
noisy speech log-spectral sequence Yl(1 : t) and the above
defined graphical model, in which speech models are trained
from clean speech signals. Formally, µln(1 : t) is calculated by
the MMSE estimation

µ̂ln(1 : t) =
∫
µln(1:t)

µln(1 : t)p
(
µln(1 : t)|Yl(1 : t)

)
dµln(1 : t),

(11)

where p(µln(1 : t)|Yl(1 : t)) is the posterior distribution of
µln(1 : t) given Yl(1 : t).

Based on the graphical model shown in Figure 2,
Bayesian estimation of the time-varying noise parameter
µln(1 : t) involves construction of a likelihood function of
observation sequence Yl(1 : t) given parameter sequence
Θ(1 : t) = (θ(1), . . . , θ(t)) and prior probability p(Θ(1 : t))
for t = 1, . . . ,T . The posterior distribution of Θ(1 : t) given
observation sequence Yl(1 : t) is

p
(
Θ(1 : t)|Yl(1 : t)

)∝ p
(
Yl(1 : t)|Θ(1 : t)

)
p
(
Θ(1 : t)

)
.

(12)
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s0 st−1 st sT

k0 kt−1 kt kT

µls0k0
(0) µlst−1kt−1

(t − 1) µlstkt (t) µlsT kT (T)

Yl(0) Yl(t − 1) Yl(t) Yl(T)

µln(0) µln(t − 1) µln(t) µln(T)

Figure 2: The graphical model representation of the dependence of the speech and noise model parameters. st and kt denote the state and
Gaussian mixture at frame t in speech model. µlstkt (t) and µln(t) denote the speech and noise parameters. Yl(t) is the observed noisy speech
signal at frame t.

Due to the Markovian property shown in (9) and (10),
the above posterior distribution can be written as

p
(
Θ(1 : t)|Yl(1 : t)

)

∝
t∏

τ=2

p
(
Yl(τ)|θ(τ)

)
p
(
θ(τ)|θ(τ−1)

)
p
(
Yl(1)|θ(1)

)
p
(
θ(1)

)
.

(13)

Based on this posterior distribution, MMSE estimation
in (11) can be achieved by

µ̂ln(1 : t) =
∫
µl1:n(1:t)

µl1:n(1 : t)

×
∑

s1:t ,k1:t

∫
µls1:t k1:t

(1:t)
p
(
Θ(1 : t)|Yl(1 : t)

)

dµls1:tk1:t
(1 : t)dµln(1 : t).

(14)

Note that there are difficulties in evaluating the MMSE
estimation. The first relates to the nonlinear function in (10),
and the second arises from the unseen state sequence s1:t

and mixture sequence k1:t . These unseen sequences, together
with nodes {µlstkt (t)}, {Yl(t)}, and {µln(t)}, form loops in the
graphical model. These loops in Figure 2 make exact infer-
ences on posterior probabilities of unseen sequences s1:t and
k1:t , computationally intractable. In the following section, we
devise a sequential Monte Carlo method to tackle these prob-
lems.

3. SEQUENTIAL MONTE CARLO METHOD
FOR NOISE PARAMETER ESTIMATION

This section presents a sequential Monte Carlo method for
estimating noise parameters from observed noisy signals and
pretrained clean speech models. This method applies se-
quential Bayesian importance sampling (BIS) in order to
generate particles of speech and noise parameters from a pro-
posal distribution. These particles are selected according to
their weights calculated with a function of their likelihood.
It should be noted that the application here is one particular
case of a more general sequential BIS method [19, 20].

3.1. Importance sampling

Suppose that there are N particles {Θ(i)(1 : t); i = 1, . . . ,N}.
Each particle is denoted as

Θ(i)(1 : t) =
{
s(i)

1:t , k
(i)
1:t,µ

l(i)

s(i)
1:tk

(i)
1:t

(1 : t),µl(i)n (1 : t)
}
. (15)

These particles are generated according to p(Θ(1 : t)|Yl(1 :
t)). Then, these particles form an empirical distribution of
Θ(1 : t), given by

p̄N
(
Θ(1 : t)|Yl(1 : t)

) = 1
N

N∑
i=1

δΘ(i)(1:t)
(
dΘ(1 : t)

)
, (16)

where δx(·) is the Dirac delta measure concentrated on x.
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Using this distribution, an estimate of the parameters of
interests f̄Θ(1 : t) can be obtained by

f̄Θ(1 : t) =
∫
fΘ(1 : t) p̄N

(
Θ(1 : t)|Yl(1 : t)

)
dΘ(1 : t)

= 1
N

N∑
i=1

f (i)
Θ (1 : t),

(17)

where, for example, function fΘ(1 : t) is Θ(1 : t) and

f (i)
Θ (1 : t) = Θ(i)(1 : t) if f̄Θ(1 : t) is used for estimating pos-

terior mean of Θ(1 : t). As the number of particles N goes
to infinity, this estimate approaches the true estimate under
mild conditions [21].

It is common to encounter the situation that the poste-
rior distribution p(Θ(1 : t)|Yl(1 : t)) cannot be sampled di-
rectly. Alternatively, importance sampling (IS) method [22]
implements the empirical estimate in (17) by sampling from
an easier distribution q(Θ(1 : t)|Yl(1 : t)), whose support
includes that of p(Θ(1 : t)|Yl(1 : t)); that is,

f̄Θ(1 : t) =
∫
fΘ(1 : t)

p
(
Θ(1 : t)|Yl(1 : t)

)
q
(
Θ(1 : t)|Yl(1 : t)

)
× q

(
Θ(1 : t)|Yl(1 : t)

)
dΘ(1 : t)

=
∑N

i=1 f (i)
Θ (1 : t)w(i)(1 : t)∑N
i=1 w(i)(1 : t)

,

(18)

where Θ(i)(1 : t) is sampled from distribution q(Θ(1 :
t)|Yl(1 : t)), and each particle (i) has a weight given by

w(i)(1 : t) = p
(
Θ(i)(1 : t)|Yl(1 : t)

)
q
(
Θ(i)(1 : t)|Yl(1 : t)

) . (19)

Equation (18) can be written as

f̄Θ(1 : t) =
N∑
i=1

f (1:i)
Θ (t)w̃(i)(1 : t), (20)

where the normalized weight is given as w̃(i)(1 : t) =
w(i)(1 : t)/

∑N
j=1 w

( j)(1 : t).

3.2. Sequential Bayesian importance sampling

Making use of the Markovian property in (13), we can have
the following sequential BIS method to approximate the pos-
terior distribution p(Θ(1 : t)|Yl(1 : t)). Basically, given an
estimate of the posterior distribution at the previous time
t−1, the method updates estimate of p(Θ(1 : t)|Yl(1 : t)) by
combining a prediction step from a proposal sampling dis-
tribution in (24) and (25), and a sampling weight updating
step in (26).

Suppose that a sequence of parameters Θ̂(1 : t − 1) up
to the previous time t − 1 is given. By Markovian property

in (13), the posterior distribution of Θ(1 : t) = (Θ̂(1 : t −
1)θ(t)) given Yl(1 : t) can be written as

p
(
Θ(1 : t)|Yl(1 : t)

)∝ p
(
Yl(t)|θ(t)

)
p
(
θ(t)|θ̂(t − 1)

)

×
t−1∏
τ=2

p
(
Yl(τ)|θ̂(τ)

)
p
(
θ̂(τ)|θ̂(τ−1)

)

× p
(
Yl(1)|θ̂(1)

)
p
(
θ̂(1)

)
.

(21)

We assume that the proposal distribution is in fact given
as

q
(
Θ(1 : t)|Yl(1 : t)

)
= q

(
Yl(t)|θ(t)

)
q
(
θ(t)|θ̂(t − 1)

)

×
t−1∏
τ=2

q
(
θ̂(τ)|θ̂(τ − 1)

)
q
(
Yl(τ)|θ̂(τ)

)

× q
(
Yl(1)|θ̂(1)

)
q
(
θ̂(1)

)
.

(22)

Plugging (21) and (22) into (19), we can update weight in a
recursive way; that is,

w(i)(1 : t) = p
(
Yl(t)|θ(i)(t)

)
p
(
θ(i)(t)|θ̂(i)(t − 1)

)
q
(
Yl(t)|θ(i)(t)

)
q
(
θ(i)(t)|θ̂(i)(t − 1)

)

×
∏t−1

τ=2 p
(
θ̂(i)(τ)|θ̂(i)(τ − 1)

)
p
(
Yl(τ)|θ̂(i)(τ)

)
∏t−1

τ=2 q
(
θ̂(i)(τ)|θ̂(i)(τ − 1)

)
q
(
Yl(τ)|θ̂(i)(τ)

)

× p
(
Yl(1)|θ̂(i)(1)

)
p
(
θ̂(i)(1)

)
q
(
Yl(1)|θ̂(i)(1)

)
q
(
θ̂(i)(1)

)

= w(i)(1 : t−1)
p
(
Yl(t)|θ(i)(t)

)
p
(
θ(i)(t)|θ̂(i)(t−1)

)
q
(
Yl(t)|θ(i)(t)

)
q
(
θ(i)(t)|θ̂(i)(t−1)

) .
(23)

Such a time-recursive evaluation of weights can be further
simplified by allowing proposal distribution to be the prior
distribution of the parameters. In this paper, the proposal
distribution is given as

q
(
Yl(t)|θ(i)(t)

) = 1, (24)

q
(
θ(i)(t)|θ̂(i)(t−1)

)=as(i)
t−1s

(i)
t
πs(i)

t k(i)
t
N
(
µl(i)
s(i)
t k(i)

t
(t);µl

s(i)
t k(i)

t
,Σl

s(i)
t k(i)

t

)
.

(25)

Consequently, the above weight is updated by

w(i)(t) ∝ w(i)(t − 1)p
(
Yl(t)|θ(i)(t)

)
p
(
µl(i)n (t)|µ̂l(i)n (t − 1)

)
.

(26)

Remark 2. Given Θ̂(1 : t − 1), there is an optimal pro-
posal distribution that minimizes variance of the importance
weights. This optimal proposal distribution is in fact the pos-
terior distribution p(θ(t)|Θ̂(1 : t − 1),Yl(1 : t)) [23, 24].
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3.3. Rao-Blackwellization and the extended
Kalman filter

Note that µl(i)n (t) in particle (i) is assumed to be distributed

in N (µl(i)n (t);µl(i)n (t − 1),Vl
n). By the Rao-Blackwell theo-

rem [25], the variance of weight in (26) can be reduced by

marginalizing out µl(i)n (t). Therefore, we have

w(i)(t) ∝ w(i)(t − 1)

×
∫
µl(i)n (t)

p
(
Yl(t)|θ(i)(t)

)
× p

(
µl(i)n (t)|µ̂l(i)n (t − 1)

)
dµl(i)n (t).

(27)

Referring to (9) and (10), we notice that the integrand

p(Yl(t)|θ(i)(t))p(µl(i)n (t)|µ̂l(i)n (t − 1)) is a state-space model

by (7) and (8). In this state-space model, given s(i)
t , k(i)

t ,

and µl(i)
s(i)
t k(i)

t
(t), µl(i)n (t) is the hidden continuous-valued vector

distributed in N (µl(i)n (t); µ̂l(i)n (t − 1),Vl
n), and Yl(t) is the

observed signal of this model. This integral in (27) can
be analytically obtained if we linearize (7) with respect to

µl(i)n (t). The linearized state-space model provides an ex-
tended Kalman filter (EKF) (see Appendix B for the detail

of EKF), and the integral is p(Yl(t)|s(i)
t , k(i)

t ,µl(i)
s(i)
t k(i)

t
(t), µ̂l(i)n (t−

1),Yl(t − 1)), which is the predictive likelihood shown in
(B.1). An advantage of updating weight by (27) is its sim-
plicity of implementation.

Because the predictive likelihood is obtained from EKF,
the weight w(i)(t) may not asymptotically approach the target
posterior distribution. One way to achieve asymptotically the
target posterior distribution may follow a method called the
extended Kalman particle filter in [26], where the weight is
updated by

w(i)(t)

∝ w(i)(t − 1)
p
(
Yl(t)|θ(i)(t)

)
p
(
µl(i)n (t)|µ̂l(i)n (t − 1)

)
q
(
µl(i)n (t)|µ̂l(i)n (t − 1), s(i)

t , k(i)
t ,µl(i)

s(i)
t k(i)

t
(t),Yl(t)

) ,

(28)

and the proposal distribution for µl(i)n (t) is from the posterior

distribution of µl(i)n (t) by EKF; that is,

q
(
µl(i)n (t)|µ̂l(i)n (t − 1), s(i)

t , k(i)
t ,µl(i)

s(i)
t k(i)

t
(t),Yl(t)

)

= N
(
µl(i)n (t);µl(i)n (t − 1) + G(i)(t)α(i)(t − 1),K (i)(t)

)
,

(29)

where Kalman gain G(i)(t), innovation vector α(i)(t − 1),
and posterior variance K (i)(t) are respectively given in (B.7),
(B.2), and (B.4).

However, for the following reasons, we did not apply the
stricter extended Kalman particle filter to our problem. First,
the scheme in (28) is not Rao-Blackwellized. The variance of
sampling weights might be larger than the Rao-Blackwellized
method in (27). Second, although observation function (7) is

nonlinear, it is convex and continuous. Therefore, lineariza-
tion of (7) with respect to µln(t) may not affect the mode
of the posterior distribution p(µln(1 : t)|Yl(1 : t)). By the
asymptotic theory (see [25, page 430]), under the mild con-
dition that the variance of noise Nl(t) (parameterized by
Vl
n) is finite, bias for estimating µ̂ln(t) by MMSE estimation

via (17) with weight given by (27) may be reduced as the
number of particles N grows large. (However, unbiasedness
for estimating µ̂ln(t) may not be established since there are
zero derivatives with respect to the parameter µln(t) in (7).)
Third, evaluation of (28) is computationally more expen-
sive than (27), because (28) involves calculation processes on
two state-space models. We will show some experiments in
Section 4.1 to support the above considerations.

Remark 3. Working in linear spectral domain in (2) for
noise estimation does not require EKF. Thus, if the noise
parameter in Θ(t) and the observations are both in the lin-
ear spectral domain, the corresponding sequential BIS can
achieve asymptotically the target posterior distribution (12).
In practice, however, due to the large variance in the lin-
ear spectral domain, we may frequently encounter numeri-
cal problems that make it difficult to build an accurate sta-
tistical model for both clean speech and noise. Compress-
ing linear spectral power into log-spectral domain is com-
monly used in speech recognition to achieve more accurate
models. Furthermore, because the performance by adapting
acoustic models (modifying mean and variance of acous-
tic models) is usually higher than enhanced noisy speech
signals for noisy speech recognition [10], in the context of
speech recognition, it is beneficial to devise an algorithm
that works in the domain for building acoustic models. In
our examples, acoustic models are trained from cepstral or
log-spectral features, thus, the parameter estimation algo-
rithm is devised in the log-spectral domain, which is lin-
early related to the cepstral domain. We will show later that
the estimated noise parameter µ̂ln(t) substitutes µ̂ln using a
log-add method (36) to adapt acoustic model mean vec-
tors. Thus, to avoid inconsistency due to transformations be-
tween different domains, the noise parameter may be esti-
mated in log-spectral domain, instead of linear spectral do-
main.

3.4. Avoiding degeneracy by resampling

Since the above particles are discrete approximations of the
posterior distribution p(Θ(1 : t)|Yl(1 : t)), in practice, after
several steps of sequential BIS, the weights of not all but some
particles may become insignificant. This could cause a large
variance in the estimate. In addition, it is not necessary to
compute particles with insignificant weights. Selection of the
particles is thus necessary to reduce the variance and to make
efficient use of computational resources.

Many methods for selecting particles have been pro-
posed, including sampling-importance resampling (SIR)
[27], residual resampling [28], and so forth. We apply resid-
ual resampling for its computational simplicity. This method
basically avoids degeneracy by discarding those particles with
insignificant weights, and in order to keep the number of the



2372 EURASIP Journal on Applied Signal Processing

particles constant, particles with significant weights are du-
plicated. The steps are as follows. Firstly, set Ñ (i) = �Nw̃(i)(1 :
t)�. Secondly, select the remaining N̄ = N −∑N

i=1 Ñ
(i) parti-

cles with new weights ẃ(i)(1 : t) = N̄−1(w̃(i)(1 : t)N − Ñ (i)),
and obtain particles by sampling in a distribution approx-
imated by these new weights. Finally, add the particles to
those obtained in the first step. After this residual sampling
step, the weight for each particle is 1/N . Besides compu-
tational simplicity, residual resampling is known to have
smaller variance varN (i) = N̄ẃ(i)(1 : t)(1 − ẃ(i)(1 : t))
compared to that of SIR (which is varN (i)(t) = Nw̃(i)(1 :
t)(1− w̃(i)(1 : t))). We denote the particles after the selection
step as {Θ̃(i)(1 : t); i = 1 · · ·N}.

After the selection step, the discrete nature of the approx-
imation may lead to large bias/variance, of which the ex-
treme case is that all the particles have the same parameters
estimated. Therefore, it is necessary to introduce a resam-
pling step to avoid such degeneracy. We apply a Metropolis-
Hastings smoothing [19] step in each particle by sampling
a candidate parameter given the currently estimated param-
eter according to the proposal distribution q(θ�(t)|θ̃(i)(t)).
For each particle, a value is calculated as

g(i)(t) = g(i)
1 (t)g(i)

2 (t), (30)

where g(i)
1 (t) = p((Θ̃(i)(t − 1)θ�(t))|Yl(1 : t))/p(Θ̃(i)(1 : t)|

Yl(1 : t)) and g(i)
2 (t) = q(θ̃(i)(t)|θ�(t))/q(θ�(t)|θ̃(i)(t)).

Within an acceptance possibility min{1, g(i)(t)}, the Markov
chain then moves towards the new parameter θ�(t); other-
wise, it remains at the original parameter.

To simplify calculations, we assume that the proposal dis-
tribution q(θ�(t)|θ̃(i)(t)) is symmetric.5 Note that p(Θ̃(i)(1 :
t)|Yl(1 : t)) is proportional to w̃(i)(1 : t) up to a scalar factor.
With (27), (B.1), and w̃(i)(1 : t− 1) = 1/N , we can obtain the
acceptance possibility as

min


1,

p
(
Yl(t)|s�(i)

t , k�(i)
t ,µl(i)

s�(i)
t k�(i)

t
(t), µ̂l(i)n (t−1),Yl(t−1)

)
p
(
Yl(t)|s̃(i)

t , k̃(i)
t , µ̃l(i)

s̃(i)
t k̃(i)

t
(t), µ̂l(i)n (t−1),Yl(t−1)

)

.

(31)

Denote the obtained particles hereafter as {Θ̂(i)(1 : t); i =
1, . . . ,N} with equal weights.

3.5. Noise parameter estimation via the sequential
Monte Carlo method

Following the above considerations, we present the imple-
mented algorithm for noise parameter estimation. Given
that, at time t−1, N particles {Θ̂(i)(1 : t−1); i = 1, . . . ,N} are

5Generating θ�(t) involves sampling speech state s�t from s̃(i)1:t according

to a first-order Markovian transition probability p(s�t |s̃(i)t ) in the graphical
model in Figure 2. Usually, this transition probability matrix is not symmet-

ric; that is, p(s�t |s̃(i)t ) �= p(s̃(i)t |s�t ). Our assumption of symmetric proposal
distribution q(θ�(t)|θ̃(i)(t)) is for simplicity in calculating an acceptance
possibility.

distributed approximately according to p(Θ(1 : t − 1)|Yl(1 :
t − 1)), the sequential Monte Carlo method proceeds as fol-
lows at time t.

Algorithm 1.

Bayesian importance sampling step

(1) Sampling. For i = 1, . . . ,N , sample a proposal Θ̂(i)(1 :
t) = (Θ̂(i)(1 : t − 1)θ̂(i)(t)) by

(a) sampling ŝ(i)
t ∼ as(i)

t−1st
;

(b) sampling k̂(i)
t ∼ πŝ(i)

t kt
;

(c) sampling µ̂l(i)
ŝ(i)
t k̂(i)

t
(t) ∼ N (µl

ŝ(i)
t k̂(i)

t
(t);µl

ŝ(i)
t k̂(i)

t
,Σl

ŝ(i)
t k̂(i)

t
).

(2) Extended Kalman prediction. For i = 1, . . . ,N , evalu-
ate (B.2)–(B.7) for each particle by EKFs. Predict noise
parameter for each particle by

µ̂l(i)n (t) = µ̂l(i)n (t|t − 1), (32)

where µ̂l(i)n (t|t − 1) is given in (B.3).

(3) Weighting. For i = 1, . . . ,N , evaluate the weight of
each particle Θ̂(i) by

ŵ(i)(1 : t) ∝ ŵ(i)(1 : t − 1)p
(
Yl(t)|ŝ(i)

t , k̂(i)
t , µ̂l(i)

ŝ(i)
t (t)k̂(i)

t
(t),

µ̂l(i)n (t − 1),Yl(t − 1)
)

,

(33)

where the second term in the right-hand side of the
equation is the predictive likelihood, given in (B.1), of
the EKF.

(4) Normalization. For i = 1, . . . ,N , the weight of the ith
particle is normalized by

w̃(i)(1 : t) = ŵ(i)(1 : t)∑N
i=1 ŵ(i)(1 : t)

. (34)

Resampling

(1) Selection. Use residual resampling to select particles
with larger normalized weights and discard those par-
ticles with insignificant weights. Duplicate particles of
large weights in order to keep the number of particles
as N . Denote the set of particles after the selection step
as {Θ̃(i)(1 : t); i = 1, . . . ,N}. These particles have equal
weights w̃(i)(1 : t) = 1/N .

(2) Metropolis-Hastings smoothing. For i = 1, . . . ,N ,
sample Θ�(i)(1 : t) = (Θ̃(i)(1 : t − 1)θ�(t)) from
step (1) to step (3) in the Bayesian importance sam-
pling step with starting parameters given by Θ̃(i)(1 : t).
For i = 1, . . . ,N , set an acceptance possibility by (31).
For i = 1, . . . ,N , accept Θ�(i)(1 : t) (i.e., substitute
Θ̃(i)(1 : t) by Θ�(i)(1 : t)) with probability r(i)(t) ∼
U(0, 1). The particles after the step are {Θ̂(i)(1 : t); i =
1, . . . ,N} with equal weights ŵ(i)(1 : t) = 1/N .
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Table 1: State estimation experiment results. The results show the mean and variance of the mean squared error (MSE) calculated over 100
independent runs.

Algorithm
MSE

Averaged execution time (s)
Mean Variance

Particle filter 8.713 49.012 5.338

Extended Kalman particle filter 6.496 34.899 13.439

Rao-Blackwellized particle filter 4.559 8.096 6.810

Noise parameter estimation
(1) Noise Parameter Estimation. With the above generated

particles at each time t, estimation of the noise param-
eter µln(t) may be acquired by MMSE. Since each par-
ticle has the same weight, MMSE estimation of µ̂ln(t)
can be easily carried out as

µ̂ln(t) = 1
N

N∑
i=1

µ̂l(i)n (t). (35)

The computational complexity of the algorithm at each
time t is O(2N) and is roughly equivalent to 2N EKFs. These
steps are highly parallel, and if resources permit, can be im-
plemented in a parallel way. Since the sampling is based on
BIS, the storage required for the calculation does not change
over time. Thus the computation is efficient and fast.

Note that the estimated µ̂ln(t) may be biased from the
true physical mean vector for log-spectral noise power Nl(t),
because the function plotted in Figure 1 has zero derivative
with respect to nlj(t) in regions where nlj(t) is much smaller

than xlj(t). For those µ̂l(i)n (t) which are initialized with val-

ues larger than speech mean vector µl(i)
s(i)
t k(i)

t
, updating by EKF

may be lower bounded around the speech mean vector. As a

result, the updated µ̂ln(t) = 1/N
∑N

i=1 µ̂
l(i)
n (t) may not be the

true noise log-spectral power.

Remark 4. The above problem, however, may not hurt a
model-based noisy speech recognition system, since it is the
modified likelihood in (10) that is used to decode speech
signals.6 But in a speech enhancement system, noisy speech
spectrum is directly processed on the estimated noise param-
eter. Therefore, biased estimation of the noise parameter may
hurt performances more apparently than in a speech recog-
nition system.

4. EXPERIMENTS

We first conducted synthetic experiments in Section 4.1 to
compare three types of particle filters presented in Sections
3.2 and 3.3. Then, in the following sections, we present ap-
plications of the above noise parameter estimation method

6The likelihood of the observed signal Yl(t), given speech model param-
eter and a noise parameter, is the same as long as the noise parameter is

much smaller than the speech parameter µl(i)
s
(i)
t k

(i)
t

(t).

based on Rao-Blackwellized particle filter (27). We consider
particularly difficult tasks for speech processing, speech en-
hancement, and noisy speech recognition in nonstationary
noisy environments. We show in Section 4.2 that the method
can track noise dynamically. In Section 4.3, we show that the
method improves system robustness to noise in an ASR sys-
tem. Finally, we present results on speech enhancement in
Section 4.4, where the estimated noise parameter is used in a
time-varying linear filter to reduce noise power.

4.1. Synthetic experiments

This section7 presents some experiments8 to show the va-
lidity of Rao-Blackwellized filter applied to the state-space
model in (7) and (8). A sequence of µln(1 : t) was generated
from (8), where state-process noise variance Vl

n was set to
0.75. Speech mean vector µlstkt (t) in (7) was set to a constant

10. The observation noise variance Σl
stkt

was set to 0.00005.
Given only the noisy observation Yl(1 : t) for t = 1, . . . , 60,
different filters (particle filter by (26), extended Kalman par-
ticle filter by (28), and Rao-Blackwellized particle filter by
(27)) were used to estimate the underlying state sequence
µln(1 : t). The number of particles in each type of filter was
200, and all the filters applied residual resampling [28]. The
experiments were repeated for 100 times with random re-
initialization of µln(1) for each run. Table 1 summarizes the
mean and variance of the MSE of the state estimates, together
with the averaged execution time of each filter. Figure 3 com-
pares the estimates generated from a single run of the differ-
ent filters. In terms of MSE, the extended Kalman particle
filter performed better than the particle filter. However, the
execution time of the extended Kalman particle filter was the
longest (more than two times longer than that of particle fil-
ter (26)). Performance of the Rao-Blackwellized particle fil-
ter of (27) is clearly the best in terms of MSE. Notice that its
averaged execution time was comparable to that of particle
filter.

4.2. Estimation of noise parameter

Experiments were performed on the TI-Digits database
downsampled to 16 kHz. Five hundred clean speech utter-
ances from 15 speakers and 111 utterances unseen in the
training set were used for training and testing, respectively.

7A Matlab implementation of the synthetic experiments is available by
sending email to the corresponding author.

8All variables in these experiments are one dimensional.
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Figure 3: Plot of estimates generated by the different filters on the
synthetic state estimation experiment versus true state. PF denotes
particle filter by (26). PF-EKF denotes particle filter with EKF pro-
posal sampling by (28). PF-RB denotes Rao-Blackwellized particle
filter by (27).

Digits and silence were respectively modeled by 10-state and
3-state whole-word HMMs with 4 diagonal Gaussian mix-
tures in each state.

The window size was 25.0 milliseconds with a 10.0
milliseconds shift. Twenty-six filter banks were used in the
binning stage; that is, J = 26. Speech feature vectors were
Mel-scaled frequency cepstral coefficients (MFCCs), which
were generated by transforming log-spectral power spectra
vector with discrete Cosine transform (DCT). The baseline
system had 98.7% word accuracy for speech recognition un-
der clean conditions.

For testing, white noise signal was multiplied by a chirp
signal and a rectangular signal in the time domain. The
time-varying mean of the noise power as a result changed ei-
ther continuously, denoted as experiment A, or dramatically,
denoted as experiment B. SNR of the noisy speech ranged
from 0 dB to 20.4 dB. We plotted the noise power in the 12th
filter bank versus frames in Figure 4, together with the esti-
mated noise power by the sequential method with the num-
ber of particles N set to 120 and the environment driving
noise variance Vl

n set to 0.0001. As a comparison, we also
plotted in Figure 5 the noise power and its estimate by the
method with the same number of particles but larger driving
noise variance set to 0.001.

Four seconds of contaminating noise were used to initial-

ize µ̂ln(0) in the noise estimation method. Initial value µ̂l(i)n (0)
of each particle was obtained by sampling from N (µ̂ln(0) +
ζ(0), 10.0), where ζ(0) was distributed in U(−1.0, 9.0). To
apply the estimation algorithm in Section 3.5, observation
vectors were transformed into log-spectral domain.

Based on the results in Figures 4 and 5, we make the fol-
lowing observations. First, the method can track the evolu-
tion of the noise power. Second, the larger driving noise vari-
ance Vl

n will make faster convergence but larger estimation
error. Third, as discussed in Section 3.5, there was large bias
in the region where noise power changed from large to small.
Such observation was more explicit in experiment B (noise
multiplied with a rectangular signal).

4.3. Noisy speech recognition in time-varying noise

The experiment setup was the same as in the previous ex-
periments in Section 4.2. Features for speech recognition
were MFCCs plus their first- and second-order time differ-
entials. Here, we compared three systems. The first was the
baseline trained on clean speech without noise compensa-
tion (denoted as Baseline). The second was the system with
noise compensation, which transformed clean speech acous-
tic models by mapping clean speech mean vector µlstkt at each
state st and Gaussian density kt with the function [8]

µ̂lstkt = µlstkt + log
(
1 + exp

(
µ̂ln − µlstkt

))
, (36)

where µ̂ln was obtained by averaging noise log-spectral in
noise-alone segments in the testing set. This system was de-
noted as stationary noise assumption (SNA). The third sys-
tem used the method in Section 3.5 to estimate the noise
parameter µ̂ln(t) without training transcript. The estimated
noise parameter was plugged into µ̂ln in (36) for adapting
acoustic mean vector at each time t. This system was denoted
according to the number of particles and variance of the en-
vironment driving noise Vl

n.

4.3.1. Results in the simulated nonstationary noise

In terms of recognition performance in the simulated non-
stationary noise described in Section 4.2, Table 2 shows that
the method can effectively improve system robustness to
the time-varying noise. For example, with 60 particles and
the environment driving noise variance Vl

n set to 0.001, the
method improved word accuracy from 75.3%, achieved by
SNA, to 94.3% in experiment A. The table also shows that
the word accuracies can be improved by increasing the num-
ber of particles. For example, given driving noise variance Vl

n

set to 0.0001, increasing the number of particles from 60 to
120 could improve word accuracy from 77.1% to 85.8% in
experiment B.

4.3.2. Speech recognition in real noise

In this experiment, speech signals were contaminated by
highly nonstationary machine gun noise in different SNRs.
The number of particles was set to 120, and the environment
driving noise variance Vl

n was set to 0.0001. Recognition per-
formances are shown in Table 3, together with Baseline and
SNA. It is observed that, in all SNR conditions, the method in
Section 3.5 further improved system performances in com-
parison with SNA. For example, in 8.9 dB SNR, the method
improved word accuracy from 75.6% by SNA to 83.1%. As
a whole, it reduced the word error rate by 39.9% more than
SNA.
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Figure 4: Estimation of the time-varying parameter µln(t) by the sequential Monte Carlo method at the 12th filter bank in experiment A.
The number of particles is 120. The environment driving noise variance is 0.0001. The solid curve is the true noise power, whereas the
dash-dotted curve is the estimated noise power.
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Figure 5: Estimation of the time-varying parameter µln(t) by the sequential Monte Carlo method at the 12th filter bank in experiment A. The
number of particles is 120. The environment driving noise variance is 0.001. The solid curve is the true noise power, whereas the dash-dotted
curve is the estimated noise power.

4.4. Perceptual speech enhancement

Enhanced speech x̂(t) is obtained by filtering the noisy
speech sequence y(t) via a time-varying linear filter h(t); that
is,

x̂(t) = h(t)∗ y(t). (37)

This process can be studied in the frequency domain as mul-
tiplication of the noisy speech power spectrum ylin

j (t) by a

time-varying linear coefficient at each filter bank; that is,

x̂lin
j (t) = hj(t) · ylin

j (t), (38)

where hj(t) is the gain at filter bank j at time t. Referring to
(2), we can expand it as

x̂lin
j (t) = hj(t)xlin

j (t) + hj(t)nlin
j (t). (39)

We are left with two choices for linear time-varying fil-
ters.
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Table 2: Word accuracy (%) in simulated nonstationary noise, achieved by the sequential Monte Carlo method in comparison with baseline
without noise compensation, denoted as Baseline, and noise compensation assuming stationary noise, denoted as stationary noise assump-
tion.

Experiment Baseline

Stationary No. of particles = 60 No. of particles = 120

noise assumption Vl
n Vl

n

0.001 0.0001 0.001 0.0001

A 48.2 75.3 94.3 94.0 94.3 94.6

B 53.0 78.0 82.2 77.1 85.8 85.8

Table 3: Word accuracy (%) in machine gun noise, achieved by the sequential Monte Carlo method in comparison with baseline without
noise compensation, denoted as Baseline, and noise compensation assuming stationary noise, denoted as stationary noise assumption.

SNR (dB) Baseline Stationary noise assumption No. of particles = 120, Vl
n = 0.0001

28.9 90.4 92.8 97.6

14.9 64.5 76.8 88.3

8.9 56.0 75.6 83.1

1.6 50.0 69.0 72.9

(1) Wiener filter constructs the coefficient as

hj(t) = 1− n̂lin
j (t)

ylin
j (t)

, (40)

where n̂lin
j (t) is the estimate of noise power spectrum.

(2) The criterion for perceptual filter is to construct hj(t)
so that the amplitude of the filtered noise power spec-
tra hj(t) · nlin

j (t) is below the masking threshold of the
denoised speech; that is,

hj(t) · nlin
j (t) ≤ Tj(t), (41)

where Tj(t) is the masking threshold of the denoised
speech signal. The threshold is a function of clean
speech spectrum xlin

j (t). Since xlin
j (t) is not directly ob-

served, the following equation is used instead, which
makes the masking threshold a function of the esti-
mated noise power spectra n̂lin

j (t):

x̂lin
j (t) = ylin

j (t)− n̂lin
j (t). (42)

The perceptual filter exploits the masking properties of
the human auditory system, and it has been employed by
many researchers (e.g., [14]) in order to provide improved
performance over the Wiener filter in low SNR conditions.
Masking occurs because the auditory system is incapable of
distinguishing two signals close in time or frequency domain.
This is manifested by an evaluation of the minimum thresh-
old of audibility due to a masker signal. Masking has been
widely applied to speech and audio coding [15]. We consider
frequency masking [15] when a weak signal is made inaudi-
ble by a stronger signal occurring simultaneously.

Both Wiener filter and perceptual filter require the esti-
mated noise power spectrum n̂lin

j (t). Under the assumption
of stationary noise, the noise power spectrum can be esti-
mated from noise-alone segments provided by explicit VAD,
for example, speech enhancement scheme in [7]. However,
in real applications, we encounter time-varying noise, which
may change its statistics during speech utterances.

The objective of this section is to test the above de-
vised method in Section 3.5 for speech enhancement in time-
varying noise. The estimated µ̂ln(t) is converted to linear
spectral domain µ̂lin

n (t) by exponential operation. Corre-
sponding jth element in µ̂lin

n (t) substitutes n̂lin
j (t) in (40)

and (42), respectively, to construct Wiener filter and percep-
tual filter. Therefore, the proposed speech enhancement al-
gorithm is a combination of sequential noise parameter es-
timation by sequential Monte Carlo method and speech en-
hancement method with time-varying linear filtering. Dia-
gram of the algorithm is shown in Figure 6. At each frame
t, the algorithm carries out the noise parameter estimation
in the log-spectral domain and perceptual enhancement of
noisy speech in the time domain. Noise parameter estimation
in the module “Noise parameter estimation” works in the
log-spectral domain of input speech signals. Estimation of
noise parameter is given by Algorithm 1. With the estimated
noise parameter at the current frame, the module “wiener fil-
ter” outputs the enhanced speech spectrum in linear spectral
domain, and the enhanced speech spectrum is used in
“masking threshold calculation.” Perceptual filter based on
masking threshold and the estimated noise parameter is con-
structed in the module “perceptual filter.” With the time-
varying perceptual filter constructed, input noisy speech sig-
nal is filtered in time domain in the module “filtering”
to obtain perceptually enhanced signal x̂(t). A detailed de-
scription of this algorithm is provided in the following sec-
tions.



Time-Varying Noise Estimation Using Monte Carlo Method 2377

Log-spectral
conversion

Noise parameter
estimation

Linear spectral
conversion

Voice activity
detection

y(t)

Windowing
+

FFT

Wiener filter
Masking threshold

calculation

x̂(t)
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Figure 6: Diagram of the proposed speech enhancement method. Noisy signal y(t) is converted into linear spectral amplitude in
“windowing + FFT.” Noise parameter is sequentially estimated in “noise parameter estimation.” The estimated noise parameter is con-
verted back into linear spectral domain and is fed into “Wiener filter” to obtain enhanced linear power spectrum. The enhanced spectrum
is inputted to “masking threshold calculation,” and the obtained masking threshold is used in perceptual filter with the estimated noise pa-
rameter in linear spectral domain. Module “perceptual filter” outputs filter coefficients for speech enhancement in “filtering,” which outputs
the enhanced signal x̂(t).

4.4.1. Masking threshold calculation

The masking threshold Tj(t) is obtained through modeling
the frequency selectivity of the human ear and its masking
property. This paper applies a computational model of mask-
ing by Johnston [15].

Frequency masking threshold calculation
(1) Frequency analysis. According to a mapping between
linear frequency and Bark frequency [14], power spectrum
xlin
j (t) after short-time Fourier transform (STFT) of input

speech signal is combined in each Bark bank b (1 ≤ b ≤ B)
by

xlin
b (t) =

bH∑
j=bL

xlin
j (t), (43)

where bL and bH denote the lowest and the highest frequency
for the bark index b.

(2) Convolution with spreading function. The spreading
function S is used to estimate the effects of masking across
critical bands. One example of the spreading function Bb at
b = 2 is plotted in Figure 7. The spread Bark spectrum at
bark index b is denoted as Clin

b (t) = Bbx
lin
b (t).

(3) Relative threshold calculation based on tone-like or
noise-like determination. The tone-like or noise-like is de-
termined by spectral flatness measure (SFM), which is calcu-
lated by measuring the decibel (dB) of the ratio of the geo-
metric mean of the power spectrum to the arithmetic mean
of the power spectrum.

(4) Masking threshold calculation. The relative threshold
is subtracted from the spread critical band spectrum to yield
the spread threshold estimate.

(5) Renormalization and including absolute threshold
information [15].

(6) Converting the masking threshold from Bark fre-
quency to linear frequency domain. The masking threshold
in linear spectral domain Tj(t) is obtained as a result.
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Figure 7: Spreading function for the noise masking threshold cal-
culation. The plot shows the spreading function applied to critical
band at 2.

An example of masking threshold in linear spectral do-
main for a given input spectrum is plotted in Figure 8. The
sampling frequency is 8 kHz. Therefore, the total number of
critical bands is B = 18. In the method presented above, the
masking threshold is calculated from the clean speech sig-
nal.

4.4.2. Wiener filter and perceptual filter

We apply the method in Section 3.5 for time-varying noise
parameter estimation. The jth element in µ̂ln(t) is converted
to linear spectral domain by exponential operation and then
substitutes n̂lin

j (t) in (40) and (42), respectively, for Wiener
filter and perceptual filter. Masking threshold of the percep-
tual filter is obtained from Section 4.4.1.
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4.4.3. Experimental results

Experiments were performed on Aurora 2 database. Speech
models were trained on 8840 clean speech utterances. The
model was an HMM with 18 states and 8 Gaussian mix-
tures in each state. Noise model was a single Gaussian
density with time-varying mean vector. Window size was
25.0 milliseconds with a 10.0 milliseconds shift. J was set to
65.

We compared three systems. The first system, denoted
as Baseline, was a speech enhancement system based on
ETSI proposal [7], in which a VAD is used for decision
of speech/nonspeech segments. Noise parameters were esti-
mated from segmented noise-alone frames. The second sys-
tem, denoted as Known, differs from the first system in that
the Wiener filter was designed with noise parameters esti-
mated by the proposed method. The third system, denoted
as Perceptual, was a perceptual filter with noise parameter
estimated by the proposed method.

VAD was initialized during the first three frames in each
utterance. Driving variance Vl

n in (9) was set to 0.0003. Num-
ber of particles (N in (35)) was set to 800.

Noise signals were (1) simulated nonstationary noise,
generated by multiplying white noise with a time-varying
continuous factor in time domain, (2) Babble noise, and (3)
Restaurant noise.

4.4.4. Performance evaluation

Spectrogram

An example of the original clean speech signals, noisy signals
in the simulated nonstationary noise, and enhanced signals
are shown in Figure 9. The contrast is more evident by view-
ing their corresponding spectrogram in Figure 10. It is ob-
served that the noise power appeared after 0.4 seconds, which
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Figure 9: An example of signals. (a) Clean speech signal in En-
glish “Oh Oh Two One Six.” (b) Noisy signal (noise is the simulated
nonstationary noise and SNR is −0.2 dB). (c) Enhanced speech sig-
nal by Wiener filter (system Baseline). (d) Enhanced speech signal
by Wiener filter with noise parameters estimated by the proposed
method (system Known). (e) Enhanced speech signal by perceptual
filter with noise parameters estimated by the proposed method (sys-
tem Perceptual).

was almost at the time when the speech segments occurred.
Figure 10c shows that Baseline cannot handle this nonsta-
tionarity of the noise, and the enhanced signal by the system
still contains much noise power in the speech segments. On
the contrary, with the proposed method, the enhanced signal
by Known has reduced the noise power in speech segments
(shown in Figure 10d). Perceptual reduces noise in the en-
hanced signal to a greater extent than the other two systems
(shown in Figure 10e). An example in Babble noise is shown
in Figure 11, and the corresponding spectrogram is shown in
Figure 12.
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Figure 10: An example of the spectrum of the signals (from top to down). (a) Spectrogram of the clean speech signal in English “Oh Oh
Two One Six.” (b) Spectrogram of the noisy signal (noise is the simulated nonstationary noise and SNR is −0.2 dB). (c) Spectrogram of the
enhanced signal by Wiener filter (system Baseline). (d) Spectrogram of the enhanced signal by Wiener filter with noise parameters estimated
by the proposed method (system Known). (e) Spectrogram of the enhanced signal by perceptual filter with noise parameters estimated by
the proposed method (system Perceptual).
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Figure 11: An example of signals. (a) Clean speech signal in English
“Oh Oh Two One Six.” (b) Noisy signal (noise is babble and SNR
is −1.86 dB). (c) Enhanced speech by Wiener filter (system Base-
line). (d) Enhanced speech by Wiener filter with noise parameter
estimated by the proposed method (system Known). (e) Enhanced
speech by perceptual filter with noise parameter estimated by the
proposed method (system Perceptual).

However, the nonstationary noise was not perfectly re-
moved in the final part of the sequence in Figure 10. This was
in part due to inefficiency in the proposal distribution. Note
that the speech states and mixtures were sampled according
to the proposal distribution in (25). Thus, at the end of an
utterance, the proposed speech states might not yet reach the

states of silence. As a result, the speech parameter µ̂l(i)
s(i)
t k(i)

t
(t)

might still mask (be larger than) the noise parameter µ̂ln(t).
In this situation, the noise parameter may not have been
updated (remained small if previously estimated noise pa-

rameter was smaller than speech parameters µ̂l(i)
s(i)
t k(i)

t
) because

the Kalman gain in EKF was (approaching) zero. Therefore,
noise in the final part of the sequence cannot be perfectly re-
moved in some utterances.

Another direction in which the method needs to be im-
proved is obvious in Figure 12. In this figure, high-frequency
components are attenuated more than necessary. Since the
Mel scale and Bark scale are wider in higher-frequency com-
ponents than those in the lower-frequency components,
noise parameters may not be accurately estimated due to
frequency uncertainty between linear frequency and Mel
scale (or Bark scale). Constructing speech enhancement al-
gorithms that work directly in linear spectral domain (not
Bark-scaled log-spectral domain in this work) may achieve
higher frequency resolution and hence better enhancement
results.

SNR improvement

The amount of noise reduction is generally measured with
the segmental SNR (SegSNR) improvement—the difference
between input and output SegSNR:

GSNR=1
B

B−1∑
b=0

10 · log10
(1/D)

∑D−1
d=0 n2(d + Db)

(1/D)
∑D−1

d=0

[
x(d+Db)−x̂(d + Db)

]2 ,

(44)

where B represents the number of frames in the signal. D is
the number of observation samples per frame, and it is set to
256.

Figure 13 shows the SegSNR improvement obtained
from various noise types and at various noise levels. We
can see that the system Known with the sequential Monte
Carlo method has improved SegSNR over system Baseline.
Figure 13 also shows that both systems Known and Percep-
tual benefit from the sequential Monte Carlo method. Fur-
thermore, Perceptual shows much greater improvement than
Known, which implies that it is effective to employ human
auditory properties for speech enhancement.9

5. CONCLUSIONS AND DISCUSSIONS

We have presented a sequential Monte Carlo method for a
Bayesian estimation of time-varying noise parameters. This
method is derived from the general sequential Monte Carlo
method for time-varying parameter estimation, but with
particular considerations on time-varying noise parameter
estimation. The estimated noise parameters are used in a
Wiener filter and a perceptual filter for speech enhancement
in nonstationary noisy environments. We also demonstrate
that, with the estimated noise parameters, a sequential mod-
ification of the time-varying mean vector of speech models
can improve speech recognition performance in nonstation-
ary noise. The results show that it is a promising approach to
handle speech signal processing in nonstationary noise sce-
narios.

9However, as discussed in Section 4.4.4, because the system Perceptual
attenuated higher-frequency components more than traditional Wiener fil-
ters, the subjective quality of the perceptually enhanced speech signal in hu-
man hearing was in fact no better than that by Wiener filters.
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Figure 12: An example of the spectrum of the signals (from top to bottom). (a) Spectrogram of the clean speech signal in English “Oh Oh
Two One Six.” (b) Spectrogram of the noisy signal (noise is babble and SNR is−1.86 dB). (c) Spectrogram of the enhanced speech by Wiener
filter (system Baseline). (d) Spectrogram of the enhanced speech by Wiener filter with noise parameter estimated by the proposed method
(system Known). (e) Spectrogram of the enhanced speech by perceptual filter with noise parameter estimated by the proposed method
(system Perceptual).
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Figure 13: Segmental SNR improvement in the following noise:
(a) simulated nonstationary noise; (b) babble noise; (c) restaurant
noise. The tested systems are the following: (×) Wiener filter (sys-
tem Baseline); (	) Wiener filter with noise parameter estimated by
the proposed method (system Known); (o) Perceptual filter with
noise parameter estimated by the proposed method (system Per-
ceptual).

The sequential Monte Carlo method in this paper is suc-
cessfully applied to two seemingly different areas in speech
processing, speech enhancement, and speech recognition.
This is possible because the graphical model shown in
Figure 2 is applicable to the above two areas. The graphi-
cal model incorporates two hidden state sequences: one is
the speech state sequence for modeling transition of speech
units, and the other is a continuous-valued state sequence
for modeling noise statistics. With the sequential Monte
Carlo method, noise parameter estimation can be con-
ducted via sampling the speech state sequences and updating
continuous-valued noise states with 2N EKFs at each time.
The highly parallel scheme of the method allows an efficient
parallel implementation.

We are currently considering the following steps for im-
proved performance: (1) making use of more efficient pro-
posal distribution, for example, auxiliary sampling [29],
(2) accurate training of speech models, and (3) design of
algorithms working directly in linear spectral domain for
speech enhancement. Improvements may be achieved if ex-
plicit speech modeling, for example, autocorrelation model-
ing of speech signals [11], pitch model [30], and so forth,
can be incorporated in the framework. Because there is non-
linear function involved, we also believe that incorporating
smoothing techniques recently proposed for nonlinear time
series [31] may achieve improved performances.

APPENDICES

A. APPROXIMATION OF THE ENVIRONMENT
EFFECTS ON SPEECH FEATURES

Effects of additive noise on speech power at the jth filter bank
can be approximated by (2), where ylin

j (t), xlin
j (t), and nlin

j (t)
denote noisy speech power, speech power, and additive noise
power in filter bank j [8, 9].

In the log-spectral domain, this equation can be written
below as

log
(
xlin
j (t) + nlin

j (t)
)

= log xlin
j (t) + log

(
1 +

nlin
j (t)

xlin
j (t)

)

= log xlin
j (t) + log

(
1 + exp

(
lognlin

j (t)− log xlin
j (t)

))
.

(A.1)

Substituting xlj(t)= log xlin
j (t), nlj(t) = lognlin

j (t), and ylj(t) =
log ylin

j (t), we have (3).

B. EXTENDED KALMAN FILTER

The prediction likelihood of the EKF is given by [24]

p
(
Yl(t)|s(i)

t , k(i)
t ,µl(i)

s(i)
t k(i)

t
(t), µ̂l(i)n (t − 1),Yl(t − 1)

)

=
∫
µl(i)n (t)

p
(
Yl(t)|θ(i)(t)

)
p
(
µl(i)n (t)|µ̂l(i)n (t − 1)

)
dµl(i)n (t)

∝ exp
(
− 1

2
α(i)(t)T

(
C(i)(t)Σl

s(i)
t k(i)

t
C(i)(t)T + Vl

n

)−1
α(i)(t)

)
,

(B.1)
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where, respectively, the innovation vector α(i)(t), one-step

ahead prediction of noise parameter µ̂l(i)n (t|t−1), correlation

matrix of the error in µ̂l(i)n (t), correlation matrix of the error

in µ̂l(i)n (t|t − 1), measurement matrix at time t (obtained by

the first-order differentiation of (7) with respect to µl(i)n (t)),
and gain function G(i)(t) are given as

α(i)(t) = Yl(t)− µl(i)
s(i)
t k(i)

t
(t)

− log
(

1 + exp
(
µ̂l(i)n (t − 1)− µl(i)

s(i)
t k(i)

t
(t)
))

,
(B.2)

µ̂l(i)n (t|t − 1) = µ̂l(i)n (t − 1) + G(i)(t)α(i)(t − 1), (B.3)

K (i)(t) = K (i)(t, t − 1)−G(i)(t)C(i)(t)K (i)(t, t − 1), (B.4)

K (i)(t, t − 1) = K (i)(t − 1) + Vl
n, (B.5)

C(i)(t) =
exp

(
µ̂l(i)n (t|t − 1)− µl

s(i)
t k(i)

t
(t)
)

1 + exp
(
µ̂l(i)n (t|t − 1)− µl

s(i)
t k(i)

t
(t)
) , (B.6)

G(i)(t) = K (i)(t, t − 1)C(i)(t)T
[
C(i)(t)K (i)(t, t − 1)C(i)(t)T

+ Σl
s(i)
t k(i)

t

]−1
.

(B.7)
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This paper explores the use of particle filters for beat tracking in musical audio examples. The aim is to estimate the time-varying
tempo process and to find the time locations of beats, as defined by human perception. Two alternative algorithms are presented,
one which performs Rao-Blackwellisation to produce an almost deterministic formulation while the second is a formulation
which models tempo as a Brownian motion process. The algorithms have been tested on a large and varied database of examples
and results are comparable with the current state of the art. The deterministic algorithm gives the better performance of the two
algorithms.
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1. INTRODUCTION

Musical audio analysis has been a growing area for research
over the last decade. One of the goals in the area is fully auto-
mated transcription of real polyphonic audio signals, though
this problem is currently only partially solved. More realistic
sub-tasks in the overall problem exist and can be explored
with greater success; beat tracking is one of these and has
many applications in its own right (automatic accompani-
ment of solo performances [1], auto-DJs, expressive rhyth-
mic transformations [2], uses in database retrieval [3], meta-
data generation [4], etc.).

This paper describes an investigation into beat tracking
utilising particle filtering algorithms as a framework for se-
quential stochastic estimation where the state-space under
consideration is a complex one and does not permit a closed
form solution.

Historically, a number of methods have been used to at-
tempt solution of the problem, though they can be broadly
categorised into a number of distinct methodologies.1 The
oldest approach is to use oscillating filterbanks and to look
for the maximum output; Scheirer [7] typifies this approach
though Large [8] is another example. Autocorrelative meth-
ods have also been tried and Tzanetakis [3] or Foote [9] are

1A comprehensive literature review can be found in Seppänen [5] or
Hainsworth [6].

examples, though these tend to only find the average tempo
and not the phase (as defined in Section 2) of the beat. Mul-
tiple hypothesis approaches (e.g., Goto [10] or Dixon [11])
are very similar to more rigorously probabilistic approaches
(Laroche [12] or Raphael [13], for instance) in that they all
evaluate they likelihood of a hypothesis set; only the frame-
work varies from case to case. Klapuri [14] also presents a
method for beat tracking which takes the approach typified
by Scheirer [7] and applies a probabilistic tempo smooth-
ness model to the raw output. This is tested on an extensive
database and the results are the current state of the art.

More recently, particle filters have been applied to the
problem; Morris and Sethares [15] briefly present an al-
gorithm which extracts features from the signal and then
uses these feature vectors to perform sequential estimation,
though their implementation is not described. Cemgil [16]
also uses a particle filtering method in his comprehensive
paper applying Monte Carlo methods to the beat tracking
of expressively performed MIDI signals.2 This model will be
discussed further later, as it shares some aspects with one of
the models described in this paper.

The remainder of the paper is organised as follows:
Section 2 introduces tempo tracking; Section 3 covers basic

2MIDI stands for “musical instrument digital interface” and is a language
for expressing musical events in binary. In the context described here, the
note start times are extracted from the MIDI signal.
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particle filtering theory. Sections 4, 5 and 6 discuss onset de-
tection and the two beat tracking models proposed. Results
and discussion are presented in Sections 7 and 8, and conclu-
sions in Section 9.

2. TEMPO TRACKING AND BEAT PERCEPTION

So what is beat tracking?3 The least jargon-ridden descrip-
tion is that it is the pulse defined by a human listener tap-
ping in time to music. However, the terms tempo, beat and
rhythm need to be defined. The highest level descriptor is
the rhythm; this is the full description of every timing re-
lationship inside a piece of music. However, Bilmes [17]
breaks this down into four subdivisions: the hierarchical met-
rical structure which describes the idealised timing relation-
ships between musical events (as they might exist in a mu-
sical score for instance), tempo variations which link these
together in a possibly time varying flow, timing deviations
which are individual timing discrepancies (“swing” is an
example of this) and finally arrhythmic sections. If one ig-
nores the last of these as fundamentally impossible to analyse
meaningfully, the task is to estimate the tempo curve (tempo
tracking) and idealised event times quantised to a grid of
“score locations,” given an input set of musical changepoint
times.

To represent the tempo curve, a frequency and phase is
required such that the phase is zero at beat locations. The
metrical structure can then be broken down into a set of lev-
els described by Klapuri [14]: the beat or tactus is the pre-
ferred human tapping tempo; the tatum is the shortest com-
monly occurring interval; and the bar or measure is related to
harmonic change and often correlates to the bar line in com-
mon score notation of music. It should be noted that the beat
often corresponds to the 1/4 note or crotchet in common no-
tation, but this is not always the case: in fast jazz music, the
beat is often felt at half this rate; in hymn music, traditional
notation often gives the beat two crotchets (i.e., 1/2 note).
The moral is that one must be careful about relating percep-
tion to musical notation! Figure 1 gives a diagrammatic rep-
resentation of the beat relationships for a simple example.
The beat is subdivided by two to get the tatum and grouped
in fours to find the bar. The lowest level shows timing devia-
tions around the fixed metrical grid.

Perception of rhythm by humans has long been an active
area of research and there is a large body of literature on the
subject. Drake et al. [18] found that humans with no musical
training were able to tap along to a musical audio sample “in
time with the music,” though trained musicians were able to
do this more accurately. Many other studies have been un-
dertaken into perception of simple rhythmic patterns (e.g.,
Povel and Essens [19]) and various models of beat percep-
tion have been proposed (e.g., [20, 21, 22]) from which ideas
can be gleaned. However, the models presented in the rest of
this paper are not intended as perceptual models or even as
perceptually motivated models; they are engineering equiva-

3A fuller discussion on this topic can be found in [6].
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Figure 1: Diagram of relationships between metrical levels.

lents of the human perception. Having said that, it is hoped
that a successful computer algorithm could help shed light
onto potential and as yet unexplained human cognitive pro-
cesses.

2.1. Problem statement

To summarise, the aim of this investigation is to extract the
beat from music as defined by the preferred human tapping
tempo; to make the computer tap its hypothetical foot along
in time to the music. This requires a tempo process to be ex-
plicitly estimated in both frequency and phase, a beat lying
where phase is zero. In the process of this, detected “notes”
in the audio are assigned “score locations” which is equiva-
lent to quantising them to an underlying, idealised metrical
grid. We are not interested in real time implementation nor
in causal beat tracking where only data up to the currently
considered time is used for estimation.

3. PARTICLE FILTERING

Particle filters are a sequential Monte Carlo estimation
method which are powerful, versatile and increasingly used
in tracking problems. Consider the state space system defined
by

xk = fk
(

xk−1, ξk
)
, (1)

where fk : �nx ×�nξ → �nx , k ∈ N, is a possibly nonlinear
function of the state xk−1, dimension nx and ξk which is an
i.i.d. noise process of dimension nξ . The objective is to esti-
mate xk given observations,

yk = hk
(

xk, νk
)
, (2)

where hk : �nx ×�nν → �ny is a separate possibly nonlinear
transform and νk is a separate i.i.d. noise process of dimen-
sion nν describing the observation error.

The posterior of interest is given by p(x0:k|y1:k) which is
represented in particle filters by a set of point estimates or

particles {x(i)
0:k,w(i)

k }Ni=1, where {x(i)
0:k, i = 1, . . . ,N} is a set of

support points with associated weights given by {w(i)
k , i =

1, . . . ,N}. The weights are normalised such that
∑N

i=1 w
(i)
k =

1. The posterior is then approximated by

p
(

x0:k|y1:k
) ≈ N∑

i=1

w(i)
k δ
(

x0:k − x(i)
0:k

)
. (3)
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As N → ∞, this assumption asymptotically tends to the true
posterior. The weights are then selected according to impor-

tance sampling, x(i)
0:k ∼ π(x(i)

0:k|y1:k), where π(·) is the so-called
importance density. The weights are then given by

w(i)
k ∝ p

(
x(i)

0:k|y1:k
)

π
(

x(i)
0:k|y1:k

) . (4)

If we restrict ourselves to importance functions of the form,

π
(

x0:k|y1:k
) = π

(
xk|x0:k−1, y1:k

)
π
(

x0:k−1|y1:k−1
)
, (5)

implying a Markov dependency of order 1, the posterior can
be factorised to give

p
(

x0:k|y1:k
)

= p
(

yk|x0:k, y1:k−1
)
p
(

xk|x0:k−1, y1:k−1
)

p
(

yk|y1:k−1
) ×p

(
x0:k−1|y1:k−1

)
∝ p

(
yk|x0:k, y1:k−1

)
p
(

xk|x0:k−1, y1:k−1
)
p
(

x0:k−1|y1:k−1
)
,
(6)

which allows sequential update. The weights can then be
proven to be updated [23] according to

w(i)
k ∝ w(i)

k−1

p
(

yk|x(i)
k

)
p
(

x(i)
k |x(i)

k−1

)
π
(

x(i)
k |x(i)

0:k−1, y1:k
) (7)

up to a proportionality. Often we are interested in the filtered
estimate p(xk|y1:k) which can be approximated by

p
(

xk|y1:k
) ≈ N∑

i=1

w(i)
k δ
(

xk − x(i)
k

)
. (8)

Particle filters often suffer from degeneracy as all but a
small number of weights drop to almost zero, a measure of

this being approximated by N̂eff = 1/
∑N

i=1(w(i)
k )2 [23]. Good

choice of the importance density π(xk|x0:k−1, y1:k) can delay
this and is crucial to general performance. The introduction
of a stochastic jitter into the particle set can also help [24];
however the most common solution is to perform resam-
pling [25] whereby particles with small weights are elimi-

nated and a new sample set {x(i)∗
k }Ni=1 is generated by resam-

pling N times from the approximate posterior as given by (8)

such that Pr(x(i)∗
k = x

( j)
k ) = w

( j)
k . The new sample set is then

more closely distributed according to the true posterior and

the weights should be set to w(i)
k = 1/N to reflect this. Further

details on particle filtering can be found in [23, 26].
A special case of model is the jump Markov linear sys-

tems (JMLS) [27] where the state space, x0:k, can be broken
down into {r0:k, z0:k}. r0:k, the jump Markov process, defines
a path through a bounded and discrete set of potential states

and conditional upon r0:k, z0:k is then defined to be linear
Gaussian. The chain rule gives the expansion,

p
(

r0:k, z0:k|y1:k
) = p

(
z0:k|r0:k, y1:k

)
p
(

r0:k|y1:k
)
, (9)

and p(x0:k|r0:k, y1:k) is deterministically evaluated via the
Kalman filter equations given below in Section 5. After this
marginalisation process (called Rao-Blackwellisation [28]),
p(r0:k|y1:k) is then expanded as

p
(

r0:k|y1:k
)

∝ p
(

yk|r0:k, y1:k−1
)
p
(

rk|rk−1
)× p

(
r0:k−1|y1:k−1

)
,

(10)

with associated (unnormalised) importance weights given by

w(i)
k ∝ w(i)

k−1

p
(

yk|r(i)
0:k, y1:k−1

)
p
(

r(i)
k |r(i)

k−1

)
π
(

r(i)
k |r(i)

0:k−1, y1:k
) . (11)

By splitting the state space up in this way, the dimensionality
considered in the particle filter itself is dramatically decreased
and the number of particles needed to achieve a given accu-
racy is also significantly reduced.

4. CHANGE DETECTION

The success of any algorithm is dependent upon the reliabil-
ity of the data which is provided as an input. Thus, detecting
note events in the music for the particle filtering algorithms
to track is as important as the actual algorithms themselves.
The onset detection falls into two categories; firstly there is
detection of transient events which are associated with strong
energy changes, epitomised by drum sounds. Secondly, there
is detection of harmonic changes without large associated en-
ergy changes (e.g., in a string quartet). To implement the first
of these, our method approximately follows many algorithms
in the literature [7, 11, 12]: frequency bands, f , are separated
and an energy evolution envelope Ef (n) formed. A three
point linear regression is used to find the gradient of Ef (n)
and peaks in this gradient function are detected (equivalent
to finding sharp, positive increases in energy which hope-
fully correspond to the start of notes). Low-energy onsets are
ignored and when there are closely spaced pairs of onsets,
the lower amplitude one is also discarded. Three frequency
bands were used: 20–200 Hz to capture low frequency in-
formation; 200 Hz–15 kHz which captures most of the har-
monic spectral region; and 15–22 kHz which, contrary to the
opinion of Duxbury [29], is generally free from harmonic
sounds and therefore clearly shows any transient informa-
tion.

Harmonic change detection is a harder problem and has
received very little attention in the past, though two recent
studies have addressed this [29, 30]. To separate harmonics
in the frequency domain, long short-time Fourier transform
(STFT) windows (4096 samples) with a short hop rate (1/8
frame) were used. As a measure of spectral change from one
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frame to the next, a modified Kullback-Liebler distance mea-
sure was used:

dn(k) = log2

( ∣∣X[k,n]
∣∣∣∣X[k,n− 1]
∣∣
)

,

DMKL(n) =
∑

k∈K ,d(n)>0

dn(k),
(12)

where X[k,n] is the STFT with time index n and frequency
bin k. The modified measure is thus tailored to accentuate
positive energy change. K defines the region 40 Hz–5 kHz
where the majority of harmonic energy is to be found and to
pick peaks, a local average of the function DMKL was formed
and then the maximum picked between each of the crossings
of the actual function and the average.

A further discussion of the MKL measure can be found
in [31] but a comprehensive analysis is beyond the scope of
this paper. For beat tracking purposes, it is desirable to have a
low false detection rate, though missed detections are not so
important. While no actual rates for false alarms have been
determined, the average detected inter-onset interval (IOI)
was compared with an estimate given by T/(Nb × F), where
T is the length of the example in seconds, Nb is the number
of manually labelled beats and F is the number of tatums in
a beat. The detected average IOI was always of the order or
larger than the estimate, which shows that under-detection is
occurring.

In summary, there are four vectors of onset observations,
three from energy change detectors and one from a harmonic
change detector. The different detectors may all observe an
actual note, or any combination of them might not. In fact,
clustering of the onset observations from each of the indi-
vidual detection functions is performed prior to the start of
the particle filtering. A group is formed if any events from
different streams fall within 50 ms of each other for transient
onsets and 80 ms for harmonic onsets (reflecting the lower
time resolution inherent in the harmonic detection process).
Inspection of the resulting grouped onsets shows that the
inter-group separation is usually significantly more than the
within-group time differences. A set of amplitudes is then as-
sociated with each onset cluster.

5. BEAT MODEL 1

The model used in this section is loosely based on that of
Cemgil et al. [16], designed for MIDI signals. Given the series
of onset observations generated as above, the problem is to
find a tempo profile which links them together and to assign
each observation to a quantised score location.

The system can be represented as a JMLS where condi-
tional on the “jump” parameter, the system is linear Gaussian
and the traditional Kalman filter can be used to evaluate the
sequence likelihood. The system equations are then

xk = Φk
(
γk
)

xk−1 + ξk, (13)

yk = Hkxk + νk, (14)

where xk is the tempo process at iteration k and can be de-
scribed as xk = [ρk,∆k]T . ρk is then the predicted time of
the kth observation and ∆k the tempo period, that is, ∆k =
60/Tk , whereTk is the tempo in beats per minute (bpm). This
is equivalent to a constant velocity process and the state inno-
vation, ξk is modelled as zero mean Gaussian with covariance
Qk.

To solve the quantisation problem, the score location is
encoded as the jump parameter, γk, in Φk(γk). This is equiva-
lent to deciding upon the notation that describes the rhythm
of the observed notes. Φk(γk), is then given by

Φk(γk) =
[

1 γk
0 1

]
,

γk = ck − ck−1.

(15)

This associated evolution covariance matrix is [32]

Qk = q


γ3
k

3

γ2
k

2
γ2
k

2
γk

 , (16)

for a continuous constant velocity process which is observed
at discrete time intervals, where q is a scale parameter.

While the state transition matrix is dependent upon γk,
this is a difference term between two actual locations, ck
and ck−1. It is this process which is important and the prior
on ck becomes a critical issue as it determines the perfor-
mance characteristics. Cemgil breaks a single beat into sub-
divisions of two and uses a prior related to the number of
significant digits in the binary expansion of the quantised
location. Cemgil’s application was in MIDI signals where
there is 100% reliability in the data and the onset times are
accurate. In audio signals, the event detection process in-
troduces errors both in localisation accuracy and in gener-
ating entirely spurious events. Also, Cemgil’s prior cannot
cope with triplet figures or swing. Thus, we break the no-
tated beat down into 24 quantised sub-beat locations, ck =
{1/24, 2/24, . . . , 24/24, 25/24, . . .} and assign a prior

p
(
ck
)∝ exp

(− log2

{
d
(
ck
)})

, (17)

where d(ck) is the denominator of the fraction of ck when
expressed in its most reduced form; that is, d(3/24) = 8,
d(36/24) = 2, and so forth. This prior is motivated by the
simple concern of making metrically stronger sub-beat loca-
tions more likely; it is a generic prior designed to work with
all styles and situations.

Finally, the observation model must be considered. Bear-
ing in mind the pre-processing step of clustering onset ob-
servations from different observation function, the input to
the particle filter at each step yk will be a variable length vec-
tor containing between one and four individual onset obser-
vation times. Thus, Hk becomes a function of the length j
of the observation vector yk but is essentially j rows of the
form [1 0]. The observation error νk is also of length j and
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is modelled as zero-mean Gaussian with diagonal covariance
Rk where the elements r j j are related to whichever observa-
tion vector is being considered at yk( j).

Thus, conditional upon the ck process which defines the
update rate, everything is modelled as linear Gaussian and
the traditional Kalman filter [33] can be used. This is given
by the recursion

x̂k|k−1 = Φkx̂k−1|k−1,

P(k|k − 1) = ΦkP(k − 1|k − 1)ΦT
k + Qk,

K(k) = P(k|k − 1)HT
k

[
HkP(k|k − 1)HT

k + Rk
]−1

,

x̂k|k = x̂k|k−1 + K(k)
[

yk −Hkx̂k|k−1
]
,

P(k|k) = [I − K(k)Hk
]
P(k|k − 1).

(18)

Each particle must maintain its own covariance estimate
P(k|k) as well as its own state. The innovation or residual
vector is defined to be the difference between the measured
and predicted quantities,

ỹk = yk −Hkx̂k|k−1, (19)

and has covariance given by

Sk = HkPk|k−1H
T
k + Rk. (20)

5.1. Amplitude modelling

The algorithm as described so far will assign the beat (i.e.,
the phase of c1:k) to the most frequent subdivision, which
may not be the right one. To aid the correct determination
of phase, attention is turned to the amplitude of the onsets.

The assumption is made that the onsets at some score lo-
cations (e.g., on the beat) will have higher energy than others.
Each of the three transient onset streams maintains a separate
amplitude process while the harmonic onset stream does not
have one associated with it due to amplitude not being rele-
vant for this feature.

The amplitude processes can be represented as separate
JMLSs conditional upon ck. The state equations are given by

αlp = Θl
pα

l
p−1 + εp,

alp = αlp + σp,
(21)

where alp is the amplitude of the pth onset from the observa-
tion stream, l. Thus, the individual process is maintained for
each observation function and updated only when a new ob-
servation from that stream is encountered. This requires the
introduction of conditioning on p rather than k; 1:p then
represents all the indices within the full set 1:k, where an ob-
servation from stream l is found. Θl

p(cp−1, cp) is a function

of cp and cp−1. To build up the matrix, Θl
p, a selection of real

data was examined and a 24× 24 matrix constructed for the
expected amplitude ratio between a pair of score locations.
This is then indexed by the currently considered score loca-
tion cp and also the previously identified one found in stream
l, clp−1, and the value given is returned to Θl

p. For example, it

could be that the expected amplitude for a beat is modelled
as twice that of a quaver off-beat. If the particle history shows
that the previous onset from a given stream was assigned to
be on the beat and the currently considered location is a qua-
ver, Θl

p would equal 0.5. This relative relationship allows the
same model to cope with both quiet and loud sections in a
piece. The evolution and observation error terms, εp and σp,
are assumed to be zero mean Gaussian with appropriate vari-
ances.

From now on, to avoid complicating the notation, the
amplitude process will be represented without sums or prod-
ucts over the three l vectors using ap = {a1

p, a2
p, a3

p} and
αp = {α1

p,α2
p,α3

p} (noting that some of these might well be
given a null value at any given iteration). For each iteration
k, between zero and all three of the amplitude processes will
be updated.

5.2. Methodology

Given the above system, a particle filtering algorithm can
be used to estimate the posterior at any given itera-
tion. The posterior which we wish to estimate is given
by p(c1:k, x1:k,α1:p|y1:k, a1:p) but Rao-Blackwellisation breaks
down the posterior into separate terms

p
(
c1:k, x1:k,α1:p|y1:k, a1:p

)
= p

(
x1:k|c1:k, y1:k

)
× p

(
α1:p|c1:k, a1:p

)
p
(
c1:k|y1:k, a1:p

)
,

(22)

where p(x1:k|c1:k, y1:k) and p(α1:p|c1:k, a1:p) can be deduced
exactly by use of the traditional Kalman filter equations. Thus
the only space to search over and perform recursion upon is
that defined by p(c1:k|y1:k, a1:p). This space is discrete but too
large to enumerate all possible paths. Thus we turn to the
approximation approach offered by particle filters.

By assuming that the distribution of ck is dependent only
upon c1:k−1, y1:k and a1:p, the importance function can be fac-
torised into terms such as π(ck|y1:k, a1:p, c1:k−1). This allows
recursion of the Rao-Blackwellised posterior

p
(
c1:k|y1:k, a1:p

)
∝ p

(
yk, ap|y1:k−1, a1:p−1, c1:k

)
× p

(
ck|ck−1

)
p
(
c1:k−1|y1:k−1, a1:p−1

)
,

(23)

where

p
(

yk, ap|y1:k−1, a1:p−1, c1:k
)

= p
(

yk|y1:k−1, c1:k
)

× p
(
ap|a1:p−1, c1:k

) (24)

and recursive updates to the weight are given by

w(i)
k = w(i)

k−1×
p
(

yk|y1:k−1, c(i)
1:k

)
p
(
ap|a1:p−1, c(i)

1:k

)
p
(
c(i)
k |c(i)

k−1

)
π
(
c(i)
k |y1:k, a1:p, c(i)

1:k−1

) .

(25)
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For k = 1
for i = 1 : N ; draw x(i)

1 , α(i)
1 and c(i)

1 from respective priors
for k = 2 : end

for i = 1 : N
Propagate particle i to a set, s = {1, . . . , S} of new
locations c(s)

k .
Evaluate the new weight w(s,i)

k for each of these by
propagating through the respective Kalman filter.
This generates π(ck|y1:k , a1:p, c(i)

1:k−1).
for i = 1 : N

Pick a new state for each particle from
π(ck|y1:k , a1:p, c(i)

1:k−1).
Update weights according to (25).

Algorithm 1: Rao-Blackwellised particle filter.

The terms p(yk|y1:k−1, c1:k) and p(ap|a1:p−1, c1:k) are calcu-
lated from the innovation vector and covariance of the re-
spective Kalman filters (see (19) and (20)). p(ck|ck−1) is sim-
plified to p(ck) and is hence the prior on score location as
given in Section 5.

5.3. Algorithm

The algorithm therefore proceeds as given in Algorithm 1.
At each iteration, each particle is propagated to a set S of
new score locations and the probability of each is evaluated.
Given the N×S set of potential states there are then two ways
of choosing a new set of updated particles: either stochas-
tic or deterministic selection. The first proceeds in a simi-
lar manner to that described by Cemgil [16] where for each
particle the new state is picked from the importance func-
tion with a given probability. Deterministic selection sim-
ply takes the best N particles from the whole set of propa-
gated particles. Fully stochastic resampling selection of the
particles is not an optimal procedure in this case, as dupli-
cation of particles is wasteful. This leaves a choice between
Cemgil’s method of stochastically selecting one of the up-
date proposals for each particle or the deterministic N-best
approach. The latter has been adopted as intuitively sensi-
ble.

Particle filters suffer from degeneracy in that the poste-
rior will eventually be represented by a single particle with
high weight while many particles have negligible probabil-
ity mass. Traditional PFs overcome this with resampling (see
[23]) but both methods for particle selection in the previ-
ous section implicitly include resampling. However, degen-
eracy still exists, in that the PF will tend to converge to a sin-
gle ck state, so a number of methods were explored for in-
creasing the diversity of the particles. Firstly, jitter [24] was
added to the tempo process to increase local diversity. Sec-
ondly, a Metropolis-Hastings (MH) step [34] was used to ex-
plore jumps to alternative phases of the signal (i.e., to jump
from tracking off-beat quavers to being on the beat). Also, an
MH step to propose related tempos (i.e., doubling or halving
the tracked tempo) was investigated but found to be coun-
terproductive.

6. BEAT MODEL 2

The model described above formulates beat location as the
free variable and time as a dependent, non-continuous vari-
able, which seems counter-intuitive. Noting that the model
is bilinear, a reformulation of the tempo process is thus
presented now where time is the independent variable and
tempo is modelled as Brownian motion4 [35]. The state vec-
tor is now given by zk = [τk,τ̇k]T where τk is in beats and
τ̇k is in beats per second (obviously related to bpm). Brown-
ian motion, which is a limiting form of the random walk, is
related to the tempo process by

dτ̇(t) = √qdB(t) + τ̇(0), (26)

where q controls the variance of the Brownian motion pro-
cess B(t) (which is loosely the integral of a Gaussian noise
process [32]) and hence the state evolution. This leads to

τ(t) = τ(0) +
∫ t

0
τ̇(s)ds. (27)

Time t is now a continuous variable and hence τ(t) is also a
continuously varying parameter, though only being “read” at
algorithmic iterations k thus giving τk � τ(tk).

The new state equations are given by

zk = Ξ
(
δk
)

zk−1 + βk, (28)

yk = Γktk + κk, (29)

where

tk = t0 +
k∑
j=1

δk. (30)

tk is therefore the absolute time of an observation and δk is
the inter-observation time. Ξ(δk) is the state update matrix
and is given by

Ξ(δk) =
[

1 δk
0 1

]
. (31)

Γk acts in a similar manner to Hk in model one and is of
variable length but is a vector of ones of the same length as yk.
κk is modelled as zero mean Gaussian with covariance Rk as
described above. βk is modelled as zero mean Gaussian noise
with covariance given as before by Bar-Shalom [32],

Qk = q


δ3
k

3

δ2
k

2
δ2
k

2
δk

 . (32)

One of the problems associated with Brownian mo-
tion is that there is no simple, closed form solution for
the prediction density, p(tk|·). Thus attention is turned to

4Also termed as Wiener or Wiener-Levy process.
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Initialise: i = 1; z1 = zk ; Xk is the predicted inter-onset
number of beats.
While dt > tol,

i = i + 1
If max(τ1:i) < Xk

dt = (τi−1 − Xk)/τ̇i−1

Draw zi ∼ N (Ξizi−1,Qi)
ti = ti−1 + dt

Else interpolate back
Find I s.t. τI < Xk and τI+1 > Xk

te = tI + (tI+1 − tI)× (Xk − τI)/(τI+1 + τI)
insert state J between I and I + 1

tJ = te
dt = min(tI+1 − te, te − tI)
Draw zJ ∼ N (m,Q′) where m and Q′ are
given below

Index q = min |(τ1:i − Xk)|.
Return τk = Xk , tk = tq and τ̇k = τ̇q.

Algorithm 2: Sample hitting time.

an alternative method for drawing a hitting time sample of
{tk|zk−1, τk = B, tk−1}. This is an iterative process and, con-
ditional upon initial conditions, a linear prediction for the
time of the new beat is made. The system is then stochas-
tically propagated for this length of time and a new tempo
and beat position found. The beat position might under or
overshoot the intended location. If it undershoots, the above
process is repeated. If it overshoots, then an interpolation es-
timate is made conditional upon both the previous and sub-
sequent data estimates. The iteration terminates when the er-
ror on τt falls below a threshold. At this point, the algorithm
returns the hitting time tk and the new tempo τ̇k at that hit-
ting time. This is laid out explicitly in Algorithm 2, where Ξi

is given by

Ξi =
[

1 dt
0 1

]
(33)

and Qi by

Qi = q


dt3

3
dt2

2
dt2

2
dt

 . (34)

N denotes the Gaussian distribution. The interpolation
mean and covariance are given by [36]

Q′ = (Q−1
I :J + ΞJ :I+1Q

−1
J :I+1ΞJ :I+1

)−1
,

m = Q′
(
Q−1

I :J ΞI :JzI + ΞT
J :I+1Q

−1
J :I+1zI+1

)
,

(35)

where the index denotes the use of Ξ and Q from (33) and
(34) with appropriate values of dt.

Thus, we now have a method of drawing a time tk and
new tempo τ̇k given a previous state zk−1 and proposed new
score (beat) location τk. The algorithm then proceeds as be-

fore with a particle filter. The posterior can be updated, thus

p
(

z1:k, t1:k|y1:k
)∝ p

(
yk|z1:k, t1:k

)
p
(
tk|t1:k−1, z1:k

)
p
(

zk|z1:k−1
)

× p
(

z1:k−1, t1:k−1|y1:k−1
)
,

(36)

where p(zk|z1:k−1) can be factorised:

p
(

zk|z1:k−1
) = p

(
τk|zk−1

)
p
(
τ̇k|zk−1, τk

)
. (37)

Prior importance sampling [23] is used via the hitting time
algorithm above to draw samples of τ̇k and tk:

π
(

zk, tk|z1:k−1, t1:k−1, y1:k
) = p

(
τ̇k|zk−1, τk

)
p
(
tk|t1:k−1, z1:k

)
.

(38)

This leads to the weight update being given by

w(i)
k = w(i)

k−1 × p
(

yk|z(i)
1:k, t(i)

1:k

)
p
(
τ(i)
k |z(i)

k−1

)
. (39)

As before in Section 5, a single beat is split into 24 subdi-
visions and a prior set upon these as given above in (17);

p(τk|zk−1) again reduces to p(τk) ≡ p(ck). p(yk|z(i)
1:k, t(i)

1:k) is
the likelihood; if κk from (29) is modelled in the same way as
νk from (14) then the likelihood is Gaussian with covariance
again given by Rk which is diagonal and of the same dimen-
sion, j as the observation vector yk. Γk is then a j × 1 matrix
with all entries being 1.

Also as before, to explore the beat quantisation space τ1:k

effectively, each particle is predicted onward to S new posi-
tions for τk and therefore again, a set of N × S potential par-
ticles is generated. Deterministic selection in this setting is
not appropriate so resampling is used to stochastically select
N particles from the N × S set. This acts instead of the tradi-
tional resampling step in selecting high probability particles.

Amplitude modelling is also included in an identical
form to that described in Section 5.1 which modifies (39) to

w(i)
k = w(i)

k−1 × p
(

yk|z(i)
1:k, t(i)

1:k

)
p
(
ap|z(i)

1:k, t(i)
1:k

)
p
(
τ(i)
k |z(i)

k−1

)
.

(40)

Also, the MH step described in Section 5.3 to explore differ-
ent phases of the beat is used again.

7. RESULTS

The algorithms described above in Sections 5 and 6 have been
tested on a large database of musical examples drawn from a
variety of genres and styles, including rock/pop, dance, clas-
sical, folk and jazz. 200 samples, averaging about one minute
in length were used and a “ground truth” manually generated
for each by recording a trained musician clapping in time to
the music.

The aim is to estimate the tempo and quantisation pa-
rameters over the whole dataset; in both models, the se-
quence of filtered estimates is not the best representation
of this, due to locally unlikely data. Therefore, because each
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Table 1: Results for beat tracking algorithms expressed as a total
percentage averaged over the whole database.

Raw Allowed
C-L TOT C-L TOT

Model 1 51.5 58.0 69.2 82.2
Model 2 34.1 38.4 54.4 72.8
Scheirer 26.8 41.9 33.0 53.4

particle maintains its own state history, the maximum a pos-
teriori particle at the final iteration was chosen. The parame-
ter sets used within each algorithm were chosen heuristically;
it was deemed impractical to optimise them over the whole
database. Various numbers of particles N were tried though
results are given below for N = 200 and 500 for models
one and two, respectively. Above these values, performance
continued to increase very slightly, as one would expect, but
computational effort also increased proportionally.

Tracking was deemed to be accurate if the tempo was cor-
rect (interbeat interval matches to within 10%) and a beat
was located within 15% of the annotated beat location.5 Kla-
puri [14] defines a measure of success as the longest con-
secutive region of beats tracked correctly as a proportion of
the total (denoted “C-L” for consecutive-length). Also pre-
sented is a total percentage of correctly tracked beats (la-
belled “TOT”). The results are presented in Table 1. It was
noted that the algorithms sometimes tracked at double or
half tempo in psychologically plausible patterns; also, dance
music with heavy off-beat accents often caused the algorithm
to track 180o out of phase. The “allowed” columns of the ta-
ble show results accepting these errors. Also shown for com-
parison are the results obtained using Scheirer’s algorithm
[7].

The current state of the art is the algorithm of Klapuri
[14] with 69% success for longest consecutive sequence and
78% for total correct percentage (accepting errors) on his test
database consisting of over 400 examples. Thus the perfor-
mance of our algorithm is at least comparable with this.

Figure 2 shows the results for model one over the whole
database graphically while Figure 3 shows the same for model
two. These are ordered by style and then performance within
the style category. Figure 4 shows the tempo profile for a
correctly tracked example using model one; note the close
agreement between the hand labelled data and the tracked
tempo.

8. DISCUSSION

The algorithms described above have some similar elements
but their fundamental operation is quite different: the Rao-
Blackwellised model of Section 5 actually bears a significant
resemblance to an interacting multiple models system of the
type used in radar tracking [33], as many of the stages are
actually deterministic. The second model, however, is much

5The clapped signals were often slightly in error themselves.
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Figure 2: Results on test database for model one. The solid line rep-
resents raw performance and the dashed line is performance after
acceptable tracking errors have been taken into account. (a) Maxi-
mum length correct (% of total). (b) Total percentage correct.

more typically a particle filter with mainly stochastic pro-
cesses. Both have many underlying similarities in the model
though the inference processes are significantly different.

Thus, the results highlight some interesting compar-
isons between these two philosophies. On close examination,
model two was better at finding the most likely local path
through the data, though this was not necessarily the correct
one in the long term. A fundamental weakness of the models
is the prior on ck (or equivalently, τk in model two) which
intrinsically prefers higher tempos—doubling a given tempo
places more onsets in metrically stronger positions which is
deemed more likely by the prior given in (17). Because the
stochastic resampling step efficiently selects and boosts high
probability regions of the posterior, model two would often
pick high tempos to track (150-200bpm) which accounts for
the very low “raw” results.

A second problem also occurs in model two: because du-
plication of paths through the τ1:k space is necessary to fully
populate each quantisation hypothesis, fewer distinct paths
are kept at each iteration. By comparison, the N-best selec-
tion scheme of model one ensures that each particle repre-
sents a unique c1:k set and more paths through the state space
are kept for a longer lag. This allows model one to recover
better from a region of poor data. This also provides an ex-
planation for why model one does not track at high tempo
so often—because more paths though the state-space are re-
tained for longer, more time is allowed for the amplitude pro-
cess to influence the choice of tempo mode. Thus, the con-
clusion is drawn that the first model is more attractive: the
Rao-Blackwellisation of the tempo process allows the search
of the quantisation space to be much more effective.
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Figure 3: Results for model two. (a) Maximum length correct (%
of total). (b) Total percentage correct.

The remaining lack of performance can be accredited to
four causes: the first is tracking at multiple tempo modes—
sometimes tracking fails at one mode and settles a few beats
later into a second mode. The results only reflect one of these
modes. Secondly, stable tracking sometimes occurs at psy-
chologically implausible modes (e.g., 1.5 times the correct
tempo) which are not included in the results above. The third
cause is poor onset detection. Finally, there are also examples
in the database which exhibit extreme tempo variation which
is never followed.

The result of this is a number of suggestions for improve-
ments: firstly, the onset detection is crucial and if the detected
onsets are unreliable (especially at the start of an example)
it is unlikely that the algorithm will ever be able to track
the beat properly. This may suggest an “online” onset detec-
tion scheme where the particles propose onsets in the data,
rather than the current offline, hard decision system. The
other potential scheme for overcoming this would be to pro-
pose a salience measure (e.g., [21]) and directly incorporate
this into the state evolution process, thus hoping to differen-
tiate between likely and unlikely beat locations in the data;
currently, the Rao-Blackwellised amplitude process has been
given weak variances and hence has little effect in the algo-
rithm, other than to propose correct phase. The other prob-
lems commonly encountered were tempo errors by plausi-
ble ratios; Metropolis-Hastings steps [27] to explore other
modes of the tempo posterior were tried but have met with
little success.

Thus it seems likely that any real further improvement
will have to come from music theory incorporated into the
algorithm directly, and in a style-specific way—it is unlikely
that a beat tracker designed for dance music will work well
on choral music! Thus, data expectations and also antici-
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Figure 4: Tempo evolution for a correctly tracked example using
model one.

pated tempo evolutions and onset locations would have to be
worked into the priors in order to select the correct tempo.
This will probably result in an algorithm with many ad-hoc
features but, given that musicians have spent the better part
of 600 years trying to create music which confounds expec-
tation, it is unlikely that a simple, generic model to describe
all music will ever be found.

9. CONCLUSIONS

Two algorithms using particle filters for generic beat track-
ing across a variety of musical styles are presented. One is
based upon the Kalman filter and is close to a multiple hy-
pothesis tracker. This performs better than a more stochastic
implementation which models tempo as a Brownian motion
process. Results with the first model are comparable with the
current state of the art [14]. However, the advantage of parti-
cle filtering as a framework is that the model and the imple-
mentation are separated allowing the easy addition of extra
measures to discriminate the correct beat. It is conjectured
that further improvement is likely to require music specific
knowledge.

ACKNOWLEDGMENTS

This work was partly supported by the research program
BLISS (IST-1999-14190) from the European Commission.
The first author is grateful to the Japan Society for the Pro-
motion of Science and the Grant-in-Aid for Scientific Re-
search in Japan for their funding. The authors thank P.
Comon and C. Jutten for helpful comments and are grate-
ful to the anonymous reviewers for their helpful suggestions
which have greatly improved the presentation of this paper.



2394 EURASIP Journal on Applied Signal Processing

REFERENCES

[1] C. Raphael, “A probabilistic expert system for automatic mu-
sical accompaniment,” J. Comput. Graph. Statist., vol. 10, no.
3, pp. 486–512, 2001.

[2] F. Gouyon, L. Fabig, and J. Bonada, “Rhythmic expressiveness
transformations of audio recordings: swing modifications,” in
Proc. Int. Conference on Digital Audio Effects Workshop, Lon-
don, UK, September 2003.

[3] G. Tzanetakis and P. Cook, “Musical genre classification of
audio signals,” IEEE Trans. Speech, and Audio Processing, vol.
10, no. 5, pp. 293–302, 2002.

[4] E. D. Scheirer, “About this business of metadata,” in Proc.
International Symposium on Music Information Retrieval, pp.
252–254, Paris, France, October 2002.

[5] J. Seppänen, “Tatum grid analysis of musical signals,” in
Proc. IEEE Workshop on Applications of Signal Processing to Au-
dio and Acoustics, pp. 131–134, New Paltz, NY, USA, October
2001.

[6] S. W. Hainsworth, Techniques for the automated analysis of
musical audio, Ph.D. thesis, Cambridge University Engineer-
ing Department, Cambridge, UK, 2004.

[7] E. D. Scheirer, “Tempo and beat analysis of acoustical musical
signals,” J. Acoust. Soc. Amer., vol. 103, no. 1, pp. 588–601,
1998.

[8] E. W. Large and M. R. Jones, “The dynamics of attending:
How we track time varying events,” Psychological Review, vol.
106, no. 1, pp. 119–159, 1999.

[9] J. Foote and S. Uchihashi, “The beat spectrum: a new ap-
proach to rhythm analysis,” in Proc. IEEE International Con-
ference on Multimedia and Expo, pp. 881–884, Tokyo, Japan,
August 2001.

[10] M. Goto, “An audio-based real-time beat tracking system for
music with or without drum-sounds,” J. of New Music Re-
search, vol. 30, no. 2, pp. 159–171, 2001.

[11] S. Dixon, “Automatic extraction of tempo and beat from ex-
pressive performances,” J. of New Music Research, vol. 30, no.
1, pp. 39–58, 2001.

[12] J. Laroche, “Estimating tempo, swing and beat locations in
audio recordings,” in Proc. IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics, pp. 135–138, New
Paltz, NY, USA, October 2001.

[13] C. Raphael, “Automated rhythm transcription,” in Proc. Inter-
national Symposium on Music Information Retrieval, pp. 99–
107, Bloomington, Ind, USA, October 2001.

[14] A. Klapuri, “Musical meter estimation and music transcrip-
tion,” in Proc. Cambridge Music Processing Colloquium, pp.
40–45, Cambridge University, UK, March 2003.

[15] R. D. Morris and W. A. Sethares, “Beat tracking,” in 7th
Valencia International Meeting on Bayesian Statistics, Tenerife,
Spain, June 2002, personal communication with R. Morris.

[16] A. T. Cemgil and B. Kappen, “Monte Carlo methods for
tempo tracking and rhythm quantization,” J. Artificial Intelli-
gence Research, vol. 18, no. 1, pp. 45–81, 2003.

[17] J. A. Bilmes, “Timing is of the essence: perceptual and compu-
tational techniques for representing, learning and reproduc-
ing expressive timing in percussive rhythm,” M.S. thesis, Me-
dia Lab, MIT, Cambridge, Mass, USA, 1993.

[18] C. Drake, A. Penel, and E. Bigand, “Tapping in time with me-
chanical and expressively performed music,” Music Perception,
vol. 18, no. 1, pp. 1–23, 2000.

[19] D.-J. Povel and P. Essens, “Perception of musical patterns,”
Music Perception, vol. 2, no. 4, pp. 411–440, 1985.

[20] H. C. Longuet-Higgins and C. S. Lee, “The perception of mu-
sical rhythms,” Perception, vol. 11, no. 2, pp. 115–128, 1982.

[21] R. Parncutt, “A perceptual model of pulse salience and metri-
cal accent in musical rhythms,” Music Perception, vol. 11, no.
4, pp. 409–464, 1994.

[22] M. J. Steedman, “The perception of musical rhythm and me-
tre,” Perception, vol. 6, no. 5, pp. 555–569, 1977.

[23] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte
Carlo sampling methods for Bayesian filtering,” Statistics and
Computing, vol. 10, no. 3, pp. 197–208, 2000.

[24] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel ap-
proach to nonlinear/non-Gaussian Bayesian state estimation,”
IEE Proceedings Part F: Radar and Signal Processing, vol. 140,
no. 2, pp. 107–113, 1993.

[25] A. F. M. Smith and A. E. Gelfand, “Bayesian statistics without
tears: a sampling-resampling perspective,” Amer. Statist., vol.
46, no. 2, pp. 84–88, 1992.

[26] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A
tutorial on particle filters for online nonlinear/non-Gaussian
Bayesian tracking,” IEEE Trans. Signal Processing, vol. 50, no.
2, pp. 174–188, 2002.

[27] A. Doucet, N. J. Gordon, and V. Krishnamurthy, “Particle fil-
ters for state estimation of jump Markov linear systems,” IEEE
Trans. Signal Processing, vol. 49, no. 3, pp. 613–624, 2001.

[28] G. Casella and C. P. Robert, “Rao-Blackwellisation of sam-
pling schemes,” Biometrika, vol. 83, no. 1, pp. 81–94, 1996.

[29] C. Duxbury, M. Sandler, and M. Davies, “A hybrid approach
to musical note detection,” in Proc. 5th Int. Conference on Dig-
ital Audio Effects Workshop, pp. 33–38, Hamburg, Germany,
September 2002.

[30] S. Abdallah and M. Plumbley, “Unsupervised onset detection:
a probabilistic approach using ICA and a hidden Markov clas-
sifier,” in Proc. Cambridge Music Processing Colloquium, Cam-
bridge, UK, March 2003.

[31] S. W. Hainsworth and M. D. Macleod, “Onset detection in
musical audio signals,” in Proc. International Computer Mu-
sic Conference, pp. 163–166, Singapore, September–October
2003.

[32] Y. Bar-Shalom and T. E. Fortmann, Tracking and Data As-
sociation, vol. 179 of Mathematics in Science and Engineering,
Academic Press, Boston, Mass, USA, 1988.

[33] S. S. Blackman and R. Popoli, Design and Analysis of Modern
Tracking Systems, Artech House, Norwood, Mass, USA, 1999.

[34] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds.,
Markov chain Monte Carlo in practice, Chapman & Hall, Lon-
don, UK, 1996.

[35] B. Øksendal, Stochastic Differential Equations, Springer-
Verlag, New York, NY, USA, 3rd edition, 1992.

[36] M. Orton and A. Marrs, “Incorporation of out-of-sequence
measurements in non-linear dynamic systems using particle
filters,” Tech. Rep., Cambridge University Engineering De-
partment, Cambridge, UK, 2001.

Stephen W. Hainsworth was born in 1978
in Stratford-upon-Avon, England. During
8 years at the University of Cambridge, he
was awarded the B.A. and M.Eng. degrees in
2000 and the Ph.D. in 2004, with the latter
concentrating on techniques for the auto-
mated analysis of musical audio. Since grad-
uating for the third time, he has been work-
ing in London for Tillinghast-Towers Per-
rin, an actuarial consultancy.



Particle Filtering Applied to Musical Tempo Tracking 2395

Malcolm D. Macleod was born in 1953 in
Cathcart, Glasgow, Scotland. He received
the B.A. degree in 1974, and Ph.D. on dis-
crete optimisation of DSP systems in 1979,
from the University of Cambridge. From
1978 to 1988 he worked for Cambridge
Consultants Ltd, on a wide range of sig-
nal processing, electronics, and software
research and development projects. From
1988 to 1995 he was a Lecturer in the Signal
Processing and Communications Group, the Engineering Depart-
ment of Cambridge University, and from 1995 to 2002 he was the
Department’s Director of Research. In November 2002 he joined
the Advanced Signal Processing Group at QinetiQ, Malvern, as a
Senior Research Scientist. He has published many papers in the
fields of digital filter design, nonlinear filtering, adaptive filtering,
efficient implementation of DSP systems, optimal detection, high-
resolution spectrum estimation and beamforming, image process-
ing, and applications in sonar, instrumentation, and communica-
tion systems.


