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Wireless sensor networks that consist of thousands of low-
cost sensor nodes have been used in many promising appli-
cations. Localization is one of the most important subjects
because the location information is typically useful for cov-
erage, deployment, routing, location service, target tracking,
and rescue. Hence, location estimation is a significant tech-
nical challenge for the researchers. Obviously, there are some
challenges for locating sensor nodes needed to be solved.The
first challenge is the energy consumption and localization
accuracy problem.The second challenge is the NLOS ranging
error problem. The third challenge is localization in low
beacon density.

Themain objective of this special issue is to explore inno-
vative, exciting, and fresh ideas for node location estimation
algorithms and localization systems. Out of 30 submissions,
12 exceptional contributions were finally selected after several
rounds of review by the invited reviewers and the guest
editors.

The paper by J.-R. Jiang et al. proposes the AoA localiza-
tion with RSSI differences (ALRDs)method to estimate angle
of arrival (AoA) by comparing the received signal strength
indicator (RSSI) values of beacon signals received from two
perpendicularly oriented directional antennas installed at
the same place. The experimental results showed that a
sensor node can estimate its location by using only four
beacon signals within 0.1 s with an average localization error
of 124 cm. Hence, ALRD conserves the time and energy
spent on localization. They further propose two methods,
namely, maximum-point minimum-diameter and maximum-
point minimum-rectangle, to reduce ALRD localization errors
by gatheringmore beacon signals within 1 s for finding the set
of estimated locations of maximum density. Such estimated

locations are then averaged to obtain the final location
estimation. Experimental results obtained demonstrate that
the two methods can reduce the average localization error
by a factor of about 29% to 89 cm. Hence, ALRD is suitable
for mobile sensing and actuating applications, as it allows a
sensor node to quickly localize itself with lower localization
errors.

In the paper “A survey of localization in wireless sen-
sor network,” the authors classify the localization methods
into target/source localization and node-self localization. In
target localization, they mainly introduce the energy-based
method. Then they investigate the node-self localization
methods. Since the widespread adoption of the wireless
sensor network, the localization methods are different in
various applications. So there are several challenges in some
special scenarios. They present a comprehensive survey
of these challenges: localization in non-line-of-sight, node
selection criteria for localization in energy-constrained net-
work, scheduling the sensor node to optimize the tradeoff
between localization performance and energy consumption,
cooperative node localization, and localization algorithm in
heterogeneous network. Finally, they introduce the evalua-
tion criteria for localization in wireless sensor network.

The paper by P. Gao et al. proposes a path-planning, a
location predicting method (PPLP) for indoor mobile target
localization. They firstly establish the path-planning model
to constrain the movement trajectory of the mobile target
in indoor environment according to indoor architectural
pattern. Then, they use MLE approach to get one certain
location result of the target. After that, based on the path-
planning model and some previous localization results of the
target, the best possible position of the target in the next
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time interval can be predicted with the proposed predicting
approach. Finally, the MLE result and prediction result are
weighted to obtain the final position.

In the paper “Localization with single stationary anchor
for mobile node in wireless sensor networks,” the authors
propose a localization algorithm named LSARSSI for mobile
node based on received signal strength indicator (RSSI)
between locating sensor node with inertia module built-in
and the single anchor. In order to avoid errors from directly
mapping absolute RSSI values to distances, they obtain
the geometrical relationship of sensors by contrasting the
measured RSSI values. They then design a novel localization
scheme, LSARSSI, which has a better accuracy and low
overhead. The simulation results show that the proposed
schemes perform high accuracy and feasibility, even in large-
scale environment.

In the paper “Range-free localization scheme in wireless
sensor networks based on bilateration,” the authors propose
a low-cost yet effective localization scheme for wireless
sensor networks (WSNs). The proposed scheme uses only
two anchor nodes and uses bilateration to estimate the
coordinates of unknown nodes. In this scheme, two anchor
nodes are installed at the bottom-left corner (Sink X) and the
bottom-right corner (Sink Y) of a square monitored region
of the WSN. Sensors are identified with the same minimum
hop counts pair to Sink X and Sink Y to form a zone, and
the estimated location of each unknown sensor is adjusted
according to its relative position in the zone. Simulation
results show that the proposed scheme outperforms the DV-
Hop method in localization accuracy, communication cost,
and computational complexity.

The paper by Y. Wang et al. proposes a prior knowledge-
based correction strategy (PKCS) to locate the robot. They
firstly investigate the RSS-based NLOS identificationmethod
using the recorded measurements. Then the ratio of NLOS
present in the record of measurements and the expectation
of the NLOS errors are used to mitigate the NLOS errors.
Kalman filter is employed to improve the estimated range.
Finally, they use the residual weighting algorithm to estimate
the location of the robot. Simulation results show that the
PKCS has much better performance than those methods
without the correctionmethod and significantly improves the
localization accuracy.

The paper by S. Zhang et al. proposes a human motion
tracking approach for daily life surveillance in a distributed
wireless sensor network using ultrasonic range sensors. It
uses cheap range sensor nodes in wireless sensor networks by
jointly selecting the next tasking sensor and determining the
sampling interval based on predicted tracking accuracy and
tracking cost under the UKF frame. Simulation results show
that the new scheme can achieve significant energy efficiency
without degrading the tracking accuracy.

In the paper “On the joint time synchronization and
source localization using toa measurements,” the authors
consider the problem of estimating the clock bias and the
position of an unknown source using time of arrival (TOA)
measurements obtained at a sensor array to achieve time
synchronization and source localization. The mean square
error (MSE) analysis is firstly performed for the case where

the source is localized via TOA positioning when assuming
the source clock bias does not exist, but in fact it is non-
zero. Comparing the obtained source localization MSE with
that from joint estimating the source position and clock bias,
they derive a condition under which ignoring the source
clock biasmay provide a smaller localizationMSE. Computer
simulations are conducted to corroborate the theoretical
development and illustrate the good performance of the
proposed algorithm.

The paper by D. Arbula and K. Lenac presents Pymote,
the library that provides support for simulation and analysis
of distributed algorithms built on top of comprehensive
Python environment. Pymote is designed to allow rapid
interactive testing of new algorithms, their analysis, and
visualization while minimizing developer’s time. It supports
both interactive algorithm simulation and automation of
experiments and provides visualization tools for both. It has
been deliberately kept simple, easy to use, and extensible.

The paper by E. Navarro-Alvarez et al. presents a new
adaptive method to calculate the path loss exponent (PLE)
for microcell outdoor dynamic environments in the 2.4GHz
industrial, scientific, and medical (ISM) frequency band.The
main contribution of this method is the formulation of a
parametric mathematical model which improves the PLE
accuracy by using the equivalent isotropic radiated power
(EIRP) and effective antenna aperture (EAA) parameters
calculated before obtaining the PLE. A second contribution
is the combination of GPS data and RSSI readings in order to
identify the RSSI long term behavior.

In the paper “A novel lightness localization algorithm
based on anchor nodes equilateral triangle layout in WSNs,”
the authors present a novel equilateral triangle localization
algorithm (LETLA) that is a lightweight approximate local-
ization algorithm and could provide better precision with less
power consumption. The LETLA is an approximate localiza-
tion based on the concept of substituting the approximate
coordinates for the real coordinates, which could result in
less accuracy and save more energy. In order to avoid the
ranging ambiguities arising from the interference of noise,
the LETLA adopts the order of ranging results to represent
the location relationship of unknown node and anchors.
Simulations show that the LETLA performs better than other
state-of-the-art approaches in terms of energy consumption
with the same localization precision.

The paper by X. Qu et al. presents minimax estima-
tion fusion method in distributed multisensor systems. This
method aims to minimize the worst-case squared estimation
error when the cross-covariances between local sensors are
unknown and the normalized estimation errors of local sen-
sors are norm bounded. The simulation results illustrate that
the proposed fusion method is a robust fusion in localization
and tracking andmore accurate than the previous covariance
intersection method.
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We present a new adaptive method to calculate the path loss exponent (PLE) for microcell outdoor dynamic environments in the
2.4GHz Industrial, Scientific, and Medical (ISM) frequency band. The proposed method calculates the PLE during random walks
by recording signal strength measurements from Radio Frequency (RF) transceivers and position data with a consumer-grade GPS
receiver. The novelty of this work lies in the formulation of signal propagation conditions as a parametric observation model in
order to estimate first the PLE and then the distance from the received RF signals using nonlinear least squares. GPS data is used
to identify long term fading from the received signal’s power and helps to refine the power-distance model. Ray tracing geometries
for urban canyon (direct line of sight) and nonurban canyon (obstacles) propagation scenarios are used as the physics of the model
(designmatrix). Although themethod was implemented for a lightweight localization algorithm for the 802.11b/g (Wi-Fi) standard,
it can also be applied to other ISM band protocols such as 802.15.4 (Zigbee) and 802.15.1 (Bluetooth).

1. Introduction

The emergence of context-aware computing applications,
and location-based services and the proliferation of portable
electronic devices have motivated an extensive research on
the topic of node or device localization for wireless networks
operating under 2.4GHz ISM band protocols such as Blue-
tooth, Zigbee, and especially Wi-Fi. Localization is an im-
portant issue for the interaction between portable device
users and the surrounding networked devices in intelligent
environments such as homes, offices, or other intelligent
buildings [1, 2].

The localization problem has been a hot research topic in
theWireless Sensor Network (WSN) andMobile Robotics lit-
erature. According to theWSN terminology, a node is a small
device with sensing, computing, storage, and communication
capabilities, and the node localization problem is defined as
“determining an assignment of coordinates for nodes in a
wireless ad-hoc or sensor network that is consistent with
measured pair wise node distances” [3]. The definition states

basically that it is necessary to estimate a distance (range)
between the nodes before obtaining coordinates. See [4–6]
for more WSN terminology and applications.

A range estimation can be performed using collected
measurements from a variety of methods such as acoustic [7–
9], directional antenna or antenna array [10, 11], infrared [12],
and Received Signal Strength (RSS) measurements [13, 14].
Unlike other ranging methods, RSS-based methods estimate
neither distances nor positions from the angle of arrival
nor traveling time of the signal. Additionally, no clock syn-
chronization is assumed in the nodes. Only the incoming RF
signal is used to infer a range to the transmitter. The basic
premise is that the received signal power decay is inversely
proportional to the distance. This signal power attenuation
is called path loss (PL) and can be quantified by a path loss
exponent (PLE). Once the ranges to the landmarks (devices
with known positions) are estimated, trilateration methods
can be employed to find the location of an unknown position
node within a suitable coordinate system.
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However, RSS levels are highly unpredictable and the
formulation of a path loss model (PLM) as function of
distance is a complex issue. This complexity is derived from
the fact that the received power level is a combination of
different signal propagation mechanisms such as reflection,
diffraction, and scattering and absorption losses. Due to these
impairments, which depend on the surrounding environ-
ment, shadowing and multipath fading are produced. As a
consequence estimation errors can be introduced for any
RSS-based localization algorithm.

In recent years, RSS-based localization algorithms have
been the subject of an increasing interest due to the wide
availability of 802.11b/g transceivers and the proliferation of
Wireless Local Area Networks (WLANs).

This approach exploits existingWLAN infrastructure and
precludes the use of additional hardware such as badges; and
wearable sensors, see [15, 16]. In fact, the IEEE 802.11 stand-
ard provides the means to obtain the signal strength via the
Received Signal Strength Indicator (RSSI). This indicator is
defined as “a mechanism by which RF energy is to be mea-
sured by the circuitry on a wireless NIC. This numeric value
is an integer with an allowable range of 0–255 (a 1-byte value)”
[17]. Similar metrics are defined for the IEEE 802.15.4 and
IEEE 802.15.1 standards.

The node localization algorithms within previous litera-
ture are referred to as GPS-free or GPS-less algorithms. The
lack ofGPS use can be explained by commondrawbacks attri-
buted to several causes such as signal availability, cost,
antenna size, and energy consumption. Nowadays, some of
these arguments are no longer true. GPS chips can be ubiquit-
ously found in mobile devices such as smart phones, hand
helds, and tablets. While GPS chips are available in many
devices, there are still many others that do not have it. The
existing GPS positioning capability could be used to estimate
the PLEs of WLAN access points and the derived PLM
employed to enable GPS-free location services.

In this paper we propose a PLE estimationmethod which
uses the RSSI provided by a 802.11b/g transceiver in com-
bination with data collected from a commercial grade GPS
receiver. The method builds ray tracing models for typical
propagation scenarios such as urban canyon and non-urban
canyon cases, and uses them to formulate the design matrix
of an observationmodel.The propagation scenarios take into
account the shadowing and multipath effects. The observa-
tions are composed of RSSI readings and GPS data. The sys-
tem of equations of the design matrix is linearized using
Taylor series and then solved through least squares. The
main contribution of this work is the formulation of a para-
metric mathematical model which improves the PLE accu-
racy by using the Equivalent Isotropic Radiated Power (EIRP)
and Effective Antenna Aperture (EAA) parameters calculated
before obtaining the PLE. A second contribution is the com-
bination of GPS data and RSSI readings in order to identify
the RSSI long term behavior.

Depending on the transmitter’s power, antenna height,
and coverage area, the RF environments where the devices are
deployed can be classified as macrocell, microcell, and pico-
cell. In microcell environments the transmitting power of the
radios ranges from 0.1 to 1 watt, the RF coverage area ranges

from 200 to 1000m, and the transmitter’s height is low (3 to
10 meters) [18]. Environments within buildings are classified
as picocells. Indoor-to-outdoor configurations are environ-
ments with walls blocking the signal and are characterized
by a wall attenuation factor. The algorithm proposed in this
work is tailored to microcell RF environments with indoor-
to-outdoor coverage configurations; therefore models such
as Okumura-Hata, Lee, or Walfisch-Bertoni are not treated
here. From this point forward, when we refer to a blind
node, we mean a device (smart phone, hand held, tablet, or
laptop) whose position needs to be estimated; when we refer
to anchor or beacon or landmark nodes, we mean access
points (APs) for whose position are already known.

The paper is organized as follows. Section 2 reviews the
localization algorithms based on RSSI only and algorithms
with RSSI-GPS collaboration. In Section 3 we present the
proposed method. Section 4 presents the implantation of the
method in real world conditions. In Section 5 the accuracy of
the experimental results is discussed, and finally, conclusions
and future work are presented in Section 6.

2. Related Work

This section is divided in two parts. The first part reviews
papers related to either empirical or theoretical RSSI-based
models. In the second part, techniques that rely on both RSSI
and GPS to derive power-distance models for node local-
ization are examined. Note there are other methods for RF-
based localization such as fingerprinting [19, 20] andBayesian
Networks [21, 22].These techniques and some others exclude
PLE estimation and are not reviewed in this paper.

2.1. PLE from RSSI Measurements. The study of RSSI for
different purposes is not a new idea. Some of these purposes
are the optimization of the coverage area of wireless networks
[23], assessment of links quality for multihop routing pro-
tocols [24], and so forth. The use of RSSI as a means for
node localization estimation in a WLAN dates back to 2000.
For example, [25] proposes the use of an Extended Kalman
Filter (EKF) to cope with the noise in the measurements
and to maintain a position estimate in harsh conditions.
They conducted an empirical experiment to relate signal
strength to distance between base and mobile stations. The
shortcoming of this work is that it is designed to work within
predefined surroundings, in this case an office. The accuracy
is one room. In [26] authors propose a lookup-table method
for node position triangulation. They also conducted data
collection to empirically correlate distance to signal strength.
The shortcoming of this works is that it requires an extensive
survey at different points in a predefined environment and the
consequent table size. In [27] authors proposed an optimal
averaging window length of RSSI samples to cope with fading
of the power and mobility of the nodes. By modeling the
channel’s fading with a Rayleigh distribution, they obtained a
factor (𝑟2)whichmultiplies theRSSI samples (𝑤).The authors
reported a lower boundmean error of 2.5mwith𝑤 = 50.The
main drawback is that thismethod is intended for rectangular
areas where bacons are placed optimally.
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Although these previous works do not calculate a PLE
explicitly, they formulate empirical power-distance models
based on averaged RSSI measurements surveyed in specific
locations.They also address some issues affecting the received
power levels such as fading due tomultipath, nonline of sight,
node mobility, and sampling.

In the following literature review we now focus on
localization systems for outdoor environments since PLE
estimation was first introduced for such environments. In
[28] the authors propose a methodology for PLE estimation
in a WiMAX system. Although this methodology is not
intended for a WLAN, it is carefully examined in this
paper because of the use of common theoretical models to
estimate PLE. The first part of the methodology pairs RSSI
measurements, expressed in dB units, with distance (𝐿[dB],
𝑑[m]). In the second part, the authors use the well-known
log-distance path loss model to formulate a system of equa-
tions.The authors measured propagation losses in two differ-
ent points with identical conditions (line of sight condition)
and formulated a system of two linear equations:

𝐿
1 [
dB] = 𝑎 + 10 ∗ 𝛾 ∗ log

10
(𝑑
1
) ,

𝐿
2 [
dB] = 𝑎 + 10 ∗ 𝛾 ∗ log

10
(𝑑
2
) ,

(1)

where 𝑎 is a coefficient that accounts for frequency and other
propagation factors, 𝛾 is the PLE, and 𝑑 is distance in meters
between the transmitter and the receiver. Solving the system
and using several measurements the authors obtained the
following empirical path loss model 𝐿[dB] = 123.02 + 10 ∗

2.687 ∗ log
10
(𝑑).

In [29] the authors used the Okumura-Hata model to
calculate two different PLEs in a WiMAX network, although
the Okamura-Hata model is usually applied in macrocell
environments (distances greater than 1 km).They formulated
two different map-supported PLMs from RSSI observations.
One PLM corresponds to an “urban canyon” area while the
other for “non-urban canyon.” The developed models con-
sidered the type of area based on city map and road network
information.

Note that an urban canyon area is an area where there
exists an open street between the receiver and the transmitter.
Therefore, the signal reaches longer distances than in areas
with obstacles. On the other hand, an area with considerable
obstacles is classified as noncanyon.

Next, we shall review works which estimate PLE for
WLAN in indoor environments. Authors in [30] proposed
and implemented a system framework which consists of a
central server, a base station, and four beacon nodes. The
algorithm dynamically estimates a PLE between the beacons
and the blind node. The base station receives the RSS values
collected by the beacons nodes and sends them to the server.
The authors also employed the log-distance path loss formula,
but they add a stochastic component:

PL (𝑑) = PL (𝑑
0
) − 10𝛼log

10
(

𝑑

𝑑
0

) + 𝑋
𝜎
, (2)

where PL(𝑑) denotes the path loss in dB as function of
distance 𝑑, in meters, away from sender; PL(𝑑

0
) is a path loss

constant at a reference distance 𝑑
0
; 𝛼 is the PLE; and 𝑋

𝜎
is

Gaussian noise in dBm units. The 𝑋
𝜎
values account for the

long term variability. The 𝛼 exponent is estimated using the
following formula:

𝛼 =

−∑
𝑛

𝑖=1
(PL (𝑑

𝑖
) − PL (𝑑

0
))

∑
𝑛

𝑖=1
10 (log 𝑑

𝑖
)

, (3)

where 𝑛 is the number of RSSI measurements at distances
𝑑
𝑖
. Basically, (3) expresses 𝛼 in terms of an averaged ratio

between path loss and the logarithm of distance using all
measurements recorded. This averaged PLE is used to obtain
distances between the blind node and the four beacons.
Finally, a polygonmethod was used to obtain the blind node’s
coordinates.

Model (2) is commonly used in macrocell scenarios
by setting the 𝑑

0
reference distance to 1 km. Although the

formula was modified for microcell scenarios (setting 𝑑
0
to 1

and 100 meters), we do not think that this is the most suitable
PLM because of the particularities of such environments.

2.2. RSSI Measurements and GPS Data. Some of the first
applications of collaborative GPS/Wi-Fi were geocaching,
wardriving, and the elaboration of signal coverage maps.
Geocaching is a recreational outdoor activity in which the
users seek containers with the aid of GPS receiver andmobile
devices.War driving is the activity of searchingWi-Fi wireless
networks in a moving vehicle, using a portable computer or
other devices connected to a GPS. A signal coverage map is a
map with geographic information of areas where a wireless
networks are deployed. It represents signal intensity areas
(strong or weak) with contour lines or colors.

In [31] the authors presented a solution for manual
deployed networks calledWalking GPS. It works by attaching
aGPS receiver to a node calledGPSmote.This node first con-
verts its latitude and longitude coordinates into a local coor-
dinates system and then it broadcasts its position to the rest of
the nodes. When the carrier (person or vehicle) places a new
node in a certain position and turns it on, the node imme-
diately receives the broadcast packet from the GPS mote and
estimates its own position. On the other hand, if a node is
turning on after being deployed, it needs to ask its neighbors
for their positions in order to trilaterate its own position.The
main drawback of this solution is that it was tested in an ideal
propagation scenario (open field environment). Moreover,
the blind nodes were deployed within a predefined grid.

In [32] the authors proposed a multisensor fusion solu-
tion with data from three sources: a GPS, a radio propagation
map, and aWLANpositioning system.Theydivided the radio
map into three areas: indoor, outdoor, and shaded (a shaded
area is an area surrounded by buildings or in closed places).
The areas are covered by three fixed APs. The algorithm
consists of two phases: offline and online. In the offline phase
they collect RSSImeasurements at predefined locations in the
map. At these locations, they estimate the expected RSSI val-
ues using an equation similar to (3) with a reference distance
of 1 meter. Calculating the ratio between the observed and
the expected RSSI, they model the corresponding multipath.
Based on these ratios, a polynomial fit function is computed
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for all the predefined locations. Using this information and
trilateration, theWLAN positioning system estimates a blind
node preliminary position. Finally, in the online phase the
GPS is used to identify the area (indoor, outdoor, or shaded)
to improve the estimated positions.

In [33] the authors presented an outdoor WiFi localiza-
tion system assisted by GPS.The system uses a unidirectional
Yagi type antenna to triangulate the location of APs using
the angle of arrival of the received signal. The angle of the
received signal is measured with a GPS compass which is
rotated with the antenna and the WiFi receiver at the same
time.All the equipmentwasmounted on amotorized rotating
base. The proposed algorithm consists of the following steps:
(i) place the equipment at two different measurements points
𝑀
1
(𝑥
1
, 𝑦
1
) and 𝑀

2
(𝑥
2
, 𝑦
2
); (ii) find the respective 𝜃

1
and 𝜃

2

which corresponds to the angles at which themaximumRSSI
are observed; (iii) find the slopes𝑚

1
= tan 𝜃

1
, and𝑚

2
= tan 𝜃

2

and calculate 𝑐
1
and 𝑐
2
using the line equation 𝑦 = 𝑚𝑥 + 𝑐;

and (iv) find the intersection point for 𝑦
1
= 𝑚
1
𝑥
2
+ 𝑐
1
and

𝑦
2
= 𝑚
2
𝑥
2
+ 𝑐
2
. This intersection point corresponds to the

estimated location of the AP.

3. Proposed Solution

The models described in Section 2 express a power distance
relationship based on the attenuation of the signal’s power
as it propagates. Such attenuation roughly obeys the inverse
power law:

𝑃
𝑟
=

1

𝑑
𝛼
, (4)

where 𝑃
𝑟
is the power received in watts, 𝛼 is the PLE (equal to

2 in free space conditions), and 𝑑 is the distance between the
transmitter and the receiver in meters. However, the receiver
power attenuates at a much higher rate and exponent 𝛼 >

2. A higher 𝛼 can be explained in terms of losses caused
by propagation mechanisms, such as diffraction, scattering,
reflection, and refraction. For a detailed explanation refer to
[34]. The combination of these mechanisms is responsible
for power variations in the RSSI readings. These variations
are commonly classified as slow variation or long term fading
and fast variations or short term fading. Fast variations are
characterized by rapid fluctuations in the RSSI levels over
very short distances. On the other hand, long term fading, also
called large scale path loss, is due the increasing distance as
the receiver moves away from the transmitter.

A suitable mathematical tool to model these propagation
mechanisms and their effects on RSSI variability is ray-
tracing. An electromagnetic wave (EM) is composed of
electric (E) and magnetic (B) fields. These fields are perpen-
dicular to each other and the direction of the wave is obtained
from the cross product of E × B. The result is the Poynting
vector (S) that can be modeled as a ray. In ray tracing, a
ray is an imaginary straight line depicting the path light
travels. Using geometrically defined propagation scenarios,
the trajectory of different S rays can be computed.

The proposed method is divided into three phases. In
the first phase the EIRP and PLE parameters are estimated
using the observation model. In the second phase, PLMs

RSSI 
and GPS 

data

Fast variations

Slow variations

PLE 
estimation

[[[
[

𝑝𝑟1(𝑑)
...

𝑝𝑟𝑛(𝑑)

]]]
]

𝑧 = 𝛽 + �

Figure 1: Schematic diagram for phase 1.

for each landmark are formulated in order to translate RSSI
measurements into ranges. In the final phase, these ranges are
used to estimate the locations of one or more blind nodes.
Next, each phase is described in detail.

3.1. Observation Model Formulation. The formulation of the
system to infer the EIRP and PLE is expressed as follows:

z = 𝐻 (x) 𝛽 + k, (5)

where z = [𝑧
1
𝑧
2
𝑧
3
⋅ ⋅ ⋅ 𝑧
𝑛
] is a 1×𝑛 vector of RSSI observations

recorded in dB units at different distances ranging from 1
to 200 meters. Each 𝑧

𝑖
represents the measurements at a

particular distance (see Section 4);𝐻(x) is the design matrix
representing the ray tracing models; 𝛽 = [𝜃

1
, 𝜃
2
] is the vector

of parameters to be estimated; and lastly k is a Rayleigh
distributed random variable which accounts for fast variation
in short distances [35]. The block diagram for this phase is
shown in Figure 1.

Mathematical models expressed in matrix 𝐻 relate the
observations zwith the parameter vector 𝛽.These models are
ray tracing equations for an urban canyon and a non urban
canyon. Matlab scripts provided by [36] are used to construct
the geometry for the two scenarios. See Figure 2.

The models perform the addition of direct and reflected
rays and calculate the resulting received power at different
points in the scenarios.This is done by calculating the average
of vector S trough an area, that is, the power flux density
(PFD). First average S is expressed in terms ofE-field strength
and then it is related to the Effective Antenna Aperture (EAA)
area of the receiving antenna as follows:

𝑃
𝑟
= 0𝐴
𝑟
. (6)

The PFD represents the field strength at the receiver’s
antenna (in W/m2 units) and it is defined as

0 =

1

2

|𝑒|
2

120𝜋

, (7)

where |𝑒| is the magnitude of the electric field radiated in the
far-field region by the source point. 120𝜋 is the impedance of
free space (in Ohms). EAA is defined as

𝐴
𝑟
=

𝜆
2
⋅ 𝑔
𝑟

4𝜋 ⋅ 𝑙
𝑟

, (8)

where 𝑔
𝑟
is the receiving antenna gain in dBi, and 𝑙r is the

system loss at the receiver. PFD is defined as follows:
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Figure 2: Ray tracing representation of signals traveling distances in (a) urban canyon propagation scenario and (b) nonurban Canyon
propagation scenario.

Expressing (6) as a function of distance

𝑃
𝑟
(𝑑
0
) = 𝐴

𝑟

󵄨
󵄨
󵄨
󵄨
𝑒
𝑇
(𝑑
0
)
󵄨
󵄨
󵄨
󵄨

2

2𝜂

, (9)

where 𝑒
𝑇
is the modulus of complex number 𝑒

𝑇
and rep-

resents the total field strength of the rays combining at the
receiver (𝑒

𝑇
= 𝑒
0
+ 𝑒
1
+ 𝑒
2
+ 𝑒
3
). The term 𝑒

0
represents the

direct ray field strength; 𝑒
1
represents the ray reflected in the

ground; and 𝑒
2
, 𝑒
3
represent the rays reflected on walls. The

formulas for each term are

𝑒
0
= √

60𝑝𝑔

𝑙

{

𝑒
(−𝑗𝑘𝑑0)

𝑑
0

} ,

𝑒
1
= √

60𝑝𝑔

𝑙

{GR𝑒
−𝑗𝑘(𝑑0+𝑑1)

𝑑
0
+ 𝑑
1

} ,

𝑒
2
= √

60𝑝𝑔

𝑙

{WR𝑒
−𝑗𝑘(𝑑0+𝑑2)

𝑑
0
+ 𝑑
2

} ,

𝑒
3
= √

60𝑝𝑔

𝑙

{WR𝑒
−𝑗𝑘(𝑑0+𝑑3)

𝑑
0
+ 𝑑
3

} ,

(10)

where 𝑑
0
is the direct ray distance between the transmitter

and the receiver, 𝑑
1
is the additional distance the ray travels

due to reflection on the ground, 𝑑
2
and 𝑑

3
are the additional

distances due to wall reflections. These additional distances
(𝑑
1
, 𝑑
2
, 𝑑
3
) are fixed according to the specified geometry.

Constants WG and WR are ground and wall reflections
coefficients, respectively. Substituting (10) in (9) we obtain:

𝐴
𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

√
60𝑝𝑔

𝑙

({

𝑒
(−𝑗𝑘𝑑0)

𝑑
0

+ GR𝑒
−𝑗𝑘(𝑑0+𝑑1)

𝑑
0
+ 𝑑
1

+WR𝑒
−𝑗𝑘(𝑑0+𝑑2)

𝑑
0
+ 𝑑
2

+𝑊𝑅

𝑒
−𝑗𝑘(𝑑0+𝑑3)

𝑑
0
+ 𝑑
3

})

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

(2𝜂)
−1

.

(11)

The term 𝑝
𝑡
𝑔
𝑡
/𝑙
𝑡
is the EIRP and one of the parameters to

estimate. Substituting (11) in matrix 𝐻
𝐴
in (5), the resulting

system is

z =
[

[

[

[

𝑃𝑟
1
(𝑑)

...
𝑃𝑟
𝑛
(𝑑)

]

]

]

]

𝛽 + k. (12)

3.2. Range Estimation. After linearizing (12) using Taylor
series, we apply least squares to estimate EIRP and EAA.
In order to obtain a more accurate PLE, we use transmitted
power, 𝑝

𝑡
received power, 𝑝

𝑟
transmitter antenna gain, 𝑔

𝑡

receiver antenna gain, 𝑔
𝑟
, transmitter system loss, 𝑙

𝑡
and

receiver system loss, 𝑙
𝑟
, to formulate a new system:

z =
[

[

[

[

𝑃𝑟
1
(𝑑)

...
𝑃𝑟
𝑛
(𝑑)

]

]

]

]

𝛽 + n. (13)

In this formulation, the RSSI observation vector z con-
tains the short term or slow variations which were filtered
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Table 1

AP ssid Actual coordinates Estimated PLE (𝛾)

ENA 131 N: 5662636.17
E: 700932.53

2.42

ENE 136 N: 5662669.42
E: 700841.48

2.35

NM 110 N: 5662542.19
E: 700931.53

2.31

KNB 125u N: 5662445.24
E: 700805.63

2.40

KNB 132 N: 5662421.01
E: 700798.60

2.41

MC 184 N: 5662452.13
E: 700879.63

2.52

MC 197 N: 5662474.47
E: 700927.79

2.55

out of the raw readings. This extraction was carried out by a
runningmean. A runningmean calculates the signal strength
averages within a certain length distance interval. Commonly
used length interval ranges from 20 to 40 times 𝜆 [37]. These
averages are indexed and the vector z is formed where 𝑛 =

1 ⋅ ⋅ ⋅max distance. The variable n is a normal distributed
random variable which accounts for slow variations in long
term fading. The model for this system’s design matrix is the
logarithm of the Friis formula:

𝑝
𝑟
(𝑑) = (𝑝

𝑡
+ 𝑔
𝑡
+ 𝑔
𝑟
− 𝑙
𝑡
− 𝑙
𝑟
) + (10 ⋅ 2 ⋅ log

10
(

𝜆

4𝜋

))

+ 𝛾 ⋅ 10 ⋅ log
10
(𝑑) .

(14)

The terms between parentheses are constant and were
calculated in the previous step; therefore the parameter, 𝛽 =

[𝜃], to be estimated is the PLE, 𝛾, and remains in the last term.
Seven APs located in the University of Calgary campus

were selected as landmarks during the data collection pro-
cess (Refer to Section 5 for more information) having the
following service set identification (ssid): ENA 131, ENE 136
and NM 110, KNB 125u, KNB 132, MC 184, and MC 197.
After the method was applied to the signal strength received
from them and to the GPS data collected, a PLE and a path
loss model for each one were estimated. Table 1 lists ssid,
estimated PLE values, and the actualUTMcoordinates for the
landmarks. In this work the UTM system is employed due to
its use of meters instead of degrees of latitude and longitude.

Figure 3 shows short term received power and the cor-
responding long term path loss model for APs: ENA 131,
ENE 136, and NM 110. Figures 3(c) and 3(d) correspond
to non-urban canyon and reflect more harsh propagation
conditions.

3.3. Node Localization. In order to determine the blind node
position in 2D space, 𝑛 landmarks are employed. Although
two landmarks would be enough, there would be two

possible solutions. A third landmark reduces the estimation
to a unique solution. With the ranges estimated from a blind
node to 𝑛 landmark APs and the coordinates of the latter,
the method can formulate the following system of nonlinear
simultaneous equations:

𝜌
1
= √(𝑥

1
− 𝑥
𝑢
)
2

+ (𝑦
1
− 𝑦
𝑢
)
2

+ (𝑧
1
− 𝑧
𝑢
)
2

,

𝜌
2
= √(𝑥

2
− 𝑥
𝑢
)
2

+ (𝑦
2
− 𝑦
𝑢
)
2

+ (𝑧
2
− 𝑧
𝑢
)
2

,

...

𝜌
𝑛
= √(𝑥

𝑛
− 𝑥
𝑢
)
2

+ (𝑦
𝑛
− 𝑦
𝑢
)
2

+ (𝑧
𝑛
− 𝑧
𝑢
)
2

,

(15)

where (𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), and (𝑥

3
, 𝑦
3
) are the APs known coor-

dinates; (𝑥
𝑢
, 𝑦
𝑢
) is the position to find; and 𝜌

1
, 𝜌
2
, . . . , 𝜌

𝑛
are

the estimated ranges.UTMNorthing andEasting coordinates
are identified with 𝑦 and 𝑥, respectively. Because the blind
node and the APs are placed at ground level, the 𝑧 coordinate
is constant with an altitude of 1112.4meters. Because the num-
ber of equations is larger than the number of unknowns the
system has no analytical solution. However, it can be solved
through linearization and iteration. First we decompose the
unknowns into approximate and incremental components:
𝑥
𝑢
= 𝑥
𝑢
+Δ𝑥
𝑢
, 𝑦
𝑢
= 𝑦
𝑢
+Δ𝑦
𝑢
, 𝑧
𝑢
= 𝑧̂
𝑢
+Δ𝑧
𝑢
, whereΔ𝑥

𝑢
,Δ𝑦
𝑢
,

Δ𝑧
𝑢
are the unknowns, and 𝑥

𝑢
, 𝑦
𝑢
, 𝑧̂
𝑢
are considered known

by assigning theman initial value. By substituting these values
in (15) and differentiationing we obtain:

𝑝 (𝑥
𝑢
+ Δ𝑥
𝑢
, 𝑦
𝑢
+ Δ𝑦
𝑢
, 𝑧̂
𝑢
+ Δ𝑧
𝑢
)

= 𝑝 (𝑥
𝑢
, 𝑦
𝑢
, 𝑧̂
𝑢
) +

𝜕𝑝 (𝑥
𝑢
, 𝑦
𝑢
, 𝑧̂
𝑢
)

𝜕𝑥
𝑢

Δ𝑥
𝑢

+

𝜕𝑝 (𝑥
𝑢
, 𝑦
𝑢
, 𝑧̂
𝑢
)

𝜕𝑦
𝑢

Δ𝑦
𝑢
+

𝜕𝑝 (𝑥
𝑢
, 𝑦
𝑢
, 𝑧̂
𝑢
)

𝜕𝑥
𝑢

Δ𝑧
𝑢
+ ⋅ ⋅ ⋅ .

(16)

The series is truncated after the first-order partial deriva-
tives eliminating nonlinear terms. With initial values for
𝑥
𝑢
, 𝑦
𝑢
, 𝑧̂
𝑢
, new values for Δ𝑥

𝑢
, Δ𝑦
𝑢
, Δ𝑧
𝑢
can be calculated

and used to modify original 𝑥
𝑢
, 𝑦
𝑢
, 𝑧̂
𝑢
values. The modified

values are used again to find new deltas. This iteration con-
tinues until the absolute values of deltas are within a certain
predetermined limit. For a detailed explanation of this pro-
cess see [38].

For instance, with Wi-Fi only data collected at test point
5662622.36N, 700894.86E, and the PLEs and coordinates of
APs ENA 131, ENE 136, and NM 110 (listed in Table 1), the
following mean ranges were obtained: 𝜌

1
= 43.9158 meters,

𝜌
2
= 60.5400 meters, and 𝜌

3
= 65.5568 meters. Real ranges

are: 38.58, 68.42, and 91.43 meters. After solving the system,
the resulting estimated coordinates for the blind node were:
𝑥
𝑢
= 5662600, 𝑦

𝑢
= 700900, and 𝑧

𝑢
= 1112.4 (red color

balloon in Figure 4). In this particular case the position error
was 22.9432m.
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Figure 3: (a) AP ENA 131 short term received signal power for an urban canyon model. (b) Corresponding long term distance model with
PLE = 2.42. (c) AP ENE 136 short term received signal power for non-urban canyon. (d) Corresponding long term distance model with
PLE = 2.35. (e) AP NM 110 short term received signal power for urban canyon model. (f) Corresponding long term model with PLE = 2.31.

4. Implementation of the Method

In order to test our proposal, several experiments were
performed at a university campus.The data collection process

consists in recording the signal strength from nearby Wi-Fi
APs. The geographic location of the points where data was
collected was also logged and paired with the Wi-Fi data at
rate of 3Hz.The data collection was carried out with a laptop
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Figure 4: One example result and visualization on Google Earth.

and a GPS Garmin model GPSmap 60CSx. In the laptop the
inSSIDer program was installed and the GPS receiver was
connected via USB port. The campus infrastructure consists
of 1280APs with transmission rate of 54Mbps, maximum
Tx sensitivity of +17.0 dBm, and minimum Rx sensitivity of
−73.0 dBm. 87 out of 1280APs were identified along with
their geographic positions, but only seven were used in the
experiments (see Table 1). The data was collected during
several random walks each 15 minutes long and was carried
out on August 7, 11, 15, and 29 and June 15 and 23, 2011. All
tests took place within the area located between the three
buildings. See Figure 4. The data was logged in the GPS
eXchange format:

<time>2011-08-16T00 : 26 : 46.0Z</time>
<wpt lat=“51.079936” lon=“−114.133793”>
<MAC>00 : 0B : 86 : D6 : CB : 43</MAC>
<RSSI> −78</RSSI>

The <time> tag stores the UTC time when the mea-
surement was taken. The <wpt> tag stores the latitude and
longitude where the measurement was taken. The <MAC> tag
stores the physical address of the AP that sent the signal. The
tag <RSSI> stores the power level of that signal. To obtain
the distance between the point where the data was collected
and the point where the transmitting AP is located, we use
the Spherical Law of Cosines. This law gives accurate results
down to distances as small as 1 meter. Finally, the data was
classified according to theMAC address of the identified APs
and sorted from closest to farthest distance in order to obtain
the observations vector z = [𝑧

1
𝑧
2
𝑧
3
⋅ ⋅ ⋅ 𝑧
𝑛
].

5. Experimental Results

After data collection and model formulation phases, three
blind node positions within the campus were selected to test
our method. The coordinates of these positions are listed in
the second column of Table 2. In order to evaluate accuracy
of the results, Wi-Fi only readings and GPS only waypoints
were collected at these positions. Note that this number of
positions represents the best readings for both Wi-Fi and
GPS signals in our experimental scenario. The overall PLE
estimation can be improved as the number of blind node

Table 2

Positions Coordinates RMS2 Mean HDOP

ONE N: 5662622.36
E: 700894.86

6.2863 3.7488

TWO N: 5662469.1
E: 700840.36

7.3534 1.5291

THREE N: 5662503.43
E: 700915.76

3.6885 1.4245

Average 5.7760 2.2341

position readings is increased. However, this is subject to
good quality readings.

Before evaluating results, it is necessary to select the
appropriate accuracy metrics. Since this work uses a GPS
receiver to infer a power-distance model, it is necessary
to employ common metrics used by GPS manufacturers
such as Circular Error Probable (CEP), one-dimensional
root mean square (rms

1
), and two-dimensional root mean

square (rms
2
). See [39] for the definitions of these and other

metrics.
Since the proposed localization algorithm is intended for

portable electronic devices such as tablets, laptops, or hand-
helds, the localization takes place in a 2D map. Therefore,
horizontal accuracy metric rms

2
is selected. The metric rms

2

is the square root of the average of the squared horizontal
error and is calculated as follows:

rms
2
= √𝜎

2

𝑥
+ 𝜎
2

𝑦
, (17)

where𝜎2
𝑥
and𝜎2
𝑦
are the rootmean square errors of the𝑥 and𝑦

components of the estimated positions, if measurements and
model errors are assumed uncorrelated and the same for all
observations. If this assumption is not fulfilled, the 𝜎2

𝑥
and 𝜎2
𝑦

are the variance of the 𝑥 and 𝑦 components. A related metric
is Horizontal Dilution of Precision (HDOP). It is defined as
the ratio of rms

2
to the root mean square of the range errors.

The closer the HDOP value is to 1 the higher the accuracy
obtained. These two metrics are employed to quantify errors
within this section.

5.1. GPS Only Data. 7963 GPS waypoints were collected at
positions ONE, 6792 at positions TWO, and lastly 8340 at
position THREE.These waypoints were processed in order to
extract Northing and Easting coordinates and HDOP. With
this information the horizontal error position with respect to
the actual coordinates of position ONE, TWO and THREE
was calculated. The results for metrics rms

2
and HDOP are

shown in Table 2.

5.2. Wi-Fi Only Measurements. Now, the same metrics are
calculated for the WiFi only readings. In this case 5116
readings were collected at the test positions. Three landmark
APs were selected for positions ONE and TWO, and only two
for position THREE. Using the PLEs obtained in Section 4
for each AP, ranges to them were estimated. With the APs
actual coordinates, the real ranges were calculated (listed in



International Journal of Distributed Sensor Networks 9

Table 3

Estimated mean ranges to APs (meters) Real ranges to APSs
(meters)

RMS2 Mean HDOP

Position ONE
ENA 131: 43.9158
ENE 136: 60.5400
NM 110: 65.5568

38.58
68.41
91.43

15.7322 0.7866

Position TWO
KNB 125u: 48.6630
KNB 132: 51.5463
MC 184: 41.9375

51.74
75.70
41.32

32.2975 1.7112

Position THREE MC 197: 23.2717
NM 110: 34.2559

30.09
43.91

6.0423 0.5857

Average 18.024 1.0278

Table 3). Using this information, the method derived esti-
mated positions for the three test points. The resulting rms

2

and HDOP are summarized in Table 3.
Comparing Tables 2 and 3, it can be seen that the rms

2

measure of our results is almost 3 times the GPS rms
2
mea-

sure. It should be noted that a comparison of GPS and WiFi
derived HDOP values is not appropriate as each method has
its own unrelated ranging error.

6. Conclusions and Future Work

In this paper an adaptive method to formulate a power-
distance model and infer distances to AP landmarks was
proposed. The method is formulated as state space system.
The method uses GPS and RSSI data to identify the short
term and long term behavior on of the received signal power.
The system’s design matrix includes the ray tracing models
(canyon and non-canyon) needed to estimate the PLE. Based
on this the distance to each RSSI measurement source is
estimated and consequently its respective position. Once the
GPS-Assisted PLEmodel is derived at any time a user without
GPS (for instance, equipped with a WiFi-only device) is
capable of estimating her/his position.

A case study was implemented employing an 802.11 based
network and data from a consumer-grade GPS receiver. The
results were encouraging. The rms

2
error using only RSSI

and the derived GPS-Assisted PLE model was, on average,
18.02 meters. On the other hand, the average error using
only a consumer grade GPS was 5.77 meters. This means that
the proposed method is capable of formulating propagation
models that overcome signal impairments and deliver results
which are approximately 3 times the GPS error. The proposal
results are promising and its accuracy is higher than disable
GPS Selective Availability service which consisted of 100m
horizontal.

Although there are different works in the literature review
that combine GPS and RSSI, none of them explicitly produce
a PLE model. However, there are related works with real
implementations which obtain a higher accuracy but they
require additional GPS hardware or manual deployments in
predefined grids.

Future work includes additional case studies for protocols
such as 802.15.4 and 802.15.1. Also, since least squares are
the basis of the proposed methodology this can be extended
to other applications such as blind node tracking based on
Kalman Filters.
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We proposed a localization algorithm named LSARSSI for mobile node based on RSSI (received signal strength indicator) between
locating sensor node with inertia module built-in and the single anchor. Instead of directly mapping RSSI values into physical
distance, contrasting RSSI values received from anchor in different visited locations, LSARSSI utilizes the geometric relationship
of perpendicular intersection to compute node positions. Given that the values of RSSI among two visited locations are equal, we
regard that their distances to anchor node are equal. After obtaining several sets of such visited locations, the relative location of
mobile node and anchor node can be calculated. Because of the limitations of LSARSSI, we put forward an improved algorithm
named ILSARSSI. Our scheme uses only one location-known anchor which is useful in low density environment without using
additional hardware. The simulations show that LSARSSI achieves high accuracy and ILSARSSI performs high stability and
feasibility.

1. Introduction

Wireless sensor networks (WSNs) are such popular research
fields that are highly interdisciplinary and state-of-the-art
[1]. It has emerged as one of the key enablers for a variety
of applications such as military, environment monitoring,
emergency response, target detection and tracking, and some
business fields. In recent years, a number of research achieve-
ments aboutWSNs localization have arisen. According to the
deployment of beacon nodes (which is also called anchor),
the localization approaches that have been proposed can be
divided into two types: one of which is based on multiple
stationary beacon nodes [2–5], and another is based on
mobile beacon node(s) [6–10].

But these methods are not suitable for all the applications
of WSNs. In some scenarios, however, there is only a station-
ary beacon node [11] or a seed (reference nodewhich position
is known). For example, when we observe WSN on the sea,
data can be transmitted to the shore or on board through
an aggregation node, and only the position of aggregation
node is known. Another example is regarding mountain
inspection; the inspectorwould carry sensormodule tomove,
transmitting data collected through the aggregation base

station on the peak, and only the position of base station is
known. In this situation, neither methods based on mobile
beacon nor methods based on multiple beacon nodes could
be used directly.

To address the previous issues, in this paper we pro-
posed a localization algorithm named LSARSSI, an RSSI-
based localization scheme using single stationary anchor. To
increase the feasibility of our scheme, we further put forward
an improved method called ILSARSSI. Major contributions
of this paper are as follows.

(i) Our schemes can be used to locatemobile node in low
density environment, which only need single anchor.

(ii) In order to avoid errors from directly mapping
absolute RSSI values to distances, we obtain the
geometrical relationship of sensors by contrasting
the measured RSSI values. We then design a novel
localization scheme, LSARSSI, which has a better
accuracy and low overhead.

(iii) The simulation results show that our schemes per-
form high accuracy and feasibility, even in large-scale
environment.
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Figure 1: A model assumption in 3D.

The rest of this paper is organized as follows. Section 2
introduces the related works about the localization of WSNs.
Sections 3 and 4, respectively, present our algorithm of
LSARSSI and ILSARSSI. Section 5 presents our implemen-
tation and the simulation results. We conclude this paper in
Section 6.

2. Related Works

According to the deployment of beacon nodes, localization
technology can be classified into two categories: multiple sta-
tionary beacon nodes based approaches and mobile beacon
node(s) based approaches.

2.1. Multiple Stationary Beacon Nodes Based Approaches.
Measurement techniques inWSNs based onmultiple station-
ary beacon nodes can be broadly classified into two cate-
gories: range-based approaches and range-free approaches.

2.1.1. Range-Based Approaches. Range-based approaches as-
sume that sensor nodes can measure the distance and/or the
relative directions of neighbor nodes. Several mechanisms
have been proposed to measure the node’s physical distance.
For example, time of arrival (TOA) obtains range information
through signal propagation times [12], and time difference
of arrival (TDOA) estimates the node location by utilizing
the time differences among signals that are received from
multiple senders [13]. As an extension of TOA and TDOA,
angle of arrival (AOA) allows nodes to estimate the relative
directions between neighbors by setting an antenna array for
each node [14].

All the previous approaches require additional hardware
equipment so as to increase the cost of the sensor nodes
greatly. Such, TDOA needs at least two signal generators [13].
AOA needs antenna arrays and multiple ultrasonic receivers
[14].

A popular and widely used ranging technique is the
received signal strength (RSS) or quantified as the received

signal strength indicator (RSSI). RSSI is utilized to estimate
the distance between two nodes with ordinary hardware
[12, 15]. Various theoretical or empirical models of radio
signal propagation have been constructed to map absolute
RSSI values into estimated distances [16]. The accuracy and
precision of such models, however, are far from perfect
because of factors such as multipath fading and background
interference [15, 17].

2.1.2. Range-Free Approaches. Given that range-based ap-
proaches are limited by hardware limitations and energy
constraints, researchers have proposed range-free solutions
as cost-effective alternatives.

Range-free approaches rely on the connectivity measure-
ments between the measurement sensor nodes and a number
of reference nodes, called seeds. For example, in the centroid
algorithm [18], seeds broadcast their position to all neighbor
nodes that record all received beacons. Each node estimates
its location by calculating the center of the locations of all
seeds it hears. In Approximate Point-in-Triangulation Test
(APIT) [19], each node estimates whether it resides inside or
outside several triangular regions bounded by the seeds that it
hears and refines the computed location by overlapping such
regions. In ring overlapping based on comparison of received
signal strength indicator (ROCRSSI) [20], each sensor node
uses a series of overlapping rings to narrow down the possible
area in which it resides.

2.2. Mobile Beacons Approaches. Localization algorithms
mentioned previously are in static sensor networks, which
are not available in some scenarios. Recently, mobile-assisted
localization approaches have been proposed to improve the
efficiency of range-based approaches [10, 21]. The location of
a sensor node can be calculated with the rangemeasurements
from themobile beacon to itself; the localization accuracy can
also be improved bymultiplemeasurements that are obtained
when the mobile beacons are in different positions.

Several localization schemes are proposed in this field.
For example, Bergamo and Mazzini propose a scheme to
perform localization, based on the estimation of the power
received by only two beacons placed in known positions [22].
By starting from the received powers, eventually averaged on
a given window to counteract interference and fading, the
actual distance between the sensor and the beacons is derived,
and the position is obtained by means of triangulation.
In [10], a localization technique based on a single mobile
beacon aware of its position (e.g., by being equipped with a
GPS receiver) was presented. Sensor nodes receiving beacon
packets infer proximity constraints to the mobile beacon and
use them to construct and maintain position estimates. In
PI algorithm [9], instead of using the absolute RSSI values,
by contrasting the measured RSSI values from the mobile
beacon to a sensor node, PI utilizes the geometric relationship
of perpendicular intersection to compute the position of the
node.

In recent years, more researches are focusing on mobile
sensor networks, which are mainly based on mobile nodes
[23–25]. Unlike other algorithms, the scene of the application
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Figure 2: The 1001th message stored by sensor.

of ours is locating the mobile node with single stationary
anchor by comparing the measured RSSI values between
the locating sensor node with inertia module built-in and
the single anchor. In this sense, LSARSSI and ILSARSSI are
actually range-free approaches.

3. LSARSSI Algorithm

In this section, we first describe the application model in
Section 3.1. Section 3.2 presents the design of our localization
scheme in detail. Section 3.3 further presents the localization
algorithm in 3D space.

3.1. Model Assumptions. For better implementing our algo-
rithm, the hypotheses are as follows: (1) an anchor and a
mobile node with inertial module whose trajectory is not
designated; (2) the environment is an obstacle-free outdoor
area; (3) the communication is not continuous, and the
locating node receives the RSSI at different time intervals;
(4) the RSSI values can be measured, and the offsets can be
obtained and stored by themobile node with inertial module.

We can illustrate it by the following model assumption.
The coordinate of anchor 𝐴 is (𝑥

0
, 𝑦
0
, 𝑧
0
). Assume that the

coordinate of initial location of the locating node 𝑁 is
𝑃
0
(𝑥, 𝑦, 𝑧). 𝑃

𝑖
(𝑖 ∈ [1, 𝑛]) is a visited location of the mobile

node 𝑁 after time 𝑇, the relative offset of node 𝑁 among
𝑃
0
and 𝑃

𝑖
in the 𝑋, 𝑌, and 𝑍 axis is Δ𝑥, Δ𝑦, and Δ𝑧. So the

coordinate of 𝑃
𝑖
is (𝑥 + Δ𝑥, 𝑦 + Δ𝑦, 𝑧 + Δ𝑧), as shown in

Figure 1.
Table 1 shows the messages obtained by the locating

node 𝑁 in different visited locations; it contains offsets and
RSSI values. As the locating node needs to store the relative
distances between locations that it visited, as well as the RSSI
values between those locations to the anchor. It may require
large memory storage for sensors. The issue can be resolved
by the following method: assume that sensor can store 1000
messages of 𝑃

0
to 𝑃
999

, and if the RSSI value of 𝑃
𝑖
is minimum

(or maximum), the message of 𝑃
1000

will replace it as shown
in Figure 2.

As the communication is not continuous, and the visited
locations for our schemes needed are countable, the compu-
tation and communication costs are acceptable.

Table 1: Messages stored by sensor.

Locations Messages (node N)
𝑃
0

Δ𝑥 Δ𝑦 Δ𝑧 RSSI(𝑃
0
)

𝑃
1

𝑥 + Δ𝑥
01

𝑦 + Δ𝑦
01

𝑧 + Δ𝑧
01

RSSI(𝑃
1
)

...
...

...
...

...
𝑃
𝑖

𝑥 + Δ𝑥
0𝑖

𝑦 + Δ𝑦
0𝑖

𝑧 + Δ𝑧
0𝑖

RSSI(𝑃
𝑖
)

...
...

...
...

...
𝑃
𝑛−1

𝑥 + Δ𝑥
0𝑛−1

𝑦 + Δ𝑦
0𝑛−1

𝑧 + Δ𝑧
0𝑛−1

RSSI(𝑃
𝑛−1

)
𝑃
𝑛

𝑥 + Δ𝑥
0𝑛

𝑦 + Δ𝑦
0𝑛

𝑧 + Δ𝑧
0𝑛

RSSI(𝑃
𝑛
)

3.2. Localization Algorithm Design. Typically, the ensemble
mean received power in a real world obstructed channel
decays proportional to 𝑑

−𝑛𝑝, where 𝑛
𝑝

is the path-loss
exponent [26]. The ensemble mean power at distance 𝑑 is
typically modeled as

[𝑝
𝑟
(𝑑)]
𝑑𝐵𝑚

= [𝑝
𝑟
(𝑑
0
)]
𝑑𝐵𝑚

− 10𝑛 log 𝑑

𝑑
0

, (1)

where 𝑃
0
is the received power (dBm) at short reference

distance 𝑑
0
.

From (1) we know that, ideally, the longer the distance
between sender and receiver, the weaker the signal strength
detected by the receiver.The localization schemewas inspired
by the perpendicular bisector of a chord conjecture [27].With
two chords of the same circle, the intersection point of two
perpendicular bisectors of the chords will be the center of the
circle.The localization problem can be transformed based on
the conjecture. The center of the circle is the position of the
anchor; the chord is a segment that is a connection of two
positions (the RSSI values of the two positions are equal) of
the mobile node at a given moment. The solution is detailed
illustrated in Figure 3.

Node 𝐴 is the anchor, 𝑁 is the mobile locating node,
𝑃
0
, 𝑃
1
, 𝑃
2
, and 𝑃

3
are the visited locations of locating node

𝑁 after the time period of 𝑖𝑡, 𝑗𝑡, 𝑘𝑡, 𝑙𝑡; 𝐵, 𝐶 are the midpoints
of segments 𝑃

0
𝑃
1
, 𝑃
2
𝑃
3
, and RSSI(𝑃

0
) = RSSI(𝑃

1
), RSSI(𝑃

2
) =

RSSI(𝑃
3
).
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Figure 3: An example of LSARSSI algorithm in 2D.

The following are the formulas for calculating the location
of locating node:

𝐴 = (𝑥
0
, 𝑦
0
) , 𝑃

0
= (𝑥, 𝑦) ,

𝑃
1
= (𝑥 + Δ𝑥

01
, 𝑦 + Δ𝑦

01
) ,

𝑃
2
= (𝑥 + Δ𝑥

02
, 𝑦 + Δ𝑦

02
) ,

𝑃
3
= (𝑥 + Δ𝑥

03
, 𝑦 + Δ𝑦

03
) ,

𝐵 = (𝑥 + Δ𝑥
0𝐵
, 𝑦 + Δ𝑦

0𝐵
) ,

𝐶 = (𝑥 + Δ𝑥
0𝐶
, 𝑦 + Δ𝑦

0𝐶
) .

(2)

According to the geometry of vector, we can obtain that

→

𝑃0𝑃1

= (Δ𝑥
01
, Δ𝑦
01
) , →

𝑃2𝑃3

= (Δ𝑥
23
, Δ𝑦
23
) ,

→

𝐴𝐵

= (𝑥 + Δ𝑥
0𝐵
− 𝑥
0
, 𝑦 + Δ𝑦

0𝐵
− 𝑦
0
) ,

→

𝐴𝐶

= (𝑥 + Δ𝑥
0𝐶
− 𝑥
0
, 𝑦 + Δ𝑦

0𝐶
− 𝑦
0
) ,

→

𝑃0𝑃1

⋅ →

𝐴𝐵

= Δ𝑥
01
∗ (𝑥 + Δ𝑥

0𝐵
− 𝑥
0
)

+ Δ𝑦
01
∗ (𝑦 + Δ𝑦

0𝐵
− 𝑦
0
) = 0,

→

𝑃2𝑃3

⋅ →

𝐴𝐶

= Δ𝑥
23
∗ (𝑥 + Δ𝑥

0𝐶
− 𝑥
0
)

+ Δ𝑦
23
∗ (𝑦 + Δ𝑦

0𝐶
− 𝑦
0
) = 0,

⇓

(1) Δ𝑥
01
∗ 𝑥 + Δ𝑦

01
∗ 𝑦

= Δ𝑥
01
∗ (𝑥
0
− Δ𝑥
0𝐵
) + Δ𝑦

01
∗ (𝑦
0
− Δ𝑦
0𝐵
) ,

(2) Δ𝑥
23
∗ 𝑥 + Δ𝑦

23
∗ 𝑦

= Δ𝑥
23
∗ (𝑥
0
− Δ𝑥
0𝐶
) + Δ𝑦

23
∗ (𝑦
0
− Δ𝑦
0𝐶
) .

(3)

Assume that
𝑎 = Δ𝑥

01
∗ (𝑥
0
− Δ𝑥
0𝐵
)

+ Δ𝑦
01
∗ (𝑦
0
− Δ𝑦
0𝐵
) ,

𝑏 = Δ𝑥
23
∗ (𝑥
0
− Δ𝑥
0𝐶
)

+ Δ𝑦
23
∗ (𝑦
0
− Δ𝑦
0𝐶
) .

(4)

then (1), (2) can be converted into
(3) Δ𝑥

01
∗ 𝑥 + Δ𝑦

01
∗ 𝑦 = 𝑎,

(4) Δ𝑥
23
∗ 𝑥 + Δ𝑦

23
∗ 𝑦 = 𝑏,

⇓

𝑥 =

𝐷
1

𝐷

, 𝑦 =

𝐷
2

𝐷

,

(5)

where

𝐷 =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

Δ𝑥
01

Δ𝑦
01

Δ𝑥
23

Δ𝑦
23

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, 𝐷
1
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑎 Δ𝑦
01

𝑏 Δ𝑦
23

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

𝐷
2
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

Δ𝑥
01

𝑎

Δ𝑥
23

𝑏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(6)

3.3. Algorithm in 3D. Here we extend our algorithm to
three-dimensional space. As we know, if there are three
noncoincident chords on the sphere, the intersection of three
midvertical planes is the center of the sphere provided that
these three planes can intersect.

The general idea of this algorithm in 3D utilizes the
previous conjecture. This problem can be described as fol-
lows: the locations of locating node 𝑁 at different times
compose a collection 𝑃 = {𝑃

0
, 𝑃
1
. . . 𝑃
𝑛
}. Their RSSI values

are {RSSI(𝑃
0
),RSSI(𝑃

1
) . . .RSSI(𝑃

𝑛
)}, locations can be divided

into a number of subsets {𝑁
1
, 𝑁
2
. . . 𝑁
𝑚
} based on RSSI val-

ues, and the RSSI values in each subset are equal, respectively.
After that, given that one of the following conditions occurs,
our LSARSSI algorithm can be achieved: (1) |𝑁

𝑎
| = 2, and

|𝑁
𝑏
| = 2 and |𝑁

𝑐
| = 2 (as shown in Figure 4(a)); (2) |𝑁

𝑎
| = 3

and |𝑁
𝑏
| = 2 (as shown in Figure 4(b)); (3) |𝑁

𝑎
| = 4 (as

shown in Figure 4(c)) (𝑎, 𝑏, 𝑐 ∈ [1,𝑚]).
As (2) and (3) are the special cases of (1), here we take

|𝑁
𝑎
| = 2, |𝑁

𝑏
| = 2 and |𝑁

𝑐
| = 2 as an example to indicate

formulas for calculating the location of locating node.𝐴 is the
anchor;𝑃

0
,𝑃
1
,𝑃
2
,𝑃
3
,𝑃
4
, and𝑃

5
are the visited locations of the

mobile node; 𝐵, 𝐶, and𝐷 are the midpoint of 𝑃
0
𝑃
1
, 𝑃
2
𝑃
3
, and

𝑃
4
𝑃
5
. And

𝐴 = (𝑥
0
, 𝑦
0
, 𝑧
0
) ,

𝑃
0
= (𝑥, 𝑦, 𝑧) ,

𝑃
1
= (𝑥 + Δ𝑥

01
, 𝑦 + Δ𝑦

01
, 𝑧 + Δ𝑧

01
) ,

𝑃
2
= (𝑥 + Δ𝑥

02
, 𝑦 + Δ𝑦

02
, 𝑧 + Δ𝑧

02
) ,
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Figure 4: Examples of LSARSSI algorithm in 3D.
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Figure 5: An example of ILSARSSI algorithm in 2D.

𝑃
3
= (𝑥 + Δ𝑥

03
, 𝑦 + Δ𝑦

03
, 𝑧 + Δ𝑧

03
) ,

𝑃
4
= (𝑥 + Δ𝑥

04
, 𝑦 + Δ𝑦

04
, 𝑧 + Δ𝑧

04
) ,

𝑃
5
= (𝑥 + Δ𝑥

05
, 𝑦 + Δ𝑦

05
, 𝑧 + Δ𝑧

05
) ,

RSSI (𝑃
0
) = RSSI (𝑃

1
) ,

RSSI (𝑃
2
) = RSSI (𝑃

3
) ,

RSSI (𝑃
4
) = RSSI (𝑃

5
) .

(7)

According to the geometry of vector, we can obtain that

→

𝑃0𝑃1

= (Δ𝑥
01
, Δ𝑦
01
, Δ𝑧
01
) , →

𝑃2𝑃3

= (Δ𝑥
23
, Δ𝑦
23
, Δ𝑧
23
) ,

→

𝑃4𝑃5

= (Δ𝑥
45
, Δ𝑦
45
, Δ𝑧
45
) ,

→

𝐴𝐵

= (𝑥 + Δ𝑥
0𝐵
− 𝑥
0
, 𝑦 + Δ𝑦

0𝐵
− 𝑦
0
, 𝑧 + Δ𝑧

0𝐵
− 𝑧
0
) ,

→

𝐴𝐶

= (𝑥 + Δ𝑥
0𝐶
− 𝑥
0
, 𝑦 + Δ𝑦

0𝐶
− 𝑦
0
, 𝑧 + Δ𝑧

0𝐶
− 𝑧
0
) ,

⇓

→

𝐴𝐷

= (𝑥 + Δ𝑥
0𝐷
− 𝑥
0
, 𝑦 + Δ𝑦

0𝐷
− 𝑦
0
, 𝑧 + Δ𝑧

0𝐷
− 𝑧
0
) ,



6 International Journal of Distributed Sensor Networks

Anchor

Locating mobile node

Trajectory

500 ∗ 500m2

Figure 6: A trajectory of the locating mobile node.

→

𝑃0𝑃1

⋅ →

𝐴𝐵

= Δ𝑥
01
∗ (𝑥 + Δ𝑥

0𝐵
− 𝑥
0
) + Δ𝑦

01
∗ (𝑦 + Δ𝑦

0𝐵
− 𝑦
0
)

+ Δ𝑧
01
∗ (𝑧 + Δ𝑧

0𝐵
− 𝑧
0
) = 0,

→

𝑃2𝑃3

⋅ →

𝐴𝐶

= Δ𝑥
23
∗ (𝑥 + Δ𝑥

0𝐶
− 𝑥
0
) + Δ𝑦

23
∗ (𝑦 + Δ𝑦

0𝐶
− 𝑦
0
)

+ Δ𝑧
23
∗ (𝑧 + Δ𝑧

0𝐶
− 𝑧
0
) = 0,

⇓

→

𝑃4𝑃5

⋅ →

𝐴𝐷

= Δ𝑥
45
∗ (𝑥 + Δ𝑥

0𝐷
− 𝑥
0
) + Δ𝑦

45
∗ (𝑦 + Δ𝑦

0𝐷
− 𝑦
0
)

+ Δ𝑧
45
∗ (𝑧 + Δ𝑧

0𝐷
− 𝑧
0
) = 0,

(1) Δ𝑥01
∗ 𝑥 + Δ𝑦

01
∗ 𝑦 + Δ𝑧

01
∗ 𝑧

= Δ𝑥
01
∗ (𝑥
0
− Δ𝑥
0𝐵
) + Δ𝑦

01
∗ (𝑦
0
− Δ𝑦
0𝐵
)

+ Δ𝑧
01
∗ (𝑧
0
− Δ𝑧
0𝐵
) ,

(2) Δ𝑥23
∗ 𝑥 + Δ𝑦

23
∗ 𝑦 + Δ𝑧

23
∗ 𝑧

= Δ𝑥
23
∗ (𝑥
0
− Δ𝑥
0𝐶
) + Δ𝑦

23
∗ (𝑦
0
− Δ𝑦
0𝐶
)

+ Δ𝑧
23
∗ (𝑧
0
− Δ𝑧
0𝐶
) ,
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Figure 7: RSSI values received by locating node after time 𝑇.

(3) Δ𝑥
45
∗ 𝑥 + Δ𝑦

45
∗ 𝑦 + Δ𝑧

45
∗ 𝑧

= Δ𝑥
45
∗ (𝑥
0
− Δ𝑥
0𝐷
) + Δ𝑦

45
∗ (𝑦
0
− Δ𝑦
0𝐷
)

+ Δ𝑧
45
∗ (𝑧
0
− Δ𝑧
0𝐷
) .

(8)

Assume that

𝑎 = Δ𝑥
01
∗ (𝑥
0
− Δ𝑥
0𝐵
) + Δ𝑦

01
∗ (𝑦
0
− Δ𝑦
0𝐵
)

+ Δ𝑧
01
∗ (𝑧
0
− Δ𝑧
0𝐵
) ,
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Figure 8: Number of locations of LSARSSI and ILSARSSI algorithms.

𝑏 = Δ𝑥
23
∗ (𝑥
0
− Δ𝑥
0𝐶
) + Δ𝑦

23
∗ (𝑦
0
− Δ𝑦
0𝐶
)

+ Δ𝑧
23
∗ (𝑧
0
− Δ𝑧
0𝐶
) ,

𝑐 = Δ𝑥
45
∗ (𝑥
0
− Δ𝑥
0𝐷
) + Δ𝑦

45
∗ (𝑦
0
− Δ𝑦
0𝐷
)

+ Δ𝑧
45
∗ (𝑧
0
− Δ𝑧
0𝐷
) ,

(9)

then (1), (2), and (3) can be converted into

(4) Δ𝑥
01
∗ 𝑥 + Δ𝑦

01
∗ 𝑦 + Δ𝑧

01
∗ 𝑧 = 𝑎,

(5) Δ𝑥
23
∗ 𝑥 + Δ𝑦

23
∗ 𝑦 + Δ𝑧

23
∗ 𝑧 = 𝑏,

(6) Δ𝑥
45
∗ 𝑥 + Δ𝑦

45
∗ 𝑦 + Δ𝑧

45
∗ 𝑧 = 𝑐,

⇓

𝑥 =

𝐷
1

𝐷

, 𝑦 =

𝐷
2

𝐷

, 𝑧 =

𝐷
3

𝐷

,

(10)

where

𝐷 =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

Δ𝑥
01

Δ𝑦
01

Δ𝑧
01

Δ𝑥
23

Δ𝑦
23

Δ𝑧
23

Δ𝑥
45

Δ𝑦
45

Δ𝑧
45

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, 𝐷
1
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑎 Δ𝑦
01

Δ𝑧
01

𝑏 Δ𝑦
23

Δ𝑧
23

𝑐 Δ𝑦
45

Δ𝑧
45

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

𝐷
2
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

Δ𝑥
01

𝑎 Δ𝑧
01

Δ𝑥
23

𝑏 Δ𝑧
23

Δ𝑥
45

𝑐 Δ𝑧
45

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, 𝐷
3
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

Δ𝑥
01

Δ𝑦
01

𝑎

Δ𝑥
23

Δ𝑦
23

𝑏

Δ𝑥
45

Δ𝑦
45

𝑐

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(11)

4. Improved Algorithm: ILSARSSI

In real scenarios, the measure of the RSS is discontinuous;
it may be difficult to obtain several groups of locations with
the same RSSI values. So the algorithm proposed previously

cannot be successfully used to locate. However, the locating
node can be located by comparing the RSSI according to the
signal attenuation model [26].

Figure 5 demonstrates an example of the improved algo-
rithm ILSARSSI. The RSSI values of node 𝑁 measured
in 𝑃
0
, 𝑃󸀠
0
, 𝑃
1
, 𝑃󸀠
1
, 𝑃
2
, 𝑃󸀠
2
, 𝑃
3
, 𝑃󸀠
3
are RSSI(𝑃

0
), RSSI(𝑃󸀠

0
),

RSSI(𝑃
1
), RSSI(𝑃󸀠

1
), RSSI(𝑃

2
), RSSI(𝑃󸀠

2
), RSSI(𝑃

3
), RSSI(𝑃󸀠

3
),

and RSSI(𝑃
0
) < RSSI(𝑃󸀠

0
), RSSI(𝑃

1
) > RSSI(𝑃󸀠

1
), RSSI(𝑃

2
) >

RSSI(𝑃󸀠
2
), RSSI(𝑃

3
) > RSSI(𝑃󸀠

3
). The anchor is in the enclosed

region BCDE of four perpendicular bisectors of the segment
𝑃
0
𝑃
󸀠

0
, 𝑃
1
𝑃
󸀠

1
, 𝑃
2
𝑃
󸀠

2
, 𝑃
3
𝑃
󸀠

3
. After finding a sufficient number of

locations that meet such condictions, we can further narrow
the area where the anchor node is. We take the centroid of
the enclosed area as the position of the anchor, and then the
coordinates of visited locations can be obtained.

The following are the formulas for calculating the location
of locating node:

𝐴 (𝑥
0
, 𝑦
0
) , 𝑃

0
= (𝑥
1
, 𝑦
1
) , 𝑃

󸀠

0
= (𝑥
󸀠

1
, 𝑦
󸀠

1
) ,

𝑃
1
= (𝑥
2
, 𝑦
2
) , 𝑃

󸀠

1
= (𝑥
󸀠

2
, 𝑦
󸀠

2
) ,

𝑃
2
= (𝑥
3
, 𝑦
3
) , 𝑃

󸀠

2
= (𝑥
󸀠

3
, 𝑦
󸀠

3
) ,

𝑃
3
= (𝑥
4
, 𝑦
4
) , 𝑃

󸀠

3
= (𝑥
󸀠

4
, 𝑦
󸀠

4
) .

(12)

As 𝐿
1
, 𝐿
2
, 𝐿
3
, and 𝐿

4
are the perpendicular bisector of

𝑃
0
𝑃
󸀠

0
, 𝑃
1
𝑃
󸀠

1
, 𝑃
2
𝑃
󸀠

2
, and 𝑃

3
𝑃
󸀠

3
, according to the geometry of

vector, we can obtain that
𝐿
1
: (𝑥
1
− 𝑥
󸀠

1
) ∗ 𝑥 + (𝑦

1
− 𝑦
󸀠

1
) ∗ 𝑦

= (

𝑥
1
+ 𝑥
󸀠

1

2

) ∗ (𝑥
1
− 𝑥
󸀠

1
) + (

𝑦
1
+ 𝑦
󸀠

1

2

) ∗ (𝑦
1
− 𝑦
󸀠

1
) ,
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Figure 9: Localization error of our LSARSSI algorithm.

𝐿
2
: (𝑥
2
− 𝑥
󸀠

2
) ∗ 𝑥 + (𝑦

2
− 𝑦
󸀠

2
) ∗ 𝑦

= (

𝑥
2
+ 𝑥
󸀠

2

2

) ∗ (𝑥
2
− 𝑥
󸀠

2
) + (

𝑦
2
+ 𝑦
󸀠

2

2

) ∗ (𝑦
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− 𝑦
󸀠

2
) ,

𝐿
3
: (𝑥
3
− 𝑥
󸀠

3
) ∗ 𝑥 + (𝑦

3
− 𝑦
󸀠

3
) ∗ 𝑦

= (

𝑥
3
+ 𝑥
󸀠

3

2

) ∗ (𝑥
3
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󸀠

3
) + (
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The approach can also be applied to the localization
of mobile node in three-dimensional space. The simulation
results show that ILSARSSI performs high feasibility and
practicality.

5. Simulation Results

To evaluate the performance of our proposed approaches, we
useMATLAB7.0 to conduct the simulations. In the following,
the simulation parameters are listed in Table 2. We assume
that the trajectory of the mobile locating node is random
(Figure 6 is a trajectory of the locating node), the packet
transmission period among anchor andmobile locating node
is in a certain time interval (1 s, 2 s, 3 s, 4 s, and 5 s), the
average moving speed of the locating node is 2m/s, and the
size of sensor field is in an obstacle-free area of 100 ∗ 100m2,
200 ∗ 200m2, 300 ∗ 300m2, 400 ∗ 400m2, and 500 ∗ 500m2.
Figure 7 plots the RSSI values received by locating node along
the trajectory shown in Figure 6.

In the first section, we mainly validate the feasibility of
LSARSSI and LSARSSI algorithm, and in the second section,
we discuss the localization error of LSARSSI and ILSARSSI
algorithms.

Table 2: Simulation parameters.

Parameters Value(s)
Packet transmission period (s) 1, 2, 3, 4, 5
Moving speed (m/s) 2

Size of sensor field (m2) 100 ∗ 100, 200 ∗ 200, 300 ∗ 300,
400 ∗ 400, 500 ∗ 500

5.1. Number of Locations Simulations. Figure 8 compares the
number of locations of LSARSSI algorithm and ILSARSSI
algorithm. The average number of locations of ILSARSSI is
much fewer than LSARSSI algorithm, which demonstrates
that the ILSARSSI algorithm performs high feasibility.

(1) Number of Locations versus Packet Transmission Period.
The packet transmission period is the time interval of
transmitting message among the anchor and locating node.
Figure 8(a) indicates that the number of locations of
ILSARSSI algorithm decreases with increasing the packet
transmission period. The average numbers of locations of
ILSARSSI algorithm and ILSARSSI algorithm are approxi-
mately 240 and 55 at different transmission period, respec-
tively.

(2) Number of Locations versus Size of Sensor Field. The size
of sensor field is the moving range of the locating node.
Figure 8(b) shows that the number of locations of ILSARSSI
algorithm increases with expanding the size of sensor field.

5.2. Average Localization Error Simulations

(1) Average Localization Error versus Packet Transmission
Period. Figure 9 compares average localization error for Ssu’s
[28], BT [29], and our algorithm. Figure 9(a) shows that the
localization accuracy for both Ssu’s and BT algorithms can
be improved by reducing the packet transmission period.
However, our LSARSSI algorithm performs higher accuracy
with increasing packet transmission period,which can reduce
the communication cost and energy consumption. If packet
transmission period is 5 s, the average localization error of
Ssu’s and BT is approximately 15m, but our algorithm is less
than 3m.

(2) Average Localization Error versus Size of Sensor Field.
Figure 9(b) shows the impact of moving range on the local-
ization error, as the size of sensor field expands from 100 ∗

100m2 to 500 ∗ 500m2. The increased size of sensor field
makes the Ssu’s and BT algorithms less accurate, but our
localization error remains within 5m.

(3) Average Localization Error of LSARSSI and ILSARSSI.
Figure 10 demonstrates the localization error of ILSARSSI
algorithm depends on the locating time. With increasing
the locating time, the locating accuracy becomes more and
more precise. That is because the possible location falls into
a smaller enclosed region. However, the estimated error
of LSARSSI algorithm varies slightly with the increase of
locating time.
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Figure 10: Average localization error of LSARSSI and ILSARSSI.

6. Conclusions

In this paper, we propose a localization algorithm named
LSARSSI for mobile node with single anchor by aid of
inertia module. The simulation results demonstrate that our
LSARSSI algorithm outperforms than other range-free local-
ization mechanisms, for example, Ssu’s and BT algorithms.
As the number of locations needed is approximately 200, we
further proposed an improved algorithm named ILSARSSI.
ILSARSSI utilize the signal attenuation model to narrow the
region of the anchor, and finally we regard the centroid of the
enclosed region as its physical position. The average number
of locations of ILSARSSI algorithm is much fewer which
performs high feasibility. Our scheme uses only one location-
known anchor which is useful in low density environment
without using additional hardware. Because our algorithms
are adapted to the obstacle-free outdoor scenario, our future
work will focus on indoor environment.
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Node position information is one of the important issues in many wireless sensor networks’ usages. In this paper, based on path
planning, a location predictingmethod (PPLP) for indoormobile target localization is proposed.Wefirst establish the path planning
model to constrain the movement trajectory of the mobile target in indoor environment according to indoor architectural pattern.
Then, one certain localization result can be obtained usingMLE algorithm. After that, based on the path-planning model and some
previous localization results, the most likely position of the target in the next time interval can be predicted with the proposed
predicting approach. Finally, the MLE result and prediction result are weighted to obtain the final position. The simulation results
demonstrate the effectiveness of the proposed algorithm.

1. Introduction

Wireless sensor networks (WSNs) are widely applied inmon-
itoring, sensing, and collecting the information of interest
in the environment [1]. Localization of target nodes is a
fundamental problem in wireless sensor networks [2]. Up to
now, the most existing localization algorithms of WSNs can
be classified into two categories: range-based [3, 4] and range-
free [5, 6]. Range-based algorithms use distance or angle
estimates in their location estimations. Range-free algorithms
use connectivity information between unknown nodes and
anchor nodes. Range-based localization algorithms need to
measure the actual distances or orientation between adjacent
nodes, and then use the measured data to locate unknown
nodes. Some ranging methods have been used for distance
or orientation estimation, such as RSSI [7, 8], ToA [7, 9],
TDOA [7, 10], and AoA [7, 11].Whatever the rangingmethod
is, there will be measurement errors in practical localization
systems that result in noisy range estimations.Thus, accuracy
in the position estimation phase is highly sensitive to range
measurements [12]. Without improving range estimation or
adding some other information related to localization, the
accuracy of the current range-based algorithms cannot be
improved obviously.

Indoor localization of WSNs has been a hot research
topic for the last several years. Due to the randomness of
targets moving and the complicated indoor environment,
it is very different to locate indoor mobile target. In this
paper, we proposed a location predicting method (PPLP)
for indoor mobile target localization in WSNs based on
path planning. We first establish the path-planning model
to constrain the movement trajectory of the mobile target
in indoor environment according to indoor architectural
pattern. Then, we use MLE approach to get one certain
location result of the target. After that, based on the path-
planning model and some previous localization results of the
target, the best possible position of the target in the next
time interval can be predicted with the proposed predicting
approach. Finally, the MLE result and prediction result are
weighted to obtain the final position. In simulation process,
we define three metrics to evaluate the performance of the
proposed algorithm and compared with the MLE algorithm
and PSO algorithm. Simulation results demonstrate that the
proposed algorithm performed better than the other two
algorithms.

The rest of this paper is organized as follows: in the next
section, some related work is briefly introduced. Section 3
presents a detailed description of the main contribution of
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this paper, the proposed algorithm PPLP. The simulation
results on localization performance and error analysis are
discussed in Section 4. Section 5 concludes.

2. Related Work

2.1. Maximum Likelihood Estimation. Maximum likelihood
estimation (MLE) is widely used in many localization appli-
cations inwireless sensor networks [13–15]. In the localization
process, the number of multiple measurement equations is
usually more than the number of variables. Set 𝑟

𝑖
(𝑖 =

1, 2, . . . , 𝑛) is the estimated distance from anchor sensor
node (𝑥

𝑖
, 𝑦
𝑖
) to the target node, the target’s position can be

calculated as [16]:

Û = (A𝑇A)
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(2)

2.2. Particle Swarm Optimization for Localization. Particle
swarm optimization (PSO) [17, 18] is a swarm bionic opti-
mization algorithm, which models the behavior of flocks of
birds and fish. This method converges to the most optimal
solution in a larger probability. Its process does not depend
upon the quality of the objective function. So, it is commonly
used to solve the optimization problems.

Let 𝑥
𝑖
= (𝑥
𝑖1
, 𝑥
𝑖2
) be the 2-dimensional vector represent-

ing the position of the 𝑖th particle in the swarm, 𝑔 = [𝑔
1
, 𝑔
2
]

the position of the best particle in the swarm, 𝑝 = [𝑝
𝑖1
, 𝑝
𝑖2
]

the current best optimal solution of the 𝑖th particle itself and
V
𝑖
= [V
𝑖1
, V
𝑖2
] is the velocity of the 𝑖th particle. The particles

evolve according to the following equations:

V
𝑖𝑑
= 𝜔V
𝑖𝑑
+ 𝑐
1
𝑟
1
(𝑝
𝑖𝑑
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) ,

𝑥
𝑖𝑑
= 𝑥
𝑖𝑑
+ V
𝑖𝑑
,

(3)

where 𝑑 = 1, 2; 𝑖 = 1, 2, . . . , 𝐾; 𝐾 is the size of the
swarm population; 𝜔 is the inertial weight; 𝑐

1
determines

how much a particle is influenced by the memory of its best
solution; and 𝑐

2
is an indication of the impact of rest of the

swarm on the particle. 𝑐
1
and 𝑐
2
are termed cognitive and

social scaling parameters, respectively. 𝑟
1
and 𝑟
2
are uniform

random numbers in the interval [0, 1].
Reference [18] proposed an improvedPSOalgorithmwith

RSSI self-correcting localization algorithm forwireless sensor
networks. Based on the RSSI ranging, the author combined

Mobile anchor trajectory

Mobile anchor

Unknown nodes

Figure 1: A mobile anchor assisting in the localization.

Previous location

Predicted location

Initial location

Figure 2: Prediction method for WSNs localization.

the proposed RSSI self-correction mechanism and improved
PSO algorithm to optimize the nodes’ localization for WSNs.
Reference [12] proposed two novel and computationally
efficient metaheuristic algorithms based on tabu search
(TS) and particle swarm optimization (PSO) principles for
locating the sensor nodes in a distributed wireless sensor
network (WSN) environment. The author compared the
performance of the proposed algorithms with each other
and also against simulated annealing. The effects of range
measurement error, anchor node density, and uncertainty in
the anchor node position on localization performance are
also studied through various simulations.

2.3. Path-PlanningMethod forWSNs Localization. Path plan-
ning is usually used for mobile anchor node in WSNs local-
ization, where usually requires complex hardware support
[19]. A mobile anchor node could be a small mobile robot
equipped with a GPS and transmit its coordinate to the rest
of the sensors to help them localize themselves. Figure 1
depicts a sensor network deployed over a geographical area.
After the deployment, a mobile anchor traverses the sensor
network while broadcasting its location packet. The packet
contains the coordinates of the anchor, the current time, and
some other information such as RSSI. Any node receiving the
packet will be able to infer its location with several mobile
anchors or one mobile anchor at different times.

2.4. Prediction Method for WSNs Localization. Prediction
method is usually used to predict the possible locations of
target in the next time interval based on the existing time
series data [20] as Figure 2 shows.



International Journal of Distributed Sensor Networks 3

Salamah and Doukhnitch [9] proposed a new efficient
algorithm based on time of arrival (ToA) to determine the
position of a mobile object (MO) in a wireless environment.
However, it is not suitable for indoor mobile target localiza-
tion because of the non-line-of-sight (NLOS) propagation in
indoor environment.

3. Proposed Algorithm

3.1. Assumptions. We assume that the whole network con-
sists of some stationary anchor nodes (ANs) and a mobile
target. The anchor nodes whose coordinates are known are
randomly or artificially deployed in a 2-dimensional indoor
flat environment. All anchor nodes have the same radio
transmission range (𝑅). A mobile target may be a human, a
robot, or some object manipulated by some person. Turning
point (TP) is the intersection of two subpaths. The target
can move freely among various rooms. After encountering
some turning points, the target may change or not change
its motion path. The position of the target can be calculated
periodical with the proposed algorithm.The trajectory of the
target can be regarded as a series of discrete points called
target nodes (TNs). So, the localization problem changes into
solving the locations of the target nodes.

3.2. Path-Planning Model. Generally, the movement of the
mobile target (such as a person) is driving by its intention
with large randomness. But in indoor environment, the
motion trajectory of the target is relatively fixed because of the
spatial constraint. People often engage in some typicalmotion
patterns. For example, if a person wants to go to another
nonadjacent room, he/she must go out the door first, then
cross the corridors, and finally reach his/her destination. It is
impossible for him/her to go through walls directly to reach
the final position. Target’s indoor movement will be limited
by the indoor architecture pattern, such as walls and doors.
Suppose the location system knows the indoor architectural
pattern beforehand, and use it to assist positioning, we can
get a better localization accuracy and trajectory of the target.

As Figure 3 shows, any corridor/aisle or room can be
viewed as a path. Assume that each path can be described
using function 𝑓(𝑥, 𝑦), then all possible moving paths can be
described using path function as follows:

𝐹 (𝑥, 𝑦) =

{
{
{
{
{

{
{
{
{
{

{

𝑓
1
(𝑥, 𝑦) ,

𝑓
2
(𝑥, 𝑦) ,

...
𝑓
𝑚
(𝑥, 𝑦) ,

𝑥 ∈ 𝑋; 𝑦 ∈ 𝑌, (4)

where 𝑋 and 𝑌 are the ranges of the 𝑥-coordinate and 𝑦-
coordinate, respectively, and 𝑓

𝑚
(𝑥, 𝑦) is the path function for

the𝑚th path, called subpath function. All subpath functions
form the total path function 𝐹(𝑥, 𝑦).

However, different buildings have different indoor archi-
tectural patterns. In order to make location computing more

The paths that target can move along

Figure 3: An indoor architectural pattern with some indoor paths.

effective, we use a straight line segment function to describe
each subpath as follows:

(𝑥
𝑏
− 𝑥
𝑎
) 𝑦 = (𝑦

𝑏
− 𝑦
𝑎
) 𝑥 + (𝑥

𝑏
𝑦
𝑎
− 𝑦
𝑏
𝑥
𝑎
) , (5)

s.t. { min [𝑥
𝑎
, 𝑥
𝑏
] ≤ 𝑥 ≤ max [𝑥

𝑎
, 𝑥
𝑏
] ,

min [𝑦
𝑎
, 𝑦
𝑏
] ≤ 𝑦 ≤ max [𝑦

𝑎
, 𝑦
𝑏
] ,

(6)

where (𝑥
𝑎
, 𝑦
𝑎
) and (𝑥

𝑏
, 𝑦
𝑏
) are the jumping-off point (JOP)

and the end point (EP) of this staight line segment, respec-
tively. A straight line segments subpath can be obtained once
JOP and EP are determined. This function can completely
(if the real subpath is straight) or approximately (if the real
subpath is not straight) describe the real subpath. It will be
useful to improve localization accuracy.

3.3. Location Predicting Method. We assume that the maxi-
mum velocity of human moving is Vmax, and localization is
periodically with period being Δ𝑇. It is difficult to determine
TN’s position according to the previous localization results,
because the human moving is random and the localization
error exists. However, the localization results can track
target’s trajectory with high possibility. So our strategy is,
first, to compute localization results during a period of time
𝑇 using some certain localization method (such as MLE);
second, to predict the next possible positions according to
these localization results; last, the localization result and
prediction result are weighted to obtain the final position. In
this paper, we use MLE algorithm to finish the first step. We
only focused on step two and step three.

Let us use set𝐺 = {𝐺
1
, 𝐺
2
, . . . , 𝐺

𝑘
} to describe localization

results of the first step during time 𝑇, where 𝐺
𝑖
= (𝑥
(𝑖)
, 𝑦
(𝑖)
).

The prediction problem can be described as follows: how to
get the next position 𝐺̂

𝑘+1
according to set 𝐺 and the path-

planning model.
For any subpath 𝑓(𝑥, 𝑦), a set 𝑍 can be used to describe

all points on this subpath. Each element of set 𝑍 satisfied
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𝑆𝑘

Subpath
Target’s trajectory
Target nodes (TNs)

Localization result 𝐺𝑖 and sequence 𝐺
Closest projection point 𝑆𝑖
The possible prediction results 𝑆𝑘+1

Figure 4: Predicting model in indoor environment.

function (5). We can also get that all elements of𝐺 are belong
to set𝐷 which can be described as follows:

𝐷 = {(𝑥
𝐷
, 𝑦
𝐷
) | {

𝑥min − Δ𝑥 ≤ 𝑥𝐷 ≤ 𝑥max + Δ𝑥
𝑦min − Δ𝑦 ≤ 𝑦𝐷 ≤ 𝑦max + Δ𝑦

} , (7)

where 𝑥min, 𝑦min, 𝑥max, and 𝑦max are the minimum
𝑥-coordinate, minimum 𝑦-coordinate, maximum 𝑥-
coordinate, and maximum 𝑦-coordinate among all elements
of 𝐺, respectively. Δ𝑥 and Δ𝑦 are threshold values which are
related to accuracy of MLE algorithm.

One key point for predicting target’s position is to
find which subpath the target may move at time k. Some
definitions are defined at first as follows:

Definition 1. Optional subpath that target may move on: for
any subpath 𝑓(𝑥, 𝑦) described with set 𝑍, if it is satisfied that
𝑍 ∩ 𝐷 ̸=0, then this subpath is one optional subpath.

Definition 2. Closest projection point 𝑆
𝑖
and set 𝑆: 𝑆

𝑖
is the

closest projection point of 𝐺
𝑖
which satisfies the following

function (8), 𝑆 is the set of {𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑘
} whose element

number is equal to 𝐺’s as

𝑆
𝑖
= {𝑆̂
𝑥
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= arg min 󵄨󵄨󵄨
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󵄨
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} , (8)

where 𝑆
𝑥
= (𝑥
𝑠
, 𝑦
𝑠
) is any point on subpath 𝑓

𝑖
(𝑥, 𝑦). 𝑓

𝑖
(𝑥, 𝑦)

is one of all optional subpaths.

The prediction model can be showed as in Figure 4.
Usually, the subpath 𝑓

𝑘
(𝑥, 𝑦) in which 𝑆

𝑘
is on is the most

possible subpath that targetmaymove on. In order to increase
the predicting probability, we choose the subpathmost of S

𝑘−𝑝

to 𝑆
𝑘
are on as the 𝑘th subpath that targets moves on. Here

𝑝 is constant which is determined by experiment. 𝑝 should
be satisfied during time 𝑘 − 𝑝 to 𝑘; the distance of target’s
moving is small. Then, we use the closet projection points

on 𝑓
𝑘
(𝑥, 𝑦) to form a new set 𝑆󸀠 = {𝑆(1), 𝑆(2), . . . , 𝑆(𝑘)}. And

the prediction problem based on the previous model can be
written as follows:

𝑆̂
𝑘+1
= 𝑆
(𝑘)
+ V
𝑘
⋅ Δ𝑇, (9)

where 𝑆̂
𝑘+1

is the position to be predicted, and V
𝑘
is the

velocity at time 𝑘. For the randomness of target moving, the
direction of vector V

𝑘
is hard to be determined. So, we rewrite

it as follows:
�
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V
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⋅ Δ𝑇 = Δ𝑆, (10)

where �⋅, ⋅� denotes the shortest distance from one point
to anther along some certain subpath. So, �𝑆̂

𝑘+1
, 𝑆
(𝑘)� is

the shortest distance from 𝑆
(𝑘) to 𝑆̂

𝑘+1
along some certain

subpath.
Obviously, the optional subpath targets are on at time

𝑘 + 1 is very likely more than one. So, 𝑆̂
𝑘+1

may have one or
multiple solutions. At time 𝑘+1, targetmay still be on subpath
𝑓
𝑘
(𝑥, 𝑦) or turn to another adjacent subpath. Without loss of

generality, we assume that 𝑓
𝑘+1
(𝑥, 𝑦) is the possible subpath

at time 𝑘+1.The key point to judge whether𝑓
𝑘+1
(𝑥, 𝑦) exist is

to find out whether there is a TP when target is moving ahead
during time Δ𝑇.

Let 𝐶 be the set of all possible TPs that target may
encounter, if there is a point 𝐶

𝑟
in 𝐶 satisfing (10), then

𝑓
𝑘+1
(𝑥, 𝑦) exists as follows:
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< Δ𝑆, (11)

where �𝐶
𝑟
, 𝑆
(𝑘)� is the possible shortest distance from 𝑆(𝑘) to

𝐶
𝑟
along the subpath 𝑓

𝑘
(𝑥, 𝑦) which can be obtained by as

following:
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Then the set of all possible predicting positions at time
𝑘 + 1 can be written as follows:
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Set 𝑀
𝑘+1

contains all possible predicting positions. But
the possibility of each element in 𝑀

𝑘+1
to become the final

localization result is different. Let ̂U
𝑘+1

be the localization
result using MLE algorithm at time 𝑘 + 1. Generally, ̂U

𝑘+1
is

close to real position with high possibility.Themore accurate
theMLE is, the higher the possibility will be. And the element
in𝑀
𝑘+1

nearby Û
𝑘+1

has a higher possibility than the other
elements. Predicting result in𝑀

𝑘+1
that owns this feature can

be treated as one final result, that is:

𝑆̂

(𝑎)

𝑘+1
= {𝑀

𝑗
| min
𝑀𝑗∈𝑀𝑘+1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝑗
−
̂U
𝑘+1

󵄨
󵄨
󵄨
󵄨
󵄨
} . (14)
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On the other hand, for the randomness of humanmoving,
different movement patterns may lead to different prediction
possibilities. We can infer the next possible positions accord-
ing to previous locations.

Definition 3. Direction value of 𝑆(𝑖): for the 𝑖th point 𝑆(𝑖) in
𝑆
󸀠, we use 𝛿orien(𝑆

(𝑖)
| 𝑆
(𝑖−1)
) to describe the target’s moving

direction at time 𝑖. If 𝛿orien(𝑆
(𝑖)
| 𝑆
(𝑖−1)
) equals to 1, themoving

direction of 𝑆(𝑖) is forward, otherwise backward. 𝛿orien(𝑆
(𝑖)
|

𝑆
(𝑖−1)
) can be calculated with the following:

𝛿orien (𝑆
(𝑖)
| 𝑆
(𝑖−1)
)

=

{
{
{
{

{
{
{
{

{

1, if < 𝜓, ⃗𝑙 ≥ 0,where, 𝜓 = 𝑆(𝑖) − 𝑆(𝑖−1),
⃗
𝑙(

𝜕𝑓

𝜕𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑆
(𝑖)

,

𝜕𝑓

𝜕𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑆
(𝑖)

) ,

−1, else,

(15)

where 𝑓 = 𝑓
𝑘
(𝑥, 𝑦), 𝑖 ≥ 2.

So the possibility the target moving forward at time k can
be described as follows:

𝑝
(forward)
(𝑘+1|𝑘)

=

Num 𝛿
(+1)

𝑚

, (16)

where Num 𝛿
(+1)is the amount of points whose direction

value is 1;𝑚 is the amount of elements in 𝑆󸀠.
From the previous description, we know that a TP may

be encountered when target is moving forward or backward
if𝑓
𝑘+1
(𝑥, 𝑦) exists. So, in set𝑀

𝑘+1
, some elements may reflect

the prediction results that target moving forward; we use
𝑛
(forward) to denote the number of these elements. Othersmay

reflect the prediction results that target moving backward; we
use 𝑛(backward) to denote the number of these elements. So, we
can get another prediction result:

𝑆̂

(𝑏)

𝑘+1
=

𝑛
(forward)

∑

𝑖=1

(

𝑝
(forward)
(𝑘+1|𝑘)

𝑛
(forward) ⋅ 𝑄̂

(𝑖)

𝑘+1
)

+

𝑛
(backward)

∑

𝑗=1

(

1 − 𝑝
(forward)
(𝑘+1|𝑘)

𝑛
(backward) ⋅ 𝑄̂

(𝑗)

𝑘+1
) ,

(17)

where 𝑄̂(𝑖)
𝑘+1

is the 𝑖th prediction result in set𝑀
𝑘+1

when target
ismoving forward, 𝑄̂(𝑗)

𝑘+1
is the jth prediction result in set𝑀

𝑘+1

when backward.
Then the final predication result can be written as follows:

𝑆̂
𝑘+1
= 𝛼 ⋅ 𝑆̂

(𝑎)

𝑘+1
+ (1 − 𝛼) ⋅ 𝑆̂

(𝑏)

𝑘+1
, (18)

where 𝛼 is the weight of each predicting result. It can be
obtained with some learning methods [20] when doing long-
term prediction [21] applications. Generally, the long-term
motion trajectory of the target usually comply with limited
movement patterns, which is shown as a repetitive motion
along one or several paths. In this paper, we only consider
short-term predicting, and the value of 𝛼 is set to 0.5.

3.4. Final Location Computing. The final localization result
can be obtained as follows:

𝐺
𝑘+1
= 𝑤 ⋅ Û

𝑘+1
+ 𝑤
󸀠
⋅ 𝑆̂
𝑘+1
. (19)

Here we defined 𝑤 as follows:

𝑤 =

{
{
{
{
{

{
{
{
{
{

{

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
Vmax

󵄨
󵄨
󵄨
󵄨
⋅ Δ𝑇 −

�
𝑆
(𝑘)
, 𝑆̂
𝑘+1

�
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆̂
𝑘+1
− Û
𝑘+1

󵄨
󵄨
󵄨
󵄨
󵄨

,

if 󵄨󵄨󵄨󵄨
󵄨

̂U
𝑘+1
− 𝑆
(𝑘)󵄨󵄨
󵄨
󵄨
󵄨
≥
󵄨
󵄨
󵄨
󵄨
Vmax

󵄨
󵄨
󵄨
󵄨
⋅ Δ𝑇,

1, else.

(20)

3.5. Updating Rules. After getting the localization result at
time 𝑘 + 1, some updating rules are proposed for the next
location predicting and computing. The updating rule for
|V
𝑘+1
| can be written as follows:

󵄨
󵄨
󵄨
󵄨
V
𝑘+1

󵄨
󵄨
󵄨
󵄨
=

�𝑆
𝑘+1
, 𝑆
𝑘
�(𝑓𝑘(𝑥,𝑦))
Δ𝑇

, if (󵄨󵄨󵄨
󵄨
V
𝑘+1

󵄨
󵄨
󵄨
󵄨
<
󵄨
󵄨
󵄨
󵄨
Vmax

󵄨
󵄨
󵄨
󵄨
) ,

󵄨
󵄨
󵄨
󵄨
V
𝑘+1

󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
Vmax

󵄨
󵄨
󵄨
󵄨
, else,

(21)

where �𝑆
𝑘+1
, 𝑆
𝑘
�(𝑓𝑘(𝑥,𝑦)) is the distance from 𝑆

𝑘
to 𝑆
𝑘+1

along
the subpath 𝑓

𝑘
(𝑥, 𝑦); 𝑆

𝑘+1
is the closest projection point of

𝐺
𝑘+1

which can be obtained by Definition 2. 𝑓
𝑘+1
(𝑥, 𝑦) is the

subpath that 𝑆
𝑘+1

is on at time 𝑘 + 1.
The update rule for set 𝑆 is to keep the length of 𝑆

unchanged, remove the first element, and insert the new
element 𝑆

𝑘+1
into the last of 𝑆.

3.6. Pseudoprocedure of PPLP Algorithm. Target’s final loca-
tion at time 𝑘 + 1 can be obtained with the following pseudo
procedure of PPLP algorithm.

Procedure begin:
//Path-planning begin:

(1) input JOP and EP of each subpath according to actual
indoor environment;

(2) determine each subpath with function (5);
(3) determine the total path with function (4);

complete path-planning modeling.
//Path-planning end.

(4) calculate the target’s location ̂U
𝑘+1

at time 𝑘 + 1 using
MLE algorithm;
//Predicting begin:

(5) initialize 𝐺, |V
𝑘
|, |Vmax|, 𝑝, Δ𝑥, Δ𝑦;

(6) calculate set 𝑆 with the path-planning model and
functions (7) and (8);

(7) calculate𝑀
𝑘+1

with functions (9)–(13);

(8) calculated 𝑆̂(𝑎)
𝑘+1

with function (14);

(9) calculated 𝑆̂(𝑏)
𝑘+1

with function (15)–(17);

(10) calculated 𝑆̂
𝑘+1

with function (18);
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Figure 5: The nodes deployment and environment set up.

(11) calculated the final position 𝐺
𝑘+1

with function (19)
and (20).
//Predicting end.
//Updating begin:

(12) update some with updating rules in Section 3.5.
//Updating end.

Procedure end.

4. Simulation and Analysis

In this section, we will evaluate the performance of the pro-
posed localization algorithm through extensive simulations
carried out using MATLAB.

4.1. Simulation Scenario and Settings. We set simulation
scenario and some key parameters as follows.

All ANs are randomly deployed in a 50∗50m2 area for the
simulation.The total number of ANs is initially 100 and every
AN is known its position. All members of 𝐺 are initialized
to (0, 15). Some other parameters are shown in Table 1.The
nodes deployment and the environment setup are shown in
Figure 5.

In Figure 5, we use 4 dotted-line segments to represent 4
subpaths, respectively.The path width is set to be 2m.We use
some random discrete TNs (as shown in Figure 5 with blue
dots) to simulate the randomness of human movement. In
the proposed algorithm, we did not consider any particular
ranging technique. In the simulation process, we use the
following formula (22) [12, 22] to describe the measured
distances between TNs and ANs with some certain ranging
technique:

̂
𝑑
𝑖𝑗
= 𝑑
𝑖𝑗
+ 𝑁
𝑖𝑗
, (22)

where ̂𝑑
𝑖𝑗
and 𝑑

𝑖𝑗
are the measured and real distance between

the AN
𝑖
and the TN

𝑗
, respectively, and 𝑁

𝑖𝑗
is assumed to

Table 1: Simulation parameters.

Type Value
𝑝 5
󵄨
󵄨
󵄨
󵄨
v
𝑘

󵄨
󵄨
󵄨
󵄨

0.5
󵄨
󵄨
󵄨
󵄨
vmax

󵄨
󵄨
󵄨
󵄨

5m/s
T 2 s
Δ𝑇 100ms
Δ𝑥 3m
Δ𝑦 3m
𝑅 10m

be blurred by additive Gaussian random variables with zero
mean and known variance 𝜎2

𝑑
.

4.2. Evaluation Metrics. To analyze the simulation results, in
this paper, we defined the following two metrics to evaluate
the performance of the proposed algorithm.

(a) Average localization error:

err aver = 1

NUM

NUM
∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑋
𝑖
− 𝜎
𝑖

󵄩
󵄩
󵄩
󵄩
, (23)

where err aver is the error mean of localization result
which reflects the accuracy of the algorithm. 𝑋

𝑖
is

the real coordinate of the TN
𝑖
; 𝜎 is the calculated

coordinate of the TN
𝑖
using the proposed localization

algorithm. ‖𝑋
𝑖
− 𝜎
𝑖
‖ represents the localization error

of TN
𝑖
. NUM is the number of TNs.

(b) Standard variance of localization error:

Loc ver = √ 1

NUM

NUM
∑

𝑖=1

(
󵄩
󵄩
󵄩
󵄩
𝑋
𝑖
− 𝜎
𝑖

󵄩
󵄩
󵄩
󵄩
− err aver)2, (24)

where Loc var is the standard variance of localization
results which can describe the degree of spread of
the localization results. Other variables have the same
meanings as metric (a).

(c) Average distance to the correct subpath:

deviate value aver = 1

NUM

NUM
∑

𝑗=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜒
𝑗
− 𝜎
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
, (25)

where deviate value aver is the average distance that the
location results of the targets deviated from the correct
subpath. 𝜒

𝑗
is the closest projection point of the TN

𝑗
, 𝜎
𝑗
is

the calculate coordinate of TN
𝑗
using proposed algorithm

localization algorithm. ‖𝜒
𝑗
− 𝜎
𝑗
‖ represents the distance that

TN
𝑖
departed from the correct subpath.

4.3. Simulation Results and Analysis. We firstly simulate 100
ANs to evaluate the performance of the proposed algorithm
and the classical MLE algorithm [13–16]. The simulation
results are shown in Figures 6 and 7.
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Figure 6: The simulation result of the proposed algorithm.

0 5 10 15 20 25 30 35 40 45 50

Target nodes
Anchor nodes
Localization results

𝑥

0
5

10
15
20
25
30
35
40
45
50

𝑦

Figure 7: The simulation result of MLE algorithm.

Figures 6 and 7 show the simulation results of the
proposed algorithm and MLE algorithm when the number
of anchor nodes is 100 and transmission range (𝑅) is 10m.
We can see that the performance of the proposed algorithm
is better than MLE algorithm. To ease the understanding
and analyzing of simulation results, we use average local-
ization error (err aver), standard variance of localization
error (Loc var), and average distance to the correct subpath
(deviate value aver) as the evaluation metrics to evaluate the
performance of these two algorithms. Finally, we get the
following comparison results.

Figure 8 provides an intuitive comparison of the accuracy
of the proposed localization algorithm and the MLE. The
average localization error can be obtained using formula (23).

The result shows that the average localization error of MLE is
2.5621m while the proposed algorithm is only 1.7624m. We
can see that the proposed localization algorithm has a better
accuracy than MLE algorithm. Figure 9 shows the distance
that localization results of TNs deviated from the correct
trajectory when the target moves along the correct subpath
as shown in Figure 5. The average distance to the correct
subpath can be obtained using formula (25). The simulation
result shows that the average distance to the correct subpath
of the proposed algorithm is 0.5175m, which is much smaller
thanMLE algorithm.We also calculate the standard variance
of localization error with formula (24). The Loc var of MLE
is 1.4318, and the proposed algorithm’s is 1.0972. Figure 10
gives the comparison results of these two algorithms with
respect to the proposed three metrics. The result shows that
the proposed algorithm (PPLP) has better performance in
all evaluation metrics than MLE algorithm. The accuracy
is high, the localization result is stable and concentrated,
and it can always find the right way that the target moves
on. This is very useful in some practical applications such
as elders/children guarding, hospital patients care, indoor
searching, and rescuing for trapped.

In order to further verify the effectiveness of the proposed
algorithm, we also did some extensive simulations and
compared it with the PSO algorithm [12, 17, 18]. By changing
the transmission radius (𝑅) and anchor nodes ratio, we get
the following simulation results.

Figure 11 provides a comparison of the accuracy of the
proposed localization approach, the MLE algorithm, and
the PSO algorithm with respect to anchor nodes’ ratio and
average connectivity. We run the simulation with 90 TNs.
The number of anchor nodes varied from 30 to 100 (as a
result the average connectivity increased from 3.99 to 11.73).
The simulation results show that the proposed algorithm has
a higher accuracy than the other two algorithms. Figure 12
shows the results of these three algorithms with respect to
the standard variance of localization error when the number
of anchor nodes was changed from 30 to 100. The results
show that the standard variance of localization error of the
proposed algorithm is lower than the other two algorithms.
Figure 13 gives the simulation results of average distance to
the correct subpath when the simulation setting is the same
as Figure 11. After running at least 100 times simulations, the
average distance to the correct subpath can be obtained. As
can be seen from Figure 13, it is obvious that the average
distance to the correct subpath decreases when anchor
nodes’ ratio increase. But simulation result of the proposed
algorithm changed within a narrow range from 0.51m to
0.86m, while the other two algorithms changed obviously.
That is to say, the proposed algorithm is more stable than the
other two algorithms in indoor environment.

Some more simulation results about the discussed three
metrics of these three algorithms can be observed in Figures
14, 15, and 16. We run the simulation with 90 TNs and 100
ANs. The transmission range was increased from 5m to 15m
(as a result, the average connectivity increased from 3.15 to
16.27). The transmission range of a sensor node varies with
its transmission power. A better localization performance
is expected with higher transmission range as the number
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of one-hop ANs increases [14]. With the increase in trans-
mission range, the average localization error, the standard
variance of localization error, and the average distance to the
correct subpath decrease. But the decrease scopes of these
three metrics are not all obvious when transmission range
is larger than 10m (here the connectivity value is 11.60).
That is because the connectivity is an essential factor that
affects these algorithms’ performance. When connectivity
is greater than a certain value (such as 11.60 showed in
Figures 14–16), the accuracy of the algorithm is changed
little. Before that, connectivity can greatly affect algorithm’s
performance. However, the proposed algorithm can have an
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Figure 12: Standard variance of localization error versus anchor
nodes’ ratio/average connectivity.
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Figure 13: Average distance to the correct subpath versus anchor
nodes’ ratio/average connectivity.

excellent performance even with low connectivity as showed
in Figures 14–16.

All simulation results proved that PPLP algorithm is
performed well in indoor environment. Furthermore, PPLP
algorithm is a centralized computing method. The location
calculation of the target can be done in some certain device
with strong processing capacity such as personal computer.
The proposed algorithm does not need to calculate large
matrix; there is no iteration in localization computing,
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Figure 15: Standard variance of localization error versus transmis-
sion range/average connectivity.

the localization program is executed sequentially with high
efficiency and low complexity.

5. Conclusion
Localization is one of the substantial issues in wireless
sensor networks. In this paper, we presented a location
predicting method (PPLP) for indoor mobile target localiza-
tion in WSNs based on path-planning. We first analyzed the
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Figure 16: Average distance to the correct subpath versus transmis-
sion range/average connectivity.

common feature of indoor environment for most buildings
and the motion pattern of most targets and established the
path-planning model to constrain the movement trajectory
of themobile target according to indoor architectural pattern.
Then, we used MLE algorithm to obtain one certain kind of
location result of the target. After that, based on the path-
planning model and some previous localization results of the
target, the best possible position of the target in the next
time interval was predicted with the proposed predicting
approach. Finally, the MLE result and prediction result were
weighted to obtain the final position. In simulation process,
we defined three metrics to evaluate the performance of
the proposed algorithm and compared it with the MLE
algorithm and PSO algorithm. Simulation results showed
that the proposed algorithm has a better performance in all
these three evaluation indicators and can be very useful for
some practical applications such as elders/children guarding,
hospital patients care, indoor search, and rescue for trapped.
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In this paper, we fit RSSI values into a parabola function of the AoA between 0∘ and 90∘ by applying quadratic regression analysis.
We also set up two-directional antennas with perpendicular orientations at the same position and fit the difference of the signal
RSSI values of the two antennas into a linear function of the AoA between 0∘ and 90∘ by linear regression analysis. Based on
the RSSI-fitting functions, we propose a novel localization scheme, called AoA Localization with RSSI Differences (ALRD), for
a sensor node to quickly estimate its location with the help of two beacon nodes, each of which consists of two perpendicularly
orientated directional antennas. We apply ALRD to a WSN in a 10 × 10m indoor area with two beacon nodes installed at two
corners of the area. Our experiments demonstrate that the average localization error is 124 cm. We further propose two methods,
named maximum-point minimum-diameter and maximum-point minimum-rectangle, to reduce localization errors by gathering
more beacon signals within 1 s for finding the set of estimated locations of maximum density. Our results demonstrate that the two
methods can reduce the average localization error by a factor of about 29%, to 89 cm.

1. Introduction

Awireless sensor network (WSN) consists of tiny sensor nodes
equipped with computational, communication, and sensing
capabilities, whereby each sensor node can collect data about
the environment, such as temperature, vibration levels, light,
electromagnetic strength, and humidity. The sensed data
is then transmitted to the sink node through a chain of
multiple intermediate nodes that help forward the data. Due
to their capabilities and versatility, WSNs have been widely
used in many areas, such as military affairs, healthcare, and
environmental monitoring. In many applications, apart from
sensed data, the location information of the deployed sensor
node is also desirable as it can be used to improve routing
efficiency. Hence, the discovery of the locations or positions
of sensor nodes is one of the most critical issues for WSNs.

Localization is the process of determining the absolute
or relative physical location of a specific node or the target
node. Although a global positioning system (GPS) [1] can
provide precise location information, the costly hardware
and large size make it unsuitable for WSNs. Furthermore, a
GPS can only be used outdoors since it depends on signals

directly received from satellites for localization. Besides the
GPS, numerous localization methods [2–27] have also been
proposed. Most of these deploy some beacon (or anchor)
nodes, which periodically broadcast beacon signals contain-
ing their own locations to help other sensor nodes with the
localization.

Localization schemes can be classified as range based or
range-free. In range-free schemes, the sensor node location
is estimated solely on network connectivity. Such schemes
need no extra hardware, but their accuracy is too low, and
they usually rely on a large deployment of beacon nodes
to improve the accuracy. Conversely, range-based schemes
usually have better accuracy.Theymeasure the time of arrival
(ToA) [2, 3], time difference of arrival (TDoA) [4–6], angle of
arrival (AoA) [2, 4, 15, 17, 18, 20, 21, 27], and received signal
strength indicator (RSSI) [3, 7–14, 16, 20, 21] to estimate the
distances or angles between pairs of nodes, which in turn
are used to calculate the locations of nodes. Most kinds of
measurement are taken with extra auxiliary hardware. For
example, ToA and TDoA are very sensitive to timing errors,
and, hence, their measurement relies on highly accurate
synchronized timers. The AoA, which is defined as the angle
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between the propagation direction of an incident RF wave
and a reference direction, can be measured by an array of
antennas. Unlike the previously mentioned three kinds of
measurement, RSSI can be outputted bymost commercial off-
the-shelf sensor nodes.

RSSI-based localizationmethods can be further classified
into groups, such as propagation model [8, 9], proximity
[10–12] or fingerprinting [13, 14, 28]. Propagation model
localization methods analyze the relationship between RSSI
values and distances to learn parameters such as the path
loss exponent of the propagation path-loss model in the
calibration phase. The calibrated propagation model is then
applied to convert the signal strength to the estimated
distance between transmitter and receiver in the localization
phase. In proximity localization methods, an unknown node
broadcasts a localization packet to initiate the localization
process. Nearby location-known reference nodes then report
the RSSI values measured from the packet to a nominated
node. The order of reported RSSI values is then used to
determine the location of the unknown node. Fingerprinting
localization methods measure RSSI values from a set of static
nodes during a calibration phase at several locations. The
measured RSSI values at a particular location are then used
to fingerprint the location. In the localization phase, a node
measures RSSI values from the same static nodes and then
estimates its location by finding the fingerprinting that is the
closest match with the measured RSSI values.

In this paper, based on the concept of integrating AoA
Localization and fingerprinting localization for reducing
errors, we propose a novel localization scheme, called AoA
Localization with RSSI Differences (ALRD). It estimates
the AoA for localization in 0.1 s by comparing the RSSI
values of beacon signals received from two perpendicularly
oriented directional antennas installed at the same place.
In the proposed ALRD, we fit RSSI values received from
a directional antenna into a parabola function of an AoA
between 0∘ and 90∘. We also set up a beacon node with
two perpendicularly oriented directional antennas and fit the
difference of the signal RSSI values of the two antennas into
a linear function of the absolute value of one AoA between
0∘ and 90∘. With the parabola and linear functions, a sensor
node can then self-localize itself quickly (within 0.1 s) by
observing RSSI values of the beacon signals emitted by the
two beacon nodes. The fitting functions can easily be stored
in a WSN node, despite their limited storage space, and their
inverse functions can be used to speed up the localization
process. Hence, ALRD is suitable for mobile sensing and
actuating applications in an open and stable environment
since it allows a sensor node to fast localize itself with small
localization errors. Our experiments demonstrate that the
average localization error is 124 cm when deployed in a 10 ×
10m indoor area.

We further propose two methods, namely maximum-
point minimum-diameter and maximum-point minimum-
rectangle, to reduce ALRD localization errors by gathering
more beacon signals within 1 s for finding the set of estimated
locations of maximum density. Such estimated locations
are then averaged to obtain the final location estimation.
Experimental results obtained demonstrate that the two

AoA

Sensor node

Propagation direction of 
the incident RF wave

Directional antenna  

Orientation

Figure 1: AoA of a sensor node and a directional antenna.

methods can reduce the average localization error by a factor
of about 29%, to 89 cm. Hence, ALRD is suitable for mobile
sensing and actuating applications, as it allows a sensor node
to quickly localize itself with lower localization errors.

The rest of this paper is organized as follows. We review
some AoA determination schemes in Section 2. In Section 3,
we describe the proposed localization scheme, ALRD, in
detail. Section 4 shows our experimental results. Then, we
describe improvements to ALRD and compare it with other
schemes in Section 5. Finally, we conclude the paper in
Section 6.

2. Related Works

In this section, we review some research that determines
AoAs for localization. Amundson et al. developed the RIMA
system that uses radio interferometry measurements to esti-
mate the AoA [15]. RIMA estimates the AoA by measuring
the TDoA of an interference signal generated by a antenna
array.The system consists of a beacon node and a target node.
The beacon node is formed by grouping three sensor nodes to
form an antenna array.The three sensor nodes are arranged in
a manner such that their antennas are mutually orthogonal.
Two of the sensor nodes transmit a pure sinusoidal signal
at slightly different frequencies to create a low-frequency
interference signal.The other sensor node and the target node
both measure the phase of the low-frequency signal. The
difference in the phase readingsmeasured by these two nodes
is then used to estimate the AoA from the beacon node to
the target node. Although RIMA can accurately measure the
AoAwithin 1 s, it requires very accurate time synchronization
between the beacon node and the target node, which is very
difficult to achieve.

Two methods, Estimating Direction-of-Arrival (EDoA)
[5] and Rotatable Antenna Localization (RAL) [16], utilize
the property of directional antennas to estimate the AoA of
a signal. EDoA estimates the AoA of an incoming signal
by using a mechanically actuated parabolic reflector. The
receiver, which is fixed to a parabolic reflector rotated by
a step motor, is used to observe the RSSI values of signals
emitted from a transmitter. When the orientation of the
reflector is aligned with the direction from the receiver to the
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Figure 2: RSSI values of signals received from a directional antenna.

90 − 𝜃

𝜃

Figure 3: AoAs relative to directional antennas with perpendicular
orientations.

transmitter, the receiver will observe the highest RSSI value.
Hence, the AoA can be obtained by searching for the reflector
orientation in which the highest RSSI value is observed.Their
experimental results show that the error in measuring the
AoA has a mean of about 4∘ and a standard deviation of
about 8∘ in both indoor and outdoor environments. However,
EDoA needs to take a long time to rotate the reflector for
searching the highest RSSI value. In RAL, a beacon node is
equipped with a rotatable directional antenna. It regularly
rotates its antenna to emit beacon signals in different direc-
tions. A sensor node determines the angle from the beacon
node to itself by observing the RSSI values of the received
beacon signals, which contain the location of the beaconnode
and the current orientation of its antenna. Similar to EDoA,
RAL can determine the AoA by determining the strongest
signal. By using the estimated AoAs and locations of two

distinct beacon nodes, a sensor node can then calculate its
own location with a localization error of 76 cm within a 10 ×
10-meter indoor area. Two enhanced methods were further
proposed to reduce the localization error by a factor of 10%
[16]. EDoA and RAL both need a long time to rotate the
antenna or the reflector for observing the variation of the
RSSI values while estimating the AoA. Therefore, EDoA and
RAL are only suitable for localizing static sensor nodes.

3. The Proposed Scheme

Existing localization schemes using AoAs may take a long
time to finish the localization or need very accurate time
synchronization. In this section, we proposeALRD that finish
localization quickly by learning how theRSSI values varywith
the AoA in advance without the need of time synchronization
between the anchor node and the target node.

3.1. Preliminary. As shown in Figure 1, we define the AoA as
the angle from the propagation direction of an incident RF
wave to the orientation of the directional antenna emitting
the RF wave. The AoA is positive if it is counterclockwise
and negative otherwise. Figure 2 shows a plot of RSSI values
over AoA; we observe that if the distance between the sensor
node and the directional antenna is fixed, the RSSI varies like
a parabolic function of AoA, referenced to the orientation
of the directional antenna, between −90∘ and 90∘ with a an
axis of symmetry at AoA = 0∘. Furthermore, we set up two
perpendicularly oriented directional antennas installed at the
same location (seen in Figure 3). From the results obtained
(as shown in Figure 4), we also observe that the difference of
the signal RSSI values received by a sensor node, localizing
between the orientations of two-directional antennas, varies
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Figure 4: Difference of the signal RSSI values received from two-directional antennas with perpendicular orientations.

like a linear function of the absolute value of theAoAbetween
0∘ and 90∘. It can be noted that absolute values of AoAs are
used and that when one absolute AoA value is 𝜃, the other
absolute AoA value is 90 − 𝜃. We then take only one absolute
AoA value as the representative without ambiguity.

3.2. RSSI Gathering and Analyzing. Before deployment,
ALRD needs to gather and analyze RSSI values of the signals
that a sensor node receives from a directional antenna at
different distances and angles. The measured RSSI values are
then analyzed to generate the fitting functions. These fitting
functions are then stored into the storage of each sensor node
for localization. For better accuracy, the RSSI gathering and
analyzing tasks are needed to execute at each new system
deployment location, since the environment changes may
make the measured RSSI values have some differences. The
tasks are described as follows.

(1) Gathering RSSI values: as shown in Figure 5, we set
up a directional antenna that can be rotated by an
angle 𝜃 from the 𝑥-axis (or the east direction) (0∘) to
the𝑦-axis (or the north direction) (90∘) and transmits
beacon signals containing the rotating angle for every
degree. A sensor is placed at the 𝑥-axis at a distance
of 𝑑, 2𝑑, . . . ,𝑀𝑑 meters for receiving signals emitted
from the antenna for several times (e.g., 100), where
𝑑 and 𝑀 are specified values (e.g., 𝑑 = 1 and 𝑀 =
10). The received signal RSSI values are averaged
and stored. The gathered RSSI average values are
denoted by 𝐺

𝑘𝑑
(𝜃), where 𝑘 = 1, 2, . . . ,𝑀, and 𝜃 =

0
∘
, 1
∘
, . . . , 90

∘.

(2) Performing quadratic regression: for each distance
𝑘𝑑, the gathered RSSI values are fitted approximately
into a quadratic function 𝑄

𝑘𝑑
(𝜃) of the rotating angle

𝜃, by quadratic regression analysis.

(3) Calculating RSSI differences: for each distance 𝑘𝑑,
the RSSI difference 𝐷

𝑘𝑑
(𝜃) at angle 𝜃 is obtained

by calculating 𝐺
𝑘𝑑
(𝜃) − 𝐺

𝑘𝑑
(90 − 𝜃). In practice,

𝐷
𝑘𝑑
(𝜃) is approximately the difference of RSSI values

between two signals that a sensor node receives from
two perpendicularly oriented directional antennas
installed at the same location.

(4) Performing linear regression: for each distance 𝑘𝑑,
the RSSI difference𝐷

𝑘𝑑
(𝜃) at angle 𝜃 is approximately

fitted into a linear function 𝐿
𝑘𝑑
(𝜃) by linear regression

analysis.
(5) Storing functions: the quadratic and linear approxi-

mation functions are loaded into the storage of the
sensor nodes before they are deployed.

3.3. ALRD Setup. Figure 6 shows the setup for ALRD. We
assume that all sensor nodes are randomly deployed in a
planar square area of interest. Two beacon nodes, 𝐵

1
and

𝐵
2
, are deployed in the lower left and lower right corners

of the area, respectively. Each beacon node is equipped with
two-directional antennas with perpendicular orientations.
The antennas of the beacon node in the lower left (or right)
corner have either an upright or a horizontal to the right (or
left) orientation. The antenna with the upright orientation
is called the vertical antenna, whereas, the antenna with
the left or right orientation is called the horizontal antenna.
Each beacon node is assumed to know its location and
orientations of the two antennas. The beacon nodes transmit
beacon signals via the two-directional antennas regularly and
alternately. The beacon signal contains the orientation of the
antenna and the location of the beacon node, which are
expected to reach the whole area of interest.

Note that the setup in Figure 5 can be the basic building
block for deploying ALRD in a large indoor localization envi-
ronment. Figure 7 shows a deployment instance of beacon
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Figure 5: The setup for gathering and analyzing RSSI values.

Beacon node Beacon node
𝐵1 at location 𝐵2 at location

AoA1𝑣 = 𝛽

AoA1ℎ = 𝛼

AoA2𝑣 = 𝛿

AoA2ℎ = 𝜙

(0, 𝐷)(0, 0)

Figure 6: Setup for ALRD.

nodes in a large area. The beacon nodes consist of 1, 2, or 4
pairs of perpendicularly oriented directional antennas. Any
two adjacent beacon nodes are D units away from each other
in the horizontal direction and 2D units away from each other
in the vertical direction. Based on the setup of Figure 6, we
can see that any two adjacent beacon nodes in the horizontal
direction can properly localize target nodes within an area of
D by D units. For example, in Figure 7, the beacon nodes X
and Y can properly localize target nodes within the shaded
area. Hence, ALRD can help localize sensor nodes in a large
area by installing a lot of beacon nodes.

3.4. Localization Procedure. In ALRD, a sensor node executes
the following steps to estimate its location.

(1) Receiving beacon signals: in order to localize itself,
the sensor node needs to collect the signal RSSI values
𝑅
1ℎ

and 𝑅
1V of the horizontal and vertical antennas

of beacon node 𝐵
1
. It also needs to collect the signal

RSSI values 𝑅
2ℎ
and 𝑅

2V of the horizontal and vertical
antennas of beacon node 𝐵

2
.

(2) Estimating distance: for each distance 𝑘𝑑, for 𝑘 =
1, 2, . . . ,𝑀, two absolute values of AoAs, 𝛼

𝑘𝑑
and 𝛽

𝑘𝑑
,

corresponding to the horizontal and vertical antennas
of the beacon node 𝐵

1
are obtained by calculating

𝛼
𝑘𝑑
= 𝑄
−1

𝑘𝑑
(𝑅
1ℎ
) and 𝛽

𝑘𝑑
= 𝑄
−1

𝑘𝑑
(𝑅
1V), for 0

∘
≤ 𝛼
𝑘𝑑

and
𝛽
𝑘𝑑
≤ 90
∘. Here, 𝑄−1

𝑘𝑑
(⋅) is an inverse function of the

quadratic function 𝑄
𝑘𝑑
(⋅) obtained in RSSI gathering

and analysis. As shown in Figure 6, 𝛼
𝑘𝑑
+ 𝛽
𝑘𝑑

should
ideally be 90∘. Therefore, the sensor node can obtain

𝐷

𝐷

𝑋 𝑌

Figure 7: Deployment instance of beacon nodes in a large area.

a rough estimate of the distance from itself to the
beacon node 𝐵

1
, by finding 𝑘𝑑 for 𝑘 = 1, 2, . . . ,𝑀,

such that 𝛼
𝑘𝑑
+𝛽
𝑘𝑑
is closest to 90∘. Let the discovered

𝑘𝑑 be denoted by 𝑘𝑑
1
. Similarly, by 𝑅

2ℎ
and 𝑅

2V, the
sensor node can find 𝑘𝑑 such that 𝜙

𝑘𝑑
+ 𝛿
𝑘𝑑

is closest
to 90∘, where 𝜙

𝑘𝑑
and 𝛿

𝑘𝑑
are two absolute values of

AoAs (where 0∘ ≤ 𝜙
𝑘𝑑

and 𝛿
𝑘𝑑
≤ 90
∘) corresponding

to the horizontal and vertical antennas of the beacon
node 𝐵

2
and 𝜙

𝑘𝑑
= 𝑄
−1

𝑘𝑑
(𝑅
2ℎ
) and 𝛿

𝑘𝑑
= 𝑄
−1

𝑘𝑑
(𝑅
2V). Let

the discovered 𝑘𝑑 be denoted by 𝑘𝑑
2
.

(3) Estimating AoA: the distance estimate 𝑘𝑑
1
obtained

in Step 2 is used to choose a proper linear approxi-
mation function 𝐿

𝑘𝑑1
for estimating the AoA of the

sensor node corresponding to the beacon node 𝐵
1
.

The AoA corresponding to the horizontal antenna
of 𝐵
1
is calculated as 𝛼

𝑘𝑑1
= 𝐿
−1

𝑘𝑑1
(𝑅
1ℎ
− 𝑅
1V),

where 𝐿−1
𝑘𝑑1
(⋅) is the inverse function of the linear

function 𝐿
𝑘𝑑1
(⋅) obtained in the RSSI gathering and

analysis stage. Similarly, by 𝑘𝑑
2
and (𝑅

2ℎ
− 𝑅
2V), the

AoA corresponding to the horizontal antenna of the
beacon node𝐵

2
can be calculated as 𝜙

𝑘𝑑2
= 𝐿
−1

𝑘𝑑2
(𝑅
2ℎ
−

𝑅
2V).

(4) Calculating location: after obtaining theAoAs𝛼
𝑘𝑑1

(or
𝛼 for short) and 𝜙

𝑘𝑑2
(or 𝜙 for short) corresponding

to the horizontal antennas of the two beacon nodes
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Figure 8: (a)The beacon nodes used in RSSI gathering and analysis.
(b) The beacon node used in localization.
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Figure 9: The ALRD experimental setup.

4. Experiment Results

In this section, we describe the implementation of ALRD and
the results of the experiments using the implementation.

4.1. Implementation. The sensor nodes and the beacon nodes
of the proposed ALRD scheme are implemented in nesC
with TinyOS support on the Moteiv BAT mote sensor. The
BAT mote sensor has a Texas Instruments MSP430 F1611
microcontroller running at 8MHzwith 10 kBRAMand48 kB
flash memory. It is equipped with the Chipcon CC2420 IEEE
802.15.4 compliant wireless transceiver using the 2.4GHz
band with a 250 kbps data rate. With an integrated onboard
omnidirectional antenna, the BAT mote sensor has a max-
imum transmission range of 50m (indoor) or 125m (out-
door).

The beacon node used for RSSI gathering and analysis
is also attached with a Maxim AP-12 panel antenna, which
is rotated by a Fastech Ezi-Servo 28 L step motor, as shown
in Figure 8(a). The beacon node used in localization is
attached with two AP-12 panel antennas with perpendicular
antennas, as shown in Figure 8(b). Its horizontal and vertical
beamwidths are 65∘ and 28∘, respectively.

4.2. Experimental Setup. We installed the ALRD setup in a
10×10m region of an indoor basketball court for conducting
experiments as shown in Figures 9 and 10. Two beacon nodes
were set up at two ends of the edge of the experiment area,
and the localization accuracy was tested at 81 grid points (as
arranged in Figure 10). Since the largest distance between a
measurement point and a beacon node is about 12.73m, we
gathered and analyze the RSSI values of signals emitted at
distances of 1, 2, . . . , 13m for every degree from 0∘ to 90∘.The
RSSI value for each distance and each degree was obtained by
averaging 100 measurements.

The gathered RSSI values are shown in Figure 11. The
interval for gathering the RSSI values is set as 1m because
the RSSI values will be indistinguishable if the interval is
too small. To reduce the gathering time and space used for
storing the approximation functions, we only measured RSSI
values for one of the four antennas of the same type of
the two beacon nodes in our experiments. The coefficients
of determination, 𝑅2, of all the approximation functions
are shown in Figure 12. We note that the coefficients of
determination are high and all exceed 0.96. Therefore, the
approximation functions are very suitable for expressing the
measured RSSI values and RSSI differences.
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Figure 10: The ALRD experimental setup and 81 grid points for
testing.

1
4
7

10

0 10 20 30 40 50 60 70 80 90
(deg)

RS
SI

 v
al

ue
s

−47

−44

−41

−38

−35

−32

−29

−26

−23

−20

−17

−14

−11

−8

−5

−2

1 M
2 M
3 M
4 M
5 M
6 M
7 M

8 M
9 M

13 M

10 M
11 M
12 M

Figure 11: The gathered RSSI values.

4.3. Localization Errors. The localization accuracy is tested
at the 81 grid points shown in Figure 10. The beacon nodes
transmit beacon signals via each of their antennas 10 times per
second. Therefore, a sensor node can localize itself 10 times
per second. We take the average of 10 localization results
and plot the cumulative distribution in Figure 13.The average
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Figure 13: Cumulative distribution function of the localization
error.

localization error of the localization experiment is 124 cm. In
Figure 14, we use different colors to represent the localization
errors of the test points. The brighter color indicates the
smaller localization error. As Figure 13 shows, the test points
that lie in the middle of the region have smaller localization
errors.This can be explained by Figure 4, in which the curves
almost look like straight lines in the middle.

5. Improvement

As the results show,ALRDcan let sensor nodes localize them-
selves by measuring RSSI values of signals from two beacon
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nodes in a short time (0.1 s). However, the measured RSSI
values may be influenced by environmental interferences so
the estimated locationmay deviate from the real location and
has a localization error. Thus, if a node spends more time
measuring more RSSI values, then more location estimations
can be made, which in turn can reduce the deviations. Based
on the concepts introduced in [28], we propose twomethods,
namely, maximum-point minimum-diameter (MPMD) and
maximum-point minimum-rectangle (MPMR), to remove
some estimated location from a set of estimated locations for
the purposes of reducing the localization error.

Assuming that 𝑃 is the set of estimated locations, MPMD
andMPMR remove some locations by finding a subset𝑃󸀠 ⊆ 𝑃

Table 1: Comparisons of localization errors.

ALRD ALRD +MPMD ALRD +MPMR
Localization errors (cm) 124 90 89
Improvement — 28% 28.8%

with the largest density. The density 𝜌 of a set of estimated
locations is defined as follows:

𝜌 =

𝑁

Dia
(MPMD) or 𝜌 = 𝑁

Area
(MPMR) , (2)

where 𝑁 is the cardinality of the set, Dia is the diameter of
the locations in the set, and Area is the area of the smallest
axis-parallel rectangle containing all locations in the set. The
diameter Dia of a set of locations can be obtained by finding a
pair of locations with the longest distance between them.The
Area of a set of locations can be obtained by finding the four
extremes (i.e., the leftmost, rightmost, highest, and lowest
extremes) and calculating the area of the rectangle bounded
by them.

The following steps are executed by a sensor node to apply
MPMD orMPMR to obtain a subset 𝑃󸀠 of a set 𝑃 of locations
such that 𝑃󸀠 has the largest density.

Step 1. If |𝑃| < 3, then return 𝑃.

Step 2. Derive subset 𝑃󸀠 of 𝑃 by removing the location with
themaximum summation of the distances from itself to other
locations in 𝑃, and calculate the density 𝜌󸀠 of 𝑃󸀠.

Step 3. If 𝜌 > 𝜌󸀠, then return 𝑃; otherwise, set 𝑃 = 𝑃󸀠 and go
to Step 1.

By using the set of estimated locations with the max-
imum density returned by MPMD and MPMR, we can
then calculate the average of all locations to derive a new
estimated location with a small localization error. Table 1
shows the average of the localization errors after applying
MPMD and MPMR to 10 localization results collected by a
sensor node within 1 second. Figure 15 shows the cumulative
distributions of the ALRD localization errors and those
improved byMPMD andMPMR. As shown, MPMD is more
suitable than MPMR for sensor nodes because it makes
similar improvements as MPMR but has less computational
overheads.

Table 2 compares ALRD with other three localization
schemes, namely, EDoA [4], RAL [13], and RIMA [15]. As
we have mentioned previously, EDoA and RAL take a long
time to localize sensor nodes because they have to rotate
the antennas or the reflector. RIMA is able to accurately
localize a target node in a short time, but it requires time
synchronization between the beacon node and the target
node. By contrast, ALRD can localize sensor nodes in a short
time and provides relatively low localization errors without
the need for time synchronization.



International Journal of Distributed Sensor Networks 9

Table 2: Comparison of localization schemes.

Method #BN #Antenna SYN Time AE LE

ALRD 2 2/BN N <1 s 6∘–8∘ 89 cm
RIMA 1 3/BN Y 1.6 s 3∘ —
EDoA — 1/SN N 200 s 4∘–8∘ —
RAL 2 2/BN N 180 s 4∘–8∘ 76 cm
#
BN: the number of beacon nodes.

#Antenna: the number of antennas per beacon node (BN) or per sensor node
(SN).
AE: angle error.
LE: localization error.
SYN: time synchronization requirement.

6. Conclusion

In this paper, we proposed AoA Localization with RSSI
Differences (ALRD) to estimate angle of arrival (AoA) by
comparing the received signal strength indicator (RSSI)
values of beacon signals received from two perpendicularly
oriented directional antennas installed at the same place.
We have implemented and installed ALRD in a 10 × 10m
indoor environment. Our experimental results showed that
a sensor node can estimate its location by using only four
beacon signals within 0.1 s with an average localization error
of 124 cm. Hence, ALRD conserves the time and energy spent
on localization. Furthermore, we proposed two methods,
namely, maximum-point minimum-diameter (MPMD) and
maximum-point minimum-rectangle (MPMR), to reduce
ALRD localization errors by gathering more beacon signals
within 1 s to find the set of estimated locations of maximum
density. The results demonstrated that MPMD and MPMR
can reduce the localization error by a factor of about 29% to
89 cm.Thus, as ALRD allows a sensor node to quickly localize
itself with lower errors; it is suitable for mobile sensing and
actuating applications.

As our experiments show, it is sufficient to gather RSSI
values for only one of four antennas of the same type to
achieve sufficient localization accuracy. By equipping anten-
nas of the same type to all beacon nodes, the sensor nodes
merely need to store the quadratic and linear approximation
functions of one antenna. In the future, we will focus on
applying ALRD to realize a large-area localization system.
Moreover, we will also try to apply different types of direc-
tional antennas and their combinations to ALRD in the hope
of further reducing localization error.
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In recent years we have witnessed strong development and widespread use of powerful wirelessly connected platforms, thus the set
of the related problems that need to be solved by distributed algorithms is growing rapidly. Some of them present large obstacles
in harnessing the full potential of this new technology, so there is an imminent need for a fast and easy evaluation of new ideas
and approaches. Simulation is a fundamental part of distributed algorithm design and evaluation process. In this paper, we present
a library for event-based simulation and evaluation of distributed algorithms. This library provides a set of simple but powerful
tools with a goal to ease virtual setup of a complex system such as a distributed network of communicating entities and to define,
simulate, and analyze its behavior. In order to reduce a huge problem space inherent in such systems, our library is using a high level
of abstraction. This is made possible by a strict and complete definition of the distributed computing environment. The library is
implemented in Python whose simple and expressive syntax provides a possibility of minimal implementations and amild learning
curve. In addition to executing automated simulations or larger experiments, the library fully supports interactive mode along with
a step-by-step execution, which can be a very powerful combination.

1. Introduction

The evaluation of distributed algorithms calls for adequate
simulation and comparison with existing state-of-the-art
solutions. Although it seems that this task is straightforward,
in practice there are a few issues that need to be handled
correctly. Existing simulation environments, like OMNeT++,
usually require definition of large set of low level parameters
(transmitter frequency, communication protocol, etc.) to
simulate the behavior of a system as close to implemen-
tation as possible. There is certainly nothing wrong with
that approach but when a problem is defined in a more
generic way (i.e., anchor free localization of wireless sensor
nodes with ranging capabilities) selection of some of those
parameters is not problem related, thus they are highly
arbitrary.This can lead to a simulation of a more specific case
than needed.

Here we present a high level Python library for event-
based simulation of distributed algorithms in wireless ad
hoc networks. The library allows the user to make imple-
mentation of their ideas using Python—a popular, easy to

learn, full featured, object oriented programming language.
Functionalities provided by the library are implemented
without additional layer of abstraction, thus harnessing full
power of Python’s native highly expressive syntax. Using the
library, users can quickly and accurately define and simulate
their algorithms.

The library particularly focuses on

(1) fast and easy implementation of ideas and approaches
at algorithm level without any specification overhead
using formally defined distributed computing envi-
ronment;

(2) support for two different workflows and their seam-
less combination: (1) interactive control and step
by step execution of simulation with easy introspec-
tion and modification of all objects in the runtime
environment, and (2) fully automated creation and
modification of simulation environment and running
multiple experiments in a clean and minimal way
using simple Python scripts;
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(3) promoting open source reproducible research, thus
encouraging its reuse and reevaluation trough com-
parisons with new ideas based on easily customized
criteria.

Since the library is built upon a formally defined distributed
computing environment, implementation of specific algo-
rithm is a straightforward process.This process is additionally
alleviated by using interactive console and the native Python
debugger in which all objects are directly accessible for intro-
spection and modification.

Python is a modular language, so advanced usage or
extension of basic functionalities is easily available by writing
additional modules and inheriting from the library core
classes. These extensions are encouraged through the open
source developing workflow.

In the next section, a brief analysis of currently available
simulators and libraries is given. In Section 3, we formally
define distributed computing environment giving theoretic
foundation and basic principles onwhich this library is based.
This is followed by a short discussion on platform selection,
description of some implementation details and possible
ways of extending the library beyond its current functional-
ities. Finally, in Section 5, there is an example of definition,
simulation, and analysis of one of the popular localization
algorithms using the library in interactive and automated
workflow.

2. Related Work

A large number of simulators have been proposed in literature
in which algorithms for wireless ad hoc networks can be
implemented and studied. These simulators have different
design goals and largely vary in the level of complexity and
included features. They support different hardware and com-
munication layers assumptions, focus on different distributed
networks implementations and environments, and comewith
a different set of tools for modeling, analysis, and visualiza-
tion. Classical algorithms include NS-2, OMNeT++, J-Sim,
TOSSIM, and others.

NS-2 [1] is a discrete event simulator for general network
simulation. It is probably the most widely used network
simulator for research. NS-2 provides substantial support
for simulation of TCP, routing, and multicast protocols over
wired and wireless networks. It was originally targeted to IP
networks but extensions [2, 3] for wireless sensor networks
have been proposed in the past. NS-2 allows for a detailed
simulation tracing and comes with the simulation tool called
NAM (network animator) for later playback. Due to a very
detailed packet level simulation, the NS-2 simulator is not
suitable for simulation of very large networks made of
thousands of nodes. NS-2 has many different distributions
and extensions and a large number of network simulations
have been performed with them. However NS-2 has a steep
learning curve and requires considerable effort to repeat the
simulations and compare with the obtained results. The core
of the simulator and most of the network protocol models
are written in C++, while OTcl is used for the definition and

configuration of the simulation environment. It is available
under an open source license.

Wireless sensor network simulation can be performed
using Mannasim framework which extends NS-2 by intro-
ducing new modules for design, development, and analysis
of different WSN applications. The Mannasim framework
provides standardized structures for common sensor, cluster
heads, and access point nodes on top of NS-2. In a simulation
these three types of nodes run different algorithms which are
implemented directly in C++.

Another simulation platform which is widely used in
the global scientific community is OMNeT++ [4, 5]. It is
an extensible, modular, component-based C++ simulation
library and framework, used primarily for building network
simulators. OMNeT++ offers extensive simulation library
that includes support for input/output, statistics, data col-
lection, graphical presentation of simulation data, random
number generators, and data structures. Domain-specific
functionality such as support for sensor networks, wireless
ad hoc networks, Internet protocols, performance model-
ing, and so forth are provided by model frameworks and
developed as independent projects. Extensions for real-time
simulation, network emulation, alternative programming
languages, database integration, and other functions exist.
For the simulation of wireless sensor networks one popular
extension is Castalia [6]. Its development was motivated
by the desire to provide a realistic channel/radio modeling.
However, for the development of high level algorithm and
studying of its behavior Castalia is time consuming because
one has to account for all the details related to specific low
level modeling.

J-Sim [7] is a general purpose simulator written in Java
according to the component-based software paradigm. Com-
ponents are loosely coupled as each component can be
designed, implemented, and tested independently. On the
top of the autonomous component architecture, a generalized
packet switched network model defines the generic structure
of a node and the generic network components, both ofwhich
can then be used as base classes to implement protocols across
various layers. J-Sim was initially designed for wired network
simulation, but a wireless extension exists which proposes an
implementation of the IEEE 802.11MAC togetherwith a set of
network and protocol components which facilitates the sim-
ulation of wireless networks. It supports real-time process-
driven simulation.

TOSSIM [8] is a platform-specific simulation library
which simulates TinyOS [9] motes at the bit level. It allows
emulation of system components and modeling of different
network topologies thus providing a realistic setting for mea-
surement of the communication costs of algorithms. TOSSIM
is an open source discrete event simulator which directly
compiles code written for TinyOS to an executable file that
can be run on standard PC equipment. It can run simulations
with a few thousand virtual TinyOS nodes. It ships with
the graphical user interface TinyViz that can visualize and
interact with running simulations.

For a survey and comparison of these and other simula-
tion platforms the reader can refer to [10–12].
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One classification [13] divides simulators into threemajor
categories based on the level of complexity:

(1) algorithm level,
(2) packet level, and
(3) instruction level.

Algorithm level simulators focus on the logic, data structure,
and presentation of algorithms.These simulators do not con-
sider detailed communication models and, most commonly,
they rely on some form of a graph data structure to illustrate
the communication between nodes. Packet level simulators
implement the data link and physical layers in a typical OSI
network stack.Hence, it is common for this type of simulators
to include implementations of 802.11b or newer MAC proto-
cols and radio models that account for propagation, fading,
collision, noise, and wave diffraction. Instruction level simu-
lators model the CPU execution at the level of instructions or
even cycles. They are often regarded as emulators.

According to this classification, Pymote is an algorithm
level simulator. In comparison to the abovementioned widely
used simulators, Pymote does not provide packet level and
instruction level simulation. Instead, it uses abstract models
of the communicating entities and the environment thus
enabling researcher to focus on a general principles not influ-
enced by large amount of implementation details. This fact
makes it considerably easier to learn and more straightfor-
ward to use. An additional benefit of such decision is scaling
of the simulation environment in a way that can accom-
modate large networks. Pymote is focused on the design
and evaluation of algorithms while also providing tools
for quick definition of different network structures. In the
remaining part of this section we describe some of the algo-
rithm level simulators that were proposed in the literature.

AlgoSensim [14] is a framework used to simulate dis-
tributed algorithms. It focuses on network specific algorithms
like localization, distributed routing, flooding, and so forth.
It is written in Java and uses XML files for configuration.The
framework was published as open source in 2006 but has
remained in alpha release since.

Shawn’s [15] primary design goals are to simulate the
effect caused by a phenomenon, not the phenomenon itself,
to improve scalability, and to support free choice of the
implementation model. Instead of performing a complete
simulation of the MAC layer including radio propagation
properties such as attenuation, collision, fading, and multi-
path propagation, Shawn simulates the effects of aMAC layer
for the application like packet loss, corruption, and delay. In
this way, while producing similar effects on the application
layer, a performance gain is obtained with a more efficient
implementation. This additionally enables Shawn to support
large-scale network simulation. Shawn is written in C++.

NetTopo [13] is an integrated framework for simulation
and visualization of wireless sensor networks written in Java.
Its design is also algorithm-oriented with the goal of rapid
prototyping of algorithms; however, it derives its motivation
by the need to study applications which can run partially in
a simulation environment and partially in a physical wireless
sensor network testbed. NetTopo supports the simulation of

large scale networks and provides a graphical user interface
to drive the simulation.

Sinalgo [16] is another simulation framework for wireless
networkswritten in Javawhich does not simulate the different
layers of the ISO network stack and focuses instead on algo-
rithm layer abstraction. It offers amessage passing view of the
network and can simulate very large networks. Sinalgo comes
with a set of available models for node mobility, connectivity,
initial distribution, interference, and transmission which a
user can extend with his own if necessary. The simulation is
usually started from the available graphical user interface, but
for long-lasting well-defined simulations it can also be started
in batch mode.

One important difference of these algorithm level simu-
lators with Pymote is the programming language and envi-
ronment. Pymote leverages Python’s strengths like ease of
learning and use and faster development than C++ and Java,
making the solutionwell suited for rapid prototyping. Further
difference is that Pymote naturally supports both interactive
and programmed simulation modes enabling and actually
fostering quick, often intertwined definition and simulation
phases. By using Python’s introspection power, that is, its
ability to inspect objects at runtime, determine information
about them, and make that information available to the user,
Pymote is able to interactively explore and manage all the
entities involved in the simulation.

3. Distributed Computing Environment

To design a proper distributed algorithm, the environment
in which it performs must be strictly defined. Distributed
environment and restrictions to problem space used in spec-
ifications for making Pymote library are taken from [17].
Main principles governing algorithm operation in this envi-
ronment are described below.

Distributed computing environment is composed from a
set of computational entities E (in our case wireless nodes)
and messages they interchange. A node 𝑥 ∈ E has the capa-
bility to store data in finite local memory𝑀

𝑥
consisting from

a number of defined registers. One of them, with special
function, is the status register that can take values from a
finite set of states S. Other parts of the node 𝑥 are CPU and
communication.

Node behavior is reactive. It acts only when it detects
one of two possible events: (1) arrival of message, and (2)
spontaneous impulse—usually used in random or defined
nodes at algorithm initiation. The action that node performs
is a result of its state (in status register) and the event, which
in our case is the arrival of message as follows:

status × event 󳨀→ action. (1)
Distributed algorithm is defined as a set of rules that associate
all possible combinations of states and events with specific
actions.

The system has homogenous behavior if all nodes run
the same algorithm which simplifies its development and
analysis. Since every nonhomogenous behavior can be made
homogeneous, as described in [17], all nodes in our library
are running the same algorithm.
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Table 1: Message structure.

Field name Data type Description
Source Node Sender node instance

Nexthop Node Neighboring node instance that is next
hop in path to destination

Destination Node Destination node instance

Header String Message header defining function and
structure of sent data

Data Dict Any data

There are three types of actions: storing and processing
data, message transmission, and changing the value of status
register. All other actions, such as measuring some phenom-
ena or relation between nodes, can be thought of as a combi-
nation of message transmission, storing, and processing data.

Message transmission between nodes is defined as a
transfer of finite sequence of bits. Simple but generic structure
and description of fields in messages used in our library is
presented in Table 1.

Every node 𝑥 can send a message to a set of other nodes
𝑁out(𝑥) ∈ E and receive it from set 𝑁in(𝑥) ∈ E. Inherent
property of every node is local orientation which means that
a node can distinguish between its neighbors by their unique
ID, so for example it can send amessage to a specific neighbor
without sending it to the other neighbors. This is utilized
through destination field in the message structure.

In practice, sending and receiving messages are complex
operations liable to failures and spanning through several
communication layers with unknown, possibly infinite dura-
tion.Whendesigning distributed algorithms, it is very impor-
tant to make their performance invariant to communication
failures and delays.

Up to this point, all network properties have been defined
for some general case. Special properties are called restrictions
because algorithms designed under assumption of this prop-
erties are restricted and cannot be applied to a more general,
unrestricted, cases.

Current restrictions in our library are as follows.
Bidirectional Links. For every node 𝑥, a set of outgoing and
incoming links are identical 𝑁out(𝑥) = 𝑁in(𝑥), for all 𝑥 ∈
E and the nodes that belong to this set are called neighbors
of 𝑥.
Connectivity. In cooperative distributed algorithms it is very
important that every node can communicate to all other
nodes, directly or through intermediate nodes.
Total Reliability. Every sent message eventually, in unknown
but finite time, will be received with its content uncorrupted
and without any failure occurring.

These restrictions are strong but sensible. They try to
limit problem space to an application layer only and remove
unwanted overspecification by focusing on a generic case
solutions.

Node’s memory content and information held in it repre-
sent its local knowledge. If at least one node in a set𝑊 ⊆ E
has information 𝑝, it is defined as implicit knowledge. If every

node in a set𝑊 has the same information then it is explicit
knowledge. Notion of knowledge is very important since the
sole purpose of (distributed) algorithm is improving local
knowledge of nodes and implicit and explicit knowledge of
the network in general.

4. Implementation

The Pymote library is based on goals described in Section 1
and formalism of the distributed computing environment
stated in Section 3. We proceed with discussion on platform
selection and brief description of the implementation of basic
library functionalities. We conclude with a description of
some of directions that can be taken to extend them.

4.1. Why Python? Python language with included libraries
and tools was selected after research and analysis of a
number of existing platforms and frameworks. The selection
of Python allows to fulfil the following requirements:

(i) easy to learn and well documented;
(ii) full featured object oriented language. Partial or

restricted solutions (i.e., MATLAB) are bound to have
a limit regarding supported object oriented features;

(iii) simple and highly expressive. As such it keeps the
code clean andminimal, making its usage straightfor-
ward;

(iv) support for interactive mode since this kind of work-
flow is especially suitable for experimentation and
analysis. IPython [18] is a Python interactive console
that provides all major functionalities needed for
interactive scientific computing (Figure 1);

(v) introspection features, namely, easy programmatic
inspection of all defined object’s properties;

(vi) rich scientific functions library and strong support
for scientific computing and calculations. Although
Python is a general purpose language, in this field it
is very competitive. NumPy and SciPy [19] are the
fundamental packages for scientific computing in
Python. They add significant power to the interac-
tive Python session by exposing the user to high-
level commands and classes needed for all kinds of
scientific data manipulation. In addition to these, for
plotting and general graphical representation of data,
matplotlib is a perfect choice;

(vii) promote open source reproducible research: Python
is a platform that already promotes similar ideas
and that grows with the community of its users and
developers.

After long and exhaustive usage, we have concluded that
Python completely fulfills the requirements.

4.2. Core Classes. The implementation philosophy followed
DRY (Do not Repeat Yourself) and KISS (Keep It Simple
Stupid) principles. DRYprinciple states our intention tomake
a library that will not rediscover and rewrite already existing
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Python 2.7.1 (r271:86832, Nov 27 2010, 18:30:46) [MSC v.1500 32 bit (Intel)] 
Type "copyright", "credits" or "license" for more information. 

IPython 0.13.1 -- An enhanced Interactive Python.  
? -> Introduction and overview of IPython's features. 
%quickref -> Quick reference. 
help -> Python's own help system. 
object? -> Details about `object', use ‘object??’ for extra details. 

Welcome to pylab, a matplotlib-based Python environment [backend: Qt4Agg]. 

For more information, type `help(pylab)'.  

In [1]: 

Figure 1: IPython interactive console.
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Figure 2: Simplified class diagram.

functionalities but one that will build on top of the existing
code. KISS principle reflects the need to simplify library
usage and library implementation. To adhere with the DRY
principle, Pymote library is placed in such a position that it
does not repeat work that has been already done. Since the
network is identified as an instance of graph, the only sensible
choice was to find a package on top of which this library
should be built.

NetworkX [20] is a package for the creation, manipula-
tion, and study of the structure, dynamics, and functions of
complex networks. Its graph definition is as general as possi-
ble allowing for easy extension. It has a huge base of graph-
related functions andmethods already implemented. Pymote
library extends from NetworkX and defines few core classes
that we describe in this section. Simplified class diagram
describing relations between core classes is presented in
Figure 2.

Network class is a subclass of the NetworkX’s Graph class
and as such it implements all methods provided by this class.
In addition, all graph-related algorithms implemented in this
package are available directly in Pymote. Based on node posi-
tions (stored inside network), environment, communication
range and channel type, Network is managing creation and
removal of links, namely, edges of the underlying Graph. A
list of algorithm instances that should be executed is placed
inside Network instance. Other responsibilities of Network

class include communication or passing messages between
neighboring nodes and managing state of algorithms that are
executed on a network.

Node class represents a wireless node. Every node has an
id to satisfy local orientation property. Additionally, it has
a set of memory fields (outbox, inbox, status, and general
purpose memory) and communication range property that
is used as an argument to a Network class method that is
managing communication links. In order to simulate node’s
knowledge in amore realistic way, a node does not know any-
thing that it would not know in real deployment, for example,
the node does not know its position inside the network. If this
information should be part of node’s knowledge (i.e., node is
an anchor), the user could ensure this in experiment setup by
equipping the nodewith an adequate sensor, as demonstrated
in Section 5.2.

Instances of Simulation class are used to control step-
by-step execution of algorithms defined in the network.
Simulation is using methods defined in Algorithm class to
execute them either on a every node or on a network level,
as presented in a sequence diagram in Figure 3. During exe-
cution, network and its nodes’ states are changing but the
simulation instance does not store any data in the process.
All data before, during, and after simulation is held inside the
network instancewhich is important as all needed data can be
stored simply by serializing and storing the network instance.

Algorithm class represents an executable code that should
run inside a network. Currently there are twomain subclasses
of Algorithm class: NetworkAlgorithm and NodeAlgorithm.

NodeAlgorithm is a classic distributed algorithm that runs
in every node. Its start is triggered spontaneously either in
randomly chosen nodes or defined ones. Every action after
the algorithm initiation is a result of incoming message and
state in which the node is in.

There is a notable difference between local termination
where the node knows it is donewith all actions in the current
algorithm and a global termination in which the node knows
that all other nodes are also done. Only global termination
can be a simple and clear signal to advance further to the next
algorithm. In our library the simulation instance (which is
used to execute algorithms on a network) is responsible for
detecting when a certain algorithm has terminated. It can be
detected by the absence of messages (local termination) or by
a node returning a clear signal that every node has terminated
its execution (global termination).
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Figure 3: Algorithm sequence diagram.

To simplify the definition and running of distributed
algorithms with known behavior, output, and cost, it is
allowed for them to use their centralized network version
represented by NetworkAlgorithm class. Algorithms that are
subclass of NetworkAlgorithm have the ability to improve
nodes local knowledge by inserting data directly into their
memory. For example, network version of distributed span-
ning tree algorithm should have the ability to write parent-
child relationship directly into every nodes memory. These
algorithms are usually helper algorithms that could insert
prerequisite knowledge data for algorithms under test. Algo-
rithms under test should always be defined as a proper
distributed algorithm or, namely, NodeAlgorithm.

4.3. Extending Base Functionalities. As we have stated in the
introduction section, Pymote is primarily focused on the
simulation of high level algorithms. Communicating entities
should not affect the outcome of the high level algorithm
and this is ensured by introducing restrictions such as total
reliability, described in Section 3.

Even though they should not affect the outcome, entities
and their lower level behavior can affect the algorithm perfor-
mance, that is, battery usage, reliability of the communication
links, and so forth. If the user wants to simulate and inspect
lower level behavior or use specific communication protocols
it certainly can be done.

For example, low level simulation of battery usage or com-
munication reliability currently can be handled by overriding
the communicate method of the Network class to simulate
and track power consumption or other custom behaviors.

Another example is radio channel simulation which can
be done by writing custom ChannelType class and then pass-
ing it to network instance. Library is currently implementing
two simple ChannelType subclasses: Udg-unit disc graph
and SquareDisc in which probability of connection between
nodes is equal to 1 − 𝑑2/𝑟2 where 𝑑 is the true distance
between nodes and 𝑟 is the communication range.

The simplest example is the routing protocol which can
be implemented as a native NodeAlgorithm with the task
of maintaining routing table in the node memory. Data in
routing table can be used to appropriately fill nexthop field
that is already present in the message structure (Table 1)
and used in communicatemethod when sending message to
nonneighbor node.

All these types of extensions can quickly be incorporated
into future versions of the main library. Using collaborative
open source workflow, this kind of development is strongly
encouraged.

5. Usage

Pymote library supports usage in two distinct workflows.
One of the most popular workflows in scientific community
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class FloodingUpdate (NodeAlgorithm):
required params = (‘dataKey’,)
default params = {}

def initializer (self):
for node in self.network.nodes():

if self.initiator condition(node):
msg = Message(destination=node,header=‘initialize’)
self.network.outbox.insert(0,msg)

node.status = ‘FLOODING’

def flooding(self, node, message):
if message.header==‘initialize’:

node.send(Message(header=‘Flood’,
data=self.initiator data (node)))

if message.header==‘Flood’:
updated data = self.handle flood message (node,message)
if updated data:

node.send (Message(header=‘Flood’,
data=updated data))

STATUS = {‘FLOODING’: flooding,}

Listing 1: Generic flooding protocol. Function initializer is special function that is issuing spontaneous impulses in the form of initialize
messages at the beginning of the algorithm execution.

class DVHop(FloodingUpdate):

def initiator condition(self, node):
node.memory[self.truePositionKey] = node.compositeSensor.read(node).get(‘TruePos’,None)
return node.memory[self.truePositionKey] is not None

def initiator data(self, node):
return{node: concatenate((node.memory[self.truePositionKey][:2],[1]))}

def handle flood message(self, node, message):
if not node.memory.has key(self.dataKey):

node.memory[self.dataKey] = {}
updated data = {}
for landmark, landmark data in message.data.items():

if landmark==node: continue
# update only if data is new or new hopcount is smaller
if not node.memory[self.dataKey].has key(landmark) or

landmark data[2]<node.memory[self.dataKey][landmark][2]:
node.memory[self.dataKey][landmark] = array(landmark data)
# increase hopcount
landmark data[2] += 1

updated data[landmark] = landmark data

# landmarks should recalculate hopsize
if node.memory[self.truePositionKey] is not None:

self.recalculate hopsize(node)
return updated data

Listing 2: APS DV-hop 1st phase: DVHop. Function recalculate hopsize is omitted. Note that during initiator condition node reads TruePos-
Sensor if it has one.
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class Trilaterate(FloodingUpdate):

def initiator condition(self, node):
return node.memory[self.truePositionKey] is not None

def initiator data(self, node):
return node.memory[self.hopsizeKey]

def handle flood message(self, node, message):
if node.memory.has key(self.hopsizeKey):

return None

node.memory[self.hopsizeKey] = message.data
self.estimate position(node)
return node.memory[self.hopsizeKey]

Listing 3: APS DV-hop 2nd phase: trilaterate. Function estimate position is omitted.

# create network with degree 9
In [1]: netgen = NetworkGenerator(n min=100,n max=300,degree=9)
In [2]: net = netgen.generate()
# select landmarks by placing TruePosSensor on them
In [3]: for node in net.nodes()[:10]:

....: node.compositeSensor = CompositeSensor((‘TruePosSensor’))
# import algorithms and pass them to network with their parameters
In [4]: from pymote.algorithms.niculescu2003.dvhop import DVHop
In [5]: from pymote.algorithms.niculescu2003.trilaterate import

Trilaterate

In [6]: net.algorithms = \
....: ((DVHop,
....: {‘dataKey’: ‘dvData’,
....: ‘truePositionKey’:‘landmarkPos’,
....: ‘hopsizeKey’:‘hopsize’,
....: }),
....: (Trilaterate,
....: {’dataKey’: ‘dvData’,
....: ‘positionKey’:‘dvHop’,
....: ‘truePositionKey’:‘landmarkPos’,
....: ‘hopsizeKey’:‘hopsize’,
....: }),
....: )

In [7]: sim = Simulation(net)
In [8]: sim.run()
INFO [simulation.py]: Simulation has finished.
# save network with all relevant data on disk
In [9]: write npickle(net,’net.gz’)

Listing 4: Interactive session for preliminary algorithm simulations. First we set up a random network in a default environment. Since
in the original article presenting the algorithm there is network with 200 randomly distributed nodes and average degree 9 we set up
NetworkGenerator with similar settings to get the appropriate instance of Network. After that, algorithms implemented in the last subsection
are instantiated and placed in this new network. Since algorithms require some nodes to know their position (landmarks) we fit first 10 nodes
with the appropriate sensor using simple for loop. Network is now ready so after instantiation of new Simulation we can run it. At the end by
serializing and storing network object all relevant data is preserved to be analyzed later.
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In [10]: sim.reset() # first reset network algorithm state and nodes memory
In [11]: sim.run(1) # run 1. step of the first algorithm
In [12]: landmark node = net.nodes()[0]
In [13]: landmark node.inbox # landmark receiving initializer message
Out[13]:
[

- - - - - - Message - - - - - -
source = None

destination = <Node id=1>
header = ‘initialize’

id(message) = 0x908e9f0>]

In [14]: sim.run(1) # run another step
In [15]: landmark node.outbox # landmark prepared a broadcast message
Out[15]:
[

- - - - - - Message - - - - - -
source = <Node id=1>

destination = Broadcasted
header = ‘Flood’

id(message) = 0x90a3d30>]

In [16]: landmark node.outbox[0].data
Out[16]: {<Node id=1>: array([201.2419, 141.9482, 1.])}
# check if position being sent in message is one being read by TruePosSensor
In [17]: landmark node.memory[‘landmarkPos’]
Out[17]: array([201.2419, 141.9482])
# another check by directly inspecting network
In [18]: net.pos[node]
Out[18]: array([201.2419, 141.9482])

Listing 5: Example of step-by-step simulation and inspection of nodes and network data. In the first step of the DVHop algorithm
spontaneous impulses are issued to landmark nodes in the from of special initializemessages. As a consequence in the second step landmark
node is broadcasting Flood message with its true position and hopcount set to 1. After that we check if this is the same data being read by
TruePositionSensor and at the end if that really is the landmark’s true position by inspecting network data.

netgen = NetworkGenerator(degree=9, n min=100, n max=300)
For lm pct in [5, 10, 20, 33]:

for net count in range(100):
net = netgen.generate()
for node in net.nodes()[:int(lm pct∗len(net.nodes())/100)]:

node.compositeSensor = CompositeSensor((‘TruePosSensor’))
net.algorithms = ALGORITHMS
sim = Simulation(net)
sim.run()
write npickle(net, ‘%d-%d.gz’ % (net count,lm pct))

Listing 6: Simple automated experiment. For each of the defined landmarks percentages (5%, 10%, 20%, 33%) 100 different networks
consisting of 100 to 300 nodes with average degree 9 are created. Each of them is fitted with described algorithms which are then executed
in a simulation. At the end of each simulation network data is stored in appropriately named compressed file. Definition of variable
ALGORITHMS is omitted for brevity.

is using an interactive console. This workflow enables free
form experimentation, runtime introspection, direct access,
and modification of all objects. Another popular workflow is
performing a batch of prepared and automated experiments.

In this section examples of using the library in both
ways are presented. Specifically, we shall try to implement

and simulate Ad hoc Positioning System (APS) with DV-
hop propagation—a popular algorithm for node localization
proposed by Niculescu and Nath [21].

5.1. Algorithm Definition. In Pymote library, algorithms are
defined as direct Python implementations. In our example,
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# inspect non landmark nodes and list their estimated positions
In [19]: for node in net.nodes()[10:]:

....: print node.memory.get(‘dvHop’, ‘Notlocalized.’)
[466.04 579.44]

[243.25 80.75]
[386.79 69.09]
[254.92 122.66]
[216.36 80.27]
Not localized.
[431.08 102.28]
[140.36 119.35]
etc...
In [20]: estimated = {}
In [21]: for node in net.nodes():

....: if node.memory.has key(‘dvHop’):

....: estimated[node] = node.memory[‘dvHop’]
In [22]: get rms(net.pos,[estimated])
Out[22]: 32.19781563265385
In [23]: show localized(net,[estimated],show labels=False)

Listing 7: Analyzing nodes memory after simulation. In dvHop key in memory of all successfully localized nodes, there are estimated
coordinates data we can inspect. Using library provided, utilities such as get rms function, root mean square error of estimated positions
can be quickly estimated. Finally, errors in estimated positions are visualized graphically. Result of the last command is presented on Figure 5.

APS with DV-hop propagation algorithm is based on the
following simple idea. Every node in a network should
estimate its distance to asmany as possible landmark (anchor,
beacon) nodes. Landmark nodes are nodes that a priori know
their absolute position. Using the estimated distance and a
landmark coordinates, the node should be able to estimate its
position using trilateration.

The algorithm has two distinct phases as follows.

(1) All landmark nodes are flooding the network with
information about their coordinates. As these mes-
sages are propagating hop by hop through the net-
work, every node is increasing hopcounter andmain-
tainingminimum received hopcount from each of the
landmarks. During this phase landmarks are calculat-
ing average hopsize by dividing knowndistances from
other landmarks with respective hopcounts.

(2) After the first phase is done, every landmark makes
another (controlled) flooding with information of
new estimated hopsize. After the first reception of
hopsize from nearest landmark, the node forwards it
and drops all other incomingmessages.Then itmakes
distance estimation and finally estimates its position.

These phases are implemented as two separate instances of
NodeAlgorithm subclass. Since both phases are using the
same flooding protocol to share information we can define
a generic algorithm class for flooding. In Listing 1 there is the
implementation of base flooding protocol.

In general, NodeAlgorithm is structured as a set of
functions that are corresponding to all possible statuses. Each
function should be able to handle all types of incoming
messages (defined by header) in a sequence of if conditions.
Since this is a simple protocol with nodes remaining only in

one status “FLOODING” and with only one type of message
“Flood”, the implementation is neat.

Note that in this algorithm function calls (hooks) occur
in three places. These are initiator condition, initiator data
and handle flood message. By subclassing this protocol and
implementing missing hooks we can make algorithms for
both phases, as presented in Listings 2 and 3.

This behavior is in accordance with established DRY
principle. Even better, every other algorithm using flooding
protocol can reuse this distributed algorithm solely by imple-
menting its ownhooks.Thus, object oriented paradigmnative
to Python can be exploited even in the distributed algorithm
implementation.

5.2. Simulation. The best way to initially test and, if needed,
debug newly defined algorithms is done by using interactive
console. In Listing 4 one example of such interactive session
is presented.

Another advantage of running simulation in an interac-
tive console is that on every exception the user is back at
the console. There, the user can issue a %debug command
to enter a debug console and run commands, inspect, and
modify all data in every frameof the program stack that raised
the exception.

In addition to continuous execution, algorithms can be
executed step by step. This is very useful when we want to
analyze algorithm in depth and inspect or modify objects
during every step of the simulation. Furthermore, it can be
handy in a situation when the algorithm does not execute
as expected but the error is not explicit enough to raise an
exception.There is an example of such execution in Listing 5.

The second type of workflow is an automated experiment.
The automated experiment is defined as a simple Python
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script that is generating networks, running simulations on
them, and eventually storing network data on disk to be
analyzed later. Example of one such script is given in
Listing 6.

5.3. Analyze Data. Objects can be inspected and data can
be analyzed at any moment. For example, during the net-
work setup phase or after the network is loaded from disk
it is convenient to visualize network topology. It can be
done by calling show method defined on a network object:
net.show(). Results are displayed in a new window like the
one in Figure 4.

Interactive console can be used to analyze experiment
data in more detail as presented in Listing 7 and Figure 5, or
to return to investigate execution of different parts of specific
experiment.

As a complement to console based workflows, Pymote
includes a graphical user interface for step-by-step algo-
rithm simulation and visualization. Interface screenshot is
presented in Figure 6. Through this interface, users can

(i) save and load network files from disk;
(ii) run and control simulation step by step with imme-

diate visual feedback, such as messages passing, node
status, and so forth;

(iii) inspect different objects including network, nodes,
and messages simply by clicking on them;

(iv) customize display of network topology, (edges, labels,
etc.);

(v) visualize of custom in-node memory structures such
as trees;

(vi) pan and zoom control; and
(vii) save visualized data in many different image formats.

6. Conclusion

In this paper, we have presented Pymote, the library that
provides support for simulation and analysis of distributed
algorithms built on top of comprehensive Python environ-
ment. Pymote is designed to allow rapid interactive testing
of new algorithms, their analysis and visualization while
minimizing developers time. It supports both interactive
algorithm simulation and automation of experiments and
provides visualization tools for both. It has been deliberately
kept simple, easy to use, and extensible.

We plan to continue developing Pymote environment in
several different directions as follows:

(i) further development of graphical user interface func-
tionalities for network setup and data analysis,

(ii) implementation of some of the state of the art algo-
rithms from the set of different fields and related
problems, and

(iii) adding support for web based version of setup and
simulation execution.

Figure 4: Network topology display.
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Figure 5: Localization error display.

Figure 6: Graphical user interface.
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The source code along with the documentation is available
as an open source project at https://github.com/darbula/
pymote. We hope to have enticed you to take a look at it, use
it, or even participate in further development.

References

[1] ns-2, http://www.isi.edu/nsnam/ns/.
[2] I. T. Downard, “Simulating sensor networks in ns-2,” Tech. Rep.,

Naval Research Laboratory, 2004.
[3] Mannasim simulator, http://www.mannasim.dcc.ufmg.br.
[4] Omnet++ simulation system, http://www.omnetpp.org/.
[5] A. Varga, “e omnet++ discrete event simulation system,” in Pro-

ceedings of the European Simulation Multi-conference (ESM ’01),
Prague, Czech Republic, June 2001.

[6] A. Boulis, “Castalia: revealing pitfalls in designing distributed
algorithms in wsn,” in Proceedings of the 5th International Con-
ference on Embedded Networked Sensor Systems (SenSys ’07),
2007.

[7] J-Sim, https://sites.google.com/site/jsimofficial/.
[8] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accu-

rate and scalable simulation of entire TinyOS applications,” in
Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems (SenSys ’03), November 2003.

[9] P. Levis, S. Madden, J. Polastre et al., “Tinyos: an operating
system for sensor networks,” in Ambient Intelligence, W. Weber,
J. Rabaey, and E. Aarts, Eds., pp. 115–148, Springer, Berlin,
Germany, 2005, http://dx.doi.org/10.1007/3-540-27139-2 7.

[10] H. Sundani, H. Li, V. K. Devabhaktuni, M. Alam, and P.
Bhattacharya, “Wireless sensor network simulators: a survey
and comparisons,” International Journal of Computer Networks,
vol. 2, no. 6, pp. 249–265, 2011.

[11] E. Egea-Lopez, J. Vales-Alonso, A. S. Martinez-Sala, P. Pavon-
Marino, and J. Garcia-Haro, “Simulation tools for wireless
sensor networks,” in Proceedings of the Summer Simulation
Multiconference (SPECTS ’05), 2005.

[12] S. Mehta, N. Sulatan, and K. S. Kwak, “Network and system
simulation tools for next generation networks: a case study,”
in Modelling, Simulation and Identification, A. Mohamed, Ed.,
InTech, 2010.

[13] L. Shu, M. Hauswirth, H. C. Chao, M. Chen, and Y. Zhang,
“Nettopo: a framework of simulation and visualization for
wireless sensor networks,”AdHocNetworks, vol. 9, pp. 799–820,
2011.

[14] Algosensim, http://tcs.unige.ch/doku.php/code/algosensim/
overview.

[15] A. Kroeller, D. Pfisterer, C. Buschmann, S. Fekete, and S. Fis-
cher, “Shawn: a new approach to simulating wireless sensor
networks,” in Proceedings of the Design, Analysis, and Simulation
of Distributed Systems (DASD ’05), San Diego, Calif, USA, 2005,
https://github.com/itm/shawn.

[16] Sinalgo, http://dcg.ethz.ch/projects/sinalgo/.
[17] N. Santoro, Design and Analysis of Distributed Algorithms, Par-

allel and Distributed Computing, John Wiley & Sons, 2007.
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This paper proposes a human motion tracking approach for a daily life surveillance in a distributed wireless sensor network
using ultrasonic range sensors. Because the human target often moves with high nonlinearity, the proposed approach applies the
unscented Kalman filter (UKF) technique. A novel sensor node selection scheme at each time step considering both the tracking
accuracy and the energy cost is presented. Experimental results in a real human motion tracking system show that the proposed
approach can perform better tracking accuracy compared to the most recent human motion tracking scheme in the real testbed
implementation.

1. Introduction

Human motion tracking is receiving increasing attention
from researchers of different fields of study nowadays. The
interest is motivated by a wide range of applications, such
as wireless healthcare, surveillance, and human-computer
interaction. A complete model of human consists of both the
movements and the shape of the body. Many of the available
systems consider the twomodeling processes as separate even
if they are very close. In our study, the movement of the body
is the target.

Most of the humanmotion tracking systems are based on
vision sensors. Recently, there has been a significant amount
of work in tracking people trajectory across multiple image
views. Some of the proposed approaches present systems that
are capable of segmenting, detecting, and tracking people
using multiple synchronized surveillance cameras located far
from each other. But they try to hand off image-based track-
ing from camera to camera without recovering real-world
coordinates [1]. Some other work has to deal with large video
sequences involved when the image capture time interval
is short [2]. The most recent work on vision-based people
tracking systems develop wireless sensor networks with
low-resolution camera to predict the trajectory of human

movement [3]. However, most vision-based approaches to
moving object detection are computationally intensive and
costly expensive [4]. They often involve intensive real-time
computations, such as image matching, background subtrac-
tion, and overlapping identification [4]. In fact, inmany cases,
due to the availability of prior knowledge on target motion
kinematics, the intensive and expensive imaging detector
array appears inefficient and unnecessary. For example, a
video image consisting of 100× 100 pixels with 8-bit gray level
contains 80 kbits of data, while the position and velocity can
be represented by only a few bits [5].

Instead of the centralized processing tracking system
based on vision, a promising alternative system named
distributed wireless sensor network (WSN) has been quickly
developed recently. It consists of many low-cost, spatially
dispersed position sensor nodes. Each node can compute
and process information that it received and transfer the
information among the sensor nodes that are placed within
its communication range or to its leader node. Although there
are many applications on WSN on target tracking problems
[5–10], few papers can be found on human motion tracking
in real-time systems [11]. We will develop such a system by
WSN in this paper.
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From our point of view, human tracking with multiple
sensors is an intrinsic multisensor data fusion problem.
Multisensor data fusion is such a process through which
we combine readings from different sensor nodes, remove
inconsistencies, and pull all the information together into one
coherent structure. Although some work of multisensor data
fusion in WSN has been proposed [6], the tracking accuracy
is still limited because of the high nonlinearity property of
the human target. In this paper, a UKF filter is employed to
estimate the velocity and position of the human trajectory
in WSN. UKF filter has the ability to switch between a high
process noise (or alternatively, higher order or turn) model
in the presence of maneuvers and a low process noise model
in the absence of maneuvers. This point gives the UKF filter
its advantage over simpler estimators like the Kalman filter
and EKF. Compared to the existing work based on EKF [6],
the proposed algorithm can give more accurate estimation
by using multiple models for human motion in a realtime
tracking system developed in this paper.

The layout of the paper is as follows. Section 2 presents
the multiple models for human motion tracking. Section 3
presents the UKF estimator for our application. Section 4
proposes the sensor node selection method for our frame-
work. Section 5 presents the simulation results and experi-
mental results. Conclusions and future work are drawn in
Section 6.

2. Problem Formulation

In this section, we formulate the human motion tracking as
a distributed multisensor data fusion problem. We consider
the human moving in a 2D Cartesian coordinate system.The
target state includes the human velocity, the human position
in the coordinate, and the turn rate when the trajectory is
along a curve. We can build up the system models as follows.

2.1. Coordinated Turn Model. In order to describe the
human’s more complex trajectory, such as turn left or turn
right, here we apply the coordinated turn model similar to
that in [5]:

x (𝑘 + 1) = F (x (𝑘)) + Gv (𝑘) ,

where x (𝑘 + 1)=[𝑃
𝑥

(𝑘+1) 𝑉
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(1)

where 𝜔 is the assumed unknown constant turn rate and
v(𝑘) is the process noise. Although the actual turn rate is not
exactly a constant, we can assume that it is not changed in a
very short-time interval. For convenience, we assume that v
is a zero mean Gaussian white noise with varianceQ(𝑘).

2.2. System Observation Model. In order to build up the
estimation scheme using UKF, the sensor observation model
is needed. If sensor 𝑗 is used,𝑍

𝑗
(𝑘) is applied to denote the kth

measurement of the target at time step 𝑡
𝑘
. The measurement

model is given by
𝑍
𝑗
(𝑘) = ℎ

𝑗
(x (𝑘)) + 𝑣

𝑗
(𝑘) , (2)

where ℎ
𝑗
is a (generally nonlinear) measurement function

depending on sensor 𝑗’s measurement characteristic and
parameters (e.g., its location). 𝑣

𝑗
(𝑘) is a variable represent-

ing measurement noise in sensor 𝑗. It is independent and
assumed to be zero-mean Gaussian distribution white noise.
The covariance of 𝑣

𝑗
(𝑘) is 𝑅

𝑗
(𝑘).

3. UKF Filter-Based Human Tracking

Based on the above coordinated constant turn model and
the system observation model, the unscented Kalman filter is
applied to estimate the system state variable which includes
the target’s position coordinate and velocity.

Given the estimate x̂(𝑘 | 𝑘) of x(𝑘) and its estimation
error covariance P(𝑘 | 𝑘), in order to avoid the linearization
involved in the EKF, the UKF works by generating a set
of points whose sample mean and sample covariance are
x̂(𝑘 | 𝑘) and covariance P(𝑘 | 𝑘), respectively. The nonlinear
function is applied to each of these points in turn to yield a
transformed sample, and the predicted mean and covariance
are calculated from the transformed samples. The samples
are deterministically chosen so that they capture specific
information about the Gaussian distribution.

For highly nonlinear systems, the UKF has advantages
over the EKF. It avoids the linearization that causes substan-
tial errors in the EKF for nonlinear systems and possible sin-
gular points in Jacobian matrices. The basic UKF algorithm
(one cycle) can be seen in [12]. The following is the details of
UKF.

3.1. Form Weighted Samples. The n-dimensional random
variable x(𝑘) with mean x̂(𝑘 | 𝑘) and covariance P(𝑘 | 𝑘)

is approximated by 2𝑛 + 1 weighted samples or sigma points
selected by the algorithm

𝜒
0
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𝑊
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𝜅
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,
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(3)
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where 𝜅 ∈ 𝑅, (√(𝑛 + 𝑘)P(𝑘 | 𝑘))
𝑖
is the 𝑖th row or column of

the matrix square root of (𝑛 + 𝑘)P(𝑘 | 𝑘), and 𝑊
𝑖
is the weight

that is associated with the 𝑖th point. In theory, 𝜅 can be any
number (positive or negative) providing that (𝑛 + 𝜅) ̸= 0.

3.2. Prediction. Given the set of samples generated by (3), the
prediction procedure is as follows.

(a) Each sigma point is instantiated through the process
model to yield a set of transformed samples

𝜒
𝑖
(𝑘 + 1 | 𝑘) = f

2
[𝜒
𝑖
(𝑘 | 𝑘)] . (4)

(b) The predicted mean is computed as

x̂ (𝑘 + 1 | 𝑘) =

2𝑛

∑

𝑖=0

𝑊
𝑖
𝜒
𝑖
(𝑘 + 1 | 𝑘) . (5)

(c) The predicted covariance is computed as

P (𝑘 + 1 | 𝑘) =

2𝑛

∑

𝑖=0

𝑊
𝑖
{𝜒
𝑖
(𝑘 + 1 | 𝑘) − x̂ (𝑘 + 1 | 𝑘)}

× {𝜒
𝑖
(𝑘 + 1 | 𝑘) − x̂ (𝑘 + 1 | 𝑘)}

𝑇

.

(6)

It is also clear that the predicted measurement is simply:

ẑ (𝑘 + 1) = H
2
x̂ (𝑘 + 1 | 𝑘) . (7)

The difference between the measurement and the predicted
observation, named the innovation, can be written as

𝜈 (𝑘 + 1) = z (𝑘 + 1) − H
2
x̂ (𝑘 + 1 | 𝑘) . (8)

The covariance of this quantity is

s
𝜈

(𝑘 + 1 | 𝑘) = H
2
P (𝑘 + 1 | 𝑘)H𝑇

2
+ 𝜎
2

𝑟
. (9)

3.3. Calculate the Kalman Filter Gain. Use the following
equation

K (𝑘 + 1) = P (𝑘 + 1 | 𝑘)H𝑇
2
s−1
𝜈

(𝑘 + 1 | 𝑘) . (10)

3.4. Update. We update the estimation using the following
equations:

x̂ (𝑘 + 1 | 𝑘 + 1) = x̂ (𝑘 + 1 | 𝑘) + K (𝑘 + 1) 𝜈 (𝑘 + 1) ,

P (𝑘+1 | 𝑘+1)=P (𝑘+1 | 𝑘)−K (𝑘+1) s
𝜈

(𝑘+1)K𝑇 (𝑘+1) .

(11)

4. Sensor Node Selection

In this section, the sensor selection method under the UKF
filter will be presented. It is assumed that each sensor is
able to detect the target and determine its range, and the
locations of all the sensors are known. One of the approaches
simply selects the nodes closest to the predicted target
location as estimated by the tracker [13]. The drawback of

the “closest” node approach is that it only roughly selects the
sensor nodes and does not consider its contribution to the
tracking accuracy and the energy consumption quantitatively
and simultaneously. In this paper, we propose an adaptive
sensor selection scheme similar to [14] but under UKF filter
framework. It jointly selects the next tasking sensor and
determines the sampling interval at the same time based on
both of the prediction of the tracking accuracy and tracking
energy cost.

4.1. Tracking Accuracy. Various measures can be defined
based on the state estimation to stand for the tracking accu-
racy, such as the trace and the determinant of the covariance
matrix, Fisher information defined on the Fisher information
matrix which is the inverse of the state estimation covariance,
eigenvalues of the difference between the desired and the
predicted covariance matrix of the state, and entropy of the
state estimation distribution. In this paper, based on the
constant velocity model and the angular coordinated turn
model, the tracking accuracy is reflected by tracking error
𝜙(𝑘) at time step 𝑘 which is defined as the trace of the
covariance matrix 𝑃(𝑘 | 𝑘), that is,

𝜙 (𝑘) = trace (𝑃 (𝑘 | 𝑘)) . (12)

Given a predefined threshold 𝜙
0
(𝑘), the tracking accuracy

at time step 𝑘 is considered to be satisfactory if

𝜙 (𝑘) < 𝜙
0

(𝑘) , (13)

otherwise it is considered to be unsatisfactory.

4.2. Energy Model. Energy consumption is used as the track-
ing cost. We consider the following energy model. If current
sensor 𝑖 selects sensor 𝑗 as the next tasking sensor, then the
total energy consumed by sensor 𝑖 in transmission is

𝐸
𝑡
(𝑖, 𝑗) = (𝑒

𝑡
+ 𝑒
𝑑
𝑟
𝛼

𝑖𝑗
) 𝑏
𝑐
, (14)

where 𝑒
𝑡
and 𝑒

𝑑
are decided by the specifications of the

transceivers used by the nodes, 𝑟
𝑖𝑗
is the distance between

sensor 𝑖 and sensor 𝑗, 𝑏
𝑐
is the number of bits sent, and 𝛼

depends on the channel characteristics and is assumed to be
time invariant. Energy consumed in receiving is

𝐸
𝑟
(𝑗) = 𝑒

𝑟
𝑏
𝑐
, (15)

where 𝑒
𝑟
is decided by the specification of the receiver of

sensor 𝑗. The energy spent in sensing/processing data of 𝑏
𝑠

bits by sensor 𝑗 is

𝐸
𝑠
(𝑗) = 𝑒

𝑠
𝑏
𝑠
. (16)

Therefore, the total energy consumption is

𝐸 (𝑖, 𝑗) = 𝐸
𝑡
(𝑖, 𝑗) + 𝐸

𝑟
(𝑗) + 𝐸

𝑠
(𝑗) . (17)

4.3. Adaptive Sensor Selection Scheme. Suppose that the
current time step is 𝑘 and the current tasking sensor is the
sensor 𝑖 which receives state estimation 𝑥(𝑘 − 1 | 𝑘 − 1) and
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Figure 1: The testbed.

estimation covariance matrix 𝑃(𝑘 − 1 | 𝑘 − 1) of the time
step 𝑘 − 1 from its parent tasking sensor. It first updates the
state estimation by incorporating its newmeasurement𝑍

𝑗
(𝑘)

using the UKF algorithm described in Section 2.Then, it uses
the sensor scheduling algorithm to select the next tasking
sensor 𝑗 and the next sampling interval Δ𝑡

𝑘
such that the

sensor 𝑗 can undertake the sensing task at the time 𝑡
𝑘+1

= 𝑡
𝑘
+

Δ𝑡
𝑘
. We suppose that Δ𝑡

𝑘
should be in the range [𝑇min, 𝑇max],

where 𝑇min and 𝑇max are the minimal and maximal sampling
intervals, respectively. If sensor 𝑗 is selectedwith the sampling
interval Δ𝑡

𝑘
, its associated predicted objective function is

defined as

𝐽 (𝑗, Δ𝑡
𝑘
) = 𝑤Φ

𝑗
(𝑘) + (1 − 𝑤)

𝐸 (𝑖, 𝑗)

Δ𝑡
𝑘

, (18)

where Φ
𝑗
(𝑘) is the predicted tracking accuracy according to

the UKF algorithm, 𝐸(𝑖, 𝑗) is the corresponding predicted
cost given by (17), the averaged energy consumption over the
period. 𝑤 ∈ [0, 1] is the weighting parameter used to balance
the tracking accuracy and the energy consumption.

The sensors are scheduled in the following two tracking
methods.
(1) After prediction, none of the sensors can achieve the
satisfactory tracking accuracy using any sampling interval in
𝑇min and𝑇max. In this case,Δ𝑡

𝑘
is set to the minimal sampling

interval 𝑇min, and the sensor is selected by
𝑗
∗

= arg
𝑗⊂𝐴

min {𝐽 (𝑗, 𝑇min)} , (19)

where 𝐴 is the candidate sensors that can be selected by
sensor 𝑖. Generally in (19), 𝑤 ̸= 0. The purpose of this mode
is to drive the tracking accuracy to be satisfactory as soon as
possible with consideration of the energy consumption.
(2) After prediction, at least one sensor can achieve the
satisfactory tracking accuracy. In this case, the optimal
(𝑗
∗
, Δ𝑡
∗

𝑘
) is selected by

(𝑗
∗
, Δ𝑡
∗

𝑘
) = arg
𝑗⊂𝐴
∗
,Φ(𝑗,𝑘)≤Φ0

min{

𝐸 (𝑖, 𝑗)

Δ𝑡
𝑘

} , (20)

where 𝐴
∗ is the set of sensors that can achieve the satisfac-

tory tracking accuracy. Equation (20) utilizes the objective

Figure 2: The MicaZ mote.

Figure 3: The MDA100CA sensor board.

function in (18) with 𝑤 = 0. The basic idea of this mode is
that when the predicted tracking accuracy is satisfactory, the
sensors and the sampling interval are selected according to
the energy efficiency.

For simplification, we suppose that the sampling interval
is selected from predefined 𝑁 values {𝑇

𝑡
}
𝑁

1
, where 𝑇

1
= 𝑇min,

𝑇
𝑁

= 𝑇max, and 𝑇
𝑡1

< 𝑇
𝑡2
if 𝑡
1

< 𝑡
2
. In addition, the set {𝑇

𝑡
}
𝑁

1

is selected such that its values can evenly divide the interval
[𝑇min, 𝑇max] into 𝑁 − 1 subintervals.

5. Experimental Results

Our testbed is shown in Figure 1. All the hardwares in the
testbed are supplied by Crossbow Technology. The testbed
consists of the following hardwares: MicaZ (processor with
on-board ZigBee radio), MDA100CA, MIB510 (USB pro-
grammer), and SRF02 (active ultrasonic sensorwith I2C bus).

Figure 2 shows the MicaZ mote, which operates from
the 2400MHz to 2483.5MHz band, and uses the Chip-
con CC2420, IEEE 802.15.4 compliant, and ZigBee ready
radio frequency transceiver integrated with an Atmega128L
microcontroller. It has an integrated radio communication
transceiverworking at 2.4GHz frequencywith a transmission
data rate of 250Kbps and indoor transmission range of 20 to
30 meters. It runs TinyOS and is programmed on nesC.

The MDA100CA series sensor boards have a precision
thermistor, a light sensor/photocell, and from general pro-
totyping area. The prototyping area supports connection to
all eight channels of the mote’s analog to digital converter
(ADC 0 to 7), both USART serial ports, and the I2C
digital communications bus.The prototyping area also has 45
unconnected holes that are used for breadboard of circuitry.
See Figure 3.
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Figure 4: MIB510 programmer board.

Figure 5: The SRF02 ultrasonic sensor.
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Figure 6: The human tracking system.

The MIB510 interface board (see Figure 4) is a multipur-
pose interface board used with the MicaZ. It supplies power
to the devices through an external power adapter option,
and provides an interface for a RS-232 mote serial port and
reprogramming port.TheMIB510 has an on-board in-system
processor (ISP) to program themotes. Code is downloaded to
the ISP through the RS-232 serial port. The ISP programs the
code into themote.The ISP and themote share the same serial

port. The ISP runs at a fixed baud rate of 115.2 kbaud. The
ISP continuallymonitors incoming serial packets for a special
multibyte pattern.Once this pattern is detected, it disables the
mote’s serial RX and TX (two legs), then takes control of the
serial port.

The SRF02 (see Figure 5) is a single transducer ultrasonic
range sensor. It features both I2C and a serial interfaces. I2C
interface is used in this project. We use only 8 sensors in
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Figure 7:The human tracking system experimental result withUKF
and EKF.

the testbed. New commands in the SRF02 include the ability
to send an ultrasonic burst on its own without a reception
cycle and the ability to perform a reception cycle without
the preceding burst. SRF02’s minimum measurement range
is around 15 cm (6 inches). This sensor has a detection angle
of 15 degrees and a maximum range of 6m.

The developed target tracking system, see Figures 1 and 6,
is made up of 8 ultrasonic sensor nodes. These 8 ultrasonic
sensors arelocated along the edge of the area, respectively,
with coordinates (200, 0), (250, 170), (50, 300), (0, 110), (100,
0), (250, 60), (150, 300), and (0, 230). The orientations of the
sensors (clockwise from the positive 𝑥-axis) are, respectively,
65∘, 90∘, 50∘, 75∘, 100∘, 110∘, 90∘, and 120∘ such that the sound
waves are not reflected from nearby walls/obstacles. Each
node is allocated with an ID number and an XY coordinate.
Their locations are shown in Figure 1 to cover a monitoring
area of 2.5m× 3.0m.The tracking target is a human. AMicaZ
mote will be attached to each sensor node.

On the base station, a laptop is connected to the network
through a MicaZ mote for receiving data packets via USB
connection. Figure 6 shows the tracking system deployed in
the testbed. Upon receiving an initial time synchronizing
beacon from processing mote, all sensor nodes will initialize
their starting time for sensor nodes. These sensor nodes will
broadcast their sensor readings with one sensor reading at
a time to the processing mote to avoid sensors’ interference.
The processing mote will also program the default measure-
ment for each sensor.

The real-time data is collected from a human who is
moving aroundwithin the sensor coverage area of the testbed.
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Figure 8: The human tracking error comparison in 𝑋 direction of
the testbed with UKF and EKF.
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Figure 9: The human tracking error comparison in 𝑌 direction of
the testbed with UKF and EKF.

The sensor selection scheme is performed during the data
collection process. In order to simplify the sensor selection
algorithm, we selected one sensor at each time step in the
experiments. The data collected is run by UKF filter-based
tracking approach proposed in Section 2, and we compared
the experimental results with the method in [13]. Figure 7
to Figure 10 shows the comparison of the result with UKF
and EKF, respectively. We can see that the result from UKF
is better than the results from EKF in the real testbed.



International Journal of Distributed Sensor Networks 7

0 5 10 15 20
0

5

10

15

20

25

30

35

Time step

UKF
EKF

M
SE

 (s
qr

t o
f t

he
 su

m
 o

f𝑋
2

an
d
𝑌
2
)

The tracking error of 𝑋 and 𝑌

Figure 10:The human tracking error comparison of theMSE (mean
square root error) of the testbed with UKF and EKF.

6. Conclusions

This paper presents a UKF filter-based adaptive sensor
scheduling scheme for human tracking in wireless sensor
networks. It uses cheap range sensor nodes in wireless sensor
networks by jointly selecting the next tasking sensor and
determining the sampling interval based on predicted track-
ing accuracy and tracking cost under the UKF filter frame.
Simulation results show that the new scheme can achieve
significant energy efficiency without degrading the tracking
accuracy. There are still many issues remaining for future
study. Multistep, multisensor selection based adaptive sensor
scheduling and sensor scheduling formultitarget tracking are
both challenging problems for further investigations.
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This paper considers the problem of estimating the clock bias and the position of an unknown source using time of arrival
(TOA) measurements obtained at a sensor array to achieve time synchronization and source localization. The study starts with
deriving the localization mean square error (MSE) for the case where we pretend that the source clock bias is absent and apply
TOA positioning to find the source position. An upper bound on the clock bias, over which we shall obtain a higher localization
MSE than that from jointly identifying the clock bias with the source position, is established. Motivated by the MSE analysis, this
paper proceeds to develop a new efficient solution for joint synchronization and source localization. The new method is in closed-
form, computationally attractive, and more importantly; it is shown analytically to attain the CRLB accuracy under small Gaussian
TOAmeasurement noise. Computer simulations are conducted to corroborate the theoretical development and illustrate the good
performance of the proposed algorithm.

1. Introduction

Recently, source localization using wireless sensor networks
(WSNs) has attracted great research efforts [1–4]. To deter-
mine the source position, positioning parameters such as
time of arrival (TOA), time difference of arrival (TDOA),
received signal strength (RSS), and angle of arrival (AOA)
are commonly used. In this paper, we shall consider deter-
mining the source position using TOAs of the source signal
received at a wireless sensor network, which is essential for
emerging applications including logistics, search and rescue,
medical service, smart homes, environmental monitoring,
and surveillance [5]. For this problem, a large number of
algorithms such as those in [6–14] have been developed
in literatures. Nevertheless, almost all of them assumed
that the source and the sensors are synchronized ahead of
the localization process. In other words, the clock biases
of the source and the sensors are known a priori so that
the obtained TOA measurements can be transformed into
rangemeasurement for source localization via TOAposition-
ing.

In practice, the source clock bias may not be readily
available and the TOA measurements are therefore subject
to unknown source clock bias. In this case, we may simply
ignore the source clock bias and still locate the source through
TOA positioning. It can be expected by intuition that the
obtained source localization accuracy would be worse than
the case where the source clock bias is known a priori.
However, the amount of performance degradation would
be small if the source clock bias is negligible compared to
the source-sensor distances. On the other hand, another
way to handle the presence of the unknown source clock
bias is to estimate it jointly with the source position. This
would also yield a source localization accuracy poorer than
that when the source clock bias is known a priori, due to
the increase in the number of unknowns to be identified.
Clearly, a theoretical analysis is needed here to compare
the performance of the above two methods in terms of
their localization accuracy.The obtained results would reveal
the sensitivity of TOA positioning to the presence of the
unknown source clock bias in the TOA measurement. More
importantly, theywould establish the conditions under which
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joint time synchronization and source localization should
be preferred in order to achieve better source localization
accuracy. To the best of our knowledge, this has not been
addressed in existing literatures.

When the source clock bias cannot be ignored and/or
it is also of interest besides the source position, an algo-
rithm that can estimate both the source position and clock
bias from the TOA measurements is definitely needed. For
example, this could occur when a sensor is newly added
to the WSN and it needs to be located and synchronized.
Conventionally, synchronization and source localization are
treated separately. In particular, synchronization is usually
achieved first via applying one of the available protocol-
domain techniques, such as [15–17], and the localization task
can then be accomplished by executing various algorithms,
such as those developed in [7–9, 12–14]. A more recent trend
is to perform joint synchronization and source localization
owing to their close relationship [18–22]. For this problem,
given the statistical model of the TOA measurement noise,
the maximum likelihood estimator (MLE) can be developed.
However, since the cost function is nonconvex, MLE often
resorts to the iterative searchwith a good initial guess for find-
ing a globally optimal solution. This approach possesses the
local convergence and even divergence problems. Another
disadvantage is the high computational complexity due to
possibly large number of iterations. Therefore, a closed-form
solution is highly desirable. Bancroft’s closed-form solution
[23] is the first linearization-based algorithm for 1D timing
(i.e., clock bias estimation) and 3Dpositioning. Zhu andDing
extended Bancroft’s method in [21] to the case where the
number of TOA measurements is more than the dimension
of the unknowns (i.e., the source position plus the clock
bias). However, this approach is in general not efficient. In
other words, it can attain the Cramér-Rao Lower Bound
(CRLB), the best accuracy for an unbiased estimator, in
certain scenarios only.

The contribution of this paper is twofold. Firstly, we
conduct a mean square error (MSE) analysis to derive the
source localization MSE when the source clock bias in the
TOA measurements is neglected and TOA positioning is
performed to locate the source. For this purpose, a first-
order analysis on a pseudo-MLE source location estimator is
utilized, which indicates that the obtained results are valid
for small TOA noise and source clock bias. The obtained
source localizationMSE would be partially dependent on the
value of the source clock bias and as a result, it reflects the
sensitivity of the TOA positioning accuracy to the presence
of source clock bias. Moreover, an upper bound on the
absolute value of the source clock bias is derived, over which
joint synchronization and source localization would provide
better localization accuracy in terms of smaller localization
MSE than TOA positioning after ignoring the source clock
bias. Secondly, this paper proposes a new efficient solution
in closed-form for joint synchronization and localization.
The newly developed method consists of two processing
steps, where the first step locates the source and the second
step estimates the clock bias. Compared with the iterative
MLEmethod, the proposed solution is computationallymore
attractive, since it does not possess local convergence or

divergence problem. Moreover, in contrast to the closed-
form Bancroft’s method [23] and its generalized version [21],
the new approach is shown analytically to be able to attain
the CRLB accuracy for both source location and source
clock under small TOA noise. We support our theoretical
developments using extensive computer simulations.

It is worthwhile to point out that the theoretical approach
adopted in this paper to perform the MSE analysis and
develop the proposed algorithm can be applied in a straight-
forward manner to the case when the TOAs are deduced
from twoway/round-trip time of flight (TOF) measurements.
TOF is usually considered as an inexpensive but effective
alternative to obtain TOAs without using the cumbersome
and costly source-sensor synchronization [24–26]. In this
case, however, the turn-around time at the source needs to
be either estimated [26] or small enough to be negligible
[27, 28] so that TOA positioning can be utilized. With the
above observation in mind, it is not difficult to show that the
turn-around time in the TOF-deduced TOA measurements
can be considered mathematically as an equivalent source
clock bias. As a result, the MSE analysis and the proposed
algorithm presented in this paper can be applied without
much modifications to investigate the effect of ignoring the
turn-around time and perform joint estimation of the turn-
around time and the source position.

The structure of this paper is as follows. Section 2 formu-
lates the joint time synchronization and source localization
problem under Gaussian TOA noise model. Besides, the
corresponding CRLB is established and analyzed in detail to
motivate the MSE analysis and the new estimation algorithm
development. Section 3 derives and verifies by computer
simulations the localization MSE when the source clock bias
in the received TOAs is ignored and the source position
is found via TOA positioning. Section 4 presents the pro-
posed closed-form solution for joint synchronization and
source localization. Theoretical performance analysis that
establishes the efficiency of the new method under small
TOA measurement error is also conducted. Section 5 gives
the simulation results to illustrate the good performance of
the newly developed algorithm, and Section 6 concludes the
paper and discusses the future work.

2. Problem Formulation and CRLB

In this section, we shall first formulate the joint time synchro-
nization and source localization problem in consideration.
The CRLB for the unknowns is then derived and analysed
to motivate the MSE analysis and the algorithm development
presented in the following two sections.

2.1. Signal Model. We shall consider jointly synchronizing
and locating a single source in a 2D plane. The extensions of
the theoretical developments in this paper to themore general
case of synchronizing and localizing a source in the 3D space
are straightforward.

The source is located at an unknown position p =

[𝑝
𝑥
, 𝑝
𝑦
]
𝑇. It has an unknown clock bias of 𝜏̃ seconds with

respect to the reference time (i.e., the true time). Mathemati-
cally, the local time at the source would be 𝑡−𝜏̃ if the reference
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time is 𝑡. The value of 𝜏̃ can be negative or positive. Besides, 𝜏̃
is unknown but deterministic.

A sensor array composed of 𝑀 sensors at accurately
known positions p

𝑚
= [𝑝
𝑚,𝑥

, 𝑝
𝑚,𝑦

]
𝑇, 𝑚 = 1, 2, . . . ,𝑀, is

used to identify p and 𝜏̃ bymeasuring the TOAs of the source
signal. Without loss of generality, we assume that the source
starts emitting signals at its local time 0, which corresponds
to the reference time 𝜏̃. The source signal reaches sensor𝑚 at
the reference time 𝜏̃ + 𝑑

𝑚
/𝑐, where 𝑑

𝑚
= ‖p − p

𝑚
‖ is the true

distance between the source and sensor 𝑚, ‖ ⋆ ‖ denotes the
2-norm and 𝑐 is the signal propagation speed. Let 𝜏̃

𝑚
be the

known clock bias of sensor 𝑚 with respect to the reference
time. The TOA measurement obtained at sensor 𝑚 would be
[21], after taking into account the measurement error 𝑛̃

𝑚
,

̃
𝑇
𝑚

= 𝜏̃ − 𝜏̃
𝑚

+

𝑑
𝑚

𝑐

+ 𝑛̃
𝑚
. (1)

Multiplying both sides of the above equation with the signal
propagation speed 𝑐 yields the TOA equation

𝑇
𝑚

= 𝜏 − 𝜏
𝑚

+ 𝑑
𝑚

+ 𝑛
𝑚
, (2)

where 𝑇
𝑚

= 𝑐
̃
𝑇
𝑚
, 𝜏 = 𝑐𝜏̃, 𝜏

𝑚
= 𝑐𝜏̃
𝑚
, and 𝑛

𝑚
= 𝑐𝑛̃
𝑚
. Note

that the scaled clock biases in (2), namely 𝜏 and 𝜏
𝑚
, now have

the units ofmeters. Noting that estimating the original source
clock bias 𝜏̃ is equivalent to identifying its scaled version 𝜏,
we shall focus on determining 𝜏 in the rest of this paper to
simplify the presentation.

Following the noise model in [21], we assume that the
TOA measurement errors 𝑛

𝑚
in (2) are independently and

identically distributed (i.i.d.) Gaussian randomvariables with
zero mean and variance 𝜎

2

𝑛
. This model has been com-

monly adopted in literatures such as [10–14] for developing
TOA-based localization algorithms and/or studying their
performance via computer simulations. Nevertheless, it is
a simplification of the real scenario where besides zero-
mean Gaussian random errors due to the additive Gaussian
noise at every sensor [10], the TOA measurements are also
subject to errors owing to the multipath and nonline-of-
sight (NLOS) propagation of the source signal as shown in
recent experimental studies [29–31]. The fundamental limits
of localization accuracy under these realistic factors was
established in [32]. Extending ourwork tomore realistic TOA
noise models is beyond the scope of this paper, but it is under
investigation.

By introducing the 𝑀 × 1 vectors,

T =

[

[

[

[

...
𝑇
𝑚

+ 𝜏
𝑚

...

]

]

]

]

, d =

[

[

[

[

...
𝑑
𝑚

...

]

]

]

]

, n =

[

[

[

[

...
𝑛
𝑚

...

]

]

]

]

,

1
𝑀

=

[

[

[

[

...
1

...

]

]

]

]

(3)

we can express the measured TOA in (2) using the following
signal model in matrix form:

T = 𝜏1
𝑀

+ d + n. (4)

The problem of interest is to estimate the source position
vector p and the source clock bias 𝜏 given T and p

𝑚
.

2.2. CRLB Analysis. The CRLB for the composite unknown
vector 𝜃 = [𝜏, p𝑇]𝑇 under the joint time synchronization and
localization scenario presented in the previous subsection is
[21]

CRLB (𝜃) = 𝜎
2

𝑛

[

[

[

[

[

[

𝑀

𝑀

∑

𝑚=1

𝜌
𝑇

p,p𝑚

𝑀

∑

𝑚=1

𝜌p,p𝑚

𝑀

∑

𝑚=1

𝜌p,p𝑚𝜌
𝑇

p,p𝑚

]

]

]

]

]

]

−1

, (5)

where 𝜌p,p𝑚 = (p − p
𝑚
)/‖p − p

𝑚
‖ is a unit vector from p

𝑚
to

p. The CRLB of the source clock bias 𝜏, denoted by CRLB(𝜏),
is given by the upper left component of CRLB(𝜃) while the
lower right 2 × 2 block of CRLB(𝜃) is the CRLB of the source
position p, denoted by CRLB(p). Applying the partitioned
matrix inversion formula [33], we have

CRLB (𝜏)

= 𝜎
2

𝑛
(𝑀 −

𝑀

∑

𝑚=1

𝜌
𝑇

p,p𝑚(
𝑀

∑

𝑚=1

𝜌p,p𝑚𝜌
𝑇

p,p𝑚)

−1
𝑀

∑

𝑚=1

𝜌p,p𝑚)

−1

,

(6a)

CRLB (p)

= 𝜎
2

𝑛
(

𝑀

∑

𝑚=1

𝜌p,p𝑚𝜌
𝑇

p,p𝑚 −

1

𝑀

𝑀

∑

𝑚=1

𝜌p,p𝑚

𝑀

∑

𝑚=1

𝜌
𝑇

p,p𝑚)

−1

.

(6b)

We proceed to evaluate (6b) more carefully to gain more
insights. Collecting 𝜌p,p𝑚 , 𝑚 = 1, 2, . . . ,𝑀, yields the 𝑀 × 2

partial derivative matrixH given as

H =

[

[

[

[

...
𝜌
𝑇

p,p𝑚
...

]

]

]

]

. (7)

CRLB(p) can then be expressed as

CRLB (p) = 𝜎
2

𝑛
(H𝑇H −

1

𝑀

H𝑇1
𝑀
1𝑇
𝑀
H)

−1

= 𝜎
2

𝑛
(H𝑇RH)

−1

,

(8)

whereR = I
𝑀

−(1/𝑀)1
𝑀
1𝑇
𝑀
, I
𝑀
is an𝑀×𝑀 identity matrix

and 1
𝑀

is an 𝑀 × 1 column vector whose elements are all
equal to one as defined in (4). The matrix R can be rewritten
as the following matrix product:

R = [
−1𝑇
𝑀−1

I
𝑀−1

] (I
𝑀−1

−

1

𝑀

1
𝑀−1

1𝑇
𝑀−1

)

× [−1𝑀−1 I
𝑀−1] ,

(9)
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where I
𝑀−1

is an (𝑀−1)×(𝑀−1) identity matrix and 1
𝑀−1

is
an (𝑀− 1) × 1 column vector whose elements are all equal to
one. Applying the matrix inversion lemma [33] to the matrix
in the middle of the right hand sides of (9) yields

(I
𝑀−1

−

1

𝑀

1
𝑀−1

1𝑇
𝑀−1

) = (I
𝑀−1

+ 1
𝑀−1

1𝑇
𝑀−1

)

−1

= Q−1
𝛼

.

(10)
Clearly,Q

𝛼
is an (𝑀−1)×(𝑀−1)matrix with all its diagonal

elements equal to 2 and others equal to 1. Substituting (10)
back into (9) and putting the result into (8), we have

CRLB (p) = 𝜎
2

𝑛
(
̃H𝑇Q−1
𝛼

̃H)

−1

, (11)

where H̃ = [−1
𝑀−1

I
𝑀−1

]H is an (𝑀 − 1) × 2 matrix whose
(𝑚 − 1)th row, 𝑚 = 2, 3, . . . ,𝑀, is equal to

H̃ (𝑚 − 1, :) = 𝜌
𝑇

p,p𝑚 − 𝜌
𝑇

p,p1 . (12)

Comparing (11) with (33) from [34], we notice that within
the considered time synchronization and source localization
framework, the CRLB of the source position is equal to that
of locating the source from 𝑀 − 1 time difference of arrival
(TDOA) measurements 𝑟

𝑚1
= (𝑇
𝑚

+ 𝜏
𝑚
) − (𝑇

1
+ 𝜏
1
), where

𝑚 = 2, 3, . . . ,𝑀. In other words, the TDOA measurements
𝑟
𝑚1

are indeed generated by subtracting the TOA obtained
at sensor 1 from the remaining TOAs. From the definition
of the TOA measurements 𝑇

𝑚
given in (2), all the TOAs are

linearly related to the unknown source clock bias 𝜏 and hence,
the subtraction operation eliminates the presence of 𝜏 in the
obtained TDOAs 𝑟

𝑚1
. This enables TDOA positioning of the

source and also forms the basis of the joint synchronization
and localization algorithm proposed in Section 4 of this
paper.

It is worthwhile to point out that we choose to produce
the TDOAs through subtracting the TOAmeasured at sensor
1 from the rest 𝑀 − 1 TOAs for two reasons. First, this
facilitates the comparison of the CRLB result derived in (11)
with (33) from [34], where the TDOA measurements were
also obtainedwith respect to sensor 1. Second, subtracting the
TOA at any sensor other than sensor 1 from the remaining
𝑀 − 1 TOAs would yield a different set of TDOA mea-
surements but with the same quality as 𝑟

𝑚1
in terms of the

source localization CRLB. This can be verified by applying
the fact from Section 2 that the TOA measurement noises
𝑛
𝑚
are i.i.d. and they have the same variance. Nevertheless,

the above observation would become invalid if 𝑛
𝑚

are no
longer i.i.d. Investigating the approach that takes into account
the statistical information on 𝑛

𝑚
to produce the optimal

TDOA measurement set is an important topic subject to
future researches.

When the clock bias of the source, 𝜏, is available a
priori, but the source position p remains unknown, the joint
synchronization and localization task reduces to the classic
problem of TOA positioning using the measurements in (2).
The best possible localization accuracy for this case becomes
[21]

CRLB(p)
𝑜
= 𝜎
2

𝑛
(

𝑀

∑

𝑚=1

𝜌p,p𝑚𝜌
𝑇

p,p𝑚)

−1

. (13)

CRLB(p)
𝑜
and CRLB(p) given in (6b) are the CRLBs of the

source location estimation under two different scenarios,
namely, when the source block bias 𝜏 is known and when
𝜏 is unknown. They are both 2 × 2 matrices and have the
same units, which makes subtracting CRLB(p)

𝑜
in (13) from

CRLB(p) in (6b) feasible. In fact, it can shown that CRLB(p)-
CRLB(p)

𝑜
is a positive semidefinite matrix, which indicates

that compared with TOA positioning, the problem of joint
time synchronization and source localization considered in
this paper has a worse localization accuracy in general. This
is expected, because we need to estimate one more unknown,
specifically the source clock bias 𝜏, from the same set of TOA
measurements.

On the other hand, carefully examining (2) reveals that
if the clock bias 𝜏 is negligible compared to the source-
sensor distance 𝑑

𝑚
, 𝑚 = 1, 2, . . . ,𝑀, or equivalently 𝜏/𝑑

𝑚
≈

0, and the source position is of primary interest, we may
simply ignore the presence of 𝜏 and apply TOA positioning
technique to the TOA measurements 𝑇

𝑚
in (2) for identi-

fying p. In this way, the obtained location estimate will be
biased, but it could have a smaller localization MSE than
that of the location estimate from an efficient estimator for
joint time synchronization and source localization. We shall
theoretically illustrate the above observations in the following
section.

3. Localization MSE Analysis

In this section, we shall derive the localization MSE when
identifying the source position p from the TOA measure-
ments 𝑇

𝑚
in (2) via TOA positioning and pretending that

the source clock bias 𝜏 is zero. The obtained results will be
contrasted with the best achievable localization MSE under
the framework of joint estimation of 𝜏 and p, which is equal
to the trace of the CRLB(p) given in (6b). The theoretical
developments are based on an estimator that utilizes the
Taylor-series linearization and estimates the source location
from 𝑇

𝑚
via the classic weighted least squares (WLS) tech-

nique. The reason behind the use of a WLS source location
estimate is that it enables obtaining its localization MSE in
closed form in terms of the TOA measurement noise power
𝜎
2

𝑛
and the source clock bias 𝜏 to gain more insights. The

localizationMSE result in this section is valid for the scenario
where the TOAmeasurement noise and the source clock bias
are both small, due to the use of first-order approximation
in the considered location estimator. But it applies to any
TOA positioning technique that achieves the CRLB accuracy
(13) when the source clock bias is known a priori. We shall
corroborate the analytical results using numerical examples
in Section 3.1 where themaximum-likelihood (ML) estimator
for TOA positioning that attains (13) asymptotically when the
source clock bias is known is simulated.

The MSE analysis starts with approximating the TOA
measurement in (2) via applying the Taylor-series expansion
up to the linear term to the source-sensor distance 𝑑

𝑚
= ‖p−

p
𝑚
‖ using an initial source position guess p̃. Mathematically,

we have

𝑇
𝑚

≈ 𝜏 − 𝜏
𝑚

+
󵄩
󵄩
󵄩
󵄩
p̃ − p
𝑚

󵄩
󵄩
󵄩
󵄩
+ 𝜌
𝑇

p̃,p𝑚 (p − p̃) . (14)
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It can be deduced from (14) that the identification of the
source positionp is equivalent to find (p−p̃). For this purpose,
we rearrange (14) and stack the result for 𝑚 = 1, 2, . . . ,𝑀 to
arrive at

[

[

[

[

...
𝑇
𝑚

+ 𝜏
𝑚

− ‖p̃ − p‖
...

]

]

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

h

=

[

[

[

[

...
𝜌
𝑇

p̃,p𝑚
...

]

]

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

G

(p − p̃) + 𝜏1
𝑀

+ n, (15)

where 1
𝑀

and n are defined in (4). Pretending that 𝜏 = 0

and utilizing n being zero-meanGaussian random vector, the
maximum likelihood (ML) estimate for (p−p̃) can be derived
using theWLS technique [35]. Adding the result to the initial
solution guess for p yields the final source position estimate

̃p̃ = p̃ + (G𝑇G)

−1

G𝑇h. (16)

Substituting (15) into the above equation and subtracting the
true source position p from both sides give the estimation
error, when the clock bias 𝜏 is ignored

̃p̃ − p = (G𝑇G)

−1

G𝑇 (𝜏1
𝑀

+ n) . (17)

Assuming that the initial source position guess p̃ is
sufficiently close to the true value p, we can ignore the error in
G and approximate it withH defined in (7) whose row vectors
are 𝜌𝑇p,p𝑚 . Therefore, (17) becomes

̃p̃ − p ≈ (H𝑇H)

−1

H𝑇 (𝜏1
𝑀

+ n) . (18)

It can been observed that ̃p̃ is a biased estimate of p
and the estimation bias is equal to 𝜏(H𝑇H)

−1H𝑇1
𝑀
, which is

proportional to the value of the source clock bias 𝜏. Moreover,
the localizationMSE can be derived bymultiplying both sides
of (18) with the transpose of ̃p̃ − p and taking expectation as
well as the matrix trace. We have

MSE (
̃p̃) = tr (𝜎2

𝑛
(H𝑇H)

−1

+𝜏
2
(H𝑇H)

−1

H𝑇1
𝑀
1𝑇
𝑀
H(H𝑇H)

−1

) ,

(19)

where tr() is the trace of a matrix.
On the other hand, the localization MSE of an efficient

estimator for jointly identifying p and 𝜏 can be derived
by applying the matrix inversion lemma [33] to (8) and
evaluating its trace. Subtracting the result from (19) yields

MSE (
̃p̃) − tr (CRLB (p))

= (𝜏
2
−

𝜎
2

𝑛

𝑀 − 1𝑇
𝑀
H(H𝑇H)

−1H𝑇1
𝑀

)

× tr ((H𝑇H)

−1

H𝑇1
𝑀
1𝑇
𝑀
H(H𝑇H)

−1

) .

(20)

This indicates that ignoring the clock bias 𝜏 may still lead to
a location estimate with a smaller localization MSE than that

of jointly identifying it together with the source position p, if
the following inequality holds:

𝜏
2
<

𝜎
2

𝑛

𝑀 − 1𝑇
𝑀
H(H𝑇H)

−1H𝑇1
𝑀

. (21)

The term on the right hand side of (21) is dependent on
the TOA measurement noise power and the localization
geometry. In particular, it increases with 𝜎

2

𝑛
. Furthermore,

it would also become relatively large when the source lies
away from the sensor array. This is because in this case,
the matrix inverse (H𝑇H)

−1 in the denominator, which is in
fact the scaled version of the best TOA localization accuracy
CRLB(p)

𝑜
when the clock bias is known (see (13)), would

increase. On the other hand, the term on the right hand side
of (21) would decrease ifH𝑇1

𝑀
is close to a zero vector. This

could occur when the source is inside the sensor array.

3.1. Numerical Examples. We shall verify the theoretical
analysis results via computer simulations. The considered
scenario is depicted in Figure 1, where 𝑀 = 6 sensors
are uniformly deployed along a circle centered at the origin
and having a radius of 20m. The source is located either at
p = [50, 50]

𝑇m which is outside the sensor array or at p =

[−10, 10]
𝑇m which is inside the sensor array.

The MLE is realized to identify the source position and
its localization MSE is defined as (1/𝐿)∑

𝐿

𝑙=1
‖p
𝑙
− p‖2, where

p
𝑙
is the source location estimate in the 𝑙th ensemble run and

𝐿 = 20, 000 is the total number of ensemble runs. The noisy
TOAmeasurements fed to theMLE in each ensemble run are
generated by adding to the true values zero-mean Gaussian
noise 𝑛

𝑚
with variance 𝜎

2

𝑛
set to be −20 in log scale. The

source position is found via maximizing the pseudo-ML cost
function (T − d)𝑇(T − d) with respect to the source position
p, where T and d are both defined in (4), T collects the
TOAmeasurements (having clock bias) and d is functionally
dependent on p. In this way, the MLE performs the TOA-
localization task by pretending that the clock bias 𝜏 in T
is absent. The maximization is conducted via applying the
iterative Taylor-series method [36] with the initial solution
guess produced by adding to the true source position zero-
mean Gaussian random vector with a covariance matrix of
2CRLB(p), where CRLB(p) is defined in (6b). This ensures
that the MLE would normally need several iterations to
converge to a solution.

Two sets of simulation results are generated, one for the
source outside the sensor array and the other for the source
inside the sensor array. They are plotted as function of the
source clock bias 𝜏 in Figures 2 and 3. Also included in the
figures are the theoretical localization MSE when ignoring
the clock bias, which is given in (19). We plot as well the
traces of CRLB(p) in (6b) and CRLB(p)

𝑜
in (13). They denote

the lowest possible localization MSEs when the clock bias 𝜏

is jointly estimated with the source position and when 𝜏 is
known a priori.

We can see from Figure 2 that when the source clock bias
𝜏 is zero, the localization MSE of the simulated ML estimator
reachesCRLB(p)

𝑜
as expected. As 𝜏 increases, the localization
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Figure 1: Joint synchronization and source localization scenario.
The sensors are denoted by circle symbols while the upper triangle
symbols represent the two true source positions considered.

performance of the considered MLE degrades as predicted
in (19). The simulation MSE matches the theoretical results
very well, which justifies the validity of the localization MSE
analysis. Furthermore, the localization MSE of the MLE
remains to be smaller than that of jointly identifying the
source clock bias and the source position, until the clock bias
reaches a certain level (in this simulation, around 𝜏 = 2.77m).
This is consistent with the analysis in (21). In Figure 2, the
boundary condition (i.e., the crossing point of curves (2) and
(3)) that makes (21) achieve equality is also verified through
simulation. Curves (2) and (3) are indeed the localization
MSEs when the source is located jointly with the source
clock bias and when the source position is found via ignoring
the source clock bias and applying TOA positioning. The
existence of a crossing point indicates that the two techniques
can yield the same performance in terms of localization MSE
for a particular value of the source clock bias.

The observations from Figure 3 where the source is inside
the sensor array are very similar to those obtained from
Figure 2 where the source is outside the sensor array. An
important difference is that in this case, the crossing point
of curves (2) and (3) appears when the source clock bias is
equal to 𝜏 = 0.0492m. This observation is consistent with
the analysis under (21).The crossing point being much closer
to the origin compared with Figure 2 indicates that when
the source lies inside the sensor array, ignoring the source
clock bias and locating the source via TOA positioning is
more likely to produce worse localization performance than
joint clock bias and source position estimation, considering
the presence of clock asynchronization (see, e.g., [32]). It
is worthwhile to point out that the above observation is
obtained without taking into account other realistic factors
such as the multipath effect in signal propagation. We are
currently extending our theoretical developments to more
realistic signal models.

It can also be seen from Figure 3 that when the clock
bias 𝜏 is as low as 0.05m, which corresponds to around
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Figure 2: Localization accuracy for the source outside the sensor
array when ignoring the presence of clock bias. (1) tr(CRLB(p)

𝑜
)

from (13), (2) tr(CRLB(p)) from (6b), (3) MSE(̃p̃) from (19), star
symbol: source localization MSE from the simulated pseudo-ML
estimator.

0 0.1 0.2 0.3 0.4 0.5

(2)

(3)

(1)

10
lo

g 1
0

(lo
ca

liz
at

io
n 

M
SE

)

−6

−8

−10

−12

−14

−16

−18

−20

−22

𝜏 (m)

Figure 3: Localization accuracy for the source inside the sensor
array when ignoring the presence of clock bias. (1) tr(CRLB(p)

𝑜
)

from (13), (2) tr(CRLB(p)) from (6b), (3) MSE(̃p̃) from (19), star
symbol: source localization MSE from the simulated pseudo-ML
estimator.

0.17 nanoseconds, if the signal propagates at the speed of
light, ignoring 𝜏 leads to an amount of more than 10 dB
degradation in source localization MSE, compared to the
joint time synchronization and localization. With those
observations in mind and noting that existing closed-form
joint synchronization and localization techniques, such as
the one proposed in [21], are not able to provide the CRLB
accuracy, we are motivated to develop in the next section a
novel algorithm in closed-form that can identify 𝜏 and the
source position p efficiently.
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4. Algorithm and Performance Analysis

In this section, we shall develop an efficient algorithm for
jointly estimating the clock bias 𝜏 and the source position
p from the 𝑀 TOA measurements in (4). The algorithm
is in closed-form and has low computational complexity. It
consists of two processing steps, where Step 1 locates the
source and Step 2 estimates 𝜏. We shall show analytically
that under small TOA measurement noise, the proposed
algorithm reaches the CRLB accuracy for both the source
position and the clock bias.

Step 1. The development of Step 1 processing is motivated by
the CRLB analysis presented in Section 2.2. In particular, we
have shown there that the CRLB of the source position, when
jointly identified with the clock bias, is identical to that under
TDOA positioning, where the 𝑀 − 1 TDOAs are produced
by subtracting the TOA measurement obtained at sensor 1
from the remaining 𝑀 − 1 TOA measurements. Following
this observation, we locate the source position p as follows.
First, we obtain the TDOA measurements via

𝑟
𝑚1

= (𝑇
𝑚

+ 𝜏
𝑚
) − (𝑇

1
+ 𝜏
1
) , 𝑚 = 2, 3, . . . ,𝑀. (22)

From (2), the measurement errors in 𝑟
𝑚1

are 𝑛
𝑚1

= 𝑛
𝑚

−

𝑛
1
. Collecting 𝑟

𝑚1
forms the (𝑀 − 1) × 1 column vector r =

[𝑟
21
, 𝑟
31
, . . . , 𝑟

𝑀1
]
𝑇 and its error vector is correspondingly

Δr = [𝑛
21
, 𝑛
31
, . . . , 𝑛

𝑀1
]
𝑇

= [−1
𝑀−1

I
𝑀−1

]n, (23)

where n is the TOAmeasurement noise vector defined in (4).
Δr is a zero-mean random vector because n have zero mean
and its covariance matrix is 𝜎

2

𝑛
Q
𝛼
, where Q

𝛼
is defined in

(10). Next, the source position p is estimated from r using the
closed-form twostage algorithm developed in [34]. We shall
briefly summarize the computations. Interested readers can
find the algorithm details in [34].

Stage 1 of Step 1 processing estimates p together with an
extra variable 𝑑

1
= ‖p − p

1
‖ that is the distance between

the source and sensor 1. The functional relationship between
them is ignored in Stage 1. Define the unknown vector as
𝜑
1
= [p𝑇, 𝑑

1
]
𝑇 and its weighted least squares (WLS) estimate

is found via

𝜑̂
1
= (G𝑇
1
W
1
G
1
)

−1

G𝑇
1
W
1
h
1
, (24)

where the weighting matrix W
1

is equal to W
1

=

(B
1
QaB𝑇1 )

−1
/𝜎
2

𝑛
, B
1

= diag([𝑑
2
, 𝑑
3
, . . . , 𝑑

𝑀
]) and 𝑑

𝑚
, 𝑚 =

2, 3, . . . ,𝑀, are the ranges between the source and sensor 𝑚

(see (2)). The matrix G
1
and the column vector h

1
both have

(𝑀 − 1) rows and their (𝑚 − 1)th rows are G
1
(𝑚 − 1, :) =

−2 ⋅ [(p
𝑚
−p
1
)
𝑇
, 𝑟
𝑚1

] and h
1
(𝑚−1) = 𝑟

2

𝑚1
−p𝑇
𝑚
p
𝑚
+p𝑇
1
p
1
.The

estimation error is equal to Δ𝜑̂
1

= (G𝑇
1
W
1
G
1
)

−1G𝑇
1
W
1
B
1
Δr

which is approximately zero-mean (under small noise con-
dition and G

1
being approximately noise-free) and has a

covariance matrix cov(𝜑̂
1
) = (G𝑇

1
W
1
G
1
)

−1.
Stage 2 of Step 1 processing refines the source position

estimate from Stage 1, which is 𝜑̂
1
(1 : 2), by exploring

the relation between the unknowns p and 𝑑
1
. The unknown

vector of this stage is 𝜑
2

= (p − p
1
) ⊙ (p − p

1
), where ⊙

is the Schur product (element by element multiplication).
Its estimate is again found via applying the WLS technique,
which is given by

𝜑̂
2
= (G𝑇
2
W
2
G
2
)

−1

G𝑇
2
W
2
h
2
, (25)

where the weighting matrix is W
2

= (B
2
cov(𝜑̂

1
)B𝑇
2
)
−1 and

B
2

= 2 ⋅ diag([(p − p
1
)
𝑇
, 𝑑
1
]). G
2
and h

2
are equal to

G
2

= [I
2
, 1
2
]
𝑇 and h

2
= [(𝜑̂

1
(1 : 2) − p

1
)
𝑇

⊙ (𝜑̂
1
(1 :

2) − p
1
)
𝑇
, 𝜑̂
2

1
(3)]
𝑇, where I

2
is a 2 × 2 identity matrix and 1

2

is a 2 × 1 column vector of ones. The estimation error in 𝜑̂
2

is Δ𝜑̂
2
= (G𝑇
2
W
2
G
2
)

−1G𝑇
2
W
2
B
2
Δ𝜑̂
1
with a covariance matrix

of cov(𝜑̂
2
) = (G𝑇

2
W
2
G
2
)

−1.
The source position estimate is obtained through map-

ping 𝜑̂
2
using

p̂ = diag ([sgn (𝜑̂
1
(1 : 2) − p

1
)])√𝜑̂

2
+ p
1
, (26)

where sgn(𝑥) is a sign function equal to 1 for 𝑥 ≥ 0 and
0 otherwise. The source localization error would be Δp̂ =

B−𝑇
3

Δ𝜑̂
2
, where B

3
= 2 ⋅ diag([p𝑇 − p𝑇

1
]). The covariance

matrix of p̂ can be shown to be cov(p̂) = B−𝑇
3

cov(𝜑̂
2
)B−1
3
.

Step 2. Step 2 estimates the clock bias 𝜏. In particular,
under the joint synchronization and localization problem
formulated in Section 2.1 (see (4)), the maximum likelihood
(ML) estimates of 𝜏 and the source position p can be found
via solving the following minimization problem:

min
𝜏,p

(T − 1
𝑀

𝜏 − d)𝑇 (T − 1
𝑀

𝜏 − d) , (27)

where the fact that the TOA measurement noise vector n
is a zero-mean Gaussian random vector has been applied.
Differentiating the cost function in (27) with respect to 𝜏 and
setting the result to zero yield the ML estimator for the clock
bias 𝜏. Mathematically, we have

𝜏̂ =

1

𝑀

1𝑇
𝑀

(T − d) . (28)

d is defined in (4) and it is unknown because the true source
position p is not available. We replace it with ̂d that has the
same functional form as d except that p has been replaced by
Step 1 output p̂. Hence, the proposed algorithm estimates the
clock bias via

𝜏̂ =

1

𝑀

1𝑇
𝑀

(T −
̂d) . (29)

We now summarize the processing required to estimate
the source position p and the clock bias 𝜏. The proposed
algorithm accomplishes the joint synchronization and source
localization task by evaluating sequentially (24), (25), (26),
and (29). Note that in computing 𝜑̂

1
and 𝜑̂

2
using (24) and

(25), the true source position p is needed to produce the
weighting matrices W

1
and W

2
. To bypass these difficulties,
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when evaluating (24), we first setW
1
to be an identity matrix

of appropriate dimension and compute 𝜑̂
1
to find 𝜑

1
. Then,

(24) is calculated again with p in W
1
being replaced by

𝜑̂
1
(1 : 2) that is just obtained. In evaluating (25), the source

position estimate from Stage 1 of Step 1 processing is utilized
to generateW

2
.

4.1. Performance Analysis. We shall establish the efficiency
of the algorithm proposed in the previous subsection under
the condition that the TOA measurement noise 𝑛

𝑚
are

sufficiently small. Mathematically, we need to show that the
algorithm output, namely the source position estimate p̂
and the clock bias estimate 𝜏̂, is unbiased and their covari-
ance matrices are approximately equal to the corresponding
CRLBs, that is,

cov (p̂) ≈ CRLB (p) , (30)

cov (𝜏̂) ≈ CRLB (𝜏) . (31)

cov(p̂) is the covariance matrix of p̂ given under (26) and
CRLB(p) is the CRLB of the source position p defined
in (6b). The validity of (30) can be verified by following
the performance analysis procedure adopted in [34]. The
unbiasedness of p̂ can be shown as follows. The estimation
error in p̂ can be written as, from the definitions of Δp̂, Δ𝜑̂
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Δr,

(32)

where Δr is the error in the TDOA measurement vector
produced from the TOAmeasurements 𝑇

𝑚
, which is defined

in (23) and shown to have zero mean. Under the small TOA
measurement noise condition, we can ignore the noise in G

1

and as a result, Δp̂ is linearly proportional to Δr and is zero-
mean, which establishes that the source location estimate
from the proposed algorithm is unbiased.

We proceed to prove (31), where cov(𝜏̂) is the covariance
matrix of the clock bias estimate in (29) and CRLB(𝜏) is the
CRLB defined in (6a). As pointed out above (29), the clock
bias is identified within the proposed algorithm using an ML
estimator. We have shown above that the source position
estimate p̂ is an efficient estimate and as such, it can be
expected from the property of the ML estimator [35] that the
clock bias estimate 𝜏̂ would have an accuracy approximately
equal to its CRLB. To derive cov(𝜏̂), the estimation error in
𝜏̂, denoted by Δ𝜏̂, needs to be found. For this purpose, we
expand ̂d in (29) at the true source position p using the
Taylor-series expansion up to the linear term, substitute (4),
and subtract 𝜏 from both sides of (29) to arrive at

Δ𝜏̂ ≈

1

𝑀

1𝑇
𝑀

(n − HΔp̂) , (33)

where H is defined in (7). It can be shown by putting (32)
into (33) that the clock bias estimate 𝜏̂ from the proposed
algorithm is also zero-mean since its estimation error Δ𝜏̂ is

linearly proportional to the zero-mean TOA measurement
noise vector n, under small TOA noise condition.

cov(𝜏̂) can be obtained via squaring both sides of (33) and
taking expectation. We have, after some simplifications,

cov (𝜏̂) ≈
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where (30) has been substituted and F = H ⋅ E[Δp̂n𝑇]. We
shall show that F ⋅ 1

𝑀
= 0
𝑀
, where 0

𝑀
is an 𝑀 × 1 vector of

zeros. In particular, after putting (32) and (23),
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Putting the above result into (34) and comparing (34) with
(6a) after applying the matrix inversion lemma [33] and
∑
𝑀

𝑚=1
𝜌
𝑇

p,p𝑚 = 1𝑇
𝑀
H, which is

CRLB (𝜏) = 𝜎
2

𝑛
(

1

𝑀

+

1

𝑀
2
1𝑇
𝑀
H

×(H𝑇H −

1

𝑀

H𝑇1
𝑀
1𝑇
𝑀
H)

−1

H𝑇1
𝑀

)

= (

𝜎
2

𝑛

𝑀

+

1

𝑀
2
1𝑇
𝑀
HCRLB (p)H𝑇1

𝑀
)

(36)

would yield (31). This completes the establishment of the
efficiency of the proposed algorithm.

5. Simulations

We shall demonstrate the estimation performance of the
algorithm developed in the previous section for identifying
the position and the clock bias of the unknown source in a
twostep manner via computer simulations. The simulation
scenario is the same as in Section 3.1, which is depicted in
Figure 1.

The newly proposed algorithm in Section 4 is applied
to estimate the source position p as well as the clock bias
fixed at 𝜏 = 15m. The accuracy for source localization and
synchronization is quantified using (1/𝐿)∑

𝐿

𝑙=1
‖p
𝑙
− p‖2 and

(1/𝐿)∑
𝐿

𝑙=1
‖𝜏
𝑙
− 𝜏‖
2, where 𝐿 = 20, 000 is the total number

of ensemble runs and p
𝑙
and 𝜏

𝑙
are the source position

and clock bias estimates in ensemble 𝑙. In each ensemble
run, the erroneous TOA measurements are produced by
adding to the true values zero-mean Gaussian noise with
variance 𝜎

2

𝑛
. For the purpose of comparison, we also realize

the algorithm developed in [21] for joint source localization
and synchronization.

For each of the two sources shown in Figure 1, we generate
two figures for plotting the synchronization and source
localization MSEs as function of the TOA measurement
noise power 𝜎

2

𝑛
, respectively. The corresponding CRLBs,

specifically CRLB(𝜏) and CRLB(p) from (6a) and (6b), are
included in the figures as performance benchmark.
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Figure 4: Synchronization accuracy for the source outside the
sensor array. Solid line: tr(CRLB(𝜏)) from (6a), star symbol: syn-
chronizationMSE from the proposedmethod, right triangle symbol:
synchronization MSE from the algorithm in [21].
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Figure 5: Localization accuracy for the source outside the sensor
array. Solid line: tr(CRLB(p)) from (6b), star symbol: source
localization MSE from the proposed method, right triangle symbol:
source localization MSE from the algorithm in [21].

Figures 4 and 5 plot the clock bias and source position
estimation MSEs for the source p = [50, 50]

𝑇 outside the
sensor array. It can be seen from the figures that the proposed
algorithm is able to attain the CRLB accuracy for the source
position and clock bias before the TOA measurement noise
power 𝜎

2

𝑛
reaches 0 in log scale. This is consistent with the

theoretical performance analysis presented in Section 4.1 that
the proposed algorithm is approximately efficient for accurate
TOAmeasurements.On the other hand, the previously devel-
oped method from [21] cannot reach the CRLB accuracy,
and its synchronization and localization MSEs are higher
than the CRLB by an amount of more than 17 dB when 𝜎

2

𝑛

lies in the range from −40 to −25 in log scale. As the TOA
measurement noise power further increases over −10 in log

30

20

10

0

−10

−20

−30

−40

−50
−40 −30 −20 −10 100

10
lo

g 1
0

(s
yn

ch
ro

ni
za

tio
n 

M
SE

)

𝜎2𝑛

Figure 6: Synchronization accuracy for the source inside the sensor
array. Solid line: tr(CRLB(𝜏)) from (6a), star symbol: synchro-
nization MSE from the proposed method, right triangle symbol:
synchronization MSE from the algorithm in [21].
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Figure 7: Localization accuracy for the source inside the sensor
array. Solid line: tr(CRLB(p)) from (6b), star symbol: source
localization MSE from the proposed method, right triangle symbol:
source localization MSE from the algorithm in [21].

scale, the performance improvement due to the use of the
newly proposed method is even more significant.

Figures 6 and 7 depict the estimation MSEs for the
clock bias and the position of the source p = [−10, 10]

𝑇

inside the sensor array. Comparing with Figures 4 and 5
immediately reveals that the estimation performance is much
better in this case,mainly because the localization geometry is
improved. Moreover, in contrast to the case where the source
is outside the sensor array, the proposed method and the
algorithm from [21] yield similar estimation accuracy that
matches the CRLBs for both the clock bias and the source
position. This again verifies the performance analysis results
in Section 4.1 on the approximate efficiency of the proposed
solution. Interestingly, the method from [21] suffers from
the threshold effect later than the new algorithm in this
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simulation. However, its better performance does not persist
as the source location moves outsides the sensor array, as
shown in Figures 4 and 5. In contrast, the proposed algorithm
can attain the CRLB performance for both cases where the
source lies within and outside the sensor array, when the TOA
measurement noise power is not sufficiently large.

6. Conclusions and Future Work

In this paper, the TOA-based joint synchronization and
source localization problem was considered. Effects of
neglecting the presence of the source clock bias in TOA
measurements on source location estimation accuracy was
first investigated. For this purpose, an MSE analysis was
performed for the case where the source is localized via TOA
positioning when assuming the source clock bias does not
exist, but in fact it is nonzero. Comparing the obtained source
localization MSE with that from joint estimating the source
position and clock bias, we derived a condition under which
ignoring the source clock bias may provide a smaller local-
ization MSE. Numerical examples were provided to validate
the analysis and reveal that, in some cases, neglecting the
clock bias can severely degrade the localization performance.
As a result, a new efficient closed-form solution for joint
synchronization and source localization was proposed. The
new method can identify the source location and clock bias
using a twostep approach. Theoretical performance analysis
and simulations were conducted to show that it can achieve
the CRLB accuracy for both source location and clock bias
estimates under small Gaussian TOA measurement noise.

Some recent work such as [22] adopted amore completed
model where both the time offset (clock bias) and skew
are considered. However, the proposed least squares (LS)
estimator in [22] cannot reach the CRLB accuracy. As a
future topic, we would like to derive an efficient closed-form
estimator for joint synchronization and source localization in
the presence of time skew.
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Localization, which determines the geographical locations of sensors, is a crucial issue in wireless sensor networks. In this paper, we
propose a novel lightweight equilateral triangle localization algorithm (LETLA) that accurately localizes sensors andminimizes the
power consumption. In the LETLA, the approximate coordinates substituted for the real coordinates of the unknown node, and the
corresponding optimization problem is formulated tominimize the estimation error.With the sequences that represent the ranking
of distances from the anchors to the unknown node, a simple and robust technique is developed to quickly and efficiently estimate
a region containing the approximate coordinates, and a condition under which the approximate error can be minimized is given.
This condition employs a new geometric construct of anchor layout called equilateral triangle diagrams. Extensive simulations show
that the LETLA performs better than other state-of-the-art approaches in terms of energy consumption with the same localization
precision.

1. Introduction

WSNs (Wireless Sensor Networks) have recently received
great attention because they hold the potential to change
many aspects of our economy and life [1–8]. Typical networks
consist of a large number of densely deployed sensor nodes
which could gather local data and communicate with other
nodes. The data from these sensor nodes are relevant only
if we know their locations. In addition, the accurate loca-
tion estimation could aid in sensor network services such
as routing, information processing, tasking, and querying.
Therefore the knowledge of positions becomes imperative
[9–17]. Moreover, the minimum resources must be used:
typical sensor nodes are battery powered and have a limited
processing ability [18, 19]. These constraints impose the new
challenges in localization algorithm development and imply
that power efficient, computation complexity and location
precision should be employed simultaneously.Manymethods
have been proposed, such as APS (DV-Hop, DV-coordinates)
[20], APIT [21–26], triangulation [27–29], Centroid [30–
33], Sequence Based [34–38], Voronoi diagrams [39–43], and
mathematical programming [44–46].

With regard to the precision of location, most of the
localization algorithms can be classified into two broad cate-
gories: accurate location algorithm and approximate location
algorithm. The accurate location algorithm produces the
exact coordinates of the unknown node through complex
calculations and precise measurement of distance. Typical
accurate location algorithms include triangulation, linear
programming, and semidefinite programming. The approxi-
mate location algorithms estimate an approximate position of
the unknown node, with roughmeasurement and simple cal-
culation. APS, APIT, Centroid, Sequence Based, and Voronoi
diagrams are all approximate location algorithms.

The accurate location algorithms have twomajor require-
ments that render them disadvantages; that is, (a) the com-
plexity is high, because triangulation, linear programming,
and semidefinite programming usually involve solving higher
order nonlinear equations which consume a large amount of
energy, and (b) the ranging accuracy should be high enough,
otherwise location algorithmwill be halted. Under an adverse
ranging condition, exact localization is not available; hence
the statistical estimation will be introduced [47–49]. When
the limited energy, the reduced processor, and the unstable
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accuracy of ranging results have been given [5, 17, 19], the
precise coordinates of the unknown node are usually difficult
to be obtained. Furthermore, in the scene of mobile sensor
nodes, the precise coordinates need so much time that the
location result is not valid anymore.

The approximate location algorithms consume less
energy in computing, since the location procedures of APS,
APIT, Centroid, Sequence Based, and Voronoi diagrams
are made up of simple logical operations and algebraic
operations. The aim of approximate location algorithms is
to find a rough precise position of the unknown node with
the least energy consumption and to achieve a compromise
between the accuracy and the complexity. The approximate
location algorithms are particularly useful for large-scale
wireless sensor networks, because they could extend sensor
nodes’ life with less computation complexity and energy
consumption and tolerate ranging error to a certain degree.

In this paper, we present a novel equilateral triangle local-
ization algorithm (LETLA) that is a lightweight approximate
localization algorithm and could provide better precision
with less power consumption. In the LETLA, the sensing
area is covered by many identical disjoint equilateral triangle
diagrams, and the anchors are placed in the vertexes of the
equilateral triangle diagrams. The LETLA is an approximate
localization based on the concept of substituting the approx-
imate coordinates for the real coordinates, which could loose
less accuracy and save more energy. The new geometric con-
struct of the layout, called the equilateral triangle diagrams,
has a major contribution to minimize the approximate error
and simplify the location procedure. In order to avoid the
ranging ambiguities arising from the interference of noise,
the LETLA adopts the order of ranging results to represent
the location relationship of unknown node and anchors.That
is an effective technology and has been employed in many
works of literature [34, 36–38].

The rest of the paper is organized as follows. The next
section gives a brief overviewof the relatedwork. In Section 3,
we describe the procedures of the LETLA. To prove the ratio-
nality of the LETLA, we calculate the utilization coefficient
of the equilateral triangle diagrams, illustrate the geometrical
characteristics of the equilateral triangle diagrams, explain
the reason for dividing the equilateral triangle into seven
distinct regions, and introduce a principle to determine the
point of tangency. In Section 4, we demonstrate the local-
ization procedures of the LETLA in a practical scenario. In
Section 5, we present a performance study of the LETLA and
make a comparison with other four localization techniques.
We conclude this paper and mention our future work in
Section 6.

2. State of the Art

In this section, we first give a brief summary of centroid,
sequence-based, and Voronoi diagrams and then show the
inspirations from them.

2.1. Survey of Centroid, Sequence-Based, and Voronoi Dia-
grams Localization Technology. Recently, many researchers

have focused on localization in WSNs. Bulusu et al. [30]
demonstrated a location technique called “Centroid” in
2000. Firstly, with the help of basic connectivity or distance
information, a rough estimate of relative node distance is
made. Then layout of anchors is used to create a relative
map of anchor position. Finally the coordinates of the cen-
troid are obtained by calculating the coordinates of anchors
which surround the unknown node in a radiation range of
communication.The coordinates of the centroid are regarded
as the approximate coordinates of the unknown node. In
2007, weighted centroid localization (WCL) was provided
by Blumenthal et al. [31]. It is derived from a centroid
determination which calculates the position of unknown
node by averaging the coordinates of anchors. To improve
the precision in real implementations, the weights were
used to refine the estimated position [32]. Because the
radio device can provide the Link Quality Indication (LQI),
received signal strength indication (RSSI), the performance
of packet transmission, and even the difference of energy
received in packets, it achieves better precision than original
centroid localization. In 2011, Jun et al. [33] presented the first
theoretical framework for WCL in terms of the localization
error distribution parameterized by the node density, the
node placement, the shadowing variance, the correlation
distance, and the inaccuracy of sensor node positioning.With
this analysis, the robustness ofWCL has been quantified, and
some design guidelines, such as node placement and spacing,
for the practical deployment of WCL, have been provided.

Yedavalli et al. [34] described the sequence-based loca-
tion approach, called Ecolocation, which was quite effec-
tive in dense and uniform topologies in 2005. Ecolocation
determines the location of unknown nodes by examining the
ordered sequence of received signal strength measurements
taken at multiple reference nodes. The key features of the
Ecolocation algorithm are as follows: (1) it constructs a
constraint table based on the RSSI values; (2) it searches the
table to find the location.However, the Ecolocation algorithm
is imperfect and has a rough localization performance. In
2009, Zhong and He [50] presented a range-free approach to
capture a relative distance between 1-hop neighboring nodes
from their neighborhood orderings. With little overhead, the
proposed method can be conveniently applied as a transpar-
ent supporting layer for many state-of-the-art connectivity-
based localization solutions.

To improve the localization accuracy, a new algorithm
based on the weighted rank order correlation coefficient and
the dynamic centroid was proposed by Yu et al. [35] in 2011.
The simulations indicate that the localization accuracy and
the robustness of the new algorithm are distinctly raised
compared with the Ecolocation.

In 2008, Yedavalli et al. [36] introduced a novel sequence-
based localization technique (SBL). In the SBL, the localiza-
tion space can be divided into many distinct regions that
can be uniquely identified by the sequences. The sequences
represent the ranking of distances from the anchors to that
region. The SBL and the Ecolocation are both proposed by
Kiran. The Ecolocation picks the location that maximizes
the number of satisfied anchor’s topology constraints. In
contrast, the SBL applies two statistic metrics that capture
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the difference in the rank orders. For the problem of location
error, a new localization technique, based on the SBL, was
proposed by Liu et al. [37] in 2009. Because it uses the
triangular area which is enclosed by the centroids of the three
“nearest” location regions, it improves the accuracy to some
extent. In 2011, Hsiao et al. [38] analyzed the deployment
strategy of sensor nodes for the SBL algorithm in order to
effectively reduce location error such as (1) the standard
deviation of the polygon area cut by the perpendicular
bisectors should be kept as small as possible; (2) certain
amount of space should be maintained between the sensor
nodes, and (3) optimization with the angle between the
perpendicular bisectors should be utilized.

Voronoi diagrams provide a powerful technique for
analysing computational geometric problems. The Voronoi
diagrams divide the plane into multiple polygons (known as
cells). Specifically, the cells are constructed in theway that any
point in a cell is closer to the local site (i.e., the site within the
cell) than to any other site on the plane. Recently, the concept
of Voronoi diagrams has been applied in robot navigation and
map establishing [39].

In 2007, Boukerche et al. [40] proposed a novel approach
that adopted Voronoi diagrams. Two types of localization
can result from the proposed algorithm: the physical location
of the node (e.g., latitude, longitude) or a region limited by
the node’s Voronoi cell. In 2009, Boukerche et al. improved
DV-Hop localization algorithm with Voronoi diagrams to
limit the scope of flooding communication and error [41].
In 2010, to achieve “k-coverage” of the sensing area, which
means every point in the surveillance area is monitored by at
least k sensors, Li and kao [42] presented a novel distributed
self-location estimation scheme based on Voronoi diagrams
with mobile nodes. Li illustrated that distributed Voronoi
diagrams provided a convenient means of analysing the
coverage problem in large-scale sensor networks. In the same
year, Ampeliotis and Berberidis [43] generalized a notion
of the closest point of the approach estimator. While in the
closest point of approach estimator, the unknown node may
lie close to the closest point of approach node. Hence the
unknown node is restricted to lie in a convex set called the
sorted order-K Voronoi cell.

2.2. Inspiration of Centroid, Sequence-Based, and Voronoi
Diagrams LocalizationTechnology. By the literature in former
section, we find some inspirations from centroid, sequence-
based, and Voronoi diagrams. They are adopted, developed,
and fused in the LETLA.

According to the facts in WSNs, most location applica-
tions only require a proximate region instead of the accurate
coordinates of the unknown nodes. Especially in the local-
ization of the mobile nodes, the real-time and approximate
coordinates of the mobile nodes are more effective than the
accurate coordinates with a long computing delay. Moreover,
WSNs need to prolong the sensor node’s life, as the sensor
nodes are powered by batteries and replaced difficultly.There-
fore, substituting the approximate coordinates for the real
coordinates of the unknown node is an efficient method to
balance the location precision and the computation complex-
ity. The purpose of centroid is to substitute the approximate

coordinates for the real coordinates, which significantly
reduces the location complexity. Enlightened by the centroid,
we proposed amethod to obtain the approximate coordinates
instead of the real coordinates.This method simplifies the arc
equations to the tangent equations as described in Section 3.

In WSNs, the unknown nodes can build Voronoi dia-
grams based on the position information of anchors and the
rank of ranging result. Each node also can find the Voronoi
diagrams it belongs to. There is a geometric constraint that
links the location to the sorting of the distances between
the unknown node and the anchors. If we know the correct
sorting of the distances, we would restrict the space in
which the unknown node may lie. This space is the Voronoi
diagrams that corresponds to the correct sorting. Aiming
to reduce the computation complexity in building Voronoi
diagrams, we propose the equilateral triangle diagramswhich
have better geometric attribute than Voronoi diagrams in
simplifying location process.

The order sequences of ranging result are more robust
than the numerical measurement of distance, which has been
proved in some papers [34, 36–38]. The measurement noise
corrupts the numerical measurement of distance directly
and distinctly over the whole location area, but it alters the
rank of ranging result slightly in the most of the areas. In
the Voronoi diagrams and the equilateral triangle diagrams,
each region can be identified by only a sorted sequence of
ranging result. Hence, the special limited region covering the
unknown node can be determined by the order sequences of
ranging result. In some mobile instances, the special limited
region can be regarded as a rough location, if a little location
delay is demanded. Consequently we apply the sequence-
based method in the LETLA to determine the special limited
region efficiently.

3. Lightness Equilateral Triangle
Localization Method

In the LETLA, the anchors are able to acquire their positions
via external device like GPS, but the unknown nodes cannot
obtain this information. The unknown nodes can get the
positions of the anchors and construct the corresponding
location sequence tables. Then, every wireless sensor node
is equipped with an omnidirectional antenna which can
transfer wireless signal in all directions [21, 50–56].

The localization area is divided into many same equi-
lateral triangles, as shown in Figure 1(a). Each equilateral
triangle formed by three anchors is picked out to estimate the
position of the unknown node. All anchors are deployed in
the vertexes of equilateral triangles and fixed after the initial
deployment. Each anchor has six adjacent anchors with the
same distance, denoted by 𝑎. As shown in Figure 1(a), anchor
𝐽 has six adjacent anchors 𝐾, 𝐿, 𝑀, 𝑁, 𝑅, and 𝑆, which are
the nearest six anchors to 𝐽 with the distance of 𝑎. Each node
has the same data transmission radius, denoted by 𝑙. In the
LETLA 𝑙 > 2𝑎 is valid. � denotes an equilateral triangle. The
basic procedures of the LETLA can be described as follows.

Step 1. The unknown node measures the distances between
itself and the anchors in its transmission range and sorts
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Figure 1: (a)The anchor layout and a demonstration of Steps 1 and 2; (b) the example of dividing�𝐷𝐸𝐶 in Step 3; (c) an instance of selecting
two arcs in Step 4; (d) the intersection of two tangents substituted for the intersection of two arcs in Step 5.

the ranging result in the ascending order. The node 𝑃 is an
unknown node and resides in an equilateral triangle with the
side of 𝑎.This equilateral triangle can be found by utilizing the
three shortest distances between the anchors and node 𝑃. If
nodes 𝐴, 𝐵, and 𝐶 are the three nearest anchors according to
the ranging sequence, the node 𝑃 will reside in the�𝐴𝐵𝐶, as
shown in Figure 1(a). In Step 1, node 𝑃 is assigned to �𝐴𝐵𝐶,
only by means of the rank of distance measurement, not
related to any numerical computation.

Step 2. When �𝐴𝐵𝐶 is determined, �𝐷𝐸𝐶, �𝐼𝐵𝐻, and
�𝐴𝐹𝐺 are selected. As shown in Figure 1(a) the overlap
region of �𝐷𝐸𝐶, �𝐼𝐵𝐻, and �𝐴𝐹𝐺 is �𝐴𝐵𝐶 and their side
lengths are 2𝑎. Because node 𝑃 knows the positions of the
anchors, it is feasible to find these three equilateral triangles.

Step 3. �𝐷𝐸𝐶, �𝐼𝐵𝐻, and �𝐴𝐹𝐺 are divided into seven
distinct regions, respectively. Figure 1(b) shows the example
of dividing �𝐷𝐸𝐶 into seven distinct regions, by means of
three arcs with the centers on the vertexes of the �𝐷𝐸𝐶 and
the radii equal to 𝑟. Node 𝑃 localizes itself at the fifth region
of the �𝐷𝐸𝐶 according to the relation of 𝐷𝑃, 𝐸𝑃, 𝐶𝑃, and 𝑟
in Table 1. Node 𝑃 also finds other two regions in �𝐼𝐵𝐻 and
�𝐴𝐹𝐺, respectively, in the same way.

Step 4. According to the regions including node 𝑃 in �𝐷𝐸𝐶,
�𝐼𝐵𝐻, and �𝐴𝐹𝐺, two arcs are selected. They have an
intersection in the position of node 𝑃. For the example
presented in Step 3, two arcs are shown inFigure 1(c). Because
node 𝑃 is in the fifth region of �𝐷𝐸𝐶, the third region of
�𝐼𝐵𝐻, and the sixth region of �𝐴𝐹𝐺 in Step 3, the arc with
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Table 1: The method of determining the sequence number of the
region in �𝐷𝐸𝐶.

Sequence number Sufficient and necessary condition
1 𝐷𝑃 < 𝑟, 𝐸𝑃 > 𝑟, 𝐶𝑃 > 𝑟

2 𝐷𝑃 < 𝑟, 𝐸𝑃 < 𝑟, 𝐶𝑃 > 𝑟

3 𝐷𝑃 > 𝑟, 𝐸𝑃 < 𝑟, 𝐶𝑃 > 𝑟

4 𝐷𝑃 > 𝑟, 𝐸𝑃 < 𝑟, 𝐶𝑃 < 𝑟

5 𝐷𝑃 >r, 𝐸𝑃 > 𝑟, 𝐶𝑃 < 𝑟

6 𝐷𝑃 <r, 𝐸𝑃 > 𝑟, 𝐶𝑃 < 𝑟

7 𝐷𝑃 <r, 𝐸𝑃 < 𝑟, 𝐶𝑃 < 𝑟

center 𝐹 and radius 𝐹𝑃 and the arc with center 𝐶 and radius
𝐶𝑃 are selected by Table 2. The length of the arc is limited by
the range of region divided in Step 3. As shown in Figure 1(c),
because node 𝑃 is in the sixth region of �𝐴𝐹𝐺, the length of
one arc is limited by the range of the sixth region in �𝐴𝐹𝐺.
In the same manner, length of the other arc is limited by the
range of the fifth region in �𝐷𝐸𝐶.

Step 5. The intersection of the two tangents is substituted for
the intersection of two arcs selected in Step 4. In Figure 1(d),
the intersection of the two tangents, denoted by 𝑄, is
considered to be the approximation of the intersection of two
arcs which is also the position of the unknown node 𝑃. The
principle of finding the point of the tangency is illustrated in
Section 3.3.

3.1. Geometrical Characteristics of Equilateral Triangle Dia-
gram. In Step 1, we propose a proposition: the unknown
node 𝑃 resides in �𝐴𝐵𝐶, when nodes 𝐴, 𝐵, and 𝐶 are
the three nearest anchors in Figure 1(a). In this section, we
validate the proposition through mathematical proofs. We
consider the sides of an equilateral triangle as a part of the
inside of the equilateral triangle. Thus, a node is either inside
or outside an equilateral triangle.

Proposition 1. As shown in Figure 1(a), if nodes 𝐴, 𝐵, and 𝐶
are the three nearest anchors to node𝑃 according to the ranging
sequences, node 𝑃 is inside �𝐴𝐵𝐶.

Proof. First, in Figure 1(a), the localization space is cut into
many equilateral triangles with the same side length 𝑎, and
therefore each node in the localization space will be inside an
equilateral triangle with the side length 𝑎. Second, if a node is
inside an equilateral triangle, the distances between the node
and the three vertexes of the equilateral triangle are all less
than the side length (𝑎) of the equilateral triangle. If a node is
outside an equilateral triangle, the longest distance between
the node and the three vertexes of the equilateral triangle is
more than 𝑎.

Let us prove this by contradiction. Nodes 𝐴, 𝐵, and 𝐶 are
the three nearest anchors to node 𝑃 according to the ranging
sequences. Let us suppose the false proposition that node 𝑃 is
outside �𝐴𝐵𝐶. Since each node in the localization space will
be inside an equilateral triangle with the side length 𝑎, node
𝑃 is inside �𝐽𝐾𝐿, which is an arbitrary equilateral triangle

and differs from the �𝐴𝐵𝐶. Because node 𝑃 is inside �𝐽𝐾𝐿,
it can be concluded that 𝑃𝐽 < 𝑎, 𝑃𝐾 < 𝑎 and 𝑃𝐿 < 𝑎.
Node 𝑃 is outside �𝐴𝐵𝐶 simultaneously, if 𝑃𝐴 > 𝑃𝐵 > 𝑃𝐶,
hence it is obtained 𝑃𝐴 > 𝑎. Consequently, we can draw a
conclusion that 𝑃𝐴 > 𝑃𝐽, 𝑃𝐴 > 𝑃𝐾, and 𝑃𝐴 > 𝑃𝐿, which
is a contradiction as nodes 𝐴, 𝐵, and 𝐶, are the three nearest
anchors to node 𝑃. Now it is fallacious that node 𝑃 is outside
�𝐴𝐵𝐶. So the proposition that node 𝑃 is inside �𝐴𝐵𝐶 is
true.

3.2. Reason of Dividing Equilateral Triangle. In this section,
we will present the reason why �𝐷𝐸𝐶, �𝐼𝐵𝐻, and �𝐴𝐹𝐺
are divided into seven distinct regions, respectively. We first
introduce a conclusion which will be proved in Section 3.3.
In substituting the intersection of the two tangents for the
intersection of the two arcs, as described in Step 5, the
approximation error varies directly with the angle and the
radius of the two arcs. For a given point of tangency, less
radius and angle of the arc will lessen the approximation
error.

Take �𝐷𝐸𝐶 for example, only node𝐷, node 𝐸, and node
𝐶 can be considered as the center of the arc in Table 2. Before
dividing, the angle of the arc in �𝐷𝐸𝐶 is 60 degrees and the
radius of the arc in�𝐷𝐸𝐶 is in the range [0, 𝑎]. When�𝐷𝐸𝐶
has been divided into seven distinct regions, the length of
the arc is limited by the range of the region which reduces
the ranges of angle and radius of the arc in �𝐷𝐸𝐶. The arcs
in the first, third, and fifth regions have less radii which is
about a third of the original length, and the arcs in the second,
fourth, sixth, and seventh regions have less angles about 30
degrees. We can draw a conclusion that dividing �𝐷𝐸𝐶 into
seven regions effectively reduces the range of the angle and
the radius of the arc in �𝐷𝐸𝐶. It will be helpful to lessen the
approximate error in Step 5.

As shown in Figure 1(a), �𝐴𝐵𝐶 is the overlap region of
�𝐷𝐸𝐶, �𝐼𝐵𝐻, and �𝐴𝐹𝐺; thereby �𝐴𝐵𝐶 is made up of
ten divisions which are superposed by different regions of
�𝐷𝐸𝐶, �𝐼𝐵𝐻, and �𝐴𝐹𝐺, respectively. The ten divisions
in �𝐴𝐵𝐶 are denoted by 𝛼, 𝛽, 𝜎, 𝜒, 𝛿, 𝜀, 𝛾, 𝜑, 𝜃, and 𝜇,
as demonstrated in Figure 2(b). The definitions of the ten
divisions are according the superposition of the region in
�𝐷𝐸𝐶, �𝐼𝐵𝐻, and �𝐴𝐹𝐺, as presented in Table 3. By the
comparison between Tables 2 and 3, the selection of center
and radius of the arc in Step 4 is based upon the division
including the unknown node 𝑃.

The length of radius in Step 3, denoted by 𝑟, is a function
of 𝑎. Given 𝑎, 𝑟 is presented according to the cosine theorem
of sides in Figure 2(c):

𝑟
2
= (2𝑎)

2
+ (

√3

2

𝑎)

2

− 2 × 2𝑎 ×

√3

2

𝑎 × cos(𝜋
6

) , (1)

𝑟 =

√7

2

𝑎. (2)

3.3. Principle of Determining Point of Tangency. An arc is
determined by the coordinates of center, the length of radius,
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Table 2: The method of selecting two arcs to indicate unknown node 𝑃 with their intersection.

Sequence number in �𝐷𝐸𝐶 Sequence number in �𝐼𝐵𝐻 Sequence number in �𝐴𝐹𝐺 Center Radius
6 2 1 Node A and node H AP and HP
4 3 2 Node B and node D BP and DP
5 4 6 Node C and node F CP and FP
6 3 1 Node A and node E AP and EP
5 2 1 Node A and node H AP and HP
4 3 1 Node B and node D BP and CP
5 3 2 Node B and node G BP and GP
5 3 6 Node C and node F CP and FP
5 4 1 Node C and node I CP and IP
5 3 1 Node A and node B AP and BP

Table 3: The definition of the ten divisions in �𝐴𝐵𝐶.

Sequence
number in
�𝐷𝐸𝐶

Sequence
number in

�𝐼𝐵𝐻

Sequence
number in

�𝐴𝐹𝐺
Symbol in
�𝐴𝐵𝐶

6 2 1 𝛼

4 3 2 𝛿

5 4 6 𝛾

6 3 1 𝛽

5 2 1 𝜎

4 3 1 𝜒

5 3 2 𝜀

5 3 6 𝜑

5 4 1 𝜃

5 3 1 𝜇

and the value of angle. In a given arc, a tangent is determined
by the position of the point of tangency. Hence, the selection
of the tangent is equivalent to choosing an optimization
position of the point of tangency. The tangent which touches
the arc in the optimal point can minimize the approximation
error in Step 4. The gap between the arc and the tangent is
a major effect factor of approximation error in Step 5. To
facilitate the calculation, a segment of the tangent is used to
substitute the whole tangent. As shown in Figure 3, 𝐹𝐸 is a
segment of the tangent and intercepts by two lines parallel
with the bisector of the arc. 𝐴𝐵 is a given arc with a given
radius and a given value of degree, denoted by 𝑟 and 𝑎,
respectively. The origin of the coordinate plane is denoted
by 𝑂, which is located at the center of 𝐴𝐵, and the 𝑦-axis is
the bisector of 𝐴𝐵 and intersects 𝐴𝐵 at 𝐶. 𝐷 is the point of
tangency and 𝑏 denotes the degree between the side of 𝐴𝐵
and the radius perpendicular to 𝐹𝐸. 𝐷 can be any point on
𝐴𝐵, so the gap between the arc and the tangent is affected by
the position of𝐷.

The effects of substituting 𝐸𝐹 for 𝐴𝐵 can be evaluated
Errorgap. (𝑥tan, 𝑦tan) denotes the coordinates of a point on 𝐸𝐹
and (𝑥arc, 𝑦arc) denotes the coordinates of a point on𝐴𝐵. The
definition of Errorgap is the difference between 𝑦tan and 𝑦arc

when 𝑥tan is equal to 𝑥arc. In Figure 3, a double-headed arrow
in the gap between 𝐸𝐹 and 𝐴𝐵 is an Errorgap:

Errorgap = 𝑦tan − 𝑦arc,

(𝑥tan = 𝑥arc = 𝑟 × cos(𝜋 − 𝑎
2

+ 𝑐)) .

(3)

The range of both 𝑥tan and 𝑦tan is (4). Because each value
of the 𝑥-axis in (4) corresponds to an Errorgap, the number of
Errorgap approaches infinity:

𝑟 × cos(𝜋 − 𝑎
2

) ≤ 𝑥tan ≤ 𝑟 × cos(𝜋 + 𝑎
2

) ,

𝑟 × cos(𝜋 − 𝑎
2

) ≤ 𝑥arc ≤ 𝑟 × cos(𝜋 + 𝑎
2

) .

(4)

As (𝑥tan, 𝑦tan) denotes the coordinates of a point on 𝐸𝐹

and (𝑥arc, 𝑦arc) denotes the coordinates of a point on 𝐴𝐵, the
expressions of 𝑦tan and 𝑦arc can be obtained with the angle 𝑎,
𝑏, and 𝑐.

𝑦tan = 𝑟 × tan(𝜋 − 𝑎

2

+ 𝑏) × [sin(𝑎
2

− 𝑐) − sin(𝑎
2

− 𝑏)]

+ 𝑟 × cos(𝑎
2

− 𝑏) ,

𝑦arc = 𝑟 × sin(𝜋
2

−

𝑎

2

+ 𝑐) = 𝑟 × cos(𝑎
2

− 𝑐) .

(5)

By combining (3) and (5), the following new expression
of Errorgap can be obtained in (6). Specifically, Errorgap is the
function of 𝑟, 𝑎, 𝑏, and 𝑐 and is actually in proportion to 𝑟

and 𝑎 according to (6). When 𝐴𝐵 is fixed, 𝑟 and 𝑎 are given.
The parameter 𝑏 is determined by the position of 𝐷. The
parameter 𝑐 in (6) has the range of [0, 𝑎]. Finding the optimal
position of 𝐷 is equivalent to finding the optimal value of
angle 𝑏 tominimize the Errorgap over the whole feasible range
of angle 𝑐, in the given radius 𝑟 and angle 𝑎. Three indicators
can quantify the effect of Errorgap over the whole gap between
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Figure 2: (a) The angle and the radius of the arc in different regions of �𝐷𝐸𝐶 after dividing; (b) the ten divisions in �𝐴𝐵𝐶; (c) applying the
cosine theorem of sides to obtain 𝑟.

the 𝐸𝐹 and𝐴𝐵 and are the functions of angle b:

Errorgap = 𝑟 × (

1 − sin ((𝑎/2) − 𝑏) × sin ((𝑎/2) − 𝑐)
cos ((𝑎/2) − 𝑏)

−

cos ((𝑎/2) − 𝑏) × cos ((𝑎/2) − 𝑐)
cos ((𝑎/2) − 𝑏)

)

= 𝑟 × (

1 − cos (𝑏 − 𝑐)
cos ((𝑎/2) − 𝑏)

) .

(6)

The first indicator is 𝐸(Errorgap) which is defined as the
average of Errorgap over the whole gap between 𝐸𝐹 and 𝐴𝐵.
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Anchor

Angle of arc
Radius of arc

Arc
Midpoint of arcSegment line

Point of tangent
Angle between the
side of arc and the radius

Angle between the side of 
arc and the radius of Errorgap

perpendicular to the FE

𝐸𝐹

𝐸

𝐴

𝑌

𝐶

𝐶

𝐹

𝐵

𝑟

𝑟

𝑎

𝑎

𝑐

𝑐

𝑏

𝑏

𝐴𝐵

𝑂

Errorgap 𝐷

𝐷

𝑋

Figure 3: The definition of Errorgap.

𝑥
𝐴
and 𝑥

𝐵
denote the coordinates of 𝐴 and 𝐵 in the 𝑥-axis

and [𝑥
𝐴
, 𝑥
𝐵
] represents the whole feasible range on the 𝑥-axis

over the whole gap between 𝐸𝐹 and 𝐴𝐵. Then the expression
of 𝐸(Errorgap) is obtained:

𝐸 (Errorgap) =
1

𝑥
𝐵
− 𝑥
𝐴

∫

𝑥𝐵

𝑥𝐴

Errorgap𝑑𝑥. (7)

[𝑥
𝐴
, 𝑥
𝐵
] in the 𝑥-axis can be represented by [0, 𝑎] in angle

𝑐. By differential calculus of (3), we obtain

𝑑𝑥 = −𝑟 × sin(𝜋
2

−

𝑎

2

+ 𝑐) × 𝑑𝑐. (8)

By combining (7) and (8),

𝐸 (Errorgap) =
1

𝑥
𝐵
− 𝑥
𝐴

∫

𝑥𝐵

𝑥𝐴

Errorgap × 𝑑𝑥

=

1

2 sin (𝑎/2)
∫

𝑎

0

Errorgap × cos(𝑎
2

− 𝑐) × 𝑑𝑐.

(9)

By combining (6) and (9), the new expression of
𝐸(Errorgap) is given by

𝐸 (Errorgap) =
𝑟

2 sin (𝑎/2)

× [

8 sin (𝑎/2) − sin ((3/2) 𝑎 − 𝑏)
4 cos ((𝑎/2) − 𝑏)

−

sin ((𝑎/2) + 𝑏)
4 cos ((𝑎/2) − 𝑏)

−

𝑎

2

] .

(10)

Because 𝐴𝐵 is given, radius 𝑟 and angle 𝑎 are fixed. The
value of 𝐸(Errorgap) only accounts for the value of angle 𝑏.

The extremum problem can be solved by finding the value of
angle 𝑏 which makes the first derivative of 𝐸(Errorgap) equal
to zero:

(i) syms 𝑎𝑏,

(ii) solve(diff(󸀠(8∗ sin(0.5∗𝑎)− sin(1.5∗𝑎−𝑏)− sin(0.5∗
𝑎 + 𝑏))/(4 ∗ cos(0.5 ∗ 𝑎 − 𝑏))󸀠,󸀠𝑏󸀠),󸀠𝑏󸀠).

The numerical result given by MATLAB demonstrates
that 𝐸(Errorgap) can be least only if 𝑏 is equal to 0.5𝑎. It shows
that 𝑏 = 0.5𝑎 is the condition for minimizing 𝐸(Errorgap) and
means that the point of tangency is the midpoint of the arc.
When 𝐷 is the midpoint of 𝐴𝐵 in Figure 3, the average of
Errorgap over the whole gap between 𝐸𝐹 and 𝐴𝐵 is minimal.

The second indicator is 𝐷(Errorgap) which is defined as
the variance of Errorgap over the whole gap between 𝐸𝐹 and
𝐴𝐵. [𝑥

𝐴
, 𝑥
𝐵
] represents the whole feasible range on the 𝑥-axis

over the whole gap between 𝐸𝐹 and 𝐴𝐵. Then the expression
of𝐷(Errorgap) is obtained:

𝐷(Errorgap) =
1

𝑥
𝐵
− 𝑥
𝐴

∫

𝑥𝐵

𝑥𝐴

(Errorgap − 𝐸 (Errorgap))
2

𝑑𝑥.

(11)

By applying (8) to (11), (12) is obtained:

𝐷(Errorgap) =
1

𝑥
𝐵
− 𝑥
𝐴

∫

𝑥𝐵

𝑥𝐴

(Errorgap − 𝐸 (Errorgap))
2

× 𝑑𝑥

=

1

2 sin (𝑎/2)
∫

𝑎

0

(Errorgap − 𝐸 (Errorgap))
2

× cos ((𝑎/2) − 𝑐) × 𝑑𝑐.
(12)

Combined with (6), (12) can be changed to (13). It is the
new expression of𝐷(Errorgap):

𝐷(Errorgap) = (

𝑟

cos ((𝑎/2) − 𝑏)
− 𝐸 (Errorgap))

2

+ 𝑟 × (

cos ((𝑎/2) − 𝑏) × 𝐸 (Errorgap) − 𝑟
co s2 ((𝑎/2) − 𝑏)

)

× (

2 cos ((𝑎/2) − 𝑏) + sin ((3/2) 𝑎 − 𝑏)
4 sin (𝑎/2)

+

sin ((𝑎/2) + 𝑏)
4 sin (𝑎/2)

)

+ 𝑟
2
(

3 sin ((3/2) 𝑎 − 2𝑏)
24 sin (𝑎/2) cos2 (𝑎/2 − 𝑏)

+

sin ((5/2) 𝑎 − 2𝑏)
24 sin (𝑎/2) cos2 (𝑎/2 − 𝑏)

𝑘
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−

3 sin (𝑎/2 − 2𝑏)
24 sin (𝑎/2) cos2 (𝑎/2 − 𝑏)

+

sin (𝑎/2 + 𝑏) + 12 sin (𝑎/2)
24 sin (𝑎/2) cos2 ((𝑎/2) − 𝑏)

) .

(13)

Because 𝐴𝐵 is given, radius 𝑟 and angle 𝑎 are fixed.
𝐷(Errorgap) only accounts for the value of angle 𝑏. The
numerical result given by MATLAB demonstrates that
𝐷(Errorgap) can be least only if 𝑏 is equal to 0.5𝑎. It shows
that 𝑏 = 0.5𝑎 is the condition forminimizing𝐷(Errorgap) and
means that the point of tangency is the midpoint of the arc.
When 𝐷 is the midpoint of 𝐴𝐵 in Figure 3, the variance of
Errorgap over the whole gap between 𝐸𝐹 and 𝐴𝐵 is minimal.

(i) syms 𝑎 𝑏 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5;
(ii) 𝑠1 = (1/(2∗ sin(0.5∗𝑎)))∗(((8∗ sin(0.5∗𝑎)+ sin(𝑏−

1.5∗𝑎)−sin(𝑏+0.5∗𝑎))/(4∗cos(𝑏−0.5∗𝑎)))−(0.5∗𝑎));
(iii) 𝑠2 = 2 ∗ sin(0.5 ∗ 𝑎) ∗ (1/(cos(𝑏 − 0.5 ∗ 𝑎)2 ) + (𝑠1)2 −

(2 ∗ (𝑠1))/(cos(𝑏 − 0.5 ∗ 𝑎)));
(iv) 𝑠3 = ((2∗ (𝑠1))/(cos(𝑏 − 0.5 ∗ 𝑎)) − (2)/((cos(𝑏 − 0.5 ∗

𝑎))
2
)) ∗ ((0.5 ∗ cos(𝑏 − 0.5 ∗ 𝑎)) − (0.25 ∗ sin(𝑏 − 1.5 ∗

𝑎)) + (0.25 ∗ sin(𝑏 + 0.5 ∗ 𝑎)));
(v) 𝑠4 = (1/(2∗(cos(𝑏−0.5∗𝑎)2)))∗((0.5∗sin(1.5∗𝑎−2∗

𝑏))−((1/6)∗(sin(2∗𝑏−2.5∗𝑎)))−(0.5∗ sin(0.5∗𝑎−
2∗𝑏))+((1/6)∗(sin(2∗𝑏+0.5∗𝑎)))+(2∗sin(0.5∗𝑎)));

(vi) 𝑠5 = 𝑠2 + 𝑠3 + 𝑠4;
(vii) solve(diff(𝑠5,󸀠𝑏󸀠),󸀠𝑏󸀠).

The third indicator is MAX(Errorgap) which is defined as
the maximal value of Errorgap over the whole gap between EF
and AB, given a fixed position of𝐷, when the position of𝐷
is fixed, which means that the degree of angle 𝑏 is constant.
Considering the definition of Errorgap, the maximal value of
Errorgap can be found in 𝑐 = 0 or 𝑐 = 𝑎 and depends on the
degree of angle 𝑏. Thus, the expression of MAX(Errorgap) is
obtained:

Max (Errorgap) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑟 × (

1 − cos (𝑎 − 𝑏)
cos ((𝑎/2) − 𝑏)

) ,

0 ≤ 𝑏 <

𝑎

2

, 𝑐 = 𝑎

𝑟 × (

1 − cos (𝑎/2)
1

) ,

𝑏 =

𝑎

2

, 𝑐 = 0 or 𝑐 = 𝑎

𝑟 × (

1 − cos (𝑏)
cos ((𝑎/2) − 𝑏)

) ,

𝑎

2

≤ 𝑏 < 𝑎, c = 0.

(14)

Proposition 2. As shown in Figure 3 and indicated in (14). If
the degree of angle a is constant and the degree of angle b is in
the interval [0, 0.5𝑎), Max(Errorgap) will be reached in 𝑐 = 𝑎

when 𝑏 = 0.5𝑎.

Proposition 3. As shown in Figure 3 and indicated in (14), if
the degree of angle a is constant and the degree of angle b is in

the interval (0.5𝑎, 𝑎], Max(Errorgap) will be reached in 𝑐 = 0

when 𝑏 = 0.5𝑎.

Proof. Consider

∵ 0 ≤ 𝑏 < 𝑎/2 and 0 < 𝑎 < 𝜋

∴ −𝑎/2 < −𝑏 ≤ 0

∴ 𝑎/2 < 𝑎 − 𝑏 ≤ 𝑎

∵ 0 < 𝑎/2 < 𝜋/2

∴ 1 − cos(𝑎/2) < 1 − cos(𝑎 − 𝑏)
∵ 1 > cos(𝑎/2 − 𝑏)
∴ 𝑟 × ((1 − cos(𝑎/2))/1) < 𝑟 × ((1 − cos(𝑎 −

𝑏))/ cos((𝑎/2) − 𝑏)).

Proof. Consider

∵ 𝑎/2 < 𝑏 ≤ 𝑎 and 0 < 𝑎 < 𝜋

∴ 0 < 𝑎/2 < 𝜋/2

∴ 1 − cos(𝑎/2) < 1 − cos(𝑏)
∵ 1 > cos(𝑎/2 − 𝑏)
∴ 𝑟×((1−cos(𝑎/2))/1) < 𝑟×((1−cos(𝑏))/ cos((𝑎/2)−
𝑏)).

Therefore, if 𝑎 is given, we can obtain the minimal
Max(Errorgap) in 𝑏 = 0.5𝑎. It means that 𝑏 = 0.5𝑎 is the neces-
sary and sufficient condition for minimizing Max(Errorgap).
Taking Max(Errorgap) into consideration, consequently, the
point of the tangent must be the midpoint of the arc. When
𝐷 is the midpoint of 𝐴𝐵 in Figure 3, the maximal value of
Errorgap over the whole gap between 𝐸𝐹 and 𝐴𝐵 is less than
other positions of𝐷.

Given an arc, the tangent is dominated by the position of
the point of tangency. If the point of tangency is the midpoint
of the arc, then 𝐸(Errorgap), 𝐷(Errorgap), and Max(Errorgap)
have the least value in each range. It has been used in the
LETLA to choose the point of tangency.

3.4. Utilization Coefficient of Equilateral Triangle Diagrams.
In Step 4, two anchors are selected from the nine anchors
which have the special geometrical relations as shown in
Figure 1(a). However, it is hard to satisfy the geometrical
requirement in the boundaries of the location space. In
Figure 4, the location area, unlocation area, and cover area
are defined and illustrated in three examples with the sides
(3𝑎, 𝑎), (4𝑎, 2𝑎), and (5𝑎, 3𝑎) of the cover area. In this section,
the utilization coefficient of equilateral triangle diagrams is
obtained, which means the percentage of the location area in
the cover area. As the sides of the cover area increase linearly,
the number of anchors and the location area, the unlocation
area, and the cover area are listed in Table 4.

(𝑚 × 𝑎, 𝑛 × 𝑎) denotes the length of the sides of the cover
area in Figure 4 the formulas of Numanchor , 𝑆unlocat , 𝑆locat, and
𝑆cover are obtained as follows. Numanchor is the number of
anchors and Sunlocat is the unlocation area. Because𝑚−𝑛 = 2𝑎

is the relation between𝑚 and 𝑛 in terms of Table 4, (15), (16),
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Table 4: The relation of the five indexes.

The side length of cover area (3a, 1a) (4a, 2a) (5a, 3a) (6a, 4a) (7a, 5a) (8a, 6a)
The number of anchors 18 36 60 90 126 168

Unlocation area 18 ×

𝑎
2
√3

4

30 ×

𝑎
2
√3

4

42 ×

𝑎
2
√3

4

54 ×

𝑎
2
√3

4

66 ×

𝑎
2
√3

4

78 ×

𝑎
2
√3

4

Location area 4 ×

𝑎
2
√3

4

22 ×

𝑎
2
√3

4

52 ×

𝑎
2
√3

4

94 ×

𝑎
2
√3

4

148 ×

𝑎
2
√3

4

214 ×

𝑎
2
√3

4

Cover area 22 ×

𝑎
2
√3

4

52 ×

𝑎
2
√3

4

94 ×

𝑎
2
√3

4

148 ×

𝑎
2
√3

4

214 ×

𝑎
2
√3

4

292 ×

𝑎
2
√3

4

(17), and (18) can be simplified to single variable functions of
𝑛:

Numanchor =
𝑘=𝑛

∑

𝑘=0

(𝑘 + 1) × 6, (15)

𝑆unlocat = [18 + 12 × (𝑛 − 1)] ×

𝑎
2
√3

4

, (16)

𝑆locat =

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

4 ×

𝑎
2
√3

4

, 𝑛 = 1

22 ×

𝑎
2
√3

4

, 𝑛 = 2

[4 + 18 × (𝑛 − 1) +

𝑘=𝑛−2

∑

𝑘=1

12 × 𝑘]

×

𝑎
2
√3

4

, 𝑛 > 2 ,

(17)

𝑆cover =

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

22 ×

𝑎
2
√3

4

, 𝑛 = 1

22 ×

𝑎
2
√3

4

, 𝑛 = 2

[22 + 18 × (𝑛 − 1) +

𝑘=𝑛−1

∑

𝑘=1

12 × 𝑘]

×

𝑎
2
√3

4

, 𝑛 > 1 .

(18)

The utilization coefficient of equilateral triangle diagrams
is the complement of ratio of 𝑆unlocat to 𝑆cover:

1 −

𝑆unlocat
𝑆cover

=

{
{
{
{

{
{
{
{

{

1 −

18

22

, 𝑛 = 1

1 −

18 + 12 × (𝑛 − 1)

22 + 18 × (𝑛 − 1) + ∑
𝑘=𝑛−1

𝑘=1
12 × 𝑘

, 𝑛 > 1.

(19)

As (16) and (18) imply, 𝑆unlocat grows linearly with 𝑛, and
𝑆cover grows linearly with the power of 𝑛. Consequently, the

AnchorUnlocation area
Location area
Cover area

Side length of equilateral triangle

3𝑎

3𝑎
2𝑎 5𝑎

4𝑎𝑎

𝑎

Figure 4: The topological structure of the equilateral triangle
diagrams.
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Figure 5:The utilization coefficient of equilateral triangle diagrams
grows along with n’s growth.

increment of 𝑛 will lead to the ratio of 𝑆unlocat to 𝑆cover close
to zero. It means that the utilization coefficient of equilateral
triangle diagrams will get close to one hundred percent as
the scale of network increases. In Figure 5 the growth rate of
𝑆unlocat is far less than the growth rate of 𝑆cover as 𝑛 increases.
When the scale of cover area increases, the influence of
unlocation area in the LETLA will rapidly vanish.
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4. Lightness Equilateral Triangle
Localization Algorithm

In this section, the LETLA will be explained by a practical
example. This example is shown in Figure 1, and the given
conditions are the same as Section 3. When the unknown
node 𝑃 knows the distance between itself and the anchor, the
LETLA can be implemented as follows.

(a) Sort the ranging results and select the three nearest
anchors 𝐴, 𝐵, and C, then find node 𝑃 in �𝐴𝐵𝐶.

(b) �𝐷𝐸𝐶, �𝐼𝐵𝐻, and �𝐴𝐹𝐺 can be determined, for
�𝐴𝐵𝐶 is their overlapped region and their side
lengths are equal to 2𝑎. The geometric relation of
equilateral triangles is determined by the deployment
of anchors which is known by node 𝑃.

(c) Node 𝑃 finds the regions in �𝐷𝐸𝐶, �𝐼𝐵𝐻, and
�𝐴𝐹𝐺, respectively, through the relationship
between the ranging results and 𝑟, as exemplified in
Table 1.

(d) As node 𝑃 is in the fifth region of �𝐷𝐸𝐶, the third
region of �𝐼𝐵𝐻, and the sixth region of �𝐴𝐹𝐺 in
Figure 1(c), the arc with the center 𝐹 and the radius
𝐹𝑃 and the other arc with the center 𝐶 and the radius
𝐶𝑃 are selected on the basis of Table 2.

(e) Derive two tangential equations of the arcs obtained
in the previous step and solve the two tangential
equations.

The main parameters of a tangential equation include
the coordinates of the point of tangency and the slope of
tangency. When the tangent is perpendicular to the line
which goes through 𝐶 and the point of tangency𝐾, the slope
of tangency can be derived by

slope of tangent = −

𝑥
𝑐
− 𝑥
𝑘

𝑦
𝑐
− 𝑦
𝑘

. (20)

(𝑥
𝑐
, 𝑦
𝑐
) and (𝑥

𝑘
, 𝑦
𝑘
) are the coordinates of 𝐶 and 𝐾,

respectively. 𝑃 knows (𝑥
𝑐
, 𝑦
𝑐
), but does not know (𝑥

𝑘
, 𝑦
𝑘
). In

order to determine (𝑥
𝑘
, 𝑦
𝑘
), a coordinate system is established

in Figure 6.
The new coordinate system can be built as follows. First,

move the original coordinate system to the positive direction
of the 𝑥-axis with the distance 𝑥

𝑐
. Second, move the original

coordinate system to the positive direction of the 𝑦-axis
with the distance 𝑦

𝑐
. Finally, rotate the original coordinate

system 180 degree clockwise. In the new coordinate system,
the origin is C denoted by (𝑥󸀠

𝑐
, 𝑦
󸀠

𝑐
), and the coordinates of 𝐾

are (𝑥󸀠
𝑘
, 𝑦
󸀠

𝑘
). The values of (𝑥󸀠

𝑐
, 𝑦
󸀠

𝑐
) and (𝑥󸀠

𝑘
, 𝑦
󸀠

𝑘
) are shown in

(21), where 𝐶𝑃 is a known ranging result:

𝑥
󸀠

𝑐
= 0,

𝑦
󸀠

𝑐
= 0,

𝑥
󸀠

𝑘
= −𝐶𝑃,

𝑦
󸀠

𝑘
= 0.

(21)

2

3

4

5

6

7

1

Tangent

Anchor
Located node
Point of tangent

Tangent
Arc

Figure 6: The calculation of the point of the tangent.

The relation of (𝑥
𝑘
, 𝑦
𝑘
) and (𝑥󸀠

𝑘
, 𝑦
󸀠

𝑘
) is

𝑥
󸀠

𝑘
= − (𝑥

𝑘
− 𝑥
𝑐
) ,

𝑦
󸀠

𝑘
= − (𝑦

𝑘
− 𝑦
𝑐
) .

(22)

Because (𝑥
𝑐
, 𝑦
𝑐
) and 𝐶𝑃 are known, combined with (21),

(𝑥
𝑘
, 𝑦
𝑘
) can be obtained by

𝑥
𝑘
= 𝑥
𝑐
− 𝑥
󸀠

𝑘
,

𝑦
𝑘
= 𝑦
𝑐
− 𝑦
󸀠

𝑘
.

(23)

The coordinates of the point of tangency are the function
of the coordinates of the center of the arc, the length of
radius of the arc, and the angle between the bisector and the
𝑥-axis. When the coordinates of the point of tangency are
known, the slop of tangency can be drawn from (20). Now the
tangential equation can be set up. Solving the intersection of
two tangents is equivalent to solving the bivariate system of
linear equations.

To sum up, the (a), (b), (c), and (d) in the LETLA are
achieved by relational operation and only (e) is implemented
by arithmetic operation. The procedure (e) only contains
the four arithmetic operations and does not involve solving
multivariable nonlinear equations, differentiation, integra-
tion, statistical estimation, and mathematical programming.
It suggests that the LETLA is a lightness location method.

5. Performance Evaluation

5.1. Localization Error Evaluation. In Section 5.1, a numerical
analysis of the performance of localization error will be given.
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Figure 7: A numerical example of Figure 1(a).

Figure 7 shows the anchor distribution and the coordinate
system. It is set up by putting Figure 1(a) in a coordinate
system with an origin𝑂 on the lower left quarter. In Figure 7,
the distance between a pair of adjacent anchors is denoted by
𝑎, which is the same in Figure 1(a) and assigned a value of
50. The length of radius to divide �𝐷𝐸𝐶, �𝐼𝐵𝐻, and �𝐴𝐹𝐺
is denoted by 𝑟, which is also like Figure 1(a) and assigned
a value according to (2). To obtain the localization error
Errorlocat, node 𝑃 has been placed in the different positions
of �𝐴𝐵𝐶 for many times.

Figure 8 shows the distribution of Errorlocat in �𝐴𝐵𝐶.
The 𝑧-axis in Figure 8 indicates the value of Errorlocat in the
corresponding testing position. Given 𝑎 = 50, the area of
Errorlocat < 1 makes up 72.971% of �𝐴𝐵𝐶. The area of
Errorlocat < 3 covers 90.519% of �𝐴𝐵𝐶. The maximum and
minimum values of Errorlocat are 6.13 and 0, respectively.The
data transmission radius of node 𝑃 is 𝑙 and 𝑙 > 2𝑎. A common
evaluation method is computing the ratio of Errorlocat and 𝑙,
and the ratio within 10% is a good indicator of localization
performance [57]. Figure 8 illustrates LETLA can achieve the
ratio within 10% in 92.655% of �𝐴𝐵𝐶. It means that the
LETLA can obtain a good localization precision and a stable
distribution.

In Figure 8, Errorlocat is associated with the division
in �𝐴𝐵𝐶, denoted by 𝛼, 𝛽, 𝜎, 𝜒, 𝛿, 𝜀, 𝛾, 𝜑, 𝜃, and 𝜇 as
demonstrated in Figure 2(b) and defined in Table 3. The
connecting points of 𝛽 and 𝜒, 𝜀 and 𝜑, and 𝜎 and 𝜃 have the
maximum value of Errorlocat. Errorlocat in 𝛼, 𝛿, and 𝛾 is all
less than 1 and Errorlocat in 𝜇 is less than 1 in least 60% area.
Moreover, Errorlocat is distributed uniformly in 𝛼, 𝛿, 𝛾, and 𝜇.
The reason of producing the maximum value of Errorlocat in
the connecting point can be explained as follows. Combine
Tables 2 and 3, when node 𝑃 lies in the connecting point of
the divisions in �𝐴𝐵𝐶, the intersection of two the arcs as
determined from Table 2 is far away from the intersection of
the two tangents. The reason is that the intersection of the

two arcs is on the endpoint of the both arcs which both have
amaximum of distance with the tangent.That result has been
analyzed in Section 3.3 with the conception of Max(Errorgap)
and the maximal value of Errorgap is in the endpoint of
the arc. Since the connecting point is the intersection of
the two arcs’ endpoint, Errorgap of the two arcs reaches the
maximum value simultaneously. Consequently, Errorgap in
the connecting point is greater than other positions of�𝐴𝐵𝐶
obviously.

Figure 9 shows the distribution of Errorlocat in �𝐴𝐵𝐶.
Figures 8 and 9 are distinguished by the ranging noise. In
Figure 8 Errorlocat is produced by the LETLA with accurate
ranging results, but in Figure 9 Errorlocat is produced by
the LETLA with the ranging results which are corrupted by
noise following a Gaussian distribution. The ranging noise
is represented by 𝜁, with expectation 𝐸(𝜁) = 0 and variance
𝐷(𝜁) = 0.5.

Given 𝑎 = 50, 𝐸(𝜁) = 0, and 𝐷(𝜁) = 0.5, the area
of Errorlocat < 1 makes up 65.251% of �𝐴𝐵𝐶. The area of
Errorlocat < 3 covers 82.238% of �𝐴𝐵𝐶. The maximum and
minimum values of Errorlocat are 7.26 and 0, respectively.
Although the ranging noise lowers the localization precision
of the LETLA, the LETLA also achieves the ratio within 10%
in 90.14% of �𝐴𝐵𝐶.

Figure 9 shows that Errorlocat is associated with the
division in �𝐴𝐵𝐶, which is the same as Figure 8. Errorlocat
is distributed uniformly in 𝛼, 𝛿, 𝛾, and 𝜇. In 𝛽, 𝜎, 𝜒, 𝜀, 𝜑, and
𝜃, Errorlocat is affected by the noise, because the areas of these
divisions are less than the areas of 𝛼, 𝛿, 𝛾, and 𝜇. It leads to the
misjudgment of the division including node 𝑃more easily:

𝑃 {
󵄨
󵄨
󵄨
󵄨
𝜉 − 𝐸 (𝜉)

󵄨
󵄨
󵄨
󵄨
< 3𝐷 (𝜉)} ≥ 0.8889. (24)

By comparing Figures 9 with 8, the range of Errorlocat in
Figure 8 and in Figure 9 is [0, 6.13] and [0, 7.26]. Based on
the Chebyshev inequality of (24), 𝐸(𝜁) = 0, and 𝐷(𝜁) = 0.5,
we obtain 𝜁 in the range of [−1.5, 1.5] with the probability of
88.89%. It means that the noise cannot change the range of
Errorlocat obviously in Figure 8; hence the difference between
the maximum of Figure 9 and that of Figure 8 is only 1.13.
Consequently, the area of Errorlocat < 1 and Errorlocat < 3

only decreases 7.72% and 8.281%, respectively.

5.2. Localization Coverage and Beacon Density. To study the
performances of the localization coverage and beacon den-
sity, we generate a variety of the test scenarios of the different
numbers of anchors. The graphs in Figure 10 illustrate three
test scenarios. The whole test area, designed as a circular
domain and denoted by 𝑆test, is the whole area of the test
scenario.The whole test area is calculated using the following
equation:

𝑆test = 𝜋 ⋅ (4𝑎)
2
. (25)

The location area 𝑆locat and the cover area 𝑆cover represent
the region in which the node can be located and region
covered by anchors. For instance, Table 5 shows the number
of anchors, the location area, and the cover area calculated
for varying the side length of the cover area. The variable
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Figure 8:The distribution of Errorlocat in�𝐴𝐵𝐶 according to the geometrical relation in Figure 7: (a) the side view; (b) the top view. In both
(a) and (b), the color indicates the value of Errorlocat.
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Figure 9: The distribution of Errorlocat in �𝐴𝐵𝐶 with ranging noise according to the geometrical relation in Figure 7: (a) the side view; (b)
the top view.
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Figure 10: The topological structure of the test scenarios.

𝑛 is a factor used to indicate the side length of the cover
area, as shown in Table 5. Because the number of anchors
is determined by 𝑛, as shown in Table 5, we can replace the
anchor number with the variable 𝑛 to facilitate the calculation
of the location area and cover area.

We use the following definitions in the evaluation: local-
ization coverage, 𝑃

𝑟
, denotes the ratio of the location area to

the whole test area:

𝑃
𝑟
=

𝑆locat
𝑆test

=

3√3 ⋅ (𝑛 − 1)
2
⋅ 𝑎
2

2𝜋 ⋅ (4𝑎)
2

=

3√3 ⋅ (𝑛 − 1)
2

32𝜋

,

𝑃
𝑑
=

NUManchor
𝑆cover

=

2 (1 + 3𝑛 ⋅ (𝑛 + 1))

3√3 ⋅ 𝑛
2
⋅ 𝑎
2

=

2 + 6𝑛
2
+ 6𝑛

3√3 ⋅ 𝑛
2
⋅ 𝑎
2
.

(26)

Because the whole test area is a fixed circular domain, as
expressed in (25) and illustrated in Figure 10, the localization
coverage increases with growing anchor number, as shown
in Figure 11(a). When the number of anchor increases to
91, the location area constitutes 82.699 percent of the test
area. Figure 11(b) graphs the beacon density for varying
the quantity of anchors under the condition of 𝑎 = 50

which is the same as assigned in Section 5.1. We see that the
beacon density falls sharply with increasing anchor number,
until it reaches a density. We refer to this density as the
saturation beacon density. The saturation beacon density can
be obtained when the value of 𝑛 approaches to infinity. If
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Figure 11: (a) The number of anchors versus localization coverage; (b) the number of anchors versus beacon density.
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Figure 12: (a) The relationship between the localization error and the variance of noise; (b) the relationship between the localization error
and the number of anchors.

Table 5: The relationship among the four indexes.

The side length of the cover area The number of anchors Location area Cover area
1𝑎 7 0 3√3 ⋅ 𝑎

2
/2

2𝑎 19 3√3 ⋅ 𝑎
2
/2 6√3 ⋅ 𝑎

2

3𝑎 37 6√3 ⋅ 𝑎
2

27√3 ⋅ 𝑎
2
/2

4𝑎 61 27√3 ⋅ 𝑎
2
/2 24√3 ⋅ 𝑎

2

5𝑎 91 24√3 ⋅ 𝑎
2

125√3 ⋅ 𝑎
2
/2

𝑛 ⋅ 𝑎 1 + 3𝑛 ⋅ (𝑛 + 1) 3√3 ⋅ (𝑛 − 1)
2
⋅ 𝑎
2
/2 3√3 ⋅ 𝑛

2
⋅ 𝑎
2
/2
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Figure 13: The energy consumption in the localization calculation
versus the number of anchors.

Table 6: The simulation parameters of NS2.

Parameter Value
Channel bandwidth (kbps) 250
Frequency (GHz) 2.4
Wireless model Shadowing
MAC protocol IEEE 802.15.4
Power for transmission (Watt) 0.28183815
Power for idle (Watt) 0.003587
Power for reception (Watt) 0.2182837
RX thresh (Watt) 1.35685𝑒 − 11

RF radius (m) 50
Initial energy (J) 10

𝑎 = 50, the saturation beacon density will be 4.6188𝑒 − 004.
We can reach the same conclusion in Figure 11(b):

lim
𝑛→∞

𝑃
𝑑
= lim
𝑛→∞

2 + 6𝑛
2
+ 6𝑛

3√3 ⋅ 𝑛
2
⋅ 𝑎
2
=

2

√3 ⋅ 𝑎
2
. (27)

5.3. Comparisons. Wecompare the LETLAwith theweighted
centroid [33], the sequence based [36], the Voronoi diagrams
[43], and the multilateration [58]. In order to study the per-
formances of localization precision and energy consumption
in different scenarios, NS2 is adopted in Table 6.

The anchors were deployed uniformly in a square field of
1000m × 1000m, and 1000 testing positions were selected to
place the unknown node. The testing positions were evenly
distributed across the 1000m × 1000m. The localization
error was obtained by averaging the ten testing values of
repeated measurements in each testing position.The anchors
placements of the five location algorithms followed the
geometric structure as Figure 4. To cover the square field of

1000m × 1000m, a portion of anchors were moved to the
corners. In the experiments, we consider RSS as the range-
measurement:

𝑃
𝑅
(𝑑) = 𝑃

𝑇
− 𝑃𝐿 (𝑑

0
) − 10𝜂 log

10

𝑑

𝑑
0
− 𝑋
𝜎

. (28)

Themost widely used simulationmodel is the log-normal
shadowingmodel [59], where 𝑃

𝑅
is the received signal power,

𝑃
𝑇
is the transmit power, and 𝑃

𝐿
(𝑑
0
) is the path loss for a

reference distance of 𝑑
0
. 𝜂 is the path loss exponent, and

the random variation 𝑋
𝜎
in RSS is generated according to

Gaussian distribution with mean 0 and variance 𝜎2. In this
model, we do not provision separately for any obstructions
like walls. In order to compare the performance in energy
consumption, we consider that a second in localization com-
puting will consume 8.052518𝑒 − 5𝐽. This value is obtained
by dividing power for transmission into 3500. We modify
the MAC layer of WPAN protocol in NS2 2.27 to realize the
calculation of the energy consumption.

In Figure 12(a) the relationship between the localization
error and the variance of noise is investigated when the
number of anchors is 36.The result shows that the localization
error increases with the variance of noise. We can observe
that the performance of the multilateration is the best when
the variance is less than six. As the variance increases,
the LETLA is more robust than the other four algorithms
under the same condition. Some of the reasons for this
result can be briefly stated. The multilateration will obtain
more precise coordinates if the variance becomes smaller.
But its performance rapidly degrades when the effect of
noise increases. As a result, the circles do not intersect at a
common point and the precise coordinates degenerate into
the approximate coordinates. The sequence based rises faster
than the weighted centroid, the Voronoi diagrams, and the
LETLA, since it needs a lot of iterative computations which
are sensitive to the initial value. The weighted centroid and
the Voronoi diagrams rise gently, but they are less accurate
than the LETLA, because they have not fully utilized the
information of the anchor placement.

In Figure 12(b), the localization error decreases with the
increment of anchors, when the variance of noise is ten.
As the number of anchors increases, the density of anchors
also grows in the fixed cover area. For this reason the
received signal power is enhanced with the decrement of
the distances between the anchors and the unknown node.
As shown in Figure 12(b), the sequence based, the LETLA,
and the Voronoi diagrams descend in steps. The reason is
that a few increments of the number of anchors are not
sufficient to change the density obviously. Only some degrees
of promotion can alter the density adequately and improve
precision effectually. It is also interesting to note that the
Multilateration is the best when the number of anchors
less than 32. However, as anchors began to accumulate, the
LETLA, the Voronoi diagrams, and the multilateration are of
about the same accuracy.

Figure 13 presents the energy consumptions of five algo-
rithms when the variance of noise is ten. Under the same
condition, the multilateration consumes more energy than
the other fourmethods.Themultilaterationwith noisy data as
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described above is based on solving nonlinear equations with
complicated closed-form solutions. However, standard algo-
rithms that provide least-square solutions for large numbers
of nonlinear equations have a very high computational cost.

In Figure 13 the tendency of the weighted centroid, the
sequence based, and the Voronoi diagrams rise with the
number of anchors and the energy consumptions of these
three methods are less than the multilateration but more
than the LETLA. By studying the References [33, 36, 43], we
can find some reasons. The Voronoi diagrams spend most of
the computing energy in constructing Voronoi diagrams and
carrying out iterative computations [43].The sequence based
consumes too many energy in the generalization of location
sequence tables and the calculation of the Spearman’s Rank
Order Correlation Coefficient and the Kendall’s Tau [36].The
weighted centroid does not contain iterative computation,
so it is simpler than sequence based and Voronoi diagrams.
However, the Weighted Centroid has more energy consump-
tion for solving the constrained extremum problems [33].

On the other hand, the energy consumption of the LETLA
is the least of all. As mentioned in Section 4, the LETLA
only solves binary linear equations, except matching and
sorting in a limited range, and does not contain any iter-
ative computations, statistical equilibrium, and multivariate
nonlinear equations. It is worthwhile to note that, the energy
consumption of the LETLA is stable. There are two reasons.
First, only two of the nine ranging results and the coordinates
of anchors are used to construct and solve the binary linear
equations. It means that the scale of the calculation of
the LETLA is fixed and limited. Second, the matching and
sorting operations can be implemented with the special data
structure, like index point, which trades time for space. In
contrast with the weighted Centroid, the sequence based,
the Voronoi diagrams, and the multilateration, the results
suggest that the LETLA ismore energy efficient with the same
localization accuracy.

6. Conclusion

In this paper, we presented a novel lightness equilateral
triangle localization algorithm (LETLA). In the LETLA, the
approximate coordinates were substituted for the real coor-
dinates of the unknown node and an optimization problem
was set up to minimize the approximate error. To solve
this optimization problem, we proposed a new geometric
structure called “equilateral triangle diagrams.” In detail, we
probed into the scalability of equilateral triangle diagrams
and presented the geometrical characteristic of equilateral
triangle diagrams. In the process of substituting the tangent
for the arc, we derived that the midpoint of the arc was the
most appropriate position of the point of the tangent.

Finally, the performance of the LETLA is much better
than those of the other localization techniques, and experi-
mental results indicate that the energy consumption of the
LETLA is less than other location algorithm, at the same
degree of location precision. As part of future work, we would
focus on the implementation of the LETLA in the practical
hardware of sensor nodes, such as MicaZ, Mica2, and Telos.
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A low-cost yet effective localization scheme for wireless sensor networks (WSNs) is presented in this study. e proposed scheme
uses only two anchor nodes and uses bilateration to estimate the coordinates of unknown nodes. Many localization algorithms for
WSNs require the installation of extra components, such as a GPS, ultrasonic transceiver, and unidirectional antenna, to sensors.
e proposed localization scheme is range-free (i.e., not demanding any extra devices for the sensors). In this scheme, two anchor
nodes are installed at the bottom-le corner (SinkX) and the bottom-right corner (SinkY) of a squaremonitored region of theWSN.
Sensors are identi�ed with the same minimum hop counts pair to Sink X and Sink Y to form a zone, and the estimated location of
each unknown sensor is adjusted according to its relative position in the zone. is study compares the proposed scheme with the
well-known DV-Hopmethod. Simulation results show that the proposed scheme outperforms the DV-Hopmethod in localization
accuracy, communication cost, and computational complexity.

1. Introduction

Wireless sensor networks (WSNs) have gained worldwide
attention in recent years. A WSN consists of spatially dis-
tributed autonomous sensors that cooperatively monitor a
deployed region for physical or environmental conditions,
such as temperature, sound, vibration, pressure, motion, and
pollutants.

e manufacturing of small and energy efficient sen-
sors has become technically and economically feasible
because of recent advances in microelectromechanical sys-
tems (MEMSs) technology. A sensor node can sense, mea-
sure, and gather information from the environment and,
based on some local decision process, transmit the sensed
data to sinks (or base stations) through a wireless medium.

e transmission power consumed by a wireless radio is
proportional to the distance squared or even a higher order
in the presence of obstacles.us, multihop routing is usually
considered for sending collected data to the sink instead
of direct communication. Most WSN routing algorithms
require the position information of sensor nodes. However,
for some hazardous sensing environments, it is difficult to

deploy the sensor nodes to the required locations. us, for
environments in which it is difficult to plan the location of
sensors in advance, localization techniques can be used to
estimate sensor positions. e simplest and most common
localization technique is to install a GPS receiver on each
sensor in the sensor networks. Although the cost of GPS
receivers is falling, they are still too costly, in price and energy
consumption, to install in a sensor network.

is study proposes a low-cost yet effectiveWSN localiza-
tion scheme. is scheme needs only two anchor nodes and
uses low-complexity operations to estimate the location of
unknown nodes. is study also compares the performance
of the proposed schemewith theDV-Hop [1]method to show
its superiority.

e rest of this paper is organized as follows. Section
2 reviews related research on WSN localization algorithms.
Section 3 presents the communication protocol used to
divide the deployed region into zones and the preliminary
localization method. Section 4 introduces the more accurate
enhanced method to estimate the positions of the unknown
sensor nodes. Section 5 provides a simulation of the proposed
localization scheme and a comparison of its performance
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with the DV-Hop method. Finally, Section 6 offers a conclu-
sion.

2. RelatedWork

Research interest in WSN localization has increased greatly
in recent years. Traditional WSN localization technologies
can be divided into two categories: range-based methods and
range-free methods [2]. A range-based method positions the
sensor nodes using additional devices, such as timers, signal
strength receivers, directional antennas, and antenna arrays.
In contrast, a range-free method requires no additional
hardware and instead uses the properties of the wireless
sensor network and the appropriate algorithms to obtain
location information.

Range-based localization relies on the availability of
point-to-point distance or angle information. e dis-
tance/angle information can be obtained by measuring time
of arrival (ToA) [3], time difference of arrival (TDoA) [4],
received signal strength indicator (RSSI) [4], and angle of
arrival (AoA) [5]. Range-based localization may produce
�ne-grained resolution but places strict requirements on
signal measurements and time synchronization.

Range-free localization requires no distance or angle
measurements among nodes. is technique can be fur-
ther divided into two categories: local techniques and hop-
counting techniques [2].

In the local techniques, a node with unknown coor-
dinates collects the position information of its neighbor
beacon nodes with known coordinates to estimate its own
coordinate. In the simple centroid algorithm proposed in
[6], each sensor estimates its position as the centroid of
the locations of the neighboring beacons. A density-adaptive
algorithm can reduce the number of computation errors if
beacons are well positioned [7]. However, this is unfeasible
for ad hoc deployment. Later, He et al. proposed the APIT
method [8], which divides the environment into triangular
regions between beacon nodes. Each sensor determines its
relative position based on the triangles and estimates its own
location as the center of gravity of the intersection of all
the triangles that the node may reside in. However, APIT
requires long-range beacon stations and expensive high-
power transmitters.

A hop-counting technique, called DV-Hop method, was
proposed by Niculescu and Nath in [1]. In the DV-Hop
method, each unknown node asks its neighboring beacon
nodes to provide their estimated hop sizes and then attempts
to obtain the smallest hop count to its neighbor beacon
nodes using the designated routing protocol. Each unknown
node estimates the distances to its neighbor beacon nodes
by the hop counts to them and the hop size of the closest
beacon node. e unknown nodes then apply trilateration to
estimate their position based on the estimated distances to
three suitable neighbor beacon nodes.

ere are many followup studies of the DV-Hop method.
e authors of [9] proposed the DV-Loc method, which
shows how Voronoi diagrams can be used efficiently to scale
a DV-Hop algorithm while maintaining or reducing the DV-
Hop localization error. e main concept of the DV-Loc

A B

C

Sink X Sink Y

F 1: A scenario of 300 sensors with a communication range of
20m, with the monitored region (200 × 200m2) divided into zones.
e colored irregular arcs are added to facilitate visualization of the
zones.

Sink

CR

F 2: A scenario of maximum distance to the sink: sensor
nodes are located at the edge of the communication range. us,
the maximum distance of sensors from the sink with hop count 𝑛𝑛
is 𝑛𝑛 𝑛 CR, where CR is the communication range.

method is to use a Voronoi diagram to limit the scope of
the �ooding in a DV-Hop localization system. DV-Loc is a
scalable solution that uses the Voronoi cell of a node to limit
the region that is �ooded when computing its position to
reduce its localization error.

e authors of [10] proposed a range-free localization
algorithm that uses expected hop progress to predict the
location of WSN sensors. e algorithm is based on an
analysis of hop progress in a WSN with randomly deployed
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F 3: A scenario ofminimumdistance to the sink: sensor nodes
are two in a group located close to the edge of the communication
range.

No. 5 sensor

No. 4 sensor

No. 1 sensor

No. 2 sensor No. 3 sensor

F 4: A scenario aer broadcasting step. Sensor No. 5 is located
at the southwest corner.

sensors and arbitrary node density. By deriving the expected
hop progress from a network model for WSNs regarding
network parameters, this system can compute the distance
between any pair of sensors.

Traditionally, hop counts between any pair of nodes
can only take an integer value, regardless of the relative
positions of nodes in the hop.e authors of [11] argued that
partitioning a node’s one-hop neighbor set into three disjoint
subsets according to their hop-count values can transform the
integer hop count into a real number. e transformed real
number hop count is then a more accurate representation of

a node’s relative position than an integer-valued hop count. In
that paper, the author presented an algorithm termed HCQ
(hop-count quantization) to perform this transformation.

Bilateration [12, 13], which is derived from multilatera-
tion, is based on the distance differences from an unknown
node to two beacons at known locations. Unlike multilat-
eration, which usually uses an iterative method to estimate
the location of an unknown node, bilateration uses a basic
geometry property, the intersection of two circles, to calculate
the location of an unknown node. e computation of
bilateration is much simpler than that of multilateration,
which usually applies more expensive computation such as
the least squares method. e disadvantage of bilateration is
that the error rate is sensitive to the distance estimation to the
beacon nodes.

In [12], Cota-Ruiz et al. presented a distributed and
formula-based bilateration algorithm that can be used to
provide an initial set of locations. In their scheme, each node
uses distance estimates to beacons to solve a set of circle-
circle intersection (CCI) problems, solved through a purely
geometric formulation. e resulting CCIs are processed to
pick those that cluster together, and the average is then used
to estimate an initial node location. A similar bilateration
algorithm was also proposed by the authors in [13] indepen-
dently.

3. Zone-Based Localization Scheme

As mentioned in Section 1, some WSNs encounter difficulty
in planning the location of sensors in advance. However,
most routing algorithms require the information of sensor
location. is section presents the proposed localization
scheme to estimate the location of sensors.e following sec-
tion extends the scheme to obtain amore accurate estimation
of sensor locations.

e basic communication protocol used in the proposed
scheme is �ooding, which is a simple and effective mecha-
nism for sending messages between sinks and sensor nodes.
Flooding guarantees that sinks can reach any target node as
long as the network is connective. In this scheme, the �ooding
mechanism serves as the initial routing step to acquire the
minimum hop count to each sink for each sensor.

3.1. Localization Scheme. In the proposed localization
scheme, called the zone-based localization method (ZBLM),
two sink nodes are installed at the lower-le corner (Sink X)
and the lower-right corner (Sink Y) of a square monitored
region (Figure 1). is scheme assumes that (1) all the
sensors are homogeneous, (2) they are uniformly deployed,
and (3) the network is connective.

e ZBLM consists of three major steps: compute min-
imum hop counts, divide the monitored region into zones,
and assign the coordinate of sensors for each zone.

Step 1 (Compute Minimum Hop Counts). First, we allow
both Sink X and Sink Y to broadcast a hop-counting packet
(HC packet in short) to their neighbor sensors. e HC
packet contains two �elds: (1)Min_hc (minimum hop count
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to the source node), initialized to 0 and (2) the source node
ID (0 for Sink X and 1 for Sink Y).

Each sensor records two current minimum hop count
values (say,𝑋𝑋hop and𝑌𝑌hop) to SinkX and SinkY, respectively,
which are both set to positive in�nity initially. Once a sensor
receives anHCpacket, it checks the hop count �eldMin_hc in
theHCpacket. IfMin_hc+1 is smaller than its corresponding
current minimum hop count value 𝑋𝑋hop (or 𝑌𝑌hop), then it
increases Min_hc by one before forwarding the packet to its
neighbors and updates its 𝑋𝑋hop (or 𝑌𝑌hop) to the newMin_hc
value accordingly. Otherwise, the sensor discards the current
incoming HC packet.

Step 2 (Divide the Monitored Region into Zones). Aer
�nishing the �ooding of HC packets by Step 1, each sensor
should have two minimum hop-count values (𝑋𝑋hop, 𝑌𝑌hop)
for Sink X and Sink Y, respectively. Sensors with the same
(𝑋𝑋hop,𝑌𝑌hop) pair are in the same zone (note that the following
subsection claims that the zone tends to be a geometry
quadrilateral), and it is denoted as zone (𝑋𝑋hop, 𝑌𝑌hop). Figure
1 shows a scenario of dividing the monitored region into
zones, in which the color irregular arcs are added for ease
of visualization. In this �gure, each node has its own (𝑋𝑋hop,
𝑌𝑌hop) pair. For example, 𝑋𝑋hop of Node A is 3 and 𝑋𝑋hop is 8.
erefore, Node A is in zone (3, 8). Similarly, Node B is in
zone (6, 5), and Node C is in zone (5, 7).

Step 3 (Assign the Coordinate of Sensors for Each Zone).
Although we have the hop counts of each sensor and, there-
fore, know which zone a sensor belongs to, this information
is still insufficient for identifying the location of a given
sensor. As shown in Figure 1, the distance of each hop is not
necessarily the same, and thus the band width corresponding
to a hop is not necessarily equal to the communication range.
e next subsection analyzes the range of the distance to
the sinks for a given sensor node with its minimum hop
count values and gives the estimated distance to the sinks.
e current subsection assumes that we already have the
estimated distances to Sink X and Sink Y for each node.

Suppose that the coordinates of Sink X and Sink Y
are (0, 0) and (𝑤𝑤𝑤𝑤 ), respectively, where 𝑤𝑤 is the length of
the square monitored region. Denote the distances from
an unknown sensor S to Sink X and to Sink Y as 𝑑𝑑𝑥𝑥
and 𝑑𝑑𝑦𝑦, respectively. e coordinate (𝑥𝑥𝑥𝑥𝑥 ) of Sensor S is
the intersection of two circles centered at (0, 0) and (𝑤𝑤𝑤𝑤 ),
respectively. erefore, (𝑥𝑥𝑥𝑥𝑥 ) can be obtained using the
following equations:

(𝑥𝑥 𝑥 𝑥)2 + 󶀡󶀡𝑦𝑦 𝑦𝑦 󶀱󶀱2 = 𝑑𝑑2𝑥𝑥,

(𝑥𝑥 𝑥 𝑥𝑥)2 + 󶀡󶀡𝑦𝑦 𝑦𝑦 󶀱󶀱2 = 𝑑𝑑2𝑦𝑦.
(1)

us, 𝑥𝑥 𝑥𝑥𝑥𝑥 2𝑥𝑥 − 𝑑𝑑
2
𝑦𝑦 + 𝑤𝑤

2)/2𝑤𝑤 and 𝑦𝑦 𝑦 𝑦󵀆󵀆𝑑𝑑2𝑥𝑥 − 𝑥𝑥2.
Because sinks are installed at the lower le and lower

right corners of the monitored region, we can only take
the positive solution of y. erefore, the coordinate of the
unknown sensor S is

󶀪󶀪
𝑑𝑑2𝑥𝑥 − 𝑑𝑑

2
𝑦𝑦 + 𝑤𝑤

2

2𝑤𝑤
,󵀎󵀎𝑑𝑑2𝑥𝑥 − 󶀧󶀧

𝑑𝑑2𝑥𝑥 − 𝑑𝑑
2
𝑦𝑦 + 𝑤𝑤

2

2𝑤𝑤
󶀷󶀷
2

󶀺󶀺 . (2)

For (1) to produce a real solution, the sum of 𝑑𝑑𝑥𝑥 and
𝑑𝑑𝑦𝑦 (the radii of two circles) must be greater than or equal
to w (the distance between two centers). is constraint is
considered when estimating the distances 𝑑𝑑𝑥𝑥 and 𝑑𝑑𝑦𝑦.

3.2. Estimate the HopDistances between Sensors and the Sinks.
At �rst, we claim that sensors with the same (𝑋𝑋hop,𝑌𝑌hop) pair
tend to congregate in a quadrilateral.

Suppose the length of the square monitored region is
m, the communication range of each sensor is CR, and the
total number of nodes is 𝑛𝑛. e probability that a node 𝑣𝑣 is
within the communication range of another given node 𝑢𝑢
is (𝜋𝜋 𝜋 CR2)/𝑚𝑚2. Since the total number of nodes is n, the
expected number of neighbor nodes, say 𝜌𝜌, for 𝑢𝑢 is (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
CR2)/𝑚𝑚2). For example, if 𝑚𝑚 𝑚𝑚𝑚𝑚 , CR = 30, and 𝑛𝑛 𝑛𝑛𝑛𝑛 ,
then 𝜌𝜌 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌     𝜌 𝜌𝜌𝜌 2)/2002) ≅ 21. Previous
research [14] provided a more precise estimation of node
degree that considers the border effect. According to [14],
𝜌𝜌 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 𝜌𝜌2−(8/3)𝑟𝑟3 +((11/3)−𝜋𝜋𝜋𝜋𝜋4), where 𝑟𝑟𝑟𝑟  CR/𝑚𝑚𝑚.
erefore, 𝜌𝜌 𝜌𝜌 𝜌 for this case.

According to [15], message forwarding between any two
nodes through �ooding occurs along the straight-line path
with a probability greater than 0.85 if the number of neighbor
nodes is greater than or equal to 15. According to the previous
paragraph, if CR = 20, then 𝜌𝜌 is greater than 15 as long as
𝑛𝑛 𝑛 𝑛𝑛𝑛. Alternatively, if CR = 30, then 𝜌𝜌 is greater than 15 as
long as 𝑛𝑛 𝑛 𝑛𝑛𝑛. us, if both the forwarding paths from Sink
X and Sink Y progress along straight lines, then the sensors
with the same (𝑋𝑋hop,𝑌𝑌hop) pair tend to congregate and form a
quadrilateral (called a “zone” in this paper). e experiment
in this study shows that the “zone effect” still exists for the
case CR = 20 and 𝑛𝑛 𝑛𝑛𝑛𝑛  (𝜌𝜌 𝜌 𝜌) (Figure 1).

e following discussion presents two extreme cases in
which the message is forwarded along the straight line. e
hop distance between sensors is related to the communi-
cation range and the density of the sensors in the region
[14, 15]. For high density, each sensor has a certain number of
sensors within its communication range. erefore, for Sink
X (or Sink Y), it is highly possible that sensors are located at
the edge of the communication range. For the extreme case
shown in Figure 2, sensor nodes always exist at the edge of the
communication range of each hop from the sink. erefore,
assuming that the communication range is CR, themaximum
distance of a sensor with hop count 𝑛𝑛 from the sink is 𝑛𝑛𝑛CR.

e other extreme case occurs when the density of sensor
nodes in the region is low and each sensor node has few
neighbors, yet the network remains connective. As Figure
3 shows, sensor nodes are two in a group located close to
the edge of the communication range. e �rst node in
each group is within the communication range of the second
node of the previous group, but immediately beyond the
communication range of the �rst node of the previous group.
Meanwhile, the second node in each group is immediately
beyond the communication range of the second node of the
previous group.

For example, in Figure 3, Node C is within the com-
munication range of Node B but immediately beyond the
communication range of Node A. Node D is immediately
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F 5: Location errors under different communication ranges (20–60m) and node densities for ZBLM and EZBLM.
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beyond the communication range of Node B. us, the
minimumdistance of sensors with hop count 𝑛𝑛 is ⌊𝑛𝑛𝑛𝑛𝑛𝑛CR+
𝜖𝜖, where 𝜖𝜖 is the distance between the two nodes in the same
group. For example, the hop count ofNodeC is 4, the distance
to the sink is 2×CR+𝜖𝜖, the hop count of Node D is 5, and the
distance is 2× CR + 𝜖𝜖𝜖, where 𝜖𝜖𝜖 is a value larger than 𝜖𝜖. If the
two nodes of each group are very close to each other yet still
satisfy these conditions, then we can ignore the small value 𝜖𝜖
and say that theminimumdistance of sensors with hop count
𝑛𝑛 is ⌊𝑛𝑛𝑛𝑛𝑛 𝑛 CR.

is analysis indicates that if the messages are forwarded
along a straight line, the distance to the sink for any sensor
with hop count 𝑛𝑛 is between ⌊𝑛𝑛𝑛𝑛𝑛 𝑛 CR and 𝑛𝑛 𝑛 CR (𝜖𝜖 is
ignored).erefore, if a sensor S is located in zone (m, n) (i.e.,
it has minimum hop count values (m, n) to Sink X and Sink
Y), then we can use the following formula to approximate
the distances, 𝑑𝑑𝑥𝑥 and 𝑑𝑑𝑦𝑦, of sensor S to Sink X and Sink Y,
respectively,

𝑑𝑑𝑥𝑥 = 󶁄󶁄󶁄󶁄
𝑚𝑚
2
󶃔󶃔 + 󶁤󶁤󶀤󶀤𝑚𝑚 𝑚 󶃄󶃄

𝑚𝑚
2
󶃔󶃔󶀴󶀴 ∗ 𝛼𝛼1󶁴󶁴󶁴󶁴 ∗ CR,

𝑑𝑑𝑦𝑦 = 󶁄󶁄󶁄󶁄
𝑛𝑛
2
󶃔󶃔 + 󶁤󶁤󶁤󶁤𝑛𝑛 𝑛 󶃄󶃄

𝑛𝑛
2
󶃔󶃔󶃔󶃔 ∗ 𝛼𝛼2󶁴󶁴󶁴󶁴 ∗ CR,

(3)

where 𝛼𝛼1 and 𝛼𝛼2 are parameters between 0 and 1. For
simplicity, this study uses the same value of 𝛼𝛼 for both 𝛼𝛼1 and
𝛼𝛼2. To have a real solution for formula (1), it is necessary to
rule out the 𝛼𝛼 values that cause 𝑑𝑑𝑥𝑥 + 𝑑𝑑𝑦𝑦 < 𝑤𝑤. Section 5 shows
that the value of 𝛼𝛼 is related to the communication range and
the density of the sensors and identi�es the best 𝛼𝛼 value that
minimizes the location error of ZBLM for each condition in
a WSN.

4. Enhanced Zone-Based LocalizationMethod

e last section presents a localization scheme to estimate
the positions of unknown sensors and prove that the sensors
with the same hop-count pair tend to be clustered in the
same zone. Sensors in the same zone have the same estimated
coordinates. is can cause a certain amount of estimation
error, unless these sensors are located at the same place, and
the error increases as the area of each zone increases.

For convenience, this study calls the coordinate of a
sensor obtained using the ZBLM scheme the ZBLM coordi-
nate. is section proposes an adjustment algorithm, called
the enhanced zone-based localization method (EZBLM),
to reduce the estimation error. e basic concept of this
algorithm is to determine the possible location of a sensor
in the zone where it belongs and adjust the coordinate of
the given sensor by the ZBLM coordinates of its relevant
neighbor zones.

In a monitored region, each zone generally has eight
neighbor zones, except for the boundary zones, which may
have less neighbor zones (Figure 4).e following paragraphs
detail how to determine which neighbor zones are closer to a
given sensor in a zone, and how to adjust the coordinate.

Step 1. Each sensor uses half the communication range to
broadcast a message that contains its ID, its hop-count pair
to Sink X and Sink Y, and its ZBLM coordinate. (According

to our simulation, the outcome of broadcasting using a
half communication range is better than that of the full
communication range, especially for sensors in the boundary
zones.) Figure 4 shows a scenario aer the broadcasting step.
e blue sensors are within a half communication range of
Sensor No. 5, indicating that Sensor No. 5 is close to its
southwest neighbor zones.

Step 2. Each sensor that receives messages from neighbor
nodes adjusts its coordinate according to the following steps.

(a) Extract the ZBLM coordinate from each received
message, and consider the extracted coordinates
(remove the duplicates) as a set of points 𝑆𝑆. Compute
the centroid, say (𝑥𝑥𝑐𝑐, 𝑦𝑦𝑐𝑐), of the points in 𝑆𝑆 (i.e., take
the arithmetic mean of all the points).

(b) Suppose the ZBLM coordinate of the sensor to be
adjusted is (𝑥𝑥𝑢𝑢, 𝑦𝑦𝑢𝑢). e adjusted coordinate is set to
the center of the two coordinates (i.e., (𝑥𝑥𝑐𝑐+𝑥𝑥𝑢𝑢)/2, (𝑦𝑦𝑐𝑐+
𝑦𝑦𝑢𝑢)/2).

e next section provides a comparison of the error rate
of the coordinates obtained using both ZBLM and EZBLM,
showing that EZBLM signi�cantly improves the error rate of
ZBLM.

5. Performance Analysis and SimulationResults

is section �rst identi�es the values of 𝛼𝛼 by experiments and
suggests the best choice of the 𝛼𝛼 value for each condition.
We then compare two performance metrics, communication
overhead, and computation overhead, for algorithms of
the ZBLM, EZBLM, and DV-Hop. Finally, we simulate the
three methods separately and compare their localization
performance, including the location error and range error.
e location error and range error are de�ned as follows.

Location error = 󵀆󵀆󶀡󶀡𝑋𝑋real − 𝑋𝑋est󶀱󶀱
2 + 󶀡󶀡𝑌𝑌real − 𝑌𝑌est󶀱󶀱

2,

range error = location error
CR

,
(4)

where (𝑋𝑋real, 𝑌𝑌real) and (𝑋𝑋est, 𝑌𝑌est) are real coordinates
and estimated coordinates, respectively, of a given unknown
sensor. CR is the communication range.

5.1. Determine the Value of 𝛼𝛼. e term 𝛼𝛼 is a parameter used
to estimate the hop distance for each sensor to the sinks using
(3). e value of 𝛼𝛼 represents the ratio of the estimated hop
distance to the communication range and depends on the
values of the communication range and the node density.
However, as far as we know, no formula can calculate the
exact value of 𝛼𝛼. erefore, this study determines the value
of 𝛼𝛼 through experiments. e value of 𝛼𝛼 is tested from 0.05
to 1.0 in 0.05 intervals. Each value of 𝛼𝛼 is used to compute the
location error of the ZBLM for each deployment. Table 1 lists
the best 𝛼𝛼 value that generates the least location error for each
combination of communication range and node density over
500 different deployments.

As Table 1 shows,most of the best 𝛼𝛼 values lie between 0.6
and 0.75, except for the cases of low density (node number
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F 7: Continued.
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F 7: Range errors of the proposed methods (ZBLM and EZBLM) versus DV-Hop under different communication ranges.

T 1: e best 𝛼𝛼 value for different node densities and communication ranges.

Number of sensors (node density)
Communication range (meters)

300
(0.0075)

400
(0.01)

500
(0.0125)

500
(0.015)

600
(0.0175)

800
(0.02)

900
(0.0225)

1000
(0.025)

20

𝛼𝛼 Values of least
location error

0.45 0.5 0.55 0.6 0.65 0.65 0.7 0.7
30 0.6 0.65 0.7 0.7 0.7 0.7 0.75 0.75
40 0.65 0.7 0.7 0.7 0.7 0.7 0.75 0.75
50 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
60 0.65 0.65 0.65 0.7 0.7 0.7 0.7 0.7
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T 2: Performance comparison of the ZBLM, EZBLM, and DV-Hop (𝑛𝑛 is the total number of nodes).

Method Communication cost Computation cost (for each unknown node) Number of anchor nodes
ZBLM 2 �ooding operations Constant 2
EZBLM 2 �ooding operations + 𝑛𝑛 broadcast operations Constant 2
DV-Hop (1 + 20%) × 𝑛𝑛 �ooding operations A variable number of iterations for trilateration 20% × 𝑛𝑛

≤500) and low communication range (CR = 20). e best
𝛼𝛼 value increases in proportion to the node density under
the same communication range. However, under the same
node density, the best 𝛼𝛼 value does not necessarily increase as
the CR increases. is is because the proposed scheme uses
an integral hop-count value, and the multiplication effect of
the 𝛼𝛼 value at a larger CR is more signi�cant than that at a
small CR.erefore, larger 𝛼𝛼 values for a larger CRmay cause
greater location error.

5.2. Performance Analysis. is section analyzes the perfor-
mance of the proposed scheme in two respects. We �rst com-
pare two performance metrics, communication overhead,
and computation overhead, for algorithms of the ZBLM,
EZBLM, and DV-Hop. We then simulate the three methods
separately and compare their location errors and range errors.

According to the algorithm proposed in Section 3, the
ZBLM individually needs two �ooding operations from Sink
X and SinkY.e coordinate estimation simply computes the
intersection of two circles, which takes constant time and uses
basic arithmetic operations such as addition, multiplication,
and the square root.

In addition to the �ooding operations needed for the
ZBLM, the EZBLM requires one broadcasting operation for
each node to determine the position of each unknown node
in its zone. e adjustment of coordinate uses two average
operations, which takes constant time.

In the DV-Hop method (described in Section 2), each
node (both beacon nodes and unknown nodes) needs one
�ooding operation to calculate the minimum hop counts
to all other nodes and the hop size for each beacon node.
Each beacon node needs one extra �ooding to broadcast the
hop size to all the unknown nodes. erefore, this method
requires (number of all nodes + number of beacon nodes)
�ooding operations. Each unknownnode uses trilateration to
estimate its location. e trilateration needs a variable num-
ber of iterations (from two to hundreds in our experiments)
to converge to a point.

Both the ZBLM and EZBLM use only two anchor nodes.
e simulations in [1] show that the DV-Hop method
requires at least 20% of the sensors to be anchor nodes to
obtain better results. Table 2 presents a performance com-
parison of these methods.e results show that the proposed
methods outperform theDV-Hopmethod in communication
cost, computational complexity, and the number of anchor
nodes required.

5.3. Simulation Experiments. e simulation environments
in this study were established as follows. e monitored
region measured 200m × 200m. e number of sensors

ranged from 300 to 1000, and the communication ranges
are from 20 to 60m. Sensors were uniformly deployed in
the region. e 𝛼𝛼 values were chosen from Table 1. Each
simulation included 50 tests, with the mean serving as the
�nal result. All the methods (ZBLM, EZBLM, and DV-Hop)
were simulated using Matlab.

Figures 5 and 6 show the location errors and range errors
of both the ZBLM and EZBLM, respectively, for different
communication ranges and number of sensors. As expected,
under the same communication range, the location error
decreases as the sensor density increases for both the ZBLM
and EZBLM. ese simulation results show that the EZBLM
improves the ZBLM scheme signi�cantly.

For the simulation of the DV-Hop method, the rate of
anchor nodes was set to 20% because its performance drops
signi�cantly when using less than 20% of anchor nodes [1].
Figure 7 shows that both the ZBLM and EZBLM outperform
DV-Hop, except for the cases of CR = 20 and node number
less than 500, in which each nodemay have too few neighbors
and thus reduce the measurement accuracy of the proposed
scheme. Note that the proposed scheme uses only two anchor
nodes, whereas the DV-Hop method uses 20% of sensors
as anchor nodes. ese simulation results show that the
proposed methods are more accurate than the well-known
DV-Hop method.

6. Conclusions

Many studies have attempted to solve the range-free localiza-
tion problems of WSNs. Most of them demand many anchor
nodes and use the multilateration method, which requires
complex computation and a variable number of iterations
to estimate the location of sensors. is study proposes two
range-free localization methods that use only two anchor
nodes and apply the low-complexity bilateration method.
Experimental results show that the range error of the EZBLM
is less than 0.3 for all cases with a node density greater than
0.0075 (node number = 300with 200∗200 region)whenCR ≥
40. Almost all the simulation results for the proposedmethod
are better than those of the DV-Hop method, which requires
many anchor nodes and more complex computations.

is study identi�es the best 𝛼𝛼 value to estimate the hop
distance under different combinations of communication
ranges and node densities. We show that sensors with the
sameminimum hop count pairs to Sink X and Sink Y tend to
form a zone. erefore, in addition to using the preliminary
coordinate estimation method, the ZBLM, for unknown
sensors, we use the EZBLM to adjust the coordinates of
unknown sensors based on the sensor locations in the zones
to which they belong. Simulation results show that this
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ad�ustment signi�cantly improves the location estimation
performance for unknown sensors.

Although the proposed scheme uses a square monitoring
region, the same algorithm can be applied to rectangular
monitoring regions.

Acknowledgments

e authors are grateful for the support of I-Shou University
under Grant ISU100-01-06 and the Ministry of Education
under the Interdisciplinary Training Program for Talented
College Students in Science, 100-B4-01.

References

[1] D.Niculescu andB.Nath, “Ad hoc positioning system (APS),” in
IEEE Global Telecommunicatins Conference (GLOBECOM’01),
vol. 5, pp. 2926–2931, San Antonio, Tex, USA, November 2001.

[2] F. Liu, X. Cheng, D. Hua, and D. Chen, “TPSS: a time-
based positioning scheme for sensor networks with short range
beacons,” in Wireless Sensor Networks and Applications, pp.
175–193, Springer, New York, NY, USA, 2008.

[3] H. Karl and A. Willig, Protocols and Architecture for Wireless
Sensor Network, John Wiley & Sons, Hoboken, NJ, USA, 2005.

[4] A. Savvides, C. Han, and M. B. Srivastava, “Dynamic �ne-
grained localization in ad-hoc networks of sensors,” in Pro-
ceedings of the 7th Annual ACM/IEEE International Conference
on Mobile Computing and Networking (MobiCom ’01), pp.
166–179, Rome, Italy, July 2001.

[5] R. Peng and M. L. Sichitiu, “Angle of arrival localization for
wireless sensor networks,” in Proceedings of the 3rd Annual IEEE
Communications Society on Sensor and Ad hoc Communications
and Networks (SECON ’06), pp. 374–382, Reston, Va, USA,
September 2006.

[6] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low-cost
outdoor localization for very small devices,” IEEE Personal
Communications, vol. 7, no. 5, pp. 28–34, 2000.

[7] N. Bulusu, J. Heidemann, and D. Estrin, “Adaptive beacon
placement,” in Proceedings of the 21st IEEE International Con-
ference on Distributed Computing Systems (ICDCS-21’ 01), pp.
489–498, Mesa, Ariz, USA, April 2001.

[8] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T.
Abdelzaher, “Range-free localization schemes for large scale
sensor networks,” in Proceedings of the 9th Annual International
Conference on Mobile Computing and Networking (MobiCom
’03), pp. 81–95, usa, September 2003.

[9] A. Boukerche, H. Oliveira, E. Nakamura, and A. Loureiro, “DV-
Loc: a scalable localization protocol using Voronoi diagrams for
wireless sensor networks,” IEEE Wireless Communications, vol.
16, no. 2, pp. 50–55, 2009.

[10] Y. Wang, X. Wang, D. Wang, and D. P. Agrawal, “Range-free
localization using expected hop progress in wireless sensor net-
works,” IEEE Transactions on Parallel and Distributed Systems,
vol. 20, no. 10, pp. 1540–1552, 2009.

[11] D. Ma, M. J. Er, B. Wang, and H. B. Lim, “Range-free wireless
sensor networks localization based on hop-count quantization,”
Telecommunication Systems, vol. 50, no. 3, pp. 199–213, 2010.

[12] J. Cota-Ruiz, J.-G. Rosiles, E. Sifuentes, and P. Rivas-Perea, “A
low-complexity geometric bilateration method for localization
in wireless sensor networks and its comparison with least-
squares methods,” Sensors, vol. 12, no. 1, pp. 839–862, 2012.

[13] X. Li, B. Ha, Y. Shang, Y. Guo, and L. Yue, “Bilateration:
an attack-resistant localization algorithm of wireless sensor
network,” in Proceedings of the International Conference on
Embedded and Ubiquitous Computing (IFIP ’07), pp. 321–332,
Taipei, Taiwan, 2007.

[14] K. Li, “Topological characteristics of randommultihop wireless
networks,” in Proceedings of the 23rd International Conference
on Distributed Computing Systems Workshops, pp. 685–690,
Providence, RI, USA, May 2003.

[15] J. Bachrach, R. Nagpal, M. Salib, and H. Shrobe, “Experimental
results for and theoretical analysis of a self-organizing global
coordinate system for ad hoc sensor networks,” Telecommuni-
cation Systems, vol. 26, no. 2–4, pp. 213–233, 2004.



Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2013, Article ID 758749, 8 pages
http://dx.doi.org/10.1155/2013/758749

Research Article
An IndoorMobile Localization Strategy for Robot in
NLOS Environment

YanWang, Yuanwei Jing, and Zixi Jia

e School of Information Science and Engineering, Northeastern University, Shenyang 110819, China

Correspondence should be addressed to Yan Wang; ywang8510@gmail.com

Received 4 October 2012; Accepted 17 December 2012

Academic Editor: Long Cheng

Copyright © 2013 Yan Wang et al. is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

is paper deals with the problem of localization of mobile robot in indoor environment with mixed line-of-sight/nonline-of-
sight (LOS/NLOS) conditions. To reduce the NLOS errors, a prior knowledge-based correction strategy (PKCS) is proposed to
locate the robot. is strategy consists of two steps: NLOS identi�cation and mitigation. We propose an NLOS identi�cation
method by applying the statistical theory. en we correct the NLOS errors by subtracting the expected NLOS errors. Finally,
the residual weighting algorithm is employed to estimate the location of the robot. Simulation results show that the proposed
strategy signi�cantly improves the accuracy of localization in mixed LOS/NLOS indoor environment.

1. Introduction

Indoor robot has been widely applied in health care, smart
home, and emergency supporting. Location information is
very important for mobile robot [1]. Due to the fact that GPS
(Global Positioning System) does not work in indoor envi-
ronment, so the indoor localization has motivated increased
research interest. Since the Wireless Sensor Network (WSN)
can be deployed quickly and �exible, so WSN is an effective
application for indoor localization.

Recently, many indoor localization systems have been
developed based on different wireless measurements:
received signal strength (RSS) [2], time of arrival (TOA) [3],
angle of arrival (AOA) [4], and time difference of arrival
(TDOA) [5]. A mobile robot can estimate its location based
on the wireless measurements with some beacon nodes
whose locations are known prior. TDOA and AOA methods
are energy-consuming resolution and they require extra
hardware. TOA needs the high precision clock to achieve
clock synchronization. So the above three methods are not
suit for low con�gured sensor node. As an inexpensive
approach, RSS has established the mathematical model
on the basis of path loss attenuation with distance, and it
requires relatively low con�guration and energy. In this
paper, we employ RSS localization method because of
its characteristics. However, due to the complex indoor

environment where walls and other obstacles are present,
the wireless channel will always be blocked. e NLOS
environment causes the radio signal to propagate a longer
path than the true distance between the beacon nodes and
target (e.g., robot or unknown node) due to the re�ection and
diffraction. So it induces the degradation of the localization
accuracy. us, indoor localization which is robust to
the NLOS environment is required [6]. In the presence
of obstacles, the major positioning errors are from the
measurements errors and NLOS propagation errors. And
the NLOS effect leads to large localization errors if we do not
consider it in the localization method.

For the purpose of realizing robust localization in NLOS
environment, we propose a localization method using RSS
measurement. And this method consists of four steps: NLOS
identi�cation, NLOS correction, Kalman �lter, and residual
weighting algorithm.

Several previous works have been investigated the local-
ization algorithm in NLOS environment. e localization
methods in NLOS environment can be categorized as non-
parametric method and parametric method. For the non-
parametric method, Chen [7] proposes a residual weighting
algorithm to alleviate the NLOS errors in the location
estimate. is method employs the least squares on all
possible combinations of distance measurements and then
calculates the �nal position as a weighted combination of
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these intermediate estimates. e computational complexity
of this method grows exponentially with the number of
measurements. A robust multilateration algorithm [8] is
introduced in NLOS environment. is algorithm is robust
in comparison with traditional least squares multilateration.
However, the performance of this method is severely affected
by the number of NLOS measurements. Least squares sup-
port vector machine [9] classi�er is employed to distinguish
LOS/NLOS propagation and further mitigate the ranging
errors in NLOS conditions. For the parametric method, the
additive noise in the range measurement is characterized by
different noise distributions corresponding to LOS andNLOS
errors. In [10], Borras et al. propose a binary hypothesis
test method to identify the NLOS measurements. In [11],
Mazuelas et al. propose a prior NLOS measurements cor-
rection method to correct the measurements from NLOS
propagation. Most of above works focus on the UWB system.
But this system is not suit for WSN which consists hundreds
of sensor nodes in the monitoring �eld.

Since the relatively low con�guration and cost, RSS-based
localization techniques have drawn considerable research
interest [12]. An environment-adaptive method is investi-
gated [13] that is tolerant to parameter variations caused by
environmental variations. A sigma-point Kalman smoother-
(SPKS) based location and tracking algorithm is proposed
[14] for RSSI-based positioning and tracking. However, all
of the above methods only consider the LOS environment.
Fewer papers investigate the RSS-based localization method
in NLOS environment.

In this paper, we �rstly investigate the RSS-based NLOS
identi�cation method using the recorded measurements.
en the ratio of NLOS present in the record of measure-
ments and the expectation of the NLOS errors are used
to mitigate the NLOS errors. Kalman �lter is employed to
improve the estimated range. Finally, we use the residual
weighting algorithm to estimate the location of the robot.

is paper is organized as follows. In Section 2, we
introduce range estimation model. NLOS identi�cation,
NLOS mitigation, and localization method are presented in
Section 3. Some simulation results present in Section 4. e
conclusions are given in Section 5.

2. Range EstimationModel

erobot carries a sensor nodewhich is used to communicate
with the beacon nodes in the WSN. e beacon nodes emit
signal continually. e robot estimates the distance between
beacon node and the robot through received signal strength.
emost widely applied signal propagation model is the log-
normal shadowing model.e received signal strength of the
robot from𝑚𝑚th beacon node [15] is

PL𝑚𝑚 = PL0 − 10𝑛𝑛los/𝑛𝑛los log10 󶀥󶀥
𝑑𝑑𝑚𝑚
𝑑𝑑0

󶀵󶀵 + 𝑆𝑆los/𝑛𝑛los, (1)

where PL0 is the received signal strength at reference distance
of 𝑑𝑑0 meters. 𝑑𝑑0 is assumed to be 1m, and 𝑛𝑛 is the path
loss exponent. Generally line-of-sight of indoor environment
shows 𝑛𝑛 around 1.6 to 1.8, and around 4 to 6 in the presence

of obstacles. 𝑆𝑆los ∼ 𝑁𝑁𝑁𝑁𝑁 𝑁𝑁2los) is the LOS measurement
noise modeled as zero mean white Gaussian with variance
𝜎𝜎2los. 𝑆𝑆𝑛𝑛los ∼ 𝑁𝑁𝑁𝑁𝑁𝑛𝑛los, 𝜎𝜎

2
𝑛𝑛los) is the measurement noise in

NLOS environment. And 𝜎𝜎𝑛𝑛los > 𝜎𝜎los. ese parameters
could be obtained in an environment through simulation
or experiment. 𝑑𝑑𝑚𝑚 = 󵀆󵀆(𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑥2 + (𝑦𝑦𝑚𝑚 − 𝑦𝑦𝑦2 is the true
distance between the 𝑚𝑚th beacon node and the robot. (𝑥𝑥𝑚𝑚,
𝑦𝑦𝑚𝑚) is the coordinate of 𝑚𝑚th beacon node, and (𝑥𝑥𝑥𝑥𝑥 ) is the
position of the robot.

From (1), the estimated range between the 𝑚𝑚th beacon
node and the robot can be expressed as

󵰁󵰁𝑑𝑑𝑚𝑚 = 10(10𝑛𝑛los/𝑛𝑛loslog10𝑑𝑑𝑚𝑚+𝑆𝑆los/𝑛𝑛los)/10𝑛𝑛los/𝑛𝑛los

= 𝑑𝑑𝑚𝑚 ⋅ 10𝑆𝑆los/𝑛𝑛los/10𝑛𝑛los/𝑛𝑛los

= 𝑑𝑑𝑚𝑚 + 󶀢󶀢10𝑆𝑆los/𝑛𝑛los/10𝑛𝑛los/𝑛𝑛los − 1󶀲󶀲 𝑑𝑑𝑚𝑚.

(2)

We can approximately obtain that [16] 𝑁𝑁los =
(10𝑆𝑆los/10𝑛𝑛los − 1)𝑑𝑑𝑚𝑚 ∼ 𝑁𝑁𝑁𝑁𝑁 𝑁𝑁21) under LOS environment,
and 𝑁𝑁𝑛𝑛los = (10𝑆𝑆𝑛𝑛los/10𝑛𝑛𝑛𝑛los − 1)𝑑𝑑𝑚𝑚 ∼ 𝑁𝑁𝑁𝑁𝑁2, 𝜎𝜎

2
2) under NLOS

environment.
So the estimated range can be rewritten as

󵰁󵰁𝑑𝑑𝑚𝑚 = 𝑑𝑑𝑚𝑚 + 𝑁𝑁los/𝑛𝑛los. (3)

Based on this range estimation model, we investigate
NLOS identi�cation when the obstacles present and pro-
pose a prior knowledge-based correction strategy (PKCS) to
mitigate NLOS errors. e proposed method can be used
to localize the mobile robot in indoor environment. is
strategy will improve the localization accuracy.

�. ���� �denti��ation andMitigation

e propagation conditions can change from LOS to NLOS
when the robot is moving in the indoor environment. e
NLOS propagation generally leads to a positive bias in the
estimation range and causes a serious error in location
estimation. So we should �rstly identify the propagation
conditions and then to mitigate the NLOS errors.

We make the following assumptions in the study. ere
are𝑀𝑀 beacon sensors and one robot in the �eld. e beacon
nodes emit radio signal which attenuates inside the area
under observation. e intensity of a signal emitted omni-
directionally. e robot receives the radio and estimates the
distance between the beacon node and the robot according to
(3).

In this section, we propose a strategy for robot localiza-
tion inNLOS environment.We �rstly employ the polynomial
�t to smooth the measurements, and then the average
deviation between the smoothed curve and measurements
and the standard deviation of the LOS noise are used to
identify the NLOS measurements. Secondly, we estimate
the NLOS ratio in the measurements to determine which
measurements contain the NLOS errors, and then mitigate
the NLOS measurements errors through subtracting the
expectation of NLOS errors. Kalman �lter is introduced to
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improve the estimated range. Finally we use the residual
weighting (Rwgh) algorithm to estimate the location of the
robot. e �owchart of the proposed algorithm is given in
Figure 1.

3.�. NLOS ���nti��ation. In order to identify the NLOSmea-
surements, we consider the historical measurements from
each beacon node individually. Based on the measurements
of beacon node during a period of time and the standard
deviation of the LOS noise, we determine whether the mea-
surements contain the NLOS errors. We select a short period
of time 𝑡𝑡1–𝑡𝑡𝑁𝑁, 𝑁𝑁 is the number of sampled measurements
from the𝑚𝑚th beacon node, and the environment parameters
are constant in the period. e estimated distance between
the𝑚𝑚th beacon node and the robot at time 𝑡𝑡𝑖𝑖 is called 󵰁󵰁𝑑𝑑𝑚𝑚(𝑡𝑡𝑖𝑖).
e standard deviation of the measurements of 𝑚𝑚th beacon
node can be expressed as [17]

𝑆𝑆 𝑆 󵀎󵀎 1
𝑁𝑁

𝑁𝑁
󵠈󵠈
𝑖𝑖𝑖𝑖
󶁢󶁢󵰁󵰁𝑑𝑑𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱 − 𝐸𝐸 󶀢󶀢󵰁󵰁𝑑𝑑𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱󶀱󶀱󶁲󶁲

2
. (4)

We can determine that the data have affected by NLOS
if the standard deviation is much larger than the standard
deviation of the LOS noise. But the value of 𝐸𝐸𝐸󵰁󵰁𝑑𝑑𝑚𝑚(𝑡𝑡𝑖𝑖)) is
unknown, so we will employ a smooth version of the mea-
surement records which we have stored to estimate the value
of 𝐸𝐸𝐸󵰁󵰁𝑑𝑑𝑚𝑚(𝑡𝑡𝑖𝑖)). For this purpose, we will use a smooth cubic
regression of the measurements.e polynomial �t is used to
estimate the deviation of the measurements. 𝑝𝑝𝑚𝑚 is the third-
order polynomial that best �ts the available measurements
minimi�ing its curvature. e third-order polynomial ful�lls
the objective of estimating the value of 𝐸𝐸𝐸󵰁󵰁𝑑𝑑𝑚𝑚(𝑡𝑡𝑖𝑖)) with a high
accuracy.

At𝑚𝑚th beacon node, the measurements are smoothed as

𝑝𝑝𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱 =
3
󵠈󵠈
𝑘𝑘𝑘𝑘
𝑏𝑏𝑚𝑚 (𝑘𝑘) 𝑡𝑡

𝑘𝑘
𝑖𝑖 . (5)

So the standard deviation of the measurements can be
rewritten as

𝑆𝑆 𝑆 󵀎󵀎 1
𝑁𝑁

𝑁𝑁
󵠈󵠈
𝑖𝑖𝑖𝑖
󶁢󶁢󵰁󵰁𝑑𝑑𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱 − 𝑝𝑝𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱󶀱󶀱

2
. (6)

Because the NLOS errors are uncorrelated in time, so
the measured data will have a signi�cantly larger average
deviation from the smoothed curve when the NLOS errors
present. e algorithm requires comparison of the deviation
𝑆𝑆 and the standard deviation of the LOS noise. If 𝑆𝑆 𝑆 𝑆𝑆1,
then the measurements contain the NLOS errors. Otherwise
the propagation path of the measurements is LOS.

3.2. NLOS Mitigation. When the NLOS is present, the mea-
sured data will deviate from the smoothed curve largely. In
order to mitigate the NLOS errors, we must know which
measurements are affected by NLOS. We �rstly estimate
the percentage of measurements in our records which are

corrupted by NLOS errors during the sample period. en
we determine which measurements are corrupted by NLOS
errors. Finally, an NLOS mitigation algorithm is proposed in
this subsection.

If the measurements are affected by NLOS,

󶀢󶀢󵰁󵰁𝑑𝑑𝑚𝑚𝑚𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱 − 𝑝𝑝𝑚𝑚𝑚𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱󶀱󶀱 ∼ 𝑁𝑁󶀢󶀢𝜇𝜇𝐿𝐿 (𝐾𝐾) ,𝜎𝜎
2
𝐿𝐿 (𝐾𝐾)󶀲󶀲 ,

󶀢󶀢󵰁󵰁𝑑𝑑𝑚𝑚𝑚𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱 − 𝑝𝑝𝑚𝑚𝑚𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱󶀱󶀱 ∼ 𝑁𝑁󶀢󶀢𝜇𝜇𝑁𝑁 (𝐾𝐾) ,𝜎𝜎 2𝑁𝑁 (𝐾𝐾)󶀲󶀲 ,
(7)

where 𝐿𝐿 and 𝑁𝑁 represent the measurements taken at time
𝑡𝑡𝑖𝑖 coming from LOS and NLOS, respectively. 𝐾𝐾 is the
percentage of measurements corrupted by NLOS errors. So

𝑁𝑁𝑁𝑁2 =
𝑁𝑁
󵠈󵠈
𝑖𝑖𝑖𝑖
󶁢󶁢󵰁󵰁𝑑𝑑𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱 − 𝑝𝑝𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱󶀱󶀱

2

= 󵠈󵠈
los
󶁢󶁢󵰁󵰁𝑑𝑑𝑚𝑚𝑚𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱 − 𝑝𝑝𝑚𝑚𝑚𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱󶁲󶁲

2

+ 󵠈󵠈
𝑛𝑛los

󶁢󶁢󵰁󵰁𝑑𝑑𝑚𝑚𝑚𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱 − 𝑝𝑝𝑚𝑚𝑚𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱󶀱󶀱
2

=𝜎𝜎 2𝐿𝐿 (𝐾𝐾)󵠈󵠈
los
󶁧󶁧
󵰁󵰁𝑑𝑑𝑚𝑚𝑚𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱 − 𝑝𝑝𝑚𝑚𝑚𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱

𝜎𝜎𝐿𝐿 (𝐾𝐾)
󶁷󶁷
2

+ 𝜎𝜎2𝑁𝑁 (𝐾𝐾) 󵠈󵠈
𝑛𝑛los

󶁧󶁧
󵰁󵰁𝑑𝑑𝑚𝑚𝑚𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱 − 𝑝𝑝𝑚𝑚𝑚𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱

𝜎𝜎𝑁𝑁 (𝐾𝐾)
󶁷󶁷
2

=𝜎𝜎 2𝐿𝐿 (𝐾𝐾)𝑋𝑋 𝑋𝑋𝑋 2𝑁𝑁 (𝐾𝐾)𝑌𝑌𝑌

(8)

Since

󵰁󵰁𝑑𝑑𝑚𝑚𝑚𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱 − 𝑝𝑝𝑚𝑚𝑚𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱
𝜎𝜎𝐿𝐿 (𝐾𝐾)

∼ 𝑁𝑁 󶀡󶀡𝜇𝜇𝐿𝐿 (𝐾𝐾) , 1󶀱󶀱 ,

󵰁󵰁𝑑𝑑𝑚𝑚𝑚𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱 − 𝑝𝑝𝑚𝑚𝑚𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱
𝜎𝜎𝑁𝑁 (𝐾𝐾)

∼ 𝑁𝑁 󶀡󶀡𝜇𝜇𝑁𝑁 (𝐾𝐾) , 1󶀱󶀱 .

(9)

From (9), it can be seen that the 𝑋𝑋 and 𝑌𝑌 follow
noncentral chi-square distribution: 𝑋𝑋 𝑋 𝑋𝑋NC(1−𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾1(𝐾𝐾𝐾

, 𝑌𝑌 𝑌

𝜒𝜒NC𝐾𝐾𝐾𝐾𝐾𝐾𝐾2(𝐾𝐾𝐾
, where 𝜆𝜆1 = 󵀆󵀆∑los 𝜇𝜇2𝐿𝐿(𝐾𝐾𝐾, 𝜆𝜆2 = 󵀆󵀆∑𝑛𝑛los 𝜇𝜇2𝑁𝑁(𝐾𝐾𝐾, NC

means noncentral.
erefore the expectation of the deviation can be pre-

sented as

𝐸𝐸 󶀢󶀢𝑆𝑆2󶀲󶀲 =𝜎𝜎 2𝐿𝐿 (𝐾𝐾) 󶁦󶁦󶁦1 − 𝐾𝐾) + 𝜇𝜇𝐿𝐿 (𝐾𝐾)󵀊󵀊
1 − 𝐾𝐾
𝑁𝑁

󶁶󶁶

+ 𝜎𝜎2𝑁𝑁 (𝐾𝐾) 󶁦󶁦𝐾𝐾 𝐾𝐾𝐾 𝑁𝑁 (𝐾𝐾)󵀊󵀊
𝐾𝐾
𝑁𝑁
󶁶󶁶 .

(10)

When the number of sample 𝑁𝑁 is large, (10) can be
rewritten as:

𝐸𝐸 󶀢󶀢𝑆𝑆2󶀲󶀲 = (1 − 𝐾𝐾) 𝜎𝜎2𝐿𝐿 (𝐾𝐾) + 𝐾𝐾𝐾𝐾
2
𝑁𝑁 (𝐾𝐾) . (11)
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F 1: e architecture of the proposed algorithm frame.

e variance of 𝑆𝑆2 is given by

Var 󶀢󶀢𝑆𝑆2󶀲󶀲 =
𝜎𝜎4𝐿𝐿 (𝐾𝐾)Var (𝑋𝑋) + 𝜎𝜎

4
𝑁𝑁 (𝐾𝐾)Var (𝑌𝑌)

𝑁𝑁2 , (12)

where Var(𝑋𝑋𝑋𝑋𝑋𝑋  𝑋 𝑋 𝑋𝑋𝑋𝑋𝑋𝑋𝑋  𝑋𝑋𝐿𝐿(𝐾𝐾𝐾󵀄󵀄(1−  𝐾𝐾𝐾𝐾𝐾 and
Var(𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌    𝑁𝑁(𝐾𝐾𝐾√𝐾𝐾𝐾𝐾.

When𝑁𝑁 is relatively large, variance of 𝑆𝑆2 is very small in
(12). So we can assume that 𝑆𝑆2 ≈ 𝐸𝐸𝐸𝐸𝐸2). We can obtain 𝑆𝑆2 as

𝑆𝑆2 ≈ (1−  𝐾𝐾) 𝜎𝜎2𝐿𝐿 (𝐾𝐾) + 𝐾𝐾𝐾𝐾
2
𝑁𝑁 (𝐾𝐾) . (13)

Assume that 𝜎𝜎𝐿𝐿(𝐾𝐾𝐾𝐾𝐾𝐾  1, 𝜎𝜎𝑁𝑁(𝐾𝐾𝐾𝐾𝐾𝐾  2. 𝜎𝜎2 is much larger
than 𝜎𝜎1.

e percentage of measurements corrupted by NLOS
errors is given by

𝐾𝐾 𝐾
𝑆𝑆2 − 𝜎𝜎21
𝜎𝜎22 − 𝜎𝜎

2
1
. (14)

en we estimate which measurements are corrupted by
NLOS errors aer the percentage of measurements which
have NLOS errors is obtained.

As we know, 𝑃𝑃𝑃𝑃𝑃los > (3/2)𝜎𝜎1} = 0.0668. It means
that the probability of LOS errors which larger than one and
half its standard deviation is very low. So the large errors are
mainly from theNLOS environment. Andwe assume that𝑝𝑝 𝑝
𝑃𝑃𝑃𝑃𝑃𝑛𝑛los > (3/2)𝜎𝜎1}, so the number of NLOS measurements
is pNK. We sort the standard deviation of the measurements
𝑆𝑆 from large to small. e largest pNK measurements may
contain the NLOS errors. We calculate the mean of these
standard deviations of the pNK measurements, and it can be
expressed as 𝑀𝑀NLOS. Since the NLOS errors are the positive
bias. We correct the pNK measurements which contain the
NLOS by substracting the expected NLOS errors𝑀𝑀NLOS.e
corrected range can be expressed as

󵰁󵰁𝑑𝑑
′
𝑚𝑚 󶀡󶀡𝑞𝑞󶀱󶀱 = 󵰁󵰁𝑑𝑑𝑚𝑚 󶀡󶀡𝑞𝑞󶀱󶀱 −𝑀𝑀NLOS, 𝑞𝑞 𝑞𝑞𝑞 𝑞 𝑞 pNK. (15)

3.3. Kalman Filter. e KF is one of the popular �ltering
methods developed and it, as well as its descendants, has
been the dominate �lter type for the past 4� years. �ost
localization systems use Kalman �lter for state estimation.
Kalman �lter produces optimal estimates whenmeasurement
noise is Gaussian and stationary. It can be executed within a
computer and iteratively without any extensive modi�cation
or special hardware. We perform the Kalman �lter for
the measurements in LOS and the corrected measurements
in NLOS. e state equation of 𝑚𝑚th beacon node under
LOS/NLOS environment can be expressed as follows:

𝑋𝑋𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖󶀱󶀱 = 𝐹𝐹 (Δ𝑡𝑡)𝑋𝑋𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱 + 𝐶𝐶𝐶𝐶𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖󶀱󶀱 , 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
(16)

where 𝑋𝑋𝑚𝑚(𝑡𝑡𝑖𝑖) and 𝑋𝑋𝑚𝑚(𝑡𝑡𝑖𝑖𝑖𝑖) are the state vectors at time
𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑖𝑖𝑖𝑖, respectively. Let the state vector be 𝑋𝑋𝑚𝑚(𝑡𝑡𝑖𝑖) =
[𝑑𝑑𝑚𝑚(𝑡𝑡𝑖𝑖) 𝑑̇𝑑𝑚𝑚(𝑡𝑡𝑖𝑖)]

𝑇𝑇, 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚  , where 𝑇𝑇 denotes the trans-
pose operator, and 𝑑𝑑𝑚𝑚(𝑡𝑡𝑖𝑖) represents the distance between the
𝑚𝑚th beacon node and the robot. 𝑑̇𝑑𝑚𝑚(𝑡𝑡𝑖𝑖) denotes the velocity of
the robot, where 𝑤𝑤𝑚𝑚(𝑡𝑡𝑖𝑖) is the process noise and follows zero
mean independently and identically distributed Gaussian
with variance 𝜎𝜎2𝑚𝑚

𝐹𝐹 (Δ𝑡𝑡) = 󶁥󶁥1 Δ𝑡𝑡
0 1 󶁵󶁵 , 𝐶𝐶 𝐶 󶀄󶀄

󶀜󶀜

Δ𝑡𝑡2

2
Δ𝑡𝑡

󶀅󶀅

󶀝󶀝
,

where Δ𝑡𝑡 𝑡𝑡  is the sample period.

(17)

e measurement equation of sensor 𝑚𝑚 under LOS/
NLOS environment can be expressed as follows:

𝑍𝑍𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖󶀱󶀱 = 󵰁󵰁𝑑𝑑𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖󶀱󶀱 = 𝑑𝑑𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖󶀱󶀱 + 𝑁𝑁los, 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
(18)

where 󵰁󵰁𝑑𝑑𝑚𝑚 is the corrected range according to (15) in NLOS
or the measurements in LOS.
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We can obtain the predicted state and prediction covari-
ance as follows:

󵰂󵰂𝑋𝑋𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖󶀱󶀱 = 𝐹𝐹 (Δ𝑡𝑡) 󵰂󵰂𝑋𝑋𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖󶀱󶀱 ,

𝑃𝑃𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖󶀱󶀱 = 𝐹𝐹 (Δ𝑡𝑡) 𝑃𝑃𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖󶀱󶀱 𝐹𝐹
𝑇𝑇 (Δ𝑡𝑡) + 𝜎𝜎2𝑚𝑚𝐶𝐶𝐶𝐶

𝑇𝑇,

𝛾𝛾𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖󶀱󶀱 = 𝑍𝑍𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖󶀱󶀱 − 󵰂󵰂𝑍𝑍𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖󶀱󶀱 ,

󵰂󵰂𝑍𝑍𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖󶀱󶀱 = 𝐺𝐺󵰂󵰂𝑋𝑋𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖󶀱󶀱 ,

(19)

where 󵰂󵰂𝑋𝑋𝑚𝑚 represents the estimate of state vector 𝑋𝑋𝑚𝑚,
󵰂󵰂𝑋𝑋𝑚𝑚(𝑡𝑡𝑖𝑖𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖) is the predicted state estimate of state vector,
󵰂󵰂𝑋𝑋𝑚𝑚(𝑡𝑡𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖) is the state estimate at the time 𝑡𝑡𝑖𝑖, 𝑃𝑃𝑚𝑚(𝑡𝑡𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖)
and 𝑃𝑃𝑚𝑚(𝑡𝑡𝑖𝑖𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖) are the estimate and predicted covariance
at the time 𝑡𝑡𝑖𝑖, respectively, and 󵰂󵰂𝑍𝑍𝑚𝑚(𝑡𝑡𝑖𝑖𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖) is the priori state
estimate of measurement 𝑍𝑍𝑍𝑍𝑍𝑖𝑖𝑖𝑖).

𝐺𝐺 𝐺 𝐺𝐺 𝐺𝐺, where 𝐺𝐺 assigns different value according to
different measurement mechanisms. Consider

𝑆𝑆𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖󶀱󶀱 = 𝐺𝐺𝐺𝐺𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖󶀱󶀱 𝐺𝐺
𝑇𝑇 + 𝑄𝑄𝑚𝑚, (20)

where𝑄𝑄𝑚𝑚 is the covariancematrix ofmeasurement error.e
Kalman gain is as follows:

𝐾𝐾𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖󶀱󶀱 = 𝑃𝑃𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖󶀱󶀱 𝐺𝐺
𝑇𝑇𝑆𝑆−1𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖󶀱󶀱 . (21)

en we can obtain the updated state estimate and
updated estimate covariance as follows:

󵰂󵰂𝑋𝑋𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖𝑖𝑖󶀱󶀱 = 󵰂󵰂𝑋𝑋𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖󶀱󶀱 + 𝐾𝐾𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖󶀱󶀱 𝛾𝛾𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖󶀱󶀱 ,

𝑃𝑃𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖𝑖𝑖󶀱󶀱 = 𝑃𝑃𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖󶀱󶀱 − 𝐾𝐾𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖󶀱󶀱 𝐺𝐺𝐺𝐺𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖󶀱󶀱 .
(22)

e ranging estimation in Kalman �lter is expressed as:

󵰑󵰑𝑑𝑑𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖󶀱󶀱 = 𝐷𝐷󵰂󵰂𝑋𝑋𝑚𝑚 󶀡󶀡𝑡𝑡𝑖𝑖𝑖𝑖 ∣ 𝑡𝑡𝑖𝑖𝑖𝑖󶀱󶀱 , 𝐷𝐷 𝐷 [1, 0] . (23)

3.4. Location Estimation. e outputs of Kalman �lter are
the estimated distances between the robot and beacon nodes.
According to the estimated distances, we can locate the robot
in the �eld. In this section, we introduce residual weighted
localization method to estimate the location of the robot.

e Conventional Residual Weighting algorithm can be
described as follows [7].

(a) Make initialization with 𝑛𝑛 𝑛 𝑛𝑛, (𝑀𝑀 𝑀 𝑀𝑀. 𝑀𝑀 is
the number of sensor nodes, the beacon nodes form
𝑍𝑍 𝑍 𝑍𝑀𝑀

𝑖𝑖𝑖𝑖 𝐶𝐶
𝑖𝑖
𝑀𝑀 range measurement combinations.

Each combination is represented by a beacon node
index set {𝑆𝑆𝑘𝑘 ∣ 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘  𝑘 𝑘𝑘𝑘𝑘.

(b) For each beacon node index set, we employ the max-
imum likelihood method to estimate the location of
the robot which can be represented as 󵰂󵰂𝑋𝑋𝑘𝑘 = [󵰁󵰁𝑥𝑥𝑘𝑘, 󵰁󵰁𝑦𝑦𝑘𝑘].
en we compute the average of Res (residual) as
follows:

Res 󶀢󶀢󵰂󵰂𝑋𝑋𝑘𝑘, 𝑆𝑆𝑘𝑘󶀲󶀲 =
Res 󶀢󶀢󵰂󵰂𝑋𝑋𝑘𝑘, 𝑆𝑆𝑘𝑘󶀲󶀲
size 󶀡󶀡𝑆𝑆𝑘𝑘󶀱󶀱

, (24)

T 1: Default parameter values.

Parameters Default values
Number of sensor nodes (𝑀𝑀) 6
Mean of the LOS noise (𝜇𝜇𝐿𝐿) 0
Mean of the NLOS noise (𝜇𝜇𝑁𝑁) 3
Standard variance of LOS noise (𝜎𝜎𝐿𝐿) 1
Standard variance of NLOS noise (𝜎𝜎𝑁𝑁) 5

where Res(󵰂󵰂𝑋𝑋𝑘𝑘, 𝑆𝑆𝑘𝑘) = ∑𝑗𝑗𝑗𝑗𝑗𝑘𝑘(
󵰁󵰁𝑑𝑑
′
𝑗𝑗−󵀆󵀆(𝑥𝑥𝑗𝑗−󵰁󵰁𝑥𝑥𝑘𝑘)

2+(𝑦𝑦𝑗𝑗−󵰁󵰁𝑦𝑦𝑘𝑘)
2)
2

and (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗) are the coordinate of 𝑗𝑗th beacon node.

(c) Find the �nal estimated location of the robot as
the weighted linear combination of the intermediate
estimations from step (b).eweight is inversely pro-
portional to Res of the estimation.Mathematically, we
can get the estimated location of the robot as follows:

󵰂󵰂𝑋𝑋 𝑋
∑𝑍𝑍
𝑘𝑘𝑘𝑘

󵰂󵰂𝑋𝑋𝑘𝑘󶀢󶀢Res 󶀢󶀢󵰂󵰂𝑋𝑋𝑘𝑘, 𝑆𝑆𝑘𝑘󶀲󶀲󶀲󶀲
−1

∑𝑍𝑍
𝑘𝑘𝑘𝑘 󶀢󶀢Res 󶀢󶀢󵰂󵰂𝑋𝑋𝑘𝑘, 𝑆𝑆𝑘𝑘󶀲󶀲󶀲󶀲

−1 . (25)

4. Performance Evaluation and Analysis

In this section, we evaluate the performance of the NLOS
localization method described in the previous sections
through simulations. Table 1 presents the default parameter
values in the experiments. We consider a 200m × 160m area
with six beacon nodes, and the robotmoves in the �eld.ere
are two obstacles in the �eld. In each simulation case, 2000
Monte Carlo runs are performed with the same parameters.
e performance of the proposed algorithm is measured by
average localization error as

error = 1
𝑁𝑁𝑡𝑡

𝑁𝑁𝑡𝑡

󵠈󵠈
𝑖𝑖𝑖𝑖

󵀆󵀆󶀡󶀡󵰁󵰁𝑥𝑥𝑖𝑖 − 𝑥𝑥󶀱󶀱
2 + 󶀡󶀡 󵰁󵰁𝑦𝑦𝑖𝑖 − 𝑦𝑦󶀱󶀱

2, (26)

where 𝑁𝑁𝑡𝑡 = 2000, (𝑥𝑥𝑥𝑥𝑥𝑥  is the true location of the robot.
(󵰁󵰁𝑥𝑥𝑖𝑖, 󵰁󵰁𝑦𝑦𝑖𝑖) is the estimated location of the robot at 𝑖𝑖th Monte
Carlo trial.

In this section, we compare the proposed algorithms
(PKCS-ML and PKCS-Rwgh) with the naïve ML and Rwgh
algorithms. All of the four algorithms employ the Kalman
�lter to improve the estimated range.

In Figure 2, we compare the localization results between
the Rwgh and PKCS-Rwgh algorithm. Figure 2(a) shows the
sight state with respect to all the beacon nodes in sample
points. We can see that the sight states vary with time.
A mobile localization is shown in Figure 2(b). is �gure
compares the true trajectory between the estimated one
obtained by Rwgh and another obtained by our method. e
localization errors can be appreciated by looking at the lines
that connect the true and the estimated positions. In Figure
2(c), we can obtain the detailed localization errors in each
sample point. It can be observed that the proposed method
has better performance in comparison with Rwgh in most of
the sample points.
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F 2: (a) e sight state in each sample point, (b) example of the mobile localization, (c) the localization errors in each sample point.

In Figure 3, the number of beacon nodes is varied from 4
to 8.eMLE and Rwgh methods with the prior knowledge-
based correction strategy are called PKCS-MLE and PKCS-
Rwgh, respectively.e results show that the effect of increas-
ing the number of beacon nodes is higher usingMLEmethod
in comparison with the Rwgh method. However, the PKCS-
MLE and PKCS-Rwgh methods have higher localization
accuracy compared with MLE and Rwgh methods.

Figure 4 shows the average localization error versus the
standard variance of LOS noise. e PKCS-MLE and PKCS-
Rwgh methods demonstrate similar robustness against the
standard variance of LOS noise.e localization errors of the
MLE are always larger than 4m and increase signi�cantly
as the standard variance of LOS noise increases. Due to

the PKCS, the performance of PKCS-MLE and PKCS-Rwgh
methods outperforms the MLE and Rwgh methods.

To investigate the robustness of the proposed method, we
evaluate it under different standard variances of NLOS noise.
In Figure 5, it is obvious that the average localization error
increases with the increment of standard variance of NLOS
noise. We can see that the localization accuracy of PKCS-
MLE is improved signi�cantly in comparison withMLE. �nd
the PKCS-Rwgh has 6.87% higher localization accuracy than
Rwgh.

In Figure 6, we show the average localization error
versus mean of NLOS noise. e accuracy of all methods
is decreased with the increase of mean of the NLOS noise.
We can see that the proposed method can signi�cantly
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F 3: Average localization error versus the number of beacon
nodes.
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F 4: Average localization error versus the standard variance of
LOS noise.

improve the location estimation accuracy by subtracting the
expectation of NLOS errors. And the average localization
error of MLE and Rwgh methods are worse without prior
knowledge-based correction strategy.

5. Conclusion

An NLOS correction approach has been proposed to locate
the position of mobile robot in order to alleviate the NLOS
errors which arise in clustering environment. We consider
the prior knowledge of the errors to identify the NLOS and
then remove the NLOS errors by subtracting the expectation
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F 5: Average localization error versus the standard variance of
NLOS noise.
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of NLOS errors. is method could mitigate the NLOS
propagation effect. Simulation results show that the PKCS
has much better performance than those methods without
the correction method and signi�cantly improves the local-
ization accuracy.
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Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into
target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then
we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization
methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we
present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in
energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy
consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the
evaluation criteria for localization in wireless sensor network.

1. Introduction

Due to the availability of such low energy cost sensors,
microprocessor, and radio frequency circuitry for informa-
tion transmission, there is a wide and rapid diffusion of
wireless sensor network (WSN). Wireless sensor networks
that consist of thousands of low-cost sensor nodes have
been used in many promising applications such as health
surveillance, battle field surveillance, and environmental
monitoring. Localization is one of the most important
subjects because the location information is typically useful
for coverage, deployment, routing, location service, target
tracking, and rescue [1]. Hence, location estimation is
a significant technical challenge for the researchers. And
localization is one of the key techniques in WSN.

The sensor nodes are randomly deployed by the vehicle
robots or aircrafts. While the Global Positioning System
(GPS) is one of the most popular positioning technologies
which is widely accessible, the weakness of high cost and
energy consuming makes it different to install in every node.
In order to reduce the energy consumption and cost, only
a few of nodes which are called beacon nodes contain the

GPS modules. The rest of nodes could obtain their locations
through localization method. The process of estimating the
unknown node position within the network is referred to
as node self-localization. And WSN is composed of a large
number of inexpensive nodes that are densely deployed in
a region of interests to measure certain phenomenon. The
primary objective is to determine the location of the target.
As shown in Figure 1, we classify the localization method
into target/source localization and node self-localization.
And the target localization can be further classified into four
categories: single-target localization in WSN, multiple-target
localization in WSN, single-target localization in wireless
binary sensor network (WBSN), and multiple-target local-
ization in WBSN. And node self-localization can be classified
into two categories: range-based localization and range-
free localization. The former method uses the measured
the distance/angle to estimate the location. And the latter
method uses the connectivity or pattern matching method to
estimate the location. We will present the localization
method in some special scenarios and finally introduce the
evaluation criteria for localization in WSN.
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Figure 1: Localization methods taxonomy.

2. Target/Source Localization

2.1. Single-Target/Source Localization in Wireless Sensor Net-
work. The source localization methods have a wide range
of possible applications. The outdoor application includes
vehicle or aircraft localization. In an indoor environment,
this method could track the human speakers. In underwater
environment, it can be used to locate the large sea animals
and ships. There are several ways to estimate the source loca-
tion: energy-based, angle of arrival (AOA) [2], time differ-
ence of arrival (TDOA) [3–6]. As an inexpensive approach,
energy-based method is an attractive method because
it requires low hardware configuration. In this survey,
we focus on the energy-based source localization.

Single-source localization can be further divided into: en-
ergy decay model-based localization algorithm and model-
independent localization algorithms.

(1) Decay Model-Based Localization Algorithm. Equation (1)
shows the decay model in [7–9]. The received signal strength
at ith sensor during time interval t can be written as

yi(t) = gi
S(t)
d2
ik(t)

+ ni(t), (1)

where gi represents the gain factor of the ith sensor. We
assume that gi = 1. S(t) is the signal energy at 1 meter away.
And dik is the Euclidean distance between the ith sensor and
the source. In addition ni is the measurement noise modeled
as zero mean white Gaussian with variance σ2

i , namely, ni ∼
N (0, σ2

i ).
Although this energy decay model appears quite sim-

plistic, it is the one commonly used in the literature. Since
the objective function of single-source localization method
has multiple local optima and saddle points [7], the authors
formulated the problem as a convex feasibility problem
and proposed a distributed version of the projection onto
convex sets method. A weighted nonlinear least squares and
weighted linear least squares methods [8] were proposed
to estimate the location of the target. In [9], the authors

proposed normalized incremental subgradient algorithm to
solve the energy-based sensor network source localization
problem where the decay factor of the energy decay method
is unknown.

Unlike the signal models in [7–9], the authors derived
a more generalized statistical model [10] for energy obser-
vation. And a weighted direct/one-step least-squares-based
algorithm was investigated to reduce the computational
complexity. And in comparison with quadratic elimination
method, these methods were amenable to a correction
technique which incorporates the dependence of unknown
parameters leading to further performance gains. This
method offered a good balance between the localization
performance and computational complexity. Energy ratio
formulation [11] was an alternative approach that is inde-
pendent of the source energy S(t). This was accomplished
by taking ratios of the energy reading of a pair of sensors in
the noise-free case. In [12], the authors proposed an energy
aware source localization method to reduce the energy
consumption in localization.

(2) Model-Independent Methods. A kernel averaging ap-
proach [13] which needs not information about energy decay
model was proposed. In [14], a novel model-independent
localization method was proposed. Since the nodes with
higher received signal strength measurement were closer to
the source, a distributed sorting algorithm is employed. If
the sensor nodes know their rank, the required distance
estimates are obtained as the expected value of the respective
probability density functions. Finally, the projection onto
convex sets (POCS) method was used to estimate the location
of the source.

2.2. Multiple-Target Localization in Wireless Sensor Network.
Many works investigate the single-target localization. How-
ever, very limited papers investigate the multiple-target
localization. Most of the works are based on the maximum
likelihood estimator. The details of the maximum likelihood
estimator are as follows.
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The received signal strength at ith sensor during time in-
terval t can be written as

yi(t) = gi

K∑

k=1

Sk(t)
dαik(t)

+ εi(t), (2)

where dik(t) is the distance between the ith sensor and the
kth source. K is the number of the sources. gi is the gain of
ith sensor. εi(t) is random variable with mean μi and variance
σ2
i . Sk(t) is the signal energy at 1 meter away for kth source.
α is the attenuation exponent.

We define the following matrix notations as follows:

Y =
[
y1 − μ1

σ1
, . . . ,

yN − μN
σN

]T
,

G = diag
[

1
σ1

, . . . ,
1
σN

]
,

S = [S1, S2, . . . , SK ]T ,

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1

d2
11

g1

d2
12

, . . . ,
g1

d2
1K

g2

d2
21

g2

d2
22

, . . . ,
g2

d2
2K

...
... . . .

...
gN
d2
N1

gN
d2
N2

, . . . ,
gN
d2
NK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ε = [ε1, ε2, . . . , εN ]N .

(3)

Using these notations, (2) can be represented as

Y = GDS + ε = HS + ε, (4)

where H = GD.
So the joint probability density function (4) can be

expressed as

f (Y | θ) = (2π)−N/2 exp
(
−1

2
(Y −HS)T(Y −HS)

)
, (5)

where θ = [r1, r2, . . . , rK ; S1, S2, . . . , SK ]T .
The maximum likelihood estimation is equivalent to mini-
mizing the following function:

L(θ) = (Y −HS)T(Y −HS) = ‖Y −HS‖2. (6)

We can obtain the maximum likelihood parameter estima-
tion of θ by minimizing L(θ).

To minimize L(θ), we should take the following opera-
tion:

∂L(θ)
∂Si

= 0. (7)

This condition leads to the following relation:
S = H∇H , where H∇ is the pseudoinverse of the matrix

H .
So we get the modified cost function:

arg minL′(θ) =
∥∥∥Y −HH∇Y

∥∥∥
2
. (8)

And a multiresolution (MR) search and the expectation
maximization (EM) method [15] were proposed to solve (8).
An efficient EM algorithm [16] was proposed to improve
the estimation accuracy and avoid trapping into local
optima through the effective sequential dominant-source
initialization and incremental search schemes. An alternating
projection [17] algorithm was proposed to decompose the
multiple-source localization into a number of simpler, yet
also nonconvex, optimization steps. This method could
decrease the computation complexity.

2.3. Single-Target/Source Localization in Wireless Binary Sen-
sor Network. Most of the source localization methods are
focused on the measured signal strength; that is, the fusion
center knows the measurements of the nodes. In order
to obtain the measurements, the node needs the complex
calculating process. The above methods require transmission
of a large amount of data from sensors which may not
be feasible under communication constraints. The binary
sensors sense signals (infrared, acoustic, light, etc.) from
their vicinity, and they only become active by transmitting
a signal if the strength of the sensed signal is above a certain
threshold. The binary sensor only makes a binary decision
(detection or nondetection) regarding the measurement, and
consequently, only its ID needs to be sent to the fusion center
when it detects the target, otherwise it remains silent. So
the binary sensor is a low-power and bandwidth-efficient
solution for wireless sensor network.

Limited papers investigate the source localization in
binary sensor network. And previous works have been
proposed to try to estimate the location of the single source in
wireless binary sensor network (WBSN). In [18], the authors
proposed a maximum likelihood source location estimator
in WBSN. A low complexity source localization method [19]
which is based on the intersection of detection areas of
sensors was introduced in noisy binary sensor networks. A
subtract on negative add on positive (SNAP) [20] algorithm
was proposed to identify the source location using the binary
sensor networks. This is a fault-tolerant algorithm that is
slightly less accurate but it is computationally less demanding
in comparison with maximum likelihood estimation. In
[21], the authors proposed a trust index based subtract on
negative add on positive (TISNAP) method to improve the
accuracy of localization for multiple event source localiza-
tion. This algorithm reduces the impact of faulty nodes on
the source localization by decreasing their trust index. And
the TISNAP algorithm assumed that the distance between
any two sources is far enough; that is, the node is influenced
by only one source initially. So the localization process is
similar to the single-source localization process. However,
all of the previous works mainly focus on single-source
localization. Fewer papers investigate the multiple-source
localization in WBSN.

3. Node Self-Localization

3.1. Range-Based Localization. The classic methods to esti-
mate the indoor location are time of arrival (TOA), time
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difference of arrival (TDOA), angle of arrival (AOA), and
received signal strength (RSS). TOA method measures travel
times of signals between nodes. TDOA method locates
by measuring the signals’ arrival time difference between
anchor nodes and unknown node. It is able to achieve
high ranging accuracy, but requires extra hardware and
consumes more energy. As an inexpensive approach, RSS has
established the mathematical model on the basis of path loss
attenuation with distance [22, 23], and it requires relatively
low configuration and energy. We can obtain the distance
between the beacon node and unknown node through the
above three measurement methods. We set the position of
beacon node is 〈(x1, y1), . . . , (xN , yN ), 〉 and the position of

unknown node is X = [x, y]T . d̃i is the estimated distance
between ith beacon node and unknown node. We can obtain
the coordinate matrix of the unknown node as follows:

X =
(
ATA

)−1
ATB,

A = 2

⎡
⎢⎢⎢⎢⎣

(x1 − x2)
(
y1 − y2

)

(x1 − x3)
(
y1 − y3

)

...
...

(x1 − xN−1)
(
y1 − yN−1

)

⎤
⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d̃2
2 − d̃2

1 −
(
x2

2 + y2
2

)
+
(
x2

1 + y2
1

)

d̃2
3 − d̃2

1 −
(
x2

3 + y2
3

)
+
(
x2

1 + y2
1

)

...

d̃2
N−1 − d̃2

1 −
(
x2
N−1 + y2

N−1

)
+
(
x2

1 + y2
1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(9)

The angles between unknown node and a number of
anchor nodes are used in the AOA method to estimate the
location. This method needs the antenna array which is an
expensive solution for low-cost sensor node.

3.2. Range-Free Localization

3.2.1. Hop-Count-Based Localization. As range-free posi-
tioning system, DV-Hop is the typical representation. It
does not need to measure the absolute distance between the
beacon node and unknown node. It uses the average hop
distance to approximate the actual distances and reduces
the hardware requirements. It is easy to implement and
applicable to large network. But the positioning error is also
correspondingly increased.

The positioning process of DV-Hop is divided into
three stages: information broadcast, distance calculation, and
position estimation. In information broadcast stage, the
beacon nodes broadcast their location information package
which includes hop count and is initialized to zero for their
neighbors. The receiver records the minimal hop of each
beacon nodes and ignores the larger hop for the same beacon
nodes. Then the receiver increases the hop count by 1 and
transmits it to neighbor nodes. All the nodes in a network
can record the minimal hop counts of each beacon nodes.
In distance calculation stage, according to the position of
the beacon node and hop count, each beacon node uses the

following equation to estimate the actual distance of every
hop:

HopSizei =
∑

j /= i

√(
xi − xj

)2
+
(
yi − yj

)2

∑
j /= i h j

, (10)

where (xi, yi) and (xj , yj) are the coordinates of beacon
nodes i and j, respectively. hj is the hop count between
the beacon nodes. Then, beacon nodes will calculate the
average distance and broadcast the information to network.
The unknown nodes only record the first average distance
and then transmit it to neighbor nodes. Finally, the unknown
node calculates its location through (9). In order to improve
the localization accuracy, the improved algorithm mainly
focuses on the following several aspects: average hop distance
between beacon nodes, deployment of the beacon nodes, and
node information.

(1) Average Hop Distance between Beacon Nodes. In the
randomly deployed node density and connectivity network,
Wang et al. [24] proposed a hop progress analytical model
to estimate the optimal path distance between any pair of
sensor nodes in the network. And it derived an expected
hop progress and hop counts estimation method. A range-
free localization algorithm (LAEP) which is using the trilat-
eration techniques and the expected hop progress analytical
results is proposed. Unlike the DV-Hop method, the LAEP
broadcasts the anchor coordinated and the corresponding
estimated distance to each sensor at the same time; therefore,
it can dramatically reduce the network traffic and the com-
munication delay. Wang only considers the node’s receipt
of beacon on a line to the utmost extent. Xu et al. [25]
proposed a mobile anchor node localization method that is
based on Archimedes curve. It takes communication path
as curve spread. It avoids the error caused by large straight
line dissemination and improves the precision. Lee et al. [26]
proposed a robust weighted algorithm which is based on
DV-Hop algorithm to calculate the average hop distances
between unknown nodes and anchor nodes. It applies to
most topological structure networks and reduces the location
error. In the same way, Zhang et al. [27] improved the
average hop distance based on minimum mean square error
standard, which reduced positioning error. Lee et al. [28]
used Karush-Kuhn-Tucker (KKT) standards and Lagrange’s
mean value theorem to correct the average hop distance error
and improve location accuracy.

(2) Deployment of the Beacon Nodes. According to the ideal
or regular node deployment scheme, the modified DV-Hop
method is improved. Zheng et al. [29] firstly derived a beacon
nodes deployment strategy that deploys a beacon node in the
center of the area and other nodes are equally placed in the
circle whose center is the center of the area and radius is half
of the length of the area. Based on this deployment strategy,
an accurate long-range DV-Hop algorithm is proposed. This
method is adapted to large-scale network. Lee et al. [30]
put forward a quadratic programming method to optimize
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adjacent distance mapping. And it can be applied to the
isotropic and anisotropic network.

(3) Node Information. Some modified methods were pro-
posed through the neighbor node information such as
anchor information and relationship between node and
anchor or topology structure to improve the DV-Hop
method. Zhong and He [31] proposed a proximity metric
called RSD (regulated signature distance) to capture the
distance relationships among 1-hop neighboring nodes.
This method can be conveniently applied as a transpar-
ent supporting layer for state-of-the-art connectivity-based
localization solutions to achieve better accuracy. He et
al. [32] proposed a spring swarm localization algorithm
(SSLA) which uses the network topology information and
a small amount of anchor node location information to
calculate unknown nodes position. Chen et al. [33] used
the information of neighbor node to make anchor node
communication range to be gradient to improve accuracy.
Lim and Hou [34] addressed the issue of localization in
anisotropic sensor networks. And a linear mapping method
is proposed to characterize anisotropic features. It projects
one embedding space built upon proximity measures into
geographic distance space by using the truncated singular
value decomposition (SVD) pseudoinverse technique. This
method is different from MDS-Map method and owns
higher accuracy than MDS-Map algorithm and the other
expanded MDS-Map algorithm.

(4) Comprehensive Improvement Method. In addition to the
above aspects, Brida et al. [35] used DV-Hop algorithm,
DV-distance, DV-Euclidean algorithm, the constraint, and
iteration condition that are to be added to select reference
node. Then it used trilateration to find possible unknown
node area, the estimated center of area as the final position.
This algorithm could reduce the network energy consump-
tion and improves localization accuracy. Chia-Ho [36] put
forward a distributed, range-free localization algorithm. In
this method, the mobile beacon node with directive antenna
is used to supply the location information for the unknown
node. Tan et al. [37] exploited acoustic communication to
further research underwater range-free algorithm, especially
proposing future prospect and development trend in view of
the characteristic of underwater acoustic channel.

3.2.2. Pattern Matching Method. Pattern matching localiza-
tion, also called map-based or Fingerprint algorithm, is
one of the most viable solutions for range-free localization
methods recently. The fingerprint localization involves two
phases. During the first phase, the received signals at selected
locations are recorded in an offline database called radio
map. Then, the second phase, it works at the online state. The
pattern matching algorithms are used to infer the location
of unknown node by matching the current observed signal
features to the prerecorded values on the map [38, 39].

Fang et al. [40] proposed a novel method to extract
the feature of robust signals to efficiently mitigate the
multipath effect. This method enhances the robustness under

a multipath fading condition and is commonly used for
the indoor environments. Swangmuang and Krishnamurthy
[41] presented a new analytical model that applies prox-
imity graphs for approximating the probability distribution
of error distance, which recorded a location fingerprint
database by using the received signals. In addition, there are
many problems under the indoor positioning environment
as following: how to capture the character of propagation
signal in the complex dynamic environment and how to
accommodate the receiver gain difference of different mobile
devices and so on. Wang et al. [42] solved these problems by
modeling them as common mode noise and then developed
a location algorithm based on a novel differential radio
map. Gogolak et al. [43] proposed fingerprint localization
methodology based on neural network which is applied in
the real experimental indoor environment. It provided the
necessary measurement results to the fingerprint localiza-
tion.

4. Localization in Some Special Scenarios

Current and potential applications of sensor networks may
be quite different. The scale of the network in these
applications may be small or large, and the environments
may be different. So the traditional localization methods are
not suitable for the special scenarios. And there are some
challenges for locating sensor nodes that need to be solved. In
this survey, we mainly describe the following four challenges.
The first challenge is NLOS (non-line-of-sight) ranging error
problem. The direct path from the unknown node to the
beacon is blocked by obstacles in wireless sensor network;
the signal measurements include an error due to the excess
path traveled because of the reflection of acoustic signal,
which is termed as the NLOS error. The NLOS error results
in the large location estimation error. The second challenge is
the energy consumption and localization accuracy problem.
Since the sensor node is powered by battery, the node may fail
due to the depletion of energy. So the energy consumption
is critical for the localization problem. It contains the node
selection, tradeoff between localization performance and
energy consumption, and node resource management. Since
the unreliable hardware and complicate communication
environment, the received information may be unreliable.
Therefore, the third challenge is corporative localization.
And the fourth challenge is the localization in heterogeneous
sensor network.

4.1. Localization in NLOS Scenario

4.1.1. NLOS Identification/Classification. As shown in Fig-
ure 2, there may be no direct path from the beacon node
to the unknown node in complicated environment. Because
of the reflection and diffraction, the signal which is used for
distance measurement can reflect and bound off multiple
surfaces before arriving at the receiver. So the signal may
actually travel excess path lengths and the direct path is
blocked. The signal measurements include an error due to
the excess path traveled which is termed as the NLOS error.
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Figure 2: Example of localization in LOS/NLOS environments.

The NLOS problem has been studied in [44] and it
was reported that the NLOS error was quite common in all
environments except for rural areas. The large location esti-
mation error will occur in NLOS environment. Accordingly,
NLOS identification is particularly significant in localization.
The problem of NLOS identification is essentially a detection
problem. There are two main approaches to solve the NLOS
errors: parametric methods and nonparametric methods. In
this section, we give a brief overview of some key researches
in this area.

Wylie and Holtzman [45] proposed a method based
on parameter hypothesis test which determines the mea-
surements whether belong to NLOS by comparing the
NLOS variance with the LOS variance. It has a simple
criterion but needs the detailed environment parameter and
a prior knowledge. Borras et al. [46] investigated NLOS
identification by using binary hypothesis test and generalized
likelihood ratio for identifying NLOS error. It proposed a
proper decision criteria and its premise is that the NLOS
error is Gaussian distributed with a large variance. Based on
Wylie-Holtzman algorithm, Mazuelas et al. [47] proposed an
improvement by using NLOS ratio estimation and it will be
able to correct the NLOS measurements from the previous
knowledge of this ratio.

The aforementioned methods need a mount of priori
knowledge and historical data. Chan et al. [48] proposed a
residual test (RT) method to overcome the shortage which
needs lots of priori knowledge. It determines the measure-
ments whether belong to NLOS by measuring the samples
appropriate to central Chi-distribution. The principle of this
method is that if all measurements are LOS, and if the
localization technique gives maximum likelihood estimates,
then the residuals, normalized by the Cramer Rao Lower
Bound (CRLB), will have a central χ2 distribution. And if
the measurements contain the NLOS error, the distribution
is noncentral χ2 distribution. Venkatraman and Caffery Jr.
[49] investigated NLOS identification for moving targets
by using a time series of range measurements. Gezici et
al. [50] proposed a nonparameter-based hypothesis test
method which used a distance metric between a known

measurement error distribution and a nonparametrically
estimated distance measurement distribution. Yu and Guo
[51] also proposed a nonparameter-based hypothesis test
method by using generalized likelihood ratio to establish
the relationship between LOS and NLOS. Then it used
Neyman-Pearson (NP) test method for NLOS identification.
A sequential probability ratio test [52] which is tolerant to
the parameters fluctuations is employed to identify whether
the measurement contains the non-line-of-sight (NLOS)
errors.

4.1.2. NLOS Mitigation. Because of the existence of the non-
ideal channel condition and non-line-of-sight transmission
between the unknown nodes and beacon nodes, NLOS error
mitigation has become a key technology and hotspot in
the research about location estimation in wireless sensor
network.

The first way attempts to identify the propagation
conditions (LOS or NLOS) and then eliminate the mea-
surements in NLOS; they only use the measurements in
LOS to locate the unknown node. The propagation model-
based method [53, 54] either directly employs the existing
propagation models or empirically develops a model based
on experimental results. The second way uses all NLOS and
LOS measurements to estimate the location, but provides
weighting or sealing to minimize the effects of the NLOS
contributions. The weighting is determined by either the
position geometry and beacon nodes layout or the residuals
(fitting errors) of individual beacon node. The Taylor
series linearization [55] (TS-LS), a widely used localization
algorithm, should have the prior information of the error
statistics which can be used to determine the weights. Chen
[56] develops an algorithm to mitigate the NLOS errors by
residual weighting when the range measurements corrupted
by NLOS errors are not identifiable. The hypothesis testing
[57] is employed to detect whether the environment is NLOS
or LOS along with time of arrival (TOA) and received signal
strength (RSS) measurements. And then an extended Kalman
filter is used to nonlinear estimation.

In a scattering environment, most of the propagation
paths between the unknown nodes and beacon nodes are
NLOS; the constrained optimization techniques are used to
reduce NLOS errors [58]. The neural network is employed
to predict the NLOS error [59]; Kalman filters [60] and
modified two-stage Kalman filter [61] are used to correct
NLOS measurements.

All the positioning algorithms in NLOS environment
focused more on the cellular network. These methods could
be used in some scenarios for wireless sensor network
localization. Fewer methods investigate the NLOS mitigation
algorithm for Wireless sensor network.

4.2. Node Selection Criteria for Localization in Energy-
Constrained Network. Due to the limited power of sen-
sor node and hostile deployment environment, the node
selection in WSN is different from the traditional node
selection in traditional wireless network. If all the sensor
nodes are used at the same time to executive localization
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task without selection, although the energy consumption of
nodes selection are saved, but at this time the repeatability of
the received information would be quite larger. If the nodes
are random selected to executive the localization task, the
algorithm is simple and the extra overhead can be ignored,
but localization accuracy is low in this case. Obviously,
this method cannot satisfy the user’s requirements for the
accurate localization, the unbalance of energy consumption
will appear, and some nodes may fail due to the depletion
of energy. This may affect the network connectivity and
may result in losing the sensed data. These characteristics
of WSN determine selection method which is different from
traditional network. Therefore, it is necessary to investigate
nodes’ selection mechanism in WSN.

The primary algorithm makes decision with global infor-
mation [62]; this method minimized the expected filtered
mean-squared position error for a given number of active
nodes by using a global knowledge of all node locations. This
algorithm needs the positions of nodes and broadcasts them
to all nodes and a lot of data communication; therefore, it
only can be applied to small networks. Based on the former
algorithm, a local selection strategy is investigated [63].
This method determines whether or not that node should
be active by only incorporating geometrical knowledge
of itself and the active set of nodes from the previous
information. Based on this approach, the researchers have
also investigated other strategies, such as the least square
method, Bayes probability method [64, 65]. Furthermore,
in order to narrow the scope and scale of selected nodes,
researchers proposed a method which combines the track
and the current state of the robot. Zhang and Cao [66]
proposed a multinode cooperation dynamic tree algorithm.
This method ensured that spanning tree has low energy
consumption and high information content by increasing
and decreasing the number of the nodes dynamically. But
this method still had some disadvantages: the root node
needs data fusion and the new node needs to be calculated,
and the consumption of energy is quite higher. Yang et al.
[67] proposed online prediction based on particle filter and
estimate the probability distribution of the target state under
the Bayes framework. This method realized the optimal
selection of the node sequence and introduced a shortest
path algorithm to reduce the information transmission.
Hamouda and Phillips [68] proposed a method which
employs the moving speed of the mobile robot to improve
the localization accuracy and consistency.

The signal shielding and multipath interference make the
channel parameters become too complex to definite error
factor. Bel et al. [69] proposed two selection principles to
reduce the number of active nodes, and the nodes with
accurate measured value (RSSI value larger than specified
threshold) are selected. This method is effective to balance
the accuracy and energy consumption and is suitable for
the WSN which is hardware resource constrained. Zhao
and Nehorai [70] used the Cramer-Rao equation to select
the next node to participate in positioning. Because of the
complexity of the observed model and the non-Gaussian
noise, it is hard to get the optimal solution of the problem.

4.3. Scheduling the Sensor Node to Optimize the Tradeoff
between Localization Performance and Energy Consumption.
A typical sensor network consists of a large number of small
sensors which are deployed randomly. However, a sensor
node has limited resources because of battery power and
small memory. Therefore, nodes’ resource management is
compulsory. In typical sensor network applications, nodes
are deployed in an unattended environment such as disaster
management, habitat monitoring, industrial process control,
and object tracking. Enormous event data will be generated
for a long sensing time in WSN. Hence, by the methods
of nodes resource management, effective usage of the vast
amount of data is crucial. In the meanwhile, the scalability
of both energy and spatial dimensions in distributed sensor
network is a key issue. Sensor networks must track various
phenomena at the same time and work within limited
communication bandwidth, energy, and processing speed.
Therefore, it is critical to distribute the workload across
only the “relevant” sensors equally and leave other sensors
available for other things. These characteristics of WSN
determine the importance of nodes resource management.

Energy consumption is one of the most important issues
in recent years. Ren and Meng [71] proposed a localization
algorithm based on particle filtering for sensor networks.
Assisted by multiple-transmit-power information, it outper-
forms the existing algorithms that do not utilize multiple-
power information. You et al. [72] proposed a specified
positional error tolerance, the sensor-enhanced and energy-
efficient adaptive localization system in an application. This
localization system dynamically sets sleep time for the nodes
and adapting the sampling rate of target’s mobility level.
However, the process of error estimation dynamically relies
on several factors in the specific environment. Gribben
et al. [73] proposed a scheduling algorithm that selects a
subset of active beacon nodes to be used in localization. It
served to reduce the message overhead, increased network
lifetime, and improved localization accuracy in dense mobile
networks. However, maximizing the nodes’ sleep time is
much more energy efficient if the nodes never wake up until
the reception of wake-up messages. The above algorithms
have the same feature that the duty cycle of the sensor
nodes is fixed in advance. In [74], the authors proposed
an innovative probabilistic wake-up protocol for energy-
efficient event detection in WSNs. The main idea of it is to
reduce the duty cycle of every sensor via probabilistic wake-
up through the dense deployment of sensor networks.

The problem of unique network localization and a math-
ematical topic known as rigidity theory have a strong
connection. Goldenberg et al. [75] proposed a localization
method for sparse networks by sweeping techniques. This
method is saving all possible positions in each position
step and pruning incompatible ones. One drawback of
sweeping method is that the possible positions could increase
exponentially as long as the number of nodes increased.
Other types of localization methods are also available, such
as using multidimensional scaling [76, 77] or mobile anchors
[78, 79]. However, all the previous works tried to localize
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more sensor nodes in a network without guaranteeing all of
them. Khan et al. [80] introduced a localization method to
localize all nodes by the minimal number of anchor nodes.
However, they assume that the sensing range of each sensor
can be enlarged to guarantee certain triangulation, so that
three anchor nodes are enough to localize all sensors.

4.4. Cooperative Node Localization. There may be not
enough information in the concentrated network or the node
may contain the harmful information in sparse network.
There are two branches in this area: (1) access the accuracy
and reliability of the neighborhood nodes. (2) Improve
precision with the cooperation of the active and passive
nodes.

Some nodes may bring unreliable or even harmful infor-
mation [81], so it is essential to review the received infor-
mation. Tam et al. [82] employed the nearest link as reference
to review the information. When there are massive link
in dense network and positioning mainly depends on the
geometry of the neighbor node topology information, the
nearest neighbors may not correspond to the best link.
Aiming at this issue, Denis et al. [83] proposed an adaptive
method to eliminate the inefficient links, but this method has
to work with neighbor node information, and the method
cannot effectively reduce the number of packet effectively.
Therefore, Das and Wymeersch [84] put forward a kind
of distributed criterion; this method employed Cramer-Rao
limit as identifiable parameters to identify the links. This
method could avoid the invalid neighbor node links and
unreliable transmission; thus, it can effectively reduce the
computation time and the number of packets.

The accuracy of master-slave node cooperative local-
ization is mainly depended on the measurements accuracy
and the number of primary reference nodes (PRN, Primary
Reference Node). But in the actual application, it is difficult
to increase the number of primary reference nodes because
of the factors of energy and the complexity. Wymeersch et
al. [81] and Fujiwara et al. [85] put forward a new method:
the nodes which received the information of the target
and the primary reference nodes are termed as secondary
reference nodes (SRN, secondary Reference Node), the
SRNs participated in the localization in a passive way.
This cooperative method reduced the required number of
PRN with relatively higher localization accuracy. Gholami et
al. [86] used the maximum likelihood estimation method
to obtain the target position. The authors formulated the
localization problem into finding the intersection of the
vertex set by using geometry description. This method avoids
getting into the local optimum.

4.5. Localization Algorithm in Heterogeneous Sensor Network.
Most of the localization methods for the wireless sensor
networks are only to consider the homogeneous network.
The different kinds of the nodes such as the different
maximum communication radius and the different nodes

own the different localization mechanisms are not consid-
ered in homogeneous, so the localization methods for the
homogeneous network cannot be directly applied in the
heterogeneous wireless sensor networks.

Du et al. [87] propose a new boundary nodes localization
method by using a small number of anchor nodes. First the
boundary nodes are elected and their positions are deter-
mined. Then the location information of boundary nodes
is sent to other nodes through a small hop communication
range. Finally, other nodes estimate their locations by the
hop count and hop range. The scheme uses fewer beacon
nodes, but has much smaller localization error and standard
deviation. This method uses fewer beacon nodes, but with
a smaller location error and standard deviation. Dong et al.
[88] proposed a two-step localization method for two-tiered
hierarchical heterogeneous sensor networks. The network
consists of three types of nodes: anchor nodes with known
locations, a few nodes equipped with both Ultrawide Band
(UWB) and RF radios, and a large number of normal sensor
nodes. The localization method works in two steps: firstly
the high-accurate ranging capability of UWB nodes is used
to estimate their location from a few anchor nodes, then,
sensor nodes estimate their locations by using UWB nodes
as anchor nodes.

Sometimes the distance between some nodes can be
measured directly, while others cannot be. Selecting a dif-
ferent positioning algorithms accord to the mutual distance
between nodes can be measured or not. Chiang et al.
[89] proposed a hybrid unified Kalman tracking (HUKT)
technique. The accuracy of tracking is based on both time
of arrival (TOA) and time difference of arrival (TDOA)
measurements. This method is proposed to adaptively adjust
the weighting value between the TOA and TDOA measure-
ments. The scheme can both provide higher localization
accuracy for mobile network and adapt to environments with
insufficient signal sources.

According to the different communication radius of
the nodes, some super nodes can be deployed at some
areas with plenty communication demands to transmit the
information. Shen and Pesch [90] considered the nodes with
more power and longer communication range as the het-
erogeneous nodes and propose a heuristic relay positioning
algorithm for heterogeneous wireless sensor networks, to
achieve the sharing of resources in heterogeneous wireless
sensor network by using the relay nodes.

5. Evaluation Criteria for Localization in
Wireless Sensor Network

The localization errors are inevitable in the estimations. In
this section, we describe some common metrics: average
localization error, root mean square error, and geometric
mean error. And the Euclidean distance and Manhattan
distance are two widely used metrics that are computed
considering a two-dimensional coordinate system [91]. The
Euclidean distance is defined to be the shortest distance
between two coordinates. The Manhattan distance is defined
to be the distance between two coordinates measured along
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the axes at the right angles. The metrics are described as
follows.

(1) Average Localization Error. The average localization error
for Euclidean distance can be computed as follows:

error = 1
Nt

Nt∑

i=1

√
(x̂i − x)2 +

(
ŷi − y

)2, (11)

where Nt is the number of trails. (x, y) is the true location
of the unknown node or source. (x̂i, ŷi) is the estimated
location.

The average localization error for Manhattan distance
can be computed as follows:

error = 1
Nt

Nt∑

i=1

(∣∣x̂i − x
∣∣ +

∣∣ ŷi − y
∣∣). (12)

(2) Root Mean Square Error. The root mean square error for
Euclidean distance can be computed as follows:

error =

√√√√√ 1
Nt

Nt∑

i=1

(
(x̂i − x)2 +

(
ŷi − y

)2
)
. (13)

The root mean square error for Manhattan distance can
be computed as follows:

error =

√√√√√ 1
Nt

Nt∑

i=1

(∣∣x̂i − x
∣∣ +

∣∣ ŷi − y
∣∣). (14)

(3) Geometric Mean Error. The geometric mean error for
Euclidean distance can be computed as follows:

error = Nt

√√√√√
Nt∏

i=1

(
(x̂i − x)2 +

(
ŷi − y

)2
)
. (15)

The geometric mean error for Manhattan distance can be
computed as follows:

error = Nt

√√√√√
Nt∏

i=1

(∣∣x̂i − x
∣∣ +

∣∣ ŷi − y
∣∣). (16)
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A minimax estimation fusion in distributed multisensor systems is proposed, which aims to minimize the worst-case squared
estimation error when the cross-covariances between local sensors are unknown and the normalized estimation errors of local
sensors are norm bounded. The proposed estimation fusion is called as the Chebyshev fusion estimation (CFE) because its
geometrical interpretation is in coincidence with the Chebyshev center, which is a nonlinear combination of local estimates.
Theoretically, the CFE is better than any local estimator in the sense of the worst-case squared estimation error and is robust
to the choice of the supporting bound. The simulation results illustrate that the proposed CFE is a robust fusion in localization
and tracking and more accurate than the previous covariance intersection (CI) method.

1. Introduction

Multi-sensor networks have received an increasing attention
in recent years, due to their huge potential in applications,
such as communication, signal process, routing and sensor
management, and many other areas. In this paper, we focus
on a specific and simple estimation fusion model in a
distributed multi-sensor system, which is in fact a two-
level optimization in the estimation fusion. Every sensor
first optimally estimates the state of target based on its
own measurements and then transmits its estimate to the
fusion center. The problem of estimation fusion is to find
an optimal state estimator based on all the received local
estimates. Although the centralized fusion which directly
makes use of all measurements from the local sensors in
time is theoretically the best fusion strategy, sometimes
communication or reliability constraints make it impossible
to transmit all the sensor measurements to a fusion center.
In contrast, the distributed fusion which only needs to
fuse all received local estimates has the advantages of lower
communication requirements, improved robustness, and so
forth.

However, the fusion algorithms in distributed system
have to deal with troubles that do not exist in centralized

fusion. One of the difficulties is that the errors of local
estimates to be fused are generally correlated, and as a result
the distributed fusion cannot be achieved by a standard
centralized algorithm such as the Kalman filter. The reasons
of this correlation may be a common process noise in target
when the state estimates are not fused at each sampling
instant, or common prior information in the estimates from
previous communication.

Over the last two decades, much research has been
performed on distributed fusion [1–6]. Some approaches
are looking for the “optimal” linear combination of local
estimates in some criteria, such as weighted least squares
or minimum variance [1, 2]. In [7], the authors proposed
a new multi-sensor optimal information fusion criterion
which is weighted by matrices in the linear minimum
variance sense. An optimal Kalman filtering fusion with
cross-correlated sensor noises is proposed in [8], which
assumes that the correlation of sensor noises is accurately
known. A unified model for estimation fusion based on the
best linear unbiased estimation (BLUE) is proposed in [9].
However, all of the aforementioned methods rely on two
assumptions: one is that the local estimates are unbiased
and the other is that the error covariance matrix of all local
estimates is known.
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There are other approaches attempting to reconstruct
the optimal centralized estimate from the local estimates. A
random weighting estimation method for fusion of multidi-
mensional position data is proposed in [10]. The method in
[5, 6, 11] deduces to a linear combination of local estimates,
but is not particularly effective in handling the correlation
in measurement noises. In the seminal papers [4, 6, 12, 13],
the covariance intersection (CI) algorithm was proposed
to deal with this problem. It fuses without assuming any
knowledge on the correlation between the local estimation
errors. A robust estimation fusion is proposed in [14], which
assumes that the correlation between the local estimation
errors is not accurately known but belongs to an uncertain
set. However, it is also a linear combination of local estimates
as the other aforementioned methods. Theoretically, the
linear combination may not be an accurate formation of the
distributed fusion. Recently, a nonlinear estimation fusion is
proposed in [15], where it minimizes the estimation error
covariance only for the most favorable realizations of the
random matrix and models it as an optimization problem
with a chance constraint. Such optimization problem is
also nonconvex and with appropriate relaxation it can be
simplified to a convex problem. Similar with all the other
aforementioned methods, it considers the optimal fusion
in the sense of statistics, which do not necessarily lead to
a small estimation error. There may be the case that the
estimation error is very large even though the optimal criteria
considered is small. So far, the robustness of the fusion
estimation is still a challenge.

In this paper, we are looking forward to establishing
a robust distributed fusion strategy under some basic
assumptions. This robust fusion is aimed at minimizing the
worst-case fusion error, which is achieved through a mini-
max problem. Although it is non-convex, we can relax it to
a semidefinite program (SDP) following [16]. The resulted
SDP problem can be solved quite efficiently in polynomial
time by an interior point method; in particular, by the
homogeneous self-dual method [17] or toolbox CVX in
Matlab. Then the resulted fusion estimate is a form of a non-
linear combination of local estimates. Since the geometrical
interpretation of our fusion method is in coincidence with
the Chebyshev center, we call it the ion (CFE). The basic
assumption of this paper is that the local estimation errors
are bounded. Although it is not satisfied theoretically if the
estimation error is a Gaussian distributed variable, it can
be guaranteed in a nearly 100% probability if the bound
is large enough and in practical applications it can always
be satisfied. We call this bound the supporting bound,
which is directly related to the resulted Chebyshev fusion
estimate. So we further investigate the sensitive analysis of the
relationship between the Chebyshev fusion estimate and the
supporting bound. The result shows that the performance
of the proposed Chebyshev fusion estimation is robust to
the choice of the supporting bound. Moreover, numerical
simulations are used to corroborate the theoretical results
which demonstrate the good performance of the proposed
CFE method.

The remainder is organized as follows. We briefly
introduce the distributed estimation fusion problem in

Section 2 and propose the robust CFE method in Section 3.
The sensitive analysis about the choice of parameter R in
CFE method is provided in Section 4, and some numerical
simulations are carried out in Section 5. Section 6 gives
conclusions.

2. Distributed Estimation Fusion Problem

Consider the following l-sensor distributed dynamic system:

xt+1 = Φxt + vt, (t = 1, . . . ,T),

yi
t = Hixt + wi

t, (i = 1, . . . , l),
(1)

where xt ∈ Rn is the state vector, Φ ∈ Rn×n is the transition
matrix, yi

t ∈ Rmi and Hi ∈ Rmi×n, i = 1, . . . , l, are the
observations and measurement matrices of l local sensors
respectively, and vt ∈ Rn and wi

t ∈ Rmi are the process noise,
and the measurement noise respectively, which are norm-
bounded zero mean random processes with covariance
matrices E(vtv′t ) = V,E(wtw′

t) = W and independent across
sensors and time t.

Kalman’s filtering is the best known recursive least mean
square (LMS) algorithm to optimally estimate the unknown
state of a dynamic system for a single sensor. Thus, the
unbiased estimates x̂i

t and corresponding error covariances
Pi
t = E[(xt − x̂i

t)(xt − x̂i
t)
′
] (i = 1, . . . , l) are available by the

Kalman filter. The distributed fusion problem is to generate
an “optimal” estimate x̂t from x̂i

t for i = 1, . . . , l.
There are three possible architectures in distributed

fusion depending on the sources of x̂i
t [6]. In this paper, we

consider the “Arbitrary distributed fusion,” that is, x̂i
t (i =

1, . . . , l) are l arbitrary estimates to be fused, and no prior
information or memory is available. The main problem is
caused by correlated estimation errors, because in general

P
i j
t = E[(xt − x̂i

t)(xt − x̂
j
t )′] /= 0 for i /= j and their values may

not be known.
In order to simplify the derivations, we start by refor-

mulating the local estimate x̂i
t in terms of a mixture of

uncorrelated components eit . More specifically, let us define

eit ∈ Rn to be the normalized random vector eit = Pi
t
−1/2

(xt −
x̂i
t) such that E[eit] = 0 and E[eite

i
t
′
] = I. Moreover, because

the noises of the dynamic system are norm bounded, we
make the following assumption.

Assumption 1. There exists a ball of radius Rt that contains
the entire support of the unknown distribution of eit for all
i = 1, . . . , l. More specifically, there exists Rt ≥ 0 such that

P
((

xt − x̂i
t

)
′Pi

t
−1
(

xt − x̂i
t

)
≤ R2

t

)
= 1. (2)

We believe that Assumption 1 is reasonable, because in
practice the estimation error of the local sensor is impossible
to be infinitely large, and we can always find a bound on it.
In practical applications, even when we have no additional
information about xt and eit , we believe that an educated and
conservative guess about the magnitude of Rt is available. We
will also revisit this issue in Section 4 where we discuss the
sensitivity of the resulting fusion estimation with respect to
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the choice of Rt . In the rest part of this paper, a robust fusion
estimation strategy will be derived based on Assumption 1.

3. The Robust Chebyshev Fusion
Estimation Strategy

3.1. The Minimax Fusion Strategy. The most widely used
fusion strategy is calculating the “best” linear combination
of local estimates to minimize some criteria in statistics, such
as minimum variance or weighted least squares. However,
there may be some nonlinear formations to fuse the local
information that performs better, which is at least as good
as the linear combination because the linear combination is
a special case of non-linear formation.

Moreover, the optimal fusion strategy in statistical mean-
ing is not necessarily to get a good estimate with respect to
the estimation error ‖(xt − x̂t)‖2. Especially for the methods
which depend on the unknown correlated estimation errors

P
i j
t , the performance of the fusion result may be considerably

poor when the estimated P̂
i j
t are not accurate enough.

Because of these uncertainties in the distributed fusion, we
propose the following robust mini-max fusion estimation.

Based on Assumption 1, we have observed that the state

xt must lie in the ellipsoid Ei = {x : (x − x̂i
t)′Pi

t
−1

(x −
x̂i
t) ≤ R2

t }, so the intersection of the l quadratic ellipsoids
is nonempty, which is defined as

Q = {x : fi(x) = x′Aix + 2b′ix + ci ≤ 0, 1 ≤ i ≤ l
}

, (3)

where Ai = Pi
t
−1

, bi = −Pi
t
−1

x̂i
t, and ci = (x̂i

t)′Pi
t
−1

x̂i
t − R2

t .
Therefore, we have P(xt ∈ Q) = 1. In order to get a robust
fusion estimation without the information on correlated
local estimation errors, we directly treat the estimation error
and suggest minimizing the worst-case error over Q, which is
equivalent to finding the Chebyshev center of Q:

min
x̂∈Rn

max
x∈Q

∥∥x̂− x
∥∥2
. (4)

The geometrical interpretation of the Chebyshev center
is the center of the minimum radius ball enclosing Q. Thus,
problem (4) can be equivalently written as

min
x̂,r

{
r :
∥∥x̂ − x

∥∥2 ≤ r, ∀x ∈ Q
}
. (5)

However, computing the Chebyshev center (4) is a diffi-
cult optimization problem in general, because the inner max-
imization is nonconvex quadratic problem. Recent research
in the context of quadratic optimization [3] shows that the
Chebyshev center can be calculated efficiently when Q is the
intersection of two ellipsoids in the complex domain, despite
the nonconvexity. While in the real domain and when there
are more than two constraints, a relaxed Chebyshev center
(RCC) is proposed in [16].

3.2. The Relaxed Chebyshev Center Fusion Estimation. The
RCC of Q, which is denoted as x̂RCC, is obtained by replacing
the non-convex inner maximization in (4) by its semidefinite

relaxation and then solving the resulting convex-concave
min-max problem, and for more details, one can refer to
[16]. Therefore, an explicit representation of x̂RCC can be
achieved by the following theorem.

Theorem 2. The RCC of Q is given by

x̂RCC = −
⎛
⎝

l∑

i=1

αiAi

⎞
⎠
−1⎛
⎝

l∑

i=1

αibi

⎞
⎠, (6)

where {α1,α2, . . . ,αl} is an optimal solution of the following
convex optimization problem in l variables:

min
αi

⎧
⎪⎨
⎪⎩

⎛
⎝

l∑

i=1

αibi

⎞
⎠
′⎛
⎝

l∑

i=1

αiAi

⎞
⎠
−1⎛
⎝

l∑

i=1

αibi

⎞
⎠−

l∑

i=1

αici

⎫
⎪⎬
⎪⎭

(7)

s.t.
l∑

i=1

αiA−1
i � I, αi ≥ 0, i = 1, 2, . . . , l. (8)

It is not difficult to cast the optimization problem (7) as
the following SDP:

min
αi

⎧
⎨
⎩t −

l∑

i=1

αici

⎫
⎬
⎭ (9)

s.t.

⎛
⎜⎜⎜⎝

l∑

i=1
αiAi

l∑

i=1
αibi

l∑

i=1
αib′i t

⎞
⎟⎟⎟⎠ � 0 (10)

l∑

i=1

αiAi � I, αi ≥ 0, i = 1, 2, . . . , l. (11)

We see that the fusion estimate x̂RCC is completely a non-
linear combination with all the available local information,
including the estimates x̂i

t and error covariances Pi
t, and

the coefficients αi are solved by an SDP (9), which can be
calculated with high efficiency. The local estimates x̂i

t are just
the fusion estimate x̂CFE when αj = δi j , where δi j = 1 when
i = j, and δi j = 0 when i /= j. From Proposition IV.2 in [16],
x̂CFE is unique and feasible. So the worst-case estimation
error of x̂CFE is smaller than or at least as small as that of
local estimators in the relaxed sense.

Remark 3. Note that from the definition of Q given in (3)
and Theorem 2, the optimal fusion coefficients αi are actually
relative to the local estimates x̂i

t. Therefore, the optimal
fusion coefficients αi are time varying and need to be solved
at every sampling time t. Fortunately, the optimization
problem (9)–(11) is an SDP, which is a class of convex
optimization problems and can be solved in polynomial
time using efficient algorithms, such as the software package
SeDuMi or CVX toolbox in MATLAB. Therefore, this could
satisfy real-time processing when the number of sensors l is
not too large.
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Among the variables, Ai and bi, except ci, are indepen-
dent of Rt, that is, the bound of the support of eit . So in
Section 4, we focus on the choice of Rt . In what follows, we
shall drop the argument t without confusion for notational
simplicity.

4. Choosing the Support Bound R

From the expression of x̂RCC in (7), the fusion estimate is
determined by the parameters αi, which is the solution of
the SDP problem (9). Because R appears only in the optimal
object, the choice of R does not infect the feasible set of (9).
First of all, we discuss the sensitivity of the choice of R in CFE
of distributed fusion estimation.

4.1. The Sensitivity of the Choice of R. Let us write the SDP
problem (9) in the standard literature on linear semidefinite
programs by

(P) max g′y

s.t. A∗(y
)

+ S = C S � 0,
(12)

where A∗(y) := ∑l+1
i=1 yiFi, g = [c1, . . . , cl,−1]′, y =

[α1, . . . ,αl, t]′, for i = 1, . . . , l, Ei = diag(ei), ei( j) = 1 if i = j,
else ei( j) = 0, and

Fi =

⎛
⎜⎜⎜⎝

Ai 0 0 0
0 Ai bi 0
0 b′i 0 0
0 0 0 Ei

⎞
⎟⎟⎟⎠

(2n+l+1)×(2n+l+1)

,

Fl+1 =
⎛
⎜⎝

0(2n×2n) 0 0
0 1 0
0 0 0

⎞
⎟⎠

(2n+l+1)×(2n+l+1)

,

C =
(

In×n 0
0 0

)

(2n+l+1)×(2n+l+1)

.

(13)

The dual of the primal program is

(D) min C •X

s.t. A(X) = g X � 0,
(14)

where C•X := trace(C′X) and A(X) := [F1•X, . . . , Fl+1•X)].
The discussion of the sensitivity of the choice of R is based on
the following assumption.

Assumption 4. The programs (P) and (D) are strictly feasible
and there exist y, S, and X which are unique and strictly
complementary solutions of (P) and (D), that is,

A
(

X
) = g, A∗(y

)
+ S = C, X S = 0,

S � 0, X � 0, X + S 
 0.
(15)

Based on the above assumption, we consider the solu-
tions of the programs (P) and (D) when there is a pertur-
bation δg on g with the following theorem.

Theorem 5. If the programs (P) and (D) satisfy Assumption 4
and the data g is changed by sufficiently small perturbation
δg, then the optimal solutions of the perturbed semidefinite
programs are differentiable functions of perturbation δg.
Moreover, the derivatives ẏ := Dy(δg), Ṡ := DS(δg) and
Ẋ := DX(δg) at y, S, X satisfy

A∗(ẏ
)

+ Ṡ = 0,

A
(

Ẋ
) = δg,

ẊS + XṠ = 0.

(16)

Remark 6. The perturbation δg does not infect the feasible
set of (P), and so does Slater’s condition of (P). By continuity,
Slater’s condition of (D) is also satisfied for all sufficiently
small perturbation δg. The result in this theorem is based on
the fact that Assumption 4 is still satisfied when perturbed g
by δg.

Remark 7. The result in this theorem is a special case in
Theorem 1 in [18], which gives a comprehensive sensitivity
result on the perturbation of all data of programs (P) and
(D). Thus, our theorem could be a direct corollary from it.

Remark 8. Although the derivatives ẏ, Ṡ, and Ẋ are char-
acterized by a system of linear equations (16), it is an
overdetermined system of l + 1 + (2n + l + 1)(3n + 3l/2 + 2)
linear equations for the l+1+(2n+l+1)(2n+l+2) unknowns.

Theorem 9. The derivatives ẏ, Ṡ, and Ẋ in (16) can be given
as the unique solution of the following nonsingular system of
l + 1 + (2n + l + 1)(2n + l + 2) linear equations for the l + 1 +
(2n + l + 1)(2n + l + 2) unknowns.

Proof. By the conditions in Assumption 4, X S = 0 =
S X, and thus the matrices X � 0 and S � 0 commute.
This guarantees that there exists a unitary matrix U that
simultaneously diagonalizes S and X. Therefore, by Corollary
1 in [18], the derivatives ẏ, Ṡ, and Ẋ can be solved from the
following system:

A∗(ẏ
)

+ Ṡ = 0,

A
(

Ẋ
) = δg,

Πup

(
U′
(

ẊS + XṠ
)

U
)
= 0,

(17)

where Πup(X) denotes the upper triangular of X.

So far, we have theoretically analyzed the sensitivity
of a perturbation δg for SDP (P). The derivatives of the
optimal solution to the perturbation could be calculated by a
nonsingular system of linear equations. Because the variable
R only exists in the object parameter g, the change of R
leads to a perturbation δg on the direction [1, . . . , 1, 0]′. If
the value of ẏ is sufficiently small, the performance of the
proposed CFE is robust due to the choice of R.

4.2. The Geometrical Interpretation of R. From the expression
in (3), we see that R in fact determines the size of the l
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Figure 1: The illustration of the insensitivity on the choice of R.

ellipsoids. We illustrate in Figure 1, that the RCC of two
interacting ellipsoids is still the same when changing the sizes
simultaneously.

A geometrical interpretation about this phenomenon is
that the RCC reflects the center point of the intersection of
some ellipsoids in some sense. When simultaneously enlarges
or reduces the sizes of these ellipsoids, the resulted RCC still
represents the center location in the same sense, so it is not
strange that the RCC is insensitive to the choice of R. In
fact, as in the simulations in Section 5, we illustrate that the
influence of the value of R on the fusion estimation is trivial.

However, we should certify that when changing the
value of R, these ellipsoids own a common interaction area.
Therefore, we suggest making a conservative choice of R. In
practice, we can estimate it from the experienced learning or
prior information.

Also from Figure 1, we see that the RCC of two ellipsoids
may be either the linear combination of the centers of the
ellipsoids or not. So the CFE varies a larger space comparing
with the other linear fusion methods.

5. Simulation Experiments in
Localization and Tracking

In this section, some simulation experiments are designed
to show the performance of the proposed CFE method in
localization and tracking and compare it with the result of
the previous CI method. In addition, we have designed a
numerical simulation to test the sensitiveness of the choice
of the value R as well.

5.1. Simulation of Dynamic System. We consider the follow-
ing dynamic system:

xt+1 = Φxt + vt, (t = 1, . . . ,T)

y(i)
t = H(i)xt + w(i)

t (i = 1, 2).
(18)
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Figure 2: The average estimation error with respect to t for the
local sensors, CFE, and CI method for Rv = [0.05 0; 0 0.05],
R(i)

w = [1 0; 0 2], where the CFE is calculated for R = 1, 2, 10
separately.
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(19)

and the noises vt and w(i)
t are normally distributed with zero

means and covariances Rv = [0.05 0; 0 0.05] and R(i)
w =

[1 0; 0 2], respectively. x̂i
t (i = 1, 2) are 2 local estimators

of xt with covariance Pi
t, respectively, which are calculated by

a standard Kalman filter. The two sensors transmit their local
estimates and covariance matrices to the fusion center, so it
has the information of x̂i

t and Pi
t.

We use the CFE and CI methods to fuse the two local
estimates tracking the target for t = 1, . . . , 600, where the
CFE is calculated by solving the SDP problem (9) with
the software package SeDuMi. The CI fusion is calculated
following the method in [6]. The tracking performances are
evaluated by the average estimation error, which is defined as

ARE(xt) =

L∑

l=1

∥∥∥xl
t − xt

∥∥∥

L
,

(20)

where xl
t denotes the estimation fusion of the state xt at

ensemble l and L = 1000 is the number of ensemble runs.
The tracking performances of the local sensors, CFE, and CI
method are illustrated in Figure 2, which shows the results of
the average estimation error with respect to sampling time t
for the local sensors, CFE, and CI method, respectively, where
the CFE is calculated for R = 1, 2, 10 separately.

From Figure 2, we see that the average estimation error
of CFE is consistently smaller than the local sensors as well
as the CI method for all the choice of R = 1, 2, 10, which
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Figure 3: The average estimation error with respect to t for the local
sensors, CFE, and CI method for Rv = [0.5 0; 0 0.5] and R(i)

w =
[3 0; 0 4], where the CFE is calculated for R = 1, 2, 10 separately.
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Figure 4: The average estimation error with respect to t for the
local sensors, CFE, and CI method for Rv = [5 0; 0 5] and R(i)

w =
[3 0; 0 4], where the CFE is calculated for R = 1, 2, 10 separately.

verified that the proposed CFE method is more accurate
compared with the CI method. Also, the average estimation
errors are almost the same with respect to different values of
R, which experimentally illustrate that CFE is insensitive to
the value of R.

The next simulation is carried out for the same dynamic

system as above, but the covariances of the noises vt and w(i)
t

are Rv = [0.5 0; 0 0.5] and R(i)
w = [3 0; 0 4], respectively.

The resulted tracks and average estimation errors are shown
in Figure 3. We can achieve the same results from this
simulation that the CFE method is more accurate than CI
method and the performances of CFE for different values of
R are very close to each other.

Figure 4 is the tracks and average estimation errors when

Rv = [5 0; 0 5] and R(i)
w = [3 0; 0 4]. The maximal

estimation error through the process in the three simulations
are listed in Table 1.

Case 2. Consider
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Figure 5: The average estimation error with respect to t for the local
sensors, CFE, and CI method for Rv = [0.05 0; 0 0.05] and R(i)

w =
[1 0; 0 2], where the CFE is calculated for R = 1, 2, 10 separately.
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Figure 6: The average estimation error with respect to t for the local
sensors, CFE, and CI method for Rv = [0.5 0; 0 0.5] and R(i)

w =
[3 0; 0 4], where the CFE is calculated for R = 1, 2, 10 separately.

In this case, also three simulations are carried out for differ-
ent values of the covariances of the noises vt, and R(i)

w respec-
tively, and the other conditions are the same as in Case 1.

The tracks in this case are the same with Case 1. The
average estimation errors through the process are illustrated
in Figures 5–7. The improved performances of CFE are
evidently better than CI when fusing the two local estimates,
especially when the covariances of the noises are larger as in
Figures 6 and 7. In fact, the performance of CI method in
these two simulations are almost the same with local sensor 2,
which is more accurate than local sensor 1. This comparison
shows that CFE is a more stable method for distributed
fusion because it always has a significant improvement when
fusing the local estimates, while the CI method may just lead
to the a local sensor estimate.

The maximal estimation error through the process in the
three simulations are listed in Table 2.
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Table 1: Comparison of the maximal estimation error through the process in the three simulations.

Simulation
Maximal squared estimation error

Sensor 1 Sensor 2 CFE R = 1 CFE R = 2 CFE R = 10 CI

1 3.3750 2.9707 2.7223 2.7601 2.7280 3.2137

2 14.0788 16.3843 9.0723 9.0220 9.1505 10.1641

3 43.6527 30.6748 20.7948 20.8013 21.3269 28.3822

Table 2: Comparison of the maximal estimation error through the process in the three simulations.

Simulation
Maximal squared estimation error

Sensor 1 Sensor 2 CFE R = 1 CFE R = 2 CFE R = 10 CI

1 3.2650 2.9283 2.1412 2.1670 2.1692 2.4373

2 15.3545 13.6833 11.8701 11.9099 11.9364 15.3535

3 38.7475 31.1737 27.2534 27.2287 27.3080 30.7442
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Figure 7: The average estimation error with respect to t for the
local sensors, CFE, and CI method for Rv = [5 0; 0 5] and R(i)

w =
[3 0; 0 4], where the CFE is calculated for R = 1, 2, 10 separately.

From Tables 1 and 2, we can see that the maximal esti-
mation errors of CFE are much smaller than that of CI and
the local sensors, which verified that the proposed CFE is
a robust fusion estimation. Meanwhile, the performance of
CFE is insensitive to the choice of R.

5.2. Sensitivity of the Value of R. In this simulation, we focus
on the performance of CFE with respect to different values
of R. This experiment explores the average estimation error
by Monte-Carlos simulation. Suppose that the true initial
state x0 and the local covariances of estimation error at
this moment are known, that is, x0 = [52.3246 2.2814],
Pi

0 = [0.2419 − 0.0456; −0.0456 0.2501] (i = 1, 2). The
dynamic system is the same as that of Case 1 in last the

subsection and Rv = [1 0; 0 1] and R(i)
w = [1 0; 0 2]. We

only consider the one step estimation fusion and use the CFE
to fuse the one step estimates x̂1

1 and x̂2
1 when the value of R

varies from 1 to 100.
The fused estimation error with respect to R for 100 runs

illustrated in Figure 8, where the blue line is the estimation
error of the first 10 runs and the red line is the average
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Figure 8: The estimation fusion error with respect to the value of R
for 100 runs, where the blue line is the estimation error of the first
10 runs and the red line is the average estimation error for the 100
runs.

estimation error for the 100 runs with respect to R. From
Figure 8, we see that the estimation error is nearly unchanged
even when the value of R varies from 1 to 100, which verifies
that the proposed CFE is not only a robust fusion but also a
stable method for the choice of R.

6. Conclusions

In this paper, we propose a method using a mini-max
strategy to get a robust fusion estimation in distributed
multi-sensor systems for localization and tracking. This
method is under the basic assumption that the normalized
estimation error of local sensors are norm bounded, thus
we can characterize the feasible set of the true state by the
intersection of some ellipsoids. Then we proposed the mini-
max fusion estimation in order to minimize the worst-case
squared error. However, the resulted optimization problem is
in fact looking for the Chebyshev center of the interaction of
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the ellipsoids, which is non-convex in nature. We relax it and
get an approximate Chebyshev center by solving a relaxed
SDP problem. The resulted estimation fusion is not a linear
combination of local estimates. Judging from the simulation
results, the proposed CFE method is a robust estimation
fusion and more accurate compared with the CI method.
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