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Regression is used to quantify the relationship between
response variables and some covariates of interest. Standard
mean regression has been one of the most applied statistical
methods formany decades. It aims to estimate the conditional
expectation of the response variable given the covariates.
However, quantile regression is desired if conditional quantile
functions such as median regression are of interest. Quantile
regression has emerged as a useful supplement to standard
mean regression. Also, unlike mean regression, quantile
regression is robust to outliers in observations and makes
very minimal assumptions on the error distribution and
thus is able to accommodate nonnormal errors. �e value
of “going beyond the standard mean regression” has been
illustrated in many scientific subjects including economics,
ecology, education, finance, survival analysis, microarray
study, growth charts, and so on. In addition, inference on
quantiles can accommodate transformation of the outcome
of the interest without the problems encountered in standard
mean regression. Overall, quantile regression offers a more
complete statisticalmodel than standardmean regression and
now has widespread applications.

�ere has been a great deal of recent interest in Bayesian
approaches to quantile regression models and the appli-
cations of these models. In these approaches, uncertain
parameters are assigned prior distributions based on expert
judgment and updated using observations through the Bayes
formula to obtain posterior probability distributions. In this
special issue on “Quantile regression and beyond in statistical
analysis of data,” we have invited a few papers that address
such issues. �e first paper of this special issue addresses
a fully Bayesian approach that estimates multiple quantile

levels simultaneously in one step by using the asymmetric
Laplace distribution for the errors, which can be viewed as
a mixture of an exponential and a scaled normal distribution.
�is method enables characterizing the likelihood function
by all quantile levels of interest using the relation between two
distinct quantile levels. �e second paper presents a new link
function for distribution–specific quantile regression based
on vector generalized linear and additive models to directly
model specified quantile levels. �e third paper presents a
novel modeling approach to study the effect of predictors of
various types on the conditional distribution of the response
variable.�e fourth paper introduces the regularized quantile
regression method using pairwise absolute clustering and
sparsity penalty, extending from mean regression to quantile
regression setting. �e final paper of this special issue uses
Bayesian quantile regression for studying the retirement
consumption puzzle, which is defined as the drop in con-
sumption upon retirement, using the cross-sectional data of
the Malaysian Household Expenditure Survey 2009/2010.
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We propose a novel modeling framework to study the effect of covariates of various types on the conditional distribution of the
response. The methodology accommodates flexible model structure, allows for joint estimation of the quantiles at all levels, and
provides a computationally efficient estimation algorithm. Extensive numerical investigation confirms good performance of the
proposedmethod.Themethodology ismotivated by and applied to a lactating sow study,where the primary interest is to understand
how the dynamic change of minute-by-minute temperature in the farrowing rooms within a day (functional covariate) is associated
with low quantiles of feed intake of lactating sows, while accounting for other sow-specific information (vector covariate).

1. Introduction

Many modern applications routinely collect data on study
participants comprising scalar responses and covariates of
various types, vector, function, and image, and the main
question of interest is to examine how the covariates affect
the response. For example, in our motivating experimental
study, the goal is to analyze how the minute-by-minute daily
temperature and humidity of the farrowing rooms, where
sows are placed after giving birth for nursing, affect their
feed intake during a lactation period. The covariates consist
of temperature profile, humidity, and sow age, where the
response is a total amount of daily feed intake of sows. A
popular approach in these cases is to use a nonparametric
framework and assume that the mixed covariates solely affect
the mean response; see Cardot et al. [1], James [2], Ramsay
and Silverman [3, 4], Ferraty and Vieu [5, 6], Goldsmith
et al. [7], McLean et al. [8], and others. However, for our
application, while it is important to study the mean feed
intake, animal scientists are often more concerned with the
left tail of the feed intake distribution. This is because low
feed intake of lactating sows could lead to many serious
issues, including decrease in milk production and negative

impact on the sows reproductive system; see, for reference,
Quiniou and Noblet [9], Renaudeau and Noblet [10], St-
Pierre et al. [11], among others. In this paper we focus on
regression models that study the effects of covariates on
the entire distribution of response. Our contribution is the
development of a modeling framework that accommodates a
comprehensive study of various types (vector and functional)
of covariates on a scalar response.

Quantile regression models the effect of scalar/vector
covariates beyond the mean response; it provides a more
comprehensive study of the covariates on the response and
has attracted great interest [12, 13]. For prespecified quantile
levels, quantile regression models the conditional quantiles
of the response as a function of the observed covariates;
this approach has been extended more recently to ensure
noncrossing of quantile functions [14]. Quantile regression
has been also extended to handle functional covariates.
Cardot et al. [15] discussed quantile regression models by
employing a smoothing spline modeling based approach.
Kato [16] considered the same problem and used a functional
principal component (fPC) based approach. Both papers
mainly discussed the case of having a single functional
covariate and it is not clear how to extend them to the
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case where there are multiple functional covariates or mixed
covariates (vector and functional).

More recently, Tang and Cheng [17], Lu et al. [18], and
Yu et al. [19] studied quantile regression when the covariates
are of mixed types and introduced the partial functional
linear quantile regression modeling framework.The first two
publications used fPC basis while the last one considered
partial quantile regression (PQR) basis. These approaches
all are suitable when the interest is studying the effect of
covariate at a particular quantile level and do not handle the
study of covariate effects at simultaneous quantile levels due
to the well-known crossing-issue.

Ferraty et al. [20] and Chen and Müller [21] con-
sidered a different perspective and studied the effect of
a functional predictor on the quantiles of the response
by modeling the conditional distribution of the response
directly. However their approach is limited to one functional
predictor. In this paper we fill this gap and propose a
unifying modeling framework and estimation technique that
allows studying the effect of mixed type covariates (i.e.,
scalar, vector, and functional) on the conditional distri-
bution of a scalar response in a computationally efficient
manner.

Let 𝑄𝑌|𝑋(⋅)(𝜏) denote the 𝜏th conditional quantile of 𝑌
given a functional covariate 𝑋(⋅), and let 𝐹𝑌|𝑋(⋅)(𝑦) denote
the conditional distribution of 𝑌 given 𝑋(⋅). We model the
conditional distribution using a generalized function-on-
function regression framework, i.e., 𝐹𝑌|𝑋(⋅)(𝑦) = 𝐸[1(𝑌 ≤
𝑦) | 𝑋(⋅)] = 𝑔−1{∫𝑋(𝑡)𝛽(𝑡, 𝑦)𝑑𝑡}, where 1(⋅) is an
indicator function and 𝑔 is the logit link function, and we
study the conditional quantiles by exploiting the relationship
between 𝑄𝑌|𝑋(⋅)(𝜏) and 𝐹𝑌|𝑋(⋅)(𝑦) through 𝑄𝑌|𝑋)(⋅)(𝜏) =
inf{𝑦 : 𝐹𝑌|𝑋(⋅)(𝑦) ≥ 𝜏} for 0 < 𝜏 < 1. The advantage
and contribution of our proposed method mainly come
from the following reasons: (1) our modeling approach is
spline-based, and as a result it can easily accommodate
smooth effects of scalar variables as well as of functional
covariates and (2) our estimation approach is based on
a single step function-on-function (or function-on-scalar)
penalized regression, which enables efficient implementation
by exploiting off-the-shelf software and leads to competitive
computations.

The remainder of the paper is structured as follows.
Section 2 discusses the details of the proposed method and
Section 3 describes the estimation procedure and extensions.
Section 4 performs a thorough simulation study evaluating
the performance of the proposedmethod and its competitors.
We apply the proposed method to analyze the sow data
in Section 5. We conclude the paper with a discussion in
Section 6.

2. Methodology

2.1. Statistical Framework. Let 𝑖 be index subjects, 𝑗 index
repeated measurements, 𝑛 the number of subjects, and 𝑚𝑖
the number of observations for subject 𝑖. Suppose we observe
{𝑌𝑖,X𝑖1, 𝑋𝑖2, {𝑡𝑖𝑗, 𝑋𝑖3(𝑡𝑖𝑗)}1≤𝑗≤𝑚𝑖}1≤𝑖≤𝑛, where𝑌𝑖 is the response,
which is a scalar random variable, X𝑖1 is a 𝑝-dimensional

vector of nuisance covariates, 𝑋𝑖2 is a scalar covariate, and
𝑋𝑖3(⋅) is a functional covariate, which is assumed to be square-
integrable on a closed domainT.

We propose the following model for the conditional
distribution of 𝑌𝑖 given X𝑖1,𝑋𝑖2, and𝑋𝑖3(⋅):

𝐹𝑌𝑖|X𝑖1 ,𝑋𝑖2,𝑋𝑖3(⋅) (𝑦) = 𝐸 {1 (𝑌𝑖 ≤ 𝑦) | X𝑖1, 𝑋𝑖2, 𝑋𝑖3 (⋅)}

= 𝑔−1 {𝛽0 (𝑦) + X𝑇𝑖1𝛽1 + 𝑋𝑖2𝛽2 (𝑦)

+ ∫𝑋𝑖3 (𝑡) 𝛽3 (𝑡, 𝑦) 𝑑𝑡} ,
(1)

where 𝐹(⋅) denotes the conditional distribution function as
before, 𝑔(⋅) is a known, monotone link function, namely,
the logit link function defined as 𝑔(𝑥) = log{𝑥/(1 − 𝑥)}
for arbitrary scalar 𝑥 ∈ [0, 1], 𝛽0(⋅) is an unknown and
smooth functional intercept,𝛽1 is a𝑝-dimensional parameter
capturing the linear additive effect of the covariate vectorX𝑖1,𝛽2(⋅) is an unknown and smooth function, and 𝛽3(⋅, ⋅) is an
unknown and smooth bivariate function. Here, the effect of
the nuisance covariates X𝑖1 is 𝛽1; it is assumed to be constant
over 𝑦 while the smooth intercept 𝛽0(𝑦) is 𝑦-variant. The
effect of 𝑋𝑖2 is 𝛽2(𝑦), which varies smoothly over 𝑦; 𝛽3(⋅, 𝑦)
quantifies 𝑦-variant linear effects of the covariate 𝑋𝑖3(⋅). If
the parameter function 𝛽2(⋅) is zero then the covariate 𝑋𝑖2
has no effect on the distribution of the response 𝑌𝑖, which is
equivalent to 𝑋𝑖2 having no effect on any quantile level of 𝑌𝑖.
Similarly, it is easy to see that a null effect, say 𝛽3(⋅, ⋅) ≡ 0,
is equivalent to the case that the functional covariate 𝑋𝑖3(⋅)
has no effect on any quantile level of the response. Chen and
Müller [21] (CM, henceforth) considered a similar model;
however, their approach is restrictive to a single functional
covariate. We discuss the differences between their method
and ours in Section 2.2

To explain our ideas, we consider the case that the
functional covariates are observed without noise on a fine,
regular, and common grid of sampling points, i.e., 𝑡𝑖𝑗 = 𝑡𝑗
with 𝑗 = 1, . . . , 𝑚 for all 𝑖. Bear in mind, this assumption
is made for illustration only, and our framework can be
extended to more general cases, including settings where the
functional covariate is observed with noise and at irregular
sampling points; see Section 3.3.

2.2. Modeling of the Covariate Effects. We model 𝛽0(𝑦) and𝛽2(𝑦) by using prespecified, truncated univariate basis. Let
{𝐵0,𝑑0(⋅) : 𝑑0 = 1, . . . , 𝜅0} and {𝐵1,𝑑1(⋅) : 𝑑1 = 1, . . . , 𝜅1}
be two bases of dimensions 𝜅0 and 𝜅1, respectively. 𝛽0(𝑦) ≈∑𝜅0
𝑑0=1

𝐵0,𝑑0(𝑦)𝜃0,𝑑0 and 𝛽2(𝑦) ≈ ∑𝜅1
𝑑1=1

𝐵1,𝑑1(𝑦)𝜃1,𝑑1 , where𝜃0,𝑑0 ’s and 𝜃1,𝑑1 ’s are unknown basis coefficients.We represent
𝛽3(𝑡, 𝑦) using the tensor product of two univariate bases
functions, {𝐵𝑡2,𝑑2(𝑡) : 𝑑2 = 1, . . . , 𝜅2,𝑡} and {𝐵𝑦2,𝑑󸀠2(𝑦) : 𝑑

󸀠
2 =

1, . . . , 𝜅2,𝑦}, where 𝜅2,𝑡 and 𝜅2,𝑦 are the bases dimensions;
𝛽3(𝑡, 𝑦) ≈ ∑𝜅2,𝑡

𝑑2=1
∑𝜅2,𝑦
𝑑󸀠2=1

𝐵𝑡2,𝑑2(𝑡)𝐵
𝑦

2,𝑑󸀠2
(𝑦)𝜃2,𝑑2 ,𝑑󸀠2 , where 𝜃2,𝑑2 ,𝑑󸀠2 ’s

are unknown basis coefficients. In practice, the integration
term ∫𝑋𝑖3(𝑡)𝛽3(𝑡, 𝑦)𝑑𝑡 is approximated by Riemann integra-
tion ∫𝑋𝑖3(𝑡)𝛽3(𝑡, 𝑦)𝑑𝑡 ≈ ∑𝑚𝑗=1𝑋𝑖3(𝑡𝑗)𝛽3(𝑡𝑗, 𝑦)(𝑡𝑗+1 − 𝑡𝑗) but
other numerical approximation scheme can be also used.
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Define 𝑍𝑖(𝑦) = 1(𝑌𝑖 ≤ 𝑦) for 𝑦 ∈ R. In practice
for each 𝑦 in a fine grid, we view 𝑍𝑖(𝑦) as a binary-
valued random functional variable. It follows that model (1)
can be written equivalently as a generalized function-on-
function regression model through relating the “artificial”
binary functional response 𝑍𝑖(𝑦) and the mixed covariates
X𝑖1, 𝑋𝑖2, 𝑋𝑖3(⋅).Thismodel can be fitted by using, for example,
the ideas of Scheipl et al. [22] which we briefly summarize
next.

Model (1) can be represented as the following generalized
additive model:

𝐸 [𝑍𝑖 (𝑦) | X𝑖1, 𝑋𝑖2, 𝑋𝑖3 (⋅)] = 𝑔−1 {𝜂𝑖 (𝑦)} ;

𝜂𝑖 (𝑦) =
𝜅0

∑
𝑑0=1

𝐵0,𝑑0 (𝑦) 𝜃0,𝑑0 + X𝑇𝑖1𝛽1

+ 𝑋𝑖2
𝜅1

∑
𝑑1=1

𝐵1,𝑑1 (𝑦) 𝜃1,𝑑1 +
𝑚

∑
𝑗=1

(𝑡𝑗+1 − 𝑡𝑗)𝑋𝑖3 (𝑡𝑗)

⋅
𝜅2,𝑡

∑
𝑑2=1

𝜅2,𝑦

∑
𝑑󸀠2=1

𝐵𝑡2,𝑑2 (𝑡𝑗) 𝐵
𝑦

2,𝑑󸀠2
(𝑦) 𝜃2,𝑑2 ,𝑑󸀠2 .

(2)

For convenience, we use the notation 𝐵𝑋𝑖2 ,𝑑1(𝑦) =
𝑋𝑖2𝐵1,𝑑1(𝑦), 𝑋𝑖3(𝑡𝑗) = (𝑡𝑗+1 − 𝑡𝑗)𝑋𝑖3(𝑡𝑗). We let B0(𝑦) =
{𝐵0,1(𝑦), . . . , 𝐵0,𝜅0(𝑦)}𝑇, B𝑖1(𝑦) = {𝐵𝑋𝑖2 ,1(𝑦), . . . , 𝐵𝑋𝑖2 ,𝜅1(𝑦)}𝑇,
B2,𝑡(𝑡) = {𝐵𝑡2,1(𝑡), . . . , 𝐵𝑡2,𝜅2,𝑡(𝑡)}𝑇, B2,𝑦(𝑦) = {𝐵𝑦2,1(𝑦), . . . ,
𝐵𝑦2,𝜅2,𝑦(𝑦)}𝑇, 𝜃0 = {𝜃0,1, . . . , 𝜃0,𝜅0}𝑇, 𝜃1 = {𝜃1,1, . . . , 𝜃1,𝜅1}𝑇, and
Θ2 = [𝜃2,𝑑2 ,𝑑󸀠2]1≤𝑑2≤𝜅2,𝑡 ,1≤𝑑󸀠2≤𝜅2,𝑦 is a coefficient matrix. Then
𝛽3(𝑡, 𝑦) = {B2,𝑡(𝑡) ⊗B2,𝑦(𝑦)}𝑇𝜃2, where 𝜃2 is the vectorization
of Θ2. We let X̃𝑖3(t) = {𝑋𝑖3(𝑡1), . . . , 𝑋𝑖3(𝑡𝑚)}𝑇 ∈ R𝑚,
B2(t, 𝑦) = {B2,𝑡(𝑡1) ⊗ B2,𝑦(𝑦), . . . ,B2,𝑡(𝑡𝑚) ⊗ B2,𝑦(𝑦)}𝑇 ∈
R𝑚×𝜅2,𝑡𝜅2,𝑦 , and B𝑖2(𝑦) = B2(t, 𝑦)𝑇X̃𝑖3(t). Now model (2) can
be written as

𝐸 [𝑍𝑖 (𝑦) | X𝑖1, 𝑋𝑖2, 𝑋𝑖3 (⋅)] = 𝑔−1 {X𝑇𝑖1𝛽1 + B0 (𝑦)𝑇 𝜃0
+ B𝑖1 (𝑦)𝑇 𝜃1 + B𝑖2 (𝑦)𝑇 𝜃2} .

(3)

The general idea is to set the bases dimensions 𝜅0, 𝜅1, 𝜅2,𝑡,
and 𝜅2,𝑦 to be sufficiently large to capture the complexity of
the coefficient functions and control the smoothness of the
estimator through some roughness penalties. This approach
of using roughness penalties has been widely used; see, for
example, Eilers and Marx [23]; Ruppert [24]; Wood [25, 26]
among many others.

It is important to emphasize that, even in the case of
a single functional covariate, our methodology differs from
[21] in two directions: (1) our proposed method is based on
modeling the unknown smooth coefficient functions using
prespecified basis function expansion and using penalties
to control their roughness. In contrast, CM uses data-
driven basis and chooses the number of basis functions
through the percentage of explained variance (PVE) of the
functional predictors. This key difference allows our method
to accommodate covariates of different types as well as

nonlinear effects. (2) Our estimation approach is based on a
single step penalized function-on-function regression while
CM uses pointwise estimation based on functional principal
component bases and thus requires fitting multiple general-
ized regressions. This nice feature leads to an computational
advantage.

3. Estimation

3.1. Estimation via Penalized Log-Likelihood. Let {𝑦ℓ : ℓ =
1, . . . , 𝐿} be a set of equally spaced points in the range of
the response variable, 𝑌𝑖’s. Conditioning on {X𝑖1, 𝑋𝑖2, 𝑋𝑖3(⋅)},
we model 𝑍𝑖(𝑦ℓ) as independently distributed Bernoulli
variables with mean 𝜇𝑖(𝑦ℓ), where 𝑔{𝜇𝑖(𝑦ℓ)} = 𝜂𝑖(𝑦ℓ). The
coefficients 𝛽1, 𝜃0, 𝜃1, and 𝜃2 are estimated by minimizing
the penalized log-likelihood criterion:

− 2L (𝛽1, 𝜃0, 𝜃1, 𝜃2 | {𝑍𝑖 (𝑦ℓ) : ∀𝑖, ℓ}) + 𝜆0𝑃0 (𝜃0)
+ 𝜆1𝑃1 (𝜃1) + 𝜆2,𝑡𝑃2,𝑡 (𝜃2) + 𝜆2,𝑦𝑃2,𝑦 (𝜃2) ,

(4)

where L is the log-likelihood function of data {𝑍𝑖(𝑦ℓ) : ℓ =1, . . . , 𝐿}1≤𝑖≤𝑛, 𝜆0, 𝜆1, 𝜆2,𝑡, and 𝜆2,𝑦 are smoothing parameters,
which control the balance between the model fit and its
complexity, and𝑃0(⋅),𝑃1(⋅),𝑃2,𝑡(⋅), and𝑃2,𝑦(⋅) are all penalties.

There are several choices to define the penalty matrix
in nonparametric regression; see Eilers and Marx [23]
and Wood [26]. We use quadratic penalties which penal-
ize the size of the curvature of the estimated coefficient
functions. Let 𝑃0(𝜃0) = ∫{𝜕2𝛽0(𝑦)/𝜕𝑦2}2𝑑𝑦 = 𝜃𝑇0D0𝜃0,
where D0 is of dimension 𝜅0 × 𝜅0 with its (𝑠, 𝑠󸀠) ele-
ment equal to ∫{𝜕2𝐵0,𝑠(𝑦)/𝜕𝑦2}{𝜕2𝐵0,𝑠󸀠(𝑦)/𝜕𝑦2}𝑑𝑦. Similarly,
𝑃1(𝜃1) = ∫{𝜕2𝛽2(𝑦)/𝜕𝑦2}2𝑑𝑦 = 𝜃𝑇1D1𝜃1, where D1 is
of dimension 𝜅1 × 𝜅1 with its (𝑠, 𝑠󸀠) element equal to
∫{𝜕2𝐵1,𝑠(𝑦)/𝜕𝑦2}{𝜕2𝐵1,𝑠󸀠(𝑦)/𝜕𝑦2}𝑑𝑦. As 𝛽3(⋅, ⋅) is a bivariate
function, the choice of penalty implies penalizing the size
of curvature in each direction, respectively: 𝑃2,𝑡(𝜃2) =
∫ ∫{𝜕2𝛽3(𝑦, 𝑡)/𝜕𝑡2}2𝑑𝑦𝑑𝑡 = 𝜃𝑇2D2,𝑡𝜃2, where D2,𝑡 = P2,𝑡 ⊗
I𝜅2,𝑦 is of dimension 𝜅2,𝑦𝜅2,𝑡 × 𝜅2,𝑦𝜅2,𝑡 with the (𝑠, 𝑠󸀠)
element of P2,𝑡 equal to ∫{𝜕2𝐵𝑡2,𝑠(𝑡)/𝜕𝑡2}{𝜕2𝐵𝑡2,𝑠󸀠(𝑡)/𝜕𝑡2}𝑑𝑡
for some orthonormal spline bases. Similarly, 𝑃2,𝑦(𝜃2) =
∫ ∫{𝜕2𝛽3(𝑦, 𝑡)/𝜕𝑦2}2𝑑𝑦𝑑𝑡 = 𝜃𝑇2D2,𝑦𝜃2, where D2,𝑦 = I𝜅2,𝑡 ⊗
P2,𝑦 is of dimension 𝜅2,𝑦𝜅2,𝑡 × 𝜅2,𝑦𝜅2,𝑡 with the (𝑠, 𝑠󸀠) element
of P2,𝑦 equal to ∫{𝜕2𝐵𝑦2,𝑠(𝑦)/𝜕𝑦2}{𝜕2𝐵𝑦2,𝑠󸀠(𝑦)/𝜕𝑦2}𝑑𝑦.

Criterion (4) can be viewed as a penalized quasilikelihood
(PQL) of the corresponding generalized linear mixed model

𝑍𝑖 (𝑦ℓ) | 𝛽1, 𝜃0, 𝜃1, 𝜃2 ∼ Bernoulli (𝜇𝑖 (𝑦ℓ)) ,
ℓ = 1, . . . , 𝐿;

𝜃0 ∼ 𝑁(0, 𝜆−10 D−0 ) ;
𝜃1 ∼ 𝑁(0, 𝜆−11 D−1 ) ;
𝜃2 ∼ 𝑁 (0,D−2 ) ,

(5)

where D−0 is the generalized inverse matrix of D0; D−1 and
D−2 = (𝜆2,𝑡D2,𝑡 + 𝜆2,𝑦D2,𝑦)− are defined similarly. Wood [26]
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discusses an alternative way to deal with the rank-deficient
matrices in the context of restricted maximum likelihood
(REML) estimation. Here we do not account for the depen-
dence over 𝑦; see Scheipl et al. [22] for a general formulation.
See also Ivanescu et al. [27] who use the mixed model
representation of a similar regression model to (5), but with a
Gaussian functional response.The smoothing parameters are
estimated using REML.

3.2. Extension to Nonlinear Model. One advantage of the
proposed framework is that it can be easily extended to
allow for more flexible effects, i.e., extending the ideas
to accommodate multiple covariates, scalar or functional,
and varied types of effects. In particular, the smooth effect
𝑋𝑖2𝛽2(𝑦) can be replaced by ℎ1(𝑋𝑖2, 𝑦) and ∫𝑋𝑖3(𝑡)𝛽3(𝑡, 𝑦)𝑑𝑡
by∫ ℎ2{𝑋𝑖3(𝑡), 𝑡, 𝑦}𝑑𝑡, where ℎ1(⋅, ⋅) and ℎ2(⋅, ⋅, ⋅) are unknown
bivariate and trivariate smooth functions, respectively; see
Scheipl et al. [22] and Kim et al. [28]. These changes require
little additional computational effort. The modeling and
estimation follow roughly similar ideas as Scheipl et al. [22].
We consider the nonlinear model in the simulation study
for the case of having a scalar covariate only, i.e., ℎ1(𝑋𝑖, 𝑦),
and the corresponding results are presented in Section S1.1
of the Supplementary Materials. The results show excellent
prediction performance compared to the competitive nonlin-
ear quantile regressionmethod, namely, constrained B-spline
smoothing (COBS) [29].

3.3. Extension to Sparse and Noisy Functional Covariates.
In practice the functional covariates are often observed at
irregular times across the units and the measurements are
possibly corrupted by noises. In such case, one needs to
first smooth and denoise the trajectories before fitting. When
the sampling design of the functional covariate is dense, the
common approach is to smooth each trajectory using splines
or local polynomial smoothing, as proposed in Ramsay and
Silverman [3] and Zhang and Chen [30]. When the design
is sparse, the smoothing can be done by pooling all the
subjects and following the PACE method proposed in Yao
et al. [31]. As recovering the trajectories has been extensively
discussed in the literatures, we do not review the procedures
here. Instead, we discuss some available computing resources
that can be used to fit these methods. In our numerical
study, we used fpca.sc function in the refund R package
[32] for recovering the latent trajectories, irrespective of a
sampling design (dense or sparse). Alternatively, one can use
fpca.face [33] in refund for regular dense design and
face.spare [34] in the R package face [35] for irregular
sparse design. Once the latent trajectories are estimated, they
can be used in the fitting criterion (4).

3.4. Estimation of Conditional Quantile. Let 𝛽̂1, 𝜃̂0, 𝜃̂1, and
𝜃̂2 be parameter estimates in (5). It follows that the estimated
distribution function 𝐹𝑌𝑖|X𝑖1 ,𝑋𝑖2,𝑋𝑖3(⋅)(𝑦) can be obtained by
plugging in the estimated coefficients. The 𝜏th conditional
quantile is estimated by inverting the estimated distribution,
i.e., 𝑄𝑌𝑖|X𝑖1 ,𝑋𝑖2 ,𝑋𝑖3(⋅)(𝜏) = inf{𝑦 : 𝐹𝑌𝑖|X𝑖1 ,𝑋𝑖2 ,𝑋𝑖3(⋅)(𝑦) ≥ 𝜏}. The

estimated distribution function is not a monotonic function
yet. In practice we suggest to first apply a monotonization
method as described in Section 3.5 and then estimate the
conditional quantiles by inverting the resulting estimated
distribution.

3.5. Monotonization and Implementation. While a condi-
tional quantile function is nondecreasing, the resulting esti-
mated quantiles may not be. Two approaches are widely used:
one is to monotonize the estimated conditional distribution
function and the other is to monotonize the estimated
conditional quantile function. We choose the former as
𝐹𝑌𝑖|X𝑖1 ,𝑋𝑖2,𝑋𝑖3(⋅)(𝑦) is readily available at dense grid points 𝑦ℓ’s.
Weuse an isotonic regressionmodel [36] formonotonization,
which imposes an order restriction; this is done by using the R
function isoreg. Other monotonization approaches include
Chernozhukov et al. [37], which was employed in Kato [16].

Our approach is implemented by first creating an artificial
binary response and then fitting a penalized function-on-
function regression model and using the logit link function.
Fitting models in (4) can be done by extending the ideas
of Ivanescu et al. [27] for Gaussian functional response;
the extension of the model to the non-Gaussian functional
response has recently been studied and implemented by
Scheipl et al. [22] as the pffr function in refund package
[32].

4. Simulation Study

4.1. Simulation Setting. In this section we evaluate the
empirical performance of the proposed method. We present
results for the case when we have both functional and scalar
covariates; additional results when there is only a single
scalar or a single functional covariate are discussed in the
Supplementary Materials, Section S1.

Suppose the observed data for the 𝑖th subject are
[𝑌𝑖, 𝑋1𝑖, {(𝑊𝑖1, 𝑡𝑖1), . . . , (𝑊𝑖𝑚𝑖 , 𝑡𝑖𝑚𝑖)}], 𝑡𝑖𝑗 ∈ [0, 10], where

𝑋1𝑖 𝑖.𝑖.𝑑∼ 𝑈𝑛𝑖𝑓(−16, 16),𝑊𝑖𝑗 = 𝑋2𝑖(𝑡𝑖𝑗) + 𝜖𝑖𝑗 for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤
𝑗 ≤ 𝑚𝑖. Let𝑋2𝑖(𝑡𝑖𝑗) = 𝜇(𝑡𝑖𝑗)+∑4𝑘=1 𝜉𝑖𝑘𝜙𝑘(𝑡𝑖𝑗)+𝜖𝑖𝑗, where 𝜇(𝑡) =
𝑡 + sin(𝑡), 𝜙𝑘(𝑡) = cos{(𝑘 + 1)𝜋𝑡/10}/√5 for odd values of 𝑘,
𝜙𝑘(𝑡) = sin{𝑘𝜋𝑡/10}/√5 for even values of 𝑘, 𝜉𝑖𝑘 𝑖𝑖𝑑∼ 𝑁(0, 𝜆𝑘),
(𝜆1, 𝜆2, 𝜆3, 𝜆4) = {16, 9, 7.56, 5.06}, and 𝜖𝑖𝑗 𝑖𝑖𝑑∼ 𝑁(0, 𝜎2𝜖 ). We
assume three cases for generating response 𝑌𝑖:

(i) Gaussian:𝑌𝑖 | 𝑋1𝑖, 𝑋2𝑖(⋅) ∼ 𝑁(2 ∫𝑋2𝑖(𝑡)𝛽(𝑡)𝑑𝑡+2𝑋1𝑖,
52); this corresponds to the quantile regressionmodel
𝑄𝑌|𝑋1 ,𝑋2(⋅)(𝜏) = 2 ∫𝑋2𝑖(𝑡)𝛽(𝑡)𝑑𝑡 + 2𝑋1𝑖 + 5Φ−1(𝜏),
whereΦ(⋅) is the distribution function of the standard
normal;

(ii) Mixture ofGaussians:𝑌𝑖 | 𝑋1𝑖,𝑋2𝑖(⋅) ∼ 0.5𝑁(∫𝑋2𝑖(𝑡)𝛽(𝑡)𝑑𝑡+
𝑋1𝑖,12) + 0.5𝑁(3 ∫𝑋2𝑖(𝑡)𝛽(𝑡)𝑑𝑡+ 3𝑋1𝑖, 42), where the
true quantiles can be approximated numerically by
using qnorMix function in the R package norMix;

(iii) Gaussian with heterogeneous error: 𝑌𝑖 | 𝑋1𝑖,𝑋2𝑖(⋅) ∼ 𝑁(2 ∫𝑋2𝑖(𝑡)𝛽(𝑡)𝑑𝑡 + 2𝑋1𝑖, 52 ∫𝑋2𝑖(𝑡)2𝑑𝑡/



Journal of Probability and Statistics 5

∑4𝑘=1 𝜆𝑘); the true quantiles are given by
𝑄𝑌|𝑋1 ,𝑋2(⋅)(𝜏) = 2 ∫𝑋2𝑖(𝑡)𝛽(𝑡)𝑑𝑡 + 2𝑋1𝑖 +

5√∫𝑋2𝑖(𝑡)2𝑑𝑡/∑4𝑘=1 𝜆𝑘Φ−1(𝜏).

Let 𝛽(𝑡) = ∑4𝑘=1 𝛽𝑘𝜙𝑘(𝑡), where 𝛽𝑘 = 1 for 𝑘 = 1, . . . , 4.
For each case, we use different combinations of signal to

noise ratio (SNR), sample size, and sampling designs to gen-
erate 500 simulated datasets. We define SNR as√∑4𝑘=1 𝜆𝑘/𝜎𝜖,
and we consider five levels of noise: SNR = {150, 10, 5, 2, 1}.
Two levels of sample size are 𝑛 = 100 and 𝑛 = 1000. Two
sampling designs are considered: (i) sparse design, where {𝑡𝑖𝑗 :𝑗 = 1, . . . , 𝑚} are𝑚 = 15 randomly selected points from a set
of 30 equispaced grids in [0, 10]; and (ii) dense design, where
the sampling points {𝑡𝑖𝑗 = 𝑡𝑗 : 𝑗 = 1, . . . , 𝑚} are 𝑚 = 30
equispaced time points in [0, 10].

The performance is evaluated on a test set of 100 subjects,
for whichwe have {𝑋1𝑖∗ , (𝑊𝑖∗𝑗, 𝑡𝑖∗𝑗), 𝑗 = 1, . . . , 𝑚} available, in
terms of mean absolute error (MAE) for quantile levels 𝜏 =
0.05, 0.1, 0.25, and 0.5:

MAE (𝜏) = 1
100
100

∑
𝑖∗=1

󵄨󵄨󵄨󵄨󵄨𝑄𝑖∗ (𝜏) − 𝑄𝑖∗ (𝜏)
󵄨󵄨󵄨󵄨󵄨 . (6)

4.2. CompetingMethods. Wedenote the proposedmethod by
Joint QR to emphasize the single step estimation approach.
We compare our method with two alternative approaches:
(1) a variant of our proposed approach using pointwise
estimation, denoted by Pointwise QR.This approach consists
of fittingmultiple regressionmodels with binomial link func-
tion as implemented by the penalized functional regression
pfr, developed byGoldsmith et al. [7], of therefundpackage
for generalized scalar responses; (2) a modified version of
the CM method, denoted by Mod CM, that we developed
to account for additional scalar covariates and which fits
multiple generalized linear models with scalar covariates and
fPC scores as predictors; (3) a linear quantile regression
approach using the quantile loss function and the partial
quantile regression bases for functional covariates, proposed
by Yu et al. [19] and denoted by PQR.Notice that although the
formulation of the first twomethods implicitly accounts for a
varying effect of the covariates on the response distribution,
they do not ensure that this effect is smooth. The third
approach can only estimate a specific quantile rather than the
entire conditional distribution. Note that all the competing
methods are monotonized for a fair comparison.

The R function pfr can incorporate both scalar/vector
and functional predictors by adopting a mixed effects model
framework. The functional covariates are presmoothed by
fPC analysis [31]. Throughout the simulation study we fix
PVE as 0.95 for fPC analysis to determine the number of
principal components and use REML to select the smoothing
parameters for our proposed methods. Other basis settings
are set to their default values. We use 100 equally distanced
points between the minimum andmaximum of the observed
𝑌𝑖’s to set the grid {𝑦ℓ : ℓ = 1, . . . , 𝐿} for the conditional
distribution function.

4.3. Simulation Results. Tables 1 and 2 show the accuracy
of the quantile prediction for the two cases (normal and
mixture) when the functional covariate is observed sparsely
and the sample size is 𝑛 = 100 (Table 1) and 𝑛 = 1000
(Table 2). Table 3 presents the prediction accuracy for the
case of heteroskedasticity with sparsely observed functional
covariates. The results based on dense sampling design show
similar patterns and thus are relegated to the supplement; see
Section S1.3. The comparison of running times is presented
in Table 4.

For the case when the response is Gaussian, Tables 1
and 2 suggest that the Joint QR typically outperforms its
competitors especially for lower quantile levels (𝜏 = 0.05
and 𝜏 = 0.1). For very small noise level (SNR = 150), PQR
performs the best, followed closely by the proposed Joint QR.
The variant Pointwise QR, which has a poorer performance,
is generally better than the modified CM approach. As
expected, as the sample size increases (𝑛 = 1000), all the
accuracy results improve; the proposed Joint QR continues
to yield most accurate quantiles for the low quantile levels.
For mixture of Gaussians, the results are somewhat similar.
The accuracy of the quantile estimators with the Pointwise
QR improves greatly; in fact the Joint QR and Pointwise
QR outperform the other approaches for quantile levels 𝜏 =
0.05, 0.1, 0.25 irrespective of the SNR. Finally, Table 3 shows
that the results for Gaussian with heterogeneous error are
close to those for the case of Gaussian. Again, the proposed
method has competitive performance in terms of prediction
accuracy.

Table 4 compares the three methods that involve esti-
mating the conditional distribution in terms of the running
time required for fitting. The times are reported based on
a computer with a 2.3 GHz CPU and 8GB of RAM. Not
surprisingly by fitting the model a single time, Joint QR is the
fastest, in some cases being order ofmagnitude faster than the
rest. Pointwise QR can be up to twice as fast as Mod CM.

For completeness, we also compare our proposedmethod
to the appropriate competitivemethods for the cases (1) when
there is a single scalar covariate and (2) when there is a single
functional covariate. In the SupplementaryMaterials, Section
S1.1 discusses the former case and compares Joint QR and
Pointwise QR with the linear quantile regression (LQR) [12],
implemented by rq function in the R package quantreg, and
the constrained B-splines nonparametric regression quantiles
(COBS), implemented by the cobs function in the R pack-
age COBS [29], in an extensive simulation experiment that
involves both linear quantile settings and nonlinear quantile
settings. Overall the results show that the proposed methods
have similar behavior as LQR; see Table S1. Furthermore we
consider the proposed method and its variant with nonlinear
modeling of the conditional distribution as discussed in
Section 3.2, which we denote with Joint QR (NL) for joint
fitting andPointwiseQR (NL) for pointwise fitting.Nonlinear
versions of the proposed methods have an excellent MAE
performance, which is comparable to or better than that of
the COBS method.

Finally, Section S1.2 in the Supplementary Materials
discusses the simulation study for the case of having a single
functional covariate and compares the proposed methods
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Table 1: Average MAE (standard error in parentheses) of the predicted 𝜏-level quantile for the case of having a scalar covariate and a sparsely
observed functional covariate. Sample size 𝑛 = 100.
Distribution SNR Method 𝜏 = 0.05 𝜏 = 0.1 𝜏 = 0.25 𝜏 = 0.5

Normal 150

Joint QR 3.67 (0.03) 3.53 (0.03) 3.30 (0.02) 3.17 (0.02)
Pointwise QR 4.96 (0.03) 4.61 (0.03) 4.22 (0.02) 4.18 (0.02)
Mod CM 6.04 (0.03) 5.81 (0.03) 5.55 (0.03) 5.14 (0.03)
PQR 3.17 (0.04) 2.71 (0.03) 2.31 (0.02) 2.16 (0.02)

Normal 10

Joint QR 6.32 (0.03) 6.00 (0.03) 5.76 (0.02) 5.73 (0.02)
Pointwise QR 7.44 (0.04) 6.85 (0.03) 6.39 (0.03) 6.28 (0.03)
Mod CM 8.20 (0.04) 8.10 (0.04) 8.04 (0.04) 8.01 (0.04)
PQR 6.82 (0.05) 6.11 (0.04) 5.34 (0.03) 5.09 (0.02)

Normal 5

Joint QR 7.84 (0.04) 7.34 (0.03) 6.93 (0.03) 6.84 (0.03)
Pointwise QR 8.91 (0.04) 8.12 (0.04) 7.45 (0.03) 7.26 (0.03)
Mod CM 9.34 (0.04) 9.23 (0.04) 9.14 (0.05) 9.06 (0.05)
PQR 8.68 (0.06) 7.81 (0.05) 6.74 (0.03) 6.34 (0.02)

Normal 2

Joint QR 10.05 (0.05) 9.22 (0.04) 8.47 (0.03) 8.28 (0.03)
Pointwise QR 10.91 (0.06) 9.86 (0.04) 8.87 (0.04) 8.54 (0.03)
Mod CM 10.85 (0.05) 10.55 (0.05) 10.34 (0.06) 10.21 (0.06)
PQR 11.21 (0.08) 10.03 (0.06) 8.56 (0.04) 7.96 (0.03)

Normal 1

Joint QR 11.50 (0.06) 10.41 (0.05) 9.40 (0.04) 9.11 (0.03)
Pointwise QR 12.12 (0.06) 10.88 (0.05) 9.70 (0.04) 9.30 (0.03)
Mod CM 11.95 (0.06) 11.46 (0.06) 11.07 (0.06) 11.05 (0.07 )
PQR 12.82 (0.08) 11.38 (0.06) 9.60 (0.04) 8.86 (0.03)

Mixture 150

Joint QR 6.92 (0.06) 6.23 (0.06) 6.16 (0.06) 4.81 (0.06)
Pointwise QR 8.10 (0.08) 6.80 (0.06) 6.66 (0.06) 5.25 (0.06)
Mod CM 9.18 (0.07) 8.99 (0.07) 8.93 (0.07) 7.90 (0.07)
PQR 8.43 (0.06) 7.18 (0.04) 6.22 (0.04) 5.48 (0.14)

Mixture 10

Joint QR 9.02 (0.06) 7.95 (0.05) 7.85 (0.05) 6.19 (0.06)
Pointwise QR 10.11 (0.07) 8.52 (0.05) 7.95 (0.05) 6.42 (0.06)
Mod CM 11.33 (0.07) 10.95 (0.07) 10.79 (0.07) 9.80 (0.08)
PQR 10.72 (0.08) 8.99 (0.05) 7.63 (0.04) 5.33 (0.09)

Mixture 5

Joint QR 10.18 (0.06) 8.91 (0.05) 8.53 (0.05) 6.82 (0.05)
Pointwise QR 11.18 (0.07) 9.38 (0.05) 8.58 (0.05) 6.98 (0.05)
Mod CM 12.19 (0.07) 11.75 (0.07) 11.52 (0.07) 10.47 (0.08)
PQR 12.12 (0.09) 10.12 (0.06) 8.40 (0.04) 5.73 (0.07)

Mixture 2

Joint QR 11.93 (0.07) 10.26 (0.05) 9.46 (0.05) 7.61 (0.05)
Pointwise QR 12.68 (0.08) 10.63 (0.06) 9.51 (0.05) 7.70 (0.05)
Mod CM 13.33 (0.08) 12.60 (0.08) 12.27 (0.08) 11.08 (0.10)
PQR 14.16 (0.10) 11.72 (0.06) 9.55 (0.04) 6.41 (0.05)

Mixture 1

Joint QR 13.17 (0.08) 11.19 (0.05) 10.06 (0.05) 8.04 (0.05)
Pointwise QR 13.71 (0.09) 11.44 (0.06) 10.10 (0.05) 8.13 (0.05)
Mod CM 14.16 (0.08) 13.22 (0.08) 12.71 (0.09) 11.44 (0.11)
PQR 15.44 (0.11) 12.84 (0.07) 10.23 (0.04) 6.89 (0.04)

with CM in terms of MAE as well as computation time;
see results displayed in Tables S2 and S3. The results show
that the proposed Joint QR is comparable to CM in terms
of the prediction accuracy and has less computation time.
In our simulation study we also consider the joint fitting of
the model by treating the binary response as normal and use
pffr [27] with Gaussian link, denoted by Joint QR (G).

5. Sow Data Application

Our motivating application is an experimental study carried
out at a commercial farm in Oklahoma from July 21, 2013, to
August 19, 2013 [38]. The study comprises 480 lactating sows
of different parities (i.e., number of previous pregnancies,
which serves as a surrogate for age and body weight) that

were observed during their first 21 lactation days; their
feed intake was recorded daily as the difference between
the feed offer and the feed refusal. In addition the study
contains information on the temperature and humidity of the
farrowing rooms, each recorded at five minute intervals. The
final dataset we used for the analysis consists of 475 sows after
five sows with unreliable measurements were removed by the
experimenters.

The experiment was conducted to gain better insights
into the way that the ambient temperature and humidity of
the farrowing room affect the feed intake of lactating sows.
Previous studies seem to suggest a reduction in the sow’s
feed intake due to heat stress: above 29∘C sows decrease feed
intake by 0.5 kg per additional degree in temperature [9].
Studying the effect of heat stress on lactating sows is a very
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Table 2: AverageMAE (standard error in parentheses) of the predicted 𝜏-level quantile for the case of having a scalar covariate and a sparsely
observed functional covariate. Sample size 𝑛 = 1000.
Distribution SNR Method 𝜏 = 0.05 𝜏 = 0.1 𝜏 = 0.25 𝜏 = 0.5

Normal 150

Joint QR 1.68 (0.01) 1.65 (0.01) 1.62 (0.01) 1.60 (0.01)
Pointwise QR 1.94 (0.01) 1.92 (0.01) 1.88 (0.01) 1.81 (0.01)
Mod CM 1.93 (0.01) 1.88 (0.01) 1.87 (0.01) 1.87 (0.01)
PQR 1.72 (0.01) 1.61 (0.01) 1.51 (0.01) 1.48 (0.01)

Normal 10

Joint QR 5.45 (0.02) 4.97 (0.02) 4.66 (0.02) 4.65 (0.02)
Pointwise QR 5.64 (0.02) 5.13 (0.02) 4.78 (0.02) 4.75 (0.02)
Mod CM 5.69 (0.02) 5.21 (0.02) 4.87 (0.02) 4.85 (0.02)
PQR 5.85 (0.02) 5.37 (0.02) 4.81 (0.02) 4.60 (0.02)

Normal 5

Joint QR 7.34 (0.03) 6.54 (0.02) 5.94 (0.02) 5.85 (0.02)
Pointwise QR 7.53 (0.03) 6.69 (0.02) 6.04 (0.02) 5.94 (0.02)
Mod CM 7.53 (0.03) 6.77 (0.02) 6.18 (0.02) 6.06 (0.02)
PQR 7.84 (0.03) 7.05 (0.02) 6.16 (0.02) 5.81 (0.02)

Normal 2

Joint QR 9.97 (0.03) 8.70 (0.03) 7.62 (0.02) 7.38 (0.02)
Pointwise QR 10.15 (0.03) 8.85 (0.03) 7.71 (0.02) 7.45 (0.02)
Mod CM 10.12 (0.03) 8.93 (0.03) 7.87 (0.03) 7.60 (0.03)
PQR 10.55 (0.04) 9.34 (0.03) 7.91 (0.03) 7.34 (0.02)

Normal 1

Joint QR 11.69 (0.04) 10.10 (0.03) 8.68 (0.03) 8.32 (0.03)
Pointwise QR 11.88 (0.04) 10.25 (0.04) 8.77 (0.03) 8.39 (0.03)
Mod CM 11.85 (0.04) 10.37 (0.04) 8.96 (0.03) 8.57 (0.03)
PQR 12.29 (0.04) 10.77 (0.04) 9.02 (0.03) 8.29 (0.03)

Mixture 150

Joint QR 4.56 (0.02) 4.44 (0.02) 4.33 (0.03) 3.68 (0.03)
Pointwise QR 4.34 (0.03) 4.24 (0.02) 4.20 (0.03) 3.66 (0.04)
Mod CM 4.68 (0.03) 4.59 (0.02) 4.38 (0.03) 4.01 (0.03)
PQR 7.84 (0.03) 6.45 (0.02) 5.29 (0.02) 3.19 (0.01)

Mixture 10

Joint QR 7.56 (0.03) 6.79 (0.02) 6.14 (0.03) 5.02 (0.03)
Pointwise QR 7.49 (0.03) 6.61 (0.02) 5.88 (0.03) 5.02 (0.03)
Mod CM 7.67 (0.04) 6.97 (0.03) 6.17 (0.03) 5.52 (0.04)
PQR 10.11 (0.04) 8.29 (0.03) 6.71 (0.02) 3.62 (0.02)

Mixture 5

Joint QR 9.20 (0.04) 7.13 (0.03) 6.94 (0.03) 5.6 (0.03)
Pointwise QR 9.17 (0.04) 7.01 (0.03) 6.71 (0.03) 5.58 (0.03)
Mod CM 9.32 (0.04) 7.37 (0.03) 7.08 (0.03) 6.18 (0.04)
PQR 11.46 (0.04) 9.36 (0.03) 7.49 (0.03) 4.32 (0.02)

Mixture 2

Joint QR 11.57 (0.05) 9.02 (0.03) 8.05 (0.03) 6.35 (0.03)
Pointwise QR 11.58 (0.05) 8.98 (0.04) 7.90 (0.03) 6.31 (0.03)
Mod CM 11.69 (0.05) 9.38 (0.04) 8.38 (0.04) 7.01 (0.04)
PQR 13.49 (0.05) 10.95 (0.04) 8.61 (0.03) 5.32 (0.02)

Mixture 1

Joint QR 13.18 (0.05) 10.31 (0.04) 8.79 (0.04) 6.79 (0.03)
Pointwise QR 13.21 (0.05) 10.28 (0.04) 8.69 (0.04) 6.73 (0.03)
Mod CM 13.26 (0.05) 10.67 (0.04) 9.21 (0.04) 7.47 (0.04)
PQR 14.93 (0.06) 12.05 (0.04) 9.35 (0.04) 5.96 (0.02)

important scientific question because of a couple of reasons.
First, the reduction of feed intake of the lactating sows is
associated with a decrease in both their bodyweight (BW)
and milk production, as well as the weight gain of their litter
[10, 39, 40]. Sows with poor feed intake during lactation
continue the subsequent reproductive period with negative
energy balance [41], which leads to preventing the onset of a
new reproductive cycle. Second, heat stress reduces farrowing
rate (number of sows that deliver a new litter) and number

of piglets born [42]; the reduction in reproduction due to
seasonality is estimated to cost 300 million dollars per year
for the swine industry [11]. Economic losses are estimated to
increase [43] because high temperatures are likely to occur
more frequently due to global warming [44].

Our primary goal is to understand the thermal needs
of the lactating sows for proper feeding behavior during
the lactation time. We are interested in how the interplay
between the temperature and humidity of the farrowing room
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Table 3: AverageMAE (standard error in parentheses) of the predicted 𝜏-level quantile for the case of heteroskedasticitywith a scalar covariate
and a sparsely observed functional covariate.

Sample size SNR Method 𝜏 = 0.05 𝜏 = 0.1 𝜏 = 0.25 𝜏 = 0.5

100 150

Joint QR 4.41 (0.03) 3.99 (0.02) 3.48 (0.02) 3.25 (0.02)
Pointwise QR 5.40 (0.03) 4.84 (0.03) 4.26 (0.02) 4.21 (0.03)
Mod CM 6.00 (0.03) 5.71 (0.03) 5.42 (0.03) 5.39 (0.03)
PQR 4.38 (0.05) 3.43 (0.03) 2.52 (0.02) 2.14 (0.02)

100 10

Joint QR 6.93 (0.03) 6.40 (0.03) 5.89 (0.02) 5.76 (0.02)
Pointwise QR 7.94 (0.04) 7.20 (0.03) 6.48 (0.03) 6.30 (0.03)
Mod CM 8.41 (0.04) 8.22 (0.04) 8.13 (0.04) 8.05 (0.04)
PQR 7.76 (0.06) 6.57 (0.04) 5.47 (0.03) 5.08 (0.02)

100 5

Joint QR 8.44 (0.04) 7.72 (0.03) 7.05 (0.03) 6.86 (0.03)
Pointwise QR 9.44 (0.05) 8.50 (0.04) 7.57 (0.03) 7.26 (0.03)
Mod CM 9.65 (0.05) 9.40 (0.05) 9.36 (0.05) 9.26 (0.05)
PQR 9.51 (0.07) 8.25 (0.05) 6.87 (0.03) 6.33 (0.02)

100 2

Joint QR 10.68 (0.05) 9.63 (0.04) 8.60 (0.03) 8.30 (0.03)
Pointwise QR 11.55 (0.06) 10.29 (0.05) 9.00 (0.04) 8.54 (0.03)
Mod CM 11.27 (0.05) 10.80 (0.05) 10.43 (0.05) 10.40 (0.06)
PQR 12.07 (0.08) 10.53 (0.06) 8.66 (0.04) 7.92 (0.03)

100 1

Joint QR 12.23 (0.06) 10.91 (0.05) 9.54 (0.04) 9.11 (0.03)
Pointwise QR 12.87 (0.07) 11.39 (0.05) 9.85 (0.04) 9.29 (0.03)
Mod CM 12.43 (0.06) 11.80 (0.06) 11.19 (0.06) 11.09 (0.07)
PQR 13.70 (0.09) 11.91 (0.06) 9.70 (0.04) 8.84 (0.03)

1000 150

Joint QR 2.87 (0.01) 2.42 (0.01) 1.89 (0.01) 1.65 (0.01)
Pointwise QR 3.06 (0.01) 2.60 (0.01) 2.07 (0.01) 1.86 (0.01)
Mod CM 3.13 (0.01) 2.65 (0.01) 2.10 (0.01) 1.91 (0.01)
PQR 3.10 (0.01) 2.47 (0.01) 1.78 (0.01) 1.48 (0.01)

1000 10

Joint QR 6.21 (0.02) 5.45 (0.02) 4.79 (0.02) 4.66 (0.02)
Pointwise QR 6.38 (0.02) 5.59 (0.02) 4.90 (0.02) 4.77 (0.02)
Mod CM 6.46 (0.02) 5.70 (0.02) 5.01 (0.02) 4.86 (0.02)
PQR 6.68 (0.03) 5.82 (0.02) 4.92 (0.02) 4.60 (0.02)

1000 5

Joint QR 8.08 (0.03) 7.01 (0.02) 6.07 (0.02) 5.85 (0.02)
Pointwise QR 8.27 (0.03) 7.15 (0.02) 6.16 (0.02) 5.94 (0.02)
Mod CM 8.30 (0.03) 7.26 (0.02) 6.31 (0.02) 6.08 (0.02)
PQR 8.64 (0.03) 7.50 (0.03) 6.27 (0.02) 5.81 (0.02)

1000 2

Joint QR 10.76 (0.03) 9.21 (0.03) 7.76 (0.02) 7.38 (0.02)
Pointwise QR 10.95 (0.04) 9.34 (0.03) 7.85 (0.03) 7.45 (0.02)
Mod CM 10.92 (0.03) 9.45 (0.03) 8.01 (0.03) 7.60 (0.03)
PQR 11.38 (0.04) 9.79 (0.03) 8.03 (0.03) 7.34 (0.02)

1000 1

Joint QR 12.54 (0.04) 10.65 (0.03) 8.83 (0.03) 8.32 (0.03)
Pointwise QR 12.74 (0.04) 10.81 (0.04) 8.92 (0.03) 8.39 (0.03)
Mod CM 12.70 (0.04) 10.91 (0.04) 9.10 (0.03) 8.56 (0.03)
PQR 13.16 (0.05) 11.26 (0.04) 9.13 (0.03) 8.29 (0.03)

Table 4: Average computing time (in seconds) of the three approaches that involve estimating the conditional distribution for the case of
having a scalar covariate and a densely observed functional covariate.

Distribution Method 𝑛 = 100 𝑛 = 1000

Normal
Joint QR 12 133

Pointwise QR 148 271
Mod CM 278 511

Mixture
Joint QR 13 154

Pointwise QR 151 296
Mod CM 327 532
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affects the feed intake demeanor of lactating sows of different
parities. We focus on three specific time points during the
lactation period—beginning (lactation day 4), middle (day
11), and end (day 18)—and the analyses are done separately
for each time point. We consider two types of responses that
are meant to assess the feed intake behavior using the current
and the previous lactation days. The first one quantifies the
absolute change in the feed intake over two consecutive days
and the second one quantifies the relative change and takes
into account the usual sow’s feed intake. We define them
formally after introducing some notation.

Let 𝐹𝐼𝑖𝑗 be the 𝑗th measurement of the feed intake
observed for the 𝑖th sow and denote by the lactation day 𝐿𝐷𝑖𝑗
when 𝐹𝐼𝑖𝑗 is measured; here 𝑗 = 1, . . . , 𝑛𝑖. Most sows are
observed every day within the first 21 lactation days and thus
have 𝑛𝑖 = 21. First define the absolute change in the feed
intake between two consecutive days asΔ(1)

𝑖(𝑗+1)
= 𝐹𝐼𝑖(𝑗+1)−𝐹𝐼𝑖𝑗

for 𝑗 that satisfies 𝐿𝐷𝑖(𝑗+1)−𝐿𝐷𝑖𝑗 = 1. For instance,Δ(1)𝑖(𝑗+1) = 0
means there was no change in feed intake of sow 𝑖 between
the current day and the previous day, while Δ(1)

𝑖(𝑗+1)
< 0means

that the feed intake consumed by the 𝑖th sow in the current
day is smaller than the feed intake consumed in the previous
day. However, the same amount of change in the feed intake
may reflect some stress level for a sow who typically eats a lot
and a more serious stress level for a sow that usually has a
lower appetite. For this, we define the relative change in the
feed intake by Δ(2)

𝑖(𝑗+1)
= (𝐹𝐼𝑖(𝑗+1) − 𝐹𝐼𝑖𝑗)/{(𝐿𝐷𝑖(𝑗+1) − 𝐿𝐷𝑖𝑗) ⋅

𝑇𝐴 𝑖}, where 𝑇𝐴 𝑖 is the trimmed average of feed intake of 𝑖th
sow calculated as the average feed intake after removing the
lowest 20% and highest 20% of the feed intake measurements
{𝐹𝐼𝑖1, . . . , 𝐹𝐼𝑖𝑛𝑖} taken for the corresponding sow. Here 𝑇𝐴 𝑖 is
surrogate for the usual amount of feed intake of the 𝑖th sow.
Trimmed average is used instead of the common average, to
remove outliers of very low feed intakes in first few lactating
days. For example, consider the situation of two sows: sow
𝑖 that typically consumes 10lb food per day and sow 𝑖󸀠 that
consumes 5lb food per day. A reduction of 5lb in the feed
intake over two consecutive days corresponds to Δ(2)

𝑖(𝑗+1)
=

−50% for the 𝑖th sow and Δ(2)
𝑖󸀠(𝑗+1)

= −100% for the 𝑖󸀠th sow.
Clearly both sows are stressed (negative value) but the second
sow is stressed more, as its absolute relative change is larger;
in view of this we refer to the second response as the stress
index. Due to the construction of the two types of responses,
the data size varies for lactation days 4 (𝑗 = 3), 11 (𝑗 = 10),
and 18 (𝑗 = 17); for the first response, Δ(1)

𝑖(𝑗+1)
, we have sample

sizes of 233, 350, and 278, whereas for Δ(2)
𝑖(𝑗+1)

the sample sizes
are 362, 373, and 336 for the respective lactation days.

In this analysis we center the attention on the effect of
the ambient temperature and humidity on the 1st quartile of
the proxy stress measures and gain more understanding of
the food consumption of sows that are most susceptible to
heat stress. While the association between the feed intake of
lactating sows and the ambient conditions of the farrowing
room has been an active research area for some time,
accounting for the temperature daily profile has not been
considered yet hitherto. Figure 1 displays the temperature

and humidity daily profiles recorded at a frequency of 5-
minute window intervals for three different days. Preliminary
investigation reveals that temperature is negatively correlated
with humidity at each time; this phenomenon is caused
because the farm uses cool cell panels and fans to control
the ambient temperature. Furthermore, it appears that there
is a strong pointwise correlation between temperature and
humidity. In view of these observations, in our analysis we
consider the daily average of humidity. Exploratory analysis
of the feed intake behavior of the sows suggests similarities
for the sows with parity greater than older sows (ones who
are at their third pregnancy or higher); thus we use a parity
indicator instead of the actual parity of the sow. The parity
indicator 𝑃𝑖 is defined as one, if the 𝑖th sow has parity one
and zero otherwise.

For the analysis we smooth daily temperature measure-
ments of each sow using univariate smoother with 15 cubic
regression bases and quadratic penalty; REML is used to
estimate smoothing parameter. The smoothed temperature
curve for sow 𝑖’s 𝑗th repeatedmeasure is denoted by𝑇𝑖𝑗(𝑡), 𝑡 ∈[0, 24), and the corresponding daily average humidity is
denoted by𝐴𝐻𝑖𝑗. Both temperature and average humidity are
centered before being used in the analysis.

For convenience we denote the response with Δ 𝑖𝑗 by
removing the superscript. In this application for fixed 𝑗, Δ 𝑖𝑗
corresponds to 𝑌𝑖 in Section 2, 𝑃𝑖 and 𝐴𝐻𝑖𝑗 correspond to
scalar covariates𝑋𝑖2, and𝑇𝑖𝑗(𝑡) and𝐴𝐻𝑖𝑗 ⋅𝑇𝑖𝑗(𝑡) correspond to
functional covariates𝑋𝑖3(⋅). We first estimate the conditional
distribution ofΔ 𝑖𝑗 given temperature𝑇𝑖𝑗(𝑡), average humidity
𝐴𝐻𝑖𝑗, parity 𝑃𝑖, and interaction 𝐴𝐻𝑖𝑗 ⋅ 𝑇𝑖𝑗(𝑡). Specifically for
each of lactation days of interest (𝑗 = 3, 10 and 17) we create a
set of 100 equispaced grid of points between the fifth smallest
and fifth largest values of Δ 𝑖𝑗’s and denote the grids with
D = {𝑑ℓ : ℓ = 1, . . . , 100}. Then we create artificial binary
responses, {1(Δ 𝑖𝑗 ≤ 𝑑ℓ) : ℓ = 1, . . . , 100}, and fit the following
model for 𝐹𝑖𝑗(𝑑ℓ) = 𝐸[1(Δ 𝑖𝑗 ≤ 𝑑ℓ) | 𝑇𝑖𝑗(𝑡), 𝐴𝐻𝑖𝑗, 𝑃𝑖]:

𝐸 [1 (Δ 𝑖𝑗 ≤ 𝑑ℓ) | 𝑇𝑖𝑗 (𝑡) , 𝐴𝐻𝑖𝑗, 𝑃𝑖] = 𝑔−1 {𝛽0 (𝑑ℓ)

+ 𝛽1 (𝑑ℓ) 𝑃𝑖 + 𝛽2 (𝑑ℓ) 𝐴𝐻𝑖𝑗 + ∫𝛽3 (𝑑ℓ, 𝑡) 𝑇𝑖𝑗 (𝑡) 𝑑𝑡

+ 𝐴𝐻𝑖𝑗 ∫𝛽4 (𝑑ℓ, 𝑡) 𝑇𝑖𝑗 (𝑡) 𝑑𝑡} ,

(7)

where 𝛽0(⋅) is a smooth intercept, 𝛽1(⋅) quantifies the smooth
effect of young sows,𝛽2(⋅) describes the effect of the humidity,
and 𝛽3(⋅, 𝑡) and 𝛽4(⋅, 𝑡) quantify the effect of the temperature
at time 𝑡 as well as the interaction between the temperature at
time 𝑡 and average humidity.Wemodel𝛽0(⋅)using 20 univari-
ate basis functions, 𝛽1(⋅) and 𝛽2(⋅) using five univariate basis
functions and 𝛽3(⋅, ⋅) and 𝛽4(⋅, ⋅) using tensor product of two
univariate bases functions (total of 25 functions).Throughout
the analysis, cubic B-spline bases are used and REML is
used for estimating smoothing parameters. The estimated
conditional distribution, denoted by 𝐹𝑖𝑗(𝑑), is monotonized
by fitting isotonic regression to {(𝑑ℓ, 𝐹𝑖𝑗(𝑑ℓ)) : ℓ = 10, . . . , 90};
ten smallest and ten largest 𝑑ℓ and the corresponding values
of 𝐹𝑗(𝑑ℓ) are removed to avoid boundary effects. By abuse of
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Figure 1: Temperature (∘C) and humidity (%) observed profiles (dashed) for three randomly selected days and the corresponding smoothed
ones (solid); the x-axis begins at 14H (2PM).
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Figure 2: Temperature curves with which prediction of quantiles is made. Dashed black line is pointwise average of temperature curves and
solid lines are pointwise quartiles; all curves are smoothed.

notation, 𝐹𝑖𝑗(𝑑) denotes the resulting monotonized estimated
distribution. Finally, we obtain estimated first quartiles, i.e.,
quantiles at 𝜏 = 0.25 level, by inverting 𝐹𝑖𝑗(𝑑), namely, 𝑄(𝜏 =
0.25 | 𝑇𝑖𝑗(𝑡), 𝐴𝐻𝑖𝑗, 𝑃𝑖) = inf{𝑑 : 𝐹𝑖𝑗(𝑑) ≥ 0.25}.

To understand the relationship between the lactating
sows feed intake and the thermal condition of the farrowing
room, we systematically compare and study the predicted
quantiles of two responses at combinations of different values
of temperature, humidity, and parity. For each of three
lactation days (𝑗 = 3, 10, 17) we consider three values of
average humidity (first quartile, median, and third quartile)
and two levels of parity (0 for older sows and 1 for younger
sows). Based on the experimenters’ interest, for the functional

covariate𝑇𝑖𝑗(⋅)we consider seven smooth temperature curves
given in Figure 2. Each of these curves is obtained by first
calculating pointwise quantiles of temperature at five-minute
intervals for a specific level and then smoothing it; we
considered quantiles levels 𝜂 = 0.2, 0.3, . . ., and 0.8. In short,
for each of three lactation days we obtain the first quartile
of two responses for 42 different combinations (3 humidity
values × 2 parity levels × 7 temperature curves) using the
proposed method. To avoid extrapolation we ascertain that
(i) there are reasonablymany observedmeasurements at each
of the combinations and (ii) bottom 25% of the responses are
not dominantly from one of the parity group; see distribution
of each response by the parity in Figure 3.
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Figure 3: Top panels: back-to-back boxplots of the absolute change in feed intake at a specific day by parity. Bottom panels: back-to-back
boxplots of the relative change in feed intake at a specific day by parity.

The resulting predicted quantiles are shown in Figure 4.
Here we focus our discussion on predicted quantile of Δ(2)

𝑖(𝑗+1)

at quantile level 𝜏 = 0.25 for lactation day 4 (𝑗 = 3)—the
first plot of the second row in Figure 4. The results suggest
that the feed intake of older sows (parity 𝑃𝑖 = 0; grey
lines) is less affected by high temperatures than younger sows
(black lines); this finding is in agreement with Bloemhof et
al. [42]. We also observe that the effects of humidity and
temperature on feed intake change are strongly intertwined.
For illustration, we focus on lactation day 4 (𝑗 = 3) again for
younger sows (black lines). For medium humidity (dashed
lines) their feed intake stays pretty constant as temperature
increases, while for low and high humidity levels (solid and
dotted lines, respectively) it changes with an opposite direc-
tion. Specifically when temperature increases, the predicted
first quartile of Δ(2)

𝑖(𝑗+1)
increases for low humidity (solid line)

whereas it decreases for high humidity (dotted line). Our
results imply that high humidity (dotted line) is related to
a negative impact of high temperature on feed intake while
low humidity (solid line) alleviates it; and this finding is
consistent with a previous study [45]. The analysis result
suggests to keep low humidity levels in order to maintain
healthy feed intake behavior, when ambient temperature is
above 60th percentile; high humidity levels are desirable for
cooler ambient temperature.

Interpretation of the other results is similar. While the
effects of covariates on feed intake are less apparent toward

the end of lactation period, we still observe similar pattern
across all three lactation days. For the 11th day (𝑗 = 10), the
25th quantile of the feed intake is predicted to decrease when
the temperature stays below the 40th percentile, regardless
of humidity level and sows age. However, it starts increas-
ing with low humidity while it continues decreasing with
high humidity when the temperature rises above the 40th
percentile. Similarly, for the 18th day (𝑗 = 17) when the
temperature rises above the 60th percentile, the predicted
first quartile increases with low humidity while it decreases
with high humidity. The effect of temperature on feed intake
seems less obvious for lactation days 11 and 18 than for day 4;
while the effect may be due to lactation day, it may also be a
result of other factors, such asmore fluctuation and variability
in temperature curves on day 4 than on other two days
(see Figure 2). Overall we conclude that high humidity and
temperature affect the sows feed intake behavior negatively
and young sows (parity one) are more sensitive to heat stress
than older sows (higher parity), especially at the beginning of
lactation period.

6. Discussion

The proposed modeling framework opens up a couple of
future research directions. A first research avenue is to
develop significance tests of null covariate effect. Testing
for the null effect of a covariate on the conditional dis-
tribution of the response is equivalent to testing that the
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Figure 4: Displayed are the predicted quantiles of Δ(1)
𝑖(𝑗+1)

and Δ(2)
𝑖(𝑗+1)

for different parities, average humidity, and temperature levels. In each
of all six panels, black thick lines correspond to the young sows (𝑃𝑖 = 1) and grey thin lines correspond to the old sows (𝑃𝑖 = 0). Line types
indicate different average humidity levels; solid, dashed, and dotted correspond to low, medium, and high average humidity levels (given by
the first quartile, median, and the third quartiles of𝐴𝐻𝑖𝑗), respectively.The seven grids in 𝑥-axis of each panel correspond to the 7 temperature
curves given in the respective panel of Figure 2.

corresponding regression coefficient function is equal to
zero in the associated function-on-function mean regression
model. Such significance tests have been studied when the
functional response is continuous [30, 46]; however their
study for binary-valued functional responses is an open
problem in functional data literature and only recently has
been considered in Chen et al. [47]. Another research avenue
is to do variable selection in the setting where there are many
scalar covariates and functional covariates. Many current
applications collect data with increasing number of mixed
covariates and selecting the ones that have an effect on the

conditional distribution of the response is very important.
This problem is an active research area in functional mean
regression where the response is normal [48, 49]. The
proposed modeling framework has the potential to facilitate
studying such problem.
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In this paper, we are interested in estimating several quantiles simultaneously in a regression context via the Bayesian approach.
Assuming that the error term has an asymmetric Laplace distribution and using the relation between two distinct quantiles of this
distribution, we propose a simple fully Bayesian method that satisfies the noncrossing property of quantiles. For implementation,
we use Metropolis-Hastings within Gibbs algorithm to sample unknown parameters from their full conditional distribution. The
performance and the competitiveness of the underlying method with other alternatives are shown in simulated examples.

1. Introduction

Quantile regression has received increasing attention from
both theoretical and empirical points of view. It is a sta-
tistical procedure intended to estimate conditional quantile
of a response distribution, given a set of covariates, and to
conduct inference about them.

In regression, when we deal with highly skewed data
distribution, traditional mean regression may not explore
interesting aspects of the relationship between the response
variable and the available covariates. Furthermore, in the
presence of outliers, the evaluation of the response average
becomes much more complicated. However, since a set
of quantiles often provides a complete description of the
response distribution conditionally to the given covariates,
quantile regression offers a practical alternative to the tradi-
tional mean regression.

Quantile regression was initially introduced by Koenker
and Bassett [1], where inference proceeds by minimizing
a check loss function. Based on their theory, many other
approaches have been emerged to study the regression quan-
tiles in both frequentist and Bayesian points of view.

In the frequentist framework, different techniques have
been developed in the literature to infer regression quantiles.
To estimate linear regression quantiles, Koenker and Bassett

[1] used linear programming technique, whereas Gutenbrun-
ner and Jurecková [2] considered the corresponding dual
problem whose solution represents the quantile coefficients
estimator. From theoretical point of view, asymptotic nor-
mality and consistency properties are proven in Koenker
and Bassett [1], Zhou et al. [3], and Koenker and Xiao [4].
For nonparametric quantile regression, spline methods are
commonly used for quantile regression fitting (see Nychka
et al. [5], Koenker and Portnoy [6], and Koenker et al. [7]).
Oh et al. [8] proposed, in univariate and bivariate settings,
an approximation of the nonlinear optimization problem by
a sequence of penalized least squares type nonparametric
mean estimation problems. Koenker andMizera [9] explored
the estimation of triograms in bivariate setting. Koenker
et al. [10] proposed an additive models estimation method
for quantile regression based on selecting the smoothing
parameter and constructing confidence bands for nonpara-
metric components, in univariate and bivariate settings. The
univariate regression quantile spline is extended to problems
with several covariates in He and Ng [11] and Li et al. [12]
where, in this latter, regression quantiles are considered in
reproducing kernel Hilbert spaces (RKHS).

In the Bayesian framework, different methods have been
successfully emerged to study quantile regression. This was
pioneered by Yu andMoyeed [13], where the authors specified
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the Bayesian quantile regression model and assumed that
the error terms are iid according to the asymmetric Laplace
distribution (ALD), denoted by ALD(𝜇, 𝜎 = 1, 𝑝) with𝜇 ∈ R being its 𝑝−th quantile, 𝜎 is the scale parameter,
and 𝑝 ∈ [0, 1] are the asymmetry parameters. They also
showed that the Bayesian approach yields a proper full
conditional distribution, even for an improper uniform prior
on the quantile coefficients and they used the Metropolis-
Hastings algorithm for implementation. Further, Kozumi
and Kobayashi [14] and Bernardi et al. [15] considered
that the scale parameter 𝜎 of the ALD is unknown. They
used the location-scale mixture representation of the ALD,
which enables developing a Gibbs sampling algorithm for
the Bayesian quantile regression model. In the literature,
we can also find other methods that extended quantile
regression model. For censored data, Kobayashi et al. [16]
proposed Tobit quantile regression with endogenous vari-
ables and Li and Bradic [17] developed regression adjust-
ment for local adaptive representation of random forests.
In continuous dependent variable case and for variable
selection and coefficient estimation, Alhamzawi et al. [18]
used adaptive LASSO quantile regression and, recently,
Sayed-Ahmed [19] applied this approach for small sample
sizes, whereas Abbas and Thaher [20] developed Bayesian
adaptive Tobit regression. Benoit and Van den Poel [21]
proposed Bayesian quantile regression methods for binary
response data and Alhamzawi and Ali [22] adapted the
quantile regression model to deal with longitudinal ordinal
data.

All these methods mentioned above, from both frequen-
tist and Bayesian points of view, studied single regression
quantile. However, there are many applications where tack-
ling several quantiles at the same time is needed. For this
direction, if one uses methods that deal with single quantile
regression to estimate regression quantiles separately, results
may not be satisfactory. Indeed, it is known that the separate
estimation of a set of quantiles may break the quantile
monotonicity property (see He [23]), which means that
quantile curves may cross.

Fortunately, many approaches have been proposed to
overcome the crossing problem. In the frequentist frame-
work, Liu and Wu [24] and Bondell et al. [25] considered
monotonicity constraints for a fixed number of quantiles in
both linear and nonparametric cases. Sangnier et al. [26]
proposed a nonparametric method that estimates multiple
conditional quantiles simultaneously when assuming that the
quantile functions spans an RKHS. In this work, they choose
an appropriate matrix-valued kernel taking into account the
distance between quantiles.

On the other hand, in simultaneous Bayesian frame-
work, Reich et al. [27] proposed a two-stage semiparametric
method for linear quantile regression, which is one of the
first methods addressing the crossing problem of quantiles.
At the first stage, they used Koenker and Bassett’s [1]
method to estimate quantile coefficients. At the second stage,
these coefficients are reestimated with Bernstein polynomial
basis function with constraints on their coefficients. Later,
Reich [28] proposed a fully Bayesian approach based on
interpolating the quantile function on different quantile

levels using a piecewise Gaussian basis function. Tokdar et
al. [29] proposed a simultaneous linear quantile regression
method for a univariate explanatory variable with a bounded
and convex domain. They showed that a linear quantile,𝑞𝜏(𝑥) = 𝛽0(𝜏) + 𝑥𝛽(𝜏), is monotonically increasing if and
only if 𝛽0(𝜏) and 𝛽(𝜏) are linear combination of two mono-
tonic increasing functions in 𝜏 ∈ [0, 1]. Afterwards, Yang
and Tokdar [30] extended this method to the multivariate
explanatory case. Another two-stage method is proposed by
Rodrigues and Fan [31]. At the first stage, they used the
standard Bayesian quantile regression of Yu and Moyeed
[13] fitted separately at the different quantile levels. They
introduced induced quantiles, at the second stage, using
a relation between quantiles of the ALD distribution. At
the same stage, they used the Gaussian process regression
that monotonizes quantile functions by borrowing strength
from the nearby ones. However, this method is still affected
by the outputs of the first stage since different likelihoods
are used for initial estimates. For nonparametric quan-
tile regression, a cubic B-spline method is considered by
Muggeo et al. [32], solving an 𝐿2 penalisation problem with
monotonicity constraint on spline coefficients. Many recent
works on simultaneous Bayesian quantile regression can be
found in literature such as Das and Ghosal [33], Das and
Ghosal [34], Rodrigues et al. [35], and Petrella and Raponi
[36].

In this paper, our contribution aims at developing a fully
Bayesian approach that estimates multiple quantiles simul-
taneously in one step. Unlike the other Bayesian methods,
our proposed method is not based on misspecification, i.e.,
the ALD is the real underlying response distribution. We
used a relation between quantiles of the ALD distribution
and Metropolis-Hastings within Gibbs algorithm for imple-
mentation. Our proposed method provides parallel quantile
functions estimators and, thus, the noncrossing is a natural
result. Our numerical results show, using specific empirical
criteria, that the estimated regression quantiles respect the
quantile level ordering.

The paper is organised as follows. Section 2 describes the
method presenting the model and establishing the relation
between quantiles of the ALD distribution used in the
estimation procedure. The algorithm associated with the
proposed method is given in Section 3, where we introduce
the location-scale mixture representation of the ALD. In
Section 4, simulated examples are provided to show the
performance and the flexibility of the method, and the final
section presents our conclusion.

2. Simultaneous Bayesian
Estimation of Quantiles

2.1. Model. We consider the quantile regression model

𝑌𝑖 = 𝑞𝑝 (X𝑖) + 𝜖𝑖, 𝑖 = 1, . . . , 𝑛, (1)

with (𝜖𝑖)𝑖 𝑖𝑖𝑑∼ ALD(𝜇 = 0, 𝜎, 𝑝), where 𝜇, 𝜎, and 𝑝,
respectively, are the location, the scale, and the asymmetry
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parameters.This leads to assuming that the response variable𝑌𝑖, given the covariable X𝑖, follows an ALD distribution:

𝑌𝑖 | (𝑞𝑝 (X𝑖) , 𝜎, 𝑝) ∼ ALD (𝑞𝑝 (X𝑖) , 𝜎, 𝑝)∀𝑖 = 1, . . . , 𝑛, (2)

whose probability density function (p.d.f.) is given by

𝑓 (𝑦𝑖; 𝑞𝑝 (x𝑖) , 𝜎, 𝑝)
= 𝑝 (1 − 𝑝)𝜎 exp{−𝜌𝑝 (𝑦𝑖 − 𝑞𝑝 (x𝑖))𝜎 } , (3)

where 𝜌𝑝(𝑢) = 𝑢(𝑝 − 1𝑢<0) is the check loss function. The
explanatory variables X𝑖’s are supposed to be iid distributed
according to an arbitrary continuous distribution, PX, whose
support is X𝑑, X ⊂ R, 𝑑 ≥ 1. In what follows, the function𝑞𝑝(.) and the parameters 𝜎, 𝑝, and PX are supposed to be
unknown.

In all subsequent sections, any quantity in bold represents
a vector; capital letters denote random variables or vectors,
whereas lowercase letters denote observed values of the
corresponding random vectors.

2.2. Bayesian Procedure

2.2.1. Likelihood. To infer simultaneously 𝑠 distinct quantiles
with a fully Bayesian approach, say 𝑞𝜏1 , . . . , 𝑞𝜏𝑠 with distinct
orders 𝜏1, . . . , 𝜏𝑠, of the conditional distribution of 𝑌 | X,
one needs to characterize the likelihood through all these 𝑠
unknown quantiles.

As explained below, this is done first by partitioning the
whole sample into 𝑠 subsamples, which requires a sufficient
number of observations, second by using the relation between
any two quantiles of the ALD distribution, and third by
rewriting the whole likelihood through 𝑠 terms, where the 𝑗-
th term only depends on 𝑞𝜏𝑗 .

(1) Consider the following partition of the whole sample
through 𝑠 subsamples:

(X𝐼𝑗 ,Y𝐼𝑗) = {(X𝑖, 𝑌𝑖)𝑖∈𝐼𝑗} , ∀𝑗 ∈ {1, . . . , 𝑠} , (4)

where 𝐼𝑗 = {(𝑗 − 1)𝑟 + 1, . . . , 𝑗𝑟} with 𝐼𝑗⋂𝐼𝑘 = 0,∀𝑗 ̸= 𝑘, and 𝑗, 𝑘 ∈ {1, . . . , 𝑠}; suppose that 𝑟 = 𝑛/𝑠 is
integer, without loss of generality.

(2) To characterize the likelihood through all quantiles
of interest, we use the relation that links any 𝜏−th
quantile to the 𝑝−th quantile of the underlying ALD
distribution (see Yu and Zhang [37] and Rodrigues
and Fan [31]):

𝑞𝜏 (X) = 𝑞𝑝 (X) + 𝜎𝑔 (𝜏, 𝑝) , (5)

where 𝑔(𝜏, 𝑝) = (1/(1 − 𝑝)) log(𝜏/𝑝)10<𝜏≤𝑝 −(1/𝑝) log((1 − 𝜏)/(1 − 𝑝))1𝑝<𝜏<1.

(3) From (5), we rewrite themodel given by (1) as follows:

Y𝐼𝑗 = q𝜏𝑗,𝐼𝑗 − 𝜎g𝜏𝑗,𝑝 + 𝜖𝐼𝑗 , ∀𝑗 = 1, . . . , 𝑠, (6)

where

Y𝐼𝑗 = (𝑌𝑖𝑗)𝑖𝑗∈𝐼𝑗 ,
q𝜏𝑗,𝐼𝑗 = (𝑞𝜏𝑗 (X𝑖𝑗))𝑖𝑗∈𝐼𝑗 ,
g𝜏𝑗 ,𝑝 = (𝑔 (𝜏𝑗, 𝑝) 1𝑖𝑗∈𝐼𝑗)𝑖𝑗∈𝐼𝑗 ,
𝜖𝐼𝑗 = (𝜖𝑖𝑗)𝑖𝑗∈𝐼𝑗 .

(7)

Then, the likelihood associated with the model given
by (1) is rewritten as the product of 𝑠 likelihoods; each
one only depends on one subsample:

𝐿 (q𝜏1,𝐼1 , . . . , q𝜏𝑠,𝐼𝑠 , 𝜎, 𝑝; x𝐼1 , . . . , x𝐼𝑠 , y𝐼1 , . . . , y𝐼𝑠)
= 𝑠∏
𝑗=1

∏
𝑖𝑗∈𝐼𝑗

𝑝 (1 − 𝑝)𝜎
⋅ exp{{{−𝜌𝑝 (𝑦𝑖𝑗 − (𝑞𝜏𝑗 (x𝑖𝑗) − 𝜎𝑔 (𝜏𝑗, 𝑝)))𝜎 }}} .

(8)

2.2.2. Priors. In this section, we specify the prior distribu-
tions for all unknown quantities. It is worth mentioning
that PX is unknown even it is not our primary interest, and
therefore it should require a prior; but since any prior on
PX that is independent of the prior on ((q𝜏𝑗,𝐼𝑗 )𝑗=1,...,𝑠, 𝜎, 𝑝)
would disappear upon marginalization of the posterior of(PX, (q𝜏𝑗,𝐼𝑗 )𝑗=1,...,𝑠, 𝜎, 𝑝) relatively to PX, we drop it in the
sequel.Thus, it suffices to choose a prior distribution for q𝜏𝑗,𝐼𝑗 ,
for 𝑗 = 1, . . . , 𝑠, 𝜎, and 𝑝.

(1) For the quantiles, we distinguish between the linear
and nonlinear cases.

(a) Linear case. 𝑞𝜏𝑗(X) = 𝛽(0)𝜏𝑗 +XT𝛽𝜏𝑗 , 𝑗 ∈ {1, . . . , 𝑠},
where XT denotes the transpose of X and 𝛽𝜏𝑗 ∈
R𝑑.
Due to (5), one should note that distinct quan-
tiles differ only by the intercept 𝛽(0)𝜏𝑗 , so that all
quantiles of interest have the same slope (𝛽𝜏1 =. . . = 𝛽𝜏𝑠 = 𝛽𝑝); then we consider the unknown
vector parameter 𝛽̌ = (𝛽(0)𝜏1 , . . . , 𝛽(0)𝜏𝑠 ,𝛽𝑝) of
dimension 𝑠 + 𝑑 with Gaussian prior,

𝛽̌ ∼ N𝑠+𝑑 (0, Σ̌0) , (9)

with Σ̌0 being a positive definite square matrix
of dimension 𝑠 + 𝑑.
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(b) Nonlinear case. We define the function ℎ on[0, 1]×X𝑑, by ℎ(𝜏, x) = 𝑞𝜏(x).Weput aGaussian
process prior on ℎ, ℎ ∼ GP(0, 𝑘), with a zero-
mean function and a covariance function 𝑘:[0, 1]2 × X2𝑑 󳨀→ R; following Sangnier et al.
[26], we choose 𝑘 to be decomposable and its
form is given by

𝑘 ((𝜏𝑖, x) , (𝜏𝑗, x󸀠)) = 𝑘𝑥 (x, x󸀠) exp (−𝑐 (𝜏𝑗 − 𝜏𝑘)2) , (10)

where 𝑘𝑥(x, x󸀠) = exp(−𝑏‖x − x󸀠‖2), 𝑏 and 𝑐
are positive hyperparameters, and ‖ ⋅ ‖ is the
Euclidean norm on R𝑑. Here, 𝑘((𝜏𝑖, x), (𝜏𝑗, x󸀠)),𝑖 ̸= 𝑗, encodes the relation between the condi-
tional quantiles 𝑞𝜏𝑖(x) and 𝑞𝜏𝑗(x󸀠). As explained
by Sangnier et al. [26], if 𝑐 󳨀→ 0, the quantile
curves are parallel so they do not cross. If 𝑐 󳨀→+∞, the quantiles are learned independently
and then they may cross. Thus, the choice of 𝑐
is important to control the crossing.

(2) 𝜎 ∼ IG(𝑎0, 𝑏0) and 𝑎0 > 0, 𝑏0 > 0, where IG

denotes the inverse Gamma distribution with positive
hyperparameters 𝑎0 and 𝑏0.

(3) 𝑝 ∼ 𝐵𝑒𝑡𝑎(𝛼0, 𝜆0) and 𝛼0, 𝜆0 > 0.
3. Computations

To compute the full conditional distributions, we shall make
use of the location-scale mixture of the ALD distribution (see
Kozumi and Kobayashi [14]).

Let 𝜔 be an exponential latent variable with parameter1/𝜎, denoted by E(1/𝜎), and let 𝑍 be a standard normal
variable such that 𝜔 and 𝑍 are independent. If 𝜖 has an ALD
distribution, 𝜖 ∼ ALD(0, 𝜎, 𝑝); then, it can be represented
as a mixture of normal variable:𝜖 = 𝛾𝑝𝜔 + 𝛿𝑝√𝜎𝜔𝑧, (11)

where 𝛾𝑝 = (1 − 2𝑝)/𝑝(1 − 𝑝) and 𝛿2𝑝 = 2/𝑝(1 − 𝑝).
Exploiting this augmented data structure, the model

defined by the system of equations given by (6) admits,
conditionally on 𝜔𝐼𝑗 = (𝜔𝑖)𝑖∈𝐼𝑗 𝑖𝑖𝑑∼ E(1/𝜎), the following
Gaussian representation:

Y𝐼𝑗 = q𝜏𝑗,𝐼𝑗 − 𝜎g𝜏𝑗,𝑝 + 𝛾𝑝𝜔𝐼𝑗 + 𝛿𝑝√𝜎𝜔𝐼𝑗𝑧𝐼𝑗 ,
𝑗 = 1, . . . , 𝑠, (12)

where 𝑧𝐼𝑗 = (𝑧𝑖)𝑖∈𝐼𝑗 𝑖𝑖𝑑∼ N(0, 1).
3.1. Full Conditional Distributions. From the equations given
in (12) and the priors defined in Section 2.2.2, we follow
Bernardi et al. [15] to derive the full conditional distributions
of 𝜔𝑛 = (𝜔1, . . . , 𝜔𝑛) and (q𝜏𝑗,𝐼𝑗 )𝑗=1,...,𝑠. Yet, the full condi-
tionals of 𝜎 and 𝑝 are not tractable and this is carried out
by including a Metropolis-Hasting step to the Gibbs sampler
algorithm.

(1) For all 𝑗 = 1, . . . , 𝑠, as well as 𝑖 ∈ 𝐼𝑗, set ]𝑖 = 𝜔−1𝑖 , and
considering the distribution 𝜔𝑖 ∼ E(1/𝜎) as a prior
on 𝜔𝑖,
]𝑖 | (𝑦𝑖, 𝑞𝜏𝑗 (x𝑖) , 𝜎, 𝑝) ∼ IG𝑎𝑢𝑠𝑠 (Ψ𝑖, 𝜙𝑝) (13)

with

Ψ𝑖 = √ 𝛾2𝑝 + 2𝛿2𝑝(𝑦𝑖 − 𝑞𝜏𝑗 (x𝑖) + 𝜎𝑔 (𝜏𝑗, 𝑝))2 ,
𝜙𝑝 = 𝛾2𝑝 + 2𝛿2𝑝𝛿2𝑝𝜎 ,

(14)

whereIG𝑎𝑢𝑠𝑠 stands for the Inverse Gaussian distri-
bution with Ψ𝑖 > 0 and 𝜙𝑝 > 0 as location and shape
parameters.

(2) The conjugate Gaussian prior on quantiles provides
Gaussian full conditional distributions in both linear
and nonlinear cases.

(a) Linear case. Let us introduce some notations:
(i) Y𝑛 = (𝑌𝑖)1≤𝑖≤𝑛,
(ii) X̌ = (𝑋̌𝑖,𝑙)1≤𝑖≤𝑛,1≤𝑙≤𝑠+𝑑 is the 𝑛×(𝑠+𝑑)design

matrix defined by

𝑋̌𝑖,𝑙 = {{{
1𝑖∈𝐼𝑙 𝑖𝑓 𝑙 ∈ 1, . . . 𝑠,𝑋𝑖,𝑙−𝑠 𝑖𝑓 𝑙 ∈ 𝑠 + 1, . . . , 𝑠 + 𝑑, (15)

(iii) g𝑛 = (𝑔(𝜏𝑗, 𝑝)1𝑖∈𝐼𝑗)1≤𝑗≤𝑠.
This allows to rewrite the system of equations
(12) into the following format:

Y𝑛 = X̌𝛽̌ − 𝜎g𝑛 + 𝛾𝑝𝜔𝑛 + 𝜖∗𝑛 , (16)

with 𝜖∗𝑛 ∼ N𝑛(0, Σ∗) and where Σ∗ =
diag(𝛿2𝑝𝜎𝜔𝑛). With the zero-mean Gaussian
prior distribution, the full conditional distribu-
tion on 𝛽̌ is then Gaussian:

𝛽̌ | (𝑥̌,𝑦𝑛,𝜔𝑛, 𝜎, 𝑝) ∼ N𝑠+𝑑 (𝜇̂𝛽̌, Σ̂𝛽̌) (17)

with

𝜇̂𝛽̌ = (𝑥̌TΣ∗𝑥̌ + Σ̌−10 )−1 𝑥̌TΣ∗ (𝑦𝑛 + 𝜎g𝑛 − 𝛾𝑝𝜔𝑛) ,
Σ̂
𝛽̌
= (𝑥̌TΣ∗𝑥̌ + Σ̌−10 )−1 . (18)

(b) Nonlinear case. We shall use other extra nota-
tions:

ℎ𝑛 = (ℎ𝜏𝑗,𝐼𝑗)𝑗=1,...,𝑠 = ((ℎ (𝜏𝑗, x𝑖))𝑖∈𝐼𝑗)𝑗=1,...,𝑠 ,
𝑘𝑛 (𝜏,𝑥) = ((𝑘 (𝜏𝑗,𝑥𝑖𝑗)𝑖𝑗∈𝐼𝑗)𝑗=1,...,𝑠) . (19)
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1: Initialization 𝑡 = 0: 𝜎(0) = 𝜎0, 𝑝(0) = 𝑝0.
2: Loop 𝑡 = 𝑡 + 1:

1. (i) 𝜎𝑝𝑟𝑜𝑝|𝜎(𝑡) ∼ N]0,∞] (𝜎(𝑡) , 𝑠𝑑𝜎),
(ii) 𝛼𝜎 = min {1, 𝑃𝜎𝑄𝜎}
(iii) 𝑢1 ∼ U[0,1] 󳨐⇒ 𝜎(𝑡+1)) = {{{

𝜎𝑝𝑟𝑜𝑝 𝑖𝑓 𝛼 > 𝑢1𝜎(𝑡) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
2. (i) 𝑝𝑝𝑟𝑜𝑝|𝑝(𝑡) ∼ N]0,1[(𝑝(𝑡) , 𝑠𝑑𝑝),

(ii) 𝛼𝑝 = min {1, 𝑃𝑝𝑄𝑝}
(iii) 𝑢2 ∼ U[0,1] 󳨐⇒ 𝑝(𝑡+1) = {{{

𝑝𝑝𝑟𝑜𝑝 𝑖𝑓 𝛼 > 𝑢2𝑝(𝑡) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
Algorithm 1: Metropolis-Hastings step.

This allows to rewrite the system of equations
(12) into the following vector format:

Y𝑛 = ℎ𝑛 − 𝜎g𝑛 + 𝛾𝑝𝜔𝑛 + 𝜖∗𝑛 . (20)

Combining (20) with theGaussian process prior
on ℎ leads to the following joint distribution of(Y𝑛, ℎ𝑛) conditional on (𝑥,𝜔𝑛, 𝜎, 𝑝):
(Y𝑛
ℎ𝑛

) ∼ N2𝑛 ((−𝜎g𝑛 + 𝛾𝑝𝜔𝑛
0𝑛

) ,
(𝑘𝑛 (𝜏,𝑥) + Σ∗ 𝑘𝑛 (𝜏,𝑥)
𝑘𝑛 (𝜏,𝑥) 𝑘𝑛 (𝜏,𝑥))) . (21)

Finally, classical calculations lead to the desired
full conditional distribution:

ℎ𝑛 | (𝑥,𝑦𝑛,𝜔𝑛, 𝜎, 𝑝) ∼ N (𝜇̂ℎ, Σ̂ℎ) , (22)

where

𝜇̂ℎ = 𝑘𝑛 (𝜏,𝑥) (𝑘𝑛 (𝜏,𝑥) + Σ∗)−1 (𝑦𝑛 − 𝛾𝑝𝜔𝑛 + 𝜎g𝑛) ,
Σ̂ℎ = 𝑘𝑛 (𝜏,𝑥) − 𝑘𝑛 (𝜏,𝑥) (𝑘𝑛 (𝜏,𝑥) + Σ∗)−1 𝑘𝑛 (𝜏,𝑥) . (23)

(3) The full conditional distribution, 𝜋𝜎 of 𝜎 | 𝑥,𝜔𝑛, 𝑝, is
proportional to1(√𝜎)𝑛+𝑎0+1 exp {−12 (Y𝑛 − q𝜏,𝑛 + 𝜎g𝑛 − 𝛾𝑝𝜔𝑛)T
⋅ (Σ∗)−1 (Y𝑛 − q𝜏,𝑛 + 𝜎g𝑛 − 𝛾𝑝𝜔𝑛)} , (24)

where q𝜏,𝑛 = (q𝜏𝑗,𝐼𝑗 )𝑗=1,...,𝑠.
(4) The full conditional, 𝜋𝑝 of 𝑝 | 𝑥,𝜔𝑛, 𝜎, is proportional

to

𝑝𝛼0 (1 − 𝑝)𝜆0 exp {−12 (Y𝑛 − q𝜏,𝑛 + 𝜎g𝑛 − 𝛾𝑝𝜔𝑛)T
⋅ (Σ∗)−1 (Y𝑛 − q𝜏,𝑛 + 𝜎g𝑛 − 𝛾𝑝𝜔𝑛)} . (25)

3.2. Algorithm. Due to (24) and (25), it is not possible
to generate 𝜎 and 𝑝 directly from their full conditional
distribution. Therefore, they are simulated by incorporating
a random walk Metropolis-Hastings step within Gibbs, as
described in Algorithm 1.

For a subset 𝐸 ⊂ R, denote by N𝐸(⋅, ⋅) the truncated
version on 𝐸 of the corresponding Gaussian distribution.
Note that the choice of the truncated Gaussian distribution
is classical.

It is worth to mention that the values of the scale param-
eters 𝑠𝑑𝜎 and 𝑠𝑑𝑝 are calibrated to achieve the equilibrium of
the random walk Metropolis-Hastings step quickly; in fact,
they are chosen neither too small nor too large so that the
acceptance rate becomes practically stable.

The conditional posterior ratios of 𝜎 and 𝑝 are given by

𝑃𝜎
= 𝜋𝜎 (𝜎𝑝𝑟𝑜𝑝 | y𝑛, x𝑛, ((q𝜏𝑗,𝐼𝑗 )𝑗=1,...,𝑠)(𝑡+1) ,𝜔(𝑡+1)𝑛 , 𝑝(𝑡))

𝜋𝜎 (𝜎(𝑡) | y𝑛, x𝑛, ((q𝜏𝑗,𝐼𝑗 )𝑗=1,...,𝑠)(𝑡+1) ,𝜔(𝑡+1)𝑛 , 𝑝(𝑡))
𝑃𝑝
= 𝜋𝑝 (𝑝𝑝𝑟𝑜𝑝 | y𝑛, x𝑛, ((q𝜏𝑗,𝐼𝑗 )𝑗=1,...,𝑠)(𝑡+1) ,𝜔(𝑡+1)𝑛 , 𝑝(𝑡))

𝜋𝑝 (𝑝(𝑡) | y𝑛, x𝑛, ((q𝜏𝑗,𝐼𝑗 )𝑗=1,...,𝑠)(𝑡+1) ,𝜔(𝑡+1)𝑛 , 𝑝(𝑡)) ,

(26)

where 𝜋𝜎(⋅ | ⋅) and 𝜋𝑝(⋅ | ⋅), are respectively, given up to a
constant in (24) and (25), and the transition probabilities are
given by

𝑄𝜎 = 𝑓N[0,∞[(𝜎(𝑡) ,𝑠𝑑𝜎)𝑓N[0,∞[(𝜎𝑝𝑟𝑜𝑝 ,𝑠𝑑𝜎) = 1 − 𝜙 (−𝜎𝑝𝑟𝑜𝑝/𝑠𝑑𝜎)1 − 𝜙 (−𝜎(𝑡)/𝑠𝑑𝜎) ,
𝑄𝑝
= 𝑓N[0,1[(𝑝(𝑡),𝑠𝑑𝑝)𝑓N[0,1[(𝑝𝑝𝑟𝑜𝑝,𝑠𝑑𝑝) = 𝜙 ((1 − 𝑝𝑝𝑟𝑜𝑝) /𝑠𝑑𝑝) − 𝜙 (−𝑝𝑝𝑟𝑜𝑝/𝑠𝑑𝑝)(𝜙 ((1 − 𝑝(𝑡)) /𝑠𝑑𝑝) − 𝜙 (−𝑝(𝑡)/𝑠𝑑𝑝)) ,

(27)
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where 𝑓N𝐸(⋅,⋅) denotes the pdf of N𝐸(⋅, ⋅) and 𝜙(.) denotes
the cumulative distribution function of the standard normal
distribution.

4. Simulation Study

In this section, we study the performance of our method in
both linear and nonlinear quantile regressions. For the model
given by (1), we shall consider three different designs for the𝑝−th quantile:

(1) Univariate linear quantile: 𝑞𝑝(𝑋) = 1 + 2𝑋, with 𝑋 ∼
U[−1,1].

(2) Multivariate linear quantile: 𝑞𝑝(X) = 1 + XT𝛽𝑝, with
𝛽𝑝 ∈ R𝑑, 𝑑 = 10, and either 𝑋𝑙 ∼ U[−1,1] or 𝑋𝑙 ∼
N(0, 1), ∀𝑙 ∈ {1, . . . , 𝑑}.

(3) Nonlinear quantile: for 𝑋 ∼ U[0,1],

𝑞𝑝 (𝑋) = cos (52𝜋𝑋 exp {−32𝑋})
+ [14 exp {2 (𝑋 − 0.5)} − exp {−1} (14 + 𝑋2 )]
⋅ 1(𝑋<0.5) + [14 exp {−2 (𝑋 − 0.5)}
− (14 + 𝑋2 ) exp {−1} − (12 − 𝑋)] 1(𝑋≥0.5).

(28)

For all designs, we generate independently 300 obser-
vations issued from the model defined in (1). All runs of
Metropolis-HastingswithinGibbs algorithmconsist in 20000
iterations, one-third of which are burn-in.The prior hyperpa-
rameters are chosen as follows: for the inverse Gamma of 𝜎,𝑎0 = 1 and 𝑏0 = 0.01; for the Beta prior of𝑝,𝛼0 = 2 and 𝜆0 = 2
and Σ̌0 is set to be the identity matrix for linear quantile and𝑐 = 0.1 and 𝑏 = 5 for the nonlinear case.The choice of 𝑐 = 0.1
and 𝑏 = 5 is typical; indeed, whatever the value of 𝜏 is, 𝑐 = 0.1
minimizes the empirical root mean integrated square error,
RMISE; that is, 𝑐 = argmin√(1/𝑛)∑𝑛𝑖=1(𝑞𝜏(X𝑖) − 𝑞𝜏(X𝑖))2,
where 𝑞𝜏 stands for the posterior mean quantile regression.
In order to test the robustness of our procedure with respect
to the model parameters, different values of 𝜎 and 𝑝 are
considered for the three designs.

The first design is a straightforward example and is
carried out just to check the convergence of the algorithm
from different tools: 𝑅̂ of Gelman and Rubin diagnostic, the
autocorrelation analysis, and the posterior plots of the various
parameters.

Through the second design, we use the crossing loss cri-
terion (see Sangnier et al. [26]) to compare the performance,
against crossing, of our method, denoted by “SBQR” with
other approaches: the frequentist single quantile method of
Koenker and Bassett [1], denoted by “K&B”, the Bayesian
single quantile regression method of Yu and Moyeed [13],
denoted by “Y&M”, and the simultaneous Bayesian method
of Reich and Smith [38], denoted by “R&S”; in addition,

we use the RMISE to evaluate the estimation performance.
These other methods are performed using available codes in
RCoreTeam (2017): rq function available in quantreg package
Koenker [39] for “K&B”, bayesQR function in bayesQR
package Benoit et al. [40] for “Y&M”, and qreg function in
BSquare package Smith et al. [41] for “R&S”.

For design 3, we compare our “SBQR” method with both
the nonparametric quantile regression method of Muggeo et
al. [32], denoted by “M&ST”, and the simultaneous noncross-
ing method of Rodrigues and Fan [31], denoted by “F&R”.
We have implemented “M&ST” with 𝑞𝑢𝑎𝑛𝑡𝑟𝑒𝑔𝐺𝑟𝑜𝑤𝑡ℎ R
package (see Muggeo [42]) and “F&R” with an own made
code in R. We use features of the RMISE criterion to show
how well “SBQR” performs among the other considered
methods.

We note that the number of observations, 𝑛 = 300, is
chosen carefully to illustrate the intended objectives in all
designs.

4.1. Design 1: Univariate Linear Quantile Regression. The iid
sample 𝜖1, . . . , 𝜖𝑛 is generated according to ALD(0, 𝜎 =0.1, 𝑝 = 0.25). We propose to infer three quantiles that are
close, namely, the quantiles of order 𝜏 = 0.2, 0.3 and 0.4,
respectively.

We fix 𝑠𝑑𝜎 = 𝑠𝑑𝑝 = 0.1. To evaluate the convergence of
our algorithm, we use three different seeds and parameter
starting values to run three different chains and calculate𝑅̂ of Gelman convergence diagnostic. Besides, we use other
convergence diagnostics such as the autocorrelation analysis
and the posterior plots.

As shown in the top panel of Figures 1, 2, and 3, all
posterior distributions shrink at the true parameters value.
Furthermore, in the middle panel of Figures 1, 2, and 3,
the decrease of the empirical autocorrelation of posterior
samples proves that the underlying chains are stationary. The
bottom panels of Figures 1, 2, and 3 show that 𝑅̂ goes to 1
through the iterations, which confirms the convergence of the
algorithm.

4.2. Design 2: Multivariate Linear Quantile Regression. The
second design is dedicated to the multivariate linear case;
hence, we consider the model given by (1) with 𝜖1, . . . , 𝜖𝑛 𝑖𝑖𝑑∼
ALD(𝜇 = 0, 𝜎 = 0.5, 𝑝 = 0.25), X ∈ R𝑑, 𝑑 = 10,𝑋𝑘 ∼ U[−1,1], 𝑘 = 1, . . . , 𝑑, and 𝛽𝑝 =(1.6, 2.2, 2.8, 3.4, 4, 4.5,
5.1, 5.7, 6.3, 6.9).

As commonly known, crossing quantiles is a practical
problem that often occurs when there is a large number of
covariates. We propose to infer two close quantiles of order𝜏1 = 0.1 and 𝜏2 = 0.12 and to study the crossing throughout
the following four methods: “K&B”, “Y&M”, “R&S”, and
“SBQR”.

To achieve the desired posterior distribution through
MCMC methods, we perform Y&M and R&S with different
number of iterations: 1000 for Y&M and 10000 for R&S.
For “R&S”, we use the logistic base distribution with 4 basis
functions. For “SBQR”, we fix 𝑠𝑑𝜎 = 𝑠𝑑𝑝 = 0.01 and Σ̌0 to be
the identity matrix.
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Figure 1: Trace and density plot (top), autocorrelation plot (middle), and 𝑅̂ evolution through iterations (bottom) of 𝜎̂ (left panel) and 𝑝
(right panel).

To compare the methods, we make use of the crossing
loss criterion (see Sangnier et al. [26]) that measures how far𝑞0.12(X) goes below 𝑞0.10(X):

𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 = 1𝑛 𝑛∑
𝑖=1

max (0, 𝑞0.10 (X𝑖) − 𝑞0.12 (X𝑖)) . (29)

For a given approach, the less the crossing loss is, the
better is themethod. As shown in Table 1, the crossing loss, by
“K&B”, is significantly of 0.43%, which corresponds to 34 data
points of 𝑞0.1(X) which are above 𝑞0.12(X). This percentage is
considerably weakened when applying the separate Bayesian
method “Y&M” (0.38%) but still has crossing quantiles (26
data points of 𝑞0.1(X) are above 𝑞0.12(X)). However, for
simultaneous estimation methods, as our proposed “SBQR”
or “R&S” methods, the crossing loss becomes zero; this

means that the simultaneous quantile estimation has the
potential to make quantile crossing vanish. Moreover, the
estimated quantiles are in the right order.While simultaneous
approaches control the monotonicity property of quantiles
in a certain sense, separate approaches do not, and they
provide more than 8% of violation according to results
previously discussed (11.33%of violation by “K&B” and 8.66%
of violation by “Y&M”).

To go further, we compute the RMISE for each quantile
order and for all methods. The “SBQR” has roughly the
smallest RMISE in both quantile levels 𝜏 = 0.1 and 𝜏 = 0.12.
The fact is that “R&S” may oversmooth when estimating the
quantiles simultaneously and here, for this linear case, the
oversmoothness impacts the flexibility of the method (high
RMISE).
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Figure 2: Trace and density plot (top), autocorrelation plot (middle), and 𝑅̂ evolution (bottom) of the intercept 𝛽(0)0.2 (left panel) and the slope𝛽(0)0.3 of the 0.2−th and 0.3−th quantile, respectively.

Table 1: Table of criteria: crossing loss and RMISE.

Method nb. crossing crossing loss RMISE (0.10) RMISE (0.12)
“K&B” 34 0.0043 0.3565 0.3218
“Y&M” 26 0.0038 0.3344 0.3362
“R&S” 0 0 0.2449 0.2849
“SBQR” 0 0 0.1989 0.2383

To see if the covariable support has an impact on
results, we consider another simulation set in which X ∼
N𝑑(0𝑑, 𝐼𝑑𝑑), that is, support(X)= R𝑑. Table 2 shows that
“SBQR” behaves like in the previous example: a zero
crossing loss and the smallest RMISE among all the
methods.

We also consider another case with a different pair of
quantile orders: 𝜏1 = 0.7 and 𝜏2 = 0.8. We turn back to the
support [−1, 1]𝑑 for X. Table 3 shows similar results as the
ones obtained for 𝜏1 = 0.10 and 𝜏2 = 0.12. Thus, “SBQR”

still has the best behavior among the other methods in terms
of crossing loss and RMISE.

It should be noted that the estimation of 𝜎 and 𝑝 by
“SBQR” is quite good, since their estimated values are near
the true ones in the different treated cases.

4.3. Design 3: Nonparametric Quantile Regression. Consider-
ing the third design with 𝑋 ∼ U[0,1] and 𝜖 ∼ ALD(𝜇 =0, 𝜎 = 0.05, 𝑝 = 0.75), we are interested in estimating
quantile functions for orders 𝜏 =0.10, 0.12, 0.15, and 0.20.
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Figure 3: Trace and density plot (top), autocorrelation plot (middle), and 𝑅̂ evolution (bottom) of the intercept 𝛽(0)0.4 (left panel) of the 0.4−th
quantile and the slope 𝛽𝑝 .

Table 2: Table of criteria: crossing loss and RMISE for normal covariate case.

Method nb. crossing crossing loss RMISE (0.10) RMISE (0.12)
“K&B” 38 0.0037 0.2356 0.2151
“Y&M” 5 0.0005 0.4569 0.4391
“R&S” 0 0 0.2865 0.3189
“SBQR” 0 0 0.2218 0.2102

We fix 𝑠𝑑𝑝 = 0.05 and 𝑠𝑑𝜎 = 0.005 and we compare our
“SBQR” method with two others: the “M&ST” method with
three-order cubic B-splines and the “F&R” approach with
smoothness parameter value equal to 0.1.

For each value of 𝜏, we evaluate the performance of these
methods through the RMISE criterion. Table 4 shows that the
RMISE values are significantly smaller for “SBQR” than the
ones for “M&ST” and “F&R”. It is worth noting, therefore,



10 Journal of Probability and Statistics

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

X

Y

Figure 4: Estimated quantile curves (black solid lines) against the true ones (red dashed lines) for SBQR (left panel), F&R (middle panel),
and M&ST (right panel) methods.

Table 3: Table of criteria: crossing loss and RMISE for uniform covariate case.

Method nb. crossing crossing loss RMISE (0.7) RMISE (0.8)
“K&B” 6 0.0041 0.4255 0.7177
“Y&M” 1 0.0009 0.403 0.7013
“R&S” 0 0 0.224 0.3791
“SBQR” 0 0 0.2065 0.2708

Table 4: RMISE at different quantile levels computed for M&ST, F&R, and SBQR methods.

Method RMISE (0.10) RMISE (0.12) RMISE (0.15) RMISE (0.20)
“M&ST” 0.1416 0.1397 0.1072 0.0774
“F&R” 0.1520 0.1033 0.0821 0.0664
“SBQR” 0.0692 0.0768 0.0777 0.0660

that our method is significantly better than the two others
in quantiles estimation; besides, it provides a reasonable
estimation of 𝜎 (𝜎 = 0.0535) and 𝑝 (𝑝 = 0.7744).

Figure 4 gives the quantile curves estimators. While
our “SBQR” method (left panel) provides quantile curves
estimates that are close to the true ones (red-dashed lines),
the 0.1−th quantile curve estimate given by “F&R” method
(middle panel) is fairly distant from the true curve, especially
when 𝑥 ∈ [0.2, 0.6]. The same happens for “M&ST” method
when 𝑥 ∈ [0.7, 1]. However, there is no scarred crossing
by any of these three methods, since they are tackling
simultaneous quantile estimation techniques.

The issue that makes “F&R” method less flexible in
simultaneous quantiles fitting is that, in the second stage, the
final estimators are quite affected by the first stage output
that may be badly estimated. For “M&ST”, the estimators
are constructed iteratively, when solving the minimization
problem, by adding constraints so that each subsequent
quantile function does not cross with the previous one; this
may cause overestimation of quantile curves. Our “SBQR”
method does not suffer from these mentioned disadvantages,
which explains its significant flexibility.

5. Conclusion

Our proposed estimation procedure, “SBQR”, for simultane-
ous Bayesian quantile regression guarantees the fundamental
property of noncrossing. Assuming that the ALD is the
underlying data distribution, this method enables charac-
terizing the likelihood function by all quantiles of interest

using the relation between two distinct quantiles. Using the
location-scale normal mixture representation of the ALD
distribution, we develop a Metropolis-Hastings within Gibbs
algorithm to implement our method. Our simulation studies
show good results that reflect the good performance of the
method and the convergence of the algorithm. Against the
crossing problem of estimated quantiles, our method has
good performance compared with single quantile estimation
methods like Koenker and Bassett [1] and Yu and Moyeed
[13] methods. From the RMISE point of view, “SBQR” is very
competitive in both linear and nonlinear quantile regression
cases.

As future perspectives, we envisage extending this work
to deal with any conditional distribution of 𝑌 | 𝑋.
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In the usual quantile regression setting, the distribution of the response given the explanatory variables is unspecified. In this
work, the distribution is specified and we introduce new link functions to directly model specified quantiles of seven 1–parameter
continuous distributions. Using the vector generalized linear and additive model (VGLM/VGAM) framework, we transform
certain prespecified quantiles to become linear or additive predictors. Our parametric quantile regression approach adopts
VGLMs/VGAMs because they can handle multiple linear predictors and encompass many distributions beyond the exponential
family. Coupled with the ability to fit smoothers, the underlying strong assumption of the distribution can be relaxed so as to
offer a semiparametric–type analysis. By allowing multiple linear and additive predictors simultaneously, the quantile crossing
problem can be avoided by enforcing parallelism constraint matrices. This article gives details of a software implementation called
the VGAMextra package for R. Both the data and recently developed software used in this paper are freely downloadable from the
internet.

1. Introduction

1.1. Background. Much of modern regression analysis for
estimating conditional quantile functions may be viewed
as starting from Koenker and Bassett [1], who offered a
systematic strategy for examining how covariates influence
the entire response distribution. The fundamental idea is
based on the linear specification of the 𝜏th quantile function𝑄�푦(𝜏 | 𝑥) = 𝛽�푇�휏𝑥 and finding 𝛽�휏 ∈ R�푝 that solves the
optimization problem

min
𝛽𝜏∈R

𝑝
∑𝜌�휏 (𝑦�푖 − 𝛽�푇�휏𝑥�푖) , (1)

for independent and identically distributed (i.i.d.) observa-
tions from a family of linear quantile regression models, say𝑦�푖 = 𝛽�푇𝜏𝑥+𝜀�푖,𝜏, 𝑖 = 1, . . . , 𝑛. Equation (1) can be reformulated
as a linear programming problem using the piecewise linear

function 𝜌�휏(𝑢) = 𝑢 ⋅ [𝜏 − 𝐼(𝑢 < 0)] for 𝜏 ∈ (0, 1). More details
can be found in Koenker [2].

In the spirit of quantile regression, the conditional dis-
tribution 𝑌 | 𝑥 is usually unspecified, although it relies on
normal–based asymptotic theory that is used for inference,
whilst the assumption of homoskedasticity of the error terms𝜀�푖,𝜏 is dropped. In this paper we use an alternative approach
of conditional–quantile regression based on assuming a pre-
specified distribution for the response. Parametric quantile
regression has some advantages over many nonparamet-
ric approaches, including overcoming the quantile crossing
problem. Two examples are Noufaily and Jones [3] which is
based on the generalized gammadistribution and generalized
additive models for location, scale, and shape (GAMLSS;
[4]). Further examples are the LMS-BCN method involving
the standard normal distribution and a three–parameter
Box–Cox transformation [5] and the classical method of
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Table 1: Some VGLM/VGAM link functions. The 4th row is implemented in VGAMextra.

Functions Links 𝑔�푗(𝜃�푗) Domain of 𝜃�푗 Link names
loge() log 𝜃�푗 (0,∞) Logarithmic
cloglog() log(− log(1 − 𝜃�푗)) (0, 1) Complementary log–log

logit() log
𝜃�푗1 − 𝜃�푗 (0, 1) Logit

logffMeanlink()‡ logit(𝜃�푗 ) − cloglog(𝜃�푗 ) (0, 1) logffMeanlink
rhobit() log((1 + 𝜃�푗)/(1 − 𝜃�푗)) (−1, 1) rhobit
‡This is the VGLM–link for the mean function of the logarithmic distribution.

quantile regression based on the asymmetric Laplace distri-
bution (ALD).

Our approach uses the vector generalized linear and addi-
tive model (VGLM/VGAM; [6, 7]) framework. We develop
new link functions, G, for the quantile regression model𝑌 | 𝑥 ∼ F (𝑥; 𝜃) , (2)𝜂𝜏 (𝜃) = G (𝑄�푦 (𝜏 | 𝑥, 𝜃)) , (3)

for a vector of quantiles 𝜏 = (𝜏1, . . . , 𝜏�퐿)�푇. Our methodology
relies on the prespecification of the distribution F. We will
also show that the quantile crossing problem canbe overcome
by this modelling framework. Equations (2)–(3) state that the
conditional distribution of the response at a given value of
𝑥 has a distribution involving a parameter 𝜃 and that the
transformed quantile of the distribution becomes a linear
predictor of the form (5). This can be achieved by defining
link functions that connect (3) to (5).The reason for the linear
predictors is that generalized linear modelling [8] is a very
well-established method for regression modelling. GLMs are
estimated by iteratively reweighted least squares (IRLS) and
Fisher scoring, and this algorithm is also adopted by VGLMs
and VGAMs.

The method presented in this paper differs from conven-
tional quantile regression [1] in that we assume F is known
whereas the conventional case does not but use an empirical
method instead to obtain the quantiles 𝜉�휏: the expectation of
the check function 𝜌�휏(𝑢) results in the property 𝜏 = 𝐹(𝜉�휏)
which defines the 𝜏-quantile (𝐹 is the cumulative distribution
function (CDF) ofF). In this paper we consider theFs listed
in Table 2.

1.2. VGLMs and VGAMs. VGLMs/VGAMs provide the
engine and overall modelling framework in this work—
the VGAM R package described below fits over 150 mod-
els and distributions—therefore we only sketch the details
here. VGLMs are defined in terms of 𝑀 linear predictors,
𝜂 = (𝜂1, . . . , 𝜂�푀)�푇, as any statistical model for which the
conditional density of 𝑦 given a 𝑑–dimensional vector of
explanatory variables, 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥�푑)�푇 has the form

F (𝑦 | 𝑥;B) = ℎ (𝑦, 𝜂1, . . . , 𝜂�푀;𝑥) , (4)

for some known function ℎ(⋅), with B = (𝛽1 𝛽2 ⋅ ⋅ ⋅ 𝛽�푀), a𝑑×𝑀matrix of unknown regression coefficients. Ordinarily,𝑥1 ≡ 1 for an intercept.

In general, the 𝜂�푗 of VGLMs may be applied directly to
the 𝑀 parameters, 𝜃�푗, of any distribution, transformed if
necessary, as the 𝑗th linear predictor

𝜂�푗 = 𝑔�푗 (𝜃�푗) = 𝜂�푗 (𝑥) = 𝛽�푇�푗 𝑥 = �푑∑
�푘=1

𝛽(�푗)�푘𝑥�푘,
𝑗 = 1, . . . ,𝑀, (5)

where 𝑔�푗 is a VGLM–parameter link function, as in Table 1
(see [6] for further choices) and 𝛽(�푗)�푘 is the 𝑘th element of
𝛽�푗. Prior to this work the 𝜃�푗 were ‘raw’ parameters such as
location, scale, and shape parameters; however, in this present
work we define them to be quantiles or a very simple function
of quantiles.

In matrix form one can write 𝜂 = 𝜂(𝑥) =
(𝜂1 (𝑥)...𝜂�푀 (𝑥)) =(𝛽�푇1𝑥...

𝛽�푇�푀𝑥

) =(𝛽(1)1 ⋅ ⋅ ⋅ 𝛽(1)�푝... d
...𝛽(�푀)1 ⋅ ⋅ ⋅ 𝛽(�푀)�푝) 𝑥

= �푑∑
�푘=1

𝛽(�푘)𝑥�푘 = B�푇𝑥,
(6)

where 𝛽(�푘) = (𝛽(1)�푘, 𝛽(2)�푘, . . . , 𝛽(�푀)�푘)�푇, 𝑘 = 1, . . . , 𝑑.
Sometimes, for some 𝑗, it may be required to model 𝜂�푗 as
intercept–only, that is, 𝜂�푗 = 𝛽(�푗)1, and 𝛽(�푗)�푘 ≡ 0 for 𝑘 =2, . . . , 𝑑.

VGAMs are a nonparametric extension of VGLMs, that
is, (6) is generalized to

𝜂 (𝑥) = 𝛽(1) + �푑∑
�푘=2

𝑓�푘 (𝑥�푘) = H1𝛽
∗
(1) + �푑∑
�푘=2

H�푘𝑓
∗
�푘 (𝑥�푘) (7)

with 𝑓∗�푘 (𝑥�푘) = (𝑓∗(1)�푘(𝑥�푘), . . . , 𝑓∗(R𝑘)�푘(𝑥�푘))�푇. Usually the com-
ponent functions are estimated by splines. Here, H1, . . . ,H�푑
are known full–column rank constraint matrices, and 𝛽(1) is
a vector of unknown intercepts. With no constraints at all,
H1 = ⋅ ⋅ ⋅ = H�푑 = I�푀 (the order-𝑀 identity matrix). For
VGLMs, the 𝑓�푘 are linear so that, cf. (6),

B = (H1𝛽⋆(1) | H2𝛽⋆(2) | ⋅ ⋅ ⋅ | H�푑𝛽⋆(�푑)) . (8)

TheH�푘 can enforce a wide range of linear constraints such as
parallelism and exchangeability.
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Table 2: New link functions for the quantiles of some 1–parameter distributions. The selectedG function is also shown.

Distribution 𝜃 Support of 𝑦 Quantile function 𝜉𝜏 FunctionG Quantile link [𝜂(𝜃; 𝜏)]
Exponential 𝜆 (0,∞) − 1𝜆 log(1 − 𝜏) log–link log log[(1 − 𝜏)−1/�휃]
Benini 𝑠 (𝑦0,∞) 𝑦0 exp(√− log(1 − 𝜏)𝑠 ) log–link log𝑦0 + √log[(1 − 𝜏)−1/�휃]
Rayleigh 𝑏 (0,∞) 𝑏√−2 log(1 − 𝜏) log–link log 𝜃 + 12 log log[(1 − 𝜏)−2]
Gamma 𝑠 (0,∞) No closed–form log–link log qgamma(𝜏, shape = 𝜃)
Maxwell† 𝑎 (0,∞) √ 2𝑎 ⋅ qgamma(𝜏, 1.5)) log–link 12 log(2 qgamma(𝜏, 1.5)𝜃 )
Topp–Leone‖ 𝑠 (0, 1) 1 − √1 − 𝜏1/�푠 logit logit(1 − √1 − 𝜏1/�휃)
1–par Normal‡ 𝜎 R 𝜇0 ± √2 ⋅ 𝜃2𝜅(𝜏)) identity 𝜇0 ± √2 ⋅ 𝜃2𝜅(𝜏)
†qgamma() is the quantile function of the standard gamma distribution in R.
‖logit(�휃) = log(�휃/(1 − �휃)).
‡�휅(𝜏) = erf−1(2𝜏 − 1), with erf() denoting the error function.

1.3. Estimation. VGLMs are estimated by maximum likeli-
hood performed by IRLSusing the expected information.The
VGLM log–likelihood is given by

ℓ (𝜂) = �푛∑
�푖=1

𝑤�푖ℓ�푖 {𝜂1 (𝑥�푖) , . . . , 𝜂�푀 (𝑥�푖)} , (9)

for known fixed positive prior weights𝑤�푖, and a Newton–like
algorithm for maximizing (9) has the form 𝛽(�푎) = 𝛽(�푎−1) +
I(𝛽(�푎−1))−1𝑈(𝛽(�푎−1)), whereI is the overall expected infor-
mation matrix (EIM), 𝑈 is the score vector, and 𝑎 is the
iteration number. The vector 𝛽(�푎) is obtained as the solution
of the generalized least squares problem 𝛽(�푎) = argmin𝛽RSS,
where the quantity minimized at each IRLS iteration is the
weighted (or residual) sum of squares, RSS =

�푛∑
�푖=1

𝑤�푖 {𝑧(�푎−1)�푖 − 𝜂(�푎−1)�푖 }�푇𝑊(�푎−1)�푖 {𝑧(�푎−1)�푖 − 𝜂(�푎−1)�푖 } . (10)

The (𝑀×𝑀)𝑊�푖 are known as the working weight matrices
and they have (𝑗, 𝑘)th element given by

[𝑊�푖]�푗,�푘 = −𝑤�푖E( 𝜕2ℓ�푖𝜕𝜂�푗𝜕𝜂�푘) . (11)

The use of individual EIMs instead of observed information
matrices means that Fisher scoring is used rather than the
Newton–Raphson algorithm.

VGAMs are also estimated by IRLS, where the difference
with respect to VGLMs is that a vector additive model is now
fitted to the pseudo–response 𝑧�푖 with explanatory variables
𝑥�푖 and working weight matrices 𝑊�푖 at each IRLS iteration.
Two approaches are currently used by VGAM to estimate
the component functions 𝑓∗: regression splines and vector
smoothing methods with vector backfitting. Rudimentary P-
splines [9] are almost operational, albeit this work is not yet
complete. Compared to VGLMs, the VGAM log–likelihood

includes a penalty if used with vector smoothing splines.
In VGAM the objective function maximized isℓ�푖 {𝜂1 (𝑥�푖) , . . . , 𝜂�푀 (𝑥�푖)}

− 12 �푑∑
�푘=1

ncol(H𝑘)∑
�푗=1

𝜆(�푗)�푘 ∫�푏𝑘
�푎𝑘

{𝑓∗�耠�耠(�푗)�푘 (𝑡)}2 d𝑡. (12)

Here, the 𝜆(�푗)�푘 are nonnegative smoothing parameters, and𝑎�푘 ≤ 𝑥�푖�푘 ≤ 𝑏�푘 are endpoints covering the values of
each covariate. The basic penalty approach adopted here is
described in Green and Silverman Green and Silverman [10].

2. Methodology

Let F(𝜂; 𝑦,𝑥) be a 1-parameter statistical model as in (4)
parametrized by 𝜃 ∈ Θ ⊂ R for some parameter
space Θ residing in (−∞,∞). Also let 𝑄�푦(𝜏 | 𝑥) be the
corresponding quantile function with 𝜏 ∈ (0, 1). Crucially,
note that (5) handles suitable transformations of 𝜃 in the
linear predictor by parameter link functions. In contrast our
proposal focusses on directly modelling 𝑄�푦(𝜏 | 𝑥, 𝜃) via a
smooth and one–to–one function G, in the form of𝜂�휏 = G (𝑄�푦 (𝜏 | 𝑥, 𝜃)) = G

∗ (𝜃 | 𝑥, 𝜏) , (13)

which is to be incorporated in the VGLM/VGAM log–
likelihood, namely, (9) and (12). Here, 𝜏 = (𝜏1, . . . , 𝜏�퐿)�푇 is a
prespecified vector of quantiles of interest. Examples of (13)
are log 𝜉�휏, logit 𝜉�휏, and 𝜉�휏.

Equation (13) is central to this work. It allows modelling
choices via G for the quantile function 𝑄�푦, and it represents
a new modification to the VGLM/VGAM framework. Note
that G resembles a link function within the VGLM/VGAM
framework as in Table 1. Two notes: first, without any loss of
generality, (13) can be seen (strictly) as a function of 𝜃 since
the quantiles 𝜏 and the covariates 𝑥 are known. Secondly, G∗
is monotonic and one–to–one, as a result of the composite of
G and 𝑄�푦 which also hold such properties. However, during
the fitting process, the IRLS algorithm internally requires
the inverse of G∗. Working with 1–parameter distribution
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at this stage eases the implementation via Fisher scoring
because the inverse (G∗)−1 can be derived manually and
then incorporated in the IRLS algorithm. In a few cases,
the inverse of G∗ does not have a closed form, such as
the 1–parameter gamma distribution, and an alternative
iterative method is employed to approximate (G∗)−1. To
achieve this efficiently, two choices are available. These are
(a) newtonRaphson.basic() from VGAMextra and (b)
VGAM::bisection.basic(), two vectorized implementa-
tions of the well-known Newton–Raphson and bisection
algorithms, to solve the roots of a real-valued function in a
given interval (𝑎, 𝑏). Further details are given in Section 2.2.

One advantage of this work is that the VGLM/VGAM
framework can circumvent the quantile crossing problem
(e.g., [2, 11], Sect. 2.5) by choosing H1 = I�푀 and H2 = H3 =⋅ ⋅ ⋅ = H�푑 = 1�푀 (an𝑀-vector of ones). Under this parallelism
assumption the method borrows strength across the entire
data set so that the additive models for 𝜂�푗 with respect to𝑥2, . . . , 𝑥�푑 are parallel. Each family function in Tables 2 and
3 has a parallel argument which is FALSE by default.
Using the syntax of VGAM based on Chambers and Hastie
[12], setting parallel = TRUE (or parallel = FALSE ∼ 1)
results inH1 = I�푀 andH2 = H3 = ⋅ ⋅ ⋅ = 1�푀; i.e., it is false for
only the intercept.

It is noted that for some distributions such as the
exponential and Maxwell the 𝜂�푗 are naturally parallel with
respect to 𝑥2, . . . , 𝑥�푑 because log 𝜉�휏 has the form ℎ1(𝜏) +ℎ2(𝑥2, . . . , 𝑥�푑). If this is so then only the intercepts will change
as a function of 𝜏 and the MLEs for ℎ2 are the same. Other
distributions such as the 1-parameter gamma do not possess
this property, and then it is necessary to constrain H2 =⋅ ⋅ ⋅H�푑 = 1�푀 to avoid the quantile crossing problem.

2.1. Two Derivations. Ideally the link transforms the support
of 𝑌 to R because 𝜂�푗 should be unbounded. The three most
common cases are as follows. For 𝑌 ∈ (0,∞) a log link is
recommended, for 𝑌 ∈ (0, 1) a logit link is a good choice,
and 𝑌 ∈ (−∞,∞) means that an identity link is natural.
These cases have been implemented for seven 1–parameter
distributions. The selection of the function G for each 𝑄
is shown in the 5th column of Table 2, whilst the resulting
quantile links as functions of 𝜃 are shown in the last column.

We now describe the quantile links for the exponential
and the Topp–Leone distributions as examples. Firstly, for𝑌 ∼ exponential(𝜃), with a rate parameter 𝜃 > 0, the density
and CDF are given by 𝑓(𝑦; 𝜃) = 𝜃𝑒−�휃�푦 and 𝐹(𝑦; 𝜃) = 1 − 𝑒−�휃�푦.
With a slight change in notation, the quantile function is
given by 𝐹−1, i.e.,

𝑄�푌 (𝜏; 𝜃) = −1𝜃 log (1 − 𝜏) , (14)

which lies in (0,∞) regardless of the values of 𝜏 and 𝜃. Given
that values of 𝜏 are known (prespecified by the user), (14)
becomes a function of 𝜃. Thus, the new quantile link for
the exponential distribution as shown in Table 2 is simply

obtained by taking G as the logarithmic transformation, as
follows: 𝜂 (𝜃; 𝜏) = log [−1𝜃 log (1 − 𝜏)]

= log log [(1 − 𝜏)−1/�휃] . (15)

This quantile link has been implemented in VGAMextra via
the function expQlink(), as shown in Table 3. Its inverse
(denoted as 𝜃(𝜂; 𝜏)) can be manually obtained from the
inverse of (15). Note that the corresponding family func-
tion (exponential()) implemented in VGAM includes a
(known) location parameter 𝐴, which gives the density𝑓(𝑦; 𝜃) = 𝜃𝑒−�휃(�푦−�퐴). By default 𝐴 = 0, and it is handled by
the argument location.

Secondly, consider the Topp–Leone distribution 𝑌 ∼
Topp − Leone(𝑠) whose support is (0, 1) and𝑄�푌 (𝑠; 𝜏�푗) = 1 − √1 − 𝜏1/�푠�푗 , (16)

with 0 < 𝜏�푗 < 1. Here, 𝜃 = 𝑠. To verify this restriction note
that 1/𝑠 > 1, for any shape parameter 𝑠 ∈ (0, 1), and hence for
any 𝜏�푗 ∈ (0, 1), 0 < 𝜏1/�푠�푗 < 1 ⇐⇒0 < 1 − 𝜏1/�푠�푗 < 1 ⇐⇒

0 < 1 − √1 − 𝜏1/�푠�푗 < 1. (17)

Thus, to allow the quantile function to be modelled by
covariates, we take the logit transformation as G. The result-
ing quantile link for this distribution is simply 𝜂(𝑠; 𝜏) =
log𝑄�푌(𝑠; 𝜏), shown in Table 2. The distribution has CDF𝐹(𝑦; 𝑠) = [𝑦 ⋅ (2 − 𝑦)]�푠 for 0 < 𝑦 < 1, and density 𝑓(𝑦; 𝑠) =2𝑠(1 − 𝑦) ⋅ [𝑦(2 − 𝑦)]�푠−1. The quantile function derives from
solving the equation 𝜏0 = 𝐹(𝑦; 𝑠) = [𝑦⋅(2−𝑦)�푠], for 0 < 𝜏0 < 1,
which leads to the quadratic equation 𝑦2 − 2𝑦 + 𝜏1/�푠0 = 0. The
solution must lie in (0, 1) and is in fact (16), as a function of𝑠. The family function topple() from VGAM estimates 𝑠,
where the default link is 𝜂(𝑠) = logit(𝑠).
2.2. Software Implementation. For practical use by others,
we have implemented seven VGLM–quantile links, 𝜂�휏
in the R package VGAMextra. They are summarized
in Table 2. The package VGAM is a requirement
of VGAMextra because the modelling functions vglm()
and vgam(), and all but the last family function of
Table 2, reside there. For this paper VGAMextra 0.0-
2 and VGAM 1.1-0 or later are required; they are
available at www.stat.auckland.ac.nz/∼vmir178 and
www.stat.auckland.ac.nz/∼yee/VGAM/prerelease/
whilst older versions of both are available on CRAN
(http://CRAN.R-project.org).

One special case is gamma1Qlink(), for the 1–parameter
(shape) gamma distribution, defined as𝜂 (𝜃; 𝜏) = log gamma (𝜏,shape = 𝜃) , (18)
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Table 3: Inverse of the quantile links and names in VGAMextra. “Approximate” means that Newton–Raphson or bisection is used to
approximate the inverse. All family functions except for normal1sdff(), which is in VGAMextra, are in VGAM.

Distribution 𝜃 Inverse𝐿[𝜃(𝜂; 𝜏)] Family function Link in VGAMextra

Exponential 𝜆 − log(1 − 𝜏)𝑒�휂 exponential() expQlink()

Benini 𝑠 − log(1 − 𝜏)(𝜂 − log𝑦0)2 benini1() benini1Qlink()

Rayleigh 𝑏 exp(𝜂)√−2 log(1 − 𝜏) rayleigh() rayleighQlink()

Gamma 𝑠 Approximate gamma1() gamma1Qlink()

Maxwell 𝑎 2qgamma(𝜏, 1.5)
exp(2 𝜂) maxwell() maxwellQlink()

Topp–Leone† 𝑠 log 𝜏
log{1 − [1 − logit−1(𝜂)]2} topple() toppleQlink()

N(𝜇 = 0, 𝜎) 𝜎 |(𝜂 − 𝜇0)/√2 ⋅ 𝜅(𝜏)| normal1sdff() normal1sdQlink()
†logit−1() denotes the inverse of the logit() transformation.

whose primary arguments are 𝜏 and 𝜃. Its inverse (Table 3)
does not admit a closed form and it is approximated by
the functionVGAM::newtonRaphson.basic(), a vectorized
implementation of the Newton–Raphson algorithm. Almost
all implementations elsewhere of this are for a scalar argu-
ment, but we operate on vectors of length 𝑛. It works as
follows. Our data is effectively 𝑦�푖 = {𝑦�푖,𝑥�푖,�푑}, 𝑖 = 1, . . . , 𝑛,
whilst the quantiles of interest, 𝜏 or 𝑝, must be entered
by the user. The shape parameter 𝜃 is estimated by IRLS
and therefore it is available at each iteration. Thus, for
each 𝜂(𝜃;𝑝)0, the ‘inverse’ is given by the root, 𝜃, of the
function

𝑓 (𝜃;𝑝, 𝜂) = 𝜂 (𝜃;𝑝)0 − log gamma (𝜏, shape = 𝜃) . (19)

Finally, the inverse of all the VGLM–quantile links is
shown in Table 3, as well as the name of the correspond-
ing implementation in VGAMextra. The inverse–links are
required at different stages of the IRLS by Fisher scor-
ing, which internally switches between 𝜂(𝜃; 𝜏) (namely,
Table 2) and 𝜃(𝜂; 𝜏) (namely, Table 3). Specifically, the
algorithm requires the score vector and the EIMs at each

IRLS iteration, which are given by the following chain–rule
formulas: 𝜕ℓ𝜕𝜂 = 𝜕ℓ𝜕𝜃 ⋅ 𝜕𝜃𝜕𝜂 ,

−E[𝜕2ℓ𝜕𝜂2 ] = −E[𝜕2ℓ𝜕𝜃2 ](𝜕𝜃𝜕𝜂)2 . (20)

Internally, the functions utilized to compute the
inverse are VGAM::eta2theta() or VGAM::theta2eta().
The VGAMextra Manual and Miranda-Soberanis [13]
give further details about the derivation of the quantile
links, whilst Yee [6] describes in the IRLS and Fisher
scoring algorithms for estimating VGLMs and VGAMs.
Complements at the second author’s homepage give
additional details on link functions.

2.3. Software Use. For the user, this methodology runs as
usual by calling the modelling functions VGAM::vglm()
and VGAM::vgam(), except for two modifications that are
described below.

To start with, we give the following output that shows the
central arguments handled by VGAM::vglm():

The first adjustment takes place with the argument
formula, a symbolic description of the model to be fit.
Usually, an expression like y ∼ x2 + x3 should suffice

for a response y and covariates x2 and x3. This effec-
tively works for univariate and even for multiple responses
say y1, y2, and y3, where the only change is to set
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Table4:Arguments handledby the functionVGAMextra::Q.reg().

Argument Description

y

Numeric, a vector or a matrix. It is
the response or dependent variable
in the formula of the model to be

fitted.

pvector

A prototype vector. Entries are the
conditional p-quantiles in the fitting

process.

length.arg

A unit-length positive integer. It is
the number of p-quantiles to be

modelled.

cbind(y1, y2, y3) ∼ x2 + x3. Here, the right hand side
(RHS) of the formula is applied to each linear predictor.

For quantile modelling using VGLMs and VGAMs,
Q.reg()must be incorporated in the formula, whose argu-
ments are shown in Table 4. For a given set of quantiles
of interest, entered through 𝜏 = (𝜏1, . . . , 𝜏�퐿)�푇, Q.reg()
replicates the response matrix Y into𝑁𝑂𝑆 ⋅ dim(𝜏) columns,
where𝑁𝑂𝑆 denotes the number of columns of Y. Then, the

RHS of the formula applies to every set of columns according
to the number of quantiles of interest. Ordinarily the response
is a vector so that𝑁𝑂𝑆 = 1 and 𝐿 = 𝑀.

As an example, suppose thatwe have two responses𝑌1 and𝑌2 sampled from a prespecified distributionF, as per Table 3,
and the quantiles of interest are 𝑝 = (0.25, 0.50, 0.75)�푇.
Then Q.reg(cbind(Y1, Y2), pvector = p) will return a
matrix with six columns, with the first three columns being𝑌1, one for each quantile, and similarly the last three columns
equal 𝑌2. Thus vglm() handles this model as a multiple
responses fit.

The second adjustment is related to the argument
family, a function that describes the statistical model
to be fitted. Each family has at least one argument for
the link functions to be used in the fitting process (the
name changes from family to family). For example, for
VGAM::exponential() this is called link, whilst for the
family function VGAM::benini1() (see the third column of
Table 3), it is called lshape. When VGLM–quantile mod-
elling is to be performed, the corresponding link (last column
of Table 3) must be entered into the family accordingly. All
the quantile links manage the same arguments, including p,
the vector of quantiles, except by benini1Qlink() which
has the additional argument y0.

With both modifications, a typical call has the following
form:

Further fitting variants can be incorporated here, e.g., cate-
gorical covariates and the use of smoothers such as regression
splines. These and a few other features are illustrated in the
following section.

3. Examples

3.1. Maxwell Data. We use simulation to generate 𝑛 = 200
random variates from a Maxwell distribution whose rate
parameter is a function of a single covariate 𝑥2. To account
for a nonlinear trend in the dataset, additive models with
cubic smoothing splines appear to be a better choice over
linear schemes such as with VGLMs. In this example we
perform the following steps to confirm the performance of
the methodology.

(1) Generate random deviates from the Maxwell distri-
bution.

(2) Run conditional VGAM–quantile modelling using
maxwellQlink() based on the VGAM family
function VGAM::maxwell(), which estimates the
Maxwell distribution by Fisher scoring.

(3) Perform ordinary quantile regression using
VGAM::alaplace1() that estimates the 1–parameter
ALD by Fisher scoring. Here, the special argument
tau will be employed.

(4) Plot the artificial data with the estimated quantile
functions, 𝑄�푦(𝜏 | 𝑥, 𝜃) (from (2)), and the estimated
quantile curves (from (3)) superimposed.

We will consider the quantiles 25%, 50%, and 75% for
simplicity, so that 𝜏 = (1/4, 1/2, 3/4)�푇.

Regarding (1), the data is generated byVGAM::rmaxwell(),
which gives random deviates from the Maxwell distribution
whose density is 𝑓(𝑦; 𝑎) = √2/𝜋𝑎3/2𝑦2exp(−𝑎𝑦2/2). We use
the rate function

𝑎 = exp{2 − 6 sin (2𝑥�푖2 − 1/5)(𝑥�푖2 + 1/2)2 } , (21)

where 𝑋�푖2 i.i.d∼ Unif(0, 1), 𝑖 = 1, . . . , 𝑛. The following code
chunk sets things up and the dataset is saved as maxdata.
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Figure 1: Simulated Maxwell data (21) including (a) the fitted quantile functions from fit.Qmodelling (VGAMextra) and (b) the fitted
quantile curves from fit.Qregression (VGAM). The quantile curves in both cases derive from vector smoothing spline fits.

The following code chunk performs steps (2) and (3).
Note the fitting of additive models via VGAM::vgam()
with smooth terms defined by VGAM::s() where 𝑥2 is

to be smoothed. To compare both fits, they are saved in
fit.Qmodelling (from (2)) and fit.Qregression (from
(3)).

Figure 1 shows the simulated data, the estimated
quantile functions, and the fitted quantile curves from
fit.Qmodelling and fit.Qregression, obtained from
vector smoothing spline fits [14]. The results are similar for𝑥2 > 0.3, but our present work performs better at the bottom
LHS tail. The data coverage from each modelling framework

is summarized in Table 5. Once again our work outperforms
the ALD method.

We conclude with a few remarks.

(1) The argument p is available for all quantile links
in Table 3 and not only for maxwellQlink().
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It can be assigned any vector of percentile
values.

(2) Under the conditional VGAM–quantile modelling
framework, the arguments to handle the parallelism
assumption such as the arguments parallel.locat
and parallel.scale in family functions are no
longer required. This is internally managed by the
new quantile links rather than being managed by the
family function.

(3) If fit is a Qlink fit, then fitted(fit) returns the
fitted quantiles. This is in the form of a 𝑛 × (𝐿 ⋅ 𝑁𝑂𝑆)
matrix. Similarly, predict(fit) returns a 𝑛 × 𝑀
matrix where the 𝑖th row is 𝜂�푇�푖 .

3.2. Comparison with the Quantreg Package. For checking
purposes, the results are compared with quantreg too. Fig-
ure 2 gives the results based on the following code.

The results should be the similar to Section 3.1 because
the ALD and the classical quantile regression method are
essentially the same. It can be seen that the bottom LHS
corner is not modelled well with quantreg either. Once again
our method performs best, which is not surprising given the
strong distributional assumption.

3.3. Exponential Data. Feigl and Zelen [15] fit an exponential
distribution to a data set comprising the time to death

(in weeks) and white blood cell counts for two groups of
leukaemia patients, and a binary variable for AG-positive and
AG-negative. The two groups were not created by random
allocation. The variable AG is the morphological variable, the
AG factor; a numeric vector where 1 means AG-positive and
2 means AG-negative. We create AG01 which is AG - 1. We
take the log of the white blood cell count (WBC) because it
is very highly skewed. The data are found in GLMsData on
CRAN, which supports Dunn and Smyth [16].

One benefit of quantile modelling with VGLMs is that it
easily allows comparisons of the effect of AG01 or any other

indicator variable, at different quantiles. First note that, for
AG-positive patients with logWBC= 9, the 25% percentile for
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Figure 2: Simulated Maxwell data (21) including (a) the fitted quantile functions from fit.Qmodelling (VGAMextra) and (b) the fitted
quantile curves from qrfit50, etc. from quantreg.

time to death is around exp 2.848 ≈ 17.25 weeks, whilst the
75% percentile is about exp 4.42 ≈ 83.1 weeks. Secondly, the
coefficient of AG011measures the influence of the AG factor
on the time to death. Keeping the levels of WBC constant, for
patients at either the 25%or 75%percentiles, the time to death
for AG–negatives compared to AG–positives is multiplicative
by a factor of exp(−1.02) ≈ 0.361, i.e., a 63.9% reduction in
lifetime.

For further illustration’s sake, we fit a 1-parameter
gamma distribution to these data and interpret the results.
Unlike the Maxwell and exponential distributions, where
simple mathematics shows that different quantiles are
parallel because their logarithm is additive with respect
to 𝜏, the 1-parameter gamma does not possess this
property.

Here, keeping the level of WBC constant, for patients at the
25%percentile, the time to death for AG–negatives compared
to AG–positives is multiplicative by a factor of exp(−1.46) ≈0.232, i.e., a 76.8% reduction. In comparison, for patients
at the 75% percentile, the time to death for AG–negatives
compared to AG–positives is multiplicative by a factor of

exp(−1.27) ≈ 0.281, i.e., a 71.9% reduction.This suggests that
the effect of AG is greater for more severe cases than those
who live longer in general.

Finally, just to check, we obtain the constraint matrices
for each predictor:
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Table 5: Empirical data coverage from quantile–modelling using
VGAMextra (QM–VGAMextra) and quantile–regression from
VGAM (QR–VGAM), after fitting (21).𝜏�푗 QM–VGAMextra coverage QR–VGAM coverage25% 26% 28.5%50% 50% 54%75% 73.5% 78.5%

There is a parallelism assumption made for logWBC but not
for any of the other explanatory variables.

4. Discussion and Future Work

This work in parametric quantile regression is blighted by
the strong assumption of the assumed distribution. In theory,
this might be ameliorated somewhat by implementing as
many distributions as possible. Some of the distributions

listed in Table 2 have real applications, for example, in
kinetic-molecular theory the speed of individual molecules
of idealized gases follows the Maxwell distribution and the
average kinetic speed is directly related to Kelvin tempera-
ture. In experiments that do not satisfy the various postulates
made (such as the effects of the container) one might model
the median particle speed with 𝑥 comprising temperature
and other covariates such as volume of the container and
density of the container walls. Different forms of gases, such
as plasmas and rarefied gases, could be modelled as such
too. Another example is the Rayleigh distribution which
is similar to the Maxwell distribution. In two-dimensions,
and in applications of magnetic resonance imaging (MRI),
complex images are often viewed in terms of the background
data, which is Rayleigh distributed.Nonstandard background
information could be included in 𝑥 and their effects on the
distribution examined.

In the current software implementation there are limita-
tions due to its internal design. For example, it would be good
if

worked like many other VGAM models. The difficulty here
is that the @linkinv S4 slot of a VGAM family function has
eta as an argument, and in our implementation this could
only possibly be created by supplying the new percentiles to
predict() beforehand.

Another minor deficiency in our software implementa-
tion is that the response vector is replicated dim(𝜏) times so
that is a form of recycling. Possibly this could be avoided
because the memory requirement might be excessive when
either dim(𝜏) or 𝑛 are very large.

At present, the VGAM framework has infrastructure to
afford 1–parameter quantile links. For quantile functions
depending on 2 or more parameter, such as the two-
parameter gamma distribution, the quantiles will be bivariate
functions whose inverse would probably not admit a closed
form. Nevertheless, future work includes being able to write
links for two-parameter distributions, of which the normal
distribution would be the most important. For this, the
methodology behind Yee and Miranda-Soberanis [17] could
be employed; they solve a decades-old problem implementing
the two-parameter canonical link function log(𝜇/(𝜇 + 𝑘)) of
the negative binomial distribution. We have already com-
menced work in this direction, e.g., with the 2-parameter
gamma distribution.
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Using the Pairwise Absolute Clustering and Sparsity (PACS) penalty, we proposed the regularized quantile regression QR method
(QR-PACS). The PACS penalty achieves the elimination of insignificant predictors and the combination of predictors with
indistinguishable coefficients (IC), which are the two issues raised in the searching for the true model. QR-PACS extends PACS
from mean regression settings to QR settings. The paper shows that QR-PACS can yield promising predictive precision as well as
identifying related groups in both simulation and real data.

1. Introduction

The regression model is one of the most important statis-
tical models. The ordinary least squares regression (OLS)
estimates the conditional mean function of the response.
The least absolute deviation regression (LADR) estimates the
conditional median function and it is resistant to outliers.
The QR was introduced by Koenker and Bassett [1] as a
generalization of LADR to estimate the conditional quantile
function of the response. Consequently, QR gives us much
more information about the conditional distribution of the
response. QR has attracted a vast amount of interest in
literature. It is applied in many different areas such as
economics, finance, survival analysis, and growth chart.

Variable selection (VS) is very important in the process
of model building. In many applications, the number of
variables is huge. However, keeping irrelevant variables in the
model is undesirable because it makes the model difficult to
interpret and may affect negatively its ability of prediction.
Many different penalties were suggested to achieve VS. For
example, Lasso [2], SCAD [3], fused Lasso [4], elastic-net [5],
group Lasso [6], adaptive Lasso [7], adaptive elastic-net [8],
and MCP [9].

Under QR framework, Koenker [10] combined the Lasso
with the mixed-effect QR model to encourage shrinkage
in estimating the random effects. Wang, Li, and Jiang [11]
combined LADR with the adaptive Lasso penalty. Li and Zhu
[12] proposed L1-norm penalized QR (PQR) by combining
QR with Lasso penalty. Wu and Liu [13] introduced PQR
with the SCAD and the adaptive Lasso penalties. Slawski
[14] proposed the structured elastic-net regularizer for
QR.

In the setting p > n, where 𝑝 represents the number
of predictors and 𝑛 represents the sample size, Belloni and
Chernozhukov [15] studied the theory of PQR for the Lasso
penalty. They considered QR in high-dimensional sparse
models. Wang,Wu, and Li [16] investigated the methodology
of PQR in ultrahigh dimension for the nonconvex penalties
such as SCAD or MCP. Peng and Wang [17] proposed and
studied a new iterative coordinate descent algorithm for
solving nonconvex PQR in high dimension.

The search for the true model focuses on two issues:
deleting irrelevant predictors and merging predictors with
IC [18]. Although the above penalties can achieve the first
issue, they fail in achieving the second one. The two issues
can be achieved through Pairwise Absolute Clustering and
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Sparsity (PACS) [18].Moreover, PACS is an oraclemethod for
simultaneous group identification and VS.

The limitations of existing variable selection methods
motivate the authors to write this paper. The aim of the
current research is to find an effective procedure for simul-
taneous group identification and VS under QR framework.

In this paper, we suggested theQR-PACS to get the advan-
tages over the existing PQRmethods. QR-PACS benefits from
the ability of PACS on achieving the mentioned issues of the
discovery of the true model which is unavailable in Lasso,
Adaptive Lasso, SCAD, MCP, Elastic-net, and structured
elastic-net.

The rest of the paper is organized as follows. In Section 2,
penalized linear QR is reviewed briefly. QR-PACS is intro-
duced in Section 3. The numerical results of simulations and
real data are presented in Sections 4 and 5, respectively. The
conclusions are reported in Section 6.

2. Penalized Linear QR

QR is a widespread technique used to describe the distribu-
tion of an outcome variable (𝑦𝑖), given a set of predictors (x𝑖).
Let x𝑖 be a 𝑝⨉1 vector of predictors for the 𝑖𝑡ℎ observation
and 𝑞𝜏(x𝑖) be the inverse cumulative distribution function of𝑦𝑖 given x𝑖. Then, 𝑞𝜏(x𝑖) = x𝑇𝑖 𝛽𝜏 = ∑𝑝𝑗=1 𝑥𝑖𝑗𝛽𝑗,𝜏, where 𝛽𝜏 is a
vector of𝑝 unknown parameters and 𝜏 is the level of quantile.

Koenker and Bassett [1] suggested estimating 𝛽𝜏 as
follows:

min
𝛽
𝜏

𝑛∑
𝑖=1

𝜌𝜏(𝑦𝑖 − 𝑝∑
𝑗=1

𝑥𝑖𝑗𝛽𝑗,𝜏) , (1)

where 𝜌𝜏(.) is the check loss function defined as

𝜌𝜏 (𝑢) = 𝜏𝑢𝐼[0,∞) (𝑢) − (1 − 𝜏) 𝑢𝐼(−∞,0) (𝑢) . (2)

Under regularization framework, Li andZhu [12],Wu andLiu
[13], Slawski [14], and Wang, Wu, and Li [16] among others
proposed the penalized versions of (1) by adding different
penalties as follows:

min
𝛽
𝜏

𝑛∑
𝑖=1

𝜌𝜏(𝑦𝑖 − 𝑝∑
𝑗=1

𝑥𝑖𝑗𝛽𝑗,𝜏) + 𝜆 𝑝∑
𝑗=1

𝑃 (𝛽𝑗,𝜏) (3)

where 𝜆 > 0 is the penalization parameter and 𝑃(𝛽𝑘) is the
penalty function.

For the rest of this paper, the subscript 𝜏 is omitted for
notational convenience.

3. Penalized Linear QR through
PACS (QR-PACS)

In this section, we incorporate PACS into the optimization of
(1) to propose QR-PACS. Under the QR setup, the predictors𝑥𝑖𝑗 are standardized and the response 𝑦𝑖 is centered, 𝑖 =1, 2, . . . , 𝑛 and 𝑗 = 1, 2, . . . , 𝑝. The QR-PACS is proposed for
simultaneous group identification and VS in QR. The QR-
PACS encourages correlated variable to have equal coefficient

values. The equality of coefficients is attained by adding
group identification penalty to the pairwise differences and
sums of coefficients.The QR-PACS estimates are proposed as
minimizers of

𝑛∑
𝑖=1

𝜌(𝑦𝑖 − 𝑝∑
𝑗=1

𝑥𝑖𝑗𝛽𝑗) + 𝜆{{{
𝑝∑
𝑗=1

𝜔𝑗 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨
+ ∑
1≤𝑗<𝑘≤𝑝

𝜔𝑗𝑘(−) 󵄨󵄨󵄨󵄨󵄨𝛽𝑘 − 𝛽𝑗󵄨󵄨󵄨󵄨󵄨 + ∑
1≤𝑗<𝑘≤𝑝

𝜔𝑗𝑘(+) 󵄨󵄨󵄨󵄨󵄨𝛽𝑘 + 𝛽𝑗󵄨󵄨󵄨󵄨󵄨}}} ,
. . .

(4)

where 𝜔 are the nonnegative weights.
The PACS penalty in (4) consists of 𝜆{∑𝑝𝑗=1 𝜔𝑗|𝛽𝑗|}

that encourages sparseness, 𝜆{∑1≤𝑗<𝑘≤𝑝 𝜔𝑗𝑘(−)|𝛽𝑘 − 𝛽𝑗|} and{∑1≤𝑗<𝑘≤𝑝 𝜔𝑗𝑘(+)|𝛽𝑘 + 𝛽𝑗|}, which are employed for the group
identification and encourage equality of coefficients.The sec-
ond term of the penalty encourages the same sign coefficients
to be set as equal, while the third term encourages opposite
sign coefficients to be set as equal in magnitude.

Choosing appropriate adaptive weights is very important
for PACS. In QR-PACS, we employed the adaptive weights
that incorporate correlations into the weights as suggested by
Sharma et al. [18] with a small modification as follows:

𝜔𝑗 = 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨−1 ,
𝜔𝑗𝑘(−) = (1 − 𝑟𝑏𝑗𝑘)−1 󵄨󵄨󵄨󵄨󵄨𝛽𝑘 − 𝛽𝑗󵄨󵄨󵄨󵄨󵄨−1

and 𝜔𝑗𝑘(+) = (1 + 𝑟𝑏𝑗𝑘)−1 󵄨󵄨󵄨󵄨󵄨𝛽𝑘 + 𝛽𝑗󵄨󵄨󵄨󵄨󵄨−1
for 1 ≤ 𝑗 < 𝑘 ≤ 𝑝, . . .

(5)

where 𝛽 is a √𝑛 consistent estimator of 𝛽, such as the
PACS [18] estimates or other shrinkage QR estimates, and𝑟𝑏𝑗𝑘 is the biweight midcorrelation (𝑗, 𝑘)𝑡ℎ pair of predictors.
We propose to employ the biweight midcorrelation [19, 20]
instead of Pearson correlation which is used in the adaptive
weights in [18] to obtain robust correlation and robust
weights.

In this paper, ridge quantile estimates were employed as
initial estimates for 𝛽’s to obtain weights performing well in
studies with collinear predictors.

4. Simulation Study

In this section, five examples were carried out to assess
QR-PACS method by comparing it with existing selection
approaches under QR setting in both prediction precision
and model discovery. A regression model was generated as
follows.

𝑦 = 𝑋𝛽 + 𝜎𝜖 (6)

In all examples, predictors 𝑋 and the error term 𝜖 were
standard normal.
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Table 1: ME, SA, GA, and SGA results of Example 1 for n=100.

𝜏 Criterion Ridge QR- QR- QR- QR- QR-PACS
QR LASSO SCAD adaptive LASSO elastic-net

𝜎=1

0.10

ME(S.E) 0.1144(0.0176) 0.0834(0.0182) 0.0684(0.0165) 0.0673(0.0153) 0.0623(0.0112) 0.0432(0.0093)
SA 0 62 79 80 87 79
GA 0 0 0 0 0 88
SGA 0 0 0 0 0 72

0.50

ME(S.E) 0.0832(0.0056) 0.0524(0.0065) 0.0443(0.0056) 0.0431(0.0050) 0.0404(0.0041) 0.0143(0.0020)
SA 0 64 81 82 86 80
GA 0 0 0 0 0 89
SGA 0 0 0 0 0 73

0.75

ME(S.E) 0.1140(0.0173) 0.0829(0.0177) 0.0672(0.0150) 0.0668(0.0146) 0.0619(0.0105) 0.0429(0.0082)
SA 0 63 81 81 88 80
GA 0 0 0 0 0 89
SGA 0 0 0 0 0 72

𝜎=3

0.10

ME(S.E) 0.1471(0.0183) 0.1168(0.0188) 0.1062(0.0162) 0.1056(0.0162) 0.0953(0.0120) 0.0755(0.0106)
SA 0 59 77 77 84 77
GA 0 0 0 0 0 86
SGA 0 0 0 0 0 70

0.50

ME(S.E) 0.1153(0.0066) 0.0855(0.0071) 0.0763(0.0060) 0.0756(0.0060) 0.0730(0.0049) 0.0473(0.0034)
SA 0 61 80 80 83 78
GA 0 0 0 0 0 87
SGA 0 0 0 0 0 71

0.75

ME(S.E) 0.1466(0.0179) 0.1161(0.0185) 0.1056(0.0161) 0.1044(0.0158) 0.0945(0.0117) 0.0744(0.0099)
SA 0 61 79 79 85 78
GA 0 0 0 0 0 87
SGA 0 0 0 0 0 70

We compared QR-PACS with ridge QR, QR-Lasso, QR-
SCAD, QR-adaptive Lasso, and QR-elastic-net. The perfor-
mance of the methods was compared using model error
(ME) criterion for prediction accuracy which was defined
by (𝛽 − 𝛽)󸀠𝑉(𝛽 − 𝛽) where 𝑉 represents the population
covariance matrix of X and the resulting model complexity
for model discovery. The median and standard error (SE)
of ME were reported. Also, selection accuracy (SA, % of
true models identified), grouping accuracy (GA, % of true
groups identified), and % of both selection and grouping
accuracy (SGA) were computed and reported. Note that none
of ridge QR, QR-Lasso, QR-SCAD, QR-adaptive Lasso, and
QR- elastic-net perform grouping. The sample size was 100
and the simulated model was replicated 100 times. Some
typical examples are reported as follows.

Example 1. In this example, we assumed the true parameters
for the model of study as 𝛽 = (2, 2, 2, 0, 0, 0, 0, 0)𝑇, 𝑋 ∈
R8. The first three predictors were highly correlated with
correlation equal to 0.7 and their coefficients were equal in
magnitude, while the rest were uncorrelated.

Example 2. In this example, the true coefficients were
assumed as𝛽 = (0.5, 1, 2, 0, 0, 0, 0, 0)𝑇,𝑋 ∈ R8.The first three
predictors were highly correlatedwith correlation equal to 0.7
and their coefficients were different in magnitude, while the
rest were uncorrelated.

Example 3. In this example, the true parameters were 𝛽 =(1, 1, 1, 0.5, 1, 2, 0, 0, 0, 0)𝑇,𝑋 ∈ R10.The first three predictors
were highly correlated with correlation equal to 0.7 and their
coefficients were equal in magnitude, while the correlation
for the second three predictors was equal to 0.3 and their
coefficients were different in magnitudes. The remaining
predictors were uncorrelated.

Example 4. In this example, the true parameters were 𝛽 =(1, 1, 1, 0.5, 1, 2, 0, 0, 0, 0)𝑇,𝑋 ∈ R10.The first three predictors
were correlated with correlation equal to 0.3 and their
coefficients were equal in magnitude, while the correlation
for the second three predictors was 0.7 and their coefficients
were different in magnitudes. The remaining predictors were
uncorrelated.

Example 5. In this example, the true parameters were
assumed as 𝛽 = (2, 2, 2, 1, 1, 0, 0, 0, 0, 0)𝑇, 𝑋 ∈ R10. The first
three and the second two predictors were highly correlated
with correlation equal to 0.7 and their coefficients were
different in magnitude, while the rest were uncorrelated.

For all the values of 𝜏 and 𝜎, Table 1 shows that the QR-
PACS method has the lowest ME. Although the QR-elastic-
net andQR-adaptive Lasso have the highest SA, it is clear that
all the considered methods do not perform grouping except
QR-PACS. The QR-PACS method successfully identifies the
groups of predictors as seen in the GA and SGA rows.
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Table 2: ME, SA, GA, and SGA results of Example 2 for n=100.

𝜏 Criterion Ridge QR- QR- QR- QR- QR-PACS
QR LASSO SCAD adaptive LASSO elastic-net

𝜎=1

0.10

ME(S.E) 0.1170(0.0201) 0.0848(0.0195) 0.0696(0.0177) 0.0665(0.0165) 0.0639(0.0106) 0.0445(0.0101)
SA 0 60 78 78 84 78
NG 100 100 100 100 100 100
SNG 0 69 70 70 78 69

0.50

ME(S.E) 0.0857(0.0075) 0.0538(0.0068) 0.0456(0.0062) 0.0439(0.0057) 0.0421(0.0055) 0.0156(0.0035)
SA 0 63 81 81 84 79
NG 100 100 100 100 100 100
SNG 0 70 71 71 80 70

0.75

ME(S.E) 0.1155(0.0185) 0.0841(0.0179) 0.0681(0.0161) 0.0679(0.0155) 0.0630(0.0111) 0.0437(0.0090)
SA 0 61 80 81 84 79
NG 100 100 100 100 100 100
SNG 0 70 70 71 79 70

𝜎=3

0.10

ME(S.E) 0.1275(0.0213) 0.0968(0.0199) 0.0788(0.0185) 0.0745(0.0183) 0.0728(0.0106) 0.0419(0.0117)
SA 0 57 77 77 83 77
NG 100 100 100 100 100 100
SNG 0 67 69 69 76 67

0.50

ME(S.E) 0.0876(0.0078) 0.0549(0.0072) 0.0464(0.0064) 0.0447(0.0062) 0.0430(0.0060) 0.0156(0.0040)
SA 0 63 80 80 83 79
NG 100 100 100 100 100 100
SNG 0 69 70 70 79 69

0.75

ME(S.E) 0.1164(0.0190) 0.0850(0.0187) 0.0692(0.0170) 0.0688(0.0162) 0.0639(0.0120) 0.0446(0.0098)
SA 0 60 79 80 84 79
NG 100 100 100 100 100 100
SNG 0 69 70 70 78 69

In Table 2, the percentage of no-grouping (NG, no
groups found) and percentage of selection and no-grouping
(SNG) were reported instead of GA and SGA, respectively.
In terms of prediction and selection, the QR-PACS method
does not performwell, while the QR-elastic-net, QR-adaptive
Lasso, and QR-SCAD perform the best, respectively. All
the methods under consideration perform well in terms
of not identifying the group. Thus, the QR-PACS is not a
recommendedmethodwhen there is high correlation and the
significant variables do not form a group.

Table 3 demonstrates that the QR-elastic-net and QR-
adaptive Lasso have the best SA, respectively; however, the
QR-PACS performs better in terms of ME. It is obvious that
QR-PACS identifies the important group with high GA and
SGA.

Table 4 shows that theQR-elastic-net, QR-adaptive Lasso,
and QR-SCAD have the best SA. It is clear that the QR-PACS
has the best results among the other methods in terms ofME.
In terms ofGAand SGA, it can be observed that theQR-PACS
performs well.

FromTable 5, it can be noticed that theQR-elastic-net has
the best SA. The QR-PACS has excellent GA. Also, it is clear
that QR-PACS successfully identifies the groups of predictors
as seen in the GA and SGA.

5. NCAA Sports Data

In this section, the behavior of the QR-PACS with ridge QR,
QR-Lasso, QR-SCAD,QR-adaptive Lasso, andQR-elastic-net

was illustrated in the analysis of NCAA sports data [21]. We
standardized the predictors and centered the response before
the data analysis.

In each repetition, the authors randomly split the data
into a training and a testing dataset, the percentage of the
testing data was 20%, and models were fit onto the training
set. The NCAA sports data were randomly split 100 times
each to allow for more stable comparisons. We reported the
average and SE of the ratio of test error (RTE) over QR of all
methods and the effective model size (MZ) after accounting
for equality of absolute coefficient estimates.

The NCAA data was taken from a study of the effects
of sociodemographic indicators and the sports programs on
graduation rates.

The data size is n=94 and p=19 predictors.The dataset and
its description are available from the website (http://www4
.stat.ncsu.edu/∼boos/var.select/ncaa.html). The predictors
are students in top 10% HS (x1), ACT COMPOSITE 25TH
(x2), On living campus (x3), first-time undergraduates (x4),
Total Enrolment/1000 (x5), courses taught by TAs (x6),
composite of basketball ranking (x7), in-state tuition/1000
(x8), room and board/1000 (x9), avg BB home attendance
(x10), Professor Salary (x11), Ratio of Student/faculty (x12),
white (x13), Assistant professor salary (x14), population of
city (x15), faculty with PHD (x16), Acceptance rate (x17),
receiving loans (x18), and Out of state (x19).

From Table 6, the results indicate that QR-PACS does
significantly better than ridge QR, QR-Lasso, QR-SCAD,

http://www4.stat.ncsu.edu/~boos/var.select/ncaa.html
http://www4.stat.ncsu.edu/~boos/var.select/ncaa.html
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Table 3: ME, SA, GA, and SGA results of Example 3 for n=100.

𝜏 Criterion Ridge QR- QR- QR- QR- QR-PACS
QR LASSO SCAD adaptive LASSO elastic-net

𝜎=1

0.10

ME(S.E) 0.1383(0.0195) 0.1176(0.0196) 0.0933(0.0164) 0.0908(0.0151) 0.0902(0.0119) 0.0558(0.0098)
SA 0 58 79 79 82 78
GA 0 0 0 0 0 85
SGA 0 0 0 0 0 70

0.50

ME(S.E) 0.1139(0.0071) 0.0843(0.0062) 0.0662(0.0059) 0.0643(0.0054) 0.0638(0.0051) 0.0367(0.0029)
SA 0 62 80 81 84 79
GA 0 0 0 0 0 86
SGA 0 0 0 0 0 71

0.75

ME(S.E) 0.1289(0.0180) 0.1083(0.0171) 0.0861(0.0161) 0.0843(0.0147) 0.0834(0.0108) 0.0479(0.0081)
SA 0 61 80 80 84 79
GA 0 0 0 0 0 86
SGA 0 0 0 0 0 71

𝜎=3

0.10

ME(S.E) 0.1490(0.0199) 0.1279(0.0198) 0.1030(0.0169) 0.1016(0.0155) 0.0998(0.0124) 0.0651(0.0104)
SA 0 57 78 78 80 77
GA 0 0 0 0 0 83
SGA 0 0 0 0 0 69

0.50

ME(S.E) 0.1244(0.0076) 0.0945(0.0065) 0.0867(0.0062) 0.0742(0.0056) 0.0735(0.0054) 0.0464(0.0032)
SA 0 61 79 80 83 78
GA 0 0 0 0 0 85
SGA 0 0 0 0 0 70

0.75

ME(S.E) 0.1399(0.0185) 0.1189(0.0171) 0.0958(0.0166) 0.0946(0.0160) 0.0930(0.0111) 0.0567(0.0086)
SA 0 60 79 80 83 78
GA 0 0 0 0 0 85
SGA 0 0 0 0 0 70

Table 4: ME, SA, GA, and SGA results of Example 4 for n=100.

𝜏 Criterion Ridge QR- QR- QR- QR- QR-PACS
QR LASSO SCAD adaptive LASSO elastic-net

𝜎=1

0.10

ME(S.E) 0.1380(0.0193) 0.1149(0.0195) 0.0939(0.0165) 0.0937(0.0153) 0.0832(0.0130) 0.0560(0.0105)
SA 0 57 79 79 82 78
GA 0 0 0 0 0 86
SGA 0 0 0 0 0 71

0.50

ME(S.E) 0.1132(0.0069) 0.0816(0.0062) 0.0672(0.0060) 0.0672(0.0056) 0.0568(0.0062) 0.0369(0.0036)
SA 0 62 81 81 85 80
GA 0 0 0 0 0 86
SGA 0 0 0 0 0 72

0.75

ME(S.E) 0.1280(0.0178) 0.1056(0.0171) 0.0873(0.0164) 0.0872(0.0149) 0.0764(0.0119) 0.0481(0.0088)
SA 0 61 80 80 84 79
GA 0 0 0 0 0 86
SGA 0 0 0 0 0 71

𝜎=3

0.10

ME(S.E) 0.1495(0.0200) 0.1270(0.0197) 0.1016(0.0169) 0.1008(0.0154) 0.0970(0.0120) 0.0639(0.0100)
SA 0 57 78 78 81 77
GA 0 0 0 0 0 84
SGA 0 0 0 0 0 70

0.50

ME(S.E) 0.1239(0.0072) 0.0928(0.0064) 0.0859(0.0060) 0.0738(0.0054) 0.0730(0.0051) 0.0458(0.0029)
SA 0 62 80 80 83 79
GA 0 0 0 0 0 85
SGA 0 0 0 07 0 70

0.75

ME(S.E) 0.1391(0.0181) 0.1182(0.0167) 0.0953(0.0163) 0.0941(0.0158) 0.0921(0.0106) 0.0559(0.0081)
SA 0 60 79 80 83 78
GA 0 0 0 0 0 85
SGA 0 0 0 0 0 70
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Table 5: ME, SA, GA, and SGA results of Example 5 for n=100.

𝜏 Criterion Ridge QR- QR- QR- QR- QR-PACS
QR LASSO SCAD adaptive LASSO elastic-net

𝜎=1

0.10

ME(S.E) 0.1330(0.0161) 0.1106(0.0168) 0.0914(0.0154) 0.0910(0.0142) 0.0818(0.0122) 0.0548(0.0981)
SA 0 58 79 79 84 79
GA 0 0 0 0 0 87
SGA 0 0 0 0 0 72

0.50

ME(S.E) 0.1119(0.0061) 0.0807(0.0053) 0.0666(0.0054) 0.0663(0.0051) 0.0561(0.0054) 0.0358(0.0031)
SA 0 63 82 82 86 81
GA 0 0 0 0 0 87
SGA 0 0 0 0 0 73

0.75

ME(S.E) 0.1274(0.0169) 0.1048(0.0162) 0.0867(0.0157) 0.0865(0.0143) 0.0756(0.0109) 0.0476(0.0079)
SA 0 62 81 81 84 79
GA 0 0 0 0 0 87
SGA 0 0 0 0 0 72

𝜎=3

0.10

ME(S.E) 0.1486(0.0188) 0.1260(0.0189) 0.1001(0.0156) 0.1000(0.0148) 0.0960(0.0110) 0.0625(0.0088)
SA 0 57 77 77 81 78
GA 0 0 0 0 0 84
SGA 0 0 0 0 0 70

0.50

ME(S.E) 0.1227(0.0069) 0.0922(0.0059) 0.0850(0.0053) 0.0731(0.0047) 0.0724(0.0045) 0.0445(0.0020)
SA 0 63 80 80 83 80
GA 0 0 0 0 0 85
SGA 0 0 0 0 0 70

0.75

ME(S.E) 0.1385(0.0177) 0.1172(0.0154) 0.0940(0.0154) 0.0935(0.0151) 0.0926(0.0100) 0.0552(0.0075)
SA 0 60 80 80 83 79
GA 0 0 0 0 0 85
SGA 0 0 0 0 0 70

Table 6: The test error and the effective model size values for the methods under consideration based on the NCAA sport data.

Method 𝜏 = 0.25 𝜏 = 0.50 𝜏 = 0.75
RTE MZ RTE MZ RTE MZ

Ridge QR 1.135 (0.035) 19 1.131 (0.037) 19 1.134 (0.034) 19
QR-LASSO 1.126(0.033) 6 1.123(0.032) 6 1.124(0.033) 6
QR-SCAD 1.115 (0.036) 6 1.111 (0.035) 6 1.113 (0.035) 6
QR-adaptive LASSO 1.110 (0.029) 5 1.101 (0.030) 5 1.108 (0.029) 5
QR-elastic-net 1.029(0.029) 5 1.022 (0.026) 5 1.025(0.030) 5
QR-PACS 0.913(0.014) 5 0.896(0.012) 5 0.912(0.015) 5

QR-adaptive Lasso, and QR-elastic-net in test error. In fact,
ridge QR, QR-Lasso, QR-SCAD, QR-adaptive Lasso, andQR-
elastic-net perform worse than the QR in test error. The
effective model size is 5 for QR-PACS, although it includes
all variables in the models.

6. Conclusions

In this paper, QR-PACS for group identification andVS under
QR settings is developed, which combines the strength of QR
and the ability of PACS for consistent group identification
and VS. QR-PACS can achieve the two goals simultaneously.
QR-PACS extends PACS frommean regression settings toQR
settings. It is proved computationally that it can be simply

carried out with an effective computational algorithm. The
paper shows that QR-PACS can yield promising predictive
precision as well as identifying related groups in both sim-
ulation and the real data. Future direction or extension of the
current paper is QR-PACS under Bayesian framework. Also,
robust QR-PACS is another possible extension of the current
paper.

Data Availability

The data which is studied in our paper is the NCAA sports
data from Mangold et al. [21]. It is public and available from
thewebsite (http://www4.stat.ncsu.edu/∼boos/var.select/ncaa
.html), [21].

http://www4.stat.ncsu.edu/~boos/var.select/ncaa.html
http://www4.stat.ncsu.edu/~boos/var.select/ncaa.html
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The objective of this study is to use the Bayesian quantile regression for studying the retirement consumption puzzle, which is
defined as the drop in consumption upon retirement, using the cross-sectional data of theMalaysianHousehold Expenditure Survey
(HES) 2009/2010. Three different measures of consumption, namely, total expenditure, work-related expenditure, and nonwork-
related expenditure, are suggested for studying the retirement consumption puzzle. The results show that the drop in consumption
upon retirement is significant and has a regressive distributional effect as indicated by larger drops at lower percentiles and smaller
drops at higher percentiles. The smaller drops among higher consumption retirees (or higher income retirees) may imply that
they have more savings and/or retirement benefits than the smaller consumption retirees (or lower income retirees). Comparison
between the three types of consumption shows that the work-related expenditure has a uniform drop across the distribution. The
drop under the nonwork-related expenditure varies across the distribution, implying that it is the source behind the variation of
the consumption drop.

1. Introduction

A life cycle theory is a major economic theory that relates
consumption and saving behavior, which states that individ-
uals desire to maintain their level of consumption in their
entire lifetime [1]. The marginal utility consumption should
remain smooth throughout retirement transition because the
change in income during retirement should be predictable
[2]. On the contrary, a number of previous studies found
a one-time significant drop in consumption in the early
years of retirement, a situation which is known as retirement
consumption puzzle.

Over the past three decades, several studies focusing on
the smoothing or stable path of consumption have been
carried out. Hamermesh [3], who was among the first to
study retirement consumption puzzle in the United States,
showed that an individual was unable to sustain the level
of real consumption prior to retirement due to inadequate

retirement savings. Later, severalmore studies have been con-
ducted in other countries such as Banks et al. [4], Hurd and
Rohwedder [5], Schwerdt [6], Wakabayashi [7], and Battistin
et al. [8]. A review on several studies related to the retirement
consumption puzzle can be found in Attanasio and Weber
[9]. There are a number of studies which found that the
decline in consumption upon retirement is due to several
reasons. As examples, Haider and Stephens [10], Smith [11],
and Blau [12] found that the consumption drop is due to
the unexpected retirement which resulted from illnesses,
disabilities, or involuntarily unemployment. Blau [12] also
developed amodified life cyclemodel which incorporated the
uncertainty in the timing of retirement.

In terms of consumption measures, several studies uti-
lized food expenditure as a prominent substitution for the
actual consumption during retirement. However, Aguiar and
Hurst [13] found that food expenditure is a poor proxy
for the actual consumption because retirees consumed the
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same quantity of food, as well as its quality, even when food
expenditure has declined.Themain reason is that the retirees
consumed home production food in their retirement since
they have more time to prepare their meal and survey for
cheaper food. Later, Hurst et al. [14] and Fisher et al. [15]
proposed a broader measure of consumption which can be
categorized according to several different types of expendi-
ture and showed that a broader consumption measure can be
used to eliminate retirement consumption puzzle.

Previous studies on the drop in retirement consumption
were mostly concentrated at the mean distribution, which
covered only certain parts of distribution, and may lead
to poor estimation of parameters especially in long-tailed
distributions. The traditional mean model estimates only the
average effects of the whole data and do not allow for an
understanding of any potential distributional impacts (or
heterogeneity potential). Furthermore, the mean regression
model is based on least squares estimation and thus has a sig-
nificant sensitivity (or is not robust) to outliers. Several stud-
ies have been carried out to study the distributional aspects
of retirement consumption puzzle, including Bernheim et al.
[16] who estimated the retirement consumption drop using
subgroups of wealth and income replacement rate and Aguila
et al. [17] who used low and high consumption households
to examine the drop in retirement expenditures. Recently,
Fisher andMarchand [18] used the quantile regression model
to investigate the drop in consumption upon retirement.

Quantile regression model is different from the tradi-
tional mean regression model as it uses the Least Absolute
Deviation (LAD), instead of the least square error, which
is able to rectify the weaknesses prevalent in the usual
regression framework. Quantile regression model also allows
the impact of each regression parameter to be analysed based
on different selected quantiles. In short, quantile regression
model has several advantages; it is a distribution-free model
which does not adhere to any distributional assumptions, it is
robust to outliers, it does not require independence assump-
tion, and it allows the analysis of regression parameters to be
extended beyond central locations.

Quantile regression model is based on the works of
Koenker and Bassett [19] and Koenker and Hallock [20]
and is gaining rapid interests by other researchers. The
model has been developed for linear models with continuous
responses and has been applied in various fields such as
finance and economics [21], ecology [22], environmental
epidemiology [23], criminology [24], and climate change
[25]. Several extensions to the quantile regression model
have been suggested and applied in other areas, such as Yu
andMoyeed [26] who proposed Bayesian quantile regression
model, Machado and Silva [27] who proposed quantile
regression model for discrete data, Hewson and Yu [28] who
suggested quantile regression model for binary data within
the Bayesian framework, Reich et al. [25] who introduced
Bayesian spatial quantile regressionmodel, and Fuzi et al. [29]
who applied Bayesian quantile regression model for claim
count data in insurance area.

In this paper, we use the Bayesian quantile regression
model to examine the drop in consumption upon retire-
ment. The Bayesian quantile regression has the combined

advantages of both the quantile regression and the Bayesian
approach.Thequantile regression is a distribution-freemodel
and robust to data, while the Bayesian approach allows
the complete univariate and joint posterior distribution of
each parameter to be generated by the MCMC simulations.
Several motivational examples are worth mentioning here.
For instance, in the field of environmental study, the quan-
tile regression model allows the investigation of whether
the effects of environmental exposure change depending
on the level of respiratory health of the population [23],
while in the area of insurance pricing and ratemaking, the
Bayesian quantile regressionmodels handle the parameters of
covariates (or the risk factors) as random variables [29]. We
use a cross-sectional data of Household Expenditure Survey
(HES) 2009/2010 in Malaysia to investigate the changes in
consumption drop across the population. We also expand
the consumption measure into three categories, namely,
total expenditure (TE), work-related expenditure (WRE), and
nonwork-related expenditure (NWRE), to identify the source
behind the variation of consumption drop.

2. Materials and Methods

2.1. Mean Regression. In our study, the drop in mean con-
sumption upon retirement is estimated using the ordinary
least square (OLS):

ln (𝐶𝑖) = 𝛼 + 𝛽 ⋅ 𝑅𝑒𝑡𝑖𝑟𝑒𝑑𝑖 + x𝑇
𝑖
𝛾 + 𝜀𝑖 (1)

where ln(𝐶𝑖) is the log of response variable (consumption
measures), 𝑅𝑒𝑡𝑖𝑟𝑒𝑑𝑖 is the binary variable which equals one
for retirees and zero for working households, and x𝑖 is the
vector of control variables consisting of demographic and
socioeconomic variables (gender, marital status, ethnic, etc.).
The regression parameter, 𝛽, represents the mean consump-
tion difference between working and retired households.

2.2. Frequentist Quantile Regression. The frequentist quantile
regression model from Koenker and Bassett [19] is used
in our study for comparison purposes. The same equation
shown in (1) is used, but the quantile regression is now
fitted to the conditional differences in the log of consumption
between working households (preretirement) and retirees
(postretirement) at the 𝜃th quantile.

Let Y be the vector of continuous response variables,
which in our case can be represented by the three different
consumption measures, and x𝑖 be the associated row-vector
of covariates consisting of demographic and socioeconomic
characteristics of households. The classical regression model
focuses on the expectation of variable 𝑌, conditional on the
values of variables X, which can be summarized as 𝐸(𝑌𝑖 |
x𝑖) = x𝑇

𝑖
𝛽. On the other hand, the quantile regression model

extends this approach to 𝑄𝑌𝑖(𝜃 | x𝑖) = x𝑇
𝑖
𝛽
𝜃
, where the

quantile 𝜃 are fixed values between 0 and 1, allowing us
to study the conditional distribution of 𝑌 on X at different
locations.

The regression parameter, 𝛽𝜃, can be obtained using

min
𝛽
𝜃

∑𝑝𝜃 [ln (𝐶𝑖) − x𝑇
𝑖
𝛽
𝜃
] (2)
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where the loss function 𝑝𝜃(𝑢) = 𝑢(𝜃 − 𝐼[𝑢 < 0]) is a
piecewise linear function and 𝐼[⋅] is the indicator function.
Equivalently, the loss function can be written as

𝑝𝜃 (𝑢) = 𝑢 (𝜃𝐼 [𝑢 > 0] − (1 − 𝜃) 𝐼 [𝑢 < 0]) . (3)

Equation (3) can be minimized using linear programming,
while the confidence interval can be obtained using bootstrap
method. R statistical program with quantreg package [30] is
used in this study to fit the frequentist quantile regression
model.

2.3. Bayesian Quantile Regression. The Bayesian approach
for quantile regression model was introduced by Yu and
Moyeed [26] who formed the likelihood function using the
asymmetric Laplace distribution (ALD). A random variable𝑌 follows the ALD when the density function is given by

𝑓𝜃 (𝑦 | 𝜇, 𝜎) = 𝜃 (1 − 𝜃)𝜎 exp {−𝑝𝜃 (𝑦 − 𝜇𝜎 )} (4)

where 0 < 𝜃 < 1 and 𝑝𝜃(⋅) is the loss function in
equation (3). Under the Bayesian approach, the MCMC can
be used to obtain the posterior distributions of the unknown
parameters.Theposterior distribution of parameter𝛽 is given
by

𝜋 (𝛽 | y) 𝛼𝐿 (y | 𝛽) 𝑝 (𝛽) (5)

where 𝑝(𝛽) is the prior distribution of 𝛽 and 𝐿(y | 𝛽)
is the likelihood function which is formed by joining the
independently distributedALD.The joint likelihood function
can be written as

𝐿 (y | 𝛽)
= 𝜃𝑛 (1 − 𝜃)𝑛𝜎 (𝜃)𝑛 exp{− 𝑛∑

𝑖=1

𝜌𝜃 (𝑦𝑖 − x𝑇
𝑖
𝛽 (𝜃)

𝜎 (𝜃) )} . (6)

Since there is no specific conjugate prior distribution for
generating the posterior distribution, we use the uniform
prior distribution for all 𝛽(𝜃) in our study. The prior
distribution for the scale parameter is the inverse-gamma
distribution, or 𝜎(𝜃) ∼inverse-gamma(𝑎, 𝑏), which allows the
Gibbs sampling algorithm in the MCMC to update and tune𝜎(𝜃) for obtaining good acceptance rates.

3. Results and Discussion

3.1. Sample Data. The sample data from Household Expen-
diture Survey (HES) 2009/2010 is used in our study. The
data contains information on monthly expenditure, together
with demographic and socioeconomic characteristics of each
household. The selected sample is a cross-sectional data
consisting of 6480 household heads.

Three different measures of consumption are used for
the response variable, namely, total expenditure (TE), work-
related expenditure (WRE), and nonwork-related expendi-
ture (NWRE). TE consists of food at home, alcohol and
cigarettes, home appliances and furniture, clothing, educa-
tion, entertainment and recreation, health, insurance, outside

food (restaurant and café), transportation (own vehicle and
public transport), personal care, rental, utility, and other
services (such as legal services, tax services, and government
agency). WRE and NWRE are constructed using the defini-
tions in Aguiar and Hurst [31] and Fisher andMarchand [18].
WRE consists of outside food, personal care, public transport,
and clothing, whereas NWREcontains food at home, alcohol,
utilities, and entertainment.

3.2. Model Development. The MCMC simulations via Gibbs
sampling algorithm are used to generate 5,000 posterior
samples of each regression parameter. The first 1,000 runs
of posterior samples are discarded as burn-ins to lessen the
effect of initial simulations, and the process resulted in 4,000
final posterior samples for each regression parameter. The
values of 𝛽 are initialized at zero, while the inverse-gamma
parameters are set at a = 0.01 and b = 0.01.

3.3. Summary Statistics. Table 1 provides the summary statis-
tics for the sample. More than half of household heads (69%)
are located in urban areas, a large majority (78%) aremarried,
and more than half (64%) belongs to Bumiputera ethnic. In
terms of educational attainment, 14% of household heads are
university or college graduates, 35% are high school gradu-
ates, and the balances are below high school education (16%),
and others (35%) (attend informal or religious education).
For occupational groups, almost 13% of household heads are
professionals, while 19% and 13% are administrative supports
and technicians, respectively. In terms of employment type,
almost half of household heads are private sector employees,
followed by self-employed (19%) and government employees
(13%).The proportions of age group are quite equally divided,
with the exception of younger household heads (age less than
25). With regard to the status of living quarters, more than
half (67%) are homeowners, followed by renters (24%).

3.4. Mean Regression. Table 2 provides the estimate, 𝛽, for
the mean regression model, which can be used to show
the difference (in mean consumption) between working
and retired households. Three response variables are
considered, namely, total expenditure (TE), work-related
expenditure (WRE), and nonwork-related expenditure
(NWRE).

The mean consumption among retirees is lower com-
pared to theworking households for all expendituremeasures
as shown by the negative coefficient. The regression estimate
for TE is significant and indicates that the consumption
for retirees is 14% lower than the working households. The
estimates for WRE and NWRE are also significant, showing
that the retirees’ consumptions are 39% and 5% lower than
the working households, respectively. As expected, the WRE
has a relatively larger drop than the NWRE, indicating
that retirees are no longer involved in employment. The
results also agree with studies from Fisher and Marchand
[18] and Fisher et al. [15] who found that the WRE has the
highest consumption drop.The results indicate that a broader
measure of consumption may diminish the retirement con-
sumption puzzle, as indicated by the smaller drop in the
NWRE.
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Table 1: Summary statistics for HES Sample 2009.

Variable Proportion of households (%)
Region

1 (Kelantan, Pahang, Terengganu) 15
2 (Johor, Melaka, Negeri Sembilan) 16
3 (Kedah, Perak, Perlis) 20
4 (P.Pinang, Selangor, Kuala Lumpur, Putrajaya) 27
5 (Sabah, Sarawak) 22

Strata
Urban 69
Rural 31

Marital status
Married 78
Single Female 12
Single Male 10

Ethnic
Bumiputera 64
Non Bumiputera 36

Educational level
College/University 14
High School Grad 35
Less than High School 16
Others (not attending formal education, religious education, not finishing school) 35

Occupational group
Professionals and Legislators 13
Administrative Supports 19
Technicians 13
Agriculture and Fishery 10
Craft and Repair 9
Elementary Occupations 10
Operators 11
Others (housewife, unemployed, disabled) 15

Employment type
Employer 2.8
Government Professional and Administrative 7.0
Government Technicians and below 6.3
Private Professional and Administrative 16.4
Private Technicians and below 33.4
Self-employed 19.0
Others (e.g. pensioners) 15.1

Subjective life expectancy
live ≤ 25 4
25 ≤ live ≤ 34 18
35 ≤ live ≤ 44 26
45 ≤ live ≤ 54 26
55 ≤ live 26

Status living quarters
Owned 67
Rented 24
Quarters 5
Others (e.g. squatters owned, squatters rented) 4
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Figure 1: Trace plots for regression estimate under Bayesian median regression (𝜃 = 0.5).

Table 2: Regression estimate for mean regression model.

Expenditure Measure Estimate SE
Work-Related Expenditures (WRE) -0.385 0.026
Non Work-Related Expenditures (NWRE) -0.050 0.017
Total Expenditures (TE) -0.139 0.018

3.5. Bayesian Quantile Regression. The trace plots for the
regression estimate under the Bayesian median regression(𝜃 = 0.5) are provided in Figure 1. The trace plots for
other quantiles are also obtained but are not shown here.The
trace plots show that the MCMC simulations mix well, the
convergence of the posterior distributions took place, and
there were no significant problems in the chain simulations.

Table 3 shows the regression estimates (and standard
deviations) under the Bayesian quantile regression. It can be
seen that the estimates for the three consumption measures
are significant at all quantiles. The drops in consumption
also differ across the distribution. All three consumption
measures show larger drops at lower percentiles and smaller
drops at higher percentiles (regressive trend), where the
smallest and highest drops are at the highest and lowest
percentiles respectively. The regressive trend disagrees with
the results of Fisher and Marchand [18] who found that the
estimates aremore negative (progressive trend) whenmoving
towards the upper distribution. However, the regressive trend
is consistent with the results of Aguila et al. [17] who found
that the retirement consumption has larger drops at lower
percentiles.

The TE displays the largest drop (22%) at the 10th
percentile, a drop of 15% at the median, and the smallest drop
(3%) at the 90th percentile. Similar patterns are also seen in
theWRE and NWRE: 60%, 36%, and 17% drops, respectively,
at the 10th, median, and 90th percentiles for the WRE and

11%, 5%, and 2% drops, respectively, at the 10th, median,
and 90th percentiles for the NWRE. In terms of magnitude,
the WRE shows the largest drop at all quantiles, and the
result agrees with the mean model which shows that the
largest drop is from the WRE. As expected, the consumption
drops under theBayesianmedianmodel (𝜃=0.50) that is quite
comparable to the OLS model. The drops for TE, WRE, and
NWREare 14%, 39%, and 5%, respectively, under theOLS and
15%, 36%, and 5%, respectively, under the Bayesian median
model, indicating that the median model can be used as an
alternative to the mean model (OLS).

It can be observed that the drop in WRE follows a
uniform trend across the distribution, while the NWRE has
more variations at lower percentiles (from 0.10 to 0.50). The
variations show that the NWRE is the source behind the
variation in the consumption drop. Our result agrees with
Fisher and Marchand [18] who found that the WRE displays
a uniform drop across the distribution, and the NWRE is the
source behind the variation of the consumption drop.

Figure 2 exhibits the plots of regression estimates with
their respective 95% credible intervals under the Bayesian
quantile regression. For comparison purpose, the estimates
from the OLS are also included, represented by the dashed
horizontal line. It can be seen that the estimates under
the NWRE have more variations in the lower percentiles
(from 0.10 to 0.50), while the estimates under the WRE are
uniformly increasing. The consistently small widths of the
credible intervals throughout the quantiles indicate that the
estimates for the three consumption measures are significant
throughout the distribution.

3.6. Frequentist Quantile Regression. For comparison pur-
pose, Table 4 shows the estimates (and standard errors)
under the frequentist quantile regression model for the three
different measures of consumption. Comparison between
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Table 3: Regression estimate for Bayesian quantile regression model.

Consumption Measure 𝜃 = 0.10 𝜃 = 0.25 𝜃 = 0.50
Est LB UB SD Est LB UB SD Est LB UB SD

WRE -0.596 -0.608 -0.584 0.006 -0.480 -0.491 -0.470 0.005 -0.359 -0.367 -0.352 0.004
NWRE -0.112 -0.123 -0.101 0.006 -0.044 -0.051 -0.035 0.004 -0.047 -0.054 -0.041 0.003
TE -0.223 -0.234 -0.211 0.006 -0.150 -0.157 -0.143 0.004 -0.150 -0.157 -0.145 0.003

Consumption Measure 𝜃 = 0.75 𝜃 = 0.90
Est LB UB SD Est LB UB SD

WRE 0.004 -0.281 -0.289 -0.273 0.004 -0.167 -0.185 -0.151
NWRE 0.003 -0.021 -0.029 -0.014 0.004 -0.016 -0.007 -0.027
TE 0.003 -0.123 -0.130 -0.115 0.004 -0.029 -0.044 -0.016

Table 4: Regression estimate for frequentist quantile regression model.

Consumption measures 𝜃 = 0.1 𝜃 = 0.25 𝜃 = 0.5 𝜃 = 0.75 𝜃 = 0.9
Est SE Est SE Est SE 𝜃 Est SE Est SE

WRE -0.595 0.060 -0.483 0.041 -0.361 0.033 -0.281 0.032 -0.162 0.045
NWRE -0.108 0.030 -0.043 0.023 -0.047 0.019 -0.020 0.021 -0.020 0.032
TE -0.222 0.036 -0.150 0.022 -0.148 0.020 -0.124 0.025 -0.024 0.036

Tables 3 and 4 shows that the estimates under the Bayesian
and frequentist quantile regression models are similar for all
quantiles. Themain difference between bothmodels is shown
by the standard deviations and standard errors; the standard
deviations under the Bayesian model are different from the
standard errors under the frequentist model. The differences
are expected since the estimates under both approaches are
obtained under different estimation methods; the frequentist
intervals are estimated via bootstrap method, whereas the
Bayesian intervals are obtained from the MCMC simulation.

The smaller standard deviations under the Bayesian
regression suggest that the model has more significant esti-
mates.The estimates are statistically significant at all quantiles
for all three consumption measures under the Bayesian
model, while the frequentist model has several insignificant
estimates at several quantiles.

Similar to the Bayesian quantile regression, all three con-
sumption measures under the frequentist quantile regression
show larger drops at lower percentiles and smaller drops
at higher percentiles (regressive trend). The TE displays the
largest drop (22%) at the 10th percentile and the smallest drop
(12%) at the 75th percentile. The drop at the 90th percentile
is insignificant. The WRE displays the largest drop (60%) at
the 10th percentile and the smallest drop (16%) at the 90th
percentile, while the NWRE displays the largest drop (11%) at
the 10th percentile and the smallest drop (5%) at the median.
The drops after the median are insignificant. The drop in
WRE also follows a uniform trend, while the drop in NWRE
has more variations.

4. Conclusions

In this study, we applied the Bayesian quantile regression
to investigate the consumption drop upon retirement which
is an area where, currently, the quantile regression model
is of limited utilization. The Bayesian quantile regression

has the combined advantages of both quantile regression
and Bayesian approach. In particular, the quantile regression
is a distribution-free model and robust to data, while the
Bayesian approach allows the complete univariate and joint
posterior distribution of each parameter to be generated
by the MCMC simulations. Our study also compared the
estimates from the Bayesian quantile regression with the
OLS (mean) and the frequentist quantile regression. We also
considered three different consumption measures, namely,
total expenditure (TE), work-related expenditure (WRE), and
nonwork-related expenditure (NWRE).

The consumption drops in TE,WRE, andNWREare 14%,
39%, and 5%, respectively, under the OLS (mean model),
which agree with studies from Fisher and Marchand [18]
and Fisher et al. [15] who found that the WRE has the
highest drop, and the NWRE has the lowest drop.The results
also prove that a broader measure of consumption may
diminish the retirement consumption puzzle, as indicated by
the smaller drop in the NWRE.

As expected, the drops in TE, WRE, and NWRE under
the Bayesian median regression model (𝜃 = 0.50) are quite
comparable to the OLS, indicating that the median model
may be used as a substitute for the mean model.

The consumption drops upon retirement are statistically
significant at all quantiles under the Bayesian quantile regres-
sion, where larger drops at lower percentiles and smaller
drops at higher percentiles indicate a regressive distributional
effect (regressive trend).TheWRE shows a relatively uniform
drop, while the drops in NWRE have more variations at
lower percentiles (from 0.10 to 0.50), indicating that the
NWRE drops are the source behind the variations of drops.
Our study agrees with Aguila et al. [17] who found larger
consumption drops at lower percentiles (regressive trend) but
disagrees with Fisher and Marchand [18] who found larger
consumption drops at higher percentiles (progressive trend).
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Figure 2: Regression estimates and 95% credible intervals for Bayesian quantile regression.

It should be noted that different data may provide different
results.

The smaller drop among higher consumption retirees (or
retirees with higher income) under the Bayesian quantile
regression imply that the retirees with higher consumption
have more savings and/or retirement benefits. The results
are consistent with the expectations of life cycle theory
which states that higher income households save more
than lower income households. The larger drop at lower
percentiles under the Bayesian quantile regression implies
that the smaller consumption responses (or retirees with
lower income) are exposed to larger consumption shocks.

Comparison between the Bayesian and the frequentist
quantile regressions shows that the estimates are similar
at all quantiles. The main difference between both models
is that the standard deviations under the Bayesian model
are different than the standard errors under the frequentist
model.The differences are expected since the estimates under
both approaches are obtained under different estimation
methods.
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