
Joint International Conference
on Cyber Games and Interactive
Entertainment 2006

Guest Editors: Kevin Kok Wai Wong, Chun Che Fung, and Arnold Depickere

International Journal of Computer Games Technology

Joint International Conference on
Cyber Games and Interactive
Entertainment 2006

International Journal of Computer Games Technology

Joint International Conference on
Cyber Games and Interactive
Entertainment 2006

Guest Editors: Kevin Kok Wai Wong, Chun Che Fung,
and Arnold Depickere

Copyright © 2008 Hindawi Publishing Corporation. All rights reserved.

This is a special issue published in volume 2008 of “International Journal of Computer Games Technology.” All articles are open access
articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Editor-in-Chief
Edmond Prakash, Manchester Metropolitan University, UK

Associate Editors

Ali Arya, Canada
Lee Belfore, USA
R. Bidarra, The Netherlands
N. S. Chaudhari, Singapore
Simon Colton, UK
Peter Comninos, UK
Paul Coulton, UK

Andrew Davison, Thailand
Abdennour El Rhalibi, UK
Jihad El-Sana, Israel
Michael J. Katchabaw, Canada
Eric Klopfer, USA
Edmund M.K. Lai, New Zealand
Craig Lindley, Sweden

Soraia R. Musse, Brazil
Alexander Pasko, UK
Seah Hock Soon, Singapore
Desney S. Tan, USA
Kok Wai Wong, Australia
Suiping Zhou, Singapore
Ming-Quan Zhou, China

Contents

Cyber Games and Interactive Entertainment, Kok Wai Wong, Chun Che Fung,
and Arnold Depickere
Volume 2008, Article ID 739041, 2 pages

A Gameplay Definition through Videogame Classification, Damien Djaouti, Julian Alvarez,
Jean-Pierre Jessel, Gilles Methel, and Pierre Molinier
Volume 2008, Article ID 470350, 7 pages

Game Play Schemas: From Player Analysis to Adaptive Game Mechanics, Craig A. Lindley and
Charlotte C. Sennersten
Volume 2008, Article ID 216784, 7 pages

Story and Recall in First-Person Shooters, Dan Pinchbeck
Volume 2008, Article ID 783231, 7 pages

A Conceptual Framework for the Analysis of First-Person Shooter Audio and its Potential Use
for Game Engines, Mark Grimshaw and Gareth Schott
Volume 2008, Article ID 720280, 7 pages

Ambient Games, Revealing a Route to a World Where Work is Play?, Mark Eyles and Roger Eglin
Volume 2008, Article ID 176056, 7 pages

Efficient Terrain Triangulation and Modification Algorithms for Game Applications,
Sundar Raman and Zheng Jianmin
Volume 2008, Article ID 316790, 5 pages

Real-Time Optimally Adapting Meshes: Terrain Visualization in Games, Matthew White
Volume 2008, Article ID 753584, 7 pages

Auto Coloring with Enhanced Character Registration, Jie Qiu, Hock Soon Seah, Feng Tian,
Quan Chen, Zhongke Wu, and Konstantin Melikhov
Volume 2008, Article ID 135398, 7 pages

Strategic Team AI Path Plans: Probabilistic Pathfinding, Tng C. H. John, Edmond C. Prakash,
and Narendra S. Chaudhari
Volume 2008, Article ID 834616, 6 pages

Hierarchical Pathfinding and AI-Based Learning Approach in Strategy Game Design,
Le Minh Duc, Amandeep Singh Sidhu, and Narendra S. Chaudhari
Volume 2008, Article ID 873913, 11 pages

A Hybrid Fuzzy ANN System for Agent Adaptation in a First Person Shooter,
Abdennour El Rhalibi and Madjid Merabti
Volume 2008, Article ID 432365, 18 pages

Generation of Variations on Theme Music Based on Impressions of Story Scenes Considering
Human’s Feeling of Music and Stories, Kenkichi Ishizuka and Takehisa Onisawa
Volume 2008, Article ID 281959, 9 pages

A Constraint-Based Approach to Visual Speech for a Mexican-Spanish Talking Head,
Oscar Martinez Lazalde, Steve Maddock, and Michael Meredith
Volume 2008, Article ID 412056, 7 pages

Activity Classification for Interactive Game Interfaces, John Darby, Baihua Li, and Nick Costen
Volume 2008, Article ID 751268, 7 pages

A Real-Time Facial Expression Recognition System for Online Games, Ce Zhan, Wanqing Li,
Philip Ogunbona, and Farzad Safaei
Volume 2008, Article ID 542918, 7 pages

Perception-Based Filtering for MMOGs, Souad El Merhebi, Jean-Christophe Hoelt, Patrice Torguet,
and Jean-Pierre Jessel
Volume 2008, Article ID 243107, 9 pages

A Study of Interaction Patterns and Awareness Design Elements in a Massively Multiplayer Online
Game, Tiffany Y. Tang, Cheung Yiu Man, Chu Pok Hang, Lam Shiu Cheuk, Chan Wai Kwong,
Yiu Chung Chi, Ho Ka Fai, and Sit Kam
Volume 2008, Article ID 619108, 8 pages

Using a Camera Phone as a Mixed-Reality Laser Cannon, Fadi Chehimi, Paul Coulton,
and Reuben Edwards
Volume 2008, Article ID 321708, 6 pages

Using a Mobile Phone as a “Wii-like” Controller for Playing Games on a Large Public Display,
Tamas Vajk, Paul Coulton, Will Bamford, and Reuben Edwards
Volume 2008, Article ID 539078, 6 pages

Game Portability Using a Service-Oriented Approach, Ahmed BinSubaih and Steve Maddock
Volume 2008, Article ID 378485, 7 pages

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 739041, 2 pages
doi:10.1155/2008/739041

Editorial
Cyber Games and Interactive Entertainment

Kok Wai Wong, Chun Che Fung, and Arnold Depickere

School of Information Technology, Murdoch University, South Street, Murdoch, 6150 Western Australia, Australia

Correspondence should be addressed to Kok Wai Wong, k.wong@murdoch.edu.au

Received 11 May 2008; Accepted 11 May 2008

Copyright © 2008 Kok Wai Wong et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computer games and interactive entertainment have gained
much attention recently in the domain of digital media.
They are now being applied or used in many areas such
as entertainment, education, training, and art. Today, the
computer games and interactive entertainment market is
highly competitive. In this special issue, all the submis-
sions are invited papers which are extended from original
conference papers that were published in the Proceedings
of CyberGames 2006 and 2007: International Conference
on Games Research and Development, and the Proceed-
ings of the Third Australasian Conference on Interactive
Entertainment (IE 2006). This special issue aims to present
the latest works on new techniques and applications in the
area of cyber games and interactive entertainment. A total
of 29 papers have been submitted to this special issue, of
which 20 high-quality papers have been accepted after the
peer review process. This special issue starts with the first
paper entitled “A gameplay definition through videogame
classification” by D. Djaouti et al. In their paper, the authors
focused mainly on defining game play through some kind of
videogame classification. The work presented in this paper
is a part of a bigger and global experiment attempting to
understand game play better with a study of the nature of
videogames. Since game play is an important component
in any interactive entertainment design, this work provides
some interesting contribution to the field. Still along the
area of game play, the second paper is by C. A. Lindley
and C. C. Sennersten and is entitled “Game play schemas:
from player analysis to adaptive game mechanics.” It looks
at the use of schema theory and model to understand the
cognitive processes underlying game play. This paper exam-
ines both the predesigned schema as well as using adaptive
game mechanics. In game design, story and narration have
become an important area to enhance the game play. The
paper by Dan Pinchbeck, “Story and recall in first person

shooters,” looks into the area of storytelling specifically
for the games of first-person shooters (FPSs). With the
advancement of technologies, FPS games are able to deliver
the high expectation of incorporating a story into the game
play. The whole idea of storytelling is to gain the interest of
the game players and to perform some indirect control on the
players by leading them through the game-play experience.
Audio and music have been quite powerful in delivering part
of the objective of gaining interest and performing indirect
control. The work presented by M. Grimshaw and G. Schott,
“A conceptual framework for the analysis of first-person
shooter audio and its potential use for game engines,” is also
useful for achieving such objectives. This paper proposed
a new conceptual framework for the design of audio used
for developing FPS games. The authors suggested that the
framework could allow better immersive experience when
playing FPS games. The next paper by M. Eyles and R.
Eglin, “Ambient games: revealing a route to a world where
work is play,” also suggested that audio and music are impor-
tant in developing good game play. They have introduced
a term called “ambient games,” which is basically evolved
from the concepts of ambient music. They have showed in
their paper how to set this concept of ambient games in
the technological context. One of the important areas of
cyber games and interactive entertainment is graphics. With
the advancement of technologies, graphics presented today
are much more complex compared to about five years ago.
However, researchers are still aiming to find more effective
and efficient algorithms for generating better graphics.
The paper by S. Raman and Z. Jianmin, “Efficient terrain
triangulation and modification algorithms for game appli-
cations,” presented an efficient terrain generation algorithm.
The proposed algorithm is based on constraint conforming
Delaunay triangulation. The paper by M. White, “Real-time
optimally adapting meshes: terrain visualization in games,”

2 International Journal of Computer Games Technology

presented discussions on some of the factors that will affect
the terrain visualization in games. It is always challenging to
present high-quality scenes through the graphics hardware
especially in real-time interactive graphics applications. This
paper provided some implementation suggestions that could
enhance games and interactive entertainment. Animation
is becoming an essential requirement for most interactive
entertainment applications, the paper by J. Qiu et al., “Auto
coloring with enhanced character registration,” presented
an autocoloring algorithm using an enhanced-character
registration technique. The approach presented can be used
for practical animation sequence in achieving high-coloring
accuracy.

Kok Wai Wong
Chun Che Fung

Arnold Depickere

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 470350, 7 pages
doi:10.1155/2008/470350

Research Article
A Gameplay Definition through Videogame Classification

Damien Djaouti,1, 2 Julian Alvarez,1, 2 Jean-Pierre Jessel,1 Gilles Methel,2 and Pierre Molinier2

1 IRIT, University of Toulouse III, 118 route de Narbonne, 31062 Toulouse, France
2 LARA, University of Toulouse II, 5 allées Antonio Machado, 31058 Toulouse, France

Correspondence should be addressed to Damien Djaouti, djaouti@irit.fr

Received 30 September 2007; Accepted 15 February 2008

Recommended by Kok Wai Wong

This paper is part of an experimental approach aimed to raise a videogames classification. Being inspired by the methodology that
Propp used for the classification of Russian fairy tales, we have identified recurrent diagrams within rules of videogames, that we
called “Gameplay Bricks”. The combinations of these different bricks should allow us to represent a classification of all videogames
in accordance with their rules. In this article, we will study the nature of these bricks, especially the link they seem to have with
two types of game rules: the rules that allow the player to “manipulate” the elements of the game, and the rules defining the “goal”
of the game. This study will lead to an hypothesis about the nature of gameplay.

Copyright © 2008 Damien Djaouti et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

This paper is part of a global experimental approach aimed at
studying the nature of videogames, in order to try to define
what “gameplay” is. The first step of our methodology is to
elaborate a classification suited to videogames.

In a simple way, we could consider videogames as
an interactive application, entering into interaction with a
player.

According to Crawford [1], interactions between a
player and a videogame can be perceived as a dialogue:
“A cyclic process in which two active agents alternately (and
metaphorically) listen, think, and speak.”

Through this paper, we aim to focus on the “computer”
side of the cycle, in order to analyze the constitutive elements
of videogames as pieces of software.

The first target of this approach is to identify formal data,
ignoring for now the knowledge and psychological aspects of
the player.

The next idea is to study this data in order to deduce
a classification of videogames. It should also contribute to
the definition of a common language suited to videogame
analysis.

We have been inspired by the work of Propp [2] in his
study of the Russian fairy tales during the beginning of the
twentieth century.

Facing similar problems, such as the impossibility for
the researchers of his time to conduct an objective study of

the inherent Russian fairy tales mechanisms, Propp used a
formal deconstruction.

Starting from a hundred of fairy tales, that he has been
analyzed in this way, he has been able to identify recurrent
narrative structures which lead him to build a classification
of Russian fairy tales.

We have also been influenced by the joint work of Salen
and Zimmerman [3], who led us to focus our study on
videogames rules : “Looking at games as rules means looking
at games as formal systems, both in the sense that the rules are
inner structures that constitute the games and also in the sense
that the rules schemas are analytic tools that mathematically
dissects games.”

By isolating the “computer” part of the videogame
interaction cycle, we obtain a simple structural diagram
(Figure 2) composed of three parts: the “Input,” peripheral
devices allowing the user to enter choices. These choices are
then evaluated by the rules of the “Compute” part, in order
to produce a “result.” This result is finally communicated to
the player through the “Output” device.

In order to stick to our paradigm, we will focus on the
“rules,” featured in the “Compute” part, made of software.

According to this approach, we have studied the rules of
588 various videogames. All this data has been indexed in a
database called V.E.Ga.S. (video & electronic games studies).

Our previous researches [4, 5] have shown strong recur-
rences, on the whole, of videogames rules. These recurrences
are exposed in the first part of this article.

2 International Journal of Computer Games Technology

Watching

Player

Thinking Pushing

Displaying

Computing

Videogame

Inputing

Figure 1: Player and videogame interaction cycle.

In the second part, we will analyze these recurrences and
try to identify the eventual structures that could be related to
the gameplay of these videogames.

2. A VIDEOGAME CLASSIFICATION

2.1. Game bricks

In accordance to Propp’s methodology, we have developed
a tool suited to the indexation and analysis of a large
videogames corpus. This quantitative approach should raise
eventual recurrent aspects likely to become criteria for a
classification.

We based our corpus on as large a period of time as possi-
ble, in order to limit the impact of technical evolution on the
results we may observe. However, we had to define several
limitations to the videogames likely to join our corpus:

(i) single player games only;
(ii) computer games only;

(iii) games based on both audio and graphical output.

The 588 games in our corpus were chosen after an online
alphabetical list of videogames titles; however, the great
majority of them are “arcade games” or “casual games.”

Thanks to our tool, we have proposed a first step
for the development of a classification criterion: we have
emphasized the “Game Bricks” (Figure 3), the “fundamental
elements” whose different combinations seem to match the
different rules and goals of videogames.

After analysis [7], we noticed that every “Game brick” cor-
responds to a “recurrent template” in the rules of videogames.

For example, two games such as “Pac-man” and “space
invaders” features the following rules:

(i) “If Pac-man collides with Ghost, then destroy Pacman.”
(ii) “If Spaceship collides with Enemy’s shot, then destroy

Spaceship.”

We notice a very strong similarity between these rules and we
can consider, therefore, that they are built on the following
template: “If player element collides with a hostile element,
then there is a negative feedback towards the player element.”

This template is then the definition of a “Game brick,”
namely, the AVOID brick. So far, we have identified ten
“Game bricks,” all built upon this same principle.

For example, the Game bricks featured in “Pac-man” are
“MOVE,” meaning the player can move an avatar; “AVOID”
for the ghosts you have to avoid; “DESTROY” for the dots

Input Compute Output

Player pushes
any button

The computer is “thinking” A “result” is displayed
on the screen

Figure 2: Structural parts of a videogame.

Avoid Manage Random Shoot Create

Destroy Match Write Move Select

Figure 3: Game bricks discovered as of now. (A side note about
the different bricks we have identified: since the paper presenting
the first version of “V.E.Ga.S.,” some bricks have been modified.
You will notice that the bricks TIME and SCORE were removed.
The COLLECT brick was merged with DESTROY. The POSITION
brick was extended in the form of MATCH. Last but not least, the
ANSWER brick was split in two bricks: SELECT and WRITE. More
detail on the bricks modifications is presented in [7].)

you have to eat; and “MATCH” because you have to match
each dot’s spatial position to destroy it.

But you can also find these bricks in a racing game
like “Need for Speed”: MOVE a car, AVOID opponents,
and MATCH on checkpoints you have to DESTROY. When
reached a checkpoint becomes “out of the game” and is not
reachable anymore, so it can be considered “destroyed,” just
like any dot eaten by Pac-man.

Nevertheless, even within their rules, these two games are
different: the movement and thus the “MOVE” brick features
two dimensions in “Pac-man,” but three in “Need for Speed
Carbon”; the number of checkpoints to reach in Need for
Speed is much smaller than the number of dots that Pac-
man has to swallow; the movement of the elements to avoid
is different in each game.

Differences between these two example games are the
issue of different implementations of “rule templates” from
the bricks they are sharing, but are also due to the use of
rules which are not covered by the bricks: in order to obtain
an efficient classification we could not make a brick for every
existing rule template.

We then had to limit the number of Game bricks, trying
to identify the most recurrent rules templates, after a close
study of the games in our corpus.

However, the Game bricks are aimed to allow the
representation of the diversity of challenges one can find
among videogames.

Damien Djaouti et al. 3

(a) (b)

Figure 4: Pac-man (1980) and need for speed carbon (2006).

Shoot Destroy

KILLER

Move Avoid

DRIVER

Figure 5: Two identified metabricks.

Besides the recurrent factor, we also took in account
the nature of the rule: we have concentrated our efforts on
representing the rules related to the actions of the player with
the “Game Bricks,” meaning we focused on rules related to
the game goal and to the means of reaching it.

Being inspired by the works of Koster [8] and Bura
[9] who both try to elaborate a grammar of videogames
in the shape of diagrams, we have formalized diagrams as
definitions for our bricks (these diagrams are presented in
Section 4.1).

The structure of these templates is based on the “struc-
ture of a rule”: one or several “triggering conditions” (If)
associated with one or several effects (Then).

The “If...Then” structure of a rule obviously reminds
one of the algorithmic scheme used in computer science, as
studied in a previous article [7].

2.2. Metabricks

Nevertheless, the number of “total combinations” obtainable
with these different bricks is still rather large, but we have
noticed that some couples of bricks were found very often in a
great number of games.

We named those couples of bricks “Metabricks” and after
the study of games that have one or two of these metabricks,
we have given them names that are rather meaningful:
MOVE and AVOID became the “DRIVER” metabrick,
and the association of SHOOT and DESTROY became
“KILLER.”

These “metabricks” seem to us empirically related to the
challenges proposed by these games.

Families that have identical metabricks, but also some
different bricks seem to present a variation on the same
challenge. For example, the families of “Pac-man” and
“Frogger” have a difference concerning the DESTROY brick:
Pac-man has to swallow dots and thus to destroy them, while
the frog has only a busy road to cross.

To summarize, we have identified “Game Bricks” that
represent “recurrent rule templates” within videogames.
Based on these bricks, we have elaborated a classification
that gathers videogames into “families” having identical
combinations of “Game bricks.”

Goal: put ball in

Rule: can’t
use hands

Rule: gravity

Figure 6: Elements, rules, and goal for soccer.

These families can then be classified through the use of
some pairs of bricks, named “MetaBricks.”

3. TOPOLOGY OF A GAME

In order to fully analyze the results of our quantitative study,
we also have studied the morphology of a videogame in a
qualitative way.

We started from the definition of a game according to
Salen and Zimmerman [3]: “An activity with some rules
engaged in for an outcome.”

The authors of “The Rules of Play” consider a game as an
activity defined by two elements: the rules and the result, the
latter one coming from a previous goal.

3.1. “Some rules”

If we consider that a videogame takes place in a virtual
universe, we can also consider that this universe is composed
of several “elements,” in the broadest sense.

For example, in soccer, a game that is playable both as a
videogame and as a sport, the universe would be composed
of elements featured in a match: players, pitch, goals, and ball.

All these elements are driven by the “rules” of the game,
in a similar way that elements from our own universe are
driven by physical or behavioral laws.

From a soccer point of view, these rules are the physical
rules handling the movement of several elements, like the
gravity applied on the ball and the players, but also the game
rules specifying that only the goalkeeper is allowed to touch
the ball with his hands.

These rules seem to determine a “field of possible
actions” that may happen when a soccer match is played.
This is what Salen and Zimmerman call the “space of
possibility” [3].

3.2. “An outcome”

According to the definition presented previously, a game
proposes an outcome. Talking about an outcome implies a
judgement of the player performance. But in order to judge,
one needs a reference. In a game, the reference is tied to the
goal the players have to reach.

For soccer, the goal of the game, identical for each team,
is to bring the ball into the goals of the opposing team. The
“goals” and “goalkeeper” words are by the way very explicit.

As shown in a previous article [7], we could also consider
the goal of the game as a rule, indeed a special one: this rule
has to state the end of the game, in others words its outcome,
when some conditions are fulfilled.

4 International Journal of Computer Games Technology

In

Avoid Out

No

Yes

Value linked
to player

MATCHES
Target value

NEGATIVE
FEEDBACK

Player
element

Out

In

Create Out

No

Non
player element
IS CREATED

POSITIVE
FEEDBACK

Player
element

Yes

Out

(a)

In

Destroy Out

No

Yes

Non
player element

IS DESTROYED

POSITIVE
FEEDBACK

Player
element

Out

In

Random Out

No

INPUT
Player triggers

“random”

EFFECT
New random

value
linked to

player

Yes

Out

In

Manage Out

No

INPUT
Any is triggered

AND
resource R

is >=X

EFFECT
Any effect

is triggered
AND

R = R− x

Yes

Out

(b)

In

Match Out

No

Yes

Value linked
to player

MATCHES
Target value

POSITIVE
FEEDBACK

Player
element

Out

In

Move Out

No

INPUT
Player triggers

“movement”

EFFECT
Position
change

for player
element

Yes

Out

In

Shoot
Out

No

INPUT
Player triggers

“shoot”

EFFECT
New element
player-linked
autonomous
movement

Yes

Out

(c)

In

Select Out

No

Yes

INPUT
Player selects
an element

EFFECT

Any effect
is triggered

Out

In

Write Out

No

INPUT
Player inputs

an alphanumeric
string

EFFECT

Any effect
is triggeredYes

Out

(d)

Figure 7

Back to the soccer example, the game is “reset” when the
ball enters into one of the goals, and the score of the team
featuring the player who shot the ball is increased by one
point.

Even though a match ends after 90 minutes, the outcome
does not depend only on time: the team with the highest
score after 90 minutes of play wins the game.

Hence the judgement allowing the outcome of the game
is here tied to the goal of the game, which is to throw the ball
into the opposing goal.

3.3. Different kinds of rules

If the target of the game is also a part of the game rules, does
it means that different “kinds” of rules exists?

The work of Gonzalo Frasca seems to indicate so, in
particular his typology of the different kinds of game rules
[10].

(i) “Manipulation rules,” defining what the player can do
in the game.

(ii) “Goal Rules,” defining the goal of the game.

(iii) “Metarules,” defining how a game can be tuned or
modified.

For now, we will put aside “Metarules,” which mean that on
the whole of videogame rules, we will find some rules related
to the definition of a goal, and other rules defining means to
reach it.

Damien Djaouti et al. 5

As different kinds of rules exist, and as “Game bricks”
are based upon “rule templates,” we can ask the following
question:

On what kind of rules are the bricks based on?

4. BRICKS AND GAMEPLAY

4.1. Game + Play = Gameplay?

In order to find which kind of rules the bricks are based on,
let us analyze the definition diagrams of each brick.

We notice that the bricks CREATE, DESTROY, RAN-
DOM, MANAGE, MOVE, SHOOT, SELECT, and WRITE all
feature a reference to the videogame’s Input within its triggers.

Please note that these bricks assume that the received
inputs are “valid.” Hence these “player’s inputs” are previ-
ously checked by additional mechanisms that are out of the
scope of this article.

On the other hand, the AVOID, BLOCK, DESTROY, and
MATCH bricks all feature a feedback within its effects [6]. (An
important note about the use of the word “feedback” in this
article: we are aware that within computer science, the terms
“negative feedback” and “positive feedback” refer to systems
with the ability to automatically correct their actual state.
However in the field of game design, “positive feedback” and
“negative feedback” refer to the different kinds of “rewards”
a game can address to the player. We chose to use the latter
definition of these terms in this paper.) This feedback is
displayed by the videogame’s Output.

We could then divide bricks into two categories, accord-
ing to whether they feature one or another of these charac-
teristics.

The first category of bricks seems to be based on a
principle that one could formulate in the following way: “to
listen to Input and to consequently carry out modifications on
game elements.”

The second category would rather correspond to: “to
observe the game elements and to return an evaluation of the
quality of modifications made by the first rule category.”

We retrieve here principles close to two types of rules
evoked by Frasca: the first category approaches the definition
of “Manipulation rules,” while the second one seems to be
related to “Goal Rules.”

But, from our point of view, the difference between these
two categories of bricks is also tied to the difference between
the two words “Play” and “Game.”

Indeed, as the bricks of the first category are related to
Input, they can be connected to the word “Play”; whereas the
bricks of the second category, which are related to the goal
and so to the Output, would approach a concept related to
the word “Game.”

Following these observations, we can try to sort the
bricks.

The difference between the two bricks categories appears
all the more clear by the fact that they are not in direct relation
between each other.

Indeed, the two categories of bricks “interact” through
the “game elements”: the “Play” bricks modify them, and the
“Game” bricks observe the modifications made by the first
ones.

Play bricks
linked to input

Game bricks

linked to goal

Random Write Select Destroy Match

Move Manage Shoot Avoid Create

Figure 8: “Play” or “Game” related bricks.

1
0
1

1
0
1
0
1
0
1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1
0
1
0
1
0
1
0
1
0
1

Play
bricks

Game
bricks

Game elements

Compute

Input

Triggers

Acts on

Acts on

Triggers

Output

Figure 9: Bricks interaction with input and output.

Shoot Destroy

KILLER

Play brick Game brick

Move Avoid

DRIVER

Figure 10: Play brick + Game Brick = Metabrick.

We could finally extend the “videogame structural dia-
gram” (Figure 2) by detailing the “Compute” part, where the
rules are located.

Unfortunately, the expression “Game brick” does not
seem adequate anymore to refer to our full set of bricks,
but only to the subset of bricks from the second category.
We must then choose another term, which seems obvious
here: we will now refer to the set of 10 identified bricks as
“GamePlay bricks.”

More than a simple name change, this word leads to an
important question still looking for a precise answer.

“What is Gameplay?”

Gameplay is empirically seen as a central element within a
videogame, and seems closely related to the game quality in
the mind of many players.

6 International Journal of Computer Games Technology

If the question of its nature appears of capital impor-
tance, it is unfortunately a concept which remains to be
precisely defined.

Looking for a definition of gameplay, let us synthesize the
points studied until now.

We identified a set of recurrences within the rules
of videogames, that we named “Gameplay bricks.” After
analysis, we observe two types of bricks, related to two “kinds
of videogame rules.”

(i) Rules listening to Input and acting on the game
elements consequently, named “Play bricks.”

(ii) Rules observing the state of the game elements and
returning to the player an evaluation of his perfor-
mance, named “Game bricks.”

May the association of “Play bricks” with “Game bricks” be the
spirit of gameplay?

A draft answer to this question may come from the two
Metabricks presented in Section 2.2, namely, DRIVER and
KILLER.

If we analyze them, we notice that they are composed of a
“Play brick” associated to a “Game brick.”

We would say that if the “Game Brick” refers to a goal
to reach, the “Play Brick” seems to represent a means (or a
constraint) in order to reach this goal.

For example, DRIVER asks the player to avoid colliding
with some elements, and allows the player to move its avatar
in order to do so. In the same way, KILLER asks to destroy
elements, through the use of projectiles that the player can
shoot or throw.

As these “Metabricks” represent pairs of “GamePlay
bricks,” that is, rules templates, which are identified in a large
group of games, our hypothesis about the nature of gameplay
seems very promising.

5. CONCLUSION

Being inspired by the methodology that Propp used for
his fairy tales classification, we have started a quantitative
analysis of videogames.

Propp’s methodology leads us to build a classification
based on “recurrent templates of games rules,” as we identified
a set of recurrent rules templates formalized into ten
“GamePlay bricks.”

According to the work of Frasca, these bricks can be of
two kinds.

(i) “Game”: if the rule template is directly related to the
goal of the game, mainly as a feedback within the rule
effects.
In this case, the rule is characterized by a trigger based
on the state of the game elements, and an effect linked
to the videogame’s Output.

(ii) “Play”: if the rule template is independent from the goal.
The rule is then characterized by a trigger based on
the videogame’s Input, and an effect targeting only the
game elements.

We would then state as hypothesis that “Gameplay” is, at least
within the videogame rules, composed of both “Game bricks”
and “Play bricks.”

We have then been able to identify pairs of “Gameplay
bricks” that have been found recurrently in our games
corpus.

We have named these recurrent pairs “Metabricks,” as
they are composed of “Play brick(s)” associated to “Game
brick(s).”

The discovery of “Metabricks,” which are the result of
pure statistical analysis over a 588 videogames corpus, seems
to lean towards a validation of our hypothesis about the
nature of gameplay.

However, our corpus of videogames needs to be extended
to more games and to more “kinds” of games to fulfill this
validation.

Moreover, the expansion of our videogames corpus
should lead to the discovery of additional Metabricks: with 4
“Game bricks” and 6 “Play Bricks,” numerous new potential
metabricks await.

More precisely, the next steps of our study will be based
on two complementary approaches.

(i) A “bottom-up” (qualitative) approach, which will lead
us to pursue the development of an experimental
videogame, named “GamB.A.S” (a first prototype was
exposed in a previous article [7]). The aim of this game
is to allow one to observe the interaction between the
different kinds of videogame rules, through the ability
of enabling/disabling any videogame rule at runtime.
For now, this game only implements rules from the
“Gameplay bricks” templates, limiting its videogame
generation abilities to quite simplified versions of
actual videogames.

(ii) A “top-down” (quantitative) approach, which will lead
us to pursue the classification of videogames.

We are modifying our classification tool in order to pro-
pose a collaborative version of our videogame classification,
freely accessible on the Internet.

This improved version adds the possibility to collect and
compare a large number of evaluations for each game, in
order to minimize the subjectivity introduced during the
analysis of videogames.

You might then freely propose, evaluate, or even consult
information about any videogame on the following website:
http:///www.gameclassification.com/.

ACKNOWLEDGMENTS

The authors wish to thank Jean-Yves Plantec and Martial
Bret from the “Iode” company for their point of view on
the idea of “bricks,” as well as Stéphane Bura, Art Director
at “10Tacle Studio,” who directed us towards a great number
of references. They also wish to offer many thanks to Annika
Hammarberg for the translation of this paper from French
to English, and Dominic Arsenault for his expert corrections
and suggestions. A very special thanks finally goes to Rashid
Ghassempouri for his general help and thoughts in our
earlier works about the game classification.

REFERENCES

[1] C. Crawford, Chris Crawford on Game Design, New Riders,
Indianapolis, Ind, USA, 2003.

Damien Djaouti et al. 7

[2] V. Propp, Morphologie du conte (1928), Seuil, Paris, France,
1970.

[3] K. Salen and E. Zimmerman, The Rules of Play, MIT Press,
Cambridge, Mass, USA, 2003.

[4] J. Alvarez, D. Djaouti, R. Ghassempouri, J.-P. Jessel, and
G. Methel, “V.E.Ga.S.: a tool to study morphology of the
video games,” in Proceedings of the International Digital Games
Conference (GAMES ’06), pp. 145–155, Portalegre, Portugal,
September 2006.

[5] J. Alvarez, D. Djaouti, R. Ghassempouri, J.-P. Jessel, and
G. Methel, “Morphological study of the video games,” in
Proceedings of the International Conference on Games Research
and Development (CGIE ’06), pp. 36–43, Perth, Australia,
December 2006.

[6] E. Adams and A. Rollings, Game Architecture and Design,
chapter 3, New Riders, Indianapolis, Ind, USA, 2004.

[7] D. Djaouti, J. Alvarez, J.-P. Jessel, G. Methel, and P. Molinier,
“Towards a classification of video games,” in Proceedings
of Artificial and Ambient Intelligence Conference (AISB ’07),
Newcastle, UK, April 2007.

[8] R. Koster, “A grammar of gameplay,” http://www.theoryoffun
.com/grammar/gdc2005.htm.

[9] S. Bura, “A Game Grammar,” http://users.skynet.be/bura/
diagrams/.

[10] G. Frasca, “Simulation versus narrative: introduction to
ludology,” in The Videogame Theory Reader, pp. 221–236,
Routledge, London, UK, 2003.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 216784, 7 pages
doi:10.1155/2008/216784

Review Article
Game Play Schemas: From Player Analysis to
Adaptive Game Mechanics

Craig A. Lindley and Charlotte C. Sennersten

Department of Technoculture, Humanities and Planning, Blekinge Technical Institute, Campus Karlshamn,
Biblioteksgatan 4, SE-374 35 Karlshamn, Sweden

Correspondence should be addressed to Craig A. Lindley, craig.lindley@bth.se

Received 31 July 2007; Accepted 19 October 2007

Recommended by Kok Wai Wong

Schema theory provides a foundation for the analysis of game play patterns created by players during their interaction with a
game. Schema models derived from the analysis of play provide a rich explanatory framework for the cognitive processes under-
lying game play, as well as detailed hypotheses for the hierarchical structure of pleasures and rewards motivating players. Game
engagement is accounted for as a process of schema selection or development, while immersion is explained in terms of levels of
attentional demand in schema execution. However, schemas may not only be used to describe play, but might be used actively
as cognitive models within a game engine. Predesigned schema models are knowledge representations constituting anticipated
or desired learned cognitive outcomes of play. Automated analysis of player schemas and comparison with predesigned target
schemas can provide a foundation for a game engine adapting or tuning game mechanics to achieve specific effects of engagement,
immersion, and cognitive skill acquisition by players. Hence, schema models may enhance the play experience as well as provide a
foundation for achieving explicitly represented pedagogical or therapeutic functions of games.

Copyright © 2008 C. A. Lindley and C. C. Sennersten. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

Computer game genres, such as role-playing games (RPGs)
and first-person shooters (FPSs), imply particular sets of de-
sign features supporting expectations that prospective play-
ers have about the nature of the play experience that games
support, based upon past experiences with other games in
the same genres. When a player first encounters a computer
game within an unfamiliar genre, they will, if sufficiently mo-
tivated, interact with the game and eventually learn sufficient
patterns of interaction to make progress within the game,
perhaps eventually completing it. Game play is therefore fun-
damentally a process of players learning, adapting and im-
proving play skills. Since computer games are predominantly
played by the use of very generic interaction technologies
(e.g., a keyboard and mouse), learning and adaptation in
play are, for the most part, processes of developing cogni-
tive skills focused upon the mechanics of a game and its me-
dia realization, based upon an existing general skill set for
computer use. Keyboard and mouse operations are mapped
onto in-game actions in a game world synthesized by the

game software. Learning how to play can therefore be divided
into three phases: (1) learning interaction mechanics, that is,
the basic motor operations required to operate, for exam-
ple, a keyboard and mouse in a largely unconscious way;
(2) learning interaction semantics, that is, the simple associa-
tive mappings from keyboard and mouse operations to in-
game actions (and meta-game actions, such as setting play
options, or loading and saving game states); and (3) learn-
ing game play competence, that is, how to select and perform
in-game actions in the context of a current game state in a
way that supports progress within a game. Interaction se-
mantics represent a basic level of competence in playing a
particular game; these mappings are often carried across dif-
ferent games within a genre and even across genres (e.g., us-
ing “w,” “a,” “s,” and “d” keys to move a player character for-
wards, left, backwards and right, resp.). Learning interaction
semantics represents a form of game challenge (in addition to
those noted by Rollings and Adams [1]), but once the basic
mappings have been learned, they become a largely uncon-
scious foundation for ongoing game play. The focus of learn-
ing then shifts to the development of game play competence,

2 International Journal of Computer Games Technology

which involves the development of forms of in-game situa-
tion awareness and decision making needed to meet the more
complex challenges such as those documented by Rollings
and Adams [1].

Game play competence involves the ability to (1) de-
code the audiovisual sensory and perceptual information de-
livered by the game media (e.g., the computer screen and
speakers) into the apprehension of a local situation within
the synthesized game world (or game space); (2) evaluate
this understanding of the local in-game situation in terms
of the overall objectives of play, current goals and tasks,
the state of the player character within the game (e.g., ca-
pabilities, health, and other statistics), and anticipation of
various rewards of playing the game; (3) make decisions
about which in-game tactics and action(s) to perform next,
based upon the perceived situation and its evaluation; and
(4) perform action(s) based upon competence in interac-
tion mechanics and semantics. The details of the cogni-
tive process underlying this repetitive sequence, which could
be described as the sense->model->evaluate->plan->act se-
quence (essentially the same as the sense->model->plan-
>act structure used to simulate higher-level action control
in robots and agents within artificial intelligence research;
see http://www.cgie2006.murdoch.edu.au/game ai.html for
extensive references), are the primary higher-level cognitive
learning outcome of learning how to play a particular com-
puter game.

The general usefulness of these different aspects of learn-
ing in game play relates to the degree to which the knowl-
edge or skills learned may transfer to other contexts. Compe-
tence in interaction mechanics is very general, transferring
to all contexts within which the same interaction technolo-
gies are used; however, the contribution of a particular game
to the development of this competence is likely to be very
limited, and certainly no greater than other applications us-
ing the same interface technology. In fact, a game may be less
effective than other applications that are more demanding in
terms of knowledge, for example, of keyboard layout, such as
word processors. Competence in interaction semantics trans-
fers only to other systems using the same mappings from me-
chanical interaction operations to in-game actions. This may
include many other games, especially those within the same
genre but also across genres, depending upon their adoption
of implicit or explicit conventions in game-interaction de-
sign. However, interaction semantics may be limited in their
transferability to other contexts, since contemporary meth-
ods of triggering synthetic actions synthesized by a computer
game are unlikely to be the same as methods of realizing ac-
tions that are not synthesized by a computer.

Game play competence has similar transferability across
computer games to competence in interaction semantics,
that is, high transferability within a genre but decreasing
across genres. However, the potential for transfer of game
play competence to contexts other than computer games
may be much greater, since similar cognitive processes im-
plementing a sense->model->evaluate->plan->act sequence
could apply within those contexts. For example, a flight sim-
ulator based upon accurately modeled flight planning and air
traffic control procedures may help players to learn how to

manage flight planning and air traffic control operations in
a real flying context. The key issue here is whether the par-
ticular mechanics and design features of the game lead to
the development of cognitive structures that can transfer to
other contexts. The effectiveness of computer games as sit-
uated learning environments (as characterized by [2]) criti-
cally depends upon this issue of transfer.

The nature of the cognitive structures underlying game
play is not only relevant to knowledge and skill transfer.
Those structures are the key to therapeutic applications of
game play (e.g., [3]), and in fact are the key to the ability
of computer games in all contexts to engage and immerse
players and motivate ongoing play. This follows since it is the
game play schema driving the situated decision process that
determines the nature and timing of emotional rewards mo-
tivating play. Hence, a greater understanding of the cognitive
structures underlying game play and how motivations and
rewards are related to these can aid in better game design in
entertainment, pedagogy, and therapy. More than this, it is
the central claim in this paper that explicitly modeling those
cognitive structures and processes within a computer game
engine has the potential to greatly enhance design effective-
ness by providing the foundations for the game system itself
to guide the development of cognitive structures and control
the emotional rewards underlying play.

This paper explores this issue by first considering the cog-
nitive framework for analyzing game play described by Lind-
ley and Sennersten [4]. Methods for conducting analyses of
play with a view to identify underlying game play schemas are
then described. Based upon this, the paper goes on to con-
sider potential methods by which a computer game system
might itself form hypotheses about the schemas underlying
the play of a particular game. Finally, we consider some ways
in which hypothesized game-play schemas can be used au-
tomatically within a computer game system to modify game
mechanics as a basis for guiding play and influencing ongo-
ing schema formation and refinement on the part of a player.
This work differs significantly from many past projects to
create computational players (e.g., see [5]) in that the latter
are typically focused on optimal game-play methods that do
not need to use computational techniques based upon hu-
man play performance. In the case of the work described
here, the particular strength and interest of the method are
the characterization and explicit representation of the spe-
cific algorithmic strategies and cognitive processes of human
players, both for analytical purposes and as a foundation for
adaptive game mechanics.

2. A COGNITIVE THEORY OF GAME PLAY:
TASKS, ATTENTION, SCHEMAS, AND
THE PLEASURES OF PLAY

Lindley and Sennersten [4] present a theory of the under-
lying cognitive systems involved in game play based upon
schema theory and attention theory. Schemas are cognitive
structures that link declarative (or factual) and procedural
(or performative) knowledge together in patterns that facil-
itate comprehension and the manifestation of appropriate
actions within a context. While the taxonomical structures

C. A. Lindley and C. C. Sennersten 3

of semantic or declarative memory are comprised of ob-
ject classes together with associated features and arranged in
subclass/superclass hierarchies, the elements of schemas are
associated by observed contiguity, sequencing, and group-
ing in space and/or time [6]. Schemas can refer to declar-
ative knowledge and taxonomical types with their features
and relationships, and integrate these with decision pro-
cesses. Schemas include scripts for the understanding and en-
acting of behavioral patterns and routines, a classic exam-
ple being Schank and Abelson’s [7] example of the restau-
rant script that includes a structure of elements for enter-
ing a restaurant, sitting down, ordering food, eating, con-
versing, paying the bill, leaving, and so on. Scripts, as struc-
tures used for both comprehension and behavior generation,
represent a structure of cognitive functions that may include
cognitive resources, perceptual interpretations and precon-
ditions, decision processes, attention management, and re-
sponsive motor actions. Story schemas are patterns represent-
ing a structure of understandable elements that must oc-
cur to make stories comprehensible. The presence of story
schemas in the cognitive systems of storytellers, listeners,
readers, or viewers of stories allows stories to be told and to
be comprehended, including the inference of missing infor-
mation. If a story deviates too far from a known schema, it
will not be perceived as a coherent story. Script and story
schemas are concerned with structures of both space and
time, while scenes are schemas representing spatial struc-
tures, such as the layout of a house, a picture or an area of
a city.

While schemas have been interpreted in many different
ways, here a game play schema is understood as a cognitive
structure for orchestrating the various cognitive resources re-
quired to generate motor outputs of game play in response to
the ongoing perception of an unfolding game. A game play
schema is therefore the structure and algorithm determin-
ing the management of attentional and other cognitive, per-
ceptual, and motor resources required to realize the tasks in-
volved in game play. Examples of types of game-play schemas
described by Lindley and Sennersten [4] include story scripts
for understanding high level narrative structures designed
into games, and scripts for the combative engagement of an
enemy, exploring a labyrinth, interacting with a trader non-
player character, and negotiating and carrying out quests.

Attention theory provides an account of the energetic re-
sources available to cognition, together with principles for
the distribution of energy (or attention) to the cognitive re-
sources that use (or manifest) it. Attention theory addresses
issues of attentional focus, management of attention (includ-
ing attentional selection), and the allocation of cognitive re-
sources to cognitive tasks. Ongoing research is addressing
the question of the detailed operation of attentional mech-
anisms, including questions such as the degree to which at-
tentional capacity is specific to specific cognitive resources
(or modes) or sharable among resources according to de-
mand, and the stage of processing of perceptual information
at which perceptual information is selected for attentional
priority. Schemas can be regarded as mechanisms or algo-
rithms that, among other functions, determine the allocation
of attention to cognitive tasks.

In the context of game play, attention and the operation
of game play schemas are driven by hierarchical goals that set
tasks for a player. Goals include those intended by design-
ers and those created by players as allowed by a game de-
sign. A hierarchical decomposition of game play goals might
at a high level include the completion of a game, which de-
composes into the subgoals of finishing each of its levels,
each of which in turn decomposes into goals of completing
a series of game challenges (and other tasks invented by the
player).

We hypothesize that this hierarchical goal structure is
mirrored in a hierarchical structure of schemas within a
player’s cognitive system, where a schema is an algorithm for
completing a particular goal or subgoal. As argued by Lindley
and Sennersten [4], this schema structure is fundamental to
many aspects of the pleasures and motivating factors behind
play. These include the pleasures of the following.

(i) Effectance which is a basic feeling of empowerment cre-
ated when an action of a player results in a response
from the game system [8]. The cause-effect relation-
ships underlying effectance are a fundamental premise
of goal-oriented schemas for action.

(ii) Closures at different hierarchical levels (as described by
Holopainen and Meyers [9]), where a closure is inter-
preted here as the completion of the algorithm consti-
tuted by a play schema. Closures may involve comple-
tion of expected outcomes and resolution of dramatic
tensions, corresponding to the completion of cycles of
suspense and relief identified by Klimmt [8]. A distinc-
tion must be made here between the intrinsic pleasures
of schema completion and more complex emotional
experience and rewards due to fictional identification
within the game world (see the point below regarding
episodes).

(iii) Achievement of in-game tasks which is rewarding
due to the displacement of a player’s identity into
their character [9], this being a matter of imagina-
tive immersion as described by Ermi and Mäyrä [10].
Achievement-oriented reward is a more specific form
of reward than mere closure, since it is associated with
the completion of schemas by the achievement of spe-
cific goals.

(iv) More complex forms of enjoyment in game tasks re-
garded as episodes [8] following from imaginative dis-
placement into the game world. Enjoyment within
episodes may include the excitement of possible ac-
tion, the pleasures of curiosity and discovery, the plea-
sures of experiencing negative emotions of suspense
followed by the transference of arousal to an ecstatic
experience when the challenge creating the anxiety
of suspense is overcome, and enhanced self-esteem.
Schemas offer greater discrimination of the pleasures
involved in episodes by allowing different forms of
episodes to be modeled as different schema patterns
having a complex substructure with corresponding
emotional effects (e.g., different scripts for solving
mysteries, combat, exploration, trading, and quest ne-
gotiation).

4 International Journal of Computer Games Technology

(v) Escape to an alternative reality provided by the fic-
tional world represented by a game [8] and facili-
tated by imaginative displacement. Players have the
pleasure of being able to experience new objects, ac-
tions, social interactions, and experiences at no risk.
These vicarious experiences can help players to cope
with felt frustrations and deficiencies in their every-
day lives, a process both of catharsis and of percep-
tion of increased competence and relevance. Schemas
for stories facilitate displacement, while many addi-
tional schema forms provide the foundations for com-
prehension of the events within the fictional world
and provide mechanisms for projection of the player’s
sense of self into the fiction.

(vi) Achievement of a sense of flow [11] in game play, this
being a state at the boundaries between engagement
and immersion, of being totally absorbed in meeting
a constantly unfolding challenge. We hypothesize that
the flow state is associated with attentional demand, in
particular occurring when schema execution demands
attentional resources above a level that would result in
player boredom and below a level that would result in
excessive difficulty and consequent frustration.

Schema theory therefore has the potential to provide both an
explanation of the decision and operational processes under-
lying game play and an explanation of the detailed reward
and motivation factors behind play. Validating this potential
requires detailed study of play resulting in the development
of empirically validated hypotheses about the detailed struc-
ture and functionality of game-play schemas, for individual
players and across groups of players.

3. METHODOLOGIES FOR IDENTIFYING
GAME PLAY SCHEMAS

Identification of game play schemas is a knowledge acquisi-
tion and representation process. Our current methodology
for doing this includes analysis of the design features of test
games, logging of player key strokes and mouse movements,
recording of the screen history of play, eyetracking data
showing the locus and dynamics of player gaze behavior,
and think-aloud protocols to gain some insight into the
player’s conscious experience of play and its decision pro-
cesses. Analysis of this data then proceeds by a process
of detailed analysis of individual play sessions in order to
identify different play modes and abstract hypothetical
underlying game play schemas. This in itself is a complex
process that may begin with cognitive task analysis (CTA, see
http://mentalmodels.mitre.org/cog eng/ce methods I.htm),
but must end with a detailed cognitive explanation of the
decision processes involved in terms of basic cognitive func-
tions. Statistical patterns of play interaction (mouse moves,
key strokes, and eye movements) that may correlate with the
presence and execution of specific game play schemas are
then identified. This requires the separation of an analysis
dataset from which schema models and initial statistical
distributions are derived from a test dataset that can then
be used to validate those schema models. This sequence is
iterated in order to refine the identified schema models.

The design features of the games used within these stud-
ies are crucial. Hence, an initial analysis of the selected games
must be made in order to identify their general features.
The iterative process of refining and validating hypothetical
game play schemas must also involve the creation of purpose-
specific test games or levels, this being done by level editing
and modding (i.e., modification of off-the-shelf games, po-
tentially including their media content and scripted behav-
ior). It is also possible to implement a hypothetical schema
to create a computational player and to test the resulting
game play interactions with actual player interaction as an-
other method of validating a schema hypothesis. As noted
by Lindley and Sennersten [4], a CTA provides the first ap-
proximation description of a game play schema, but a CTA
is also heavily determined by the language and cultural con-
structs of the observer. The phenomenologically meaning-
ful terms of a CTA may have to be further analyzed to ac-
count for the ways that those high-level constructs are actu-
ally realized by underlying neurophysiological mechanisms,
and this mapping could involve different parsings of func-
tional units at the CTA and neurophysiological levels. Hence,
a game play schema might be described at different levels
of abstraction or from different interpretation perspectives,
some being meaningful in terms of the subjective languages
of task performance (e.g., the terms of self-reported task per-
formance) or CTA and others in terms of implementational
neurophysiology that may have a very different structure and
functional decomposition than that of more linguistically
conditioned accounts.

The choice of the level of abstraction in game play
schema descriptions may depend upon the purpose of the
analysis. More importantly, however, it may be that distinc-
tive statistical profiles can be associated with schema charac-
terizations at an optimal level of abstraction; more abstract
schema descriptions may be too general to have any statis-
tical discrimination between them, while more detailed de-
scriptions may involve details that cannot be correlated with
statistical groups. Hence, an important ongoing task is the
statistical validation of suitable levels of schema description.
It is yet to be determined how consistent the level of descrip-
tion needs to be, across game genres, games within genres,
different kinds of players, different players within those types,
and different play sessions for the same player. It is hoped,
however, that applying this methodology will result in statis-
tical profiles uniquely associating player types and game de-
sign feature sets with distinctive statistical distributions of in-
teraction primitives at the level of interaction semantics that
indicate specific hypothetical game play schemas (or sets of
schemas) within the cognitive systems of those players. This
is a large undertaking (and in fact endless, as game design
continues to evolve) that must be approached incrementally
by focusing upon specific genres, games, and design feature
subsets.

Questions of levels of abstraction and also of higher-level
structures also apply to interaction primitives. Basic interac-
tions implement game moves at the semantic level. However,
the presence of specific schemas may be indicated by specific
sequences or clusters of interaction semantics, rather than, or
in combination with, their frequency. Different play modes,

C. A. Lindley and C. C. Sennersten 5

such as setting options versus game play commands directed
towards achieving in-game goals (i.e., game moves) can often
be distinguished by specific discrete interaction primitives,
such as hitting an escape key. However, manual interpreta-
tion of play and the formation of schema hypotheses based
upon this are crucial for defining criteria for distinguishing
between the presence of different schemas that involve the
same or similar interaction primitives.

To illustrate this discussion, a hypothetical schema can be
described based upon observations of play of the role play-
ing game Neverwinter Nights. Neverwinter Nights is a third-
person point of view game in which the player has a pri-
mary in-game character and this character can gain a num-
ber of companions in order to form a team, also controlled
by the player. Within the game world there are many under-
ground labyrinths consisting of rooms and chambers con-
nected by passages. Rooms and passages often have doors
and the labyrinths in general contain threats such as mon-
sters and traps, nonplayer characters that may be friendly
or hostile depending upon how the player character inter-
acts with them, powerups and various treasures. The play
patterns observed for this example occurred within a pe-
riod of the game during which the player is intended (by
the game designers) to be acting to achieve a number of
higher-level story goals predesigned into the game; in par-
ticular, the player is on a quest to find four specific creatures
that are the key to creat an antidote for a plague and each of
which is hidden somewhere within its own labyrinth. Each
labyrinth has a similar abstract structure and distribution
of game challenges, with differences in its thematic realiza-
tion. This leads to a style of game play that manifests highly
repetitive patterns of interaction and decision making. The
schema, expressed in this case in a kind of high-level and in-
formal pseudocode, is a hypothesis about (part of) the un-
derlying algorithm responsible for manifesting these repeti-
tive patterns as the player character and team move through
the labyrinths.

The question of the level of abstraction involved is il-
lustrated by considering a significant number of possible
subtasks and additional tasks that are not represented in
the above description: Check health bar for 1, . . . , N char-
acters, Check for treasure/items to pick up, Check item
attributes/quest relevance, Select navigation waypoints for
movement, Avoid enemies during retreat, Tweak group
member positions, Bring back strays, Check status of quests,
Talk with NPCs, Accept/reject quests, Check minimap win-
dow, Reconfigure inventory, Reconfigure equipped items, Se-
lect level up options, and so forth.

A complete schema description must include all possi-
ble subschemas and include a way of representing the opera-
tion of simultaneous parallel schemas, their relative priority,
and the principles for switching from one schema to another.
The detail involved can be high. For example, the detailed
description of a subtask such as “check map window” must
include an account of exactly what it is that is being looked
for in the map window, how the data is to be interpreted, and
some kind of representation for the outcome of the minimap
check (e.g., a decision about being lost and/or activating a
goal-related reorientation subschema).

1. Stop at Closed Door
2. Check health of party

if >1 party member low, then:
Rest Party
Resummon summoned creature

else
if 1 party member low, then:

if lots of healing potions, then:
administer healing

else
Rest Party
Resummon summoned creature

3. Enter combat configuration
4. Open door and enter room
5. If there is an enemy

Select target
Monitor health of party until enemy defeated
if >1 party member has low health, then:

Run away
Rest Party
Resummon summoned creature
Go back to step 3

else
if 1 party member low, then:

if lots of healing potions, then:
administer healing

else
Run away
Rest Party
Resummon summoned creature
Go back to step 3

6. If enemy remains, go to step 5
7. Check for traps . . .
. . . etc. . . .

Algorithm 1

4. AUTOMATED IDENTIFICATION OF GAME PLAY
SCHEMAS AND SCHEMA-BASED ADAPTATION
OF GAME MECHANICS

The intended outcome of schema analysis over significant
numbers of players and play sessions is a probabilistic profile
of the frequencies, clusters, and/or sequences of semantic in-
teraction primitives (game moves) associated with different
types of underlying game play schemas for a specific game
(i.e., its design features). If such a set of statistical profiles
is available, it may be possible to use the profiles for auto-
mated identification of the schemas of particular players/play
sessions. It is possible to automatically record (or log) inter-
action semantics for a particular player during a particular
play session or across different play sessions. This will result
in a count of the absolute frequency of each type of seman-
tic interaction primitive used by that player, which can be
turned into a relative frequency by subdivision with the to-
tal count of interaction primitives. This might be used (in
addition to specific commands that indicate changes in play
mode) to match against a database of statistical profiles of
different game play schemas in order to derive a probabilistic

6 International Journal of Computer Games Technology

hypothesis about the likelihood that specific known schemas
are underlying play. Here, we hypothesize that poor overall
correlations are likely to indicate the presence of previously
uncharacterized schemas, which ideally should be returned
to a central schema repository for the game for analysis and
new schema description development and distribution.

As described above, game play schemas represent the sig-
nificant learning outcomes of game play and also encapsulate
various rewards of play. An explicit representation of desired
and observed game play schemas within a game system con-
stitutes a knowledge base that can potentially be used auto-
matically for a variety of purposes by the game system.

Schema representation and mapping can be used for au-
tomated monitoring of a game design as a method of validat-
ing the design in terms of player satisfaction. Since a schema
includes various points of player reward and presents a time
structure for the emotional experience of a game, the schema
indicates a hypothesis about the nature of the emotional ex-
perience of the player. Different players may prefer differ-
ent forms of satisfaction. Monitoring schemas and schema
execution may indicate which forms of satisfaction particu-
lar players are seeking. It may also provide a foundation for
determining when a player is not achieving enough satisfac-
tion (based upon criteria that may be derived from a player’s
history of play, since different players may have different de-
mands in terms of the nature and intensity of rewards). This
may be because a game is too easy or too difficult, in which
case the game mechanics and parameters determining diffi-
culty for a specific schema can be modified to achieve a better
subjective experience. It may also be that a player has not dis-
covered those elements of a schema needed in order for its
execution to result in a satisfying experience, in which case
the game system model of the player schema related to a tar-
get schema might be used to change the game mechanics,
for example, to dynamically adapt a level design or to intro-
duce instructional material (perhaps by spawning a suitably
informed NPC) to lead the player to actions (such as going to
a specific training scenario) that result in gaining the appro-
priate skills. In effect, this can amount to more efficient and
dynamic use of in-game tutorials together with an automa-
tion of the normal processes of game tuning carried out man-
ually during game testing prior to release, but having the ad-
vantage of being tuned to specific players rather than a group
of commercial testers.

Schema descriptions can also be used to explore the effec-
tiveness of a game design in realizing designers’ intentions.
Simple observations may indicate basic design failures, such
as the visual design of interactive elements leading them to
be too unobtrusive within the game space for players to no-
tice. However, schema descriptions may show deeper and less
obvious problems, such as design features leading too soon
to limited modes of play that reward players too much for
play patterns that are developed very quickly, discouraging
them from exploring a game enough to discover other as-
pects of its mechanics. As with the other examples presented
here, actively using these models within a game system allows
the mechanics to be varied for individual players, instead of
providing a single solution that is supposed to accommodate
everyone.

Monitoring schema formation can also result in auto-
mated detection of the degree to which a game design is
achieving emergent game play (see [12]) where the design
rather loosely constrains the nature of the play experience.
In this case, poor correlations with known schemas may be
a positive indicator of emergent play. Conversely, design fea-
tures may be selected that are compatible with a broad set of
known schemas representing very different play styles, ensur-
ing that a design accommodates a wide variety of play styles,
a space within which players have a lot of freedom to create
patterns of interaction.

A major use of explicit schema representations may lay
in pedagogical or therapeutic functions of game play. In this
case, target schemas may not be initially derived from game
play but from the target application domains for learning or
training. For example, in a military application, observation
of tactical decision making in the field could support the de-
velopment of schema descriptions for tactical decision mak-
ing. A game for tactical training should then encourage play-
ers to preferentially develop the same or, functionally, sim-
ilar schemas. The effectiveness of the design of a game in-
tended for tactical training can then be assessed by compar-
ing the schemas of players derived from observation of their
play patterns with those of operational tacticians. This may
be a great advantage compared to assessing performance out-
comes, since performance outcomes alone only indicate how
a player has mastered a game system, with no indication of
how well the mastery of the game will transfer to an applica-
tion domain. The schema description is an explicit represen-
tation of the cognitive capabilities that facilitate operational
competence, thereby having much greater transfer potential
from the game to the target application environment. More-
over, aspects of the operational schemas that cannot be facil-
itated by game design provide an explicit representation of
the limits of transfer that may then be used to appropriately
focus on supplementary training.

Just as in the case of tuning game mechanics for player
satisfaction, explicit schema representations and monitoring
of player schemas can be used to adapt game mechanics to
achieve pedagogical or therapeutic outcomes. For example, a
game designed to train players to achieve batter spatial nav-
igation skills might present an initial diagnostic level involv-
ing a comparatively complex navigation task based upon a
variety of cues, such as verbal descriptions, minimaps, dis-
tance cues, and local cues like footprints and vehicle tracks.
Based upon which cues players use, ongoing levels can re-
duce or exclude cues that are already taken into account and
emphasise neglected cues to encourage the development of
broader attention patterns.

5. CONCLUSION

This paper has described an approach to the analysis of game
play based upon schema theory and attention theory. An em-
pirically based method has been described as a basis for iden-
tifying and validating hypothetical game play schemas. Auto-
mated schema recognition and the potential uses of explicit
schema representations within game systems have been ex-
plored. This approach provides for explicit modeling of the

C. A. Lindley and C. C. Sennersten 7

cognitive systems and processes underlying game play, both
for analytical studies of play and as a potential implementa-
tion mechanism for adaptive games. Work on the analysis of
games using this approach is ongoing. It is hoped that the
results of this work will provide the foundations for future
implementation of schema-based adaptive game systems.

ACKNOWLEDGMENTS

This paper has been written in the context of the FUGA (FUn
of GAming) EU research project, and a collaboration with
the Swedish Defence Research Agency (FOI). We thank our
colleagues for many stimulating inputs to this project.

REFERENCES

[1] A. Rollings and E. Adams, Andrew Rollings and Ernest Adams
on Game Design, New Riders, Indianapolis, Ind, USA, 2003.

[2] J. P. Gee, What Video Games Have to Teach Us About Learning
and Literacy, Palgrave Macmillan, New York, NY, USA, 2003.

[3] G. Robillard, S. Bouchard, T. Fournier, and P. Renaud, “Anx-
iety and presence during VR immersion: a comparative
study of the reactions of phobic and non-phobic participants
in therapeutic virtual environments derived from computer
games,” Cyberpsychology & Behavior, vol. 6, no. 5, pp. 467–476,
2003.

[4] C. A. Lindley and C. C. Sennersten, “A cognitive framework
for the analysis of game play,” in Proceedings of the 28th An-
nual Conference of the Cognitive Science Society: Workshop on
the Cognitive Science of Games and Game Play (CogSci ’06),
Vancouver, Canada, July 2006.

[5] H. J. van den Herik, Y. Björnsson, and N. S. Netanyahu, “Com-
puters and games,” in Proceedings of the 4th International Con-
ference (CG ’04), Ramat-Gan, Israel, July 2004, Revised Papers.
Lecture Notes in Computer Science 3846 Springer 2006.

[6] J. M. Mandler, Stories, Scripts and Scenes: Aspects of Schema
Theory, Lawrence Erlbaum Associates, Hillsdale, NJ, USA,
1984.

[7] R. Schank and R. Abelson, Scripts, Plans, Goals and Under-
standing, Erlbaum, Hillsdale, NJ, USA, 1977.

[8] C. Klimmt, “Dimensions and determinants of the enjoyment
of playing digital games: a thrre-level model,” in Proceedings
of Level Up: Digital Games Research Conference, M. Copier
and J. Raessens, Eds., pp. 246–257, Utrecht, The Netherlands,
November 2003.

[9] J. Holopainen and S. Meyers, “Neuropsychology and Game
Design,” Consciousness Reframed III, Newport, Walse, UK,
http://www.stephan.com/NeuroBio.html, May, 2006.

[10] L. Ermi and F. Mäyrä, “Fundamental components of the
gameplay experience: analysing immersion,” in Proceedings of
the Digital Games Research Association Conference, Changing
Views: Worlds in Play (DIGRA ’05), S. de Castell and J. Jenson,
Eds., pp. 17–25, Vancouver, BC, Canada, June 2005.

[11] M. Csikszentmihalyi, Flow: The Psychology of Optimal Ex-
perience, Harper Perennial, New York, NY, USA, Reproduc-
tion edition, 1991.

[12] K. Salen and E. Zimmerman, Rules of Play: Game Design Fun-
damentals, MIT Press, Cambridge, Mass, USA, 2004.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 783231, 7 pages
doi:10.1155/2008/783231

Research Article
Story and Recall in First-Person Shooters

Dan Pinchbeck

University of Portsmouth, Eldon Building, Portsmouth, Hampshire PO1 2DJ, UK

Correspondence should be addressed to Dan Pinchbeck, dan.pinchbeck@port.ac.uk

Received 28 September 2007; Accepted 15 February 2008

Recommended by Kok Wai Wong

Story has traditionally been seen as something separate to gameplay—frequently relegated to an afterthought or epiphenomenon.
Nevertheless, in the FPS genre there has been something of a renaissance in the notion of the story-driven title. Partially, this is due
to advances in technology enabling a greater capacity for distributed storytelling and a better integration of story and gameplay.
However, what has been underrecognised is the dynamic, epistemological, and psychological impact of story and story elements
upon player behaviour. It is argued here that there is evidence that story may have a direct influence upon cognitive operations.
Specifically, evidence is presented that it appears to demonstrate that games with highly visible, detailed stories may assist players
in recalling and ordering their experiences. If story does, indeed, have a more direct influence, then it is clearly a more powerful
and immediate tool in game design than either simply reward system or golden thread.

Copyright © 2008 Dan Pinchbeck. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

In our recent paper [1], we discussed a simple study
designed to offer evidence of one of the ways in which
nonludically significant devices within an FPS game have
a direct impact upon how the experience of the game is
recalled and reported. Subjects played one of two games with
very different levels of visibility and importance of story and
then undertook a semistructured interview based around
four major aspects: plot, character, avatar, and world. The
research focus was whether subjects appeared to utilise story
as a framework for their recall.

Narrative and games have a rather turbulent historical
relationship, particularly in academic circles, but it is not
our intention to add to volume of writing on this subject
here. Thus, rather than entering into a debate about the
relative narrativity of games, we will concern ourselves with
the functional operation of story in FPS systems and, in
particular, how they might relate to memory.

Firstly, we will offer an alternate way of conceptualising
story information in games that coopts both Barthes’
atomisation of narrative [2] and Carr’s appropriation of
the protonarrative [3]. Secondly, we will briefly introduce
the notion of narrative psychology and the claims that
there exist innate story-like structures in cognition that
would predispose subjects towards the favoring of story-like

sequences, the interpretation of sequences as stories, or better
recall of sequences with highly apparent story-like structures.

2. STORY IN GAMES AS PROTONARRATIVE NETWORK

Barthes argues for four fundamental units that act as the
building blocks of all narrative [2, pages 79–124]. These units
are divided into functions, which relay action, and indices
which relate to abstract, atmospheric, or psychological
notions. For example, the unit “He wrote” would be classed
as a function as it conveys an irreducible action, whereas “He
was tense” falls into the category of indices. Both categories
may be further defined: functions according to their relative
importance and impact, and indices according to their level
of abstraction or specifity.

Barthes classes functions as either cardinal, which are
both consecutive and consequential, or catalyst, which are
only consecutive. In other words, cardinal functions are
critical to narrative progression, whereas catalysts may be
crucial to the telling of the story but their omission will not
affect the basic structure of the story itself. True indices refer
to “the character of a narrative agent” [2, page 96] such as an
emotion, mood, or atmosphere, whilst the other subclasses,
informants, locate within the temporal environment of the
narrative. Barthes argues that everything within a narrative
is essentially constructed from these four classes of objects.

2 International Journal of Computer Games Technology

In itself, this taxonomy is important because it enables a
structural, rather than semantic, classification to occur when
approaching narratives, asking questions such as whether
there is a dearth of catalyst functions (suggesting a lean,
reportage style of text), or large numbers of informants
presen (perhaps prompting a higher level of trust in the
reliability of the narrative).

The idea of functional units is extremely powerful
because they operate far below the threshold of a fully formed
narrative situation that has been so problematically applied
to games. Conceptually, it is not difficult to conceive of
a situation whereby as Jenkins notes “Narrative can also
enter games on the level of localized incident, or what I
am calling micronarratives” [4, page 125]. However, his
conceptualization of micronarrative is problematic as it just
seems to lower the threshold beyond which a sequence can
be defined as a narrative, which rather misses the point of
the ludologists issues with their structure rather than their
scale [5, 6]. More useful is Carr’s notion of protonarratives.

Carr also notes that narratives are composed of isolatable
units that, whilst not containing explicit causal sequences,
have a form of interpretative predisposition hardwired into
them [3]. In other words, we can understand a network of
units that, when perceived, is likely to lend themselves to
one particular interpretation over another. Bartlett famously
conducted a study, whereby native American myths with
nonwestern narrative structures were converted in memory
by Western subjects to yield more conformist and recog-
nisable Western narratives [7, pages 64–94]. Between the
preexisting interpretative structures of the subject and a
network of protonarrative units that predisposes a particular
interpretative outcome, a story is formed. Thus, for the
remainder of this paper, when we speak of stories, it is the
protonarrative network with its predetermined relationships
we are referring to.

This conceptualization of story neatly sidesteps the
narrativity debate by not requiring games themselves to be
narrative objects, but simply to contain a set of objects at
least some of which have predetermined semantic as well
as ludic relationships. Protonarrative networks may contain
sequences, but it is just as likely that the colocation of their
constituent elements will be enough to trigger a particular
interpretation by the player. There are very clear links here to
schema theory.

3. SCHEMA, STORY, AND GAMES

Schema theory essentially posits a set of inbuilt and learned
mental architectures that hold generalised situational knowl-
edge. Schank and Abelson’s contextual dependency theory
[8] is schematic at root such as Minsky’s frames: “a data-
structure for representing a stereotyped situation” [9, page
1]. The basic notion of schema is that once enough cues have
been received to trigger the schematic response; the following
operations are essentially put through this filter.

Thus, not only may we infer a story schema from
Bartlett ’s study, but we can also propose schema for media
experience and gaming. Indeed, Ijsselsteijn (2003) argues

that learned schemata are fundamental factors in users’
experiences of media:

From the anecdotal evidence accumulating throughout
media history, it becomes clear that people’s responses to
media are not a linear product of the extent of sensory
information that the medium provides but are very much
shaped by people’s previous experience with and expecta-
tions towards media. It would seem a little odd to us now
if people should panic and run out of a movie theatre at the
sight of an approaching train on the screen. This is because
our media schemata, or knowledge representations of what
media are, and are capable of, tell us what to expect from
mediated experiences, including the perceptual tricks that
cinema or VR can play on us. (2003:37).

When schemata are triggered, they adjust the interpreta-
tion of further signals, making other schemata more or less
likely to fire in turn: priming occurs. For example, closure
is generally agreed to be a fundamental, even unavoidable
aspect of narrative, to the extent that Kermode wonders,
“Why does it require a more strenuous effort to believe that
a narrative lacks coherence than to believe that somehow,
if one could only find it, it doesn’t?” [10, page 53]. Thus,
when the schema for story fires, we could postulate that
it increases the expectations of closure and following the
type of interpretive activity that may occur. Equally, once
a situation crosses the threshold to be identified as a first-
person shooter, the shooter schema fires and predisposes
a certain type of perceptual activity and action. In a pilot
study, Pinchbeck et al. [11] noted that experienced FPS
players tended to centralize their gaze and use the mouse
to visually explore the environment, whereas inexperienced
players tended to keep the mouse static and allow their gaze
to move around the screen. A possible explanation of this
disparity in visual behaviour is that experienced players know
that shots, when they need to be fired, will hit whatever is
central on the screen. Thus, it is advantageous to synchronise
the acts of visual exploration and aiming.

Schemata offer a model by which a network of units
would trigger a particular interpretative frame. In other
words, all a game needs to do is to contain a suitable network
of protonarrative objects, and a player will tend towards a
story-like interpretation of their play. This offers a functional
bridge between Juul’s “real rules and fictional worlds” [12,
page 163]. A story interpretation, therefore, becomes, as Rein
and Schon describe “one of a class of framing procedures,
that is, strategies for organising and deriving solutions for
problems” [13], or “an organising principle for human
action.” [14]. In other words, a protonarrative network which
triggers a story schema to fire as the primary interpretative
device may help players to understand what occurs during
the game session It should also be noted that there is no
contradiction or complication arising from both story and
shooter schema firing simultaneously. The experience of
playing, Bioshock (2007) or S.T.A.L.K.E.R. (2007) games
which invests so much, so clearly, in their stories, is clear
evidence of this.

This paper is primarily concerned with the simple
question of whether a strong story helps players remember
more of their gameplay experience and in better detail. This

Dan Pinchbeck 3

begs the question of why we might expect this to be the case,
and that requires us to consider the relationship between
memory and story in a little more detail.

4. STORIES AND MEMORY

In his classic study, Tulving proposed a distinction between
two forms of memory:

“Episodic memory receives and stores information
about temporally dated episodes or events, and
temporal-spatial relations among these events. A per-
ceptual event—is always stored in terms of its autobi-
ographical reference to the already existing contents
of the episodic memory store. Semantic memory is
the memory necessary for the use of language. It is
a mental thesaurus, organized knowledge a person
possesses about words and other verbal symbols,
their meaning and referents, about relations among
them, and about rules, formulas, and algorithms for
the manipulation of these symbols, concepts, and
relations.” [15, pages 385–387].

Eysenck and Keane [16, page 165] note that there has
been some controversies whether this distinction actually
obfuscates a unitary process, but it is the natural fusion
of episodic memory and schema that are of interest here.
In particular, the autobiographical and temporal aspects of
episodic memory have very clear conceptual relationships to
the notion of story schema and, indeed, narrative psychology
has made much of this.

Conceptually, there is only a short step to be made from
an autobiographical memory, where a sense of coherent self
relative to a sequence of events is held by an organism, to the
idea that our inner experience is a form of story in itself—
though at this point we will revert to the term narrative
in keeping with the literature and to avoid confusion
with our ludically orientated definition of story used else-
where. Robinson and Hawpe make this point, for example,
“Experience does not automatically assume narrative form.
Rather, it is in reflecting on experience that we construct
stories” [13, page 111]. This would seem to suggest that
whilst episodic memory in itself needs not be explicitly
narrative, any reflection upon it is. Further, Crossley argues
that by planning our lives and ourselves, we engage in a
filtering process, thus, creating an ongoing narrative from
the nonlinear, frequently noncausal complexity of life [17].
Equally, our own actions and responses, including memories,
are filtered and represented to form the self.

Indeed, the self may be seen as the result, illusory or
not, of predictable responses to environmental situations.
In other words, a sense of coherence in response suggests a
coherent, locatable self at the centre of a complex and shifting
world. Thus, the inward projection of a self as distinct from
the environment, tied up in the process of distal attribution,
or reality inferral [18], requires a temporal sequence of
coherence in order to logically maintain itself. In other
words, without a sense that the self that is being postulated
existed prior to the current experience, and without the sense

that past and current experiences fall along a single trajectory
of ongoing experience, the construct cannot be maintained.

The autobiographical function of episodic memory may,
then, not simply be to enable the storage, recovery, and
implementation of representations of prior events and body
states, but also to enable the illusion of a singular, unitary self
to exist in the first place. Just as the psychological processes
surrounding presence, vection, and so forth, all enable the
organism to separate itself from the environmental field,
so episodic memory anchors it to its own developmental
past. If the formation of causal sequences in relation to a
stable perspective is fundamental to the sense of self, then,
narrative is given a very core position in our subjective being
indeed. Bruner, for example, argues for a “protolinguistic
readiness for narrative organisation and discourse” [19, page
80], whilst Nath [20] contends that narrative is a critical
component of assembling a subjective stance and thus crucial
to any experience. Underlying these claims is, however, a
rather weak and inclusive definition of narrative, more an
“assimilating structure” [21, page 91] than a represented
causal sequence. We are reminded of Juul’s point that in the
narrative/ludology debate, the narrativists were characterised
by a very inclusive definition of narratives, whereas the
ludologists demanded a much less inclusive one [12, pages
156–159].

Once again, schema theory offers a middle ground. We
do appear to be, at least given the evidence of their ubiquity,
story-telling animals as Schank has argued [22]. Stories are
common and powerful schema, and what can be taken from
the more extreme narrative psychology positions is that there
is a conceptual and structural closeness between schema and
narratives that may explain why this is the case. In terms of
games, the tendency for us to tell stories may lead us to two
hypotheses:

(i) That player will tend to format their gameplay
experiences as stories, even when story is not a
dominant feature of gameplay. This is analogous to
Bartlett’s subjects framing the contents of “The War
of the Ghosts” to fit their most comfortable means of
recall;

(ii) That where the protonarrative units within a game
(world, characters, and avatar) can most easily be
formed into a network, or where a stronger set of
predetermined relationships (the plot) exists, players
will find it easier to remember details about these
units which are not directly related to gameplay. In
other words, by formatting the play experience as
a story, nonludically significant detail will be more
easily and effectively recalled.

5. THE STUDY

This is all very well in principle and theory, but what
empirical evidence can be offered to support it, and how
does it relate to the practical business of game development?
The following section is a summary of the paper original
published at Cyber games 2007, and the reader is referred to
this paper for a full analysis of results [1].

4 International Journal of Computer Games Technology

A simple study was carried out, whereby twenty-six
participants played either Bethsheda’s Call of Cthulhu: Dark
Corners of the Earth (2006), or id’s Doom3: Resurrection
of Evil (2005) for 40 minutes in more-or-less natural
playing conditions and then undertook a semistructured
interview. In this interview, subjects were asked to discuss
four factors in their experiences: the world they explored,
the characters they met, the avatar they controlled, and
the sequence of events—literally “what happened when
you played the game?” There were two data sets under
investigation. Firstly, the quantity and quality of information
about the gameplay experience reported; and secondly,
whether there was apparent use of clear story structuring in
the reports obtained. Thus, the study aimed to determine
whether there was any evidence that a game with a strong
and complex story such as Cthulhu (CTH) aided recall or
prompted recall with a story-like structure, and whether
either of these factors were present or diminished in the
relatively unnarrative resurrection of evil (RES). Readers are
referred to the original paper for a discussion of the in-game
narratives and gameplay of these titles. The key factors of the
results are, however, reproduced below.

5.1. Character

CTH subjects demonstrated a generally good grasp of the
large cast in the opening levels of the game. When asked
“Can you tell me about some of the characters you met
in the game?”, most subjects responded by talking about
classes of characters. Individuals were mentioned less and,
interestingly, the most frequently mentioned individuals
were not actually met in the game but integrated within goal
structure. However, it was intriguing to note that 5 subjects
included the avatar in their choices of reported characters.

By contrast, there are only two named NPCs in RES, one
(George) is met briefly during the first level and the other
(McNeil) being visually introduced in the opening cutscene
and represented by occasional radio contact. Alongside, there
is an unnamed marine who bequeaths his weapon and
immediately dies and various unnamed and doomed voices
that occasionally come through over the radio. The opening
cutscene shows the player’s squad being killed prior to play
starting. What is interesting is that given the paucity of
NPCs in the game; one might expect the NPCs to stand
out; however, only 5 of the 13 players remembered McNeil;
none remembered her name correctly. Less than half (5/13)
reported George and only one guessed at his name. Half
the subjects spoke of the other marines and team mates,
suggesting that they “could speak to you,” or “they were
helping you.” Of these, only one noted that the entire squad
was wiped out prior to play starting, though it is possible
that they attributed the unnamed grabber gun marine to this
squad. The CTH subjects were altogether more successful at
recalling names. Only 5/13 could not recall a single name
from the game, and two of these later remembered.

All subjects from both groups had no problem when
asked to provide a motive for one of the characters they
had identified. In the CTH group, these were usually fairly
accurate, and in many cases picked up on subtle nonludically

significant information. Player’s asked about the motive for
the marines being on Mars in RES which were far less
sure and in some cases highly creative in their responses.
9/13 players were asked and the results varied from the
semiaccurate “there was an incident,” “they used to go there
and lost the colony” to the false “they have discovered this
archeological site,” “conducting some research,” and fanciful
“human curiosity.” Only one subject noted the cover story
given in the opening sequence.

5.2. Environment

Subjects were asked to talk about the environments they
visited and then prompted with two further questions:
any particularly memorable features or details, and what
sounds were present? CTH splits into two levels: the opening
sequence in a dilapidated cult mansion and its underground
tunnels and Innsmouth itself. RES is all set in an archeo-
logical dig site, with alien architecture slowly transforming
into the human base sited above it. These were variously
described as caverns, mines, high-tech industrial, and Aztec.
The presence of technology was noted, often (4/13) in
relation to the number of boxes and crates lying around.
What was most striking about RES subjects descriptions
of the environment was how directly indexed to gameplay
mechanisms many of them were. 6 of the 13 subjects talked
explicitly about generic game devices rather than the
presented environment.

The darkness of the levels was the consistent feature
noted, with all subjects referencing it. Beyond that, features
were evenly distributed between pits, doors, and interactive
objects (a power cell transplant sequence was noted by
4 subjects). It was quickly recognised by 5 subjects that
each hostile agent was preceded by a signature sound; aside
from this, ambient noise was noted. However, no subject
reported the radio transmissions that sporadically interrupt
the action, nor the direct instructions from McNeil.

The CTH group found it easier to talk about the
environments, perhaps due to the diversity of spaces they
encountered. 12/13 subjects differentiated between the
two playable levels. Two subjects confused the cult house
with the asylum in the opening cutscene, which may be
attributable to the morgue and experiment rooms in the
basement. A further 7/13 used distinct narrative structuring
when describing the environments. 4 of the 13 subjects
referred to a gameplay mechanism: the save point, the fact
that the designers increased tension by reducing the sizes of
the environments at critical moments, the reduction of the
visual field with movie bars to indicate a cutscene, and the
lack of weapons increasing a sense of vulnerability. Finally,
4/13 subjects reported the town’s name unprompted (two
were correct), which may be interpreted as evidence as it
was engaged with on a homodiegetic level rather than just
as a game map. It is also worth noting that two subjects
questioned the reality of the Innsmouth level altogether,
both suggesting that the entire episode was actually a
hallucination and that the player had never recovered from
the six-year psychotic break that separates the levels. Again,

Dan Pinchbeck 5

this may be taken as evidence that they were engaging with
the environment at a significantly narrativised level.

5.3. Avatar

One thing both study groups shared was a very distinct
conceptual distance between player and avatar. Only two
subjects in the entire study referred to the action in the
first person. Further, the majority used the second when
discussing plot, character, and environment: “you go into the
basement,” “you are this marine.”

However, it is important to note that over identification
with the avatar can be problematic, as it exposes the
limitations of the game system [23]. The fact that most of
the subjects in the study felt that they were controlling Jack
or the marine, or in some cases “aiding” them, acting as a
team suggests that the avatars were functioning effectively.

Subjects were first asked about their relationships to the
avatar, and then whether they thought he had a definable
character. If the answer was yes, they were prompted to try
and encapsulate this personality in few words. Finally, they
were asked about their motives and whether they considered
this to be the same as their avatars.

All but one of the CTH subjects easily identified with
Jack, citing the amount of background material as the
major reason they were able to do so (4/13 also stated that
the gameplay device of hearing his heartbeat increase in
times of stress helped draw them in). Although they clearly
distinguished themselves from him, 6/13 said they felt they
were looking through his eyes, or otherwise, operating in
tandem with the character. One suggested he felt as if he was
playing part of Jack’s mind, with the game script providing
the counterpoint. All the subjects said they could identify
a clear character, and their suggestions of personality fitted
those suggested by the game, with stating that the amnesia,
whilst giving him a motive to continue playing, was a block
to this. The one subject who failed to identify with Jack
said that whilst the amnesia gave him a motive to continue
playing, it blocked his empathising with the character. Four
also inferred personality from his responses to the game’s
action: “he asks a lot of questions,” “he is very curious,” “he is
not afraid of finding things out,” and seamlessly integrating
essential gameplay devices with the presented world. Most
felt that their motives and Jack’s coincided—a drive to find
things out, to solve the mystery of not just Innsmouth, but
the missing six years of his life.

RES subjects found empathy easy too but struggled more
with the notion of character. Although 8/13 felt that the
marine had a character, when asked to summarise his per-
sonality, there were noticeable pauses; then 5/13 constructed
a personality based around their play styles—either “cool,
level headed, not freaked out by what is happening” or “a
kick-ass marine.” The remaining four described the avatar as
bland, or a shell, though two of these suggested that as the
story progressed, they may understand more about him. One
tied his motive to try to find his squad, which is completely
missing from the actual game; another candidly pointed out
that the initiation of the action comes from the avatar picking
up the artifact and that he was playing the “idiot who caused

it all.” Noticeably, the RES players were more likely (5/13)
to differentiate their motive from the avatars: whilst he was
variously “trying to get to the surface,” “escaping,” “staying
alive,” “returning the artifact for study,” they remained only
superficially involved, wanting to explore the game, or just
responding to wave after wave of hostile avatar. Several (3/13)
wanted additional characterisation to flesh out the marine’s
character.

5.4. Plot

The need for closure was highly evident in both subject
groups; most of whom assumed a closed narrative was
unfolding, even if they did not fully grasp it. CTH subjects
generally coped well with a highly complex narrative, includ-
ing an unconventional temporal sequence. One subject failed
to identify Jack in the opening sequence; another suggested
that the suicide was successful and the Innsmouth level was
not real. All of the CTH subjects described the plot fully or
near fully and did so using clear storytelling structures: there
was clear cause and effect and understanding of temporal
sequencing. More to the point, every subject thought a story
was operating behind the action—two even suggested that
it was more important than the action (one describing the
experience as more like watching a film than playing a game)
and were happy to ascribe the gaps in the information
they were given to a plot arc they had yet to uncover
although most assumed they would uncover it. Asked if
they believed that other characters within the game knew
more than they did, all but one answered yes. Certainly,
Cthulhu is a mystery game and is quite deliberately aimed
at creating this impression. None of the subjects found the
action arbitrary—they all assumed that it was only their
ignorance of the final plot resolution that hindered their
understanding. Conspiracy, and its counterpart, amnesia, is a
powerful theme in FPS games, occurring in nearly every title,
and it is evident why this should be. Not only does it allow
narrative development to be offered as a reward scheme, but
it also achieves two more direct gameplay functions. Firstly,
it lowers the player/avatar’s status, training them to be reliant
upon the system for information, which is why it is so often
attached to high-status NPCs. Secondly, it allows the system
to gain control over information shortfalls: it is simply not
necessary to offer a complete package of information if the
closure is operating successfully—the player will contribute
at least the assumption that all will become clear and, as such,
shortfalls and contradictions can be masked.

Tellingly, even though RES subjects struggled to create a
full narrative of their experiences, quickly degenerating into
brief summaries “monsters come and you shoot them,” “you
just keep going until to find the boss,” and several 3/13 admit-
ted complete ignore as to what was going on; most (7/13)
believed there to be a story happening. This would seem to
confirm that Kermode’s question remains valid in the sphere
of game research. Only two drew attention to the PDAs
lying around the environment which provided background
story. One was convinced that McNeil would be revealed
to be the nemesis figure (another essential FPS device).
Two subjects noted that the “leaders” (presumably McNeil),

6 International Journal of Computer Games Technology

rather than being in possession of extra information, had no
idea what was happening or what to do about it; three others
correctly recalled her statement that “I have seen this before.”
Narrative plays a very small part in Resurrection of Evil’s
action, and there is little in the way of a coherent ecology:
demons teleport in according to shock value and challenge,
and it is not altogether surprising that 4/13 subjects found
the action arbitrary.

6. CONCLUSION

A game with a high emphasis on story such as Cthulhu
seems to enable players to recall a substantial quantity of
the information it presents, even when this is presented in
a nonstandard and incomplete fashion. Although players
often fail to remember names, they are adept at either
recalling or inferring motive. Even though Cthulhu contains
a much higher number of characters than Resurrection of
Evil, subjects were able to remember much more about
them, suggesting that players of the latter were simply not
paying any attention to them. This may sound banal, but it
is evidence that the system is training the player to attach
significance. Further, the fact that players of Resurrection
found it difficult to recall their actions in detail suggests that
a strong plot may not only act as a reward scheme but aid in
orientation and postexperience affect.

Players in both titles inferred personality from cutscenes
and homodiegetic information where this was lacking; they
frequently constructed it themselves from the activities of
the avatar. The environments and objects of Resurrection
without a strong plot structure were recalled often according
to gameplay devices, whereas Cthulhu’s were placed in a
homodiegetic context. Finally, closure was clearly operating
across both games, even with a rudimentary narrative; Res-
urrection players inferred a body of unknown information
that many were convinced would be revealed to them, even
when they misread the plot—and often remembered little of
the primer from the opening cutscene.

Thus, rather than a late bolt-on, in reality no less sim-
plistic, or the alternate reward system, we need to consider
story within games as an integrated aspect of the overall
system. If utilising narrative devices such as character, plot,
closure, and voice has a direct and dynamic impact upon the
psychological processes in operation during the act of play.
Then, not only does this provide us with a less subjective
means of interpreting story in games, but it begins to open up
a pseudo-mechanistic approach to putting together effective,
ludically functional stories. In order to achieve this, we
have proposed that the common issues of narrative can
be bypassed if we utilise the concept of protonarratives to
envisage story as a network of objects, with a degree of
predeterminism in terms of relationships which tend to yield
interpretation within a predetermined range.

In a very real sense, this invites us to, one way or
another, avoid the “art” of stories in favor of the “craft.” In
analysing story in games in this way, the mechanics of the
application of story to game design can be exposed, making
the highly complex field of narratology and its application
to psychology accessible to those whose specialisms lie in

other areas of game design and development. Further, it
highlights the direct impact story can have upon gameplay,
in terms of creating more memorable, complex and affective
gaming experiences. We are in the position, in terms of the
maturation of the both game design and game research,
for the medium to demand a wholly distinct and specific
understanding of the nature and use of story as a functional
technology.

REFERENCES

[1] D. Pinchbeck, “I remember Erebus: memory, story and
immersion in first person shooters,” in Proceedings of the 3rd
International Conference on Games Research and Development
(CyberGames ’07), pp. 121–129, Manchester Metropolitan
University, Manchester, UK, September 2007.

[2] R. Barthes, Image, Music, Text, Fontana Press, London, UK,
1993.

[3] D. Carr, Time, Narrative and History, Indiana University Press,
Bloomington, Ind, USA, 1985.

[4] H. Jenkins, “Game design as narrative architecture,” in First
Person: New Media as Story, Performance and Game, N.
Wardrip-Fruin and P. Harrigan, Eds., pp. 118–130, MIT Press,
Cambridge, Mass, USA, 2003.

[5] M. Eskelinen, “Towards computer game studies,” in First
Person: New Media as Story, Performance and Game, N.
Wardrip-Fruin and P. Harrigan, Eds., pp. 36–45, MIT Press,
Cambridge, Mass, USA, 2004.

[6] G. Frasca, “Ludology Meets Narratology: similitudes and dif-
ferences between (video)games and narrative. Finnish version
originally published in Parnasso#3, Helsinki, 1999,” English
translation, July 2006, http://www.ludology.org/.

[7] F. Bartlett, Remembering: A Study in Experimental and Social
Psychology, Cambridge University Press, Cambridge, UK,
1932.

[8] R.C. Schank and R. Abelson, Scripts, Plans, Goals and
Understanding: An Enquiry into Human Knowledge Structures,
Lawrence Erlbaum Associates, Hillsdale, Mich, USA, 1977.

[9] M. Minsky, “A framework for representing knowledge,” in The
Psychology of Computer Vision, P. Winston, Ed., McGraw-Hill,
New York, NY, USA, 1975.

[10] F. Kermode, The Genesis of Secrecy: On the Interpretation of
Narrative, Harvard University Press, Cambridge, Mass, USA,
1979.

[11] D. Pinchbeck, B. Stevens, S. Van Laar, S. Hand, and K.
Newman, “Narrative, agency and observational behaviour in a
first person shooter environment,” in Proceedings of Narrative
AI and Games Symposium: Society for the Study of Artificial
Intelligence and the Simulation of Behaviour (AISOB ’06), T.
Kovacs and J. A. R. Marshall, Eds., pp. 53–61, SSAISB, Bristol,
UK, April 2006.

[12] J. Juul, Half Real: Video Games between Real Rules and Fictional
Worlds, MIT Press, Cambridge, Mass, USA, 2005.

[13] J. A. Robinson and L. Hawpe, “Narrative thinking as heuristic
process,” in Narrative Psychology: The Storied Nature of Human
Conduct, T. R. Sarbin, Ed., pp. 111–125, Praeger, London, UK,
1986.

[14] T. R. Sarbin, “The narrative as a root metaphor for psychol-
ogy,” in Narrative Psychology: The Storied Nature of Human
Conduct, T. R. Sarbin, Ed., pp. 3–21, Praeger, London, UK,
1986.

Dan Pinchbeck 7

[15] E. Tulving, “Episodic and semantic memory,” in Organization
of Memory, E. Tulving and W. Donaldson, Eds., Academic
Press, New York, NY, USA, 1972.

[16] M. Eysenck and M. Keane, Cognitive Psychology: A Student’s
Handbook, Psychology Press, Hove, UK, 2000.

[17] M. L. Crossley, Introducing Narrative Psychology: Self, Trauma
and the Construction of Meaning, Open University Press,
Buckingham, UK, 2000.

[18] J. Loomis, “Distal attribution and presence,” Presence: Teleop-
erators and Virtual Environments, vol. 1, no. 1, pp. 113–119,
1992.

[19] J. Bruner, Acts of Meaning, Harvard University Press, London,
UK, 1990.

[20] S. Nath, “Narrativity in user action: emotion and temporal
configurations of narrative,” in Proceedings of the 4th Interna-
tional Conference on Computational Semiotics for Games and
New Media (COSIGN ’04), Split, Croatia, September 2004.

[21] J. C. Mancuso, “The acquisition and use of narrative grammar
structure,” in Narrative Psychology: The Storied Nature of
Human Conduct, T. R. Sarbin, Ed., pp. 91–110, Praeger,
London, UK, 1986.

[22] R. C. Schank, Tell Me a Story: A New Look at Real and Artificial
Memory, Charles Scribner’s Sons, New York, NY, USA, 1990.

[23] D. Pinchbeck, “Ludic reality: a construct for analyzing epis-
temology and meaning-mapping in play,” in Proceedings of
the Philosophy of Computer Games Conference, University of
Modena and Reggio Emilia, Italy, January 2007.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 720280, 7 pages
doi:10.1155/2008/720280

Research Article
A Conceptual Framework for the Analysis of First-Person
Shooter Audio and its Potential Use for Game Engines

Mark Grimshaw1 and Gareth Schott2

1 School of Art and Design, University of Wolverhampton, City Campus, Molineux Street, Wolverhampton WV1 1SB, UK
2 Department of Screen and Media Studies, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand

Correspondence should be addressed to Mark Grimshaw, mark.grimshaw@wlv.ac.uk

Received 27 September 2007; Accepted 20 November 2007

Recommended by Kok Wai Wong

We introduce and describe a new conceptual framework for the design and analysis of audio for immersive first-person shooter
games, and discuss its potential implications for the development of the audio component of game engines. The framework
was created in order to illustrate and acknowledge the direct role of in-game audio in shaping player-player interactions and in
creating a sense of immersion in the game world. Furthermore, it is argued that the relationship between player and sound is best
conceptualized theoretically as an acoustic ecology. Current game engines are capable of game world spatiality through acoustic
shading, but the ideas presented here provide a framework to explore other immersive possibilities for game audio through real-
time synthesis.

Copyright © 2008 M. Grimshaw and G. Schott. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Members of your platoon cluster around you and over the radio
comes the message “follow me” with others responding “affir-
mative.” You follow the sound of organ music discovering that
it emanates from a Gothic church with buttressed superstruc-
ture. In the distance, the sharp crack of gunfire and the dull
thud of explosions catch your attention. Eager to join the fray,
the metronomic rhythm of your running boots on the hard sur-
face of the path is soon matched by the sound of your panting
breath; this quickly overtakes the pace of your slowing footsteps
so you slow to a walk. Soon the organ music is left behind and
the cacophony of battle intensifies. Suddenly, a siren indicates
that a platoon member has managed to steal the enemy’s flag
and, amidst the sharp staccato of machine gun fire, you see and
hear him weaving and running towards you, flag in hand, and
hotly pursued by a posse of enemy soldiers.

An account of player experiences when playing first-
person shooter (FPS) games is useful in several respects
when establishing the groundwork and rationale for the de-
velopment of the conceptual framework presented in this
paper. To begin with, it may intimate a level of engage-
ment with games signaling, among other things, the plea-
sures and satisfaction at being involved in an individual or

team situation. Such pleasures result from (amongst other
reasons) a demonstration of individual skill and mastery
(in a multiplayer situation, a public demonstration of such
skill) combined with the pursuit of collaborative objectives
in an environment that, in many respects, simulates real-
world problem-solving scenarios. The account may also in-
timate that the perspective presented and the nature of the
engagement with the game are both subjective and individ-
ually constructed. Indeed, the plot of the very story may be
very different when narrated by the other players involved
in the same game scenario. Importantly, it outlines how FPS
games typically place the player in a hostile environment (the
hunter and the hunted) that demands attentiveness to all
available cues (especially, and crucially for the aims of this
paper, sound cues) for team success, character survival and
individual glory. What is described is not fiction or imagina-
tion, but a lived account of experiences within the immersive
spaces of a particular genre of computer games.

Many of the points raised above may be applied to many
computer games (not to mention other forms of gaming)
with varying degrees of success and prioritization. Some
games provide different cues for the solution of a puz-
zle, some have less of a team aspect or none at all, others
are less combative while others offer different perspectives.

2 International Journal of Computer Games Technology

Te
le

di
eg

es
is

H
ap

tic
in

pu
t

So
ni

fic
at

io
n

C
om

m
on

So
un

ds

Multiplayer
Acoustic ecology

Player Soundscape

Game server

Game engine

Resonating
space

Ideodiegesis:
Kinediegesis
Exodiegesis

Image

Player

Synchresis

Acousmatic

Soundscape:

Auditory icons:
Character

Interactable
Feedback

Environment
Sensory

immersion

Perceptual factors:

Visualized (Ideodiegetic)

Player

experience
and context

Functions:
Choraplast
Topoplast
Aionoplast

Chronoplast
Attractor
Retainer

Connector

Kinaesthetics

Affordances
Causal listening

Semantic listening
Navigational listening
Causality/Indexicality

Keynote, Signal
Challenge-based immersion

Imaginative immersion

Acoustic ecology
Single-player

Figure 1: A conceptual framework of the FPS game acoustic ecology in multiplayer mode.

(For a more complex and extensive attempt at taxonomiz-
ing computer game types, see A Multi-Dimensional Typol-
ogy of Games [1].) Broadly speaking, it is the types of cues
offered, the hostile environment, the mix of team and indi-
vidual skills, the immersive, first-person perspective, and, of
course, the combat that signals the FPS genre. It is our con-
tention that sound cues in FPS games afford more possibili-
ties than in other genres to live the type of game experience
signaled in the account. A first-person perspective game uses
sound to immerse the player within the game environment
in a way that a 2-dimensional platform game such as Donkey
Kong [2] or a variety of role playing games (RPGs) do not
typically attempt. This paper presents a conceptual frame-
work for FPS game audio and a model of game worlds as an
acoustic ecology in order to increase the ability of both game
scholars and developers to analyze both the relevance of cur-
rent applications of audio and its effect upon player immer-
sion and player-player interaction.

The conceptual framework (Figure 1) and examples
given here account for multiplayer run and gun FPS games,
that is, networked games in which there is more than one
human player. Bots (computer-generated characters) do not
(yet) respond to sound but, in tracking down or evading

player-controlled characters, make use of game code vari-
ables that change according to that character’s position, ac-
tions and status. The assumption is made that the concep-
tual framework for single-player games constitutes a subset
of those found in multiplayer games, hence it is the latter that
is investigated here.

Of the terminology that resides in the conceptual frame-
work constructed and outlined here, a large proportion is de-
rived from a broad range of disparate work on the nature
and function of sound spread across a variety of media. Such
areas utilized in the framework include kinaesthetics, affor-
dance theories, modes of listening, auditory icons, diegetic
sound, sonification, causality, indexicality, soundscapes and
immersion theories to name but a few. In doing so, it was
necessary for all these treatments of sound to be adapted to
account for the medium through which the FPS genre is ex-
perienced, either by pointing out the significant differences
(between the medium to which the terminology was origi-
nally applied and that of the FPS genre) and adjusting ac-
cordingly or by extending the theoretical model to include
new terminology where existing terminology proved insuf-
ficient. In order to further illustrate the framework, the FPS
game Urban Terror [3] is used (Figure 2).

M. Grimshaw and G. Schott 3

Figure 2: A screenshot from Urban Terror.

This paper extends a paper [4] presented by the authors
at the Cybergames 2007 conference by exploring the implica-
tions of the conceptual framework described there for the fu-
ture development of the audio component of game engines.

2. THE CONCEPTUAL FRAMEWORK

Understanding of sound in the FPS game world is a mat-
ter of experience. This experience, and the resultant com-
prehension, is the result of the training and conditioning
which occurs either external to the FPS game (for exam-
ple, through exposure to popular commercial cinema sound
conventions) or which takes place during initial exposure
to the sonic conventions of the FPS genre as a whole or to
the specific FPS game being played. These conditions ap-
ply equally to both the sound designer and the player who,
ideally, should have broadly similar socio-cultural experi-
ences and understandings of sound. FPS game sounds may
therefore be described as a set of sonic signs or auditory
icons which may be analyzed through semiotic terminology,
such as indexicality, iconicism, symbolism or metaphor, in
an attempt to explain how the intended meaning is (ide-
ally correctly) translated to the received meaning. Thus, the
FPS game engine may be understood as a sonification sys-
tem in which sounds are (re)encodings of non-audio data.
This game world data may derive either directly from the
game engine, as in the case of game status sounds for in-
stance, or, in the majority of cases, is an expression of player
activity, such as the sounds of footsteps or the firing of
weapons.

2.1. Audio sample categorization

Our first approach in constructing a taxonomy of FPS game
sounds was one that perused the classification of audio sam-
ples as found on either the distribution medium or on the
installation drive of the product itself. This initial approach
provided useful insights into the sound designer’s classifica-
tion system which itself may be extrapolated to the meaning
that is intended for particular sounds. While this approach
has already been used to account for game sound within

games studies community through reference to character, in-
teractable or environment sounds, for example, [5–7], none
of the literature explicitly examines the distribution or in-
stallation media for further clues as to the sound designers’
intentions. At the very least, our approach revealed a division
between diegetic and nondiegetic sounds as there is typically
a separate directory for music or menu interface audio sam-
ples as opposed to other audio samples which, themselves,
may be subclassified into character, interactable, environ-
ment or feedback audio samples. Thus, of the 607 base au-
dio samples in Urban Terror (game-specific audio samples as
opposed to level-specific audio samples), fully 601 are avail-
able to be used during gameplay with the remaining six being
the menu music (one) and menu interface sounds (five). The
601 audio samples are, therefore, diegetic whilst the remain-
ing six are nondiegetic.

The game designer-constructed organization of audio
samples in Urban Terror is illuminating in several respects.
Firstly, it is an indication of how the game code deals with
sound and its relationship to a variety of characters, objects,
and locations within the game. Sounds that players’ charac-
ters create as they move, fire, or taunt are separated from
environment sounds which are part of a location; sounds
of interactable objects are separated from the sounds non-
interactable objects make, and diegetic sounds are separated
from nondiegetic sounds. Secondly, the sheer number of
sounds is an indication of the importance of sound to the
game experience. Thirdly, this organization of sound indi-
cates some of the technical limitations of the game, namely
in the areas of media storage and computer memory. As an
example, some audio samples of footsteps are shared be-
tween the characters and this decreases the number of sounds
which must be stored on the game distribution medium (a
compact disc or Internet download in this case) and which
must be loaded in the computer memory while playing.

Alone, this mode of categorizing sound offers little in-
sight into the function and meaning of sound, how sound
is used in the game by the player or how sound functions
to form an acoustic ecology. In order to explore such issues,
it was necessary to employ and devise other taxonomic ap-
proaches. However, before proceeding to these other possible
forms of classification, consideration of the means of sound
creation and production at the game design stage is useful as
it sheds some light on the degree of interaction made possi-
ble in the FPS game which directly relates to the player im-
mersion within and participation in a game-related acoustic
ecology. In any computer game, sounds heard during game-
play and from within the game environment are synthesized
or digitally recorded and stored as discrete audio samples.
In all modern run and gun FPS games, most, if not all such
sounds consist of audio samples and this is certainly the case
for Urban Terror. Most of these audio samples are sounded in
response to player input, game status (which, in most cases,
is an indication of player activity) or bot activity in games
where bots are employed. A smaller number of environment
audio samples are under the control of the game engine al-
though their audification may be responsive to player loca-
tion (by pan and intensity) or where the game engine is ca-
pable of acoustic shading.

4 International Journal of Computer Games Technology

Such audio samples (as described above) are labeled
nomic auditory icons by Gaver [8]. However, in the context
of games, nomic is an ill-advised term to use, and so we pre-
fer to call them causal auditory icons. They bear a strong de-
gree of causality and indexicality to the actions they repre-
sent because they are usually recordings of real-world ana-
logues represented in the game, hence the virtual causality of
the sounds. Conversely, a symbolic auditory icon has a more
arbitrary mapping between the sound and the event it repre-
sents and within games aspiring to a degree of realism (such
as Urban Terror [9]) there are few such auditory icons.

The abundance of recorded audio samples (as opposed
to synthesized audio samples), which may be described as
causal auditory icons, combined with their appropriate in-
game use (in other words, they are causal sounds with a high
degree of virtual indexicality, for example, a recording of a
shot-gun is sounded each time a shot-gun is fired), is a good
indication of the level of realism the FPS game aspires to. Ur-
ban Terror, which is usually described as a realism mod, is a
prime example; of the 601 diegetic audio samples available,
the only synthetic audio samples (the only symbolic auditory
icons) are those related to game status events, such as when
a flag has been captured. This may be compared to Quake III
Arena [10] or Quake 4 [11] which, set as they are in a more
fantastical gamescape, have a greater proportion of symbolic
auditory icons representing not just game status events but
also various audio samples sounded by player input (such as
those to do with power-ups and teleporters).

2.2. Diegetic audio

It is possible to classify all audio samples as either diegetic
or nondiegetic following film sound theory. However, differ-
ences in the creation and resultant nature of the FPS game
soundscape compared to the film soundscape require refine-
ments of the term diegetic. As already noted, sounds in an
FPS game consist of discrete audio samples and, unlike film,
there is no complete game soundtrack that is stored on the
distribution medium and played during gameplay. The FPS
game soundscape, which forms a part of the acoustic ecology,
is created in real-time through the agency of game engine ac-
tions (the sounding of game status feedback or ambient au-
dio samples, for example) or through the agency of player
input acting upon the discrete audio samples which form the
soundscape’s palette. Furthermore, with any playing of the
game (even the same level), the resultant soundscape will be
substantially different for the one player and, in a multiplayer
game, the soundscape experienced by one player will also be
substantially different to that experienced simultaneously by
other players. It is for this latter reason that we define the
terms ideodiegetic (those sounds that any one player hears)
and telediegetic (those heard and responded to by a player—
they are ideodiegetic for that player—but which have conse-
quence for another player; they are telediegetic for the second
player). Furthermore, ideodiegetic sounds may be classified
as kinediegetic (sounds initiated directly by that player’s ac-
tions) and exodiegetic (all other ideodiegetic sounds).

Of the class of diegetic audio samples, and in the context
of a multiplayer game, all global feedback sounds (such as

game status messages) may be classed as exodiegetic sounds.
They are ideodiegetic in that they are heard by all play-
ers (simultaneously) but initiated by the game engine in re-
sponse to significant events. All other audio samples may be
ideodiegetic or telediegetic depending upon context. These
include environment sounds (which are usually level-specific
audio samples rather than game-specific audio samples).
Ideodiegetic sounds may be classed as either kinediegetic or
exodiegetic. For the player who triggers them, the sounds
are kinediegetic; they are exodiegetic for other players. If
such sounds have consequences for other players who do not
hear them (for example, the blast of the shotgun which kills
an enemy may draw others of her teammates to that loca-
tion which itself may provide opportunities for the opposing
team), they may also be classed as telediegetic for these other
players.

As has been noted by several writers [6, 7], sound in an
FPS game may be attended to in one of three modes: reduced
listening, semantic listening, and causal listening. Reduced
listening, as noted by Stockburger [7], is little used by expe-
rienced players. What these writers do not suggest is that the
mode of listening may change depending upon context and
experience. Furthermore, we identify a fourth mode, naviga-
tional listening. This is required because of the unique (com-
pared to electro-acoustic music and film sound theory where
the original three modes were first described) abilities of the
FPS player to move her character around the 3-dimensional
game world. In this mode, certain sounds may be used as au-
dio beacons helping to guide players, especially those new to
the particular game level, around the game world structures.

2.3. The FPS game soundscape

Schafer’s [12] keynote sounds are, in this context, audio sam-
ples which form part of the sonic ambience and may not be
directly triggered by the player being, instead, sounded by the
game engine. (They may be triggered by other players but are
judged by the one player to be distant and of little interest and
so form part of the general ambience of battle.) An example
in Urban Terror is the Bach organ fugue in the Abbey level
or, in the same level but in a different location, the twitter-
ing of birds. There is some ambiguity here that is not cap-
tured by the brief descriptions of such environment or ambi-
ent sounds in existing games studies literature. For example,
the player does typically have some kinaesthetic control over
the sounding of these sounds; by simply moving away from
a location, the sound may be attenuated to silence (and vice
versa). Furthermore, if a keynote sound is a sound which is
not intended to be consciously listened to, merely forming
the background for more perceptually important sounds, the
decision to consciously attend to a sound or not is often a
matter of player choice, indeed, musicians may respond to
the organ fugue differently to non-musicians.

A signal sound is a foregrounded sound which is de-
signed to be consciously attended to because it potentially
contains important information encoded within it. Most of
the game-specific audio samples in Urban Terror may be
classified as signal sounds when they are sounded in a con-
text which foregrounds them. Thus, the loud, and therefore

M. Grimshaw and G. Schott 5

proximate, sounding of gunshot samples is worthwhile pay-
ing attention to (particularly in the individual deathmatch
game mode). However, if the sounds of battle are distant,
they may be classed as keynote sounds particularly if they
are relatively constant and the player’s attention is directed
elsewhere. All game status indicators and team radio mes-
sages are signal sounds because, although they are as perva-
sive as keynote sounds, they are usually louder and therefore
more proximate and, in the case of radio messages, have no
reverberation, thereby foregrounding them through the lack
of depth cues.

Soundmarks are identifying aural features of the acoustic
ecology and may be either signal sounds or keynote sounds
which are consciously attended to. Symbolic auditory icons,
such as flag status signals, are more likely to be uniquely iden-
tifying of an FPS game than causal auditory icons because the
latter are derived from recordings of existing real-world, ex-
ternal sounds whereas the former reference the internal game
world.

2.4. Immersion through sound

FPS game sounds may be categorized according to a variety
of immersive principles. Following Ermi and Mäyrä’s ideas
[13], all FPS sounds can contribute to sensory immersion
where the sounds of the game world override those in the
player environment. It should be noted, though, that the de-
gree of sensory immersion is dependent upon a range of fac-
tors beyond the control of the game designers including the
relative loudness of the two sets of sound and the audio hard-
ware used; one of the factors influencing the decision of most
FPS players to use headphones [14] is likely to be a greater
sensory immersion. Many sounds offer challenge-based im-
mersion by requiring a response which includes the use of
both mental and kinetic skills. It is typically the case that
these sounds are ones which are produced by other players
and they usually relate to actions involving weapons. How-
ever, whilst most level-specific environment sounds in Urban
Terror, for example, generally do not offer challenge-based
immersion possibilities, audio beacons require the naviga-
tional listening mode and, therefore, mental skills.

Sounds offering imaginative immersion possibilities are
those which help the player identify with her character and
the game environment and action. In the first case, FPS
games offer a range of character sounds, some of which may
be classed as proprioceptive sounds (such as the character
breathing whose rate may vary according to the exertions
of the character) and which, with a high level of immer-
sion, may be seen as aural prostheses similar to the prosthetic
limbs seen receding into the screen. Exteroceptive sounds
affording imaginative immersion through identification in-
clude a range of sounds which aid in contextualizing the
player character within the environment.

McMahan categorises computer game elements as per-
ceptual sureties, surprises, or shocks [15]. The latter militate
against immersion in the game world by being external stim-
uli (or errors in the game) that remind the player that this
is just a game taking place within the player’s real-world en-
vironment. Sureties are mundane cues, expected details pro-

viding an experience which is consistent with the rules and
conventions of the game world. The creaking of a door as it
opens and closes or the footsteps of a player moving around
are aural examples of this. Surprises, according to McMahan,
consist of three types: attractors (inviting the player to do
something); connectors (helping player orientation) and re-
tainers (causing the player to linger in game world locations).

A variety of sounds in FPS games fulfil these require-
ments. Indeed, any sound inviting an active response may
be said to be an attractor. Thus, the sound of gunfire in the
distance may tempt the player to investigate and team radio
messages detailing enemy actions invite a response on the
part of the team player. Many sounds, particularly environ-
ment sounds, function as connectors and they are often at-
tended to in the navigational listening mode. Locational and
depth properties are important parameters of sounds func-
tioning as connectors. Although, at first playing of the game,
the player may derive enjoyment out of certain sounds and
so may linger in a particular location in order to hear more,
the nature of the FPS game is such that more-or-less contin-
ual movement is usually required of the player to seek out or
avoid the enemy or to attack the enemy base and so, for the
experienced player, no sounds in the FPS game may be said
to be retainers.

We propose four terms to describe the spatializing and
temporal affordances offered by FPS game sounds. The per-
ception of a variety of spaces is one of the main contributing
factors of FPS sounds to the perception of, and immersion
within, the game world. In terms of our phrase resonating
space, there is a real resonating space, which is the acous-
tic volume enveloping and morphing around the player, and
a virtual resonating space, matching, through a process of
synchresis, the illusory visual space depicted on the screen
(other virtual spaces may be identified as separate volumes
within the game world), the perception of which is cre-
ated by parameters of sound such as localization, depth cues
and reverberation. Such cues may be processed in real time
(acoustic shading) with more sophisticated game audio en-
gines or they may be encoded into the audio samples on the
distribution medium. Sounds providing this affordance are
choraplasts. Sounds may also function as topoplasts where
they create the perception of paraspaces such as locations in
the game. Additionally, sound may provide the affordance
of the perception of time passing or of a particular tem-
poral period in the past, present or future. The former are
chronoplasts and, because sound is vectored through time,
that is, it takes time to hear a sound, all sounds have a basic
chronoplastic function (in addition to any explicit function
they may have in this area). The latter are aionoplasts and
weapon sounds typically have this function setting the game,
for example, in the modern era rather than the mediæval
age.

3. THE IMPLICATIONS FOR GAME ENGINE DESIGN

As previously stated, modern FPS games make use of audio
samples that may be treated as causal auditory icons (the
most common form and typically recordings of real-world
events) or symbolic auditory icons (more common in games

6 International Journal of Computer Games Technology

with a less realist scenario). Whilst the use of causal auditory
icons provides quite accurate sonic representations of real-
world artifacts in the game world, that use comes at a price
that is calculated in memory, both distribution medium stor-
age and game system random access memory (RAM). As-
suming a 16 bit, monophonic, 44.1 kHz game audio system,
100 one-second audio samples require a total of almost 9 MB
of storage.

This may not seem expensive with the technology avail-
able in 2007. However, there are several factors conspiring
to push this cost up. Firstly, many game audio samples are
longer than one second particularly if they are vocal audio
samples. Secondly, and perhaps more importantly, the game
designers’ desire to provide the player with an increasingly
rich sonic environment requires, as an initial solution, the
provision of yet more samples. Unlike sound design for a
film, game sound designers work to a non-linear script and
“it is not possible to make every gunshot sound unique if
you do not know how many gunshot sounds are needed!”
[16]. Games such as Urban Terror (based on the Quake III
Arena game engine) must therefore strike a balance between
a wish to provide an audio sample for every sonic possibility
(an infinite number) and paying regard to storage and mem-
ory requirements (Urban Terror is typically provided as an
Internet download).

Later game engines, such as that used by Half-Life 2 [17],
use acoustic shading techniques. This provides a part solu-
tion to the audio sample memory problem by real-time pro-
cessing of audio samples with reverberation that approxi-
mates the virtual acoustic properties of the character’s envi-
ronment. This is also a step towards solving the non-linearity
enigma as expressed by Boyd because any one audio sample
does multiple duty by having different reverberant charac-
teristics in different locations of the game. However, acoustic
shading of audio samples still requires a high use of memory
and it provides solely a reverberation solution without taking
account of other encodings possible in sound (its emotive as-
pects or the direct sound source, for example).

Gaver notes that, using what he calls everyday listen-
ing, sounds are usually described by one or two of their
salient characteristics (object and action); a metallic clang,
a wooden thump, a glass-like shattering, for example [18].
Indeed, he provides algorithms to show it is possible to con-
ceptualize and synthesize sound according to these charac-
teristics rather than directly by the use of properties such as
frequency and intensity; a top-down model as opposed to a
bottom-up model. The resultant caricature sounds should
then provide the minimum information required to enable
at least an approximate identification of both source object
and action.

Populating an FPS game with such caricature, synthe-
sized sounds would seem to militate against realism and the
requirements of a rich, immersive player experience. How-
ever, there is evidence to suggest that, where sound is con-
cerned, a reduced realism may be all that is required to
achieve the desired immersive effect [19–21]; a simulation,
rather than emulation, that is based upon convention, ex-
pectation, and caricature. Certainly, in film, this is how many
sound FX work; recordings are made (and enhanced in post-

production) of sources and actions that are not necessar-
ily the same as those depicted on the screen. However, by
matching the main characteristics of the recorded sound
to the expected sound of the screen depiction (such ex-
pectation often being the result of cinematic convention)
and synchronizing sound and visual action, the audience is
persuaded that that screen event really has produced that
sound.

The suggestion, then, is that real-time synthesis of sound
in digital games may prove to be of benefit in dealing with the
twin challenges of memory and non-linear practice without
imperiling the immersive experience and, indeed, perhaps
enriching it. The ideal scenario might be to have a combi-
nation of synthesis and audio samples because (despite ad-
vancements in synthesis) some sounds (such as the human
voice) are still best represented by audio samples. Synthesis
may be of use for the more symbolic auditory icons, fast-
repeating sounds (such as gunfire), and background, keynote
sounds and may be enhanced through any acoustic shading
the game engine offers.

4. CONCLUSION

All sounds, or the use of some sounds, in the FPS game con-
tribute in some way to player immersion in the acoustic ecol-
ogy and it is this immersion within (and the player’s creative
participation in the game’s acoustic ecology) that, in large
part, affords the perception of immersion in the FPS game
world. Thus, the player is physically immersed in the real
resonating space and, through kinaesthetic techniques and
the ability to trigger a range of sounds through various in-
put methods, is drawn into the virtual resonating space that
is then synchretically mapped to the visual game world and
activity that are represented either on- or off-screen.

The model in Figure 1 exhibits all the elements of the
conceptual framework described thus far. Because it is a
model of an acoustic ecology, it importantly shows relation-
ships between the player (the listener) and soundscape. As it
is a model of the acoustic ecology of the FPS run and gun
game, though, it includes a variety of components and rela-
tionships which are unique to digital games (some of which
may be unique to the subgenre) such as the game engine, im-
age, a range of spatial and immersive elements and percep-
tual factors. Furthermore, because this is a model of a multi-
player game acoustic ecology, it also includes the game server
and other players and their soundscapes. (For clarity, only
one other player and soundscape are shown here.)

Although the conceptual framework and the model are
focused on FPS games as their paradigm, it may well be the
case that they (or aspects of them) may also be used to ana-
lyze the wider area of digital game sound in the future with
the caveat that much further research and testing (using dif-
ferent digital game genres) is required. Furthermore, it is sug-
gested that the conceptual framework and model may prove
to be of use in the design of the audio component of game
engines by supporting the notion that real-time synthesis of
sound in the game is a valid means of providing an immer-
sive acoustic ecology.

M. Grimshaw and G. Schott 7

REFERENCES

[1] E. Aarseth, S. M. Smedstad, and L. Sunnanå, “A multi-
dimensional typology of games,” in Proceedings of the Digital
Games Research Conference, pp. 48–53, University of Utrecht,
The Netherlands, November 2003.

[2] “Donkey Kong [Computer program],” Nintendo, 1981.
[3] Silicon Ice, “Urban Terror [Computer program],” Version 3.7,

2005.
[4] M. Grimshaw and G. Schott, “A conceptual framework for the

design and analysis of first-person shooter audio,” in Proceed-
ings of the 3rd International Conference on Games Research and
Development, Manchester, UK, September 2007.

[5] Xamot, “Urban Terror,” August 2001, http://everything2.com/
index.pl?node id=1036283.

[6] J. Friberg and D. Gärdenfors, “Audio games: new perspectives
on game audio,” in Proceedings of the ACM SIGCHI Inter-
national Conference on Advances in Computer Entertainment
Technology, Singapore, June 2004.

[7] A. Stockburger, “The game environment from an auditive per-
spective,” in Proceedings of the Digital Games Research Confer-
ence, University of Utrecht, The Netherlands, November 2003.

[8] W. W. Gaver, “Auditory icons: using sound in computer in-
terfaces,” Human-Computer Interaction, vol. 2, no. 2, pp. 167–
177, 1986.

[9] C. Law, “Urban Terror!,” GameSpy, June 2006, http://archive
.gamespy.com/legacy/spotlights/urbanterror a.shtm.

[10] id Software, “Quake III Arena [Computer program],” Activi-
sion, 1999.

[11] id Software, “Quake 4 [Computer program],” Activision, 2005.
[12] R. M. Schafer, The Soundscape: Our Sonic Environment and the

Tuning of the World, Destiny Books, Rochester, Vt, USA, 1994.
[13] L. Ermi and F. Mäyrä, “Fundamental components of the

gameplay experience: analysing immersion,” in Proceedings
of DiGRA 2005 Conference Changing Views—Worlds in Play,
Toronto, Canada, June 2005.

[14] S. Morris, “First person shooters—a game apparatus,” in
Screenplay: Cinema/Videogames/Interfaces, G. King and T.
Krzywinska, Eds., pp. 81–97, Wallflower Press, London, UK,
2002.

[15] A. McMahan, “Immersion, engagement, and presence: a new
method for analyzing 3-D video games,” in The Video Game
Theory Reader, M. J. P. Wolf and B. Perron, Eds., pp. 67–87,
Routledge, New York, NY, USA, 2003.

[16] A. Boyd, “When Worlds Collide: Sound and Music in
Films and Games, 2003,” Gamasutra, September 2004, http://
www.gamasutra.com/features/20030204/boyd 01.shtml.

[17] Valve Software, “Half-Life 2 [Computer program],” Electronic
Arts, 2004.

[18] W. W. Gaver, “How do we hear in the world? Explorations in
ecological acoustics,” Ecological Psychology, vol. 5, no. 4, pp.
285–313, 1993.

[19] B. Laurel, Computers as Theatre, Addison-Wesley, New York,
NY, USA, 1993.

[20] M. Back and D. Des, “Micro-Narratives in Sound De-
sign: Context and Caricature in Waveform Manipulation,
1996,” December 2007, http://www.icad.org/websiteV2.0/
Conferences/ICAD96/proc96/back5.htm.

[21] C. Fencott, “Presence and the Content of Virtual En-
vironments, 1999,” August 2005, http://web.onyxnet.co.uk/
Fencott-onyxnet.co.uk/pres99/pres99.htm.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 176056, 7 pages
doi:10.1155/2008/176056

Research Article
Ambient Games, Revealing a Route to
a World Where Work is Play?

Mark Eyles and Roger Eglin

Advanced Games Research Group, School of Creative Technologies, Universtiy of Portsmouth, Eldon Building,
Winston Churchill Avenue, Portsmouth, PO1 2DJ, UK

Correspondence should be addressed to Mark Eyles, mark.eyles@port.ac.uk

Received 27 September 2007; Accepted 7 January 2008

Recommended by Kok Wai Wong

A novel way of playing games called ambient gaming is defined and described. Growing out of ideas in ambient music, ambient
gaming is defined as “ignorable as it is interesting” after Brian Eno’s description of ambient music. Ambient gaming is set in the
context of existing games. Further, ambient games are set in a technological context, showing that the technology enabling their
development is now becoming available. The specification and implementation of an ambient game prototype, Ambient Quest,
are described. Finally, future directions leading to work enhancing games are suggested.

Copyright © 2008 M. Eyles and R. Eglin. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

This article seeks to address four questions around the con-
cept of ambient games. What might the game equivalent of
ambient music play like? What technologies would this re-
quire? How could an ambient game be produced (with lim-
ited resources)? What is the potential for exploiting ambi-
ent games? The answers to these questions build on work
outlined in previous conference papers on ambient games in
which they were combined with role playing games [1] and
in which a pilot study of an ambient game simulation was
described [2]. Practical suggestions are offered for building
and running simple ambient games, and for future ways of
exploiting this technology to turn work into play.

2. AMBIENT MUSIC

Brian Eno coined the term ambient music on his album Am-
bient 1: Music for Airports released in 1978. In the sleeve
notes of Music for Airports, Brian Eno gives a definition of
ambient music, ambient music must be able to accommodate
many levels of listening attention without enforcing one in par-
ticular; it must be as ignorable as it is interesting. In a talk given
for the long now foundation’s series of seminars about long-
term thinking in 2003 [3], Eno talked about Music for Air-

ports: “I wanted to make a kind of music that would actually
reduce your focus on this particular moment in time that you
happened to be in and make you settle into time a little bit
better” [4].

The description of ambient music and the ambient pieces
produced by Brian Eno serves as a guide to the creation of an
ambient games definition and acts as a useful reference point
and context for the creation of ambient games.

3. DEFINING COMPUTER GAMES

A video or computer game is an interactive entertainment
played against, or with the aid of, computer-generated char-
acters or tokens in a computer-generated environment. A
single player game has a series of interesting obstacles to
overcome in order to gain rewards. A multiplayer game has
a series of interesting obstacles to overcome at the expense
and/or with the help of other players to gain rewards. Games
require a commitment of time and effort from the player.
This commitment varies widely between games. A large and
involving strategy computer game like Civilization 2 (or any
other game in the Civilization franchise) may require many
hours of play and thought from the player. There is also a
substantial learning curve at the start of the game before the
player is able to play proficiently. When starting a game like

2 International Journal of Computer Games Technology

this, the player is often committing themselves to 50+ hours
of play, stretching over weeks or months. A simple game like
Tetris has a very shallow learning curve (the player can start
playing almost immediately) and requires very little commit-
ment from the player, though players may choose to make
a larger commitment of time and effort to the game if they
wish. The word completion game hangman requires very lit-
tle commitment and has virtually no learning curve for the
average person.

Another characteristic of games is where they are played.
For example, console games are played in a single location,
the console does not move around during play, though the
player may move a small amount while playing. A game on a
mobile phone does not normally require the player to move
around while they are playing, but does allow the player to
move around if they wish to, though there are a small num-
ber of games that do require movement. Mobile phone games
may be played in any location (which has conditions that will
not damage the phone). The game may be played in any loca-
tion (which has conditions that will not damage the phone).
Similarly, the class of games labelled pervasive/ambient games
allows the player to move freely around everyday locations
while playing. The player can play ambient games in the en-
vironment they normally inhabit. There are also games that
require the player to move around while playing, especially
outside of computer games, frequently in locations specially
prepared for the games (such as football fields, tennis courts).
There are many sports in which the players are required to
move around. The rules for cross country running require
the participants to move a large distance.

By plotting player commitment against the distance the
player may travel while playing, it becomes clear that there is
an undefined class of games that do not require large com-
mitments and in which the player may move around (per-
haps be required to move around) while playing. This class
of games has been labelled pervasive/ambient games. See the
Commitment and movement when playing games figure. The
areas marked out for games in this figure are not defini-
tive, there are plenty of exceptions, but they are intended
to broadly indicate general areas of commitment and move-
ment.

This figure has a threshold marked showing the commit-
ment required to start playing any game. Below this thresh-
old, the player has not yet committed to starting playing. At,
and above, this threshold, the player is deciding to start, and
is actually starting, a game. Below this threshold, they have
not got the will, or intention, to start playing. However, they
may be starting to collect data that will be used in play before
they make this commitment.

As implied by the Commitment and movement when play-
ing games figure, the key component of an ambient game is
that the player may choose their level of interaction with the
game.

4. SPECIFYING AN AMBIENT GAME

An example of a game that requires minimal player interven-
tion is Progress Quest (http://www.progressquest.com) [5].

Stationary
in one location
while playing

Moving around in
one location
while playing

Moving around
many locations
while playing

Console/
PC

Arcade

Eye toy

Football LARP
Cross

country

Handheld

Set top
box

Casual
games

Mobile phone

Pervasive/ambient games

Commitment needed to decide to start playing a game

Player distance travelled

C
om

m
it

m
en

t
re

qu
ir

ed
to

pl
ay

th
e

ga
m

e

Figure 1: Commitment and movement when playing games.

All a player needs to do in order to play Progress Quest is to
set the game running. The game displays the player’s charac-
ter’s role playing statistics and lists the completed quests and
so on. The player need not intervene again as Progress Quest
continues to play, all gameplay decisions are made automat-
ically.

In order to play Progress Quest, the player has to start
the game running, consequently it may be argued that there
is some (minimal) participation from the player. However, it
is not possible to play the game without starting it running.
A player might ask someone else to start the game running
for them, but they would still have made a decision to play
the game, they would be actively involved. There is no pos-
sibility of playing the game unknowingly. Even if the players
were to set up a program that started Progress Quest at ran-
dom times while the computer was turned on, they would
still have made a decision to start the game.

Progress Quest shares characteristics with films. The
game requires the same sort of interaction that is necessary
for watching a conventional film on DVD. The player starts
the DVD playing and then watches the story unfold on a
screen. The difference between a film and Progress Quest is
that in a film all the decisions have already been made. The
viewer will see the same sequence of scenes whenever they
watch the film. Progress Quest generates the story in real
time. Players assume a new identity every time they start a
new game of Progress Quest and become participants in a
new story.

Imagine a game similar to Progress Quest in which after
the game starts, the player’s actions in the real world affect
progress in the game world. The game world consists of a
virtual environment containing quests to complete (achieved
by defeating monsters at various locations). In this game,
the player chooses the degree to which they wish to man-
age events in the game. At one extreme, the game runs itself,
gathering data from the player’s actions in the real world and
automatically applying this to the game world. At the other
extreme, the player can determine how the real world data

M. Eyles and R. Eglin 3

is applied in the game world, micromanaging game interac-
tions.

The player may choose to manipulate their actions in the
real world to generate data required to progress more suc-
cessfully in the game. Alternatively, they may ignore the con-
sequences of their actions in the real world and allow data
to gather without consciously changing their behaviour. The
player experiences a game-induced mood while playing. This
is an ambient game.

An ambient game would normally be expected to contain
goals for the player, though it would be possible to imple-
ment a very open-ended ambient game in which there are no
clearly defined goals with the player taking part in much freer
ambient play, (akin to Caillois’ paidia [6]). However, even in
this ambient play the player is still operating within a set of
game rules, and might set their own goals within that frame-
work.

An ambient game is coincident with real life; elements
are superimposed on the real world. In an ambient game, the
gameplay is in the background, available for the players to
focus their attention on it. In other types of games, the player
has information pushed at them, they are required to interact.
In an ambient game, the players pull information from the
game when they want it. Ambient games feature pull, not
push, technology. Compare this to ambient music which is
composed to be in the background, though the listener can
bring it to the foreground and focus their attention on it if
they wish.

At the heart of ambient games is the idea that the players
can dip in and out of the game; that the game is running in
the background, creating as mood, while they are engaged in
other activities.

5. AMBIENT GAME TECHNOLOGY

There are two possible ways that an ambient game could
be implemented; either the player carries an ambient gam-
ing system around with them or the game is embedded in
the environment that surrounds the player. For a truly ambi-
ent game, the interface should be unobtrusive, allowing the
player to easily switch between engaging and ignoring it. An
ambient intelligent environment offers an ideal solution for
the implementation of ambient games. There are a number
of technologies and ideas that make the production of an am-
bient game possible.

There are a number of different technologies that are en-
abling the development of ambient intelligence: interconnec-
tivity, artificial intelligence, and the proliferation of comput-
ers. These technologies support the ubiquity, transparency,
and intelligence of ambient intelligence [7].

Ubiquity refers to ubiquitous computing [8] in which a
massive number of interconnected computers are embedded
in the environment.

Transparency indicates that ambient intelligence envi-
ronments are invisible and in the background [7].

Intelligence relates to the interfaces and ways these in-
terconnected computers respond and interact with people
through user friendly interfaces. They are able to exhibit spe-
cific forms of social interaction (ibid).

The European Union’s Information Society Technologies
Advisory Group (ISTAG) predicts that ambient intelligence
will emerge from the convergence of the following three key
technologies:

(i) ubiquitous computing,
(ii) ubiquitous communication,

(iii) intelligent user-friendly interfaces [9].

Ambient intelligence systems may also require locative
information, specifying player location and also assigned
identity and/or personal identity knowledge, they may need
to differentiate between different people. For example, if one
of the functions of an ambient intelligence is to control the
lighting within a house, it not only needs to be able to turn
lights on and off as people move through the house, but also
to set brightness levels according to the preferences of indi-
viduals.

In order to fulfil the transparency requirement commu-
nication with ambient intelligences should be seamlessly in-
tegrated into the environment. Computer workstations or
input panels do not fulfil transparency. The user might ex-
pect to be able to communicate with ambient intelligences
through speech or gestures, with the ambient intelligences
responding in speech or with their available interfaces (per-
haps momentarily dimming lights to indicate that a request
has been received and stored).

As devices proliferate, it becomes useful to be able to
identify them. Different components in ubiquitous systems
need identity in the same way that in games each of the non-
player and player characters need identity. If there was no
way of identifying individual components then it would be
impossible to know the outcome of interactions.

Items may be tagged in the physical world with radio-
frequency identification tags (RFID). These are transpon-
ders that respond with a unique serial number when a reader
sends a signal to them. They are frequently used for tracking
goods through supply chains, where it is useful to know the
location and identity of the goods [10].

People may be tracked in the real world using face recog-
nition systems [11]. This recognition has great implications
for ambient intelligence environments where they might be
used to recognize and track people as they move around
and also to ensure that the systems respond appropriately to
known individuals [12].

With the emergence of ambient intelligence and ambient
intelligence environments, the age of “massively many intel-
ligent computers—one user” is arriving and bringing with it
new gameplay opportunities.

6. AUGMENTED REALITY AND PERVASIVE GAMING

The introduction of existing, commercially available, devices
able to track the position of people in the world, such as
global positioning systems, is opening up many opportuni-
ties to explore new ways of playing games, for example aug-
mented reality and pervasive gaming.

Players of augmented reality games wear a head mounted
display that allows them to move around the real world
with computer-generated images superimposed onto the real

4 International Journal of Computer Games Technology

Games

Alternate reality

AmbientPervasive
Ambient

quest

Augmented reality

Figure 2: Pervasive and ambient games.

world. The equipment tracks the player’s location and where
they are looking then generates appropriate images.

Examples of augmented reality games include Pac Man
at the Mixed Reality Lab, Nanyang Technological University
[13] and ARQuake at the University of South Australia [14].

Augmented reality technology gives one route forward
for gaming in the environment, but still requires the users
to carry equipment around with them. In its current incar-
nations, augmented reality requires the user to make a sub-
stantial commitment of time and effort to play the game and
consequently does not sit within ambient games.

Other pervasive games also feature locative technology so
players (though not necessarily all of the players) move into
the real world while playing and their position and actions
in the real world affect, and are affected by, events in a vir-
tual world [15]. There are a number of different variations
on this; the IPerG research consortium lists the following ar-
eas of pervasive gaming that they are exploring:

(i) crossmedia games,
(ii) socially adaptable games,

(iii) massively multiplayer reaching out,
(iv) enhanced reality live role-playing,
(v) city as theatre (ibid.).

These vary from ambient games in the commitment the
player makes to the game and the intention of the game; the
intention of ambient games is to create a mood in an envi-
ronment. The games listed above also frequently require the
player to carry around hardware for playing the game.

The mobile game Feeding Yoshi was presented in 2006 as
a game that exploited seamful design. Seamful design incor-
porates discontinuities (gaps and edges) in ubiquitous sys-
tems (e.g., wireless and global positioning coverage) in ap-
plications, including games. In Feeding Yoshi, the players
(working in teams) each carry a PDA as they go about their
normal lives in applications, including games [16]. When
they are within range of a plantation or Yoshi, the PDA beeps
and displays details of the plantation/Yoshi. The player can
then plant seeds, harvest fruit in the plantation, or feed the
virtual Yoshi character. The plantations and Yoshis are gener-
ated within the PDAs based on the type of wireless networks
detected—secure networks become Yoshis, open networks
become plantations. Players can further swap seeds and fruits
with each other [17]. Feeding Yoshi is an interesting exam-
ple of a game in which players play while going about their

normal lives. However in order to play the game, the play-
ers have to focus their attention onto the implementation of
the game on the PDA where they carry out particular game
moves; further the game calls their attention, pushing them
into the game to make moves when appropriate networks are
detected. Although players have a choice of whether to play
or not, this game does not share the ambient ignorability of
ambient games, in which play is possible without focusing
attention on the game.

In 2005, ambient utility games were proposed by Kangas
et al. in which playfulness is introduced into experiencing
and understanding information, especially using innovative
interfaces to allow player movements and so on to feed into
the game [18]. The purpose of these games is not only to
entertain but also to have a utility, or usefulness, to them, en-
couraging players to perhaps exercise or study: “Utility games
belong to a new type of games where utility is emphasized in
the content” (ibid). The emphasis on utility sets these apart
from the ambient games such as ambient quest where the
primary intention is to create a mood, not to create useful
behaviour in the player; though as a byproduct of playing a
game like Ambient Quest, the player may engage in useful
behaviour. In the conclusion to their paper, Sonja and Outi
do specifically mention leisure gaming as an application of
their ambient utility games, though this does seem to con-
tradict the emphasis they place on usefulness and education
elsewhere in the paper.

Alternate reality games (ARG), sometimes known cross
media entertainment (XME), are, according to an article
on CNET http://www.news.com, “. . . an obsession-inspiring
genre that blends real-life treasure hunting, interactive story-
telling, video games, and online community . . . ” [19].

The Alternate Reality Gaming Network defines alternate
reality games as “an intensely complicated series of puzzles
involving coded web sites, real-world clues like the newspa-
per advertisements, phone calls in the middle of the night
from game characters, and more. These games (which are
usually free to play) often have a specific goal of not only in-
volving the player with the story and/or fictional characters
but also of connecting them to the real world and to each
other. Many game puzzles can be solved only by the collab-
orative efforts of multiple players, sometimes requiring one
or more players to get up from their computers to go outside
to find clues or other assets planted in the real world.” Unlike
augmented reality games, they do not normally require spe-
cial equipment to be carried around by the players while they
are being played, though players are likely to need access to
computers, phones, and other sources of information [20].

Many alternate reality games are used for promotional
purposes, for example the first alternate reality game, The
Beast, was used to promote the film AI: Artificial Intelligence
in 2001. More recently, 2006, Volvo cars has used alternate re-
ality game The Hunt to promote the release of a new XC90 car
(http://thehunt.volvocars.net/uk/thehunt). The alternate re-
ality game Perplex City (http://www.perplexcity.com) is not
a promotional tool, but makes money from selling clue cards
to players. As well as clue cards, Perplex City also delivers
puzzles and clues via websites, podcasts, emails, texts, and
live events.

M. Eyles and R. Eglin 5

Alternate reality games combine events in virtual com-
puter spaces and the real world to create a coherent gam-
ing experience. They are frequently multiplayer, requiring
co-operation between two or more players to solve puz-
zles and progress. The unfolding stories in these games blur
the boundaries between reality and fantasy by incorporating
game elements into the real the world that influence game
play in online worlds.

Alternate reality games are very close to ambient games,
but still require a commitment from the player and demand
specific game playing behaviours. They are not primarily
driven by normal everyday behaviours.

7. DEFINING AMBIENT GAMING

Ambient gaming has been specified in relation to ambient
music and the technologies that would make ambient gam-
ing possible, in particular the development and nature of
ambient intelligence environments has been described. Al-
though ambient games are likely to include computer game
technology to create their virtual worlds they are not the
same as traditional computer games. New ways of playing
computer games in the real world, such as augmented reality
gaming, pervasive gaming, and alternate reality games, have
been described in order to set the idea of ambient games in
context.

As previously stated, ambient games can be defined as
games that are controlled by everyday actions (i.e., not us-
ing a dedicated game input device, mouse or keyboard) in
everyday, real world environments that have gameplay con-
sequences in a virtual game world. Further, ambient games
do not demand the attention of the player, they are “ignor-
able as they are interesting” [3], allowing players a wide depth
of interventions from letting the game play itself to micro-
managing game events. Ambient games are always on, the
player does not experience them in isolated, discrete play-
ing sessions as is the case with, for example, console games.
Ambient games also allow the player experiences that range
from superficially shallow to profoundly deep. The player is
able to choose how they focus their attention on the game,
and alter their degree of attention at will. A key attribute of
ambient games is their intention and ability to create a mood
in an environment.

Ambient games are coexistent with the real world and
may be seamlessly controlled by the intelligent interfaces of
ambient intelligent environments. They are intended to in-
fluence the player’s experience of their environment, per-
haps invoking emotions through the game that affect the
player’s perception of the real world. The ambient intelli-
gence interfaces give information (feedback) on the progress
of player characters (avatars), and allow the player to inter-
act with the game’s virtual world through gesture, speech,
and movement. In some applications of this game technol-
ogy, the player’s heart rate, respiration, and so on might also
be used to control their avatar, rather like Dan Sutch’s Fizzees
(Tamagotchi-like digital creatures that are nurtured by the
physical actions of their owner) [21]. In other applications it
may be things that players do in the real world such as mov-
ing around, and spending money. The feedback to the player

may not necessarily be limited to auditory and visual senses,
but might also affect other senses, perhaps creating tempera-
tures, smells, and so on.

The ambient game definition allows for single player,
multiplayer, or massively multiplayer gaming. The number
of players does not affect the ambience of ambient games, and
they may often feature social interactions between players.

8. IMPLEMENTING AND RUNNING AN AMBIENT
GAME SIMULATION

The game Ambient Quest is an example of a simple, inex-
pensive, single player ambient game simulation. In order to
test out some of the ideas of ambient games with a moderate
budget, Ambient Quest has been designed to be played using
a simple 2D virtual world, and the ambient intelligent envi-
ronment has been somewhat simplified, being simulated by
carrying a pedometer to measure distance travelled. In the
current implementation of Ambient Quest, the number of
steps taken by the players is used to determine distance trav-
elled in the virtual game world. In the first version of Ambi-
ent Quest, Players entered these distances into the game by
giving them to the researcher (in person or via email) who
takes on the role of the intelligent interface and enters the
distances manually into a game engine that then provides a
log file that may be used by the players to display the activ-
ities of their avatars. A more up-to-date version of Ambient
Quest (version 2.1) allows players to directly enter their own
distances.

The limitations of this system are that the players have
to make a little more commitment to the game than might
actually be necessary in an ambient game implemented in an
ambient intelligence environment.

In addition to supplying the distance walked, there are
two ways for players to control avatars. Firstly, the avatars
move in random directions, without player intervention, au-
tomatically fighting enemies they encounter, and so on. Sec-
ondly, the player may decide the direction their player char-
acter travels, and hence determine the occurrence of fights,
and so on. These directions are supplied to the researcher
with the distance walked for entering into the game engine.
For convenience, these two modes of play may be termed pas-
sive and active.

The virtual game world comprises a two-dimensional
grid. Player characters can move north, south, east, or west
(not diagonally). If they pass through a square containing a
pickup, then this is automatically picked up and any actions
triggered by the pick up are resolved immediately. If they
pass through a square containing an enemy, then they au-
tomatically enter into combat, which is resolved by compar-
ing player attack against enemy defence, modifying the out-
come with a dice roll. If the enemy is defeated, then there is a
chance it will drop something the player can take.

Ambient Quest was run at the Women in Games 2007
conference on the 19th and 21st April 2007 at University of
Wales: Newport, United Kingdom. The conference was at-
tended by academic game researchers and industry profes-
sionals. The delegates were all given pedometers, and com-
puters were set up with the Ambient Quest program running

6 International Journal of Computer Games Technology

10987654321

10

9

8

7

6

5

4

3

2

1

Player number: 1

(active player)

Level: 2
EXP: 36
Health (max): 79 (120)

Strength (base): 13 (12)

Toughness (base): 14 (12)

Sword: none
Shield: leather
Armour: none
Food: apple, bread

Gold: 166
Total weight: 4

Turns left: 3

Water

Swamp

Jungle

Forest

Plains

Desert

Mountains

Q : Return to title (no file dump)
F : File dump screen
C : Cheat mode toggle (reveal grid)
E : Eat food (if available)

A/S : Add or subtract a turn
T : Toggle player type (active/inactive)
M : Automove an inactive player
Arrow keys : Manually move an active player

Figure 3: Ambient Quest screen layout.

on them so that distances moved could be converted into
game moves.

The delegates quickly became engaged in the game, and
it seemed to influence the mood at the conference with del-
egates talking about the game. The attention of players on
the game varied greatly over time; they were able to ignore
it or focus more fully on it at whim. Players also admitted to
changing their behaviour, for example walking instead of get-
ting a taxi. Players also cheated by shaking their pedometers.
This was sometimes justified because pedometers had been
accidentally reset. The pedometers had a reset button on the
outside which was rather easy to press.

The positioning of the reset button resulted in game mod-
ding as players started pulling the buttons off the pedometers
so they could not be accidentally reset. This pedometer mod-
ding was unexpected, emergent, game behaviour that had
not been predicted. Over the second day of the game, players
were talking about how far they had walked and discussing
how far they should walk each day.

During the second day, a couple of people asked to have
their moves put into the Ambient Quest game program, but
this was a much smaller number than was expected.

Despite this low engagement with the virtual world, it
was very clear from conversations with people that they were
aware they were playing a game and that their movements
would affect movements of an avatar. There was a very strong
sense that people were engaged together in an ambient game
as evidenced by their comments.

By the third day, it had become clear that the delegates
were largely not interested in the process of transferring
their pedometer readings into the Ambient Quest 2D world

though they did continue to refer to the game. They already
had a good idea of the gameplay, and it was as though they
didn’t actually need to go and see it played out on a screen.
They could imagine it, which may not be surprising consid-
ering the conference delegates were mainly game researchers
and developers.

One of the speakers at the conference, Julia Sussner, made
an interesting observation about the way people were re-
duced to steps. The steps to squares transfer when using
the pedometer reading to determine moves on a 2D map
involved a numerical to graphical transformation. Perhaps
there is a sense of enlargement when taking the scalar steps
and using them to create vector moves. In his book Little, Big,
Crowley [22] describes a world behind our world in which
“the farther in you go, the bigger it gets”. Beyond the moves
on the 2D map there is an avatar with attributes, armour,
weapons, supplies, gold, experience, and so on. The deeper
the player moves into the game, the more complexity they
will find, and the richer the game experience, which might
lead to a greater influence on the real world .

Ambient Quest successfully managed to create a mood at
the conference and to be as ignorable as it was interesting.
The engagement of delegates lay on a spectrum from super-
ficial to full engagement.

Would the reaction of the delegates have differed if they
had just been handed pedometers without a game attached?
Observations and conversations lead to the conclusion that
the players would not have been as engaged; there was a defi-
nite buzz at the conference that something novel was being
tried and that something was happening just out of sight,
driven by the pedometers everyone was wearing.

M. Eyles and R. Eglin 7

Ideally, in a future version, Ambient Quest would be
played in an ambient intelligent environment with a sophis-
ticated 3D virtual world and intelligent interfaces, and many
more aspects of the players’ activities would be mapped onto
their avatars, perhaps in a massively multiplayer version of
the game. For example, a future implementation of Ambient
Quest might use cameras embedded in the environment and
face recognition software, and so forth to measure distance
travelled.

9. THE FUTURE OF AMBIENT GAMES

Future research in ambient games is taking place to reveal not
only their use as a form of entertainment but also their more
serious uses, in line with the ideas mentioned previously on
ambient utility games. There are plans to use biometric and
locative readings to drive future ambient games.

If ambient games are proven to modify behaviour, then
they might be designed to have a direct effect on productiv-
ity, rewarding productive work practices. They might also be
used to enhance otherwise repetitive jobs, for example stack-
ing shelves in a supermarket might lead to gains for virtual
characters in an ambient game world.

Outside of the workplace, ambient games might be used
to encourage healthy life style choices, perhaps increas-
ing the amount of exercise that people take. The Ambient
Quest game has been shown to affect simple choices such as
whether to walk or take a taxi.

10. CONCLUSION

This article has described a novel way of playing games and
has defined ambient gaming. The ambient music roots of
ambient games have been described. The growth of technol-
ogy suitable for implementing a full ambient game system
has been described, and this has been contrasted and com-
pared with existing game technologies including both aug-
mented reality and pervasive gaming as well. A way forward
for research into ambient games has been suggested with the
description of playing a simple ambient game simulation,
Ambient Quest, at a conference. Future applications have
been suggested that might promote the idea that work can
be play.

ACKNOWLEDGMENT

The authors specially thank Neil Dansey of Determined Soft-
ware who programmed Ambient Quest.

REFERENCES

[1] M. Eyles and R. Eglin, “Ambient role playing games: towards
a grammar of endlessness,” in Women in Games Conference,
Newport, UK, April 2007.

[2] M. Eyles and R. Eglin, “Entering an age of playfulness where
persistent, pervasive ambient games create moods and mod-
ify behaviour,” in Proceedings of the 3rd International Confer-
ence on Games Research and Development (Cybergames ’07),
Manchester, UK, September 2007.

[3] B. Eno, Ambient 1: Music for Airports, EG Records, London,
UK, 1978.

[4] B. Eno, “The Long Now-Transcript,” November 2003, http://
www.enoshop.co.uk/words.asp.

[5] E. Fredricksen, “Progress Quest (Version 6.2),” August 2004.
[6] R. Caillois, Man, Play and Games, University of Illinois Press,

DeKalb, Ill, USA, 1961.
[7] E. Aarts, R. Harwig, and M. Schuurmans, “Ambient intel-

ligence,” in The Invisible Future: The Seamless Integration of
Technology into Everyday Life, P. Denning, Ed., pp. 235–250,
McGraw-Hill, New York, NY, USA, 2001.

[8] M. Weiser, “Ubiqutous computing,” 1996 http://www.ubiq
.com/hypertext/weiser.

[9] C. Weyrich, “Orientations for workprogramme 2000 and be-
yond,” Tech. Rep., Information Society Technologies Advisory,
Luxembourg, Belgium, September 1999.

[10] RFID Centre, “Introduction to RFID,” 2005, http://www.rfidc
.com/docs/introductiontorfid.htm.

[11] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face
recognition: a literature survey,” ACM Computing Surveys,
vol. 35, no. 4, pp. 399–458, 2003.

[12] A. P. M. Grgic, “Face recognition,” June 2006, http://www
.face-rec.org.

[13] Human Pacman, “Human pacman,” 2006, http://www.mixe-
drealitylab.org/research/HP/HP webpage/research-HP-infor
.htm.

[14] D. B. Thomas, “About the ARQuake Project,” 2002, http://
wearables.unisa.edu.au/Projects/ARQuake/www/index.html.

[15] D. A. Waern, “IPerG,” 2006, http://www.pervasive-gaming
.org/index SWF.html.

[16] M. Chalmers, “Seamful design and ubicomp infrastructure,”
in Proceedings of Ubicomp Workshop, at the Crossroads: The In-
teraction of HCI and Systems Issues in UbiComp, Seattle, Wash,
USA, October 2003.

[17] M. Bell, M. Chalmers, L. Barkhuus, et al., “Interweaving mo-
bile games with everyday life,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’06),
pp. 417–426, Montréal, Québec, Canada, April 2006.

[18] S. M. Kangas, I. Outi, and C. Pöysä, “Ambient utility games:
connecting utility to play,” in Proceedings of the International
Conference on Internet and Multimedia Systems and Applica-
tions (EuroIMSA ’05), pp. 18–24, Grindelwald, Switzerland,
February 2005.

[19] J. Borland, “Blurring the line between games and life,” Febru-
ary 2005, http://news.com.com/Blurring+the+line+between
+games+and+life/ 2100-1024 3-5590956.html.

[20] “The alternating reality gaming network. What is an ARG?”
September 2002–2006, http://www.argn.com/index.php.

[21] D. Sutch, “Fizzees (Physical Electronic Energisers),” 2006.
[22] J. Crowley, Little, Big, Methuen, London, UK, 1981.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 316790, 5 pages
doi:10.1155/2008/316790

Research Article
Efficient Terrain Triangulation and Modification
Algorithms for Game Applications

Sundar Raman and Zheng Jianmin

School of Computer Engineering, Nanyang Technological University, Singapore 639798

Correspondence should be addressed to Sundar Raman, sund0010@ntu.edu.sg

Received 28 September 2007; Accepted 3 March 2008

Recommended by Kok Wai Wong

An efficient terrain generation algorithm is developed, based on constrained conforming Delaunay triangulation. The density of
triangulation in different regions of a terrain is determined by its flatness, as seen from a height map, and a control map. Tracks
and other objects found in a game world can be applied over the terrain using the “stenciling” and “stitching” algorithms. Using
user controlled parameters, varying levels of detail can be preserved when applying these objects over the terrain as well. The
algorithms have been incorporated into 3dsMax as plugins, and the experimental results demonstrate the usefulness and efficiency
of the developed algorithms.

Copyright © 2008 S. Raman and Z. Jianmin. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

The generation of a terrain is fundamental to many games
today. Games like Tread marks [1] and Colin McRae Rally
[2] were bestsellers mainly due to their impressive looking
terrains, and by using technologies like dynamic LOD,
continuous LOD, and deformable terrain over it. While
all these are useful in solving specific problems related
to rendering a huge terrain, they do not deal with the
generation of a simple, yet realistic-looking terrain.

A terrain can be decomposed into two parts: (i) a
triangular mesh, and (ii) one or more textures. In using such
a terrain in a game, there are two main concerns: (i) the
memory needed to store the terrain information for large
worlds, and (ii) the time taken to load the big terrain into
memory during a game’s load-time. In this paper, the focus
is on the triangular mesh part and algorithms are developed
for its generation and modification.

Our terrain-generation algorithm is top-down, similar
to Garland’s approach [3], and it reduces the number of
triangles required to represent the terrain for any particular
level of detail, thus solving the two problems. The main
difference between our algorithm and Garland’s algorithm(s)
is the introduction of a control map and several user
parameters for refinement and minimization of triangle
count. Our modification algorithm is based more on the real-

world needs of a game artist, and uses the same triangulation
technique to modify parts of the terrain. We have extended
our previous work [4] to make it faster and more control-
lable.

The rest of the paper is organized as follows. Section 2
describes how to generate efficient triangular meshes for
terrains using a height map, control map, and Delaunay
triangulation. In Section 3, algorithms are proposed to easily
modify the mesh so that objects found in a game, like tracks
and guard rails can be applied over it. Two ways of doing
this are discussed: (i) stenciling and (ii) stitching. The results
for each section are shown separately. Finally the paper is
concluded in Section 4.

2. TERRAIN GENERATION

The inputs of our algorithm are a height map, a control
map and user defined parameters. A controlled, constrained
conforming Delaunay triangulation algorithm is then used
to create a triangular mesh that defines the terrain. Below is
a description of each component of the procedure.

2.1. Height map

A height map is used to store elevation data for the terrain.
The height map is a grayscale image where a white pixel

2 International Journal of Computer Games Technology

indicates the highest point, a black one the lowest point and
shades of gray for heights in between. Each pixel is usually
made up of 8 or 16 bits, thereby allowing us to store 28 or
216 different-height values. Figure 2(a) shows a height map
of a simple terrain and Figure 3(a) shows its corresponding
triangular mesh representation.

2.2. Control map

Besides the height map, a control map is introduced,
indicatingthe regions in the terrain where more detail needs
to be added. The control map is also a grayscale image, where
whiter regions are given more importance than the darker
regions (refer to Figure 2(b)). Demarcating control regions
has many uses, such as densely triangulating only those areas
where the camera focuses often, like the area where we have
tracks. Such an example is shown in Figure 6.

2.3. Delaunay triangulation

A Delaunay triangulation (DT) of a set of points P in a plane
is a triangulation DT(P) in which no point p ∈ P lies inside
the circumcircle of any triangle in DT(P). The advantage of
DT is that it produces a more regular-looking triangulation
for any given point set, by maximizing the minimum angle
of the output triangle set.

A planar straight line graph (PSLG), which is a collection
of vertices and edges where endpoints of each edge are
vertices of the PSLG, is used to initially represent the
terrain. This is because the terrain needs to have well-marked
boundary edges. Since the input is a PSLG, its triangulation
becomes a constrained Delaunay triangulation (CDT). We
also need to add more vertices on the inside and on each edge
of the PSLG, making it a constrained conforming Delaunay
triangulation (CCDT). The additional vertices inserted are
called Steiner points [5].

The most common algorithms for DT are the divide-and-
conquer [6], sweepline [7] and incremental [8] algorithms.
Of these, Guibas and Stolfi’s [9] implementation of divide-
and-conquer algorithm has been found to be the fastest (see
Su and Scot Drysdale [10]). Shewchuk [11] has adopted
an optimization to this algorithm from Dwyer [12] to
partition the vertices with horizontal and vertical cuts,
thereby making it faster. Hence the same has been used in
our implementation.

For constructing the CDT, first, the DT of the vertices is
first performed; then, each missing input segment is forced
into it by deleting the edges it crosses, inserting the segment
and then retriangulating the two resulting polygons using the
ear-cutting algorithm [13]. The CCDT is constructed using
a variation of Chew’s second algorithm [14], optimized for
terrain generation using some assumptions (only boundary
edges are constrained, etc.).

2.4. Terrain generation algorithm

The workflow of the proposed CCDT algorithm is shown in
Figure 1. The algorithm generates the final mesh using a top-
down approach. It begins with the four corner vertices of the

Initial PSLG

Output mesh

No

Yes

Height map

Control map

User params

Constrained
Delaunay

triangulation

Satisfies area,
angle and height

constraints?

Add/delete
vertices, use
Lawson’s flip

algorithm

Figure 1: Proposed terrain-generation algorithm.

(a) (b)

Figure 2: Inputs to the terrain-generation algorithm (a) height map
(b) control map.

height map, which determine the terrain’s size. A rectangular
PSLG is constructed, and an initial CDT simply splits the
rectangle into two triangles.

Each triangle is checked to see if it satisfies the MinArea
and MinAngle constraints. If it does not, it is rejected; else
the more complex height constraint check is performed.

For the height constraint check, 1–40 equally distributed
pixels are chosen inside each triangle, the exact number
depending on the SkipScale parameter and the size of the
current triangle. Next, all the pixels are checked to see if
they satisfy the height constraint by comparing them with
the height map and control map. If the control map is not
specified, a default all-white or all-black control map can
be assumed (we use all-black). If all the pixels satisfy the
constraint, the triangle is accepted; otherwise, it is rejected.
The rejected triangles are eliminated using the variation of
Chew’s second algorithm [14], by adding and/or deleting
Steiner points, and maintaining the Delaunay condition
using Lawson’s flip algorithm [8]. The newly created triangles
are checked as well, until all the triangles thus formed satisfy
all three constraints.

S. Raman and Z. Jianmin 3

(a) (b)

Figure 3: Output terrain mesh (a) hi-res with 175 K triangles, (b) low-res with just 75 K triangles.

2.5. User parameters

The user parameters shown in Figure 1 control the results of
the output terrain. Eight parameters are introduced: SizeX,
SizeY, Height, MinArea, MinError, MaxError, MinAngle, and
SkipScale.

SizeX and SizeY specify the length and width of the
terrain. Height is the maximum height of the terrain (all the
height values from the height map will be mapped from 0 to
this value), MinArea is the minimum area of any triangle in
the projected 2D mesh. The height error in the control region
is guaranteed to be less than or equal to MinError, whereas
for the other regions, it is guaranteed to be not greater than
MaxError. The algorithm further guarantees that the angle of
any triangle found by projecting the mesh onto 2-dimension
is greater than or equal to MinAngle. Ruppert [15] has shown
that the upper limit for MinAngle is 20.7◦, but Shewchuk
[11] has argued that in practice, adding new vertices fails
only when the angle exceeds 33.8◦. To be safe, we have put
an upper limit of 33◦ for MinAngle. SkipScale determines the
overall accuracy of the algorithm.

These parameters, in addition to the control map, give
a lot of flexibility to our triangulation algorithm, allowing
users to generate different parts of the terrain at different
resolutions.

2.6. Results

The algorithm was implemented as a 3dsMax plugin to
generate the terrain. Figures 2(a) and 2(b) show the input
height map and control map, respectively. Our algorithm
generates a terrain with such a property (P) that the
control regions and those parts where there are a lot of
height variations are tessellated more densely, whereas fewer
triangles are used for the relatively flat and noncontrol
regions.

The terrain in Figure 3(a) was generated with the fol-
lowing parameters: SizeX = SizeY = 15840, Height = 2000,
MinArea = 10, MinError = 5, MaxError = 50, MinAngle
= 0, SkipScale = 1. Furthermore, by modifying the error
parameters, a terrain of any resolution can be generated, with
reduced number of triangles, while maintaining the property
P at the same time.

For the terrain in Figure 3(b), MinError and MaxError
were set to 10 and 100, respectively, with all the other

Figure 4: Stenciling a plane over a bigger plane.

parameters being the same. As we can see, this terrain looks
reasonably detailed in the “nonflat” and control regions, but
the other areas are greatly simplified to produce a mesh with
58% reduction in the number of triangles. This gives great
flexibility to the artist who can generate multiple versions of
the same terrain (using different control maps), which can be
used in the game under different rendering contexts.

3. TERRAIN MODIFICATION

After generating the Delaunay triangulated terrain, artists
or programmers may need to modify it to overlay patches,
tracks, and so forth, over it. This section describes two
methods (stenciling and stitching) for such modification.
Terminology for the sake of clarity: DM is the destination
mesh SM is the source mesh. Our objective is to overlay SM
over DM, at any specified position and orientation.

3.1. Stenciling

In stenciling, priority is given to the geometry of SM when
overlaying it on DM. The amount of priority given is
determined by an error parameter. To illustrate, a simple
example as in Figure 4.

Let DM and SM be two simple 2×2 grids, with SM being
smaller and positioned over DM as shown in Figure 4 (left).
On the right, there is a single stenciled mesh in which

(i) all the edges and vertices of SM are projected and
retained;

(ii) no new vertices are introduced;
(iii) the edges of DM which intersect with any edge of SM

are removed;
(iv) the region around the stenciled part is retriangulated.

4 International Journal of Computer Games Technology

Figure 5: Stitching a plane over a bigger plane.

It is notable that SM is projected over DM “as-is.” However,
if DM is a terrain and SM is a track, this has disadvantages
because we will lose height information pertaining to DM
when vertices of DM inside the projected area are removed.
Therefore, an error parameter is introduced, which controls
how much height difference error is allowed over the
stenciled region. This allows great flexibility to the artists
who can make the track as detailed as they want to. A real
life terrain-track example is shown in Section 3.3.

The main steps of the algorithm are as follows:

Stenciling algorithm

(1) Create a new empty mesh M
(2) Create a new PSLG X, initialize it to DM
(3) Generate height map H from SM
(4) Add projected SM vertices lying within DM to X
(5) Remove DM vertices lying within projected SM region.
(6) Remove all DM edges which intersect with projected

SM edges, from X
(7) If SM extends beyond DM, calculate points of inter-

section of projected SM edges with bounding edges of
DM, and add them to X

(8) Add all projected “full” SM edges (excluding those
which lie fully or partially outside DM) to X

(9) Retriangulate

(i) Apply the CCDT algorithm, set M = CCDT(X).
(ii) Perform area, angle, and height constraint checks

only for newly formed triangles lying within
projected SM region

(10) For every new point (not belonging to DM) added to
M, calculate its new height from H (from step 3)

For checking constraints, parameters can be set from the user
interface, similar to terrain generation.

3.2. Stitching

Stitching is the “error-free” and more intuitive way of
overlaying SM over DM. True to the word, the two meshes
are simply “stitched” together, while following the height of
DM. To illustrate, the same example as in Figure 4:

As compared to stenciling, the right of Figure 5 shows a
mesh in which

(i) all the projected edges of SM are either retained or
split;

(ii) all the edges of DM are also retained or split;

Figure 6: Input terrain and track meshes.

(iii) new vertices are created wherever DM and SM inter-
sect;

(iv) the region around the stitched part is retriangulated.

The advantage of stitching is that no “new” vertices are
introduced by the triangulation algorithm, except for the
newly created intersection points. This implies that the
height difference error is always zero, and we get a perfect
stitched mesh. It also means there is no need of any user
parameters for angle, area, and height error constraints, since
no more triangles than necessary are created.

The stitching algorithm is outlined below:

Stitching algorithm

(1) Create a new empty mesh M
(2) Create a new PSLG X, initialize it to vertices of DM
(3) Add all nonduplicated vertices of SM lying within DM

(VS), to X
(4) If SM extends beyond DM, calculate points of inter-

section of projected SM edges with bounding edges of
DM (VB), and add them to X

(5) Add new vertices created due to intersection of every
projected SM edge with every DM edge (VN), to X

(6) Add all unaffected edges of DM (not intersecting with
any projected SM edge), to X

(7) Add all unaffected projected edges of SM (not inter-
secting with any DM edge) lying within DM, to X

(8) Add newly formed edges found by splitting DM edges
to X

(9) Add newly formed edges found by splitting projected
SM edges to X

(10) Retriangulate

(i) Apply the CDT algorithm, set M = CDT(X)

(11) Calculate precise height of all new vertices (VSUVBUVN)
by point-inside-triangle tests and interpolation

3.3. Results

Many experiments were conducted to test the algorithms,
with terrains of different sizes as destination meshes and
objects like tracks and patches representing plough lands as
source meshes. Figure 6 shows a track object positioned over
a terrain, at the exact orientation in which it needs to be
applied. Figure 7 shows the effect of stenciling and stitching
of the track over this large terrain.

S. Raman and Z. Jianmin 5

Figure 7: Track over terrain using stenciling.

Figure 8: Track over terrain using stitching.

It can be seen from Figure 7 that in stenciling, as few
vertices are added “inside” the projected source mesh, the
exact number controlled by an error parameter. For stitching,
however, all the points of intersection are added, and hence
there is no loss of height information in the final mesh
(Figure 8). In other words, the track mesh perfectly follows
the terrain and its height.

4. CONCLUSION

In this paper, an efficient terrain-generation method was
introduced, based on the constrained conforming Delaunay
triangulation, using a height map, control map, and some
control parameters.

By using a height map together with a control map,
generating a terrain using a top-down approach was auto-
mated to a large extent, providing game artists the means to
create a terrain at different resolutions in different regions.
Enhancements to the mesh were done via user parameters
which specified angle, area, and height constraints. The
nature of the chosen triangulation algorithm (Delaunay
triangulation) further guaranteed the maximization of the
minimum angle, hence producing a well rounded, more
geometrically balanced terrain.

Two methods were proposed to modify the generated
terrain: stenciling and stitching, to add objects such as tracks
over the terrain. In stenciling, the geometry of the source
mesh was retained as closely as possible, and the CCDT
algorithm was used for retriangulation. In stitching, the
source mesh followed the destination mesh perfectly, by

calculating all points of intersection with it, and the CDT
algorithm was used for retriangulation.

ACKNOWLEDGMENTS

The authors wish to express their sincere thanks to gameLAB
Annexe, NTU, Singapore and TQ Global, Singapore, for
providing them with excellent infrastructure and an ideal
work environment for their research.

REFERENCES

[1] Tread Marks, Longbow Digital Arts Incorporated, 1999,
http://www.ldagames.com/treadmarks/.

[2] Colin McRae Rally 04, The Codemasters Software Company
Limited, 2004, http://www.codemasters.com/games/?gameid=
1361.

[3] M. J. Garland and P. S. Heckbert, “Fast polygonal approxi-
mation of terrains and height fields,” Tech. Rep. CMU-CS-95-
181, School of Computer Science, Carnegie Mellon University,
Pittsburgh, Pa, USA, 1995.

[4] S. Raman and J. Zheng, “Efficient terrain triangulation and
merging of world objects for game applications,” in Proceed-
ings of the 3rd International Conference on Games Research and
Development (CyberGames ’07), pp. 46–51, Manchester, UK,
September 2007.

[5] J. Steiner, “Questions proposées. Théorèmes sur l’hexa-
gramum mysticum,” Annals of Mathematics, vol. 18, pp. 339–
340, 1827.

[6] D. T. Lee and B. J. Schachter, “Two algorithms for constructing
a Delaunay triangulation,” International Journal of Parallel
Programming, vol. 9, no. 3, pp. 219–242, 1980.

[7] S. Fortune, “A sweepline algorithm for Voronoi diagrams,”
Algorithmica, vol. 2, no. 1, pp. 153–174, 1987.

[8] C. L. Lawson, “Software for C1 Surface Interpolation,” in
Mathematical Software III, pp. 161–194, Academic Press, New
York, NY, USA, 1977.

[9] L. Guibas and J. Stolfi, “Primitives for the manipulation
of general subdivisions and the computation of Voronoi
diagrams,” ACM Transactions on Graphics, vol. 4, no. 2, pp. 74–
123, 1985.

[10] P. Su and R. L. Scot Drysdale, “A comparison of sequential
Delaunay triangulation algorithms,” in Proceedings of the
11th Annual ACM Symposium on Computational Geometry
(SCG ’95), pp. 61–70, Vancouver, BC, Canada, June 1995.

[11] J. R. Shewchuk, “Triangle: engineering a 2D quality mesh
generator and Delaunay triangulator,” in Proceedings of the
1st ACM Workshop on Applied Computational Geometry
(WACG ’96), pp. 124–133, Philadelphia, Pa, USA, May 1996.

[12] R. A. Dwyer, “A faster divide-and-conquer algorithm for
constructing delaunay triangulations,” Algorithmica, vol. 2, no.
1, pp. 137–151, 1987.

[13] H. Elgindy, H. Everett, and G. Toussaint, “Slicing an ear using
prune-and-search,” Pattern Recognition, vol. 14, no. 9, pp. 719–
722, 1993.

[14] L. P. Chew, “Guaranteed-quality mesh generation for curved
surfaces,” in Proceedings of the 9th Annual Symposium on
Computational Geometry (SCG ’93), pp. 274–280, San Diego,
Calif, USA, May 1993.

[15] J. Ruppert, “A Delaunay refinement algorithm for quality 2-
dimensional mesh generation,” Journal of Algorithms, vol. 18,
no. 3, pp. 548–585, 1995.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 753584, 7 pages
doi:10.1155/2008/753584

Review Article
Real-Time Optimally Adapting Meshes:
Terrain Visualization in Games

Matthew White

Department of Computing and Mathematics, Manchester Metropolitan University, All Saints, Manchester M15 6BH, UK

Correspondence should be addressed to Matthew White, mattwhite06@googlemail.com

Received 27 September 2007; Accepted 21 December 2007

Recommended by Kok Wai Wong

One of the main challenges encountered by interactive graphics programmers involves presenting high-quality scenes while re-
taining real-time frame rates on the hardware. To achieve this, level-of-detail techniques can be employed to provide a form of
control over scene quality versus performance. Several algorithms exist that allow such control, including the real-time optimally
adapting mesh (ROAM) algorithm specifically aimed at terrain systems. Although ROAM provides an excellent approach to ter-
rain visualization, it contains elements that can be difficult to implement within a game system. This paper hopes to discuss these
factors and provide a more game-orientated implementation of the algorithm.

Copyright © 2008 Matthew White. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Efficiently rendering meshes within a virtual environment
requires the use of a level-of-detail (LOD) algorithm. This
helps ensure that the number of primitives (triangles) used
to represent the mesh is kept as close to an “optimal” level as
possible. As graphics developers, we measure this level as a
compromise between both scene detail (triangle count) and
frame rate. The optimal level is then defined as the highest
number of triangles we can render, while retaining an accept-
able frame rate for our application.

Traditional level-of-detail methods begin by defining
several versions of the scene’s meshes, each differing in trian-
gle count. As the application renders the scene, a version of
each mesh is chosen in relation to factors, such as the meshes’
onscreen size and overall scene importance. As meshes be-
come closer or further from the viewer, their onscreen size
changes and thus the number of triangles required to ren-
der them effectively. The result is a form of control over the
scene triangle count and thus a more optimal detail level of
the scene.

However, when applied to “massive” meshes, such as ter-
rains, this technique breaks down. By massive, we mean a
mesh whose size is so large that it is common for it to con-
tain both very close and very distant sections from the viewer
at one time. Simply put, we cannot just pick a distance from

this vast range, apply a single detail level across the entire
landscape, and expect reasonable results. Instead we need
to implement a more specialized LOD algorithm that takes
this range of distances into account. One of the first of these
methods was introduced by Lindstrom in his continuous
level-of-detail (CLOD) paper [1], which was then expanded
upon by Duchaineau to produce the original ROAM algo-
rithm [2].

ROAM works by defining a mesh as a hierarchal bintree
structure of renderable triangles, dubbed by Duchaineau as a
binary triangle tree. In this tree, each node represents a trian-
gle that is a lower detail version of its two children nodes. Leaf
nodes represent the highest LOD’s triangles, while the root
node represents the lowest. The rendering procedure then
becomes a recursive task where we transverse the tree and
decide which nodes to render for the current frame. When
testing each node, we can choose to either tag the relevant
triangle to be rendered this frame, or step a level deeper into
the tree, and perform the same test upon the child nodes.
Because each node represents 3 vertices (a triangle), a 3D lo-
cation in the virtual world can be defined for the node and
thus a distance from the viewer can be found. With this dis-
tance, we can perform the same distance test as the more
traditional LOD algorithms, except that this test is now per-
formed at a per-triangle level instead of the entire mesh.
The result is that we can spread the LOD across the entire

2 International Journal of Computer Games Technology

visible terrain and thus solve the problem of the “massive
mesh.”

Although ROAM produces a range of detail levels for a
terrain that can be tweaked to a specific triangle level, the
algorithm itself does not translate to graphics hardware that
well [3]. Because the graphics processor can only process data
in its local graphics memory, any change to the renderable
dataset requires an upload to this graphics memory. This up-
load can be considered expensive, and overuse of it can result
in a problem known as “thrashing,” causing the graphics pro-
cessing unit (GPU) to stall as it waits for graphics memory to
be written to. For high performance graphics, we prefer to
load the required data onto the graphics card at initialisa-
tion time, and then attempt to minimise any further uploads
during the runtime of the application. Duchaineau’s ROAM
relies heavily on changes to the mesh vertices, which are built
to describe the current tessellation of the mesh. Uploading
this buffer to the graphics memory can cause the mentioned
thrashing effect and thus a performance hit, something that
has caused criticism from games developers and led to sim-
plified variations of the algorithm appearing in several games
[4, 5].

Many of these variations have one thing in common. In-
stead of checking every triangle of the mesh for a correct
LOD, the mesh is split into a collection, usually a grid, of
terrain tiles. Each tile then contains several sets of geom-
etry, each representing a different LOD for the tile, much
like the more traditional LOD algorithms. Because each tile
has a finite number of detail levels, they can all be uploaded
to the graphics memory at initialisation time, minimising
the thrashing effect. Therefore, better performance can be
obtained by these ROAM variations, which can make them
more desirable for games applications.

This performance increase has its cost however. By re-
placing the per-triangle LOD test with per-tile tests, we lose
the tessellation accuracy of the algorithm. No longer can we
increase or decrease the triangle count by a single triangle,
and thus lose the near-perfect optimal detail level provided
by the original ROAM method. Also, the effect known as
“popping” can become much more apparent in these vari-
ations. Popping is the graphical artifact created when a vis-
ible part of the terrain changes its detail level. The geome-
try literally changes in front of the users eyes, and can be-
come very distracting if large areas of the landscape suddenly
switch. This effect is unavoidable, but can be reduced if the
changing sections of the terrain are relatively small on screen.
Since ROAM tessellates on a per-triangle basis, this area is
usually sufficiently small for combating popping, but when
entire terrain tiles change LOD, the effect can be much more
noticeable.

Not all game systems that use ROAM implement this
style of approach however. Treadmarks [6], an action game
by Longbow Digital Arts, is probably the most well known of
games that implement ROAM-based terrain. Instead of using
the simpler versions of the algorithm, like those mentioned
in Snook’s and Ulrich’s papers, Treadmarks uses a split-only
approach, along with a technique called Implicit Binary Trees
to increase performance [7]. Split-only means that the ter-
rain’s detail level is recalculated for each frame, without the

frame coherence feature mentioned in Duchaineau’s origi-
nal paper. Although this requires more per-frame processing
time, it greatly simplifies the algorithm making it much eas-
ier and quicker to implement into a game system.

The remainder of this paper will describe a new variation
of ROAM that combines the ideas discussed in these previous
variations into a new system, aimed mainly towards games
and real-time graphical applications.

2. OVERVIEW

Originally presented previously at the Manchester Cy-
berGames Conference [8], the “GEOmancy” terrain engine
uses a version of the ROAM algorithm that overcomes the
problems discussed. The system works by dividing the terrain
geometry into a collection of tiles, each represented by a pair
of ROAM triangle bintrees. The classic ROAM split-merge
algorithm is then applied to each tile individually to produce
an optimal detail level. To retain speed through hardware op-
timisations, the vertex buffer for each tile remains static and
is uploaded to graphics memory at the application’s start.
The detail level of each tile is then described, instead, via an
index buffer, which is created through transversing the tile’s
bintrees. Because the per-frame change in viewpoint position
is usually a small fraction of the terrain size, the amount of
LOD changes is also very small, resulting in very few updates
to the separate tiles’ index buffers. This allows the accuracy of
the original ROAM algorithm to be maintained, while min-
imising the amount of data that must be posted to the graph-
ics device per frame.

Although the algorithm tries to provide both high ac-
curacy and high performance, it is liable to two major lim-
itations. First, the algorithm only works on grid-based ter-
rain geometry. That is, vertices that are spaced along the x-z
plane at regular intervals with only their height values differ-
ing. This is not too much of an issue for games as this is by
far the most popular terrain representation method, allow-
ing the dataset to be compressed to a map of height values
(a heightmap) and a single float that defines the distance be-
tween vertices. Secondary, due to the use of static vertices,
only heightmaps of specific sizes can be used.This limitation
can be overcome by using the next largest viable size and
“voiding” off the unwanted extra vertices with water or walls,
and so forth. The geometry may still be there, but techniques
can be used to ensure that the player never sees it.

3. IMPLEMENTATION

3.1. Tiled geometry

The GEOmancy algorithm begins by converting a heightmap
into a grid of terrain tiles. For each tile, a vertex array is cre-
ated by sampling the relevant heightmap entries and scal-
ing these values to produce terrain heights and thus vertices.
These vertex arrays can then be placed in the graphics mem-
ory ready for future render calls.

For each tile, we need to create two bintrees, each rep-
resented by an index buffer. When we tessellate our bintree,
this index buffer will contain a description of which triangles
to render to provide the current LOD of the tile. As stated

Matthew White 3

previously, each node of a triangle bintree represents a ren-
derable triangle. Because we are using an index array to ref-
erence which vertices to render, a triangle can be represented
using three integers that can be used to index the appropri-
ate vertex array. As well as this, we also need to store an error
metric for the triangle, similar to Duchaineau’s ROAM, so
that we can perform LOD tests at runtime for each node in
the tree. Since we cannot know the distance to the viewpoint
at initialisation time, we need to store a value that can assist
us during the runtime LOD decisions. For this, a technique
from the Treadmarks engine is used called variance.

Since every non-highest detail level triangle is an approx-
imation of its children, a difference for it can be calculated
by finding the distances between it and the actual height of
the geometry that it covers. When we run our LOD tests, we
can say that triangles with a high variance are bad representa-
tions of the geometry they cover, and should receive a higher
“split” priority than those with lower variances. When our al-
gorithm is deciding where to add triangles to the frame, the
variance measure helps ensure that rougher sections of the
terrain will receive more detail than the flatter parts, which is
exactly what we require.

As stated previously, our terrain tiles must be of a specific
size. This is because an existing vertex at the correct point is
required to split a triangle in two. Because of this, only spe-
cific sizes will allow us to split triangles down to the lowest
level possible. As can be seen in Figure 1, there is a limited
number of tile dimensions that allow this situation.

For each increase in usable detail levels for a tile, we are
required to double the number of triangles along their edges.
The size of the tile, in vertices, required for this can, there-
fore, be defined as [(2n) + 1], where n is the depth of the tile
bintrees. For the demo, we used a dimension of 9×9 vertices
per tile, as it provided a good balance between bintree depth
and number of tiles.

3.2. Implicit bintrees

Now that we have divided our terrain into tiles, we need to
create our version of the ROAM triangle bintrees. As men-
tioned previously, we will be using an updatable index buffer
to describe which triangles to render from our vertex ar-
ray. To help boost performance, a technique, again from the
Treadmarks engine, called Implicit Bintrees, will be used. Be-
cause our trees will never add or remove nodes after the ini-
tialisation phase, we can represent our bintrees through a
fixed-sized array, providing an abstract interface that accesses
it like a bintree. The result is that all memory allocations are
done at initialisation, improving the performance of the run-
time part of the algorithm. An excellent explanation of this
process was presented by Bryan Turner on the Gamasutra
website [9].

The first index of our array stores the root node of the
tree. Transversing the tree can be quickly achieved via bit-
shift operations as follows.

Left-Child Index: curIndex � 1.
Right-Child Index: (curIndex � 1) + 1.
Parent Node: curIndex � 2.

These macros enable a parent or child index to be found
from any other array index, through the use of very fast op-
erations, as well as removing the need for each node to store
pointers to its neighbours.

Perhaps the biggest advantage of implicit bintrees (other
than removing the need for dynamic memory allocation),
is that any triangle in the tree can now be described us-
ing a single integer index. As will be covered later, this fact
is particularly useful for implementing the ROAM split and
merge queues, as well as solving the CLOD problem known
as cracks.

In our algorithm, each tile contains two of these im-
plicit bintrees, one for the “top-left triangle” and one for the
“bottom-right one.” For each bintree node, we store three in-
dices that describe the triangle vertices, along with a variance
value for the triangle. We define our root node as a triangle
with vertices at the relevant corners of the tile. Every child
can then be defined by dividing the parent triangle down its
centre, creating the two half-sized child triangles. This pro-
cess can be repeated recursively through the tree to create all
potential triangles for each tile.

3.3. Error metrics

To complete our bintrees, we need to find the variance value
for each node of the tree. This is a recursive process that starts
at the leaf nodes and works up to the root node. Because
each leaf node represents our highest LOD, their variance
value is 0. For each node above these leaves, we sample the
height value from the heightmap where their hypotenuse’s
midpoint aligns to. We also find the average of the two hy-
potenuse’s vertex heights to find the approximate rendered
height at this point of the triangle. Variance is then the max-
imum of either the difference of these values, or of the two
children’s variance values. This max operation helps prevent
a situation where a low detail triangle midpoint happens to
fall at the same point as, or near to, the original height data.
Whereas the variance for this would be near zero, the actual
triangle itself could still be a bad approximation for the other
points of the terrain that it covers.

At run-time, we can perform an error test per node based
upon the relative variance value. To make the algorithm
view-dependant, we take factors concerning the virtual cam-
era into account when making this test. As mentioned, these
factors are usually in relation to the triangles’ onscreen size,
and thus the viewpoint distance. A typical test divides the
variance value with this distance and checks the result against
a threshold. This ensures that closer, rougher terrain is split
with more scrutiny than distant, flatter parts. If this test fails,
then we can “split” the triangle by stepping down one level of
the tree and repeating the test on the two child nodes. Once
we find a node that passes the test, we can add the three in-
dices stored for the triangle to the terrain tile’s main index
array. When all the tests have been completed, the tile’s in-
dex array will describe an optimal tessellation of the mesh
for that frame, and can be used to reference the vertex array
when rendering.

Although this works and allows per-triangle tessellations
on a frame-by-frame basis, it is not entirely performance

4 International Journal of Computer Games Technology

(a) (b) (c) (d)

Figure 1: Static tile-size restrictions.

friendly. For each frame, we must recursively test every tile’s
bintrees from their root node to find the optimal detail level.
Since our variance values do not change after initialisation,
the only varying factor for our tests is the viewpoint itself. In
most applications, it is not usual for the camera to move far
between frames, so the results of the majority of tests will be
identical to the previous frame’s results. Therefore, instead of
transversing the bintrees from root node down, we can “pick
up” from where we left off last frame, testing each bintree
from its previous optimal state. This optimisation is known
as frame coherence and is a very effective part of the original
ROAM algorithm.

3.4. Split-merge queues

In ROAM, frame coherence is achieved by using two queues
called the split and merge queues. The split queue is used
to store the next nodes that can be “split,” thus increasing
the bintree’s effective LOD, whereas the merge queue stores
nodes that can be “merged” to decrease the LOD. Splitting a
triangle is the process of converting it into its two child tri-
angles, and therefore incrementing the mesh’s triangle count,
whereas merging is the reverse process of converging two tri-
angles into their parent.

Implementing these data structures is relatively straight-
forward. Because our system is using static vertex arrays, the
number of potential triangles is also constant, and thus the
maximum number of triangles that could be on either queue.
We can therefore implement each queue as a fixed length ar-
ray of this size, with each array containing the indices to rela-
tive nodes within the implicit bintree. We can then use mark-
ers to store the effective starts and ends of the active parts of
these queues, and never have to reallocate memory during
run-time.

These queues represent the detail level state for a single
bintree. We create two operations that allow the increase and
decrease of this detail level called Split and Merge, respec-
tively. The following is the pseudocode for a typical imple-
mentation for these operations.

Split operation

Pop top node index from the Split Queue.
Push this index to the Merge Queue.
Find node’s child indices using the implicit bintree bit-
shift macros.
Add child indices to the end of the Split Queue, in or-
der of Variance values.

Figure 2: Cracks between triangles.

Merge operation

Pop top node index from the Merge Queue.
Push this index to the Split Queue.
Find node’s child indices using macros.
Remove these child node indices from the Split Queue.

By restricting access to the queues to these 2 operations,
we can ensure that the queues are always ordered by the
node’s variance values. This helps ensure that higher variance
areas of a bintree are split and merged before the lower vari-
ance parts, which is exactly what we want.

Because the split queue of a bintree contains a list of all
visible triangles, an index buffer for the tile mesh can be
built up by iterating through it and referencing the appropri-
ate structures directly. Furthermore, we can tag which bin-
trees have had their split or merge methods accessed for each
frame, and only upload the new index buffer for them. Be-
cause the number of per-frame tessellations is usually a small
percentage of the visible terrain tiles, this results in a great re-
duction in the amount of data being transferred to the graph-
ics memory.

3.5. Avoiding cracks

3.5.1. Overview

One problem that all level-of-detail algorithms have to deal
with is that of cracks appearing between different LODs. In
ROAM, this occurs whenever a triangle is split. As can be seen
from Figure 2, the extra vertex at the children’s heads is at a
different height than the second triangle, thus resulting in
a gap. To solve this, the triangle at the base of the splitting
triangle must also be forced to split.

There are three possible arrangements of triangles when
splitting: base-to-nothing, base-to-base, and base-to-edge.

Base-to-nothing occurs when our split target triangle’s
hypotenuse (the base) is at the edge of the mesh, and thus no
geometry. In this situation, we simply do nothing and split
the triangle as normal.

Matthew White 5

Base-to-base is when the triangle shares its hypotenuse
with its neighbour. In this situation, we simply force the
neighbour triangle to split before the target triangle splits.
The result is that the crack is covered up as the neighbour
triangle’s children reference the same vertex at that point.

Base-to-edge is perhaps the most complex scenario. In
this case, our triangle’s base-to-base partner is one of the
neighbour’s triangle’s children. We essentially need to split
twice, once for the neighbour and once for its appropriate
child. The reason why this can become complex is that this
initial split can encounter the same base-to-edge scenario as
the original split. The result is that forced splitting can be
propagated across the mesh, as triangles force other triangles
to be split.

However, because a base-to-edge scenario can only occur
between a triangle and a triangle of a detail level that is one
less, this propagation seldom travels very far, so this rarely
becomes an issue in practice.

To implement this forced split, each triangle needs
knowledge of its diamond partner, which is the triangle in
the mesh that shares a base-to-base relationship. With this
knowledge, the triangle can inform its partner that it too
needs to split. In the original ROAM, a pointer to this part-
ner was stored on a per-triangle basis. However, in a terrain
mesh that can contain hundreds of thousands of potential
triangles, this extra memory requirement can soon mount
up. GEOmancy takes advantage of the implicit bintrees and
uses a neighbour map to significantly reduce these memory
requirements.

3.5.2. Neighbour map

As mentioned previously, we can describe any potential tri-
angle in our mesh with a pointer to a bintree and an index
that defines which slot of the implicit bintree array to look
at. We also know that, apart from the underlying height data,
the structure of every bintree in our system is the same. The
consequence of this is that every node in a bintree is also sur-
rounded by, relatively, the same neighbours as simular nodes
in other bintrees. With this similarity in mind, instead of
storing a diamond partner pointer for each triangle, we can
create a static map that when queried can return a descrip-
tion of the required partner.

Because a diamond partner shares its base with its part-
ner triangle, it can only be in either the same bintree or a
neighbouring bintree. During initialisation, we store three
pointers for each bintree, each of which point to the relative
neighbouring bintree. These pointers can even be null in the
case that the tree is at the edge of the mesh. Upon querying,
the neighbour map returns a partner’s array index and also a
flag that denotes which bintree neighbour the index refers to
(left-edge, right-edge, or hypotenuse-edge neighbour). With
this information, a bintree can call the split function through
the relevant pointer, passing in the index to produce a forced
split. In the case of a “same bintree” flag, the bintree class
simply calls its own split method. In the event that a neigh-
bour pointer is null, then the split can be assumed to be
a base-to-nothing scenario, and the forced split can be ig-
nored.

The end result is a fast look-up system for finding di-
amond partners that does not require per-triangle pointer
storage. The neighbour map’s size remains fixed regardless
of the size of the terrain, which can prove very beneficial for
systems that require vast landscapes.

Creation of the neighbour map is a recursive task much
like the creation of the bintrees. It was found that, with the
exception of the root triangle, every triangle’s neighbours
could be found by examining their parent. Root triangles
have no parent node, so their neighbours must be defined
upon the bintrees creation, through the use of the neighbour
pointer class members mentioned previously. The neighbour
map itself is an array of the same size as the system’s bintrees.
At each slot, we store a flag, indicating the root triangle’s bin-
tree neighbour, and another index, describing the specific tri-
angle from this bintree.

Figure 3 shows the graphical representation of the first 3
levels of a bintree. As we can see, the bintree (triangle 0) has
the neighbours L, R, and H denoting left-edge, right-edge,
and hypotenuse neighbours, respectively.

The left child of this triangle is triangle 1. As can be seen,
its neighbours are as follows:

(i) left neighbour: triangle 0’s right child;
(ii) right neighbour: triangle 0’s base neighbour;

(iii) base neighbour: triangle 0’s left neighbour.

The right child of the root (triangle 2) shares a similar
relationship:

(i) left neighbour: triangle 0’s base neighbour;
(ii) right neighbour: triangle 0’s right child;

(iii) base neighbour: triangle 0’s right neighbour.

The next level down (triangles 3, 4, 5, and 6) follows the
same pattern depending on if they are the left or right chil-
dren of their parent. Using this information, we can use a re-
cursive method to fill the neighbour array with a flag and in-
dex number, describing the relative location of the diamond
partner for any node in one of our bintrees.

3.6. Summary

At the end of the initialisation, we have converted our
heightmap into a grid of terrain tiles. Each tile represents
a square of geometry of our terrain, represented via ver-
tex buffers, and also two bintrees. These bintrees represent
the current tessellation of the terrain tile, using split-merge
ROAM to produce an index buffer that denotes which trian-
gles to render from our geometry. These bintrees offer split
and merge methods to increase or decrease the tree’s LOD by
a single triangle.

During run-time, we test each tile against an error thresh-
old using both its split-queue’s top node’s variance and the
distance to the tile from the camera. These factors insure that
the worst approximations and the closest triangles are split at
a higher priority.

To maintain an optimal level of performance, we also
use frame-by-frame coherence offered by the split and merge
queues. Because of this, and the segmentation of the geom-
etry due to the tiled terrain, only a small proportion of the

6 International Journal of Computer Games Technology

L R

0

H

(a)

L R

1 2

H

(b)

L R

3

4 5

6

H

(c)

Figure 3: Neighbourhood map structure.

terrain’s entire index buffer requires changing each frame,
minimising the effect of thrashing.

Finally, any bintree can query the neighbour map for a
description of a specific triangle’s diamond partner, from
which it can force another local bintree to split a triangle,
avoiding cracks from appearing within the mesh.

4. RESULTS

To test the final implementation of the system, a sam-
ple heightmap was used and frame rates were observed. A
heightmap of size 512 × 512 was chosen for these tests, and
thus provided just over 522 000 potentially renderable tri-
angles in the mesh. The system used for the tests was a
typical desktop system; 2.0 GHz CPU, 512 MB RAM with
an ATI Radeon 9600 graphics card. Different error metrics
were tested to see the difference between performance and
scene quality during the rendering. Table 1 shows the aver-
age frame rates achieved for several error metrics.

Metrics above 7 pixels provided slightly higher frame
rates, but also suffered from very noticeable popping. By us-
ing a small error metric, this popping effect was restricted
to the smaller onscreen triangles, and was not as noticeable.
Without some extra feature to deal with these artifacts, how-
ever, metrics over 7 are unlikely to be favourable for use
within a games application.

For comparison, the most recent version of ROAM
(ROAM 2.0) shows a performance between 40 million and 56
million triangles per second [10] depending upon the hard-
ware being used. Depending upon the error metric chosen,
our system can produce higher frame rates while maintain-
ing an acceptable level-of-detail. The full source and an exe-
cutable demo for the GEOmancy system can be found on-
line at http://members.gamedev.net/rootevilgames/mwhite/
GEOmancy.htm.

5. FURTHER WORK

At the time of writing, the GEOmancy algorithm provides a
new variation of ROAM, aimed for implementation within
a games-orientated system. However, there are further im-
provements being worked on that will be discussed in this
section.

Memory can be a tight resource, especially in the de-
velopment of console games. Storing an entire dataset for a
landscape can hog up much of this resource. To get round
this, we intend to make as much of the vertex data reusable
as possible. The idea revolves around the use of vertex buffer

Table 1: Frame rates for specific error metrics.

Error metric
Average frame rate Triangles

(per second) (per second)

1.0 90.5 47.26 million

3.0 106.7 55.72 million

5.0 112.2 58.59 million

7.0 113.9 59.48 million

streams. In one stream, we load the vertices’ x and z posi-
tions. Because these are repeated for each tile, due to the grid
nature of the mesh, we can create a single vertex buffer for
each tile to reference. A second stream can then be used to
reference other vertex data, such as the y position and tex-
ture coordinates.

For systems using pixel shader 3.0, an expansion of this
technique can be applied using vertex textures. This way,
each tile’s vertex height can be referenced directly from the
heightmap texture, moving part of the processing onto the
GPU. Normal maps can also be used in the same fashion to
provide fast per-vertex normals for dynamic lighting.

Perhaps one of the most exciting ideas for future devel-
opment is the incorporation of DirectX 10’s new geometry
shader. This is a shader stage that allows the generation of
new primitives within the rendering pipeline itself. As men-
tioned in my previous paper, the main reason that there has
been no GPU-only implementation of ROAM is the inability
to add and remove vertices in this pipe-line. With this new
shader, this limitation should no longer apply and the cre-
ation of a full GPU ROAM algorithm could soon become a
reality.

6. CONCLUSION

ROAM is a popular and very effective algorithm for the visu-
alisation of terrains. However, several problems and perfor-
mance issues can be encountered when trying to implement
it into a performance-heavy application, such as a computer
game. This paper has presented an overview of the origi-
nal algorithm and discussed a possible implementation of a
more games-orientated variation. By imposing size restric-
tions upon the input geometry, memory requirements can be
precalculated during the initialisation stages, eliminating the
need for dynamic memory allocations at run-time. Finally, a
tile-based system has been incorporated, allowing us to treat
each terrain tile as a separate mesh. This allows us to sep-
arate the terrain mesh’s index buffer into more manageable

Matthew White 7

sections, rebuilding only the parts that require it between
frames.

ACKNOWLEDGMENTS

The author would like to thank Geoff Brindle for his assis-
tance throughout his dissertation, which led to the devel-
opment of this paper. He would also like to thank Edmund
Prakash for general assistance during his dissertation, as well
as allowing him to present his original paper at the Manch-
ester CyberGames Conference 2007.

REFERENCES

[1] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust,
and G. Turner, “Real-time, continuous level of detail rendering
of height fields,” in Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH
’96), pp. 109–118, New Orleans, La, USA, August 1996.

[2] M. Duchaineau, M. Wolinsky, D. Sigeti, M. Miller, C. Al-
rich, and M. Mineev-Weinstein, “ROAMing terrain: real-time
optimally adapting meshes,” Tech. Rep. UCRL-JC-127870,
Lawrence Livermore National Laboratory, Livermore, Calif,
USA, July 1997.

[3] G. Snook, Real-Time 3D Terrain Engines Using C++ and Di-
rectX 9, Charles River Media, Hingham, Mass, USA, 2003.

[4] G. Snook, “Simplified terrain using interlocking tiles,” in
Games Programming Gems 2, pp. 377–383, Charles River Me-
dia, Hingham, Mass, USA, 2001.

[5] T. Ulrich, “Chunked LOD,” http://www.tulrich.com/geekstuff/
chunklod.html.

[6] Longbow digital arts, Treadmarks, http://www.ldagames.com/
treadmarks.

[7] S. McNally, “Treadmarks Engine (Binary Trees and Terrain
Tessellation),” http://www.ldagames.com/.

[8] M. White, “Adapting ROAM for use within a games appli-
cation,” in Proceedings of the 3rd International Conference on
Games Research and Development (CyberGames ’07), pp. 59–
66, Manchester, UK, September 2007.

[9] B. Turner, “Real-Time Dynamic Level of Detail Terrain
Rendering with ROAM,” http://www.gamasutra.com/features/
20000403/turner 01.htm.

[10] M. Duchaineau, ROAM Algorithm Version 2.0, http://www.
cognigraph.com/ROAM homepage/ROAM2.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 135398, 7 pages
doi:10.1155/2008/135398

Research Article
Auto Coloring with Enhanced Character Registration

Jie Qiu,1 Hock Soon Seah,1 Feng Tian,1 Quan Chen,1 Zhongke Wu,2 and Konstantin Melikhov1

1 Interaction and Entertainment Research Center, School of Computer Engineering, Nanyang Technological University,
50 Nanyang Drive, Singapore 637553

2 College of Information Science and Technology, Beijing Normal University, Beijing 100875, China

Correspondence should be addressed to Jie Qiu, jqiu@ntu.edu.sg

Received 27 July 2007; Accepted 2 October 2007

Recommended by Kevin Kok Wai Wong

An enhanced character registration method is proposed in this paper to assist the auto coloring for 2D animation characters.
After skeletons are extracted, the skeleton of the character in a target frame is relocated based on a stable branch in a reference
frame. Subsequently the characters among a sequence are automatically matched and registered. Occlusion are then detected and
located in certain components segmented from the character. Two different approaches are applied to color regions in components
without and with occlusion respectively. The approach has been tested for coloring a practical animation sequence and achieved
high coloring accuracy, showing its applicability in commercial animation production.

Copyright © 2008 Jie Qiu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Inking/coloring of the individual animated characters for ev-
ery frame is one of the most time-consuming and labor-
intensive procedures in cel animation production. Many sys-
tems and some algorithms have been proposed to assist the
coloring of cel animation production. However, these sys-
tems or algorithms have significant limitation, in terms of
not being able to automatically establish the correct region
correspondences when there is a big change or occlusion
of the character, as reviewed in [1]. In summary, computer-
assisted auto coloring (CAAC) remains a tough issue in re-
search.

To detect and handle occlusion, a novel character regis-
tration method was proposed in our previous work [2], as
the first attempt for auto coloring 2D characters for some
special cases. As indicated in [2], the auto coloring approach
may be challenged if the character’s position changes greatly
in a sequence of frames. In this paper, a relocation method is
proposed to enhance the character registration approach in
[2], making the auto coloring approach more robust.

The rest of the paper is organized as follows. First, the en-
hanced character registration method is introduced in detail.
Subsequently, our occlusion detection and auto coloring pro-
cess is introduced. Experiments are then designed to test the
algorithm and results analyzed. Conclusion and future work
can be found at the end of this paper.

2. CHARACTER REGISTRATION

2.1. Skeleton extraction

A skeleton is a useful shape abstraction that captures the es-
sential topology of an object in both two and three dimen-
sions. It represents a thinned version of the original object,
which still retains the shape properties of the original object
[3]. The skeleton of a 2D character can preserve the most
essential geometric and topological information of it, which
makes it suitable for our character registration purpose.

In practical animation production, some characters are
complex featuring sharp convex or concave details in their
outline, which introduce redundant branches when the
skeleton extraction approach based on active contours [4, 5]
is applied. As shown in Figure 1, the branches in red and
green do not relate to the physical structure of the character.
These are viewed as “noise” in this paper. The short redun-
dant branches in Figure 1 can be easily pruned based on a
threshold, but it is difficult to remove the long ones. To re-
duce the noise, Gaussian filtering is applied to smooth the
outline and remove the details. The Gaussian function in 2D
form is

G(x, y) = 1
2πσ2

e(x2+y2)/−2σ2
. (1)

2 International Journal of Computer Games Technology

Outline
Skeleton

Redundant short branches
Redundant long branches

Figure 1: Extracted skeletons.

σ = 0.5

(a)

σ = 1

(b)

σ = 1.5

(c)

σ = 2

(d)

σ = 2.5

(e)

σ = 3

(f)

σ = 3.5

(g)

σ = 4

(h)

Figure 2: Skeleton extraction after Gaussian smoothing.

The smoothed outlines and corresponding skeletons with
different σ are illustrated in Figure 2. The σ is empirically se-
lected as 3 for the examples used in this paper.

After the outline is smoothed, the skeleton of each char-
acter is extracted using active contours approach [4, 5],
and further thinned under SUSAN thinning rules [6], and
pruned. Finally, it is segmented into L-branches and J-
branches as introduced in [2]. Topology graphs of each char-
acter is also extracted using the approach introduced in [5].
Figure 3 shows the extracted skeleton and topology graph
for the character in Frame 4 of the first test used in the
paper. Junction nodes are illustrated in red, leaf nodes in
blue, L-branches in green, and J-branches in black, respec-
tively.

2.2. Skeleton relocation

Animation is an art of capturing a series of individual
movements, whether on film or in digital form, and re-
playing them in rapid succession to give the illusion of
movement [7]. Accordingly, even in two successive frames,
the positions of the two characters may differ much. Be-
sides affine transforms which are often used for depicting
the character’s global motion, deformation of the charac-

(a) (b)

Figure 3: Extracted skeleton and topology graph.

ter parts usually exists for expressing the local motion like
the movements of articulated parts. With these uncertain-
ties, it is hard to find an accurate transform to locate the
two characters in the same position with the most similar-
ity. When drawing inbetweens, animators locate characters
of two key frames by overlapping the most similar parts of
the character in the same position. Mimicking this method,
two skeletons can be relocated according to a stable branch
which does not change much among the whole animation
sequence.

The stable branch of each frame can be interactively se-
lected by the user. Alternatively, user only needs to indicate
the stable branch in the first reference frame to be registered.
Given a reference frame and a target frame, a prediction and
relocation method is proposed as follows to reduce user in-
tervention.

Given a population of random vectors x, the principal
components analysis (PCA) is defined as

y = A
(
x −mx

)
, (2)

whereA is the matrix whose rows are formed from the eigen-
vectors of x’s covariance matrix Cx,mx is x’s mean vector [8].

(i) Compute the PCA transforming matrices Ti and Mi

for the stable branch Bi in the reference frame, where
Ti and Mi, respectively, correspond to A and mx in (2).

(ii) Transform the skeleton S in the reference frame to the
transforming coordinate system R2

t according toTi and
Mi:

Sti = Ti∗
(
S−Mi

)
. (3)

(iii) For each branch Bi′ in the target frame, compute the
dissimilarity value Dt(i, i′).

(a) Compute the PCA transforming matrices Ti′ and Mi′

for a branch Bi′ in the target frame, where Ti′ and Mi′ ,
respectively correspond to A and mx in (2).

(b) Transform the skeleton S′ in the target frame to the
transforming coordinate system R2

t according to Ti′
and Mi′ :

S′ti′ = Ti′∗
(
S′ −Mi′

)
. (4)

Jie Qiu et al. 3

260
240
220
200
180
160
140
120
100

80
60

0 50 100 150 200

(a)

−120
−100
−80
−60
−40
−20

0
20
40
60
80

−150 −100 −50 0 50 100

(b)

Before relocation

(c)

After relocation

(d)

Figure 4: Skeleton relocation.

(c) Compute the Hausdorff distance Ht(Sti , S
′t
i′) between Sti

and S′ti′ :

d(a, b) =
√(
xa − xb

)2
+
(
ya − yb

)2
, (x, y) ∈ R2

t ,

�h
(
Sti , S

′t
i′
) = sup

a∈Sti
inf
b∈S′ti′

d(a, b),

Ht
(
Sti , S

′t
i′
) = max

{�h
(
Sti , S

′t
i′
)
,�h
(
S′ti′ , S

t
i

)}
.

(5)

(d) Compute the Hausdorff distance Ht(Sti ,−S′ti′) between
Sti and −S′ti′ .

(e) The dissimilarity value Dt(i, i′) between branches Bi
and Bi′ is the minimum of Ht(Sti , S

′t
i′) and Ht(Sti ,−S′ti′):

Dt(i, i′) = min
(
Ht
(
Sti , S

′t
i′
)
,Ht
(
Sti ,−S′ti′

))
. (6)

(iv) If Dt(i, i′) is the minimum, Bi and Bi′ are corre-
sponded, the skeleton S′ in the target frame is trans-
formed and normalized to be S′ti′ or −S′ti′ according to
Ti′ andMi′ . The transforming coordinate system R2

t for
Sti and S′ti′ or−S′ti′ is treated as the global coordinate sys-
tem R2

g .

Figure 4 shows the relocated skeletons and frames.
Frames 1 and 2 are represented in blue and red, respectively.

2.3. Skeleton registration

General topology models are predefined based on the char-
acter’s physical structure. Figure 5 illustrates some common
topology models, which represent the most essential topo-
logical information of the characters.

Head & neck

Right arm Left arm

Torso

Right leg Left leg

12 3

4

5 6

(a) Human and human-like
characters

Head & neck

Right arm Left arm

Torso Tail

Right leg Left leg

12 3

4

5 6

(b) Tailed human-like ani-
mals

Head & neck

Back
leg 1

Front
leg 2

Front
leg 1

Back
leg 2

Tail
Torso 1

2356

47

(c) quadruped

Figure 5: General topology model.

1
42 3

4

5 6

(a)

1
2 3

4

5 6

(b)

Figure 6: Skeleton registration.

To assure registration accuracy, a frame is selected as the
first reference frame from the sequence to be painted, which
contains a stable branch as introduced in Section 2.2 and
the maximum number of branches among the sequence. The
skeleton and topology graph of the character in the selected
frame is then registered to the general model, as illustrated in
Figure 6. The topology graph is adjusted accordingly.

For characters in the other frames in the sequence, their
skeletons and branches are registered based on the branch
correspondences established by skeleton matching intro-
duced in the next section.

2.4. Skeleton matching

As introduced in [2], our skeleton matching algorithm is
based on both geometric and topological information of the
skeleton, containing the following two steps.

2.4.1. Geometric matching

Global dissimilarity due to the motion of branches is rep-
resented by the global Hausdorff distance Hg(Bi,Bi′) and
computed using the global coordinate system R2

g of the two
frames.

4 International Journal of Computer Games Technology

Frame 4

1

2 3

4

65

(a)

Frame 5

1

2 3

4

65

(b)

Figure 7: Segmentation result.

The local deformation of each branch is represented by
the local Hausdorff distance Hl(Bi,Bi′) and computed using
the local coordinate system R2

l of the two frames established
based on PCA [2].

With the global and local Hausdorff distances between
two branches, the dissimilarity value DV is defined as

DV(i, i′) = Hg
(
Bi,Bi′

)
+ min

(
Hl
(
Bi,Bi′

)
,Hl
(
Bi,−Bi′

))
.
(7)

Each branch Bi in the reference frame is matched with
all branches in the target frame first. If DV(i, i′) is the min-
imum among all dissimilarity values, a matching (Bi→Bi′)
is obtained. Subsequently, each branch Bi′ obtains its best-
matched branch in the reference frame. If a bidirectional
matching is achieved, (Bi→Bi′)∩ (Bi′→Bi), Bi and Bi′ are cor-
responded (Bi↔Bi′), and Bi′ is registered as the same branch
with Bi in the general topology model. The unregistered
branches will be readjusted in later process.

2.4.2. Topological readjustment

After geometric matching, some branches with big motion or
deformation may be left unregistered. To match and register
these branches and detect occlusion, a topological readjust-
ment method is applied.

For each selected branch Bti′ in the target frame, its merg-
ing candidates are obtained, and it is merged with the one re-
lated most closely [2]. If no merging candidate is found, geo-
metric matching is applied to those unregistered branches in
Bti′ ’s subgraph.

2.5. Component segmentation

After skeleton registration, characters are segmented into
several components corresponding to the branches in skele-
ton and topology graph, based on the explained area of each
branch [2].

The segmented and registered components for Frames 4
and 5 are illustrated in Figure 7, where corresponding com-
ponents are in the same color.

(a) Frame 4 (b) Frame 5 (Step 1)

(c) Frame 5 (Step 2) (d) Frame 5 (Step 3)

Figure 8: Auto coloring process.

3. ENHANCED AUTO COLORING

3.1. Occlusion detection

To detect and locate occlusion in components, a method
based on the variation of region areas is advanced in [2].

(i) Each region in the reference frame is quantized and
coded as an English character based on its area.

(ii) All the regions in the target frame are quantized and
coded based on the scale points computed in the refer-
ence frame.

(iii) Regions in a component Ci in the reference frame are
coded as a string Si and compared with the string Si′ of
its corresponding component Ci′ in the target frame,
and the least conversion cost between them is com-
puted as γ(Si→Si′).

(iv) Occlusion is located in Ci′ if γ(Si→Si′) is bigger than an
empirically defined threshold.

3.2. Auto coloring

With occlusion detection, regions can be divided into two
categories: the first category contains all regions which are
in the components without occlusion, and the second con-
sists of those in the components with occlusion. The former
is supposed to be more stable than the latter and different
matching methods are applied to the two categories.

The coloring process consists of three steps, and the col-
oring result after each step is illustrated in Figure 8.

(i) For the first category, the hierarchical feature-based re-
gion matching approach as proposed in [1, 9] is ap-
plied.

(ii) For the second category, the continuity of some region
contours is broken because of occlusion. Hence, fea-
tures such as area, curve length, character points, and
relations with neighboring regions change greatly. But

Jie Qiu et al. 5

the rest of regions still have relatively stable features of
area, curve length and character points. So a matching
method similar to that for the first category is applied
to match these regions. Each region is matched with
those in corresponding components in the reference
frame. The only difference is that the feature of rela-
tions with neighboring regions is ignored, so that the
coded character string [1] is only composed of charac-
ter points.

(iii) Finally, each of the remaining regions in the relo-
cated target frame inherits the color of the region
that it overlaps mostly in the reference frame. If no
such region is obtained, which means that the re-
gion fully overlaps the background, it is painted in the
color which fills the majority of the component (major
color) that it belongs to.

After skeleton registration for the first reference frame,
the prior and subsequent uncolored frames are selected as
new target frames iteratively. The nearest colored frame
which contains a stable branch is selected as the target frame’s
reference frame.

4. RESULTS AND ANALYSIS

To test the possibility of applying our approach in practi-
cal animation production, we use a Japanese-style sequence
in practical production of the trailer of “Justeen” animation.
The 8 frames as shown in Figure 9 compose 2/3 of a cut in the
trailer, showing a boy jumping down into the control room
of his robot. It can be noticed that occlusion arises due to
the motion of the character’s arms. To minimize the infor-
mation loss due to occlusion, we select Frame 4 as the first
reference frame. Then the prior and subsequent frames are
colored one by one according to the color information of its
next and prior frame, respectively. From the results we can
see that most of the regions are correctly colored. The regions
wrongly colored are mainly because no corresponding re-
gions in the reference frame can be obtained due to the occlu-
sion or information loss. Figure 10 illustrates the main errors
among the sequence and the correct results. As illustrated in
Figure 10(a), the right arm in Frame 5 changes greatly com-
pared with the one in Frame 4, and the occluded part of the
bracelet in Frame 4 is visible in Frame 5. Accordingly, the
regions indicated in blue circles are wrongly matched as no
correct correspondences exist in Frame 4. With more refer-
ence frames (which contain the corresponding regions) pro-
vided, this kind of error can be avoided. In Figure 10(c), the
regions in blue circles in Frame 5 are created due to the oc-
clusion, and they inherit the color of the regions they overlap
mostly in Frame 4 as no corresponding regions are obtained.
In Figure 10(e), the region in blue circle in Frame 7 is cre-
ated as the hair is swaying to the position overlapping with
the eyebrow. It is thus wrongly matched to a hair branch as
they have great similarity. These errors can be solved if the
hair is drawn in a separate layer. The mouth in Frame 1 is
widely open so that the tongue appears only in this frame. It
is not matched to any region, and thus inherits the color of

Frame 1

(a)

Frame 2

(b)

Frame 3

(c)

Frame 4
(the first reference frame)

(d)

Frame 5

(e)

Frame 6

(f)

Frame 7

(g)

Frame 8

(h)

Figure 9: Test 1 (resolution: 2420×2420 pixels) (courtesy of Anime
International Co., Inc., Japan).

the face in Frame 2. This kind of error due to information
loss is hard to be avoided. In summary, the coloring accuracy
for the total 7 uncolored frames is over 93%, which shows
that our approach is applicable to practical animation pro-
duction.

Figure 11 shows the other test, with the first frame se-
lected as the first reference frames. The character is simple,
but it is noticeable that large motions and deformations exist
among the sequence. With the relocation method proposed
in this paper, skeletons are accurately matched, ensuring the
high coloring accuracy for the test.

6 International Journal of Computer Games Technology

(a) (b)

(c) (d)

(e) (f)

Errors

(g)

Correct results

(h)

Figure 10: Error Analysis for Test 1.

Frame 1
(the first reference frame)

(a)

Frame 2

(b)

Frame 3

(c)

Frame 4

(d)

Figure 11: Test 2 (resolution: 550× 400 pixels).

(a) (b) (c) (d)

Figure 12: Other frames in the cut used in Test 1 (courtesy of Anime
International Co., Inc., Japan).

5. CONCLUSION AND FUTURE WORK

In this paper, our previous work on character registration is
enhanced with a refined skeleton extraction procedure and a
novel character relocation method. With the enhanced char-
acter registration, occlusion can be correctly detected and lo-
cated in components segmented from the character. Subse-
quently, two different matching methods are applied to re-
gions in components without and with occlusion, respec-
tively. A practical animation sequence from a cut of “Jus-
teen” animation trailer is applied to validate the approach.
A high coloring accuracy is achieved. It shows that the pro-
posed auto coloring approach with enhanced character reg-
istration is applicable to practical animation production.

Nevertheless, there are limitations. The proposed ap-
proach requires that each frame has a stable branch, which
is not always true among a long sequence. For example, the
cut we used in Test 1 contains 12 frames in total, and the first
4 frames are illustrated in Figure 12. Due to the information
loss, no stable branch exists in these frames. So they cannot
be automatically colored using our approach. Future research
work will be focusing on the auto coloring for these kinds of
special cases and new relocation methods.

ACKNOWLEDGMENT

This work has been partially supported by the Science and
Engineering Research Council (SERC) Grant no. 052 015
0024 Ref: 44, which is awarded by the Agency for Science and
Technology Research (A∗STAR) and administered through
the Singapore National Grid Office.

REFERENCES

[1] J. Qiu, H. S. Seah, F. Tian, Z. Wu, and Q. Chen, “Feature- and
region-based auto painting for 2D animation,” The Visual Com-
puter, vol. 21, no. 11, pp. 928–944, 2005.

[2] J. Qiu, H. S. Seah, F. Tian, Q. Chen, Z. Wu, and M. Konstantin,
“Auto coloring with character registration,” in Proceedings of
the International Conference on Game Research and Development

Jie Qiu et al. 7

(CyberGames ’06), vol. 223, pp. 25–32, Perth, Australia, Decem-
ber 2006.

[3] N. D. Cornea, D. Silver, X. Yuan, and R. Balasubramanian,
“Computing hierarchical curve-skeletons of 3D objects,” The
Visual Computer, vol. 21, no. 11, pp. 945–955, 2005.

[4] P. Golland and W. E. L. Grimson, “Fixed topology skeletons,”
in Proceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR ’00), vol. 1, pp. 10–
17, Hilton Head Island, SC, USA, June 2000.

[5] J. Qiu, H. S. Seah, F. Tian, Q. Chen, and K. Melikhov, “Topology
enhanced component segmentation for 2D animation charac-
ter,” in Proceedings of International Workshop on Advanced Imag-
ing Technology, pp. 30–35, Okinawa, Japan, January 2006.

[6] S. M. Smith, “Edge thinning used in the SUSAN edge detec-
tor,” Internal Technical Report TR95SMS5, Defence Research
Agency, Surrey, UK, 1995.

[7] C. Patmore, The Complete Animation Course: The Principles,
Practice and Techniques of Successful Animation, Thames &
Hudson, London, UK, 2003.

[8] R. C. Gonzalez and R. E. Woods, Digital Image Processing,
Addison-Wesley, Reading, Mass, USA, 1992.

[9] J. Qiu, H. S. Seah, F. Tian, Q. Chen, and Z. Wu, “Enhanced auto
coloring with hierarchical region matching,” Computer Anima-
tion and Virtual Worlds, vol. 16, no. 3-4, pp. 463–473, 2005.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 834616, 6 pages
doi:10.1155/2008/834616

Research Article
Strategic Team AI Path Plans: Probabilistic Pathfinding

Tng C. H. John,1 Edmond C. Prakash,2 and Narendra S. Chaudhari1

1 School of Computer Engineering, Nanyang Technological University, Singapore 639798
2 Department of Computing and Mathematics, Manchester Metropolitan University, Manchester M1 5GD, UK

Correspondence should be addressed to Edmond C. Prakash, e.prakash@mmu.ac.uk

Received 29 September 2007; Accepted 13 December 2007

Recommended by Kok Wai Wong

This paper proposes a novel method to generate strategic team AI pathfinding plans for computer games and simulations using
probabilistic pathfinding. This method is inspired by genetic algorithms (Russell and Norvig, 2002), in that, a fitness function is
used to test the quality of the path plans. The method generates high-quality path plans by eliminating the low-quality ones. The
path plans are generated by probabilistic pathfinding, and the elimination is done by a fitness test of the path plans. This path
plan generation method has the ability to generate variation or different high-quality paths, which is desired for games to increase
replay values. This work is an extension of our earlier work on team AI: probabilistic pathfinding (John et al., 2006). We explore
ways to combine probabilistic pathfinding and genetic algorithm to create a new method to generate strategic team AI pathfinding
plans.

Copyright © 2008 Tng C. H. John et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

A popular game with heavy team AI is “Full Spectrum War-
rior” (FSW), a console game on Xbox. This game is a down-
sized version of “Full Spectrum Command” on the PC plat-
form. The game “Full Spectrum Command” is actually a
simulation of the real-world behavior of the US Army. This
game was originally used in the military for leadership train-
ing as well as decision making training. The game includes
real-world army movements such as “bounding” and duck-
ing. The main feature of the game is its team AI. The team
AI of the game is actually derived from the real world and
simulates how a real person will behave. The purpose of this
game is to command two teams of soldiers to accomplish a
mission.

Even though it is a great game, one area it can improve
on is the team AI plan. Players may feel that opponents al-
ways appear at the same places after playing repeatedly, as
most team AI plans use A∗ algorithm or look up tables as
their main pathfinding techniques. These techniques always
produce the same path if the source and destination locations
are the same. On the other hand, Probabilistic is able to pro-
duce variations to the path even if the source and destination
locations are the same.

Replay value can easily be added to the game by creating
variations to the opponent team plans. When the opponents

have different plans, they move differently, thus the players
cannot always predict the opponents’ locations. This work
uses probabilistic pathfinding algorithm to obtain variations
of team AI path plans.

Section 2 talks about related work, existing problem, and
a scenario that strategic team AI path planning can be ap-
plied. Section 3 gives an introduction about team AI and
probabilistic pathfinding. It explains how team AI is created
in [1] by combining different systems. Section 4 describes
the main method of strategic team AI path plan generation.
Section 5 suggests a method that can be used to optimize
this work. Section 6 shows some interesting strategies gener-
ated by this team AI path plan generation method. The final
section, Section 7, comprises conclusion, other applications,
and future suggestions for this work.

2. RELATED WORK

In this paper, team AI pathfinding and team AI plans are the
same. Team AI pathfinding refers to the different paths taken
by teammates to reach a desired place. An example is a team
of enemies enter a room from different doors to trap and
capture the player. Team AI pathfinding plans are popular in
computer games. With good team plan, the game difficulty
level increases, making the game more challenging and helps
to showcase intelligent behavior of the game.

2 International Journal of Computer Games Technology

Figure 1: Situation without team AI.

In this work, we use and extend our earlier work on prob-
abilistic A∗ pathfinding algorithm [1]. Further readings on
A∗ pathfinding can be found in [2–4]. Bourg and Seeman
[4] provide other data representation of the A∗ pathfinding.
A very useful article by Pinter [5] discusses methods to mod-
ify a raw path generated from a path search to form a more
convincing traveling path.

An interesting work by Kamphuis et al. [6] attempts to
simulate tactical pathfinding in urban environments for a
small group of characters for games and simulations. The
characters use tactical information such as road maps and
special locations for pathfinding. This work uses common
A∗ data structure and a list of gateway points. The tactical
pathfinding [6] algorithm is able to run in real time with the
help of a preprocessing step. For this work to run in real time,
no preprocessing is needed. With optimization, it can even
run more efficiently.

3. PREVIOUS WORK

This section is an introduction to team AI: Probabilistic
pathfinding. The detail implementation and algorithm can
be found in [1]. Team AI can be shown to exist if teammates
coordinate to trap or capture an opposite team. Figure 1
shows a situation when team AI is not enabled. The enemy
teammates find the shortest path to capture the player.

Figure 2 shows a situation with team AI enabled. The en-
emy teammates surround, trap, and capture the player.

Probabilistic is a modified version of A∗ algorithm with
an addition ability to generate different paths controlled by a
probability variable. The variable controls how different the
paths differ from the shortest path. The paths may not be the
shortest, but they are one of the shorter paths. In general, if
the variable is 0, then probabilistic pathfinding will behave
exactly the same as a usual A∗ pathfinding. If the variable is
set to 1, it will always produce a different path that is not the
shortest. For more details refer to [1]. Figure 3 below shows
an example of an enemy character following different paths
to pursuit the player character.

Figure 2: Situation with team AI.

Figure 3: Different paths generated by probabilistic pathfinding.

Notice that there are light grey squares in Figures 1, 2, and
3. They are actually the gateways of the map. Gateway is nar-
row path in the environment that opens up to a bigger path
before and after the gateway. That is, a gateway is a narrow
link between two spaces. Figure 4 illustrates a gateway.

A blackboard messaging system is developed in [1] to
facilitate communications between characters of a team. In
short, blackboard is a place for characters to “write” use-
ful information and let other teammates read it. After every
teammate read, the message is deleted by the message writer.
Figure 5 shows the concept of a blackboard.

Putting together probabilistic pathfinding, gateways in-
formation, and message system, we achieved what is shown
in Figure 2, the complete working team AI in [1].

4. PATH PLAN GENERATION

In this section, we illustrate the method used to generate
high quality team AI path plans. The main idea is to test the
team AI path plans with a fitness function. The fitness will

Tng C. H. John et al. 3

Unmovable area

Movable area

Gateway

Figure 4: Illustration of a gateway.

I want to
inform B . . .

Entity A

A get
message

A post
message

Blackboard

B can you please move . . .?

Yes I can. On the way.

B post
message

B get
message

I want to
know A . . .

Entity B

Figure 5: Different paths generated by probabilistic pathfinding.

determine whether the team plan is good enough. If the qual-
ity is bad, a new team AI path plan search will be conducted.
Figure 6 shows the flow chart for path plan generation.

This idea is mainly inspired by genetic algorithms [7],
where a fitness function is used to test the quality of the
genes combination. The genes combination is formed based
on its parents, some manipulation, and some randomness.
The better the quality of the combination of genes is, the
higher chance it will survive. The bad quality gene combina-
tions get eliminated. Team AI path plan works the same way.
Different path plans are generated by probabilistic pathfind-
ing. Treat each path plan as a combination of genes. A fitness
function is used to test path plan. If it is not good enough, it
will be eliminated. A new search will be conducted. The cycle
repeats until a satisfactory quality path plan is obtained.

A fitness test can be a simple function that calculates the
distance between two characters. For example in a game, it

Probabilistic
pathfinding

generates
path plans

Pass
Fitness

test

Fail

High quality
path plans

Figure 6: Path plan generation flow chart.

Figure 7: Path with overlapping regions.

is not acceptable for two teammates to get too near to each
other or their paths overlap. An alternative could be for the
team to explore a bigger area of the map to gain resources
and familiarize with the terrain. It all depends on the game
play. Therefore, the fitness test for such a path plan will fail
if two teammates get too close to each other. Fitness test can
also be constraints of the team path plan.

Figure 7 shows a team path plans that are not acceptable
because of overlap paths.

The path of the bottom-right enemy character follows the
shortest path to the player. With team AI enabled, that bot-
tom two characters have to trap the player through different
entrances. However, due to overlap paths constraint, the path
plan is discarded. A new path plan is conducted and shown
in Figure 8. By comparing the plan shown in Figure 7 and
Figure 8, the team path plan in Figure 8 is better than that of
Figure 7 according to overlap constrains.

The following are three ways to test the team paths with
the fitness function. They are illustrated below.

4.1. Iterative test

The fitness test is conducted after the whole team found its
path. If the fitness test fails, a new path plan search will
be conducted. However, the old path plan is saved. This is
to prevent the system from doing too many searches and
slow down the game. The user can specify a number of
maximum searches to perform. If the maximum number of
searches is reached, the path plan with the highest fitness
will be selected. The user may also choose to terminate the

4 International Journal of Computer Games Technology

Figure 8: Path without overlap.

Path QualityPathPlanForWholeTeam() {
Path pathOfWholeTeam;
do {

pathOfWholeTeam = null;
While(TeamPathPlanNotComplete()) {

pathOfWholeTeam + =
ProbabilisticPathForOne();

}
} while(FitnessTest(pathOfWholeTeam)==fail);

Return pathOfWholeTeam;
}

Algorithm 1

search once a path plan passed the first fitness test. This
method is efficient if the fitness test seldom fails on path
plans. This method is the easiest and fastest to implement.
No modification is needed for probabilistic pathfinding gen-
eration algorithm. No modification is needed for team path
planning. The exact algorithm is already shown in Figure 6.
Algorithm 1 shows the pseudo code algorithm.

4.2. Step test

Algorithm 2 shows the pseudo code of the step test.
The fitness test is conducted at every segment of the path.

This is the extreme opposite end of iterative test. On selection
of the next node (using probability pathfinding search), if it
does not pass the fitness test, another node will be chosen in-
stead. This method is good if iterative test always fails and the
number of characters is small. As opposed to iterative test,
modification is needed for probabilistic pathfinding genera-
tion algorithm. The fitness test function has to be included
into the probabilistic pathfinding algorithm.

4.3. Progressive test

The test will be conducted after each character found its
path. This is a middle solution between the iterative test

Path QualityPathPlanForWholeTeam () {
Path pathOfWholeTeamSoFar = null;
While (TeamPathPlanNotComplete ()) {

pathOfWholeTeamSoFar + =
ProbabilisticPathForOne (pathOfWholeTeamSoFar);
}
Return pathOfWholeTeamSoFar;

}
Path ProbabilisticPathForOne (Path
pathOfWholeTeamSoFar) {

Path currentMemberPath = null;
Path temp = null;
do {

currentMemberPath += selectANextNode ();
do {

temp = pathOfWholeTeamSoFar +
currentMemberPath.selectADifferentNode ();

} while (FitnessTest(temp) == fail);
} while

(currentMemberPath.SearchNotComplete ())
return currentMemberPath;

}

Algorithm 2

Path QualityPathPlanForWholeTeam () {
Path pathOfWholeTeamSoFar = null;
Path temp = null;
Path memberPath = null;
do {

do {
memberPath = ProbabilisticPathForOne ();

temp = pathOfWholeTeamSoFar + memberPath;
} while (FitnessTest(temp) == fail)
pathOfWholeTeamSoFar += memberPath;

} while (TeamPathPlanNotComplete ());
Return pathOfWholeTeamSoFar;

}

Algorithm 3

and the step test Table 1. It is based on each character. Af-
ter each character has found its path, the fitness test will
be performed. If the test fails, the character will choose an-
other path. This is the best method if the iterative test and
step test always fail. Modification needs to be made to team
path planning. Fitness test is conducted per character (see
Algorithm 3).

5. OPTIMIZATION

Fitness testing should be cheap if it does not involve cal-
culation of huge set of constraints and variables. The load
of this system comes from A∗ pathfinding. This means that
all optimization techniques applicable to A∗ pathfinding are
here. A common optimization technique for A∗ pathfinding

Tng C. H. John et al. 5

Table 1: Summary fitness function test.

Methods Advantage Best for cases

Iterative test Easiest and fastest to implement
Many high quality solutions

Fitness test mostly passes

Progressive test A general solution that can solve most cases
Average solution

In the middle of iterative test and step test

Step test Guaranteed to have a solution if it exists
Few high quality solutions

Fitness test mostly fails

Figure 9: Combine force strategy.

is search by parts so that the A∗ search execution is spread
out over many frames.

6. ANALYSIS OF STRATEGIES

One useful feature of this team AI path plan generation
method is to generate various useful strategies. These strate-
gies can be applied to first person shooting team games as
AI opponents or enemies. With such interesting strategies,
the replay value of the game increases. The difficulty level in-
creases and it becomes more challenging for player to defeat
the enemies. This section analyzes interesting strategies gen-
erated.

Figure 9 shows the combined force strategy. In this par-
ticular strategy, it is the reverse. Joining teammates together
synergized the power of the enemy team and increased the
chance of success for eliminating the player. From Figure 9,
the enemies join forces along the way and attack the player
together in a single path. The fitness function to such a plan
is to test the path before the destination (the player posi-
tion) and ensure that before the destination all three team-
mates must be together. This is the first constraint. This fit-
ness function will eliminate plans that do not combine forces
before they encounter the player. The second constraint con-
trols can be how early the teammates must combine their
forces before they encounter. The earlier they meet the higher
chance of success in their mission. For this example, the sec-
ond constrained fitness function is not tested. As long they

Figure 10: Trap strategy.

are able to meet before encountering the player, it is a good
strategy.

Figure 10 shows a trap strategy. It is the reverse strategy
of Figure 9. In this case, the team may have higher chance
of success for killing the player. The trap strategy aims to
trap the player at different directions. As far as possible, this
means that the enemy teammates should not have overlap
paths. So there are two constrained fitness functions for this
example. The first constraint means, as far as possible, that
the teammates must not encounter the player in the same
direction. In general, use the pigeonhole theorem [8]. Num-
ber of teammates in same direction cannot be greater than
teammates divided by number of directions. This is to ensure
equal distribution of teammates in each direction. The sec-
ond constraint is to avoid crossing paths of the teammates.
This is to create higher chance of search space if the player
escapes somewhere else.

Figure 11 shows a similar strategy as in Figure 10. How-
ever, a third fitness constraint is applied. The third constraint
is the minimum distance away from the path of teammates.
This is the explore and trap strategy . No doubt, the main ob-
jective of the teammates is to trap and capture the player in
different directions and paths. In addition, the enemy team-
mates have a secondary objective to explore a wider area of
the map. This will facilitate their future plans, actions, or op-
erations. From Figures 10 and 11, with an additional fitness
function, the path generated is different. A secondary objec-
tive can be included with additional constraints.

6 International Journal of Computer Games Technology

Figure 11: Explore and trap strategy.

Figure 12: Combine and split trap strategy.

Figure 12 shows the most interesting strategy. One of the
teammates follows the path of another teammate. To make
analysis easier, the enemy teammate right of the player is
known as E1 and the enemy teammate on top of E1 will be
E2. In this situation, the map can be full of land mines. For
every grid path that a character moves, it needs to remove all
the landmines and make sure it is safe to travel before it can
proceed to the next grid. E1 is ahead of E2 to the player. E2
tries to follow the path of E1 because in that case, E2 does not
need to waste effort removing all landmines. This is the first
constrained fitness function, which is try to overlap paths if
they are along the way.

This is also a trap strategy because all teammates trap
the player from different directions. This should be the sec-
ond constraints. That is, all teammates should try to trap the
player in different directions.

Using these two constrained fitness functions, a very nice
strategy is generated from the team AI path plan method.
The teammates know what they are doing. They work to-
gether and save effort for removing landmines. When they
are near to the player, they split their ways to trap the player.

7. CONCLUSION

This paper proposes a new method inspired by genetic algo-
rithm to generate interesting and high quality path plans for
team AI. Probabilistic pathfinding is used for path search and
blackboard architecture is used for communication between
teammates. The path generation algorithm runs in real time
without any preprocessing. Only the standard graph data and
a list of gateway points are needed for the A∗ search. Control-
lable randomness allows the path generation to be tuned eas-
ily. The dynamic generation of path plans adds replay value
to games. In addition, interesting path plans generated from
this method are able to showcase the AI intelligences of the
game which is a good selling point for games.

This strategic path plan generation method can apply to
other applications that involve path searching. It is best for
applications that have many solutions. A good example is
traffic control system or GPS system. Such systems can plan
the path of vehicles to avoid congestion. Congestion condi-
tion is used as constraints for fitness test to fail. For exam-
ple, a congestion condition can be that the number of vehicle
traveling along a road must be less than a maximum number.
Another good application is goal planning with many differ-
ent ways of achieving the goals. This path plan generation
method can generate good quality path plans to achieve the
goals. A real example is a mission-based game where there are
many ways to solve a mission. Choosing a good plan to solve
the mission can bring out the intelligence of game characters.

The path plan generated using this method is by trial and
error. Generate a path, test it, and discard it if it is not good
enough. A future step to go from here is to generate path
plans by functions or heuristic. An example is to add a fitness
function as a heuristic function to the probability pathfind-
ing algorithm. With the fitness heuristics function, the path
plans generated will always be good. This will prevent all the
wasteful discards of low quality path plans.

REFERENCES

[1] T. C. H. John, E. C. Prakash, and N. S. Chaudhari, “Team AI:
probabilistic pathfinding,” in Proceedings of the International
Conference on Game Research and Development, vol. 223 of
ACM International Conference Proceeding, pp. 191–198, Perth,
Australia, December 2006.

[2] S. Rabin, AI Game Programming Wisdom 2, Charles River Me-
dia, Hingham, Mass, USA, 2004.

[3] M. Buckland, Programming Game AI by Example, Wordware,
Plano, Tex, USA, 2005.

[4] D. M. Bourg and G. Seeman, AI for Game Developers, O’Reilly,
Sebastopol, Calif, USA, 2004.

[5] M. Pinter, “Gamasutra,” http://www.gamasutra.com/features/
20010314/pinter 01.htm.

[6] A. Kamphuis, M. Rook, and M. H. Overmars, “Tactical path
finding in urban environments,” 2005, http://www.cs.uu.nl/
centers/give/movie/index.php.

[7] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Ap-
proach, Prentice Hall, Englewood Cliffs, NJ, USA, 2002.

[8] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper
Saddle River, NJ, USA, 2nd edition, 2000.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 873913, 11 pages
doi:10.1155/2008/873913

Research Article
Hierarchical Pathfinding and AI-Based Learning Approach in
Strategy Game Design

Le Minh Duc, Amandeep Singh Sidhu, and Narendra S. Chaudhari

School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798

Correspondence should be addressed to Le Minh Duc, minhducle@pmail.ntu.edu.sg

Received 10 October 2007; Accepted 26 February 2008

Recommended by Kok Wai Wong

Strategy game and simulation application are an exciting area with many opportunities for study and research. Currently most of
the existing games and simulations apply hard coded rules so the intelligence of the computer generated forces is limited. After
some time, player gets used to the simulation making it less attractive and challenging. It is also costly and tedious to incorporate
new rules for an existing game. The main motivation behind this research project is to improve the quality of artificial intelligence-
(AI-) based on various techniques such as qualitative spatial reasoning (Forbus et al., 2002), near-optimal hierarchical pathfinding
(HPA∗) (Botea et al., 2004), and reinforcement learning (RL) (Sutton and Barto, 1998).

Copyright © 2008 Le Minh Duc et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Although strategy games have been around for above ten
years, AI is still the biggest challenge in games with many
unsolved problems. In this research, RL is chosen to further
develop AI techniques. RL is learning from interaction with
an environment, from the consequences of action, rather
than from explicit teaching. In order to apply RL successfully,
some of qualitative spatial reasoning techniques and HPA∗

are employed to design a better framework. In addition, real-
time strategy (RTS) genre is selected for implementing the
game to demonstrate the result.

Here are the milestones of this research work. Firstly,
a game idea is brainstormed and implemented into a
complete game demo called StrikeXpress with all the basic
characteristics of a RTS. Secondly, the game demo is opti-
mized with more expressive spatial representations, better
communication of intent, better pathfinding, and reusable
strategy libraries [1]. Finally, the RL is applied to the game’s
AI module. The paper is organized as follows. In Section 2,
we review important concepts used in this project and briefly
outline the development platform and tools used to create
the game demo. In Section 3, we discuss the approaches for
pathfinding and qualitative spatial reasoning techniques. We
describe the framework for RL in Section 4 and conclude in
Section 5.

2. LITERATURE REVIEW

2.1. Game design process

Game is made of many components, and game design
process has to go through many steps as discussed in detail
in [2]. However, making a complete commercial game is not
our intention; our main focus is to build a basic game to
demonstrate the research idea. For this purpose, we follow
a simple game design process as shown in Figure 1. In
Concept phase, we have to brainstorm the game story, look for
concept arts, and choose the development platform. Design
phase is mainly to design models, game levels based on
design documents. Components Implementation phase is to
implement components such as user interface, visual and
audio effects, game mechanics, and AI. The next steps are
integration, fine tuning, and testing before launching the game
demo. The most challenging issue is how to implement
machine learning feature nicely without affecting the game
flow. Figure 3 shows the overall project architecture where
the left part is game design process, and the right part is the
framework for RL.

2.2. Qualitative spatial reasoning

Qualitative representations carve up continuous properties
into conceptually meaningful units [3]. Qualitative spatial

2 International Journal of Computer Games Technology

Concept
Design

(GDD & TDD)
Components

implemetation

Game demo
Fine tuning

& testing
Integration

Figure 1: Game design process.

representations carve space into regions [4], based on a
combination of physical and task-specific constraints.These
techniques can provide a more humanlike representation of
space and can help overcome the difficulties of spatial rea-
soning. This will let us build strategy AIs that more effectively
use terrain to achieve their goals, take orders, and find their
way around. Moreover, decoupling the spatial representation
in the AI from the spatial implementation in the game engine
constitutes a large step toward making reusable AIs, driving
down development costs while improving AIs’ subtlety [1].
The approach is discussed in detail in Section 3 together with
pathfinding.

2.3. Near-optimal hierarchical pathfinding

The popular solution for pathfinding is A∗ algorithm.
However, as A∗ plans ahead of time, the computational
effort and size of the search space required to find a path
increase sharply. Hence, pathfinding on large maps can result
in serious performance bottlenecks. Therefore, HPA∗ [5]
is used to overcome the limitations of A∗. The main idea
is to divide and conquer—break down a large task into
smaller specific subtasks. HPA∗ will be discussed in detail in
Section 3.

2.4. Hierarchal AI-based learning

In Figure 2, we use simple American hierarchal military
structure to demonstrate the idea. An Army Lieutenant
typically leads a platoon-size element (16 to 44 soldiers) to
perform specific tasks given by higher commissioned officer
such as Captain, Major, Colonel, or General. Similarly in
the game, platoon represents the lowest level agents (LLA-)
which perform real actions like move, run, shoot, and guard.
Lieutenant represents the middle level agent (MLA) which
decides the best strategy for the platoon such as to find
the optimal paths, split the platoon into subgroups to move
on different paths, decide the suitable time for engagement,
retreat or call for reinforcement, and report results to higher
officer. Higher commissioned officer represents the highest
level agent (HLA) in the game that uses RL to learn from
the environment and the consequences of actions performed
by lower level agents to decide next actions such as to send
forces to engage the enemy at coordinate (x, y, z), to agree or

Higher commissioned officer
1
∗

Reinforcement learning
Hightest level

Strategic planning &
give tasks to lower level

Path-finding
Middle level

Decide the best actions to
accomplish tasks given

Lieutenant
1

1

Action perform
Lowest level

Do actions (moving)
as instructions

Platoon

Figure 2: AI-based learning structure.

reject to send reinforcement, and to set up a series of strategic
actions.

We notice that LLA is the easiest to implement as most of
the actions are primitive and can be taken care of them by the
game engine’s built-in functions. HLA can be realized based
on proven and established RL algorithm, provided that there
is sufficient information for decision making—as shown in
Figure 3; machine learning structure is already designed for
RL. It is realized that the most difficult and bottleneck part
is MLA where the game can be slow down noticeably, or
the AI can become stupid due to improper, nonoptimized
pathfinding, and data structure. Besides, most of the strategic
actions planed by HLA involve some kind of movement.
Without an efficient MLA, RL may not work properly.

2.5. Development tools

The game engine used to create game demo, StrikeXpress, is
3D Gamestudio (http://www.3dgamestudio.com/). MySQL
is used for database storage (http://www.mysql.com/), and
Matlab is used for running RL function (http://www
.mathworks.com/products/matlab/). In addition, to connect
between these tools, we must use some DLL extensions
supported by 3D Gamestudio which is basically an exter-
nal library that adds functions to the game engine. A piece
of code written in DLL form may run faster than that writ-
ten in game scripting language due to its precompilation.
Theoretically everything, MP3 or MOD players, a phys-
ics engine, another 3D engine, or even another scripting
language, can be added to the engine this way. Therefore,
in order to make connection between the game engine and
MySQL, we use a DLL extension called A6mySQL which
is written in C++ (http://www.plants4games.com/hmpsplit/
files/A6MySQL Public Release.rar).

Le Minh Duc et al. 3

Peripherals
controls

Game
logic

AI

Models
design

Sound &
visual effect

Exercise
database

API

1 n

1 1

1 1

AI agent

Rule
editor

Machine
learning

Learning module

SQL query

Result

New/modified
rules

New/modified
rules

Rule database

Figure 3: The overall project architecture.

To make connection between MySQL and Matlab, the
plugin created by Robert Almgren is used (http://mmf
.utoronto.ca/resrchres/mysql/).

3. PATHFINDING APPROACHES

Pathfinding on RTS games is complex because the environ-
ment is dynamic; there are lots of units which continuously
move around the map and its scope equals the size of
the level. This section is to demonstrate the use of two
pathfinding approaches in the game: Points of visibility [6]
and HPA∗.

3.1. Points of visibility

Points of Visibility algorithm uses waypoints scattered
around the level. A set of waypoints are connected together
to create a network of movement directions. As shown in
Figure 4, this network alone is sufficiently enough to guide
a unit to transverse every obvious location of the map. In
this approach, for simplicity, all the waypoints are placed
manually, but the connections between those waypoints are
done automatically like in Figure 5. How the waypoint is
placed will make or break the underlying pathfinding code.
The idea is to build a connected graph which will visit all
places of our level. In human architecture, particularly tight
corridors and other areas where the environment constrains
the agents’ movement into straight lines, waypoints should
be placed in the middle of rooms and hallways, away from
corners to avoid the wall-hugging issues. However, in large
rooms and open terrain, waypoints should be placed at the
corners of obstacles in a game world with edges between
them. It will help generate paths almost identical to the
optimal one.

In the graph making process, we select one entity to be
responsible for creating and loading the graph data file. What
the graph making process actually does is to let the selected
entity move from one waypoint to another. A waypoint A is
said to be connected with waypoint B if the selected entity

Figure 4: A path shown in Debug mode.

is able to walk from A to B in straight line. The size of this
selected entity will be considered when creating the graph so
we must choose it wisely. After the graph making process is
completed, all the connections will be stored in a data file.
In the game, when pathfinding is invoked, it will process on
the graph loaded from the file, and we can use any search
algorithms to find the way. In this project, for simplicity, we
deploy Dijkstra search algorithm.

Advantages

Points of Visibility are being used today by more than 60%
of modern games. It is simple and efficient thank to node-
based structure. It is particularly useful when the number of
obstacles is relatively small and they have a convex polygonal
shape. When encountering slopes, hills, and stairs, we will
get better results if placing a waypoint every short distance
to fully cover it. Also, the graph does not need to be fully
connected. The algorithm can handle the case where a level
is split into two parts, and the player teleports from one
part to the other. We can apply any search algorithm to this
approach. We also can smooth the paths to make it look

4 International Journal of Computer Games Technology

Figure 5: Waypoints placed manually and connections generated
automatically.

Figure 6: Transform terrain to large grid [screenshot taken from
Warcraft III map editor].

more natural. The graph making process is also useful for
debugging as all the waypoints and connections are displayed
explicitly like Figure 5.

Disadvantages

The efficiency of the method decreases when many obstacles
are present and/or their shapes are not a convex polygon
or the level is open terrain with dense collection of small
size obstacles. Modeling such a topology with this approach
would result in a large graph with short edges. Therefore, the
key idea of traveling long distances in a single step would
not be efficiently exploited. The need for algorithmic or
designer assistance to create the graph is also troublesome.
In addition, the movement needs a lot of adjustment to be
realistic, and the complexity increases fast when dealing with
multiagents.

3.2. The HPA∗ algorithm

This technique is highly recommended based on its efficiency
and flexibility to handle both random and real-game maps
with a dynamically changing environment using no domain-

NW N NE

W E

SW S SE

Figure 7: Representation of the first 8 neighbor cells.

Figure 8: More expressive representation level grid.

specific knowledge. It is also simple and easy to implement. If
desired, more sophisticated, domain-specific algorithms can
be plugged in to increase the performance.

3.2.1. HPA∗ preprocessing phase (offline)

Transform the level to large grid

The entire level is transformed into large grid with equal
cells’ size as shown in Figure 6. All the cells will be scanned.
From all the accessible cells, we will check the height and any
special values of each cell to determine its cost to use in A∗

algorithm. Hence, each cell can be treated as a node similar
to waypoint in previous algorithm. All the cells’ information
will be put into an array for further processing.

Prelink the cell array

After transforming the level to large grid, we scan through
each cell to see what surrounding cells can actually link
to (NE, N, NW, E, W, SE, S, SW) as shown in Figure 7. For a
surface with many cliffs, a cell on a cliff may not be reachable
from its neighbor if the slope is too great. As a result, the
level is transformed from the original in Figure 6 to more
expressive representation grid like in Figure 8 where the black
cell is totally inaccessible and white cell is accessible by some
of its neighbors. The cost of each white cell may be different.

Le Minh Duc et al. 5

Figure 9: Grid to 16 subgrids.

Figure 10: Abstract subgrid connectivity graph.

Divide a large grid into smaller clusters and find entrances
between these clusters

The grid in Figure 8 can be divided into subgrids (clusters) in
many ways, as shown in Figure 9. An entrance is a maximal
obstacle-free segment along the common border of two
adjacent clusters c1 and c2 [5]. Entrances are obtained for
each subgrid in the same manner as larger grid and the red
lines connect the resulting entrance nodes.

Build abstract subgrid connectivity graph

Transitions are used to build the abstract problem graph.
For each transition, we define two nodes in the abstract
graph and an edge that links them. The edge represents a
transition between two clusters is called interedge. Each pair
of nodes inside a cluster is linked by an edge called intraedge.
The length of an intraedge is computed by searching for
an optimal path inside the cluster area. We only cache
distances between nodes and discard the actual optimal paths
corresponding to these distances. If desired, the paths can
also be stored, for the price of more memory usage [5]. After
building the abstract graph like Figure 10, this graph is saved
into a precompiled node list file for that level.

3.2.2. Pathfinding phase (online)

Add S and G to abstract graph and use A∗ search

When the game is loaded, we will also load its precompiled
node list. The first phase of the online search connects the
starting position S to the border of the cluster containing S

Figure 11: Use A∗ to find path from S to G with cost 29.

G

S

Figure 12: Path refinement with cost 29.

by temporarily inserting S into the abstract graph. Similarly,
connecting the goal position G to its cluster border is handled
by inserting G into the abstract graph. After S and G have
been added, A∗ is used to search for a path between S and G
in the abstract graph. This is the most important part of the
online search where heapsort and heap structure are used.
It provides an abstract path, the actual moves from S to the
border of S’s cluster, the abstract path to G’s cluster, and the
actual moves from the border of G’s cluster to G [5] as shown
in Figure 11. In case S and G change for each new search, the
cost of inserting S and G is added to the total cost of finding
a solution. After a path is found, we remove S and G from
the graph. Consider the case when many units have to find
a path to the same goal, we insert G once and reuse it. If
among these units there are some units close to each other,
this group of units can share the same search operation. In
the case the destination can be reached without obstacles
in the way, a simple linear path should be chosen instead.
The cost of inserting G is amortized over several searches. In
general, a cache can be used to store connection information
for popular start and goal nodes.

Refine path as needed

Path refinement translates an abstract path into a low-level
path. Each cluster crossing in the abstract path is replaced
by an equivalent sequence of low-level moves as shown in
Figure 12. If the cluster preprocessing cached these move

6 International Journal of Computer Games Technology

G

S

Figure 13: Path smoothing with cost 27.

sequences attached to the intraedges, then refinement is
simply a table look-up. Otherwise, we perform small searches
(using A∗) inside each cluster along the abstract path to
rediscover the optimal local paths. Consider a domain where
dynamic changes occur frequently, after finding an abstract
path, we can refine it gradually as the character navigates
toward the goal. If the current abstract path becomes invalid,
the agent discards it and searches for another abstract path.
There is no need to refine the whole abstract path in advance
[5].

Apply smoothing

The topological abstraction phase defines only one transition
point per entrance and gives up the optimality of the
computed solutions. Solutions are optimal in the abstract
graph but not necessarily in the initial problem graph.
Therefore, we perform a postprocessing phase for path
smoothing to improve the solution quality. The main idea
is to replace local suboptimal parts of the solution by straight
lines. Starting from one end of the solution, for each cell,
we check whether we can reach a subsequent cell in the
path in a straight line. If this happens, then the linear path
between the two cells replaces the initial suboptimal sequence
between these cells [5]. This step could be done one frame
after applying A∗. If the entity begins to walk in the same
frame as the proper A∗ or one frame later, it can hardly be
recognized by the player.

3.2.3. Multilevel hierarchy

Additional levels in the hierarchy can reduce the search effort,
especially for large mazes. In a multilevel graph, nodes and
edges have labels showing their levels in the abstraction
hierarchy. Pathfinding is performed using a combination of
small searches at various abstraction levels. We build each
new level on top of the existing structure. The clusters for
level l are called l-clusters [5]. To search for a path between S
and G, we search only at the highest abstraction level and will
always find a solution, assuming that one exists. The result of
this search is a sequence of nodes at the highest abstraction
level. If desired, the abstract path can repeatedly be refined
until the low-level solution is obtained.

(a) (b)

Figure 14: Multi-level abstract graphs with 16 “1-clusters” and 4
“2-clusters”.

3.2.4. Data structure representation

Looking at HPA∗, we notice that the number of search
operations in one pathfinding can be up-to l + 1 times:
one search for the highest abstraction level and l searches
for recursive path refinement. Even when caching and unit
grouping are used, HPA∗ is still slow if the A∗ search
operation is not efficient. To optimize A∗ search, we focus
on improving the data structure representation.

Node and cell structure

The elements for pathfinding in this approach are nodes (for
multilevel abstract graphs) and cells (for low-level graph).
For simplicity, we can call these elements as cells. In A∗

search, the algorithm has the choice of connected cells from
the current entity position. When it decides to go to a
direction, it can choose again out of its connected cells and
can calculate again. It goes on and on until one of the cells
leads direct to the goal. Once the search reaches G, the
algorithm has to trace back to S. Heuristic that could help
us with probabilities, but an exact statement about which
cells lead to the goal could not be made. That means all
the cells have to be saved and to be recallable every time.
Alternatively, we could search a path from G to S so that the
path can be used immediately. Otherwise, the saved path has
to be reversed. As the number of cells is large, it would be
useful when our algorithm could process as much cells as
possible to find even longer and complex ways. Here is some
information a cell must contain.

(i) The position of the cell to calculate the distance to G,
we may take the coordinate of its center point.

(ii) The heuristic to determine how probable it is to reach
G from the current state of position.

(iii) A reference to the previous (parent) cell to trace back.

(iv) A unique ID: an individual number of identification
for access every cell later on. It has to be approach-
able.

For example, with the low-level graph, every terrain
consists of vertices which are numbered consecutively so that
each vertex has its own unique number. Besides, most of the

Le Minh Duc et al. 7

engines have function to access the vertex directly based on
its number. Therefore, the solution is to assign the unique
number of the cell’s center vertex to the cell’s unique ID.
There are alternative ways when we do not want to analyze
the terrain in our game. However, we believe that pathfinding
based on analyzing the terrain has better quality. Here is an
example of defining cell:

CELL[ID] = cell center vertex number;

CELL[waycosts] = PARENT CELL[waycosts] + 1;

CELL[cellcosts] = CELL[waycosts]

+ distance(current pos, goal pos);

CELL[parent] = parent cell ID.

The information about the position of the cell can be
found out through cell ID. Every time new cells get created,
the waycosts increases by 1. The sum out of many heuristic
values gets normally summarized as cellcosts. As an array
represents a single cell, multidimensional array is used to
represent the level grid. On the basis of the cellcosts, the
algorithm has to go for a cell with the lowest cellcosts inside
the array where the pathfinding continues. It would be very
ineffective to let the algorithm search again in its saved cells
for the best one since it already searched and saved the cells
that lead to G. It would be more luxurious if the array with
the saved cells is prearranged so that the presently cheapest
cell is always at the first array entry. Among all the sort
algorithms, the heapsort is the most efficient.

Heapsort

According to Williams [7], who invented Heapsort and the
heap data structure, Heapsort is a combination of tree sort
developed by Floyd [8] and tournament sort described,
for instance, by Iverson [[9], Section 6.4] (see also [10]).
A heap is a binary tree (a tree structure, whose knots
have only two edges), whose roots/knots have a lesser (or
greater, depending on heap attribute) value than their direct
succession roots/knots. The heap attribute is determined by
the heap order. When roots/knots have a lesser value than
their successors, it is an increasing heap order (the deeper
you go down the binary tree, the greater the value gets).

At a heap with increasing heap order like the example
in Figure 15, the smallest value of this data structure always
inside the root that is pretty practical because our array
with the cell entries could sort the cellcosts that way—the
presently cheapest cell (the cell with the least cell costs)
would always be at the root. To represent the array as a
heap structure, first, we put the first cell at CELL LIST array
on position CELL LIST[1]; then, the successors of a cell
in CELL LIST[i] are saved at the positions CELL LIST[2∗i]
and CELL LIST[2∗i + 1]. Reversely, the parent cell can be
found by dividing the position of the current cell by 2:
CELL LIST[i/2]. In array shape, a heap would look like
Figure 16.

We use the heap from the start as a data structure. The
heap is not empty at the beginning; the heapsort sorts a new
value directly after the entry. Also, changing and deleting

1

2 6

5 3 20 8

24 18 10 14 22 25 26 15

32

Figure 15: A heap with an increasing heap-order.

an entry (and the combined rearrangement) have to be
managed by the heapsort. A heap that is used in such a kind
of heapsort is called priority queue. The priority lays on the
cellcosts that shall be possibly low. To add new cell or modify
the value of a cell lesser, a procedure called up-heap [7] is
used. The new cell is added as leafs at the end of the array,
and the heapsort starts bottom-up. In case our defined heap
order is overridden, the modified value of a cell is greater
than the value of one of its child nodes, we have to use down-
heap [7] procedure, sort top-down after the up-heap. We may
optimize the sort by using other variants of heapsort such as
weak heapsort [11] or ultimate heapsort [12].

3.2.5. Experimental results

In [5], experiments were performed on a set of 120 maps
extracted from BioWare’s game, BALDUR’S GATE, varying
in size from 50 × 50 to 320 × 320. For each map, 100
searches were run using randomly generated S and G pairs
where a valid path between the two locations existed. The
experimental results show a great reduction of the search
effort. Compared to a highly-optimized A∗, HPA∗ is shown
to be up to 10 times faster, while finding paths that are within
1% of optimal.

Figure 18 compares low-level A∗ to abstract search on
hierarchies with the maximal level set to 1, 2, and 3. The
left graph shows the number of expanded nodes and the
right graph shows the time. For hierarchical search, the total
effort is displayed, which includes inserting S and G into the
graph, searching at the highest level and refining the path.
The real effort can be smaller since the cost of inserting S or
G can be amortized for many searches, and path refinement
is not always necessary. The graphs show that, when complete
processing is necessary, the first abstraction level is good
enough for the map sizes that we used in this experiment.
We assume that, for larger maps, the benefits of more levels
would be more significant. The complexity reduction can
become larger than the overhead for adding the level. More
levels are also useful when path refinement is not necessary,
and S or G can be used for several searches. Figure 19 shows
how the total effort for hierarchical search is composed of the

8 International Journal of Computer Games Technology

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10][11][12][13][14][15][16][17][18][19][20]

1 2 6 5 3 20 8 24 18 10 14 22 25 15 26 32 · · ·

Root 1st layer 2nd layer 3rd layer 4th layer

Figure 16: Representation of a heap in an array.

abstract effort, the effort for inserting S and G, and the effort
for solution refinement. The cost for finding an abstract path
is the sum of only the main cost and the cost for inserting
S and G. When S or G is reused for many searches, only
part of this cost counts for the abstract cost of a problem.
Considering these, the figure shows that finding an abstract
path becomes easier in hierarchies with more levels.

4. AI-BASED LEARNING

In Section 3, we discuss the approach to pathfinding used
in MLA (Figure 2). In this section, we describe an AI-based
learning design (Figure 3) to be used in all the agents. The
purpose of AI-based learning is to capture and consolidate
expert knowledge to achieve realistic game, evaluate the
scenarios and strategies with greater accuracy. It will help the
player experience increasing level of intelligence with every
interaction in the game.

As RL is rule based, all the rules of the game will be
extracted and stored in a Rule Database. During the game
play, HLA would query the rules through Rule API from
time to time. These rules will be used by computer’s forces to
play against the player. The detailed environment parameters
and the result of action performed by agents are captured
and logged in an Exercise Database which will be used for
RL. In an offline situation where the game is not running,
Machine Learning module analyzes the data from the Exercise
Database based on RL functions and creates new rules or
modifies existing rules for Rule Database. The modification
of rules will increase AI gradually. It means that the level of
difficulty rises up, and the player will find it harder to beat
the computer [13]. Another function for the offline situation
is the Rule Editor that has the capabilities to display, create,
modify, and delete rules.

4.1. Rule API and rule database

Rule API is the interface for all operations. The most
important functions are to attach Rule Database and to
query the rules. When the game is loaded, each entity will
be attached to its corresponding rule database through its
agent.Subsequently, the entities can query for the rules in
the rule database.The rules have to decide the actions to
be carried out by the entities based on the information
provided. Each query of the rule database will return one
action. After the execution of that action, query the database
for the next action will base on new information. As querying
the database may become speed bottleneck, we may cache
the entire rule database if the memory is large enough.

Rule editor

Display rule Query for a rule

Edit rule

Create rule

Delete rule

∗

1
∗

111

∗

∗

Save a rule

Delete a rule
Expert �Uses�

�Uses�

�Uses�

�Uses�

�Uses�

Figure 17: Use case for rule editor.

Otherwise, we only cache some of the frequently accessed
rules.

In Rule Database , there are rules to define the mission
of the forces which is the overall objective of HLA. This
mission contains a set of submissions (SM) that is to be
carried out by lower agents in order to accomplish the
mission. For each command or overall mission, there is a set
of SM that would be directly related to the mission stored
in the database. The SM has to be assigned to forces to
execute or complete the task. Information regarding the SM,
for example, parameters, type of forces to be assigned, and
priorities will also be provided in the database. Hence, there
will be a rule database for HLA to assign the SM to forces.
The assignment is under these conditions: after a main
command (or overall mission) is given, a force has finished
its assigned SM, new force is created, or a situation occurs, for
example, enemy situation, operational situation, or obstacle
situation. In the situation awareness, the mission, situation
and its parameters are required by the rules. When a force
encounters a situation, it will immediately react based on its
rules of situation awareness. Hence, a rule database for MLA
and LLA would also be necessary to respond accordingly. At
the same time, the encountered situation and actions taken
will also be reported to HLA which would then evaluate the
situation and react appropriately. New SM can be reassigned
to other forces whenever necessary. If the situation is not
resolvable by the rules, user intervention may be requested.

4.2. AI agent

Every entity that is said to have AI will have an AI agent
assigned to it. At LLA, AI called unit agent is used to control

Le Minh Duc et al. 9

100 200 300 400

Solution length

0

2000

4000

6000

8000

10000

12000

N
u

m
be

r
of

n
od

es

Low-level
1-level abstract

2-level abstract
3-level abstract

Total expanded nodes

(a)

100 200 300 400

Solution length

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

To
ta

lC
P

U
ti

m
e

(s
ec

s)

Low-level
1-level abstract

2-level abstract
3-level abstract

CPU time

(b)

Figure 18: Low-level A∗ versus hierarchical pathfinding.

100 200 300 400 500

Solution length

0

500

1000

1500

N
u

m
be

r
of

n
od

es

1-level abstract

(a)

100 200 300 400 500

Solution length

0

500

1000

1500

N
u

m
be

r
of

n
od

es

2-level abstract

(b)

100 200 300 400 500

Solution length

0

500

1000

1500

N
u

m
be

r
of

n
od

es

3-level abstract

(c)

Figure 19: The effort for hierarchical search in hierarchies with one abstract level, two abstract levels, and three abstract levels. We show in
what proportion the main effort, the SG effort, and the refinement effort contribute to the total effort. The gray part at the bottom of a data
bar represents the main effort. The dark part in the middle is the SG effort. The white part at the top is the refinement effort.

detailed behaviors of different units. Unit agent is attached
to every unit entity and consisted of various state machines
to handle the detail movement and strategic reactions when
it carries on the task given. Detail movement of an entity
is determined by the game mechanics such as stand, guard,
run, shoot, and throw grenade. Strategic reactions consist of
individual reaction and group reaction.

4.2.1. Individual reaction

The unit agent will consider its survival probability as well as
the present of enemy force in its line of sight to act according
to the situation.For example, consider the case when a unit
is at state stand, it detects enemy within its range of fire. If
no task is given by higher agent, the unit agent has choices to
50% switch to state shoot, or to 30% switch to state retreat,
or to 20% remain in state stand. The probability parameters
are specified in the rule database and are loaded into the
game at initialization process. We notice that game difficulty
level could be adjusted simply based on some factors that
affect the “skill” of the unit agent. For example, the reaction

time, update cycle speed, health level, fire power of the enemy
forces could be increased to add in challenges. The opponent
could also have a “cheat” factor, that is, it will be given more
units than the player.

4.2.2. Group reaction

Agents will also be attached to capture the hierarchy, that is,
battalion, company, and the group behaviors. These agents
will communicate with unit agents to get the status of
different units. This status will help the hierarchical agent
to make a better decision. For example, group formation in
movement is useful to ensure that all the units keep their
original formations upon reaching their targets. To achieve
group formation, we use a simple approach: calculate the
center position of all the selected units (a point that is
roughly the middle of where they currently are). From that
point, we get the offset for each unit, for example, if the
center point is at [5,1] and one unit is at [6,1] then the offset
would be [1,0]. The offset is, then, added to the destination
point and that would be the point to move the selected

10 International Journal of Computer Games Technology

Q(s, a) = (1− α)Q(s, a) + α(r + γmax(Q(s′, a′)))

The learning rate The discount rate

The current Q-value for the state s and action a,
the Q-value represents how good it thinks that
action is to take when in that state

Figure 20

unit to. This would ensure all the units keep their original
formations upon reaching their targets.

Another example is coordinated behavior in the enemy
situation. In case our units surround the enemies, we want
them to shoot the enemies without shooting at each other.
Some of the games make it simple by letting the bullet go
through ally to reach the enemies. We also can implement a
small procedure to avoid friend’s line of fire. In the enemy
engagement, if a unit has line of sight to the target, it can
shoot immediately. Otherwise, if obstructing object is an ally,
request him to move away. If the ally is busy, or obstruction
is not an ally, the unit moves itself to another place until it
has the line of sight to the target. Another possible solution
would be flocking which lets units repulse from each other
and arrives at different offsets from the destination. However,
we believe that flocking is overkill for RTS game, unless we
really want to mimic the behavior of flocks.

4.3. Rule editor

The main responsibility of Rule editor is to edit the rule
database. It has functions to add, delete, and modify any
rule. It follows the model-view-controller design pattern.
The Editor facilitates to change the state of the database
on receiving instructions. In Figure 17, Display Rule allows
the experts to view the rules displayed sequentially within a
rule database. The expert has the ability to skip the current
database and view the rules from another one. Edit Rule is to
edit an existing rule. Create Rule allows the expert to create
new rule from scratch. The expert, then, key-in or select the
desired values for the parameters as well as the actions or
output the rule would return. The completed rule will be
stored in respective rule database. While the existing rules
are displayed, the expert is given the option to delete the rule
using Delete Rule.

4.4. Machine learning

This module is used to learn from environments, scenar-
ios, and unsuccessful attempts. Based on the information
obtained, it would try to extract new rules. The module
checks with the rule database to ensure that the learnt rules
are not present in the database. Newly learnt rules would be
saved to the database [13].

RL function, Q-Learning [14], uses “rewards” and “pun-
ishments” so that an AI agent will adapt and learn appro-
priate behaviors under some conditions. In the experience

tuple (s, a, r, s′), s is the start state, a is the action taken, r
is the reinforcement value, and s′ is the resulting state. The
exploration strategy is to select the action with the highest
Q-value from the current state.

There are two types of learning: supervised learning
and unsupervised learning [15]. Supervised Learning (SL) is
when machine learns from the user through user’s input or
adjustment of parameters. SL occurs when the rules fail to
decide on an appropriate reaction to a situation and request
for user’s intervention or when the user decides to intervene.
This intervention and its result will be logged in the Exercise
Database for the offline learning. During the offline learning
process, the effectiveness of user intervention is analyzed, and
a new rule is generated.

Unsupervised Learning (UL) , in contrast, is to learn new
rules without the knowledge or inputs from the user. The
learning would be based on the existing set of rules to either
generate new rules or enhance the old one. Some rules are
specific to be fired by certain situations; some are more
generic to be fired by a larger number of situations. The
situations that would fire the rules could interest or subset
with another one. This may result in several possible rules
to be fired for one situation. Hence, these possible rules for
a situation need to be prioritized to obtain the most efficient
outcome. For example, the assignment of SM to forces can be
conducted in several ways or sequences, and UL is to learn
the best way to assign the SM. Each possible assignment of
forces is valued with a priority or probabilities. Usually the
possible assignment with the highest value is selected. If a
sequence of assignment fails in a mission, the probabilities
of this sequence will be decreased accordingly to reflect the
failure. On the other hand, the probability would increase
for a successful mission. Similar concept is also applied to
the rules that respond to situations. Rules will be rewarded
or punished based on the successful or failure executions of
the reactions.

5. CONCLUSIONS

This research work is from the development of the basic
game with simple AI modules, to the research of the higher-
level concepts—advanced AI-based learning algorithms.
Using the game demo as an effective tool, we implement var-
ious game AI techniques such as finite state machine, group
behaviors, and pathfinding algorithms. We, then, work on
finding the optimal combination of efficient techniques that
are easy to implement and generic enough to be applicable
in many games with little implementation changes. Based
on this combination, we design the architecture for RL and
propose the framework for future developments.

Our approach can have any number of hierarchical
levels, making it scalable for large problem spaces. When
the problem map is large, a larger number of levels can be
the answer for reducing the search effort, for the price of
more storage and preprocessing time. We use no application
specific knowledge and apply the technique independently
of the map properties. We handle variable cost terrains
and various topology types such as forests, open areas with

Le Minh Duc et al. 11

obstacles of any shape, or building interiors without any
implementation changes.

This research work has exposed us to new technologies
and to current trends in computer game industry. We have
explored some of game AI techniques and evaluated their
pros and cons as part of the objectives. These technologies
have shown to possess great potential in penetrating into the
market, and there is plenty of room for improvement.

In the future, we will continue evaluating the proposed
RL architecture to prove its effectiveness. We will also explore
on some advanced techniques such as fuzzy logic, Bayesian
networks, and neural networks, and will modify them to use
in strategic game domain. Using these techniques, we will
focus on tactical AI, particularly focusing on pathfinding,
tactic analysis, and tactical representation. In addition, group
dynamics and coordinated behavior are also very interesting
to spend time on. At the same time, the underlying cognitive
architecture needs to be expanded to make the games even
more realistic.

REFERENCES

[1] K. D. Forbus, J. V. Mahoney, and K. Dill, “How qualitative
spatial reasoning can improve strategy game AIs,” IEEE
Intelligent Systems, vol. 17, no. 4, pp. 25–30, 2002.

[2] E. Bethke, Game Development and Production, Wordware,
Plano, Tex, USA, 2003.

[3] K. Forbus, “Qualitative reasoning,” in CRC Handbook of
Computer Science and Engineering, pp. 715–733, CRC Press,
Boca Raton, Fla, USA, 1996.

[4] A. G. Cohn, “Qualitative spatial representation and reasoning
techniques,” in Proceedings of the 21st Annual German Confer-
ence on Artificial Intelligence: Advances in Artificial Intelligence
(KI ’97), vol. 1303 of Lecture Notes in Computer Science, pp.
1–30, Springer, Freiburg, Germany, September 1997.

[5] A. Botea, M. Müller, and J. Schaeffer, “Near optimal hierarchi-
cal path-finding,” Journal of Game Development, vol. 1, no. 1,
pp. 7–28, 2004.

[6] S. Rabin, “A∗ speed optimizations,” in Game Programming
Gems, M. DeLoura, Ed., pp. 272–287, Charles River Media,
Rockland, Mass, USA, 2000.

[7] J. W. J. Williams, “Algorithm 232: heapsort,” Communications
of the ACM, vol. 7, no. 6, pp. 347–348, 1964.

[8] R. W. Floyd, “Algorithm 113: treesort,” Communications of the
ACM, vol. 5, no. 8, p. 434, 1962.

[9] k. E. Iverson, “A programming Language,” John Wiley and
Sons, New York, NY, USA, 1962.

[10] E. H. Friend, “Sorting on electronic computer systems,”
Journal of the ACM, vol. 3, no. 3, pp. 134–168, 1956.

[11] R. D. Dutton, “Weak-heap sort,” BIT Numerical Mathematics,
vol. 33, no. 3, pp. 372–381, 1993.

[12] J. Katajainen, “The ultimate heapsort,” Australian Computer
Science Communications, vol. 20, no. 3, pp. 87–95, 1995.

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, MIT Press, Cambridge, Mass, USA, 1998.

[14] I. Millington, Artificial Intelligence for Games, Morgan Kauf-
mann, San Mateo, Calif, USA, 2006.

[15] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, Machine
Learning, Neural and Statistical Classification, Prentice Hall,
Upper Saddle River, NJ, USA, 1994.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 432365, 18 pages
doi:10.1155/2008/432365

Research Article
A Hybrid Fuzzy ANN System for Agent Adaptation in
a First Person Shooter

Abdennour El Rhalibi and Madjid Merabti

School of Computing and Mathematical Sciences, Liverpool John Moores University, James Parsons Building,
Byrom Street, L3 3AF, Liverpool, UK

Correspondence should be addressed to Abdennour El Rhalibi, a.elrhalibi@ljmu.ac.uk

Received 31 July 2007; Accepted 1 November 2007

Recommended by Kok Wai Wong

The aim of developing an agent, that is able to adapt its actions in response to their effectiveness within the game, provides the
basis for the research presented in this paper. It investigates how adaptation can be applied through the use of a hybrid of AI tech-
nologies. The system developed uses the predefined behaviours of a finite-state machine and fuzzy logic system combined with
the learning capabilities of a neural computing. The system adapts specific behaviours that are central to the performance of the
bot (a computer-controlled player that simulates a human opponent) in the game with the paper’s main focus being on that of the
weapon selection behaviour, selecting the best weapon for the current situation. As a development platform, the project makes use
of the Quake 3 Arena engine, modifying the original bot AI to integrate the adaptive technologies.

Copyright © 2008 A. El Rhalibi and M. Merabti. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

With graphics at an almost photorealistic level and complex
physics systems becoming commonplace, AI [1] is becoming
more important in providing realism in games.In the past,
game AI has used techniques that are suited to the restricted
computational power available to it, but which still produced
believable, but limited, nonplayer characters (NPCs) artifi-
cial intelligence (AI) technologies such as finite state ma-
chines (FSM) and rule-based systems (RBS). These tech-
niques were also used due to their relative simplicity which
did not require much development time to implement and
were easy to debug, especially as the programmers generally
did not specialise in AI.

With the increase in computational power available for
AI, more complex techniques can be incorporated into
games creating more complex behaviours for NPCs. The in-
creasing importance of AI in games has meant that spe-
cialised AI programmers are becoming part of development
teams bringing techniques from academia [2–5]. One of the
areas of AI which has gathered interest is that of using ma-
chine learning techniques to create more complex NPC be-
haviours.

Most players develop styles of play that take advantage of
certain weaknesses inherent in the NPC AI that become ap-
parent as they become more proficient at the game. Once dis-
covered, these deficiencies in the preprogrammed AI mean
the competitive edge is lost making the player lose interest in
the now all too easy game. If the NPC developed new tactics,
adapting to the players style, uncovered their hiding places,
or even discovered tactics that exploited weaknesses in the
players’ play, then this would add immeasurably to the en-
joyment and prolong the life of the game [6–8]. The game
should be tailored to provide a variety of challenges, and in-
creasing the level of difficulty to deal with NPCs. This should
of course be adjusted to the need of the player and be pro-
vided as a way to increase difficulty level in the gameplay
without introducing unbeatable NPC which could lead to
player’s frustration. We are aware that it is a difficult issue to
adjust the balance gameplay between performance and playa-
bility, and it will be the role of the game designer to deal with
it. We are just interested in this paper in increasing NPCs’
performance and adaptation.

This paper describes a method of implementing a first-
person shooter (FPS) bot which uses machine learning [9]
to adapt its behaviour to the playing style of its opponent. It

2 International Journal of Computer Games Technology

0 20.1 100
0

0.17

0.6

1 Near death Good Excellent

Figure 1: Sets defining the linguistic variable “health.”

uses a combination of small, focussed, artificial neural tech-
niques and predefined behaviours that allow the bot to ex-
hibit changes in those behaviours to compensate for differ-
ent player styles. For the purposes of this paper, only a single
behaviour is focused on, that of weapon selection, although,
in order to significantly adapt the play of the bot, multiple
behaviours would use the system during a match.

2. FOUNDATION TECHNOLOGIES

2.1. Fuzzy logic

Whereas traditional logic describes concepts in terms of
“true” or “false,” fuzzy logic provides a way of describing val-
ues by the degree with which they correspond to a certain cat-
egory within the concept, called DOM (the degree of mem-
bership) in a set. Linguistic variables are collections of sets
that represent real concepts, for example the variable health
could be made up of the sets near death, good, and excellent,
as shown in Figure 1 [3, 10, 11].

Fuzzy logic provides a way of combining more than one
variable to give a single output value, making decisions based
on multiple criteria. For example, the aggression of a game
character based on its health and the distance to the enemy.

Using fuzzy logic to derive decisions based on the input
values for a number of variables requires that a sequence of
steps to be carried out.

(1) Selection of sets that comprise the linguistic variables
for the inputs and output. As with the input variables,
the output variable consists of a number of sets defined
by a range of values (see Figure 2). The difference is in
the way they are used to calculate the final out value
(see step (6), Defuzzification).

(2) Creation of fuzzy rules corresponding to the different
combinations of inputs. The rules determine the out-
put set for the different combinations of inputs. Using
the previous example, if health is “good” and distance
is “close,” the rule could be “fight defensively.”

(3) Fuzzification of the crisp inputs into fuzzy values giving
the DOM for the inputs sets. Figure 1 shows the fuzzi-
fication of the crisp value 20.1 resulting in the DOM
for each set of near death = 0.6, good = 0.17 and excel-
lent = 0.0.

0
68.66

100
0

0.18

0.53

1
Run away Fight defensively All out attack

Figure 2: Sets defining the output variable “aggressiveness.”

(4) Use inference to evaluate which rules are active based
on the DOM of the input sets that make up that rule.
Each combination of sets (for each input variable) is
compared with the rulebase to determine which out-
put sets are active. The DOM of the output set is de-
termined, in this case, using the lowest DOM of the
inputs (there are a number of methods for calculating
the DOM). This results in a number of possible DOMs
for each set of the ouput variable.

(5) Combine the multiple DOMs for each rule into the
output sets using composition. This results in a single
DOM for each of the output sets, as shown in Figure 2.

(6) Defuzzification of the output sets to give a single crisp
value. This is done by calculating the centre of the
area under the graph defined by the DOM in each set.
Figure 2 shows an example for the output variable “ag-
gressiveness” with doms of 0.18 for “fight defensively”
and 0.53 for “all out attack.” There are a number of
methods, of varying complexity and accuracy, for de-
termining the output value. One of the least expen-
sive, in terms of computation, is the mean of maximum
method, the equation for which is shown in (calcula-
tion of mean of maximum)

(
RAmax∗RAdom +FDmax∗FDdom +AAmax∗AAdom

)

(
RAdom + FDdom + AAdom

) ,

(1)

where

(i) RAmax is the crisp value for the centre of “run away”
set (where fuzzy value = 1);

(ii) RAdom is the fuzzy value for DOM for run away set;
(iii) FDmax and FDdom are as above for “fight defensively”

set;
(iv) AAmax and AAdom are as above for “all-out attack” set.

2.1.1. Combs method

In traditional fuzzy logic, a rule needs to be defined for every
combination of set for all the input variables. This can result
in combinatorial explosion as the number of rules required
grows exponentially according to the number of fuzzy sets for

A. El Rhalibi and M. Merabti 3

each linguistic variable, that is, 2 variables each with 5 sets =
52 = 25 rules and 5 variables with 5 sets = 55 = 3,125 rules.
This can make large systems slow, confusing, and difficult to
maintain which, particularly in games, can make fuzzy logic
impractical.

The main difference between Combs method [10] and
the traditional method is in the way the rule set is defined. It
builds rules based on each individual set’s relationship to the
output, considering one variable at a time, rather than cre-
ating rules for every combination of set for all the variables.
This reduces the exponential growth of the number of rules
into a linear growth, so that a system with 10 variables and 5
sets per variable would have 50 rules as opposed to 9 765 625
with the traditional system.

2.2. Artificial neural networks

There are many forms of artificial neural nets (ANN) of vary-
ing complexity which attempt to mimic the biological opera-
tion of the brain artificially by modelling the inter-connected
cells that enable the brain to process information. The sim-
plest form of ANN, the one used here, is the perceptron
which is modelled as a single neuron with a set of weighted
inputs mapping to a single output [7, 12–14].

The inputs (X1 to Xn) to the perceptron can vary in num-
ber and value (binary or real numbers) depending on the
application. Each input is multiplied by its corresponding
weight (W1 to Wn) and the weighted inputs are then added
together, along with the bias, giving the output value. The
bias represents a constant offset and can be treated as another
input with a constant value of 1. By adjusting its weights, the
perceptron can be trained to recognise specific combinations
of inputs and generalise for similar inputs.

2.2.1. Training the perceptron

Initially, the perceptrons use a default value for all of their
weights. This, in effect, means that the perceptrons will
not have any influence over the effectiveness rating for the
weapons, only the characteristics and fuzzy logic will affect
the value. Once adaptation has begun, occurring every time
there is feedback, the following training procedure is per-
formed.

The training of perceptrons described here uses an incre-
mental approach, computing the adjustments to the weights
by way of the steepest descent technique [7]. The delta rule
algorithm calculates the change required Δwi for each weight
wi by taking the difference between the actual y and the de-
sired t output and multiplying it by the input value xi for
that weight and by a, typically small, learning rate η; see (2),
computation of required adjustment for each weight:

Δwi = η(t − y)xi. (2)

The new weight for each input can then be found using the
steepest descent technique, as shown in (3), computation of
adjusted weight value, changing the weights as a result of
feedback:

wi ←− wi+Δwi. (3)

The incremental nature of the algorithm means that it can be
performed as the game is being played using feedback from
actions performed.

2.3. Quake 3 arena

In order to implement the adaptable AI, a suitable environ-
ment was required that provided all the features of a FPS
so that the capabilities of the bot can be tested. The Quake
3 Arena (Q3A) game engine [8, 15] provided the frame-
work for the development of the bot AI. The new AI was
integrated with the original AI, reusing many of its features.
For more information regarding the Q3A engine, specifically
in relation to the interface between the AI and the game
engine, [8] provides the most comprehensive documenta-
tion.

Using the original bot AI provided the opportunity to be
able to define the characteristics of the bot using text files
that determine the style of play of the bots within the game.
This proved helpful in the evaluation of the new AI, which
was carried out in matches against the “standard” Q3A bots.
By defining specific characteristics, situations could be set up
that required the bot to adapt its behaviour.

3. SYSTEM DESIGN

A number of features are required of the adaptable AI system
in order to achieve the aim of a bot that is able to adapt to the
play of an adversary:

(i) to be able to play competitively from the first game
(out of the box);

(ii) to adapt its behaviour as the game is being played (on-
line);

(iii) to be computationally inexpensive.

The system makes use of the indirect adaptation technique,
using a conventional AI layer to control the bot, with the
adaptation AI modifying the behaviours of the bot in re-
sponse to feedback according to its actions. This enables
the bot to be competitive immediately by giving it a priori
knowledge, as recommended by [1, 3, 5].

The adaptation system incorporates a number of compo-
nents that combine to rate the effectiveness of a choice within
a behaviour and adapt the value to reflect how well the cho-
sen action performs in the game. Figure 4 shows how the sep-
arate elements are linked together to calculate the rating and
allow adaptation to occur.

The system utilises a hybrid of two AI technologies:
fuzzy logic and perceptrons. The fuzzy logic acts as the prior
knowledge enabling the bot to perform in the game at a com-
petitive level. The perceptron is used to facilitate the adapta-
tion, acting as a form of memory enabling the bot to “re-
member” the effectiveness of actions in certain situations,
altering its weights based on the feedback it receives from
game. By using perceptrons, rather than more complex mul-
tilayer networks, the computational requirements are kept as
low as possible whilst retaining the basic features of a neural
net.

4 International Journal of Computer Games Technology

W1

W2

...

...

Wn

WeightsInputs Output Y = B × b +
n∑

i=1

Xi ×wi

∑

Xn

...

X2

X1

Y output

b

B bias

Figure 3: Architecture of a perceptron.

Characteristics:
fuzzy weights

Adaptation Feedback

...

...

Perceptron

Fuzzy logic Effectiveness
rating

×
Multiply

Figure 4: Adaptation system overview.

The system is composed of two main mechanisms:

(i) the effectiveness rating mechanism: used to determine
how effective a certain choice is according to the input
values;

(ii) the adaptation mechanism: used to change the effec-
tiveness rating according to feedback from the game
on how effective it was.

The effectiveness of a choice is predicted using a combina-
tion of the characteristics of the bot, defined in the charac-
teristic files, a fuzzy logic component and a perceptron com-
ponent. This system is used for each of the choices within a
behaviour. The effectiveness is calculated by multiplying the
outputs from the fuzzy logic component and the perceptron
together with the characteristic for the choice.

The adaptation mechanism uses feedback from the game
to determine how successful the choice was compared to
the perceptron’s predicted effectiveness of the choice. The
feedback and output of the perceptron are then used to
train the perceptron, increasing or decreasing the weight
values according to the delta rule training algorithm dis-
cussed in Section 2.1.1. Adjusting the weights of the percep-
tron changes its output impacting on the effectiveness rating
for the action, thus making it more or less likely to be used.

3.1. Adaptation of weapon selection behaviour

Modern FPS games, such as Quake 3 Arena, make use of
complex 3D environments for their game worlds which, in
turn, mean that the NPCs that inhabit them must have com-
plex AI to interact with them, and the player, convincingly.
Bots must be able to exhibit a number of behaviours, special-
ising in particular actions or strategies that contribute to the
overall aim of winning the game. Due to the nature of the
game, the aim being to kill the opponent more times than
they kill you, the behaviours that would benefit most from
adaptation are those that relate to combat with opponents,
either directly or indirectly. One such behaviour is that of se-
lecting the most effective weapon for the current situation.
The rest of the paper will focus on this behaviour to demon-
strate how the system can be applied.

The aim of adapting the selection of weapons is to en-
able the bot to change its weapon preferences depending on
its success in particular situations. By changing the “effec-
tiveness” or “fitness” of each weapon, by way of changing the
perceptron weights according to the input values, different
play styles can be adapted to.

The selection of information used as inputs for the sys-
tem components is vital to their efficiency at performing ac-
tions in the game. The following sections detail the inputs for
the fuzzy logic and perceptron components.

3.1.1. Fuzzy logic for weapon selection

Each of the weapons have a set of data defined for the vari-
ables (inputs) that represent the range of values that are sig-
nificant to that weapon. The variables used for the fuzzy logic
component are the following.

(i) Distance to the enemy. Each of the weapons available
is better or worse at different distances. For exam-
ple, the Lightning Gun has a maximum range of 768
and the Rocket Launcher risks splash damage when
used at close distance. The distance needs to be broken
down into fuzzy sets defining the effectiveness of each
weapon for the distance range represented by that set.

(ii) Ammunition amount for each weapon. Each of the
weapons have different firing rates. For example, the
Machine Gun fires a shot every 1/10th of a second
whilst the Railgun can only fire a shot every 1.5 sec-
onds.Running out of ammunition in a fight means
changing to another weapon, which takes time, reduc-
ing the damage that can be inflicted on the enemy. The
ammunition level needs to be represented as a number
of fuzzy sets spanning the maximum amount of am-
munition (200). Each weapon requires a unique col-
lection of set data defining the relative values of am-
munition depending on their rates of fire—10 ammu-
nition for the Railgun is different to the same amount
for the Machine Gun.

3.1.2. Perceptron for weapon selection

Each opponent and game map have their own set of percep-
trons as, for instance, different weapons can be more or less

A. El Rhalibi and M. Merabti 5

effective depending on the map being played. Each weapon
is represented by a perceptron, each having a unique set of
weight values for that weapon. The inputs to the perceptron
are the same for each of the weapons, although weapon spe-
cific inputs, that is, the amount of ammunition, will result
in certain inputs having slightly different values. Some of the
variables investigated are the folllowing.

(i) Distance to the enemy. By adapting the distance at
which the weapon should be used, the weapons will
increase/decrease the range at which they are used. An
example of a use for this is if the enemy is very ag-
gressive and continues attacking when low on health.
Normally the rocket launcher may not be used at close
range due to the danger of splash damage, selecting
a less damaging, and less successful, weapon instead.
The system could adapt the lower range of the Rocket
Launcher so that it is selected over the less useful
weapon, incurring damage to the bot but also killing
the opponent with one shot.

(ii) Ammunition. The amount of ammunition for each
weapon can be adapted to make use of weapons that
the opponent is more susceptible to be damaged by.
Used by the fuzzy logic component, it has a large influ-
ence on the selection of weapons and by adjusting the
ranges the bot will be more likely to stick with a suc-
cessful weapon even though the ammunition is run-
ning low in the hope of killing them before the weapon
needs to be switched.

(iii) Visibility of enemy. It would be useful to adapt the
weapon selection based on the visibility of the enemy
so that areas that contain obstacles, creating cover for
the enemy to hide behind, can influence the selection
to favour weapons that have splash damage enabling
the weapon to inflict damage around corners.

(iv) Height difference. Like the visibility of the enemy, the
height difference between the bot and its opponent
could be used to influence the use of weapons that
have splash damage. If the opponent is below the bot,
it can aim at the floor near to the enemy, hitting with
radial damage. If the opponent is higher, making it dif-
ficult to hit them with splash damage, then Grenades
can be launched onto the higher area or more precise
weapons can be used. Adapting the relative strengths
of weapons when there is a height difference will select
the most effective weapons in those situations.

3.2. Feedback for perceptron training

The feedback that is used to train the perceptrons for the
weapon selection behaviour is focused on the criteria of caus-
ing as much damage as possible whilst avoiding inflicting
damage to oneself. This means that it must account for a
combination of health lost by the enemy and by the bot it-
self as a result of its own attack (not damage sustained from
enemy attack). A timed aspect is required to allow for the
different characteristics of each of the weapons (firing rate
and damage per shot) and enable the performance of the
weapons to be compared. To reward weapons that have the

∑

W1

W2

W3

W4

Figure 5: Categorisation of perceptron inputs.

capability of “finishing off” enemies (e.g., Railguns are very
good at one-shot kills) a bonus is also required when the op-
ponent is killed by the current weapon. This increases the
overall feedback value thus increasing the weight values when
training.

3.3. Categorisation of perceptron inputs

Due to the linear nature of perceptrons (they are unable to
handle nonlinear problems) difficulties arise with inputs that
can be effective at high and/or low values. One problem is
that higher input values will always output higher ratings
and so if the lower input values are better (i.e., correspond
to a more effective weapon use), these inputs values will not
be able to characterize this effectiveness. Another problem is
if the weapon is more effective with an input value that is in
the middle range, such as the grenade launcher that can cause
splash damage close-up but has a limited range. This is com-
pounded by the training mechanism that changes the weight
of the input depending on the input value. This means that
high values will always be penalised more than low values.

To allow adaptation to occur independently for differ-
ent levels of the same input, its range of values needs to be
categorised into ranges. The fuzzy logic component can be
utilised to achieve this. It is able to take a single value and
assign a DOM for each of the categories by fuzzifying the in-
put value. Each of the categories represents an input into the
perceptron, splitting the single input value into the number
of sets that represents that input, as shown in Figure 5. The
advantage of this approach is that it will categorise the input
into continuous values for each set, rather than the imprecise
method of just determining whether the value is in a category
or not. It also uses functionality that is already within the sys-
tem so no new component needs to be developed.

One of the main advantages with using fuzzy logic to cat-
egorise the input value is that the fuzzy values will represent
the DOM for the set. This means that the low category can
have a high input value and the high a low value—0 (100%
membership of the low category) could input a 1. When
training the perceptron, this will be useful in correctly re-
warding or punishing the value range responsible for the ac-
tion selected. Another advantage is that the maximum mem-
bership of a set is 100%, in effect normalising the input values
for each set to a value between 0 and 1. Although the input
value can be in multiple sets, the combined fuzzy values will
approximate 1 (fuzzy values need not add up to 1 but are
usually near to this value, depending on the set data).

6 International Journal of Computer Games Technology

0

Lower min Upper minMax

Input value

Fuzzy
value

1

Figure 6: Data definitions for a fuzzy set.

4. DISCUSSION ON IMPLEMENTATION

4.1. Fuzzy logic component design

The fuzzy logic component is comprised of three parts. The
first represents the fuzzification process, turning the crisp
values of the inputs into fuzzy values of the degree of mem-
bership in the sets for that input, along with the rule associ-
ated with those sets. The second part, representing the com-
position process, calculates the degree of membership of the
output sets based on the rules and fuzzy values calculated in
step 1. The last part, the defuzzification process, determines
the output value for the component.

It was decided during the design of the fuzzy logic com-
ponent that each of the input variables should have four sets.
In keeping with Combs method, the output sets should have
the same number of sets as the input variables and so they
also have four sets. Using four sets to define a variable pro-
vides a balance between sufficient detail to describe the in-
puts properly without making the component overly com-
plicated.

4.1.1. Fuzzification process

The fuzzification of a crisp value into a fuzzy value or values
is achieved using the data that defines the membership func-
tion for each set in the input variable. The data for the sets is
defined in an array that is loaded during initialisation of the
game. Figure 6 shows a typical representation of a fuzzy set
with the data that represents that set labelled on the x-axis.
The two “min” values represent the upper and lower limits
of the set at the point where the degree of membership in
that set equals 0. In between these two points the degree of
membership will be greater than 0 with the maximum fuzzy
value, 1, marked by “max.”

Using this data, any input value that is within the “min”
range can have a fuzzy value calculated for it using linear in-
terpolation. The point at which the input value crosses the
line defining the edge of the set (joining lower min and max)
can be determined by finding the difference between the in-
put value and the max or min (depending on which is high-
est) and dividing it by the difference between the max and
min values that the input value bisects. This results in two

equations depending on whether the input value is between
the lower min and the max, or the upper min and the max.
Equation (5) presents calculation of the fuzzy value when
max < input < upper min,

fuzzy value, fvl =
(
input− lower min

)

(
max − lower min

) . (4)

Equation (1) presents calculation of the fuzzy value when
max < input < upper min,

fuzzy value, fvu =
(
upper min − input

)

(
upper min −max

) . (5)

Along with the fuzzy value, the rule associated with the set is
also required so that the fuzzy value can be applied to the cor-
rect output set during composition. The rule is represented
by the array location of the output set, that is, output [0]
is bad, output [1] is average, [2] is good, and [3] is excellent.
The fuzzification of the input value will result in 2 or 4 values
being returned; the input usually has a degree of membership
in 2 sets, 1 set only if the degree of membership is very high
(>90%), so the fuzzy value and rules for both sets must be
returned.

Pseudocode for fuzzification process

Algorithm 1 shows how the fuzzification process is calcu-
lated,calculating the fuzzy value if within a set, 1 if equal to
the max value, and 0 if outside (also setting the rule to −1 to
mark it as unused).

The fuzzification function is designed so that, as well as
being used in the fuzzy logic component, it can also be used
for single inputs when categorising input values for use with
the perceptron.

4.1.2. Composition process

The composition of the fuzzy values and their associated
rules into the degree of membership for each of the output
sets is done by taking the MAX fuzzy value associated with
each of the output sets calculated for all the inputs. This re-
turns an array of values for each of the output sets that can
be used to determine the output value in the next part, de-
fuzzification.

Pseudocode for composition process

The process of composition is quite straightforward, simply
putting fuzzy values into an array representing the output
sets if the value is greater than the one currently in there.
Algorithm 2 shows how this process can be accomplished.

(i) Fuzzy values[] is an array containing the fuzzy values
and rules calculated in the fuzzification process where
[0] to [3] is the fuzzy values and rules for an input.

(ii) Output array[] is an array that contains the MAX val-
ues for each of the output sets where [0] is set 1, [1] is
set 2, and so forth.

A. El Rhalibi and M. Merabti 7

for each of the inputs
for each of the sets

if set lower min value < input value < set max value
fuzzy value = (1 /

(set max value − set lower min value))∗

(input value − set lower min value)
output rule = set rule

end of if
else if set max value < input value < set upper min value

fuzzy value = (1 / (set upper min value −
set max value))∗(set upper min value − input value)

output rule = set rule
end of if

else if input value = set max value
fuzzy value = 1
output rule = set rule

end of if
else fuzzy value = 0

output rule = −1
end of else

end of for
end of for

Algorithm 1: Pseudocode for fuzzification process.

for number of sets (i)
if fuzzy values[i + 1] > −1

if output array [fuzzy values[i + 1]] <
fuzzy values[i]

output array [fuzzy values[i + 1]] = fuzzy values[i]
end of if
increment i by 2

end of for

Algorithm 2: Pseudocode for composition process.

This process will be done for each of the inputs in turn;
finally getting the MAX values for each of the output sets af-
ter all the inputs have been processed.

4.1.3. Defuzzification process

The defuzzification process takes the array generated by com-
position and returns the final crisp value that is used to de-
termine the rating of the action. It uses the mean of maxi-
mum method of defuzzification to calculate the single out-
put value, based on the max values of each of the output sets
and the fuzzy values for that set.

Pseudocode for defuzzification process

The defuzzification process uses the output array
(Output array[]) and the stored data for the output
sets (Output data[]) to calculate the output value.

for number of output sets (i)
mean of max top + = output data[i]∗ output array[i]
mean of max bottom + = output array[i]

end of for
mean of max = mean of max top/mean of max bottom

Algorithm 3: Pseudocode for defuzzification process.

4.2. Perceptron component design

The perceptron component does not require a separate func-
tion to calculate its output value. A perceptron is a combina-
tion of a multiplication for each of the inputs and its associ-
ated weight followed by a sum of all the multiplications. The
perceptron calculation is incorporated into the functions for
each behaviour, as specific information for the inputs is re-
quired in each case.

4.2.1. Pseudocode for perceptron component

The code shown in Algorithm 4 shows the design of the per-
ceptron component that is incorporated into each behaviour.
A single function is not used for simplicity, as the require-
ments of each behaviour regarding the number of inputs to
the perceptron and the information to get differ enough to
warrant separate functions. Each of the functions follows the
same design, just using different information.

8 International Journal of Computer Games Technology

get input values specific to behaviour
for each behaviour action (a)

for each input to perceptron (i)
output[a] + = input value[i]∗ weight[i]

end of for
end of for

Algorithm 4: Pseudocode for perceptron component.

SelectBestWeapon() function
fzEval = EvalFuzzyWeapons()
pEval = EvalPerceptWeapons()
fzVal = GetWeaponFuzzyVals()
for each weapon

eval = FzEval∗PEval∗FzVal
if weapon is current weapon

eval ∗= 1.1
end of if
if eval is highest value

best weapon = eval weapon
end of if

end of for
return eval weapon

end of function

Algorithm 5: Pseudocode for weapon selection function.

4.3. Weapon selection behaviour design

The weapon selection behaviour is handled by a single
function from which the fuzzy logic and perceptron eval-
uations are called and all the relevant input data ex-
tracted. This function replaces the original Q3A function
trap BotChooseBestFightWeapon() for the adaptable bot in
the BotChooseWeapon() function. Algorithm 5 shows the
structure of the function and how the effectiveness for each
weapon is determined.

The variables fzEval, pEval, and fzVal are all arrays that
are filled with the data for all the weapons stored in the same
array locations in each, that is, array location [0] contains all
gauntlet data, [1] machine gun data, and so forth. The fzEval
array holds the fuzzy logic evaluations for each weapon, pE-
val the perceptron evaluations, and fzVal the fuzzy weapon
weights defined in the characteristic file.

Once all the data has been calculated and collected, the
overall evaluation of the weapon is calculated by multiply-
ing all the values from the 3 arrays for each weapon together
to determine the effectiveness rating for each weapon. If the
weapon is the currently held weapon it is given a bonus so as
to prevent circumstances were the evaluations of 2 weapons
are very close and slight changes in situation cause constant
changing between weapons. Each time the rating of a weapon
is calculated, it is compared with the previous weapon and
the one with the highest value is recorded. At the end of the
calculations, the weapon with the highest rating is returned.

4.3.1. Weapon fuzzy data

The data that defines the fuzzy sets for the input variables,
distance and the ammunition level, is integral to the perfor-
mance of the fuzzy logic component. The values that were
used to define the sets were carefully chosen after careful ob-
servation of a number of games, with collection of the infor-
mation displayed on the screen for accurate appraisal.

Distance variable data definition

The set data for the distance variable is the same for all of
the weapons; except for the gauntlet which is a special case in
that it can only hit an opponent when in direct contact with
it. The distance variable is split into 4 categories:

(i) close,
(ii) medium,

(iii) far,
(iv) very far.

It was decided that, with the exception of the gauntlet, each of
the weapons generally could be rated according to the same
ranges defined by the 4 categories and so just 2 sets of fuzzy
sets needed to be used: one for the gauntlet and the other for
the rest of the weapons.

The fact that the gauntlet needs to be touching the op-
ponent to make a hit means that only 1 of its sets has to
be considered when designating its min, max, and rule val-
ues; the close set. Anything outside the close set means that
the weapon cannot damage the opponent and so is given the
worst rule (bad). The major consideration was determining
the “killing range” of the weapon, when it would be deemed
usable. Table 1 shows the value ranges for the sets (far and
very far not shown for readability as they also have rule of 0);
minL and minH being the lower min and upper min values.

The gauntlet data shows that it is only usable within a
distance of 5 units from the enemy. At any other distance, it
will output the lowest value possible. This means that, com-
bined with its low weapon weight, all other weapons should
be chosen before it.

The set data for the other weapons needed to take into ac-
count the different ranges of the weapons, some being good
at close range but almost useless at long range, others being
good in the middle ranges but less so when close or very far
away. It was decided that the upper range for distance was
1500 units, anything above this being set to 1500, as this was
near the limit of the bot’s awareness.

Figure 7 shows the data values used for each of the sets’
ranges, the rules needed to be defined for each of the weapons
separately as each has its different strengths and weaknesses
(which can be seen in Table 2).

The data values chosen for each weapon were derived
from observation of games being played and data collection
from personal experience from playing the game. Access to
the fuzzy logic component of the Q3A AI was not possible,
so the values are a “best guess” as to the values used. The
rules represent the weapon’s ability to damage at each dis-
tance range, the lowest being 0 (bad) with the best being 3
(excellent).

A. El Rhalibi and M. Merabti 9

Table 1: Distance fuzzy set data for gauntlet.

Close Medium Far Very Far

minL minH max rule minL minH max rule — · · · — — — · · · — —

0 5 0 1 0 200 20 0 — · · · — — — · · · — —

0

1

Fu
zz

y
va

lu
e

0 150 600 1500
Distance

Figure 7: Fuzzy set data for weapon selection distance input.

Table 2: Fuzzy rule set for weapon selection distance.

Rules

Close Medium Far Very far

Machine Gun 1 1 1 1

Shotgun 3 2 1 0

Grenade launcher 1 2 2 1

Rocket launcher 1 3 2 2

Lightning gun 2 3 2 0

Railgun 1 2 3 3

Plasma gun 3 3 2 1

BFG 3 3 3 2

A number of factors were taken into account when defin-
ing the data values. For instance, the rocket launcher is given
a close rule of 1 (average) because it has a large splash dam-
age radius which will cause damage to the bot if used at close
range. Its long range effectiveness is marked down due to the
relatively slow speed of rockets which means that they are
easy to avoid given the time that longer ranges afford. As an-
other example, the railgun is only rated at 1 for close range
due to its long reload time between shots, even though a sin-
gle hit could kill the opponent.

Ammunition variable data definition

Each of the weapons needed to have its own set of data de-
fined for the amount of ammunition input variable. All the
weapons have different firing rates that determine the range
for each of the ammunition sets. The only data that is con-
stant between all the weapons, except for (again) the gaunt-
let which does not use ammunition at all, was the maximum
amount of ammunition that could be available which is 200.

In the same way as was done for determining the values
used for the distance sets, careful observation of the game
lead to the selection of the set data, depending on the rate of
fire of each weapon and the amount that is available when the
weapon is first picked up. The amount of ammunition avail-

0

1

Fu
zz

y
va

lu
e

0 20 50 200
Ammunition

Figure 8: Fuzzy set data for shotgun ammunition.

0

1

Fu
zz

y
va

lu
e

50 80 200

Ammunition

Figure 9: Fuzzy set data for plasma gun ammunition.

able on the map is not taken into account for this iteration of
the project, although it could be a future improvement.

The set data for the ammunition for the shotgun and
the plasma gun are shown in Figures 8 and 9. the diagrams
show how the shotgun and plasma gun differ in the way they
use ammunition. The shotgun has a slow reload and so the
ranges of the sets are smaller and they are grouped near to 0
to represent the fact that, due to its slow firing rate, smaller
amounts of ammunition are considered good. The plasma
gun, in contrast, has a high firing rate which can be seen by
the way the sets are more spaced out with larger ranges mak-
ing larger amounts of ammunition more important than for
the shotgun.

Output data definition

The output sets are defined by a single value that represents
the max value of the set. This is the only value that needs to
be specified due to the defuzzification method used; that of
mean of maximum which only uses the max value to calcu-
late the output value.

As can be seen in Figure 10, the output sets are not
equally spaced from 0 to 100, each set is assigned a value to
bias the output for that set. By doing this, the better rated
sets produce much higher output values than the bad set,
which can offset weapons with much higher characteristic

10 International Journal of Computer Games Technology

10 35 55 80

Bad Average Good Excellent

Figure 10: Fuzzy set data for weapon selection output.

EvalFuzzyWeapons()
GetinputValues()
for each weapon

if have weapon and ammo
Fuzzify()
Composition()
Defuzzify()

end of if
end of for
return array of weapon evaluations

end of function

Algorithm 6: Pseudocode for weapon selection fuzzy logic evalu-
ation function.

preferences. This was done so that there would be very lit-
tle chance of selecting weapons in circumstances were they
are useless, such as when the enemy is out of range and so no
damage can be inflicted.

4.3.2. Weapon selection fuzzy logic evaluation function

This function is called from the SelectBestWeapon() function
in order to get the fitness values for all the weapons according
to the fuzzy logic component. From this function, the three
parts of the fuzzy logic component are called, as can be seen
in Algorithm 6.

First, the input values for the inputs are extracted and
then, if the bot has the weapon in its inventory and also has
ammunition for the weapon, the fuzzy logic component is
run on them (calling the three parts in turn—Fuzzify, Com-
position and Defuzzify). An array is returned at the end that
holds the evaluation of all the weapons by the fuzzy logic
component.

4.3.3. Weapon selection perceptron evaluation function

The function that evaluates the weapons using the per-
ceptron component simply uses the code explained in
Section 4.2. For the weapon selection behaviour, like the
fuzzy logic evaluation function, the evaluation is only run if
the weapon is in the bot’s inventory and there is an ammuni-
tion available for it.

The output of the perceptron is normalised to a value be-
tween 0 and 1 by dividing it by the number of inputs into
the perceptron. Each of the inputs is normalised also and by
taking the maximum number of inputs that can be used at
one time, the perceptron output can be scaled appropriately.
The maximum number of inputs takes into account the cate-
gorisation of some inputs, which means that the four inputs
resulting from categorisation actually represent 1 input as,
at most, there will only be two active at one time and their
combined values will always be approximately 1.

Perceptron inputs for weapon selection

The inputs used for the perceptron are the following:

(i) distance to enemy: categorised to 4 inputs;
(ii) ammunition: categorised to 4 inputs;

(iii) health;
(iv) visibility: categorised into 2 inputs, visible or not visi-

ble;
(v) height difference: categorised into 2 inputs, above or

below;
(vi) aggression.

The inputs used were determined from assessment of those
specified in the analysis section during development. Some of
the input variables proposed were discovered to be superflu-
ous to the adaptation process and others had to be tailored to
the limitations of the Q3A source code. The quad input was
discarded due to the test map not including the power-up,
although this could be implemented if other maps were to be
used. The visibility input was originally intended to be a mea-
sure of obstructions in the area but it was discovered that the
function that returns the visibility of the enemy only returns
the values 0 and 1 on the test map (although on maps that
include fog it returns values between 0 and 1). This meant
that it is now only used to determine whether the bot can see
its opponent or not and is used choosing weapons that have
splash damage that can still hit the enemy even when they are
hidden.

The visibility and the height difference inputs are cate-
gorised simply into 2 inputs, each being either a 1 or 0 de-
pending upon whether they are visible or not or whether the
enemy is above or below. If in one category that input value
is 1 and the other 0 and vice versa. This enables the percep-
tron to gain positive or negative reinforcement for situations
when the enemy is not visible (1 in not visible input) or when
they are (1 in visible input).

Fuzzy set data for input categorisation

The categorisation of the inputs distance and ammunition
are needed to scale the inputs,so that each weapon would
have the same output from the perceptron for the same rel-
ative inputs. This presented no problems for the distance
input as the distance to the enemy is the same for all the
weapons. The ammunition input required the amounts to
be scaled appropriately for each of the weapons individu-
ally so as to represent the characteristics of each, and give

A. El Rhalibi and M. Merabti 11

roughly the same perceptron output for the same relative
level of ammunition. In order to do this, the input set data
used for the ammunition by the fuzzy logic component was
used.

4.3.4. Feedback for weapon selection

The feedback for the weapon selection behaviour required
careful thought on how to deal with the varying character-
istics of the different weapons. The feedback needed to be a
measure of the weapon that dealt the most damage to the en-
emy, whilst also taking into account any damage done to the
bot. This meant that a timing element needed to be intro-
duced to account for the different firing rates of the weapons.
Another consideration was that some projectiles take time
to travel to their target whilst others strike immediately. The
weapons fall into one of two categories that affect the feed-
back.

(i) Instant shot: those weapons whose projectiles im-
pact immediately upon firing (having a speed of 0).
Weapons in this category are

(a) gauntlet (W1),

(b) machine gun (W2),

(c) shotgun (W3),

(d) lightning gun (W4),

(e) railgun (W5).

(ii) Missile: weapons that fire projectiles that have a finite
speed and take time to impact. Weapons in this cate-
gory are

(a) grenade launcher (W6),

(b) rocket launcher (W7),

(c) plasma gun (W8),

(d) BFG (W9).

The method developed to record the input data (distance,
ammunition, etc.) when a firing event occurs (when the
weapon is fired). When the projectile impacts, hitting ei-
ther opponent or environment, it calls the feedback function
which determines the time between impacts and the damage
inflicted on the enemy and sustained by the bot. This deals
with the problems of calling feedback just after a fire event
(would not know damage for missiles) or calling feedback
when the missile impacts (need to know inputs when pro-
jectile fired). To implement this method, each fired projectile
needs to be tracked after it is fired, so that it can be related
to the correct inputs when it impacts. The time between im-
pacts is only measured when in combat with the enemy, not
including time between combat when navigating the map.
The previous impact time is reset each time the bot finds a
new enemy.

Based on the requirements of the feedback, (6) (weapon
selection feedback equation) shows how the feedback value
is calculated from the damage to the enemy, the damage to
the bot, the time between projectile impacts and a bonus.

The bonus is given when the enemy is killed by the current
weapon:

feedback = damage2enemy− damage2self
last impact time− prev impact time

+ bonus.

(6)

The feedback value is a representation of the damage/second
inflicted by the weapon. In order to be able to directly com-
pare this value with that of the perceptron output value for
the training it needs to be normalised to the range [0, 1].

Normalisation of weapon selection feedback

The normalisation of the feedback requires that it represent
how well the weapon is performing. Every time the weapon
is fired it produces feedback whether it hits or not. To fairly
judge the performance of the weapons, the characteristics of
each weapon was analysed so that a good measure of a good
performance could be established. Table 3 shows the firing
characteristics of each weapon.

Using this data, the average damage per second, tak-
ing into account all the weapons, was estimated to be 150
(rounding down to the nearest 10). This figure assumes that
the weapons are 100% accurate. The average accuracy level of
a “standard” bot, at skill level 4, was calculated to be approx-
imately 25%. Taking this into account, the average damage
the weapons inflict could be estimated at 150/4 = 37.5. This
value could then be used as an “average” feedback score, one
which should produce a normalised value of 0.5.

In keeping with observed accuracy, most of the time the
weapon is going to miss, on average hitting only 1 in 4
times. This means that when training the perceptron with the
missed shots, the reduction in value of the weights inflicted
by misses should be compensated for when the enemy is hit
inducing damage. The time between shots also has a bearing
on the performance measure, but an average damage per sec-
ond of 37.5, taking into account misses and hits, should train
the perceptron to output 0.5 in those situations.

The upper and lower limits of the feedback value could
also be estimated from the weapon data, using the max splash
damage to determine the lower value and max damage per
second to determine the upper. After investigating the source
code it was discovered that splash damage only inflicts 0.5
of the damage on the attacker, so the minimum level is 50
(100∗0.5 with no hit on enemy). The maximum damage per
second is capped at 250 due to the excessive damage of the
BFG, which is available only on a few maps and usually has
little ammunition available for it.

In order to adequately normalise the feedback to give a
value that could be used for training of the perceptron, fuzzy
logic is used. This enables input values to output specific val-
ues, used to output 0.5 from an input of 37.5, and replaces
what could be a mathematically complex function with a
simple process.

Figure 11 shows the input fuzzy sets that are used to nor-
malise the feedback value. The 4 sets span the range of values
from −50 to 250 that the feedback falls between with set 1
centred on 0, the feedback for a miss, and set 2 centred on

12 International Journal of Computer Games Technology

Table 3: Weapon firing characteristics.

W# Damage/projectile Speed of projectile (0 = instant) Splash damage Splash radius Fire delay (1/10 sec) Damage/second

W1 50 0 0 0 400 125

W2 7 0 0 0 100 70

W3 90 0 0 0 1000 90

W4 100 700 100 150 800 125

W5 100 900 100 120 800 125

W6 16 0 0 0 200 80

W7 100 0 0 0 1500 67

W8 20 2000 15 20 100 200

W9 100 2000 100 120 200 500

0 1 2 3

37.5

−50 0 50 100 150 200 250

Figure 11: Feedback normalisation input fuzzy set data.

0 0.1 0.5 1

3210

Figure 12: Feedback normalisation output fuzzy set data.

37.5, the feedback for an average hit. Each of the sets directly
map to the output sets, shown in Figure 12, by way of their
rule.

The output sets are set up so that they output specific
values for specific input values. An input value of 37.5 will
have a 100% membership in set 2 which maps to the output
set 2, producing an output of 0.5. An input of 0 will have
100% membership in set 1, mapping to output set 1 giving
an output of 0.1. Inputs of −50, the minimum feedback, and
250, the maximum, will output 0 and 1, respectively.

weaponFeedback()
last impact time = current time
damage enemy = damage to enemy
damage self = damage to self from splash from own

weapon
if enemy killed

bonus = 80
end of if
feedback value = (damage enemy − damage self)/

(last fire time − prev fire time) + bonus
feedback value = normaliseFeedback(feedback value)

trainPerceptron(feedback value)
prev impact time = last impact time
last impact time = 0

end of function

Algorithm 7: Pseudocode for weapon selection feedback function.

Pseudocode for weapon selection feedback

The feedback function is called after every projectile im-
pact, extracting the information required and then calling
the function that trains the perceptron. Algorithm 7 shows
pseudocode for the operation of the function.

First, the time is recorded so that the time since the pre-
vious impact occurred can be calculated. The damages done
to the enemy and self are extracted and a bonus given if the
enemy died from this projectile. The feedback value is then
calculated and normalised before being passed to the percep-
tron training function to adjust the weights. Finally, the pre-
vious impact time is made equal to the current time and the
last impact time is set to 0.

4.3.5. Training for weapon selection

The training of the perceptron is simply involved using the
delta rule algorithm to update the weights of the perceptron
based on the output of the perceptron when the projectile
was fired and the feedback gathered from the projectiles im-
pact.

A. El Rhalibi and M. Merabti 13

trainPerceptron()
for each input to perceptron (i)

weight[i] + = learning rate∗

(feedback value − output value)∗

input value[i]
end of for

end of function

Algorithm 8: Pseudocode for weapon selection training function.

Pseudocode for weapon selection training function

The function for training the perceptron is quite simple in
operation as can be seen in Algorithm 8. The learning rate is
set at a low value, which will be altered during evaluation in
order to find a good balance between adapting fast enough
to influence a game and slow enough so that isolated events
do not interfere with the appropriate learning.

The function simply loops through the inputs to the per-
ceptron, calculating the change required to the weight by
multiplying the difference between the perceptron output
and the feedback by the learning rate and the input value.
This adjustment is then added to the weight, increasing or
decreasing its value accordingly.

4.4. System development

The design section discussed the methods that are used to
implement the adaptation system. This section will show
how the designs for the components were realised using the
Q3A engine [8, 15].

The adaptation system is composed of a number of func-
tions relating to a specific component or behaviour within
the system. All of the functions that were specially written for
this system use the same prefix “adapt” in order to easily find
and identify them within the many functions that make up
the Q3A source code. The majority of the adaptation system
functions and data structures are defined in the ai main.h
and ai main.c files of Q3A engine [8, 15]. This provides ac-
cess to and from the Q3A AI functions and data structures
that this system integrates with.

The functions developed and a description of their pur-
pose are listed below.

(i) Fuzzy logic component functions:

(a) AdaptFuzzify fuzzifies the input data;

(b) AdaptComposition calculates the degree of mem-
bership for the output sets;

(c) AdaptDefuzzify calculates the output of the fuzzy
logic component.

(ii) Weapon selection behaviour:

(a) AdaptSelectBestWeapon is a main function that
evaluates the weapons and selects the best
available.

(iii) Weapon selection behaviour fuzzy logic functions:

(a) AdaptLoadWeaponFuzzyVals loads the weapon
fuzzy values from the characteristic files;

(b) AdaptAllocWepDOMS loads the fuzzy set data;
(c) AdaptEvalFuzzyWeapons main function that is

called to evaluate the weapons using fuzzy logic.

(iv) Weapon selection behaviour perceptron functions:

(a) AdaptInitWPercept initialises the perceptron
weights and loads the set data for categorisation
of inputs;

(b) AdaptEvalPerceptWeapons is a main function that
is called to evaluate the weapons using the per-
ceptron;

(c) AdaptGetWinputvalues extracts the data for the
perceptron inputs;

(d) AdaptWeaponFeedback calculates the feedback
for the weapon selection behaviour;

(e) AdaptTrainWPerceptron trains the perceptron
based on the feedback.

(v) Utility functions:

(a) AdaptFlagFireEvent records a firing event;
(b) AdaptOutputWepEvaluation outputs the percep-

tron data to file.

4.5. Fuzzy logic component development

4.5.1. Data structures

The fuzzy logic component was required to fulfil a number
of roles in the system: evaluation of actions, categorisation
of inputs to the perceptron, and normalisation of values. In
order to meet these requirements, two data structures were
created to contain the information used to calculate the out-
put from the fuzzy logic component.

(i) adapt DOM t: this structure contains a 2-dimensional
array to hold the data for each set of an input variable.

(ii) adapt FL t: this structure contains an array of
adapt DOM t structures for each input variable and
an array containing the output set data. It also has vari-
ables for the number of sets and the number of input
variables.

By splitting the 2 structures up, it allowed the use of a sin-
gle adapt DOM t structure for categorisation of inputs, in
which case the output set is not needed.

4.5.2. Loading fuzzy set data

The set data for the fuzzy logic component comprises a large
amount of information; each input variable having a number
of sets each requiring 4 values to define it (MINL, MINH,
MAX, and RULE). For the weapon-selection behaviour, this
meant 9 weapons each with 2 inputs each of which had 4
sets defined by 4 values, resulting in 288 (+ 4 for output set)
values that needed storing. In order to facilitate the use of this

14 International Journal of Computer Games Technology

0 20 0 1 0 200 20 0 20 1500 200 0 200 1500 1500 0
0 10 0 0 5 100 50 0 50 150 100 0 100 200 200 0
0 150 0 1 0 600 150 2 150 1500 600 1 600 1500 1500 1
0 50 0 1 0 100 50 1 50 200 100 2 100 200 200 2
. . .

Algorithm 9: Extract from fuzzy set data file for weapon selection.

line start = 0
read file and put all data into input string
for each weapon

for each input variable
while newline character not encountered in

input string
line length++

end of while
copy data between line start and line length to

line string
scan line string for values and put them into
adapt FL t structure

line start + = line length+1
line length = 0
end of for

end of for

Algorithm 10: Pseudocode for function to parse fuzzy set data.

amount of data, it is loaded in from a text file on initialisation
of the game.

The data is stored in a particular format, as shown in
Algorithm 9. The structure of the data can be seen in Table 4
(data missing for clarity); the first two lines of the data rep-
resenting the input variables for a single weapon, each line
representing all the data for each input. A line is made up of
four groups of four data items, representing the data for each
fuzzy set in ascending order.

In order to load the data, the function AdaptAllocWep-
DOMS needed to be written which extracted the data from
the file and put it into the appropriate place in the adapt FL t
structure used to hold the information. The file utilities in-
corporated into QuakeC [15] are basic, much of which is tai-
lored to specific purposes within the game engine, especially
when parsing the loaded data.

The Q3A trap FS Read() function enables data to read
in from the file and be placed into an array of characters.
The data then needs to be parsed and placed into the data
structure. Algorithm 10 shows the pseudocode for how the
data is parsed from the string read in from file.

The function sets up loops for each weapon and each in-
put variable and searches the string for a newline character.
The data from the start of the line to the end of the line is then
copied to another string, using the Q3A strncpy() function,
and the Q3A function sscanf() is then used to scan through
the copied string for the individual data values contained
within. Finally, the variable holding the position of the start

of the line is set to the start of the next line and the new line
length set to 0.

4.5.3. Loading weapon characteristic data

Part of the requirements of the system is that it takes into ac-
count the fuzzy preferences that are defined in the character-
istic files. Access to the fuzzy component of Q3A is not avail-
able in the source code and the data loaded into it could not
be extracted for use by the adaptable AI system. This meant
that a function needed to be written to load the data from the
characteristic file, so that the weapon weights could be used.

The weapon preference file is formatted in a particular
way. In a similar way to that of the fuzzy set data, the data
needed to be parsed so that the values could be placed into
an array. The process of extracting the data required a differ-
ent technique, as the values are linked to a key representing
the weapon that the value applies to. Algorithm 11 shows the
pseudocode for parsing the weapon preference data from the
file string.

The function goes through the string, character by char-
acter, looking for prefix of a key, “W−.” When it finds this
combination of characters, it finds the end of the line and
copies that line to another string which is scanned for the key
and a value. The key is compared with the weapon names and
when a match is found, the value is placed in an array at the
appropriate location for that weapon (the weapon number).

4.6. Weapon selection perceptron
component development

4.6.1. Data structure

The simple architecture of the perceptron means that the
data structure required to hold the data for it is also simple.
The structure created, called adapt P t, is made up of two ar-
rays and an integer variable. The variable simply holds the
number of inputs into the perceptron, for use when looping
through perceptrons with varying numbers of inputs. Due to
the limitations in allocating memory imposed by the Q3A
engine, the arrays need to set up to the size of the largest
number of inputs into the perceptron. Therefore, the arrays
can be of any size so the numinputs variable is used when de-
termining the size of the arrays.

One array is used to store the perceptron weights for each
of the inputs. The other array stores the input values for the
last time the output of the perceptron was calculated. This is
required for the training of the perceptron, which needs the
value for each input in order to calculate the adjustment for
the weights.

4.7. Weapon selection behaviour development

The weapon selection behaviour is controlled through a sin-
gle function that calls the separate components, calculates
the best weapon, and returns the weapon number. It re-
places the Q3A function trap BotChooseBestFightWeapon()
in the BotChooseWeapon() function for the adaptable bot.
The function is called AdaptSelectBestWeapon().

A. El Rhalibi and M. Merabti 15

Table 4: File format for weapon selection fuzzy set data.

Set 1 · · · · · · Set 4

Weapon Input MINL MINH MAX RULE · · · · · · MINH MAX RULE

Gauntlet
Distance 0 20 0 1 · · · · · · 1500 1500 0

Ammo 0 10 0 0 · · · · · · 200 200 0

MachGun
Distance 0 150 0 1 · · · · · · 1500 1500 1

Ammo 0 50 0 1 · · · · · · 200 200 2
...

...
...

...
...

...
...

...
...

...
...

while not at end of input string
if input string[character num] = “W” and

input string[character num+1] = “−”
line start = character num+2
while newline character not encountered

line length++
end of while
copy data between line start and

line length to line string
scan line string for key and value
if key = weapon name

array[weapon] = value
end of if

end of if
character num++

end of while

Algorithm 11: Pseudocode for function to parse weapon preference data.

4.7.1. Information gathering

The weapon selection process requires a number of details
about the bot, its enemy and the environment to be gath-
ered. This is done by making use of the data structures and
functions defined in Q3A. The distance to the enemy and the
ammunition level are common to both the fuzzy logic and
perceptron components. Both of these pieces of information
can be found in the inventory array from the bot state t data
structure. This array contains a large amount of useful in-
formation, the ones used for the weapon selection being as
follows.

(i) bs->inventory[INVENTORY MACHINEGUN] re-
turns a 1 if the bot currently has the weapon in
its inventory. The names of each weapon can be
substituted for MACHINEGUN.

(ii) bs->inventory[INVENTORY BULLETS] returns the
amount of ammunition type. The names of each type
of ammunition can be substituted for BULLETS.

(iii) bs->inventory[INVENTORY ARMOR] returns the
amount of armour the bot currently has.

(iv) bs->inventory[ENEMY HEIGHT] returns the differ-
ence in height between the bot and its current enemy.

(v) bs->inventory[ENEMY HORIZONTAL DISTANCE]
returns the distance (horizontally) between the bot
and its enemy.

Other variables within the bot state t structure also contain
information used for the inputs to the perceptron. The health
level of the bot is found using

bs- > lastframe health (7)

while it can be determined if the bot is directly in combat
with another bot or player using

bs- > enemy (8)

which returns a −1 if not in combat and the entity number
of the enemy when it is.

In order to find the visibility of the enemy and the ag-
gression of the bot, functions need to be called that return
the level of each. To get the visibility of the enemy, the func-
tion

BotEntityVisible() (9)

is called. This returns a floating point number in the range
[0, 1], although values other than 0 or 1 are only returned
when in fog or water. Otherwise, the value returned simple
represents whether the enemy is visible or not. The aggres-
sion level of the bot is found using

trap Characteristic BFloat() (10)

and passing CHARACTERISTIC AGGRESSION as a param-
eter. This returns a floating point number in the range [0, 1]
giving the aggression value defined in the characteristic file.

16 International Journal of Computer Games Technology

if weapon fired
search through wep fire event array for empty slot (i)
if it is not allocated

weapon fire = i
wep fire event[i] = event type

end of if

Algorithm 12: Pseudocode for flag fire event function.

4.7.2. Projectile tracking for feedback

The majority of the code for this application was confined
to the AI sections of the engine as it purely deals with the
behaviour of the bots within the game. Due to the way the
feedback is calculated, recording information after a shot and
when the projectile impacts, the weapons needed to signal
when they fired and the projectile emitted from the weapon
needed to be tracked until it impacted on either the environ-
ment or the enemy.

In order to achieve this, two different sections of the game
engine, the AI (files prefixed with “ai ”) and the game sec-
tions (files prefixed with “g ”), were required to communi-
cate with each other using a common data structure that was
available to both. The playerState t data structure seemed to
provide the answer as it was accessible from bot state t, which
the AI used, and from gclient s which was accessible from the
game section. This proved to be problematic in practice due,
what appeared to be the same structure in fact being different
versions of one another so, data stored in one version from
the game section would be copied to the one available to the
AI section, but changes made in the AI section were not avail-
able from the game section.

This meant changing the location of the data from
player State t to gclient t, which was accessible to the AI sec-
tion by the way of a global structure that makes data available
across the whole server side of the game engine.

When a weapon is fired, the projectile is tracked using
an array stored in gclient t, as shown in Algorithm 12. The
FlagFireEvent() function is in the file g weapon.c and is called
from the functions that fire the weapons, also in the same file.

The projectile entity, if a missile, stores the array loca-
tion of the event, in order that it can be identified upon im-
pact, and stores the type of event (missile or impact) in the
wep fire event array. The missile event is used for the delayed
impacts of rockets, grenades, plasma, and the impact event is
used for instant shot projectiles and when the missile projec-
tiles impact. An array is used for cases when multiple missiles
are active at the same time, for instance when the plasma gun
fires a volley or the grenade launcher launches a number of
grenades at once. The missiles can impact in any order so the
array must search for unallocated slots.

When a missile entity impacts, calling either the
G MissileImpact() or G ExplodeMissile functions in
g missile.c, it sets the event in the wep fire event array
to impact and resets the weapon fire variable. At the end of
an AI cycle, the wep fire event array is checked for impact

events and if one is found, the feedback function is called,
resetting the wep fire event array to free the slot for other
projectiles. It is also checked for missile events and, if a new
event is found, a copy of the perceptron input values are put
into a wep event inputs array that is stored in the bot state t
structure.

5. EVALUATION

For the purposes of testing the adaptation system, the fuzzy
logic component was designed to mimic the selections made
by the original Q3A AI as closely as possible. This was done
so that the changes in behaviour of the bot due to adapta-
tion during a match could be directly compared with the be-
haviour exhibited by the original AI.

5.1. Adaptation of weapon selection

In order to test whether the bot is able to change weapon
preferences within the game, its preferences were set up so
that it had a high preference for a certain weapon but also
low accuracy. By assigning another weapon a high accuracy
but normal preference, the system’s ability to change prefer-
ences was tested. The adaptable bot’s preferences and accu-
racy levels were set up as follows:

(i) plasma gun: accuracy = 0.1, preference = 300;
(ii) rocket launcher: accuracy = 0.9, preference = 200;

(iii) grenade launcher: accuracy = 0.8, preference = 100;
(iv) shotgun: accuracy = 0.7, preference = 150.

The significant weapon numbers in Figures 6 and 7 are
2-machine gun, 3-shotgun, 4-grenade launcher, 5-rocket
launcher, and 8-plasma gun.

Figure 13 shows the output of the weapon selection
choices, comparing the Q3A AI with the adaptable AI. The
graph shows how the adaptable AI and Q3A AI make very
similar selections at the start of the match, with only slight
variations in the choice of weapon. Towards the end of
the match the differences of choice become more evident
with regards to the plasma gun in particular; seen clearly in
Figure 14 which shows a close up of the last part of the match.

This demonstrates the adaptation occurring on the
plasma gun’s use as, due to its very low accuracy, the nega-
tive feedback lowers its effectiveness rating over the course of
the match until the other weapons effectiveness scores make
them a better choice. The rating of the plasma gun falls so low
that the grenade launcher, with only a third of the preference
rating of the plasma gun, is preferred over it in some situ-
ations. The rocket launcher is shown to be preferred to the
plasma gun in almost all situations, and those times when it
is not can be accounted for by the rocket launcher running
out of ammunition.

The graphs showing the adaptation of the perceptrons
for the plasma gun (Figure 15) and the rocket launcher
(Figure 16) illustrate how rating of the plasma gun drops
and the rocket launcher rises to a point were the preferences
change for the weapons. Whereas, the plasma gun’s medium
range drops to around 0.2, the rocket launcher’s rises, albeit

A. El Rhalibi and M. Merabti 17

1 256 511 766 1021 1276 1531 1786 2041 2296 2551 2806

Number of selections

0

1

2

3

4

5

6

7
8

9

W
ea

p
on

n
u

m
be

r

Adaptable AI
Q3A AI

Comparison of weapon selection
for low accuracy and high preference

Figure 13: Graph of weapon selection comparison between adapt-
able ai and q3a ai for low accuracy and high preference of plasma
gun.

0

1

2

3

4

5

6

7

8

9

W
ea

p
on

n
u

m
be

r

Adaptable AI
Q3A AI

Extract of comparison of weapon selection
for low accuracy and high preference

Figure 14: Extract of comparison of weapon selection for low ac-
curacy and high preference, showing difference due to adaptation.

only slightly, to 0.55. This is enough of a variation to cause
the change in weapon selection to occur.

5.2. Validity of input choices for perceptron

The inputs chosen for the perceptron resulted in varying
degrees of success in their ability to affect the selection of
weapons due to adaptation. The distance input was success-
ful in reflecting the feedback of the weapon’s strengths and
weaknesses in the adaptation of its weights. Trends can be
identified from the adjustments made during training that
relate to the performance of the weapon in the game.

Another input that demonstrated an effect on the selec-
tion process was the height difference, although not to the
extent of the distance input. It showed a higher effectiveness
for when the enemy is below the bot and lower for enemies
above.

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166

Number of shots

0

0.1

0.2

0.3

0.4

0.5

0.6

W
ei

gh
t

Close
Medium

Far
Very far

Plasma gun adaptation
with low accuracy and high preference

Figure 15: Adaptation of plasma gun distance due to low accuracy
and high preference.

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Number of shots

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

W
ei

gh
t

Close
Medium

Far
Very far

Rocket launcher adaptation

Figure 16: Adaptation of rocket launcher distance due to high ac-
curacy and medium preference.

The ammunition input showed little influence over de-
termining the correct weapons by adapting its values. This
is because there is no direct link between the effectiveness of
the weapon and the amount of ammunition, therefore the
feedback could not influence the ammunition training. The
only direct influence of the ammunition on the weapon se-
lection came when the level fell to 0, causing the weapon to
be changed to another. All other levels had no bearing on
how the weapon performed, indicating that categorisation
was not required. Possibly, restricting the ammunition input
to a “low ammunition” input would better serve the selection
of weapons.

The evaluation of the inputs shows that certain types of
input lead to better performance of the adaptation of the per-
ceptron while others contribute little. Generally, the most ef-
fective inputs:

(i) directly influence the behaviour; the ammunition in-
put had no direct influence over the effectiveness of
the weapon, whereas the distance changed how well it
performed;

18 International Journal of Computer Games Technology

(ii) are reflected in the feedback; there was no feedback
that reflected the effect of ammunition at levels other
than 0, when the weapon needed to change. The
amount of damage that could be inflicted was not af-
fected by larger or smaller amounts of ammunition.

6. CONCLUSIONS

This paper has shown how, by combining traditional AI tech-
niques, a system can be developed that enables the choices
made by a conventional AI layer to be altered in response
to feedback from the actions selected. Although the devel-
opment was limited to just the weapon selection behaviour,
so limiting the effect on the game that is visible from testing,
evidence was found that the system is capable of adapting
to feedback by a significant enough amount to change the
actions that prove unsuccessful to those that are successful.
The results showed interesting trends that indicate that, with
more development and testing to determine optimum set-
tings, the system developed could form the basis of a useable
adaptable AI system.

ACKNOWLEDGMENT

The authors would like to express their appreciation to the
anonymous reviewers for their very helpful and constructive
comments and recommendations.

REFERENCES

[1] J. Manslow, Learning and Adaptation, AI Game Programming
Wisdom, Charles River Media, Rockland, Mass, USA, 2002.

[2] J. E. Laird, “Game AI: the state of the industry 2000, part two,”
Game Developer Magazine, 2000.

[3] M. McCuskey, Fuzzy Logic for Video Games, Game Program-
ming Gems, Charles River Media, Rockland, Mass, USA, 2000.

[4] S. Russell and P. Norvig, Artificial Intelligence ‘A Modern Ap-
proach’, Prentice-Hall, Upper Saddle River, NJ, USA, 1995.

[5] S. Rabin, AI Programming Wisdom, Charles River Media,
Rockland, Mass, USA, 2002.

[6] N. Palmer, “Machine Learning in Games Development,” 2003,
http://ai-depot.com/GameAI/Learning.html.

[7] A. J. Champandard, AI Game Development: Synthetic Crea-
tures with Learning and Reactive Behaviours, New Riders, In-
dianapolis, Indiana, 2004.

[8] J. M. P. van Waveren, “The Quake III Arena Bot,” University of
Technology Delft, Faculty ITS, San Diego, Calif, USA, 2003.

[9] T. Alexander, An Optimized Fuzzy Logic Architecture for Deci-
sion Making, AI Game Programming Wisdom, Charles River
Media, Rockland, Mass, USA, 2002.

[10] M. Zarozinski, Imploding Combinatorial Explosion in a Fuzzy
System, Game Programming Gems 2, Charles River Media,
Rockland, Mass, USA, 2001.

[11] R. C. Berkan and S. L. Trubatch, Fuzzy Systems Design Prin-
ciples: Building Fuzzy IF-THEN Rule Bases, Wiley-IEEE, New
York, NY, USA, 1997.

[12] L. Fausett, Fundamentals of Neural Networks: Architectures, Al-
gorithms, and Applications, Prentice-Hall, Upper Saddle River,
NJ, USA, 1994.

[13] S. Haykin, Neural Networks: A Comprehensive Foundation,
Prentice-Hall, Upper Saddle River, NJ, USA, 2nd edition, 1998.

[14] M. R. Medsker and J. And Liebowitz, Design and Development
of Expert Systems and Neural Computing, Macmillan College,
New York, NY, USA, 1994.

[15] Quake 3 Arena, Id Software, Dallas, Tex, USA, 1999, http://
www.idsoftware.com.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 281959, 9 pages
doi:10.1155/2008/281959

Research Article
Generation of Variations on Theme Music Based
on Impressions of Story Scenes Considering Human’s
Feeling of Music and Stories

Kenkichi Ishizuka and Takehisa Onisawa

Graduate School of Systems and Information Engineering, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8573, Japan

Correspondence should be addressed to Takehisa Onisawa, onisawa@iit.tsukuba.ac.jp

Received 31 July 2007; Accepted 17 October 2007

Recommended by Kevin Kok Wai Wong

This paper describes a system which generates variations on theme music fitting to story scenes represented by texts and/or pic-
tures. Inputs to the present system are original theme music and numerical information on given story scenes. The present system
varies melodies, tempos, tones, tonalities, and accompaniments of given theme music based on impressions of story scenes. Ge-
netic algorithms (GAs) using modular neural network (MNN) models as fitness functions are applied to music generation in order
to reflect user’s feeling of music and stories. The present system adjusts MNN models for each user on line. This paper also de-
scribes the evaluation experiments to confirm whether the generated variations on theme music reflect impressions of story scenes
appropriately or not.

Copyright © 2008 K. Ishizuka and T. Onisawa. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Music, pictures, and/or text information are combined into
multimedia content with interaction among them [1]. The
effectiveness of multimodal communication using combined
different modal media has been analyzed in the field of cogni-
tive psychology [1]. It is expected that multimodal commu-
nication will be performed in everyday life in the future ow-
ing to the development of information technology [2]. How-
ever, the interaction among different modal media is not nec-
essarily generated by their simple and random combination.
Features and impressions of media should be considered well
in order to create effective multimedia contents. Therefore,
creation of multimodal contents costs more time and labor
than that of single-modal one. Support systems for creation
of multimodal contents or for the flexible combination of
different modal media are taken interest in [3, 4].

The authors are studying on the construction of a system
which generates variations on theme music fitting to each
story scene represented by texts and/or pictures [5]. This sys-
tem varies melodies, tempos, tones, tonalities, and accom-
paniments of a given theme music based on impressions of
story scenes. This system has two sections representing (a)

relations between story scenes and musical images and (b)
relations between features of variations and musical impres-
sions. Since human feeling of stories and music is different
among people [6] and the difference is important in multi-
media content creation, it is necessary to consider the above
relations depending on each user. Although in [5] these re-
lations are obtained by questionnaire data, that is, off line,
in the present paper a method, which adjusts the relations
for each user on line, is proposed. In this paper, the trans-
formation of theme music is defined as follows. Tunes, tones,
musical performances, rhythms, tempos are varied according
to story scenes [7].

2. OUTLINE OF PRESENT SYSTEM

2.1. Inputs and outputs

Inputs to the present system are original theme music and
numerical information on given story scenes. Outputs are
MIDI files of variations on original theme music generated
according to each story scene. This paper deals with gen-
eration of variations on theme music fitting to stories ob-
tained by the system [8] that generates story-like linguistic

2 International Journal of Computer Games Technology

Table 1: Information on story scene.

No. Information Num Information

1 Happiness 7 Kind of character 1

2 Sadness 8 Kind of character 2

3 Surprise 9 Impressions of behavior

4 Fear 10 Kind of character 1 (previous)

5 Anger 11 Kind of character 2 (previous)

6 Disgust 12 Impressions of behavior

— — 13 Picture’s sequence

expressions given four pictures. In this paper, a scene is de-
fined as each picture for story generation. Information on
a picture scene, for example, character’s emotion, kinds of
characters, impressions of character’s behavior in a story
scene (e.g., violent behavior), picture sequence, as shown in
Table 1, is acquired from each picture [8]. These are inputs
to the present system.

2.2. System structure

The present system consists of two sections, a musical image
acquisition (MIA) section and a theme music transforma-
tion (TMT) section as shown in Figure 1. The MIA section
converts information on story scenes shown in Table 1 into
transformation image parameters (TIPs) by modular neural
network (MNN) models [9]. The TMT section transforms
inputted original theme music based on values of TIPs, and
generates a set of midiformatted candidates of variations on
theme music for each story scene. The TMT section applies
genetic algorithms (GAs) to the generation of variations can-
didates, which has MNN models as fitness functions. MNN
models consist of three neural network models, an average
model network (AMN), an individual variation model net-
work (IVMN), and gating networks. AMN is a hierarchical
neural network model expressing user’s average feeling of
music and stories. IVMN is a radial basis function network
model expressing differences among users’ feeling of music
and stories. The gating network switches over between AMN
and IVMN. The present system adjusts IVMNs and the gat-
ing networks for each user.

3. MUSICAL IMAGE ACQUISITION (MIA) SECTION

The MIA section is constructed by MNN models. The in-
puts to MNN models are shown in Table 1. MNN models
estimate the values of TIPs representing musical image for
transformation of original theme music. In this paper, TIPs
consist of some pairs of adjectives that are selected refer-
ring to a study that retrieves many genres musical works
with pairs of adjectives representing musical image [10].
These are happy-sad, heavy-light, hard-soft, stable-unstable,
clear-muddy, calm-violent, smooth-rough, thick-thin. Preex-
periments are performed in order to confirm which pairs of
adjectives are necessary for TIPs. The procedures of the pre-
experiments are as follows. (1) Fixing musical instruments,
tempos, tonalities, tones, chords in a melody part and accom-
paniment parts patterns at random, 125 variations are gener-

Table 2: Transformation image parameters.

Parameters Values

Calm-violent [0.0–1.0]

Heavy-light [0.0–1.0]

Happy-sad [0.0–1.0]

Clear-muddy [0.0–1.0]

Degree of change from original theme music [0.0–1.0]

ated. (2) Some subjects, who have no experience to play some
musical instruments over 3 years, listen to the variations and
express impressions on them with 8 pairs of adjectives. (3)
If the subjects feel that it is difficult to evaluate the differ-
ence among the variations with some pairs of adjectives, they
give the pairs. The results of the pre-experiments show that
it is difficult to evaluate the difference among the variations
using adjectives hard-soft, stable-unstable, smooth-rough, or
thick-thin. Then, in this paper these four pairs of adjectives
are not used. That is, four pairs of adjectives, which are pa-
rameters on degree of change from original theme music shown
in Table 2, are used. Each parameter value is a real number in
[0.0, 1.0].

The MIA section estimates the values of TIPs from in-
formation on a picture scene. In generation of variations on
theme music fitting to story scenes, information on story
scenes necessary for the estimation of the values of TIPs is
dependent on media representing a story, for example, pic-
tures, texts or animations or the contents of a story, for ex-
ample, a serious story, a story for children, and is not deter-
mined uniquely. Therefore, it is necessary to consider the se-
lection of information on picture scenes for the estimation of
the values of TIPs. However, since in this paper, input to the
present system is limited to information on pictures scenes,
the paper does not discuss this point. In the future it is neces-
sary to change information according to media representing
a story or the form of a story.

4. THEME MUSIC TRANSFORMATION (TMT) SECTION

4.1. Procedure on generation of variations [5]

Inputs to the TMT section are original theme music and val-
ues of TIPs obtained by the MIA section, and outputs are
MIDI files of variations on theme music. MIDI files consist of
the melody part and six accompaniment parts. The accom-
paniment parts consist of an obbligati part, a backing parts
1 and 2, a bass part, a pad part, and a drums part. The TMT
section modifies impressions of inputted original theme mu-
sic varying the following components of MIDI files [5]: (1)
scores of melody parts, (2) tempos, (3) tonalities, (4) accom-
paniment patterns of accompaniment parts, and (5) tones.

4.2. Structure of TMT section

The TMT section transforms given original theme music
according to inputted TIPs and outputted sets of MIDI-
formatted candidates of variations on given theme music as
shown in Figure 2. GAs are applied to the transformation of

K. Ishizuka and T. Onisawa 3

Present systemInput Output

Theme music

Transformation image parameter

Information
on

story scene

MNN

AMN

IVMN

Musical image acquisition
section

Gating
net

Euclid
distance GA search

Gating
net

MNN

AMN

IVMN

Variations

Theme music transformation section

Variation

Variation

Variation

Melody chromosome

Score information

Accompaniment
chromosome

Accompaniment part
information

Figure 1: System structure.

a given theme music fitting to TIPs, where a variation gener-
ated from a given theme music is represented by a chromo-
some in the framework of GAs. In this paper, GAs parameters
are abbreviated as follows.

(1) N : Population size
(2) T : Maximum number of generations
(3) Nnew: The number of individuals generated randomly
(4) Nuser: Partial population size presented to user
(5) Pc: Crossover probability
(6) Pm: Mutation probability.

Procedures in the TMT section are as follows.

(1) N variations are generated from inputted theme music
in the form of chromosomes.

(2) Fitness values of chromosomes are calculated accord-
ing to the inputted values of TIPs and melodies of orig-
inal theme music.

(3) GAs operations of crossover and mutations are per-
formed. Next generation population is generated. Go
back to step (2).

4.2.1. Structure of chromosome

Variations consist of three kinds of chromosomes such as
Melody Chromosome, Accompaniment Chromosome, and Sta-
tus Chromosome.

The melody chromosome has melody part score infor-
mation. Melody part score information is represented by
the format shown in Figure 3. A given original theme mu-
sic is represented as an initial chromosome. The accompa-

niment chromosome has accompaniment part information.
The playing pattern number and the performance type of the
obbligati part in the accompaniment part are represented by
chromosomes, where each information is represented with
1 byte as shown in Figure 3. Initial chromosomes have ran-
dom values for information. The status chromosome has in-
formation on a tempo, a tonality, and a tone. Tempo, tonal-
ity, melody part tone, and obbligato part tone are repre-
sented by a chromosome as shown in Figure 3. Tempo (60–
200 [BPM]), tonality (a major scale or minor one), and tone
are also represented with 1 byte. Initial chromosomes have
random values for information.

4.2.2. Calculation of fitness value [5]

Fitness values of chromosomes are calculated according to
the inputted values of TIPs and melodies of original theme
music [5]. Let i (i = 1, 2, ...,N) be the chromosome num-
ber, that is, the variation number, and Fitnessi represents the
fitness value of the ith variation. Fitnessi is defined as

Fitnessi = Melody Fitnessi + Impression Fitnessi, (1)

where Melody Fitnessi is the fitness value of score informa-
tion in the melody part of the ith variation referring to [11],
and Impression Fitnessi is the fitness value of impressions on
the ith variation [5]. Impression values of variations are esti-
mated by MNN models. These impression values are degrees
of four pairs of adjectives used in TIPs estimation. MNN
models are obtained by the relation between feature spaces
of variations and impression values.

4 International Journal of Computer Games Technology

(1)

(2)

(3)

Input Output

Theme music

Transformation
image parameter

N variations are generated in the form of chromosomes

Nuser fittest variations are taken as
candidates

Fitness evaluation
is given to chromosomes

MIDI files are
generated from
chromosomes

Repeat

Crossover and mutation

Theme music transformation section

Figure 2: Theme music transformation section.

Melody part score information

One bar is divided into 16

Key = 60
Vol = 100

Key = 55
Vol = 80

Key = 55
Vol = 40

Key = 66
Vol = 80

Key = 64
Vol = 40

Key = 64
Vol = 40

· · ·

Accompaniment part information

Obbligati
part info.

Backing part 1
pattern

Backing part 2
pattern

· · · Drums part
pattern

6 bytes

Tempo, tonality,
melody part tone,
obbligati part tone
information

Tempo Tonality Melody part
tone

Obbligati part
tone

4 bytes

Figure 3: Three kinds of chromosomes.

Smaller the value of Fitnessi is, the better the ith variation
is. Procedures of calculation of fitness values are shown in
Figure 4.

4.2.3. GA operations

(N − Nnew) individuals of parent candidates are selected by
the tournament selection according to the fitness values ob-
tained in 4.2.2. Crossovers at probability of Pc and mutations
at Pm are applied to parent candidates. Nnew individuals are
generated at random. Crossover and mutation are performed
as follows.

Crossover

uniform crossover is applied to melody chromosomes ob-
tained by the generative theory of total music grouping struc-
ture analysis [12] in every group.

Mutation

random values are assigned to the accompaniment chromo-
some and the status chromosome. Varying score informa-
tion on the melody part described in [5] is applied to melody
chromosomes.

K. Ishizuka and T. Onisawa 5

Input

Original theme music

Variations

Transformation
image parameter

Degree of change
from original theme
music

Calm ∼ violent
Heavy ∼ light
Happy ∼ sad
Clear ∼muddy

Melody fitness

Impression
fitness

Fitness

M
N

N

Variation

Melody chromosome

Score information

Accompaniment
chromosome

Accompaniment part info.

Tempo, tonality, tone
chromosome

Tempo

+

Tonality Tone

Figure 4: Calculation of fitness values.

5. MNN STRUCTURE

The present system uses MNN models to represent (1) re-
lations between story scenes and values of TIPs in the MIA
section, and (2) relations between features of variations and
musical impressions in the TMT section. MNN models in the
present system consist of AMN, IVMN, and the gating net-
work as shown in Figure 5. When the present system adjusts
its MNN models for each user, IVMN and the gating network
are obtained by learning of user’s data of individual variation
of feeling of music and stories.

AMN is a hierarchical neural network model which con-
sists of sigmoid neurons. AMN is constructed using ques-
tionnaire data of subject’s feelings for music and stories. The
questionnaire data are obtained referring to [6].

IVMN is a hierarchical neural network model which con-
sists of RBF neurons. RBF is a function responding to input
values in a local area. Therefore, an RBF network is easy to
be adjusted online and fast. When a user is not satisfied with
outputs of MNN, learning data of IVMN are generated and
saved in the present system. Input values of learning data
are input values of MNN. Output values of learning data are
evaluation values by each user.

The gating network is an RBF network switching over be-
tween AMN and IVMN. The gating network judges whether
input values of MNN are close to the area learned by IVMN
or not. When a user is not satisfied with outputs of MNN,
learning data of IVMN are generated and saved in the present
system. Learning data of the gating network are input values
of MNN. Output values of learning data of the IVMN are
evaluation values by users.

IVMN and the gating network are constructed by the
method proposed in [13] using all data saved in the present
system.

Outputs of MNN models are defined as

fMNN(x) =
{
fpersonal(x) : g(x) ≥ t

faverage(x) : g(x) < t,
(2)

where g(x) is an output value of the gating network
fpersonal(x) is an output value of the IVMN faverage(x) is an
output value of the AMN, and t is a threshold of switching
AMN and IVMN.

6. EXPERIMENTS

Experiments are performed to evaluate the present system by
8 undergraduate/graduate students. In the experiments, GA
parameters are set at the following values: N = 100, T =
100, Nuser = 3, Nnew = 20, Pc = 70%, Pm = 20%. In the
experiments, the threshold of switching AMN and IVMN by
a gating network is set at 0.75. Musical works are chosen at
random from prepared seventeen MIDI files of classical tunes
or folk tunes, and are used as theme music of stories.

6.1. Construction of IVMN and gating network

IVMN and the gating network for each subject are con-
structed in the following procedures.

(1) Story scenes and theme music are inputted to the
present system. The present system generates N varia-
tions according to each story scene and outputs them.

(2) When a subject is satisfied with one of outputted vari-
ations, go to (8). When a subject is not satisfied with
any variations, go to (3).

(3) A subject looks at the values of TIPs estimated by the
present system. The values of TIPs are presented to a
subject in the form of Figure 6.

(4) The present system adjusts MNN models according to
two cases as shown in Figure 7. That is, a subject feels
(a) presented musical image is not suitable for story
scenes or (b) generated variations are different from
presented musical images.

(a) When a subject feels that presented musical im-
age is not suitable for story scenes, a subject
evaluates whether the values of TIPs fit to story

6 International Journal of Computer Games Technology

Input x

AMN
(hierarchical

neural network)

IVMN
(RBF network)

Gating network
(RBF network)

faverage(x) fpersonal(x) g(x)

g(x) < t : fMNN(x) = faverage(x)

g(x) ≥ t : fMNN(x) = fpersonal(x)

Output fMNN(x)

Figure 5: Concept figure on MNN.

scenes by the interface shown in Figure 6. Vari-
ations are generated according to values of TIPs
evaluated by a subject. Go to (5).

(b) When a subject feels generated variations are dif-
ferent from presented images, a subject chooses
one ofN variations. A subject evaluates his/her
impressions using the 7-point scale method
shown in Figure 8, where evaluation items are
pairs of the same adjectives as the ones used as
TIPs estimation. In this procedure the human in-
terface shown in Figure 8 is used. Variations are
generated by using modified MNN models. Go
to (6).

(5) A subject listens to N variations. When a subject is
satisfied with one of outputted variations, go to (7).
When a subject is not satisfied with any variations, go
to (3).

(6) A subject listens to N variations. When a subject is
satisfied with one of outputted variations, go to (8).
When a subject is not satisfied with any variations, go
to (3).

(7) MNN models in MIA section are adjusted by the re-
lation between information on story scenes and values
of TIPs evaluated by a subject.

(8) Go to an evaluation of the next scene.

6.2. Experiment 1

Three story scenes are inputted into the present system and
variations are generated, where the story scenes are differ-
ent from the ones used in Section 6.1 and MNN models
are adjusted for each subject in Section 6.1. This experiment
confirms whether the present system generates variations on
theme music reflecting subject’s feeling of music and stories.

Let twelve story scenes be Si(i = 1, . . . , 12). A subject is
asked to read Si and to evaluate musical images fitting Si us-
ing the 7-point scale method (e.g., (7) very calm through (1)
very violent), where evaluation items are 4 pairs of the same

adjectives as the ones used in TIPs estimation. Let the evalu-
ation values of Si by a subject be ISi = (ai1, ai2, ai3, ai4) and let
twelve variations generated from Si by the present system be
Pi(i = 1, . . . , 12). A subject is asked to evaluate impressions of
Pi by 7-point scale method, where evaluation items are four
pairs of the same adjectives as the ones used in TIPs estima-
tion, and Pi are presented to a subject at random. Let impres-
sions of Pi evaluated by a subject be IPi = (bi1, bi2, bi3, bi4),
where ai1 and bi1, ai2 and bi2, ai3 and bi3, and ai4 and bi4
are evaluation values of “violent-calm,” “heavy-light,” “clear-
muddy,” and “sad-happy,” respectively. These variables have
integer values in [1, 7] evaluated by a subject. In this exper-
iment, cosine correlations [14] between ISi and IPi are used
for the evaluation whether the generated variations are re-
flecting subject’s feelings for music and stories or not. Cosine
correlation Sim(ISi , IPi) is defined as

Sim
(
ISi , IPi

) = cos
(

arg
(
ISi , IPi

))

=
∑(

ai j × bi j
)

√∑ (
ai j
)2 ×

√(
bi j
)2

, (1 ≤ j ≤ 4), (3)

when Sim(ISi , IPi) is close to 1.0, generated variations are re-
flecting users feelings for music and story well.

6.3. Result 1

Sim(ISi , IPi) are shown in Table 3. It is found that 80% of the
whole of Sim(ISi , IPi) is 0.9 or more, and the present system
is able to generate variations reflecting subject’s feelings to
music and stories.

6.4. Experiment 2

Other three story scenes are inputted into the present sys-
tem and variations are generated, where MNN models in the
present system are adjusted for each subject in Section 6.1.
A subject is asked to evaluate with 7-point scale method
whether variations on theme music fit impressions of each
presented story scene or not; (7) very suitable (6) suitable (5)

K. Ishizuka and T. Onisawa 7

The system estimated musical image as follows

Very happy Happy
A little
happy Neutral

A little
sad Sad Very sad

Very violent Violent
A little
violent Neutral

A little
calm Calm Very calm

Very heavy Heavy
A little
heavy Neutral

A little
light

Light Very light

Very clear Clear
A little
clear Neutral

A little
muddy Muddy Very muddy

Width of change
in melody

Generate

Figure 6: TIPs estimation by present system.

(3) The system estimates that
calm and a little muddy music
suitable for this scene

Scene

Variations

The boy is
bullying the dog
The dog is
frightened Input Output

The present
system

User User

I feel that
violent and muddy music
is suitable for this scene

I feel that generated variations
are calm music, not a little muddy

(a) A subject feels that presented
musical image is not suitable
for the story scene

(b) A subject feels generated
variations are different from
presented images

Figure 7: MNN models adjustment.

How do you feel this variation?

Very happy Happy
A little
happy Neutral

A little
sad Sad Very sad

Very violent Violent
A little
violent Neutral

A little
calm Calm Very calm

Very heavy Heavy
A little
heavy Neutral

A little
light Light Very light

Very clear Clear
A little
clear Neutral

A little
muddy Muddy Very muddy

Play Stop Learn

Figure 8: Interface.

8 International Journal of Computer Games Technology

Graph

Average
system

Present
system

Average of
evaluation values

Decentralization of
evaluation values

1

2 3 4 5 6 7

3

4 5 6 7

0 % 20 % 40 % 60 % 80 % 100 %

4.97 1.82

5.69 1.06

Figure 9: Distributions of evaluation values.

A boy is bullying a dog

Subject A

Strings

Strings

Tempo = 104

Steel Gt

Ac Bass

Strings

Drums

Subject B

Trombone

Strings

Tempo = 93

Steel Gt

Dist Guitar

Timpani

Drums

(a)

The boy came to meet the girl

The boy and the girl are smiling

Subject A

English Horn Tempo = 127

Strings

Piano

Harp

Ac Bass

Warm Pad

Subject B

Flute

Strings

Tempo = 112

Nylon Gt

Pizzicato Str

Ac Bass

Strings

Drums

(b)

Since the dog was bullied by

the boy, it called for a bear

The bear swallowed the girl
The boy is running away from
the bear

Subject A

Trumpet Tempo = 191

Strings

Rock Organ

String

Slap Bass

Halo Pad

Drums

Subject B

English Horn

Strings

Tempo = 196

Rock Organ

Pick Bass

Halo Pad

Drums

(c)

Figure 10: Examples of variations.

a little suitable (4) neutral (3) little suitable (2) not suitable
(1) not suitable at all. Furthermore, to confirm the effective-
ness of IVMN, variations generated by the present system
and the ones generated by an average system are compared
with each other, where the average system is the system whose
IVMN in MNN models are average among subjects.

6.5. Result 2

Experimental results are shown in Table 4. It is found that
the present system gets evaluation (5) or (6) or (7) in ap-
proximately 87.5% of all evaluation results.

Distributions of evaluation values of variations gener-
ated by the present system and those of variations gener-
ated by the average system are shown in Figure 9. It is found
that variations generated by the present system are evalu-

Figure 11: Theme music.

ated higher in the large percentage than variations generated
by the average system. An average and a decentralization of
evaluation values are also shown in Figure 9. The decentral-
ization of evaluation values of variations generated by the
present system is lower than that of variations generated by
the average system. It is found that constructing IVMN and
the gating network for each user are effective.

Figure 10 shows examples of the variations on theme mu-
sic by subjects A and B, where original theme music is Twin-
kle Stars as shown in Figure 11. From these figures it is found

K. Ishizuka and T. Onisawa 9

Table 3: Cosine Similarity.

Story Scene
Subject

G H I I K L M N

1

1 0.86 0.94 0.93 0.95 0.96 0.98 0.99 0.97

2 0.83 0.99 0.98 0.97 0.98 0.99 0.98 0.97

3 0.94 0.99 0.82 0.95 0.95 0.99 0.98 0.94

4 0.96 0.90 0.96 0.96 0.96 0.95 0.98 0.94

2

1 0.84 0.97 0.97 0.94 0.94 0.95 0.94 0.89

2 0.91 0.97 0.99 0.85 0.99 0.99 0.99 0.98

3 0.98 0.95 0.98 0.93 0.93 0.97 0.98 0.95

4 0.97 0.92 0.96 0.82 0.91 0.97 1.00 1.00

3

1 0.84 0.94 0.83 0.95 0.85 0.98 0.98 0.97

2 1.00 0.98 0.99 0.96 0.98 0.99 0.99 0.99

3 0.99 0.93 0.98 0.94 0.95 0.93 0.88 0.40

4 0.65 0.98 0.79 0.80 0.98 0.97 0.94 0.50

Average 0.90 0.96 0.93 0.92 0.95 0.97 0.97 0.88

Table 4: Evaluation Values.

Story Scene
Evaluation Values

G H I I K L M N

1

1 6 6 5 4 5 6 3 5

2 6 7 7 6 5 5 5 4

3 5 7 7 6 6 7 6 6

4 6 6 6 7 3 7 6 4

2

1 7 7 4 6 5 7 4 6

2 6 5 6 5 6 6 6 5

3 6 6 7 6 6 7 6 5

4 7 6 7 7 4 7 6 6

3

1 7 7 6 5 5 5 4 5

2 7 6 5 6 6 6 4 5

3 5 6 6 7 4 5 6 5

4 7 6 6 6 4 6 5 3

that although the same scenes are given to the subjects, vari-
ous theme tunes are transformed by the present system.

Variations on theme music generated by the present sys-
tem are dependent on subjects’ impressions on story ex-
pressed by pictures. Therefore, even if the same pictures
are given, generated variations are different among subjects.
Nevertheless, subjects themselves are satisfied with generated
variations. Then it is found that the present system generates
variations on theme music fitting to subjects’ impressions on
story well. However, subjects’ impressions on story usually
change according to time and environment in which subjects
are. The present system does not deal with the variations de-
pending on these factors, time, environment, and so forth.
This is a future work.

7. CONCLUSIONS

This paper presents the system which transforms a theme
music fitting to story scenes represented by texts and/or pic-
tures, and generates variations on the theme music. The
present system varies (1) melodies, (2) tempos, (3) tones,

(4) tonalities, and (5) accompaniments of a given theme mu-
sic based on impressions of story scenes using neural net-
work models and GAs. Differences of human’s feeling of
music/stories are important in multimedia content creation.
This paper proposes the method that adjusts the models in
the present system for each user. The results of the experi-
ments show that the system transforms a theme music re-
flecting user’s impressions of story scenes.

REFERENCES

[1] Z. Iwamiya, Multimodal Communication on Music and Visual-
izations, Kyushu University Press, Fukuoka, Japan, 2000.

[2] S. Takahasi, M. Okamoto, and H. Ohara, “Voice and sound
processing technology for easy, comfortable, convenient com-
munications environment,” NTT Technical Journal, pp. 8–9,
2004 (Japanese).

[3] H. Liu, H. Lieberman, and T. Selker, “A model of textual affect
sensing using real-world knowledge,” in Proceedings of the 8th
International Conference on Intelligent User Interfaces (IUI ’03),
pp. 125–132, Miami, Fla, USA, January 2003.

[4] H. Takagi and T. Noda, “Media converter with impression
preservation using a neuro-genetic approach,” International
Journal of Hybrid Intelligent Systems, vol. 1, no. 1, pp. 49–56,
2004.

[5] K. Ishizuka and T. Onisawa, “Generation of variations on
theme music based on impressions of story scenes,” in Pro-
ceedings of the International Conference on Games Research and
Development, pp. 129–136, Perth, Western Australia, Decem-
ber 2006.

[6] Y. Kiyoki, T. Kitagawa, and T. Hayama, “A metadatabase sys-
tem for semantic image search by a mathematical model of
meaning,” ACM SIGMOD Record, vol. 23, no. 4, pp. 34–41,
1994.

[7] W. Apel, Harvard Dictionary of Music, Harvard University
Press, London, UK, 2nd edition, 1973.

[8] S. Kato and T. Onisawa, “Generation of consistent linguistic
expressions of pictures,” Journal of Japan Society for Fuzzy The-
ory and Intelligent Infomatics, vol. 17, no. 2, pp. 233–242, 2005
(Japanese).

[9] K. Watanabe, Neural Network Computational Intelligence,
Morikita Press, Tokyo, Japan, 2006.

[10] T. Ikezoe, Y. Kazikawa, and Y. Nomura, “Music database re-
trieval system with sensitivity words using music sensitivity
space,” Journal of Japan Information Processing Society, vol. 42,
no. 12, pp. 3201–3212, 2001 (Japanese).

[11] T. Kadota, M. Hirao, A. Ishino, M. Takeda, A. Shinohara,
and F. Matsuo, “Musical sequence comparison for melodic
and rhythmic similarities,” in Proceedings of the 8th Interna-
tional Symposium on String Processing and Information Re-
trieval (SPIRE ’012001), pp. 111–122, Laguna De San Rafael,
Chile, November 2001.

[12] F. Lerdahl and R. Jackendoff, A Generative Theory pf Tonal Mu-
sic, MIT Press, Cambridge, Mass, USA, 1983.

[13] A. Hattori and H. Nakayama, “Additional learning and ac-
tive forgetting by support vector machine and RBF networks,”
Tech. Rep., Institute of Electronics, Information and Commu-
nication Engineers, Tokyo, Japan, 2002.

[14] A. Yamaue and S. Kurachi, Psychological Statistics, Kitaoozi
Press, Tokyo, Japan, 1991.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 412056, 7 pages
doi:10.1155/2008/412056

Research Article
A Constraint-Based Approach to Visual Speech for
a Mexican-Spanish Talking Head

Oscar Martinez Lazalde, Steve Maddock, and Michael Meredith

Department of Computer Science, Faculty of Engineering, University of Sheffield, Regent Court, 211 Portobello Street,
Sheffield S1 4DP, UK

Correspondence should be addressed to Oscar Martinez Lazalde, acp03om@sheffield.ac.uk

Received 30 September 2007; Accepted 21 December 2007

Recommended by Kok Wai Wong

A common approach to produce visual speech is to interpolate the parameters describing a sequence of mouth shapes, known as
visemes, where a viseme corresponds to a phoneme in an utterance. The interpolation process must consider the issue of context-
dependent shape, or coarticulation, in order to produce realistic-looking speech. We describe an approach to such pose-based
interpolation that deals with coarticulation using a constraint-based technique. This is demonstrated using a Mexican-Spanish
talking head, which can vary its speed of talking and produce coarticulation effects.

Copyright © 2008 Oscar Martinez Lazalde et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Film, computer games, and anthropometric interfaces need
facial animation, of which a key component is visual speech.
Approaches to producing this animation include pose-based
interpolation, concatenation of dynamic units, and physi-
cally based modeling (see [1] for a review). Our approach is
based on pose-based interpolation, where the parameters de-
scribing a sequence of facial postures are interpolated to pro-
duce animation. For general facial animation, this approach
gives artists close control over the final result; and for vi-
sual speech, it fits easily with the phoneme-based approach
to producing speech. However, it is important that the inter-
polation process produces the effects observed in the natural
visual speech. Instead of treating the pose-based approach as
a purely parametric interpolation, we base the interpolation
on a system of constraints on the shape and movement of the
visible parts of the articulatory system (i.e., lips, teeth/jaw,
and tongue).

In the typical approach to producing visual speech, the
speech is first broken into a sequence of phonemes (with
timing), then these are matched to their equivalent visemes
(where a viseme is the shape and position of the articula-
tory system at its visual extent for a particular phoneme in
the target language, e.g., the lips would be set in a pouted

and rounded position for the /u/ in “boo”), and then inter-
mediate poses are produced using parametric interpolation.
With less than sixty phonemes needed in English, which can
be mapped onto fewer visemes since, for example, the bil-
abial plosives /p/, /b/, and the bilabial nasal /m/ are visually
the same (as the tongue cannot be seen in these visemes),
the general technique is low on data requirements. Of course,
extra postures would be required for further facial postures
such as expressions or eyebrow movements.

To produce good visual speech, the interpolation pro-
cess must cater for the effect known as coarticulation [2],
essentially context-dependent shape. As an example of for-
ward coarticulation, the lips will round in anticipation of
pronouncing the /u/ of the word “stew,” thus affecting the ar-
ticulatory gestures for “s” and “t.” The de facto approach used
in visual speech synthesis to model coarticulation is to use
dominance curves [3]. However, this approach has a num-
ber of problems (see [4] for a detailed discussion), perhaps
the most fundamental of which is that it does not address the
issues that cause coarticulation.

Coarticulation is potentially due to both a mental plan-
ning activity and the physical constraints of the articulatory
system. We may plan to over- or underarticulate, and we
may try to, say, speak fast, with the result that the articula-
tors cannot realize their ideal target positions. Our approach

2 International Journal of Computer Games Technology

tries to capture the essence of this. We use a constraint-based
approach to visual speech (first proposed in [4, 5]), which
is based on Witkin and Kass’s work on physics-based artic-
ulated body motion [6]. In [7], we presented the basics of
our approach. Here, we show how it can be used to produce
controllable visual speech effects, whilst varying the speed of
speech.

Section 2 will present an overview of the constraint-
based approach. Sections 3, 4, and 5 demonstrate how the
approach is used to create Mexican-Spanish visual speech
for a synthetic 3D head. Section 3 outlines the required in-
put data and observations for the constraint-based approach.
Section 4 describes the complete system. Section 5 shows
the results from a synthetic talking head. Finally, Section 6
presents conclusions.

2. CONSTRAINT-BASED VISUAL SPEECH

A posture (viseme) for a phoneme is variable within and be-
tween speakers. It is affected by context (the so-called coar-
ticulation effect), as well as by such things as mood and tired-
ness. This variability needs to be encoded within the model.
Thus, a viseme is regarded as a distribution around an ideal
target. The aim is to hit the target, but the realization is that
most average speakers do not achieve this. Highly deformable
visemes, such as an open mouthed /a/, are regarded as having
larger distributions than closed-lip shapes, such as /m/. Each
distribution is regarded as a constraint which must be sat-
isfied by any final speech trajectory. As long as the trajectory
stays within the limits of each viseme, it is regarded as accept-
able, and infinite variety within acceptable limits is possible.

To prevent the ideal targets from being met by the trajec-
tory, other constraints must be present. For example, a global
constraint can be used to limit the acceleration and decelera-
tion of a trajectory. In practice, the global constraint and the
distribution (or range) constraints produce an equilibrium,
where they are both satisfied. Variations can be used to give
different trajectories. For example, low values of the global
constraint (together with relaxed range constraints) could be
used to simulate underarticulation (e.g., mumbling). In ad-
dition, a weighting factor can be introduced to change the
importance of a particular viseme relative to others.

Using the constraints and the weights, an optimization
function is used to create a trajectory that tries to pass close to
the center of each viseme. Figure 1 gives a conceptual view of
this. We believe that this approach better matches the mental
and physical activity that produces the coarticulation effect,
thus leading to better visual speech. In using a constrained
optimization approach [8], we need two parts: an objective
function Obj(X) and a set of bounded constraints Cj ,

minimize Obj(X) subject to ∀ j : bj ≤ Cj(X) ≤ bj , (1)

where bj and bj are the lower and upper bounds, respectively.
The objective function specifies the goodness of the system
state X for each step in an iterative optimization procedure.
The constraints maintain the physicality of the motion.

End

Start

Figure 1: Conceptual view of the interpolation process through or
near to clusters of acceptable mouth shapes for each viseme.

Table 1: Boundary constraints.

Constraints Action

S(tstart) = εstart Ensures trajectory starts at εstart

S(tend) = εend Ensures trajectory ends at εend

S(tstart)
′ = S(tend)′ = 0

Ensures the velocity is equal to zero
at the beginning and end of the
trajectory

S(tstart)
′′ = S(tend)′′ = 0

Ensures the acceleration is equal to
zero at the beginning and end of the
trajectory

The following mathematics is described in detail in [4].
Only a summary is offered here. The particular optimization
function we use is

Obj(X) =
∑

i

wi
(
S
(
ti
)−Vi

)2
. (2)

The objective function uses the square difference between
the speech trajectory S and the sequence of ideal targets
(visemes)Vi, given at times ti. The weightswi are used to give
control over how much a target is favored. Essentially, this
governs how much a target dominates its neighbors. Note
that in the presence of no constraints,wi will have no impact,
and the Vi will be interpolated.

A speech trajectory S will start and end with particular
constraints, for example, a neutral state such as silence. These
are the boundary constraints, as listed in Table 1, which en-
sure the articulators in the rest state. If necessary, these con-
straints can also be used to join trajectories together.

In addition, range constraints can be used to ensure that
the trajectory stays within a certain distance of each target,

S
(
ti
) ∈ [Vi,Vi

]
, (3)

whereV andVi are, respectively, the lower and upper bounds
of the ideal targets Vi.

If (3) and Table 1 are used in (2), the ideal targets Vi will
simply be met. A global constraint can be used to dampen
the trajectory. We limit the parametric acceleration of a tra-
jectory.

∣∣S(t)′′
∣∣ ≤ γ, where t ∈ [tstart, tend

]
, (4)

Oscar Martinez Lazalde et al. 3

Table 2: Mexican-Spanish viseme definitions.

Phoneme Viseme name Phoneme Viseme name

Silence Neutral i I

j, g J c, k, q K

b, m, p, v B M P n, ñ N

a A o,u O

ch, ll, y, x CH Y r R

d, s, t, z D S T l L

and γ is the maximum allowable magnitude of acceleration
across the entire trajectory. As this value tends to zero, the
trajectory cannot meet its targets, and thus the wi in (2) be-
gins to have an effect. The trajectory bends more towards the
target, where wi is high relative to its neighbors. As the global
constraint is reduced, the trajectory will eventually reach the
limit of at least one range constraint.

The speech trajectory S is represented by a cubic nonuni-
form B-spline. This gives the necessary C2 continuity to en-
able (4) to be applied. The optimization problem is solved us-
ing a variant of the sequential quadratic programming (SQP)
method (see [6]). The SQP algorithm requires the objective
function described in (2). It also requires the derivatives of
the objective and the constraints functions: the Hessian of the
objective function Hobj and the Jacobian of the constraints
Jcstr. This algorithm follows an iterative process with the steps
described in (5). The iterative process finishes when the con-
straints are met, and there is no further reduction in the op-
timization function (see Section 5 for discussion of this):

ΔXobj = −H−1
obj

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂Obj
∂X1

...

∂Obj
∂Xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

ΔXcstr = −J+
cstr(JcstrΔXobj + C),

Xj+1 = Xj + (ΔXobj + ΔXcstr).

(5)

3. INPUT DATA FOR THE RANGE CONSTRAINTS

In order to produce specific values for the range constraints
described in Section 2, we need to define the visemes that
are to be used and measure their visual shapes on real speak-
ers. In English, there is no formal agreement on the number
of visemes to use. For example, Massaro defines 17 visemes
[9], and both Dodd and Campbell [10], as well as Tekalp
and Ostermann [11] use 14 visemes. We chose 15 visemes
for Mexican-Spanish, as listed in Table 2.

Many of the 15 visemes we chose are similar to the En-
glish visemes, although there are exceptions. The phoneme
/v/ is an example, where there is a different mapping be-
tween Spanish and English visemes. In English speech, the
phoneme maps to the /F/ viseme, whereas in Spanish, the /v/
phoneme corresponds to the /B M P/ viseme. There are also
letters, like /h/, that do not have a corresponding phoneme in
Spanish (they are not pronounced during speech) and thus

(a)

(b)

(c)

(d)

Figure 2: The left two columns show the front and side views of the
viseme M. The right two columns show the front and side views of
the viseme A. (a) The synthetic face; (b) Person A; (c) Person B; (d)
Person C.

have no associated viseme. Similarly, there are phonemes in
Spanish that do not occur in English, such as /ñ/, although
there is an appropriate viseme mapping in this example to
the /N/ viseme.

To create the range constraints for the Mexican-Spanish
visemes listed in Table 2, three native Mexican-Spanish
speakers were observed, labeled Person A, Person B, and Per-
son C. Each was asked to make the ideal viseme shapes in
Mexican-Spanish, and these were photographed from front
and side views. Figure 2 gives examples of the lip shapes
for the consonant M (labelled as B M P in Table 2) and
for the vowel A for each speaker, as well as the mod-
eled synthetic head (which was produced using FaceGen
www.facegen.com). Figure 3 shows the variation in the lip
shape for the consonant M when Person B pronounces the
word “ama” normally, with emphasis and in a mumbling
style. This variation is accommodated by defining upper
and lower values for the range constraints. Figure 4 illus-
trates the issue of coarticulation. Person B was recorded three
times pronouncing the words “ama,” “eme,” and “omo,” and
the frames containing the center of the phoneme “m” were
extracted. Figure 4 shows that the shape of the mouth is
more rounded in the pronunciation of “omo” because the
phoneme m is surrounded by the rounded vowel o.

4. THE SYSTEM

Figure 5 illustrates the complete system for the Mexican-
Spanish talking head. The main C++ module is in charge
of communication between the rest of the modules. This
module first receives text as input, and then gets the cor-
responding phonetic transcription, audio wave, and timing
from a Festival server [12]. The phonetic transcription is
used to retrieve the relevant viseme data. Using the informa-
tion from Festival together with the viseme data, the opti-
mization problem is defined and passed to a MATLAB rou-
tine, which contains the SQP implementation. This returns
a spline definition and the main C++ module, then gener-
ates the rendering of the 3D face in synchronization with the
audio wave.

Each viseme is represented by a 3D polygon mesh con-
taining 1504 vertices. Instead of using the optimization pro-
cess on each vertex, the amount of data is reduced using

4 International Journal of Computer Games Technology

(a)

(b)

(c)

Figure 3: Visual differences in the pronunciation of the phoneme
m in the word “ama”: (a) normal pronunciation; (b) with emphasis;
(c) mumbling. In each case, Person B pronounced the word 3 times
to show potential variation.

(a)

(b)

(c)

Figure 4: Contextual differences in the pronunciation of the
phonene m: (a) the m of “ama”; (b) the m of “eme”; (c) the m of
“omo.” In each case, Person B pronounced the word 3 times to show
potential.

principal component analysis (PCA). This technique recon-
structs a vector Vi that belongs to a randomly sampled vector
population V using (6)

V = {v0, v1, . . . , vs
}

,

vi = uV +
s∑

j=1

ejbj , 0 ≤ j ≤ s,
(6)

SQP in MATLAB

Synchronized in time

Text

Audio signal

3D face

C++
talking
head

Festival

Viseme PC data

Figure 5: Talking-head system.

where uV is the mean vector, ei are the eigenvectors obtained
after applying the PCA technique, and bj are the weight
values. With this technique, it is possible to reconstruct, at
the cost of minimal error, any of the vectors in the popula-
tion using a reduced number of eigenvectors ej and its corre-
sponding weights bj .

To do the reconstruction, all the vectors share the reduced
set of eigenvectors ej (PCs), but they use different weights b j
for each of those eigenvectors. Thus, each viseme is repre-
sented by a vector of weight values.

With this technique, the potential optimization calcula-
tions for 1504 vertices are reduced to calculations for a much
smaller number of weights. We chose 8 PCs by observing the
differences between the original mesh and the reconstructed
mesh using different numbers of PCs. Other researchers have
used principal components as a parameterization too, al-
though the number used varies from model to model. For
example, Edge uses 10 principal components [4], and Kshir-
sagar et al. have used 7 [13], 8 [14], and 9 [15] components.

It is the PCs that are the parameters (targets) that need
to be interpolated in our approach. In the results section, we
focus on the PC 1, which relates to the degree that the mouth
is open. To determine the range constraints for this PC, the
captured visemes were ordered according to the amount of
mouth opening. Using this viseme order, the range con-
straint values were set accordingly using a relative scale. The
same range constraint values were set for all other PCs for all
visemes. Whilst PC 2 does influence the amount of mouth
rounding, we decided to focus on PC 1 to illustrate our ap-
proach. Other PCs only give subtle mouth shape differences
and are difficult to determine manually. We hope to address
this by working on measuring range constraints for static
visemes using continuous speaker video. The acceleration
constraint is also set for each PC.

5. RESULTS

The Mexican-Spanish talking head was tested with the sen-
tence “hola, cómo estas?”. Figure 6 shows the results of the

Oscar Martinez Lazalde et al. 5

mouth shape at the time of pronouncing each phoneme in
the sentence. Figures 7 and 8 illustrate what is happening for
the first PC in producing the results of Figure 6. The pink
curves in Figures 7 and 8 show that the global constraint
value is set high enough so that all the ideal targets (mouth
shapes) are met (visual results in Figure 6(a)). Figure 6(b)
and the blue curves in Figures 7 and 8 illustrate what hap-
pens when the global constraint is reduced. In Figure 8, the
acceleration (blue curve) is restricted by the global accelera-
tion constraint (horizontal blue line). Thus, the blue spline
curve in Figure 7 does not meet the ideal targets. Thus, some
of the mouth shapes in Figure 6(b) are restricted. The more
notable differences are at the second row (phoneme l), at the
fifth row (phoneme o), and at the tenth row (phoneme t).

In each of the previous examples, both the global con-
straint and the range constraint could be satisfied. Making
the global constraint smaller could, however, lead to an un-
stable system, where the two kinds of constraints are “fight-
ing.” In an unstable system, it is impossible to find a solution
that satisfies both kinds of constraints; and as a result, the sys-
tem jumps from a solution that satisfies the global constraint
to one that satisfies the range constraint in an undetermined
way leading to no convergence. To make the system stable
under such conditions, there are two options: relax the range
constraints or relax the global constraint. The decision on
what constraint to relax will depend on what kind of anima-
tion is wanted. If we were interested in preserving speaker-
dependent animation, we would relax the global constraints
as the range constraints encode the boundaries of the man-
ner of articulation of that speaker. If we were interested in
producing mumbling effects or producing animation where
we were not interested in preserving the speaker’s manner of
articulation, then the range constraint could be relaxed.

Figure 6(c) and the green curves in Figures 7 and 8 il-
lustrate what happens when the global constraint was re-
duced further so as to make the system unstable, and the
range constraints were relaxed to produce stability again. In
Figure 7, the green curve does not satisfy the original range
constraints (solid red lines), but does satisfy the relaxed range
constraints (dotted red lines). Visual differences can be ob-
served in Figure 6 at the second row (phoneme l), where the
mouth is less open in Figure 6(c) than in Figures 6(a) and
6(b). This is also apparent at the fifth row (phoneme o) and
at the tenth row (phoneme t).

For Figure 6(d), the speed of speaking was decreased re-
sulting in a doubling of the time taken to say the test sen-
tence. The global constraint was set at the same value as for
Figure 6(c), but this time the range constraints were not re-
laxed. However, the change in speaking speed means that the
constraints have time to be satisfied as illustrated in Figures
9 and 10 .

As a final comment, the shape of any facial pose in the
animation sequence will be most influenced by its closest
visemes. The nature of the constraint-based approach means
that the neighborhood of influence includes all visemes, but
is at its strongest within a region of 1-2 visemes, either side
of the facial pose being considered. This range corresponds
to most common coarticulation effects, although contextual
effects have been observed up to 7 visemes away [16].

o

1

a

c

o

m

o

e

s

t

a

s

(a) (b) (c) (d)

Figure 6: Face positions for the sentence “hola, cómo estas?”: (a)
targets are met (global constraint 0.03); (b) targets not met (global
constraint 0.004); (c) targets not met (global constraint 0.002) and
range constraints relaxed; (d) speaking slowly and targets not met
(global constraint 0.002).

6. CONCLUSIONS

We have produced a Mexican-Spanish talking head that
uses a constraint-based approach to create realistic-looking
speech trajectories. The approach accommodates speaker
variability and the pronunciation variability of an individ-
ual speaker, and produces coarticulation effects. We have
demonstrated this variability by altering the global con-
straint, relaxing the range constraints, and changing the
speed of speaking. Currently, PCA is employed to reduce the

6 International Journal of Computer Games Technology

0 200 400 600 800 1000 1200

−30

−20

−10

0

10

20

30

0.03
0.006
0.002

Figure 7: The spline curves for the results shown in Figures 6(a)
(pink), 6(b) (blue), and 6(c) (green). The horizontal axis gives time
for the speech utterance. The key shows the value of the global accel-
eration constraint. The red circles are the targets. The solid vertical
red bars show the range constraints for Figures 6(a) and 6(b). The
dotted bar is the relaxed range constraint for Figure 6(c).

0 200 400 600 800 1000 1200
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.03
0.006
0.002

Figure 8: The values of the global acceleration constraints for the
results shown in Figures 6(a) (pink), 6(b) (blue), 6(c) (green), and
Figure 7. The horizontal axis gives time for the speech utterance.
The horizontal lines give the limits of the acceleration constraint in
each case.

amount of data used in the optimization approach. However,
it is not clear that this produces a suitable set of parameters
to control. We are currently considering alternative parame-
terizations.

0 500 1000 1500 2000

−30

−20

−10

0

10

20

30

Figure 9: The spline curve for the result shown in Figure 6(d). The
global constraint is set to 0.002, and all range constraints are met.
The duration of the speech (horizontal axis) is twice as long as
Figure 7. The green circles illustrate the knot spacing of the spline,
and the x’s represent the control points. The solid vertical red bars
show the range constraints.

0 500 1000 1500 2000
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Figure 10: The values of the global acceleration constraint for the
result shown in Figure 6(d). The horizontal lines give the limits of
the acceleration constraint.

ACKNOWLEDGMENTS

The authors would like to thank Miguel Salas and Jorge Ar-
royo. They also like to express their thanks to CONACYT.

REFERENCES

[1] F. I. Parke and K. Waters, Computer Facial Animation, A K Pe-
ters, Wellesley, Mass, USA, 1996.

[2] A. Löfqvist, “Speech as audible gestures,” in Speech Production
and Speech Modeling, W. J. Hardcastle and A. Marchal, Eds.,
pp. 289–322, Kluwer Academic Press, Dordrecht, The Nether-
lands, 1990.

[3] M. Cohen and D. Massaro, “Modeling coarticulation in syn-
thetic visual speech,” in Proceedings of the Computer Anima-
tion, pp. 139–156, Geneva, Switzerland, June 1993.

Oscar Martinez Lazalde et al. 7

[4] J. Edge, Techniques for the synthesis of visual speech, Ph.D. the-
sis, University of Sheffield, Sheffield, UK, 2005.

[5] J. Edge and S. Maddock, “Constraint-based synthesis of vi-
sual speech,” in Proceedings of the 31st International Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH
’04), p. 55, Los Angeles, Calif, USA, August 2004.

[6] A. Witkin and M. Kass, “Spacetime constraints,” in Proceedings
of the 15th International Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’88), pp. 159–168, Atlanta,
Ga, USA, August 1988.

[7] O. M. Lazalde, S. Maddock, and M. Meredith, “A Mexican-
Spanish talking head,” in Proceedings of the 3rd International
Conference on Games Research and Development (CyberGames
’07), pp. 17–24, Manchester Metropolitan University, UK,
September 2007.

[8] P. E. Gill, W. Murray, and M. Wright, Practical Optimisation,
Academic Press, Boston, Mass, USA, 1981.

[9] D. W. Massaro, Perceiving Talking Faces: From Speech Percep-
tion to a Behavioral Principle, The MIT Press, Cambridge,
Mass, USA, 1998.

[10] B. Dodd and R. Campbell, Eds., Hearing by Eye: The Psychology
of Lipreading, Lawrence Erlbaum, London, UK, 1987.

[11] A. M. Tekalp and J. Ostermann, “Face and 2-D mesh ani-
mation in MPEG-4,” Signal Processing: Image Communication,
vol. 15, no. 4, pp. 387–421, 2000.

[12] A. Black, P. Taylor, and R. Caley, “The Festival speech synthesis
System,” 2007, http://www.cstr.ed.ac.uk/projects/festival/.

[13] S. Kshirsagar, T. Molet, and N. Magnenat-Thalmann, “Prin-
cipal components of expressive speech animation,” in Proceed-
ings of the International Conference on Computer Graphics (CGI
’01), pp. 38–44, Hong Kong, July 2001.

[14] S. Kshirsagar, S. Garchery, G. Sannier, and N. Magnenat-
Thalmann, “Synthetic faces: analysis and applications,” Inter-
national Journal of Imaging Systems and Technology, vol. 13,
no. 1, pp. 65–73, 2003.

[15] S. Kshirsagar and N. Magnenat-Thalmann, “Visyllable based
speech animation,” Computer Graphics Forum, vol. 22, no. 3,
pp. 631–639, 2003.

[16] A. P. Benguerel and H. A. Cowan, “Coarticulation of upper
lip protrusion in French,” Phonetica, vol. 30, no. 1, pp. 41–55,
1974.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 751268, 7 pages
doi:10.1155/2008/751268

Research Article
Activity Classification for Interactive Game Interfaces

John Darby, Baihua Li, and Nick Costen

Department of Computing and Mathematics, The Manchester Metropolitan University, John Dalton Building,
Chester Street, Manchester M1 5GD, UK

Correspondence should be addressed to John Darby, j.darby@mmu.ac.uk

Received 28 September 2007; Accepted 13 December 2007

Recommended by Kok Wai Wong

We present a technique for modeling and recognising human activity from moving light displays using hidden Markov models. We
extract a small number of joint angles at each frame to form a feature vector. Continuous hidden Markov models are then trained
with the resulting time series, one for each of a variety of human activity, using the Baum-Welch algorithm. Motion classification
is then attempted by evaluation of the forward variable for each model using previously unseen test data. Experimental results
based on real-world human motion capture data demonstrate the performance of the algorithm and some degree of robustness
to data noise and human motion irregularity. This technique has potential applications in activity classification for gesture-based
game interfaces and character animation.

Copyright © 2008 John Darby et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The interpretation of human motion is a fundamental task
in computer vision. It has received much attention in recent
years with wide applications in surveillance, human com-
puter interaction, and the entertainment industry [1]. In
vision-based interfaces for video games, such as that in [2]
by Decathlete, a player’s gestures and activities are used as
commands for game control instead of pressing buttons on a
keyboard or moving a mouse. In this case, the player’s move-
ments, embedded in video images, must be detected, param-
eterised, and recognised with a sufficient level of accuracy to
allow interaction with an intelligent agent.

On the other hand, generating realistic human motion
remains an open problem in the game industry. Traditional
key-framing methods are extremely labour intensive requir-
ing the manual specification of key poses at specific frames.
Physical simulation seems to be more realistic than key-
framing, but due to the difficulty of modelling the underly-
ing control mechanism, instabilities, and high computation
cost, physics-based animation has not been used with much
success. Recently, performance-based animation has received
much interest [3]. Among these techniques, marker-based
or markerless video-driven animation has shown great po-
tential [4, 5]. Low-level features, such as key-point positions

or joint angles, are used to describe full-body movements.
MPEG-4, a digital video coding and compression standard
primarily used for web-based multimedia applications [6],
utilises feature point data as body animation parameters to
enhance object-based coding that ultimately facilitates data
transmission and storage reduction.

Visual analysis of human motion in video images is a dif-
ficult problem in computer vision research. Though progress
has been made in the last decade [7–9], marker-free video
tracking is still in its infancy in many aspects [1]. Alterna-
tively, marker-based optical motion capture (MoCap) sys-
tems are commercially available and have been widely used
in the animation industry, such as the Vicon 512 [10]. In
this case, motion and structure are presented solely by a
small number of moving light displays (MLDs). Despite the
complex imaging and vision processing for feature detection
from images, we would argue high-level activity recognition
information derived from the low-level feature data, such as
the MLDs, can be coded more efficiently (than the raw Mo-
Cap files) as semantic indexing to enhance human-computer
interaction and animation synthesis. Searching and brows-
ing large MoCap file databases is difficult, if not impossible,
unless each file is hand labelled with a descriptive string, for
example, “run,” “walk,” and so forth. An interesting question,
not only in the context of interaction analysis for computer

2 International Journal of Computer Games Technology

games, is how the categorisation and labelling of such data
might be automated. If a solution capable of differentiating
activities in real-time can be found, then there are also po-
tential applications in interaction representation for games,
with user movements controlling avatar animation. The ac-
curacy of the body animation parameters at one extreme, and
generic activity classes at the other, with network load of a re-
mote server, for example, the deciding factor.

In this study, we concentrate on a high-level activity
recognition task using hidden Markov models (HMMs).
Therefore, our algorithm assumes the availability of feature
point motion data that might be obtained by various meth-
ods and sensors, such as the 3D marker-based optical motion
capture data used here. The rest of this paper is organised as
follows. Section 2 reviews related work on activity recogni-
tion using HMMs. Section 3 describes our choice of feature
vector and the use of HMMs for training and classification in
the general case. Section 4 provides experimental results on
the recognition of human activity. We discuss and conclude
our work in Sections 5 and 6.

2. RELATED WORK

Bobick [11] describes three levels of motion understanding
problem: movement, activity, and action. For the sake of clar-
ity and cross comparison, we adopt the language of that
framework here. The work presented addresses an activity
recognition problem. We require knowledge of the various
movements that form the activities and the temporal proper-
ties of the sequence. We do not attempt to address the ques-
tions of context and domain knowledge that allow for the
description of action.

In the first application of HMMs to human motion
recognition, Yamato et al. [12] classified a set of 6 different
tennis strokes. They achieve good “familiar person” classi-
fication results (better than 90%) but recognition rates drop
considerably when the test subject is removed from the train-
ing data. This work is also interesting for its use of hidden
states with very short duration; they use 36 states for se-
quences that are between 23 and 70 symbols in length. Wil-
son and Bobick [13] adopt the HMM in their work on ges-
ture recognition. They are able to recognise simple gestures
such as a waving hand. They do not shape the topology of
their state transition matrix, for example, by imposing a left-
to-right structure on their trained HMM, but leave it poten-
tially ergodic. They argue that although gestures may appear
to us as a well defined sequence of conceptual states, they
may appear to sensors as a complex mixture of perceptual
states. This problem is addressed again by Campbell et al.
[14] where the careful selection of features, for example, us-
ing velocity rather than position, results in a feature vector
that approximates a prototypical trajectory through concep-
tual states when plotted out in feature space over time. They
achieve good results classifying a variety of T’ai Chi moves,
but all training and testing data is performed by the same
individual, so the generality of the model is not evaluated.
Bowden [15] shows that extracting a richer high dimensional
feature vector and then performing dimensionality reduction
with principal components analysis can help a model to gen-

eralise, alleviating the “familiar person” requirement. Brand
and Hertzmann [16] introduce stylistic HMMs which specif-
ically address this problem by attempting to recover the “es-
sential structure” of data while disregarding its “accidental
properties” in a separation of structure and style.

Brand [17] highlights shortcomings of HMMs for vision
research, noting that many activities are not well described
by the Markov condition, as they feature multiple interacting
processes. He applies a coupled HMM to the classification
of T’ai Chi movements, describing the interactions between
both hands and shows improved performance over standard
HMMs. Galata et al. [18] use variable length Markov models
in order to dynamically vary the order of the Markov model.
This allows for the consideration of shorter or longer state
histories when analysing training data, facilitating the encod-
ing of activity with correlations at different temporal scales.

Outside of the Markovian frameworks discussed in this
section, other techniques have been successfully employed
for human activity recognition. Section 4 of [1] gives a com-
prehensive review of the various techniques that have been
applied to the action recognition task and a discussion of
their relative merits. In particular, both template matching
and neural networks have received much attention, for ex-
ample, [19, 20], respectively. Template matching techniques
offer low computational complexity and ease of implementa-
tion over state-space approaches such as the HMM. However,
they are typically more sensitive to noise and variation in the
speed of movements [1]. Neural networks have been shown
to be an equally viable approach to human motion classifica-
tion with near identical results to the HMM [21].

In the context of our own research, we are particularly
interested in the HMM for its generative capabilities. The
HMM is good for characterizing not only the spatial but
also the temporal nature of data. Traversing a trained model
gives believable synthetic data. In other work we use this fea-
ture of HMMs to provide predictions of a subject’s move-
ments in a markerless Bayesian tracking scheme. We believe
that although the standard HMM undoubtedly entails con-
sideration of the various shortcomings addressed by the ap-
proaches above, and others, it is still a powerful tool and has
favourable training requirements versus some of its exten-
sions.

3. METHOD

Human kinematic data used in this work was acquired using
a Vicon 512, 3D marker-based optical motion capture sys-
tem. This provides coordinates of markers attached to feature
points on a subject, in the manner of a 3D-MLD system. Fea-
ture points are located on the head, torso, shoulders, elbows,
wrists, hips, knees, and ankles. The data have been analysed
before, with classification achieved by considering the data in
the frequency domain [22].

3.1. Feature extraction

In a sequence of framesm = 1, . . . ,M we select a subset of the
available feature points. These were the markers on the right
shoulder, elbows, wrists, right hip, knees and ankles. Angles

John Darby et al. 3

between right radius and right humerus, both radii, right fe-
mur and right tibia, and both tibia were then calculated.

For example, the angle between the two radii bones may
be calculated from the marker location vectors mRelb, mRwri,
mLelb, mLwri by defining limb vectors lLrad = mLwri − mLelb

and lRrad = mRwri −mRelb. The relationship

|lLrad||lRrad|cosθ = lLrad·lRrad (1)

is then used to determine the angle θ between limbs. In this
way, a feature vector is compiled at each frame (see Figure 1):

fm =

⎛
⎜⎜⎜⎜⎝

θRrad,Lrad

θRhum,Rrad

θRfem,Rtib

θRtib,Ltib

⎞
⎟⎟⎟⎟⎠

, m = 1, . . . ,M. (2)

As limbs are considered relative to one another, the feature
vector should remain consistent for a particular pose regard-
less of the subject’s location in the world coordinate system.
Although the marker data is unavoidably noisy, this type of
feature extraction will provide a tight coupling between con-
ceptual and perceptual states.

3.2. Hidden Markov models

A hidden Markov model can be used to model a time series
such as the one derived in the last section. This approach as-
sumes that the underlying system is a Markov process, where
the system’s state at any timestep m is assumed to depend
only on its state at m − 1. A standard Markov model is de-
scribed by a set of states and a set of transition probabili-
ties between these states. The state of the system is allowed
to evolve stochastically and is directly observable. This ap-
proach may be extended with the introduction of a hidden
layer between state and observer. Each state emits an ob-
servable symbol from an alphabet common to all states, ac-
cording to some probability distribution over that alphabet
(see Figure 2). This describes a system where both the evolu-
tion of the system and the measurement of that evolution are
stochastic processes. In our own application HMMs are an
appropriate tool as they allow us to handle both the natural
variability in a human’s performance of a particular activity
and also the error of our sensors in estimating their move-
ment.

In order to analyse experimental data using an HMM,
we must train HMMs to represent a set of training data and
then evaluate the probability that subsequent test data sets
were produced by that model. In this way, we may classify a
set of N distinct test activities using N HMMs. An HMM λ is
specified by parameters S, Ai j , Ai, pi(f), where

(i) S = {s1, . . . , sN} is the set of hidden states;
(ii) the N ×N matrix, Aij , is the probability of a transition

from state i to state j;
(iii) Ai is the probability of a sequence starting in state i;
(iv) pi(f) is the probability of observing feature vector f

while in state i; the emission probability is modelled by
a single multivariate Gaussian pi(f) = N (f ;µi;Σi) =

350300250200150100500

Frame

0

20

40

60

80

100

120

140

160

180

θ
(◦

)

θRhum, Rrad

θRfem, Rtib

θRrad, Lrad

θRtib, Ltib

Figure 1: An example of the time series f for a walking subject.

p 1
(f

)

f
A1

A11

A12A21

A31 A13

A2

A22

A23

A32

A3

A33

s1

s2 s3

p 2
(f

)

f

p 3
(f

)

f

Figure 2: An example of a 3-state HMM with each state emitting a
1D feature vector f .

exp{−1/2(f − µi)
T/
√

(2π)D|Σi|} with mean µi, covari-
ance Σi, and D the dimensionality of f (see Figure 3).

Sections 3.3 and 3.4 give an overview of the use of contin-
uous HMMs with single multivariate Gaussian observation
functions for training and classification.

3.3. Training

Given a feature vector sequence F = {f1, . . . , fM}, we require
the set of model parameters that maximise the probability
that the data is observed. This problem cannot be solved an-
alytically, but by making estimates of the initial model pa-
rameters and applying Baum-Welch reestimation, a form of
expectation maximisation, iteration is guaranteed towards a
local maximum in p(F | λ) across the space of models. Al-
though p(F | λ) may contain a number of critical points,
running the algorithm to convergence from a number of

4 International Journal of Computer Games Technology

180
160

140
120 θRfem, Rtib100

120

140

160
θ
Lfem

, Ltib

0

2

4

p i
(f

)

×10−3

Figure 3: θRfem,Rtib versus θLfem,Ltib with 5 states.

different estimated initial conditions generally results in a
good estimate of the global maximum [23].

The Baum-Welch algorithm requires calculation of the
forward and backward variables for the data set F. The for-
ward variable for a state i at time m is the total probability of
all paths through the model that emit the training data up to
time m, {f1, . . . , fm} and finish in state i:

αm,i = pi
(

fm
) N∑

j=1

αm−1, jAji, (3)

where α1,i is calculated using the distribution Ai, that is,
Aipi(f1). Similarly, the backward variable for a state i at time
m is the total probability of all paths from state i that emit the
rest of the training data {fm+1, . . . , fM}:

βm,i =
N∑

j=1

βm+1, j p j
(

fm+1
)
Aij , (4)

where βM,i = 1. At any time m, the value αm,iβm,i gives the
total probability of all paths through the model that produce
the data F and pass through state i at time m. Furthermore,∑N

i=1αm,iβm,i is constant for all m and gives the probability of
the sequence F given λ, or p(F | λ). We can use these re-
sults to calculate the probability that the model was in state
si when feature vector fm was observed, given all the data:

γm,i =
αm,iβm,i

αm,iβm,i
(5)

with which we can estimate the parameters of the Gaussian
emission function p(f) associated with each state i:

µi =
∑M

m=1γm,ifm∑M
m=1γm,i

,

Σi =
∑M

m=1γm,i
(

fm − µi
)(

fm − µi
)T

∑M
m=1γm,i

,

(6)

these are the first two maximisation steps.

In order to reestimate the matrix Aij , we must consider
the probability that a transition from state i to state j oc-
curred between timesteps m− 1 and m:

ξm,i j = p
(
qm = s j , qm−1 = si | F, λ

) = αm−1,iAi j p j(fm)βm+1, j

p(F | λ)
,

(7)

where qm is the active hidden state at time m. This is the to-
tal probability of all paths through the model which emit
{f1, . . . , fm−1} and pass through state i at m − 1 (given by
αm−1), multiplied by the transition-emission pair i transi-
tions to j, j emits fm, multiplied by the total probability of
all paths from state j that emit the remainder of the training
data {fm+1, . . . , fM} (given by βm, j), as a fraction of all paths
through the model that emit the data.

By summing over the total number of state transitions,
we get the expected number of transitions from i to j:

Ei j =
M∑

m=2

ξm,i j , (8)

as the expectation step. The final maximisation step is then

Aij =
Ei j∑N
j=1Ei j

. (9)

This process can then be iterated, with (6), and (9) providing
the new estimate for λ, until some convergence criteria is met.
Ai may also be reestimated as γ1,i although this is not done in
this approach.

3.4. Classification

We can use the definition of the forward variable α in order
to calculate the likelihood of a sequence of feature vectors
given a particular set of model parameters. For a set of test
data G = {g1, . . . , gM} and model λ = {S,Aij ,Ai, pi(g)},

p(G | λ) =
N∑

i=1

αM,i. (10)

Therefore, if an HMM is trained for each activity we are in-
terested in recognising, we can evaluate the likelihood that
unseen test data was emitted by each of the models and clas-
sify data as belonging to the model most likely to have pro-
duced it.

4. RESULTS

A set of 6 subjects were recorded performing 6 periodic ac-
tivities using the Vicon system. These were walking on the
spot, running on the spot, one-footed skipping, two-footed
skipping, and two types of star jump. Each activity was per-
formed by at least 3 individuals. Each sequence was divided
into two halves, each of between 5 to 12 seconds at 60 fps.
One half was used for training, the other retained for testing.
Although the fact that the motions are periodic is useful as
it negates the need to segment the training data, this is not
a requirement of the approach. All of the steps described in
Sections 4.1 and 4.2 were performed using the HMM Tool-
box for Matlab [24].

John Darby et al. 5

Table 1: Classification of human activities.

λJump1 λJump2 λRun λSkip1 λSkip2 λWalk

GJump1 17/20 3/20 0/20 0/20 0/20 0/20

GJump2 0/20 20/20 0/20 0/20 0/20 0/20

GRun 0/15 0/15 15/15 0/15 0/15 0/15

GSkip1 0/15 1/15 0/15 12/15 2/15 0/15

GSkip2 0/20 0/20 0/20 0/20 20/20 0/20

GWalk 0/15 0/15 0/15 0/15 0/15 15/15

4.1. Activity training

A feature vector was extracted at each frame as described in
Section 3.1. This vector was then extended to contain a finite
difference estimate of Δfm made using the previous timestep,
that is, Δfm ≈ fm− fm−1. This is helpful in resolving ambigui-
ties such as intersections in the feature vector trajectory, thus
reducing the number of states that represent a junction in
feature space. It is analogous to a second order HMM, where
the previous state as well as current state have an effect on the
next transition, thus encapsulating extra “history” in each
state of a first order HMM. Each of the activities was rep-
resented by 30 states. As in [12] this is a relatively large num-
ber considering that each activity has a period of approx-
imately one second. Emitting consecutive conceptual state
vectors from the mean point of each state will produce al-
most identical poses. However, a large number of states helps
the initial clustering and provides good results even if it is not
intuitively appealing [25].

Initial estimates of the state means and covariance ma-
trices were found by K-means clustering [26]. The transition
matrix was initially estimated randomly (with each row ofAij
summing to 1) and the prior Ai set with every value equal to
1/N , where N is the total number of states. Ai was not rees-
timated in order that test data could begin at any point dur-
ing the activity unit with no probabilistic penalty. The transi-
tion probabilities and state means and covariances were rees-
timated using no more than 20 iterations of the Baum-Welch
update equations of Section 3.3.

4.2. Activity classification

Each subject’s test data for each activity was tested separately.
Feature vectors were again extracted at each frame to build
up a set of observations G. p(G | λ) was then calculated
5 times for each test sequence, the Baum-Welch algorithm
having been allowed to reconverge to a newly estimated set
of parameters λ each time. Table 1 summarises the classifica-
tion results for each batch of activity test data against each
trained model. For cross comparison, the forward variable
is calculated over the first 2.5 seconds of each test sequence
(M = 150 in (10)). Classification results are concentrated on
the diagonal and no misclassifications are made for 4 of the
activities. In the cases of Jump1 and Skip1, all off-diagonal
classifications are due to just one test sequence in each batch,
with all other sequences being correctly classified. Further
discussion of these results is given in Section 5. Using the

150100500

Frame

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
×104

ln
(p
(G

W
al

k
|λ

x
))

λWalk

λJump2

λSkip2

λJump1

λSkip1

Figure 4: Forward variable for one subject’s test walking sequence
for all activity models as a function of the number of frames (m).

HMM Toolbox for Matlab, evaluation of p(G | λ) typically
takes between 0.05 to 0.08 seconds, facilitating real-time cal-
culation of p(G | λ) for the 6 HMMs.

4.3. Confusion matrices

In the framework outlined in [2], a key aspect of any ges-
ture based interface is its speed in determining a user’s activ-
ity. Although p(G | λ) may be calculated in real-time, any
approach is limited by the need for sufficient data to sta-
bilise the results of the forward variable evaluations. Deter-
mining this data requirement is key to quantifying the level
of latency introduced to game play by a gesture based in-
terface. Figure 4 shows the forward variable evaluated using
one subject’s test walking sequence for each activity model
as a function of the number of frames taken as input (m).
p(GWalk | λRun) caused arithmetic overflow at m = 2 and is
not plotted. Walking is not correctly established as the most
likely activity untilm = 4 and jumping temporarily overtakes
it for m = 27, 28, 29. Walking subsequently remains the most
likely interpretation.

6 International Journal of Computer Games Technology

Table 2: Classification of two-footed skipping activity versus data segment length.

λJump1 λJump2 λRun λSkip1 λSkip2 λWalk

M = 2 0.0114 0.0193 0.0000 0.0386 0.9277 0.0000

M = 4 0.0089 0.0114 0.0000 0.0309 0.9495 0.0000

M = 8 0.0017 0.0017 0.0000 0.0017 0.9950 0.0000

M = 16 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

M = 32 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

M = 64 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

In order to determine how quickly reliable classification
may take place across the activity cycle, each training se-
quence was divided into smaller segments for evaluation with
the forward variable. Segment lengths of 2, 4, 8, 16, 32, and
64 frames were used and all possible continuous segments
of this length tested, with data segments allowed to overlap,
thus maximising the number of classification problems con-
sidered. The classification results are used to form a confu-
sion matrix for each activity. The confusion matrix for the
two-footed skipping activity is shown in Table 2. A correct
classification rate of greater than 99% is achieved with a seg-
ment size of 8 frames, equivalent to 0.13 seconds of data.

5. DISCUSSION

The learned transition matrices Aij were strongly focused on
just a few columns per row. As in [15], no effort was made
to number the states meaningfully, for example, in chrono-
logical order. However, it would suggest that even though
no topology shaping was attempted, Baum-Welch training
found a natural left-to-right type structure for the HMM
where each state may be self-referential, or may transition
to a handful of nearby (in terms of the feature space) states.
This supports the claim that the feature vector achieves a
tight level of coupling between the conceptual and percep-
tual states.

Classification between the broad activity types (run,
walk, skip, jump) was reliable, but subtle changes in the ac-
tivity proved harder to classify. For example, the confusion
between the two star jumps and one-footed and two-footed
skipping seen in the first and fourth row of Table 1 respec-
tively. These activities were only misclassified for one indi-
vidual’s test sequence in each case, and in the case of skipping
we believe this to be due to a lack of training data for that
subject, causing Baum-Welch training to overfit to the other,
longer sequences. However, in the case of the star jumping,
the similarity between the two activities, in terms of the fea-
ture vector we extract, may mean they are unsuitable for in-
clusion in a gesture interface as a pair. Included separately,
they do not pose a problem.

The compilation of confusion matrices demonstrated
that classification was feasible with the consideration of only
small amounts of data. The reduction of segment length pro-
duced remarkably little spread in the distribution across ac-
tivity columns of the matrix. Balancing the tradeoff between
accuracy and latency in a gesture based interface is an appli-

cation dependent decision, but confusion matrices compiled
in this way should facilitate such development decisions.

Although the models performed well when the individual
concerned formed part of the training group, performance
worsened significantly when they were removed. Only run-
ning on the spot and walking on the spot were consistently
recognised. This drop in performance is broadly in line with
previous findings, for example, [12]. The resulting models
may have failed to recover “underlying structure” due to the
high level of variation between training data. Alternatively,
they may have suffered from overfitting to what is a small
set of training data and an impoverished representation of
the activity. In either case, a larger number of people in the
training set should improve results.

6. CONCLUSIONS

We have described a technique for classifying human activi-
ties with HMMs. In this baseline study, buffered marker data
obtained from a MoCap system were successfully used for
human activity analysis in real-time. These results demon-
strate the proposed method remains a candidate for feature-
based on-line recognition tasks in gesture based games.

Although MoCap data is used here, the doubly stochastic
nature of the HMM should allow for the use of less invasive,
but more noisy, markerless tracking techniques. The HMM
may provide a way of interpreting complex user input avail-
able from a new generation of computer game input devices,
providing a more natural and engaging user experience. This
type of high level semantic description of a person’s move-
ments could also be incorporated into object based coding
schemes such as body animation parameters, as an activity
index for decoders.

ACKNOWLEDGMENTS

This research was made possible by an MMU Dalton Re-
search Institute research studentship and EPSRC Grant
EP/D054818/1. All MoCap data used in this paper were ob-
tained by an optical motion capture system installed at the
Department of Computer Science, University of Wales, UK.

REFERENCES

[1] L. Wang, W. Hu, and T. Tan, “Recent developments in human
motion analysis,” Pattern Recognition, vol. 36, no. 3, pp. 585–
601, 2003.

John Darby et al. 7

[2] W. T. Freeman, D. B. Anderson, P. A. Beardsley, et al., “Com-
puter vision for interactive computer graphics,” IEEE Journal
of Computer Graphics and Applications, vol. 18, no. 3, pp. 42–
53, 1998.

[3] A. Menache, Understanding Motion Capture for Computer An-
imation and Video Games, Morgan Kaufmann Publishers, San
Francisco, Calif, USA, 1999.

[4] J. Starck, G. Miller, and A. Hilton, “Video-based character an-
imation,” in Proceedings of the ACM SIGGRAPH Eurographics
Symposium on Computer Animation (SCA ’05), pp. 49–58, Los
Angeles, Calif, USA, July 2005.

[5] J. Wilhelms and A. V. Gelder, “Interactive video-based motion
capture for character animation,” in Proceedings of the IASTED
Conference on Computer Graphics and Imaging (CGIM ’02),
Kauai, Hawaii, USA, August 2002.

[6] Joint Video Team, Information technology—coding of audio-
visual objects—part 10: advanced video coding, MPEG-4,
ISO/IEC 14496-10, 2005.

[7] A. O. Bălan, L. Sigal, and M. J. Black, “A quantitative evalu-
ation of video-based 3D person tracking,” in Proceedings of
the 2nd Joint IEEE International Workshop on Visual Surveil-
lance and Performance Evaluation of Tracking and Surveillance
(VS-PETS ’05), vol. 2005, pp. 349–356, Beijing, China, Octo-
ber 2005.

[8] N. Jojic, M. Turk, and T. S. Huang, “Tracking self-occluding
articulated objects in dense disparity maps,” in Proceedings
of the IEEE International Conference on Computer Vision
(ICCV ’99), vol. 1, pp. 123–130, Kerkyra, Greece, September
1999.

[9] C. Sminchisescu and B. Triggs, “Kinematic jump processes for
monocular 3D human tracking,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’03), vol. 1, pp. 69–76, Madison, Wis, USA,
June 2003.

[10] Vicon motion systems, http://www.vicon.com/.
[11] A. Bobick, “Movement, activity and action: the role of knowl-

edge in the perception of motion,” in Royal Society Workshop
on Knowledge-Based Vision in Man and Machine, pp. 1257–
1265, London, UK, February 1997.

[12] J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action
in time-sequential images using hidden Markov model,” in
Proceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR ’92), pp. 379–385,
Champaign, Ill, USA, June 1992.

[13] A. D. Wilson and A. F. Bobick, “Learning visual behavior for
gesture analysis,” in Proceedings of International Symposium on
Computer Vision (ISCV ’95), pp. 229–234, Coral Gables, Fla,
USA, November 1995.

[14] L. W. Campbell, D. A. Becker, A. Azarbayejani, A. F. Bobick,
and A. Pentland, “Invariant features for 3-D gesture recog-
nition,” in Proceedings of the International Conference on Au-
tomatic Face and Gesture Recognition (FG ’96), pp. 157–162,
Killington, Vt, USA, October 1996.

[15] R. Bowden, “Learning statistical models of human motion,” in
Proceedings of the IEEE Workshop on Human Modeling, Anal-
ysis and Synthesis (CVPR ’00), pp. 10–17, Hilton Head Island,
SC, USA, July 2000.

[16] M. Brand and A. Hertzmann, “Style machines,” in Proceedings
of the 27th Annual Conference on Computer Graphics and In-
teractive Techniques (SIGGRAPH ’00), pp. 183–192, New Or-
leans, La, USA, July 2000.

[17] M. Brand, N. Oliver, and A. Pentland, “Coupled hidden
Markov models for complex action recognition,” in Proceed-

ings of the IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, pp. 994–999, San Juan, Puerto
Rico, USA, June 1996.

[18] A. Galata, N. Johnson, and D. Hogg, “Learning variable-length
Markov models of behavior,” International Journal of Com-
puter Vision and Image Understanding, vol. 81, no. 3, pp. 398–
413, 2001.

[19] A. Bobick and J. Davis, “Real-time recognition of activity using
temporal templates,” in Proceedings of the IEEE Workshop on
Applications of Computer Vision, pp. 39–42, Sarasota, Fla, USA,
December 1996.

[20] Y. Guoa, G. Xu, and S. Tsuji, “Understanding human motion
patterns,” in Proceedings of the 12th IAPR International Con-
ference on Pattern Recognition (ICPR ’94), vol. 2, pp. 325–329,
Jerusalem, Israel, October 1994.

[21] I. Boesnach, J. Moldenhauer, C. Burgmer, T. Beth, V. Wank,
and K. Bos, “Classification of phases in human motions by
neural networks and hidden markov models,” in Proceed-
ings of IEEE Conference on Cybernetics and Intelligent Systems
(CCIS ’04), vol. 2, pp. 976–981, Singapore, December 2004.

[22] B. Li and H. Holstein, “Recognition of human periodic
motion-a frequency domain approach,” in Proceedings of the
International Conference on Pattern Recognition (ICPR ’02),
vol. 1, pp. 311–314, Quebec, Canada, August 2002.

[23] A. B. Poritz, “Hidden Markov models: a guided tour,” in
Proceedings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP ’88), pp. 7–13, New
York, NY, USA, April 1988.

[24] K. Murphy, Hidden Markov model toolbox for Matlab
http://www.cs.ubc.ca/∼murphyk/software/HMM/hmm.html.

[25] D. O. Tanguay Jr., “Hidden Markov models for gesture recog-
nition,” M.S. thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology,
Cambridge, Mass, USA, 1995.

[26] A. Gersho, “On the structure of vector quantizers,” IEEE
Transactions on Information Theory, vol. 28, no. 2, pp. 157–
166, 1982.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 542918, 7 pages
doi:10.1155/2008/542918

Research Article
A Real-Time Facial Expression Recognition System for
Online Games

Ce Zhan, Wanqing Li, Philip Ogunbona, and Farzad Safaei

School of Computer Science and Software Engineering, University of Wollongong, NSW 2522, Australia

Correspondence should be addressed to Ce Zhan, cz847@uow.edu.au

Received 31 July 2007; Accepted 31 January 2008

Recommended by Kok Wai Wong

Multiplayer online games (MOGs) have become increasingly popular because of the opportunity they provide for collaboration,
communication, and interaction. However, compared with ordinary human communication, MOG still has several limitations,
especially in communication using facial expressions. Although detailed facial animation has already been achieved in a number of
MOGs, players have to use text commands to control the expressions of avatars. In this paper, we propose an automatic expression
recognition system that can be integrated into an MOG to control the facial expressions of avatars. To meet the specific require-
ments of such a system, a number of algorithms are studied, improved, and extended. In particular, Viola and Jones face-detection
method is extended to detect small-scale key facial components; and fixed facial landmarks are used to reduce the computational
load with little performance degradation in the recognition accuracy.

Copyright © 2008 Ce Zhan et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Multiplayer online games (MOGs) have become popular
over the last few years.The collaboration, communication,
and interaction ability of MOGs enable players to cooper-
ate or compete with each other on a large scale.Thus, play-
ers could experience relationships as real as those in the real
world. The “real feeling” makes MOGs attractive to an in-
creasing number of players, despite significant amounts of
time and subscription fee required to play. Taking youths in
China, for example, according to “Pacific Epoch’s 2006 On-
line Game Report” [1], China had 30.4 million online gamers
by the end of 2006.

Despite the advances in interactive realism of MOGs,
when compared with real-world human communication, the
interfaces are still primitive. For example, in most of the ex-
isting MOGs, text-chat is used rather than real-time voice
chatting during a conversation, avatars have no activities
related to natural body gestures, facial expressions, and so
forth.

Among the problems mentioned above, this paper fo-
cuses on facial communication in particular. In everyday life,
the manifestation of facial expressions is a significant part

of our social communication. Our underlying emotions are
conveyed by different facial expressions. To feel immersed
and socially aware like in the real world, players must have
an efficient method of conveying and observing changes in
emotional states. Existing MOGs allow players to convey
their expressions mainly through text-based commands aug-
mented by facial and body expressions [2].

Although a number of existing MOGs have already
achieved detailed animation, text commands do not offer an
efficient way to control the avatar’s expressions easily and
naturally. They are simple and straightforward, but not easy-
to-use. First, players have to memorize all the commands.
Thus the more sophisticated the facial system is, the harder
it is to use. Second, humans convey emotions by expressions
in real time. Players cannot type text commands every few
seconds to update their current mood. Thirdly, facial com-
munication should happen naturally and effortlessly; typing
commands ruins the realism.

The goal of this paper is to automatically recognize the
player’s facial expressions, so that the recognition results can
be used to drive the “facial expression engine” of a multi-
player online game. While many facial recognition systems
have been reported, MOGs pose unique requirements on the

2 International Journal of Computer Games Technology

system which have not been well addressed. In a summary, a
facial expression recognition system for MOGs should meet
the following requirements [2].

(i) The recognition has to be performed automatically
and in real time.

(ii) The system should consume minimum system re-
sources.

(iii) The system should be robust under different lighting
conditions and complex backgrounds.

(iv) The system should be user-independent (e.g., the sys-
tem should be able to handle users of different genders,
ages, and ethnicities).

(v) The input device should be easy to obtain and with-
out any constraints, so only single regular web camera
should be used.

(vi) The system should be insensitive to distance of user
to camera. (i.e., the system should be able to handle a
relatively wide range of face resolutions).

(vii) Players usually have to face the computer screen while
playing game. Thus, input of the system should be
user’s frontal faces with certain degree of tolerance to
head rotations.

(viii) Due to entertainment purpose of the system, the
recognition accuracy rate need not to be overly con-
servative.

In this paper, we propose a real-time automatic system
that meets the requirements. It recognizes players’ facial ex-
pressions, so that the recognition results can be used to con-
trol avatar’s expressions by driving the MOG’s “animation
engine” instead of text commands. Section 2 provides a brief
overview of existing technologies for facial expression recog-
nition. Section 3 describes the proposed system and exten-
sion and improvement of several algorithms for an efficient
implementation of the system. Section 4 presents the experi-
mental results and Section 5 concludes the paper.

2. OVERVIEW OF FACIAL EXPRESSION RECOGNITION

In computer vision, a facial expression is usually considered
as the deformations of facial components and their spatial re-
lations, or changes in the pigmentation of the face. An auto-
matic facial expression recognition system (AFERS) is a com-
puter system that attempts to classify these changes or de-
formations into abstract classes automatically. A large num-
ber of approaches have been proposed since mid 1970s in
the computer vision community. Early works have been sur-
veyed by Samal and Iyengar [3] in 1992.Fasel and Luttin [4]
and Pantic and Rothkrantz [5] published two comprehensive
survey papers which summarized the facial expression recog-
nition methods proposed before 1999. Recently, Tian et al.
[6] presented the recent advances (before the year 2004) in
facial expression recognition.

Generally, an AFERS consists of three processing stages:
face detection, facial feature extraction and representation,
and facial expression recognition. The face-detection stage
seeks to automatically locate the face region in an input im-
age or image sequences. As the first step of AFERS, its reliabil-
ity has a major influence on the performance and usability of

the entire system. The face detector could detect faces frame
by frame or just detect a face in the first frame and then track
it in the subsequent images in a sequence.

After the face has been detected, the next step is to ex-
tract and represent the information about the facial expres-
sion to be recognized. The extraction process forms a high-
level description of the expression as a function of the image
pixel data. This description commonly referred to as “fea-
ture vector” is used for subsequent expression classification.
Geometric features which present the shape and locations
of facial components and spectral-transform-based features
which are gained by applying image filters to face images
are often used to represent the information of facial expres-
sions. Irrespective of the kind of feature extraction approach
employed, the essential information about the displayed ex-
pressions should be preserved. The extracted features should
contain high discrimination power and high stability against
different expressions.

Facial expression classification is the last stage of AFERS
and it is decision procedure.The facial changes can be identi-
fied as facial action units (AUs) [7] or six prototypic emo-
tional expressions [8]. Introduced by Ekman and Friesen,
each of the six prototypic emotions possesses a distinctive
content and can be uniquely characterized by a facial ex-
pression. These prototypic emotions are also referred to “ba-
sic emotions”. They are claimed to be universal across hu-
man ethnicities and cultures and comprise happiness, sad-
ness, fear, disgust, surprise, and anger. An AU is one of the 44
atomic elements of visible facial movement or its associated
deformation. Ekman and Friesen first use AUs in their facial
action coding system (FACS) [9] with the goal of describing
all possible perceptible changes that may occur on the face. In
applications, a facial expression is represented using a com-
bination of AUs with respect to the locations and intensities
of corresponding facial actions.

To attain successful performance, almost all the existing
facial expression recognition approaches require some con-
trol over the imaging conditions, such as high-resolution
faces, good lighting, and uncluttered backgrounds. With
these constraints, the existing methods in the literature can-
not be directly applied in most real-world applications,
which always require operational flexibility. Although de-
ployment of the existing methods in fully unconstrained en-
vironments is still in the relatively distant future, integrating
and extending these algorithms to develop a facial expression
recognition system for a certain application context such as
MOG is achievable.

3. PROPOSED SYSTEM

Based on the specific requirements of MOGs, a facial expres-
sion recognition system is proposed in this section. The sys-
tem categorizes each frame of user’s facial video sequence
into one of the six prototypic emotional expressions.

We hypothesize that recognition of the six prototypic
emotional expressions would serve an MOG well in most
cases, since players may not have enough time to perceive
more subtle facial changes. Figure 1 shows the block dia-
gram of the system, which consists of four components: face

Ce Zhan et al. 3

Images
captured by

camera

Face
images

Facial
landmark
positions

Feature
vectors

Face
detector

Landmark
localization

Feature
extraction Classifier

6 basic
emotions

Face detection
Facial feature extraction

& representation
Facial expression

recognition

Figure 1: The proposed system for MOGs.

detection, facial landmark localization, feature extraction,
and classification of the expressions.

3.1. Face detection

The face region is located in an input image by implement-
ing one of the boosting methods proposed by Viola and
Jones [10]. The method achieves real-time detection by using
very simple and easily computable Haar-like features; and the
good detection rate was obtained by the use of a fundamental
boosting algorithm, AdaBoost [11], which selects the most
representative features in a large set. As a machine-learning
method, most of the time and computational expenditure are
consumed during the offline training process. Thus, in the
detection process, minimal system resources are needed. The
trained face detector scans an image by a subwindow at dif-
ferent scales. Each subwindow is tested by a cascade classifier
made of several stage classifiers. If the subwindow is clearly
not a face, it will be rejected by one of the first stages in the
cascade while more specific classifier will classify it, if it is
more difficult to discriminate. For details on the Viola-Jones
face-detection method, readers are referred to [10].

3.2. Facial landmark localization

To extract the facial feature automatically, facial landmarks
need to be detected without manual efforts. Automatic facial
landmark localization is a complex process. To find accurate
position of landmarks, most of landmark detection meth-
ods involve multiple classification steps and a great number
of training samples are required [4, 5]. Although coarse-to-
fine localization is widely used to reduce the computational
load, the detection process is still too complex and time-
consuming for MOGs.

According to the results of the facial landmark location
tolerance test conducted in our previous work [2], the fa-
cial landmark positions are relatively fixed after the normal-
ization based on three key landmarks: mouth center and eye
centers. Thus, it is reasonable to use fixed landmarks on nor-
malized face images rather than performing traditional fa-
cial landmark detection; and in this way, only three key facial
components are needed to be detected.

Figure 2: The extended Haar-like feature set.

To take advantage of the computational efficiency of
Haar-like features and highly efficient cascade structure used
in Viola-Jones Adaboost face-detection method, “AdaBoost”
detection principle is still adopted to search the key facial
components (the mouth and eyes) within the detected face
area. However, low detection rate was observed when the
conventional Viola-Jones method was trained with the fa-
cial components and employed in the detection process. This
is probably due to the lack of structure information of the
facial components (compared to the entire face). Especially,
the structure of the facial components become less detectable
when the detected face is at low resolution. Another possible
cause of the low detection rate is the substantial variations of
the component shape, especially, mouth, among the different
expressions conveyed by the same or different people. This
is also true for high-resolution face images. To solve these
problems, we improved the “AdaBoost” detection method by
employing extended Haar-like features, modified the train-
ing criteria, regional scanning, and probabilistic selection of
candidate subwindow.

3.2.1. Extended Haar-like feature set

An extended feature set with 14 Haar-like features (Figure 2)
based on [12] is used in the facial component detection. Be-
sides the basic upright rectangle features employed in face
detection, 45◦ rotated rectangle features and center-surround
features are added into the feature pool. The additional fea-
tures are more representative for different shapes than the
original Haar-feature set, thus they would improve the de-
tection performance.

4 International Journal of Computer Games Technology

3.2.2. High hit rate cascade training

In the conventional Viola-Jones method, the cascade classi-
fier is trained based on the desirable hit rate and false-positive
rate. Additional stage is added into the cascade classifier if
the false positive is higher. However, when the false-positive
rate decreases, the hit rate also decreases. In the case of facial
components detection, hit rate will dramatically fall for low-
resolution face images if the cascade classifier is trained for a
target low false-positive rate.

To ensure that low-resolution facial components could
be detected, a minimum overall hit rate is set before train-
ing. For each stage in the training, the training goal is set to
achieve a high hit rate and an acceptable false-positive rate.
The number of features used is then increased until the tar-
get hit rate and false-positive rate are met for the stage. If the
overall hit rate is still greater than the minimum value, an-
other stage is added to the cascade to reduce the overall false-
positive rate. In this way, the trained detectors will detect the
facial components at a guaranteed hit rate though some false
positives will occur, which can be reduced or removed by the
scanning scheme introduced below.

3.2.3. Regional scanning with a fixed classifier

Rather than rescaling the classifier as proposed by Viola and
Jones, to achieve multiscale searching, input face images are
resized to a range of predicted sizes and a fixed classifier is
used for facial component detection. Due to the structure of
face, we predict the face size according to the size of facial
component used for training. In this way, the computation of
the whole image pyramid is avoided. If the facial component
size is larger than the training size, fewer false positives would
be produced due to down sampling; when the component is
smaller than the training sample, the input image is scaled
up to match the training size.

In addition, prior knowledge of the face structure is used
to partition the region of scanning. The top region of the face
image is used for eye detection, and the mouth is searched in
the lower region of the face. The regional scanning not only
reduces the false positives, but also lowers the computation.

3.2.4. Candidate subwindow selection

To select the true subwindow which contains the facial com-
ponent, it is assumed that the central position of the facial
components among different persons follows a normal dis-
tribution. Thus, the probability that a candidate component
at k = [x y]T is the true position can be calculated as

P(k) = 1

(2π)|sΣ|1/2 exp
(
− 1

2
(k− sm)TsΣ−1(k− sm)

)
,

(1)

where the mean vector m and the covariance matrix Σ are
estimated from normalized face image dataset. The scale co-
efficient “s” can be computed as s = wd/wn; wd is the width
of detected face; and wn is the width of normalized training
faces. The candidate with maximum probability is selected as
the true component.

Figure 3: The landmark localization process: (from left to right)
detection of face and facial components, normalised face, and fixed
set of facial landmarks on the normalised face.

3.2.5. Specialized classifiers

Two cascade classifiers are trained for mouth. One is for de-
tecting closed mouths, and the other is for open mouths.
During scanning, if the closed mouth detector failed to find
a mouth, the open mouth detector is triggered. In addition,
the left and right eye classifiers are trained separately.

After the area of key facial components, mouth and eyes,
have been detected, face images are normalized based on the
centers of the components; and finally, mean coordinates of
facial landmarks obtained from the “location tolerance test”
are used as landmarks. Figure 3 shows the landmark localiza-
tion process.

3.3. Feature extraction

As stated previously, the extracted features should possess
high discriminative power and high stability against differ-
ent expressions. Among a number of feature extraction algo-
rithms proposed in the literature, research has demonstrated
that Gabor filters are more discriminative for facial expres-
sions and robust against various types of noise than other
methods [4]. However, applying Gabor filters to the whole
face area is too costly for MOGs. In the proposed system,
Gabor filters with different frequencies and orientations are
applied only to a set of facial landmark positions. Thus, not
only the real-time requirement can be met due to the reduced
amount of data to be processed, but also the limited localiza-
tion in space and frequency yields a certain amount of ro-
bustness against translation, distortion, rotation, and scaling
of the images. At the same time, face cropping or alignment is
not necessary in the whole recognition process since feature
extraction is conducted at specific locations.

A 2D Gabor function is a plane wave with wave vector
k, restricted by a Gaussian envelope function with relative
width σ :

Ψ(k, x) = k2

σ2
exp

(
− k2x2

2σ2

)[
exp(ik · x)− exp

(
− σ2

2

)]
.

(2)

In our implementation, we set σ = π [13]. A set of Ga-
bor kernels, which comprises 3 spatial frequencies (k = π/4,
π/8, π/16) and 6 different orientations (π/6, 2π/6, 3π/6,
4π/6, 5π/6, π) [14], is employed. The parameters of Gabor
kernels are chosen based on a large number of experiments,
so that the extracted feature vectors only contain the most
important components with high discriminative power. Each
image is convolved with both even and odd Gabor kernels

Ce Zhan et al. 5

160×160 120×120 100×100 80×80 60×60 45×45

Face resolution (pixels)

0

20

40

60

80

100

D
et

ec
ti

on
ra

te
(%

)

Mouth detection using original “AdaBoost”

(a) Original “AdaBoost”

160×160 120×120 100×100 80×80 60×60 45×45

Face resolution (pixels)

0

20

40

60

80

100

D
et

ec
ti

on
ra

te
(%

)

Mouth detection using improved “AdaBoost”

(b) Improved “AdaBoost”

Figure 4: Mouth detection result. Both detectors are trained using same dataset.

at facial landmarks (as shown in Figure 3). Thus, 18 com-
plex Gabor wavelet coefficients are obtained at each land-
mark. Since only magnitudes of these coefficients are used,
each face image is represented by a vector of 360 (3× 6× 20)
when 20 landmarks are used.

3.4. Classification

A wide range of classifiers in pattern recognition literature
have been applied to expression classification. We evaluated
a number of classification methods in [2]. In this paper, sup-
port vector machines (SVMs) [15] are employed.

SVMs belong to the class of kernel-based supervised
learning machines and have been successfully employed in
general-purpose pattern-recognition tasks. Based on statisti-
cal learning theory, SVMs find the biggest margin to separate
different classes. The kernel functions employed in SVMs are
used to efficiently map input data which may not be linearly
separable to a high-dimensional feature space where linear
methods can then be applied. Since there are often only sub-
tle differences between different expressions posed by differ-
ent people, for example,“anger” and “disgust” are very sim-
ilar. The high discrimination ability of SVMs plays a major
role in designing classifiers that can distinguish such expres-
sions. SVMs also demonstrate relatively good performance
when only a modest amount of training data is available, and
this also makes SVMs suitable for the system under consid-
eration. Furthermore, only inner products are involved in
SVMs computation; the learning and prediction processes
are much faster than some traditional classifiers such as a
multilayer neural network.

In the implementation, classifiers are trained to identify
Gabor coefficient vectors obtained from feature extraction
process into one of the six basic emotional expressions or
a neutral expression. Since SVMs are binary classifiers and
there are 7 categories to distinguish, 21 SVMs are trained to

discriminate all pairs of expressions. A multiclass classifier is
obtained by combining the SVM outputs through a voting
principle. For example, if one SVM makes the decision that
the input is “Happiness” and not “Sadness,” then happiness
gets +1 and sadness gets −1. After all SVMs have made their
decisions, votes for each category are summed together, and
the expression with the highest score is considered to be the
final decision.

4. EXPERIMENTAL RESULTS

4.1. Facial component detection

As introduced in Section 3.2, 4 cascade classifiers were
trained to detect the key facial components, one for left eyes,
one for right eyes, and two for mouths. Positive training
samples of eyes and mouths and negative samples (nonfa-
cial components) were cropped from AR database [16] and
AT&T database [17]. To accommodate low-resolution fa-
cial components, the training samples were rescaled to small
sizes: 10×6 for eyes and 16×8 for mouth. For each detector,
about 1200 positive samples and 5000 negative samples were
used for training.

The trained detectors were tested on BioID database [18].
To evaluate the performance on low-resolution input, the
test images were down sampled to different resolutions to
simulate low-resolution faces which are not included in the
database. To show the improvement compared with the orig-
inal detection method proposed by Viola and Jones, mouth
detection results at different face resolutions are presented in
Figure 4. The average left eye, right eye, and mouth detec-
tion rate for different face resolutions is 95.7%, 97.2%, and
95.6%, respectively. A few detection examples are shown in
Figure 5.

6 International Journal of Computer Games Technology

(a) 200× 200 (b) 100× 100 (c) 50× 50

Figure 5: Facial component detection results for different resolu-
tion faces from BioID database.

(a) (b)

(c) (d)

Figure 6: Recognition samples from FG-NET.

4.2. Expression recognition

FG-NET database [19] was used in the experiment. The
database contains 399 video sequences of 6 prototypic
emotional expressions and a neutral expression from 18 in-
dividuals. For each expression of each person, at least 3 se-
quences are provided. In the experiment, one sequence of
each expression is left out for test, and the rest are used as
the training samples. The recognition result is presented in
Table 1 and some samples are shown in Figure 6. The re-
sults show that “Happiness,” “Surprise,” and “Neutral” are
detected with relative high accuracy while other more sub-
tle expressions were a little bit harder to recognize, espe-
cially for “Sadness”. During testing, we found that “Sadness,”
“Anger,” “Fear,” and “Disgust” are confused with each other
frequently, sometimes even human beings are not able to
discriminate them, however, they are seldom confused with
other expressions. Thus, if these four expressions are treated
as one, together with “Happiness,” “Surprise,” and “Neutral,”
we can estimate user’s emotional state more accurately on a
higher level. Naming the new expression as unhappy, classi-
fication result for 4 expressions are presented in Table 2. In
this way, the system is able to tell with an 85.5% accuracy if
the user is in good mood, bad mood, or just surprised. We
also tested the system in practical conditions, some samples
are shown in Figure 7. The results show that the system is rel-

(a) (b)

(c) (d)

Figure 7: Recognition samples for real-time test.

Table 1: Recognition results for 7 expressions classification.

Expression Recognition rate

Happiness 85.2%

Sadness 78.9%

Fear 80.7%

Disgust 81.6%

Surprise 86.3%

Anger 83.3%

Neutral 84.9%

Table 2: Recognition results for 4 expressions classification.

Expression Recognition rate

Happy 85.2%

Unhappy 85.6%

Surprise 86.3%

Neutral 84.9%

atively robust against complex background and lighting con-
ditions, furthermore, it works on the images taken from a
practical range of distances from user to camera.

5. MOG IMPLEMENTATION ISSUES

In this section, we indicate the manner in which the pro-
posed system can be incorporated in an MOG. A typical
MOG is a complex distributed system connecting thousands
of users. Two main types of network architecture are em-
ployed, namely, client-server and peer-to-peer [20]. We re-
frain from any comparative discussion about the two types
of architecture since this paper is not about such considera-
tions.

Ce Zhan et al. 7

The system presented in this paper is implemented on the
client side as it constitutes a user interface device enhance-
ment. The system outputs a classification of the current emo-
tion of the player and this is transmitted to the server. It is
possible that an XML-based description of the emotions is
employed. The game logic server running of the centralized
server would incorporate a module that can parse the XML
message and send the appropriate message to the game world
module which in turn issues the necessary message that al-
lows the correct view of the avatar to be generated. Thus,
the facial expression recognition system allows a rendering of
the appropriate avatar with the required emotion on clients’
world views.

6. CONCLUSIONS

In this paper, we presented an automatic facial expression
recognition system for MOGs. Several algorithms are im-
proved and extended to meet the specific requirements. De-
spite recent advances in computer vision techniques for face
detection, facial landmarks localization, and feature extrac-
tion, building a facial expression recognition system for real-
life applications still remains challenging.

REFERENCES

[1] http://www.pacificepoch.com/.
[2] C. Zhan, W. Li, F. Safaei, and P. Ogunbona, “Facial expres-

sion recognition for multiplayer online games,” in Proceedings
of the 3rd Australasian Conference on Interactive Entertainment,
vol. 207, pp. 52–58, Perth, Australia, December 2006.

[3] A. Samal and P. A. Iyengar, “Automatic recognition and anal-
ysis of human faces and facial expressions: a survey,” Pattern
Recognition, vol. 25, no. 1, pp. 65–77, 1992.

[4] B. Fasel and J. Luettin, “Automatic facial expression analysis: a
survey,” Pattern Recognition, vol. 36, no. 1, pp. 259–275, 2003.

[5] M. Pantic and L. J. M. Rothkrantz, “Automatic analysis of fa-
cial expressions: the state of the art,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, no. 12, pp.
1424–1445, 2000.

[6] Y.-L. Tian, T. Kanade, and J. F. Cohn, Hand Book of Face Recog-
nition, Springer, New York, NY, USA, 2004.

[7] G. Donato, M. S. Bartlett, J. C. Hager, P. Ekman, and T. J. Se-
jnowski, “Classifying facial actions,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 21, no. 10, pp. 974–
989, 1999.

[8] P. Ekman, Emotion in the Human Face, Cambridge University
Press, New York, NY, USA, 1982.

[9] P. Ekman and W. Friesen, Facial Action Coding System
(FACS):Manual, Consulting Psychologists Press, Palo Alto,
Calif, USA, 1978.

[10] P. Viola and M. J. Jones, “Robust real-time object detection,”
International Journal of Computer Vision, vol. 57, no. 2, pp.
137–154, 2004.

[11] Y. Freund and R. E. Schapire, “A decision-theoretic general-
ization of online learning and an application to boosting,” in
Proceedings of the 2nd European Conference on Computational
Learning Theory (EuroCOLT ’95), pp. 23–37, Barcelona, Spain,
March 1995.

[12] R. Lienhart and J. Maydt, “An extended set of Haar-like fea-
tures for rapid object detection,” in Proceedings of the Inter-

national Conference on Image Processing (ICIP ’02), vol. 1, pp.
900–903, Rochester, NY, USA, September 2002.

[13] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding
facial expression with gabor wavelets,” in Proceedings of the 3rd
IEEE International Conference on Automatic Face and Gesture
Recognition, pp. 200–205, Nara, Japan, April 1998.

[14] Z. Zhang, M. Lyons, M. Schuster, and S. Akamatsu, “Compar-
ison between geometry-based and gabor-wavelets-based facial
expression recognition using multi-layer perceptron,” in Pro-
ceedings of the 3rd IEEE International Conference on Automatic
Face and Gesture Recognition, pp. 454–459, Nara, Japan, April
1998.

[15] C.-W. Hsu and C.-J. Lin, “A comparison of methods for mul-
ticlass support vector machines,” IEEE Transactions on Neural
Networks, vol. 13, no. 2, pp. 415–425, 2002.

[16] http://cobweb.ecn.purdue.edu/aleix/aleix face DB.html.
[17] http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase

.html.
[18] http://www.bioid.com/.
[19] http://www.mmk.ei.tum.de/ waf/fgnet/feedtum.html.
[20] S. Bogojevic and M. Kazemzadeh, “The architecture of mas-

sive multiplayer online games,” M.S. thesis, Lund Institute of
Technology, Lund University, Lund, Sweden, 2003.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 243107, 9 pages
doi:10.1155/2008/243107

Research Article
Perception-Based Filtering for MMOGs

Souad El Merhebi, Jean-Christophe Hoelt, Patrice Torguet, and Jean-Pierre Jessel

VORTEX Group, Institut de Recherche en Informatique de Toulouse, Paul Sabatier University, 31062 Toulouse, France

Correspondence should be addressed to Souad El Merhebi, merhebi@irit.fr

Received 30 September 2007; Revised 13 January 2008; Accepted 8 April 2008

Recommended by Kok Wai Wong

Online games have exploded in the last few years. These games face several problems linked to scalability and interactivity. In
fact, online games should provide a quick feedback of users’ interactions as well as a coherent view of the shared world. However,
the search for enhanced scalability dramatically increases message exchange. Such an increase consumes processing power and
bandwidth, and thus limits interactivity, consistency, and scalability. To reduce the rate of message exchange, distributed virtual
environment systems use filtering techniques such as interest management that filters messages according to users’ interests in the
world. These interests are influenced by perceptual facts which we study in this paper in order to build upon them a perception-
based filtering technique. This technique satisfies users’ needs by precisely providing an exact filtering which is more efficient than
other techniques.

Copyright © 2008 Souad El Merhebi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Online game players interact within a shared virtual world
through their avatars. Players’ interactions change the state of
their avatars and may affect the state of the world. To insure
coherency, all players should observe the same state of the
shared world at the same moment. Therefore, the activity of
a player must be communicated to the other players. This
must be done as quickly as possible to provide an interactive
game in which players have a quick feedback of their
interactions.

On the other hand, online games, especially massively
multiplayer online games (MMOGs), need to be more
and more scalable. However, increasing the number of
participants tends to dramatically increase the number of
update messages. A higher amount of message exchange
requires higher bandwidth and more processing power,
which slows down the system and makes it less interactive
“lagging” [1]. The system should therefore be adapted to
these limited resources. This can be done by minimizing
exchanged messages and the number of their recipients.

Distributed virtual environments (DVEs) systems take
advantage of the fact that participants neither perceive nor
are interested in the whole virtual world. This is due to
many reasons: world’s design, distances that separate avatars,
limitation of avatars’ awareness, and so forth. Sometimes,
developers themselves create these limitations to enhance the

scalability of the system (shards, fog, etc.). Limitations of
awareness define the interests of players within the world.
This provides an interesting basis to design message filtering
whose concept is to deliver messages only to concerned
participants, this is called interest management.

The perception of an avatar within its world expresses
or contributes to expressing its interest. Perception-based
filtering [2] defines the perceptual interests of avatars in an
exact way. This paper completes the study of perception-
based filtering by including a more general perception model
and providing deeper mathematical analysis backed up with
the results of an experimental evaluation.

In Section 2, we present a brief overview of related
work. Section 3 describes the relation between awareness and
perception. Section 4 describes perception-based filtering. In
Section 5, we present the translation of perception rules into
existing interest management techniques. Section 6 presents
the experimental and analytical evaluation of perception-
based filtering. Finally, Section 7 presents conclusions and
outlines future work.

2. RELATED WORK

Interest management techniques have been implemented
within military DVE systems as well as in games. They use
the division of space or the definition of individual interests
of avatars, or a combination of the two approaches.

2 International Journal of Computer Games Technology

NPSNET [3] divides the environment into hexagonal
cells and specifies for each entity an area of interest (AOI),
which is a circle centered on the entity. An entity is only aware
of entities within the hexagons that overlap its AOI.

MASSIVE implements the spatial model of interaction
[4] which assigns an aura to each object for each medium
(graphics, audio, etc.). Spatial model’s filtering is achieved
in two stages. The first detects auras’ collision of couples of
objects. This entails a possibility of interaction and leads to
the second stages which consists, in the negotiations, of levels
of awareness between users. The level of awareness of entity
A toward entity B is a function of A’s focus and B’s nimbus,
the focus being the observer’s allocation of attention and
the nimbus the observed’s manifestation or observability.
The negotiations of awareness levels decide the existence of
awareness on each side. If there is awareness, its level can
influence the attribution of resources (e.g., bandwidth, audio
quality, etc.). Whenever a change occurs, the couple has to
negotiate again to know whether a change in awareness took
place. For performance and development cost reasons, this
model is often used in a simplified way which only uses auras
to determine awareness of avatars, even if this entails the
exclusive establishment of symmetrical relations.

Effect management [5] is a variation of the spatial
model of interaction which preserves the attractive feature of
asymmetric awareness, while offering the possibility of not
defining foci and nimbi functions if there are no resource
accommodations. Effect management determines the exis-
tence of awareness on the two sides distinctly in the first stage.
The second stage (i.e., awareness level computation) will only
be dedicated to the determination of the nonnull awareness
level through foci and nimbi negotiations if needed. To
achieve that, the first stage associates with each entity a
viewing zone which reflects the ability to perceive and an
effect zone which reflects the ability to be perceived instead
of combining the two abilities within the aura. When the
viewing zone of an entity A overlaps the effect zone of an
entity B, A becomes aware of B.

HLA [6, 7] uses interest management through a runtime
infrastructure (RTI) service: the data distribution manage-
ment (DDM). This service first allows the expression of
entities’ interest and availability by defining subscription and
publication zones. Then, it computes intersections between
zones and deliver updates according to those computations
(i.e., an update is only sent to the entities whose subscription
zones intersect with its publication zone). DDM uses a
multidimensional coordinate system in which entities define
their interests and availability. This system can use a fixed or
hierarchical grid.

Other DVE systems and online games use division of
space without the individual definition of entities’ interests
into zones. Some of them also associate to each division or
share a server in order to enhance scalability. Such systems
are SPLINE [8], RING [9], Ultima Online, Neverwinter
Nights, Silkroad Online, World of Warcraft, and so forth.

Our study focuses on the definition of individual inter-
ests of avatars because this approach provides a more exact
filtering than division of space. As we have seen, many
interest management techniques define their users’ interests

in individual zones because they are simple, natural and not
expensive. However, these systems define the extents of their
zones in an empirical way. This leads to imprecise filtering
which makes avatars receive more or fewer messages than
they actually need. In fact, if an avatar does not receive
all the messages that interest it, the player’s experience
will be less realistic and interactive. Otherwise, if avatars
receive messages that do not interest them, the system and
the network will be overloaded with unnecessary messages.
Thus, in both cases the empirical definition of zone extents
will harm the simulation. For these reasons, it is very
important to have a mechanism that determines the interests
of users in a precise way. Our previous study of perception-
based filtering [2] defined the limits of avatars’ perception
and presented a translation of these limits into zones in
other interest management techniques. In this paper, we will
complete this study by presenting a more general perception
model and by providing a comparative analysis backed
up with experimental results between the perception-based
filtering and the other interest management techniques.

3. RELATION BETWEEN AWARENESS
AND PERCEPTION

The perceptibility of an avatar (its ability to be perceived,
its manifestation) depends on its importance in the world.
This importance may be related to the avatar’s situation (an
aircraft is easily perceived in a clear sky) or its function (a
speaker in a stadium is seen and heard by all the audience).
Most importantly, an avatar is noticed due to its physical
manifestation: its size.

On the other hand, not all avatars have the same capacity
of awareness because of their structure, function or behavior.
An avatar can simulate a short-sighted person, another
represents a person carrying binoculars. We can also have
a well-positioned entity or a fast entity. These entities have
different degrees of perception.

Therefore, an avatar’s awareness of another depends
on the perception of the observer, the perceptibility of
the observed and the distance that separates the couple.
This awareness may only depend on these factors in case
of the absence of others. This relationship was expressed
in some interest management techniques such as area of
interest management, spatial model of interaction, and effect
management through the use of zones.

4. PERCEPTION-BASED FILTERING

Computer graphics’ developers use many algorithms to
perform visibility tests. In the following, we will study these
algorithms to see if they may specify convenient message
filtering parameters.

Computer graphics determines that an object is not
visible due to the following widely used properties.

(i) P1 is outside of camera’s view volume.

(ii) P2 is hidden by other objects.

(iii) P3 covers less than one pixel on the screen.

Souad El Merhebi et al. 3

fov

θ

Figure 1: Angle of view of a virtual camera.

P1 cannot define an efficient filtering technique for DVEs
because when a player turns his head, he may quickly
visualize a lot of new avatars. Therefore, P1 does not
define stable filtering parameters that prevent an avatar from
frequent and thus expensive changes of interests.

P2 may be interesting because it can eliminate an
important amount of message exchange. Many techniques,
based on this property, have been used in computer graphics.
These techniques can be used for message filtering for
DVEs. For example, it is possible to use occlusion queries
on recent GPUs [10] or precomputed potentially visible
sets [11] (as used in Quake(tm) [12] and RING [9], e.g.).
However, the implementation of these techniques is difficult
and they require complex computations when they are
done dynamically (especially on a client/server architecture
because the server performs filtering for many entities during
each simulation frame).

P3 offers a simpler method: knowing player A’s screen
resolution and the 3D-engine camera parameters, we can
easily determine the projection of avatar B’s bounding sphere
on the screen. If the size of the projected sphere is less than a
certain threshold (which may be set to the size of one pixel,
e.g.), A will not see B. This will be the basis of our perception-
based filtering.

4.1. Maximal distance of perception

Let us take the standard approach of a virtual camera using
a projection plane as it is defined in OpenGL and Direct3D.
The camera is defined by its angle of view (or field of view—
fov), which is the angular extent of the virtual scene that
is rendered (see Figure 1). This defines a viewing volume
(a pyramid), which is then divided into smaller volumes,
one for each pixel. Given this, we can determine the angle
of view covered by a pixel for a specific player from the
virtual camera’s field of view (fov) and the number of pixels
covered by the user’s viewport (SSize). The whole screen
covers 100% of the field of view, therefore a single pixel
covers approximately an average angle θ (The camera model
induces a distortion for the pixels that are far from the center
of the screen. We will consider this distortion negligible in
our study.):

θ = fov
SSize

. (1)

α

θ

Figure 2: Angular extents of a pixel and a sphere.

α/2

D

R

Figure 3: Angular extent of a 3D object.

On the other hand, we can compute the angular extent
α of a 3D object projection on the screen (Figure 2).
To compute this extent, we can see in Figure 3 that the
relationship between the angle α (view angle covered by the
object), the “opposite” side R (the bounding sphere radius),
and the “adjacent” side D (distance between object and
camera) is

tan
(
α

2

)
= R

D
. (2)

By using our filtering criteria, P3 allows an object to
be seen when the size of its projection is superior to one
or several pixels. The minimal number of perceived pixels
depends on the viewing capacity of the user. A user with an
enhanced capacity of view can see an object if its projection
covers one pixel, while a short-sighted user will need a
projection superior to several pixels to be able to see a
projected object.

When the size of the projected sphere is bigger than a
pixel this is exactly the same as having the angular extent “α”
bigger than the angle covered by one pixel “θ” (Figure 2). For
a short-sighted user, this maximal angle will be multiplied by
the minimal number of pixels seen by the user “n”. Knowing
that α and n·θ are always smaller than π, we have

α ≥ n·θ ⇐⇒ tan
(
α

2

)
≥ tan

(
n·θ

2

)

⇐⇒ R

D
≥ tan

(
n·θ

2

)

⇐⇒ D ≤ R

tan(n·θ/2)
.

(3)

4 International Journal of Computer Games Technology

This inequality shows that an observer can see an
object if the distance that separates them is less or equal
to “R/ tan(n·θ/2).” This gives the maximal distance of
perception under which the user sees the other avatar;

Dmax = R

tan(n·θ/2)

= R·V , where V = 1
tan(n·θ/2)

.

(4)

This maximal distance depends on the player’s viewing
capacity V and on the observed avatar’s size R.

The number of visible avatars is directly related to the
player’s viewing capacity. However, it is possible that at a
certain moment during the game, the system or a user
becomes no longer able to handle more message transfers.
To prevent this, we allow it to artificially reduce the values
of perception distance by using the filtering coefficient “FC”
that varies between 0 and 1:

Dmax = R·V·FC. (5)

4.2. Filtering mechanism

To be able to use perception-based filtering, a server
(in client/server architectures) or clients (in peer-to-peer
architectures) compute the maximal distance of perception
that the observing avatar has of the observed avatar (a simple
multiplication). Then, they compare this maximal distance
of perception to the distance that separates the two avatars to
deduce if the perception takes place or not.

5. DETERMINING RADIUSES OF INTEREST ZONES

As we have seen in Section 2, many interest management
techniques use zones to determine avatars’ interests and
manifestations. Until now, these techniques have determined
the radiuses of their zones empirically. In this section, we
propose mechanisms that determine these radiuses based
on our perception rules. This translation has two goals:
providing a mechanism to determine the size of zones for
these used filtering techniques and establishing a fair ground
to compare the perception-based filtering with the existing
interest management techniques.

The condition that the zones should strictly fulfil to
express perception is that whenever an avatar sees another
with perception-based filtering, it should be able to see
it with the parallel interest management techniques (area
of interest management, spatial model of interaction or
effect management, etc.). If this entails a reception of
unnecessary information, this can be tolerated. But not
receiving important update messages cannot be tolerated.

In Figure 4, we can see the translation of perception rules
into various interest management techniques. The computa-
tion of these radiuses varies according to the techniques, but
it always depends on the perception and perceptibility of all
the avatars of the environment. In the following, we analyze
these dependencies and their impact on filtering.

Area of interest management

Area of interest

Observer Observed

Observer Observed

Effect management

Spatial model of interaction

Viewing zone
Effect zone

Aura

Perception based filtering

Dmax

Observer Observed

Observer Observed

Figure 4: Translation of perception rules in various interest
management techniques.

5.1. Area of interest management

The area of interest management allows an avatar to see
the avatars that are within its area of interest (AOI). To
have a fair translation, whenever an avatar sees another
with perception-based filtering, it should see it with area of
interest management. Therefore, if the distance between two
avatars is smaller than Dmax, the AOI of the viewing avatar
should cover the other avatar (see Figure 5). Consequently,
the radius of the AOI should be greater than or equal to all
the Dmax. To optimize filtering, we choose the largest Dmax

that the avatar has as its AOI radius.
S being the set of games’ avatars:

AOI (A) = max
{
Dmax(A,n), ∀n ∈ S

}
. (6)

This may entail excessive information reception because
if we have an important avatar, all the avatars will enlarge
their AOIs to be able to see it when it is distant. This will make

Souad El Merhebi et al. 5

Dmax

Dmax

D
m

ax

Figure 5: Determining the AOI radius.

the avatars receive information of small and distant avatars
that they are not supposed to see.

5.2. Spatial model of interaction

The spatial model of interaction allows two avatars to see
each other when their auras collide. The sizes of the auras
will be defined following the rule R.

“A sees B with perception-based filtering” means that
the distance between A and B is less than or equal to the
corresponding Dmax:

D(A,B) ≤ Dmax(A,B). (7)

And “A sees B with the spatial model of interaction”
means that the auras of A and B collide:

D(A,B) ≤ Aura(A) + Aura(B), (8)

where Aura(N) is the radius of N’s aura.
A condition that makes R possible is

C: Aura(A) + Aura(B) ≥ Dmax(A,B) (9)

because

D(A,B) ≤ Dmax(A,B),

Dmax(A,B) ≤ Aura(A) + Aura(B) =⇒ D(A,B)

≤ Aura(A) + Aura(B).

(10)

So condition C allows the satisfaction of rule R. There-
fore, S being the set of the game’s avatars, the general rule
will be

∀a ∈ S, ∀b ∈ S, Aura(a) + Aura(b) ≥ Dmax(a, b).
(11)

This rule gives a set of constraints which define a system
of inequalities. For example, if we take a game with three
avatar types: a person (P), an eagle-eyed person (EE), and
a truck (T), the following constraints will be raised:

2∗Aura(P) ≥ Dmax(P,P), (12)

(to enable two persons to see each other when they should),

Aura(P) + Aura(EE) ≥ Dmax(P,EE) (13)

(to enable a person to see an eagle-eyed person),

Aura(P) + Aura(T) ≥ Dmax(P,T),

Aura(EE) + Aura(P) ≥ Dmax(EE,P),

2× Aura(EE) ≥ Dmax(EE,EE),

Aura(EE) + Aura(T) ≥ Dmax(EE,T),

Aura(T) + Aura(P) ≥ Dmax(T ,P),

Aura(T) + Aura(EE) ≥ Dmax(T ,EE),

2× Aura(T) ≥ Dmax(T ,T).

(14)

These constraints define a system of linear inequalities
which has an infinity of solutions. Our goal is to find the
optimal solution that minimizes the number of possible
interactions between avatars. This number is proportional
to the possibility of auras’ collisions, which makes it propor-
tional to the total area covered by all avatars’ auras:

AA =
∑
n∈S

π Aura(n)2. (15)

Such a system can be solved in many ways. We used
Newton’s method for the solution of systems of equalities and
inequalities [13], parameterized to minimize the value ofAA.

5.3. Effect management

Effect management offers better precision because for each
avatar we distinguish the ability to see (perception) from
the ability of being seen (perceptibility), this gives more
precise constraints. A similar demonstration to that of the
spatial model of interaction gives the following translation
condition:

D(A,B) ≤ V(A) + E(B), (16)

where V(A) is the radius of an avatar A’s viewing zone and
E(B) is the radius of an avatar’s B effect zone.

So, S being the set of the game’s avatars, the system takes
this form:

∀a ∈ S, ∀b ∈ S, E(a) + V(b) ≥ Dmax(a, b). (17)

If we take our previous example, we will have the
following system of inequalities:

V(P) + E(P) ≥ Dmax(P,P), (18)

(to enable persons to see each other)

V(P) + E(EE) ≥ Dmax(P,EE), (19)

6 International Journal of Computer Games Technology

(to enable a person to see an eagle-eyed person)

V(P) + E(T) ≥ Dmax(P,T),

V(EE) + E(P) ≥ Dmax(EE,P),

V(EE) + E(EE) ≥ Dmax(EE,EE),

V(EE) + E(T) ≥ Dmax(EE,T),

V(T) + E(P) ≥max (T ,P),

V(T) + E(EE) ≥ Dmax(T ,EE),

V(T) + E(T) ≥ Dmax(T ,T).

(20)

The system can be solved by minimizing the area covered
by the effect and viewing zones:

AEV =
∑
n∈S

πC(n)2 + πE(n)2. (21)

6. EXPERIMENTAL RESULTS

To implement perception-based filtering, we used Architec-
ture for Systems of Simulation and Training in Teleoperation
(ASSET) [14], a prototyping system supporting the design
and evaluation of new teleoperation systems by using virtual
reality components. In our context, ASSET is used in
simulation mode only thus becoming a generic client/server-
based DVE system.

We compared the performance of perception-based
filtering with those of area of interest management and
spatial model of interaction in its simple version and effect
management. The level of realism is constant with the four
techniques, since it is fixed by the perception rules while the
communication load varies following the filtering technique
and this is what interests us.

6.1. Experimental environment

We used for our experiments 100 nodes of a cluster of
Grid’5000 [15], which is a grid of thousands of CPUs
distributed at 9 sites France wide. Nodes have Rocks Linux
3.3.0 as operating systems and are connected by a Gigabit
Ethernet network. The nodes are IBM eServer 325 shipped
with AMD Opteron 246 CPUs (2.0 GHz/1 MB/400 MHz),
2 GB memory, 2x Gigabit Ethernet (1 in use) and Myrinet-
2000 (M3F-PCIXF-2) network cards.

An experiment is a two-minute simulation with a
simulation step of 200 milliseconds. We carried out the
experiments varying the number of clients. We repeated
the experiments several times and averaged the resulting
values. During an experiment, the server collects various
experimental data such as the number of exchanged messages
and the server’s load.

The server was always allocated a dedicated node.
However, since the number of clients in a single simulation
got up to 160 (and we only have 100 nodes available), we
eventually had to run two clients on the same node.

6.2. Simulation parameters

The virtual environment is a 20000 × 20000 square. The
behavior of avatars is autonomous following a random
acceleration with a privileged direction. An avatar can be
a normal person, an eagle-eyed person (with good visual
ability) or a truck. The person and the driver of the truck
have a limited viewing capacity, while the eagle-eyed person
has an enhanced viewing capacity. Furthermore, the truck
has a larger size, thus it has a stronger chance of being seen
than the others.

6.2.1. Perception-based filtering

For perception-based filtering, we consider that the field of
view is equal to 120 degrees and the screen is 1024 pixels
large. This gives us the angle covered by one pixel,

θ = fov
Nb PixelsX

= 120
1024

= 0.117.

(22)

We consider that the eagle-eyed person is able to see the
details on the screen up to one pixel (n = 1). His viewing
capacity is of

Veagle = 1
tan

(
neagle·θ2

)

= 1
tan

(
1·0.117

2

)

= 1
tan

(0.058)

= 977.8.

(23)

To obtain the maximal distance of perception that the
avatar has of a person, we multiply the radius of the person
with the visual capacity of the avatar:

Dmax(eagle,person) = Rperson·Veagle

= 1.022·977.8

= 1000.

(24)

On the other hand, the maximal distance of perception
that an eagle-eyed person has of a truck depends on the
truck’s bounding sphere radius:

Dmax(eagle,truck) = Rtruck·Veagle

= 2.045·977.8

= 2000.

(25)

The avatars with a normal viewing capacity (the person
and the driver of the truck) will see less clearly on the screen.

Souad El Merhebi et al. 7

Table 1

Dmax Person Truck Eagle-eyed

Person (P) 500 1000 500

Truck (T) 500 1000 500

Eagle-eyed (EE) 1000 2000 1000

Table 2

Avatar Person Truck Eagle-eyed

AOI 1000 1000 2000

Table 3

Avatar Person Truck Eagle-eyed

Aura 250 1000 1000

Table 4

Avatar Person Truck Eagle-eyed

Viewing zone 250 250 1000

Effect zone 250 1000 250

We will consider that their minimal threshold of perception
is of two pixels (n = 2). Thus, we have

Vperson = 1
tan

(
nperson·θ2

)

= 1
tan

(
2·0.117

2

)

= 1
tan

(0.117)

= 488.9.

(26)

This influences all the maximal distances of perception of
the person.

Table 1 lists the maximal distances of perception of our
environment. We can see for example that the maximal
distance of perception that a person has of a truck is 1000.

6.2.2. Area of interest management

By using the rules of translation defined above, we defined
the radiuses of the areas of interest for our avatars in Table 2.

6.2.3. Spatial model of interaction

The system of inequalities related to the spatial model of
interaction was solved using a solver which gave the results
listed in Table 3.

6.2.4. Effect management

Table 4 shows the optimal solution of the corresponding
system of inequalities.

0

50

100

150

200

250

O
u

tp
u

t
ba

n
dw

id
th

(M
bi

t/
s)

0 20 40 60 80 100 120 140 160

Number of clients

Without filtering
Effect
Perception

Interest
Spatial

Figure 6: Network bandwidth with and without filtering.

6.3. Results

6.3.1. The impact of filtering

Figure 6 shows the rate of messages sent by the server
with and without filtering. We notice that all the filtering
techniques succeeded in reducing the rate of outgoing
messages. This pushes further the bottleneck on the server
that is due to the cost of sending messages when there is
no filtering used. However, filtering techniques postpone the
bottleneck but do not eliminate it. The bottleneck is related
to the load of filtering that is equivalent in all the filtering
techniques (Figure 7).

We should note that we use a Gigabit network. If the
network had a narrower bandwidth, the bottleneck without
filtering would take place a lot sooner because of the network
load and not the server load.

6.3.2. Evaluation of perception-based filtering

Figure 8 compares the rate of messages sent by the server
with the four filtering techniques. We can notice that the
perception-based technique presents the lowest rate of sent
messages. This exact filtering performed by our technique
allows the server to use less upload bandwidth and makes
users receive fewer messages. This makes the application less
expensive and more interactive.

6.3.3. Analysis

We have seen that perception-based filtering achieves better
results than the other filtering techniques. This is due to
the fact that perception-based filtering performs an exact
filtering and delivers to each user only data that he is able
to perceive while others do not.

8 International Journal of Computer Games Technology

0

10

20

30

40

50

60

70

80

90

100

C
P

U
lo

ad
(%

)

0 20 40 60 80 100 120 140 160

Number of clients

Without filtering
Effect
Perception

Interest
Spatial

Figure 7: Server’s load with and without filtering.

0

50

100

150

200

250

300

Se
n

t
m

es
sa

ge
s

(k
)

0 20 40 60 80 100 120 140 160

Number of clients

Effect
Perception

Interest
Spatial

Figure 8: Sent messages.

(i) The area of interest management does not allow
avatars to express their manifestations. For these reasons,
the AOI of an avatar depends on all the existing avatars.
Therefore, if we have an important avatar that is seen from
a long distance, the AOIs of all the avatars should be large
enough to cover this avatar when it is distant. Thus, these
AOIs will cover small and distant avatars that should not be
seen.

(ii) The spatial model of interaction combines the ability
to see and the ability to be seen within the aura. This prevents
avatars from establishing asymetrical relations. Therefore, an
important avatar which is seen by everyone will be forced to
see everyone.

(iii) Effect management does not suffer from the short-
comings of the previous techniques. That is why it offers a
better rate of filtering than both of them. However, it still has
an excessive rate of message exchange due to the sizes of effect

Area of interest management

Area of interest

Viewing zone
1000

1000

1000

Effect zone
1000

Effect zone

250
250

Effect management

Spatial model of interaction

Viewing zone
Effect zone

Aura

Perception based filtering

2000

Dmax(eagle-eyed, truck)

2000

1000Dmax (eagle-eyed,person)

Figure 9: Dmax translation into various interest management
techniques.

and viewing zones which depend on each other because of
the system of inequalities.

Figure 9 gives a concrete example of the inexact filtering.
Let us consider the scenario of an eagle-eyed person who

is standing at a distance of 2000 away from a truck and of

Souad El Merhebi et al. 9

1100 from a normal person. We will study the perception of
the eagle-eyed toward the two other avatars.

With perception rules, our observer can see the truck
because they are at a distance (2000) which is equal to
the observer’s maximal distance of perception of the truck.
However, the distance that separates him from the other
person (1100) is superior to the corresponding maximal
distance of perception (1000). Therefore, the eagle-eyed
person receives the update of the truck but not that of the
other person.

With area of interest management, the observer’s AOI
covers the truck and the person. So the observer will receive
the update of the person, while he is not supposed to see
him.

With the spatial model of interaction, the aura of the
observer overlaps the auras of the two other avatars. Thus,
he receives the messages of the other two avatars.

With effect management, the viewing zone of the
observer overlaps the effect zones of both the truck and
the person. So the observer also receives unnecessary
updates.

This concrete comparison further details the causes of
the advantage of percepetion-based filtering over the other
interest management techniques.

7. CONCLUSIONS AND FUTURE WORK

We have presented the perception-based filtering technique.
This technique will help developers determine their avatars’
perceptual interests in a precise way. We have also presented
a translation of perception rules into interest manage-
ment techniques which define the interests of players by
using zones. We have then compared the performance of
perception-based filtering with other techniques and we
found that our technique further reduces the amount of
exchanged messages. We have also described the reasons why
our technique offers such advantages.

Perception-based filtering presents an additional advan-
tage related to the dynamic change of interests. In fact,
perception-based filtering allows avatars to change their
abilities to perceive or be perceived without having to change
a lot of simulation parameters. Furthermore, any change of
ability of one avatar with the other techniques will induce a
new system of inequalities that should be solved to give a new
set of filtering parameters.

However, perception-based filtering only expresses per-
ceptual factors while the other techniques allow to express
other characteristics in addition to perception (function,
behaviour, etc.). This is why we intend to extend our research
to the auditive and functional domains.

ACKNOWLEDGMENTS

This work was supported in part by the French Government
through the NatSIM ANR Project (Contract ANR 05-
MMSA-0004-01). Grateful acknowledgment for proofread-
ing and correcting our article goes to Anne Beauvallet,
Senior Lecturer at Toulouse II University (English Studies
Department).

REFERENCES

[1] D. Terdiman, “World of warcraft battles server problems,”
http://articles.techrepublic.com.com/2100-1087911-6063990.
html.

[2] S. Elmerhebi, J.-C. Hoelt, P. Torguet, and J.-P. Jessel, “Percep-
tion based messages filtering for massively multiplayer online
games,” in Proceedings of the 3rd International Conference on
Games Research and Development (CyberGames ’07), Manch-
ester, UK, September 2007.

[3] M. R. Macedonia, M. J. Zyda, D. R. Pratt, D. P. Brutzman,
and P. T. Barham, “Exploiting reality with multicast groups:
a network architecture for large-scale virtual environments,”
in Proceedings of the IEEE Virtual Reality Annual International
Symposium (VRAIS ’95), pp. 2–10, Los Alamitos, Calif, USA,
March 1995.

[4] S. Benford and L. Fahlén, “A spatial model of interaction in
large virtual environments,” in Proceedings of the 3rd Euro-
pean Conference on Computer-Supported Cooperative Work
(ECSCW ’93), pp. 109–124, Milano, Italy, September 1993.

[5] S. Elmerhebi, P. Torguet, and J.-P. Jessel, “Realism and com-
munication evaluation of effect management in distributed
virtual environments,” in Proceedings of the 12th Eurographics
Symposium on Virtual Environments (EGVE ’06), Lisbon,
Portugal, May 2006.

[6] A. Boukerche, N. J. McGraw, C. Dzermajko, and K. Lu, “Grid-
filtered region-based data distribution management in large-
scale distributed simulation systems,” in Proceedings of the 38th
Annual Symposium on Simulation (ANSS ’05), pp. 259–266,
San Diego, Calif, USA, April 2005.

[7] J. Calvin and R. Weatherly, “An introduction to the high
level architecture (HLA) runtime infrastructure (RTI),” in
Proceedings of the 14th Workshop on the Standards for the
Interoperability of Defence Simulations, pp. 705–715, Orlando,
Fla, USA, March 1996.

[8] R. C. Waters, D. B. Anderson, J. W. Barrus, et al., “Diamond
park and spline: social virtual reality with 3D animation,
spoken interaction, and runtime extendability,” Presence,
vol. 6, no. 4, pp. 461–481, 1997.

[9] T. A. Funkhouser, “Ring: a client-server system for multi user
virtual environments,” in Proceedings of the Symposium on
Interactive 3D Graphics (SI3D ’95), pp. 85–92, ACM Press,
Monterey, Calif, USA, April 1995.

[10] D. Bartz, M. Meißner, and T. Hüttner, “Extending graphics
hardware for occlusion queries in opengl,” in Proceedings
of the ACM SIGGRAPH/Eurographics Workshop on Graphics
Hardware, pp. 97–104, ACM Press, Lisbon, Portuga, August-
September 1998.

[11] J. M. Airey, J. H. Rohlf, and F. P. Brooks Jr., “Towards
image realism with interactive update rates in complex virtual
building environments,” in Proceedings of the Symposium on
Interactive 3D Graphics (SI3D ’90), pp. 41–50, ACM Press,
Snowbird, Utah, USA, March 1990.

[12] M. Abrash, “Inside quake: visible surface determination,” in
Dr. Dobb’s Sourcebook, pp. 41–45, January-February 1996.

[13] B. N. Pshenichnyi, “Newton’s method for the solution of
systems of equalities and inequalities,” Mathematical Notes,
vol. 8, no. 5, pp. 827–830, 1970.

[14] N. Rodriguez, J.-P. Jessel, and P. Torguet, “A virtual reality tool
for teleoperation research,” Virtual Reality, vol. 6, no. 2, pp.
57–62, 2002.

[15] F. Cappello, F. Desprez, M. Dayde, et al., “A large scale, recon-
figurable, controlable and monitorable grid platform,” in Pro-
ceedings of the 6th IEEE/ACM International Workshop on Grid
Computing (Grid ’05), Seattle, Wash USA, November 2005.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 619108, 8 pages
doi:10.1155/2008/619108

Research Article
A Study of Interaction Patterns and Awareness Design
Elements in a Massively Multiplayer Online Game

Tiffany Y. Tang, Cheung Yiu Man, Chu Pok Hang, Lam Shiu Cheuk, Chan Wai Kwong,
Yiu Chung Chi, Ho Ka Fai, and Sit Kam

Department of Computing, Hong Kong Polytechnic University, Kowloon, Hong Kong

Correspondence should be addressed to Tiffany Y. Tang, cstiffany@comp.polyu.edu.hk

Received 28 September 2007; Accepted 13 December 2007

Recommended by Kok Wai Wong

Massively multiplayer online games (MMOGs) have been known to create rich and versatile social worlds for thousands of millions
of players to participate. As such, various game elements and advance technologies such as artificial intelligence have been applied
to encourage and facilitate social interactions in these online communities, the key to the success of MMOGs. However, there is a
lack of studies addressing the usability of these elements in games. In this paper, we look into interaction patterns and awareness
design elements that support the awareness in LastWorld and FairyLand. Experimental results obtained through both in-game
experiences and player interviews reveal that not all awareness tools (e.g., an in-game map) have been fully exploited by players.
In addition, those players who are aware of these tools are not satisfied with them. Our findings suggest that awareness-oriented
tools/channels should be easy to interpret and rich in conveying “knowledge” so as to reduce players-cognitive overload. These
findings of this research recommend considerations of early stage MMOG design.

Copyright © 2008 Tiffany Y. Tang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Interacting online with people from throughout the world
is a daily occurrence for millions of Internet players, yet
most do it with little perspective on the virtual identity they
are projecting. It is generally accepted now that the Internet
and online games provide a tremendous opportunity for
new forms of entertainment. It is especially true for MMOG
characterized by its ability to enable thousands of players
to play in an evolving virtual world at the same time over
the Internet. Once a player enters the game world, he can
engage in a variety of activities with other players who
might be sitting at the other part of the globe. Hence, one
of the most foremost goals of these MMOGs is to offer a
rich social platform for players to interact and socialize as
Will Wright, creator of the block-buster game “The SIMS,”
put it: “In some sense, what we are really building with
these games are communities. That is our primary thing”
[1]. In this regard, awareness is known as one of the most
discriminating factors contributing to the success of the
social environments. It is defined as “the knowledge of the
presence of other people, including their interactions and other

activities” [2]. Generally, being aware of each other’s presence
(including the workspace environment, their actions, and
the manipulating artifacts) provides a clue for their own
action in the situated environment, and might guide their
own actions accordingly [3]. It is especially imperative in
densely populated online virtual communities, where people
tend to interact with each other to weave a rather complex,
yet, fruitful web of relationship [4]. Careful incorporation
of awareness tools in these online spaces thus becomes more
essential to foster both collaboration and competition. In the
human-computer interaction area, a number of works have
been devoted to study awareness, including how to make
various awareness tools in a wide variety of applications
[3, 5–7] and in MMOGs [5, 8–10]. In fact, MMOGs have
attracted more attention recently as a test bed to study
awareness and social interaction patterns in some high
profile CHI conferences [5, 9]. Unfortunately, very few of
them probe into this issue from players’ perspective, that is,
whether or not, players have made the most out of these
tools to facilitate the in-group and interpersonal interactions,
which motivates our study here. Particularly, in this paper,
we report out findings on one popular MMOG called

2 International Journal of Computer Games Technology

Table 1: A brief summery of awareness and interaction design elements in LastWorld.

Tools/approaches/tasks Information elements

Social
awareness

People Player description
(Figure 2)

Who is online?

What are their statuses?

What are they doing?

Location Map, radar (Figure 3)
Where am I?

Where are others?

Social
interaction

Teamworks such as
chatting, fighting,
trading

How can I team up with other
players?

How can I boost up my skills and
levels in teams?

the LastWorld (available at http://www.lastworld.com/) and
compare our results with that of Fairyland, on evaluating
the usability of these tools to raise awareness and encourage
players to interact.

In the next section, we will discuss previous study on
MMOGs, with a particular focus on how MMOGs act as
social sphere. We will then give brief overview LastWorld
including how they have been designed to raise social
awareness and encourage group interactions. We then report
the experimental results on LastWorld in Section 3. A
comparison of LastWorld and Fairyland on the design efforts
to support social interactions will be provided in Section 4;
the design implication will also be pointed out. We conclude
this paper by discussing our next step in augmenting our
research following the path.

2. MMOGS AS A “SOCIAL SPHERE”

2.1. Social awareness: some background

In a distributed, socially populated environment, it is imper-
ative for members to be “aware” of each other and the
environment, in terms of their many facets, among them,
the information about each other’s actions, the individual
environment, and the state of the manipulated artifacts. For
instance, in distributed document editing environment, this
awareness information can range from who are the active
editors, on what part of the document each are working, why
the document is being edited, and so on. Game designers
have implemented a variety of awareness tools to allow
players to formulate general as well as specific awareness of
their group mates, or even counterparts in an attempt to
execute their actions accordingly. For example, a map can
show player position, while the name on top of players reveals
player identity to others. The work in [10] summarizes the
workspace awareness elements and categorizes them into two
major types based on their temporal aspect: those related to
the present and the past.

2.2. Motivation of our work

One notable issue related to awareness is that the tools
to support awareness should be readily accessible, easy to
interpret, and rich in convey “knowledge” in order to reduce
players’ cognitive information overload. It is especially true

in real-time multiuser virtual environment like MMOGs,
where players rely heavily on the information to explore,
when there might be overcrowded information available
on the screen. For instance, imagine a group of players
collaboratively engage in a fighting mission at a remote
island; valuable information related to it includes individual
players’ skills, energies left, location, and identifying the
approaching enemies and so on, as shown in Table 1. Hence,
when the information becomes overloaded, players have
to quickly identify those valuable or in some cases, they
even need to choose from among the various awareness
sources, in order to gather this information and make a quick
assessment of the environment and situations. One extreme
is that the information might be too coarse, thus, cannot
be used instantly to assist players. The other extreme is that
there might be too much information which makes players
difficult to spot the most relevant to their current task. Either
of these two cases can greatly affect players’ perceptions of the
environments. To our knowledge, very few studies addressed
this issue, which motivates our study here. The findings of
our in-game experiences and player interviews agree with
our worries in that players, in fact, are not satisfied with the
awareness tools, and pointed out that they are sometimes
too busy to compile the information and formulate their
presence in relation to the environment and other players.

Before we proceed to present our findings, a discussion
on related work will appear in the next section.

2.3. MMOGs as a “Social Sphere”

MMOGs are designed to encourage players socialize through
a wide variety of channels, from combating, gesturing,
chatting, doing business, and so on; a collected place where
we call it a social sphere. Although MMOGs have taken the
game-playing world by storm, the work in [8] pointed out
that there are lacks of sociological study in the research com-
munity. One of the most notable studies was conducted by
Ducheneaut and Moore [5], where the researches immersed
themselves in Star Wars Galaxies (SWGs), one of the most
popular MMOGs to investigate the interaction patterns to
support CSCW. The work in [8] further investigates the
degree of social activities as supported and exhibited in
the “third places” of SWGs: the cantinas. In particular, as
originally coined by Oldenburg, these “third places” should

Tiffany Y. Tang et al. 3

(a)

Team name

Player name

(b)

Figure 1: (a) A “day” in the world, (b) one of the people awareness
tools.

provide “a great variety of public places that host the regular,
voluntary, informal, and happily anticipated gatherings of
individuals beyond the realms of home and work” [11, page
16]. The works in [5, 8] reveal that the majority of visitors
have clear purposes to socialize in the cantinas, which is in
contrast to the pure social interactions that go “beyond the
contexts of purpose, duty or role” [12] and their encounters
are mostly marked by “short and instrumental” [8, page 11].
To summarize, these studies [5, 8–10] generally examine a
variety of social activities players carried out during game-
playing to, in some degree, look into the design rationale that
MMOGs should encourage and support social interactions.
The work in [13] reviews a number of awareness tools in
a video game, Quake, to investigate how these tools can
support team play and team collaboration. However, the
study did not reveal players’ perceptions on these tools,
which is one of the major differences between their study and
ours.

Although in these studies, awareness issue has been
casually mentioned, it is not thoroughfully investigated,
which motivates our study here. Specifically, we attempt
to study how sufficient existing awareness tools have been
designed to foster social interactions among players, and
whether or not players tend to make the most out of these
tools to engage in social interactions.

Before we proceed to present our findings, we will give a
short overview of LastWorld.

2.4. Some background on LastWorld

LastWorld was launched in the summer of 2005 and rated as
the number online game at the time of this study [14]. As
an MMOG, it aims at providing an entertaining and social
platform for players. In order to support social interactions,
LastWorld provides a wide range of tools, tasks to allow
players to interact with each other, as well as with non-
player characters (NPCs). Figure 1(a) shows one screenshot
of the game, where players can control their characters
to take actions, such as fighting, sitting, working, trading
items, and so on. Players can also communicate with each
other, choosing different types of communicational methods
through the conversational panels in the lower right corner
of the screen, as shown in Figure 1.

(a) (b)

Figure 2: (a) People awareness: who’s online?; (b) people awareness:
where is the player and who is he/she?.

2.4.1. Social awareness in LastWorld

A number of awareness tools exist in the games. In this paper,
we will only focus on tools to support people and location
awareness.

Table 1 summarizes the tools/tasks that we will evaluate
in LastWorld that are designed to support social awareness
and interactions.

Regarding people awareness, the game uses a series of
tools to indicate the status and identity each player. The
purpose of these tools is to help users to be aware of other
players’ position as well as obtain their identities/skills.

For example, above each character, there are names
showing in white and the organization name showing in
pale purple, as seen in Figure 2(b). And on notice board,
once a team member is connected to the game, it will notify
other members of the same team that “[who] member is
connected.” Players can also check whether or not their
friends are online instantly in the conversation box (see
Figure 2(a)).

Location awareness deals with the information players
can collect related to whereabouts of themselves, other
players, monsters, and NPCs. Sufficient and easy-to-obtain
location awareness information can give players an orien-
tation as well as the position of others that can help them
formulate their activities and achieve their goals. LastWorld
provides a number of tools, including map, radar, coordinates
to indicate location of players, players’ friends, players’
teammates, enemies, and so on. Players can manipulate it
by zooming in and out on it, and perform searching (see
Figure 3).

2.4.2. Social interactions in LastWorld

Both player-player and player-game interactions are encour-
aged in LastWorld; the former includes a number of com-
munication channels for players to interact with each other;
while the latter provides ways for players to interact with
NPCs. In this paper, we focus on the former type of the
interactions (see Table 1).

The game provides a couple of communication channels
for players to interact with each other. For instance, in

4 International Journal of Computer Games Technology

Figure 3: Normal map versus zoom-in map.

Trading, players can buy/sell goods in fixed price or by
bargaining in any city. Both buyers and sellers can negotiate
the prices during trading. In general, Trading provides
an excellent platform to encourage players with different
professions and skills to communicate with each other.
Chatting offers another type of player-player interaction in
the game where players can engage in 4 types of chatting
mode: public, private, team, and organization.

3. FINDINGS ON LASTWORLD

3.1. Experiment methodology

To have a real experience in the game community, each
of us created at least one character in the game. A total
of 10 characters were created, which make up most of the
professions in the game. In order to become a part of the
community, each of the characters logs on to play the game
for at least 40 hours. We then collect data through direct
observation of the game environment and interacting with
different players in the game. These interactions include
participating in different teams, trading, and bargaining with
other players. In total, we spent 2 months playing the game
regularly and after that, we designed a questionnaire for the
team members to complete. The questionnaire targets at how
each group of players looks at the awareness tools, their
interactions, their attitude, and behavior in the game. We
then further interviewed 18 players (with their age ranging
from 20 to 30) in the game so as to increase the reliability of
the collected data. We tried to divide the players according
to their playing frequency. The results are sufficient for us to
address the issues raised in this paper.

3.2. How players socialize in LastWorld: experiments

As argued in previous sections, the most fundamental goal
of MMOGs is to create a social environment for players to
interact through all the possible kinds of awareness-oriented
design elements and interaction channels. These elements
include a variety of designs in the game, including map,
radar, chat, and so on (see Table 1 for those studied in our
experiment). We are interested in investigating the degree of
awareness of players; that is, how efficiently and easily players

can make use of these elements to foster social interaction,
and improve their in-game social welfare. In particular, the
following questions are addressed.

(i) do players know and use these carefully designed
awareness elements during game playing?

(ii) how efficiently the awareness tools can foster players’
social interaction?

The first goal is to evaluate the usage of these virtual
awareness tools, while the 2nd is to assess the usability
of these tools in facilitating player interactions. In our
experiment, we studied three types of players, that are, core
players, spending more than 30 hours per week; moderate
players, spending 11 and 20 hours per week, and casual
players, spending less than 11 hours per week. In our study,
there is 6, 8, and 4 core, moderate, and casual players,
respectively. It is crucial to include all types of players in the
analysis so as to understand and compare different players’
views on awareness and their interaction.

3.2.1. The usefulness and appropriateness of
awareness design in LastWorld

We mainly used questionnaire to gather the information
about the awareness for our study. We found out that players
have similar points of view in some aspects, but have different
opinion in others.

(a) People awareness—Are players aware of
the social environment around them?

Issue One. How long does it take for players to be aware that
their friends are online?

The result of our study reveals that the majority of players
are able to know the status of their friends immediately or
within 3 minutes. This suggests that the notification of the
friends’ connection is helpful for the players who are notified
whenever their friends are online. However, 5 out of 18
players are unable to determine whether or not their friends
are online. There are some possible reasons for it. Since
the notice board shows many things concurrently, newer
messages will cover the older ones, so players may easily miss
some notification in the board. In addition, players may be
busy doing something else such as hitting monsters in the
game, so they fail to pay attention to the notice board. As
such, some sound alert could be used; and it is often referred
to as audible awareness indicators [3].
Issue Two. How difficult is it to find friends?

Obviously, the textual descriptions on top of each char-
acter are essential for the players (see Figure 2(b)): at least
half of them strongly agreed. The results indicate that the
character, organization, and other descriptions are critical
to identify players. Surprisingly though, roughly half players,
44%, find it difficult or very difficult to identify their friends
from among other people, even though the friends are just
next to them, because although these elements can help
players identify characters, it is so confused and complicated
especially when there are too many players showing on the
screen at the same time. To find out how difficult to identify

Tiffany Y. Tang et al. 5

(a) (b)

Figure 4: (a) The town centre on a particular day, and (b) some
players are willing to talk during trading.

friends, we performed an experiment: we open the game
together and sit in the crowd. One of us spent almost 3
minutes to locate all of “us.” When asked what helped him
to do so, he pointed to the radar and coordinates rather than
player description over the head. Therefore, the helpfulness
of player description is less useful if there are too many
characters in the same place (see Figure 4(a)).

More than half of core players think it is easy or very
easy to locate their friends. Most moderate players vote it
as normal or difficult; while all casual players rated as easy
or very easy. Core players have much experience in playing
game, so they are more experienced to find other ways such
as using radar and communication to identify the friends. No
other tools might help players find other players in the game
except for the description of the characters. For instance, if
one player wants to find a personal shop to buy a weapon,
what he/she can do is just running around the town and
finding a player who is a weapon seller. If he/she wants to
find a specific character type to form a team, he/she can only
send a message to everyone and wait for their reply, which is
very time consuming. In other words, the tools in the game
are not sufficient to foster awareness among players.

(b) Location awareness—The usefulness of
corresponding design elements

Issue One. Are maps, radars, and coordinates easy to use in
support of location awareness?

56% of players think the tools are useful to support loca-
tion awareness. Our study indicates that a large proportion
of players think that map, radar, and coordinates are easy
or even very easy to use. Also, 22% of them have neither
stronger nor weaker views on this issue. Only one player feels
negative with the maps and radars. There are no differences
between the three types of player regarding it. This result
is not surprising since the game provides comprehensive
functions to assist players to use such tools.
Issue Two. Is there sufficient information in the map and
radar?

Although the map and radar are useful for players, they
may not contain enough information to help players: 78%
of players pointed out that the information embedded in
the map and radar is not clearly enough to facilitate higher
degree of location awareness: know where they and their
friends are. The results of three types of player are similar. To
further our understandings, we interviewed 10 players in the

game on it. 70% of them reported that there are not enough
notations in the map and radar. And 20% of them think that
it is just ok. Among the 7 players who admitted that notation
is not enough, some pointed out that the map is not detailed
enough. Some of players indicate that the details in the map
cannot be changed when we zoom in the map except for the
town of the current game, as shown in Figure 3 that even
though the map is zoomed in, the detail of it will not be
enhanced. In addition, the rest of players agree that the map’s
notation is not enough since the map has no coordinates
when the cursor points to the map to help players find others.
Some especially novice players point out that the coordinates
are meaningless.

3.3. Interaction patterns in LastWorld

In another series of experiments, we attempt to study
information on how players make use of the interactions
provided by the game to enrich their socially virtual “life.”
In particular, we will focus on teamwork and trading system,
two of the most representative interactions in the game.

3.3.1. TeamWork

Issue One. Have players ever tried to team up with other
players? Are they willing to team up with other players, both
in team or outside the team?

Generally, our experiment summarizes that players feel
satisfied from working and collaborating with others. Among
the 18 players we interviewed, about 90% of them have
tried to be involved in different teams. Nearly all (except
for one moderate player) expressed their willingness to team
up with players of other professions. There are no apparent
differences between three groups of players. Furthermore,
about 90% players have tried to team up with other players,
and only 2 of them are active in socializing with players
out of their team. That is, most of the players are reluctant
to talk actively with other players; they never or seldom
talk actively with players outside their team. However, the
number jumped to 15 (94%) when they got involved in the
teams. The majority of them commented that they tend to
talk more with their team members than with people outside
the team.
Issue Two. Why and how players interact with each other
through teamwork and in what ways?

The above result gives insufficient information on why
and how the players interact through teamwork. To further
our understandings, we turn to compare the different effects
between players that always team up with other player
and those that play the game alone. We created 2 similar
characters, A and B, of the same profession and at the same
time. A tends to team up with other players, while B is not
involved in teamwork at all. We let the two characters do the
same thing to gain experience within 5 hours. In the end,
A achieved 15 levels, while B achieved 12 levels only. A died
once only while B died 5 times. In addition, their interactions
with other players are also very different. A always exchanges
sentences and communicates with team members, while B

6 International Journal of Computer Games Technology

Table 2: A comparison of two players in a team and playing alone,
respectively.

Character A Character B

(Involved in a team) (play alone)

Game hour 5 5

Level achieved 15 13

Deceased times 2 5

Interaction

(sentences Around 180 Around 15

exchange)

exchanged only a few sentences (roughly 15 sentences within
5 hours) with other players, as shown in Table 2.

These observations are aligned with our previous anal-
ysis: it explains why players tend to work and collaborate
with other players. That is, those involved in the team
tend to gain more experience and die less, which provides
a strong intrinsic incentive for players to be involved in
teamwork. In particular, the system awards 20 percent more
experience to each player involved in the team and players
can gain experiences much faster. Meanwhile, when there are
characters from different professions involved in a team, the
overall power of the team also becomes stronger. The more
players involved in a team, the stronger the team becomes. It
is not difficult to see that the team members have to have
good teamwork so as to survive in more dangerous areas.
They have to communicate with each other, and also due to
the interdependencies of the jobs, they have to communicate
in order to get helps from other team members. Another
kind of relationship that evolves from the conversation is
altruism among team members, through which players with
high levels give a helping hand to new players. These various
ways provide an ideal platform to encourage players to help
and interact with each other. The more the ways in which
players can and are encouraged to help each other, the easier
it is for players to meet each other, which basically reinforces
the relationships among team members and facilitates group
interactions.

3.3.2. Trading

Issue One. Have players ever tried to trade?
Out of 18 players, 14 have tried before. All core game

players have tried. This number dropped sharply to 2 (out of
4) for casual players. For those who have ever tried to trade,
only a small fraction has tried to bargain with the buyers
or sellers. The number is surprisingly low. The result shows
short and casual interactions exchanged among players. We
found out that for those 14 players that have ever tried to
trade, 11 usually do not make any utterances during the trade
at all. Though some of them exchanged a few sentences, none
exchanged more than 5 sentences during the trade. The data
shows that most players have tried to trade without many
interactions.
Issue Two. How often do players talk during trading?

To answer this question, we set up 3 personal item shops
in the town centre selling the same items. In store A, we set
the price of all items 20 percent higher than the market price,
while in store B, we set the price 20 percent lower; and to
have a control experiment, we further set up store C with all
items selling at the market price. After that, we let the stores
be idle for 3 hours. No items in store A were sold, while in
store B, 18 items were sold and in store C, 4 items were sold.
However, for all cases, no players attempted to bargain or
talk with us. Nearly all go to the personal item shops simply
searching for what they need, without greeting or talking
with the merchandiser. They buy items at a reasonable price,
and leave nearly immediately when it is rather expensive. The
town centre looks like very crowded, with high population
density. The players sitting on the square with a text box
above them are those opening personal item stores. We spent
30 minutes greeting 100 players. However, only a few of
them gives us some response. A major cause is that many
players are away from the keyboard (AFK), leaving their
avatars idle to earn money for them. When this happens
continuously, the players visiting the personal item shops and
trying to bargain with the merchandisers will get frustrated.
They sense that all players trading in the town centre are
AFK-ing (or “microing”) and avoid talking or talk very
little. This also explains our previous data, most players tend
not to bargain with the merchandisers or say very little.
This, of course, greatly affects the quality of interaction [5].
While these game features such as microing allow a wider
range of activities to be performed automatically, they can
compromise the quality of social interactivity. Nevertheless,
this does not prevent some players from talking during the
trading. We noticed that there are some players who are
genuinely interactive and eager to have longer conversations
with others (see Figure 4(b)).

4. A COMPARISON BETWEEN LASTWORLD
AND FAIRYLAND

So far, we observed that player performance is largely deter-
mined by how players can utilize the tools and other game
elements such as in-game tasks, and exploit accordingly.
Our observations indicate that not every tool has been fully
understood or noticed by players, and not every group-
oriented task is capable of forcing players to execute group
activities: some choose to complete the task alone, while
some are willing to form a group. A natural question to
ask at this point is that what would happen if we conduct
the analysis in another type of game? To answer it, we
perform a similar usability study in a different type of game,
Fairyland which is a fantasy MMOG more suitable for girls.
It is different from LastWorld, a more action and strategy-
packed MMOGs preferred more by boys. In Fairyland,
players enjoy similar experiences like those in LastWorld,
for instance, chatting with other players, forming teams to
perform tasks such as fighting, trading, and so on. The
major difference between the two games is that Fairyland
is targeted at girl players, while LastWorld is targeted more
at boy players, which leads to some unique design elements
to encourage player interactions. For instance, in Fairyland,

Tiffany Y. Tang et al. 7

(a) (b)

Figure 5: (a) The map, (b) player description.

there is a Family system, where players can join a family to
interact, socialize, and participate in all kinds of activities.
The core of the Family system is fundamentally different
from the Fighting system in LastWorld and many other games
in that the Family system is inherently more group-oriented,
and is a metaphoric design mimicking human family system.
Therefore, we expect that the interactivity in this module
should be denser than that in other module in the game. To
make a comparison, we will briefly report key findings and
compare them to those in LastWorld.

4.1. Major findings and the comparisons

Besides in-game experiences, we again distributed question-
naires to players, and received 55 responses. 95% agree
that map and coordinates are useful to unfold two major
kinds of location information (see Figure 5(a)): buildings or
paths around the players, and the general information in
the location. Player coordinates are also shown on the small
map, so most of them feel happy with the design to support
location awareness. 84% of players agree that situational icon
containing player description similar to those in LastWorld
on players’ head helps them know what others are doing in
the game (see Figure 5(b)). In addition, players feel positive
toward the audio alert attached to a location; that is, when
a player enters different places, the background music will
change immediately in order to alert players that they are
staying in a different location now.

Among the various types of group-oriented tasks, the
Family mode stands out: 91% reported experiences with it at
least once, and among them, 80% like it very much. It is also
observed that once players join a family, they always interact
with their family members. Half of the subjects indicate that
by joining a family, they cannot only interact and engage
in more group-oriented activities such as fighting enemies,
doing business, but also win real friendship outside the game.
Players are quite comfortable with the interaction mode
reflecting bindings among players both inside and outside
the game. The result reveals the success of design element in
Fairyland to encourage players to interact and socialize. This
finding is different from that in LastWorld where players tend
to talk with others in a team. As for chatting, our finding is
similar to that in LastWorld that not many players tend to
talk unless required; instead, they prefer to just send some
emotional icons during communications which are deemed
enough in most occasions (96%).

These key findings lead us to strongly believe that even
though the genres and target players of the two games

are different, player expectations and perceptions over the
usability in awareness and interaction of the two games
are similar: the tools should be designed to allow easy and
quick access; the information should be easy to interpret
and manipulate. As for the task design, the success of the
Family mode in Fairyland highlights the importance of the
task per se to encourage players to collaborate, as opposed to
the teamwork mode in LastWorld where players seldom talk
outside a team.

4.2. Discussions and design implications

Although macroing can automate performance actions and
offer a more flexible options for players to continuously
engaging in games without physically sitting in front of
the games, it, somehow, compromises the quality of social
interactivity among players [5]. We also suggest that the
deployment of audio alert (as in Fairyland) which can
quickly inform players of some key information such as who
is online, or what is the player’s newest status, instead of
only changing the color of player names which are relatively
difficult to notice as in LastWorld. One very interesting
observation is that some players are reluctant to socialize
when they do not need to, as in trading in LastWorld.
However, the success of the Family mode in Fairyland
highlights the importance of the task per se to encourage
players to collaborate. The result indicates the growing trend
and degree of importance of these “third place” (i.e., the shop
in LastWorld; the Family in Fairyland) to host the “voluntary
and informal” gatherings [11, page 16].

Although awareness tools and interaction patterns are
quite prevalent in many MMOGs, little is known about how
players perceive and utilize these tools, and exploit them. Our
study aims at filling this gap. We suggest that it is rather
essential for designers to test whether or not players can
make the most out of these tools to realize designers’ design
rationale.

5. CONCLUDING REMARKS

In this paper, we look into the interaction patterns and
the awareness design elements in LastWorld, and briefly
compare the results with a different type of MMOG called
Fairyland. The results generally reveal that the emphasis
on teamwork is one of the most important components to
keep players interacting in the game, such as the success of
the Family in Fairyland. Thus the MMOGs should include
a variety of team-oriented activities and offer a wider
spectrum of supporting tools to ensure maximum game-
playing immersions.

There are several limitations of our study. The game
elements studied and reported in this paper are mostly
typical ones to support interaction and awareness. There are
more elements designed to encourage player interactivity.
In addition, our studies reported here only focus on the
usability of awareness and interactions at a coarse level. A
finer-grained level of usability analysis is desirable to answer
questions such as, as a newly joined group member, can

8 International Journal of Computer Games Technology

I quickly and easily obtain information on the progress of
other players? These are the focus of our future work.

REFERENCES

[1] W. Wright, “Models come alive (PC forum transcript),”
http://many.corante.com/20030601.shtml.

[2] P. Dourish and V. Bellotti, “Awareness and coordination in
shared workspaces,” in Proceedings of the ACM Conference on
Computer-Supported Cooperative Work (CSCW ’92), pp. 107–
114, Toronto, Ontario, Canada, November 1992.

[3] C. Gutwin and S. Greenberg, “Design for individuals, design
for groups: tradeoffs between power and workspace aware-
ness,” in Proceedings of the ACM Conference on Computer-
Supported Cooperative Work (CSCW ’98), pp. 207–216, Seattle,
Wash, USA, November 1998.

[4] A. Lee, C. Danis, T. Miller, and Y. Jung, “Fostering social
interaction in online spaces,” in Proceedings of the 8th IFIP
Conference on Human-Computer Interaction (INTERACT ’01),
pp. 59–66, Tokyo, Japan, July 2001.

[5] N. Ducheneaut and R. J. Moore, “The social side of gaming:
a study of interaction patterns in a massively multiplayer
online game,” in Proceedings of the ACM Conference on
Computer-Supported Cooperative Work (CSCW ’04), pp. 360–
369, Chicago, Ill, USA, November 2004.

[6] C. Gutwin, R. Penner, and K. Schneider, “Group awareness
in distributed software development,” in Proceedings of the
ACM Conference on Computer-Supported Cooperative Work
(CSCW ’04), pp. 72–81, Chicago, Ill, USA, November 2004.

[7] S. Smale and S. Greenberg, “Broadcasting information via
display names in instant messaging,” in Proceedings of the
International ACM SIGGROUP Conference on Supporting
Group Work (GROUP ’05), pp. 89–98, Sanibel Island, Fla,
USA, November 2005.

[8] N. Ducheneaut, R. J. Moore, and E. Nickell, “Virtual “third
places”: a case study of sociability in massively multiplayer
games,” Computer Supported Cooperative Work, vol. 16, no. 1-
2, pp. 129–166, 2007.

[9] N. Ducheneaut, N. Yee, E. Nickell, and R. J. Moore, ““Alone
together?”: exploring the social dynamics of massively multi-
player online games,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’06), vol. 1, pp.
407–416, Montreal, Quebec, Canada, April 2006.

[10] N. Ducheneaut and R. J. Moore, “More than just ‘XP’:
learning social skills in multiplayer online games,” Interactive
Technology and Smart Education, vol. 2, no. 2, pp. 89–100,
2005.

[11] R. Oldenburg, The Great Good Place, Marlowe, New York, NY,
USA, 1989.

[12] G. Simmel, On Individuality and Social Forms, University of
Chicago Press, Chicago, Ill, USA, 1971.

[13] N. Nova, “Awareness tools: lessons from quake-like,” in
Proceedings of Playing with the Future Conference, Manchester,
UK, April 2002.

[14] Baidu, http://post.baidu.com/f?kz=40033578, November 2007.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 321708, 6 pages
doi:10.1155/2008/321708

Research Article
Using a Camera Phone as a Mixed-Reality Laser Cannon

Fadi Chehimi, Paul Coulton, and Reuben Edwards

InfoLab21, Lancaster University, Lancaster LA1 4WA, UK

Correspondence should be addressed to Paul Coulton, p.coulton@lancaster.ac.uk

Received 29 September 2007; Accepted 31 January 2008

Recommended by Kok Wai Wong

Despite the ubiquity and rich features of current mobile phones, mobile games have failed to reach even the lowest estimates of
expected revenues. This is unfortunate as mobile phones offer unique possibilities for creating games aimed at attracting demo-
graphics not currently catered for by the traditional console market. As a result, there has been a growing call for greater innovation
within the mobile games industry and support for games outside the current console genres. In this paper, we present the design
and implementation of a novel location-based game which allows us turn a camera phone into a mixed-reality laser cannon. The
game uses specially designed coloured tags, which are worn by the players, and advanced colour tracking software running on a
camera phone, to create a novel first person shoot-em-up (FPS) with innovative game interactions and play.

Copyright © 2008 Fadi Chehimi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Since the appearance of “snake” on the Nokia 16110 mo-
bile phone in 1997, the potential for mobile games has ex-
cited the industry and market analysts alike producing fore-
casts of game revenues between 3.6 and 18.5 billion for 2006
[1]. However, the reality is that the mobile games have only
generated approximately 2.6 billion in 2006, predominantly
from games that were either cut down versions of old arcade
games or very simple casual games [1]. Whilst these types of
game no-doubt have their place in the market, there are in-
creasing calls within this fledgling industry for developers to
produce more innovative games and for operators to support
and promote them on their portals.

This innovation will most likely be achieved by embrac-
ing both the challenges and opportunities [2] that mobile
phones offer, particularly their mobility, connectivity, and
rich feature sets which now include elements such as cam-
eras and 3-D motion sensors. Mixed-reality games that en-
able users to see and interact with virtual computer gener-
ated content superimposed on views of the real (physical)
world on mobile phones certainly would certainly fall into
this category. This is because they generally take into account
of the nature of the device often by incorporating location
[3], proximity [4] and different modalities for user interac-
tion [5] to create original game experiences.

Whilst location undoubtedly helps provide interactive
game play, it is not always easy to achieve. It often requires
additional hardware and/or software such as a global posi-
tioning system (GPS), or APIs to access Cell ID, or to utilise
enhanced time difference of arrival (ETDOA) [3]. However,
many of these features are uncommon in general handsets of
these games to become successful, they would need to be able
to be distributed. One way of ensuring this is to create games
that run on as many handsets as possible and are not tied
to a particular phone feature or fixed to a particular physi-
cal location. Therefore, part of the rationale of this research
project is to produce a location-independent, mixed-reality
game that utilises one of the most common features on mo-
bile phone’s camera. The camera has become almost a de-
fault feature on any mobile phone as evidenced by the fact
that Nokia is looked at as the largest manufacturer of digital
cameras in the world.

Whilst this is not the first mobile game to utilise the cam-
era, it is unique when compared to previous games in that it
uses advanced image processing of camera frames dynam-
ically in real time. The captured frames are analysed on a
frame-by-frame basis and fed to the application framework
to provide the game interaction and status definition. The
game could be regarded as a mobile mixed-reality version of
paintball or laser tag, and hence it has been dubbed “Mobi-
lazer.”

2 International Journal of Computer Games Technology

To place the game in context with other available camera-
based games, we will start with a brief review of the related
games and research projects in this area.

2. OTHER PHONE CAMERA GAMES

Cameras are now a common feature of even the most basic
mobile phone. Indeed, a reported 295.5 million were shipped
in 2005 which represented nearly 40% of all phones shipped
[6]. There is, thus, a real opportunity for their use within
games but as very few innovative games have done so and
in quite varied ways.

Some of the earliest such games, unsurprisingly, came
out of Japan around 2003 such as “Photo Battler” from NEC
which allowed players to turn photos into character cards
that were then assigned various attributes enabling play-
ers to compete against each other. Around the same time
“Shakariki Petto” appeared from Panasonic which was a vir-
tual pet that a player fed by taking pictures of colours that
represent food, for instance, the colour red represented ap-
ples. More recent games have also explored using the pictures
themselves to create mixed-reality games such as the “Man-
hattan Story Mash-Up” [7] and “My Photos Are My Bullets”
[8].

Other games have evolved to use the camera to detect
movements of the phone and transfer them to movements
within the game. Probably the best known are from game
developer, Ojom, with its games “Attack of the Killer Virus”
and “Mosquitos” for Symbian S60 mobile phones. In both
games, the enemy characters that the player must “shoot” are
superimposed on top of a live video stream from the mobile
phone’s camera. The player moves around this mixed-reality
space by moving his phone and firing using the centre key of
the joy pad. Other games have evolved to use visual codes to
either detect movement [9], to imply, locate, or interact with
objects such as ConQwest by Area Code [3].

However, none has yet utilised the complex real-time
marker tracking, player recognition and interactivity iden-
tification in a real shoot-em-up game style as of that of “Mo-
bilazer.” There has been several marker tracking designs but
almost all were based on black and white markers, whose
recognition can be more efficient but has poorer information
storage. In most cases, the tags were designed to: (1) get a
piece of information instantly [10]; (2) feed-in input options
to mobile phone applications [11]; (3) augment 3D models
for interactive viewing [2, 5]; and (4) to locate landmarks for
guiding visually impaired people [12].

3. GAME DESIGN

“Mobilazer” engages two or more teams of players in an un-
bounded physical location and employs camera phones to
track special tags fitted on the “armour” worn by each in-
dividual player providing by this the means of game interac-
tion. The specially designed software turns a player’s mobile
phone into a form of a “laser” cannon whereby he can shoot
opposing players and interact with designated game objects
such as team bases and poser-up collection points.

(a) Scanning for tag (b) Tag detected

Figure 1: Tag detection.

The armour-like vests worn by each player have coloured
tags mounted on their front and back faces (although this
could be extended to include smaller tags on arms and legs).
The double-facing tags enable players to shoot others from a
variety of orientations simply by pointing the phone’s camera
at the tag and aiming through the viewfinder (using the cross
hair which is always in the middle of the screen) as shown
in Figure 1(a). Once a tag is detected, “Mobilazer” displays a
target sign centred at the coloured tag indicating the identifi-
cation of the rival, and a box including his/her details (name,
team, rank, weapons, etc.) as shown in Figure 1(b). The kills
and points are controlled through interaction with a central
game server through TCP/IP over the general packet radio
service (GPRS).

3.1. Game modes

“Mobilazer” has been designed to accommodate four differ-
ent playing modes which are selected by the preformed social
grouping and controlled by a controller client unit (CCU)
which is another mobile phone running as the game server.

3.1.1. Fortress

This game mode is a capture−the−flag style of game, engag-
ing two or more teams. It starts by players representing each
team agreeing on a location for their team base or Fortress
which will be assigned a specific coloured tag. Each member
of a particular team tries to protect his Fortress and attack
the other teams’ Fortresses and members, who are then ef-
fectively removed from the game once shot. The game con-
tinues until members of one group are the only survivors, or
when one base is left intact while all others are destroyed.

3.1.2. Last man standing

This is a battle mode where a player tries to shoot all other
players in the game to become the last man standing. This
mode is highly flexible as it has no defined team bases to at-
tack or defend. It can operate over a wide range of game are-
nas, and therefore the time taken to complete it is dependent

Fadi Chehimi et al. 3

on the size of this arena. The game can be preset to terminate
after a designated period of time where the winner will be the
person with highest number of kills.

3.1.3. Individual battle mode

This mode is a timed free for all battle where no partici-
pant is locked out from the game session if shot. The aim
is to score as many points as possible in order to acquire ad-
vanced equipment. Every time a player shoots an opponent,
they scores points depending on the experience of the player
being shot and the distance from which the shot was fired.
Although players are not locked out of the game once shot,
they have to wait a recovery period before their weapons are
reactivated. This introduces a requirement to either hide or
run.

3.1.4. Team battle mode

This battle mode is essentially a team version of the previous
mode. Extra points are gained by each winning team mem-
ber which he can use later to upgrade his/her weapons or
armour.

3.2. Game balance

One of the essential elements for successful multiplayer com-
puter games is differentiating players’ experiences so that the
game is balanced [13]. Balance means that all players feel they
have an equal chance of competing, keeping in mind the dif-
ferentiation between experienced and nonexperienced ones.
Interestingly, this feature has not been given much consider-
ation in mixed-reality games, although it likely ensures that
players return to the game on multiple occasions. This is ad-
dressed in “Mobilazer” by introducing a variety of armours
and weapons to allow both new players and more expert ones
the opportunity to gain experience and be rewarded for re-
peated game play.

The system rates a player by the number of points they
have collected. Certain points are gained depending on the
status of the players they shoot and the distance between the
two. These points qualify a player for a higher ranking and
enable buying advanced gear each of which has a defined set
of points to acquire and a number of hits to destroy as shown
in Table 1.

4. GAME ARCHITECTURE

The Mobilazer architecture is composed of: the coloured
tags, the mobile phone client application, and the mobile
phone game server module as shown in Figure 2.

4.1. Tag design

The coloured tag is the vital entity in the whole system as
it identifies players in the game and initiates their interac-
tion between players and the game assets. The tag shown in
Figure 2 has been designed in this way to facilitate easy de-

Table 1: Mobilazer scoring scheme.

Equipment type Points scored
Points
needed

Number of
hits

None 10 — 1

Bronze armour 20 30 2

Silver armour 40 60 5

Gold armour 60 90 10

Sniper 90 90 1

Tracker gun 100 200 1

Dist. ≤ 5 m 2 — —

5 m < dist. ≤ 10 m 4 — —

10 m < dist. ≤ 15 m 8 — —

15 m < dist. < 20 m 12 — —

Local
database

Phone
detects tags

Players wearing
tags

Registered
and loginConsult server

about tags

TCP/IP
GPRS

Game
server

Central
database

Figure 2: Mobilazer architecture.

tection by cameras through the following four features:

(i) the triangular segments coloured red (top), green
(right), and blue (left) which are used by the software
to detect the centre point of the tag;

(ii) the upper black boundary facilitates calculation of the
physical distance between players;

(iii) the black and white code area in the middle that con-
tains the ID of the player or equipment;

(iv) the lower red two boundary triangles below the code
which are used to improve the readability of the ID.

4.1.1. Physical structure

The tag has a large dimension of 20 cm by 24 cm to facilitate
detection from longer distances and is made of “felt” fabric
that reduces the amount of light reflected of its surface, which
causes problems for the tracking software when reading the
tag. This is indeed a known issue for phones using the camera
in 1D and 2D barcode reading applications.

4 International Journal of Computer Games Technology

4.1.2. Triangular segments

The three coloured triangular segments ensure that even
when the tag is rotated the vertical distance between the cen-
tre point and top of the segments is preserved, which is used
in distance calculation. This holds true as long as the whole
tag falls within the boundary of the captured camera frame
and as long as it is upright and not rotated more than ±45
degrees from the upright.

4.1.3. Code blocks

The code area in the middle of the tag represents binary data
and is capable of representing 24 = 16 codes. The shape of a
component block is not that important as tests have shown
that it approximates to a square shape (pixels) when viewed
from a distance. Rhombuses are used here just to optimise
the space available and fit in as much blocks as possible while
keeping them big enough to be identified.

4.1.4. Strategic points

There are three critical points in the design of the tag that
ensure consistent recognition of the tag ID. The first point
is the centre point where the tips of all coloured segments
meet. It is necessary when calculating the distance between
two players and identifying the upper corner of the code area.
The second point is the right corner of the code area and the
third is the left corner of the code. All three corners are used
to read the ID through interpolation.

4.2. Client application

The client application runs on the phone and is responsible
for

(i) communicating with the game server to inform it of
shots, collected items, and synchronisation of players’
information;

(ii) detecting tags, reading their embedded data, and dis-
playing players’ status and gear details in a box on
screen.

When the Mobilazer client is launched, the player registers
his/her nickname (used throughout the game), the team to
which he/she belongs (if any), and the number associated
with the tags on his/her armour. Each player submits these
details to the server through connected TCP/IP sockets over
GPRS and waits for acknowledgment to log in. When the
client control unit (CCU) verifies that all players are regis-
tered it initiates the logging process.

Once in the game, the client detects a tag with a set of op-
timised image processing routines. It then reads the code on
the tag and checks it against the records in its local database
(which has been acquired from the server during the regis-
tration phase). Using a local database copy is more efficient
since it decreases latency, reduces constant switching between
the client and the server, and saves costs incurred from mo-
bile network charges of GPRS use. The server will update this

If no tag

Detect tags

Tag
found

Read code

Update
database If no records Check in

database

Receive data
from server Wait

for a shot Display
details

Records
found

If player shoots

TCP/IP
Inform

System conditional functions

User conditional functions

Client-specific functions

Client/server functions

Figure 3: Client detection process.

local database regularly once a player’s status has changed by
pushing the new data to all phones.

When a tag ID is identified during the game, the appli-
cation shows on phone screen a target sign centred on the
tag and an information box containing the nickname of the
target player, his/her team, his/her weapons, and his/her cal-
culated distance from the shooter. If the attacker decides to
shoot the opponent, the client sends a command to the server
over TCP/IP through the connected socket requesting chang-
ing that opponent’s status to indicate that he/she has been
shot. The server then broadcasts this new information to all
participants as well to update their local databases. This pro-
cess is illustrated in Figure 3.

4.3. Game server

The server manages the communication and data exchange
between players in a game session. Since the CCU operating
the server will be present in the game field, it is used to de-
fine to the game server how many players will join a session
before commencing the registration process. Then, the reg-
istration starts and the server displays on screen a counter
of how many players have joined. When all players are reg-
istered, the CCU initiates the logging-in process. This two-
phase initiation ensures that the server receives details of all
players beforehand and then delivered all at once to each par-
ticipant in the game.

The game server central database contains the nicknames
of all players, their mobile phone IMEI numbers, their tag
IDs, their groups (if available), their scores, and their ac-
quired equipment. Players are identified uniquely by the
IMEI numbers of their phones. Their weapons and scores
will be associated with these numbers in the server database.
Thus, each player must always use the same phone he used
initially if he/she is to carry forward the gear possessed from
previous battles to future ones.

Fadi Chehimi et al. 5

5. GAME BALANCE FEATURES

To add depth to the game and, as we have highlighted pre-
viously, to aid the balance we have added four features that
relate to players’ experiences.

5.1. Distance measurement

The Mobilazer client is capable of measuring the distance
between any arbitrary two players. The algorithm used to
achieve this functionality is related to the tag. Once the cen-
tre point of a tag is found the application traverses the pixels
above it vertically until it reaches a pixel on the arch between
the red semitriangle and the black boundary. The number of
pixels iterated r represents the radius length of the triangular.
Experiment showed that a tag fills the screen area in Mobi-
lazer when it is at 140 cm distance from the phone. In this
case, the number of pixels between the centre point and the
arch is 80 pixels. Based on these givens, the following formula
gives us the new distance D (in centimetres and meters):

Dcm = Z × 80× 140
r

= 11200
r

=⇒ Dm = Z × 112
r

, (1)

where Z is the zooming factor defined in a subsequent para-
graph.

5.2. Zooming functionality

The camera API in Symbian OS provides the functionality
for camera zooming either digitally or optically. In our test
device the Nokia 6630 has a digital zoom of up to 4X. The
default zoom value of the API (1X) displays tags too small on
screen to be recognised. So the application resets this value
to 3.6X which allows players view objects on screen almost in
their actual physical sizes.

To allow flexibility and enhance player experience we
have added ten zooming options, and all players with all
weapons except snipers have this functionality enabled.

Although calculating the distance depends on pixels and
tag size on screen, the distance will still adhere to the exact
physical distance even when the image is digitally zoomed in
or out. This is achieved by preserving the proportions in (1)
with the zoom factor Z. As 3.6X is the defaulted zoom value,
Z is calculated as follows where z is the new zoom adjusted to
the scene by the player. Note that the fraction in the denomi-
nator has been simplified to eliminate floating point division
which optimises the system for mobile phone processors that
are at present based on fixed-point routines:

Z = z

3.6
= 25× z

45
= 0.534× z. (2)

5.3. Sniper

The Sniper feature allows a player to shoot tags that are much
farther than the normal camera range. The effect is applied
using Symbian-specific bitmap manipulation utilities that
enlarge and clip images, rather than simply depending on
the camera API zooming functions. The image will be en-
larged 6 times its size on screen, neglecting any zooming ef-
fect, and then clipped to the size of the mobile phone screen

Figure 4: Sniper zoom.

to produce a sniper close-up feel. Once this is done a black
mask is superimposed on top of the view with sniper-detailed
crosshair, as shown in Figure 4, to give the player the impres-
sion of looking through a telescopic sight. At start a sniper
has 7 shots. The player can reload it either by collecting more
points or by encountering an equipment collection point.

5.4. Guided missile

This weapon is capable of locating its target even if it is not in
line of sight. The user simply selects his/her enemy from the
list of players downloaded from the server, and the guided
missile finds its way to the unfortunate player. Since this is
the most advanced piece of equipment, it requires the most
number of points for a player to acquire and it has a limited
number of shots. The process of loading this gun is similar
to that of the sniper. Note that in case of “Fortress” mode
the owner of a guided missile will not be able to target an
opponent team’s base remotely.

5.5. Armour shields

Table 1 highlighted the three different types of armours avail-
able in Mobilazer: bronze, silver, and gold. Beginner players
will be provided the gold armours to provide the maximum
protection as they learn how to play the game. As they be-
come more experienced their armour level drops until they
reach the point where they join a battle without any protec-
tion. However, it is still possible to acquire this protection
during the game if a player collects enough points or triggers
an equipment collection point.

Any armour can be combined with any other weapon.
For example, a player may have a sniper gun and wears a
silver armour. In this case the player will endure 5 hits instead
of 1 before he is defeated.

5.6. Power-ups and gear collection points

Weapons, armours, and power-ups may be scattered around
the battle field for players to collect and charge up. Special
coloured tags can be registered in the server to represent such
items. The players need to target their phone on the tag in the

6 International Journal of Computer Games Technology

same way as opponents and the corresponding item will be
loaded to their account automatically once detected. Then,
it will be updated in the server and forwarded through to
other players. In case of picking up an armour by a player
who already has one and has not been hit, the tag will have no
effect, that is, the number of allowed hits will not be doubled.
However, if the player has some hits, his/her armour will be
renewed and hits will be eliminated. If a player picks up a
weapon that he/she already has, his/her shots will be doubled.

6. CONCLUSION

This paper has highlighted the design and implementation
of the game and as yet we have only completed controlled
trials. In the next phase we intend to open up the game to a
wide audience and present details of the user experience in a
future publication.

With the current lack of innovation in the mobile games
market, and in particular the failure to address much wider
demographics means that new game genres should be con-
sidered for mobile gaming. Mixed-reality games create one
such possible genre but it is often hampered by the fact that
it demands utilising very high-end handsets with low critical
mass. With this in mind we have shown that common camera
phones have the potential for resolving this obstacle by cre-
ating highly sophisticated and immersive environments, and
by they being capable of performing complex image process-
ing tasks in real time.

ACKNOWLEDGMENT

The authors wish to acknowledge the support of Nokia for
the real-time hardware and software laboratory in Infolab21
at Lancaster University where much of this work was carried
out.

REFERENCES

[1] R. Tercek, “The first decade of mobile games,” Keynote
at GDC Mobile, San Francisco, USA, March 2007, www
.roberttercek.com/.

[2] P. Coulton, O. Rashid, R. Edwards, and R. Thompson, “Cre-
ating entertainment applications for cellular phones,” ACM
Computers in Entertainment, vol. 3, no. 3, p. 3, 2005.

[3] O. Rashid, I. Mullins, P. Coulton, and R. Edwards, “Extending
cyberspace: location based games using cellular phones,” ACM
Computers in Entertainment, vol. 4, no. 1, 2006.

[4] H. Clemson, P. Coulton, and R. Edwards, “A serendipitous
mobile game,” in Proceedings of the 4th Annual Interna-
tional Conference in Computer Game Design and Technology
(GDTW ’06), pp. 130–134, Liverpool, UK, November 2006.

[5] P. Coulton, R. Edwards, W. Bamford, F. Chehimi, P. Gilbert-
son, and M. Rashid, “Mobile games: challenges and opportu-
nities,” in Advances in Computers, vol. 69, Elsevier Press, Ams-
terdam, The Netherlands, 2007.

[6] Nokia, “The mobile device market,” August 2005, http://
www.nokia.com/.

[7] V. Tuulos, J. Scheible, and H. Nyhom, “Combining web, mo-
bile phones and public displays in large-scale: manhattan story
mashup,” in Proceedings of the 5th International Conference on

Pervasive Computing, vol. 4480, pp. 37–54, Toronto, Ontario,
Canada, May 2007.

[8] R. Suomela and A. Koivisto, “My photos are my bullets—using
camera as the primary means of player-to-player interaction in
a mobile multiplayer game,” in Proceedings of the 5th Interna-
tional Conference on Entertainment Computing (ICEC ’06), pp.
250–261, Cambridge, UK, September 2006.

[9] S. Bucolo, M. Billinghurst, and D. Sickinger, “User experiences
with mobile phone camera game interfaces,” in Proceedings
of the 4th International Conference on Mobile and Ubiquitous
Multimedia (MUM ’05), vol. 154, pp. 87–94, Christchurch,
New Zealand, December 2005.

[10] M. Rohs, “Visual code widgets for marker-based interaction,”
in Proceedings of the 25th IEEE International Conference on
Distributed Computing Systems Workshops (ICDCSW ’05), pp.
506–513, Columbus, Ohio, USA, June 2005.

[11] R. Ballagas, J. Borchers, M. Rohs, and J. G. Sheridan, “The
smart phone: a ubiquitous input device,” IEEE Pervasive Com-
puting, vol. 5, no. 1, pp. 70–77, 2006.

[12] J. Coughlan, R. Manduchi, M. Mutuzaki, and H. Shen, “Rapid
and robust algorithms for detecting colour targets,” in Proceed-
ings of the 10th Congress of the International Colour Association
(AIC ’05), Granada, Spain, May 2005.

[13] C. Bateman and R. Boon, 21st Century Game Design, Charles
River Media, Rockland, Mass, USA, 2005.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 539078, 6 pages
doi:10.1155/2008/539078

Research Article
Using a Mobile Phone as a “Wii-like” Controller for
Playing Games on a Large Public Display

Tamas Vajk,1 Paul Coulton,2 Will Bamford,2 and Reuben Edwards2

1 Department of Automation and Applied Informatics, Budapest University of Technology and Economics,
Goldman Gyorgy ter 3. IV.em, H-1111 Budapest, Hungary

2 Informatics, Infolab21, Lancaster University, Lancaster LA1 4WA, UK

Correspondence should be addressed to Paul Coulton, p.coulton@lancaster.ac.uk

Received 26 September 2007; Accepted 12 November 2007

Recommended by Kok Wai Wong

Undoubtedly the biggest success amongst the recent games console releases has been the launch of the Nintendo Wii. This is
arguably due to its most innovative attribute—the wireless controller or “Wiimote.” The Wiimote can be used as a versatile game
controller, able to detect motion and rotation in three dimensions which allows for very innovative game play. Prior to the Wii,
and with much less furor, Nokia launched its 5500 model phone which contains 3D motion sensors. Using the Sensor API library
available for the Symbian OS, this sensor data can be used by developers to create interesting new control schemes for mobile
games. Whilst 3D motion can be utilized for ondevice games, in this paper we present a novel system that connects these phones
to large public game screens via Bluetooth where it becomes a game controller for a multiplayer game. We illustrate the potential
of this system through a multiplayer driving game using the Microsoft XNA framework and present preliminary feedback on the
user experience from a public trial which highlights that these controls can be both intuitive and fun.

Copyright © 2008 Tamas Vajk et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Traditionally, the console game industry has divided poten-
tial players into two main categories: hardcore and casual
gamers [1]. Of these categories it is the hardcore gamer that
the industry has targeted itself towards as they exhibit fea-
tures it wishes to exploit, such as [1] their tendency to pur-
chase and play many games, their ability to enjoy longer play
sessions, their ability to tolerate high levels of functionality
in the user interface, their decision to play games as a lifestyle
preference or priority. The result of the focus on this market
has led to a console user demographic dominated by young
white males and arguably the genres of first person shooter
(FPS), sports and driving games [1].

However, there have been successful attempts to broaden
the console user demographic, most notably by Nintendo
through its DS console and innovative titles such as Ninten-
dogs, WarioWare, and BrainAge, the latter of which created
huge sales amongst previously nonconsole gamers.

The success of the DS led Nintendo to develop the Wii
which has achieved phenomenal sales since its launch [2] by
capturing the imagination of users not traditionally consid-

ered part of the current console gaming market [2]. From
the perspective of both the game developer and game player,
the most innovative feature of the Wii is the “Wiimote.‘’ The
Wiimote itself was one of the primary design aspects of the
Wii, and in an interview by Kenji Hall for Business Week in
November 2006, Shigeru Miyamoto describes part of Nin-
tendo’s rationale:

“The classic controller was something we had become fond
of and gamers had become comfortable with. It had many im-
portant elements. But it also had come to dictate a lot of what
went into games—the way graphics were made, the way battles
were fought in role-playing games, the arc of in-game stories.
They were all being made to fit one standard. Creativity was
being stifled, and the range of games was narrowing.”

Their solution was the Wiimote, a wireless controller
which is able to sense both rotational orientation and transla-
tional acceleration along three-dimensional axes. It achieves
this through the use of inbuilt accelerometers, together with
a light sensor. This light sensor is used in conjunction with
an array of light-emitting diodes centrally positioned above
or below the console’s display [3] which allows for six degrees
of freedom. The Wiimote can be augmented with additional

2 International Journal of Computer Games Technology

features, one of which is the “Nunchuk,” which features an
accelerometer and a traditional analog joystick with two trig-
ger buttons [3]. The overall result is a game interface capable
of supporting a huge array of input possibilities that will en-
able new and exciting video game experiences.

Whilst mobile phones are in their relative infancy as gam-
ing devices [4] compared to 7th generation consoles such
as the Wii, their ubiquity and increasingly rich feature sets
means they are equally capable of addressing the issue of
widening the game player demographic [5]. Furthermore, as
ubiquitous consumer devices they are ideal for interacting
with urban computing environments and in particular large
public displays [6]. Further, with the ever expanding feature
set on handsets, mobile game developers can increasingly
turn to innovative forms of user input such as RFID/NFC,
cameras, microphone, and so forth [7].

Whilst some of the aforementioned input mechanisms
have been the subject of a variety of research projects [7],
the use of 2D accelerometers on mobile devices has been the
subject of few studies [8] and the potential for using 3D ac-
celerometers on phones appears completely unexplored [7].
This is principally due to the fact that the first 3D accelerom-
eters have only just been integrated into mobile phones and
these phones have yet to become widespread. The Nokia 5500
was one of the first such equipped phones having been tar-
geted at sports users, utilizing the built-in motion sensors as a
pedometer and speed/distance tracker for various exercising
purposes. Other phones with motion sensors include Sam-
sung’s SCH-S310 (claimed to be the world’s first 3D motion
sensing mobile), NTT’s N702, and more recently the Nokia
N95.

Although there is an obvious potential for innovation in
game play on mobile phones themselves, in this paper we are
concerned with the potential use of a phone as a controller
for games (or indeed a variety of applications) running on
large public displays. In the following sections, we present
the generic design and implementation of such an interac-
tive system together with issues related to the implementa-
tion on this particular phone. Furthermore, we highlight the
potential for the general use of accelerometers on phones in
a variety of control interfaces. To illustrate the opportuni-
ties of this interface, we highlight its operation through the
development of a novel multiplayer car racing game using
an analogue control mechanism. This extends upon our pre-
vious work [9] based on the old arcade classic Tron Light
Cycles in which a digital control scheme was employed. We
then present the user experience from participants playing
the game at a public event in Budapest, before drawing our
overall conclusions.

2. PHONE CONTROLLER SYSTEM

Whilst there are obviously possibilities for creating innova-
tive interfaces using 3D motion as the input mechanism for
mobile games, in this project we explore using the phone as
the games controller for multiplayer games shown on exter-
nal displays and, in particular, large public screens. Using a
large screen offers a number of benefits: it frees the games
developer from constraints of the limited graphics capabil-

Figure 1: Poppet system.

ities of the mobile screen [10], enables a greater amount of
movement to the participating players, provides a rich social
atmosphere [6] and affords an opportunity for rich social in-
teraction [11] in a variety of urban landscapes. However, we
do acknowledge the practical deployment of such displays is
often fraught with difficulty [12].

The system developed is part of a generic framework,
which we have termed Poppet,1 for utilizing on-board phone
sensors such as cameras, accelerometers, radio frequency
identification/near field communications (RFID)/(NFC),
which can be linked to games running on large public dis-
plays via Bluetooth as shown in Figure 1.

Although Poppet is capable of addressing a range of de-
vices, in the next section, we specifically describe the de-
sign challenges involved in producing a mobile client for the
Nokia 5500 together with its on-board accelerometers. How-
ever, the game server design is sufficiently generic to allow
interaction with a wide range of phones using Bluetooth as
the means of communication.

2.1. Mobile client design

Accessing the 3D motion sensors requires the use of the Sym-
bian Sensor API which is similar in function to J2ME’s Mo-
bile Sensor API (JSR-256). Both of these APIs provide the
potential to access a wide range of sensors such as accelerom-
eters, thermometers, barometers, and humidity monitors, in
fact any type of sensor designed to be incorporated in a mo-
bile phone, or those accessible via Bluetooth [13]. Sensors
need only be supported by the API library to be usable. The
Symbian Sensor API is available from Nokia and requires the
use of the Symbian S60 3rd Edition SDK. Whilst there is sup-
port for the Symbian Sensor API on several mobile devices,
there are currently no mobile phones that include JSR-256
[13].

1 In folk-magic or witchcraft, a “Poppet” is a doll made to represent a per-
son, for casting spells on that person. The intention is that whatever are
the performed actions, the doll is transferred to the subject. These dolls
are often incorrectly referred to as Voodoo dolls.

Tamas Vajk et al. 3

−x

−y

+z

Figure 2: Nokia 5500 accelerometer axes.

The general Poppet framework uses J2ME, as this is cur-
rently the most widely deployed mobile platform. Although
the sensor data is not directly accessible from J2ME, because
of the lack of JSR-256 as previously highlighted, the problem
can be overcome by using a socket connection on the mobile
phone to allow access to native services. The general solu-
tion for accessing native services from J2ME on Symbian S60
phones is by opening a low level socket connection in a Sym-
bian C++ application then connecting to the defined port on
the loop-back address from the J2ME application [14]. Thus
the Symbian C++ application can retrieve sensor/other data
from the phone and then forward this to any J2ME applica-
tions that may be listening. This solution has been applied in
our simple mobile client to allow J2ME applications to access
the 3D sensor data.

The connection between the game client and server is
based on Bluetooth, which creates a reasonably high band-
width (data rates can vary between 1 Mbps and a few Kbps
depending upon the type of transfer mode initiated) between
the devices. In order to allow a device to become discoverable
by others, it is necessary to advertise at least one Bluetooth
service. In the case of Poppet, the mobile client implementa-
tion uses the official Java Bluetooth API (JSR-82) to alleviate
porting issues.

The Nokia 5500 utilizes a 6g accelerometer, that is, it can
detect acceleration forces with a magnitude of up to six times
that of earth’s gravity. The accelerometer outputs three 12-
bit signed data values at a frequency of around 37 Hz. These
outputs correspond to the three phone axes (x, y, z) as shown
in Figure 2.

In terms of illustrating the opportunities for creating
novel interaction methods using phones with inbuilt ac-
celerometers, it is worth considering the following three Fig-
ures (3, 4, 5) which show the recorded output from the sen-
sors on the Nokia 5500 in three different scenarios. Note that
output has been expressed as acceleration forces in g for clar-
ity.

Figure 3 shows the three accelerometer outputs when the
phone was statically placed upon a desk (representing a hor-
izontal plane). It can be seen that outputs x and y are ap-
proximately zero (although some sensor noise is evident) and

0 50 100 150 200 250 300

Samples

−6

−4

−2

0

2

4

6

A
cc

el
er

at
io

n
(g

)

x
y
z

Figure 3: Nokia 5500 accelerometer data (phone at rest on a table).

0 50 100 150 200 250 300

Samples

−6

−4

−2

0

2

4

6

A
cc

el
er

at
io

n
(g

)

x
y
z

Figure 4: Nokia 5500 accelerometer data (lateral movement of
phone across the table).

output z is showing a positive 1g force which is the effect of
gravity on the device. Note, although sensor noise could be
reduced by the application of a digital filter on the output
values, in this case we felt showing the raw data was more in-
formative. Overall, this figure illustrates that gravity provides
a means of deducing the orientation of the phone which can
then be utilized to provide a “tilt-based” controller.

In Figure 4, we see the accelerometer outputs resulting
from several rapid lateral movements of the phone on a desk.
At the start of the graph, we see outputs in the same state
as in Figure 4 and then very large acceleration forces on axis
y produced by the movement. Note that the output rapidly

4 International Journal of Computer Games Technology

0 50 100 150 200 250 300

Samples

−6

−4

−2

0

2

4

6

A
cc

el
er

at
io

n
(g

)

x
y
z

Figure 5: Nokia 5500 accelerometer data (phone dropped).

alternates between positive, then negative data values indi-
cating the transitions from acceleration to deceleration and
vice versa.

There are some smaller residual artifacts from this move-
ment, seen in both x and z , which result from testing by
hand rather than using a fixed jig (as it is difficult to isolate a
movement completely under such conditions). Figure 4 de-
picts the potential for utilizing “hand gestures” for the con-
trol of events within games [15] and without the problems
associated with using the camera to obtain the movement
[15]. However, gesture recognition requires careful study as
the variation in how the user holds the phone could produce
anomalous outputs and there is no method of obtaining the
phone’s physical position within actual space as provided by
the “sensor bar” for the Wii. This is because both rotation
and translational acceleration affect the accelerometer’s out-
put (essentially they can produce the same internal forces on
the accelerometer).

Figure 5 visualizes the output after the phone has been
dropped. The trace shows that initially the phone is held up-
right with the screen held at the top with gravity acting on
x. When the phone is dropped, the effect of gravity is over-
come and all three accelerometers output values approximat-
ing zero, before the phone hits the floor with a jolt. The aim
of this test was to show that the phone could be used to mea-
sure activity of a player within a game, such as jumping or
running, whereby the phone would simply be worn rather
than held and directly controlled.

2.2. Game server design

Using Bluetooth on a PC requires the implementation of a
Bluetooth stack. Furthermore, different models of USB Blue-
tooth dongle have different stacks that may or may not be
compatible with Microsoft Windows’ Bluetooth stack. To al-
leviate some of these compatibility issues, the game server

Mobile 2

Mobile 1

Bluetooth link

Bluetooth link

PC

Bluetooth
link

Sensor API

Symbian

Socket
conn.

J2ME

Figure 6: Phone game controller communication architecture.

was implemented using the Franson Bluetooth SDK for C#.
This SDK supports the two most common Bluetooth stacks,
the Windows stack and the WIDCOMM stack, which should
ensure that the Poppet game server can be used with most
Bluetooth devices. The basic communication architecture is
shown in Figure 6 which also illustrates the on-phone socket
communication used to transfer accelerometer data between
the native application and a J2ME application.

The game server performs two main tasks: it lo-
cates/connects the Bluetooth phone controllers and it also
processes the data to be used within the game. The first re-
quires device discovery, which looks for the previously ad-
vertised service number on each phone controller in range
of the PC. Once a phone controller is found, the PC tries to
establish a connection with it. If connecting to the mobile is
successful, both sides have all the necessary information to
send and receive data between each other. The communica-
tion is based on streams at both ends.

The remaining task of the game server is to process the
received data. As data triplets are arriving at the PC approx-
imately 37 times per second which is fine in this case al-
though, there might not be enough time to process every
triplet and maintain the operation of the game in real-time.
Therefore, if a real-time game is created, the developer has
three options: they can drop packets, interpolate missing ac-
celerometer samples, or assume that all samples can be pro-
cessed before the next change in game state.

3. GAME IMPLEMENTATION

Even though the project presents some interesting technical
challenges, it is principally aimed at developing a theoret-
ical understanding of the user’s experience in utilizing this
type of tangible interface in conjunction with a game played
on a public display. This understanding will be achieved by
collecting empirical data from game prototypes played by
various groups. Our first prototype was the game we called
Mobi-Tron [9] which operated with a simple digital steering
control and was tested amongst staff and students at Lan-
caster University.

When questioned on how to improve the experience, a
number of players expressed a wish that the degree of tilt of
the phone should correlate to the speed of the light cycle, as
the current game only allows for changes in direction but not
speed [9]. Other comments suggested incorporating sounds
which the current version lacks and one person suggested

Tamas Vajk et al. 5

Figure 7: Screenshot of TiltRacer version 1.

Figure 8: TiltRacer version 2 on a large public display.

that rather than simply turning at right angles, the full 360
degrees of movement should be used [9]. This has been sub-
sequently incorporated in our new game called TiltRacer
which is presented in this paper and shown in Figure 7.

TiltRacer utilizes the Poppet framework previously de-
scribed and the actual driving game was developed in C# us-
ing Microsoft’s XNA game framework. The initial version of
the game was a simple figure of eight shaped track shown
in the previous figure, although this was expanded to a more
complex track, shown in Figure 8, for the user trial as our ini-
tial in-house feedback considered it too easy to master. The
game itself is a simple first to complete a selected number of
tracks and can be played by up to 4 players simultaneously
although in the trials we limited this to two.

4. USER EXPERIENCE

In this section, we present the results of testing the system
amongst participants of the Forum Nokia Technical Days and
European Mobile Innovation Competition2 held between the
6th and 8th June 2007 in Budapest, Hungary. The game was
displayed on a large screen at the evening reception for the
event is shown in Figure 8 and participants were invited to
try the game out. To ascertain aspects of the user experience

2 The game represented the UK entry for the innovation completion, hav-
ing previously won through the UK heat, and was the ultimate winner of
the event.

Figure 9: Users playing TiltRacer.

as a whole we decided to adopt and ethnographic approach
[16] because of the nature of the event which combined video
and still image recording by three researchers of the 30–35
individuals who tried the game.

The general response to the interface was that it was
fun, as highlighted by some of the players’ facial reactions
in Figure 9 and that it was also intuitive, as participants
quickly gained an understanding of how their movements af-
fected game avatars with little or no instruction from the re-
search team or preceding players. Further, as is evidenced by
Figure 9, the players were concentrating solely on the screen
and not looking at the interface which aided their immer-
sion in the experience. Whilst this observation is interesting
in relation to research concerning the display of public in-
formation on a large screen against private information on a
small screen it should be noted that this largely influenced by
the nature of the game-play and something like a card game
would provide more interesting analysis of this area.

The overall response to the game is probably best
summed up by Harri Lehmuskallio, a user experience spe-
cialist for Idean who was part of the judging panel,

“The application expands the interaction from mobile to the
physical world. The game concept is simple, but it demonstrates
that casual games can be played this way in public spaces. The
fact, that TiltRacer was created, opens new possibilities for the
industry as it shows that innovating is fun and doable.”

5. CONCLUSIONS

The Wii console has captured the imagination of users who
previously have not participated in console-based gaming.
Whilst the particular game genres chosen are a factor in user
acceptance, it is undoubtedly its innovative controller func-
tionality that has proved its most attractive feature.

Whilst we are certainly not suggesting that mobile phones
could rival the Wii, the inclusion of 3D accelerometers opens
up the possibility for the same type of innovation for games
running on mobile phones. Further, they also provide users
with an innovative game interface that they already carry
around as part of their everyday day lives. This could allow
them to interact in novel ways with games forming part of
the environment. In particular, the increasing presence in our
cities of large public displays is making this hybridization of

6 International Journal of Computer Games Technology

virtual and real space available to the mass market and thus
brings new opportunities for games.

Although this game can be considered a fairly simple ex-
ample in terms of graphics and complexity, and there is cer-
tainly a requirement for further study using other types of
game, it does highlight that a novel interaction mechanism
coupled with a fun group activity can provide an enjoyable
social experience, with high levels of user interaction.

ACKNOWLEDGMENT

The authors thank Nokia for the provision of software and
hardware to the Mobile Radicals research group which were
used in the implementation of this project.

REFERENCES

[1] C. Bateman and R. Boon, 21st Century Game Design, Charles
River Media, Rockland, Mass, USA, 2005.

[2] J. Brightman, “Merrill Lynch: 30% of U.S. Households to Own
Wii by 2011,” http://biz.gamedaily.com/industry/feature/
?id=15309.

[3] Nintendo, “Nintendo Nsider Technical Forums,” http://
forums.nintendo.com/nintendo/.

[4] R. Tercek, “The First Decade of Mobile Games,” Keynote
at GDC Mobile, San Francisco, Calif, USA, March 2005,
www.roberttercek.com.

[5] P. Coulton, R. Edwards, W. Bamford, F. Chehimi, P. Gilbert-
son, and M. Rashid, Mobile Games: Challenges and Opportu-
nities, Advances in Computers, Elsevier Press, Amsterdam, The
Netherlands, 2007.

[6] J. Leikas, H. Stromberg, V. Ikonen, R. Suomela, and J. Heinila,
“Multi-user mobile applications and a public display: novel
ways for social interaction,” in Proceedings of the 4th Annual
IEEE International Conference on Pervasive Computing and
Communications (PerCom ’06), pp. 66–70, Pisa, Italy, March
2006.

[7] R. Ballagas, J. Borchers, M. Rohs, and J. G. Sheridan, “The
smart phone: a ubiquitous input device,” IEEE Pervasive Com-
puting, vol. 5, no. 1, pp. 70–71, 2006.

[8] J. F. Bartlett, “Rock ‘n’ scroll is here to stay,” IEEE Computer
Graphics and Applications, vol. 20, no. 3, pp. 40–45, 2000.

[9] T. Vajk, W. Bamford, P. Coulton, and R. Edwards, “Using a
mobile phone as a ‘Wii like’ controller,” in Proceedings of the
3rd International Conference on Games Research and Develop-
ment, Manchester, UK, September 2007.

[10] P. Coulton, O. Rashid, R. Edwards, and R. Thompson, “Cre-
ating entertainment applications for cellular phones,” ACM
Computers in Entertainment, vol. 3, no. 3, 2005.

[11] J. Reid, J. Hyams, K. Shaw, and M. Lipson, “Fancy a Schmink?:
a novel networked game in a café,” ACM Computers in Enter-
tainment, vol. 2, no. 3, p. 11, 2004.

[12] O. Storz, A. Friday, N. Davies, J. Finney, C. Sas, and J. G. Sheri-
dan, “Public ubiquitous computing systems: lessons from the
e-campus display deployments,” IEEE Pervasive Computing,
vol. 5, no. 3, pp. 40–47, 2006.

[13] P. Coulton, W. Bamford, F. Chehimi, P. Gilberstson, and
O. Rashid, “Using in-built RFID/NFC, cameras, and 3D ac-
celerometers as mobile phone sensors,” in Mobile Phone Pro-
gramming: Application to Wireless Networking, F. H. P. Fitzek
and F. Reichert, Eds., pp. 381–396, Springer, New York, NY,
USA, July 2007.

[14] A. Gupta and M. de Jode, “Extending the reach of MIDlets:
how MIDlets can access native services,” Symbian Technical
Paper, version 1.1, June 2005.

[15] S. P. Walz, R. Ballagas, J. Borchers, et al., “Cell spell-casting: de-
signing a locative and gesture recognition multiplayer smart-
phone game for tourists,” in Proceedings of PerGames, pp. 149–
156, Dublin, Ireland, May 2006.

[16] A. Crabtree, S. Benford, C. Greenhalgh, P. Tennent, M.
Chalmers, and B. Brown, “Supporting ethnographic studies of
ubiquitous computing in the wild,” in Proceedings of the Con-
ference on Designing Interactive Systems (DIS ’06), vol. 2006,
pp. 60–69, University Park, Pa, USA, June 2006.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 378485, 7 pages
doi:10.1155/2008/378485

Research Article
Game Portability Using a Service-Oriented Approach

Ahmed BinSubaih and Steve Maddock

Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK

Correspondence should be addressed to Steve Maddock, s.maddock@dcs.shef.ac.uk

Received 30 September 2007; Accepted 7 January 2008

Recommended by Wong

Game assets are portable between games. The games themselves are, however, dependent on the game engine they were developed
on. Middleware has attempted to address this by, for instance, separating out the AI from the core game engine. Our work takes
this further by separating the game from the game engine, and making it portable between game engines. The game elements
that we make portable are the game logic, the object model, and the game state, which represent the game’s brain, and which we
collectively refer to as the game factor, or G-factor. We achieve this using an architecture based around a service-oriented approach.
We present an overview of this architecture and its use in developing games. The evaluation demonstrates that the architecture
does not affect performance unduly, adds little development overhead, is scaleable, and supports modifiability.

Copyright © 2008 A. BinSubaih and S. Maddock. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

The shift in game development from developing games from
scratch to using game engines was first introduced by Quake
and marked the advent of the game-independent game
engine development approach [1]. In this approach, the
game engine became the collection of modules of simulation
code that do not directly specify the game’s behaviour (game
logic) or game’s environment (level data) [2]. The game engine
is thus reusable for (or portable to) different game projects.
However this shift produces a game that is dependent on
the game engine. For example, why can’t a player take his
favourite game (say Unreal) and play it on Quake engine or
Quake game on Unreal engine?

Hardware and software abstractions have facilitated the
ability to play a game on different hardwares and on different
operating systems. These abstractions have also facilitated
the ability to use data assets such as 3D models, sound, music,
and texture across different game engines. This ability should
also be extended to allow for the game itself to be portable.
The goal of our work is to make the game engine’s brain
portable, where the brain holds the game state and the object
model and uses the game logic to control the game. We
collectively refer to these three things as the G-factor.

We see the portability of the G-factor as the next logical
step in the evolution of game development and, following

Lewis and Jacobson’s terminology [1], we call it the game-
engines-independent game development approach. A benefit
of making the G-factor portable would be to encourage more
developers to make use of game engines, since a particular
game engine’s future capability (or potential discontinua-
tion, as was the fate of Adobe Atmosphere which was used for
Adolescent Therapy-Personal Investigator [3]) would not be
a worry as a different game engine could easily be substituted.
This problem has recently been referred to as the RenderWare
Problem [4] after the acquisition of RenderWare engine by
Electronic Arts (EA) and its removal from the market. We
see the issue of rewriting the G-factor from scratch every
time we migrate from one engine to another as similar to the
undesired practice of developing games from scratch which
was deemed unfeasible and resulted in the advent of game
engines.

As we noted earlier, portability is an issue that per-
vades all games with regards to game assets. In addi-
tion, however, and related to our work, are the moves
towards addressing more aspects of portability. Examples
include artificial intelligence (AI) architectures and inter-
faces [5]. AI architectures use custom made or off-the-
shelf components such as AI Middleware (e.g., SOAR
[6] or AI.Implant (http://www.biographictech.com (accessed
5/5/2007)). However, specifying the game using the AI
middleware format merely moves the game from one

2 International Journal of Computer Games Technology

Table 1: Comparing a typical game development approach to GSA’s approach

Step Typical approach GSA’s approach

(1) Create the
level data.

Create the decorative objects in the game engine.

(i) Create the game objects using the world builder
or TorqueScript.

(i) Create the game objects using the world builder in the game
engine and give them a unique ID which identifies these objects
in the game space as well. Load these objects using TorqueScript.

(ii) Create the game objects in the game space with the same
unique ID using Jython.

(2) Create the
GUI.

Use the game engine interface builder or TorqueScript to create the interface. The behaviour
is set as part of the game logic (step 4).

(3) Create the
object model.

(i) Use TorqueScript to extend the objects or create
new ones.

(i) Create the object models for the game objects that require
representation in the game engine and the game space.

(ii) Create the other game object models in game space.

(4) Create the
game logic.

(i) Use TorqueScript to set the behaviour in the
game engine.

(i) Use Jython or Java to create the logic in the game space.

(5) Create the
adapter.

(i) Send the updates from the game engine to the game space.

(ii) Create the adapter which translates between the game engine
and the game space.

proprietary format (game engines) to another (AI middle-
ware). The work on interfaces aims to facilitate access to
game engines. For example, Gamebots [7] and GOLOG Bots
[8] are the interfaces that have been used to access Unreal,
with, similarly, Quakebot [9] for Quake, FlexBot [10] for
Half-Life, and Shadow Door [11] for Neverwinter Nights.
These provide interfaces for specific game engines. Other
projects are attempting to provide common interfaces to
game engines such as the initiative by International Game
Developers Association (IGDA) for world interfacing [12]
and OASIS [13]. Despite this work, such interfaces may have
more success in the serious games community rather than
the fast-evolving games industry.

In [14], we described, in detail, how to make the G-factor
portable. In this paper, we give an overview of this earlier
work, and instead focus more on the evaluation process,
addressing issues such as performance, implementation
overhead, scalability, and modifiability. We present results of
conducting both an unstructured evaluation process and a
structured evaluation using ATAM [15], and contrast the two
in the subsequent discussion.

The remainder of this paper is structured as follows.
Section 2 demonstrates the issues with the typical game
development approach through the development of a sample
game. This is then contrasted with the development of the
same game using our approach, which enables the G-factor
to be portable. Section 3 describes the evaluation process
and what it revealed about the two development approaches.
Finally Section 4 presents the conclusions.

2. AN ARCHITECTURE FOR G-FACTOR PORTABILITY

This section contrasts a typical game development approach
with the game-development approach proposed in our work.
Section 2.1 describes what is considered to be a typical
development approach through the development of a sample
game, and highlights the dependencies associated with this

approach. Section 2.2 then proposes an approach to address
these dependencies and describes an architecture called game
space architecture (GSA) which has been implemented to
validate this approach.

2.1. A typical approach to game development

We will use a game that we call Moody NPCs to illustrate the
typical approach to game development. The game consists
of a number of nonplayer characters (NPCs) that react to
a player based on their mood. The player can carry out
actions such as greeting or swearing. Each NPC reacts to the
action based on his mood which is governed by two variables:
cowardness/courage and forgiveness/punishment. The game
allows the user to navigate the level and click on an NPC
which reveals its current mood and the actions available. The
player can adjust the mood variables and try out different
actions. The Torque game engine is used to demonstrate how
the game is developed.

The typical game development approach can be grouped
into four main steps as shown in the typical approach
column in Table 1. To create the game level data (step 1),
Torque engine provides a level editor called World Editor.
The level can also be created using other ways such as:
scripting, API, and configuration files. The game level data
contain the terrain of the environment and the decorative
objects (e.g., houses, trees, etc.). The level also contains
location markers for the game objects (e.g., NPCs and
player). Scripting is used to create the other game objects
(e.g., reaction, action, and interaction). This approach for
creating the game level data is very common amongst game
engines—84% of engines we surveyed provided editors to
create the game level [5].

Figure 1 shows the graphical user interface created in step
2. This has mood variable sliders on the top left corner of the
screen and an actions controller on the bottom left corner
of the screen. The player can use the keyboard to navigate

A. BinSubaih and S. Maddock 3

Figure 1: The Moody NPCs game.

around and the mouse to select an NPC. We used Torque’s
GUI Editor to set the interface controllers, although it is also
possible to use scripting and configuration files.

Step 3 is to create the object model to hold the structure
for the game objects. The object model consists of five classes:
player, NPC, action, reaction, and interaction. Torque has
a default object model for the player and the AI player. We
extended these to add the properties that are specific to the
game (i.e., mood variables for an NPC). We created the other
classes using a static object model using TorqueScript. The
other game object models are created using scripting. Finally,
step 4 is to create the game logic which controls how the NPC
reacts to the player actions.

2.2. GSA’s approach

Figure 2 illustrates the software dependencies problem GSA
is aiming to tackle. the example used is the development
of Gears of War , which is dependent on Unreal Engine
3 and the underlying software [16]. This is similar to the
dependency the Moody NPCs game suffers from, and also
to the dependencies exhibited by the projects we surveyed in
an earlier paper [5].

GSA’s objective is to reduce the dependencies by adopting
a service-oriented design philosophy, which enables the G-
factor to exist independently of the game engine. The service-
oriented approach has proved its practicality for achieving
different types of portability such as platforms and languages
[17]. The novel design approach employed in GSA combines
a variant of the model-view-controller (MVC) pattern to
separate the G-factor (i.e., model) from the game engine (i.e.,
view) with on-the-fly scripting to enable communication
through an adapter (i.e., controller). The use of a variant of
MVC rather than the normal MVC avoids a known liability
where the view is tightly coupled to the model [18]. The
use of on-the-fly scripting is used to maintain the attractive
attributes associated with typical game development where
data-driven mechanisms are used to modify the G-factor.
Most notably, modifiability is upheld in the typical game
development approach using scripting, which our surveys
found to be very popular with game engines and projects that
use game engines [5]. To maintain this level of modifiability
(i.e., scripting level access) to the game engine and the
game space, GSA uses on-the-fly scripting to communicate
with both via the adapter. For example, a communication

may begin with the game engine sending the updates to
the adapter (step 1 in the communication protocol shown
in Figure 3). The adapter converts them into scripts or
direct API calls (step 2) which are then used to update
the game space (step 3). When the game space needs to
communicate with the game engine, it notifies the adapter
of the changes that need to be communicated (step 4). The
adapter formats these into the engine’s scripting language
(step 5) and sends them to the engine to be executed (step 6).
The separation and the communication mechanisms allow
the G-factor to exist independently of the game engine.
The effect this has on portability is that when migrating
to a new engine, the elements in the game space (i.e., the
game state, object model, and game logic) can stay intact.
Contrasting this to migrating a game developed using the
typical game development approach, which often require all
three elements to be created again, shows the extent of the
effort saved.

As was shown in Table 1, the first difference between
our approach and the typical game development approach
is the creation of the game objects, which is split over the
game engine and the game space due to the two types of
game objects. The first type is the game objects that have to
have representations inside the game engine to provide visual
representations, such as the player and the NPCs needed for
the Moody NPCs game. These require real-time processing in
the game engine, and it is impractical to communicate every
frame from the game space to the game engine. Therefore,
these objects have to be created in the game engine as well
as the game space and only updates are communicated.
The second type of game objects is the ones that do not
have representations inside the game engine, such as the
action, interaction, and reaction objects. These objects can be
created in the game space only. The object model creation is
similarly split over the game engine and the game space. The
second difference is creating the game logic in the game space
rather than the game engine. The third difference is creating
the adapter which handles the communication between the
game space and the game engine.

3. EVALUATION AND DISCUSSION

A software architecture can be evaluated using structured or
unstructured methods. An unstructured evaluation, which
is a common way to evaluate a software architecture [19],
consists of randomly throwing challenges at the architecture
and hoping that either the architecture can address them, or
that they will reveal its limitations. In structured evaluation,
methods such as ATAM [15], SAAM [20], ARID [21], and
ABAS, PASA and CBAM [22] are used to probe the archi-
tecture with the aim of exercising the whole architecture.
We used ATAM in our structured evaluation, a method
that is not limited to a particular stage of the development
cycle, and which involves stakeholders (i.e., user, maintainer,
developer, manager, tester, architect, security expert, etc.)
in specifying the architecture attributes to address. In the
following paragraphs, we will summarise the findings of
detailed structured [23] and unstructured [24] evaluations
carried out in our earlier research papers. We will focus on

4 International Journal of Computer Games Technology

Problem

Games are too
dependent on the

underlying software

(i.e. game engine).

74% of the engines &
86.7% of the projects
surveyed used data-
driven approaches but
games remain tied to
the engine.

83.3% of the projects
surveyed used the
engines’ specific object
models and 76.7% used
engines’ scripting
languages.

Software dependencies [25]

“Gears of war”
Gameplay code

∼ 250000 lines C++, script code

Unreal engine 3
Middleware game engine
∼ 250000 lines ++ code

DirectX
graphics

OpenAL
audio

Ogg
Vorbis
Music
Codec

. . .

Porting the G-factor to another engine

• Recreate the game objects.

• Recreate the object model.

• Rewrite the game logic in the new engine’s language.

(a)

Solution

Reduce the dependencies

by allowing the G-factor

elements to exist
independently of the game

engine.

Use a variant of MVC for
the separation and on-the-fly

scripting to link back to the

engine to maintain

accessibility to the engine at

scripting level.

Games space

• Holds the G-factor elements.
• Services the game to engines.
• Uses a dynamic object model.

Scripts Messages

Scripts
& API

. . .

. . .

1

2

34

5

6

Unreal
adapter

Torque
adapter

Unreal
engine

Torque
engine

Porting the G-factor to another engine

• Game objects in the game space remain intact, but the
ones in the game engine need to be created again.

• Object model in the game space remain intact, but the
ones in the game engine need to be created again.

• Game logic is not affected.
• Link the game space to the new engine (i.e. adapter).

V
ar

ia
n

t
of

M
V

C
pa

tt
er

n

M
od

el
C

on
tr

ol
le

r
V

ie
w

(b)

Figure 2: GSA overview. The numbers highlighting the communication between the game space and the game engine are described in
Figure 3.

Adapter

Scripts mapping (game engine→ game space)

Message Jython/Java

2 Scenario.setProperty value(instance, property, values, . . .)

Scripts mapping (game space→ game engine)

Attribute Engine script

Interaction: reaction attribute NPCName.animate (gesture)

1. Updates are received from the game engine.

2. The adapter uses the scripts mapping table to convert the message to a
Jython script.

3. Game state is updated.

4. When a modification is done in the game state the adapter is notified.

5. If the object is of class interest then the adapter converts it to a game
engine script.

6. Script is sent to the game engine.

Figure 3: Communication between the game engine and the game space.

four attributes: portability, performance, modifiability, and
scalability. Following this, we contrast the structured and
unstructured approaches to evaluation.

3.1. Portability

The unstructured evaluation found that GSA managed to
address the portability challenge by servicing the same
G-factor to two different engines [13]: a bespoke engine
developed on top of DirectX 9.0 and the Torque game engine
(see Figure 4). This was done without modifying the G-factor
and was constrained to modifying the adapter. Similarly,
the structured evaluation found GSA supports portability. It
found that the separation using the MVC pattern allows for
better portability since it allows for multiple views (i.e., game

engines) for the same model (i.e., G-factor). In addition,
the structured evaluation found that portability could be
undermined if the game engine does not fully expose the
required functionality through scripting since the adapter
relies on scripting for communicating back to the game
engine (see Figure 2).

3.2. Performance

The aim here was to find the average reduction in frames-
per-second (fps) due to the use of GSA. To get a performance
indicator, a player was simulated to be running continuously
around a path for 30 minutes (see Figure 5). Using this
simulation, two performance tests were run to contrast the
overheads of a game developed with the typical development

A. BinSubaih and S. Maddock 5

(a)

Virtual Guide: You have entered the accident scene zone
you should secure the scene and search for injured poeple

You have asked question: Was there anybody with you
in the vehicle, sir? Answer is: NO

14 : 59

(b)

Figure 4: (a) Smart terrain running on bespoke engine, (b) the same G-factor running on Torque [24].

approach to one developed using GSA. The performance
overheads measured were: fps, CPU, memory, and network
(for the test using the game space). The average reduction
in fps was 11.69% when following the GSA approach. This
average fps reduction is relatively large for a small game and
more tests need to be performed to get a better indication of
how this reduction will scale with the game size. However,
when comparing this finding to the findings from the
scalability challenge (described later), we find that GSA does
not affect performance unduly. The structured evaluation
revealed two issues. It found that the data integrity across the
different game states (i.e., game engine and game space) was
at risk. This is due to the delays that might occur because of
the separation as a result of the use of the MVC pattern which
add an overhead for exchanging information. Initial tests
revealed no problems, but further tests are required before
this can be established with certainty. In addition, there is
a danger if the message load increases that the game space
becomes the bottleneck in the architecture.

3.3. Modifiability

Here, the success of GSA was judged by the ability to create
different G-factors on the same architecture using a different
object model and game logic. The fact that different G-
factors (Figures 1, 4, 5, and 6) can be developed using
GSA showed its modifiability. In addition, a structured
evaluation process measured the modifiability across the
different parts of GSA by examining how each architectural
decision affects modifiability, and how it trades against the
other quality attributes (e.g., portability and performance)
[23]. The evaluation revealed that if a single unique identifier
cannot be set for game objects on the game space and game
engine, then GSA becomes very sensitive to any modification
as it has to be added manually in the adapter. Furthermore,
using on-the-fly scripting allows for better modifiability but
runs slower than precompiled code. Modifiability is also
enhanced by the use of a variant of the MVC pattern that
reduces the dependencies between the model and the view.

3.4. Scalability

The aim was to identify how much overhead is added as the
game size grows. This was examined by developing a serious

Figure 5: First-person shooter game [24].

Figure 6: A serious game for traffic accident investigators [25].

game for traffic accident investigators [25] (see Figure 6).
The adapter’s implementation overhead for each challenge is
presented in Table 2. Using the implementation overheads
of the adapters compared to their game logic sizes in each of
the test games developed, we can forecast that for small game
size, the overhead is large, but that it stabilises at around
6% for code of size between 100,000 and 500,000 lines
(see Figure 7) (http://support.microsoft.com/kb/828236
(accessed 24/8/2007)). The scalability challenge also showed
that the performance overhead was not noticeable when
judging its success in training [25] for which smooth play
is crucial to avoid frustrating the users. The structured
evaluation found that using a dynamic object model
allows for better game-model scalability, but it makes
the architecture very sensitive to change as the change
propagates to the game logic and to the adapter.

6 International Journal of Computer Games Technology

Table 2: The implementation overhead for the adapter.

Challenge Logic size (lines of code) Adapter size (lines of code)

Portability 60 346 (bespoke) 354 (Torque)

Modifiability 100 350

Performance 70 300

Scalability 6214 1100

3.5. Structured versus unstructured evaluation

The unstructured evaluation revealed how well the architec-
ture can cope with the challenges. However, there was no easy
way to establish the correlation between the challenge and
what architectural decisions had supported or undermined.
Furthermore the unsystematic way of generating scenarios
(i.e., challenges) meant that some time was unnecessarily
spent in implementing different tests when one could have
served all the challenges (e.g., the implementation of the
serious game (see Figure 6) used in the scalability challenge
could have been used to test all of the challenges). This
could be attributed to the incomplete overall evaluation
picture due to the lack of systematic guidance. Although,
there is no guarantee that a structured evaluation would not
produce redundant probing since, just like the unstructured
evaluation, it is also scenario-based. However, the chances
are reduced due to the fact that the generation of scenarios
is guided by using a utility tree (The utility tree elicits the
quality attributes down to the scenario level to provide a
mechanism for translating architectural requirements into
concrete practical scenarios) in which all the scenarios are
identified. This serves two purposes. The first purpose is that
once all the scenarios are present, the experimentation can
begin by choosing a test where preferably all these scenarios
can be addressed. The second purpose is that it describes the
decisions that are going to be analyzed by the scenario which
means that any repetitive probing can be identified.

The problem with scenario-based evaluation which both
unstructured and structured evaluations use is that the
evaluation is only as good as the scenarios generated, which
in turn depends on the stakeholders in the evaluation team.
Although there are measures put in place to ensure that the
selection includes all the important personnel (i.e., architects
and domain experts), the fundamental problem still persists.

Contrasting ATAM’s output to the unstructured evalu-
ation results, which quite often answer the challenge with
yes or no, or with some metrics such as network load or
fps, highlights the strengths of ATAM. ATAM classifies the
decisions according to how they affect the architecture (i.e.,
support or undermine it). We found the ATAM process
helpful in understanding our architecture better. Of further
benefit is that it should also act as a guide when there is
a need to modify or evolve GSA. This guidance is based
on the fact that it reveals the strengths and weaknesses of
the architectural decisions. In future, we recommend using
ATAM alongside the development cycle. This is where ATAM
is designed to be most effective by revealing issues at different
stages of the development cycle when they are cheaper to
address. Had we started with ATAM, we believe it would have

0 1 2 3 4 5 6

105Gameplay code size (number of lines)

0

2

4

6

8

10

12

14

16

18

O
ve

rh
ea

d

Adapter implementation overhead

15.63

9.38

6.64 6.32 6.12
6.05

Figure 7: The adapter code forecast compared to the game logic
code size.

saved us time and effort by avoiding the creation of a number
of redundant challenges.

4. CONCLUSIONS

We have presented an architecture for making games (i.e.,
G-factors) portable between game engines. The changes
required to the typical game development approach have
been demonstrated through the development of a sample
game called Moody NPCs. In addition, the work has
presented the findings from two types of evaluation. The
findings have revealed that GSA is capable of making
the G-factor portable, but GSA adds performance and
implementation overheads. Despite these overheads, GSA
has been shown to scale to real world applications [25].
Modifiability has been found to be sensitive in cases where
a unique identifier cannot be set for game objects.

Whilst the unstructured evaluation managed to reveal
issues with the architecture, the mechanism of throwing
random challenges resulted in redundant challenges and
failed to articulate which architectural decisions undermined
or supported GSA. Using ATAM guided the evaluation
better. Employed earlier, it could have helped to avoid the
redundancy in the unstructured evaluation. Also, it was
capable of revealing how the architectural decisions interact
in order to support the required attributes. Although the
portability presented in this work has only been shown
across two engines, the approach followed to achieve that
is consistent in the way the two engines were linked via the
adapter, and, therefore, there is no reason why it cannot be
followed to link other engines.

With gameplay predicted to be the distinguishing factor
between future games [26] and combined with the increased
number of commercial licensees of game engines and the
increased interest from the serious games community, this
will increase the need for portable games for two reasons.
The first reason is because developers can keep the visual
aspects of their game up-to-date with the latest game engine.

A. BinSubaih and S. Maddock 7

The second reason is the security from having to face the
RenderWare Problem [4]. However, the incentive for game
engine developers is less clear.

REFERENCES

[1] M. Lewis and J. Jacobson, “Games engines in scientific
research,” Communications of the ACM, vol. 45, no. 1, pp. 27–
31, 2002.

[2] J. Wang, M. Lewis, and J. Gennari, “Emerging areas: urban
operations and UCAVs: a game engine based simulation of
the NIST urban search and rescue arenas,” in Proceedings of
the 35th Winter Simulation Conference, pp. 1039–1045, New
Orleans, La, USA, December 2003.

[3] D. Coyle and M. Matthews, “Personal investigator: a therapeu-
tic 3D game for teenagers,” in Proceedings of the Conference
on Human Factors in Computing Systems (CHI ’04), Vienna,
Austria, April 2004.

[4] S. Carless, “Rise of the game engine,” Game Developer, pp. 2–2,
2007.

[5] A. BinSubaih, S. Maddock, and D. Romano, “A survey of ‘game’
portability,” Tech. Rep. CS-07-05, Department of Computer
Science, University of Sheffield, Sheffield, UK, 2007.

[6] J. E. Laird, M. Assanie, B. Bachelor, et al., “A testbed for
developing intelligent synthetic characters,” in Proceedings
of the AAAI Spring Symposium on Artificial Intelligence and
Interactive Entertainment, pp. 52–56, Palo Alto, Calif, USA,
March 2002.

[7] R. Adobbati, A. N. Marshall, A. Scholer, et al., “Gamebots: a 3D
virtual world test-bed for multi-agent research,” in Proceedings
of the 2nd International Workshop on Infrastructure for Agents,
MAS and MAS Scalability, Montreal, Quebec, Canada, May
2001.

[8] S. Jacobs, A. Ferrein, and G. Lakemeyer, “Unreal Golog bots,”
in Proceedings of Workshop on Reasoning, Representation, and
Learning in Computer Games (IJCAI ’05), Edinburgh, Scotland,
UK, July-August 2005.

[9] J. E. Laird, “It knows what you’re going to do: adding antici-
pation to a Quakebot,” in Proceedings of the 5th International
Conference on Autonomous Agents, pp. 385–392, Montreal,
Quebec, Canada, May-June 2001.

[10] A. Khoo, G. Dunham, N. Trienens, and S. Sood, “Efficient,
realistic NPC control systems using behavior-based tech-
niques,” in Proceedings of the AAAI Spring Symposium on
Artificial Intelligence and Interactive Entertainment, Palo Alto,
Calif, USA, March 2002.

[11] T. S. Hussain and G. Vidaver, “Flexible and purposeful NPC
behaviors using real-time genetic control,” in Proceedings of
the IEEE Congress on Evolutionary Computation (CEC ’06), pp.
785–792, Vancouver, BC, Canada, July 2006.

[12] A. Nareyek, N. Combs, B. Karlsson, S. Mesdaghi, and I. Wil-
son, “The report of the IGDA’s artificial intelligence interface
standards committee,” International Game Developers Asso-
ciation http://www.igda.org/ai/report-2005/report-2005.html,
2005.

[13] C. Berndt, I. Watson, and H. Guesgen, “OASIS: an open
AI standard interface specification to support reasoning,
representation and learning in computer games,” in Proceedings
of Workshop on Reasoning, Representation, and Learning in
Computer Games (IJCAI ’05), pp. 19–24, Edinburgh, Scotland,
UK, July-August 2005.

[14] A. BinSubaih and S. Maddock, “G-factor portability in game
development using game engines,” in Proceedings of the 3rd

International Conference on Games Research and Development,
pp. 163–170, Manchester, UK, September 2007.

[15] P. Clements, R. Kazman, and M. Klein, Evaluating Software
Architectures: Methods and Case Studies, Addison-Wesley,
Reading, Mass, USA, 2001.

[16] T. Sweeney, “The next mainstream programming language: a
game developer’s perspective,” in Proceedings of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, p. 269, Charleston, SC, USA, January 2006.

[17] T. Erl, Service-Oriented Architecture: Concepts, Technology, and
Design, Prentice-Hall, Englewood-Cliffs, NJ, USA, 2005.

[18] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture: A System of
Patterns, vol. 1, John Wiley & Sons, New York, NY, USA, 1996.

[19] R. Bahsoon and W. Emmerich, “Architectural stability and
middleware: an architecture centric evolution perspective,”
in Proceedings of the 2nd International ECOOP Workshop on
Architecture-Centric Evolution (ACE ’06), Nantes, France, July
2006.

[20] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson,
and J. Carriere, “The architecture tradeoff analysis method,”
in Proceedings of the 4th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS ’98), pp.
68–78, Monterey, Calif, USA, August 1998.

[21] P. Clements, “Active reviews for intermediate designs,” Tech.
Rep. CMU/SEI-2000-TN-009, Software Engineering Institute,
Pittsburgh, Pa, USA, 2000.

[22] R. Bahsoon and W. Emmerich, “Evaluating software architec-
tures: development, stability and evolution,” in Proceedings of
the ACS/IEEE International Conference on Computer Systems
and Applications, p. 47, Tunis, Tunisia, July 2003.

[23] A. BinSubaih and S. Maddock, “Using ATAM to evaluate
a game-based architecture,” in Proceedings of the 2nd Inter-
national ECOOP Workshop on Architecture-Centric Evolution
(ACE ’06), Nantes, France, July 2006.

[24] A. BinSubaih, S. Maddock, and D. Romano, “Game logic
portability,” in Proceedings of the ACM SIGCHI International
Conference on Advances in Computer Entertainment Technology
(ACE ’05), pp. 458–461, Valencia, Spain, June 2005.

[25] A. BinSubaih, S. Maddock, and D. Romano, “A serious
game for traffic accident investigators,” International Journal of
Interactive Technology and Smart Education, vol. 3, no. 4, pp.
329–346, 2006.

[26] E. Dounis, “The great debate: gameplay vs. graphics,” http://
www.gamersmark.com/articles/205/, 2006.

