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The topic of multiple-input multiple-output (MIMO) sys-
tems is one that has attracted a significant amount of atten-
tion in the research community over the past decade or so.
MIMO systems refer to wireless systems that are equipped
with multiple antenna elements on either side of a commu-
nication link. Propelled by the startling discovery in the mid
1990’s that the capacity of MIMO systems grows roughly
proportionally with the minimum number of antenna ele-
ments on each side of the wireless link, the field has under-
gone an explosive growth in both the academic and the in-
dustrial communities that has led to many further impor-
tant advances. These advances have brought about not only
the definition of new subareas of focused research, but also,
equally importantly, a reconsideration of older techniques
and a cross-fertilization of ideas from several other overlap-
ping fields.

One of the research areas that has both affected strongly
MIMO systems and has been equally affected by them is that
of signal processing, as many of the developed/demonstrated
MIMO transceiver architectures are based on advanced sig-
nal processing techniques. On the transmitter side, one can
view most space-time coding/spatial multiplexing techniques
as solving a problem of space-time signal design. On the re-
ceiver side, various flavors of multiuser detectors, space-time
decoders, and related techniques for MIMO channel estima-
tion and tracking (e.g., including blind/semiblind process-
ing) are also typically derived in a signal processing frame-
work.

More recent research on MIMO systems has started to
focus on new areas of interest. At the link level, such ar-
eas are the handling of cochannel (e.g., in-cell and out-of-
cell) interference; the development of precoding techniques
at the transmitter to preempt adverse channel effects; and the
design and use of efficient receiver-to-transmitter feedback
mechanisms to improve the link throughput. In parallel,
many studies have focused on the application of such MIMO
techniques to specific transmission formats (dictated by dif-
ferent air interfaces) such as CDMA, OFDM, and so forth.
Moving up the protocol stack, the interaction of MIMO tech-
niques with MAC layer procedures such as adaptive retrans-
mission and scheduling is an area that has started producing
important know-how, especially regarding the suitability of
MIMO techniques in high-speed data systems. Moving be-
yond wireless links, architecting an entire wireless network
that uses MIMO connections poses a number of important
questions, both at a fundamental level (e.g., MIMO network
capacity) and at a practical level (e.g., MIMO network de-
sign).

With all of the above in mind, this special issue aims at
giving a well-rounded snapshot of recent advances that cover
most of these topics, with a special emphasis on signal pro-
cessing methodologies as a design tool. As progress in the
field is both rapidly emerging and voluminous, it has clearly
not been our intent to provide an exhaustive coverage of all
MIMO topics but rather a good selection of recent studies
that are indicative of the progress in the field.
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The papers included in this special issue address a broad
range of issues arising in the development and application of
MIMO techniques. These contributions range from general
space-time coding and processing techniques and analytical
methodologies to specific implementation issues arising in
particular wireless standards and environments and to fun-
damentals of wireless MIMO networks. Among other topics,
they touch upon the areas of transmitter and receiver design,
blind and training-based techniques, link-level and system-
level studies, open- and closed-loop systems, physical layer
and higher layer issues, and wireless LAN and cellular appli-
cations.

The specific contributions of the papers in this issue are
summarized in the following paragraphs.

Invited paper

In their invited paper, Jafar, Foschini, and Goldsmith present
an in-depth analysis of the so-called “PhantomNet” wireless
network concept. In such a network, the best possible ser-
vice is provided to new users joining the network without
affecting existing users. The problem is addressed in its full
generality, that is, assuming multiple cells, users, and anten-
nas, and results are obtained for both uplink and downlink
communication. Optimality is sought in terms of the mul-
tiuser capacity region. This leads to a high degree of gen-
erality of the presented results and solutions. Furthermore,
despite the inherent differences between the two directions
of communication (and the resulting differences between
the corresponding solutions), the authors demonstrate a re-
markable symmetry between the uplink and downlink prob-
lems.

Channel estimation and multiuser detection
in MIMO systems

In the first paper of this section, J. Du and Y. Li study the
problem of channel estimation for D-BLAST OFDM sys-
tems. The authors propose a layerwise channel estimation al-
gorithm that takes advantage of the D-BLAST structure. Fur-
ther performance improvements are realized by introducing
a subspace tracking scheme.

In the next paper, Buzzi, Grossi, and Lops study the
problem of blind multiuser detection in asynchronous DS-
CDMA systems equipped with multiple antennas. Several
novel blind schemes are proposed and their performance is
evaluated, showing their multiple access interference sup-
pression capability, despite the absence of channel state in-
formation.

Another blind detection scheme that is specifically tai-
lored to space-time differentially encoded systems is pre-
sented in the paper by Zhang and Ilow. Their proposed re-
ceiver algorithm is based on constant modulus characteristics
of signaling and it is suitable for a rich multipath environ-
ment. The scheme requires no channel estimation and can
work with small numbers of signal samples.

In their paper, Y. Du and Chan examine a technique for
speeding up the search for an optimal multiuser detection

solution using a genetic algorithm. The authors first study
the objective function of the genetic algorithms. Then they
propose two detectors to generate the seed chromosome of
the initial population. Their results show that the proposed
scheme not only reduces the computational complexity of
finding the detector, but also improves performance.

MIMO systems, space-time coding, and beamforming

In the first paper of this section, C. Li and Xiaodong Wang
compare the performance of three well-known MIMO tech-
niques: BLAST, space-time block coding (STBC), and lin-
ear precoding/coding (i.e., beamforming) in the context of
WCDMA. The authors study the signal-to-noise properties
analytically, and the bit error rate performance via simu-
lations. They also consider a subspace method for imple-
menting the linear precoding method (which requires chan-
nel knowledge at the transmitter). The authors evaluate the
trade-offs between BLAST and STBC in terms of data-rate
and diversity in this situation (see also the following pa-
per in this section) and demonstrate that subspace-based
beamforming can be effectively realized in WCDMA sys-
tems.

In the next paper, Mecklenbriduker and Rupp consider
a new STBC scheme that extends the well-known Alam-
outi codes to the situation in which the number of trans-
mit antennas is an arbitrary power of two. Further solutions
for arbitrary even numbers of transmit antennas are also
presented, which offer improved orthogonalization proper-
ties while preserving high diversity. The authors also con-
sider schemes that trade off the properties of Alamouti and
BLAST-type systems (see also Li’s and Wang’s paper above)
to achieve a continuous trade-off between quality of service
and data rate. The appropriate trade-off can be selected using
only the number of transmit antennas. Implications of these
techniques for UMTS are also discussed.

MIMO systems and interference

In his paper, Blum studies the problem of maximum system
mutual information in MIMO systems that employ antenna
selection in the presence of interference. This leads to opti-
mal signaling covariance matrices for the interesting case of
limited channel feedback required for antenna selection.

The paper by Song and Blostein studies the effect of col-
ored space-time interference on MIMO systems, emphasiz-
ing the problems of channel estimation, data detection, and
interference correlation estimation. The focus is on the case
of one dominant interferer and the quantification of its im-
pact on the performance of a generalized BLAST ordered
data detection algorithm. The authors show that exploiting
the interference’s spatio-temporal nature can result in impor-
tant gains.

MIMO techniques in current/emerging air interfaces

In the first paper of this section, J. Liu and J. Li study some
practical issues arising in the application of MIMO OFDM
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to high-rate wireless LAN systems. The authors propose sig-
naling and corresponding synchronization, channel estima-
tion, and detection schemes that are backward compatible
with the existing 802.11a standard. They also propose the
use of a BLAST-type data transmission scheme and a sim-
ple LS-based soft detector to reduce the complexity of the
receiver.

In the next paper, Hansen, Affes, and Mermelstein revisit
the problem of multiuser detection in CDMA networks. The
authors apply an interference subspace rejection technique
to the downlink of networks in which the spreading factors
or modulation used by the interferer may not be known. The
schemes proposed in the paper require no prior knowledge
of these factors. A new code allocation scheme is also pro-
posed to reduce the complexity of the proposed interference
cancellation schemes.

The paper by Gonzalez-Lépez, Miguez, and Castedo pre-
sents a maximum likelihood channel estimation scheme that
is suitable for turbo equalization in a space-time coded sys-
tem. The authors apply their scheme to GSM-based trans-
mission in a subway tunnel. Their experiment shows a sig-
nificant reduction in the required training sequence length.

In the final paper of this section, Leus, Petré, and Moonen
propose novel transmit diversity and corresponding space-
time chip equalization techniques for DS-CDMA systems.
Their proposed scheme is shown to achieve both maximal
antenna diversity and maximal multipath diversity.

Resource allocation and feedback in multiple
antenna systems

In the first paper of this section, Han, Farrokhi, and K. J. Ray
Liu revisit the problem of jointly optimizing power control
and beamforming to minimize the cochannel interference.
The authors optimize the bit error rate directly in calculating
the power and beamforming vector. Both the power control
and beamforming algorithms are updated iteratively and are
shown to converge.

In their paper, Chung, Lozano, Huang, Sutivong, and
Cioffi study closed-loop MIMO systems. In order to achieve
the closed-loop capacity, the authors propose to use a low
rate feedback channel to provide rate and power informa-
tion to the transmitter. Two joint rate and power allocation
schemes are proposed and studied by the authors. Their re-
sults show that the performance loss due to the quantization
of power is marginal, and that the MIMO system demon-
strates an average rate close to capacity with the low-rate
feedback channel and strong coding scheme.

Higher layer issues in MIMO systems

In the final paper of the special issue, Zheng, Lozano, and
Haleem propose an ARQ scheme based on the BLAST sys-
tem. The authors suggest the use of separate ARQ for each
layer of the BLAST transmission. This multiple ARQ struc-
ture not only improves the throughput, but also facilitates
the interference cancellation.

We believe that the included papers present an excellent
sampling of state-of-the-art research in the field of MIMO
communications and signal processing. We would like to
thank all of the authors for their timely contributions and
we anticipate that these papers will make this special issue a
useful reference that will act as a catalyst for further exciting
research in the field of MIMO systems.

Sergio Barbarossa
Constantinos Papadias
H. Vincent Poor
Xiaowen Wang
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We present a network framework for evaluating the theoretical performance limits of wireless data communication. We address the
problem of providing the best possible service to new users joining the system without affecting existing users. Since, interference-
wise, new users are required to be invisible to existing users, the network is dubbed PhantomNet. The novelty is the generality
obtained in this context. Namely, we can deal with multiple users, multiple antennas, and multiple cells on both the uplink
and the downlink. The solution for the uplink is effectively the same as for a single cell system since all the base stations (BSs)
simply amount to one composite BS with centralized processing. The optimum strategy, following directly from known results, is
successive decoding (SD), where the new user is decoded before the existing users so that the new users’ signal can be subtracted out
to meet its invisibility requirement. Only the BS needs to modify its decoding scheme in the handling of new users, since existing
users continue to transmit their data exactly as they did before the new arrivals. The downlink, even with the BSs operating as
one composite BS, is more problematic. With multiple antennas at each BS site, the optimal coding scheme and the capacity
region for this channel are unsolved problems. SD and dirty paper (DP) are two schemes previously reported to achieve capacity
in special cases. For PhantomNet, we show that DP coding at the BS is equal to or better than SD. The new user is encoded
before the existing users so that the interference caused by his signal to existing users is known to the transmitter. Thus the
BS modifies its encoding scheme to accommodate new users so that existing users continue to operate as before: they achieve
the same rates as before and they decode their signal in precisely the same way as before. The solutions for the uplink and the
downlink are particularly interesting in the way they exhibit a remarkable simplicity and an unmistakable, near-perfect, up-down
symmetry.

Keywords and phrases: channel capacity, dirty paper coding, duality, broadcast channel, successive decoding, multiple-input
multiple-output systems.

ing the base station antennas for sectoring/beamforming,
and treating cochannel interference from other cells as noise.

The rapid growth of cellular networks and the anticipation of
ever increasing demand for higher data rates have expanded
the scope of wireless research from single user, and single
cell, and single antenna systems to multiuser multicellular
systems employing multiple antennas. A traditional way of
handling the multiantenna, multiuser, and multicellular sys-
tem has been to reduce it to a single antenna, single user,
and single cell system by orthogonally splitting the chan-
nel among the users in time/frequency/code/space, employ-

Moreover, since early wireless networks have been designed
primarily for voice traffic, rate adaptation was not consid-
ered. This constrained approach may be simpler, but quite
often it leads to suboptimal strategies. In order to estimate
the absolute performance limits of these multidimensional
systems, we need to explicitly account for the presence of
multiple users, multiple antennas, and multiple cells on both
the uplink and the downlink.

In this paper, where wireless data communication is
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highlighted, the focus is on finding the best transmit strategy.
Due to the presence of a multiplicity of contending users, the
best transmit strategy is not as straightforward as for a single-
user system. Assigning limited communication resources to
effect the best transmit strategy is particularly relevant for
handling delay tolerant data traffic since helping some users
typically amounts to slowing others. The best strategy, of
course, depends on the priorities assigned to each user. Given
the prioritization, say, for example, first-come-first-served
(FCES), we find here the optimum communication means
under different criteria.

Although we will proceed with the FCES prioritization
in our presentation, our results hold for other means of
prioritizing such as last-come-first-served, random order-
ing, or any scheme that predetermines an ordering among
users.

We consider both the uplink and the downlink of a mul-
tiuser multicellular system using multiple antennas at both
ends. We consider a system that evolves in time with new
users entering the system and old users leaving the system.
Using FCEFS, our objective is to provide the best service pos-
sible to the new users as they enter the system, without pe-
nalizing the users already in the system. Thus each user in
the system has a higher priority than the users that come
after him. Subsequent users are served under the require-
ment that the previous ones are not affected: interference-
wise, new users must be invisible to exiting users. Since for
both the uplink and the downlink only earlier entrants inter-
fere while later entrants are invisible, the network is dubbed
PhantomNet. The strategies that affect this invisibility will
be seen to be successive decoding (SD) for the uplink (a
form of multiuser detection) and dirty paper (DP) coding
for the downlink. In our network context, these strategies
are particularly interesting both because of their simplic-
ity as well as the unmistakable symmetry evident between
uplink-downlink operation. Just how resources like base sta-
tions, bandwidth, spatial modes, and power are used is not
preordained. Rather, under the FCFS regime, the network
can self-organize the deployment of these communication
resources.

The FCES model assigns lower priority to new users.
However, as previous users complete their transmission, the
user moves up on the priority scale. So users that stay in
the system longer tend to experience a better average service.
In other words, shorter messages experience a lower average
rate, while longer messages experience a higher average rate.
It is therefore reasonable to expect that the FCFES scheduling
algorithm would make the time required to transmit to dif-
ferent users’ messages more equal.!

UIf one chooses instead a last-come-first-served model, short messages
would see higher average rates, and long messages would see lower average
rates. Thus last-come-first-served scheduling would make the time required
to transmit different users’ messages more disparate. The average number
of simultaneously active users would reflect the average interference seen by
the users. Overall, the choice of the scheduling algorithm for a system will
depend on such criteria.

Our scope here is limited to the presentation of theoret-
ical findings. These findings provide a tractable framework
in which performance of multicellular, multiuser, and mul-
tiantenna wireless networks can be numerically evaluated
through simulation. Information theoretic optimization is at
the core of our approach. Simulation results with DP coding
presented in [1] complement this work.

2. SYSTEM MODEL

Although we are ultimately interested in a multicellular sys-
tem, for simplicity, we start with a single base station. Multi-
ple base stations will be addressed in Section 7.

2.1. Uplink

The uplink is characterized by the following equation:

K
Y = > HX;+N, (1)

i=1

where Y is the received vector at the base station, K is the
number of users currently active in the system, H; is the flat-
fading matrix channel of user i, and N is the additive white
Gaussian noise (AWGN) vector at the base station.

Without loss of generality, we assume that the users are
indexed by the order in which they arrive. So user 1 is the
first user in the system, while user K is the last user to join the
system. The users are subject to transmit power constraints
given by

trace [E[X:X]] <P, 1<i<K. (2)
Note that there is no data coordination between users, so the
X; are independent.

2.2. Downlink

Finding the optimal transmit strategy for the downlink with
multiple antennas is a hard problem. This is because the
multiple antenna downlink channel is a nondegraded broad-
cast channel and its capacity region is a long standing un-
solved problem in information theory [2]. The optimal cod-
ing strategy for the multiple antenna downlink is therefore
unknown. The special cases of the AWGN broadcast chan-
nel where the optimal coding strategy is known include the
degraded broadcast channel (single transmit antenna at the
BS), and the recently solved sum rate capacity of multiple
user vector broadcast channel with multiple transmit anten-
nas at the BS and at each of the mobiles [3, 4, 5, 6, 7]. While
SD achieves capacity in the first case, DP coding based on
the results of [8] achieves capacity in the latter. DP cod-
ing can also be shown to achieve capacity for the degraded
AWGN broadcast channel. Note that for all these cases where
the capacity is known, it is achieved with SD or DP coding
and with Gaussian codebooks. For this reason, in this pa-
per, we will restrict our downlink transmit strategies to these
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two coding schemes and we will assume that Gaussian code-
books are used. These assumptions may not be restrictive
at all in case the conjectures about the optimality of Gaus-
sian codebooks on the downlink can be established [9, 10].
Thus, our downlink model is given by the following equa-
tion:

K
Yi=H; > X;+N; (3)

where Y;, X;, H;, and N; are the output vector, the input vec-
tor, the channel matrix, and the AWGN vector for user i. For
both SD and DP coding strategies, the input vectors corre-
sponding to different users are independent. As in the uplink
model described earlier, the downlink model also assumes
that the users are indexed by the order in which they ar-
rive. Further, the power in each user’s input vector is given
by

trace [E[X;X/]] <P, 1<i<K. (4)

We would also like to point out that a “ranked known
interference” scheme based on the results of [3] was used in
[11] to minimize the delay in a multiuser multicellular sys-
tem with multiple antennas at the base station and a single
receive antenna at each mobile. While the scheme itself is
suboptimal and limited in scope to a single receive antenna
at each mobile, it is another example of a simple way to per-
form resource allocation on the downlink. The results of [11]
are interesting and complement this work.

Unlike the uplink where users have individual power con-
straints, on the downlink, it is possible to redistribute trans-
mit powers across users without changing the total transmit-
ted power from the base station. Thus the downlink is typi-
cally characterized by a sum power constraint.

For both the uplink and the downlink, the channel is as-
sumed to experience slow and flat fading. Note that, with
a sufficiently refined partition of the frequency band, a
frequency-selective fading channel can be viewed as a num-
ber of parallel spectrally disjoint noninterfering essentially
flat subchannels. It follows that, for any desired accuracy, the
resulting channel matrix is equivalent to a block-diagonal
flat-fading channel matrix. Hence the flat channel analy-
sis presented here extends to frequency-selective fading in a
straightforward manner. We assume that the channel matri-
ces are perfectly known to the BS. The users are assumed to
know their own channel and the spatial covariance structure
of the sum of the noise and the relevant interference seen at
the receiver.

Lastly, since the notion of substreams comes up in later
sections, we elaborate what we mean by it. Note that a user’s
input vector X; may further be composed of several indepen-
dent vectors Xj1,Xi,.... This amounts to splitting the to-
tal rate for that user among several substreams. For a single
user, it can be shown that rate splitting does not decrease ca-
pacity. For a single-antenna multiple access AWGN channel,
rate splitting allows all points in the capacity region to be

achieved without time-sharing [12]. For our purpose, split-
ting a users’ power into substreams allows the substreams
from different users to be interleaved in any manner with re-
spect to the encoding/decoding order.

3. PROBLEM DEFINITION

Based on the FCFS model, our primary objective is to ac-
commodate new users only to the extent that the users that
are already active in the system are not affected. While this
constitutes the general idea, to be precise, we need to distin-
guish between the following two cases.

Existing users are unaffected (preserving rates)

This would mean that the existing users continue to have the
same rates as before. However, this leaves open the possibil-
ity that the existing users may adjust their transmit strategy
on the uplink or their receive strategy on the downlink in
some way to accommodate the new user. For example, on
the downlink, it is conceivable that if superposition coding
was used, then the existing users may need to decode and
subtract out the new users signal before detecting their own
signal. If this allows the existing users to achieve the same
rates as before, we say that the existing users are not affected,
or the rates are preserved.

Existing users are strictly unaffected
(making the accommodation of new users invisible)

We could be more strict in our problem statement. We could
demand that the new users be accommodated in such a way
that not only do the existing users continue to achieve the
same rates as before but also they are completely oblivious to
the presence of new users. That is, the existing users’ trans-
mitters/receivers on the uplink/downlink continue to pro-
cess the input data stream/received signal exactly as before to
generate the transmitted signal/output data stream. Thus the
only changes needed to accommodate the new user are made
at the base stations. To distinguish this case from the previ-
ous one, we say that the existing users are strictly unaffected,
or the new users are invisible.

Within each of the cases mentioned above, there are sev-
eral, more or less equally significant, problems that one can
pose. We list these problems in Sections 3.1 and 3.2 for the
uplink and the downlink, respectively. We will see later that
all the uplink problems really amount to the same problem—
basically the same solution procedure covers all of the up-
link variations. Among the downlink problems, we will en-
counter some substantive differences.

3.1. Uplink

On the uplink, the user’s transmit power is the limiting fac-
tor. So, for the uplink, the first set of problems UPla and
UP1b (uplink problems 1a and 1b) that we wish to solve are
as follows.

UPla (preserving rates). Allocate the maximum possible
rate to user K (new user) with transmit power Px such
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that the existing users’ rates are not affected. Note that
this allows the existing users to modify their transmit
strategy to accommodate the new user so long as their
rates are unaffected.

UP1b (making the new user invisible). Allocate the maxi-
mum possible rate to user K (new user) with transmit
power Pg such that the existing users are strictly unaf-
fected. Note that now, we require that the new user be
invisible to the existing users, that is, the existing users
must not modify their transmit strategy or their rates.
Thus, the existing users are, in effect, oblivious to the
presence of the new user.

We also briefly address the alternate problem where users
have certain rate requirements and wish to achieve those
rates with the minimum possible transmit power as follows.

UP2a (preserving powers). Determine the minimum possi-
ble transmit power for a new user K with rate require-
ment Rk such that the existing users’ transmit powers
are not affected.

UP2b (making the new user invisible). Determine the mini-
mum possible transmit power for a new user K with
rate requirement Rk such that the existing users are
strictly unaffected.

3.2. Downlink

On the downlink, each base station distributes the total
transmit power among the users it serves. Thus, unlike the
uplink where each user has an individual power constraint,
the downlink is characterized by a sum power constraint in-
stead. The coding schemes we consider for the downlink are
SD and DP. A brief description of these schemes is presented
later. In particular, we wish to determine the following.

DP1. Is DP or SD a better scheme for the downlink in gen-
eral?

For FCFS scheduling, the corresponding problems on the
downlink would be as follows.

DP2a (preserving rates). Determine the maximum possible
rate for user K subject to a total transmit power P; +
P, + - - - 4+ Pg such that existing users’ rates are not
affected.

DP2b (making the new user invisible). Determine the maxi-
mum possible rate for a user K subject to a total trans-
mit power P; + P, + - - -+ + Pk such that existing users
are strictly not affected.

Note that in problems DP2a and DP2b, the BS adds a power
Py to the total power to accommodate a new user (user K)
into the system. The powers Py, P,,. .., Px determine how the
rates are allocated to the users and need not be the actual
transmitted powers in each user’s input signal.

Note that as the channel changes, the users’ rates/powers
may change. So for each channel realization, we solve the
FCEFS scheduling problems listed above. The assumption that
the channel varies slowly is important in this respect.

4. MIMO CAPACITY REVIEW

Before proceeding with the solutions to the problem defined
in Section 3, we briefly visit the MIMO capacity expression.
Consider the MIMO channel

I
Y =HX+ > HX;+N. (5)

i=1

Here, X is the desired signal and X;,X>,..., X represent
I independent interference signals. All input signals are
assumed to be Gaussian with input covariance matrices
Q,Q75,Q5,...,Qf, respectively. Recall that the input covari-
ance matrices identify the optimal spatial eigenmodes and
the optimal power allocation across those eigenmodes. The
input covariance matrices of the interfering signals Q;" are al-
ready fixed. We are interested in the optimal input covariance
matrix Q* for the desired signal X subject to total power con-
straint trace(Q) < P. The H matrices represent the channels.
The noise is assumed to be AWGN with covariance matrix
normalized to identity. Note that this could apply to either
the downlink or the uplink.

Since the interference is independent of the signal, the
capacity of this channel is

C= mgxI(X; Y)
= mgxh(Y) —h(Y | X)
I I
= manh(HX+Z H,-XZ-+N) —h(HX + > HiXi+ NIX)
i=1 i=1

I 1
=mgxh(HX+zHiXi+N) h(ZH,»XiJrN)

i=1 i=1

I
[+HQH'+> H;QFH/

i=1

= 1
maxlog

1
I+ HQ'Hf

i=1

—log

1 -1
I+ (1 + ZH,-Q?HJ) HQH'

i=1

= 1
max log
(6)

Thus the capacity of this channel can be expressed as C =
logll + (I + 3!, H;Q H/)"'"HQ*H"|. The optimal Q* is
determined as follows.

Since log [T + AB| = log |I + BAI, we can also express the
capacity as

I —-1/2
C = maxlog I + (1 + ZH,Q;H,.*>
i=1

(7)
I -1/2t
x HQ*H' (1 +> H,-Q,.*Hf)

i=1

=m§X10g|I+HQH*|, (8)
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where

I 1/2
H= (1 + ZH,()ij) H. 9)

i=1

But (8) is the familiar MIMO capacity expression for a sin-
gle user with channel H in the presence of AWGN and with-
out interference. The optimal input covariance matrix Q is
obtained by the well-known waterfilling algorithm over the
eigenmodes of H [13].

Thus, in summary, the capacity for the channel (5) is
given by

I -1
C=log’1+(1+ZHiQ:Hﬁ> HQ*H'|, (10)

i=1

where Q™ is the optimal input covariance matrix obtained by
waterfilling over the effective channel (9). Similar expressions
appear quite frequently in later sections. To avoid repetition,
instances of the same expressions presented later may be less
descriptive. We advise the reader to refer back to this section
and the references for details.

5. UPLINK SOLUTION

The uplink presents a relatively simple problem since the
capacity region and the optimal coding strategy are known
even with multiple antennas at the BS and the mobiles [14].
The desired solution is easily seen to be the well-recognized
points on the capacity region corresponding to SD of users
in a particular order. However, for the sake of completeness,
and to strike a parallel with the downlink solutions presented
later, we provide the solution and a self-contained proof as
follows.

The solution to the first uplink problem UPla (preserv-
ing rates) is given by the following theorem.

Theorem 1. The optimal set of rates R} on the uplink is

i-1 -1
I+ (I +> H]-Q;H}> H:Q  H

j=1

R} =log R (11)

where Q] is the optimal input covariance matrix obtained by
waterfilling over the eigenmodes of the effective channel ma-
trix (I + 2;_:11 H;Qf H}L )~Y2H; subject to the power constraint
trace(Q;) = P;.

In other words, an optimal strategy for the uplink is to
use SD (multiuser detection with successive interference can-
cellation) at the base station in the inverse order of the user’s
indices. The new user gets decoded first and his signal is sub-
tracted out so that the existing users do not see him as in-
terference. The highest rate that the new user can support
without affecting existing users is simply given by the single-
user waterfilling solution treating the existing users’ signal as
colored Gaussian noise.

Proof. We start with user 1. Ignoring the rest of the users, the
highest rate he can support with power P; is

R = mfu)d(Xl;Hle +N), (12)
it

where the maximization is over all distributions p;(X;) that
satisfy the power constraint (2). The optimal p{ (-) is the well
known zero-mean vector Gaussian distribution with covari-
ance matrix Q; determined by waterfilling over the eigen-
modes of H;. Let X{* ~ p;. Note that the users’ channels H;
are known and therefore H; is not a random variable in (12).

Now for the user 2, ignoring all but the user 1, from the
multiple access capacity region, we have

Ry + R, < max I(Xl,Xz;H1X1+H2X2+N). (13)
p1(-),p2(+)
But R, and p, are already determined by the user 1. So we
have

R} = m?.))(I(Xl*,XZ;Hlxl* +H,X; +N) — R{, (14)
pat-

RZ* = maxI(Xl*,Xg;Hle* +H, X, +N)
p2() (15)
—I(X;Hi X +N),

R; = mfu)(I(Xz;Hle* + H) X5 +N)
pal-
+I1(X; 5 Hi X + HyXo + NIX) (16)
—I(X;Hi X +N),

R; = maxI(Xz;Hle* + H) X, +N)

pa(*) (17)
+I(X!5H XS +N) = I(X]); Hi X +N),

Ry = m(m)d(xz;Hlxl* +H,X; +N), (18)
pal(-

where (16) follows from the chain rule of mutual informa-
tion and (17) follows from the independence of X|* and X,.
Note that this corresponds to decoding user 2 while treating
user 1 as noise. Thus, at the base station, user 2 is decoded
first and his signal is subtracted to obtain a clean channel for
user 1. The optimal input distribution for user 2 is the water-
fill distribution over the eigenmodes of (I+H,Q; H )~2H,.

Proceeding in this fashion, we obtain the result of
Theorem 1. O

It is interesting to note the simplicity of the solution.
Note that the SD scheme requires only the BS to make some
changes in the way it decodes the received signal. Specifically,
the BS needs to decode the new user and subtract his signal
before proceeding to decode the existing users’ signals. How-
ever, the existing users themselves do not need to do anything
different because of the new user. Thus the new user is com-
pletely invisible to existing users. Thus, we conclude that on
the uplink, an optimal strategy that leaves the existing users’
rates unaffected also leaves the existing users unaffected. In
particular an optimal solution to UP1la (preserving rates) is
also the optimal solution to UP1b (making the new user in-
visible).
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The second pair of uplink problems UP2a (preserving
powers, while using minimum additional power to meet a
new user’s rate) and UP2b (making the new user invisible,
while meeting his rate with minimum additional power) are
also very similar to UPla and UP1b. Clearly for the user 1,
the required transmit power is the one that achieves a ca-
pacity equal to his required rate R, with optimal waterfilling
over his channel. In order for user 1’s transmit power to be
unaffected by user 2, the BS must decode user 2 before user 1.
This also ensures that user 1 is not affected by user 2. There-
fore, user 2 must see user 1 as noise. The required transmit
power for user 2 is the one that achieves a capacity equal to
his required rate R, with optimal waterfilling over his chan-
nel in the presence of colored noise due to the interference
from user 1’s signal. Thus, except that we know the rates and
we need to solve for the transmit powers, the solution is the
same as given by Theorem 1. Again UP2a and UP2b have the
same solution.

6. DOWNLINK

6.1. Successive decoding and dirty paper

We begin this section with a brief summary of the key fea-
tures of the SD and DP schemes. The details can be found in
references.

SD is the well-known strategy, where several substreams
are encoded directly on the channel input alphabet and in-
dependent of each other. Figure 1 shows an SD encoder. If a
user has access to all codebooks, then he can decode any sub-
stream that is encoded at a rate lower than the capacity of
his channel for that substream’s input covariance matrix and
treat other simultaneously transmitted codewords as noise.
This allows him to reconstruct the transmitted codeword for
the decoded substream and subtract its effect from the re-
ceived signal, thus obtaining a cleaner channel for detecting
other substreams.

With this strategy, a user may need to decode several
codewords carrying other users’ data and subtract their ef-
fect before he achieves a channel good enough to decode
the codeword carrying his own data. Notice from Figure 1
that each encoder operates independent of all the other en-
coders.

Now, without loss of generality, we can assume that the
substreams are encoded in some order, one after the other.
This means that while choosing the codeword €' for the
ith substream, the transmitter has precise, noncausal in-
formation about the interference caused by all the i — 1
substreams that have already been encoded. This brings us
into the realm of DP coding. Figure 2 shows a DP encoder.
Notice that unlike the SD scheme illustrated in Figure 1,
where each encoder operates independent of the rest, in
the DP scheme, there is a definite order such that the out-
put of each encoder depends not only on the input sub-
stream data but also on the outputs of the encoders be-
fore it. This is possible because the encoders are collocated
at the base station which allows them to cooperate per-
fectly.

Cﬂ

Substream 1

Substream 2

To channel

FiGure 1: Encoding of L substreams in a successive decoding
scheme.

Substream L

Substream 1

Substream 2

Cl+Cy+---+CP_,

Substream L Encoder L

To channel

Cl+Ci+---+C}

FIGURE 2: Encoding of L substreams in a dirty paper scheme.

The most powerful aspect of the DP scheme comes from
the interesting work of Costa [8]. This paper presented the
following result.

Costa’s dirty paper result
Consider the scalar channel

Y; :X,‘+S,‘+Ni, (19)

where at each instant i € Z*, Y; is the output symbol, N; is
AWGN with power Py, X; is the input symbol constrained so
that E[X?] < Px, and §; is the interference symbol generated
according to a Gaussian distribution. Now suppose the entire
realization of the interference sequence Si,S,,... is known
to the transmitter noncausally, that is, before the beginning
of the transmission. This information is not available at the
receiver. Then the capacity of the channel is given by

C- log<1+ Pl), (20)
Py

irrespective of the power in the interference signal. In other
words, if the interference is known to the transmitter before-
hand, the capacity is the same as if the interference was not
present. The capacity-achieving input distribution is X ~
N (0, Px). Further, the channel input X and the interference
S are independent.

Costa’s result assumed a Gaussian distribution for the in-
terference. The coding scheme described in [8] requires a
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knowledge of the distribution of the interference for design-
ing the codebooks. Thus, if the statistics of the interference
changed from one codeword to another, the receiver would
have to be informed and it would have to switch to a dif-
ferent codebook. Thus, with Costa’s scheme, even though
the capacity of a channel with interference known only to
the transmitter would be the same as without it, the receiver
would have to be informed about any change in the interfer-
ence statistics so it can use the correct codebook.

Recent work by Erez et al. [15] showed that lattice strate-
gies can be used to extend the Costa’s result to arbitrarily
varying interference. Their scheme is able to handle arbitrar-
ily varying interference by communicating modulo a funda-
mental lattice cell and using dithering techniques. It is this
lattice strategy that we imply by the term DP coding in this
paper. For a detailed exposition of the scheme and the re-
quired background, see [15, 16, 17, 18].

Although Costa’s work in [8] and the recent work of Erez
et al. in [15] assume a scalar channel, the extension to the
complex matrix channel is straightforward. A MIMO system
with the channel matrix H known to both the transmitter
and the receiver can be transformed into several parallel non-
interfering scalar channels by a singular value decomposition
[19] of the channel. Thus, it is easily verified that Costa’s re-
sult carries through to the MIMO system with arbitrary in-
terference and we have the following.

Extension to complex MIMO systems
with arbitrarily varying interference

Consider the MIMO channel
Yi = HXi+Si+Ni, (21)

where H is the channel matrix known to both the transmitter
and the receiver and at each instant i € Z*, Y; is the output
vector, N; is AWGN vector with covariance matrix Qy, X; is
the input vector constrained so that Qx = trace(E [X,-X;r 1) <
Px, and §; is an arbitrarily varying interference vector. All
symbols are complex. Now suppose the entire realization of
the interference sequence Si, Sy, . .. is known to the transmit-
ter non-causally. Then the capacity of the channel is given by

[HQeHT + Qv

) P

C= max  log
Qx:trace(Qx)<Px

irrespective of the power in the interference signal. In other
words, if the interference is known to the transmitter before-
hand, the capacity is the same as if the interference was not
present. It is worth mentioning that this does assume that
both the transmitter and receiver have access to a common
source of randomness to allow the dithering operation. The
capacity-achieving input distribution is X ~ A (0, Qx). Fur-
ther, the channel input X and the interference S are indepen-
dent.

Unlike Costa’s scheme, the DP scheme works for arbi-
trarily varying interference. Therefore, no knowledge of in-
terference statistics is required at the receiver. Thus, even if
the interference statistics change from one codeword to an-

other, the receiver continues to operate exactly the same way.
This property in particular is crucial for our FCFS scheduling
problem.

An important feature of the DP scheme is that the
capacity-achieving codes are not the channel input symbols
C/ but the functions used to map the data and the transmit-
ter side information to the channel input alphabet. Since the
coding is not performed on the channel input alphabet itself,
even if one decodes the data carried by a substream, it is not
possible to subtract the effect of the transmitted symbols of
the substream and obtain a cleaner channel. For example, re-
fer to Figure 2. Decoding the ith substream does not allow a
user to reconstruct the transmitted symbols C;' and therefore
the user cannot subtract out G/ to obtain a cleaner channel.

In Figure 2, before encoding substream i, the transmitter
knows the interference from substreams 1,2,...,i — 1. Thus
the capacity achieved by substream i is the same as if sub-
streams 1,2,...,7— 1 were not present. The interference from
substreams i + 1,i + 2,..., L is not known and so it must be
treated as noise.

To highlight the distinction between SD and DP, consider
the following example of a broadcast system with two en-
coded substreams: substream 1 and substream 2. With SD,
especially on a nondegraded broadcast channel, it is possi-
ble that one user can decode and cancel substream 2 before
decoding substream 1, and at the same time another user
with a different channel can decode and cancel substream 1
before decoding substream 2. Thus the decoding order may
vary from user to user. On the other hand, with DP, there is
a fixed encoding order such that the substreams encoded later
achieve the same capacity as if the substreams encoded before
them were not present. Moreover, the substreams encoded
earlier can achieve a capacity no higher than that achiev-
able by treating all substreams encoded after them as noise.
In a nutshell, in SD, the encoding order is irrelevant and
the optimal decoding order may vary from one user to an-
other. In DP, there is no notion of decoding order. Instead,
there is only one encoding order, where each substream has
a unique position relative to every other substream. For each
receiver, this unique order decides which substreams have to
be treated as noise and which substreams do not impact the
capacity of its own substream.

6.2. Solution to DP1 (DP versus SD)

The first problem we address on the downlink is to deter-
mine whether SD or DP is a better scheme in general. Be-
fore stating the solution, we see why it is not trivial. Con-
sider two substreams intended for two different users. With
DP, one of the users (the one encoded second) can achieve
the same capacity as if the other user was not present. How-
ever, the other user (who was encoded first) must treat this
user as noise and his capacity is reduced. With SD on the
other hand, depending on the users’ channels and the input
covariance matrices, several situations are possible. It could
be that the channels are such that each user can decode the
other user’s substream and subtract it before decoding his
own substream. This seems to be better than DP. However, it
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could also happen that the channels are such that neither user
can decode the other user’s substream. In that case, SD would
be worse than DP. Since it is the downlink, one can also opti-
mize the transmit power across users while keeping the same
total transmit power. Further, the rate regions may not be
convex. In such a case, we can make the rate region convex
by including rate vectors achievable with time-sharing. With
all these possibilities, the question as to whether SD or DP is
the better strategy on the downlink does not seem to have an
obvious answer.

With the following theorem, we show that DP is the bet-
ter downlink strategy in general.

Theorem 2. Subject to a sum power constraint, the set of rate
vectors achievable with SD and time-sharing is also achievable
with DP and time-sharing.

In other words, the convex hull of the achievable rate re-
gion with SD is completely contained within the convex hull
of the achievable rate region with DP.

Proof. We prove this by showing that the boundary of the
achievable rate region with SD and time division is contained
within the boundary of the achievable rate region with DP
and time-sharing. Note that in either scheme, the points in
the interior can always be attained by throwing away some
codewords.

The boundary points of the rate region are obtained by
maximizing

Z uiR; (23)

for all fZ such that i = 0 and XX | i = 1.

Let R and RP? denote the sets of rate vectors achiev-
able with SD and DP, respectively. Note that in order to
prove the result of Theorem 2, it suffices to prove that for all

u,

K K
max Zy,-Ri > max Z/‘iRi' (24)
RERDP _| ReRSD j=1

In order to prove (24), we assume without loss of gen-
erality that the users’ priorities are arranged as 1 = y, =
- = pg. We start with the SD scheme and show that DP

can achieve at least the same value of ji - R. Let R be the rate
vector that maximizes 4 - R with SD. Without loss of general-

ity, we can assume that RSP does not use time-sharing. This
is because simple linear programming tells us that a rate vec-
tor corresponding to time-sharing between several different
rate vectors is a convex combination of those rate vectors and
therefore cannot achieve a higher value of 4 - RS than the
best of those rate vectors.

Let the total number of substreams being transmitted be
L. Further, and again without loss of generality, we label the
substreams from 1 to L such that if i < j and substream i

carries data for user u(i) and substream j carries data for
user u(f), then gy ) = pu(j). That is, the substreams are ar-
ranged in decreasing order of the priority of the user whose
data they are carrying. For multiple substreams carrying the
same user’s data, we label them in the order in which they are
decoded by that user.

Now note that no user can decode a substream carrying
data for a user with a lower priority. This is easily proved by
contradiction as follows. Suppose that user A can decode a
substream that carries user B’s data at a rate . Now if user
A has a higher priority than user B, that is, if g4 > yg, then

we can increase (i - RSP by simply having the substream carry
user A’s data instead of user B’s data at the same rate, r so
that,

{ - R(new) = i - " — ppr + par > 4i - R (25)

But this is a contradiction since we assumed that the rate vec-
tor RSP maximizes 4 - R over all rate vectors R achievable with
SD and without time-sharing.

In light of this observation, it is clear that while decoding
substream [, the intended user must treat substreams [ + 1
to L as noise. The substreams 1 to [ — 1 may or may not be
treated as noise depending upon whether it is possible to de-
code and subtract those substreams or not. So with SD, the
rate achieved on the Ith substream is no greater (could be
smaller) than r;, where r; is the achievable rate when the sub-
streams [ + 1 to L are treated as noise while substreams 1 to
I -1 are not present. Next, we show that DP can achieve 7; on
each of these substreams.

Suppose we use DP to encode the L substreams in the or-
der in which they are labeled. Then the Ith substream sees
substreams [ + 1 to L as noise since these substreams are en-
coded after substream I and therefore the interference caused
by them is not known. However, since substreams 1 to [ — 1
have already been encoded, they present known interference
to substream [ and therefore do not affect the data rate that
substream [ is capable of supporting. Thus DP allows sub-
stream [ a rate r; that is at least as large as the maximum al-
lowed rate for that substream in the optimum SD rate vec-

tor that maximizes y - R. This proves (24) and completes the
proof of Theorem 2. O

We can also easily extend this theorem to show that the
achievable rate region of the pure DP scheme includes the
achievable rate region of not only the pure SD scheme but
also any hybrid scheme where some users use SD while oth-
ers use DP. Lastly, we need time-sharing for this result be-
cause the achievable rate region for SD and DP without time-
sharing may not be convex.

6.3. Downlink solutions for DP2a (preserving rates)
and DP2b (making the accommodation of new
users invisible)

In DP2a, we are only requiring rate conservation in dealing
with the Kth user. This leaves open the possibility that, in
meeting the earlier rates, if the earlier users are handled in a
different way than before, we can actually achieve a strictly
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greater rate for the Kth user. Indeed, in some instances, a
greater rate is possible. This DP2a problem is exceptional
in that we encounter the most difficult of the optimization
problems in this paper and a solution is only presented for a
special case. In the general case, based on the conjecture in [9],
a solution can, in theory, be obtained by solving a number of
convex programming problems to obtain the achievable rate
region with DP coding [20]. However, the complexity of this
is exponential in the number of users.

In problem DP2b, we insist that earlier users be treated
exactly as before. Later users must be invisible (phantoms)
to earlier ones. It turns out that, with this added constraint,
we can obtain a complete solution. Moreover, as we will see
in Section 7, a solution is possible for the full multiple base
station setup.

6.3.1.

Next, we address the problem of assigning the maximum rate
to new user K subject to total power P; + P, + - - - + Pk such
that the existing users’ rafes are not affected. So we wish to
allocate the maximum possible rates to each user such that

Solution to DP2a (preserving rates)

(i) user 1 gets R}, the maximum rate possible with power
P; as if no other user was present,

(ii) user 2 gets R}, the maximum rate possible with fotal
power P; + P, such that user 1 still gets R} and as if
users 3,. .., K were not present,

(iii) user K gets Rg, the maximum rate possible with total
power Py 4+ P, + - - - + Pk such that users 1 through
K — 1 still get rates R} through Rg _,.

While the overall optimization seems hard for the gen-
eral multiple antenna broadcast system, limiting the number
of transmit antennas at the base station to one does lead to a
simple solution. A single transmit antenna at the base station
makes the channel degraded and the optimality of Gaussian
inputs is established from Bergman’s proof in [21]. Note that
although Bergman’s proof is for scalar broadcast channels,
that is, broadcast channels with a single transmit antenna at
the base station and a single receive antenna at each user, the
vector broadcast channel with a single antenna at the base
station and multiple receive antennas at each user is easily
seen to be equivalent to the scalar broadcast channel [22].
Thus, in this case, the capacity region is well known and we
do not need the conjecture of [9]. Next, we present this solu-
tion to gain some insight.

With a single transmit antenna at the base station, the
downlink is a degraded broadcast channel. Even with multi-
ple receive antennas, each user can perform spatial matched
filtering to yield a scalar AWGN channel for himself [22]. For
this channel, the broadcast capacity is well known and ei-
ther SD or DP can be used to achieve any point in the capac-
ity region. In particular, all the rate points can be achieved
with SD/DP with the same encoding/decoding order [23].
The user with the weakest channel is decoded/encoded first
so that he sees everyone else as noise. The decoding/encoding
proceeds in the order of the users’ channel strengths so that
weaker users who cannot decode the stronger users are forced

to treat their signal as noise while the stronger users can
decode the weaker users” data, and are therefore unaffected
by the presence of weaker users. Thus, in this case, the en-
coding/decoding order is decided by the users’ channels and
not by the order of users’” arrivals or their relative priori-
ties.

For each channel state, we calculate the optimal rates
and powers in an iterative fashion as follows. We start with
only user 1 in the system with total power P; and find R}
Then we incrementally add users to the system, in the order
2,3,...,K, each time finding the optimal rates for the set of
users in the system with total power given by the sums of the
powers of those users. The ith user is added as follows.

(1) Arrange the users in the order of their channel
strengths.

(2) The users with a stronger channel than user i are not
affected. That is, they continue to use the same power
and rates as before.

(3) The users with a weaker channel than user i have to
treat user i as noise. So the additional power P; avail-
able to the system is distributed among user i and the
weaker users so that the weaker users can sustain the
same rates as before.

The optimal distribution of the additional power among
the new user and the weaker users requires only a one-
dimensional optimization and is easily obtained. Proceeding
in this fashion, after the Kth user has been added, we obtain
the optimal rate and power allocation for all the users in the
system. Note that this is the optimal allocation because the
rate vector obtained in this fashion lies on the boundary of
the capacity region.

While this solution does not affect the existing users’
rates, it does affect the existing users in that they may have
to decode the new user before decoding their own signals if
SD is used. If DP is used, then the existing users may have to
see the new user as spatially colored noise. They are still able
to achieve the same rates as before because they have a higher
power. Thus, the solution does not allow the existing users to
continue operating as before.

Next, we present a solution that gives the new user K the
maximum rate possible with total transmit power P; + P, +
-« + + Px without affecting existing users.

6.3.2. Solution to DP2b (making the accommodation
of new users invisible)

Theorem 3. The optimal set of rates R} on the downlink such
that existing users are oblivious to the presence of the new users
is given by

i-1 -1
1+<I+ZHiQJ.*Hi*> HQ'H!|, (26)

j=1

R} =log

where Q] is the optimal input covariance matrix obtained by
waterfilling over the eigenmodes of the effective channel ma-
trix (I + Z}_:ll H,Qf H;)"V2H; subject to the power constraint
trace(Q;) = P;.
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In other words, an optimal strategy for the downlink that
does not allow new users to affect existing users is to use
DP encoding at the base station in the inverse order of the
user’s indices. The new user gets encoded first so his signal
is a known interference and the existing users’ rates do not
get affected. The highest rate that the new user can support
without affecting existing users is simply given by the single-
user waterfilling solution treating the existing users’ signal as
colored Gaussian noise. A simple example to illustrate the
optimal downlink scheme is presented after the proof.

Proof. DP’s ability to handle arbitrarily varying interference
makes it the obvious choice in this case. Using SD would
require existing users to decode the new user, thus acknowl-
edging the new user’s presence. However, since DP is able to
handle arbitrary interference, it does not matter if the inter-
ference known to the ith user’s encoder comes from users
i,i+1,...,K — 1 or from users i,i + 1,...,K. The rate and
decoding strategy for user i depend only on the interference
from users 1,2,...,i— 1 that came before him and whose sig-
nals must be treated as noise for user i.

Note that time-sharing and rate-splitting are not re-
quired. This is easily seen as follows. With only user 1 in
the system, time-sharing between different rates at differ-
ent powers would decrease his overall rate since capacity is
strictly concave in transmit power (Jensen’s inequality). Rate
splitting is not needed either. Thus user 1 does not use time-
sharing when he is the only user in the system. Since user 1
is oblivious to the presence of new users, the BS cannot use
time-sharing or split user 1’s data into substreams and rear-
range the encoding order of these substreams when new users
appear. The same logic applies to all users.

Thus, no time-sharing or rate-splitting is required and
the optimal DP vector is the one where users are encoded in
the inverse order of their indices. O

To better illustrate the downlink strategy, we present a
detailed example for a system with 3 users. The base station
follows the following sequence of steps in this order.

(1) Determine the rate R;" and the input covariance ma-
trix Q; for user 1 according to equation (26). Note that these
are simply the single-user capacity of user 1’s channel and the
waterfilling distribution that achieves that capacity when no
other user is present.

(2) Determine the rate R} and the input covariance ma-
trix Q; for user 2 according to equation (26). These are
the single-user capacity and the waterfilling distribution that
achieves that capacity for user 2’s channel treating the inter-
ference from user 1 at the output of user 2’s channel as col-
ored Gaussian noise.

(3) Determine the rate R} and the input covariance ma-
trix Q3 for user 3 according to equation (26). These are the
single-user capacity for user 3’s channel and the waterfilling
distribution that achieves that capacity treating the interfer-
ence from users 1 and 2 as colored Gaussian noise.

(4) Encode user 3’s data. That is, generate C3.

(5) Using the knowledge of the interference caused by C3
at the output of user 2’s channel, encode user 2’s data. That

is, generate C. Thus, user 3 presents known interference to
user 2 and does not affect user 2’s capacity.

(6) Using the knowledge of the interference caused by
C7 + Cf at the output of user 1’s channel, encode user 1’s
data. That is, generate Cf'. Thus, users 2 and 3 present known
interference to user 1 and do not affect user 1’s capacity.

Note that in order to determine the users’ optimal rates
and input distributions, we need to proceed in the order
1,2,...,K. However, after that the actual codes are generated
in the order K,K — 1,...,1.

The solution for the downlink is interesting for its sim-
plicity and also for its striking symmetry with the uplink so-
lution.

7. MULTIPLE BASE STATIONS

In this section, we incorporate multiple base stations to
model a multicell environment. We assume that all the base
stations are connected through a high-speed reliable net-
work. It allows perfect coordination and information ex-
change between base stations. Cooperation between base sta-
tions has also been considered previously for the uplink by
Wyner in [24] and for the downlink by Shamai and Zaidel in
[25].

7.1. Uplink

On the uplink, the received signal at the bth base station is
characterized by the following equation:

K
Y =5 HX;+ N, (27)
i=1

where Y% is the received vector at the bth base station, K
is the number of users currently active in the system, Hi[b
is the flat-fading B, X U; matrix channel between user i and
base station b, B, and U; are the numbers of antennas at the
bth base station and the ith user, respectively, and N b is the
AWGN vector at the bth base station.

However, since we allow perfect coordination and infor-
mation exchange between base stations, note that we can
treat all the base stations together as one big base station with
all the antennas. The equivalent description of the received
signal at this base station is given by (1).

K
Y => HX+N. (28)

i=1

Here Y, H;, and N are obtained by stacking up on top of
each other the corresponding Y1?], H,»[b], and NI for all the
base stations. But this brings us back to the single-cell model.
Thus, for the uplink, the optimal solutions for the single cell
simply carry through to the multicell environment.

7.2. Downlink

We extend the downlink solution to DP2b (existing users
oblivious to the presence of new users) with multiple cells.
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The downlink with B base stations is described as

B K
Yi= > H'YX"+N, 1<i<K, 1<bs<B, (29)
b=1 j=1

where Y; is the output vector, X,-[b] and H;[b] are the input
vector and the channel matrix from base station b, and N; is
the AWGN vector for user i. Further, the additional power for
each new user is limited per base station so that

trace [E[X/"'x/""]] < P”, 1<i<K, 1<b<B. (30
Note that a system where each user is assigned to only one
base station is included as a special case by setting the appro-
priate power constraints to zero.

Again, since we allow perfect coordination between base
stations, we can represent the B base stations as one big base
station. Defining

H, = |H" H

| - HY|, 1<i<K, (31)
and X; as the vector obtained by stacking all the X,-[b] into
a single column, we obtain an equivalent representation for
the downlink as (3). Now this looks similar to the single-
cell downlink model we had earlier. However, note that the
components of the input vector X; come from different base
stations. There is a different input power constraint on each
base station. Thus, the solution presented earlier does not ap-
ply in the exact same form. However, a natural extension of
the single-cell downlink solution to multiple base stations is ob-
tained as follows.

Although rate splitting is not necessary, recall that it does
not reduce capacity. We explain the multicell extension of
the single-cell downlink solution in terms of rate splitting
for clarity. Specifically, we split each user’s rate into B sub-
streams. The idea is to perform the waterfill in B stages. At
each stage, we waterfill until a base station meets its power
constraint. Then we null out the antenna gains from that
base station so that no more power is allocated to it and
proceed with the waterfill. This gives us B layers or B sub-
streams that can be encoded using DP. Consider the ith user.
As shown in Theorem 3, this user sees the interference from
users 1,2,...,i — 1 as colored noise and is unaffected by the
interference from users i+ 1,i+2,..., K. Therefore, the max-
imum rate he can achieve is given by

i-1 -1
I+ (1 +> H]Q;‘H;r> H,QH;

j=1

R} = max log

where the maximization is over all input covariance matrices
that satisfy the power constraints per base station. We split
the user’s rate into B substreams to be encoded in the order
B,B —1,...,1 using DP encoding. So the Bth substream sees
all the other substreams as noise, while the first substream’s
rate is unaffected by substreams B, B — 1,...,2. Let the rates

on these substreams be R,[b]* , and the corresponding input
covariance matrices be Q,m *. Then we have

R =R L RIE* 4RI

* [1]% [2] % [B] * (33)
Q' =Q  +QT -+ Q .

The optimal Q" is obtained as follows.
(1) Perform a singular valqe decomposition of the effec-
tive composite channel (I + Z};ll H; Qj* H;f)_l/zHi as

i-1 -1/2
(1 + > HjQf H}) H; = FiAiM;. (34)
j=1

Start water-pouring over the eigenmodes of this channel.
Continue adding power until one of the base stations meets
its power constraint for the ith user Pl-[b]. Without loss of gen-
erality, we assume base station 1 runs out of power for user i.
This corresponds to the first rate split, that is, call this the first
substream for user i. The input covariance matrix obtained in
this way is Q™. Among the B substreams corresponding to
user i, this substream will be encoded last, so it is unaffected
by the interference from the remaining B — 1 substreams. The
rate on this substream is

i-1 -1
RIU* = Jog ‘1+ (1+ ZH,»Q}H}) HQM* Hf
j=1

. (35)

(2) Since base station 1 already used up its power for user
i, we null out the contribution from H,»m to the compound
channel matrix by setting it to zero. Define a new composite
channel
-1 2 3 B
Again, perform a singular value decomposition on the new
composite effective channel

i-1 -1/2
(1 + > H;Q H| + H,Q,““Hj) g

j=1 (37)

_ EUA

Note that this treats the interference from the first substream
as noise. Again, start water-pouring over the eigenmodes of
this new channel until another base station meets its power
constraint. Without loss of generality, we call this base sta-
tion 2. This gives us the input covariance matrix Q,m " on the
second substream. The rate for the second substream is

i-1 -1
RI* = log |T+ (I +> H;Q Hf +H,»Q}”*HJ)
= (38)

% Hi[_l] Q}Z]*Hi[_ll.r
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Proceeding in this fashion, we obtain the input covariance
matrices on all the substreams and the corresponding rates
as well. Combining the substreams, we get the overall rate
and input covariance matrix for each user from equations
(33).

Thus we find that multiple base stations only affect the
downlink solution to the extent that the waterfilling algo-
rithm needs some modification in order to accommodate
the different power constraints per base station. Otherwise,
the solution does not change. In particular, we still use DP
coding, and the ordering of users is the same as before. Also
note that while we used rate splitting to derive the opti-
mal input covariance matrix, it is not necessary to split the
rates into substreams. The same overall input covariance ma-
trix can be used without rate-splitting to achieve the same
capacity.

8. CONCLUSIONS AND DISCUSSION

We addressed the problem of providing best possible rates
to new users as they enter a wireless data network, without
penalizing the existing users. We have dubbed the network a
PhantomNet. This is because of the design theme, that when
a user enters, all subsequent entrants must, to him, be phan-
toms, that is, interference-wise, they must be invisible. For
both the uplink and the downlink, only earlier entrants can
interfere with an entering user. PhantomNet operation in-
volves treating all bases as a single composite base, so that
the actual bases simply serve as multiple antenna sites which
are networked, say with fibers, to and from a single central
processor.

For the uplink we found that, to achieve the phantom re-
quirement, we could make a straightforward application of
the well-established SD strategy where the new user is de-
coded before the existing users. For the downlink, achieving
the invisibility requirement is more problematic. The opti-
mal downlink strategy is to use DP coding, where the new
user is encoded before the existing users. This makes use of
the fact that the bases have knowledge of all signals that are to
be transmitted. This enables simultaneous communication
to the users despite arbitrarily varying interference by sig-
nalling modulo a fundamental lattice cell and using dithering
techniques.

The striking feature of the uplink and the downlink
strategies is their simplicity, and even more than that, their
similarity. In both cases, the new users are forced to see the
existing users as noise while the existing users are not af-
fected by the presence of the users who joined the system
after them. That is, they can continue to operate exactly as
before. The only changes need to be made at the BS. For
the uplink, the base station is the decoder and thus the so-
lution hinges on the optimal decoding order, whereas for the
downlink, the base station is the encoder and the solution is
based on the encoding order. Note that as users leave the sys-
tem, the same structure is maintained. As a user exits, it does
not affect the rates of the users who joined the system be-
fore him. It does help the users who joined the system after

him since they no longer have to face interference from his
signal.

With multiple cells, we found that the uplink was effec-
tively the same as a single-cell system since all the base sta-
tions are treated as one composite base station. Thus the
single-cell strategy extends to multiple cells without loss of
optimality. In contrast to the uplink, while the downlink is
also viewed as a single virtual base station, there is a refine-
ment since each of the actual base stations has a separate total
power constraint. Consequently, the multiple cell downlink
solution is different in that the distinct total transmit power
constraints require a multistage waterfilling solution in de-
termining the optimal input covariance matrix for each user.
At each stage, waterfilling is performed until each base sta-
tion meets its total power constraint. Those base stations that
have already met their power constraints are not considered
in the successive waterfilling stages.

While we drew heavily on published results, the novelty
of our finding is the generality achieved in our setting: mul-
tiple base stations and multiple users with multiple antennas
accommodated at both the transmit and receive sites. We also
proved a general result that extends beyond our framework.
We showed that the achievable rate region with SD and time-
sharing is contained within the achievable rate region with
DP coding and time-sharing.

We stress that PhantomNet uses information theoretic
means for self-organizing the allocation of communication
resources. There is allowance of extreme flexibility in allo-
cating resources to a user. For example, which bases, which
antennas at the bases, (which sectors) and which frequency
bands are made available to a user need not be imposed over
the network area. Instead, resource allocations can be left to
develop, dynamically as needed (on the fly), in a fine-grained
manner as expressed by the information theory formulas
that we have presented. Dynamic choices would emerge as
users come and go. Whenever and wherever and to what ex-
tent such amorphous allocations result in a superior network
compared to imprinting a rigid regular structure from the
outset is a topic for future study. Through constraints, one
is free to impose structure when it looks advisable. A sim-
ulation testbed could be used to study PhantomNet opera-
tion to learn which beneficial features should first be moved
into practice. Such a testbed could also be used to quan-
tify the value of more antennas, more sectorization, and so
forth.
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Multiple-input and multiple-output (MIMO) systems formed by multiple transmit and receive antennas can improve perfor-
mance and increase capacity of wireless communication systems. Diagonal Bell Laboratories Layered Space-Time (D-BLAST)
structure offers a low-complexity solution for realizing the attractive capacity of MIMO systems. However, for broadband wireless
communications, channel is frequency-selective and orthogonal frequency division multiplexing (OFDM) has to be used with
MIMO techniques to reduce system complexity. In this paper, we investigate D-BLAST for MIMO-OFDM systems. We develop
a layerwise channel estimation algorithm which is robust to channel variation by exploiting the characteristic of the D-BLAST
structure. Further improvement is made by subspace tracking to considerably reduce the error floor. Simulation results show that
the layerwise estimators require 1 dB less signal-to-noise ratio (SNR) than the traditional blockwise estimator for a word error
rate (WER) of 1072 when Doppler frequency is 40 Hz. Among the layerwise estimators, the subspace-tracking estimator provides
a 0.8 dB gain for 1072 WER with 200 Hz Doppler frequency compared with the DFT-based estimator.
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selective fading wireless channels. As in [3], when combining

Multiple-input and multiple-output (MIMO) systems
formed by multiple transmit and receive antennas are under
intense research recently for its attractive potential to offer
great capacity increase. Space-time coding, proposed in [1],
performs channel coding across the space and time to exploit
the spatial diversity offered by MIMO systems to increase
system capacity. However, the decoding complexity of the
space-time codes is exponentially increased with the number
of transmit antennas, which makes it hard to implement
real-time decoding as the number of antennas grows. To
reduce the complexity of space-time based MIMO systems,
diagonal Bell Laboratories layered space-time (D-BLAST)
architecture has been proposed in [2]. Rather than try to op-
timize channel coding scheme, in D-BLAST architecture, the
input data stream is divided into several substreams. Each
substream is encoded independently using one-dimensional
coding and the association of output stream with transmit
antennas is periodically cycled to explore spatial diversity.
Orthogonal frequency division multiplexing (OFDM)
systems have the desirable immunity to intersymbol interfer-
ence (ISI) caused by delay spread of wireless channels. There-
fore, the combination of D-BLAST with OFDM is an attrac-
tive technique for high-speed transmission over frequency-

D-BLAST structure with OFDM, we implement the space-
time structure in space-frequency domain to avoid decoding
delay. To decode each layer, channel parameters are used to
cancel interference from detected signals and suppress inter-
ference from undetected signals to make the desired signal as
“clean” as possible. Therefore, estimation of channel param-
eters is a prerequisite for realizing D-BLAST structure and
to a great extent determines system performance. In this pa-
per, we investigate D-BLAST OFDM systems and address the
channel estimation problem.

DFT-based least-square (LS) channel estimation for
MIMO-OFDM systems and simplified estimation algorithm
using parallel interference cancellation have been addressed
in [4, 5], respectively. For D-BLAST OFDM, we propose a
layerwise LS channel estimator that exploits the characteris-
tics of the system structure by updating channel parameters
after each layer is detected so that later layers in the same
OFDM block can be detected with more accurate channel
state information.

In spite of low complexity of DFT-based channel esti-
mators, there is leakage when the multipaths are not ex-
actly sample spaced [6], which induces an error floor for
channel estimation. To reduce the error floor of DFT-based
algorithm and increase estimation accuracy, more taps have
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to be used. Consequently, the estimation problem becomes
ill-conditioned and noise may be enhanced. To improve the
channel estimation accuracy for D-BLAST OFDM, we use
optimum training sequences in [5, 7] not only for initial
channel estimation but also for tracking channel autocorre-
lation matrix and then its dominant eigenvectors. The resul-
tant eigenvectors are then used to form a transform which
requires fewer taps to be estimated and reduces the error
floor. The low-rank adaptive filter 1 (LORAF 1) in [8] is used
for subspace tracking. For both proposed estimators, further
refinement can be achieved by a robust filter [9] to exploit
time-domain correlation.

The rest of this paper is organized as follows. In Section 2,
we introduce D-BLAST OFDM systems. Then, in Section 3,
we derive a layerwise LS channel estimator and analyze the
mean square error (MSE) performance. Next, in Section 4,
we propose an improved channel estimator based on sub-
space tracking. In Section 5, we evaluate the performance of
a D-BLAST OFDM system with different channel estimation
algorithms by computer simulation and major results of the
paper are summarized in Section 6.

2. D-BLAST OFDM SYSTEM

Before introducing the channel estimation algorithm, we
briefly describe D-BLAST for MIMO-OFDM in this section.

The complex baseband representation of a delay spread
channel can be expressed as [10]

ht,7) = > a(t)A(r - ), (1)
!

where o;(t)’s are wide-sense stationary narrowband com-
plex Gaussian processes and are assumed to be independent
among different paths. The channel may vary from block to
block but stays the same within each OFDM block, which
means that the effect of intercarrier interference (ICI) is not
considered. Moreover, we assume the same normalized time-
domain correlation function for all paths, that is,

ofri(At), 1=m,

0, I+ m. )

E{ay(t+ At)af (1)} = {

Without loss of generality, we assume the total average power
of the channel impulse response to be unity, that is,

Zo,z =1 (3)
]

For a MIMO-OFDM system with N; transmit and N, re-
ceive antennas (N, > Ny), the received signal at the kth sub-
carrier of the nth block from the jth receive antenna can be
expressed as

N;
xj[n,k] = > Hij[n, klbi[n,k] + wj[n, k], (4)

i=1
forj =1,...,N,and k = 0,...,K — 1, where K is the total
number of subcarriers of OFDM, b;[n, k] is the symbol trans-
mitted from the ith transmit antenna at the kth subcarrier of

the nth block, H;;[n, k] is the channel’s frequency response at
the kth subcarrier of the nth block corresponding to the ith
transmit and the jth receive antenna, and w; [, k| is additive
(complex) Gaussian noise that is assumed to be independent
and identically distributed (i.i.d.) with zero-mean and vari-

ance p.
Equation (4) can also be written in matrix form as
x[n, k] = H[n,k]b[n, k] + w[n, k], (5)
where
x1[n, k]
x[n, k] = : ,
xn, [, k]
Hy[n,k] Haln k] --- Hyaln k]
Hi[n,k] Haxnlnk] --- Hyaln k]
Hin, k] = . . . ,
Hin, [n, k] - Hyn, [n, k] (6)
bi[n, k]
b(n, k] = : ,
by, [n, k]
wi[n, k]
win, k] =
wn, [1, k]

D-BLAST is an effective MIMO technique [2] that has
been originally developed for a single-carrier system with flat
fading channel. In this paper, we will use this technique for
a MIMO-OFDM system, which can be shown in Figure 1.
From the figure, the set of all subcarriers in an OFDM block
is divided into N; subsets, each with L = K/N; subcarriers.
Each layer, composed of N; such subsets associated with dif-
ferent transmit antennas, is encoded and decoded indepen-
dently. Note that each layer still has K subcarriers, but dif-
ferent subcarriers may be associated with different transmit
antennas. Layers starting at block n are denoted as L,[n],
p = 1,2,...,N;. With some abuse of notations, k is both the
subcarrier index and the symbol index for each layer. Given
the structure of D-BLAST OFDM, the received signal at each
receive antenna is the superposition of the desired signal, the
signals already detected in the previous layers, and those un-
detected.

The signal detection of D-BLAST MIMO-OFDM is also
very similar to the original D-BLAST. Assume that layer
Ly[n], p = 1,2,..., Ny, is to be detected. From (4) we have

xj[gp(n, k), k] = Hy ), [8p (1, k), kb, 1) [gp (n, k), K]

G
+ > Hij[gp(n, k), k]bi[gy(n, k), k]

i=1

N, @)
+ Z Hij[gp(n)k))k]bi[gp(nak))k]
i=fp(k)+1

+wilgp(n, k), k],
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The layer to be detected

Layers not detected

Transmit
antenna 4
Transmit
antenna 3 Ly[n—1]
Transmit
antenna 2 | 3ln— 11| Laln —1]
Transmit
antenna 1 ' Frequency
Layers already detected Block n
Transmit
antenna 4
Transmit Liln]
antenna 3
Transmit Ls[n] Lin]
antenna 2
Transmit
F
antenna 1 requency

Block n+1

- - Subsets of the set of the entire subchannels.
|:| |:| Subsets with the same label constitute a layer.

Ficure 1: D-BLAST MIMO-OFDM structure.

for j = 1,2,...,N;and k = 0,...,K — 1, where f,(k) and
gp(n, k) are associations of the kth symbol of layer L, [#] with
transmit antenna and OFDM block, respectively, that is, the
kth symbol of layer L, [n] is sent from the f,(k)th transmit
antenna via the kth subcarrier of the g, (#, k)th OFDM block.
Note that, in general, a layer spans two consecutive OFDM
blocks, thus g, (n, k) is either n or n + 1. Equation (7) can be
written in matrix notation as

x[gp(n, k), k] = Hy, ) [8p(n, k), kb, 0 [gp (1, ), K]
fplk)-1
+ Z Hi[gp(”)k):k]bi[gp(n:k)ak]

i=1

. (8)

+ Z Hl[gp(n)k))k]bl[gp(n)k))k]
i=fp(k)+1

+wlgy(n,k), k],

where H;[n, k] is the ith column of H[#, k]. Signals from an-
tennas 1 to f,(k) — 1 have been detected and those from an-
tennas f,(k) + 1 to N, are yet to be detected.

First, interference cancellation is carried out by subtract-
ing detected signals from the received signal:

XP[gP(n’k)’k] = X[gp(”lyk); k]
fr(k)—1 ) (9)
— > Hilgy(n,k), k]bilgy(n, k), k],

i=1

where b; [n, k]’s are detected symbols. Then interference from
undetected signals is suppressed by linear combination that

yields the maximum signal-to-interference-plus-noise ratio
(SINR). Let

I:Ip [I’l, k] é (pr(k)+1 [n) k]) pr(k)+2 [I’l, k]) cee HNt [n) k]))
(10)

then from [11], we have the following weighting vector:
vyln k] = (Hp[n, k1H} [n,k] + pI)_lep(k) [n,k]. (11)

Thus, if we assume Gaussian distribution for the residual in-
terference plus noise, the maximum likelihood decoding of
layer L,[n] is to find {by, ) [gp(n, k), k]} that minimizes

M({i)fp(k)[gp(l’l,k),k]; k=0,1,...,K - 1})

K-1

1
Bl ,§0 v [m, k) (Hp [m, kKJHE [m, k] + pI)v,[m, k]

| v}, K (% m, K] =B o s Kb b K [

(12)

which can be solved by standard Viterbi algorithm when
convolutional codes are used. From the above discussions,
channel information is crucial for the signal detection of D-
BLAST MIMO-OFDM. Therefore, we focus on channel esti-
mation in the paper.

3. LAYERWISE CHANNEL ESTIMATION

In this section, we develop a layerwise LS channel estimation
algorithm and analyze its performance.

3.1. Layerwise least-square channel estimation

Due to layerwise detection in D-BLAST, usually only par-
tial knowledge of the symbols transmitted from all transmit
antennas at one OFDM block is available after decoding of
each layer. To exploit the characteristics of D-BLAST struc-
ture, channel estimation is carried out each time a layer is de-
tected. Since channel responses are independent among dif-
ferent transmit-receive antenna pairs, we consider the chan-
nel estimation for one particular receive antenna and omit
the receive antenna subscript j in (4) to get

N
x[n, k] = ZHi[n, klbi[n, k] + w[n, k]. (13)

i=1

After detection of layer L, [n], we estimate the channel re-
sponses at the nth block. Since only part of all the subcarriers
of the current OFDM block have signals from all transmit an-
tennas detected, we replace the received signals at subcarriers
not fully detected with those of the previous OFDM block to
form a complete received signal vector, due to the fact that
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H;[n,k] = Hi[n — 1, k]. Define 3.2. Performance analysis
Here, we briefly analyze the performance of the above chan-
() x[n-1,k], kex® nel estimator for D-BLAST OFDM. Let
2P n, k] = (k] L
x[n, k], else,
AP [, k) 2 {{%[n - Lk], kez® P 2 biln—1,k], kex®
bi[n, k], else, Py 0, else, (24)
a(p) T A(p) A(p)
where Z(P) = {k;gp(n,k) = nand f,(k) < N;} is the set of §;" [n] = diag {§;"[n,0],...,8" [n, K — 1]},

subcarriers with signals not fully detected.
It is observed that with some leakage [6], channel fre-
quency response can be approximated as

x-1
Hi[n,k] = > hi[n, JW{, (15)
1=0

where Wi = e 7@K v > [t4/t], t4 is the maximum de-

lay spread and t, is the sampling interval which is equal to
1/KAf with A f being the tone spacing.

Let
2P[n] = (29[n,0],...,2° [n,K = 1])", (16)
D [n] = diag{d" [n,01,...,d" [n,K — 11},  (17)
1 1 - 1
1 Wx  --- wi!
U=1. - : ’ (18)
iWKl)'_'. W)(IKI)
AP () 2 (B [(n), B [(n],.. .68 )", (19)
B [n) 2 (WP (1,0, P [, — 11) " (20)

The LS channel estimation is to minimize the following cost
function [4]:

C(h?;i=1,2,....N, - 1})
2 (21)
2P [n ZDP) Uh(P [n]
Then
H(P)[n] — (T(p)” [n]T(P)[n])flT(P)H [n]Z(P)[n], (22)
where
T [n] = (DY [n]U, DL [n]U,..., DL [1]U).  (23)

The above estimate is further refined by applying a robust
estimator for OFDM systems in [9], which makes full use
of the correlation of channel parameters at different OFDM
blocks.

GP[n] 2 (T(P)H[n]T(P)[n])_lT(P)H[n]Sf.P)[n],

The MSE of the channel estimator is

hin)|*}

“[n] T [n])"!

MSE®) [n] & LE{H}](P) [n]

= (»)
NtXTr{ p(T

+ G [n] E(Ah[n] AW [n]) G [n]],

(25)

where E{-} denotes expected value of a random variable.
Clearly the first term in the above equation results from noise
and the second term is due to channel variation.

From the above discussion, the MSE of the channel esti-
mate depends on the inverse of T®)" [1]T® [n], which relates
to the condition number of T [n]T® [n]. It can be proved
in the appendix using the bordering theorem for Hermitian
matrices [12] that condition number of T®¥" [#]T® [n] in-
creases with . It implies that the channel estimation becomes
more ill-conditioned as the number of parameters to be esti-
mated increases. Thus we should choose the number of pa-
rameters as small as possible while preserving energy of the
channel response, which is the reason for tracking the opti-
mum transform matrix U in Section 4.

4. SUBSPACE TRACKING

The major problem of decision-directed channel estima-
tion is the randomness of the symbol sequences during
data transmission mode. For example, when the symbol se-
quences from any two of the transmit antennas are the same
or very close, it is impossible or very hard to distinguish
channel responses corresponding to different transmit an-
tennas. The greater the number of transmit antennas, the
more likely the channel is unidentifiable, or the more ill-
conditioned channel identification is. Furthermore, to re-
duce the leakage of decision-directed DFT-based channel es-
timation in MIMO-OFDM systems, the number of taps rep-
resenting channel frequency response has to be increased,
which will make channel identification more ill-conditioned
at the same time, as shown in Section 3. Moreover, increas-
ing the number of taps makes the inverse operation of matri-
ces in (22) more complicated. Hence, it is essential for low-
complexity and high-performance channel estimator to re-
duce the number of parameters to be estimated while pre-
serving most of the energy of channel frequency responses
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during the data transmission mode. Therefore, we will de-
velop subspace tracking approaches to estimate channel pa-
rameters. And since the subspace only depends on channel
autocorrelation matrix, which is time-invariant or chang-
ing very slowly, we apply subspace tracking only to training
blocks and use the derived transform matrix instead of U de-
fined in (18) for channel estimation during data transmission
mode.

Let the K X K channel autocorrelation matrix (Ry )k, x, =
E{H[ki]H*[k,]} have singular value decomposition as fol-
lows:

Rf = UfAU? , (26)

where Uy is a K x K unitary matrix and A = diag{A,,
Ay Ak, A= Ay = - - - > 0. From [13], optimum rank-y
estimator is to select eigenvectors uj, uy, ..., uy correspond-
ing to the y biggest eigenvalues. Then the optimum rank-y
transform matrix is

Ugpt = (up,mp,..., ). (27)

Therefore, channel autocorrelation matrix is needed here for
the optimum low-rank channel estimation.

To obtain the channel autocorrelation matrix, first we
have to separate channel responses H;i[n,k]’s for differ-
ent i’s. This can be done by appropriately designing the
training block. In [5, 7], optimal training sequences have
been proposed to maximally separate frequency responses
of different transmit antennas while preserving most of the
energy of each channel response. The training sequences
are

biln, k] = by [n, k] WM Vk, (28)

fori=1,2,...,N;, where Ky = | K/N;| > [t4/t] is the num-
ber of taps used to represent the channel response as a DFT
transform. During the training period, we choose K; taps
in approximating the channel response according to (15).
Since the leakage introduced by the DFT-based approxima-
tion is decreased as K increases and the well-designed train-
ing sequences provide maximum separability, we can set Ko
to be big enough such that the leakage is negligible while in-
troducing little aliasing between different channel responses
[5]. The procedure to separate channel responses can be de-
scribed in Algorithm 1.

The dimension y of the subspace can be either deter-
mined by minimum description length (MDL) criterion [14]
that is not accurate for low signal-to-noise ratio (SNR) or
slow channel variation, or by the approach in [13, 15] which
argues that the essential dimension of a random signal is
about the product of the bandwidth and time interval of
the signal plus one. We just choose the latter approach for
its simplicity and effectiveness; therefore, y = [t4/t;]. Sub-
space tracking approach can be summarized, which is in
Algorithm 2 modified LORAF 1 in [8].

It should be noted that the robust channel estimator
depends only on the subspace spanned by the dominant

(a) During each training block, #[n, k] = x[n, k] - bf [n, k].

(b) Perform IFFT on (1[n,0],%(n,1],...,1[n, K — 1])
to get ({[n,0],{[n,1],...,{[n,K — 1]).

(c) For the channel response of transmit antenna i,
circularly left shift ({[#,0],{[n,1],...,{[n, K — 1])
by (i — 1)Ky to get ({'[n,0],{'[n,1],...,{" [n,K = 1]).
Let ¢ [mk] 2 {'[n, k], kel0,Ky—1],

0, else.

(d) A channel estimate H;[#, k] is obtained by performing
FFT on (" [n,0],{" [n,1],...,{"[n,K — 1]).

ArcoriTHM 1: Channel separation using the optimum training se-
quences.

Initialization:

(Ui[0Dy = WE/VK, 0<k<K-1,0<l<y-1;
O0]=L0<a<1;

During each training block:

inputv;[n] = (H;[n,0], Hi[n,1],...,Hi[n,K — 1])7,
ci[n] = Uf'[n - 1]v;[n],

Ai[n] = aAi[n = 1]®i[n — 1]+ (1 — @)vi[n]cf [n],
A;[n] = Ui[n]R;[n] QR decomposition,

®;[n] = U'[n - 1]U;[n],

Low-rank channel approximation:

vi[n] = Uj[n]h;[n]

ALGORITHM 2: Subspace tracking for channel estimation.

eigenvectors rather than the particular eigenvectors. Let
lA]i[n] = Uothi[n]y (29)

where Q;[n] is a y X y unitary matrix which accounts for
the change of dominant eigenvectors without changing the
subspace. Substituting (29) into (25), it can be easily verified
that the MSE of the channel estimator is invariant to rota-
tion of the dominant eigenvectors, which can also be seen in
[9]. Therefore, it is the dominant subspace spanned by chan-
nel frequency responses that affects the performance of the
subspace tracking-based channel estimator.

5. SIMULATION RESULTS

In this section, we evaluate the performance of differ-
ent decision-directed channel estimation algorithms for D-
BLAST OFDM by computer simulation. Typical-urban (TU)
channel with Doppler frequency f; = 40 and 200 Hz is used
in our simulation. Performance of the proposed 7-tap lay-
erwise subspace tracking estimator is simulated. As a com-
parison, performances of systems with ideal channel param-
eters, 7-tap layerwise estimator with optimum transform, as
defined in (27), and 10-tap layerwise DFT-based estimator
with significant tap selection (STS) [4] are evaluated. The
performance of the traditional 10-tap blockwise DFT-based
channel estimator is also given, where channel estimation is
carried out once per OFDM block and the estimated chan-
nel parameters are used for the detection of the next OFDM
block.
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Four transmit antennas and four receive antennas are
employed to form four D-BLAST layers. Channel parameters
corresponding to different transmit and receive antenna pairs
are assumed to be independent but have the same statistics.
The system bandwidth of 1.25 MHz is divided into 256 sub-
channels: 2 subchannels on each side are used as guard tones,
and the rest of the subchannels are used for data transmis-
sion. The symbol duration is 204.8 ys and another 20.2 ys is
added as cyclic prefix (CP), resulting in a total block duration
of 225 us. A 16-state binary-to-4-ary convolutional codes of
rate 1/2 with the octal generators being (26,37) [16] is used
to encode the information bits in each layer. Four tail bits are
used for trellis termination, leaving 248 information bits per
layer. The encoder output is interleaved before sending to a
transmit antenna at a particular subcarrier.

In each independent simulation, 2000 OFDM blocks of
data are transmitted with 1 training block sent every 10
blocks. The performance averaged over independent sim-
ulations is evaluated. For channel estimator with subspace
tracking, the first 50 blocks use 10-tap DFT-based estima-
tor with STS. The estimated channel parameters are used for
initial subspace acquisition so that initial training overhead
can be saved at the expense of negligible performance loss
for continuous data transmission. Then channel estimation
is switched to the estimator with subspace tracking and the
subspace is updated at each training block. The forgetting
factor « is chosen to be 0.995.

Figures 2a and 2b compare the word error rate (WER)
and bit-error-rate (BER) performance of different channel
estimation algorithms when Doppler frequency is 40 Hz. Of
all estimators, the blockwise DFT-based channel estimator
has the worst performance since it uses channel state in-
formation at the previous OFDM block for detection and
thus is most susceptible to channel variation. The blockwise
DFT-based estimator requires about 1 dB more SNR than the
layerwise DFT-based estimator for a WER of 1072 and its
WER curve levels off quickly at high SNR’s since its perfor-
mance is bounded by channel variation. Among layerwise es-
timators, the subspace tracking estimator, requires 0.7 dB less
SNR than the DFT-based estimator for 10~ WER. Figure 2c
shows how MSE evolves as the layerwise channel estimation
progresses. From the figure, we can see that for all layerwise
channel estimation methods, the most significant MSE im-
provement is seen after detection of the first layer of the cur-
rent OFDM block, which is 0.7dB at SNR = 16dB, com-
pared with about 0.16 dB per layer improvement for layers
detected later with the proposed subspace tracking channel
estimator.

For f; = 200Hz, from Figure 3 we see that the perfor-
mance difference between the blockwise channel estimator
and layerwise estimators is even bigger now that the system
performance is dominated by fast variation of channel pa-
rameters. The SNR gain for using layerwise subspace track-
ing estimator is about 0.8 dB for 1072 WER compared with
layerwise DFT-based estimator. It is clear that as the channel
variation rate increases, the MSE performance improvement
with layerwise channel estimation becomes more significant,
with the successive MSE improvements being 3.4 dB, 1.2 dB,

100 P

— 10-tap blockwise DFT est. with STS
—0— 10-tap layerwise DFT est. with STS
—8- 7-tap layerwise subspace tracking est.
—o— 7-tap layerwise optimum basis est.
—x— Ideal parameters
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)
b

1073 ¢

1074 L L
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FIGURE 2: (a) WER, (b) BER, and (c¢) MSE of D-BLAST systems for
channels with TU delay profile and f; = 40 Hz.
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FIGURE 3: (a) WER, (b) BER, and (c) MSE of D-BLAST systems for
channels with TU delay profile and f; = 200 Hz.

1.2dB, and 1dB at SNR = 16dB, as observed in Figure 3c.
For both f; = 40 and 200 Hz, the subspace tracking estima-
tor can effectively reduce the error floor thus provide better
performance than that of the DFT-based estimator.

6. CONCLUSION

MIMO-OFDM is a promising technology that embraces ad-
vantages of both MIMO system and OFDM, that is, immu-
nity to delay spread as well as huge transmission capacity.
In this paper, we apply the D-BLAST structure to MIMO-
OFDM systems and develop a channel estimator that up-
dates the estimated channel parameters in a layerwise fash-
ion. Since we update channel estimation using detected sig-
nals to improve detection of the rest of the signals in the cur-
rent OFDM block, the system is more robust to fast fading
channels when compared with the traditional blockwise es-
timator. To further reduce the channel estimation error, we
use the training blocks not only for channel estimation, but
also for tracking of the dominant subspace spanned by the
channel frequency response to reduce the number of param-
eters to be estimated during data transmission mode. Thus,
additional performance improvement is obtained by using
subspace tracking for the layerwise estimator, which is about
0.8 dB for 1072 WER with f; = 200 Hz.

APPENDIX

Let U" = (U, uy41), and from U’, we define T%?)'[n] as in (23)
by substituting U’ for U. We will show that

cond (T®" [n]T? [n]) = cond (T?" [n]TP[n]), (A.1)
where cond(-) means condition number of a matrix.

Proof. Let the eigenvalues of TP [n]T® [n] be YLz y =
- 2 yyn, > 0. From (23) and by exchanging columns which
does not change the eigenvalues, we have

TP [n] = (TP [n], Y [n]), (A.2)
where

YO [n] = (DY [n]uges,..., DY [n]uyes ),

) , T®" [T [n] T [n]YP)[n]
(p)H (p) =
o <Y<P>”[n1T<P>[n1 YO [n]YP[n] )
(A.3)
Let the eigenvalues of T?)" [n]T® [n] be y| = y5 = - - - =

4

Y+, > 0. By the bordering theorem for Hermitian matri-
ces [12], we have

VIZY =P = VE)(+1)N¢ >0, (A.4)
thus
cond (T®" [n]T® [n]) = -1 — » YL
Y(X+1)Nf YN (AS)

= cond (T?" [n]T® [n]). O
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The problem of blind multiuser detection for an asynchronous multicarrier DS-CDMA system employing multiple transmit and
receive antennae over a Rayleigh fading channel is considered in this paper. The solutions that we develop require prior knowledge
of the spreading code of the user to be decoded only, while no further information either on the user to be decoded or on the
other active users is required. Several combining rules for the observables at the output of each receive antenna are proposed
and assessed, and the implications of the different options are studied in depth in terms of both detection performance and
computational complexity. A closed form expression is also derived for the conditional error probability and a lower bound for the
near-far resistance is provided. Results confirm that the proposed blind receivers can cope with both multiple access interference
suppression and channel estimation at the price of a limited performance loss as compared to the ideal linear receivers which
assume perfect channel state information.

Keywords and phrases: MC CDMA, multiple antennae, MIMO systems, channel estimation, timing-free detection, near-far

resistance.

1. INTRODUCTION

Multicarrier code division multiple access (MC-CDMA)
has been conceived as a transmission format which retains
the potentials of direct sequence CDMA (DS-CDMA)—
and in particular its resistance to multipath effects induced
by the radio channel as the communication rate grows
larger and larger [1]—while relaxing some very demand-
ing requirements posed by its competitor. In particular,
the efficacy of DS-CDMA on wireless channels is mainly
due to the recombination of multiple rays so as to in-
crease the average signal-to-noise ratio, but this inevitably
poses the problem of a tight synchronization so as to avoid
heavy mismatch losses in the replicas-retrieving process.
MC-CDMA, instead, by partitioning the available band-
width in many subbands, no larger than the channel co-
herence bandwidth, and allocating in each subband inde-
pendently modulated digital signals, achieves two advan-

tages, that is, (a) the propagation channel in each sub-
band is frequency-flat, and (b) the symbol duration for the
data signals occupying the frequency subbands grows lin-
early with the number of subbands, thus implying that the
need for fast electronics and high-performance synchroniza-
tion schemes is less stringent. The combination of the MC
concept with the CDMA technology has led to the birth
of three main access schemes, that is, multitone CDMA
(2, 3], MC CDMA [4, 5, 6], and MC DS-CDMA [7, 8, 9,
10].

On the other hand, both MC-CDMA and DS-CDMA are
expected to support, in future wireless networks, extremely
high data rates, which may be in contradiction with their
inherent spectral inefficiency. A viable mean to cope with
this problem is to resort to multiple transmit and receive an-
tennae. Indeed, recent results from information theory have
shown that the capacity of a multiantenna wireless commu-
nication system in a rich scattering environment grows with a
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law approximately linear in the minimum between the num-
ber of transmit and receive antennae [11]. Roughly speak-
ing, multiple transmit antennae generate a spatial diversity
which can be successfully exploited at the receiver end to
improve performance, especially if space-time coding tech-
niques are employed at the transmitter [12]. Motivated by
these considerations, many studies have been recently pub-
lished for either single-user or multiuser multiantenna sys-
tems [13, 14].

All of these studies, though, assume either perfect chan-
nel state information (CSI) or error-free estimation thereof.
The problem of evaluating the cost of such an information
has been only recently considered [15] and the main results
are as follows: (a) the training and the data transmission
phase should be carefully designed in order to ensure reliable
transmission in a multiantenna system on wireless channel;
(b) in the large signal-to-noise ratio regime, the length of
the training phase should be in the order of the number of
transmit antennae; (c) in the region of low signal-to-noise
ratios, about half the transmission time should be devoted
to training, and, moreover, the capacity of trained systems is
far from the optimal one. It is also worth pointing out that
in a CDMA multiaccess network, the signal-to-interference-
plus-noise ratio is expected to be quite low, at least as far as
the network load increases, whereby the task of reducing—if
not nullifying—the training phase is more and more strin-
gent.

Motivated by these results, the present paper deals with
the problem of blind multiantenna systems employing an
MC DS-CDMA modulation format.! Since the prior uncer-
tainty as to the CSI results in a complete lack of knowledge
of the spatial signatures of both the user of interest and of
the other users, while knowledge of the spreading code of
all of the active users can be reasonably assumed only at the
“base station” of an isolated cell, we consider the more gen-
eral scenario where the receiver cannot avail itself of any prior
information beyond the spreading code of the user of in-
terest, and is thus faced with asynchronous cochannel inter-
ference (whether from the same cell or from nearby cells);
thus differential encoding-decoding is assumed, as a result of
the lack of a phase reference. For the sake of simplicity, we
also consider uncoded transmission, even though the results
can be extended to account for space-time block coding. The
main contributions of this paper can be summarized as fol-
lows.

(1) We develop a signal model for an MC DS-CDMA sys-
tem operating over a fading dispersive channel and
employing multiple transmit and receive antennae that
resembles the signal model developed in [16, 17, 18]
with reference to a single-antenna DS-CDMA system
operating in the same conditions.

(2) Based on the above analogy, we extend the subspace
techniques developed in [16, 19] to the multiantenna

IThe results presented here can be easily extended to the multitone
CDMA and to the MC-CDMA techniques as well.

MC DS-CDMA system and, moreover, we propose
several combining schemes to integrate the statistics
observed on each receive antenna branch. It should be
noted that the resulting receivers are blind and timing-
free, that is, they do not require any information be-
yond the spreading code of the user to be detected. In-
terestingly, not even the propagation delay and initial
transmitter timing offset for the user of interest is re-
quired.

(3) As a by-product of the previous derivations, we also
introduce a subspace-based technique which enables
blind channel estimation up to a complex scaling fac-
tor.

(4) We also provide a thorough performance analysis of
the proposed receivers; in particular, we derive closed-
form formulas for the conditional error probability
and for the near-far resistance, given the channel im-
pulse response realization. It is worth noticing that the
methodology outlined here is quite general and can be
used to express the performance of any linear receiver
in differentially encoded systems.

The rest of the paper is organized as follows. Section 2
outlines the system model, while Section 3 is devoted to the
development of the detection structures. In Section 4, the
statistical analysis of the receiver is provided, while Section 5
is devoted to the discussion of the numerical results. Finally,
concluding remarks are given in Section 6.

Notation

In the following, (-), (-)7, and (-)" denote conjugate, trans-
pose, and conjugate transpose, respectively; M,x,(C) is the
set of all the m X n-dimensional matrices with complex-
valued entries. E[-] denotes statistical expectation; R(-)
and J(-) denote real part and coefficient of the imaginary
part, respectively; column-vectors and matrices are indicated
through boldface lowercase and uppercase letters, respec-
tively. The term Im(A) is the image of A, that is, its col-
umn span, while Ker(A) is the null space of A, that is, the
orthogonal complement of Im(A); dim(S) is the dimension-
ality of the subspace S; the symbols (-,-), ®, and © de-
note the canonical scalar product, the Kronecker product,
and the Schur (i.e., component-wise) matrix product, re-
spectively; I, denote the identity matrix of order n; O, , and
0,, are the m X n-dimensional matrix and m-dimensional
vector with null entries, respectively, and diag(a) is a di-
agonal matrix containing the elements of the vector a on
its diagonal; A* is the Moore-Penrose generalized inverse of
A. supp{f} is the support of the function f, that is, the
set of its arguments for which f is not zero and ur(7)
is the unit height rectangular waveform of support (0, T).
N (u, C) denotes the distribution of a Gaussian vector with
mean p and covariance matrix C while Q(-) is the area
under the leading tail of standard Gaussian pdf; finally
Qi(+,-) and Iy(-) are the Marcum function and the modi-
fied Bessel function of the first kind and order zero, respec-
tively.
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FIGURE 1: Scheme of a communication system with multiple transmit and receive antennae.

2. SYSTEM MODEL

The general scheme of an MC communication system
equipped with multiple transmit and receive antennae is
shown in Figure 1. A block of n; symbols is converted from
serial to parallel and each symbol feeds a (spatially) separate
antenna. Thus, the n; symbols are transmitted in parallel,
achieving an n;-fold increase in the data rate, and received
on n, spatially separated receive antennae, providing an n,th-
order receive diversity to combat fading.

The complex envelope of the signal received on the rth
antenna can be formally written as

o-(17)
K-1 P-1 n—1

= > STAR S PR (- 7k — ITy) * K (1) + wi (1),

k=0 1=0  t=0
(1)

where

(1) K is the number of active users;

(2) P isthe length of the transmitted frame;

(3) Ak is the amplitude of the signal transmitted by the kth
user;

(4) bE(D) is the symbol transmitted by the tth antenna of
the kth user at the [th bit interval;

(5) ﬁf(r) is the signature assigned to the tth transmitter of
the kth user;

(6) Ty is the bit duration;

(7) 7% is the kth user’s overall delay, that is, the sum of
the kth user transmission delay and of the propagation
time through the channel;

(8) h’,{ (1) is the channel impulse response from the tth
transmit of the k-user to the rth receive;

(9) w,(7) is the additive white Gaussian noise on the rth
receive antenna, independent for different antennae,
with power spectral density 2.M,.

On the other hand, the signatures in (1) are

1

N-1 M-1
BE(r) = D D k(M + m)yu (v — mT.) ™07, (2)
n=0 m=0

where

(1) N is the number of subcarriers provided to each user;

(2) M is the spreading gain on each subcarrier (hence
PG = MN is the overall processing gain);

(3) ck(),1=0,...,MN — 1, is the spreading sequence as-
signed to the tth antenna of the kth user;

(4) T. = Ty/M is the chip duration;

(5) yix(7) is a unit-energy chip waveform supported in
[0, At T¢], with bandwidth By.; Ay, is a suitable integer
so that the signal energy content outside By, is negligi-

ble;
(6) fusn=0,...,N—1,are the frequencies assigned to the
subcarriers.

Notice that, denoting by €F the energy per bit of the kth user,

we have A% = \[26f/NM.

The number of subcarriers N employed in an MC sys-
tem and their spacing A f have to be properly chosen, based
on the channel characteristics. Indeed, if Beoper is the coher-
ence bandwidth of the channel, N should be chosen so as to
ensure fading flatness in each subband and fading indepen-
dence between adjacent subbands; thus, if 2W is the overall
bandwidth assigned for transmission, N, B, and Af result
from the following set of constraints:

(i) Bsc < Beoher: fading flatness on the single subband;
(ii) Af = Beoher: fading independence for different sub-
band;
(iii) (N = 1)Af + By, = 2W: available bandwidth.

For given N, the processing gain on each subcarrier is fixed
(M = PG/N), and the channel frequency response can be
approximated as follows:

HE (Pl (f — W) = jZ_:Hlfr(fn)uAf (f - (f" B %))

- ngfr,nuAf(f - (f" - A%))

(3)

where f, = (n — (N — 1)/2)Af. We assume a slowly fading
channel, namely, whose coherence time exceeds the packet
duration PTy,. As to HF,,, it is modelled as a sequence of
complex standard Gaussian random variables, independent
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FIGURE 2: General A/D converter for an MC DS-CDMA system.

for all n; additionally, due to the spatial separation, they are
also independent for different ¢, r, and k.

At the receiver side, the signal observed on each antenna
is converted to discrete-time. According to the scheme in
Figure 2, there are N branches (i.e., as many as the number
of carriers) in the anolog-to-digital converter (ADC), each
one consisting of a mixer and of a low-pass filter (1),
whose output is sampled every T, seconds. Ideally, the fil-
ter ¥,x(7) should be strictly bandlimited, with bandwidth
not smaller than B, and not larger than Af; in practice, it
is realized through a waveform with finite support [0, A, T]
and bandwidth extending between B, and Af. It is also re-
quired to have a Nyquist autocorrelation, that is, ry, (jTc) =
g ¥rx(D)¥,,(r — jTe)dr = 8(j): this implies that output
noise samples are uncorrelated. At the nth branch, the output
of the low-pass filter at the rth antenna is written as follows:

(Qr (T)eiszﬂ) * l//rx(T)

K-1 P-1 nt
Z Zb"(l
=0 =0 t=0

M-1
KM + m)yy (1 — 7% — mT, - ITy)
-0 (4)

(htr(T zmﬂr) * Yre(T)
( T)e_sznr) * Wrx(T)
-1 p- n—1
Z Ak Z bi‘(l)s’t‘,r,n(r
1=0

Trn (T) =

X

*

o+

- lTb) + Wr,n(T))

HM

where

M-1

s’t‘m(r) = Z cf‘

m=0

= ARy (1) * (ME, (1 = T)e 20T %y, (7)
= Htk,r,n(Pk(T - Tk)-

(nM + m)gt’f,,n(r - mT.),

8hon(T) )

In this equation, ¢*(7) = AFy.(7) * ¥,.(7) and use has

been made of the fact that the channel is flat on each subcar-
rier. It is worthwhile noticing that

(i) in (4), the only substream surviving filtering is the nth
one as, due to the bandlimitedness of the transmitted
chip waveform, there is no intercarrier interference;

(ii) all of the unknown parameters (Hf”, and 7%) due to
propagation through the channels and users transmit-
ting delay have been shoved in the unknown functions
(D).

Notice that the prior uncertainty as to the delay parameter
7k derives from the initial timing offset of the kth transmit-
ter and from the propagation delay. However, while the latter
contribution could be easily absorbed in the channel impulse
response, the former should be explicitly accounted for in the
context of an asynchronous network: this fact, coupled with
the use of strictly bandlimited chip waveforms, poses some
limitations on the maximum users number that will be dis-
cussed in greater detail later on in the paper.

Upon sampling at chip rate, the signal 7, ,(7) is converted
to the sequence

“1p-1
trn(Te) Z ZAk Z b,’f(l)s’f’m(ch—
k=0 I=0 ¢

-0

lTb) + Wrn (jTC).
(6)

As ¢*(1) has a compact support in [0,AT,], with A = A, +
Ay, according to (5), we have

supp {g{fnn(‘r)} = [%,7F + AT.] c [0, T, +2T.],
with g, ,(0) = gk, (T, +2T.) =
supp {Slti,’n(‘l’)} = [t TP+ AT+ (M - 1)T,] (7)

C [O,ZT;, + TC],
with s, ,(0) = ¢, (2T, + T.) = 0

where the inclusions stem from the assumption that 7% +
A — 2T. < Tp. Thus, assuming that we are interested in
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decoding the information symbols transmitted by the Oth
antenna of the Oth user, as sf,,(jT. — iTy) # 0 only for
j=iM+1,...,(i+2)M, bg(i) can be detected through the
windowed observables r, ,(j T;), for j = iM+1,...,(i+2)M,
that can be arranged in the vector

rr,n(i) = (rr,n(in + Tc) e rr,n((i"' Z)Tb))T € (CZM~ (8)

Stacking now the discrete-time version of gf,.,(7) into the
vector

T
gffc,r,n = (gtlfr,n(TC) e gf,r,n(Tb + TC))
= Hiy (¢ (Te = 7%) - - oM (T4 T = 7)) )

= sz,r,n‘Pk e cM+
and defining the following matrices:

k
Ct,n,O

cK(nM) 0 0
cK(nM +1) ck(nM) 0

=lkmM+M-1) FaM+M -2) ck(nM)
0 KM+ M -1) (M +1)
0 0 KM +M -1)
€ Momsm+1(C),
k
Ch,1 = O ) e Momxm+1(C),
o Onm+1
(0]
Clt(,rm—l = ZZI’MH € Momsm+1(C),
Ct,n,OH

(10)

where C’{n)OH and C’f,n,OL € Murxm+1(C) contain the M up-
per and M lower rows of the matrix Cﬁmo, respectively, the
discrete-time version sf, ,(jT. — ITp), ] = i— 1,4, i+ 1, of the
signatures sf, (T — IT}) are represented by the vectors

SFrnot = (s (TO+Te) -+ s, (3Ty))"
= Cfy18trn€ CY,
Strno = (ko (T0) - -, (2T0)"
= Cfuo8trn€ CV,
= (sk (= Tp+To) - sk, (Ty)"

_ Ck k 2M
- Ct,n,Hgt,r,ne C.

k
St,r,n,+1

(11)

Thus, the discrete-time observable r,,(i) in (8) can be
recast as

K-1 1 ni—1
tea(i) = D > > bF(i+Dst, , +Weali), (12)
k=0 [=—1 t=0

where

Win(i) = (Wen (iTy + Te) = wrn (1 +2)T3)) )
1
~ N (0231, 2N Lon ).

Stacking up the vectors corresponding to the N sub-
carriers, we obtain the following discrete observable at the
rth receive antenna:

rr,O(i)
(i) = :
rrN-1(1) (14)

K-1 1
=2 >
k=0 I=—1

n—1
b i+ Dsy,; +w, (i) € CMN,
t=0

where we have let

k
st,r,O,l
k .
st,r,l -
k
St,r,N—l,l
_ k ok 2MN
- Ct,lgt,r € (C >
ct o
£,0,] M,M+1
k .
C = - € Momnx+yn (C),
k
Onm+1 Cin-11
k
gt,r,O
kK _ . 1
gt,r ( 5)
k
8tr,N-1
k
Ht,r,O
=1 1 |ed
k
Ht,r,Nfl
_ Wk k (M+1)N
- ht,r ® ¢ eC >
wr,O(i)
w, (i) = € CMN,
w,n-1(i)

Notice that in (14), sf,, is the complete signature trans-
mitted by the tth antenna of the k-user and received, after
propagation, at the rth antenna (namely, it is a spatial signa-
ture related to the real one through the channel impulse re-
sponse); s’{r,,l and sf, |, are parts of the signature related to
the previous and successive transmitted symbol; the vectors
gk, contain both the unknown channel coefficients (through
the vectors hf, » ~ N (0n,Iy)) and the users timings (through
the vectors (pk); finally, w; (i) ~ N (02mn,> 2MLomn ) accounts
for the thermal noise.

The above model represents the extension to the MC
DS-CDMA case with multiple antennae of a well-known
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representation derived for single-antenna DS-CDMA sys-
tems operating over fading dispersive channels [16, 17, 18,
19]. In this scenario, in order to allow possible joint process-
ing of the observables at all of the receive antennae, it is useful
to define the vector r(i) = (ro(i) - - - r,,—1(i))T, which, upon
defining quantities

k
St0,1

2MN
(O

k _
St1 = Stlg €

k
st,n,—l,l
k k
St =1, ® Cj € Momnn, xr+1)8n, (C),

k
8t,0

8
gl]‘inr—l
hf,
= | e
ht,,

hltc ® (Pk c (C(MH)Nnr)

(16)

k

wo (i)
w(i) = € CMNn:
Wn,—l(i)

can be also written as follows:

ro(i)
r(i) = :
1y, -1(0)
K-1 1 m-1
= Z Z Z bf(i+l)s]t‘),+w(i)
k=0 I=-1 t=0
= by(i)sgp + by (i — 1) _y + by(i+1)sq .
o ]
useful signal IST
n—1

+ Z > b+ D)s? + Z Z 2 bk(1+l)stl+w(z)

l—fltl kll—*lZO
noise

self—mterference MAI
= by(i)sfp +2(i) + w(i)

= q(i) + w(i) € CMNm,
(17)

In (17), s, is the useful signature, z(i) represents the self-
interference, multiuser interference (MAI), and intersym-
bol interference (ISI) contribution, and w(i) ~ N (02mnn,»
2MoLamny,) 1s the thermal noise. Notice that the subscript
“t” points out that each transmit antenna of a given user is as-
signed a different spreading sequence, a condition that will be
shown to be necessary in blind uncoded systems. For future

reference, notice that the covariance matrix of r(i) is equal to

R, = E[I‘(l)rH(l)]
-1 n—1
Z > [sk_ysF + sfsF +sF L s ] + 2 Mo Lo,
k=0 t=0
= qu + 2<N012MN11,-
(18)

3. DETECTOR DESIGN

The detectors that are considered in this paper are linear,
and thus uniquely specified by a suitable complex-valued
vector m.2 As anticipated, differential coding/decoding is to
be adopted to cope with the absence of a phase reference,
whereby the desired information is contained in the quantity
dd(i) = bY(i)b3(i — 1). At the receiver side, the observables
ro(i),...,r,,—1(i) can be either processed separately and then
combined or processed jointly through the vector in (17); we
refer to the former case as noncooperative detection and to
the latter case as cooperative detection.

Noncooperative detection

If we adopt a noncooperative scheme, the signals at the out-
put of the n, antennae are processed through as many de-
tectors, whose outputs are expressed by 9,(i) = (r.(i),m,),
r =1,...,n — 1. The vector 9(i) = (9(i) -+ - 9, 1 ()7 is
then forwarded to a combining block, which makes the de-
cisions c?o)(i) = f(9(i),9(i — 1)). We consider three different
scenarios.

(1) Soft integration. In this case, the decision rule assumes
the form

(i) = £(9(i), 90 — 1)) = sgn [R((9(0),9(i — 1)))]
n—1 _ (19)
= sgn [9&( > 9,()9, (i — 1))],
r=1

that is, the decision takes place after the integration of
the soft differential statistics 9, (i)9,(i — 1).
(2) Hard integration (with a randomized offset):

(i) = £(9(i), 9 — 1))
n—1
= sgn [ Z sgn [R(9,(1)9,(i—1))] + u], (20)

r=1
11
wu((=33))
2°2
that is, the combination takes place after one-bit quan-
tization of the soft differential statistics. Observe that,
for n, odd, the randomized offset has no effect and this

decision amounts to a majority rule, which is optimal
for hard-quantized statistics; on the other hand, for #,

2From now on, we adopt the normalization |/m|| = 1.
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even, the possibility that f(9(i),9(i — 1)) = 0 is ward
off through the secondary threshold u.?

(3) Maximal ratio combiner (MRC). According to (14), the
vector 9(i) is expressed as follows:

(s0,0,0m0) (zo(i), mg)

9(i) = by (i) +

(sg,n,—l,mmﬂr—l) (Zn,—1(i), my, 1)

<W0(i),m0>

<wn,—1(i)’ mn,—l)
=ab)(i)+Z+W.
(21)

A possible detection strategy consists of weighting the n, un-
quantized statistics of the vector 9(i) with the elements of
the gain vector a, thus realizing an MRC; afterwards, the un-
certainty on the phase can be removed though differential
detection. The detection rule is thus

(i) = £(9(),9G — 1))

_ (22)
= sgn [ R ((9(1),7) (9G - 1),7)) .

Cooperative detection

In this scheme, the observables are first stacked in a unique
vector and then jointly processed, obtaining 9(i) = (r(i), m);
a decision is finally made through

dy(i) = sgn [R(9(1)9(i — 1))]. (23)

Obviously, the cooperative scheme is expected to achieve, at
the price of some complexity increase, a substantial perfor-
mance improvement with respect to the noncooperative de-
tection schemes.

Notice also that (17) reduces to (14) for n, = 1; as a
consequence, the synthesis of the receiver can be carried out
starting from the observables in (17) and then specify the re-
sults to the case n, = 1. There are, of course, a number of
different criteria to design m. The first step is to generalize
the subspace-based detector, introduced in [16, 21], to the
new scenario and then move on to the newly proposed detec-
tor family that is referred to as “two-stage” receivers in what
follows.

3.1. Subspace-based receiver

The correlation matrix R,, of the received signal can be de-
composed as

R,, = UAUY = UA U +U,A,UH, (24)

3For further details on the optimality of randomized tests, see [20].

where U = (U,U,), A = diag(A;, Ay); A; = diag(Ay,...,
Askn,) contains the 3Kn; largest eigenvalues of R,, in de-
scending order and U, the corresponding orthonormal
eigenvectors; Im(Us) and Im(U,,) are the signal subspace and
the noise subspace, respectively. Based on the above decom-
position, the orthogonality between the noise subspace and
the useful signal s) can be exploited to obtain an estimate,
§8 , say, of the vector gg. In particular, under the condition*

dim (Im (Rgg) N Im (89,S0%)) =1, (25)

g) can be obtained as the unique, nontrivial solution of the
equation

0 =U}'sg, = UL'S 80 (26)

Since in practice the covariance matrix R, is not
known, it has to be replaced by its sample estimate R,, =
(1/Q) z,‘?:gl r(i)rf (i), whose spectral decomposition is

R, - OA0" + 04,00, 27)
Accordingly, g) solves the problem

g = arg min ||U}/ S80Il (28)
that is, it is the eigenvector corresponding to the smallest
eigenvalue of the matrix SJi IAJnIAJ‘;I S0.0-

The vector g is then used to obtain the classical mini-
mum mean square error (MMSE) and zero-forcing (ZF) re-
ceivers, that is,

_Nn-1g0 &0
mymse = R, Sg080

S (29)
myzg = Rj,S008,
with
Ry, = U (A, —2N,1) U7,
. 1 2MNn, (30)
2No = o An);
"~ 2MNn, - 3Kn, H%fﬂ( i

3.2. Two-stage receiver

The subspace-based receivers exhibit a noticeable perfor-
mance degradation as the users number grows large, since
the dimensionality of the noise subspace decreases and the
estimate of the vector g) becomes worse and worse. A pos-
sible mean to cope with these overloaded scenarios is to re-
sort to the “two-stage” receivers, introduced in [18, 19] with
reference to single-antenna DS-CDMA networks. As a con-
sequence, the mathematical proofs of the results in Sections
3.2.1 and 3.2.3 will be omitted so as to avoid any overlap with
available literature.

4Remember that Im(Rgg) = Im(U) = Ker(UY) and Im(S{,S0%) =
Im(SJ ).
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mr(i)

r(i) y(i)
—

FIGURE 3: Two-stage linear receiver scheme.

Two-stage detectors owe their name to a functional split
of their operation in a suppression block, represented by the
matrix D of Figure 3, and a BER optimization block, repre-
sented by the vector e of the same figure. Obviously, the two
stages may collapse into the single vector m = De.

3.2.1. Synthesis of the interference

cancellation stage D

The useful signature s{  lies in Im(S{ ), which, in turn, is a
vector subspace of CMTDUN" The first stage is thus a nonin-
vertible transformation of the observables, that is,

y(i) = D"x(i), (31)

where D € Mopnn, x(m+1)Nn, (C) solves one of the following
two constrained minimization problems:

E[|ID"x()|[*] = min, det (D7S3,) # 0; )
32
E[|ID"q()||*] = min, det (D"SJ) # 0.

The former cost function is the classical one for minimum
mean output energy (MOE), while the latter involves the
minimization of the noise-free observables; in both cases, the
constraint ensures that the signal of interest always survives
after the noninvertible transformation. Under the condition
(25), the solution to the above problems can be shown to be
written as follows:

-1
D= (R+ 38,03851) 38,0

(33)

x [(83,0 (R+85,S5)"s0t) o 1] diag(w),
where & € CM*DN" s an arbitrary vector with strictly posi-
tive entries and R can be either R, or Ryq. If R = R;;, D is the
solution to the former problem in (32) and subsumes, as the
special case of nonfading channel with known timing, the
minimum MOE solution equivalent to the MMSE receiver;
accordingly, we refer to this solution as an MMSE-like re-
ceiver. Otherwise, if R = Ryy, D is the solution to the latter
problem in (32) and subsumes in the same way the linear
ZF receiver; we thus refer to this solution as ZF-like receiver.
Since scalar multiplicative constants have no influence on the
decision rule (see [19]), the matrix D can be also expressed
as follows:

D = (R+S5,S3) "S5, (34)

Before proceeding in the system derivation, it is worth
commenting on condition (25), which was advocated to sup-
port solution (33). Indeed, the constraints in (32) just ensure

that the output useful signature is nonzero with probability
one, but they do not offer any guarantee that all of the inter-
ference be blocked before further processing. On the other
hand, defining

0 k K-1 Q0
X = (50,71 Y 'Snt—1,+180,0)’ (35)

that is, the matrix containing all the 3Kn; signatures s]f, ;and
S0.0> and noticing that

Ry + 800808 = XX",  Dyzpie = (XX7)'S),,  (36)

it is seen that a necessary condition for

DY sk, = SO (XXH) sk, = 0 for (k,1,1) # (0,0,0),
(37)

(i.e., for all the interferers to be nullified and the useful sig-
nal to survive) is that si‘, ; and the columns of S, be linearly
independent with respect to X for all (k,t,1) # (0,0,0) (see
[19] for more details). Ensuring that s, is the only signa-
ture linearly dependent on the columns of S, with respect
to X amounts to forcing sj o = S ¢g) to be the only direction
which belongs both to Im(Sg,OsgfLOI ) and to Im(R,), that s, to
forcing (25) to hold true. This condition will be, in the fol-
lowing, referred to as identifiability condition, a term we bor-
row from [17]: notice however that, while in the subspace-
based detectors such a condition is a necessary one in order
to ensure the channel identification—and indeed its viola-
tion would result in a useless receiver—in our approach, (25)
is not a precondition, even though its violation usually results
in a performance degradation and in the loss of the near-far
resistance properties.

It is also worth pointing out here that, in the consid-
ered scenario, (25) cannot be relaxed through signal-space
oversampling, as suggested in [16], and implemented in
[19], where rectangular chip waveforms were adopted. The
MC modulation format, instead, requires avoiding the in-
tercarrier interference, which, for asynchronous systems, can
be accomplished through the use of strictly bandlimited
chip waveforms: obviously, no further sampling beyond the
Nyquist rate may be advantageous in this situation.

3.2.2. Blind implementation of D

In order to implement in a blind fashion the MMSE-like re-
ceiver, the covariance matrix R,, is to be replaced in practice
by its sample estimate R,,; the blocking matrix is then

Damist-tike = (Ryr +8985) 785, (38)

The implementation of the ZF-like receiver requires, instead,
more attention since an estimate of Ry + S0,0S04 is needed.
To this end, first note that, based on (25),

dim (Im (Ryq + S5 ,S0%))
= dim (Im (Ry)) +dim (Im (S9,S0%)) -1 (39)
=3Kn;+ (M +1)Nn, — 1;
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whereby, upon eigendecomposition, we obtain
Ryg + 850800 = UAUM = U, A UY + U,A, U, (40)

where U = [U; Uy], A = diag(A1,Az), Ay = diag(hy,...,
A3Kn+(M+1)Nn,—1) contains the 3Kn; + (M + 1)Nn, — 1 largest
eigenvalues and U; the corresponding orthonormal eigen-
vectors. An estimate of Ry, + S0,0S05 is thus

Ryq + 8008057 = UiA UY (41)

and the blind implementation of the ZF-like filter is
~ —_ +
Dzgiike = (qu + 58,038,}01) S0.0- (42)

3.2.3. Synthesis of the second stage e

Assuming that the blocking matrix D has suppressed all of
the interference (the term DHz(i) is very small if the MMSE-
like solution is adopted, while it is exactly zero for the ZF-like
one), the observables at the output of the second stage can be
written as

y(i) = bY (i)D" S{ 180 + D w(i). (43)

The vector e can be now chosen so as to minimize the
BER, that is, it is the cascade of a whitening filter and
of a filter matched to the warped useful signal. Upon
considering the “economy size” singular value decompo-
siton D = UpAVH, the whitening filter is VA~!, with
A € MusnNnxM+1)Nn, (C) a diagonal matrix and V €
M (M+1)Nn, x(M+1)Nn, (C) a unitary square matrix. Accordingly,
the whitened observables are given by

yu(i) = (VA™)"Dx(i)
= A'VHVAUEr(i) = Ulr(i) (44)
= bi())ULS) o860 + Upwi(i)
and the matched filter is UES)g). The second stage is then
e=VA'USS) g (45)
and the expression of the complete receiver is given by
m = De = UpAVAVA'UES] g0 = UpULS)g).  (46)

3.2.4. Blind implementation of e

Since in practice the vector g is not known, a further pro-
cessing is needed to obtain an estimate of the second stage
(45). To this end, notice that the correlation matrix of y,, (i)
can be written as

H
R, ;. = U5SH o8l (U5SHo80)" + 2MoIars 1w, » (47)

that is, it consists of the sum of a full-rank matrix and of
a unit rank one, the latter admitting UBS] og) as its unique
eigenvector. Consequently, the eigenvector upm,x correspond-
ing to the largest eigenvalue of R, ,, is parallel to UJS{ ,g0,

and the receiver’s second stage is € = VA 'uyay. Thus the
receiver is given by

m = UpUmax. (48)

In practice, the vector umay is estimated through an eigen-
decomposition of the sample covariance matrix R, ,, of the
whitened observables y,, (i) with

Q-1

~ 1 . . PPN

Rywyw = 6 Z YW(I)YW(Z)H = UgRrrUD~ (49)
i=0

3.3. Channel estimation

As a by-product of the previous derivations, an estimate (up
to a complex scalar factor) of the discrete-time channel im-
pulse response g) can be obtained, based on the considera-
tion that upmey is parallel to U S0085- Accordingly, the esti-
mate g of gf is

80 = (0HS30) imax = d. (50)

This estimate (and, in the same way, the subspace-based one)
can be further improved based on (16), which shows that
g0 = h) ® ¢° is a structured vector. Thus we can look for
the nearest vector to d having this structure, that is, we can
consider the following optimization problem:

|lh® ¢ —d||? = min, heCN", ¢ e RM (51)
Unfortunately, the cost function in (51) can be shown to have
multiple minima, and no closed-form solution can be de-
vised to compute its global minimum. A suitable strategy is
to minimize this function alternately with respect to h and ¢,
which yield the following iterative rule:

INn, ® (Pn,l)Hd)

n

1
- ||<pn,l||2(

——R((h, ® Ly1)"d), (52)

where we have denoted by g)(n) the estimate of g) at the
nth iteration. Note that convergence of this procedure to the
global minimum is not guaranteed; however, experimental
evidence has shown that after few iteration (i.e., 3—4), a fixed
point is reached.

3.4. Gain vector estimation

If a noncooperative scheme with maximal ratio combining is
adopted, after we have realized the n, receivers, one for each
antenna, a further processing is needed in order to get an es-
timate of the gain vector a.

Assuming again complete suppression of all of the inter-
ference, (21) becomes

9(i) = abY(i) + W. (53)
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A simple blind method for estimating a (see [21]) can be de-

veloped noticing that the correlation matrix of 9(i) is given
5

by
Ry = a2 + 2Mp1,,,. (54)

Thus, the eigenvector corresponding to the largest eigenvalue
of Ry is parallel to @ and so, except for a complex scaling
factor, it is an estimate of the gain vector a (note that the
phase ambiguity introduced by this complex constant is re-
moved by the differential detection rule). Finally, note that
this estimation technique can be easily made adaptive using
the tracking algorithm suggested in [21].

3.5. Maximum number of users and system complexity

The identifiability condition sets a limit on the maximum
rank of Ry and, consequently, on the maximum number of
users, Kmax say, that the system can accommodate reliably.
Since, based on (39),

2MNn, > dim (Im (Rgq + S0 4S0%))

55
=3Kn;+ (M + 1)Nn, — 1, (53)
we have
K < {WJ (56)
37’lt

Recalling that each user is assigned n; spreading sequences,
the maximum number of active users is

Kmax: \\(M_SIIJN-FlJy
' (57)
. {[(M—I)Nnr+lJ MN}
Kpax =ming | —————— |, ——
3?1{ Ny

for noncooperative and cooperative detection, respectively.
Note that the cooperative detection scheme, jointly elaborat-
ing the signals received at the n, antennae, achieves better
BER performance and, at the same time, can accommodate
a larger number of users than the noncooperative scheme,
as expected, at the price of some complexity increase. In fact,
due to the matrix inversion in the first stage and to the singu-
lar value decomposition in the second one, the receiver com-
plexity is cubic with the dimension of ﬁrr, that is, the com-
plexity is O((MNn,)?). Noncooperative receivers, instead,
rely on n, parallel operations conducted on matrices of order
2MN and entail a complexity O (n,(MN)?). Note, however,
that, coupling a recursive least squares (RLS) procedure with
subspace tracking techniques as in [18, 19], the overall com-
plexity can be limited to be quadratic, that is, O ((n,MN)?)
and O (n,(MN)?) for cooperative and noncooperative detec-
tion, respectively. Moreover, since #, is not very large for real
applications, the complexity increase involved by cooperative
over the noncooperative detection is often negligible.

>Note that the channel attenuations and thermal noise are “spatially”
uncorrelated and that the receiver filters m, have unit energy.

A final key remark is now in order. Conditions (57) rep-
resent the extension to the case of MC DS-CDMA employ-
ing multiple transmit and receive antennae of the condi-
tion reported in [19] for single-antenna DS-CDMA systems
employing rectangular chip pulses. As already anticipated,
such an identifiability condition cannot be relaxed through
signal-space oversampling, once bandlimited waveforms are
employed. Indeed, adopting rectangular pulses corresponds
to enlarging the bandwidth beyond 1/T; and to using infi-
nite effective bandwidth which in turn corresponds to a the-
oretically infinite precision in delay estimation (see [20]).
Thus, in the case of asynchronous systems with unknown de-
lays, the DS-CDMA multiplex actually spans, in the ensem-
ble of the delays realizations, an infinite-dimensional space
whose principal directions can be in principle resolved by
progressively enlarging the front-end bandwidth (i.e., “over-
sampling” by a factor L, which corresponds to chip-matched
filtering through a unit-height pulse of duration T./L and
sampling at rate L/T,). In the considered strictly bandlimited
scenario, instead, the signal span is strictly finite, whereby
there appear to be just two alternatives in order to increase
the maximum user number: the former is obviously an in-
crease of the number of receive antennae, while the latter,
that we just mention here, is to enlarge the processing win-
dow.

Before moving on to the statistical analysis of the pro-
posed detection schemes, it is worth commenting on the
two-stage receiver family introduced in this section. First, no-
tice that the functional split between the interference cancel-
lation and the BER maximization stages results in a greater
flexibility at a design level; indeed, the blocking matrix D may
be designed according to several different criteria, mainly de-
pending on the intensity of the interfering users, without af-
fecting the structure of the BER optimization stage. Addi-
tionally, even though we do not dwell on this issue here, it
is natural to investigate the feasibility of adaptive (on a bit-
by-bit scale) blind systems. Notice that, in our scenario, sev-
eral different time-scales can be envisaged for channel vari-
ations: the abrupt changes in the MAI, wherein new users
may enter the network and former users may abandon it,
short-term variations in the channel tap-weights, and long-
term variations in the temporal and spatial signatures of
the active users. Notice also that the MAI structure affects
only the interference-blocking stage of the proposed receiver,
and would in principle require a self-recovering updating of
the blocking matrix D, which is indeed the focus of cur-
rent research. As for the long-term variations, it is reason-
able to assume that their time scale is large enough so as to
allow batch processing with offline estimation of the rele-
vant statistical measures. An open problem is, instead, the
handling of short-term variations, which have an impact on
both stages of the receiver. At an intuitive level, one might
expect that the interference-blocking matrix design crite-
rion should be modified in order to ensure nonzero out-
put signal in the ensemble of the channel tap-weights real-
izations, which expectedly results in a set of constraints dic-
tated by the covariance matrix of the channel taps. Addition-
ally, constrained-complexity tracking procedures should be
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introduced in order to adapt the BER optimization stage in
such a time-varying scenario. All of the above issues form the
objects of current investigations.

4. STATISTICAL ANALYSIS

In this section, we develop a statistical performance analysis
of the proposed receiver and, in particular, we derive ana-
lytical expressions for the conditional error probability and
near-far resistance, given the timing and the channel realiza-
tions of all of the users, that is, conditioned on the vector

K-1)T
0T ( )

g= (g0 -gT g ) € CRnAINT (58

4.1. Probability of error

First of all, recall that the decision rule is written as

db (i) = sgn [R ((x(i),m) (i = 1), m)) |
(59)
=sgn (%xia_c,',l + %Rix,q),
where
x; = (r(i),m) = by(i)m"S] og) + m"z(i) + m" w(i)

= b)(i)m" Soo +£(4).

60)

Assuming that the MAI plus ISI contribution m*’z(i) at the
output of the filter is approximately Gaussian with zero mean
(see [22]), the term {(i) in (60) can be modeled as a complex
Gaussian random variate with zero mean. Thus, given g and
bY(i), the random variable x; is itself Gaussian and

U= E[ xl}g’bo(l) —bo(l)m Soo,

E[[¢]7]

= mH(ZvaIZNMm + Rz)m, (61)
E[G; ]

c(0) = Var (x;| g, b3(i)) =

c(1) = Cov (xi, xi-1 | g b3 (i), b3(i — 1)) =
= m" (Ry(iywii-1) + Reiyz(i=1)) m,

where
Reiz) = E[z()z" ()] = 8§ _ 80, + 80 41801
n—1
H H
+ Z St 151 M+ s)s) +32+15(z),+1]
K-1 ny—
k kH kH
+Z Z St 1Sz T+ sfsf +St+15z+1]
k=1 t=0
= 0 0.0H (62)
Re(iyz(io1) = Z [s/- 1St +st:+1]
t=1
K-1 n—
+ Z Z St 18§ +S’tcsltd:r11]
k=1 t=0

Onn,MN ZJVOIMN)

Ryyw(i-1) = 1n, ®
W) = B (OMN,MN Omn.mN

Notice also that R.),i) and Ry 1) are equal to the null
matrix if the ZF-like receiver is adopted. Since the probability
of error can be written as

Pe\g = Pe\g d)(i)=1

63
—P(zxx, 1+;xxl 1<0\g,d°(z)—1) (63)

and since (1/2)xiX;—1 + (1/2)%ix;—; is a quadratic form in
correlated complex-valued Gaussian random variables, upon
defining

6(0) — e2(0) - T2(c(1)
=T e s em)
= 1y |00~ e(1) (64)
ST RO -we)

a:1<1+ R(c(1) )
2 ¢(0) = 32(e(1))
and using the results in [23], we obtain

Peg = Qi(a,b) — aly(ab)e™ @02,

(65)
P, = Eg[ e\g]-

Notice that (65) is the expression of the probability of error
of any linear receiver employing differential data detection.
In order to obtain the unconditional error probability, we
should carry out the expectation with respect to the vector
g; however, this task cannot be easily accomplished, whereby
we resort to a numerical average over a finite number of ran-
dom realizations of g.

So far, the case of a cooperative reception has been ana-
lyzed; moving to the noncooperative receiving scheme with
hard integration, denote by p. the conditional probability of
error over each of the n, receive antennae (note that p, can
be computed with the same approach as in the case of co-
operative detection); since the channel gains and the thermal
noise are assumed independent across the receive antennae,
the hard integration strategy amounts to a Bernoulli count-
ing and the overall probability of error is easily shown to be
written as follows:

() Pe\g pd (n,+1)/2 ("7)pi(1 = pe)n =i for n, odd;
(i) Pefg = X2, o0 () PL(1— pe)”r—’+(1/2)(nr/2 )prr2(1—

pe)™’? for n, even.

Determining an analytical expression for the error proba-
bility in the case of noncooperative reception with soft in-
tegration is quite involved a task. Indeed, in this case, the
test statistic can be expressed through the quadratic form

27;51((1/2)x 1+(1/2)_J J _1), where the n, pairs {x,,x, .
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are Gaussian variates, statistically independent of each other
but not identically distributed, thus implying that the re-
sults in [23] cannot be directly applied. For the sake of
brevity, we do not dwell any further on this issue, and just
point out that the system error probability in this scenario
is lower and upper bounded by those of the cooperative
scheme and noncooperative scheme with hard integration,
respectively.

4.2. Near-far resistance

For a multiuser detector, the asymptotic efficiency and the
near-far resistance for the Oth transmit antenna of the Oth
user are defined as follows:

. P&/ Ny) }
= 0,1] : Iim ——2—~* ,
1= sup {re[ b i, e ey
7 = inf {n},
&,=0
i#0

(66)

respectively, where P? is the probability of error of the opti-
mum receiver (maximum likelihood) for an isolated system
(i.e., with no other user except the Oth one); the performance
measures in (66) determine the loss due to the presence of
the MAI in the limit of very low background noise. We just
focus on the ZF-type receiver, since the MMSE-like solution
converges to the ZF-like one as N, vanishes.

First of all, note that if (25) is met, the proposed receiver
achieves asymptotic multiuser efficiency, since the first stage
is able to completely suppress interference (see (37)). How-
ever, as P, cannot be easily computed in a closed form, in the
sequel we condition on the vector g and consider the follow-
ing conditional near-far resistance:

_ . RRT Pe\g(gl?/ffvo) }}

n(g) = 8;12f0 { sup {r e[0,1]: Jl\%rilo P2 (rE0/ o) 00
i#0

(67)

Note that even though 7(g) does not coincide with the actual
system near-far resistance 7, it is still a measure of the re-
ceiver capability to combat interference with arbitrarily large
strength in the low-noise region: precisely, 77(g) is the near-
far resistance that the receiver experiences during the trans-
mission of a frame.

Now, since a closed-form expression of Pg‘g is not avail-
able, a lower bound for 7(g) can be obtained by replac-

ing Pg‘g itself with the error probability Q(4/ ||Sg)0 [12/MNoy) of a
synchronous single-antenna system employing binary phase-
shift keying; thus, we have

7(g)

P (8)/ N
> inf {sup{r € [0,1]: lim (Ep/No) < +oo}}.
&,20

(68)

Now, we evaluate this parameter. For the ZF-like receiver,

the quantities in (61) and (64) simplify to
u = b (i)m™s)y,
c(0) = 2Nplm/1?,
c(1) = m"Rypu-1ym = 2Mpv,
[ml[? — /Im]* — 32(v) _ §
[ml[* — 32(v) VM’

b:;|mH50| Iml2 + Tm[[*=32(v) _ ¢
VIR N T il = 92 (v) Wi

e iv RO,

[m* = 32(v)
respectively, and the probability of error for the Oth transmit
antenna of the Oth user given g in (65) can be also written as
follows:

= |mhs),|
V2N O\

(69)

Pyg = Qi (\/%, \/%0) - a10<%>e_(52+¢2)/(2%). (70)

Since Qi (&/\/No, ¢/+/No) and To(Eg/Np)e (E+9V/Q2M) are
both asymptotic functions, for Ny — 0, to Q((¢ — &)/\/Ny)
(see [24]), the conditional near-far resistance admits the fol-
lowing lower bound:

(¢ - &)? | (m,s0,) | .
= > fK < Kmax:
7(8) = | [shol 5ol F(Iml2 +3()"
0, otherwise.
(71)

It is obviously understood that averaging the above quan-
tity with respect to g leads to a sort of average near-far resis-
tance, that is, the near-far resistance experienced, on the av-
erage, by the receiver during the transmission of many (the-
oretically infinite) packets; in this case too, the expectation
with respect to the vector g can be evaluated numerically.

5. NUMERICAL RESULTS

In this section, we discuss numerical results illustrating the
performance of the proposed receivers. We use both semi-
analytical procedures exploiting the previously derived ana-
lytical formulas, and plain Monte Carlo simulations. In both
situations, the curves shown will be the result of an average
over 10* channels and delays realizations. We assume that

(a) each user is equipped with two transmit antennae;

(b) the convolution (yix * ¥,y )(7) = @(7) is a raised cosine
with duration 4T, (A = 4) and roll-off factor 0.22;

(c) the number of subcarriers is N = 4 and the spreading
over each one is M = 8 (the composite spreading gain
is then PG = 32 and the spreading sequences are PN €
{—1,1} of length 31 stretched out with a—1);

(d) the sample correlation matrix R,, is obtained through
a sample estimate over Q = 1300 samples.
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—v— 3 receive antennae
—— 4 receive antennae

—e— 1 receive antenna
—s— 2 receive antennae

FiGUre 4: Lower bound for the average near-far resistance of the
two-stage receiver versus the number of users for several n,: M =
8,N =4,and n; = 2.

In Figure 4, the computed lower bound for the average
near-far resistance of the two-stage receiver with cooperative
detection is represented versus the number of active users for
different number of receive antennae (1, = 1,...,4). Results
show that the proposed receiver is near-far resistant and, also,
that increasing the number of receive antennae yields a re-
markable performance improvement (note that for n, = 4,
the limiting factor of the number of users is no longer dic-
tated by (25), but by the number of available spreading se-
quences, that is, sixteen times two). Figures 5 and 6 show
the probability of error (obtained through the semianalytical
procedure) of the nonblind receivers with cooperative detec-
tion versus the ratio yy = SE/NO, for several values of the
number of receive antennae and of active users. It is here as-
sumed that perfect average power control has been pursued,
even though, due to the said near-far resistance feature of the
proposed receivers, the system performance is only slightly
degraded in a near-far scenario. It is seen from Figure 5 that
as the number of receive antennae grows, the receiver per-
formance improves and, for a fixed error probability value, a
higher number of users can be accommodated. On the other
hand, Figure 6 shows the error probability for different re-
ceivers and fixed number of users, that is, K = 4. It can
be seen that the MMSE-like receiver behaves slightly worse
than the MMSE one for n, = 1, while for n, = 2, all the
nonblind receivers exhibit the same performance. Simula-
tion results, not provided here for the sake of brevity, have
also confirmed a perfect agreement between the semianalyti-
cal procedure and the Monte Carlo-based performance eval-
uation technique.

With regard to the performance of the blind receivers, re-
sults of Monte Carlo simulations are presented in Figures 7,
8,9, 10, 11, and 12 for a severe near-far scenario (the inter-
fering users are 15dB above the user of interest) and with
K = 4 active users, for both cooperative and noncooperative

—— 1 receive antenna
—e— 2 receive antennae
—v— 3 receive antennae

FiGure 5: Probability of error for the nonblind ZF-like receiver
versus y, for different number of users and of receive antennae:
M =8 N =4,and n, = 2.

10°

10—5 L
0 2 4 6 8 10 12 14 16
yo (dB)
—— MMSE-like
—— MMSE
—— ZF-like, ZF

FIGURE 6: Probability of error for the nonblind receivers: MMSE-
like, MMSE, ZF-like, and ZF: K = 4,M = 8, N = 4, and n, = 2.

reception (observe that the maximum number of user Kyax
for the noncooperative scheme is 4 implying that the network
is fully loaded). Figures 7 and 8 show the performance of the
proposed subspace-based channel estimation procedure for a
noncooperative and a cooperative reception scheme, respec-
tively. In particular, the correlation coefficient

b | (80,80) | 72)
18511 llgoll
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FiGure 7: Channel estimation for a noncooperative reception FiGuRre 9: Probability of error for the blind receivers; noncoopera-
scheme: K = 4, M = 8, N = 4, n, = 2, n, = 2, Q = 1300, and tive reception with hard integration: K = 4, M = 8, n; = 2, n, = 2,
P = 1500. Q = 1300, and P = 1500.
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FiGure 8: Channel estimation for a cooperative reception scheme:
K=4,M=8n =2,n =2,Q=1300,and P = 1500. FiGURE 10: Probability of error for the blind receivers; noncoopera-
tive reception with soft integration: K = 4,M = 8, N = 4, n, = 2,
n, = 2,Q = 1300, and P = 1500.

is reported versus yy. Here, the word “mod” in the legends

refers to the improved channel estimation rule in (52). Fig-

ures 9 to 11 show the system error probability for the nonco- ~ mation is achieved by the ZF-like receiver, immediately fol-
operative scheme with hard and soft integration, and for the ~ lowed by the subspace-based one, while for the cooperative
cooperative scheme, respectively. Here, the curve labeled as  case, both the ZF-like and the MMSE-like receivers outper-
“MMSE-like limit” reports the performance of the MMSE- form the subspace-based one. This trend is confirmed in the
like receiver in the limit of increasingly large size Q of the  plots showing the error probability; indeed, the ZF-like re-
sample set used to estimate the covariance matrix of the data. ceiver performs slightly better then the ZF subspace-based
Inspecting the figures, it is seen that in the noncooperative ~ one in both cases while the MMSE-like receiver outperforms
case, with the network fully loaded, the best channel esti-  the subspace-based receiver only in the cooperative case. It is
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FIGURE 11: Probability of error for the blind receivers; cooperative
reception scheme: K = 4, M = 8, N = 4,n, = 2, n, = 2, Q = 1300,
and P = 1500.

also seen that the soft integration achieves superior perfor-
mance with respect to the hard integration scheme and that
both of them incur a loss with respect to the cooperative re-
ception. Notice that for the noncooperative receiver, due to
the network full load, the MMSE-like limit performance is
not coincident with that of the ideal MMSE receiver; con-
versely, for cooperative reception, since now the users num-
ber is smaller than the maximum one, the MMSE-like limit
curve is quite coincident with the ideal MMSE receiver per-
formance. Finally, in Figure 12 a comparison between the er-
ror probability of the soft integration and MRC techniques in
a noncooperative reception scheme is provided. Notice that,
at the price of some complexity increase, the MRC scheme
achieves better results with respect to the soft integration
one for the nonblind receivers; on the other hand, concern-
ing the blind receivers, the performance improvement is less
evident due to the not perfect estimation of the vector gain
(§99 was obtained though a sample estimate over Q, = 1000
samples).

6. CONCLUSIONS

In this paper, we have considered the problem of blind mul-
tiuser detection for asynchronous MC DS-CDMA systems
equipped with multiple transmit and receive antennae. This
is nowadays an interesting research topic, since MC mod-
ulation formats coupled with the use of multiple antennae
represent a suitable means to achieve high data rates on the
wireless channel at a reasonable computational and practical
implementation cost.

The receivers that have been proposed here are code-
aided in the sense that they require knowledge of the spread-

yo (dB)

—e— MMSE-like, soft
-e- MMSE-like, MRC
—v— ZF-like, soft

-v- ZF-like, MRC

—— ZF nonblind, soft

—«— MMSE nonblind, soft
- - ZF nonblind, MRC

- %- MMSE nonblind, MRC

FIGURE 12: Probability of error for both soft integration and max-
imal ratio combiner in a noncooperative scheme: K = 4, M = 8§,
N=4,n=2,n =2,Q=1300, P = 1500, and Q, = 1000.

ing code for the user of interest only, while no prior knowl-
edge on the channel state and on the timing offset is needed.
Several combining rules for the statistics obtained at the
output of each antenna have been considered and assessed.
A thorough statistical analysis has been derived for the
proposed receivers (and for any linear receiver employing
binary differential transmission), while the performance of
the blind version has been evaluated through Monte Carlo
simulations. Results have shown that these receivers exhibit
performance levels close to those of the MMSE and ZF ones
and that the use of multiple receive antennae has a beneficial
impact on the system performance.

Future work on this topic comprises the consideration
of space-time and space-frequency codes, as well as the ex-
tension of the proposed detection strategy to the situation in
which the channel is time-dispersive, that is, it does not re-
main constant over the whole transmitted frame.
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With sophisticated signal and information processing algorithms, air interfaces with space-time (ST) coding and multiple recep-
tion antennas substantially improve the reliability of wireless links. This paper proposes a new receiver algorithm for differential ST
coded transmissions over the finite-impulse-response (FIR) rich multipath fading channels. The symbol detection introduced in
this paper is a deterministic subspace-based approach in a multiple-input and multiple-output (MIMO) system framework. The
receiver (i) operates in a blind fashion without estimating the channel or its inverse and (ii) is able to work with a small number
of signal samples and hence can be applied in the quasistatic channels. The proposed scheme employs multiple antennas at both
sides of the transceiver and exploits both the antenna diversity and the multiple constant modulus (MCM) characteristics of the
signaling. The receiver is able to blindly mitigate the intersymbol interference (ISI) in a rich multipath propagation environment,
and this has been verified through the extensive Monte Carlo simulations.

Keywords and phrases: rich multipath channels, space-time processing, transmit diversity, unitary group codes, signal subspace,

constant modulus.

1. INTRODUCTION

Space-time (ST) multiple-input multiple-output (MIMO)
transmission and reception is now regarded as one of the
most effective approaches for increasing channel capacity or
system fading-resistance [1, 2, 3, 4, 5, 6, 7]. Among a variety
of ST coding schemes, differential ST modulation (DSTM)
and differential space-code modulation (DSCM) are among
the most promising ST coding schemes in wireless fading
channels because of their efficient differential encoding and
detection features [8, 9, 10, 11, 12]. Of particular interest to
this paper is differential unitary group codes introduced in
8,9, 12].

The differential schemes can work whether the channel
state information (CSI) is available or not, and this is what
makes them very attractive. When an accurate estimation of
the CSI is difficult or costly, the DSTM schemes are obviously
preferable than other schemes which assume full knowledge
of the CSI.

As a recent development, a new type of ST block code
is the Khatri-Rao ST code (KRST) proposed in [13], which

possesses a built-in channel identifiability. It relies on the
blind identifiability properties of the trilinear models and
parallel factor analysis to estimate the channel states and to
detect the ST symbols. However, there are some concerns
about the convergence speed of its iterative algorithm. DSTM
does not have such an issue. Compared to DSTM, KRST has a
higher computational complexity at the receiver. The DSTM
was designed to maximize the diversity advantage of the code
while maintaining a receiver implementation to be as simple
as possible.

The common point of the DSTM, DSCM, and the KRST
is that they all assume a frequency-flat fading channel mod-
eling in their design and analysis. In this paper, we con-
sider reception of the DSTM signals under more realistic and
complex channel conditions in rich multipath environment.
Multipath scattering and reflection effects characterize most
wireless channels. They cause both time and angle spreads.
As a result, most wireless channels are selective in time, space,
and frequency, and this is a reason why this paper addresses
multipath frequency-selective impairments in the design of
the ST receiver.
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In contrast to the method presented in this paper, a
combination of orthogonal frequency division multiplexing
(OFDM) scheme with one of DSTM, DSCM, and KRST
is feasible for transceiver designs over MIMO frequency-
selective channels, because OFDM is capable of converting
the frequency-selective channels into frequency-flat fading
channels. Besides, to achieve the maximum diversity gain, a
direct design of the frequency-ST coding scheme based on
OFDM is also possible. An example is the transceiver pro-
posed in [14]. However, the OFDM scheme has its own limi-
tations: it has a very large peak to average power ratio, which
demands a high linearity on the transmitter power ampli-
fier. Nonlinearity of the system causes the intercarrier inter-
ference, which gives rise to the drastic degradation of the sys-
tem performance. Moreover, performance of OFDM is more
vulnerable to the frequency synchronization error than the
conventional schemes, such as the single-carrier M-ary PSK,
which the DSTM employs [15].

For channel equalizers requiring the channel estimation,
the channel identification precision substantially affects the
system performance. Small estimation bias may cause a se-
vere performance degradation. In mobile communications,
the channel changes quickly so that channel estimation is in-
efficient. Therefore, in this paper, channel estimation is nei-
ther assumed nor conducted in the algorithm. At the receiver,
the transmitted data are recovered directly from the observed
samples using an algebraic approach. Specifically, the new
transceiver scheme consists of (i) a DSTM transmitter, (ii) an
equalization algorithm based on direct input signal subspace
estimation, and (iii) a differential ST symbol detector.

In general, the proposed receiver mitigates the multipath
time-spread impairments without channel estimation pro-
vided that the channel is of rich multipath type so that its
characterization matrix meets certain column-rank condi-
tions. The approach used in this paper to recover the data
relies on a modified version of signal subspace-based method
introduced in [16]. The novelty of this paper stems from in-
tegrating subspace method based signal deconvolution and
the exploitation of constant modulus property of the trans-
mitted symbols to facilitate the noncoherent detection of
DSTM signaling in a frequency-selective environment.

2. REVIEW OF DIFFERENTIAL ST MODULATION

In this section, the DSTM and unitary group codes [8] are
briefly described for transmissions over frequency-flat fad-
ing channels. A transmitter equipped with K antennas and
a receiver equipped with M antennas are assumed to con-
stitute the transceiver system. A unitary ST codeword ma-
trix C; of size K x K is transmitted in the jth time slot T;
of duration T, = K - T, where j is the time index and T
is the symbol duration. Each code matrix C; is of the form
C; = C;j_1G;. Matrix G; is chosen from a specific code set
9 = {G(m) | Gem)G{L,, = I} to represent user data, where m
is the codeword index (m = 1,2,...,.M). The code has the
property

C;Cll = KlIgxk. (1)

Additive
noise N

g

{Channel H} ¥

il
=

Transmitter
antenna array

Receiver
antenna array

FIGURE 1: The general modeling of a multiantenna transceiver sys-
tem.

It was proved in [9] that a full-rank unitary group code with
M = 2" codewords is equivalent to either a cyclic group
code or a dicyclic group code. Assuming that the unknown
frequency-flat fading channel is characterized by matrix H €
Cumxk, the received data of the differentially ST coded signals
at multiple receiving antennas are given as [8]

Yj = HX]' +Nj, (2)

where (i) the transmitted ST code is represented by X, j =
1,2,...,]; (i) J is a frame length in codewords; and (iii) N;
stands for the matrix version of additive white Gaussian noise
(AWGN). With such modeling in a frequency-flat fading en-
vironment, a maximum likelihood (ML) decoder derived in
[8] is

~

Gj= argrgax‘)%{Tr {G(m)Y?Yj,l}}, (3)
(m)

where R stands for real part of the value and Tr denotes a
trace computation. Hence, without knowing H, the G; can
be estimated by observing the last two received data blocks
[Y;_1,Y;].

3. THE NEW RECEIVER ALGORITHM FOR
TRANSMISSION OVER FIR RICH MULTIPATH
FADING CHANNELS

3.1. Basis representations of the transmitted signals

In what follows, after a frame-by-frame DSTM transmitter is
proposed, the discussion will focus on an equalization algo-
rithm based on direct input signal subspace estimation.

The transmission scenario proposed in this paper for
MIMO rich multipath channels is a frame-by-frame trans-
mission/reception scheme illustrated in Figures 1 and 2,
where T, is a time slot for a codeword and Tg > LT,
is a frame guard interval to avoid the interframe interfer-
ence (L is the maximum channel length of the subchan-
nels).

At the receiver, the continuous-time received signal vec-
tor Y(t) is sampled at the symbol rate (1/7;) after down-
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FIGURE 2: Transmitted signal frame structure and timing.

converting and reception filtering. For a period of signal
frame (TF), the sampled data sequence of Y (¢) at a receiver is
arranged in a matrix form as follows:

[YO)Y]: e ,YN+L—1]

»1(0) (1)
¥2(0)  ya2(1)

Yyuxviz) =

yl(N+L — 1)
y»(N+L-1) (4)

>

ym(0) ym(1) -+ yu(N+L-1)

where (i) N is the frame length in symbols and (ii) y; is a
column vector of sampled data. We assume the quasistatic
channel, namely, over the duration of one frame, the MIMO
channel is time invariant.

According to the general modeling of MIMO channels,
to capture the channel states, a matrix sequence {h(i), i =
0,1,...,L} is used. If the noise effects are temporarily disre-
garded and with the proper arrangement of data, we get the
following input-output relation in a matrix format for the
qth frame:

lq] [q]
YA?Ix(N+L) = HMXK(L+1)XI?(L+1)><(N+L)’ (5)
where
Hyxk 1) = [h(0),h(1),...,h(L)];
lq]
XI?(L+1)><(N+L)
x(0) x(1) - -+ x(N—1) 0 0
0 x(0) -+ x(N=-2)x(N-1) -~ 0
0o --- 0 x(0) x(1) - x(N-1)
(6)
and x(i) is a column vector x(i) = [x1(7), x2(), ..., xx ().

In order to retrieve input (transmitted) signals from the
observation of convoluted received signals, first, a matrix se-
quence {9 | p=0,1,2,...,L} is formed such that

@(p) = [Yp,Yp+1)~~~)Yp+N—1]; P = 0) 1)2)~--)L1 (7)

where 9)(P) can be viewed as the vector subsequences of
[Y0> V15> YN+1-1] within a sliding window of width N cor-
responding to the shift p = 0,1,..., L.

For every LZ](P), we calculate a matrix £ which consists
of the spanning row vector set, that is, the rows of %) consti-
tute the orthonormal basis for the subspace spanned by the
rows of PP, The matrix £?) can be obtained by singular
value decomposition (SVD) or some other efficient estima-
tion methods. This processing is denoted in this paper by

PP = 5P p=0,1,2,...,L (8)

Proposition 1. Let the row vector subspace of Xgxn =
(x(0) x(1) --- x(N —1)] be denoted by 8x. In absence of
the noise, the intersection of the row vector subspaces of 7,
p =0,1,...,L, is equivalent to 8x with a probability of 1 for
transmissions employing unitary ST group codes, provided H
is of a full-column rank and the signal frame length N is suffi-
ciently large for matrix X to have full-row rank.

The proof of Proposition 1 is in the appendix. The full-
column-rank assumption of H could be met with proba-
bility of 1 if it is a “tall” matrix with a row number larger
than the column number if channel is of a rich multipath
type. Evidently, if the subchannel lengths increase, accord-
ingly, the number of reception antennas should be increased.
Some auxiliary methods to facilitate meeting this assump-
tion are discussed in Section 3.2. This assumption is a suffi-
cient condition for the operation of the algorithm proposed
in Section 4; however, it is not a necessary condition.
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As a matter of fact, for the proposed algorithm, it is only
assumed that some matrices amongh(i),i = 0, 1,..., L, indi-
vidually have a full-column rank. This normally holds with
probability of 1 for a rich multipath environment and the
number of the reception antennas being larger than that of
the transmission antennas. This assumption could be further
relaxed by the data stacking method discussed in Section 3.2.

Defining a new matrix & whose row vectors span the vec-
tor subspace intersection of %), p = 0,1,...,L, and denot-
ingitby B = ﬂf,:o EW from Proposition 1, we have that the
rows of E also span subspace 8x with probability 1. There-
fore,

Xgxn = WixkBrxn 9)

holds with probability 1, where Wiy is a weight matrix.
Hence, with a proper W, the transmitted signals could be re-
covered completely from 2)(?) by finding the spanning vec-
tor set using procedure of Proposition 1. In other words, the
transmitted data could be recovered from 2)?) within the
ambiguity of a transformation W.

The above observation is a fundamental point for the re-
ceiver algorithm design in this paper based on direct input
signal subspace estimation. The estimation of W will be dis-
cussed in Section 4.2.

3.2. Column-rank assumption of channel matrices
and oversampling

Regarding the assumption for the column rank of h(i), the
following discussion is in order. As analyzed in [17], rich
multipath scattering normally causes wide angle spreads. In
these situations, the channels can be modeled using uncor-
related high-rank matrices. For MIMO frequency-flat fading
channels, a formula suggested in [17] to predict a high-rank
channel situation is

2D, 2D, R\
K—1M-1_M’ (10)

where (i) Dy, D, stand for the transmission and reception
scattering radius, respectively; (ii) R is the distance between
transmitter and receiver; and (iii) A is the wavelength. This
formula indicates that a large number of scatters (and large
antenna spacing), large angle spreading, and small range R
will help in building up the high-rank MIMO channels in
a frequency-flat fading modeling. High-rank MIMO chan-
nels can offer significant spatial multiplexing gain or diver-
sity gain.

For MIMO frequency-selective channels, the above pre-
diction method is applicable to channel matrices among h(7)
that do not have zero columns. Therefore, it still brings in-
sight to investigation of the MIMO frequency-selective chan-
nels and the scheme discussed in this paper.

To facilitate meeting the channel matrix column-rank re-
quirements with minimum receiver antenna number, it is
possible to arrange the received sample data for each frame

by stacking the data v times as follows:

[q] lq]
YA?IVX(N+L+V—1) = HMVXK@”)XKq(L+v)><(N+L+v—1)’ (11)
r lql _lql [q]
Yoq qu o YI\?+L—1 0 0
lql _lql lq]
Y[q] _ 0 YOq qu YI\?+L—2 e 0 i
Lo 0o 0y oyl
rh(0) h(1) --- h(L) 0 0
0 h() h(1) -+ h(L-1) --- 0
H = . . . . . . . ,
L 0 0 0 h(0) h(L)
(12)
Xl =
xl91(0) xlal(1) x4(N-1) 0 0
0o x4 x4a) --- xl4(N-2) --- 0
0 0 0 xl4(0) - xl(N-1)

(13)

The arrangement of received data in the matrix above is
different from that of [16] for improving signal detection at
the first and last L symbols in each transmitted frame.

If a large receive antenna number is not feasible, over-
sampling with larger reception bandwidth could be consid-
ered as an alternative approach to meet the necessary channel
matrix rank condition. If the oversampling rate is P, (P — 1)
times more data can be obtained and arranged as follows:

[Yo, V15> YN+L-1]
y(0) y(1) yIN+L—-1) ]
Y(%) Y<1+%) y<N+L—1+%)
V) 55 sfeno1e Y

(14)

where the index i + j/P stands for the jth sample in the ith
symbol duration. Therefore, with a MIMO channel charac-
terized by

[h(0),h(1),...,h(L)]

r h(0) h(1) h(L) T
V(1) w(e) o n(eed)
() (7Y (e 5

(15)
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provided that the effects of transmission shaping filtering
and reception filtering are encompassed into the channel
[h(0),h(1),...,h(L)], the input-output relation in the over-
sampling case becomes

Ypmtvx(N+Lsv-1) = Hpamyxk v Xk @ev)x(N+Liv-1),  (16)
where
[_lq] _lq] _[q]
Yoq qu ot YJ\?+L—1 0 0
_lq]  _lq] _[q]
Y _ (‘) Y(?q Yl'q - YJ\?fL—Z - 0 ’
_[q] _[q]
| 0 0 0 Voo ottt YNeio (17)
[h(0) h(1) - “h(L) 0 0
. 0 h(0) h(1) h(L-1) --- 0
=] . . L. : o
0 0 0 hO) h(L)

and Xk (1+v)x(N+L+v—1) 1 the same as the one in (13).

In the oversampling case, it is possible to meet the full-
rank requirement with a receiver antenna number smaller
than that of transmitter antennas at the cost of oversampling
complexity and wider reception bandwidth. The latter factor
also causes degradation in signal-to-noise ratio (SNR) to a
certain extent.

4. ESTIMATION OF THE TRANSMITTED SIGNALS
FROM RECEIVED DATA OVER RICH MULTIPATH
CHANNELS IN THE PRESENCE OF NOISE

The ST subchannels can be of different lengths and the sig-
nals are usually contaminated by the noise. In the presence
of noise, 4x may not necessarily be the subspace intersec-
tion of £) discussed in Section 3. However, it is still possible
to search for independent vectors whose linear combinations
can approximate row vectors in 4x in a similar fashion. We
propose the following algorithm for determining a spanning
vector set from received signals to approximate the transmit-
ted signal vectors. This scheme is verified to provide a robust
performance through simulations, which is described in the
next section.

4.1. The basis estimation and approximation
of transmitted signals

In the description of the receiver algorithm, the following no-
tation is adopted:

(a) [A;B] stands for a matrix formed by stacking matrices
A and B;
(b) L is the maximum length of the MIMO subchannels
and is assumed to be known to the receiver;
(©) [nyql = rm;ﬁ';“f (g0} |, denotes the following computa-
tion routine:
(1) calculate SVD: UXQ=SVD([E";5%;. . ;
where U, X, and Q are the resulting matrices of the
SVD computation;
(2) 9 = Qqi:n,)> where n, is the number of singular

E(imax>])’

vectors whose corresponding singular values are
not less than #. Qap,) denotes a matrix consist-
ing of the rows from ath to bth of matrix Q. Pa-
rameters [n,, q] are the computation results of this
routine.

The proposed algorithm to estimate 4x proceeds in three
steps as follows.

Algorithm Procedure.

Step a

(1) imax =L+ v, 7 =0; ‘

(2) calculate [n,,q] = M=} gy |1=0.96(Amex—1)> Where
Amax 1s the current largest singular value;

BY VO =qr+1=r

(4) if n; < K, go to Step b; else go to Step c.

Step b if imax > 1,

(1) imax = Imax — 13 . i

(2) calculate [1,,q] = M5 {ED}H 209600 -1)> Where
Amax 1s the current largest singular value;

BY VO =qr+1=r

(4) if n, < K, repeat Step b, else go to Step ¢;

else go to Step c.

Step ¢
(1) Calculate [n,,q] = @_, {VD}],_0.965
(2) E=q.

In the above computation of the intersection of basis vec-
tors by SVD analysis, A, is an important parameter because
it is used to compute how many £ share certain vectors as
row basis vector. Computing and applying Am.x at each step
instead of setting a constant value makes the algorithm adap-
tive to different channel-rank situations.

In the presence of noise and channel-rank deficiency, the
above basis-vector searching algorithm may get more vec-
tors than the desired basis vectors as computation results.
However, this does not prevent approximating the transmit-
ted signals. In this paper, the signaling property of multiple
constant modulus (MCM) is taken advantage of to properly
weight the estimated basis in approximating the original sig-
nal vectors. The “closer” vectors to the original signal vector
basis are sorted out by their dominant weights obtained from
the MCM constraint.

Specifically, once the matrix & is obtained, the transmit-
ted signal matrix Xgxn can be approximated by exploiting
the MCM property. Similarly as in (9), the relation between
X« and Egyy can be expressed as follows:

Xixn = WiexsEsuns (18)
where (i) £ stands for a matrix whose row vectors are the
estimated bases and (ii) X represents the estimate of signal
frame after deconvolution. The number of row vectors in &
may be greater than the number of the signal vector basis due
to the noise effects. Hence, the matrix W is not necessarily a
square matrix as W in (9).

The noise components have direct influences on the al-
gorithm in two aspects: (i) the noise degrades the estimation
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accuracy of the E and W; (ii) the random noise makes the
processing time of each estimation vary from frame to frame.
The sensitivity of the algorithm to the noise was examined by
the simulations elaborated in Section 5.

The weight matrix W is calculated using the alternating
projection iterations algorithm presented in the next section.

4.2. Signal property projection

DSTM employs PSK signaling so that transmitted signals
have MCM characteristics. Therefore, an alternating projec-
tion method from [18] is adopted here to calculate W in the
following procedure.

Algorithm Procedure. For j =0,1,...,n,

(1) XgLN = ng)xséSXN,

2) XV = Proc_G_S{X(},

(3) X6 = ADXG) 4+ (1 - AH)XWD,

(4) XU = X0) . /|X0)|,

(5) WS = XN s
where Proc _G_S means the Gram-Schmidt orthogonaliza-
tion procedure, and A0 is a diagonal relaxation matrix. The
initial matrix W(© could be either determined by pilot signals
or choosing randomly a full-column-rank matrix. As men-
tioned in [18], the Gram-Schmidt orthogonalization proce-
dure is applied here to prevent the algorithm from being bi-
ased to certain signals of strong power. The iteration stops
when W) reaches a stable state, that is, norm (WU*D —
W) < ¢, where ¢ is a small constant.

4.3. Signal detection

After the W is estimated by the above procedure, the
transmitted signal could be approximated as in (18). The
relation between the original coded signal frame X =
[X1,X2,X3,...,%] and the estimate X = [%},%2,%3,...,%.] can
be modeled as

X = AX+N, (19)
3\(1'=AX,‘+1'1,', i=1,2,...,¢ (20)

where A is an admissible matrix and x; is an ST group code
matrix. Noise elements are assumed to have independent and
identical circularly symmetric complex Gaussian distribu-
tion CN (0, 82).

Definition 1 (see [18]). If ax € {a | lox| = 1, k = 1,...,d}
C C and P is a permutation matrix, the matrix A =
(diag(a, az,...,aq)P) is an admissible transformation ma-
trix.

The ambiguity between X and its estimate )A(, represented
by A, exists because the MCM signal property constraint
used in estimating W does not contain any phase informa-
tion. From equations

Xi = AXI +n; Xi+1 = AX1+1 + iy, (21)
Xit1 = XiG[m)>

we obtain the following relations:

Xi+1 = XiGpm) + fhir1, (22)
where

i1 = Ny — Gy (23)

The dependence between X;;; and X; indicates a differ-
ential relation with the multiplicative matrix G- It can be
observed that the ambiguity matrix A between X; and x; is re-
moved by the differential signaling and differential detection.

Hence, the detection of GI) can be carried out using a
least square error detector:

Glitl = arg rgin [|Xir1 — %G|, (24)
[r]

where, for the G matrices, the matrix subscript r is an ST
codeword alphabet index, and the superscript i is a time in-
dex of the ST codeword.

From (24), we get

A ) ~ ~ Hn ~
Gl = argrglnTr{(xM - %Gp) (X1 — XiG[,])}
[r]
. ~AH (2 A~ HA
= argmin Tr{RI, (%i1) — (&Giry) " Rivo
~ \H,~ ~ H o~

- (Xin1) " (XGpy) + (XGpr) (XiG[rJ)}~
(25)

Because Tr{(X;G(,)" (X;G(;1)} is a constant for different G},
the detector for DSTM’s differential signaling becomes

Gli+1l — argrg%x%{Tr{()AiiG[r])H(;(iH)}}- (26)

Through the approximation of the signals with the estimated
basis as in (18), the intersymbol interference (ISI) of the sig-
nal is mitigated. Hence, in the procedure proposed in this
paper for MIMO frequency-selective channels, the final de-
tection stage embodied through (26) is similar to that for
DSTM signaling over frequency-flat fading MIMO channels
as represented in (3). In the comparison of (26) and (3), the
following property is useful: for square matrices A and B,
Tr{AB} = Tr{BA}.

4.4. Summary of the receiver algorithm

The complete receiver algorithm proposed for DSTM sig-
naling over the finite-impulse-response (FIR) rich multipath
channels proceeds on a frame-by-frame basis according to
the following four steps:

(1) estimate the direct input signal subspace basis and
signal approximations according to the method in
Section 3.1;

(2) calculate W by iterating the alternating projections
exploiting MCM using the algorithm presented in
Section 3.2;

(3) determine X by)A( = WE;
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FIGURE 3: Received signal constellation diagram (L = 7, M = 6,
K =4,P =1, N = 256, SNR/bit/antenna = 18.5dB).
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FIGURE 4: Signal constellation diagram after equalization (L = 7,
M =6,K =4,P =1,N = 256, SNR/bit/antenna = 18.5dB).

(4) perform signal detection according to detection crite-
ria (26) as described in Section 4.3.

Provided that the maximum delay spread is less than
T, the block Toeplitz signal structure and data processing
procedures in Sections 3.1, 3.2, and 4.3 enable the algebraic
data recovery without channel knowledge and channel es-
timation. The procedures in Sections 3.1 and 3.2 mitigate
frequency-selective effects in rich multipath environment,
and the differential detection of ST symbols described in
Section 4.3 removes the ambiguity of transformation A in
(19).

Regarding the proposed algorithm, it should be noted
that the receiver algorithm proposed in this paper exploits
both block Toeplitz structure of the received signals and the
MCM property of M-ary PSK signaling. It is not directly ap-
plicable to the schemes with a signaling without constant en-
velope. When employing other signalings that do not have

-10
-0 -8 -6 -4 -2 0 2 4 6 8 10

FIGURE 5: Received signal constellation diagram (L = 7, M = 6,
K =4,P =1, N = 256, SNR/bit/antenna = 19.3 dB).
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FIGURE 6: Signal constellation diagram after equalization (L = 7,
M =6,K =4,P =1,N = 256, SNR/bit/antenna = 19.3dB).

the MCM property, the part of the receiver algorithm de-
scribed in Section 3.2 for estimating W must be modified.

5. PERFORMANCE SIMULATIONS

With different parameter settings of the transceiver and the
channels, simulations of the new receiver algorithm were
conducted to verify the bit error rate (BER) performance
over Rayleigh FIR fading channels in the presence of AWGN.
Figures 3, 4, 5, 6, 7, and 8 illustrate the signal constellation
before and after the equalization for different values of SNR
per antenna. From Figures 4, 6, and 8, it is evident that en-
forcing the MCM property in our algorithm causes the signal
constellation after equalization to have a circular appearance.

The representative BER simulation results with the pa-
rameters K = 4, M = 5,6, N = 256, and P = 1 are illus-
trated in Figures 9, 10, and 11 for L = 3,5, 7, respectively.
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FIGURE 7: Received signal constellation diagram (L = 7, M = 6,
K =4,P =1, N = 256, SNR/bit/antenna = 21.4 dB).
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FiGure 8: Signal constellation diagram after equalization (L = 7,
M =6,K =4,P=1,N = 256, SNR/bit/antenna = 21.4dB).

The multiple channels were simulated to be the FIR Rayleigh
fading channels.

The simulations were carried out by employing a
(Msky,... ks) = (451,1,1,1) cyclic group code [9] and Q-
PSK signaling. The results were statistically averaged over
all possible cases of random path delays of the subchannels,
random ST channel states, random bitstreams, and random
AWGN. The SNR values in Figures 9, 10, and 11 are the spa-
tially and temporally averaged SNR per antenna over all the
frames received.

For comparison purposes, the performance of DSTM
signaling with the previous receiver’s algorithm was simu-
lated with the same fading channels. From the figures, it can
be observed that the receiver (without equalization) derived
under the assumption of the frequency-flat fading channels
fail in the frequency-selective fading channels considered in
the simulations (curves are labeled as “without equalization”
in the figures). On the other hand, the proposed algorithm

.\*\\
%.\*\ E
Bl R R
<4
|sa}
)
m 15 20 25
SNR (S/No)
— M=5
e M=6

-—- Without equalization

FIGURE 9: System BER performance in time-dispersive fading chan-
nel (L=3,K=4,P=1,N = 256).
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Ficure 10: System BER performance in time-dispersive fading
channel (L =5,K =4,P =1, N = 256).

(with equalization) maintains a robust performance in rich
multipath quasistatic FIR fading channels.

When the channel length is increased, it is more difficult
to remove the ISI effects. This is evident by comparing the
performance curves in Figures 9, 10, and 11, where L = 3,5,
and 7, respectively. From these figures, we can observe that in
order to obtain the same performance of BER at 1073 using
the same transceiver setup, the SNR has to be increased from
4dB to 7dB and 14.1dB for K = 4, M = 5. Additionally,
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FIGURe 11: System BER performance in time-dispersive fading
channel (L=7,K =4,P =1, N = 256).

FIGURE 12: System BER performance in time-dispersive fading
channel (L=5,K =4,M =5,6,P =1).

the power savings by increasing the receiver antenna number
depends on the BER operating point of the system.
Similarly, for different N = 64,128,192, the simulation
results with the parameters K = 4, M = 5,6,and P = 1 are il-
lustrated in Figures 12, 13, and 14 for L = 5, 6, 7, respectively.
From these figures, we could observe that the choices of N ex-
hibit a considerable influence on the system performance. To

BER

FIGUure 13: System BER performance in time-dispersive fading
channel (L=6,K =4,M =5,6,P = 1).

BER

FIGURE 14: System BER performance in time-dispersive fading
channel (L=7,K =4,M =5,6,P =1).

some extent, for short channel length cases, a relatively larger
N within a certain range facilitates higher performance. The
improvements are achieved at the expense of the increased
computational complexity. But, for the cases of long channel
lengths, this trend does not exist.
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6. CONCLUSIONS

This paper proposes a blind ST receiver algorithm for DSTM
transmissions over quasistatic FIR fading channels. The algo-
rithm is applicable in the transmission scenarios with differ-
ent numbers of antennas at both the transmitter and receiver
sides. Simulation results demonstrate its robust performance
over unknown rich multipath FIR fading channels. With a
proper design of the transceiver parameters and the frame
guard time Tg in the new scheme, the ST symbol detection
error drops significantly when SNR passes certain thresholds
despite the delay spread of the channels.

Particularly, the new detection algorithm does not rely
on the channel estimation. Secondly, the proposed receiver is
not subjected to the channel changes provided the channel is
invariant within one frame time slot. Furthermore, in con-
trast to the methods based on the statistics of a large amount
of signal samples, the proposed scheme is capable of operat-
ing when a relatively small number of received data samples
are available.

APPENDIX
PROOF OF PROPOSITION 1
Proof. Let B denote the row span of £, p=0,1,2,...,L.

If H is of a full-column rank, from (5), it could be concluded
that

For p =0,
Sy =
x(0) x(1) x(2) x(3) --- x(N —1)
0 x(0) x(1) x(2) --- x(N —2)
row_span . . . . ;
0 --- 0 x(0) x(1) --- x(N-L-1)
(A.1)
Forp =1,
Sy
x(1) x(2) x(N-1) 0
x(0) x(1) x(N -1)
= row._span . . . . ;
0 .-+ x(0) x(1) x(N - L)
(A.2)
Forp=1,
Syw = row_span
x(L) x(L+1) --- x(N-1) 0 0
x(L-1) x(L-2) --- x(N —-1) 0
X . . . . .
x(‘O) x(.l) x(.2) x(N.—l)

(A.3)

By observing the above relationship, it is evident that 8x C
89, respectively, for i = 0,1,2,..., L. Therefore, according
to set theory,

(A.4)

L
8x C { ﬂ 5@(:‘)}.
i=0

Consider 890 () 8y, which is equivalent to the inter-
section of row subspaces of

x(0) x(1) x(2) x(N -1)
0 x(0) x(1) x(2) --- x(N —2)
6 : . x(.O) x('l) . x(N —‘L -1)
x(1) x(2) x(N-1) 0
x(0) x(1) x(2) --- x(N —-1)
6 . . x(.O) x(‘l) . -‘ . X(N.— L)
(A.5)

If frame length N is sufficiently large, the rows of X7
are linear independent with probability of 1. Observing the
block Toeplitz structure of the above matrices, the row rank
of the intersection is (K(L + 1) — K). Therefore, the number
of basis vectors of 891 () 8y is also (K(L + 1) — K).

Following the similar verification procedure, it could
be observed that the number of row basis vectors of
52)(1) ﬂ 52)(2) m 5@(3) is (K(L+1) —2K).

Moreover, the number of basis vectors of {ﬂiL:O Sy} is
K, which is equal to the number of row basis vectors for $x.
Hence, from (A.4), it is concluded that

L
8x = {ﬂ 5@(:‘)}
i=0

(A.6)
O
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Enhanced genetic algorithms (GA) applied in space-time block coded (STBC) multiuser detection (MUD) systems in Rayleigh flat-
fading channels are reported in this paper. Firstly, an improved objective function, which is designed to help speed up the search
for the optimal solution, is introduced. Secondly, a decorrelating detector (DD) and a minimum mean square error (MMSE)
detector have been added to the GA STBC MUD receiver to create the seed chromosome in the initial population. This operation
has improved the receiver performance further because some signal information has been intentionally embedded in the initial
population. Simulation results show that the receiver employing the improved objective function and the DD or MMSE detector
can converge faster with the same bit error rate (BER) performance than the receiver with the initial population chosen randomly.
The total signal-to-noise ratio (SNR) improvement contributed by these two modifications can reach 4 dB. Hence the proposed
GA receiver is a promising solution of the STBC MUD problem.

Keywords and phrases: genetic algorithms, multiuser detection, decorrelating detector, minimal mean square error detector,

space-time block coding, objective function.

1. INTRODUCTION

In wireless communications, space-time block coding
(STBC) with diversity gains has been widely studied in mul-
tiuser detections (MUDs) [1, 2, 3] because STBC can utilize
the information in the spatial and time domains simulta-
neously [4]. From the coding point of view, the single-user
performance of STBC has been studied in [5, 6] and some
STBC code designs have been established. Generally speak-
ing, STBC is a coding technique designed particularly for the
application with multiple transmit antennas [5, 6]. It intro-
duces temporal and spatial correlation into signals transmit-
ted from different antennas. The signals transmitted from
the different transmit antennas in an STBC transmitter can
be considered and calculated as if they were originated from
different virtual users so that STBC detection in the case of
single user can be regarded simply as a MUD problem.
Conventional detection (CD) of multiuser signals utilizes
a bank of chip-level matched filters to detect each user sig-
nal separately while treating all other user signals as interfer-
ence. However, owing to multiaccess interference (MAI), this
single-user detection method suffers much from the near-
far effect. Consequently, the MUD technique that employs a

combinatorial optimization process to exploit the informa-
tion of all the users in order to detect a target user signal
has been proposed to mitigate the near-far effect [7]. Among
all the MUD techniques, the maximum likelihood (ML) op-
timal detector can achieve satisfactory bit error rate (BER)
performance but the computational complexity varies expo-
nentially with the number of users. Even with the maximum
a posteriori (MAP) method described in [8], the computa-
tional complexity still varies in the order of 2/, where “I” is
the length of the codeword and is a linear function of the
number of users. Therefore, the MUD technique is a non-
deterministic polynomial (NP)-hard problem [9], which re-
quires unforeseeable huge computing power in order to find
a global optimum solution. For such NP-hard problems, it
is necessary to search for good approximation algorithms
that yield solutions close to the optimum, although they do
not guarantee that a global optimum can be obtained for
every instance. Such approximate algorithms are also based
on the ML method but the final decision is reached from a
simpler route at the expense of performance degradation.
Some general approximation algorithms that can achieve
a reasonable balance of system performance and computa-
tional speed have been reported: simulated annealing (SA)
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FIGURE 1: Schematic of an uplink STBC MUD system.

[10], tabu search (TS) [11], and genetic algorithms (GA)
[9, 12, 13, 14, 15, 16]. In the TS method, the move attribute,
which is a set of important parameters stored in the tabu list,
must be chosen in such a way that it is neither too permissive
nor too restrictive. Otherwise, the method will likely con-
verge to a local optimum with higher probabilities. On the
other hand, the GA method, which can be transformed into
the SA method by gradually modifying some GA parameters,
will only lead to a longer convergence time but not a higher
probability of converging to a local optimum even if the GA
parameters have been improperly selected. It is because of
this more tolerable selection of parameters that GA has been
chosen to investigate alternative MUD solutions in this pa-
per.

The GA comes originally from the schemata theory [12].
It was inspired by the observations of the natural process of
evolution of plant and animal species. These living species
constantly explore new possibilities in building new living
organisms as well as skillfully exploit the “knowledge” ac-
cumulated in the current living organisms to create new
species that are as capable of surviving as their ancestors [9].
These remarkable characteristics of the process of creating
new forms of life have caught the interest of computer sci-
ence researchers and led to the creation of the GA in 1975
[12].

It has been shown in [13, 14, 15, 16] that the application
of GA in MUD systems can significantly reduce the com-
putation complexity with comparable BER performance in
Rayleigh flat-fading channels. In particular, the application
of GA in an STBC MUD system is proposed for the first time
in [13], where all the chromosomes in the initial population
are randomly chosen. However, the results shown in [13] in-
dicate that the number of generations needed for the output
to converge to a satisfactory performance is still fairly large,
which makes the computation too long even though it is al-
ready much shorter than the ML method.

In this paper, a modified objective function is first in-
troduced to shorten the GA computation. Furthermore,
a decorrelating multiuser detector (DD) and a minimum
mean square error (MMSE) detector [17] are also proposed
to provide the seed chromosome of the initial population in

the STBC MUD receiver in a wireless uplink transmission
system. The DD decouples the received signal and the lin-
ear MMSE detector maximizes the receiver output signal-to-
noise ratio (SNR). The seed chromosome provided by the
DD or MMSE detector is perturbed randomly to generate all
the chromosomes of the initial population. Hence some sig-
nal information has been embedded in the initial population.
Consequently, we expect this algorithm to converge more
quickly and the computation burden should be reduced. The
only cost of this technique is the time consumed to obtain the
seed chromosome, which is small compared with the benefit
it brings. The simulation results have confirmed the validity
of the proposed receiver.

Notations

Superscripts (-)*, ()7, and (-)¥ denote the complex con-
jugate, transpose, and Hermit operation respectively; ()~}
refers to the matrix inverse operation; || - || is for the ma-
trix/vector Frobenius norm; and - X - represents the dimen-
sion of a complex matrix.

2. SYSTEM MODEL

The schematic of a multiuser STBC system is shown in
Figure 1. Just to simplify the analysis, we cut the descrip-
tion of the outer code and the channel estimation with the
assumption that the channel state information (CSI) is per-
fectly known and remains constant during an entire block
period. In real cases, it is not difficult to include such tech-
nologies in STBC MUD systems. There are K users in the
uplink channel. For each user, the bit stream is MPSK mod-
ulated and STBC encoded before being transmitted from
N antennas. The size of the PSK modulation set is Q. All
users are assumed to be synchronous and mutually indepen-
dent. The signals from all users reach the M receive antennas
through a Rayleigh flat-fading channel.

Without loss of generality, the STBC 4, code described
in [5, 6] is selected in this study. The §, code represents one
category of orthogonal STBC, where the subscript “2” refers
to N, the number of transmit antennas. It is straightforward
to extend this study to the case of more transmit antennas at
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other transmission rates, no matter whether the STBC design
is orthogonal or not. §, is given as

_ [ Xﬁ‘ x’z‘} _ [Ci,k Cik:| (1)
where the superscript “k” represents the kth user. x¥ and x5
are the symbols to be transmitted per block (i.e., the num-
ber of symbols per block is Ky = 2). The symbol ¢}, (where
i = .sNand t = 1,...,P) in the ith column for the
kth user w1th P =2 tlme slots per block is transmitted
by the ith transmit antenna. The transmission rate of §, is
R = Ky/P = 1, which is the highest in all STBC designs. In all
of the other cases, R is always less than 1.

The detected signal from all the users in the jth (j =
1,2,...,M) receive antenna (in the base station) in the tth
time slot is

K
t] = Z (Z“z;ctk) +’1t) (2)

where oc i is the path gain between the ith transmit antenna

and the ]th recelve antenna for the kth user and 17, is the
noise. As usual, af ,j 1s taken as an independent complex
Gaussian random variable with zero mean and a variance of
0.5 per dimension.

For the kth user, the path gain matrix for the jth receive
antenna is (the superscript k is dropped till (9) to simplify
the notation)

ﬁj = [061,j aj v (XN,j]T. (3)

The signal symbols per block can be denoted as

X
[Re (x1) Re (x2) - - - Re (xx,) Im (x1) Im (x2) - - - Im (xg, )]".
(4)
The signal in the jth receive antenna is
, o AT
= [r{ Mo TIJJ] (5)
and the noise in the jth receive antenna is
. P T
w=[nl w o nh] (6)

Using STBC encoding, the detected signal in the jth antenna
can be obtained from the following general matrix transfor-
mation which is applicable to any STBC design:

= Gohj+ 1) = H +1p), (7)

where H/ for the §, design is defined as

: Ay 0 a1 K
H o= | o et | (8)
“2,] 051,] 052,1 051,]

The purpose of introducing the redundant vector x in (4)
with the conjugation of the signal symbols is to enable it to
treat the generalized STBC design. When a nonredundant
signal vector [x1,x2,... s xxo]T is used, the cost of conjugat-
ing half of the received signals and CSI has to be taken into
account as well [3]. For example, instead of the transforma-
tion in (7), the received signal for the Alamouti design 4 [6]
will be represented as [3] follows:

j
r _ OC]’]' 062’]' X1 j
[rﬁ*] B [“ik,j —“TJ [XJ e ©)
However, it is impossible to apply (9) for the following STBC
design:

X1 X2 X3 0

- xf 0 —x3

S= * 0 * (10)
X3 _xl —x2
0 —-xF x5 -—xf

The #54 design in [5] is similar to S. In this situation, the
redundant form given by (4) and the transformation shown
in (7) have to be adopted, which then eliminates the need to
conjugate the received signals and the CSI [18]. Hence the
combined received signal of the M receive antennas can be
written as

T T
r= [ll r?

MP x 1

T
T
_rM]

(11)

where MP X 1 and similar notations in the following equa-
tions refer to the dimensions of the matrices. Therefore, in-
cluding all of the K users, the signal in the jth receive antenna
should be

K
k=1

ji=1,2...,M. (12)

Hence the received signal vector is

1

r X '
2 72 e
r= . :[H1 H, "'HK]X . + .
r}” H ,-C'.K ,1.M (13)
B —_— ——
x 1
MP x 1 MP x 2KoK 2KpK X1 MP x1
where
1 172 el
Hy = [H} H} - HY| MPx 2K, (14)
In matrix form, the received signal is
r=Hx+7. (15)
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In the conventional receiver, each user is separately de-
tected [14]. Therefore, the detection rule [6] for single user
can also be applied to the MUD with matched filtering. The

estimation of rf,k(ft],k) for the kth user based on (7) is ob-
tained after the matched filter from the received signal r. For
example, the decisions based on the estimation in [6] for two
receive antennas with the §, design are

ok al koal* ka2 kop2*
X1 = QP T 00 0, T X7+ 65075 s

ok al K al* k* 52 K p2*
X2 = 0 Tk — Qo + 07 — Ky 75 k.

(16)
In this paper, if we let % be the estimation of the origi-
nal signal x, the estimation error can be obtained assuming
perfect CSI:
fi = lie —HRJP". (17)
As mentioned earlier, a DD or MMSE detector is ap-
plied at the receiver side in the MUD so as to create the seed
chromosomes for the subsequent GA operations in order to
improve the receiver performance. Firstly, the estimation of
the original signal is to be calculated by either the DD or
the MMSE detector and designated as the seed chromosome.
Then this seed chromosome is perturbed randomly to form
the initial population, which will undergo further GA opera-
tions. The DD estimation of the original signal is

%pp = (HAH) ™'

Hr, (18)
where H is assumed to be full column rank. The correspond-
ing MMSE detector estimation is

A -1 H

fvmse = (R, H) ', (19)
where R,, is the self-correlation of the received signals from
all the receive antennas. The inversion operations in (18) and
(19) only appear once and the subsequent operations do not
require such inversions so that the total computation time
is little affected if the number of evaluations of (17) is fairly
large.

3. THE GENETIC ALGORITHM
In general, a GA is composed of the following steps.

(1) Initial population generation: all initial chromosomes
are encoded in bit level to simplify the following GA
recombination operations. They are either generated
randomly or derived from the DD decision or the
MMSE decision. Each chromosome is a combination
of the probable solution for all users. Normally, the
population size is taken as the product between K, the
number of users, and QX, the number of all possible
solutions of each user.

(2) Fitness value calculation: the MSE shown in (17) can
act as the objective function to evaluate the fitness
of each chromosome. The optimal solution of (17)
should yield a minimum value. In fact, the ML method

(3)

(4)

(5)

(6)

(7)

evaluates every possible combination of bits so the
computation time varies exponentially with the num-
ber of users. As explained before, the use of GA in an
STBC MUD system can reduce the computation times
of (17) significantly. To make the search more effective,
an improved version of the objective function over that
defined by (17) is proposed here:

r Hx |

el [HZ]

. (20)

i

The expression calculates the phase difference between
r and Hx and should therefore be more sensitive to the
changes of either or both vectors. The best chromo-
some in a generation should have the least value of the
objective function. If the value of the best chromosome
in the present generation is larger than its counterpart
in the previous generation, the chromosome with the
largest value of the objective function in the present
generation will be replaced by the best chromosome of
the previous generation. This operation ensures that at
least the useful information contained in the present
generation is passed on to the next. A chromosome is
usually considered to be better if it has a larger fitness
value. Hence a fitness value can be defined with the
help of (17) or (20) as follows:

f=hh~f

where fy is a sufficiently large constant and can be
taken as the largest value of f; or f, within the whole
population. Obviously, the larger the fitness value, the
better the chromosome is.

If the optimal criterion is satisfied, that is, when any
one of all f; in the population is less than a pre-
determined threshold, or if the generation number has
exceeded a predefined value, which is also commonly
taken as the product between K and QXv, then go to
Step (9). Otherwise, go to Step (4).

Selection: this operation is based on the Roulette-
wheel rule [9] and the probability of each chromosome
being selected is calculated using the fitness value ob-
tained with (21) in Step (2). It serves to provide the
chromosomes for the subsequent recombination op-
erations.

Reproduction: this step is intended to replace the chro-
mosome of the largest objective function by the best
chromosome of the same generation.

Crossover: this operation exchanges some parts of the
chromosomes to provide a chance for a chromosome
to include more signal information. Since the objective
function is calculated in symbol (8 PSK) level and nor-
mally erroneous symbols are detected adjacent to the
correct symbols, the crossover operation is carried in
symbol level. In this paper, a single-point crossover is
adopted.

Mutation: this operation can enhance the convergence
of the GA in case the original signal information has

i=1,2, (21)
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TasBLE 1: The time needed for different detectors.

Receiver RR-f; RR- f, RDD-f;

RDD- f,

RMD-fi RMD-f, ML(K=1) ML(K =4)

Time needed per block(s) | 3.287 3.259 1.124

1.092

1.123 1.090 6.479 998.559

not been included in the initial population. For exam-
ple, if the second bit of all chromosomes is “0” whereas
the real signal bit is “1,” then the only way leading to
the right solution is by mutation. The mutation opera-
tion is also carried out in symbol level, where a symbol
may be mutated to its adjacent symbol in the constel-
lation according to a certain selected mutation proba-
bility. Generally, the crossover probability p. is close to
1 and the mutation probability p,, is close to 0.

(8) Go to Step (2) for the next generation.

(9) End and output the decisions.

Sometimes the bit inversion operation is performed in
the GA but it can be regarded as a special kind of crossover
so that it is not considered here. The operations of Step (6)
and Step (7) may also lead to chromosomes with less infor-
mation but the operation in Step (5) can reverse this degener-
ative effect. For given predefined number of generations and
population size, the computation times of (17) vary linearly
with (KQK0)2, which is much smaller than the factor of QXKo
in the ML detection. The improvement is clearly significant.

The significant features of the GA proposed in this paper
are the introduction of an improved objective function and
the preparation of an initial population that already contains
some signal information from the output of a DD or MMSE
detector given by (18) or (19) instead of a blind and random
selection of the initial population as suggested in [13].

4. SIMULATIONS

In the following simulations, 8 PSK modulation and $,
STBC of rate 1 have been adopted and the number of users
is K = 4. Hence Q = 8, N = 2, and the signal vector length,
that is, the chromosome length, is L = K*K; log, Q = 24.
The number of receive antennas is M = 2. The predefined
number of generations and the population size are both 256
since the number of all possible solutions for each user is
QK = 64. The improvement of the computation time in the
GA STBC MUD is therefore 256 times over the ML detec-
tion. The recombination operation parameters are p,, = 0.05
and p, = 0.95. The Roulette-wheel selection rule and the
single-point crossover are adopted. The channel is Rayleigh
flat fading and is maintained constant during the whole block
period. The path gain is taken as an independent complex
Gaussian random variable with zero mean and a variance of
0.5 per dimension.

The computation times for each block averaged from
1000 times of Monte Carlo simulations in Matlab are given
in Table 1 for various simulation schemes. In the table, “f,”
and “f,” represent the receiver based on the objective func-
tion given by (17) and (20) respectively. “RR” refers to the re-
ceiver with the seed chromosome chosen randomly. “RDD”

refers to the receiver with its seed chromosome created from
the DD detector. “RMD?” refers to the receiver with its seed
chromosome created from an MMSE detector. “ML (K = 1)”
represents the ML detector for the single-user case. The time
per block needed for “ML (K = 4)” is so large that only sev-
eral blocks are simulated for reference and therefore the BER
performance of this case is not shown in the following fig-
ures. The same notations are also used in the following fig-
ures. The criterion for terminating the algorithm is when the
objective function from (17) or (20) is less than a predefined
threshold. This threshold is selected from the smallest value
of (17) or (20), where the training signal is obtained by set-
ting % to x. The resulting threshold is 0.5 for f; or 0.1 for f,
in this paper. The table shows clearly that the time needed for
our proposed GA STBC MUD is only about 1/5 of that of the
single-user receiver with ML detection, and the improvement
over the MUD is more than 256 times since some block de-
tection may have the GA operations terminated before the
last generation. The computation time required when the
seed chromosome is prepared from either the DD detector
or the MMSE detector is a few times further smaller than
that when the initial chromosomes are randomly chosen. The
computation time for the modified objective function f, is
about 10% less than that for the original function f; because
of its quicker convergence.

The BER performance versus the number of generations
for the various detection schemes employing the objective
function f; or f, is shown in Figure 2 at SNR = 6dB. For
comparison, the BER curves for the iterative MAP method
suggested in [3] after the 6th iteration (6th iter. of IMAP in
the figure) for the CD, DD, MMSE, and ML detectors are
also given. By comparing Figure 2a with Figure 2b, it can be
observed that the improvement of RDD and RMD over RR
is more significant with f, than with f;. Besides, the perfor-
mance of RDD is comparable to that of RMD. All proposed
GA receivers outperform the CD after 30 or 10 generations
with f; or f,, respectively. RDD or RMD detector initially
performs the same as DD or MMSE detector but gradually
achieves a better BER performance after GA operations.

Figure 3 gives a comparison between the two objective
functions when SNR = 6 dB for RR, RDD, and RMD, respec-
tively. The receiver with the objective function f, converges
to a BER of 1072 about 80 generations sooner than that with
fi for both RDD and RMD, which is also the reason why
the computation time for the final decision is smaller with
f> than with fi. A similar behavior is observed with RR but
the improvement is not so significant. It is also obvious that
the performance of the receivers with f, approaches to that
of the single-user ML detection much faster and nearer than
those with f;.

Figure 4 shows the BER versus SNR performance of
the final GA output of various receivers with the objective
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FIGURE 2: Performance comparison of various receivers at SNR =
6 dB with the objective function (a) f; and (b) f.

function f; or f, respectively. Figure 4a shows that RDD and
RMD with the objective function f; outperform RR by about
2dB at the BER of 1072, Here the comparison is referenced
at the BER of 1072 instead of 107> just because the results
cannot approach 1073, Figure 4b shows that RDD and RMD
with the objective function f, outperform RR by about 3 dB
at the BER of 1072 and can outperform 6th iteration results of
the iterative MAP detection. The SNR degradation compared
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FIGURE 3: Performance comparison at SNR = 6 dB of different ob-
jective functions for receiver with the seed chromosome (a) ran-
domly chosen, (b) created by a DD detector, and (c) created by an
MMSE detector.
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FIGURE 4: BER versus SNR performance of various receivers with

the objective function (a) f; and (b) f.

with the single-user ML performance is about 2 dB for RMD
and RDD at the BER of 1072, Furthermore, RMD outper-
forms RDD by a very small amount with both objective func-
tions. The improvement of all the proposed receivers over
the CD, DD, and MMSE is significant. However, Figure 4
also shows that there may be a bound for those detectors
with f;, which will limit any further application of such

detectors.
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F1Gure 5: BER performance comparison of different objective func-
tions for receiver with the seed chromosome (a) randomly chosen;
(b) created by a DD detector, and (c) created by an MMSE detector.
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Figure 5 shows the detailed performance comparison be-
tween f; and f, for RR, RDD, and RMD, respectively. Clearly
the receivers with f, outperform those with f;. The SNR im-
provement at the BER of 1072 is about 1.3dB or 1dB for
RDD or RMD, respectively.

5. CONCLUSIONS

The GA has previously been shown to be a feasible technique
to solve the STBC MUD problem requiring less computing
resources. To further improve its performance, two modifi-
cations have been proposed in this paper. Firstly, a new ob-
jective function is introduced which includes the phase in-
formation of the relevant signal vectors in order to make
the decision more accurate. It contributes to about 10% re-
duction of detection time and about 1.3 or 1dB SNR im-
provement at the BER of 1072 for the GA receiver with
DD or MMSE detector, respectively. It also requires fewer
generations to converge. Secondly, the DD and MMSE de-
tectors have been embedded into the GA STBC MUD sys-
tem to generate the seed chromosome and thus provide
some signal information to the first generation. The result-
ing simulations confirm that the receivers thus designed can
converge faster than that with the initial population ran-
domly chosen. The improvement in SNR is about 2-3 dB
at the BER of 1072. Therefore, the total SNR improvement
of the best receiver proposed here can reach 3—4 dB at the
BER of 1072 when compared with the previous reported
GA STBC MUD receiver. This receiver performance is also
better than the DD, MMSE, or MAP detector. The degra-
dation in SNR when compared with a single-user ML de-
tector is limited to about 2dB at the BER of 1073, All the
above results suggest that the proposed improved GA receiver
is a promising solution of the STBC MUD problem with
reasonable computation complexity and fairly good perfor-
mance.
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Multiple-input multiple-output (MIMO) communication techniques have received great attention and gained significant devel-
opment in recent years. In this paper, we analyze and compare the performances of different MIMO techniques. In particular, we
compare the performance of three MIMO methods, namely, BLAST, STBC, and linear precoding/decoding. We provide both an
analytical performance analysis in terms of the average receiver SNR and simulation results in terms of the BER. Moreover, the
applications of MIMO techniques in WCDMA systems are also considered in this study. Specifically, a subspace tracking algo-
rithm and a quantized feedback scheme are introduced into the system to simplify implementation of the beamforming scheme.
It is seen that the BLAST scheme can achieve the best performance in the high data rate transmission scenario; the beamforming
scheme has better performance than the STBC strategies in the diversity transmission scenario; and the beamforming scheme can
be effectively realized in WCDMA systems employing the subspace tracking and the quantized feedback approach.

Keywords and phrases: BLAST, space-time block coding, linear precoding/decoding, subspace tracking, WCDMA.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) communication
technology has received significant recent attention due to
the rapid development of high-speed broadband wireless
communication systems employing multiple transmit and
receive antennas [1, 2, 3]. Many MIMO techniques have been
proposed in the literature targeting at different scenarios in
wireless communications. The BLAST system is a layered
space-time architecture originally proposed by Bell Labs to
achieve high data rate wireless transmissions [4, 5, 6]. Note
that the BLAST systems do not require the channel knowl-
edge at the transmitter end. On the other hand, for some ap-
plications, the channel knowledge is available at the trans-
mitter, at least partially. For example, an estimate of the
channel at the receiver can be fed back to the transmitter
in both frequency division duplex (FDD) and time division
duplex (TDD) systems, or the channel can be estimated di-
rectly by the transmitter during its receiving mode in TDD
systems. Accordingly, several channel-dependent signal pro-
cessing schemes have been proposed for such scenarios, for
example, linear precoding/decoding [7]. The linear precod-
ing/decoding schemes achieve performance gains by allocat-

ing power and/or rate over multiple transmit antennas, with
partially or perfectly known channel state information [7].
Another family of MIMO techniques aims at reliable trans-
missions in terms of achieving the full diversity promised by
the multiple transmit and receive antennas. Space-time block
coding (STBC) is one of such techniques based on orthog-
onal design that admits simple linear maximum likelihood
(ML) decoding [8, 9, 10]. The trade-off between diversity and
multiplexing gain are addressed in [11, 12], which are from a
signal processing perspective and from an information theo-
retic perspective, respectively.

Some simple MIMO techniques have already been pro-
posed to be employed in the third-generation (3G) wireless
systems [13, 14]. For example, in the 3GPP WCDMA stan-
dard, there are open-loop and closed-loop transmit diver-
sity options [15, 16]. As more powerful MIMO techniques
emerge, they will certainly be considered as enabling tech-
niques for future high-speed wireless systems (i.e., 4G and
beyond).

The purpose of this paper is to compare the perfor-
mance of different MIMO techniques for the cases of two
and four transmit antennas, which are realistic scenarios
for MIMO applications. For a certain transmission rate, we
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compare the performance of three MIMO schemes, namely,
BLAST, STBC, and linear precoding/decoding. Note that
both BLAST and STBC do not require channel knowledge
at the transmitter, whereas linear precoding/decoding does.
For each of these cases, we provide an analytical performance
analysis in terms of the receiver output average signal-to-
noise ratio (SNR) as well as simulation results on their BER
performance. Moreover, we also consider the application of
these MIMO techniques in WCDMA systems with multipath
fading channel. In particular, when precoding is used, a sub-
space tracking algorithm is needed to track the eigenspace of
the MIMO system at the receiver and feed back this infor-
mation to the transmitter [17, 18, 19, 20]. Since the feedback
channel typically has a very low bandwidth [21], we contrive
an efficient and effective quantized feedback approach.
The main findings of this study are as follows.

(i) In the high data rate transmission scenario, for exam-
ple, four symbols per transmission over four transmit
antennas, the BLAST system actually achieves a bet-
ter performance than the linear precoding/decoding
schemes, even though linear precoding/decoding
make use of the channel state information at the trans-
mitter.

(ii) In the diversity transmission scenario, for example,
one symbol per transmission over two or four trans-
mit antennas, beamforming offers better performance
than the STBC schemes. Hence the channel knowledge
at the transmitter helps when there is some degree of
freedom to choose the eigen channels.

(iii) By employing the subspace tracking technique with an
efficient quantized feedback approach, the beamform-
ing scheme can be effective and feasible to be employed
in WCDMA systems to realize reliable data transmis-
sions.

The remainder of this paper is organized as follows. In
Section 2, performance analysis and comparisons of differ-
ent MIMO techniques are given for the narrowband scenario.
Section 3 describes the WCDMA system based on the 3GPP
standard, the channel estimation method, the algorithm of
tracking the MIMO eigen-subspace, as well as the quantized
feedback approach. Simulation results and further discus-
sions are given in Section 4. Section 5 contains the conclu-
sions.

2. PERFORMANCE ANALYSIS AND COMPARISONS
OF MIMO TECHNIQUES

In this section, we analyze the performance of several MIMO
schemes under different transmission rate assumptions, for
the cases of two and four transmit antennas. BLAST and lin-
ear precoding/decoding schemes are studied and compared
for high-rate transmissions in Section 2.1. Section 2.2 fo-
cuses on the diversity transmission scenario, where different
STBC strategies are investigated and compared with beam-
forming and some linear precoding/decoding approaches.

2.1. BLAST versus linear precoding for high-rate
transmission

Assume that there are nr transmit and ny receive antennas,
where ng > nr. In this section, we assume that the MIMO
system is employed to achieve the highest data rate, that is,
nt symbols per transmission. When the channel is unknown
to the transmitter, the BLAST system can be used to achieve
this; whereas when the channel is known to the transmitter,
the linear precoding/decoding can be used to achieve this.

2.1.1. BLAST

In the BLAST system, at each transmission, nr data sym-
bols s1,52,...,8n, Si € A, where +4 is some unit-energy (i.e.,
E{lsi|>} = 1) constellation signal set (e.g., PSK, QAM), are
transmitted simultaneously from all nr antennas. The re-
ceived signal can be represented by

N hia h1,2 hl,nr S1 n

V2 p hay hop hony ) ny
L= . . . +1 .0

nr : . :

Vg h”R)I h”R)Z T hﬂR,nT Snr Mg
—— \ v SN — N —

Y H s n

(1)

where y; denotes the received signal at the ith receive an-
tenna; h; ; denotes the complex channel gain between the ith
receive antenna and the jth transmit antenna; p denotes the
total transmit SNR; and n ~ N (0, L, ).

The received signal is first matched filtered to obtain z =

H"y = . /p/nrH"Hs + H n. Denote Q@ = H'H and w £

Hn, and thus, w ~ N (0, Q). The matched-filter output is
then whitened to get

iQl/zs+\~', (2)
nr

u=Q"z=

where v £ Q2w ~ N :(0,1,,,). Based on (2), several meth-
ods can be used to detect the symbol vector s. For example,
the ML detection rule is given by

2
u- | Loy, (3)

$mL = arg min
nr

seA"T

which has a computational complexity exponential in the
number of transmit antennas nr. On the other hand, the
sphere decoding algorithm offers a near-optimal solution
to (2) with an expected complexity of ©(n}) [22]. More-
over, a linear detector makes a symbol-by-symbol decision
§ = Q(x), where x = Gu and Q(-) denotes the symbol slicing
operation. Two forms of linear detectors can be used [5, 6],
namely, the linear zero-forcing detector, where G = Q2
and the linear MMSE detector, where G = (Q"? +(nr/p)D7L
Finally, a method based on interference cancellation with
ordering offers improved performance over the linear de-
tectors with comparable complexity [22]. Note that among
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the above-mentioned BLAST decoding algorithms, the lin-
ear zero-forcing detector has the worst performance. The de-
cision statistics of this method is given by

P, (4)
nr

x=Gu=Q "u=

It follows from (4) that the received SNR for symbol s; is
(p/nT)/[Q_l]j,j, j = 1,2,...,nr. Hence the average received
SNR under linear zero-forcing BLAST detection is given by

=% 1 ”ZT 1
SNRprasT-LZF = P(— - ) (5)
nr S e,

2.1.2. Linear precoding and decoding

When the channel H is known to the transmitter, a linear pre-
coder can be employed at the transmitter and a correspond-
ing linear decoder can be used at the receiver [7]. Specifically,
suppose m < nr symbolss = [s1 s -+ $u]T are transmit-
ted per transmission, where m = rank(H). Then the linear
precoder is an ny X m matrix F such that the transmitted sig-
nal is Fs. The ng X 1 received signal vector is then

y = HFs +n, (6)

where n ~ N (0,1,,). At the receiver, y is first matched fil-
tered, and then an m X nr linear decoder G is applied to the
matched-filter output to obtain the decision statistics

X = GHHy = GQFs + GH n. (7)

The linear precoder F and decoder G are chosen to minimize
a weighted combination of symbol estimation errors, that is,
mingg E{|[D"?(s—x)||?}, where D is a diagonal positive def-
inite matrix subject to the total transmitter power constraint
tr(FF) < p. The weight matrix D is such that all decoded
symbols have equal errors (equal error design). Denote the
eigendecomposition of Q as Q@ = VAVH + VAV, where A
and V contain the m largest eigenvalues and the correspond-
ing eigenvectors of Q, respectively; and A and V contain the
remaining (nr—m) eigenvalues and the corresponding eigen-
vectors, respectively. Denote y = p/tr(A™"). Then the linear
precoder and decoder are given by [7]

F = yl/ZVA_I/Z,

— 1 71/2VH (8)

y12 4yl

It can be verified that GH'HF = (1/(y~!+ y))L,. Hence
this precoding scheme transforms the MIMO channel into
a scaled identity matrix. Furthermore, the received SNRs for
all decoded symbols are equal, given by v, that is,

NR P P
SNRequal—error precoding = tr (A,l) = tr (Qfl) . (9)

Remark 1. The BLAST system can be viewed as a special case
of linear precoding with the transmitter filter F = /p/nrl,,.

And the zero-forcing BLAST detection scheme corresponds
to choosing the receiver filter G = Q"2

Remark 2. An alternative precoding scheme is to choose F =
\Jp/nrV and G = VH_ Then the output of the linear decoder

can be written as

X = /pVHHHHVs+VHHH /nﬁAs+w, (10)
T

where w ~ N (0,A). Hence this scheme also transforms
the MIMO channel into a set of independent channels, but
with different SNRs. The received SNR for the jth symbol
is (p/n1)Aj, where A; is the jth eigenvalue contained by A.
We call this method the whitening precoding. The average
received SNR is given by

RN] tr(Q
SNRwhitening precoding = ( Z A ) ( r( ) ) . (1 1)
T

Note that the whitening precoding is different from the
equal-error precoding in (8). In particular, different received
SNRs are achieved over different subchannels for the whiten-
ing precoding, whereas the equal-error precoding provides
the same SNR over all subchannels.

2.1.3. Comparisons

We have the following result on the relative SNR perfor-
mance of the BLAST system and the two precoding schemes
discussed above.

Proposition 1. Suppose that an np X ng MIMO system is em-
ployed to transmit ny symbols per transmission, using either
the BLAST system, the equal-error precoding scheme, or the
whitening precoding scheme, then

SNRWhitening precoding = SNRprAST-LZF

c (12)
= SNRequal—error precoding:
Proof. We first show that
sNRBLAST—LZF = SNRequal—error precoding- (13)
Since
1 & 1 & nr
— 2N =2 [e] . (14)
ri; ) g R WERR (VT )
we have
1 & 1
— > 15
2 [0 s 1)

It follows from (5), (9), and (15) that SNRpast1zr =
SNRequal—error precoding-
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We next show that SI\]RBLAST—LZF < SNRwhitening precoding-
First, we have the following.

Fact 1. Suppose that A is a nXx n positive definite matrix, then
—— =A;; —a'A;'a;, (16)

where A; is the (n — 1) X (n — 1) matrix obtained from A
by removing the ith row and ith column; and a; is the ith
column of A with the ith entry A;; removed. Note that A, is
a principal submatrix of A; since A is positive definite, so is,
A;, and A; ! exists. To see (16), denote the above-mentioned
partitioning of the Hermitian matrix A with respect to the
ith column and row by A = (A;,a;,A;;). In the same way, we
partition its inverse B £ AL = (Bi,ﬁi,Bi,i). Now from the
fact that AB = I,,, it follows that

Ai,,‘B,‘,i + ﬁIHf), =1, aiBi,i + AiBi =0. (17)

Solving for B;; from (17), we obtain (16).
Using (16), we have

nr 1 I nr
Z W = (Qi,i — a)fIQl 6)1) < Z Q,‘),‘ = tr(Q).
j=1 i j=1 j=1

nr

(18)

It then follows from (5), (11), and (18) that SNRpiasT-1.2F <
SNRwhitening precoding O

Figure 1 shows the comparisons between the BLAST and
the linear precoding/decoding schemes in terms of the aver-
age receiver SNR as well as the BER for a system with nr = 4
and ng = 6. The rate is four symbols per transmission. The
SNR curves in Figure la are plotted according to (9), (5),
and (11). It is seen that the SNR curves confirm the conclu-
sion of Proposition 1. Moreover, it is interesting to see that
the SNR ordering given by (12) does not translate into the
corresponding BER order. This can be roughly explained as
follows. The BER for the ith symbol stream can be approx-
imated as Q(y+/SNR;), where y is a constant determined by
the modulation scheme. The average BER is then

M3

i niTi lQ(yx/SNR,). (19)

Since Q(-) is a concave function, we have

P < Q(y m). (20)

Hence, the average SNR value does not directly translate into
the average BER. Moreover, it is seen from the Figure 1b in
Figure 1 that the interference cancellation with ordering [6]
BLAST detection method offers a significant performance
gain over the linear zero-forcing method, making the BLAST
outperform the precoding schemes by a substantial margin.

16 1
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FiGurg 1: Comparisons of the average receiver SNR and the BER
between the BLAST and the linear precoding/decoding schemes:
nr = 4 and ng = 6; the rate is four symbols/transmission.

2.2, Space-time block coding versus beamforming
for diversity transmission

In contrast to the high data rate MIMO transmission sce-
nario discussed in Section 2.1, an alternative approach to ex-
ploiting MIMO systems targets at achieving the full diver-
sity. For example, with ny transmit antennas and ng receive
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antennas, a maximum diversity order of nrng is possible
when the transmission rate is one symbol per transmission.
When the channel is unknown at the transmitter, this can be
achieved using STBC (for nr = 2); and when the channel is
known at the transmitter, this can be achieved using beam-
forming.

2.2.1. Two transmit antennas case

Alamouti scheme

When ny = 2, the elegant Alamouti transmission scheme can
be used to achieve full diversity transmission at one symbol
per transmission [8]. It transmits two symbols s; and s, over
two consecutive transmissions as follows. During the first
transmission, s; and s, are transmitted simultaneously from
antennas 1 and 2, respectively; during the second transmis-
sion, —s3 and s are transmitted simultaneously from trans-
mit antennas 1 and 2, respectively. The received signals at re-
ceive antenna i corresponding to these two transmissions are
given by

OV _ o[ s s [h] [m]
|:}’i(2)] _\/;[;f 5%] [hi,;]+[ni(2):| , i=1,2,...,np.

(21)
Note that (21) can be rewritten as follows:
yiD) | _ [P hiy hix ||s + ni(1)
yi(2)* 2 | by —hi || s ni(2)* |
Yi ﬁi S n;
i=1,2,...,np,
where n; td -(0,1,). Note that the channel matrix H; is

orthogonal, that is, H'H; = (|h;1|? + |hi2|*) L.
At each receive antenna, the received signal is matched
filtered to obtain

Z; Zﬁ?yi:\/g“hi,”z-f— |hi,2|2)s+wi, i=1,2,...,1p,
(23)

where w; ~ N (0, (|h;1|>+ |hi2]1*)],). The final decision on s
is then made according to § = QQ(z), where Q(-) denotes the
symbol slicing operation, and

Z:ZZi:\/gliz(|hi’l|2+|hi’2|2)i|s+zwi- (24)
i=1 i=1 i=1

The received SNR is therefore given by
nR 2
(2| X7 (hia [*+ iz )
X5 (14 [hal?)

Lt (L) = Lo () =p(

SNRAlamouti =

)tl + /12 )
2 b
(25)

where Q4 = HHy, A, and 1, are the two eigenvalues of Qy,
and

hl,l h1,2
h2,1 h2,2
Hy=| . .|, Qa=H{H, (26)
hnR,l hnR,Z
Beamforming

Beamforming can be referred to as maximum ratio weighting
[23], and it is a special case of the linear precoding/decoding
discussed in Section 2.1.2, where

F= \/ﬁvly
# (27)
G=v,
and v; is the eigenvector corresponding to the largest eigen-
value of Q. Hence in the beamforming scheme, at each trans-
mission, the transmitter transmits v;s from all transmit an-
tennas, where s is a data symbol. The received signal is given

by
y =HFs+n = /pHv;s +n. (28)

At the receiver, a decision on s is made according to § = Q(u),

where the decision statistic u is given by u = vi’Hy =

VP vilQv, s + viTH n. The received SNR in this case is
[Sa— [ —

h Ne(0,41)
SNRbeamforming = PAI (29)

Comparing (25) with (29), it is obvious that SNRpcamforming =
SNRAlamouti- Note that in this case, the SNR order indeed
translates into the BER order; since in the Alamouti scheme,
both symbols have the same SNR, then

pbeamforming = Q(Y P)Ll) = Q()/\ g(ll +A2)> = PAlamouti-

(30)

2.2.2. Four transmit antennas case
One symbol per transmission

It is known that rate-one orthogonal STBC only exists for
nr = 2, thatis, the Alamouti code. For the case of four trans-
mit antennas (ny = 4), we adopt a rate-one (almost orthog-
onal) transmission scheme with the following transmission
matrix:

S1 $2 S3 S4
* * * *
Sy =S S =S
S = 2 1 4 3 . (3 1)
3 =S84 —S1 %
* *

D R
Such a transmission scheme was proposed in [24]. Hence
four symbols s, s;, s3, and s4 are transmitted across four
transmit antennas over four transmissions. The received sig-
nals at the ith receive antenna corresponding to these four
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transmissions are given by

yi(1) hi, n;i(1)

yi2) | _ [P | hi2 n;i(2) .

%) | = 4S his + m(3) |’ i=1,2,...,nz (32)
yi(4) hi4 n;i(4)

Note that (32) can be rewritten as

yi(1) hiv  hiz hiz hia | [s n;i(1)
eIl BT S E s e 1S I PCOR
yi3) | " Na|-hiz hia hiyn —hip||ss ni(3) |’
yi(4)* —hiy =his hi  hi S4 n;(4)*

— ~ S—
Yi I:[[ s Vi

i=1,2,...,nR.

(33)

The matched-filter output at the ith receive antenna is given
by

z; = Hly, = \/Eﬂ,-s +w;, (34)
where
Vi 0 [24] 0
~ . 0 p 0 —a
_f\Hg. — i i
Ql - Hi Hl - —a; 0 yi 0 > (35)
0 (24 0 Vi

yi = 2 hijl% i = 233(hfhis + hiyhis), and w; =
Hfn; ~ N.(0,9;). By grouping the entries of z; into two
pairs, we can write

(| _ [P | wi(1)
[&(3)] a \/;I‘, [53} * |:Wi(3):|’

| " (36)
zi(4) wi(4)
[z,m] \f FH [w,m}

where I; = [ % ;‘] and wi, ~ N (0,T;), £ = 1,2. Note that
Il = T;. Note also that (36) are effectively 2 x 2 BLAST sys-
tems and they can be decoded using either linear detection or
ML detection. For example, the linear decision rule is given
by 8¢ = Q[>* Giszie], € = 1,2, where the linear detector
can be either a zero-forcing detector, that is, G;, = I'; !, or an
MMSE detector, that is, G;¢ = (T; + (4/p)I1) L. On the other
hand, the ML detection rule is given by

P! P
e o) - )
nR nR
= max [%{SHZZ,‘,(;}\/?SH<ZF,'> :|, = 1,2.
scA’ i-1 4 ;

i=1
(37)

When the channel state is known at the transmitter, the
optimal transmission method to achieve one symbol per
transmission is the beamforming scheme described by (27),
(28), and (29).

Note that the received SNR of the above block coding
scheme with linear zero-forcing detector is given by

2
SRzg-—fﬂé—— (38)

ﬂereas the SNR of the beamforming scheme is given by
SNRbeamforming = Pll

Two symbols per transmission

Now suppose that a rate of two symbols per transmission is
desired using four transmit antennas. When the channel is
unknown at the transmitter, we can use one pair of the trans-
mit antennas to transmit s; = [s; $;]7 using the Alamouti
scheme, and use the other pair to transmit s, = [s3 s4]7 also
using Alamouti scheme. In this way, we transmit four sym-
bols over two transmissions. At the ith receive antenna, the
received signal y; = [yi(1) yi(2)]T corresponding to the two
transmissions is given by

= \/glzl,-,lsl + \/gﬁi’zsz, +n, i=1,2,...,np, (39)

~ hix h; ~ hj, h,
where Hiy = [} ;2 ] and Hyp = [hi S ¢ |. Therefore, we
have
Y1 H,, Hi, s
Y2 p Hyi Hap ||
2
.= . . +n. 40
: A : 5 (40)
_ _ 5
Ynr HnR,l HnR,z
— —(_/T
y H

The received signal y is first matched filtered to obtain

2= Hily - \EﬁHﬁs +Hn, (41)
Denote
1 & A E
I, ;—Z HY H;,
Q2HH=ny - = . (42)
ZHlHJ2 L

Then the output of the whitening filter is given by u =
a2y, /2 0"
use any of the aforementioned BLAST decoding methods to
decode s.

When the channel is known at the transmitter, linear
precoding/decoding can be used to transmit two symbols
per transmission. For example, the equal-error precoding
scheme is specified by (8) and (9) with m = 2. The re-
ceived SNR of this method is given by SNRequal-crror precoding =

s +w, wherew ~ N .(0,14). Now we can
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FiGUre 2: Comparisons of the BER performances among the
MIMO techniques for one symbol/transmission: beamforming ver-
sus Alamouti with ny = 2 and ng = 3; beamforming versus rate-one
STBC with ny = 4 and ng = 6.

p/(ATt +A51). The whitening precoding method, on the
other hand, is specified by F = ,/p/2[viv,] and G = [v;v,]7;
and the average received SNR of this method is given by

SNRyhitening precoding = P((A1 +12)/4). Note that A; and A, are
the two largest eigenvalues contained in A.

2.2.3. Comparisons

Figure 2 shows the performance comparisons among the
MIMO techniques to achieve one symbol per transmission.
Specifically, the beamforming scheme is compared with the
Alamouti code for a system with two transmit antennas,
and the beamforming scheme is compared with the rate-one
STBC for a system with four transmit antennas. It is observed
from Figure 2 that the beamforming scheme achieves about
2dB gain over the Alamouti code, and similarly, the beam-
forming can achieve much better performance than the rate-
one STBC strategy.

Figure 3 shows the performance comparisons between
the linear precoding/decoding schemes and the rate-two
STBC strategy for a system with nr = 4 and ng = 6 to achieve
two symbols per transmission. It is seen from Figure 3 that
the rate-two STBC achieves a better performance than the
linear precoding/decoding schemes, and the performance
gap is not so large. In particular, the rate-two STBC with
BLAST-LZF decoding has an approximate performance to
the equal-error precoding scheme.

It is observed from Figures 1 and 3 that although the
linear precoding/decoding schemes exploit the channel
knowledge at the transmitter, they may not have perfor-
mance gains compared to those MIMO techniques with-

107!

BER

SNR (dB)

-e- Equal-error precoding

- Whitening precoding

-+ Rate-2 STBC, BLAST-LZF
— Rate-2 STBC, BLAST-ML

F1Gure 3: Comparisons of the BER performances between the linear
precoding/decoding strategies and the rate-two STBC: ny = 4 and
ng = 6; the rate is two symbols/transmission.

out channel knowledge requirement at the transmitter. And
this phenomenon is evident especially in the high-data rate
transmission scenario, that is, BLAST versus linear precod-
ing/decoding schemes with n = 4. This can be explained as
follows. Note that, for the linear precoding/decoding strate-
gies discussed above, the adaptive modulation is not em-
ployed, and thus, the performance gain is limited for the fixed
modulation.

3. WCDMA DOWNLINK SYSTEMS

In this section, a WCDMA downlink system based on the
3GPP standard, a subspace tracking algorithm, as well as a
quantized feedback approach are specified. In Section 3.1,
we describe the WCDMA system, including the structures
of the transmitter and the receiver, the channelization and
scrambling codes, the frame structures of the data and the
pilot channels, the multipath fading channel model, as well
as the channel estimation algorithm. In Section 3.2, we de-
tail the subspace tracking method and the quantized feed-
back scheme.

3.1. System description
3.1.1.

The system model of the downlink WCDMA system is shown
in Figure 4. The left part of Figure 4 is the transmitter struc-
ture. The data sequences of the users are first spread by
unique orthogonal variable spreading factor (OVSF) codes
(Censr1> Censrps-..), and then, the spread chip sequences
of different users are multiplied by downlink scrambling
codes (Ces,1, Ces2, - - ). After summing up the scrambled data

Transmitter and receiver structures



656

EURASIP Journal on Applied Signal Processing

Censi1 - Csel
Censeo Csco

Usler N l
Pilot

Censea Cse Sum

.13

Pilot

Cch,SF,O Cse0

Sum — X 1
Finger 2 Ch |
. . anne
tracking estimator
for pilot L
Sum —
i
Finger 12
—| tracking : Decoding
for data L

FIGURE 4: Transmitter and receiver structures of the downlink WCDMA system.

sequences from different users, the data sequences are com-
bined with the pilot sequence, which is also spread and
scrambled by the codes (Cepsr0,Ceso) for the pilot chan-
nel sent to each antenna. The specifications of OVSF and
scrambling codes can be referred to [15]. The right part of
Figure 4 shows the receiver structure of this system with one
receive antenna. We assume the number of multipaths in the
WCDMA channel is L. Each receive antenna is followed by
a bank of RAKE fingers. Each finger tracks the correspond-
ing multipath component for the receiver antenna and per-
forms descrambling and despreading for each of the L mul-
tipath components. Such a receiver structure is similar to
the conventional RAKE receiver but without maximal ratio
combining (MRC). Hence, there are L outputs for each re-
ceive antenna, and thus, each of the L antenna outputs can
be viewed as a virtual receive antenna [14]. With the received
pilot signals, the downlink channel is estimated accordingly.
This channel estimate is provided to the detector to perform
demodulation of the received users’ signals.

It is shown in [14] that the above receiver scheme with
virtual antennas essentially provides an interface between
MIMO techniques and a WCDMA system. The outputs of
the RAKE fingers are sent to a MIMO demodulator that op-
erates at the symbol rate. The equivalent symbol-rate MIMO
channel response matrix is given by

hl,l,l hl,l,Z hl,l,nT

hl,L,l hI,L,Z hl,L,nr
H=| : oo, , (43)

Bugin g2 - Baging

hﬂR,L,l hﬂR>L,2 hnR;L)”T_

where h;; ; denotes the complex channel gain between the jth
transmit antenna and the /th finger of the ith receive antenna.
Hence (43) is equivalent to a MIMO system with nr transmit
antennas and (ng - L) receive antennas [14].

3.1.2. Multipath fading channel model
and channel estimation

Each user’s channel contains four paths, that is, L = 4. The
channel multipath profile is chosen according to the 3GPP
specifications. That is, the relative path delays are 0, 260, 521,
and 781 nanoseconds, and the relative path power gains are
0, —3, -6, and —9 dB, respectively.

There are two channels in the system, namely, common
control physical channel (CCPCH) and common pilot chan-
nel (CPICH), whose rates are variable and fixed, respectively.
For more details, see [15]. The CPICH is transmitted from all
antennas using the same channelization and the scrambling
code, and the different pilot symbol sequences are adopted
on different antennas. Note that in the system, the pilot sig-
nal can be treated as the data of a special user. In other words,
the pilot and the data of different users in the system are com-
bined with code duplexing but not time duplexing.

Here we use orthogonal training sequences of length T' >
nt based on the Hadamard matrix to minimize the estima-
tion error [25]. Note that, although the channel varies at the
symbol rate, the channel estimator assumes it is fixed over at
least n symbol intervals.

3.2. Subspace tracking with quantized feedback
for beamforming

3.2.1. Tracking of the channel subspace

Recall that in the beamforming and general precoding trans-
mission schemes, the value of the MIMO channel H has to be
provided to the transmitter. Typically, in FDD systems, this
can be done by feeding back to the transmitter the estimated
channel value H. However, the feedback channel usually has
a very low data rate. Here we propose to employ a subspace
tracking algorithm, namely, projection approximation sub-
space tracking with deflation (PASTd) [20], with quantized
feedback to track the MIMO eigen channels. Figure 5 shows
the diagram of the MIMO system adopting a subspace track-
ing and the quantized feedback approach. In particular, the
receiver employs the channel estimator to obtain the esti-
mate of the channel H and subsequently, PASTd algorithm
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F1GURE 6: BER performance of beamforming under different doppler frequencies: (a) ny = 4, ng = 1 (beamforming, perfect known channel,
lossless feedback (2 frames)), (b) ny = 2, ng = 1 (perfectly known channel, lossless feedback (1 frame)).

is adopted to get F = V = [Vy,...,V,,], which contains the
principal eigenvectors of O = HH.

3.2.2. Frame-based feedback

Note that, for the uplink channel in the 3GPP standard [21],
the bit rate is 1500bits per second (bps), the frame rate
is 100 frames per second (fps), and thus, there are fifteen
bits in each uplink frame. On the other hand, the down-
link WCDMA channel is a symbol-by-symbol varied chan-
nel. Thereby, it is necessary to consider an effective and effi-
cient quantization and feed back scheme, so as to feed back F
to the transmitter via the band-limited uplink channel.

For the beamforming scheme, we employ the feedback
approach as follows. The average eigenvector of the channel
over one frame or two frames is fed back instead of the eigen-
vectors of each symbol or slot duration. Note that such feed-
back approach assumes the downlink WCDMA channel as
a block fading one, and actually, it is effective and efficient
under low doppler frequencies. Figure 6 shows the BER per-
formances of the MIMO system employing the beamform-
ing scheme under different doppler frequencies. In Figure 6b,
two transmit antennas are adopted, and the average eigen-
vectors over one frame duration are losslessly fed back. That
is, the eigenvector information is precisely fed back without



658

EURASIP Journal on Applied Signal Processing

TaBLE 1: Frame structures for quantized feedback. Case 1: two transmit antennas and one receive antenna, (5, 5) quantization : 5 bits for the
absolute value component and 5 bits for the phase component of each vector element; A;;: jth bit for the absolute value of ith vector element;
P;j: jthbit for the phase of ith vector element. Case 2: two transmit antennas and 1 receive antenna, (4,7) quantization. Case 3: four transmit

antennas and 1 receive antenna, (3,6) quantization.

Case 1
Slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Bits | An Ay Az Ay Ais Ay Ay A Ay Ays Py, Py, Py Pyy Pys
Case 2
Slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Bits | Ap Ay Az Ay Ay Ay Ay Ay Py, Py Py; Pyy Pys Pys Py;
Case 3
Slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Bits | An Ap Az Ay Ay Ay Py, Py, Py Py Pys Py As) Asy Ass
Slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Bits Ps Ps; Ps;3 Psy Pss P3¢ Ay Ap Ay Py Py Py Py Pys Pys

quantization. It is seen that the system achieves a good per-
formance for the speeds lower than 30 km/h, and the BER
curves are shown as “floors” when v is higher than 30 km/h.
The appearance of such “floor” is due to the severe mismatch
between the precoding and the downlink channel. Similarly,
Figure 6a gives the BER performances of the system employ-
ing the beamforming with four transmit antennas, where the
average eigenvectors over two frames are losslessly fed back.
It is seen that the BER performances degrade to “floors” for
the speeds higher than 15km/h. It is observed from (6) that
the frame-based feedback approach is feasible for the beam-
forming system under the low-speed cases. In particular, it is
feasible for the system employing two transmit antennas and
four transmit antennas, under the cases of v < 25km/h and
v < 10 km/h, respectively.

3.2.3. Quantization of the feedback

Table 1 shows the feedback frame structures for the MIMO
system employing beamforming schemes, that is, the quan-
tization of the elements of the eigenvector to be fed back.
We consider three cases here. Case 1 and Case 2 are con-
trived for the beamforming system with two transmit an-
tennas. These two bit allocation strategies of one feedback
frame are, namely, (5,5) and (4,7) quantized feedback, re-
spectively. In particular, (5,5) quantized feedback allocates
5Dbits each to the absolute value and the phase component
of one eigenvector element; and (4, 7) quantized feedback al-
locates 4 bits and 7 bits to the absolute value and the phase
component of one eigenvector element, respectively. Case 3,
namely, (3, 6) quantized feedback, is contrived for the beam-
forming system with four transmit antennas. Two feedback
frames are allocated for the average eigenvector over two
frames. Note that relatively more bits should be allocated to
the phase component, since the error caused by quantiza-
tion is more sensitive to the preciseness of the phase com-
ponents than that of the absolute value components more-

over, our simulations show that the (5,5) and (4,7) quan-
tized feedback approaches actually have very approximated
performances.

4. SIMULATION RESULTS FOR WCDMA SYSTEMS

In the simulations, we adopt one receive antenna (ng = 1),
which is a realistic scenario for the WCDMA downlink re-
ceiver. For the multipath fading channel in the WCDMA sys-
tem, the number of multipath is assumed to be four (L =
4), and the mobile speed is assumed to be three kilome-
ters per hour (v = 3km/h). QPSK is used as the modula-
tion format. The performance metric is BER versus signal-
to-interference-ratio (I./I,). I./1, is the power ratio between
the signal of the desired user and the interference from all
other simultaneous users in the WCDMA system. Subse-
quently, several cases with different transmission rates over
two and four transmit antennas are studied.

BLAST versus linear precoding

Figure 7 shows the performance comparisons between the
BLAST and the linear precoding/decoding schemes for a rate
of four symbols per transmission over four transmit anten-
nas (ny = 2). In particular, the channel estimator given in
Section 3.1.2 is adopted to acquire the channel knowledge.
For the linear precoding/decoding schemes, lossless feedback
is assumed. It is seen from Figure 7 that the BLAST scheme
with ML detection achieves the best BER performance over
all linear precoding/decoding schemes. Note that the reason
that precoding does not offer performance advantage here
is that we require the rate for different eigen channels to be
the same, that is, no adaptive modulation scheme is allowed.
Hence we conclude that to achieve high throughput, it suf-
fices to employ the BLAST architecture and the knowledge of
the channel at the transmitter offers no advantage.
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Figure 7: BER comparisons between the BLAST and the trans-
mit precoding schemes: nr = 4 and ng = 1; four QPSK sym-
bols/transmission; v = 3km/h, L = 4.

STBC versus beamforming

Figure 8 gives the performance comparisons between the
Alamouti STBC and the beamforming schemes for a rate
of one symbol per transmission over two transmit antennas
(nt = 2). The effects of the quantized feedback approach is
also shown in Figure 8. In particular, the cycled line is the
BER performance when perfect channel knowledge is avail-
able at both the transmitter and the receiver. The solid line is
the performance when perfect channel knowledge is avail-
able at the receiver and the frame-based feedback without
quantization in Section 3.2.2 is adopted. It is seen that the
frame-based feedback approach only causes very trivial per-
formance degradation. The asteriated line is the performance
when perfect channel knowledge is available at the receiver
and the frame-based feedback with (4, 7) quantized feedback
approach in Section 3.2.3 is adopted. It is seen that the quan-
tization of the feedback only generates about 0.5dB perfor-
mance loss. Moreover, the triangled line is the performance
when the channel estimator in Section 3.1.2, the subspace
tracking in Section 3.2.1, and the (4,7) quantized feedback
approach are adopted. It is shown that the subspace track-
ing and the channel estimation cause about 1 to 1.5dB per-
formance degradation. Finally, the squared line is the perfor-
mance of the Alamouti STBC, where the channel estimator is
adopted at the receiver. It is observed from Figure 8 that the
WCDMA system employing beamforming can have a bet-
ter performance than that employing the Alamouti STBC
scheme, though the performance gain is not very evident.
Figure 9 gives the comparison between the beamform-
ing scheme and the rate-one STBC strategy discussed in
Section 2.2.2 for a rate of one symbol per transmission over
four transmit antennas (nr = 4). Similarly, perfectly known
channel knowledge, estimated channel knowledge, lossless

BER

-20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10
I./I,r (dB)

-o- BE, perfectly known channel

— BE perfectly known channel, lossless feedback
-+ BE, perfectly known channel, quantized feedback
- BE, subspace tracking, quantized feedback

- Alamouti STBC, estimated channel

Ficure 8: BER comparisons between Alamouti and beamforming
with subspace tracking and quantized feedback schemes: ny = 2
and ng = 1; one QPSK symbol/transmission; v = 3km/h; (4,7)
quantized feedback.
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FIGURE 9: BER comparisons between rate-one STBC and beam-
forming with subspace tracking and quantized feedback schemes:
nr = 4 and ng = 1; one QPSK symbol/transmission; v = 3 km/h;
(3,6) quantized feedback.

feedback, and quantized feedback cases are shown. From
bottom up, the first curve is the result of the beamform-
ing scheme with perfectly known channel knowledge at both
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TABLE 2: Summary of the performance comparisons of the MIMO techniques.

(a)

High-rate transmission MIMO techniques Channel information ~ BER performance
- BLAST Receiver Better
Four symbols/transmission over ny = 4 . . . .
Transmit precoding ~ Transmitter/receiver Worse
(b)
Diversity transmission MIMO techniques channel Information ~ BER performance
. Beamforming Transmitter/receiver Better
One symbol/transmission over ny = 2 ) )
Alamouti Receiver Worse
One symbol/transmission Beamforming Transmitter/receiver Better
over ny =4 Rate-one STBC Receiver Worse
Two symbols/transmission Transmit precoding ~ Transmitter/receiver Worse
over nr =4 Rate-two STBC Receiver Better

the transmitter and the receiver; the second curve is the re-
sult of the beamforming scheme with perfectly known chan-
nel knowledge at the receiver and the frame-based feedback
without quantization; the third curve is the result of the
beamforming scheme with perfectly known channel knowl-
edge at the receiver and the frame-based feedback with (3, 6)
quantization; the fourth curve is the result of channel esti-
mator, subspace tracker, and the frame-based feedback with
(3,6) quantization; the top two curves are the results of the
rate-one STBC scheme with different detection methods. It is
observed from Figure 9 that the beamforming can achieve a
much better performance than the STBC for the case of four
transmit antennas.

Moreover, it is also well confirmed that the subspace
tracking algorithm discussed in Section 3.2.1, the frame-
based feedback in Section 3.2.2, as well as the quantization
approach discussed in Section 3.2.3 offer a practical way of
realizing beamforming in MIMO WCDMA systems.

5. CONCLUSIONS

In this paper, we have analyzed and compared the perfor-
mance of three MIMO techniques, namely, BLAST, STBC
and linear precoding/decoding, and considered their appli-
cations in WCDMA downlink systems. For a certain trans-
mission rate, we compared the different scenarios with dif-
ferent transmit antennas both analytically in terms of the av-
erage receiver SNR, as well as through simulations in terms
of the BER performance. To cope with the channel feedback
in WCDMA systems for beamforming, we adopted a sub-
space tracking method with a quantized feedback approach
to make the principle eigenspace of the MIMO channel avail-
able to the transmitter.

Some instructive conclusions are drawn in this study. On
the one hand, the optimal BLAST scheme can achieve the
best performance in the high-rate transmission scenario, al-
though with channel knowledge available at the transmit-
ters, no performance gain is achievable by the linear precod-

ing/decoding schemes without employing adaptive modula-
tion. On the other hand, the beamforming scheme achieves
better performances than the STBC schemes in the diversity
transmission scenario. Table 2 gives a summary of the per-
formance comparisons of the MIMO techniques in different
scenarios. Moreover, it is well confirmed the effectiveness and
feasibility of the combination of the subspace tracking algo-
rithm and the quantized feedback approach for beamform-
ing transmission in the MIMO WCDMA system. Finally, we
note that in this paper, we only consider the linear precoding
scheme. Significant performance improvement is expected
when nonlinear precoder (e.g., adaptive modulation and bit
loading) is employed [26, 27, 28].
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New space-time block coding schemes for multiple transmit and receive antennas are proposed. First, the well-known Alamouti
scheme is extended to Ny = 2™ transmit antennas achieving high transmit diversity. Many receiver details are worked out for
four and eight transmit antennas. Further, solutions for arbitrary, even numbers (Ny = 2k) of transmit antennas are presented
achieving decoding advantages due to orthogonalization properties while preserving high diversity. In a final step, such extended
Alamouti and BLAST schemes are combined, offering a continuous trade-off between quality of service (QoS) and data rate. Due
to the simplicity of the coding schemes, they are very well suited to operate under UMTS with only very moderate modifications
in the existing standard. The number of supported antennas at transmitter alone is a sufficient knowledge to select the most
appropriate scheme. While the proposed schemes are motivated by utilization in UMTS, they are not restricted to this standard.
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1. INTRODUCTION

One of the salient features of UMTS is the provisioning
of moderately high data rates for packet switched data ser-
vices. In order to maximize the number of satisfied users,
an efficient resource assignment to the subscribers is de-
sired allowing flexible sharing of the radio resources. Such
schemes must address the extreme variations of the link qual-
ity. Standardization of UMTS is progressing steadily, and
various schemes for transmit diversity [1] and high-speed
downlink packet access (HSDPA) with multiple transmit
and receive antennas (MIMO) schemes [2] are currently un-
der debate within the Third Generation Partnership Project
(http://www.3gpp.org/).

Recently, much attention has been paid to wireless
MIMO systems, (cf. [3, 4, 5]). In [6, 7], it was shown that
the wireless MIMO channel potentially has a much higher
capacity than was anticipated previously. In [8, 9, 10], space-
time coding (STC) schemes were proposed that efficiently
utilize such channels. Alamouti [11] introduced a very sim-
ple scheme allowing transmissions from two antennas with
the same data rate as on a single antenna but increasing
the diversity at the receiver from one to two in a flat-fading
channel. While the scheme works for BPSK even with four

and eight antennas, it was proven that for QPSK, only the
two-transmit-antenna scheme offers the full diversity gain
(8, 12].

In order to evaluate the (single-) symbol error probabil-
ity for a random channel H with N7 statistically independent
transmission paths with zero-mean channel coefficients hj
(k = 1,...,Nr) of equal variance,! known results from lit-
erature for maximum likelihood (ML) decoding of uncoded
QPSK (with gray-code labelling) can be employed [13]:

BERML = %EH erfc

1 ML
= EE‘XML [erfc( 0‘2,)]

Here the fading factor oy is introduced as a random vari-
able with y3y, density, the index indicating 2N degrees of
freedom, that is, a diversity order of N7. In case of indepen-
dent complex Gaussian distributed variables Ay, the follow-

(1)

1We normalize 337, E[|h[?] = 1.



Generalized Alamouti Codes

663

ing explicit result for QPSK modulation is obtained accord-
ing to [13, Section 14.4, equations (15)]:

lJooerfc xi i e *dx
2 Jo 2Ny ) T'(Nt)

- [1,4]NTN§1 Nr—1+k (1—1-‘14)]‘
L2 k=0 k 2 /7

_ Ey/Ny
¥ =\ Ny +Ey/Ny (3)

In contrast to this behavior, the performance for a linear ze-
roforeing (ZF) receiver is different. The bit error rate (BER)
for a ZF receiver with Nt transmit and Ny receive antennas
is given by [14]

BERyr = ~Ea, [erfc( “—ZZF)} (4)
2 o

with azp being Xz—distributed with 2(N7 — Ny + 1) degrees
of freedom rather than 2N7. A good overview of the various
single symbol error performances is given in [15] and some
early results on multiple symbol errors in [16]. The pro-
posed coding schemes of this paper will be compared with
these results for uncoded transmissions. In particular, select-
ing space-time codes will result in different degrees of free-
dom for the resulting fading factor &« when compared to (1)
and (4).

The paper is composed as follows. In Section 2, the well-
known Alamouti scheme is introduced setting the notation
for the remaining of the paper. In Section 3, the Alamouti
space-time codes for transmission diversity is extended re-
cursively to M = 2™ antenna elements at the transmitter.
While it is well known that the resulting transmission ma-
trix for flat-fading looses its orthogonality for m > 2, it is
shown that the loss in orthogonality for the new schemes
is not severe when utilizing gray-coded QPSK modulation.
Starting with a four-antenna scheme in Section 3, it will be
demonstrated that linear receivers perform close to the theo-
retical bound for four-path diversity offering significant gain
over the two-antenna case proposed by Alamouti. Even more
interestingly, linear interference suppression can be imple-
mented at low-complexity because the channel matrix ex-
hibits a high degree of structure, enabling factorization in
closed-form. In Section 4, this observation is generalized
to extended Alamouti schemes for an arbitrary number of
transmit antennas Ny = 2™ preserving as much orthogo-
nality as possible. In particular, results will be presented for
the case Ny = 8. Transmission schemes with more than one
receive antenna will be considered in Section 5 and it will
be shown that even in cases with Ny # 2™ transmit anten-
nas, preservation of orthogonality is possible. Variable bit
rate services and bursty packet arrivals are handled flexibly in
UMTS by dynamically changing the spreading factor in con-
junction with the transmit power, thus preserving an average
Ey/Ny, but without changing the diversity order and outage
probability. A combination of BLAST and extended Alam-
outi schemes is proposed in Section 6 that makes use of the

BERML

existing diversity in a flexible manner, trading diversity gain
against data rate and thus augmenting the diversity order and
outage probability for fulfilling the quality of service (QoS)
requirements. Not considered in this paper is the impact of
the modulation scheme on the achieved diversity. It is well
known that a certain rank criterion [8] needs to be satisfied
in order to utilize full channel diversity in MIMO systems.

2. ALAMOUTI SCHEME

A very simple but effective scheme for two (N = 2) antennas
achieving a diversity gain of two was introduced by Alamouti
[8, 11]. It works by sending the sequence {s;,s5 } on the first
antenna and {s,, —s'} on the other. Assuming a flat-fading
channel and denoting the two channel coefficients by k; and
h;, the received vector r is formed by stacking two consecu-
tive data samples [r,7,]T in time:

r=Sh+v. (5)

Here, the symbol block S and the channel vector h are de-

fined as follows:
— hl
h= |:]’l2:| . (6)

_ S1 $2
. [s; —s;‘}
| | o h||s "
H - [h hr} H * H 7

This can be reformulated as
or in short notation:
y=Hs+v, (8)

where the vector y = [r, 51T is introduced. The resulting
channel matrix H is orthogonal, that is, H'H = HHY =
h?I,, where the 2 X 2 identity matrix I, as well as the gain of
the channel h? = |h;|? + |hy|? are introduced. The transmit-
ted symbols can be computed by the ZF approach

s = [HYH] 'Hy = %HHy = s+ [HH] 'Hfv, (9)

revealing a noise filtering. Note that due to the particular
structure of H, the two noise components are orthogonal.
For a fixed channel matrix H and complex-valued Gaussian
noise v, it can be concluded that they are both i.i.d. and thus
are two decoupled noise components. The noise variance for
each of the two symbols is given by 20%/h>. Comparing to
the optimal ML result for two-path diversity, the results are
identical indicating that with a simple ZF receiver technique,
the full two-path diversity of the transmission system can
be obtained. Using complex-valued modulation, only for the
two-antenna scheme such an improvement is possible. Only
in the case of binary transmission, higher schemes with four
and eight antennas exist [12]. In UMTS, QPSK is utilized on
CDMA preventing perfectly orthogonal schemes with an im-
provement larger than a diversity of two.
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3. FOUR-ANTENNA SCHEME

In UMTS with frequencies around 2 GHz, four or even
eight antennas are quite possible at the base stations and
two or four antennas at the mobile [17]. Since the num-
ber of antennas will vary among base stations and mo-
bile devices, it is vital to design a flexible MIMO trans-
mission scheme supporting various multielement anten-
nas. As a minimum requirement, the mobile station might
only be informed about the number of transmit anten-
nas at the base station. Based on its own number of re-
ceive antennas, it can then decide which decoding algo-
rithm to apply. Some codes offer complexity proportional to
the number of receive antennas, for example, cyclic space-
time codes [18]. Another example being Hadamard codes,
retransmitting the symbols in a specific manner. For the
case of four transmit antennas, the resulting matrix becomes
[51,52,53,845 1,82, =S3, —=S43 S1, —S2, —$3,543 —S1,52, =53, S4].
In such schemes, the receiver can be built with very low-
complexity, and higher diversity is achievable with more re-
ceiver antennas. However, by only utilizing multiple receiver
antennas, the maximum possible diversity is not utilized in
such systems unless transmit diversity is utilized as well.

In the following, simple block codes supporting much
higher diversity in a four transmit antenna scheme for UMTS
are proposed which do take advantage of additional transmit
diversity.?

Proposition 1. Starting with the 2 x 2-Alamouti scheme, the
following recursive construction rule (similar to the construc-
tion of a complex Walsh-Hadamard code) is applied:

hi  hy hy hy
b h ~hf hF -k} i
—h5 k| |=hi —-hi hBf k3
he —hs —hy M

(10)

That is, the complex scalars h; and h, appearing to the
left of the arrow “—” are replaced by the 2 x 2 matrices

hy  hy
= [—h; hr] ’
| hs hy
= [—h:‘ h?] ’
and then reinserted into the Alamouti space-time channel
matrix
H H

where * denotes complex conjugation without transposi-
tion.

(11)

2The outage capacity of this scheme was originally reported in [19].

This results in the following symbol block S for transmit-
ting the four symbols s = [s,...,s4]T:

S1 $2 S3 S4
5§ =sf osf —s3

S= * ko k|- (13)
s3 S, s =8

S4 —S3 —S S

The received vector can be expressed in the same form as (5).
Converting the received vector by complex conjugation

Y1 =711, vy = V1,
v =15, v, =75,
* =% (14)
V3 =13, V3 = V3,
Ya = T4 Vs = Vg,
results in the following equivalent transmission scheme:
y=Hs+v, (15)

in which H appears again as channel transmission matrix. If
v is a complex-valued Gaussian vector with i.i.d. elements,
then so is v.

3.1. ML receiver performance

While a standard ML approach is possible with correspond-
ingly high complexity, an alternative ML approach applying
matched filtering is first possible with much less complex-
ity. After the matched filtering operation, the resulting ma-
trix HY is

(16)

L XJ,
G=HfH=HH! = | ? ,
XTI, I,

where the 2 X 2 matrix

), = [01 (ﬂ (17)

as well as the Grammian G have been introduced. The gain
of the channel is

W=+ [+ s+ [l (8)
and the channel dependent real-valued random variable X is
defined as follows:

X = 2Re (hlh;k - hzh;k)

= . (19)

By applying the matched filter HY, this results in the recep-
tion of the following vector:

z = H'y = H"Hs + H'v = 1’ +Hv  (20)
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in which the pair {s;,s4} is decoupled from {s,,s3} allowing
for a low-complexity solution based on the newly formed re-
ceiver vector z.

The ML decoder selects s minimizing

Ai(s) = |ly — Hs||* = s Gs — 2Re(y""Hs) + [lyl|*>  (21)

for all permissible symbol vectors s from the transmitter al-
phabet and spatially white interference plus noise was as-
sumed. Alternatively, the matched filter can be applied to y
and the ML estimator can be implemented on its output z
given in (20) leading to

Ay(s) = (z— Gs)EG™(z — Gs). (22)

Note that it needs to be taken into account that the noise
plus interference is spatially correlated after filtering. As-
suming the elements vx of v to be zero mean and spatially
white with variance o results in w = Hfv with covariance
matrix

E[ww!] = ¢?H"H = ¢2G. (23)

The advantage of this approach is that this partly decouples
the symbols. The pair {s;,s4} is decoupled from {s,,s3} al-
lowing for a low-complexity ML receiver using the partial
metrics

Asa(s1,54)
= |z —h2(51+Xs4)|2+ |z4—hZ(54-f—X51)|2
—2XRe{[z1 — K (s1 + Xs4) |[2F — B*(sf + XsF)]},
Az (52, 53)
= |22 = (s — Xs3) | + [ 25 — (53 — X5) |
+2X Re{[z2 — h* (s, = Xs3) | [23 — *(s§ — Xs3)]}.
(24)

Note that the two metrics Ay, and Ay, are positive definite
when |X]| < 1. They become semidefinite for |X| = 1. In
UMTS with QPSK modulation, this requires a search over
2 X 16 vector symbols rather than over 256.

3.2. Performance of linear receivers

Linear receivers typically suffer from noise enhancement. In
this section, the increased noise caused by ZF and minimum
mean squared error (MMSE) detectors is investigated. Both
receivers can be described by the following detection princi-
ple:

§= (H'H +ul,) 'z, (25)

where y = 0 for ZF and y = of for MMSE. It turns out that
both detection principles have essentially the same receiver
complexity. The following lemmas can be stated.

Lemma 1. Given the 4 X 4 Alamouti scheme as described in
(10), the eigenvalues of HFH/h? are given by

A]ZAZZI‘FX, A3:/14=1*X, (26)

where h* and X are defined in (18) and (19).

Proof. The Grammian H”H is diagonalized by VIH"HV,
with the orthogonal matrix

_ 1L )
Vs = V2 [Iz 12} (27D)

Some favorable properties are worth mentioning. The
eigenvectors of HTH which are stacked in the columns of V4
do not depend on the channel; they are constant. The scaled
matrix /2Vy is sparse, that is, half of its elements vanish and
the nonzero entries are +1.

Lemma 2. If the channel coefficients h; (i = 1,...,4) are i.i.d.
complex Gaussian variates with zero mean and variance 1/4,
then the following properties hold:

(1) X and h? are independent;

(2) let A; be an eigenvalue of H'H/h?. The probability den-
sity of Ai is fLa(A) = (3/4)A(2 — A) for 0 < A < 2 and
zero elsewhere. Likewise, Ai/2 is beta(2,2)-distributed;

(3) let & be an eigenvalue of H'H. The probability density
of & is fe (&) = 4ke ™ for & > 0.

Proof. The joint distribution of X and h? is derived in
Appendix A. The eigenvalues &; of H'H and A; of HYH/h?
are proportional to each other, that is, & = h%}; for i =
1,...,4. O

It can be concluded that E [A;] = 1 and Var(};) = 0.2 for
all i, indicating that the normalized channel matrix HH/h?
is close to a unitary matrix with high probability.

Let y = 1 be the following random variable which de-
pends on the channel gain if 4 > 0:

B+ 1 for ZF,
y = “ o

= 2 28
h? 1+Z—‘2/ for MMSE. (28)

For evaluating the BER of the linear receiver for general y #
0,

tr| (HYH + uL,) "HIPH(HTH + 1)~ |
_ (i) Y2+ X2(1-2y) (29)
) (- x2)?

needs to be evaluated which is obtained via

1 ylz *X]g
(7 - X2) <Xlz yL ) (30)

When replacing the arguments of the complementary error
function with (29), two interpretations can be discussed.

[HH +uL,] "' =



666

EURASIP Journal on Applied Signal Processing

Comparing the arguments of the complementary error
function with the standard ML solution for multiple diver-
sity, one recognizes the beneficial diversity term h? indicating
four times diversity together with an additional term, say

2 2 2
A Y HEX(1-2y) 1 B 3 X
84 - ())2 _X2)2 - )/2 —X2 2()) 1) (yz _X2)2.
(31)

In Appendix A, it is shown that X and h? are statistically in-
dependent variates. Therefore, d, can be interpreted as an
increase in noise while h? causes full fourth-order diver-
sity. Alternatively, one can interpret the whole expression
azrs = h*84 as defining a new fading factor with the true
diversity order without noise increase. Both interpretations
can be used to describe the scheme’s performance.

3.2.1. Noise enhancement

If the first interpretation is favoured, the following result is

obtained.

Lemma 3. Given the 4 X 4 Alamouti scheme in independent
flat Rayleigh fading as described in (10), a four-times diversity
is obtained at the expense of a noise enhancement of

3
E[&:] = 3 2u% + 2ue® By (2u) (2u* + p — 2), (32)

where E,,(x) denotes the exponential integral defined for Re (x)
> 0 as follows:

0 e—xt

Eq(x) = L "

dt. (33)

Proof. The expectation E[J4] in (A.10) needs to be evaluated.
Note that 84 depends on X and k2. It is shown in Appendix A
that X and h? are independent if hy,.. ., hy are i.i.d. complex-
valued zero-mean Gaussian variates. Therefore, we can eval-
uate E[J,] via (A.11) which leads to the result (32). O

In case of a ZF receiver, the noise is increased by a factor
of 3/2 which corresponds to 1.76 dB, a value for which the
four-times diversity scheme gives much better results as long
as Ep/Ny is larger than about 3 dB. Therefore, the noise en-
hancement E[6,] is maximum for ZF receivers (u = 0) and it
does not exceed 1.76 dB for MMSE. The formula

1
Nr

Nr—1
Nr
(34)

E[dy,] 2 ( ) E tr (H'H) ) tr (H'H) | =2

seems to describe the noise enhancement for ZF receivers
for the general case of Np transmit antennas. Note that
tr(HPH) is the squared Frobenius norm of H. The argu-
ment of the expectation operator is closely related to the
numerical condition number k of H. Let &y, and & be the
largest and the smallest eigenvalue of H¥H, respectively.
Then tr((HPH)"!) tr(HFH) > &y,/& = x. The noise en-
hancement can be lower bounded by the squared numerical
condition number, that is, E[8x,] > E[x?].

1.8 ¢
1.6
14+
1.2+

Noise enhancement (lin.)
_

0.8}
0.6}
0.4}
0.2} )/
%% -10 0 10 20 30 40

Ep/No = 1/ = 1/0% (dB)

— 2Tx 16 Tx
-- 4Tx * Equation (32)
8Tx © Equation (35)

Figure 1: Comparison of the noise enhancement versus E,/N; =
1/0% for ZF and MMSE receivers.

The formula was explicitly validated for Ny = 2,4, and
8 and with Monte Carlo simulations for larger values of Nr.
Although no formal proof exists, the upper limit for the noise
enhancement was found at 3 dB. The behavior of (32) versus
1/u (which equals Ep/Ny for the MMSE) is shown in Figure 1
indicated by crosses labeled “x.”

Additional insight into the behavior of (32) is gained by
regarding the channel gain h? as approximately constant, an
assumption that holds asymptotically true for Ny — oo. This
assumption enables us to replace the joint expectation over
X and y in (32) by a conditional one, that is, conditioned on

2

>

9 9 3 3 -1
E[8,1h2] = Ey—3+<1y2—iy—1)log;+l. (35)

This approximation is compared with the exact expression
of (32) in Figure 1 where the approximation obtained from
(35) is plotted versus E[1/(y — 1)] = Ep/Ny. The values are
indicated by circles labeled “o.” The horizontal shift in E,/Ny
between (32) and (35) is generally less than 1dB. This ap-
proximation becomes exact for the case of ZF receiver where
¢ — 0, that is, the limit for y — 1 of (35) is 3/2.

3.2.2. Truediversity

The second interpretation of (29) leads to a refined diversity
order. In this case, the term in y and X purely modifies the
diversity but leaves the noise part unchanged. The BER per-
formance can be computed explicitly. We restrict ourselves to
the ZF case for which y = 1 and 8, = 1/[1 — X?]. In this case,
8, and h? are statistically independent. We obtain

W28\ hPeh
BERzr = L L erfc<m> mf&((?)dh dé. (36)
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Approximation div = 3.2

FIGURE 2: Histogram of a sample of z defined in (40) and its density

f.(2) in (43).

Using the result from [13], (2) is obtained correspondingly,
however, with a different solution for a random variable y:

_ Ey/Ny
uX) _\/2(1 ~X2) + Ey/No’ (37)

leading to rather involved terms. A much simpler method is
to interpret the term k%8 as a new fading factor azps with
X-statistics. Since § is a fractional number, the new factor
azr4 = h?8 cannot be expected to have an integer number of
freedoms. Comparing with a Nakagami-m density, the mean
value of h?8 corresponds to the number of degrees of free-
dom m for this density. Computing E[h?0;] = m = 3.2 is
obtained. Figure 2 displays a histogram of azp4 from 5,000
runs. Furthermore, the exact density function is shown and
a close fit obtained by the squared Nakagami-m distribution
with m = 3.2, or equivalent y? with 6.4 degrees of freedom.
This result contradicts the general belief that ZF receivers ob-
tain only 2(Ng — Nt + 1) = 2 degrees of freedom. The result
is different here due to the channel structuring.

An exact derivation of the probability density for this
random variable is lengthy and is only sketched here. The
random variable (1 — X?)h? can be constructed from two
independent variables uu and vv which are each y?-
distributed with four degrees of freedom (diversity order
two). Substitute

x' = [h, hy], y' = [hy, —hs3]. (38)
Then X = (xfy + yx)/(x"x + yy). Using u = [x — y]/+/2
and v = [x +y]/+/2, the following result is obtained:
HypoH
oy g Wy 4
(1=X%)h 4uHu+vHv uflu+ 1vy (39)

The joint density p,,.(w,z) of this expression can be com-
puted via the transformation

1
2= TuFu+ IvEY

w = vily, (40)

achieving

3 2
Pwz(W,2) = ﬁ exp ( - WW_ Z). (41)

The density of z is found by marginalizing the joint density
p(w,z). The density can be expressed using a Whittaker func-
tion (see [20]):

© 32 exp(—4t)

fZ(Z) = 292 ﬁdt (42)
1 43,2Z2,Ze4z
_ 5632101 _ ~
=2 l"(z) exp(—2z)W,,_1(4z) (.2)

(43)

This last approximation is also shown in Figure 2, obviously
a good fit.

3.3. Simulation results

Figure 3 displays the simulated behavior of the uncoded BER
transmitting QPSK (gray coded) of the linear MMSE re-
ceiver and zero fading correlation between the four transmit
paths. The BER results were averaged over 16,000 symbols
and 3,200 selections of channel matrices H for each simu-
lated E,/Ny. For comparison, the BER from the ZF receiver
and the cases of ideal two- and four-path diversity are also
shown. The values marked by circles “o” labeled “expected
theory” are the same as for four-path diversity, but shifted
by the noise enhancement (n.e.) of 1.76 dB. Compared to the
ZF receiver performance, there is just a little improvement
for MMSE.

For practical considerations, it is of interest to investigate
the performance when the four paths are correlated, as can
be expected in a typical transmission environment. Figure 4
displays the situation when the antenna elements are corre-
lated by a factor of {0.5,0.75,0.95}. As the figure reveals, no
further loss is shown until the value exceeds 0.5. Only with
very strong correlation (0.95), a degradation of 4 dB was no-
ticed.

3.4. Diversity cumulating property of receive antennas

An interesting property is worth mentioning coming with
the 4 X 1 extended Alamouti scheme when using more than
one receive antenna. Typically adding more receive antennas
gives rise to expect a higher diversity order in the transmis-
sion system, however, available only at the expense of more
complexity in the receiver algorithms. In the extended Alam-
outi scheme, the behavior is slightly different as stated in the
following lemma.

Lemma 4. When utilizing an arbitrary number Ny of receive
antennas, the extended Alamouti scheme can obtain an Ng-fold
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FiGgure 3: BER for four-antenna scheme with linear MMSE receiver
and zero correlation between antennas.
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FiGure 4: BER for four-antenna scheme with ZF receiver, fading
correlation between adjacent antenna elements is {0.5,0.75,0.95}.

diversity compared to the single receive antenna case requiring
only an asymptotically linear complexity O(NR) for ML as well
as linear receivers.

Proof. The proof will be shown for two receive antennas. Ex-
tending it to more than two is a straight forward exercise:
r; = His+vy; r, = Hys +v,. (44)

Matched filtering can be applied and the corresponding

terms are summed up to obtain

HYr, + HYr, = [HYH, + HfH, |s + Hfv; + Hv,

45
= [HI'H, + HYH,]s + V. 45)

Note that the new matrix [HH; +HAYH, ] preserves the form
(16):

1 0 0 X
01 -X0

HIH, + HI'H, = (k3 + 1) 0o -x 1 ol (06
X 0 0 1

with X = [X,h3+X,h3]/ [k +Hh3]. Thus, the matrix maintains
its form and therefore, complexity of ML or a linear receiver
remains identical to the one antenna case. Only the matched
filtering needs to be performed additionally for as many re-
ceive antennas are present. The leading term hf +h3 describes
the diversity order, being twice as high as before. For Ny re-
ceiver antennas, a sum of all terms hi, k = 1,...,Ng, will
appear in this position indicating an Nx-fold increase in ca-
pacity. O

Note that Ny receiver antennas can be purely virtual and
do not necessarily require a larger RF front end effort. For ex-
ample, UMTS’s WCDMA scheme enables RAKE techniques
to be utilized. Thus, at tap delays 7x where large energies oc-
cur, a finger of the RAKE receiver is positioned. Correspond-
ingly, the channel matrix H consists in this case of several
components, all located at K different delay times. The re-
ceived values can be structured in one vector as well and
y = Hs + v is obtained again, however now with y is of
dimension 4K X 1 and H of dimension 4K X 4, while s re-
mains of dimension 4 X 1 as before. The previously discussed
schemes can be applied as well and each term h? now con-
sists of K times as many components as before, thus increas-
ing diversity by a factor of K. In conclusion, such techniques
work as well in a scenario with interchip interference as in flat
Rayleigh fading with the additional benefit of having even
more diversity and thus a better QoS, provided the cross-
correlation between different users remains limited.

4. EIGHT AND MORE ANTENNA SCHEMES

Applying (10) several times (m — 1 times), solutions for
Nt = 2" x 1 antenna schemes can be obtained. The obtained
matrices exhibit certain properties that will be utilized in the
following. They are listed in the following lemma and proven
in Appendix B.

Lemma 5. Applying rule (10) m— 1 times results in matrices H
of dimension Ny X Nt, Ny = 2™, with the following properties:
(1) all entries of H'H are real-valued;
(2) the matrix H'H is of the form

HPH = [ _AB ﬂ (47)
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and the inverse of H'H is of block matrix form

[HHH]_l _ |:¢; :\B:| |:(A2 +®B2)_ (A2 +@B2)1:| . (48)

Due to the form (47), all eigenvalues are double;®
(3) each nondiagonal entry X; of H'H/tr[HH] is either
zero, or X; follows the distribution

1
ZNT_ZB(NT/Z, NT/Z)

fx () = (1-)M* g <,

(49)
Applying rule (10) two times in succession results in the

8 x 8 scheme. It can immediately be verified that the matrix
H"H is given by

L X, -Z), YL
Her 12| X2 L YL —Z],
HH=W 7 v oo x| OO
YL, ZJ, -XJ, L
with
8
W=3 |l
k=1
«  2Re (b = hahf + hshy — heh?)
h? " (5D
y = 2Re(mhy = shi +hohi - hahg)
_ > ,
, _ 2Re(lohf — hihg + hahf — hshy)
- > .

According to property (2), the block structure of this ma-
trix can be recognized. Note that A> + B? = aly + fJ4, with

Ja = D I
e o) (52)

a=X"-Y*-Z"+1, B=2X-YZ),
and the inverse can also be expressed by a combination of 14
and Jy:
- 1

[A2+B2] " = ——— (ady — B4) (53)
o=
if a| # |B| which enables a computationally efficient imple-
mentation.

The ML receiver decouples into two 4 X 4 schemes by
exploiting the structure of these matrices, (cf. Section 3.1).
For UMTS with QPSK modulation, this leads to a search over
2 X 256 vector symbols rather than 4% = 65536.

3The proof of the latter statement is simple: if an eigenvector [x, y] exists
for an eigenvalue A, then also [y, —x] must be an eigenvector, linear inde-
pendent of the first one, and thus the eigenvalues must be double.

4.1. Performance of linear receivers

Proceeding analogously to Section 3.2, the noise enhance-
ment E[dg] for the eight-antenna scheme is governed by
tr[(HAH + ulg) '"HPHMHAH + plg)~'] = 83s/h?, where
y = 1+ u/h* and

A

1S :
A_ 1
58*8§(y+a,~—1)2' 5y

Lemma 6. All eigenvalues A; of H'H/h? in (50) are given by

M=h=010-X)+(Y -2),
M=Ml=010+X)—(Y+2),
As=X=010+X)+(Y+2),
A=l=01-X)—(Y-2).

(55)

Proof. The Grammian H"H is diagonalized by VIH"HV,
with the orthogonal matrix

L L . L

11, L -L -]
Vi = — 56
72|k L L ] (56)
-L -J2 b
resulting in the above given eigenvalues. O

Lemma 7. If the channel coefficients h; (i = 1,...,8) are i.i.d.
complex-valued Gaussian variates with zero mean and vari-
ance 1/8, then the following properties hold:

(1) let A; be an eigenvalue of HFH/h?. The probability den-
sity of Ai is fis(A) = (21/8192)A(4 — A)° for 0 <
A < 4 and zero elsewhere. Likewise, A;/4 is beta(2,6)-
distributed;

(2) let & be an eigenvalue of H'H. The probability density
of & is fe(§) = 4k for & > 0 and zero elsewhere.

Proof. It is sufficient to give the proof for one eigenvalue, say
As. The proof for the remaining eigenvalues proceeds simi-
larly. By completing the squares (as in Appendix A), h*As/4
can be regarded as the sum of two y2-distributed variables
with n = 2 degrees of freedom each, that is,

]’11+h4—]’16+h7 2

2

]’lz—h3+h5+]’l8 2
> .

(57)

By introducing an orthogonal transformation via the matrix
V! from (56), the proof is completed following the procedure
in Appendices A and B. O

The noise enhancement for the eight-antenna case and
a ZF receiver (4 = 0) is evaluated by using the eigenvalue
statistics from Lemma 7:

4 7
E[ds] = L A fis(V)dA = 1o L7 (58)



670

EURASIP Journal on Applied Signal Processing

100 H T T H T Al H T T
1071
1072,

1073L .

Uncoded BER

1074,

1072L .

-10 -5 0 5 10 15 20 25
Ey/Ny (dB)

- - Eight-antenna scheme: ZF simulated

— Eight-antenna scheme: MMSE simulated
—= Perfect eight times diversity

© Theory including n.e. of 2.43 dB

FIGURE 5: BER for eight-antenna scheme for ZF and MMSE re-
ceivers compared to theory.

or around 2.43 dB. The noise enhancement for the general
linear receiver (4 = 0) is obtained similarly to the four-
antenna scheme; the result is

E[8s] = 2 +2u — i+ pe B 2u) (2u —3u—6).  (59)

Thus, the noise enhancement of the MMSE receiver is always
smaller than 2.43 dB. Figure 1 compares the noise enhance-
ment versus SNR for the ZF and MMSE receivers and for
Alamouti’s two-, and the proposed four-, and eight-antenna
schemes. The noise enhancement for each scheme is calcu-
lated numerically by averaging over 4000 realizations of the
channel matrix H. For each realization, the eigenvalues A;
of HH are numerically computed and subsequently aver-
aged over (h*/Nr) zﬁiq Ai/(Ai+u)?, where Ny = 2,4,8, or 16.
The resulting averaged curves are shown in Figure 1 labeled
“2 Tx,” “4 Tx,” and so forth.

The theoretical values marked by small crosses, labeled
“x,” are calculated according to (32) versus E,/Ny = 1/0‘2, =
1/u for the MMSE case. The values marked by small circles,
labeled “o,” are calculated according to the approximation in
(35) versus Ep/No = E[1/(y — 1)].

4.2. Simulation results

Figure 5 displays the simulated behavior of the uncoded BER
for QPSK modulation and zero-fading correlation between
the eight transmit paths. The BER results were averaged over
12,800 symbols and 4,000 selections of channel matrices H
for each simulated E,/Nj. The results are shown for a signif-
icance level of 99.7%. In other words, the scheme assumes a
tolerated outage probability of 0.3%. Outage is assumed to
occur if the numerical condition of HH which is the ratio
of the largest to the smallest eigenvalue exceeds 100 ~ 27. In-

verting these rare but adverse (nearly singular) channel ma-
trices HYH lead to the loss of at least seven bits of numerical
accuracy in the receiver. The values marked by little circles
“0” labeled “expected theory” are the same as for eight-path
diversity, but shifted by the noise variance increase of 2.43 dB.

5. ALAMOUTIZATION

So far, mostly Nr X 1 antenna schemes have been consid-
ered. However, in the future several antennas are likely to oc-
cur at the receiver as well. A cellular phone can carry two
and a laptop as many as four antennas [17]. The proposed
schemes can be applied, however, it remains unclear how to
combine the received signals in an optimal fashion. In the
following, an interesting approach is presented allowing an
increase in diversity when the number of receiver antennas is
more than one but typically less than the number of transmit
antennas. The proposed STC schemes preserve a large part
of the orthogonality so that the receivers can be implemented
with low-complexity. The diversity is exploited in full and the
noise enhancement remains small.

Proposition 2. Assume that a block matrix form of the channel
matrix H is given by

H = [HH;], (60)

where the matrices {Hy,H,} are not necessarily quadratic.
Then, the scheme can be Alamouted by performing the fol-
lowing operation:

H, H,

_|-Hy Hf

G = H H |- (61)
H, -H,

At the receiver, a ZF operation is performed, obtaining
the corresponding term GG with the property

HIH, + HIH} %)

H _
G'G=2 [ %) HIH} + H?HJ : (62)

Thus perfect orthogonality on the nondiagonal block entries
is achieved indicating little noise enhancement while the di-
agonal block terms indicate high diversity values.*

Example 1. A two-transmit-two-receive antenna system is

considered:
_ hl _ h3
H, - H L H- [h] (63)

The matrix G G becomes

10
GG =2(|h|* + || * + | hs|* + | ha ) [0 1] (64)

4This was proposed in [4] in a simpler form.
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Thus, the full four times diversity can be explored, without a
matrix inverse computation. Note that in this case, the trans-
mit sequence at the two antennas reads

* * * *

S] 52 _53 _54 53 54 S] 52
{53 s st sy st sy —ss 754}' (65)
Note also that during eight time periods, only four symbols
are transmitted, that is, this particular scheme has the draw-
back of offering only half the symbol rate!

Example 2. Consider a 4X2 transmission scheme. The ma-
trices are identified to

hu hip his his
Hi = |:h21 hzz} ’ H. = [hzs th ’ (66)
The matrix GHG consists of two block matrices of size 2 x 2
on the diagonal. Thus, the scheme is still rather simple since
only a 2X2 matrix has to be inverted although a four-path di-
versity is achieved. A comparison of the noise enhancement
shows that for this 4 X 2 antenna system, 3 dB is gained com-

pared to the 4 X 1 antenna system. Note that now the data
rate is at full speed!

Example 3. The previously discussed 4 X 1 antenna system
can be obtained when setting

H, = [hl hz] ) H; = [h3 h4]. (67)
The reader may also try schemes in which the number of re-
ceive antennas is not given by Ng = 2". As long as Ny is even,
the scheme can be separated in two matrices H; and H, of

same size allowing the Alamoutization rule (Proposition 2)
to be applied.

6. COMBINING BLAST AND ALAMOUTI SCHEMES

Although the proposed extended Alamouti schemes allow for
utilizing the channel diversity without sacrificing the receiver
complexity, not much has been said on data rates yet. In the
case of Ny X 1 antenna schemes, the Ny symbols were re-
peated Nt times in a different and specific order guarantee-
ing a data rate of one. Thus, the data rates in the proposed
schemes typically remain constant (equal to one) when the
schemes are quadratic and can be lower when the receive
antenna number is smaller than the transmit antennas as
pointed out in the previous section. In BLAST transmissions,
this is different. In its simplest form, the V-BLAST coding
[21], Nt new symbols are offered to the Ny transmit anten-
nas at every symbol time instant thus achieving data rates N
times higher than in the Alamouti schemes. A combination
of schemes can be achieved by simply transmitting more or
less of the different repetitive transmissions. By utilizing the
obtained transmission matrix structures, the diversity inher-
ent in the transmission scheme can be exploited differently
offering a trade-off between data rate and diversity order. In
order to clarify this statement, an example is presented.

671
TABLE 1
Antenna n=1 n=2
1 S1 s3
2 s —s7
3 3 s3
4 Sy —s3

Example 4. A 4 X 2 antenna scheme is considered for trans-
mission. In a flat-fading channel system, eight Rayleigh co-
efficients are available describing the transmissions from the
four transmit to the two receive antennas, the transmission
matrix being

hi hi his hig

H= I:hZI hy has th ' (68)
It should thus be possible to transmit either four times the
symbol data rate with diversity gain two, or two times the
data rate with diversity four, or only at the symbol data rate
but with diversity gain eight. In the first case, the 4x 1 scheme
as proposed in Section 3 will be used, repeating the four
symbols four times, resulting in the reception of eight sym-
bols. When assigning two paths each to one 2 X 2 matrix H;,

i=1,...,4, the following transmission matrix is obtained:
H, H,
_ | -Hy Hf
H = H, H, (69)
-H{ Hj

Computing H7H, a 4 X 4 matrix is obtained in a similar way
to the 4 X 1 antenna case, however with twice the diversity.
Thus in this case, a diversity of eight is achieved with a data
rate of one.

On the other hand, by transmitting the sequences only
twice, according to Table 1, the received signals at the two
antennas can be formed to

Vi1 hii hiy his hig S1

yi| _ | =hiy By —hiy hi5| 2| _

ya| | ha han hs hu||ss = Hs. (70)
Y22 —h3, b3 —h3y his| [ss

Thus, computing HTH results simply in the following block
matrix:

1 B
HFH - [l’;lH )/21:| (71)

with y1 = [k |2 + [h]? + |3 | + [hl? and y, = [hy | +
[h22 |2 + |ha3]? + |hasl?. Due to the condition BFB = BB7,
such matrices can be inverted with a 2 X 2 matrix inversion
rather than a 4 x 4:

[HH] - [_YQIH ;ﬁ] [g %} 72)

with C = [y1y,1 — BBH] L. Thus, the underlying Alamouti
scheme gives us the advantage of lower complexity while the
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BLAST scheme offers higher data rate. This specific scheme
was investigated in [22, 23], where a diversity factor of six was
found to closely match the diversity gain and the correspond-
ing unitary matrices to diagonalize the scheme are presented.

Finally, the third transmission mode would send only one
set of four symbols to the four transmit antennas. The corre-
sponding matrix H?H is not of full rank and therefore, can-
not be inverted. The entries on its diagonal consist of two
times diversity terms like |h;;|> + |h12|2. The decoding can
be performed either in MMSE mode or with an ML decoder
[24] allowing only for diversity of two but with a data rate of
four. Gaining such insight, the following conjecture can be
made.

Conjecture 1. Given a wireless communications system with
Ny transmit and Ny receive antennas in a flat Rayleigh fad-
ing environment with maximum diversity NrNr (see also [25]
for definition), an Alamoutization scheme can be found with
diversity order D and data rate R, if D € N and R € N ap-
proximately factorizing the maximum diversity, that is, DR ~
N7Ng.

Note that this statement was not formulated in terms of
alemma since it may not be exactly true in the sense that ex-
actly a diversity of say eight is obtained when actually only 6.4
is achieved. It is thus to apply with some care. On non-flat-
fading channels, the UMTS transmission allows the diversity
to increase by assigning a number of fingers to each major
energy contribution in the impulse response. In this case, all
finger values are combined in a correspondingly larger ma-
trix H. However, HH remains of the same size as before.
The various fingers only contribute to higher diversity gain
allowing to utilize BLAST schemes in which HH would not
be of full rank in a flat Rayleigh scenario.

7. CONCLUSION

In this paper, several extensions to the Alamouti space-time
block code supporting very high transmit and receiver diver-
sity have been proposed and their performance is evaluated.
By combining conventional BLAST and new extended Alam-
outi schemes, a trade-off between diversity gain (and thus
QoS) and supported data rate is offered allowing very high
flexibility while the receiver complexity is kept approximately
proportional to the transmitted data rate.

Not considered in this paper is the influence of the mod-
ulation scheme on the diversity. It is well known [8] that a
rank criterion on the modulation scheme needs to be satis-
fied in order achieve the full diversity. In QPSK transmission,
this rank criterion is, for example, not satisfied in the four-
and eight-antenna transmission schemes. In other words,
for some transmitted symbols, the full diversity will not be
achieved. One can exclude such symbols or use different
modulation schemes. In [26, 27], the possibility to use off-
set QPSK was proposed. This can be implemented in UMTS
without sacrificing much of the existent hardware solutions.
Another possibility very suitable for UMTS is to work with
feedback schemes. In [28, 29], it is shown for the 4 X 1 as
well as the 8 X 1 antenna scheme that a very simple feedback

scheme retransmitting only one or two bits can reinstall the
full diversity.

APPENDICES

A. PROOFS FOR LEMMAS 2 AND 3
Starting from the definition of X in (19), it is observed that
the squares in the denominator can be appended:
|h1+h4|2+ |h2—h3|2
24 [l * o+ ks |* + [ ha |

X+1= (A.1)
|
In the case of i.i.d. complex-valued Gaussian distributed vari-
ables h;, the two variates h; + hy and h; + h3 become complex
Gaussian distributed and independent of each other. They
depend, however, on the variates in the nominator. Now, a
linear orthogonal coordinate transformation is defined:

u:(h+hn V:(m—hg
v2 - V2 (A2)
g m—h) o (ths)
V2o N
such that Z?:l |hi|? = |ul>+ v + |u/'|* + |v'|? and
X+1 lul? + [v? X
2 T EARr Wl E e A

Generally, if X{ and X7 are independent random variables
following chi-square distributions with v, and v, degrees
of freedom, respectively, then X?/(X? + X3) is said to fol-
low a beta(p, q) distribution with v, = 2p and v, = 2q
degrees of freedom and the probability density is given by
(1/B(p,q))¢P~1(1 — &)1, with p = /2, g = v,/2. This
matches our case (A.3) for v; = v, = 4 and the probabil-
ity density specializes to 6§(1 — ). Transforming this back to
X gives the probability density

(1-x%) forlx|<1,

fx(x) = (A4)

S W

elsewhere.

The independency of X and # = h?* can be established by
transformation of variables starting from the two indepen-
dent variates Z; = X? defined above which are (up to a scal-
ing) i distributed, that is, their joint probability density is
given by

z14+22)/2

Lzlzze’( forz; >0, z; >0. (A.5)

16

The 2 X 2 transformation between the variates X, n and Z,
Z, is derived from (A.3):

lezz (ZI)ZZ) =

1+X

X:ZI_ZZ 7z, = 5 n
Zi+2, |, 2 (A.6)

I1=Z1+Zz Zz=TI’]

The rules for transformation of variates result in the follow-
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ing joint probability density for X, #:
(1 - x*)pPe?
= fx(x)fn(n))

where fy is given above and f; is the y3-density rescaled to
unit mean, that is,

Sl = (A7)

for x| <1, # >0,

12

8 3,4
e forn >0,
fim =1 3 3 1

(A.8)
elsewhere.

For the ZF receiver (where 4 = 0), it follows that the noise is
increased by a factor of

2
E[8,] = B [1—1;(2] - JO A= D) = % (A.9)

For the general linear receiver with g > 0 (including the
MMSE),

1+X

B[6,] - 1B —
[0:] = 27| (1+wh?+X)°

(14 p/h* - X)

2 :| (A.10)
is evaluated by exploiting independency of X and 1 = h*:

wiod =[]

The integration over x is straightforward. The remaining in-
tegral

1+x

(Lt + %) fo(x)fﬂ(r])dxdn (A.11)

E[d4] = 3ZI (2112 +6un — u(3u +4n)log(2n + u)
0 (A12)

+u(3u+4n) logy) ne *dy

is evaluated in terms of the exponential integral which leads
to (32).

B. SOME PROPERTIES OF HH"

In the following it will be shown that all entries of H'H
are real valued. The proof is performed by induction. Using
block matrix notation H7H at a certain level m equals

(B.1)

HH - HI'H, + HY'H, HI'H, - HIH}
H{H, - H'H} HYH, + HYH,

Thus, if the property is given at the lower level scheme, H'H,
and HY'H, are real valued and so are the diagonal block ma-
trices. In the next step, the recursion for the nondiagonal
block matrix H'H, — HYH is investigated. Assuming H;
is constructed by H;; and Hj, and H; in a similar manner by
the matrices Hy; and Ha,, then the term HYH, is given by

HIH, + HLH}, HEH,, - HLH},

HIH, =
1 [H HH,, - HLH;, HEH,, + HLH

} (B.2)

and the nondiagonal block matrix is obtained by such value
minus its transposed form H} H}. Thus, every term H{'H, —
HIH{ is replaced by a sum of terms of the form HZH,,,, —
HI H}. If the property holds for the level below, it also holds
for the current level. To complete the induction argument, it
has to be shown that the property also holds for the first level
(m = 1). In this case, the diagonal elements are |h;|? + |hy|?
and the nondiagonal values are hj'hy, + hyh{, that is, either
zero or 2R {h{ h,}. Thus, all entries are real valued. Note that
due to the different signs occurring, it cannot be concluded
that the terms become zero.

The second property is shown in [30]. For the third
property, it is observed that every nondiagonal term X
consists of either elements (hihf + hfhi)/h? or —(hh}, +
hj*hy)/h?. Thus building X + 1 allows to consider (h?+h;h} +
hihi)/h?* and (h* — hih}, + hfhy,)/h?, further allowing to
reorganize the terms into (h; + hi)(h; + hi)*/h?* and (b +
hw)(hi = hy)*/h2. By applying the same transformation as in
Appendix A:

_ (hi+hk) _ (hz—hm)

u= T, V= 7\/2 5
(B.3)

/- (hi — h) o (hi + hm)

V2 V2

the terms X +1 can be written in terms of independent Gaus-
sian variables and the same rules as before apply. The result-
ing term then reads (X +1)/2 = X{/(X{ + X3) with X; and
X, being Xz—distributed with v = 2" = Nr degrees of free-
dom each and

1

Nr/2-1 _
B(I\I'T/Z,NT/Z)5 (1

O (B4

is obtained, resulting in the density (49) for X.
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Maximum system mutual information is considered for a group of interfering users employing single user detection and antenna
selection of multiple transmit and receive antennas for flat Rayleigh fading channels with independent fading coefficients for
each path. In the case considered, the only feedback of channel state information to the transmitter is that required for antenna
selection, but channel state information is assumed at the receiver. The focus is on extreme cases with very weak interference or
very strong interference. It is shown that the optimum signaling covariance matrix is sometimes different from the standard scaled
identity matrix. In fact, this is true even for cases without interference if SNR is sufficiently weak. Further, the scaled identity
matrix is actually that covariance matrix that yields worst performance if the interference is sufficiently strong.

Keywords and phrases: MIMO, antenna selection, interference, capacity.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) channels formed
using transmit and receive antenna arrays are capable of pro-
viding very high data rates [1, 2]. Implementation of such
systems can require additional hardware to implement the
multiple RF chains used in a standard multiple transmit and
receive antenna array MIMO system. Employing antenna se-
lection [3, 4] is one promising approach for reducing com-
plexity while retaining a reasonably large fraction of the high
potential data rate of a MIMO approach. One antenna is se-
lected for each available RF chain. In this case, only the best
set of antennas is used, while the remaining antennas are not
employed, thus reducing the number of required RF chains.
For cases with only a single transmit antenna where standard
diversity reception is to be employed, this approach, known
as “hybrid selection/maximum ratio combining,” has been
shown to lead to relatively small reductions in performance,
as compared with using all receive antennas, for considerable
complexity reduction [3, 4]. Clearly, antenna selection can
be simultaneously employed at the transmitter and at the re-
ceiver in a MIMO system leading to larger reductions in com-
plexity.

Employing antenna selection both at the transmitter and
the receiver in a MIMO system has been studied very recently
[5, 6, 7]. Cases with full and limited feedback of information
from the receiver to the transmitter have been considered.
The cases with limited feedback are especially attractive in
that they allow antenna selection at the transmitter without
requiring a full description of the channel or its eigenvector

decomposition to be fed back. In particular, the only infor-
mation fed back is the selected subset of transmit antennas to
be employed. While cases with this limited feedback of infor-
mation from the receiver to the transmitter have been studied
in these papers, each assume that the transmitter sends a dif-
ferent (independent) equal power signal out of each selected
antenna. Transmitting a different equal power signal out of
each antenna is the optimum approach for the case where se-
lection is not employed [8] but it is not optimum if antenna
selection is used. The purpose of this paper is to find the op-
timum signaling. This problem is still unsolved to date. For
simplicity, we ignore any delay or error that might actually be
present in the feedback signal. We assume the feedback signal
is accurate and instantly follows any changes in the environ-
ment.

Consider a system where cochannel interference is
present from L — 1 other users. We focus on the Lth user and
assume each user employs n; transmit antennas and #, re-
ceive antennas. In this case, the vector of received complex
baseband samples after matched filtering becomes

L-1
o = JprHooxe + . i  Hejxj +n, (1)
j=1

where H ; and x; represent the normalized channel ma-
trix and the normalized transmitted signal of user j, respec-
tively. The signal-to-noise ratio (SNR) of user L is p; and
the interference-to-noise ratio (INR) for user L due to in-
terference from user j is # ;. For simplicity, we assume all
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of the interfering signals x;, j = 1,...,L — 1, are unknown
to the receiver and we model each of them as being complex
Gaussian distributed, the usual form of the optimum signal
in MIMO problems. Then if we condition on Hy3,...,Hy 1,
the interference-plus-noise from (1), Z]L;ll JALHLjXj + 1,
is complex Gaussian distributed with the covariance matrix
R; = Z;‘;ll qL,jHL,ijHEj + I,,,, where S; denotes the covari-
ance matrix of x; and I,,, is the covariance matrix of n. Un-
der this conditioning, the interference-plus-noise is whitened
by multiplying y; by Ry 2. After performing this multiplica-
tion, we can use results from [2, 8, 9] (see also [10, pp. 12-23,
pp- 250,256]) to express the ergodic mutual information be-
tween the input and output for the user of interest as in the
following:

I(xz; (yz, #))
= E{log, | det (I, +pr (R *HL1) S (R; 2 H. 1)) |} (2)
= E{log, [det (I, + prHr, 1 StHY R, )]}
(# reminds us of the assumed model for Hy ;,...,Hy ). In
(2), the identity det (I + AB) = det (I + BA) was used. If we

wish to compute total system mutual information, we should
find S;,...,S; to maximize

¥(S,,...,S;)
= gl(xi; (vi» #))

- E{logz [det (In, +piH;;SH

i=1
L -1
X <In,+ Z i’[l)JH,,JS]HlI:I]) ):| ]’
=1, ji

(3)

Now, assume that each receiver selects n,, < n, receive an-
tennas and ng < n; transmit antennas based on the channel
conditions and feeds back the information to the transmit-
ter.! Then the observations from the selected antennas fol-
low the model in (1) with #; and #, replaced by ny and ny,,
respectively, and H; j replaced by H; ;. The matrix Hj; is ob-
tained by eliminating those columns and rows of H; ; corre-
sponding to unselected transmit and receive antennas. Thus
we can write H; i = g(Hj;), where the function g will choose
I:Ii,j to maximize the instantaneous (and thus also the er-
godic) mutual information (or some related quantity for the
signaling approach employed). In order to promote brevity,
we will restrict attention in the rest of this paper to the case
where ny = ny so we will only use the notation for ny. We
note that the majority of the results given carry over imme-
diately for the case of ny # ny, and since this will be obvious
in these cases, we will not discuss this further.

It is important to note that we restrict attention to nar-
rowband systems using single user detection, equal power

IThe case where each user employs a different 1 and ng, is also easy to
handle.

(constant over time) for each user, and fixed definitions
of the transmitting and receiving users. Future extensions
which remove some assumptions are of great interest. How-
ever, as we will show, these assumptions lead to interesting
closed form results which we believe give insight into the fun-
damental properties of MIMO with antenna selection.

In Section 2, we give a general discussion and some use-
ful relationships used to study the convexity and concavity
properties of the system mutual information. In Section 3,
we study cases with weak interference. We follow this, in
Section 4, with our results for strong interference. The results
in Sections 3 and 4 are general for any ny = ng, 14, 1, and
L. Section 5 is devoted to numerical studies for the particu-
lar case of n, = n; = 8, ngy = ng = L = 2 to illustrate the
agreement with the theory from Sections 3 and 4. The results
in Section 5 also show that our asymptotic results give use-
ful information for nonasymptotic cases as well. The paper
concludes with Section 6.

2. GENERAL ANALYSIS OF SYSTEM
MUTUAL INFORMATION

Clearly, the nature of the functional? ¥(S;,...,S.) will de-
pend on the SNRs p;, i = 1,...,L, and the INRs #;j, i, j =
I,...,L,i # j. This can be seen by considering the convexity
and the concavity of ¥(Sy,...,S) as a function of Sy,..., S;.
Towards this goal, we define a general convex combination of
two possible solutions (Sy,...,S.) and Si,..., SL) as follows:

(Sl,...,SL) =(1- t)(Sl,...,SL) +l’(S1,...,SL)
= (S],...,SL) +f((Sl,...,SL) - (S],...,SL))
(St S0) +£(Shy. .., S))

(4)
for 0 < t < 1 ascalar. Then ¥(Sy,...,S;) is a convex function
of (S1,...,Sy) if [12]

d _ - -
EW(SI;---)SL)ZO vSi,...,S.. (5)
Similarly, W(Sy,...,St) is a concave function of (Sy,...,Sg) if
d . _ - -
E\P(Sla---)sL) <0 VSl,...,SL. (6)

There are several useful known relationships for the deriva-
tive of a function of a matrix ® with respect to a scalar pa-
rameter t. In particular, we note that [13, Appendix A, pp.
1342, 1345, 1349, 1351, 1359, 1401]

%ln[det (®)] = trace [d)’l (%(D)],
d

d
‘o1 - _p1( L -1
dtq) @ (dtq))(b ’

(7)

’In the case without antenna selection [11], it is possible to argue that
each S; can be taken as diagonal. These arguments are based on the joint
Gaussianity of the H;; which does not hold after selection.
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Assuming selection is employed, we can use (3) and (7) to
find (interchanging a derivative and an expected value)

d‘}’(S S.) = ! iE{trace[QliQ]} (8)
dt P T n(2) £ Pde Y
where
-1
Q—I,,st+p,H,,SHH<nst+ > niH SﬁH])
j=Lj#i )
:Ins, S Q
D Qs = pSHTQT ! — piL, G (ic-)f—l (10)
dt 1 Pl 1,19 1,1 1 Pl L1Vl 1,1 dt 1 i 0
d & H
Q= Z ni,Hi ; SHY, (11)
j=1,j#i
A second derivative yields
da? -
dtzly(s )
L
1n(z)§1E{“"‘ce o' (50) (12)
d d
—o’'fZ0:.l07 Z20:
o' (ge)a(3e)])
with
d2

~ I~IH — —( ! (!
_Ql = — ZplIIl IS; i,i i ( i) i ]
dtz ' '

U d -\ = d -\ =
H. .SSHEO-1 Z2O. -1 2 H. -1
+ 2piH;,;S:H;;Q; (dth>Q’ (dtQ'>Q’ .

3. OPTIMUM SIGNALING FOR WEAK INTERFERENCE

We can use (12) to investigate convexity and concavity for
any particular set of SNRs p;, i = 1,...,L,and INRs j; j, i, j =

LLi# j. We investigate extreme cases, weak or strong
interference, to gain insight. The following lemma considers
the case of very weak interference.

Lemma 1. Assuming sufficiently weak interference, the best
(S1,...,81) (that maximizes the ergodic system mutual infor-
mation) must be of the form

’yLInst + (1 - )/L)Onst)’
(14)

(X(y Iﬂst (1_)’1) RN

where Oy, is an ny by ny matrix of all ones, « = 1/ng, and
O<yi=li=1,...,L

Outline of the proof. For the case of very weak interference,
we ignore terms which are multiples of #; ; (essentially, we

setnj — 0fori=1,...,L,j=1,...,L,and j # i) and we
find (d/dt)Q; = 0 so that (d?/dt?)Q; = 0 which leads to

d2
dtij(s )SL)

! 2yl s
S e ) o

PN BT
X (I, + piH;;SHJ)) PiHi,isiHﬁ] }
(15)

Since S; is a covariance matrix, (I,, + p;H;;SHIH)™! =
(UHU + UHAU)! = (U1, + A)-'UH) = UQ)*uf =
U(Q)UAU(Q)UH, where U is unitary and A and Q are
diagonal matrices with nonnegative entries. Define A =
piHi,iS;Hg and note that Af = A due to S} being a
difference of two covariance matrices (easy to see using
UAU! expansion for each covariance matrix). Thus the trace
in (15) can be written as trace[U(Q)2U7AU(Q)2U”A] =
trace[UQUPAU(Q)?UPAUQU| =  trace[BBF] since
trace [CD] = trace [DC] [13]. We see trace[BBY] must be
nonnegative since the matrix inside the trace is nonnegative-
definite so that (15) implies that W(S;,...,S.) is concave.
This will be true for sufficiently small #;;, i,j = 1,...,L,
i # j, relative to p;, i = 1,...,L. To recognize the sig-
nificance of the concavity, we note that given any permu-
tation matrix II, we know [8] that I:Ii,]- has the same dis-
tribution as H; ;IT (switching the ordering or names of se-
lected antennas cannot change the physical problem), so
YIS, 117, ..., TIS; IT7) = W(Sy,...,S;). Let >y denote the
sum over all the different permutation matrices and let N
denote the number of terms in the sum. From concavity,
Y((1/N) SIS IIH, .. (1/N) S IS IIH) > ¥(S,,...,S;)
(8] which implies that the optimum (S;,...,S;) must be of
the form such that it is invariant to transforms by permu-
tation matrices. This implies that the best (S;,...,S;) must
be of the form given in (14). We refer the interested reader
to [14] for a rigorous proof of this (taken from a single user
case). O

Before considering specific assumptions on the SNR,

we note the sirnilaritonf (14) to (4) with (S1,...,S1) =
(l/nst)(ons,) cee Ons,)a (Sb oo >SL) = (l/nst)(InS,v .. yInS,): and
t=y1=...=yL.

Small SNR

Thus we have determined the best signaling except for the
unknown scalar parameters yy, ...,y which we now inves-
tigate. Generally, the best approach will change with SNR.
First, consider the case of weak SNR for which the following
lemma applies (recall we have now already focused on very
weak or no interference).

Lemma 2. Let h(p, p);; denote the (i, j)th entry of the ma-
trix Hy p and define Sy,..., Sy, from (14). Assuming sufficiently
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weak interference and sufficiently weak SNR,

d
d—yp‘{l(sh N SL)

:_nstln(Z)pP {ZZ 2 E*(P’P)i,jfl(PaP)i,j'}

i=1j=1j=1,j#j

forp=1,...,L
(16)

Outline of the proof. Using the similarity of (14) to (4),
(d/dyp)¥ can be seen to be the pth component of the sum in
(8) with (Sy,...,81) = (1/n4)(On,s...,0n,)s (S1,...,81) =
(Ung)(X,,...,1,,), and t = y,. To assert the weak signal
and interference assumptions, we set #;; — 0 for all 4, j and
pi — 0 for all i and in this case we find

d d _ _
-1 ) . H..SHH
Q; at Q — i Q; piHi;S;H; (17)

and using (8) gives

d
s Y(Si,...,51)

= mE{ trace [ﬁp,p(lns, - O,,S,)I:II;’P]},

where the ny X ngy matrix can be explicitly written as

0 -1 -+ -1 -1 -1
-1 0 -1 --- -1 -1

L,—0, —|~1 -1 0 =1 - =1 g
-1 -1 --- -1 -1 0

Explicitly carrying out the operations in (18) gives (16). [

Notice that without selection (in this case H,, = H,,,),
the quantity in (16) becomes zero under the assumed model
for Hy, (ii.d complex Gaussian entries). Thus selection
turns out to be an important aspect in the analysis. The fol-
lowing lemmas will be used with the result in Lemma 2 to
develop the main result of this section.

Lemma 3. Let h(p, p);; denote the (i, j)th entry of the ma-

trix Hp,, and define Sy, .., Sy, from (14). Assuming sufficiently
weak interference and sufficiently weak SNR,
¥(Si,...,Sr)
B nstln(z) Z"P

X E{ > 3 | h(p, p)ij |

i=1j=1

+(1=y) 2> > ﬁ*(p»p)i,jfl(p,pw}

=1j=1 =14
(20)

Outline of the proof. Consider an ny X ny nonnegative def-
inite matrix A and let 1,(A),...,A,,(A) denote the eigen-
values of A. For sufficiently weak SNR p;, we can approxi-
mate In[det(I+p;A)] = In[[T},(1+piA;(A))] = 37, In[1+
piri(A)] = p; Z"“ Aj(A) = p;trace(A). Now, con51der Y it-
self, from (3), for the set of covariance matrices in (14) and
assume that selection is employed. Thus we consider the re-
sulting ¥ as a function of (yy,...,yr) and we see

¥(Ss,. SL)
N ns,ln () = pr (21)

X E{ trace I:Hp,p[yplnst +(1 - )’p)oﬂsr]ﬁgp]}‘

Note that the ny X ny matrix can be explicitly written as

[)’plnsf + (l - yP)O”xt]
L 1=y L=yp 1=y, 1=y
1- 1 1- 1- 1-—
Vp Y Vo Y (22)

L=yp 1=y, 1 1=y L=

L=y 1= L=y 1=y 1

Using (22) in (21) with further simplification gives (20). [

Lemma 4. Assuming sufficiently weak interference and suffi-
ciently weak SNR, the antenna selection that maximizes the er-
godic system mutual information will make

E{ii > fz*(p,px,ﬁ(p,p)iw} (23)

i=1j=1j'=1,j'4j
positive.

Outline of the proof. First, consider the antenna selection ap-
proach for the pth link which maximizes the ergodic system
mutual information in (20) when y, = 1in (14). Thus the se-
lection approach will maximize the quantity in the pth term
in the first sum in (20) when y, = 1 by selecting antennas
for each set of instantaneous channel matrices to make the
terms inside the expected value as large as possible. It is im-
portant to note that the choice (if y, = 1) depends only on
the squared magnitude of elements of the channel matrices.
If we use this selection approach when y, # 1, then the
terms multiplied by (1 — y,) in (20) will be averaged to zero
due to the symmetry in the selection criterion. To see this,
first note that the contribution to the ergodic mutual infor-

mation due to the pth term is
h(p,p) 115w PsP ) gy i=1j=1j=1,j'#j

th(p,pn.l ..... 1(ppYuny (F(D> P11+ o
x dh(p, p)ii - - - dh(p, Plun,

Nst Nst Nst

h(p, P)nin,)

(24)
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times the constant p,/ng In (2). In (24),

Ihp o)t popngme (P> PI1Ls s B(Ds PIion,) (25)

is the probability density function of the channel coefficients
prior to selection, the integral is over all values of the argu-
ments and the selection rule H = g(H) is important in de-
termining the integrand. If the optimum selection rule for
(20) with y, = 1 will select a particular set of transmit and
receive antennas for a particular instance of A(p, p)i,1,--.,
h(p, p)u,n,»> then due to symmetry, this same selection will
also occur several more times as we run through all the pos-
sible values of h(p, p)i,1,..., (P, P)n,n - Thus assume that
terms with |h(p, Pij |2 =a and [h(p, p)ij .|? = bin (20) with
yp = larelarge enough to cause the correspondmg antennas
to be selected by the selection criterion trying to maximize

(20) with y, = 1 for some set of h(p, p)i1>...,h(Ps P)nyng-
Then due to the symmetry,
]:l(p’P)z])h(P p)z] ae]¢a \/—el¢h)
fl(p’P)z]rh(P P)l] = \/_e]¢“ —\fe]‘ph)’
(26)

(Va
(
(= Jael¥, \bei?),
(= Jaei¥, —\bei?)

will all appear in (24). Since each of these four possible val-
ues appear for four equal area (actually probability) regions
in channel coefficient space, a complete cancellation of these
terms results in (24). In fact, this leads to (24) averaging to
zero. Thus if we use the selection approach that will maxi-
mize (20) with y, = 1, this is the best we can do.

However, if y, # 1, we can do better. Due to the cross
terms in (20) in the term multiplied by (1 — y,), we can
use selection to do better by modifying the selection ap-
proach. To understand the basic idea, let H' denote the ma-
trix H, , for a particular selection of antennas and H” de-
note the same quantity for a different selection of anten-
nas. Now consider two selection approaches which are the
same except the second approach will choose H” in cases
where

( ) =
( )
(h(p, p)i> h(p, p)ijr)
(h(p, P)ii> h(p, p)ij) =

Mgt Nst

> | H 1P =

i=1j=1

Mgt Nst

> 2 IH,

i=1j=1
(27)

N5t Nst

>SS Ay

i=1j=1j'=1,j#j

and (in the sum, both a term and its conjugate appear, giving
a real quantity)

Nst Nst Nst
> > > HjH<0. (28)
i=1j=1j'=1,j4]

Assume the first selection approach is the one trying to max-

imize (20) with y, = 1 so it will just select randomly if

st Nst

zz |Hi’jl|2:

i=1j=1

N5t Nst

>3, (29)

i=1j=1

since it ignores the cross terms in its selection.

From (20), the second selection approach will give larger
instantaneous mutual information for each event where the
selection is different. Since the probability of the event that
makes the two approaches different is greater than zero un-
der our assumed model, then the second antenna selec-
tion approach will lead to improvement (if y, # 1) and
it will do this by making the term multiplied by (1 — y,)
in (20) positive. Clearly the optimum selection scheme will
be at least as good or better, so it must also give improve-
ment by making the term multiplied by (1 — y,) in (20)
positive. O

We are now ready to give the main result of this section.

Theorem 1. Assuming sufficiently weak interference, suffi-
ciently weak SNRs, and optimum antenna selection, the best
(S1,...,S1) (that maximizes the ergodic system mutual infor-
mation) uses

5 O0p,). (30)

Outline of the proof. The assumption of weak SNRs
implies that p, is small for al 1 < p < L. In
this case, optimum selection will attempt to make
E{>™ Z Z]_lj#]h (p, p),]h(p pij} as large as
possible as shown in Lemma3. Lemma4 builds on
Lemma 3 to show that optimum selection can always
make E{>. X, Z;’S’_l i #Jh (p> p)ijh(p, p)ij} positive.
Lemma 2 shows that (d/dy,)V¥ is directly proportional to
the negative of E{>.*; >, Z';“_l 4 m*(p, p)iih(p, )iy}
which the selection is makmg positive and large. Thus it
follows that (d/dy,)V¥ is always negative which implies that
the best solution employs y, = 0 since any increase in y,,
away from y, = 0 causes a decrease in ¥. Since p, is small
for all p, the theorem follows.

Large SNR

Now consider the case of large SNR, where the following the-
orem applies.

Theorem 2. Assuming sufficiently weak interference, suffi-
ciently large SNRs, and optimum antenna selection, the best
(S1,...,SL) (that maximizes the ergodic system mutual infor-
mation) uses

(S1,...,81) = —(Luy» .. L) (31)
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Outline of the proof. Asserting the weak interference, large
SNR assumption in (8) gives

L d 1, ST
Q' 2 Q — (pH,SH) PHSH (32)

so that

(d/dy,)¥(St,...,SL)
= ﬁE{trace[( ool + (1= 7,)0,, 1)
(Rl 0 )]
“In() (2) E{ trace | 5]7 [ypln, + (1= y5)On,]
<[, -0, 18, ]}

= ﬁE{tracs [(Vplnst +(1- yp)Onst)fl(L,ﬂ - Onsf)]}

-1

ngt (s — 1)()’19 -1)
= >0
Yo ((ns = 1)y, — ny) In(2)
(33)
which is positive for 0 < y, < 1 (since (ny — 1)y, < ny)

and zero if y, = 1. In (33), we used trace [CD] = trace [DC]
[13]. Thus for the large SNR case (large p, for all p) when
the interference is very weak, the best signaling uses (14) with
yp = L. Since this is true for all p, the theorem follows. [

As a further comment on Theorem 2, we note that the
proof makes it clear that if p,, is large only for certain p, then
yp = 1 for those p only. Likewise, it is clear from Theorem 1
that if p,, is small only for certain p, then y, = 0 for those p
only. Of course, this assumes weak interference. Thus we can
image a case where the best signaling uses y, = 1 for some p
and y, = 0 for some p’ # p with proper assumptions on the
corresponding py,, ppr. One can construct similar cases where
only some of the #; ; are small and easily extend the results
given here in a straight forward way.

4. STRONG INTERFERENCE

Now consider the other extreme of dominating interference
where #;;, i = 1,...,L, j = 1,...,L, is large (compared to
p1>---»pr). The following lemma addresses the worst signal-
ing to use.

Lemma 5. Assuming sufficiently strong interference, the worst
(S1,...,S1) (that minimizes the ergodic system mutual infor-
mation) must be of the form

(S1,...,SL)

= ‘x(yllﬂsr + (1 - Vl)Omw o ’yLInst + (]' - YL)On;t))

(34)

where Oy, is an ng by ny matrix of all ones, & = 1/ny, and
O<yi<li=1,...,L

Outline of the proof. Provided #; ; is sufficiently large, we can
approximate (9) as

L -1
Q _Ins[+Pz ii lﬁg(lnst"' Z r]z,]I:Iz)]S]I:IIIj) zlﬂsr'
j=1j#i
(35)

After applying this to (12) and using (13) for large #; ; so that
Q' = (Z]L,:Lj# ni,jH;;S;H[L) ™!, we find the first term in-
side the trace in (12) depends inversely on #; j, while the sec-
ond term inside the trace in (12) depends inversely on ’11‘2,1‘
so that the first term dominates for large #; ;. Further, we
can interchange the expected value and the trace in (12) so
we are concerned with the expected value of (13). Now note
that the first term in (13) consists of the product of a term
A = H;;S;H}! and another term depending on H;; for j # i.
Now consider the expected value of (13) computed first as an
expected value conditioned on {H; is J # i} and then this ex-
pected value is averaged over {H; s J # i}. Now note that the
conditional expected value of A becomes the zero matrix.’>
Thus the contribution from the first term in (13) averages to
zero so that

TS5
&2
1n(z)ztrace[ SLdtZQH
lnt2) ZE trace | 2p;H;;S;HS
L -1
X( > Wi;ﬁi,jsjﬁfj)
=1, j#i
L
X( Z WIJHI’]S}H{:I])
=1, j#i
. -1
X( > ’YUﬁIJSJI:Iin)
=1, j#i
L
X( Z 7’]1,11:11’]5}1‘:[{:1])
=1, j#i
. -1
X( 2. m;ﬁwsjﬁflj)
=1, j#i

(36)

which is nonnegative. To see this, we can use a few
of the same simplifications used previously. Ex-
pand the nonnegative definite matrices 2p;H;;S;H}
and (Z]L.:Lj#im,jﬁi,jgjﬁz)’l using the unitary ma-
trix/eigenvalue expansions as done after (15). Then the
matrix inside the expected value in (36) can be factored

3Recall §! = §;—S; and use the appropriate eigenvector expansions, prob-
lem symmetry, and constraints on trace [S;], trace [S;].
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into BB after manipulations similar to those used after
(15). Thus ¥(Sy,...,Sr) is convex. Thus using the same
permutation argument as used for the weak interference
case, the result stated in the theorem follows. O

The following theorem builds on Lemma 5 to specify the
exact y1,. ..,y giving worst performance.

Theorem 3. Assuming sufficiently strong interference and opti-
mum antenna selection, the worst (S1,...,St) (that minimizes
the ergodic system mutual information) uses

. a 1
(S1,...,81) = —(Luy» - Ly ). (37)

Nt

Outline of the proof. Consider ¥(S,...,Sr) for (Si,...,S)
of the form given by Lemma 5 which is (from (2) and (3))

¥(S,,...,S.)

L
> E{log, [ det (I, + piH;SHIR )]}

i=1

sz
e

Nt ln

trace [H;;S;HIR; ']}

14

XE{ S5 hp, p)i |

i=1j=1

Tl-p) S S S fl*(p,P)i,jfl(P)p)’lf'}’

i=1j=1j=1,j#j
(38)

where the first simplification follows from large #; ; and the
same simplifications used in (21). The second simplification
follows from those in (20) but now ﬁ( P> p)ij denotes the
(i, j)th entry of the matrix lel/ ’H p.p- Now note that antenna
selection will attempt to make the second term in the last line
of (38), which multiplies the positive constant 1 - y,, as large
and positive as it possibly can. In fact, it is easy to argue that
antenna selection can always make this term positive as done
previously for (20). We skip this since the problems are so
similar. Thus we see that the best performance for (S,...,S.)
of the form given by Lemma 5 must be obtained for y, = 0
and the worst performance must occur at y, = 1. Since this
is true for all p, the result in the theorem follows. O

The result in Theorem 3 tells us that the best signaling
for cases without interference and selection is the worst for
strong interference and selection. It appears that the best sig-
naling for (S, ...,St) of the form given by Lemma 5 (see the
discussion in Theorem 3) may be the best signaling overall.
However, it appears difficult to show this generally.

The following intuitive discussion gives some further in-
sight. Due to convexity, the best performance will occur at a
point as far away from the point giving worst performance

(S1,...,81) = (I/ng)(y,,...,1,,) as possible (recall that the
y1 = - - - = yr = 1 point gives the worst performance). Thus
the best performance occurs for a point on the boundary of
our space of feasible (S, ..., S;) and this point must be as far
away from the point giving the worst performance as possi-
ble. One such pointis (Sy,...,S.) = (1/#14)(Opy> - .., Op,,). It
can be shown generally (for any ny) that this solution is the
farthest from (Sy,...,S.) = (1/n4)(Ly,,...,1,,) (Frobenius
norm). This follows because (1/n)0,,, is the farthest from
(1/ng)L,,. Note that S with one entry of 1 and the rest zero is
equally far from (1/n4)I,,, but numerical results in some spe-
cific cases indicate that the rate of increase in this direction
is not as great as the rate of increase experienced by mov-
ing along the line (Sy,...,S.) = y(/ng)(Ly,,..., Ly,) + (1 —
y)(1/ng)(Op,, . .., Op,) away from y = 1 towards y = 0.

5. NUMERICAL RESULTSFORny; = ng, =L =2,
n=mn,=38

Consider the case of ngy = ng, = L = 2, n, = n, = 8§,
M2 = #21 = 1, and p; = p, = p and assume that the op-
timum antenna selection (to optimize system mutual infor-
mation) is employed. First consider the case of no interfer-
ence and assume a set of covariance matrices of the form
($1,S2) = y(172)(I;, L) + (1 — y)(1/2)(0,, 0,). Thus since
P1L=p2=p and N2 = 2,1 = K, WE set Y1 =Y2=Y. Figure 1
shows a plot of the y giving the largest mutual information
versus SNR, for SNR (p) ranging from —10 dB to +10 dB. We
see that the best performance for very small p is obtained for
y = 0 which is in agreement with our analytical results given
previously. For large p, the best signaling uses y = 1 which is
also in agreement with our analytical results given previously.
Figure 1 shows that the switch from where y = 0 is optimum
to where y = 1 is optimum is very rapid and occurs near
p=—-3dB.

Now consider cases with possible interference. Again
consider the case of ngy = ng, = L = 2, n, = n, = 8,
M2 = a1 = 1, and p; = p, = p and assume that the opti-
mum antenna selection (to optimize system mutual informa-
tion) is employed. To simplify matters, we constrain §; = S,
in all cases shown. First we considered three specific signaling
covariance matrices which are

1

50
51252: 1 b)

0_

2

11

22 (39)
Si=8=|1 1],

2 2

81282:<

We tried each of these for SNRs and INRs between —10dB
and +10dB. Then we recorded which of the approaches
provided the smallest and the largest system mutual infor-
mation. These results can be compared with the analytical

O -
o O
~_—
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FIGURE 1: Optimum y versus p; = p, = SNR for cases with no
interference and ny = n, = 2, n, = n, = 8. Note that y = 0
is the best for —10dB < SNR < —3dB and y = 1 is the best for
—2dB < SNR < 10dB.

10

[10; 00] worst
QO
0 L 4
72 - 0 4
0.5%[10; 01] worst

NP

SNR (dB)

10 -8 -6 -4 -2 0 2 4 6 8 10
INR (dB)

FIGURE 2: The worst signaling (of the three approaches) versus SNR
and INR for ny = ny, = L =2,n, = n, = 8,p; = p» = SNR, and
111,2 = 112,1 = INR.

results given in Sections 3 and 4 of this paper for weak and
strong interference and SNR. Figure 2 shows the worst sig-
naling we found versus SNR and INR for p; = p, = SNR
and 71, = 721 = INR. For large INR, Figure 2 indicates
that §; = S, = (1/2)I, leads to worst performance which
is in agreement with our analytical results given previously.
Figure 2 also shows that either S; = S; = (1/2)1, (for weak
SNR) or (for large SNR) S; = S, with only one nonzero entry
(a one which must be along the diagonal) will lead to worst
performance for weak interference.

For weak interference, Figure 3 shows that the best per-
formance is achieved by either §; = S, = (1/2)0O, (for weak

10

0.5%[10; 01] best
0

| s |
,2./—/ ]

-4 r 0.5%[11;11] best b

SNR (dB)
[=}

-10 -8 -6 -4 -2 0 2 4 6 8 10
INR (dB)

FIGURE 3: The best signaling (of the three choices) versus SNR and
INR for ny = ny = L =2,n =n, =8, p = p, =SNR, and
111,2 = 7]2,1 = INR.

SNR) or §; = S, = (1/2)I, (for large SNR). This agrees with
our analytical results presented previously. Figure 3 shows
that the best performance is achieved by §; = S, = (1/2)0,
for large interference and this also agrees with our analytical
results presented previously. We note that in the cases of in-
terest (those for which we give analytical results), the differ-
ence in mutual information between the best and the worst
approach in Figures 2 and 3 was about 1 to 3 bits/s/Hz.

We selected a few SNR-INR points sufficiently (greater
than 2dB) far from the dividing curves in Figures 2 and 3.
For these points, we attempted to obtain further information
on whether the approaches shown to be the best and worst in
Figures 2 and 3 are actually the best and the worst of all valid
approaches under the assumption that §; = S,. We did this
by evaluating the system mutual information for

b
S =8, = (b‘i b a) (40)

for various values of the real constant a and the complex
constant b on a grid. When we evaluated (40) for all real
a and b an a grid for a range of values consistent with the
trace (power) and nonnegative definite enforcing constraints
on §; = S, we did find the approaches in Figures 2 and 3
did indicate the overall best and worst approaches for the
few cases we tried. Limited investigations involving complex
b (here the extra dimension complicated matters, making
strong conclusions difficult) indicated that these conclusions
appeared to generalize to complex b also.

Partitioning the SNR-INR Plane

Based on Sections 3 and 4, we see that generally the space of
all SNRs p;, i = 1,...,L,and INRs 3 j, i, j = 1,...,L, i # j,
can be divided into three regions: one where the interference
is considered weak (where Figure 1 and its generalization
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apply), one where the interference is considered to dominate
(where Figure 3 and its generalization apply), and a transi-
tion region between the two.

For the case with ngy = n, = L = 2, n, = n, = 8§,
My = 21 = 1, and py = p» = p, we have used (12)
to study the three regions. We first evaluated (12) numeri-
cally using Monte Carlo simulations for a grid of points in
SNR and INR space. The Monte Carlo simulations just de-
scribed were calculated over a very fine grid over the region
—10dB =< p =< 10dB and —10dB =< x < 10dB. For each
given point in SNR and INR space, we evaluated (12) for
many different choices of (Sy,...,Sr), (Sl,...,SL), and the
scalar t. We checked for a consistent positive or negative value
for (12) forall (Sy,...,St), (Sl,. R SL), and the scalar t on the
discrete grid (quantize each scalar variable, including those
in each entry of each matrix). In this way, we have viewed the
approximate form of these three regions. We found that gen-
erally for points sufficiently far (more than 2 dB from closest
curve) from the two dividing curves in Figures 2 and 3, the
convexity and concavity follows that for the asymptotic case
(strong or weak INR) in the given region. Thus the asymp-
totic results appear to give valuable conclusions about finite
SNR and INR cases. Limited numerical investigations suggest
this is true in other cases but the high dimensionality of the
problem (especially for ny, ng, L > 2) makes strong conclu-
sions difficult.

6. CONCLUSIONS

We have analyzed the (mutual information) optimum sig-
naling for cases where multiple users interfere while using
single user detection and antenna selection. We concentrate
on extreme cases with very weak interference or very strong
interference. We have found that the best signaling is some-
times different from the scaled identity matrix that is best
for no interference and no antenna selection. In fact, this is
true even for cases without interference if SNR is sufficiently
weak. Further, the scaled identity matrix is actually the co-
variance matrix that yields worst performance if the interfer-
ence is sufficiently strong.
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The impact of interference on multiple-input multiple-output (MIMO) systems has recently attracted interest. Most studies of
channel estimation and data detection for MIMO systems consider spatially and temporally white interference at the receiver.
In this paper, we address channel estimation, interference correlation estimation, and data detection for MIMO systems under
both spatially and temporally colored interference. We examine the case of one dominant interferer in which the data rate of the
desired user could be the same as or a multiple of that of the interferer. Assuming known temporal interference correlation as a
benchmark, we derive maximum likelihood (ML) estimates of the channel matrix and spatial interference correlation matrix, and
apply these estimates to a generalized version of the Bell Labs Layered Space-Time (BLAST) ordered data detection algorithm. We
then investigate the performance loss by not exploiting interference correlation. For a (5,5) MIMO system undergoing indepen-
dent Rayleigh fading, we observe that exploiting both spatial and temporal interference correlation in channel estimation and data
detection results in potential gains of 1.5dB and 4 dB for an interferer operating at the same data rate and at half the data rate,

respectively. Ignoring temporal correlation, it is found that spatial correlation accounts for about 1 dB of this gain.

Keywords and phrases: multiple-input multiple-output, interference, channel estimation, data detection.

1. INTRODUCTION

Wireless systems with multiple transmitting and receiving
antennas have been shown to have a large Shannon channel
capacity in a rich scattering environment [1, 2]. By transmit-
ting parallel data streams over a multiple-input multi-output
(MIMO) channel, it was shown that the Shannon capacity of
the MIMO channel increases significantly with the number
of transmitting and receiving antennas [2]. Layered space-
time architectures were proposed for high-rate transmission
in [3, 4]. Space-time coding techniques have also been inves-
tigated [5, 6].

While substantial research efforts have focussed on
point-to-point MIMO link performance, the impact of in-
terference on MIMO systems has received less interest. In
a cellular environment, cochannel interference (CCI) from
other cells exists due to channel reuse. In [7], channel capac-
ities in the presence of spatially colored interference were de-
rived under different assumptions of knowledge of the chan-
nel matrix and interference statistics at the transmitter. The

impact of spatially colored interference on MIMO channel
capacity was studied in [8, 9, 10]. The capacity of MIMO
systems with interference in the limiting case of a large num-
ber of antennas was studied in [11]. The overall capacity of
a group of users, each employing a MIMO link, was inves-
tigated in [12]. The output signal-to-interference power ra-
tio (SIR) was analytically calculated in [13], when a single
data stream is transmitted over independent Rayleigh MIMO
channels. While the majority of the studies deals with chan-
nel capacity, in this paper we focus on the achievable symbol
error rate performance of a MIMO link with interference.
Prior results on estimation of vector channels and spa-
tial interference statistics for code division multiple access
(CDMA) single-input multiple-output systems can be found
in [14]. Most studies of channel estimation and data de-
tection for MIMO systems assume spatially and temporally
white interference. For example, in [15], maximum likeli-
hood (ML) estimation of the channel matrix using training
sequences was presented assuming temporally white interfer-
ence. Assuming perfect knowledge of the channel matrix at
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the receiver, ordered zero-forcing (ZF) and minimum mean-
squared error (MMSE) detection were studied for both spa-
tially and temporally white interference in [4, 16], respec-
tively. However, in cellular systems, the interference is, in
general, both spatially and temporally colored.

In this paper, we propose and study a new algorithm that
jointly estimates the channel matrix and the spatial interfer-
ence correlation matrix in an ML framework. We develop a
multi-vector-symbol MMSE data detector that exploits in-
terference correlation. In the case of a single dominant in-
terferer and large signal-to-noise ratio (SNR), we show that
spatial and temporal second-order interference statistics can
be decoupled in the form of a matrix Kronecker product. In
finite SNR, the decoupling of spatial and temporal statistics
of interference-plus-noise is only an approximation. We also
determine the conditions where this approximation breaks
down.

Although temporal interference correlation is difficult to
estimate in practice, our objectives are to determine the per-
formance benchmark achieved if temporal correlation was
known. As sources of temporal correlation, we consider cases
in which the data rate of the desired user is either the same as
or a multiple of that of the interferer. The new ML algorithm
serves as a performance benchmark when temporal and spa-
tial interference correlation are exploited in joint channel es-
timation and data detection. We also assess the performance
improvement obtained in more practical cases where only
part of the correlation information is exploited, including the
performance obtained by assuming temporally white inter-
ference, that is, ignoring temporal correlation.

The paper is organized as follows. In Section 2, we
present our system model of temporal and spatial interfer-
ence. In Section 3, we derive ML estimates of channel and
spatial interference correlation matrices assuming known
temporal interference correlation. In Section 4, one-vector-
symbol detection is extended to a multi-vector-symbol ver-
sion which is used to exploit temporal interference correla-
tion. In Section 5, we consider the case of one interferer and
large SNR and assess the benefits of taking temporal and/or
spatial interference correlation into account for channel esti-
mation and data detection. We then examine the level of SNR
at which the approximation of separate spatial and temporal
interference-plus-noise statistics break down. In cases where
the spatial and temporal correlation are not separable, the
performance improvement obtained by exploiting the spa-
tial correlation is evaluated. For reference, comparisons are
made to the well-known direct matrix inversion (DMI) al-
gorithm [17], generalized to multiple input signals, a batch
method that does not require estimates of channel and spa-
tial interference correlation matrices.

In this paper, the notation (-)7 refers to transpose, (-)*
refers to conjugate, (-)T refers to conjugate transpose, and Iy
refers to an N X N identity matrix.

2. SYSTEM MODEL

We consider a single-user link consisting of N; transmitting
and N, receiving antennas, denoted as (Ny, N;). The desired

user transmits data frame by frame. Each frame has M data
vectors. The first N data vectors are used for training, so that
the desired user’s channel matrix and interference statistics
can be estimated, and the remaining data vectors are for in-
formation transmission. In a slow flat fading environment,
the received signal vector at time j is expressed as

yj=ij+nj, j=0,...,M—1, (1)
where x; is the transmitted data vector, H is the N, x N;
spatial channel gain matrix, and the interference vector n;
is zero-mean circularly symmetric complex Gaussian. We as-
sume that the channel matrix H is fixed during one frame.
This is a reasonable assumption since high-speed data ser-
vices envisioned for MIMO systems are generally intended
for low mobility users. By the same argument, it is also as-
sumed that the interference statistics are fixed during one
frame.

In practice, the interference may be both spatially and
temporally correlated. We assume that the cross correlation
between the interference vectors at time i and j is E{nin}r} =
A (i, j)R, where A (4, j) is the (4, j)th element of an M X M
matrix Ay. The (4, j)th element of matrix R is the correla-
tion between the ith and jth elements of interference vector
ni, k €0,...,M — 1. As a result, the covariance matrix of the

concatenated interference vectorn = [n} - - -nl; |7 is
Ay (0,0)R Ay (0,M —1)R
E{an'} = : :
Ay(M—-1,0)R Ay(M—-1,M—-1)R
=AM ®R,

(2)

where ® denotes Kronecker product, and matrices Ay and R
capture the temporal and spatial correlation of the interfer-
ence, respectively. The above model implies that the spatial
and temporal interference statistics are separable. The corre-
lation matrices Ay and R are determined by the application-
specific signal model. In Section 5, we provide an example
in which the interference covariance matrix has the above
Kronecker product form. When the interference statistics can
only be approximated by (2), the conditions where this ap-
proximation breaks down are investigated in Section 5.4.3.
In addition to interference correlation, we remark that a de-
coupled temporal and spatial correlation structure arises in
the statistics of fading vector channels consisting of a mobile
with one antenna and a base station with an antenna array
[18].

3. JOINT ESTIMATION OF CHANNEL AND SPATIAL
INTERFERENCE STATISTICS

During a training period of N vector symbols, we concate-
nate the received signal vectors, the training signal vectors

and the interference vectors as ¥ = [y{ ---y5_,]T, x =
(x{'-- x5 )T, and & = [n{ ---nk_,]7, respectively. The
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received signal in (1) is rewritten as the vector
y = (In®H)x+n, (3)

where 1 is circularly symmetric complex Gaussian with zero-
mean and covariance matrix Ay ® R. Assuming prior knowl-
edge of temporal interference correlation matrix Ay, we need
to estimate channel matrix H and spatial interference corre-
lation matrix R. If R and Ay are nonsingular, the conditional
probability density function (pdf) is

1
aN-Nr det (Ay ® R)

xexp{ - [y - (Iy e H)|' (4)

x (Ay ®R) [y~ (Iy e H)x] |.

Pr(’_’|H) R) =

3.1. ML solution

The ML estimate of the pair of matrices (H,R) is the value
of (H, R) that maximizes the conditional pdfin (4), which is
equivalent to maximizing In Pr(y|H, R).

Letting A and B denote m X m and n X n square matrices,
and using identities [19]

det(A ® B) = det(A)" det(B)™,

(A®B)'=AT1eB], ®)

where A, B are nonsingular, it can be shown that maximizing
(4) is equivalent to minimizing

f(H,R) = Indet(R)
t %[y— (Iy ® H)x]' (6)
X (Ay' @ R [y - (Iy ® H)x].
Denoting the elements of Ay as
Xoo vt dHo,N-1
AV = b (7)
AN-1,0 ON-1,N-1

we rewrite (6) as

f(H,R)
= Indet(R)
| N-IN-
N - Z Z ~ Hx;)'R ™ (y; - Hx))
= Indet(R)
N-1N-1
+trace<! Z Z a;j(yi — Hx;) (y; — ij)T]».
i=0 j=0

(8)

To find the value of (H, R) that minimizes f(H,R) in (8),

we set df (H,R)/0H = 0. Define the weighted sample corre-
lation matrices' as

N-1N-1
- 1
R;V,‘V = N ai,jYin)
i=0 j=0
1 N-1N-1
D t
R, = N > XX s 9)
i=0 j=0
1 N-1N-1
Rxx = ﬁ (Xi)jX,'X}-.
i=0 j=0

Using the identities of matrix derivative [19], it can be shown
[20] that (8) is minimized by

H=RI R (10)

Setting o f (H,R)/0R = 0, it can also be shown that the esti-
mate of spatial interference correlation matrix is given by

1 N-1N-1 +
R = N i i (yi — Hx;) (y; — Hx;) (11)
i=0 j=0
=R,, — HR,,. (12)

We remark that if Ry, and Ry, in (10) were known cross- and
auto-correlation matrices, the estimate for H would repre-
sent the Wiener solution.

3.2. Special case: temporally white interference

If an interference is temporally white, with loss of generality,
we may substitute Ay = Iy into (9), (10), (11), and (12), and
obtain estimates

=R! Rxxl, (13)
R, =R,, - H,Ry, (14)

where the subscript w indicates temporally white interfer-
ence, and the sample correlation matrices are

| Nl
Ry =~ > yiyi, (15)
N
| N
ny =N XiY‘Jr> (16)
NS
| No1
Ry = N xix;f. (17)

Note that H,, in (13) is the same as the channel estimate used
in [15].

ITo distinguish weighted sample correlation matrices from conventional
sample correlation matrices in Section 3.2, we denote the former by a tilde
and the latter without a tilde.
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3.3. Whitening filter interpretation

To obtain insight on the estimates in (10) and (12), we let the
received signal vectors during the training period undergo a
linear transformation where the transformed received signal
vectors are

[¥6 - - ya1] = [yo - - -yn1 JAGY2 (18)
At the output of the transformation, we have
y; =Hx;+n;, i=0,...,N—-1, (19)

where the transformed training signal vectors and interfer-
ence vectors are

[x0 - x ] = [x0 - - - xn-1JARY?, o)
20
[ - -njy ] = [no- - -y JARY,

respectively. Concatenating the transformed interference

vectorsasn’ = [ny! - - -myl_;]7, it can be shown that

i = (Ay"? ®Iy)n, (21)

where i = [n{ - - - n}_,]7. Since the covariance matrix of fi
is Ay ® R, the covariance matrix of i’ is

cov (') = (Ay? ® Iy,) cov () (Ay2 ® Iy, )|

= (Ao Iy) (Ao R) (A 0 1y)  (22)

=Iy®R,

where we used (A ® B)T = AT ® Bt and (A® B)(C® D) =
AC ® BD [19]. We also used the fact that the temporal cor-
relation matrix Ay is symmetric, as well as Ag,l/ 2. From
(22), it is obvious that the transformed interference vectors
{ng - - -ny_,} are temporally white with spatial correlation
matrix R.

As a result, we can estimate H and R from the sam-
ple correlation matrices of transformed signal vectors as in
Section 3.2. The sample correlation matrix

1 N-1
N
Ryy = N Z YiYi

i=0

[vo - -yaallye vl (23)

1

N

1 125 - t
- N[Yo o yno JAN2AR [y -y

1

N

[yo- - -ywv-1 AR [yo - - -yw1]' = Ry,

which shows that the weighted sample correlation matrix of
{Yo - - - yn—1} is equivalent to the sample correlation matrix
of {yy - - - yy_1}. Similarly, the weighted sample correlation
matrices ny and R, are equivalent to the sample correla-
tion matrices Ry, and Ry, respectively. Therefore, the esti-
mates in (10) and (12) can also be realized by first temporally

whitening the interference, and then forming the estimates
from the sample correlation matrices of the transformed sig-
nal vectors.

4. DATA DETECTION

We focus on ordered MMSE detection due to the better per-
formance of MMSE compared to ZF detection [21]. For re-
ceived signal vector y; = Hx; + n;, modifying the BLAST al-
gorithm in [16], the steps of ordered MMSE detection of x;
from y; with estimated channel and interference spatial cor-
relation matrices are as follows:

Step 1. Initialization: set k = 1, Hy = H, % = x;, Yk = Vi.

Step 2. Calculate the estimation error covariance matrix Py =
(Iny+1-k + Hzﬁ’lHk)’l. Find m = argmin; Px(j, j),
where Pi(j, j) denotes the jth diagonal element of Py.
Hence, the mth signal component of X has the small-
est estimation error variance.

Step 3. Calculate the weighting matrix Ay = (INs1-k +
H,ili‘lHk)‘lHZR‘l. The mth element of X; is esti-
mated by 2" = Q(Ax(m, :)yx), where Ai(m,:) denotes
the mth row of matrix Ay, and Q(-) denotes the slicing
operation appropriate to the signal constellation.

Step 4. Assuming that the detected signal is correct, remove
the detected signal from the received signal yi+1 = yx —
X' Hi (:, m), where Hy (:, m) denotes the mth column of
H;.

Step 5. Hyy; is obtained by eliminating the mth column of
matrix Hx and X+ is obtained by eliminating the mth
component of vector X.

Step 6. If k < Ny, increment k and go to Step 2.

We refer to this scheme as one-vector-symbol detection, as we
detect x; using y; only.

When an interference is temporally colored, there may
exist a performance to be gained by taking the temporal
interference correlation into account. That is, we may use
YN+15--->Ym to detect Xn41,...,Xy jointly where N is the
training length and M is the frame length. Due to the com-
plexity of using all the received signal vectors and for sim-
plicity of presentation, we consider a two-vector-symbol de-
tection in which (y;,yis1) is used to detect (x;,X;41) jointly.
The one-vector-symbol algorithm can be easily extended to
the two-vector-symbol version by writing

Yi H O X; n;
= + .
Yit1 0 H| [xi N
[ N S —

Yi H Xi n;

(24)

With the estimated channel, an estimate of H, denoted as H,
can be obtained. Using the estimated spatial interference cor-
relation and the known temporal interference correlation, we
are able to estimate the covariance matrix of n;, denoted as

R. Replacing x;, yi, H, and R in the one-vector-symbol al-
gorithm by X;, Vi, H, and R, respectively, we obtain the two-
vector-symbol detection algorithm.
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5. APPLICATIONS

In this section, we apply the channel estimation in Section 3
and data detection in Section 4 to the case of a single-user
link with one dominant cochannel interferer operating at dif-
ferent data rates.

5.1. System model

Consider a desired user with one dominant cochannel inter-
ferer. The assumption of one cochannel interferer can ap-
ply to cellular TDMA or FDMA systems when sectoring is
used. For example, in 7-cell reuse systems, with 60 degree
sectors, the number of cochannel interfering cells would be
reduced to one [22]. We assume that the desired and inter-
fering users have N; and L transmitting antennas, respec-
tively, and that there are N, receiving antennas. Assuming
that the thermal noise is small relative to the interference,
we ignore the thermal noise in the problem formulation. An
investigation of this assumption in channels with noise ap-
pears in Section 5.4.3. We also assume that over the duration
of a transmitted frame, a randomly delayed replica of the in-
terfering signal is transmitted continuously, and that the in-
terference statistics do not change. This assumption may not
hold for asynchronous packet transmission systems. In a slow
flat fading environment, the vector signal at the receiving an-

tennas is
P.T Mo
y(t) =,/ N H Z xkg(t —kT)
L k=0

+HPILTIH1 z bkg] t—kTI—T)
[—

where M is the frame length, and H (N, X N;) and H; (N, X L)
are the channel matrices of the desired and interfering users,
respectively. The channel matrices are also assumed fixed
over a frame and have independent realizations from frame
to frame. The data transmission rates of the desired and in-
terfering users are 1/T and 1/T7, respectively. The spectra of
transmit impulse responses g(¢) and g;(¢) are square root
raised cosines with parameters T' and T7, respectively. The
same roll-off factor, f3, is assumed for both g(t) and g;(t). The
data vectors of the desired and interfering users are xi (N;x 1)
and by (L X 1), respectively. We assume that the data sym-
bols in x;’s and by’s are mutually independent, zero mean,
and with unit variance. We denote P and P; as the transmit
powers of the desired and interfering users, respectively. The
delay of the interfering user relative to the desired user is 7,
assumed to liein 0 < 7 < T7.

Passing y(#) in (25) through a filter matched to the trans-
mit impulse response of the desired user, g(t), the vector sig-
nal at the output of the matched filter is

P Mo
yme(t) = | H > xxg(t—kT)
Ne (S
+1[PITIH[ Z bkgl t—kT; —T)
k=—c0

(25)

(26)

where g(t) = g(t) * g(t), g1(t) = &(t) * g(¢), and * denotes
convolution. As a result, g(t) has a raised cosine spectrum
and satisfies the Nyquist condition for zero intersymbol in-
terference.

Assuming perfect synchronization for the desired user, as
we sample the output of the matched filter (26) at time ¢t =
7T, we obtain

A H +,IPITIH[ Z bkg] ]T kT[—T)
k=—o

(27)

The interference vector n; is zero mean since the data vec-
tor of interferer by is zero mean. Note that there is no inter-
symbol interference for the desired user. However, due to the
interferer’s delay and/or mismatch between the transmit and
receive impulse responses, intersymbol interference exists for
the interferer.

5.2. Interference statistics

The cross correlation between the interference vectors in (27)
attime jT and g7 is

E<|< i bklgl(jT—leI - T))
kij=—o0
X ( i bzzgj(qT—szI - T))]’H;r

ky=—o0

P,
= #HIHI

9]

> e (T —kTr — 7)gi(qT — kT1 - 1)},

k=—00

(28)

where the last equality is due to the facts that E{by, bzz} =0

for ky # ky and E{bb]} = 1.
During a training period of N vector symbols, the co-
variance matrix of the concatenated interference vector i =

[n - - -n}_,]" has the form of (2), where
AN(])Q) — z {gI(]T - kTI - T)g](qT — kT] - T)}’
k=—0c0
0<j,gq<N-1,
(29)
R= PITTIHIHI (30)

The N, X N, spatial correlation matrix R is determined by the
interferer’s channel matrix. The N X N temporal correlation
matrix Ay depends on parameters T and Tj, delay 7, and
pulse gr(#); it can be calculated a priori if these parameters



690

EURASIP Journal on Applied Signal Processing

are known. The temporal correlation is due to intersymbol
interference in the sampled interfering signal. We remark
that for the case of multiple interferers with the same delay,
the covariance matrix of interference also has the form of
(2).

We study temporal interference correlation in the cases
where (1) the interferer has the same data rate as that of the
desired signal (T = T7) and (2) the data rate of the desired
user is an integer multiple of that of the interferer (11 = mT,
m > 1).
5.2.1. Interferer at the same data rate
as the desired signal

With T = T1, g;(t) has a raised cosine spectrum and is given
by [23]

gi(t) = sinc (%) 71“_)35;;6:2/22. (31)

We note that Ax(j,q) depends on j — g. This indicates that
the sequence consisting of interference vectors is station-
ary. Hence, the temporal correlation matrix is a symmetric
Toeplitz. By appropriate truncation of the infinite series in
(29), we can numerically calculate the temporal correlation
matrix. For the case of § = 1, T' = 1, and 7 = 0.5, the ele-
ments of the temporal correlation matrix are

0.5 j=g¢q
AN(j,q) =4025 [|j—ql=1 for0<jq<N-1, (32)
0 otherwise.

5.2.2. Interferer at a lower data rate than

the desired signal

It can be shown that g;(t) is given by

g(t) = F 1 Grer, (PN Grer ()} (33)

where F 7! denotes the inverse Fourier transform and
Gye,r(f) is the raised cosine Fourier spectrum with param-
eter T and roll-off factor . Unlike the case of the same data
rate interferer where Ay (j, q) depends on j — g, in the case of
lower data rate interferer, Ay(j,q) depends on the values of
j and g. This indicates that the sequence consisting of inter-
ference vectors is cyclostationary [23, 24]. With T; = mT, it
can be shown that Ax(j, g) is periodic with period m, that is,
AN(j,q) = An(j+m, q+m). As a result, the temporal correla-
tion matrix Ay is symmetric, but not Toeplitz. Furthermore,
for N > m, the number of nontrivial eigenvalues of Ay is
[N/m], where [ -] rounds the argument to the nearest integer
towards infinity [25]. For the case of T; = 2T, T = 1, § = 1,
7 = 0.25, and training length N = 6, by numerical calcula-
tion of (29) with appropriate series truncation, the temporal

correlation matrix is

[ 0.648 0.400 —0.048 —0.006 —0.010 —0.0017]
0.400 0.277 0.105 0.084 0.002 0.011
—0.048 0.105 0.648 0.400 -—0.048 —0.006

As = —0.006 0.084 0.400 0.277 0.105 0.084

—0.010 0.002 —-0.048 0.105 0.648 0.400

| —0.001 0.011 —0.006 0.084 0.400 0.277 |

(34)

Note that Ag in (34) is singular as the number of nontrivial
eigenvalues is 3.

5.3. Data detection without estimating channel
and interference

During a training period of N symbol vectors, instead of es-
timating the channel matrix and interference statistics, one
can alternatively employ a least squares (LS) estimate of ma-
trix M which minimizes the average estimation error

N-1
f2(M) = trace «{% Z (xi — My;) (x; — MYi)T]»' (35)

i=0
By setting 0 ,(M)/0M = 0, we obtain

M =RyR,}, (36)
where the sample correlation matrices Ry, and R, are de-
fined in (16) and (15), respectively. The transmitted signal
vector x; is detected as Q(My;), where Q(-) is the slicing op-
eration appropriate to the signal constellation. We remark
that (36) is the well-known DMI algorithm [17], generalized
for multiple input signals. A significant loss in performance
is expected for this LS detector, since without estimates of
channel and spatial interference correlation matrices, itera-
tive MMSE detection cannot be performed.

5.4. Simulation results

Monte Carlo simulations are used to assess the benefits of
taking temporal and spatial interference correlation into ac-
count, for channel estimation and data detection in the case
of one interferer. Although temporal interference correlation
may be difficult to estimate in practice, we examine this as a
benchmark and determine the performance loss due to ig-
noring this correlation. We evaluate average symbol error
rates (SERs) in independent Rayleigh fading channels of rich
scattering, that is, the elements in channel matrices H and
H; are independent, identically distributed (i.i.d.) zero-mean
complex Gaussian with unit variance. We assume that the de-
sired user has 5 transmitting and 5 receiving antennas, and
the interfering user has 6 transmitting antennas.> Both the
desired and interfering users employ uncoded quadrature
phase shift keying (QPSK) modulation. The training signal
vectors are columns of a fast Fourier transform (FFT) matrix

2For a nonsingular spatial interference correlation matrix, we set N, < L.
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[16] to guarantee orthogonal training sequences from differ-
ent transmitting antennas. We define SIR(dB) = 10log P./P;.
Without loss of generality, we set P; = 1 in the simulation.
The SERs of two cases are simulated: (1) interferer at the
same data rate as the desired signal and (2) the data rate of
the desired user is twice that of the interferer.

In Figures 1, 2, 3, and 4, with solid and dashed lines repre-
senting one- and two-vector-symbol data detection, respec-
tively, we plot average SERs for the following cases:

(a) perfectly known channel parameters and interference
statistics, with one-vector-symbol (curve 1) and two-
vector-symbol (curve 2) detection;

(b) channel and spatial interference correlation matrices
are estimated assuming known temporal interference
correlation, with one-vector-symbol (curve 3) and
two-vector-symbol (curve 4) detection;

(c) channel and spatial interference correlation matrices
are estimated assuming temporally white interference,
with one-vector-symbol detection (curve 5);

(d) only the channel matrix H is estimated assuming tem-
porally white interference; an identity spatial interfer-
ence correlation matrix is used in one-vector-symbol
data detection (curve 6);

(e) LS estimate of the transmitted signal vector without
ordered detection (Section 5.3) (curve 7).

We remark that cases (a) and (b) are benchmarks presented
for reference, while case (d) corresponds to the well-known
BLAST system in [4, 16].

Interferer at the same data rate
as the desired signal

5.4.1.

We examine the case of T = 1, § = 1, and 7 = 1/2, and the
nonsingular temporal interference correlation matrix shown
in (32). Figures 1 and 2 show the average SERs for training
lengths 2N; and 4Ny, respectively. Comparing the LS detec-
tion (curve 7) with other methods, much lower SERs can be
achieved by using ordered MMSE detection as expected.

Comparing curves 5 and 6, we observe that for a training
length of 4N, symbols, gains can be obtained by estimating
spatial interference correlation. However, shorter training
lengths such as 2N; produce inaccurate estimates of spatial
interference correlation which in turn do not yield any ben-
efit over assuming spatially white interference. As expected,
we observe that the improvement by taking into account
estimated spatial correlation increases with longer training
lengths.

Examining curves 3 and 5 in Figure 2, we observe that
the improvement in taking temporal interference correla-
tion into account in channel estimation is not significant.
Moreover, this rate of improvement rapidly diminishes as
the training length increases. This can be explained by not-
ing that in estimating channel and spatial interference corre-
lation matrices for temporally colored interference, the re-
ceived signal vectors first undergo a transformation which
temporally whitens the interference vectors as discussed in
Section 3.3. Since the temporal correlation in (32) drops

quickly to zero after one time lag, the benefit in temporal
whitening of interference vectors is not significant, especially
for long training lengths.

By comparing curves 3 and 4 in Figure 2, there is a slight
improvement in using two-vector-symbol over one-vector-
symbol detection. This implies that not much gain can be
achieved by taking temporal interference correlation into ac-
count in data detection, owing to the low temporal corre-
lation. Due to better estimates of channel and interference
spatial correlation matrices obtained with a longer training
length, the performance gap between curves 3 and 4 should
increase as the training length increases.

By comparing curves 4 and 6 in Figure 2, we observe a
1.5 dB gain in SIR obtained by estimating spatial interference
correlation and taking explicit advantage of known tempo-
ral interference correlation in channel estimation and data
detection using a training length of 4N;. About 1 dB of that
gain is due to the estimation of spatial interference correla-
tion, and the remaining 0.5 dB gain is due to exploiting tem-
poral interference correlation in channel estimation and data
detection.

Interferer at a lower data rate
than the desired signal

We examine the case of T = 27, T = 1, = 1,7 = 0.25
and the temporal interference correlation matrix for training
length N = 6 shown in (34). Recall that the temporal corre-
lation matrix for the lower-data-rate-interferer case is singu-
lar. To avoid the singularity, the diagonal elements of Ay are
increased by a small amount; hence, the temporal correla-
tion matrix used for channel estimation may be modified to
Ay + 81y within the proposed framework. In our simulation,
we chose § = 0.01.

The same set of average SER curves as in the same-data-
rate-interferer case are simulated. Figures 3 to 4 show the
SERs for different training lengths. As in the case of the same-
data-rate interferer, curve 7 illustrates the poor performance
without ordered detection. Curves 5 and 6 suggest that for
short training lengths it is better to estimate only the channel
matrix and assume spatially white interference in data detec-
tion; however, for moderately long training lengths, gains can
be obtained by estimating spatial interference correlation.

By examining curves 3 and 5 in Figure 4, we observe that
the improvement in taking temporal interference correlation
into account in channel estimation, although larger than that
in the same-data-rate-interferer case due to the high tempo-
ral correlation in the lower-data-rate-interferer case, is still
not that significant.

In contrast to the same-data-rate-interferer case, curves 3
and 4 in Figure 4 show that the improvement of two-vector-
symbol over one-vector-symbol detection is significant due
to the higher temporal interference correlation. This implies
that a significant gain can be achieved by taking the known
temporal interference correlation into account in data detec-
tion for the lower-data-rate-interferer case.

By comparing curves 4 and 6 in Figure 4, for the training
length 4Ny, there is a total of 4 dB gain in SIR by estimating
spatial interference correlation and taking advantage of the

5.4.2.
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FIGURE 2: Average SER versus SIR with N; = N, = 5, L = 6, and
training length 4N, under independent Rayleigh fading. Both the
desired and the interfering users are at the same data rate.
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FIGURE 5: Average SER versus INR with N, = N, = 5, L = 6,
SIR=10dB, and training length 4N, under independent Rayleigh
fading. Both the desired and the interfering users are at the same
data rate.

known temporal interference correlation in channel estima-
tion and data detection. About 3.5 dB of the gain is due to
exploiting temporal interference correlation in channel esti-
mation and data detection.

5.4.3. Effect of model mismatch

With one interferer and a finite SNR, the interference-plus-
noise statistics can only be approximately modelled using a
Kronecker product. Here, we investigate when this approx-
imation breaks down. We model thermal noise as a zero-
mean circularly symmetric complex Gaussian vector with
covariance matrix Iy, that is, independent from antenna
to antenna, with noise power ¢ on each antenna. We de-
fine (interference-to-noise power ratio) INR = 10log P;/0?,
where P; = 1 is used in the simulations. For the case of an in-
terferer at the same data rate and using a training length 4Ny,
we observe in curves 3 and 5 in Figure 5 that, at INRs below
17 dB, taking interference temporal correlation into account
appears not to be of benefit. Figure 6 shows the correspond-
ing comparison for the case of the lower-data-rate interferer.
In this case, temporal correlation is larger and the decou-
pled model of interference-plus-noise statistics breaks down
at INRs lower than 12 dB.

5.4.4. Effect of exploiting spatial
interference-plus-noise correlation

From the above results, temporal interference correlation,
even if known, may not result in a performance benefit at
lower INRs due to model mismatch. Therefore, we assess the
benefit of taking only the spatial correlation of interference-
plus-noise into account. As a reference, we compare the per-
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FIGURE 6: Average SER versus INR with N, = N, = 5, L = 6,
SIR=10dB, and training length 4N; under independent Rayleigh
fading. The data rate of the desired user is twice that of the inter-
fering user.

formance to the case of assuming the interference-plus-noise
to be spatially white. With total interference power fixed,
Figure 7 compares the average SER for one (solid lines) and
two (dashed lines) interferers. In the case of two interferers,
the interferers have equal power and random relative delays.
Both desired and interfering users employ a (5,5) MIMO
link, a total-interference-to-noise ratio of 12 dB, and a train-
ing length of 4N;. Both the desired and the interfering users
operate at the same data rate. Figure 7 shows that for one
interferer, there is 1.2 dB gain over a wide range of signal-to-
interference-plus-noise ratio (SINRs), by estimating the spa-
tial correlation of interference-plus-noise. For the case of two
equal-powered interferers, the corresponding gain in SINR is
negligible.

6. CONCLUSIONS

By modelling interference statistics as approximately tempo-
rally and spatially separable, we have investigated ML joint
estimation of channel parameters and spatial interference
correlation matrices. We have assessed the impact of tem-
poral and spatial interference correlation on channel estima-
tion and data detection. For training lengths of at least four
times the number of transmitting antennas, gains of around
1 dB are observed by estimating spatial interference correla-
tion. We determine that an additional 0.5 to 3.0 dB in perfor-
mance gain would result if the known temporal correlation
was exploited. For shorter training lengths, however, it is bet-
ter to estimate only the channel matrix and assume spatially
white interference in data detection. One source of tempo-
ral correlation occurs where a cochannel interferer operates
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FIGURe 7: The improvement of estimating spatial correlation of
interference-plus-noise in practical systems.

at data rate lower than that of the desired user. Exploiting
temporal interference correlation in channel estimation was
found not to be of benefit. However, if temporal correlation is
significant, as in case of lower-data-rate interference, signif-
icant performance gains by exploiting temporal interference
correlation in data detection are theoretically possible. The
minimum INR levels, where separable temporal and inter-
ference correlation statistics model was shown to break down
and provide no benefit, ranged from 12 or 17 dB, depending
on the level of temporal correlation. Of more practical sig-
nificance, it was shown that at a total INR of 12dB, 1.2dB
of performance gain can be obtained over a wide range of
SINRs by estimating spatial correlation only and neglecting
temporal correlation.
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INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has been selected as the basis for the new IEEE 802.11a standard for high-
speed wireless local area networks (WLANs). We consider doubling the transmission data rate of the IEEE 802.11a system by using
two transmit and two receive antennas. We propose a preamble design for this multi-input multi-output (MIMO) system that is
backward compatible with its single-input single-output (SISO) counterpart as specified by the IEEE 802.11a standard. Based on
this preamble design, we devise a sequential method for the estimation of the carrier frequency offset (CFO), symbol timing, and
MIMO channel response. We also provide a simple soft detector based on the unstructured least square approach to obtain the
soft information for the Viterbi decoder. This soft detector is very simple since it decouples the multidimensional QAM symbol
detection into multiple one-dimensional QAM symbol—and further PAM symbol—detections. Both the sequential parameter
estimation method and the soft detector can provide excellent overall system performance and are ideally suited for real-time
implementations. The effectiveness of our methods is demonstrated via numerical examples.

Keywords and phrases: MIMO system, OFDM, WLAN, symbol timing, carrier synchronization, channel estimation.

Orthogonal frequency division multiplexing (OFDM) has
been selected as the basis for several new high-speed wireless
local area network (WLAN) standards [1], including IEEE
802.11a [2], IEEE 802.11g, and HIPERLAN/2. IEEE 802.11g
and HIPERLANY/2 are very similar to IEEE 802.11a in terms
of signal generation and detection/decoding. We use IEEE
802.11a to exemplify our presentation in this paper.

The OFDM-based WLAN system, as specified by the
IEEE 802.11a standard, uses packet-based transmission. Each
packet, as shown in Figure 1, consists of an OFDM packet
preamble, a signal field, and an OFDM data field. The pream-
ble can be used to estimate the channel parameters such as
the carrier frequency offset (CFO), symbol timing, as well as
channel response. These parameters are needed for the data
symbol detection in the OFDM data field. The preamble de-
sign adopted by the standard is specifically tailored to the
single-input single-output (SISO) system case where both
the transmitter and receiver deal with a single signal. This
standard supports a data rate up to 54 Mbps.

Transmission data rates higher than 54 Mbps are of par-
ticular importance for future WLANs. Deploying multiple
antennas at both the transmitter and receiver is a promising
way to achieve a high transmission data rate for multipath-
rich wireless channels without increasing the total transmis-
sion power or bandwidth [3]. The corresponding system,
as shown in Figure 2, is referred to as a multi-input multi-
output (MIMO) wireless communication system, where M
and N in the figure denote the numbers of transmit and re-
ceive antennas, respectively.

Among the various popular MIMO wireless communi-
cation schemes, the BLAST (Bell Labs Layered Space Time)
approaches [4, 5] are particularly attractive. BLAST attempts
to achieve the potentially large channel capacity offered
by the MIMO system [6, 7]. In BLAST systems, the data
stream is demultiplexed into independent substreams that
are referred to as layers. These layers are transmitted si-
multaneously, that is, one layer per transmit antenna. At
the receiver, the multiple layers can be detected, for exam-
ple, through successive detection via an interference can-
cellation and nulling algorithm (ICNA) [5]. The detection
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can also be done via the sphere decoding (SPD) algorithm
[8].

Our focus herein is on doubling the data rate of the SISO
system as specified by the IEEE 802.11a standard by using
two transmit and two receive antennas (referred to as the
MIMO system in the sequel) based on the BLAST scheme.
We propose a preamble design for this MIMO system that
is backward compatible with its SISO counterpart as speci-
fied by the IEEE 802.11a standard. That is, a SISO receiver
can perform CFO, symbol timing, and channel response es-
timation based on the proposed preamble design and detect
up to the signal field. The SISO receiver is then informed, by
using, for example, the reserved bit in the signal field, that a
transmission is a SISO or not. Our preamble design can be
used with two transmit and any number of receive antennas.
However, we mainly focus on the two receive antenna case
herein. Based on our MIMO preamble design, we propose a
sequential method, ideally suited for real-time implementa-
tions, to estimate the CFO, symbol timing, and MIMO chan-
nel response.

The convolutional code specified in the IEEE 802.11a
standard will also be used in our MIMO system for chan-
nel coding. As a result, soft information from the MIMO de-
tector is needed by the Viterbi decoder to improve the de-
coding performance. Both the efficient ICNA and SPD algo-
rithms offer only hard output. Soft output can be inferred
with the ICNA-based algorithm for iterative detection and
decoding [9]. However, this algorithm is computationally ex-
tremely heavy—exponentional in terms of transmit antenna
number M as well as the constellation size. Although reduced
complexity versions were alluded to in [9], the costs in per-
formance degradation by using these versions were not clear.
The space time bit-interleaved coded modulation (STBICM)
approach [10] can deliver soft output, in both the iterative
and noniterative modes, but it is also computationally ex-
tremely heavy. A list sphere decoder (LSD) algorithm [11]
was recently proposed to reduce the computational complex-

ity of STBICM with a small performance degradation. How-
ever, LSD is still very complicated and hard to implement
in real time for OFDM-based MIMO WLAN applications
due to the high data rate. We present herein a simple MIMO
soft detector, based on the unstructured least square (LS) fit-
ting approach. This LS-based soft detector is ideally suited
for real-time implementations since it decouples the multidi-
mensional quadrature amplitude modulation (QAM) sym-
bol detection into multiple one-dimensional QAM symbol
detections. We show that the real and imaginary parts of
the noise of the decoupled detection output are indepen-
dent of each other. Hence, the QAM symbol detection can
be further simplified into two pulse amplitude modulation
(PAM) symbol detections. As a result, this LS-based soft de-
tector is orders of magnitude more computationally efficient
than LSD; yet, the efficiency is achieved at a cost of a small
performance degradation, due to the aforementioned de-
coupling. The LS-based detector can also be seen as related
to the zero-forcing or to the linear decorrelating detector
[12].

The remainder of this paper is organized as follows.
Section 2 describes the MIMO system. The new preamble de-
sign is given in this section. Section 3 presents our sequen-
tial method for CFO, symbol timing, and MIMO channel
response estimation. The MIMO soft detector is provided
in Section 4. Numerical examples are given in Section 5 to
demonstrate the effectiveness of the proposed methods. Fi-
nally, we end our paper with comments and conclusions in
Section 6.

2. SYSTEM DESIGN

Our MIMO system closely resembles its SISO counterpart as
specified by the IEEE 802.11a standard. We first give a brief
overview of the IEEE 802.11a SISO system before we proceed
to describe our MIMO system.

2.1. IEEE 802.11a standard

Figure 1 shows the packet structure as specified by the IEEE
802.11a standard. The nominal bandwidth of the OFDM
signal is 20 MHz and the in-phase/quadrature (I/Q) sam-
pling interval s is 50 nanoseconds. In this case, the num-
ber of samples Ny = 64 for an OFDM data symbol is equal
to the number of subcarriers. The OFDM packet preamble
consists of ten identical short OFDM training symbols t;,
i=1,2,...,10, each of which contains N¢ = 16 samples, and
two identical long OFDM training symbols T;, i = 1,2, each
of which contains Ny = 64 samples. Between the short and
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long OFDM training symbols, there is a long guard interval
(GI2) consisting of 2N¢ = 32 data samples. GI2 is the cyclic
prefix (CP) for the long OFDM training symbol T}, that is, it
is the exact replica of the last 2N¢ samples of T.

The information carrying data are encoded in the OFDM
data field. The binary source data sequence is first scrambled
and then convolutionally encoded by an industrial standard
constraint length K = 7, rate 1/2 encoder, which has genera-
tion polynomials gy = (133)s and g1 = (171)s. The encoded
output is then punctured according to the data rate require-
ment and is segmented into blocks of length Necpps (num-
ber of coded bits per OFDM symbol), each of which corre-
sponds to an OFDM data symbol. The binary data in each
block is first interleaved among the subcarriers (referred to
as the frequency domain (FD) interleaving in the sequel) and
then mapped (in groups of log, A bits) into A-QAM symbols,
which are used to modulate the different data carrying sub-
carriers. Each OFDM data symbol in the OFDM data field
employs Ns = 64 subcarriers, 48 of which are used for data
symbols and 4 for pilot symbols. There are also 12 null sub-
carriers with one in the center and the other 11 on the two
ends of the frequency band. The OFDM data symbols, each
of which consists of Ns = 64 samples, are obtained via taking
the inverse fast Fourier transform (IFFT) of the data symbols,
pilot symbols, and nulls on these N subcarriers. To eliminate
the intersymbol interference (ISI), each OFDM data symbol
is preceded by a CP or GI, which contains the last N¢ samples
of the OFDM data symbol.

The signal field contains the information including the
transmission data rate and data length of the packet. The
information is contained in 16 binary bits. There is also a
reserved bit (which can be used to distinguish the MIMO
from SISO transmissions) and a parity check bit. These 18
bits, padded with 6 zeros, are then encoded (by the same en-
coder as for the OFDM data field) to obtain a 48-bit binary
sequence. The encoded sequence is then interleaved among
subcarriers and used to modulate the 48 data carrying sub-
carriers using BPSK. The signal field consists of 64 samples
and is obtained via taking the IFFT of these 48 BPSK sym-
bols, 4 pilot symbols, and 12 nulls. Also, there is a CP of
length N¢ to separate the preamble from the signal field.

2.2. SISO data model

To establish the data model, consider first the generation
of an OFDM data symbol in the OFDM data field. Let
Xqs0 =[x xd x}\,s]T be a vector of Ng data symbols,
where (-)T denotes the transpose and x}ls, ns = 1,2,...,Ng,
is the symbol modulating the nsth subcarrier and is equal
to 0 for null subcarriers, 1 or —1 for pilot subcarriers, and
in C for data carrying subcarriers. Here C is a finite con-
stellation, such as BPSK, QPSK, 16-QAM, or 64-QAM. Let
Wy, € CNs*Ns be the fast Fourier transform (FFT) matrix.
Then the OFDM data symbol s corresponding to xgiso is ob-
tained by taking the IFFT of xgis0. That is, s = WgSXSISO/Ns,
where (-)H denotes the conjugate transpose. To eliminate the
ISI, each OFDM data symbol is preceded by a CP or GI s¢
formed using s.

Let
hO(t) = > a,0(t — pts) (1)
)

denote the time-domain analogue channel impulse response
of the frequency-selective time-invariant fading channel,
where «, and 1,t5, 0 < 17, < N¢, p € Z, are the complex
gain and time delay of the pth path, respectively. Let

T
h® = [A K | (2)

be the equivalent finite impulse response (FIR) filter response
of hV(¢t), that is, if h = Wy,h® = [h hy -+ hy]T is
the sampled frequency domain channel response, then for
ns = 1,2,...,N5,

— —jTpt
h”S - Z (xpe Tt | w=2m(ns—1)/(Nsts)* (3)
P

The Ith element of KV, 1 = 0,1,..., Ng — 1, can be written as

sin (77,)
sin (7 (7, — I)/Ns)’

(4)

h;t) _ z“pefjn(l-%-(Ngfl)rP)/Ns
P

which includes the leakage effect due to the frequency do-
main sampling [13].

By discarding the first Nc samples at the receiver (as-
suming a correct symbol timing), the noise-free and CFO
free received signal vector z{fs, € CMs*!, due to sampling
the received signal, is the circular convolution of h® and s.
Hence the FFT output of the received data vector zgiso =
z850 + esiso, where esiso ~ N (0, (0%/Ns)ly,) is the addi-
tive zero-mean white circularly symmetric complex Gaussian
noise with variance 02, can be written as [14]

ysiso = Whzsiso = diag{h}xsiso + Wigesiso € CV*LL (5)

The data model in (5) can also represent the OFDM symbols
in the signal field and the preamble.
Equation (5) can also be written as

ysiso = diag{xsiso th + Wiesiso. (6)

Note that (5) is useful for symbol detection whereas (6) is
used for channel estimation.

For the sake of simulation simplicity, the equivalent
channel h® is often approximated by an exponentially de-
caying FIR filter with length Ly [14], denoted as

T
by = [ KO h ] )

In this case, the received signal can be easily simulated as the
convolution of the channel hEtF) and the transmitted signal.
Let t, be the root mean square (RMS) delay spreading time
and t, = t,/ts. Then Lr = [10t,] + 1, where [x] denotes the
smallest integer not less than x. For Ip = 0,1,...,Lr — 1, we
have

hl(;) - e/v‘(O, (1 _ e_l/t")e_lF/tn)~ (8)

This channel model is referred to as the Chayat model [15].
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IEEE 802.11a compatible packet preamble

Signal field Long training symbol block 2 OFDM data field
Short training symbols Long training symbol block 1 [ 0.8 +3.2 = 4 us 1.6+2x3.2=28us
10 X 0.8 = 8 us 1.6+2X3.2=28us 0.8+3.2=4ps
T T T T T T T T T T T T T T T T
t1 : t : t3 : ta : ts : te : ty : tg : to :t10 GI2 : T : T, GI: Signal GI2 : T : T, GI: OFDM symbol GI: OFDM symbol
Fobobbobododod b boeeeee e Ry beeeeoee b e R
ittty ts!te ! 7]t to Ity GI2 ! T, ! T, 7 GI! Signal 7G12: -T, ! -T, GI! OFDM symbol GI! OFDM symbol

F1GURE 3: Proposed MIMO preamble (and signal field) structure.

Note that our symbol timing estimation method, which
will be presented in Section 3, works equally well for the
channel models given by both (4) and (7). Our MIMO chan-
nel response estimation method also works equally well for
both models. We use (7) to generate channels to simplify our
simulations.

2.3. MIMO preamble design

For the IEEE 802.11a SISO system, the short OFDM training
symbols can be used to detect the arrival of the packet, al-
low the automatic gain control (AGC) to stabilize, compute
a coarse CFO estimate, and obtain a coarse symbol timing,
whereas the long OFDM training symbols can be used to cal-
culate a fine CFO estimate, refine the coarse symbol timing,
and estimate the SISO channel response.

The MIMO system considered herein has two transmit
and two receive antennas (such as a crossed dipole pair for
both the transmitter and the receiver). Two packets are trans-
mitted simultaneously from the two transmit antennas. We
design two preambles, one for each transmit antenna. We as-
sume that the receiver antenna outputs suffer from the same
CFO and has the same symbol timing. To be backward com-
patible with the SISO system, we use the same short OFDM
training symbols as in the SISO preamble for both of the
MIMO transmit antennas, as shown in Figure 3.

As for the long OFDM training symbols, they should be
designed to support the MIMO channel response estimation.
MIMO channel response estimation has attracted much re-
search interest lately. Orthogonal training sequences tend to
give the best performance (see, e.g., [16] and the references
therein). We also adopt this idea of orthogonal training se-
quences in our preamble design. In the interest of backward
compatibility, we use the same T} and T, (as well as GI2) as
for the SISO system for both of the MIMO transmit antennas
before the signal field, as shown in Figure 3. After the signal
field, we use T and T, (and GI2) for one transmit antenna,
and —T; and —T, (and —GI2) for the other. This way, when
the simultaneously transmitted packets are received by a sin-
gle SISO receiver, the SISO receiver can successfully detect up
to the signal field, which is designed to be the same for both
transmit antennas. The reserved bit in the signal field can tell
the SISO receiver to stop its operation whenever a MIMO
transmission follows or otherwise to continue its operation.
The long OFDM training symbols before and after the sig-
nal field are used in the MIMO receivers for channel esti-
mation. Although the employment of an additional pair of

long OFDM training symbols can increase the overhead, the
corresponding loss of efficiency is not significant for larger
packet. The reserved bit in the signal field can also inform the
MIMO receiver that the transmission is a SISO one. When
this occurs, the MIMO receiver can modify its channel esti-
mation and the data bit detection steps slightly, as detailed at
the end of Sections 3 and 4, respectively.

Other MIMO preamble design options with backward
compatibility are possible. For example, by exploiting the
transmit/receive diversities, we may get improved symbol
timing or CFO correction. However, these improvements do
not necessarily result in improved packet error rate (PER).
Hence, we prefer the straightforward MIMO preamble de-
sign shown in Figure 3.

2.4. MIMO data model

To stay as close to the IEEE 802.11a standard as possible, we
use in our MIMO system the same scrambler, convolutional
encoder, puncturer, FD interleaver, symbol mapper, pilot se-
quence, and CP as specified in the standard. To improve di-
versity, we add a simple spatial interleaver to scatter every
two consecutive bits across the two transmit antennas. This
spatial interleaving is performed before the FD interleaving.

Consider the ngth subcarrier (for notational convenience,
we drop the notational dependence on ng below). Consider
the case of N receive antennas. (Note that considering the
general case of N receive antennas does not add extra diffi-
culties for the discussions below.) Let H denote the MIMO
channel matrix for the ngth subcarrier:

hl,l hl,z

h2,1 h2,2
H=| . . e, (9)
hni hyp

where h,,, denotes the channel gain from the mth transmit
antenna to the nth receive antenna for the ngth subcarrier.
Let y denote a received data vector for the nsth subcarrier,
which can be written as

y = Hx+e € CM, (10)

where x = [x; x2]T is the 2 X 1 QAM symbol vector sent on
the ngth subcarrier and e ~ N (0, 0%Iy) is the additive white
circularly symmetric complex Gaussian noise with variance
2. In Section 4, we will provide a soft detector based on this
model.
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3. CFO, SYMBOL TIMING, AND CHANNEL
ESTIMATION

In this section, we present our sequential CFO, symbol tim-
ing, and MIMO channel response estimation approach based
on our MIMO preamble design. The CFO can be esti-
mated from the samples of two consecutive data blocks due
to the periodic inputs (the short OFDM training symbols
t1,...,t10). Because of the fact that the CFO can be out-
side the unambiguous range measurable by the long OFDM
training symbols, we have to estimate the CFO in two steps:
(a) a coarse CFO estimation using the short OFDM train-
ing symbols and then (b) a fine CFO estimation, to deter-
mine the residue of the coarse CFO correction, using the long
OFDM training symbols. After estimating and accounting
for the CFO, we can obtain the symbol timing. We estimate
the symbol timing also in two steps: the coarse symbol tim-
ing and fine symbol timing. The former is obtained by using
the later portion of the short OFDM training symbols in the
packet preamble. The fine symbol timing is obtained by us-
ing the long OFDM training symbols before the signal field.
Finally, we obtain the MIMO channel response estimate. The
parameter estimates are obtained in the order presented be-
low.

3.1. Coarse CFO estimation

Let z,(l) = zi(I) + ex(I), n = 1,...,N, denote the Ith time
sample of the signal received from the nth receive antenna,
starting from the moment that the receiver AGC has become
stationary (the receiver AGC is assumed to become station-
ary at least before receiving the last two short OFDM training
symbols and remain stationary while receiving the remainder
of the packet). In the presence of CFO, we have [17]

2%(I+ N¢) = z22¢(De/Neme,  n=1,...,N, (11)
where € is the normalized CFO (with respect to the sampling
frequency), which we still refer to as CFO for convenience.
For each receive antenna output, consider the correlation be-
tween two consecutive noise-free received data blocks, each
of which is of length N¢. Then the sum of the correlations
for all receive antennas can be written as

N k+Nc-1 N Nc-1

Z Z ne(l) ne Z+Nc) —e —j2N¢me Z Z |Zne(l)|
n=1 [=k n=1 [=0
4 pe-jNere,

(12)

where (-)* denotes the complex conjugate and k is any non-
negative integer such that z3¢(k + 2N¢ — 1) is a sample of the
nth receive antenna output due to the input (transmit an-
tenna output) being a sample of the short OFDM training
symbols of the MIMO packet preamble. Let

N Nc-1

Ps = n; go zo(D)zy; (I1+ Nc) (13)

= Pe INem€ ¢ ¢,

where ep is due to the presence of the noise. We calculate the
coarse CFO as [18]

/P, (14)

M™>
o

ZNcT[

where Zx denotes taking the argument of x.
We next correct the CFO using €é¢ to get the data samples

ff)(l), n=12,...,N,as follows:

29(1) = z,(1)e72mee, (15)
Correspondingly, we have
PO = pge/2Neméc, (16)

In the sequel, we only consider the CFO corrected data given
above. For notational convenience, we drop the superscript

of 29, n=1,2,...,N.

3.2. Coarse symbol timing estimation

Now we can use a correlation method, modified based on
the approach presented in [17] to estimate the coarse symbol
timing. The symbol timing is referred to as the starting time
sample due to the input being the long OFDM training sym-
bol T (before the signal field). Once the starting time sample
due to the long OFDM training symbol T is determined, we
can determine the starting time sample due to every OFDM
data symbol thereafter. According to the specification of the
IEEE 802.11a standard and the sampling rate of 20 MHz, the
true symbol timing T is 193, as shown in Figure 4.

From (13) and (16), we note that the correlation (after
the CFO correction) is approximately the real-valued scalar
P plus a complex-valued noise. Hence we propose to use the
following real-valued correlation sequence for coarse symbol
timing determination. We calculate the correlation sequence
in an iterative form similar to the complex-valued approach
in [17] as follows:

PR(k + 1)
= Pr(k)

Re { > [zu(k + Nc)zj (k +2Nc) — za(k)z): (k + Nc)]}

n=1

N
= PR(k) + Z {zn(k"'NC) [zn(k+2NC) - zn(k)]
n=1
+ Zn(k + N¢)[2a (k + 2N¢) = 2,061},
(17)

where both Re(-) and (-) denote the real part of a complex
entity and (-) stands for the imaginary part. We start the iter-
ation by using Pr(0) = Re(Ps). Note that the real-valued cor-
relation approach given in (17) is superior to the absolute-
valued one given in [17] since the former uses fewer compu-
tations, lowers the noise level (variance reduced in half) in
the correlation sequence, and decreases closer to zero when
the data samples in the sliding data blocks are due to the
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FIGURE 4: [llustration of symbol timing determination.

input being GI2 or the long OFDM training symbols follow-
ing the short OFDM training symbols in the preamble.

When some of the data samples of the sliding data blocks
are taken from the received data due to the input being GI2 or
the long training symbols following the short OFDM train-
ing symbol, Pr(k) will drop since (11) no longer holds. This
property is used to obtain the coarse symbol timing. Let
Tp, as shown in Figure 4, denote the first time sample when
Pr(k) drops to less than half of its peak value. The coarse
symbol timing

Tc = Tp+§Nc+NC

> (18)

is the coarse estimate of the beginning time sample due to
the input being the long OFDM training symbol T before
the signal field. The second term at the right-hand side of
the above equation is due to the fact that Pg(k) will drop to
approximately one half of its maximum value when the data
samples of the second half of the second of the two sliding
blocks are due to the first GI2 in the preamble as input; the
third term is due to one half of the length of GI2. When the
channel spreading delay tp = max{r, — 7} is assumed to
satisfy tp < N, only the first half of GI2 can suffer from ISI.
Hence our goal of coarse timing determination is to place
the coarse timing estimate between the true timing Ty = 193
and Ty — N¢ = 177 to make accurate fine CFO estimation
possible. This explains why we use N¢ instead of 2N¢ for the
third term in (18).

3.3. Fine CFO estimation

For each receive antenna output, we calculate the correlation
between the two long OFDM training symbols before the sig-
nal field. We then sum the correlations for all receive anten-
nas as follows:

M=

Ng—1
b = Z Zn(l-f— Tc)Z:(l-f— T(;+Ns). (19)
=0

n=1

Then the fine CFO estimate can be computed as

1
2N57‘[

€p = ZPy. (20)

We can use €r in the same way as €¢ to correct the CFO. We
assume that for the data we use below, €r has been already
corrected.

Note that the aforementioned simple fine CFO estima-
tion approach may not be optimal. For example, the CFO
estimation accuracy could be improved by using the long
OFDM training symbols after the signal field as well; how-
ever, our simple fine CFO estimation approach is sufficiently
accurate in that the overall system performance can no longer
be improved with a more accurate CFO estimate, especially
when pilot symbols are exploited. For the data bit detection,
no matter how accurate the CFO estimate is, it can never be
perfect due to the presence of noise. Pilot symbols are used
to track the CFO residual phase for each OFDM data symbol
before data bit detection. A maximum likelihood (ML) CFO
residual tracking scheme is given in Appendix C.

3.4. Fine symbol timing estimation

We now move on to obtain the fine symbol timing by using
the long OFDM training symbols before the signal field. The
fine symbol timing is estimated by using the N data blocks
of length N, starting from the time sample T¢ + 3N¢. With
this choice, due to the fact that T; is identical to T5, the data
blocks are most likely due to the input being the second half
of Ty and the first half of T,, even when the coarse symbol
timing has a large error.

Let y,, denote the Ns-point FFT of the data block from
the nth receive antenna and let ), be the equivalent FIR
channel in the time domain between the mth transmit an-
tenna and the nth receive antenna, n = 1,2,...,N, m = 1, 2.
Then, by neglecting the existence of the residual CFO, y, can
be written as (cf. (6))

2
Yn = XpW Z hmﬂ + Whney, (21)

m=1

where Xp is a diagonal matrix with the 52 known BPSK
symbols and 12 zeros, which form the T, in Figure 3, on
the diagonal. Since the Moore-Penrose pseudoinverse of Xz
is Xp itself and Wy,/Ni/? is unitary, we get an estimate of

hY =32 h as
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1

hO =
n NS

W Xzy. (22)

Let Ty, as shown in Figure 4, denote the index of the first ele-
ment of |h®| = SN [h{Y | that is above 1/3 of the maximum
value of the elements of >~ A, (Our empirical experi-
ence suggests that selecting the threshold to be 1/3 gives the
best result.) Then the fine symbol timing T is obtained as

Tp = T¢ — N¢c+ T7 — 3. (23)

The second term above is used to compensate for the afore-
mentioned 3N¢ shift due to the fact that Ng — 3N¢c = N¢ and
the last term above is chosen to be 3 to ensure that Tr > T
occurs with very low probability.

3.5. MIMO channel response estimation

After we obtained Tk, we can now estimate the MIMO chan-
nel response. Let y,,; denote the Ns-point FFT of the average
of the two consecutive blocks, each of which is of length Ng,
associated with the two long training symbols before the sig-
nal field, from the nth receive antenna. Let y,, denote the
counterpart of y,; after the signal field. Then, for the ngth
subcarrier, we have

Y1 = Xp (hny + ha2), (24)
Yno = xp(hpy — hu2), (25)

where xp denotes the ngth diagonal element of X3z, y,; de-
notes the ngsth element of y,,;, i = 1,2, and we have dropped
the dependence on s for notational simplicity. Solving (24)
and (25) yields

B xB(Yn1 + Yn2)
nl — f)

s = xB()’n,lz_ n2) (27)

(26)

When the reserved bit in the signal field indicates a SISO
transmission, we only need to estimate h,;, n = 1,2,...,N,
in a way similar to (26).

4. A SIMPLE MIMO SOFT DETECTOR

With the CFO, symbol timing, and MIMO channel response
determined and accounted for, we can proceed to detect the
data bits contained in each BLAST layer and subcarrier of the
OFDM data symbols in the OFDM data field. In the sequel,
we present a very simple soft detector for the MIMO system.
Note that this soft detector can be used in a general setting of
the BLAST system and hence we present it in a general frame-
work based on the data model of (10), where H is assumed
to be N x M and x to be M x 1. (We use H to replace H in
our simulations.)

Consider first the ML hard detector of the BLAST system.
For the data model of (10), the ML hard detector is given by

%X =arg min ||y - Hx||2, (28)

xeCMx1

where || - ||? denotes the Euclidean norm. The cost function
in (28) can be written as

ly - HXH2 = yly + x"H¥Hx - y"Hx — x"Hy
= (x"—y" ) )HHE -HY)  (29)
H
+y'y - y" (H") "H"HHy,

where Hf = (HFH) 'H". We note, from the above equa-
tion, that by ignoring the constellation constraint on x, we
can obtain an unstructured LS estimate %Xy, of x, which is
given by

ﬁuszHTy=x+H‘Leéx+c. (30)

Note that %X, is the soft decision statistic that we are inter-
ested in. We refer to this simple scheme of obtaining a soft de-
cision statistic as the MIMO soft detection scheme. Note that
a necessary condition for H'H to be nonsingular is N > M.
Also note that c is still Gaussian with zero mean and covari-
ance matrix

E[ect] = o?H (HY)" = 62 (HEH) . (31)

Due to the use of the interleaver and deinterleaver, the
data bits contained in x are independent of each other. By ig-
noring the dependence among the elements of ¢, we can con-
sider only the marginal probability density function (pdf) for
the elements X,(m), m = 1,2,..., M, of Xy. (Note that an
approximation is made here, which can lead to performance
degradation. However, the computation is greatly simplified
by the approximation.) Let

h{
N
Ht'2| 7 | e CMN, (32)
hj;
Then the mth element of ¢, m = 1,2,..., M, can be written
as
Cm = H,T,,e. (33)

Obviously, ¢y, is still Gaussian with zero mean and variance
2 -2
o2 =E|[cu|’] = [Ihal0?. (34)

The estimate of the above noise variance 0% can be easily ob-
tained via the difference of the two consecutive blocks of the
nth receive antenna, from which we got y,,; (cf. (24)). Note
that o2 along with % provide the soft information for the
mth, m = 1,2,..., M, symbol in %Xy, needed by the Viterbi
decoder. Note also that the noises corresponding to different
layers have different variances which means that the symbols
corresponding to different layers have different quality. This
unbalanced layer quality is the reason why we have used a
spatial interleaver before the FD interleaver.
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Note that for SISO systems we usually consider an or-
dinary QAM symbol as two PAM symbols (e.g., a 64-QAM
symbol can be considered as two 8-ary PAM symbols) due
to the orthogonality between the real and imaginary parts
of a QAM symbol as well as the independence between the
real and imaginary parts of the additive circularly symmetric
Gaussian error. A bit metric computation scheme for PAM
symbols is presented in Appendix A. In Appendix B, we show
that the real and imaginary parts of c,, are independent of
each other. Hence we can significantly simplify the bit metric
computations by exploiting these independencies.

The minimum mean square error (MMSE) detector is
often deemed to be better than the LS-based one [12]. Al-
though this can be true for the constant modulus constella-
tions, such as PSK, it is not necessarily true for QAM sym-
bols, as suggested by our simulations due to the different
power levels of the QAM symbols. Hence, we do not provide
an MMSE counterpart of the LS-based soft detector.

When the reserved bit in the signal field indicates a SISO
transmission, the H in (28) is in fact a vector. Hence the %X in
(30) and the E[cc] in (31) are scalars, and they are the soft
information used as in the SISO system for data bit detection.

5. NUMERICAL EXAMPLES

In this section, we provide numerical examples to demon-
strate the effectiveness and performance of our sequential es-
timation method for CFO, symbol timing, and MIMO chan-
nel response based on our MIMO preamble design as well as
the simple MIMO soft detector.

In the IEEE 802.11a standard, the maximum transmis-
sion data rate is 54 Mbps; in this case, the 64-QAM constella-
tion is used and the channel coding rate is R = 3/4, which
comes from puncturing the Rc = 1/2 encoded sequence
with the puncturing rate Rp = 2/3. We consider doubling
the maximum 54 Mbps transmission data rate by using two
transmit and two receive antennas, thatis, M = N = 2. In
our simulations, each of the MN = 4 time domain MIMO
channels is generated according to the Chayat model; the 4
channels are independent of each other.

Due to the fact that 52 out of 64 subcarriers are used
in the OFDM-based WLAN system, the signal-to-noise ra-
tio (SNR) for the SISO system used in this paper is defined as
52/(640?) for the constellations whose average energies are
normalized to 1. Whereas for the MIMO system, the SNR is
defined as 52/(12802) (i.e., we use the same total transmis-
sion power for the MIMO system as for its SISO counter-
part).

We first provide a simulation example for symbol timing
estimation. Two curves in Figure 5 show the 10* Monte Carlo
simulation results of the coarse symbol timing estimates for
the Chayat channels with ¢, = 25 and ¢, = 50 nanoseconds,
respectively, when SNR = 10 dB. Note that the coarse symbol
timing estimates fall within the desired interval with a high
probability. Note also that the adverse effect of the coarse
symbol timing estimate being smaller than Ty — N¢ = 177
is usually not significant since, due to the exponentially de-
caying property of the channels, the ISI in the receiver out-
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FIGURE 5: Coarse and fine symbol timing estimates.

put due to the input being the latter portion of the first half of
GI2 is minimal. (Since the adverse effect of the coarse symbol
timing estimate being larger than T, = 193 is usually trou-
blesome for the fine CFO estimation, we prefer the coarse
timing estimate T¢ to be well ahead of T;.) The other two
curves in Figure 5 show the 10* Monte Carlo simulation re-
sults of the fine symbol timing estimates for the Chayat chan-
nels with ¢, = 25 and ¢, = 50 nanoseconds, respectively, when
SNR = 10 dB. Note that our simple fine symbol timing ap-
proach gives highly accurate timing estimates.

We then provide a simulation example to show the effec-
tiveness of the MIMO channel estimator and the PER per-
formance of the MIMO soft detector. (One packet consists of
1000 bytes. Based on the IEEE 802.11a standard, even if only
one error occurs in a packet, the entire packet is discarded.)
In Figure 6, we show the 10* Monte Carlo simulation results
of the PER performance of our soft detector as a function
of the SNR for the MIMO system, with ¢, being 50 nanosec-
onds for the Chayat channels, when the transmission data
rate is 108 Mbps. We consider two cases: the case of perfect
channel knowledge and the case of estimated channel param-
eters. For the former case, we assume the exact knowledge of
CFO, symbol timing, and MIMO channel, whereas for the
latter case, we use the estimates of all of the aforementioned
parameters obtained with our sequential approach from the
MIMO packet preamble as well as the CFO residual phase
tracking. As a reference, we also give the PER curves of the
soft detector for the SISO system (with the data rate being
54 Mbps) as a reference. We note, from the PER curves, that
both the MIMO preamble design and the sequential channel
parameter estimation algorithm are effective in that the gap
between the PER curves corresponding to the perfect channel
knowledge case and the estimated channel parameter case for
the MIMO system is no more than that of the SISO system.
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FiGUrE 6: PER versus SNR at the 108 Mbps data rate for the Chayat
channels with ¢, = 50 nanoseconds.

Note also that the MIMO soft detector is effective in that the
MIMO system needs only 2 to 3 dB extra total transmission
power to keep the same PER (we are mostly interested in
PERs being 0.1, according to the IEEE 802.11a standard) as
its SISO counterpart, but with the data rate doubled.

Finally, we show the performance comparisons of the
SPD hard detector [8], the MIMO soft detector, as well as the
LSD-based soft detector [11], an approximation of STBICM,
the ideal MIMO soft detector. Figure 7 gives PER curves ob-
tained from 10* Monte Carlo simulations for these detec-
tors as a function of SNR for the MIMO system, with esti-
mated channel parameters. (The simulation parameters are
the same as those in the previous example.) Note that the
MIMO soft detector is much better than SPD and is outper-
formed by LSD in terms of PER. However, the MIMO soft
detector is much more efficient than LSD. We did not at-
tempt to optimize our Matlab simulation codes. Even so, our
preliminary results indicate that the LS-based MIMO soft
detector requires only about one fifth of the computations
needed by SPD. Unlike SPD, whose sphere radius shrinks
when finding better solutions, LSD keeps the sphere radius
constant, which means that it is computationally much more
demanding than SPD, especially when the sphere radius is
large. We do not have an exact flop comparison, yet we be-
lieve LSD flops > SPD flops ~ 5 times MIMO soft detector
flops, which means that the LS-based soft detector can be or-
ders of magnitude more computationally efficient than the
LSD-based one.

6. CONCLUDING REMARKS

We have proposed a preamble design for the MIMO system
with two transmit and two receive antennas. This MIMO

0T T T T T T T T T T 1

PER

i i i i i i
22 23 24 25 26 27 28 29 30 31 32 33 34 35

SNR (dB)

- Hard SPD
—a— SoftLS
—— List SPD

FIGURE 7: PER versus SNR at the 108 Mbps data rate for the Chayat
channels with ¢, = 50 nanoseconds.

preamble design is backward compatible with its SISO coun-
terpart as specified by the IEEE 802.11a standard. Based on
this MIMO preamble design, we have devised a sequen-
tial method for the estimation of CFO, symbol timing, and
MIMO channel responses. We have also provided a simple
soft detector for the MIMO system based on the unstruc-
tured LS approach to obtain the soft information for the
Viterbi decoder. Both the sequential parameter estimation
method and the soft detector are very efficient and ideally
suited for real-time implementations. The effectiveness of
our methods has been demonstrated via numerical exam-

ples.

APPENDICES
A. BIT METRIC CALCULATION FOR THE QAM SYMBOL

To make this paper self-contained, we describe in this ap-
pendix briefly our bit metric calculation method for the
QAM symbol. Note that the real and imaginary parts of a
QAM symbol plus the additive circularly symmetric complex
Gaussian noise are independent of each other. Hence the soft
decision statistic corresponding to a transmitted QAM sym-
bol can be easily divided into the real and imaginary parts,
which correspond to the soft decision statistic of two real
valued PAM symbols. The variance of the noise additive to
the PAM symbols is halved as compared to the QAM sym-
bols. In view of this, we only present the method for calcu-
lating the bit metric for a symbol in the PAM constellation
R.

Let D;; = {s:s € R} denote the set of all the possible
PAM symbols with the ith bit v; = j, i = 1,2,...,log, A/2,
j =0, 1. The formation of £D; ; depends on the way the PAM
symbols are labeled. For example, for the Gray indexed 8-ary
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FiGure 8: Illustration of 8-ary PAM symbols with Gray labeling and
their pdf curves.

PAM constellation shown in Figure 8, we have

07)1,0 = {_7>_5)_3)_1}) (Al)
where the first bit is the left most one shown in Figure 8.
Then, for a given soft information (x, o) of the PAM symbol,
the bit metric for v; is given by

V= logi"z’%ol (A.2)
where
po(vi = j|x) = po(Dijx)
= > polslx)
SED;; (A3)
B Jo(xIs)p(s)
- SEZ@ plx)
with
folxls) = —m=—e~(x=9%20° (A.4)

being the pdf given the symbol s and the variance o2, as
shown in Figure 8. The occurrence of each symbol in R is
often assumed to be equally likely, that is, p(s) = (1/2)?2,
for all s € R. In this case, we have

po(vi = jlx) = 23%17(@ S A9 (48)

which leads to

— log{ Z e—(x—s)z/Zoz} _ log{ Z e—(x—s)z/Zaz}.
SED;; s€Dip

(A.6)

To speed up the bit metric calculation in practical ap-
plications, we can make a grid for x and ¢ to precalculate
a lookup table for the #;’s. The bit metric calculation in our
simulations is based on such a table.

B. APROPERTY OF THE ¢, IN (33)

With X and % denoting the real and imaginary parts of x, re-
spectively, we get from (33)

(B.1)

Then
¢=H'e-Hfe ¢=H'e+He (B.2)
Hence, we have
Efee’] = E[(A'e - A'e)(ef (@) +e (A")")]
=E [I:ITee (HT) — HTééT(HT)T]
+E[Afee’ (AY)' - A'ee” (AY)' | (B.3)

= %UZ[HT @h’ - at (HT)T]

1. [HT(ﬁf)T _ (H’r (ﬁT)T>T])

where we have used the fact that E[ee’] = E[eel] = 021/2
and E[ee”] = E[ée!] = 0. Equation (B.3) implies that the
diagonal elements of E[c&!] are zero and hence E[¢,,¢n] = 0,
m=1,2,...,M.

C. PHASE CORRECTION USING PILOT SYMBOLS

The CFO correction will never be perfect in practice due to
the presence of noise. Hence, there will be a phase error ¢ for
each OFDM data symbol caused by the error in the fine CFO
estimate €p. The error ¢ increases linearly with time.

As we mentioned earlier, each OFDM data symbol con-
tains four known pilot symbols. We denote these pilot sym-
bols by a 4 x 1 vector p. The pilot symbols can be used to
correct ¢ for each OFDM data symbol after CFO correction
using €p. Let ys,p) be the vector containing the correspond-
ing four elements of the FFT output of an OFDM data sym-
bol in the OFDM data field received from the nth antenna,
n=12,...,N. Let hE,p,)y, be the 4 x 1 estimated channel vec-
tor from transmit antenna m to receive antenna n for the four
corresponding subcarriers. Let P = diag{p}. We have

(C.1)

where {e(P)} _; are zero-mean white circularly symmetric

complex Gaussian noise vectors that are independently and
identically distributed. Then the ML criterion leads to

N 2 2
(ﬁML = arg mq)in Z yfqp) — eJtp Z h,&p,)n
=1 m=1 (CZ)

-5l 5 e}
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We proposed recently a new technique for multiuser detection in CDMA networks, denoted by interference subspace rejection
(ISR), and evaluated its performance on the uplink. This paper extends its application to the downlink (DL). On the DL, the
information about the interference is sparse, for example, spreading factor (SF) and modulation of interferers may not be known,
which makes the task much more challenging. We present three new ISR variants which require no prior knowledge of interfering
users. The new solutions are applicable to MIMO systems and can accommodate any modulation, coding, SF, and connection
type. We propose a new code allocation scheme denoted by DACCA which significantly reduces the complexity of our solution
at the receiving mobile. We present estimates of user capacities and data rates attainable under practically reasonable conditions
regarding interferences identified and suppressed in a multicellular interference-limited system. We show that the system capacity
increases linearly with the number of antennas despite the existence of interference. Our new DL multiuser receiver consistently
provides an Erlang capacity gain of at least 3 dB over the single-user detector.

Keywords and phrases: CDMA, downlink multiuser detection, interference rejection, space-time processing, code allocation,

MIMO.

1. INTRODUCTION

Third generation wireless systems will deploy wideband
CDMA (W-CDMA) [1, 2] access technology to achieve data
transmission at variable rates. Standards [1] call for trans-
mission rates up to 384 Kbps for mobile users and 2 Mbps for
portable terminals. On the downlink (DL), high-speed DL
packet access (HSDPA) [3, 4] allows for transmission rates
up to about 10 Mbps in the conventional single-input single-
output (SISO) channel and about 20 Mbps in the multiple-
input multiple-output (MIMO) channel. It is expected that
most of the traffic will be DL due to asymmetrical services
like FTP and web browsing. The DL will therefore become

the limiting link, and only high DL performance can give the
network operator maximal revenue from advanced radio-
network technologies.

MIMO [5] and multiuser detection (MUD) [6, 7, 8] are
both very promising techniques for high capacity on the DL
in wireless systems. In a noise-limited MIMO system, Shan-
non capacities increase linearly in SNR with the number of
antennas [5] instead of logarithmically as in the SISO system.
Recent studies, however, have shown that in an interference-
limited MIMO system, this linear relationship is not achieved
due to the multiple-access interference (MAI) [8]. In [9, 10],
it was shown that the gain in such systems is basically limited
to the antenna beamforming gain at the receiver. In terms
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of system capacity,! this means that the Erlang capacity in-
creases linearly with the number of antennas. MUD can sig-
nificantly increase the capacity further especially when inter-
ference is pronounced [11]. It is therefore of prime concern
to establish a cost-effective solution that combines MIMO
and MUD for optimal DL performance.

MUD is a challenging problem, not only for the uplink
(UL), but even more so for the DL. On the UL, the receiv-
ing base station knows the connection characteristics of all
in-cell users. The DL MUD problem is more difficult be-
cause the terminal has no knowledge of active interference,
its spreading codes, SF, modulation, coding, and the connec-
tion type (packet switched or circuit switched). Furthermore,
complexity considerations are more important because ter-
minals are limited by size and price and are restricted in avail-
able power.

Most previous work was aimed at the UL (e.g., [11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21]). For the DL, blind
adaptive MMSE solutions based on generalizations of single-
user detectors (SUDs) have previously been proposed for
the STAR [22] receiver in [23], denoted STAR GSC, and
for the RAKE [24] receiver in [25], denoted the general-
ized RAKE (G-RAKE). These solutions are characterized by
low complexity and low risk because they impose the least
change to an established technology. But they require the use
of short codes and the capacity gain in a practical DL en-
vironment is limited to about 1.5-2.5dB for the G-RAKE
[26, 27] (and expectedly in the same range for STAR-GSC).
In [28], a solution which offers potentially higher capacity
gains is presented. Relying on the use of orthogonal vari-
able spreading factor (OVSF) [29] codes, it probes for in-
terference on the OVSF code tree at a high SF level in or-
der to identify and reject codes with significant energy. This
solution is complex because it rejects interference at a high
SF level and is defined for rejection of in-cell interference
only.

We propose a new class of MUD solutions for DL multi-
cellular interference-limited CDMA-based MIMO systems.
These new solutions are all DL variants of the previously pre-
sented interference subspace rejection (ISR) technique [30]
and are therefore referred to as DLISR. The DLISR vari-
ants do not rely on prior knowledge of the interference and
its properties (e.g., modulation, coding scheme, and con-
nection type). Nor do they attempt to estimate the SF and
modulation of the interference. DLISR takes advantage of
a concept we denote by virtual interference rejection (VIR)
combined with a new OVSF code allocation scheme de-
noted dynamic power-assisted channelization code alloca-
tion (DACCA). VIR reduces complexity in the receiver by
attacking interference at a low SE. DACCA provides informa-
tion to the terminal about the location of interference in the
OVSF code-space. DLISR does not necessarily require VIR
and DACCA. However, when combined with these new con-
cepts, DLISR provides very high performance at very low

I'System capacity is a measure of the total system capacity. Shannon ca-
pacity is a measure of the single link spectral efficiency.

complexity. As a benchmark, we consider the PIC [16, 17]
with soft decision (PIC-SD), which can also exploit the VIR
and DACCA techniques.

Performance of MUD detectors heavily relies on the dis-
tribution of interference. For instance, MUD typically offers
very significant performance gains if the interference arrives
from one strong source. However, if interference arrives from
numerous weaker sources, MUD performance approaches
SUD performance. In order to provide convincing results
with regards to real-world applications, it follows that inter-
ference must be modelled realistically. We have therefore im-
plemented a precise model as shown in Figure 1. First we es-
tablish a realistic realization of the interference using a radio-
network simulator (RNS); then this information is used for
the link-level simulations to assess the BER for DLISR, PIC-
SD, and the SUD. Repeating the cycle many times and com-
bining the results, we arrive at system-level capacity esti-
mates. Our link-level simulator makes assumptions very sim-
ilar to those in W-CDMA standards. We do not rely on any a
priori knowledge of the channel; instead we employ the STAR
receiver [22] to estimate the channel. Simulations show that
our new MUD consistently offers a gain of at least 3 dB over
SUD based on maximal ratio combining (MRC) for QPSK
and as much as 6.5-8.1 dB for 16 QAM. Our solution demon-
strates a linear growth in Erlang capacities with the number
of receiving antennas.

The main contributions of this paper are as follows. Most
importantly, we propose a new solution for DL MIMO MUD
in CDMA-based systems. We present the concepts of VIR and
DACCA to allow for effective operation of DLISR and to re-
duce the complexity at the receiver significantly. Finally, we
propose an RNS to generate realistic realizations of the inter-
ference in the DL MIMO system.

The paper is organized as follows. We present our link-
level signal model in Section 2. In Section 3, we derive DLISR
and introduce DACCA and VIR. The RNS is presented in
Section 4. Then our system-level simulation results are pre-
sented in Section 5. Finally, our conclusions are given in
Section 6.

2. LINK-LEVEL SIGNAL MODEL

In this section, we discuss the link-level signal model and
discuss briefly basic estimation issues. The radio-network
model, which is important for the quality of our simulation
results, is presented later in Section 4. Section 2.1 presents
an overview of the MIMO model, Section 2.2 provides the
mathematical model of the signals, and finally, Section 2.3
considers estimation of the basic parameters.

2.1. Overview of the MIMO model

We consider a DL MIMO CDMA system as illustrated in
Figure 2. Let (4, v) denote the user with index u = 1,...,U,
connected to the cell with index v = 1,..., Ncgris. We de-
fine a cell as one site sector, that is, a three-sector site has
three cells. U, is the number of users connected to the cell
with index v and Ncgris is the number of cells considered.
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Let b{%" (t) represent a BPSK stream of encoded information
bits. The encoded data bits are modulated according to the
modulation scheme (we consider QPSK and 16-QAM in this
paper) and scaled by the desired transmit amplitude ") (¢).
The stream of modulated channel symbols are switched to
one of Ng groups such that the user (1, v) is assigned to the

group g(u,y). The modulated symbols are then spread by a
user-specific channelization code, increasing the rate by the
SE, L = T/T,, where T is the time duration of one modu-
lated symbol and T, is the chip duration. The channeliza-
tion code is defined as ciﬁ’v)(t) = c@uniwn)(t), where i(,,)
is the index to one of the codes of the group. Assignment
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of groups and channelization codes are discussed below. We
add a pilot unique to each group scaled by the desired pilot
amplitude, that is, ng(t) = w;(t)c‘%’v(t), where (y(t))? is the
desired pilot power and ¢*(t) is a PN code unique to the
group. Finally the cell-specific scrambling code cX.() is ap-
plied to yield the group-specific signal G,(t), g = 1,..., Ng.
The Ng groups of signals, organized in the vector G¥(t) =
[GI(1)T,...,GX, (1)T]T, are next spatially mapped onto My
antennas by the M7 X Ng-dimensional matrix M to arrive at
the Mr-dimensional signal, A”(t) = MG"(t). A"(t) is trans-
mitted over the channel H"(¢) and received by the mobile
unit with My antennas. If M has full rank, the groups are
mapped orthogonally in space onto the transmitting anten-
nas. Orthogonal spatial mapping is possible as long as the
condition (Mr > Ng) is satisfied. In this paper, we assume
that My = Ng and therefore the Hadamard matrix is use-
ful. The Hadamard matrix ensures both orthogonal trans-
mission in space and equal distribution of power between
the transmitting antennas.? If a different delay D,, is em-
ployed at each transmitting antenna, we obtain time diver-
sity. This may be attractive in low-diversity situations, but
in a typical multipath channel possibly with multiple receive
antennas, the sufficient diversity is available and extra time
diversity may degrade performance because channel identi-
fication is made more difficult [31] (see also footnote 16).
In our simulations, we consider multipath mostly with an-
tenna diversity reception and therefore we have used D,, = 0.
Simulations (not shown herein) have demonstrated that us-
ing different antenna delays generally results in the same or
slightly worse performance when multipath propagation is
considered.

We now return to the concepts of grouping and channel-
ization-code design. Channelization codes are grouped into
Ng groups with L codes in each group. The purpose of
grouping is to allow for user capacities beyond the SE. Each
group will contain channelization codes unique to the group.
Codes are correlated between groups but mutually uncor-
related within groups. The spatial mapping M serves to
separate groups further by assigning orthogonal spatial sig-
natures at transmission. Users are assigned a group and a
channelization code pair (g(u,),i(uy)) On a first-come first-
serve basis in the following order: (g,i) = (1,1),(1,2),...,
(1,L),(2,1),...,(Ng,L). Let G, denote the set of channel-
ization codes in group g. By wise definitions of the code
groups, intragroup (preferably orthogonal) as well as in-
tergroup correlations are controlled. It is noteworthy that
since the same scrambling code is used across groups, cross-
correlation properties, once set by proper choice of channel-
ization code sets, are preserved after scrambling. As an exam-
ple, we consider the following two groups of SF = 4 channel-

2We use Hadamard matrices with a power-2 number of transmit anten-
nas. Otherwise, with an arbitrary number of transmit antennas, we resort to
orthogonal Vandermonde-structured matrices. Current investigations sug-
gest significant advantages due to exploitation of such spatial mapping ma-
trices when combined with closed-loop PC and MIMO transmit diversity
[31].

ization codes:

([+1] [+1] [+17] [+1]]
Tl 12 a3 147 | [T -1 +1 -1
Gy [ e P M = b la bbb
| [+1] [-1] | -1 [+1]]

[+17] [+17] [+17] [+1]

-1 +1 -1 +1

L1201 22 23 247 _

I L NNt o I I Y I Y R I

[ t1] [ -1] | -1} _+1__

(1)

Intragroup correlations are zero for both groups and inter-
group correlations are always —6 dB (relatively). Using these
code groups as a baseline, we can easily derive an OVSF tree
for both groups (see [29]). It is easy to show that intergroup
correlations reduce with higher SFs. For SF lower than four
some code pairs will have nonzero correlation. Lower SFs
must therefore be employed in practice with extra coordi-
nation between groups. In this example, the two code groups
have been rotated by 45° with respect to each other.

2.2. Multiuser multicell downlink signal model

We now present a mathematical formulation of the received
signal. A useful diagram is shown in Figure 3. We consider
the DL of a cellular CDMA system, where the mobile is
equipped with an antenna array of My sensors. At time ¢,
the observation vector received at the antenna array of Mz
sensors at the mobile terminal can be defined as follows:

Xl(t) NceiLs
X(t) = = > X'()+N(), (2)
X (1) v
where
U, Ng
X'(t) = > X"+ > X5'(1) (3)
u=1 g=1

is the signal arriving from the vth cell, X“")(¢) is the con-
tribution from the (u, v)th user, X3 (¢) is the pilot signal of
the gth group of the vth cell, and N(¢) is the thermal noise
assumed to be uncorrelated additive white Gaussian noise
(AWGN).

The contribution of the (u, v)th user, X*")(¢), to the re-
ceived signal X (¢) is given by

Mr
X (1) = > Hy(t) @ AR (1), (4)
m=1
where H},(t), m = 1,..., My, is the Mg-dimensional channel

vector from the mth transmitting antenna to the receiving
antenna array with My sensors, and Aﬁff’v)(t), m=1,...,Mr,
is the contribution of the (u, v)th user to the signal transmit-
ted at the mth antenna. Each dimension corresponds to one
transmit antenna. The total transmitted signal arriving from
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FIGURE 3: Network-level signal diagram.
the (u, v)th user is defined as follows: with
AEM)V)(t) v c v v v
A(u,v)(t) _ _ MG(M’V)(t) (5) Hm(t):LLOSSZ:lhm,p(t)sp(t)a(t_Tp_DM)) m= 1, ,MT,
p=
(14 v (t) (8)
with where §(¢) is the Dirac delta function, T;(t) € [0, T) are the
multipath time delays for p = 1,...,P. Note that the phys-
ical path delays are the same for all receiving antennas but
GO (1) = (u V(s delay differences may optionally be imposed at transmission.
R B o () = TV (), Bl mp(t)]T is the unit-norm prop-
(6) agation vector, ¢ ( )%, p = 1,..., P, are the power fractions
i [Y OO0 () € G along ach path ch that.ZP:1 &(0)” = 1, Dy is an addi-
Gg“’V (t) = 0 £ ¢ tional transmit delay associated with each transmit antenna,
if (u,v) & Gg, and Lioss is the path loss. In practice, Lioss is largely com-
5 (u ) pensated by power control and we therefore fix it to unity in
where (y®¥)(£))" is the power, ¢ (t) = (D" (t) is what follows. Note that this implies that the expected gain of

the spreading code (channelization code + scrambhng code),

and b™")(t) denotes the modulated symbols. For lack of

space, we do not detail the contribution of the pilots to the

received signal, but it follows the pattern of (4), (5), and (6)

by replacmg X®9(£) by X8V (1), A () by A (1), and
G®) () by G (1), respectively.

We adopt the common assumption that the channel re-
sponse can be modeled as a tapped delay line with Rayleigh-
faded tap gains [32]. The Mg-dimensional channel response
vector from the transmitting cell to the mobile unit with Mg
antenna elements is therefore given as follows:

B = |0, m=1,.. My 7)

H; (t) is one (by definition).

At reception, the Mr-dimensional received signal is first
filtered by the pulse-matched filter, then sampled and framed
into observation vectors containing Q consecutive symbols
of the desired user (the signal is first down converted in re-
ality). We define the preprocessing step through the function
P,V = P(U(t),n) : CMrx1 . @Mr(QL+LAIX1 45 follows (see
[30] for more details):

Us (1) = Ti j Ut +£)()dt,
V= [U*(nT +aT.)", U*(nT + (a+ DT.) ", 9)
T T
U(nT + (a+QL+Ly — 1)T,) ] ,

where L, is an extra margin to account for the delay spread,
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¢(t) is the square-root raised-cosine shaping pulse, and a is
an offset that guarantees that the targeted symbols nQ + k,
k =0,...,Q — 1, occur within the duration of the observa-
tion frame. Without loss of generality, we set a = 0 in what
follows. With this definition, we can now define the prepro-
cessed observation as

Nceus Uy

Z Z ll/y(lu,v)Xslu,v)

v=1 u=1
Nceus No

SED I €A AN

v=1 g=1

(10)

where Y, = P(X(),n), Y, (wy) = P (X (6)/y V) (t), n),

Y& = (x5 t)/wg’” t),n), NP = P(N(t),n), and "
=y (nQT). Y™ is to be understood as the contribution
of the (u, v)th user to the nth observation. It is useful to de-
compose its contributions as follows:

YY) =y SRl Y, an
k'

and Y(”: is to be understood as the signature of the nQ +
k’th symbol. We next define the user (d,v4) as the desired
user (v4 denotes the best server of user d) and let g; denote
the group to which the user is assigned. We now isolate the
desired signal and pilot in (10) from intersymbol interference

(IST) and in-cell/out-cell MAI as follows:

(dyva) (d )y (d vd) d>Vd x,8d-Vd (dyvq)
- an+ " Y + ‘/fg,” You' + lﬂ,nd
—r_x —_— ——

desired signal desired pilot pilot interference

Neeus Uy

g Y e S S e,
u= 1,u#d r= 1,v#vg u=1

e - , | AweN
in-cell MAIL out—cell MAI
(12)
where with reference to (11), we have
(dyva) _ u) 1, (v d va)
Listgn = Z i an+ Lpn'
k' #k
l(u,v) _ v uv)b Y(MV ,
n Z n nQ+k’=k',n (13)
Nceus N
d, W&V g Vd y,8d-Vd
ln,;d = Z Z ﬁ,nl‘%,n - Yg .
v=1 g=1

2.3. Basic parameter estimation principles

In our simulations, we estimate every parameter as needed
with no prior information assumed known to the receiver.
To estimate the multipath delays and the multipath gains, we
employ a variant of the STAR receiver [22] as discussed in
Section 2.3.1. MRC data detection (used by the SUD consid-
ered herein), power estimation, and signal-to-interference-
plus-noise ratio (SINR) estimation for PC are then discussed
in Sections 2.3.2, 2.3.3, and 2.3.4, respectively.

2.3.1. STAR: the spatio-temporal array-receiver

We employ a variant of the STAR receiver [22] which mainly
differs in the despreading operation. Instead of using the
code of the desired user for despreading, we employ a more
generalized code for despreading. We consider multicodes to
represent one cooperative code for despreading, which is a
combination of concatenating codes in time (i.e., consecutive
symbols by data remodulation) and combining over chan-
nels. For the channel of the desired user, we combine the pi-
lot code with the data remodulated spreading code over Q
consecutive symbols. For other channels, we employ only the
pilot for channel identification with STAR.

2.3.2. MRC beamforming and data detection

The signal component s%’ik =y nQ ' contains sufficient

statistics for the estimation of both data and power. The sig-
nal component can be estimated by MRC which is optimal
in white noise. With reference to (12), the MRC combiner
for the k"th symbol of user (1, v) is as follows:

(u,v)
(u,v) _ Xkl’l,i: K =
mMRC,k’,n - (u,v) )2 - O’ LR Q - 1) (14)
Yy |l

and then the signal component is estimated as

Alu,v) u,v),H
SpQekr = WMRC kon L (15)
A beamformer for the pilots can be defined accordingly. Note
that we use the term beamformer because Wy pc s, works
in both space and time. The transmitted symbol is estimated

as the symbol in the signal constellation which is the closest
U, V

~(u,
to an+k - SnQ+k/l//”
(Section 2.3.3).

, where ¢, is the estimated power

2.3.3. Power estimation

We consider two different power estimators. The first estima-
tor first estimates the amplitude

o
() Lo (S5 ) g (
—api - g X 8 1
k=0
(16)
where « is a forgetting factor. The power estimate is then

found by squaring the amplitude estimate. The second es-
timator estimates the power directly:

Q-1

() = a4 (1 - )~ (17)

Q nQ+k |
k' =0

The latter is biased because it effectively estimates the com-
bined signal and interference noise power. The estimator in
(16) has less bias and is more accurate because the filtering
appears before the squaring; but it requires that the decision
feedback (DF) is decent. The estimator of (17) is useful to
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TasLE 1: Definition of the constraint matrix of each mode. (Each generic column € i

is normalized to one.)

ISR mode Co=1... 3 Cieor N, (number of constraints)
Hypotheses (H) (constraint/symbol/interferer) [ ,X;,n, ] (Q+2)NI
Q .
Realizations (R) (constraint/interferer) [ z b"nQJrkZ;m, . ] NI
k=—1
. . Q 4 N
Total realization (TR) (constraint/total MAI) [ 5% e Dok ¥, n] 1

estimate the power of the interference (where decision feed-
back is difficult), whereas the estimator of (16) is used for the
desired pilot and data signal.

2.3.4. SINR estimation

The PC command is determined by comparing the SINR es-
timate at the receiver with the target SINR. We use the fol-
lowing estimator for the SINR:

lf/(d’vd) 2

~(d, _ n

)’;(1 va) - (A(d,vd)) ) (18)
On

d) A(d vd) -

where wnd " results from (16) and 6; is an estimator for
the postcombined noise, which is obtamed by estimating the
total received power (of all users) after combining and then
subtracting the estimated power of the desired user.

3. DOWNLINKINTERFERENCE SUBSPACE REJECTION

Our main contribution is a new efficient and cost-effective
MUD solution for DL MIMO, DLISR. DLISR is based on
ISR previously presented for UL systems [30]. It incorpo-
rates new variants of ISR modes which are specially suited
for the more problematic DL case. In particular, DLISR em-
ploys VIR, which involves rejection of virtual users instead
of physical users. VIR has many benefits especially when it is
combined with DACCA. Neither VIR nor DACCA are indis-
pensable for DLISR; however, capacity gains and especially
complexity reductions are achieved when combined. We next
review ISR in Section 3.1. Then we define DACCA and VIR
and introduce DLISR. Finally, we discuss the attractive com-
plexity features of our new solutions.

3.1. Review of ISR

In this section, we provide an overview of ISR. For a more
complete picture, see [30]. The basic ISR recipe is to form
a constraint matrix C with a column span which spans the
estimated interference subspace. In a second step, the ob-
servation is mapped away from the interference subspace
spanned by C by constrained spatio-temporal projection;
thereby, MAI and ISI are reduced significantly. The desired
signal can then be estimated by conventional beamforming,?
for example, MRC.

3We use the term beamforming because our solution works in space and
time. However, the term filter-combiner could equally well be used.

The projection and combining steps can also be car-
ried out in a single beamforming step. The ISR beamformer

WS, k= 0,...,Q — 1, is defined by

AH A -1
Qn = (Cfcn) > (19)
I, = Iy, - C,Q.CY, (20)
o (dyva)
vy _ _ Mn¥pen (1)
—kn o (dv)™ e (dva)’
Ykn H Ykn

where Iy, denotes an Ny X Ny identity matrix, and Ny =
MRg(QL + Ly) is the total space-time dimension. First, we

form the projector II,, orthogonal to the constraint matrix

C,.. Second, we project the estimated response vector Yk ;,Vd)

and normalize it to yield the ISR beamformer ﬂ,(fn” .

3.1.1. ISR modes

The ISR modes differ in the construction of the constraint
matrix. Table 1 defines the constraint matrix of each mode
when considering only MAI rejection and a pedagogical il-
lustration is provided in Figure 4 which links the modes to
the composition of the constraint matrix. In the table, NT
denotes the number of interfering signals to be rejected, and
iis the index to a subset of MAI signals which we strive to re-
ject. Note that for simplicity, Table 1 defines the composition
of the constraint matrix when only MAI is rejected, but it is
easily generalized to also incorporate ISI rejection by adding
columns of the estimated ISI. Of the modes previously pre-
sented, three merit discussion here.

In the ISR-hypothesis mode (ISR-H), every symbol sig-
nature* of the selected interfering users is rejected individu-
ally. This mode does not require DE. If the channel is known,
selected interfering users can be rejected perfectly but the
white noise is enhanced. ISR-H was found to perform poorly
on the UL because of the large noise enhancement associ-
ated with the many constraints [30]. Its application to the
DL, however, is more appealing due to the adverse near-far
situations there as we will witness later.

In the ISR-realizations mode (ISR-R), we do not form a
null constraint for each symbol signature of each interfering
user. Instead, we reconstruct the sequence of symbols over

4“Symbol signature” is understood as the unmodulated symbol.
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FIGURE 4: Relation between H, R, and TR modes can be illustrated
from the composition of the constraint matrix.

the duration of the observation frame. The R mode there-
fore requires DF. These decisions are obtained from MRC-
based decisions (Section 2.3.2). The number of constraints is
reduced with ISR-R giving less white noise enhancement at
the cost of reduced near-far resistance.

In the ISR-total realization (ISR-TR) mode, we recon-
struct interference using DF as in the R mode, then we add
the reconstructed interfering users scaled by their estimated
amplitudes to form one constraint only. ISR-TR, in addition
to DF, also requires power estimates (Section 2.3.3). The TR
mode has negligible white noise enhancement but also the
worst near-far resistance.

Before we introduce the proposed application of ISR to
the DL (DLISR) in Section 3.4, we will present DACCA and
VIR in Sections 3.2 and 3.3, respectively.

3.2. DACCA

We propose a strategy for channelization code allocation of
user data channels at the base station, which we denote by
DACCA. With DACCA, the base station dynamically reas-
signs channelization codes to the users at a low rate with the
aim of concentrating energy in the left-hand side of the OVSF
tree. We propose a simple metric for code assignment as the
product between each user’s output power and SF, denoted
by the power-SF product (PSFP) in the following.> DACCA
is illustrated in Figure 5a. The aim is to fill the OVSF tree
from left to right subject to the PSFP of users. The desired
outcome is a concentration of power at the left-hand side of
the OVSF tree. Figure 6 shows the probabilistic origin of the
interference for a random mobile in a network. The distribu-
tions were obtained with the aid of the RNS to be presented
in Section 4 and corresponds to a soft-blocking rate (SBR)
(see Section 4.2) of 20%, processing gain (PG) of 16, and an
offered traffic of Togp = 4 Erl. In this paper, the PG is defined
as the SE, L, multiplied by the number of receive antennas,
that is, PG = MgL. Otherwise, the assumptions specified in
Section 5.2.1 apply. We observe that most of the interference
is generated by just a few users. For example, 30% of the total
interference arrives from the strongest in-cell interferer and
the sum of only two interferers accounts for almost half the
interference. With DACCA, therefore, most of the interfer-
ence power can be concentrated in a relatively small portion
of the OVSF code space. It is the pronounced near-far situa-
tions on the DL which make DACCA especially interesting.
Dynamic code assignment and reassignment strategies
have previously been considered in [33, 34]. The goal in pre-
vious works was to reduce code blocking and limit the code
reassignment rate. Instead, the purpose of DACCA is to pro-
vide the mobile with a priori knowledge on where to look for
interference and at the same time concentrating the inter-
ference energy in a small portion of the OVSF tree. DACCA
shares some similarities with the strategy denoted “leftmost”
in [34], namely, users are assigned to the leftmost available
code in the OVSF tree. DACCA imposes additional restric-
tions because it both strives to assign the leftmost codes and
at the same time to achieve the best possible concentration
of power at the left-hand side of the OVSF tree. Therefore,
DACCA will exacerbate the probability of code blocking and
more frequent code reassignments must be performed by
UTRAN (UMTS terrestrial radio access network). The need
for frequent reassignment is satisfied by reassigning codes at
alow rate of 75 Hz in our simulations. Regarding code block-
ing, previous results [34] indicate that a load (i.e., number
of OVSF codes in use divided by the SF) of 50% yields a
code-blocking rate less than 1%. Comparing this blocking
with the loads we can achieve (see Section 5) and the SBR
on the air interface, it is reasonable to deem code blocking

SIn practice, the assignment rule should be more complex because not
all SFs are equally probable and because assigned codes mutually preclude
each other; for example, assignment of a high SF code blocks any parents
of that code to be assigned. This issue is irrelevant for this work because we
consider only one SF for all users in our simulations.
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FIGURE 5: DACCA and VIR illustrated. (a) In DACCA, users are assigned channelization codes according to their PSFP. (b) Interference

rejection is aimed at a low SF when VIR is employed.
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FIGURE 6: Relative power of interferers arriving from different
sources. 1 In-cell is the strongest in-cell interferer, 1@1 neighbor
is the strongest interference from first-tier neighbors.

to be a minor drawback of DACCA. Note that DACCA does
not conflict with 3G standards because channelization codes
can be allocated almost freely by UTRAN. Only the primary
CPICH and the primary CCPCH have predefined channel-
ization codes [29].

3.3. Virtual interference rejection

VIR involves rejection of interference targeting a channel-
ization code with low SF (rejection SF (RSF)) although no
physical users may be assigned this code. VIR is particularly
interesting in the context of OVSF trees [29]. The idea is to
target one or more virtual channelization codes with low RSF
L and reject these codes as if they were physical users. The
advantage is that any offspring (in the OVSF tree) from the
rejected virtual code is also rejected; therefore, multiple in-

terfering users are rejected, targeting only a few virtual chan-
nelization codes.

It is noteworthy that VIR targets the channelization
codes. In practice, the channelization codes are repeated at
the rate LgrT,, scrambled by the scrambling code and fil-
tered by the channel response. A mathematical formulation
of VIR is provided in [35]; here we will provide an example
of VIR. Consider the segment of an OVSF tree starting at an
SF of 8 shown in Figure 5b. Codes that are circled are in ac-
tive use. Consider the virtual channelization code c.(8,1),
marked with an “x.” We reconstruct all required segments®
of c.n(8,1), apply the appropriate scrambling code, and filter
them by the estimated channel response. Then we reject all
reconstructed segments. It then follows that all descendants
are rejected irrespective of their SF and modulation; that is,
the interferer with SF = 16 assigned to code ¢(16,1), the
code with SF = 32 assigned to c.,(32, 3), and the one with an
SF of L = 64 assigned to c¢.;(64,7), respectively, are all re-
jected. The code ¢, (64, 8) is rejected although it is not active
and the code c.;(16,3) is active but not rejected. Preferably,
codes that are not active should not be rejected.

When VIR is combined with DACCA, cancelling the left-
most code at any RSF ideally causes the highest possible frac-
tion of the interference to be rejected. The efficiency of VIR
is, therefore, enhanced when DACCA is used. If DACCA is
not employed, the RSF must be higher to minimize the num-
ber of rejected inactive codes. This will increase complexity
significantly (see Section 3.5) and possibly degrade perfor-
mance.

An idea similar to VIR was considered in [28]; however,
the targeted SFs were very high SFs instead of very low SFs
like in VIR. The idea there is that one interferer at a low SF is
equivalent to numerous high SF virtual users. With VIR, the

6Required segments means those segments which will have contributions
within the current observation frame. If the delay spread is low, there are
approximately QL/Lgr + 1 contributing segments per targeted virtual code
(including two edge symbols).
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TasBLE 2: Important characteristics of new ISR variants for DL MIMO.
Feature Requires Knows int. Knows Knows int. Applicable to Knows int.
strategy DACCA? codes? int. SF? modulation? PS/CS int.? coding?
ISR-H-FC Yes No No No Yes No
ISR-H-BC No!? No No No Yes® No
ISR-R-SD No!? No No No Yes® No
PIC-SD No!? No No No Yes® No
MRC No No No No Yes No
Performance gain with DACCA.
2Complexity reduction with DACCA.
3Possible performance penalty for PS.
idea is opposite: one low SF code constitutes many interferers ~ 3.4.1. DLISR-H-FC

assigned to physical OVSF codes of higher SFs.

3.4. DLISR

Compared to the UL, DL MUD is characterized by a lack of
information regarding the interference. A mobile generally
has no knowledge of the interfering users’ codes, modula-
tion, connection type, and coding. This information is only
available for the pilots and the desired signal. Therefore, the
interference rejection is conveniently split into two steps: in
the first step, we remove the MAI and in the second step,
we remove the ISI and the pilots as shown in Figure 7. The
TR mode has shown excellent performance in [30] with the
lowest possible complexity. Therefore, the TR mode is well
suited for application in the second step regardless of the so-
lution applied in the first step. For lack of space, we disregard
further details and focus on the more important first step in
the following. Improved near-far resistant channel estima-
tion [36] may be achieved by using the near-far resistant ob-
servation Yy, = II, Y, (see (20)) offered as an intermediate
step according to Figure 7. It is therefore natural to use Yy,
for the purpose of channel identification because it is offered
without additional complexity. In the following, we present
three variants of DLISR. Two variants based on ISR-H and
are denoted by DLISR-H with fixed constraints (DLISR-H-
FC) and DLISR-H with best constraints (DLISR-H-BC), re-
spectively. The final variant is based on the R mode with soft
decision and is denoted by DLISR-R-SD. For the purpose of
comparison, we also consider the PIC-SD. Important prop-
erties of the DLISR variants, PIC-SD, and MRC are summa-
rized in Table 2.

DLISR-H-FC is the simplest of all variants. The idea is to
blindly reject the same OVSF code subspace according to a
fixed strategy. Obviously, this mode is relevant only when
DACCA is employed.

Whenever a virtual-user code is rejected, white noise is
enhanced. It can be shown that if the spreading is real, the
noise enhancement is given as follows:”

Nr -2
K_NT—Z—NC’ (22)
where N. is the number of interfering signals to be rejected.
The observation frame with dimension Ny = Mg(QL + Lp)
(see (10)) spans (QL + Lp)/Lg segments of the targeted code
with SF Lg. Due to asynchronism and multipath propaga-
tion, additional symbols will contribute at the edges. Assum-
ing that the delay spread is insignificant, it follows that the
number of constraints in (22) is N; =~ [(QL + La)/Lg| + 1.

Using (22) and the probabilistic distribution of interfer-
ence (see Figure 6), we can identify a solution that optimizes
the trade-off between noise enhancement and interference
reduction. Table 3 lists the relative reduction of interference
and noise enhancement for different strategies. The first row

7If we strive to reject a subspace with dimension N, contained within
the total dimension N, a fraction of the desired signal energy is rejected
as well. It is reasonable to assume that this fraction is approximately (N7 —
N¢)/Nr. Therefore, the noise compared to the desired signal is enhanced by
Nr/(NT —N,). A more accurate development of (22) will be shown in a later
contribution.



High Capacity Downlink Transmission with MIMO ISR in CDMA 717
TaBLE 3: Choosing the best strategy.
Number of interferers to reject
(in-cell/neighbor 1/neighbor 2) 1/0/0 2/0/0 3/0/0 3/1/0 4/1/0 4/2/0 4/2/1 4/3/1
Interference reduction (dB) 1.53 2.64 3.47 4.41 5.11 5.83 6.42 6.98
Noise enhancement (dB) 0.32 0.66 1.04 1.46 1.91 2.43 3.01 3.67
Net gain (dB) 1.20 1.97 2.43 2.95 3.19 3.40 3.41 3.31
TaBLE 4: Complexity estimates of ISR variants in Mops.
Task DLISR-H-FC  DLISR-H-BC  DLISR-R-SD  PIC-SD MRC  Comment
STAR 300 300 300 300 300 100 Mops per channel [37]
Reconstruct, Xiz;)k 259 363 363 311 0 —
chy, 61 61 31 0 0 E ha}s higher dimension for H-variants
ut it is sparse
Q=_CHcC 246 246 61 0 0 —
Q'Ccly, 282 282 1 0 0 —
Margin 40% 40% 40% 40% 40% —
Total Mops at RSF =8 1607 1753 1058 855 420 Appropriate when DACCA is employed
Total Mops at RSF = 16 4185 4476 1800 1218 420 —
Total Mops at RSF = 32 13728 14308 3828 1944 420 Appropriate when DACCA is absent

identifies the interferers rejected, for example, 2/1/0 means
the two strongest in-cell virtual users plus the strongest out-
cell user of the neighbor cell with the strongest pilot chan-
nel. In the second row, the noise enhancement is computed
according to (22). The net gain peaks at 3.41 dB suggesting
that the best strategy is to reject 4 in-cell virtual users, 2 vir-
tual users from the strongest neighbor, and one virtual user
from the second strongest neighbor. In reality, the strategy
(which is fixed) should be selected according to the highest
load during busy hour. This ensures optimal performance at
peakload and always satisfactory performance at lower loads.

3.4.2. DLISR-H-BC

In the DLISR-H-BC variant, we estimate the power in the
virtual subspace of the serving cell and all cells in the neigh-
bor list. The power is estimated subject to the RSF which may
represent many virtual users. The best constraints are com-
puted along the same lines as in Table 3, but the interference
reduction is based on the estimated power and not the statis-
tical mean. This version hence adapts easily to fast fading and
will attempt to reject interference most efficiently. This strat-
egy therefore ensures that we always follow an optimal rejec-
tion strategy, provided that the powers are estimated prop-
erly and the update is done frequently.

DLISR-H-BC is more complex than DLISR-H-FC be-
cause it needs to probe the interference subspace and has
to decide which constraints to reject for best performance.
It can, however, work in the absence of DACCA although
DACCA simplifies probing. In the absence of DACCA, in-
terference is not generally concentrated at a low SF virtual
code; it may therefore be necessary to probe the OVSF tree
at higher RSF levels. This increases complexity and reduces
the accuracy of probing because a few strong sources can be
estimated more reliably than many weak sources.

3.4.3. DLISR-R-SD

In this variant, we reconstruct the virtual users using soft
decision. Working at a low RSE, the N, OVSF virtual codes
which contain most power are selected. These codes are re-
constructed as virtual users’ signals, and soft decision esti-
mates based on MRC estimation are used. Note that hard de-
cision FB is not usually an option on the DL and the fact that
one virtual code is the contribution of many physical inter-
fering users makes hard decision even more complicated.

3.4.4. PIC-SD

As a benchmark, we consider the PIC [16, 17] with SD
FB, and denote it by PIC-SD. We follow the same steps as
for DLISR-R-SD; but the reconstructed interference is sub-
tracted instead of nulled. Obviously, PIC-SD, like DLISR,
takes advantage of both VIR and DACCA to improve per-
formance and lower complexity.

3.5. Computational complexity of DLISR

We provide complexity estimates in Table 4 assuming VIR
with an RSF of 8 for all DLISR variants, PIC-SD, and MRC.
We have also listed results for an RSF of 16 and 32, respec-
tively. We have detailed the most demanding tasks and a mar-
gin of 40% has been added to account for all other opera-
tions not listed. We assume that RSF/2 virtual codes are re-
jected and that three cells are actively monitored. Complex-
ity is specified in Mops, where one operation is defined as
a complex multiply-add. The numbers are appropriate for
Mpgr = 1. Roughly speaking, complexity is invariant to the
SF of the desired user, and grows linearly with the number
of receiving antennas. The results for RSF = 8 relate to the
situation where DACCA is employed (as in our later simu-
lations). When DACCA is not employed, an RSF of 8 is too
low. We simulated the leftmost and random code-allocation
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schemes, for which details are omitted for lack of space, and
found that an RSF of about 32 must be employed if the left-
most strategy is used instead of DACCA, and even higher RSF
must be employed if random code allocation is employed.

The complexity of the matrix inversion is very modest.
For the R-variant, it is negligible because the dimension is
only 4 (with RSF = 8). H-variants have higher complexities
associated with the inversion but, although not evident, there
are huge savings because Q is band diagonal as a result of VIR
(low RSF approach).® PIC-SD does not require matrix inver-
sion and therefore has a complexity advantage over DLISR
which, however, is vanishing for low RSFs.

When VIR and DACCA are employed, the complexity of
our solution is moderate. Our MUD solutions require from
about 1.1 to 1.7 Gops. Today’s high-end signal processors
offer speeds of more than 10 Gops. A requirement of 1.1—
1.7 Gops is therefore reasonable for a mobile terminal appli-
cation where cost and power consumption must be kept low.
The feasibility becomes even more evident when compared
with SUD (STAR-MRC); our solution requires only about
2.5-4 times the complexity of SUD. Note that our SUD can-
didate, STAR [22] with MRC, is comparable in complexity
to the RAKE [37], which is used in current implementations.
DLISR-R-SD is less complex than the H-variants but the dif-
ference is only about 50% which is considered unimportant.

If DACCA is not employed, VIR is still applicable (and
should be used!) but it must target a higher RSE. This ex-
acts a significant complexity increase of about 4-8 times’
when comparing at RSF = 32 which as argued is a good
choice when DACCA is not employed. The complexity of the
R-variants is now four times less than the H-variants. It is
therefore in much favor of DLISR-R-SD when higher RSFs
are used.

4. RADIO-NETWORK SIMULATOR

The purpose of the RNS is to provide a realistic picture of the
distribution of the users and how they interfere with each
other. This information is then used for the link-level simu-
lations.

The RNS starts by uniformly populating users in a ho-
mogeneous cell grid which we name the test network. Us-
ing propagation estimates, it iteratively blocks users either
due to coverage or interference limitations. Once the net-
work arrives at a stable condition, the RNS outputs the re-
alized interference. A stable condition is characterized as one
where all users can achieve the required SINR without being
blocked (i.e., without exceeding the maximum power offered
by the base station cell). First, we provide a mathematical for-
mulation in Section 4.1. Then we outline the algorithm in
Section 4.2.

8When the columns of C are arranged appropriately. Note that ISR is
invariant to the arrangement of the columns of C.

Values are in the high end. We feel confident that many computational
tricks can be exploited to reduce the complexity of reconstruction, and so
forth.

4.1. Network-level signal model

The mobile unit always strives to achieve a certain SINR
which is sufficient to provide a certain QoS. If the serving
cell is not able to supply the power required by a mobile, the
mobile is blocked. Below we define the link budget which is
useful to assess the SINR at the target mobile subject to trans-
mitted power, propagation loss, interference, and so forth.
First, we briefly discuss the propagation model which is es-
sential to the later considerations.

4.1.1.

We consider the following simplified form of the Okumura-
Hata propagation model [38, 39]:

Propagation model

Lot (4, V)

max { dist (%, V), do} (23)

do

= Lo+ 10Kp 10g10 ( ) +I'ines

where Kp is the propagation exponent (typically 3.5-4 for
urban environments), Ly is an offset which relates to the
morphology, # = 1,...,Ny is the user index where Ny is
the total number of users in the network attempting a call,
v = 1,...,Ncpus is the cell index where Ncpris is the to-
tal number of cells, and dist(#, V) is the distance between
the mobile and the cell. Finally, I'tng models the log-normal
fading (LNF) and is assumed to be a normally distributed
random variable, that is, I1ng € N{O, O'LZNF}. Note that the
variables 7, v, and Ncgr1s by definition are different from u,
v, and Ncgpis first introduced in Section 2.1.1% Considering
that signals arriving from the same spatial direction will ex-
perience similar LNF, we introduce the following location-
dependent modeling of the LNF:

I'ine = Xing €0s(®) + Ying sin(@), (24)

where © is the angle between the mobile and the cell, and
where Xing, Yinr are independent zero-mean Gaussian dis-
tributed random variables with variance ofy.

4.1.2. Generic multicell multiuser link budgets

We define the set § which contains the indices of all mobiles
which are blocked. If the mobile (%, V) is not blocked (i.e.,
(u,v) ¢ G35), we have

S(u,v) = Pour(w,v) + Gr(u, V)
_ o (25)
+ Gr — Amarg (%, V) — Loatu (%, V) <=

Pour(s,v) = S(41,v) — Gr(%, V) — Gr + Aparg (14, V) 26)
+ Lpatu (4, v),

where S is the signal strength at the input of the receiving

10For instance, (1, v) is the uth user connected to the vth cell. However, %
means the zith user in the network (possibly blocked).
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antenna,'! Poyr is the power fed to the transmitting an-
tenna,'? Gr and Gy, are the gains of the transmitting and re-
ceiving antennas, respectively, Ayarg accounts for additional
engineering margins (e.g., PC margin), and Lpary is the path
loss between the serving cell and the user equipment defined
in (23). We assume that the mobile antenna gain is indepen-
dent of its location and Gy, is therefore location independent.

Let yreq specify the required SINR in dB for a specified
QoS. We assume that the required target value is the same
for all mobiles.!> Assume that v,, is the serving cell of the zth
mobile; then the required signal power at the input to the
receiver, say Sreq (%, ¥y), is given in dB as follows:

SREQ (ﬁ, Vu) = YREQ T 1010g10 (JV# + 1#(ﬁ))
ray 27
)

= yreq + N +10log;, (1 +

where N is the user-independent thermal noise power, and
J(m) is the total MAI received at the mobile 7 to be defined in
(29). We use the # sign to differentiate a physical value from
its dB equivalent. We next combine (26) and (27) to find the
required transmitted power:

_ 1* ()
Preq (@, V) = yreq + N + 10log, {1+ %
- Gr(%,7V,) — Gr + Amarc + Learu (%, 7,,)

(28)

and can now define the received interference as follows:

J(@) = 10log,, ( Z 10Preq(#',7u) = Korrr —Lioss (#',v4))/10

u'#u

+ Z Zlo(Pkm(u’)V’)LLoss(u’,v;))/w) (29)
v#vy, W

+ 10log,, (PG),

where Korrn is the orthogonality factor, a measure of the
orthogonality loss due to multipath propagation (a typical
value is 2dB), and PG = LMy, is the PG.

We define the best server v,, of the mobile with index # as
the serving cell ¥ which requires the lowest output power to
satisfy the SINR target:

v, = argmin {Preq(%,7') | 4(%) = 0}. (30)

This definition suggests that we consider the best server as
the cell with the strongest signal since the interference is as-
sumed zero. In handover situations, this may not be true be-
cause of hand-over hysteresis, congestion, or load balancing.
We also note that the best server, according to the definition

1'We assume for simplicity that the reference point is the antenna con-
nector and avoid this way to consider feeder losses and so forth which are
immaterial for our purpose.

12The connector of the transmitting antenna is our reference point.

131n reality, the target value is determined by the outer-loop PC and dif-
fers, due to different channel conditions, slightly across mobiles which oth-
erwise require the same service.

used, may not be the best choice because of orthogonal trans-
mission, which implies that a weaker server may occasionally
have better effective SINR. If the best server cannot supply
the required power needed, the user is blocked. Blocking oc-
curs either due to coverage blocking (excessive path loss) or
interference blocking (excessive interference).

The size of the test network can be limited using
wraparound to mitigate the edge effect. To implement wrap-
around, we place nine virtual images of the test network in all
directions (south, south-east, east, and so forth). In the com-
putations, the image of a cell which gives the strongest signal
is chosen. For instance, to compute the required power in
(28), we compute it for both the target cell and also for all its
nine replicas; and then select the replica which gives the high-
est signal strength. Nondocumented simulations support the
efficiency of network wrapping, which allows for the use of
test networks smaller than 25 sites (5 by 5 grid).

4.2. RNS algorithm

The object of the algorithm is to locate mobiles in the net-
work so that all nonblocked mobiles experience satisfactory
SINR. The algorithm estimates this by uniformly distribut-
ing Ncgrrs Torr users, where Topr is the offered traffic. Then
it blocks users until a stable solution is found. The RNS al-
gorithm is illustrated by the flowchart in Figure 8. We iden-
tify a cell near the center of the grid as the target cell. Assume
that the noise floor A and the maximum output power Pyax
have been defined. Initially, the sets of blocked mobiles are
empty, that is, $cg = O (coverage) and 813 = & (interfer-
ence).

(1) Distribute Ncgris cells on a map in a hexagonal grid.

(2) Randomly populate the test network with Nerris Torr
users.

(3) Compute for every mobile-cell pair the power required
for service (see (28)).

(4) Identify the best server for every user (see (30)).

(5) Users with Prpq > Pmax, Pmax being the maximum
output power which can be assigned to any individ-
ual user, are deemed to be coverage blocked and are
added to the set 8cp. The fraction of users blocked
estimates the coverage blocking probability, that is,
Prcp = size{4cp}/(NcerrsTorr).

(6) Compute the total received interference for all remain-
ing users (see (29)).

(7) Compute required output power for all remaining
users (see (28)).

(8) Block users which have Pour > Pwmax and add to the
set of interference blocked users $1z.

(9) If all users that are not blocked can achieve the re-
quired SINR, stop, otherwise go to 7.

We note that the noise floor and the maximum output pow-
ers are chosen arbitrarily. By appropriate choices, we can tar-
get any desired coverage blocking.

Prig = size{8is}/(Nceirs Torr) estimates the probability
of interference blocking. An estimate of the total SBR is then
pI'B = PI‘CB + prlB-
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F1GURE 8: Flowchart of the radio-network simulation operations.

5. SYSTEM-LEVEL SIMULATIONS
5.1.

The simulation model consists of the RNS (Section 4) and
the link-level simulator as shown in Figure 1. The RNS pro-
vides realistic realizations of the radio-network and the link-
level simulator uses this information for BER assessments.
We note that a network realization from RNS will result in
the same target SINR for all mobiles; however, it is the distri-
bution of the interference which is particularly important on
the DL. For a given average offered Erlang traffic, the actual
carried traffic is determined by the radio-network SBR (cov-
erage+interference blocking). The SBR is related to the aver-
age SINR of the mobiles. This is illustrated in Figure 9 which
depicts SBR as a function of the required SINR. The coverage
blocking was fixed at 10% by adjusting the maximal output
power Pypax. Each SBR estimate is based on 37500 observa-
tions with the conditions otherwise stated in Section 5.2.1.
Each curve corresponds to the offered traffic level specified
in the legend. For a given carried traffic and SBR, the SINR
from these curves dictates the PC target SINR which must be
used by the link-level simulator. For instance, if we target an
SBR 0f 20% and 4 Erlangs of traffic, the SINR target is 4.5 dB.

From link-level to system-level results

5.2, Simulation setup
5.2.1.

We have considered a homogeneous hexagonal grid of 5 by
5 sites. Wrapping has been used to mitigate the edge effect.
The sites have 3 sectors with pointing directions of 0°, 120°,
and 240° azimuth, respectively. The antennas are 20 m high
and the site-to-site distance is 250/5m. We use the verti-
cal/horizontal antenna patterns of Kathrein Werke KG, type
number 742212, 1950 MHz antennas with 6° electrical tilt.!*
The orthogonality factor is assumed to be 2.2 dB. We dedi-
cate 10% of the average output power to the CPICH. Cov-
erage blocking has been fixed at 10%. We consider high data
rates herein. Therefore, the coverage blocking is chosen mod-
erately high. Table 5 summarizes the settings otherwise used.

RNS simulations setup

5.2.2.

In the link-level simulations, we attempted to approximate
the specifications for WCDMA [2]. We have considered

Link-level simulations setup

14We tested antenna tilts in the range of 0° to 8° and selected 6° because it
provided the highest coverage degree with the choice of site-to-site distance
and antenna heights.
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FIGURE 9: Estimated SBR as a function of the SINR target in a ho-
mogeneous system. The coverage blocking is fixed at 10% and the
PGis 16.

low SF operation and high-order modulation schemes (e.g.,
HSPDA [3, 4]). We use the interference realizations and pilot
powers as given by the RNS as inputs to the link-level sim-
ulator. We explicitly generate signals from the serving cell
and the three strongest neighbors,!> whereas the interfer-
ence from the remaining cells is modeled as AWGN. In all
our simulations, we consider an SF of L = 8 which corre-
sponds to a coded information rate of 480 kbps with QPSK
or 960kbps with 16 QAM when a rate-1/2 coding is as-
sumed. The channel is Rayleigh fading [32] with chip-rate
normalized Doppler fp/R., where R, = 3.86 Mcps is the chip
rate, and we consider frequency-selective fading with P = 3
equal-strength propagation paths with random delays and
interpath delays limited to 10 chips. We consider both SISO
and MIMO systems. For the desired user, we implement

15Simulations with the RNS show that the desired cell and the three
strongest neighbors contribute 95% of the total interference when the car-
ried traffic is 1.6 Erlangs. This number increases with higher traffic loads.
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TABLE 5: Parameters used for the RNS.

Parameter Assumption

Comments

Cell layout

Site-to-site distance 250./5m

Antenna pattern Kathrein 742212 with 6° electrical tilt
Antenna height 20m

Antenna tilt 6°

SBR 20%

CPICH power 10%

Propagation model

Processing gain 16

LNF standard deviation 8dB

LNF correlations Yes

Hexagonal grid, three-sector sites

Wrapping used to mitigate edge effect

Horizontal/vertical patterns

Optimized for coverage

10% due to coverage, 10% due to interference
Relative to average cell output power

Constant + 401log, (1 [x2 + yz) _

Equal to MRL

Determined by angle of arrival (see (24))

PC,'® with a PC correction factor APpc to be updated at a
rate of 1500 Hz. The PC message is determined by compar-
ing the estimated SINR (see Section 2.3.4) to the target SINR
(coordinated with the RNS). We further impose a transmis-
sion delay of Dpc = 1/(1600 Hz) = 0.625 millisecond and a
simulated error rate on the PC bit of BERpc = 10%. Model-
ing closed-loop PC for all users is costly and we have there-
fore used a simplified model for the interfering users as illus-
trated in Figure 10. The signal from the unit power source is
first scaled by the PC feedback to yield the transmitted power

P{% . The transmitted power is attenuated by the channel,
then a Gaussian random variable with variance 0.25 is added
to model practical estimation errors in the receiver. This sig-
nal is squared and used by the PC decision device to adjust
the transmitted power (dpis compensates for the bias im-
posed by the simulated noise), and fed back with a delay
of Dpc. To find the power as experienced by the target mo-
bile, we attenuate the transmitted power by the propagation
loss from the serving cell of the interferer to the desired user
LU — L) o eventually yield (y®¥)(¢))2. The values of
the propagation losses are obtained as a side product from
the RNS.

We use STAR [22] to estimate the channels with the mod-
ifications formulated in Section 2.3.1 and Figure 7. DACCA
is used with code reallocation at 75 Hz. It is further assumed
that DLISR-H-BC updates its constraints at a rate of 300 Hz.
Working at an RSF of 8, we found that N, = 2Mp is a good
rule for good performance for DLISR-R-SD in the operating

16In the absence of PC, the received power y? has a y* distribution with
standard deviation 0,2 = 1/y/Mr X Mp that asymptotically approaches the
AWGN channel at a very high diversity order M X Mg — co. With PC, how-
ever, y? has a log-normal distribution with much weaker standard deviation
that quickly approaches the AWGN channel with few antenna elements only,
as shown in [31]. Hence, PC significantly increases capacity and reduces the
MIMO array size. Indeed, as noted in [31], if we apply the asymptotic ex-
pression for the BER in the absence of PC Pr[b # b] = (Ej/No)~VMr<Mr —

~1/0? . L
(Ep/Ny) % to the case of active PC (as an approximation), we may expect
to obtain (from standard deviation measurements) the same capacity with
PC and 3 X2 antennas as would be obtained without PC and 30 X 2 antennas!

region of interest (about 5% BER). The PIC-SD interestingly
shows strong sensitivity to this parameter and the best choice
proves to be N, = Mg. The parameters most commonly uti-
lized in the simulations, unless otherwise specified, are sum-
marized in Table 6. All BER estimates reported are derived
from at least 150 RNS realizations and each realization was
run for at least 19000 symbols.

5.3. SISO with QPSK modulation

We consider first a SISO system with QPSK modulation.
The SBR is 20% and the SF is L = 8. We employ one
channelization-code group composed of L = 8 orthogonal
Walsh codes. Note that the high soft-blocking ratio consid-
ered reflect the high data rate services that we are consid-
ering. The carried traffic is hence hard limited to a maxi-
mum of 8 users. Code blocking occurs rarely with the traffic
loads we consider and its influence is vanishing compared to
the SBR of 20%. This claim is true for all simulations cited
herein.

Figure 11 shows the uncoded BER as a function of the
carried Erlang traffic in the network. Our proposed DLISR
variants significantly outperform MRC. They provide Erlang
capacity gains of 3.5dB (DLISR-H-BC) > 3.2dB (DLISR-R-
SD) > 1.6 dB (DLISR-H-FC),! respectively, over MRC-based
SUD at 5% BER. Although PIC-SD is similar to DLISR-R-SD,
it can only offer a gain of 2.6 dB. This illustrates the advantage
of linearly constrained beamforming compared to subtrac-
tion."® With DLISR-H-BC, we achieve the highest spectral
efficiency of 0.78 bps/Hz, where spectral efficiency is defined
as s = log,(Mwiod) Te/L, where Myoq denotes the number
of symbols in the signal constellation, and Ty is the carried
Erlang traffic (at 5% BER). It is noteworthy that the H mode
on the UL did not demonstrate as good performance. The
pronounced near-far situations on the DL makes its applica-
tion attractive.

w«_ »

17We use for simplicity “>” to say that the gain is “greater than”
18Note the similarity of these two: with PIC, interference is reconstructed
and subtracted; with DLISR-R-SD, the reconstructed interference is nulled.
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Figure 10: Simplified PC modeling used to model PC (for interfering users only).
TaBLE 6: Parameters used in link-level simulations (unless otherwise specified).
Parameter Value Comment
R, 3.84 Mcps Chip rate
p 3 (0dB,0dB,0dB) Number of paths (relative average strength)
fe 1.9GHz Carrier frequency
£ 0H Frequency error (we assume that frequency offset
¢ z errors have been compensated, see [40])
fo 8.9Hz Doppler frequency (i.e., 5Kmph)
L 8 SF
fec 1600 Hz Frequency of PC updating
APpc +1dB PC adjustment
BERpc 10% Simulated PC BER
% T, 2 ppm Symbol clock drift (linear)

At 10 chips Maximal delay spread

foacea 75Hz DACCA reassignment rate

Note that if we instead compare capacities at BER levels
below 3 dB and above 5%, respectively (i.e., 2.5% and 10%),
the DLISR-H-BC capacity gains over MRC are 4.5dB and
2.3dB, respectively. It is therefore advantageous for DLISR
(and MUD solutions in general) to compare along lower BER
levels. Our internal studies have shown that 5% is an appro-
priate target if a rate-1/2 convolutional code with constraint
length 9 is assumed. We therefore continue to aim at 5%.

5.4. 2 x2MIMO with QPSK modulation

We now consider a 2 X 2 MIMO system. The SF is still 8 but
the PG is 16 because of the extra antenna. Since we have two
transmitting antennas, we have defined two groups of chan-
nelization codes. One group consists of L = 8 orthogonal
Walsh codes; the second group likewise consists of 8 orthog-
onal codes obtained from the first group by 45° rotation (see
the example in Section 2.1). Results are shown in Figure 12.
DLISR-H-BC, DLISR-R-SD, PIC-SD, and MRC achieve
the same relative capacity gain of about 3.9 dB compared to
SISO. The advantage of linearly constrained beamforming
(DLISR-R-SD) compared to subtraction (PIC-SD) is con-
firmed in this situation as well. The best spectral efficiency of
1.95 bps/Hz is again achieved by DLISR-H-BC. It is obvious
that about 3dB of these gains are due to the antenna gain.
The rest is a combination of diversity and statistical multi-

plexing gain on the air interface. DLISR-H-FC improves in
MIMO compared to SISO achieving a relative gain of 5.1 dB
compared to SISO. DLISR-H-FC experiences a statistical gain
because more users are active in the MIMO system and ran-
domness hence plays a less dominant role. Since this variant
uses completely fixed constraints, interference energy is more
likely to be concentrated where expected.

5.5. 4 x 4 MIMO with QPSK modulation

We increase the number of receive and transmit antennas to
four. Four code groups were determined by computer sim-
ulations where the objective was to minimize the intergroup
cross-correlation. Results are shown in Figure 13 (for MRC,
ISRDL-H-BC, and PIC-SD). The spectral efficiency of both
DLISR and MRC doubles, compared to the 2 x 2 MIMO sys-
tem. We are hence able to retain our MUD advantage of at
least 3dB over MRC-based SUD. PIC-SD as usual performs
worse than DLISR and can only provide a gain of 2.1 dB over
MRC. With DLISR-H-BC, we can now support 17 Erlangs
of 480 kbps traffic per sector corresponding to a spectral effi-
ciency of 4 bits/Hz/sector. Comparing SISO, 2x2 MIMO, and
4 x 4 MIMO, we notice that capacity increases linearly with
the number of antennas. This linear relationship was also
found by [9] for the MMSE MUD in an interference-limited
cellular system. In cellular interference-limited systems, the
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FiGure 11: Uncoded BER performance as a function of the offered
traffic. The modulation is QPSK and the channel is SISO. The SF is
8 corresponding to an information rate of 480 kbps (rate-1/2 coding
assumed).
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Figure 12: Uncoded BER performance as a function of the offered
traffic. The modulation is QPSK and the channel is 2 x 2 MIMO.
The SF is 8 corresponding to an information rate of 480 kbps (rate-
1/2 coding assumed).

gain is limited to the antenna gain and is therefore dictated by
the number of receive antennas. Note that multiple transmit

Uncoded BER
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Carried traffic [Erl]

- MRC
-+ DLISR-H-BC
- PIC-SD

FIGURE 13: Uncoded BER performance as a function of the offered
traffic. The modulation is QPSK, the channel is 4 x 4 MIMO, and
the SBR is 20%. The SF is 8 corresponding to an information rate
of 480 kbps (rate-1/2 coding assumed).

antennas still serve to alleviate the shortage of OVSF codes
and can provide additional time diversity.

5.6. 2 x2MIMO with 16-QAM modulation

We use the same settings as in Section 5.4 but consider now
16-QAM modulation corresponding to a bit rate of 960 kbps
after rate-1/2 coding. Figure 14a shows the uncoded BER as
a function of the carried traffic. We have used the 16-QAM
symbol constellation suggested in [4].

The capacity gain of DLISR compared to MRC becomes
dominant offering 8.1dB capacity increase achieved with
DLISR-H-BC. DLISR-R-SD performs slightly worse with
7.7dB gain over MRC, but as usual, outperforming PIC-
SD which only provides a gain of 6.7dB. The remarkable
gains over MRC are a result of increased data rate which ef-
fectively exacerbates the near-far situations because interfer-
ence is limited to fewer sources. Compared to the QPSK re-
sults, the carried Erlang traffic is reduced by about 5.4 dB for
DLISR variants. The spectral efficiency, which decreases less
due to the doubled symbol rate, is 1.1 bps/Hz for DLISR-
H-BC corresponding to a reduction of 2.6 dB compared to
MIMO QPSK.

Higher capacities can always be achieved at the expense
of increased SBR because it implies higher SINR operating
point, even though the carried traffic is constant. To see the
effect, Figure 14b shows performance with SBR = 60%. The
spectral efficiency is increased for all modes. For instance,
the DLISR-H-BC spectral efficiency is increased by 1.8 dB,
yielding an absolute spectral efficiency of about 1.5 bps/Hz.
This illustrates the important trade-off between capacity and
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Figure 14: Uncoded BER performance as a function of the offered traffic. The modulation is 16 QAM, the channel is 2 X 2 MIMO, and the
SF is 8 corresponding to an information rate of 960 kbps (rate-1/2 coding assumed). (a) The SBR is 20%. (b) The SBR is 60%.

network SBR. Higher SBR reduces the benefit of DLISR com-
pared to MRC slightly, but it is still a significant 6.5 dB with
DLISR-H-BC. MRC benefits more from increased SBR be-
cause in-cell interference becomes dominant and therefore
an orthogonality gain, which is more pronounced for MRC,
is achieved.

6. CONCLUSION

In this paper, we have presented a new MUD for DL
MIMO systems. Our solution is based on previously pre-
sented ISR and is denoted DLISR. We have defined three
variants of DLISR with different performances and com-
plexities. The DLISR variants share one common feature,
they employ VIR and they can benefit from dynamic al-
location of channelization codes at the base station using
the DACCA technique. VIR significantly reduces complex-
ity because interference is rejected at a low (virtual) SE With
DACCA, the base station assigns channelization codes with
the aim of concentrating interference in a small portion of
the OVSF code tree. With DACCA, VIR therefore becomes
even more efficient because we can attack interference at a
lower SF hence reducing complexity further. We note that
only one of our solutions requires DACCA. The remain-
ing solutions benefit from DACCA in terms of complex-
1ty.

Performance of DLISR has been evaluated with the aid
of a realistic simulation model consisting of an RNS and a
link-level simulator. The RNS generates interference scenar-

ios similar to those experienced in real life. These realizations
of interference are used by the link-level simulator to produce
BER performance statistics. At both levels, we have strived to
use realistic assumptions. As a benchmark, we have consid-
ered the MRC-based SUD and the PIC-SD.

The Erlang capacity of the network is found to grow lin-
early with the number of receive antennas for both MRC-
based SUD and our new DLISR MUD despite the existence
of interference. Significant increases of capacity are achieved
with DLISR which offers capacity gains over MRC-based
SUD of at least 3dB for QPSK (480kbit/s) and about 6.5—
8.1dB when 16 QAM (960Kkbit/s) is employed. A 4 X 4
MIMO system can support 17 Erlangs of 480kbit/s traf-
fic per sector corresponding to a spectral efficiency of 4
bits/s/Hz. DLISR-H-BC always achieves best performance
outperforming DLISR-R-SD by about 0.3-0.5 dB. DLISR-R-
SD outperforms PIC-SD by 0.5-0.9 dB, hence illustrating the
advantage of linearly constrained beamforming (DLISR-R-
SD) compared to subtraction (PIC-SD). DLISR-H-FC gen-
erally achieves the least gain over MRC, but it also possesses
the simplest structure.

Our DLISR solutions have low complexity when DACCA
is employed in UTRAN. The gains cited herein are achieved
at a complexity of about 1.6 Gops, which is only about 4
times that of SUD, and close to the complexity of PIC-SD.
The realistic assumptions of our study suggest that our solu-
tion is low risk. The new DLISR MUD is therefore a serious
candidate for DL MUD in CDMA-based MIMO and SISO
systems.
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INTRODUCTION

This paper presents a novel channel estimation technique for space-time coded (STC) systems. It is based on applying the max-
imum likelihood (ML) principle not only over a known pilot sequence but also over the unknown symbols in a data frame. The
resulting channel estimator gathers both the deterministic information corresponding to the pilot sequence and the statistical
information, in terms of a posteriori probabilities, about the unknown symbols. The method is suitable for Turbo equalization
schemes where those probabilities are computed with more and more precision at each iteration. Since the ML channel estimation
problem does not have a closed-form solution, we employ the expectation-maximization (EM) algorithm in order to iteratively
compute the ML estimate. The proposed channel estimator is first derived for a general time-dispersive MIMO channel and then
is particularized to a realistic scenario consisting of a transmission system based on the global system mobile (GSM) standard
performing in a subway tunnel. In this latter case, the channel is nondispersive but there exists controlled ISI introduced by the
Gaussian minimum shift keying (GMSK) modulation format used in GSM. We demonstrate, using experimentally measured
channels, that the training sequence length can be reduced from 26 bits as in the GSM standard to only 5 bits, thus achieving a
14% improvement in system throughput.

Keywords and phrases: STC, turbo equalization, turbo channel estimation, maximum likelihood channel estimation, GSM, sub-
way tunnels.

component codes. Obviously, such a decoding approach be-
comes impractical in most situations. The key idea behind

Recently, the so-called Turbo codes [1, 2, 3] have revealed
themselves as a very powerful coding technique able to ap-
proach the Shannon limit in AWGN channels. A Turbo code
is made up of two component codes (block or convolutional)
parallely or serially concatenated via an interleaver. This sim-
ple coding scheme produces very long codewords, so each
source information bit is highly spread through the trans-
mitted coded sequence. At reception, optimum maximum
likelihood (ML) decoding can be carried out by considering
the hypertrellis associated with the concatenation of the two

Turbo coding is to overcome this problem by employing a
suboptimal, but very powerful, decoding scheme termed it-
erative maximum a posteriori (MAP) decoding [3, 4]. Basi-
cally, the method relies on independently decoding each of
the component codes and exchanging in an iterative fashion
the statistical information, that is, the a posteriori probabili-
ties about symbols, obtained in each decoding module.

The same decoding principle has also been successfully
applied, under the term Turbo equalization [5], to effec-
tively compensate the ISI induced by the channel and/or the
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modulation scheme. This technique exploits the fact that ISI
can be viewed as a form of rate-1, nonrecursive coding. So,
whatever coding scheme is used, if an interleaver is located
prior to the channel, the overall effect of coding and ISI
can be treated as a concatenated code and therefore, itera-
tive MAP decoding can be applied. Luschi et al. [6] present
an in-depth review of this technique and further improve-
ments can be found in [7, 8, 9, 10]. In general, iterative MAP
processing can be applied to a variety of situations where the
overall system can be viewed as a concatenation of modules
whose input/output relationship can be described as a (hid-
den) Markov chain. Several works have appeared in the last
years exploiting this idea. For instance, Gortz [11], Garcia-
Frias and Villasenor [12], and Guyader et al. [13] worked
on the problem of joint source-channel decoding and Zhang
and Burr [14] addressed the problem of symbol timing re-
covery.

In practical receivers, where the channel impulse re-
sponse has to be estimated, it is convenient to have chan-
nel estimators capable of benefiting from the high perfor-
mance of Turbo equalizers [15, 16, 17]. Moreover, second-
and third-generation mobile standards consider the trans-
mission of pilot sequences known by the receiver for channel
estimation purposes. In the global system mobile (GSM) stan-
dard, this sequence is 26 bits long, which represents 17.6%
of the total frame length (148 bits) [18]. Such a long train-
ing sequence is necessary if classical estimation techniques,
such as least squares (LS), are used. Employing more re-
fined channel estimators, such as the one presented in this
paper, we can dramatically decrease the necessary length of
the training sequence and therefore increase the overall sys-
tem throughput. In [19], an ML-based channel estimator is
presented where the ML principle is applied not only to the
pilot sequence, but also to the whole data frame. Since the in-
volved optimization problem had no analytical solution, the
expectation-maximization (EM) algorithm [20] was used for
iteratively obtaining the solution.

Also, wireless communications research has been very in-
fluenced by the discovery of the potentials of communicating
through multiple-input multiple-output (MIMO) channels,
which can be carried out using antenna diversity not only
at reception, as classical space-diversity techniques have been
doing, but also at transmission. MIMO techniques have the
advantage to provide high data rate wireless services at no
extra bandwidth expansion or power consumption. Telatar
[21] calculated the capacity associated with a MIMO chan-
nel that in certain cases grows linearly with the number of
antennas [22]. More recent progress in information theoret-
ical properties of multiantenna channel can be found in [23].

Although MIMO channel capacity can be really high,
it can only be successfully exploited by proper coding and
modulation schemes. The term space-time Coding (STC)
[24, 25] has been adopted for such techniques. Special ef-
forts have been made in code design [24, 26] and several de-
coding approaches have been developed for these codes. In
both fields, the Turbo principle has been applied in profu-
sion. Turbo ST codes designs can be found in [27, 28, 29] and
various Turbo decoding schemes are exposed in [30, 31].

As in single-antenna systems, practical ST receivers must
perform the operation of channel estimation. Having effi-
cient and robust estimators is crucial to guarantee that the
system performance degradation due to the channel estima-
tion error is minimized. In this paper, we present a novel
channel estimation technique that gathers both the deter-
ministic information corresponding to the pilot sequence
and the statistical information, in terms of a posteriori prob-
abilities, about the unknown symbols. The method is suit-
able for Turbo equalization schemes where those probabili-
ties are computed with more and more precision at each it-
eration. We derive the channel estimator for general MIMO
time-dispersive channels and analyze its performance in a
multiple-antenna communication system based on the GSM
standard operating inside subway tunnels.

The main motivation for developing a multiple-antenna
GSM-based communication system is the following. GSM
is, by far, the most widely deployed radio-communication
system. Since 1993, its radio interface (GSM-R) has been
adopted by the European railway digital radio-communic-
ation systems. Due to the conservative nature of its market,
it is expected that railway radio-communication systems will
employ GSM-R for the long-term future. For this reason,
when subway operators wish to deploy advanced, high data
rate, digital services for security or entertainment purposes,
it is very likely that they will prefer to increase the capac-
ity of the existing GSM-R system rather than switch to an-
other radio standard. STC and Turbo equalization are very
promising ways of achieving this capacity growth [32]. In
this specific application, we will show that the proposed it-
erative MLMIMO channel estimation method has large ben-
efits over traditional channel estimation approaches.

The rest of the paper is organized as follows. Section 2
presents the signal model and Section 3 describes the Turbo
equalization scheme for STC systems. Next, in Section 4, we
derive the ML channel estimator for a general time-dispersive
MIMO channel. Since direct application of the ML principle
leads to an optimization problem without closed-form solu-
tion, the EM algorithm is applied for computing the actual
value of the solution, resulting in the so-called ML-EM es-
timator. The application of the proposed channel estimator
to a STC GSM-based system operating in subway tunnels is
detailed in Section 5. Section 6 presents the results of com-
puter experiments for both the general case and experimen-
tal measurements of subway tunnel MIMO channels. Finally,
Section 7 is devoted to the conclusions.

2. SIGNAL MODEL

We consider the transmitter signal model corresponding to
an STC system shown in Figure 1. The original bit sequence
u(k) feeds an ST encoder whose output is a sequence of
vectors c(k) = [ca(k) c(k) -+ eon(k)]T, with N being
the number of transmitting antennas. The specific spatio-
temporal structure of the sequence of vectors c(k) depends
on the particular STC technique employed. Any of the several
STC methods that have been proposed in the literature could
be used in our scheme. However, we have focused on ST
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FiGURE 1: Transmitter model.

trellis codes [24, 25] to elaborate our simulation results. Each
component of c(k) is independently interleaved to produce a
new symbol vector b(k) = [bi(k) ba(k) --- by(k)]T and
these are the symbols that are afterwards modulated (wave-
form encoded) to yield the signals s;(t;b;) i = 1,2,...,N
that will be transmitted along the radio channel. Without
loss of generality, we will assume that the modulation format
is linear and that the channel suffers from time-dispersive
multipath fading with memory length m. It is well known
that at reception, matched-filtering and symbol-rate sam-
pling can be used to obtain a set of sufficient statistics for
the detection of the transmitted symbols. Using vector nota-
tion, this set of statistics will be grouped in vectors x(k) =
[(x1(k) x2(k) - x(k)]T, k =0,1,...,K — 1, where L is
the number of receiving antennas and K is the number of to-
tal transmitted symbol vectors in a data frame. Elaborating
the signal model, it can be easily shown that the sufficient
statistics x(k) can be expressed as

x(k) = Hz(k) + v(k), (1)

where matrix H = [H(m —1) H(m—2) --- H(0)] rep-
resents the overall dispersive MIMO channel with memory
length m. Each submatrix

hi (i) hp@) - hin(i)

ho (i) hpa(i) -+ - hon(i)
H(l) - . . .. . (2)
hpi(i) hra(i) - -+ hin(i)

contains the fading coefficients that affect the symbol vector
b(k — 7). Vector z(k) results from stacking the source vectors
b(k), that is,

z(k) = [bT(k—m+1) bT(k—-m+2) --- bI(k)T]. (3)
Finally, the noise component v(k) is a vector of mutually in-
dependent complex-valued, circularly symmetric Gaussian
random processes, that is, the real and imaginary parts are
zero-mean, mutually independent Gaussian random pro-
cesses having the same variance. We will also assume that the
noise is temporally white with variance o?.

3. STTURBO DETECTION

Figure 2 shows the block diagram of an ST Turbo de-
tector. The MAP equalizer [4] computes L[b(k)|X] which
are the a posteriori log-probabilities of the input sym-
bols b(k) based on the available observations x =
(xT(0) xT(1) --- x(K—1)]T. Due to its time-dispersive
nature, it is convenient to represent our MIMO channel by
means of a finite-state machine (FSM) having 2NV~ states.
This FSM has 2V transitions per state which implies that
there is a total number of 2N transitions between two time
instants. Let ex = (sx_1,b(k),s(k), sx) be one of the 2N pos-
sible transitions at time k of this FSM. This transition de-
pends on four parameters: the incoming state sx_;, the out-
going state sk, the input symbol vector b(k), and the output
symbol vector without noise s(k) = Hz(k). It is important to
point out that the incoming state is determined by the m — 1
previous symbol vectors, that is, sg-1 = (b(k —m +1),b(k —
m+2),...,b(k — 1)). On the other hand, the outgoing state
is a function of the previous state and the current input sym-
bols, that is, sk = fhext(sk—1, b(k)). For a better description of
the MAP equalizer, we are going to introduce the notation
b(k) = Lin(ex) and s(k) = Lout(ex) to represent the input and
output symbol vectors associated to the transition e, respec-
tively. Note that the output vector does not depend on the
outgoing state sx, so we will slightly change our notation and
write

S(k) = Lout(ek) = Lout(sk—lyb(k))

~ Low (2(K)) = Ha(k). ®)

The a posteriorilog-probabilities L[b(k)|X] can be recursively
computed by means of the Bahl-Cocke-Jelinek-Raviv (BCJR)
algorithm [3, 4] which is summarized in the sequel. The first
stage when computing the a posteriori log-probabilities is
noting that

L[b(k)|x] = L[b(k), %] + hs, (5)

where h;, is the constant that makes P[b(k)|X] a probability
mass function and

L[b(k),x] = log Z
ex:Lin (ex)=b(k)

eXpL[ek)f(] (6)

is the joint log-probability of the transition e, and the set
of available observations . This joint log-probability can be
expressed as

Lle, %] = ax—1[sk-1] + yrlex] + Brlsk], (7)

where
arls] = Llsk-1,%; ],
yrlex] = L[b(k)] + L[x(k)|s(k)], (8)
Brls] = L[x [sk],
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F1GURE 2: Receiver model.

with

Lx®)Is(0)] = - L|x(k) - B, )

% = [x7(0) xT(1) ---
g = [xI(k+1) xT(k+2) ---

xI(k-1)], (10)
x'(K - 1)]. (11)

Note that the noise variance o7 is needed in (9). Our simu-
lation results assume this parameter as known. However, it
could be estimated and, in particular, it can be considered
as another parameter to be estimated by the ML estimator
described in Section 4, as shown in [33], for the case of a de-
cision feedback-equalizer (DFE) instead of a MAP detector.
The computation of the quantities ax[s], yxlex], and fi[s]
can be carried out recursively by first performing a forward
recursion

Hk—1 [Sk—l ]

= log >
b(k),sk-2:
Snext(sk-2,b(k=1))=sk-1

exp {“k—z[sk—z] +L[b(k - 1)]

+ L[x(k)Is(k) ]|
(12)

with initial values ap[s = 0] = 0 and ap[s # 0] = —o0, and
then proceeding with a backward recursion

Bk[sk] = log Z exp {ﬂkﬂ [sks1] + L[b(k+1)]

b(k+1),5%41:
Soext(sb(n+1)) =841

+ L[x(k + 1)ls(k+ 1]}
(13)

using as initial values Bx_1[s = sk-1] = 0 and fx_1[s #
sg-1] = —oo.

Similarly, the decoder has to compute the a posteriorilog-
probabilities of the original symbols L[u(k); O] from their a
priori log-probabilities L[u(k);I] = log(0.5) and the a pri-
orilog-probabilities L[c(k); I] which come from the detector.
Again, the BCJR algorithm applies [3, 4]. It also computes
the a posteriori log-probabilities of the transmitted symbols

L[c(k); O] using

Llc(k); O]

=log >

ek:Lout(ex)=c(k)

exp {o1 [sk-1] + ylse] + Belsi]}, (14)

where L{c(k); I] is utilized as branch metric. These computed
log-probabilities are then fed back to the detector to act as
the a priorilog-probabilities L[b(k)]. As reflected in Figure 2,
note that it is always necessary to subtract the a priori compo-
nent from the computed log-probabilities before forwarding
them to the other module in order to avoid statistical depen-
dence with the results of the previous iteration.

4. MAXIMUM LIKELIHOOD CHANNEL ESTIMATION

Channel estimation is often mandatory when practically im-
plementing ST detection strategies, unless we deal with some
kind of blind processing techniques. In this section, we will
present a novel channel estimation method that will enable
us to take full advantage from the Turbo detection scheme
presented in the Section 3.

When developing our channel estimation approach,
we will exploit the fact that transmitted data frames in
most practical systems contain a deterministic known pi-
lot sequence of length M for the purpose of estimating
the channel at reception. For instance, in GSM, this se-
quence is M = 26 bits long [18]. Let by = [bf b']”
denote the overall data frame, which includes b, =
[th(O) bl(1) --- bl (M- 1)]T as the training sequence
and b = [bT(M) bT(M+1) --- bT(K—-1)]7 as the in-
formation sequence. Analogously, Xy = [xI x"]7T are the
observations corresponding to one data frame, where %, =
[(x{(0) xF(1) -+ x/(M—1)]T represents the pilot se-
quence and ¥ = [x(M) x(M+1) --- x(K—1)]" corre-
sponds to the information sequence. The ML estimator is
thus given by

H = arg m}?xfi“;r;H(i), (15)
where f; 5,5 is the probability density function (pdf) of the

observations conditioned on the available information (the
training sequence b) and the parameters to be estimated
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(the channel matrix H). Although, this is a problem with-
out closed-form solution, the EM algorithm [20] can be em-
ployed to iteratively solve (15). The EM algorithm relies on
defining a so-called “complete data” set formed by the ob-
servable variables and by additional unobservable variables.
At each iteration of the algorithm, a more refined estimate
is computed by averaging the log-likelihood of the complete
data set with respect to the pdf of the unobservable vari-
ables conditioned on the available set of observations. Us-
ing the EM terminology, we define the union of the observa-
tions (which are the observable variables) and the transmit-
ted bit sequence (which are the unobservable variables) X, =
[B} X}] T" as the complete data set, whereas the observations
Xy are the incomplete data set. The relationship between %,
and X; must be given by a noninvertible linear transforma-
tion, that is, Xy = TX,. It can be easily seen that in our case,
this transformation is given by T = [0rp+k)xNM+K) LLv+k) -
With these definitions in mind, the estimate of the channel at
the i + 1th iteration is obtained by solving

a {108 f (X)), (16)

Hi = arg maxEx \x/beHl

where Ef{-} denotes the expectation operator with respect
to the pdf f(x). Expanding the previous expression, we have

0g [ fx,15,:m (%) f5(b)]}
= arng_?XEB\i;ﬁ {log [ fi b (Xe) fpu (X))
(%

= argmaxlog fy 5,1 (%) + Egx, {108 frpa (X))
M-1 (17)

= argmln > Ixe(k) - Hlt(k)Hz
k=0

+E,-,.,~qﬁ,{ S Jixh) Hz<k>||2},
k=M

Hjpy = argmax Ey e {lo

where the last equality follows from the fact that, as far as we
assume AWGN, the pdf of the observations conditioned on
the transmitted symbols f; ;.. is Gaussian. This leads to the
following quadratic optimization problem:

M-1
H,+1 = argmln Z th(k) Hz,(k)H2
k=
o o
+ D E (k)\x;ﬁ,{”x(k) — Hz(k)| }

k=M

with the closed-form solution'
I:\Ii-%-l = (sz,t +sz) X (Rz,t +Rz)71) (19)

ISince the expectation operator is linear, the derivation leading to (19)
follows, step by step, the usual optimization procedure to find the LS es-
timate of a linear system given a set of noisy observations (see, e.g., [34]).
Such a procedure includes the calculation of the gradient with respect to the
system coefficients and then solving for the points where the gradient van-
ishes. Hence, solving (17) is tedious, since derivatives have to be computed
for the coefficients in matrix H, but conceptually straightforward.
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where

M-1

sz,t = Z Xt(k)zfl(k)) (20)
k=0
M-1

Rz,t = Z Zg(k)ZfI(k), (21)
k=0
K-1

R = D Eypxi (X027 (R)}, (22)
k=M
K-1

R, = > E, s 20027 (k). (23)
k=M

Note that for computing (22) and (23), it is necessary to
know the probability mass function p, ) p,- Towards this
aim, we take benefit from the Turbo equahzatlon process be-
cause

L[z(k) 1% Hi] = L[z(k), 5 Hi] + b = L[ewX] +hz, - (24)
where h; is the constant that makes p, 5, @ probability
mass function and L[ek, X] is the joint log-probability of the
transition e and the set of available observations. Notice that
this quantity has already been computed in the Turbo equal-
ization process (see (7)). This fact makes the proposed chan-
nel estimator very suitable to be used within a Turbo equal-
ization structure.

5. APPLICATION TO AN STC SYSTEM FOR SUBWAY
ENVIRONMENTS

We focus now on the application of the ML-EM channel esti-
mator described in Section 4 to an STC GSM-like system for
underground railway transportation systems. Some practical
considerations follow. In subway tunnel environments, prop-
agation conditions result in flat multipath fading because its
delay spread is small when compared to the GSM symbol
period [35]. Nevertheless, the modulation employed by the
GSM standard, Gaussian minimum shift keying (GMSK),
induces controlled ISI and thus Turbo ST Equalization can
be employed for the purpose of joint demodulating and de-
coding. In addition, experimental measurements [36] have
revealed that in this environment, there exist strong spatial
correlations between subchannels. These spatial correlations
will be taken into account when evaluating the receivers’
performance in the following section because we will use,
in the computer simulations, experimental measurements of
MIMO channel impulse responses obtained in subway tun-
nels. These field measurements have been carried out in the
framework of the European project “ESCORT” [37]. We will
show how the proposed channel estimator allows to reduce
the necessary length of the training sequence from 26 bits in
the GSM standard up to only 5 bits, while performance is
maintained very close to the optimum (i.e., the bit error rate
(BER) obtained when the channel is perfectly known at re-
ception) which clearly implies a very high gain in the overall
system throughput.
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Figure 1 can be useful again for modeling the STC trans-
mitter under consideration (for the sake of clarity, we refer
the reader to Appendix A for a detailed description). This
model can be summarized as follows. Each component of
b(k) is independently modulated using the GMSK modula-
tion format. GMSK is a partial response continuous phase
modulation (CMP) signal and thus a nonlinear modulation
format. Nevertheless, it can be expressed in terms of its Lau-
rent expansion [38, 39, 40] as the sum of 2°~! PAM signals,
where p is the memory induced by the modulation. For the
GMSK format in the GSM standard, p = 3 but the first PAM
component contains 99.63% of the total GMSK signal energy
[39, 40], so we can approximate the signal radiated by the ith
antenna as

> ai(k)h(t - kT), (25)

k=—o0

2E;
si(;by) = T
where Ej, is the bit energy, T the symbol period, a;(k) =
jai(k — 1)bi(k) are the transmitted symbols which belong to
a QPSK constellation, b; = {b;(k)};_, is the bit sequence to
be modulated, and h(¢) is a pulse waveform that spans along
the interval [0, pT], where p is the memory of the modu-
lation. It is demonstrated in [38] that the transmitted sym-
bols a;(k) are uncorrelated and have unit variance. In order
to simplify the detection process at the receiver, we will as-
sume that a differential precoder is employed prior to mod-
ulation, that is, d;(k) = b;(k — 1)b;(k) because we have then
ai(k) = jai(k — 1)di(k) = j*bi(k).

Considering that the transmission channel inside subway
tunnels suffers from flat multipath fading [35], the signal re-
ceived at the Ith antenna is

N
yi(t) = > hisi(5b:) + mi(t), (26)

i=1

where hy; is the fading observed between the ith transmit-
ting antenna and the [th receiving antenna and n(t) is
a continuous-time complex-valued white Gaussian process
with power spectral density No/2.

The received signals y(t) are passed through a bank of fil-
ters matched to the pulse waveform h(t) and sampled at the
symbol rate in order to obtain a set of sufficient statistics for
the detection of the transmitted symbols. Because h(¢) does
not satisfy the zero-ISI condition, a discrete-time whitening
filter [41, 42] is located after sampling. In addition, the ro-
tation j* induced by the GMSK modulation is compensated
by multiplying the received signal by j*, resulting in the fol-
lowing expression for the observations:

N p-1
xi(k) = > hii Y f(m)bi(k —m) +vi(k)
i=1 m=0

(27)

M=

hyisi(k) +vi(k),

l
—_

1

where v;(k) represents the complex-valued AWGN with vari-
ance o2 and f(m) = [0.8053,-0.5853j,—0.0704] is the
equivalent discrete-time impulse response that takes into ac-

count the transmitting, receiving, and whitening filters, and
the derotation operation. Using vector notation, the output
of the whitening filters after the derotation can be expressed
as

x(k) = #Hs(k) +v(k), (28)
where x(k) = [x1(k) x2(k) --- x.(k)]T and
hiy hyy -+ iy
hy hyy - -+ hon
H=1. . . - (29)
hpy hy -+ iy

Equation (28) can be rewritten in the form of (1) as

b(k -2)
x(k) = [f(0)# f(1)FH fQ2)H]|bk—1)|+v(k)
b(k) (30)

= Hz(k) + v(k).

However, this signal model for the observations does not em-
phasize that the ISI comes from the GMSK modulation for-
mat instead of the time-dispersion of the multipath channel.
As a consequence, we prefer to rewrite (28) as

x(k) = HB(k)f +v(k), (31)
where

B(k) = [b(k) bk —1) bk - z)] ;

(32)
f = [0.8053, —0.5853 j, —0.0704] .
5.1. ML channel estimation for STC GSM-like
systems with flat fading

Estimating the channel according to (30) and directly apply-
ing the method described in the previous section is highly
inefficient because we have to estimate an unnecessarily large
number of parameters. In addition, this way we do not take
into account the knowledge at reception of the controlled ISI
introduced by the modulator, given by f(m). Equation (31)
is preferable because it enables us to formulate the estima-
tion of only the unknown channel coefficients hy;, as it is ex-
plained in the sequel. Again, we assume that the transmitted
data frames contain a known pilot sequence of length M. The
ML estimator of the channel is given by

H = argmﬁx]‘}(“—,t;ﬂ(f{). (33)

This is a problem without closed-form solution, so we will
apply the EM algorithm in a similar way to the general case
explored in Section 4. We define the complete and incom-
plete data sets as X, = [B} i}]T and Xy, respectively. Both
sets are related through the linear transformation X r = Tx.,
where T = [0rv+x)xNm+K) I(m+K) |- Using the latter defini-
tions, the 7 + 1th estimate of the channel is computed using
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the EM method as
Hoy = arg m}e}ine‘if)Bt;@i{ log fi. 1. (Xe) I (34)

Making similar manipulations to those made for the time-
dispersive MIMO channel, we arrive at the following opti-

mization problem:
= M-1 )
Hiy1 = argmin Z [|x/ (k) — #B,(k)f||
woo
(35)
K-1

+ 3 By 11X (K) — 7B}
k=M

which is also a quadratic optimization problem whose solu-
tion is

Hi = Ry +Ryp) X (Ryy +Ry) (36)

where
M-1 i
Rxb,t = Z Xt(k)(Bt(k)f) 5
k=0
M-1 u
Ry = > (B:(K)f) (Bi(k)f)",
k=0
K-1

R = . By |X(K) (BOF) ',
k=M

K-1

Ry = > By | (BUOF) (B,
k=M

(37)

Here we need to average with respect to the pdf fg 5.7,
Again, we take benefit from the Turbo equalization process
because

L[B(k)|%; H:] = L[B(k),%; ] + hs = Llew, %] + hg, (38)

where hp is the constant that makes pg ;5.7 @ probability
mass function and L[e, X] is a quantity already computed in
the Turbo equalization process.

6. SIMULATION RESULTS
6.1. Rayleigh MIMO channel

Computer simulations were carried out to illustrate the per-
formance of the proposed channel estimator. Figure 3 plots
the BER after decoding obtained for a 2 x 2 STC system over
a nondispersive channel. Data are transmitted in blocks of
218 bits out of which the pilot sequence occupies M = 10
bits. The performance curves for both the LS method and
when the channel is perfectly known are also shown for
comparison. Note that there is no iteration gain when the
channel is known because there is no ISI and, therefore,
no “inner coding” for the Turbo processing. Nevertheless,
this is not true when the ML-EM channel estimator is used
because the channel is reestimated at each iteration of the
Turbo equalization process. The ST encoder is a rate 1/2 full
diversity convolutional binary code with generating matrix
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F1GURE 3: Performance results for ST coded data over a nondisper-
sive channel.

G = [46,72] in octal representation [26]. The independent
interleavers are 20800 bits long each. The modulation format
is BPSK and each channel coefficient is modeled as a zero-
mean, complex-valued, circularly invariant Gaussian ran-
dom process. Consequently, their magnitudes are Rayleigh
distributed. We have also assumed that the channel coeffi-
cients are both temporally and spatially independent, having
variance 67 = 1/2 per complex dimension. The signal-to-
noise ratio (SNR) is defined as

E{ (Hz(k)" (Hz(k))} 1 (aE™)
SNR = E{vH(v(k)} Lo? (39)

where Tr{-} denotes the trace operator. The channel changes
at each transmitted block. Figure 3 shows that, even if its re-
sult for the first iteration is very poor, the ML-EM channel es-
timator outperforms the classical LS method from the fourth
iteration.

The bad performance obtained by the ML-EM estimator
at the first iteration comes from the fact that the Turbo equal-
izer is using an uninformative initial estimate of the channel.
Specifically, (19) can be viewed as an LS estimator, where
the correlation matrices Ry;; and R;; have been modified
by the addition of the matrices Ry, and R;, respectively. In
the first iteration, these matrices are computed by assuming
that p, ) xa, is a uniform probability mass function (there-

fore, independent of the initial channel estimate Hy) in (22)
and (23). This results in a degradation of the pure LS esti-
mator and a very high symbol error rate (SER) after decod-
ing. Such a high SER (around 0.4) can never lead the Turbo
equalization process to convergence. However, in our case,
convergence is achieved because, in the next iterations, a sub-
stantial improvement is obtained in channel estimation from
the EM algorithm (not from the Turbo structure itself). No-
tice that one iteration of the EM algorithm (19) is performed
only after one complete equalization and decoding step. Any-
way, once the channel estimate is good enough for the Turbo
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FiGure 4: Performance results for ST coded data over a dispersive
channel with memory m = 2.

equalization structure to lie in its convergence region, both
the EM algorithm and the Turbo iterative process help in re-
ducing the error rate. Figure 3 also shows that at the eighth
iteration, the performance is very close to the optimum, that
is, known channel case. Only 0.5 dB separates the two curves
ata BER of 107%.

Figure 4 shows the results (BER after decoding) obtained
when a time-dispersive MIMO channel with memory m = 2
is considered. The simulation parameters are the same as in
Figure 3. In particular, note that, again, each channel coef-
ficient has variance 07 = 1/2 per complex dimension. It is
apparent that at the fourth iteration, the ML-EM estimator
performs very similar to the LS method, which does not im-
prove significantly through the iterations. At the eighth iter-
ation, the performance of the ML-EM estimator is again very
close to the known channel case.

6.2. GSM-based transmission over subway
tunnel MIMO channels

The performance of the proposed GSM-based transmission
system with a Turbo STC receiver in subway tunnel environ-
ments has also been tested through computer simulations.
The channel matrices # result from experimental measure-
ments (carried out within the framework of the European
project “ESCORT”) of the MIMO channel impulse response
present in a subway tunnel. The experimental setup con-
sisted of four transmitting antennas, each one having a 12 dBi
gain, located at the station platform, and four patch antennas
located behind the train windscreen. The complex impulse
responses were measured with a channel sounder having a
bandwidth of 35 MHz by switching successively the anten-
nas and stopping the train approximately each 2 m. From the
whole set of 4 X 4 measured subchannels, only those corre-
sponding to the furthest antennas were picked up for con-
structing a 2 X 2 system. In [35], it was demonstrated that
the mean capacity of the measured channel is less than the ca-

M= 5,6 8th iteration

0.5 1 1.5 2 2.5
SNR (dB)

F1GUrE 5: MSE for several lengths of the training sequence.

pacity of Rayleigh fading channels, this difference being more
remarkable in the case of a 4 X 4 system.

The ability of our channel estimation technique to com-
bine the deterministic information of the pilot symbols
and the statistical information from the unknown symbols,
thanks to the ST Turbo detector, enables us to considerably
reduce the size of the training sequence in GSM systems.
Indeed, by means of computer simulations, we have deter-
mined the minimum length of the training sequence for the
considered GSM-based MIMO system. Figure 5 shows the
channel estimation mean square error (MSE) for several val-
ues of the training sequence length (M = 4, 5, and 6 bits).
The channel code is the same as in the previous simulations.
The interleaver size is 20800 bits and the frame length is 148,
as established in the GSM standard. There is a significant dif-
ference in the estimation error between using M = 4 bits and
M =5 bits, whereas the gap between M = 5and M = 6 is
very small. This points out that M = 5 bits is the minimum
length for the training sequence. This assumption can also be
corroborated in Figure 6, where the SER at the output of the
decoder is plotted versus the required SNR.

Next, we compare the results obtained with the proposed
estimator using a training sequence of M = 5 bits and
those obtained with classical LS using a training sequence
of M = 26 bits (the length standardized in GSM). The re-
sults obtained when the receiver perfectly knows the channel
are also plotted for comparison. As it is shown in Figure 7,
the proposed method (ML-EM) with M = 5 bits performs
better than the LS with M = 26 bits beyond the sixth itera-
tion, achieving a performance very close to the known chan-
nel case beyond the seventh iteration.

7. CONCLUSIONS

In this paper, we propose a novel ML-based time-dispersive
MIMO channel estimator for STC systems that employ
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FIGURE 6: SER versus SNR at the output of the decoder for several
lengths of the training sequence.

Turbo ST receivers. We formulate the ML estimation prob-
lem that takes into account the deterministic symbols cor-
responding to the training sequence and the statistics of the
unknown symbols. These statistics can be obtained and suc-
cessively refined if an ST Turbo equalizer is used at reception.
This full exploitation of all the available statistical informa-
tion at reception renders an extremely powerful channel esti-
mation technique that outperforms conventional approaches
based only on the training sequence. Since the involved op-
timization problem has no closed-form solution, the EM al-
gorithm is employed in order to iteratively obtain the solu-
tion. The main limitation of our approach is that the com-
putational complexity of the channel estimator grows expo-
nentially with the number of transmitting antennas and the
channel memory size, hence it is only practical for a moder-
ate size of the transmitter antenna array. Note, however, that
this complexity is inherent to the problem of optimal detec-
tion and estimation in MIMO systems.

The method has been particularized for a realistic sce-
nario in which an STC system based on the GSM standard
transmits along railway subway tunnels. Simulation results
show how our channel estimation technique enables us to di-
minish the training sequence length up to only 5 bits, instead
of the 26 bits considered in the GSM standard, thus achieving
a 14% increase in the system throughput.

APPENDICES
A. SIGNAL MODEL OF AN STC GSM SYSTEM

The transmitter model depicted in Figure 1 is valid for an
STC GSM system. The signal radiated by ith antenna is given
by [38, 40]

si(tby) = 4| szﬂb exp [jn i b(k)q(t — kT)}, (A1)

k=—o0

100
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FIGURE 7: Performance comparison between ML-EM (M = 5 bits),
LS (M = 26 bits), and known channel.

where Ej, is the bit energy, T the symbol period, b; =
{bi(k)} ;. _, the bit sequence to be modulated, and

t
a) = | _gwr, (A2)
where g(t) is the convolution between a Gaussian-shaped

pulse and a rectangular-shaped pulse centered at the origin
[43, 44], that is,

g(t) = u(t) * rect (%), (A.3)
where
_L_ |ﬂ <.I
rect (%) =127 -2’
0, otherwise, (A4)
) = L e 1(L>2
= Ve, P T 2\6,) |
with
JJIog?2
oy = s (A.5)

2nB

where B is the 3 dB bandwidth of u(¢). It is possible to derive
a closed-form expression for g(t) given by [38, 40]

0= HaZ20) o), s
where
Qt) = \/%7[ Lw e 2dr (A7)

is the Gaussian complementary error function. With the aim
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FiGURE 8: (a) Shifted GMSK pulse, g(t — 1.5T), for p = 3. (b) GMSK phase pulse, q(¢).

of simplifying subsequent analysis, we redefine g(t) = g(t —
p/2T), so it is limited to the interval [0, pT], where p is the
number of symbol periods where the signal has significant
values. For GSM (B = 0.3), a value of p = 3 is reasonable
[40], as it can be verified in Figure 8, that plot the properly
shifted versions of g(¢) and q(¢) when B = 0.3.

Since GMSK is a partial response CPM, it can be ex-
pressed in terms of its Laurent expansion [38, 39, 40], formed
by the sum of 2#~! PAM signals, where p is the memory in-
duced by the modulation. Since in GSM, the first PAM com-
ponent contains 99.63% of the total GMSK signal energy
[39, 40], we can approximate the signal radiated by the ith
antenna by

Y]

> ai(k)h(t = KT),

k=—o00

25,

si(tbi) = T

(A.8)

where aj(k) = jai(k — 1)bi(k) are the transmitted sym-
bols, which belong to a QPSK constellation, are uncorre-
lated and have unit variance [38]. In order to simplify the
detection process at the receiver, we will assume that a dif-
ferential precoder is employed prior to modulation, that
is, di(k) = bi(k — 1)b;(k) because then we have a;(k) =
jai(k — 1)di(k) = j*b;(k). The pulse waveform h(t) is equal
to C(t — 3T)C(t — 2T)C(t — T), where C(t) = cos(mq(ltl])).
Figure 9a shows that it takes significant values over the inter-
val [0.5T,3.5T] because the actual and the linearized GMSK
waveforms are shifted by half a symbol period.

In order to detect the transmitted symbols, s;(¢;b;) is
passed through a filter matched to the pulse waveform h(t)
and then sampled at the symbol rate. The output of the
matched filter is given by

ri(t) = a;(t) * h(t) * h*(=t) + n(t) x* h*(=t)

— ai(t) % Ru(t) +g(2), (&.9)

where

)

> ai(k)d(t - kT)

k=—o00

26

ai(t) = T

(A.10)

and Ry(t) (see Figure 9b) denotes the autocorrelation func-
tion of h(t). After sampling, we have

ri(k) = ri(t = kT) = a;(k) * Ru(k) + g(k), (A.11)

where the autocorrelation function of g(k) is Rg(k) =
(No/2)Ry (k). Clearly, the noise g(k) is colored because h(t)
does not satisfy the zero-ISI condition. Since it is more
comfortable to perform detection assuming white noise, a
discrete-time whitening filter [41, 42] is located after sam-
pling

1
F*(z71)’

Wi(z) = (A.12)

where F*(z™!) comes from the factorization of the autocor-
relation function Ry(k) = F(z)F*(z7!). This expression for
the whitening filter leads to an overall system response given
by F(z). In Appendix B, we demonstrate that the maximum
phase F(z) polynomial is given by

F(z) = \/%u oz ) (1= o)

= 0.8053 + 0.5853z! + 0.0704z2,

(A.13)

where p; = —0.1522, p, = —0.5746, and r, = R,(-2).
In addition, the rotation j K induced by the GMSK is com-
pensated by multiplying the received signal by j %, resulting
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FIGURE 9: (a) Pulse shape, h(t). (b) Autocorrelation function, Ry(t).

in the following expression for the observations:

N p-1
xi(k) = > i > f(m)bi(k = 1) + vi(k)
m=0

i;l (A.14)
= Z hysi(k) + vi(k),
i=1

where vi(k) is AWGN with variance ¢? and f(m) =
[0.8053 —0.5853j —0.0704] is the equivalent discrete-time
impulse response that takes into account the transmitting,
receiving, and whitening filters, and the derotation oper-
ation. Using vector notation, the output of the whiten-
ing filters after the derotation can be expressed as in
(28), where x(k) = [x1(k) x2(k) -+ x (k)T, s(k) =
[s1(k) s2(k) -+ sn(k)]T, and is as in (29).

B. COMPUTATION OF THE DISCRETE-TIME
WHITENING FILTER

First, it is important to note that there are 27 choices of F(z)
that satisfy the desired factorization Ry(z) = F(z)F*(z™!).
The different choices yield filters 1/F*(z~!) that have the
same magnitude but different phase response. One possible
choice is to select F*(z7!) so that it is a minimum phase,
that is, with all its roots inside the unit circle. In this way,
1/F*(z7!) is a realizable causal and stable discrete system.
The problem of this selection is that the overall impulse re-
sponse F(z) will be the maximum phase and anticausal, and
the resulting ISI will be difficult to compensate. To overcome
this limitation, we choose F*(z7!) to be the maximum phase
and thus the whitening filter 1/F*(z!) will be stable only if
it is considered anticausal. Nevertheless, anticausal filters can
be implemented if a sufficient large delay is introduced. The
advantage of this approach is that now the overall impulse
response F(z) is causal and minimum phase.

Considering that Ry, () takes significant values only over
the interval [—2,2] (see Figure 9b), we have

Ry(k) = {rg,r1 10, r, o} = {5 s ros 1, 12}

(B.1)
= {0.0567,0.5127,0.9963,0.5127,0.0567}.

As mentioned before, note that h(t) contains 99.63% of the
actual GMSK total energy because R;,(0) = 0.9963. The Z-
transform of Ry, (k) is

Ru(z) =122 +roiz+ro+nz t+mz2 (B.2)

that we can express as

Ry(z) = r2(z/)—_*l) (Z ~ 1)(1 —piz ) (1= paz7!). (B3)

*
1 P2

Forcing |p1l, [p2] =< 1 in order that the resulting whitening
filter exists and be stable, we have p; = —0.1522 and p, =
—0.5746. Taking into account that p; and p, are real valued,
we arrive at

F2) = |2 (1=piz ) (1= prz?) (B.4)
P1p2
and thus the whitening filter is given by
W) = o ilals (8.5)
TR ED) T U1 pa2) '

whose inverse Z-transform is
p1p2/12
w(k) = {wihy__ = {\[/):(szﬂ —pl"“)}. (B.6)

Since {|wg|} ;5 is a strictly decreasing series, we can consider
only the first significant wy coefficients. Taking into account
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that |[w_29| < 1074, we can implement w(k) as an anticausal
FIR filter:

w(k) = {w_19,W_18,...,W_1,Wo}
= {0.0001, —0.0001, 0.0002, —0.0004, 0.0007,
—0.0013,0.0022, —0.0038, 0.0066, —0.0115, (B.7)
0.0201, —0.0349, 0.0608, —0.1058,0.1839,
0.3189,0.5473, —0.9025,1.2417}.
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In the downlink of DS-CDMA, frequency-selectivity destroys the orthogonality of the user signals and introduces multiuser in-
terference (MUI). Space-time chip equalization is an efficient tool to restore the orthogonality of the user signals and suppress
the MUI. Furthermore, multiple-input multiple-output (MIMO) communication techniques can result in a significant increase
in capacity. This paper focuses on space-time block coding (STBC) techniques, and aims at combining STBC techniques with the
original single-antenna DS-CDMA downlink scheme. This results into the so-called space-time block coded DS-CDMA downlink
schemes, many of which have been presented in the past. We focus on a new scheme that enables both the maximum multiantenna
diversity and the maximum multipath diversity. Although this maximum diversity can only be collected by maximum likelihood
(ML) detection, we pursue suboptimal detection by means of space-time chip equalization, which lowers the computational com-
plexity significantly. To design the space-time chip equalizers, we also propose efficient pilot-based methods. Simulation results
show improved performance over the space-time RAKE receiver for the space-time block coded DS-CDMA downlink schemes

that have been proposed for the UMTS and IS-2000 W-CDMA standards.

Keywords and phrases: downlink CDMA, space-time block coding, space-time chip equalization.

1. INTRODUCTION

Direct sequence code division multiple access (DS-CDMA)
has emerged as the predominant multiple access technique
for 3G cellular systems. In the downlink of DS-CDMA, or-
thogonal user signals are transmitted from the base station.
All these signals are distorted by the same channel when
propagating to the desired mobile station. Hence, when this
channel is frequency-selective, the orthogonality of the user
signals is destroyed and severe multiuser interference (MUI)
is introduced. Space-time chip equalization can then restore
the orthogonality of the user signals and suppress the MUI
[1,2,3,4].

Multiple-input multiple-output (MIMO) systems, on the
other hand, have recently been shown to realize a significant

increase in capacity for rich scattering environments [5, 6, 7].
Both space division multiplexing (SDM) [8, 9] and space-
time coding (STC) [10, 11, 12] are popular MIMO commu-
nication techniques. SDM techniques mainly aim at an in-
crease in throughput by transmitting different data streams
from the different transmit antennas. However, SDM typi-
cally requires as many receive as transmit antennas, which se-
riously impairs a cost-efficient implementation at the mobile
station. STC techniques, on the other hand, mainly aim at an
increase in performance by introducing spatial and tempo-
ral correlation in the transmitted data streams. As opposed
to SDM, STC supports any number of receive antennas, and
thus enables a cost-efficient implementation at the mobile
station. In this perspective, space-time block coding (STBC)
techniques, introduced in [11] for two transmit antennas and
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later generalized in [12] for any number of transmit anten-
nas, are particularly appealing because they facilitate maxi-
mum likelihood (ML) detection with simple linear process-
ing. However, these STBC techniques have originally been
developed for signaling over frequency-flat channels, and do
not enable the maximum multiantenna and multipath diver-
sity present in frequency-selective channels. Therefore, im-
proved STBC techniques have recently been developed for
signaling over frequency-selective channels [13, 14, 15]. The
STBC technique proposed in [13] enables the maximum
multiantenna diversity, and although it is presented as a tech-
nique that provides the maximum multipath diversity, it is
not possible to prove it without any proper discussion on
how to treat the edge effects at the beginning and the end
of a burst. If the edge effects are handled by a cyclic prefix as
in [14], maximum multipath diversity is not guaranteed. On
the other hand, if the edge effects are handled by a zero post-
fix as in [15], maximum multipath diversity is guaranteed.

Up till now, research on STBC techniques has mainly
focused on single-user communication links. In this pa-
per, we aim at combining STBC techniques with the orig-
inal single-antenna DS-CDMA downlink scheme, resulting
into so-called space-time block coded DS-CDMA downlink
schemes. As an example, we mention the space-time block
coded DS-CDMA downlink schemes that have been pro-
posed for the UMTS and IS-2000 W-CDMA standards, both
special cases of the so-called space-time spreading scheme
presented in [16], which consists of a mixture of the original
single-antenna DS-CDMA downlink scheme and the STBC
technique of [12]. However, this scheme does not enable the
maximum multiantenna and multipath diversity present in
frequency-selective channels. A second example is the space-
time block coded DS-CDMA downlink scheme presented
in [17], which consists of the original single-antenna DS-
CDMA downlink scheme followed by the STBC technique
of [14]. However, this scheme only enables the maximum
multiantenna diversity but not the maximum multipath di-
versity (due to the fact that maximum multipath diversity
is not provided by the STBC technique of [14]). Therefore,
in this paper, we consider the space-time block coded DS-
CDMA downlink scheme that consists of the original single-
antenna DS-CDMA downlink scheme followed by the STBC
technique of [15]. This scheme enables both the maximum
multiantenna diversity and the maximum multipath diver-
sity (due to the fact that maximum multipath diversity is pro-
vided by the STBC technique of [15]). Although this max-
imum diversity can only be collected by ML detection, we
pursue suboptimal detection by means of space-time chip
equalization, which lowers the computational complexity
significantly. Note that this suboptimal detection technique
can also be applied to the STBC technique of [15] on its own,
without combining it with the original single-antenna DS-
CDMA downlink scheme.

Assuming there are J transmit antennas, the straightfor-
ward way to implement space-time chip equalization is to
apply J space-time chip equalizers to recover the J transmit-
ted space-time block coded multiuser chip sequences, then
to apply space-time decoding to recover J subsequences of

the original multiuser chip sequence, and finally, to perform
simple despreading. Since this comes down to an equaliza-
tion problem with J sources, we need J + 1 chip rate sam-
pled outputs at each mobile station for a finite-length zero-
forcing (ZF) solution to exist (i.e., J] + 1 receive antennas
if the antennas are sampled at chip rate). However, we will
show that the space-time chip equalization and space-time
decoding operations can be swapped, which allows us to first
apply space-time decoding, then to apply J space-time chip
equalizers to recover ] subsequences of the original multiuser
chip sequence, and finally, to perform simple despreading.
Since this comes down to J equalization problems with only
one source, we need only two chip rate sampled outputs at
each mobile station for a finite-length ZF solution to exist
(i.e., two receive antennas if the antennas are sampled at chip
rate). To design the space-time chip equalizers, we finally
propose efficient pilot-based methods.

In Section 2, we discuss the transceiver design of the pro-
posed space-time block coded DS-CDMA system. We dis-
tinguish between the transmitter design, the channel model,
and the receiver design, where the latter is based on space-
time chip equalization. In Section 3, we then propose two
pilot-based methods for practical space-time chip equalizer
design. We show some simulation results in Section 4. In
Section 5, we finally draw our conclusions.

Notation

We use upper (lower) bold face letters to denote matri-
ces (vectors). Superscripts *, T, and H represent conjugate,
transpose, and Hermitian, respectively. Further, |- | repre-
sents the flooring operation, and & {-} represents the expec-
tation operation. We denote the N X N identity matrix as Iy
and the M X N all-zero matrix as 0p;xn. Next, [A],,, denotes
the entry at position (m, n) of the matrix A. Finally, diag{a}
represents the diagonal matrix with the vector a on the diag-
onal.

2. TRANSCEIVER DESIGN

We consider the downlink of a space-time block coded DS-
CDMA system. We assume the base station is equipped with
J transmit antennas, and the mobile station is equipped with
M receive antennas. In the following, we discuss the trans-
mitter design, the channel model, and the receiver design.

2.1. Transmitter design

At the base station, a space-time block coded DS-CDMA
downlink scheme transforms {s,[k]}"_, and sp[k], where
su[k] is the uth user’s data symbol sequence and s, [k] is the
pilot symbol sequence, into ] space-time block coded mul-
tiuser chip sequences {u;[#] }ﬁzl.

We consider the space-time block coded DS-CDMA
downlink scheme that consists of the original single-antenna
CDMA downlink transmission scheme followed by the STBC
technique of [15]. This scheme enables both the maximum
multiantenna diversity and the maximum multipath diver-
sity. For simplicity, we will focus on the case of ] = 2 transmit
antennas. Extensions to more than two transmit antennas
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FIGURE 1: Proposed space-time block coded DS-CDMA downlink scheme.

(J > 2) are straightforward and can be developed following
the design rules presented in [18].

Figure 1 depicts the proposed space-time block coded
DS-CDMA downlink scheme (NX repeats each sample N
times, whereas “S/P” and “P/S” represent a serial-to-parallel
and parallel-to-serial conversion, respectively). First, the
original multiuser chip sequence x[#] is constructed:

(1)

x[n] :=

Mea

sul Ln/N]]cu[n] + s, [Ln/N]]c,[n],

I
—

u

where c¢,[n] is the uth user’s code sequence and c,[n] is
the pilot code sequence. We assume that both ¢,[n] and
cp[n] are normalized and consist of a multiplication of a
user/pilot specific orthogonal Walsh-Hadamard spreading
code of length N and a base-station specific long scrambling
code. Note that the above pilot insertion technique is simi-
lar to the so-called common pilot channel (CPICH) [19] in
forthcoming 3G systems. Second, the original multiuser chip
sequence x[n] is serial-to-parallel converted into the 1 X KN
multiuser chip block sequence x[i]:

x[i] := [x[iKN],...,x[(i+1)KN - 1]]. (2)
Third, the multiuser chip block sequence x[i] is transformed
into the two 1 X KN block sequences x; [i] and x,[i]:

x1[2i] xp[2i+ 1]
Xz[Zl] X2[21+ 1]

(3)
x[21]

L —x*[2i+ 1]Pgy
= x[2i+ 1] )

x*[2i]Pkn

where Py is an N X N permutation matrix that performs a
reversal of the entries, that is, [Py, = d[n+n" — N —1].
Fourth, we add a zero postfix of length L to each block of the
block sequence x;[i], resulting into the 1 X (KN + L) block
sequence u;[i]: u;[i] := x;[i]T, where T is the KN X (KN +L)
zero postfix insertion matrix: T := [Ixy, Oxnxz]. Finally, the
block sequence u;[i] is parallel-to-serial converted into the
space-time block coded multiuser chip sequence u;[n]:

[ [i(KN +L1)],...,u;[(i + (KN + L) = 1]] := u;i], (4)
which is transmitted at the jth transmit antenna with rate
1/T, (the chip rate).

2.2. Channel model

Assuming the mth receive antenna is sampled at the chip rate,
the received sequence at the mth receive antenna can be writ-
ten as

2 L
”]:ZZ jUlujln =11 + en(n], (5)
j=11=0

where e,,,[n] is the additive noise at the mth receive antenna
and hy, j[I] is the channel from the jth transmit antenna to
the mth receive antenna, including transmit and receive fil-
ters. We assume that hy, ;[I] is FIR with order L;,, and that
L is a known upper bound on max; ,, {L;}. Note that L was
also chosen as the zero postfix length in Section 2.1.

2.3. Receiver design

A first option is to serial-to-parallel convert the received se-
quence y,,[n] into the 1 X (KN + L) received block sequence
Y li]:

[ym[i(KN"‘L)]’---)ym[(i"' 1)(KN+L) - 1]]’

(6)

Ym[l] =

then to apply space-time decoding and Viterbi equaliza-
tion as in [18], and finally, to perform simple despread-
ing. This detection technique is overall ML, but leads to a
very large computational complexity. That is why we pur-
sue suboptimal detection by means of space-time chip equal-
ization, which lowers the computational complexity signif-
icantly. Note that this suboptimal detection technique can
also be applied to the STBC technique of [15] on its own,
without combining it with the original single-antenna DS-
CDMA downlink scheme.

We first introduce some new notation. Defining the M x 1
vector

ylnl = [yilnl,..., yulnl]’, (7)
we can write
2 L
Z Z h;[Nu;[n —1] +e[n], (8)
where e[n] is similarly defined as y[n], and
by (1] 2= (B0 b 1] (9)
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Further, defining the (Q + 1)M X KN matrix

Y[i]
y[i(KN +1)] y[i(KN +L) + KN — 1]

YIKN+1)+Q] - - y[i(KN +L)+KN —1+Q]
(10)

we can write
2
Y[i] = > #€U;[i] + E[i], (11)
j=1

where E[i] is similarly defined as Y[i],

h;[L] h;[0] Onx1 Onrx1
Orx1 hj[L] h;[0] Onrxa
ij = . . . 5
Onx1 Oumxi h;[L] h;[0]
U;[i]

wi[i( KN+L)~L] - -+ u;[i(KN+L) - L+KN — 1]

u]-[i(KN.+L)+Q] - uj[i(N+1L) +'Q+KN— 1]
(12)

The parameter Q basically represents the order of the
adopted space-time chip equalizer. This equalizer order Q is
usually chosen to be close to the channel order L. For the sake
of conciseness, we assume Q = L. However, the proposed re-
sults can easily be extended to other values of the equalizer
order Q.

Choosing Q = L, itis clear from the zero postfix insertion
that U;[i] can be expressed as

x; 175
U;li] = 7 (x;[il) := : , (13)

X [iT&

with J§ the N x N shift matrix with [J{ 1, = 8[n —n’ — 1]
(note that 153) =1Iy).

To proceed, the straightforward way is to apply two
space-time chip equalizers on Y[i] to recover x; [i] and x;[i],
then to apply space-time decoding to recover x[2i] and x[2i+
1], and finally, to perform simple despreading. Since this
comes down to an equalization problem with two sources,
we need three chip rate sampled receive antennas at each mo-
bile station for a finite-length ZF solution to exist (for J > 2
transmit antennas, we need J + 1 chip rate sampled receive
antennas at each mobile station). However, we will show that
the space-time chip equalization and space-time decoding
operations can be swapped, which allows us to first apply
space-time decoding on Y[2i] and Y[2i + 1], then to apply
two space-time chip equalizers to recover x[2i] and x[2i + 1],
and finally, to perform simple despreading. Since this comes

down to two equalization problems with only one source, we
need only two chip rate sampled receive antennas at each mo-
bile station for a finite-length ZF solution to exist (even for
] > 2 transmit antennas, we need only two chip rate sampled
receive antennas at each mobile station). The latter option
clearly has more degrees of freedom to tackle the equaliza-
tion problem, and therefore leads to a better performance.
This option is explained in more detail next.

2.3.1. Space-time decoding
Using (11) and (13), we can write Y[2i] and Y[2i + 1] as

Y[2i] = JflT(Xl [21]) + szT(Xz[Zl]) + E[2i],
Y[21+1] :3(17(X1[21+1])+3€27(X2[21+1]) (14)
+E[2i+ 1].

Since x1[2i + 1] = —x5[2i]Pky (see (3)), we can derive from
(13) that

xi[2i + 1)\

T (x1[2i+1]) :
xi[2i + 18

[x7 [2i]PinTicy

| x5 2 PinTien
[ x5 201180
= - Py
| x5 [24]]c
x5 2]
“Porer| ) | PrN
X2 [ZI]IKN

—Por1 T (x2[2i]) Pgn.

(15)

Similarly, since x,[2i + 1] = x'[2i]Pkn (see (3)), we can de-
rive from (13) that

T (x[2i +1]) = Pyr T " (x1[2i]) Pxw. (16)

Conjugating Y[2i + 1] and multiplying it to the right-hand
side with Pgy, we then arrive at
Y* [2i + 1]Pxn
= FFT* (x1[2i + 1]) Py + F6 T * (x2[2i + 1]) Py
+E*[2i+1]PKN (17)
=~ Por T (x2[2i]) + F Porn T (x1[2i])
+E* [21 + I]PKN,

where the second equality is due to (15) and (16). Stacking
Y[2i] and Y*[2i + 1]Pgn:

. Y/[2i]
Y[i] := [Y*[2i+ 1]PKN] ’ (18)
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and using the fact that x; [2i] = x[2i] and x,[2i] = x[2i + 1]
(see (3)), we finally obtain

Y[i] = #€X[i] + E[i], (19)

where E[i] is similarly defined as Y[i],

P It I,
T H P —H Py |

oo | T (x[2d])
X[i] = [‘T(x[2i+ 1])]

2.3.2. Space-time chip equalization

(20)

We now apply two space-time chip equalizers on Y[i]: f, and
f,. The 1 X 2(L+1)M space-time chip equalizer f, is designed
to extract the even multiuser chip block x[2i], whereas the 1x
2(L + 1)M space-time chip equalizer f, is designed to extract
the odd multiuser chip block x[2i + 1]:

x[2i] = £,Y[i], x[2i+ 1] = £,Y[i]. (21)
Note that x[2i] and x[2i + 1] are two distinct rows of X[i].

A first possibility is to apply two ZF space-time chip
equalizers, completely eliminating the interchip interference
(ICI) at the expense of potentially excessive noise enhance-
ment:

f, = i.(FHR;19¢) ' FEHR; L,
B (22)
f, =i, (FTR ' F) FHIR,

where i, is a 1 X (4L+2) unit vector with a one in the (L+1)th
position, i, is a 1 X (4L + 2) unit vector with a one in the
(3L + 2)th position, and R, := 1/(KN)&{E[{/]E"[i]}. A sec-
ond possibility is to apply two minimum mean-squared error
(MMSE) space-time chip equalizers, balancing ICI elimina-
tion with noise enhancement:

£, =i (FIR'F +R;) T FHIRS,

- o - (23)
£, =i, (HTR'F +R;") FIR;!,
where R, := 1/(KN)&{X[i]XH[i]}.

Assuming the additive noise sequences {em[n]}M_, are
mutually uncorrelated and white with variance 02, we can
write R, = 02Iy+1)m. Purthermore, assuming the data
symbol sequences {s, [n]}ff:l are mutually uncorrelated and
white with variance o2, the original multiuser chip sequence
x[n] is white with variance 02 = ¢2J/N (justified by the long
scrambling code), and we can write R, = o2 diag{[r,,r,]} =
02]/N diag{[ry, 1]}, wherer, = [(KN—L)/(KN),...,(KN -
1)/(KN),1,(KN = 1)/(KN),...,(KN — L)/(KN)].

2.3.3. Despreading
We define the 1 X KU multiuser data symbol block s[i] as

sli] := [s1[i],...,sulil], (24)

where s, [i] is the uth user’s 1 x K data symbol block given by

sulil := [su[iK],...,su[(i+ DK — 1]]. (25)

Note that the 1 x K pilot symbol block s, [i] is similarly de-
fined as s,[i]. We further define the multiuser code matrix
Cl[i] as

Cli] :== [Ci[i]T,...,CulilT]", (26)

where C,,[i] is the uth user’s code matrix given by

cu[iK]
Culi] == ) (27)
i+ 1)K —1]

with ¢,[k] := [c,[kN],...,c,[(k + 1)N — 1]]. Note that the
pilot code matrix Cy,[i] is similarly defined as C, [i]. It is then
clear from (1) that the multiuser chip block x[i] can be ex-
pressed as

U

N G, [i 1C. [
x[i] u;s [1]1Culi] + s, [i]Cp 1] (28)

= s[i|Cli] + s, [i]C,i].

Hence, by despreading the multiuser chip block x[7] with the
uth user’s code matrix C,[i], we obtain

suli] = x[i]C}/[i] (29)

because C, [i]CH[i] = Ok, Cu [{JCH[i] = Ok for u # o/,
and C,[i]CH[i] = Ig. Therefore, once x[i] has been esti-
mated, we can find an estimate for s, [i] by simple despread-
ing:

$uli] = x[i]CL[i]. (30)

Plugging (30) into (21), we thus obtain

$ul2i] = £Y[i]CH[2i],
_ (31)
$u[2i+ 1] = £,Y[i]CH[2i + 1].

From these equations, it is also clear that the order of equal-
ization and despreading can be reversed. In other words, we
can first despread Y[i] with C,[2i] and C,[2i + 1], and then
perform space-time chip equalization on both results.

3. PRACTICAL SPACE-TIME CHIP EQUALIZER DESIGN

In this section, we focus on practical space-time chip equal-
izer design. In [20, 21], we have developed two pilot-based
space-time chip equalizer design methods for the origi-
nal single-antenna DS-CDMA downlink scheme: a training-
based method and a semiblind method. In this section, these
two methods are appropriately modified and applied to the
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proposed space-time coded DS-CDMA downlink scheme.
We consider a burst of 2I data symbol blocks.

The goal of the training-based method is to compute the
uth user’s even and odd data symbol blocks {su[Zz]} _; and
{s,[2i + 1]}, from {Y[i]}! i1 based on the even and odd
pilot symbol blocks {sp[21] i—p and {sp[21 + 1]}1 1> the even
and odd pilot code matrices {Cp[Zz]} _1and {C,[2i+ 1} , 1>
and the uth user’s even and odd code matrices {C,[2i]}!
and {C,[2i + 1]},

The goal of the semiblind method is to compute the
uth user’s even and odd data symbol blocks {s,[2i]}]_; and
{sy[2i + 1]}, from {Y[i]}L,, based on the even and odd
pilot symbol blocks {sp[21]}l , and {sp[21 + 1]}, 1» the even
and odd pilot code matrices {CP[ZI]} _pand {C,[2i+1] }f >
and the even and odd multiuser code matrices {C[2i] } _;and
{C[2i + 1]}L_,. Note that the semiblind method requires the
knowledge of the active codes. This knowledge can be ob-
tained by means of a limited feedback from the base station
to the mobile station (only the indices of the active codes
have to be fed back). However, this knowledge can also be ob-
tained by first adopting the training-based method to design
a space-time chip equalizer, and then comparing for each
code the energy obtained after equalization and despreading
with some threshold in order to decide whether this code is
active or not.

For the sake of conciseness, we will only focus on block
implementations. These block implementations might look
rather complex, but they form the basis for practical low-
complexity adaptive implementations, which can be derived
in a similar fashion as done in [20, 21].

For the sake of simplicity, we make the following assump-
tions:

(Al) the matrix #€ has full column rank 4L + 2;
(A2) the matrices X[2i] and X[2i + 1] have full row rank
4L +2foralli e {1,...,I}.

The first assumption requires that 2(L + 1)(M — 1) = 2L
which means we need only M > 2 receive antennas at each
mobile station (even for ] > 2 transmit antennas, we need
only M > 2 receive antennas at each mobile station). The
second assumption requires that 4L + 2 < KN. Note that
these assumptions are not really necessary for the proposed
methods to work. The only true requirement is that x[2i] and
x[2i+ 1] belong to the row space of Y[i] foralli € {1,...,1I}.
Assumptions (A1) and (A2) are sufficient but not necessary
conditions for this. However, they considerably simplify the
analysis.

Assume no noise is present. Because of assumption (Al),
the row space of Y[i] equals the row space of X[i]. Hence,
there exist two 1 X 2(L + 1)M space-time chip equalizers f,
and f,, for which

f.Y[i] — x[2i] = 01xknN>
N (32)
on[i] - X[2i+ 1] = 0;xKN-

Because of assumption (A2), these two space-time chip

equalizers f, and f, are ZE. By using (28), we then obtain

£,Y[i] - s[2i]C[2i] — s,[2i]C, [2i] = Opxns
£,Y[i] —s[2i +1]C[2i + 1] — sp[2i+ 1]CP[21'+ 1] = 01xknN-
(33)

3.1. Training-based method

By despreading (33) with the even and odd pilot code matri-
ces C,[2i] and C,[2i + 1], we obtain

£.Y[i]C} [2i] — s,[2i] = 01,

f,Y[i]C} [2i + 1] (34)

- SP[2i+ 1] = 0;xk

because C[i]C}/[i] = Ogxx and C,li]CJ/[i] = Ik. The
training-based method solves (34) for f, and f, for all i €
{1,...,I}. In the noisy case, this leads to the following least
squares (LS) problems:

I
mén{ Zl IEY[i1C; [2i] - sp[2i1||2},
o (35)
n}1n<|2||fY z]CH[21+ 1] —sp[2i+1]]| }

i=1

which can be interpreted as follows. The space-time de-
coded output matrix Y[i] is first equalized with the even
and odd space-time chip equalizers f, and f,, and then de-
spread with the even and odd pilot code matrices Cp[2i] and
C,[2i + 1]. The resulting even and odd vectors f, Y[ ]CH[21]
and f,Y[i ]Cg [2i+ 1] should then be as close as possible in an
LS sense to the even and odd pilot symbol blocks s,[2i] and
sp[2i+ 1] foralli € {1,...,I}. The solutions of (35) can be

written as
) I
f = (Zsp[zi]cp[zi]YH[i])
1:11 »
X (Z [i]C} [2i]C, [2i] Y [i ]) ,

i=1

(36)

M~

i

spl2i+1]Cy[2i + I]YH[i])

1

; -1
(Z z]CH 2i+1] Cp[21+l]YH[ ]) .

The obtained space-time chip equalizers f, and £, are sub-
sequently used to estimate the uth user’s even and odd data
symbol blocks s, [2i] and s,[2i + 1] foralli € {1,...,I}:

HriA:
[[ i1C, 21, (37)

sul2i] = £Y
£,Y[i)CH[2i +1].

S,[2i+1] =

These soft estimates are fed into a decision device that deter-
mines the nearest constellation point.
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3.2. Semiblind method

The semiblind method directly solves (33) for (f.,s[2i]) and
(fy,s[2i+1]) foralli € {1,...,I}. In the noisy case, this leads
to the following LS problems:

min {ZHfY ] - s[2i] [2i]—sp[2i]Cp[2i]||2]>,

(Fe{s[2i]}])

I
(£, {s[zm]}, ) {;”

[i]] —s[2i +1]C[2i+ 1]

—sp[2i+1]Cp[2i + 1]||2]».
(38)

Since we are interested in f, and f,, we can first solve (38) for
s[2i] and s[2i+ 1] forall i € {1,...,I}, which results into

§[2i] = £.Y[i]CH[2i],

Ans " (39)
§[2i+1] = £,Y[i]CH[2i + 1]

because C[i]Cg[i] = Ogxx and Cp[i]CI;[i] = Ik. Substitut-

ing §[2i] and §[2i + 1] in (38) leads to the following LS prob-

lems:

~2.
5
—
M~

HnYUMhm-—cHuﬂcuﬂ)—spuﬂcAsz},

Il
—_

[|£,Y[i] (Ixn — CH[2i+ 1]C[2i + 1])

Il
—

2.

=}
——

M~

—s,[2i + 1]C,[2i + 1]||2},
(40)

which can be interpreted as follows. The space-time decoded
output matrix Y[i] is first equalized with the even and odd
space-time chip equalizers f, and f, and then projected on the
orthogonal complement of the subspace spanned by the even
and odd multiuser code matrices C[2i] and C[2i + 1]. The
resulting even and odd vectors £, Y [i] (Ixy — CH[2i]C[2i]) and
£,Y[i](Ixy — CH[2i + 1]C[2i + 1]) should then be as close as
possible in an LS sense to the even and odd pilot chip blocks
sp[2i]Cp[2i] and s,[2i + 1]Cp[2i + 1] for all i € {1,...,T}.
The solutions of (40) can be written as

f, =

/N
M-

sP[Zi]Cp[Zi]YH[i])

-1
[ (Tkn — CH[Zi]C[Zi])YH[i]> ,

VR
<

X
VS
I

&
Il
7
M~

X
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(41)

The obtained space-time chip equalizers f, and £, are sub-
sequently used to estimate the uth user’s even and odd data
symbol blocks s, [2i] and s,[2i + 1] foralli € {1,...,1}:

$u(2i] = £.Y[i]Cl[2i],
(42)
$.2i +1] = £,Y[i]CH[2i + 1].

These soft estimates are fed into a decision device that deter-
mines the nearest constellation point.

With some algebraic manipulations, it is easy to prove
that (40) is equivalent to

1
mfin{z X1 CH 2i] - s, (24]]]°

¢ i=1

+ ||£.Y[i] (I — CH [2i]C[2i] — Cgf[zi]cp[zi])nz},

m1n<|ZHfY Cl[2i+1] = sy[2i +1]|]°

f i=1

+ ||, Y] (Igy — CH[2i +1]C[2i + 1]

— CH[2i+1]Cy[2i + 1])||2}.
(43)

This shows that (40) naturally decouples into a training-
based part and a blind part (hence the name semiblind). The
training-based part corresponds to (35). The blind part can
be interpreted as follows. The space-time decoded output
matrix Y[i] is first equalized with the even and odd space-
time chip equalizers f, and f, and then projected on the or-
thogonal complement of the subspace spanned by the even
and odd multiuser code matrices C[2i] and C[2i+ 1] and the
even and odd pilot code matrices C,[2i] and C,[2i + 1]. The
resulting even and odd vectors £,Y[i](Ixy — CH[2i]C[2i] —
C}/[2i]Cp[2i]) and £,Y[i](Txn — CM[2i+1]C[2i+1] - C} [2i+
1]Cp[2i + 1]) should then be as small as possible in an LS
sense for all i € {1,...,I}. Note that when the user load in-
creases, the orthogonal complement of the subspace spanned
by the even and odd multiuser code matrices C[2i] and
C[2i + 1] and the even and odd pilot code matrices C,[2i]
and C,[2i + 1] decreases in dimension. As a result, the in-
formation that the blind part contributes to the training-
based part diminishes, and the semiblind method converges
to the training-based method. In the extreme case when the
system is fully loaded, that is, N = U — 1, the orthogonal
complement of the subspace spanned by the even and odd
multiuser code matrices C[2i] and C[2i + 1] and the even
and odd pilot code matrices C,[2i] and C,[2i + 1] is empty,
that is, Ixy — CH[ZI]C[ZI] - Cg[ZI]CP[Zl] = Ognxkn and
Ixn — CH[2i+ 1]C[2i+ 1] - Cg[2i+ 1]Cp[2i+ 1] = OgxNXKN-
Hence, the blind part does not contribute any additional
information to the training-based part, and the semiblind
method reduces to the training based method, that is, (43)
reduces to (35).
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4. SIMULATION RESULTS

In this section, we compare the proposed space-time chip
equalizer for the proposed space-time coded downlink
CDMA transmission scheme with the space-time RAKE re-
ceiver for the space-time spreading scheme, which encom-
passes the space-time coded downlink CDMA transmission
schemes that have been proposed for the UMTS and IS-2000
W-CDMA standards [16]. We do not consider channel codes
when comparing the above transceivers. Otherwise, it will
not be very clear whether a performance gain is due to the
transceiver or the channel code. Moreover, the influence of
channel codes on performance has been studied extensively
in literature. In W-CDMA, the target coded BER typically is
107%, which boils down to an uncoded BER of 1072 with a
convolutional code of rate 1/2, constraint length 7, and soft
decision Viterbi [22]. Therefore, we compare the different
transceivers at an uncoded BER of 1072 in the sequel.

We consider a downlink CDMA system with a spreading
factor of N = 32, ] = 2 transmit antennas at the base station,
and M = 2 receive antennas at each mobile station. We as-
sume that all channels are independent. We further assume
that each channel h; ,[n] is FIR with order L;,, = 3 and
has independent Rayleigh fading channel taps of equal vari-
ance o7. Note that the bandwidth efficiency of the proposed
space-time coded downlink CDMA transmission scheme is
€1 = KU/(KN + L), whereas the bandwidth efficiency of
the space-time spreading scheme is €, = U/N. Hence, in
order to make a fair comparison between the two systems,
their spectral efficiencies should be comparable. We therefore
take K = 5 and L = 3 for the proposed space-time coded
downlink CDMA transmission scheme, which results into
€1/€; = 0.98. We assume QPSK modulated data symbols,
and define the signal-to-noise ratio (SNR) as the received bit
energy over the noise power:

a3l Shoe{lnmir]

_ -
2(L+1)o20}

= T.

SNR

(44)

Two test cases are investigated.

Test case 1

We first assume that the pilot enables us to obtain perfect
channel knowledge at the receiver. We then compare the pro-
posed MMSE space-time chip equalizer for the proposed
space-time coded downlink CDMA transmission scheme
with the MMSE space-time RAKE receiver for the space-
time spreading scheme (see [23, 24]), which is different from
the matched space-time RAKE receiver for the space-time
spreading scheme (see [16]) because it uses an MMSE filter
instead of a matched filter to combine the finger outputs. It
has been shown in [23, 24] that for the space-time spreading
scheme, the MMSE space-time RAKE receiver significantly
outperforms the matched space-time RAKE receiver. Figures
2, 3, and 4 compare the performance of the two transceivers
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for U = 1, U = 15, and U = 31 users, respectively. The
performance results are averaged over 1000 random chan-
nel realizations, where for each channel realization, we con-
sider 10 random data and noise realizations corresponding
to I = 10 (100 data symbols per user). Also shown is the the-
oretical performance of >.; ,(Ljm + 1) = 16-fold diversity
over Rayleigh fading channels [22].

First of all, we see that the proposed transceiver comes
close to extracting the maximum diversity at low-to-medium
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user loads. More specifically, at a BER of 1072, the proposed 10!
transceiver incurs a 0.1, 1, and 1.8 dB loss compared to the
theoretical ML bound for U = 1, U = 15, and U = 31 users, 100 |
respectively. The existing transceiver, on the other hand, per-
forms poorly at medium-to-high user loads. At a BER of
1072, it incurs a 0.5, 3, and 8.2 dB performance loss com-
pared to the proposed transceiver for U = 1, U = 15, and o
U = 31 users, respectively. The existing transceiver is not ca- =

pable of completely suppressing the MUI at high SNR. This
results into a flooring of the BER at high SNR. Note that the
flooring level increases with the number of users U.

Test case 2

We now investigate the performance of the pilot-based meth-
ods. Note that for the space-time spreading scheme, it is easy
to derive a training-based method to estimate the combining
filter of the space-time RAKE receiver based on the knowl-
edge of the pilot. The performance results are again averaged
over 1000 random channel realizations, where for each chan-
nel realization, we consider 10 random data and noise re-
alizations corresponding to I = 10 (100 data symbols per
user). Figures 5, 6, and 7 compare the performance of the
different methods for U = 1, U = 15, and U = 31 users,
respectively.

First of all, we observe that the difference between
the training-based method and the semiblind method for
the proposed transceiver decreases with an increasing user
load, as indicated in Section 3.2. Next, we observe that the
training-based method for the existing transceiver performs
much worse than the training-based and semiblind meth-
ods for the proposed transceiver at medium-to-high user
loads. Finally, note that for the proposed transceiver, the
MMSE performance discussed in test case 1 can be viewed

0 5 10 15 20
SNR (dB)

—e— Proposed transceiver: training-based
—— Proposed transceiver: semiblind
- - - Existing transceiver: training-based

FIGURE 6: Performance of pilot-based methods for U = 15.

as the convergence point of the training-based and semi-
blind methods as I goes to infinity. Comparing the fig-
ures of test case 2 with the figures of test case 1, we ob-
serve that for I = 10, the training-based method is still
far from the MMSE performance, whereas the semiblind
method is already very close to the MMSE performance.
Hence, as I increases, the semiblind method converges
faster to the MMSE performance than the training-based
method.
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5. CONCLUSIONS

We have aimed at combining STBC techniques with the orig-
inal single-antenna DS-CDMA downlink scheme, resulting
into the so-called space-time block coded DS-CDMA down-
link schemes. Many space-time block coded DS-CDMA
downlink transmission schemes can be considered. We have
focussed on a new scheme that enables both the maxi-
mum multiantenna diversity and the maximum multipath
diversity. Although this maximum diversity can only be col-
lected by ML detection, we have pursued suboptimal detec-
tion by means of space-time chip equalization, which low-
ers the computational complexity significantly. To design the
space-time chip equalizers, we have also proposed efficient
pilot-based methods. Simulation results have shown im-
proved performance over the space-time RAKE receiver for
the space-time block coded DS-CDMA downlink schemes
that have been proposed for the UMTS and I1S-2000 W-
CDMA standards.
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INTRODUCTION

Traditional joint power control and beamforming achieve the targeted signal-to-interference-noise ratio (SINR) at the receivers by
assuming the knowledge of the measurements of channel parameters and SINR. Blind beamforming is an effective technique for
beamforming and channel estimation without the need of training sequences, thus not consuming extra bandwidth. In this paper,
we propose a novel joint power control and blind beamforming algorithm that reformulates the power control problem in such
a way that it does not need any prior knowledge and additional measurements in the physical layer. In contrast to the traditional
schemes that optimize SINR and, as a result, minimize bit error rate (BER), our proposed algorithm achieves the desired BER by
adjusting a quantity available from blind beamforming. By sending this quantity to the transmitter through a feedback channel,
the transmit power is iteratively updated in a distributed manner in the wireless networks with cochannel interferences (CCIS).
Our proposed algorithm is more robust to estimation errors. We have shown in both analysis and simulation that our algorithm
converges to the desired solution. In addition, a Cramer-Rao lower bound (CRB) is derived to compare with the performance of
our proposed joint power control and blind beamforming system.

Keywords and phrases: array signal processing, power control, distributed control, direction of arrival estimation.

Over the past few decades, wireless communications and
networking have witnessed an unprecedented growth, and
have become pervasive much sooner than anyone could have
imagined. One of the major challenges for the system de-
sign is the limited available radio frequency spectrum. Chan-
nel reuse is a common method to increase the wireless sys-
tem capacity by reusing the same channel beyond some dis-
tance. However this introduces cochannel interference (CCI)
that degrades the link quality. Two promising approaches
to combat CCI are power control and antenna array pro-
cessing. Power control is one direct approach toward min-
imizing CCIL. The transmit powers are constantly adjusted.
They are increased if the signal-to-interference-noise-ratios

(SINRs) at the receivers are low and are decreased if the
SINRs are high. Such a process improves the quality of weak
links and reduces the unnecessary transmit powers. Antenna
array processing techniques such as beamforming can be ap-
plied to receive and transmit multiple signals that are sepa-
rated in space. Hence, multiple cochannel users can be sup-
ported in each cell to increase the capacity by exploring the
space diversity.

Many works have been reported in the literature for em-
ploying power control and beamforming to reduce CCI. Tra-
ditional beamformers such as minimum mean square er-
ror (MMSE) and minimum variance distortion response
(MVDR) methods have been commonly employed [1]. In
(2, 3], general frameworks for power control are constructed.
Beamforming is a physical layer technique that can greatly
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increase receivers’ SINR by using the signal processing al-
gorithms, while power control is a media access control
layer technique that can effectively control users’ trans-
mit powers to share the channels. Many joint power con-
trol and beamforming algorithms are proposed in [4, 5,
6, 7, 8]. Most of the existing works assume the avail-
ability of prior channel information and measurement of
SINR.

As a majority of communication systems often struggle
with the limited bandwidth constraint, it is desirable for the
receiver with multiple antennas to steer to the desired direc-
tion and to estimate the transmit signals without consum-
ing much channel bandwidth. By eliminating the training
sequence overhead, used for estimation, and maximizing the
channel capacity for information transmission, blind estima-
tion and beamforming [9, 10, 11, 12, 13, 14, 15, 16] offer
a bandwidth efficient solution to signal separation and es-
timation. Its importance also lies in the practical need for
some communication receivers to equalize unknown chan-
nels without the assistance and the expense of training se-
quences.

Current methods of joint power control and beamform-
ing [4, 5, 6, 7, 8] assume perfect measurement of channel
parameters and SINR at the receivers, which is very difficult
to obtain in practice. Blind beamforming can estimate and
separate, without the use of training sequences, the transmit-
ted signals that suffer from the channel distortion and addi-
tive noise. The difficulties for joint power control and blind
beamforming are to formulate such a cross-layer problem
into a joint optimization problem, and develop an algorithm
that can be self-trained and adaptively adjust the system pa-
rameters. In this paper, we present a novel joint power con-
trol and blind beamforming algorithm for a multicell multi-
antenna system. Based on a reformulated joint problem, our
proposed algorithm optimizes the bit error rate (BER) us-
ing a quantity directly available from the blind beamform-
ing and estimation, which avoids additional measurements
mentioned above. Mobiles’ transmit powers are updated in a
distributed manner such that the CCI is effectively reduced.
Convergence properties of the proposed algorithm are dis-
cussed. A Cramer-Rao lower bound (CRB) is derived to show
the effect of power control on the symbol estimation perfor-
mance in the networks. Simulation results illustrate that our
algorithm converges to the desired solution and is more ro-
bust to channel estimation error compared with traditional
joint power control and training-based beamforming algo-
rithm.

The organization of this paper is as follows. In Section 2,
we present the system model and the traditional joint power
control and beamforming problem. In Section 3, first we
choose a blind beamforming algorithm. Then we give the
reformulated joint power control and blind beamforming
problem. An adaptive algorithm is developed and a system is
constructed. In Section 4, the convergence and uniqueness of
the solution are analyzed. The CRB is derived to compare the
performance. In Section 5, we evaluate our algorithm via nu-
merical studies. In Section 6, we give the summary and con-
clusion.

2. SYSTEM MODEL, BEAMFORMING
AND POWER CONTROL

Consider K distinct cells in wireless networks where cochan-
nel links exist. Each cell consists of one base station and its as-
signed D mobiles. Antenna arrays with M elements are used
only at the base station and M = D. We assume that coherent
detection is possible so that it is sufficient to model this mul-
tiuser system by an equivalent baseband model. Each link is
affected by the slow Rayleigh fading. The propagation delay
is far less than one symbol period. For uplink case, the ith
base station antenna array’s output vector is given by

x;(t)

K D
= Z Z \/Gz‘i'in“ZiaZi(Gz‘fi) 'gz‘j(t - Tki)sli(t_ ki) + (1),

k=1d=1
(D)

where GY, is path loss, af; is fading coefficient, P{ is transmit
power, af,(6%,) is the ith base station array response vector
to the signal from the dth mobile in the kth cell at direction
62, g?(t) is shaping function, s(t) is message symbol, 7; is
the delay, and n;(¢) is thermal noise vector. We assume the
synchronous transmission for all the users within the same
cell, that is, 7;; = 0, for all i. The synchronous assumption is
reasonable because the symbol timing can be effectively con-
trolled within each cell. We assume that the CCI from other
cells is asynchronous for the desired signals within the cell
and 14, k # i, is uniformly distributed within the symbol
duration. We assume that the channels are flat fading and
stable within a frame of hundreds of symbols. Define the im-
pulse response from the dth mobile in the kth cell to the pth

element of the ith base station as h,‘ff = a,‘fia,‘ff (Hl‘fi)r,‘jf , where
rzlip includes the effect of the transmitter, receiver filter, and
shaping function g (t — 74,). In the vector form, it is given by
he, = [hi4,... hM9])T. The sampled received vector for this

DK users and MK antenna outputs multicell system at time
n is given by

X(n) = AS(n) +n(n), (2)

where X(n) = [x](n),x] (n),...,xg(n)]", S(n) = [S(n),
SI(n),...,SE(m)]T, Si(n) = [s}(n),...,s2(n)]T, n(n) is the
sampled thermal noise vector, and

Ay Ay - A
Ap Ay - A
Ak Ak - Akkdykepk

where A;; = [ P}Giljhilj e PiDGghg .

Let w¥ be the beamforming weight vector for the dth mo-
bile in the ith cell. Without loss of generality, we normalize
the beamformer weight vector ||(w?)Hh¢[2 = 1, which will
not change the receivers’ SINRs. We assume that the trans-
mitted signals from different sources are uncorrelated and
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zero mean, and the additive noise is spatially and temporally
white with variance N; = 02Iyxm, where o2 is the thermal
noise variance. The dth user’s SINR at its associated ith base
station’s beamformer output is

d_ PG
1 i 7 Hyj 12 H .
S Y woeta) PLGLI (W Thi||” + (wi) " Nowd!

(4)

The issue in question here is how to find the users’ beam-
forming vectors and transmit powers such that each user has
the desired link quality and does not introduce unnecessary
CCI to other users. In the rest of this section, we will briefly
illustrate the traditional joint power control and beamform-
ing.

An adaptive antenna array is designed to receive the sig-
nals from the desired directions and attenuate signals’ radi-
ations from other directions of no interest. The outputs of
the array elements are weighted by a beamformer. In order
to suppress the interferences, the beamformer places its nulls
in the directions of interference sources and steers to the di-
rection of the target signal. Some most popular beamform-
ers are MMSE and MVDR beamformers [1]. In this paper,
we will compare joint power control and MVDR beamform-
ing method with our proposed blind scheme because MVDR
beamformer is commonly used in the literature [4].

If the channel responses h¢ can be estimated, the beam-
forming vector can be calculated by the MVDR method,
which minimizes the total interferences at the output of a
beamformer, while the gain for the desired dth user in the ith
cell is kept as a constant. The MVDR problem can be defined
as

i ©
subject to
| (wd) " o1, i1, M (6)
Define correlation matrix as ¢, = E[x;x!']. The optimal
weight vector is given by
wio S @)

(hd)" g7 'hd’

In traditional power control schemes, the overall trans-
mit powers of all links are minimized, while each link’s trans-
mit power is selected so that its SINR is equal to or larger than
a fixed and predefined targeted SINR threshold y¢ required
to maintain the link quality. The power control problem can
be defined as

K D
min > > PY, (8)
Pl iT1ao
subject to
(I1-BE)P > u, (9)

whereu = [u},...,uP,...,uk,...,uR]",P = [P},...,PP,...,
Pk,...,P2]T, Iis the identical matrix, B = diag{y},...,y?,
> Vs> YR}, and
0 ifi=k,
Flii = 1 64||(w)"he || 10
[ ]kJ ll||(w(l;3l 11|| lf]-/i—k, ( )
ii

where i = | k/D|, d =mod(k,D), i" =| j/D], d = mod(j, D),
andk,j=1---KD.

If the spectral radius p(BF) [17], that is, the maximum
eigenvalue of BF, is inside the unit circle, the system has
feasible solutions and there exists a positive power alloca-
tion vector to achieve the desired targeted SINRs. By Perron-
Frobenius theorem [17, 18], the optimum power vector for
this problem is P = (I — BF)~'u. Many adaptive algorithms
[3, 4, 19] have been developed to reduce the system complex-
ity by the following distributed iteration:

Pln+1) = %1{*, (11)
where I = (wf)HNiwf+25£)#i)d) | (wh)Ph,12P,G], and I?
can be easily estimated at the receivers. The power allocation
is balanced at the equilibrium when the power update in (11)
has converged.

The level of CCI depends on both channel gain and trans-
mit power. The optimal beamforming vector may vary for
different powers. Hence the beamforming and power control
should be considered jointly. In [4], a joint power control and
beamforming scheme has been proposed. An iterative algo-
rithm is developed to jointly update the transmit powers and
beamformer weight vectors. The algorithm converges to the
jointly optimal transmit power and beamforming solution.
The joint iterative algorithm can be summarized by the fol-
lowing two steps:

(i) beamforming in physical layer: MVDR algorithm,
(ii) power update in MAC layer: P**! = BFP" + u,

where power update step can be implemented by using only
local interference measurement. But the algorithm assumes
the knowledge of SINR and directions of the desired signals
or the perfect measurements of channel responses, which are
very difficult to get in practice.

3. JOINT POWER CONTROL AND BLIND
BEAMFORMING

In this section, first we consider how to choose a blind beam-
forming algorithm that can be used for joint optimization
with power control. Then we reformulate the joint power
control and blind beamforming problem as a cross layer ap-
proach. Finally, an adaptive iterative algorithm is developed.

3.1. Choosing a blind beamforming algorithm

The traditional beamforming needs the measurement of spa-
tial responses of the array. A common practice is the use of
training sequences [1]. However, it costs bandwidth which
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is very precious and limited in wireless networks. Moreover,
the measurement errors can greatly reduce the performance
of beamforming. This gives us the motivation to use blind
beamforming method to separate and estimate the multiple
signals arriving at the antenna array. Since beamforming and
power control are two different layer techniques, we need to
find the blind beamforming algorithms that allow us to have
joint optimization across the layers. In [13, 14], a maximum
likelihood approach named iterative least squares projection
(ILSP) algorithm is proposed. The algorithm explores the
finite alphabet property of digital signals. The channel es-
timation and symbol detection can be implemented at the
same time. In addition, a quantity is available for BER perfor-
mance and can be used for power control optimization [20].
In this subsection, we will briefly review the ILSP algorithm.

Consider the same channel module in (2). The dth mo-
bile inside the ith cell generates binary data s¢ (1) with power
P¢ transmitted over a low delay spread Rayleigh fading chan-
nel. The channel and antenna array response is h¢.. The sam-
pled antenna output at the ith base station is given by

x;(n) = Z hié/PIGis (n) + vi(n), (12)

where v;(n) includes the ith base station antenna thermal
noise and all the CClIs from the other cells, that is,

K D
vitn) = min)+ > Y WPIGEsi(n),  (13)

k=1 d=1
ki

where n;(n) is the M X 1 sampled thermal noise vector.

The ILSP algorithm works with a shifting window on
data blocks of size N. Assume that the channel is constant
over the N symbol periods. In the ith cell, we obtain the fol-
lowing formulation of the Ith data block:

Xi(h) = ASi(D) +Vi(D), (14)
where [ is block number,

X;(l) = [x(IN+1) x,(IN+2) . xi((l+1)N)],
Vi(l) = [viIN+1) vi(IN+2) --- vi((I+1)N)],
Si(l) = [si(IN+1) s;(IN+2) -+ s((I+1)N)], (15)
si(n) = [si(n) -+ P(m)]",

= [\P/G}h}; --- \PPGPhY]

We assume that the number of users is known or has been
estimated.

The ILSP algorithm uses the finite alphabet property of
the input to implement a least squares algorithm that has
good convergence properties for the channel with low delay
spread. The algorithm is carried out in two steps to alterna-
tively estimate A; and S; as follows:

min f (A5 $5X,) = [|Xi(]) - A% (16)

A;,Si

The first step is a least square minimization problem, where
S; is unstructured and its amplitude is continuous without
considering the discrete nature of modulations, while A; is
fixed and equal to the estimated A.. In the second step, each
element of the solution S; is projected to its closest discrete
values S;. Then a better estimate of A; is obtained by mini-
mizing f(A;, $i;X;) with respect to A, keepmg S; fixed. We
continue this process until estimates of A; and §; are con-
verge. The ILSP algorithm is given in Algorithm 1.

3.2. Reformulation of joint power control
and beamforming

In traditional joint power control and beamforming, the
user’s received SINR is larger than or equal to a targeted value
to maintain the link quality such as the desired BER. In this
paper, we proposed another quantity available from the ILSP
algorithm to directly ensure each user’s BER. For simplic-
ity, we use BPSK modulation for the analysis and simulation.
The other PAM or MQAM modulation methods can be eas-
ily extended in a similar way. It has been shown in [14] that
the error probability of ILSP algorithm is approximated by

d _ 2
Prlsi) = Q( Var [(m)] ) (17)

where each estimated signal §§-j(n) has E[§,‘-i(n)] = sf(n), that
is, ILSP is an unbiased estimator with variance

Var [§¢(n)] = 207 (AT A)dd, (18)

where, in our case, 67 = E[vi(n)"v;(n)] and can be estimated
by

2 1 2
= yIvill" (19)

In [14], (18) is developed for single cell environment with ad-
ditive white Gaussian noise. In our case, we need to perform
optimization in multicell scenario with CCI. Because there
are a large number of CCI sources with similar received pow-
ers, by the central limit theorem, we can assume that v;(n)
approaches a zero-mean Gaussian vector. So (18) still holds
in our case. From the simulation results in Section 5, we can
show that this assumption is valid.

In our proposed joint power control and blind beam-
forming scheme, the key issue is the quantity Var[sd(n)]
which is directly related to error performance. Var[s (n)] is
a function of 0,»2 and A;, so it is also a function of all Pf,
for all i,d. We want the maximum variance for each user’s
Var[sA?(n)] to be less than or equal to a predefined value vary
so that each user’s BER is less than the desired value. How-
ever, if var is too small, each user’s transmit power will be
too large and cause too much CCI. Under this condition,
the system may not be feasible, that is, no matter how large
the transmit powers are, the receivers cannot achieve de-
sired BER. So we need a feasibility constraint for vary. The
reformulated joint power control and blind beamforming
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(1) Initial A;y, Step m = 0.
QRQym=m+1
(a) Si,m = Azqui,
where A},,_, = (AL _ A, ) 'AH_,
(b) projection onto finite alphabet
Sim = proj[Siml,
(C) Ai,m = Xis?,-ma
where $,, = 8t (S,,,SE,)".
(3) Repeat until (Ai,m,si,m) ~ (Ai,m—lagi,mfl)-

ALGORITHM 1

problem is given by
K D
min > > PY, (20)
Pl T
subject to
Var (ﬁf(n)) <vary, Vid, (21)

where vary is feasible. In order to solve this problem, we need
to develop a distributed algorithm such that each user can
adapt its transmit power by using only local information. We
need to evaluate the feasible range of var, such that the sys-
tem is feasible, that is, there exists a possible power allocation
vector. The convergence and optimality of the adaptive algo-
rithm will be considered in Section 4.

3.3. Adaptive iterative algorithm

In this subsection, we assume that vary is feasible for the sys-
tem. We will discuss the feasibility issue in Section 4.1. In
ILSP algorithm, the iteration stops when the estimated chan-
nel response matrix and symbol matrix have converged. In
the algorithm, we use the final channel response matrix A;
to substitute A; in (18). Then the estimation of Var(s¢(n)) is
calculated by

o\ -1
vard = 207 (AiHA,->dd. (22)
In the uplink, the value of var? is obtained in the base sta-
tion and compared with the desired vary. If var? is too large,
it means that the BER for the dth user is too large and conse-
quently, the dth user’s power needs to be increased. If var is
too small, it is unnecessary to have such a high power for the
dth user. Consequently, the power needs to be reduced. The
power update stops when transmit powers have converged in
the consecutive iterations, that is, Var;-’l ~ varg. Each user’s
power is updated by the simple feedback of A = var¢ /var,
from the base station. The power update scheme can be eas-
ily implemented in a distributed manner. In each iteration,
the power is updated by

Pé(m+1) = AP (m), (23)

where m is the iteration number.

With the above power update equation, we develop the
following joint adaptive power control and blind beamform-
ing algorithm. The algorithm is initialized by some feasible
power allocation vector P(0) and some approximate channel
estimation Ai,o [13]. The user’s BER may be larger than the
desired value during the initialization. In each iteration, first,
ILSP blind estimate algorithm is applied to estimate the an-
tenna array responses and the transmitted signals. Then var?
is calculated. The new transmit power is updated by (23).
The iteration is stopped by comparing the power vector of
the two consecutive iterations. When the algorithm stops,
each user’s desired BER will be satisfied. The adaptive algo-
rithm is summarized in Algorithm 2.

With the adaptive algorithm, we can construct a joint
power control and blind beamforming system as shown in
Figure 1. The variance calculator module calculates the esti-
mation var{ from the ILSP module. The updating informa-
tion of transmit powers is computed by the power update
module. Then the simple power update information is sent
back to mobiles via the feedback channels. When the algo-
rithm converges, the output data from the ILSP module will
have the desired BER.

4. ANALYSIS AND CONVERGENCE
OF THE ALGORITHM

4.1. Convergence analysis

In this subsection, we analyze the condition for our proposed
algorithm to converge, that is, we find the feasible range for
varg. Then we prove that the power update converges to a
unique solution when the system is feasible, while the blind
beamforming may not converge to a unique solution. So our
proposed joint power control and blind beamforming algo-
rithm may have local minima because of the inherited char-
acteristics of the blind estimation. We will propose a method
to avoid the local minima. From the simulation results in
Section 5, we can show that even with the possible local min-
ima, the proposed algorithm performs comparably well with
the traditional joint power control and beamforming algo-
rithm.

Consider the transmission from the dth mobile to its as-
sociated ith base station with h¢ and G% being the channel
response and link gain, respectively, and A; being the channel
response matrix. We want to find the expression Var[§?(n)]
in (18). Then we will analyze the conditions for the conver-
gence of our algorithm. We have

[AFA] = VP! PFGGE (b)) R, (24)

The det(AHA;) can be expanded by the following alternating
sum form:

det (APA;) = P!G - - - PPGR f, (hy), (25)
where h; = [hl,...,hD]and f,(h;) is a real function of chan-

nel responses h?, for all d. Then it follows from the cofactor
method of matrix inverse [17] that
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(1) Given P(0), varg, m = 0, and A; = Aso.
(2) Received data block at base station i,
(i) ILSP blind estimation to get A
(ii) For each mobile d inside ith cell,
var! = 267 (APA) ;)
var?

vary
Pd(m +1) =
(ii1) Am = A,
(3) m =m+ 1. Go to step 2;
Repeat until P;(m) = P;(m —

AP (m);

1), for all i.

ALGoRrITHM 2: Joint power control and blind beamforming algo-
rithm.

12 (ha) T2 1J¢dP]Gx]t _ f3(hi)

(AFA) 5 = ,
fi(hi) [T2) PG, P{G]

(26)

where f2d(h,-,~) is a real function of channel responses h,]-,-, j#
d,and fi(hi) = £ (hi)/ fi (hy).

Because the channels are not reused in the adjacent cells
in most of the communication system, we assume that the
CCI plus thermal noise in (13) is Gaussian noise with the
variance:

o} —ZZHh 1k GY;P{ + Mo™. (27)
jFid=1

Now we can calculate Var[fj-i(n)] as

200 20}

Var [§;j(n)] = (AHA)d PdefS( tl) (28)

An interesting result is that Var(§,‘f(n)) is independent of the
transmit powers of the other mobiles in the same cell. So the
main concern for power control is intercell CCI. Substitute
into (23), the power update equation can be expressed as

Z]#lZd 1||h | Gde+MU

Pln+1) = A fi(hi).  (29)

d
Gj; var

In matrix form, we define a matrix Q as

GLAT/GE ifi 4,
[Q1kj={0”f4 e (30)

otherwise,

where i = |k/D|, d = mod(k,D),i" = | j/D],d = mod(},

D), and f4kj = ||h?i||2f3(hii). The matrix expression of (29)
for the whole network can be written as
1
P(n+1) = —QP(n) +u, (31)
vary
where P = [P} - - -PP,...,P}< .- -PE]T,u = [u1,...,upk]’,
and
M
uj = S (hi)Ma? (32)
Gé var,

M

‘/é\‘
Variance
3

calculator

Power Feedbafk
update | to mobiles

Y

Data stream

g :,\l/ ILSP >
S|

F1GURE 1: Joint power control and blind beamforming system.
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&
Antenna array

Y

By Perron-Frobenius theorem [17], the power update in (31)
has the equilibrium

-1
P-(1-—q) u (33)
varg
If (I — (1/varg)Q) is positive definite, that is, the spectrum
radius [p(Q)| < vary, the positive power vector exists and the
power update converges. Under this condition, the system is
converged when Var[§?(n)] = vary. From the simulation re-
sults in Section 5, we will see that our algorithm converges
rapidly to the desired var if [p(Q)| < vary.

When varg is too small and less than p(Q), the system
is not feasible and the adaptive algorithm diverges. In order
to prevent the algorithm from diverging, the system will de-
tect the severity of CCL If the system detect p(Q) approaches
varg or the transmit powers increase very fast, vary will be in-
creased so that users will reduce their transmit powers and
CCI will be alleviated.

Following the same proof in [19], we can prove that the
power update in (29) converges to a unique solution. Sup-
pose that P and P* are two different converge power allo-
cation vectors. Without loss of generality, we assume that
B = max;(P?/P#*) > 1 such that fP* > P. We can find an
index i such that BP¢* = P4, We have

Zﬂiz?—l Hh || ded +Mo?

P = - 15 (hii)
G?,-varo
S S th‘ii”zcj‘liﬁp?* +Mo? b
= d 15 (hii)
Gj; varg (34)
S S0 [P GEPE + Mo?
<p : G i varg ﬁ(hii)

= BP{*.

The above contradiction implies that the power update equa-
tion (23) will converge to a unique solution. However, be-
cause the solution of blind beamforming may not be unique
[14], our proposed joint scheme may fall into local minima.
In order to prevent such local minima, we propose the fol-
lowing scheme to avoid the local minima.

When the two users are not well separated in the an-
gle, that is, the array response A; is ill-conditioned. The
ILSP algorithm can converge to some fixed points that are
not the global minima. In this case, instead of projecting
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unstructured continuous estimated symbols to the closest
discrete values in ILSP algorithm, we enumerate over all QP

possible vectors S! € QP and choose the one that minimizes

$;(n) = arg min ||X;(n) — A,'S{||2, vj, (35)
sleqp

where Q) is the modulation constellation alphabet. This enu-
merating method has a better performance but a higher com-
plexity. If the global minimum is still not achieved, it has
been shown in [13] that usually one or two reinitializations
with random guess are sufficient to yield the global mini-
mum. So we can have two or three parallel structures with
different initial values to calculate ILSP algorithm. Then we
select the minimal one. The probability of staying in a local
minimum will be greatly reduced.

4.2. Cramer-Rao lower bound

In our proposed joint power control and blind beamforming
system, the performance of each user’s BER is determined
by the noise variance, channel conditions, and power alloca-
tion. When the additive noise is a zero-mean Gaussian ran-
dom process, the estimation performance of the unbiased es-
timator is bounded by the CRB. In this subsection, we derive
the covariance matrix for the parameters of the thermal noise
variance, the input symbols, and the power allocation vector
for the CRB. The results will help us analyze the effects of
power control on the users’ symbol estimation performances
in this multicell system.

For simplicity, we assume that the data are modulated
as BPSK, that is, S(n) € QKP, where Q = {+1}. Similar
to the performance analysis of ILSP in [14], we assume that
the channel responses are known (the algorithm itself doesn’t
need such information). The parameters for Fisher informa-
tion matrix are 9 = [02,5(1),...,S(N),P]. The likelihood
function L of the received data X(n) is given by

LIX(1) - - - X(N)]

1
- (ﬂo_z)MKN

N
X exp { - % S [X(n) - AS(m)]" [X(n) - AS(n)]}.
n=1

(36)
The Fisher information matrix is calculated by
B d?In(L)
16); = -E [ 36,06, }
M(iN 0 --- 0 0
0 Q --- 0 RO (37)
0 0 Q R(N)
0 R() --- RIN) Rp

where Q, R(n), and Rp are derived in the appendix.

In order to see the effect of the proposed power control
on the symbol estimation errors, we define the average mean
square error (AMSE) as a performance measure of the sym-
bol estimation:

L 5 180m =Sl

AMSE =
NS sl

(38)

Because we use BPSK modulation, |S(n)||*> = DK, for all n,
and AMSE is the variance bounded by CRB. The CRB for the
symbol estimation can be obtained directly from the inverse
of Fisher information matrix, that is,

1 N DK
-1
AMSE = n;}; (I70)) s5mysi () (39)

where $/(n) is the jth element of S(n). How close AMSE is
to the CRB will show the relative efficiency of our proposed
algorithm.

5. SIMULATION RESULTS

A network with 50 cells is simulated as shown in Figure 2.
Each hexagonal cell’s radius is 1000 m. Two adjacent cells do
not share the same channel. In each cell, one base station is
placed at the center. Two mobiles are placed randomly with
uniform distribution. Each mobile transmits BPSK data over
Rayleigh fading channels. Each base station employs four-
elements antenna array. The noise level is ¢ = 1. The trans-
mit frame has N = 1000 data symbols. Our shaping function
is raised cosine function.

Path loss is due to the decay of the intensity of a propa-
gating radio wave. In our simulations, we use the two slope
path loss model [21] to obtain the average received power as
a function of distance. According to this model, the average
path loss is given by

G- ¢ - (40)
ra(1+rA/ (4hyhyy))

where C is a constant, r is the distance between the mobile
and the base station, a is the basic path loss exponent (ap-
proximately two), b is the additional path loss component
(ranging from two to six), hj is the base station antenna
height, h,, is the mobile antenna height, and A, is the wave-
length of the carrier frequency. We assume the mobile an-
tenna height is 2m and the base station antenna height is
50 m. The carrier frequency is 900 MHz.

In Figure 3, we show the analytical and numerical per-
formance of ILSP, compared with MVDR with perfect chan-
nel estimation. The numerical results with CCI match the
analytical results well especially at high SINR range, which
proves our assumption that V;(n) can be treated as Gaus-
sian noise when the number of CClIs is large. Our pro-
posed joint power control and blind beamforming has only
about 1-2 dB performance loss over traditional power con-
trol and MVDR beamforming with perfect channel esti-
mation. However, MVDR beamforming needs additional
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FIGURE 3: ILSP performance.

training sequence to estimate the channel and SINR with
prior information that may not be available in practice.

In reality, perfect channel estimation is hard to obtain. In
Figure 4, we show the effect of directions of arrivals (DOA)
estimation error on the traditional joint power control and
MVDR beamforming and our algorithm. In Figure 4a, we
compare the BER performance while the transmit power al-
location is the same for both algorithms. We can see from
the curves that when the channel estimation error for DOA
is greater than about 2 degrees, the blind beamforming algo-
rithm outperforms the traditional MVDR. In Figure 4b, we
compare the overall transmit power while BER performance
is the same for both algorithms. We can see that the blind
beamforming algorithm needs a little bit more transmit pow-
ers when the DOA estimation error is small. However, the

DOA estimation error (degree)

—— Joint PC and MVDR
~~~~~~~ Joint PC and ILSP

(b) Overall power.

F1GURE 4: Effects of DOA estimation error.

traditional power control with MVDR method will diverge
when the DOA estimation error is about 2 degrees. Our pro-
posed joint power control and beamforming algorithm will
always converge regardless the DOA variations. When the
mobiles are moving, DOA are changing and this will cause
the channel estimation errors. The traditional MVDR beam-
former may not be aware of the changing and still use the ob-
solete h in (7). This will greatly increase BER and transmit
powers of the joint power control and MVDR method. The
proposed blind scheme will automatically track and adapt to
the changes and so it is more robust to channel estimation
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errors. Consequently, our algorithm is more robust in appli-
cations where usually only the inaccurate channel and SINR
estimations are available. It is worthy to mention that the
proposed scheme is more sensitive to fast channel varying
and the complexity is much higher compared to the tra-
ditional training sequence-based algorithm. However, our
scheme saves the transmission bandwidth by eliminating the
training sequences and is more robust to channel estimation
errors.

In Figure 5, we show the numerical results of BER and
the overall transmit power versus vary for the proposed joint
blind beamforming and power control algorithm. When var,
is decreasing from a large number, BER decreases and the
overall power increases slightly. Within a reasonable BER
range such as BER = 107% to BER = 107>, we can cal-
culate the threshold of vary for the desired BER. After varg
decreases to a specific value, the overall transmit power in-
creases and BER decreases quickly. This is because the CCI
is too large and var, — p(Q). After var, is smaller than
some value, the algorithm diverges. Consequently, there is
no feasible power control solution, that is, no matter how
large the transmit powers are, the receivers cannot ensure
the desired BER. This proves that our algorithm behaves ex-
actly the same as the traditional power control algorithm, ex-
cept that our algorithm directly ensures BER instead of each
user’s SINR. There is a trade-off between the overall trans-
mit power and BER, while var is the bridge between the two
quantities.

In Figure 6, we show the distribution of the number of
iterations required for the convergence of our proposed al-
gorithm with different values of vary. The convergence crite-
ria is that the maximum difference of users’ transmit pow-
ers between two consecutive iterations is less than 3%. When
varg is within the range that the system is feasible, we can
see that our algorithm converges within a small number of
iterations, which demonstrates that our algorithm is robust
in the wireless communication systems if the channel gains
and topologies have been changed. When vary is large, that
is, the desired BER is large, the algorithm converges slower.
This is because the transmit powers are small when vary is
large. Consequently, the var? estimation is poor and more it-
erations are needed for the convergence.

In Figure 7, we compare the AMSE and CRB versus vary.
When vary is large and the transmit powers of users are
small, the CCI is small. The performance of ILSP is close to
CRB. The difference is because discrete alphabets are used
for transmitted symbols, while there is no such assumption
for CRB. When var, is decreasing, the CCI and our algo-
rithm’s AMSE are decreasing because of the increasing trans-
mit powers. In this situation, the CRB is much lower than
our algorithm performance. This is because we assume that
all the channel conditions including A;;, i # j, are known for
CRB, while our algorithm only estimates A;; and treats trans-
mitted signals from other cells as noise. If an algorithm can
take consideration of all A;;, for all 4, j, its performance will
be much better and closer to CRB; however, the complexity
will be unacceptably high. When var, is smaller than some
value, our algorithm diverges. The transmit powers also di-
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verge to arbitrary large values. But the CRB goes extremely
low because SINR can be very high, if we know all the chan-
nel responses.

6. CONCLUSION

We have proposed a novel joint power control and blind
beamforming algorithm that reformulates the power con-
trol problem in terms of a quantity directly related to the er-
ror performance of the estimation. First, this approach opti-
mizes BER instead of a theoretically indirect SINR. Secondly,
the algorithm does not require additional measurements of
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channel or SINR, which saves valuable limited bandwidth.
Third, our scheme can be easily implemented in a distributed
manner. Fourth, our scheme is more robust to channel es-
timation error. The proof of convergence of the algorithm
is derived and supported by simulation results. Performance
results show that our algorithm performs well in the situa-
tions where the radio spectrum is limited or the good esti-
mations are hard to obtain.

APPENDIX
From (36), the log likelihood function is
In(L) =

~MKN In(7) — MKN In (0?)

N
- % > [XH(n) - $T(n)AH][X(n) — AS(n)].
n=1

(A1)

We take partial derivatives of (A.1) with respect to o2,
S(n), and P:

ln(L)
do2

MKN 1 &
—T o 2 emen),

n=1

dln(L) 2
8Sn(n) = p Re {AHe(n)},
e(n)}

aln(L) _ iz i {dmg(ST(”))dlag( )AHe(n)}
- (A2)

= w2l

where e(t) = X(t) — AS(t), and diag(1/P) = diag(1/P},...,
1/PP,...,1/PR). Using the several results that are proven in
[16, 22], we have
E (aln(L)>2 _ MKN
002 oot
(aln(L)> E (aln(L)) (8ln(L)>T o
00?2 oP R

)
[ aln(L)
o]

(8ln(L)
do?

Q- aln(L)

E)S(r)

h-J

T 2
) ] = 2 Re{A"A}S,,

{dlag (ST(n)) diag ( )AH
x A diag ( ) diag (S (n))},
R(n) = E[(%lsn((lf))> (81;11()L))T]

— Re {AHA diag ( ) diag (S(n))}

(A.3)
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This paper presents an extension of the vertical Bell Laboratories Layered Space-Time (V-BLAST) architecture in which the closed-
loop multiple-input multiple-output (MIMO) capacity can be approached with conventional scalar coding, optimum successive
decoding (OSD), and independent rate assignments for each transmit antenna. This theoretical framework is used as a basis
for the proposed algorithms whereby rate and power information for each transmit antenna is acquired via a low-rate feedback
channel. We propose the successive quantization with power control (SQPC) and successive rate and power quantization (SRPQ)
algorithms. In SQPC, rate quantization is performed with continuous power control. This performs better than simply quantizing
the rates without power control. A more practical implementation of SQPC is SRPQ, in which both rate and power levels are
quantized. The performance loss due to power quantization is insignificant when 4-5 bits are used per antenna. Both SQPC
and SRPQ show an average total rate close to the closed-loop MIMO capacity if a capacity-approaching scalar code is used per
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nel information feedback from the receiver to the trans-
mitter, hence a closed-loop implementation. Furthermore,

Information theory has shown that the rich-scattering wire-
less channel can support enormous capacities if the multi-
path propagation is properly exploited, using multiple trans-
mit and receive antennas [1, 2, 3]. In order to attain the
closed-loop multiple-input multiple-output (MIMO) capac-
ity, it is necessary to signal through the channel’s eigen-
modes with optimal power and rate allocation across those
modes [4, 5]. Such an approach requires instantaneous chan-

a very specialized transmit structure is required to perform
the eigenmode signaling. Therefore, it is challenging to incor-
porate the closed-loop MIMO capacity-achieving transmit-
receive structures into existing systems.

Open-loop schemes that eliminate the need for instan-
taneous channel information feedback at the transmitter
have also been proposed [6, 7, 8, 9, 10, 11]. These schemes
can be divided into two categories: multidimensional coding
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(e.g., space-time coding) and spatial multiplexing (e.g., ver-
tical Bell Laboratories layered space-time (V-BLAST)). Mul-
tidimensional coding [7] requires very specialized coding
structures and complicated transceiver structures. Further-
more, its complexity grows very rapidly with the number of
transmit antennas. Among spatial multiplexing approaches,
V-BLAST [9, 10, 11] uses simple scalar coding and a well-
known transceiver structure. This paper focuses on the
V-BLAST transmission scheme.

In V-BLAST, every transmit antenna radiates an indepen-
dently encoded stream of data. This transmission method is
much more attractive from an implementation standpoint;
the transmitter uses a simple spatial demultiplexer followed
by a bank of scalar encoders, one per antenna. The receiver
uses a well-known successive detection technique [12]. Fur-
thermore, this scheme is much more flexible in adapting
the number of antennas actively used. This flexibility is a
strong advantage for the following reasons. First, the chan-
nel estimation process requires more time as the number of
transmit antennas increases; consequently, the overall spec-
tral efficiency—including training overhead—could actually
degrade with an excessive number of transmit antennas in
rapidly fading channels. Hence, MIMO systems may need
to adapt the number of antennas actively used depending
on the environment. Second, it is expected that during ini-
tial deployment, not all base stations and terminal units may
have the same number of antennas. Therefore, the number
of antennas actually being used may need to be adapted,
for example, during hand-off processes between different
cells.

As previously mentioned, the main weakness of open-
loop V-BLAST is that it attains a part of the closed-loop
MIMO capacity; as the transmitter cannot adapt itself to
the channel environment in an open-loop fashion, V-BLAST
simply allocates equal power and rate to every transmit an-
tenna. Consequently, the performance is limited by the an-
tenna with the smallest capacity, as dictated by the channel.
Hence, it is natural to consider per-antenna rate adaptation
using a low-rate feedback channel.

Using a low-rate feedback channel, [13] introduced rate
adaptation at each antenna in V-BLAST to overcome this
problem. We extend their approach to both rate and power
adaptations at each antenna and theoretically prove that
this new scheme, denoted as V-BLAST with per-antenna
rate control (PARC), achieves the performance of an open-
loop scheme with multidimensional coding. A similar ap-
proach was taken at OFDM/SDMA in the downlink of wire-
less local networks [14]. We show that with per-antenna rate
and power control, V-BLAST achieves higher performance
than the other open-loop schemes. Moreover, V-BLAST with
PARC attains the open-loop MIMO capacity.

In developing the optimal PARC, similarities are noted
between the V-BLAST with PARC and the Gaussian
multiple-access channel (GMAC) problems. Every transmit
antenna within the V-BLAST can be regarded as an individ-
ual user in a GMAC. As shown in [15], with optimum suc-
cessive decoding (OSD), the total sum capacity of the GMAC
can be achieved at any corner point of the capacity region. As

will be shown, this result translates directly to the V-BLAST
context by simply incorporating the notion of PARC.

Next, these theoretical results are applied to practical
modulation scenarios. In order to apply the idealized capac-
ity results to a real system, the following points should be
considered. First, the idealized results assume an infinite-
length codebook to achieve vanishingly small bit error
rates (BERs), but in a real system, current coding tech-
niques and practical system requirements allow only for
a finite-length coding with nonzero error rates [16]. Sec-
ond, the idealized results assume a continuous rate set, but
in a real system, only rates from a discrete rate set are
feasible.

The first issue can be easily solved by adopting the con-
cept of a gap (T') [17]:

b =log, <1+$>. (1)

The number of bits transmitted at a specific SINR and spe-
cific coding and BER can be expressed as (1), where b is the
number of bits transmitted per symbol, SINR is the signal-
to-interference-and-noise ratio, and I' is a positive number
larger than 1, which is a function of the BER and specific
coding method. Note that this is a capacity expression, ex-
cept that the SINR is scaled by a penalty I, which is a func-
tion of the target BER and coding method. I' can take various
values; for uncoded M-QAM with the target BER 1073, T is
3.333 (5.23 dB). For a very powerful code (e.g., Turbo code),
I'is close to 1 (0 dB). When I equals 0 dB, the gap expression
(1) equals the actual capacity [17]. Works in [13] also uti-
lize the gap expression in considering the rate adaptation per
antenna.

The second issue is investigated using ad hoc methods
since the optimal solution for discrete rates is difficult to
obtain analytically. Successive quantization with power con-
trol (SQPC) is first proposed. Here, the rate is quantized
efficiently with continuous power control. However, a con-
tinuously variable transmit power level can be impracti-
cal since the feedback channel data rate is limited. There-
fore, SQPC is extended to successive rate and power quan-
tization (SRPQ) by considering power level quantization as
well.

The organization of this paper is as follows. The system
model is introduced in Section 2. V-BLAST is specifically de-
scribed in Section 3, with optimal PARC, when the trans-
mit antenna powers are given. The antenna power allocation
that maximizes the capacity is derived in Section 4. Section 5
shows that the open-loop capacity can be approached us-
ing V-BLAST with equal power allocation; additional power
control only leads to a slight increase in capacity. Section 6
first suggests a simple discrete bit loading algorithm based on
rounding off the rate from a continuous set with equal power
allocation. Then, a new discrete bit loading is presented
along with continuous power control, SQPC, in Section 7. In
Section 8, a discrete bit loading with quantized power levels,
SRPQ is suggested. Results are shown in Section 9. Conclu-
sions follow in Section 10.



764

EURASIP Journal on Applied Signal Processing

2. SYSTEM MODEL

We assume a general architecture with M transmit and N
receive antennas and perfect channel estimation at the re-
ceiver. Rate and/or power information can be fed back to
the transmitter. The M X 1 transmit signal vector is x; the
N x 1 received signal vector is y. The N X M channel matrix
H can take any value; however, for a rich scattering environ-
ment, we assume that H is composed of independent zero-
mean complex Gaussian random variables. The zero-mean
additive white Gaussian noise (AWGN) vector at the receiver,
denoted by n, has a covariance matrix equal to the identity
matrix scaled by 2. For simplicity, we assume 02 = 1 and
scale the channel appropriately. The average power of each
component of the H matrix is indicated by g, while the to-
tal power available to the transmitter is denoted by Pr. An
average SNR p is defined as Prg.
This model can be expressed mathematically as

y = Hx +n, (2)

where E[nn'’] = Iy and E[H (n;, m1)*H(ny, my)] = g8(n; —
1y, m —my) for all ny, ny, my, and m,. Iy denotes the identity
matrix of size N X N, §(m, n) denotes the 2-dimensional Kro-
necker delta function, and H (n, m) indicates the nth row and
mth column element of the H matrix. Consistent with the
open-loop V-BLAST concept, the signals radiated from dif-
ferent antennas are independent. Hence, the covariance ma-
trix of x can be expressed as follows when the power allocated
to antenna m is equal to Pp,:

Pb O --- 0 0
0 P --- 0 0
Exx] =]ttt (3)
0 0 Py-1 0
0 0 0 Pu

where S™_| P,, = Pr. When we simply allocate equal power
to all the transmit branches, we assign P,, = Pr/M. We use
()T and (-)¥ to denote transposition and Hermitian trans-
position, respectively. For scalars, (+)* denotes complex con-
jugate.

3. V-BLAST WITH PARC

With respect to minimum mean square error (MMSE) V-
BLAST, the natural extension is PARC, which is explained in
detail below.

The capacity of the mth transmit antenna C, can be
expressed in terms of the channel matrix and the trans-
mit power of each antenna. We define h,, as the mth col-
umn of H and H(m) (m = 1,...,M) as the N x (M —
m+ 1) matrix [hy,hy4 hy_1hy]. We also define P(m)
asan (M — m+ 1) X (M — m + 1) diagonal matrix with
(P> Pty - - - » Py—1, Par) along the diagonal.

According to the OSD procedure described in [15], the
signals radiating from the M transmit antennas are decoded

in any agreed-upon arbitrary order. In the remainder, it is
assumed, without loss of generality, that they are decoded
according to their index order. It is interesting to note that,
unlike the open-loop V-BLAST, the ordering has no impact
on the capacity attained by the sum of all M antennas.' It
does, however, impact the fraction of that capacity that is al-
located through rate adaptation to each individual antenna.
It also affects the total rate when both rate and power are

quantized.
The process is parameterized by a set of projection vec-
tors F,, (m = 1,...,M) and cancellation vectors B,,1, B,.2,

vo s By (m=1,...,M — 1), all with a dimension of N x 1.
In decoding the mth transmit antenna signal, interference
from the (m — 1) already decoded signals is subtracted from
y by applying the proper cancellation vectors to reencoded
versions of their decoded symbols. An inner product of that
cancellation process result and the projection vector corre-
sponding to the mth antenna is fed into the mth antenna de-
coder.

The first antenna, in particular, is decoded based on Z,
which is obtained as the inner product of F; and the receive
vector Y; = y expressed as Z; = (F,Y;) = F,"Y,. The
decoded bits are reencoded to produce x;. The second an-
tenna is similarly decoded based on Z,, where Z, is now the
inner product of F, and a vector Y, obtained by subtract-
ing the vector B %) from y. Therefore, Y, = y — By %) and
Z; = (F5,Y>). In general, the mth antenna is decoded based
onZy = (F,, Y, = Fil(y — 2;71:]1 B(n-1);%;). Here, it is as-
sumed that all decoded bits are error-free, which is legitimate
in the analysis of capacity [16].

The optimal cancellation vectors are given by B(,—1); =
h;, and the optimal projection vectors are F,, = (H(m +
DP(m+ D)H(m + 1)7 +Iy)~h,, [15].

Furthermore, the capacity of the mth antenna can be ex-
pressed as

C =log, (1+ Pyhy," (H(m + 1)P(m +1)

xH(m+ D" +1y) 'hy) (m=1,...,M),
(4)

and it was proved in [15] that

M
> Cp = log, det (Iy + HE[xx"JH"), (5)
m=1

which, with equal power per antenna, is precisely the open-
loop MIMO capacity attainable with multidimensional cod-
ing [1]. Hence, the same capacity can be achieved using scalar
coding, but at the expense of rate adaptation using a low-
rate feedback channel. For a practical coding scheme with a
nonzero BER, the rate R,, is expressed as follows, using (1)

Tt should be emphasized that this is true only in a capacity sense. In
practice, due to error propagation, error rate performances can differ de-
pending on the ordering.
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and (4):
R

( thmH(H(m+1)P(m+1)H(m+1)H+IN)_1hm>
=log, [1+ T

(6)

It is interesting to note that as the number of anten-
nas grows large, the capacities C,, become increasingly pre-
dictable from the statistics of the channel, and hence the
feedback need for each transmit antenna actually vanishes
progressively [18].

4. POWER CONTROL IN V-BLAST WITH PARC

In this section, the power P, (m = 1,...,M) allocation
methods are considered under the total power constraint. For
any set of powers P,,(m = 1,...,M), the optimal capacity
and rate are those given by (4) and (6). The optimal power
allocation scheme here is different from the waterfilling solu-
tion in [4].

4.1. Optimal schemeforN = 10orN =2

The optimal power control was found only when the num-
ber of receive antennas is 1 or 2. The optimal power alloca-
tion for more extensive cases was independently derived in
[19].

When N=1, the open-loop MIMO capacity can be ex-
pressed as

M
C=log2(sz|hm|2+l>, (7)

m=1

where h,, is a scalar. Under the total power constraint, the
optimal power allocation corresponds to assigning the entire
power budget to the transmit antenna with the largest |h,,|.

When N=2, following (5), the open-loop MIMO capacity
can be expressed as

C = log, [( % pmyH(1,m)y2+1)

m=1

(ﬂﬁ_lpm}H(Z,m)}z+l>

_<m1

M
X ( > PuH(2,m) H(1,m) + 1)]

m=1

(8)

Mz

P,H(1,m)*"H(2,m) + 1)

Under the total power constraint, the optimal power al-
location can be found using a Lagrangian method:

](Pl)---)PM)
M M
- ( S P, |H(1,m)|* + 1) ( > P, |H2,m)|* + 1)
m=1 m=1
M
- ( > P,H(1,m)*H(2,m) + 1)
m=1
M M
X ( > PyH(2,m)* H(1,m) + 1) +)\< > Py —PT>,
m=1 m=1
9)
where J(Pi,...,Py) is convex with respect to P,,. The opti-

mal power allocation should satisfy the Karush-Kuhn-Tucker
condition [20]; if the optimal power allocation P, is posi-
tive for all m = 1,..., M, then the optimal power assignment
policy is found from dJ/0P; = 0 (I = 1,..., M) and the total
power constraint. dJ/0P; = 0 becomes

M
> P, |H(L,DH2,m) - H(1,mH(2,1) |
m=1 (10)

—A—|HLD|? = |HR,D|® (=1,...,M).

If some P,,’s are zero in the optimal power allocation, then
0J/9P; should be zero only for the nonzero P;’s and the total
power constraint should be satisfied. By checking this condi-
tion numerically, the optimal power allocation can be found.
Simulation results are shown in Section 5.

4.2. Suboptimal scheme for N > 2

We were not able to find the optimal power and rate alloca-
tions when the number of receive antennas is more than 2.
By solving the nth-order linear equations, we can get the op-
timal power solution, but obtaining a closed form, even for
N = 3, is extremely complicated. However, from the optimal
solution for N = 1 and N = 2, we observe the following:

(i) the optimal power allocation scheme usually corre-
sponds to selecting 1 or 2 antennas while switching off
the remaining ones completely;

(ii) with suboptimal power allocations (e.g., equal-power
allocation), the capacity loss is small.

Based on these observations, we suggest a suboptimal power
allocation algorithm that works for any combination of M
and N. First, divide the total power Pr by M and consider
Pr/M as a power unit. There are M such power units. Then,
consider every possible power unit distribution over anten-
nas, calculate the sum capacity (5) of each distribution, and
select the one that yields the largest sum capacity of all the
distributions.

5. CAPACITY RESULTS

Numerical values for the capacity are shown in this section.
Equation (1) is equivalent to the capacity formula for two di-
mensions when the gap (T') is 0 dB. The average (ergodic)
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FIGURE 1: Average capacity when M = 2 and N = 2.

capacity is used as a performance measure. We have also
tested the outage capacity at small levels of outage, which
shows a performance trend similar to that of the average
capacity. Hence, the outage capacity results are not shown
here.? Figures 1, 2, and 3 show such average capacity for var-
ious combinations of M and N. For each combination, the
following cases are depicted: MIMO capacity, optimal power
allocation with PARC, equal power allocation with PARC,
suboptimal power allocation with PARC, and equal power
and equal rate allocation. The MIMO capacity is the maxi-
mum rate achievable by transmitting over the channel eigen-
modes when both the transmitter and the receiver know the
channel matrix [4]. In other words, the MIMO capacity here
is the closed-loop MIMO capacity. Furthermore, the spectral
efficiency of equal power allocation with PARC is equal to the
open-loop MIMO capacity.

In a moderate to high SNR regime, equal power alloca-
tion across antennas works almost as well as the optimal (or
suboptimal) power allocation as long as the rate is controlled
under OSD. Hence, power adaptation becomes largely irrel-
evant with PARC in a moderate to high SNR region. How-
ever, in a low SNR region, it is observed that power alloca-
tion improves the capacity. This is in line with conclusions
drawn in other research literatures in similar cases. In a single
user time-varying channel, a close-to-optimal performance
is achieved by transmitting a constant power when the chan-
nel path gain is larger than a certain threshold value [21].

2In general, unless all the schemes produce the same probability density
function of achievable capacity, the outage capacity does not follow the same
trend as the average capacity.
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FIGURE 2: Average capacity when M = 4and N = 2.
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FIGURE 3: Average capacity when M = 4 and N = 4.

Results also show that the capacity loss relative to the
closed-loop MIMO capacity is not significant (except in
Figure 2, where the gap between MIMO capacity and equal-
power capacity is not reduced even though we increase the
average SNR). Therefore, equal power allocation combined
with PARC under OSD is a practical and efficient method to
approach the MIMO capacity. All the schemes proposed in
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this paper perform better than the equal power and rate allo-
cation (MMSE) V-BLAST.?

6. SIMPLE ROUNDING-OFF

Here, a simple, discrete bit loading algorithm is proposed.
Given that PARC under equal power allocation achieves the
open-loop MIMO capacity as seen in (5), a natural practical
extension is to simply round off each rate per antenna with
equal power allocation. Here, it is assumed that all the deci-
sions are correct during OSD process.

Given the rate R, as described in (6), round off R,, and
assign the rounded-off rate [R,,], where [x] is the largest in-
teger which is smaller than or equal to x. The rate set can
be reduced further by considering only every gth integer. In
this case, the rounded-off rate is q[R,,/q]. This quantization
method does not limit the maximum rate used, but simu-
lation results in Section 9 show that the maximum rate per
antenna calculated with this algorithm is less than or equal
to 16 QAM when an average SNR is 10 dB. Hence, clipping
in quantization is not considered.

As there is no power control, this is simpler than the fol-
lowing two schemes. However, unlike in the continuous rate
case, results in Section 9 show that the spectral efficiency loss
is significant when power is not adapted.

7. SUCCESSIVE QUANTIZATION WITH
POWER CONTROL

A more efficient discrete bit loading algorithm is proposed
by also adapting the power levels at each transmit antenna.
Obviously, the performance is maximized by using optimal
power control under the assumption that discrete rates are
available at each transmit antenna. However, a closed-form
solution for the optimal discrete rate and continuous power
control cannot be found analytically; furthermore, an ex-
haustive search over the set of rate and power levels is too
complicated to be conducted in real time. Hence, instead
of the optimal rate and power control scheme, an ad-hoc
discrete bit loading method, successive quantization with
power control (SQPC) (Figure 4), is suggested in the fol-
lowing. Here also all the decodings are assumed perfect in
OSD.

The transmit antennas are labeled according to the or-
der in which they are decoded at the receiver. The SINR of
the kth transmit antenna contains interference from all the
antennas decoded after it (i.e.,k + 1,...,M). The available
rates are assumed to be 0, g, 2g, 3g, and so on. Therefore, g is
the interval between rate quantization levels. Again, there is
no clipping; from numerical calculations, the maximum rate

3Equal power and rate allocation should be interpreted carefully. This
is achieved when a codebook designer knows the channel and then allo-
cates equal power and rate across the antennas. However, in practice, MMSE
V-BLAST is designed without any prior knowledge regarding the channel.
Therefore, one MMSE V-BLAST can achieve one point on the curve not the
entire curve.

m= M,
Premaining = Pr

)

Allocate
Premaining/m
to the mth antenna

2

| Quantize Ry,max |

2

| Calculate required Py, %

Reduce

Rm,max

Premaining — Py >0?

Yes

m=m-—1,

P remaining =

Premaining - Py

FiGure 4: SQPC algorithm.

per antenna is less than or equal to 16 QAM when an average
SNR is 10 dB.

First, the power and rate for the Mth antenna are allo-
cated. The rate of this Mth antenna is independent of the
power of all other antennas. Py is divided by M and then as-
signed as the transmit power of the Mth antenna. Then, we
calculate the maximum rate Rygmax possible for Py = Pr/M
from (6). Next, round Rjy,max and recalculate how much Py
is needed to support rounded Ryf,mqx from (6). Here “round
x” means q{x/q}, where {x} means the integer closest to x.
If that power exceeds Pr, then subtract g from Rymayx. Then,
recalculate how much power is necessary to support the re-
duced Ryf max from (6).

Second, the power and rate for the (M — 1)th antenna
are allocated. Given the interference due to the Mth antenna
from the previous stage, calculate the maximum rate for the
(M—1)th antenna, assuming (Pr—Py)/(M —1) is allocated as
the transmit power of the (M —1)th antenna. Round Ryf—1,max
and recalculate how much Py is needed to support this
rounded Ry 1 max. If (Py + Pa—1) exceeds Pr, then subtract
q from Ryr—1,max and recalculate Py, which can support the
reduced Ry—1 max-

Iteratively, at step j (j < M — 1), the power and rate for
the (M — j)th antenna are determined. The exact amount
of interference from M,M — 1,...,(M — j + 1)th antennas
is known at this stage. Calculate the maximum rate for the
(M~ j)th antenna, Ry~ j max, assuming (Pp—(Pp+Py—y - - =+
Puyj41))/(M — j) is allocated as the transmit power of the
(M — j)th antenna. Round Ry jmax and calculate the new
Py j which can support rounded Ry jmax. If (Py + Ppr—y +
- -+ + Py ;) exceeds Pr, then reduce Ry jmax by g and find
the new Py j which can support the reduced Ry j max-

At step M — 1, where the power and rate for the first an-
tenna are determined, R max is calculated, assuming (Pr —
(Pyp + Pyi—1 - - - + Py)) is allocated as the transmit power of
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the 1st antenna. Round off R; max and recalculate a new P,
which can support rounded-off Ry max. Here, rounding up is
not an option since it would violate the power budget.
SQPC will inherently leave some part of the total power
Pr unused. This residual power is not sufficient to increase
the rate of any antenna to the next higher quantized level.

8. SUCCESSIVE RATE AND POWER QUANTIZATION

SQPC in Section 7 can become infeasible, especially when
frequent rate and power level updates are necessary. As power
levels still assume infinite precision, frequent power level up-
dates cannot be supported due to a limited data rate on the
feedback channel. Here, we look into the case in which both
rate and power are adapted, while limiting the number of
available rate and power levels. Here also, a closed-form so-
lution for the optimal discrete rate and discrete power con-
trol does not exist; again, an exhaustive search over the set
of rates and powers is too complicated to be conducted in
real time. Hence, an ad hoc suboptimal discrete bit loading,
successive rate and power quantization (SRPQ) (Figure 5), is
also suggested as follows. Here also, all the decoding stages
are assumed perfect during OSD.

We use the same notation for the antenna labeling and
the achievable rates as in Section 7. Furthermore, the avail-
able transmit power levels are 0, Pr/(Np — 1), 2Pr/(Np —
1),...,and Pr, where Np is the number of available transmit
power levels. In SQPC, only rate per antenna was quantized
while the power levels could take any continuous values.

First, the power and rate for the Mth antenna branch
are allocated. Pr is divided by M and then assigned to the
Mth branch. Then, the maximum rate Rpjmax possible is
calculated for Py; = Pr/M from (6). Next, round Ry max
and recalculate how much Py, is needed to support rounded
Ry;max from (6). Then round up Py considering the num-
ber of power levels available. In other words, Py is updated
as qp[Pm/qpl, where q, = Pr/(Np — 1) and [x] means the
integer closest to and larger than x. Round-off is not an op-
tion since it would ruin the reliability according to (1). If that
power exceeds Pr, then subtract g from Ry,max. Recalculate
how much power is required to support the reduced Rymax
from (6). Then round up Py so that Py can take one of Np
transmit power levels as before. If this Py, still violates the
power budget, subtract g from Rymax again and repeat the
process until the power budget is satisfied.

Second, the power and rate for the (M — 1)th antenna
are allocated. Given the interference due to the Mth antenna
from the previous stage, calculate the maximum rate for the
(M — 1)th antenna while assuming that (Pr — Py)/(M — 1)
is allocated as the transmit power of the (M — 1)th antenna.
Round Rj—1,max and recalculate how much Py;_; we need to
support this rounded Ry/_1,max. Then round up Py_; so that
Pyr— can take one of Np transmit power levels. If (Pa+Pp—1)
exceeds Pr, then subtract g from Rps—1 max and recalculate the
smallest Pys—; which is among the available Np power levels
and can support reduced Rps—1 max. If the power budget can-
not be satisfied, keep reducing Rys—1,max by q until the power
budget is satisfied.

m= M,
Premaining = Pr

J

Allocate
Premaining/m
to the mth antenna

2

| Quantize Ry,max |

2

| Calculate required Py, H

N

| Quantize Py, |

Reduce
Premaiuing = Py >0¢ R
m,max
Yes
m=m-1,
Premaining =

Premaining —Pu

FIGURE 5: SRPQ algorithm.

Iteratively, at step j (j < M — 1), the power and rate
for the (M — j)th antenna branch are allocated. The exact
amount of interference from M, M —1,..., (M — j+1)th an-
tenna branches is known. Calculate the maximum rate for
the (M — j)th antenna branch, Ry jmax, assuming (Pr —
(Py+Ppoy + - ++Py—j11))/ (M~ j) is allocated as the transmit
power of the (M — j)th branch. Round Ry j max and calculate
new Py ; which is one of the available Np power levels and
can support rounded Ry;— j max. If (Par + Ppr—y + - - - + Py j)
exceeds Pr, then reduce Ry jmax by g and find a new Py,
which is one of the available Np power levels and can sup-
port reduced Ry jmax. If the power budget is not satisfied,
keep reducing Ry j,max and calculate appropriate Py ;.

At step M — 1, where the power and rate for the first an-
tenna are decided, the maximum rate R; n,y is calculated as-
suming that (P — (Py + Py—1 - - - + P2)) is allocated as the
transmit power of first branch. Round off R; 1. and recalcu-
late a new Py, which is one of the available Np power levels
and can support rounded Rj max. If the power budget is not
satisfied, keep reducing R max and calculate appropriate P;.
Here, rounding up is not an option since it would definitely
violate the power budget.

Several variations are shown in the following subsections.
The first one is a variation in which residual power is used
efficiently to reduce error propagation, while the second one
is a variation in which an efficient decoding order is found.

8.1. SRPQI1.: efficient use of residual power

SRPQ inherently leaves some part of the total power Pr un-
used. This residual power is not sufficient to increase the rate
of any antenna to the next higher quantized level. However,
this residual power can be used efficiently to reduce the er-
ror rate. Therefore, by pouring residual power into the first
antenna, which is decoded first, its BER performance can be
improved. This reduction in BER, in turn, helps improve the
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FIGURE 6: Effect of rate quantization when M = N = 2.

decoding reliability at later stages. Pouring all the residual
power into the first antenna does not increase the feedback
channel rate, even though P, is not within the Np possible
power levels since P; equals (Pr — ZI,\,,/IZZ P,,), which can be
calculated at the transmitter once P, (2 < m < M) are fed
back. This variation of the SRPQ scheme is called SRPQI.

8.2. SRPQ2: efficient decoding order

So far, the decoding order has been chosen arbitrarily. In a ca-
pacity sense, it was proved that the same total rate is achieved
regardless of the decoding order. However, for the quantized
rate power case, it is unclear whether the optimization of de-
coding order is helpful or not. Here, a decoding order is opti-
mized by doing a full search over all possible decoding orders.
This variation of SRPQ scheme is called SRPQ2.

9. RESULTS

The following schemes are considered: MIMO Capacity, SR,
SQPC, SRPQI, and SRPQ2. The MIMO capacity is the
closed-loop MIMO capacity as in Section 5. For each average
SNR p, H is generated 1000 times and the average capacity
is calculated assuming that a scalar capacity-achieving code
is used: I' = 1 at (1). First, the effect of rate quantization is
investigated; later, power quantization is also considered.

9.1. Effect of rate quantization levels

When g is equal to 1, both square and cross QAM (0
bits/symbol, 1 bit/symbol, 2 bits/symbol, and so on) are al-
lowed as a signal constellation. On the other hand, when ¢ is
equal to 2, only square QAM (0 bits/symbol, 2 bits/symbol,
4 bits/symbol, and so on) is allowed. For each ¢, optimal

25
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¢~ Optimal discrete rate (q = 2)
~SQPC(g=1)
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4= SR(q=1)
% SR (q =2)

FiGure 7: Effect of rate quantization when M = N = 4.

discrete rate is the case in which the spectral efficiency is
maximized under a total power constraint when only dis-
crete rates (0,¢,2q,...) are available per antenna. In Figures
6 and 7, the average capacity is displayed as function of the
quantization levels. When the power on each transmit an-
tenna is not adapted at all (SR case), using a smaller number
of discrete rate levels (g = 2) results in poor performance
compared with using a larger number of discrete rate levels
(g = 1). However, in other schemes (SQPC, optimal discrete
rate), the performance difference is not significant between
q = 1 and g = 2. The trade-off between feedback informa-
tion and performance is observed; power levels at each an-
tenna in SR do not need to be fed back. However, more rate
levels (smaller g) need to be fed back for SR than for SQPC in
order to achieve the same performance level. Hence, it is con-
cluded that g = 2 is a reasonable quantization level choice,
where power control is also available.

9.2. Effect of power quantization levels

In this section, g is assumed to be 2 and the capacities of
the various schemes are compared, depending on the power
quantization levels. In Figures 8 and 9, SQPC always per-
forms better than SR for the same M, N, and q. Furthermore,
the performance gap increases with M and N. Moreover, for
low SNR, the capacity of SQPC falls short of the MIMO ca-
pacity by 4dB in SNR when g = 2. Due to space limitations,
the result for ¢ = 1 cannot be presented, but in this case,
the performance of SQPC is less than the MIMO capacity by
3dBin SNR.

For a low average SNR p, a small number of power levels
does not degrade the performance significantly from a large
number of power levels. The reason is that, for a low SNR,
usually only a single antenna is activated. However, for a high



770

EURASIP Journal on Applied Signal Processing

Capacity (bps/Hz)

Average SNR p (dB)

— MIMO capacity
-5 SRPQI (N, = 4)
- SRPQ2 (N, = 4)
- SRPQ1 (N, = 16)
- SRPQ2 (N, = 16)
-6-SQPC

--SR

FIGURE 8: Average capacity when M =2 and N = 2 forq = 2.

average SNR p, the performance loss is considerable as the
number of power levels is decreased. Indeed, when N, < 4,
the degradation caused by power control quantization be-
comes so great that it is better not to do power allocation at
all, since SR scheme outperforms both SRPQ1 and SRPQ2.

Our results suggest that N, = 16 and N, = 32 for
M =N =2and M = N = 4, respectively, result in minimal
degradation compared to the scheme in which continuous
power is allowed. Moreover, this choice of N, leads to only
2 dB away from the MIMO capacity if a capacity achieving
scalar coding is used. Finally, as can be seen, SRPQ2 outper-
forms SRPQ1 in terms of spectral efficiency. This shows that
the decoding order indeed matters when continuous rate and
power cannot be used.

10. CONCLUSIONS

This paper proposes an extension of V-BLAST in which the
MIMO capacity is approached closely with rate and/or power
control using scalar coding with successive interference can-
cellation. Two practical discrete bit loading algorithms are
proposed: SQPC and SRPQ. Simulation results show that
power control is necessary, especially in a low SNR regime.
Furthermore, it is shown that 4 or 5 bits are sufficient for
power quantization levels in order to sustain a similar spec-
tral efficiency to that achieved by continuous power levels.
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We propose a new automatic repeat request (ARQ) scheme for MIMO systems with multiple transmit and receive antennas. The
substreams emitted from various transmit antennas encounter distinct propagation channels and thus have different error statis-
tics. When per-antenna encoders are used, separating ARQ processes among the substreams results in a throughput improvement.
Moreover, it facilitates the interference cancellation in certain MIMO techniques. Quantitative results from UMTS simulations
demonstrate that the proposed multiple ARQ structure yields more than 30% gain in link throughput.
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1. INTRODUCTION

Third-generation cellular systems are being designed to sup-
port high-speed packet data services. In the downlink, which
has more stringent requirements in many of such services,
high-speed packet access is provided through a shared chan-
nel where time-division multiplexing is used. Time slots are
assigned to users at specific data rates through a scheduling
algorithm based on the user data backlog and on channel
quality indication (CQI) received via a feedback channel.!
Such a transmission scheme allows multiple users to share
the system resources efficiently by adapting to traffic and
channel variations and it also avoids possible resource lim-
itations that might occur if each user were allocated a ded-
icated code-multiplexed channel. Therefore, it has the po-
tential to improve the capacity for delay-tolerant bursty ser-
vices. Examples where this scheme will be implemented in-
clude the CDMA 1x EV-DO and 1x EV-DV and the UMTS
high-speed downlink packet access (HSDPA) [1, 2]. Several
advanced technologies are employed in high-speed downlink
transmission to improve link throughput or reduce packet
delay by adapting to the time-varying channel conditions,

IEach terminal measures its channel condition and translates it into a
metric to be fed back to the serving base station.

traffic statistics, and quality-of-service requirements. Some
of these adaptive techniques, relevant to this paper, are sum-
marized below.

Multiple transmit and receive antennas. The use of mul-
tiple antennas at each base station sector is already part of
every third-generation standard. In the downlink, specifi-
cally, these antennas can be used to provide transmit diver-
sity and/or to direct a beam towards the intended terminal.
The deployment of multiple receive antennas at data ter-
minals is also being considered. The combination of mul-
tiple transmit and receive antennas will enable the imple-
mentation of a number of multiple-input multiple-output
(MIMO) techniques that promise spectacular increases in
throughput without the need for additional power or band-
width [3, 4, 5].

Dynamic link adaptation through adaptive modulation
and coding. Typically, each transmission in the downlink
shared channel is at the maximum available power, with no
power control. Therefore, link adaptation [6, 7], which ad-
justs the modulation and coding schemes (MCS), provides
an efficient way of maximizing the instantaneous usage of
the wireless channel. Specifically, it enables the use of aggres-
sive MCSs when channel conditions are favorable while it re-
verts to MCSs that are more robust but with lower transmis-
sion rates when channel conditions degrade. The base station
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selects the appropriate MCS based on the CQI for the user
served at each time slot. We hereby refer to the MCS selec-
tion process as the mapping design.

Automatic repeat request (ARQ) or hybrid ARQ (HARQ).
The performance of MCS-based link adaptation largely de-
pends on the accuracy of the CQI, which is difficult to main-
tain as velocity increases. The delay tolerance of many data
services enables the use of retransmission schemes to re-
cover erroneous packets. Recently, HARQ techniques have
been adopted by several wireless standardization bodies, for
example, 3GPP and 3GPP2. HARQ [8, 9, 10] can improve
throughput performance, compensate for link adaptation er-
rors, and provide a finer granularity in the rates effectively
pushed through the channel. Upon detecting a transmission
failure, mostly by cyclic redundancy check (CRC), the termi-
nal sends a request to the base station for retransmission. The
delay due to packet acknowledgement can be significantly re-
duced by placing the HARQ functionality in the base station
(Node B in UMTS) rather than in the radio network con-
troller (RNC in UMTS). The packet decoder at the mobile
combines the soft information of the original transmission
with those of the subsequent retransmissions. The combined
signal has higher probability of successful decoding. In gen-
eral, there are two ways of soft combining. With chase com-
bining, the base station repeatedly sends the same packet and
the receiver aggregates the energy from the (re)transmissions
to improve the signal-to-noise ratio (SNR) [11, 12]. A more
sophisticated HARQ mechanism, named incremental redun-
dancy (IR), transmits additional redundant information in
each retransmission and gradually reduces the coding rate
until successful decoding occurs [13, 14, 15]. Compared with
chase combining, IR requires larger receiver buffers but it can
achieve better performance [16]. It also provides finer gran-
ularity in the encoded rates and allows for better adaptation
to channel variations.

Scheduler. In a multiuser system where user channel con-
ditions change over time, a scheduler can exploit those chan-
nel variations by giving certain priority to the users with
transitorily better channels. The scheduler critically impacts
the system performance. Several scheduling algorithms have
been proposed in the literature to maximize the packet data
throughput, subject to various fairness conditions [17].

The above technologies are tightly coupled. However,
since some of them reside in different layers, that is, HARQ
in the medium access control (MAC) layer and MIMO in
the physical layer, they are usually discussed and treated
separately. The evaluation of each technology fails to take
into account the performance improvement or degradation
brought about by the other one. In particular, the link layer
performance of any MIMO algorithm is usually selected ac-
cording to the raw data rate at some operating point, for ex-
ample, 10% packet error rate. However, when some level of
channel uncertainty exists and the system supports HARQ, it
may be beneficial to transmit aggressively at higher packet er-
ror rates and recover channel errors through retransmissions
[18]. The throughput depends heavily on the transmission
strategy. An overly aggressive transmission could produce
too many unsuccessful packet transmissions that diminish

the overall throughput, while an overly conservative one fails
to fully utilize the channel. In this case, the overall through-
put depends on the algorithms at both layers and only
cross-layer design can enable the most efficient use of the
channel.

In this paper, we address some of the key design issues as-
sociated with the choice of the HARQ structure to be used for
MIMO physical layer transmission. We propose a new HARQ
structure that matches the layered structure of the most pop-
ular MIMO architectures [19]. Simulation results show that
the performance sensitivity to the choice of HARQ depends
on the aggressiveness of the transmissions and on the type of
CQL

The paper is organized as follows. In Section 2, we de-
scribe the layered architectures with per-antenna encoding.
Modifications to the conventional HARQ structure to fit
these layered architectures are discussed in Section 3. We
compare the performance of different HARQ structures in
Section 4. Conclusions are drawn in Section 5.

2. LAYERED ARCHITECTURES WITH
PER-ANTENNA ENCODING

In order to approach the MIMO channel capacity in rich
multipath environments, the substreams radiated from the
various transmit antennas should be uncorrelated [20, 21].
Nonetheless, it may in practice be advantageous to jointly en-
code them (Figure 1a). This has motivated a blossoming in-
terest in the design of space-time (vector) codes [22]. Clearly,
when the substreams are jointly encoded, they should share
a single CRC.

The complexity of joint detection, however, explodes as
the number of transmit antennas grows large. As a result,
there has also been strong interest in devising alternative
approaches. One such approach is that of layered architec-
tures, which incorporate multiple scalar encoders, one per
transmit antenna. In these architectures, input data is de-
multiplexed into multiple substreams, which are then sep-
arately encoded and radiated from the various transmit an-
tennas (Figure 1b). At the receiver, the substreams are succes-
sively detected and cancelled [4, 5]. Specifically, the informa-
tion extracted from each substream is reencoded, interleaved,
and modulated to construct a replica of the transmitted sub-
stream. This replica, properly combined with the channel re-
sponse, is then subtracted from the overall received signal so
that—if there are no errors—the interference contribution
of this substream is removed. The complexity of these archi-
tectures increases more gracefully with the number of anten-
nas. Furthermore, they can capitalize on existing scalar cod-
ing formats.

A layered architecture can approach the MIMO chan-
nel capacity if the data rates of the different transmit an-
tennas are appropriately adjusted [23, 24]. This adjustment
requires separate CQI, one per transmit antenna, and thus
the amount of feedback required increases linearly with
the number of transmit antennas. We hereby refer to it as
per-antenna rate and CQI. Alternatively, a common CQI—
and thus the same data rate—can be used for all transmit
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FiGure 1: MIMO transmitter architecture with different coding
structures.

antennas at the expense of some loss in capacity [23]. To
illustrate this point, Figure 2 depicts the difference between
the capacity with and without the constraint that the data
rate at each of the transmit antennas be equal, for the spe-
cific case of 4 transmit and 4 receive uncorrelated antennas
with Rayleigh fading. For the purpose of this paper, in any
event, the most relevant feature of a layered architecture is
that it does not constraint the transmit antennas to be jointly
encoded and share a unique CRC.

3. HARQ MECHANISMS FOR MIMO SYSTEMS

If the MAC layer is unaware of the presence of MIMO at
the physical layer, HARQ simply attaches a single CRC to
the packet with such CRC encompassing the data radiated
from the various transmit antennas. We refer to this scheme,
depicted in Figure 3a, as MIMO single ARQ (MSARQ).
Since substreams transmitted from different antennas en-
counter distinct propagation channels, they have different er-
ror statistics. Using a typical channel propagation model with
4 transmit and 4 receive uncorrelated antennas [21], we ob-

10

Ergodic capacity (bps/Hz)

0 . . . .
-2 0 2 4 6 8
Average E;Ny (dB)

—6— Per-antenna rate and CQI
—%— Common rate and CQI

FIGURE 2: Ergodic Shannon capacity with 4 transmit and 4 receive
antennas obtained via Monte Carlo simulation on a Rayleigh-faded
channel with no antenna correlation.

serve that in more than 70% of error events,? only the sub-
streams from 1 or 2 transmit antennas are corrupted and thus
require a retransmission (Figure 4). However, upon an error
event, an MSARQ receiver has to request a retransmission of
the entire packet because it relies on the single CRC over the
whole packet. Retransmitting substreams that have already
been correctly received wastes throughput. When multiple
per-antenna encoders are used, it becomes possible to re-
move the constraint that the substreams radiated from mul-
tiple transmit antennas share a single ARQ process.

For per-antenna MIMO encoding architectures, we
herein propose to employ multiple ARQ processes, 1 for
each substream radiated from 1 transmit antenna or group
of antennas. This scheme is independent of the receiver-
processing algorithm and only requires that the receiver de-
codes substreams independently. We refer to this scheme as
MIMO multiple ARQ (MMARQ). As shown in Figure 3b, a
CRC symbol is appended to each substream. At the receiver,
each such substream is decoded and the associated CRC
is used to validate the content. Multiple acknowledgment
(NACK/ACK) indications are then sent back to the trans-
mitter. After receiving these acknowledgements, the trans-
mitter sends fresh packets from the transmit antennas that
have been successfully acknowledged and retransmits the
substreams that have been negatively acknowledged through
their associated transmit antennas. Hence, the HARQ opera-
tions at different transmit antennas are independent of each
other. We focus on high-speed downlink data transmission
so that the overhead due to multiple CRC symbols is neg-
ligible. However, we need to consider the uplink signaling
overhead due to multiple acknowledgements. For each ARQ
process, NACK/ACK requires an overhead of 1 bit plus error
protection redundancy. Therefore, the amount of ARQ feed-

2 An error event occurs when any of the substreams contains an error.
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F1GURE 3: Transmitter structures of MSARQ and MMARQ.
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FIGURE 4: Probability distribution of the number of corrupted sub-
streams in an error event with 4 transmit and 4 receive uncorrelated
antennas and frequency-flat fading.

back overhead scales with the number of transmit antennas.
When that number is large, grouping the transmit antennas
and assigning a single ARQ process to each group can reduce
the signaling overhead.

Next, using per-antenna encoders with successive de-
coding and cancellation at the receiver as an example, we

describe the receiving procedures for both MMARQ and
MSARQ. The receiver decodes the transmitted substreams
sequentially following a certain order, which can be opti-
mized to achieve the best throughput performance. The first
substream is decoded from the overall aggregate received sig-
nal Y(¢). The information data So(t), extracted from sub-
stream 0, is then reencoded, interleaved, and modulated to
construct a replica of the transmitted substream. This replica,
combined with the channel response, that is, F(Sy (), H(¢)),
is then subtracted from Y(¢) so that the interference contri-
bution of this substream to the others is removed. This pro-
cedure is the so-called interference cancellation. The same
process is then applied to the remaining substreams, which
are thus successively extracted.

For MMARQ), the interference cancellation and HARQ
packet combining procedures can be blended advanta-
geously. In that case, the receiver would decode a substream
and use its associated CRC to validate the content. If this sub-
stream carries a retransmission packet and contains uncor-
rectable errors, the soft symbols of the packet would be com-
bined with those of the previous transmission(s) to extract
the information data. The receiver would then perform in-
terference cancellation to remove the interference due to this
substream. Interference cancellation is performed regardless
of the results of the CRC validation; therefore, all the sub-
sequent substreams can be decoded without waiting for the
retransmission of the current substream. However, the relia-
bility of the decoded data is much higher after HARQ packet
combining and, thus, using such data to reconstruct the sig-
nal replicas for interference cancellation reduces error propa-
gation. The detailed receiver procedure is shown in Figure 5.
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Figure 5: MMARQ receiver flow chart.

In contrast, it is not so easy to combine HARQ with
interference cancellation when MSARQ is employed. As il-
lustrated in Figure 6, MSARQ separates HARQ packet com-
bining from interference cancellation. The receiver performs
packet decoding and interference cancellation to extract the
substreams and then combines those substreams into a com-
pound packet. In this case, decoding errors at each substream
could propagate to the substreams that are decoded after-

wards. Such error propagation could severely degrade the
performance. Another alternative would be to recancel inter-
ference on the HARQ combined signal upon a CRC failure.
This procedure is shown in Figure 7, wherein interference
cancellation is conducted twice. We refer to it as MSARQ
IC. The resulting hardware design, however, could be prob-
lematic, as the receiver would need to quickly feedback the
NACK indicator to the transmitter.
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FIGURE 6: MSARQ receiver flow chart type L.
4. COMPARISON OF MSARQ AND MMARQ (1) A fraction of the power and code space available at the
base station is allocated to HSDPA while the rest is as-
In this section, we compare the performance of MSARQ and signed to pilots, overhead channels, and voice traffic.
MMARQ in the context of UMTS HSDPA [25]. The most (2) HSDPA users are time-multiplexed in short frames.
prominent features of HSDPA, which is specifically geared A scheduler at the MAC layer determines the user to

towards delay-tolerant data, are as follows. be served at each frame. Each scheduling interval or
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FiGURre 7: MSARQ IC receiver flow chart.

frame lasts 2 milliseconds. We assume that the entire
HSDPA code space (10 codes in this paper) and trans-
mit power are assigned to the scheduled user. That
is, the base station transmits to only one user in each
frame using 10 codes and full power. The transmit sig-
nal consists of a superposition of such 10 orthogonal
codes.

(3) The Node B (or base station) MAC determines the

transmission rate for the user being served, based on
the CQI.

(4) The HARQ functionality resides between the Node B
and the mobile terminal to permit soft combining and
fast NACK/ACK feedback.

We have developed a simulation tool that captures the
dynamic processes in a radio network. The simulated radio
network consists of a base station (Node B) and multiple user
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terminals. The Node B possesses the following functionali-
ties.

(a) MACusppa. It performs scheduling, MCS selection,
and HARQ, based on the CQI feedback and the NACK/ACK

signaling from each terminal.

(i) Scheduler. System performance depends heavily on the
scheduling algorithm. For the purpose of this work,
we limit ourselves to a round-robin scheduler, which
exhibits maximum fairness across users. Additionally,
with such scheduler, it is easy to quantify the system-
level performance from the single-user performance.

(ii) MCS selection. The MCS at each transmit antenna is
separately controlled through CQI feedback from the
receiver [23, 24].

(ili) HARQ. The downlink HARQ operates asyn-
chronously, that is, the retransmissions can take
place anytime after the Node B receives a NACK/ACK.
The scheduler determines the exact time. To com-
pensate for the NACK/ACK feedback delay of 2
frames, each HARQ entity operates in terms of
three stop-and-wait (SAW) processes. This allows
HARQ to operate continuously without waiting for a
NACK/ACK signal. For MSARQ, all transmit antennas
use a single HARQ entity with 3 processes while, for
MMARQ, each transmit antenna uses one HARQ
entity with 3 processes. Chase combining is used to
combine the initial transmission with the retransmis-
sions. The maximum number of retransmissions is
30. If a corrupted packet cannot be recovered after
exhausting the maximum number of retransmis-
sions, the packet is discarded and the associated loss
should be recovered by higher layer error control
mechanism.

(b) PHY. The physical layer simulation consists of a se-
quence of events such as transmission and reception of sig-
nals, signal-to-interference-and-noise ratio (SINR) evalua-
tion, and channel estimation. It employs a bandwidth of
5MHz with 3.33-milliseconds frames. We assume that the
uplink channel operates at a rate of 64 kbps. At the terminal,
the substreams radiated by the various transmit antennas are
decoded according to a fixed order. The MCS of each such
substream is selected based on its detected SINR at the re-
ceiver and it is then fed back as a CQI message. Some addi-
tional premises are summarized below:

(i) fading is Rayleigh-distributed and frequency-flat and
the channel is either perfectly known at the receiver
or modeled by adding simulated estimation noise onto
the actual channel;

(ii) pedestrian speed (3 Km/hr);

(iii) 70% of transmit power dedicated to HSDPA;
(iv) 10 out of 16 orthogonal codes dedicated to HSDPA;

(v) 4 uncorrelated transmit and 4 uncorrelated receive an-
tennas;

(vi) 7 MCSs employing turbo codes with varying rates and
symbol repetition [4]: QPSK rate 1/4 repeated 4 times,
QPSK rate 1/4 repeated 2 times, QPSK rate 1/4, QPSK

rate 1/2, QPSK rate 3/4, 16-QAM rate 1/2, and 16-
QAM rate 3/4.

The probability of each substream being detected er-
roneously is given by a frame error rate (FER) versus in-
stantaneous SINR curve for each MCS. For the above MCS
schemes, these curves are displayed in Figure 8.

The ultimate performance measure is the single-user
throughput, defined as the ratio between the number of in-
formation bits correctly received by a user and the time that
the channel is allocated to that user:

throughput

B total good bits
(total frames with transmissions) - frame duration’

(1)

Notice that the throughput represents the peak net through-
put that can be delivered to a user.

It should be pointed out that the throughput depends
on the mapping between the detected SINR and the selected
MCS per antenna. Such mapping is adjusted in order to max-
imize the throughput while maintaining some target FER
measured prior to HARQ operation. When this target FER is
small (less than 5%), the probability of retransmission is low
and there is no large gain with any kind of ARQ. As the target
FER increases, the probability of retransmissions grows and
there is a considerable gain with MMARQ. Hence, we opti-
mize the FER to maximize the throughput.

4.1. Performance with perfect channel
estimation and feedback

Our initial simulations assume perfect channel estimation
and error-free uplink feedback. We first examine the ad-
vantage of combining HARQ with interference cancellation
by comparing the compound packet error performance of
MSARQ and MSARQ IC. Separating interference cancella-
tion from HARQ combining fails to eliminate the interfer-
ence from any corrupted substream even if the substream is
later fully recovered through HARQ packet combining. Such
inefficiency results in a higher compound packet error rate
(Figure 9). To quantify the advantage of per-antenna HARQ
in MMARQ, the throughput performances of MMARQ,
MSARQ, and MSARQ IC are compared in Figure 10. We ob-
serve that MMARQ achieves 10%-20% improvement over
MSARQ IC and 26%—40% over MSARQ. Thus, the contri-
butions of combined operation and multiple ARQ structures
are roughly equal. The ergodic Shannon capacities for open-
loop single-transmit single-receive and 4-transmit 4-receive
configurations are also shown in the same figure as refer-
ences.

In the above example, MSARQ, MSARQ IC, and
MMARQ use the same MCS/SINR settings, which maxi-
mize the throughput for MMARQ but not necessarily for
MSARQ and MSARQ IC. Through additional simulations,
we find that the optimal MCS/SINR settings for MSARQ
and MSARQ IC yield a compound FER of 8%—-10%, while
the optimal FER for MMARQ is around 15%-20%. The
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corresponding individual substream error rates are 2%—5%
and 8%-18%, respectively. In practice, it is quite difficult
to guarantee a substream error rate of 5% or less. There-
fore, the optimal throughput of MMARQ would be easier
to achieve in a realistic environment. Nevertheless, the op-
timized throughputs are shown in Figure 11, where the im-
provement of MMARQ drops to around 10% with respect
to MSARQ IC and 20% with respect to MSARQ. By oper-
ating at a low packet error rate, channel coding and packet
combining can eliminate most channel errors. As such, the
throughput gap between MSARQ and MSARQ IC also di-
minishes.

4.2. Performance with imperfect channel
estimation and feedback

Next, we examine the performance of MSARQ, MSARQ IC,
and MMARQ in more realistic conditions, with imperfect
channel estimation and imperfect uplink feedback. The main
sources of imperfection are limited pilot power, finite chan-
nel coherence time, and feedback delay. We model these non-
idealities by adding noise to the SINR, that is,

Jas = yas + N (0,02), (2)

where y4p represents the SINR in dB as estimated by the re-
ceiver, ygp represents the actual SINR in dB, and N(0,02)
represents Gaussian noise with variance ¢2. The estimation
error not only impacts the MIMO signal detection and de-
coding process, but also impacts the MCS selected for each
transmit antenna. In addition, the uplink feedback channel
also encounters a uniformly distributed binary error rate of
6%, which could corrupt the CQI and the NACK/ACK indi-
cation(s). Figure 12 illustrates the throughput performance
of MMARQ, MSARQ, and MSARQ IC for ¢ = 1.5dB.
The performance degradations range from 10% to 18% for
MMARQ, 17% to 32% for MSARQ, and 16% to 24% for
MSARQ IC. Relatively, MMARQ is less sensitive to chan-
nel estimation noise and feedback errors. As the level of un-
certainty increases, it becomes more difficult to guarantee a
successful transmission without sacrificing packet through-
put. In this case, it is beneficial to transmit aggressively and
use HARQ to recover from channel errors. Overall, MMARQ
achieves 30%—-45% throughput improvement over MSARQ,
while per-antenna ARQ contributes to a 15%-25% through-
put improvement.

5. CONCLUSION

We have proposed a new ARQ scheme suitable for any
MIMO scheme in which substreams radiated from differ-
ent antennas are encoded separately. Conventionally, a sin-
gle ARQ process is applied to each data packet. Upon an er-
ror event, all constituent substreams—including those that
have already been correctly received—are retransmitted. In
contrast, our proposed scheme separates the ARQ processes
for the substreams. We have quantified the gains of the new
scheme within the context of UMTS high-speed downlink
data access. We first considered ideal conditions with perfect
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Figurg 11: Throughputs of MMARQ, MSARQ, and MSARQ IC
with interference cancellation in ideal conditions using the opti-
mized MCS/SINR settings.
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Figure 12: Throughput of MMARQ, MSARQ, and MSARQ IC
with interference cancellation in realistic conditions (with imper-
fect channel estimation and imperfect uplink feedback).

channel estimation and error-free uplink feedback, where
MMARQ improves the throughput by 25%—-40%. We then
performed the simulations in more realistic conditions, with
imperfect channel estimation and possibly erroneous uplink
feedback. Such uncertainty leads to a higher loss rate, and
HARQ becomes a major technique for efficient error con-
trol and recovery. Hence, MMARQ is even more favorable
with the performance improvement increasing to 30%—45%
compared with MSARQ. It should be pointed out that the
results presented here are based on the premise of frequency-

flat fading and uncorrelated antennas. Frequency-selective
fading may modify this conclusion, and this problem is cur-
rently under investigation.

Traditionally, the physical layer had been considered the
performance bottleneck in wireless systems due to the unpre-
dictable nature of the radio channel. Higher layer issues, such
as scheduling, link adaptation, retransmissions, and mobile
routing, used to be discussed and treated separately from
major physical layer issues. With the convergence of mobile
communications and data services, however, there is a grow-
ing need for a cross-layer design that facilitates the interac-
tion of multiple protocol layers. In particular, one can couple
the design of link layer (i.e., MAC and RLP) with that of the
physical layer. The superior performance of MMARQ con-
firms the benefits of such joint layer design.
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