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For more than 30 years, the fluorescence-based technique of
flow cytometry (FCM) has been widely used by clinicians,
immunologists, and cancer biologists to distinguish different
cell types in mixed cell subpopulations, based on the
expression of cellular markers. In both health research and
treatment, this analytical method is used for a variety of
tasks, in particular the diagnosis and monitoring of cancer.
This technology is also used for cross-matching organs for
transplantation, and for research involving stem cells, vaccine
development, apoptosis and phagocytosis.

In the last decade, advances in FCM instrumentation
and reagent technologies have enabled simultaneous single
cell measurement of surface and intracellular markers,
including cellular-activation markers, intracellular cytokines,
immunological signaling, and cytoplasmic and nuclear cell
cycle and transcription factors, thus positioning FCM to play
an even bigger role in health care and medical research.

However, the rapid expansion of FCM applications has
outpaced the development of tools for storage, analysis, and
data representation. For example, a typical FCM experiment
may involve measurement of up to 20 different charac-
teristics per cell, for hundreds of thousands of cells per
sample. The increase in the amount of data generated by
FCM techniques poses unique informatics and statistical
challenges.

It is widely recognized that one basic challenge for
FCM is to simplify the extraction of data and statistical

information. To date, very few bioinformatic and statistical
tools exist to manage, analyze, present, and disseminate
FCM data. Current FCM data analysis methods involve
the use of multiple applications, the output of which is
often fragmented. There is a widespread demand for the
development of integrated data analysis tools to organize,
analyze, and exchange FCM data. Such development is
lagging far behind the ability to collect and process samples
via FCM, much to the detriment of health research.

This special issue aims to summarize the current state of
bioinformatics research in FCM, to present the most recent
developments in analytical tools and to open-up the field
to new researchers to bring additional ideas and solutions
to current bottlenecks. The issue includes several important
contributions, which cover a wide range of approaches and
techniques for FCM. These contributions are summarized as
follows.

Bashashati and Brinkman review state-of-the-art FCM
data analysis approaches that can be used in a typical analysis
pipeline going from quality assessment to sample classifica-
tion. Not only does their paper review current techniques
and approaches but it also points out potential pitfalls of
these approaches and discusses strategies to overcome these.

Much like with gene expression data, technical variation
such as changes in the instrumentation channel voltages
or changes in the specificity of the manufacturer of the
antibodies can result in systematic biases. These biases need



to be removed or at least minimized in order to allow proper
data analysis and sample comparisons. Cichocki et al. present
a novel normalization method to correct for time biases
in large-scale flow cytometric analysis. They investigate two
types of normalizing beads: broad spectrum and spectrum
matched and propose two alternative normalization proce-
dures that are usable in the absence of normalizing beads.

Once data have been properly normalized, a component
of FCM analysis involves identifying immunophenotypically
distinct sub-populations of cells within each patient; this is
referred to as “gating” in the FCM community. Although
gating has traditionally been done visually, automated
approaches based on statistical modeling of the data are
starting to emerge. Walther et al. present such an approach
based on a nonparametric statistical model that aims to form
cell subpopulations that can be delineated by the contours
of high-density regions much like in manual gating. Because
their approach is non-parametric it can reproduce non-
convex subpopulations that are known to occur in FCM
samples, but which cannot be produced with current para-
metric model-based approaches. Much like Walther et al.,
Finak et al. present a framework for the identification of
cell subpopulations in FCM data based on merging mixture
components using the flowClust methodology. In this new
approach, several parametric clusters can represent a single
sub-population, and the approach can thus accommodate
complicated FCM data distributions (e.g., non-convex sub-
populations).

Even though automated gating methods are becoming
increasing popular, the majority of FCM experiments are still
being analyzed visually, usually by serial inspection of one or
two dimensions at a time. In order to improve and validate
automated gating, it is important to compare automated
gates to manual gates obtained by an expert. Gosink et al.
introduce a Bioconductor package called flowFlowJo that can
import gates defined by the commercial package FlowJo and
work with them in a manner consistent with the other flow
packages in Bioconductor. This work facilitates examination
of gating robustness, allows one to combine manual and
automated gating, and can be used to perform exploratory
data analysis on manual gates.

Another major goal in clinical applications is the identi-
fication of biological changes (e.g., proportion of cells within
a subpopulation) that correlate with a disease in order to
predict the status (e.g., healthy/diseased) of a patient. Rogers
and Holyst present flowFP, a Bioconductor package for
fingerprinting flow cytometric data. flowFP provides tools to
transform raw FCM data into a form suitable for direct input
into conventional statistical analysis and empirical modeling
software tools (e.g., supervised classification). Among other
things flowFP is based on a multivariate binning approach
and thus can bypass the gating stage, which can be an
advantage for complex flow data.

In a similar clinical context, Eliot et al. investigate the use
of tree-based methods for discovering associations between
flow cytometry data and clinical endpoints. In particular,
they compare a number of tree-based methods for their
capability to select immunological predictors of CD4 recon-
stitution in HIV-infected subjects initiating anti-retroviral
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treatment. The authors show that tree-based methods can be
successfully applied to flow cytometry data to better inform
and discover associations that may not emerge in the context
of a standard univariate analysis.

Even though Bioconductor is a great platform for FCM
allowing computational statisticians and bioinformaticians
to leverage the power of R and other contributed packages,
it can remain difficult to be used by biologists and clinicians.
Lee et al. have developed an open source, extensible graphical
user interface (GUI) iFlow, which sits on top of the
Bioconductor backbone, enabling basic analyses by means
of convenient graphical menus and wizards. iFlow is easily
extensible in order to quickly integrate novel methodological
developments.

Finally, Strain et al. introduce plateCore, a new package
that extends the functionality of core FCM Bioconductor
packages to enable automated negative control-based gating
and facilitate the processing and analysis of plate-based data
sets from high-throughput FCM screening experiments.
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Flow cytometry (FCM) is widely used in health research and in treatment for a variety of tasks, such as in the diagnosis and
monitoring of leukemia and lymphoma patients, providing the counts of helper-T lymphocytes needed to monitor the course
and treatment of HIV infection, the evaluation of peripheral blood hematopoietic stem cell grafts, and many other diseases. In
practice, FCM data analysis is performed manually, a process that requires an inordinate amount of time and is error-prone,
nonreproducible, nonstandardized, and not open for re-evaluation, making it the most limiting aspect of this technology. This
paper reviews state-of-the-art FCM data analysis approaches using a framework introduced to report each of the components in
a data analysis pipeline. Current challenges and possible future directions in developing fully automated FCM data analysis tools
are also outlined.
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1. Introduction

Flow cytometry (FCM) is widely used in health research and
treatment for a variety of tasks, such as providing the counts
of helper-T lymphocytes needed to monitor the course and
treatment of HIV infection, in the diagnosis and monitoring
of leukemia and lymphoma patients, the evaluation of
peripheral blood hematopoietic stem cell grafts, and many
other diseases [1-8]. The technology is also used in cross-
matching organs for transplantation, research involving stem
cells, vaccine development, apoptosis, phagocytosis, and
a wide range of cellular properties including phenotype,
cytokine expression, and cell-cycle status [9-14]. Clinically,
FCM is also used to analyze a wide array of immunological
parameters in disease and to study the humoral and cellular
response to vaccines.

FCM traditionally has been a tube-based technique
limited to small-scale laboratory and clinical studies [15].
Due to recent hardware advances it is now possible to
analyze thousands of samples per day. This has dramatically
increased the efficiency and use of this technique and allowed
the adoption of FCM to high-throughput settings.

It is widely recognized that data analysis is by far one of
the most challenging and time-consuming aspects of FCM
experiments as well as being a primary source of variation in

clinical tests [7, 9, 10, 16-25]. Investigators have traditionally
relied on intuition rather than on standardized statistical
inference in the analysis of FCM data. The increased volume
and complexity of FCM data resulting from the increased
throughput greatly boosts the demand for reliable statistical
methods and accompanying software implementations, for
the analysis of these data [1-6, 16, 20, 23, 26-31]. This is
because the ability to analyze FCM data is lagging far behind
the ability to collect samples and to run FCM analyses, to the
detriment of health research.

This article reviews published approaches for FCM data
analysis in the context of a framework created to facilitate the
reporting and review process.

2. Background

2.1. FCM Data Analysis. In FCM, intact cells and their
constituent components are tagged with fluorescently conju-
gated monoclonal antibodies and/or stained with fluorescent
reagents and then analyzed individually by a flow cytometer.
In the instrument, hydrodynamic forces align the cells and
the fluorescent molecules in/on each cell are excited by
passing through the laser light at speeds exceeding 70 000
cells per second. Each cell passing through the beam also



scatters light providing an indication of cell shape and size.
A flow cytometer is capable of measuring up to 20 cell
characteristics, for up to millions of individual cells per
sample aliquot [26, 32]. This technology can be used to
examine many cellular parameters on live or fixed cells,
including surface, cytoplasmic, and nuclear proteins, DNA,
RNA, reactive-oxygen species, intracellular pH, and calcium
flux. Measurement of the expression of cellular-activation
markers, intracellular cytokines, immunological signaling,
and cytoplasmic and nuclear cell cycle and transcription
factors can also be readily performed [9, 11, 12, 27, 28, 33—
35].
Typical FCM data analysis involves

(1) gating (i.e., identification of homogenous cell popu-
lations that share a particular function),

(2) interpretation (i.e., finding (or using) correlations
between some characteristics of the identified cell
populations (e.g., percentages of cells in a cell popula-
tion, median fluorescent intensity of a cell population
for different markers) and clinical outcomes (e.g.,
diagnosis, survival).

Gating is a highly subjective process in which the
investigators determine the regions in multiparametric space
that contain the “interesting” data, based on their knowledge
of the experimental factors and experience (Figure 1(a)).
This is a tedious, time-consuming, and often inaccurate task
typically accomplished using proprietary software provided
by instrument manufacturers to serially select regions in
one- and two-dimensional graphical representations of
the data. Intersections or unions of polygonal regions
in hyperspace are then used to filter data and define
a subset or subpopulation of events for further analysis
(Figure 1(b)). This low-dimensional subsetting ignores the
high-dimensional multivariate nature of the data. While
a variety of technical issues can confound the accurate
positioning of gates, even relatively minor differences in
gating can produce different quantitative results [36]. A
recent study involving 15 institutions shows that the mean
interlaboratory coefficient of variation ranged from 17-44%,
even though the same samples and reagents were used and
the preparation of samples was standardized. Even though
all analyses were conducted by individuals with expertise in
flow cytometry, most of the variation was attributed to gating
[36].

2.2. Supervised and Unsupervised Learning Techniques.
Supervised and unsupervised learning techniques can be
used to address the problems faced in gating and interpre-
tation of FCM experiments.

In supervised learning, the variables under investigation
can be split into two groups: explanatory variables (e.g.,
measurements of events in FCM data) and one or more
dependent variables (e.g., cell type). The goal here is to
predict the labels of the input patterns (e.g., labels of
the events in FCM data). This goal can be achieved by
discovering an association between the explanatory variables
and the dependent variable as is done in regression analysis.
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Once this association is discovered through the training
stage, the algorithm can predict the dependent variable for
any event of unknown label. To apply supervised data mining
techniques the values of the dependent variable must be
known for a sufficiently large part of the data set.

Unsupervised learning is closer to the exploratory spirit
of data mining. In unsupervised learning situations all
variables are treated in the same way; there is no dependent
variable. However, there is still a goal to achieve. In
automated gating of FCM data, the goal is to identify the
events that are in the same cluster. Clusters contain groups
of events that are more similar to each other than the events
from other clusters.

The dividing line between supervised learning and unsu-
pervised learning is the same that distinguishes discriminant
analysis from cluster analysis. Supervised learning requires
that the target variable is well defined and that a sufficient
number of its values are given. For unsupervised learning
typically the target variable is either unknown or has only
been recorded for too small a number of cases.

3. Methods of Survey

FCM data analysis designs selected for this review include
papers that met the following criteria.

(1) The keyword “flow cytometry” and one or more
of the keywords “automated analysis”, “automated
gating”, and “automated clustering” appeared in its
title, abstract, or body using Google Scholar search

engine.

(2) The work described one or more automated/semi-
automated data analysis components. Papers that
presented tutorials were not included. Papers that
used manual gating procedures were included only
if they employed automated analysis algorithms to
analyze gating results. Papers that included simple
statistical tests such as Student t-test on manual
gating results and the papers that solely applied static
gates to FCM data (without any other data processing
component) were also not included.

(3) Only papers published in English in refereed interna-
tional journals prior to March 2009 were included.

We use the framework presented in Section 3.1 to report
components involved in FCM data analysis.

3.1. FCM Data Analysis Framework. Figure 2 depicts an
FCM data analysis framework in which an FCM data file
is analyzed through a series of analysis components. This
framework has evolved from the study of FCM literature
covered in this article and work in related fields, including
statistics and computer science. This framework is con-
structed to report details of FCM data analysis studies in a
systematic way to facilitate reporting and review process. The
framework does not incorporate the hardware and software
components used for FCM data collection.
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FIGUrk I: Two-dimensional sequential gating example. (a) Operator selects a subset of “interesting” events (shown within the ellipsoid
region), (b) Selected events in (a) are observed and further analyzed using other dimensions of the data. The axes represent different
parameters representing physical and chemical characteristics of the analyzed cells.

(1) Quality Assessment. Artifacts from sample preparation,
handling, variations in instrument parameters, or other
factors may confound experimental measurements and lead
to erroneous conclusions. Therefore, quality assessment is a
crucial step in the use of high-throughput flow cytometry
and its associated information services [37-39]. The aim
of data quality assessment could include detecting whether
intersample variability measurements of samples are not
likely to be biologically motivated. Such samples should be
identified, investigated, and potentially removed from any
further analyses.

(2) Normalization. Like all other high-throughput data
sources, there is a substantial need for normalization steps
to remove nonbiological variations so that the analysis can
focus on the important and relevant biological variations
between samples. Instrument variability (e.g., changes in
laser power), experimental protocol changes (e.g., changes
in voltage setting of the instrument), and reagent changes
(e.g., using antibodies from different vendors) are examples
of nonbiological factors that can introduce variability in the
data and shift the location of cell populations. Such changes
may affect the analysis of FCM data as the main prerequisite
for automated FCM data analysis is a uniform, quantitative,
and comparable raw data which can be addressed by
developing normalization methodologies.

(3) Outlier Removal. Outliers refer to observations (events
in the FCM data) that deviate to such a large extent from
others so as to arouse suspicion that they do not belong
to the same group of observations of interest. Cell debris,

dead cells, and doublets (multiple events at the same time)
often contaminate FCM data and give rise to outliers.
Statistics derived from data sets that include outliers may be
misleading. Therefore, it is crucial to identify outliers and
account for their prevalence so as to minimize their effect on
subsequent analysis.

(4) Automated Gating. Automated identification of homoge-
nous cell populations that share a particular function is
referred to as automated gating. The main purpose of
automated gating is having an objective and systematic
approach for classifying cells. Automated gating can be used
to

(i) identify known cell populations,

(ii) discover new subpopulations of cells that might
not be easily detected via standard manual gating
methods. For example, cell populations may be
missed due to limitations of two-dimensional manual
gating.

(5) Cluster Labelling. Comparison of FCM samples is only
possible if the same cell populations of different samples are
compared against each other. For example, lymphocyte cells
of two different samples can be compared against each other
but it does not make sense to compare lymphocytes from one
sample to granulocytes of another sample. Cluster labelling is
referred to the procedure of finding similar cell populations
between samples after automated gating. Depending on the
automated gating approach used, cluster labelling may not
be needed as it can be embedded in automated gating
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FIGURE 2: Proposed FCM data analysis framework.

procedure. Note that similar cells within each sample are
identified through automated gating.

(6) Feature Extraction. This step involves computing mea-
surable heuristic properties (also referred to as features)
of the identified gates for further analysis. Percentages of
cells with respect to the total number of cells, median, and
standard deviations of fluorescent intensities of different
markers for the events within each gate (or gates of interest)
are examples of features that can be computed for the next
step.

(7) Interpretation. Interpretation of gating results is highly
dependent on what the objective of the study is. Usually,
there are two major objectives in an FCM-based study: (a)
statistical comparison of samples, where the samples are
compared to see if they share similar characteristics; (b)
classification, where the samples are labeled to predefined
classes such as healthy versus patient or patients with short
survival versus the ones with long survival time. Depending
on the objectives of a study (comparison versus classifica-
tion), unsupervised or supervised learning techniques can be
used.

4. Results

In Table 1, we report the data analysis components of each
paper according to the framework presented in Section 3.
For the papers that reported multiple designs, multiple
classifications were recorded. The designs were categorized
based only on what was implemented and reported in each
paper. Each column in Table 1 reports the details of each
of the components of the FCM data analysis framework,
including the following details of each automated gating
algorithm

(i) capability of supporting multidimensional gating,
(ii) capability of the algorithm to determine the number

of cell populations (gates) automatically,

(iii) whether or not the algorithm belongs to the category
of supervised or unsupervised learning techniques.

All the studies covered in this review (except [40, 41]) use
percentages of cells within the identified gates and/or median
fluorescent intensities of cell populations as the properties

(features) of the identified gates for further analysis. Fur-
thermore, a few studies address quality assessment [42—44]
and normalization [44] of FCM data. Therefore, for effective
use of space, Table 1 does not report the quality assessment,
normalization and feature extraction components of the
framework for each study.

The entries that contain “E” refer to the term “embed-
ded” meaning that either the cluster labelling, determining
the number of cell populations, or outlier detection is
embedded in the automated gating algorithm. Studies that
did not implement a specific data processing component or
do not have a specific capability (e.g., handling multidimen-
sional data) have a “—” entry.

5. Discussion

Although a consensus among researchers for the need of
a framework to describe FCM data analysis is not well
documented, we feel that it can be a useful tool to facilitate
research in this field. A common framework provides a
reference, not only for researcher-to-researcher interaction
but also for communication to persons in related fields
and professions. It will also facilitate technology cross-
fertilization, that is, the ability to recognize and integrate
significant technological advancements made by others into
one’s own work. Therefore, during the course of reviewing
FCM data analysis literature, we created a framework to
report FCM data analysis approaches in a structured way,
which facilitates the reporting and review process in the
future. Our approach was to create an intuitive framework
for organizing and documenting the key data analysis
components described in a study and also provide a means
to identify the data analysis components that have not been
reported. Moreover, the use of this framework makes it easier
to understand the differences between different data analysis
pipelines.

Table 1 provides a summary of the survey, making it a
quick reference to review the results. For example, a quick
look at the first row in Table 1 shows the design components
used by Jeffries et al. [45] in their analysis of FCM data.
Moreover, if somebody is interested in designing or using
automated gating approaches, he/she can quickly identify
the studies that address automated gating of the FCM data
by referring to the third column of Table 1. The proposed
framework is flexible enough to encompass the range of
data analysis approaches covered in this paper. However,
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FIGURE 3: Percentages of studies that address different data analysis
components according to the proposed framework. Note that
cluster labeling approaches that are embedded in gating stage are
counted in the “Cluster Labeling” entry.

refining or expanding it might be necessary in the future.
For example, even though a feature selection component
was not needed to describe current FCM data analysis
studies, addition of this component might be necessary
in future. Feature selection is specifically important as it
can discard the uninformative and also redundant features,
facilitate data visualization and data understanding, reduce
the measurement and storage requirements, reduce training
and utilization times, and defy the curse of dimensionality to
improve prediction performance [88].

Figure 3 shows the percentages of the studies that have
addressed each of the data analysis components according to
the proposed framework.

As shown in Figure 3, most of the studies (more than
70%) focus on automated gating of FCM data from which
65% use unsupervised techniques and 35% use supervised
techniques. However, only few studies focus on quality
control and normalization of FCM data, suggesting that
more work might still be needed in the future.

In the rest of this section we specifically discuss the FCM
data analysis methods that have been used in the context of
the framework introduced in Section 3.1.

5.1. Quality Assessment. The basis of the quality assessment
method proposed in [42, 43] is that, given a cell line, or
a single sample, divided in several aliquots, the distribu-
tion of the same physical or chemical characteristics (e.g.,
side light scatter (SSC) or forward light scatter (FSC))
should be similar between aliquots. To test this hypothesis,
five distinct visualization methods were implemented to
explore the distributions and densities of ungated FCM
data: Empirical Cumulative Distribution Function (ECDF)
plots, histograms, boxplots, and two types of bivariate plots.
Hahne et al. [44] also propose a set of visualization tools
to inspect box plots of fluorescent values, number of cells,
and a measure defined as “odds ratio” for similar samples
within a plate. These different graphical methods provide
investigators with different views of the data and can quickly
flag the samples that are different from the rest. As the flagged
samples may be anomalous for biological reasons, these
samples are worth studying further, and some determination
as to whether the sample presents data quality issues or rather
presents real biological significance should be made [42].
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Problems with the cell suspension, clogging of the needle,
or similar issues can cause unusual patterns in the data.
flowQ R package [89] addresses such problems by developing
several approaches that detect disturbances in the flow of
cells and also detect unusual patterns in the acquisition of
fluorescence and light scatter measurements over time. These
are detected dynamically by identifying trends in the signal
intensity over time or local changes in the measurement
intensities. The underlying hypothesis is that measurement
values are acquired randomly; hence there should not be
any correlation to time. Other quality assessment strategies
may include investigating the number of events or the
number of live cells within a sample. Furthermore, specific
statistical tests addressing quality assurance requirements of
an experiment can be developed. For example, in the FCM
experiments to monitor clonal repopulation of engrafted
single cell hematopoietic stem cells in mice [90, 91],
blood samples are taken and divided into three aliquots.
Each aliquot is stained with cocktail specific for detecting
granulocytes/monocytes, B cells, and T cells. The percentages
of each cell type from the donor population should add to
roughly 100%; otherwise possible problems with the staining
or the gating have occurred. Using such criterion, automated
quality assurance tools can be developed to identify possible
problems in the experiments.

5.2. Normalization. The only study that touches on the
normalization issue of FCM data proposes a method of
normalizing all channels, using a model based on the size
(FSC channel) of the events [44]. The authors show in their
experiment that the increase in autofluorescence associated
with cell size needed to be adjusted for and developed
a specific linear model for this adjustment. Nonbiological
variations can cause a shift or rotation in absolute position
of cell populations. Figure 4 shows an example in which the
voltage of the flow cytometer has changed in the channel
that measures CD3 expression between the two experiments
causing the population marked within the ellipsoid gate to
move substantially (more than 10-fold change in median
fluorescent intensity). Such variations should be accounted
for during data analysis as they can cause misinterpretation
of the results. For example, an ellipsoidal gate defined based
on the data shown in Figure 4(a) would not capture the
population of interest shown in Figure 4(b) even though
the two populations represent the same cell types. While
significant further developments to normalize FCM data are
needed, care should be taken, as biologically motivated vari-
ations should be conserved while removing nonbiological
variations.

5.3. Outlier Removal. Outliers can have a significant effect
on automated gating results. For example, in unsupervised
techniques, they can lead to overestimating the number of
cell populations (i.e., clusters present in the data) needed to
provide a good representation of the data. Moreover, data
contaminated with outliers, when used as example data to
train a supervised technique, can affect decision boundaries
of the algorithm leading to poor gating results.
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FIGURE 4: (a) and (b) Example of cases where flow cytometer voltage changes have caused in a shift in the absolute position of the populations

within the ellipsoid gates.

Outliers can be handled in a number of ways depending
on the learning technique being used. For example, in
the model-based clustering framework [92, 93], they can
be handled by either replacing the Gaussian distribution
with a more robust one (e.g., t [94]) or adding an extra
component to model the outliers (e.g., uniform [92]). Lo
et al. [46] used a t-distribution in the context of model-
based clustering to deal with outliers in FCM data. Jeffries
et al. [45] represent two-dimensional FCM data as an
image and apply a set of morphological operators on the
corresponding image to remove outliers. Although Jeffries’
study concentrates on two-dimensional data, the operators
are applicable to multidimensional data as well. Cluster
membership weights calculated during automated gating
may also be used for outlier identification [30, 46]. When
using supervised learning techniques, suspected examples
can be removed from the learning phase to improve the
generalization performance of the learning algorithm [95].
Furthermore, assigning decision confidence together with
the labels of each event can be utilized to exclude the events
that are less likely to belong to a specific class (e.g., [96-98]).

5.4. Automated Gating. More than 70% of the studies
covered in this review have implemented approaches for
automated gating of the FCM data. In the following subsec-
tions, we focus on these approaches in more detail. Although
the approaches covered in these sections are implemented for
automated gating purposes, most of them are applicable to
interpretation stage of data analysis as well.

5.4.1. Supervised Techniques for Gating. Supervised tech-
niques require training data and a training phase to learn

the relationship between the events and output classes but
unsupervised ones do not need this. Selection of training
data that is representative of all cell populations of interest
is important in training supervised techniques. Supervised
techniques usually classify the input events to one of the
predefined cell populations introduced to the algorithm
in the training stage. Therefore, if a novel cell population
exists in the data, the algorithm classifies that population
as belonging to one of the predefined cell populations and
not as a novel population. Two strategies can overcome this
problem to some extent.

(i) The first one is assigning an “unknown” class for the
input patterns that are unlikely to belong to known
event categories [79, 96, 98]. A disadvantage of this
solution is that if two novel categories exist in the test
data, both will be classified as unknown even though
the unknown class is comprised of multiple novel
classes. It is, however, possible to add another stage of
processing to further investigate the unknown events
to see if they consist of multiple populations. Another
similar solution would be to assume that each event
can belong to several classes with different mem-
bership (e.g., event one belonging to “Class 17 with
70% chance and to “Class 2” with 30% chance) or
to assign decision confidence for each classified event
and reject less confident classifications as outliers or
unknowns [96-98]. Using such a strategy, Wilkins
et al. [75] show that more than 70% of novel species
were successfully identified as “unknown” while the
proportion of correctly classified species decreased
moderately (from 93.8% to 86.8%) compared to the
case when no novel species were identified.
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(ii) The second approach used by Beckman et al. [79]
suggests adding fictitious events that reside in some
of the empty spaces. Input events that are close
to these fictitious events are classified as unknown
events rather than being classified as belonging to
the populations of interest [79]. This approach,
however, needs extensive intervention in the data
space in order to generate populations that represent
unwanted event types. Moreover, this task is imprac-
tical when the dimension of the data is high, as one
needs to generate fictitious data points that represent
different unknown categories throughout the whole
data space [99].

Overall, supervised techniques are suitable for tasks
where we know how many classes exist in the data and a
choice of unknown class would exclude the events that do
not belong to the classes of interest. On the other hand,
unsupervised techniques are more suitable for novel class
discovery tasks.

In supervised learning techniques, the training set should
be a good representative of the future unseen data. Therefore,
reproducible FCM data is necessary. For example, if there
is excessive drift in the centroids of the cell populations,
many of the cells could be misclassified. Some minor amount
of drift can be usually accommodated by the algorithm
itself and also having training sets composed of samples
measured at different times for different individuals [40].
One approach to overcome this problem is to normalize the
data before gating.

Care should be taken when using supervised techniques,
as usually unequal numbers of training patterns of each class
are available, and this can bias the training of the classifier
towards the classes with higher number of training events.
One solution that has been suggested and applied to FCM
data is to take into account a posteriori probabilities and class
probabilities (i.e., the proportion of each of the cell categories
in the training data) [86, 99, 100].

During training, a supervised learning algorithm reaches
a state where, given sufficient and informative data, it should
be capable of predicting the correct label for unseen data.
However, the algorithm may adjust itself to very specific
features of the training data that have little relation to
unseen data. In this process referred to as overfitting,
the performance on the training examples is high while
the performance on unseen data becomes worse. Roughly
speaking, an algorithm that is overfit is like a botanist with
a photographic memory who, when presented with a new
tree, concludes that it is not a tree because it has a different
number of leaves from anything he/she has seen before [101].
Opverfitting can be avoided by employing techniques such as
regularization and early stopping [102-104].

Regularization involves introducing a form of penalty
for complexity of the classification model. An example of
regularization in neural networks is weight decay algorithm
used in MLP neural networks. As large weights can decrease
the performance of an MLP classifier on unseen data, weight
decay penalizes the large weights causing the weights to
converge to smaller absolute values than they otherwise

Advances in Bioinformatics

would [102]. This strategy has been used in the context of
gating FCM data [77].

In early stopping, the available training data is divided
into two sets, that is, a new training set and a validation set.
In each iteration of learning, the data of the new training set
is used to train the learning algorithm and the validation
set is used to evaluate its performance. The learning phase
is forced to stop once the performance on the validation
set does not improve or degrades. This method can be
used either interactively (based on human intervention)
or automatically (based on some stopping criteria usually
chosen in an adhoc fashion). As mentioned in [105], early
stopping is widely used as it is easy to implement and has
been reported to be superior to regularization methods in
many cases (e.g., [106]).

A number of algorithms in the category of supervised
techniques such as multilayer perceptron (MLP) networks
(e.g., [48, 54]), radial basis function (RBF) networks (e.g.,
[54, 75]), and support vector machines (SVM) [80] have
been used in the context of cell population identification in
FCM data.

A typical MLP network consists of a set of nodes forming
the input layer, one or more hidden layers, and an output
layer. The MLP network has a highly connected topology
since every input node is connected to all nodes in the first
hidden layer, every node in the hidden layers is connected to
all nodes in the next layer, and so on. The value of each node
is determined by a weighted combination of input nodes,
possibly including some nonlinear activation function.

An MLP network is trained by repeated presentation of
input patterns to the network. During the training process,
small iterative weight changes in the structure of the network
are performed until the predicted outputs are considered
close enough to desired outputs. Designing an MLP classifier
is not a trivial task as one needs to determine optimal
parameters of the MLP structure (e.g., number of hidden
layers, number of hidden layer nodes, etc.) for each specific
classification task. For most problems, one hidden layer
is sufficient. Using two hidden layers rarely improves the
model, and it may introduce a greater risk of converging
to a local minima. The network may not be able to model
complex data if inadequate number of hidden layer nodes is
used. On the other hand, if too many nodes are used, the
training time may become excessively long, and the network
may overfit the data. In general, training an MLP is relatively
slow and sometimes the algorithm gets stuck in local minima
and therefore the training process has to be restarted [104].
It has been shown that if an accuracy of (1 — e) on a test set is
desirable, the number of events in the training set, p, should
satisfy p = w/e, where w is the total number of weights
in the network [107]. Hence, to obtain 90% accuracy (e =
0.1) on test set, the desirable number of events required in
training set is at least ten times the total number of weights.
While having p > w/e is definitely desirable, it is sometimes
difficult in practice to build such a large database of clinical
cases. An option is to use a perturbation method to generate
a large number of cases by introducing small variations
in actual cases [77]. The importance of having sufficiently
large training sets to cover biological variation is highlighted
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by the increase in overall identification success of different
marine microalgae in an FCM study [86].

An RBF neural network typically is comprised of three
layers of nodes (i.e., input, hidden and output layers). The
neurons in the hidden layer contain basis functions, usually
Gaussian transfer functions whose outputs are inversely
proportional to the distance from the center of the basis
function. Normally the Euclidean distance is used as the
distance measure, although other distance functions are also
possible. An RBF network output is formed by a weighted
sum of the hidden layer neuron outputs and the unity bias.

The parameters of an RBF network which are determined
in the training stage consist of the positions of the basis
function centers, the radius (spread) of the basis functions
in each dimension, the weights in output sum applied to
the hidden layer nodes outputs as they are passed to the
summation layer, the parameters of the linear part, and so
forth.

Various methods have been used to train RBF networks.
One approach first uses k-means clustering to find cluster
centers which are then used as the centers for the RBF
functions. However, k-means clustering is a computationally
intensive procedure, and it often does not generate the
optimal number of centers. Another approach is to use a
random subset of the training points as the centers.

Assuming that the data is linearly separable, among the
infinite number of hyperplanes that separate the data, an
SVM classifier picks the one that has the smallest general-
ization error. Intuitively, a good choice is the hyperplane
that leaves the maximum margin between the two classes,
where the margin is defined as the sum of the distances of
the hyperplane from the support vectors. Support vectors
are the examples closest to the separating hyperplane and
the aim of an SVM classifier is to orientate this hyperplane
in such a way that it is as far as possible from the closest
members of both classes. If the two classes are nonseparable
we can still look for the hyperplane that maximizes the
margin and that minimizes a quantity proportional to the
number of misclassification errors. The trade-off between
margin and misclassification error is controlled by a positive
constant C (referred to as error penalty) that has to be chosen
beforehand [101, 108].

SVMs are very universal learners. In their basic form,
SVMs learn linear threshold function. Nevertheless, by a
simple “plug-in” of an appropriate kernel function, they
can be extended to nonlinear classifiers such as polynomial
classifiers, radial basis function (RBF) networks, and three-
layer sigmoid neural networks.

Perhaps the biggest limitation of the SVM approach lies
in the choice of the kernel. Once the kernel is fixed, SVM
classifiers have only one user-chosen parameter (the error
penalty) [101].

RBF networks can be trained significantly faster than
MLPs. In addition to the number of hidden layers, a
difference between RBF and MLP classifiers lies in the
nodes of the hidden layer, which use different kernels (basis
functions) to represent the data. RBF networks have the
advantage of not suffering from local minima in the same
way as MLPs. While for an RBF there is no restriction on
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decision boundaries formed, an MLP forms convex decision
boundaries. Moreover, RBF’s hidden layer performs a non-
linear mapping from the input space into a (usually) higher-
dimensional space in which the input patterns become
linearly separable [109]. Although RBF networks are quick
to train, when training is finished and it is being used, it is
slower than an MLP. Therefore, where speed is a factor an
MLP may be more appropriate.

SVM can be seen as a new way to train polynomial, neural
network, or RBF classifiers. While most of the techniques
used to train the above mentioned classifiers are based on the
idea of minimizing the training error, which is usually called
empirical risk, SVMs operate on another induction principle,
called structural risk minimization, which minimizes an
upper bound on the generalization error [108].

In the context of FCM data analysis, Boddy et al. [81]
compares the performances of RBF networks using different
basis functions. Specifically, radially symmetric and a more
general arbitrarily oriented ellipsoidal basis functions were
employed, with the latter proving to be significantly superior
in performance. The distance between input patterns and
the basis function centers are defined by a distance metric,
which determines the shape of the basis function. The
Euclidean distance metric produces hyperspherical (radially
symmetric) basis functions around the basis functions
centers. Mahalanobis distance metric, on the other hand,
allows the hyperellipsoid (nonradially symmetric) to adopt
any orientation that best fits the data distributions.

Wilkins et al. [54] compare several classification algo-
rithms such as MLP, RBE and LVQ (learning vector
quantization) to identify phytoplankton species from FCM
data. The authors show that identification success was
more or less similar using the above-mentioned techniques.
Therefore, they suggest using the criteria mentioned earlier
and characteristics of the data at hand to decide which
method is the best to use. In another study on phyto-
plankton species, Morris et al. [80] demonstrate that an
SVM classifier outperforms RBF classification. These studies
focus on specific data sets and their generalization on
other data sets is unknown. Therefore, picking an algorithm
based on the type of data at hand and above-mentioned
characteristics of learning algorithms is recommended. One
approach that might be worth considering in FCM studies
is the multiple classifier systems (MCSs) [110]. MCSs are
based on combining the outputs of ensembles of different
classifiers (supervised learning techniques). Classification
accuracy improvements are possible provided that a suitable
combination function is designed and that the individual
classifiers make different errors. Ideally, a combination
function should take advantage of the strengths of individual
classifiers, avoid their weaknesses, and improve classification
accuracy [110].

5.4.2. Unsupervised Techniques for Gating. Algorithms for
unsupervised analysis of FCM data should be

(i) computationally efficient as the amount of data
generated for each FCM experiment is large (an
FCM experiment contains measurements for up to
millions of cells for up to 20 parameters),
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(ii) able to detect clusters with different shapes as clusters
(cell populations) in FCM data can have different
shapes ranging from spherical shapes to irregular
shapes such as being highly elongated or even being
curved,

(iii) able to detect populations with different densities and
percentages as FCM samples can contain a wide range
of cell populations in terms of the density of cells
(very sparse vs. very dense cell populations) and also
percentages of cells in each population (populations
of interest as low as 0.1% of total events),

(iv) able to determine the number of cell populations as
the number of cell populations present in the data is
usually not known apriori,

(v) able to handle outliers as data can contain significant
number of outliers.

The above-mentioned characteristics of FCM data make
unsupervised analysis challenging as existing clustering algo-
rithms either do not address or have limitations in addressing
these requirements.

Clustering algorithms require the number of clusters that
they should identify to be specified apriori. There are several
approaches for choosing the number of clusters, including
resampling, cross-validation, and various information crite-
ria [111]. Zeng et al. [53] use the peaks of density distribution
of each channel of FCM data and estimate the numbers of
clusters to be identified by k-Means algorithm. Lo et al. [46]
propose to use Bayesian information criteria (BIC) in the
context of a model-based clustering approach to estimate the
optimal number of clusters. BIC is computationally cheap to
compute once maximum likelihood estimation for the model
parameters has been completed, an advantage over other
approaches, especially in the context of FCM where datasets
tend to be very large. While computationally cheap, BIC
relies heavily on an approximation of marginal likelihoods,
which might not be very accurate for some data. Alternative
approaches such as the integrated completed likelihood [112]
may improve the estimation of the number of clusters. Nev-
ertheless, combined with expert knowledge, such approaches
can provide guidance on choosing a reasonable starting
number of clusters.

Sometimes it is possible that even if the actual number of
clusters is known, the clustering algorithm may not identify
the correct clusters at the level of separation that is desired.
This can happen when there is a rare cell population within
the FCM data. In this case, the clustering algorithm may
consider the rare population as an outlier or as part of a larger
cell population and instead divide larger cell populations
into smaller populations. One approach to overcome this
problem might be clustering the data with higher number
of clusters with the hope that the rare populations are
represented by separate clusters and use some merging
algorithm to combine the clusters that are similar according
to a criterion.

k-means clustering algorithm is one of the methods that
have been used in literature. While this approach performs
well when the clusters are spherical in shape, clusters in
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FCM data usually are not spherical. Demers et al. [82] have
proposed an extension of k-means allowing for nonspherical
clusters, but this algorithm has been shown to lead to inferior
performance compared to fuzzy k-means clustering [50]. In
fuzzy k-means [113], each cell can belong to several clusters
with different association degrees, rather than belonging
to only one cluster. Even though fuzzy k-means takes into
consideration some form of classification uncertainty, it is
a heuristic-based algorithm and lacks a formal statistical
foundation. Other choices include hierarchical clustering
algorithms (e.g., linkage or Pearson coefficients method).
However, these algorithms are not appropriate for FCM data,
since the size of the pairwise distance matrix increases in the
order of n? with the number of cells, unless they are applied
to some preliminary partition of the data [72], or they are
used to cluster across samples, each of which is represented
by a few statistics aggregating measurements of individual
cells [87, 114]. Since the required processing time for some
clustering algorithms increases significantly by the increase
in the number of events and parameters of FCM data,
subsampling the data might be a suitable approach to reduce
the processing time. Care should be taken when performing
subsampling to make sure that the properties of the original
data are preserved after this process. For example, a random
uniform sampling of data may not be a suitable approach
as it can discard the small populations present in the data.
One alternative might be using a guided sampling approach
in which representative events are selected from low-density
populations as well. This might be achieved by different
strategies such as looking at density distributions of the
data or performing a coarse clustering before subsampling
procedure.

An alternative approach for FCM data gating is to model
the FCM data with mixtures of distributions. The most com-
monly used model-based clustering approach is based on
finite Gaussian mixture models [93, 115]. However, Gaussian
mixture models rely on the assumption that each component
follows a Gaussian distribution, which is often not the case
when modeling FCM data. A common approach is to look
for transformations of the data that make the normality
assumption more realistic. Lo et al. [46] proposed the use
of the Box-Cox [116] transformation prior to using a model-
based clustering. In addition to nonnormality, there is also
the problem of outlier identification in mixture modeling.
As mentioned earlier, replacing the Gaussian distribution
with a more robust one (e.g., t [94, 115]) or adding an
extra component to model the outliers (e.g., uniform [92]) is
suggested to deal with outliers. The ¢-distribution is similar
in shape to the Gaussian distribution with heavier tails
and thus provides a robust alternative [117]. The Box-Cox
transformation is a type of power transformation, which
can bring skewed data back to symmetry, a property of
both the Gaussian and t-distributions. In particular, the Box-
Cox transformation is effective for data where the dispersion
increases with the magnitude, a scenario not uncommon to
FCM data [46].

One of the benefits of model-based clustering approach
is that it provides mechanism for both “hard” clustering (i.e.,
the partitioning of the whole data into separate clusters)
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and fuzzy clustering (i.e., a “soft” clustering approach in
which each event may be associated with more than one
cluster) [46]. The latter approach is in line with the rationale
that there exists uncertainty about to which cluster an event
should be assigned.

5.5. Cluster Labelling. Cluster labelling (or cluster matching)
between samples is usually performed manually. Approaches
that can label the clusters based on their location such as
mean or median fluorescent intensity (MFI) of known cell
populations or their location relative to other clusters have
been used in literature [45]. Cluster labelling approaches
that take into account the shape and rotation of cell
populations in addition to their locations might provide
more robust results. In case of using the absolute location
of cell populations for cluster labelling, data normalization
prior to labelling is necessary as significant changes in the
location of cell populations (as shown in Figure 4) can result
in mismatching cell populations. Note that in case of using
supervised techniques for automated gating, labelling is not
needed as the gating algorithm determines the labels of
events (e.g., whether the events are of cell type 1 or cell
type 2). Therefore, this information can be used for labelling
(matching) cell populations between samples as well.

5.6. Feature Extraction. Prior to interpretation of gating
results, features representing the identified cell populations
need to be defined. In literature, usually the percentages
and locations of cell populations are used for interpretation
purposes. However, other characteristics of cell populations
such as their shapes (e.g., whether they are spherical or
ellipsoidal), dispersion, orientation, and proportion of a
specific cell population relative to another cell population
may also be useful to achieve better interpretation results.
Since the features that may carry information are not always
known apriori, one option is to generate as many features as
possible and then use feature selection techniques to discard
the uninformative and also redundant features.

Furthermore, approaches such as the one introduced in
[41] that uses other representations of the characteristics
of the FCM data (characteristics based on kernel density
estimation in the case of [41]) might be interesting to
investigate further. Since the final aim in some studies such
as the one presented in [41] is to perform a classification task
(e.g., healthy versus patient), gating FCM data may not be
necessary (except to find basic cell populations such as live
cells and lymphocytes) which can potentially eliminate the
errors that can be introduced in the system by poor gating
strategies.

5.7. Interpretation. Although mostly done manually, inter-
pretation of results can utilize many methods that have
been developed in computer science for finding associations
between FCM samples with their labels (e.g., disease diag-
nosis) or identifying cluster of patients with similar FCM
data. Depending on the purpose of the study, supervised
or unsupervised learning techniques can be used. For
example, if the aim is to classify a sample as disease or
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healthy, supervised learning techniques can be used. For the
purpose of finding patients who have similar data, standard
unsupervised learning techniques can be utilized.

6. Conclusions

The need for completely automated analysis of FCM data
is becoming more evident with the advances in high-
throughput FCM technology. To date, most research has
been focused on developing approaches for automated gating
of FCM data. Manual gating is recognized as labor intensive,
subjective, and prone to error when processing large num-
bers of samples. Therefore, automated gating methods will
allow for a faster and more robust data analysis pipeline.
Although significant effort is still needed to develop auto-
mated gating algorithms that address challenging aspects of
FCM data, we believe that the research community needs to
look beyond automated gating and develop bioinformatics
tools that facilitate building completely automated FCM data
analysis pipelines. It should be noted that the development
of robust, automated methods for high-throughput FCM
data analysis also requires high-quality data to feed into
the analysis framework. Generating this high-quality data
requires well-designed experiments with the appropriate
positive and negative controls.

A rigorous quantitative assessment is important before
using automated approaches in practice, as a replacement
for expert manual analysis. Moreover, it is likely that one
data analysis solution may not be suitable to address specific
questions of a study or address the challenges of analyzing a
specific FCM dataset. For example, if somebody is interested
in identifying a previously known type of cell, supervised
techniques might be better suited. Overall, in order to use
automated data analysis approaches in biomedical research
and clinical setting, we need to develop more generic solu-
tions or design smart algorithms that can tune themselves
with little intervention, as the users may not have enough
knowledge of bioinformatics techniques. The availability of
a wide variety of example data is crucial, as it would aid
in the development, evaluation, and comparison of different
automated analysis methodologies.

The development of automated FCM data analysis
approaches will greatly facilitate both basic research and clin-
ical applications in medical/agricultural areas that depend
upon this technique. Since FCM generates data sets as
complex and informative as gene arrays using markers for
different cell populations defined by phenotypic, activation,
or cytokine expression features, optimizing FCM-based data
analysis will also help develop FCM as a proteomics and
diagnostic tool with widespread applications in both basic
and clinical laboratories.
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1. Introduction

Genome-wide association (GWA) studies have revolu-
tionised the mapping of common genetic variants, mostly
single nucleotide polymorphisms (SNPs), with susceptibility
to a wide range of common, multifactorial disorders [1],
in particular autoimmune diseases [2]. The next step to
followup on these findings is the identification of the
molecular effects of these genetic risk variants. A potential
approach to achieve this goal is to associate these risk alleles,
in sufficiently large cohorts, with quantitative molecular
traits. This approach has been widely used in the context
of gene expression mRNA analysis [3—6] but RNA is only
an intermediate step and downstream protein level traits
provide more valuable biological information.

Multicolour flow cytometry analysis can provide rich
protein level data simultaneously on different subsets of cells;
this is of particular importance for post-GWA investigations
as genetic heterogeneity identified in disease-associated
regions can differentially affect various cell subsets. However,

the throughput of current flow cytometry approaches,
including data analysis and sample collection, is limited
to a small number of samples per day or week, especially
when fresh blood is required. As the identification of
subtle molecular effects directed by common genetic variants
may require the analysis of a relatively large number of
samples, flow cytometry experiments may need to span over
several months. Owing to the complexity of flow cytometry
technology, various technical artifacts, including variability
in reagents or measuring instruments, can create time-
related biases. Consequently, normalisation procedures are
necessary to enable the comparison of samples analysed at
different dates.

Similar issues have been identified in the context of gene
expression microarray analysis. For these analyses researchers
typically take advantage of the large number of independent
measurements (one per gene or probe), implicitly using
the rank of a gene of interest as a summary statistic. Such
techniques are not available for flow cytometry data, and
therefore specific approaches are required.



With the motivation of understanding the molecular
effects of type 1 diabetes (T1D) risk variants located in
the IL2 receptor a-chain (IL-2RA/CD25) gene region [7],
we quantified cell surface expression of CD25 on CD4* T
cells using flow cytometry [8]. We analysed 192 samples
over a seven-month period, including 15 pairs of repeated
individuals (with blood donations separated by at least three
months) in order to assess measurement repeatability. We
show how time-related biases affect the repeatability of a
phenotype of interest, computed as a mean fluorescence
intensity (MFI) in a population of CD4" memory T cells.
We used the repeatability level of this genetically controlled
and stable phenotype as a proxy for technical variability
of the flow cytometry measurements. We show how using
fluorescent calibration beads to normalise the MFIs can
control for day-to-day technical variability, generated by
the flow cytometer, that could not be controlled for other-
wise.

2. Results

2.1. Repeatability of CD25-APC Normalised Mean Fluorescent
Intensity (MFI) Phenotype. Using multicolour flow cytom-
etry analysis, we previously identified CD25 cell surface
expression on CD4" memory T cells to be associated
with genetic variants in the CD25 gene region [8]. This
phenotype is a MFI of anti-CD25 conjugated to APC in
this cell population. To analyse this cell population the 192
samples were gated manually (using the software FlowJo,
Tree Star, Inc.) to correct for interindividual and technical
variability (see Figure S1 in supplementary material avali-
able online at doi: 10.1155/2009/476106 for a description
of gating procedure). Constant flow cytometer settings,
pooling of different antibody batches prior to the start
of the study, and strict protocol adherence were used to
control for technical variability. Nevertheless, when analysing
the distribution of this MFI phenotype across time, we
observed significant time effects. Because this phenotype
is correlated to CD25 genotype, we restricted this analysis
to 149 samples with an identical T1D susceptible CD25
genotype at the main CD25 expression associated SNP [8].
However, time-associated trends remained significant even
in this subgroup (p = 5 x 107* when regressing the
MEFI against a quadratic model for time, coded in number
of days, see Figure 1(a)). These time effects are probably
due to fluctuations in the flow cytometer that cannot be
measured.

To better control for technical day-to-day variability
of the flow cytometry measures, MFIs were converted to
molecules of equivalent fluorochrome (MEF) using six peak
calibration beads (Dakocytomation, see Methods). For each
experimental day, the MFIs of the six peak calibration beads
were measured using flow cytometer settings identical to
the ones used for the analysed samples. Using the MFI
to MEF correspondence provided by the manufacturer we
fitted a linear model MEF = «a X MFI and used this linear
transformation for MFI normalisation. The efficiency of this
procedure is illustrated by the improved repeatability of the
MEEF in contrast with the nonnormalised MFI (Figures 1(b)
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and 1(c)), thus demonstrating an improved control for day-
to-day technical variability.

2.2. Background Subtraction Using Isotype Control. Typical
flow cytometry procedures to control for day-to-day techni-
cal variability use a fluorochrome-conjugated isotype control
antibody to quantify the background, nonspecific, fluores-
cence intensity. Subtraction procedures are then applied to
compare the background level with the observed intensity
in order to estimate the fraction of positive cells, as defined
by cells with a fluorescence level exceeding background [9].
In the example described here, measures obtained using
background subtraction (either two-percent of background
or maximum positive difference, see [9]) are less replicable
(R?* = 0.443) and correlations with the MEF phenotype are
limited (R? = 0.59, see Figure 2).

These differences are consistent with the fact that the MFI
and the fraction of CD25+positive cells provide different
types of information. Therefore, these summary statistics
require different normalisation approaches: one using nor-
malisation beads, the other using an isotype control.

2.3. Broad Spectrum versus Spectrum Matched Beads. The
calibration beads used in this study are broad spectrum
beads, which means that the same set of beads can be
used to normalise fluorochromes at different wavelengths
(e.g., PE and APC using the same set of beads). Alternative
normalisation tools use spectrum matched beads, that is,
fluorescent beads whose light spectrum matches exactly the
fluorochrome of interest, for example, APC. Such spectrum
matched beads are required to standardise flow cytometry
measurements across different laboratories or flow cytome-
ters [10]. The fact that the data presented in this study were
generated using a single flow cytometer (BD Biosciences
LSRII) limits the complexity of MFI normalisation, thus
justifying the use of broad spectrum beads.

To better understand the impact of broad versus spec-
trum matched normalising beads, we analysed normalising
beads from another dataset generated during the same
time period using the same flow cytometer. For this
additional dataset broad spectrum (Dakocytomation) and
APC spectrum matched (BD Biosciences) were tested. For
technical reasons, and also to better understand the effect
of variability in photomultiplier tube voltage (controlling
the light detection sensitivity), flow cytometer settings were
not kept constant through time for these additional beads
data. Indeed we observed that, as expected, the normali-
sation coefficient is strongly negatively correlated with the
APC photomultiplier tube voltage (Figure 3). Note that,
in contrast with the data in Figure 3, the APC voltage
remained constant for all other data (Figures 1, 2, 4, and
5), and, therefore, differences in voltage settings explain the
differences in MFI trends between Figures 1(a) and 3. We
found very close agreement between broad spectrum and
APC spectrum matched beads (Figure 3), hence justifying
the use of broad spectrum beads if the analysis involves a
single flow cytometer operated under a strictly adhered-to
protocol.
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FIGURE 1: (a) Black crosses show nonnormalised MFIs in the CD4* memory T cell population as a function of time. The back line was fitted
line to these MFI values using a loess procedure. The red line shows the normalisation coefficient estimated from the beads. (b) Repeatability
plots (n = 15 pairs) for MFIs of CD25-APC cell surface expression in the CD4* memory T cell population. (c) Repeatability plots (n = 15
pairs) for CD25-APC MEF (normalised MFI) in the same cell population. For (b) and (c), each individual’s blood donations were separated

by at least 3 months.

2.4. Isotype Control Is Not Usable for MFI Normalisation. We
then investigated whether MFIs obtained by measuring the
isotype control fluorescence are usable for MFI normalisa-
tion, in contrast with the traditional use for background
subtraction. Isotype controls are primarily used to provide
information on nonspecific binding via Fc receptors present
on the cells of interest. In our analyses, we attempted to block
such Fc binding using mouse IgG immunoglobulin (Sigma-
Aldrich Company), thereby making the isotype control
primarily a measurement of the autofluorescence [11] of the
cell population examined. We hypothesized that, owing to
this nonspecificity, the biological donor-to-donor variability
would have a more limited effect on isotype fluorescence,
thus providing some information of technical variability.

In Figure 4, we show a comparison of the variability
across time of the normalising beads and isotype control
MFIs. We found that the variability of the isotype control

MFIs greatly exceeds the variability obtained from normalis-
ing beads. A regression analysis using a quadratic model for
time (coded as number of days) regressed against the average
isotype MFI for each day explains only 18.4% of the variance
of the isotype MFI values. The same regression for the
normalising bead MFIs explains 64.8% of the measurement
variance. The isotype MFIs also showed large variation
across different donors analysed on the same day, suggesting
that donor-to-donor differences in autofluorescence levels
contribute to the isotype MFI variability. Moreover, for low
MFI values in the range of the isotype control MFIs, the
signal-to-noise ratio is low.

Opverall, the isotype MFIs are highly variable and affected
by donor-to-donor variability. In addition, the biological
variability captured by the isotype control MFIs (average
MFI less than 2) is not significant when analysing higher
CD25 cell surface MFIs in the CD4' memory T cell
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FIGURE 3: Variability across time of the normalisation coefficient for
broad spectrum beads (black) and APC spectrum matched beads
(red). The blue line shows the APC photomultiplier tube voltage
setting used to measure the beads MFI.

population (average MFI: 25). Thus, the biological donor-
to-donor information captured by the isotype control is not
relevant for normalising the MFIs of interest. Taken together,
these results indicate that the isotype control is not usable for
MFI normalisation.

2.5. Across-Sample Normalisation in the Absence of Cali-
bration Beads. We then investigated alternative procedures
allowing for the control of flow cytometry day-to-day
technical variability in MFI measurements in the absence
of calibration beads. First, we investigated whether we
could use the 192 samples analysed to estimate the trend
associated with technical variability, and use this estimate to
correct for time-related biases. Because of CD25 genotype-
phenotype correlations [8], we only included 149 individuals
with identical T1D susceptible genotypes at the main CD25
expression associated SNP. We coded time as the number
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FIGURE 4: Variability across time of the isotype control MFIs (red
crosses, one point per sample) and the normalising beads MFIs
(black line, one point per experimental day). MFIs are scaled such
that the value is equal to one for the first day, and a logarithmic scale
is used for the y-axis.

of days since the first bleed and regressed a quadratic
model for time against the CD25-APC MFI estimated in the
total CD4" T cell population to generated predicted values
pt. The multiplicative normalising factor was estimated as
a; = pi/pi—o. Applying this correcting factor to our main
phenotype of interest (CD25-APC MFI in the CD4" memory
T cell population, Figure 5(a)) significantly improved the
phenotype repeatability (R> = 0.91) and helped control for
time-related biases.

2.6. Within-Sample Normalisation in the Absence of Calibra-
tion Beads. We then investigated a second procedure for
MFI normalisation, a flow cytometry approach analogous to
quantile normalisation for gene expression microarray data.
In the context of microarray data, quantile normalisation
takes advantage of a large number of independent data
points (one point per gene or probe) to rank a gene of
interest within the overall distribution of gene intensities.
This procedure corrects at least partially for variability
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across independent microarray experiments. Flow cytometry
analysis, on the other hand, does not provide large num-
bers of independent data points. However, some partially
uncorrelated MFI measures are available when analysing
independent cell subsets. Therefore, we recoded our MFI
phenotype of interest (computed in CD4* memory T cells)
by computing, for each sample, the ratio of MFIs between
CD4* memory T cells and total CD4" T cells. The advantage
of this approach is the use of an internal control within
the same sample, therefore providing control for technical
variability. The drawback is the reliance on this additional
phenotype to be biologically stable. This situation is similar
to a gene expression analysis where a single gene is used
for normalising the expression intensities; the underlying
assumption is that the expression of this normalising gene
is stable. In the example provided here the repeatability of
the resulting phenotype was poor (R*> = 0.37, Figure 5(b)),
indicating that the repeatability of the MFI in the total CD4*
T cells is lower than what we observed in the CD4* memory
T cells.

3. Discussion

We have identified CD25 cell surface expression on CD4"
memory T cells to be a biologically stable phenotype,
quantifiable by flow cytometry analysis. We have shown
that the use of broad-spectrum fluorescent normalising
beads significantly reduces the day-to-day variability of flow
cytometry measurements. This normalisation could not have
been achieved with the sole use of an isotype control,
thus motivating the development of efficient tools for flow
cytometry data normalisation.

We also investigated two alternative normalisation meth-
ods, less effective than normalising beads in this example
but useful in situations where fluorescent beads are absent.

A potentially useful approach consists of using the MFIs
obtained from a different population of cells within the same
sample, thus providing an internal normalisation. However,
this procedure will only be useful in a situation where a
different population with repeatable MFI values exists.

In spite of these results, normalisation of fluorescence
intensity data from flow cytometry remains challenging.
Indeed, controlling the technical variability of such a
complex experimental procedure over extended periods of
time is difficult. The development of methods for higher
throughput flow cytometry, enabling the analysis of dozens
of samples on the same day, may address some of these issues
by shortening the duration of the experiment. However,
when the phenotype of interest requires the analysis of
fresh blood, which is the case in this study, the limiting
factor becomes the number of blood samples collected per
day, which is unlikely to become much higher. We have
shown recently that CD25 cell surface expression on memory
cells is decreased and more variable if frozen peripheral
blood mononuclear cells are analysed [8], thereby ruling
out storage of frozen cells as a way to increase throughput.
Therefore, for such experiments the requirement for proper
normalisation of flow cytometry data across several months
remains a necessity.

An elegant approach to circumvent normalisation issues
is the use of a nested design comparing, on each experimental
day, both categories of samples (e.g., individuals with
different genotypes, or cases/controls). When using this
design, only phenotypes of individuals analysed on the same
day are compared with each other, thus avoiding biases
associated with day-to-day technical variability. When the
study is balanced (i.e., the same number of samples from
each category is analysed on each day) the loss of statistical
power to detect phenotype differences is minimal, while the
design becomes much more robust to technical variability.



4. Methods

4.1. Antibodies and Whole Blood Immunostaining. The
anti-human monoclonal antibodies used for cell surface
immunostaining were APC-conjugated anti-CD25 (BD
Biosciences, clones M-A251 and 2A3), Alexa-Fluor 700-
conjugated anti-CD4, Alexa-Fluor 488-conjugated anti-
CD127, and Pacific Blue-conjugated anti-CD45RA (BioLe-
gend). The isotype control antibodies used were APC-
conjugated mouse IgG1 (BD Biosciences) and Alexa-Fluor
488-conjugated mouse IgGl (BioLegend). To minimize
potential variation due to antibody batch differences, all
antibodies were obtained prior to the start of the experiment
and all vials of antibody derived from the same clone and
labelled with the same fluorochrome were pooled prior
to usage. To better visualize lower-level CD25 expression,
we increased CD25 detection sensitivity by simultaneously
using two anti-CD25 monoclonal antibodies, (labelled with
the same fluorochrome (clones 2A3 and M-A251), that
recognize distinct epitopes on the CD25 molecule and there-
fore do not cross-compete. Prior to staining, whole blood
samples were blocked with mouse IgG immunoglobulin
(Sigma-Aldrich Company) at a concentration of 2 ug per
100 4L blood. All samples were stained within 5 hours
postvenesection. After blocking, samples were stained for
40 minutes and then lysed for 10 minutes with freshly
prepared 1X BD FACS Lysing Solution (BD Biosciences).
Following erythrocyte lysis, samples were incubated at 4°C
and were washed with BD CellWASH (BD Biosciences). The
samples were fixed with freshly prepared 1X BD CellFIX (BD
Biosciences). The samples were stored at 4°C until analysis
by flow cytometry.

4.2. Flow Cytometry Analysis. All immunostained samples
were analyzed using a BD LSRII Flow Cytometer with
BD FACSDiVa Software (BD Biosciences). Each day donor
samples were evaluated, we also analysed six peak normal-
ising fluorospheres (Blank Beads and Calibration Beads,
Dakocytomation) for MFI normalisation purposes. For our
second dataset, where voltage settings were allowed to
vary, six peak normalising fluorospheres (Blank Beads and
Calibration Beads, Dakocytomation) and BD Calibrite APC
Beads (BD Biosciences) were tested on each experimental
day.

4.3. Data Processing and Statistical Analysis. The flow cytom-
etry data were analyzed using FlowJo (Tree Star, Inc.). The
remaining data processing/statistical analysis was performed
using the R programing language. Gates were automatically
extracted from the FlowJo output using an in-house XML
parsing script based on the R XML 2.3.0 library. These gates
were applied to the raw FCS files using the R flowCore
1.8.3 library. Repeatability R* values are estimated using
[var(X) — (X} — X?)*]/var(X) where (X!, and (X?),
designate the first and second sets of replicates (n = 15 in this
study).
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1. Introduction

Flow cytometry allows to measure simultaneously multi-
ple characteristics of thousands of cells. This ability has
made flow cytometry a prevalent instrument in both the
research and clinical settings. A major road block to
tapping the full potential of this technology is the lack
of data analysis methodology and software that allows for
an automated and objective analysis of the data generated
by this high-throughput instrument. One important part
of the analysis of flow cytometry data is gating, that is,
the identification of homogeneous subpopulations of cells.
The current standard technique for this type of analysis is
to draw 2D gates manually with a mouse on a computer
screen, based on the user’s interpretation of density contour
lines that are provided by software tools such as FlowJo
(http://www.treestar.com/) or BioConductor [1, 2]. The
cells falling in this gate are extracted and the process is
repeated for different 2D projections of the gated cells,
thus resulting in a sequence of two-dimensional gates that

describe subpopulations of the multivariate flow cytometry
data.

There are several obvious problems with this kind
of analysis. It is subjective as it is based on the user’s
interpretation and experience, it is error-prone, difficult to
reproduce, time consuming, and does not scale to a high-
throughput setting. For these reasons manual gating has
become a major limiting aspect of flow cytometry [3-5], and
there is a widely recognized need for more advanced analysis
techniques [6, 7].

There have been several recent attempts to produce
automatic and objective gates. Those employ the k-means
algorithm [8-10] or mixture models with Gaussian com-
ponents [11] or with t components and a Box-Cox trans-
formation [12]. A drawback of all of these methods is that
they produce necessarily convex subpopulations; whereas
occasionally subpopulations occur that are not convex and
are, for example, kidney shaped. Such subpopulations can
arise, for example, when two markers are added sequentially,



so that there is a developmental progression over time that
moves the subpopulation first in one direction and then in
another direction. The methodology introduced in this paper
is grounded in nonparametric statistical theory which allows
for such subpopulations.

We follow the paradigm that clusters of the data can
be delineated by the contours of high-density regions [13],
which is also the rationale that underlies manual gating.
We implement this paradigm algorithmically by constructing
a grid with associated weights that are derived by binning
the data. The purpose of this grid is twofold. It allows
for a fast computation of the density estimate via the Fast
Fourier Transform, and it provides for an economical but
flexible representation of clusters. We model each high-
density region by a collection of grid points. This collection
is determined algorithmically as follows. We establish links
between certain neighboring grid points based on statistical
decisions regarding the gradient of the density estimate. The
goal is to connect neighboring grid points by a chain of
links that follow the density surface “uphill.” The result of
this first processing stage is a number of chains that link
certain grid points and which either terminate at the mode
of a cluster or represent background that will not be assigned
to a cluster. In a second stage the algorithm will combine
some of these chains if statistical procedures indicate that
they represent the same cluster. The idea of following the
gradient uphill to determine clusters is motivated by manual
gating and is similar to a proposal by [14], which albeit
does not provide the statistical methodology required to
make decisions about nonzero gradients and combining
certain chains. Reference [15] gives a visual display of
gradients but no algorithm for finding clusters by linking the
gradients.

The end result of our algorithm is clusters that are
represented by chains that link certain grid points. This
representation has the advantage that it provides an efficient
data structure for visualizing and extracting the cells that
belong to a cluster. The chains that link grid points in a
cluster represent a tree structure which can be traversed
backwards to efficiently enumerate all grid points in the
cluster and hence to retrieve all cells in the cluster via their
nearest neighbor grid point.

2. Methods

2.1. Representing the Distribution on a Grid. Binning data on
a grid allows fast processing with little loss of accuracy [16].
The current software implementation of our methodology
works with successive 2D projections and we describe the
methodology in this setting, although the algorithm can be
generalized to work in higher dimensions from the start.
Thus we have n data points x; = (xj1,x2), i = 1,...,n.
To construct a grid we choose a positive integer M, typically
M = 128 or 256, and construct the grid consisting of M?
points as follows. Set A; = (max;x;; — minx;;)/(M — 1),
j = 1,2, and define the jth coordinate of y(u, m,) to be y,, =
min;x; j+(mj—1)A;, m; = 1,..., M. Then the grid is defined

as {Yimmy) : (m1,ma) € {1,...,M}*}.

Advances in Bioinformatics

Next, each grid point ym, where m = (m;,m;) €
{1,...,M}?,is assigned a weight wy, by linearly binning [16]
the observations x;, that is,

xi,j - )’mj ‘
e 1
y ) M

The grid {ym,m € {1,... ,M}?} and the associated weights
{Wm,m € {1,... , M2} represent an approximation to
the cell distribution. Our software implementation allows
the user to choose various values of M. A larger choice
of M results in a finer grid and hence a more precise
approximation of the cell distribution at the expense of more
computing time. However, in accordance with the results in
[16], we found that a relatively small number of bins already
give an excellent approximation. Within a precision of 0.01%
of the total cell population we could not detect a change in
the outcome of gating small subpopulations when increasing
M from our default value of 256 to 512.

Our clustering algorithm described below uses only the
grid and the associated weights to derive the clustering
assignment. This assignment is then applied to cluster
observations x; as follows. Each observation x; is assigned to
the grid point yr, that is the closest to x; in Euclidean norm.
Then x; is assigned to the same cluster to which its associated
grid point yp, is assigned. Likewise, all observations assigned
to a certain cluster can be retrieved as follows. Find all
grid points ym assigned to the given cluster, then find all
observations x; that are assigned to these grid points.

n 2
Wm = anax(o,l -

i=1j=1

2.2. Computing the Estimate of the Cell Density. At each grid
point ym,m € {1,..., M3}?, an estimate of the density surface
f( ym) 1s computed as follows.

Denote by ¢(x) = 1//2mexp(—x?/2) the Gaussian
kernel. Then the estimated density at yn, is given by (see, e.g.,
[16])

Z L LA; i/l
= — Z Z Wm-1 X 1_[ ( ) (2)
ll, Zib=-2, J
where 1 = (I,1), Z; = min(|l4h;j/A;|,M — 1), and h; =
SD({xij,i = 1,...,n})n""%, where SD denotes standard

deviation. The above sum can be computed quickly with the
Fast Fourier Transform (FFT) in a well-known way [16], but
it can also be computed directly using the above formula
without the FFT.

2.3. Association Pointers between the Grid Points. First, for
each grid point we compute the standard error of the
corresponding density estimate and then label those grid
points as background whose density does not pass a certain
statistical threshold. The interpretation of this criterion is
that it tests whether the density is significantly different from
zero; see Step 1 for details.

Next we want to construct links between grid points that
follow the density gradient, that is, point “uphill” To this
end, we visit each grid point in turn and compare the density
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estimate on this grid point with those of its neighboring grid
points, of which there are at most eight. We establish a link
to that neighboring grid point that has the highest value of
the density estimate, provided that the difference in density
estimates is statistically significant (Step 2). Testing whether
the latter difference is nonzero is necessary as otherwise the
variability of the density estimate may lead to links that may
accidentally connect different clusters. Computationally we
implement links by way of the programming language data
type of a pointer.

Next we follow each chain to its end and determine
whether it represents a cluster or background (Step 3). Then
we determine whether two clusters need to be merged
because they are connected by a path that possesses no
statistically significant trough (Step 4). This is done by
iteratively building a set of grid points which are neighbors
to a local maximum of the density surface, are not maxima
or background, and do not exhibit a statistically significant
change in density when compared to the local maximum.
If this set in turn possesses a neighboring grid point that
is a local maximum, then we found a path (via this set)
between two local maxima that does not exhibit a statistically
significant trough. Consequently the last part of Step 4
merges the corresponding clusters by establishing pointers
to the grid point with the highest density. We iterate Step 4
until there are no more changes in the clusters (Step 5). It
can be shown that there will be only finitely many iterations.
Step 6 takes care of remaining points that are assigned
to the background. Thus the resulting number of clusters
is determined by the data via the statistical methodology
described previously.

Here is a more formal description of the various steps.
Step 1. Consider all grid points ym,m € {1,..., M}, in turn.
For each grid point y, compute

Z Zy
Om = n(n—l)lgzllzgzzwm_l
2 z(l h) 3
¢ (L;A;/h; 1 -
<=7 = = m)”
=1 j

n—1

Om is an estimate of the standard error of the estimated
density at ym. 02 can be computed with the FFT as above.

Define the index set § = {m € {1,...,M}? : f(ym) >

4.3 % \/%}. The factor 4.3 is an adjustment for multiple
testing over the grid and is obtained by calculations as in
[15]. Thus & is the set of grid points, where the density is
significantly different from zero. Grid points outside this set
are marked as background. From each grid point yy,, m ¢ 4,
a pointer is established that points to a dummy state that
represents background noise.

Step 2. For all grid points ym, m € 4, in turn.
Consider all the neighboring grid points pi,..., pu,,
which are defined as the set of all grid points contained in the

boxﬂ?zl{x:ymijj <xj < ymtAj}. Letp € {p1,..., pu,}

such that f(p) = max-i,_
arbitrary manner. Then estabhsh an assoc1at10n pointer from
ym to p provided the following two conditions hold:

f(p) > f(ym) and (a/ae)f(ym) > Am, Where e =
(p — ym)/llp — ymll, Il - |l denotes Euclidean norm, and
(d/ ae)f( ym) and A, are defined as follows:

a Zea Ym)

0 Zl Zz w lx_l“A“ﬁ¢<leJ/hJ)
aymu "=z, " he o h ’
Am = q(o.951/“)\/g,

#4 Zme%ﬁ Wm
n2nH§:1hj Smes f(ym)

L ( > eaeb[A -5ty )aym,,ﬂym)])

(lej/hj)
h? ’

o & l IyAgA
o Z Z Zzhz bn
M=z, a’tb

(4)

__ Hereej,e denote the standard Euclidean basis vectors.
32 is an estimate of the variance of (9/de)f(ym) and
q(0.95"%) is the normal distribution critical value adjusted
for multiple testing via «; see, for example, [15]. A is an
estimate of (0/0ym,) f(¥m)(0/0Ym,) f (¥m). q(x) denotes the
100 - xth percentile of the standard normal distribution. All
the sums can be computed with the FFT as above. Checking
that the derivative at yn, in the direction of p is significant,
rather than just linking ym to p, prevents an accidental
linking of different clusters. However, this approach may
result in not being able to establish links near the maximum,
where the density surface is flat. This is addressed by Step 4,
which merges such grid points.

Step 3. For all grid points ym, m € 4, in turn.

If a pointer originates at ymy, then it will point to
a different grid point, which itself may have a pointer
originating from it. This succession of pointers is followed
until one arrives at a grid point y, that either

(a) y, does not have any pointer originating from it, or

(b) y, has a pointer originating from it which points to a
dummy state that represents a cluster or background
noise.

In case (a) all the pointers visited in succession will be
removed and new pointers originating from each grid point
visited in succession will be established to the dummy state
that represents the background noise, provided the following
condition holds:
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FiGgure 1: Comparison of manual and DBM gating in the scatter dimensions—singlet gates are shown as determined by the researcher (top)
and DBM (bottom, colored plot frames) for neonatal mouse spleen cells. The subset is further gated using the researcher’s live/dead gate
and displayed in context of the next gating decision by the researcher. Note that the results of the DBM clustering are displayed with same
software that was used for the manual gating (FlowJo). This was done to facilitate the comparison and because a suitable display system for
publication has not yet been developed. Thus in the bottom left plot, color is used to code the clusters found by DBM.

F(y2) < q(0.957%)az2. (5)

Otherwise, provided there is a pointer into y,, then a new
pointer will be established that originates from y, and points
to a newly established dummy state that represents a new
cluster.

In case (b) no pointers are removed or established.

Step 4. Let {¥m(1)>--- Ym)} be the set of all grid points
which have a pointer originating from them to a dummy

state representing a cluster, enumerated such that f( Ym@1)) =
“ = f(Ym)-
Fori=1,...,k do the following.
Set A = {m(i)}. Iterate the following loop until no more
indices are added to #A:
(Begin loop)
For each index a € « in turn, add all the indices p to A
that satisfy

(i) yp is a neighbor of y, as defined in Step 2,

(ii) no pointer originates from yp,
(iiD) f(7p) +8p = fOma) ~ G

(End loop)
Denote by B the set of indices of grid points which satisfy the
following two conditions. The grid point possesses a pointer
originating to a dummy state representing a cluster, and the
grid point has some yp, p € # as neighbor. If B is not empty,
then do the following.

Define q by f( Yq) = maXe gf( ¥r), breaking ties
arbitrarily.

Establish a pointer from each yp,p € 4 \ {m(i)}, to yq.
For each r € B,r#q, remove the pointer from y; to
the dummy state representing a cluster and establish a new
pointer from yr to yq.
(End loop over 7)

Step 5. Repeat Step 4 until there are no more additions or
deletions of pointers to dummy states representing clusters.

Step 6. From each grid point that does not have a
pointer originating from it, establish a pointer point-
ing to the dummy state that represents the background
noise.

After Step 6 every grid point has a pointer originating
from it. Following the succession of pointers leads to a
dummy state which represents either background noise or
a cluster. All grid points which are thus linked to the same
dummy state pertain to the same cluster (or background
noise). Cluster memberships of observations x; derive from
the cluster memberships of the grid points as explained in
Section 2.1.

3. Results

We implemented the density-based merging (DBM) algo-
rithm in a Java application with a graphical user interface
that allows cluster visualization and sequential selection of
clusters to support progressive gating. To enable comparison
of DBM gating with data gated manually with a commer-
cial analysis package (FlowJo, http://www.treestar.com/), we
record cluster assignments for each event in association with
the original data. These values are used as synthetic gating
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Figure 2: Differences in manual versus DBM gating in scatter
dimensions—cells included by both gates (top), cells included in
the manual gate and excluded by the DBM gate (middle), and
cells included in the DBM gate and excluded by the manual gate
(bottom) are displayed (column 1). Cells are live/dead gated as
described in the text, and shown in the context of the next manual
gating decision (column 2).

parameters in the commercial package, where we can directly
compare results.

Mouse spleen and peritoneal cavity cells harvested in
serum-containing medium were incubated on ice for 15
minutes with a 10-color staining combination. Data were
collected on an LSR IT (Becton Dickinson).

In the data shown in Figures 1-3, we replicate manual
gating decisions from a dataset previously analyzed by a
senior researcher using FlowJo. The researcher has sequen-
tially selected gates that progressively restrict the inclusion of
cells to ultimately encompass a known functionally distinct
subset. For each of these sequential manual gating decisions,
we select the corresponding cluster(s) defined by the DBM
algorithm. In our analysis, we thus reproduce the existing
workflow of the researcher, with the notable exception that
we use gating boundaries that are defined algorithmically.

Figure 1 (first column) compares the initial gating in the
forward-scatter area/height dimensions performed manually
(top) or with DBM (bottom). The research intention here
is to separate single cells from doublets and other debris.
Drawing the manual gate requires a great deal of experience

for a researcher to draw, owing to the lack of visual
differentiation between the overlapping populations. DBM
identifies two clusters that agree surprisingly well with the
manual gate: the red cluster contains 81% of the total events;
the corresponding expert gate contains 80% of the total
events; the overlap between the two gates is 98%.

Two views of the events encompassed by the clusters
are shown in columns 2 and 3 of Figurel. Column 4
shows further gating of the samples with the same manual
gate applied to the manually gated (top) and DBM gated
(bottom) data shown in columns 2 and 3. The similarity
of the yield from the manually gated and DBM gated
sample underscores the strong overlap between the two
samples.

In each case, a small percentage of the events captured
by one of the gating methods are excluded from the other
(Figure 2). Importantly we find that the DBM gate tends to
better capture the desired events then does the researcher’s
gate. We define desirable events as those included in the
subsequent gates that the expert set. The gate set by the expert
included fewer cells in the desired subset than the DBM gate,
resulting in a loss of desired cells (3474 cells). The expert gate
also included fewer cells outside the desired subset. However,
the additional “nondesired” cells included in the DBM gate
are not relevant since the expert has gated these out of the
subsequent analysis. Thus, in this situation, the DBM gate is
more successful than the expert gate.

In Figures 1 and 2, we analyzed the results of a single
DBM gate generated to match the first gate that the expert
applied in the gating series. Figure 3, which is based on a dif-
ferent dataset, compares results from three sequential gates
applied by the researcher with the comparable sequential
DBM gates. The researcher has chosen three sequential gates
(Figure 3, top): the first gate excludes doublets and debris;
the second gate excludes dead cells (bright PI); the third,
which yields a subset that is enriched for B cells (the target of
interest to the expert), excludes monocytes and macrophages
(CD11bbr, F4/80+GR-1br).

Applying the corresponding sequence of DBM clusters
results in a distribution (Figure 3, bottom) that is almost
indistinguishable from the distribution obtained with the
expert’s gates. The principal differences is a small increase in
the number of cells in the B cell subset desired by the expert,
and the inclusion of a small percentage of cells that lie near,
but not within, the B cell subset.

We view these results as extremely promising. We are
pleased that the DBM algorithm performed at least as well
than the expert in terms of identifying the subset of interest
in this study. We plan to perform future studies with more
diverse datasets to provide a more detailed investigation of
the performance of the DBM algorithm.

4. Discussion

Flow cytometry allows to separate cells into subsets for
further analysis. The potential of this technology is currently
limited by a lack of automatic and objective data analysis
and gating techniques. We introduced methodology and
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Figure 3: Comparison of manual and DBM gating for 3-step gating sequence—adult mouse spleen cells are analyzed using the researcher’s
manual gates (top plots) and the corresponding clusters identified by DBM (bottom plots with colored plot frames). Color is used to code
the clusters found by DBM in the first three plots on bottom. Each of the manual/DBM gate pairs has < 4% difference in total number of

cells. In this study, the researcher is interested in B cells (column 4).

demonstrated a software implementation that allows auto-
matic 2D gating that is based on statistical theory and hence
objective, reproducible, and fast. Typically, the automatic
gating takes only a fraction of a second. An important feature
of this methodology is that it is nonparametric and allows
for nonconvex gates, which current parametric methodol-
ogy with mixture models does not provide. Likewise, the
nonparametric statistical theory provides the information
necessary to decide on the number of populations in the
sample, which is known to be a difficult problem in the
context of parametric mixture models with no satisfactory
solution currently available.

We implemented our methodology in a sequential 2D
setting to automate the traditional manual gating. While
the methodology can in principle be implemented in a
higher-dimensional setting, there are also advantages to
stick with the traditional sequential procedure. First, many
users are familiar with the sequential gating procedure
and may be hesitant to work with the high-dimensional
output of a “black box,” which may be difficult to interpret.
Second, it is common practice to first project the data on
the forward light scatter (FSC) and sideward light scatter
(SSC) to distinguish basic cell types (e.g., monocytes and
lymphocytes) and to remove dead cells and cell debris.
Also, the user may have prior knowledge that leads her
to consider certain 2D projections or gating paths. These
aspects are readily incorporated in our implementation.
Third, sequential 2D gating allows for an informative and
straightforward visualization of the gating and the results.

We implemented our methodology in software called
ClusterGenie which we plan to be open source but dis-
tributed commercially. We demonstrated it on a sample
of mouse spleen and peritoneal cavity cells. Our results

compared favorably with expert gating of the data in
FlowJo. We plan a rigorous quantitative assessment of our
methodology in the near future.
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1. Introduction

Flow cytometry (FCM) can be applied in a high-throughput
fashion to process thousands of samples per day. However,
data analysis can be a significant challenge because each data
set is a multiparametric description of millions of individual
cells. Consequently, despite widespread use, FCM has not
reached its full potential due to the lack of an automated
analysis platform to assist high-throughput data generation.

A critical bottleneck in data analysis is gating, the
identification of groups of similar cells for further study.
The process involves identification of regions in multivariate
space containing homogeneous cell populations of interest.
Generally, gating has been performed manually by expert
users, but manual gating is subject to user variability, which
can potentially impact results [1-3].

A number of methods have been developed to automate
the gating process [4-7]. These include model-based meth-
ods such as multivariate mixture models that describe the
joint density of the flow cytometry data as a mixture of
simpler distributions [5, 6]. The simplest of these methods

utilizes a mixture of multivariate gaussian distributions [5].
However it is not sufficiently flexible to model the outliers
or asymmetrical cell populations frequently found in flow
cytometry data [6].

A more recent approach compensates for these effects by
applying a data transformation during the model fitting pro-
cess [6, 8]. This transformation makes data more symmetric,
while the use of a multivariate ¢ distribution allows the model
to handle outliers [6, 8, 9].

These model-based gating methods effectively amount
to clustering of the data and generally employ likelihood-
based measures such as the Bayesian information criterion
(BIC) or Akaike information criterion (AIC) to select an
appropriate model (number of clusters) from a range of
possibilities [10]. While these measures are effective for
choosing a model that provides a good fit to the underlying
data distribution, they are problematic for clustering flow
cytometry data, where the goal is to determine the correct
number of distinct cell populations. BIC favors models with
more mixture components in order to provide a better fit
to the data distribution [11]. However, this comes at the
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TasLE 1: Distributional assumptions, data transformation, and model selection criteria for the five clustering models compared in this study.

Distribution Transformation Model selection criteria Model name
Box-Cox BIC flowClustg;c
Box-Cox ICL flowClustycy,
Multivariate-t Box-Cox Fixed K flowClustg
Box-Cox BIC, entropy flowMerge
Box-Cox BIC, entropy, fixed K flowMergex
None BIC GMMgic
Gaussian None ICL GMMcL
None fixed K GMMg

cost of overestimating the number of well-separated clusters,
particularly when clusters are asymmetric and/or nonconvex.

An alternative measure recently proposed for model
selection is the Integrated Complete Likelihood (ICL)[11].
The ICL is an entropy-penalized BIC criterion, wherein
the BIC is penalized by an entropy term, which increases
as a function of the overlap between model components.
Consequently, ICL favors models with fewer components
and provides a better estimate of the number of well-
separated populations; however this generally comes at the
cost of a poor fit to the empirical data distribution, especially
if clusters are asymmetric, nonconvex, or otherwise not
readily fit by a simple parametric distribution [12].

In flow cytometry, where the shapes of cell populations
can be asymmetric and nonconvex, neither of the above
model fitting criteria are well suited to the clustering
problem. An ideal model would allow multiple mixture
components to represent an individual cluster or cell
population, thus providing a good fit to the data and a
good estimate of the number of distinct clusters. Such an
algorithm has recently been proposed for Gaussian mixture
models (GMMs) [12]. The algorithm starts with the best
model selected by the BIC criterion and iteratively merges
pairs of overlapping clusters in order to minimize the entropy
of the model [12]. Because it is based on the best fitting BIC
model, this approach retains the good distributional fitting
properties of the best BIC model, while simultaneously
allowing multiple mixture components to represent a single
cluster. Like the ICL measure, it also provides a reasonable
estimate of the number of well separated clusters in the data
[12]. Merging clusters to improve fitting of nonconvex cell
population has also recently been suggested by Pyne et al.
[13].

Here we extend the work of Baudry et al. to subpopula-
tion identification in flow cytometry data [12]. We combine
the cluster merging algorithm with the more flexible model
classes provided by a multivariate t-mixture with Box-Cox
transformed data and develop a method for summarizing
merged clusters that is compatible with the flowClust
framework [6]. Additionally, we automate the choice of the
number of clusters in the cluster merging algorithm, making
it suitable for application in a high throughput FCM analysis
pipeline. We propose a method for the identification of
borderline cases where the merging algorithm fails, which
can be flagged for manual analysis. In Table 1 we list the

distributional assumptions, model selection criteria, and the
abbreviations used to refer to the five models compared
throughout this paper.

Employing the cluster merging algorithm under the flow-
Clust framework provides a better fit and a better estimate of
the number of distinct cell populations for complicated flow
cytometry data distributions, than either the flowClustgc,
flowClusticr, GMMgic, or GMM;c. models. The cluster
merging algorithm provides a simpler visual representation
of the data that is more amenable to interpretation. We
demonstrate the performance of our algorithm on simulated
and real FCM data. The software is available through the
Bioconductor project.

2. Materials and Methods

2.1. The flowClust Framework. We embed the cluster merg-
ing algorithm within the flowClust framework available in
BioConductor [6, 14]. The flowClust package is used to
fit mixture models of multivariate ¢ distributions to flow
cytometry data. Additionally, the model allows the data to be
Box-Cox transformed during model fitting, with the goal of
making the data distribution more symmetric and bringing
it closer to “normality”. The model allows a number of
parameters to be estimated from the data, including the
degrees of freedom v of the multivariate ¢ distributions
being fitted and the Box-Cox transformation parameters A
(Table 1). While flowClust does allow independent degrees of
freedom and independent Box-Cox transformation parame-
ters to be estimated for each mixture component, we chose
to use a common degrees of freedom and common Box-Cox
transformation parameter, estimated from the data, across
all mixture components in a model. This was done in order
to have closed form estimates of summary statistics for the
merged components. Note also that this additional flexibility
is not necessary in our framework as subpopulations can be
represented as mixtures of multiple components. In the rest
of this paper, we refer to this as the flowClust model.

2.2. The Cluster Merging Algorithm. We have implemented
the cluster merging algorithm described in [12], with several
modifications allowing its use with flow cytometry data
within the flowClust framework. Briefly, we begin with
the optimal flowClustgic solution of K clusters. At the
first iteration of the algorithm, two clusters are chosen
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for merging in order to minimize the entropy of the data
under the new cluster assignments, as described in [12]. The
entropy of clustering for a K cluster mixture model is defined
as

K N
ENT(K) = —=2> > palog, (pi), (1)

k=1i=1

where pi is the probability of data point i belonging to
cluster k. Thus for two overlapping clusters k, k + 1, the
probability of a data point i in the overlapping region
belonging to either cluster is nonzero, and the entropy is
high. If the clusters overlap very little or not at all, then
the entropy is zero or near zero. Consequently, by iteratively
merging overlapping components, the entropy of clustering
is reduced. At each successive iteration, two more clusters are
merged until, at the Kth iteration, the data is defined by a
single cluster.

Baudry et al. suggest two data-driven approaches for
choosing the optimal k-cluster solution [12]. The first
involves identifying an “elbow” in a plot of the entropy of
clustering versus the number of clusters in a solution. The
second involves identifying peaks in a plot of the number of
clusters versus the change in entropy obtained by merging
two clusters in the k + 1 cluster solution into a single cluster
to form the k cluster solution (see [12] for details). Here, we
propose an automated approach for choosing the optimal k-
cluster solution based on changepoint analysis of the entropy
versus number of clusters plot, making the cluster merging
algorithm suitable for inclusion in an automated workflow
for flow cytometry data analysis [8].

2.3. Parameter Representation of Merged Mixture Components.
It is important to be able to have a parametric representation
of merged clusters in order to summarize characteristics of
the population. To this end, we model a merged cluster
as a multivariate ¢ distribution with degrees of freedom, v,
equal to the degrees of freedom of its component clusters.
We let X; and X; be random variables that represent the p
dimensional measurements of cells in clusters 7 and j. We let
X be the random variable that represents the p dimensional
measurements of cells in the cluster created by merging
clusters i and j (i.e., any two clusters). We let fy, fi, and f;
be the distributions of X4, X;, and X, respectively, and n;, n;
the number of events in clusters i and j, respectively. Thus f
can be written as a mixture of f; and f; (see [12] for details)
as follows:

P« fe = pifi+ pjfi- (2)

Thus, by definition, the proportion of cells py in the
merged cluster is equal to the sum of the proportions of the
components p; and pj, given by

Px = pit pj. (3)

Because we model the merged cluster as a single multivariate
t distribution we can summarize merged components with
individual sets of parameters describing their locations and
scales. To estimate the mean and covariance matrix of the

merged component, we match the first two moments of the
distributions in (2) (see [15]), giving
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The expressions in (4) are the mean vector and covari-
ance matrix of the merged distribution, which is approxi-
mated by a multivariate ¢ model with v, = »; and v; = v;
degrees of freedom. As previously mentioned, a common
Box-Cox transformation parameter allows us to estimate the
parameters of the merged clusters on the transformed scale.

2.4. Estimating the Number of Clusters/Cell Subpopulations.
Our stopping criteria for merging are based on analysis of the
number of clusters in a solution versus the clustering entropy
of that solution. Intuitively, when mixture components
overlap significantly, the entropy of clustering will be a large
value. As components are combined in subsequent iterations
of the merging algorithm, the entropy will decrease. When
only well separated components are left in the clustering
solution, further merging will have little impact on the total
entropy of clustering. This is reflected in a change of slope in
the plot of the clustering entropy versus the number of com-
ponents at the point, where the remaining clusters are well
separated. We refer to this as the optimal flowMerge solution.

We formalize this idea by fitting piecewise linear regres-
sion to the entropy versus the number of clusters in the
series of flowMerge model and allow the regression to have
either one or two segments (i.e., one or no changepoint).
Furthermore, we force the location of the changepoint to
be an integer, thus reflecting the discrete nature of the
clustering. Formally, if we have K models with an increasing
number (1---K) clusters, we fit a series of two-segment
piecewise linear regressions to the entropy versus the number
of clusters in the mixture models. The first segment is fit to
the data points for mixture models 1- - - k and the second
segment to the data points for models k - - - K, where k €
{2---K — 1}, assuming K > 3. The position of the change
point, k, is chosen to minimize the residual sum of squares
between the observed data and the piecewise regression line.
Once we have selected the location of the changepoint, we
choose between the presence and absence of a changepoint
(i.e., two-segment piecewise regression versus simple linear
regression) using the BIC criterion.

When K = 3, there are not enough data points to fit a
changepoint model, therefore we determine the presence or
absence of a changepoint by computing the angle 6 between
the two component regression lines, given by 0 = arctan(|a—
bl/(1 + ab))(180/m) where a and b are the slopes of the



two lines. We set an empirical cutoff of 0 = 1 degree for
identification of a changepoint. Another borderline case is
for K = 2 clusters, in which case we always return the two
component solution. For these borderline cases, the sample
is flagged with a warning. In practice, however, we have
rarely found cases where the flowClustgic fit has K < 4
components.

2.5. Identifying Borderline Cases. We flag potential cases
where the merging algorithm fails to identify a good solution
through several different criteria.

(1) If the number of clusters in the flowMerge solution
is equal to the number of clusters in the flowClustg|c
solution.

(2) If the number of clusters in the flowMerge solution
is less than the number of clusters in the flowClust;cp,
solution.

(3) If no changepoint is detected (BIC chooses no change
point model).

(4) If the entropy of the flowMerge solution is unusually
high (an outlier) compared to the entropy of the
flowMerge solution for comparable samples using the
same markers.

In the above cases, samples are flagged for manual inspection
of the automated gating. To facilitate the comparison in
(4), we normalize the entropy by the number of events in
the sample as well as the number of clusters in the merged
solution:

K N . .
ENTy(K) = —2241 Z;llfzklogz (pix) (5)

2.6. The CLL Data Set. We applied the cluster merging algo-
rithm to a real-world data set consisting of 137 samples from
18 individuals with CLL (chronic lymphocytic leukemia)
provided by the BC Cancer Agency. The data set is composed
of between six and seven samples per individual. Each sample
is labeled with three fluorescent markers. The entire panel of
markers is designed for immunophenotyping of lymphomas
in a clinical setting (Table 2).

We performed automated gating using flowClust on the
forward scatter and side scatter channels, followed by cluster
merging of the optimal flowClustgc solution. We com-
pared the number of clusters obtained by the flowClustgic,
flowClusticr, and flowMerge solutions. The lymphocyte
subpopulation was selected from the merged solution
and automated gating was applied to this subpopulation
in the fluorescence dimensions. Again, the flowClustgc,
flowClustycr, and flowMerge solutions were compared, as
well as the GMMg;¢ solution.

2.7. Simulation. We simulated data from the empirical
distribution of a real FCM data set. Based on the CD8 versus
CD4 projection of a CLL sample, we estimated the empirical
distribution using a two-dimensional kernel density
estimator on a 100 by 100 point grid, and sampled 100 data
sets of size N = 9198 equal to the original number of events.
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TABLE 2: Summary of the antibody markers used in the CLL data.

?élrgll;ionda};ion Abl Ab2 Ab3 tlII)e;s
1 CD10 CD11 CD20 18
2 CD45 CD14 CD19 18
3 CD5 CD19 CD3 18
4 CD5 CD19 CD38 5
5 CD5 ZAP70 CD19 1
6 CD5 ZAP70 CD3 1
7 CD57 CD2 CD8 4
8 CD57 CD56 CD3 4
9 CD7 CD4 CD8 13
10 FMC7 CD23 CD19 18
11 IgG IgG IgG 1
12 IgG1 IgG1/IgG2a IgG2 13
13 Kappa Lambda CD19 18

Number of clusters
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FiGURrE 1: flowClustgc, flowClusticr, flowMerge solutions for auto-
mated gating of forward versus side scatter across 137 clinical sam-
ples of CLL. The flowClustgc fit: black solid curve. The flowClusticy,
fit: red dashed curve. The flowMerge fit: green dashed curve.

Events were simulated in a two-step process, first we sampled
according to the CD8 marginal density derived from the
two-dimensional kernel density estimate on a 100 X 100
point grid, then sampled in the CD4 dimension, conditional
on the sampled CD8 value, defined by the 100 X 1 element
bin of the kernel density estimate. The simulated data sets
were gated using the manual gates established on the original
data for CD8+/CD4—, CD8—/CD4+, and CD8—/CD4— cell
populations (Figure 6(a)). These manual gates were used to
calculate misclassification rates for automated gating using
the flowClustgic, flowClustcr, flowMergex, and GMMg;c
models with the number of clusters fixed at the true number
(K = 3) and with the number of clusters chosen by the
optimal model.

3. Results

3.1. CLL Data Set. We compared the number of clusters
identified by the flowClustgic, flowClusticr, flowMerge
models used for automated gating of 137 lymph node-
derived CLL samples in the forward versus side scatter
dimensions (Figure 1). The forward and side scatter data for
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FiGure 2: Examples of the flowClustgc, flowClust;cr, flowMerge cluster solutions for forward versus side scatter in a sample of CLL flow
cytometry data. (a) The flowClustgc solution with seven clusters. (b) The flowClustc. solution with two clusters. (c) The entropy versus
number of clusters plot, fit to a two-component piecewise linear regression model. The best fitting model has a changepoint at three clusters.
(d) The flowMerge solution corresponding to K = 3 clusters provides a better fit to the lymphocyte population than either the flowClustgc
or flowClusticy. solutions and provides a good estimate of the true number of cell populations.

these samples contain between two and three predominant
cell populations that correspond to lymphocytes, debris,
and outliers. The number of clusters identified by the
flowClustgic solution shows large variability across all
samples. This solution generally required more mixture com-
ponents than the true number of cell populations (median
6 clusters, range 3-15). Importantly, multiple components
were often required to model the lymphocyte population
(Figure 2(a)), which is the cell population of interest.

In contrast, the flowClusticy, fit is better but tends to
underestimate the true number of cell populations. Across
the 137 CLL samples, ICL identified a median of two
populations per sample (range from 1 to 3). The ICL also
provides a poor fit to the data, inadequately modeling the
lymphocyte population (Figure 2(b)).

The flowMerge solution derived from the flowClustgic
solution provides both a good fit to the underlying data,
including the lymphocyte cell population, as well as an
improved estimate of the true number of cell populations
(Figures 2(c) and 2(d)). The number of clusters estimated
through merging is generally between the flowClustgic and
flowClustycy, solutions (median of 4 populations, range 2 to
8 clusters).

We performed automated gating in the fluorescence
channels on the lymphocyte subpopulation derived from
the previous autogating step. In 60/137 cases (43%),
the GMMgc solution returned more clusters than the
flowClustgic solution. In 95% of those cases the GMMgic
fit was within 5 components of the flowClustgic fit. These
two models returned an equal number of clusters in 29/137



cases (21%), and in 48/137 (35%) of cases, the GMMgpc fit
had fewer components. However, in the latter cases, 95% of
the samples differed by only a single component (Figure 3,
black curve). In general, for the fluorescence dimensions, the
flowClustgic model estimated fewer cell subpopulations than
the GMMpic model, in accordance with what is expected,
given that the former is a more robust and flexible model.

The flowClustycy, fit generally underestimated the num-
ber of cell subpopulations and provided a poor fit to the
data distribution (Figure 3, red curve and Figure 4(a)). In the
example shown, the flowClust;cy, solution identifies two cell
subpopulations in the CD8/CD4/CD7 dimensions and fails
to discriminate between the CD4+/CD7+ and CD4+/CD7—
cell subpopulations. Additionally, it entirely fails to capture
the CD8+ cell subpopulation (Figure 4(a)).

In contrast, for the same sample, the flowClustgc fit
requires 13 components and clearly overestimates the
number of cell subpopulations. Specifically, the CD4-/
CD7—-/CD8— cells require multiple mixture components to
model a single subpopulation (Figure 4(b)).

The choice of the number of clusters for the flowMerge
solution is automated by fitting a piecewise linear model
to the entropy versus number of clusters (Figure 4(c)). This
solution is derived from the flowClustgc fit and provides
a good compromise between model fit and subpopula-
tion identification. It correctly discriminates between the
different unique cell subpopulations that were missed by
the flowClusticy, solution, while combining the overlapping
mixture components required to model the CD8/CD4/CD7
negative cell subpopulation in the flowClustgc solution
(Figure 4(d)).

We identify cases where cluster merging fails by examin-
ing the distribution of the entropy of the flowMerge solution
across multiple comparable samples (Figures 5(a)-5(d)). In
the forward versus side scatter dimensions, cell populations
tend to be complex and overlapping. This is reflected in the
distribution of the normalized entropy (Figure 5(a), left).
The normalized entropy of the merged solution has a broad
distribution (90% of the samples below 0.4, median 0.2) and
the solution itself may have many clusters. In contrast, for the
fluorescence dimensions, the merged solution identifies well
separated populations, reflected by a normalized entropy
distribution that is tightly distributed around zero (90% of
samples below 0.2, median 0.03) (Figure 5(a), right). We
correct for the relationship between the entropy and the
number of clusters in the merged solution as well as the
number of events by normalizing the entropy (Figure 5(b)).
Normalization reduces the correlation of the entropy with
the number of clusters (p = 0.38 versus p = 0.77 for
FS versus SS, and p = 0.08 versus p = 0.49 for fluores-
cence dimensions) (Figure 5(b)). This allows us to identify
flowMerge solutions where the entropy is unusually large (in
the right tail of the distribution), independent of the number
of clusters or events. For forward versus side scatter and for
fluorescence channels, we can identify samples where the
merged solution contains highly overlapping components
(Figure 5(c)). None the less, for forward versus side scatter,
the lymphocyte population is sufficiently dense that it can
be readily identified visually. Such cases are therefore flagged
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FIGURE 3: The number of clusters chosen by the flowClustgc,
flowClustyc, flowMerge, and GMMpc solutions for automated
gating of CD8, CD4, and CD7 across 137 samples of CLL. The
flowClustg;c solution: solid black curve. The flowClust;c; solution:
dashed red curve. The flowMerge solution derived from the
flowClustgc solution: dashed green curve. The GMMgc solution:
dashed blue curve.

for manual analysis. Importantly, this criterion allows us to
identify general classes of samples where merging fails. We
note several sets of markers (notably CD10/CD11¢/CD20
and Kappa/Lambda/CD19), where the normalized entropy
of clustering is high for all, or a majority of samples
(Figure 5(d)). This type of outlier detection is suitable for a
high throughput setting to quickly assess flowMerge model
fit across groups of parameters and identify those where
the automated merging algorithm is problematic. In these
cases, again, manual inspection may be required to find an
appropriate merged solution. More careful analysis of these
cases could suggest strategies to improve automated gating
techniques for flow cytometry data.

3.2. Simulation. We simulated 100 data sets of CD8 versus
CD4 fluorescence based on the empirical distribution of
real CD8 versus CD4 CLL data. This simulation approach
ensured that the simulated data was not biased towards any
of the models under investigation. This data had three cell
subpopulations defined based on the contours in the CD4
versus CD8 dimensions. These included CD4+/CD8— cells,
CD8+/CD4— cells, CD4—/CD8— cells, (outliers were defined
by events outside these gates) (Figure 6(a)). No CD4+/CD8+
cell subpopulation could be discerned from the kernel
density estimate of this particular sample. We simulated 9198
events per sample (equal to the number of events in the
original data) and assigned them to populations based on
the manually defined gates from the original data. Kernel
density estimates based on simulated data are comparable to
the original data (Figure 6(b)).

We compared the number of clusters selected under the
optimal flowClusticr,, flowClustgic, GMMg;ic, and flowMerge
solutions (Figure 6(c)). The flowClustic;, solution system-
atically underestimated the true number of subpopulations
(2 clusters estimated in all simulations). The GMMgic
and flowClustgic solutions both significantly overestimated
the true number of cell subpopulations in all simula-
tions (median 10 and 9, resp., Figure 6(c)). The median
flowClustgicsolution (K = 9 clusters, Figure 6(d)) required
two components to model the CD4+/CD8— subpopulation,



Advances in Bioinformatics

10*
103 4
[<3] [Te} [Ta)
Ay
<+ 102 4 4
D o] [o)
O a a
10! 4 O O
0 L T T T T T T T T T T T T T T T
0 10! 102 10 104 0 100 102 10® 10% 0 100 102 10 10*
CD7 FITC CD7 FITC CD4 PE
(a)
X flowClustgyc solution flowClustgyc solution flowClustgc solution
10% 4
104 4 104 1
10° ] 0 0
A 15 10° i510° 7
< 10~ 1 a 2 [
A oo 1024 % 102 7
o A A
10! 1 O ot i O o1
0 L T T T T 0 L T T T T 0 k T T T T
0o 10! 102 10 104 0 100 102 10® 10% 0 100 102 10 10*
CD7 FITC CD7 FITC CD4 PE
(b)
%103 flowMerge solution flowMerge solution flowMerge solution
60 4 104 o
1044 10* A
a0 = 3 3 |
§ . 2 Q 10 §10
= - 2 | 2
2 S 2 1 2 10
1 © 10 © 10" -
0oy . — 0 1 — — 0+ .
2 4 6 8 10 12 0 100 102 10® 10% 0 10% 102 10® 10* 0 10!
Number of clusters CD7 FITC CD7 FITC

flowClusticy, solution

flowClusticr, solution

flowClustcy, solution

(c)

(d)

FiGure 4: Example of flowClust;cy, flowClustgc, and flowMerge solutions fitted to a CLL sample in the CD8, CD4, and CD7 dimensions.
(a) Three projections of the flowClustcy, solution. (b) Three projections of the flowClustgc solution. (c) Entropy versus number of clusters
for a series of flowMerge model fits with a piecewise linear regression fitted to the data. The changepoint located at K = 5 clusters is selected

automatically. (d) Three projections of flowMerge solution with K = 5 clusters derived from the flowClustgc solution.

one for the CD8+/CD4— subpopulation, three for the
CD4—-/CD8— subpopulation, and three components for
modeling various outlier low-frequency subpopulations.
Although the flowMerge solution overestimated the true
number of clusters on average, it provided the closest
estimate of the true number of cell subpopulations (median
5). In 16% of simulations, the flowMerge solution estimated
the correct number of clusters. In 51% of simulations
it overestimated the true number by only one cluster.
Closer examination reveals that the extra clusters serve
predominantly to model outlier populations (Figure 6(e)).
These results are summarized in Table 3.

We also compared the misclassification rates for the
different models, relative to class assignments from manual
gating. This was done in two ways. First, we fixed the number
of clusters to the true number (K = 3) for the flowClusty,

GMM, and flowMergex models (Figure 6(f)). Note that the
former three sets of models are distinct from their “optimal”
counterparts by virtue of fixing the number of clusters.
Alternately, we compute the misclassification rate between
the optimal flowClustgc, flowMerge or GMMp¢ solutions,
choosing the three components from each that minimize
the misclassification rate (Figure 6(g)). When the number of
components was fixed to the true number, the GMMy model
had the highest misclassification rate (12.3%) (Figure 6(h)),
flowClusty had the second highest misclassification rate
(10.5%) (Figure 6(i)), while the flowMergex solution (with
fixed K) derived from the optimal flowClustg;c model, had
the lowest misclassification rate (4.2%) (Figure 6(j) and
Table 3). Both the GMMy and the flowClusty solutions with
a fixed number of components failed to correctly identify
the rare CD8+/CD4— cell subpopulation in the simulated
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FIGURE 5: Detecting failed cluster merging. (a) Distribution of the entropy (normalized for the number of events and clusters) of the
flowMerge solution for forward versus side scatter (left) and fluorescence channels (right) across 137 samples. (b) The relationship between
the normalized entropy and the number of clusters in the flowMerge solution for forward scatter versus side scatter (left) and fluorescence
channels (right). (c) Example of flowMerge solutions with unusually high normalized entropy from the right tail of the distribution for
forward versus side scatter (left) and fluorescence (right). (d) A plot of the normalized entropy versus samples grouped by antibody labels
identifies antibody combinations that are problematic for automated gating with the automated merging algorithm.

TABLE 3: Mean, standard deviation, 95% coverage, and bias of the estimated number of clusters for each model, as well as the mean, standard
deviation and 95% coverage for the misclassification rate of each model. CI: coverage interval.

Statistic Model Mean SD 95% CI Bias
flowClust gic 9.03 1.59 6-12 6.03
Number of clusters flowClustcr 2.00 — 2-2 —1.00
GMMgic 10.41 1.31 8-12 7.14
flowMerge 5.45 0.97 4-7 2.45
flowClust 0.103 0.00826 0.0937-0.112 —
Misclassification rate (K = 3) GMM 0.124 0.00537 0.114-0.134 —
flowMergex 0.0445 0.0104 0.0312-0.0669 —
flowClustgc 0.398 0.101 0.230-0.613 —
Misclassification rate (best model) GMMBIC 0.499 0.0756 0.339-0.625 —
flowMerge 0.0685 0.0223 0.0383-0.121 —

data (Figures 6(h) and 6(i)). In contrast, the flowMergex
solution correctly identified this subpopulation as a distinct
entity.

The misclassification rates for the optimal flowClustgc,
flowMerge, and GMMgic solutions were calculated as
described, relative to the manually derived gates
(Figure 6(g)). These followed a pattern similar to the
misclassification rates with a fixed number of components
(GMMgic was the highest, followed by flowClustgic,
followed by flowMerge). However, in contrast to the fixed
component solutions, the misclassification rates for the

flowClustgic and GMMgic solutions were significantly
higher than the flowMerge solution (Table 3). This is due
to the fact that multiple model components are required
to represent distinct cell populations, something only
permitted within the cluster merging framework.

4. Discussion

Model-based automated gating of flow cytometry data is
difficult when cell subpopulations are nonconvex, or have
complicated multidimensional shapes that are not readily
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FIGURE 6: Simulation results for CD4 versus CD8 dimensions of a CLL sample. (a) The 2D kernel density estimate of the real CD4 versus CD8
data. Gates for the CD4+/CD8—, CD8+/CD4—, and CD4—/CD8— subpopulations are represented by light coloured lines. Events outside the
gates are considered outliers. (b) An example of the kernel density estimate of simulated data drawn from the distribution defined by the real
data. (c) The number of clusters selected by the flowMerge solution, the GMMg;c solution, the flowClustg;c, and flowClust;c;, solutions over
100 realizations of simulated data. (d) The median flowClustg;c flowClust solution with 9 components. (e) The median flowMerge solution
with 5 components. (f) The misclassification rate (MCR) for the flowMergex solution, the GMMk solution, and the flowClustk solution with
the number of clusters fixed to the true number of cell subpopulations (K = 3). (g) The misclassification rates for the three components
from the optimal GMMgpc, flowClustgc, and flowMerge solutions minimizing the MCR. (h) A GMM, (i) flowClust, (j) and flowMergex

solution with a fixed number of clusters.

modeled by single components of simpler multivariate
distributions. This issue is resolved, in part, by allowing
multiple mixture components to represent the same cell
subpopulation. However, for further analysis, cell subpopu-
lations are generally summarized by a variety of statistics; this
requires one to summarize an arbitrary number of mixture
components for a single cell subpopulation. Consequently
the cluster merging algorithm is not suitable for application
to flow cytometry data without further modifications. By
taking advantage of the fact that a merged cluster is itself a
mixture (see (2)), and approximating the merged distribu-
tion as a density from the same family as its components, we
use moment matching to summarize the merged cluster with
asingle set of parameters that provides a good approximation
to the underlying data (see (3) and (4)). This simple
representation of otherwise complicated distributions allows
downstream data analysis to proceed in the usual manner
and fits within the existing flowClust framework, allowing
for easy visualization of automated gating results.
Comparison of the cluster merging algorithm with other
automated gating models (Table 1) using both simulated
and real data demonstrate that merging provides a better
fit and better estimate of the true number of cell subpop-
ulations than the other models. Estimates of the number
of cell populations derived from standard model-selection
measures such as BIC or ICL are not entirely suitable for
flow cytometry data (Figures 2 and 4). BIC, while providing a
good fit to the data, requires many more clusters than actual
number of cell subpopulations, while ICL underestimates
the number of cell subpopulations and provides a poor
fit to the data, missing both rare cell subpopulations and
poorly fitting those that have complicated structure (Figures
4(a), 4(b) and Table 3). The flowMerge solution provides a
good compromise between these two extremes. It is based

on the flowClustgc solution, thus retaining the property of
good fit to the distribution, while simultaneously eliminating
ambiguity associated with multiple overlapping components
representing the same cell subpopulation. Merging decreases
the entropy of clustering by making local changes to the
model without compromising the global fit.

We use a changepoint model to estimate the optimal
number of clusters in the merged solution. This allows the
cluster merging algorithm to be implemented in a high-
throughput pipeline for flow cytometry data analysis. In
general, this approach provides satisfactory results, both
for forward versus side scatter dimensions as well as for
fluorescence dimensions (Figures 1 and 3). The number
of clusters chosen by flowMerge is generally between the
flowClustgic and flowClustcy, solutions, and although it still
tends to overestimate the number of cell subpopulations
by several components, these generally model outlier cell
subpopulations (Figure 2(d) and 6(e)). Interestingly, our
simulation results also show that our framework for sum-
marizing merged components allows some of these outlier
subpopulations to be merged with clusters representing more
dense cell subpopulations, of interest, without adversely
affecting the fit of the model. This is due to the fact
that the parameters of merged clusters are weighted linear
combinations of the parameters of the component clusters.
Therefore components of lower density contribute less to the
mean and covariance parameters of merged clusters (Figures
6()-6(g)).

Our results on real flow data demonstrate that the
cluster merging algorithm improves our ability to identify
the lymphocyte cell subpopulation from the forward versus
side scatter dimensions. This high density subpopulation
is often represented by multiple mixture components in
the flowClustgic and GMMgjc solutions. Merging allows
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this subpopulation to be represented by a single model
component (Figure 2). Even in cases where merging fails,
the algorithm is sufficiently robust that prior information
about the expected number of cell populations could be used
to identify an appropriate merged solution manually, while
retaining a good fit to the data distribution (Figures 6(d)
and 6(j)). Others have suggested incorporating information
from the repeated-measures design of some flow cytometry
data sets to help make gating decisions [16]. The application
of cluster merging for identification of cell populations in
the fluorescence dimensions is also beneficial. It reduces the
complexity of subpopulations represented by multiple com-
ponents. A comparison of the flowClustgic and flowClustycy,
solutions shows that these two criteria tradeoff model
fit against a simpler representation of cell subpopulations
(Figures 4(a) and 4(b)). The flowClust;cy, solution frequently
fails to correctly identify all but the highest density regions;
whereas the flowClustgic solution often overestimates the
number of clusters in high density regions.

Our cluster merging framework provides a robust mod-
eling approach for automated gating of flow cytometry data.
It provides a good compromise between the flowClustgic
and flowClustycy, solutions by combining the good model
fitting characteristics of BIC-based model selection with a
more modest estimate of the true number of clusters, a char-
acteristic of the ICL-based model selection. It allows us to
represent complicated cell populations using single mixture
components for which we can readily obtain closed-form
parameter estimates for use in further analysis. Additionally,
these estimates are robust to outlier cell populations. The
cluster merging approach to gating has a lower misclassifica-
tion rate than other models considered here, irrespective of
whether the number of clusters was fixed at the true number
or chosen from amongst the components in the optimal
fitting model. Together, these factors make cluster merging a
powerful tool for automated gating of flow cytometry data.
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1. Introduction

Flow cytometry is a high-information content platform that
is increasingly becoming a high-throughput platform as well
[1]. Flow cytometers measure individual cells, and thus are
capable of revealing subtleties of biology that other tech-
nologies cannot detect. Recent advances in instrumentation
such as 4 and 5 color laser systems and the availability
of reagents and protocols for assessing internal proteins
and their phosphorylation state are serving to make flow
cytometry a very important tool for understanding disease
processes in human biology [2]. There is also a growing
appreciation that it is important to assess cells not only
in their quiescent state, but also in response to various
stimuli [3]. This adds another layer of complexity to flow
cytometry data sets. Powerful analysis tools are needed to
properly explore and analyze data sets in which each sample
has many stimuli, cell subpopulations, and phosphoprotein
measurements.

There are a number of challenges associated with the
analysis of these large, complex flow cytometry data sets. The
challenges can be divided into. (1) acquisition of high-quality

data, (2) tools for data organization, annotation, and query,
(3) tools for data manipulation, and (4) techniques and
statistical methods for data analysis. All of these components
are related and, done well, serve to reinforce each other.
The first two of these tasks tend to be application- and lab-
specific, while the latter two lend themselves well to the
development of shared tools for all those faced with complex
flow cytometry analyses. Similar to tools developed for
microarrays, a set of packages is evolving in the Bioconductor
community that holds great promise for flow cytometry
data analysis. These packages which include flowCore [4, 5],
flowQ, flowViz, flowUtil, flowStats, flowClust [6] and others
all operate on a common set of core methods and classes for
reading, transforming, gating and otherwise manipulating
flow cytometry data.

In the analysis of flow cytometry data it is important
to be able to work with the gates that have been manually
defined. Commonly these gates are defined in a commercial
flow cytometry analysis package that is used, along with
“cut-and-paste” and simple analysis packages such as Excel
or Prism, to provide results. This becomes problematic
when dealing with complex problems and large data sets.



To address this problem, we have built a package that
provides a way to extract data from one such commercial
package, FlowJo (http://www.flowjo.com/), into the publicly
accessible analysis platform R/Bioconductor. We chose to
use FlowJo because it is amongst the most commonly
used flow cytometry programs and it stores its session
information in an open format. The package flowFlowJo can
produce R data structures with either summary statistics or
fully flowCore compliant objects representing the various
gates, compensation matrices, and other related information
embedded in FlowJo sessions. The goal of flowFlowJo is
to make it easy, in R, to use compensation and gating
information that has been produced using FlowJo. The
flowFlowJo package provides the ability to work with both
the raw data and the gating information in a powerful
analysis environment that makes full use of the existing open
source community efforts.

2. Software

2.1. Overview of the flowFlowJo Package. Flow]o is a com-
mercially available software package used for the gating,
visualization, and analysis of data from flow cytometry
experiments. FlowJo saves its session information in an
eXtensible Markup Language (XML) text file called a
workspace. A workspace file contains all the information
necessary to describe the gating structures, compensation,
transformations, locations of the Flow Cytometry Standard
(FCS) [7] files, graphs, and figures created by the user. FlowJo
workspace files do not contain raw cytometry data.

The R package flowFlow]Jo is a set of methods and classes
designed to extract the file locations, gates, compensation
matrices, and some of the other information contained in
FlowJo workspace files and return the information in a
manner consistent for use with the Bioconductor flowCore
packages. The flowFlowJo package can execute the following
actions when supplied with the location of one or more
Flow]Jo workspaces:

(1) read and parse the workspace(s),

(2) extract the location of all of the FCS files referenced
in the workspace(s),

(3) extract all of the intermediate and final gates as
flowCore S4 class filters objects,

(4) extract the spillover matrices,
(5) extract the transformation settings,

(6) organize the extracted information into a set of
data structures so that all of the compensation and
gating strategies described in the workspace(s) can
be executed in R. In effect, this captures and executes
much of the analysis workflow stored in the FlowJo
workspace,

(7) return a set of identically ordered lists containing all
of the file locations, file names, filter objects, filter
names, and compensation matrices.
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These operations are typically done by an analyst using
flowFlowJo in order to

(1) produce summary tables of the names and numbers
of gates described in the workspace(s),

(2) execute the complete set of gatings described in
the workspace, returning a comprehensive table of
summary statistics for all of the populations for each
of the channels,

(3

~

obtain a set of ordered lists of FCS file paths, spillover
matrices, and flowCore S4 filter objects identical with
that created by the researcher using FlowJo. These
objects can then be used in a more detailed event-
level analysis than would be possible from simple
summary statistics alone.

Figure 1 illustrates how the major components of the
flowFlowJo package are related in typical data analysis
sessions. The following code examples demonstrate part of
such an R session using flowFlowJo to analyze a set of
cytometric data. In the first line of this example the analyst
reads in a FlowJo workspace from a file on his system. In
the second line the analyst obtains a list of all the files and
gate names referenced in the workspace to ensure that correct
number and types of gates have been obtained. For brevity,
the contents of this call are not shown in the demo below. In
the third line the analyst “executes” the workflow detailed in
the workspace via the collectSummaryFlowInfo command to
assemble a complete set of summary statistics on all of the
FCS files and all of the gates described in the workspace. In
this example, the analyst also instructs the code to recover
the photomultiplier tube voltage setting as recorded in each
FCS file via the keywords argument. In fact, the keywords
argument allows the analyst to recover any of the metadata
embedded within the header section of each FCS file. The
list of possible keywords and their values can be found for
any FCS file with the standard flowCore call, keyword. In
the fourth line of code, the analyst converts the complex
summary object to a standard R data structure while merging
it with additional metadata describing experimental details:

fjList0Obj <- readFlowJoList("C://Documents
and Settings/TestFlowJoFile.wsp")

gateAndFileInfo <- getFlowJoSummary
(fjList0bj)

summaryStatsObj <- collectSummaryFlowInfo
(fjList0bj, keywords=c("$P1V"))

flowReport <- createFlowReport
(summaryStats0bj, extraMetaDataFrame)

The analyst then works with the resulting standard R data
structure to produce reports and analyses as needed. The
above code provides only summary statistical information
on the populations delineated in the workspace. However in
some cases the analyst may wish to examine the distribution
of data within a population much more carefully or gain
event by event access to the cells within a population. The
getFlowJoGates command as invoked in the first line of
the example session below returns an ordered list-of-lists
containing all of the file locations, file names, compensation
matrices, gate names and flowCore compliant filter objects
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corresponding to all of the FCS files with the regular expres-
sion “Specimen.*C01” in their full pathname. As discussed
above, the getFlowJoSummary command will return the full
set of file names referenced in the in a FlowJo workspace
from which the analyst may wish to choose a subset via
the fileNamePatterns argument. The default for the
fileNamePatterns argument returns the information for
all of the FCS files referenced in the workspace. In the
second and third lines below, an FCS file is loaded into
memory and compensated. The fourth and subsequent lines
illustrate standard flowCore operations on the associated
“CD3+:Lymphocyte” filter object. The summary command
shows the number and percent of cells recorded in the FCS
file that fall within the boundaries of the CD3+: Lymphocyte
gate. Finally the gate is adjusted by moving each of its forward
scatter polygon coordinates 10% higher:

gatelList <- getFlowJoGates(fjListObj,
fileNamePatterns=c ("Specimen.*C01"))

aFlowFrame <- read.FCS
(gateList$FCSFilename[[1]])

aFlowFrame <- flowJoCompensate
(aFlowFrame, gateList$compMats[[1]1])

aFilter <- gateList$filter[[1]]

aFilter

filter ‘Specimen_001_C1_CO1.fcs:
Lymphocytes: CD3+’

the intersection between the 2 filters

Polygonal gate ‘Specimen_001.C1_CO1.fcs:
Lymphocytes’ with 6 vertices in dimensions
FSC-A and SSC-A

Rectangular gate ‘Specimen_001_C1.CO1.fcs:
CD3+’ with dimensions:

Pacific Blue-A: (337.211599131617,
5996 .56443562053)

PE-A: (11.0542047560856, 37903.8875296341)
summary (filter (aFlowFrame, aFilter))
Specimen_001_C1_CO1.fcs:Lymphocytes: CD3++:

14342 of 99286 events (14.45%)
summary (filter (aFlowFrame, aFilter@filters
[[1]]@boundaries [,"FSC-A"] % 1.1))
Specimen_001_C1_CO1.fcs:Lymphocytes:CD3++:
13043 of 99286 events (13.14%)

As can be seen, the types of operations that can be conducted
at this point are virtually limitless. The getFlowJoGates
method simply provides the user with all of the relevant
components found in the FlowJo workspace as R and
flowCore compliant objects in a set of commonly ordered
lists.

2.2. File Locations, Gates/Filters, Spillover Matrices Com-
pensation Matrices and Transformations. Prior to using the
flowFlowJo package, Flow]Jo will have been used to manually
process (compensate and gate) one or more FCS files to
produce one or more FlowJo workspaces. This is a routine
process for those analyzing flow cytometry data. Worth
noting is that the location of the FCS files is stored in the
FlowJo workspace as absolute or relative paths. Moving the
FCS files to another location will cause the location of these

files as extracted from the workspace to be in error and
further processing steps on these files will be impossible. In
anticipation of this possibility, the readFlowJoList method
allows the user to specify an alternate path for the referenced
ECS files.

It is common practice that an assay is performed over
many weeks or months, with the data from each day’s
run being accumulated into a single FlowJo workspace.
Furthermore, it is not uncommon for the files containing
the data from various runs to be given the same names.
The package flowFlowJo allows for this by reading in any
number of FlowJo workspaces at the same time and tracking
the location of the FCS files by their full pathname.

Some inconsistencies appear in the use of terminology
in flow cytometry software and literature with respect to
compensation matrices. FlowJo workspaces include sections
labeled “CompensationMatrix” which are more properly
referred to as “spillover” matrices. The spillover matrix
elements represent the proportion of the signal emitted by
each fluorescent dye that falls within the band pass windows
for each of the other fluorescent dyes. The compensation
matrix is the inverse of this matrix. Currently, in order to
obtain similar results (e.g., mean fluorescent intensities and
cell counts) between FlowJo and flowCore, it is necessary to
multiply the observed signal values by the spillover matrix to
the data with the usual flowCore method call (compensate)
and then to divide all of the observed fluorescent (nonscat-
ter) data by the maximum of the values in the spillover
matrix. The flowFlowJo package implements an internal
method, flowJoCompensate, to automatically take care of this
issue when generating summary statistics. It is also worth
noting that FlowJo (and flowFlowJo) allow for a different
spillover matrix for each FCS file referenced within each
workspace.

Standardized interpretation of the gating coordinates can
also be problematic. The information contained within the
DivaSettings and TransformSettings sections of the FlowJo
workspace records the user’s preference for gating visualiza-
tions. This data is parsed and returned by the readFlow]JoList
method. However, all the fluorescence channel coordinates
are encoded by FlowJo in their nontransformed gate coor-
dinates. Hence there are no methods in flowFlowJo that
currently utilize transformation and “DivaSettings” data,
since they appear to have no impact on the obtained results.
Additionally, due to code legacy, FlowJo reads the scatter gate
data of FCS files in only 12 bit resolution (i.e., a maximum
value of 4096). However modern flow cytometers typically
record integrated signal intensities at 18 bit resolution (i.e.,
a maximum value of 262143). Thus the forward and side
scatter gate coordinates are currently (FlowJo 7.2.5) encoded
as 1/64 of their actual values for 18 bit FCS files. In these
cases the readFlowjoList method automatically (internally)
multiplies each of the scatter gating coordinates by 64 to
adjust for this prior to generating flowCore filter objects.

2.3. Data Summary Objects. The first step in automating the
analysis of manually gated data is to ensure uniformity of the
naming convention across all of the samples and to confirm
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FIGURE 1: Diagram of the major methods of the flowFlowJo package and their relationship in typical use.

that all of the expected data is present. With larger data sets,
problems may include (1) different names for the same cell
populations, (2) missing gates, (3) missing samples, and (4)
unexpected gates or samples. Such unanticipated deviations
from the experimental plan can become buried in a large set
of data and often compromise the downstream data analysis.
A simple summary of the data is useful for identifying these
anomalies. Toward this end, the getFlowJoSummary method
returns a table showing the number and counts of different
gate names associated with all of the FCS files in one or more
Flow]Jo workspaces.

In some cases, a data analyst may wish to proceed
manually in R with the organized lists of FCS files, filters,
and spillover matrices extracted by flowFlowJo. This can
be accomplished with the getFlowJoGates method described
above. However, in many cases, the analyst may be satisfied
with the gating choices created in FlowJo, and may wish
to simply acquire a complete set of summary statistics
on all of the cell populations. The FlowFlowJo package
provides methods to automatically “execute” the gating
strategy provided in the workspace. It is only at this point
that the flowFlowJo methods actually access the FCS files.
The collectSummaryFlowInfo method systematically employs
standard flowCore methods to create a data structure
summary object with median fluorescent intensities and cell
counts for each of the channels for each of the populations,
as well as any requested header information from each of the
FCS files.

Each FCS file is composed of several sections in addition
to the raw list-mode data. The header section of each FCS file
typically contains 100 or more pieces of information about
each flow run, including laser settings, photomultiplier tube
voltages, run times, and other information. The collectSum-
maryFlowlnfo method can be configured to collect one or
more of these items from each FCS file. As a practical matter,

since each FCS file may be quite large, the code only reads
one FCS file into memory at a time, extracts the appropriate
information, and frees its memory before moving on to the
next file.

Finally, the createFlowReport method can combine the
summary object with additional metadata about the exper-
iment such as sample information or treatment conditions.
The resulting flow report will contain one line for each
channel of each cell population of each FCS file along with
any associated metadata and keywords from the header
section of the FCS file.

There are a wide variety of possible gate types within
FlowJo. The current version of flowFlowJo can process range,
rectangle, polygon, quadrant, and “auto” gates. Elliptical
gates are not currently supported. With the advent of FlowJo
version 7.5, the gate descriptions in the workspace are
expected to be consistent with the Gating-ML standard [8],
and we will be upgrading flowFlowJo to handle all gate
types produced by FlowJo. Additional detail on the use of
flowFlowJo is contained in the vignette that is available
through Bioconductor (http://www.bioconductor.org/).

3. Applications

In the following sections we describe two applications in
which we believe it is beneficial to have computational
access to manually defined gates. These two applications
are intended to illustrate how flowFlowJo, by allowing for
computational access to manually defined gates, will make
it easy to address questions and concerns about gates and
the gating process. We hope that flowFlowJo will provide
for an easier comparison of manual and automated gating
approaches and improve our confidence in different gating
procedures.
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3.1. Supporting Reproducible, Semiautomated Flow Cytometry.
In our experience, flow cytometry is commonly practiced
in one of two ways. The first way occurs when a small
number of samples are evaluated as part of an ongoing
process of hypothesis generation and testing. The second
way occurs in the clinical lab, a highly-regulated, high-
throughput environment, in which there is little room for
exploration or follow-up. In our view there is an important
need for a third option in flow cytometry. This third way
(which we call reproducible, semiautomated flow cytometry)
supports the manual, exploratory analysis which is easy to
do in software tools such as FlowJo or FCSExpress, but also
allows for the type of modeling and analysis that has proven
beneficial in the microarray arena. In addition, reproducible,
semiautomated flow cytometry should have the potential to
retain, and even improve upon, many of the benefits available
in the highly regulated clinical environment.

The flowFlowJo package supports a reproducible, semi-
automated system in three primary ways. First, the package
supports the use of FlowJo, which provides the bench
researcher with a familiar tool for the visualization and
exploration of flow data. Secondly, flowFlowJo moves all
computations on the original data set into the R pro-
gramming environment—thus allowing for automation and
reproducibility of analysis statistics [9]. These summary
statistics can then be readily exported into other visualization
tools such as SpotFire. Third, the availability of all the
data in R allows the use of a wide range of sophisticated
statistical analysis tools. Data visualization and analysis often
raises questions pertaining to the gating of cell populations.
These questions can be readily explored because all of the
postgating analyses can be automated.

3.2. Gating Robustness. Gating is an important and often
time-consuming component of the analysis of large flow
cytometry data sets. The delineation of the boundaries of
cell populations is often made difficult by variable numbers,
size, shape, and location of both target and nontarget cell
populations. This variability may be due to debris arising
from problems with sample handling or reagents, or may
be due to changes in cell populations arising from disease
or specific genetic differences. These problems may only
become apparent in the midst of a large project, and it
can be problematic to preemptively design an algorithm
or model capable of handling such unforeseen problems.
The difficulty of automating the pattern recognition of
(potentially) distorted objects in the presence of noise
is recognized in other fields [10] as well, in which the
human ability to identified distorted words and characters
is relied upon. While manual gating is relatively robust to
unanticipated cell population distributions, it suffers from
the potential for operator bias. In fact all gating methods have
their drawbacks in particular cases, and tools and procedures
are needed for evaluation of the results of the gating process.

It is important to be able to assess the robustness of
gating results irrespective of the method employed, and some
relatively robust approaches do exist [11, 12]. In general, the
results of an experiment are considered robust if they are not

sensitive to small changes in the assumptions or methods
used to arrive at the results. To assess gating robustness in
flow cytometry, it is extremely useful to be able to work with
gates in a computational framework. There are at least three
intertwined aspects of gating robustness that are important
to assess: gating method, gate method tuning, and gate
homogeneity. For illustrative purposes, we focus on the first
and only briefly comment on the other two.

As an illustration of the assessment of gating method
robustness, we examined a set of human blood samples run
in a single 96-well plate. These samples originated from
blood drawn from four healthy donors that were stimulated
ex-vivo with various levels of TNF-«a by three operators
(resulting in a total of 96 samples) as part of an assay
development program. The samples were stained with a
variety of different antibodies, of which we only consider the
antibodies for CD3/CD14 and P-p38 (the phosphorylated
form of mitogen-activated protein kinase 14) as expressed by
the monocytes. The antibodies to CD3 and CD14 were both
conjugated to the same dye because cells staining for either
of these markers can be distinguished in the SSC channel,
thus allowing for the use of more channels for other markers
of interest. P-p38 is intracellular and was detected by an
experimental protocol in which the cells were permeabilized.

Monocytes were gated in several ways in order to assess
the robustness of results to the choice of gating method
employed. For method I gates were created manually in
FlowJo using a polygon gate drawn on a SSC versus
logio(CD3/CD14) bivariate plot. The gates for method II
were obtained with a robust normal fit via the fitNorm2
method from the R package prada [13] on the cells gated
with method L. The fitNorm2 method uses a contour level
for the resulting bivariate normal distribution chosen as the
gate boundary [13]. Method III found the intersection of
manually gated cells from method I with regions of signifi-
cant curvature obtained via the featureSignif method in the
R feature package which fit a two dimensional probability
density function [14] to all of the SSC and CD3/CD14 data
for each flow file. Results were then compared across the
three methods for all samples. Each of these methods has
one (or more) tuning parameters which can be used to
make results match very closely for any individual sample
between the three different methods. It is the agreement
across methods for all the samples that is of importance. For
method I (manual gating) the operator created a polygon
gate using as many vertices placed in whatever locations
were deemed appropriate. For method II and III, the various
tuning parameters were selected so as to provide results close
to those obtained with method I. It should be noted that the
results for methods II and III are by design subsets of the
results obtained by method I.

Figure 2 shows the gates obtained by the three methods
for two of the blood samples. These two cases bracket the
range of observed agreement between gates; very good for
sample H03, and poorer for sample B10. For every gate, the
response of the cells in that gate as measured by their mean
P-p38 levels was computed (the level of response for each
sample is driven primarily by the TNF-a stimulation level).
Comparison of response measures between the three gating
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FIGURE 2: Gates for the monocyte population as produced by the three gating procedures applied to two of the 96 whole blood samples.
The distribution of the cells is indicated by the blue shading with darker blue corresponding to regions containing higher numbers of cells.
Regions where a probability density function fit to the data was calculated to have significant curvature are indicated in black, except where
they lie within the manual gate and are colored red. Gating methods I, II, and IIT are shown in green, yellow, and red, respectively. The
regions were colored in order of largest to smallest for visual display because the gates overlap with each other.
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FiGure 3: Comparison of the monocyte P-p38 mean fluorescent intensity as determined by the different gating methods for the 96 samples
of whole blood. The apparent P-p38 response in any particular sample may be affected by the donor, the person running the assay, and the
amount of TNF-a stimulation applied to the cells. The points corresponding to the two samples shown in Figure 2 are labeled in red.

methods is shown in Figure 3. It is clear that method I and
method II agree very closely, while method III is moderately
different from the first two methods. These simple graphs
illustrate both a bias and variance between methods that
should be taken into consideration in evaluating the strength
of any conclusions drawn. Thus we have obtained an
indication of the level of uncertainty due to gating strategy
and can readily identify cases in which further investigation
is warranted. Conversely, of course, we may decide one of the
gating methodologies performs poorly and remove it from
use for a particular application.

It is also important to look at the homogeneity of the
cells within a gate. In some cases the monocyte population
of the samples examined in this experiment was actually
composed of two populations of cells as distinguished by
different P-p38 expression. This difference was not apparent
when examining the cells in the SSC versus CD3/CD14
domain. These two populations have offset centers in SSC
versus CD3/CD14 space which causes a gradient in mean P-
P38 expression across the manually drawn gate. Such mixed
populations might be observed, for example, through use of
3 dimensional viewing tools. Alternatively one might color
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each point within a gate as a function of its distance in all
measured parameters from the center of the gate, thereby
providing a simple visual measure of cell homogeneity within
a gate. Another approach is to divide the gate up into
a number of subsets and compute the desired summary
statistic for each subset. The variability across these subsets
provides an assurance of the strength of the assumption of
homogeneity within the gate. These types of visualizations
and analyses are readily explored when the data is available
in the R statistical programming environment.

The P-p38 heterogeneity of some of the samples illus-
trates the strengths and weaknesses of the three gating meth-
ods depending on the nature of the question being asked. If
the goal is to further subdivide a population, it is important
to be as inclusive as possible because the subtypes in other
gating parameters may not be uniformly scattered across the
parent gate. If the goal is to perform a dose-response assay
by measuring, for example, the phosphorylation state of an
internal signaling protein, a more restricted population such
as the bivariate normal gate (method II) might be more
appropriate. The curvature gradient approach (method III)
is particularly sensitive to the distribution of cells within a
region and might be valuable in assays where detecting slight
changes in the population structure is important. The gating
method and tuning parameters chosen should be chosen
based on the question being addressed.

Finally, other aspects of the gating process may likewise
be assessed for robustness. Automated and partially auto-
mated approaches have tuning parameters that are usually
set to work well for test cases. The sensitivity of the results
in these test cases can be helpful in judging how well the
approach is going to work in a full study. To assess this
sensitivity, an approach similar to that shown above can be
used to systematically vary the tuning/controlling parameter
and assess the variability in the results as a function of the
controlling parameters.

4. Discussion and Conclusion

As the number of flow cytometry data sets grow in a
study, it becomes increasingly difficult to explore “what-if”
questions. It is common to uncover a behavior that can only
be investigated by creating new gates or adjusting existing
gates. Exploration and analysis of a data set can also reveal
problems with an initial gating strategy that can be easily
fixed computationally, but would be tedious to fix manually.
Examples of this include the case in which manual gates are
refined computationally and the case in which the robustness
of gates (drawn manually or computationally) is assessed.
We have also experienced cases in which a population that
initially appeared to be of little importance turned out to
be of substantial interest. In one case, the population had
been poorly gated, and the events at the maximum possible
intensity were included, but should not have been. Rather
than re-gating manually, it was simple to adjust each gate
computationally to exclude the boundary region.

The flowFlowJo package provides a set of methods
for extracting and organizing information from Flow]o

workspaces and the FCS files to which they refer. In its most
basic application, it allows the user to retrieve all of the gates
and spillover matrices for all of the FCS files described within
one or more FlowJo workspaces. The gates are returned as
flowCore compliant filter objects, and the spillover matrices
are returned as numeric matrices. Additional functionality
is gained by the ability of the user to effectively run all
of the compensation and gating functions described by the
workspace(s) and automatically retrieve all of the relevant
summary statistics into a concise data structure. These data
may also be easily combined with any metadata describing
the nature or source of each sample and any experimental
conditions to which they were subjected.

There has been limited involvement by the bioinfor-
matics, statistical, and machine learning communities in
the problems of flow cytometry [15]. Programmatic access
to both raw data and gates in flow cytometry allows us
to ask many questions about flow cytometry data that
traditionally were tedious or effectively impossible. The
ability to assess gate choice assumptions is expected to lead
to better assessments of the quality of our methods. In
some cases, more sophisticated approaches such as mixture
modeling may be called for when seemingly uniform cell
populations actually include two or more cell types. This is
especially important when examining cell populations for
which a subset of the cells with no known defining antibodies
respond differently to stimuli than the rest of the cells in the
population.

At the present time, flowFlowJo is known to work with
FlowJo version 7.2.5 running on the Windows operating
system. We expect FlowJo to continue to evolve and we
intend to maintain flowFlowJo in such a way that it can
handle the current Flow]Jo workspaces. A major change in the
FlowJo workspace structure will be the transition to Flow]o
7.5 when the use of the Gating-ML standard is expected to
replace the current XML format. The flowFlowJo package
and supporting vignette and documentation is available from
the Bioconductor web site (http://www.bioconductor.org/).
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1. Introduction

Flow cytometry (FC) produces multidimensional biological
information at the level of the cellular compartment, and
over very large numbers of cells. As such it is ideally
suited to a wide variety of investigations for which cellular
context and large sample observations are important. In
recent years the technology of FC has undergone appre-
ciable development [1, 2] with the introduction of digital
signal processing electronics [3], multiple lasers, increasing
numbers of fluorescence detectors, and robotic automation,
both in sample preparation [4] and in instrumental data
collection [5]. The recent development of new reagents
[6] that enable increasing assay complexity has also been
rapid and accelerating. Given the scope and pace of these
developments, the bottleneck in many FC experiments has
shifted from the wet laboratory to the computer laboratory;
that is to say, data analysis [1].

FC data are typically analyzed using graphically driven
approaches. Subsets of cells (events) are delineated usu-
ally in one- or two-dimensional histograms or “dotplots”

in a procedure termed “gating.” Gates of differing shapes
including rectangular, circular, elliptical, or arbitrary polyg-
onal contours may be specified. The gating process is
frequently applied in a sequential fashion, with the numbers
of events inside successive gates falling monotonically from
step to step. Subsets determined via gating are typically then
quantified with respect to their expression patterns in the
dimensions of multiparameter space not utilized for gating,
often by simply counting proportions of the subsets that
are positive or negative for each of the markers of interest
for that subset. Several commercially available software
packages have been extensively optimized to support this
kind of visually guided analysis workflow, for example,
FlowJo (Treestar Inc, Ashland, OR), WinList (Verity Software
House, Topsham, ME), and FCSExpress (De Novo Software,
Los Angeles, CA).

Manual gating is a highly effective means of analysis of
flow cytometry data, especially in cases where the application
of expert judgment in the visual design of gating strategies
may be able to isolate events of biological interest in
the presence of confounding experimental (or biological)



variations that will be difficult to account for automatically.
Nevertheless, manual gating has three main drawbacks [7—
9]. First, the choice of gates is often subjective, particularly
in the not-unusual situation where the distribution is broad
and smooth. This lack of objective criteria is problematic,
especially when different samples may show different types of
“excursions” from the average/normal case. Second, because
gates are specified by manually drawing regions on a graph
using a computer mouse, the process is very labor intensive
and time consuming. Finally, because gating and regions of
interest are determined by the data analyst based on his or her
experience, there may be interesting and informative features
that exist within the full ungated multivariate distribution of
events but that nevertheless escape detection in this analysis
paradigm.

A number of automated gating procedures have been
developed with the aim of reducing tedium as well as
increasing objectivity in the gating process. Notwithstanding
this, a strong need still remains for computational tools that
transform and represent multiparameter flow cytometric
data in a form efficiently amenable to machine learning and
data mining.

We have developed a software package called flowFP
to address these limitations in conventional approaches to
the analysis of FC data. The broad aim of the package
is to directly transform raw FC list-mode data into a
representation suitable for direct input to other statistical
analysis and empirical modeling tools. Thus, it is useful
to think of flowFP as an intermediate step between the
acquisition of high-throughput FC data on the one hand,
and empirical modeling, machine learning, and knowledge
discovery on the other.

2. Materials and Methods

2.1. Algorithm Description. The software package described
herein, flowFP, implements and integrates ideas put forth
in [10, 11]. FlowFP utilizes the Probability Binning (PB)
algorithm [10] to subdivide multivariate space into hyper-
rectangular regions that contain nearly equal numbers of
events. According to the vernacular of flow cytometry,
the axes describing a multivariate space are referred to as
“parameters.” Here we will use the term “variable” so as to
avoid confusion with the nomenclature of “parameter” as
used in the statistics literature. Regions (bins) are determined
by (a) finding the variable whose variance is highest, (b)
dividing the population at the median of this variable which
results in two bins, each with half of the events, and (c)
repeating this process for each subset in turn. Thus, at the
first level of binning the population is divided into two bins.
At the second level, each of the two “parent” bins is divided
into two “daughter” bins, and so forth. The final number of
bins #n is determined by the number of levels [ of recursive
subdivision, such that n = 2.

This binning procedure is typically carried out for a
collection of samples (instances), called a “training set.”
The result of the process models the structure of the
multivariate space occupied by the training set by the way it
constructs bins of varying size and shape and is thus termed
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a “model” of the space (not to be confused with modeling
approaches that fit data to a parameterized model or set
of models). The model is then applied to another set of
samples (which may or may not include instances from the
training set). This operation results in a feature vector of
event counts in each bin of the model for each instance in
the set. These feature vectors are, in the context of a specific
model, a unique description of the multivariate probability
distribution function for each instance in the set of samples,
and thus are aptly referred to as “fingerprints.”

Although flowFP generates bins using the PB algorithm,
the way it utilizes the resulting fingerprints is similar to the
methods described in [11]. Each element of a fingerprint
represents the number of events in a particular subregion
of the model. Although it may not be known a priori
which of these regions are informative with respect to an
experimental question, it is possible to determine this by
using appropriate statistical tests, along with corrections for
multiple comparisons, to ascertain which regions (if any) are
differentially populated in two or more groups of samples. If
we regard the number of events in a bin as one of n features
describing an instance, then the statistical determination of
informative subregions is clearly seen to be a feature selection
procedure.

Fingerprint features are useful in two distinct modes.
First, all or a selected subset of features can be used in
clustering or classification approaches to predict the class of
an instance based on its similarity to groups of instances.
Second, the events within selected, highly informative bins
can be visualized within their broader multivariate context in
order to interpret the output of the modeling process. This
step is crucial in that it provides a means to develop new
hypotheses for FC-derived biomarkers within the context of
existing reagent panels.

2.2. Software Implementation. FlowFP is implemented in
the open-source R Statistical Computing Environment [12]
and is freely available as part of Bioconductor [13]. Within
Bioconductor a framework has been created for handling
FC data known as flowCore [14, 15]. FlowFP is one of a
growing number of Bioconductor packages integrated within
this framework and thus able to interoperate with other
flowCore-compliant tools as well as with the full range of
downstream statistical analysis and machine learning tools
available in R. This integration enables flexible creation of
powerful high-throughput analysis procedures for large FC
data sets.

FlowFP uses the S4 object-oriented facility of R. Compu-
tationally intensive parts are written in the C programming
language for efficiency. FlowFP is built around a set of three
S4 classes, each with a constructor of the same name as the
class name. In addition there are a number of methods for
data accession, manipulation, and visualization.

2.2.1. FlowFPModel. FlowFPModel is the fundamental class
for the flowFP package. The flowFPModel constructor takes
a collection of one or more list-mode instances which are
represented in the flowCore framework as a flowFrame (for a
single instance) or a flowSet (for a collection of instances),
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respectively (henceforth we will refer to flowFrames and
flowSets, the original list-mode data being implied). In addi-
tion to the required argument, flowFPModel has optional
arguments that allow control over the number of levels of
recursive subdivision and the set of variables to be considered
in the binning process. By default all variables in the input
flowSet are considered, but if this argument is provided, any
variables not listed are ignored. The constructor emits an
object of type flowFPModel, which encapsulates a complete
representation of the binning process that is used later to
construct fingerprints.

2.2.2. FlowFP. The flowFP constructor takes a flowFrame or
a flowSet as its only required argument, and an optional
flowFPModel. If no flowFPModel is supplied, flowFP com-
putes a model (by calling flowFPModel internally). Regard-
less the source of the model, flowFP applies the model to
each of the instances in its input. The resulting flowFP object
extends the flowFPModel class and contains two additional
important slots to store a matrix of counts and a list of
tags. The counts matrix has dimensions m X n, where m
is the number of instances in the input flowSet (or one if
a flowFrame is provided), and n is the number of features
in the model. The tags slot is a list of m vectors, each of
which has e elements, where e is the number of events in
the corresponding frame in the input flowSet. The value for
each element of the tag vector represents the bin number into
which the corresponding event fell during the fingerprinting
procedure. This is useful for visualization or gating based on
fingerprints as will be illustrated below.

2.2.3. FlowFPPlex. The flowFPPlex is a container object
which facilitates combining, processing, and visualizing large
collections of flowFP objects which are all derived from the
same set of instances. The flowFPPlex constructor takes a
list of flowFP objects. The flowFPPlex manages the logical
association of a set of flowFP descriptions. In particular, it
extends the counts matrices of its members “horizontally” so
as to create a unified representation of the entire collection
of fingerprints. The main utility of the flowFPPlex is its
support for creating a merged representation of a set of
instances acquired using a multitube panel, with different
flowFPModels for each tube in the panel.

2.2.4. Generic Functions. A number of other methods have
been provided to facilitate interaction with and analysis of
fingerprinting results. Chief among these are visualization
methods that aid in the understanding and interpretation of
fingerprinting results (see Figures S1-S3 in Supplementary
Material available online at doi:10.1155/2009/193947). A few
other accessor methods deserve special mention.
nRecursions(obj). This generic function returns the
number of levels of recursive subdivision of its argument.
FlowFP, flowFPPlex, and flowFPModel all implement the
method. Furthermore, the flowFP class implements the “set”
method. This enables the user to compute a model at some
fairly high resolution, and then to derive fingerprints at that
resolution or any lower resolution without recomputing the
model. This is possible because fingerprinting is recursive,

so that given any high-resolution model, all models of lower
resolution can be derived from it.

counts(obj). This generic function returns a matrix of
the number of events per instance and per bin. FlowFP
and flowFPPlex classes implement this method, facilitating
creation of fingerprint matrices suitable for processing by
downstream methods outside of the flowFP package. The
method has an optional argument “transformation” that can
take on values “raw” (returns the actual event counts for each
bin), “normalize” (normalizes by dividing raw counts by the
expected number of events), or “log2norm” (like normalize
except that it further takes the log, of the result).

sampleNames(obj) and sampleClasses(obj). These ge-
neric functions set or get sample identifiers for objects of
class flowFP or flowFPPlex. By default, for flowFPs, sample
names are derived from the flowSet. However they can
be overridden by the set method, providing flexibility to
handle cases where the sample names in a flowSet are
not appropriate. When adding fingerprints to a flowFPPlex,
sample names (and if present, sample classes) are compared,
and the join operation is not permitted unless names and
classes among all fingerprints in the flowFPPlex are identical.

parameters(obj). This generic function returns the light
scatter and/or fluorescence variables involved in binning,
either for a flowFPModel or a flowFP. The function is able to
report both the variables that were considered for binning as
well as those that actually participating (if the global variance
of a variable is small enough it may never be selected for
division).

tags(fp). This generic function returns the tags slot of a
flowFP object, described in Section 2.2.2. This is useful for
visualization and gating operations.

binBoundary(obj). This generic function reports a list
of multivariate rectangles corresponding to the limits of the
bins. FlowFP and flowFPModel classes both implement this
method. This information is also useful for visualization and
gating operations.

2.3. Data and Characteristics. Deidentified flow cytometric
data from peripheral blood or bone marrow aspirate samples
were provided by Clarient, Inc. (Aliso Viejo, CA) along
with primary diagnoses by experienced hematopathologists.
After application of QC filters including that described in
Section 3.1.1 the data set included 42 cases diagnosed as
Acute Myeloid Leukemia (AML) and 309 cases that were
determined to be immunophenotypically normal. For the
purposes of this study physician diagnosis was regarded as
the ground truth.

Data were collected over a one-year period, using the
panel described in Table 1. Briefly, samples were lysed with
ammonium chloride, then washed with PBS, centrifuged
and resuspended. Blocking was accomplished by incubating
with RPMI-1640 supplemented with 10% rabbit serum for
30 minutes at 37°C. Cells were then pelleted, resuspended
in RPMI-1640, and adjusted to between 4-8 x 10° cells/mL.
Antibody staining was accomplished by incubating in the
dark at room temperature for 15 + 5 minutes 100 4L of the
adjusted cell suspension with 40 uL of pretitrated antibody
cocktail per tube. For the viability tube, 10 uL of 7AAD
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TaBLE 1: Reagent panel used for immunophenotyping of leukemia/lymphoma samples.
Tube FL1 FL2 FL3 FL4 FL5
P3S P4S P5S P6S P7S
1 IgG1-FITC IgG1-PE CD45-ECD IgG1-PC5 IgG1-PC7
2 (s)Kappa-FITC (s)Lambda-PE CD45-ECD CD19-PC5 CD20-PC7
3 CD7-FITC CD4-PE CD45-ECD CD8-PC5 CD2-PC7
4 CD15-FITC CD13-PE CD45-ECD CD16-PC5 CD56-PC7
5 CD14-FITC CD11c¢-PE CD45-ECD CD64-PC5 CD33-PC7
6 HLA DR-FITC CD117-PE CD45-ECD CD34-PC5 CD38-PC7
7 CD5-FITC CD19-PE CD45-ECD CD3-PC5 CD10-PC7
8 FL1-Log FL2-Log FL3-Log FL4-Log FL5 Log

was added in place of the antibody cocktail. After staining
each tube was washed with 3 mL PBS, vortexed, pelleted,
and resuspended in 500 L of PBS prior to running on the
flow cytometer. Five-color immunofluorescence along with
forward and side scatter data were collected on two FC-
500 cytometers (Beckman Coulter, Miami, FL). Data were
collected for 3 x 10* events for each tube.

3. Results

3.1. Gating Quality Control

3.1.1. Tube Data. FlowFP was used to assess the consistency
of event distributions in variables common to a multiple-
tube panel. Using the panel described in Table 1, note that
CD45 is common to all tubes except the viability tube.
Frequently [16-22], the distribution of events in the Side
Scatter versus CD45 projection (referenced as parameters 2
and 5 in the code below) from a single tube is used to gate an
entire collection of tubes in order to save time. If the CD45
versus SSC distribution differs among the tubes, errors due
to incorrect subsetting will occur, but may not be readily
apparent without careful study of the gating plots.

Using flowFP, in order to rapidly detect consistency of
CD45 versus SSC distributions without the need to look at
dotplots, we (1) create a flowSet comprising tubes 1-7 of
a sample, (2) create a model, using the common variables
CD45 and SSC, from the flowSet, (3) create fingerprints of
the same samples with respect to this model, and (4) display
the result. The R commands to accomplish this using flowFP
are as shown in Algorithm 1 (Code Fragment 1).

Figure 1(a) shows the resulting plot. Each tube is repre-
sented by one of the colored plots, with the CD45 versus SSC
fingerprint shown as a line. The standard deviation of the
fingerprint values around their mean is shown for each tube
to provide a quantitative measure of the degree to which a
tube deviates from the norm of all tubes combined. The same
value is mapped to colors, shown in the color legend above
the plots, to provide a quick visual representation of the
consistency of the distributions. For comparison, Figure 1(b)
shows a similar result for a sample that displayed poor CD45
versus SSC consistency. Note that Tube 5 in that sample
differed markedly from the other tubes in the panel, as did
Tube 4, but to a lesser extent.

3.1.2. 96-Well Plate Data. High-throughput FC data are
flexibly accommodated in the FlowFP package. For data
derived from 96-well plates, a plot method of type “plate” can
be used to display a qc-style plot in a layout that reflects the
structure of the plate. Figure 2 shows such a result. Data were
obtained [23, 24] in which SSC, CD3, and CD4 (parameters
2, 5, and 7) were used to gate the entire plate of data. The R
commands shown in Algorithm 2 (Code Fragment 2) were
used to produce the plot in Figure 2.

Note that in this case we illustrate the use of an implicit
model by omitting the model from the flowFP constructor.
The utility of such a rapid and straightforward quality
assurance tool is most apparent in the case of this sort of
high-throughput data.

3.2. Automated Classification of Acute Myeloid Leukemia. We
now turn to the application of flowFP to support a machine
learning workflow. The aim here is to illustrate the utility
of fingerprint-based approaches in general, and flowFP in
particular, by automatically categorizing samples into one
of two a priori known classes, AML or Normal. The dataset
described in Section 2.3 was used. Tube 1 (isotype control)
and Tube 8 (viability) were ignored for the purpose of this
analysis, leaving 6 tubes, numbered 2-7.

We divided the samples randomly into a balanced
training set comprising 21 of 42 AML cases and 21 of
309 Normal cases. We elected to balance the training set
so as not to bias the classifier towards the more heavily
represented Normal case. The remaining 21 AML cases and
288 Normal cases were assigned to the test set. Modeling and
fingerprinting were done on a per-tube basis. Models were
computed from training data only, in order to avoid biasing
the prediction of the test set. We also employed a “differential
modeling” procedure by creating two separate models, one
for the AML training instances and one for the Normal
training instances. Then, fingerprints from each tube and for
each model were computed and aggregated into a flowFPPlex
for further analysis. Fingerprinting was performed on all
variables. The R code fragment implementing this procedure
is shown in Algorithm 3 (Code Fragment 3).

Models were computed at a resolution level | = 11,
producing n = 2048 bins. This resolution was determined
using the default automatic setting of flowFPModel which
implements the heuristic that the typical (median) number
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> fp <- flowFP (fs, mod)
> plot (fp, type=“qc”)

> fs <- read.flowSet (path=“lo_gate dev’, transformation=FALSE)
> mod <- flowFPModel (fs, parameters=c(2,5))

ALGORITHM 1: (Code Fragment 1).

Fingerprint deviation plot

Method = sd [ —

Vertical scale factor = 3 0 1

(a)

Fingerprint deviation plot

Method = sd
Vertical scale factor = 3 0 1

(c)

FIGURE 1: FlowFP plot method to display gating data consistency. Fingerprints were computed using CD45 and SSC which are common
variables in all tubes. Fingerprint similarity is indicated by color and in the similarity metric shown in each panel. The color wedge shows
mapping of colors to values of the similarity metric (values above the maximum indicated on the wedge all map to red). The x-axis for each
subplot is fingerprint index, and the y-axis is the log, transformed fingerprint value plotted with zero at the center and scaled to + “vertical
scale factor” (in this case 3.0). (a) Sample FI05.000942, an example of a sample with good gating consistency. (b) Sample FI05.000599, an
example of a sample with poor gating consistency. (c) and (d) as in (a) and (b), except that models were computed from Tube 1 only, rather
than the aggregate of Tubes 1-7 for each sample. Note that the fingerprint for Tube 1 in both cases has zero deviation, as expected. Note also
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> fs <- read.flowSet (path=“96_well”, transformation=F)
> fp <- flowFP (fs, parameters=c(2,5,7))

> plot (fp, type=“plate”)

ArgoriTHM 2: (Code Fragment 2).

Fingerprint deviation plot

Method = sd
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FiGure 2: QC plot method for high-throughput data. Data were fingerprinted on variables common to all wells in a 96-well plate. The
display maps into colors the degree to which gating data conform to the plate-wide norm.

of events in each instance of the training set is binned such
that the number of events per bin is not less than 8. The
resulting flowFPPlex therefore had 6 tubes X 2 models x
2048 bins = 24 576 features.

We extracted feature values from the flowFPPlex using
the accessor function counts(plex, transformation=
“log2norm”) which performs a logarithmic transformation
on the normalized counts matrix.

Using only the instances in the training set, we performed
a Mann-Whitney test on each feature independently (there
are many methods of feature selection, a discussion of
which is beyond the scope of this report). We selected those
features which had a 99.9% likelihood of being differentially
distributed between the two classes, after performing the

Benjamini-Hochberg correction for multiple comparisons
[25, 26]. This led to the selection of 1681 informative features
out the original 24 576 features. Using the reduced feature
set we trained a Support Vector Machine (SVM) classifier
[27, 28] using a radial basis function kernel. We then
blindly predicted the class of the test set using this classifier
by assigning the predicted class probabilities into three
equal ranges. The results are shown in Figure 3. Sensitivity
and specificity are 90.5% (19/21) and 99.3% (278/288),
respectively, with 9.5% (2) of AML instances and 2.8% (8)
of Normal instances falling into the Uncertain group. No
cross validation was performed here for clarity and brevity of
presentation. For a better assessment of model performance
this would be required. Interestingly, repeating the analysis
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plex <- flowFPPlex ()
for (tube in 2:7) {
fs <- read_tubes (tube)

trainSets <- list(aml=train_aml, norm=train_norm)

for (trainSet in trainSets) {
mod <- flowFPModel (fs([trainSet])
fp <- flowFP (fs, mod)
plex <- append (plex, fp)

# create an empty plex

# loop over tubes 2—7

# create a flowSet

# differential modeling

# training set only

# create fingerprints

# add fingerprints to plex

}
}
ArcoriTHM 3: (Code Fragment 3).
—Train- Test as low-intermediate SSC, CD45 dim, and negative for CD3,

Ei 1' ] R DI A o LN AL B0 CD19, and CD10. The CD45 versus SSC distribution of the
S 08 PR Ty UL ‘Z'. informative bins corresponds to a region containing blasts
n v . . . and monocytes.
£ 061 Z . A more comprehensive although less detailed picture
E od of informati.on distribution .in the.panel is illustrated in
5 L F.1g1.1re 5. This par'flllel coordinate view enable§ the appre-
% 02 1 . . ) ML [Normall 7 ciation of expression patterns across the entire panel of
S . R tubes. Notice that the AML pattern in Tube 7 displayed in
D‘: 0) b= v, Normal| 2 278 8

FiGure 3: Support Vector Machine classification of AML versus
Normal. The classifier was trained with 21 AML and 21 Normal
Instances (left-most two regions). The classifier was then used to
blindly predict class probabilities for the test set of 21 AML and
288 Normal instances (the right-most region). Ground-truth class
assignments are indicated by color, red for AML and blue for
Normal. The probability range 0-1 was divided into three equal
regions. Instances falling into the lower third were classified as AML,
in the upper third as Normal, and in the middle as Uncertain “?”.

without the “differential modeling” method described above
(i.e., using AML and Normal combined training instances
to compute the models for each tube) resulted in a similar
result, but with a slightly poorer sensitivity of 85.7% (data
not shown).

The time required to compute the fingerprints was 1.8
seconds per sample, requiring 5.2GB of memory on a
machine running the Linux 2.6 SMP 64-bit kernel with
a 2.83 GHz processor. Recall that this represents, for each
sample, the construction of 2 fingerprints for each of 6
tubes, each of which has 3 x 10* events. Compared with
mixture modeling approaches that are used for analysis of FC
data (e.g., [8, 29]) flowFP is a computationally inexpensive
method of analysis of FC data.

Figure 4(d) shows the distribution of informative fea-
tures selected as described above with respect to tube
number. Tubes 7 and 4 appear to be the most informative
for distinguishing AML from Normal. Figures 4(a)—4(c)
display the informative subset of features (bins) that fell
in Tube 7 and which had higher likelihood, on average,
in the AML group compared with the Normal group.
Informative features characteristic of AML can be described

Figure 5 indicates the same CD45(dim), CD3(—), CD10(—)
blast phenotype shown in Figure 4. In Tube 4 the phe-
notype of AML-informative bins is consistent with blasts
expressing CD15(dim to —), CD13(dim to +), CD16(—),
CD56(—) (see also Figure S4 in Supplementary Material).
Separation of the bundles of trajectories corresponding to
AML and Normal events is the widest in Tubes 4, 6, and
7, consistent with the distribution of information across
the tubes shown in Figure 4(a). By contrast, Tube 5 has
intertwined bundles, apparently in keeping with the fact
that Tube 5 held the fewest informative fingerprinting
features.

4. Discussion

With recent technological advances, FC is now capable
of operating as a true high-throughput technique. A key
enabling requirement however is the need to automate
data analysis for speed, much as automation in sample
preparation and data acquisition have accelerated the rate
of generation of data and thereby enabled high-throughput
FC. This requirement inevitably drives movement away from
human-drawn, visually-based gating which is the single most
significant obstacle preventing a true high-throughput FC
workflow.

We have shown that fingerprint-based analysis of FC
data represents an effective bridge between large amounts of
FC data and the world of machine learning and knowledge
discovery techniques. It effectively captures informative
features of a multivariate probability distribution function
and does so in a computationally efficient way. As such it
represents one of the tools that may help to bring FC into
a new era of application to problems previously not feasible
due to limitations in data analysis techniques.
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FIGURE 4: Visualization of informative features. (a)—(c) dotplots for Tube 7. Black dots are aggregated data from 5 AML and 5 Normal

instances. Colored dots indicate events in informative bins with hig
versus Forward Scatter. (b) CD45 versus Side Scatter. (c) Pairwise d
the frequency with which informative features occur in Tubes 2-7.

It is important to note that fingerprinting of FC data is
not without limitations. First, we note that fingerprinting
approaches are sensitive to differences in multivariate proba-
bility distributions no matter their origin. Thus, instrumen-
tal, reagent or other systematic variations may cause spurious

her probability density in AML compared with Normal. (a) Side Scatter
otplots of fluorescence’s CD5, CD19, CD3, and CD10. (d) Histogram of

signals as large or larger than true biological effects. For this
reason it is important to measure and control for these effects
[1]. In fact, fingerprinting itself can be used to assess and
to help control for systematic effects, as was illustrated in
Section 3.1.
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F1GURE 5: Parallel coordinate view of informative fingerprint features. The expression pattern of an individual event is shown as a vertical
trajectory. Events are chosen from informative bins selected as described in the text. Events in bins with excess median probability among
AML (Normal) instances are shown in red (blue). The numbers of AML and Normal trajectories are balanced to avoid visual bias.

Second, because fingerprinting is, in essence, the creation
of a multivariate histogram, it responds to factors that
might artificially emphasize certain bins in preference to
others. In particular, events may pile up on either the zero
or full-scale axis for one or more variables. This situation
frequently results from values that would be negative due to
compensation or background subtraction (causing pileup on
the zero axis) or at the other end of the scale, values that
exceed the dynamic range of the signal detection apparatus
causing pileup at full scale. At either end this results falsely
in an apparent high density of events. Fingerprinting bins are
thus “attracted” to these locations, causing a distortion in the
proper characterization of the true multivariate probability

distribution function. One might be tempted to simply
remove these values. However this is problematic since they
can be very important. For example, values piling up at full
scale are the brightest of all. A better solution is to adjust
detector gains to minimize or eliminate full-scale pileup,
to use high-dynamic-range detectors and electronics and to
use modified data transformations such as the biexponential
transform to smoothly distribute values at or below zero.
Just as scaling and transformation of data are important
for visualization of multivariable distributions [30-32], so
they are also important for fingerprinting. Data acquired
using linear amplifiers such as exist in some modern instru-
ments, or data that have been “linearized” from instruments
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with logarithmic amplifiers, tend to be heavily skewed to
the left, since in most cases data distributions are quasi-log-
normally distributed. Bins determined from such data thus
have extreme variations in size. A good rule of thumb is to
use a data transformation that produces the most spread-
out distribution, which also is often the transformation
most effective for clear visualization of the distribution. For
example, Forward Scatter data are almost always displayed on
a linear scale, whereas fluorescence data are usually displayed
on a logarithmic or biexponential scale. For a good review
of scaling and transformation of flow cytometric data, the
reader is referred to [32].

A key limitation for fingerprinting approaches, including
flowFP, relates to the number of events available for analysis.
Since the objective of probability binning is to find bins
containing equal numbers of events, it follows that once the
number of bins is on the order of the number of events in
an instance, the expected number of events per bin will be
of order unity. In this case differences in bin counts will
not be statistically significant. On the other hand, if the
dimensionality of the data set is high, the average number of
times any variable will be divided in the binning process will
be small. For example, in a dataset with 18 variables, if we
demand at least, say, 10 events per bin for statistical accuracy,
about 2.6 X 10° events would be required in order that each
variable is divided on average into at least two bins. Thus,
the spatial resolution of binning is limited by the number of
events collected, and as the number of variables increases, the
number of events needed to maintain resolution increases
geometrically.

FlowFP has been peer reviewed and accepted for inclu-
sion in the next release of Bioconductor scheduled for
October 2009. Prior to that date the development version
may be downloaded from http://www.bioconductor.org/.
The package is currently available for all architectures
supported by Bioconductor. In addition to the functionality
illustrated here, the authors plan to improve some of the
visualization methods, specifically to enable better use of
color, for example to represent statistical significance of
bins. One of the advantages of integration with other flow
cytometry Bioconductor packages is the ease of comparing
and combining analysis methodologies. For example, it will
be of interest to compare the performance of fingerprint-
ing with other methods such as clustering and mixture
modeling (flowClust). By the same token, such methods
might be used in concert. For example, it is possible that
clustering could be used to define major cell categories
(e.g., B cells, T cells, granulocytes, etc.), within which
fingerprinting may efficiently parse subsets correlated with
function.

In summary, flowFP provides the flow cytometry com-
munity with a new tool that transforms FC data such
that a wide range of other data analysis algorithms may
be brought to bear. It creates a representation of FC data
that preserves information embedded in the multivariate
probability distribution function while at the same time
presenting the information in a way that can be utilized easily
by other software tools. Because it is tightly integrated in Bio-
conductor with several other FC-related packages and also
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exists in the broader R statistical computing environment,
flowFP can interoperate with a very wide range of open-
source analysis techniques. This power and flexibility enables
a broad range of new computational analysis approaches that
have potential in two distinct areas. First, it will facilitate the
retrospective mining of FC data, seeking novel biomarkers
that may be lurking in existing data. Second, it breaks the
data analysis bottleneck that has up until now limited the full
exploitation of FC in clinical applications.

Acknowledgments

The authors wish to express their deep gratitude to Jonni
Moore, Hank Pletcher, Andrew Bantly, Rich Schretzenmair,
and all of the people of the University of Pennsylvania
Flow Cytometry Resource for providing intellectual fuel and
many reasons to create flowFP. They thank Florian Hahne,
Nolwenn Le Meur, and Ryan Brinkman for advice and
assistance in programming in R and integration with flow-
Core. They thank Bruce Bagwell for stimulating discussions
regarding applications of fingerprinting of FC data. They
are most especially grateful to Clarient, Inc. for generously
making available the data sets used to illustrate the utility
of flowFP. Finally, they thank the University of Pennsylvania
PathBioresource and the Department of Pathology and
Laboratory Medicine for financial support.

References

[1] P. K. Chattopadhyay, C.-M. Hogerkorp, and M. Roederer,
“A chromatic explosion: the development and future of
multiparameter flow cytometry,” Immunology, vol. 125, no. 4,
pp. 441449, 2008.

[2] J. P. McCoy Jr., “Basic principles of flow cytometry,” Hema-
tology/Oncology Clinics of North America, vol. 16, no. 2, pp.
229-243, 2002.

[3] S. Murthi, S. Sankaranarayanan, B. Xia, G. M. Lambert, J. J.
Rodriguez, and D. W. Galbraith, “Performance analysis of a
dual-buffer architecture for digital flow cytometry,” Cytometry
Part A, vol. 66, no. 2, pp. 109-118, 2005.

[4] A.S. Kelliher, D. W. Parent, D. C. Anderson, et al., “Novel use
of the BD FAGS™ SPA to automate custom monoclonal anti-
body panel preparations for immunophenotyping,” Cytometry
Part B, vol. 66, no. 1, pp. 40-45, 2005.

[5] L. V. Gates, Y. Zhang, C. Shambaugh, et al., “Quantitative mea-
surement of varicella-zoster virus infection by semiautomated
flow cytometry,” Applied and Environmental Microbiology, vol.
75, no. 7, pp. 2027-2036, 2009.

[6] P.K. Chattopadhyay, D. A. Price, T. F. Harper, et al., “Quantum
dot semiconductor nanocrystals for immunophenotyping by
polychromatic flow cytometry,” Nature Medicine, vol. 12, no.
8, pp. 972-977, 2006.

[7] R.Achuthanandam, J. Quinn, R.J. Capocasale, P. J. Bugelski, L.
Hrebien, and M. Kam, “Sequential univariate gating approach
to study the effects of erythropoietin in murine bone marrow,”
Cytometry Part A, vol. 73, no. 8, pp. 702—714, 2008.

[8] C. Chan, E Feng, J. Ottinger, D. Foster, M. West, and T.
B. Kepler, “Statistical mixture modeling for cell subtype
identification in flow cytometry,” Cytometry Part A, vol. 73,
no. 8, pp. 693-701, 2008.



Advances in Bioinformatics

[9] P. Lloyd-Evans, A. R. Guest, E. B. Austin, and M. L. Scott,
“Use of a phycoerythrin-conjugated anti-glycophorin A mon-
oclonal antibody as a double label to improve the accuracy of
FMH quantification by flow cytometry,” Transfusion Medicine,
vol. 9, no. 2, pp. 155-160, 1999.

[10] M. Roederer, W. Moore, A. Treister, R. R. Hardy, and L. A.
Herzenberg, “Probability binning comparison: a metric for
quantitating multivariate distribution differences,” Cytometry,
vol. 45, no. 1, pp. 47-55, 2001.

[11] W. T. Rogers, A. R. Moser, H. A. Holyst, et al., “Cytometric

fingerprinting: quantitative characterization of multivariate

distributions,” Cytometry Part A, vol. 73, no. 5, pp. 430-441,

2008.

R Development Core Team, R: A Language and Environment

for Statistical Computing, R Foundation for Statistical Com-

puting, Vienna, Austria, 2008.

[13] R. C. Gentleman, V. J. Carey, D. M. Bates, et al., “Biocon-
ductor: open software development for computational biology
and bioinformatics,” Genome Biology, vol. 5, no. 10, p. R80,
2004.

[14] B. Ellis, P. Haaland, F. Hahne, et al., “flowCore: basic struc-
tures for flow cytometry data,” 2009, http://bioconductor.org/
packages/2.3/bioc/html/flowCore.html.

[15] E Hahne, N. LeMeur, R. R. Brinkman, et al., “flowCore: a
Bioconductor package for high throughput flow cytometry,”
BMC Bioinformatics, vol. 10, article 106, 2009.

[16] M. ]J. Borowitz, K. L. Guenther, K. E. Shults, and G. T. Stelzer,
“Immunophenotyping of acute leukemia by flow cytometric
analysis: use of CD45 and right-angle light scatter to gate on
leukemic blasts in three-color analysis,” American Journal of
Clinical Pathology, vol. 100, no. 5, pp. 534-540, 1993.

[17] K. Nishikawa, T. Miyasaki, N. Tsukaguchi, Y. Noma, K.
Nakagawa, and N. Narita, “CD45 gating of acute leukemia,”
Rinsho Byori, vol. 44, no. 6, pp. 548-553, 1996.

[18] F Lacombe, E Durrieu, A. Briais, et al., “Flow cytometry CD45
gating for immunophenotyping of acute myeloid leukemia,”
Leukemia, vol. 11, no. 11, pp. 1878-1886, 1997.

[19] W. Cui, W. Ma, and Q. Lin, “CD45-gating for flow cytometric
immunophenotyping of leukemia,” Zhongguo Yi Xue Ke Xue
Yuan Xue Bao, vol. 22, no. 2, pp. 199-203, 2000.

[20] R. Gelman and C. Wilkening, “Analyses of quality assessment
studies using CD45 for gating lymphocytes for CD3%4"%,”
Cytometry Part B, vol. 42, no. 1, pp. 1-4, 2000.

[21] R.J. Lock, P. E Virgo, and R. S. Evely, “Pitfalls of CD45 gating
strategies in leukaemia immunophenotyping,” Clinical and
Laboratory Haematology, vol. 25, no. 1, p. 67, 2003.

[22] S. H. Maljaei, 1. Asvadi-E-Kermani, J. Eivazi-E-Ziaei, A.
Nikanfar, and J. Vaez, “Usefulness of CD45 density in the
diagnosis of B-cell chronic lymphoproliferative disorders,”
Indian Journal of Medical Sciences, vol. 59, no. 5, pp. 187-194,
2005.

[23] M. Inokuma, C. dela Rosa, C. Schmitt, et al., “Functional
T cell responses to tumor antigens in breast cancer patients
have a distinct phenotype and cytokine signature,” Journal of
Immunology, vol. 179, no. 4, pp. 2627-2633, 2007.

[24] M. Inokuma, C. dela Rosa, C. Schmitt, et al., 96-well plate data

deposited with Flow Informatics and Computational Cytom-

etry Society website, 2008, http://www.ficcs.org/software

.html#Data_Files.

Y. Benjamini and Y. Hochberg, “Controlling the false discovery

rate-a practical and powerful approach to multiple testing,”

Journal of the Royal Statistical Society Series B, vol. 57, no. 1,

pp. 289-300, 1995.

(12

(25

11

[26] K. I. Kim and M. A. van de Wiel, “Effects of dependence in
high-dimensional multiple testing problems,” BMC Bioinfor-
matics, vol. 9, article 114, 2008.

[27] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273-297, 1995.

[28] E. Dimitriadou, K. Hornik, E Leisch, et al., “el071:
Misc Functions of the Department of Statistics,” 2008,
http://cran.r-project.org/src/contrib/e1071_1.5-19.tar.gz.

[29] K. Lo, R. R. Brinkman, and R. Gottardo, “Automated gating
of flow cytometry data via robust model-based clustering,”
Cytometry Part A, vol. 73, no. 4, pp. 321-332, 2008.

[30] D.R. Parks, M. Roederer, and W. A. Moore, “A new “logicle”
display method avoids deceptive effects of logarithmic scaling
for low signals and compensated data,” Cytometry Part A, vol.
69, no. 6, pp. 541-551, 2006.

[31] J. W. Tung, D. R. Parks, W. A. Moore, L. A. Herzenberg, and
L. A. Herzenberg, “New approaches to fluorescence compen-
sation and visualization of FACS data,” Clinical Immunology,
vol. 110, no. 3, pp. 277283, 2004.

[32] D. Novo and J. Wood, “Flow cytometry histograms: transfor-
mations, resolution, and display,” Cytometry Part A, vol. 73,
no. 8, pp. 685692, 2008.



Hindawi Publishing Corporation
Advances in Bioinformatics

Volume 2009, Article ID 235320, 9 pages
doi:10.1155/2009/235320

Research Article

Tree-Based Methods for Discovery of Association between Flow
Cytometry Data and Clinical Endpoints

M. Eliot,! L. Azzoni,? C. Firnhaber,3> W. Stevens,* D. K. Glencross,* 1. Sanne,>

L.J. Montaner,? and A. S. Foulkes!

I Division of Biostatistics, University of Massachusetts, Amherst, MA 01003, USA

2Immunology Program, Wistar Institute, Philadelphia, PA 19104, USA

3 Clinical HIV Research Unit, University of Witwatersrand, Johannesburg, South Africa

* Department of Hematology and Molecular Medicine, National Health Laboratory Service and University of

Witwatersrand, Johannesburg, South Africa

Correspondence should be addressed to A. S. Foulkes, foulkes@schoolph.umass.edu

Received 19 May 2009; Revised 14 August 2009; Accepted 12 October 2009

Recommended by George Luta

We demonstrate the application and comparative interpretations of three tree-based algorithms for the analysis of data arising
from flow cytometry: classification and regression trees (CARTS), random forests (RFs), and logic regression (LR). Specifically, we
consider the question of what best predicts CD4 T-cell recovery in HIV-1 infected persons starting antiretroviral therapy with CD4
count between 200 and 350 cell/uL. A comparison to a more standard contingency table analysis is provided. While contingency
table analysis and RFs provide information on the importance of each potential predictor variable, CART and LR offer additional
insight into the combinations of variables that together are predictive of the outcome. In all cases considered, baseline CD3-
DR-CD56+CD16+ emerges as an important predictor variable, while the tree-based approaches identify additional variables as
potentially informative. Application of tree-based methods to our data suggests that a combination of baseline immune activation
states, with emphasis on CD8 T-cell activation, may be a better predictor than any single T-cell/innate cell subset analyzed. Taken
together, we show that tree-based methods can be successfully applied to flow cytometry data to better inform and discover
associations that may not emerge in the context of a univariate analysis.

Copyright © 2009 M. Eliot et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Advances in flow cytometry, and particularly technological
developments that facilitate acquisition of multiparameter
defined phenotypes, present new and exciting opportunities
for predicting patient outcomes based on individual specific
cell subset changes. This is specifically relevant in the context
of studying human immunodeficiency virus (HIV), where
there exists a great potential to draw from the rich array of
data on host cell-mediated response to infection and drug
exposures, to inform and discover patient level determinants
of disease progression and/or response to antiretroviral ther-
apy (ART). We describe three existing analytic approaches,
designed specifically for uncovering complex structures, and
their applications to high density multiparameter cell subset
data arising from the use of flow cytometry technology.

We demonstrate the usefulness of each approach for novel
discovery in this context as well as the contrasting clinical
associations that each approach is tailored to address.

The data motivating our research were collected during
the pre-randomization stage of the South Africa Structured
Treatment Interruption (SASTI) trial, an on-going non-
inferiority trial that aims to determine whether patients
whose ART is interrupted after achieving immune control
on therapy will continue to retain the immune reconstitu-
tion benefits of therapy. Data on multiple immunological
parameters were collected, by way of flow cytometry, on
all study participants at start of ART and periodically over
the course of the trial. The aim of our present investigation
is to illustrate how tree-based machine learning algorithms
can be applied to characterize the predictive capacity of
a large number of immunological variables, collected at



therapy initiation, with regard to a single, clinically relevant
measure of immune reconstitution at a fixed time point on
continuous therapy and prior to randomization.

We begin by presenting briefly a commonly applied,
univariate analysis approach for testing the association
between each immunological parameter, individually, and
the outcome of interest. We then present three tree-based
methods that are designed for discovery of complex struc-
tures of association in high-dimensional data settings: (1)
classification and regression trees (CARTs) [1]; (2) random
forests (RFs) [2]; (3) logic regression (LR) [3, 4]. These meth-
ods have been described recently for many high-throughput
data settings, including most notably gene chip arrays [5-12];
however, to our knowledge, the application of these analytic
approaches to discover predictors of clinical outcomes based
on data arising from flow cytometry technologies has not
been reported previously.

Notably, the usefulness of CART for immunophenotyp-
ing is discussed in Beckman et al. [13], with a review in
Boddy et al. [14]. In our setting, the underlying goal differs
in that we aim to explore the clinical utility of a large
number of a priori defined phenotypes, rather than identify
new phenotypes based on a comparatively small number
of measurements. Also of note, in an earlier manuscript,
Ganju et al. apply CART to identify predictors of censored
survival time among patients with cerebral gliomas [15].
Inputs in the analysis include five flow cytometry variables,
as well as cytogenetic, molecular and clinical markers. Our
investigation extends this research, through consideration of
a large number of multiparameter subsets, and by offering a
discussion of multiple tree-based approaches, as well as their
comparative interpretations, for discovery of associations
between these subsets and a clinical endpoint.

2. Data and Laboratory Methods

The SASTI trial began in 2006 and led to the successful
recruitment of n = 127 HIV-1 infected individuals, of whom
n = 78 individuals completed the 36-week prerandomization
phase of the trial. Eligibility criteria for the study included
documented HIV-1 infection, 18 years of age or older, and
a CD4+ count between 200 and 350 cells/uL in the absence
of therapy and within 60 days of the start of the study. All
individuals in the trial received a similar ART regimen for the
first 36 weeks, and then were randomized to either multiple
short-term treatment interruptions or continuous therapy.
The present investigation focuses only on prerandomization
data, when all subjects are still on ART, as the trial is still on-
going as of August 2009.

Cellular immunophenotypes were studied using flow
cytometry. Stainings were performed on fresh whole blood
at the Department of Hematology and Molecular Medicine,
National Health Laboratory Service and University of the
Witwatersrand, Johannesburg, South Africa. Briefly, whole
blood samples were stained for surface marker detection
using fluorochrome-labeled monoclonal antibodies (mAbs)
lyophilized on 96-well plates (Lyoplates, BD Biosciences,
San Jose, CA). Fluorochrome binding was detected using
a 4-color FacsCalibur flow cytometer (BD Biosciences).
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Cellular subests were analysed using proprietary software
(CellQuest, BD Biosciences). Percent of positive cells was
calculated based on isotype-matched control mAb bind-
ing. Whole blood samples were stained with monoclonal
antibody (mAb) combinations (given in Table 1) for 30
minutes, followed by lysis and analysis on a FACScaliber
flow cytometer (BD Biosciences). Given the limitation of the
instrument (simultaneous detection of 4-color fluorescence),
multiple stainings were performed to assess subsets of
CD3+ T lymphocytes. The gating strategy is summarized as
follows.

(1) Background staining was assessed using isotype-
matched mAb (staining 1—this method is generally
considered acceptable for surface flow cytometry of
lymphocytes).

(2) Postrun electronic event gating was performed using
CellQuest software (BD Biosciences), based on the
use of multiple 2-color quadrants. A first gating
assessed expression of CD3 and CD8 (stainings 2, 3,
4,6), CD3 and HLA-DR (staining 5), CD3 and CD45
(staining 7), and Lin-1 and HLA-DR (staining 8).
Events falling in the quadrants of interest were further
gated using quadrants to explore the expression of
the remaining markers. The number of events falling
in each quadrant was collected. Results are expressed
as percent of gated/total events unless otherwise
specified.

(3) For T cell subset assessment, the CD4+ T lymphocyte
subset was directly stained using CD4 mAb only in
staining 7 (single platform CD4 count [16]). Based
on the mutually exclusive expression of CD8 and
CD4 in the vast majority of T cells (as also assessed
in staining 7), in all remaining T cell stainings (2, 3,
4, and 6) CD4+ T cells were defined as CD3+ cells
lacking expression of CD8.

In this paper, we focus on assessing the relationships
among multiple baseline flow cytometry variables collected
at initiation of ART and the variability in achieving a robust
CD4+ T-cell count rise on ART, in the context of restricting
the range of starting CD4 count between 200 and 350
cells/uL. A complete listing of the baseline flow variables is
given in the first column of Table 2. These are fluorescence-
based cell phenotypes following intensity threshold gates
using two to four fluorochromes. Four replicates, based on
independent data acquisitions, were recorded for each of
the phenotypes, CD3-CD8-, CD3+CD8-, CD3-CD8+, and
CD3+CD8+ and averaged for the analysis. After combining
these data, there are a total of 63 flow variables. All variables
are measured as a percent of gated at baseline, with the
exception of CD4+ which is a cell count. CD4+ T-cells, which
are targeted in the viral replication cycle, play an important
role in the functioning of the host immune system and
are a well-described marker for disease progression when
decreasing and as a response to ART based on its inverse
relation to viral replication [17]. A CD4+ cell count of
greater than 450 cells/uL at 36 weeks on ART is considered
a positive response to ART within this study and serves as



Advances in Bioinformatics 3
TaBLE 1: 4 Color stainings employed for flow cytometric analysis.

Staining no. FITC PE PerCP cy5.5 APC

1 Ig Ig Ig Ig

2 CD45RA CDe62L CD3 CD8

3 CD38 CD28 CD3 CD8

4 HLA-DR CD95 CD3 CDS8

5 CD56 CD16 CD3 HLA-DR
6 CD7 CD154 CD3 CD8

7 CD8 CD4 CD45 CD3

8 Lin-1 CD123 HLA-DR CDl1l1c

the outcome in our present investigation. Notably, while this
dichotomized version of CD4+ cell count is used in our
study, the analytic methods we present are equally applicable
to both binary and quantitative outcomes.

3. Methods

We present a univariate analysis and three tree-based algo-
rithms. The tree-based approaches involve recursive splitting
of the data, based on the value of predictor variables,
in a manner that broadly captures the variability in a
single outcome. All three approaches are nonparametric
and can be applied in the context of a large number of
predictors and a single binary or quantitive trait. Both
CART and RFs can handle both quantitative and binary
predictor variables, while logic regression requires dichoto-
mous inputs. For clarity of presentation, we dichotomize
all of the potential predictors a priori. Further discussion
of this, including model sensitivity to choice of inputs,
is given in Section 5. We begin by briefly defining our
notation.

3.1. Notation and Univariate Analysis. Suppose we have p
predictor variables based on the outcome of flow cytometry
at a single time point. We denote these with the vector x; =
(xi1. .., Xip) for individual i, where i = 1,...,n. The n X p
matrix X is used to denote the full data design matrix with
(i, j)-element corresponding to the value of variable j for
individual i. Subjects are assumed to be independent, though
we expect correlation among the predictors. Interest lies in
characterizing the association between X and a measured
trait, which we denote with the vector y = (y1, ¥2,..., ¥n)
for the » individuals in our study. In our setting, each of the
columns of X, denoted X, is a measure of the flow variables
and the outcome of interest is a binary indicator for CD4+
cell count >450 cells/uL. We define each X as an indicator
for being above or below the sample median value for that
variable.

Measuring and testing the association between a single
categorical predictor and a binary outcome is typically
achieved through a contingency table analysis. The odds
ratio, defined as the odds of disease given exposure, divided
by the odds of disease given no exposure, is a well-described

measure of association in the this context and is given
formally by

_ Pr(D* | E*)/[1 - Pr(D* | EY)]
~ Pr(D* | E)/[1-Pr(D* | E)]’

OR (1)
In our setting, we report the odds of having a CD4+ cell
count of more than 450 cells/uL (D*) given that a specific
baseline flow variable is in the upper half of its distribution
(E*), over the odds of having a CD4+ cell count >450
cells/uL given that this flow variable is in the lower half (E7).
Pearson’s y*-test can be applied as a test of the null hypothesis
of no association between exposure and disease for each flow
variable independently. An adjustment of the resulting P-
values, that accounts for the number of tests performed, is
needed in this setting for assessing statistical significance. We
report the g-value which is based on a positive false discovery
rate adjustment [18, 19].

3.2. Classification and Regression Trees. Classification and
Regression Trees (CARTs) are an alternative, nonparametric
approach that allows us to model simultaneously the rela-
tionship between an outcome and multiple potential predic-
tor variables. This approach provides us with information on
variable importance as well as the structure of association.
Classification trees are constructed for binary outcomes
while regression trees apply to continuous traits. Both binary
and continuous predictor variables are acceptable inputs,
though trees are constructed based on binary splits of these
data. The first step in generating a tree is to determine
the most predictive variable of the trait, which we denote
X(1), based on a prespecified splitting rule. Secondly, we
divide individuals into groups based on the value of X(;) and
determine the most predictive variable of the outcome within
each of these groups. This process is repeated recursively
until a stopping criterion is met and then the resulting tree
is pruned back to avoid over-fitting. Tree construction is
sensitive to the choice of splitting rule, and ultimately, we
want to define such a rule so that we partition our data
in a manner that minimizes the within group heterogeneity
in the outcome. Here we describe the CART methodology
generally, though in the example we present a classification
tree since we are considering a binary outcome.

Formally, let the node Q) represent the full set of data and
suppose after splitting the data based on one of the predictor



TaBLE 2: Univariate associations with CD4+ count at 36 weeks on
ART.

Predictor Odds ratio P-value
CD3-DR-CD56+CD16+ 0.183 .008
Lin-DR- 0.228 .018
CD45+CD3+ 0.274 .035
CD3+CD8+CD38+CD28+ 0.281 .047
CD3-CD8+ 0.323 .084
CD3-DR+CD56+CD16+ 0.339 .087
CD3+CD8-CD7+CD154+ 0.339 .087
CD3-DR-CD56-CD16- 0.364 113
CD3+CD8+CD7+CD154+ 0.388 463
CD3+CD8-CD7+CD154- 0.389 .146
CD3+CD8-DR+CD95- 0.429 .189
CD3+DR- 0.460 .236
CD3+CD8-CD45RA+CD62L+ 0.477 283
CD3+CD8-DR+CD95+ 0.477 .283
CD45-CD3+ 0.494 .632
CD3+CD8- 0.494 .632
Lin-DR+CD123+CD11c+ 0.564 424
CD3+CD8+DR+CD95+ 0.628 571
CD3-DR+ 0.646 .586
CD3+CD8-DR-CD95- 0.646 .586
CD45+CD3+CD8-CD4- 0.703 .690
CD3+CD8+CD38-CD28+ 0.709 .699
CD3+CD8-CD7-CD154- 0.740 774
CD3+CD8+ 0.752 .786
CD3+CD8-CD38+CD28+ 0.759 797
CD3+CD8+CD38+CD28- 0.760 812
CD3-DR+CD56-CD16- 0.805 .887
CD3-DR+CD56+CD16- 0.805 .887
CD3+CD8+CD38-CD28- 0.813 .898
CD45-CD3- 0.862 .989
Lin-DR+CD123+CD11c- 0.913 917
CD3+CD8+CD45RA+CD62L- 0.923 .908
CD3+CD8+CD45RA-CD62L 0.931 .898
CD45+CD3+CD8-CD4+ 0.931 .898
CD3+CD8+DR+CD95- 0.938 .887
CD3+CD8-CD7-CD154+ 0.962 .696
CD3+CD8-CD38+CD28- 0.996 797
CD3+CD8+DR-CD95- 1.004 797
Lin+DR+ 1.074 .898
CD3-DR-CD56-CD16+ 1.074 .898
CD3-CD8- 1.074 .898
Lin+DR- 1.149 1.000
CD45+CD3- 1.160 .989
CD3+CD8-CD38-CD28- 1.160 .989
CD3+CD8-CD45RA+CD62L- 1.230 .898
CD45+CD3+CD8+CD4- 1.317 797
CD3+DR+ 1.329 .786
Lin-DR+CD123-CD11c- 1.329 .786
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TasLE 2: Continued.

Predictor Odds ratio P-value
CD3+CD8-DR-CD95+ 1.329 .786
CD3+CD8+DR-CD95+ 1.410 .699
CD45+CD3+CD8+CD4+ 1.410 .699
CD3+CD8+CD45RA-CD62L+ 1.422 .690
CD3-DR- 1.446 677
CD3-DR+CD56-CD16+ 1.486 .661
Lin-DR+ 1.511 .605
CD4+ 1.522 .598
Lin-DR+CD123-CD11c+ 1.522 .598
CD3+CD8-CD45RA-CD62L+ 1.630 512
CD3-DR-CD56+CD16- 1.630 512
CD3+CD8+CD7+CD154- 1.657 .502
CD3+CD8+CD7-CD154- 1.707 487
CD3+CD8-CD38-CD28+ 1.898 354
CD3+CD8-CD45RA-CD62L 2.011 294
CD3+CD8+CD45RA+CD62L+ 2.152 238

variables, we have two groups, Q; and Qg, called the left and
right daughter nodes, respectively. If the node impurity, or
heterogeneity, for Q) is denoted £((2), then we aim to identify
the split that maximizes

¢ = 4(Q) - 1(Qr) — L(Qr). (2)

That is, we want to choose a split that maximizes the
reduction in node impurity. In the context of a binary
outcome (y = 0 or 1), we let £(Q) = 7(Q)i(Q2) where 7
is the probability of belonging to , so that (2) reduces to

¢ =i(Q) — mi(Qr) — mri(Qg). (3)

The impurity, i(Q2), is commonly measured using the Gini
index [12], defined as

i(Q) = 2pa(l - pa), (4)

where pg =Pr(y = 1| Q) is the conditional probability that
y is equal to 1 within the node Q.

Once a tree is constructed, as shown in Figure 1, we
prune it to ensure its applicability to external datasets.
Importantly, increasing the number of splits in a tree will
inevitably decrease the prediction error for the data used
to generate the tree. However, a smaller tree may better
describe the underlying structure in the population at large.
Therefore, after we build a tree, as described above, we prune
it in order to get an optimal subtree, using cost-complexity
pruning. Briefly, for tree 7 of size |7| and complexity
parameter a > 0, the cost complexity is given by

Ry =R(T) +a|T |, (5)
where

R(T) = Z Pr(1)r(7), 6)

TeT
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n=78
pa = 0.243
(19/78)
CD3-DR-CD56+ CD3-DR-CD56+
CD16+ CD16+
= high =low
n =39
n=39 pa = 0.385
pa =0.103 (15/39)
(4/39)
Lin-DR- Lin-DR-
= high =low
n=16 n=23
pa = 0.125 pa =0.56
(2/16) (13/23)
CD3+CD8- CD3+CD8-
DR+CD95+ DR+CD95+
= high =low
n=12 n=11
pa = 0.333 pa =0.82

(4/12) (9/11)

FiGurek 1: Classification tree (unpruned).

7 is the set of terminal nodes in tree 7 and r(7) is the
measure of error for the node 7. In the case of a binary
outcome, we let r(7) equal the misclassification rate.

3.3. Random Forests. Random Forest (RF), originally pro-
posed by [2], is an alternative approach that involves
generating a collection of trees. Since this approach results
in an ensemble of trees, which tend to vary in structure,
RFs serve to quantify the importance of variables, rather
than depicting the specific structure of association among
variables. A primary advantage of RFs is that, through
sampling a subset of variables at each split, it offers a natural
approach to handling collinearity among the predictors.
In this paper, we demonstrate the application of RFs as
an exploratory tool, although methods for determining
statistical significance based on variable importance scores
have been described recently [20, 21].

The RF algorithm is summarized by the following
step-by-step procedure: (1) generate a learning sample by
sampling n; individuals with replacement from our data
(usually about two-thirds of the data). We call the remaining
n, ~ n — n; data the out-of-bag (OOB) data; (2) using
the learning sample data, generate an unpruned tree by
randomly sampling a subset of the predictors at that node.
These predictors will be used as our variables on which our
splitting decisions are based (3) based on the OOB data,
find the overall tree impurity, and call this 7,. Permute the
predictor X; and record the overall tree impurity for each
j =1,...,p. Call tree impurity for the jth predictor m; and
call variable importance for this predictor 8,; = m; — 7.
(4) repeat steps (1)—(3) for b = 2,...,B in order to obtain
01j5...,0pj for each ;.

For each predictor, j, the overall variable importance
score is given by the average importance over the B trees.
Formally, we write

~ 1 &
b= L0, (7)
B

Notably, for each tree, a learning sample is used in the tree
construction, while an independent test sample, called the
OOB data, is used to evaluation variable importance.

3.4. Logic Regression. Logic regression (LR) is another tree-
based approach that is increasingly popular for the analysis
of high-dimensional data. LR searches specifically for models
that are comprised of combinations of Boolean expressions
of the predictors [3, 4]. Boolean expressions take on the
value of either 0 or 1, and are themselves functions of
binary variables, related to each other by “and,” “or,” and
“complement” statements. Formally, LR models are of the
form

gELY | X]) = o+ D.BiLj, (8)

j=1

where L; is a Boolean combination of the binary pre-
dictors. Suppose that we have binary predictor variables
X1,Xs,...,X, which we want to use to predict some
outcome. An example of a Boolean expression in terms of our
group of predictors is (X; A Xz) V (X3 A X{), which represents
“bothX; = 1and X; = 1orboth Xz = 1 and X4 = 0.7

4. Example

We report the results of applying a univariate analysis and
each of the tree-based methods described above to data
arising from the SASTI trial detailed in Section 2. In total,
n = 63 flow cytometry variables, measured at baseline,
are used as potential predictors (in addition to CD4+
count at baseline). Each variable is dichotomized to indicate
whether the value is above or below the median of the
observed (nonmissing) values for that predictor. That is, an
observation is set equal to 1 if it is greater than the median
value for all observations in our sample of that predictor and
0 otherwise. A single imputation is used such that missing
data points are assigned the most common value of 0 or 1,
based on the nonmissing data for the corresponding variable.
The outcome of our analysis is an indicator for whether
CD4+ cell count is greater then 450 cells/uL at 36 weeks after
initiation of ART, which represents the last time point prior
to randomization.

The univariate analysis results are provided in Table 2.
Here the OR is reported as a measure of association between
each flow variable at baseline and CD4+ cell count at 36
weeks on ART. The P-value corresponds to Pearson’s y*-test
of association. Based on this analysis, we see that CD3-DR-
CD56+CD16+ is the most predictive variable with an OR
= 0.183 (unadjusted P = .008). This suggests that the odds
of having a CD4+ cell count >450 cells/uL while on therapy
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Random forest binary predictors

CD3-DR-CD56+CD16+
Lin-DR-

CD45+CD3+
CD3+CD8+CD38+CD28+
CD3+CD8-CD7+CD154+
CD3-DR-CD56-CD16-
CD3-DR+CD56+CD16+
CD3-CD8+
CD3+CD8+CD45RA+CD62L+
CD3+CD8-CD7+CD154-
CD3+DR-
CD3+CD8-DR+CD95-
CD3+CD8+CD45RA-CD62L+
CD3+CD8-CD45RA+CD62L+
CD3+CD8-CD45RA-CD62L
CD3+CD8-DR+CD95+
Lin-DR+CD123+CD11c+
CD3+CD8-CD45RA-CD62L+
CD3+CD8+DR+CD95-
CD45+CD3+CD8-CD4-
Lin+DR-

CD3+CD8+
CD3+CD8+CD7-CD154-
Lin-DR+CD123+CD11c¢-
CD45+CD3+CD8+CD4+
CD3+CD8+CD38-CD28-
Lin-DR+CD123-CD11c¢c+
CD3+CD8+DR+CD95+
Lin+DR+
CD3+CD8+CD7+CD154+
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FIGURE 2: Variable importance scores from application of an RE.

is higher among individuals with a baseline observed CD3-
DR-CD56+CD16+ that is in the lower half of our sample.
Lin-DR- at baseline is the next most predictive variable,
with an OR = 0.23 (unadjusted P = .018). After adjusting
for multiple testing using the approach of Benjamini and
Yekutieli [22], we cannot conclude that any of the flow
variables alone are significantly associated with CD4+ count
after 36 weeks. The repeated ORs reported in this table are
likely due to the limited sample size in our study, as clear
relationships among these pairs and triplets of variables are
not generally well-established.

An unpruned classification tree, based on a stopping rule
of n = 5 individuals per node, is illustrated in Figure 1.
This model yields five terminal nodes, indicated by the
shaded circles, resulting from splits based on CD3-DR-
CD56+CD16+, Lin-DR- and CD3+CD8-DR+CD95+. The
first split indicates, for example, that for high CD3-DR-
CD56+CD16+ (i.e., CD3-DR-CD56+CD16+ greater than
the median), only po = 4/39 = 10.3% of the individuals
in our sample have an observed CD4+ count that is greater
than 450, while for low CD3-DR-CD56+CD16+ (i.e., CD3-
DR-CD56+CD16+ less than the median), po = 15/39 =
38.5% of individuals have a CD4+ cell count that is greater
than 450 cells/uL. Among those individuals who fall to the
right daughter node (i.e., low CD3-DR-CD56+CD16+), the
next most important predictor is Lin-DR-. When CD3-DR-
CD56+CD16+ is low and Lin-DR- is high, 2/16 = 12.5%

of the subjects in our sample have an observed CD4+
count that is greater than 450. On the other hand, when
both CD3-DR-CD56+CD16+ and Lin-DR- are low, a much
higher percentage (13/23 = 56.5%) of individuals have
a CD4+ count greater than 450 cells/uL. Application of
cost-complexity pruning resulted in a tree with no splits,
suggesting that these findings may not be reproducible in an
independent sample. This may be a consequence of limited
power in our small sample setting.

The results of applying the RF algorithm to these data
are given in Figure 2. Here we see that the most important
baseline predictor of CD4+ count on ART is again CD3-DR-
CD56+CD16+, with a mean decrease in node impurity of
1.26. The next most important variable is Lin-DR- (also the
second split in our classification tree), with a corresponding
mean decrease in node impurity of 1.05. These results are
generally consistent with the univariate analysis of Table 2
and to some extent with the classification tree of Figure 1;
however, some notable differences are apparent. First, the
RF analysis places more emphasis on CD45+CD3+ as an
important predictor than the CART analysis. Interestingly,
CD45+CD3+ is also the third most important variable in the
univariate analysis. Since the classification tree is considering
a series of conditional analyses, this difference may be a
result of CD45+CD3+ not having a strong association within
levels of the first splitting variable, CD3-DR-CD56+CD16+.
Secondly, the classification tree analysis places greater



Advances in Bioinformatics

Or

N

And

CD3-DR-
CD56-CD16-

Note: gray box indicates complement

(a) First element of LR (/§1 = —4.96)

And
Or
CD3-CD8-
CD7-CD154+
CD45+CD3+ Lin-DR+
CD8+CD4- CD123-CDl11c+

Note: gray box indicates complement

(b) Second element of LR ([§2 = -3.79)

FIGURE 3: Logic regression trees.

emphasis on CD3+CD8-DR+CD95+ than either the RF or
univariate approaches. This specifically lends some insight
into a potential effect of the combination of CD3-DR-
CD56+CD16+, Lin-DR-, and CD3+CD8-DR+CD95+.
Finally, we applied LR to the data and the resulting
trees are presented in Figure 3. Here we applied a logit link
function, specified that we wanted two trees and restricted
the total number of “leaves” (across both trees) to 6 for ease
if interpretation. The coefficient estimates for the trees in
Figures 3(a) and 3(b) are ﬁl = —4.96 and [§2 = —3.79, respec-
tively. In this case, the variable CD3-DR-CD56-CD16- is an
important predictor of CD4+ count on therapy. Notably,
this variable is highly negatively correlated with CD3-DR-
CD56+CD16+ (Pearson’s p = —0.71), which was identified
as the most important predictor of immune reconstitution
based on the other approaches described above. In addition
to CD3-DR-CD56-CD16- being an important predictor of
immune reconstitution, we have, for example, based on the
second tree, that when CD3+CD8-CD7+CD154+ is low (less
than the median) and either CD45+CD3+CD8+CD4- or
Lin-DR+CD123-CD11c+ is high (greater than the median)
the log odds that CD4+ count is greater than 450 cells/uL
decreases by 3.79, compared to when this does not hold.

5. Discussion

The goal of this study is to compare a number of tree-
based methods for their capability to select immunological
predictors of CD4 reconstitution in HIV-infected subjects
initiating antiretroviral treatment. Earlier studies from our
group have demonstrated that pre-ART CD95 expression
on CD8+ T cells is negatively associated with the frequency
of plasmacytoid Dendritic Cells (PDCs) after 52 weeks of
treatment [23]. Conversely, a positive association was also
demonstrated between levels of baseline CD28 expression
in CD4+ T cells and PDC recovery. Other studies have
also suggested that baseline CD4 count may predict the
degree of post-ART immune reconstitution [24]. How-
ever, the selection of immunologic predictors of immune
reconstitution has so far been based on known biologic
associations between variables (e.g., association of a certain
variable with diseases stages, etc.), and data-mining methods
for automated unbiased selection from a large numbers of
variables remain underutilized.

We describe the application of a univariate approach
and three tree-based methods for the analysis of the
association between a single trait and multiple variables
arising from flow cytometric analysis. Interestingly, for this
data example, the univariate contingency table analysis and
RFs resulted in similar findings in terms of the ranking
of important variables. This may not always be the case,
since as we describe in Section 3, the variable importance
scores derived within the context of RFs are based on the
individual effects of variables, as well as their effects within
levels of other variables. In the example provided, CART
and LR provided complementary information about the
structure of association, and particularly the combinations
of variables that are informative. Specifically, while all
of the approaches suggest that CD3-DR-CD56+CD16+ is
an important predictor of CD4+ count on therapy, the
CART model further suggests that among individuals for
whom CD3-DR-CD56+CD16+ is in the lower half of our
sample, Lin-DR- is an important variable in differentiating
between responders and nonresponders. Similarly, the LR
analysis revealed several combinations of variables that
lend further insight into determining the individual level
characteristics that together are predictive of response to
ART in this population. The added information on variables
that are predictive of outcome, beyond those identified
by univariate analysis, provides greater understanding of
multiple combinations among variables that may equally
predict an outcome, reflecting the potential complexity of
responses among human study groups.

Notably, a high degree of correlation is intrinsic to the
variables included in our analysis of flow cytometry data.
Specifically, events passing a certain logical gate are assessed
for co-expression of two fluorochromes, and separated in
quadrants based on the intensity (above or below a certain
level) of each fluorochrome. Thus, any increase in the percent
of events falling in one quadrant must correspond to a
decrease in the percent of events that fall in one or more
of the other quadrants. For example, the variables CD3-
CD8-, CD3+CD8-, CD3-CD8+, and CD3+CD8+ arise from



four quadrants on the same plate for each individual and
thus always sum to 100%. While each variable represents
a distinct cell subset, and application of the described
approaches to data with such a correlation structure is
reasonable, further extensions of these methods that account
for the correlation structure may offer new insights. At
the same time, interpreting variable importance must be
done in light of the existing correlations. For example, we
saw in the example provided above that both CART and
the RF identified CD3-DR-CD56+CD16+ as an important
predictor of immune reconstitution, while LR identified the
highly correlated variable, CD3-DR-CD56-CD16-. RFs offer
a natural approach to handling correlations by sampling a
subset of predictors at each stage of the tree splitting; how-
ever, using any of the approaches described, the importance
of a variable may be obscured in the presence of other, very
highly correlated variables. One alternative approach is to
choose a priori a subset of uncorrelated variables to include
in the analysis. This is reasonable if prior knowledge suggests
multiple variables are defining the same underlying construct
but may be less optimal if the precise relationship among
variables is unknown.

This paper represents an attempt to utilize data from
experimental and clinical laboratory settings that are avail-
able in resource constrained settings. While it is general
good scientific practice to avoid unnecessary assessment,
limiting stainings and maximizing the usefulness of current
resource capacity is paramount in the settings in which these
experiments were conducted. Because the use of multicolor
flow cytometers is restricted to resource-rich clinical and
research settings, we have elected to use the output of
more commonly available 4-colour analytical instruments,
in the hope that any information gained from this approach
is applicable in the resource-constrained settings such as
those in which the study was conducted. We also agree
that the clinical interpretability of the findings in this
data setting is limited. Specifically, the full panel of mAb
used for this paper would not be applicable to general
practice, particularly in resource constrained settings, due
to issues of cost and laboratory capacity. This panel was
in fact used in an experimental setting, to investigate in
detail the effects of ART on individual immune subsets.
However, the purpose of this paper is to identify which,
among the baseline, pre-ART stainings performed, could be
useful to predict the desired outcome (in this case immune
reconstitution as assessed by CD4 counts). We demonstrated
how tree-based approaches can be applied to identify a small
number of phenotypes that contribute to the selected CD4
recovery outcome. Importantly, many of the cellular subsets
(e.g., mature NK cells, myeloid Dendritic cells, CD95-
expressiong activated T lymphocytes) selected using the
three tree-based methods presented here as being predictive
of immune reconstitution have been previously shown to
be individually correlated with disease progression and/or
immune reconstitution [25, 26], thus further supporting
the reasonableness of our approach. CD4 is presently the
only validated tool to monitor immune competence in HIV-
infected individuals. However, because pre-ART CD4 counts
are notoriously poor predictors of clinical response to ART,
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the identification of a limited number of variables that could
be used as additional predictors in larger prospective studies
represents an important contribution to the field. Selected
stainings can be recombined in smaller panels, reducing
cost and capacity consumption; for example, based on the
logic regression trees presented in Figure 3, the use of only
two staining combinations (e.g., CD3/CD8/CD7/CD154 and
CD45/CD3/CD4/CD8) would be sufficient to predict a CD4
immune reconstitution outcome.

Importantly, differences in the insights offered by each
of the approaches presented are a reflection of the specific
algorithms employed and not the result of one approach
being more or less correct than another. The univariate
analysis, while methodologically sound, only considers asso-
ciations that exist between single variables and the outcome.
Univariate analyses are not designed to discover variables
that are only important conditional on the level of another
variable. The CART and RF algorithms, on the other hand,
are specifically searching for conditional associations, that
is, associations of variables with the outcome within levels
of other variables. Finally, logic regression trees allow for
discovery of combinations of variables that are predictive,
even in the setting in which no single element of the
combination is important on its own. That is, both CART
and RF split initially on the single most important variable;
however, if a combination of two or more variables is
important, none of which are predictive individually, then
both CART and RF may not find this association [12, 27].
The LR algorithm, on the other hand, is designed specifically
to capture this information.

In summary, each of the tree-based approaches described
herein complement univariate analyses of multiparameter
defined flow cytometry subsets. These methods are designed
specifically to uncover complex structures, and as demon-
strated in the example above, allow for discovery of combina-
tions of variables that are together predictive of an outcome.
While extensions of these methods, including, for example,
the recently proposed approach of [20], would allow for
measuring statistical significance of variable importance
scores, their strength lies in the discovery of combinations
of variables that are potentially associated with the out-
come. In all of the approaches presented, a type of cross-
validation algorithm is applied, which renders the results
theoretically applicable to independent samples. However,
as with all exploratory analyses, further hypothesis driven
research will enable further validation of true underlying
associations.
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envision iFlow to be easily extensible in order to quickly integrate novel methodological developments.
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1. Introduction

The analysis of large and highly complex datasets produced
by modern high-throughput biomedical research can be a
daunting task. Programmatic approaches, batch processing,
and targeted analysis pipelines are typically employed to deal
with this growing complexity. These solutions usually require
considerable programming proficiency, or a rigid workflow
structure that can be bundled into a static pipeline.

Flow cytometry (FCM) is an important emerging tech-
nology in immunology, cancer research, and health care.
The technology is extremely versatile, and a multitude of
different applications have been developed, which is reflected
in a complicated and multilayered data analysis process.
The analysis of FCM data has traditionally relied heavily
on manual decision-making, and FCM software platforms
typically present an interactive graphical user interface (GUI)
as their primary interface [1, 2].

However, the sheer volume of data in high-throughput
FCM experiments makes it impossible for an expert to effi-
ciently perform fully manual analyses, and a certain degree of
automation has become essential [3-5]. In the Bioconductor
project [6], we have implemented a set of flexible command-

line tools to facilitate the analysis of complex FCM data [7, 8].
The goal of the software is to foster the development of
novel analytic methods by providing an open and extensible
research platform that enables collaboration between bioin-
formaticians, computer scientists, statisticians, biologists,
and clinicians. In order to succeed in this goal, we need
to engage experienced practitioners who do not necessarily
have programming skills. iFlow is a cross-platform software
application meant to expose the tools and methods available
in the Bioconductor project to such an audience by means of
an interactive, extensible, and locally customizable GUL

2. Results

iFlow is implemented using the Gtk2 toolkit [9, 10], and
sits on top of R and Bioconductor. It allows convenient
management, visualization, and analysis of FCM data. On
startup, iFlow will open an application window (Figure 1).
Subsequently, one or more additional graphics windows may
also be opened (Figure 2). The application window consists
of a control panel and the main panel. The control panel lists
all available datasets and gates, and allows the user to select
one. All operations are peformed on the currently selected
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FIGURE 2: An iFlow graphics window displaying data of three FCM channels in the form of stacked density plots for ten different samples.

dataset. The main panel consists of a notebook with three
types of tabs: Information, Annotation, and Summary; their
contents are context-dependent.

The Information tab provides details about the currently
selected data-set. It also displays information about previ-
ously defined gates and transformations, which can be reused
in other tasks. The Annotation tab provides phenotypic
information about the individual samples in the current
data-set. It is possible to subset based on these covariates.

Various summaries of the data can be displayed in additional
Summary tabs.

A range of visualization methods are available from the
Graphics menu. These include contour plots, density plots,
scatter plots, ECDF plots, histograms, parallel coordinate
plots, Q-Q plots, scatter plot matrices, and time series plots.
Typical gating operations like rectangular and polygonal
selections are available from the Gate menu. iFlow also
supports basic interactive drawing of gates. In addition,
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a number of automated gating algorithms are available,
offering data-driven selection of distinct cell populations.
More general data manipulation operations are available in
the Data menu, including various transformation options
and data subsetting based on previously defined gates.

2.1. A Sample Session. Detailed usage instructions for iFlow
are available in the manual accompanying the package. Here,
we highlight some of the features one might use in a typical
session. Data in the form of FCS files or R binary data files
can be read in using the File|Load menu item. This step
adds one or more data entries to the Data tab in the control
panel. Selecting one such entry brings up a brief description
of the associated dataset in the Information tab, as well as a
tabular view of the sample covariates (e.g., Group ID, Patient
ID, Visit number, etc.) in the Annotation tab.

As a next step, we may wish to create a new data-set with
the subset of samples from a particular patient group. To do
this, we first select the appropriate rows in the Annotation,
and use the Subset item in the context menu that can be
brought up using the right mouse button. Alternatively, one
can use the Data|Subset By|Sample Covariates menu
item. This creates a new data entry in the control panel that
is nested within the original dataset.

We can next inspect the data graphically using items in
the Graphics menu. A useful overview is given by stacked
density plots (Figure 2). Such inspection may indicate the
need to transform the data, which can be achieved using the
Data|Transformation menu item.

The usual next step is to select a specific cell subtype for
further analysis, for instance lymphocytes. Various types of
gates can be created using the Gate |Create menu item; the
list includes a Lymphocyte gate which tries to automatically
select lymphocytes given a pair of channels and a third
preselection channel. Once a gate is created, it can be applied
to any dataset, and the results summarized in a Summary tab.

In large experiments, there is often a need for normal-
ization before comparisons can be made across samples.
The Data|Normalization menu item provides access to
several normalization methods. As when creating subsets or
transformations, normalization leads to the creation of a new
dataset nested within its parent.

A video of iFlow demonstrating the above steps is provi-
ded as Supplementary Material to this manuscript (see Sup-
plementary Material available online at doi: 10.1155/2009/
103839).

3. Discussion

Most FCM software implemented in the Bioconductor pro-
ject was developed to address the growing need for automa-
tion in the data analysis process. However, command-line
driven tools exclude a large group of potential users who are
more familiar with GUI software. Moreover, in the course of
working with high-throughput FCM datasets, it has become
apparent that complete automation is not yet a practical
goal, and some degree of manual interaction is crucial. We
developed iFlow in order to make our methods accessible
to a broader audience, and to combine the advantages of

automated or semiautomated analysis with interactive data
analysis.

The iFlow package contains all the code necessary to
create and run the GUI, but it does not contain any
code for the analysis of FCS data. Rather, it relies on
functionality implemented in other R packages, which are
installed and loaded at the same time as iFlow. It currently
provides access to data visualization, manual and automated
gating, transformations and basic data manipulations. This
is sufficient for initial exploratory data inspection, as well as
for prototyping large analysis projects.

Some of the capabilities exposed by iFlow, such as
automated gating, already go beyond what is available in
standard FCM GUI software. However, the primary long-
term advantage of our software is its open and extensible
nature. Additional functionality may easily be added in
response to user feedback, or once common use cases have
emerged. FCM is a field of active research, and we expect
many novel analytical methods to be developed in the
future. It would be relatively simple to incorporate these new
methods into iFlow once they are implemented within the
R/Bioconductor framework. This involves modification of
the appropriate menu items and association of a particular R
command with the extended menu. In this way, the extensive
facilites already provided by various R add-on packages can
be leveraged to expand the capabilities of iFlow with little
additional work; for example, FCM data stored in relational
databases could easily be imported using existing R packages
for database access.

We believe that iFlow can serve as a useful interface for
advanced statistical processing of FCM data, and that it will
help bridge the gap between bench scientists, statisticians,
and FCM data analysts. It is available as an R package on
Bioconductor (http://www.bioconductor.org/).
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Flow cytometry (FCM) software packages from R/Bioconductor, such as flowCore and flowViz, serve as an open platform for
development of new analysis tools and methods. We created plateCore, a new package that extends the functionality in these
core packages to enable automated negative control-based gating and make the processing and analysis of plate-based data sets
from high-throughput FCM screening experiments easier. plateCore was used to analyze data from a BD FACS CAP screening
experiment where five Peripheral Blood Mononucleocyte Cell (PBMC) samples were assayed for 189 different human cell surface
markers. This same data set was also manually analyzed by a cytometry expert using the FlowJo data analysis software package
(TreeStar, USA). We show that the expression values for markers characterized using the automated approach in plateCore are in
good agreement with those from FlowJo, and that using plateCore allows for more reproducible analyses of FCM screening data.

Copyright © 2009 Errol Strain et al. This is an open access article distributed under the Creative Commons Attribution License,
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1. Introduction

While there are a number of different software packages
available for analysis of FCM data, these programs are often
ill-suited to the development of new methods needed for
analyzing high-throughput FCM studies. Flow Cytometry-
High-Content Screening (FC-HCS) experiments generate
large volumes of data [1, 2], which requires a system-
atic approach to preprocessing, gating (i.e., filtering), and
summarizing results for robust analyses. Current FC-HCS
data analysis methods often use a combination of software
packages for different parts of the analysis. The raw FCM files
are processed and gated using FCM specific software, such as
FlowJo or FCS Express (De Novo Software, USA). Results are
then exported, and statistical analysis is performed in pack-
ages like MATLAB (USA) and R (http://www.r-project.org/)
[3]. Unfortunately, this approach to FC-HCS analysis results
in methods that are semiautomated at best, and they
often require significant subjective and error-prone manual
intervention to identify cells of interest [4]. It is therefore
desirable to develop programmatic approaches to process

FCM data so that FC-HCS analysis pipelines are robust,
objective, and able to match the high-throughput capacity
of modern cytometers.

FCM packages available through the Bioconductor [3]
project provide an open platform that can be used by
cytometrists, bioinformaticians, and statisticians to collab-
oratively develop new methods for automated FC-HCS
analysis. The basic data processing tools for importing, trans-
forming, gating, and organizing raw FCM data are in the
flowCore package [5] and the visualization functions are in
flowViz [6]. The Bioconductor model for FCM data analysis
facilitates the development of new analysis methods, since
the overhead associated with accessing and visualizing FCM
data is handled by flowCore and flowViz. The availability of
flowCore and flowViz has enabled the creation of new tools
for quality assessment of large FCM experiments, such as
flowQ [7], and for model-based clustering and automated
gating, such as flowClust [8].

We have developed an R package (plateCore) that
also takes advantage of the functionality in flowCore and
flowViz to create methods and data structures for processing
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plateCore
workflow

> pbmcFP <- flowPlate (pbmcPlate,
wellAnnotation, plateName = “PBMC.001”)

> pbmcFP <- compensate (pbmcFP, compensation.matrix)

> pbmcFP <- Subset (pbmcFP, rectangleGate (
“FSC-H” = ¢(300, 700), “SSC-H” = ¢ (50,400)))

> ecdfplot (~‘FSC-H’|as.factor (Row.Id), plateSet (pbmcFP))

> pbmcFP <- setControlGates (pbmcFP,
gateType = “Negative.Control”)

> pbmcFP <- applyControlGates (pbmcFP)

> pbmcFP <- summaryStats (pbmcFP)

FiGurek 1: Typical FC-HCS plate workflow on the left and corresponding steps from a PBMC lymphocyte plateCore analysis on the right.

large, plate-based FCM data sets. Additionally, we have
implemented new tools to make it easier to integrate
textual descriptions of plate layouts and also to perform
automated gating based on nonparametric analysis of neg-
ative control wells. This study presents results from an
automated plateCore analysis of a PBMC lymphocyte BD
FACS CAP (Combinational Antibody Profile) data set, which
included 189 different antibody-dye conjugates and their
controls arranged on 5 replicate 96-well plates. The output
of plateCore was compared to an analysis by an expert
cytometrist using Flow]Jo, one of the standard FCM analysis
programs, to evaluate the performance of the automated
approach.

plateCore is not designed to be a graphical user interface
driven tool, but rather to help develop a standardized plat-
form for the analysis of FC-HCS data. These analyses often
represent a collaborative effort between cytometry experts
who generate the data and the quantitative individuals who
help deal with the large volume information. In order for this
collaboration to work, the cytometrists must have confidence
in the results of the automated analysis. To this point, we
demonstrate the equivalence of our results to those produced
by an expert cytometrist using FlowJo.

2. Materials and Methods

2.1. Flow Cytometry Data. The data analyzed in this study
was part of the initial set of experiments used to validate the
BD FACS CAP platform. BD FACS CAP was designed as a
cell characterization tool to screen for the presence of a large
number of different human cell surface markers, and it was

important to show that the assay was able to correctly identify
positive and negatively staining markers on a well-studied
cell population, such as PBMC lymphocytes. Previously
frozen PBMC samples from two donors were analyzed on a
BD FACS Calibur using BD FACS CAP staining plates. The
analysis was performed on 96-well plates with 189 different
antibodies arrayed three per well in 63 test wells, along with
30 isotype control wells and three unstained controls. The
complete list of BD FACS CAP antibodies can be found
at http://www.bd.com/technologies/discovery_platform/
BD_FACS_CAP.asp. FCM files for the five plates (two for
Donor 1 and three for Donor 2) are available for download
from http://www.ficcs.org/data/plateData.tar.gz.

2.2. Data Analysis. FCM output was analyzed in parallel
using FlowJo and plateCore. Short descriptions of the steps
in each software package are provided below. Additionally,
the plateCore script used to perform the analysis is pro-
vided in Supplementary Materials available online at doi:
10.1155/2009/356141, and an example of the progression
from raw FCM data files to a completed plateCore analysis
for a single plate is shown in Figure 1.

2.3. plateCore

(1) Template Construction. A tab delimited text file was
created that describes the contents of each well on the
replicate plates. This information includes the marker
name, fluorophore, antibody type, and the isotype group
assignment. In this early version of BD FACS CAP the
combination of antibodies in a well was based on available
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FIGURE 2: FlowJo estimates for the percentage of cells above the isotype threshold for 189 markers on replicate plates for donor 1 and donor
2. Estimates from markers where the center of the cell population was near the isotype threshold, around 50%, were more variable than
samples which were clearly positive (>99%) or negative (<1%). The correlation for replicate plates was strong in both donors, with donor 1
at 0.92 and donor 2 at 0.98. Plate 9208 for donor 2 is not shown, since the results are very similar to 9206 and 9207.

antibody-dye combinations. Newer versions of BD FACS
CAP use biological information to assign markers to wells
and are able extract more useful coexpression information.

(2) Data Import. FCM files for each plate were imported
using flowCore. The import operation produces 5 flowSet
objects, one for each plate, which were then integrated
with the layout information in the template to create 5
flowPlates.

(3) Gating. flowPlates were processed using a combination
of static gates (rectangleGate) and data driven gates (using
norm2filter in flowCore) to pick out the lymphocytes in the
forward (FSC) and side scatter (SSC) channels.

(4) Plate Level Quality Assessment. The quality of the data
was then assessed by looking for fluidic events such as
bubbles, pressure drops, or large aggregates that can shift the
baseline fluorescence readings. Fluidic events can often be
identified by plotting the empirical cumulative distribution
function (ecdf) plots of FSC values for each well and looking
for distributions shifted relative to other wells [9]. Based
on the ecdf plots, several wells were further investigated by
cytometry experts who determined that the shifts were in an
acceptable range.

(5) Isotype-Based Gating. The threshold between positive
and negative cells was determined using the isotype controls,
which provided a gross estimate of nonspecific binding in
the primary antibodies. One-dimensional gates were created

using the isotype thresholds, and these gates were applied
to identify cells that had specific staining in channels of
interest. Details about the nonparametric isotype gating
strategy implemented in plateCore are provided in the results
section.

(6) Summarization. The 5 flowPlates were then aggregated
into a single flowPlate using the fpbind operation from
plateCore. Having the data in this format makes it easier to
plot replicate wells from different plates, perform statistical

analyses, and to export a single, experiment level results text
file.

2.4. Flow]o

(1) Template Construction. An XML-based Flow]Jo template
was created where test wells and their corresponding isotype
control well were assigned to one of 30 groups. Wells in each
group contained similar sets of antibody-dye conjugates.

(2) Data Import. FCM files were imported using the FlowJo
template.

(3) Gating. Lymphocytes were selected using polygonal gates
in the FSC-SSC view.

(4) Plate Level Quality Assessment. Quality assessment was
performed by looking for wells where the FSC-SSC location
of the lymphocyte population shifted relative to other wells
on a plate.
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F1GURE 3: Plot showing the percentage of cells above the isotype threshold from plateCore (x-axis) and FlowJo (y-axis) for each of the
189 markers on the 5 PBMC plates. If the two methods produce similar estimates, then the values should be near the red line (y = x). In
plateCore the isotype threshold was determined using only information from the isotype control well, while the threshold in FlowJo may be
adjusted after identifying either positively or negatively staining test samples. Generally, these Flow]Jo adjustments resulted in the isotype gate
being set a higher level to exclude a negative test sample. The effect of increasing the isotype threshold can be seen in these plots, where most
disagreements are cases where plateCore estimates are higher than FlowJo. Detailed plots for one marker, CD112 (red diamond), where the

two methods give different results are shown in Figure 5.

(5) Isotype-Based Gating. Event data for isotype wells was
visualized on a log scale, and the expression threshold for
each stained channel was set by picking a value that lies above
the bulk of the events. Isotype gates were initially set so that
approximately 0.5% of the events in the isotype well were
above the threshold. These gates were then applied to the
test wells, and the gates were moved up or down depending
upon positive and negative test well populations. If the
population of cells in positive wells was much higher than the
isotype gate, then the gate was moved up to help reduce false
positives associated with nonspecific staining. Similarly, if the
isotype gate was higher than negative samples, the gate would
be moved down to ensure that positive cells were classified
correctly.

(6) Summarization. The percentage of cells above the thresh-
old for each of the 189 antibodies was then exported for each

plate, and these results were merged to create the analysis
report.

3. Results

Although this study focuses on comparing two different
FC-HCS analysis methods, it is important to consider the
original goal of the experiment used to generate the data
when interpreting the results. BD FACS CAP was designed
to provide a standard assay platform for screening a large
number of markers on many different cell types. The
validation effort for BD FACS CAP included running the
assay on well-characterized cell types to find markers with
either positive or negative staining and comparing these
results to published cell expression profiles in literature.
The PBMC lymphocyte staining results presented in the
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F1GURk 4: Plot showing the percentage of cells above the isotype threshold from plateCore (x-axis) and FlowJo (y-axis) for donor 1 (red)
and 2 (blue) in channels FL1-H through FL4-H. plateCore gating for Phycoerythrin (PE) conjugated antibodies (FL2-H) was consistently

lower than FlowJo, resulting in more cells above the isotype gate.

following section represent one of the cell types used for
validating the technology.

3.1. FlowJo Output. Descriptions of marker expression pro-
files for particular cell populations in flow cytometry often
use terms like positive-negative, or bright-dim, to qualify
the amount of target present. Since BD FACS CAP is
a standard platform for screening a wide range of cell
types, and antibody concentrations were not optimized
for these particular PMBC samples, results are reported
as the percentage of cells above the isotype gate rather
than positive or negative. Followup studies, including single
color titrations and competition experiments, are needed

to definitively show that a marker is present. Markers that
have been previously characterized using BD FACS CAP
with >90% of the cells above the isotype threshold are
usually confirmed as positive using titration and competition
experiments, while staining in markers with <10% of cells
above the isotype threshold is often the result of nonspecific
binding (data not shown). Note that these percentages refer
to the fraction of cells above the isotype threshold, but
this does not necessarily imply heterogeneous staining in
multiple populations.

Automating the creation and modification of isotype
gates made by cytometrists analyzing BD FACS CAP data
using FlowJo is challenging. Cytometrists adjust gates based
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FIGURE 5: Density plots showing the plateCore (solid black) and FlowJo (dashed black) isotype gates for CD112 and CD109, which shared
the same isotype control (IgG1-PE). The plateCore and Flow]Jo analyses gave different estimates for CD112 (see Figure 3), which was caused
by the gate being moved higher in FlowJo based on the presumed negative staining for CD109.

on expert knowledge about the performance of specific
antibody types and dyes, or after identifying positive or
negative test samples. If the isotype gate cut off the bottom
portion of a positive cell population in a test well, then the
gate was moved down. Similarly, if the isotype gate included
too many cells from negative test wells, it was moved up.
Results from the FlowJo-based gating of replicate PBMC
plates are shown in Figure 2. Detailed results for each marker
are not presented in this study, but since the majority of
antibodies on the BD FACS CAP staining plate are known
to bind different leukocytes, it is not surprising that a large
fraction would be identified as positive on PBMCs. Markers

such as CD44, CD45, CD47, and CD59 are broadly expressed
on lymphocytes and were positive (>99%) in this study.

3.2. plateCore versus FlowJo. Isotype controls are used to
determine the threshold between background staining and
specific binding of an antibody conjugate to its target. For
the FlowJo analysis, the gate was initially set at the 99.5th
quantile of the fluorescence signal in each stained channel
of the isotype and then adjusted based on results from test
wells. In plateCore, we have implemented two approaches to
automatically creating gates based on negative controls. The
first simply replicates the initial creation of the Flow]Jo gates
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and determines the threshold based on a set quantile, while
the second uses a nonparametric approach where the gate
(Gij) for isotype i, channel j was set according to

G,‘j = MFL‘]‘ + 4MAD,‘]‘, (1)

where MFI is the Median Fluorescence Intensity and MAD
is Median Absolute Deviation in the raw data (linear
scale). Although FCM fluorescence signals are approximately
lognormal, as evident from density plots shown in this
study (Figures 5 and 8), it is difficult to reliably make
distributional assumptions, and the choice of 4 MADS
represents a conservative attempt to set the gate above the
99th quantile of cells in the isotype stained wells.

The nonparametric gating approach is obviously more
robust to outliers than a static gate based on the 99.5th quan-
tile, but in practice both methods produce very similar results
if the data is good quality and there are a sufficient number
of cells (over 1000) in the isotype well. The plateCore analysis
presented in this study used the nonparametric approach
to gating, and while this relatively simple method works
surprisingly well for BD FACS CAP, advances in model-based
clustering methods, such as those in flowClust, should lead to
future performance improvements in automated gating.

Comparisons of the output from the plateCore and
FlowJo analyses are shown in Figure 3. Both methods
produce nearly identical estimates for markers that were
either clearly positive (299%) or clearly negative (<1%),
and R-squared values for all makers were between 0.83
and 0.93 (Figure 3). These cell populations are not close to
the isotype threshold, and therefore different isotype gate
settings have little or no effect on estimates of the percentage
of cells above the gate. In situations where the isotype gate
splits a test cell population, small changes to the gate can
dramatically change these estimates. This effect is evident in
the results from replicate plates using FlowJo (Figure 2) and
in comparisons of FlowJo and plateCore (Figure 3), where
estimates for markers having approximately 50% of the cells
above the isotype gate are more variable than markers having
<1% or =99%.

Figure 4 shows the plateCore and FlowJo comparison
broken down by channel, and we can see that a large portion
of the markers that disagree were stained with Phycoerythrin
(PE) in FL2-H. plateCore estimates for antibodies conjugated
to PE were almost always higher than FlowJo, indicating that
the isotype gates in FlowJo were moved above their initial
setting. Looking in detail at one PE conjugate where the
two methods disagree, CD112 IgG1-PE, we can see how the
gate for was changed in the manual analysis based on what
looks like nonspecific staining in a related test sample, CD109
IgG1-PE (Figure 5). Since the gene for CD112 (PVRL2) has
been shown to be expressed on a subset of lymphocytes in
healthy donors using microarrays [10], the plateCore results
showing 65%-92% of the cells above the isotype gate may
actually represent specific staining. Unfortunately, increasing
the isotype (IGgl-PE) threshold in FlowJo to eliminate
what looks like background staining in CD109 also seems
reasonable. More focused studies will have to be performed
to determine if the staining for CD112, and other markers
that disagreed, was positive or negative.

Isotype well A02
2.5 1 Gate (9207) —>

Gate (9206,9208)
—

Plate 9207
) Gate (8774,8775)

1.5 A

Density

0.5 1

100 1005 10 1015
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FIGURE 6: Density plot showing an example of one case where the
isotype (IgGl-Alexa 488) gate settings differed between replicate
plates for donor 2 (blue). In this case, the low setting for plate
9207 did not result in a significant difference between plates for
the percentage of cells above the gate in the corresponding test well
(CXCR5), so the gate was not modified. Plates 9206, 9207, and 9208
had 14%, 16%, and 15% percent of cells above the gate, respectively.

3.3. Gating Quality Assessment. Since we may not always
have access to output from expert cytometrists to help
determine if our automated gating is reasonable, we need
alternative approaches to assessing the quality of our isotype-
based gates. The strategy we used for this PBMC study
involves visually checking density plots of the isotype wells
for replicate plates and also comparing the percentage of
cells above the isotype gates versus the MFI ratio to see if
the gating was consistent across the experiment. Plates for
each PBMC donor are purely technical replicates; so any
differences should be due to variation in cell staining or
changes in instrument settings.

An example of the plots used to check replicate isotype
gates is shown in Figure 6. In this case the threshold for
one of the 3 replicate plates for donor 2 was lower than the
other 2, indicating that the marker expression values from
this isotype should be further evaluated. Fortunately, the
difference is relatively small and did not change the estimate
for the test well associated to this isotype (CXCR5 IgGl-
Alexa 488). If the difference between replicates had been
larger, we would have averaged the isotype thresholds from
the remaining replicates and replaced the setting for plate
9207.

The MFI ratio is defined as the ratio of the MFI for a
marker to the MFI of its isotype control. Essentially, this
ratio tells us how well separated a population of stained test
cells is from the population of cells in the isotype control.
The distance between these two populations is related to
the percentage of cells above the isotype gate (Figure 7).
To evaluate isotype gating at the experiment level for these
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FIGURE 7: Quality of the automated gating was assessed by
performing a robust logistic regression of the percentage of cells
above the isotype gate on the log transformed MFI ratio and looking
for estimates that were more than 2 standardized residuals away
from the best fit line (red line). There were 18 estimates flagged in
this study (red diamonds) where the value was different than we
would predict from the MFI ratio. Detailed examination of these
18 cases showed that the isotype gate settings were reasonable, but
they differed from other markers in that they had more than one
population of stained cells. Sample density plots for one of these
markers, CD3, are provided in Figure 8.

5 plates we performed a robust logistic regression for the
percentage of positive cells on the MFI ratio and looked for
values that were more than 2 standard residuals from the
best fit line. We chose 2 standard residuals in a conservative
attempt to ensure that any questionable automated gating
decisions were examined in detail. Deviation from the best
fit line can indicate either a problem with the isotype gate or
that the sample has multiple cell populations (Figure 8). If
the percentage of cells above the gate is significantly different
than we would predict from the MFI ratio, then the isotype
gate was checked. We note that this approach does not
actually tell us if the gating was correct, simply whether or
not the isotype gating was consistent.

The bulk of the measured responses for the markers (927
out of 945) is within two standard residuals from the best
fit line (Figure 7), which is surprising since the 189 different
antibodies were conjugated to different fluorophores (either
Alexa 488, FITC, PE, PerCP, APC, or Alexa 647) and matched
against different isotypes (either IgG1, IgG2, IgG2a, IgG2b,
IgG3, or IgM). We expected that differences in fluorescence
intensity between dyes, and variation in nonspecific binding
by different antibody types, would make direct comparisons
difficult. The 18 values that were more than two standard
deviations away from the line were examined in detail, and
the isotype gate settings were found to be reasonable. In this
case the flagging was the result of a positive and negative
staining population of cells, which made the relationship
between the MFI ratio and the fraction of cells above the
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isotype gate look very different than markers staining a single
population. Density plots for one of the flagged markers,
CD3, are shown in Figure 8.

4. Discussion

We were motivated to use the flowCore package for BD
FACS CAP data analysis by a desire to reduce subjectivity
associated with isotype gating and also to make the more
analyses more reproducible. We found that while flowCore
was very powerful, both in terms of efficient use of memory
for large data sets and an extensive collection of FCM
functions, it did not scale well to BD FACS CAP experiments
with multiple plates and a complex layout. plateCore was
developed to make it easier to perform operations and
produce visualizations that are technically challenging to
do in flowCore and flowViz. For example, creating a set
of threshold gates based on negative control wells, either
isotype or unstimulated cells, and then applying those gates
to test wells on a plate is a relatively common FC-HCS
operation. In this study, the PBMC isotype gates were created
and applied to test wells in two steps, using setControlGates
and applyControlGates (Figure 1). Replicating this same
operation in flowCore would require either many individual
custom gating steps or users to develop their own methods
that duplicate the functionality in plateCore.

plateCore provided the ability to quickly analyze complex
BD FACS CAP plates and produce useful visualizations
(such as Figures 2-8), which facilitated discussions with
the cytometry experts and helped to develop approaches
to automate the gating process. Since this was a screening
assay, the goal was to quickly and reproducibly process
a large volume of data to get an approximate expression
value for each of the 189 human cell surface markers and
then perform more in-depth analysis for markers that were
of biological interest. Using plateCore, we were able to
reduce the level subjectivity in setting isotype gates, eliminate
mistakes associated with manual data annotation and export,
and automate the creation of plots and data quality reports
that summarized the experiment. Additionally, the plateCore
scripts and experimental annotation can be shared with
other cytometry groups, allowing them to reproduce our
analysis.

An important realization from our experience develop-
ing plateCore and analyzing BD FACS CAP experiments
was that individual isotype gates should not be changed by
cytometrists when performing FC-HCS experiments. The
cytometrist does not have any information other than expert
opinion about where a gate should go for a particular
set of values, and making adjustments adds both bias and
noise to the end result. In addition, the use of a more
uniform gating approach facilitates the use of plateCore to
combine and analyze results across many samples, which
is one of the important new capabilities of this software.
The functionality in plateCore enables cytometrists and
statisticians to work together and make higher level decisions
about gating strategies, based on methods like the gating
quality assessment shown in Figure 7. Also, the gating in
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FIGURE 8: Density plot for CD3 (IgG1-Alexa 488), which was flagged for further evaluation by our gating quality assessment (Figure 7). The
isotype gate settings look reasonable; however the MFI ratio for CD3 was very different from other markers that also had 75%-80% of their
cells above the isotype gate. Looking at Figure 7, other markers with 75%-80% had MFI ratios near 5, while CD3 has an MFI ratio of 31-37.
The flagging was the result of 2 cell populations for CD3, whereas most other markers stain a single population.

this experiment is relatively simple since we were only
concerned with one dimension at a time. Developing new
methods to reproducibly gate samples in three or more
dimensions requires tools like flowCore and flowClust. plate-
Core provides infrastructure that makes the data available
to quantitative scientists to further develop and apply these
research tools.

The complexity of large FCM experiments, like BD FACS
CADP, highlights the difficulty of applying existing FCM anal-
ysis platforms to high-throughput studies. Generating and
interpreting results from this PBMC study required extensive

collaboration between flow cytometrists, bioinformaticians,
and statisticians. At various points in the analysis, each group
needed to access the raw data, annotation, and details about
the experimental design. Providing this access using stand-
alone FCM platforms is expensive in terms of the price of
multiple software licenses and in time spent training statisti-
cians and bioinformaticians to use the programs. Fortunately
the Bioconductor FCM packages are modeled on standard
data structures used for microarrays, which should already
be familiar to most quantitative individuals working on high-
throughput biological problems. In addition, this approach
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allows scientists to use modern software development tools,
including version control software, to manage plateCore
scripts and make the analysis reproducible in a way that
is generally not possible with GUI-based tools. Finally, we
found that flowCore, flowViz, and plateCore provide an open
analysis platform that facilitates communication between the
flow cytometrists generating the data and the computational
experts analyzing the data.
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