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Digital audio effects usually refer to all those algorithms
that are used for improving or enhancing sounds in any
step of a processing chain of music production, from
generation to rendering. Today these algorithms are widely
used in professional or home music production studios,
electronic or virtual musical instruments, and all kinds of
consumer devices, including videogame consoles, portable
audio players, smartphones, or appliances. Motivated by this
expansion trend, in the past few years the range of research
topics that have fallen within the digital audio effects realm
has broadened to accommodate new topics and applications,
from space-time processing to human-machine interaction.

All the technologies and the research topics that are
behind such topics are today addressed by the International
Digital Audio Effects Conference (DAFx), which has become
a reference gathering for researchers working in the audio
field. In the many editions of the DAFx conference, we have
witnessed a proliferation of new and emerging methodolo-
gies for digital audio effects at many levels of abstraction,
from signal level to symbol level. Some of the contributions
to this special issue, in fact, are linked to works presented
in this conference and seem to capture this transformational
trend.

Two contributions of this special issue deal with aspects
of sound synthesis. Synthetic sound generation is an impor-
tant aspect of sound effects, whose importance has recently
grown beyond the boundaries of musical sound synthesis.
While virtual environments are becoming more and more

part of our everyday life, the sonification of acoustic events
in such environments is, in fact, still an open problem.
The first contribution of the series, by C. Picard et al.,
addresses exactly this issue and provides analysis tools for
determining the parameters of modal sound synthesis. The
second contribution, by J. Pakarinen, offers a different set
of analysis tools for parameter estimation, this time devoted
to a hot topic in the DAFx community, which is that of
virtual analog processing, with particular reference to the
nonlinearities that characterize the reference analog systems
that are being emulated. The third contribution, by A. Novak
et al,, allows us to take a different look at nonlinearities, this
time with reference to audio effects for music production.

Digital audio effects are also part of the music production
processing chain, which includes preprocessing, editing and
mixing. The paper, by Terrell et al., is concerned with the
noise gate, a specific type of digital effect, important for the
capturing drum performances and dealing with bleeds from
secondary sources. Another classical type of effects widely
used in music production is time/pitch scaling. This effect
is addressed in the contribution authored by E. Azarov et al.
The paper by E. Perez et al. again addresses music production
aspects, as it proposes a solution for automatic panning
effects in music mixing.

Sound rendering and, particularly, spatial rendering are
progressively gaining more and more importance in the
research community of DAFx. In this line of work is the paper
authored by F. Antonacci et al. which introduces a seminal



work on geometric wavefield decomposition which accounts
for propagation phenomena such as diffusion and diffraction
and serves as a computational engine for both wavefield
rendering and binaural rendering. Still in the area of binaural
rendering are the two contributions to this special issue, the
first of which is by L. Wang et al., which addresses the long-
debated problem of cross-talk cancellation. This paper is
followed by that of M. Cobos et al., which proposes a method
that allows us to avoid using a dummy head in binaural
recording sessions.

This special issue also includes two papers that deal
with high-level processing of musical content, which can be
used for a variety of applications, from music information
retrieval to digital audio effects. The former, by A. Barbancho
et al., is concerned with piano chords detection based on
parallel interference cancellation methods. The latter, by
Itoyama et al, and Okuno, tackles a query-by-example
technique based on source separation and remixing.
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This paper presents a new approach to modal synthesis for rendering sounds of virtual objects. We propose a generic method that
preserves sound variety across the surface of an object at different scales of resolution and for a variety of complex geometries.
The technique performs automatic voxelization of a surface model and automatic tuning of the parameters of hexahedral finite
elements, based on the distribution of material in each cell. The voxelization is performed using a sparse regular grid embedding of
the object, which permits the construction of plausible lower resolution approximations of the modal model. We can compute the
audible impulse response of a variety of objects. Our solution is robust and can handle nonmanifold geometries that include both
volumetric and surface parts. We present a system which allows us to manipulate and tune sounding objects in an appropriate way
for games, training simulations, and other interactive virtual environments.

1. Introduction

Our goal is to realistically model sounding objects for
animated realtime virtual environments. To achieve this, we
propose a robust and flexible modal analysis approach that
efficiently extracts modal parameters for plausible sound
synthesis while also focusing on efficient memory usage.
Modal synthesis models the sound of an object as a
combination of damped sinusoids, each of which oscillates
independently of the others. This approach is only accurate
for sounds produced by linear phenomena, but can compute
these sounds in realtime. It requires the computation of a
partial eigenvalue decomposition of the system matrices of
the sounding object, which can be expensive for large com-
plex systems. For this reason, modal analysis is performed
in a preprocessing step. The eigenvalues and eigenvectors
strongly depend on the geometry, material and scale of the
sounding object. In general, complex sounding objects, that
is, with detailed geometries, require a large set of eigenvalues
in order to preserve the sound map, that is, the changes
in sound across the surface of the sounding object. This

processing step can be subject to robustness problems. This
is even more the case for nonmanifold geometries, that is,
geometries where one edge is shared by more than two
faces. Finally, available approaches manage memory usage in
realtime by only pruning part of modal parameters according
to the characteristics of the virtual scene (e.g., foreground
versus background), without specific consideration regard-
ing the objects’ sound modelling. Additional flexibility in the
modal analysis itself is thus needed.

We propose a new approach to efficiently extract modal
parameters for any given geometry, overcoming many of the
aforementioned limitations. Our method employs bounding
voxels of a given shape at arbitrary resolution for hexahedral
finite elements. The advantages of this technique are the
automatic voxelization of a surface model and the automatic
tuning of the finite element method (FEM) parameters based
on the distribution of material in each cell. A particular
advantage of this approach is that we can easily deal with
nonmanifold geometry which includes both volumetric and
surface parts (see Section 5). These kinds of geometries
cannot be processed with traditional approaches which use



a tetrahedralization of the model (e.g., [1]). Likewise, even
with solid watertight geometries, complex details often lead
to poorly shaped tetrahedra and numerical instabilities; by
contrast, our approach does not suffer from this prob-
lem. Our specific contribution is the application of the
multiresolution hexahedral embedding technique to modal
analysis for sound synthesis. Most importantly, our solution
preserves variety in what we call the sound map.

The remainder of this paper is organized as follows.
Related work is presented in Section 2. Our method is then
explained in Section 3. A validation is presented in Section 4.
Robustness and multiscale results are discussed in Section 5,
then realtime experimentation is presented in Section 6. We
finally conclude in Section 7.

2. Background

2.1. Related Work. The traditional approach to creating
soundtracks for interactive physically based animations
is to directly playback prerecorded samples, for instance,
synchronized with the contacts reported from a rigid-body
simulation. Due to memory constraints, the number of
samples is limited, leading to repetitive audio. Moreover,
matching sampled sounds to interactive animation is difficult
and often leads to discrepancies between the simulated visu-
als and their accompanying soundtrack. Finally, this method
requires each specific contact interaction to be associated
with a corresponding prerecorded sound, resulting in a time-
consuming authoring process.

Work by Adrien [2] describes how effective digital
sound synthesis can be used to reconstruct the richness of
natural sounds. There has been much work in computer
music [3-5] and computer graphics [1, 6, 7] exploring
methods for generating sound based on physical simula-
tion. Most approaches target sounds emitted by vibrating
solids. Physically based sounds require significantly more
computation power than recorded sounds. Thus, brute-
force sound simulation cannot be used for realtime sound
synthesis. For interactive simulations, a widely used solution
is to apply vibrational parameters obtained through modal
analysis. Modal data can be obtained from simulations [1, 7]
or extracted from recorded sounds of real objects [6]. The
technique presented in this paper is more closely related to
the work of O’Brien et al. [1], which extends modal analysis
to objects that are neither simple shapes nor available to be
measured.

The computation time required by current methods to
preprocess the modal analysis prevents it from being used
for realtime rendering. As an example, the actual cost of
computing the partial eigenvalue decomposition using a
tetrahedralization in the case of a bowl with 274 vertices and
generating 2426 tetrahedra is 5 minutes with a 2.26 GHz Intel
Core Duo. Work of Bruyns-Maxwell and Bindel [8] address
interactive sound synthesis and how the change of the shape
of a finite element model affects the sound emission. They
highlight that it is possible to avoid the recomputation of the
synthesis parameters only for moderate changes. There has
been much work in controlling the computational expense
of modal synthesis, allowing the simultaneous handling of a

EURASIP Journal on Advances in Signal Processing

large variety of sounding objects [9, 10]. However, to be even
more efficient, flexibility should be included in the design of
the model itself, in order to control the processing. Thus,
modal synthesis should be further developed in terms of
parametric control properties. Our technique tackles com-
putational efficiency by proposing a multiscale resolution
approach of modal analysis, managing the amount of modal
data according to memory requirements.

The use of physics engines is becoming much more
widespread for animated interactive virtual environments.
The study from Menzies [11] address the pertinence of
physical audio within physical computer game environment.
He develops a library whose technical aspects are based
on practical requirements and points out that the interface
between physics engines and audio has often been one of
the obstacles for the adoption of physically based sound
synthesis in simulations. O’Brien et al. [12] employed
finite elements simulations for generating both animated
videos and audio. However, the method requires large
amounts of computation, and cannot be used for realtime
manipulation.

2.2. Modal Synthesis. Modal sound synthesis is a physically
based approach for modelling the audible vibration modes
of an object. As any kind of additive synthesis, it consists
of describing a source as the sum of many components
[13]. More specifically, the source is viewed as a bank
of damped harmonic oscillators which are excited by an
external stimulus and the modal model is represented with
the vector of the modal frequencies, the vector of the decay
rates and the matrix of the gains for each mode at different
locations on the surface of the object. The frequencies and
dampings of the oscillators are governed by the geometry
and material properties of the object, whereas the coupling
gains of the modes are determined by the mode shapes and
are dependent on the contact location on the object [6].

Modes are computed through an analysis of the govern-
ing equations of motion of the sounding system. The natural
frequencies are determined assuming the dynamic response
of the unloaded structure, with the equation of motion. A
system of n degrees of freedom is governed by a set of n
coupled ordinary differential equations of second order. In
modal analysis, the deformation of the system is assumed to
be a linear combination of normal modes, uncoupling the
equations of motion. The solution for object vibration can
be thus easily computed. To decouple the damped system
into single degree-of freedom oscillators, Rayleigh damping
is generally assumed (see, for instance, [14]).

The response of a system is usually governed by a
relatively small part of the modes, which makes modal
superposition a particularly suitable method for computing
the vibration response. Thus, if the structural response is
characterized by k modes, only k equations need to be solved.
Finally, the initial computational expense in calculating
the modes and frequencies is largely offset by the savings
obtained in the calculation of the response.

Modal synthesis is valid only for linear problems, that
is, simulations with small displacements, linear elastic mate-
rials, and no contact conditions. If the simulation presents
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nonlinearities, significant changes in the natural frequencies
may appear during the analysis. In this case, direct integra-
tion of the dynamic equation of equilibrium is needed, which
requires much more computational effort. For our approach,
the calculations for modal parameters are similar to the ones
presented in the paper of O’Brien et al. [1].

3. Method

In the case of small elastic deformations, rigid motion of
an object does not interact with the objects’s vibrations.
On the other hand, we assume that small-amplitude elastic
deformations will not significantly affect the rigid-body
collisions between objects. For these reasons, the rigid-body
behavior of the objects can be modeled in the same way as
animation without audio generation.

3.1. Deformation Model. In most approaches, the deforma-
tion of the sounding object typically need to be simulated.
Instead of directly applying classical mechanics to the
continuous system, suitable discrete approximations of the
object geometry can be performed, making the problem
more manageable for mathematical analysis. A variety of
methods could be used, including particle systems [3, 7]
that decompose the structure into small pair-like elements
for solving the mechanics equations, or Boundary Element
Method (BEM) that computes the equations on the surface
(boundary) of the elastic body instead of on its volume (inte-
rior), allowing reflections and diffractions to be modeled [15,
16]. The Finite Element Method (FEM) is commonly used to
perform modal analysis, which in general gives satisfactory
results. Similar to particle systems, FEM discretizes the
actual geometry of the structure using a collection of finite
elements. Each finite element represents a discrete portion
of the physical structure and the finite elements are joined
by shared nodes. The collection of nodes and finite elements
is called a mesh. The tetrahedral finite element method has
been used to apply classical mechanics [1]. However, tetra-
hedral meshes are computationally expensive for complex
geometries, and can be difficult to tune. As an example, in the
tetrahedral mesh generator Tetgen (http://tetgen.berlios.de/),
the mesh element quality criterion is based on the minimum
radius-edge ratio, which limits the ratio between the radius
of the circumsphere of the tetrahedron and the shortest edge
length. Based on this observation, we choose a finite elements
approach whose volume mesh does not exactly fit the object.

We use the method of Nesme et al. [17] to model
the small linear deformations that are necessary for sound
rendering. In this approach, the object is embedded in a
regular grid where each cell is a finite element, contrary to
traditional FEM models where the elements try to match
the object geometry as finely as possible. Tuning the grid
resolution allows us to easily trade off accuracy for speed. The
object is embedded in the cells using barycentric coordinates.
Though the geometry of the mesh is quite different from
the object geometry, the mechanical properties (mass and
stiffness) of the cells match as closely as possible the
spatial distribution and the parameters of material. The
technique can be summarized as follows. An automatic

high-resolution voxelization of the geometric object is first
built. The voxelization initially concerns the surface of the
geometric model, while the interior is automatically filled
when the geometry represents a solid object. The voxels
are then recursively merged (8 to 1) up to the desired
coarser mechanical resolution. The merged voxels are used
as hexahedral (boxes with the same shape ratio as the fine
voxels) finite elements embedding the detailed geometric
shape. The voxels are usually cubes but they may have
different sizes in the three directions. At each step of the
coarsification, the stiffness and mass matrices of a coarse
element are computed based on the eight child element
matrices. Mass and stiffness are thus deduced from a fine grid
to a coarser one, where the finest depth is considered close
enough to the surface, and the procedure can be described
as a two-level structure, that is, from fine to coarse grid. The
stiffness and mass matrices are computed bottom-up using
the following equation:

7

Kparent = ZLITKILD (1)
i=0

where K is the matrix of the parent node, the K; are the
matrices in the child nodes, and the L; are the interpolation
matrices of the child cell vertices within the parent cell.
Since empty children have null K; matrices, the fill rate
is automatically taken into account, as well as the spatial
distribution of the material through the L; matrices. As a
result, full cells are heavier and stiffer than partially empty
cells, and the matrices not only encode the fill rate but
also the distribution of the material within each cell. With
this method, we can handle objects with geometries that
simultaneously include volumetric and surface parts; thin or
flat features will occupy voxels and will thus result in the
creation of mechanical elements that robustly approximate
their mechanical behavior (see Section 5.1).

3.2. Modal Analysis. The method for FEM model [17]
is adapted from realtime deformation to modal analysis.
In particular, the modal parameters are extracted in a
preprocessing step by solving the equation of motion for
small linear deformations. We first compute the global mass
and global stiffness matrices for the object by assembling the
element matrices. In the case of three-dimensional objects,
global matrices will have a dimension of 3m x 3m where
m is the number of nodes in the finite element mesh. Each
entry in each of the 24 X 24 element matrices for a cell
is accumulated into the corresponding entry of the global
matrix. Because each node in the hexahedral mesh shares an
element with only a small number of the other nodes, the
global matrices will be sparse. If we assume the displacements
are small, the discretized system is described on a mechanical
level by the Newton second law

Md+Cd+Kd=f, 2)

where d is the vector of node displacements, and a derivative
with respect to time is indicated by an overdot. M, C,
and K are, respectively, the system’s mass, damping and



(1) Compute mass and stiffness at desired mechanical level
(2) Assemble the mass and the stiffness matrices

(3) Modal analysis: solve the eigenproblem

(4) Store eigenvalues and eigenvectors for sound synthesis

ALGorITHM 1: Algorithm for modal parameters extraction.

stiffness matrices, and f represents external forces, such as
impact forces that will produce audible vibrations. Assuming
Rayleigh damping, that is, C = o;K + a,M with some
and a,, we can solve the eigenproblem of the decoupled
system leading to the # eigenvalues and the n X m matrix of
eigenvectors, with n the number of degrees of freedom and m
the number of nodes in the mesh. The sparseness of M and
K matrices allows the use of sparse matrix algorithms for the
eigen decomposition. We refer the reader to Appendices A
and B for more details on the calculation.

Let A; be the ith eigenvalue and ¢; its corresponding
eigenvector. The eigenvector, also known as the mode shape,
is the deformed shape of the structure as it vibrates in the
ith mode. The natural frequencies and mode shapes of a
structure are used to characterize its dynamic response to
loads in the linear regime. The deformation of the structure
is then calculated from a combination of the mode shapes of
the structure using the modal superposition technique. The
vector of displacements of the model, u, is defined as:

u= Zﬁi‘bi, (3)

where f3; is the scale factor for mode ¢;. The eigenvalue for
each mode is determined by the ratio of the mode’s elastic
stiffness to the mode’s mass. For each eigen decomposition,
there will be six zero eigenvalues that correspond to the six
rigid-body modes, that is, modes that do not generate any
elastic forces.

Our preprocessing step that performs modal analysis can
be summarized as in Algorithm 1.

Our model approximates the motion of the embedded
mesh vertices. That is, the visual model with detailed geom-
etry does not match the mechanical model on which the
modal analysis is performed. The motion of the embedding
uses a trilinear interpolation of the mechanical degrees of
freedom, so we can nevertheless compute the motion of any
point on the surface given the mode shapes.

3.3. Sound Generation. In essence, efficiency of modal analy-
sis relies on neglecting the spatial dynamics and modelling
the actual physical system by a corresponding generalized
mass-spring system which has the same spectral response.
The activation of this model depends on where the object is
hit. If we hit the object at a vibration node of a mode, then
that mode will not vibrate, but others will. This is what we
refer to as the sound map, which could also be called a sound
excitation map as it indicates how the different modes are
excited when the object is struck at different locations.

From the eigenvalues and the matrix of eigenvectors,
we are able to deduce the modal parameters for sound
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synthesis. Let A; be the ith eigenvalue and w; its square root.
The absolute value of the imaginary part of w; gives the
natural frequency (in radians/second) of the ith mode of
the structure, whereas the real part of w; gives the mode’s
decay rate. The mode’s gain is deduced from the eigenvectors
matrix and depends on the excitation location. We refer the
reader to the Appendices A and B for more details on modal
superposition.

The sound resulting from an impact on a specific location
j on the surface is calculated as a sum of n damped
oscillators:

si(t) = iaij sin(27 fit)e %, (4)
i=1

where f;, d;, and a;; are, respectively, the frequency, the decay
rate and the gain of the mode i at point j in the sound map.
An object characterized with m mesh nodes and »n degrees-
of freedom is described with the vectors of frequencies and
decay rates of dimension #, and the matrix of gains of
dimension #n X m.

3.4. Implementation. Our deformation model implementa-
tion uses the SOFA Framework ( http://www.sofa-framework
.org/) for small elastic deformations. SOFA is an open-source
C++ library for physical simulation and can be used as an
external library in another program, or using one of the
associated GUI applications. This choice was motivated by
the ease with which it could be extended for our purpose.

Regarding sound generation, we synthesize the sounds
via a reson filter (see, for example, Van den Doel et al. [6]).
This choice is made based on the effectiveness for realtime
audio processing. Sound radiation amplitudes of each mode
is also estimated with a far-field radiation model ([15,
Equation (15)]). As the motions of objects are computed
with modal analysis, surfaces can be easily analyzed to
determine how the motions induce acoustic pressure waves
in the surrounding medium. However, we decide to focus
our study on effective modal synthesis. Finally, our approach
does not consider contact-position-dependent damping or
changes in boundary constraints, as might happen during
moments of excitation. Instead we use a uniform damping
value for the sounding object.

4. Validation of the Model

4.1. A Metal Cube. In order to globally validate our method
for modal analysis, we study the sound emitted when
impacting a cube in metal. Due to its symmetry, the cube
should sound the same when struck at any of the eight
corners, with an excitation force whose direction is the same
to the face (see Appendices A and B for more details on
the force amplitude vector). We use a force normal to the
face cube in order to guarantee the maximum energy in all
excited modes. The sound emitted should also be similar
when hitting with perpendicular forces that are both normal
to one pair of the cube faces.

We suppose the cube is made of steel with Young’s
modulus 21 x 10'°Pa, Poisson ratio 0.33, and density
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7850 kg/m>. The Raleigh coefficients for stiffness and mass
are set to 1 X 1077 and 0, respectively. The use of a constant
damping ratio is a simplification that still produces good
results. The cube model has edges which are 1 meter long.
A Dirac is chosen for the excitation force. In this case, no
radiation properties are considered.

In this example, a 3 X 3 X 3 grid of hexahedral finite
elements is used, leading to 192 modes. However, to adapt
the stiffness of a cell according to its content, the mesh is
refined more precisely than desired for the animation. The
information is propagated from fine cells to coarser cells. For
this example, the elements of the 3 X 3 x 3 cells coarse grid
resolution approximates mechanical properties propagated
from a fine grid of 6 X 6 X 6 cells and 216 elements (see
Section 3.1 for more details on the two-level structure).

We observe in Figure 1 that the resulting sounds when
impacting on different corners of the cube are identical. Also,
this is true when exciting with perpendicular forces that are
normal to cube faces. This shows that our model respects the
symmetry of objects, as expected.

4.2. Position-Dependent Sound Rendering. To properly ren-
der impact sounds of an object, the method must preserve
the sound variety when hitting the surface at different
locations. We consider a metal bowl, modeled by a triangle
mesh with 274 vertices, shown in Figure 2.

The material of the bowl is aluminium, with the param-
eters 69 x 10° Pa for Young’s modulus, 0.33 for Poisson
ratio, and 2700 kg/m? for the density. The Rayleigh damping
parameters for stiffness and mass are set to 3 x 10~® and 0.01,
respectively. The bowl has a width of 1 meter. No radiation
properties are considered; our study focuses specifically on
modal synthesis.

We compare our approach to modal analysis perfor-
med first using tetrahedralization with Tetgen (http://tetgen
.berlios.de/) with 822 modes. Our method uses hexahedral
finite elements and is applied with a grid of 6 X 6 x 6 cells,
leading to 891 modes. For this example, the elements of the
6x6x6 cells coarse grid resolution approximates mechanical
properties propagated from a fine grid of 12 X 12 x 12 cells.

We first compare the extracted modes from both meth-
ods. We observe that the ratio between frequencies and
decays is the same for both methods. We then compare the
synthesized sounds from both methods. We take 3 different
locations, that is, top, side and bottom, on the surface of
the object where the object is impacted, see Figure 2. The
excitation force is modeled as a Dirac, such as a regular
impact. The frequency content of the sound resulting from
impact at the 3 locations on the surface is shown in Figure 3.

Each power spectrum is normalized with the maximum
amplitude in order to factor out the magnitude of the impact.
The eigenvalues that correspond to vibration modes will be
nonzero, but for each free body in the system there will be
six zero eigenvalues for the body’s six rigid-body freedoms.
Only the modes with nonzero eigenvalue are kept. Thus,
816 modes are finally used for sound rendering with the
tetrahedralization method and 885 with our hexahedral FEM
method.

Loc1

Amplitude (dB)

103

Frequency (Hz)
(b)

FIGURE 1: A sounding metal cube: sound synthesis is performed for
excitation on 4 different corners and forces normal to one pair of
cube faces (a); the power spectrum of the emitted sounds is given

(b).

We provide with the sounds synthesized with the
tetrahedral FEM and the hexadedral FEM approaches (see
additional ~ material  (http://www-sop.inria.fr/members/
Cecile.Picard/Material/AdditionalMaterialEurasip.zip)).
Figure 3 highlights the similarities in the main part of the
frequency content. The difference when impacting at the
bottom (location 3) of the object is due to the difference in
distribution of modes and we believe this is due to the size of
the finite elements used in our method. However, we notice
in listening to the synthesized sounds that those generated
by our method are comparable to those created with the
standard tetrahedralization.

5. Robustness and Multiscale Results

The number of finite elements determine the dimension
of the system to solve. To avoid this expense, we provide
a method that greatly simplifies the modal parameter
extraction even for nonmanifold geometries. An important
subclass of nonmanifold models are objects that include both
volumetric and surface parts. Our technique consists of using
multiresolution hexahedral embeddings.



Loc1

Loc2
Loc3

FIGURE 2: A sounding metal bowl: sound synthesis is performed for
excitation on 3 specific locations on the surface.

5.1. Robustness. Most approaches for tetrahedral mesh
generation have limitations. In particular, an important
requirement imposed by the application of deformable
FEM is that tetrahedra must have appropriate shapes, for
instance, not too flat or sharp. By far the most popular of
the tetrahedral meshing techniques are those utilizing the
Delaunay criterion [18]. When the Delaunay criterion is
not satisfied, modal analysis using standard tetrahedraliza-
tion is impossible. In comparison with tetrahedralization
methods, our technique can handle complex geometries and
adequately performs modal analysis. Figures 4 and 5 give an
example of sound modelling on a problematic geometry for
tetrahedralization because of the presence of very thin parts,
specifically the blades that protrude from either side.

We suppose the object is made of aluminum (see
Section 4.2 for the material parameters). The object has a
height of 1 meter. We apply a coarse grid of 7 x 7 x 7 cells
for modal analysis. The coarse level encloses the mechanical
properties of a fine grid of 14 x 14 x 14 cells (see Section 3.1
for more details on the two-level structure). In this example,
sound radiation amplitudes of each mode are also estimated
with a far-field radiation model [15, Equation (15)]. Figure 5
shows the power spectrum of the sounds resulting from
impacts, modeled as a Dirac, on 6 different locations. Each
power spectrum is normalized with the maximum amplitude
of the spectrum in order to factor out the magnitude of the
impact.

We provide with the sounds resulting when hitting on the
6 different locations (see additional material, link referred in
Section 4.2). Figure 5 shows the variation of impact sounds
at different surface locations due to the sound map since
the different modes have varying amplitude depending on
the location of excitation. The frequency content is related
to the distribution of mass and stiffness along the surface
and more precisely to the ratio between stiffness and mass.
The similarities in the resulting sounds when hitting on
location 1 and location 3 are due to the similarities of the
local geometry. However, the stiffness at location 3 is smaller,
allowing more resonance when being struck which explains
the predominant peak in the corresponding power spectrum.
When hitting the body of the object at location 2, the stiffness
is locally smaller in comparison to locations 1 and 3, leading
to a larger amount of low-frequency content. Also, it is
interesting to examine the quality of the sound rendered
when hitting the wings (locations 4, 5, and 6). Because wings
are thin and light in comparison to the rest of the object, the
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higher frequencies are more pronounced. Finally, impacts on
locations 2 and 4 gives comparable sounds since the impact
locations are close on the body of the object.

5.2. A Multi-scale Approach. To study the influence of the
number of hexahedral finite elements on sound rendering,
we model a sounding object with different resolutions of
hexahedral finite elements. We have created a squirrel model
with 999 vertices which we use as our test sounding object.
The squirrel model has a height of 1 meter. Its material is
pine wood, which has parameters 12 x 10° Pa for Young’s
modulus, 0.3 for Poisson ratio, and 750kg/m> for the
volumetric mass. Rayleigh damping parameters for stiffness
and mass are set to 8 X 107® and 50, respectively.

Sound synthesis is performed for 3 different locations of
excitation, see Figure 6 (top left). The coarse grid resolution
for finite elementsisset to 2 X2 x 2,3 X3 X 3,5 X 5 X 5,and
7 X 7 x 7. In this example, each grid uses mass and stiffness
computed as described in Section 3.1 from a resolution 4
times finer; that is, the model with resolution 2 X 2 X 2 has
properties computed with a grid of 8 x 8 x 8.

We provide with the sounds synthesized with the dif-
ferent grid resolutions for finite elements and for the 3
different locations of excitation (see additional material, link
referred in Section 4.2). Results show that the frequency
content of sounds depend on the location of excitation and
on the resolution of the hexahedral finite elements. The
higher resolution models have a wider range of frequencies
because of the supplementary degrees of freedom. We also
observe a frequency shift as the FEM resolution increases.
Note that a 2 X 2 x 2 grid represents an extremely coarse
embedding, and consequently it is not surprising that the
frequency content is different at higher resolution. Neverthe-
less, there are still some strong similarities at the dominant
frequencies. Above all, a desirable feature is the convergence
of frequency content as the resolution of the model increases.
While additional psychoacoustic experiments with objective
spectral distortion measures would be necessary to validate
this result, when listening to the results, the sound quality for
this model at a grid of 5 X 5 X 5 may produce a convincing
sound rendering for the human ear. Figure 6 suggests that
higher resolutions are necessary before convergence can be
clearly observed in the frequency content. Finally, we note
that the grid resolution required for acceptable precision
in the sound rendering depends on the geometry of the
simulated object.

5.3. Discussion. The sound map is influenced by the resolu-
tion of the hexahedral finite elements. This is related to the
way stiffnesses and masses of different elements are altered
based on their contents. As a consequence, a 2 X 2 X 2
hexahedral FEM resolution would show much less expressive
variation than higher FEM resolution (we refer the reader to
the records provided in the additional material, link referred
in Section 4.2). One approach to improving this would be to
use better approximations of the mass and stiffness of coarse
elements [19].

Modelling numerous complex sounding objects can
rapidly become prohibitively expensive for realtime
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F1GURE 3: Sound synthesis with a modal approach using classical tetrahedralization with 822 modes (green) and our method witha 6 X6 x 6
hexahedral FEM resolution, leading to 891 modes (blue): power spectrum of the sounds emitted when impacting at the 3 different locations

shown in Figure 2.

FIGURE 4: An example of a complex geometry that can be handled
with our method. The thin blade causes problems with traditional
tetrahedralization methods.

rendering due to the large set of modal data that has to be
handled. Nevertheless, based on the quality of the resulting
sounds obtained with our method, and given that increased
resolution for the finite elements implies higher memory

and computational requirements for modal data, the FEM
resolution can be adapted to the number of sounding objects
in the virtual scene.

Table 1 gives the computation times and the memory
usage of the modal data, that is, frequencies, decay rates
and gains, when computing the modal analysis with different
FEM resolution on the squirrel model. In this example, the
finer grid resolution is two levels up to the one of coarse grid,
that is, a coarse grid of 2xX2x 2 cells has a fine level of 8 x8x 8
cells with 337 degrees of freedom (3954 for 5 X 5 x 5). These
are computation times of an unoptimized implementation
on a 2.26 GHz Intel Core Duo. We highlight the 5 X 5 X 5
cells resolution since the results indicate that this resolution
may be sufficient to properly render the sound quality of the
object (see Section 5.2). These results could be improved by
reformulating the computations in order to be supported by
graphics processing units (GPU).

Despite the fact that audio is considered a very important
aspect in virtual environments, it is still considered to be of
lower importance than graphics. We believe that physically
modeled audio brings a significant added value in terms
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different locations on the wing (bottom). Note that the audible response is different based on where the object is hit.

TaBLE 1: Computation times in seconds and memory usage in
megabytes for different grid resolutions. Computation times are
given for the different steps of the calculation: discretization and
computation of mass and stiffness matrices (T1), eigenvalues
extraction (T2), and gains computation (T3).

Grid Res. T1 T2 T3 Total MEM
# Modes

(cells) (s) (s) (s) (s) (MB)

7X7X7 1191 1.81 16.06 3.99 21.89 9.3

6X6X6 846 0.89 5.78 2.39 9.06 6.8
5X5X5 579 0.43 2.07 0.97 3.47 4.7
4x4x4 363 0.24 0.61 0.59 2.88 2.9
3xX3x%3 192 0.05 0.14 0.16 0.35 1.6
2X2X2 81 0.01 0.03 0.01 0.05 0.69

of realism and the increased sense of immersion. Our
method is built on a physically based animation engine, the
SOFA Framework. As a consequence, problems of coherence
between physics simulation and audio are avoided by using
exactly the same model for simulation and sound modelling.

The sound can be processed in realtime knowing the modal
parameters of the sounding object.

6. Experimenting with the Modal
Sounds in Realtime

To apply excitation signals in realtime to the simulated
sounding objects, we implemented an object, or data pro-
cessing block, for Pure Data and Max/MSP, two similar
visual programming modular environments for dataflow
processing. We used the flext library (http://puredata.info/
Members/thomas/flext/) (API for object development com-
mon to both environments), and the C/C++ code for modal
synthesis of bell sounds from van den Doel and Pai [20]. The
object in use on a Pure Data patch is illustrated in Figure 7).
We provide the user two different ways for the user to interact
with the model. The user can either choose a specific mesh
vertex number of the geometry model (represented in red in
the figure), or can choose a specific location (in green) where
the nearest vertex is deduced by interpolation.

One advantage of the method is to give the possibility
to control the parameters of the sounding model in order
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FIGURE 6: A squirrel in pine wood is sounding when struck at 3 different locations (from left to right). Frequency content of the resulting
sounds with 4 different resolutions for the hexahedral finite elements: (from top to bottom), 2 X2 X 2,3 X3 X 3,5 X 5X 5,7 X 7 x 7 cells.

to tune the resulting sounds for the desired effect. For
instance, the size of the geometry can be modified as
different dimensions could be preferred for rendering sounds
in a particular scenario. The mesh geometry is loaded in
Alias\ Wavefront *.0bj format, and we use Blender to apply
geometrical transformations in order to test how it affects the
rendering of the resulting sounds.

As our sound model consists of an excitation and a
resonator, interesting sounds can be easily obtained by
convolving modal sounds with user-defined excitations. The

excitation which supplies the energy to the sound system
contributes to a great extent to the fine details of the resulting
sounds. Excitation signals may be produced by various ways:
loading recorded sound samples, using realtime signals
coming from live soundcard inputs, connecting the output
of other audio applications with Pure Data through a sound
server.

This interface can be viewed as a preliminary prototyping
tool for sound design. Indeed, by experimenting sounds with
predefined objects and interactions types, the parameters of
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FiGure 7: Interface for sound design. After having loaded the modal data and the corresponding mesh geometry, the user can experiment
the modal sounds when exciting the object surface at different locations. Excitation signals may be loaded as recorded sound samples or

realtime tracked from live soundcard inputs.

sounding objects can easily chosen in order to convey specific
sensations in games. Our approach offers a great extent of
control regarding the possibilities of sound modification,
towards a wide audience since its implementation is cross-
platform and open source. In [21], Bruyns proposed an
AudioUnit plugin, that is unfortunately no longer available,
for modal synthesis of arbitrarily shaped objects, where
materials could be changed based on interpolation between
precalculated variations on the model. Lately, Menzies has
introduced VFoley in [22], an opensource environment for
modal synthesis of 3D scenes, with consequent options
on parameterization (particularly with many collision and
surface models), but tied to physically plausible sounds as
opposed to physically-inspired sounds. This is shown in the
movie provided as additional material (see link referred in
Section 4.2).

7. Conclusion

We propose a new approach to modal analysis using auto-
matic voxelization of a surface model and computation of
the finite elements parameters, based on the distribution of
material in each cell. Our goal is to perform sound rendering
in the context of an animated realtime virtual environment,
which has specific requirements, such as realtime processing
and efficient memory usage.

For simple cases, our method gives results similar to
traditional modal analysis with tetrahedralization. For more
complex cases, our approach provides convincing results.
In particular, sound variety along the object surface, the
sound map, is well preserved. Our technique can handle

complex nonmanifold geometries that include both vol-
umetric and surface parts, which cannot be handled by
previous techniques. We are thus able to compute the
audio response of numerous and diverse sounding objects,
such as those used in games, training simulations, and
other interactive virtual environments. Our solution allows
a multiscale solution because the number of hexahedral
finite elements only loosely depends on the geometry of
the sounding object. Finally, since our method is built on a
physics animation engine, the SOFA Framework, problems
of coherence between simulation and audio can be easily
addressed, which is of great interest in the context of
interactive environment.

In addition, due to the fast computation time, we are
hopeful that realtime modal analysis will soon be possible
on the fly, with sound results that are approximate but still
realistic for virtual environments. For this purpose, psychoa-
coustic experiments should be conducted to determine the
resolution level for acceptable quality of the sound rendering.

Appendices

These appendices give the mathematical background behind
modal superposition for discrete systems with proportional
damping. To apply modal superposition, we assume the
steady state situation, that is, the sustained part of the
impulse response of an object being struck. Indeed, the
early part, which is of very short duration, contains many
frequencies and is consequently not well described by a
discrete set of frequencies. Modal superposition uses the
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Finite Element Method (FEM) and determine the impulse
response of vibrating objects by means of a superposition of
eigenmodes.

A. Derivation of the Equations

We first consider the undamped system; its equation of
motion is expressed by

Mx + Kx = f, (A.1)
where M and K are, respectively, the mass and stiffness
matrices of the discrete system. The mass matrix is typically
a diagonal matrix, its main diagonal being populated with
elements whose value is the mass assumed in each degree of
freedom (DOF). The stiffness matrix is symmetric (often a
sparse matrix, that is, only a band of elements around the
main diagonal is populated and the other elements are zero).
In finite elements, these matrices are assembled based on the
element geometry and properties.

Since the study is in the frequency domain, the displace-
ment vector x and the force vector f are based on harmonic
components, that is, x = Xe/%!,x = jwXe/“, % = — w?Xe/®!
and f = Fe/*!, X and F are two amplitude vectors and contain
one element for each degree of freedom (DOF). The elements
of X are the displacement amplitudes of the respective DOF
as a function of w and the elements of F are the amplitudes
of the force, again depending on w, acting at location and in
direction of the corresponding DOE. Since the harmonic part
is available on both sides, we can ignore it and the equation
of motion can be rewritten

X = (K- M) 'F (A2)

where X and F means in practice X(w) and F(w), but
are shorten for simplification, and w is a diagonal matrix.
Equation (A.2) is the direct frequency response analysis. The
term K — w?M needs to be calculated for each frequency. To
calculate the response to any excitation force F(w), we need
to solve the eigenvalue problem:

(K - @*M)X =0, (A.3)

or

(MIK)X = 0?X = AX. (A.4)
This equation says that each sounding object has a structure-
related set of eigenvalues A, which are simply connected to the
system’s frequencies. To extract the eigenvalues, the following
condition has to be fulfilled

det(K — w?M) = 0. (A.5)
Solving (A.5) implies finding the roots of a polynomial,
which correspond to the eigenvalues A. The latter can then
be replaced in (A.3):

(K- MY =0, (A.6)

¥ is the matrix of eigenvectors, or eigenfunctions, where
the column r is the vector related to the eigenvalue w?.
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The eigenvectors define the mode shapes linked to the
corresponding frequency of the system.

If the frequencies are unique, many eigenvectors can be
extracted for a given eigenvalue and all are proportional.
Thus, the information enclosed in the eigenvectors is not the
absolute amplitude but a ratio between the amplitudes in the
degrees of freedom. For this reason, the eigenvectors are often
normalized according to a reference. Due to the orthogonal
property of the eigenvectors, ¥7¥ = I. Consequently, ¥"M¥
and YTKY are diagonal matrices, and are, respectively, called
the modal mass and the modal stiffness of the system,
because the ratio between modal stiffness and modal mass
gives the matrix of eigenvalues. A very suitable reference
choice is to scale the eigenvectors so that the modal mass
matrix becomes an identity matrix. From (A.2), we can write:

T(w _ .2 _ TL“’)
YT (K — *M)¥ = ¥ X .
_yrF@ '
A— ) =¥ X(@) v,
and finally
X(w) = Y(A — 1) "¥TF(w). (A.8)

Equation (A.8) simply expresses that the response X(w) can
be calculated by surimposing a set of eigenmodes weighted
by the excitation frequency, multiplied with an excitation
load vector F(w).

Properties of Eigenvalues and Eigenvectors. The orthogonality
of modes expresses that each mode contains information
which the other modes do not have, and consequently a given
mode cannot be built from the others. On the other hand,
solutions of geometrically symmetric systems often give pairs
of multiple eigenmodes.

Boundary conditions are settled simply by prescribing
the value of certain degrees of freedom resolved in the
displacement vector. As an example, a structure rigidly
attached to the ground will show null DOFs around the
support point. Consequently, the elements in the mode
shapes corresponding to these DOFs will always be zero and
will not need to be solved.

B. Damping

We now consider a damped system, and in particular
the proportional damping model which assumes that the
damping can be expressed proportional to the stiffness and
mass matrix (Raleigh damping), that is, C = ;K + a,M.
In consequence, the eigenvalues of the proportional damped
system are complex and can be expressed according to the
eigenvalues of the undamped case

A= w2 (1+ jn,), (B.1)
where the imaginary part contains the loss factor #,.
The modal superposition is thus given by
X(w) = ¥(A - 0?1+ jg) " WTF(w). (B.2)
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Equation (B.2) enables us to determine entire response
velocity fields that cause the surrounding medium to vibrate
and to generate sound.
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Several audio effects devices deliberately add nonlinear distortion to the processed signal in order to create a desired sound. When
creating virtual analog models of nonlinearly distorting devices, it would be very useful to carefully analyze the type of distortion,
so that the model could be made as realistic as possible. While traditional system analysis tools such as the frequency response give
detailed information on the operation of linear and time-invariant systems, they are less useful for analyzing nonlinear devices.
Furthermore, although there do exist separate algorithms for nonlinear distortion analysis, there is currently no unified, easy-to-
use tool for rapid analysis of distorting audio systems. This paper offers a remedy by introducing a new software tool for easy
analysis of distorting effects. A comparison between a well-known guitar tube amplifier and two commercial software simulations
is presented as a case study. This freely available software is written in Matlab language, but the analysis tool can also run as a

standalone program, so the user does not need to have Matlab installed in order to perform the analysis.

1. Introduction

Since the 1990s, there has been a strong trend in the digital
audio effects community towards virtual analog modeling,
that is, mimicking the sound of old analog audio devices
using digital signal processing (DSP). Guitar tube amplifier
emulation [1] has been an especially vibrant area of research
with several commercial products.

There are roughly two methodological approaches for
designing virtual analog models: the black-box- and the
white-box methods. In the former, the designer treats the
original audio device (called target in the following) as an
unknown system and tries to design the model so that it
mimics only the input/output relationship of the target,
without trying to simulate its internal state. In the white-box
approach, the designer first studies the operation logic of the
device (often from the circuit schematics) and tries to design
the model so that it also simulates the internal operation
of the target. While both approaches can yield satisfactory
results in many cases, there is still room for improvement
in the sound quality and model adjustability, if the virtual

analog models are to act as substitutes for the original analog
devices.

In all virtual analog modeling, the target and model
responses need to be carefully analyzed. This is obviously
essential in the black-box approach, but it is also an
unavoidable step in white-box modeling, since even circuit
simulation systems need to have their component values
adjusted so that the model response imitates the target
response. While some part of this analysis can be conducted
simply by listening to the models, there is a clear need
for objective analysis methods. If the target system can
be considered linear and time invariant (LTI), it is rela-
tively straightforward to analyze the magnitude and phase
responses of the target and model and try match them as
closely as possible. For distorting systems, however, linear
magnitude and phase responses give only partial information
on how the system treats audio signals, since distortion
components are not analyzed.

Analysis of mildly distorting audio systems, such as
loudspeakers, have traditionally consisted of simple total
harmonic distortion (THD) measurements, where a static



sine signal is fed to the system as an input, and the harmonic
distortion component levels are summed and normalized to
the amplitude of the fundamental component. Even though
THD gives a vague indication on the general amount of
static harmonic distortion, it tells nothing on the type of
this distortion. Thus, THD is a poor estimate for analyzing
distorting audio effects. Although more informative analysis
techniques have been designed by the scientific community,
there is currently no unified, easy-to-use tool for simultane-
ously conducting several distortion analysis measurements.

2. Distortion Analysis Toolkit

2.1. Overview. The distortion analysis toolkit (DATK) is a
software tool for analyzing the distortion behavior of real
and virtual audio effects. It operates by first creating a user-
defined excitation signal and then analyzes the responses
from the devices. The DATK package includes five analysis
techniques, which can be further augmented with additional
user-defined analysis functions. The DATK is developed in
Matlab language, but standalone operation is also possible.
Since a distortion measurement on an audio effects device
usually consists of making several individual recordings
while varying some control parameter and keeping the other
parameters fixed, the DATK is designed for batch processing.
This means that the DATK creates an excitation signal as an
audio file according to the specifications set by the user. Next,
the user plays this excitation to the device under test (DUT)
and records the output on any playback/recording software.
The DUT response to its control parameter variations can
be tested by changing the control parameter values and
rerecording the response. As a result, the user is left with a set
of response files that each have different control parameter
settings.

The analysis part is carried out by pointing the excitation
file and the set of response files to the DATK, after which
it plots analysis figures, so that each analysis type is shown
as a separate figure, and the analysis results from each
response file are illustrated with subfigures. Thus, it is easy
to interpret the effect of control parameter variations on the
system response, since each subfigure shows the response
to a different value of the varied parameter. The analysis
figures can also be saved as.fig files even in standalone
mode, allowing further editing with Matlab. The DATK
runs on any modern computer, and only requires the use
of a simple playback/recording software for playing the
excitation signal and recording the responses. For measuring
software plugins, the playback/recording software should
be able to act as a plugin host. For measuring physical
effects devices, an audio interface with adjustable play-
back/recording gains should be used. Sections 2.2 through
2.6 discuss the analysis functions currently included in
the DATK, while Section 2.7 discusses how to develop
additional analysis functions. Since the user defines the
desired analysis techniques and their parameters by writing
a text file, where the different analysis types (or same
analysis types with different parameters) are written as
separate lines, Sections 2.2 through 2.6 also introduce the
syntax for performing each analysis type. The actual use of
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the DATK software is illustrated in Section 3 with a case
study.

2.2. Sine Analysis. One of the simplest distortion analysis
techniques is to insert a single sinusoid signal with fixed
amplitude and frequency into the system, and plot the
resulting spectrum. The advantage of this analysis type is that
it is easy to understand and the results are straightforward
to interpret. The disadvantage is that this analysis gives only
information on how the system treats a single, static sine
signal with given amplitude and frequency. In particular, it
tells nothing about the dynamic behavior of the system. The
DATK sine analysis function is invoked using the syntax

SineAnalysis(frequency,duration)

where the frequency denotes the frequency of the analysis
sine in Hertz, and duration is the signal duration in
seconds. The amplitude of the sine is set to unity. In
the analysis phase, the DATK plots the resulting system
response spectrum in the audio frequency range so that the
amplitude of the fundamental frequency component (i.e.,
the component at the same frequency as the analysis sine) is
0dB. The fundamental component is further denoted with
a small circle around its amplitude peak, which helps in
locating it if the spectrum has high-amplitude distortion
components at subharmonic- or otherwise low frequencies.

2.3. Logsweep Analysis. The logsweep analysis technique is an
ingenious device for analyzing static harmonic distortion as a
function of frequency. Introduced by Farina in 2000 [2], the
basic idea behind the logsweep analysis technique is to insert
a logarithmic sine sweep signal with fixed amplitude to the
system, and then convolve the time-reversed and amplitude
weighted excitation signal with the system response. As
a result, one obtains an impulse response signal, where
the response of each harmonic distortion component is
separated in time from the linear response and each other.
If the duration of the logsweep signal is long enough, the
time separation between the harmonic impulse responses is
clear and it is straightforward to cut the individual harmonic
responses and represent them in the frequency domain. As
a result, one obtains magnitude response plots for the linear
response and each harmonic distortion component.
The DATK logsweep analysis function uses the syntax

LogsweepAnalysis(start_freq,end freq,

duration,number_of_harmonics)

where start_freq and end freq are the frequency
limits (in Hz) for the logarithmic sweep, and duration
is the sweep duration in seconds. The parameter
number_of harmonics sets the number of harmonic
components to plot in the analysis phase, so that value 3,
for example, would correspond to the linear response and
the 2nd and 3rd harmonic distortion components to be
drawn. As a rule of thumb, the signal to noise ratio (SNR)
decreases with increasing harmonic numbers, so it is often
not advisable to try to analyze a large number of harmonics
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(e.g., >6), unless long excitation signals (several seconds) are
used.

In the analysis phase, the DATK plots the linear and
harmonic distortion component magnitude responses as
a function of frequency (in the frequency range from
start_freq to end_freq) in a single figure. The response
curves are illustrated with different colors and each curve
has a number denoting the harmonic order, starting from
1 for the linear response, 2 for the 2nd harmonic, and
so forth. The magnitude offset of the responses is set
so that the magnitude of the linear response is 0dB at
low frequencies. The magnitude responses of the harmonic
distortion components are shifted down in frequency by the
order of their harmonic number. This means that looking
at the analysis figure at a given frequency, say at 1kHz,
curve 1 gives the magnitude of the linear component,
curve 2 gives the magnitude of the 2nd harmonic (which
actually has the frequency of 2kHz), curve 3 gives the
magnitude of the 3rd harmonic (residing at 3kHz), and
so forth. This will be further illustrated in Section 3.6.
The harmonic impulse responses are windowed using a
Blackman window prior to moving them into the frequency
domain, for obtaining smoother magnitude response plots
[3].

The advantage of this measurement technique over the
sine analysis (Section 2.2) is that it displays more informa-
tion in a single figure by drawing the magnitude responses as
a function of the (fundamental) frequency on the full audio
frequency range. For analyzing the magnitude of high-order
distortion components, however, the sine analysis is usually
better since it displays the entire audible spectrum in one
figure, while the logsweep analysis can successfully be used
to track only the low-order distortion components, due to
clarity reasons and the aforementioned SNR issue. Another
drawback of the logsweep analysis technique is that long
excitation signals can take a long time to analyze due to the
relatively slow computation of long convolutions.

2.4. Intermodulation Distortion Analysis. When a multitone
signal is clipped, intermodulation distortion (IMD) occurs.
This means that the distortion creates signal components
not only to the integer multiples of the original tones, but
also to frequencies which are the sums and differences of the
original signal components and their harmonics. In musical
context, IMD is often an undesired phenomenon, since IMD
components generally fall at frequencies which are not in any
simple harmonic relation to the original tones, making the
resulting sound noisy and inharmonic.

Traditionally, the IMD of distorting systems has been
measured by feeding a sum of two sinusoids with different
frequencies into the system and plotting the resulting
spectrum. Although this type of analysis gives an exact indi-
cation of the frequencies and amplitudes of the distortion
components for a given pair of input signal frequencies and
amplitudes, it is not very useful in determining the overall
level of the IMD. It should be noted that with distorting
audio effects, it is often useful to know the exact frequency
and amplitude behavior of the harmonic distortion compo-
nents, since there are some strong opinions regarding the

harmonic content and the resulting sound, such as “the
vacuum tube sound consists mainly of even harmonics”, or
that “the 7th harmonic is something to be avoided”. With
IMD, however, it is probably more useful to have a single
number indicating the overall amount of distortion, since
IMD is generally considered an undesired phenomenon, with
no specific preferences on any particular IMD components.
Furthermore, traditional IMD measurements ignore the
dynamic behavior of the intermodulation mechanism, so
that dynamic or transient intermodulation (DIM/TIM) [4]
distortion components are left unnoticed.

The IMD analysis of the DATK software is based on
the measurement technique introduced by Leinonen et al.
[5], which measures both the DIM distortion and static
IMD. In this measurement approach, a square wave signal
with a fundamental frequency f, is summed with a lower-
amplitude sinusoid having a frequency f,, so that fi <
fo. Next, this signal is inserted to the DUT, and the
amplitude of the IMD components at audio frequency range
is compared to the amplitude of the sinusoid. As a result, a
percentage ratio between the root-mean-square (RMS) IMD
components and the low-amplitude sinusoid riding on top
of the square wave is obtained. Thus, an IMD percentage
value of 100 % would mean that the RMS IMD is equal in
magnitude to the frequency component that causes the IMD
in the first place. The static IMD is measured in a very similar
way, the only difference being that instead of a square wave
signal, a triangular waveform is used.

For measuring the IMD, the DATK creates two signals:
one containing the square wave and the sine wave (for
measuring DIM), and one containing the triangle wave and
the sine (for measuring static IM). In order to estimate the
IMD as a function of input signal amplitude, both of these
signals are weighted by a linear amplitude ramp, so that the
overall signal amplitude increases with time, although the
amplitude ratios between the square (or triangle) wave and
the sine wave remain unchanged. The DATK IMD analysis is
called with the function

IMDAnalysis(sine_freq,sq-freq,sine_ampl,

sq.ampl,duration)

where sine_freq and sine_ampl are the frequency (Hz)
and amplitude of the sinusoid, respectively, and sq_freq
and sq_ampl are the fundamental frequency and amplitude
of the square wave. The triangle wave uses the same
frequency and amplitude parameters as the square wave. The
frequencies of the sine and square waves should be selected
so that they are not in an integer relation with each other or
the sampling frequency of the system.

The final parameter, duration, sets the length (in sec-
onds) of each of the IMD test signals. The amplitude parame-
ters are normalized so that the ratio between the sine and the
square wave amplitudes remains sine_ampl/sq-ampl, but
the overall signal amplitude reaches unity at the end of the
test signal ramp. For avoiding digital aliasing of the square
and triangle wave signals, the DATK creates them using the
differentiated parabolic waveform technique, introduced in
[6]. At the analysis phase, the DATK analyzes the system’s



output spectra for the IMD test signals and evaluates the
DIM and IM percentages.

The advantage of the IMD measurement suggested in
[5] over the traditional IMD measurements (i.e. simply
plotting the output spectra), is that it provides two intuitive
parameters concerning the IMD level: the IM percentage,
which tells the amount of IMD associated with relatively
static signals (such as the sound of a violin), and the DIM
percentage, which tells the amount of IMD associated with
transient signals (such as the sound of percussions).

2.5. Transient Response Analysis. Measuring the transient
behavior of distorting audio devices is difficult in general.
Typically, the transient response depends heavily on the
amplitude and frequency content of the test signal, so it is
usually not possible to generalize the results for other types
of input signals. Nevertheless, it is still useful to compare
the input/output waveforms of a distorting device when a
transient signal is used as input, for example because certain
types of dynamic distortion (such as the blocking distortion,
asin [7]) can be identified from the waveforms.

The DATK transient response analysis operates by creat-
ing a sine burst signal, where the first cycle (called transient)
has a larger amplitude than rest of the sine burst (called
tail). The DATK transient response analysis function uses the
syntax

TransientAnalysis(tail _ampl,freq,

duration,cycles_to_draw)

where tail_ampl denotes the amplitude of the tail of
the sine burst following the transient, and should be a
positive number smaller than one (the amplitude of the
transient is always unity). Parameters freq and duration
set the frequency (Hz) and duration (sec) of the sine
burst, respectively. The parameter cycles_to_draw sets the
initial zoom limit in the analysis figure, so that dynamic
distortion effects are easy to see. For example, a value of
10 would result in a waveform analysis figure, where 10
cycles of the response wave were displayed. The optimal
value for the cycles_to_draw parameter obviously depends
on the dynamic distortion characteristics of the device. If
the DUT acts only as a static nonlinearity, the amplitude
envelope, horizontal offset, and shape of the tail should
remain constant in the analysis figure.

2.6. Aliasing Analysis. The DATK also has a tool for estimat-
ing the effect of signal aliasing in digital distorting devices.
Nonlinear distortion always expands the signal spectrum by
creating harmonic (and other) distortion components. This
is problematic in a digital implementation, since the dis-
tortion components exceeding the Nyquist frequency (half
the sampling rate) will alias back to the baseband, possibly
resulting in an inharmonic and noisy signal. There are several
techniques for avoiding aliasing within digital distortion [1],
oversampling being probably the most popular.

The aliasing analysis tool in the DATK operates by creat-
ing a high-frequency sine signal, and analyzing the spectrum
of the system response. This analysis technique, introduced
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FIGURE 1: The custom-built AC30 tube guitar amplifier (photo by
Ari Viitala).

in a recent journal article [7], tracks the nonaliased harmonic
distortion components and fits a simple auditory spectrum
curve on them, for estimating the frequency masking effect of
the baseband signal. More specifically, the auditory spectrum
curve is estimated by fitting a gammatone filterbank [8]
magnitude response curve on top of the nonaliased signal
so that the center frequencies of the filters are aligned with
the frequencies of the baseband components. A fixed 10 dB
offset between the peak of each sinusoidal signal component
and the corresponding gammatone filter is applied since it
was empirically found to match well with many distorted
signals. Next, the effect of the hearing threshold is added
by estimating the F-weighting function [9] for audio fre-
quencies, together with a user-defined sound pressure level
(SPL) value. The net effect of the masking curves and hearing
threshold is obtained by taking the maximum value of the
filter magnitude responses and the F-weighting function for
each frequency.

Finally, the DATK creates a residual spectrum by
removing the original sine and the nonaliased distortion
components, and displays the residual spectrum in the same
figure with the auditory spectrum estimate. Since the residual
spectrum consists of the aliased signal components (and
noise), one can assume that the aliasing artifacts (or noise)
are audible, if the residual spectrum exceeds the auditory
spectrum estimate in magnitude at any frequency. It should
be noted that although there exist more sophisticated tech-
niques (e.g., [10, 11]) for estimating the auditory spectrum
of complex tones, the use of a relatively simple auditory
model in this context is enough to characterize the perceptual
point of view. Evaluation in detail requires a detailed model
compared against a careful formal listening test, which falls
beyond the intended scope of the DATK tool.

The DATK aliasing analysis function is invoked by calling

AliasingAnalysis(freq,duration,SPL)

where freq is the frequency of the sine. The sine frequency
should be selected from the normal frequency range defined
for the system under measurement. For example, measuring
the aliasing of a digital guitar effects device at a frequency
of 16 kHz would not yield realistic results, since the electric
guitar signal usually has very little energy above 15kHz [12].
The duration parameter sets the duration of the sine signal
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0006 DATK_Create

— ]

F1GuRre 2: Dialog box for creating the analysis signal.

0006 DATK_Analysis

FIGURE 3: A dialog box for analyzing the system responses.

(in seconds), and the SPL parameter is the estimated F-
weighted sound pressure level at which the distorted sine
signal would be played.

2.7. Developing Additional Analysis Functions. The user can
append the DATK’s collection of analysis tools by developing

his or her own signal generation and analysis functions.
Although the DATK can be operated as a standalone
program, developing additional analysis tools requires the
use of Matlab. Appending the DATK to include custom user-
defined analysis tools is relatively simple, provided that the
user is familiar with basic signal processing tasks on Matlab.
The user-defined analysis tools should comply with some
consistency rules, namely that

(i) there is a function for creating an excitation signal,
possibly according to parameters set by the run-time
user,

(ii) there is an analysis function which accepts a response
signal and plots an analysis figure accordingly,

(iii) any additional parameters that the analysis function
requires are generated as metadata by the excitation
creation function and stored in a file.

More detailed instructions on developing custom analysis
tools for DATK can be found on the DATK website: http://
www.acoustics.hut.fi/publications/papers/DATK/. After de-
veloping the custom analysis tools, the user can easily com-
pile a standalone version of the updated DATK using Matlab’s
deploytool-function.

3. Case Study: Measurement on the Real and
Virtual AC30 Guitar Amplifiers

This section illustrates the use of the standalone DATK
software by measuring the distortion characteristics of an
AC30 guitar tube amplifier and two of its virtual analog
versions. The main purpose of this section is to provide an
example case for producing distortion measurements using
the DATK, rather than to perform a detailed interpretation
of the operation of the devices. Thus, the emphasis is on
explaining the measurement procedure, and what is the
useful information in the analysis results, without trying to
explain why the amplifier or its virtual versions have a certain
effect on the signal.

3.1. VOX AC30. The AC30 is an iconic guitar tube amplifier,
first introduced by the VOX company in 1959 [13]. This class
AB [14] amplifier uses four cathode-biased EL-84 tubes in
the output stage. In 1961, a “Top Boost”-unit, an additional
circuit box including treble and bass controls and an extra
gain stage was introduced for the AC30. Due to its immediate
popularity among users, the Top Boost unit was integrated
into the AC30 circuitry from 1963 onwards. The distinct
“jangly” sound of the AC30 amplifier can be heard on many
records from several bands such as the Beatles, The Rolling
Stones, The Who, Queen, R. E. M., and U2, from the last five
decades.

A custom-built AC30 amplifier, illustrated in Figure 1,
was chosen as a test example for the DATK. This amplifier
(referred to as “real AC30” in the following) is a rela-
tively faithful reproduction from the original AC30 circuit
schematics, although the tremolo circuit has been omitted.
In addition to the real AC30, the distortion measurements
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FIGURE 4: Graphical user interface for manual alignment of the analysis signal.

were conducted on two commercial software emulators,
namely the Top30 unit of the Overloud TH1 [15] plugin,
and the FOX ACS-45 unit of the Peavey ReValver [16] plugin
(abbreviated TH1 AC30 and ReValver AC30, resp., in the
following).

3.2. Measurement Setup. The distortion behavior of the
real AC30 was measured with the DATK software running
on a 2.4GHz MacBook (Intel Core 2 Duo, 4 GB RAM)
laptop computer with M-Audio Firewire 410 as the audio
interface. The Reaper software [17] was used in playing
the excitation and recording the responses. An 8 () power
resistor was used as a load for the amplifier. The amplifier
output signal was obtained by recording the voltage over the
load resistor using a custom-built attenuator/buffer circuit to
eliminate the impedance coupling between the amplifier and
the audio interface. It should be noted, that although real
tube amplifiers usually require a separate attenuator/buffer
circuit, many other distortion devices, such as effects pedals,
may directly be connected to the audio interface. The high-
impedance bright channel was used on the amplifier, and
the tone knobs were all set to 12 o’clock. Different responses
were measured by varying the “Volume bright” knob, which
in practice controls the gain for the bright channel. On
the software plugins also, the bright channel was selected
(called “Brilliant” on the ReValver AC30), all tone controls
were set to 12 o’clock, and different recordings were made
while varying the channel gain. It should be noted that
since the real AC30 was operated without a loudspeaker,
the loudspeaker emulation was switched off for both virtual
plugins.

3.3. Creating the Analysis Signal. A complete analysis was

performed on the three systems. The five functions were

stored in a text file, with the following parameter values:
SineAnalysis(1000,0.1),
TransientAnalysis(1/10,1000,2,20),
LogsweepAnalysis(20,20000,2,5),

IMDAnalysis(6000,1270,1,4,2),
AliasingAnalysis(5000,1,80),

This file was read during the analysis by DATK. Next,
the excitation signal was created by double-clicking the
DATK_Create program icon, which opens a dialog box
illustrated in Figure 2. At step 1, a sampling frequency of
48000 Hz and a bit length equal to 24 were selected from the
dialog box. A gap of 24000 samples (corresponding to half a
second with the selected sample rate) was chosen between
the individual excitations. The purpose of this segment of
silence between the measurement signal bursts is to ensure
that the different measurements do not affect each other,
that is, that the previous response signal has faded before
a new one begins. At step 2, the recently created text file
was selected using the “Browse”-button, and at step 3, the
name and path for the excitation file was selected. Finally,
the “Create analysis signal”-button was pressed, resulting in
a command-line message denoting that the excitation signal
was successfully created.

3.4. Recording. The excitation signal was imported by the
recording software, and it was played to the real AC30 while
recording its output onto another track. Three recordings
were made with different settings for the “volume bright”
knob: 9 o’clock (low-gain), 12 o’clock (middle gain), and
full (high gain). The three outputs were individually saved
as.wav files within the same directory. Next, the TH1 plugin
with only the Top30 unit enabled (and the channel gain knob
set to 9 o’clock) was added as an effect on the excitation
track, and the response was saved as a wave file to the
same directory as the real AC30 response files. The TH1
AC30 response recordings were repeated two times with
the virtual channel gain knob set to 12 o’clock and full,
in order to obtain response wave files with all three gain
settings. Finally, the TH1 plugin was replaced with the Peavey
ReValver plugin with only the FOX ACS-45 unit enabled,
and the same operations (adjust gain, render output wave
file, repeat) were carried out three times. Thus in the end,
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FIGURE 5: Response spectra to a 1 kHz sinusoid for the real AC30 (left column), the Top30 unit of the TH1 software plugin (middle column),
and the FOX ACS-45 unit of the ReValver software plugin (right column). The user adjustable gain knob was first set to 9 o’clock (top row),
then to 12 o’clock (middle row), and finally to full (bottom row). As expected, the real AC30 has a higher noise floor than the digital versions.

the response directory contained 9 response signals as.wav
files with sample rate of 48 kHz and 24-bit resolution.

3.5. Signal Analysis. The analysis part of the DATK was
started by double-clicking the DATK_Analyze-program icon,
which opens a dialog box illustrated in Figure 3. First, the
wave file containing the excitation signal and the directory
containing the response files were located using the “Browse”
buttons at steps 1 and 2. The next pane, step 3, defines
the type of time alignment between the excitation and
response signals. The “Align manually” option, which allows
the user to individually set the time alignment, was used.
The other option allows the user to define a common delay
(positive or negative) for all response files. A common
delay value may be useful, for example if all responses

are obtained from the same device since the signal delay
is typically identical between different responses. Since
there were three versions of the AC30 with three gain
settings each, three rows and three columns were selected
at step 4 to display the nine analysis subfigures. Finally, the
distortion analysis was started by pressing the “Analyze!”
button.

Since manual alignment was chosen at step 3 of the
analysis dialog box, the DATK next opens a time alignment
window, displayed in Figure 4. Here, the user’s task is to move
the response signal (denoted with a dashed purple line) in
time using a slider, so that it coincides with the excitation
signal (denoted with a solid blue line). The resolution of the
time alignment is one sample, and the zoom option can be
used in adjusting the time offset as carefully as possible. After
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FIGURE 6: Transient analysis waveforms for the real AC30 (left column), the TH1 AC30 (middle column), and the ReValver AC30 (right
column). The input signal is illustrated with a dashed line, while the solid line denotes the measured response. The gain knob was first set to
9 o’clock (top row), then to 12 o’clock (middle row), and finally to full (bottom row).

the user has aligned all the responses with the excitation, the
DATK begins the analysis calculation and draws the result

figures in the order defined in the analysis command text
file.

3.6. Results. Prior to performing the analysis using DATK,
the three AC30 variants were tested with an electric guitar.
The output signals from all test cases were fed to headphones
through a TH1 loudspeaker cabinet simulator in order to
obtain a more natural electric guitar sound. This informal
and highly subjective playing test revealed that the real AC30
had a certain “smooth” distortion type that was not entirely
captured by either software plugins, although the TH1 AC30

managed to get closer to it than the ReValver AC30, which
sounded somehow too “harsh”, especially when using full
gain.

The first analysis plot drawn by the DATK is the sine
analysis figure, illustrated in Figure 5. With low-gain settings
(top row), all three AC30 variants share a similar lowpass-
type spectral envelope. The amplitude ratios of the first few
harmonic components on the TH1 AC30 show a relatively
good match with the real AC30, while the low-order even
harmonics are more suppressed with the ReValver AC30.
Interestingly, the 6th harmonic is heavily attenuated in the
real AC30 response, while the virtual versions do not mimic
this.
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FIGURE 7: Logsweep analysis of the real AC30 (left column), the TH1 AC30 (middle column), and the ReValver AC30 (right column). The
gain knob was first set to 9 o’clock (top row), then to 12 o’clock (middle row), and finally to full (bottom row). The numbered curves
represent the order of the distortion, so that curve 1 corresponds to the linear magnitude response, curve 2 to the 2nd order harmonic
distortion, curve 3 to the 3rd order harmonic distortion, and so forth. The 6th order and higher distortion components are not illustrated.

Increasing the gain level to medium (middle row), the
even harmonic components become more suppressed in the
real AC30 response, while the overall spectral envelope gets
brighter. The ReValver AC30 response seems to simulate
this even-order distortion component attenuation well. Both
virtual plugins show a slightly stronger lowpass-effect than
the real AC30 with medium gain. For full gain settings,
the even-order distortion components exceed the odd-order
components in the real AC30 response. For the ReValver
AC30, the opposite happens: the odd-order components
are significantly louder. As expected, the overall spectral
envelope gets even brighter with increased gain in all three
AC30 variants. Looking at all responses in Figure 5, it seems
that the spectrum of the real AC30 response varies strongly
on the gain level and this change is more subtle with the
software versions.

The second analysis type produces the transient response
plot, illustrated in Figure 6, where the dashed line denotes
the input signal, while the response waveform is drawn

with a solid line. The vertical axis has been zoomed in
between —0.5-0.5 to better illustrate the dynamic effects. It
can be seen in the figure that the initial transient is hard-
clipped in nearly all cases. For low-gain settings (top row),
the real AC30 shows a slight bias shift after the transient,
without a strong effect on the waveform. The TH1 AC30
response experiences a slightly stronger bias shift, with a
heavier distortion immediately after the transient, while the
ReValver AC30 response is more static. For medium and full
gain settings (middle and bottom row), the real AC30 shows
a slight attenuation right after the transient, which might
indicate blocking distortion [7]. The TH1 AC30 response
shows an exaggerated bias shift due to the transient, while
the ReValver AC30 response is again more static. With full
gain, the real AC30 waveform is more severely distorted than
with the software plugins.

The third analysis figure is the logsweep response plot,
illustrated in Figure 7. Here, it can be seen that the linear
response (curve 1) of the ReValver AC30 shows a similar
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FIGURE 8: Intermodulation distortion analysis of the real AC30 (left column), the TH1 AC30 (middle column), and the ReValver AC30
(right column). The gain knob was first set to 9 o’clock (top row), then to 12 o’clock (middle row), and finally to full (bottom row). The
solid line illustrates the amount of dynamic intermodulation distortion, while the dashed line denotes the amount of static intermodulation

distortion, both as a function of the normalized input signal level.

highpass behavior in the audio range as the real AC30, while
the TH1 AC30 response is flatter. For low and medium-gain
settings, the distortion components on the real AC30 have
a highpass nature. The even harmonics on the TH1 AC30
mimic this somewhat, while the odd harmonics are more
pronounced in the low frequencies than with the real AC30.
The odd harmonics on the ReValver AC30 have a highpass
trend for low and medium-gain, but the even harmonics
are attenuated more than in the real AC30. For full gain,
the second and third harmonics on the real AC30 are very
strong at high frequencies. Neither software plugins have
such a high distortion in the kilohertz range as the real
AC30. Furthermore, neither plugins mimic the boosting of

the third harmonic and simultaneous suppression of the fifth
harmonic at low frequencies (near 70 Hz).

The fourth analysis result created by the DATK is
the intermodulation distortion analysis plot, illustrated in
Figure 8. It shows the dynamic intermodulation (DIM)
distortion percentage with the solid line, and the static
intermodulation (IM) distortion percentage with a dashed
line, both as a function of the normalized input signal
amplitude. As can be seen in the figure, the DIM distortion
exceeds the static IM distortion in all cases. For low- and
medium gain settings (top and middle row), the DIM/IM
distortion increases monotonically with input signal ampli-
tude in nearly the same way for all three AC30 variants.
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FIGURE 9: Aliasing analysis for the real AC30 (left column), the TH1 AC30 (middle column), and the ReValver AC30 (right column), when a
5kHz sine is used as input. The gain knob was first set to 9 o’clock (top row), then to 12 o’clock (middle row), and finally to full (bottom row).
In the figures, the circles denote the peaks of the harmonic components, while the solid line stands for aliased signal components and noise.
The dashed line illustrates an auditory spectrum estimate. In both software plugins (middle and right column), the aliased components
greatly exceed the estimated auditory threshold, thus suggesting that the aliasing is clearly audible. For the real AC30 (left column), the
figures show that the 50 Hz power supply hum and its harmonics are also audible.

With full gain (bottom row), however, the intermodulation ~ gain settings. However, the underlying mechanisms causing
distortion figures reveal stronger differences. On the real  the different full-gain intermodulation distortion behavior
AC30, the static IM distortion decreases with increasing between the AC30 variants should be examined in detail in
input signal amplitude, while the DIM distortion remains  further studies.
nearly constant. The TH1 AC30 shows an interesting notch The fifth and final analysis plot is the aliasing analysis,
in the DIM distortion curve, indicating that there could bea  depicted in Figure 9. It illustrates the estimated auditory
local minimum of DIM distortion with input signals with a  spectrum (dashed line) caused by a distorted 5kHz sine
certain amplitude. The DIM/IM distortion on the ReValver  signal. The amplitude peaks of the distorted signal are plotted
AC30 with full gain seems to be relatively low and largely =~ with circles. The solid lines in the figures illustrate the aliased
unaffected by the input signal amplitude. signal components and measurement noise.

In general, it seems that there are no large differences As can be seen in Figure 9, the real AC30 (first column)
in the intermodulation distortion behavior between the  hasarelatively high noise level due to the 50 Hz power supply
real and simulated AC30 variants at low- and medium  hum and its harmonic components. This power supply
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noise is clearly audible also in quiet parts when using the
amplifier in a real playing situation. Interestingly, the aliasing
analysis plots for both virtual AC30 plugins (second and
third column) show severe aliasing phenomenon. The aliased
component at 1kHz is roughly 40dB above the auditory
spectrum estimate at full gain settings, making it clearly
audible. In fact, the heavy aliasing behavior can strongly
be heard also by listening to the logsweep responses of the
AC30 plugins. It should be noted that the power supply
noise is generally less irritating than aliasing noise, since
the former stays largely constant regardless of the input
signal. Aliasing noise, in turn, changes radically according
to the input signal, and can it be an especially undesired
phenomenon when playing high bent notes, since when
the original tone moves up in frequency, the strongest
aliased components move down, creating an unpleasant
effect.

After all the analysis figures have been created, the
DATK analysis part is finished. For the 2.4 GHz MacBook
test computer, it took 76 seconds to analyze the AC30
responses (66 seconds when running under Matlab), while
clearly most of the time is spent in performing the logsweep
analysis.

4. Conclusion

A new software tool for performing rapid analysis measure-
ments on nonlinearly distorting audio effects was presented.
The software is called Distortion Analysis Toolkit (DATK),
and it is freely available for download at http://www
.acoustics.hut.fi/publications/papers/DATK/. The software
operates by first creating an excitation signal as a.wav file
according to the specifications set by the user. Next, the
user feeds this excitation signal as an input to a physical
or virtual distorting audio effect and records the output.
Several recordings can be made if the distorting effect’s
control parameter variations are to be analyzed. Finally, the
introduced software analyzes the response files and displays
the analysis results with figures. The software is developed in
Matlab language, but it can also be operated in standalone
mode. The DATK includes five distortion analysis methods,
and additional analysis techniques can be appended to it
using Matlab.

The usage of the DATK was illustrated with a case study,
where a custom-built AC30 guitar tube amplifier and two
commercial software simulations, TH1 AC30 and ReValver
AC30, were measured and compared. The amount and type
of distortion on the real AC30 were found to be strongly
dependent on the channel gain, as well as input signal
frequency. Especially the amplitude ratios between the first
few harmonic components show a complex nonmonotonous
dependency from the channel gain. Although both soft-
ware plugins successfully simulate the overall distortion
characteristics in a broad sense, their response is more
static than the real AC30 response. Waveform responses
to a transient input signal reveal that the nonlinearity
in the real AC30 is dynamic. Also the tested TH1 AC30
plugin shows strong dynamic behavior, while the ReValver
AC30 plugin is more static. Intermodulation distortion
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analysis did not reveal any major differences between the
three AC30 variants for low- and medium-gain settings,
although some differences could be observed under full gain
operation. Clearly audible aliasing noise was observed for
both software plugins with sinusoid inputs when running
a 48 kHz sample rate, whereas the real AC30 suffered from
power supply hum. In a practical guitar playing condition,
the aliasing noise on the tested software plugins is in
most cases negligible due to the complex spectrum of
the guitar. High bent notes can, however, reveal audible
aliasing artifacts even when operating at a 96 kHz sample
rate.
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A new method of identification, based on an input synchronized exponential swept-sine signal, is used to analyze and synthesize
nonlinear audio systems like overdrive pedals for guitar. Two different pedals are studied; the first one exhibiting a strong influence
of the input signal level on its input/output law and the second one exhibiting a weak influence of this input signal level. The
Synchronized Swept Sine method leads to a Generalized Polynomial Hammerstein model equivalent to the pedals under test. The
behaviors of both pedals are illustrated through model-based resynthesized signals. Moreover, it is also shown that this method
leads to a criterion allowing the classification of the nonlinear systems under test, according to the influence of the input signal

levels on their input/output law.

1. Introduction

Various classical analog audio effects fall into the category of
nonlinear effects such as compression, harmonic excitation,
overdrive, or distortion for guitars. Digital emulations of
nonlinear audio effects can be obtained when using a suitable
nonlinear model. Such nonlinear models are available in the
literature, for example, Volterra model [1], neural network
model [2], MISO model [3], NARMAX model [4], hybrid
genetic algorithm [5], extended Kalman filtering [6], or
particle filtering [7].

A new method for the identification of nonlinear
systems, based on an input exponential swept-sine signal
has been proposed by Farina et al. [8, 9]. This method
has been recently modified for the purpose of nonlinear
model estimation [10] and allows a robust and fast one-
path analysis and identification of the unknown nonlinear
system under test. The method is called Synchronized Swept
Sine method as it uses a synchronized swept sine signal for
identification.

A nonlinear effect can be modeled either by a simple
static nonlinear input/output law, where each input ampli-
tude is directly mapped to an output amplitude (nonlinear

system without memory), or on a more complex way by
nonlinear laws which take memory into account, meaning
that the memoryless nonlinearities and the linear filtering
are mixed. Moreover, several nonlinear audio effects include
amplifiers, the gain of which is automatically controlled
by the level of the input signal [11]. In other words, the
performance of nonlinear systems with memory may also
depend on parameters of the input signal, such as its level
or its past extrema, as for the hysteretic systems [12].

This classification of nonlinear systems according to the
influence of the input signal parameters on the input/output
law leads to a similar classification of the identification meth-
ods. The methods for identification of static nonlinearities
indeed do not require the same level of model complexity as
methods used for nonlinear systems with memory or with
gain control.

In this paper, it is shown that the Synchronized Swept
Sine method is suited to analyze, classify, and synthesize the
nonlinear systems under test. In the frame of this work,
two different overdrive pedals have been tested; the first one
exhibiting a strong influence of the input signal level on
its input/output law and the second one exhibiting a weak
influence of this input signal level.



In Section 2, Synchronized Swept Sine method is shortly
presented. This method leads to a nonlinear model (Sec-
tion 3), made up of several branches, each branch consisting
of a nonlinear function and a linear filter. The nonlinear
functions are chosen as a power series that makes the
model equivalent to a Generalized Polynomial Hammerstein
(GPH) model. Next, the measurements on overdrive pedals
are presented in Section 4. The behaviors of both systems
are illustrated through model-based resynthesized signals.
Finally, in Section 5, we propose a criterion based on the
GPH model to classify the nonlinear systems according to the
importance of the influence of the input signal parameters on
the input/output law of the system under test.

2. Analysis of Nonlinear Systems

The nonlinear system identification method used in this
paper is based on an excitation by a swept-sine signal
(also called chirp) exhibiting an exponential instantaneous
frequency fi(t). This so-called Synchronized Swept-Sine
method allows the identification of a system in terms of
harmonic distortion at several orders. This identification is
conducted in several steps.

First, an exponential swept-sine signal x;(t) is generated
and used as the input signal of the nonlinear system under
test. The excitation swept-sine signal x;(t) is defined as

xs(t) = As sin{ZnL[exp(?) - 1]}, (1)

= Roun 7Tf1
L=R d(ln(ﬁ/ﬁ))’ (2)

where

fi and f, being start and stop frequencies, and T being
the time length of the swept-sine signal. The rounding
operator is necessary to synchronize the swept-sine signal
for higher-order contributions with linear component as
depicted in Figure 1. This condition is necessary for the
model identification and for a proper reconstruction of the
output signal.

Then, the distorted output signal y(¢) of the nonlinear
system is recorded for use in the so-called nonlinear convo-
lution [8]. Next, the signal denoted X;(t) is derived from the
input signal x,(#) as its time-reversed replica with amplitude
modulation in such a way that the convolution between x,(t)
and X,(¢) gives a Dirac delta function &(¢). The signal X,(t) is
called the inverse filter [8].

Finally, the convolution between the output signal y(t)
and the inverse filter X(t) is performed, leading to

ys(£) * %(t) = D hi(t+ Aty), 3)

i=1

where h;(t) are the higher-order impulse responses and At;
are the time lags between the first and the ith impulse
response. Since the result of convolution y;(#) % X;(t) consists
of a set of higher-order impulse responses that are time
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FIGURE 1: Swept-sine signal x,(¢) in the time domain (b), with the
time length chosen according to the instantaneous frequency fi(t)

(a).

shifted, each partial impulse response can be separated from
each other.

The set of higher-order nonlinear impulse responses
hi(t) can also be expressed in the frequency domain. The
frequency response functions of the higher-order nonlinear
impulse responses h;(t) are then defined as their Fourier
transforms

Hi(f) = FT[hi(t)]. (4)

The frequency responses H;(f) represent the frequency
dependency of the higher-order components. H;(f) may be
regarded as the system frequency response, when considering
only the effect of the input frequency f on the ith harmonic
frequency of the output. The theoretical background of the
Synchronized Swept-Sine method is detailed in [10].

3. Model Identification

In this section, the frequency responses H;(f) described in
the previous section are used for a nonlinear model based
on a multiple-input single-output (MISO) model [3]. The
structure of this model is shown in Figure 2. It is made up of
N parallel branches, each branch consisting of a linear filter
A, (f). The input signals g, [x(¢)] are known as linear and/or
nonlinear functions of x(t) chosen by the user.

The output signal y(t) of the nonlinear system can then
be expressed as

N )
Y1) = Zj @alx(0)]an(t — D)dr, (5)
n=17-"%



EURASIP Journal on Advances in Signal Processing

t
g1lx(1)] A »1(8)
2[x(1)] A 7(t)
y(t)
t
&x(1)] 4s() y3(t)
[x(1)] N (t)
IN|X AN(f) N

F1GURre 2: MISO model for nonlinear system identification with the
input signals g,[x(¢)] and the linear filters A, (f), n € [1,N].

where N is the number of the input signals of the MISO-
based nonlinear model, and where a,(¢) is the impulse
response related to the nth branch of the MISO based
nonlinear model

an(t) = FT7![A,(f)]. (6)

The linear filters A,(f) (or equivalently the impulse
responses a,(t)) have then to be identified, using the
previously estimated H;(f). This identification consists in
solving a linear system of N equations using the least-squares
method. First, the coefficients ¢, of Discrete Fourier Series
of the functions g, [x(t)] are calculated as

M-1

. (21 27
Cnk = Mmzzbgn [sm(ﬁm)] exp(—]ﬁkm), (7)

for an input signal being a discrete-time harmonic signal of
length M. Next, the following set of linear equations with
unknown A, ( f) is solved

N

Hl(f) = ZAn(f)Cn,i + Res(f)’ (8)

n=1

for i € [1,1] (I being the number of harmonics taken into
account), n € [1,N], and Res( f) being the residue. AsI > N,
there can be more equations than unknowns. To solve the set
of equations (8) for I > N, the least-squares algorithm [13]
is applied, minimizing the residue Res( f).

If the functions g,[x(¢)] are improperly chosen and/or
if at least one of the input signals is missing, the value of
the residue increases drastically, which makes Res(f) an a
posteriori criterion for the choice of the input signals g, [x(t)].

If one of the nonlinear functions g, [x(t)] produces high
harmonic distortion components, nonlinear aliasing [14]
can appear. This can be avoided by choosing the nonlinear
functions g,[x(t)] according to any mathematical series. The
most used series is the one based on the power series, such as

glx(®)] = x"(¢). 9)

Band-pass| |
[Nfi, f2]

x(t) —

FIGURE 3: Generalized Polynomial Hammerstein (GPH) model
(power series nonlinear model) for nonlinear system identification.

A model with inputs chosen as power series is equivalent
to the Generalized Polynomial Hammerstein (GPH) model
[15] with N branches. In such a case, the nonlinear aliasing
can be controlled by the frequency range. The highest
frequency must not exceed f,/(2N), where f; is the sampling
frequency. The lowest frequency limit is as well given by the
highest power function N. The filters A, (f) are indeed valid
only in the frequency band [N f;, f;]. For that reason, the
model should be preceded by a bandpass filter as shown in
Figure 3. The amplitude limitation is as well given by the
excitation signal x;(t) used for the analysis. As the nonlinear
system 1is tested using an excitation signal x,(t), the level
of which does not exceed the amplitude A, the nonlinear
system is valid only for an input signal not exceeding A;.

4. Experimental Measurements:
Analysis and Synthesis

In a previous work, the Synchronized Swept-Sine method has
been used to model the limiter part of a dynamic processor
[10]. Results have shown the ability of the method to estimate
very hard distortions with a good accuracy within the whole
frequency range. In this section, the same method is tested
on two real-world analog audio effects devices exhibiting
weak distortions. Both devices under test are overdrive effect
pedals. The first one is an Ibanez Tube Screamer ST-9
[16], the second one is a home-made overdrive pedal, the
electric circuit diagram of which being depicted in Figure 4.
These pedals exhibit different nonlinear performances, as
investigated below.

The experimental measurement consists of two steps: (a)
identification of the nonlinear system under test through
the GPH model as described in the previous section and
(b) comparison of the output signals of both the nonlinear
system under test and the GPH model when excited with the
same signal.

For the first step, the measurement setup is as follows: the
sampling frequency used for the experiment is f; = 192kHz
and the excitation signal x,(t) is sweeping from f; = 5Hz to
f» = 10 kHz with a maximum amplitude A; = 1 V. The filters
A, (f) of the GPH model are then estimated.

The second step is the validation of the model for several
input levels. To analyze the accuracy of the GPH model, the
following test is performed. An input signal is provided to
the inputs of both the real-world analog effect device and its
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corresponding GPH model, and both outputs are compared
in the time and frequency domains. The input signal x(¢)
is a sine-wave with frequency f, = 500Hz and amplitude
Ay that varies from 0.1V to 1V with step 0.1 V. Regarding
distortion measurements, we choose to test the accuracy of
the method through the weighted harmonic distortion (HI-
2) that takes into account the higher-order components more
than the classical harmonic distortion [17].

4.1. Computing Complexity versus Accuracy. The choice of
the number of branches N of the GPH model is a key param-
eter which may influence the accuracy of the identification.
The higher the value of N the higher the accuracy but the
higher the computing complexity. To choose an optimal
value of N, the Ibanez Tube Screamer is firstly tested for
different values of N. Then, the HI-2 is calculated for both
output signals, the output of the real-world system and the
GPH model-based output, when excited with a sine wave
with frequency f; = 500 Hz and amplitude Ay = 1 V.

Both the HI-2 difference, noted AHI-2 and given in dB,
and the relative computing complexity CC are presented in
Table 1. The CC is defined as the computational time needed
to generate the output of the GPH model with N branches,
normalized by the computational time needed to generate
the output of a GPH model for N = 1 (linear system case).
(The simulation is made in Matlab for f; = 192 kHz and for
a signal with a number of samples equal to f;.)

As shown in Table 1 (for the nonlinear system under test),
the choice N = 7 is a good candidate for an optimal value
between the accuracy and the computational time. Increasing
N does indeed not increase the accuracy of the model, but
increases the computational time. As the model is made
up of parallel branches (each branch including the same
computing complexity), the computational time is directly
proportional to N.

4.2. Ibanez Tube Screamer Overdrive Pedal. The first nonlin-
ear system under test is an overdrive effect pedal Ibanez Tube

Screamer [16] (pedal 1). The pedal has been configured as
follows: Drive = 4/10, Level = 6/10, Mid Boost = 0/10, and
Tone = 3/10. Driving input level is attenuated by 25 dB before
exciting the nonlinear system under test.

The outputs corresponding to an input sine wave with
fo = 500Hz and Ay = 1V are shown in Figure 5, in both
time and frequency domains. The HI-2 is —21.14 dB for the
real-world output and —21.17 dB for the model output (N =
7), that illustrates a very good accuracy of the identification
method.

The HI-2 for both model and real-world system are
compared in Figure 6, when measured with increasing input
signal level A (from 0.1V to 1V). The HI-2 fits only for the
maximum input level Ay = 1V, corresponding to the level A,
of the signal used for the estimation of the A,(f). For other
levels Ay < 1V, discrepancies between the HI-2 spread from
4 to 8 dB. For example, the responses of the GPH model and
the real-world device to a sine wave, the amplitude of which
is Ag = 0.5V, is given in Figure 7, in both time and frequency
domains. The regenerated output signal, based on the GPH
model estimated for A; = 1V, does not fit with the real-world
output signal. The HI-2 is —28.0 dB for the real-world output
and —34.6 dB for the model output.

As a consequence, the nonlinear system under test
(Ibanez Tube Screamer) can be seen as a nonlinear system
whose input/output law is driven by the input level A,.
Nevertheless, when the amplitude Ay of the input signal is
the same as the amplitude A; used for the identification of
the nonlinear system, the GPH model-based output fits well
with the real-world output. This is illustrated in Figure 8 for
the case A; = Ag = 0.5V. The HI-2 is then —28.0 dB for the
real-world output and —27.9 dB for the GPH model-based
output.

4.3. Home-Made Overdrive Pedal. The second nonlinear
system under test is a home-made overdrive pedal, noted
pedal 2, exhibiting lower dependency on input level. The
circuit diagram of the pedal 2 is presented in Figure 4.
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TasLE 1: Effect of the number of branches N of the GPH model on the weighted harmonic distortion difference AHI-2 and on the relative

computing complexity CC.
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The same configuration and analysis as those described in
Section 4.2 have been setup.

The outputs corresponding to an input sine wave of fy =
500Hz and Ay = 1V are shown in Figure 9. The HI-2 is
—29.56 dB for the real-world output and —29.45 dB for the
GPH model output. As for the case of pedal 1, it illustrates a
very good accuracy of the identification method. The outputs
corresponding to an input sine wave of f; = 500 Hz and
Ay = 0.5V (Figure 10) show also a good agreement even if
the amplitude A of the input signal differs of the amplitude
A; = 1V used for the identification of the nonlinear system.
The HI-2 is —45.0 dB for the real-world output and —43.2 dB
for the model output.

As illustrated in Figure 11, the difference AHI-2 between
both HI-2 is less than 2.5dB for all the input levels A,.
Thus, such a nonlinear system represents a system whose
input/output law is not driven by the input level Ay. For such
anonlinear system, the presented identification method with
GPH model can be used for both analysis and synthesis.

5. Classification of Input Level
(In)Dependent Nonlinear Systems

In the previous section, two real-world nonlinear systems,
exhibiting different nonlinear behaviors have been identi-
fied thanks to the Synchronized Swept Sine method. The
input/output law of the first system under study (pedal 1)
is driven by the input level Ay, while the input/output law of
the second one (pedal 2) is independent of this input level. In
the following, we call “input level dependent” the first kind of
nonlinear system and “input level independent” the second
one.

A key point of the method of identification presented
in this paper is its capacity to distinguish both kinds of
nonlinear systems through its ability to synthesize the output
signals from any given input signal. Then, the classification
of nonlinear systems in these two categories (input level
dependent and input level independent) is performed here
thanks to the Synchronized Swept-Sine method. A criterion
based on the analysis of impulse responses a,(t) of GPH
model is used to perform this classification.

More specifically, we show that analyzing only the first
branch (linear part) of the model is sufficient to classify both
kinds of nonlinear systems. The linear impulse response a; (¢)
is firstly estimated for N = 7 and for several input levels A, €
[0.1,1] V, noted ay,(t); | denoting the input of the index
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level. Then, if the nonlinear system under test is an “input
level dependent” one, the impulse responses are expected to
be different from each other. On the contrary, if the nonlinear
system under test is an “input level independent” one, the
impulse responses a;,(t) are expected to be very close each
other.

In Figures 12 and 13, the impulse responses a;,(t) of the
first branch of the nonlinear model are depicted for different
input levels, for the case of pedals 1 and 2 respectively.
Using these results, we propose to define the following
relative squared error (RSE) based criterion for classifying
the nonlinear systems under test,

[ {an(t) = (ai (1)} dt
RSE; = , 10
l [ (@ (0))dt (10)
where (a;(#)) is the average impulse response,
10
(ar(1)) = w. (11)

The RSE measures the mean-squared distance between
the average impulse response (a;(t)) and the impulse
responses a(t).

For the case of pedal 1, we have max(RSE;) = 10%, whilst
for the case of pedal 2, max(RSE;) = 1.3%. This order of
magnitude between both values clearly allows to classify the
input level dependent and input level independent nonlinear
systems under test.

6. Conclusions

In this paper, a recently proposed method [10] is tested
for classifying, analyzing, and synthesizing two nonlinear
systems (overdrive effect pedals) exhibiting different nonlin-
ear behaviors. The method for identification of nonlinear
systems is based on synchronized swept-sine signal and
allows the identification of nonlinear system under test in a
one-path measurement.

The classification is indispensable for distinguishing
nonlinear systems whose input/output law is driven by input
level, and nonlinear systems whose input/output law is
independent of the input level.

Two nonlinear systems have been tested: the first one
corresponding to a nonlinear system whose input/output
law is driven by the input level and the second being
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a nonlinear system whose input/output law is independent
of the input level. For the latter (pedal 2), the results
show that the method is useful for both analysis and
synthesis. The comparison between the synthesized and

Impulse response
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FIGURE 12: Impulse responses a;;(t) of the first branch of the
nonlinear model (N = 7) depicted for different input levels (pedal

1).

real-world signal shows very good agreement in both time
and frequency domains. The same agreement is shown
by comparing the weighted harmonic distortion HI-2
[17].
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In the case of input level dependent nonlinear system
(pedal 1), it is shown that when the identification is carried
out from a signal with input level A;, the model is very
accurate only when the amplitude of the input signal to
be synthesized is Ay = A,. Thus, for a whole analysis of
such a system, the frequency responses H;(f) have then to
be estimated for different input levels A, leading to 2D
frequency response functions (FRF) H;(f, A;).

Works are now in progress to implement the FRF
H;i(f,As) into the nonlinear model in order to synthesize
such systems for any input signals.
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An algorithm is presented which automatically sets the attack, release, threshold, and hold parameters of a noise gate applied to
drum recordings which contain bleed from secondary sources. The gain parameter which controls the amount of attenuation
applied when the gate is closed is retained, to allow the user to control the strength of the gate. The gate settings are found by
minimising the artifacts introduced to the desirable component of the signal, whilst ensuring that the level of bleed is reduced by
a certain amount. The algorithm is tested on kick drum recordings which contain bleed from hi-hats, snare drum, cymbals, and

tom toms.

1. Introduction

Dynamic audio effects apply a control gain to the input
signal. The gain applied is a nonlinear function of the level
of the input signal (or a secondary signal). Dynamic effects
are used to modify the amplitude envelope of a signal. They
either compress or expand the dynamic range of a signal. A
noise gate is an extreme expander. If the level of the signal
entering the gate is below the gate threshold, an attenuation
is applied. If the level of the signal is above the threshold the
signal passes through unattenuated. The attack and release
parameters control how quickly the gate opens and closes.
As the name suggests, noise gates are used to reduce the
level of noise in a signal. There are many audio applications,
for example, noise gates are used to remove, breathing from
vocal tracks, hum from distorted guitars, and bleed on drum
tracks, particularly snare and kick drum tracks. The use
of digital audio workstations (DAWs) for postproduction
means that it is quick and easy to manually remove some
sources of noise by silencing regions of an audio file.
However, it is very time consuming to manually remove
bleed from drum tracks so noise gates are still heavily used.
The reader is referred to [1] for a comprehensive
review of digital audio effects (DAFx). In [2], a class of

sound transformations called adaptive digital audio effects
(A-DAFx) are defined. Adaptive effects extract features from
a signal and use them to derive control parameters for
sound transformations. Adaptive audio effects have existed
for many years. Dynamic effects are simple examples of A-
DAFx because the control gain applied is derived from the
level of the input signal. Features can be extracted from the
input signal, an external signal, or the output signal before
being mapped to control parameters. These are referred
to as autoadaptive, external-adaptive, and feedback-adaptive
respectively. Cross-adaptive effects use two or more inputs;
the features of which are used in combination to produce the
control parameters for the sound transformation.

A-DAFx have been used for automatic mixing applica-
tions. Early work focused on audio for conferencing. An
adaptive threshold gate is presented in [3]. This is an external
adaptive effect. Ambient noise is picked up by a secondary
microphone from which the level is extracted. The level
of the noise is mapped to the threshold of a noise gate
which is applied to the primary microphone. In [4], a
direction sensitive gate is presented. This is a cross-adaptive
effect. Each microphone unit contains two microphones.
These face toward and away from the speaker. The level
of the signals entering the microphones is extracted and



compared to determine the direction of the signal. The
direction is mapped to an on/off switch which ensures that
the microphone is only active if the sound source is in front
of it.

Recent automatic mixing work has turned toward audio
production. Perez-Gonzalez and Reiss [5-7] have presented
A-DAFx for live audio production. A cross-adaptive effect
which does automatic panning is presented in [5]. The
automatic panner extracts spectral features from a number
of channels, each of which corresponds to a different
instrument. The spectral features are mapped to panning
controls, subject to predefined priority rules. The objective is
to separate spatially those instruments with similar frequency
content. The work in [6] is used to reduce spectral masking
of a target channel in a multichannel setup. This is a
cross-adaptive effect. It extracts spectral features from each
channel, and if a channel has a similar spectral content
to the predefined target channel an attenuation is applied.
Automatic fader control is demonstrated in [7]. This is
a cross-adaptive effect. It extracts the loudness from each
channel. Loudness is a perceptual feature, a function of
level and spectral content. The loudness of each channel
is compared to the average loudness of all channels and is
mapped to fader controls. This mapping seeks to make the
loudness of all channels equal.

In [7] the cross-adaptive effect is used to instantiate
changes to the fader controls which seek to produce a
predefined outcome: equal loudness in all channels. This can
be viewed as a form of real-time optimization. There are a
few examples of audio effect parameter automation, where
the optimization is performed offline. Whilst these do not
fit neatly into the A-DAFx structure, they still incorporate
feature extraction and feature mapping. In [8], a method is
presented which allows perceptual changes in equalization
to be made to an audio signal. An example requirement is
to make the signal sound brighter. This is a cross-adaptive
effect. The spectral features of the input signal are extracted
and are compared with a database of previously examined
signals, to which perceptually classified equalization changes
have been made. A nearest neighbour optimization is
used to map the similarity in spectral features to relevant
equalization settings. In [9], a method is presented which
automatically sets the release and threshold of a noise gate
applied to drum recordings. This work is expanded here.
This is an autoadaptive effect. The distortion to the target
signal and the residual noise are extracted from the input
signal. An objective function is defined which is a weighted
combination of these two features. The objective function
is minimised subject to weighting parameter, mapping the
features to the release and threshold.

Automatic audio effects for musical applications gener-
ally have a user input which takes subjective considerations
into account. For example, [5] has a global panning width
control and [6] has a maximum attenuation control. The
panning values output by the automatic panner are scaled
between the center, and the user-defined global panning
width. The maximum attenuation control defines the maxi-
mum gain reduction that can be applied to channels in order
to reduce masking with the target channel. If the use of an
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audio effect cannot be defined in a purely objective way, it is
advisable to decouple subjective and objective elements when
attempting to automate it. In the case of a noise gate this
distinction can be made clearly. The objective is to reduce
the amount of noise, so the gate should attenuate the signal
when noise is prevalent and should not attenuate when the
wanted signal is prevalent. The subjective element is the level
of attenuation that should be applied.

2. Method

2.1. Noise Gates in Drum Recordings. A noise gate has five
main parameters: threshold (T), attack (A), release (R),
hold (H), and gain (G). Threshold and gain are measured
in decibels, and attack, release, and hold are measured in
seconds. The threshold is the level above which the signal
will open the gate and below which it will not. The gain is
the attenuation applied to the signal when the gate is closed.
The attack is a time constant representing the speed at which
the gate opens. The release is a time constant representing the
speed at which the gate closes. The hold parameter defines
the minimum time for which the gate must remain open. It
prevents the gate from switching between states too quickly
which can cause modulation artifacts.

A typical drum kit comprises kick drum, snare, hi-
hats, cymbals, and any number of tom toms. An example
microphone setup will include a kick drum microphone, a
snare microphone (possibly two), a microphone for each
tom tom, and a set of stereo-overheads to capture a natural
mix of the entire kit. In some instances a hi-hat microphone
will also be used. When mixing the recording, the overheads
will be used as a starting point. The signals from the other
microphones are mixed into this to provide emphasis on
the main rhythmic components, that is, the kick, snare, and
tom toms. Processing is applied to these signals to obtain the
desired sound. Compression is invariably used on kick drum
recordings. A compressor raises the level of low amplitude
regions in the signal, relative to high amplitude regions which
has the affect of amplifying the bleed. Noise gates are used to
reduce (or remove) bleed from the signal before processing is
applied.

Figure 1(a) shows an example kick drum recording
containing bleed from secondary sources. Figure 1(b) shows
the amplitude envelope of the kick drum contained within
the recording, and Figures 1(c) and 1(d) show the amplitude
envelope of bleed contained within the signal. The large and
small spikes up to 1.875 seconds in Figure 1(c) are snare hits
and the final two large spikes are tom-tom hits. Figure 1(d)
has reduced limits on the y-axis. This figure shows the
cymbal hit at 0 seconds, and hi-hat hits, for example, at
1.625 seconds. The amplitude of these parts of the bleed is
very low and will have minimal affect on the gate settings.
Components of the bleed signal which coincide with the
kick drum cannot be removed by the gate (because it is
opened by the kick drum). The snare hits coincide with
the decay phase of the kick drum hits and so will have the
biggest impact on the noise gate time constants. If the release
time is short, the gate will be tightly closed before the snare
hit, but the natural decay of the kick drum will be choked.
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noisy signal. Part (d) has reduced limits on the y-axis to show cymbals and hi-hats in the bleed signal.

If the release time is long the gate will remain partially open,
and the snare hit will be audible to some extent, but the
kick drum hit will be allowed to decay more naturally. If
the threshold is below the peak amplitude of any part of the
bleed signal, then the bleed will open the gate and will be
audible. It is necessary to strike a balance between reducing
the level of bleed and minimising distortion of the kick
drum.

2.2. Audio Files, Artifacts, and Noise Reduction. Audio files
representatives of a kick drum recording containing bleed
from hi-hats, snare drum, cymbal, and tom toms are
investigated. The audio is generated using the commercial
software BFD2 from FXpansion. In this software the samples
for each drum have been recorded with all microphones
active so natural bleed is available. Test audio files are made
by soloing the output of the kick drum microphone. Audio
files are sequenced by the author. The kick drum signal which
contains bleed is referred to as the noisy signal, y,[#n]. This is

a combination of the clean kick drum signal yx[n] and the
bleed signal y; [n],

Yaln] = yi[n] +ys(n], (1)

where [#] is the sample index. [n] will be dropped from this
point onward for clarity. Time domain vectors are identified
by lowercase, bold, typeface. Passing a signal through the
noise gate will generate a gate function, g. This vector
contains the gain to be applied to each sample of the input
signal. An example gate function is plotted in Figure 1(a).
The gate function will generate distortion artifacts in the kick
drum signal, Dy,

T 2
-9 -Z*YkH | 2
Iyl
and will reduce the bleed signal to a residual level, D,
T 2
D, - I8 -*s;bll ’ 3)
[lysl|



where . is the elementwise, vector multiplication operator.
The signal to artifact ratio (SAR) and the reduction in the
bleed level (dpleed) are given by

SAR = 20log,,(Dz"),

(4)
8b1eed = 2010810 (DB )

In [9] it is proposed that optimal noise gate settings should
be found by minimising an objective function which is a
weighted combination of the distortion artifacts D, and
the noise reduction Dy. The weighting parameter is then
used to control the strength of the gate. The release and
threshold are parameters in the objective function, but
attack, gain, and hold are fixed. The attack is set to the
minimum time of 1ms, the gain to —oco dB, and the hold
to a value that prevents distortion. A usable automatic
gate requires these parameters to be included, in particular
the gain setting, which if fixed at —co dB will choke the
kick drum sound severely. The implementation presented
in this paper also includes the attack time and hold time
as parameters in the objective function. The gain is used
in place of the weighting parameter to control the strength
of the gate. Rather than minimising an objective function
which contains the distortion artifacts and the residual noise,
the distortion artifacts are minimised (SAR is maximised),

subject to the reduction in the bleed being greater than some
threshold.

2.3. Approximating Distortion Artifacts and Noise Reduction.
The distortion artifacts and noise reduction cannot be
evaluated without separating the kick and bleed components
of the signal. The human auditory system can do this
instinctively. A human user will have prior knowledge of
what the clean signal sounds like, that is, the user will know
that the clean signal is a kick drum. This is replicated when
automating the noise gate by inputting a single, clean, kick
drum hit to the algorithm. In practice this could be obtained
during a sound check, or could be taken from a database of
kick drum samples.

The noisy signal is split into windows of quaver length.
Each window is attributed to kick or bleed. The divisions
within the noisy signal are made based on note onsets. Onsets
are identified manually, but it is assumed that they could be
identified exactly using an onset detection algorithm. The
work in [10] is a benchmark paper on onset detection, and
[11] contains a summary of drum transcription and source
separation techniques. The spectral power of each window
of the noisy signal is correlated with the spectral power of a
region of the clean kick drum signal of equal length. If the
correlation is above a predefined threshold, it is attributed to
kick drum. The correlation is calculated as the scalar product
of the normalised spectral powers. X; is the spectral power of
window i of the noisy signal, and X, is the spectral power of
the clean kick drum signal. The correlation is given by

€= (niin)T' (1) )

where ¢; is the correlation of the spectral powers of window
i of the noisy signal with the clean kick drum signal.

EURASIP Journal on Advances in Signal Processing

Windows of the noisy signal with a correlation greater than
the threshold of 0.95 are assigned to kick drum. All other
windows are assigned to bleed. An approximation of the
clean signal is made by aligning a copy of the clean kick drum
hit with the start of each window assigned to kick drum.
This forms the synthesized clean signal y,, which is used in
place of yx in (2). The bleed is approximated by silencing
all windows in the noisy signal which are attributed to the
kick drum.

Figure 2 shows how the approximations to the kick
and bleed components in the noisy signal are obtained.
Figure 2(a) shows the noisy signal. It has been quantized
with an eighth note quantization grid and windows are
based on this spacing. Figure 2(d) of this figure shows the
correlations between the spectral power of each window in
the noisy signal with the spectral power of the clean kick
drum hit. Marked on this figure is the correlation threshold
of 0.95. All windows which contain a kick drum hit have a
correlation above this threshold. Figures 2(b) and 2(c) show
the synthesized kick drum signal, y,, and the approximate
bleed signal, y;, respectively. The dotted lines on Figures 2(a)
and 2(c) show the gate function g, which is the gain applied
by the gate as the noisy signal passes through it. The dotted
line on Figure 1(b) shows the function (1 —g). These are used

to estimate the distortion artifacts and the residual noise as
defined in (2) and (3).

2.4. The Noise Gate Optimization Algorithm. Common prac-
tice when using a noise gate to reduce bleed in drum
tracks is to first set the gain to —oo dB. The threshold is
then set as low as possible to allow the maximum amount
of kick drum to pass through without allowing the gate
to be opened by the bleed signal. The release is set as
slow as possible whilst ensuring that the gate is closed
before the onset of any bleed notes. For very fast tempos
this may not be possible without introducing significant
artifacts, in which case some bleed notes which occur close
to the kick drum hit may be allowed to pass through. The
implications of this in the automatic implementation will be
discussed later. It is assumed that the gate must be closed
for all bleed onsets. The attack is set to the fastest value
which does not introduce any distortion artifacts. The hold
time is continually adjusted to remove modulation artifacts
caused by rapid opening and closing of the gate. During an
interonset interval assigned to kick drum, the gate should
go through one attack phase and one release phase only.
The hold parameter should be as low as possible whilst
maintaining this requirement. If it is too long it can affect
the release phase of the gate. Once all other parameters
have been set, the gain is adjusted subjectively to the desired
level.

Figure 3 is a flowchart of the algorithm. The inputs on
the left are constraints enforced at each stage. The inputs
on the right are the parameter values at each stage. The
signal is split into regions which contain kick drum and
regions which contain bleed, as discussed in Section 2.3.
An initial estimate of the threshold is found by maximising
the SAR, subject to the constraint that the bleed level is
reduced by at least 60 dB. This is identified by the parameter
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FIGURE 2: Approximations to the kick drum and bleed signals, (a) contains the noisy signal y,, (b) contains the synthesized clean kick drum
signal y;, (c) contains the component of the signal attributed to bleed y;,, and (d) shows the correlation of the spectral power of each window
with the spectral power of the clean kick drum signal. The correlation threshold is identified by the dotted line.

Obleed> Which is the minimum change in the bleed level
after gating. The attack, release, and hold are set to their
minimum values during the initial threshold estimate and
the gain is set for full signal attenuation (G = 0 on a
linear scale). This ensures that the threshold is set to the
lowest feasible value. The minimum hold time is found
which permits only one attack phase and one release phase
for each kick drum window. These constraints are identified
by parameters Nattack and Nrelease Which correspond to the
permitted number of attack and release phases, respectively.
The other gate inputs are the minimum values of attack
and release and the initial threshold estimate. The threshold
estimate is required because the minimum hold time can
vary significantly with threshold. The threshold is then
recalculated using the updated hold parameter. Finally the
attack and release are found by maximising the SAR, subject
to the bleed reduction. Steepest descent gradient methods are
used to minimise functions at each stage.

Breaking the algorithm into stages rather than defining a
single objective function which contains all parameters has
a significant advantage in this kind of optimization scheme.
The major problems when using a single objective function
are discontinuous regions in the solution space and regions
of the solution space which have zero sensitivity with respect
to small changes to the parameters. This is the case for all
parameters when the threshold is close to zero (at which
point the signal level is always above the threshold). By
optimising each parameter in turn, and ensuring that the
start point lies within a sensitive, continuous region at each
stage, this problem is overcome. Alternative optimization
methods which do not rely on gradient information could
potentially be used.

3. Results

The algorithm is tested using a simple drum beat. The tempo
of the beat is 120 bpm, the time signature is 4/4, and the
kick hits lie on a 1/8 note quantization grid. There are
some 1/16 note snare drum hits, but none of these occur
immediately after a kick drum hit. This ensures that each kick
drum window has a length of 1/8 note. The required bleed
reduction is set to Spleed = —60 dB, and the gain of the noise
gate is set to —oo dB, that is, full attenuation. Figures 4(a) and
4(b) show the signal before and after gating, respectively. The
gate function is plotted with a dashed line. It can be seen that
the kick drum decay phase of the gated kick drum has been
shortened, so that the signal level is approximately zero at the
beginning of the region assigned to bleed, which occurs at
0.5s. A user would now be free to adjust the gain parameter
with the automated threshold, attack, release, and hold to
change the strength of the gate.

The automatic noise gate algorithm is now investigated
for a range of required bleed reductions, and for a range of
noisy signals which contained different strengths of bleed.
The strength of the bleed is measured relative to the test
case described above, and includes bleed strengths of +0 dB,
+2 dB, +4 dB, and +6 dB. Figures 5(a)-5(d) contain plots of
the threshold, release, hold, and SAR, respectively. The attack
has not been plotted because in all cases the algorithm set it
to the minimum value of 1 ms.

Initial discussions are focused on the signal with a relative
bleed strength of +0 dB. Figure 5(a) shows that the threshold
has a stepped profile, and that it decreases as the required
bleed reduction is decreased. Table 1 shows the peak levels
extracted from each region of the noisy signal attributed
to bleed. The overall peak level is —28 dB, which occurs in



EURASIP Journal on Advances in Signal Processing

Split audio into kick
and bleed
Estimate T A R, Hos
8b1 d = —60dB ———>| min> fmin> fImin
« Maximise(SAR) [« G =0

% ins .
Nattack = 1 —— Calculate H émmoRmm
— G=
Nrelease = 1 —————| Minimise(H) < s
- est
% ins .
8 60dB Calculate T Amin> Rmin
bleed = — —| K——— G=0
“ Maximise(SAR)

K— H

) =-60dB ————
bleed Maximi;

Calculate A, R k——+—T,H

se(SAR) K—G=0

FIGURE 3: Automatic noise gate flow chart.

the final section and is due to the tom tom hits. Inspection
of Figure 5(a) shows that the threshold is above this for
Obleed < —10dB, and so the bleed signal will not open the
gate. Large reductions in bleed, for example, dpicea = —60 dB,
result in thresholds which are higher than the peak level
of the bleed by around 3 dB. This headroom is required to
ensure that the gate has sufficient time to close during the
release phase (which in calculating the threshold is set to
the minimum value of 10 ms). As the required reduction in
bleed becomes smaller, the gate does not need to be closed so
tightly by the end of the release phase, which permits a lower
threshold. The threshold follows a stepped profile because
the bleed reduction is highly sensitive to small changes in
the threshold. The threshold is set using the predetermined
hold time and minimum attack and release times, as shown
in Figure 3. Using these parameter values, a change in the
threshold from —25.89 dB, to —22.56 dB results in a change
in Opjeed from —22.5 dB to —56.4 dB. With the tolerance used,
there are no intermediate threshold values that will give a
bleed reduction between —22.5dB and —56.4 dB. When the
strength of the bleed is increased, a similar trend can be seen,
but the difference between the threshold and the peak level
of the bleed (shown in Table 1) gets progressively smaller.
This is because with a higher strength of bleed, the absolute
reduction in bleed to produce the same relative change is
smaller, and the gate does not need to be closed so tightly
by the end of the release phase.

For a fixed threshold the release time gradually increases
as the required bleed reduction decreases. This is expected
because the gate does not need to be closed so tightly by
the start of the bleed window. Each step drop in threshold
causes a sudden shortening of the time between the start of
the release phase and the start of the following bleed window
and so a step drop in release time is needed to produce the
required bleed reduction.

TaBLE 1: Peak signal level in the bleed regions identified by ¢, and t,
for a range of relative bleed strengths.

t b 0dB +2dB +4dB +6dB
0.5 1 —-29.1 —-26.3 —25.6 -24.9
1.5 2.25 -29.1 -28.7 —28.2 -27.6
2.5 3 —-29.3 —-28.9 —28.4 -29.7
3.5 4 —28.0 -26.5 —24.5 —-22.7

The hold time gives what appears to be the most
unintuitive results. For signals with relative bleed strengths
of +0dB, +2dB, and +4 dB, the hold time remains roughly
constant at around 40 ms. The signal which has a bleed
strength of +6 dB has a far lower hold time when the required
bleed reduction is large, and shows a sudden increase in
hold time when &pjeed > —20dB. The value of the hold
time will depend on the degree to which the envelope of the
kick drum signal is fluctuating about the threshold. If there
are substantial fluctuations a longer hold time is required.
The hold time is determined using the initial estimate of
the threshold. Signals with different relative bleed strengths
have different initial threshold estimates. Evidently for the
signal with a bleed strength of +6dB, there are minimal
fluctuations in the envelope of the kick drum signal about the
initial threshold estimate when the required bleed reduction
is large. When the required bleed reduction is decreased,
the initial threshold estimate is lower, and there are more
fluctuations in the envelope of the kick drum signal about
it. A longer hold time is therefore needed.

The SAR generally increases as the required reduction
in bleed decreases. This is expected. A gentler gate causes
less distortion in to kick drum signal. There are a few
anomalous points where a decrease in the required bleed
reduction is accompanied by an decrease in the SAR.
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F1GURE 4: Kick drum recording before and after gating, (a) before gating, and (b) after gating, with Spjeeca = —60 dB.

These points coincide with step reductions in the threshold
and release. It is suggested that in these transitional points
a smoother change in the release and threshold may be
required. This cannot be achieved with the algorithm in
its current form because the threshold and release time are
evaluated independently. It may be possible to include an
additional, final stage which optimizes all of the parameters
together.

4. Discussion

In designing the algorithm, manual use of a noise gate has
been taken into account. It is the opinion of the author that
by replicating the human thought process, the automated
results should better approximate those obtained by a human
user. Although formal evaluation has not been undertaken,
informal testing has shown this to be the case.

The algorithm has been designed so that it is independent
of the specific noise gate implementation. It would be
easier to develop an algorithm if hidden aspects of the
implementation, such as the transient filter properties, and
the level detector, were known, but this would limit the use of
the algorithm to a specific noise gate. This approach also ties
in with the concept of replicating human operation because
the parameters are set based only on the input and output of
the gate and so much like with a human user, decisions are

based purely on changes to the properties of the signal. It is
the opinion of the author that this black box approach has
most potential when considering commercial developments
in the automation of any audio effect, as it allows the
automation algorithm to be developed independently of the
effect implementation (so long as the same parameters are
available).

The algorithm presented divides the signal into a number
of intervals based on the position of onsets. Problems will
arise with drum recordings at high tempos and with high
resolution quantization grids. In these cases it is likely that
the kick drum regions will be very short, resulting in a
choked kick drum sound after gating. A human operator
would adjust the release to allow some bleed onsets which
are close to the kick drum hit to pass through. This should be
incorporated into the automatic gating algorithm. This could
be done by defining a minimum kick drum window length,
based on the amplitude envelope of the clean kick drum hit.

It is interesting to consider how the automatic noise gate
presented in this paper fits into the A-DAFx framework.
Most A-DAFx have a small analysis frame and update control
parameters continuously, more or less in real time. This is
particularly the case with established auto-adapative effects
such as compressors. The algorithm presented here uses an
audio segment of around 8 seconds, and takes 5-10 seconds
to form and minimise the objective function. Despite this
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lengthy time frame the algorithm could still be implemented
within the A-DAFx framework. Large and sudden changes
to noise gate parameters are undesirable, so an accumulative
learning approach could be used as in [7].

Subjective evaluation has not yet been performed for
this work. It would be useful to compare the values of
the gate parameters output by the algorithm to those of
an experienced engineer. This could be used to determine
suitable reductions in SNR to be used in the algorithm, which
may or may not be based on properties of the input signal.

5. Conclusions

An algorithm has been presented which automatically sets
the threshold, release, attack, and hold parameters of a noise
gate used on a kick drum recording that contains bleed from
secondary sources. The parameters identified cause minimal
distortion to the kick signal, whilst enforcing a predefined
reduction in the level of the bleed signal. The gain parameter
is not set automatically and is used to manually control
the strength of the gate. The algorithm has been developed

independently from the noise gate implementation, and
through consideration of the process followed by a human
user. It has been tested for signals with varying levels of bleed,
and varying amounts of bleed reduction. The gate settings
found are intuitively correct, although as yet no subjective
evaluation has been undertaken to compare them to expert
users.
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The paper presents methods for instantaneous harmonic analysis with application to high-quality pitch, timbre, and time-scale
modifications. The analysis technique is based on narrow-band filtering using special analysis filters with frequency-modulated
impulse response. The main advantages of the technique are high accuracy of harmonic parameters estimation and adequate
harmonic/noise separation that allow implementing audio and speech effects with low level of audible artifacts. Time stretch and
pitch shift effects are considered as primary application in the paper.

1. Introduction

Parametric representation of audio and speech signals has
become integral part of modern effect technologies. The
choice of an appropriate parametric model significantly
defines overall quality of implemented effects. The present
paper describes an approach to parametric signal processing
based on deterministic/stochastic decomposition. The signal
is considered as a sum of periodic (harmonic) and residual
(noise) parts. The periodic part can be efficiently described
as a sum of sinusoids with slowly varying amplitudes and
frequencies, and the residual part is assumed to be irregular
noise signal. This representation was introduced in [1] and
since then has been profoundly studied and significantly
enhanced. The model provides good parameterization of
both voiced and unvoiced frames and allows using different
modification techniques for them. It insures effective and
simple processing in frequency domain; however, the crucial
point there is accuracy of harmonic analysis. The harmonic
part of the signal is specified by sets of harmonic parameters
(amplitude, frequency, and phase) for every instant of time.
A number of methods have been proposed to estimate
these parameters. The majority of analysis methods assume
local stationarity of amplitude and frequency parameters
within the analysis frame [2, 3]. It makes the analysis

procedure easier but, on the other hand, degrades parameters
estimation and periodic/residual separation accuracy.

Some good alternatives are methods that make esti-
mation of instantaneous harmonic parameters. The notion
of instantaneous frequency was introduced in [4, 5], the
estimation methods have been presented in [4-9]. The aim
of the current investigation is to study applicability of the
instantaneous harmonic analysis technique described in [8,
9] to a processing system for making audio and speech effects
(such as pitch, timbre, and time-scale modifications). The
analysis method is based on narrow-band filtering using
analysis filters with closed form impulse response. It has been
shown [8] that analysis filters can be adjusted in accordance
with pitch contour in order to get adequate estimate of
high-order harmonics with rapid frequency modulations.
The technique presented in this paper has the following
improvements:

(i) simplified closed form expressions for instantaneous
parameters estimation;

(ii) pitch detection and smooth pitch contour estimation;
(iii) improved harmonic parameters estimation accuracy.

The analysed signal is separated into periodic and
residual parts and then processed through modification tech-
niques. Then the processed signal can be easily synthesized



in time domain at the output of the system. The deter-
ministic/stochastic representation significantly simplifies the
processing stage. As it is shown in the experimental section,
the combination of the proposed analysis, processing, and
synthesis techniques provides good quality of signal analysis,
modification, and reconstruction.

2. Time-Frequency Representations and
Harmonic Analysis

The sinusoidal model assumes that the signal s(n) can be
expressed as the sum of its periodic and stochastic parts:

K

s(n) = ZMAGk(n) cos gx(n) + r(n), (1)
k=1

where MAGy(n)—the instantaneous magnitude of the kth
sinusoidal component, K is the number of components,
¢r(n) is the instantaneous phase of the kth component,
and r(n) is the stochastic part of the signal. Instantaneous
phase @i (n) and instantaneous frequency fi(n) are related as
follows:

Pi(n) = Zzﬂljj‘(i)

i=0

+ 91 (0), (2)

where F; is the sampling frequency and ¢k (0) is the initial
phase of the kth component. The harmonic model states that
frequencies fy(n) are integer multiples of the fundamental
frequency fo(n) and can be calculated as

Je(n) =k fo(n). 3)

The harmonic model is often used in speech coding since
it represents voiced speech in a highly efficient way. The
parameters MAGy(n), fi(n), and @r(0) are estimated by
means of the sinusoidal (harmonic) analysis. The stochastic
part obviously can be calculated as the difference between the
source signal and estimated sinusoidal part:

K
r(n) = s(n) — ZMAGk(n) cos @i (n). (4)
k=1

Assuming that sinusoidal components are stationary (i.e.,
have constant amplitude and frequency) over a short period
of time that correspond to the length of the analysis frame,
they can be estimated using DFT:

N-1
S(f) = 3 2 s(me PN, 5)
DJn:O
where N is the length of the frame. The transformation
gives spectral representation of the signal by sinusoidal
components of multiple frequencies. The balance between
frequency and time resolution is defined by the length of the
analysis frame N. Because of the local stationarity assump-
tion DFT can hardly provide accurate estimate of frequency-
modulated components that gives rise to such approaches
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as harmonic transform [10] and fan-chirp transform [11].
The general idea of these approaches is using the Fourier
transform of the warped-time signal.

The signal warping can be carried out before transforma-
tion or directly embedded in the transform expression [11]:

S(w,a) = Z s(n)r/|1 + an|e i@0+01/2)amn (6)

n=-o0

where w is frequency and « is the chirp rate. The trans-
form is able to identify components with linear frequency
change; however, their spectral amplitudes are assumed
to be constant. There are several methods for estimation
instantaneous harmonic parameters. Some of them are
connected with the notion of analytic signal based on the
Hilbert transform (HT). A unique complex signal z(t) from
a real one s(t) can be generated using the Fourier transform
[12]. This also can be done as the following time-domain
procedure:

z(t) = s(t) + jH[s(t)] = a(t)el?V), (7)
where H is the Hilbert transform, defined as
+oo _
HIs(H)] = p.v. J =7y (8)
— T

where p.v. denotes Cauchy principle value of the integral.
z(t) is referred to as Gabor’s complex signal, and a(t) and
¢(t) can be considered as the instantaneous amplitude and
instantaneous phase, respectively. Signals s(¢) and H [s(t)] are
theoretically in quadrature. Being a complex signal z(t) can
be expressed in polar coordinates, and therefore a(t) and ¢(t)
can be calculated as follows:

a(t) = +/s>(t) + H2[s(t)],

H [S(t)])
s(t) )7
Recently the discrete energy separation algorithm (DESA)

based on the Teager energy operator was presented [5]. The
energy operator is defined as

Y(s(n)] = s*(n) —s(n — Ds(n+ 1), (10)

(9)

o(t) = arc tan(

where the derivative operation is approximated by the
symmetric difference. The instantaneous amplitude MAG(n)
and frequency f(n) can be evaluated as

2¥[s(n)]
Y[sn+1)—sn—-1)]

_ . Y(s(n+1) —s(n—1)]
f(n) = arcsm\/ 5] .

The Hilbert transform and DESA can be applied only to
monocomponent signals as long as for multicomponent
signals the notion of a single-valued instantaneous frequency
and amplitude becomes meaningless. Therefore, the signal
should be split into single components before using these
techniques. It is possible to use narrow-band filtering for this
purpose [6]. However, in the case of frequency-modulated
components, it is not always possible due to their wide
frequency.

MAG(n) =

(11)
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3. Instantaneous Harmonic Analysis

3.1. Instantaneous Harmonic Analysis of Nonstationary Har-
monic Components. The proposed analysis method is based
on the filtering technique that provides direct parameters
estimation [8]. In voiced speech harmonic components
are spaced in frequency domain and each component can
be limited thereby a narrow frequency band. Therefore
harmonic components can be separated within the analysis
frame by filters with nonoverlapping bandwidths. These
considerations point to the applicability and effectiveness
of the filtering approach to harmonic analysis. The signal
s(n) is represented as a sum of bandlimited cosine functions
with instantaneous amplitude, phase, and frequency. It is
assumed that harmonic components are spaced in frequency
domain so that each component can be limited by a narrow
frequency band. The harmonic components can be separated
within the analysis frame by filters with nonoverlapping
bandwidths. Let us denote the number of cosines L and
frequency separation borders (in Hz) Fy < F, < - -+ < Fy,
where Fy = 0, F; = F;/2. The given signal s(n) can be
represented as its convolution with the impulse response of
the ideal low-pass filter h(n):

sin(mrn)

s(n) = s(n) * h(n) = s(n) *
0.5

=s(n) * J cos(27 fn)df
~05

= s(n) *x [2 J‘OO-S cos(27rfn)df}
= s(n) * [kilé le cos<2ﬂfgs)df]

S [ 7| S su(n)
= >sn) x| =h(n)| = > s(n),
k=1 Fsk k:lk

(12)

where hy(n)—the impulse response of the band-pass filter
with passband [Fy_1, Fx], sk(n)—bandlimited output signal.
The impulse response can be written in the following way:

Fx n
() = J cos(znf— )df
Fiy FS
ZFZ, n=0, (13)
1 F (Znn ) . <2nn k)
- cos F e sin F. , n#0,
where F¥ = (F,_, +F;)/2 and FX = (F, — Fx_,)/2. Parameters

F¥and FX correspond to the center frequency of the passband
and the half of bandwidth, respectively. Convolution of finite
signal s(n) (0 < n < N —1) and hx(n) can be expressed as the

following sum:
2m(n — i) k) . (271(11 ) )
( E, F; ) sin F.

(14)

N-1

sk(n) = Z 25(1)

The expression can be rewritten as a sum of zero frequency
components:

sk(n) = A(n) cos(0n) + B(n) sin(0n), (15)
where
N-1 .
Z 25(1) . (271(;135— 1)F§> COS(ZH(:«S 1) )
N-1 .
B(n) = Z (25(1)) .n(ZH(ZS— I)F§> Sin(Zn(;S 1) )

(16)

Thus, considering (15), the expression (14) is a magnitude
and frequency-modulated cosine function:
sk(n) = MAG(n) cos(¢p(n)), (17)

with instantaneous magnitude MAG(#n), phase ¢(n), and
frequency f(n) that can be calculated as

MAG(n) = 1J/A%(n) + B2(n),

-B
o(n) = arctan( A(:;)), (18)
_p(n+1) —g(n)
fny = EEEZ P,

In that way the signal frame s(n) (0 < n < N — 1) can
be represented by L cosines with instantaneous amplitude
and frequency. Instantaneous sinusoidal parameters of the
filter output are available at every instant of time within the
analysis frame. The filter output sx(n) can be interpreted as
an analytical signal sf(n) in the following way:

sp(n) = A(n) + jB(n). (19)
The bandwidth specified by border frequencies Fi—; and Fy
(or by parameters FF and Ff) should cover the frequency
of the periodic component that is being analyzed. In many
applications there is no need to represent entire signal as
a sum of modulated cosines. In hybrid parametric repre-
sentation it is necessary to choose harmonic components
with smooth contours of frequency and amplitude values.
For accurate sinusoidal parameters estimation of periodical
components with high-frequency modulations a frequency-
modulated filter can be used. The closed form impulse
response of the filter is modulated according to frequency
contour of the analyzed component. This approach is
quite applicable to analysis of voiced speech since rough
harmonic frequency trajectories can be estimated from the
pitch contour. Considering centre frequency of the filter
bandwidth as a function of time F.(n), (15) can be rewritten
in the following form:

sk(n) = A(n) cos(0n) + B(n) sin(0n), (20)
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N-1 . .
2s(i) . (2n(n—1i) 4 21 .
A(n) = IZZ(:) 2n—1) 51n< F. FA) COS(EQ)C(H,I)))
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(21)

The required instantaneous parameters can be calculated
using expressions (18). The frequency-modulated filter has
a warped band pass, aligned to the given frequency contour
F¥(n) that provides adequate analysis of periodic compo-
nents with rapid frequency alterations. This approach is an
alternative to time warping that is used in speech analysis
[11]. In Figure 1 an example of parameters estimation is
shown. The frequency contour of the harmonic component
can be covered by the filter band pass specified by the centre
frequency contour F¥(n) and the bandwidth 2F%.

Center frequency contour F.(n) is adjusted within the
analysis frame providing narrow-band filtering of frequency-
modulated components.

3.2. Filter Properties. Estimation accuracy degrades close
to borders of the frame because of signal discontinuity
and spectral leakage. However, the estimation error can be
reduced using wider passband—TFigure 2.

In any case the passband should be wide enough in order
to provide adequate estimation of harmonic amplitudes. If
the passband is too narrow, the evaluated amplitude values
become lower than they are in reality. It is possible to
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FIGURE 3: Minimal bandwidth of analysis filter.

determine the filter bandwidth as a threshold value that gives
desired level of accuracy. The threshold value depends on
length of analysis window and type of window function. In
Figure 3 the dependence for Hamming window is presented,
assuming that amplitude attenuation should be less than
—20dB.

It is evident that required bandwidth becomes more
narrow when the length of the window increases. It is also
clear that a wide passband affects estimation accuracy when
the signal contains noise. The noise sensitivity of the filters
with different bandwidths is demonstrated in Figure 4.

3.3. Estimation Technique. In this subsection the general
technique of sinusoidal parameters estimation is presented.
The technique does not assume harmonic structure of the
signal and therefore can be applied both to speech and audio
signals [13].

In order to locate sinusoidal components in frequency
domain, the estimation procedure uses iterative adjustments
of the filter bands with a predefined number of iterations—
Figure 5. At every step the centre frequency of each filter is
changed in accordance with the calculated frequency value
in order to position energy peak at the centre of the band. At
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the initial stage, the frequency range of the signal is covered
by overlapping bands By,..., B, (where h is the number of
bands) with constant central frequencies Fo . .., F~', respec-
tively. At every step the respective instantaneous frequencies
fBi(ne),..., fB(n.) are estimated by formulas (15) and (18)
at the instant that corresponds to the centre of the frame
n¢. Then the central bandwidth frequencies are reset F* =
fB(n), and the next estimation is carried out. When all
the energy peaks are located, the final sinusoidal parameters
(amplitude, frequency, and phase) can be calculated using
the expressions (15) and (18) as well. During the peak
location process, some of the filter bands may locate the
same component. Duplicated parameters are discarded by
comparison of the centre band frequencies Fg‘ yees Fg’“.

In order to discard short-term components (that appar-
ently are transients or noise and should be taken to the resid-
ual), sinusoidal parameters are tracked from frame to frame.
The frequency and amplitude values of adjacent frames are
compared, providing long-term component matching. The
technique has been used in the hybrid audio coder [13],
since it is able to pick out the sinusoidal part and leave the
original transients in the residual without any prior transient
detection. In Figure 6 a result of the signal separation is
presented. The source signal is a jazz tune (Figure 6(a)).

The analysis was carried out using the following set-
tings: analysis frame length—48 ms, analysis step—14 ms,
filter bandwidths—70Hz, and windowing function—the
Hamming window. The synthesized periodic part is shown
in Figure 6(b). As can be seen from the spectrogram, the
periodic part contains only long sinusoidal components with
high-energy localization. The transients are left untouched in
the residual signal that is presented in Figure 6(c).

3.4. Speech Analysis. In speech processing, it is assumed
that signal frames can be either voiced or unvoiced. In
voiced segments the periodical constituent prevails over
the noise, in unvoiced segments the opposite takes place,
and therefore any harmonic analysis is unsuitable in that
case. In the proposed analysis framework voiced/unvoiced

frame classification is carried out using pitch detector. The
harmonic parameters estimation procedure consists of the
two following stages:

(i) initial fundamental frequency contour estimation;

(ii) harmonic parameters estimation with fundamental
frequency adjustment.

In voiced speech analysis, the problem of initial fun-
damental frequency estimation comes to finding a peri-
odical component with the lowest possible frequency and
sufficiently high energy. Within the possible fundamental
frequency range (in this paper, it is defined as [60, 1000] Hz)
all periodical components are extracted, and then the
suitable one is considered as the fundamental. In order to
reduce computational complexity, the source signal is filtered
by a low-pass filter before the estimation.

Having fundamental contour estimated, it is possible to
calculate filter impulse responses aligned to the fundamental
frequency contour. Central frequency of the filter band is
calculated as the instantaneous frequency of fundamental
multiplied by the number k of the correspondent harmonic
Fé(n) = k fo(n). The procedure goes from the first harmonic
to the last, adjusting fundamental frequency at every step—
Figure 7. The fundamental frequency recalculation formula
can be written as follows:

£ f(n)MAG;(n)

Joln) = i:Z()(i+ 1) S5 MAG;(n)’

(22)

The fundamental frequency values become more precise
while moving up the frequency range. It allows making
proper analysis of high-order harmonics with significant
frequency modulations. Harmonic parameters are estimated
using expressions (10)-(11). After parameters estimation, the
periodical part of the signal is synthesized by formula (1) and
subtracted from the source in order to get the noise part.

In order to test applicability of the proposed technique,
a set of synthetic signals with predefined parameters was
used. The signals were synthesized with different harmonic-
to-noise ratio defined as

0_2
HNR = 101g0—‘§, (23)

where o7 is the energy of the deterministic part of the signal
and o7 is the energy of its stochastic part. All the signals were
generated using a specified fundamental frequency contour
fo(n) and the same number of harmonics—20. Stochastic
parts of the signals were generated as white noise with such
energy that provides specified HNR values. After analysis the
signals were separated into stochastic and deterministic parts
with new harmonic-to-noise ratios:

~ &2
HNR = 101g-1. (24)
Ue

Quantitative characteristics of accuracy were calculated as
signal-to-noise ratio:

O
SNRy = 10lg o (25)
eH
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where &% —energy of the estimated harmonic part and 02;—
energy of the estimation error (energy of the difference
between source and estimated harmonic parts). The signals
were analyzed using the proposed technique and STFT-
based harmonic transform method [10]. During analysis
the same frame length was used (64ms) and the same
window function (Hamming window). In both methods,
it was assumed that the fundamental frequency contour is
known and that frequency trajectories of the harmonics are
integer multiplies of the fundamental frequency. The results,
reported in Table 1 show that the measured SNRy values
decrease with HNR values. However, for nonstationary
signals, the proposed technique provides higher SNRy values
even when HNR is low.

An example of natural speech analysis is presented in
Figure 8. The source signal is a phrase uttered by a female
speaker (F; = 8 kHz). Estimated harmonic parameters were
used for the synthesis of the signal’s periodic part that was
subtracted from the source in order to get the residual.
All harmonics of the source are modeled by the harmonic
analysis when the residual contains transient and noise
components, as can be seen in the respective spectrograms.

4. Effects Implementation

The harmonic analysis described in the previous section
results in a set of harmonic parameters and residual signal.
Instantaneous spectral envelopes can be estimated from the
instantaneous harmonic amplitudes and the fundamental
frequency obtained at the analysis stage [14]. The linear
interpolation can be used for this purpose. The set of
frequency envelopes can be considered as a function E(n, f)
of two parameters: sample number and frequency. Pitch
shifting procedure affects only the periodic part of the signal

that can be synthesized as follows:

K
s(n) = ZE(n,?k(n)) cos @, (n). (26)
k=1

Phases of harmonic components ¢, (1) are calculated accord-
ing to a new fundamental frequency contour f (n):

pulm = > 4D

i=0

+ 95 (n). (27)

Harmonic frequencies are calculated by formula (3):
Fr(n) =kfy(n). (28)

Additional phase parameter @5 (n) is used in order to keep
the original phases of harmonics relative phase of the
fundamental

P (n) = gi(n) — key(n). (29)

As long as described pitch shifting does not change spectral
envelope of the source signal and keeps relative phases
of the harmonic components, the processed signal has a
natural sound with completely new intonation. The timbre
of speakers voice is defined by the spectral envelope function
E(n, f). If we consider the envelope function as a matrix

E(0,0) E(o, %)
E= : : , (30)
E(N,0) - - - E(N, %)

then any timbre modification can be expressed as a con-
version function C(E) that transforms the source envelope
matrix E into a new matrix E:

E = C(E). (31)

Since the periodic part of the signal is expressed by
harmonic parameters, it is easy to synthesize the periodic
part slowing down or stepping up the tempo. Amplitude and
frequency contours should be interpolated in the respective
moments of time, and then the output signal can be
synthesized. The noise part is parameterized by spectral
envelopes and then time-scaled as described in [15]. Separate
periodic/noise processing provides high-quality time-scale
modifications with low level of audible artifacts.

5. Experimental Results

In this section an example of vocal processing is shown. The
concerned processing system is aimed at pitch shifting in
order to assist a singer.

The voice of the singer is analyzed by the proposed
technique and then synthesized with pitch modifications to
assist the singer to be in tune with the accompaniment. The
target pitch contour is predefined by analysis of a reference
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recording. Since only pitch contour is changed, the source  is low in order to provide proper synchronization with
voice maintains its identity. The output signal however is ~ accompaniment. The reference signal is shown in Figure 9, it
damped in regions, where the energy of the reference signal s a recorded male vocal. The recording was made in a studio
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TaBLE 1: Results of synthetic speech analysis.

Harmonic transform method Instantaneous harmonic analysis

HNR FANR SNRy FNR SNRy
Signal 1— fy(n) = 150 Hz for all n, random constant harmonic amplitudes

© 41.5 41.5 50.4 50.4
40 38.5 41.4 41.2 44.7
20 20.8 29.2 21.9 26.2
10 10.7 19.5 11.9 16.4
0 1.2 9.2 2.9 6.0
Signal 2— fy(n) changes from 150 to 220 Hz at a rate of 0.1 Hz/ms, constant harmonic amplitudes that model sound [a]

© 41.5 41.5 48.3 48.3
40 38.2 40.7 41.0 44.3
20 21.0 29.5 22.1 26.4
10 11.0 20.3 12 17.1
0 1.3 9.3 2.7 6.5
Signal 3— fy(n) changes from 150 to 220 Hz at a rate of 0.1 Hz/ms, variable harmonic amplitudes that model sequence of vowels
© 19.6 19.7 34.0 34.0
40 17.3 17.5 31.2 31.8
20 17.7 21.3 20.1 25.5
10 8.7 15.6 10.3 15.1
0 -0.8 7.55 0.94 5.2

Signal 4— f,(n) changes from 150 to 220 Hz at a rate of 0.1 Hz/ms, variable harmonic amplitudes that model sequence of vowels, harmonic
frequencies deviate from integer multiplies of f;(n) on 10 Hz

00 13.2 14.0 26.9 27.0
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20 11.9 13.6 19.3 22.7
10 6.9 12.1 9.6 14
0 -1.6 6.1 0.5 4.2
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FIGURE 11: Output signal.

with a low level of background noise. The fundamental
frequency contour was estimated from the reference signal
as described in Section 3. As can be seen from Figure 10, the

source vocal has different pitch and is not completely noise
free.

The source signal was analyzed using proposed harmonic
analysis, and then the pitch shifting technique was applied as
has been described above.

The synthesized signal with pitch modifications is shown
in Figure 11. As can be seen the output signal contains the
pitch contour of the reference signal, but still has timbre, and
energy of the source voice. The noise part of the source signal
(including background noise) remained intact.

6. Conclusions

The stochastic/deterministic model can be applied to voice
processing systems. It provides efficient signal parameter-
ization in the way that is quite convenient for making
voice effects such as pitch shifting, timbre and time-scale
modifications. The practical application of the proposed
harmonic analysis technique has shown encouraging results.
The described approach might be a promising solution
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to harmonic parameters estimation in speech and audio
processing systems [13].
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A real-time semiautonomous stereo panning system for music mixing has been implemented. The system uses spectral
decomposition, constraint rules, and cross-adaptive algorithms to perform real-time placement of sources in a stereo mix. A
subjective evaluation test was devised to evaluate its quality against human panning. It was shown that the automatic panning
technique performed better than a nonexpert and showed no significant statistical difference to the performance of a professional

mixing engineer.

1. Introduction

Stereo panning aims to transform a set of monaural signals
into a two-channel signal in a pseudostereo field [1]. Many
methods and panning ratios have been proposed, the most
common one being the sine-cosine panning law [2, 3]. In
stereo panning the ratio at which its power is spread between
the left and the right channels determines the position of
the source. Over the years the use of panning on music
sources has evolved and some common practices can now be
identified.

Now that recallable digital systems have become com-
mon, it is possible to develop intelligent expert systems
capable of aiding the work of the sound engineer. An expert
panning system should be capable of creating a satisfactory
stereo mix of multichannel audio by using blind signal
analysis, without relying on knowledge of original source
locations or other visual or contextual aids.

This paper extends the work first presented in [4]. It
presents an expert system capable of blindly characterizing
multitrack inputs and semiautonomously panning sources
with panning results comparable to a human mixing engi-
neer. This was achieved by taking into account techni-
cal constraints and common practices for panning, while
minimizing human input. Two different approaches are

described and subjective evaluation demonstrates that the
semi-autonomous panner has equivalent performance to
that of a professional mixing engineer.

2. Panning Constraints and Common Practices

In practice, the placement of sound sources is achieved using
a combination of creative choices and technical constraints
based on human perception of source localization. It is not
the purpose of this paper to emulate the more artistic and
subjective decisions in source placement. Rather, we seek to
embed the common practices and technical constraints into
an algorithm which automatically places sound sources. The
idea behind developing an expert semi-autonomous panning
machine is to use well-established common rules to devise
the spatial positioning of a signal.

(1) When the human expert begins to mix, he or she
tends to do it from a monaural, all centered position,
and gradually moves the pan pots [5]. During this
process, all audio signals are running through the
mixer at all times. In other words, source placement
is performed in realtime based on accumulated
knowledge of the sound sources and the resultant



mix, and there is no interruption to the signal path
during the panning process.

(2) Panning is not the result of individual channel
decisions; it is the result of an interaction between
channels. The audio engineer takes into account the
content of all channels, and the interaction between
them, in order to devise the correct panning position
of every individual channel [6].

(3) The sound engineer attempts to maintain balance
across the stereo field [7, 8]. This helps maintain the
overall energy of the mix evenly split over the stereo
speakers and maximizes the dynamic use of the stereo
channels.

(4) In order to minimize spectral masking, channels with
similar spectral content are placed apart from each
other [6, 9]. This results in a mix where individual
sources can be clearly distinguished, and this also
helps when the listener uses the movement of his or
her head to interpret spatial cues.

(5) Hard panning is uncommon [10]. It has been
established that panning a ratio of 8 to 12dBs is
more than enough to achieve a full left or full right
image [11]. For this reason, the width of the panning
positions is restricted.

(6) Low-frequency content should not be panned. There
are two main reasons for doing this. First, it ensures
that the low-frequency content remains evenly dis-
tributed across speakers [12]. This minimizes audible
distortions that may occur in the high-power repro-
duction of low-frequencies. Second, the position of
a low frequency source is often psychoacoustically
imperceptible. In general, we cannot correctly local-
ize frequencies lower than 200 Hz [13]. It is thought
that this is due to the fact that the use of InterTime
Difference as a perceptual clue for localization of
low frequency sources is highly dependent on room
acoustics and loudspeaker placement, and Inter-Level
Differences are not a useful perceptual cue at low
frequencies since the head only provides significant
attenuation of high-frequency sources [14].

(7) High-priority sources tend to be kept towards the
centre, while lower priority sources are more likely
to be panned [7, 8]. For instance, the vocalist in a
modern pop or rock group (often the lead performer)
would often not be panned. This relates to the idea
of matching a physical stage setup to the relative
positions of the sources.

3. Implementation

3.1. Cross-Adaptive Implementation. The automatic panner
is implemented as a cross-adaptive effect, where the output
of each channel is determined from analysis of all input
channels [15]. For applications that require a realtime signal
processing, the signal analysis and feature extraction has
been implemented using side chain processing, as depicted
in Figure 1. The audio signal flow remains real-time while
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FiGure 1: General diagram of a cross-adaptive device using side
chain processing with feature accumulation.

the required analysis of the input signals is performed in
separate instances. The signal analysis involves accumulating
a weighted time average of extracted features. Accumulation
allows us to quickly converge on an appropriate panning
position in the case of a stationary signal or smoothly adjust
the panning position as necessary in the case of changing
signals. Once the feature extraction within the analysis side
chain is completed, then the features from each channel are
analyzed in order to determine new panning positions for
each channel. Control signals are sent to the signal processing
side in order to trigger the desired panning commands.

3.2. Adaptive Gating. Because noise on an input microphone
channel may trigger undesired readings, the input signals are
gated. The threshold of the gate is determined in an adaptive
manner. By noise we refer not only to random ambient noise
but also to interference due to nearby sources, such as the
sound from adjacent instruments that are not meant to be
input to a given channel.

Adaptive gating is used to ensure that features are
extracted from a channel only when the intended signal is
present and significantly stronger than the noise sources. The
gating method is based on a method implemented in [16, 17]
by Dugan. A reference microphone may be placed outside
of the usable source microphone area to capture a signal
representative of the undesired ambient and interference
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FIGURE 2: Quasiflat frequency response bandpass filter bank (Type
A filter bank for K = 8). (a) Filter bank consisting of a set of
eight second order band-pass IIR Biquadratic filters with center
frequencies as follow: 100Hz, 400Hz, 1kHz, 2.5kHz, 5kHz,
7.5kHz, 10kHz, and 15000 kHz. (b) Combined response of the
filter bank.

noise. The reference microphone signal is used to derive
an adaptive threshold by opening the gate only if the input
signal magnitude is grater than the reference microphone
magnitude signal. Therefore the input signal is only passed
to the side processing chain when its level exceeds that of the
reference microphone signal.

3.3. Filter Bank Implementation. The implementation uses
a filter bank to perform spectral decomposition of each
individual channel. The filter bank does not affect the audio
path since it is only used in the analysis section of the
algorithm. It was chosen as opposed to other methods of
classifying the dominant frequency or frequency range of a
signal [18] because it does not require Fourier analysis, and
hence is more amenable to a real-time implementation.

For the purpose of finding the optimal spectral decom-
position for performing automatic panning, two different
eight-band filter banks were designed and tested. The first
consisted of a quasiflat frequency response bandpass filter
bank, which for the purposes of this paper we will call filter
bank type A in Figure 2, and the second contained a lowpass
filter decomposition filter bank, which we will call filter bank
type B in Figure 3. In order to provide an adaptive frequency
resolution for each filter bank, the total number of filters, K,
is equal to the number of input channels that are meant to be
panned. The individual gains of each filter were optimized to
achieve a quasiflat frequency response.

3.4. Determination of Dominant Frequency Range. Once
the filter bank has been designed, the algorithm uses the

102
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FIGURE 3: Lowpass filter decomposition filter bank (Type B filter
bank for K = 8). (a) Filter bank comprised of a set of second order
low-pass IIR Biquadratic filters with cutoff frequencies as follows:
35 Hz, 80 Hz, 187.5 Hz, 375 Hz, 750 Hz, 1.5 kHz, 3 kHz, and 6 kHz.
(b) Combined response of the filter bank. All gains have been set to
have a maximum peak value of 0 dBs.

band limited signal in each filter’s output to obtain the
absolute peak amplitude for each filter. The peak amplitude
is measured within a 100 ms window. The algorithm uses
the spectral output of each filter contained within the filter
bank to calculate the peak amplitude of each band. By
comparing these peak amplitudes, the filter with the highest
peak is found. An accumulated score is maintained for the
number of occurrences of the highest peak in each filter
contained within the filter bank. This results in a classifier
that determines the dominant filter band for an input
channel from the highest accumulated score.

The block diagram of the filter bank analysis algorithm is
provided in Figure 4. It should be noted that this approach
uses digital logic operations of comparison and addition
only, which makes it highly attractive for an efficient digital
implementation.

3.5. Cross-Adaptive Mapping. Now that each input channel
has been analyzed and associated with a filter, it remains
to define a mapping which results in the panning position
of each output channel. The rules which drive this cross-
adaptive mapping are as follows.

The first rule implements the constraint that low-
frequency sources should not be panned. Thus, all sources
with accumulated energy contained in a filter with a high
cutoff frequency below 200 Hz are not panned and remain
centered at all times.

The second rule decides the available panning step of
each source. This is a positioning rule which uses equidistant
spacing of all sources with the same dominant frequency
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range. Initially, all sources are placed in the centre. The
available panning steps are calculated for every different
accumulated filter, k, where k ranges from 1 to K, based
on the number of sources, Ny, whose dominant frequency
range resides in that filter. Due to this channel dependency
the algorithm will update itself every time a new input is
detected in a new channel, or if the spectral content of an
input channel suffers from a drastic change over time.

For filters which have not reached maximum accumu-
lation there is no need to calculate the panning step, which
makes the algorithm less computationally expensive. If only
one repetition exists for a given kth filter (Ny = 1) the system
places the input at the center.

The following equation gives the panning space location
of the ith source residing in the kth filter:

(1/2, Ne=1,
N,—i—1 . .
. —, + N dd,
P(ik) = { 2(Ne — 1) PRk O (1)
Ni—i . .
- 7, + o] 1)
(N = 1) i+ Nk is even, N #

where P(i, k) is the ith available panning step in the kth filter,
i ranges from 1 to Ny and P(i,k) = 0.5 corresponds to a
center panning position.
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Using this equation, if Ni is odd, the first source, i = 1,
is positioned at the center. When Nj is even, the first two
sources, i = 2,3, are positioned either side of the center.
In both cases, the next two sources is positioned either
side of the previous sources and so on such that sources
are positioned further away from the centre as i increases.
The extreme panning positions are 0 and 1. However, as
mentioned, hard panning is generally not preferred. So our
current implementation provides a panning width control,
Py, used to narrow or widen the panning range. The
panning with has a valid range from 0 to 0.5 where 0 equates
to the wide panning possible and 0.5 equates to no panning.
In our current implementation, it defaults to Py = 0.059.
The Py value is subtracted for all panning positions bigger
than 0.5 and added to all panning positions smaller than 0.5.
In order to avoid sources originally panned left to cross to the
right or sources originally panned right to cross to the left,
the panning width algorithm ensures that sources in such
cases default to the centre position.

3.6. Priority. Equation (1) provides the panning position for
each of the sources with dominant spectral content residing
in the kth filter, but it does not say how each of those
sources are ordered from source i = 1 to i = Ni. The
common practices mentioned earlier would suggest that
certain sources, such as lead vocals, would be less likely
to be panned to extremes than others, such as incidental
percussions. However, the current implementation of our
automatic panner does not have access to such information.
Thus, the authors have proposed to use a priority driven
system in which the user can label the channels according
to importance. In this sense, it is a semiblind automatic
system. Thus, all sources are ordered from highest to the
lowest priority. For the Nj sources residing in the kth filter,
the first panning step is taken by the highest priority source,
the second panning step by the next highest priority source,
and so on. The block diagram containing the constrained
decision control rule stage of the algorithm is presented in
Figure 5.

3.7. The Panning Processing. Once the appropriate panning
position was determined, a sine-cosine panning law [2] was
used to place sources in the final sound mix:

(P(z k)n) Fnlx),

Sfrout(x) = sin
o 2)
fLout(X)=C0( b ) Fnl).

An interpolation algorithm has been coded into the
panner to avoid rapid changes of signal level. The inter-
polator has a 22 ms fade-in and fade-out, which ensures a
smooth natural transition when the panning control step is
changed.

In Figure 6, the result of down-mixing 12 sinusoidal test
signals through the automatic panner is shown. It can be seen
that both f; and f, are kept centered and added together
because their spectral content is below 200 Hz. The three
sinusoids with a frequency of 5 kHz have been evenly spread.
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f> has been allocated to the center due to priority while f;
has been send to the left and fs has been send to the right,
in accordance with (1). Because there is no other signal with
the same spectral content than fi;, it has been assigned to
the center. The four sinusoids with a spectral content of
15kHz have been evenly spread. Because of priority, f; has
been assigned a value of 0.33, f; has been assigned a value of
0.66, fo has been assigned all the way to the left, and fo has
been assigned all the way to the right, in accordance with (1).
Finally, the two sinusoids with a spectral content of 20 KHz
have been panned to opposite sides. All results prove to be
in accordance with the constraint rules proposed for cross-
adaptive mapping.

4. Results

4.1. Test Design. In order to evaluate the performance
of the semiautonomous panner algorithm against human
performance, a double blind test was designed. Both of auto-
panning algorithms were tested, the bandpass filter classifier
known as algorithm type A, and the low-pass classifier
known as algorithm type B. Algorithms were randomly
tested in a double blind fashion.

The control group consisted of three professional human
experts and one nonexpert, who had never panned music
before. The test material consisted of 12 multitrack songs of
different styles of music. Stereo sources were used in the form
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FIGURE 6: Results of automatic panning based on the proposed
design. The test inputs were 12 sinusoids with amplitude equal to
one and the following frequencies: fi = 125Hz, f, = 5kHz, f; =
15kHz, fy = 5kHz, fs = 20kHz, fy = 5kHz, f; = 15kHz, f; =
20kHz, fy = 15kHz, fip = 15kHz, fiy = 10kHz,and fi, = 125Hz

of two separate monotracks. Where acoustic drums were
used, they would be recorded with multiple microphones
and then premixed down into a stereo mix. Humans and
algorithms used the same stereo drum and keyboard tracks as
separate left and right monofiles. All 12 songs were panned
by the expert human mixers and by the nonexpert human
mixer. They were asked to pan the song while listening for
the first time. They had the length of the song to determine
their definitive panning positions. The same songs were
passed through algorithms A and B only once for the entire
length of the song. Although the goal was to give the human
and machine mixers as close to the same information as
possible, human mixers had the advantage of knowing which
type of instrument it was. Therefore, they assigned priority
according to this prior known knowledge. For this reason a
similar priority scheme was chosen to compensate for this.
Both A and B algorithms used the same priority schema.
Mixes used during the test contain music freely available
under creative commons copyright can be located in [19].
As shown in Figure 7, the test used two questions to
measure the perceived overall quality of the panning for
each audio comparison. For the first question, “how different
is the panning of A compared to B?”, a continuous slider
with extremities marked “exactly the same” and “completely
different” was used. The answer obtained in this question
was used as a weighting factor in order to decide the validity
of the next question. The second question, “which file, A
or B, has better panning?”, used a continuous slider with
extremes marked “A quality is ideal” and “B quality is ideal”.
For both of these questions, no visible scale was added in
order not to influence their decision. The test subjects were
also provided with a comment box that was used for them to
justify their answers to the previous two questions. During
the test it was observed that expert subjects tend to use the
name of the instrument to influence their panning decisions.
In other words they would look for the “bass” label to make
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sure that they kept it center. This was an encouraging sign
that panning amongst professionals follows constraint rules
similar to those that were implemented in the algorithms.

The tested population consisted of 20 professional sound
mixing engineers, with an average experience of 6-year work
in the professional audio market. The tests were performed
over headphones, and both the human mixers and the test
subjects used exactly the same headphones. The test lasted
an average time of 82 minutes.

Double blind A/B testing was used with all possible
permutations of algorithm A, algorithm B, expert and
amateur panning. Each tested user answered a total of 32
questions, two of which were control questions, in order to
test the subject’s ability to identify stereo panning. The first
control question consisted of asking the test subjects to rate
their preference between a stereo and a monaural signal.
During the initial briefing it was stressed to the test subject
that stereo is not necessarily better than monaural audio. The
second control question compared two stereo signals that
had been panned in exactly the same manner.

4.2. Result Analysis. All resulting permutations were classi-
fied into the following categories: monaural versus stereo,
same stereo versus same stereo file, method A versus method
B, method A versus nonexpert mix, method B versus
nonexpert mix, method A versus expert mix, and method B
versus expert mix.

Results obtained on the question “How different is
panning A compared to B?” were used to weight the results
obtained for the second question “Which file, A or B, has
better panning quality?”. This is in order to have a form of
neglecting incoherent answers such as “I find no difference
between files A or B but I find the quality of B to be better
compared to A”.

Answers to the first question showed that, with at least
95% confidence, the test subjects strongly preferred stereo to
monaural mixes. The second question also confirmed with
at least 95% confidence that professional audio engineers
find no significant difference when asked to compare two
identical stereo tracks. The results are summarized in Table 1,
and the evaluation results with 95% confidence intervals are
depicted in Figure 8.

The remaining tests compared the two panning tech-
niques against each other and against expert and nonexpert
mixes. The tested audio engineers preferred the expert mixes
to panning method A, but this result could only be given with
80% confidence. On average, non-expert mixes also were
preferred to panning method A, but this result could not be
considered significant, even with 80% confidence.

In contrast, panning method B was preferred over non-
expert mixes with over 90% confidence. With at least 95%
confidence, we can also state that method B was preferred
over method A. Yet when method B is compared against
expert mixes, there is no significant difference.

The preference for panning method B implies that low-
pass spectral decomposition is preferred over band-pass
spectral decomposition as a means of signal classification for
the purpose of semi-autonomous panning. Furthermore, the
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lack of any statistical difference between panning method B
and expert mixe, (in contrast to the significant preference for
method B over non-expert mixes, and for expert mixes over
method A) leads us to conclude that the semi-autonomous
panning method B performs roughly equivalently to an
expert mixing engineer.

It was found that the band-pass filter bank, method A,
tended to assign input channels to less filters than the low-
pass filter bank, method B. The distribution of input tracks
among filters for an 8-channel song for both methods is
depicted in Figure 9. In effect, panning method B is more
discriminating as to whether two inputs have overlapping
spectral content and hence is less likely to unnecessarily
place sources far from each other. This may account
for the preference of panning method B over panning
method A.

The subjects justified their answers in accordance with
the common practices mentioned previously. They relied
heavily on manual instrument recognition to determine the
appropriate position of each channel. It was also found that
any violation of common practice, such as panning the lead
vocals, would result in a significantly low measure of panning
quality. One of the most interesting findings was that spatial
balance seemed to be not only a significant cue used to
determine panning quality but was also a distinguishing
factor between expert and non-expert mixes. Non-expert
mixes were often weighted to one side, whereas almost
universally, expert mixes had the average source position in
the centre. Both panning methods A and B were devised to
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FIGURE 8: Summarized results for the subjective evaluation. The
first two tests were references (comparing stereo against monaural,
and comparing identical files), and the remaining questions
compared the two proposed auto-panning methods against each
other and against expert and non-expert mixes. 95% confidence
intervals are provided.

perform optimal left to right balancing. Histograms of source
positions which demonstrate these behaviors are depicted in
Figure 10.
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TasLE 1: Double blind panning quality evaluation table.

Test Number of Comparisons Preference Confidence Standard Deviation Mean
Stereo versus 20 Stereo 95% 0.61545 ~0.4561
Mono
Stereo versus 20 Identify them 95% 0.0287 0.0064
Stereo to be the same
Human Expert
versus Method 144 Human 80% 0.5105 —0.666
A
et N
versus 56 95% 0.5956 —0.0552
Non-expert between
algorithms

Method B
versus 56 Method B 90% 0.6631 0.1583
Non-expert

No significant
Method B 144 difference 95% 0.5131 0.0108
versus Expert between

algorithms

Method A
versus Method 200 Method B 95% 0.4474 —0.0962
B
5. Conclusions and Future Work References

In terms of generating blind stereo panning up-mixes with
minimum human interactions, we can conclude that it is
possible to generate intelligent expert systems capable of
performing better than a non-expert human while having
no statistical difference when compared to a human expert.
According to the subjective evaluation, low-pass filter-
bank accumulative spectral decomposition features seem to
perform significantly better than band-pass decompositions.

More sophisticated forms of performing source priority
identification in an unaided manner need to be investigated.
To further automate the panning technique, instrument
identification and other feature extraction techniques could
be employed to identify those channels with high priority.
Better methods of eliminating microphone cross-talk noise
need to be researched. Furthermore, in live sound situations,
the sound engineer would have visual cues to aid in panning.
For instance, the relative positions of the instruments on
stage are often used to map sound sources in the stereo
field. Video analysis techniques could be used to incorporate
this into the panning constraints. Future subjective tests
should include visual cues and be performed in real sound
reinforcement conditions.

Finally, the work presented herein was restricted to stereo
panning. In a two-or three-dimensional sound field, there
are more degrees of freedom, but rules still apply. For
instance, low-frequency sources are often placed towards the
ground, while high-frequency sources are often placed above,
corresponding to the fact that high frequency sources emitted
near or below the ground would be heavily attenuated [20].
It is the intent of the authors to extend this work to automatic
placement of sound sources in a multispeaker, spatial audio
environment.

[1] M. A. Gerzon, “Signal processing for simulating realistic
stereo images,” in Proceedings of the 93rd Convention Audio
Engineering Society, San Francisco, Calif, USA, October 1992.

[2] J. L. Anderson, “Classic stereo imaging transforms—a
review,” submited to Computer Music Journal, http://www
.dxarts.washington.edu/courses/567/08 WIN/JL_Anderson_St-
ereo.pdf.

[3] D. Griesinger, “Stereo and surround panning in practice,” in
Proceedings of the 112th Audio Engineering Society Convention,
Munich, Germany, May 2002.

[4] E. Perez_Gonzalez and J. Reiss, “Automatic mixing: live down-
mixing stereo panner,” in Proceedings of the 7th International
Conference on Digital Audio Effects (DAFx ’07), pp. 63—68,
Bordeaux, France, 2007.

[5] D. Self, et al., “Recording consoles,” in Audio Engineering:
Know It All, D. Self, Ed., vol. 1, chapter 27, pp. 761-807,
Newnes/Elsevier, Oxford, UK, 1st edition, 2009.

[6] R. Neiman, “Panning for gold: tutorials,” Electronic Musi-
cian Magazine, 2002, http://emusician.com/tutorials/emu-
sic_panning_gold/.

[7] R.Izhaki, “Mixing domains and objectives,” in Mixing Audio:
Concepts, Practices and Tools, chapter 6, pp. 5871, Focal
Press/Elsevier, Burlington, Vt, USA, 1st edition, 2007.

[8] R. Izhaki, “Panning,” in Mixing Audio: Concepts, Practices
and Tools, chapter 13, pp. 184-203, Focal Press/Elsevier,
Burlington, Vt, USA, 1st edition, 2007.

[9] B. Bartlett and J. Bartlett, “Recorder-mixers and mixing

consoles,” in Practical Recording Techniques, chapter 12, pp.

259-275, Focal Press/Elsevier, Oxford, UK, 3rd edition, 2009.

B. Owsinski, “Element two: panorama—placing the sound in

the soundfield,” in The Mixing Engineer’s Handbook, chapter 4,

pp- 2024, Mix Books, Vallejo, Calif, USA, 2nd edition, 2006.

E Rumsey and T. McCormick, “Mixers,” in Sound and

Recording: An Introduction, chapter 5, pp. 96—153, Focal Press

/ Elsevier, Oxford, UK, 1st edition, 2006.

(11]



10

[12] P. White, “The creative process: pan position,” in The Sound

[13]

(14]

on Sound Book of Desktop Digital Sound, pp. 169-170, MPG
Books, UK, 1st edition, 2000.

E. Benjamin, “An experimental verification of localization in
two-channel stereo,” in Proceedings of the 121st Convention
Audio Engineering Society, San Fransisco, Calif, USA, 2006.

J. Beament, “The direction-finding system,” in How we
Hear Music: The relationship Between Music and the Hearing
Mechanism, pp. 127-130, The Boydel Press, Suffolk, UK, 2001.
V. Verfaille, U. Zolzer, and D. Arfib, “Adaptive Digital Audio
Effects (A-DAFx): a new class of sound transformations,” IEEE
Transactions on Audio, Speech and Language Processing, vol. 14,
no. 5, pp. 1817-1831, 2006.

D. W. Dugan, “Automatic microphone mixing,” Journal of the
Audio Engineering Society, vol. 23, no. 6, pp. 442—449, 1975.
D. W. Dugan, “Application of automatic mixing techniques
to audio consoles,” in Proceedings of the 87th Convention of
the Audio Engineering Society, pp. 18-21, New York, NY, USA,
October 1989.

W. A. Sethares, A. J. Milne, S. Tiedje, A. Prechtl, and J.
Plamondon, “Spectral tools for dynamic tonality and audio
morphing,” Computer Music Journal, vol. 33, no. 2, pp. 71-84,
2009.

E. Perez_Gonzalez and J. Reiss, “Automatic mixing tools
for audio and music production,” 2010, http://www.elec
.qmul.ac.uk/digitalmusic/automaticmixing/.

D. Gibson and G. Peterson, The Art of Mixing: A Visual
Guide to Recording, Engineering and Production, Mix Books /
ArtistPro Press, USA, 1st edition, 1997.

EURASIP Journal on Advances in Signal Processing



Hindawi Publishing Corporation

EURASIP Journal on Advances in Signal Processing
Volume 2010, Article ID 642316, 18 pages
doi:10.1155/2010/642316

Research Article

Two-Dimensional Beam Tracing from Visibility Diagrams for
Real-Time Acoustic Rendering

F. Antonacci (EURASIP Member), A. Sarti (EURASIP Member),
and S. Tubaro (EURASIP Member)

Dipartimento di Elettronica ed Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Correspondence should be addressed to F. Antonacci, antonacc@elet.polimi.it

Received 26 February 2010; Revised 24 June 2010; Accepted 25 August 2010

Academic Editor: Udo Zoelzer

Copyright © 2010 FE. Antonacci et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present an extension of the fast beam-tracing method presented in the work of Antonacci et al. (2008) for the simulation
of acoustic propagation in reverberant environments that accounts for diffraction and diffusion. More specifically, we show how
visibility maps are suitable for modeling propagation phenomena more complex than specular reflections. We also show how the
beam-tree lookup for path tracing can be entirely performed on visibility maps as well. We then contextualize such method to
the two different cases of channel (point-to-point) rendering using a headset, and the rendering of a wave field based on arrays of
speakers. Finally, we provide some experimental results and comparisons with real data to show the effectiveness and the accuracy

of the approach in simulating the soundfield in an environment.

1. Introduction

Rendering acoustic sources in virtual environments is a
challenging problem, especially when real-time operation
is required without giving up a realistic impression of the
result. The literature is rich with methods that approach
this problem for a variety of purposes. Such methods are
roughly divided into two classes: the former is based on
an approximate solution of the wave equation on a finite
grid, while the latter is based on the geometric modeling
of acoustic propagation. Typical examples of the first class
of methods are based on the solution of the Green’s or
Helmbholtz-Kirchoff’s equation through finite and boundary
element methods [1-3]. The computational effort required
by the solution of the wave equation, however, makes these
algorithms unsuitable for real-time operation except for
a very limited range of frequencies. Geometric methods,
on the other hand, are the most widespread techniques
for the modeling of early acoustic reflections in complex
environments. Starting from the spatial distribution of the
reflectors, their acoustic properties, and the location and the
radiation characteristics of sources and receivers (listening
points), geometric methods cast rays in space and track
their propagation and interaction with obstacles in the

environment [4]. The sequence of reflections, diffractions
and diffusions a ray undergoes constitutes the acoustic path
that link source and receiver.

Among the many available geometric methods, a par-
ticularly efficient one is represented by beam tracing [5-
9]. This method was originally conceived by Hanrahan and
Heckbert [5] for applications of image rendering, and was
later extended by Funkhouser et al. [10] to the problem of
audio rendering. A beam is intended as a bundle of acoustic
rays originating from a point in space (a real source or a wall-
reflected one), which fall onto the same planar portion of an
acoustic reflector. Every time a beam encounters a reflector,
in fact, it splits into a set of subbeams, each corresponding
to a different planar region of that reflector or of some other
reflector. As they bounce around in the environment, beams
keep branching out. The beam-tracing method organizes
and encodes this beam splitting/branching process into a
specialized data structure called beam-tree, which describes
the information of the visibility of a region from a point (i.e.,
the source location). Once the beam-tree is available, path-
tracing becomes a very efficient process. In fact, given the
location of the listening point (receiver), we can immediately
determine which beams illuminate it, just through a “look
up” of the beam-tree data structure. We should notice,



however, that with this solution the computational effort
associated to the beam tracing process and that of path-
tracing are quite unbalanced. In fact if the environment is
composed by n reflectors, the exhaustive test of the mutual
visibility among all the n reflectors involves O (n?) tests, while
the test of the presence of the receiver in the m traced beams
needs only @(m) tests. Some solutions for a speedup of
the computation of the beam-tree have been proposed in
the literature. As an example in [10] the authors adopt the
Binary Space Partitioning Technique to operate a selection
of the visible obstacles from a prescribed reflector. A similar
solution was recently proposed in [11], where the authors
show that a real-time tracing of acoustic paths is possible
even in a simple dynamic environment.

In [12] the authors generalized traditional beam tracing
by developing a method for constructing the beam-tree
through a lookup on a precomputed data structure called
global visibility function, which describes the visibility of a
region not just as a function of the viewing angle but also of
the source location itself.

Early reflections are known to carry some information
on the geometry of the surrounding space and on the
spatial positioning of acoustic sources. It is in the initial
phase of reverberation, in fact, that we receive the echoes
associated to the first wall reflections. Other propagation
phenomena, such as diffusion, transmission and diffraction
tend to enrich the sense of presence in “virtual walkthrough”
scenarios, especially in densely occluded environments. As
beam tracing was originally conceived for the modeling of
specular reflections only, some extensions of this method
were proposed to account for other propagation phenomena.
Funkhouser et al. [13], for example, account for diffusion
and diffraction through a bidirectional beam tracing process.
When the two beam-trees that originate from the receiver
and the source intersect on specific geometric primitives
such as edges and reflectors, propagation phenomena such
as diffusion and diffraction could take place. The need
of computing two beam-trees, however, poses problems of
efficiency when using conventional beam tracing methods,
particularly when sources and/or receivers are in motion.
A different approach was proposed by Tsingos et al. [14],
who proposed to use the uniform theory of diffraction
(UTD) [15] by building secondary beam-trees originated
from the diffractive edges. This approach is quite efficient,
as the tracing of the diffractive beam-trees can be based on
the sole geometric configuration of reflectors. Once source
and receiver locations are given, in fact, a simple test on
the diffractive beam-trees determines the diffractive paths.
Again, however, this approach inherits the advantages of
beam tracing but also its limits, which are in the fact that
a new beam-tree needs be computed every time a source
moves.

As already mentioned above, in [12] we proposed a
method for generating a beam-tree through a lookup on the
global visibility function. That method had the remarkable
advantage of computing a large number of acoustic paths
in real time as both source and reflector are in motion in a
complex environment. In this paper we generalize the work
proposed in [12] in order to accommodate diffusion and
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diffraction phenomena. We do so by revisiting the concept
of global visibility and by introducing novel lookup methods
and new operators. Thanks to these generalizations, we will
also show how it is possible to work on the visibility diagrams
not just for constructing beam-trees but also to perform the
whole path-tracing process.

In this paper we expand and repurpose the beam tracing
method for applications of real-time rendering of acoustic
sources in virtual environments. Two are the envisioned
scenarios: in the former the user is wearing a headset, in
the latter the whole sound field within a prescribed volume
is rendered using loudspeaker arrays. We will show that the
two scenarios share the same beam tracing engine which, in
the first case, is followed by a path-tracing algorithm based
on beam-tree lookup [12], with an additional head-related
transfer function. In the second case the beam tracer is used
for generating the control parameters of the beam-shaping
algorithm proposed in [16]. This beam-shaping method
allows us to design the spatial filter to be applied to the
loudspeaker arrays for the rendering of an arbitrary beam.
Other solutions exist in the literature for the rendering of
virtual environments, such as wave field synthesis (WFS) and
ambisonics. Roughly speaking, WFS computes the spatial
filter to be applied to the speakers with an approximation
of the Helmholtz-Kirchoff’s equation. Interestingly enough,
for example, in [17] the task of computing the parameters
of all the virtual sources in the environment is demanded
to an image-source algorithm. Therefore, some WES systems
already partially rely on geometric methods. When rendering
occluded environments, however, the image-source method
tends to become computationally demanding, while fast
beam tracing techniques [12] can offer a significant speedup.

It is important to notice that the method proposed in
[12] was developed for modeling complex acoustic reflec-
tions in a specific class of 3D environments obtained as the
cartesian product between a 2D floor plan and a 1D (vertical)
direction. This situation, for example, describes a complex
distribution of vertical walls ending in horizontal floor
and ceiling. When considering acoustic wall transmission,
a 2D x 1D environment becomes useful for modeling a
multi-floored building with a repeated floor plan. Although
2D x 1D environments enjoy the advantages of 2D modeling
(simplicity, duality, etc.), the computation of all delays and
path lengths still needs to be performed in a 3D space.
While this is rather straightforward in the case of geometric
reflections, it becomes more challenging when dealing with
diffraction and diffusion phenomena.

The paper is organized as follows. In Section 2 we review
and revisit the concept of global visibility and its use for
efficiently tracing acoustic paths. In Section 3 we discuss the
main mathematical models used for explaining diffusion and
diffraction phenomena, and we choose the one that best
suits our beam tracing approach. Sections 4 and 5 focus
on the modeling of diffusion and diffraction with visibility
diagrams. In Section 6 we present two possible applications
of the algorithm presented in this paper. In Section 7 we
prove the efficiency and the effectiveness of our modeling
solution. Finally, Section 8 provides some final comments
and conclusions.
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2. The Visibility Diagram Revisited

In this section we review the concept of visibility diagram,
as it is a key element for the remainder of this paper. In [12]
we adopted this representation for generating a specialized
data structure that could swiftly provide information on
how to trace acoustic beams and rays in real time with
the rules of specular reflection. This approach constitutes a
generalization of the beam tracing algorithm proposed by
Hanrahan and Heckbert [5]. The visibility diagram is a re-
mapping of the geometric structures and functional elements
that constitute the geometric world (rays, beams, reflectors,
sources, receivers, etc.) onto a special parameter space that is
completely dual to the geometric one. Visibility diagrams are
particularly useful for immediately assessing what is in the
line of sight from a generic location and direction in space.
We will first recount the basic concepts of visibility diagrams
and provide a general view of the path-tracing problem for
the specific case of purely specular reflections. This overview
will be provided in a slightly more general fashion than in
[12], as all the algorithmic steps will be given with reference
to visibility diagrams, and will constitute the starting point
for the discussions in the following sections.

2.1. Visibility and the Tracing Problem. A ray in a 2D space
is uniquely characterized by three parameters: two for the
location of its origin, and one for its direction. As we are
tracing paths during their propagation, we are interested in
rays emerging from a reflector after bouncing off it. As a
consequence, the origin corresponds to the virtual source.
Furthermore, because we are interested in assessing only
where the ray will end up, we can afford ignoring some
information on where the ray is coming from, for example
the source distance. This means that a ray description based
on three parameters turns out to be redundant, and can be
easily reduced to two parameters. In [12] we adopted the
Reference Reflector Parametrization (RRP) parametrization
based on the location of the intersection on the reference
reflector and the travel direction of the ray. Although the
RRP is referred to a frame attached to a specific reflector, this

choice does not represent a limitation, due to the iterative
nature of the visibility evaluation process. Let s; be the
reference reflector. For reasons that will be clearer later on,
the RRP normalizes s; through a translation, a rotation and
a scaling of the axes in such a way that the reference reflector
lies on the segment of the y-axis between —1 and 1. The
set of rays passing through s; is described by the equation
y@ = mx + q. Figure 1 shows the reflector s; referred to the
normalized frame in the geometric domain (left). The set of
rays passing through s; is called region of visibility from s; and
it is represented by the horizontal strip (reference visibility
strip) in the (m,q) domain. Due to the duality between
primitives in (x, y) and (m,q) domains we will sometimes
refer to the RRP as the dual space. We are interested in
representing the mutual occlusions between reflectors in the
dual space. With this purpose in mind, we split the visibility
strip into visibility regions, each corresponding to the set
of rays that hit the same reflector. According to the image-
source principle, all the obstacles that lie in the same half
space of the image-source, are discarded during the visibility
test. As a convention, in the future we will use the rotation
of the reference reflector which brings the image-source in
the half-space x" < 0. The above parameter space turns out
to play a similar role as the dual of a geometric space. In
Table 1 we summarize the representation of some geometric
primitives in the parameter space. A complete derivation of
the relations of Table 1 can be found in [12, 18]. Notice
that the relation between primitives in the two domains is
of complete duality. For example, the dual of the oriented
reflector is a wedge in the (m, g) domain (sort of an oriented
“beam” in parameter space). Conversely, the dual of an
oriented beam (a single wedge in the (x, y) geometric space)
is an oriented segment in the (m,q) domain (sort of an
oriented “reflector” in parameter space).

2.1.1. Visibility Region. The parameters describing all rays
originating from the reference reflector s; form the region of
visibility from that reflector. After normalization, this region
takes on the strip-like shape described in Figure 1, which we
refer to as “reference visibility strip”. Those rays that originate
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from the reference reflector and hit another reflector s; form
a subset of this strip (see Figure 1) which corresponds to
the intersection between the dual of s; and the dual of s
(reference visibility strip). The intersection of the dual of s;
and the visibility strip is the visibility region of s; from s;.
Once the source location is specified, the set of rays passing
through s; and s; and departing from that location will be
a subset of the visibility region of s;. One key advantage of
the visibility approach to the beam tracing problem resides
in the fact that we only need geometric information about
the environment to compute the visibility regions, which can
therefore be computed in advance.

2.1.2. Dual of Multiple Reflectors: Visibility Diagrams. When
there are more than two reflectors in the environment,
we need to consider the possibility of mutual occlusions,
which results in overlapping visibility regions. Sorting out
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which reflector occludes which (with respect to the reference
reflector) corresponds to determining which visibility region
overrides which in their overlap. Two solutions for the
occlusion problem are possible: the first, already presented
n [12], is based on a simple test in the geometric domain.
An arbitrary ray chosen in the overlap of visibility regions
can be cast to evaluate the front-to-back ordering of visibility
regions or, more simply, to determine which oriented
reflector is first met by the test ray. An example is provided
in Figure 2 where, if s; is the reference reflector, we end
up having an occlusion between s, and s3, which needs
to be sorted out. A test ray is picked at random within
the overlapping region to determine which reflector is hit
first by the ray. This particular example shows that, unless
we consider each reflector as the combination of two of
oppositely-facing oriented reflectors, we cannot be sure that
the occlusion problem can be disambiguated. In this case,
for example, s, occludes s; for some rays, and s3 occludes
s for others. As shown in Table 1, a two-sided reflector
corresponds to a double wedge in ray space, each wedge
corresponding to one of the two faces of the reflector. By
considering the two sides of each reflector as individual
oriented reflectors, we end up with four distinct wedge-
like regions in ray space, thus removing all ambiguities. The
overlap between visibility regions of two one-sided reflectors
arises every time the extreme lines of the corresponding
visibility regions intersect. We recall that the dual of a point
P(x,7) is a line whose slope is —x. The extreme lines of the
visibility region of reflector s; are the dual of the endpoints
of s;, that are (xﬂ > Vil )) and (sz,yjz) and the slopes of the

extreme lines of the Vlslblhty region of s; are x], and sz)
A similar notation is used for the overlapping reflector s.
Under the assumption that s; and s never intersect in the
geometric domain, we can reorder one-sided reflectors in

front-to-back order by simply looking at the slopes of the
extreme lines of their visibility regions. If the line €§’) of
equation g = —mxﬁ’l) + ysll) and the line £ of equation

(@) (@)

q= mx,(f2)+ ¥4 intersect in the dual space, then =X > =X

jl
guarantees that s; occludes s; and —x! 1 < —xk2 guarantees
that s occludes s;.

2.2. Tracing Reflective Beams and Paths in Dual Space

2.2.1. Tracing Beams. In this paragraph we summarize
the tracing of beams in the geometric space using the
information contained in the visibility diagrams. Further
details on this specific topic can be found in [12]. This
can be readily done by scanning the visibility diagram
along the line that represents the “dual” of the virtual
source. In fact, that line will be partitioned into a number
of segments, one per visibility region. Each segment will
correspond to a subbeam in the geometric space. Consider
the configuration of reflectors of Figure 3(a). The first step
of the algorithm consists of determining how the complete
pencil of rays produced by the source S is partitioned into
beams. This is done by evaluating the visibility from the
source using traditional beam tracing. This initial splitting
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FIGURE 3: Beams traced from the source location (a) and the corresponding beam-tree (b).

process produces two classes of beams: those that fall on
a reflector and those that do not. The beams and the
corresponding beam-tree are shown in Figures 3(a) and 3(b),
respectively. We consider the splitting of beam b3, shown in
Figure 4. The image-source is represented in the dual space
by the line €p. The beam b3 will therefore be a segment on
that line, which will be partitioned in a number of segments,
one for each region on the visibility diagram. In Figure 4(a)
the beam splitting is accomplished in the (m,q) domain,
while in Figure 4(b) we can see the corresponding subbeams
in the geometric domain. This process is iterated for all
the beams that fall onto a reflector. Further details can be
found in [12]. At the end of the beam tracing process we
end up with a tree-like data structure, each node by of
which contains information that identifies the corresponding
beam:
(i) the one-sided reference reflector s;,
(ii) the one-sided illuminated reflector s; (if any),
(iii) the position of the virtual source S(x?, ys(i)) in the
normalized reference frame,
(iv) the segment [q;, ¢»] that identifies the “illuminating”
region on the y-axis,
(v) the parent node (if any),
(vi) alist of the children nodes (if at least one exists).

The last two items are useful when reclaiming the “reflection
history” of a beam. Given the above information we are
immediately able to represent the beams (i.e., segments) in
the (m, q) domain.

2.2.2. Tracing Paths. In [12] the construction of the beam-
tree was accomplished in the dual space but path-tracing
was entirely done in the geometric domain. We will now
derive an alternate and more efficient procedure for tracing
the acoustic paths directly in the dual space. The goal is to
test the presence of the receiver R in the beam by, originating
from the reflector s;. The coordinates of the receiver in the
normalized reference frame of s; are (xﬁ'), yﬁ') ). In order for R
to be in by, there must exist a ray in by that passes through R,
that is,

A(m,q) € by : yV = mxl) + 7. (1)

This means that the ray (#,q) from S to R, is represented
in the dual space by a point resulting from the intersection
of the dual of bx (a segment) and the dual of R (a line).
The presence test is thus performed by computing the
intersection of two lines in the parameter space. If by
does not fall onto a reflector, then the condition (1) is
sufficient. If by falls on reflector s;, then we must also make
sure that s; does not occlude R. Assuming that s; lies on
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FIGURE 5: Path-tracing from source S to the receiver R. The beam-tree on the right-hand side is the same as in Figure 3.

the line €](~1) cy = mx + q;’), we can easily conclude that
R is not occluded by s; if the distance between S and R is
smaller than the distance between S and the intersection of
the (1, q) ray with s, which means that:

(s = %)%+ (s = )’

(o

_ 2
9;— 1
+<ys—mjm]_m—%) :

The conditions in (1) and (possibly) (2) are tested for all
the beams. However, if R falls onto by, then we know that
it cannot fall in other beams that share the virtual source of
bk. This speeds up the path-tracing process a great deal. As an
example of the tracing process, consider the situation shown
in Figure 5. Here S and R are not in the line of sight, but
a reflective path exists through the reflection from s;. First-
order beams are traced directly in the geometric domain, as
done in [12], therefore the presence of R in beams originating
directly from S is tested directly in the geometric domain.
Let us now test the presence of R in the reflected beams
emerging from b; (see Figure 3). The intersection between

2
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\
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A

FIGURE 6: Tracing paths in the visibility diagram: the parameters of
the outgoing ray are found by means of the intersection of the dual
of the beam (a segment) and of the receiver (a line). Paths falling in
beams limited by a reflector, also (2) must hold.

the line ¢,, dual of R, and the dual of by; (a segment) is easily
found (see Figure 6 on the right). Once we have checked the
presence of the receiver in by, the position of the receiver and
the information encoded in b;; are sufficient to determine
the delay and the amplitude of the echo associated to that
acoustic path. More details on this aspect will be provided in
Section 6.1.
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bounces off the surface, resulting from a combination of secondary
wavefronts, will not propagate just in the specular direction with
respect to the exciting wave.

3. Mathematical Models of Diffraction
and Diffusion

In this section we investigate some mathematical models
used in the literature to quantitatively describe the causes
of diffraction and diffusion. Later we will choose the model
which best works for our beam tracing method.

3.1. Models of Diffusion. When a wavefront encounters a
rough or nonhomogeneous surface, its energy is diffused
in nonspecular directions (see Figure 7). Let us consider a
flat surface with a single localized unevenness whose size is
bigger than the wavelength A of the incident wavefront. The
Huygens principle interprets the diffused wavefront as the
superposition of the local wavefronts associated to reflections
on each point of the surface. As we can see in Figure 7, the
direction of propagation of the outgoing wavefront differs
from the direction of the incident one. Consequently, a
sensor facing the wall will pick up energy not just from
the incident wavefront but also from a direction that is not
specular. A rough surface can be characterized through a
statistical description of the speckles (in terms of size and
density). In fact, the acoustic properties of the scattering
material can be predicted or measured using various tech-
niques [19-21]. Diffusion can also be associated to local
variations of impedance (e.g., a flat reflective surface that
exhibits areas of acoustically absorbing material) [22]. From
the listener’s standpoint, diffusion tends to greatly increase
the number of paths between source and receiver and,
consequently, the sense of presence [23]. Different models
have been proposed in the literature to account for diffusion.
A reflection is said to be totally diffusive (Lambertian) if the
probability density function of the direction of the outgoing
rays does not depend on the direction of the incoming
ray. Totally diffused reflections are described by Lambert’s
cosine law. A survey on the typical acoustic characteristics of
materials, however, reveals that Lambertian reflections turn
out to be quite unrealistic. For this reason, in the literature
we find two modeling descriptions: the scattering coefficient
and the diffusion coefficient [24, 25]. The diffusion coefficient
measures the similarity between the polar response of a
Lambertian reflection and the actual one. This coefficient is
expressed as the correlation index between the actual and
the diffusive polar responses corresponding to a wavefront

coming from a perpendicular direction with respect to the
surface. The scattering coefficient measures the ratio between
the energy diffused in nonspecular directions and the total
(specular and diffused) reflected energy. This parameter
is useful when we are interested in modeling diffusion
in reverberant enclosures but it does not account for the
directions of the diffused wavefronts. This approximation
is reasonable in the presence of a large number of diffusive
reflections, but tends to become a bit restrictive when
considering first-order diffusion only (i.e., ignoring diffusion
of diffused paths). This is why in this paper we consider
the additional assumption that diffusive surfaces be wide.
This way the range of directions of diffused propagation
turns out to be wide enough to minimize the impact of the
above approximation. We will use the scattering coefficient
to weight the contribution coming from totally diffuse
reflections (modeled by Lambert’s cosine law) and specular
reflections.

3.2. Models of Diffraction. Diffraction is a very important
propagation mode, particularly in densely occluded environ-
ments. Failing to properly account for this phenomenon in
such situations could result in a poorly realistic rendering
or even in annoying auditory artifacts. In this section we
provide a brief description of three techniques for rendering
diffraction phenomena: the Fresnel Ellipsoid, the line of
sources, and the Uniform Theory of Diffraction (UTD).
We will then explain why the UTD turns out to be the
most suitable approach to the modeling of diffraction in
conjunction with beam tracing.

3.2.1. Fresnel Ellipsoids. Let us consider a source S and a
receiver R with an occluding obstacle in between. According
to the Fresnel-Kirchhoff theory, the portion of the wavefront
that is occluded by the obstacle does not contribute to the
signal measured in R, which therefore differs from what
we would have with unoccluded spherical propagation. In
order to avoid using the Fresnel-Kirchhoff integral, we can
adopt a simpler approach based on Fresnel ellipsoids. If d
is the distance between S and R, only objects lying on paths
whose length is between d and d + A/2 are considered as
obstacles, where A is the wavelength. If x, is the generic
location of the secondary source, the locus of points that
satisfy the equation Sx;R — SR < A/2 is an ellipsoid with foci
in S and R. The portion of the ellipsoid that is occluded by
obstacles provides an estimate of the absolute value of the
diffraction filter’s response. It is important to notice that the
size of the Fresnel ellipsoid depends on the signal wavelength.
As a consequence, in order to study diffraction in a given
configuration, we need to estimate the occluded portion of
the Fresnel ellipsoids at the frequencies of interest. In [26]
the author proposes to use the graphics hardware to estimate
the hidden portions of the ellipsoids. The main limit related
to the Fresnel ellipsoid is the absence of information related
to the phase of the signal: from the hidden portions of the
ellipsoid, in fact, we can only infer the absolute value of the
diffraction filter. If we need a more accurate rendering of
diffraction, we must resort to other techniques.




FiGure 8: Geometric Theory of Diffraction: an acoustic source is
in S. The acoustic source interacts with the obstacle, producing
diffracted rays. Given the source position S, the points on the
edge behave as secondary sources (e.g., P; and P, in the figure).
According to the geometrical theory of diffraction, the angle
between the outgoing rays and the edge equals the angle between
the incoming ray and the edge. The envelope of the outgoing rays
forms a cone, known in the literature as Keller cone.

3.2.2. Line of Sources. In [27] the authors propose a frame-
work for accurately quantifying diffraction phenomena.
Their approach is based on the fact that each point on a
diffractive edge receives the incident ray and then re-emits
a muffled version of it. The edge can therefore be seen as
a line of secondary sources. The acoustic wave that reaches
the receiver will then be a weighed superposition of all
wavefronts produced by such edge sources.

In order to quantitatively determine the impact of
diffraction in closed form, we need to be able to evaluate
the visibility of a region (environment) from a line (edge of
secondary sources). As far as we know, there are no results in
the literature concerning the evaluation of regional visibility
from a line. There are, however, several works that simplify
the problem by sampling the line of sources. This way,
visibility is evaluated from a finite number of points [28-30].
This last approach can be readily accommodated into our
framework. However, as we are interested in a fast rendering
of diffraction, we prefer to look into alternate formulations.

3.2.3. Uniform Theory of Diffraction. The Uniform Theory of
Diffraction (UTD) was derived by Kouyoumjian and Pathak
[15] from the Geometric Theory of Diffraction (GTD),
proposed by Keller in 1962 [31]. As shown in Figure 8,
according to the GTD, an acoustic ray that falls onto an edge
with an angle 6; produces a distribution of rays that lies on
the surface of a cone. The axis of this cone is the edge itself,
and its angle of aperture is 6; = 6. The GTD assumes that
the edge be of infinite extension, therefore, given a source
and a receiver we can always find a point on the edge such
that the diffracted path that passes through it will satisfy the
constraint 0; = 6,;. The Keller cones for the source S and two
points P; and P, on the edge are shown in Figure 8.

In a way, the GTD allows us to compactly account for
all contributions of a line distribution of sources. In fact,
if we were to integrate all the infinitesimal contributions
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over an infinite edge, we would end up with only one
significant path, which is the one that complies with the
Keller condition, as all the other contributions would end
up canceling each other out. The impact of diffraction on
the source signal is rendered by a diffraction coefficient that
depends on the frequency and on the angle between the
incident ray and the angular aperture of the diffracting wedge
(see Section 6.1 and [32] for further details). This geometric
interpretation of diffraction is also adopted by the UTD. The
difference between GTD and UTD is in how such diffraction
coefficients are computed (see Section 6.1).

The use of the UTD in beam tracing is quite convenient
as it only involves one incident ray per diffractive path. The
UTD, however, assumes that the wedge be of infinite exten-
sion and perfectly reflective, which in some cases is too strong
an assumption. Nonetheless, the advantages associated to
considering only the shortest path make the UTD an ideal
framework for accounting for diffraction in beam tracing
applications. Notice that when the incident ray is orthogonal
to the edge (6; = 90°), the conic surface flattens onto a
disc. This particular situation would be of special interest to
us if we were considering an inherently 2D geometry. This,
however, is NOT our case. We are, in fact, considering the
situation of “separable” 3D environments [12], which result
from the cartesian product between a 2D environment (floor
map) and a 1D (vertical) direction. This special geometry
(sort of an extruded floor map) requires the modeling of
diffraction and diffusion phenomena in a 3D space. The
Uniform Theory of Diffraction is, in fact, inherently three-
dimensional, but our approach to the tracing of diffractive
rays makes use of fast beam tracing, whose core is two
dimensional. In order to be able to model UTD in fast beam
tracing, we need therefore to first flatten the 3D geometry
onto a 2D environment and later to adapt the 2D diffractive
rays to the 3D nature of UTD. In order to clamp down
the 3D geometry to the floor map, we need to establish a
correspondence between the 3D geometric primitives that
contribute to the Uniform Theory of Diffraction and some
2D geometric primitives. For example, when projected on
a floor map, an infinitely long diffracting edge becomes
a diffractive point, and a 3D diffracted ray becomes a
2D diffracted ray. When tracing diffractive beams, each
wedge illuminated (directly or indirectly) by the source will
originate a disk of diffracted rays, as shown in Figure 8.
At this point we need to consider the 3D nature of the
environment. We do so by “lifting” the diffracted rays in
the vertical direction. We will end up with sort of an
extruded cylinder containing all the rays that are diffracted
by the edge. However, when we specify the locations of the
source and the receiver, we find that this set includes also
paths that do not honor the Keller cone condition 6; =
04, and are therefore to be considered as unfeasible. The
removal of all unfeasible diffracted rays can be done during
the auralization phase. During the auralization, in fact, we
select the paths coming from the closer diffractive wedges,
as they are considered to be more perceptually relevant.
The validation is a costly iterative process, therefore we
only apply it to paths that are likely to be kept during the
auralization.
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3.3. New Needs and Requirements. As already said above,
we are interested in extending the use of visibility maps
for an accurate modeling and a fast rendering of diffusion
and diffraction phenomena. As visibility diagrams were con-
ceived for modeling specular reflections, it is important to
discuss what needs and requirements need to be considered.

Diffraction. Visibility regions can be used for accommodat-
ing and modeling diffraction phenomena. In fact, according
to the UTD, when illuminated by a beam, a diffractive edge
becomes a virtual source with specific characteristics. Our
goal is to model the indirect illumination of the receiver
by means of secondary paths: wavefronts are emitted from
the source, after an arbitrary number of reflections they
fall onto the diffractive edge, which in turn illuminates the
receiver after an arbitrary number of reflections. A common
simplification that is adopted in works that deal with this
phenomenon [14] consists of assuming that second and
higher-order diffractions are of negligible impact onto the
auralization result. This, in fact, is a perceptually reasonable
choice that considerably reduces the complexity of the
problem. In fact, a simple solution for implementing the
phenomenon using the tracing tools at hand, consists of
deriving a specialized beam-tree for each diffractive source.
We will see later how. Another important aspect to consider
in the modeling of diffraction is the Keller-cone condition
[31], as briefly motivated above: with reference to Figure 8 we
have to retain paths for which 6; = 6;. Tsingos et al. in [14]
proposed to account for it by generating a reduced beam-
tree, as constrained by a generalized cone that conservatively
includes the Keller-cone. The excess rays that do not belong
to the Keller cone, are removed afterwards through an
appropriate check. We will see later that this approach can
be implemented using the visibility diagrams.

Diffusion. Let us consider a source and a receiver, both facing
a diffusive surface. In this case, each point of the surface
generates an acoustic path between source and receiver. This
means that the set of rays that emerge from the diffusing
surface no longer form a beam (i.e., no virtual source
can be defined as they do not meet in a specific point in
space). In fact, according to Huygens principle, all points
of the diffusive surface can be seen as secondary sources
on a generally irregular surface, therefore we no longer
have a single virtual source. Unlike diffraction, diffusion
indeed poses new problems and challenges, as it prevents
us from directly extending the beam tracing method in
a straightforward fashion. One major difference from the
specular case is the fact that the interaction between multiple
diffusive surfaces cannot be described through an approach
based on tracing, as we would have to face the presence of
closed-loop diffusive paths. On the other hand, the impact
of a diffusive surface on the acoustic field intensity is rather
strong, therefore we cannot expect an acoustic path to still be
of some significance after undergoing two or more diffusive
reflections. It is thus quite reasonable to assume that any
relevant acoustic paths would not include more than one
relevant diffusive reflection along its way. We will see later on
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FIGURE 9: The real source S and the receiver R face the diffusive
reflector s;. Reflector s, partially occludes s; with respect to the
receiver. §’ is the image-source of S mirrored over the prolongation
of s;. The segments Sg and gR form a diffusive path.

that this assumption, reasonably adopted by other authors
as well (see [13]) opens the way to a viable solution to
the real-time rendering of such acoustic phenomena. In
fact, even if a diffusive surface does not preserve beam-like
geometries, it is still possible to work on the visibility regions
to speed up the tracing process between a source and a
receiver through a diffusive reflection. This can be readily
generalized to the case in which a chain of rays go from
a source through a series of specular reflections and finally
undergoes a diffusive reflection before reaching the receiver
(diffusive path between a virtual source and a real receiver). A
further generalization will be given for the case in which the
rays undergo all specular reflections but one, which could be
a diffusive reflection somewhere in between the chain. This
last case corresponds to one diffusive path between a virtual
source and a “virtual receiver”, which can be computed by
means of two intersecting beam-trees (a forward one from
the source to the diffusive reflector and a backward one from
the receiver to the diffusive reflector).

4. Tracing Diffusive Paths Using
Visibility Diagrams

As already said before, the rendering of diffusion phenomena
is commonly based on Bidirectional Beam Tracing, from
both the source and the receiver. The need of tracing beams
not just from the source but also from the receiver requires
a certain degree of symmetrization in the definitions. For
example, we need to introduce the concept of “virtual
receiver’, which is the location of the receiver as it gets
iteratively mirrored against reflectors.

Let us consider the situation shown in Figure9: a
(virtual) source S and a (virtual) receiver R face the diffusive
reflector s;. Reflector s, partially occludes s; with respect
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qi

F1GURrE 10: Normalized geometric domain (a) and corresponding dual space (b). The lines €z and €y are the dual of the points §" and R.

to R. In order to simplify the problem we singled out the
diffusive path Sg gR. Figure 9 also shows the image-source
§’, obtained by mirroring S over (the prolongation of) s;.
Notice that the geometry (lengths and angles) of the path
Sq gR is preserved if we consider the path §'g gR. We can
therefore consider the virtual source S’ instead of S, and
trace the diffuse paths onto the visibility diagram “from” the
reference diffusing reflector. If the coordinates of §" and R in
the normalized geometric domain are (xg, ys) and (xg, yr),
respectively, then the set of diffuse rays can be represented by

{(m:,1,,q) : ys = Mixs +q, yr = Mexr +q}.  (3)

In other words, we are searching for the directions #1; and 7,
of the rays that originate from the point g on the reference
reflector and pass through §" and R.

The diffuse paths can be quite easily represented in the
RRP from the reference reflector. The path from a point P on
the reflector is, in fact, the intersection of the dual of P, which
is the line g = ¢; with the dual of §’, which is the line £y : g =
—mxs + yg . Similarly, the ray from P to R is the intersection
between the line g = g and the line €z : ¢ = —mxg + yr. As
we can see, we do not just have the ray that corresponds to
the intersection of the two lines £g and €s (same point, same
direction), but a whole collection of rays corresponding to
the horizontal segment that connects the source line s and
the receiver line €x (same point but different directions).

Notice, however, that we have not yet considered poten-
tial occlusions of the diffuse paths from other reflectors in the
environment. In Figure 9 we can see that only a portion of 5,
contributes to diffusion. In fact there is a portion of s; that is
not visible from R, as it is occluded by s,. This occlusion can
be easily identified in the dual space by following a similar
reasoning to that of (2) for the tracing of specular reflective
paths. The set of rays that are potentially occluded by s,
is represented in the dual space by the beam obtained by
intersecting €r with the visibility region of s,. In order to
test whether the beam is actually occluded by s, or not, we

can simply pick any ray within that area and check whether
it reaches s, before R. The dual space representation of the
problem of Figure 9 is described in the right-hand side of
Figure 10 (the geometric description of the same problem is
shown on the left-hand side of the same Figure, for reasons
of convenience). In the example of Figure 10 the line of
sight between R and s, is partially occluded by s,, therefore
only the segment [—1,g;] contributes to diffusive paths.
Let us consider, for example, the path §'g gR, which is the
line g = gp. The directions of the rays from g to R and
§" are given by m; and my,, respectively. Notice that until
now, for reasons of simplicity, we have considered R to be
the receiver, which forces the diffusion to occur last along
the acoustic path. In order to make the proposed approach
equivalent to bidirectional beam tracing, we will consider
that R is the receiver or a virtual receiver obtained by building
a beam-tree from the receiver location. In order to contain
the computational cost, we only consider low-order virtual
sources and virtual receivers. In Section 7, for example, we
limit the order of virtual sources and virtual receivers to
three.

5. Tracing Diffractive Beams and Paths Using
Visibility Diagrams

In this section we extend the use of visibility diagrams to
model diffractive paths and, using the UTD, we generalize
the fast beam tracing method of [12] to account for this
propagation phenomenon.

5.1. Selection of the Diffractive Wedges. As already discussed
in [14], the diffractive field turns out to be less relevant
when source and receiver are in direct visibility. The very
first step of the algorithm consists, therefore, of selecting
which edges are likely to generate a perceptually relevant
diffraction. In what follows, we will refer to a wedge as a
geometric configuration of two or more walls meeting into
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FIGURE 11: An example of diffractive wedge and beams departing
from it. Notice that if either the source or the receiver fall outside the
regions marked as I and II, then there is direct visibility, therefore
diffraction can be neglected.

a single edge. If the angular opening of the wedge is smaller
than 7 and both the receiver and the source fall inside the
wedge, then source and receiver are in direct visibility. Not
all wedges are, therefore, worth retaining. Even if a wedge
is diffractive, we can still find configurations where source
and receiver are in direct visibility. When this happens,
diffraction is less relevant than the direct path and we discard
these diffractive paths. With reference to Figure 11, we are
interested in auralizing diffraction in the two regions marked
as I and II, where source and receiver are not necessarily in
conditions of mutual visibility. For each of the two regions
we will build a beam-tree. This selection process returns a
listi = 1,..., M of diffractive wedges and their coordinates.

5.2. Tracing Diffractive Beam-Trees. With reference to
Figure 12, our goal is to split the bundle of rays departing
from the virtual source and directed towards the regions I
and II into subbeams. In order to do this, we take advantage
of the visibility diagrams. As seen in Section 3, the virtual
source is placed on the tip of the diffracting wedge. The dual
of this virtual source is the semi-infinite line of equation
q = +1 or q = —1, the sign depending on the normalization
of the RRP. We are interested in auralizing the diffracted field
only in regions I and II, therefore we evaluate the regional
visibility along the lines (virtual sources in the geometric
space) g = +1 only for m > my or m < my. By scanning
these semi-infinite lines along the visibility diagrams we can
immediately determine all the visible reflectors of the above
beams, and therefore determine their branching. Figure 12
shows the first-level beams and their dual representations
for the configuration of Figure 11 (which refers to regions
I and II). The propagation and the branching of these
diffractive beams will follow the usual rules, according to the
iterative tracing mechanism defined in Section 2 for specular
reflections. The number of levels (branching order) of the
diffractive beam-trees is indeed to be specified in a different

11

fashion compared with reflective beam-trees, for reasons of
relevance and computational load. We notice that, at this
stage, the location of source or receiver does not need to be
specified. As a consequence, we can build diffractive beam-
trees in a precomputation phase.

5.3. Diffractive Paths Computation. Once source and receiver
are specified, we can finally build the diffractive paths. Let
95’1’”)(?&{” ') denote the ith reflective path between the
source and the beam-tree to the region I (to the region
II) departing from the diffractive wedge marked with m in
the environment. As far as the auralization of diffraction is
concerned, the path J’s(ffm) is completely defined if we specify
the source location, the position of the point of incidence of
the ray on the walls (possibly in normalized coordinates) and
the location of the diffractive edge. The set of paths between

the source and the diffractive region inside the beam-tree

of the region I (II) is JPS(T) ({PS(,'I”)). Similarly, JPIgf") (f;{'f”))

is the jth path between the receiver and the nth diffractive
wedge in the beam-tree I (II), and 5)1{? (3)}5,’;} is the set of
paths between receiver and the diffractive edge inside the
region I (II).

We are interested in diffractive paths where source and
receiver fall in opposite regions: if the source falls within the
beam-tree I, then we will check whether the receiver is in the
beam-tree II, as diffraction is negligible when both source

and receiver are in the same region. Let {PI(T)H be the set of
paths associated to the diffractive edge m (when the source is

in beam-tree I, and the receiver in II). Similarly, {PI(I@I is the
set of paths where the source is in the beam-tree I and the
receiver is in I. These sets are obtained as

(4)

where ® denotes the cartesian product. Finally, the set of

paths for the diffractive edge m is the union of =7)1<T)11 and

(m) |
Pt

P = e7)1(7:1)11 U ‘?I(Iri)l' (5)

In order to preserve the Keller cone condition, we have to
determine the point P; on the diffractive edge that makes
the angle 0; between the incoming ray and the edge equal
to the angular aperture of the Keller cone 6;. When dealing
with diffractive beam-trees which include also one or more
reflections, the condition 6; = 6 is no longer sufficient for
determining the location of the virtual source, as we must
also preserve the Snell’s law for the reflections inside the path.
In [14] the authors propose to compute the diffraction and
reflection points along the diffractive path through a system
of nonlinear equations. This solution is obtained through an
iterative Newton-Raphson algorithm. In this paper we adopt
the same approach.
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FIGURE 12: When the source and the receiver fall outside the regions I and II, diffraction becomes negligible. The diffractive beam-trees will

therefore cover regions I and II only.

6. Applications to Rendering

In this section we discuss the above beam tracing approach
in the context of acoustic rendering. As anticipated, we first
discuss the more traditional case of channel-based (point-
to-point) rendering. This is the case of auralization when the
user is wearing a headset.

We will then discuss the case of geometric wavefield
rendering.

6.1. Path-Tracing for Channel Rendering. In this section we
propose and describe a simple auralization system based
on the solutions proposed above. Due to their different
nature, we will distinguish between reflective, diffusive
and diffractive echoes. In particular, diffraction involves a
perceptually relevant low-pass filtering on the signal, hence
we will stress diffraction instead of diffusion and reflection.
The diffraction is rendered by a coefficient, whose value
depends on the frequency. Each diffractive wedge, therefore,
acts like a filter on the incoming signal, with an apparent
impact on the overall computational cost. We therefore made
our auralization algorithms select the most significant paths
only, based on a set of heuristic rules that take the power of
each diffractive filter into account.

6.1.1. Auralization of Reflective Paths. As far as reflections
are concerned, we follow the approach proposed in [12]:
the echo i is characterized by a length ¢;. The magnitude of
the ith echo is A; = r*/¢;, r being the reflection coefficient
and k being the number of reflections (easily determined by
inspecting the beam-tree). The delay associated to the echo i
is d; = ¢;/c, where c is the speed of sound (¢ = 340 m/s in our
experiments).

6.1.2. Auralization of Diffraction. As motivated in Section
5, we have resorted to UTD to render diffraction. In
order to auralize diffraction paths, we have to compute a
diffraction coefficient, which exhibits a frequency-dependent
behavior. A comprehensive tutorial on the computation of
the diffraction coefficient in UTD may be found in [14]. We
remark here that in order to compute the diffractive filter,
for each path we need some geometrical information about
the wedge (available at a precomputation stage) and about
the path, which is available only after the Newton Raphson
algorithm described in the previous Section.

6.1.3. Auralization of Diffusive Paths. Accurate modeling of
diffusion is typically based on statistical methods [33]. Our
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modeling solution is, in fact, aimed at auralization and
rendering applications, therefore we resort to an approxi-
mated but still reliable approach that does not significantly
impact on the computational cost: we make use of the
Lambert cosine law, which works for energies, to compute
the energy response. Then we convert the energy response
onto a pressure response by taking its square root. A similar
idea was developed in [34], where the author combines beam
tracing and radiosity.

In order to compute the energy response, we need
the knowledge of the position of the virtual source and
receiver and the segment on the illuminating reflector from
which rays depart. The energy response H é’) of the diffusive
path from reflector i is given by the integration of the
contributions of each point of the reflector. If the length of
the diffusive portion is ¢, then the auralization filter may be
approximated as

N
HY = > D(P)AP, (6)

i=1

where P; is the coordinate on the diffuser, N is the number
of portions in which the segment has been subdivided and
D(P;) is modeled according to the Lambert cosine law:

cos[0;(P;)] cos[0,(P;)]
- ,

D(P;) = (7)
and 0;(P;) and 6,(P;) are the directions of the incident and
outgoing rays referred to the axis of the reflector, respectively.
Angles 6;(P;) and 6,(P;) are related to m; and m, according
to

0;(P) = tan[m;(P)],

(8)
6,(P) = tan[m,(P)].

6.2. Beam Tracing for Sound Field Rendering. The beam-
tree contains all the information that we need to structure
a sound field as a superposition of individual beams, each
originating from a different image-source. A solution was
recently proposed for reconstructing an individual beam in
a parametric fashion using a loudspeaker array [16]. Here,
an arbitrary beam of prescribed aperture, orientation origin
is reconstructed using an array of loudspeakers. In particular,
the least squares difference of the wavefields produced by the
array of loudspeakers and by the virtual source is minimized
over a set of predefined control points. The minimization
returns a spatial filter to be applied at each loudspeaker. It
is interesting to notice that the approach described in [16]
offers the possibility to design a spatial filter that performs
a nonuniform weighting of the rays within the same beam.
This feature enables the rendering of “tapered” beams, which
is particularly useful when dealing with diffractive beams. In
fact, the diffraction coefficient (see [14] for further details)
assigns different levels of energy to rays within the same
beam, according to the reciprocal geometric configuration of
the source, the wedge and the direction of travel of the ray
departing from the wedge.
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Ficure 13: Example of a test environment used for assessing the
computational efficiency of our beam tracing algorithm. The 8 m X
4m rooms are all connected together through randomly-located
apertures.

The rendering of the overall sound field is finally achieved
by adding together the spatial filters for the individual beams.
More details and a some preliminary results of this method
can be found in [35].

7. Experimental Results

In order to test the validity of our solution, we per-
formed a series of simulation experiments as well as a
measurement campaign in a real environment. An initial
set of simulations was performed with the goal of assessing
the computational efficiency of our techniques for the
auralization of reflective, diffractive and diffusive paths,
separately considered. In order to assess the accuracy of our
method, were constructed the impulse responses of a given
environment (on an assigned grid of points) through both
simulation and direct measurements. From such impulse
responses, we derived a set of parameters, typically used
for describing reverberation. The comparison between the
measured parameters and the simulated ones was aimed
at assessing the extent of the improvement brought by
introducing cumulatively diffraction and diffusion into our
simulation.

7.1. Computation Time. In order to assess the computational
efficiency of the proposed method, we conducted a series of
simulations in environments of controlled complexity (vari-
able geometry). We developed a procedure for generating
testing environments with an arbitrary number of 8m X
4m rooms, all chained together as shown in Figure 13. An
N-room environment is therefore made of 4N reflectors.
In order to enable acoustic interaction between rooms,
each one of the intermediate walls exhibits a randomly-
placed opening. In our tests, we generated environments
with 20, 40, 80, 120, 320, 640 such walls. The simu-
lation platform was based on an Intel Mobile Pentium
processor equipped with 1 GB of RAM, and the goal was
to:



14

15

Beam tracing time (s)

0.5

100 200 300 400
Walls

—=— Visibility diagram
—o— Traditional beam tracing

FIGURE 14: Beam-tree building time for variable geometry for
traditional beam tracing (circles) and visibility-based beam tracing
(squares) for 10,000 beams. The proposed approach greatly out-
performs traditional beam tracing especially when the number of
traced beams is very large.

(i) compare the beam-tree’s building time of visibility-
based beam tracing with that of traditional beam
tracing [5];

(ii) measure the diffractive path-tracing time;

(iii) measure the diffusive path-tracing time.

As far as the time spent by the system in computing the
visibility diagrams is concerned, we invite the reader to [12].
The beam-tree building time is intended as the time spent by
the algorithm in tracing a preassigned number of beams. In
order to assess the impact of the proposed approach on this
specific parameter, in comparison with a traditional beam-
tracing approach, we stopped the algorithm when 10,000
beams were traced. The simulation results are shown in
Figure 14. As expected, our approach turns out to outper-
form traditional beam tracing. As the beam-tree building
time strongly depends on the source location, we conducted
numerous tests by placing the source at the center of each
one of the rooms of the modular environments. The beam-
tree building time was then computed as the average of the
beam-tree building times over all such simulations. In order
to test the tracing time of the diffusive paths the source
has been placed in the center the modular environment. We
conducted several experiments placing the receiver at the
center of each one of the rooms. We measured the time
spent by the system in computing the diffusive paths. We
considered up to three reflections before and after the diffuse
interaction. Figure 15 shows the average tracing time of the
diffusive paths as a function of the number of walls. If we
are interested in an accurate rendering, we should trace at
least 1000 beams: in this situation we notice that even in a
complex environment (e.g., 640 walls) the auralization of the
diffusive paths takes only a fraction of the time spent by the
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Variable geometry, 10000 beams
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FiGure 15: Tracing time of the diffusive paths as a function of the
number of walls of the environment of Figure 13.
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FIGUre 16: Auralization time for diffractive paths (measured in
seconds) versus the complexity (measured by the number of walls)
of the environment.

system for the auralization of the reflective paths. The last test
is aimed at assessing the computational time for auralizing
the diffractive paths. As done above, the source was placed
at the center of the environment and we conducted several
experiments, placing the receiver at the center of each room.
In particular in this situation two tests have been conducted:

(i) the number of diffractive paths with respect to the
number of walls in the environment;

(ii) the computational time for auralizing the diffractive
paths.

Figure 16 shows the time that the system takes to auralize
the diffractive paths, as a function of the number of walls
in the environment. Figure 17 shows the number of paths
for the same experiment. The number of diffractive paths
depends upon both the depth of the diffractive beam-trees
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FIGURE 17: Number of diffractive paths versus the complexity of
the environment (measured by the number of walls) in which
experiments are done.
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FiGUure 18: Floor-map of the validation environment: the grid
represents the 77 acquisition points and the loudspeaker location
is marked with a dot.

and the number of diffractive edges in the environment in
quite an unpredictable fashion. Notice that the auralization
for the diffractive paths can exceed the auralization of the
reflective paths. However, we should keep in mind that the
computation of over 1000 diffractive paths can be quite
redundant from a perceptual standpoint. We propose here to
select the diffractive paths arisen from the closer diffractive
wedges, as they are more perceptually relevant.

7.2. Validation. It becomes important to assess how well
spatial distributions of reverberations are rendered by this
approach. In order to do so, we conducted comparative tests
between simulated data and real data with corresponding
geometries. We placed a high-quality loudspeaker in a
reverberant environment and used it to reproduce a MLS
sequence [36]. The environment’s floor map is shown in
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Simulated response with reflections: EDT (ms)
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FiGUre 19: Early Decay Time map: (a) simulated with reflections
only, (b) simulated with reflections and diffraction, (c) simulated
with reflections, diffraction and diffusion, (d) measured.

Figure 18, where the location of the loudspeaker and micro-
phone are marked with green and red dots, respectively.
The acquired signals were then processed to determine the
impulse responses of the environment in those locations, as
described in [36]. The reflective and diffusive reflection coef-
ficients of the walls, indeed, could not be directly measured
but were coarsely determined so that the T of the simulated
impulse response would approximate the estimated one in
a given test position. As a sample-to-sample comparison of
the acquired and simulated impulse responses is not very
informative, we compared some parameters that describe
the impulse response, which can be readily derived from the
simulated and measured impulse responses. In particular, we
run extensive simulations first with reflections only (up to
the 16th order of the beam-tree), with diffraction (up to the
6th order) and finally with diffusion (with an order 3).
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Simulated response with reflections: Normalized energy
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FiGure 20: Normalized energy map: (a) simulated with reflections
only, (b) simulated with reflections and diffraction, (c) simulated
with reflections, diffraction and diffusion, (d) measured.

Early Decay Time (EDT). EDT is the time that the Schroeder
envelope of the impulse response takes to drop of 10 dB.
A comparison of the EDT maps (geographical distribution
of the EDT in the measured and simulated cases) is shown
in Figure 19. Notice that the impact of diffusion in this
experiment is quite significant: in fact, as expected, including
diffusion increases the energy in the “tail” of the impulse
response, with the result of obtaining a more realistic
reverberation.

Normalized Energy of the Impulse Response. where the nor-
malization is performed with respect to the impulse response
of maximum energy. A comparison between normalized
energy maps is shown in Figure 20. Once again we notice
that a simulation of all phenomena (reflections, diffraction
and diffusion) produces more realistic results.
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Simulated response with reflections: Centre time (ms)
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Figure 21: Center Time map: measured (a) simulated with
reflections only, (b) simulated with reflections and diffraction, (c)
simulated with reflections, diffraction and diffusion, (d) measured.

Center Time. It is first-order momentum of the squared
impulse response. The Center Time (CT) map is shown
in Figure 21, where we see that a simulation based on
reflections, diffraction and diffusion allows us to achieve,
once again, a good match. We notice, in particular, that
modeling diffusion increases the level of smoothness of the
simulated map, which makes it more similar to the measured
one.

8. Conclusions

In this paper we proposed an extension of the visibility-
based beam tracing method proposed in [12], which now
allows us to model and render propagation phenomena such
as diffraction and diffusion, without significantly affecting
the computational efficiency. We also improved the method
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in [12] by showing that not just the construction of the
beam-tree but also the whole path-tracing process can be
entirely performed on the visibility maps. We finally showed
that this approach produces quite accurate results when
comparing simulated data with real acquisitions. Thanks
to that, this modeling tool proves particularly useful every
time there is a need for an accurate and fast simulation of
acoustic propagation in environments of variable geometry
and variable physical characteristics.
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Crosstalk cancellation plays an important role in displaying binaural signals with loudspeakers. It aims to reproduce binaural
signals at a listener’s ears via inverting acoustic transfer paths. The crosstalk cancellation filter should be updated in real time
according to the head position. This demands high computational efficiency for a crosstalk cancellation algorithm. To reduce the
computational cost, this paper proposes a stereo crosstalk cancellation system based on common-acoustical pole/zero (CAPZ)
models. Because CAPZ models share one set of common poles and process their zeros individually, the computational complexity
of crosstalk cancellation is cut down dramatically. In the proposed method, the acoustic transfer paths from loudspeakers to ears
are approximated with CAPZ models, then the crosstalk cancellation filter is designed based on the CAPZ transfer functions.
Simulation results demonstrate that, compared to conventional methods, the proposed method can reduce computational cost

with comparable crosstalk cancellation performance.

1. Introduction

A 3D audio system can be used to position sounds around
a listener so that the sounds are perceived to come from
arbitrary points in space [1, 2]. This is not possible with
classical stereo systems. Thus, 3D audio has the potential
of increasing the sense of realism in music or movies.
It can be of great benefit in virtual reality, augmented
reality, remote video conference, or home entertainment.
A 3D audio technique achieves virtual sound perception
by synthesizing a pair of binaural signals from a monaural
source signal with the provided 3D acoustic information:
the distance and direction of the sound source with respect
to the listener. Specifically, the sense of direction can be
rendered by using head-related acoustic information, such
as head-related transfer functions (HRTFs) which can be
obtained by either experimental or theoretical means [3, 4].
To deliver binaural signals, the simplest way is through
headphones. However, in many applications, for example,
home entertainment environment, teleconferencing, and so
forth, many listeners prefer not to wear headphones. If
loudspeakers are used, the delivery of these binaural signals

to the listener’s ears is not straightforward. Each ear receives
a so-called crosstalk component, moreover, the direct signals
are distorted by room reverberation. To overcome the above
problems, an inverse filter is required before playing binaural
signals through loudspeakers.

The concept of crosstalk cancellation and equalization
was introduced by Atal and schroeder [5] and Bauer [6] in
the early 1960s. Many sophisticated crosstalk cancellation
algorithms have been presented since then, using two or
more loudspeakers for rendering binaural signals. Crosstalk
cancellation can be realized directly or adaptively. Supposing
that the acoustical transfer paths from loudspeakers to ears
are known, the direct implementation method calculates
the crosstalk cancellation filter by directly inverting the
acoustical transfer functions [7, 8]. Generally a head-
tracking scheme, which can tell the head position precisely,
is employed to work together with the direct estimation
method. The direct estimation method can be imple-
mented in the time or frequency domain. Time-domain
algorithms are generally computationally consuming, while
frequency-domain algorithms have lower complexity. On the
other hand, time-domain algorithms perform better than



frequency-domain ones with the same crosstalk cancellation
filter length. For example, a frequency-domain method such
as the fast deconvolution method [7], which has been
shown to be very useful and easy to use in several practical
cases, can suffer from a circular convolution effect when
the inverse filters are not long enough compared to the
duration of the acoustic path response. In an adaptive
implementation method, the crosstalk cancellation filter is
calculated adaptively with the feedback signals received by
miniature microphones placed in human ears [9]. Several
adaptive crosstalk cancellation methods typically employ
some variation of LMS or RLS algorithms [10-13]. The LMS
algorithm, which is known for its simplicity and robustness,
has been used widely, but its convergence speed is slow. The
RLS algorithm may accelerate the convergence, but the large
computation load is a side effect. Although many algorithms
have been proposed, the adaptive implementation method
remains academic research rather than a real solution. The
reason is that people who do not want to use headphones
would probably not like to use a pair of microphones in the
ears to optimize loudspeaker reproduction either.

One key limitation of a crosstalk cancellation system
arises from the fact that any listener movement which
exceeds 75-100 mm may completely destroy the desired
spatial effect [14, 15]. This problem can be resolved by
tracking the listener’s head in 3D space. The head position
is captured by a magnetic or camera-based tracker, then the
HRTF filters and the crosstalk canceller based on the location
of the listener are updated in real time [16]. Although head-
tracking systems can be employed, measures should still be
taken to increase the robustness of the crosstalk cancellation
system. It has been shown that the robust solution to
this virtual sound system could be obtained by placing
the loudspeakers in an appropriate way to ensure that the
acoustic transmission path or transfer function matrix is well
conditioned [17-19]. Robust crosstalk cancellation methods
with multiple loudspeakers have been proposed [8, 20, 21].
Another approach adds robustness of a crosstalk canceller
by exploring the statistical knowledge of acoustic transfer
functions [22].

This paper focuses on the crosstalk cancellation problem
for a stereo loudspeaker system. Least-squares methods are
popular in designing a crosstalk cancellation system; how-
ever, the required large computation is always a challenge. To
reduce the computational cost, this paper proposes a novel
crosstalk cancellation system based on common-acoustical
pole/zero (CAPZ) models, which outperforms conventional
all-zero or pole/zero models in computational efficiency [23,
24]. The acoustic paths from loudspeakers to ears are approx-
imated with CAPZ models, then the crosstalk cancellation
filters are designed based on the CAPZ transfer functions.
Compared with conventional least-squares methods, the
proposed method can reduce the computation cost greatly.
The paper is organized as follows. Conventional crosstalk
cancellation methods are introduced in Section 2. Then the
proposed crosstalk cancellation method based on the CAPZ
model is described in detail in Section 3. The performance
of the proposed method is evaluated in Section 4. Finally,
conclusions are drawn in Section 5.
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H(z) G(z)
A coustic transfer plant

Crosstalk canceller

Xy =

F1GuUrE 1: Block diagram of the direct crosstalk cancellation system
for stereo loudspeakers.

2. Conventional Crosstalk Canceller

It is common to use two loudspeakers in a stereo system.
A block diagram of the direct implementation of crosstalk
cancellation is illustrated in Figure 1 for a stereo loudspeaker
system. The input binaural signals from left and right
channels are given in vector form X(z) = [X; (z),Xz(z)]T,
and the signals received by two ears are denoted as
D(z) = [Di(z),Ds(2)]T. (Here signals are expressed in
the Z domain.) The objective of crosstalk cancellation is
to perfectly reproduce the binaural signals at the listener’s
eardrums, that is, D(z) = z 9X(z), where z7¢ is the delay
term, via inverting the acoustic path G(z) with the crosstalk
cancellation filter H(z). Generally, the loudspeaker response
should also be inverted when designing the crosstalk can-
celler; however, this part can be implemented separately and
thus is not considered in this paper for the convenience of
analysis. G(z) and H(z) are, respectively, denoted in matrix
forms as

Gi(z) Gpa(z) Hu(z) Hix(2)
6 - | o) me - 10

(1)

where G;ij(2),1, j = 1,2, is the acoustic transfer function from
the jth loudspeaker to the ith ear, and H;j(2), i, j = 1,2, is the
crosstalk cancellation filter from X; to the ith loudspeaker.

To ensure crosstalk cancellation, the global transfer
function from binaural signals to ears should be

D(z) = G(2)H(2)X(2) = z %X (2), (2)

thus
G(z)H(z) =271, (3)
H(z) = 279G '(2), (4)

where I is the identity matrix. The delay term z~¢ is necessary

to guarantee that H(z) is physical realizable (causal). How-
ever, a perfect reproduction is impossible because G(z) is
generally nonminimum-phase, in which case a least-squares
algorithm is employed to approximate the optimal inverse
filter G™!(z). The time-domain least-squares algorithm is
given below.
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Suppose that g;; = [gij0,. .- ,gij,Lg,l]T, the time-domain
impulse response of Gj;j(z), is a vector of length Ly, and
hij = [hijos. .. hijp,—1] T, the time-domain impulse response
of Hjj(z), is a vector of length L;,. Rewriting (3) in a time-
domain form, we get

511 512 hyy hy ug O
5 | I | T 0w ©
Gy Gxn 21 h2 d
or in a suppressed form
GH = U, (6)

where G;j, a component of G, is

T
&ijo oo Sijile—1 o ... O
~ 0 8ij,0 GijL—1 - 0
Gij = . . . ¢ . . (7)
0 0 8ij,0 gij,Lgfl

Gi ; is a convolution matrix of size L; X Ly by cascading the
vector gjj, Ly = Ly + Ly — 1,

ug =10,...,0,1,0,...,0]" (8)

is a vector of length L; whose dth component equals 1, and
O is a vector of length L, containing only zeros.
The least-squares solution to (6) is

His = G'U, 9)

where G* is the pseudoinverse of G, and G* is given by
-1
G" = (GTG+pI) G, (10)

where 3 is a regularization parameter to increase the
robustness of the inversion [25].

The crosstalk cancellation filter is obtained by (9), with
its filter length

Ly = L. (11)

The acoustic path matrix G is dependent on the head
position. When the head moves, it is required to update G
and calculate H in real time. The computation load becomes
heavy when the size of G is large.

In [26], a single-filter structure for a stereo loudspeaker
system is proposed to calculate the inverse of G, which needs
less computation. It is given as follows.

From (4), we can get

H(z) = z79G 1(2)

_ Gn(z) —Gnl2) (12)
_ z d|:*G21(Z) Gn(z) :|
G11(2)Ga2(2) — G12(2)Gai (2)°
Let
Q(2) = G11(2)Gn(2) — G12(2) G2 (2), (13)
2
T(z) = @a (14)

3

then the problem of inverting G(z) is converted to
Q(z)T(z) = z L (15)
Suppose that ¢ = [qo---> qu,l]T, the time-domain

response of Q(z), is a vector of length Ly, and L; = 2L, — 1;
t = [to,...,t,_1]", the time-domain response of T(z), is a
vector of length L;. Rewriting (15) in a time-domain form,
we get

Qt = uy, (16)
where
qo --- qr,—1 o ... 0 r
Q- 0 q0 qr,-1 - 0 (17)
6 0' q(; . qL/;,l

is a convolution matrix of size L, X L; by cascading of the
vector q; L, = Ly + Ly — 1.
The least-squares solution to (16) is

frs = Q' uy, (18)

where Q" is the pseudoinverse of Q, and Q* is given by

Q' = (Q"Q+p1) Q. (19)

The crosstalk cancellation filter is obtained from (12) and
(18), with its filter length

Lip =L+ L — 1. (20)

Combining G(z) and H(z), we get the global transfer
function

F(z) = G(z) - H(z)

(). [Gn(z) GIZ(Z)] _ [ G(2) _GIZ(Z)]
B G (2) Ganl(z) -Gau(z) Gul(z)
=T(z)
G11(2)Gna(2) 0
-G12(2) G2 (2)
0 G11(2)Gaa(2)
—G12(2)Gai(2)

21)

The off-diagonal items of (21) are always zeros regardless
the value of T'(z). This implies that the crosstalk is almost
fully suppressed. However, due to the filtering effect by
the diagonal items in (21), distortion will be introduced
when reproducing the target signals. This is the inherent
disadvantage of the single-filter structure method.



3. Crosstalk Cancellation System Based
on CAPZ Models

The acoustic transfer function is usually an all-zero model,
whose coefficients are its impulse response. However, when
the duration of the impulse response is long, it requires
a large number of parameters to represent the transfer
function [27]. This results in large computation in binaural
synthesis and crosstalk cancellation. Pole/zero models may
decrease the computational load, but their poles and zeros
both change when the acoustic transfer function varies,
leading to inconvenience for acoustic path inversion. To
reduce the computational cost, this paper attempts to
approximate the acoustic transfer function with common-
acoustical pole/zero (CAPZ) models, then design a crosstalk
cancellation system based on it.

3.1. CAPZ Modeling of Acoustic Transfer Functions. Haneda
proposed the concept of common-acoustical pole/zero
(CAPZ) models, and modeled room transfer functions and
head-related transfer functions with good results [23, 24].
He believed that an HRTF contains a resonance system of ear
canal whose resonance frequencies and Q factors are inde-
pendent of source directions. Based on this, the HRTF can
be efficiently modeled by using poles that are independent
of source directions, with zeros that are dependent on source
directions. The poles represent the resonance frequencies and
Q factors. The model is called common-acoustical pole/zero
model. CAPZ models share one set of poles and process their
own zeros individually. This obviously reduces the amount
of parameters with respect to conventional pole/zero models,
and also cut down computation.

When an acoustic transfer function H;(z) is approxi-
mated with a CAPZ model, it is expressed as

N,
A(z) = Bi(z) Y, lobniz"
(2) = -
Alz) 1+ szil apz "

> (22)

where N, and N, are the numbers of the poles and zeros, a =
[l,al,...,aNp]T and b; = [bl,,-,...,qu,i]T are the pole and
zero coefficient vectors, respectively. The CAPZ parameters
may be estimated with a least-squares method [23, 24] or a
state-space method [28]. The least-squares method is simply
given below.

Suppose a set of K transfer functions, the total modeling
error is defined as

K N-1
J=>> le(nl?
i=1n=0
5 (23)
KN-1 Ny Ny
=> > |hi(m)+ > ajhi(n— j}-> b;:6(n)| ,
i=1n=0 j=1 j=0

where N is the length of e(n) and hi(n) is the impulse
response of H;(z).
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To find the pole coefficients vector a and the zero
coefficients vector b;, i = 1,...,K, we minimize the error J
and obtain that

I Ho,17 [ bl 1 _ 70,17
0 H] ] __a_ B | ’
: (24)
I Hox |[bx]  [rox|
0 H[( —a - rK ?

where I is the identity matrix, vector r,; =
[1i(0),...., (NI, 7 = [Wi(Ng + 1),...,hi(N = D],

i =1,...,K; Hy; and H; are both convolution matrices by
cascading the impulse response h;(n), that is,

Ho,i
0 0 0
hi(0) 0 0
B hi(1) hi(0) 0
hi(Ng = 1) hi(Ng=2) 0 1s(Ng = Np) (N 1)xN,
(25)
H;
hi({\]q) - hi(N —‘NP +1) 06
BN =2) . h(N=1=Np) |
From (24), a and b; can be obtained by
I Y
a=—(ATH) AR,
(27)
b,‘:HD,,'a-l‘T’o,i, i=1,...,K,
where vector R = [rl,...,rK]Tand matrix H =

[H,,...,Hg]".

It is useful to specify the selection of the number of
poles and zeros, N, and N,. The more poles and zeros used,
the better approximation result may be obtained. On the
other hand, more parameters require higher computation.
Thus a trade-off should be considered. Generally, in the
least-squares method, the number of parameters can be
determined empirically [24]; or in the state-space method,
it is determined based on the singular-value decomposition
result [28].

3.2. Crosstalk Cancellation Based on the CAPZ Model. Sup-
posing that acoustic transfer path G is known, the CAPZ



EURASIP Journal on Advances in Signal Processing

parameters are estimated. The CAPZ models from the
loudspeakers to the ears are

Gulz) = BX((ZZ))Z%“,
Gul(z) = iZI(i(ZZ))Z_d“,
Gn(z) = %(Zz))z_d”,

where di1, di2, da1, and dy; are the transmission delays from
the loudspeakers to the ears.
Substituting (28) into (4), we get

H(z)
=2z79G"1(2)
Zﬁd|: Gn(z) ’GIZ(Z):|
-Gul(z) Gulz)

~ G11(2)Gn(2) — Gi(2)Gai (2)
_ Z—@((M)Z—(mwm

A2(z)
- (%Z?(Z))Z%dlﬁdﬂ)) (29)
(e (e
-

"~ Bi1(2)By(2)z- @ntd2) — By (2)Byy (2)z (@tdn)

By(2)A(z)z=%  —Byy(2)A(z)z %
X
—By1(2)A(z)z~%1  Byi(2)A(z)z =%
Without loss of generality, assume dy; + dx, < diz + day,

and let A = (d) +d») — (d12 +da1). Substituting A into (29),
we get

7 (d—di—d»)
B11(2)B2(z) — Bi2(2)Bai (2)z72
Bn(z2)A(z)z7%  —Bia(z)A(z)z~%
{—le(Z)A(Z)zdz‘ Bzz(Z)A(Z)Zd”]

H(z) =

z70 { By (2)A(z)z %

- —Bp2(2)A(z)z~%
" B(2) | =By (2)A(2)z %

By (2)A(z)z~

—By1(2)A(z)z ™%

B (2)A(z)z %
Bi1(2)A(z)z~

—Bu(Z)A(Z)zd“}

(30)

where B(z) = Bi1(2)Bn(z) — Bi(2)Ba(2)z72, Clz) =
27%/B(z),and 8 = d — (dy1 + d»,) is the delay.

5

Thus the problem of inverting G(z) is converted to
B(z)C(z) = z7°L (31)
Suppose that b = [by,..., bLb,l]T, the time-domain impulse

response of B(z), is a vector of length Ly, and L, = 2(N, +
H+A-1;¢c = [co,...,ch_l]T, the time-domain impulse
response of C(z), is a vector of length L.. Rewriting (31) in a
time-domain form, we get

Bc = us, (32)

where B is a convolution matrix of size L3 X L. by cascading
the vector byand Ly = L, + L, — 1,

bo ... by 0 ... 0 1"
0 bo bi,1 ... 0
B =
(33)
0 ... 0 b() . bLh—l

us = [0,...,0,1,0,...,0]F

is a vector of length L3 whose §th component equas 1.
Since B(z) is generally nonminimum-phase, the least-
squares solution to (32) is

CLs = B*u(g, (34)

where B* is the pseudoinverse of B, and B* is given by
-1
B" = (B"B+pI) BT, (35)

where f is the regularization parameter.
Finally, the crosstalk canceller is obtained by (30) and
(34), with its filter length

Lz =L+ (Nq + 1) + (Np + 1) + max(di1, diz, da1, d) — 1

=L+ Ng+Np+dmax + 1,
(36)

where dmax = max(dii, dia, da1, dan).

3.3. Computational Complexity Analysis. Now we discuss
the computational complexity of the three methods (the
least-squares method, the single-filter structure method, and
the CAPZ method) from two aspects: crosstalk cancellation
filter estimation and implementation. For the convenience of
comparison, Table 1 lists some parameters for three methods,
respectively, where the column “Inverse filter” denotes the
filter resulted from matrix inversion (referring to (9), (18),
and (34)), the column “Matrix size” denotes the size of
the matrix being inverted. It should be noted that the
term “inverse filter” is different from the term “crosstalk
cancellation filter”
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TABLE 1: Parameters for the three methods: the least-squares method, the single-filter structure method, and the CAPZ method.
Method Inverse filter Matrix size Crosstalk cancellation filter length

Least-squares h Size(G) = 2L X 2Ly, Ly =1Ly
Single-filter structure t Size(Q) = L, X L; Lip=Li+L;—1
CAPZ c Size(B) = L3 X L, Lps = Le+ Np + Ny + dax + 1

TasLE 2: Computational complexity of crosstalk cancellation filter
estimation for the three methods: the least-squares method, the
single-filter structure method, and the CAPZ method.

Method

Least-squares

Computation cost (in multiplications)
8(O(Liw) +2Li L)
O(Liy) +2L3 Lo
O(Liw) +2L3 Ls

Single-filter structure
CAPZ

3.3.1. Computational Complexity of Crosstalk Cancellation
Filter Estimation. From (9), (12), and (30), it is found
that estimating the inverse filters h, ¢, and ¢ consumes the
major computation of crosstalk cancellation filter estima-
tion. Thus only the computation of calculating the inverse
filters is considered. Generally, the computational complexity
of inverting a matrix of size N X N is O(N?), without
taking advantage of matrix symmetry. The computation of
estimating the inverse filters &, t, and ¢ is closely related to the
size of the matrix G, Q, and B, respectively. Supposing that
the inverse filter lengths in the three methods are equal, that
is, Ly = Ly = Ly = Liny, we summarize the computational
complexity in Table 2 for the three methods (referring to (9),
(18), and (34)). The computational complexity is calculated
in terms of multiplication. For example, when the size of G
is 2L; X 2Ly, the number of calculations involved in matrix
multiplication is 16LﬁL1, and matrix inversion is O((2Ly)?)
(referring to (9), (10), and Table 1). Thus, the computation
cost of the least-squares method is 8(O(L2) +2L7Ly), as listed
in Table 2. The computation cost of the other two methods
can be obtained in a similar way.

For the convenience of comparison, we rewrite the
parameters Ly, L,, and L3 from Table 1 in an approximated
form as

Li=Ly+Ly— 1= Ling + Ly,
Ly=Li+Lj—1=L+2Ly — 2~ Lin, +2L;,  (37)
Ly=L:+Ly—1=L+2Ny+A = Liny + 2N,.

Generally, L, > N, holds for a CAPZ model. Thus we have

L, >Ly > Ls. (38)

From Table 2, the computational complexity of the least-
squares method is much higher than the other two methods
(almost 8 times), while the computation of the single-filter
structure method is a little higher than the proposed CAPZ
method.

3.3.2. Computational Complexity of Crosstalk Cancellation
Filter Implementation. The computational complexity of

crosstalk cancellation implementation is proportional to the
crosstalk cancellation filter length, as listed in Table 1. Since
L¢ > Nj + Ny + diax holds for the CAPZ model, we have

Ly < Lps < Lpy, (39)

with the assumption of L, = L; = Ly.

The least-squares method has the lowest computational
complexity in crosstalk cancellation filter implementation,
while the single-filter structure method has the highest one.

In summary, although the least-squares method has
the lowest computational cost in filter implementation, its
complexity in filter estimation is much higher than the other
two. On the other hand, the CAPZ method has the lowest
complexity in filter estimation, and ranks second in terms
of the complexity of filter implementation. In a global view
of both measures, the CAPZ method is the most effective
among the three ones. Later, the performance comparison
of the three methods will be carried out in Section 4.3 under
the same assumption with Ly = Ly = Ly = Liny.

4. Performance Evaluation

The acoustic transfer function can be estimated based on
the positions of loudspeakers and ears. Head-related transfer
functions (HRTF) provide a measure of the transfer path
of a sound from some point in space to the ear canal. This
paper assumes that the acoustic transfer function can be
represented by HRTF in anechoic conditions. The HRTFs
used in our experiments are from the extensive set of HRTFs
measured at the CIPIC Interface Laboratory, University of
California [29]. The database is composed of HRTFs for 45
subjects, and each subject contains 1250 HRTFs measured at
25 different azimuths and 50 different elevations. The HRTF
is 200 taps long with a sampling rate of 44.1kHz. In the
experiment, the HRTFs are modeled as CAPZ models first,
then the performance of the proposed crosstalk cancellation
method is evaluated in two cases for loudspeakers placement:
symmetric and asymmetric cases.

4.1. Experiments on CAPZ Modeling. For subject “003”, the
HRTFs from all 1250 positions are approximated with CAPZ
models. Before modeling, the initial delay of each HRIR is
recorded and removed. The common pole number is set
empirically as N, = 20, and the zero number N, = 40.
The original and modeled impulse responses and magnitude
responses of the right ear HRTF at elevation 0°, azimuth 30°
are shown in Figures 2(a) and 2(b), respectively. It can be
seen from these figures that only small distortions can be
noticed between the original and modeled HRTFs. Similar
results may be observed at other HRTF positions.
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F1GURE 2: Comparison of the original and modeled right ear HRTF at elevation 0°, azimuth 30°.

4.2. Performance Metrics. Two performance measures are
used: the signal-to-crosstalk ratio (SCR) and the signal-
to-distortion ratio (SDR) [8]. Regarding to (6), the ideal
crosstalk cancellation result should be

_ _ u O
an-u-[4 9]

Since G is generally nonminimum-phase, the actual crosstalk
cancellation result is

(40)

o | fu S
GH—F—[f21 ol (41)
The signal-to-crosstalk ratio at two ears would be
T T
scr, = /11 gep, - 2fz (42)

fibfi2’ AR

and the average signal-to-crosstalk ratio is given by SCR =
(SCR; + SCR3)/2.

And the signal-to-distortion ratio at two ears is deter-
mined by

SDR; = ; >
(fn—ul) (fn—ul)

(43)
SDR, = ! ,

(o — w2) " (for — u2)

and the average signal-to-distortion ratio is SDR = (SDR, +
SDR,)/2.

According to the definitions above, the signal-to-
crosstalk ratio measures the crosstalk suppression perfor-
mance, and signal-to-distortion ratio measures the signal
reproduction performance.

4.3. Performance Evaluation in Symmetric Cases. In this
experiment, the loudspeakers are placed in symmetric posi-
tions. Three crosstalk cancellation methods are compared:
the least-squares method, the single-filter structure method,
and the proposed method based on CAPZ models. To be
consistent with the assumption in computational complexity
analysis in Section 3.3, the inverse filter lengths in the three
methods are set equal, that is, L, = L; = L.. A total of
63 crosstalk cancellation systems are designed at 7 different
elevations uniformly spaced between 0° and 67.5° and 9
different azimuths uniformly spaced between 5° and 45°.
For each crosstalk cancellation system, various inverse filter
lengths ranging from 50 to 400 samples with an interval of 50
are tested. Generally, the crosstalk cancellation performance
is not quite sensitive to the delay value; however, an
optimal delay value is selected for each method separately
so that they can be compared in a fair condition. Since the
relationship between the crosstalk cancellation and the delay
z~% shows no evident regularity, we choose the delay value
experimentally. For each experiment case, the optimal delay
is selected experimentally from values ranging from 50 to 400
samples with an interval of 50, ensuring that the crosstalk
cancellation algorithm performs best with this optimal delay.
Table 3 lists the optimal delay for the three methods at
various inverse filter lengths. The regularization parameter is
set empirically as § = 0.005 throughout the experiment. The
mean value of the performance metrics over all 63 crosstalk
cancellation systems is calculated.

Figure 3 shows the mean signal-to-distortion ratio
(SDR), respectively, for the three methods with various
inverse filter lengths. The horizontal axis is the inverse filter
length ranging from 50 to 400 samples. The vertical axis is the
mean signal-to-distortion ratio. The SDR of the least-squares
method is always 2-3 dB higher than the CAPZ method,
and 3-5 dB higher than the single-filter structure method.
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samples) for the three methods: the least-squares method (LS), the
single-filter structure method (SF), and the CAPZ method.
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FIGURE 3: Mean signal-to-distortion ratio (SDR) at different inverse
filter lengths for the three methods: the least-squares method (LS),
the single-filter structure method (SF), and the CAPZ method.

Figure 4 shows the mean signal-to-crosstalk ratio (SCR),
respectively, for the three methods with various inverse filter
lengths. The horizontal axis is the inverse filter length ranging
from 50 to 400 samples. The vertical axis is the mean signal-
to-crosstalk ratio. Since the SCR of the SF method can be as
high as 300 dB for all simulation cases, which is much higher
than the levels of the other two methods (20-30 dB), its curve
is left out of the picture. The SCR of the CAPZ is higher than
the least-squares method. It can be seen from Figures 3 and
4 that the single-filter structure method yields the best SCR
performance, while the least-squares method yields best SDR
performance. On the other hand, for both SDR and SCR
measures, the proposed CAPZ method yields performance
that is superior to one of the reference methods, but inferior
to the other reference. In a view of crosstalk cancellation, the
performance of the CAPZ method is in the middle of the
three methods. It can yield comparable crosstalk cancellation
as the other two methods do.
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FIGURE 4: Mean signal-to-crosstalk ratio (SCR) at different inverse
filter lengths for the three methods: the least-squares method (LS),
the single-filter structure method (SF), and the CAPZ method.
(Note that the curve of the SF method is not depicted in the picture,
because its SCR values can be as high as 300 dB for all simulation
cases.)

As discussed at the end of Section 2, with the off-diagonal
items of the global transfer function (21) being zeros,
the single-filter structure method can obtain nearly perfect
crosstalk suppression. That is why the signal-to-crosstalk
ratio (SCR) can be as high as 300 dB, which is implied in
Figure 4. In practice, inevitable errors in the measurement
process (nonideal HRTFs) result in degraded performance.
To conduct a more realistic evaluation, we add random white
noises with a signal-to-noise ratio of 30dB to the HRTF
measurement, and repeat the previous experiment. Although
this is not a real non-ideal HRTF, the white noise may partly
simulate errors and disturbances encountered during the
measurement. This process is repeated five times, and then
an average result is calculated. The mean signal-to-distortion
ratio and signal-to-crosstalk ratio of the three methods are
shown in Figures 5 and 6, respectively. The result is similar
to the noise-free case: the performance of the three methods
all decreases a little; especially, the SCR of the single-filter
structure method reduce to about 26 dB.

From Figures 3—6, similar variation trends of the signal-
to-distortion ratio (SDR) and signal-to-crosstalk ratio (SCR)
may be observed for both noisy and noise-free cases. For
all the three methods, the SDR performance increases with
the inverse filter length Liny, and the increase is small for
Liny > 150. The slow variation of SDR for large Li,, may be
related to the least-squares matrix inversion process. When
Liny increases, the size of the matrices G, Q and B increases,
the matrix inversion becomes difficult and more errors will
be introduced. The error may cancel part of the benefit
brought by a longer inverse filter. Thus the SDR increases
slowly for large inverse filter length. With regard to the SCR
performance, the least-squares method yields increasing SCR
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FIGURE 5: Mean signal-to-distortion ratio (SDR) at different inverse
filter lengths for the three methods: the least-squares method (LS),
the single-filter structure method (SF), and the CAPZ method
(white noise added to HRTF).
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FIGURE 6: Mean signal-to-crosstalk ratio (SCR) at different inverse
filter lengths for the three methods: the least-squares method (LS),
the single-filter structure method (SF), and the CAPZ method
(white noise added to HRTF).

with the increasing inverse filter length, while the single-
filter structure method and the CAPZ method yield almost
constant SCR with the increasing inverse filter length. Since
the off-diagonal items of (21) are always zeros regardless
of the value of T(z), the SCR of the single-filter structure
method is little affected by the inverse filter length. Likewise,
the CAPZ method shows similar trend as the single-filter
structure method does. In Figure 6, a slow decrease is also

TABLE 4: Mean crosstalk cancellation performance in the symmetric
case for the three methods when the inverse filter length equals 150.

Crosstalk
Method SDR(dB) SCR(dB) cancellation
filter length
Least-squares 11.2 15.6 150
Single-filter structure 7.1 26.8 349
CAPZ 8.6 17.6 233

TaBLE 5: Crosstalk cancellation performance in the asymmetric case
for the three methods when the inverse filter length equals 150.

Method SDR(dB) SCR(dB)
Least-squares 14.7 18.9
Single-filter structure 10.2 27.7
CAPZ 12.0 19.1

noticed for the curves of the CAPZ method and the single-
filter structure method, which may be caused by the noise
added to the acoustic transfer functions.

In summary, the proposed CAPZ method yields similar
crosstalk cancellation performance as the other two methods
do, meanwhile it is more computationally efficient. In a
global view of both crosstalk cancellation and computational
complexity, the proposed method is superior to the other two
methods. Taking both performance and computation into
consideration, we set the inverse filter length at 150. When
white noises with a signal-to-noise ratio of 30 dB is added
to HRTE, the performance of the three methods are listed
in Table 4. The result in Table 4 also verifies the conclusion
above.

4.4. Performance Evaluation in Asymmetric Cases. In this
experiment, the stereo loudspeakers are placed in asymmet-
ric positions, with the left and right loudspeakers at 30°
and 60°, respectively, equidistant from the listener. Although
this is not a common audio system, the crosstalk canceller
can reproduce the desired sound field around the listener.
The inverse filter length is set at 150, the regularization
parameter is set at § = 0.005, the filter delay d is chosen from
Table 3, white noise with a signal-to-noise ratio of 30dB is
added to the HRTF measurement. The performance of the
three methods is shown in Table 5. Comparing Table 4 with
Table 5, it can be seen that the performance of the three
methods in the asymmetric cases is similar to that in the
symmetric case. To give the readers a better understanding
of the principle of crosstalk cancellation, Figure 7 depicts
the impulse responses of the crosstalk cancellation system
by the CAPZ method. The impulse responses of the HRTFs
of 200 taps are shown in Figure 7(a), the four crosstalk
cancellation filters designed by the CAPZ method are shown
in Figure 7(b), and the result impulse responses after
crosstalk cancellation are shown in Figure 7(c). Clearly, a
good crosstalk cancellation can be obtained.
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FIGURE 7: Impulse responses of crosstalk cancellation in the asymmetric case.

5. Conclusion

This paper investigates crosstalk cancellation for authentic
binaural reproduction of stereo sounds over two loud-
speakers. Since the crosstalk cancellation filter has to be
updated according to the head position in real time,
the computational efficiency of the crosstalk cancellation
algorithm is crucial for practical applications. To reduce the
computational cost, this paper presents a novel crosstalk
cancellation system based on common-acoustical pole/zero
(CAPZ) models. The acoustic transfer paths from loudspeak-
ers to ears are approximated with CAPZ models, then the
crosstalk cancellation filter is designed based on the CAPZ
model. Since the CAPZ model has advantages in storage and
computation, the proposed method is more efficient than
conventional ones. Simulation results demonstrate that the
proposed method can reduce the computational complexity
greatly with comparable crosstalk cancellation performance
with respect to conventional methods.

The experiment in this paper is conducted in anechoic
conditions. However, with promising results in anechoic
environments, the proposed method can be extended to
realistic situations. For example, in reverberation conditions,
the acoustic transfer functions may also be approximated
by the CAPZ model, and then crosstalk cancellation may
be conducted in a similar way. However, due to large
computational complexity and time-varying environments,
this situation has not been specially addressed. Our further
research will focus on this practical problem.
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Localization of sounds in physical space plays a very important role in multiple audio-related disciplines, such as music,
telecommunications, and audiovisual productions. Binaural recording is the most commonly used method to provide an
immersive sound experience by means of headphone reproduction. However, it requires a very specific recording setup using
high-fidelity microphones mounted in a dummy head. In this paper, we present a novel processing framework for binaural
sound recording and reproduction that avoids the use of dummy heads, which is specially suitable for immersive teleconferencing
applications. The method is based on a time-frequency analysis of the spatial properties of the sound picked up by a simple
tetrahedral microphone array, assuming source sparseness. The experiments carried out using simulations and a real-time

prototype confirm the validity of the proposed approach.

1. Introduction

Human hearing plays a major role in the way our environ-
ment is perceived. Generally, sound is perceived in all three
dimensions, width, height, and depth, which are all necessary
to achieve a natural perception of sound [1]. These attributes
are usually employed to describe the spatial characteristics
of sound taking into account its diffuseness properties. The
human auditory system is very sophisticated and, thus,
capable to analyze and extract most spatial information
pertaining to a sound source using two ears. In fact, when
a sound scene is recorded by a single microphone, we are still
able to recognize the original sound events. However, much
of the information corresponding to the spatial properties of
these events is lost. As a result, spatial sound recording and
reproduction techniques are always based on a multichannel
approach.

Reproduction using two-channels or stereo is the most
common way that most people know to convey some spatial
content into sound recording and reproduction, and this
can be considered as the simplest approximation to spatial
sound. On the other hand, surround sound systems have

evolved and entered homes in order to give a better sensation
than stereo by using more reproduction channels and have
been widely utilized in theaters since the middle 70s. Both
stereo and surround systems have an optimal listening posi-
tion, known as sweet spot [2]. This optimum listening area is
almost limited to the central point in the loudspeaker setup.
Outside the central zone, the perceived virtual source loca-
tions differ significantly from their intended spatial position.

Another much more realistic strategy is to reproduce
directly in the ears of the listener, via headphones, the signal
that he/she would perceive in the acoustic environment that
is intended to be simulated. This strategy is widely known
as binaural reproduction. The signals to be reproduced with
headphones can be recorded with an acoustic dummy head
or they can be artificially synthesized by using a measured
Head-Related Transfer-Function (HRTF) [3]. In an anechoic
environment, as sound propagates from the source to the
listener, its own head, pinna, and torso introduce changes to
the sound before it reaches the ear drums. These effects of
the listener’s body are registered by the HRTF, which is the
transfer function between the sound pressure that is present
at the center of the listener’s head when the listener is absent
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FIGURE 1: Block diagram of the proposed 3D binaural synthesis method.

and the sound pressure developed at the listener’s ear. Since
humans have different-sized heads, torsos, and ear shapes,
HRTFs vary from person to person. The HRTF is a function
of direction, distance, and frequency. The inverse Fourier
transform of the HRTF is the Head-Related Impulse Response
(HRIR), which is a function of direction, distance, and time.
Using binaural sound reproduction, it is possible to create
a very convincing and immersive sound experience that
provides the listener with a natural perception of localized
sound events.

In this paper, we present a novel method to capture and
process the spatial characteristics of sound with the aim
of providing a real-time 3D audio experience. Instead of
using an expensive dummy head setup, a small tetrahedral
microphone array is utilized to discriminate among the
three spatial dimensions, providing a cheap and effective
way of constructing a full 3D audio system. The proposed
technique is based on a two-step approach. In a first analysis
stage, the signals captured by each microphone pair are
processed in the time-frequency domain, resulting in a
complete directional description of the recorded sound. In
the synthesis stage, source sparseness is assumed, and each
time-frequency bin is selectively filtered using a different
HRTF depending on its estimated direction.

Figure 1 summarizes the steps involved in the proposed
approach for binaural sound synthesis.

(1) The signals obtained by the microphones of the array
enter the analysis stage.

(2) In the analysis stage, the four signals are first trans-
formed into the time-frequency domain by means
of the Short-Time Fourier Transform (STFT). Then,
Direction-of-Arrival (DOA) information (azimuth
and elevation) for each time-frequency bin is
extracted using the processing described in Section 3.

(3) The synthesis stage is based on a time-frequency
selective HRTF filtering of one of the input micro-
phone signals. This filtering is carried out selectively
in the STFT domain according to the directions
estimated in the analysis stage, resulting in the output
signals for the left and right ears. Finally, the ear
signals are transformed back to the time domain
using the inverse STFT operator.

The paper is structured as follows. Section 2 provides a
review of multisource binaural synthesis techniques closely
related to our work. Section3 presents the processing
techniques involved in the analysis stage of the method,
describing the signal model and the array geometry used
to estimate the directional information. Section 4 is devoted
to the synthesis stage of the method, where the analyzed
spatial information is used to create an immersive 3D sound
scene. Section 5 presents a performance comparison between
conventional binaural reproduction and our sparsity-based
approach using synthetic mixtures of speech and music
sources. Section 6 describes and evaluates a real-time pro-
totype that implements the processing described in this
paper. Finally, in Section 7, the conclusions of this work are
summarized.

2. Binaural Sound Synthesis

2.1. Multisource Binaural Sound Synthesis. 1t is widely known
that binaural sound synthesis is a technique capable of
reproducing a virtual sound image of a recorded sound
signal at an apparent position in the three-dimensional
space. Binaural synthesis is based on the use of HRTFs (or
their HRIRs time-domain representation) to filter the audio
streams corresponding to different sound sources located at
different spatial positions, creating a highly immersive audio
experience. As a result, to render N sound sources positioned
at N different locations it is necessary to use 2N filters (N
for the left ear and N for the right ear). The computational
complexity is therefore very dependent on the number of
sound sources, which makes the real-time rendering of
multiple sound sources a very intensive computational task
[4, 5]. In this context, many approaches have been proposed
to reduce the complexity of multisource binaural synthesis,
many of them based on parametric HRTFs [6]. Experiments
with parametric HRTFs have confirmed that subjects cannot
discriminate the parametric HRTF versions from the original
ones if a suitable set of parameters are selected within
each critical band [7]. Breebaart et al. [8] proposed some
methods to provide a multichannel audio experience over
stereo headphones from a mixdown of sound source signals
and a parametric representation (spatial parameters) of the
multichannel original signal in a time-frequency domain.
The binaural synthesis stage combines the spatial parameters
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of the multichannel signal with the HRTF parameters that
describe the virtual loudspeaker setup, resulting in a set of
combined binaural parameters that are later used to modify
the downmix signal. These rendering methods provide high-
quality binaural reproduction of multichannel audio and can
be easily combined with multichannel audio coders such as
MPEG surround.

Despite being powerful and promising, the above
approaches are substantially different from the application
covered in this paper. The reason is that they are mainly based
on a time-frequency analysis of different loudspeaker signals
whereas our proposed method takes as input the signals from
a small microphone array, which are successfully employed
to describe the sound field in one point of the three-
dimensional space. Therefore, the proposed method shares
more similarities with another spatial sound processing
technique known as Directional Audio Coding.

2.2. Directional Audio Coding. Directional Audio Coding
(DirAC) is a recently proposed method for spatial sound
recording and reproduction [9] which shares many simi-
larities with the binaural synthesis technique described in
this paper. In a first analysis stage, DirAC uses typically
a B-format microphone to capture the spatial properties
of the sound recorded in a given environment (although
other alternatives can also be used [10]). In a second stage,
the analyzed spatial features are employed to reproduce the
recorded sound again by means of an arbitrary loudspeaker
setup. Note that although B-format signals are used, there
are substantial differences with conventional Ambisonics
reproduction [11].

More recently, a binaural synthesis version of DirAC
has been proposed to provide spatial sound reproduction
over headphones using the conventional DirAC scheme [12].
The main features of this version and their relation to our
proposed approach are next discussed.

2.2.1. DirAC Analysis and Synthesis. The analysis stage of
DirAC is based on a time-frequency processing of the B-
format input signals to estimate direction and diffuseness
parameters. To this end, an energetic analysis based on
pressure and velocity signals is carried out, which needs
for an adequate calibration before starting the processing
[13]. Besides using a B-format microphone, different array
structures can be employed in this analysis stage with the
aim of estimating the necessary direction and diffuseness
parameters.

Regarding DirAC synthesis, several alternatives have
also been proposed. In the low-bit-rate version, only one
omnidirectional signal is transmitted along with the spatial
metadata, which is used as the signal that is processed
and applied to all the reproduction loudspeakers. Another
version uses B-format signals to construct a set of virtual
microphone signals that are similarly processed using the
metadata obtained from the analysis stage [9].

The transmitted signals are divided into two different
streams: the diffuse and the nondiffuse sound stream. The
nondiffuse sound is assumed to be the part of sound that
has a clear direction and is reproduced by the loudspeaker

setup using vector base amplitude panning (VBAP) [14]. In
contrast, the diffuse sound stream is assumed to surround
the listener and the input signal is decorrelated and played
from multiple loudspeakers.

The binaural version of DirAC follows a philosophy sim-
ilar to that of Breebaart’s work in that a virtual loudspeaker
setup is assumed and implemented by means of HRTF data.
Both diffuse and nondiffuse sound streams are processed in
the same way as in the real loudspeaker version but using
virtual loudspeakers simulated by means of HRTFs [15].

2.2.2. Relation to the Proposed Approach. As previously com-
mented, DirAC shares many similarities with the binaural
synthesis method proposed in this paper, which is also based
on a two-step approach. However, substantial differences can
be found both in the analysis and the synthesis stages of the
algorithm.

As will be seen in Section 3.3, amplitude calibration is
not necessary in our proposed analysis stage, since DOA
estimation is based only on phase information. Although
different microphone array alternatives have already been
proposed for DOA estimation in a DirAC context, they either
are limited to DOA estimation in the horizontal plane [16] or
they use more than 4 microphones [17, 18]. Moreover, as will
be later explained, diffuseness is not directly estimated in our
proposed approach since the synthesis stage does not rely on
this parameter.

On the other hand, the synthesis stage does not assume
a virtual loudspeaker setup nor makes a different treatment
between diffuse and nondiffuse components. This makes
the synthesis processing even more simple than in DirAC.
In fact, in our method, diffuseness information is assumed
to be inherently encoded by the DOA estimates since the
variance found on the directional information over the
time-frequency domain is already a representation of the
diffuseness characteristics of the recorded sound. In this
context, there is no need for assuming a specific loudspeaker
reproduction setup since each time-frequency element is
binaurally reproduced according to its estimated direction.

3. Analysis Stage

3.1. Signal Model. The signals recorded by a microphone
array, with sensors denoted with indices m = 1,2,...,M in
an acoustic environment where N sound sources are present,
can be modeled as a finite impulse response convolutive
mixture, written as

N L,-1

Xm(t) = Z Z B (£)s4(t — £),

n=1 €=0

m=1,....,M, (1)

where x,,(t) is the signal recorded at the mth microphone
at time sample t, s,,(t) is the nth source signal, h,(t) is the
impulse response of the acoustic path from source 7 to sensor
m, and L, is the maximum length of all impulse responses.
The above model can also be expressed in the STFT
domain. This transform divides a time domain signal into
a series of small overlapping pieces; each of these pieces is



windowed and then individually Fourier transformed [19].
Using this transform, the model of (1) can be expressed as

N
Xk r) = D" Hun(K)S(k, 1), (2)

n=1

where X,,(k,7) denotes the STFT of the mth microphone
signal, being k and r the frequency index and time frame
index, respectively. S, (k,r) denotes the STFT of the source
signal s, (t) and H, (k) is the frequency response from source
n to sensor m. Note that (2) is only equivalent to (1) in the
case when the analysis window in the computation of the
STFT is longer than L,,.

If we assume that the sources rarely overlap at each time-
frequency point, (2) can be simplified as follows:

Xon(k,7) = Hypa(k)Sa(k, 1), 3)

where S,(k,r) is the dominant source at time-frequency
point (k,r). To simplify, we assume an anechoic model
where the sources are sufficiently distant to consider plane
wavefront incidence. Then, the frequency response is only
a function of the time-delay 7,,, between each source and
sensor

Hyn(k) = ejZkaTmn’ (4)

fi being the frequency corresponding to frequency index k.

3.2. Sparsity and Disjointness. Speech and music signals have
been shown to be sparse in the time-frequency domain [20].
A sparse source has a peaky probability density function; the
signal is close to zero at most time-frequency points, and has
large values in rare occasions. This property has been widely
applied in many works related to source signal localization
[21, 22] and separation [23, 24] in underdetermined situa-
tions, that is, when there are more sources than microphone
signals. However, source sparsity alone is useless if the
sources overlap to a high degree. The disjointness of a mixture
of sources can be defined as the degree of nonoverlapping of
the mixed signals. An objective measure of disjointness is the
so-called W-Disjoint Orthogonality (WDO) [25, 26].

Spectral overlapping depends not only on source sparsity,
but also on the mutual relationships between signals. Highly
uncorrelated signals will result in a low probability of
overlapping. This is even truer for statistically independent
signals, since independence is a stronger requirement than
uncorrelation. Speech signals most often mix in a random
and uncorrelated manner, such as in the cocktail party
paradigm. With music mixtures, the situation is different.
Their disjointness will vary strongly according to music type.
Tonal music will result in strong overlaps in frequency, while
atonal music will be more disjoint in frequency [27].

The disjointness properties of speech and music signals
are dependent on the window size parameter, which affects
the number of frequency bands in the analysis. In particular,
the disjointness of speech signals decreases when the window
size is very large as a consequence of the reduced temporal
resolution. For music signals, frequency disjointness plays a

EURASIP Journal on Advances in Signal Processing

O

P2

ps3
3

FIGURE 2: Tetrahedral microphone array for 3D DOA estimation.

more important role than time disjointness and so frequency
resolution should be favored with longer analysis windows.
Moreover, as expected, mixtures of correlated melodies
shown to be less disjoint than uncorrelated ones due to the
higher amount of spectral and temporal overlapping.

It is also worth to remark that the sparsity and
disjointness properties of audio signals become affected
in reverberant environments. The room impulse response
smears the energy in both time and frequency and so
the spectral overlap between different sources in the time-
frequency domain is increased with reverberation. Despite
this effect, the assumption of nonoverlapping sources has
been shown to be still useful for sparsity-based applications
such as source separation [28, 29].

3.3. Array Geometry and DOA Estimation. Now consider a
tetrahedral microphone array (M = 4) with base radius R,
as shown in Figure 2. The sensor location vectors in the 3-
dimensional space with origin in the array base center, are

given by

PIZ[R) 0) O]T)
T
R V3
b2 |: 2) TR: 0j| >
R 3, (5)
=15 _7R) 5
b3 [2 2 0}

pi= [0, 0, Rﬁ]T.

The DOA vector of the nth source as a function of the
azimuth 0, and elevation ¢, angles is defined as

d,, = [cos 0, cos ¢y, sin B, cos Py, sin ¢, | T (6)
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The source to sensor time delay with respect to the origin
is given by 7,,, = pLd./c, ¢ being the speed of sound.
Therefore, the frequency response of (4) can be written as

Hypn(k,7) = /P, (7)
Taking into account this last result and (3), it becomes

clear that the phase difference between the microphone pair
formed by sensors i and j, is given by

4<Xj(k,r)> 2nfi

~p) do, (8)

X )~ ¢ (ps

where / denotes the phase of a complex number.
Using a reference microphone g, the phase difference

information at point (k,7) of M — 1 microphone pairs is
stored in the vector

[ (XK r) Xuer)\ 1"
= [ (BB (Bakr) )

forming the following system of equations:

by(k,r) = ZLkaPdn, (10)

where
T
P= [qu,...,qu] ) Png = Pn — Pqg- (11)

Finally, the DOA at time-frequency bin (k, r) is obtained
by taking the inverse of the P matrix

d,(k,r) = —

= 2nka’lbq(k,r). (12)

The regular tetrahedral geometry used in this paper
leads to the following simple equations for d,(k,r) =

[y, db, ds]":

~ c 1

d, = cos 0, cos ¢, = ?fkﬁ(bz + b3),

~ c

d, = sin 6, cos ¢, = ﬁ(ba - by), (13)

ds = sing, = Z;fk [\}g(bz +bs) - ﬁm},

where b, is the nth element of the vector by (k, r) (reference
microphone g = 1). The azimuth angle is obtained using the
four quadrant inverse tangent function:

é,,(k, r) = atan®*"’ (dAl, dAz) (14)
The elevation angle is directly obtained as

$n(k, r) = sin’l(dz). (15)

Note that for each time-frequency point (k, r), estimating
the 3D direction of arrival is relatively simple, just using
the observed phase differences between 3 microphone pairs
of the array. Another aspect to consider is spatial aliasing.
The distance between microphones determines the angular
aliasing frequency. Due to the 277 ambiguity in the calculation
of the phase differences, the maximum ambiguity-free
frequency in a microphone pair subarray would be given
by fi = ¢/2d, where d is the separation distance between
the capsules. Beyond this frequency, there is not a one-
to-one relationship between phase difference and spatial
direction. However, small arrays with d ~ 1.5cm provide
an unambiguous bandwidth greater than 11 kHz, covering a
perceptually important frequency range.

3.4. Example. With the objective of showing how this anal-
ysis stage is capable of capturing the 3D spatial information
of sound, we show a simulated sound scene where 4 speech
sources are simultaneously active. The simulation has been
carried out considering a shoe-box-shaped room (3.6 m X
3.6m x 2.2m) with reflecting walls (reverberation time
Teo = 0.1s). The azimuth angles of the sources were
61 = 150, 02 = 750, 63 = 2100, and 64 = 260°. The
elevation angles were ¢; = 0°, ¢ = 30°, ¢35 = —10°,
and ¢, = 45°. Figure 3(a) shows the source locations in the
3D space. Figures 3(b) and 3(c) show the 2D histograms of
the distribution of DOA estimates in the XY and ZY plane,
where red color means that many estimates are concentrated
on the same location. Note how most DOA estimates
are concentrated around the actual source directions. The
deviations in the estimates are a consequence of room
reflections and interference. The effect of reverberation in
sparse source localization was studied by the authors in a
previous work [30]. However, as will be explained in the next
section, these deviations do not have a negative effect on our
proposed binaural synthesis method, since they contribute to
the perception of the diffuseness properties of sound.

4. Synthesis Stage

As said in Section 1, HRTFs provide accurate localization
cues because they encode all the necessary information
regarding how the arriving sound is filtered by the diffraction
and reflection properties of the head, pinna, and torso, before
it reaches the eardrum and inner ear. Using this information,
synthesizing a binaural sound signal for headphone repro-
duction is straightforward. The HRTF for each ear must be
used to filter an input signal, ensuring that the outputs are
correctly reproduced over their corresponding headphone
channel. This is usually done for each separate source signal
with the aim of positioning an auditory object in the direc-
tion from which the HRTFs have been measured. However,
in our proposed approach, the synthesis stage differs signifi-
cantly from this conventional processing due to the fact that
no separate source signals are available. Again, taking into
account source sparseness in the time-frequency domain, we
will be able to reproduce the original spatial characteristics of
the recorded sound scene using the directional information
extracted from the previous analysis stage.
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FIGURE 3: DOA analysis of a mixture of 4 speech sources. (a) Source locations in the 3D space. (b) Distribution of DOA estimates in the XY

plane. (c) Distribution of DOA estimates in the ZY plane.

4.1. Time-Frequency Selective HRTF Filtering. Consider a set
of measured [31, 32] or simulated HRTFs [33]. It is widely
known that the use of nonindividualized HRTFs for binaural
reproduction has some problems, mainly

(1) sound objects are frequently localized inside the head,

(ii) frontal sounds often appear behind the listener and
vice versa,

(iii) the perceived directions of the synthesized sources do
not match the intended spatial positions.

These classical problems associated to binaural reproduc-
tion have already been extensively studied [34] and we will
not address them in this paper.

Assuming far field conditions, the HRTF is a function
of the arrival direction of the source (0,,¢,) and the
frequency fi, expressed as HRTF(8,, ¢,, k). Moreover, there
is also a different HRTF for the right and left ears, having
HRTF.(0,, ¢u, k) and HRTFR(6,,, > k).

The synthesis strategy is simple. Any of the omnidirec-
tional signals of the array X,,(k,r) is filtered accordingly to

the estimated DOA angles 5,1 and $,, as follows:

Y1k, ) = Xpu(k, r)HRTF (8, u k),
(16)
Yr(k, r) = Xon(k, )HRTFg (6, § k)

where Y.(k, ) and Yr(k, r) are the STFT of the output signals
corresponding to the left and right ears, respectively. These
signals are transformed back to the time domain using the
inverse STFT operator following an overlap-add scheme.
Using the above approach, the microphone signal
Xu(k,r) provides a pressure signal for the synthesis of the
binaural signal. The required spatial localization cues are
then given by the HRTF coefficients, which are carefully
selected based on the estimated directional data. Note that
we only use a single omnidirectional signal for the calculation
of the output, since combinations of the microphone signals

TABLE 1: Mean square error for synthesized signals in anechoic
scenario.

Number of sources N Mean square error

1 0.003
2 0.073
3 0.243
4 0.382

could result in coloration due to spatial filtering effects. In
our implementation, we chose the signal of microphone 4
for being slightly above from the array center.

4.2. Selective Filtering and Sparsity. Further considerations
are needed regarding the above synthesis approach. Note that
each time-frequency bin is independently filtered according
to its DOA information. As well as in the analysis stage,
source sparsity and disjointness form the basis of our
synthesis method. Under approximate WDO conditions,
only one source has a major contribution on a given
time-frequency element. Therefore, it is only necessary to
filter each bin according to the direction of the dominant
contribution since the energy corresponding to the rest of
the sources can be neglected with little error. Obviously, if
the number of sources is increased, the error will be higher.

To illustrate this idea, Figure 4 shows the waveforms of
the left and right ear signals in an anechoic scenario for an
increasing number of sources. The real signals obtained by
conventional HRTF synthesis are shown on the left side and
the ones synthesized by means of time-frequency selective
filtering are on the right side. To evaluate quantitatively the
synthesized signals, their mean square errors are provided
in Table 1. As expected, the error of the synthesized signal
depends on the number of sources. However, as will be
shown in the next section, these errors do not severely affect
the subjective quality of the synthesized signals.



EURASIP Journal on Advances in Signal Processing

Real-1 source

- bbb

Right
0 5
Time (s)

10

Real-2 sources

Right
0 5
Time (s)

10

Real-3 sources

M b ol

-1 Left

Right
0 5
Time (s)

10

(a)

(c)

Synthetic-1 source

Left
1
Right

0 5
Time (s)

10

Synthetic-2 sources

Left

Right
0 5
Time (s)

10

Synthetic-3 sources

FTRRTPERRT AN

Left

Right
0 5

Time (s)

10

FIGURE 4: Waveforms of real and sparsity-based synthesized binaural signals for different number of sources. (a) One source. (b) Two sources.

(¢) Three sources.

Besides the number of sources, the environment and the
type of signals also play a major role in our synthesis method.
As explained in Section 3.2, speech and music have different
sparsity properties and room reflections spread the energy
of the sources both in time and frequency. However this is
not a serious problem. Time-frequency points dominated by
reverberation will be inherently reproduced from multiple
directions, just as suggested by the analysis stage. This way,
the higher the variance found in the estimated directions,
the higher the sense of envelopment will be perceived.
In contrast, a dry room that produces very peaky DOA
distributions will result in a synthesized binaural signal
where the sources can be clearly perceived from their
actual directions. A problem associated with a high degree

of reverberation is that artifacts may appear due to the
prominent discontinuities in the directional data. These
effects can be effectively reduced by smoothing the filtering
coefficients along the frequency axis.

4.3. HRTF Spatial Resolution. Traditionally, a practical prob-
lem associated with HRTFs is the difficulty to measure
responses for every possible angle with infinite spatial
resolution. Although some approaches have been recently
proposed to solve this classical problem [35], most available
HRTF databases have been measured with some practical
resolution. In order to use HRTFs corresponding to the
acquired directional information, several approaches can be
followed.
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(1) Use directly the HRTF of the available data bank that
is closest to the estimated direction. This would be
the simplest approach.

(2) Interpolate the available HRTFs to get more accu-
rate filters. This can be done using sophisticated
interpolation techniques [36—38]. However, a simple
linear interpolation in the time domain using the
closest HRIRs has shown to be a very convincing and
efficient solution [39, 40].

(3) Use a parametric HRTF model [33, 41]. This option
provides directly the filtering information needed for
any direction.

Depending on the requirements of a given application,
a different strategy can be selected. While the interpolation
strategy is very useful for achieving accurate localization, the
other two methods are computationally more efficient. In the
next section we comment on some useful aspects regarding
the real-time implementation of the method.

5. Evaluation Using Synthetic Mixtures

To evaluate subjectively the quality and spatial impression
provided by the proposed technique, a set of simulations
considering different acoustic situations were carried out.
The evaluation conducted this way is useful to assess the
performance of the method under different acoustic environ-
ments with control on specific aspects of the acoustic setup.

In the experiments, a set of sound sources were simulated
inside a shoe-box-shaped room (6.25 X 3.75 X 2.5m),
acquiring all the required impulse responses by means of the
Roomsim [42] simulation package for Matlab. This software
simulates the acoustics of a rectangular room by means of
the image method [43] and, moreover, it allows to generate
binaural room impulse responses (BRIRs) corresponding to
a selected HRTF data set.

The simulation setup is depicted in Figure 5. Four source
positions, were considered in the experiments at a radius
2m for the array base center (origin of coordinates): (6,
0°,¢1 = 0°), (6, = 60°,¢, = 10°), (65 = 120°,¢5 = —10°),
and (6, 180°, ¢4 = 0°). The signals at the microphones
were obtained by convolving the simulated responses with
the corresponding dry source signals and adding all of
them together. To simulate our tetrahedral array, we used
an intermicrophone distance of d = 1.5cm and assumed
perfect omnidirectional responses for all sensors. On the
other hand, the KEMAR mannequin [44] was selected to
generate reference source signals for the subjective tests.

Different types of signals were considered to take into
account different sparsity properties.

(i) A set of 2 male and 2 female speech sources
extracted from the public data provided in The 2008
Signal Separation Evaluation Campaign [45]. They
are sampled at 16 kHz, 16 bits, and have a duration
of 10s.

(ii) A multitrack folk music recording consisting of
four instruments: accordion, sax, guitar, and violin.
Although originally sampled at 44.1 kHz, they were
resampled to have the same sampling frequency
(16 kHz) as the above speech mixtures.

The STFT was computed using Hann windows of 1024
samples of length, with a hop size of 512 samples (50%
overlap). These parameters have been shown to be optimum
for sparsity-based speech processing [27]. However, music
would benefit from longer time windows.

A set of 7 listeners took part on an informal listening
test with the aim of evaluating the similarities between the
scenes rendered by means of the simulated KEMAR and
those obtained by means of the proposed approach. The
assessed sound scenes were mixtures of one, two, three,
and four sources. There were three versions of each scene.
Each version was obtained using different room surface
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characteristics, thus, having different reverberation times:
Teo = 0s (anechoic), Tep = 0.1s (slightly reverberant),
and Tg = 0.9 (very reverberant). As a result, there were
2 versions (KEMAR-simulation and proposed) of a total
of 24 different sound scenes (12 for speech and 12 for
music).

Two different aspects were considered in the evaluation:
sound quality and spatial impression. A 4-point grade
scale was used to compare the scenes rendered using the
tetrahedral array with the reference KEMAR simulated
scenes, ranging from —3 to 0 in the following intensity scale:

(i) 0: Equal,

(ii) —1: Slightly Worse,
(iii) —2: Moderately Worse,
(iv) —3: Substantially Worse.

5.1. Results. Figures 6(a) and 6(b) show the results of the
tests for sound quality and spatial impression, respectively.
Black dots denote the mean values and thin bars rep-
resent 95% confidence intervals. Regarding sound quality
(Figure 6(a)), it can be observed that in anechoic conditions
(Teo = 0), there are no significant differences between both
binaural reproduction methods. However, as the reverbera-
tion degree gets higher, the performance of the method is
slightly degraded. This worsening may be due to some metal-
lic sound reported by some listeners. There are also clear
differences between speech and music, music being consid-
erably more problematic than speech, specially when the
number of sound sources is higher. This is a consequence of
harmonic overlapping, which affects substantially the WDO
assumption. Regarding spatial impression (Figure 6(b)), the
decreasing tendency with reverberation is again observed,
but the number of sound sources and the type of source
signals seem to be less significant.

From the above results, it becomes clear that both
source overlapping and reverberation affect negatively the
performance of the proposed approach. Obviously, this
degradation is due to the fact that some of the assump-
tions taken for the development of the algorithm are not
completely met, specially those based on source sparsity
and disjointness. A detailed analysis of the artifacts caused
by different types of errors in the analysis and synthesis
stages could be useful to improve the performance of
the method when working in difficult acoustic environ-
ments. Although this analysis is out of the scope of this
paper, the authors plan to address this issue in future
works.

6. Evaluation with Real Mixtures

6.1. Real-Time Implementation. In the last section, a set
of experiments using simulations of reverberant rooms
were presented. Besides considering these simulations, the
applicability of the proposed method can be substantially
enhanced by providing some notes on the real-time imple-
mentation of a working prototype. Two objectives are
pursued with this implementation. First, to demonstrate

that the computational cost of this technique is reduced
enough to be implemented in a practical embedded system.
Second, having a real-time system allowed us to plan future
interactive experiments where conditions related to scene
changes can be experienced as they occur.

For our real-time prototype we used a PC running
Microsoft Windows XP as a base. To construct the micro-
phone array prototype with d = 1.5 cm, four instrumenta-
tion quality microphones from Briiel & Kjaer model 4958
were used. These microphones have excellent phase matching
in the audio band. The signal acquiring system consisted
of a digital audio interface with four microphone inputs
(M-Audio Fast Track Ultra USB 2.0) and ASIO drivers.
The Intel Integrated Performance Primitives (Intel IPP) [46]
library was used for FFT computation and vector operations.
In the analysis stage, phase differences are calculated from
the FFT coefficients of each input data frame at each
channel. The [x, y,z] components of the DOA vector are
then calculated using (13), taking into account that the
corresponding frequencies fi have to be previously stored.
Moreover, the processing parameters were set the same as in
Section 5.

Since the experiments reported in the following sub-
section were conducted using a Briiel & Kjaer 4128 Head
And Torso Simulator (HATS), the HRTF database used
for the synthesis was specifically measured by the authors
to allow for an objective comparison. The HRTFs were
measured using the logarithmic sweep method [47] with
sampling frequency 44.1kHz. Moreover, the measuring
system was carefully compensated. HRTFs were sampled
both in azimuth and elevation. The dummy-head was placed
in a rotating table, measuring responses from —180° to 180°
every 5 degrees. On the other hand, elevations were measured
from —40° to 90° every 10 degrees. For every measure,
the same loudspeaker distance to the center was employed
(1m).

6.2. Evaluation and Discussion. Experiments similar to those
presented in Section 5 were carried out using the constructed
prototype. Different combinations of sound sources were
simultaneously recorded using the tetrahedral microphone
array and the HATS, placing the microphone array on top
(Figure 7). The sources were reproduced in the horizontal
plane over different loudspeakers of our Wave-Field Synthe-
sis array, with azimuth angles of 0, 60, 120, and 180 degrees.
The room has an approximate reverberation time of Tgy =
0.2s. For comparison purposes, the same speech and music
signals used in the simulations were selected. The reference
signals for the listening test are the simultaneously recorded
signals from the artificial head. The same group of subjects
took part in the evaluation.

The results of this experiment are shown in Figure 8. As
expected, there are many similarities with those in Figure 6
for slight reverberation. Again, results both in sound quality
and spatial impression are worse for music signals than
for speech signals, specially when the number of sources is
high. Moreover, the results confirm that sound quality is
more critical than spatial impression, however, the overall
score suggests that the perceived quality obtained with the
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FIGURE 6: Results of the subjective tests using synthetic mixtures. Black dots denote the mean values and thin bars represent 95% confidence
intervals. (a) Sound quality evaluation. (b) Spatial impression evaluation.

FIGURE 7: Tetrahedral array and acoustic dummy-head used in the experiments.

proposed synthesis method is only slightly degraded from the ~ time-frequency analysis. In the first stage, the assumption

obtained using the acoustic dummy-head.

7. Conclusion

of sound sources that rarely overlap in the time-frequency
domain has been considered to study the spatial properties
of the sound that impinges a small tetrahedral microphone
array. The phase difference information of several micro-

In this paper, we have presented a two-step binaural sound  phone pairs is combined to obtain a 3D DOA estimate
synthesis method based on sparse signal processing and  in each time-frequency slot. In the synthesis stage, one of
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FIGURE 8: Results of the subjective tests using real recorded mixtures. Black dots denote the mean values and thin bars represent 95%
confidence intervals. (a) Sound quality evaluation. (b) Spatial impression evaluation.

the microphone signals is selectively filtered in the time-
frequency domain with the left and right HRTFs that
correspond to the estimated DOAs.

Experiments using both synthetic and real mixtures of
speech and music were conducted using different number of
sources. Although the performance of the method is slightly
degraded with the number of sources and reverberation,
the perceived sound quality and spatial impression are
considerably similar to conventional binaural reproduction.
However, artifacts due to spectral overlapping makes this
method more suitable for speech applications than for
music.

The proposed spatial sound capturing method not only
eliminates the need for an acoustic mannequin, which has
a considerable volume and uncomfortable portability, but
also allows to change easily the head response by using a
different HRTF database in requirement of the application,
needs, or user preferences. Moreover, it allows to rotate
the head position in real time. Thus, a tracking system
can be used to follow the position of the subject in the
synthesis stage, providing the listener with a more immersive
sensation.
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In this paper, a piano chords detector based on parallel interference cancellation (PIC) is presented. The proposed system makes
use of the novel idea of modeling a segment of music as a third generation mobile communications signal, specifically, as a CDMA
(Code Division Multiple Access) signal. The proposed model considers each piano note as a CDMA user in which the spreading
code is replaced by a representative note pattern. The lack of orthogonality between the note patterns will make necessary to design
a specific thresholding matrix to decide whether the PIC outputs correspond to the actual notes composing the chord or not. An
additional stage that performs an octave test and a fifth test has been included that improves the error rate in the detection of these
intervals that are specially difficult to detect. The proposed system attains very good results in both the detection of the notes that

compose a chord and the estimation of the polyphony number.

1. Introduction

In this paper, we deal with a main stage of automatic music
transcription systems [1]. We are refering to the detection of
the notes that sound simultaneously in each of the temporal
segments in which the musical piece can be divided. More
precisely, we deal with the multiple fundamental frequency
(F0) estimation problem in audio signals composed of piano
chords. Therefore, the objective in this paper is to robustly
determine the notes that sound simultaneously in each of the
chords of a piano piece.

The approach employed in this paper is rather different
from other proposals that can be found in the literature
[1, 2]. In the paper by Goto [3], a multiple FO estimation
method based on a MAP approach to detect melody and
bass lines is described. In the contribution by Klapuri [4, 5] a
multiple FO estimation method based on the iterative estima-
tion of harmonic amplitudes and cancellation is presented.
Kashino et al. [6, 7] propose a Bayesian approach to estimate
notes and chords. Dixon [8] uses heuristics in the context
of the Short Time Fourier Transform (STFT) to find peaks in
the power spectrum to define musical notes; also tracking the
detected peaks in consecutive audio segments is considered.

In the paper by Tolonand and Karjalainen [9], a multipitch
analysis model for audio and speech signals is proposed
with some basis on the human auditory model. Vincent and
Plumbley [10] propose an F0 extraction technique based on
Bayesian harmonic models. Marolt [11, 12] uses a partial
tracking technique based on a combination of an auditory
model and adaptive oscillator networks followed by a time-
delay neural network to perform automatic transcription of
polyphonic piano music.

In this paper, we consider a different point of view. The
audio signal to be analyzed will be considered to have certain
similarities with the communications signal of a 3G mobile
communications system. In this system, the communications
signal is a code division multiple access (CDMA) signal
[13]. This means that multiple signals from different users
are transmitted simultaneously after a spreading process
[14] that makes them approximately orthogonal signals.
So, our model will consider each piano note as a CDMA
user. We consider that the sinusoids with the frequencies
of the partials of each note define a signal composed of
approximately orthogonal components. In this signal, some
of the sinusoidal components of the model, the effect of
windowing, the time-variant nature of the music signal,



and other effects can be included in the concepts of noise
and interference, that makes the different notes loose the
property of orthogonality. So, each note will add interference
(non orthogonal components) to other notes in a music sig-
nal in which several notes are simultaneously played. Then,
the detection of the different notes played simultaneously can
be considered as the problem of simultaneously removing the
interference from the different notes and, then, deciding the
notes played. The process is similar to the way in which a PIC
receiver removes the interference from the multiple users to
perform the symbol detection. In our context, the spreading
codes will be the spectral patterns of the different notes.
These patterns will include both the inherent characteristics
of the piano and the style of the interpretation.

Turning back to the communications framework, it is
clear that the most favorable and simplest case in CDMA
systems is the one in which the spreading codes are
orthogonal; that is, the cross-correlation between them is
zero. In this case, it is known that the optimum detector
is the conventional correlator. Then, the receiver can be
easily implemented as a bank of filters adapted to the users’
spreading codes [15]. Nevertheless, real CDMA systems do
not fulfill the orthogonality condition; so the design of
advanced detectors, like the PIC receiver, is required to cope
with the interference due to the lack of orthogonality and
to the multiuser access. In the context of musical signals,
regarding the problem of detection of the notes that compose
a musical chord, the orthogonality condition between the
spectral patterns of the different notes cannot be achieved.
This is due to the harmonic relations that exist between the
notes of the equal-tempered musical scale typically used in
Western music, specially between octaves and fifths (despite
inharmonicity and stretched tuning [16]).

In order to perform the detection of the notes that sound
in a certain segment or window of a musical audio signal,
we have considered the CDMA detection technique called
Parallel Interference Cancellation (PIC). We have selected
PIC detection among other techniques [14, 15, 17] because
it has been observed that PIC detection obtains very good
performance in different CDMA system configurations [18]
and it can be reasonably adapted to our problem. The PIC
detector is aimed to simultaneously remove, for each user,
the interference coming from the remaining users of the
system. In the specific case of the music signal, regarding
each piano note, the interference (parts or components of
a note that are not orthogonal to other notes) caused by
the rest of the notes should be simultaneously removed to
allow the simultaneous detection of the different notes. A
brief overview of the PIC detector for piano chords will be
given in Section 2.

The paper is organized as follows. Section 2 will present
a general view of the structure of the proposed PIC detector
for piano chords. Section 3 will present the music signal
model employed and the preprocessing techniques required,
paying special attention to the similarities to CDMA signals.
Section 3.1 will describe the process of estimation of the note
patterns required to perform interference cancellation and
detection and Section 3.2 will show the preprocessing tasks
to be applied to the input signals before the interference
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FIGURE 1: General structure of the PIC detector for piano chords.

cancellation process. Section 4 will describe in detail the
structure of the interference cancellation stage of the parallel
interference cancellation (PIC) detector adapted to the piano
signal. Next, Section 5 will propose a method to finally decide
the notes played using the outputs of the PIC. This section
will cover not only the direct detection of notes but also
specific tests to properly deal with their octaves and fifths.
Section 6 will present some results and comparisons of the
performance of the detection system. Finally, Section 7 will
draw some conclusions.

2. Overview of the PIC Detector for
Piano Chords

In this section, a general overview of the structure of a PIC
Detector for piano chords is given. Figure 1 shows a general
PIC structure in which the interference cancellation stage is
the heart of the detector. The detector is defined upon three
different stages.

The first stage (Preprocessing) obtains a representation of
the chord (chord(t)) to be analyzed in the frequency domain
so that its representation matches the signal model used in
the system. Then, the preprocessed signal, W, passes through
the parallel interference cancellation (PIC) block. This stage
obtains an output for each of the notes of any piano (L = 88
notes for a standard piano). These values are related to the
probability of having played each of the notes of the piano.
To perform the parallel detection of interference, the note
patterns (P) estimated from the musical signal model, taken
as spreading codes, will be used. Finally, making use of the
outputs of the PIC stage, y, it must be decided which are
the notes that are actually present in the chord. This is the
task of the final decision stage (Note Decision). This stage
performs the decision using previously precomputed generic
thresholds, U, together with a method of discrimination
between actually played notes and octaves and fifths.

3. Music Signal Model

In this section, the music signal model considered to allow
interference cancellation is presented. Also, marked similari-
ties between the CDMA mobile communications signal and
the audio signals are outlined. Recall that the music signals
that will be handled by the proposed detector will be piano
chords, that is, waveforms that contain the contribution of
one or more notes that sound simultaneously. Consider a
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piece (window) of the waveform of the music audio signal.
This signal, say chord(t), can be expressed, in general, as
follows:

M
chord(t) = zAnb,,pn(t) + n(t), (1)

n=1

where M, is the number of all the notes that can sound in
the window (88 notes for a standard piano), A,, represents
the global amplitude of the nth note that may sound in the
chord, b, € {1,0}, indicates whether the note sounds (the
note was played), b, = 1, or not, b, = 0, p,(t), stands for
the representative waveform of the nth note in the chord,
with normalized energy, and n(t), represents additive white
Gaussian noise (AWGN) with variance o2.

More details on this model will be given shortly, but
before that, let’s turn our sight to the mobile communica-
tions context. In such context, a certain window of a CDMA
signal model can be expressed as follows [18]:

K
r(t) = > Axbier(t) +n(1), 2)
k=1

where K, is the number of simultaneous active users, Ay, is
the amplitude of the kth user’s signal, by € =1, is the bit
transmitted by user k, ck(t), represents the spreading code
assigned to user k with energy normalized to one, and n(t),
represents AWGN with variance ¢2.

A comparison of (1) and (2) reveals that they share
the same formulation, but also some differences must be
observed. In (2), the bits transmitted by user k, by, are
represented by =1, while in (1) the values that b, may take
are 1 or 0. Moreover, at the sight of the two equations, the
definition of chord(t) takes into account all the possible notes
that can be played, while r(t), in (2), only includes the active
users in the communications system (note that the number
of possible user codes can be very high). Then, the problem of
the detection of the notes played in a window of the available
waveform, becomes the problem of deciding if b, is 0 or 1
in (1), while the receiver of the communication system must
detect the bits that have been transmitted by each active user,
that is, to decide if by is 1 or —1. In spite of these differences,
the similarity between (1) and (2) is enough to encourage
us to consider the adaptation of advanced communication
receivers to the detection of the notes in our musical context.

A main requirement of any CDMA detector is the
following: the detector needs to know the spreading codes of
the users, cx(t). In our context, according to (1), the partial
waveforms of the notes, p,(t), are required, these will be
called time patterns of the notes. But the same formulation is
also valid in the frequency domain, then, the discrete power
spectrum of chord(t), can be expressed as follows:

M
W(k) = > AjbpPy(k) + N (k), 3)

n=1

where P,(k) is the kth bin of the power spectrum, P,,
(P, = [Pu(0),..., Py(K),...,Po(N—=1)]"), of p,(t), and N (k)
represents the power spectrum of the additive noise n(t).

It is clear that (3) is also similar to (2), in which the
CDMA signal model is shown. If we consider a type of
CDMA receiver adapted to our context, it will require to
know the power spectrum, P,(k), of each of the notes that
can sound in order to be able to perform the detection of
the notes. These functions will be used to define the spectral
patterns of the notes that will become the note patterns.

The audio signal model in the frequency domain will be
used to design our system and the spectral patterns will be
selected to represent the different notes just like spreading
codes represent different users. The procedure to define
the note patterns and the preprocessing stage required at
the input of our PIC detector are described in the next
subsections.

3.1. Determination of Note Patterns. In order to detect each
note correctly, the detector needs to know the note patterns
just like any CDMA detector needs to know the spreading
codes of the users [19]. Also, these patterns should be as
independent as possible of the piano and of the technique
employed in the performance. Since the chord detection
system will work in the frequency domain, spectral patterns
of the notes will be used to play the role of the CDMA
spreading codes in communication systems.

The representative spectral pattern of each note is
obtained as the average power spectrum of 27 different
waveforms of the possible performances in which each note
can be played: three different playing techniques (Normal,
Staccato and Pedal) in three different dynamics (Forte,
Mezzo and Piano) and three different pianos. These samples
are taken from the RWC data base [20], in which the audio
signals are sampled at a frequency rate of 44.1kHz and
quantized with 16 bits. The length of the analysis windows,
N, is also the number of bins of the power spectrum and
it ranges between 2'* and 27, which results in analysis
windows of duration between 371ms and 2.97s. These
window lengths have been found adequate for a polyphonic
music transcription system, showing a good compromise
between time and frequency resolution [21]. The analysis
windows are obtained applying a rectangular windowing
function (simple truncation) to the signal waveform after the
onset of the sound [22]. Note patterns are normalized to have
unit energy so that they can be easily used in the interference
cancellation stage (Section 4). With all this, each note pattern
is a N-dimensional vector defined as:

L
P==>P, 4
720 ()

where Py, is the vector that contains the N points of the
power spectrum of the i-st performance of the I-st note of
the piano, Ny, is the number of waveforms considered for
each note (27 different performances per note), Z, is the
normalization constant, defined as

T

Np Np
Z) = (zpl,i) . (Zpl,i)' (5)
i=1 i=1



In this way, general note patterns that take into account
the positions of the partials and their relative power are
obtained. These patterns can be used to detect the notes
played in an analysis window regardless the piano employed
and the interpretation technique. The set of patterns calcu-
lated for all piano notes will be denoted by P:

P=[P P, Py (6)
This set of patterns will be used in the PIC detector as it will
be described in Section 4.

The required signal preprocessing stage according to this
audio signal model, is presented in the next subsection.

3.2. Preprocessing of Analysis Windows. Taking into account
that the interference cancellation stage will perform in the
frequency domain using the defined spectral note patterns,
the detection system needs a stage to extract a representation
of the signal that will be usable in the cancellation stage. This
is the task of the preprocessing block in Figure 1.

The preprocessing stage obtains the discrete power
spectrum of the windowed waveform under analysis (3)
with length N, where N ranges between 2'* and 2'7, as
in the process of determination of the note patterns (the
windowing function used in this stage is the same that is used
for the determination of the note patterns). The samples of
the power spectrum are stored in the vector:

W = [W(0),..., W(N — 1)]". (7)

This vector constitutes the input to the parallel interference
cancellation stage.

4. Parallel Interference Cancellation (PIC)

Once the note patterns are defined and stored in the pattern
matrix P, and after the description of the preprocessing stage,
the core of the detector, will be described.

A general description of the structure and behavior of
PIC structures in communication systems together with
comments on certain issues regarding to the cancellation
policy, the receiver power of different users (notes in our
context) and the number of cancellation stages can be found
in [17]. Now, we will draw a description of the system
specifically adapted to our context.

Figure 2 depicts the general structure of a linear mul-
tistage PIC detector, with m stages, for the detection of L-
notes. Note that in our case L = M. This choice means that
we will consider all the notes that can be played in a standard
piano (88 notes from A0 to C8), unlike other authors that
often do not consider the lowest and the highest octaves of
the piano [4] (in [4] the range of notes detected is from E1 to
C7). A general description of the behavior follows. Each note
that sounds in the window under analysis (chord(t)), (W
after preprocessing) introduces disturbance (interference) to
the process of detection of each of the remaining L — 1
notes that may sound at the same time. Then, it should be
possible to create replicas of the L — 1 notes detected to
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F1GURE 2: General structure of the PIC detector.

be simultaneously subtracted from the input signal (W) to
remove their contribution (disturbance or interference) and
to allow better performance of the note detection process at
the next stage. This process is performed using the scheme in
Figure 3. This figure will be described in detail later.

Note that if the initial detections are correct, then
the replicas reconstructed could be perfect. This scheme
would offer complete interference cancellation in one stage.
On the other hand, if a note is detected, but it was not
really sounding, a replica, created using the note patterns,
subtracted from the input signal, adds additional disturbance
(interference) to the process of detection of other notes. Also,
any mismatch between a note pattern and the preprocessed
waveform of that note may introduce interference into the
detection process of other notes. This is a main reason
why a more conservative procedure, in which interference
is partially removed at successive interference cancellation
stages, was proposed [23] and selected to deal with our
problem (Figure 3). In this structure, as the stages progress,
the detections should be more reliable and the cancellation
process should be more accurate. Also, the unavoidable dif-
ference between the note patterns and the preprocessed note
contributions to the chords discourages us from attempting
to perform total interference cancellation.

Specifically, a multistage partial PIC detector structure
has been chosen [17, 23, 24]. In this detector, the parameter
Um> see Figures 2 and 3, represents the maximum amount
of interference due to each note that will be canceled.
In the context of digital communications systems, this
strategy attains good performance with a small number of
interference cancellation stages (between 3 and 7) when the
weights of each stage, y,,, are correctly chosen [18].

The interference cancellation structure, in our case, is
analogous to the one presented in [18, 23]. Note that at the
PIC front-end, an initial detection of the notes is performed
using a bank of correlators. For each note [, the centered
correlation between the preprocessed input signal, W, and
the corresponding note pattern, Pj, is calculated, yo; (see
Figure 2). The value obtained is used as input to the first
cancellation stage (Figure 2).
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Now, the proper cancellation process starts. At each stage
of the multistage PIC detector, for each note /, the process
shown in Figure 3 is performed. In this figure, the following
notation is employed.

(i) Thick lines represent vectors of length N, the length
of the power spectrum considered.

(ii) Thin lines represent scalar values.

(iii) P;is the pattern of the Ith note of the piano, calculated
using (4).

(iv) I = 1,2,..., L, where L is the number of piano notes
considered (88 notes in our case).

(V) pm is the cancellation parameter for stage m. This
parameter controls the amount of cancellation done
at each stage. Usually, this parameter grows as the
number of stage increases [25]. The reason for this
choice is based on the expected improvement of the
decision statistics obtained after each PIC stage as
the signal goes through the interference cancellation
system. Under this assumption, interference cancel-
lation can be performed with lesser error in the
successive stages.

(Vi) ¥m, is the decision statistic obtained for note [ after
the cancellation stage m.

(vii) Correlator calculates the centered correlation
between the input signal and the note pattern P;.

(viii) f’m,l represents the linear regeneration made at stage
m of the possibly played note L. P, is given by

Poi = ym1P1. (8)

As it can be observed in Figure 3, the output at each
stage m for each note [ is obtained by removing, from the
preprocessed input W, the regeneration of the remaining
(L — 1) notes of the piano weighted by the cancellation
parameter y,,. The larger y,,, the larger is the interference
canceled.

Errors in the detections make the system add addi-
tional interference, instead of removing interference. The
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FIGURE 4: Structure of the Note Decision stage.

interference added in this case grows with the cancellation
parameter. Therefore, the choice of cancellation weights is
essential for the proper performance of the PIC. In Section 6,
a comparison between different sets of weights and different
number of stages shows the importance of the choice of these
parameters.

The output of the PIC for the detection of each note will
be stored in the vector y (see Figures 1 and 2). This vector
will contain the L decision statistics of the notes of the piano:

Y= Dmtseeor ymr] 9)

This vector must be analyzed to decide which notes were
played.

5. Played Note Decision

Making use of the PIC outputs, the system must decide
which notes were played in the window under analysis.
Ideally, the elements in y that correspond to the notes that
were actually played, should be positive values and zero
elsewhere. Unfortunately, this does not happen because of
the windowing, the way in which the note patterns are
defined, noise and because of the equal-tempered music
scale, used in Western music. Note that assuming ideal
harmonicity, the equal-tempered scale sets many nonorthog-
onal frequency relationships between different notes, being
the most outstanding of them the octave and perfect fifth
[21]. All these issues make appear significant values at the
positions of the decision statistics obtained by the PIC for
notes that were not actually played. The task of the Note
Decision stage is to deal with this problem to make a decision
on the notes played.

In Figure 4, the structure of the Note Decision stage is
shown. This stage consists of two distinct blocks: Energy
Thresholding and Harmonic Tests.

5.1. Energy Thresholding. The objective of this block is to
identify the notes that definitely were not played. This
initial decision is based on the comparison of the estimated
energy of the contribution of each possible note to the
(preprocessed) input signal W, versus a threshold. In order
to do this, all the decision statistics in y are compared with a
threshold.

Now, the thresholds must be defined. In order to
properly define them, we must first notice that before the
normalization (see (5)), the note patterns of the different



notes do not have the same energy. The energy of the
contribution of each note to the input signal will show the
same behavior. So, the thresholds must take into account
this feature. To this end, we decided to define thresholds for
groups of notes clustered according to the mean energy of the
samples available in our databases.

Let g denote the number of groups or clusters. We
will define a matrix of thresholds, U, for all the piano
notes clustered in g groups. Note that these thresholds will
be valid for all the notes regardless of the piano and the
interpretation, just like the note patterns previously defined.

A detailed description of the process of creation of the
groups of notes, the definition of the thresholds and how
these thresholds are employed is now given:

Creation of the Clusters of Notes. First, we have to define
the groups of notes that we will consider according to their
expected mean energy. Recall that we refer to the selected
representation of the notes in our system, not to the note
waveforms. The mean energy of each note is calculated
from the recorded samples of pianos 1 to 3 of the Musical
Instrument Data Base RWC-MDB-1-2001-W01 [20]. We
calculate the energy of each piano note played with different
performance techniques and, then, the mean is obtained.
Second, the notes are ordered according to their energy, in
descendant order. The largest mean energy, M., is selected
and the following energy interval is defined: [0.66M,,M,]
(the coefficient 0.66 has been experimentally obtained). The
notes whose mean energy is in this interval compose the first
group of notes. Then, these steps are recursively performed
with the remaining notes until all the notes are grouped.
After the completion of this process, ¢ = 6 groups of notes
are obtained.

Definition of Thresholds. We consider two types of threshold:
one type of threshold for notes in the same group i
(autothreshold, represented as u;;) and the other one for the
notes in the other groups j, where the group j has more
energy than group i (it will be denoted crossthreshold and
it will be represented as u;;).

Autothresholds, u;;, are calculated as follows: the notes
with the largest and the lowest energy in the group i are
selected (let i and i, represent the indexes of these notes in
the group i, resp.) and a composed signal formed summing
the patterns of these notes (P;, and P;, resp.) weighted by the
square root of their corresponding energy is obtained:

Ci=2,P, +7,P, (10)

where Z, was defined in (5).

Then, this composed signal passes through the PIC
detector (Figure 2). The vector obtained at the output of the
PIC,y, is normalized by the value of its largest element. Then,
autothresholds are defined by the element in the normalized
vector y that corresponds to the note with the lowest energy.

Crossthresholds, u;j, are calculated in a similar way as
autothresholds but different notes are selected as reference.
Specifically, the note with the largest energy in the group j
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(je) and the note with the lowest energy in the group i(i.)
are selected. Then, the composed signal is defined as follows:

Cij=2;,P; +7,P,. (11)
This signal, C;;, passes through the PIC structure and, then,

the threshold is defined as in the previous case.

Construction of the Matrix of Thresholds. All the thresholds
defined are stored in a matrix with the following structure:

Upr Uz -+ Ugg
Upp Uz -+ Ugg

U= , (12)
Ugl Ugd - Ugg

where each column represents all the thresholds found for a
dominant group, j.

Usage of the Matrix of Thresholds. The group d, that contains
the note with the largest value at the output of a PIC stage, y,
is selected. Then, the corresponding column of the matrix U,
(Udds. .., ugd]T, is used for thresholding.

Once the threshold column is selected, the elements in
y under the corresponding thresholds are removed and the
final decisions will be taken with the remaining elements.

The output of the energy thresholding block is denoted
y*. This vector contains all the notes that were possibly
sounding in the window under analysis. However, additional
tests, that take into account harmonic relations among the
notes, must be performed to avoid false positives.

5.2. Harmonic Tests. The last block of the note decision stage
includes some harmonic tests to perform the final decision.
One of the problems in polyphonic detection is the detection
of the octave and perfect fifth since many errors occur due
to either missing notes or, especially, to the appearance
of false positives [26, 27]. This is due to the overlapping
between harmonic partials of different sounds. Assuming
ideal harmonicity, it is known that harmonic partials of two
sounds coincide if and only if the fundamental frequencies
of the two sounds are in rational number relations [28, 29].
When the harmonicity is not ideal, the overlapping continues
since the partials of the notes may exhibit appreciable
bandwidth. On the other hand, an important principle in
Western music is that simple harmonic relationships are
favored over dissonant ones in order to make the sounds
blend better [21]. This is the case of octaves and fifths. These
intervals are the ones whose harmonious relationships are
the simplest (2:1 and 3:2) and these are also the two most
frequent intervals in Western music [30].

The objective of the harmonic tests is to decide if the
possibly played notes in y* were actually played or if those
are due to perfect octaves or perfect fifths. Finally, it is worth
mentioning that this stage includes the estimation of the
polyphony number in each chord.

In Figure 5, the general structure of the final stage is
presented. The notation used in the figure is as follows.
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(i) y* is the vector that contains all the possibly played
notes. It was obtained after the energy thresholding
stage.

(ii) E is the vector that contains the mean energy of the
88 piano notes.

(iii) P is the note pattern matrix.

(iv) Nj is the set of notes that do not pass the octave test.
(V) Yy, is obtained removing from y* the notes in N;.
(vi) N is the set of notes that do not pass the fifth test.

(vii) Notes is the final vector of notes detected.

As it can be seen in Figure 5, the decision process is as
follows: first, all the possible notes with octave relations are
considered and it is checked whether they are actually played
notes. The notes that do not pass this test, Ng, are removed
from y* to define yg,. Then, all the possible notes with fifth
relation in yg,, are considered and, then, it is checked if they
are really played notes. Again, the notes that do not pass
the test, N, are removed from yg, to give a vector of notes
detected (Notes).

5.2.1. Octave/Fifth Test. The octave and the fifth relation tests

are similar, the only difference among them is the relation

between the notes involved and the thresholds. Figure 6

shows the block diagram employed in the octave/fifth tests.
The notation used in Figure 6 is described now.

(i) y* is the vector that contains all the possibly played
notes.

(ii) yy is the vector that contains a subset of notes from y*
oryy, that fulfill the criteria of octave or fifth relation.

(iii) (1/Z%) Z,L‘=1,jeyx E;Pj is the signal composed with the
patterns of the notes to check (P;) weighted by their
corresponding energy (E;), in order to properly cope
with low- and high-energy notes, and normalized to
unit energy using the normalization constant:

T

L L
ZV = > E;P; > E;P; (13)
j=1 j=1

JEYx JEYx

(iv) ug, is the threshold vector for the octave/fifth-related
notes.

(v) N, is the set of notes that do not pass the octave (x =
8)/fifth (x = 5) tests.

The operations performed in these tests are similar to those
in the process of estimation of the thresholds u,.. The
description of this process follows: a synthetic signal is
composed with the patterns of the notes weighted by their
corresponding energy. The synthetic signal is normalized
to have unit energy. The composed signal passes through
the PIC detector and the outputs are normalized by the
maximum value of the outputs. Then, the output of the
PIC, that correspond to the notes under test, are used as
new thresholds for these notes. If a decision statistic of a
note does not pass the new threshold, then the note will be
removed from the set of possibly played notes since the value
of the decision statistic found at the output of the PIC stage
is considered to be due to some octave/fifth relation.

6. Results

The evaluation of the performance of the PIC detector for
piano chords described in this paper and the comparison of
the result versus a selected technique in [4] have been done
using samples taken from different sources.

(i) Independent note samples: these samples correspond
to pianos 1 to 3 of the Musical Instrument Data
Base RWC-MDB-1-2001-W01 [20] and home-made
recordings of two different pianos (Yamaha and
Kawai).

(ii) Chord recordings: these samples are home made
recordings of the two different pianos (Yamaha and
Kawai).

The total number of samples available was over 4200.
Note that the patterns are defined using a database which
is different from the one used in the evaluation. The pianos
used for the chord recordings are a Yamaha Clavinova CLP-
130 and a Kawai CA91 played in a concert room.

The chords used to validate the system correspond, to the
real chords frequently used in Western music. All the chords
have been recorded in all the piano octaves and with different
octave separations between the notes that constitute the
chord. The recorded chords, as a function of the polyphony

number, are as follows:

(i) chords of two notes: intervals of second, third, fourth,
fifth and octaves as well as their extension with one,
two, three and four octaves,

(ii) chords of three notes: perfect major and perfect
minor chords with different order of notes,

(iii) chords of four notes: perfect major and perfect minor
chords with duplication of their fundamental or their
fifth, as well as, major 7th and minor 7th chords,

(iv) chords of five notes: perfect major and perfect minor
chords with duplication of their fundamental and
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The recorded chords satisfy the statistical profile dis-
covered by Krumhansl in classical Western music [30], that
is, octave relationships are the most frequently, followed by
consonant musical intervals (perfect fifth, perfect fourth)
and the smallest probability of occurrence is given to
dissonant intervals (minor second, augmented fifth, etc.).
Note that these are the types of chords actually used in
Western music. In general, these chords are more difficult to
resolve that the chords that are just composed with dissonant
intervals [21].

The error measure employed is the note error rate
(NER) metric. The NER is defined as the mean number of
erroneously detected notes divided by the number of notes
in the chords [21]:

SE+DE+IE

NER = > o, (14)
where Substitution errors (SE): happen when a note, that
does not exist in the chord, is detected as played note,
Deletion errors (DE): appear when the number of detected
notes is smaller than the number of notes in a chord,
Insertion errors (IE): appear when the number of detected
notes is larger than the number of notes in a chord, NN:
represents the number of notes in the chords.
It is worth mentioning that insertion errors (IE) never
occurred in the proposed PIC detector in the tests done and
the deletion errors only occur when the polyphony number
is estimated.

Concerning the temporal resolution, windows with N =
24 samples were chosen. This choice gives a temporal
resolution of about 371 ms and a spectral resolution of
2.69 Hz, which is the minimum resolution to distinguish the
fundamental frequencies of the lowest notes of the piano.

Ficure 7: Comparison of note error rates for different sets of can-
cellation parameters and different number of parallel interference
cancellation stages.

After several tests, and according to the results obtained
for the CDMA signal in [18], a 3-stage PIC was chosen
whose cancellation parameters are y = [0.5,0.7,0.9] [23]. It
has been observed that this choice provides a good balance
between performance and complexity. A comparison of note
error rates for PIC with 3, 5, or 7 stages and using 4 different
sets of cancellation parameters are presented in Figure 7. The
sets of cancellation parameters evaluated are as follows:

(i) “I set™ in this set, all the cancellation parameters are
1 (total interference cancellation is attempted at each
stage) [31].

(ii) “0.5 set”: in this set all the cancellation parameters are
0.5.

(iii) “Tardén set™ in this set the cancellation parameters
are defined as [25]:

1k
Uk = EE; (15)

where k is the stage and K the number of stages of the
receiver.

(iv) “Divsalar set” in this set the cancellation parameters
are y = [0.5,0.7,0.9] [23].

Figure 7 shows that the cancellation parameters proposed
by Divsalar attain the best NER. On the other hand, for “I
set” the NER increases with the number of stages, this is
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due to the errors cancellation errors are accumulated because
the cancellation in each stages is 100%. However, for “0.5
set” and “Tardén set” the NER decreases with the number
of stages because the cancellation in each stage is small
enough so that the cancellation errors do not negatively affect
the detection performance of subsequent stages. Note that
these sets require many interference cancellation stages (large
computational burden) to attain the optimum performance
which is attained with K — 0. However, the “Divsalar
set”, with interference cancellation stages, attains better
performance than the other two sets of parameters with
seven stages.

In Figure 8, a comparison of the NER for different
polyphony numbers using the proposed PIC detector and the
iterative estimation and cancellation reference method pro-
posed in [4] is presented. In this case the polyphony number
is known. Note that the method selected for comparison in
[4] performs the detection of the notes in a successive way
using a band wise FO estimation for general purpose multiple
FO detection. However, our method performs the detection
in a parallel way using specific note patterns. The dataset
employed in the comparison was described at the beginning
of this section.

It is worth mentioning that the errors are just sub-
stitution errors in both methods because the polyphony
number is known. In this case, the output vector (Notes)
is completed, if it is necessary, with the discarded notes in
N; and Ns for which the PIC output are larger. Recall that
the proposed PIC detector never shows insertion errors and
the deletion errors only occur when the polyphony number
is estimated. As it can be observed in Figure 8, the NER
increases with the polyphony number for both methods,
however the proposed PIC detector gets better results and
it can also deal with the low and high octaves of the piano.
Note that the evaluation of the system in [4] is restricted
to the range E1 to C7, because the FOs of the input dataset
are restricted to that range. In this paper, we have evaluated,
tuned and compared the systems in the range defined by all

Perfect fifth
Polyphony

Octave Others

FiGURrE 9: Note error rates for octaves, perfect fifths and other
intervals using the proposed PIC detector when the polyphony
number is 2.

the piano notes. According to this choice, 12.5% of the notes
are out of the range originally evaluated in [4].

There exists a gap in the performance between polyphony
4 and polyphony 5. This is due to the octave and fifth
relations between the notes in these chords. In this case, the
octave and fifth test sometimes fail when the chord includes
several octaves and perfect fifths all together, because of the
overlapping between the partials of more than three notes.
On the other hand, the NER for a polyphony number of 6
is smaller than for polyphony number 5, the reason for this
is the following: these chords have been always played with
both hands and with a minimum of two octaves of separation
between the lowest note and the highest note. In most cases,
this separation is four or five octaves, so the coincidences
between partials with octave or fifth relation are smaller and
the octave and fifth test attain better performance.

If we also compare these results with the ones presented
in [32], it should be taken into account that the evaluation of
the system presented by Shi et al. [32] is made with sounds
generated by mixing the sounds of different notes played
solely and after a normalization of their amplitude to make
the different notes of the same amplitude. However, the PIC
detector proposed has been tested on recorded chords in
which the different notes can be of different amplitudes and
in which the chords are selected to be coherent and relevant
from the musical point of view, as it has been presented at
the beginning of this section.

Regarding the performance of the octave and fifth tests,
Figure 9 represents the NER for octave, perfect fifth intervals
and other intervals using the proposed PIC detector when the
polyphony number is 2. In this figure, it can be observed that
the NER for perfect fifth chords is smaller than the NER for
octave intervals and other types of intervals.

Note that the fifth test performs better than the octave
test because the overlap of the partials of the note patterns of
notes with octave relation is larger than in the case of notes
with fifth relation. Also, fifth test is performed after octave
test. On the other hand, the NER for octaves is the same as
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for other types of intervals. These results show that the octave
and fifth tests are efficient, making the errors to become
almost independent of the type of interval that composed the
chord under analysis.

Figure 10 shows the NER of the PIC detector when
the polyphony number is estimated in the note decision
block. As it can be observed, the NER is not significantly
increased with respect to the case in which the polyphony
number is known. In this figure, substitution and deletion
errors are shown because, when the polyphony number is
estimated, deletion errors can appear. It can be observed
that the deletion errors are less than substitution errors.
If we compare these results with the ones presented in
Figure 8, it is clear that the increase of NER found when the
polyphony number is estimated is mainly due to deletion
errors.

If we compare the results in Figure 10 with the ones
presented in [21] for the different polyphony estimation
strategies, it can be observed that the proposed PIC detector
attains better NER. Also, the difference in the performance
between the cases in which the polyphony number is known
and the cases in which it is estimated is smaller. This is
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an indication of the robustness of the proposed detection
system both as note detector and as estimator of the degree
of polyphony.

Figure 11 shows the note error rates in different levels of
noise for different polyphony numbers using the proposed
PIC detector when the polyphony number is estimated.
No differences between substitution and deletion errors are
shown because the percentage of deletion and substitution
errors are the same as in Figure 10.

The noise variance has been selected so that the signal
to noise ratio (SNR) is adjusted as in [21]. This figure
shows that despite the NER increases with the noise, the
proposed PIC system performs quite robustly in noisy
cases. Again, the NER for a polyphony number of 6 is
smaller than for polyphony number 5 because these chords
have been always played with both hands, as previously
described.

7. Conclusions

In this paper, a piano chords detector based on the idea
of parallel interference cancellation has been presented. The
proposed system makes use of the novel idea of modeling
a segment of music as a third generation CDMA mobile
communications signal. The model proposed considers each
piano note as a CDMA user in which the spreading code
is replaced by a representative note pattern defined in the
frequency domain. This pattern is calculated by averaging the
power spectral densities of different piano notes interpreted
in various styles and with different pianos. This choice allows
to attain good detection performance using these patterns
regardless of the piano used to play the chord to be analyzed.

The structure of a multistage weighted PIC detector has
been presented and it has been shown that the structure
gets perfectly adapted to the purpose of the detection of the
notes played in a chord. Since the spectral patterns of the
notes are not orthogonal to each other, due to the harmonic
relationships between the notes, and the different notes in a
chord have different energies, a specific thresholding matrix
has been designed for the task of deciding whether the PIC
outputs correspond to real notes composing the chord. This
matrix of thresholds is designed to be usable for any chord in
any piano.

Finally, an additional stage that performs an octave test
and a fifth test has been included. This stage eliminates false
positives produced by the appearance of octave and fifth
relations between the notes performed in the chord. It has
been checked that these tests make the error rates in the
detection of octaves and fifths to become similar to the ones
found in the detection of any other type of interval.

The proposed system attains very good results in both
the detection of the notes that compose a chord and the
estimation of the polyphony number. Moreover, it has been
observed that the detection performance is not noticeably
affected by the estimation of the polyphony number with
respect to the situations in which the polyphony number is
known.
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We describe a novel query-by-example (QBE) approach in music information retrieval that allows a user to customize query
examples by directly modifying the volume of different instrument parts. The underlying hypothesis of this approach is that
the musical mood of retrieved results changes in relation to the volume balance of different instruments. On the basis of this
hypothesis, we aim to clarify the relationship between the change in the volume balance of a query and the genre of the retrieved
pieces, called genre classification shift. Such an understanding would allow us to instruct users in how to generate alternative queries
without finding other appropriate pieces. Our QBE system first separates all instrument parts from the audio signal of a piece with
the help of its musical score, and then it allows users remix these parts to change the acoustic features that represent the musical
mood of the piece. Experimental results showed that the genre classification shift was actually caused by the volume change in the

vocal, guitar, and drum parts.

1. Introduction

One of the most promising approaches in music information
retrieval is query-by-example (QBE) retrieval [1-7], where
a user can receive a list of musical pieces ranked by their
similarity to a musical piece (example) that the user gives as
a query. This approach is powerful and useful, but the user
has to prepare or find examples of favorite pieces, and it is
sometimes difficult to control or change the retrieved pieces
after seeing them because another appropriate example
should be found and given to get better results. For example,
even if a user feels that vocal or drum sounds are too strong
in the retrieved pieces, it is difficult to find another piece
that has weaker vocal or drum sounds while maintaining the
basic mood and timbre of the first piece. Since finding such
music pieces is now a matter of trial and error, we need more
direct and convenient methods for QBE. Here we assume that

QBE retrieval system takes audio inputs and treat low-level
acoustic features (e.g., Mel-frequency cepstral coefficients,
spectral gradient, etc.).

We solve this inefficiency by allowing a user to create new
query examples for QBE by remixing existing musical pieces,
that is, changing the volume balance of the instruments. To
obtain the desired retrieved results, the user can easily give
alternative queries by changing the volume balance from
the piece’s original balance. For example, the above problem
can be solved by customizing a query example so that the
volume of the vocal or drum sounds is decreased. To remix
an existing musical piece, we use an original sound source
separation method that decomposes the audio signal of a
musical piece into different instrument parts on the basis
of its musical score. To measure the similarity between the
remixed query and each piece in a database, we use the Earth
Movers Distance (EMD) between their Gaussian Mixture



Models (GMMs). The GMM for each piece is obtained by
modeling the distribution of the original acoustic features,
which consist of intensity and timbre.

The underlying hypothesis is that changing the volume
balance of different instrument parts in a query grows
diversity of the retrieved pieces. To confirm this hypothesis,
we focus on the musical genre since musical diversity and
musical genre have a certain level of relationship. A music
database that consists of various genre pieces is suitable for
the purpose. We define the term genre classification shift as
the change of musical genres in the retrieved pieces. We
target genres that are mostly defined by organization and
volume balance of musical instruments, such as classical
music, jazz, and rock. We exclude genres that are defined
by specific rhythm patterns and singing style, e.g., waltz and
hip hop. Note that this does not mean that the genre of the
query piece itself can be changed. Based on this hypothesis,
our research focuses on clarifying the relationship between
the volume change of different instrument parts and the
shift in the musical genre of retrieved pieces in order
to instruct a user in how to easily generate alternative
queries. To clarify this relationship, we conducted three
different experiments. The first experiment examined how
much change in the volume of a single instrument part is
needed to cause a genre classification shift using our QBE
retrieval system. The second experiment examined how the
volume change of two instrument parts (a two-instrument
combination for volume change) cooperatively affects the
shift in genre classification. This relationship is explored
by examining the genre distribution of the retrieved pieces.
These experimental results show that the desired genre
classification shift in the QBE results was easily achieved by
simply changing the volume balance of different instruments
in the query. The third experiment examined how the
source separation performance affects the shift. The retrieved
pieces using sounds separated by our method are compared
with those using original sounds before mixing down in
producing musical pieces. The experimental result showed
that the separation performance for predictable feature shifts
depends on an instrument part.

2. Query-by-Example Retrieval by
Remixed Musical Audio Signals

In this section, we describe our QBE retrieval system for
retrieving musical pieces based on the similarity of mood
between musical pieces.

2.1. Genre Classification Shift. Our original term “genre
classification shift” means a change in the musical genre
of pieces based on auditory features, which is caused by
changing the volume balance of musical instruments. For
example, by boosting the vocal and reducing the guitar and
drums of a popular song, auditory features are extracted
from the modified song are similar to the features of a jazz
song. The instrumentation and volume balance of musical
instruments affects the musical mood. The musical genre
does not have direct relation to the musical mood but
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genre classification shift in our QBE approach suggests that
remixing query examples grow the diversity of retrieved
results. As shown in Figure 1, by automatically separating
the original recording (audio signal) of a piece into musical
instrument parts, a user can change the volume balance of
these parts to cause a genre classification shift.

2.2. Acoustic Feature Extraction. Acoustic features that rep-
resent the musical mood are designed as shown in Table 1
upon existing studies of mood extraction [8]. These features
extracted from the power spectrogram, X(¢, f), for each
frame (100 frames per second). The spectrogram is calcu-
lated by short-time Fourier transform of the monauralized
input audio signal, where t and f are the frame and
frequency indices, respectively.

2.2.1. Acoustic Intensity Features. Overall intensity for each
frame, S;(#), and intensity of each subband, S,(i,t), are
defined as

Fyn Fy (i)
Sl(t)z ZX(t’f)) Sz(i,t)= Z X(t)f)> (1)
f=1 f=Fi()
where Fy is the number of frequency bins of the power
spectrogram and F (i) and Fy (i) are the indices of lower and
upper bounds for the ith subband, respectively. The intensity
of each subband helps to represent acoustic brightness. We
use octave filter banks that divide the power spectrogram into
n octave subbands:

Fy Fy  FEn Fy
|:1)2n71)a|:2n71a2n72):---)|:77FNj|7 (2)

where # is the number of subbands, which is set to 7 in
our experiments. These filter banks cannot be constructed
because they have ideal frequency response; we implemented
these by division and sum of the power spectrogram.

2.2.2. Acoustic Timbre Features. Acoustic timbre features
consist of spectral shape features and spectral contrast
features, which are known to be effective in detecting musical
moods [8, 9]. The spectral shape features are represented by
spectral centroid S3(t), spectral width S4(t), spectral rolloff
S5(t), and spectral flux Se(t):

SPLX(LA) S
Si(t) ’
LX) (f = $s(10)°
S4(t) = N0 ,
0 (3)
> X(t, f) = 0.955:(p),
f=1

Fn

Se(t) = > (logX(t, f) —logX (¢t — 1, 1))*.
f=1

S3(t) =
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FIGURE 1: Overview of QBE retrieval system based on genre classification shift. Controlling the volume balance causes a genre classification

shift of a query song, and our system returns songs that are similar to the genre-shifted query.

TaBLE 1: Acoustic features representing musical mood.

Acoustic intensity features

Dim. Symbol Description

1 Si(t) Overall intensity

2-8 S, (i, t) Intensity of each subband*
Acoustic timbre features

Dim. Symbol Description

9 S5(t) Spectral centroid

10 S4(t) Spectral width

11 Ss (1) Spectral rolloff

12 Se (1) Spectral flux

13-19 S7(i, 1) Spectral peak of each subband*

20-26 Ss (i, 1) Spectral valley of each subband*

27-33 Sy (i, t) Spectral contrast of each subband*

*7-band octave filter bank.

The spectral contrast features are obtained as follows. Let

a vector,

(X(,1,1),X(i,t,2),...,X(i,t, Fn (1)), (4)

be the power spectrogram in the tth frame and ith subband.
By sorting these elements in descending order, we obtain

another vector,

where

(X'(5,6,1),X'(i,£,2),..., X (i, t, Fx (7)), (5)

X'(i,t,1) > X'(i,£,2) > - - -

> X' (i, t, Ex (i) (6)

as shown in Figure 3 and Fy(i) is the number of the ith
subband frequency bins:

Fy(i) = Fu(i) — FL(i). (7)
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F1GuRe 2: Distributions of the first and second principal components of extracted features from the no. 1 piece of the RWC Music Database:
Popular Music. Five figures show the shift of feature distribution by changing the volume of the drum part. The shift of feature distribution

causes the genre classification shift.
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FIGURE 3: Sorted vector of power spectrogram.

Here, the spectral contrast features are represented by
spectral peak S;(i,t), spectral valley Ss(i,t), and spectral
contrast Sy (i, t):

. S X (it f)
57(1, t) = log([)’FN(l) 3

Z?L(?f/j)FN(i) X' (i,t, f) (8)
BFn (i) ’

S9(i) t) = S7(i) t) - SS(i) t))

Ss(i, 1) = log(

where f3 is a parameter for extracting stable peak and valley
values, which is set to 0.2 in our experiments.

2.3. Similarity Calculation. Our QBE retrieval system needs
to calculate the similarity between musical pieces, that is, a
query example and each piece in a database, on the basis of
the overall mood of the piece.

To model the mood of each piece, we use a Gaussian
Mixture Model (GMM) that approximates the distribution
of acoustic features. We set the number of mixtures to 8
empirically, although a previous study [8] used a GMM with
16 mixtures since we used smaller database than that study
for experimental evaluation. Although the dimension of the
obtained acoustic features was 33, it was reduced to 9 by
using the principal component analysis where the cumulative
percentage of eigenvalues was 0.95.

To measure the similarity among feature distributions,
we utilized Earth Movers Distance (EMD) [10]. The EMD
is based on the minimal cost needed to transform one
distribution into another one.

3. Sound Source Separation Using
Integrated Tone Model

As mentioned in Section 1, musical audio signals should
be separated into instrument parts beforehand to boost
and reduce the volume of those parts. Although a number
of sound source separation methods [11-14] have been
studied, most of them still focus on dealing with music
performed on either pitched instruments that have harmonic
sounds or drums that have inharmonic sounds. For example,
most separation methods for harmonic sounds [11-14]
cannot separate inharmonic sounds, while most separation
methods for inharmonic sounds, such as drums [15], cannot
separate harmonic ones. Sound source separation methods
based on the stochastic properties of audio signals, for
example, independent component analysis and sparse coding
[16-18], treat particular kind of audio signals which are
recorded with a microphone array or have small number
of simultaneously voiced musical notes. However, these
methods cannot separate complex audio signals such as
commercial CD recordings. We describe our sound source
separation method which can separate complex audio signals
with both harmonic and inharmonic sounds in this section.

The input and output of our method are described as
follows:

input power spectrogram of a musical piece and its
musical score (standard MIDI file); standard MIDI
files for famous songs are often available thanks to
Karaoke applications; we assume the spectrogram
and the score have already been aligned (synchro-
nized) by using another method;

output decomposed spectrograms that correspond to
each instrument.
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To separate the power spectrogram, we approximate the
power spectrogram which is purely additive. By playing back
each track of the SMF on a MIDI sound module, we prepared
a sampled sound for each note. We call this a template sound
and used it as prior information (and initial values) in the
separation. The musical audio signal corresponding to the
decomposed power spectrogram is obtained by using the
inverse short-time Fourier transform with the phase of the
input spectrogram.

In this section, we first define the problem of separating
sound sources and the integrated tone model. This model
is based on a previous study [19], and we improved
implementation of the inharmonic models. We then derive
an iterative algorithm that consists of two steps: sound source
separation and model parameter estimation.

3.1. Integrated Tone Model of Harmonic and Inharmonic Mod-
els. Separating the sound source means decomposing the
input power spectrogram, X (t, f), into a power spectrogram
that corresponds to each musical note, where t and f are the
time and the frequency, respectively. We assume that X (¢, f)
includes K musical instruments and the kth instrument
performs Li musical notes.

We use an integrated tone model, Ji(¢, f), to represent
the power spectrogram of the /th musical note performed by
the kth musical instrument ((k, I)th note). This tone model
is defined as the sum of harmonic-structure tone models,

Hy(t, f), and inharmonic-structure tone models, Iy (¢, f),

multiplied by the whole amplitude of the model, w(] ):

H 1
Ju(t, ) = wip (wis " Hia(t, f) + wi' T (. £)), (9)
where w,(cjl) and (w,(f), w,(fl)) satisfy the following constraints:

}J,’_Jxlffdtdf vk 1w 1 wd =1 (10)

The harmonic tone model, Hy(t, f), is defined as
a constrained two-dimensional Gaussian Mixture Model
(GMM), which is a product of two one-dimensional GMMs,
> gl{nZEklm(t) and kaﬁ)F,ﬂ)(f). This model is designed
by referring to the HTC source model [20]. Analogously,
the inharmonic tone model, I (¢, f), is defined as a con-
strained two-dimensional GMM that is a product of two
one-dimensional GMMs, . uklmEkl) (t) and S v F(f).
The temporal structures of these tone models, E,(d )(t) and
Eklm(t), are defined as an identical mathematical formula,
but the frequency structures, F,g,?( f) and F,gi( f), are
defined as different forms. In the previous study [19], the
inharmonic models are implemented in a nonparametric
way. We changed the inharmonic model by implementing
in a parametric way. This change improves generalization of
the integrated tone model, for example, timbre modeling and
extension to a bayesian estimation.

5
The definitions of these models are as follows:
My—1 Ny " -
Hu(t, f) = >, D tiim Eklm(t) kln Fy, (f),
m=0 n=1
Z Z klmEklm(t) klnFlgn(f ),
m=0 n=1
H
H) 1 (t - Tlilm)>
Egjn () = N7kt e &
TPk 2(ka )
(H) (f ‘Ukln)
Fkln (f) \/— (H) 2 >
Ukl 2(% )
0 (11)
1 t— Tkim
El(cgln(t) = J2pd exp _<)z) >
TPk 2(sz )
2
Dy 1 (F(f)—n)
Fkl"(f)_\/ﬁ(f+x)logﬁexl)( 2 >

H H
Tm = T+ mpyy s

(H) (H)
Wy = MW

T = T + mpy7
_log((f/x) +1)
a log 8 '

All parameters of Ji;(t, f) are listed in Table 2. Here, My and
Ny are the numbers of Gaussian kernels that represent tem-
poral and frequency structures of the harmonic tone model,
respectively, and M; and Nj are the numbers of Gaussians
that represent those of the inharmonic tone model.  and x
are coefficients that determine the arrangement of Gaussian
kernels for the frequency structure of the inharmonic model.
If 1/(log ) and « are set to 1127 and 700, ¥ (f) is equivalent

F(f)

to the mel scale of f Hz. Moreover ufﬂ, v,(f;l), ,(flln, nd v,g;
satisfy the following conditions:
Vk,l: Zu,(ﬁr), =1,
m
Vi1 Sl =1,
n
(12)

Vk,l: Zu,(f,zn =1,
m
(0]
Evkzn

As shown in Figure 5, function F,g,)q( f) is derived by
changing the variables of the following probability density

function:
2
)

1
N(gsn, 1) —mexp<— 5
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TABLE 2: Parameters of integrated tone model.

Symbol Description

wy)) Overall amplitude

wil, wi) Relative amplitude of harmonic and inharmonic tone models

u,(ﬁz Amplitude coefficient of temporal power envelope for harmonic tone model

v,gf,) Relative amplitude of the nth harmonic component

u,(f,l,, Amplitude coefficient of temporal power envelope for inharmonic tone model

v,(flﬂ, Relative amplitude of the nth inharmonic component

Tkl Onset time

pub Diffusion of temporal power envelope for harmonic tone model

oo Diffusion of temporal power envelope for inharmonic tone model

wl? FO of harmonic tone model

o’ Diffusion of harmonic components along frequency axis

B« Coefficients that determine the arrangement of the frequency structure of inharmonic model

from g = F(f) to f, that is,

B\ (F (fim1)

Fin(f) = G

1 1
- (f+K)log/3\/ﬁexP<_ 2

3.2. Iterative Separation Algorithm. The goal of this separa-
tion is to decompose X(t, f) into each (k, [)th note by mul-
tiplying a spectrogram distribution function, AV (k, ;¢, f),
that satisfies

VLt f:0<AD (kL f) <1,

Vit f i D AD(k It f) =1

k.l

(15)

With AV (k,L;t, f), the separated power spectrogram,
X,g)(t, f), is obtained as

X (6, £) = AY (kL t, /)X (1, £). (16)

Then, let AY) (m, n; k, 1, t, f) and AD (m, n; k, 1, t, f) be spec-

trogram distribution functions that decompose Xkl)(t )
into each Gaussian distribution of the harmonic and inhar-
monic models, respectively. These functions satisfy

Vi, Lmnt, f:0<AD (mnsk Lt f) <1

(17)
Vi, Lmnt, f:0<AD(mmnk Lt f) <
VLt f:0< SAM (mmk, Lt f)

m,n (18)

+ ZA(I)(m,n;k,l, tf) =

With these functions, the separated power spectrograms,
X (t, f) and X,g,)m(t,f), are obtained as

klmn
XD (8, f) = A® (m,msk, Lt, /)X (8 f),

X (1, f) = (t, ).

To evaluate the effectiveness of this separation, we use
an objective function defined as the Kullback-Leibler (KL)

divergence from X,gfn)n(t, f)and X,g,)nn(t, f) to each Gaussian
kernel of the harmonic and inharmonic models:

0 -3(5 [[xis

(H)
Xklmn(t f)
(H)
Ukim kln Eklm(t)Fk '(f)

+ Z H X (5

(19)
AD (m,n; k, 1, )X

% log dtdf

(20)

X (6, f) )
dedf |.
Vi Ekn (DEG (f) /

The spectrogram distribution functions are calculated by
minimizing Q) for the functions. Since the functions
satisfy the constraint given by (18), we use the method of
Lagrange multiplier. Since Q) is a convex function for
the spectrogram distribution functions, we first solve the
simulteneous equations, that is, derivatives of the sum of QW
and Lagrange multipliers for condition (18) are equal to zero,
and then obtain the spectrogram distribution functions,

x log (

Ekl >(t)Fkln (f)
Skt Ju(ts f)

Eg, (D (f)
Skida(t, f)

AP (my sk, Lt f) =
(21)
AD (m, msk,Lt, f) =



and decomposed spectrograms, that is, separated sounds, on
the basis of the parameters of the tone models.

Once the input spectrogram is decomposed, the like-
liest model parameters are calculated using a statistical
estimation. We use auxiliary objective functions for each
(k, Dth note, Qg), to estimate robust parameters with power
spectrogram of the template sounds, Yy (t, f). The (k,[)th
auxiliary objective function is defined as the KL divergence
from Y,g:fn(t, f) and Y,Ellr)nn(t, f) to each Gaussian kernel of
the harmonic and inharmonic models:

(H)
(H) t 1 Yklmn( f)
z J kimn (£ f) l0g ug v ESD (0 F (f)

Ukim szn

I) 1 klmn(t f) dtd
U%H Vim0 )08 - i oy 4P
(22)

dtdf

where

YIEII-rIIBn(t’f) = A<H)(m’ n; k) l> t’f) Ykl(t)f))

YO () = AD (m,nsk, L t, f) Yu(t, f).

Then, let Q be a modified objective function that is defined

as the weighted sum of Q) and Qg) with weight parameter
%

(23)

Q=aQ®W +(1-a)> Q). (24)

We can prevent the overtraining of the models by gradually
increasing « from 0 (i.e., the estimated model should first
be close to the template spectrogram) through the iteration
of the separation and adaptation (model estimation). The
parameter update equations are derived by minimizing Q.
We experimentally set « to 0.0, 0.25, 0.5, 0.75, and 1.0 in
sequence and 50 iterations are sufficient for parameter con-
vergence with each alpha value. Note that this modification
of the objective function has no direct effect on the calcu-
lation of the distribution functions since the modification
never changes the relationship between the model and the
distribution function in the objective function. For all «
values, the optimal distribution functions are calculated from
only the models written in (21). Since the model parameters
are changed by the modification, the distribution functions
are also changed indirectly. The parameter update equations
are described in the appendix.

We obtain an iterative algorithm that consists of two
steps: calculating the distribution function while the model
parameters are fixed and updating the parameters under the
distribution function. This iterative algorithm is equivalent
to the Expectation-Maximization (EM) algorithm on the
basis of the maximum a posteriori estimation. This fact
ensures the local convergence of the model parameter
estimation.

4. Experimental Evaluation

We conducted two experiments to explore the relationship
between instrument volume balances and genres. Given the

EURASIP Journal on Advances in Signal Processing

TABLE 3: Number of musical pieces for each genre.

Genre Number of pieces
Popular

Rock

Dance 15

Jazz 9
Classical 14

query musical piece in which the volume balance is changed,
the genres of the retrieved musical pieces are investigated.
Furthermore, we conducted an experiment to explore the
influence of the source separation performance on this
relationship, by comparing the retrieved musical pieces
using clean audio signals before mixing down (original) and
separated signals (separated).

Ten musical pieces were excerpted for the query from
the RWC Music Database: Popular Music (RWC-MDB-P-
2001 no. 1-10) [21]. The audio signals of these musical
pieces were separated into each musical instrument part
using the standard MIDI files, which are provided as the
AIST annotation [22]. The evaluation database consisted
of 50 other musical pieces excerpted from the RWC
Music Database: Musical Genre (RWC-MDB-G-2001). This
excerpted database includes musical pieces in the following
genres: popular, rock, dance, jazz, and classical. The number
of pieces are listed in Table 3.

In the experiments, we reduced or boosted the volumes
of three instrument parts—vocal, guitar, and drums. To shift
the genre of the retrieved musical piece by changing the
volume of these parts, the part of an instrument should
have sufficient duration. For example, the volume of an
instrument that is performed for 5 seconds in a 5-minute
musical piece may not affect the genre of the piece. Thus,
the above three instrument parts were chosen because they
satisty the following two constraints:

(1) played in all 10 musical pieces for the query,

(2) played for more than 60% of the duration of each
piece.

At http://winnie kuis.kyoto-u.ac.jp/ ~itoyama/qbe/, sou-
nd examples of remixed signals and retrieved results are
available.

4.1. Volume Change of Single Instrument. The EMDs were
calculated between the acoustic feature distributions of each
query song and each piece in the database as described
in Section 2.3, while reducing or boosting the volume of
these musical instrument parts between 20 and +20dB.
Figure 6 shows the results of changing the volume of a single
instrument part. The vertical axis is the relative ratio of the
EMD averaged over the 10 pieces, which is defined as

average EMD of each genre

EMD ratio = .
rato average EMD of all genres

(25)

The results in Figure 6 clearly show that the genre
classification shift occurred by changing the volume of any
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FIGURE 6: Ratio of average EMD per genre to average EMD of all genres while reducing or boosting the volume of single instrument part.
Here, (a), (b), and (c) are for the vocal, guitar, and drums, respectively. Note that a smaller ratio of the EMD plotted in the lower area of
the graph indicates higher similarity. (a) Genre classification shift caused by changing the volume of vocal. Genre with the highest similarity
changed from rock to popular and to jazz. (b) Genre classification shift caused by changing the volume of guitar. Genre with the highest
similarity changed from rock to popular. (c) Genre classification shift caused by changing the volume of drums. Genre with the highest

similarity changed from popular to rock and to dance.

instrument part. Note that the genre of the retrieved pieces
at 0dB (giving the original queries without any changes) is
the same for all three Figures 6(a), 6(b), and 6(c). Although
we used 10 popular songs excerpted from the RWC Music
Database: Popular Music for the queries, they are considered
to be rock music as the genre with the highest similarity at
0dB because those songs actually have the true rock flavor
with strong guitar and drum sounds.

By increasing the volume of the vocal from —20 dB, the
genre with the highest similarity shifted from rock (-20 to

4dB) to popular (5 to 9dB) and to jazz (10 to 20dB) as
shown in Figure 6(a). By changing the volume of the guitar,
the genre shifted from rock (—20 to 7dB) to popular (8 to
20 dB) as shown in Figure 6(b). Although it was commonly
observed that the genre shifted from rock to popular in both
cases of vocal and guitar, the genre shifted to jazz only in the
case of vocal. These results indicate that the vocal and guitar
would have differentimportance in jazz music. By changing
the volume of the drums, genres shifted from popular (—20
to —7dB) to rock (—6 to 4dB) and to dance (5 to 20 dB)
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caused by changing the volume of guitar and drums.

as shown in Figure 6(c). These results indicate a reasonable
relationship between the instrument volume balance and the
genre classification shift, and this relationship is consistent
with typical impressions of musical genres.

4.2. Volume Change of Two Instruments (Pair). The EMDs
were calculated in the same way as the previous experiment.

Figure 7 shows the results of simultaneously changing the
volume of two instrument parts (instrument pairs). If one
of the parts is not changed (at 0 dB), the results are the same
as those in Figure 6.

Although the basic tendency in the genre classification
shifts is similar to the single instrument experiment, classical
music, which does not appear as the genre with the highest
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drums.

similarity in Figure 6, appears in Figure 7(b) when the vocal
part is boosted and the drum part is reduced. The similarity
of rock music decreased when we separately boosted either
the guitar or the drums, but it is interesting that rock music
can keep the highest similarity if both the guitar and drums
are boosted together as shown in Figure 7(c). This result
closely matched with the typical impression of rock music,
and it suggests promising possibilities for this technique as a
tool for customizing the query for QBE retrieval.

4.3. Comparison between Original and Separated Sounds. The
EMDs were calculated while reducing or boosting the volume
of the musical instrument parts between —5 and +15 dB.
Figure 8 shows the normalized EMDs that are shifted to 0
when the volume control ratio is 0 dB. Since all query songs

are popular music, EMDs between query songs and popular
pieces in the evaluation database tend to be smaller than
the pieces of other genres. In this experiment, EMDs were
normalized because we focused on the shifts in the acoustic
features.

By changing the volume of the drums, the EMDs plotted
in Figure 8(c) have similar curves in both of the original
and separated conditions. On the other hand, by changing
the volume of the guitar, the EMDs plotted in Figure 8(b)
showed that a curve of the original condition is different from
a curve of the separation condition. This result indicates
that the shifts of features in those conditions were different.
Average source separation performance of the guitar part
was —1.77 dB, which was a lower value than those of vocal
and drum parts. Noises included in the separated sounds
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of the guitar part induced this difference. By changing the
volume of the vocal, the plotted EMDs of popular and
dance pieces have similar curves, but the EMDs of jazz
pieces have different curves, although the average source
separation performance of the vocal part is the highest
among these three instrument parts. This result indicates
that the separation performance for predictable feature shifts
depends on the instrument part.

5. Discussions

The aim of this paper is achieving a QBE approach which
can retrieve diverse musical pieces by boosting or reducing
the volume balance of the instruments. To confirm the
performance of the QBE approach, evaluation using a music
database which has wide variations is necessary. A music
database that consists of various genre pieces is suitable for
the purpose. We defined the term genre classification shift as
the change of musical genres in the retrieved pieces since we
focus on the diversity of the retrieved pieces not on musical
genre change of the query example.

Although we conducted objective experiments to evalu-
ate the effectiveness of our QBE approach, several questions
remain as open questions.

(1) More evidences of our QBE approach by subjective
experiments are needed whether the QBE retrieval

system can help users search better results.
(2) In our experiments, we used only popular musical

pieces as query examples. Remixing query examples
except popular pieces can shift genres of retrieved
results.

For source separation, we use the MIDI representation
of a musical signal. Mixed and separated musical signals
contain variable features: timbre difference from musical
instruments’ individuality, characteristic performances of
instrument players such as vibrato, and environments such
as room reverberation and sound effects. These features
can be controlled implicitly by changing the volume of
musical instruments and therefore QBE systems can retrieve
various musical pieces. Since MIDI representations do not
contain these features, diversity of retrieved musical pieces
will decrease and users cannot evaluate the mood difference
of the pieces if we use only musical signals which are
synthesized from MIDI representations.

In the experiments, we used precisely synchronized
SMFs at most 50 milliseconds of onset timing error. In
general, synchronization between CD recordings and their
MIDI representations is not enough for separation. Previous
studies on audio-to-MIDI synchronization methods [23, 24]
can help this problem. We experimentally confirmed that
onset timing error under 200 milliseconds does not decrease
source separation performance. Another problem is that
the proposed separation method needs a complete musical
score with melody and accompaniment instruments. A study
of source separation method with a MIDI representation
of specified instrument part [25] will help solving the
accompaniment problem.
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In this paper, we aimed to analyze and decompose a mix-
ture of harmonic and inharmonic sounds by appending the
inharmonic model to the harmonic model. To achieve this,
a requirement must be satisfied: one-to-one basis-source
mapping based on structured and parameterized source
model. The HTC source model [20], on which our integrated
model is based, satisfies the requirement. Adaptive harmonic
spectral decomposition [26] has modeled a harmonic struc-
ture in a different way. They are suitable for multiple-pitch
analysis and applied to polyphonic music transcription. On
the other hand, the nonnegative matrix factorization (NMF)
is usually used for separating musical instrument sounds
and extracting simple repeating patterns [27, 28] and only
approximates complex audio mixture since the one-to-one
mapping is uncertified. Efficient feature extraction from
complex audio mixtures will be promising by combining
lower-order analysis using structured models such as the
HTC and higher-order analysis using unconstrained models
such as the NMF.

6. Conclusions

We have described how musical genres of retrieved pieces
shift by changing the volume of separated instrument parts
and explained a QBE retrieval approach on the basis of
such genre classification shift. This approach is important
because it was not possible for a user to customize the QBE
query in the past, which required the user to always find
different pieces to obtain different retrieved results. By using
the genre classification shift based on our original sound
source separation method, it becomes easy and intuitive to
customize the QBE query by simply changing the volume
of instrument parts. Experimental results confirmed our
hypothesis that the musical genre shifts in relation to the
volume balance of instruments.

Although the current genre shift depends on only the
volume balance, other factors such as rhythm patterns, sound
effects, and chord progressions would also be useful for
causing the shift if we could control them. In the future,
we plan to pursue the promising approach proposed in this
paper and develop a better QBE retrieval system that easily
reflects the user’s intention and preferences.

Appendix
Parameter Update Equations

The update equation for each parameter derived from the
M-step of the EM algorithm is described here. We solved
the simultaneous equations, that is, derivatives of the sum of
the cost function (24), and Lagrange multipliers for model
parameter constraints, (10) and (12), are equal to zero. Here
we introduce the weighted sum of decomposed powers:

Z(t, f) = aAD (k, 1 LX)+ —a)Yul(t f),
70 (6, £) = A (m,ms kL, ) Zua (1, f),

70 (6 F) = AD (m,msk,Lt, £) Zu(t, f).

(A1)
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The summation or integration of the decomposed power
over indices, variables, and suffixes is denoted by omitting
these characters, for example,

ZZk mn

(A2)
ZHUED Jzéfifn(t,f)df-
w,g) is the overall amplitude:
w) = z40 4z, (A.3)

W,(f) and w,(fl) are the relative amplitude of harmonic and

inharmonic tone models:

(H)
wii' = <H% >
Zy + 2y
" (A.4)
Wl(c? (H)Zkl -
Zy ' tZy

u}ﬂ is the amplitude coefficient of temporal power envelope

for harmonic tone model:

H)
S0 Zklm
klm — ) .
Zkl

(A.5)

v,((ﬁ) is the relative amplitude of the nth harmonic compo-
nent:

) _ iy
kin = (13) : (A.6)
Z

u}fl,)q is the amplitude coefficient of temporal power envelope

for inharmonic tone model:

v,gi is the relative amplitude of the nth inharmonic compo-

nent:

(A.8)

Ty is the onset time:

% f(t mp,i?) <H)(t)dl‘+z f(f mpy )Zklm(t)

Tkl = N Z(”
(A9)
w,(d )w,(f) is the FO of harmonic tone model:
(H)
i) _ zf”fzkln (f)df
Wi —, (A.10)

%-n2Zkln

13

agn is the diffusion of harmonic components along fre-
quency axis:

1/2
(H) _ % I <f ~ ) ) Za)(f)df
o 70 (A.11)
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