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There is an old tale of three blind men who were brought to
the zoo for the first time and allowed to touch the elephant.
On their way home, they shared this exciting experience. “An
elephant is a long, flexible, and cylindrical creature,” said the
man who had touched the elephant’s trunk. “No! It is a thin
and flat creature,” said the man who had touched the ele-
phant’s ear. “No, no! An elephant is rough and rigid like a
tree stem,” disagreed the third person who had touched the
elephant’s leg. And the truth is that all three men were right!

When trying to see the invisible with our medical imag-
ing systems, we are much like those three blind men. With
each imaging modality, we shed some light on a different as-
pect of the general physiological picture. Although in some
cases one modality may suffice to provide a definitive clinical
answer, this is not the case in many other situations. Multi-
modal imaging (MMI) is needed for three basic reasons: (a)
to acquire complementary information which may be needed
to reach a definitive diagnostic conclusion, exclude certain
pathologies, or obtain quantitative values (e.g., [1, 2]); (b) to
create synergism by data fusion (i.e., to provide added infor-
mation and new images which are more informative than the
individual source images); (c) to plan therapeutic procedures
and monitor treatment (e.g., [3, 4]).

An ideal MMI system or method should be capable of
performing all three tasks mentioned above. Naturally, that
requirement might be too demanding in terms of technolog-
ical capabilities and operational considerations. Hence, di-
agnostic and therapeutic systems are commonly separated.
However, one may see in the near future more system inte-
gration in the form of image-guided therapy.

There are several technical issues that are associated with
MMI. A prerequisite is to obtain effective fusion and display
of the data (e.g., [5–7]). Accurate spatial (and maybe also
temporal) alignment is crucial for effective data fusion. There
are basically two approaches for achieving coregistration.

The first, which may be called the “hardware” approach,
utilizes a hybrid design comprising two (or more) imaging
modalities that are contained within a single device. The
advantage of this approach is that the imaging modalities
acquire data sequentially while the patient lies on the bed.
The disadvantage is the need for dedicated MMI equipment
which may be cumbersome or costly.

The second approach for achieving coregistration is
the “software-” based approach. With this approach, image
properties and tissue geometry and texture are used as clues
for aligning the data sets. Alignment is thus achieved by ma-
nipulating the acquired data under certain optimization con-
straints or 3D model to achieve the best (most probable)
match (e.g., [8–11]). Of course this approach is susceptible
to noise and artifacts, but on the other hand it allows bet-
ter versatility, and in many cases may be applied success-
fully to scans performed on different occasions and at dif-
ferent locations. Nevertheless, it is now widely recognized
that the merger of information is more efficiently achieved
by the hardware approach. The recent (2001) introduction
of hybrid scanners has led to an expansion of this approach
through the rapid adoption of the technology into the clini-
cal arena.

One of the most promising examples of MMI hybrid sys-
tems that is currently demonstrating a significant clinical im-
pact is the combination of CT with nuclear imaging, and
specifically positron emission tomography (PET). Following
the development of a prototype in the late 1990s [12], the
first commercial combined PET/CT scanner was introduced
in 2001 and since then, close to 2000 of such devices from
different vendors have been installed in clinics worldwide.
Both CT and PET technologies continue to advance and
since 2006, new PET scanners are now only available in com-
bination with CT. The MMI technology available clinically
has demonstrated particular impact in staging malignant
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disease [13, 14] and in monitoring response of the disease
to therapy. The recent incorporation of high-speed, multi-
slice CT scanners with PET also opens up the potential for
applying this technology to cardiac disease.

Another attractive modality for MMI is MRI. Although
MRI imposes severe restrictions on the imaging environ-
ment, it offers a broad spectrum of scan types and im-
age contrast. Compared with CT, MRI offers greater soft-
tissue contrast, better capability for quantitation of func-
tion (e.g., measurement of blood flow or tissue metabolism),
and potentially new types of molecularly targeted contrast
agents. Efforts for combining MRI with other modalities
(e.g., PET/MRI and ultrasound/MRI) are currently under
development.

Another aspect of MMI is the development of multi-
modal contrast enhancing materials. Such materials can be
used in the form of a “fit-all” type of marker (e.g., [15]).
Thus, their signals can be used as control points for 3D align-
ment. Alternatively, they can be used as standard contrast
agents used for disease detection and characterization (e.g.,
[16]).

In conclusion, considering the current tends in radiology,
it can be expected that MMI devices will become increasingly
available in the clinical arena. PET/CT has already made an
important clinical contribution to patient care for oncology,
while the new combined SPECT/CT designs are enhancing
SPECT applications and improving physicians’ confidence
with image interpretation. No doubt, new combinations of
hybrid devices will appear in the clinical arena and in many
situations. As demonstrated by PET/CT in the oncology field,
they will become the primary imaging option. A PET/MR
design for simultaneous acquisition of PET and MR has re-
cently acquired the first patient images, and a combined PET
and ultrasound device is also under development for breast
imaging. For many reasons, therefore, hybrid imaging de-
vices are finding widespread acceptance within the clinical
environment and some are already contributing to patient
care and management. There is little doubt that this trend
will continue in the future with an increasing reliance on
MMI devices for medical imaging, thereby ensuring that all
involved can be satisfied that they will eventually obtain a
true and consistent picture of the elephant.

Haim Azhari
Robert R. Edelman

David Townsend
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The purpose of the paper is to present and evaluate the performance of a new software-based registration system for patient setup
verification, during radiotherapy, using electronic portal images. The estimation of setup errors, using the proposed system, can
be accomplished by means of two alternate registration methods. (a) The portal image of the current fraction of the treatment is
registered directly with the reference image (digitally reconstructed radiograph (DRR) or simulator image) using a modified man-
ual technique. (b) The portal image of the current fraction of the treatment is registered with the portal image of the first fraction
of the treatment (reference portal image) by applying a nearly automated technique based on self-organizing maps, whereas the
reference portal has already been registered with a DRR or a simulator image. The proposed system was tested on phantom data
and on data from six patients. The root mean square error (RMSE) of the setup estimates was 0.8 ± 0.3 (mean value ± standard
deviation) for the phantom data and 0.3± 0.3 for the patient data, respectively, by applying the two methodologies. Furthermore,
statistical analysis by means of the Wilcoxon nonparametric signed test showed that the results that were obtained by the two
methods did not differ significantly (P value > 0.05).

Copyright © 2007 Pantelis A. Asvestas et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

The effectiveness of radiation therapy depends on the patient
setup accuracy at each radiation treatment session. A signif-
icant problem is to reproduce the intended position of the
part of the patient that is irradiated with respect to the treat-
ment beam(s) at each treatment session. It is a common clin-
ical practice to verify the setup by comparing the portal im-
age with a reference one which records the intended patient
position. Typical reference images that can be used are simu-
lator images, digitally reconstructed radiographs (DRRs), or
another portal images. The introduction of electronic portal
imaging devices (EPIDs) offers the potential for correcting
inaccuracies in patient placement in a prospective manner,
rather retrospectively as is done with conventional megavolt-
age films.

In general, setup errors are classified as random (or in-
terfraction) and systematic errors [1]. The random errors are
deviations between different fractions, during a treatment
series, whereas the systematic errors are deviations between
the intended patient position and the average patient posi-

tion over a course of fractionated therapy [2]. Furthermore,
random patient movement or periodic movements such as
breathing can cause the so-called intrafraction error, which
is defined as the deviation observed within a single frac-
tion of fractionated therapy. However, these movements dur-
ing a single fraction are usually insignificant for most pa-
tients and treatment sites, with a few exceptions (e.g., the
lung).

A number of setup correction strategies aiming at im-
proving target localization during radiation therapy treat-
ments have been proposed. Most of these strategies are based
on the matching of common anatomical features of portal
images selected either manually or semiautomatically. In [3],
the magnitude of the errors introduced into the registra-
tion between the rotated and the nonrotated phantom im-
ages and the reference DRR image was determined based on
“match structures,” which include the field edges and at least
three anatomical landmarks manually selected on the refer-
ence image and matched with the corresponding anatomy
in the portal images. An object-based registration method
for portal images was developed in [4], which was based
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on core analysis, a fundamental computer vision method, to
define correspondence between common anatomical struc-
tures of the images manually selected and a curved-based
matching algorithm (chamfer-matching) in order to deter-
mine the translation/rotation parameters of the image regis-
tration. Similar approaches for registering DRRs with portal
images were also proposed using either the Pearson’s correla-
tion coefficient as a measure of match on selected anatom-
ical features [5] or the template matching technique [6].
Other strategies for the verification of patient setup were
based on the optimization of a similarity measure such as
histogram matching technique [7], phase-only correlation
[8], the minmax entropy [9], and the mutual information
[10]. Furthermore, a comparative study of various similar-
ity measures and optimization procedures had been per-
formed on matching high-quality DRRs against portal im-
ages that were acquired right before treatment dose delivery
[11].

Setup errors that are caused by out-of plane rotations
can be estimated by means of three-dimensional techniques
[5, 12]. In general, out-of-plane rotational errors that are
smaller than 3◦ do not affect the projected anatomy in por-
tal images significantly. However, when larger rotational er-
rors are not taken into account, this causes a reduced accu-
racy in the measurement of the translational error [13]. In
some cases, two-dimensional techniques can also provide re-
liable estimations of the out-of-plane rotational errors; out-
of-plane rotation for an anterior image can be an in-plane
rotation for a lateral image.

In this paper, an extended version of our paper in [14]
is presented for the estimation of patient setup errors dur-
ing radiotherapy treatments. According to the proposed
methodology, the verification of patient setup consists of the
following steps: (a) delineation of radiation field edges in the
portal image in order to verify that the beam has the cor-
rect shape as well as to establish a common coordinate sys-
tem with a previously delineated field edge from the refer-
ence image, and (b) matching of common anatomical struc-
tures within the two images in order to provide an estima-
tion of the patient setup error relative to the field edges.
Two registration methodologies are presented within the pa-
per: (a) the registration of portal image of the current frac-
tion of the treatment with the corresponding DRR image,
used as a reference image and (b) the registration of por-
tal images at different treatment sessions using a nearly au-
tomatic technique based on self-organizing maps (SOMs)
to define automatic correspondence of common anatomi-
cal features of the portal images. Both registration method-
ologies have been incorporated towards the development
of a software system, called ESTERR-PRO, for the estima-
tion of patient setup errors as presented in the paper. A
detailed description of the system in terms of registration
methodologies is provided in Section 2. In Section 3, re-
sults of the performance of the system on phantom and
real data are presented. Finally, in Sections 4 and 5, dis-
cussion of the results and concluding remarks are drawn,
respectively.

2. MATERIALS AND METHODS

2.1. The proposed software system: “ESTERR-PRO”

The complete system incorporates the following features: (a)
friendly user interface, (b) image processing tools, and (c)
a database of patient records and images. The user of the
system is able to access and display portal images and cor-
responding reference images (DRRs simulator images) for
a patient selected from the database. The image processing
tools can then be used to detect and objectively estimate the
setup error, if present.

ESTERR-PRO runs on personal computers (PCs) under
the Microsoft Windows operating system. The software was
developed in the C++ language.

In order to review portal images, the user must first select
a patient name from the database. Then all the available ref-
erence and portal images, sorted by date, are presented to the
user. When the selection of the reference and the portal im-
age is completed, the images are displayed next to each other
(see Figure 1).

The image processing toolkit includes tools for (a) pre-
processing such as brightness/contrast adjustment, contrast
enhancement (histogram equalization [15], contrast and
limited adaptive histogram equalization [16]), and smooth-
ing (mean filtering, median filtering, morphological smooth-
ing [15]), (b) patient setup verification.

2.2. Patient setup verification

As already mentioned, the patient setup verification com-
prises two steps: (a) delineation of radiation field edges in
the portal image in order to verify that the beam has the cor-
rect shape as well as to establish a common coordinate sys-
tem with a previously delineated field edge from the reference
image, and (b) matching of common anatomical structures
within the two images.

2.2.1. Verification of field shape

The radiation field edges in the portal image are delineated
automatically as follows: a thresholding operation (with
threshold level set to 5) of the gray-levels of the image is ap-
plied in order to obtain a rough approximation of the field
contour. Then, the Canny edge detector [17] using a fast re-
cursive implementation of the Gaussian kernel [18], applied
on the original image in a band of width 15 pixels around
the position of the initial contour, provides the final form of
the field edges. The values for the standard deviation of the
Gaussian kernel, the low threshold, and the high threshold
for the nonmaximum suppression of the Canny edge detec-
tor were set to 2.0, 0.0, and 0.95, respectively. The field edges
for each image are stored in the computer memory as a bi-
nary image, which is called field edge map and has the same
size as the original image. A value 1 (0) in the field edge map
indicates that the corresponding pixel belongs to the field
contour (background).
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Figure 1: The ESTERR-PRO interface. The main screen is divided into two side-by-side panels. A portal image is displayed on the right
panel and a reference image is displayed on the left panel.

The verification of the field shape is accomplished au-
tomatically as follows: first, the distance transformation of
the reference field edge map is calculated [19]. The distance
transformation provides the smallest distance of each pixel of
the field edge map from the field edge. Then, an optimization
process is applied in order to achieve the spatial coincidence
of the two radiation field edge maps. The optimization pro-
cess involves the minimization, with respect to the param-
eters of a rigid transform (namely displacement and rota-
tion in the image plane) of the distance between the reference
edge map and the transformed version of the edge map of the
portal image, using the current values of the parameters of
the rigid transform. The distance between the two edge maps
is calculated by means of the distance transformation of the
reference field edge map. In our implementation, the Pow-
ell’s method [20] is used for the optimization process. Af-
ter the end of the optimization process, the distance between
the reference edge map and the transformed edge map of the
portal image should be small enough. If this distance exceeds
a predefined value, this means that the two field edges do not
have the same shape and a warning is generated, which in-
forms the user about this inconsistency. Additionally, if the
reference image is another portal image then it is expected
that the parameters of the rigid transform, obtained during
the optimization process, to be nearly zero. If this is not the
case, then a warning is also generated. It must be noted that
the whole process is invoked automatically, immediately after
the user selects the pair of the images.

2.2.2. Matching of anatomical structures

The choice of the procedure that is used for the matching
of common anatomical structures between the reference and
the portal image depends on the type of the reference im-
age: (a) if the reference image is a DRR or a simulator im-
age, a modified manual procedure is applied, (b) if the ref-
erence image is a portal image, a semiautomatic approach is
followed.

In particular, when the reference image is a DRR or a sim-
ulator image, the following procedure is applied. The edges
of each image are extracted automatically by the Canny edge
detector. Trackbars for the adjustment of the values of the
parameters Canny edge detector (namely, the standard de-
viation of the Gaussian kernel and the high threshold for the
nonmaximum suppression) are available (see Figure 2) in or-
der to provide the capability of the user to select only edges
that correspond to the anatomical structures of interest.

When the user selects the edges that correspond to the
same anatomical structures within the two images, a similar
optimization procedure as the one used for the verification
of the field shape is invoked. The outcome of the aforemen-
tioned procedure is the setup error in terms of horizontal
displacement, vertical displacement, and angle of rotation
around the axis that is perpendicular on the image plane.

When the reference image is another portal image, the
matching procedure involves the definition of fiducial marks
(points) on anatomical structures of the reference image that
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Figure 2: The edge selection window for matching the anatomical structures between a DRR and a portal image.

do not move with time, or with anatomical processes (the
skeletal system is a good example, whereas the bladder or
the intestines are counterexamples of placement of fiducial
marks). The user-defined fiducial marks can be saved with
the reference image to be utilized in subsequent fractions of
the radiation treatment series. Let (xi, yi) (i = 1, 2, . . . ,N)
be the coordinates (in pixel units) of the user-defined fidu-
cial marks. The next step of the procedure involves the maxi-
mization of a properly chosen function, f , with respect to the
parameters of the setup error (horizontal displacement (dx),
vertical displacement (dy), and angle of rotation (θ)) using
self-organizing maps [21]. The self-organizing map (SOM)
is a neural network algorithm, which uses a competitive
learning technique to train itself in an unsupervised man-
ner. Kohonen first established the relevant theory and ex-
plored possible applications [22]. The Kohonen model com-
prises a layer of neurons m, ordered usually in a one- or two-
dimensional grid. The training of the network is performed
in an iterative way. At each iteration k, a data point x ∈ Rn

is presented to the network; the neuron j with weight vector
w j ∈ Rn is declared as the winning neuron, according to the
following rule:

j = arg min
i

(∥∥x −wi

∥
∥). (1)

The winning neuron j and its neighboring neurons i have
their weight vectors modified according to the following rule:

wi(n + 1) = wi(n) + hi j(n)
[

x(n)−wi(n)
]
, (2)

where hi j(n) = h(‖ri − r j‖,n) is a kernel defined on the neu-
ral network space as a function of the distance ‖ri − r j‖ be-
tween the winning neuron j and its neighboring neurons i,

as well as the iteration number n. This kernel has the shape
of the “Mexican hat” function, which in its discrete form has
maximum value at inter-neuron distance in the case of i = j
whereas its value drops in a Gaussian manner as the distance
increases. The width of this function decreases monotoni-
cally with iteration number. In this way convergence to the
global optimum is attempted during the early phases of the
self-training process, whereas gradually the convergence be-
comes more local as the size of the kernel decreases.

Prior the description of the proposed method, some no-
tations must be introduced. Let μA(I) denote the restriction
of an image I to the region A ⊂ R2 and Tw(A) ⊂ R2 is the
rigid transformation, with parameters w = (dx,dy, θ), of the
region A, where dx, dy, and θ are the horizontal displace-
ment, the vertical displacement, and the angle of rotation,
respectively. Furthermore, MoM(I1, I2) denotes a measure of
match between two images I1 and I2.

If IR, IF are the reference image and the image to be regis-
tered, respectively, then the implementation of the SOM net-
work for registering the two images is as follows. The topol-
ogy of the network is constructed by placing a neuron on
each user-defined fiducial mark Pi = (xi, yi) (i = 1, 2, . . . ,N)
of the reference image. Each neuron is associated with a
square area Ai = [xi − R, xi + R]×[yi−R, yi +R], of (2R+1)2

pixels, centered at the position of the neuron. Additionally, a
weight vector wi = (dxi,dyi, θi), which holds the parameters
of a local rigid transformation, is assigned to each neuron.

The SOM network is trained as follows.

(1) For each neuron, the components of the weight vec-
tor are initialized to zero values, wi(0) = (0, 0, 0), the
quantities MoMi(0) ≡ MoM(μAi(IR),μTwi(0) (Ai)(IF)) are
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calculated, the variable MoMbest is set to a very large
(in magnitude) negative value, and the iteration vari-
able, n, is set to 1.

(2) While n is less than nmax,

(i) if the average value of the MoMi(n− 1),
MoMave(n − 1), is better than MoMbest, then
MoMbest = MoMave(n − 1) and the current
weights are stored as wi;

(ii) an input signal, s(n) = (dx(n),dy(n), θ(n)), is
generated randomly;

(iii) for every neuron, the quantity MoMi(n) ≡
MoM(μAi(IR),μTs(n) (Ai)(IF)) is calculated;

(iv) the winning neuron, kn, in the current iteration,
is defined as

kn = arg max
i

{
MoMi(n)

}
(3)

under the condition

MoMkn(n) > MoMave(n− 1); (4)

(v) the weights of the neurons are updated according
to the following equation:

wi(n)=wi(n− 1)+h
(
kn,n, i

)[
s(n)−wi(n− 1)

]
,

(5)

where h(kn,n, i) (i = 1, 2, . . . ,N) is given by the
following equation:

h
(
kn,n, i

) =
⎧
⎨

⎩

Lq(n),
∥
∥Pkn − Pi

∥
∥ < αq(n)d0,

0 otherwise

q(n) =
⌊

n

p + 1

⌋
,

(6)

L, a,d0 ∈ R and p ∈ R are parameters to be de-
fined later, ‖‖ denotes the Euclidean norm, and
�� is the floor function;

(vi) the iteration variable is increased by one.

(3) When the training is finished, the parameters of the
affine transformation between the two portal images
are calculated using a least squares method between
the point sets {Pi} and {Twi(Pi)} [20].

The selected measure of match was the gradient correla-
tion coefficient, namely,

MoM
(
IR, IF

) = GCC
(
IR, IF

)

= GCCh
(
IR, IF

)
+ GCCv

(
IR, IF

)
,

(7)

where

GCCh
(
IR, IF

)

=
{∑

x,y

[
Gh
R(x, y)−G

h
R

][
Gh
F(x, y)−G

h
F

]}2

∑
x,y

[
Gh
R(x, y)−G

h
R

]2∑
x,y

[
Gh
F(x, y)−G

h
F

]2
,

GCCv
(
IR, IF

)

=
{∑

x,y

[
Gv
R(x, y)−G

v
R

][
Gv
F(x, y)−G

v
F

]}2

∑
x,y

[
Gv
R(x, y)−G

v
R

]2∑
x,y

[
Gv
F(x, y)−G

v
F

]2 .

(8)

The subscript R(F) refers to the reference (to be regis-
tered) image; the superscript h(v) refers to the horizontal
(vertical) direction in the image plane, and G denotes the first
derivative. For example, Gh

R(x, y) denotes the first derivative
of the reference image along the horizontal direction esti-
mated at pixel position (x, y). G refers to the mean value of
the first derivative.

The rationale for selecting the aforementioned measure
of match was that gradient measures concentrate the contri-
butions on edge information, which intuitively appears sen-
sible.

The following generator of random numbers is used for
producing the input signals to the network:

s j(n) = wkn, j + sgn
(
vj − 0.5

)
TM(n)

×
[(

1+
1

TM(n)

)|2vj−1|
−1

]
(
Uj−Lj

)
( j=1, 2, 3)

TM(n) =
⎧
⎨

⎩

1, n = 0,

exp
(
− 2
(
q(n)

)1/n
)

, n > 0,

(9)

where s1(n) = dx(n), s2(n) = dy(n), s3(n) = θ(n), vj is a
uniformly distributed random variable in [0, 1], and Uj(Lj)
denotes the maximum (minimum) allowed value for the cor-
responding component of the input signal. Although Uj and
Lj are inputs to the matching process, for all pairs of im-
ages used in the current study, constant values were used
(±50 pixels for the displacement and ±10◦ for the angle of
rotation).

It must be noted that (9) is a slightly modified version
of the generator used in the very fast simulated annealing
method [23] and provides random signals which in general
lie in the range [wkn, j − (Uj − Lj),wkn, j + (Uj − Lj)]. When a
generated signal is not in the allowed range [Lj ,Uj], then it is
discarded and a new signal is produced until s j(n) ∈ [Lj ,Uj].
The parameter TM(n) controls how far from the weights of
the current winning neuron the input signal can reach. As
the iteration variable evolves, the magnitude of TM(n) falls
exponentially and the generated input signals are more local-
ized around the weights of the current winning neuron (see
Figure 3). This is a desired property, since as the number of
iterations grows, the weights of the current winning neuron
get closer to the parameters of the solution of the matching
problem.

The parameter d0 provides the initial radius of a circular
region around the winning neuron. Only neurons inside this
region are updated. Usually, d0 is set to the maximum dis-
tance between the fiducial marks. As can be seen from (6),
this distance is reduced with geometric rate determined by
the parameter α (0 < α ≤ 1). A typical value for the param-
eter α is 0.995. The parameter L acts like a gain constant for
the magnitude of the update that is applied to the weights
of the neurons. This parameter also decreases geometrically
as the iteration variable evolves. The range of values L is be-
tween 0.99 and 1.0; a typical value is 0.995. The parameter
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Figure 3: Normalized histogram of the values obtained by means of
the random number generator described in (9) for different values
of the parameter TM.

p is an integer that determines the rate of change of the pa-
rameters L and α. Practically, this parameter determines the
number of iterations that are executed before an adjustment
of the values for the parameters L, α, and TM(n) takes place.
A typical value for this parameter is 200. The number of iter-
ations is set to 5000 and the size of the square area associated
with each neuron is 19 (R = 9).

Finally, since the transformed region Ts(n)(Ai) does not
have integer coordinates, bilinear interpolation is used in or-
der to calculate MoMi(n).

In Figure 4, the results that were obtained from the appli-
cation of the proposed methodology on real pelvic data are
presented.

2.3. Data acquisition and evaluation protocol

The proposed system was tested on phantom and real data.
All the portal images were acquired for gantry angle 0◦ using
a CCD camera-based EPID (Beamview Plus v2.1, Siemens)
of “HYGEIA” with a total dose of ∼ 20 MU/image; 6-MV X-
rays were used. The size of the pelvic field was 12 × 12 cm2

at the isocenter. The DRR images were obtained from a CT
data set acquired using a Siemens Somaton Plus 4 scanner
at 120 keV, with a 2 mm slice thickness and no gap between
slices.

An anthropomorphic phantom (Alderson Rando phan-
tom), commercially available system, was used. The evalua-
tion method was as follows.

(a) A DRR and a portal image of the selected region of
interest (head, lung, pelvis) of the phantom, with no setup
error between them, were acquired. This was achieved by
means of three fiducial markers, visible on the CT imaging,
adhered on the phantom using laser alignment to define a
reference point on both CT scanning and irradiation. This
point was used as the isocenter during treatment planning

(DRR) and irradiation (portal imaging). These DRR and
portal images served as the reference images. Before the ac-
quisition of CT phantom images and phantom irradiation,
the accuracy of the lasers alignment in both the CT and the
treatment room was checked and found within 1 mm. More-
over, possible introduced inaccuracies due to no-horizontal
CT-couch motion or inaccuracies in the stated slice thickness
must be excluded since an extensive quality control was per-
formed prior to the use of the CT scanner.

(b) An expert from the “HYGEIA” hospital defined
the fiducial marks on anatomical structures, (xi, yi) (i =
1, 2, . . . ,N), on the portal reference image. These points were
used for matching each portal image with the reference por-
tal image.

(c) The treatment couch was moved along the hor-
izontal (left-right) and/or vertical (head-foot) direction
2 mm, 4 mm, . . . , 12 mm and a new portal image was ac-
quired. Before phantom irradiation, the treatment couch
(ZXT-Siemens) reading positions were checked and their ac-
curacy was found within 1 mm.

(d) The setup verification tool of the system was invoked
in order to estimate the setup error between the reference
images and each new portal image, using the procedures de-
scribed in Sections 2.2.1 and 2.2.2. The output of the system
was the estimated values of the parameters of the simulated
setup error, namely horizontal displacement (mm), vertical
displacement (mm), and angle of rotation (degrees).

(e) A set of 50 test points, Pi (i = 1, 2, . . . , 50), was defined
on the reference DRR. Since the setup error is known, the ac-
tual position of these points on the portal images (including
the reference portal image) was identified. The position of
these points on the portal images was also identified using
the estimated values for the setup error. For each portal im-
age, the root mean square error (RMSE) (in millimeters) be-
tween the actual and the estimated positions of this set points
was calculated by the following equation:

RMSE =

√
√
√
√√

1
50

50∑

i=1

∥
∥(Pi

)
act − (Pi)est

∥
∥2

, (10)

where the subscript act (est) refers to the actual (estimated)
positions of the test points on the portal images and ‖ · ‖
denotes the Euclidean distance.

For the real data, the aforementioned evaluation proce-
dure was slightly modified, since it is not known the ac-
tual setup error. Therefore, a manual registration, to serve as
ground truth, was carried out by two experts from “HYGEIA”
hospital. The average value of the two obtained estimates
was used as ground truth. A total of six subjects were in-
vestigated, who were recruited from patients referred to the
“HYGEIA” hospital for prostate cancer treatment. For each
patient, a DRR and thirty portal images were acquired corre-
spondingly. The proposed evaluation protocol has been ap-
proved by the ethical committee of the “HYGEIA” hospital
and the subjects gave informed consent to the work.
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Figure 4: Example of matching a pair of portal images on patient data. The fiducial marks, defined by the user, are shown on the reference
image (left panel). The corresponding points on the other portal image, after the end of matching procedure, are also shown.

2.4. Statistics

The statistical difference between the actual and estimated
positions was assessed by means of the Wilcoxon signed non-
parametric test, for both real and phantom data [24]. The
null hypothesis was that the two methods (DRR—portal and
portal—portal matching) did not differ as per the RMSE.

3. RESULTS

3.1. Phantom data

Setup error estimations (three parameters and RMSE) are
shown in Tables 1 and 2, respectively. For the pelvic region,
the RMSE was 0.8 ± 0.3 (mean value ± standard deviation)
and 0.8± 0.4 when the reference image was the DRR and the
portal image, respectively. For the cranial region, the RMSE
was 0.8± 0.3 and 0.6± 0.3 when the reference image was the
DRR and the portal, respectively. For both cases, the Wilxo-
con signed test showed that the null hypothesis could not be
rejected at the 5% level (P value > 0.05).

3.2. Real data

For each patient, the average values of the setup error over the
thirty portal images are shown in Table 3. The RMSE over all
six patients was 0.3 ± 0.3 and 0.3 ± 0.3 when the reference

image was the DRR and the portal corresponding to the first
fraction of the treatment, respectively. The statistical analysis
of the RMSE measurements of each patient showed that the
null hypothesis could not be rejected at the 5% level (P value
> 0.05).

4. DISCUSSION

The design and the development of the proposed system were
based on several constraints. It should use the equipment
available in the “HYGEIA” hospital: a portal imager and a CT
scanner. The human intervention should be minimal, the re-
sults should be accurate and the execution time should be
kept as low as possible.

In this framework, the estimation of the patient setup can
be accomplished using two alternate processes: (a) the por-
tal image corresponding to the current fraction of the treat-
ment is matched directly with the DRR (or the simulator im-
age). (b) The portal image is matched with the portal im-
age acquired during the first fraction of the treatment (ref-
erence portal), whereas the reference portal has already been
matched with the DRR image.

The rationale underlying the proposed system design was
based on the following facts. In general, it is a very diffi-
cult task to achieve an accurate matching between a DRR
and a portal image automatically, mainly due to the fact that
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Table 1: Setup error estimations (horizontal displacement, vertical displacement, angle of rotation, and RMS error) for known setup error
of the pelvic region of the phantom for DRR versus portal and portal versus portal.

Expected DRR versus portal Portal versus portal

dx
(mm)

dy
(mm)

θ(◦)
dx
(mm)

dy
(mm)

θ(◦)
RMSE
(mm)

dx
(mm)

dy
(mm)

θ(◦)
RMSE
(mm)

2 0 0 3.0 0.1 −0.4 1.2 3.1 0.2 0.1 1.2

4 0 0 4.4 −0.1 0.2 0.6 4.8 −0.2 −0.1 0.8

6 0 0 5.5 −0.2 0.4 0.9 5.6 −0.2 −0.2 0.7

8 0 0 8.6 −0.8 0.3 1.2 9.3 −0.6 0.3 1.6

10 0 0 10.9 −0.7 0.3 1.3 10.1 −0.4 0.4 0.9

12 0 0 12.2 −0.3 0.0 0.4 12.2 −0.8 0.2 0.9

0 2 0 0.0 1.7 −0.2 0.4 0.1 1.4 0.1 0.6

0 4 0 −0.3 5.2 0.2 1.2 −0.1 4.9 0.1 0.9

0 6 0 −0.2 6.2 0.2 0.5 −0.1 5.6 −0.1 0.5

0 8 0 0.0 8.2 0.4 0.8 0.1 8.2 −0.1 0.2

0 10 0 0.5 9.5 0.0 0.8 0.1 9.6 0.3 0.7

0 12 0 −0.1 12.5 -0.1 0.6 −0.3 11.9 0.1 0.3

Table 2: Setup error estimations (horizontal displacement, vertical displacement, angle of rotation, and RMS error) for known setup error
of the cranial region of the phantom for DRR versus portal and portal versus portal.

Expected DRR versus portal Portal versus portal

dx
(mm)

dy
(mm)

θ(◦)
dx
(mm)

dy
(mm)

θ(◦)
RMSE
(mm)

dx
(mm)

dy
(mm)

θ(◦)
RMSE
(mm)

2 0 0 1.7 0.2 −0.3 0.7 1.8 −0.0 −0.1 0.3

4 0 0 3.9 0.2 0.2 0.4 4.7 −0.1 −0.1 0.7

6 0 0 6.4 −0.1 0.0 0.4 6.0 −0.0 −0.2 0.4

8 0 0 8.5 0.5 0.2 0.8 8.1 −0.2 0.1 0.3

10 0 0 10.5 0.3 −0.2 0.7 10.5 −0.2 −0.2 0.7

12 0 0 12.6 −0.2 −0.1 0.6 11.9 0.0 −0.1 0.2

0 2 0 −0.3 2.4 0.4 0.9 0.1 2.4 0.1 0.5

0 4 0 −0.1 4.6 0.3 0.8 0.2 4.5 0.2 0.7

0 6 0 0.1 6.8 0.1 0.8 0.6 6.8 0.2 1.0

0 8 0 0.6 8.5 0.25 0.9 0.2 8.4 −0.1 0.5

0 10 0 0.0 11.3 −0.1 1.4 0.2 10.9 0.1 0.9

0 12 0 0.8 12.6 0.4 1.3 0.5 12.8 0.2 0.9

the two images are acquired at totally different energies. It
has been proposed to convert the DRR into a megavoltage
DRR prior to the matching [5, 25, 26]. However, this was
not possible in our case, due to software system installation
into a dedicated computer platform, output incompatibility
of the radiation treatment planning software and local net-
work topology.

On the other hand, automated techniques based on seg-
mentation should be excluded from the design since these
methods rely heavily on the success of the segmentation step,
which is a very difficult task due to the low inherent contrast
of the portal images. Additionally, no segmentation tech-
nique can give satisfactory results for every anatomical region

of interest. The very difficult task of portal image segmenta-
tion justified the development of other methods of research,
such as intensity-based methods [5, 9, 27]. These methods
assume there is a statistical relation between the gray level
values of the pixels of the images to be matched and that this
relation is at maximum when the images are matched. Al-
though these methods seem to be promising, further work is
required.

Another solution was the use of some kind of man-
ual technique. However, pure manual methods depend on
the accurate determination of homologous fiducial marks
between the two images and furthermore are in general
time consuming and prone to spatial inaccuracies. Therefore,
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Table 3: Setup error estimations (horizontal displacement, vertical displacement, angle of rotation, and RMS error) for six subjects. The
values listed are the mean values± standard deviation calculated over a set of thirty portal images. The RMSE measurements for portal-portal
versus DRR-portal did not show significant differences (P > 0.05, Wilcoxon signed test).

Patient Setup error dx(mm) dy(mm) θ(◦) RMSE(mm)

1
Expected −1.8± 0.2 −1.6± 0.1 −0.1± .0.2

DRR versus portal −1.8± 0.12 −1.5± 0.1 −0.2± .0.2 0.1± 0.1

Portal versus portal −1.6± 0.2 −1.8± 0.1 0.2± .0.2 0.3± 0.1

2
Expected 2.0± 0.3 −1.0± 0.5 −0.2± 0.1

DRR versus portal 2.0± .0.4 −1.2± .0.6 −0.2± .0.2 0.1± 0.1

Portal versus portal 1.9± .0.2 −1.1± .0.3 −0.2± .0.1 0.1± 0.1

3
Expected −1.9± 0.5 −0.1± 0.0 −0.1± .0.2

DRR versus portal −2.0± .0.4 −0.1± .0.1 −0.1± .0.1 0.8± 0.5

Portal versus portal −2.0± .0.4 −0.1± .0.1 −0.1± .0.2 0.7± 0.5

4
Expected −0.1± .0.1 −3.5± 0.7 −0.2± .0.3

DRR versus portal −0.1± .0.1 −3.5± .0.6 −0.2± .0.2 0.1± 0.0

Portal versus portal −0.1± .0.1 −3.8± .0.6 −0.2± .0.2 0.2± 0.0

5
Expected 0.5± .0.1 1.6± 0.6 0.4± .0.3

DRR versus portal 0.8± .0.1 1.9± .0.7 0.4± .0.3 0.6± 0.1

Portal versus portal 0.7± .0.1 1.7± .0.7 0.4± .0.2 0.3± 0.1

6
Expected 2.0± .0.3 −1.5± 0.6 0.2± .0.2

DRR versus portal 2.4± .0.4 −1.1± .0.5 0.2± .0.2 0.3± 0.1

Portal versus portal 2.1± .0.2 −1.4± .0.4 0.1± .0.1 0.3± 0.0

regarding the match of DRR and a portal image, we have cho-
sen a modified manual technique that automatically identi-
fies candidate pairs of corresponding edges between the two
images. Then, the user simply selects the proper pairs of
edges that are going to be used for the matching. The results
in Tables 1–3 indicate that the proposed methodology pro-
vides estimates of the setup error that are close enough to the
expected ones. As can be observed, the values of patient dis-
placements along the horizontal and vertical axis are smaller
than those of the phantom, due to quality control processes
adopted at the Radiotherapy Department of the “HYGEIA”
Hospital.

As already mentioned, the estimation of the setup er-
ror can be also accomplished by means of a portal-to-portal
matching method. This method requires the definition of a
small number (four to seven) of fiducial marks only on the
reference portal image. These fiducial marks are stored in the
database and are automatically retrieved every time the spe-
cific patient is selected. The accuracy of the portal-to-portal
matching lies within the limits imposed by the clinical rou-
tine. This approach introduces an additional error in the es-
timation of patient setup error (error due to the matching of
DRR with the portal image of first fraction and error due
to the matching of the portal of the current fraction with
the portal image of the first fraction). However, statistical
analysis showed that the two methods did not differ signif-
icantly as per the RMSE. Additionally, since a nearly auto-
mated method is used, the user is provided in return with a
fast, reliable, robust, and user-friendly technique, which re-
quires minimal user intervention.

5. CONCLUSIONS

An integrated software system has been presented for the cal-
culation of patient setup errors in radiotherapy, using EPID
images. The system handles both DRR-portal image pair as
well as portal-portal pairs. The philosophy of the system
was to achieve very fast execution time, increased robust-
ness, considering parameter range as well as anatomic re-
gions of the body and accuracy in the calculation of setup er-
rors. The system has already been installed in the Radiother-
apy Department of “HYGEIA” Hospital, Athens, and is fully
operational in a clinical environment. The selected meth-
ods for image registration require minimal user interven-
tion, achieve high accuracy, and have proven highly practi-
cal and popular among the physicians and physicists of the
“HYGEIA” Hospital.
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Conformal radiotherapy (CRT) results in high-precision tumor volume irradiation. In fractioned radiotherapy (FRT), lesions
are irradiated in several sessions so that healthy neighbouring tissues are better preserved than when treatment is carried out
in one fraction. In the case of intracranial tumors, classical methods of patient positioning in the irradiation machine coordinate
system are invasive and only allow for CRT in one irradiation session. This contribution presents a noninvasive positioning method
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the patient’s head (CT-data usually acquired during treatment) and points distributed over the patient’s face which are acquired
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diagnosis device (CT-modality) and the 3D sensor of the therapy room (visible light modality) is obtained by registering the
surfaces represented by the two 3D point sets. The geometrical relationship between the coordinate systems of the 3D sensor and
the irradiation machine is given by a calibration of the sensor position in the therapy room. The global transformation, computed
with the two previous transformations, is sufficient to predict the tumor position in the irradiation machine coordinate system
with only the corresponding position in the CT-coordinate system. Results obtained for a phantom show that the mean positioning
error of tumors on the treatment machine isocentre is 0.4 mm. Tests performed with human data proved that the registration
algorithm is accurate (0.1 mm mean distance between homologous points) and robust even for facial expression changes.
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1. INTRODUCTION

1.1. Medical context

The goal of radiotherapy is to eradicate tumors while pre-
serving the surrounding healthy organs as much as possi-
ble. Radiotherapy machines consist of X-ray sources turning
around one axis and emitting ionizing beams destroying car-
cinogenic cells. One crucial task in radiotherapy is to know
precisely the tumor position with respect to a 3D reference
point called isocentre. During classical treatment, radiother-
apists determine both the number and the distribution of
the irradiation angles in order to control the energy distri-
bution in the tumoral volume and to minimize the energy
passing through the healthy regions. The more precise the
patient placement is, the more efficient the radiotherapist’s
treatment protocols are.

Treatment protocols depend on the organ to be irradi-
ated. This paper focusses on intracranial tumor treatment.

For such tumors, the positioning is usually based on metal-
lic frames screwed on the patient’s skull. The frame-based
method is also employed by the radiotherapists of the oncol-
ogy centre (Centre Alexis Vautrin, Nancy, France) associated
to this work. The therapy always starts with a computer to-
mography (CT) or another similar examination, the frame
being already screwed on the patient’s head. The tumor bor-
ders, manually delineated in each image, are used to compute
the 3D target volume and the lesion localization with regard
to a coordinate system (Of ,�x f ,�y f ,�z f ) given by the frame.
As shown in Figure 1, (Of ,�x f ,�y f ,�z f ) is defined by orthog-
onal slots machined into the frame. The �x f , �y f , and �z f vec-
tor axes take Of (frame centre) as origin and pass through
slot intersections. As both the frame and the tumor are vis-
ible in the CT, the lesion can be localized in (Of ,�x f ,�y f ,�z f ).
As also illustrated in Figure 1, three laser beams sweep three
orthogonal planes in the therapy room. The intersections of
the three plane pairs support the orthogonal vectors of the
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irradiation machine coordinate system (Om,�xm,�ym,�zm). Om

(isocentre) is the intersection point of the three planes. Dur-
ing the treatment, the patient’s head is placed so that the laser
planes fall into the slots. With this placement, (Of ,�x f ,�y f ,�z f )
and (Om,�xm,�ym,�zm) are superimposed. Knowing the tumor
localization with respect to the frame, the table on which the
patient lies is displaced to bring the lesion to the isocentre.

One obvious drawback of the frame-based method lies
in the fact that the treatment is traumatic for the patient (the
frame is screwed on the head). Moreover, the frame can nei-
ther be fixed for a long time on the patient’s head nor screwed
and unscrewed several times. Consequently, the irradiation
must be performed in one unique session. Meanwhile, frac-
tioned treatment (irradiation in several sessions) is more effi-
cient than treatment performed in one fraction. Notably, the
healthy organs are less damaged in fractioned radiotherapy
(FRT) than in one session irradiations. The mean position-
ing errors of the best invasive frame methods are 1 mm [1].
With these small errors, conformal radiotherapy (CRT) can
be efficiently used. CRT is a technique which results in very
accurate target volume irradiation.

1.2. Previous work

In the case of intracranial tumors, only few solutions im-
proving the patient’s positioning step of radiotherapy treat-
ment were proposed in the literature. Noninvasive frames
were conceived and tested, the screws being for example re-
placed by bands surrounding the head and maintaining the
frame [2]. Devices fixed in the ears and on the nose were also
used to maintain the frame on the patient’s head [3, 4]. These
devices allow radiotherapists to use FRT since the frames
can be fixed several times. Meanwhile, historical results [5]
have shown that these Noninvasive frames lead to a rather
inaccurate positioning, the daily set up variability ranging in
[1–3] mm. These positioning errors are too high when ra-
diotherapists want to take advantage of the high irradiation
accuracy of CRT.

The positioning problem in radiotherapy is to find the
geometrical relationship between the coordinate systems of
the therapy machine and the diagnosis device (CT, etc.).
This problem lies in the fact that the two devices are usually
placed in different rooms of a hospital. One way to solve this
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problem is to place the diagnosis and treatment machines in
the same room. For such solutions the geometrical relation-
ship between the machines is known by construction and/or
using calibration procedures. The known geometrical rela-
tionship is used either to displace the patient’s table on rails
[6] or with a robot [7]. These solutions lead to FRT and ac-
curate positioning (1 mm error for [6]) but are usually far
too expensive for most hospitals. For instance, a CT-scanner
cannot always be dedicated to radiotherapy treatment only.

Another method employed for intracranial lesions [8]
and prostate cancer [9, 10] is based on the use of portal im-
ages (PI) and digitally reconstructed radiographs (DRR) or
simulated radiographs (SR). PI images are radiographs ac-
quired during treatment. Since treatment involves high en-
ergy, the PI have poor contrast. DRR are artificial images
computed with 3D CT data. The DRR are generated from the
viewpoints of the PI. SR are radiographs acquired in simula-
tion rooms having exactly the same geometry as treatment
rooms, the irradiation sources being of low energy. The bone
structures are the interesting information in the PI, DRR,
and SR 2D planes. The disparity between the data of two
modalities (IP and DRR [9, 10] or IP and SR [8]) is used
to quantify the positioning quality. The bone structure seg-
mentation and matching (registration) is done either visu-
ally or automatically. Such methods are not precise enough
for CRT (1 cm error for [8] and 1.6 mm error for [9]). A

noninvasive method was proposed by Meeks et al. [11] for
intracranial tumors. The authors conceived a bite plate hav-
ing on one of its extremities a molded part which is blocked
by the patient’s maxillary dentition. The bite plate supports
aluminium spheres and infrared LEDs (ILEDs). Both the
spheres and the tumors are visible in CT data. The tumor
can be located in a coordinate system defined by the spheres.
The ILEDs positions in the sphere coordinate system are ob-
tained with a first calibration procedure. A 3D infrared sen-
sor consisting of three cameras is fixed in the therapy room.
The sensor position in the radiotherapy room is given by a
second calibration. This sensor gives the ILEDs positions in
the therapy room. Knowing the relative positions between
the ILEDs and the spheres and the spheres and the tumors,
it is possible to predict the tumor position in the treatment
machine coordinate system. With this method, the mean po-
sitioning error is 1.11 mm. Among the Noninvasive solutions
described in the literature, this method is one of the most
accurate and can be used in CRT and FRT. Meanwhile, this
accuracy was measured with respect to the results obtained
for a classical frame-based method which was itself affected
by errors. Moreover, the method is not suitable for people
(small children and elderly people) who have missing teeth.
A dedicated part (molded bite plate) must also be built for
each patient.

Recently, Li et al. [12] proposed an interesting head po-
sitioning method based on 3D sensors fixed in the CT and
therapy rooms. The algorithm principle can be divided into
three parts consisting of a reference surface generation dur-
ing CT-simulation, “controlled” patient face acquisitions in
the therapy room, and data alignments providing the patient
positioning parameters.

In the CT-room, the 3D sensor position is calibrated us-
ing a specially designed calibration plate. This calibration
provides the geometrical link between the coordinate systems
of the 3D sensor and of the CT-scanner (the 3D head surface
and lesion positions are known with respect to a simulated
isocentre and treatment machine coordinate system). During
the CT-data acquisition, a 3D sensor is used to acquire points
spread out over the patient’s face. The corresponding 3D sur-
face is placed in the planned (simulated) treatment position.
The CT-face surface is not exactly the same as that given by
the 3D sensor in the treatment room when face masks are
used to immobilize the patient’s head. Placing the 3D face
surface acquired with 3D sensor in the simulation coordinate
system (with the aim to replace the CT-surface) is one way to
obtain a reference surface “comparable” to the face surface
acquired in the treatment room. This placement is done with
the calibration parameters.

Mandible or lip movements lead to nonnegligible chan-
ges in terms of facial expression. Li et al. project a light ray
on the chin area and determine in real time skin/sensor dis-
tances. The mandible motions are small when the measured
distances become stable (in such situations the authors ver-
ified that the acquired images were reliable). The treatment
room sensor being calibrated with the same method as the
CT-simulation sensor, the face point positions are known in
the irradiation machine coordinate system.

The 3D surface obtained in the treatment room is then
aligned with the reference surface using an iterative closest
point algorithm. The geometrical parameters given by the
alignment are used to adjust the head position.

Similar algorithms and sensors were used in [13] for
breast lesion irradiation.

1.3. Objectives of the presented work

Considering the methods presented in the literature, the pa-
tient positioning algorithms proposed by Meeks et al. [11]
and by Li et al. [12] are reference methods since they are
Noninvasive and can be used in FRT. Meanwhile, the method
of Meeks et al. is not suitable for people (small children and
elderly people) having missing teeth. The method of Li et
al. does not have this drawback. For this reason, a 3D sensor
was chosen in the frame of our noninvasive patient position-
ing algorithm.

Facemasks are not always usable since some patients are
allergic to masks or could not wear them because of a phobia.
The positioning method must work with simple immobiliza-
tion devices consisting of head supports and devices block-
ing the patient’s forehead, ears, and/or mandibles. Thus, the
smallest available reference face area for the positioning is the
face region located between the bottom of the forehead and
the bottom of the nose. With this constraint, cost and time
related to the building of dedicated patient parts (face masks,
dental supports, etc.) can be minimized.

Li et al. demonstrated that it is possible to position pa-
tients with submillimetre accuracy using 3D optical sensors.
The aim of this contribution is to show that registration
methods can lead to a robust patient positioning when using



4 International Journal of Biomedical Imaging

3D sensors and simple immobilization devices. The method
has to be precise even if the cutaneous face surface is not
completely rigid (the surface shapes depend on facial expres-
sions).

2. POSITIONING ALGORITHM

2.1. Algorithm principle

The difficulty relating to the patient positioning problem is
due to the fact that the exact geometrical relationship be-
tween the CT coordinate system and that of the therapy ma-
chine is unknown. In other words, knowing only the tumor
position in the CT coordinate system (OCT,�xCT,�yCT,�zCT) is
not sufficient to determine the tumor position in the therapy
machine coordinate system (Om,�xm,�ym,�zm).

In the case of the method used usually (invasive stereo-
tactic frame), the relationship between (OCT,�xCT,�yCT,�zCT)
and (Om,�xm,�ym,�zm) is known by using a third coordinate
system related to the frame, namely, (Of ,�x f ,�y f ,�z f ). The po-
sitioning problem can be solved because the frame ensures
two functions. First, the frame provides a coordinate system
in which the tumor can be localized in the therapy room.
Second, the frame is also able to localize the machine coordi-
nate system. That is the reason why the frame must be exactly
in the same position on the patient’s head during the whole
treatment.

For the proposed method, the frame is replaced by two
devices, each device having one of the two functions of
the frame. The first device is a 3D sensor which is fixed
in the therapy room above the patient’s table. This sensor
acquires the 3D surface of the patient’s face. This data is
used to localize the tumor in the sensor coordinate system
(O3DS,�x3DS,�y3DS,�z3DS). The second device is a calibration
piece. The geometry of this piece allows us to determine the
mathematical relationship between (O3DS,�x3DS,�y3DS,�z3DS)
and (Om,�xm,�ym,�zm). The two devices are used in the frame
of a two step algorithm.

Step 1. The calibration piece (see Figure 2) was specially de-
signed for classical therapy rooms equipped with the laser
system described in Figure 1. The calibration piece consists
of four spheres fixed onto a plate in which orthogonal slots
were machined. The plate is positioned on the patient’s ta-
ble so that the laser beams fall into the slots. In this situa-
tion, the exact positions of the four sphere centres are known
by construction in (Om,�xm,�ym,�zm). An image of the calibra-
tion piece is acquired with the 3D sensor and the sphere cen-
tre coordinates are computed in (O3DS,�x3DS,�y3DS,�z3DS). It is
possible to find analytically the ˜T3DS,m transformation link-
ing (O3DS,�x3DS,�y3DS,�z3DS) to (Om,�xm,�ym,�zm) if, for a given
calibration piece position, the sphere centre coordinates are
known in the coordinate systems of both the 3D sensor and
the therapy machine.

Step 2. During standard intracranial cancer treatment, the
head borders are marked in the CT images so that the 3D
head surface is systematically available. The registration of

�y3DS

3D sensor �z3DS

�x3DS

O3DS

Laser
beam 2

Laser
beam 3

Laser
beam 1

Om

�xm�ym
�zm

Figure 2: Calibration piece.

the 3D head data with the 3D face data acquired in the ther-
apy room gives the ˜TCT,3DS geometrical transformation link-
ing (OCT,�xCT,�yCT,�zCT) to (O3DS,�x3DS,�y3DS,�z3DS).

The ˜T3DS,m and ˜TCT,3DS transformations being matri-
ces, the global transformation matrix ˜TCT,m = ˜T3DS,m ×
˜TCT,3DS is sufficient to compute a given point position in
(Om,�xm,�ym,�zm) with only its corresponding position known
in (OCT,�xCT,�yCT,�zCT). Since both the 3D sensor and the CT-
scanner provide data without spatial distortion and with the
same isotropic scale factor of 1, ˜TCT,3DS and ˜T3DS,m are isome-
tries (matrices containing only 3D translations and 3D rota-
tions).

2.2. Data and 3D sensor description

In the CT-modality, data sets are typically represented by
about 2000 points spread out over the whole cutaneous sur-
face of the patient’s head. The voxel size of the CT-scanner
equals 0.313 mm× 0.313 mm× 2 mm.

The measurement principle of the 3D sensor1 fixed in the
therapy room is based on the structured light (visible light
modality). The sensor is able to acquire data without any
strong and particular constraints (no change in the lighting
conditions, etc.). The face/3D sensor distance must only be
approximatively 1 m. The typical data provided by the sen-
sor is clouds of about 7000 points distributed over the pa-
tient’s face. The field of view equals 210 mm× 320 mm for a
depth of view of 100 mm. The sensor has a spatial resolution
of 2 mm, 1 mm, and 0.2 mm for the �x3DS, �y3DS, and �z3DS axes,
respectively.

1 3D flash! cam system from 3D metrics, Petaluma, CA 94954,USA.
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2.3. 3D sensor calibration

The calibration starts with an acquisition of the calibra-
tion piece placed in such a way on the patient’s table that
the laser beams fall into the slots. In the first calibra-
tion step, the sphere centre coordinates are determined in
(O3DS,�x3DS,�y3DS,�z3DS). The second step consists in the search
for the analytical relationship ( ˜T3DS,m) between the sphere
centre positions in the sensor coordinate system and the
same positions in (Om,�xm,�ym,�zm).

2.3.1. Sphere centre computation

For each 3D point, the sensor gives both position informa-
tion and a color value. To take advantage of the color data,
the calibration piece is put on black fabric. It is noticeable
in Figure 2 that the color of the spheres is bright, while the
plate is dark. With the color intensity information, it is easy
to separate the sphere points from the other points (image
background and plate points).

The geometry of the calibration piece is well known:
40 mm sphere diameters and 120 mm distances between
neighbouring spheres (see Figure 3). These values, and all
others relating to the calibration piece geometry, are known
by construction with a 0.01 mm accuracy. During the cali-
bration, the 3D points are sorted in four groups each cor-
responding to one sphere. The sorting is performed as fol-
lows: if the distance between the point currently treated and
a point of a group is smaller or equal to 40 mm, then the cur-
rent point is assigned to the tested point group.

For numerical reasons (the 3D sensor reconstructs the
points with small errors), the points are not exactly located
on a sphere. Sn is the nth sphere (n = 1, 2, 3, 4) of radius r
and has a centre Cn with coordinates (xn3DS, yn3DS, zn3DS) in
(O3DS,�x3DS,�y3DS,�z3DS). If the ith point pi,n (i ∈ [1, In], In
point number of group n), of coordinates (xi,n3DS, yi,n3DS, zi,n3DS),
belongs to the sphere Sn, then (1) is verified:

(

xi,n3DS − xn3DS

)2
+
(

yi,n3−D − yn3DS

)2
+
(

zi,n3DS − zn3DS

)2 = r2.
(1)

The coordinates of centre Cn are determined by minimizing
the functional εn given in (2),

εn =
In
∑

i=1

∣

∣

(

xi,n3DS − xn3DS

)2
+
(

yi,n3−D − yn3DS

)2

+
(

zi,n3DS − zn3DS

)− r2
∣

∣.

(2)

The initial value of the centre coordinates are given by the
gravity centre of all the points of a group. The simplex [14]
is used as optimization method since this algorithm is accu-
rate and converges quickly towards the minimum when the
solutions are close to the initial values.

2.3.2. Calibration matrix determination

The ˜T3DS,m homogeneous matrix, which provides the coor-
dinates (xm, ym, zm) of a point in the therapy machine coor-
dinate system using the coordinates (x3DS, y3DS, z3DS) of the
same point in 3D sensor coordinate system, consists of nine
rcal
i rotation parameters and three tcal

j translation parameters
(see (3)):
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As shown in Figure 3, the three spheres S1, S3, and
S4 define the calibration piece coordinate system (Ocp,�xcp,
�ycp,�zcp). The fourth sphere S2 is only used to check the cal-
ibration results consistency. The rotation parameters rcal

i ex-
press the point with coordinates (x3DS, y3DS, z3DS) in a ro-
tated coordinate system having the same origin as the 3D
sensor coordinate system but with axes parallel to those of
(Ocp,�xcp,�ycp,�zcp). The rcal

i parameter values are given by (4)
and depend on the sphere centre coordinates of (1). d1, d2

and d1d2 are the norms of �xcp, �ycp, and �zcp, respectively,
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As formulated in (5), two 3D translations define the
global translation linking the 3D sensor and the therapy ma-
chine coordinate systems. The parameters of translation 1 are
directly related to the coordinates (x4

3DS, y4
3DS, z4

3DS) of the S4

sphere centre position while translation 2 is completely de-
fined by the calibration piece dimensions. Translation 2 gives
the distances between the origins of the calibration piece and
the therapy machine coordinate systems along the x-, y- and
z-axes:

⎛

⎜

⎝

tcal
x

tcal
y

tcal
z

⎞

⎟

⎠ =

⎛

⎜

⎜

⎝

−x4
3DS

−y4
3DS

−z4
3DS

⎞

⎟

⎟

⎠

︸ ︷︷ ︸

translation 1

+

⎛

⎜

⎝

−60
−60
25

⎞

⎟

⎠

︸ ︷︷ ︸

translation 2

. (5)

2.4. 3D data registration

An analysis of review papers dealing with medical image reg-
istration [15–17] shows that the superimposition of 3D CT
data and 3D structured light data is an application that is
hardly ever studied.

2.4.1. General considerations

Let us consider Im(xm, ym, zm) and It(xt, yt, zt) as two 3D im-
ages containing homologous structures Dm and Dt extracted
from the images with the segmentation algorithms fm and ft.
The Dt data is transformed with the aim of superimposing
it with the Dm model data. In other words, the registration
procedure consists in finding the parameters θ of the ˜TCT,3DS

transformation such as Dm = ˜TCT,3DS(Dt). The homologous
structures are superimposed with an optimization method Ψ
which minimizes a similarity measure S. The principle of the
registration method providing the optimal ˜TCT,3DS transfor-
mation is mathematically formulated in (6):

˜TCT,3DS = arg min
θ∈Θ|Ψ

S
(

T
(

ft
(

It
)

︸ ︷︷ ︸

Dt

)

, fm
(

Im
)

︸ ︷︷ ︸

Dm

)

. (6)

In our patient positioning application, Dm and Dt are point
clouds directly provided by the sensors of the two modalities.
No fm and ft segmentation algorithms are needed to extract
the homologous structures. The advantage of our method is
that the errors inherent in the segmentation algorithms are
avoided.

It is noticeable that both the 3D point densities (see
Section 2.2) and the 3D surface sizes are different for the
two modalities. The model surface (Dm data set, patient’s
face of the visible light modality) is completely a part of the
transformed surface (Dt data set, patient’s head of the CT-
modality) when the two data sets are registered.

The registration requires the definition of four mathe-
matical entities, namely, the transformation type, the simi-
larity measure S, the transformation space Θ giving the lim-
its of the θ-parameters, and the search strategy (optimization
Ψ).

2.4.2. Transformation type

As justified in Section 2.1, the transformation parameters are
those of an isometry. The choice of the transformation type
of ˜TCT,3DS was also realized on the assumption that a patient
can make “similar enough facial expressions” during the CT-
scan and the data acquisition with the 3D sensor (the im-
pact of facial expression differences on the registration is dis-
cussed in Section 3.5).

The homogenous matrix ˜TCT,3DS, used to determine the
coordinates (x3DS,y3DS,z3DS) of a point (tumor) in (O3DS,
�x3DS,�y3DS,�z3DS) using the coordinates (x3 CT, y3 CT, z3 CT) of
the same point in (O3 CT,�x3 CT,�y3 CT,�z3 CT), consists of the
t

reg
x , t

reg
y , and t

reg
z translation parameters and of nine r

reg
i

rotation parameters. The rotation parameters are defined
with the Euler angles (for the Euler angles, the so-called “x-
convention” is used: the first rotation is by an angle ψ about
the �zCT-vector, the second is by an angle θ ∈ [0,π] about the
new �xCT-vector, and the third is by an angle φ about the new
�zCT-vector).

2.4.3. Similarity measurement

During the registration of two surfaces, the similarity (su-
perimposition degree) can be assessed by measuring a dis-
tance between the surfaces. In the case of surfaces repre-
sented by point clouds, the bottleneck distance [18], the
Hausdorff distance (Hd) [19], the directed Hausdorff dis-
tance (dHd), or the combination of several of these dis-
tances [20] are often suitable. For a given application, a dis-
tance measure can be chosen according to the following cri-
teria.

Data set type

A given measure is suitable or not depending on whether the
two surfaces are represented by a similar or a different point
number. The fact that the surfaces to be matched have the
same size or not is another decision criterion.
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Robustness against perturbations

Surfaces partially hidden, noise affecting the positions of all
the points, or data sets with outliers, influence more or less
the similarity measure correctness depending on the chosen
measure.

Required transformation invariance

The measure has to exhibit appropriate properties according
to the type of the geometrical transformation used in the reg-
istration scheme. For example, for isometries or affine trans-
formations, d(A,B) = d(T(A),T(B)) must be verified, d be-
ing the distance between two data sets A and B.

The bottleneck distance is suitable for data sets consisting
of the same number of points. Dm and Dt being of different
sizes, the bottleneck distance cannot be used in our appli-
cation. Both the Hd and the dHd are suitable for data sets
consisting in different point numbers. They are also invari-
ant under isometries, and are robust against noise affecting
the point positions. The dHd (h(A,B) defined in (7)) is the
greatest Euclidean distance chosen between all the smallest
Euclidean distances from a point a of the data set A to all
points b of the data set B. The Hd (H(A,B) of (8)) is com-
puted using the dHd,

h(A,B) = max
a∈A

min
b∈B

‖a− b‖, (7)

H(A,B) = max
(

h(A,B),h(B,A)
)

. (8)

One advantage of the dHd, with respect to the Hd, lies
in the fact that the h(A,B) distance is more robust against
occlusions than the H(A,B) distance. In our positioning
problem, the Dm model data set (patient’s face) represents
a smaller 3D surface than the Dt data set (patient’s head).
Indeed, the back of the patient’s head is hidden for the 3D
sensor fixed in the therapy room while the whole head is
acquired in the CT-modality. Robustness against occlusions
was the first criterion for choosing the dHd.

The second advantage of the dHd lies in the properties
of the h(A,B) and H(A,B) distances. It is well known that
the H(A,B) distance is a metric. This means in particular
that H(A,A) = 0 (identity) and that H(A,B) + H(A,C) ≥
H(B,C) (strong triangle inequality) are verified by the Hd.
Symmetry (H(A,B) = H(B,A)) follows from the identity
and strong triangle inequality. Symmetry is a propriety which
is required in many matching problems. The strong trian-
gle inequality is not verified by the dHd and consequently
h(A,B) �= h(B,A). For the proposed application, if the two
data sets are best registered then Dm is included in Dt. This
means that for registered data, h(Dt,Dm) is greater than zero
and h(Dm,Dt) equals 0 (in fact due to coordinate discretiza-
tion, this latter value is small but never null). The dHd has
also been chosen because it is interesting to have a similarity
measure (h(Dm,Dt)) whose value is very small when the data
is registered and which becomes monotonically greater when
the surfaces move apart (in our application, the increasing of
the similarity measure is not monotonic for the Hd).
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Figure 4: Appropriateness of the dHd. (a) Feature space for two ro-
tation angles given in degrees. The Dm (3D sensor data) and Dt (CT
modality) point sets were acquired for a phantom (plaster head).
The h(Dm,Dt) surface is not only convex for these two angles, but
also for all other parameters of the isometry. (b) Similarity measure
evolution. The decimal logarithm values of h(Dm,Dt) are given for
each iteration of the optimization. The combination of the steepest
gradient and the simplex allows both a fast and accurate conver-
gence.

2.4.4. Feature space limits

The interesting feature limits are those defining a parame-
ter space Θ having a unique minimum and a convex simi-
larity measure surface (see Figure 4(a)). The dHd measure is
very robust against translations. Theoretically, there are no
translation limits beyond which the surface convexity is af-
fected. For the two Dm and Dt data modalities, it has also
been verified experimentally that h(Dm,Dt) decreases mono-
tonically for rotation angles ranging between [−20◦, 20◦].
The patient’s positions and the angles of view being approx-
imately the same in the CT-scanner and on the radiotherapy
table, only small rotation angles have to be considered for the
registration. In this situation, the six-dimensional parameter
space consisting of three translations and three rotations is
effectively convex.

2.4.5. Minimization method

Experiments proved that the data of the two modalities lead
to a quasiconvex hypersurface (instead of an ideal convex
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Figure 5: Data down-sampling algorithm.

surface) having one global minimum in the six-dimensional
parameter space. Indeed, small local minima affect the hy-
persurface. A steepest descent algorithm is first used since
this method converges quickly towards the solution whereas
small local minima are avoided. As this algorithm only comes
near to the global minimum (without reaching it), the sim-
plex algorithm has been then used for obtaining the final
˜TCT,3DS. The simplex algorithm is robust and accurate if the
initialization is close to the solution (see Figure 4(b)).

2.4.6. Inherent accuracy of the registration algorithm

Data was acquired for a phantom (plaster head, see Figure
5(a)) with the 3D sensor in order to assess the inherent ac-
curacy of the registration algorithm. A known ˜Ttest transfor-
mation was applied to this data set Dm, taken as model, to
obtain the transformed data Dt. The registration algorithm
was then used to superimpose Dt on Dm. For the ˜TCT,3DS ma-
trix obtained in this way, one should ideally have ˜TCT,3DS =
˜T−1

test.
The parameter values of the ˜T−1

test transformation are
given in the first column of Table 1. The second column

of Table 1 gives the value differences between the parame-
ters of ˜TCT,3DS and the corresponding ones of ˜T−1

test. For the
second column, the ˜TCT,3DS transformation was computed
with the whole points of the Dm and Dt data sets (without
point down-sampling, see Section 2.4.7). The greatest differ-
ences were about 1◦ and several hundredth of mm for, re-
spectively, the three rotation angles (ψ, θ and φ) and the
translations (t

reg
x , t

reg
y and t

reg
z ). These differences lead to a

mean registration error of 0.03 mm (mean Euclidian dis-
tance between homologous points ofDm andDt transformed
by ˜TCT,3DS, namely, ˜TCT,3DS( ˜Ttest(Dm))). This test, performed
with monomodal data, prove that the registration algorithm
has high inherent accuracy.

2.4.7. Data down-sampling

The results obtained for the registration algorithm are sat-
isfactory in terms of inherent accuracy but are not accept-
able in the clinical case since the computation of ˜TCT,3DS re-
quires about 4 hours on a PC with a 3.2 GHz Pentium IV
processor with 2 gigabytes of RAM (the programs were writ-
ten in C). This time is high since the application of the dHd
to the two data sets consisting, respectively, of about 7000
3D points (visible light modality, Dm) and 2000 points (CT-
modality, Dt) implies the computation of 14 million Euclid-
ian distances. One solution to reduce the registration time is
to diminish the point number of one modality. The visible
light modality has been chosen since the Dm data set is the
one with the most of the points.

The structured light-based sensor stores the 3D points
camera line by camera line, each line having a constant y3DS

value (see Figure 5(a)). A down-sampling algorithm (Fan al-
gorithm [21]) whose principle is sketched in Figure 5(b) is
used to eliminate points characterized by a low curvature.
Two consecutive points (Pi and Pi+1) and a height value ε
define two lines L+

i and L−i with a given aperture angle de-
pending on ε. The selected points are Pi and the last point
lying between the two lines. The last point becomes the new
Pi and the algorithm is repeated until the last point on the
line is reached.

By giving at ε the values of 0.01 (2014 remaining points
for Dm), 0.1 (808 points), and 0.5 (406 points), the compu-
tation time of 4 hours (ε = 0, whole data set Dm of 7060
points) falls, respectively, to 50 minutes, 12 minutes, and 2
minutes. The last time, also obtained with a Pentium IV pro-
cessor, is acceptable in the frame of standard treatment pro-
tocols. Moreover, faster computers can be used if this time
must still be reduced. It is noticeable in Table 1 that the data
down-sampling with the ε values reported here had a very
weak influence on the parameters of ˜TCT,3DS and on the in-
herent registration algorithm accuracy.

2.5. Tumor position in the therapy room

Finally, the (xtum
m , ytum

m , ztum
m ) tumor position in the therapy

machine coordinate system can easily be computed with the
(xtum

CT , ytum
CT , ztum

CT ) tumor position in the CT coordinate system
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Table 1: Inherent accuracy of the registration algorithm according to the data down-sampling parameter ε.

˜T−1
test parameter values ˜T−1

test− ˜TCT,3DS (ε = 0) ˜T−1
test− ˜TCT,3DS (ε = 0.01) ˜T−1

test− ˜TCT,3DS (ε = 0.1) ˜T−1
test− ˜TCT,3DS (ε = 0.5)

θ = 7◦ 0.9 0.91 0.91 0.92

φ = 9◦ −0.6 −0.6 −0.62 −0.62

ψ = −5◦ 1.09 1.09 1.58 1.06

t
reg
x = 50 mm −0.02 −0.02 −0.03 −0.03

t
reg
y = −40 mm −0.01 −0.01 −0.01 −0.01

t
reg
z = 50 mm 0.06 0.06 0.06 0.06

and the global transformation matrix ˜TCT,3DS (see (9)):

⎛

⎜

⎜

⎜

⎜

⎜

⎝

xtum
m

ytum
m

ztum
m

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= ˜T3DS,m ˜TCT,3DS
︸ ︷︷ ︸

˜TCT,3DS

⎛

⎜

⎜

⎜

⎜

⎜

⎝

xtum
CT

ytum
CT

ztum
CT

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

3. EXPERIMENTS AND RESULTS

3.1. Simulation room description

During standard treatment, the patient positioning is first re-
alized in a simulation room in order to assess the positioning
accuracy and to check the dose distribution. The simulation
room is geometrically identical to the treatment room. The
two rooms are also equipped with the same devices. In par-
ticular, the simulation machine isocentre is also visualized by
three laser beams.

However, between the two rooms there is a major differ-
ence related to the energy emitted by the irradiation sources.
The linear accelerator of the treatment room is characterized
by high energy whereas the source of the simulation machine
is suitable to the realization of radiographic films (control
radiographs). Such radiographs are generally taken for two
well-defined viewpoints (see Figure 6).

As for the therapy machine coordinate system, the (Osm,
�xsm,�ysm,�zsm) simulation machine coordinate system is com-
pletely defined and visualized by the laser beams. The two
control radiographs are orthogonal since the first radio-
graph is parallel to the plane defined by the (�xsm,�ysm) axis
pair, while the second radiograph is parallel to the (�zsm,�ysm)
plane.

Moreover, a metallic cross is fixed in front of the X-ray
source. The axis passing both through the X-ray point source
and the 3D intersection point of the metallic cross is perpen-
dicular to the radiograph planes, to the (�xsm,�ysm) plane of
the first viewpoint and to the (�zsm,�ysm) plane of the second
viewpoint. With this geometry, the projection of the axes�xsm,
�ysm, and �zsm of the simulation machine coordinate system is
visualized exactly by the projections of the metallic cross onto
the radiographs.

The proposed positioning algorithm was tested in the
simulation room.

di,ref
sm

�zsm
Osm �xsm

�ysm

Isocentre
of the

simulation
machine

Frontal radiograph Lateral radiograph

Metallic cross projection

8
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X-ray source

Metallic cross
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Radiograph
Metallic cross

projection

(b)

Figure 6: Simulation room. (a) Orthogonal control radiographs.
(b) Room geometry.

3.2. Phantom description and CT-data

Tests were performed with a plaster head acting as phan-
tom (see Figure 5). Fifteen metallic balls (simulating tumors)
were included in the head. These radio-opaque balls, with a
mean diameter of 5 mm, were regularly spaced and placed
exactly on three orthogonal axes. Figure 6(a) gives the labels
of these balls. It is noticeable that the balls are distributed
into the whole head volume so that it can be checked if the
positioning accuracy depends on the tumor localization.



10 International Journal of Biomedical Imaging

Table 2: First positioning test results. The i-ball labels are those of
Figure 6 (all values are given in millimeters).

i xi,com
sm yi,com

sm zi,com
sm di,com

sm

1 0.13 −0.08 0.12 0.19

2 0.11 0.12 0.18 0.24

3 0.18 −0.02 0.04 0.19

4 0.47 0.11 0.35 0.59

5 −0.27 −0.10 −0.07 0.3

6 0.29 0.02 −0.18 0.34

7 0.6 0.29 0.3 0.74

8 −0.21 0.17 0.15 0.31

9 0.31 0.06 −0.18 0.36

10 0.18 −0, 31 0.32 0.48

11 0.26 −0.34 0.08 0.44

12 0.31 0,21 0.28 0.47

13 −0.16 0.21 0.42 0.5

14 0.15 0.23 −0.19 0.33

15 0.36 −0.17 0.28 0.49

A scan was performed with the plaster head placed in the
CT-machine. The balls were spread out on several voxels of
the CT. The mass centre positions (xiCT,yiCT,ziCT) were com-
puted for each ball pi (i ∈ [1, 15]).

3.3. First positioning test

The balls were successively placed at the simulation machine
isocentre by superimposing the ball projections and the cross
intersection projections viewed on the two control radio-
graphs. This placement can be done very accurately by ex-
perienced radiotherapists. The laser positions on the plas-
ter head were marked precisely for each ball placement on
Osm. Thus, the placement of the marks on the laser beams
ensures a very accurate positioning of the balls on the isocen-
tre. If a ball is placed on Osm, then the positioning algorithm
should ideally give (0, 0, 0) as result for the ball coordinates in
(Osm,�xsm,�ysm,�zsm). It is noticeable that this positioning ex-
periment is conducted like a true patient positioning in the
therapy room.

The sensor was fixed in the simulation room and its posi-
tion was calibrated in the (Osm,�xsm,�ysm,�zsm) coordinate sys-
tem. The surface of the plaster head given by the CT-scan was
registered with the plaster head’s face acquired in the sim-
ulation room. The balls pi were all placed at the isocentre
and positions of their centres were computed with (9). The
(xi,com

sm , yi,com
sm , zi,com

sm ) ball coordinates in (Osm,�xsm,�ysm,�zsm)
and their di,com

sm distances to Osm are given in Table 2. The
mean and standard deviation values of the di,com

sm distances
are, respectively, 0.4 mm and 0.15 mm. With these results,
several observations can be formulated.

The mean positioning error is very small and indicates a
submillimetre accuracy.

No correlation can be established between tumor posi-
tions and positioning errors. In other terms, a weak variabil-

Table 3: Ball 3 positioning results for different acquisitions and 3D
sensor viewpoints. d3,com

sm is the distance between the ball with coor-
dinates (x3,com

sm ,y3,com
sm , z3,com

sm ) and the isocentre (All values are given
in millimeters).

Acquisition
number

x3,com
sm y3,com

sm z3,com
sm d3,com

sm

1 0.24 0.12 0.01 0.27

2 0.1 0.01 0.03 0.1

3 0.11 0.12 0.21 0.27

4 0.18 −0.02 0.04 0.19

5 0.14 0.13 0.22 0.29

6 −0.21 −0.07 0.12 0.25

7 0.03 0.15 −0.18 0.24

8 0.17 −0.08 0.11 0.22

9 0.08 −0.14 0.10 0.19

ity affects the positioning accuracy when considering differ-
ent head regions (head centre or skull region). This result is
important since the lower this variability is, the more the po-
sitioning errors are predictable.

The voxel of the CT-modality having a size of 0.313 mm×
0.313 mm× 2 mm means that the (xi,com

CT , yi,com
CT , zi,com

CT ) centre
coordinates of the balls (with a 5 mm diameter) are affected
by errors. Theses errors have also an impact on the patient
positioning accuracy. The positioning accuracy can still be
improved with scanners (CT-modality or other modalities)
delivering volume data with a higher resolution.

3.4. Second positioning test

The purpose of the second positioning test was the assess-
ment of the variability of the positioning results with re-
gards to the calibration data, the phantom data, and sensor
viewpoint differences. Indeed, from one acquisition to an-
other, the distributions of the 3D sensor points on the cali-
bration piece spheres and on the plaster head are different,
even if the point density remain quasiconstant. Concerning
the viewpoint differences, acquisitions were performed for
sensor/object distances ranging in [90, 110] cm and for angle
deviations (from reference angles) belonging in [−10◦, 10◦].

Each ball was acquired several times for different angles
of view. Images of the calibration piece were also taken for
each sensor position. For each ball, the mean distance and
the standard deviation were computed for the di,com

sm distances
to the isocentre. The standard deviation, acting as first cri-
terion for the assessment of the isocentre/ball distance vari-
ability, was smaller than 0.1 mm for the fifteen balls. The val-
ues given in Table 3 for ball 3 are representative of the po-
sitioning algorithm variability. The standard deviation with
respect to the mean value of the d3,com

sm distances of ball 3 is
0.055 mm. The mean distance between the mean position of
a ball and the different positions of the same ball is another
criterion allowing the assessment of the positioning variabil-
ity. The mean distance between the positions of ball 3 and
the (0.093, 0.024, 0.073) mean position coordinates of ball 3
is 0.18 mm. It is noticeable that the mean position of ball 3 is
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very close to the (0,0,0) isocentre coordinates. The small val-
ues obtained for the two algorithm variability criteria show
that the positioning algorithm is relatively independent to-
wards sensor position differences and different 3D point dis-
tributions. Moreover, it is noticeable that the sensor can be
fixed once and for all in an optimal position in terms of
patient positioning accuracy. Thus, the positioning accuracy
dependency according to the sensor position is not a crucial
problem.

3.5. Registration of human faces

The only step of the positioning algorithm which can lead to
different results when human data is used instead of phan-
tom data is the 3D surface registration. Two tests were carried
out to assess the influence of the nonrigid cutaneous surface
on the registration algorithm.

First registration test

A first image is acquired with the 3D sensor for a person
who takes a neutral expression (eyes open in a natural way
and closed mouth). This image simulates the CT-data. A sec-
ond image was taken immediately after the first acquisition.
Even if the person was asked to keep the same expression
(the mouth remained closed), differences exist between the
two images (eyelids more or less open, teeth more or less
clenched, different point distribution over the face, etc.). In
the second image, the data included in a window comprised
between the bottom of the forehead and the bottom of the
nose (see Figure 7(b)) was manually extracted (this face re-
gion can automatically be extracted by looking for the high
curvature points corresponding to the nose and to the or-
bital arches). A transformation consisting of some decimetre
translation components and of three rotation angles rang-
ing each in [−10◦, 10◦] is applied to the 3D surface extracted
from the second image. The extracted data was then regis-
tered with the first image. This test was done for 15 women
and men.

After registration, the distances between each point of
the transformed surface (second image) and the correspond-
ing computed points on the reference surface (closest points
on the surface of the first image) are determined. The mean
distance between these homologous points never exceeded
0.1 mm for all 15 people. It is noticeable that this mean value
is only a little bit greater than the 0.03 mm inherent regis-
tration accuracy computed for the ideal phantom data (see
Section 2.4.6). The 0.1 mm distances correspond to errors
smaller than 1◦ and one tenth of millimetres for the angles
and the translations, respectively. These results prove that the
registration scheme based on the dHd is very robust and ac-
curate, not only for phantom data, but also for human data.
A high registration accuracy can be obtained since, in the
considered window, the anatomical parts supporting the skin
(orbital arches, nose and cheek-bone) are rigid surfaces. In
this region, skin movements affect only slightly the 3D face
shape. The mouth and the essential parts of the cheeks (non-
rigid regions) are outside the window.

Second registration test

The aim of the second test is to assess the registration algo-
rithm accuracy and robustness in more extreme situations.
A first image is again acquired for people. For this reference
image, the people systematically closed their eyes and their
mouth (teeth slightly clenched). This face posture can easily
be maintained. Other images were acquired for each person
with different face configurations: closed mouth/open eyes,
open mouth/closed eyes, and open mouth/open eyes. Trans-
formations consisting of some decimetre translation compo-
nents and of three rotation angles ranging each in [−10◦,
10◦] are applied to these images. The latter are then regis-
tered with the reference image. The whole data of each image
(no data extraction) was used during the registration.

Figure 7 illustrates typical results obtained with differ-
ent men and women. Figure 7(c) allows a quantitative as-
sessment of the registration quality of the 3D data repre-
sented by the images of Figures 7(a) and 7(b). The graphic
of Figure 7(c) gives, for each point of the transformed image,
the shortest distance to the surface of the model image. The
distances between these homologous points vary greatly ac-
cording to the face region. It was verified that the distances
between homologous points located around the mouth or
on the chin, on the cheeks, and on the regions close to the
nose peak or orbital arches are, respectively, greater than
3 mm, range approximatively in [0.3, 3] mm or are smaller
than about 0.3 mm. These observations are coherent since

(i) if the images are well registered, big differences ex-
ist for the mouth and the chin due to unconscious
movements,

(ii) some millimetre variability is normal for points lo-
cated on cheeks which have a low rigidity, and

(iii) small errors for points located on the nose peak and
on the orbital arches are predictable since these face
parts are the most rigid (opening the mouth does not
normally change the nose position).

If only the points on the nose peak and around the or-
bital arches are considered, the mean drigid distance between
homologous points after registration is 0.09 mm. The dall

mean distance computed for all points is 1.6 mm. Mean-
while, the last measure is strongly influenced by the points lo-
cated around the mouth and on the chin. Without these last
points, the dcheeks mean distance including the cheek points
is 1.05 mm. However, the drigid measure is the most perti-
nent (since it is based on rigid face parts) and indicates that
the registration had a submillimetre accuracy for the man of
Figure 7. It is noticeable that the drigid value is close to the
0.1 mm mean distance obtained for the first registration test
with the window.

The same observation can be made for the woman of Fig-
ures 7(e) and 7(f) with closed eyes (reference image) and
open eyes (image to be transformed). After the registra-
tion the dall, dcheeks, and drigid mean distances are 1.2 mm,
0.99 mm and 0.11 mm, respectively. drigid indicates again a
submillimetre registration accuracy. Similar results were ob-
tained for all people, even if both the eyes and mouth were
open.
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Figure 7: Registration results for humans. (a) Man with closed eyes and mouth. (b) Man with closed eyes and open mouth. The window
in (b) indicates the data of the image to be transformed in the first registration test (the whole 3D points are used in the second test). The
colour rays are the structured light information used for the 3D point reconstruction. (c) Computed distances between homologous points
of (a) and (b) after registration. (d) Computed distances between homologous points of (e) and (f) after registration. (e) Woman with closed
eyes and mouth. (f) Woman with open eyes and closed mouth.

Registration result discussion

The first tests presented here indicate that the 3D points be-
tween the bottom of the forehead and of the nose should sys-
tematically be extracted from the data set to be transformed
before registering it with the model data (whole face points).
It is recalled that this face part is always visible when the de-
vices defined in section 1.3 are used. With this way to pro-
ceed, the distances between the homologous face points have
a very small mean value (0.1 mm). The tests also proved that
eyelid movements have a negligible impact on the registra-
tion accuracy. The tests with the phantom demonstrated that
there is no correlation between the positioning accuracy and
the lesion position in the head (Section 3.4). This fact indi-
cates that if the lesion is close to the face surface (0.1 mm er-
ror) or in the head centre (two very different localizations),
the lesion localization error due to the registration is always
about 0.1 mm (or at least by far smaller than 1 mm). Thus,
the first advantage of the dHd taken as similarity measure
lies in the fact that small face surfaces lead to an accurate reg-
istration. The only condition is that face regions with enough
geometrical information are included (regions with high cur-

vatures like the nose or orbital arches) in the data. Another
advantage of the dHd is its ability to register two surfaces of
different sizes and point densities (this measure is often used
when surface data of two different modalities must be regis-
tered).

The second tests proved that the dHd is able to register
two surfaces presenting large geometrical differences while
ensuring submillimetre alignment accuracy. In fact, the tests
confirmed that the dHd can handle data containing outliers
(points on the mouth or on the eyes in the case of very strong
eyelid movement) without greatly affecting the registration
accuracy.

The tests also proved that the registration algorithm con-
verges in a robust way towards the solution, even for big head
position differences between the two modalities. Moreover,
neither an initial manual alignment nor an initial homolo-
gous point marking is required. According to the literature,
the dHd leads to registration accuracies which are almost in-
dependent of the translation differences between surfaces.
This fact was confirmed by the results. Orientation differ-
ences (around each axis) ranging in [−10◦, 10◦] were always
successfully treated by the registration algorithm. The tested



R. Posada et al. 13

position differences are greater than those encountered in
clinical situations. In fact, radiotherapists place the patient
with initial errors of one centimetre (or a few millimetres)
and some degrees in terms of translations and rotations. The
proposed registration scheme is able to handle bigger differ-
ences in an automatic way.

4. CONCLUSION

The results presented in this contribution prove that the pro-
posed algorithm is an important first step towards a pa-
tient positioning which allows for the association of CRT and
FRT in the case of intracranial lesion irradiation. Tests with
a phantom proved that the inherent accuracy of the whole
positioning algorithm (sensor calibration and registration)
is 0.4 mm. Registration tests with human data proved that
the mean alignment errors are very small (about one tenth
of millimetres). This registration accuracy leads us to think
that the whole positioning method will also lead to a sub-
millimetre accuracy for patient data. In fact, as suggested by
Li et al. [12], if the calibration and the registration have each
a submillimetre accuracy, the limitation in terms of precision
is rather due to the precision of the patient immobilization
devices than to positioning algorithm precision. The fact that
Li et al. obtained a submillimetre accuracy with similar algo-
rithm principles and sensors indicates that it is also possible
to reach a submillimetre accuracy for patients. The next step
of the positioning algorithm evaluation will consist in exper-
iments conducted as follows. Patients will be positioned with
the classical invasive frame-based method. The proposed al-
gorithm will be used in parallel to obtain a second tumor co-
ordinate set. The later coordinates will be compared to those
given by the frame based method. Control radiographs will
also be used to test the positioning accuracy of the algorithm
with patient data.

The proposed method is noninvasive and no dedicated
piece must be built for patients. Standard treatment proto-
cols are not influenced by the algorithm. Moreover, only con-
ventional and simple immobilization devices are required.
The drawbacks relating to frames or face masks are avoided.

One of the main results of this contribution lies in the
performances of the registration algorithm. The optimiza-
tion method converges robustly and accurately towards the
solution, even for large head position differences. Facial ex-
pression changes can also be processed by the algorithm.

Phantom-based tests proved that the positioning accu-
racy does not depend on the lesion position in the head. The
fact that the irradiation must be done with well-known er-
rors (at least submillimetre errors) explains why it is impor-
tant for the positioning accuracy to be independent of the
lesion localization.
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N. E. Säterborg, “A non-invasive method for fractioned stereo-
tactic irradiation of brain tumors with linear accelerators,” Ra-
diotherapy and Oncology, vol. 17, no. 1, pp. 57–72, 1990.

[4] M. Delannes, N. Daly, J. Bonnet, J. Sabatier, and M. Tremoulet,
“Fractioned radiotherapy of small inoperable lesions of the
brain using a non-invasive stereotactic frame,” International
Journal of Radiation Oncology, Biology, Physics, vol. 21, no. 2,
pp. 749–755, 1991.

[5] J. D. Graham, A. P. Warrington, S. Gill, and M. Brada, “A non-
invasive, relocatable stereotactic frame for fractionated radio-
therapy and multiple imaging,” Radiotherapy and Oncology,
vol. 21, no. 1, pp. 60–62, 1991.

[6] M. Uematsu, A. Shioda, A. Suda, et al., “Computed
tomography-guided frameless stereotactic radiotherapy for
stage I non-small cell lung cancer: a 5-year experience,” In-
ternational Journal of Radiation Oncology, Biology, Physics,
vol. 51, no. 3, pp. 666–670, 2001.

[7] C. Mavroidis, J. Flanz, S. Dubowsky, P. Drouet, and M.
Goitein, “High performance medical robot requirements and
accuracy analysis,” Robotics and Computer-Integrated Manu-
facturing, vol. 14, no. 5-6, pp. 329–338, 1998.

[8] E. N. J. Th. Van Lin, L. van der Vight, H. Huizenga, J. H. A. M.
Kaanders, and A. G. Visser, “Set-up improvement in head and
neck radiotherapy using a 3D off-line EPID-based correction
protocol and a customised head and neck support,” Radiother-
apy and Oncology, vol. 68, no. 2, pp. 137–148, 2003.

[9] D. Sarrut and S. Clippe, “Patient positioning in radiotherapy
by registration of 2D portal to 3D CT images by a contend-
based research with similarity measures,” in Proceedings of 14th
International Congress and Exhibition on Computer Assisted
Radiology and Surgery (CARS ’00), pp. 707–712, Elsevier Sci-
ence, San Francisco, Calif, USA, June-July 2000.

[10] R. Bansal, L. H. Staib, Z. Chen, et al., “Entropy-based,
multiple-portal-to-3D CT registration for prostate radiother-
apy using iteratively estimated segmentation,” in Proceedings
of the Medical Image Computing and Computer-Assisted Inter-
vention (MICCAI ’99), vol. 1679 of Lecture Notes in Computer
Science, pp. 567–578, Cambridge, UK, September 1999.

[11] S. L. Meeks, F. J. Bova, T. H. Wagner, J. M. Buatti, W. A. Fried-
man, and K. D. Foote, “Image localization for frameless stereo-
tactic radiotherapy,” International Journal of Radiation Oncol-
ogy, Biology, Physics, vol. 46, no. 5, pp. 1291–1299, 2000.

[12] S. Li, D. Liu, G. Yin, P. Zhuang, and J. Geng, “Real-time 3D-
surface-guided head refixation useful for fractionated stereo-
tactic radiotherapy,” Medical Physics, vol. 33, no. 2, pp. 492–
503, 2006.

[13] D. Djajaputra and S. Li, “Real-time 3D surface-image-guided
beam setup in radiotherapy of breast cancer,” Medical Physics,
vol. 32, no. 1, pp. 65–75, 2005.

[14] J. A. Nelder and R. Mead, “A simplex method for function
minimization,” Computer, vol. 5, no. 7, pp. 308–313, 1965.



14 International Journal of Biomedical Imaging
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An important goal of software development in the medical field is the design of methods which are able to integrate information
obtained from various imaging and nonimaging modalities into a cohesive framework in order to understand the results of quali-
tatively different measurements in a larger context. Moreover, it is essential to assess the various features of the data quantitatively
so that relationships in anatomical and functional domains between complementing modalities can be expressed mathematically.
This paper presents a clinically feasible software environment for the quantitative assessment of the relationship among bio-
chemical functions as assessed by PET imaging and electrophysiological parameters derived from intracranial EEG. Based on the
developed software tools, quantitative results obtained from individual modalities can be merged into a data structure allowing a
consistent framework for advanced data mining techniques and 3D visualization. Moreover, an effort was made to derive quanti-
tative variables (such as the spatial proximity index, SPI) characterizing the relationship between complementing modalities on a
more generic level as a prerequisite for efficient data mining strategies. We describe the implementation of this software environ-
ment in twelve children (mean age 5.2±4.3 years) with medically intractable partial epilepsy who underwent both high-resolution
structural MR and functional PET imaging. Our experiments demonstrate that our approach will lead to a better understanding
of the mechanisms of epileptogenesis and might ultimately have an impact on treatment. Moreover, our software environment
holds promise to be useful in many other neurological disorders, where integration of multimodality data is crucial for a better
understanding of the underlying disease mechanisms.
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1. INTRODUCTION

With ever-improving imaging technologies and high-per-
formance computational power, the complexity and scale
of brain imaging data have continued to grow at an explo-
sive pace. Recent advances in imaging technologies, such
as molecular imaging using positron emission tomography
(PET), structural imaging using high-resolution magnetic
resonance (MR), as well as quantitative electrophysiological
cortical mapping using electroencephalography (EEG), have
allowed an increased understanding of normal and abnormal
brain structures and functions [1–4] It is well understood
that normal brain function is dependent on the interactions
between specialized regions of the brain which process in-
formation within local and global networks. Consequently,

there is a need to integrate the acquired multimodality data
in order to obtain a more detailed understanding about pro-
cess interaction in a complex biological system. In addition to
integration, advanced computational tools need to be devel-
oped which allow quantitative analysis of a variety of func-
tional patterns as well as the design of a software environ-
ment that allows quantitative assessment of relationships be-
tween diverse functional and anatomical features. Although
this is an area of active research, current state-of-the-art tech-
nologies are still suboptimal with respect to multimodality
integration and quantitative assessment of qualitatively dis-
tinct neuroimaging datasets in patients with structurally ab-
normal brains. This paper presents a multimodality database
for neuroimaging, electrophysiological, as well as clinical
data specifically designed for the assessment of epileptic foci
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in patients with epilepsy, and can serve as a standard tem-
plate for other diagnostic procedures which employ multiple
imaging technologies.

The paper is organized as follows. In Section 2, we dis-
cuss previous work by other investigators and how it re-
lates to the proposed framework. In Section 3, we intro-
duce a novel image analysis method able to assess quanti-
tatively the relationship between imaging and electrophys-
iological data. In Section 4, we describe the integration of
diverse data sets into an extendable database structure and
describe available queries for quantitative analysis of mul-
timodality data. Section 5 details the implementation issues
and shows the applications of the presented environment. Fi-
nally, in Section 6 we discuss the strength and limitations of
the proposed system and conclude with potential future di-
rections.

2. RELATED WORK

The accurate segmentation of anatomical brain structures
from medical images and their compact geometrical repre-
sentation in a rigorous computational framework is diffi-
cult due to the complexity and physiological variability of
the structures under study. In the past, a large number of
techniques have been applied to achieve spatial standardiza-
tion of the cortical surface within a group of subjects, but
only a few methods are currently available for the defini-
tion of homotopic volume elements within the whole brain.
For example, Thompson et al. [5], Lohmann [6], and Vail-
lant et al. [7] used a manually labeled atlas brain, which was
then warped to fit an individual subject’s brain surface with
subsequent transfer of labels onto the subject’s cortical sur-
face. Another related method is the 3D stereotactic surface
projection (3D-SSP) technique [8], which is based on the
extraction of subcortical functional data onto a predefined
set of surface pixels following stereotactic anatomical stan-
dardization of an individual brain. More recently, conformal
mapping techniques have gained a wider application in brain
mapping [9]. For example, Hurdal and Stephenson [10] pro-
posed a discrete mapping approach that uses spherical pack-
ing in order to produce a “flattened” image of the cortical
surface onto a sphere yielding maps that are quasiconformal
approximations to classical conformal maps. Moreover, Gu
et al. [11] proposed optimization of the conformal parame-
terization method by composing an optimal Möbius trans-
formation so that it minimizes the landmark mismatch en-
ergy. Based on the work of the above investigators as well
as on our previous work with landmark-constrained confor-
mal surface mapping [12], we have developed a landmark-
constrained conformal mapping of the brain where the map-
ping accuracy is achieved through matching of various corti-
cal landmarks (e.g., central sulcus, Sylvian fissure, interhemi-
spheric fissure). These landmarks are manually defined in the
subject’s native space and subsequently aligned in the spher-
ical domain using landmark-constrained conformal map-
ping. Finite cortical elements are defined geometrically in the
spherical domain and subsequently reversely mapped into
the subject’s native space where all data analyses take place.

As the position of cortical landmarks is affected by structural
abnormalities, this method incorporates both physiological
variations as well as structural abnormalities into the map-
ping process.

The creation of brain image databases which allow stor-
age, organization, and the sharing of processed brain data be-
tween investigators with different scientific backgrounds in
easily accessible archives is one of the main goals of the newly
emerging field of neuroinformatics. This objective is becom-
ing increasingly important for researchers in the brain imag-
ing field as an unprecedented amount of brain data is now
acquired using complementing modalities which need to be
analyzed based on an overarching strategy [13–15]. Follow-
ing the model of other scientific fields which were revolution-
ized through the implementation of powerful database struc-
tures such as the GenBank (http://www.ncbi.nlm.nih.gov)
for the field of genomics or the Protein Data Bank (http://
www.rcsb.org/pdb ) for the field of proteomics, several neu-
roimaging databases were generated in the past decade in
order to fully mine the information present in the ac-
quired data. The Visible Human Project website http://www
.nlm.nih.gov/research/visible/visible human.html allows re-
searchers to view high-resolution image sections of two hu-
man cadavers and is widely used in education and training.
More comprehensive human brain databases which attempt
to combine the expertise of computer programmers, statisti-
cians, and basic researchers in an attempt to develop neu-
roinformatics tools for interdisciplinary collaboration are
the ICBM database http://www.loni.ucla.edu which includes
PET, MRI, fMRI, EEG, and MEG modalities [16] as well
as the BrainMapDBJ http://www.brainmapDBJ.org and the
ECHBD databases which both integrate PET and fMRI image
data [17]. In comparison to these multiinstitutional large-
scope archives, our database is specific to the task of under-
standing the mechanisms of epileptogenesis in patients with
epilepsy who are evaluated for resective surgery. Whereas the
above-mentioned archives integrate the data within the con-
cept of a probabilistic atlas of the human brain, a major con-
sideration of our database design was the analysis and inte-
gration of data in native space. As a consequence, our ap-
proach not only allows the integration of complementing
modalities (PET, MRI, EEG) in native space of each indi-
vidual patient, but also provides software tools able to quan-
tify the relationship between these diverse modalities. Conse-
quently, the developed framework has the potential to gener-
ate quantitative measures which characterize the state of the
brain in more detail than would be possible with each indi-
vidual modality.

3. INTEGRATION OF MULTIMODALITY DATA IN
THE PRESURGICAL EVALUATION OF PATIENTS
WITH EPILEPSY

The main objective of presurgical evaluation of patients with
medically refractory epilepsy is to define the boundaries of
epileptogenic brain regions to be resected. Towards this goal,
definition of the epileptogenic cortex by intracranial subdu-
ral EEG recording remains the gold standard. However, the
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accuracy of foci localization using subdural electrodes de-
pends greatly on location of electrodes placed on the brain
surface, and selection bias (i.e., area of cortex sampled) is
a major limitation. In order to guide the placement of sub-
dural electrodes, a combination of noninvasive anatomical
and functional imaging, such as MR and PET imaging, is fre-
quently used. These modalities provide the epilepsy surgery
team with important information to guide placement of sub-
dural electrodes over epileptogenic brain regions based on
the position and extent of anatomical and functional abnor-
malities [18–20] as well as the seizure semiology (i.e., symp-
toms of seizures). Furthermore, after the intracranial EEG
electrodes are implanted, each electrode records a number of
electrophysiological parameters that need to be related to the
imaging information in order to decide on the most effective
course of surgical intervention. To this end, we designed an
extendable multimodality database which allows assessment
of relationships among various modalities across a large pa-
tient population. A focal point of our design was the exten-
sibility of the database scheme in order to allow easy inclu-
sion of data originating from newly developed PET tracers or
the inclusion of emerging modalities such as diffusion tensor
imaging (to incorporate a measure of brain connectivity) or
susceptibility weighted imaging (to assess venous vasculature
in brain tissue).

3.1. Data acquisition protocols

PET imaging using the tracers [F-18]deoxy-L-glucose (FDG)
and [C-11]flumazenil (FMZ) was performed as part of
the clinical management of patients undergoing evalua-
tions for epilepsy surgery. PET studies were performed us-
ing the CTI/Siemens EXACT/HR scanner (Knoxville, Tenn,
USA) with a reconstructed image resolution of about 5 mm
FWHM. All subjects was fasted for 4 hours prior to the
PET procedure and EEG was monitored using scalp elec-
trodes during the whole study duration. Static PET images
were obtained based on coincidence data acquired between
40–60 minutes post injection for the FDG and between 20–
40 minutes post injection for the FMZ tracer.

MRI studies were performed on a GE 1.5 Tesla Signa
unit (Milwaukee, Wis, USA). High-resolution T1-weighted
images were performed using a fast spoiled gradient echo
(SPGR) sequence. The SPGR technique generates 124
contiguous 1.5 mm sections of the entire head using a
4.6/1.3/450 (TR/TE/TI) pulse sequence, flip angle of 12 de-
grees, matrix size of 256× 256, and FOV of 240 mm.

3.2. Image data processing

Following coregistration of the PET image volumes to the
high-resolution MR image volume, all extracerebral struc-
tures were removed from the MR image volume using an
in-house developed software package [3]. Following initial
thresholding, the software performs multiple erosion and di-
lation operations in order to delete connections between the
brain and the skull in subdural space. Finally, a connected
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Figure 1: Definition of the four brain lobes (F,P,T,O) on the lateral
cortical surface based on user-defined landmarks such as the central
sulcus (CS), Sylvian fissure (SF), and the parieto-occipital sulcus
(POS). The locations of the frontal (yellow) and occipital (green)
poles are obtained as the extension of the AC-PC line to the front
and back of the brain. The horns of the corpus callosum (P1 and
P2) as well as the POS are defined in the medial plane.

component analysis is performed and all but the largest com-
ponent (brain) is deleted, resulting in an MR image volume
where all extracerebral structures are removed and cortical
sulci and gyri become visible. The standard set of cortical
landmarks consisted of the central sulcus, Sylvian fissure, and
parieto-occipital sulcus, which were subsequently used to de-
fine the spatial extent of the four brain lobes (frontal, pari-
etal, temporal, and occipital). In order to find the border of
the occipital cortex on the lateral cortical surface, both the
parieto-occipital sulcus as well as the medial border between
the cerebellum and the occipital lobe were defined on the
midplane and then projected normal to the midplane onto
the lateral surface (Figure 1).

3.3. Quantitative assessment of bilateral
PET abnormalities

We have recently developed a landmark-constrained confor-
mal surface mapping technique [12, 21] which allows accu-
rate and reproducible transformation of each patient’s cor-
tical surface to a canonical spherical domain (the confor-
mal brain model (CBM), see the appendix). Once the cor-
tical surface of a subject is mapped to the CBM, finite surface
elements can be defined geometrically on the spherical sur-
face at various resolution levels (8, 32, 128, 512, and 2048)
(Figure 2).

The set of surface elements can be subsequently reversely
mapped into native space where they represent homotopic
surface elements in brains of individual patients. These sur-
face elements scale proportionally to the size and shape of in-
dividual brains. Moreover, in order to integrate PET and MRI
data, a normal fusion approach is applied in native space of
each subject. The extracted MR brain surface is smoothed
using a “roller-ball algorithm” based on alpha-shapes [22]
where the parameter alpha is the radius of a ball rolled over
the surface. Smoothing of the cortical surface is achieved
as all points deep inside cortical sulci are recovered which
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Figure 2: Landmark-constrained conformal surface mapping of the cortex onto a sphere and construction of finite surface elements. (a)
Cortical surface of a brain with defined landmarks showing the bilateral central sulci. (b) Landmark-constrained conformal mapping (CM)
of the cortical mantel to the surface of a sphere. Constraints are enforced during conformal mapping so that the midplane is mapped to the
main circle of the unit sphere, and landmarks (e.g., central sulcus) are mapped to the same spatial location. (c) Geometric parcellation of
the unit sphere into 512 surface finite elements. (d) Location of the same surface finite elements after reverse conformal mapping (CM−1)
into the subject’s native space.

cannot be reached by the ball. Following triangulation of the
brain surface, the normal vector to the surface is calculated
in each surface voxel. By averaging the PET tracer concentra-
tion along the inverse normal vector in the coregistered PET
image volume, the average PET tracer concentration within
a 10 mm cortical mantel is calculated.

By comparing the PET tracer concentration in these cor-
tical elements between a group of normal control subjects
and an individual patient, functionally abnormal increases
or decreases of PET tracer concentration can be determined
in finite elements of the cortical mantel. Decision about the
functional abnormality of a cortical element of a patient at
a given location can be then made based on a severity index
calculated as

severityi =
(
mi − μi

)

σi
, (1)

where mi is the mean tracer concentration at cortical loca-
tion i of a patient and μi and σi are the mean tracer con-
centration and standard deviation (SD) at cortical location
i derived from a control group. Values of the severity index
within ±2 SD are assumed to represent normal cortex. The
severity of detected abnormalities (outside ±2 SD) is then
color-coded and mapped onto the cortical surface allowing
assessment of functional abnormalities relative to anatomi-
cal cortical landmarks.

Our approach attempts to merge the advantages of voxel-
based (such as SPM) and region-of-interest-based strategies,
but at the same time tries to avoid the pitfalls associated
with either of these methods. The semiautomated geomet-
ric parcellation procedure creates cortical elements that are
much larger than individual voxels of the image volume,
but circumvents the time consuming and subjective defini-
tion of large surface-based regions of interest. Moreover, as
this method does not rely on asymmetry measures between
homotopic cortical volume elements [23], it is well suited

to detect bilateral cortical abnormalities. Finally, the most
prominent advantage of our method is the fact that all data
samplings and analyses are performed in the subject’s native
space. By avoiding spatial warping, we allow application of
this method to brains that are very different from the normal
adult brain, such as brains of patients with tuberous sclero-
sis (with a large number of tubers deep inside the brain) or
children during various developmental stages.

3.4. Subdural EEG assessment

All patients with intractable focal epilepsy included in the
present study underwent chronic EEG monitoring with sub-
dural electrode grids as part of their presurgical evaluation.
Subdural electrode placement was guided by seizure semiol-
ogy, scalp EEG recordings, and cortical glucose metabolism
abnormalities on PET. During the chronic subdural EEG
monitoring, more than two habitual seizures were captured
and analyzed using Stellate’s SENSA 5.0 software [24], yield-
ing for each grid electrode the mean interictal spike fre-
quency as well as the normalized interictal spike frequency
(normalized to the electrode with highest spike frequency).
Identification of electrodes involved in seizure onset and
seizure spread of habitual clinical seizures was determined by
chronic subdural EEG monitoring (see, e.g., [8]).

3.5. Localization of electrodes on the cortical surface

In the past, we have implemented a method that allows the
localization of subdural grid electrodes on the cortical sur-
face [25, 26]. In short, this method relies on the accurate
alignment of a lateral planar X-ray image (Figure 3(b)) of the
patient’s head with the electrode grid in place with a three-
dimensional surface rendering of the head (Figure 3(a)).
Upon completion, a surface view of the cortex is created
which corresponds to the planar X-ray image and where the
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(a) (b) (c)

Figure 3: (a) Anatomical information is used to define virtual markers corresponding to (b) fiducial markers placed on the patients’s head
prior to X-ray imaging. (c) The result is a surface view where the location of the four corner electrodes of each of the three EEG grids can be
determined on the brain surface.

spatial coordinates of the four corner grid electrodes of each
rectangular EEG grid can be determined on the brain surface
(Figure 3(c)). The accuracy of this method was reported to
be 1.24±0.66 mm with a maximal misregistration of 2.7 mm
[25].

3.6. Assessment of the spatial relationship between
functional and electrophysiological data

Our previous results indicated that intracranial subdural
electrodes showing electrophysiological ictal (seizure onset
and spread) or interictal (spike frequency) abnormalities are
either overlapping or in close proximity to functional abnor-
malities measured with PET imaging [27]. Because classical
receiver operator characteristic (ROC) analysis is suboptimal
in describing spatially related measures, we have previously
developed a spatial proximity index (SPI) [28]. This index
yields an overall quantitative measure of the spatial relation-
ship between electrophysiological and functional PET image
data and is calculated based on the position of intracranial
grid electrodes relative to abnormal PET tracer concentra-
tion in cortical areas (Figure 4). The SPI is a continuous vari-
able that equals zero for perfect overlap between seizure onset
electrodes and PET-defined abnormal cortical elements and
increases in value proportional to the distance between EEG-
defined onset electrodes and PET-defined abnormal cortical
elements.

The subdural EEG electrode array defines electrodes that
are either EEG positive (E+) or negative (E−) for seizure on-
set. Moreover, electrodes located within the PET abnormal-
ity are designated as PET positive (P+) and those outside the
PET abnormality are designated as PET negative (P−). Using
these definitions, the (unitless) spatial proximity index (SPI)
is computed as the ratio of the penalized total weighted dis-
tance between EEG positive and PET positive electrodes and
the total number of seizure onset electrodes,

SPI =
∑M

i=1 wi di
(
Ei + |Pi +

)
+
∑K

i=1 Pi +
(¬Ei +

)

∑M
i=1

(
Ei +

) , (2)

where M is the number of EEG positive electrodes, K is the
number of PET positive electrodes, and wi is a weighting fac-

tor which accounts for the varying interictal spike frequency
at different electrode locations. The weighting factor is either
1 or 0 for both seizure onset and spread, whereas for spike
frequency the weighting factor is derived as the quotient be-
tween the spike frequency at a particular electrode location
and the maximal spike frequency in the whole brain. In (2),
the first term in the numerator represents the total weighted
distance between all seizure onset electrodes and the near-
est PET positive electrode, whereas the second term repre-
sents the number of all false positive PET electrodes (i.e.,
PET positive electrodes which are not EEG positive). Finally
the denominator reflects the total number of EEG positive
electrodes. Because subdural electrodes are always arranged
in a rectangular lattice, the “city-block” metric [29] is used
to calculate the distance between two electrodes. It is impor-
tant to note that all characteristics of the Euclidian metric
are preserved in the city-block metric. In this metric, the dis-
tance between two adjacent electrodes is 1 and the distance
between two diagonal electrodes is 2. SPI values were cal-
culated separately for seizure onset (SPIonset), seizure spread
(SPIspread), and interictal spike frequency (SPIspike).

In order to demonstrate the computation of SPI values,
Figure 4 shows a (5×4) electrode grid with seizure onset elec-
trodes (red) and electrodes which are not seizure onset elec-
trodes (yellow). In Figure 4(a), the PET abnormality is ad-
jacent to the seizure onset electrodes resulting in an SPIonset

value of 2.66, while in Figure 4(b) the PET abnormality is re-
mote to the seizure onset electrodes resulting in an SPIonset

value of 5.66. In this example, the lower SPI value indicates a
closer spatial proximity between (complementing) PET and
EEG modalities and indicates that low SPI values are asso-
ciated with situations in which PET imaging is successfully
guiding the placement of an intracranial EEG grid (despite
being nonoverlapping).

4. DATABASE DESIGN AND QUANTITATIVE ANALYSIS

4.1. Database design

Our database design is founded on the relational model de-
picted in Figure 5. Conceptually, the database is structured in
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Figure 4: Schematic representation of an intracranial EEG grid
placed on the surface of the brain. Electrophysiologically normal
electrodes are yellow, whereas electrodes determined as abnormal
(either onset, spread, or frequent spiking) are shown in red. The
area with abnormal PET tracer concentration is depicted in grey.
Electrodes overlaying the PET abnormality but which are found to
be electrophysiologically normal represent false positive (FP) cases,
whereas electrophysiologically abnormal electrodes not overlaying
the PET abnormality represent false negative (FN) cases. (a) A PET
abnormality in close spatial proximity to electrophysiologically ab-
normal electrodes prompts the insertion of an intracranial grid
(black square) which will include the electrophysiologically abnor-
mal area, whereas (b) a PET abnormality that is distant to the elec-
trophysiologically abnormal area will trigger the insertion of in-
tracranial grid electrodes likely to miss the electrophysiologically
abnormal area.

three hierarchical levels: a patient level, a cluster level, and a
cortical element level. At the highest level (patient level), clin-
ical variables are stored such as the age of the patient, age at
first seizure, seizure type, seizure severity, and seizure dura-
tion. An index of seizure severity was derived as the product
of average monthly seizure number and average seizure du-
ration. As the cortical distribution of each PET tracer (e.g.,
FDG, FMZ, etc.) is distinct, the database includes separate
row for different PET tracers (Exam Type in PET Exam ta-
ble). The lowest level is the cortical element level, which pro-
vides information with regard to the location of functional
data in cortical elements. Cortical elements at different res-
olution levels are represented by the coordinates of the three
vertices building the corners of a surface triangle (Corner A,
Corner B, Corner C in the Cortical Element table). In addi-
tion, the PET table stores for each cortical element the Sever-
ity (Severity index), and the SPI table stores SPI values for
seizure onset, seizure spread, and interictal spiking for the
whole brain at each resolution level. Moreover, the surface
coordinates of each EEG grid electrode are stored at this low-

est level in the EEG grid table. This table stores for each of the
potentially multiple electrode grids placed onto the cortex
the location of the corner electrodes (Corner I-Corner IV
in the EEG grid table). The location of all other electrodes
within the EEG grid can be then computed from the location
of the corner electrodes given a 10 mm spacing between indi-
vidual electrodes. Electrophysiological parameter such as the
seizure category (onset, spread, spiking), interictal spike fre-
quency, or normalized interictal spike frequency can be then
mapped to a particular grid electrode. Given the location of
each electrode, the software then automatically determines
the corresponding cortical element at various resolution lev-
els. Finally the intermediate cluster level (Cluster table) al-
lows the grouping of cortical volume elements either into
anatomical territories such as the prefrontal, motor-frontal,
parietal, temporal, and occipital cortices, or into functional
clusters according to PET or EEG data. To accommodate
the flexibility of an evolving database schema, we applied an
XML-based approach. In this way, the database allows grace-
ful inclusion of additional modalities at each of the three
levels. The XML-based approach does not only accommo-
date the incorporation of additional data structures into the
database, but ensures also the scalibility of the system. This
was achieved through following design criteria: (1) an effi-
cient mapping algorithm that generates corresponding rela-
tional schemas from XML schemas in linear time [29], (2)
the implementation of two efficient linear data mapping al-
gorithms in order to store XML data in the database [30], and
(3) the implementation of a linear XML subtree reconstruc-
tion algorithm able to reconstruct the XML subtree from the
database [29].

4.2. Database initialization

The database was initially populated with control data deter-
mined in control subjects in order to establish a normative
pattern. The control group consisted of 15 young adult con-
trols (mean age 27.6 ± 4.5 years) who were not taking any
medication, and had no history of neurological or psychi-
atric disorder. All adult controls had normal MRI scans.

4.3. Queries for quantitative analyses

The purpose of the database is to provide an integrated
framework able to present relationships between functional
and electrophysiological parameters in an organized and, for
the user, easy-to-navigate fashion. A focus of our design was
to merge an efficient database structure with a display mod-
ule, so that users can grasp the results of their queries in an
intuitive way. Figure 6 shows the main control panel allowing
access to all data structures within the database and the link
to an integrated 3D image display module.

In addition, the application provides various queries
and advanced display options. For example, the user can
request to “highlight” all EEG grid electrodes with spike
frequency greater than 20% of the maximal spike fre-
quency and to calculate the corresponding SPI values. This
is highly relevant in light of our previous reports [19]
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PET date
Exam type

Cluster

Patient ID (FK)
PET date (FK)
SEQ ID (FK)

Level (FK)

Cluster ID

Cortical element

Patient ID (FK)
PET date (FK)
SEQ ID (FK)

Level

Corner A
Corner B
Corner C
Severity index

EEG grid

Patient ID (FK)
Grid ID

Corner I
Corner II
Corner III
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Patient ID (FK)
Grid ID (FK)
Electrode ID

Category
Spike frequency
Total spike

SPI

Patient ID (FK)
Level

SPI onset
SPI spread
SPI spiking

Figure 5: Relational model design of the database. On a conceptual level, the database is structured in three hierarchical levels. At the
lowest level (green), PET and EEG information are stored, which is associated with distinct finite cortical elements. At the intermediate level
(orange), functionally or electrophysiologically similar cortical elements are grouped into clusters. Finally, all clinical data characterizing the
disease state are stored at the highest level (blue). For simplification of presentation, each three-dimensional coordinate is recorded as one
attribute in tables, like Corner A in table EEG-grid.

indicating that in patients with nonlesional neocortical
epilepsy, seizures arose from areas adjacent to PET-defined
abnormalities, rather than from within the PET-defined ab-
normalities. An SQL query answering the above request is
Algorithm 1.

In essence, this query retrieves the electrophysiological
data from table Electrode and the PET data from table Clus-
ter, respectively, based on the input patient ID($PID). After
the location of an electrode with (normalized) spike frequen-
cies > 0.20 is determined, data representing the current elec-
trode is integrated with data characterizing the distribution
of abnormal PET clusters using the “join” condition Adja-
cent($PID, E.electrode, C.SEQ ID). This expression will re-
turn the value “true” only in the case when the current elec-
trode is adjacent to an abnormal cortical region. In addi-
tion, our design supports advanced graphical structure min-
ing techniques in order to discover nontrivial associations
between multiple electrophysiological parameters and their
spatial relationship to the PET-defined abnormalities. One of
these data mining techniques, the “association rule mining,”
is used to determine whether certain clinical patterns result
in larger SPI values or whether different PET tracers produce
larger SPI values given the same clinical pattern. This infor-
mation is important in order to determine the clinical perfor-
mance of newly developed PET tracers. Two measurements
that are used in the association mining process are support

and confidence defined as follows:

(i) support(condition c)
= # of patients satisfying c/total # of patients,

(ii) confidence(condition c1, condition c2)
= support(c1 & c2)/support(c1).

The association rule mining procedure returns all rules in the
form of condition 1 → condition 2, with a support and a
confidence greater than some user-specified thresholds. The
two measurements in conjunction quantify the association
strength between condition 1 and condition 2. One example
of an association rule is

(
# of patients

(
SeizureDuration > 3 .AND. Seizure Severity

> 2 .AND. SPIonset < 1.5
))/

(
# of patients

(
SeizureDuration

> 3 .AND. Seizure Severity > 2
))

> 0.8.
(3)

This indicates that if a patient has had seizures for more than
3 years and the severity score of these seizures was on average
higher than 2, then there is greater than 80% likelihood that
the patient’s SPIonset will be greater than 1.5.
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Figure 6: Main control panel which allows access to clinical, electrophysiological, and image data. The imaging module allows coding of
EEG parameters (red = seizure onset, yellow = seizure spread, green = normal) and evaluation of each electrode with respect to its location in
space by allowing real-time rotation and zoom of all objects in 3D. Furthermore, the SPI parameter which quantifies the spatial relationship
between PET and EEG information can be saved in the database for further evaluation across patients.

SELECT E.Electrode ID
FROM Electrode E, Cluster C
WHERE E.Patient ID = $PID AND C.Patient ID

= $PID AND E.Spike frequency
> 0.20

AND Adjacent($PID, E.Electrode, C.SEQ ID).

Algorithm 1

5. IMPLEMENTATION AND RESULTS

We have utilized VTK/OpenGL for rendering, Oracle 9i for
database applications, and C/C++ for implementation of
computationally intensive algorithms. Furthermore, we sep-
arated the computational components from other function-
ality and created a standalone programming library consist-
ing of the following modules: (1) conformal mapping; (2)
objective definition of PET abnormalities; (3) EEG grid over-
lay; (4) calculation of SPI values; (5) extendable database
component; and (6) graphical output module.

With the expected growth of knowledge about the evo-
lution of epileptic foci as well as the emergence of new com-
putational methods that require diverse information inputs,
it is impractical to design a fixed database schema. As new
requirements arise, it is critical that the database schema ad-
justs gracefully to these new requirements. In contrast to tra-
ditional database systems, where evolution of the database
schema to new requirements is problematic for dynamic ap-
plications, we applied a flexible data model based on XML
(eXtensible Markup Language) [29, 31, 32] due to its ex-
tensibility and flexibility nature. While in the past we have
successfully developed an XML storage and query system, in
which the database schema was automatically created from
an XML schema [30], this technique needed to be extended

to include support for the processing and storage of spatial
information.

5.1. Patient population

Twelve children (mean age 5.2 ± 4.3 years, age range 1 to
14.8 years) with medically intractable partial epilepsy were
analyzed. Patients were selected according to the following
criteria. All children were diagnosed with unilateral seizure
foci based on seizure semiology, scalp ictal, and intracranial
EEG as well as FDG PET, which were performed as part of
their presurgical evaluation. The region of epileptic focus as
verified by EEG showed hypometabolism in all cases. No cor-
tical or subcortical lesions on MRI scans were observed; how-
ever, patients with pure hippocampal atrophy were included.
All studies were performed in accordance with guidelines
stipulated by the Ethics Committee of Wayne State Univer-
sity.

5.2. Application number 1: multimodality display

Our application provides integration of anatomical, func-
tional, and electrophysiological data as shown in Figure 7.
Upon retrieval from the database, the software displays a
surface rendering of the selected patient’s brain with func-
tional data derived from PET imaging mapped directly
onto the cortical surface. In addition, each EEG electrode
is color coded according to its electrophysiological char-
acteristics (red = seizure onset, yellow = seizure spread,
green = normal) and is displayed directly on the corti-
cal surface. As the display is fully three-dimensional, the
user can interactively rotate and zoom the brain in or-
der to inspect the spatial relationship between EEG elec-
trodes and PET abnormalities from various viewing an-
gles.
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(a) (b)

Figure 7: (a) Surface rendering of a patient’s brain with an epileptic focus in the right temporal lobe. Finite cortical elements which represent
abnormally decreased FDG PET tracer uptake are rendered as blue areas with dark blue representing the most severe decrease and with light
blue representing the least severe decrease. The location of FDG PET abnormalities can be assessed with respect to the location of seizure
onset electrodes (red) and seizure spread electrodes (yellow). The SPIonset for this patient was calculated as 2.75. (b) Surface rendering of a
patient with tuberous sclerosis who had cortical tubers in the frontal and parietal lobes. Both tubers are associated with abnormally decreased
FDG tracer uptake (blue areas). Furthermore, yellow, orange, and red areas represent various degrees of abnormally increased FDG tracer
uptake, whereas green areas represent areas with abnormally homogeneous FDG tracer uptake and may indicate dysplastic tissue. Onset
electrodes (red) were located near the tuber in the parietal lobe and this area was determined as epileptogenic. The relevance of abnormally
increased FDG tracer uptake adjacent to epileptogenic tubers is at present unclear and warrants future studies.

5.3. Application number 2: quantitative assessment of
the spatial relationship between PET and
EEG abnormalities

In addition to the multimodality display, our software also
allows calculation of SPI values in order to allow quanti-
tative comparison between localizing information based on
clinical readings (onset/spread) and localizing information
obtained based on a semiquantitative analysis of interictal
spike frequency. Figure 8 shows images determined in a pa-
tient studied with both FDG as well as FMZ PET, and reports
SPI values which were calculated with regard to seizure onset
electrodes and electrodes with high interictal spike frequency
(>40% of maximal spike frequency). The user is able to select
various thresholds of spike frequency and interactively assess
the spatial relationship between frequently spiking cortical
tissue, the location of seizure onset, and areas of function-
ally abnormal cortex. The spatial relationship between these
areas is then encoded in SPI values and stored for further sta-
tistical assessment.

Usually, EEG abnormalities are located adjacent to exten-
sive PET abnormalities and might be reversible after surgical
intervention. In addition, remote areas of PET abnormality
might exist, which possibly indicate secondary epileptic foci
initially triggered by the primary focus but which might ma-
ture with time and become independent. This phenomenon
is at present time poorly understood and possible mecha-
nisms are discussed elsewhere [27]. There are strong indi-
cations, however, that the relationship between electrophys-
iology and molecular function is complimentary and that
the EEG and PET modalities characterize different aspects of
brain tissue epileptogenicity.

6. DISCUSSION

With ever-improving imaging technologies and boost in
computational power, the medical imaging field has experi-
enced a tremendous increase in the amount of information
collected. Although medical imaging modalities provide di-
verse quantitative and qualitative information, each modality
has its distinct strengths and limitations. While T1-weighted
MR images yield high-resolution anatomical images, the ob-
tained functional information is limited. In contrast, molec-
ular imaging using a variety of PET tracers provides accu-
rate functional information, unfortunately with significantly
less anatomical detail as compared to MR imaging. Never-
theless, both modalities provide invaluable clinical informa-
tion to the physicians even when utilized qualitatively. In the
past, our group has successfully used data from PET, MR
and EEG in the presurgical evaluation of epileptic children
and showed a significant improvement in surgical outcome
when using such multimodality approach [33, 34]. It appears
that further improvement in the localization of epileptogenic
brain tissue might be derived from a tighter integration of all
presurgical data (anatomical, functional, electrophysiologi-
cal, and clinical) within a comprehensive database. Once data
from multiple imaging and nonimaging modalities are com-
bined within a rigorous computational framework, the in-
formation entailed in one modality may be used to enhance
or reinterpret information derived from a complementing
modality. Thus, the information content in such a database
is not simply additive, but is likely to have an amplifying ef-
fect. Large-scale database structures containing various brain
disorders can be then constructed with a common frame of
reference, allowing meta-analysis of data patterns distributed
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Figure 8: Cortical display of a patient studied with both FDG PET (panels (a) and (b)) and FMZ PET (panels (c) and (d)). Images on the
left (panels (a) and (c)) show coding of the EEG grid according to the location of seizure onset electrodes (red) and seizure spread electrodes
(yellow). The images indicate that the FDG PET abnormality corresponding to seizure onset electrodes in the temporal lobe (red arrow) is
larger than the FMZ PET abnormality. Moreover, in the case of FDG PET, the seizure onset electrodes overlay a larger functionally abnormal
area as compared to FMZ PET which is reflected in the lower SPI score for FDG (0.43 versus 2). The panels on the right (panels (b) and (d))
present the coding of the EEG grid according to a spike frequency threshold of 40% of the maximal spike frequency observed in this patient.
Whereas FMZ PET is sensitive to the area of high spike frequency in the frontal lobe (green arrow), FDG PET fails to detect this abnormality.
Again, this spatial relationship between functional and electrophysiological abnormalities is encoded in the SPI score (1.19 versus 4.37).

over several modalities. Obviously, such analyses require a
well-developed visual interface which allows the researchers
to grasp the relationship between data patterns in an intuitive
way. We believe that such a “visual database” has the poten-
tial to provide physicians with additional important clues re-
garding the pathological state of cortical areas and is likely to
be of relevance for the clinical management of epilepsy pa-
tients.

6.1. Methodological consideration

As with every method, a few limitations need to be con-
sidered when applying this method to images of children
with intractable epilepsy. As indicated above, we used young
adults to create a normal database, and this database was
implicitly assumed to characterize accurately normal tracer
concentration patterns in children. This approach is in-
evitable due to ethical guidelines which sanction only the
study of children who may derive direct benefit from stud-
ies using administration of radioactive substances. Although
the application of adult tracer concentration patterns to chil-
dren represents a potential source of error, it appears that at
least for FDG the tracer concentration patterns might be very
similar between children and adults [35].

Secondly, integration of brain PET and MR image vol-
umes requires their spatial alignment, a potential source of
error. Because the brain is encased by the skull and can be
therefore regarded as a rigid body, alignment between the
MR and PET brain image volumes is likely to be accurate
within a few millimeters, especially if anatomical landmarks
inside the brain are used. Moreover, the localization of the
electrode grid on the cortical surface might result in a max-
imal misregistration of about 3 mm [25]. Thus, despite the
fact that misalignment effects associated with various align-
ment procedures might be additive, their total effect is likely
to be less than 5 mm.

Finally, the initial processing step of our method re-
quires the manual definition of cortical landmarks, guided
by a detailed surface rendering of cortical sulci and gyri.
Although high-resolution MR images provide detailed fea-
tures of the cortex, reproducible definition of cortical land-
marks is not trivial and might contribute to the misalign-
ment of presumably homotopic cortical elements in differ-
ent patients. In order to keep this source of error to a mini-
mum, we chose only anatomically well-defined cortical fea-
tures for our standard landmark set. Nevertheless, the defi-
nition of cortical landmarks contributes the largest error to
possible misalignment between homotopic cortical elements
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and future studies are warranted to assess their clinical rele-
vance.

6.2. Conclusion

The creation of a multimodality extendable database struc-
ture accessible through an advanced 3D visualization inter-
face holds promise of providing new insights into the forma-
tion and identification of epileptic foci. A better understand-
ing of the relationship between functional and electrophysio-
logical data might lead to new approaches in epilepsy surgery
and will likely improve clinical management of a large num-
ber of patients suffering from intractable epilepsy.

APPENDIX

Because the brain surface is a genus zero surface and topolog-
ically equivalent to a sphere, we have previously developed
a landmark-constrained conformal surface mapping tech-
nique [12, 21] that allows accurate and reproducible trans-
formation of a subject’s cortical surface to a canonical spher-
ical domain (the conformal brain model (CBM)). The con-
formal mapping technique allows parametrization of a brain
surface without angular distortion and is computed by min-
imizing the harmonic energy of the map. As an example,
given two genus zero surfaces with maps M1 and M2, the
transformation ( f : M1→M2) is conformal if, and only if, f
is harmonic. Based on this fact, one can compute the confor-
mal mapping between genus zero surface by minimizing the
harmonic energy [12]. In practice, we use a triangular mesh
in order to approximate genus zero cortical surfaces. Once
the cortical surface of a subject is mapped to the CBM, finite
surface elements can be defined geometrically on the spheri-
cal surface at various resolution levels (see Figure 2).
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Objectives. SPECT/slow-rotation low-output CT systems can produce streak artifacts in filtered backprojection (FBP) attenuation
maps, impacting attenuation correction (AC) in myocardial perfusion imaging. This paper presents an adaptive Bayesian iterative
transmission reconstruction (ABITR) algorithm for more accurate AC. Methods. In each iteration, ABITR calculated a three-
dimensional prior containing the pixels with attenuation coefficients similar to water, then used it to encourage these pixels to the
water value. ABITR was tested with a cardiac phantom and 4 normal patients acquired by a GE Millennium VG/Hawkeye system.
Results. FBP AC and ABITR AC produced similar phantom results. For the patients, streak artifacts were observed in the FBP and
ordered-subsets expectation-maximization (OSEM) maps but not in the ABITR maps, and ABITR AC produced more uniform
images than FBP AC and OSEM AC. Conclusion. ABITR can improve the quality of the attenuation map, producing more uniform
images for normal studies.
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1. INTRODUCTION

Attenuation correction (AC) has undergone extensive clin-
ical investigation [1–4] and now is a recommended tech-
nique for improving the quality of myocardial perfusion
imaging (MPI) with single-photon emission computed to-
mography (SPECT) [5]. Since the attenuating material in a
patient’s thorax is too varied to meet the constant attenua-
tion coefficient approximation made in both Sorenson’s and
Chang’s methods [6, 7], transmission imaging is required to
obtain patient-specific attenuation maps for accurate AC in
MPI [8–11]. It has been pointed out that high-quality trans-
mission scans and sufficient transmission counts with low
crosstalk from the emission radionuclide are essential to re-
duce the propagation of noise and error into the attenuation-
corrected emission images [5].

Recently, hybrid X-ray CT and SPECT systems became
available for MPI. Among the commercial SPECT/CT sys-
tems, Millennium VG/Hawkeye (GE Healthcare Technolo-
gies, Milwaukee, Wis) produces the lowest cost and dose
to the patient, since this camera uses a single-slice, slow-
rotation, low-output CT scanner. AC with these systems has

shown to improve sensitivity, specificity, and predictive ac-
curacy in detection of coronary artery disease [12]. Com-
pared to the conventional radionuclide attenuation maps,
the Hawkeye CT attenuation maps have higher resolution
and contrast and do not have the crosstalk and low-count
issues. With phantom models, it has been shown that Hawk-
eye AC is, to some extent, superior to AC given by the SPECT
systems with radionuclide transmission sources [13]. How-
ever, in clinical patients streak artifacts are often observed
in the attenuation maps produced by filtered backprojection
(FBP) of the slow-rotation low-output CT scans (shown in
Figure 1). These artifacts are produced by inconsistencies in
the CT sinogram such as those caused by respiratory motion
during the CT acquisition. It has become a serious concern
that these streak artifacts may degrade the accuracy of AC,
and essentially raise the probability of false-positive cases in
clinical practice.

Bayesian techniques have been introduced to transmis-
sion reconstruction for AC using radionuclide transmis-
sion imaging [14, 15]. It has been validated that Bayesian
techniques can better handle the low-count issue associated
with radionuclide transmission imaging than FBP, so as to
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Figure 1: Example Hawkeye CT attenuation maps of (a) patient
and (b) phantom.

enhance the quality of the reconstructed attenuation maps
and improve the accuracy of AC [16, 17]. Although transmis-
sion noise is not an issue with the Hawkeye CT data, Bayesian
technique may be useful in transmission reconstruction of
the Hawkeye CT data for reducing the streak artifacts and
improving the quality of the attenuation maps. Based on this
hypothesis, this study developed an adaptive Bayesian itera-
tive transmission reconstruction (ABITR) algorithm in order
to remove the streak artifacts in the Hawkeye CT attenuation
maps for more accurate AC.

2. MATERIALS AND METHODS

2.1. Phantom and patient studies

A data spectrum anthropomorphic torso phantom with car-
diac, liver, lung, and spine components was used in this
study. The cardiac insert consisted of a plastic chamber sim-
ulating the left ventricular chamber surrounded by a 1-
cm-thick plastic chamber simulating the myocardium. Two
smaller fillable chambers (90◦ and 45◦, resp.), 1 cm thick and
2 cm long, were used to simulate hypoperfused defects (il-
lustrated in Figure 2). The normal myocardium and defects
were filled with 222 kBq/mL (6 µCi/mL) and 111 kBq/mL
(3 µCi/mL) of Tc-99m, respectively, simulating typical pa-
tient uptakes of Tc-99m sestamibi or Tc-99m tetrofosmin.
The liver and background were filled with 11.1 kBq/mL
(0.3 µCi/mL) of Tc-99m.

This phantom was imaged four times with a GE Millen-
nium VG/Hawkeye system using the following acquisition
parameters:

(1) low-energy high-resolution collimators;
(2) 20% photopeak window centered at 140 keV;
(3) 12% scatter window centered at 118 keV;

Defects:
relative concentration = 0.5

45◦

90◦

Normal myocardium:
relative concentration = 1 A B C

A: apical uniformity slices
B: defect contrast slices
C: basal uniformity slices

Figure 2: The cardiac insert configuration of the phantom.

(4) 180◦ acquisition, noncircular orbit;
(5) 60 projections, 30 seconds per projection.

The raw CT sinograms were preprocessed for crosstalk
correction, nonlinearity correction, air and monitor nor-
malization, and ring artifact correction by means of the
manufacturer-provided tools. The preprocessed CT sino-
grams were rebinned from fan-beam geometry to parallel-
beam geometry. In the rebinning, the pixel size of the CT
sinograms was changed to the pixel size of the emission im-
ages. The rebinned sinogram was then submitted to ordered-
subsets expectation-maximization (OSEM) (standard itera-
tive reconstruction, without the Bayesian prior) and ABITR.
Standard FBP (available on the system) was also used to re-
construct the attenuation maps for comparison. The FBP re-
construction was performed before the rebinning. The FBP
attenuation maps were then rebinned to the same pixel size
as the OSEM and ABITR attenuation maps.

Compton window subtraction [18] was performed on
the tomographic projections as

Pscatter-compensated = Pphotopeak − k × Pscatter, (1)

where Pscatter-compensated is the scatter-compensated tomo-
graphic projection, Pphotopeak and Pscatter are tomographic
projections in the photopeak window and scatter window,
respectively, k is the scatter compensation scaling factor
(the manufacturer-recommended value 1 was used). The
scatter-compensated tomographic projections were submit-
ted to emission reconstruction with AC. OSEM with 3 it-
erations and 6 subsets was used for the emission recon-
struction. The reconstructed images then underwent three-
dimensional (3D) Butterworth postfiltering (critical fre-
quency of 0.4 cycles/cm and power of 10) followed by cardiac
reorientation. Attenuation corrected short-axis images using
the FBP, OSEM, and ABITR attenuation maps were then sub-
mitted to quantitative comparison and statistical analysis.

Four normal patients were used to compare OSEM AC
and ABITR AC to FBP AC. These patients underwent a stan-
dard stress Tc-99m sestamibi rest Tl-201 dual-isotope pro-
tocol using the GE Millennium VG/Hawkeye system with
the same acquisition parameters as those in the phantom
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Figure 3: Illustration of the adaptive Bayesian iterative transmission reconstruction (ABITR) algorithm.

experiments. Short-axis images given by FBP AC, OSEM AC,
and ABITR AC were obtained using the same reconstruction
parameters as above and then submitted to quantitative com-
parison and statistical analysis.

2.2. Adaptive Bayesian iterative transmission
reconstruction

ABITR is illustrated in Figure 3. The input of ABITR is a uni-
form image as initial guess image and a measured CT sino-
gram after preprocessing. A guess sinogram was generated
from the guess image and then compared to the measured
sinogram. The error of this comparison was backprojected,
and then used to update the guess image. A 3D Bayesian prior
image was calculated by image segmentation of the updated
guess image. The image segmentation identified an object
image which contained the pixels whose values were close
to the water attenuation coefficients (±25%). Morphological
processing was then applied to the object image to improve
the results from image segmentation [19]. Morphological
opening (removing small objects from an image while pre-
serving the shape and size of large objects in the image) and
closing (filling in small gaps inside large objects and smooth-
ing the outer edges of large objects) were used to reduce the
impact on image segmentation from the streak artifacts in
the guess image. After the prior image was obtained, the pix-
els inside the object was updated using the following equa-
tion:

Pixelnew = (1− b)× Pixelold + b× µwater, (2)

where Pixelold and Pixelnew were the original and updated val-
ues of the pixels in the guess image that were inside the ob-
ject, b is a factor controlling the strength of the Bayesian prior
(with b equal to 0, the ABITR algorithm becomes a standard
OSEM algorithm), and µwater is the water attenuation coeffi-
cient, 0.153 cm−1 for 140 keV photopeak.

The guess image updated with the Bayesian prior was
then submitted to forward projection to start a new iteration.

ABITR stopped at a preset iteration number (30 iterations
used in this study).

ABITR was performed on a PC with Pentium IV 2.4 GHz
CPU and 512 Mb RAM. It was a totally automatic process
and took less than 2 minutes to reconstruct a map with a
64× 64 matrix and 25 slices.

2.3. Quantitative comparison and statistical analysis

Defect contrast and normal short-axis uniformity were used
to compare the ABITR AC with the FBP AC in the phantom
studies. Maximal-count circumferential profile (MCCP), ex-
tracted from a short-axis slice, was used to calculate the
contrast and uniformity [20]. Three short-axis slices cutting
through the two defects, as shown in Figure 2, were selected
to calculate their defect contrasts, and their mean value rep-
resented the defect contract of that region. The defect con-
trast was defined as

contrast =
[

max(MCCP)−min(MCCP)
]

max(MCCP)
, (3)

where max(MCCP) and min(MCCP) were maximal and
minimal counts in the MCCP, respectively. The MCCPs ex-
tracted from three short-axis slices cutting through regions
of homogeneous tracer distribution towards the base and to-
wards the apex were selected to calculate their normal short-
axis uniformities (shown in Figure 2), and their mean value
represented the basal and apical uniformities, respectively.
The uniformity was defined as

uniformity = stdev(MCCP)
mean(MCCP)

, (4)

where stdev(MCCP) and mean(MCCP) were the standard
deviation and mean of the counts in the MCCP, respectively.
The optimal defect contrast should be close to 50% and op-
timal uniformity should be close to 0.

Short-axis uniformity, the same quantitative index as
above, was used to compare the OSEM AC and ABITR AC
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Figure 4: Phantom attenuation maps: (a) the FBP map (b) the
ABITR map.

19 20 21 22 23

(a)

19 20 21 22 23

(b)

19 20 21 22 23

(c)

Figure 5: Patient (a) FBP, (b) OSEM, and (c) ABITR attenuation
maps.

to the FBP AC in the patient studies for the apical, middle,
and basal regions.

Paired t-test was used to compare the contrast and uni-
formity in the phantom studies and the uniformity in the
patient studies.

3. RESULTS

Figure 4 shows the FBP and ABITR attenuation maps in
phantom. Both maps looked similar. Figure 5 shows the FBP,
OSEM, and ABITR attenuation maps in patient. Both FBP
and OSEM maps had streak artifacts, not observed in the
ABITR map.

The uniformity and defect contrast analyses of the phan-
tom studies are shown in Table 1. No statistically significant
difference was found between FBP AC and ABITR AC in the
phantom studies. Table 2 shows the short-axis uniformity
analysis of the patient studies. The ABITR AC images were
barely significantly (P = .0547) more uniform at the basal re-
gion compared to the FBP AC images for the normal patient
studies. No significant differences were obtained between the
OSEM AC and FBP AC images, indicating that the Bayesian
process played more important role in improving the quality
of the attenuation map than iterative reconstruction.

Figure 6 shows the images of a normal subject. Bayesian
AC produced images with less defect extent and severity,
more similar to the AC normal database of the Emory Car-
diac Toolbox than FBP AC.

4. DISCUSSION

This paper presents a transmission reconstruction technique,
ABITR, for SPECT/slow-rotation low-output CT systems.
Since the Hawkeye CT scanners use low-dose X-ray tubes,
a typical transmission CT scan takes around 6 minutes to ac-
quire 25 1-cm-thick slices. This slow rotation achieves good
coregistration between the emission and transmission im-
ages; however, patient respiratory motion during the CT ac-
quisition can result in inconsistency in the CT sinogram, and
thus can create streak artifacts as we generally see in clinical
practice. Due to the uncertainty in patient respiratory mo-
tion, it is difficult to manage the motion during the CT ac-
quisition and to estimate where the streak artifacts will be
present and how much they will impact AC. Nevertheless,
the attenuation map with streak artifacts cutting through the
myocardium may be of concern for clinicians and leads to
questions regarding the possible impact of such attenuation
maps on the quality of resulting AC images. From the patient
studies presented in this paper, the ABITR technique showed
to improve the quality of the slow-rotation low-output CT
attenuation maps by eliminating the streak artifacts. It redis-
tributed the pixel values in the attenuation maps to improve
the soft-tissue uniformity while keeping the line integrals
consistent to the data through iterative process. Compared
to the FBP AC, ABITR AC yielded more uniform short-axis
images for normal patient studies. In the phantom studies
presented in this paper, ABITR and FBP yielded similar at-
tenuation maps and AC images. This similarity indicated that
ABITR did not create new artifacts in the attenuation map
that can significantly impact AC. With phantom and patient
studies, it is supported that ABITR can enhance the perfor-
mance of the SPECT/slow-rotation low-output CT systems
in AC in clinical MPI.

The original CT projections were in fan-beam geome-
try and had higher resolution (1-2 mm per pixel). It was re-
binned to parallel-beam geometry with lower resolution (>
6 mm per pixel). The FBP reconstruction was done before the
rebinning, whereas the ABITR and OSEM reconstructions
were done after the rebinning. In other words, the ABITR
AC had three differences from the FBP AC: (a) Bayesian pro-
cessing, (b) iterative reconstruction; and (c) image resolution
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Table 1: Short-axis uniformity and defect contrast analyses of the phantom studies.

Uniformity (%)
ABITR AC FBP AC

Apical Basal Apical Basal

Range 7.9–10.9 13.3–16.1 7.3–10.7 12.0–15.9

Mean 9.1 14.7 8.7 13.8

Std. 1.5 1.4 1.4 1.9

Mean Dif.∗ 0.4 0.9 — —

Std. Dif.§ 0.8 0.7 — —

P† .3888 .0857 — —

Contrast (%) Anterior Inferior Anterior Inferior

Range 50.0–56.7 47.3–49.7 49.1–56.0 46.7–48.5

Mean 53.1 48.3 53.5 47.5

Std 2.8 10.4 3.0 9.2

Mean Dif −0.4 0.8 — —

Std Dif 1.4 1.6 — —

P .5864 .3732 — —

∗ The mean differences between the ABITR AC and FBP AC studies.
§ The standard deviation of the mean differences.
† The P values were given by comparison between the ABITR AC and FBP AC studies using the paired t-test (N = 4). All of the P values in this table were
greater than .05, indicating that there was no statistically significant difference between the ABITR AC and FBP AC images for the phantom studies.

Table 2: Short-axis uniformity analysis of the patient studies.

Uniformity (%)
ABITR AC OSEM AC FBP AC

Apical Middle Basal Apical Middle Basal Apical Middle Basal

Max. 9.2 8.1 21.1 9.0 8.2 22.4 8.8 7.9 22.0

Min. 4.4 5.2 12.7 4.8 5.3 13.7 5.0 5.9 12.9

Mean 7.2 6.6 15.8 7.3 7.0 16.5 7.1 7.1 16.3

Std. 2.0 1.2 3.7 1.8 1.3 4.0 1.6 1.0 4.1

Mean Dif.∗ 0.11 −0.43 −0.48 0.14 −0.16 0.21 — — —

Std. Dif.§ 0.50 0.45 0.31 0.39 0.37 0.83 — — —

P† .6771 .1510 .0547 .5327 .4536 .6480 — — —

∗ The mean differences between the ABITR AC and FBP AC studies and between the OSEM AC and FBP AC studies.
§ The standard deviation of the mean differences.
† The P values were given by comparison between the ABITR AC and FBP AC studies and between the OSEM AC and FBP AC studies using the paired t-test
(N = 4). The P value of .0547 for the basal uniformities showed that the ABITR AC images had barely significantly better short-axis uniformity at the basal
regions for the patient studies. No significant differences were obtained between the OSEM studies and FBP AC studies.

(FBP was used before rebinning, whereas ABITR was used af-
ter rebinning). It has been shown in Table 2 that there were
no significant differences between the OSEM AC and FBP AC
studies, indicating that reduction of the transmission image
resolution by rebinning did not help much in improving the
attenuation-corrected images. In Figure 5, the OSEM map
appears smoother than the FBP attenuation map but less
smooth than the ABITR attenuation map. It must be noted
that the Bayesian processing (assigning similar attenuation
coefficients for the tissue region) does have a smoothing ef-
fect on the image, but the smoothing is different from the
smoothing we generally use to reduce image noise. There is

actually very little noise in the CT transmission data. In sum-
mary, among the three differences between ABITR AC and
FBP AC, the Bayesian processing was shown to be the major
contributor in improving the quality of the attenuation map.

The major limitation of this study is the small number
of patient studies. With the small sample size, it only showed
the statistical trend but did not reach the statistical signifi-
cance (P < .05). Another limitation of this study is that no
abnormal patients were included in the preliminary evalua-
tion of the ABITR AC. A gold standard that can accurately
measure defect extent and severity has not yet been estab-
lished for comparison between the FBP AC and ABITR AC
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Figure 6: Images of a normal subject. FBP (top) and Bayesian (bottom) attenuation maps and AC images are shown on the left panel. FBP
and Bayesian polar maps (three for each, shown as a column) are shown on the right panel. For each column, the images are raw polar map,
defect extent, and defect severity given by the Emory Cardiac Toolbox and its attenuation correction normal file.

in abnormal patients. Nevertheless, the streak artifacts are
more likely to create artifactual defects in the AC images of
normal studies rather than to artifactually enhance the uni-
formity of the AC images on abnormal studies. The ABITR
technique needs to be prospectively validated with a statis-
tically sufficient sample size and with normal and abnormal
patients and before it is implemented for clinical use. In ad-
dition, convergence test of the ABITR algorithm has not yet
performed and a preset iteration number (30) was used in
this study. It has been shown that iterative reconstruction of
emission data converges around 20–50 iterations and then
starts diverging when there is random noise in the emis-
sion data [21]. Since the transmission CT data has very little
random noise, the ABITR algorithm is expected to converge
quickly and to have very little divergence issues.

5. CONCLUSION

ABITR can remove the streak artifacts in the FBP attenua-
tion maps caused by inconsistencies in the slow-rotation low-
output CT sinogram such as those caused by patient respi-
ratory motion during the acquisition. The improved qual-
ity of the ABITR attenuation map can yield more uniform
attenuation-corrected images for normal subjects. ABITR
can enhance the performance of SPECT/slow-rotation low-
output CT systems in AC of clinical MPI. Prospective valida-
tion of this technique will be performed before the method
is implemented for clinical use.
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1. INTRODUCTION

Positron emission tomography (PET) provides images of
metabolic processes that are used increasingly in the clini-
cal setting to obtain data on cancer and other pathological
processes. In oncology, the diagnosis of cancer and the as-
sessment of the extent of disease often rely on PET [1]. How-
ever, because PET images are relatively noisy and are limited
by relatively poor spatial resolution, small lesions are difficult
to detect [2] and the anatomical location of hypermetabolic
regions can be difficult to determine in PET images [3].

The introduction of dual modality PET/CT scanners
[4, 5] has addressed the latter issue by providing metabolic
PET images registered with the anatomical information from
CT. In these scanners, the patient lies still on a bed which is
then translated through fixed mechanically aligned coaxial
CT and PET gantries so that the data acquired are precisely
coregistered in space. The PET acquisition typically occurs
immediately after the CT acquisition to minimize the effects
of patient motion. After reconstruction, the high-resolution
anatomical images (from CT) are overlayed with the func-

tional images (from PET) to provide precise localization of
hypermetabolic regions. In oncology, such image fusion has
been shown to improve the diagnostic reliability [6, 7].

In the interest of improving small lesion detectability,
the objective of this study was to provide a new method for
PET/CT image fusion with an improved resolution and bet-
ter contrast ratio relative to standard reconstructions. First,
a modified form of the super-resolution method of Irani
and Peleg [8] shown to improve resolution in PET imag-
ing (Kennedy et al. [9]) was employed for PET data ac-
quisition and image reconstruction. In the super-resolution
method, several acquisitions interspersed with subpixel shifts
are combined in an iterative algorithm to yield a higher-
resolution image, depicted schematically in Figure 1. Sec-
ondly, since the radiopharmaceutical distribution will often
follow anatomical borders, the potential exists to combine
the high-resolution border information from the CT image
with the functional distribution from the PET image to yield
a PET image with enhanced borders. The algorithm we used
to incorporate CT data in PET images is called hybrid com-
puted tomography (HCT). HCT was originally developed for
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Figure 1: Super-resolution algorithms combine multiple low-reso-
lution image acquisitions into a high-resolution image.

artifact reduction in ultrasonic computed tomography [10].
In regions not containing anatomical edges, HCT has been
shown to provide noise reduction in PET images equivalent
to the standard Gaussian filtering typically used [11]. In PET
imaging, HCT provides sharper edges and improves contrast
ratios [11].

In this paper, we demonstrate how a combination of a
super-resolution acquisition and reconstruction combined
with HCT filtering increases the contrast ratios of 18F-FDG
uptake in PET images while providing noise reduction equiv-
alent to a standard Gaussian filter in regions without corre-
sponding anatomical edges. Where corresponding anatomi-
cal edges are available, the technique enhances the edges of
18F-FDG uptake. Through the combination of increased res-
olution and edge enhancement, the PET imaging of small
features is improved.

2. MATERIALS AND METHODS

PET was performed using standard and super-resolution ac-
quisitions [9]. Each type of acquisition was then filtered with
one of two techniques: a standard Gaussian filter or the
equivalent HCT filter [11] incorporating CT border infor-
mation. Consequently, four methods of generating PET im-
ages were compared:

(a) standard acquisition and processing with Gaussian fil-
tering;

(b) super-resolution acquisition and processing with
Gaussian filtering;

(c) standard acquisition and processing with HCT filter-
ing;

(d) super-resolution acquisition and processing with HCT
filtering.

The degree of filtering was chosen to keep the level of
noise constant among images compared.

2.1. Super-resolution and HCT

The term super-resolution refers here to a technique in which
several low-resolution points of view (POVs) are combined
iteratively to obtain a higher-resolution image. In the Irani
and Peleg formulation of a super-resolution algorithm [8],
the initial estimate of the high-resolution image, f (0), can be
based on the average of the upsampled acquisitions shifted to

a common reference frame:

f (0) = 1
K

K∑

k=1

T−1
k

(
gk
�⏐s
)
, (1)

where gk is one of K acquisitions, T−1
k is the geometric

transformation to a common reference frame, and ↑ s is
the upsampling operator from low-resolution to the high-
resolution representation.

One could obtain the low-resolution measured data gk
from the “true” image f if the acquisition system was ade-
quately modeled. The process would include shifting the im-
age f to the kth POV, blurring to account for limited system
resolution, downsampling to the system’s sampling rate, and
adding noise. For a given estimate of the image, f (n), the low-
resolution data is modeled as in [8]:

g̃ (n)
k = (Tk

(
f (n))∗ h

)⏐�s, (2)

where ∗h is the blurring operation with the kernel h and s ↓
is the downsampling operator which averages the pixels to
the lower resolution. The noise term is dropped. The origi-
nal geometric transformation of the kth acquisition from the
common reference frame is Tk . This is typically the physi-
cal shift between the object and the imager from the original
position.

To obtain a better estimate of the image f , the previous
estimate of the high-resolution image, f (n), is corrected by
the difference between the low-resolution data gk and the

term g̃ (n)
k that represents what the low-resolution data would

have been, had the estimate, f (n), been correct. The next it-
eration f (n+1) of a high-resolution estimate is the following
[8]:

f (n+1) = f (n) +
1
K

K∑

k=1

T−1
k

(((
gk − g̃ (n)

k

)�⏐s
)
∗ p

)
. (3)

Here, the differences between gk and g̃ (n)
k are upsampled, ↑ s,

to achieve the smaller super-resolution pixel size, moved to
a common reference frame, T−1

k , and averaged over K ac-
quisitions. The symbol ∗p is a sharpening kernel. This for-
mulation of the super-resolution algorithm has been demon-
strated to improve resolution in MRI imaging [12, 13] and in
PET [9].

Although the blur and sharpening kernels can be set to
unity [9, 12], in this study the blur kernel has been modeled
as a Gaussian point spread function (PSF). In order to reduce
the noise caused by sharpening, the upsampling procedure of
Farsiu et al. [14] was used.

In addition to the super-resolution acquisition, a modi-
fied form of an iterative algorithm called hybrid computed
tomography (HCT), implemented previously on ultrasonic
CT data [10], was utilized here to fuse CT anatomical data
with the PET functional data. The HCT algorithm is based on
a two-dimensional (2D) Taylor series expansion of the gray
levels which incorporates texture and edge information. The
HCT algorithm utilizes edge information taken from CT to
retain sharper edges while smoothing the PET data, which
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often follow the anatomical borders. Thus, the resulting re-
constructed image has reduced noise but sharp borders.

In HCT, each value of the image f at each pixel is expand-
ed into neighboring pixels. Neglecting higher-order terms,
the modified 2D Taylor expansion about pixel (a, b) has a
value f (x, y) at pixel (x, y) [10]:

f (x, y) = f (a, b) +
[

(x − a) · ∂ f
∂x

∣∣∣∣
a,b

+ (y − b) · ∂ f
∂y

∣∣∣∣
a,b

]

· β(a, b),
(4)

where the function β(x, y) has a zero value within homo-
geneous regions but is set to have a value of 1 at boundary
points. In the PET/CT application, the function β can be ob-
tained from the anatomical edge data of the CT scan. One
method of modifying (4) to include discrete pixels and diag-
onal directions is to write it as

f (x, y) = f (a, b) +
[
Δr · Δ f

Δr

∣∣∣∣
a,b

]
· β(a, b), (5)

where Δr is the step size in the direction
⇀
r = [x − a y − b]

and Δ f = f (x, y) − f (a, b). Here, the expansion was lim-
ited to nearest neighbors, as depicted in Figure 2, so the step
size was unity: Δr = 1. In one HCT iteration, (5) is applied
in a neighborhood of f (x, y) and the results averaged, for
each pixel (x, y) in the image. In the absence of a border, re-
peated iterations of (5) average a pixel value with its neigh-
bors. If a 3× 3 neighborhood is used, in regions distant from
a border, it can be shown that n HCT iterations are equiva-
lent to the application of a Gaussian filter with a full-width
half-maximum (FWHM) of [11]:

FWHM = 4

√
ln(2)n

3
pixels. (6)

If the functional and anatomical boundaries do not match,
HCT may introduce artifacts [11], but in the absence of bor-
der information the default of HCT is the standard Gaussian
filtering.

For a simple HCT example, consider the 3 × 3 image in
Figure 2. The central pixel f22 has an uptake indicated by the
gray shading. In the first HCT iteration, the value assigned to
f22 by (5) is determined by its nearest neighbors. If the thick
solid line is the true border, β between the central pixel and
the 3 gray pixels in the first column is set to 0 because there
is no border among them and (5) sets the value of f (x, y)
to f (a, b). However, when the index (a, b) falls on the other
side of the border, β is set to 1 and f (x, y) retains its original
value. When applied to all 9 neighborhood pixels, the uptake
in the central pixel is averaged with the uptake in those 3 gray
pixels in the first column. Equation (5) generates a weighted
average; in this case the center pixel is weighted at 6/9 and the
3 other pixels are weighted at 1/9 each. However, if the true
border is between the central pixel f22 and f12, as indicated by
the dotted line, then β is set to 0 only among the pixels of the
second and third columns. In the first iteration, the value of
the central pixel is averaged with the 5 other pixels in the sec-
ond and third columns which have no uptake (as indicated

1

2

3

1 2 3

f11 f12 f13

f21 f22 f23

f31 f32 f33

Figure 2: HCT applied to a 3 × 3 image. In the case that pixel f22

indicates a true uptake (gray), the solid line is the true border and
HCT algorithm iteratively averages its value with the pixels in the
first column. In the case that dotted line is the true border, the up-
take in pixel f22 iteratively averages its value with the pixels in the
second and third columns.

by white). Although the value of the central pixel is substan-
tially reduced, the application of (5) to each of the other 5
pixels in turn effectively distributes this uptake among the
6 pixels in the second and third columns. Regardless of the
position of the border, the application of (5) is an averaging
operation; therefore HCT is a counts-preserving process.

The combined technique (i.e., super-resolution and
HCT) was evaluated in both phantom (3D brain-mode ac-
quisition) and patient studies (2D whole-body mode acqui-
sition), using a clinical PET scanner (GE Discovery LS, GE
Healthcare Technologies, Milwaukee, WI).

2.2. Data acquisition and processing

The GE Discovery LS combines X-ray CT and PET scan-
ners arranged such that the gantries are coaxial and a bed
can automatically move through each gantry in order to pro-
vide images in both modalities that are coregistered. The PET
portion of the scanner is similar to a GE Advance NXi de-
scribed elsewhere [9, 15]. In a standard 2D whole-body PET
acquisition, the septa between the 18 detector rings restrict
the photons acquired to the transaxial plane. Transaxial im-
ages (35 per field of view, FOV) are typically reconstructed as
128×128 pixel images having a pixel size of 4 mm×4 mm and
a slice thickness of 4.25 mm. The axial FOV is 14.5 cm and
the transaxial FOV, as reconstructed in this mode, is 50 cm.
An ordered subsets expectation maximization (OSEM) al-
gorithm [16] using 2 iterations and 28 subsets was used for
reconstructing the 2D whole-body data from the PET sino-
grams (projections). Coronal and sagittal images are typi-
cally obtained by stacking the images of several axial FOVs
into a three-dimensional (3D) data set and reslicing appro-
priately.

The 3D brain-mode acquisition is similar except that the
septa are retracted to increase the number of photons de-
tected. The data was rebinned into transaxial data sets using
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Fourier rebinning [17] before being reconstructed with an
OSEM algorithm using 5 iterations and 32 subsets. The pixel
size is typically set to 2 mm × 2 mm reducing the recon-
structed transaxial FOV width by a factor of 1/2. The slice
thickness remains the same as in the 2D whole-body mode.

The CT provided 512× 512 pixels transaxial images with
a pixel size of 1 mm× 1 mm and a slice thickness of 4.25 mm
which were coregistered with the PET images. A tube volt-
age of 140 kV and current of 90 mA was used. For attenua-
tion corrected (AC) PET images, the CT images also served
as the basis for an attenuation map by means of rescaling
the Hounsfield units (HU) of the CT to attenuation coeffi-
cients appropriate for the higher energy of PET gamma rays
[18–21].

In this study, the 2D whole-body mode data was recon-
structed with a voxel size of 2 mm × 2 mm × 4.25 mm, sim-
ilar to the 3D brain-mode acquisition. This gave transaxial
PET images of 256×256 pixels for the 2D whole-body mode.
This was the voxel size for all the standard acquisitions and
for each low-resolution POV in the super-resolution acqui-
sition data sets. After processing with the super-resolution
technique, the pixel sizes obtained were smaller. When super-
resolution was applied in the transaxial plane (see below),
the resulting voxel size was 1 mm× 1 mm× 4.25 mm. When
super-resolution was applied axially (see below), the result-
ing voxel size was 2 mm× 2 mm× 1 mm.

Unfiltered image data sets from standard and super-
resolution acquisitions were then filtered with either a stan-
dard Gaussian filter or an HCT filter which could incorporate
edge information while providing equivalent smoothing (6)
in regions away from anatomical edges. The smoothing was
set to maintain the same level of noise among the images ob-
tained from the four processing methods (see below). In or-
der to make effective use of the resolution of the border infor-
mation provided by the CT [11], the filtering was applied af-
ter the images had been interpolated to a 0.25 mm×0.25 mm
pixel size for the 3D brain-mode PET/CT acquisitions and
0.5 mm× 0.5 mm for the 2D whole-body case using a piece-
wise cubic Hermite interpolation. The edges were extracted
using a Canny edge detector algorithm [22] on CT images
to which the scanner protocol’s default contrast window had
been applied (level: 40 HU, width: 400 HU). For edge extrac-
tion, the Gaussian smoothing employed on the CT by the
Canny edge detector was 1.2 mm FWHM for the 3D brain-
mode PET/CT acquisitions and 3.0 mm FWHM for the 2D
whole-body case.

2.3. Phantom study

To evaluate image quality among the four processing meth-
ods implemented here, a specially designed phantom was
used (Figure 3). The phantom provided cylindrical hotspots
of 18F-FDG solution with diameters of 1, 1.5, 2, 3, 4, 6, and
8 mm arranged in rows such that the separation between
hotspots was equal to their diameters. The hotspots were cre-
ated by drilling holes through a polycarbonate disk (diameter
9 cm, thickness 1.5 cm) and treating the disk with ozone to
allow 18F-FDG solution (130 kBq/mL) to flow freely through

(a)

2 mm
1.5 mm

8 mm
4 mm

3 mm
6 mm 1 mm

(b)

Figure 3: Phantom: a specially treated polycarbonate disk allowed
18F-FDG solution to flow freely through holes of varying sizes when
immersed in a cup of the solution.

Transaxial
plane

Axial
direction Rotation

Translation

z

x

y

Figure 4: Geometry of phantom orientation for the 3D brain-mode
PET acquisition. The phantom disk was aligned with the transaxial
plane and translated and rotated within that plane between each of
four separate POVs.

them when the disk was immersed in a fitted cup containing
the solution. To a 1 cm depth, on each side of the disk, the
cup contained just 18F-FDG solution.

The phantom was placed in the scanner to obtain trans-
axial images in the plane of the disk using the 3D brain-mode
acquisition protocol (Figure 4). A standard acquisition of 10-
minute duration was followed by 4 acquisitions of 2.5 min-
utes each for the super-resolution acquisition. Each PET ac-
quisition was accompanied by a CT scan to provide atten-
uation correction (AC) according to common practice with
such PET/CT scanners [18]. Between the 4 acquisitions, the
phantom was given a small displacement and rotation in the
transaxial plane to provide the geometrical shifts needed by
the super-resolution algorithm. The position of the initial ac-
quisition was taken to be the common reference frame. In the
case of the phantom trial, the size of the geometric shifts was
tracked in the CT images using two 1 mm markers separated
by 43 cm that had been fixed to the phantom in the transaxial
plane. The shifts used are listed in Table 1. The initial CT im-
age also provided the border information used by the HCT
algorithm.
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Table 1: Transaxial displacements and rotations from the initial po-
sition used in the 3D AC brain-mode acquisition phantom trial.

2.5-minute PET
displacement
acquisition

Horizontal
displacement
left (mm)

Vertical
displacement
up (mm)

Clockwise
rotation
(degrees)

Initial 0 0 0

Second 2.0 0.5 1.7

Third 5.0 1.2 3.9

Fourth 9.1 2.0 7.2

The geometry of the phantom and the method of super-
resolution acquisition in the 3D brain mode is described else-
where [9] in more detail.

For comparison purposes, each processing method was
applied to achieve the same degree of noise reduction. As a
measure of the noise, the variance in the PET signal was cal-
culated in a region known to have a homogeneous uptake of
18F-FDG solution. The transaxial slices of the cup of 18F-FDG
solution on either side of the polycarbonate disk contained
no features except for the 9.0 cm diameter circular edge of the
cup. A 5.0 cm diameter circular region of interest (ROI) was
selected from one of these slices. Because such a region con-
tains no edges from the CT, both HCT and Gaussian filtering
provide the same degree of smoothing [11]. The FWHM (or
HCT equivalent) of the smoothing was chosen so that the
standard and super-resolution acquisitions and reconstruc-
tions had the same variance within this homogeneous ROI.
The same filters were then applied to the phantom images
containing the features of interest: the uptake in the holes of
the polycarbonate disk.

As an indication of image quality, a contrast ratio was
calculated for the phantom results. For each row of holes,
the locations of the sources were known so they were masked
and an average PET signal was calculated. The regions falling
between holes were also masked and those pixel values were
used to calculate an average background value for that row.
The contrast ratio was taken to be the average PET signal
to the average background, so that a contrast ratio of unity
would indicate that the feature could not be distinguished.
Because the level of noise as measured by the variance was
kept constant, comparing these contrast ratios was equiva-
lent to comparing a contrast to variance metric.

Three additional studies were performed to measure the
PET resolution of this experimental arrangement in terms of
a PSF of the data acquisition. A single 1 mm hole of the phan-
tom disk was filled with 20 μCi (0.74 MBq) 18F-FDG solution
and capped in order to emulate a “point source” for trans-
verse 3D brain-mode images that were acquired as above.
The reference position for the source was 2.0 cm above the
axial center line of the scanner. Additionally, to check axial
resolution, the phantom was laid flat and fixed to the bed
to emulate a “point source” in coronal images. Between each
of 4 PET acquisitions, the bed was automatically shifted into
the scanner in 1 mm increments, and the super-resolution
technique was applied axially. The process was repeated for

the 2D whole-body mode. These results have been reported
elsewhere [9], but that study used a blurring-and-deblurring
kernel of 1 pixel. Here, as a modification, the blur kernel
was set to a Gaussian PSF with a FWHM chosen to mini-
mize the FWHM of the “point source” and the blurring-and-
deblurring procedure [14] described above was used. For the
purpose of direct comparison, the same data set as the previ-
ous report [9] was used.

Anticipating the focus of the patient study below, the ax-
ial resolution of the 2D whole-body mode was also checked
for 2 POVs with 2 mm axial shifts and 8 POVs with 0.5 mm
axial shifts.

2.4. Patient study

The patient was injected with 370 MBq of 18F-FDG after a 4 h
fast and was then kept resting comfortably for 90 min before
scanning. A 2D head-to-thigh PET/CT scan was acquired,
including a CT scan followed by a PET scan consisting of
6 FOVs with an acquisition time of 4 min per FOV. During
this standard PET acquisition, the CT was reviewed to iden-
tify an ROI suitable for employing the super-resolution tech-
nique. A FOV was chosen containing a suspected small lung
lesion. After the standard PET scan, the patient was requested
to remain still, the bed registration was maintained, and 4 ad-
ditional POVs of the ROI were acquired, taking 4 min each.
Each 4-minute acquisition interval was subdivided into 1-
minute and 3-minute intervals so that four 1-minute-long
POVs were available to check the case in which the total
super-resolution acquisition time equaled the standard ac-
quisition time. Between each subsequent POV, the bed was
automatically moved 1 mm further into the scanner to pro-
vide 4 PET views differing by shifts which were subpixel since
the slice thickness of a standard PET acquisition in the axial
direction was 4.25 mm. The patient was not exposed to addi-
tional radiation since the X-ray CT scan was not repeated.
Because registration was maintained, the initial X-ray CT
scan could be used to provide border information for the
HCT processing of both the standard and super-resolution
PET images by matching the data from any transaxial PET
slice with the data from the appropriate transaxial X-ray CT
slice at the same location.

As in the phantom trial, the patient images were pro-
cessed by the four methods. Nonattenuation corrected im-
ages were used because the pulmonary lesion was more evi-
dent than in the AC PET. The degree of image noise was mea-
sured by the variance. In the absence of a known region of
homogeneous uptake, the variance was calculated from the
nonzero pixel values excluding a 15 mm circular ROI around
the lesion of interest in the coronal images. The degree of fil-
tering in each of the four processing methods was chosen to
keep the noise level the same, as measured by this variance.

In order to compare PET images in the patient study,
target-to-background ratios were calculated as a measure of
the intensity of the lesion’s uptake for coronal, sagittal, and
transverse slices through the lesion of interest. The precise
target shape and location were unknown, so the masking
method used for the phantom contrast ratio calculations was



6 International Journal of Biomedical Imaging

Figure 5: Transaxial 3D brain-mode PET image of a slice through
the 9.0 cm diameter phantom cup. The 5.0 cm diameter ROI (white
circle) was used to calculate the variance as a measure of image noise
since it was known to contain a homogeneous distribution of 18F-
FDG solution.

inappropriate here. However, because the small lesion had
substantially higher uptake than other tissues in each of the
images, its location could be demarcated by setting a thresh-
old. For each image, the target was defined as pixels hav-
ing values greater than 60% of the maximum pixel value
for that image. To exclude uptake erroneously assigned to
regions known to be outside the body, a minimum thresh-
old was set (5% of the maximum pixel value). The remain-
ing nonzero pixels defined the background. The target-to-
background ratio was calculated as the mean of the target
pixel values divided by the mean of the background pixel val-
ues. A more intense, localized uptake would have a higher
target-to-background ratio.

3. RESULTS

In order to establish that the phantom images had the same
noise level, a transaxial slice adjacent to the polycarbon-
ate disk was selected and an ROI used to measure noise
was chosen in a region of homogeneous 18F-FDG uptake
(the white circle in Figure 5). To maintain a variance of
10.6 ± 0.1 kBq2/mL2 in this ROI, the standard acquisitions
were smoothed with a 1.8 mm FWHM Gaussian filter (equiv-
alent to 15 HCT iterations; see (6)) and the super-resolution
results were smoothed with a 3.0 mm FWHM Gaussian fil-
ter (equivalent to 41 HCT iterations). These filters were also
applied on the transaxial images through the polycarbonate
disk showing the features of interest (Figure 6).

In the phantom trial (Table 2), the super-resolution tech-
nique improved the concentration ratios of the 3 mm, 4 mm,
6 mm, and 8 mm features from an average of 1.9 (range:
1.1–2.9) for the standard acquisition to an average of 2.1
(range: 1.2–3.3). HCT filtering also improved the standard
contrast ratios to an average of 2.1 (range: 1.3–3.1). Us-
ing the combined acquisition and processing technique of
super-resolution and HCT, the PET contrast ratios were
the highest (average: 2.8, range: 1.6–4.3). Using the super-
resolution/HCT technique, 3 mm 18F-FDG sources were
more clearly resolved (Figure 6) than the standard image and
the edges of the sources were more delineated. A plot of pixel
value profiles through the 3 mm features of the phantom

(a) (b)

(c) (d)

Figure 6: Transaxial PET images through the phantom disk us-
ing 3D brain-mode acquisition. (a) Standard processing. The nine
hotspots in the row (black arrow) along the left are 3 mm in diam-
eter and the five largest hotspots are 8 mm (gray arrow). (b) HCT
result. (c) Super-resolution result. (d) Super-resolution/HCT result
has the greatest contrast. The 3 mm sources (black arrow) are more
clearly resolved than in the standard image. The 8 mm sources (gray
arrow) show sharper edges than in the standard image.

Table 2: Contrast ratios for the PET signals in the 3D AC brain-
mode acquisition phantom trial.

Image type
3 mm 4 mm 6 mm 8 mm

holes holes holes holes

Standard 1.1 1.3 2.1 2.9

Super-resolution 1.2 1.5 2.4 3.3

HCT 1.3 1.5 2.4 3.1

HCT and
super-resolution

1.6 2.2 3.2 4.3

(Figure 7) shows that the super-resolution profile (dashed
line) and the HCT profile (dotted) both gave moderately bet-
ter contrast than the standard method (dashed and dotted).
The combination of HCT and super-resolution gave the best
contrast of all the methods (Figure 7, solid black line).

The efficacy of including a Gaussian blur kernel in the
super-resolution processing [14] was checked by measuring
the PSF in the axial direction (2D whole-body mode and 3D
brain mode) and transaxial directions (3D brain mode). In
each type of image, the “point source” was provided by a
cross section through a single 1 mm hole of the phantom
which had been filled with 18F-FDG and capped. Table 3



John A. Kennedy et al. 7

20

25

30

35

40

45

50

55

60

65
P

E
T

si
gn

al
(k

B
q/

m
L)

0 10 20 30 40 50 60

Relative vertical position (mm)

Profile of PET signal along 3 (mm) holes

Super-resolution/HCT
HCT

Super-resolution
Standard

Figure 7: A plot of pixel values through the 3 mm features of the
phantom images in Figure 6. The super-resolution (dashed line)
and HCT (dotted) profiles give better contrast than the standard
method (dashed and dotted). The combination of HCT and super-
resolution gives the best contrast (solid black).

Table 3: Super-resolution point spread function FWHM values for
phantom trials.

Acquisition
mode

Axis
Blur kernel
of 1 pixel(a)

(mm)

Gaussian blur
kernel of 3.0 mm
FWHM (mm)

2D whole
body

Axial 4.1 4.0

3D brain Axial 4.8 4.6

3D brain Radial 4.4 4.3

3D brain Tangential 4.3 4.2
(a)Previously reported [9].

shows that, using the same data, the inclusion of a Gaussian
blur kernel improved the resolution by reducing the FWHM
of the PSFs by a difference of 0.1 mm to 0.2 mm compared to
previously reported results [9]. The value of the blur kernel
used for Table 3 was set to 3.0 mm since this minimized the
FWHM of the “point source.”

In the 2D whole-body mode, when the number of axial
shifts was decreased from 4 POVs (with 1 mm shifts) to 2
POVs (with 2 mm shifts), the axial resolution was degraded
from 4.0 mm to 4.3 mm as measured by the FWHM of the
axial PSF. The axial resolution of the 2D whole-body case did
not improve when 8 POVs with 0.5 mm shifts were used; the
FWHM of the axial PSF remained at 4.0 mm.

For the patient study in which the super-resolution ac-
quisition time was the same as that of the standard (4 min to-
tal), the lesion of interest could not be resolved due to the low
number of counts in each POV. By using a 4 min acquisition
time for each POV (a total of 16 min), the super-resolution
method clearly resolved the lesion as shown in Figure 8(a).
In Figure 8, the filters were selected to achieve the same level

(a) (b)

(c) (d)

Figure 8: Coronal PET images of the patient through the pul-
monary lesion. The black arrow marks the small lesion of interest.
(a) Standard 2D whole-body mode acquisition. (b) HCT. The edge
of the 18F-FDG uptake is more delineated than in the standard im-
age. (c) Super-resolution. The uptake is more localized than in the
standard image. (d) Super-resolution and HCT. The uptake is the
most localized in this image.

Table 4: Lesion target-to-background ratios for the PET signals in
the 2D whole-body mode acquisition patient trial.

Image type Transaxial Coronal Sagittal Average

Standard filter
5.5 6.0 6.6 6.1

(3.0 mm FWHM)

Super-resolution 6.3 6.3 5.9 6.2

HCT 7.6 7.7 7.4 7.6

HCT and
super-resolution

8.1 8.3 7.7 8.0

of noise in the PET images. By smoothing the images with a
3.0 mm FWHM Gaussian filter (10 HCT iterations for the
0.5 mm × 0.5 mm pixel size; see (6)) a variance of 0.36 +
0.01 kBq2/mL2 was maintained in the coronal images exclud-
ing a 15 mm diameter circular ROI around the lesion of in-
terest. Table 4 shows that the lesion target-to-background ra-
tios were higher with super-resolution (except for the sagit-
tal image) when compared to the ratios for the standard im-
ages. The application of HCT further increased the target-
to-background ratios. For the super-resolution acquisition
that was processed with HCT, the target-to-background ra-
tios were the highest. They improved to an average of 8.0
(range: 7.7–8.3) when compared to an average of 6.1 (range:
5.5–6.6) for the standard image. Sharper edges and more lo-
calized uptake were also depicted in the patient reconstruc-
tions using the combination super-resolution and HCT tech-
niques when compared to the other images (Figure 8).

4. DISCUSSION

The super-resolution acquisition and reconstruction meets
the goal of obtaining higher resolution in the PET acqui-
sition. Super-resolution has been reported to improve the
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axial resolution by 9% to 52% compared to a standard ac-
quisition and by 14% to 16% compared to merely interleav-
ing the acquired slices to the appropriate axial location [9].
As described above, modifying the Irani and Peleg method
[8] to include a 3.0 mm blur kernel improves these results
by a further 2% to 4% (Table 3), using the same data sets.
Similarly, in the 3D brain-mode transaxial images, super-
resolution has been reported to improve the resolution by at
least 12% [9] and the modified method used here improves
that result by a further 2%. The improved resolution due to
the super-resolution technique compared to a standard ac-
quisition is evident in the phantom image (Figure 6), in a
pixel plot through its 3 mm features, and in the improved
contrast ratios (Table 2). This improvement due to the super-
resolution acquisition and processing holds true even when
the super-resolution results require more smoothing than the
standard images to achieve the same level of image noise, as
in the phantom case.

In the phantom trial (Figure 6), the application of HCT
filtering, as an algorithm for the fusion of PET and CT
data, improves contrast ratios by an average of 14% (range:
7–18%) when compared to the standard Gaussian method
(Table 2). This is similar to the improvement provided by
super-resolution alone (average: 13%, range: 9–15%) and the
pixel profiles through the 3 mm phantom features using these
two methods roughly match (Figure 7). The application of
both methods in tandem provides superior contrast ratios:
an average of 54% (range: 45–69%) better than the standard
processing method for images with the same level of noise.
This increase in contrast is a combination of the reduction of
partial volume effects provided by super-resolution [9] and
the retention of uptake within established borders when the
image is smoothed with HCT. Small features are most evi-
dent in the super-resolution/HCT image (Figure 6(d)) and
pixel profile (Figure 7) when compared to the other three
processing methods.

Although the improvement in the image due to the
super-resolution technique and the HCT filtering can be
demonstrated with the phantom, the same cannot be said
for the patient trial since the true distribution of 18F-FDG
is unknown. However, in all but the sagittal image, super-
resolution improved the lesion’s target-to-background ratio
(Table 4). HCT improved the target-to-background ratio by
an average of 26% (range: 12–38%). The combined super-
resolution/HCT procedure was superior and improved the
target-to-background ratio by an average of 34% (range: 17–
47%). In the super-resolution/HCT PET image, the uptake is
more localized and delineated (Figure 8) as would be desired
for small tumor detection.

Unlike the phantom case, in terms of acquisition time,
the comparison between standard and super-resolution pa-
tient PET acquisitions is not one to one. The super-resolution
acquisition and reconstruction for the patient required ap-
proximately four times the number of counts as the standard
images. (The signal of the lesion of interest was lost due to the
low-counting statistics when the total acquisitions times were
kept the same.) Using four POVs of 4 min each, this super-
resolution example demonstrates that these acquisitions are

clinically feasible if restricted to one FOV of interest. When
the total acquisition times were kept constant (as in the phan-
tom case) the super-resolution data required more smooth-
ing (Gaussian filters of 3.0 mm FWHM or their HCT equiv-
alent) than the standard data (1.8 mm FWHM). In contrast,
the super-resolution data for the patient did not require ad-
ditional smoothing to obtain the same noise level as in the
standard images (Gaussian filters of 3.0 mm FWHM or their
HCT equivalent were used for both) because of the increased
number of counts in the super-resolution case.

The choice of 4 POVs for the super-resolution technique
in the patient case is reasonable. Since the automated bed
motion readily provides increments of 0.5 mm, conceivably
one could acquire 8 POVs for the super-resolution technique.
However, at 4 min per POV the resulting long acquisition
time may be prohibitive. On the other hand, keeping the to-
tal acquisition time constant renders the number of counts
per position too low to be useful, as found in the four 1-
minute POVs case. In general it could be stated that there
is a minimal acquisition time required for each POV in order
to obtain useful information. Hence, the number of POVs
multiplied by that minimal acquisition time will determine
the needed total acquisition time. The number of POVs used
and their corresponding acquisition times has yet to be opti-
mized.

It is worth reiterating from [9] that patient motion will
further degrade the efficacy of the super-resolution tech-
nique because the registration of the POVs should be known
to subpixel accuracy. Consequently, brain scans may be more
suitable for the clinical application of super-resolution since
the head is then firmly fixed and subject to little motion. Also,
the application of this technique in the transverse direction
would require a method of recording the geometric shifts of
the patient in the transaxial plane. Conceivably, one could
envision a new type of scanner with a rotating gantry, and
perhaps even with some transaxial motion, that would be
able to provide super-resolution without moving the patient.

Applying HCT in the axial direction as presented here is
suboptimal since the slice thickness of the CT was automat-
ically set by the scanner to be the same as that of standard
PET images. However, the CT scanner can potentially pro-
vide thinner slice reconstructions. Using such images as the
CT input would reduce partial volume effects and potentially
further improve the results.

The improvement in resolution due to super-resolution
acquisition and reconstruction and the improvement in con-
trast ratio using HCT filtering come at a considerable in-
crease in computational time when applied together. Com-
pared to standard processing, the super-resolution technique
applied to PET increases processing times by a factor of 23
[9] and HCT filtering increases this by a factor of 8 [11].
On the Discovery-LS scanner used, the reconstruction time
of AC PET is typically 2 to 3 min per FOV with most of
the reconstruction being performed concurrent with a 20-
to-30-minute acquisition of 5 to 7 FOVs per patient. Increas-
ing processing times by factors greater than 8 could not be
easily accommodated. Because of this prohibitive increase
in computer processing time, the clinical application of the
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combined super-resolution/HCT process would likely need
suitable dedicated computer hardware or to be restricted to
a suspicious region of interest to avoid spending computa-
tional resources sharpening the entire data set.

As an alternative to OSEM, one may consider the use
of penalized-likelihood image reconstruction methods, as
a complementary process to super-resolution. Penalized-
likelihood iterative reconstruction algorithms include a
penalty (regularization) term which discourages neighboring
pixels from converging to widely disparate values [23]. With
such an approach, edge information (obtained from another
modality) may be introduced via the regularization term [24]
or prior [25], and perhaps could replace the HCT processing
stage. A disadvantage of using penalized-likelihood methods
for emission tomography is that space-invariant penalties re-
sult in high-count regions tending to be smoothed more than
low-count regions [26], but methods have been developed
to give a more uniform spatial resolution [27]. Although
not addressed by this paper, it would be worthwhile to try
to achieve a similar improvement in resolution for a given
variance by combining the super-resolution method with the
penalized-likelihood reconstruction methods.

5. CONCLUSION

A new method incorporating two techniques, super-reso-
lution and hybrid computed tomography (HCT), for fus-
ing PET and CT images has been developed and evaluated.
A super-resolution acquisition, modified to include a Gaus-
sian blur kernel, has been shown to significantly improve the
resolution of the PET acquisition. The feasibility of imple-
menting the method in a clinical PET/CT scanner has been
demonstrated by showing higher contrast ratios in a phan-
tom study and higher target-to-background ratios in a small
lesion from a patient study for images exhibiting the same
level of noise. The resulting reconstructions provide higher
resolution metabolic images with delineated edges where
corresponding anatomical borders are available.
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1. INTRODUCTION

Multimodal image registration plays a significant role in
medical image processing such as medical diagnosis, thera-
peutic planning and assessment [1]. MI has proved to be an
effective criterion for the multimodal medical image regis-
tration [1–3]. However, even with this method, the correct
alignment cannot be guaranteed, especially when it is applied
to images with low resolution or small overlapped area. MI
function traditionally relies on only intensity information of
images, lacking sufficient spacial information, so it has diffi-
culty in accurately measuring the degree of alignment of two
images. It is also apt to be influenced by intensity interpola-
tion, therefore presents many local maxima which frequently
lead to misregistration [4, 5].

Different tissues in human brain usually present different
gray intensity no matter which imaging modality is applied
to them. The intensity gradient at the transition of two tis-
sues is steeper than the interior, where the gradient magni-
tude and phase lie on the imaging modality, and the spatial
relative position is invariable. Therefore the gradient fields of
two images can provide effective spatial information for their
similarity measurement.

Some research introduced gradient or feature informa-
tion into multimodal image registration to improve the per-
formance of registration function. Butz and Thiran [6] per-
formed the registration with MI based on feature space;
Pluim et al. [7] integrated gradient information into mutual
information to get a relatively smooth registration function;
Haber and Modersitzki [8] presented an alternative similarity
measurement based on normalized gradient field for multi-
modal image registration; Maintz et al. [9] showed that im-
age intensity gradient was an effective multimodal image reg-
istration criteria. These methods were effective for the im-
provement of registration quality. Our work took full advan-
tage of the gradient phase information and the relationship
between intensity images and their gradient fields to further
improve the performance of MI function.

Our current study proposes a technique for Multimodal
image registration, namely adaptive combination of inten-
sity and gradient field mutual information (ACMI). Unlike
the intensity MI computed with original images, the gradi-
ent field MI is calculated with gradient code maps (GCM)
which were obtained from corresponding original images
by a spherical gradient coder. The intensity of each point
in GCM is completely determined by thegradient vector of
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corresponding point in original intensity image, so that the
magnitude and phase information of spatial gradient field
of original image is converted into intensity information of
GCM. The properties of these two MI functions are comple-
mentary for each other and the ACMI is defined as the sum of
products of each MI function and corresponding weighting
function. The weighting function can be adaptively regulated
to highlight the contribution of MI function with better per-
formance to ACMI.

The simulated data experiment and the actual registra-
tion experiment were conducted to compare the perfor-
mance of ACMI and traditional MI. The results of simu-
lated data experiment showed that ACMI function was much
smoother and more reliable than traditional MI. The statisti-
cal test for the results of actual registrations demonstrated
that the registration quality with ACMI was significantly
higher than that with traditional MI and it was much less
sensitive to the reduction of resolution or overlapped region
of images.

2. METHODS

2.1. Mutual information

Given reference image R and floating image F with their
respective marginal intensity distributions pR, pF and joint
intensity distribution pRF , their MI is defined by means of
Kullback-Leibler measure [3]:

I(R,F) =
∑

i, j

pRF(i, j) log
pRF(i, j)
pR(i)pF( j)

. (1)

The MI criterion postulates that the images are geomet-
rically aligned when I(A,B) is maximal. However, this is not
always true, because many local maxima are frequently an-
nounced and sometimes even worse, the global maximum
does not correspond to the correct alignment [5].

MI is also defined by means of information theoretic no-
tion of entropy. Given images R and F with their respective
entropies H(R) and H(F) and their joint entropy H(R,F),
their MI I(R,F) is defined as

I(R,F) = H(R) + H(F)−H(R,F). (2)

In fact, MI is a measure method based on statistical no-
tion, and its reliability depends on the number of voxels in-
cluded in its computation. It is sensitive to image resolution
or the overlapped area of two images. To solve this problem,
some MI-related measures have been proposed such as en-
tropy correlation coefficient (ECC) E(R,F) [10]

E(R,F) = 2I(R,F)
H(R) + H(F)

(3)

and normalized mutual information NMI N(R,F) [11]

N(R,F) = H(R) + H(F)
H(R,F)

. (4)

The same artifact patterns as MI function are found in
both ECC and NMI [4]. It does not guarantee an accurate

and reliable alignment. Comparing (2) and (3), for fixed im-
ages R and F, their respective entropies H(R) and H(F) are
approximately constant, so the EEC is in fact the product of
I(R,F) and a constant. As a result, ECC has the similar per-
formance to MI except for its normalized value range [0, 1]
[1]. Therefore in the following analysis, ECC is used in place
of corresponding MI.

2.2. Spatial gradient field code

Given a 2D image F with intensity f (x, y), its spatial gradient
field GF(x, y) can be computed by

GF(x, y) = ∂ f (x, y)
∂x

−→
i +

∂ f (x, y)
∂y

−→
j , (5)

where the
−→
i and

−→
j are the unit vectors along x and y axes,

respectively. If the horizontal and vertical derivatives, namely
∂ f (x, y)/∂x and ∂ f (x, y)/∂y, are denoted by fx and fy , re-
spectively, then the magnitude ρi, j and phase θi, j ([0, 2π)) of
gradient of voxel fi, j are calculated by

γi, j =
√
f 2
x + f 2

y ,

γmax = max
(
γi, j
)
,

ρi, j =
⎧
⎪⎨
⎪⎩

γi, j
γmax

γi, j < γmax,

0.999 γi, j = γmax,

θi, j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tan−1
fy
fx

fx > 0, fy > 0,

tan−1
fy
fx

+ π fx < 0,

tan−1
fy
fx

+ 2π fx > 0, fy < 0,

π

2
fx = 0, fy > 0,

3π
2

fx = 0, fy < 0.

(6)

The ranges of ρi, j and θi, j are [0,1) and [0, 2π), respectively.
The point ci, j in GCM C is obtained by coding the gradient
vector (ρi, j , θi, j) of corresponding point fi, j in F with gradient
coder [12],

ci, j =
⎧
⎪⎨
⎪⎩

⌊
ρi, j
Δp

⌋
N +

⌊
θi, j
Δθ

⌋
ρi, j ≥ Th,

0 ρi, j < Th,
(7)

where �ρi, j /Δp� is the integer portion of ρi, j /Δp and Th is a
prespecified threshold to ignore the point with low gradient
magnitude. Δρ and Δθ are, respectively, the magnitude and
phase bin intervals of gradient coder, and N equals to 2π/Δθ .
Figure 1 illustrates a 2D gradient coder. It converts gradi-
ent difference of points in gradient field into intensity dif-
ference of points in GCM. Given two gradient vectors with
equal magnitude, the one with more phase (θi, j) will pro-
duce stronger intensity in GCM.Table 1 shows an example of
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Figure 1: Illustration of a 2D gradient coder (Δρ = 1/4, Δθ = π/4).

Table 1: Mapping from gradient field of intensity image to GCM
(Δρ = 1/4, Δθ = π/4).

Range [0,0.25) [0.25,0.5) [0.5,0.75) [0.75,1)

[0,π/4) 0 8 16 24

[π/4,π/2) 1 9 17 25

[π/2, 3π/4) 2 10 18 26

[3π/4,π) 3 11 19 27

[π, 5π/4) 4 12 20 28

[5π/4, 3π/2) 5 13 21 29

[3π/2, 7π/4) 6 14 22 30

[7π/4, 2π) 7 15 23 31

mapping from gradient field of intensity image to GCM. The
most left column and the top row of Table 1 correspond to
phase angle and magnitude of gradient vector, respectively.
For example, two pixels with gradient vectors (0.3,π/8) and
(0.3, 5π/8) will produce intensity values 8 and 10 in GCM,
respectively. The gradient field map includes both magni-
tude and phase information, so it can provide more spa-
tial information for the similarity measurement of two im-
ages.

This gradient coder can be easily extended to 3D images.
Given a voxel fi, j,k of 3D image F with gradient vectors ( fx,
fy , fz), the 3D gradient coder is defined as

ci, j,k =

⎧
⎪⎪⎨
⎪⎪⎩

⌊
ρi, j,k
Δp

⌋
NK +

⌊
φi, j,k
Δφ

⌋
K +

⌊
θi, j,k
Δθ

⌋
ρi, j,k ≥ Th,

0 ρi, j,k < Th,
(8)

(a) (b)

(c) (d)

Figure 2: A slice of 3D GCM of MRI T1. (a) Original image, (b)
gradient magnitude map, (c) gradient phase map, (d) GCM (Δρ =
1/16, Δθ = π/8, Δφ = π/8, and Th = 0.10).

with

γi, j,k =
√
f 2
x + f 2

y + f 2
z ,

γmax = max
(
γi, j,k

)
,

ρi, j,k =

⎧
⎪⎪⎨
⎪⎪⎩

γi, j,k
γmax

γi, j,k < γmax,

0.999 γi, j,k = γmax,

φi, j,k = cos−1 fz
γi, j,k

,

θi, j,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tan−1
fy
fx

fx > 0, fy > 0,

tan−1
fy
fx

+ π fx < 0,

tan−1
fy
fx

+ 2π fx > 0, fy < 0,

π

2
fx = 0, fy > 0,

3π
2

fx = 0, fy < 0,

(9)

where φi, j,k([0,π]) and θi, j,k([0, 2π)) are the polar angle and
azimuthal angle, respectively. N and K equal to π/Δφ and
2π/Δθ , respectively, where Δφ and Δθ are the polar angle and
azimuthal angle bin intervals of 3D gradient coder, respec-
tively. The other notations are defined similarly as in (6).
With (8), spatial gradient field (magnitude and phase) in-
formation of original images is converted into intensity in-
formation of GCMs. Figures 2 and 3 show a slice of GCMs of
3D MRI T1 and PET images, respectively.
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(a) (b)

(c) (d)

Figure 3: A slice of 3D GCM of PET. (a) Original image, (b) gradi-
ent magnitude map, (c) gradient phase map, (d) GCM (Δρ = 1/16,
Δφ = π/8, Δθ = π/8, and Th = 0.16).

2.3. Adaptive combination of intensity and gradient
field mutual information (ACMI)

With (3), the intensity ECC Ei is obtained from two origi-
nal images and the gradient ECC Eg is computed from their
GCMs. The ACMI Ea is defined as

Ea = f
(
v
(
Ei,Eg

))
Ei +

(
1− f

(
v
(
Ei,Eg

)))
Eg , (10)

with

f
(
v
(
Ei,Eg

)) = 1
1 + exp

(− (v(Ei,Eg
)− 0.5

)
/T
) ,

v
(
Ei,Eg

) = Ei + Eg
2

0 ≤ Ei, Eg ≤ 1.

(11)

As shown in Figure 4, the weighting function f (v(Ei,Eg))
actually is a logistic function with rightward half unit shift.
This function has some expected properties [13]. The first
is the saturation with the maximum of one and the mini-
mum of zero. This property is very important for the weight-
ing function because, as described by (10), the output of
f (v(Ei,Eg)) presents a fraction whose value extends from
zero to one. The second is differentiability which not only
prevents introducing additional local maxima during com-
bination of registration functions but also facilitates the op-
timization of ACMI with some derivative-needed techniques
such as Gauss-Newton optimization method. The third, the
most important one, is the nonlinearity. As indicated in
Figure 4, the weighting function presents nonlinear charac-
teristic in two terminal saturating parts but approximate lin-
ear characteristic in the middle nonsaturating part. Thus,
according to (10), the ACMI is mostly determined by one
of two ECC functions at each nonlinear terminal (gradient
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Figure 4: Weighing functions f (v(Ei,Eg)) with T = 0.0025 (green),
T = 0.01 (magenta), T = 0.04 (blue), T = 0.16 (black) and T =
0.64 (red), respectively.

ECC for the left terminal and intensity ECC for the right),
but equals to the sum of two ECC functions with similar
weights in the middle linear part. The nonlinear degree of
weighting function totally depends on the time constant T .
If it is too large, for example 0.64 (Figure 4, the red line), the
weighting function will present more linear characteristic. As
a result, the unexpected middle linear part is lengthened and
the weight-similar sum of registration functions can lead to
severe roughness of ACMI. Decrease of time constant can
shorten this unexpected middle linear part and lengthen the
terminal saturating parts. On the other hand, the extremely
small time constant, for example 0.0025 (Figure 4, green
line), can impair the differentiability of weighting function
and introduce additional local maxima when combining two
registration functions. The optimal choice for T was ob-
tained by experimental method (described in Section 3). In
terms of these three properties, f (v(Ei,Eg)) is a desirable
weighting function for combination of registration func-
tions.

As shown in Figures 2(a) and 3(a), the original images
contain abundant information. It has two effects on their
ECC function. On the one hand, the similarity measurement
of two images is more reliable because of abundant informa-
tion and the ECC function presents a tendency of conver-
gence to the global maximum which corresponds to the cor-
rect alignment. On the other hand, abundant information
means strong nonuniformity of intensity across voxels, then
the ECC function is easily influenced by intensity interpola-
tion, and thereby presents many local maxima which can lead
to inaccurate registration (see Figures 6(a), 6(d), and 6(g)).

Compared to the original images, as shown in Figures
2(d) and 3(d), GCMs contain less information (most vox-
els have zero intensity value except those at edges of some
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tissues). This relatively higher-intensity uniformity reduces
the effect of intensity interpolation on ECC function of two
maps and therefore makes it smoother [4]. Additionally the
edge information in GCMs can provide reliable and accu-
rate spatial information for the similarity measurement of
images. However, in the neighborhood of global maximum,
the ECC function often presents plateaus or valleys, prevent-
ing convergence to global maximum (see Figures 6(b), 6(e),
and 6(h)).

According to their complementary properties, these two
ECC functions are combined by ACMI, using a nonlinear
weighting function (10). In our study, the downhill simplex
optimization [14] was used for the search of maximum in
six-dimensional space (translations along x, y, and z axes,
and rotations around x, y, and z axes). This algorithm is
an efficient method for N-dimensional unconstrained min-
imization [15, 16]. It begins with N + 1 vertices which de-
fine a simplex in N-dimensional space and attempts to move
them into the minimum. Given reference image R, floating

image F, and transforming parameter vector (vertex) x(k)
j

( j = 1, 2, . . . , 7) in kth iteration, TF(x(k)
j ) denotes the trans-

formed F with x(k)
j , and Ei(k)

j , Eg(k)
j and Ea(k)

j denote intensity

ECC, gradient ECC and ACMI of R, and TF(x(k)
j ), respec-

tively. The iterative procedure is the following [16].

Step 1. Initialize x(k)
j and calculate Ea(k)

j .

Step 2. Order x(k)
j to satisfy Ea(k)

1 ≤ Ea(k)
2 ≤ · · · ≤ Ea(k)

7 ,

and calculate the centroid of the six best ACMI values, x(k) =∑6
j=1 x

(k)
j /6 and Ea

k
.

Step 3. x(k)
r = x(k) + (x(k) − x(k)

7 ) and calculate Ea(k)
r .

Step 4. If Ea(k)
1 ≤ Ea(k)

r < Ea(k)
6 , then x(k)

7 = x(k)
r , Ea(k)

7 = Ea(k)
r

and go to Step 9.

Step 5. If Ea(k)
r < Ea(k)

1 , then x(k)
e = x(k) + 2(x(k)

r − x(k)), and

calculate Ea(k)
e . If Ea(k)

e < Ea(k)
r , then x(k)

7 = x(k)
e , Ea(k)

7 =
Ea(k)

e , and go to Step 9; otherwise x(k)
7 = x(k)

r , Ea(k)
7 = Ea(k)

r ,
and go to Step 9.

Step 6. If Ea(k)
6 ≤ Ea(k)

r < Ea(k)
7 , then x(k)

c = x(k) + 0.5(x(k)
r −

x(k)), and calculate Ea(k)
c . If Ea(k)

c ≤ Ea(k)
r , then x(k)

7 = x(k)
c ,

Ea(k)
7 = Ea(k)

c , and go to Step 9; otherwise go to Step 8.

Step 7. If Ea(k)
r ≥ Ea(k)

7 , then x(k)
cc = x(k) − 0.5(x(k) − x(k)

7 )

and calculate Ea(k)
cc . If Ea(k)

cc < Ea(k)
7 , then x(k)

7 = x(k)
cc , Ea(k)

7 =
Ea(k)

cc , and go to Step 9; otherwise, go to Step 8.

Step 8. x(k)
j ← x(k)

j + 0.5(xk1 − x(k)
j ).

Step 9. c = {(1/7)
∑7

j=1[Ea(k)
j − Ea

(k)
]2}1/2. If c < 10−4, then

the iteration exists; otherwise k ← k + 1, and go to Step 2.

In each iteration, the ACMI Ea(k)
j for each transforming

parameter vector x(k)
j is calculated as follows.

Step 1. Transform F into TF(x(k)
j ) with transforming param-

eters vector x(k)
j .

Step 2. Calculate intensity ECC Ei(k)
j and gradient ECC Eg(k)

j

of R and TF(x(k)
j ).

Step 3. Adjust weighting function according to Ei(k)
j and

Eg(k)
j .

Step 4. Calculate ACMI Ea(k)
j .

When alignment improves, ACMI uses an iterative algo-
rithm to automatically adjust the proportion between inten-
sity ECC and gradient ECC by changing the weighting func-
tion. Thus at the coarse registration stage, the ACMI depends
mostly on gradient ECC due to the low sum of ECC values
and presents a smooth property facilitating the convergence
to the basin of global maximum. With the two images in-
creasingly aligned, the v(Ei,Eg) becomes larger due to the in-
crease of the values of intensity ECC Ei and gradient ECC
Eg (10). Accordingly, as indicated in Figure 4 (blue line), the
weighting function shifts from the left saturating terminal to
the right. At the fine stage where the gradient ECC varies
slightly, the ACMI is determined mostly by intensity ECC for
which the gradient ECC is a supplement. The higher the sum
of ECCs is, the more reliable the intensity ECC is, therefore
the more the ACMI depends on it than on gradient ECC.
This coarse-to-fine and gradient-to-intensity strategy facili-
tates the convergence to global maximum which corresponds
to correct alignment.

3. RESULTS

The brain image set used in the current study includes 35
brain MRI/PET image pairs (MRI T1, PD, T2, and their re-
spective rectified versions versus PET). The brain image set
and the standard transformations of each image pair were
provided as the part of the project, “Retrospective Image Reg-
istration Evaluation,” Vanderbilt University, Nashville, TN
[17]. The accuracy of each registration was evaluated by
bone-marker-based gold standard, and the registration er-
ror was defined as the error distances between the gold stan-
dard in the reference image and the centroid of volume of
interest (VOI) in the floating image after alignment (see
[17] for more details). To compare performance of tradi-
tional ECC and ACMI for image pairs with low resolution or
small overlapped area, two types of image pairs were gener-
ated from each original image pairs, namely subsampled ver-
sion (subsampled by a factor of two in three axes, resp.) and
small-overlapped version (50% overlapped region of original
pairs).

In our study, the threshold Th for each type image is 0.10
for MRI T1, 0.08 for MRI T2, 0.12 for MRI PD, and 0.16
for PET. The thresholds were obtained by the basic global
thresholding mehod [18].

As indicated by (8), the smaller the bin intervals of mag-
nitude and phase of gradient coder are, the more gray levels
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Figure 5: The mean registration error (RE) versus time constant for
MRI/PET image pairs (blue), subsampled version (red) and small-
overlapped version (green). The registration error is defined as the
error distances between the gold standard in the reference image
and the centroid of volume of interest (VOI) in the floating image
after alignment. The horizontal axis is labeled with intervals of log2.
For each image version, the registration error reaches the minimum
near the time constant 0.04 where each is relatively insensitive to the
changes of time constant.

the GCM has, and accordingly the more accurate registration
result will be obtained. However, the increase of gray lev-
els can decrease the statistic power of joint histogram from
which the mutual information of two GCMs is calculated
[4, 5]. Usually the overmuch gray levels of GCM are sub-
sampled with a suitable bin interval width when calculating
the joint histogram. So the extremely small bin intervals of
magnitude and phase of gradient coder cannot improve the
quality of registration. In our study, the magnitude, polar,
and azimuthal angle bin intervals (Δρ, Δφ, and Δθ) are 1/16,
π/8, and π/8, respectively. Thus the gray level of GCM is 2048
(16×8×16) which is enough to identify the changes of mag-
nitude and phase of intensity images, and it is subsampled to
128 gray levels in the calculation of joint histogram.

The optimal choice of time constant was obtained by
“bootstrap” method. Fifty “bootstrap” data sets were created
by randomly selecting 20 MRI/PET image pairs 50 times with
replacement from the brain image set. For a given “boot-
strap” data set, registration was applied to each image pair
using ACMI with each of 17 different time constants (from
0.0025 to 0.64). For a given time constant Tj , the mean reg-
istration error across all “bootstrap” data sets was obtained
by θj = (1/50)

∑50
i=1 mji, where mji denoted the median

registration error across image pairs in Di for Tj . Figure 5
shows mean registration error across all “bootstrap” data sets
versus time constant for MRI/PET image pairs (blue), and
their subsampled version (red) and small-overlapped version
(green). As presented by Figure 5, mean registration error for
each image version reaches the minimum near the time con-
stant 0.04 where it is relatively insensitive to changes in the
time constant.

Figure 6 describes three types of registration functions
of a PET/MRI T1 pair, namely intensity ECC (traditional
ECC), gradient ECC, and their adaptive combination ACMI
versus relative displacements between reference and floating
images in horizontal and vertical orientations. The negative
registration functions are displayed for visual convenience.
For the original images, the ACMI performs slightly bet-
ter than intensity and gradient ECC (top row of Figure 6).
For the subsampled version, the intensity ECC presents a
global maximum corresponding to the correct alignment,
but it still has many local maxima, especially a secondary
maximum near the global maximum (Figure 6(d)). The gra-
dient ECC presents less local maxima, but a valley at the
bottom (Figure 6(e)). For small-overlapped version, the in-
tensity ECC is strongly rough, though it presents only a
global maximum corresponding to the correct alignment
(Figure 6(g)). The gradient ECC is smoother, but presents
a plateau at bottom not including the correct registration
point (Figure 6(h)). Even the global optimization method
such as simulated annealing or genetic algorithm is applied
to these versions, the correct alignment is not guaranteed.
ACMI overcomes these problems (Figures 6(f) and 6(i)).
It provides sufficient smoothness in the coarse registration
stage due to the dominance of gradient ECC. On the other
hand, it presents only one global maximum at coordinate
(0, 0) of the graph (corresponding to the correct alignment)
in the fine registration stage because of the combination of
larger part of intensity information (intensity ECC).

For each image pair, the registrations were applied to its
three types of versions with traditional ECC, gradient ECC,
and ACMI, respectively. Table 2 summarizes the results of
registration. The values in the left three columns labeled with
“Accuracy” are the median/maximal registration error for in-
tensity ECC, gradient ECC, and ACMI, respectively, and the
values in the right columns labeled with “Number of Itera-
tions” are the mean and standard deviation of number of it-
erations (Mean ± SD) for intensity ECC, gradient ECC, and
ACMI, respectively.

Relative to intensity ECC and gradient ECC, ACMI pro-
vides 20.7% and 11.3% mean reduction in error for orig-
inal version, 19.6% and 8.1% for subsampled version, and
22.5% and 10.8% for small overlapped version, respectively.
For each of three image versions (original, subsampled, and
small-overlapped version), a paired Student’s t-test on ECC
types reveals that the results of gradient ECC are significantly
more accurate than those of intensity ECC (P < .01 for orig-
inal version, P < .0005 for subsampled version and small-
overlapped version) but less accurate than those of ACMI
(P < .01 for original version, P < .001 for subsampled ver-
sion and small-overlapped version). For each of ECC types
(intensity ECC, gradient ECC, and ACMI), a one-way analy-
sis of variance (ANOVA) on three image versions finds signif-
icant difference for intensity ECC (P < .001) and for gradient
ECC (P < .005), but not for ACMI (P > .05). This reveals that
ACMI function is much less sensitive to the reduction of res-
olution or overlapped area of images than intensity ECC and
gradient ECC. Also, subpixel accuracy is obtained in all reg-
istrations with ACMI. As indicated by Table 2, gradient ECC
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Figure 6: Registration function (PET/MRI T1) versus relative displacement between reference and floating images in horizontal and vertical
orientations. For the original images, the ACMI performs slightly better than intensity and gradient ECC (top row). For the subsampled
version, the intensity ECC presents a global maximum corresponding to the correct alignment, but also presents many local maxima, espe-
cially a secondary maximum near the global maximum (d). The gradient ECC presents less local maxima, but a valley at the bottom (e).
For small-overlapped version, the intensity ECC is strongly rough, though it presents only a global maximum corresponding to the correct
alignment (g). The gradient ECC is smoother, but presents a plateau at bottom not including the correct registration point (h). ACMI of
each image version provides sufficient smoothness in the coarse registration stage and presents only one global maximum at coordinate (0,
0) of the graph (corresponding to the correct alignment) in the fine registration stage ((c), (f), and (i)).

performed better than intensity ECC, but it cannot achieve
the optimal registration with absence of intensity informa-
tion. In the fine stage of registration, the intensity informa-
tion is required to further improve the registration quality.
Table 2 also provides a comparison of number of iterations
among intensity ECC, gradient ECC, and ACMI. As sum-
marized by Table 2, the number of iterations was most for
the intensity ECC, much more for ACMI, and least for the
gradient ECC. Relative to intensity ECC and gradient ECC,
ACMI provided 31.9% mean reduction but 69.8% mean in-
crease in the number of iterations for original version, 21.4%
mean reduction but 47.1% mean increase for subsampled
version, and 31.9% mean reduction but 30.5% mean in-
crease for small overlapped version, respectively. Taken to-
gether, ACMI outperforms intensity ECC in terms of accu-
racy and speed of registration. It can also provide a more

accurate result but cost more processing time than gradient
ECC. As for the fact that processing time of registration is
not crucial due to highly developed computer, ACMI is pre-
ferred over gradient ECC except for a required online regis-
tration.

Figure 7 illustrates the registration results of three ver-
sions of MRI T1/PET image pairs with the intensity (tradi-
tional) ECC, gradient ECC, and ACMI. For the convenient
display, the extracted brain of MRI T1 image (Figure 7 left
of (a)) and the 50% transparent profile of extracted brain of
PET image (Figure 7 right of (a)) are served as the under-
lying and the overlying, respectively. These examples clearly
show that when the resolution or the overlapped area of im-
ages reduces, the intensity ECC and the gradient ECC can
easily lead to misregistration, but the ACMI performs well
(Figure 3).
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Table 2: Accuracy and iterative number comparison among intensity ECC, gradient ECC, and ACMI.

Pair mode Pairs
Accuracy (median/maximum mm) Number of iterations (Mean ± SD)

Intensity ECC Gradient ECC ACMI Intensity ECC Gradient ECC ACMI

Original images

T1-PET 7 2.78/4.96 2.73/4.31 2.38/4.22 269.5 ± 84.8 111.3 ± 29.9 172.2 ± 44.0

T2-PET 7 1.91/6.37 1.52/5.84 1.39/5.51 288.0 ± 145.1 87.5 ± 45.8 161.7 ± 43.9

PD-PET 7 2.46/6.19 1.97/4.72 1.62/3.41 222.2 ± 108.7 93.2 ± 36.9 159.9 ± 58.6

T1 rec-PET 4 3.19/8.37 2.88/6.12 2.63/5.43 240.5 ± 92.2 102.4 ± 33.1 145.5 ± 49.7

T2 rec-PET 5 3.15/9.15 3.04/7.13 2.72/6.08 220.3 ± 97.8 93.6 ± 42.8 174.9 ± 37.3

PD rec-PET 5 3.07/8.13 2.65/7.41 2.37/6.74 224.7 ± 89.5 99.3 ± 41.9 183.1 ± 63.0

Subsampled version

T1-PET 7 4.13/8.25 3.70/7.37 3.40/7.48 169.0 ± 65.0 93.7 ± 31.4 127.5 ± 36.4

T2-PET 7 4.14/9.18 3.52/6.18 3.06/5.10 189.0 ± 63.4 79.1 ± 35.9 138.8 ± 40.6

PD-PET 7 3.07/12.94 2.74/7.06 2.59/5.36 151.5 ± 63.3 82.1 ± 39.0 135.7 ± 32.8

T1 rec-PET 4 4.62/10.37 3.95/9.22 3.51/8.83 150.2 ± 59.3 88.6 ± 28.9 118.5 ± 26.3

T2 rec-PET 5 5.25/16.15 4.92/10.88 4.83/7.07 176.5 ± 59.1 89.7 ± 34.2 136.7 ± 35.6

PD rec-PET 5 4.17/11.82 3.39/8.17 3.03/6.33 144.5 ± 52.2 90.7 ± 40.6 113.7 ± 29.4

Small-overlapped version

T1-PET 7 4.15/5.78 3.71/6.65 3.33/7.17 146.2 ± 93.2 94.9 ± 35.7 112.3 ± 29.9

T2-PET 7 3.34/8.37 2.44/6.07 2.20/4.94 207.5 ± 88.2 120.5 ± 61.3 153.0 ± 48.2

PD-PET 7 3.98/8.18 3.11/6.21 2.84/5.11 213.7 ± 83.1 106.8 ± 47.9 134.2 ± 51.4

T1 rec-PET 4 3.33/10.85 2.96/8.13 2.61/6.72 139.5 ± 64.1 68.6 ± 40.7 96.5 ± 43.6

T2 rec-PET 5 4.17/12.05 3.89/9.27 3.21/7.38 170.0 ± 79.3 63.9 ± 37.0 99.1 ± 46.5

PD rec-PET 5 3.39/9.10 3.30/7.58 3.16/6.91 193.0 ± 114.8 103.4 ± 58.0 133.1 ± 52.8

4. DISCUSSION AND CONCLUSION

Though MI method is a well-known effective criterion for
Multimodal image registration, it still has some disadvan-
tages which often make the alignment less than optimal.

First, MI is unreliable to measure the degree of align-
ment between two images. MI function includes only inten-
sity information but little spatial information of images, so
it usually either produces several global maxima or presents
a global maximum which does not correspond to the cor-
rect alignment. Some research introduced spatial informa-
tion such as gradient-based information [6–8] or feature-
based information [19–21] to improve the quality of image
registration. These methods were effective but they did not
took full advantage of the phase information of gradient field
or the relationship between intensity images and their gradi-
ent fields.

Second, MI function is easily influenced by the intensity
interpolation and presents many local maxima to trap the
optimization [4, 5], leading to the failure of registration. Var-
ious high-order interpolation methods [22, 23] and global
optimization algorithms [6] were introduced to reduce the
influence of local maxima. But these methods are com-
putationally expensive [24, 25]. Moreover, these methods
are meaningless if the similarity measurement is unreliable
[26, 27].

Third, MI is sensitive to the reduction of resolution or
overlapped area of images. MI is a similarity measurement
method and its reliability depends on the statistical stabil-
ity of samples. The reduction of resolution or the overlapped

area decreases the sample size, then deteriorates the statistical
stability of samples. As a result, MI presents a poor perfor-
mance for the registration of images with low resolution or
small overlapped area. NMI [11] and ECC [10] were intro-
duced to solve this problem, but no significant improvement
was observed [25, 28]. They are also sensitive to the reduc-
tion of resolution or overlapped area of images.

To overcome these disadvantages of MI, we propose a
technique for Multimodal image registration, namely ACMI,
based on adaptive combination of intensity and gradient field
mutual information. We constructed GCM from which the
gradient field mutual information of original intensity im-
ages is calculated. The GCM is obtained from correspond-
ing original images by a spherical gradient coder and in-
cludes both magnitude and phase information of gradient
field of original images. The gradient field mutual informa-
tion provides sufficient spatial information for the similar-
ity measurement of images, besides it is smoother due to the
relatively higher intensity uniformity of GCMs. ACMI com-
bines the advantages of intensity ECC and gradient ECC, and
adopts a coarse-to-fine and gradient-to-intensity registration
strategy, so it overcomes the nonsmoothness and unrelia-
bility of traditional MI function. Results of simulated data
experiments and actual registration both demonstrate that
ACMI function performs better than traditional MI and it
is much less sensitive to the reduction of resolution or over-
lapped area of two images.

According to its advantages, ACMI function is suitable
for the registration of low-resolution images or impaired im-
ages. One example is the registration with multiresolution
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Figure 7: Illustration of registration results of PET/MRI T1 pair with intensity ECC, gradient ECC, and ACMI. (a) The extracted brain of
MRI T1 image (left) and the 50% transparent profile of extracted brain of PET image (right) are served as the underlying and the overlying,
respectively. (b) The first row: registration results of original version using intensity ECC, gradient ECC, and ACMI; the second row: the
corresponding results of subsampled version; the third row: the corresponding results of small-overlapped version.

method whose object is to accelerate the registration speed
without decreasing the registration accuracy and robust-
ness. For low-resolution images, the multiresolution method
with intensity ECC in fact prolongs the registration process,
because the subsampling of these images deteriorates the
smoothness of MI function, so that the convergence point of
subsampled images is still a poor start point for the final im-
ages [29]. The ACMI can be used in multiresolution method
for its insensitivity to the reduction of resolution.

In our study, the optimal value of time constant T was
obtained using a “bootstrap” method. As shown in Figure 5,
the mean registration error of each version is relatively in-
sensitive to the changes of T near the optimal value, and ex-

tremely low or high T values can lead to relatively inaccurate
registration. It is not clear whether this optimal T is suit-
able for other multimodality image pairs such as MRI/CT,
MRI/SPECT. The registrations of these multimodality im-
age pairs might present a similar pattern of “mean registra-
tion error versus time constant” to that of MRI/PET pairs
(Figure 5). Extending ACMI to these multimodality image
pairs will be our future work.
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Purpose: beyond the pure morphological visual representation, MR imaging offers the possibility to quantify parameters in the
healthy, as well as, in pathologic lung parenchyma. Gas exchange is the primary function of the lung and the transport of oxygen
plays a key role in pulmonary physiology and pathophysiology. The purpose of this review is to present a short overview of the
relaxation mechanisms of the lung and the current technical concepts of T1 mapping and methods of oxygen enhanced MR
imaging. Material and Methods: molecular oxygen has weak paramagnetic properties so that an increase in oxygen concentration
results in shortening of the T1 relaxation time and thus to an increase of the signal intensity in T1 weighted images. A possible
way to gain deeper insights into the relaxation mechanisms of the lung is the calculation of parameter Maps. T1 Maps based
on a snapshot FLASH sequence obtained during the inhalation of various oxygen concentrations provide data for the creation
of the so-called oxygen transfer function (OTF), assigning a measurement for local oxygen transfer. T1 weighted single shot TSE
sequences also permit expression of the signal changing effects associated with the inhalation of pure oxygen. Results: the average of
the mean T1 values over the entire lung in inspiration amounts to 1199 +/− 117 milliseconds, the average of the mean T1 values in
expiration was 1333 +/− 167 milliseconds. T1 Maps of patients with emphysema and lung fibrosis show fundamentally different
behavior patterns. Oxygen enhanced MRT is able to demonstrate reduced diffusion capacity and diminished oxygen transport
in patients with emphysema and cystic fibrosis. Discussion: results published in literature indicate that T1 mapping and oxygen
enhanced MR imaging are promising new methods in functional imaging of the lung and when evaluated in conjunction with the
pure morphological images can provide additional valuable information.
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1. INTRODUCTION

Beyond the pure morphological visual representation, MR
imaging offers the possibility to quantify functional param-
eters in healthy, as well as, the pathologic lung tissue. The
T1 time of biological tissue is one of the potential measur-
able parameters. Gas exchange is the primary function of the
lung and oxygen uptake plays a major role in lung physiology
and pathophysiology. Consequently, the representation and
quantification of lung oxygen uptake provides important in-
formation regarding pulmonary function. Furthermore, im-
age creation of pathologically altered oxygen exchange in the
diseased lung is of great preclinical and clinical interest. Due
to the paramagnetic properties of oxygen, MR imaging of
oxygen transport is theoretically possible. The purpose of

this review is to present a short overview of the relaxation
mechanisms of the lung and the current technical concepts
of T1 mapping and methods of oxygen enhanced MR imag-
ing.

2. PULMONARY RELAXATION MECHANISMS

The first order approximation of the lung T1 relaxation time
shows it to be monoexponential and considerably dependant
upon tissue water content: the greater the water content the
shorter the T1 time [1, 2]. In a majority of studies, alteration
of T1 relaxation times in pathologically-changed lungs (i.e.,
pulmonary edema) could be qualitatively explained by the ef-
fect of water in the lungs [3], even though the measurements
showed variable quantitative results [4]. The T1 alterations
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Figure 1: T1 map of a healthy subject: expiration (b) demonstrates
a lengthening of the T1 times (seconds) as compared to inspiration
(a).

observed in animal experiments, or in ex vivo observations
of various pathologies (i.e., Lung fibrosis) could not solely be
explained by the effect of lung water [5–8].

The explanation of MR relaxation mechanisms in the
presence of macromolecules, such as collagen, was simplified
via the development of a theoretical model which is based
on the interaction between water molecules and macro-
molecules [9]. This takes into account that the pulmonary T1
relaxation properties are determined by two balanced groups
of water molecules: one compartment consists of free water
and the other by water which is bound to macromolecules
such as collagen. An alteration of the lung parenchyma, such
as the increase in the quantity of macromolecules, leads to a
change in the water-bound fraction and therefore a change
in the proportion of water-bound molecules.

A significant percentage of signal generating protons are
found in the blood. Parenchymal regional perfusion will,
therefore, have an effect on the regional lung parenchymal
T1 relaxation time. Lung perfusion and airspace oxygen con-
tent are dependent from the respiratory phase. However, in a
recent publication, we illustrated that the T1 time in inspira-
tion (1199+/−117 milliseconds) is shorter than in expiration
(1333+ /−167 milliseconds) [10] (Figure 1).

3. OXYGEN AS CONTRAST MEDIUM

Due to two unpaired electrons, molecular oxygen has weak
paramagnetic properties with a magnetic moment of 2.8
Bohr magnetons. The idea to use oxygen as a paramagnetic
contrast medium is not new and was initially discussed by
Young et al. [11]. The potential advantages of oxygen as a
contrast medium are obvious. Oxygen is inexpensive, readily
available, and safe. Short-term inhalation is not associated
with any adverse side-effects. Only after continuous inhala-
tion of 100% oxygen for more than 24 hours does the possi-
bility of permanent pathological lung changes arise [12]. The
illustration of oxygen dispersion is of great physiological and
pathophysiological interest in that oxygen transport repre-

21% O2
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Figure 2: T1 map (seconds) of a healthy subject with inhalation of
room air 21% oxygen (a), as well as inhalation of 100% oxygen (b).
The increase of O2 concentration shortens the T1 time of the lung
parenchyma as well as the Aorta (arrow).

sents the essential function of the lungs and not the distribu-
tion of nonphysiological substances which are measured in
examinations such as a nuclear medicine-pulmonary func-
tion test. A portion of oxygen is bound to hemoglobin in the
pulmonary capillary bed and a small fraction remains in sol-
uble form. The hemoglobin bound oxygen is enclosed within
the erythrocyte and therefore, the tissue water protons can-
not engage in a spin-lattice interaction which leads to T1 re-
laxation [13]. Edelman et al. were the first to discuss the use
of the paramagnetic properties of soluble oxygen to illustrate
pulmonary oxygen transport [14]. Inhalation of pure oxygen
increases the PaO2 in the lungs. This increase in partial oxy-
gen pressure leads to a shortening of the T1 time (Figure 2)
and therefore, to a signal rise of the T1 weighted images
[15]. Animal studies demonstrated a linear correlation be-
tween PaO2 and lung parenchymal relaxivity (=1/T1) [16].
The difference in lung parenchymal acquisition signal inten-
sities between inhaled room air and 100% oxygen is minimal,
and visual representation is generally accomplished by image
subtraction. Apart from the lungs, signal increases were also
noted in other organs such as the aorta, spleen, and kidneys
[15]. Besides the effect on T1, an elevated oxygen concentra-
tion also leads to a prolongation of lung parenchymal T2∗

time with only a minimal influence on the signal intensity
[16].

The exact mechanism altering signal or the change in
T1 time is not known. The influence of oxygen on T1 time
seems to be played out on the pulmonary vein and parenchy-
mal levels [17]. The molecular oxygen paramagnetic effect
is in any case not measurable within the pulmonary gaseous
spaces in that the oxygen only influences relaxation of water
protons in its proximate surroundings and is itself not signal
emitting. After inhalation of higher oxygen concentrations,
the interplay of inhalation, diffusion, and perfusion influence
the conventional acquisition signal and also alter the T1 time.
It only follows that there is a measurable differences in signal
behavior in the pathological lung after inhalation of oxygen
which results from an alteration of one or more of these fac-
tor, thereby increasing interpretation difficulty.
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Figure 3: T1 Measurements: after a 180◦ inversion pulse, 16 Images were acquired at specific time points using a snapshot FLASH sequence.
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the 16 measured signal intensities from which a Pixel T1 time can be calculated. The final T1 map results from the color coding of the T1
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Ohno et al. [18] used the absolute sum of the signal rise
during a dynamic measurement as a parameter for lung dif-
fusion capacity, Müller et al. [19] the slope of the rise.

Oxygen Transfer Function (OTF) was created to describe
the oxygen transport T1 maps [20]. This was achieved by
measuring T1 maps at various inspired oxygen concentra-
tions. Increase in relaxivity is a measure for oxygen transfer
of inhaled air into the blood stream. OTF describes the inter-
play between oxygen diffusion, ventilation, and perfusion.

4. TECHNIQUE

MRT examination of the pulmonary parenchyma exhibits
a minor signal-to-noise ratio. On the one hand, this is due
to minimal lung parenchymal proton density, and on the
other, the multiple air/parenchymal surfaces cause suscepti-
bility jumps which results in an extremely short T2 time of
only a few milliseconds [21–23]. To achieve the highest possi-
ble signal, a short echo time (TE) is necessary. Therefore, the
use of a single shot turbo spin-echo (TSE) technique has sev-
eral advantages: a short TE, multiple 180◦ refocusing pulses
to minimize susceptibility artifacts, a short inter echo time
to minimize diffusion and perfusion effects, and a short ac-
quisition time to reduce motion artifacts. In several studies
[16, 17, 24, 25] a T1 weighted inversion recovery half-Fourier
acquisition single shot turbo spin echo (HASTE) for oxygen
enhanced pulmonary MRT was used.

The calculation of T1 maps allows for the elimination of
T2 effects and the analysis of the effects of oxygen inhala-
tion. In vivo T1 lung measurements are, as all other MR pul-
monary parenchymal measurements, difficult. On the one
side, low-proton densities cause a poor signal-to-noise ratio,
and conversely, measurements are influenced by susceptibil-
ity artifacts as well as motion artifacts (cardiac pulsation and
diaphragmatic motion). Most of the published studies exam-

ined an only small volume measurement that naturally cov-
ers only a minor portion of the lung. This results not only
in problems of a statistical nature, but also varying T1 values
are expected where it is then unclear if the entire pulmonary
parenchyma is represented. In order to evaluate diffuse, but
regionally inhomogeneous alterations in lung parenchyma,
T1 maps of the entire lung are necessary where there is a cor-
responding T1 value for every pixel.

A possibility which is proposed in several projects, in-
cluding work from our group, calculates T1 maps based on
measurements from snapshot FLASH sequences [10, 26, 27].
These are based on the TOMROP sequence and consist of
two elements: first, magnetization is inverted using a nons-
elective inversion pulse, then the return to original magne-
tization state occurs over longitudinal relaxation and an im-
age is created using a series of measurements taken from a
fast snapshot FLASH sequence [28]. The scan time for one
slice at a specific point in time has an estimated duration of
200 milliseconds and is measured at 16 predefined points in
time after the inversion pulse. Acquisition of an entire slice
lasts about four seconds. The measurement provides 16 time-
dependant signal intensities for each pixel. An exponential-fit
over these data points yields the T1 relaxation time for each
pixel. A color coded image of the T1 values for all the pixels
produces the final T1 map (Figure 3).

5. EMPHYSEMA

WHO defines emphysema as irreversible enlargement of the
air spaces distal to the terminal bronchiole with destruc-
tion of the elastic scaffolding without accompanying fibrosis
[29]. The detection and the morphological grading of lung
emphysema using computer tomography have been inten-
sively explored over the last few years [30]. Furthermore,
there are ongoing studies to evaluate the capacity of CT
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Figure 4: Morphological CT (a) and perfusion map of an emphy-
sematous lung show good correlation of severe emphysema in the
anterior-lateral parts of the lung and decreased perfusion (green
pixels) as compared to the normal posterior parts of the lung. The
bright red pixels represent excluded, air containing parts of the lung.

to include functional information like perfusion (Figure 4).
The inherent problems associated with pulmonary MR ex-
aminations, especially the low-proton density (and the poor
signal-to-noise ratio) or the susceptibility artifacts are even
more pronounced in the emphysema altered lung. Indepen-
dent of emphysema pathogenesis, the total composition of
macromolecules such as collagen and elastin are within nor-
mal limits, however the distribution and the organization are
pathologically altered [31]. Signal behavior of the emphy-
semic lung is, apart from a total reduction in signal intensity
which mirrors the pulmonary parenchymal destruction, dif-
ficult to foresee. It was recently demonstrated that the T1 re-
laxation time in emphysematous altered lung is significantly
shorter than in healthy lung (Figure 5) [32]. The cause of this
T1 time shortening possibly lies in vascular rarefaction or a
redistribution of blood within the effected lung parenchyma.
In any case, this has to be taken into consideration when per-
forming inhalation examinations. At this time, there is no
definitive data available relating to T1 relaxation time behav-
ior after 100% oxygen inspiration.

A study from Ohno et al. compared healthy volunteers
with emphysema patients [18], and healthy volunteers with
patients diagnosed with bronchial carcinoma and Bronchial
carcinoma patients without emphysema to those with [25],
respectively. The time course of an acquisition was examined
by taking sequential measurements using HASTE sequencing
with inhalation of 21% (room air) and 100% oxygen.

The 100% oxygen signal rise in patients with pulmonary
emphysema was significantly flatter and demonstrated excel-
lent correlation with FEV1. Strong correlation between the
maximum signal rise and CT emphysema scoring as well as
pulmonary diffusion capacity was also noted. Müller was also
able to show a reduction in diffusion capacity in the em-
physemic lung segments when compared to healthy subjects
through dynamic measurements of pulmonary signal behav-
ior during inhalation of 100% oxygen. Contrary Ohno’s re-

Inspiration

(a)

Expiration
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Figure 5: T1 map of a patient with lung emphysema: when com-
pared to a healthy lung (Ill. 1), the T1 time is clearly shortened.
Expiration (b) demonstrates no significant prolongation of the T1
time as compared with inspiration (a).

sults, it was demonstrated that inspiration of 100% oxygen
provided a good correlation between the slope of the signal
rise and the clinical measurement of diffusion capacity.

The existing studies show that oxygen enhanced pul-
monary MRT can be a valuable complementary tool in eval-
uating pulmonary emphysema patients, especially in spatial
encoded imaging of pulmonary diffusion capacity. Investi-
gations in this field are, however, still in the preclinical trial
phase.

6. FIBROSIS

Independent of the etiology, pulmonary fibrosis is char-
acterized by the deposition of newly-synthesized matrix
molecules. In accordance with the above described simpli-
fied two compartment model, the relative increase in macro-
molecules should lead to a shortening of the T1 relaxation
time. This assumption was partially verified by animal model
measurements [7], and in some measurements there was no
change in T1 time noted [6]. Our measurements demon-
strated that patients with lung fibrosis, when compared to
healthy volunteer subjects, showed a shortening in the T1
relaxation time which is less pronounced in expiration than
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Inspiration

(a)

Expiration

(b)

Figure 6: T1 map of a Patient with lung fibroses: in comparison to
a healthy lung (Figure 2), the T1 time is shortened. Expiration (b)
shows a significant T1 time prolongation as compared to inspiration
(a).

in inspiration (Figure 6) [32]. However, there are no current
publications discussing the behavior of the fibrotic lung un-
der 100% oxygen inspiration.

7. CYSTIC FIBROSIS

Cystic fibrosis is an autosomal-recessive hereditary disease
in which the pathological composition of the exocrine gland
secretion leads to characteristic secondary changes in target
organs. In the lungs, this disease has a homogeneous pic-
ture encompassing atelectasis, emphysema, microabscesses,
bronchiectasis which ultimately leads to pulmonary fibrosis.

In a recent work, T1 maps of healthy volunteers were
compared to those of cystic fibrosis patients [20]. The pa-
tient group showed an inhomogeneous distribution of T1
relaxation times where pathologically altered segments had
shorter T1 times than the noneffected segments as well as the
lungs of the healthy subjects (Figure 7). The OTF curve of
the pathological lung segments exhibited a distinctly flattend
pattern, consequently, a reduced dependence of pulmonary
parenchymal relaxivity on the inhaled oxygen concentration
(Figure 8). Reasons for this change can either be related to
the limited pulmonary diffusion capacity or the alteration
in ventilation or perfusion of the diseased segments, thus
a supplementary MR pulmonary perfusion study is recom-
mended.

21% O2

(a)

40% O2

(b)

60% O2

(c)

80% O2

(d)

100% O2

0

1000

1800

(m
s)

(e)

Figure 7: T1 map (millisecond) of a patient with Cystic Fibrosis: in-
halation of increasing oxygen concentrations demonstrates a steady
shortening of T1 times in the healthy lung segments. The diseased
tissue of the right mid lobe (arrow) distinguishes itself in that the
T1 time remains relatively unchanged.

8. SUMMARY

T1 maps from healthy subjects and patients with emphysema
and fibrosis reveal significantly different behaviors. These
differences reflect the complex interaction of the structural
and functional influences of the above-mentioned diseases.
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Figure 8: Oxygen transfer function (OTF) of a patient with Cystic
Fibroses from Ill. 6. Healthy lung segments (ROI 2 and 3) demon-
strate a linear increase in relaxivity (=1/T1) with increasing oxy-
gen concentrations. The slope of the curve is a measurement of
lung oxygen transport capacity. The diseased lung segment (ROI
1) shows no rise; there is therefore no oxygen transport.

Pulmonary relaxation mechanisms are still not fully under-
stood. Further studies using T1 maps can advance the un-
derstanding of the relationship between lung structure and
lung function. A basic knowledge of the T1 relaxation mech-
anisms is also the ground work for optimizing conventional
MR pulmonary image sequencing. All published data, up to
now, confirm that oxygen enhanced MRT has an important
role in the imaging of diffusion capacity and oxygen trans-
port which provides valuable information in the detection
and understanding of the role that functional alterations have
in lung diseases such as emphysema and cystic fibrosis.

In spite of the considerable technical difficulties, several
publications confirm the potential that T1 maps and oxy-
gen enhanced MRT have characterizing pathological changes
in lung tissue. However, existing literature still cannot pro-
vide a final evaluation of the presented methods. The previ-
ously obtained results will allow for further informative in-
sight into the functional changes of the pathological altered
lung parenchyma.
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1. INTRODUCTION

Screening X-ray mammography is continue to be the pri-
mary tool for early detection of breast cancer and therefore
reduces the mortality rate of the disease. Over the past few
years, the quality of mammography has improved signifi-
cantly but the accuracy of image interpretation is still a re-
mained challenge. Mammography interpretation depends on
human factors which is difficult to quantify. Thus, ensuring
accurate interpretation of mammography is important for
women’s health [1].

Vibro-acoustography (VA) is a new imaging modality
based on ultrasound-stimulated acoustic emission which can
be integrated with the mammography to enhance breast can-
cer diagnosis. The VA acoustic field in response to vibration
of an object due to an applied cyclic force at each point is de-
tected by a hydrophone and used to form the image of the
object [2].

Vibro-acoustography has been tested as a noninvasive
imaging tool to image excised human tissues, such as breast
[3], liver [4], arteries [5], and prostate [6]. Vibro-acoustog-
raphy has also been used as a nondestructive imaging tool
to identify the structural flaws of materials by measuring

changes in the mechanical response to vibration at a point
of interest [7, 8].

Recently, we have developed a VA system for in vivo
breast imaging [3]. This system is integrated with a clinical
stereotactic mammogram machine. The combined system is
designed to produce matching VA and mammography im-
ages of the breast. The dual modality system can serve two
purposes. The mammogram is used as a reference image to
evaluate and optimize VA performance. Secondly, it is antic-
ipated that the VA and mammography images would pro-
vide complimentary information of the breast. Thus, by in-
tegrating the two images, the diagnostic value of the two-
modality image would be more than the individual im-
ages.

While mammography is considered as an important di-
agnostic tool, particularly for screening microcalcification
clusters and detecting malignancy [9–11], there are associ-
ated shortcomings which raise concern about the quality of
image interpretation. For example, the efficacy of this modal-
ity heavily decreases in dense breast imaging [12]. Moreover,
X-ray mammography does not contain information about
the depth and thickness of the objects. Vibro-acoustography,
on the other hand, is not hampered by tissue density [3].
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The above argument further justifies integrating VA and
mammography. Integration of multimodality imaging has
been widely used for generating more diagnostic and clini-
cal values in medical imaging. Proper image registration and
multimodality image fusion techniques need to be employed
for high quality image integration. On the other hand, inac-
curate image registration and incorrect localization of region
of interest risks a potential impact on patients. Integrating
images of the same target generated with different modalities
has been investigated for various clinical images [13–15].

In a study published by Behrenbruch et al. [13], fusion
of the high-resolution structural information available from
mammography with the functional data acquired from MRI
imaging is proposed to offer a better pathological indicator
such as calcifications. It has been reported that some tissue
details that are not visible in contrast-enhanced MRI can be
recognized in the fused images [13].

Prior to the fusion process, it is important to apply a ro-
bust registration technique to align images, from a single or
from different modalities [14, 15]. By image registration, the
correspondences between the images can be seen more easily
and the clinicians can get maximum amount of information
from the images [15].

This paper describes a reliable image registration tech-
nique for aligning VA images and X-ray mammogram. It
also proposes principles of integrating VA and X-ray im-
ages after performing a reliable registration. As a result, a
software-based image alignment tool was designed for in-
tegrating the two modalities and facilitating the diagno-
sis process. Assuming that these two completely different
modalities should provide relatively independent informa-
tion about the breast tissues, the ultimate aim of this re-
search is to enhance the quality of image interpretation and
further improving the effectiveness of breast cancer detec-
tion.

2. METHODS AND MATERIALS

2.1. Experiment setup

Figure 1 shows a schematic of combined vibro-acoustog-
raphy-mammography system used for image generation. X-
ray images are generated by Mammotest/Mammovision (Fis-
cher Imaging Corporation’s HF-X Mammography) system
equipped with compression paddle to immobilize the tar-
get (breast). Vibro-acoustography transducer is mounted in
a water tank attached to the mammography system (see
Figure 1). This transducer is designed with two arrays (two
compact transducers) driven by two continuous-wave or
tone-burst signals at slightly different frequencies [16]. A
window (104-by-80 mm) covered by a flexible membrane is
mounted on water tank wall to allow both X-ray and the
ultrasound beams to pass through to the target. The pa-
tient breast is covered by ultrasound coupling gel before it is
placed in contact with the membrane. The imaging window
for either imaging method is a 50-by-50 mm square. Within
this area, the VA collects 256-by-256 points of the target by
scanning the breast.

X-ray
tube

Ultrasound
transducer Breast Patient bed

Hydrophone

X-ray detector

Compression panelSlide
VA water tank

Figure 1: Schematic of combined vibro-acoustography-mammog-
raphy system, “reproduced with permission from [3].”

2.2. Principles of vibro-acoustography

Vibro-acoustography is based on low-frequency vibrations
induced in the object due to the radiation force of ultra-
sound. Radiation force is generated by a change in the spatial
distribution of the energy density of an incident ultrasound
beam. The change of energy density of the impinging ultra-
sound may be due to energy absorption, scattering, and re-
flection.

The magnitude of radiation force depends on a number
of parameters, including the scattering and absorption prop-
erties of the object. For a planar object insonified with a plane
wave, the radiation force is related to the power reflection co-
efficient of the object [3, 7].

In vibro-acoustography, two continuous wave (CW) ul-
trasound beams of slightly different frequencies, f 0 =
3 MHz and f 0 + Δ f , are used with Δ f = 30 KHz. The
two beams are focused at a joint focal point. At this point,
the combined ultrasound field energy density is sinusoidally
modulated. Therefore, the field generates a highly localized
oscillatory radiation force at frequency Δ f , when interacting
with an object. The radiation stress is normally confined to a
small volume of the object, which acts as an oscillating point
force placed remotely inside the object [3].

The radiation force vibrates the object at frequency Δ f
and generates in a secondary acoustic field (acoustic emis-
sion) with the same frequency that propagates in the object.
As the ultrasound beam is scanned across the object, an au-
dio hydrophone can detect the acoustic emission. The hy-
drophone signal is recorded and its amplified amplitude is
mapped into an image [3, 7].

Other VA system parameters are: the resolution of the VA
setup = 0.7 mm in transverse plane and about 9 mm in ax-
ial direction, spatial sampling interval is 0.2 mm in both di-
rections in the scan plane, the scan time is about 7 minutes
for a 256 × 256 image, and ultrasound intensity at the focal
point = 700 mW/cm2 in compliance with the FDA recom-
mendation for in vivo ultrasound. The audio hydrophone
is covered with acoustic gel and placed in contact with the
side of breast. The ultrasound transducer can scan the breast
through a window. To take an X-ray, the water tank is emp-
tied and the transducer is moved out of X-ray path [5].
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The vibro-acoustogram illustrates two types of informa-
tion about the object: (i) ultrasonic properties of the object,
such as the scattering and power absorption characteristics;
(ii) the dynamic characteristics of the object at frequency Δ f ,
which also relates to the boundary conditions and the cou-
pling to the surrounding medium. The acoustic emission is
also influenced by the surrounding medium as it propagates
from the focal point of the transducer to the hydrophone. As
the transducer scans the object, the distance between the fo-
cal point and the hydrophone varies. However, because the
attenuation of the tissue at Δ f is not significant, variations
of the acoustic emission due to variations of focal point-to-
hydrophone distance is negligible. The ultrasonic properties
are those that are also present in conventional ultrasound
imaging. The dynamic characteristics at Δ f , which are re-
lated to object stiffness, can be described in terms of object
mechanical impedance at frequency Δ f . Such information is
not available from conventional ultrasonography [3].

Speckle is the snowy pattern which results from random
interference of the scattered ultrasound field. Speckles reduce
the contrasts of conventional ultrasound images and often
limit detection of small structures, such as breast micro cal-
cifications in tissue. Vibro-acoustography on the other hand
uses the acoustic emission signal, which is at a low frequency,
thus the resulting images are speckle free and have high con-
trast. This feature makes vibro-acoustography suitable for
detection of breast micro calcifications [3].

2.3. Theory of image registration

The VA beams stay parallel as the object is scanned and can
be used to generate 3D images of an object by integrating
its image slices acquired at different depths. The VA beams
scan across the object while focusing at a fixed depth. Vari-
ous slices of the object are scanned at different depths and the
corresponding VA images are formed. On the other hand, X-
ray beams form a perspective projection image and generate
a 2D image of the object without any depth/thickness infor-
mation. Consequently, the VA images have a fixed magnifica-
tion for targets at different depths but the X-ray images show
variable magnifications depending on target depth. Figure 2
shows a schematic of beams and target coverage areas (filled
ovals) in these two modalities. It is shown, in Figure 2(b),
that the screened images of X-ray (large oval) and VA (small
oval) of the same target are different. Therefore, for the pur-
pose of overlaying the images, a geometric calibration is re-
quired to resize and shift one image to match with the other
one.

Ideally, by registration, the size and position of VA im-
ages should be geometrically transformed to match exactly
with mammography images pixel-by-pixel. In this work, we
adopted an algorithm based on control points (CPs) and
found an equation to adjust the registration transformation
with a magnification factor (MF) for different depths. CPs
can be identified in an image as pixel points related to user
added markers or existing image spots [17]. The MF is de-
fined by the ratio of W and Y1 where W is the dimension
of the image at the plane of the X-ray detector and Y1 is the

X-ray
focal point

X-ray beam

SID
D1

Y1
W

X-ray
detector

panel

(a)

Ultrasound image

Ultrasound beam

X-ray image

(b)

Figure 2: Schematic of beams and target coverage areas in (a) X-
ray; (b) VA.

dimension of the target (see Figure 2(a)) by X-ray. Equation
(1) expresses MF as the ratio of W and Y1 and also versus
SID and D1 as follows:

MF = W

Y1
= SID

SID−D1
, (1)

where SID is equal to 664 mm and D1 is the distance of the
target from the X-ray detector panel.

In Mammovision system, SID is defined as “source to
image” or “focal spot to image receptor” distance which is
equal to 664 mm in this case. For VA, the focal point is lo-
cated at 70 mm distance from the transducer. The position
of the transducer is changeable to focus at different depths in
the object (target). As an example, any target located within a
range of 10 mm to 100 mm distance from the X-ray detector
panel can be scanned.

The sensitive part of the X-ray detector panel is a 50 ×
50 mm square CCD screen. The stereotactic mammography
system has target-focusing interface that can be used for mea-
suring D1. This system establishes depth of the target using
stereo images taken by positioning the X-ray camera at +15
and−15 degree deviation related to its normal zeroth-degree
position. The dept information is important in the under-
standing of the calibration system and error propagation.

An initial study of X-ray and VA images of a phantom
was conducted to create a universal matrix of CPs. This ma-
trix can be used in registering the breast images for the pur-
pose of integrating two modalities. The phantom was fab-
ricated from a perforated PVC board with two cross wires
mounted as markers. It is used to mimic 2D targets and val-
idate the registration method by calculating the target regis-
tration error (TRE) [18, 19]. The images acquired from the
same phantom by VA and X-ray techniques are illustrated in
Figures 3(a) and 3(b), respectively.
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(a) (b)

Figure 3: Images of the phantom used to create the matrix of control points: (a) VA image; (b) X-ray image.

The CPs are selected along the image of two cross wires to
ensure that the same points were selected in the X-ray and VA
image. We used acoustic gel to couple the hydrophone to the
PVC board to reduce bubbles which appear as white points in
the VA images. The mid grey points on Figure 3(b) are part
of the X-ray image and can be considered as pepper noise.
The X-ray images are rescaled from resolution of 1024-by-
1024 to 256-by-256 to match the number of pixels with the
VA pixels. However, the positions of similar objects (such as
CPs) are still different in the two images.

Figure 4 shows the normalized positions of similar points
and the distance between two cross lines in two images. By as-
signing (1.00, 1.00) to the position of the very top-right pixel
(256, 256) in Figure 4, we can normalize every pixel position
of the image.

To establish correspondence between the phantom im-
age obtained by VA with its X-ray image, we plotted a “black
square” to illustrate the position of the X-ray frame (in
Figure 4). Two cross wires mounted as markers are plotted
by white cross lines for the VA image and blue lines for the
corresponding X-ray. Figure 4 shows the overlap between the
coverage areas of each modality. It shows that by reposition-
ing the VA transducer, we can maximize the common cov-
erage area by two modalities. In addition, due to different
magnifications of these two methods still registration is re-
quired.

The CPs in X-ray image are selected as base points and
similar points in the corresponding VA image are called input
points. Eight CPs that can be clearly located in both images
were selected to generate two 8-by-2 matrices of base points
and input points. The number of CPs and their locations are
flexible and can be optimized empirically. The locations of
CPs which are the center of eight selected holes in the phan-
tom are indicated by 4-point stars in Figure 4. These matrices
are contained the X and Y coordinates of the selected CPs in
the X-ray and the corresponding VA images.

(0.00, 1.00)

(0.25, 0.90)

X : 0:49 = 50 mm
Y : 0:81 = 50 mm

6.3 mm

(0.25, 0.09)

(0.73, 0.97)

(0.45, 0.47)

(0.46, 0.37)

(1.00, 1.00)

(0.74, 0.90)

(0.73, 0.20)

(0.74, 0.09)

Figure 4: The normalized positions of similar points and the dis-
tance between two crossed lines in VA and X-ray images.

One of the key components of the registration process is
to find a mathematical transformation to map the input im-
age to the base image. A second-order polynomial, which is
invariant to rotation and translation, was used to infer a spa-
tial transformation of the X and Y pair of each pixel. For VA
registration, this transformation can be applied to the base
and input points to map any new grayscale VA image into
its corresponding X-ray. The rotation and translation of VA
images are mathematically assigned by the transformation,
which is then used to create the fusion display of the original
grayscale medical images.

The second-order polynomial transformation maps Xb

and Yb of the base-point matrix to Xi and Yi of the input-
points matrix according to (2) [20]:

[
Xi,Yi

] = [1,Xb,Yb,Xb ∗ Yb,X2
b ,Y 2

b

]∗ InvT , (2)

where ∗ is the multiplication sign.
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To specify all coefficients of InvT with the size of 6-by-2,
at least 6 CPs are required to solve the inverse of the second-
order polynomial, InvT [20].

We chose eight CPs and used normalized cross-corre-
lation to adjust each pair of CPs to solve the second-order
polynomial.

To adjust the X-ray image for different depths, it is
scaled up by MF before applying the transformation of (2).
Two-dimensional interpolation techniques such as nearest-
neighbor, bilinear, and bicubic interpolation can be used to
estimate the image value at a location in between image pix-
els.

Inaccurate image registration of VA and mammogram
may cause incorrect localization of region of interest and may
have a potential impact on interpretation of diagnostic infor-
mation [18]. It is possible to find an adaptive transformation
to correct the magnification problem and limit the TRE. This
is a suggestion for future research.

2.4. Registration of VA breast images and
X-ray mammography

The results of registration of the phantom images including
the matrices of base points and input points were used to
spatially transform in vivo breast VA images from volunteer.
Figure 5(a) shows the coronal view X-ray mammography of
the breast of a patient with a large calcification enclosed in a
fibroadenoma region marked with arrows according to a ra-
diologist diagnosis. The VA breast image obtained by scan-
ning the same subject with focal point positioned at 4 cm
from the skin (20 mm from the CCD screen) is shown in
Figure 5(b).

To map the VA image pixel-by-pixel on to the mammo-
gram, a modified polynomial transformation was applied.
The resultant registered image is shown in Figure 5(c). We
imported the arrows from Figure 5(a) to this figure, at po-
sitions that matched the arrows in X-ray image to show the
corresponding marking area in the X-ray image. The thick
dark band at the top of registered VA image (see Figure 5(c))
is the area that was not covered by VA because the VA image
frame did not match exactly. On the other hand, the bottom
part of the target, which was scanned by VA, was not cov-
ered by X-ray. This error is caused due to misalignment of
the X-ray and VA imaging windows. Figure 4 shows clearly
the coverage area of each method. However, the rest of VA
image is registered to match with its corresponding X-ray im-
age.

2.5. Registration error

To evaluate the registration error, three different measures of
registration accuracy can be defined as follows [21].

(i) Fiducial registration error (FRE), which is the value of
the point-based registration cost function after regis-
tration.

(ii) Surface registration error (SRE), which is the value of
the surface-based registration cost function.

(a)

(b)

(c)

Figure 5: The breast image with fibroadenoma: (a) marked X-ray
by an expert radiologist showing the fibroadenoma and the nearby
calcification; (b) a 5× 5 cm2 VA image of a breast including a large
calcification and nearby fibroadenoma; (c) the resultant registered
VA images with focal point at 20 mm from the CCD screen, “repro-
duced with permission from [3].”
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Table 1: Results of MFM calculations for different D1.

D1(mm) MF MFm

0 1 0.9689

20 1.0311 1

40 1.0641 1.0330

(iii) Target registration error (TRE), which is defined as
the distance between corresponding points other than
those used to estimate the transformation parameters.

The TRE is a more objective measure of registration ac-
curacy but it is difficult to quantify this error in an unmarked
registered image. To measure this error, one marker needs to
be assigned randomly on each patient as a target and four
other markers as fiducials [21].

However, the FRE is a better parameter to measure the
registration error in this study as no marker put on the
patient. It measures the residual displacement between the
points used for registration as the RMS (root mean square)
error on the distance between the corresponding CPs of the
registered VA and X-ray images,

FRE =
√∑N

n=1 d2
n

N
, (3)

where N is the total number of CPs and dn is the mini-
mum Euclidean distance between the nth CPs. The Euclidean
distance, d, is the minimum distance between a base-point
(Xb,Yb) and input-point (Xi and Yi) [22]:

d = min
{√(

Xb − Xi
)2

+
(
Yb − Yi

)2
}
. (4)

The FRE is an accumulation of different error compo-
nents, such as MF, error due to the registration transforma-
tion, and error due to different characteristics of imaging
techniques. It was found that the MF is the most dominate
component of FRE. To minimize this error, we obtained ma-
trices of CPs for the target located at D1 equal to 20 mm,
which is approximately the mean distance from the CCD
screen to the middle of the breast. It is assumed that the
maximum size of the compressed breast is less than 40 mm.
Therefore, the MF, as expressed by (1), can be modified as
follows:

MFm = (MF−0.0311). (5)

MFm is equal to one for the average distance (D1 =
20 mm) and (MF = 1.0311). The results of MFm calculations
for the minimum (D1 = 0 mm), average (D1 = 20 mm),
and maximum (D1 = 40 mm) distance of the target are
shown in Table 1. By selecting fixed CPs matrices for all tar-
get locations, the maximum error due to MF is 1.65 mm
((1.033− 1)× 50 = 1.65 mm) for a 50-by-50 mm2 object.

2.6. Image fusion

Image fusion can be performed at three different levels: pixel
level, feature level, and decision level [23]. We used pixel level

image fusion techniques and for better visualization of the
structural information contained in both images, it is de-
cided to adopt a color-based method for fusing the registered
images. The registered VA and X-ray images are assigned as
the blue and red components of an RGB image, respectively.
A zero matrix is assigned as the green-component of the
RGB image. Figure 6(a) shows the resultant image of color-
based fusion of the two primary images shown in Figure 5.
This method generates an image with color-code informa-
tion of each image which may be useful for diagnostic pur-
poses.

To improve the quality of fused images, we used
pixel level fusion with different ratio (R) of pixel values.
Figure 6(b) shows the resultant image by fusing the two im-
ages using 50% of each image pixel value. The integrated
image shows features of VA and X-ray in a single image.
The calcification seen in the VA and X-ray mammography
matches perfectly.

The proposed method for integrating of multimodality
medical images allows extracting new information by fusing
VA images at different depths with X-ray mammogram. User
can select one VA image at a time from a file, containing VA
images scanned at different depths of the object, and register
it with a based mammogram. Finally, the registered VA im-
age can be enhanced and fused with the base image of X-ray
mammography.

Figure 7(a) shows another scanned VA image taken at the
depth of 5 mm of the CCD screen and Figure 7(b) shows the
same image after fusing with the X-ray image which con-
firms the position of calcification. The VA image shows the
fibroadenoma (marked by arrows) which is not clearly visi-
ble in the X-ray.

3. DISCUSSION AND CONCLUSIONS

Integrating images from two completely different modali-
ties, VA and X-ray, using either color-based or pixel-value
fusion techniques may generate more structural and diag-
nostic information. A color-based fusion technique may be
more suitable for visualization of the structural informa-
tion.

Here, we presented a method for integrating VA and X-
ray (mammography). It is shown that, because X-ray im-
age magnification varies with target depth, the registration
transformation must be adjusted with a magnification fac-
tor for different target depths. In this work, we used a
modified second-order polynomial, which leads to a scale/
rotation/translation invariant paradigm for image registra-
tion. To validate the proposed registration method, we fused
VA images at different depths with the X-ray mammogram
and demonstrated that the detected classification area is lo-
cated at the same position in both modalities.

In addition, a method of calculating the fiducial registra-
tion error (FRE) due to MF was proposed. By selecting the
matrices of CPs for the target located at mid distance from
the screen, the error of image registration can be limited to
1.65 mm. In most cases, the size of target is larger than the
maximum error and it is positioned at around 20 mm from
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(a) (b)

Figure 6: The fused breast image using the primary breast image with fibroadenoma as shown in Figure 5 by (a) color-based method; (b)
pixel-level method with R = 50%.

(a) (b)

Figure 7: (a) The original VA image; (b) the fusion of VA with marked mammogram.

the CCD screen. Therefore, the registration error is not sig-
nificant for such targets. We also note that the FRE of 1.65
is about twice the lateral resolution of the system (0.7 mm),
indicating the possibility of one resolution cell error in image
registration. However, for registering of small targets such as
micro calcification, an adaptive transformation can be ap-
plied to reduce the FRE.

The fused image of two different modalities which is as-
sociated with an X-ray mammography, annotated by an ex-
pert radiologist, can be used to verify independent diagnostic
information of the VA modality. Moreover, the aligned image

would assist the users to gain maximum amount of informa-
tion from X-ray mammogram and the VA modality.
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1. INTRODUCTION

Deep venous thrombosis (DVT) of the lower limb is a com-
mon and life-threatening condition. The incidence in the
United States is estimated at 70–100 000 new cases/year with
as many as 200 000 hospitalizations/year. It carries a risk of
pulmonary embolism (PE) and the development of post-
thrombotic syndrome. The incidence of PE is calculated at
600 000 cases/year, 100 000 of them are fatal [1–3]. Risk fac-
tors for lower extremity acute venous occlusion range from,
prolonged immobilization to hypercoagulability syndromes,
trauma, and malignancy. Venous thromboembolism (VTE)
is a leading cause of morbidity and mortality during preg-
nancy and puerperium, and is second only to hemorrhage as
the commonest cause of maternal death during pregnancy
[4]. There is a fivefold increased risk of VTE in pregnant
women compared with nonpregnant women of a similar age
[5].

Malignancy and central venous lines are major risk fac-
tors of upper extremity thrombosis (UEDVT) with predicted
poor survival. The increasing use of indwelling central ve-
nous catheters (CVC) for transparietal feeding, fluid admin-
istration, and chemotherapy has resulted in an increased
prevalence of upper extremity venous thrombosis, although,
the rate of catheter-associated thrombosis decreased in re-
cent years thanks to improvement in biocompatibility and
better insertion and maintenance techniques [6]. UEDVT

may be asymptomatic or the clinical manifestations are not
specific, presenting with arm or neck swelling or pain. In
more than half of the cases objective methods of examina-
tion are negative for thrombosis. Pulmonary embolism sec-
ondary to UEDVT, sometimes a lethal complication, is not
unusual and has been reported in a comparable prevalence to
lower extremity thrombosis. Other significant complications
of UEDVT are loss of vascular access, superior vena cava syn-
drome, and postthrombotic venous insufficiency [7–9].

The clinical complications (from postthrombotic syn-
drome to fatal pulmonary embolism) as well the risk of an-
ticoagulant treatment require a precise diagnosis of DVT.
The clinical diagnosis is unreliable: only 20–30% of symp-
tomatic patients have proven DVT and 90% of fatal PE
are asymptomatic for DVT [10]. Objective methods of ex-
amination are demanded to reach an accurate diagnosis.
Phlebography, computerized tomography angiography fol-
lowed by venography (CTA-CTV) and radionuclide venog-
raphy (RNV) are invasive or semi invasive tests. Color
Doppler duplex ultrasonography (CDDUS), and magnetic
resonance venography (MRV) are noninvasive methods. This
paper highlights the potential risks and benefits of each
of these techniques and presents the advantages, disadvan-
tages, and accuracy of the different imaging modalities. An
appropriate imaging algorithm for the diagnosis of DVT
is presented. The use of clinical pretest probability scor-
ing and diagnostic algorithms can help identify patients
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(a) (b) (c)

Figure 1: Normal phlebography. (a) Calf veins. (b) Popliteal vein. (c) Femoral vein at the groin and iliac vein at the pelvis.

requiring further investigation for suspected venous throm-
boembolism (VTE).

2. PHLEBOGRAPHY

Phlebography (also called venography, ascending contrast
phlebography, or contrast venography) is still considered the
gold standard in the diagnosis of peripheral DVT; it is the
most accurate test with a nearly 100% sensitivity and speci-
ficity [11]. This X-ray examination provides an image of the
limb veins after contrast material is injected into a distal
vein (Figures 1(a)–1(c)) [12]. Main phlebographic findings
are persistent filling defect, abrupt interruption of contrast
in a vein, lack of opacification in all or some deep veins,
and flow diversion with opacification of collateral branches
[13]. Venography relies on the anatomy of the venous sys-
tem, lacking physiological information. It is painful; expen-
sive, exposes the patient to a fairly high dose of radiation;
and can cause complications related to nephrotoxicity and
allergic reactions to iodinated contrast agents. It also carries
a risk for post venographic phlebitis [14, 15]. In about 5%
of cases, there are technical problems in conducting the test.
Due to its invasive nature and the risk of complications, it
cannot be used neither as a routine test for the diagnosis of
symptomatic DVT nor as a screening tool in asymptomatic
patients at high risk for DVT. Peripheral phlebography is per-
formed when the noninvasive examination color Doppler US
and duplex Doppler is doubtful or technically limited, such
in suspected thrombosis of iliac vein, innominate vein, or su-
perior vena cava [13].

3. COLOR DOPPLER DUPLEX ULTRASONOGRAPHY

CDDUS is the initial test of choice for diagnosis of acute
DVT due to its high accuracy, relatively low cost, portabil-
ity, widespread, and lack of ionizing radiation [16]. B-mode

ultrasound with Doppler color and duplex is the only non-
invasive imaging test that combines anatomy and physiol-
ogy of the veins by visualization of vein morphology and
the map of flow velocity and direction. It is required as the
primary instrumentation for peripheral venous testing ac-
cording to the standards of the Intersocietal Commission
for the Accreditation of Vascular Laboratories (ICAVL) [17].
CDDUS for the diagnosis of limb vein thrombosis uses a
combination of gray-scale, compression, color, and spectral
Doppler sonography. Color and spectral Doppler analysis
are useful in the diagnostic evaluation of DVT but are best
considered as adjuncts to the conventional compression ul-
trasound examination. The examination is performed by a
high-resolution transducer of 7–10 MHz; a lower frequency-
4–8 MHz is required for the obese patient, the edematous
limb, and the pelvic veins. The veins scanned comprise the
deep venous system—femoral vein at the groin and along
the thigh, popliteal vein, and tibioperoneal trunk at the up-
per calf—and the confluence of the superficial great saphe-
nous vein with the femoral vein. The deep calf veins are
usually examined when localized pain or swelling is present.
CDDUS findings of the normal vein are sonolucent lu-
men, easily compressible with a slight pressure exerted by
the probe and centripetal nonpulsatile flow, with respira-
tory phasicity and augmentation after Valsalva performance
(Figures 2(a)–2(c)). An echogenic lumen, depending on
thrombus age, uncompressible and flow devoid is diagnos-
tic of a thrombotic vein (Figures 3(a)–3(c)) [18–24]. The
main aim of CDDUS is to confirm or exclude vein throm-
bosis. Further information includes thrombus extent and
characterization—fresh or organized, free floating or at-
tached, and partial or totally occlusive—that have prognostic
value for the development of pulmonary embolism and post-
thrombotic syndrome. Patients with proximal DVT tend to
present a slower and incomplete resolution of thrombus and
to develop a more severe post-thrombotic syndrome due
to deep venous reflux [25]. Free floating thrombus carries
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Figure 2: Normal vein. (a) Sonolucent lumen, easily compressible with a slight pressure exerted by the probe. Left side: before compression;
right side: during compression; only the arteries remain visible. Large arrow: common femoral vein (CFV); short arrow: great saphenous
vein. (b) Flow in femoral artery and veins at the level of the bifurcation. (c) Centripetal nonpulsatile flow in femoral vein, with respiratory
phasicity.

(a)

(b) (c)

Figure 3: Thrombotic vein. (a) Echogenic lumen, enlarged, noncompressible vein. Left side: before compression; right side: during pressure
exerted by the probe, the vein does not collapse. (b) Thrombus at the bifurcation of the femoral vein, seen as color void and turbulent
surrounding flow. (c) No flow demonstrated on duplex in a thrombotic femoral vein.
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an increased risk of pulmonary embolism, although float-
ing thrombus tends to attach to the vein wall or resolve,
not warranting any specific therapeutic procedure [26]. Fur-
ther diagnostic aims are to detect alternative disorders such
as popliteal Baker’s cyst, hematoma, aneurysm, pseudoa-
neurysm, lymphadenopathy, or other tumors, known as
“pseudothrombophlebitis,” mimicking DVT. The incidence
of these alternative diagnoses is 11–18% [27]. A bilateral ex-
amination is indicated when high-risk patients are screened
and in the workflow of suspected PE in patients with risk fac-
tors for DVT. Due to its high specificity, complete ultrasound
examination of the proximal and distal veins at least down to
the level of the popliteal trifurcation allows withholding an-
ticoagulant therapy without the risk of major complications.
Isolated calf vein thrombosis does not carry a significant ad-
verse outcome; scanning the calf with localized symptoms
or physical findings is cost-effective. A repeat examination is
warranted if the clinical findings worsen; otherwise, a single
examination is enough [28]. The sensitivity and specificity
of USD for the diagnosis of DVT in symptomatic patients is
very high. Compressibility under probe pressure (CUS) is the
most accurate test; for proximal DVT, femoral, and popliteal
veins, compression US reached a sensitivity of 97 to 100%
and a specificity of 98 to 99%. For isolated calf DVT, the sen-
sitivity dropped to 50–70% and the specificity to 60%. An
echogenic lumen has a low sensitivity of about 50% for both
proximal and calf DVT, due to the low echogenicity of the
fresh thrombus [29–32]. In a meta-analysis of 100 cohort
studies that compared Duplex US to contrast venography
in patients with suspected DVT; the sensitivity for proximal
DVT was 96.5%, for distal calf DVT, 71.2% and specificity
of 94.3%; the sensitivity improved in the recent years proba-
bly due to equipment development, US technique used, and
operator expertise [33].

Ultrasonography is the primary imaging modality also
for the diagnosis of upper-extremity thrombosis (UEDVT).
The veins examined include the deep system—internal jugu-
lar, subclavian, axillary, and brachial veins. The superficial
veins—cephalic and basilica—are scanned in case of periph-
erally inserted catheter-related suspected thrombosis. The
fresh clot may be not visualized and the diagnosis done on
the presence of a vein enlarged and rigid, without changes on
respiratory phases or respiratory maneuvers. Useful findings
to rule-out thrombosis are an echo-free compressible vein,
normal response to respiratory maneuvers-vein collapse on
brief deep inspiration (sniff test), and enlargement on Val-
salva test normal color Doppler and biphasic spectral dis-
play on duplex sonography [34–37]. The main obstacle for
the diagnosis of UEDVT is the presence of overlying bones
on the medial subclavian vein and centrally located veins, in-
nominate and superior vena cava, that makes them difficult
to visualize and impossible to directly assess by compression
techniques.

Spectral Doppler abnormalities in the subclavian vein
may be predictable for central occlusions. Flow void on color
Doppler and a dampened nonpulsatile and nonphasic flow
on duplex examination are diagnostic for a central venous
thrombosis [38]. A reversed flow in the jugular vein may

indicate thrombosis in the innominate vein with the inter-
nal jugular vein serving as a collateral pathway. Patel et al.
[34] related a 100% positive predictive value and 91% neg-
ative predictive value for sonography in the diagnosis of
complete central occlusions. Small nonobstructive thrombus
may remain undiagnosed and large collateral veins misinter-
preted as a normal vein, leading to false negative results. To
overcome some of the limitations of US examination of the
upper limb veins, a small footprint sector transducer from a
supraclavicular or suprasternal approach may be of aid. CD-
DUS is a reliable method for diagnosing CVC-related throm-
bosis of the upper limb veins especially if several parameters
are evaluated in combination [39]. High diagnostic accuracy
of UEDVT was found in 6 prospective studies, with a sensi-
tivity of 78–100% and a specificity of 82–100% [8, 40–44].
False positive results were unusual. A sensitivity of 100% and
a specificity of 94% for compression US and color Doppler
US for UEDVT using venography as the reference test ware
reported by Prandoni et al. [44].

Chronic thrombosis in a patient with long-term catheter-
ization is more challenging, as enlargement of the throm-
botic lumen is not present. Color Doppler is even more use-
ful in chronic thrombosis detecting collateral veins and an
echogenic, flow void, and small caliber central vein. Large
veins in an unusual anatomic position and without the ac-
companying artery must be recognized as enlarged collaterals
and not be mistaken for the main vein. Aliasing due to high
velocities and high pulsatility in the stenosed areas in com-
parison to dampened peripheral waveforms are additional
diagnostic parameters. Frozen valve leaflets and echogenic
synerchias may be seen as sequels of previous thrombosis [35,
37, 45]. In any case, the diagnosis of catheter-associated deep
venous thrombosis may be difficult. Doppler ultrasound has
a lower accuracy in this setting than it does in lower extrem-
ity venous thrombosis [46].

A particular different issue is acute on chronic thrombo-
sis. The enlarged vein with hypoechoic lumen represents an
acute process. Recurrent thrombosis is a challenging diagno-
sis for all imaging modalities. Comparison with a baseline
examination may be helpful in these cases.

The clinical diagnosis of DVT is unreliable, but clini-
cal prediction rules based on signs and symptoms do facil-
itate the categorization of patients into high, low, or medium
risk categories [47]. A diagnostic strategy combining clinical
score, D-dimer test, and compression US may refine the se-
lection of patients. D-dimer assays have a high negative pre-
dictive value in patients with suspected VTE and can exclude
the diagnosis. Based on clinical score and D-dimer test, ve-
nous US will be performed in patients with a high clinical
score, an elevated D-dimer, or both (Figure 4).

Screening patients with plasma D-dimer and ultrasonog-
raphy of the lower limbs may be the most cost-effective strat-
egy. Ascending venography is reserved for patients with neg-
ative or equivocal CDDUS results and a high clinical prob-
ability of DVT [28, 48–50]. In the current state of the art,
CDDUS is the modality of choice for the diagnosis of DVT.
The appropriate examination is compression color duplex
ultrasound of the complete venous system, including the
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Suspected DVT

Low/intermediate
score

D-dimer normal

Low/intermediate
score

D-dimer elevated

High score
D-dimer normal

High score
D-dimer elevated

US (�) US (+) US (�) US (+)

Phlebo (�)
or

repeat US (�)

Phlebo (+)
or

repeat US (+)

No DVT No DVT DVT No DVT DVT DVT

Figure 4: Algorithm for the diagnosis of DVT in symptomatic patients. By applying a diagnostic strategy based on the clinical score and
D-dimer test; venous USD is performed in patients with a high clinical score, an elevated D-dimer, or both. The appropriate examination is
compression color duplex ultrasound of the complete venous system, including the distal veins, when focal symptoms or physical findings are
present and bilateral examination in the high-risk patient. Contrast venography is reserved for a minority of cases. Modified from Mantoni
M. Ultrasound of limb veins. Eur Radio 11 : 1557-62, 2001 (with author’s permission).

distal veins when focal symptoms or physical findings are
present and a bilateral examination in the high-risk patient.
It is an accurate examination and allows an early and safe
diagnosis of thrombosis without straining the patients. It
is the main diagnostic tool in symptomatic patients and in
screening asymptomatic DVT in specific high-risk popula-
tions. Pitfalls and limitations of venous ultrasound are re-
lated to veins anatomy, flow changes, technical limitations,
and operator expertise.

4. COMPUTERIZED TOMOGRAPHY ANGIOGRAPHY
AND VENOGRAPHY

Multidetector CTA, combined with venous-phase imaging
(CTA-CTV), can accurately diagnose a pelvic vein or infe-
rior vena cava occlusion, sometimes the source of significant
pulmonary emboli. Multidectector helical CT (MDCT) of
the chest (100–140 mL of contrast medium injected at a rate
of 3 mL/s) is followed by venous-phase imaging CT of the
lower limbs without any additional contrast medium injec-
tion [51]. Indirect MDCT venography is acquired from the
upper calves to the mid-abdomen. Thrombosis appears as a
hypodense mass sometimes encircled by the hyperdense rim
of contrast medium. The reported specificity and sensitivity
compared with ultrasound is variable [52]. Coche et al. [51]
compared the results of CT venography for diagnosing DVT
with those of Doppler sonography and phlebography or re-
peated focalized sonography in case of discrepancy. Sensitiv-
ity and specificity of CTV were 93% and 97%, respectively

(kappa = 0.88). CT venography in addition to CT pulmo-
nary angiography is a relatively accurate method for evalu-
ation of femoropopliteal venous thrombosis. In a compar-
ative study between CTA-CTV and sonography, Garg et al.
[53] found a 100% sensitivity, 97% specificity, 100% nega-
tive predictive value, and 71% positive predictive value for
CTV. Satisfactory or good quality CT venography examina-
tion was obtained in 97% of the studies. Two CT venography
studies had false-positive findings due to flow artifacts. The
authors concluded that combined CT pulmonary angiogra-
phy and CT venography may be more efficacious than sonog-
raphy or two separate examinations in the selected patients.
In another trial, CT venography had 93% accuracy com-
pared with sonography in identifying deep venous thrombo-
sis. However, the positive predictive value of CTV was only
67%, suggesting that sonography should be used to confirm
the presence of isolated DVT before anticoagulation is ini-
tiated. CT venography interpretation should be performed
with knowledge of certain pitfalls [54].

The prospective investigation of pulmonary embolism
diagnosis II trial was conducted to investigate the accuracy
of MDCTA alone and combined with venous-phase imaging
(CTA-CTV) for the diagnosis of acute pulmonary embolism
[55].

MDCTA alone had 83% sensitivity, 96% specificity, and
positive predictive value with a concordantly high or low
probability on clinical assessment. CTA-CTV for PE had 90%
sensitivity and 95% specificity and was nondiagnostic with a
discordant clinical probability like MDCTA alone. Missing
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diagnoses were due to poor image quality of either CTA or
CTV. According to this trial, MDCTA-CTV has a higher di-
agnostic sensitivity than does CTA alone with similar speci-
ficity in patients with suspected PE. The predictive value of
both of them is high with a concordant clinical assessment,
but additional testing is necessary when the clinical prob-
ability is inconsistent with the imaging results. According
to Cham et al. [56], a substantial number of patients sus-
pected to have PE had DVT in the absence of PE. The com-
bined technique of pulmonary CTA-indirect CTV has been
shown to identify DVT in up to 18% of patients with sus-
pected PE who have no evidence of emboli on CTPA and
thus could have a significant effect on patient care. Indirect
MDCT venography is as accurate as sonography in the diag-
nosis of femoropopliteal DVT and can further reveal throm-
bus in large pelvis veins and the inferior vena cava, an im-
portant advantage over sonographic screening for DVT [57],
although the technique is slightly more time consuming (up
to 4 min delay after contrast injection) and has an increased
radiation dose [58].

5. MAGNETIC RESONANCE VENOGRAPHY

Two-dimensional time-of-flight venography (TOF-MRV) is
the technique of choice for magnetic resonance venogra-
phy. Studies may be performed without contrast and can de-
pict emboli as filling defects or directly detect the thrombus.
MR direct thrombus imaging (MR-DTI) is a novel technique
which detects metahemoglobin, allowing direct visualization
of pulmonary emboli and simultaneous imaging of the legs
without the need for intravenous contrast. This technique
uses a T1-weighted gradient-echo sequence, with a preex-
citation radio-frequency pulse to abolish fat signal, and an
inversion recovery time chosen to nullify signal from flow-
ing blood to maximize thrombus conspicuity. The technique
is 98% sensitive and 96% specific for diagnosing DVT when
compared with ultrasound and contrast venography. Early
data suggest that MR-DTI is also highly accurate in detection
of PE and the safety of withholding treatment on the basis
of MR-DTI alone is currently being evaluated [59]. Acute
occlusion of the pelvic veins and the inferior vena cava, of-
ten due to extension from the femoropopliteal system, rep-
resents a major risk for PE. Color flow Doppler imaging is
often limited for the diagnosis of iliocaval thrombosis ow-
ing to obesity and bowel gas. Both CT scans and MR imag-
ing can accurately diagnose acute pelvic vein or inferior vena
cava occlusion and are as well helpful in diagnosing central
chest vein occlusion. MRI is preferred because it is noninva-
sive, does not require contrast agent, carries no exposure to
ionizing radiation, that is definitively demanded for pregnant
women, and is highly accurate and reproducible [60].

Furthermore, MRV can differentiate an acute occlusion
from chronic thrombus. In a study designed to evaluate the
diagnostic value of MRV and color Doppler US in the as-
sessment of DVT compared with contrast-enhanced venog-
raphy, MRV was 100% sensitive and 100% specific in the di-
agnosis of DVT above the knee. Color Doppler imaging de-
picted 13 of 15 cases of DVT and 5 of 6 venous examinations

that had normal results, yielding sensitivity and specificity
of 87% and 83%, respectively. The differences in sensitivity
and specificity between MRV and color Doppler US were not
statistically significant [61]. In a recent meta-analysis to esti-
mate the diagnostic accuracy of MRV for DVT, the pooled
estimate of sensitivity was 91.5% (95% CI: 87.5–94.5%) and
the pooled estimate of specificity was 94.8% (95% CI: 92.6–
96.5%). Sensitivity for proximal DVT was higher than sensi-
tivity for distal DVT (93.9% versus 62.1%) [62]. MR venog-
raphy seems to be more accurate than color Doppler sonog-
raphy in detecting the extension of deep venous thrombo-
sis. Shankar et al. [63] performed two-dimensional gated in-
flow and phase contrast MRV in children with suspected up-
per extremity CVC-related thrombosis, to assess the extent
of venous thrombosis and to locate patent veins for replace-
ment central venous catheter. MRV was more accurate than
Doppler ultrasonography and contrast studies for defining
the extent of venous thrombosis. MRV correctly showed ve-
nous anatomy and patency for reinsertion of CVC. MRV
is considered medically indicated for evaluation of venous
thrombosis or occlusion in the large systemic veins (e.g.,
superior vena cava, subclavian, or other deep veins in the
chest), for differentiation of tumor thrombus and blood clot
and diagnosis of superior vena cava syndrome. The peer re-
viewed medical literature has not established MRV to be su-
perior to duplex ultrasonography for diagnosis of deep vein
thrombosis in the arms or legs. MRV has not been shown
to be superior to US for lower limb DVT, except in imaging
the deep femoral and hypogastric vessels. However, informa-
tion about these vessels is not needed for management de-
cisions, except in patients with pulmonary emboli where the
source of the emboli has not been identified by ultrasonogra-
phy [64]. MRV has the potential to be used as a stand-alone
test for DVT but requires further evaluation. Therefore it is
considered to be experimental and investigational for this ap-
plication. Due to its high cost and limited availability, MRV
should be reserved to diagnose DVT in patients for whom
ultrasound examination is inappropriate or unfeasible [62]
and to replace venography and CTV in pregnant women and
patients with contraindications to iodinated contrast media
injection.

6. NUCLEAR MEDICINE VENOGRAPHY

The radionuclide investigation of DVT includes such tech-
niques as radionuclide venography and thrombus-avid
scintigraphy. Although these methods have not been as thor-
oughly evaluated as compression ultrasound, studies thus
far have indicated encouraging results, and further inves-
tigations are warranted [65]. Radionuclide venography of
the upper extremity has been described as a reliable non-
invasive procedure for early diagnosis of upper limb ve-
nous thrombosis associated with indwelling CVC. It is per-
formed by injecting both arms with approximately 5 mCi
of technetium pertechnetate followed by a normal saline
flush. The dynamic images are acquired on a large field of
view camera with a high-energy low-resolution collimator at
the rate of two frames per second [66, 67]. (99 m)TC-MAA
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radionuclide imaging is a useful method for noninvasive de-
tection of DVT and PTE. Combined radionuclide venogra-
phy and perfusion lung scan can also be performed in the
same setting if Tc99m-MAA is used [68]. The radionuclide
venogram appears accurate in the proximal veins and in ex-
cluding but not diagnosing distal venous thrombosis. The
potential advantages of radionuclide venography versus con-
trast venography are low-volume and low-flow injection, no
need to access a large peripheral vein, no adverse side ef-
fects, low radiation exposure (130 mrads), rapidity of execu-
tion, and no patient preparation. The disadvantage is the low
anatomic detail [66, 67].

In summary, invasive testing for venous thromboem-
bolism can be safely avoided in the majority of patients, using
diagnostic strategies combining noninvasive tests.

Color and duplex ultrasound with manual compression
(CDDUS) is the most sensitive and specific noninvasive test
and is nowadays accepted as the modality of choice for the
diagnosis of DVT. CT venous-phase imaging at the time of
CT pulmonary angiography and MR venography is com-
parable with venous ultrasonography in the evaluation of
femoropopliteal DVT. The iliac veins and vena cava, vessels
poorly shown on ultrasonography but sometimes the source
of significant pulmonary emboli, are also depicted by CT
and MR venography. MRV can differentiate an acute occlu-
sion from chronic thrombus. Due to its high cost and lim-
ited availability, MRV is not used for the routine diagnosis
of DVT and should be reserved for the examination of in-
accessible veins on ultrasonography and as a complementary
test in nondiagnostic ultrasound studies for pregnant women
and patients with contraindications to iodinated contrast
media injection. Studies on venous scintigraphy have indi-
cated encouraging results but further investigations are war-
ranted. A diagnostic strategy combining clinical score, D-
dimer test, and compression US can be used in a systematic
way to reliably rule in or exclude venous thromboembolism.

7. CONCLUSIONS

Due to its high specificity, a negative examination may pre-
clude anticoagulant treatment. A strategy combining clini-
cal score and D-dimer test refines the selection of patients.
Phlebography is the gold standard method but is invasive and
carries risks of contrast media complications and ionizing ra-
diation. CTV following pulmonary CTA and MRV is useful
to detect iliocaval thrombosis. MRV can differentiate acute
from chronic thrombosis and diagnose central obstructions.
RNV has low-anatomic detail.

CDDUS is the modality of choice for the diagnosis of
DVT. A diagnostic strategy combining clinical score, D-
dimer test, and CDDUS is recommended. Phlebography is
reserved for discrepant noninvasive studies.
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