Erratum

Erratum for “Assessment of LWR-HTR-GCFR Integrated Cycle”

Eleonora Bomboni, 1 Nicola Cerullo, 1 and Guglielmo Lomonaco 2

1 DIMNP, University of Pisa, Italy
2 University of Pisa, Italy

Correspondence should be addressed to Guglielmo Lomonaco, g.lomonaco@ing.unipi.it

Received 15 December 2009; Accepted 15 December 2009

Copyright © 2009 Eleonora Bomboni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Assessment of LWR-HTR-GCFR Integrated Cycle

Erratum. Please substitute the old Figure 10 with the following new Figure 1, the old Figure 11 with the following new Figure 2, Please substitute the old Figure 18 with the following new Figure 3, the old Figure 25 with the following new Figure 4, and the paragraph (i) at page 8, column 2, with the following:

“First of all, the LOMB is always lower than 50000 years. GCFR SNF reaches LOM after about 10000 except for the 1st and the 2nd cycle (Figures 12 and 17). As far as PBMR is concerned, its waste composed of Am, Cm and FPs is characterized by a LOMB three time higher than that of the average GCFR waste (Figure 10). Furthermore, considering all the HM coming from PBMR as a waste (i.e., including Np and Pu; that corresponds to a OTTO cycle for PBMR), the LOMB increases by two orders of magnitude (please compare Figures 10 and 11) and becomes even worse than that of LWR waste. Hence, the advantages of recycling Pu and Np coming from PBMR are confirmed.”
Total radiotoxicity versus time (LOMBT = 33932 years)

Figure 1

Total radiotoxicity versus time (LOMBT = 1098541 years)

Figure 2

Contribution of various elements radiotoxicties versus time

Figure 3

Decay power versus time

Figure 4
Submit your manuscripts at http://www.hindawi.com