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The neutron diffusion equation is often used to perform core-level neutronic calculations. It consists of a set of second-order
partial differential equations over the spatial coordinates that are, both in the academia and in the industry, usually solved by
discretizing the neutron leakage term using a structured grid. This work introduces the alternatives that unstructured grids can
provide to aid the engineers to solve the neutron diffusion problem and gives a brief overview of the variety of possibilities they
offer. It is by understanding the basic mathematics that lie beneath the equations that model real physical systems; better technical
decisions can be made. It is in this spirit that this paper is written, giving a first introduction to the basic concepts which can be
incorporated into core-level neutron flux computations. A simple two-dimensional homogeneous circular reactor is solved using
a coarse unstructured grid in order to illustrate some basic differences between the finite volumes and the finite elements method.
Also, the classic 2D IAEA PWR benchmark problem is solved for eighty combinations of symmetries, meshing algorithms, basic
geometric entities, discretization schemes, and characteristic grid lengths, giving even more insight into the peculiarities that arise
when solving the neutron diffusion equation using unstructured grids.

1. Introduction

The better we engineers are able to solve the equations
that model the real physical plants we design and build,
the better services we can provide to our customers, and
thus, general people can be benefited with better nuclear
facilities and installations. The Boltzmann neutron transport
equation describes how neutrons move and interact with
matter. It involves continuous energy and space-dependent
macroscopic cross-sections that should be knownbeforehand
and gives an integrodifferential equation for the vectorial flux
as a function of seven independent scalar variables, namely,
three spatial coordinates, two angular directions, energy, and
time. It represents a balance that holds at every point in space
and at every instant in time. Such an equationmay be tackled
using a variety of approaches; one of them is a simplification
that leads to the so-called neutron diffusion approxima-
tion that states that the neutron current is proportional to
the gradient of the neutron flux by means of a diffusion

coefficient, which is a function of the macroscopic transport
cross-section.When this approximation—which is analogous
to Fick’s law in species diffusion and to the Fourier expression
of the heat flux—is replaced into the transport equation, a
partial differential equation of second order on the spatial
coordinates is obtained. Formally, the neutron diffusion
equation may be derived from the transport equation by
expanding the angular dependance of the vectorial neutron
flux in a spherical harmonics series and retaining both the
zero and one-moment terms, neglecting the contributions of
higher moments [1, 2]. As crude as it may seem, this diffusion
equation gives fairly accurate results when applied under the
conditions in which thermal nuclear reactors usually operate.
Indeed, it can be shown that in a homogeneous bare critical
reactor, the neutron current is proportional to the neutron
gradient for every neutron energy [3].

The energy domain is usually divided into a finite number
of groups, thus transforming one partial differential equation
over space and energy into several coupled equations—one
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for each group—containing differential operators applied
only over the spatial coordinates.This resulting set of second-
order PDEs is known as the multigroup neutron diffusion
equation and is usually used to model, design, and analyze
nuclear reactor cores by the so-called core-level calculation
codes.These programs take homogenizedmacroscopic cross-
sections (which may depend on the spatial coordinates
through changes of fuel burnup, materials temperature or
other properties) computed by lattice-level codes as an input
and solve the diffusion equation to obtain the flux (and its
related quantities such as power, xenon, etc.) distribution
within the core.

Given a certain spatial distribution of materials and its
properties inside a reactor core, chances are that the resulting
reactor will not be critical. That is to say, in general, the
rate of absorptions and leakages will not exactly overcome
the neutrons born by fissions sources, and some kind of
feedback—either through an external control system or by
means of an inherent stability mechanism of the core [4]—
is needed to keep the reactor power within a certain interval.
Mathematically, this means that the transport—and thus the
diffusion—equation does not have a steady-state solution. In
practice, given a certain reactor configuration, its steady-state
flux distribution is computed by setting all the time deriva-
tives to zero as usual but also by dividing the fission sources by
a positive value 𝑘eff called the effective multiplication factor,
which becomes also one unknown and turns the formulation
into a eigenvalue problem.The largest (or smallest, depending
on the formulation) eigenvalue is therefore the effective
multiplication factor. If 𝑘eff < 1, the original configuration
was subcritical, and conversely. As successive configurations
make 𝑘eff → 1, the associated eigenfunctions approach the
steady-state critical flux distribution [5].

Core-level codes traditionally use regular grids to dis-
cretize the differential operators over the space. Depending
on the characteristics and symmetry of the reactor core,
either squares or hexagons are used as the basic shape
of the mesh. Usual discretization schemes involve cell-
centered finite differences or two-step coarse-mesh/coupling
coefficient methods [6–8], which are accurate and efficient
enough formost applications.There are, nevertheless, certain
limitations that are not inherently related to structured grids
but to the way their coarseness is utilized and how they are
computed and applied to the reactor geometry. These issues
can be overcome by discretizing the spatial operators using
a scheme which could be applied to nonstructured grids,
namely, finite volumes or finite elements.

This way, unstructured grids may be used to study,
analyze, and understand the numerical errors introduced by
the discretization of the leakage operator with a difference-
based scheme over a coarse structured grid by successively
refining the mesh whilst comparing the solutions with the
structured one, as depicted in Figure 1. Another example of
application may be the improvement of the response matrix
of boundary conditions over cylindrical surfaces, which is
the case for most of the nuclear power plants cores. When
a coarse structured mesh is applied to a curved geometry,
there appears a geometric condition known as the staircase
effect. Even though arbitrary shapes cannot be perfectly

tessellated with unstructured grids, for the same number of
unknowns, they better represent the geometry than struc-
tured meshes, as Figure 2 illustrates. Again, by refining the
mesh and comparing solutions, the matrix responses used
to set the boundary conditions on the coarse meshes can
be optimized. Finally, other complex geometries such as
slanted control rods (Figure 3) or irradiation chambers can be
directly taken into account by unstructured grids, possibly by
refining the mesh in the locations around said complexities.

2. The Steady-State Multigroup Neutron
Diffusion Equation

In the present work, we take the steady-state multigroup
neutron diffusion equation for granted. That is to say, we
focus on the mathematical aspects of the eigenvalue problem
and make no further reference to its derivation from the
transport equation nor to the validity of its application
to reactor problems, as these subjects that are extensively
discussed in the classic literature [1, 5, 11].

The differential formulation of the steady-state multi-
group neutron diffusion equation over an 𝑚-dimensional
domain 𝑈 with 𝐺 groups of energy is the set of 𝐺 coupled
differential equations:

div [𝐷𝑔 (x) ⋅ grad 𝜙𝑔 (x)] − Σ𝑎𝑔 (x) ⋅ 𝜙𝑔 (x)

+

𝐺

∑

𝑔󸀠 ̸= 𝑔

Σ𝑠𝑔󸀠→𝑔 (x) ⋅ 𝜙𝑔󸀠 (x)

+ 𝜒𝑔 ⋅

𝐺

∑

𝑔󸀠=1

]Σ𝑓𝑔󸀠 (x)
𝑘eff

⋅ 𝜙𝑔󸀠 (x) = 0,

(1)

where 𝜙𝑔 are the 𝑔 = 1, . . . , 𝐺 unknown flux distributions
and the Σs and the 𝐷s are the macroscopic cross-sections
and diffusion coefficients, which ought to be computed by a
lattice-level code and taken as an input to core-level codes.
However, for the purposes of fulfilling the objectives of this
work, we take the macroscopic cross-sections as functions of
the spatial coordinate x ∈ R𝑚 which is known beforehand.
The coefficient 𝜒𝑔 represents the fission spectrum and is the
fraction of the fission neutrons that are born into group 𝑔. As
stated above, the ]-fissions are divided by a positive effective
multiplication factor 𝑘eff and all the time derivatives, that is,
the right hand of (1) is set to zero. We note that, in order to
define a consistent nomenclature, we use the absorption cross
section Σ𝑎𝑔 of the group 𝑔, which is equal to the total cross
section Σ𝑡𝑔 minus the self-scattering cross section Σ𝑠𝑔→𝑔.
Therefore, the sum over the scattering sources excludes the
term corresponding to 𝑔

󸀠
= 𝑔. If we had used the total

cross section in the second term of (1), we would have had
to include the self-scattering term as a source.

If the cross sections depend only in an explicit way
on the spatial coordinate x, then (1) is linear. If, as is the
general case, the cross sections depend on x through the flux
𝜙𝑔(x) itself—such as by means of the xenon concentration
or by local temperature distributions—then (1) is nonlinear.
Nevertheless, this general case can be solved by successive
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(a) Coarse structured grid commonly used in diffu-
sion codes such as in [9]. Each lattice cell is divided into
a 2 × 2 grid for solving the neutron diffusion equation

(b) Discretization of the lattice cell using a fine
unstructured grid as proposed in this work

(c) Further refinement of the unstructured grid

Figure 1: Discretization of a homogenized PHWR array of fuel channels for a core-level diffusion computation. Each square is a lattice-level
cell comprising one fuel channel and the surrounding moderator.

linear iterations so the basic problem can be regarded as being
purely linear.

It should be noted that, if at least one of the diffu-
sion coefficients 𝐷𝑔(x) is discontinuous over space, then
the divergence operator is not defined at the discontinuity
points. Therefore, the differential formulation—also known
as the strong formulation—is not complete when there exist
material discontinuities that involve the diffusion coefficients.
At thesematerial interfaces, the differential equation has to be
replaced by a neutron current conservation condition:

𝐷
+

𝑔
(x) ⋅ grad 𝜙

+

𝑔
(x) = 𝐷

−

𝑔
(x) ⋅ grad 𝜙

−

𝑔
(x) , (2)

where the plus and minus sign denote both sides of the inter-
face. As the diffusion coefficients are different, the resulting
flux distribution𝜙𝑔(x) ought to have a discontinuous gradient
at the interface in order to conserve the current.

When transforming the strong formulation into a weak
formulation—not just into an integral formulation—both (1)
and (2) can be taken into account by a single expression. In
effect, let 𝜑𝑔(x) be arbitrary functions of x for 𝑔 = 1, . . . , 𝐺.
Multiplying each of the 𝐺 equations (1) by 𝜙𝑔(x), integrating

over the domain 𝑈 ∈ R𝑚, and applying Green’s formula [12]
to the leakage term, we obtain

∫
𝑈

𝐷𝑔 (x) ⋅ [grad 𝜑𝑔 (x) ⋅ grad 𝜙𝑔 (x)] 𝑑
𝑚x

+ ∫
𝜕𝑈

𝜑𝑔 (x) ⋅ 𝐷𝑔 (x) ⋅ [grad 𝜙𝑔 (x) ⋅ n̂] 𝑑𝑆

+ ∫
𝑈

𝜑𝑔 (x) ⋅ Σ𝑎𝑔 (x) ⋅ 𝜙𝑔 (x) 𝑑
𝑚x

+ ∫
𝑈

𝜑𝑔 (x) ⋅
𝐺

∑

𝑔󸀠 ̸= 𝑔

Σ𝑠𝑔󸀠→𝑔 (x) ⋅ 𝜙𝑔󸀠 (x) 𝑑
𝑚x

+ 𝜒𝑔 ⋅ ∫
𝑈

𝜑𝑔 (x) ⋅
𝐺

∑

𝑔󸀠=1

]Σ𝑓𝑔󸀠 (x)
𝑘eff

⋅ 𝜙𝑔󸀠 (x) 𝑑
𝑚x.

(3)

These 𝐺 coupled equations should hold for any arbitrary
set of functions𝜑𝑔(x).Making an analogy between (3) and the
principle of virtual work for structural problems, we call these
functions virtual fluxes. This formulation does not involve
any differential operator over the diffusion coefficient and yet,
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(a) Continuous two-dimensional domain (b) Structured grid

(c) Unstructured grid

Figure 2: When a continuous domain (a) is meshed with an unstructured grid, there appears a geometric condition known as the staircase
effect (b). For the same number of nodes, unstructured grids reproduce the original geometry better (c).

Figure 3: Cross section of a hypothetical reactor in which the
control rods enter into the core from above with a certain attack
angle with respect to the vertical direction.

at the same time, can be shown to be equivalent to the strong
formulation given by (1).

In any case, both formulations involve the computation
of 𝐺 unknown functions of x and one unknown real value
𝑘eff. Except for homogeneous cross sections in canonical
domains 𝑈, the multigroup diffusion equation needs to be
solved numerically. As discussed below, any nodal-based
discretization scheme replaces a continuous unknown func-
tion 𝜙𝑔(x) by 𝑁 discrete values 𝜙𝑔(𝑖) for 𝑖 = 1, . . . , 𝑁.

Figure 4: The finite volumes method computes the unknown flux
in the cell centers (squares), whilst the finite elements method
computes the fluxes at the nodes (circles).

If we arrange these unknowns into a vector 𝜙 ∈ R𝑁𝐺

such as

𝜙 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜙1 (1)

𝜙2 (1)

...
𝜙𝐺 (1)

𝜙1 (2)

...
𝜙𝑔 (𝑖)

...
𝜙𝐺 (𝑁)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (4)
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(a) Fast flux distribution
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Figure 5: A bare homogeneous circle solved with finite volumes (184 unknowns).

then the continuous eigenvalue problem—in either for-
mulation—can be transformed into a generalized matrix
eigenvalue/eigenvector problem casted in either of the follow-
ing forms:

𝑅 ⋅ 𝜙 =
1

𝑘eff
⋅ 𝐹 ⋅ 𝜙,

𝐹 ⋅ 𝜙 = 𝑘eff ⋅ 𝑅 ⋅ 𝜙,

𝑅
−1
⋅ 𝐹 ⋅ 𝜙 = 𝑘eff ⋅ 𝜙,

(5)

where 𝑅 and 𝐹 are square 𝑁𝐺 × 𝑁𝐺 matrices. We call
𝐹 the fission matrix, as it contains all the ]-fission terms
which are the ones that we artificially divided by 𝑘eff. The
rest of the terms are grouped into the removal or transport
matrix 𝑅, which includes the rest of the neutron-matter
interaction mechanisms. It can be shown [11] that, for any
real set of cross sections, 𝑅−1 exists and that the𝑁𝐺 pairs of
eigenvalue/eigenvector solutions of (5) satisfy that

(1) there is a unique real positive eigenvalue greater in
magnitude than any other eigenvalue,

(2) all the elements of the eigenvector corresponding to
that eigenvalue are real and positive,

(3) all other eigenvectors either have some elements that
are zero or have elements that differ in sign from each
other.

2.1. Boundary Conditions. Being a differential equation over
space, the neutron diffusion equation needs proper boundary
conditions to conform a properly definedmathematical prob-
lem. These can be imposed flux (Dirichlet), imposed current
(Neumann), or a linear combination (Robin). However, due
to the fact that in the linear problem in absence of external
sources—such as (1) or (3)—the problem is homogeneous;
if 𝜙𝑔(x) is a solution, then any multiple 𝛼𝜙𝑔(x) is also a
solution. That is to say, the eigenvectors are defined up to a
multiplicative constant whose value is usually chosen as to
obtain a certain total thermal power. Thus, the prescribed
boundary conditions should also be homogeneous and be
defined up to amultiplicative constant.Therefore, the allowed
Dirichlet conditions are zero flux at the boundary; the
Neumann conditions should prescribe that the derivative in
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(a) Fast flux distribution
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Figure 6: A bare homogeneous circle solved with finite elements (218 unknowns).

the normal direction should be zero (i.e., symmetry condi-
tion), and the Robin conditions are restricted to the following
form:

grad 𝜙𝑔 (x) ⋅ n̂ + 𝑎𝑔 (x) ⋅ 𝜙𝑔 (x) = 0, (6)

n̂ being the outward unit normal to the boundary 𝜕𝑈 of the
domain 𝑈.

2.2. Grids and Schemes. One way of solving the neutron
diffusion equation—and in general any partial differential
equation over space—is by discretizing the differential oper-
ators with some kind of scheme that is applied over a certain
spatial grid. Given an 𝑚-dimensional domain, a grid defines
a partition composed of a finite number of simple geometric
entities. In structured grids, these elementary entities are
arranged following a well-defined structure in such a way
that each entity can be identified without needing further
information than the one provided by the intrinsic structure.
On the other hand, the geometric entities that compose
an unstructured grid are arranged in an irregular pattern,
and the identification of the elementary entities needs to

be separately specified, for example, by means of a sorted
list. For instance, Figure 2(b) shows a structured grid that
approximates the continuous domain of Figure 2(a). Each
square may be uniquely identified by means of two integer
indexes that indicate its relative position in each of the
horizontal and vertical directions. In the case of Figure 2(c)
that shows an unstructured grid, there is no way to system-
atically make a reference to a particular quadrangle without
any further information.

Almost all of the grid-based schemes—which are known
as nodal schemes, which are to be differentiated from modal
schemes based on series expansions—are based in either the
finite differences, volumes, or elements method. Finite differ-
ences schemes provide themost simple and basic approach to
replace differential (i.e., continuous) operators by difference
(i.e., discrete) approximations. However, they are not suitable
for unstructured meshes and may introduce convergence
problems with parameters that are discontinuous in space,
which is the case for any reactor core composed of at
least two different materials. Moreover, boundary conditions
are hard to incorporate and usually give rise to incorrect
results.
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of 𝑘eff versus 𝑎/ℓ𝑐.

Methods of the finite volumes family involve the inte-
gration of the differential equation over each elementary
entity, applying the divergence theorem to transform volume
integrals into surface integrals and providing a mean to esti-
mate the fluxes through the entity’s surface using information
contained in its neighbors. In this context, each elementary
entity is called a cell, and finite volumes methods give the
mean value of each of the group fluxes 𝜙𝑔(𝑖) at the 𝑖th cell,
which may be associated to the value of 𝜙𝑔(x𝑖) where x𝑖 is
the location of the cell barycenter. Being an integral-based
method, spatial-discontinuous parameters are handled more
efficiently than in finite differences, and boundary conditions
can be easily incorporated as forced cell fluxes. Nonetheless,
even though these methods may be applied to unstructured
grids, the estimation of the fluxes on the cells’ surfaces is
usually performed by using some geometric approximations
that may lose validity as the quality of the grid is worsened.
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Figure 9: The 2D IAEA PWR benchmark geometry.

Moreover, the simple integral approach cannot take into
account discontinuous diffusion coefficients, so when two
neighbors pertain to different materials the flux has to be
computed in a certain particular way to conserve the neutron
current according to (2).

Finally, finite elements methods rely on a weak formula-
tion of the differential problem similar to (3) that maintains
all the mathematical characteristics of the original strong
formulation plus its boundary conditions. The method is
based on shape functions that are local to each elementary
entity—now called element, defined by nodes as corners—
and on finding a set of nodal values such that a certain
condition is met, which is usually that the residual of the
solution has to be orthogonal to each of the shape functions.
This condition is known as the Galerkin method and implies
that the error committed in the approximate solution of
the continuous problem is confined into a small subset of
the original vector space of the continuous functions. These
mathematical properties make finite elements schemes very
attractive. However, these features depend on a large number
of integrations that ought to be performed numerically, so
a computational effort/desired accuracy tradeoff has to be
considered. Not only does the finite elements method give
the values of the flux 𝜙𝑔(x𝑖) at the 𝑖th node but also the
shape functions provide explicit expressions to interpolate
and to evaluate the unknown functions at any location x of
the domain𝑈. Boundary conditions are divided into essential
and natural.Thefirst group comprises theDirichlet boundary
conditions which are satisfied exactly—within the precision
of the eigenvalue problem solver—by the obtained solution.
The latter include the Neumann and the Robin conditions
that are satisfied only approximately by the derivatives of the
interpolated solution through the shape functions with finer
meshes giving better agreement with the prescribed values.

The same unstructured grid may be used either for the
finite volumes or for the finite elements method. In the first
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Largest eigenvalue 1.029690 (2883.36 pcm)
11.35 @ (30.66, 30.79)
13.06 @ (51.71, 130.76)

Number of unknowns 15740
Outer iterations 3
Linear iterations 32
Inner iterations 1967
Residual norm
Relative error
Error estimate
Memory used 49824 kB
Soft page faults 13401
Hard page faults 0
Total CPU time 0.74 seconds

Max 𝜙2(x, y) @core
Max 𝜙2(x, y) @reflector

2.483 × 10−8

1.223 × 10−8

4.03 × 10−9

keff

quarter-symmetry core meshed using Delaunay (triangles, 󰪓c = 3) solved with finite volumes
Milonga’s 2D LWR IAEA benchmark problem case no. 002

(a)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

k Pk 𝜙1k 𝜙2k
0.75   32.82   5.55
1.33   42.42   9.84
1.47   46.45   10.90
1.23   39.21   9.11
0.61   26.77   4.53
0.94   29.95   6.94
0.93   29.27   6.89
0.74   20.11   5.49
—      3.22      7.56
1.46   45.97   10.78
1.50   47.30   11.10
1.33   41.99   9.85
1.07   34.05   7.89
1.04   32.71   7.67
0.95   29.71   7.00
0.72   19.56   5.34
—      3.06      7.33
1.49   46.95   11.02
1.36   42.89   10.07
1.18   37.33   8.76
1.07   33.67   7.92
0.97   28.92   7.18
0.66   16.28   4.91
—      2.34     5.49
1.20   37.97   8.91
0.97   30.96   7.18
0.90   28.42   6.69
0.84   22.21   6.19
—      5.68     12.15
—      0.67     2.57
0.47   20.42   3.48
0.68   20.55   5.04
0.58   14.14   4.30
—      2.22     5.62
0.57   13.74   4.25
—    3.88      8.20
—    0.53      2.03
—    0.60      2.29

(b)
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(c)
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(d)

Figure 10: (a) Mesh and thermal flux distribution. (b) Power and fluxes. (c) Flux distribution 𝜙
𝑔
(𝑥, 0) along the 𝑥-axis. (d) Flux distribution

𝜙
𝑔
(𝑥, 𝑥) along the diagonal.

case, the unknowns are themean value of the fluxes over each
cell, whilst in the latter the unknowns are the fluxes evaluated
at each node. Therefore, the number of unknowns 𝑁𝐺 is
different for each method, even when using the same grid.
Figure 4 shows this situation, and in Section 3.1, we further

illustrate these differences. A fully detailed mathematical
description of the actual algorithms for both volumes and
elements-based proposed discretizations can be found in an
academic monograph written by the author of this paper
[13].
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Largest eigenvalue 1.029927 (2905.71 pcm)
11.31 @ (31.75, 29.99)
12.20 @ (130.97, 50.98)

Number of unknowns 15576
Outer iterations 3
Linear iterations 32
Inner iterations 1947
Residual norm
Relative error
Error estimate
Memory used 56256 kB
Soft page faults 15645
Hard page faults 0
Total CPU time 0.9201 seconds

Max 𝜙2(x, y) @core
Max 𝜙2(x, y) @reflector

1.394 × 10−8

6.865 × 10−9

3.425 × 10−9

keff

quarter-symmetry core meshed using Delaunay (quads, 󰪓c = 2) solved with finite volumes
Milonga’s 2D LWR IAEA benchmark problem case no. 013

(a)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

k Pk 𝜙1k 𝜙2k
0.74   32.44   5.49
1.33   42.30   9.82
1.47   46.51   10.92
1.24   39.46   9.17
0.60   26.45   4.43
0.94   29.97   6.96
0.93   29.38   6.91
0.74   20.05   5.45
—      3.01      7.46
1.45   45.88   10.76
1.50   47.20   11.08
1.33   41.98   9.84
1.09   34.65   8.05
1.04   32.80   7.69
0.95   29.86   7.04
0.71   19.62   5.28
—      2.93      7.15
1.48   46.80   10.98
1.36   42.88   10.07
1.19   37.55   8.81
1.07   33.85   7.96
0.97   29.05   7.21
0.67   16.53   4.93
—      2.20     5.56
1.21   38.08   8.93
0.98   31.15   7.24
0.92   28.89   6.80
0.83   22.47   6.15
—      5.43     12.41
—      0.67     2.60
0.45   19.77   3.30
0.69   20.76   5.09
0.58   14.60   4.28
—      2.26     5.74
0.56   13.64   4.13
—    3.71      8.21
—    0.52      2.00
—    0.60      2.38

(b)
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(c)
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Figure 11: (a) Mesh and thermal flux distribution. (b) Power and fluxes. (c) Flux distribution 𝜙
𝑔
(𝑥, 0) along the 𝑥-axis. (d) Flux distribution

𝜙
𝑔
(𝑥, 𝑥) along the diagonal.

3. Results

We now proceed to show two illustrative results that are to
be taken as an overview of the possibilities that unstructured
grids can provide in order to tackle the multigroup neutron

diffusion problem. The examples are two-dimensional prob-
lems, as they contain some of the complexities a real three-
dimensional reactor posse, yet the reported results are not
so complicated as to be easily understood and analyzed. In
particular, we state some basic differences between the finite
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Largest eigenvalue 1.029695(2883.88 pcm)
11.12 @ (30.76, 30.32)
8.38 @ (50.00, 130.00)

Number of unknowns 15922
Outer iterations 3
Linear iterations 32
Inner iterations 1990
Residual norm
Relative error
Error estimate
Memory used 109964 kB
Soft page faults 30591
Hard page faults 0
Total CPU time 1.58 seconds

Max 𝜙2(x, y) @core
Max 𝜙2(x, y) @reflector

1.056 × 10−8

5.202 × 10−9

5.122 × 10−9

keff

quarter-symmetry core meshed using Delaunay (quads, 󰪓c = 2) solved with finite volumes
Milonga’s 2D LWR IAEA benchmark problem case no. 018

(a)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

k Pk 𝜙1k 𝜙2k
0.74   32.20   5.49
1.30   41.52   9.61
1.44   46.51   10.68
1.20   38.43   8.90
0.61   26.48   4.52
0.94   29.96   6.93
0.94   29.59   6.96
0.72   20.61   5.69
—      3.58      8.62
1.42   44.95   10.54
1.47   46.34  10.88
1.31   41.27   9.68
1.07   34.09   7.89
1.04   32.75   7.68
0.96   30.03   7.08
0.71   20.14   5.54
—      3.42      8.20
1.46   46.06   10.81
1.34   42.22   9.91
1.18   37.11   8.71
1.07   33.75   7.94
0.98   29.29   7.27
0.62   16.92   5.22
—      2.58     6.32
1.19   37.52   8.80
0.96   30.84   7.15
0.91   28.58   6.73
0.80   22.80   6.33
—      6.11     12.77
—      0.80     3.18
0.47   20.43   3.50
0.69   20.88   5.10
0.54   14.63   4.50
—      2.55     6.48
0.51   14.18   4.39
—    4.10      8.54
—    0.64      2.52
—    0.71      2.85

(b)
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45
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𝜙1(x, 0)

(c)
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(d)

Figure 12: (a) Mesh and thermal flux distribution. (b) Power and fluxes. (c) Flux distribution 𝜙
𝑔
(𝑥, 0) along the 𝑥-axis. (d) Flux distribution

𝜙
𝑔
(𝑥, 𝑥) along the diagonal.

volumes and the finite elements methods by solving a two-
group homogeneous bare reactor with the Robin boundary
conditions over the very same grid, although a rather coarse
one, so the differences can be observed directly into the
resulting figures.We then solve the classical two-dimensional
LWR problem, also known as the 2D IAEA PWR benchmark.

Not only do we show again the differences between the finite
volumes and elements formulation but also we solve the
problemusing different combinations ofmeshing algorithms,
basic shapes, and characteristic lengths of the mesh.

To solve the two examples shown below, we employed the
milonga code, which was written from scratch by the author
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Largest eigenvalue 1.029159 (2833.26 pcm)
11.74 @ (28.51, 32.24)
15.60 @ (52.00, 132.00)

Number of unknowns 3132
Outer iterations 3
Linear iterations 32
Inner iterations 391
Residual norm
Relative error
Error estimate
Memory used 26888 kB
Soft page faults 7322
Hard page faults 0
Total CPU time 0.308 seconds

Max 𝜙2(x, y) @core
Max 𝜙2(x, y) @reflector

5.408 × 10−8

2.665 × 10−8

8.424 × 10−9

keff

Milonga’s 2D LWR IAEA benchmark problem case no. 031
quarter-symmetry core meshed using Delquad (quads, 󰪓c = 4) solved with finite volumes

(a)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

k Pk 𝜙1k 𝜙2k
0.77   34.22   5.70
1.40   44.68   10.40
1.53   48.36   11.35
1.28   40.70   9.48
0.60   27.04   4.48
0.95   30.17   7.02
0.91   28.61   6.73
0.69   19.18   5.08
—      2.64      6.89
1.51   47.85  11.22
1.55   48.97   11.49
1.37   43.34   10.17
1.11   35.35   8.23
1.04   32.72   7.68
0.92   29.08   6.85
0.67   18.76   4.96
—      2.54      6.58
1.54   48.54   11.39
1.39   43.92   10.31
1.20   37.92   8.90
1.07   33.60   7.90
0.95   28.31   7.02
0.61   15.74   4.51
—      1.97     5.15
1.23   38.68   9.07
0.99   31.32   7.30
0.90   28.18   6.63
0.78   21.68   5.79
—      4.81     11.91
—      0.55     2.17
0.44   19.84   3.28
0.67   20.27   4.98
0.52   13.60   3.88
—      1.90     5.20
0.52   13.29   3.83
—    3.21      7.92
—    0.43      1.68
—    0.48      1.95

(b)
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0
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(c)

0 40 80 120 160
0

15

30

45

𝜙2(x, x)
𝜙1(x, x)

(d)

Figure 13: (a) Mesh and thermal flux distribution. (b) Power and fluxes. (c) Flux distribution 𝜙
𝑔
(𝑥, 0) along the 𝑥-axis. (d) Flux distribution

𝜙
𝑔
(𝑥, 𝑥) along the diagonal.

of this paper and is currently still under development within
his ongoing PhD thesis. There exists a first public release
[14] under the terms of the GNU General Public License—
that is, it is a free software—that can only handle structured
grids. There is a second release being prepared, whose

main relevance is that it can work with nonstructured grids
as well, which is the main feature of the code. It uses a
general mathematical framework—coded from scratch as
well—which provides input file parsing, algebraic expres-
sions evaluation, one- and multidimensional interpolation of
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Largest eigenvalue 1.029788 (2892.60 pcm)
11.20 @ (31.49, 30.11)
10.91 @ (130.38, 51.14)

Number of unknowns 15776
Outer iterations 3
Linear iterations 32
Inner iterations 1972
Residual norm
Relative error
Error estimate
Memory used 56996 kB
Soft page faults 15436
Hard page faults 0
Total CPU time 0.9121 seconds

Max 𝜙2(x, y) @core
Max 𝜙2(x, y) @reflector

2.296 × 10−12

1.131 × 10−12

6.877 × 10−13

keff

Milonga’s 2D LWR IAEA benchmark problem case no. 043
eighth-symmetry core meshed using Delaunaya (triangs,󰪓c = 2) solved with finite volumes

(a)

1 0.74 32.41 5.48
2 1.31 41.88 9.71
3 1.45 45.82 10.76
4 1.22 38.77 9.00
5 0.60 26.44 4.45
6 0.93 29.86 6.92
7 0.93 29.41 6.92
8 0.75 20.30 5.52
9 — 3.22 7.79

10 1.43 45.23 10.61
11 1.48 46.67 10.95
12 1.31 41.45 9.72
13 1.07 34.23 7.94
14 1.03 32.69 7.67
15 0.95 29.93 7.06
16 0.73 19.88 5.39
17 — 3.12 7.51
18 1.47 46.37 10.88
19 1.34 42.43 9.96
20 1.18 37.21 8.73
21 1.07 33.70 7.93
22 0.98 29.14 7.23
23 0.67 16.51 4.99
24 — 2.35 5.71
25 1.19 37.63 8.82
26 0.96 30.77 7.15
27 0.91 28.47 6.71
28 0.83 22.55 6.17
29 — 5.76 12.25
30 — 0.68 2.66
31 0.46 20.16 3.41
32 0.68 20.58 5.05
33 0.59 14.43 4.35
34 — 2.33 5.89
35 0.57 13.81 4.20
36 — 3.81 8.23
37 — 0.54 2.08
38 — 0.62 2.44

k Pk 𝜙1k 𝜙2k

(b)
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Figure 14: (a) Mesh and thermal flux distribution. (b) Power and fluxes. (c) Flux distribution 𝜙
𝑔
(𝑥, 0) along the 𝑥-axis. (d) Flux distribution

𝜙
𝑔
(𝑥, 𝑥) along the diagonal.

scattered data, shared-memory access, numerical integration
facilities, and so forth. The milonga code was designed with
four design basis vectors in mind—which are thoroughly
discussed in the documentation [15]—which includes the
type of problems it can handle, the code scalability, which

features are expected, and what to do with the obtained
results.

It works by first reading an input file that, using plain-
text English keywords and arguments, defines the number
𝑚 of spatial dimensions, the number 𝐺 of group energies,
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Largest eigenvalue 1.029726 (2886.75 pcm)
11.04 @ (30.69, 30.69)
8.64 @ (130.00, 50.00)

Number of unknowns 4040
Outer iterations 2
Linear iterations 24
Inner iterations 505
Residual norm
Relative error
Error estimate
Memory used 42940 kB
Soft page faults 11437
Hard page faults 0
Total CPU time 1.064 seconds

Max 𝜙2(x, y) @core
Max 𝜙2(x, y) @reflector

2.019 × 10−8

9.946 × 10−9

7.138 × 10−9

keff

Milonga’s 2D LWR IAEA benchmark problem case no. 047
eighth-symmetry core meshed using Delaunay (triangles, 󰪓c = 3) solved with finite volumes

(a)

1 0.74 31.94 5.45
2 1.29 41.17 9.53
3 1.43 45.15 10.60
4 1.19 38.14 8.83
5 0.61 26.34 4.50
6 0.93 29.84 6.90
7 0.94 29.54 6.95
8 0.71 20.64 5.71
9 — 3.62 8.65

10 1.41 44.58 10.45
11 1.46 45.99 10.79
12 1.30 40.97 9.61
13 1.06 33.88 7.84
14 1.03 32.63 7.65
15 0.95 29.98 7.07
16 0.68 20.15 5.57
17 — 3.46 8.23
18 1.45 45.72 10.73
19 1.33 41.94 9.84
20 1.17 36.91 8.66
21 1.07 33.63 7.92
22 0.98 29.25 7.26
23 0.59 16.96 5.28
24 — 2.63 6.35
25 1.18 37.28 8.74
26 0.96 30.68 7.11
27 0.91 28.50 6.72
28 0.79 22.80 6.35
29 — 6.19 12.76
30 — 0.81 3.21
31 0.47 20.36 3.49
32 0.68 20.85 5.09
33 0.51 14.65 4.54
34 — 2.58 6.50
35 0.49 14.19 4.43
36 — 4.16 8.54
37 — 0.65 2.54
38 — 0.71 2.88

k Pk 𝜙1k 𝜙2k
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Figure 15: (a) Mesh and thermal flux distribution. (b) Power and fluxes. (c) Flux distribution 𝜙
𝑔
(𝑥, 0) along the 𝑥-axis. (d) Flux distribution

𝜙
𝑔
(𝑥, 𝑥) along the diagonal.

and optionally a mesh file. Currently, only grids generated
with the code gmsh [16] are only supported, mainly because
it is also a free software and it suits perfectly well milonga’s
design basis in the sense that the continuous geometry can be
defined as a function of a number of parameters. Afterward,
the physical entities defined in the grid are mapped into

materials with macroscopic cross sections, which may
depend on the spatial coordinates x bymeans of intermediate
functions such as burn-up or temperatures distributions,
which in turn may be defined by algebraic expressions, by
interpolating data located in files, by reading shared-memory
objects or by a combination of them. In the same sense,
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Largest eigenvalue 1.029695 (2883.87 pcm)
11.08 @ (30.45, 30.45)
8.33 @ (130.00, 50.00)

Number of unknowns 8234
Outer iterations 3
Linear iterations 32
Inner iterations 1029
Residual norm
Relative error

Max 𝜙2(x, y) @core
Max 𝜙2(x, y) @reflector

2.028 × 10−12

9.993 × 10−13

1.012 × 10−12

keff

Relative error
Error estimate
Memory used 75468 kB
Soft page faults 20094
Hard page faults 0
Total CPU time 1.256 seconds

9.993 × 10

1.012 × 10−12

Milonga’s 2D LWR IAEA benchmark problem case no. 058
eighth-symmetry core meshed using Delaunay (quads, 󰪓c = 2) solved with finite volumes

(a)

1 0.74 32.07 5.47
2 1.29 41.36 9.57
3 1.44 45.34 10.64
4 1.20 38.28 8.87
5 0.61 26.38 4.50
6 0.93 29.85 6.90
7 0.94 29.48 6.94
8 0.72 20.53 5.66
9 — 3.57 8.59

10 1.42 44.78 10.50
11 1.46 46.17 10.84
12 1.30 41.11 9.64
13 1.06 33.96 7.86
14 1.03 32.63 7.65
15 0.95 29.91 7.06
16 0.71 20.05 5.52
17 — 3.40 8.16
18 1.45 45.88 10.77
19 1.33 42.06 9.87
20 1.17 36.98 8.68
21 1.07 33.62 7.91
22 0.98 29.18 7.25
23 0.62 16.86 5.20
24 — 2.58 6.29
25 1.18 37.37 8.76
26 0.96 30.73 7.12
27 0.91 28.48 6.71
28 0.80 22.72 6.31
29 — 6.09 12.72
30 — 0.80 3.17
31 0.47 20.35 3.48
32 0.69 20.81 5.09
33 0.54 14.58 4.48
34 — 2.55 6.46
35 0.52 14.13 4.37
36 — 4.09 8.51
37 — 0.64 2.51
38 — 0.71 2.84

k Pk 𝜙1k 𝜙2k
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Figure 16: (a) Mesh and thermal flux distribution. (b) Power and fluxes. (c) Flux distribution 𝜙
𝑔
(𝑥, 0) along the 𝑥-axis. (d) Flux distribution

𝜙
𝑔
(𝑥, 𝑥) along the diagonal.

boundary conditions are applied to appropriate physical
entities of dimension𝑚−1.The problemmatrices𝑅 and𝐹 are
then built and stored in an appropriate sparse format using
the free PETSc [17, 18] library, and the eigenvalue problem
is solved using the free SLEPc [19] library. The results are
stored into milonga’s variables and functions, which may be

evaluated, integrated—usually using the free GNU Scientific
Library [20] routines—and of course written into appropriate
outputs. Milonga can also solve problems parametrically and
be used to solve optimization problems. As stated above, the
code is a free software so corrections and contributions are
more than welcome.
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Largest eigenvalue 1.029462 (2861.85 pcm)
11.36 @ (30.93, 29.53)
12.33 @ (131.00, 51.00)

Number of unknowns 6228
Outer iterations 2
Linear iterations 24
Inner iterations 778
Residual norm
R l ti

Max 𝜙2(x, y) @core
Max 𝜙2(x, y) @reflector

2.6 × 10−8

1.281 × 10−8

4.996 × 10−9

keff

Relative error
Error estimate
Memory used 41460 kB
Soft page faults 10930
Hard page faults 0
Total CPU time 0.604 seconds

1.281 × 10 8

4.996 × 10−9

Milonga’s 2D LWR IAEA benchmark problem case no. 073
eighth-symmetry core meshed using Delaunay (quads, 󰪓c = 2) solved with finite volumes

(a)

1 0.75 32.97 5.55
2 1.34 42.68 9.92
3 1.48 46.60 10.94
4 1.23 39.26 9.14
5 0.59 26.45 4.40
6 0.94 29.97 6.97
7 0.93 29.14 6.85
8 0.72 20.02 5.34
9 — 3.01 7.73

10 1.46 46.06 10.80
11 1.50 47.35 11.11
12 1.33 42.12 9.88
13 1.08 34.48 8.02
14 1.04 32.71 7.67
15 0.94 29.54 6.96
16 0.70 19.54 5.21
17 — 2.88 7.35
18 1.49 46.91 11.01
19 1.36 42.89 10.07
20 1.19 37.48 8.80
21 1.07 33.59 7.90
22 0.96 28.80 7.14
23 0.64 16.36 4.75
24 — 2.17 5.63
25 1.21 38.10 8.94
26 0.98 31.10 7.24
27 0.90 28.29 6.66
28 0.81 22.27 5.99
29 — 5.36 12.57
30 — 0.62 2.50
31 0.45 20.02 3.36
32 0.68 20.40 5.00
33 0.55 14.14 4.09
34 — 2.15 5.79
35 0.55 13.59 4.08
36 — 3.59 8.34
37 — 0.50 1.99
38 — 0.61 2.36
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Figure 17: (a) Mesh and thermal flux distribution. (b) Power and fluxes. (c) Flux distribution 𝜙
𝑔
(𝑥, 0) along the 𝑥-axis. (d) Flux distribution

𝜙
𝑔
(𝑥, 𝑥) along the diagonal.

3.1. A Coarse Bare Homogeneous Circle. Figures 5 and 6 show
the results of solving a bare two-dimensional circular homo-
geneous reactor of radius 𝑎 over an unstructured grid which
is deliberately coarse, using the finite volumes method and
the finite elements method, respectively. Two group energies

were used and a null-flux boundary conditionwas fixed at the
external surface. Figures 5(a) and 6(a) compare the obtained
fast flux distributions. In the first case, the numerical solution
providesmean values for each neutron flux group in each cell,
while in the latter, the solution is computed at the nodes, and
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Largest eigenvalue 1.029851 (2898.58 pcm)
10.90 @ (31.82, 31.82)
8.51 @ (130.00, 50.00)

Number of unknowns 1752
Outer iterations 3
Linear iterations 32
Inner iterations 219
Residual norm

Max 𝜙2(x, y) @core
Max 𝜙2(x, y) @reflector

5.66 × 10−12

2.789 × 10−12

1.595 × 10−12

keff

Residual norm
Relative error
Error estimate
Memory used 42564 kB
Soft page faults 11213
Hard page faults 0
Total CPU time 0.9921 seconds

5.66 × 10

2.789 × 10−12

1.595 × 10−12

Milonga’s 2D LWR IAEA benchmark problem case no. 076
eighth-symmetry core meshed using Delaunay (quads, 󰪓c = 4) solved with finite volumes

(a)

1 0.73 31.51 5.40
2 1.27 40.59 9.39
3 1.41 44.57 10.46
4 1.18 37.68 8.71
5 0.61 26.15 4.50
6 0.93 29.79 6.88
7 0.94 29.71 6.99
8 0.67 20.92 5.82
9 — 3.75 8.85

10 1.39 43.97 10.31
11 1.44 45.41 10.66
12 1.28 40.52 9.50
13 1.05 33.65 7.78
14 1.03 32.59 7.64
15 0.96 30.16 7.12
16 0.66 20.45 5.68
17 — 3.59 8.41
18 1.43 45.20 10.61
19 1.32 41.55 9.75
20 1.16 36.72 8.62
21 1.07 33.66 7.92
22 0.98 29.51 7.33
23 0.54 17.28 5.43
24 — 2.73 6.51
25 1.17 37.00 8.68
26 0.95 30.57 7.08
27 0.91 28.60 6.74
28 0.74 23.11 6.48
29 — 6.42 13.00
30 — 0.84 3.32
31 0.48 20.41 3.53
32 0.69 21.03 5.13
33 0.46 14.93 4.67
34 — 2.69 6.67
35 0.46 14.44 4.55
36 — 4.32 8.71
37 — 0.67 2.63
38 — 0.74 2.97
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Figure 18: (a) Mesh and thermal flux distribution. (b) Power and fluxes. (c) Flux distribution 𝜙
𝑔
(𝑥, 0) along the 𝑥-axis. (d) Flux distribution

𝜙
𝑔
(𝑥, 𝑥) along the diagonal.

continuous functions are evaluated by means of the shape
functions used in the formulation. Figures 5(b) and 6(b)
illustrate the fast fluxes unknowns and its relative position in
space. It can be noted that the mesh coarseness gives results
that differ substantially in both cases. Finally, the structure of
the sparse eigenvalue problemmatrices is shown for each case

with blue, red, and cyan representing positive, negative, and
explicitly inserted zero values. In the finite volume case, there
are 184 unknowns (92 cells × 2 groups), while in the second
case there are 218 unknowns (109 nodes × 2 groups). The
volumes’ fissionmatrix is almost diagonal: it has a bandwidth
equal to the number of energy groups, which in this case is
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Figure 19: Static reactivity versus number of unknowns. The four original solutions as published in 1977 [10] are included as reference.

two.The off-diagonal values appear right next to the diagonal
elements because of the chosen ordering of the unknowns
in the flux vector 𝜙 ∈ R184. Other orderings may be used,
but the rate of convergence of the eigenvalue problem can be
deteriorated. On the other hand, the elements’ fission matrix
has a nontrivial structure, because the grid is unstructured,
and the net fission rate at each element depends on the fluxes
at the nodes whose location inside thematrix depends in turn
on how the gridwas generated.This effect is similar to the one
that appears in structural analysis where mass matrices need
to be lumped in order to simplify transient computations [21].
The diagonal block of element’s 𝑅 matrix and the null block
in 𝐹 correspond to the discrete equations that set the null-
flux boundary conditions on the nodes located at the external
surface. Other types of boundary conditions lead to different
kinds of structures within the problem matrices.

In case a part of the domain contained a nonmultiplicative
material such as a reflector, then there would appear sections
of the fission matrix with null values in both methods,
rendering 𝐹 singular in both methods. Care should be taken
when dealing with the numerical schemes for the eigenvalue
problem solution. It can be seen in the elements’ matrices
a particular structure that implements the boundary condi-
tions at the external surfaces. This structure does not appear
in the volumes’ matrices because the boundary conditions

appear as flux terms which are summed up over all the
surfaces of each cell, so they aremasked inside the volumetric
discretization of the divergence and gradient operators.

As the two-group neutron diffusion equation with uni-
form cross sections over a circle subject to null-flux bound-
ary conditions has an analytical solution, it is adequate to
compare how the two proposed numerical schemes relate to
it. In the studied problem, we ignored upscattering and fast
fissions. Then, the analytical effective multiplication factor is

𝑘eff =
]Σ𝑓2 ⋅ Σ𝑠1→2

[Σ𝑎1 + Σ𝑠1→2 + 𝐷1(]0/𝑎)
2
] [Σ𝑎2 + 𝐷2(]0/𝑎)

2
]

(7)

being, ]0 = 2.4048 . . ., the smallest root of Bessel’s first-kind
function of order zero 𝐽0(𝑟).

Figure 7 shows how the two numerical effective multi-
plication factors compare to the analytical solution given
by (7) as a function of the mesh refinement, indicated by
the quotient 𝑎/ℓ𝑐 between the radius of the circle and the
characteristic length of the cell/elements. We can see that
the 𝑘eff computed by the finite volumes (elements) method
is always greater (less) than the analytical solution. Indeed,
it can be proven that for a bare one-dimensional slab this
is always the case [13]. However, this result does not hold
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Figure 20: Total wall time versus number of unknowns.

for problems with nonuniform cross sections, even in simple
one-dimensional reflected reactors.

We may draw two other conclusions from Figure 7. First,
that the finite element method seems to provide a better
solution than the volumes-based scheme and, second, that
even though the error committed tends to decrease with finer
grids, its behavior is not monotonic for finite volumes. In
fact, Figure 8 shows the difference between the numerical
and analytical solutions using a logarithmic vertical scale,
where both conclusions are even more evident. We defer
the discussion of such differences between the discretization
scheme until the next section. It is worth to note, however,
that the fact that a finite-element-based scheme throws better
results for the particular bare homogeneous circular reactor
under study than the finite volumes does not imply that
finite volumes ought to be discarded as a valid tool for
solving the neutron diffusion equation in general cases. The
combination of lattice and core-level computations is usually
performedusing cell-based resultswhichwhen fed into node-
based methods to solve the few-group neutron diffusion
equation may introduce errors which potentially can lead
to unacceptable solutions. Nevertheless, this analysis is far
beyond the scope of this paper which focuses on solving a
mathematical equation over unstructured grids.

3.2. The 2D IAEA PWR Benchmark Problem. This is a
classical two-group neutron diffusion problem, first designed
in the early 1970s and taken as a reference benchmark for
computational codes. A number of codes were used to solve
either this problem or its three-dimensional formulation
[22, 23], including milonga using a structured grid [24]. The
original formulation can be found in the reference [10], and
there is a reproduction that may be easily found online in
reference [24]. The geometry consists of a one-quarter of
a PWR core depicted in Figure 9, and the homogeneous
macroscopic cross sections are listed in Table 1. An axial
buckling term 𝐵

2

𝑧,𝑔
= 0.8×10

−4 should be taken into account.
The external surface should be subject to a zero incoming
current condition, which may be written as

𝜕𝜙𝑔

𝜕𝑛
= −

0.4692

𝐷𝑔

⋅ 𝜙𝑔. (8)

The expected results are as follows.

(1) Maximum eigenvalue.
(2) Fundamental flux distributions:

(a) Radial flux traverses 𝜙𝑔(𝑥, 0) and 𝜙𝑔(𝑥, 𝑥).
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Figure 21: Time needed to mesh the geometry versus number of unknowns.

Table 1: Macroscopic cross-sections (units are not stated in the original reference, but they are assumed to be in cm−1 or cm as appropriate).

𝐷
1

𝐷
2

Σ
1→2

Σ
𝑎1

Σ
𝑎2

]Σ
𝑓2

Material
1 1.5 0.4 0.02 0.01 0.080 0.135 Fuel 1
2 1.5 0.4 0.02 0.01 0.085 0.135 Fuel 2
3 1.5 0.4 0.02 0.01 0.130 0.135 Fuel 2 + rod
4 2.0 0.3 0.04 0 0.010 0 Reflector

Note: the fluxes shall be normalized such that

1

𝑉core
∫
𝑉core

∑

𝑔

]Σ𝑓𝑔 ⋅ 𝜙𝑔𝑑𝑉 = 1. (9)

(b) Value and location of maximum power density.
This corresponds to maximum of 𝜙2 in the
core. It is recommended that the maximum
values of 𝜙2 both in the inner core and at the
core/reflector interface be given.

(3) Average subassembly powers 𝑃𝑘

𝑃𝑘 =
1

𝑉𝑘

∫
𝑉
𝑘

∑

𝑔

]Σ𝑓𝑔 ⋅ 𝜙𝑔𝑑𝑉, (10)

where 𝑉𝑘 is the volume of the 𝑘th subassembly and
𝑘 designates the fuel subassemblies as shown in
Figure 9.

(4) Number of unknowns in the problem, number of
iterations, and total and outer.

(5) Total computing time, iteration time, IO-time, and
computer used.

(6) Type and numerical values of convergence criteria.
(7) Table of average group fluxes for a square mesh grid

of 20 × 20 cm.
(8) Dependence of results on mesh spacing.

Even though the original problem is based on a quarter-
core situation, the problem has an eighth-core symmetry
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Figure 22: Time needed to read the mesh versus number of unknowns.

which cannot be taken into account by structured grids
which are the main target of the benchmark. However,
nonstructured grids can take into consideration any kind of
symmetry almost without loss of accuracy and at the same
time reducing roughly the number of unknowns by a half
and the associated computational effort needed to solve the
problem by a factor of four. Answers to items (1)–(7) can
be given completely by milonga using a single input file
(see Supplementary data in SupplementaryMaterial available
online at http://dx.doi.org/10.1155/2013/641863). As asked in
item (8), how results depend not only on the mesh spacing
but also on the meshing algorithm, on the grid’s elementary
geometric shape, and on the discretization scheme may shed
lights on the subject whichmay be evenmore interesting than
the numerical results themselves.

Taking advantage of milonga’s capability of reading and
parsing command-line arguments, the selection of the core
geometry (quarter or eighth), the meshing algorithm (delau-
nay [16] or delquad [25]), the shape of the elementary
entities (triangles or quadrangles), the discretization scheme
(volumes or elements), and the characteristic length ℓ𝑐 of
the mesh can be provided at run time. Fixing five values for
ℓ𝑐 = 4, 3, 2, 1, 0.5 gives 2 × 2 × 2 × 2 × 5 = 80 possible
combinations, which we solve with successive invocations to

milonga with the same input file but with different arguments
from a simple script. Figures 10, 11, 12, 13, 14, 15, 16, 17, and
18 show the results corresponding to items (1)–(7) for some
illustrative cases. The complete set of figures and the code
used to generate themmay be provided upon request. Table 2
compiles the answers to the problem for every case studied.

As the milonga code is still under development, its
numerical routines are not yet fully optimized nor designed
for parallel computation. Therefore, the reported times are
only rough estimates and should be taken with care. The
solution comprises five steps:

(1) generate the grid with the requested geometry, mesh-
ing algorithm, basic shape, and characteristic length
by calling to gmsh;

(2) read the generated mesh;
(3) build the matrices;
(4) solve the eigenvalue problem;
(5) compute the requested results.

The CPU time reported in Figures 10–18 is thus the
sum of all of these five steps, but not the time needed to
generate the figures—which in some caseswith coarsemeshes
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Figure 23: Time needed to build the matrices versus number of unknowns.

was considerably larger than the solution time itself. The
eigenvalue problem was solved using a multilayer iterative
Krylov-Schur method [26] with a tolerance relative to the
matrices norm

󵄩󵄩󵄩󵄩𝑅 ⋅ 𝜙 − (1/𝑘eff) ⋅ 𝐹 ⋅ 𝜙
󵄩󵄩󵄩󵄩

‖𝑅‖ + (1/𝑘eff) ⋅ ‖𝐹‖
< 10
−8
. (11)

The reported residual norm and relative error are
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑅 ⋅ 𝜙 −

1

𝑘eff
⋅ 𝐹 ⋅ 𝜙

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
,

󵄩󵄩󵄩󵄩𝑅 ⋅ 𝜙 − (1/𝑘eff) ⋅ 𝐹 ⋅ 𝜙
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩(1/𝑘eff) ⋅ 𝜙
󵄩󵄩󵄩󵄩

,

(12)

respectively. The fields marked as outer, linear, and inner
iterations refer to the number of steps needed to attain
the requested tolerance in each layer of the Krylov-Schur
algorithm. The computer used to solve the problem has an
Intel i7 920@ 2.67GHz processor with 4Gb of RAM running
Debian GNU/Linux Wheezy.

When using a finite volumes-based scheme over an
unstructured mesh, the solver has to gather information

about which cells are neighbors and which are not. Currently
gmsh does not write this kind of lists in its output files,
so milonga has to explicitly solve the neighbors problem.
Performing a linear search is an 𝑂(𝑁

2
) task, which is

unacceptable for problem sizes 𝑁 of interest. The code uses
a search based on a 𝑘-dimensional tree [27], which can in
principle be performed in𝑂(𝑁) steps. Still, for large values of
𝑁, the time needed to read and parse the mesh (number two
previously mentioned) is the bottleneck of the solution. This
step is not needed in finite elements, although the construc-
tion of the elementary matrices involves the computation
of the multidimensional Jacobians and integrals, which then
have to be assembled. Again, for large 𝑁, this step (number
three) takes up most of the time needed to solve the problem.

The Delaunay algorithm is a standard method for gen-
erating two-dimensional grids [16] by tessellating a plane
with triangles. If the mesh needs to be based on quadrangles
instead, a recombination algorithm can be used to transform
two adjacent triangles in one quadrangle, whenever is possi-
ble. However, for geometries which are based on rectangular
shapes there exist other algorithms [25] both for meshing
and for recombining the triangles that give rise to elementary
entities with right angles almost everywhere, which may be a
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Figure 24: Time needed to solve the eigenvalue problem versus number of unknowns.

desired property of the resulting grid. For finite elements, the
steps needed to build the matrices depend on the selection
of triangles or quadrangles as the basic elementary geometry
because the shape functions change. However, the number of
unknowns is the same as the number of nodes that does not
change after a recombination procedure. On the other hand,
the number of unknowns in the finite volumes schemes with
triangles is roughly twice as the number of unknowns with
quadrangles for the same grid.

Figure 19 shows how the computed static reactivity (i.e.,
1 − 1/𝑘eff) depends on the number of unknowns for each
of the sixteen combinations of geometry algorithm shape
scheme. The four accepted results published in the original
reference [10] are included for reference, although it should
be taken into account that said reactivities were computed
almost forty years ago. Figure 20 shows the total wall time
needed to solve the problem as a function of 𝑁𝐺, while
Figures 21, 22, 23, and 24 show the times needed for each
of the first four steps involved in the solution, maintaining
the same logarithmic scale for both the abscissas and the
ordinates. Green data represent finite volumes, whilst blue
bullets correspond to finite elements. Solid lines indicate
quarter-core and dashed lines eighth-symmetry. Fillet bullets

are results obtained by theDelaunay triangulation, and empty
bullets were computed with the delquad algorithm. Finally,
triangle-shaped data correspond to triangles and squares, and
diamonds denote quadrangles as the basic geometry of the
grid.

It can be seen that finite elements produce amuch smaller
dispersion of eigenvalues 𝑘eff than finite volumes with the
refinement of the mesh. This can be explained because finite
volumes methods rely on a geometric condition of the mesh
which may change abruptly if the meshing algorithm decides
to allocate the cells in a rather different form for small changes
in ℓ𝑐. Finite elements methods are less influenced by these
discontinuous lay-out changes of the elements. As expected,
eighth-core symmetries give almost the same results as the
quarter-core geometries with roughly half the unknowns.
For small problems, finite volumes run faster that finite
elements because the time needed to solve the neighbor
problem is negligible. When the problem size grows, this
time increases and exceeds the overhead implied in the con-
struction and assembly of the finite elements matrices. Also,
at least for this configuration, it is seen that the eigenvalue
problem is solved faster for finite volumes than for finite
elements.
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4. Conclusions

Unstructured grids provide the cognizant engineer with
a wide variety of possibilities to deal with the design or
analysis of nuclear reactor cores. These kinds of grids can
successfully reproduce continuous geometries commonly
found in reactor cores such as cylinders, and therefore,
not only can the diffusion equation be better approximated
inside the domain of definition but also the fulfillment of
boundary conditions is improved. A free computer code
was written from scratch that is able to completely solve
the 2D IAEA PWR Benchmark using unstructured grids
for sixteen combinations of geometry, meshing algorithm,
basic shape, and discretization scheme plus any value of
the grid’s characteristic length by using a single input file.
The complete set of input files and code—executable and
source—is available either online or upon request, with
comments, experiences, suggestions, and corrections being
more than welcome. Further development should include
tackling full three-dimensional geometries with complete
thermal hydraulic feedback in order to analyze how the
solutions of the coupled neutronic-thermal problem depend
on the spatial discretization scheme of the neutron leakage
term. Parallelization of the computation and assembly of the
matrices and of the solution of the eigenvalue problem and
its implementation using GPUs are also desired features to
implement. A problemwith direct applications that the future
versions of milonga ought to solve is the analysis of how the
geometry of the absorbing materials should be taken into
account in structured coarse grids in order to mitigate effects
such as the rod-cusp problem.

Suitable schemes for approximating the continuous dif-
ferential operators by discrete matrix expressions include
finite volumes and finite elements families. Finite volumes
methods compute cell mean values, whilst finite elements
give functional values at the grid’s nodes. In general, finite
elements are less sensitive to changes in the mesh so the
results they provide do not change significantly for different
meshing algorithms or elementary shapes. Small problems
are best solved by finite volumes as the neighbor-finding
problem is faster than the process of building and assembling
the eigenvalue-problem matrices. For a large number of
unknowns, the process of finding which cell is neighbor of
which—even based on a 𝑘-dimensional tree—overwhelms
the computation and assembly of elementary matrices, and
finite-element methods perform better.
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