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Sensors health monitoring is essentially important for reliable functioning of safety-critical chemical and nuclear power plants.
Autoassociative neural network (AANN) based empirical sensor models have widely been reported for sensor calibration
monitoring. However, such ill-posed data driven models may result in poor generalization and robustness. To address above-
mentioned issues, several regularization heuristics such as training with jitter, weight decay, and cross-validation are suggested
in literature. Apart from these regularization heuristics, traditional error gradient based supervised learning algorithms for
multilayered AANNmodels are highly susceptible of being trapped in local optimum. In order to address poor regularization and
robust learning issues, here, we propose a denoised autoassociative sensor model (DAASM) based on deep learning framework.
Proposed DAASM model comprises multiple hidden layers which are pretrained greedily in an unsupervised fashion under
denoising autoencoder architecture. In order to improve robustness, dropout heuristic and domain specific data corruption
processes are exercised during unsupervised pretraining phase. The proposed sensor model is trained and tested on sensor data
from a PWR type nuclear power plant. Accuracy, autosensitivity, spillover, and sequential probability ratio test (SPRT) based fault
detectability metrics are used for performance assessment and comparison with extensively reported five-layer AANN model by
Kramer.

1. Introduction

From safety and reliability stand point, sensors are one of the
critical infrastructures in modern day automatic controlled
nuclear power plants [1]. Decision for a control action,
either by operator or by automatic controller, depends on
correct plant state reflected by its sensors. “Defense in depth”
(defense in depth safety concept requires mission critical
systems to be redundant and diverse in implementation to
avoid single mode failure scenarios) safety concept for such
mission critical processes essentially requires a sensor health
monitoring system. Such sensor health monitoring system
hasmultifaceted benefits which are just not limited to process
safety, reliability, and availability but also in context of cost

benefits from condition based maintenance approach [2, 3].
A typical sensor health monitoring system may include tasks
of sensor fault detection, isolation, and value estimation
[4]. Basic sensor monitoring architecture comprises two
modules as depicted in Figure 1.The first module implements
a correlated sensormodel which provides analytical estimates
for monitored sensor’s values. Residuals values are evaluated
by differencing the observed and estimated sensor values and
are supplied to residual analysis module for fault hypothesis
testing. These correlated sensor models are based on either
the first principles models (e.g., energy conservation and
material balance) or history based data driven models [5].
However, sensor modeling using empirical techniques from
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Figure 1: Integrated sensor estimation and fault detection architecture.

statistics and artificial intelligence are an active area of
research [6, 7].

In order to model complex nonlinearity in physical
process sensors, autoassociative neural network based sensor
models had widely been used and reported for calibration
monitoring in chemical processes [8–11] and nuclear power
plants [12–15]. Data driven training procedures for such
neural network based sensor models discover the underlying
statistical regularities among input sensors from history data
and try to model them by adjusting network parameters.
Five-layer AANN is one of the earliest autoassociative archi-
tectures proposed for sensor and process modeling [8].

In contrast to shallow single layered architectures, these
multilayered neural architectures have flexibility for model-
ing complex nonlinear functions [16, 17]. However, harness-
ing the complexity offered by these deep NN models with-
out overfitting requires effective regularization techniques.
Several heuristics based standard regularization methods
are suggested and exercised in literature [18, 19] such as
training with jitter (noise), Levenberg-Marquardt training,
weight decay, neuron pruning, cross validation, and Bayesian
regularization. Despite all these regularization heuristics, the
joint learning of multiple hidden layers via backpropagation
of error gradient inherently suffers from gradient vanishing
problem at the earlier layers [20]. This gradient instability
problem restricts the very first hidden layer (closer to input)
from fully exploiting the underlying structure in original data
distribution. Result is the poor generalization and prediction
inconsistency. Problem gets evenmore complex and hard due
to inherent noise and colinearity in sensor data.

Considering the complexity and training difficulty due
to gradient instability in five-layer AANN topology, Tan
and Mayrovouniotis proposed a shallow network topology
of three layers, known as input trained neural network
(ITN-network) [21]. However, the modeling flexibility gets
compromised by shallow architecture of ITN-network.

The regularization and robustness issues associated with
these traditional learning procedures motivate the need for
complementary approaches. Contrary to shallow architecture
approach by Tan andMayrovouniotis [21], here, we are inter-
ested in preserving the modeling flexibility offered by many
layered architectures without being compromised on gener-
alization and robustness of the sensormodel. Recent research
on greedy layerwise learning approaches [22, 23] has been
found successful for efficient learning in deep multilayered

neural architectures for image, speech, and natural language
processing [24]. So, for a multilayered DAASM, we pro-
posed to address poor regularization through deep learning
framework. Contrary to joint multilayer learning methods
for traditional AANN models, the deep learning framework
employs greedy layerwise pretraining approach. Following
the deep learning framework, each layer in the proposed
DAASM is regularized individually through unsupervised
pretraining under denoising based learning objective. This
denoising based learning is commenced under autoencoder
architectures as elaborated in Section 3. It essentially serves
several purposes:

(1) Helps deep models in capturing robust statistical
regularities among input sensors.

(2) Initializes network parameters in basin of attraction
with good generalization properties [17, 25].

(3) Implicitly addresses model’s robustness by learning
hidden layer mappings which are stable and invariant
to perturbation caused by failed sensor states.

Moreover, robustness to failed sensor states is not an
automatic property of AANN based sensor models but is
primarily essential for fault detection. Consequently, tradi-
tional AANN based sensor model requires explicit treatment
for robustness against failed sensor states. However, for
the case of DAASM, an explicit data corruption process is
exercised during denoising based unsupervised pretraining
phase. The proposed corruption process is derived from
drift, additive, and gross type failure scenarios as elaborated
in Section 4.1. Robustness to faulty sensor conditions is an
implicit process of denoising based unsupervised pretrain-
ing phase. Robustness of the proposed DAASM, against
different sensor failure scenarios, is rigorously studied and
demonstrated through invariance measurement at multiple
hidden layers in theDAASMnetwork (see Section 7).The full
DAASM architecture and layerwise pretraining is detailed
in Section 4. We will compare the proposed DAASM based
sensor model with an extensively reported five-layer AANN
based sensor model by Kramer. Both sensor models are
trained on sensor data sampled from full power steady
operation of a pressurizedwater reactor. Finally, performance
assessment with respect to accuracy, autosensitivity, cross-
sensitivity, and fault detectability metrics is conducted under
Section 8.
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2. Problem Formulation

In context of sensor fault detection application, the purpose
of a typical sensor reconstruction model is to estimate
correct sensor value from its corrupted observation. The
objective is to model relationships among input sensors
which are invariant and robust against sensor faults. So,
empirical learning for robust sensor relationships can be
formulated as sensor denoising problem. However, contrary
to the superimposed channel/acquisition noise, the term
“denoising” specifically corresponds to the corruption caused
by gross, offset, and drift type sensor failures. Under such
denoising based learning objective, the empirical sensor
model can be forced to learn a function that captures the
robust relationships among correlated sensors and is capable
of restoring true sensor value from a corrupted version of it.

Let 𝑆True and �̃�Obs be the normal and corrupted sensor
states related by some corruption process 𝜑(⋅) as follows:

�̃�Obs = 𝜑 (𝑆True) , (1)
where 𝜑 : 𝑅

𝑛

→ 𝑅
𝑛 is a stochastic corruption caused by

an arbitrary type sensor failure. The learning objective for
denoising task can be formulated as

𝑓 = arg min
𝑓

𝐸
𝑆True


𝑓 (�̃�Obs) − 𝑆True



2

2

. (2)

Under minimization of above formulation, the objective of
empirical learning is to search for 𝑓 that best approximates
𝜑
−1. Furthermore, we will formulate and learn such sensor

value estimation and restoration function under neural net-
work based autoassociative model driven by deep learning
frame work.

2.1. Basic Deep Learning Framework. Neural network
research suggests that the composition of several levels of
nonlinearity is key to the efficient modeling of complex
functions. However, optimization of deep architecture with
traditional gradient based supervised learning methods has
resulted in suboptimal solutions with poor generalization.
Joint learning of multiple hidden layers via backpropagation
of error gradient inherently suffers from gradient vanishing
problem at the earlier layers and hence constrains the hidden
layers from fully exploiting the underlying structure in
original data distribution. In 2006, Hinton in his pioneering
work proposed a systematic greedy layer by layer training
of a deep network. The idea is to divide the training of
successive layers of a deep network in the form of small
subnetworks and use unsupervised learning to minimize
input reconstruction error. This technique successfully
eliminates the shortcomings of the gradient based learning
by averting the local minima. Deep learning framework
employs a systematic three-step training approach as follows:

(1) Pretraining one layer at a time in a greedy way.
(2) Using unsupervised learning at each layer in a way

that preserves information from the input and disen-
tangles factors of variation.

(3) Fine-tuning the whole network with respect to the
ultimate criterion of interest.
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Figure 2: Suppose training data ( ) concentrate near a low-
dimensional manifold. Corrupted examples ( ) obtained by apply-
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Figure 3: Basic denoising autoencoder (DAE) scheme. An empty
circle depicts a single neuron. A filled circle depicts corrupted units
in input vector.

3. Building Block for DAASM

In relation to empirical modeling approach as formulated
in Section 2, denoising autoencoder (DAE) [26] is the most
promising building block for pretraining and composition
of deep autoassociative sensor model. DAE is a variant of
the traditional autoencoder neural network, where learning
objective is to reconstruct the original uncorrupted input
𝑥 from partially corrupted or missing inputs �̃�. Under
training criterion of reconstruction errorminimization, DAE
is forced to conserve information details about the input
at its hidden layer mappings. The regularization effect of
denoising based learning objective pushes the DAE network
towards true manifold underlying the high dimension input
data as depicted in Figure 2. Hence, implicitly captures the
underlying data generating distribution by exploring robust
statistical regularities in input data. A typical DAE architec-
ture, as depicted in Figure 3, comprises an input, output, and
a hidden layer. An empty circle depicts a neuron unit. The
input layer acts as a proxy layer to the original clean input.
Meanwhile, the red filed units in input layer are proxies to
clean input units which are randomly selected for corruption
under some artificial noise process. 𝐿(𝑥, �̂�) is an empirical
loss function to be optimized during training process.

Let 𝑥
𝑖
be the original data vector with 𝑖 = 1, 2, . . . , 𝑁

elements, while �̃�
𝑖
represents the partially corrupted version

obtained through corruption process 𝜂
𝐷
. The encoder and
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decoder functions corresponding to DAE in Figure 3 are
defined as

ℎ (�̃�
𝑖
) = 𝑓
𝜃
(�̃�) = 𝜎 (𝑊�̃�

𝑖
+ 𝑏) ,

�̂� (�̃�
𝑖
) = 𝑔
𝜃
 (ℎ) = 𝜎 (𝑊



ℎ (�̃�
𝑖
) + 𝑏


) .

(3)

The encoder function 𝑓
𝜃
(�̃�) transforms input data to ℎ(�̃�

𝑖
)

mapping through a sigmoid type activation function 𝜎(𝑥) =

(1 + exp−𝑥)−1 at hidden layer neurons. �̂�(�̃�
𝑖
) is an approxi-

mate reconstruction of 𝑥 obtained through decoder function
𝑔
𝜃
(ℎ) through reverse mapping followed by sigmoid activa-

tion at output layer. Meanwhile, 𝜃 = {𝜃, 𝜃


} = {𝑊, 𝑏,𝑊


, 𝑏


}

are the weight and bias parameters corresponding to these
encoder and decoder functions.

In relation to sensor reconstruction model as formulated
in Section 2, the above-described DAE can be reinterpreted
as follows:

𝑥 ∼ 𝑆 = {𝑠
𝑖
}
𝑛

𝑖=1
,

�̃� ∼ �̃� = 𝜂
𝐷
((�̃� | 𝑠)) ,

�̂� ∼ �̂� = 𝜂
−1

𝐷
(�̃�) .

(4)

𝑆 are the input sensor values under fault free steady state
operation. �̃� is a partially corrupted input which is generated
through an artificial corruption process 𝜂

𝐷
on selected subset

in input sensor set {𝑠
𝑖
}. �̂� are the estimated sensor values

by reconstruction function learnt on clean and corrupted
inputs 𝑆 and �̃�. Network parameters 𝜃, for DAE, can be
learned in an unsupervised setting through minimization of
the reconstruction loss in

𝐿 (𝑥, �̂�; 𝜃) ∼ 𝐿 (𝑆, �̂�; 𝜃) = arg min
𝜃

𝑁

∑

𝑖=1


𝑆 − �̂�



2

2

. (5)

4. DAASM Architecture and Regularization

In order to capture complex nonlinear relationships among
input sensors, a multilayered architecture is proposed for
denoised autoassociative sensormodel (DAASM). Individual
layers in network hierarchy are pretrained successively from
bottom to top. For a well regularized sensor model, the
structure and optimization objective in greedy layerwise
pretraining play a crucial role. Two heuristics are applied for
robust learning in DAASM as follows:

(1) Each successive layer in multilayered DAASM
assembly is pretrained in an unsupervised fashion
under denoising autoencoder (DAE) as elaborated in
Section 3.

(2) To address robustness, data corruption processes for
denoising based pretraining task are incorporated
with domain specific failure scenarios which are
derived from different types of sensor faults. These
heuristics serve several purposes:

(i) Forcing the DAE output to match the orig-
inal uncorrupted input data acts as a strong

regularizer. It helps avoid the trivial identity
learning especially under overcomplete hidden
layer setting.

(ii) Denoising procedure during pretraining leads
to latent representations that are robust to input
perturbations.

(iii) Addition of corrupted data set increases train-
ing set size and thus is useful in alleviating
overfitting problem.

Full DAASM is learnt in two stages: (1) an unsupervised
pretraining phase and (2) a supervised fine-tuning phase. As
shown in Figure 4, the pretraining phase follows a hierarchal
learning process in which successive DAEs in the stack
hierarchy are defined and trained in an unsupervised fashion
on the preceding hidden layer activations. Full sensor model
is constructed by stacking hidden layers from unsupervised
pretrained DAEs followed by a supervised fine-tuning phase.
For each DAE in the stack hierarchy, the optimization
objective for unsupervised pretraining will remain the same
as in relation (5). However, weight decay regularization term
is added to the loss function which constrains network
complexity by penalizing large weight values. In relation (6),
{𝑊,𝑊



} are the network weight parameters corresponding to
encoder and decoder function, while 𝜆 is the weight decay
hyperparameter:

𝐿 (𝑆, �̂�; 𝜃) =
1

𝑁

𝑁

∑

𝑖=1


𝑆 − �̂�



2

2

+
𝜆

2
(‖𝑊‖

2

+

𝑊



2

) . (6)

In a typical DAE architecture, a number of input and
output layer neurons are fixed corresponding to input data
dimension 𝑑; however, middle layer neuron counts 𝑑

 can
be adjusted according to problem complexity. Literature in
deep learning suggests that under complete middle layer
(𝑑


< 𝑑), for DAE architecture, results in dense compressed
representation at the middle layer. Such compressed repre-
sentation has tendency to entangle information (change in a
single aspect of the input translates into significant changes
in all components of the hidden representation) [27]. This
entangling tendency directly affects the cross-sensitivity of
sensor reconstruction model especially for the case of gross
type sensor failure. Considering that, here, we choose for
an overcomplete hidden layer setting (𝑑



> 𝑑). Under
overcomplete setting, denoising based optimization objective
acts as a strong regularizer and inherently prevents DAE from
learning identity function.

Anticlockwise flow in Figure 4 shows architecture and
greedy layer by layer unsupervised pretraining procedure for
all hidden layers in DAASM stack. For each hidden layer ℎ

𝑙
,

a DAE block is shown, in which an encoder function 𝑓
𝑙

𝜃
(⋅)

and a decoder function 𝑔
𝑙

𝜃
(⋅) are learnt by minimizing the

loss function corresponding to fault free reconstruction of the
inputs as in relation (6). For the case of first hidden layer ℎ

1
,

the corresponding DAE-1 is trained directly on sensor data
using 𝐿(𝑆, �̂�, 𝜃) loss function in (6). However, hidden layers
ℎ
2
through ℎ

3
are learnt on data from preceding hidden layer

activations using recursive relation in (7). So the loss function
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Figure 4: DAASM architecture and greedy learning procedure. Greedy layerwise pretraining procedure is depicted by counterclockwise flow
in the figure.

corresponding to DAE-1 and DAE-2 can be represented as
𝐿(ℎ
𝑙
, ℎ̂
𝑙
, 𝜃), where ℎ̂ is an approximate reconstruction of ℎ:

ℎ
𝑙

= 𝑓
𝑙

𝜃
(ℎ
𝑙−1

;𝑊
𝑙
) = sigm (𝑊

𝑙

ℎ
𝑙−1

+ 𝑏
𝑙

) ;

1 ≤ 𝑙 ≤ 𝐿 = 3.

(7)

⟨𝑊⟩ are the network weights corresponding to encoder part
in DAE.

The noise process 𝜂
𝑆

𝐷
(�̃� | 𝑆) for DAE-1 corresponds to

a salt-and-pepper (SPN) type corruption process, in which
a fraction of the input sensor set 𝑆 (chosen at random for
each example) is set to minimum ormaximum possible value
(typically 0 or 1).The selected noise processmodels gross type
failure scenarios and drives the DAE-1 network to learning
invariance against such type of sensor failures. The noise
functions 𝜂

ℎ
2

𝐷
(ℎ̃
1

| ℎ
1
(�̃�)) employ a corruption process in

which ℎ
1
(𝑆) and ℎ

1
(�̃�) from pretrained DAE-1 will be used as

the clean and noisy input for DAE-2 pretraining. Finally, an
additive Gaussian type corruption process (AGN) : �̃� | 𝑥 ∼

𝑁(𝑥, 𝜎
2

) is used for DAE-3 noise function 𝜂
ℎ
3

𝐷
(ℎ̃
2
| ℎ
2
(�̃�)). We

will further mathematically formulate and discuss all these
corruption processes in detail in Section 4.1.

These pretrained layers will initialize the DAASM net-
work parameters in basin of attractions which have good
generalization and robustness property. In order to generate a
sensormodel that is fairly dependent on all inputs, “Dropout”
[28] heuristic is applied on ℎ

3
hidden units during DAE-

3 pretraining. Random dropouts make it hard for latent
representations at ℎ

3
to get specialized on particular sensors

in the input set. Finally, pretrained DAEs are unfolded into a
deep autoassociator network with 𝐿 number of encoder and
𝐿 − 1 decoder cascade as shown in unsupervised fine-tuning
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phase in Figure 3. The final network comprises one input
layer, one output, and 2𝐿 − 1 hidden layers. The input sensor
values flow through encoder cascade 𝑓 = 𝑓

𝑙

𝜃
𝑜𝑓
𝑙−1

𝜃
𝑜 ⋅ ⋅ ⋅ 𝑓

1

𝜃

using recursive expression in (7) and a decoder cascade 𝑔 =

𝑔
1

𝜃
𝑜𝑔
𝑙+1

𝜃
 𝑜 ⋅ ⋅ ⋅ 𝑔

𝐿−1

𝜃
 using the following equations:

ℎ̂
𝐿

= ℎ
𝐿

,

ℎ̂
𝑙

= 𝑔
𝑙

𝜃
 (ℎ
𝑙+1

;𝑊


𝑙
) = sigm(𝑊



𝑙
ℎ̂
𝑙+1

+ 𝑏


𝑙
) ;

1 ≤ 𝑙 ≤ 𝐿 − 1 = 2,

�̂� = 𝑔
0

(ℎ̂
1

) = 𝑊


0
ℎ̂
1

+ 𝑏


0
,

(8)

where ⟨𝑊


, 𝑏


⟩ are network weights and biases of the decoder
part in DAE. The entire network is fine-tuned using a
semiheuristic based “Augmented Efficient Backpropagation
Algorithm,” proposed by Embrechts et al. [29], with following
minimization objective:

𝐿 (𝑆, �̂�; 𝜃) =
1

𝑁

𝑁

∑

𝑖=1


𝑆 − �̂�



2

2

+
𝜆

2

2𝐿

∑

𝑘=1

𝑊𝑘


2

2
. (9)

A 𝐿−2weight decay term is added to the above loss function
for network regularization purpose during fine-tuning phase.
To circumvent the overfitting, an early stopping procedure,
which uses validation error as proxy for the generalization
performance, is used during fine-tuning phase.

4.1. Corruption Process 𝜂(⋅) for Invariance. For the case of cal-
ibration monitoring, an ideal DAASM should learn encoder
and decoder functions which are invariant to failed sensor
states. So during DAE based pretraining phase, engineered
transformations from prior knowledge about the involved

failure types are imposed on clean input. Different data
corruption processes 𝜂(⋅) are devised for learning of each
successive hidden layer. Denoising based learning objective
drives the hidden layermappings to get invariant against such
engineered transformations on input data. It is important to
understand that denoising based learning approach does not
correct the faulty signal explicitly; rather it seeks to extract
statistical structure among input signals which is stable and
invariant under faults and hence implicitly estimates correct
value for faulty signal. Two failure types are identified and
defined as follows:

(i) Gross sensor failure: it includes catastrophic sensor
failures. Salt-and-pepper type corruption process, in
which a fraction ] of the input sensor set 𝑆 (chosen
at random for each example) is set to minimum or
maximum possible value (typically 0 or 1), is selected
for modeling gross type failure scenarios.

(ii) Miscalibration sensor failure: it includes drift, multi-
plicative, and outlier type sensor failures and is mod-
eled through isotropic Gaussian noise (GS) : �̃� | 𝑥 ∼

𝑁(𝑥, 𝜎
2

). Instead of selecting an arbitrarily simple
noise distribution, we estimated the distribution of
sensor’s natural noise and exaggerated it to generate
noisy training data.

We propose to distribute the denoising based invariance
learning task across multiple hidden layers in the DAASM
network. Both gross and miscalibration noise types are
equally likely to occur in the input space. Gaussian type
corruption process is not suitable for input data space 𝑆

because of its low denoising efficiency against gross type
sensor failures. Contrarily, salt-and-pepper type corruption
process covers two extremes of sensors failure range and
hence provides an upper bound on perturbation due to
minor offset and miscalibration type sensor failures. So, salt-
and-pepper type corruption process is devised for DAE-1
pretraining as follows:

𝜂
𝑆

𝐷
(�̃� | 𝑆) = SPN

{{{{{{{{{{

{{{{{{{{{{

{

�̃�
𝑖
= 𝑠
𝑖
, 𝑖 ∉ 𝑗,

�̃�
𝑖
= 𝑘, 𝑖 ∈ 𝑗, 𝑘 = {0, 1} with

{{

{{

{

Pr (0) =
1

2

Pr (1) =
1

2

}}

}}

}
𝑖!=V𝑛

⋃

𝑖=1

{𝑗
𝑖⋅⋅⋅𝑁=V𝑛} , 𝑗

𝑖
= [1, 𝑛] = rand ( ) , ] = input fraction, 𝑛 = input dimension.

(10)

Gross type sensor failures usually have high impact on cross-
sensitivity and can trigger false alarms in other sensors.
Such high cross-sensitivity effect may affect isolation of
miscalibration type secondary failures in other sensors. In
order tominimize the effect, a corruption procedure in which
ℎ
1
(𝑆) and ℎ

1
(�̃�) from pretrained DAE-1 are proposed as the

clean and noisy input for DAE-2 pretraining.This corruption
method is more natural since it causes next hidden layer
mappings to get invariant against cross-sensitivity effects

and network aberrations from previous layer.The corruption
process is supposed to improve invariance in ℎ

2
layer map-

pings against cross-sensitivity effects from gross type sensor
failures:

𝜂
ℎ
2

𝐷
(ℎ̃
1
| ℎ
1
(�̃�)) = ℎ̃

𝑖

1
= ℎ
𝑖

1
(�̃�) ,

where �̃� = 𝜂
𝑆

𝐷
(�̃� | 𝑆) = SPN.

(11)
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Table 1: List of NPP sensors.

Transmitter ID Transmitter name Service Units Low range High range
FF1 Feed flow 1 Feedwater flow KG/S 0 600
FF2 Feed flow 2 Feedwater flow KG/S 0 600
SF1 STM flow 1 Steam flow KG/S 0 600
SF2 STM flow 2 Steam flow KG/S 0 600
SP1 STM PSR 1 Steam pressure BARG 0 100
SP2 STM PSR 2 Steam pressure BARG 0 100
SP3 STM PSR 3 Steam pressure BARG 0 100
PP1 PZR PSR 1 Pressurizer pressure BARG 116 170
PP2 PZR PSR 2 Pressurizer pressure BARG 116 170
PL1 PZR LVL 1 Pressurizer level % 0 100
PL2 PZR LVL 2 Pressurizer level % 0 100
SGL1 SG LVL NR 1 range Steam generator level narrow % 0 100
SGL2 SG LVL NR 2 range Steam generator level narrow % 0 100

Here ℎ
𝑖

1
(𝑠) corresponds to hidden layer activations against

clean sensors at the input layer, while ℎ
𝑖

1
(�̃�) corresponds to

hidden layer activations against partially faulted sensor set.
Finally, to add robustness against small offset and

miscalibration type sensor failures, an isotropic Gaussian

type corruption process is devised for DAE-3 pretrain-
ing. The corruption procedure corrupts the ℎ

2
hidden

layer mappings, against clean sensors at the input layer
as ℎ
2
(ℎ
1
(𝑆)), by employing an isotropic Gaussian noise as

follows:

𝜂
ℎ
3

𝐷
(ℎ̃
2
| ℎ
2
(𝑆)) = AGN

{{{{{{{

{{{{{{{

{

ℎ̃
𝑖

2
= ℎ
𝑖

2
(ℎ
𝑖

1
(𝑆)) , 𝑖 ∉ 𝑗

ℎ̃
𝑖

2
| ℎ
𝑖

2
∼ 𝑁(𝑠, 𝜎

2

𝐼) , 𝑖 ∈ 𝑗

𝑖!=V𝑛

⋃

𝑖=1

{𝑗
𝑖⋅⋅⋅𝑁=V𝑛} , 𝑗

𝑖
= [1, 𝑛] = rand ( ) , ] = input fraction, 𝑛 = total inputs.

(12)

Finally, clean input is used for the supervised fine-tuning
phase in Figure 4.

5. Data Set Description

Intentionally, for study purposes, we limited the modeling
scope of DAASM to full power steady operational state. It is
the common state in which NPP operates from one refueling
to the next. However, in practice it is not possible for NPP
systems to be in perfect steady state. Reactivity induced
power perturbations, natural process fluctuations, sensor and
controller noises, and so forth, are some of the evident causes
forNPP parameter fluctuations and are responsible for steady
state dynamics. Considering that the collected data set should
be fairly representative of all possible steady state dynamics
and noise, the selected sensors are sampled during different
time spans of one complete operating cycle.The training data
set consists of 6104 samples collected during the first two
months of full power reactor operations after refueling cycle.
Meanwhile 3260 and 2616 samples are reserved for validation
and test data sets, respectively. Five test data sets are used for
model’s performance evaluation. Each test data set consists
of 4360 samples collected during eight-month period after
refueling operation. In order to account for fault propagation

phenomenon due to large signal groups, a sensor subset is
selected for this study. An engineering sense selection based
on physical proximity and functional correlation is used to
define the sensor subset for this study. Thirteen transmitters,
as listed in Table 1, are selected from various services in
nuclear steam supply systemof a real PWR typeNPP. Figure 5
shows the spatial distribution of the selected sensors.

Starting from postrefueling full power startup, the data
set covers approximately one year of selected sensors values.
Selected sensors are sampled every 10 seconds for consecutive
12-hour time window. Figure 6 shows data plot from few
selected sensors.

6. Model Training

NPP sensor’s data are divided into training, test, and valida-
tion set. Each sensor data set is scaled in 0.1 to 0.9 ranges by
using lower and upper extremities corresponding to individ-
ual sensor. However, the values 0 and 1 are explicitly reserved
for gross and saturation type sensor failures, respectively.
Training data consists of 4320 samples from full power steady
state reactor operation. Meanwhile test and validation data
are used for sensor model optimization and performance
evaluation, respectively. The training setup for DAASM
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Figure 5: Spatial distribution of selected sensor set.
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Figure 6: Plot of NPP sensors listed in Table 1.

employs two learning stages, an unsupervised learning phase
and supervised training phase. DAE based greedy layerwise
pretraining of each hidden layer, as described in Section 4, is
performed usingminibatches from training data set. Stochas-
tic gradient descent based learning algorithm is employed

as suggested in practical training recommendations by [30].
Finally, standard backpropagation algorithm is employed for
supervised fine-tuning in fully stacked DAASM in Figure 4.
Supervised training is performed using clean sensor input
only. The model hyperparameters are set by random grid
searchmethod [31]. A summary of the training hyperparame-
ters corresponding to optimumDAASM is shown in Table 2.

7. Invariance Test for Robustness

A layer by layer invariance study is conducted to test the
robustness of fully trained DAASM against failed sensor
states. Data corruption processes applied during pretraining
are essentially meant to learn hidden layer mappings which
are stable and invariant to faulty sensor conditions. The
following invariance test, for successive hidden layers in final
DAASM stack, can provide an insight into the effectiveness
of data corruption processes exercised during denoising
based pretraining phase. Invariance, for hidden layer map-
pings ℎ

𝑙
, is quantified through mean square error (MSE)

between Euclidean (𝐿2) normalized hidden layer activation
⟨ℎ
𝑖
⟩
𝑛
/‖⟨ℎ
𝑖
⟩
𝑛
‖
2
and ⟨ℎ̃

𝑖
⟩
𝑛
/‖⟨ℎ̃
𝑖
⟩
𝑛
‖
2
against clean and faulty

sensors, respectively. Invariance test samples are generated
by corrupting randomly selected sensors in input set with
varying level of offset failures [5%–50%]. The MSE against
each offset level is normalized across hidden layer dimension
𝐷
ℎ
and number of test samples 𝑇

𝑁
as shown in (13). Finally

theseMSE values are normalized with maximalMSE value as
in (14). Normalized MSE curves for each successive hidden
layer are plotted in Figure 7. Consider
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Table 2: Summary of DAASM hyperparameters.

Hyperparameter type Tested hyperparameter values Successful hyperparameter
against optimum model

Pretrained DAE units 3 3

Network architecture

𝐼
𝑛
− 𝐸(𝑛, 𝑝) − 𝐵

𝑛
− 𝐷(𝑛, 𝑝) − 𝑜

𝑛

𝐼
𝑛
: input layer neurons

𝐵
𝑛
: bottleneck layer neurons
𝑜
𝑛
: output layer neurons

𝐸(𝑛, 𝑝): encoder cascade
𝐷(𝑛, 𝑝): decoder cascade

𝑛: number of layers
𝑝: neurons per layer

13 − 𝐸(2, 20) − 8 −

𝐷(2, 20) − 13

Learning rate for
unsupervised pretraining {0.1, 5 × 10

−2

, 1 × 10
−2

, 5 × 10
−3

, 1 × 10
−3

, 5 × 10
−4

} [5 × 10
−2, 1 × 10

−2

]

Learning rate for
supervised training

Scheduled learning rate based on training error
monitoring:

{0.15, 0.1, 0.005, 0.001, 0.0001}

{0.1, 0.005, 0.001}

Mean pretraining error for
each hidden layer

Corresponding to minima observed during cross
validation 10

−4

Weight decay, 𝜆 {10
−3

, 10
−4

, 10
−5

} 10
−3

Momentum, 𝑚 [0.85, 0.99] [0.95, 0.98]

Input corruption level, ]
Corrupted input fraction: {10%, 25%, 30%, 40%}

Gaussian corruption (% of sensor’s nominal value):
{0.05, 0.10, 0.20, 0.35, 0.50}

Input fraction: [25–35]%
Gaussian noise level:

[0.10–0.25]
Dropout fraction in DAE-3 {0.10, 0.20} 0.1

MSE (𝐻
𝑙
,%Offset) =

(1/𝑇
𝑁
)∑
𝑇
𝑁

𝑛=1
(⟨ℎ
𝑖
⟩
𝑛
/
⟨ℎ𝑖⟩𝑛

2
− ⟨ℎ̃
𝑖
⟩
𝑛

/

⟨ℎ̃
𝑖
⟩
𝑛

2
)
2

𝐷
ℎ

,

1 ≤ 𝑙 ≤ 𝐿 = No. of encoder layers = 3; %Offset = 5%, 10%, 20% ⋅ ⋅ ⋅ 50%,

(13)

MSENormalized (𝐻
𝑙
) =

MSE (𝐻
𝑙
,%Offset)

MSE (𝐻
𝑙
,%Max-Offset)

. (14)

LayerwiseMSEplots, in Figure 7, clearly show that invariance
to faulty sensor conditions increases towards higher layers in
the network hierarchy. In these plots, lower curves indicate
higher level of invariance. To further investigate the effect
of increasing invariance on reconstructed sensor values, a
sensor model, corresponding to the level “𝐿” of each hidden
layer, is assembled via encoder and decoder cascade. Robust-
ness of these partial models is quantified through (1 − 𝑆

𝑖

Auto).
Autosensitivity values 𝑆

𝑖

Auto (see Section 8.2) are calculated
against varying offset failure levels. In Figure 8, layerwise
increase in robustness confirms that increased invariance
helps in improving overall model’s robustness.

8. DAASM versus K-AANN
Performance Analysis

Here we will assess and compare the performance of DAASM
with popular five-layer AANNmodel originally proposed by
Kramer [8]. The K-AANN model is trained with same data

set as used for DAASM and is regularized with Levenberg-
Marquardt algorithm. Furthermore, to improve robustness,
training with jitter heuristic is employed by introducing a
noise of 10% magnitude on clean sensor input. The five-layer
topology 13-17-9-17-13 is found to be optimum for K-AANN
model. Both DAASM and K-AANN model are compared
through accuracy, robustness, spillover, and fault detectability
based performance metrics in the following subsections. All
performance metrics are calculated against test data set,
consisting of 4320 samples frompostrefueling full powerNPP
operations. Performance metric values are reported.

8.1. Accuracy. Mean square error (MSE) of observed and
model estimated sensor values, against fault free test data set,
is used to quantify accuracy metric as follows:

Accuracy =
1

𝑁

𝑁

∑

𝑖=1

(�̂�
𝑖
− 𝑆
𝑖
)
2

. (15)
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Figure 7: Layerwise invariance in DAASM. Lower curves depict
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Figure 8: Robustness measure (1 − autosensitivity) at multiple
hidden layers in DAASM. Higher curves depict high robustness.

The MSE values of all sensors are normalized to their
respective span and are presented as percent span in Figure 9.
Being an error measure, the lower MSE values by DAASM
signify its prediction accuracy.

8.2. Robustness. Robustness is quantified through autosensi-
tivity as defined by [32, 33]. It is themeasure of model’s ability
to predict correct sensor values under missing or corrupted
sensor states. The measure is averaged over an operating
region defined by 𝑘 samples from test data set as follows:

𝑆
𝑖

Auto =
1

𝑁

𝑁

∑

𝑘=1



�̂�
drift
𝑘𝑖

− �̂�
𝑘𝑖

𝑠
drift
𝑘𝑖

− 𝑠
𝑘𝑖



, (16)

where 𝑖 and 𝑘 are indexes corresponding to sensors and their
respective test samples. 𝑠

𝑘𝑖
is the original sensor value without

fault. �̂�
𝑘𝑖
is the model estimated sensor value against 𝑠

𝑘𝑖
. 𝑠drift
𝑘𝑖

is the drifted/faulted sensor value. �̂�drift
𝑘𝑖

is themodel estimated
sensor value against drifted value 𝑠

drift
𝑘𝑖

.

Feed
flow

1

Feed
flow

2

STM
flow

1

STM
flow

2

STM
PSR 1

STM
PSR 2

STM
PSR 3

PZR
PSR 1

PZR
PSR 2

PZR
LVL 1

PZR
LVL 2 LVL

SG

NR 2
LVL
SG

NR 1
K-AANN 0.382 0.361 0.343 0.412 0.186 0.211 0.166 0.386 0.411 0.243 0.223 0.512 0.621

DAASM 0.281 0.253 0.246 0.293 0.121 0.132 0.122 0.243 0.315 0.173 0.156 0.394 0.465

Accuracy metric

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
SE

 (%
 sp

an
)

Figure 9: MSE depicting DAASM and K-AANN accuracy on each
sensor.
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Figure 10: Autosensitivity values of individual sensors in both
models.

The autosensitivitymetric lies in [0, 1] range. For autosen-
sitivity value of one, the model predictions follow the fault
with zero residuals; hence no fault can be detected. Smaller
autosensitivity values are preferred, which essentially means
decreased sensitivity towards small perturbations. Large
autosensitivity values may lead to missed alarms due to
underestimation of the fault size caused by small residual
values. Compared to K-AANN model, in case of DAASM, a
significant decrease in autosensitivity values for all sensors is
observed. The plot in Figure 10 shows that DAASM is more
robust to failed sensor inputs.

To further investigate robustness against large offset
failures, both models are evaluated against offset failures
in [5%–50%] range. For each sensor, samples from test
data are corrupted with specific offset level and correspond-
ing autosensitivities are averaged over whole sensor set.
Autosensitivity values less than 0.2 are considered as robust.
The maximum autosensitivity value of 0.187 is observed in
steam flow sensor. The plot in Figure 11 shows that average
autosensitivity for both models increases with increasing
level of offset failure. However, the autosensitivity curve for
DAASM autosensitivity is well below the corresponding K-
AANN curve.

8.3. Spillover. Depending upon the size and type of failure,
a failed sensor input can cause discrepancy in estimated
output for other sensors. The phenomenon is referred to in
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Figure 11: Comparison of robustness against increasing offset
failure.

literature as “spillover effect” and is quantified through “cross-
sensitivity” metric [32]. It quantifies the influence of faulty
sensor 𝑖 on predictions of sensor 𝑗 as follows:

𝑆
𝑗𝑖

Cross =
1

𝑁

𝑁

∑

𝑘=1



�̂�
drift
𝑘𝑗

− �̂�
𝑘𝑗

𝑠
drift
𝑘𝑖

− 𝑠
𝑘𝑖



, (17)

𝑆
𝑗

Cross =
1

𝑁 − 1

𝑁

∑

𝑖=1

𝑆
𝑗𝑖

Cross, 𝑖 ̸= 𝑗, (18)

where 𝑖 and 𝑗 indexes are used to refer to faulty and
nonfaulty sensors, respectively. Meanwhile, 𝑘 is the index for
corresponding test samples. 𝑆𝑗𝑖Cross is the cross-sensitivity of
sensor 𝑗 with respect to drift in 𝑖th sensor. 𝑠

𝑘𝑖
is the value of

𝑖th sensor without any fault. �̂�
𝑘𝑗
is the model estimated value

of 𝑗th sensor against 𝑠
𝑘𝑖
. 𝑠drift
𝑘𝑖

is the drifted/faulted value of 𝑖th
sensor. �̂�drift

𝑘𝑗
is themodel estimated value of 𝑗th sensor against

drifted value 𝑠
drift
𝑘𝑖

.
The highly distributed representation of the input in

neural network based sensor models has pronounced effect
on the cross-sensitivity performance. Cross-sensitivitymetric
value lies in [0, 1] range. High value of cross-sensitivity
may set off false alarms in other sensors, provided the
residual values overshoot the fault detectability threshold in
other sensors. So, minimum cross-sensitivity value is desired
for a robust model. The plot in Figure 12 shows that the
cross-sensitivity for DAASM is reduced by a large factor as
compared to K-AANNmodel.

The spillover effect, against particular level of offset failure
in [5%–50%] range, is averaged over all sensors as follows:

Avg.Cross Sensitivity (𝐾%) =

∑
𝑁

𝑗=1
𝑆
𝑗

cross(𝐾%)

𝑁
,

offset failure level 𝐾% = 5%, 10%, 20% ⋅ ⋅ ⋅ 50%.

(19)
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Figure 12: Cross-sensitivity values of individual sensors in both
models.
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Figure 13: Comparison of spillover effects against increasing offset
failure.

The cross-sensitivity values 𝑆
𝑗

cross(𝐾), against 𝐾% offset fail-
ure level, are calculated using (18). Figure 13 shows the
average cross-sensitivity plot for both models. Small cross-
sensitivities are observed in DAASM which effectively
avoided false alarms in other channels without relaxing the
SPRT faulted mean value up to an offset failure of 35–40% in
any channel. However, for the case of offset noise larger than
35%, SPRTmean needs to be relaxed to avoid false alarms and
isolate the faulty sensor. However, Robustness of K-AANN
model deteriorates significantly due to spillover effect beyond
15% offset failure.

Similarly, gross failure scenarios corresponding to two
extremities of sensor range can cause severe Spillover effect.
To study robustness against gross type failure scenario, a
subset of input sensors is simultaneously failed with gross
high or low value and average cross-sensitivity of remaining
sensor set is calculated using relation (19). Plot in Figure 14
shows that average cross-sensitivity of K-AANN model
increases drastically beyond 10% gross failure. However,
DAASM resulted in a very nominal spillover, even in case
of multiple sensor failure. The DAASM effectively managed
simultaneous gross high or low failures in 25% of total sensor
set as compared to 10% in case of K-AANN.
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Figure 14: Comparison of spillover effect against simultaneous gross
high/low failure in multiple sensors.

8.4. Fault Detectability. Fault detectability metric measures
the smallest fault that can be detected by integrated sensor
estimation and fault detection module as shown in Figure 1
[32]. The detectability metric is measured as percentage of
sensor span 𝐷 = 𝑀/Span, where value M corresponds
to minimum detectable fault. Minimum fault detectability
limit, for each sensor, is quantified through statistical based
sequential probability ratio test (SPRT) by Wald [34]. SPRT
test is carried out to detect if the residual being generated
from normal distribution 𝑁(𝜇

1
, 𝜎
2

) or 𝑁(𝜇
0
, 𝜎
2

) as defined
for faulty and fault free sensor operations, respectively [35].
Calibration failures are reflected in the mean parameter of
residual’s distribution. The SPRT procedure is applied to
detect changes in the mean of residual’s distribution. The
application of SPRT requires setting of following parameters
value [36]:

𝜇
0
: normal mode residual mean.

𝜎
2: normal mode residual variance.

𝜇
1
: expected offset in residual mean in abnormal

mode.
𝛼: false alarm probability.
𝛽: missed alarm probability.

Under normal mode, the residuals from observed and model
estimated sensor values behave as awhiteGaussian noisewith
mean 𝜇

0
= 0. The residual variance 𝜎

2 is estimated for each
sensor under normal operating conditions and remained
fixed. The false alarm 𝛼 and missed alarm 𝛽 probabilities are
set to be 0.001 and 0.01, respectively. In order to determine
minimum fault detectability limit, a numerical procedure
is opted which searches for minimum expected offset 𝜇

1

in the interval {𝜇
1

: [𝜎–3𝜎]}, provided the constraint on
missed and false alarm rate holds. 𝜎 is the standard deviation
corresponding to residual variance of particular sensor. The
plot in Figure 15 shows the detectability metric for each
sensor. The plot in Figure 15 shows that DAASM can detect
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Figure 15: Comparison of fault detectability metrics.

faults which are two times smaller in magnitude than those
detectable by K-AANNmodel.

Improvement in fault detectability metric for DAASM
can be attributed to observed improvement in model robust-
ness, as suggested by the following relation:

𝑟
𝑖

Δ𝑆
drift
𝑖

= (1 − 𝑆
𝑖

Auto) . (20)

The term 𝑟
𝑖
/Δ𝑆

drift
𝑖

measures the ratio of observed residual
to actual sensor drift in terms of autosensitivity. For highly
robust model, this ratio reduces to one which means residual
reflects the actual drift and results in high fault detectability.
Contrarily, ratio value close to zero means that the prediction
is following the input and results in poor fault detectability.

8.4.1. SPRT Based Fault Detectability Test. Sequential prob-
ability ratio [34, 36] based fault hypothesis test is applied
to residual sequence {𝑅

𝑖
} = 𝑟

1(𝑡
1
)
, 𝑟
1(𝑡
1
)
⋅ ⋅ ⋅ 𝑟
𝑛(𝑡
𝑛
)
generated

by relation 𝑅
𝑖
(𝑡
𝑖
) = 𝑆

Obs
(𝑡
𝑖
) − 𝑆

Est
(𝑡
𝑖
) at time 𝑡

𝑖
, where

𝑆
Obs

(𝑡
𝑖
) and 𝑆

Est
(𝑡
𝑖
) are the actual and model predicted

sensor values, respectively. The SPRT procedure analyzes
whether the residual sequence is more likely to be generated
from a probability distribution that belongs to normal mode
hypothesis 𝐻

0
or abnormal mode hypothesis 𝐻

1
by using

likelihood ratio as follows:

𝐿
𝑛
= exp[−(1/2𝜎

2
)[∑
𝑛

𝑖=1
𝜇
1
(𝜇
1
−2𝑟
𝑖
)]]

. (21)

For fault free sensor values, the normalmode hypothesis𝐻
0
is

approximated byGaussian distributionwithmean 𝜇
0
= 0 and

variance 𝜎
2. Abnormal mode hypothesis 𝐻

1
is approximated

with mean 𝜇
1

> 𝜇
0
using the same variance 𝜎

2. The SPRT
index for the positive mean test is finally obtained by taking
logarithm of the likelihood ratio in (21) as follows [35]:
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2
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(22)

Pressurizer pressure sensor, sampled at a frequency of 10 sec-
onds, is used as a test signal to validate the fault detectability
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Figure 16: SPRTbased fault detection in pressurizer pressure sensor.

performance. Two drift faults, at the rate of +0.01%/hour and
−0.01%/hour, are introduced in the test signal for DAASM
and K-AANN model’s assessment, respectively. The first and
second plots in Figure 16 show drifted and estimated pressure
signal from DAASM and K-AANN models, respectively.
Third plot shows residual values generated by differencing the
drifted and estimated signals frombothmodels.The final plot
shows SPRT index values against residuals from K-AANN
model and DAASM. The hypotheses 𝐻

1
and 𝐻

0
correspond

to positive and negative fault acceptance, respectively. From
SPRT index plot, successful early detection of the sensor
drift at 2200th sample, with lag of 6.11 hours since the drift
inception, shows that DAASM is more sensitive to small
drifts. On the other hand, SPRT index on K-AANN based
sensor estimates registered the same drift at 3800th sample
with a lag of almost 10.55 hours. The result shows that
DAASM is more robust in terms of early fault detection with
low false and missed alarm rates.

Finally, both models are tested against five test data sets.
Each test set consists of 3630 samples corresponding to
differentmonths of full power reactor operation. Bothmodels
successfully detected an offset failure of 0.12–0.3 BARG in all
steam pressure channels and a drift type failure up to 2.85% in
steam generator level (Figure 22).The K-AANNmodel failed
to register a very small drift up to 0.1% in steam flow (STM
flow 1) channel. A small drift up to 0.1 BARG is detected in
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Figure 17: Steam pressure estimates against offset failures up to 0.3
(BARG).
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Figure 18: Feed flow estimates.

test set 5 of pressurizer pressure channel. However, in case
of drift type sensor failures, fault detection lag for DAASM
was on average 0.5 times smaller in comparison with K-
AANN model. Plots in Figures 17–21 show the estimated
sensor values, from both models, on five test data sets of few
selected channels.

9. Conclusion

This paper presented a neural network based denoised
autoassociative sensor model (DAASM) for empirical sen-
sor modeling. The proposed sensor model is trained to
generate a monitoring system for sensor fault detection in
nuclear power plants.Multilayer AANNbased sensormodels
may result in suboptimal solutions due to poor regulariza-
tion by traditional backpropagation based joint multilayer
learning procedures. So a complementary deep learning
approach, based on greedy layerwise unsupervised pretrain-
ing, is employed for effective regularization in the proposed
multilayer DAASM. Autoencoder architecture is used for
denoising based unsupervised pretraining and regularization
of individual layers in the network hierarchy. To address
robustness against perturbations in input sensors, data cor-
ruption processes exercised during unsupervised pretraining
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phase were based on prior knowledge about different failure
scenarios. Results from invariance tests showed that the
proposed data corruption schemeswere beneficial in learning
latent representations at hidden layers and were invariant
to multiple levels of perturbation in input sensors. Conse-
quently, these pretrained hidden layers worked as well regu-
larized perturbation filters with increased invariance towards
sensor faults. It is also observed that sensitivity against sensor
faults decreased significantly towards higher layers in full
DAASMassembly. In a practical context of sensormonitoring
in nuclear power plants, the proposed model proved its
robustness against gross type simultaneous sensor failures.
It also showed significant improvement in all performance
metrics when compared with popular and widely used five-
layered AANNmodel by Kramer.Moreover, time lag in small
drift’s detection is significantly reduced. The overall results
suggest that greedy layerwise pretraining technique, in com-
bination with domain specific corruption processes, provides
a viable framework for effective regularization and robustness
in such deep multilayered autoassociative sensor validation
models.

Appendix

See Table 3.
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Figure 21: Pressurizer pressure estimates against drift failure up to
0.1%.
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failure up to 2.87%.

Abbreviations

AANN: Autoassociative neural network
K-AANN: Kramer proposed Autoassociative neural

network
DAASM: Denoised autoassociative sensor model
NPP: Nuclear power plant
PWR: Pressurized water reactor
𝑆Auto: Autosensitivity
𝑆Cross: Cross-sensitivity
DAE: Denoising autoencoder
𝑆: Observed sensor value
�̂�: Model predicted sensor value
�̃�: Corrupted sensor value
SPN: Salt-and-pepper noise
AGN: Additive Gaussian noise.
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