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Abstract. 
LQR control of wind induced motion of a benchmark building is considered. The building is fitted with a semiactive variable stiffness tuned mass damper adapted from the literature. The nominal stiffness of the device corresponds to the fundamental frequency of the building and is included in the system matrix. This results in a linear time-invariant system, for which the desired control force is computed using LQR control. The control force thus computed is then realized by varying the device stiffness around its nominal value by using a simple control law. A nonlinear static analysis is performed in order to establish the range of linearity, in terms of the device (configuration) angle, for which the control law is valid. Results are obtained for the cases of zero and nonzero structural stiffness variation. The performance criteria evaluated show that the present method provides displacement control that is comparable with that of two existing controllers. The acceleration control, while not as good as that obtained with the existing active controller, is comparable or better than that obtained with the existing semiactive controller. By using substantially less power as well as control force, the present control yields comparable displacement control and reasonable acceleration control.


1. Introduction
Active control devices, such as the Active Tuned Mass Damper (ATMD), require substantial input power and could also destabilize the system if the controller is improperly designed. On the other hand, passive control devices are less effective in the presence of stochastic disturbances and/or structural property variations. Semiactive control devices do not possess these disadvantages and thus appear to be sound alternatives to active and passive devices [1–4]. Such devices provide control forces by varying their mechanical properties, based on feedback. The variable stiffness damper is a semiactive device with good potential for controlling wind/earthquake generated response. Kobori et al. [5] and Nasu et al. [6] considered an active variable stiffness (AVS) system, comprising an on-off type two ended hydraulic damper, to make the structure nonresonant during an earthquake. Nemir et al. [7] considered a variable stiffness bracing and obtained rapid dissipation by way of energy redistribution to higher modes. Such AVS systems, while effective, cause abrupt switching of stiffness. Yang et al. [8] proposed a sliding mode controller for an AVS system. A resetting control algorithm, involving the release of potential energy of the device followed by a quick resetting of the device to its full-stiffness state, was considered by Yang et al. [9]. Yang et al. [2] proposed a 76-storey building in Melbourne as a benchmark structure for evaluating algorithms for wind induced response control. Results using LQG control with an ATMD were obtained in their study.
Nagarajaiah [10] developed a semiactive variable stiffness (SAVS) device and studied its performance using a scaled model. The SAVS-TMD has been shown to be effective for structures that are subjected to force/base excitation [11]. Varadarajan and Nagarajaiah [12, 13] studied the wind response control of the benchmark building [2]. They used Empirical Mode Decomposition-Hilbert Transform method [12] and Short Time Fourier Transform (STFT) method [13] in order to track the dominant response frequency. The SAVS-TMD was then tuned to this frequency. Wu and Yang [14] studied the performance of Linear Quadratic Gaussian control (LQG), 
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 control, and continuous sliding mode control applied to an active mass driver, for acceleration reduction of the wind excited Nanjing tower. Using a variable stiffness TMD, Collins et al. [15] considered bang-bang control combined with semiactive control. However, they did not consider the actuator dynamics. Semiactive controller designs using other devices are also available. For magnetorheological devices, Yuen et al. [16] used reliability based robust linear control with a clipped control law, and Karamodin and Kazemi [17] used LQG control and a semiactive neural controller with acceleration/velocity feedback. Sohn et al. [18] studied the semiactive control of a suspension system, by estimating the road profile using the extended least squares method and then applying LQG control. Gaul et al. [19] studied the control of a truss with semiactive friction joints. They used two methods, that is, one with a controller for each joint and another with a single clipped-optimal controller.

In the present study, the SAVS-TMD of  [12, 13] is deployed in order to control the wind excited benchmark building [2] by using a Linear Quadratic Regulator (LQR) controller. The nominal stiffness of the device, corresponding to the fundamental frequency of the structure, is included in the system matrix. This results in a linear time invariant system, for which algorithms suitable for real-time control applications can be employed. One such algorithm is LQR control wherein gains are computed offline, thus making it suitable for real-time control. The desired control force is computed using LQR control and then realized by changing the stiffness of the device within limits specified around the nominal stiffness. This is done using a simple control law which changes the configuration of the device—within specified limits—by means of an electromechanical actuator. The dynamics of the actuator are excluded from this study. A nonlinear static analysis is performed in order to obtain the operational range of the device configuration angle. This ensures a linear force-displacement behavior for the device, and hence validity of the control law. In order to assess robustness of control, the controller thus designed is implemented on the structure having 
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 stiffness variation [2]. The goals of the paper are (i) implementation of STLC, that is, the SAVS-TMD device with LQR control, with a simple control law that is valid within the operational range of the device, (ii) comparing the performance of STLC with that of the controller in [2], which is based on ATMD with LQG control (ALC), and the controller in [13] which is based on SAVS-TMD with STFT control (STSC). This is done for all cases of structural stiffness variation, in order to assess control robustness. In contrast to STLC where gains are computed offline (i.e., computed only once), STFT involves a time-varying system with online computations for real-time frequency tracking during its control law implementation, so as to tune the device to the tracked frequency. This involves intensive online computations which increase the control-loop time and thus renders STFT less suitable for real-time control. On the other hand, ALC, being an active method, requires substantially more power and control force than STLC. Thus, the present study provides a new power-efficient controller design for the benchmark problem, that is, one which is suitable for real-time control and which can be readily extended to output-based feedback control in order to further decrease the loop time.
2. Semiactive Variable Stiffness TMD
The SAVS-TMD is fitted at the top of the 76-storey benchmark building [2], as shown in Figure 1(a). The device comprises a rhombus of four springs, each having stiffness 
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. The springs are pin connected at sliding joints (Figures 1(b) and 2). The masses of sliders and springs, and the effect of friction, are neglected. Joint-3 and joint-4 slide along a horizontal guide-rail fixed on the floor. Joint-2 slides along the 
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-directed groove which is present at the bottom of the TMD mass. The TMD mass moves along the 
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-directed rails that are fixed on the floor. By using a controlled actuator, joint-1 can be made to move along a 
	
		
			

				𝑦
			

		
	
-directed guide that is fixed on the floor. This causes the stiffness of the device to vary, due to variation in the device configuration angle 
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(b)
Figure 1: (a) Benchmark building with SAVS-TMD. (b) Realization of SAVS-TMD inspired by [13].




	
		
	
		
























































	
		
			
		
			
		
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
		
			
		
	


	
		
			
		
			
		
		
			
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
	
	
		
	


	
		
	


	
		
	


	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	
	
		
		
	
	
		
	


	
		
	
	
		
	
	
		
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	
	
		
		
	
	
		
	


	
		
	
	
		
	
	
		
		
	
	
		
	


	
		
			
		
		
			
			
			
			
		
	


	
		
		
			
		
		
			
		
	


	
		
		
			
		
		
			
		
	


	
		
		
			
		
		
			
		
	


	
		
		
			
		
		
			
		
	


	
		
		
			
		
		
			
		
	


	
		
		
		
	
	
		
	


	
		
		
		
	
	
		
	


	
		
		
		
	
	
		
	


	
		
		
		
	
	
		
	



Figure 2: Schematic of SAVS with TMD displaced.


The coordinates of joints 1, 3, and 4 are denoted 
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 being the TMD displacement measured relative to the top storey (Figure 2). The joint coordinates are measured as per directions shown in Figure 2. The TMD displacement results in force 
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Figure 3: 
	
		
			

				𝐹
			

			

				𝑑
			

		
	
 versus 
	
		
			

				𝑥
			

			
				d
				r
				e
				l
			

		
	
 for various configurations 
	
		
			

				𝜃
			

		
	
.


Assuming that 
	
		
			

				𝑥
			

			
				d
				r
				e
				l
			

			
				≪
				𝐿
			

			

				𝑒
			

		
	
, that is, the TMD displacement is small relative to the unstretched spring length, the model of [12, 13] can be used. This model implies a linear force-displacement relation for a given configuration 
	
		
			

				𝜃
			

		
	
, with device stiffness given as
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			

				𝑘
			

			

				𝑑
			

			
				(
				𝑡
				)
				=
				𝑘
			

			

				𝑒
			

			
				c
				o
				s
			

			

				2
			

			
				𝜃
				(
				𝑡
				)
				.
			

		
	

					Here, 
	
		
			

				𝑘
			

			

				𝑑
			

			
				(
				𝑡
				)
			

		
	
 is the stiffness provided by the device for a given configuration 
	
		
			

				𝜃
			

		
	
. Based on the force-displacement behavior shown in Figure 3, the maximum configuration angle is restricted to 
	
		
			

				𝜃
			

			
				m
				a
				x
			

			
				=
				4
				1
			

			

				∘
			

		
	
 (i.e., open position) in order to maintain device linearity. This corresponds to around 
	
		
			
				1
				0
				%
			

		
	
 nonlinearity at 
	
		
			

				𝑥
			

			
				d
				r
				e
				l
			

			
				=
				0
				.
				6
				8
			

		
	
 (Figure 3). Further, the minimum configuration angle is restricted to 
	
		
			

				𝜃
			

			
				m
				i
				n
			

			
				=
				7
			

			

				∘
			

		
	
 (i.e., closed position) due to mechanical constraints during flattening of the rhombus. The nominal configuration angle of the device is set as 
	
		
			

				𝜃
			

			

				𝑛
			

			
				=
				2
				8
				.
				2
			

			

				∘
			

		
	
 in order that, in this configuration, the device is tuned to the fundamental frequency of the structure. Depending on the control force required, the device stiffness is increased/decreased by varying the device configuration, 
	
		
			

				𝜃
			

		
	
, about 
	
		
			

				𝜃
			

			

				𝑛
			

		
	
, such that 
	
		
			

				𝜃
			

			
				m
				i
				n
			

			
				≤
				𝜃
				≤
				𝜃
			

			
				m
				a
				x
			

		
	
. With the linear force-displacement relation of (3) used in the controller design, the RMS value of TMD displacement is obtained as less than 
	
		
			
				2
				6
			

		
	
cm, as seen from the controlled responses in Table 1. When both the control-force required and the TMD-displacement are large and have opposite signs, the device angle 
	
		
			

				𝜃
			

		
	
 required is large and the force-displacement relation is nonlinear (Figure 3). However, instances of this happening are few, as is evident from the relatively small RMS values of 
	
		
			

				𝑥
			

			
				d
				r
				e
				l
			

		
	
 (given in Table 1) when compared to the linearity limit of 
	
		
			
				0
				.
				5
				5
			

		
	
m for 
	
		
			
				𝜃
				=
				4
				0
			

			

				∘
			

		
	
. Hence, the model given by (3) is henceforth used in the control law. The stiffness of the device can also be written as
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				𝑘
			

			

				𝑑
			

			
				(
				𝑡
				)
				=
				𝑘
			

			
				𝑑
				𝑛
			

			
				+
				Δ
				𝑘
			

			

				𝑑
			

			
				(
				𝑡
				)
				.
			

		
	

					Here, 
	
		
			

				𝑘
			

			
				𝑑
				𝑛
			

		
	
 is the nominal stiffness that corresponds to the TMD being tuned to the fundamental frequency of the structure. Further, 
	
		
			
				Δ
				𝑘
			

			

				𝑑
			

			
				(
				𝑡
				)
			

		
	
 is the additional stiffness required to attain the desired control force. The additional stiffness is obtained by varying the device configuration, 
	
		
			

				𝜃
			

		
	
, such that 
	
		
			
				Δ
				𝑘
			

			
				𝑑
				m
				i
				n
			

			
				≤
				Δ
				𝑘
			

			

				𝑑
			

			
				(
				𝑡
				)
				≤
				Δ
				𝑘
			

			
				𝑑
				m
				a
				x
			

		
	
, where 
	
		
			
				Δ
				𝑘
			

			
				𝑑
				m
				i
				n
			

			
				=
				(
				𝑘
			

			

				𝑒
			

			
				c
				o
				s
			

			

				2
			

			

				𝜃
			

			
				m
				a
				x
			

			
				−
				𝑘
			

			
				𝑑
				𝑛
			

			

				)
			

		
	
 and 
	
		
			
				Δ
				𝑘
			

			
				𝑑
				m
				a
				x
			

			
				=
				(
				𝑘
			

			

				𝑒
			

			
				c
				o
				s
			

			

				2
			

			

				𝜃
			

			
				m
				i
				n
			

			
				−
				𝑘
			

			
				𝑑
				𝑛
			

			

				)
			

		
	
.
Table 1: Performance criteria: STLC compared with ALC and STSC, for 
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				{
				0
				.
				5
				8
				}
			

		
	
	
	
		
			
				{
				0
				.
				4
				9
				}
			

		
	
	
	
		
			
				{
				0
				.
				7
				1
				}
			

		
	
	
	
		
			
				{
				0
				.
				7
				3
				}
			

		
	
	
	
		
			
				{
				0
				.
				6
				1
				}
			

		
	
	
	
		
			
				{
				0
				.
				7
				8
				}
			

		
	

	
	
		
			
				[
				0
				.
				6
				0
				]
			

		
	
	
	
		
			
				[
				0
				.
				5
				1
				]
			

		
	
	
	
		
			
				[
				0
				.
				7
				4
				]
			

		
	
	
	
		
			
				[
				0
				.
				7
				2
				]
			

		
	
	
	
		
			
				[
				0
				.
				6
				2
				]
			

		
	
	
	
		
			
				[
				0
				.
				8
				5
				]
			

		
	

	

	
	
		
			

				𝐽
			

			

				6
			

		
	
 (kNm/s)	5.35 	 4.33 	 6.83	
	
		
			

				𝐽
			

			
				1
				2
			

		
	
 (kNm/s) 	 35.7 	 27.0	 52.1
	
	
		
			
				{
				1
				2
				.
				0
				}
			

		
	
	
	
		
			
				{
				8
				.
				4
				6
				}
			

		
	
	
	
		
			
				{
				1
				6
				.
				6
				}
			

		
	
	
	
		
			
				{
				7
				2
				.
				0
				}
			

		
	
	
	
		
			
				{
				5
				2
				.
				7
				}
			

		
	
	
	
		
			
				{
				1
				1
				8
				}
			

		
	

	

	
	
		
			

				𝐽
			

			
				∗
				6
			

		
	
 (kNm/s)	 2.37 	 2.18 	 2.46 	
	
		
			

				𝐽
			

			
				∗
				1
				2
			

		
	
 (kNm/s)	 2.33 	2.24 	 2.82 
	
	
		
			
				{
				2
				.
				3
				7
				}
			

		
	
	
	
		
			
				{
				2
				.
				0
				3
				}
			

		
	
	
	
		
			
				{
				2
				.
				6
				2
				}
			

		
	
	
	
		
			
				{
				2
				.
				3
				4
				}
			

		
	
	
	
		
			
				{
				2
				.
				0
				2
				}
			

		
	
	
	
		
			
				{
				2
				.
				6
				7
				}
			

		
	

	
	
		
			
				[
				2
				.
				3
				8
				]
			

		
	
	
	
		
			
				[
				2
				.
				0
				5
				]
			

		
	
	
	
		
			
				[
				2
				.
				4
				9
				]
			

		
	
	
	
		
			
				[
				2
				.
				2
				6
				]
			

		
	
	
	
		
			
				[
				2
				.
				0
				8
				]
			

		
	
	
	
		
			
				[
				2
				.
				6
				5
				]
			

		
	

	

	
	
		
			

				𝜎
			

			

				𝑢
			

		
	
 (kN)	22.7 	 19.2 	 28.3 	
	
		
			
				|
				|
				|
				|
				m
				a
				x
				𝑢
				(
				𝑡
				)
			

		
	
 (kN)	 94.2 	 83.1	 106 
	
	
		
			
				{
				3
				4
				.
				1
				}
			

		
	
	
	
		
			
				{
				2
				8
				.
				3
				}
			

		
	
	
	
		
			
				{
				4
				4
				.
				3
				}
			

		
	
	
	
		
			
				{
				1
				1
				8
				}
			

		
	
	
	
		
			
				{
				1
				0
				6
				}
			

		
	
	
	
		
			
				{
				1
				6
				4
				}
			

		
	

	

	
	
		
			

				𝜎
			

			

				𝑥
			

			
				d
				r
				e
				l
			

		
	
 (cm)	 22.8	 19.5 	 25.3 	
	
		
			
				|
				|
				𝑥
				m
				a
				x
			

			
				d
				r
				e
				l
			

			
				|
				|
			

		
	
 (cm)	 76.8 	 70.6	 93.1 
	
	
		
			
				{
				2
				3
				.
				0
				}
			

		
	
	
	
		
			
				{
				1
				8
				.
				4
				}
			

		
	
	
	
		
			
				{
				2
				7
				.
				5
				}
			

		
	
	
	
		
			
				{
				7
				4
				.
				3
				}
			

		
	
	
	
		
			
				{
				5
				9
				.
				8
				}
			

		
	
	
	
		
			
				{
				9
				1
				.
				6
				}
			

		
	

	
	
		
			
				[
				2
				2
				.
				3
				]
			

		
	
	
	
		
			
				[
				1
				7
				.
				9
				]
			

		
	
	
	
		
			
				[
				2
				5
				.
				0
				]
			

		
	
	
	
		
			
				[
				6
				9
				.
				6
				]
			

		
	
	
	
		
			
				[
				5
				8
				.
				0
				]
			

		
	
	
	
		
			
				[
				8
				4
				.
				3
				]
			

		
	

	



3. Reduced Order Model
The equation of motion of the wind excited building, with SAVS-TMD at the top storey, is written as
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				𝐌
				̈
				̇
				𝐗
				+
				𝐂
				𝐗
				+
				𝐊
				𝐗
				=
				𝐃
				𝑢
				(
				𝑡
				)
				+
				𝐖
				(
				𝑡
				)
				.
			

		
	

					Here, 
	
		
			
				𝐗
				=
				[
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				…
				,
				𝑥
			

			
				𝑛
				−
				1
			

			
				,
				𝑥
			

			

				𝑑
			

			

				]
			

			

				𝑇
			

		
	
 is the displacement vector measured relative to the ground, where 
	
		
			

				𝑥
			

			

				𝑖
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				…
				,
				(
				𝑛
				−
				1
				)
			

		
	
, is the lateral displacement of the 
	
		
			
				𝑖
				t
				h
			

		
	
 storey and 
	
		
			

				𝑥
			

			

				𝑑
			

		
	
 is the TMD displacement, 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 is the control input (i.e., force) that is realized via the additional stiffness provided by the SAVS device, 
	
		
			
				𝐌
				=
				d
				i
				a
				g
				[
				𝐌
			

			

				𝑠
			

			
				,
				𝑚
			

			

				𝑑
			

			

				]
			

		
	
 is the system mass matrix, 
	
		
			
				𝐂
				=
				d
				i
				a
				g
				[
				𝐂
			

			

				𝑠
			

			
				,
				𝟎
				]
				+
				d
				i
				a
				g
				[
				𝟎
				,
				𝐂
			

			

				𝑑
			

			

				]
			

		
	
 is the system damping matrix, and 
	
		
			
				𝐊
				=
				d
				i
				a
				g
				[
				𝐊
			

			

				𝑠
			

			
				,
				𝟎
				]
				+
				d
				i
				a
				g
				[
				𝟎
				,
				𝐊
			

			

				𝑑
			

			

				]
			

		
	
 is the system stiffness matrix, where subscript 
	
		
			

				𝑠
			

		
	
 refers to the structure and subscript 
	
		
			

				𝑑
			

		
	
 refers to the damper, 
	
		
			

				𝐊
			

			

				𝑑
			

			
				=
				[
				{
				𝑘
			

			
				𝑑
				𝑛
			

			
				−
				𝑘
			

			
				𝑑
				𝑛
			

			

				}
			

			

				𝑇
			

			
				{
				−
				𝑘
			

			
				𝑑
				𝑛
			

			

				𝑘
			

			
				𝑑
				𝑛
			

			

				}
			

			

				𝑇
			

			

				]
			

		
	
 and 
	
		
			

				𝐂
			

			

				𝑑
			

			
				=
				[
				{
				𝑐
			

			

				𝑑
			

			
				−
				𝑐
			

			

				𝑑
			

			

				}
			

			

				𝑇
			

			
				{
				−
				𝑐
			

			

				𝑑
			

			

				𝑐
			

			

				𝑑
			

			

				}
			

			

				𝑇
			

			

				]
			

		
	
, 
	
		
			

				𝑚
			

			

				𝑑
			

		
	
, 
	
		
			

				𝑐
			

			

				𝑑
			

		
	
, and 
	
		
			

				𝑘
			

			
				𝑑
				𝑛
			

		
	
, are the mass, damping coefficient, and nominal stiffness, respectively, of the TMD, 
	
		
			
				𝐃
				=
				[
				0
				,
				0
				,
				…
				,
				1
				,
				−
				1
				]
			

			

				𝑇
			

		
	
 is the control force placement vector, and 
	
		
			
				𝐖
				(
				𝑡
				)
			

		
	
 is the wind excitation vector, with its last element being zero. Since the system stiffness matrix contains only the nominal stiffness of the TMD, the system is time-invariant and the control force required is given as
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				𝑢
				=
				Δ
				𝑘
			

			

				𝑑
			

			

				𝑥
			

			
				d
				r
				e
				l
			

			
				;
				𝑥
			

			
				d
				r
				e
				l
			

			
				=
				𝑥
			

			

				𝑑
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			

				.
			

		
	

The state space representation of (5) is
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				̇
				𝐙
				=
				𝐀
				𝐙
				+
				𝐁
				𝑢
				+
				𝐄
				𝐖
				,
			

		
	

					where
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝐗
				̇
				𝐗
				⎤
				⎥
				⎥
				⎥
				⎦
				⎡
				⎢
				⎢
				⎢
				⎣
				𝐌
				𝐙
				=
				;
				𝐀
				=
				𝟎
				𝐈
			

			
				−
				1
			

			
				𝐊
				𝐌
			

			
				−
				1
			

			
				𝐂
				⎤
				⎥
				⎥
				⎥
				⎦
				;
				⎡
				⎢
				⎢
				⎢
				⎣
				𝟎
				𝐌
				𝐁
				=
			

			
				−
				1
			

			
				𝐃
				⎤
				⎥
				⎥
				⎥
				⎦
				⎡
				⎢
				⎢
				⎢
				⎣
				𝟎
				𝐌
				;
				𝐄
				=
			

			
				−
				1
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				.
			

		
	

					The output vector for assessing control effectiveness is given by
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				𝐲
				=
				𝐂
			

			

				𝐲
			

			
				𝐙
				+
				𝐃
			

			

				𝐲
			

			
				𝑢
				+
				𝐅
				𝐖
				,
			

		
	

					where 
	
		
			

				𝐂
			

			

				𝐲
			

		
	
, 
	
		
			

				𝐃
			

			

				𝐲
			

		
	
, and 
	
		
			

				𝐅
			

		
	
 are as defined in Section 5. In order to reduce the computation time, for real-time control applications, the model is reduced by using the method of Davison [20] as done in [2, 14]. This entails choosing a reduced set of 
	
		
			
				2
				𝑙
			

		
	
 states that are representative of the system response and then expressing this reduced set of states in terms of the first 
	
		
			
				2
				𝑙
			

		
	
 eigenmodes that dominate the response. Let 
	
		
			

				𝚪
			

		
	
 represent the matrix of eigenvectors of 
	
		
			

				𝐀
			

		
	
, with the eigenvectors arranged in decreasing order of eigenvalue dominance (i.e., the first eigenvector corresponds to the eigenvalue lying closest to the origin and the last eigenvector corresponds to the eigenvalue lying farthest from the origin). Rearrange 
	
		
			

				𝐙
			

		
	
 such that 
	
		
			
				𝐙
				=
				[
				𝐙
			

			
				𝑇
				𝑟
			

			

				𝐙
			

			
				𝑇
				𝑜
			

			

				]
			

			

				𝑇
			

		
	
, where 
	
		
			

				𝐙
			

			

				𝑟
			

			
				=
				[
				𝐗
			

			
				𝑇
				𝑟
			

			
				̇
				𝐗
			

			
				𝑇
				𝑟
			

			

				]
			

			

				𝑇
			

		
	
 is the reduced order 
	
		
			
				2
				𝑙
			

		
	
-dimension state vector and 
	
		
			

				𝐗
			

			

				𝑟
			

		
	
 is the reduced order 
	
		
			

				𝑙
			

		
	
-dimension displacement vector. Here, 
	
		
			

				𝐙
			

			

				𝑜
			

		
	
 comprises the 
	
		
			
				2
				(
				𝑛
				−
				𝑙
				)
			

		
	
 states, of the full order system, that are excluded from the reduced order system. The 
	
		
			

				𝐀
			

		
	
, 
	
		
			

				𝐁
			

		
	
, 
	
		
			

				𝐂
			

			

				𝐲
			

		
	
, 
	
		
			

				𝐄
			

		
	
, 
	
		
			

				𝚪
			

		
	
 matrices are now rearranged according to 
	
		
			
				𝐙
				=
				[
				𝐙
			

			
				𝑇
				𝑟
			

			

				𝐙
			

			
				𝑇
				𝑜
			

			

				]
			

			

				𝑇
			

		
	
. Thus, the approximation of the states in terms of the first 
	
		
			
				2
				𝑙
			

		
	
 eigenmodes yields [14] 
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				
				𝐙
				=
				𝐈
				𝚪
			

			
				−
				𝑇
				1
				1
			

			

				𝚪
			

			
				𝑇
				2
				1
			

			

				
			

			

				𝑇
			

			

				𝐙
			

			

				𝑟
			

		
	

					and it also yields the reduced order system
						
	
 		
 			
				(
				1
				1
				)
			
 			
				(
				1
				2
				)
			
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				̇
				𝐙
			

			

				𝑟
			

			
				=
				𝐀
			

			

				𝑟
			

			

				𝐙
			

			

				𝑟
			

			
				+
				𝐁
			

			

				𝑟
			

			
				𝑢
				+
				𝐄
			

			

				𝑟
			

			
				𝐀
				𝐖
				;
			

			

				𝑟
			

			
				=
				𝐀
			

			
				1
				1
			

			
				+
				𝐀
			

			
				1
				2
			

			

				𝚪
			

			
				2
				1
			

			

				𝚪
			

			
				−
				1
				1
				1
			

			
				;
				𝐁
			

			

				𝑟
			

			
				=
				𝚪
			

			
				1
				1
			

			
				
				𝐒
			

			
				𝑇
				1
			

			
				,
				𝐒
			

			
				𝑇
				2
			

			
				,
				…
				,
				𝐒
			

			
				𝑇
				2
				𝑙
			

			
				
				𝐄
				𝐁
				;
			

			

				𝑟
			

			
				=
				𝚪
			

			
				1
				1
			

			
				
				𝐒
			

			
				𝑇
				1
			

			
				,
				𝐒
			

			
				𝑇
				2
			

			
				,
				…
				,
				𝐒
			

			
				𝑇
				2
				𝑙
			

			
				
				𝐄
				;
				𝐲
				=
				𝐂
			

			

				𝑟
			

			

				𝐙
			

			

				𝑟
			

			
				+
				𝐃
			

			

				𝐲
			

			
				𝑢
				+
				𝐅
				𝐖
				;
				𝐂
			

			

				𝑟
			

			
				=
				𝐂
			

			

				𝐲
			

			
				
				𝐈
				𝚪
			

			
				−
				𝑇
				1
				1
			

			

				𝚪
			

			
				𝑇
				2
				1
			

			

				
			

			

				𝑇
			

			

				.
			

		
	

					Here, 
	
		
			

				𝐀
			

			
				1
				1
			

		
	
 is the top left 
	
		
			
				(
				2
				𝑙
				×
				2
				𝑙
				)
			

		
	
 partition of 
	
		
			

				𝐀
			

		
	
, 
	
		
			

				𝐀
			

			
				1
				2
			

		
	
 is the top right 
	
		
			
				(
				2
				𝑙
				×
				(
				2
				𝑛
				−
				2
				𝑙
				)
				)
			

		
	
 partition of 
	
		
			

				𝐀
			

		
	
, 
	
		
			

				𝚪
			

			
				1
				1
			

		
	
 is the top left 
	
		
			
				(
				2
				𝑙
				×
				2
				𝑙
				)
			

		
	
 partition of 
	
		
			

				𝚪
			

		
	
, 
	
		
			

				𝚪
			

			
				2
				1
			

		
	
 is the bottom left 
	
		
			
				(
				(
				2
				𝑛
				−
				2
				𝑙
				)
				×
				2
				𝑙
				)
			

		
	
 partition of 
	
		
			

				𝚪
			

		
	
 , and 
	
		
			

				𝐒
			

			

				𝑖
			

		
	
 is the 
	
		
			
				𝑖
				t
				h
			

		
	
 row vector of 
	
		
			

				𝚪
			

			
				−
				1
			

		
	
.
4. Controller Design
Linear quadratic regulator (LQR) control [21] is considered for controller design. The reduced order model, that is, (11), is considered for the plant dynamics. Thus, the reduced states are assumed to be available for feedback. Using LQR control, the control force 
	
		
			

				𝑢
			

			

				𝑑
			

		
	
 is obtained such that the performance index
						
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				1
				𝐽
				=
			

			
				
			
			
				2
				
			

			
				∞
				0
			

			
				
				𝐙
			

			

				𝑇
			

			
				𝐐
				𝐙
				+
				𝑅
				𝑢
			

			
				2
				𝑑
			

			
				
				=
				1
				(
				𝑡
				)
				d
				𝑡
			

			
				
			
			
				2
				
			

			
				∞
				0
			

			
				
				𝐙
			

			
				𝑇
				𝑟
			

			

				𝐐
			

			

				𝑟
			

			

				𝐙
			

			

				𝑟
			

			
				+
				𝑅
				𝑢
			

			
				2
				𝑑
			

			
				
				d
				𝑡
			

		
	

					is minimized. The performance index represents the total energy of the system (i.e., the structure and the SAVS-TMD). Here, 
	
		
			

				𝑅
			

		
	
 is the positive scalar weighting of the control effort, and 
	
		
			

				𝐐
			

		
	
 is the 
	
		
			
				(
				2
				𝑛
				×
				2
				𝑛
				)
			

		
	
 positive semidefinite state weighting matrix; that is,
						
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				
				𝐊
				𝐐
				=
				d
				i
				a
				g
			

			

				𝐬
			

			

				𝛽
			

			

				1
			

			

				𝐌
			

			

				𝐬
			

			

				𝛽
			

			

				2
			

			
				
				.
			

		
	

					Here, 
	
		
			

				𝛽
			

			

				1
			

		
	
, 
	
		
			

				𝛽
			

			

				2
			

		
	
, and 
	
		
			

				𝑅
			

		
	
, are chosen such that effective control is achieved without exceeding the limits prescribed on the TMD displacement, 
	
		
			

				𝑥
			

			
				d
				r
				e
				l
			

		
	
, and the device configuration angle 
	
		
			

				𝜃
			

		
	
. Equations (10) and (14) yield the 
	
		
			
				(
				2
				𝑙
				×
				2
				𝑙
				)
			

		
	
 positive semidefinite state weighting matrix for the reduced order system as
						
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				𝐐
			

			

				𝑟
			

			
				=
				
				𝐈
				
				𝚪
			

			
				2
				1
			

			

				𝚪
			

			
				−
				1
				1
				1
			

			

				
			

			

				𝑇
			

			
				
				𝐐
				
				𝐈
				
				𝚪
			

			
				2
				1
			

			

				𝚪
			

			
				−
				1
				1
				1
			

			

				
			

			

				𝑇
			

			

				
			

			

				𝑇
			

			

				.
			

		
	

					Here, 
	
		
			

				𝐐
			

		
	
 has been rearranged according to 
	
		
			
				𝐙
				=
				[
				𝐙
			

			
				𝑇
				𝑟
			

			

				𝐙
			

			
				𝑇
				𝑜
			

			

				]
			

			

				𝑇
			

		
	
. Minimizing 
	
		
			

				𝐽
			

		
	
 subject to the constraint represented by (11) considered without wind excitation, one obtains the desired optimal control force as [21]
						
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑑
			

			
				=
				−
				𝑅
			

			
				−
				1
			

			

				𝐁
			

			
				𝑇
				𝑟
			

			
				𝐏
				𝐙
			

			

				𝐫
			

			

				.
			

		
	

					Here, 
	
		
			

				𝐏
			

		
	
 is the solution of the algebraic Riccati equation given as
						
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				𝐏
				𝐀
			

			

				𝑟
			

			
				+
				𝐀
			

			
				𝑇
				𝑟
			

			
				𝐏
				−
				𝐏
				𝐁
			

			

				𝑟
			

			

				𝑅
			

			
				−
				1
			

			

				𝐁
			

			
				𝑇
				𝑟
			

			
				𝐏
				+
				𝐐
			

			

				𝑟
			

			
				=
				𝟎
				.
			

		
	

					Considering (4), (6), and the configuration limits of the SAVS device, one obtains the control law. This yields the position of joint-1, that is required to realize the desired control force 
	
		
			

				𝑢
			

			

				𝑑
			

		
	
, as
						
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				⎧
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎩
				𝜃
				=
				4
				1
			

			

				∘
			

			
				𝑢
				(
				o
				p
				e
				n
				p
				o
				s
				i
				t
				i
				o
				n
				)
				i
				f
			

			

				𝑑
			

			
				
			
			

				𝑥
			

			
				d
				r
				e
				l
			

			
				≤
				Δ
				𝑘
			

			
				𝑑
				m
				i
				n
			

			
				c
				o
				s
			

			
				−
				1
			

			

				
			

			
				
			
			

				𝑘
			

			
				𝑑
				𝑛
			

			
				+
				𝑢
			

			

				𝑑
			

			
				/
				𝑥
			

			
				d
				r
				e
				l
			

			
				
			
			

				𝑘
			

			

				𝑒
			

			
				i
				f
				Δ
				𝑘
			

			
				𝑑
				m
				i
				n
			

			
				<
				𝑢
			

			

				𝑑
			

			
				
			
			

				𝑥
			

			
				d
				r
				e
				l
			

			
				<
				Δ
				𝑘
			

			
				𝑑
				m
				a
				x
			

			

				7
			

			

				∘
			

			
				𝑢
				(
				c
				l
				o
				s
				e
				d
				p
				o
				s
				i
				t
				i
				o
				n
				)
				i
				f
			

			

				𝑑
			

			
				
			
			

				𝑥
			

			
				d
				r
				e
				l
			

			
				≥
				Δ
				𝑘
			

			
				𝑑
				m
				a
				x
			

			
				,
				𝑞
			

			

				1
			

			
				=
				𝐿
			

			

				𝑒
			

			
				s
				i
				n
				𝜃
				.
			

		
	

					Equations (3) and (4) yield the control force thus realized; that is, 
						
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				
				𝑘
				𝑢
				=
			

			

				𝑒
			

			
				c
				o
				s
			

			

				2
			

			
				𝜃
				(
				𝑡
				)
				−
				𝑘
			

			
				𝑑
				𝑛
			

			
				
				𝑥
			

			
				d
				r
				e
				l
			

			

				.
			

		
	

An alternative procedure to determine the device configuration 
	
		
			

				𝑞
			

			

				1
			

		
	
 that involves the solution of the nonlinear static equations (1) is as follows. For a known desired control force, 
	
		
			

				𝑢
			

			

				𝑑
			

		
	
, and TMD displacement, 
	
		
			

				𝑥
			

			
				d
				r
				e
				l
			

		
	
, the total force required from the TMD is obtained as 
	
		
			

				𝐹
			

			

				𝑑
			

			
				=
				𝑘
			

			
				𝑑
				𝑛
			

			

				𝑥
			

			
				d
				r
				e
				l
			

			
				+
				𝑢
			

			

				𝑑
			

		
	
. Using 
	
		
			

				𝐹
			

			

				𝑑
			

		
	
 and 
	
		
			

				𝑥
			

			
				d
				r
				e
				l
			

		
	
 in (1), the device actuation, 
	
		
			

				𝑞
			

			

				1
			

		
	
, as well as 
	
		
			

				𝑞
			

			

				2
			

		
	
, 
	
		
			

				𝑞
			

			

				3
			

		
	
, and 
	
		
			

				𝑞
			

			

				4
			

		
	
, can be obtained, subject to the minimum values permissible for 
	
		
			

				𝜃
			

			

				1
			

		
	
 and 
	
		
			

				𝜃
			

			

				4
			

		
	
. In this manner, the linear force-displacement relation, (3), and the resulting control law, (19), are not used. However, as discussed in Section 2 (on the basis of RMS values of the TMD displacement), the linear force-displacement relation suffices for the present application. Hence, this alternative procedure is not adopted.
5. Results
The 76-storey benchmark building is modeled using 76 translational degrees of freedom, as considered in [2]. The TMD, having mass 
	
		
			

				𝑚
			

			

				𝑑
			

			
				=
				5
				0
				0
				𝑡
			

		
	
, is placed at the top storey. The mass matrix, 
	
		
			

				𝐌
			

			

				𝑠
			

		
	
, stiffness matrix, 
	
		
			

				𝐊
			

			

				𝑠
			

		
	
, and damping matrix 
	
		
			

				𝐂
			

			

				𝑠
			

		
	
 for the structure, as well as the across-wind data, are considered from [22]. A 
	
		
			
				±
				1
				5
				%
			

		
	
 variation in structural stiffness is also considered in order to assess the effectiveness of the controller [2]. The damping ratio for the TMD is considered as 
	
		
			
				7
				%
			

		
	
 [12].
As one of the aims of this study is to compare results from STLC with those using ALC [2] and STSC [13], the reduced order model of [2] is considered. This is a 24-degree-of-freedom model, with the reduced state, 
	
		
			

				𝐗
			

			

				𝑟
			

		
	
, comprising the displacements at storeys 3, 6, 10, 13, 16, 20, 23, 26, 30, 33, 36, 40, 43, 46, 50, 53, 56, 60, 63, 66, 70, 73, and 76, and the TMD displacement, all measured relative to ground. The wind force vector is obtained by lumping wind forces at the reduced DOFs, with the wind location matrix 
	
		
			

				𝐄
			

			

				𝑟
			

		
	
 modified appropriately [2]. Thus, the third part of (12) is not considered when obtaining the wind force vector. Figure 4 shows the resulting across-wind load that acts on storeys 50 and 73 for the reduced order model.


	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	


	
		
	
	
		
	
	
		
	
	
		
		
		
		
	


	
		
	
	
		
	
	
		
	
	
		
		
		
		
	

Figure 4: Time history of wind force on the 50th and 73rd storeys [22].


The nominal stiffness of the SAVS device, 
	
		
			

				𝑘
			

			
				𝑑
				𝑛
			

		
	
, is tuned to the fundamental frequency of the structure. The fundamental frequency is 0.16 Hz, resulting in 
	
		
			

				𝑘
			

			
				𝑑
				𝑛
			

			
				=
				5
				0
				5
				.
				1
				2
			

		
	
kN/m. Using (3), the stiffness of the spring used in the device is chosen as 
	
		
			

				𝑘
			

			

				𝑒
			

			
				=
				6
				5
				0
				k
				N
			

		
	
. This ensures that the nominal stiffness of the device is the average of the stiffness values of the device at its operational limits 
	
		
			

				𝜃
			

			
				m
				i
				n
			

			
				=
				7
			

			

				∘
			

		
	
 and 
	
		
			

				𝜃
			

			
				m
				a
				x
			

			
				=
				4
				1
			

			

				∘
			

		
	
. Thus, the limits on the additional stiffness that can be provided by the device are 
	
		
			
				Δ
				𝑘
			

			
				𝑑
				m
				a
				x
			

			
				=
				1
				3
				5
				.
				2
				2
				3
			

		
	
 and 
	
		
			
				Δ
				𝑘
			

			
				𝑑
				m
				i
				n
			

			
				=
				−
				1
				3
				4
				.
				8
				9
			

		
	
kN/m.
The parameters for the controller design are chosen as 
	
		
			

				𝛽
			

			

				1
			

			
				=
				9
				0
				0
			

		
	
, 
	
		
			

				𝛽
			

			

				2
			

			
				=
				1
			

		
	
, and 
	
		
			
				𝑅
				=
				2
				×
				1
				0
			

			
				−
				2
			

		
	
. The reduced order plant, that is, (11), is integrated using MATLAB ode-45. The initial conditions for the state and the initial control input are considered as zero (i.e., 
	
		
			

				𝐙
			

			

				𝑟
			

			
				=
				𝟎
			

		
	
 and 
	
		
			
				𝑢
				=
				0
			

		
	
). Thus, 
	
		
			

				𝐙
			

			

				𝑟
			

		
	
 is obtained at the end of each time step. Subsequently, the desired control force, 
	
		
			

				𝑢
			

			

				𝑑
			

		
	
, is obtained from (17), the position of joint-1, 
	
		
			

				𝑞
			

			

				1
			

		
	
, is obtained from the control law, that is, (19), and the control force, 
	
		
			

				𝑢
			

		
	
, applied at the start of the next time step is obtained from (20). Figure 5 shows the block diagram for the control loop simulation.


	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	
	
		
			
	
	
		
			
	
	
		
			
	
	
		
			
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
	


	
		
	
	
		
		
		
		
		
		
	


	
		
	
	
		
	


	
		
	


	
		
	
	
		
	


	
	
	
	
	
	
	
	
	
	
	
	


	
		
			
		
		
			
			
			
			
		
	


	
		
	


	
		
	
	
		
	




	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	


	
		
		
		
		
		
		
		
		
		
	
	
		
		
	
	
		
	


	
		
		
		
		
		
		
		
		
		
	
	
		
		
	
	
		
	


	
		
		
		
		
		
		
		
		
		
	
	
		
		
	
	
		
	



Figure 5: Block diagram for control.


Performance criteria denoted by 
	
		
			

				𝐽
			

			

				1
			

			
				,
				…
				,
				𝐽
			

			
				1
				2
			

		
	
 are evaluated [2]. These are defined in terms of controlled responses that are suitably normalized wherever indicated. The uncontrolled structure with zero variation in stiffness is considered when obtaining the normalizing quantity which, unless noted otherwise, corresponds to the response being normalized. The displacement and acceleration of storeys 
	
		
			

				1
			

		
	
, 
	
		
			
				3
				0
			

		
	
, 
	
		
			
				5
				0
			

		
	
, 
	
		
			
				5
				5
			

		
	
, 
	
		
			
				6
				0
			

		
	
, 
	
		
			
				6
				5
			

		
	
, 
	
		
			
				7
				0
			

		
	
, 
	
		
			
				7
				5
			

		
	
, and 
	
		
			
				7
				6
			

		
	
 and the displacement and velocity of the TMD measured relative to storey 76 are considered. Hence, the matrices 
	
		
			

				𝐂
			

			

				𝐲
			

		
	
, 
	
		
			

				𝐃
			

			

				𝐲
			

		
	
, and 
	
		
			

				𝐅
			

		
	
, appearing in the output equation, that is, (13), are defined as follows. Define 
	
		
			
				𝐯
				=
				[
				1
				3
				0
				5
				0
				5
				5
				6
				0
				6
				5
				7
				0
				7
				5
				7
				6
				]
			

			

				𝑇
			

		
	
. For 
	
		
			
				𝑖
				=
				1
			

		
	
 to 9, 
	
		
			

				𝐂
			

			

				𝐲
			

			
				(
				𝑖
				,
				𝐯
				(
				𝑖
				)
				)
				=
				1
			

		
	
. Further, 
	
		
			

				𝐂
			

			

				𝐲
			

			
				(
				1
				0
				,
				7
				7
				)
				=
				−
				𝐂
			

			

				𝐲
			

			
				(
				1
				0
				,
				7
				6
				)
				=
				𝐂
			

			

				𝐲
			

			
				(
				1
				1
				,
				1
				5
				4
				)
				=
				−
				𝐂
			

			

				𝐲
			

			
				(
				1
				1
				,
				1
				5
				3
				)
				=
				1
			

		
	
. For 
	
		
			
				𝑖
				=
				1
				2
			

		
	
 to 
	
		
			
				2
				0
			

		
	
, the 
	
		
			
				𝑖
				t
				h
			

		
	
 row of 
	
		
			

				𝐂
			

			

				𝐲
			

		
	
, 
	
		
			

				𝐃
			

			

				𝐲
			

		
	
, and 
	
		
			

				𝐅
			

		
	
 is the 
	
		
			
				(
				7
				7
				+
				𝐯
				(
				𝑖
				−
				1
				1
				)
				)
				t
				h
			

		
	
 row of 
	
		
			

				𝐀
			

		
	
, 
	
		
			

				𝐁
			

		
	
, and 
	
		
			

				𝐄
			

		
	
, respectively. Here, 
	
		
			
				𝐯
				(
				𝑖
				−
				1
				1
				)
			

		
	
 denotes the 
	
		
			
				(
				𝑖
				−
				1
				1
				)
				t
				h
			

		
	
 element of 
	
		
			

				𝐯
			

		
	
. The remaining elements of 
	
		
			

				𝐂
			

			

				𝐲
			

		
	
, 
	
		
			

				𝐃
			

			

				𝐲
			

		
	
, and 
	
		
			

				𝐅
			

		
	
 are zero.

	
		
			

				𝐽
			

			

				1
			

		
	
 denotes the maximum RMS acceleration, normalized with the RMS acceleration of storey 75, with storey  76 and the TMD being excluded from the maximum. 
	
		
			

				𝐽
			

			

				2
			

		
	
 denotes the average of the normalized RMS accelerations, with the average being taken over storeys 50 to 75. 
	
		
			

				𝐽
			

			

				3
			

		
	
 denotes the normalized RMS displacement of storey 76. 
	
		
			

				𝐽
			

			

				4
			

		
	
 denotes the average of the normalized RMS displacements, with the average being taken over storeys 50 to 76. 
	
		
			

				𝐽
			

			

				5
			

		
	
 denotes the RMS of 
	
		
			

				𝑥
			

			
				d
				r
				e
				l
			

		
	
 (i.e., the TMD displacement relative to storey 76) normalized with the RMS displacement of storey 76; 
	
		
			

				𝐽
			

			

				6
			

		
	
 denotes the RMS of 
	
		
			
				𝑢
				̇
				𝑥
			

			
				d
				r
				e
				l
			

		
	
, that is, the average input power. Note that in [13] the “average power” is defined as the RMS of 
	
		
			
				̇
				𝑥
			

			
				d
				r
				e
				l
			

		
	
 normalized with the RMS velocity of storey 76, that is, a ratio of velocities. This is denoted here as 
	
		
			
				
				𝐽
			

			

				6
			

		
	
 and is used for comparison with the results from STSC. This essentially represents the RMS of the TMD velocity. Performance criteria 
	
		
			

				𝐽
			

			

				7
			

		
	
 to 
	
		
			

				𝐽
			

			
				1
				2
			

		
	
 and 
	
		
			
				
				𝐽
			

			
				1
				2
			

		
	
 are defined analogous to 
	
		
			

				𝐽
			

			

				1
			

		
	
 to 
	
		
			

				𝐽
			

			

				6
			

		
	
 and 
	
		
			
				
				𝐽
			

			

				6
			

		
	
, respectively, by replacing the RMS values with corresponding peak values. The