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Condition-based maintenance is critical to reduce the costs of maintenance and improve the production efficiency. Data-driven
method based on neural network (NN) is one of the most used models for mechanical components condition recognition.
In this paper, we introduce a new bearing condition recognition method based on multifeatures extraction and deep neural
network (DNN). First, the method calculates time domain, frequency domain, and time-frequency domain features to represent
characteristic of vibration signals.Then the nonlinear dimension reduction algorithm based on deep learning is proposed to reduce
the redundancy information. Finally, the top-layer classifier of deep neural network outputs the bearing condition. The proposed
method is validated using experiment test-bed bearing vibration data. Meanwhile some comparative studies are performed; the
results show the advantage of the proposed method in adaptive features selection and superior accuracy in bearing condition
recognition.

1. Introduction

Bearing degradation is one of themost common fault sources
in rotating machinery system. Unexpected bearing failure
can lead to large costs of maintenance and loss of revenue.
Traditionally, the maintenance activity is selected from pre-
ventive and corrective maintenance. However, preventive
maintenance may typically involve the high maintenance
costs, and corrective maintenance may reduce the productive
efficiency [1, 2]. So condition-based maintenance based on
condition monitoring is critical to assure safe and efficient
operation of rotating machinery system [3].

Generally, among the various approaches of bearing
condition monitoring, it can be classified into two categories:
signal processing-based approaches and pattern recognition-
based approaches. In signal processing-based approaches,
some mathematical or statistical operations are performed
on the measurement signal and then the bearing condition
is judged through the prior knowledge of human beings.
The kurtosis coefficient is a major indicator of bearing
performance degradation detection [4]. The other statistical
parameters such as the first-order moment (e.g., mean 𝑥), the
second-order moment (e.g., variance 𝜎2), and Crest Factor

are utilized in the study of bearing condition monitoring
usually. The statistical analysis method is widely used for
its simplicity and computation [5]. Spectrum analysis is also
effective in tracking fault of bearing [6]. Spectral kurtosis
in frequency domain is an effective tool to enhance the
machinery fault features [7]. For bearing condition mon-
itoring and fault diagnosis, envelope spectrum analysis is
used for diagnostics bearing where faults signal has an
amplitudemodulating effect on the characteristic frequencies
[8]. However, the spectral analysis method has no time
scale information. In order to overcome that shortcoming,
some new approaches based on time-frequency analysis are
proposed for bearing faults detecting and localizing. Shi et al.
[9] proposed a wavelet-based envelop spectrum method to
detect the defect in rolling element bearings.

Meanwhile, pattern recognition-based condition moni-
toring is composed of two parts: feature extraction and pat-
tern recognition. The signal processing-based feature extrac-
tion approach is a basic step in conditionmonitoring. Pattern
recognition is another critical issue. Classification-based
machine learning algorithms are commonly used in industry
and academic fields for condition recognition [10]. Support
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vector machines (SVMs) map the input data into high-
dimension space with different kernel functions to efficiently
perform a nonlinear classification. Abbasion et al. [11] present
a new method based on wavelet analysis (WP) and support
vector machine (SVM) to diagnosis of multifault of bearing.
Artificial neural networks (ANN) are able to learn expert
knowledge through a representative set of data. So ANN
is commonly adopted in automated detection of machine
conditions [12]. Bin et al. [13] extract the fault characteristics
combined empiricalmode decomposition andwavelet packet
decomposition. Then BP neural network is taken to identify
themodel of bearing. In addition to BP neural network, fuzzy
neural network [14], conditional random field [15], recurrent
neural network [16], and radial basis function neural network
[17] are also applied in bearing intelligent condition moni-
toring. Deep neural network (DNN) is a new kind of neural
network architectures that attempts to abstract the high-level
features from the raw signal through multilayer nonlinear
transformation [18]. Hinton and Salakhutdinov [19] point out
that deep learning can convert high-dimensional data to low-
dimension nonlinearly by training a multilayer neural net-
work. Since then deep neural network has widely been used
in speech recognition [20], image recognition [21], natural
language processing [22], and some other classification and
recognition applications. But recently, the bearing condition
monitoring based on deep neural network almost cannot be
found in academic and industrial.

In this paper, we propose a new method based on mul-
tifeatures fusion and DNN nonlinear dimension reduction
to recognize bearing condition. The time domain features,
frequency domain features, and time-frequency features are
fused for integrating the bearing condition features. Those
features are input into the deep neural network (DNN) as
the input vector. Then the DNN model will extract the high-
level abstraction of input data and recognize the bearing
condition. The remainder of this paper is organized as
follows. The proposed method is presented in Section 2.
Section 3 discusses the case study, where the proposed
method is validated through real-world bearing vibration
signal. Section 4 presents the conclusion and future work.

2. Condition Recognition Using
the Proposed Method

The proposed method for bearing condition monitor-
ing mainly includes three steps: feature extraction, fea-
ture dimension reduction, and condition recognition. The
detailed process is as follows.

2.1. Feature Extraction. The presence of defect of machinery
components can barely be determined from the raw accelera-
tion signal. To get a better understanding of the raw vibration
signal we tried to extract the time domain, frequency domain,
and time-frequency domain features.

2.1.1. Time Domain Features. Time domain features of vibra-
tion signals have proved to be useful to present themachinery
condition. FromTable 1, we apply those classical time domain

Table 1: Time domain features extraction.
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statistical features to represent the bearing condition. The
Peak to Peak value calculates the difference between the
maximum and minimum value in the signal. The Root
Mean Square (RMS)measures the power content of vibration
signal. Those are the first moment and second moment of
probability distribution. Skewness, an asymmetrymeasure, is
defined as the third moment. Kurtosis, a descriptor of signal
shape, is based on a scaled calculation of the fourth moment
of the data. The Crest Factor, Shape Factor, Impulse Factor,
and Margin Factor are some dimensionless quantities that
govern the bearing degeneration behavior.

2.1.2. Frequency Domain Features. The signal spectrum con-
tains rich condition information. The spectral kurtosis, indi-
cating the presence of short transients and their frequency
locations, is obtained by calculating the kurtosis from each
frequency band. For a number 𝑀 of 𝑁-point realization at
the frequency index𝑚, the spectral kurtosis is given as [23]
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where 𝑀 is the realization of the process that contains 𝑁
points. And 𝑋

𝑖 is the data from frequency transform. In
practice, the categories of failures are not known. Similar to
the rolling bearing, the inner, outer races and the cage faults
have the chance to appear. So the frequency signatures are
difficult to obtain due to the fact that the fault may concern
all the components of the test bearing at the same time.
We proposed a new condition indicator which is obtained
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by calculating the correlation coefficient between the two
vibration signals
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where 𝑥
𝑖
and 𝑦

𝑖
are two spectral kurtosis vectors of size𝑁. 𝑥

𝑖

is the standard spectral kurtosis frequency distribution. 𝑦
𝑖
is

the spectral kurtosis of current signal. And 𝑥 and 𝑦 are their
corresponding means.

2.1.3. Time-Frequency Domain Features. Wavelet transfer
(WT) decomposes signal into time-frequency space and has
the excellent performance to present the signal characteristic.
However, WT just subdivides signal into low-frequency
bands. To get more detailed signal frequency representation,
the wavelet package transform (WPT) is performed.Through
the WPT, a signal can be divided into high-frequency and
low-frequency bands with the binary tree form. At each
decomposition levels, the signal is divided into two mutual
orthogonal subspaces:

𝑈
𝑗,𝑘
= 𝑈
𝑗+1,2𝑘

⊕ 𝑈
𝑗+1,2𝑘+1

, (3)

where 𝑗 indicates the tree level and 𝑘 is the node index in
level 𝑗. The dividing is operating until decomposition level
𝐽; then the process will produce 2𝐽 subspaces which are
mutual orthogonal subspaces. The WP function 𝑊𝑛

𝑗,𝑘
(𝑡) is

mathematically expressed as below [24]:
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where 𝑗 and 𝑘 are the scale and translation parameters,
respectively. 𝑛 is the oscillation parameter. So the WP coef-
ficients 𝑆𝑛

𝑗,𝑘
are obtained by the inner product between the

signal 𝑥(𝑡) and the WP functions𝑊𝑛
𝑗,𝑘
, as below:
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2.2. Deep Neural Network. Feature vector selection and
dimension reduction facilitate the pattern classification.Deep
neural network (DNN) attempts to abstract the high-level
data structure by using multiple nonlinear transformation.
From Figure 1, the main processing step includes layered
pretraining and fine-tuning. In this paper, the Autoencoder
DNN structure is applied to process the multidimensional
feature data.

2.2.1. Pretraining. During the pretraining stage, an Autoen-
coder network consists of three layers: the input layer, the
hidden layer, and the output layer. Firstly, the input layer 𝑥
is mapped into the hidden layer 𝑦 with the equation

𝑦 = 𝑠 (W𝑥 + 𝑏) , (6)

where W is the weight matrix, 𝑏 is the bias value, and 𝑠 is a
transfer function; usually it is nonlinear such as the sigmoid

Original feature
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Hidden layer 1 Original feature

Hidden layer 1

H layer 2
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Fine-tuning

Hidden layer 1

Reconstruction 

Hidden layer 2

Pretraining

Figure 1: The framework for deep learning.

function. This processing is called encoder. Secondly, the
decoder processing maps the hidden layer 𝑦 into the output
layer 𝑧 with the equation:

𝑧 = 𝑠 (W󸀠𝑦 + 𝑏󸀠) , (7)

where the weight matrix W󸀠 is constrained to the transpose
of the encoder mapping: W󸀠 = W𝑇. The output value 𝑧 is
seen as the prediction of input 𝑥with the code value 𝑦. So the
network is optimized by minimizing the error between the
values 𝑧 and 𝑥, such as 𝐿(𝑥𝑧) = ‖𝑥 − 𝑧‖2. So the loss function
can be described as

𝐿
𝐻
(𝑥, 𝑧) = −

𝑑

∑

𝑘=1

[𝑥
𝑘
log 𝑧
𝑘
+ (1 − 𝑥

𝑘
) log (1 − 𝑧

𝑘
)] . (8)

The code layer (hidden layer) 𝑦 has fewer nodes than
the input and output layer. It can be seen as the compressed
representation of the input layer. This is similar to the PCA
data dimensionality reduction. But the Autoencoder is the
nonlinear method.

2.2.2. Fine-Tuning. The multihidden layers of the Autoen-
coder are unsupervised pretraining.Then those hidden layers
are combined with the Softmax classifier to construct the
deep neural network.The fine-tuning trains the whole neural
network with the supervised learning method to improve the
performance. During the fine-tuning, all layers are stacked
into a single model, so all of the model parameters can
be optimized. Backpropagation algorithm for fine-tuning
Autoencoder is used. And the detailed equations and deriva-
tion process can be found in [25].

2.3. Structure of the Proposed Method. To estimate the oper-
ation condition of rolling bearing, a new feature extraction
and process scheme is proposed in this paper. The goal of the
method is to extract the bearing condition’s indicator features
and fuse those features to the recognition model to indicate
the bearing operation condition. Then the deep neural
network reduces the features matrix dimension nonlinearly
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Figure 2: The framework for bearing condition estimation.

and recognizes the bearing condition. As shown in Figure 2,
the proposed method is described as follows.

Step 1. Preprocess the raw signal with normalization.

Step 2. Extract features of the input signal with time domain,
frequency domain, and time-frequency domain.

Step 3. Smooth the features bymoving average filter, and then
normalize the filtered features.

Step 4. Pretrain the Autoencoder neural network with the
features of training and testing set by unsupervised learning.

Step 5. Fine-tune the stacked Autoencoder neural network
with the label training set.

Step 6. Estimate the bearing operation condition under the
trained model.

3. Experiments Analysis and Discussion

3.1. Description of the Platform PRONOSTIA. The exper-
imentation platform is PRONOSTIA (Figure 3) which is
designed to validate bearing performance degradation and
condition monitoring assessment. In the present experimen-
tal test-bed a series of experiments about bearing degradation
process is performed. All kinds of failure, inner race fault,
outer race fault, ball fault, and so on, will have the chance to
occur in the experiment.

The platform is mainly consisting of drive part and load
part. In the driven part, the asynchronous motor (250W)
with a gearbox drives the shaft rotating. The testing bearing

Bearing tested Accelerometers

CouplingTorquemeterSpeed sensor

AC motor

Figure 3: The experimental platform PRONOSTIA.

inner race is fixed through the shaft. The load part is
produced by a force actuator (𝑝𝑛𝑒𝑢𝑚𝑎𝑡𝑖𝑐𝑗𝑎𝑐𝑘), which exerts
an exceeding force of the bearing’s maximum dynamic load
on the testing bearing to reduce the bearing’s life cycle. Two
accelerometers (𝐷𝑌𝑇𝑅𝐴𝑁3035𝐵) are mounted horizontally
and vertically on the housing of the test roller bearing to
pick up the horizontal and the vertical accelerations as shown
in Figure 3. The sampling frequency of the data acquisition
is 25600Hz and the vibration data provided by the two
accelerometers are collected every 1 second [26, 27].

The bearing degradation data consists of three categories:
the first operating condition (1800 rpm and 4000N), the
second operating condition (1650 rpm and 4200N), and the
third operating condition (1500 rpm and 5000N). Empir-
ically, the bearing full life cycle can be divided into four
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Figure 4: The run-to-fail vibration signal of bearing1 1 and
bearing1 3.

failure levels: normal, early fault, degradation, and failure as
shown in Figure 4.There are six run-to-fail datasets. And the
number of different testing bearings are 2830, 871, 911, 797,
515, and 1637. So the total samples are 7534. Half of them
(3767) are chosen randomly as the training samples. The
other half are used as the testing samples.

3.2. Feature Extraction. The raw vibration signals are non-
stationary and nontrendable which makes it difficult to
obtain the condition estimation. According to Section 2,
the time domain, frequency domain, and time-frequency
domain feature extractionmethods are applied to indicate the
characteristics of bearing vibration signal.

As Table 1, the eight classical time domain features are
shown in Figures 5(a)–5(h). From those figures, the features
are almost trend but also with some impulse noise. Moving
average filter is performed to smooth those features with an
average size 15, determined empirically. The red curve is the
filtered feature which is more smooth especially eliminating
the influence of impulse. Normalization of features are
conducted to transfer the features within the same scale.

For the spectrum kurtosis (SK) in frequency domain,
Welch’s estimate of the SK is employed to indicate the
locations in the frequency domain of the raw signal [28, 29].
Set window length𝑊

𝑛
= 2
8, overlap length 𝑂

𝑛
= 𝑊
𝑛
∗ 3/4,

and FFT length 𝐹
𝑛
= 2 ∗ 𝑊

𝑛
. The length of raw signal is

2560; through (1), we can get the spectrum kurtosis 𝐺SK.
Select mean of the first five 𝐺SK as the standard template
of each vibration dataset and the correlation coefficient can
be calculated by (2). Hence, Figure 5(i) is regarded as the
bearing monitoring index from the frequency domain fea-
ture. As visual inspection, the correlation coefficient curves of
spectrum kurtosis are of significant tendency and noiseless.
Time-frequency domain features based on wavelet packet
decomposition provide arbitrary time-frequency resolution
of specified signal. From Figure 6(a), at the bearing initial
operation stage, the frequency component is mainly focused
on 400∼600Hz. But with the increase of running time,
there are certain changes that come out for the concentrated

frequency band. At the end of bearing service, it moves down
to 0∼200Hz as shown in Figure 6(b).

Based on these observations, we quantify the spread
of energy in the time-frequency plane using the sum of
absolute amplitude. Over time, the different time-frequency
distributions have different curve trends. From Figure 6(c),
we separate the six frequency bands 0∼150Hz, 151∼300Hz,
301∼450Hz, 451∼600Hz, and 601∼800Hz. For the severe
oscillation of frequency band curve, the length of moving
average filter is set to 21. Figure 6(d) is the filtered and
normalized curves. Thus, eight time domain features, one
frequency domain feature, and five time-frequency domain
features for individual horizontal and vertical vibration signal
are detected.They are smoothed by the average moving filter.
And for improving the convergence speed of the regression
algorithm, all the features are normalized.

3.3. Results andDiscussion. Through all above feature figures,
not all of them have the same important degrees to identify
the bearing condition. So before those features are fed
into the classifier, we reduce their dimension through deep
Autoencoder neural network. And it includes two stages:
pretraining stage and fine-turning stage. The pretraining is
an unsupervised learning process. So in this case, we use
the feature data from training and testing set to train the
Autoencoder networks.Thus in the first operation condition,
there are 7534 samples from the six run-to-fail sets with
different operation condition. In our experiment, the neuron’s
number of input layer is 28, the first hidden layer is 20, the
second hidden layer is 5, and the output layer is 4. During
the first hidden layer training, the input layer’s neurons are
28, the hidden layer’s neurons are 20, and the output layer’s
neurons are 28. Through (6)∼(8), the BP algorithm is used to
train the Autoencoder network. When the training network
arrives at the stop condition, the first hidden layer 𝐿

1
can be

got.Then the first hidden layer𝐿
1
is assigned to input layer for

the second hidden layer training. The hidden layer’s neurons
are 5. Each layer is trained as a denoising Autoencoder by
minimizing the reconstruction of its input. Once all layers
are pretrained, the network goes through the second stage of
training (fine-tuning). Fine-tuning is a supervised learning
process where we want to minimize prediction error on a
supervised task. A Softmax classifier layer is added to the
top of the network. We then train the whole neural network
to get the optimal parameters. And the transfer function of
the last layer is tanh. The results are shown in Table 2. The
degeneration stage works out the most accuracy rate with
98.2%. For comparison, PCA dimension reduction, SVM
classification, and unpretraining method is applied to the
dataset to test the classification rate.

3.3.1. PCA Dimension Reduction Method. Principle compo-
nent analysis (PCA) is an effective linear data dimension
reduction method [30] and is often used for bearing fault
diagnosis and classification. PCA has ability to extract the
most significant representation features. In the experiment,
28 features are extracted in every sample. PCA is applied to
the training feature sets, and just five most distinct principle
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Figure 5: (a)∼(h) are the time domain features and (i) is the frequency domain feature of bearing1 1.

components are accounted. Then the transformation matrix
based on the training set is applied to the test signal. At last the
compressed features are used for classification by BP neural
network with three layers.The results can be found in Table 2.

3.3.2. SVM Classification Method. Support vector machine
(SVM) is a classical supervised learningmodel with the rigor-
ous statistical learning theory.Thekernel of SVMmodel is the
construction of kernel function implicitly mapping the input
data into the high-dimensional spaces. And SVMs have been
found to be remarkably effective in many machinery fault
diagnoses [31]. In many bearing fault diagnosis applications
[32], the RBF kernel obtains the significant classification
accuracy rate. In the experiment, we mainly consider the
RBF kernel. And the raw features input directly into SVM
classification; the result is shown in Table 2.

3.3.3. The Influence of Unsupervised Prelearning. An impor-
tant improvement of deep learning is the unsupervised
learning which does not need the label data to train the
neural network [33]. And the unsupervised learning can
find the appropriate initial weights values which are helpful
for optimizing the weights in nonlinear deep learning. For
validating the significant of pretraining, the deep learning
model is built without unsupervised prelearning; its result is
shown in Table 2. The result indicates that the unsupervised
prelearning can improve the recognition accurate rate of
bearing condition.

3.3.4. The Influence of Different Features. To investigate the
influence of different features, different feature combination
is analyzed. First, the features are divided into three cate-
gories: traditional features (Feature 1), traditional features and
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Figure 6: The time-frequency domain features of bearing1 1.

Table 2: The results of different algorithms.

Proposed method Proposed PCA SVM Unpretraining
Normal Early fault Degeneration Fault

Normal 0.965 0.035 0 0 0.965 0.915 0.940 0.915
Early 0.132 0.783 0.085 0 0.783 0.788 0.774 0.777
Degeneration 0 0.004 0.982 0.014 0.982 0.950 0.935 0.960
Fault 0 0 0.048 0.952 0.952 0.922 0.933 0.922
Success rate 0.965 0.783 0.982 0.952 0.935 0.898 0.909 0.897

spectrum kurtosis (Feature 2), traditional features, spectrum
kurtosis, and WPT (Feature 3). Then those features’ com-
bination is reduced dimension and distinguished condition
classification by deep learningmodel.The result can be found

in Table 3. As you can see, the proposed feature extraction
method can improve the bearing condition recognition
accuracy. And the spectrum kurtosis and WPT features are
also helpful.
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Table 3: The results of different features combination.

Features Accuracy
Feature 1 0.892
Feature 2 0.913
Feature 3 0.935

4. Conclusion and Future Works

Condition-based maintenance based on condition moni-
toring is critical to reduce the cost of maintenance and
improve production efficiency of industry. In this paper,
a novel method based on multifeatures extraction, deep
neural network features dimensional reduction, and condi-
tion recognition is proposed. Time, frequency, and time-
frequency domain features are fused to represent the char-
acteristic of bearing operation condition.Then the nonlinear
dimension reduction method based on deep learning is
proposed to highlight the hidden patterns and to compress
the information. At last, a classification in which the different
bearing operation stage is identified is added to the top level
of deep neural network. This condition monitoring system is
validated with real-world vibrationmonitoring data collected
from bearing. A comparative study is performed between the
proposed method and PCA dimension reduction method,
SVM classificationmethod, unpretrainingmethod, and three
different features’ combination. Those results demonstrate
the advantage of the proposed method in achieving more
accurate condition estimation.
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