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Nonlinear dynamic model of a coaxial rotor system was established with a method combining the finite element method and the
fixed interface modal synthesis method. Then an implicit time domain method was presented to solve the nonlinear equations
of motion; thus dynamic characteristics of the rotor system can be obtained. With nonlinear forces of squeeze film damper and
intermediate bearing considered, nonlinear dynamic response characteristics of the co- and counterrotating coaxial rotor system
under multiple unbalance forces were studied and compared in this work. It was found that the critical speeds of the corotating
system were equal to or slightly higher than those of the counterrotating case due to the gyroscopic moments. The results showed
that the unbalance excitation frequencies are dominant in the responses of the rotor system. Besides, due to coupling effect of the
intermediate bearing some combinations of the unbalance excitation frequencies were also observed in the spectrogram but the
combinations were different for co- and counterrotating cases. Stability and periodicity of the rotor system were investigated with
bifurcation diagram, Poincare map, and phase diagram. It was found that the rotor system executes four-period quasi-periodic
motion around critical speeds.

1. Introduction

In recent years, coaxial dual-rotor system has been applied
to many aeroengines with two corotating or counterrotating
rotors, such as RB211, GE120, and F119. The counterrotating
technology is beneficial to improve the fuel consumption
rate and thrust-weight ratio as well as reduce the gyro-
scopic torque of aeroengines [1]. Another technology that
has been applied is the intermediate bearing which aims
to further reduce the mass of the aeroengines. For most
modern aeroengines, the squeeze film dampers (SFD) are
commonly adopted to provide structural isolation and reduce
the amplitude of rotor response. All these facts necessitate
that more studies should be conducted to investigate the
dynamic characteristics of dual-rotor systems with SFD and
the intermediate bearing.

In 1975, Vance and Royal [2] have published an extensive
discussion of the design and operational technological issues
related to the intermediate bearings. Hibner [3] has applied

the transfer matrix method to the multiple-shaft machines
in order to compute the critical speeds and nonlinearly
damped response. Gupta et al. [4] have presented a study
on a counterrotating dual-rotor test rig with an intermedi-
ate bearing. The rotor system was also modeled with the
transfer matrix method. Cross-excitation phenomena have
been encountered. In 1996, Ferraris et al. [5] have analyzed
the rotordynamics of a dual-shaft prop-fan aircraft engine
with two rotors spin at equal speeds in opposite directions.
A study of a twin-spool aircraft engine is also presented in
the book of Lalanne and Ferraris [6]. In [7–9], Hu et al.
have studied the dynamic characteristics of a counterrotating
dual-rotor system with the transfer matrix method. The
nonlinearity of the intermediate bearing was included. The
finite element method has been applied in [10, 11] to obtain
the dynamic characteristics of dual-rotor system with inter-
mediate bearing. Fatigue life of two different configurations
of the intermediate bearing were studied and compared by
Hu et al. [12] in 2006. However, the intermediate bearing was
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Figure 1: Diagram of beam element.

not coupled with the rotor system. From 2008 to 2011, Hai
and Bonello [13–16] have conducted extensive investigations
on computational method to obtain the unbalance response
of the multispool whole aeroengine with squeeze film
dampers.

The current study is on a co- and counterrotating dual-
rotor test rig that has been developed to study the dynamics of
dual-rotor machines with intermediate bearings and squeeze
film dampers. The purpose of this paper is to study the
modeling method and nonlinear dynamic characteristics of
the complex dual-rotor systems. In the second part of the
paper, the modeling method and the numerical algorithm
are presented. Then a description of the experimental appa-
ratus is given in the next part. Finally, nonlinear dynamic
characteristics of the co- and counterrotating test rig are
studied and the numerical results are compared with the
experimental results to validate the model established in this
paper.

2. Modeling and Numerical Algorithm

2.1. Finite Element Formulation. Figure 1 shows the rotor
element considered in this work. Each element consists of two
nodes, with four degrees of freedom at each node. The nodal
displacement vector can be described as

qe = [𝑢𝑒1 V𝑒1 𝜃𝑒1 𝜑𝑒1 𝑢𝑒2 V𝑒2 𝜃𝑒2 𝜑𝑒2]𝑇 . (1)

The displacement vector within the element can be interpo-
lated as

[[[[[
[

𝑢𝑒𝜉 (𝜉, 𝑡)
V𝑒𝜉 (𝜉, 𝑡)𝜃𝑒𝜉 (𝜉, 𝑡)𝜑𝑒𝜉 (𝜉, 𝑡)

]]]]]
]

=
[[[[[[
[

𝑁1 0 0 𝑁2 𝑁3 0 0 𝑁40 𝑁1 −𝑁2 0 0 𝑁3 −𝑁4 0
0 −�̌�1 �̌�2 0 0 −�̌�3 �̌�4 0
�̌�1 0 0 �̌�2 �̌�3 0 0 �̌�4

]]]]]]
]
qe.

(2)

The shape functions in (2) are

𝑁1 = 1 − 1𝑙2𝑒 + 12𝑔 (12𝑔𝑙𝑒 𝜉 + 3𝜉2 − 2𝑙𝑒 𝜉3) ,
𝑁2 = 1𝑙2𝑒 + 12𝑔 ((𝑙2𝑒 + 6𝑔) 𝜉 − 2𝑙2𝑒 + 6𝑔

𝑙𝑒 𝜉2 + 𝜉3) ,
𝑁3 = 1𝑙2𝑒 + 12𝑔 (12𝑔𝑙𝑒 𝜉 + 3𝜉2 − 2𝑙𝑒 𝜉3) ,
𝑁4 = 1𝑙2𝑒 + 12𝑔 (−6𝑔𝜉 − 𝑙2𝑒 − 6𝑔

𝑙𝑒 𝜉2 + 𝜉3) ,

(3a)
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�̌�1 = 1𝑙2𝑒 + 12𝑔 ( 6𝑙𝑒 𝜉2 − 6𝜉) ,
�̌�2 = 1𝑙2𝑒 + 12𝑔 (𝑙2𝑒 + 12𝑔 − 4𝑙2𝑒 + 12𝑔

𝑙𝑒 𝜉 + 3𝜉2) ,
�̌�3 = 1𝑙2𝑒 + 12𝑔 (6𝜉 − 6𝑙𝑒 𝜉2) ,
�̌�4 = 1𝑙2𝑒 + 12𝑔 (12𝑔 − 2𝑙2𝑒𝑙𝑒 𝜉 + 3𝜉2) .

(3b)

In (3a) and (3b), 𝑙𝑒 is the element length and 𝑔 is formulated
as given below:

𝑔 = 𝐸𝑒𝐼𝑒𝜅𝐺𝑒𝐴𝑒 , (4)

where𝐸𝑒 is Young’sModulus, 𝐼𝑒 is the areamoment of inertia,𝐺𝑒 is the shear modulus, and 𝐴𝑒 is the cross-sectional area. 𝜅
denotes the shear coefficient, and for a hollow circular shaft
section [16, 17]

𝜅 = 6 (1 + 𝜇) (1 + 𝜆2)2
(7 + 12𝜇 + 4𝜇2) (1 + 𝜆2)2 + 4 (5 + 6𝜇 + 2𝜇2) 𝜆2 , (5)

where 𝜇 is Poisson’s ratio and 𝜆 is the ratio of the inner shaft
radius to the outer shaft radius. Hence for a solid shaft 𝜆 → 0.

With rotary inertia and shear effects considered, the
kinetic energy and strain energy for a shaft element are

𝑇𝑒 = 12 ∫𝑙𝑒
0

(𝜌𝑒𝐴𝑒�̇�2𝑒𝜉 (𝜉, 𝑡) + 𝜌𝑒𝐼𝑒�̇�2𝑒𝜉 (𝜉, 𝑡)) 𝑑𝜉, (6a)

𝑈𝑒 = 12 ∫𝑙𝑒
0

(𝜕𝜑𝑒𝜉 (𝜉, 𝑡)𝜕𝜉 )𝑇 𝐸𝑒𝐼𝑒 (𝜕𝜑𝑒𝜉 (𝜉, 𝑡)𝜕𝜉 ) 𝑑𝜉 + 12
⋅ 𝜅 ∫𝑙𝑒
0

𝛾𝑇𝐺𝑒𝐴𝑒𝛾 𝑑𝜉.
(6b)

And thus the element mass matrix is

me

= 𝜌𝑒𝐴𝑒 ∫𝑙𝑒
0

[N]𝑇 [N] 𝑑𝜉
+ 𝜌𝑒𝐼𝑒 ∫𝑙𝑒

0
[𝑔 [N] + [N]]𝑇 [𝑔 [N] + [N]] 𝑑𝜉.

(7)

The element stiffness matrix is

ke = 𝐸𝑒𝐼𝑒 ∫𝑙𝑒
0

[N]𝑇 [N] 𝑑𝜉
+ 𝐸𝑒𝐼𝑒𝑔∫𝑙𝑒

0
[N]𝑇 [N] 𝑑𝜉,

(8)

where

[N] = 𝑑 [𝑁1 𝑁2 𝑁3 𝑁4]𝑑𝜉 ,
[N] = 𝑑2 [𝑁1 𝑁2 𝑁3 𝑁4]𝑑𝜉2 ,
[N] = 𝑑3 [𝑁1 𝑁2 𝑁3 𝑁4]𝑑𝜉3 .

(9)

The element gyroscopic matrix is

ge = −2𝜌𝑒𝐼𝑒 ∫𝑙𝑒
0

(BT
2B1 − BT

1B2) 𝑑𝜉, (10)

where

[B1

B2
] = [ 0 −�̌�1 �̌�2 0 0 −�̌�3 �̌�4 0

�̌�1 0 0 �̌�2 �̌�3 0 0 �̌�4] . (11)

For disk element, the mass and gyroscopic matrices are

md
e =

[[[[[[
[

𝑚𝑖𝑑 0 0 0
0 𝑚𝑖𝑑 0 0
0 0 𝐼𝑖𝑑 0
0 0 0 𝐼𝑖𝑑

]]]]]]
]

, (12a)

gde =
[[[[[[
[

0 0 0 0
0 0 0 0
0 0 0 𝐼𝑖𝑝
0 0 −𝐼𝑖𝑝 0

]]]]]]
]

, (12b)

where 𝑚𝑖𝑑, 𝐼𝑖𝑑, and 𝐼𝑖𝑝 are the mass, diametral moment of
inertia, and polar moment of inertia of the disk, respectively.

2.2. Nonlinear Forces of the Supports. For squeeze film
dampers analyzed in this work, based on the short bearing
assumption and the Reynolds boundary conditions, nonlin-
ear forces of the SFD can be expressed as [17]

𝑓sfd
𝑥 = − 𝜇𝑠𝑅𝐿3

𝑐2 (𝑥2 + 𝑦2)1/2 [𝑥 ( ̇𝜀𝐼2 + 𝜀�̇�𝐼1)
− 𝑦 ( ̇𝜀𝐼1 + 𝜀�̇�𝐼3)] ,

𝑓sfd
𝑦 = − 𝜇𝑠𝑅𝐿3

𝑐2 (𝑥2 + 𝑦2)1/2 [𝑦 ( ̇𝜀𝐼2 + 𝜀�̇�𝐼1)
+ 𝑥 ( ̇𝜀𝐼1 + 𝜀�̇�𝐼3)] ,

(13a)

𝜀 = √𝑥2 + 𝑦2
𝑐 , (13b)
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̇𝜀 = 𝑥�̇� + 𝑦�̇�
𝑐√𝑥2 + 𝑦2 , (13c)

�̇� = 𝑦�̇� − 𝑥�̇�𝑥2 + 𝑦2 , (13d)

tan𝜓 = 𝑥𝑦. (13e)

𝑥 and 𝑦 are the horizontal and vertical displacements of the
journal. 𝐼𝑗 (𝑗 = 1, 2, 3) are Sommerfeld integrals. 𝑅 and 𝐿 are
radius and length of the SFD, respectively. 𝜇𝑠 and 𝑐 denote the
dynamic viscosity of the film and the radial clearance of the
SFD.

As for the rolling ball bearing, based on pure rolling
assumption and the hertz contact theory, nonlinear force of
the rolling ball bearing [18] is

𝑓𝑏𝑥 = 𝑘𝑛
𝑁𝑏∑
𝑗=1

𝑢𝜉𝜃𝑗𝐻(𝑢𝜃𝑗) sin 𝜃𝑗,

𝑓𝑏𝑦 = 𝑘𝑛
𝑁𝑏∑
𝑗=1

𝑢𝜉𝜃𝑗𝐻(𝑢𝜃𝑗) cos 𝜃𝑗,
(14a)

𝜃𝑗 = 2𝜋 (𝑗 − 1)
𝑁𝑏 + 𝜔𝑐𝑡, (14b)

𝑢𝜃𝑗 = (𝑥ir − 𝑥or) cos 𝜃𝑗 + (𝑦ir − 𝑦or) sin 𝜃𝑗 − 𝛾2 , (14c)

𝐻(𝑢𝜃𝑗) = {{{
0, 𝑢𝜃𝑗 ≤ 0,
𝑢𝜃𝑗, 𝑢𝜃𝑗 > 0, (14d)

𝜔𝑐 = 𝜔in𝑟 + 𝜔out𝑅𝑅 + 𝑟 , (14e)

where the superscripts ir and or in (14c) denote inner ring and
outer ring of the bearing. 𝑘𝑛 in (14a) is the contact stiffness
between rollers and rings.𝑁𝑏 represent number of the rollers.𝜉 = 3/2 for the rolling ball bearing used in the intermediate
support. 𝜃𝑗 is the rotation angle of the𝑗th roller at time 𝑡.𝛾 and 𝜔𝑐 are bearing radial clearance and rotational speed
of the bearing retainer, respectively. 𝑢𝜃𝑗 is the elastic radial
deformation of the 𝑗th roller. 𝑟 and 𝑅 represent radius of the
inner and outer ring. 𝜔in and 𝜔out are the rotational speeds of
the inner and outer rings.

2.3. Equations of Motion and Numerical Algorithm. Equation
of motion of a nonlinear rotor system can be written as

Mü + Gu̇ + Ku = Fnonl + Funb. (15)

Funb is the unbalance force vector.Fnonl is the nonlinear forces
exerted by the SFDs and rolling bearing in this work. M, K,
andG can be obtained quite readily with elements formulated
in Section 2.1.

Mathematically, the model is a set of nonlinear second-
order differential equations, the computational efficiency of

which depends on the numerical methods applied and the
total DOFs of the rotor system. To combine accuracy of the
finite element model and computational efficiency, the fixed
interface modal synthesis is applied to reduce dimension of
the mathematical model and thus the computational effort.

Equation (15) can be rewritten as

[MII MIJ

MJI MJJ
][üI

üJ
] + [GII GIJ

GJI GJJ
][u̇I

u̇J
]

+ [KII KIJ

KJI KJJ
][uI

uJ
] = [FunbI

0
] + [ 0

FnonlJ
] ,

(16)

where uI can be interpreted as linear DOFs, with only
unbalance forces considered, while uJ represents the interface
DOFs or nonlinearDOFs in this work, including all the nodes
with nonlinear forces considered.

According to fixed interface modal synthesis method,
transformation between physical and modal coordinates is

[uI
uJ

] = [𝜙k 𝜙c
0 I

][qk
uJ

] = T[qk
uJ

] , (17a)

where 𝜙k is the mass normalized normal mode matrix, 𝜙c is
the mass normalized constrained mode, I is unity matrix, qk
is the normal mode coordinates, and T is the transformation
matrix. 𝜙c is given as below:

𝜙c = − (KII)−1 KIJ. (17b)

In (16), let uJ = 0 and neglecting the gyroscopic effects gives

MIIüI + KIIuI = 0. (17c)

Solving the eigenvalue problem corresponding to (17c) gives
the mass normalized normal mode matrix 𝜙k and the modal
frequencyΩk.

Substitute (17a) into (16) and premultiply with TT to
obtain the reduced equations of motion:

[ I MIJ

MJI MJJ
][q̈k

üJ
] + [GII GIJ

GJI GJJ
][q̇k

u̇J
]

+ [KII 0

0 KJJ
][qk

uJ
] = [

[
𝜙TkF

unb
I

𝜙Tc F
unb
I

]
]

+ [ 0

FnonlJ
] ,

(18a)

where

MJJ = MJJ + MJI𝜙c + 𝜙Tc (MII𝜙c + MIJ) ,
MIJ = MJI = 𝜙Tk (MII𝜙c + MIJ) ,
GII = 𝜙TkGII𝜙k,
GJJ = GJJ + GJI𝜙c + 𝜙Tc (GII𝜙c + GIJ) + cJJ,
GIJ = GJI = 𝜙TkGII𝜙c + 𝜙TkGIJ,
KII = diag (Ω2𝑟) , 1 ≤ 𝑟 ≤ 𝑛,
KJJ = KIJ + KJI𝜙c + kJJ.

(18b)
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Ω𝑟 is the 𝑟thmodal frequency obtained from (17c). FunbI is the
unbalance force acting on linear DOFs. FnonlJ is the nonlinear
force acting on nonlinear DOFs.

And

FnonlJ = −kJJ + [FSFDJ

FBJ
] , (19)

where FSFDJ = [𝑓sfd
1𝑥 𝑓sfd
1𝑦 ⋅ ⋅ ⋅ 𝑓sfd

𝑁𝑥 𝑓sfd
𝑁𝑦 ] is the nonlinear

force vector exerted by SFDs which can be calculated with
(13a), (13b), (13c), (13d), and (13e). FBJ = [𝑓𝑏𝑥 𝑓𝑏𝑦 −𝑓𝑏𝑥 −𝑓𝑏𝑦]
is the nonlinear force vector exerted by rolling bearing which
can be calculated with (14a), (14b), (14c), (14d), and (14e). kJJ
and cJJ are given below:

kJJ = [kBJ 0
0 0

] ,

cJJ = [cBJ 0
0 0

] ,
kBJ = diag (kBJi) , 1 ≤ 𝑖 ≤ 𝑁,
cBJ = diag (cBJi) , 1 ≤ 𝑖 ≤ 𝑁,
kBJi = [𝑘𝐽𝑖 0

0 𝑘𝐽𝑖] ,

cBJi = [𝑐𝐽𝑖 0
0 𝑐𝐽𝑖] .

(20)

𝑘𝐽𝑖 and 𝑐𝐽𝑖 are the stiffness and damping coefficients of
the elastic support, respectively. 𝑁 is the number of elastic
supports.

Rearranging (18a) and (18b) gives

q̈k + GIIq̇k + KIIqk = 𝜙TkFunbI − MIJüJ − GIJu̇J, (21a)

MJJüJ + GJJu̇J + KJJuJ

= FnonlJ + 𝜙Tc FunbI − MJIq̈k − GJIq̇k. (21b)

In (21a) and (21b), the vectors qk and uJ can be inter-
preted as linear and nonlinear DOFs of the reduced system,
respectively. Obviously, there is no nonlinear force acting on
the linear DOFs. Thus, the explicit Newmark-beta method
applies to (21a) while implicit Newmark-beta method applies
to (21b).

According to assumptions of Newmark-beta method, in
time interval [𝑡𝑛 𝑡𝑛+1] is

[q̇n+1k

u̇n+1J
] = [q̇nk

u̇nJ
] + {(1 − 𝛽) [q̈nk

ünJ
] + 𝛽[q̈n+1k

ün+1J
]}Δ𝑡, (22a)

[qn+1k

un+1J
] = [qnk

unJ
] + [q̇nk

u̇nJ
]Δ𝑡

+ {(0.5 − 𝛼) [q̈nk
ünJ

] + 𝛼[q̈n+1k

ün+1J
]}Δ𝑡2,

(22b)

where 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡 and Δ𝑡 is the time increment. The
superscripts 𝑛 and 𝑛 + 1 denote 𝑡𝑛 and 𝑡𝑛+1.

The following equations can be obtained from (22a) and
(22b):

q̈n+1k = 𝑎qn+1k − An
q ,

q̇n+1k = 𝑏qn+1k − Bn
q ,

(23)

ün+1J = 𝑎un+1J − An
J ,

u̇n+1J = 𝑏un+1J − Bn
J ,

(24)

with

An
q = 1𝛼Δ𝑡2 qnk + 1𝛼Δ𝑡 q̇nk + ( 12𝛼 − 1) q̈nk ,

An
J = 1𝛼Δ𝑡2 unk + 1𝛼Δ𝑡 u̇nk + ( 12𝛼 − 1) ünk ,

Bn
q = 𝛽𝛼Δ𝑡qnk + (𝛽𝛼 − 1) q̇nk + (𝛽𝛼 − 2) q̈nk ,

Bn
J = 𝛽𝛼Δ𝑡unk + (𝛽𝛼 − 1) u̇nk + (𝛽𝛼 − 2) ünk ,
𝑎 = 1𝛼Δ𝑡2 ,
𝑏 = 𝛽𝛼Δ𝑡 .

(25)

Substituting (22a) and (22b)–(25) into (21a) and (21b) yields

qn+1k = S−1q (𝜙TkFunbn+1I − Vqu
n+1
J + Wq) , (26a)

(SJ − VJS
−1
q Vq) un+1J

= Fnonl n+1J + (𝜙Tc − VJS
−1
q 𝜙

T
k ) Funbn+1I

− VJS
−1
q Wq + WJ,

(26b)
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Model rotating part (sha� and disks) with element
formulated in Section 2.1

Obtain M, K, G in Eq. (15)
Partition M, K, G as Eq. (16)

Model rotor system with element formulated in
Section 2.1 with all supports pinned

Modal analysis

Obtain Eq. (18a) and (18b) with nonlinear forces described in
Eq. (13a), (13b), (13c), (13d) and (13e)-(14a), (14b), (14c), (14d) and (14e) and Eq. (19)

Solve with method described in Eq. (23)–(27a), (27b), (27c), (27d), (27e), (27f) and (27g)

Compute Φc with Eq. (17b) Ωk and rearranged Φk

Figure 2: Flowchart of modeling and solving.

with

Wq = MIIA
n
q + GIIB

n
q + MIJA

n
J + GIJB

n
J , (27a)

WJ = MJJA
n
J + GJJB

n
J + MJIA

n
q + GJIB

n
q , (27b)

Sq = 𝑎MII + 𝑏GII + KII, (27c)

SJ = 𝑎MJJ + 𝑏GJJ + KJJ, (27d)

Vq = 𝑎MIJ + 𝑏GIJ, (27e)

VJ = 𝑎MJI + 𝑏GJI, (27f)

Fnonl n+1J = Fnonl nJ (un+1J , u̇n+1J ) . (27g)

Use (24) to substitute for u̇n+1J in (27g) and substitute the new
(27g) into (26b) to yield nonlinear equations of un+1J . After
solving (26b) for un+1J with numerical algorithms, qn+1k can
be obtained with un+1J substituted into (26a).Thus u̇n+1J , ün+1J ,
q̇n+1k , and q̈n+1k can be solved from (23) and (24). The process
continues to repeat and move forward to find un+2J and so on.
When the iteration is over, the nonlinear response in physical
coordinate system can be obtained from (17a).

Computational efficiency of solving (21a) and (21b)
depends on solving (21b) while dimensions of (21b) depend
on DOFs with nonlinear forces considered. Thus the compu-
tational efficiency can be greatly improved with themodeling
technique and solving method described in this work.

To summarize, nonlinear model of the rotor system is
established with finite element method and fixed interface
modal synthesis method; subsequently an implicit time-
domain method based on Newmark-beta method is applied
to solve the equations of motion of the reduced system; thus
dynamic characteristics can be obtained. Flowchart of the
modeling and solving method is shown in Figure 2.

3. Test Rig Description

The coaxial test rig studied in this paper is presented in
Figure 3.

The stationary coordinate system in Figure 3 consists of
three mutually perpendicular axes, 𝑜𝑥, 𝑜𝑦, and 𝑜𝑧, intersect-
ing at the point 𝑜 and axis of the rotor coincides with axis 𝑜𝑧.
The axes 𝑜𝑥 and 𝑜𝑧 are horizontal, and 𝑜𝑦 is vertical.

The rotor system consists of two shafts disposed along the
same axis 𝑜𝑧, connected by an intermediate bearing. The test
rig is designed with 4 supports and 4 disks, two for each rotor.
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Figure 3: Structural diagram of the coaxial rotor system.
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Figure 4: Spectrum cascade of the horizontal response of disks 2 and 4, numerical simulation. 𝜆 = −1.65.

The rotors are supported by supports I, II, III, and IV. The
squirrel cage + rolling bearing + SFD supporting scheme is
adopted for supports I, II, and III. The intermediate bearing
has one ringmounted on the shaft of inner rotor and the other
ring on outer rotor as shown in Figure 3.The rotor comprises
shaft and disks. Each shaft is driven by its ownmotor through
flexible couplings and therefore their rotational speeds can be
different.

Model parameters of the rotor system studied in this
work are listed in Tables 1–5. Young’s modulus of the shaft
is 196GPa, mass density is 7810 kg/m3, and shear modulus
is 75.5GPa. To apply modal synthesis method, 40 modes are
retained in the normal mode matrix 𝜙k. For the Newmark-
beta method, 𝛼 = 0.25 and 𝛽 = 0.5.

Geometric dimensions and information of each element
are listed in Table 1. Stiffness coefficients of elastic supports
are listed in Table 2. Parameters of the intermediate bearing
and SFDs are listed in Tables 3 and 4. The unbalance
configuration and inertia properties of each disk are listed in
Table 5.

4. Numerical and Experimental Results

Dynamic characteristics of both the co- and counterrotating
dual-rotor system were studied in this section.The rotational
speed ratio is defined as 𝜆 = 𝜔2/𝜔1, where 𝜔2 is the
rotational speed of the outer rotor and 𝜔1 is the rotational
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Table 1: Dimension and elements information of the rotor system.

Node number Axial location (m) Bearing/disk Element number Outer diameter (m) Inner diameter (m)
1 0 1 0.018 0.00
2 0.08143 2 0.018 0.00
3 0.16286 3 0.018 0.00
4 0.24429 4 0.018 0.00
5 0.24909 5 0.018 0.00
6 0.25479 6 0.018 0.00
7 0.28879 7 0.018 0.00
8 0.32279 8 0.018 0.00
9 0.35879 Disk number 1 9 0.018 0.00
10 0.38369 10 0.018 0.00
11 0.40859 11 0.018 0.00
12 0.43349 12 0.018 0.00
13 0.43869 Bearing number 1 13 0.018 0.00
14 0.44479 14 0.022 0.00
15 0.54752 15 0.022 0.00
16 0.65025 16 0.022 0.00
17 0.75298 17 0.022 0.00
18 0.85571 18 0.022 0.00
19 0.95844 19 0.022 0.00
20 1.06117 20 0.022 0.00
21 1.06517 Bearing number 4 21 0.022 0.00
22 1.06867 22 0.022 0.00
23 1.08867 23 0.022 0.00
24 1.10867 Disk number 2 24 0.022 0.00
25 1.14274 25 0.022 0.00
26 1.17681 26 0.022 0.00
27 1.21088 27 0.017 0.00
28 1.21488 Bearing number 2 28 0.014 0.00
29 1.21838 29 0.014 0.00
30 1.23038 End of inner rotor
31 0.64200 30 0.035 0.03
32 0.66065 31 0.035 0.03
33 0.67930 Bearing number 3 32 0.035 0.03
34 0.68650 33 0.038 0.03
35 0.71170 34 0.038 0.03
36 0.73690 35 0.038 0.03
37 0.76210 Disk number 3 36 0.038 0.03
38 0.80784 37 0.038 0.03
39 0.85358 38 0.038 0.03
40 0.89932 39 0.038 0.03
41 0.94506 40 0.038 0.03
42 0.99080 Disk number 4 41 0.038 0.03
43 1.01430 42 0.038 0.03
44 1.02030 43 0.070 0.03
45 1.03330 44 0.060 0.03
46 1.06030 45 0.060 0.03
47 1.06430 Bearing number 4 46 0.060 0.03
48 1.07380
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Figure 5: Spectrum cascade of the horizontal response of disks 2 and 4, numerical simulation. 𝜆 = 1.65.
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Figure 6: Spectrum cascade of the horizontal response of disks 2 and 4, experimental results. 𝜆 = −1.65.

Table 2: Stiffness of elastic supports (squirrel cage).

Support I Support II Support III Support IV
Stiffness (N/m) 1.45 × 106 2.21 × 105 9.29 × 105 —

speed of the inner rotor. 𝜆 = 1.65 (corotating) and𝜆 = −1.65 (counterrotating) cases are studied in the current
work.

4.1. Overview of the Results. With the model established
by method described in Section 2, steady-state unbalance
response of the rotor system is obtained for rotational speed
of the inner rotor varying from 4 rad/s to 800 rad/s with a
step length of 2 rad/s. Zero initial condition is adopted for
the first step. For the rest of the steps, result of previous step
is adopted as the initial condition. The critical speeds of the
rotor system can be identified by plotting and analyzing the
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Figure 7: Spectrum cascade of the horizontal response of disks 2 and 4, experimental results. 𝜆 = 1.65.

0 100 200 300 400
−15

−10

−5

0

5

10

15

x
(1
0
−
5

m
)

�휔1 (rad/s)
(a) Disk 2

0 100 200 300 400
−15

−10

−5

0

5

10

15

x
(1
0
−
5

m
)

�휔1 (rad/s)
(b) Disk 4

400 500 600 700 800
−6

−4

−2

0

2

4

6

x
(1
0
−
5

m
)

�휔1 (rad/s)
(c) Disk 2

400 500 600 700 800
−6

−4

−2

0

2

4

6

x
(1
0
−
5

m
)

�휔1 (rad/s)
(d) Disk 4

Figure 8: Bifurcation diagrams of the horizontal response of disk 2 and disk 4 with rotor speed. 𝜆 = −1.65.
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Table 3: Parameters of the intermediate bearing.

Radius of inner ring (mm) Radius of outer ring (mm) Number of rollers Contact stiffness (N/m3/2) Radial clearance (𝜇m)
9.37 14.13 9 7.055 × 109 6
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Figure 9: Bifurcation diagrams of the horizontal response of disk 2 and disk 4 with rotor speed. 𝜆 = 1.65.

Table 4: Parameters of SFDs.

Inner rotor Outer rotor
SFD I SFD II SFD III

Radius R/mm 25 18 35
Length L/mm 15 15 20
Radial clearance c/mm 0.1 0.1 0.08
Dynamic viscosity 𝜇𝑠/10−2 Pa⋅s 1.0752

Table 5: Unbalance configuration and inertia properties of disks.

Inner rotor Outer rotor
Disk 1 Disk 2 Disk 3 Disk 4

Unbalance (×10−5 kg⋅m) 2 4 1 2
Mass (kg) 2.3386 2.3386 3.2590 1.6303
Polar moment of inertia
(kg⋅m2) 0.00815 0.00815 0.01561 0.00661
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Figure 10: Response analysis of disk 2: 𝜔1 = 102 rad/s and 𝜆 = −1.65.

spectrum cascade of the numerical and experimental results.
Without loss of generality, only unbalance response of disk 2
and disk 4 are analyzed.

Numerical results of the spectrum cascades for the
horizontal response of disk 2 and disk 4 with inner rotor
operating in 4–400 rad/s are shown in Figures 4 and 5. And
the corresponding experimental results are shown in Figures
6 and 7. The following conclusions can be reached from
Figures 4–7:

(1) Responses of the inner and outer rotor are coupled
because of the intermediate bearing. Frequency com-
ponents, 𝜔1 and 𝜔2, corresponding to the unbalance
excitation frequencies of the inner and outer rotor,
are dominant in the response of disk 2 and disk
4. The coupling effect which makes the spectrum
cascades corresponding to disk 2 and disk 4 basically

follows the same pattern with only slight differences
in amplitude.

(2) Frequency components besides 𝜔1 and 𝜔2 in the
responses of disks 2 and 4, such as 2𝜔1 +𝜔2, 𝜔1 +2𝜔2,3𝜔1 + 2𝜔2, 2𝜔1 + 3𝜔2, and (𝜔2 − 𝜔1)/2, are mainly
caused by the nonlinear forces of the SFD and the
coupling effect of the intermediate bearing. However,
the combination frequency components are different
for co- and counterrotating systems. For example,
Figures 4 and 5 show the spectrum cascade of disks
2 and 4 under counter- and corotating conditions. In
Figure 4(a), the combination frequency components
are 2𝜔1+𝜔2,𝜔1+2𝜔2, 3𝜔1+2𝜔2, and 2𝜔1+3𝜔2, while in
Figure 5(a) only 2𝜔1+𝜔2 and𝜔1+2𝜔2 are observed. In
Figure 4(b), the combination frequency components
are 2𝜔1 + 𝜔2, 𝜔1 + 2𝜔2, 3𝜔1 + 2𝜔2, 2𝜔1 + 3𝜔2, and
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Figure 11: Response analysis of disk 2: 𝜔1 = 102 rad/s and 𝜆 = 1.65.

(𝜔2 − 𝜔1)/2 while in Figure 5(b) those combinations
are 2𝜔2 − 𝜔1, 3𝜔2 − 2𝜔1, and (6𝜔2 + 𝜔1)/3.

(3) In Figure 4, two critical speeds of the counterrotating
rotor system, 168 rad/s and 186 rad/s, are observed.
For the corotating system, Figure 5, the correspond-
ing critical speeds are 168 rad/s and 190 rad/s. From
the experimental results presented in Figures 6 and 7,
the lowest two critical speeds for counter- and coro-
tating systems are 170 rad/s and 189 rad/s and 173 rad/s
and 195 rad/s. The differences of critical speeds for
co- and counterrotating systems are mainly caused by
the gyroscopic effect. For the corotating rotor system,
the gyroscopic moments of both rotors act in the

same direction to strengthen the shaft thus raising
the critical speeds. While, for the counterrotating
system, the gyroscopic moments act in the opposite
directions; thus the strengthening effect is weakened
and then lower critical speeds are achieved.

4.2. Unbalance Response Analysis. Respectively, for counter-
and corotating cases, Figures 8 and 9 show bifurcation
diagrams for horizontal displacement of disk 2 and disk
4 with rotor speed. Sampling period for the bifurcation
diagram is 5 × 2𝜋/𝜔1 because the rotational speed ratio of
outer and inner rotor is ±1.65 and 5 ≈ 1.65 × 3.The horizontal
axes are rotational speeds of inner and outer rotor. And the
vertical axes are horizontal displacement of disk 2 and disk 4.
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Figure 12: Response analysis of disk 2: 𝜔1 = 114 rad/s and 𝜆 = −1.65.

Basically, disks 2 and 4 execute multiple period orbital
motion around critical speeds, which can be seen from the
bifurcation diagrams shown in Figures 8 and 9. For both
the counter- and corotating cases, when the rotor systems
operate near the critical speeds, a four-period orbital motion
is observed; see Figures 10, 11, 16, and 17. Although only four
scattered and isolated points are observed in the Poincare
maps shown in Figures 10(d), 11(d), 16(d), and 17(d), the
enlarged graphic circulated by the red circle shows that the
isolated “points” are actually closed loops which indicate
quasi-periodic motion. Besides, by comparison between Fig-
ures 10 and 11 it can be seen that both the counter- and coro-
tating systems execute four-period orbital motion although
their orbits show a little difference—the amplitude for the
orbit of disk 2 of the counterrotating system is slightly larger
than that of the corotating system. Also, only 𝜔1 and 𝜔2 are
observed in the spectrogram shown in Figures 10(a) and 11(a).

And the amplitude of 𝜔2 is much larger than that of𝜔1, which means the outer rotor is the main source of
vibration.

As the rotational speed rises to 114 rad/s, notable dif-
ferences for the spectrogram, orbit, phase trajectory, and
Poincare map between the counter- and corotating condi-
tions are observed, Figures 12 and 13. The Poincare map
shown in Figure 12(d) suggests that disk 2 executes four-
period quasi-periodic motion under counterrotating con-
dition while no obvious periodicity can be observed from
the random-like and irregularly distributed points shown
in Figure 13(d), the corotating condition. In contrast, this
phenomenon is reversed when the rotational speed is fur-
ther increased to 140 rad/s; see Figures 14 and 15. Under
140 rad/s, the corotating case, Figure 15(d), indicates a four-
period quasi-periodic motion while the counterrotating case,
Figure 14(d), shows randomly points cloud. Besides, from
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Figure 13: Response analysis of disk 2: 𝜔1 = 114 rad/s and 𝜆 = 1.65.

Figures 13(a) and 15(a) it can be seen that frequency compo-
nents other than 𝜔1 and 𝜔2 can be found for the conditions
when no obvious periodicity can be observed.

At 170 rad/s, approximately the next critical speed, four-
period quasi-periodic motion emerges again; see Figures
16 and 17. Also, it is noted that the closed loop shown in
Figure 16(d), the counterrotating case, is twisted while that
of the corotating case, Figure 17(d), is an ellipse. Figures
16 and 17 also reveal that the amplitude of disk 2 under
counterrotating condition is approximately twice that for the
corotating condition.

To conclude, the rotors execute four-period quasi-
periodic motion around critical speeds, Figures 10, 11, 16, and
17. Between two critical speeds, the motion state of the rotor
system can be quite different for the counter- and corotating
cases, Figures 12–15. Around critical speeds, the amplitude of
disk 2 is much larger for the counterrotating case comparing

with that of the corotating case, Figures 10(b), 11(b), 16(b), and
17(b).

4.3. Experimental Validation. The comparison between
numerical and experimental results has already been made
in the previous section, Figures 4–7. Orbits of disk 2 and
4 under three different rotational speeds are compared
in this section for further validation; see Figures 18–22.
The numerical results show great agreement with the
experimental results, which validate the model and method
adopted in the current work.

5. Conclusions

A modeling method combining the finite element method
and the fixed interface modal synthesis method has been
developed in the work to establish the nonlinear model of
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Figure 14: Response analysis of disk 2: 𝜔1 = 140 rad/s and 𝜆 = −1.65.
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Figure 15: Response analysis of disk 2: 𝜔1 = 140 rad/s and 𝜆 = 1.65.
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Figure 16: Response analysis of disk 2: 𝜔1 = 170 rad/s and 𝜆 = −1.65.
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Figure 17: Response analysis of disk 2: 𝜔1 = 170 rad/s and 𝜆 = 1.65.
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Figure 18: Orbit of disk 2 and disk 4 with 𝜔1 = 128 rad/s and 𝜆 = −1.65.
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Figure 19: Orbit of disk 2 and disk 4 with 𝜔1 = 160 rad/s and 𝜆 = −1.65.
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Figure 20: Orbit of disk 2 and disk 4 with 𝜔1 = 210 rad/s and 𝜆 = −1.65.
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Figure 21: Orbit of disk 2 and disk 4 with 𝜔1 = 146 rad/s and 𝜆 = 1.65.
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Figure 22: Orbit of disk 2 and disk 4 with 𝜔1 = 170 rad/s and 𝜆 = 1.65.
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a counterrotating dual-rotor test rig for steady-state nonlin-
ear response analysis. First, a finite element model of the
rotor system is established without considering supports,
from which the mass, stiffness, and gyroscopic matrices are
obtained. Together with these matrices, the fixed interface
modal synthesis method is applied to establish the nonlinear
model of the rotor system in which the nonlinearities of SFD
and intermediate bearing are considered. Subsequently, the
Newmark-beta method is improved to solve the nonlinear
equations of motion. Then dynamic characteristics of the
rotor system are investigated.

Conclusions are listed as follows:

(1) The modeling method developed in this work is fast
and efficient in establishing nonlinear model of com-
plex rotor systems. Combining with the improved
Newmark-beta method, nonlinear dynamic charac-
teristics can be obtained accurately and efficiently.

(2) Due to the gyroscopic effect, critical speeds of the
corotating rotor system are slightly higher than those
of the counterrotating system.

(3) Due to coupling effect of the intermediate bearing, the
dual unbalance excitation frequencies are dominant
in the responses of inner and outer rotor for both the
counter- and corotating systems. Besides, combina-
tion frequency components in the responses of inner
and outer rotor are mainly caused by coupling effect
of the intermediate bearing.

(4) Generally the rotors execute four period quasi-
periodic motion around critical speeds. Between two
critical speeds, the motion state of the rotor system
can be quite different for the counter- and corotating
cases. Around critical speeds, the amplitude of disk 2
ismuch larger for the counterrotating case comparing
with that of the corotating case.

(5) The comparison between numerical and experimen-
tal results has shown great agreement, which proves
validities of the modeling method and the numerical
results.
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